
   AND MUCH NORE

USER GROUPS

PROGRAN LIBRARIES
R

TIMER EUNCTIONS |    

 

EXTRA NENORY
       

(Wuserur rouTines |
     

   1’ PROGRAMMING TIPS |
 

 

(Mxevsonro erriciency LY     Lollusce el
 

   Q HP-41CX DEenm I
D000 J
Rms |
ee >
o=ool
2 ==
2=eae
2 2o,

    HP-41CV    

= HP-41C     
    Understand how the HP-41 works

and learn to expand its abilities
 

 

by W Mier-Jedrzejowicz





EXTEND

your HP-41

by
W.A.C. Mier-Jedrzejowicz, Ph.D.



"Extend your HP-41" by W.A.C. Mier-Je¢drzejowicz, Ph.D.

Second printing November 1985

ISBN 0 9510733 0 3

Library of Congress Card Catalogue Number : 85-062787

Published by:

W.A.C. Mier-Je¢drzejowicz

40, Heathfield Road

London W3 8EJ

United Kingdom

United States publishers:

SYNTHETIX

P.O. Box 1080

Berkeley, CA 94701-1080

U.S.A.

Write to the above addresses for price information.

Please enclose an addressed envelope for reply.

U.K. edition printed by:

Rank Xerox Copy Bureaux

30/34 High Street

Slough

Berkshire

United Kingdom

Copyright 1985, W.A.C. Mier-Je¢drzejowicz

-ii-



FOREWORD

When is a calculator not a calculator? -- When it becomes a computer!

The Hewlett-Packard HP-41 works just like a pocket calculator and looks

like one, yet it can also be used as a powerful pocket computer. This book

takes you on a trip through the ins and outs of the HP-41, beginning with

simple calculations, and ending with sophisticated programs that let you

use your HP-41 as a computer with features far more powerful than those

described in the HP-41 manuals.

Why this book? As pocket calculators and computers have become more

powerful their users have come to be faced with a new dilemma. When out in

the field or in a laboratory and with only a pocket computer to hand,they

ask themselves "Should I try to work my problems out on the pocket computer

here, or should I go back to the office and use a larger computer?” The

answer is "I’ll have to go back and use my office computer" all too often

just because users do not realise how much can be done on a pocket

computer. This is particularly true of the HP-41 which at first sight looks

like an ordinary pocket calculator. Yet the HP-41 is extremely versatile,

more powerful than some pocket-sized BASIC computers, and can be used with

many accessories including interfaces to HP and IBM personal computers. The

HP-41 can be carried around and can serve as a pocket calculator, yet its

uses can be greatly extended whenever necessary, in the field or in the

laboratory. The purpose of this book is to show how any HP-41, not just the

HP-41C but also the HP-41CV or HP-41CX (including the latest versions, see

Appendix E) can be extended by an understanding of its operations, by a

knowledge of special techniques and by the use of various accessories.

The book is divided into five parts with each part subdivided into chapters

and sections. Part I is a general introduction and also includes advice for

the complete beginner. Part II is made up of additional advice for users

with some experience of an HP-41. Part III contains suggestions for

advanced programming, including advice on selecting and using plug-in

modules, particularly the Time and Extended Functions modules. Part III

-1ii-



also covers other accessories, and ways to obtain specialized programs

instead of writing them yourself. Part IV provides information on non-

standard programming techniques, information that is not provided in HP

manuals but allows you to greatly extend the use of your HP-41,

particularly if you have an Extended Functions module or an HP-41CX. This

part includes information about equipment that allows the user to program

the HP-41 in its own internal "machine language". Part V comprises a

collection of Appendices, among them a list of other books on the HP-41, a

list of known faults (bugs), and a list of HP-41 system flags and

barcodes.

Copyright: The material in this book is copyright and may not be reproduced

in any form, either in whole or in part, without the written consent of the

publisher and author, except that the programs contained herein may be

reproduced for personal use, and short extracts may be quoted for review

purposes.

Disclaimer: All material in this book is published without representation

or warranty of any kind. Neither the publisher nor the author shall have

any liability, consequential or otherwise, arising from the use of any

material in this book.

-jv-



AD MAIOREM DEI GLORIAM

Dedicated to my Father who introduced me to the joys of multiplication

tables and of computing, and who is still suffering the consequences and to

my Mother who made it possible.

Acknowledgements: Many people deserve to be thanked for their help or

contributions, and I fear that I may have omitted some names, so first of

all "Thank You" to all the calculator enthusiasts, named and unnamed, who

have provided information that is used by others. I must especially thank

the members of calculator user groups, and in particular Richard Nelson who

founded the original user group PPC and is now running the user group CHHU,

and David Burch who set up and is still running the UK club, HPCC. Many

thanks too to the following who have given me help and advice: Rob

Woodhouse, Dave Bundy, Brian Steel, George loannou, Jeremy Smith, Terry

Stancliffe; also Frank Wales and Graeme Cawsey (and Bill Regussy) and

Julian Perry. A special thank-you to Bruce Bailey who made many helpful

suggestions and provided a very useful program. Grateful thanks to Joanna

Tobiasiewicz and David Burch for their help in typing and checking the

text, to Rabin Ezra who helped with some of the Tables, and to Richard

Rijnbeek for proofreading. My thanks as well to those who have allowed me

to use equipment for this book: Geoff Hall, Robert Lewis, Brian Steel,

Metyclean Ltd. and of course Hewlett Packard Ltd. and their employees.

Keith and Catherine Jarett have worked hard to make the second printing

possible. An extra thank you to them and to Bruce Bailey for suggesting

corrections and changes for this printing.

-V-





CONTENTS

Page

Table Of FigUIeS. ..oteeee et e eeXiii

Table of Tables. . ..otee e e e eteXiv

PART I - Fundamentals

Chapter 1. IntroducCtion .. ... ..tttit ettte3

1.1 The purpose of this book ...........,3

1.2 This book and other books ........... ......5

1.3 Sources of information .................t7

1.4 Notes for experienced USEIS ......oviiiiriiinnneennnnennn8

Chapter 2. About the HP-41 .. ... . ..e11

2.l OVVIEW. ittt ettt eee11

2.2 Some HP-41 hiStOry ..ottt ittt e e iieeee11

2.3 The layout of the HP-41 ... ... ... ... ... .....14

2.4 Batteries and POWeT .. .vii itttee16

2.5 ROM, RAM and Continuous Memory............covivieennn.. 18

2.6 HP-41C, HP-41CV, HP-41CX ... ...ittti19

2.7 SOME ACCESSOTIES .t vt vvtu ittt eee it enneeneeenenneneenens20

Chapter 3. Definitions and problems ...........c..i ittt iinnnnnnnn.29

3.1 Using the HP-41 ... ....etet ei29

3.2 The display and audible signals ................. ...,29

3.3 Toggle keys, Keyboardsand modes. ..........................32

3.4 Parameters, arguments and RPN .............................35

3.5 Instructions and functions, routines and programs,

CAtAlOUGS . ittteeee38

3.6 Some common problems . ......44

-vii-



CONTENTS

Page

PART II - Calculating and programming from scratch

Chapter 4. Starting from the keyboard ......... ...i,63

4.1 Turning on, and what to do if youcannot ...................63

4.2 Look after your stack ...........cciiiiiiiiiiiiiininnnnnn.69

43 Make use of Alpha .........iie78

4.4 Set your StatUS ...ttt it ieineienee,85

4.5 LASTX; corrections and constants ..............ccouvvvunne...89

4.6 Efficiency: keyboard operations vs programming .............93

Chapter 5. Know your funCtions ........cittiitiniieine i innnennennn97

5.1 ChoOOSE YOUT WEAPOMS .ot vtiiet ittt eneneseenennseeennnennn97

5.2 General mathematical functions .............................97

53 Timesand angles ......oviitiiiiii itttit102

5.4 Summations and StatiStics . ..........uiiitiriiineneneneaaas 104

5.5 IndireCtions ...ttteee106

Chapter 6. Something about programming. ..........c.ovveueenneennennnnn. 111

6.1 A SImMPle ProOgram. . ....o.iitiiitieee et eneenenonneennnennn 111

6.2 Using labels to identify programs and routines ............ 112

6.3 Searching for labels with GTO and XEQ.................... 114

6.4 Finding your place, compiled addresses, CAT 1 and

Indirect EXECULION . ...ttt t ittt it ii et et ieeeeeenennnnn 121

6.5 Checking, correcting and changing a program ............... 126

6.6 Watching program €XeCULION .. .......covevrernneennennennnn. 132

6.7 Using tests to control program execution .................. 134

6.8 ISG, DSE and NOPS .......cuiniiiiiiiniiiiiiannenenenann 137

6.9 Asking questions and displaying results ................... 142

6.10 Using subroutines and structuring programs ................ 149

-viii-



CONTENTS

Page

Chapter 7. Some example ProgramsS. .. ...ovt ittt ittnn ittt enneeennnnns 157

7.1 Hyperbolics and inverse hyperbolics ....................... 157

7.2 REVIEW TCBIStEIS .. itiitt it ittt ettt et et et ienenn, 158

7.3 Integration with infinite limits  ............ ... ... ...... 161

7.4 Random numbers .........c..iuiiiininiiiinn i nnnnennenn. 166

7.5 Complete arc Tangent - ATAN2 ......... .. iiiinn.171

PART III - Extended Programming

Chapter 8. More about MeEmMOTY. ... v vttt it ittt ittte177

8.1 Space, time and numbering............c.c.iitiiiiiiiiin.n. 177

8.2 Contents of RAM MeEmMOTY.....oiiitittt181

8.3 The layout of RAMand ROM.............................. 184

8.4 Peripherals, the display and the CPU ...................... 194

8.5 Program instructions in RAM .................. ... .. ..., 196

8.6 Key assignments of instructions ..................c.cuuo.nn.210

8.7 AIC or A1CV2e216

8.8 SpacCe SAVING LIPS .ttt ittt e e eee217

Chapter 9. Time fUNCtIONS . ... .ttt ittt it ittt e e e it eieee227

9.1 A growing SYStemM ... ...ttt it iitieeteenneeaneeanenn227

9.2 Times and dates ... ..oiiiiitinet ittt ienennenns228

9.3 Using the stopwatCh ......... ...ittt232

9.4 Using the alarms ............ ittt ittt inennnnnann.237

9.5 Additional HP-41CX time functions ........................246

Chapter 10. Extended FUNCHIONS . ...ttt tiiteeeeenneeenennnn249

10.1 Extending your control over the HP-41 .....................249

10.2 Alpha string control . ........ ..ittt250

10.3 Moving data and flags ...ttt iiiiiniinnnn259

10.4 HP-41 status control ......... ...ittt267

10.5 Additional HP-41CX functions and features.................273

10.6 Indirect COMPATISONS ...\ vitt ittt et eiieeaeeaeeennenn278

-ix-



CONTENTS

Page

Chapter 11. Extended MemoOTY. . ...ttt ittt i itittt289

11.1 What is Extended Memory ? ...........iiiiiiiiininnnnnnn.289

11.2 Creating and deleting files ...........ccienn.290

11.3 File POINteIS ottt ittt it it ettt e e ee292

11.4 Using data files ........ciiiiiiiiiiiiiiittt295

115 Using text files ...tttitite300

11.6 Using program files .............i,308

11.7 Checking the contents of Extended Memory .................310

11.8 Additional HP-41CX Extended Memory functions............311

11.9 The HP-41CX Text Editor. .. ........ciiiiiiiiiiinnnnnnn.313

11.10 Generalised key assignment program - GASP................316

Chapter 12. Peripherals and plug-in modules ................ ...,327

12.1 More programs, more qUIPmMent . .. .....ouovevneennnennenenn..327

12.2 Printers and display devices ...t327

123 Card Readerand Wand.......... ... ... ... . .i,335

124 HP-IL and other peripherals ............ ... . ...i,344

12.5 Plug-in modules and XROM conflicts . ......................349

12.6 Application program modules.......... ......,354

12.7 Utility program modules...tnnnnn...367

12.8 System Extension modules.............coiiiiiiiiinnnnn...378

129 Diagnostic and service modules ............. ...,390

Chapter 13. Advanced programs and USEr groupPS . ........ouvuuveminnunnennenn393

13.1 Advanced programs 2 ........cciiiiitiiie393

13.2 Books and journals ...........cuiuiiiiiiiitit393

13.3 Adapting programs from other calculators ..................395

13.4 Hewlett Packard Solutions books ............. ... ... .. ...397

13.5 User Libraries and user clubs ............. ... ... ...398

13.6 The benefits of belonging toa user club ..................400

13.7 Buying and ordering programs. . ..........oevveeiirennnrnnn..405

13.8 Writing advanced programs yourself ........................406

-X=-



CONTENTS

Page

PART IV - Synthetic Programming

Chapter 14. Introduction to Synthetic Programming .......................411

14.1 How many bytes makea million ? ......... ...,411

142 Non normalised numbers, tumble dryers and cement mixers...412

143 Your first synthetic tool ....... ... .. .. ..i,415

144 Using the Byte Grabber.............,424

145 The Byte Table and the status registers ...................431

14.6 Status registers M, N, O, P .. ... ... .. ..i,438

147 Register Q ...ttte i e iie444

14.8 Register d, the flag register  .............coiiiirinnnn.446

149 Register ¢, a vital register ... ......458

14.10 Registers +- and e¢; making synthetic key assignments .......465

14.11 Registers a and b - the current address and RTN stack .....473

Chapter 15. Using Synthetic Programming ..............cciuiiitininennn...481

15.1 When should Synthetic Programming be used ? .............481

152 More key asSIgNMENtS . ....uvttinenennennnnennnenennennann.482

15.3 Byte Grabbers, Byte Jumpers and program analysis ..........492

154 Addresses and multi-byte instructions .....................498

15.5 Four eXxamples. . ..otttitttet504

15.6 Synthetic text and Q-loaders ..............cciiiiiiiiinnn.514

157 Other SP bits and pieCes ........coitiiriiiiiniinnennnnnn518

15.8 Do’s and don’ts of Synthetic Programming ..................527

Chapter 16. Synthetic Programming and Extended Functions...............535

16.1 New tricks forold .......... ...i,535

16.2 Alpha register Operations . ...........c.eeiimunenernnnenenns536

163 Flagsand numbers. ..... ...t iiitiiiiiiinnneeenn.538

164 Registers, keys and programs ...............coiiiiiiiinn...543

16.5 Understanding Extended Memory............. ... ...,546

16.6 Manipulating Extended Memory................ ... .. .555

-Xi-



CONTENTS

Page

16.7 Understanding buffers and a programmable PACK ..........563

16.8 A programmable PRP...... ... ... ... . . .i..569

16.9 Non-normalising recalls and RAM editing...................579

Chapter 17. Where next 7 ...itttettt e eie ee589

17.1 A better machine 7 ...... ... .ittt589

17.2 Personalised software and keyboards .......................589

17.3 Hardware modifications ................iiiriiiriininnnnnnn.591

17.4 Black boxes and M-code ...............594

17.5 Missing funcCtions ...........c.iiutiriinnenneennnennnnnnnn598

PART V - Appendices

Appendix A: Books and journals for the HP-41 . .........................603

Appendix B: Sources of information and equipment.......................611

Appendix C: HP-41 system bugs, nasty surprises, and ROM revisions ......615

Appendix D: HP-41 system flags......coiiinieteeeann643

Appendix E: Recent changes to the HP-41 series and new products ........653

Appendix F: Barcodes. ....otee655

s=<673

List Of PrOograms ... ...ttt ittt ititInside back cover

-Xii-



TABLE OF FIGURES

Figure Title Page

2.1 The I/0 POrtsS .tttee e et eee14

3.1 The HP-41 Display....tee eeee30

4.1 First Stack Analysis Form for (a+2)*a ......... .......71

4.2 Second Stack Analysis Form for (a+2)*a..............,72

43 Stack Analysis Form for (a*b + c¢/d)*sin(€) ..........ouviuennnnon...74

8.1 Different ways of seeing a number...ttt180

8.2 A register containing a number........ . ...e182

8.3 A register containing a text String ............tittiiie183

8.4 HP-41C Random Access Memory (RAM) Layout ..................... 185

8.5 HP-41 with Additional RAM . ... ... ... . ..i,188

8.6 HP-41 Read-Only Memory (ROM) Layout ........................... 190

8.7 Layout of a Key Assignment Register..............coviieininenn...212

141 The HP-41 Status RegISterS . ...ttt ittt ittt ittt eeeeee439

142 RegiSter C COMtEMES ...ttt ettt et ettt etete458

143 MoVIng the CUTtaIn ... ...ttt ittt ittt et eeaie s462

144 The key assignment flags. ......ttt465

145 Registers a and b........ .ie474

16.1 HP-41 RAM memory, including Extended Memory ...................547

16.2 Extended Memory link register contents. . ..............oieinneonn.549

16.3 Extended Memory file status header............. ... . ... ... ... ...551

16,4 Buffer header StruCtUIC . ... .. itttitttet563

-X1ii-



TABLE OF TABLES

Table Title Page

8.1 Byte Table of HP-41 Prefixes. ........cooiiiiiiiiiiiiii,197

8.2 Byte Table of HP-41 PoStfiXeS...otttee198

8.3 The HP-41 Display Characters. .. .. .otttit206

12.1 Flag Settings for HP-IL print mode .......... ...ttt nnenn.335

122 XROM numbers used for plug-ins .........coitiiiiirtinnneennnn352

14.1 The Byte Table (first half --rows 0 to 7). .....cov..432

142 The Byte Table (second half --rows 8 to F) ........ ... ... ... .....433

-Xiv-



PART |

Fundamentals

 





CHAPTER 1 - ABOUT THIS BOOK

1.1 The purpose of this book.

What do you get when you buy an HP-41? First of all you get the HP-41

itself with a pocket guide. You also get the manuals whose size alone

suggests that the HP-41 is more than just a pocket calculator. What you

most certainly do not get is a friend to help you understand the HP-41 and

use it to full advantage. Most owners get along as best they can without

such a friend. Some have friends or colleagues who can help them, others

ring Hewlett-Packard to try to get the advice they need. A lucky few find

a user group whose members understand their problems and are willing to

help.

Certain questions and answers come up time and again at user groups. What

should I do if it locks up and refuses to respond to the keyboard? How can

I type in this program if there is no XROM key on the keyboard? Can you

suggest a good program for my work? A single collection of answers to

these questions would be valuable for new members of user groups and for

people who cannot or will not join a user group.

This book contains just such a collection of answers, along with other

information. It has grown out of the monthly meetings in London of the

user group HPCC, formerly called PPC (UK), but the questions and answers

should be of interest to HP-41 users everywhere. Even those owners who

have long been members of a user group will find useful reference material,

new tricks, and some interesting programs here. If you are thinking of

buying an HP-41 then Part I of the book will tell you what you can get and

will help you decide if that is what you really want.

Some questions can be answered with a straightforward "press this button"

or "look it up in such-and-such a book". Others can only be answered

through an explanation in detail of how the HP-41 works. Users who take

the trouble to understand their HP-41 will be able to write better and

faster programs, maybe even to write and sell specialist programs. This

-3-



book will therefore give detailed explanations of many HP-41 operations.

You may prefer to read the details after first looking quickly through the

whole book. No book can hope to answer all questions so there will be

places where you will be referred to another book or to a magazine article.

At times you will be advised to go to a user group meeting, since some

questions are impossible to answer in a book. Books which are referred to

are included in the reference list in Appendix A. Maybe you should look

through this Appendix right now and perhaps buy a different book! It is

most important to read the HP manual, but some people find this hard to

read or maybe they have a second-hand HP-41 without a manual. This book

will do as an introduction if you do not have the manual but you should

really read that too.

The book has five parts arranged to help the reader use it for reference as

well as to read through it. Part I covers the fundamental information

required by a reader, particularly if he or she is new to the HP-41. It

also explains some of the computer jargon that is used to describe the HP-

41, and it even covers some HP-41 history. Part II goes through normal HP-

41 operations. It does not give all the information available in HP

manuals but it includes further details, explanations and suggestions that

are not provided in them. Part III goes on to extended programming; this

means using the HP-41 with plug-in modules and with peripheral devices such

as printers, it also means writing or obtaining programs more complicated

than you would normally write yourself. Many users see advertisements for

HP-41 accessories but do not know how much use these are. Some users even

buy equipment that is completely unsuitable and this part of the book may

save readers from the same fate. Few owners know that some extremely

useful accessories for the HP-41 are made by other companies, some of these

are covered in Part III.

Part IV covers the use of non-standard functions which means using

instructions that are not described in the HP-41 manuals. These functions

can be used on any HP-41 and do not require any extra equipment. Their use

(referred to as Synthetic Programming) greatly extends the capabilities of

the HP-41. This part ends with a short description of further ways to

-4-



stretch your HP-41, including the use of the HP-41 internal "machine

language". Part V contains Appendices with information that is best

collected in one place for easy reference. This includes an Appendix on

the latest changes to the 40 series of calculators, and on how these

changes relate to what is written in the rest of the book. An Index is

provided but if you are looking for a particular piece of information you

may find it more quickly by checking through the Contents. Each part of

the book is divided into chapters with the chapters divided into sections.

Section numbers are used when one item refers to another.

By reading this book (and getting to understand the HP-41 better in other

ways) you will help yourself get more from the HP-41 by extending the range

of things you can do with it. Extending your HP-41 can mean many things -

using its memory better or adding to its memory, using the functions more

efficiently, recognising which peripheral devices will help you most - all

this and more will be covered. If you are a professional who uses the HP-

41 for engineering or scientific work, you should find advice that will

help extend the usefulness of your HP-41. It seems reasonable then to call

the book "Extend your HP-41", for that is its overall purpose.

1.2 This book and other books.

As stated above this book contains information that will help you

understand the HP-41. You may want to buy or borrow some of the books and

journals referred to for further details, see Appendix A. A few deserve to

be mentioned right away. First of all, you should make sure you get and

read the HP manuals. They vary in style and quality but it is unwise to

use any product without knowing what the maker has to say about it. The

HP-41CX manuals are particularly good and you may want to have a look at

them even if you do not have an HP-41CX.

Other books come in three kinds. There are specialist books on certain

features of the HP-41, such as the Extended Functions or Synthetic

Programming. Secondly there are specialist books on particular subjects,

such as navigation or forestry. Thirdly, there are general information or

-5-



reference books such as the HP-41 and HP-IL System Dictionary or "Tips and

Routines for the HP-41". The book you are reading now is definitely of the

third kind. It contains some of the same information as other books but

does not replace the lot. In particular "Tips and Routines" by John

Dearing is well worth having, and the "Synthetic Programming Quick

Reference Guide" by Jeremy Smith provides a very useful pocket-sized

reference.

This is primarily a programming book. It gives advice on solving your

problems by means of programs or keyboard calculations. The peripheral

devices have been left until Part III for this reason, and even then they

are treated mainly as aids to programming. In other words, this is more of

a software (programming) book than a hardware (nuts and bolts; and chips)

book. Some hardware advice, even on opening up the HP-41 and speeding it

up has been provided, but this too is designed to help in programming. If

you want detailed advice on rebuilding your HP-41, or using it as a

doorstop, then you need a book that is more concerned with the HP-41

hardware.

Now a few words about the way some information will be presented here. A

new word or idea will be printed in bold characters at the place where it

is explained. A short set of steps to be done on the HP-41 will be printed

with each step appearing as it is seen on the keyboard and separated from

the next step by a comma. For example the steps taken to work out the

logarithm of six would be printed as 6, LOG which means press the key

marked 6 then press the key marked LOG. Longer sets of steps and programs

will be shown as they appear on an HP-41 printer. You do not need a

printer to use this book, but if you do not have one then you should check

through Section 2.7 which shows what a program looks like when it is

printed. The up-arrow symbol, 1 will be used to mean "to the power of" in

arithmetic expressions, so that X712 means "X to the power of 2", or

"X squared". The HP-41 displays X12 and Y1X in the same way.

-6-



1.3 Sources of information.

The information in this book has been gathered from various sources and

these deserve to be mentioned here. First of all, some important

information from HP manuals has been repeated here albeit in a different

form. HP also used to publish a quarterly journal "Key Notes" which gave

much useful information including corrections, and suggestions from users.

Some information from "Key Notes" will be mentioned.

A great deal of information has come through user groups, specially the

oldest group, PPC, through its journals, through books published by its

members, and through discussions with individuals. The books and journals

are mentioned in Appendix A, many members of user groups have provided

information and I thank them all. Sometimes I have thanked particular

individuals for providing ideas or programs, but many bits of information

have come from more than one source or from a source I cannot identify.

Information that has been published is subject to copyright and it is

neither proper nor safe to copy text from other people’s books. It is

legal to publish short extracts for review purposes and in a few places I

do mention a particular book or article and include a short extract to show

what can be found in that particular text. In general though, books and

articles are mentioned as sources of further specialist information on a

given subject.

Of course some of the information has come from the author too. I have

used my HP-41 for serious work, particularly in Space Physics, and also for

playing about with in my spare time. Some of this has resulted in useful

routines, or in ideas for improved control of HP-41 operations; these have

formed a considerable part of the book, including some new uses of the

Extended functions for Synthetic Programming.



1.4 Notes for experienced users.

New HP-41 users should find a lot to interest them in this book, but what

is there in it for more experienced users? Those experienced users who are

not members of a user group or who have only recently joined one will find

much information that is not available outside user groups, and some

readers may even decide to join such a group. The generalised key-

assignment program in Section 11.10 is an example of a topic that should

interest these readers; it provides a convenient introduction to the non-

standard HP-41 functions without itself using any such functions.

It has not been my purpose here to publish a list of programs for use in

specific subjects; readers who are experienced HP-41 users will no doubt

have their own programs already. I have included a few programs for

mathematical or engineering calculations, but these are provided as

examples and my main purpose is to give answers to questions, and to make

suggestions as to how the HP-41 can be used more effectively. To this end

the book provides a mixture of new ideas and of information gained from the

experience of people who wish to use the HP-41 more efficiently and to

greater advantage.

If you are an experienced user but your normal use of the HP-41 has been

confined to the instructions in the manuals you may be surprised to find

that additional powerful instructions have been discovered and exploited.

Even the HP-41 internal machine language (M-code) can be used for

programming. You can compare the use of the normal instruction set to

programming in BASIC on a home computer. The use of the additional

instructions called "Synthetic instructions" is like using BASIC with PEEK

and POKE instructions to access the operating system. The use of M-code is

equivalent to programming a home computer in its own machine language.

Those readers who are experienced members of user groups will know already

about Synthetic Programming (SP) and about M-code. This is not a book

about M-code, although that is mentioned, so what use is it to an old hand?

It provides two things for these users; firstly a review of normal HP-41

-8-



programming including new tips, and secondly various information on SP,

particularly new ideas on the use of SP with the Extended Functions,

illustrated by examples. It also contains reference material such as a

list of bugs. It is a collection of ideas and suggestions concerning the

HP-41, all in one place, so that owners of this book may be able to avoid

looking through a stack of old journals every time they need to check

something. If you do not think you need a book like this then pass it on

to a new member of your local user group who asks all those silly questions

you can no longer be bothered to answer.

Exercises.

A textbook without exercises is like a calculator without an ENTER Kkey;

what was in your memory gets lost when you start on something new. For the

sake of those people who want to treat this book as a textbook each chapter

will end with a few exercises. They should help you remember what the

chapter was about, but you can ignore them if you wish.

1.A One of the subjects on the cover of the book is "Keyboard efficiency".

How efficiently do you use the functions on the keyboard? Test yourself by

finding the smallest number of keys you need to press (without using key

assignments) in order to work out the square root of (A12 + Bf2 + C12) and

display the result. Count every time you press a key including SHIFT, but

do not count the keys needed to put in A, B and C. Hint: you will find the

answer in Section 5.3 under P-R, R-P.

1.B Look through Appendix A. Do you recognise any of the books? Have you

read any of them? If you are serious about using your HP-41 you should

think about buying some of the books most closely related to your

interests. If no suitable book exists maybe you should write one yourself!

1.C Get a notebook and keep notes of interesting items as you go through

the book. This is particularly important if you are an experienced user:

otherwise you may quickly forget new ideas if they are mixed in with things

you already know.





CHAPTER 2 - ABOUT THE HP-41.

2.1 Overview.

This whole book is about the HP-41 so why a chapter "About the HP-41"? The

first chapter was an introduction to the book; this chapter is an

introduction to the HP-41. Its main purpose is to explain the HP-41, to

help new owners and to introduce words that are normally used as computer

jargon but have also come to be used to describe the HP-41. If you already

know your HP-41 and the jargon, and if you really do not care why the HP-41

system is the way it is, then you may as well skip this chapter.

2.2 Some HP-41 history.

The HP-41C was introduced by Hewlett-Packard on July 16 1979 as a portable

battery-operated programmable calculator with many "advanced" features

including a full alphabetic capability. Since that time two further HP-41

models have been produced along with a host of accessories, books and other

items. Whereas previous calculators were replaced by entirely new models

after two or three years the HP-41 has grown with these additions, some of

them foreseen in its planning, others introduced later. Thus the HP-41 has

not been replaced quickly but has been extended by these new features,

particularly the HP-IL interface loop.

The capabilities of the HP-41 series have been expanded so much that

Hewlett-Packard nowadays call the HP-41 a portable computer. Nevertheless

the HP-41 on its own looks very much like Hewlett-Packard’s original

scientific pocket calculator, the HP-35. The dimensions, the vertical

format, the position of the display and keyboard, even the number and

layout of the keys (buttons) are the same on the HP-41 computer as on the

HP-35 calculator.

The HP-41 is therefore a calculator-based computer, as opposed to other

pocket computers which are scaled-down versions of microcomputers used in

the home and office. This difference extends to the languages used; the

-11-



micro-based pocket computers generally use BASIC which is the language used

by most micros. In this language a single instruction (statement) can

include complicated arithmetic expressions. The HP-41 language is made up

of the instructions available on the keyboard together with other similar

ones, and a program is made up of a collection of these strung together one

by one. The relative merits of the two types of pocket computer can be

argued, but the fact is that an HP-41 can be used as a calculator which

turns into a computer when necessary. This evidently has strong appeal to

many scientists, engineers, navigators, astronauts and others; Hewlett-

Packard have sold over a million HP-41s.

Certainly most owners will defend the HP-41 against attacks on its supposed

shortcomings. Its high price can (perhaps) be justified by its high

quality and the level of after-sales service provided by Hewlett-Packard.

Its vertical format allows it to be held and used with only one hand. Its

language i1s as much a computer language as any other and has been named

FOCAL (Forty-One Calculator Language); not an ideal choice since a computer

language called FOCAL already exists (an operating system language for

CDC’s). The limited memory and speed are limited only in comparison to

bigger and less portable machines.

Hewlett-Packard have of course introduced other personal calculators and

portable computers since the HP-41. The series 10 calculators are lovely

pocket-sized machines, faster than the HP-41 at certain tasks but with

neither its general-purpose capability nor its features for communication

with other devices. The HP-75 is a true computer, faster than the HP-41,

but of a size to be held in the lap not in one hand, and much more

expensive. The HP-71 1is also beautiful: it looks like a scaled-down

version of the HP-75 although internally it is more similar to the HP-41.

It is hand-sized (just) and has an amazing calculator mode but it is a

computer with a horizontal format and therefore less likely to travel with

people who like to do their calculations out in the field using just one

hand. An "HP-41 translator module" for the HP-71 has recently been

introduced; it allows the user to write and run HP-41 programs on an HP-71,

it also provides new HP-41 type functions and allows FOCAL programs to be

-12-



mixed with BASIC or FORTH routines and programs. This module is a great

help for someone who wants to transfer their work from an HP-41 to an HP-71

and take advantage of its greater speed, but it does not make the HP-71

smaller, change its shape, or make it any cheaper. In short, Hewlett-

Packard have introduced new items, but nothing to replace the HP-41

calculator/computer. No other company makes a device that is directly

comparable to the HP-41, the nearest is probably the Psion "Organiser".

This is the same size and shape as the HP-41 and is described as a pocket

computer but it is more an electronic pocket notebook, with better text

editing facilities than any current HP-41 but with only two ports for

plugging in memory modules or specialist software modules.

To avoid "calculator or computer" discussion all three models (HP-41C, HP-

41CV, HP-41CX) will be referred to as "an HP-41" or a "machine" without

specifying whether this may be a computer or a calculator. Perhaps the

best title for the HP-41 is an HHC - for Hand-Held-Computer which makes it

clear we are not talking about a computer such as a PDP-11 or a Cray-l.

The programming language will be referred to as FOCAL or simply as the

"user language" since it is the language employed by ordinary users. The

limitations of memory size and speed will be treated as obstacles to be

overcome, not as reasons for replacing the HP-41 with a bigger "machine".

The milestones in the history of the HP-41 since its introduction have been

the introduction of the HP-41CV with five times as much memory as the HP-

41C has, the introduction of the HP-IL and the Time module and the Extended

Functions module, and the introduction of the HP-41CX. If you ask members

of a wuser group they will probably add other milestones such as the

development of Synthetic Programming or the use of M-code. The

introduction of the HP-71B is often described as the final milestone,

actually more like a tombstone, but in fact the HP-71 is sufficiently

different that it will not entirely replace the HP-41. Those people who

prefer vertical format, calculator-style computers are waiting for Hewlett-

Packard to produce a true successor to the HP-41s, either an even more

extended HP-41, or an entirely new product.

-13-



2.3 The layout of the HP-41

Let us now examine the HP-41 itself. New owners should make sure they

recognise the various parts of an HP-41 and their names. Presumably most

readers will know that the word key means one of the buttons on the front,

but is it fair to assume everyone knows this? If you know about the layout

and names then skip this section and come back to it later if you need to.

At the top on the front is the display which shows results and messages.

Below this are four toggle keys or rocker switches which determine how the

HP-41 will react to any other keys on the keyboard below them. The SHIFT

key is the yellow (or gold) key. On the back of the HP-41 is a sticker

showing the ALPHA keyboard (or the Text Editor keyboard on the HP-41CX

although this is mostly the same as the ordinary ALPHA keyboard). Above

this sticker is the battery compartment. At the top of the HP-41 are four

Input/Output ports or I/O ports or simply ports. These let you plug in

modules or peripheral devices (known jointly as accessories or plug-ins )

that can be used with the HP-41. The ports are numbered as shown below.

 

Figure 2.1 The I/0 ports.

The same numbering is shown on the panel at the top left of the back. The

serial number, including date of manufacture, is at the top right. You

should keep a note of this in case your HP-41 is ever stolen. Finally

there is an AC adaptor socket on the side to the right of the keyboard.

-14-



Since the HP-41 allows you to redefine the keys, it is designed to let you

put an overlay on the keyboard. You get two general-purpose keyboard

overlays with your HP-41 when you buy it. The overlays lie on top of the

normal keyboard; they have holes cut out so that they slip over the keys

and only cover up the printing above them on the flat part of the keyboard.

The new functions you have chosen for each key can be written on the

overlays so that you can check what each key does. Special overlays are

also provided for use with some plug-in modules and for certain functions

which redefine the keyboard, for example the Stopwatch. To hold down the

overlays the HP-41 has a tab at the top of the keyboard and three slots at

the bottom. You can also buy a super-overlay called a membrane Touchpad.

This covers the whole keyboard, keys and all, and it contacts each key

through a small pad. It can have the normal key functions printed on it or

companies that use many HP-41s can order touchpads with special functions

printed on them. The touchpad reduces the positive "click" that you

normally feel when you press an HP-41 key. Some people dislike this, but

the touchpad makes the keyboard quicker to use because it lets you slide

your fingers over its surface from one key to another without lifting them

off each key after it has been pushed.

The I/O ports, the slots for the overlays and the sliding tab all leave

holes in the HP-41 case. There are also two holes to the left and right of

the I/O ports,these are designed to hold the Card Reader firmly in place,

you can sce them in Figure 2.1. Whereas many previous HP calculators were

encased in an impenetrable shell, the HP-41 will let in water and sand

fairly ecasily because of these gaps. Yachtsmen generally put two polythene

bags one inside the other around their HP-41s to keep out the water. In

sandy deserts or very dusty conditions you should stick some heavy duty

tape around the various gaps including the AC adaptor socket. You can use

a touchpad to cover the keyboard and hide the gaps around the keys and the

tab and slots. If you are the kind of person who often spills coffee (or

sulphuric acid) on the keyboard you will find the touchpad very useful.

(If your HP-41 dealers do not have the touchpad in stock tell them the part

number, it is HP 82200A, otherwise they will probably try to sell you an

-15-



overlay kit!) The worst problem with coffee or other drinks is that the

sugar in them dries out under the keys and jams them. If you drink coffee

without sugar you may get away with spilling some on the keyboard. The

touchpad is rather expensive, a much cheaper way to protect the keyboard is

to cut out a piece of card large enough to cover the whole keyboard and

hold this card down over the keyboard with sticky tape. Then glue one of

the overlays over the card. You will find that you can press the HP-41

keys through the card; the overlay shows you where each key is, and you can

write the key functions on the card, so that they can be read through the

holes in the overlay.

2.4 Batteries and power.

If you have bought a new HP-41 or if your HP-41 has not been used for over

a year then you should put in a new set of four 1.5 Volt alkaline size N

(also called 2/3 size AA) batteries. In the UK ask for Duracell MN9100,

VARTA 7245 or their equivalent. The battery replacement method is

described in the manuals but I shall repeat it here for anyone who has

still not obtained a manual. Remove the battery pack by pushing the inset

lip away from the ALPHA keyboard sticker. The holder pops out and you can

remove the old batteries and insert the new ones, making sure that each

battery has its + end or its - end facing the bottom of the holder as

marked on the underside of the holder. Replace the holder with the exposed

battery ends facing the top and push forward and down until the holder

snaps into place.

If you put in worn-out batteries, or if any of the batteries are the wrong

way round then the HP-41 should not be harmed but it will refuse to turn on

and the contents of its memory may be lost. Turn round any batteries that

are upside down and do not put in or leave in any old batteries since they

may leak. Instead of disposable alkaline batteries you could use a more

expensive type such as lithium cells of the same size, or mercury cells;

both types have a longer life. You could also use rechargeable Nickel-

Cadmium 1.5 V cells (Ni-Cads for short). Whatever type of batteries you

use, make sure the battery contacts are clean.

-16-



The HP-41 was originally designed to be run from an AC mains adaptor as an

alternative to batteries and the AC socket on the side had two small gold-

plated balls for contact with the adaptor plug. Instead of an AC adaptor

HP eventually produced a rechargeable battery pack (part number 82120A if

you want to order one) which replaces the whole battery holder. This

battery pack can be charged from the same AC charger as is used for the HP-

41 printer and the HP-IL printer and cassette drive. The charger plug can

be fitted through the AC socket, but the gold contacts are no longer

provided since an accidental electrical contact with them can damage the

HP-41 circuits.

When you are using your HP-41 you will need to change the batteries

occasionally, the BAT message will warn you of this, see Section 3.2. If

you are replacing the batteries after using the HP-41, make sure it is

turned off when you remove the battery pack. While the batteries are

removed after the HP-41 has been turned off, internal capacitors provide

enough current to maintain the contents of memory. You can be fairly slow

in changing the batteries, the internal capacitors on most HP-41s will

maintain memory for several days and some will last for up to a month! Do

not try to turn on the HP-41 while the batteries are removed as this will

speed up the discharge.

Once you have a set of good batteries correctly placed in the HP-41, you

should be able to turn it on by pressing the ON toggle key. Normally the

HP-41 comes on with its memory unchanged, but a new HP-41 or one whose

batteriecs have not been replaced soon enough may display MEMORY LOST to

show that the memory contents have been lost. If the display remains

completely blank or if it shows MEMORY LOST, press the backarrow key and

the display should show a zero value. If none of these things happen, see

Section 4.1 for further advice. To protect against unnecessary battery use

the HP-41 turns itself off automatically after 10 minutes if it is not

being used; you can prevent this, sce last paragraph of Section 3.3.

Following MEMORY LOST, the HP-41 sets its display and other features to

-17-



default values. A default value is one that is assumed if no other value

has been specified. For example numbers are displayed with four digits

after the decimal mark by default unless you specify a different display.

(On previous HP calculators the default display was two digits after the

decimal mark.)

2.5 ROM, RAM and Continuous Memory.

Should the HP-41 batteries be removed for too long a time, it will lose

everything that the user has put into its memory (see previous section).

On the other hand it will still remember that it is an HP-41! The display

and the functions will work as before because their instructions are stored

in a permanent memory which cannot be changed unless the HP-41 is damaged.

This type of memory is called ROM (Read Only Memory). The HP-41 can only

read instructions and information from this memory; it cannot change them.

The ROM memory is written before the HP-41 is put together, it does not

change afterwards (unless it is replaced when the HP-41 is being repaired),

and it does not need batteries to be preserved.

The user must also be provided with memory that can be altered so that new

numbers and programs can be stored. This memory in the HP-41 is called

Continuous Memory, but it is only continuous so long as the user does not

change it and there is an electric current to maintain it. It is actually

called Continuous Memory because on earlier calculators all this user

memory was lost every time the calculator was turned off. Newer circuitry

takes a current of less than 0.ImA to maintain the memory and this is

provided by a small "leakage current" from the batteries even when the

machine is turned off, and from capacitors when the batteries are removed.

Memory that can be written to and read from used to be divided into two

types, sequential access and random access, although this division into two

types is rarely used now. Sequential access memory such as a magnetic tape

needs to be read or written in sequence, from the beginning to the required

place. Random access memory allows the user to go directly to any place

without checking from the beginning every time. The Continuous Memory of

-18-



the HP-41 is of this type, called RAM (Random Access Memory). The layout

of the HP-41 RAM and ROM memory will be described in Chapter 8.

HP-41 memory is divided up into registers. [Each register can store a

number with up to ten decimal digits, a decimal point and a sign followed

by a signed two-digit exponent (power of 10). The part of the number that

is not the exponent is called the mantissa, and each single figure (0 to 9)

is called a digit. Each register can also contain a text string made up

of zero to six characters. A character is any letter, numerical digit,

punctuation mark or special symbol (like + or & or a blank space). Other

things can also be stored in registers, and registers can be divided up

into smaller elements or treated as groups. This will be discussed in

Chapter 8. For now it is enough to say that the contents of a register

will just be called a value if there is no need to specify what that value

actually is. The contents of registers, and other items which are used

during programs and calculations are known collectively as data.

2.6 HP-41C, HP-41CV, HP-41CX...

The HP-41C, the original (and cheapest) version of the HP-41, has 64 memory

registers available for storage of programs, data and key reassignments.

64 registers may seem a lot for a pocket calculator but on an HP-41C they

will be quickly used up unless it is dedicated to one task only and is

never used for anything else. Up to 4 RAM memory modules, each with 64

memory registers, can be plugged in to extend the memory but they take up

the ports which can therefore not be used for other plug-ins. In January

1981 HP introduced a Quad memory module equivalent to four ordinary memory

modules. At the same time they introduced an HP-41 with a Quad module

built into it, the HP-41CV; the V is a roman five to say the CV has five

times as much memory as the C. The HP-41CV keyboard also had keys with a

more slanted lower face, which made the blue letters easier to read than on

the original keyboard. This improved keyboard is now used on all HP-41s.

In December 1981 HP announced the HP Interface Loop (HP-IL) and also the

HP-41 Time module and Extended Functions/Extended Memory module. These two

-19-



modules were useful for control of devices attached to the the HP-IL loop,

but they also extended the abilities of the HP-41 itself. It was soon

rumoured that a new HP-41 model with these modules built-in would appear,

as had been the case with the HP-41CV. In fact the HP-41CX (X for

Extended) was cancelled and resurrected several times before it was

officially announced in November 1983. The HP-41CX is just like an HP-41CV

with a Time module and an Extended Functions/Extended Memory module built

in, except that it has additional functions and features, including a Text

Editor. The Time and Extended functions will be described in Chapters 9,

10 and 11.

As of December 1984 the HP-41CV was marginally more expensive (in the UK)

than an HP-41C and a Quad memory module bought separately. An HP-41CX

however costs little more than an HP-41CV, the difference is less than the

cost of a Time module or an Extended Functions/Extended Memory module.

Unless you are buying an HP-41 for a specific application which is fitted

exactly by the HP-41C or the HP-41CV, then the HP-41CX is the best buy even

if you do not use many of its additional functions. (Few people really do

much text editing on a pocket computer, but it is nice to have a text

editor on the HP-41CX just in case you want to make a few notes.) More

details of the HP-41CV will be given in Section 8.7 and various features of

the CX will be described in Sections 9.5, 10.5, 10.6, 11.8, and 11.9.

It is possible that Hewlett-Packard could introduce an even more extended

version of the HP-41, perhaps with more Extended Memory and Extended

functions than the HP-41CX. Most of the advice and programs in this book

should work on such an additionally extended HP-41. (Any changes or

additions to the 40 series that are made after the main part of the book

has been written will be mentioned in Appendix E.)

2.7 Some accessories.

The plug-in modules and devices available for use with the HP-41 will be

discussed in some detail in Chapter 12. As it will be necessary to mention

them earlier here is an introduction to the plug-ins available.

-20-



As was explained in Section 2.5, the HP-41 uses ROM and RAM memory. RAM

modules provide additional memory for the user in the form of memory

modules, Quad memory modules and Extended memory modules. ROM modules,

sometimes just called ROMs, contain pre-written programs for special

applications, for example the Maths or the Petroleum Fluids Applications

modules. Some special ROMs contain additional functions, not programs, and

these modules may contain other parts such as a quartz oscillator in the

Time module, or RAM memory in the Extended Functions/Extended Memory

module. The plug-in modules are all the same size, just small enough to

fit entirely into one of the HP-41 ports.

Plug-in devices each have a plug that fits into a port but the devices

themselves lie outside the HP-41. The ports are called Input/Output ports

but many of the accessories are used only for input or only for output.

The Card Reader is used to store programs, data (information), and the

status of the HP-41 on small magnetic cards. These cards can be treated as

mass storage, an cxtension of the HP-41 memory without size limitations.

The programs, data and status can be read back into the HP-41 at a later

time and they can be transferred to other HP-41s. The Card Reader can also

read HP-67 and HP-97 program and data cards and interpret them for use on

the HP-41. This means that owners of these earlier calculators can carry

on using their programs, and that HP-41 owners can use HP-67/97 programs if

no available HP-41 programs meet their needs. The Card Reader provides 26

extra HP-41 functions designed to simulate HP-67/97 functions not available

on the HP-41. (Some of these functions are very useful on their own and

can be exploited in HP-41 programs.) It plugs into port 4 and looks like a

part of the HP-41. If you have wondered why the soft carrying case has a

piece of foam at the bottom, this is because the case is designed to hold

an HP-41 with a Card Reader attached to it when the piece of foam is

removed. The Card Reader is a true Input/Output device as information can

be written or read with it; it should really be called a

"Card Writer and Reader" but the name "Card Reader" has been borrowed from

computers and will not change.

221-



The Optical Wand or Wand can be used to read single instructions, data and

whole programs from printed barcode which looks similar to the product

codes on items in shops. Barcode is easier to mass-produce and copy than

magnetic cards, it cannot be damaged by magnetic fields, and it can be

easily stored and transported (for instance in books). Barcode for several

programs has been included in this book whereas it would not have been easy

to include magnetic cards. Some pecople prefer to use a barcode keyboard

which provides all the functions they use; this can be ecasier than using

the keyboard and spelling out or assigning instructions that are not

available on the ordinary keyboard. Small amounts of barcode can be drawn

by hand without too much trouble or it can be made up from the sheet of

labels sold with the Wand. Barcode for the new fuctions available on the

CX is not yet provided with the Wand so it has been included in Appendix F

together with barcode for letters and some other functions. Large amounts

of barcode take a lot of work to produce directly from the HP-41, and only

printers and plotters available on HP-IL can print it. Even this is

difficult unless you have a Plotter module. Barcode can also be ordered

from companies which will produce it from magnetic cards. The Wand is

clearly only an input device.

The HP-41 printer, the HP82143A, plugs directly into the HP-41 and is used

to print data, programs and status information. It can also be used to

print graphs, histograms and simple pictures, and to trace program

execution. It increases the usefulness of the HP-41 enormously but costs

half as much again as an HP-41CX.

All the above devices plug directly into one of the HP-41 ports and are

designed for use with the HP-41 alone. (Devices like this, intended for

one particular use only are called dedicated devices.) The Hewlett-

Packard Interface Loop (HP-IL) works differently; it provides a means of

attaching a variety of devices to each other on a single loop. The HP-41

can be one of these devices, and normally it expects to control the others.

A different controller, for example an HP-75 computer can be used, and it

is even possible to have more than one computer on a loop. Devices for use

with HP-IL are designed to work with the HP-41 or any other controller that

222-



can send them commands along the loop. This is more versatile than using

items dedicated to the HP-41, but it is at the expense of having to use a

special HP-IL module. This plugs into one HP-41 port and has two cables

attaching the HP-41 to the rest of the loop.

When HP-IL was introduced, a printer very similar to the HP82143A was

provided. This new printer, the HP82162A, has all the features of the

HP82143A, plus the ability to format printing (space it out on a line as

required), to justify text margins, and to print barcode. It costs more

than the HP82143A and it can only work with an IL module which is itself

expensive, but it can be used with any HP-IL computer, not just the HP-41.

The older printer has one advantage; it can be used with an HP-IL

Development module to let an HP-41 connected to a loop monitor what other

devices attached to the same loop are doing. If an HP82143A printer is

attached to the monitoring HP-41 it can print out a full analysis of the

commands and data passed round the loop. An HP82162A printer cannot do

this since it is attached to the loop in general, not to the monitoring HP-

41. The HP82162A also prints some rarely used characters differently than

does the HP82143A. Both these printers produce rows of only 24 characters

and use thermal print paper which fades with age and exposure to heat or

light. Important information from these printers should be stored

carefully or photocopied to provide a more permanent copy if it is not to

be lost.

The next few Chapters will introduce fundamental ideas and describe how

the HP-41 is operated from the keyboard, but later on, particularly after

Chapter 5, a great deal will be written about programming, and various

programs will be printed out. HP-41 programs are shown in this book as

they would be printed on an HP82143A or an HP82162A printer. Most program

lines look exactly the same on such a printout as they would on an HP-41

display but there are a few differences, so a short example of a printed

program will be useful. The printout of a program is often called a

program listing. Here then is an example of a program listing:

-23-



aPM 18,12
BL "LIGHT"

The first line shows the time and date when the program was printed. This

is provided by HP-IL printers but not by the HP82143A, and it is only

printed if the HP-41 has a Time module attached or built-in. This helps

you find the latest version of a program but is not much use in a book, so

most listings in this book will be shown without it. The next line is line

01 of the program. Since it is a label it is printed with a lozenge on its

left. This lozenge, or diamond, is printed next to all labels to help you

find them in a long program listing. (In typed program listings, I shall

use an asterisk in place of this diamond.) The label consists of the LBL

function and its name "LIGHT" enclosed in quote marks. In the HP-41

display the name would not have quote marks around it but it would appear

as 01 LBL'LIGHT. The 7 is a text symbol showing that what follows it is a

string of text, not an instruction. The next line contains the number

representing the speed of light in SI units. This consists of a mantissa

(2.998) followed by a power of 10 (or exponent). In a program the exponent

is separated from the mantissa by the letter E. In a normal display the

separator is just a space. The next line contains no instruction, just the
T

text "c=". In the display this would appear as "c= . It is important to

realise that there is a difference between a piece of text on its own,

which is used for displaying messages, and a piece of text that is part of

a function such as the LBL above. The remaining lines of the program

display a message showing the speed of light. This program can be used to

get the speed of light for use in calculations and to display it clearly at

the same time. Programs and programming methods will be described in

detail in Chapter 6.

-24-



Larger printers are available for use with HP-IL, these generally have the

advantage that they print on ordinary computer paper and also on single

sheets but none of them have a set of characters that is fully compatible

with the HP-41 which uses a few unusual characters. The new Thinkjet

printer uses a thermal inkjet instead of a dot-matrix printer head (this

works best with one kind of paper which particularly suits the Thinkjet

printer) but otherwise it is fairly similar to the dot-matrix printers.

The more advanced of these can be used for graphics since the individual

dots can be addressed and used for printing any selected pattern. Video

interfaces are also available for the HP-41, these really work like on-

screen printers and do not provide any graphics. The printers are

fundamentally output devices, although some limited talk-back to the HP-41

is available from their control buttons.

The HP-IL version of the HP7470A Plotter can be used for graphics or as a

printer. It can also be used as an input device for digitising graphs and

figures since it has an Enter button which sends the X and Y coordinates of

the pen back to the HP-IL controller.

In addition to the Card Reader you can use magnetic cassettes and disks for

mass storage. Unlike the Card Reader these can only be controlled through

an HP-IL module. The printers and the cassette drive have a metal loop at

the top left for use with a security cable. This feature is not generally

advertised by HP.

Some care is needed in plugging-in and unplugging all modules and devices.

The HP-41 and the devices can sometimes be damaged if they are connected or

disconnected while either is turned on, but this very rarely occurs and you

should not be unduly worried if you remove a module and then find that you

forgot to turn the HP-41 off. The contacts in the HP-41 ports and on the

plug-ins have a thin layer of gold plating which slowly wears away so you

should not plug items in and out just for the fun of it. Hewlett-Packard

will replace the HP-41 port connectors at a price, but they will not

replace the contacts inside a module. (Some user groups have members who

are willing to do this though.) The modules and the ports can collect

-25-



static electricity and when they are connected this can affect RAM memory,

occasionally causing a "crash" or even a MEMORY LOST. This can usually be

avoided by breathing gently into the port and the module opening before

connecting them together. The moisture in your breath should be sufficient

to discharge the static, but water is bad for the connectors, so do not

breathe too heavily.

Early models of the Card Reader and the Time module may draw an excessive

current from the HP-41 batteries when they are first plugged-in. Turn the

HP-41 on and off after you plug them in to reduce the current drain to

normal.

The I/O ports are one of the best features of the HP-41, although four are

not enough. When the HP-41 was first introduced, cynics said that the

ports were only there so that people would have to buy their HP-41 in bits

and pay more for it. To some extent this may be true, but there are now so

many bits that you may well be unable to fit all the ones you are using at

once into the four ports. A partial solution is to buy an HP-41CX since

this has so much already built in, but even then you may soon be playing

"musical ports" as one HP-41 user (W. Kolb, PPCCJ V9N4p96) put it! A

better solution is to use a Port Extender. This is a box which fits

under the HP-41, plugs into one port, and provides more ports (the number

can depend on the make, but is typically six extra ports). Only

independent companies make port extenders, see Appendix B; Hewlett-Packard

do not produce such a device since there are some complicated rules about

what can go into each slot. Adventurous owners open up their modules and

combine the contents of several into one, or even wire the module contents

directly into the free spaces in their HP-41. Some companies provide this

service too, they are best contacted via local user groups. Once again

there are several rules about what can or cannot be done, one of these is

that you cannot expect HP to help with this kind of thing, or to sympathise

if the HP-41 has got damaged. Once again, ask for advice at your user

group.

-26-



Exercises

2.A The HP-41CX Quick Reference Guide lists 222 functions on the CX. The C

and the CV have 95 fewer functions and also less memory. The functions,

data registers and the April 1984 prices of the 4ls in the UK (excluding

Value Added Tax) are given below.

HP-41C 64 data registers 127 functions price: 152 Pounds.

HP-41CV 320 data registers 127 functions price: 216 Pounds.

HP-41CX 446 data registers 222 functions price: 242 Pounds.

Assuming the price to be A for the basic HP-41, B per data register, and C

per function, work out A, B and C to the nearest hundredth of a Pound.

2.B When you have done Exercise 2.A work out how many extra functions would

have to be added to the HP-41CX to create an HP-41CZ (Z for zero) which

would cost nothing.

Which would you say is the more unrealistic, the cost scheme used in this

problem or HP’s pricing policy? Don’t take this problem too seriously!

2.C Have you ever really examined your HP-41 closely? What colour is it?

(It is not quite black.) Have a look at the keys; the number keys are

slightly larger than the others. It could be argued that this makes it a

little easier to identify them should you need to operate the HP-41 by

touch alone, but in in any case it is a carry-over from the design of

earlier HP calculators. If you have an earlier model (35,45,55,65,67),

compare it with the HP-41. You may need to be able to operate by touch

alone, particularly if you are reading numbers from an instrument and

keying them directly into the HP-41. Try entering a few numbers without

looking at the keyboard, obviously the large size of the ENTER key makes it

easy to find so that a new number can be separated from the previous one.

The R/S key is among the number keys as well so that you can run a short

program by touch alone.

-27-





CHAPTER 3 - DEFINITIONS AND PROBLEMS

3.1 Using the HP-41.

The first two chapters have been rather theoretical since they are intended

to provide information for people who are thinking about buying an HP-41 as

well as for users. Now we can start using the HP-41! One of the first

things that happen when somecone uses a new device is that something goes

wrong and the manual says nothing about the problem. At other times the

manual does explain the problem, in great detail, but using words that mean

nothing to the reader. This chapter therefore goes through some uses of

the HP-41 but also contains a lot of definitions. These lead to

explanations of the more common problems encountered by HP-41 users. Do

not worry though, the main feature of the HP-41 is that it provides

solutions, not problems. Problems rarely occur and are described here only

to help the reader get solutions.

3.2 The display and audible signals.

When you turn on your HP-41 the display should show some letters or

numbers. This LCD (Liquid Crystal Display) consists of twelve positions

each able to display one character. Each character can be followed by a

punctuation sign (. or , or :). Each display position is made up of 14

segments so 16,384 different characters are possible but at present the

HP-41 only uses 79 of these (pity), and of course the three punctuation

signs. (If the display circuit does not recognise a character it uses a

default consisting of all fourteen segments turned on, & sometimes called a

boxed star.) These twelve positions normally show numbers, but you can use

them to display messages, and the HP-41 also uses them to display warnings,

messages and programs. You can select the number of digits to be used when

a number is shown and you can also choose how commas and points are used in

the display of numbers; this will be described in Section 4.4. Below the

twelve characters there are twelve display annunciators that tell the user

about special conditions, and these will be described below. Figure 3.1

shows a display with all the annunciators turned on.

-29-



BAT

12,3456 18Y
BAT USER GRAD SHIFT 01234 PRGM ALPHA

 

Figure 3.1 The HP-41 display.

The batteries are running low. With alkaline batteries there are

less than seven hours running time, or less than a month of

memory protection left. With rechargeable batteries you probably

have less than a minute of running time and only a few hours of

Continuous Memory protection. If you continue running a program

when the BAT annunciator is lit the display will eventually fade

out while the program continues to run, then the program will

stop but Continuous Memory will be maintained. After the program

has stopped the HP-41 will stay on for another 10 minutes and

will then turn itself off automatically as normal. You should

replace the batteries as soon as possible if the HP-41 has

reached this stage. BAT will also come on if the batteries

cannot drive a plugged-in card reader or optical wand, but if you

turn the HP-41 off and on again the BAT will vanish. In such

cases you should use fresh batteries for the card reader or wand,

then put back the old batteries and use them for normal HP-41

operations. If your batteries are flat but you have an HP82143A

printer attached then you will be able to carry on because the

printer’s batteries will provide power to the HP-41.

USER See next section.

-30-



GRAD The HP-41 will perform trigonometric functions in gradians, not

degrees (which is the default). 400 gradians = 360 degrees. The

letter G 1s actually a separate annunciator, used only in

conjunction with RAD to display GRAD.

RAD The HP-41 will perform trigonometric functions in radians.

Note: If neither GRAD nor RAD is displayed the HP-41 will work in degrees.

SHIFT The yellow SHIFT key has been pressed. See next section.

0,1,2,3,4 The flag corresponding to the displayed number has been set. For

example if 0 and 2 are displayed but 1,3 and 4 are not then flags

0 and 2 are set but flags 1, 3 and 4 are clear. See Section

4.4.1 for details about flags.

PRGM Displayed when the HP-41 is in program mode (see next section).

It is also displayed when the HP-41 is running a program.

ALPHA See next section.

Each display annunciator can be cleared by an appropriate action; putting

in new batteries, setting the HP-41 to work in degrees mode, clearing flags

0 to 4, and so on.

In addition to displaying information or sending it to attached devices,

the HP-41 can also use audible signals to communicate with the user. There

are ten individual tones and one compound signal called BEEP. Press SHIFT,

4 to hear this. It is loud enough to attract your attention in a quiet

room, say to tell you that a long program has finished, but it would be no

use at all as a fire alarm. The tones are not intended to be particularly

musical, though if you play them in turn from TONE 0 to TONE 9 you will get

a scale of sorts (C minor). Combinations of tones have been used to let

blind people use HP-41s, and of course in games. Time module alarms and

the optical Wand produce additional tones.

-31-



Most HP-41s can also be persuaded to produce a high-pitched whistle. If

you remove the batteries at the right moment during a tone and replace them

then the HP-41 will make this whistle whenever you press any key or while

it is executing any function. On any HP-41 made after the middle of 1983

(including all HP-41CXs and most HP-41s repaired after that time) you can

get into this whistle mode by resetting during a tone. To do this press ON

and ENTER at the same time as the HP-41 is executing a BEEP. You may have

to try a few times to get this right, but it is worth it if you can: if you

display the clock when the HP-41 is in this mode then you will get a short

whistle once a second giving you a ticking clock. This mode is not cleared

when you turn off the HP-41 but it is cleared whenever you sound an

ordinary tone or BEEP.

3.3 Toggle keys, keyboards and modes.

The four keys below the display control how the keyboard will be

interpreted when other keys are pressed. The SHIFT key belongs with these,

called "toggle" keys because pressing them repeatedly toggles the HP-41

alternatively into and out of special states. The first time one of these

is pressed the display shows that the special state is active, the next

time the key 1is pressed the display shows that the state has been

cancelled. Sometimes the result of pressing one of these keys depends on

one of the other keys.

The ON key belongs with these since pressing it the first time turns the

HP-41 on so that the whole display becomes active and the keyboard responds

to other keys. The second time this key is pressed, all this is cancelled

and the HP-41 is turned off. This is therefore often called the ON/OFF

key. Pressing SHIFT, ON turns on the clock display if a Time module is

plugged in or if you have an HP-41CX.

When the USER key is pressed the USER display annunciator comes on and the

keyboard will respond according to the user’s definition of the keys,

unless ALPHA is also displayed. The USER setting is independent of the

-32-



other toggle functions, it changes only when USER is pressed again. When

the PRGM key is pressed the PRGM annunciator comes on and subsequent

keystrokes are recorded in a program instead of being obeyed at once. USER

and ALPHA can also be active in PRGM mode. Pressing PRGM again cancels the

program setting, and turning the HP-41 off also cancels it.

Pressing ALPHA makes the ALPHA display come on; the keys respond as shown

on their lower faces and on the sticker at the back of the HP-41. Pressing

the key again cancels this Alphabetic keyboard and so does pressing the

PRGM key or the ON key.

SHIFT turns on the SHIFT annunciator and selects the functions assigned to

the shifted keys (written above the keys, not on them). This is true in

USER and ALPHA as well as in the normal keyboard state. SHIFT is

automatically cancelled whenever any key except USER is pressed. Pressing

SHIFT a second time cancels it without doing anything else.

Each of the above keys selects a keyboard mode. If none of these modes is

set then the HP-41 keyboard behaves according to the normal functions

printed in white on each key. This is often called the Normal keyboard.

Pressing any of the ordinary keys in this state will make the HP-41 do what

is printed on the Kkey. If you keep the key down, the function

corresponding to that key 1is displayed. When you release the key the

function is executed unless you have kept it down for more than half a

second in which case the function is cancelled and the display shows NULL.

This function preview also works in PRGM, and in USER mode where it is

particularly useful since it lets you check whether a key has been

redefined. The function preview does not work in this way for keys that

need parameters, see next section.

When USER, ALPHA, or PRGM is pressed, the keyboard reacts differently than

with the normal keyboard. Some other functions, and many programs redefine

the keyboard for their own use. This leads to additional keyboard modes

such as the Stopwatch keyboard or the Text Editor keyboard. The word mode

is also used on its own to describe a state of the HP-41. For example the

-33-



HP-41 can be in degrees mode, or in radians mode or in gradians mode. This

will affect the results of trigonometric functions regardless of which

keyboard is active. If you press PRGM you take the HP-41 into program mode

so that instructions will be stored in a program, but any one of the three

keyboards ALPHA, Normal or USER can be active. The opposite of PRGM mode

is usually called RUN mode since programs are run more often than they are

written. This name is inherited from earlier calculators which did not

have toggle keys but instead had a switch that could be set to PRGM or RUN.

When a program is running or a function is working, they are often said to

be executing. This comes from the original meaning of the word execute -

to do something - in this case the program or function is doing what it is

told to do.

The word "mode" describes other things too. For example the HP-41 can do

trigonometry in one of three modes; degrees, radians or gradians. The GRAD

and RAD annunciators show the trigonometric mode. The "display mode"

determines how numbers are shown; FIX 9 or ENG 3 for example.

It is rather unfortunate that Hewlett-Packard has also chosen to use the

word "mode" to describe the level of power consumption, or electricity use,

of the HP-41. In deep sleep mode the HP-41 is off and only enough power is

used to maintain Continuous Memory and to run the Time module crystal

oscillator if one is present. In light sleep mode the HP-41 is on but is

not actively doing anything. It is however keeping the display on,

monitoring the keyboard for any keystrokes, and counting through ten

minutes at the end of which it will go into deep sleep if nothing has

happened. This is also called standby or idle mode. There is an ON

function which is separate from the ON switch, it sets flag 44 and is used

to stop the HP-41 from turning off after ten minutes of inactivity.

Finally operating mode means the HP-41 is executing a function, running a

program, performing a lengthy operation (such as packing the memory), or

displaying a running clock or stopwatch. The HP-41CX goes into this mode

too when it is displaying CAT 4,5 or 6 or when it is running the Text

Editor; it leaves this mode after 2 minutes of inactivity in any of these

states. If BAT is displayed and the HP-41CX 1is stopped at CAT 4,5 or 6

-34-



then it exits from this state after one minute. The clock will not be

displayed if BAT is on.

3.4 Parameters, arguments and RPN.

Most functions use the displayed value to work on, for example LOG normally

calculates the logarithm of the displayed number. The value used by a

function in this way is called its argument, and arguments must be provided

before a function is used. This is the basis of the RPN - Reverse Polish

Notation - system used by the HP-41. Arguments are always provided before

the function as in the example of LOG just above; even in the case of

addition you type in the first number, then ENTER, then the second number

and finally + . That is why the system is called Reverse; numbers are put

in before the functions that use them. It is called Polish because this 

way of writing down expressions (or notation) was invented by a Polish

logician Jan Eukasiewicz, and not everyone can pronounce "Eukasiewicz" as

well as I can. By the way, the largest single user of RPN calculators

appears to be the petroleum industry, and one of the people who started the

petroleum industry was another FEukasiewicz! Ignacy FEukasiewicz refined

crude oil, sank one of the first European oil wells (in Eastern Poland) and

invented an efficient oil lamp (well, he had to do something with all that

oil). Just one Eukasiewicz after another!

If you are not familiar with RPN you should practice using it before

reading much more of this book. The HP-41 manuals give a fairly good

introduction or you may want to read one of the beginners’ books suggested

in Appendix A. Alternatively you could just practice with a few functions

on your HP-41.

For mathematical functions that use one argument (monadic functions) you

make sure the argument has been been made available, then press the

function key. The argument can be entered from the keyboard, recalled from

memory, or created as the result of a previous mathematical function.

Following any of these operations the argument is in the X-register which

is the register used for most mathematical functions and for displaying

-35-



results. After the function has done its job, the result is in the X-

register and is also displayed. Many functions take more than one argument

though, for example conversion from radial coordinates to polar coordinates

involves two values. The first is put into the X-register, then copied

into the Y-register when you press ENTER. The second argument can then be

put into the X-register, and the result can be obtained by pressing

SHIFT,R-P. The result consists of two values too, one in the X-register,

the second in the Y-register which can be thought of as sitting above the

X-register. R-P is a dyadic function which means that it starts with two

arguments and finishes with two resulting values. The most common

functions though are + - * (multiply) and / (divide). They start with two

arguments and finish with one result. These are called bifid functions;

they work very much like the dyadic functions, you put the first value in,

press ENTER, put the second value in, and press the function key. This

outline might help you understand RPN and more will be said about it in

Chapter 4. If you are a complete beginner though, remember the advice -

read the manual first.

The mathematical functions and most others expect an argument before the

function is performed. Some functions however require additional

information after the key has been pressed. This is because such

information is part of the function. For example pressing STO produces the

display STO__ meaning store -- where? The answer to "where" is called a

parameter; for STO it can be any number from 00 to 99 or one of several

other values. Functions that require parameters are control functions, not

mathematical functions, and they do not have a function preview since you

can cancel them by pressing the backarrow key instead of supplying a

parameter. You can use the backarrow key to cancel one of the numbers

(digits) you have used to reply, or to cancel the whole instruction.

The __ that comes after STO is called a prompt, it prompts you to provide a

two-digit parameter and this parameter replaces the __ prompt. Parameters

for different functions can be one, two, three or four digits long. For

example TONE can only take a one-digit parameter, so you can only create

TONE 0 to TONE 9 (until you read Chapter 14). STO takes a two digit

-36-



parameter so you can use STO 00 to STO 99. DEL takes a three digit

parameter, so you can use it to delete any number of program lines from 000

to 999. You may however have a program that is 2000 lines long and you may

wish to delete the first 1100 lines. To change a three digit prompt DEL___

into four digits you can press EEX. This will change DEL___ into DEL 1___

so you can delete up to 1999 lines. All three-digit prompts can be changed

in this way with EEX, but the largest four digit parameter that can be

produced is 1999. Instead of pressing the number keys to fill in a prompt

you can also press one of the keys in the top two rows. The first row

produces the values 1 to 5 in reply to any prompt for one, two or three

digits. The second row produces 6 to 10, except that the TAN key produces

0 instead of 10 if the prompt is only one digit long. These keys cannot be

pressed after EEX to complete a 4-digit parameter, but if you own a ZENROM,

see Chapter 12, they can be used after EEX to complete a 3-digit parameter.

Some instructions can take either a number or an ALPHA value for a

parameter. For example GTO__ suggests that you should provide a two-digit

number, but if you press ALPHA you will see GTO_. Then you can type in a

parameter made up of 1 to 7 ALPHA characters. When you press ALPHA again

the parameter is complete and the instruction can be obeyed. A few

instructions such as ASN will only take ALPHA parameters; they provide a

single prompt but will only take a parameter after ALPHA has been pressed.

If you change your mind and decide to cancel an instruction with an ALPHA

prompt you can press the backarrow key even in ALPHA mode; the instruction

will be cancelled and ALPHA mode will also be cancelled. Most of the

instructions that take numeric parameters will also take the parameters X,

Y, Z, T or L. These refer to the stack registers which will be described

in the next chapter. Many instructions take indirect parameters too and

these will also be described in the next chapter. A stack parameter is

obtained when you press the decimal point key and then one of the above

letters. An indirect parameter is obtained if you press SHIFT and then a

number or the decimal point and a letter. As you can see, there are many

options for producing parameters, the HP-41CX manual covers them all by

describing a parameter keyboard.

-37-



3.5 Instructions and functions, routines and programs, catalogues.

What should we call the operation of calculating a sine on the HP-41? What

should we call the collection of operations that calculate a hyperbolic

sine? At the lowest level of computer programming each eclementary

operation is called an instruction. To the average user of an HP-41 the

ordinary user-language instructions such as X=Y? or CLX or SIN are the low-

level instructions of the machine. Unfortunately the Owner’s Manuals also

give the reader "instructions" on how to use X=Y? and the others, so this

is not a very good word to use.

To a mathematician, sine or logarithm are "functions", and the HP-41 uses

the SIN and LOG instructions to work out approximate values of these

functions. By analogy SIN, LOG, X=Y? and all the other instructions on the

HP-41 are called functions. This may displease mathematicians but at least

it is fairly clear. In this book the words "instruction" and "function"

will both be used to describe things the HP-41 does.

High-level computer languages (ones that are more similar to written

algebra than the machine-level languages) have more powerful and longer

instructions called statements. A typical statement might be

X1 = (-B + SQRT( B**2 - 4*A*C ) )/2/A

The HP-41 does not have statements, the functions are the most complicated

level of single instructions available. On the other hand a single HP-41

function can do many things. For example SIN is equivalent to the

following two statements on a bigger computer

LASTX=X

X=SIN(X)

A collection of computer statements which perform a fairly simple task is

called a subroutine. On the HP-41 a collection of functions starting at a

label and ending at a RTN or an END makes up a subroutine. Such a

-38-



subroutine saves you the trouble of writing out the same group of

instructions every time they are needed and it can be called on whenever

the same task needs to be performed. A larger collection of statements,

often including many subroutines, and able to perform some complete task,

is called a program. A program may work out a shop’s tax for a financial

year, and a small subroutine in this program may be used to work out the

tax on the sales of odd socks. On the HP-41, a complete collection of

functions starting immediately after one END and going on to the next END

is called a program. The functions in a program, recorded one after

another, are given numbers, and each such numbered function is called a

program step, a step or a line. The use of labels, RTNs and ENDs will be

covered in detail in Chapter 6.

The trouble with HP-41 programs is that one person’s program may be

another’s subroutine. A program written to calculate hyperbolic sines may

do a complete job for one owner, but it may be used as a subroutine by

someone else who is working out complex integrals. As a compromise, the

hyperbolic sine routine can be called a routine, and so can other similar

programs. In fact any subroutine or program could be called a routine in

the right circumstances.

HP-41 functions always consist of just a name (sometimes followed by a

parameter) and are recorded in routines as one step by that name alone.

These functions are written in the machine-level language of the HP-41 and

are recorded only on ROM, in the HP-41 or on plug-in modules. HP-41

routines, on the other hand, consist of collections of steps, and can be

recorded either on ROM or in RAM in the HP-41 continuous memory. When a

routine is executed as a step in a program, the step is stored either as

XEQ "routine" if the "routine" is in RAM, or as XROM "routine" if it is in

a plug-in ROM.

-39-



The following programs show examples of functions and routines. Each

program asks the user to provide a value X, then calculates a mathematical

function of X and displays the result. The XEQ and XROM instructions are

obtained by pressing the XEQ key, then ALPHA, then spelling out the

function name, then pressing ALPHA again. This is called ALPHA execution,

it will be covered in detail in the next chapter.

@ieLBL =CALLE" BLeLBL =CRLLCZ"
#2 “RWHAT IS X7¢ 82 “WHAT IS %7-
B3 PROMPT 83 PROWPT

a4 SIH B4 XEQ “CIHC-

853 "SINGYD=" B3 “SINC{E})="

86 ARCL ¥ #6 ARCL ¥
@7 AYIEH 87 AVIEW
88 ERD 88 END

CALCI calculates the sine of X, using the HP-41 function SIN at line 04.

CALC2 calculates the sinc function of X [ SINC(X) = SIN(X)/X ] using a

user-written routine SINC. In the first case, the function name appears

without quotes, since it is an HP-41 function. In the second case, the

name appears as XEQ "SINC" since SINC refers to a routine name in RAM

memory.

BleLBL =CALCI" BieLBL "CALL3"
B2 “WHAT 15 ¥7- B2 "WHAT I5 X7
83 PROMPT 83 PRONPT
B4 XROM "SIHH® B4 EROM 81.33
85 ~SINH(¥)=" 85 ~SINHK="
A6 ARCL ¥ B ARCL %
87 AVIEW B7 AVIEW
83 END 83 END

CALC3 calculates the hyperbolic sine of X, using the SINH routine in the

HP-41 plug-in MATH ROM. The program only stores the information that step

4 will execute function 33 in ROM module 01. The listing on the left was

-40-



printed with the Maths module plugged into the HP-41, so the HP-41 could

check the routine name. The version on the right is the same program, but

was printed with the Maths ROM removed from the HP-41. Since the module is

unavailable, the name of the routine cannot be found, and a numerical

identifier is printed on line 04 instead. In both cases, step 4 begins

with XROM which means "execute a routine from a ROM". If a program tries

to use a function or program from a module that has been removed then it

will stop at the XROM line and will display the message NONEXISTENT.

@ielBL “CALL4" BieLBL “CALL4"

B2 “WHAT 15 £%- B2 "WHAT 15 £7¢
83 PROWPT 43 PROMPT
A4 SINH B4 XROM 31.25

83 "SIHH(Z)=" B3 "SINH(H="

#6 ARCL ¥ 86 ARCL ¥

#7 AVIEH @7 RYIEHW

88 END @8 END

CALC4 is the same as CALC3 except that it was written while a special Maths

module was plugged into the HP-41. This module provides a SINH function,

written in machine language, not a SINH routine. When the module is

plugged in, the function appears like an ordinary HP-41 function as is seen

in the listing on the left. When the module is removed, the numerical

identifier shows up as an XROM but with a different identifier from that in

CALC3.

The programs in a plug-in module are made up of collections of functions,

just like programs you write yourself in RAM memory. You could therefore

print out a program from a module, or copy it out onto a piece of paper,

then write it line by line into RAM. This operation is made much easier by

a special COPY function which copies a whole program directly from a module

to RAM. You can then change the copy if you like, and use it instead of

the original in the module, even if you take the module out of your HP-41.

Functions in modules are different, they are written in HP-41 machine-level

language and cannot be copied into RAM, so they can only be used when the

-41-



module that contains them is plugged in.

Whenever you write a program and refer in it to a routine or to a function

by spelling out the name of the routine or function (using Alpha

execution), the HP-41 immediately tries to find the name you have spelled

out. This is done so that the name can be correctly stored in the program

as a function name, or as a reference to a ROM program, or as a reference

to a program in RAM memory. The HP-41 refers to the names of functions and

routines by means of three separate lists called catalogues. The first

catalogue (called CAT 1) gives the names of all routines in RAM memory,

identified by global labels; these are programs and routines you have

written yourself or read from some device such as a Card Reader. The

second catalogue (CAT 2) contains the names of all ROM modules plugged

into the I/O ports (plus the Time functions and Extended Functions built

into the HP-41CX), and the names of all routines and functions contained in

these modules. The third catalogue contains the names of those functions

that are built into all HP-41s (not the additional functions in the HP-

41CX). You can examine these catalogues yourself by pressing

CAT (SHIFT,ENTER) followed by a 1, a 2, or a 3. Notice that CAT 1 contains

global labels and the corresponding ENDs but no function names, CAT 2 can

contain routines and functions, CAT 3 contains only function names.

The catalogues are searched in the order of their numbers, starting at 1

and ending at 3. This is sensible because it allows you to write your own

alternatives to the HP-41 functions. For example you may want to write

your own ATAN routine as you are not sure if the HP-41 ATAN function works

the way you want it to. If you subsequently XEQ "ATAN" then your own

version will be used as it will be found in CAT 1, which will be searched

before CAT 3. (If you press SHIFT, TAN then you will still use the HP-41

function because this is tied to the SHIFT, TAN key.) Plug-in modules

(CAT 2) are also searched before CAT 3. A function called FACT in a

plugged-in ROM module will be found and stored (or performed) instead of

the CAT 3 function called FACT. Should you write your own program and give

it a particular name, forgetting that the same name is used in CAT 2 or in

CAT 3, then your own program will be referred to later when you refer to

-42-



that name. The CAT 2 or CAT 3 item will be ignored, and you might not even

be aware that you had used a duplicate name.

If you want to write a program which uses a function or routine from a

plug-in accessory, you can record a step to execute the function even if

the accessory is not attached. (Press XEQ and spell out the name of the

function or routine.) The step will be recorded as XEQ"function" and will

work rather slowly when the program is run (because the HP-41 will have to

look for the name in Catalogues 1 and 2), but the function or routine will

be found if the accessory has been plugged in. A whole lot of trouble can

be caused if more than one program or function in the HP-41 or in plug-in

accessories have the same name. Details will be given in Chapter 12, for

now you should bear the following in mind.

When you spell out a name (Alpha execution - remember?) the HP-41 searches

for a program or function with that name by going through different

possible locations in the following order:

1. Your own programs in RAM memory (CAT 1). The search begins at the end

of CAT 1 and goes backwards so that the most recently created programs

are checked first. This means that you can write two programs with

the same name and the more recent one will be used without your having

to delete the older version.

2. Time module, printer and HP-IL if any of these are connected (these

come at the beginning of CAT 2 whichever I/O port they are plugged

into).

3. Any other plug-in modules or devices (the rest of CAT 2), going

through ports 1,2,3 and 4 in that order. (Extended Functions are

searched last if you have an HP-41CX.)

4. The functions built into the HP-41 itself (CAT 3).

From this you can see that a program you have written yourself and called

SINH will be executed in preference to a program or function called SINH if

that is in a plug-in module. A function called SIZE? on a module in port 1

will be executed in preference to a function with the same name on a module

-43-



in port 2, and so on. A function called SST (there is one in the HP-IL

Development module) will get executed in preference to the HP-41 function

SST if you execute it by spelling out its name (the SST key will still

execute the normal HP-41 function). You should avoid writing programs with

duplicate names, and you should unplug modules that contain duplicate

names. If you are obliged to have several modules plugged in and some

names are duplicated then plug the modules into the ports in such an order

that the functions you want are on a module in a lower-numbered port than

other modules which contain the same name. (Read Sections 8.3 and 12.3 for

more details.)

If a particular program or function is named on a key (see Section 4.3.2

for details of assigning functions and programs to keys for use in USER

mode), then that program or function will be used without a search through

the catalogues for the name. Thus you can assign a function to a key, then

write a program with the same name, and then refer to the function by

pressing the key and refer to the program by spelling out its name. More

details of how the catalogues are searched will be provided in Section 6.3;

details of assigning names to keys will be given in Section 4.3.2.

3.6 Some common problems.

Certain problems are encountered often, particularly by new users of the

HP-41. Now that the required words have been explained, the problems can

be outlined, and you might even find a few solutions here. This list is

given here for the sake of completeness, do not let it frighten you; the

HP-41 is a reliable machine and most users never have serious difficulties.

i. Unrecognised instructions and confusing characters

You are copying a program from a book or article into your HP-41 when you

come across a function that you do not recognise. For example you are

ploughing through a long program and in the middle you find

100 OFF

What is that on line 100? If you press the ON key, you will turn the HP-41

-44-



off, but you will not record OFF in a program. There is no OFF function on

the keyboard so what do you do? You must use Alpha execution; press the

XEQ key, then ALPHA, and spell out the unrecognised function, then press

ALPHA again. This was described above in Section 3.5. Whenever you come

across a function you do not recognise, you should press XEQ,ALPHA, then

spell it out and press ALPHA again. This will also work for functions on

plug-in ROMs and even for functions on the Normal keyboard. If you see

XEQ "name" or XROM "name", you should do the same, press XEQ and spell out

the name in ALPHA. If the unrecognised name comes from a plug-in module or

a peripheral device such as the printer or Card Reader then the fact should

have been mentioned in the program description. Printer and Card Reader

functions will be covered briefly in Chapter 12. By the way, OFF is a

function used in programs to turn the HP-41 off since a program cannot

press the ON key.

Remember always to press XEQ before you spell out the name, otherwise you

will simply enter a line of alphabetic text, not a function. If a function

has a space in the middle, spell out only the part before the space; the

function will prompt for the part after the space. For example if you see

DSE Y press XEQ, Alpha, D, S, E, Alpha. After a moment the HP-41 will

display DSE _

then Y. You should not try to spell out the whole function or the HP-41

— and you will be able to fill the prompt by pressing . and

will look for a function called "DSE Y", which is not the same thing at

all.

When you see XROM "name" do not try to spell out the word XROM, just press

XEQ and then spell out the "name". The difference between XROM and XEQ was

explained above in Section 3.5.

Program listings can be printed in lower case mode and with double-wide

characters. A long program line printed in double-width mode will overflow

onto the next line of a listing; the few odd-looking letters at the

beginning of a line are actually part of the previous line. Do not forget

that numbers can be displayed (and therefore printed) with or without digit

grouping marks at every third digit. The role of the dot and comma can be

-45-



reversed for use with European notation. As a result you might see a

printout with a comma on its own on a line; this will be the same as a

decimal point on its own; both have the same effect as a zero.

The up-arrow character 1 is used for three separate kinds of function and

this can be confusing. In the middle of an instruction 1t means "to the

power of", for example Y1X means "Y to the power of X". At the end of an

instruction 1 means "move the RPN stack up", for example ENTER?T means

"complete the number in the X register, then copy X into Y, Y into Z, and Z

into T" (this will be explained in Section 4.2.2). An up-arrow put in

front of an instruction or program name in the ALPHA register means that

the instruction is to be performed by an alarm, see Chapter 9.

You may have come across the instruction /// among the instructions for

using programs in HP-41 Solutions Books. This is Hewlett-Packard’s way of

writing "press the SHIFT key" in these books. Sometimes they use a small

black rectangle or the letter d followed by a full stop instead.

When you key in a program from a listing in a Solutions book, you may come

across functions that you do not recognise. These might be functions that

you have forgotten about, or they may be functions from some peripheral or

plug-in module; this should be mentioned in the program description, but a

few programs are provided without an explicit mention of the fact that they

use a printer or a Card Reader. Check above for advice on unrecognised

functions.

You may also have come across program steps which consist entirely of an

exponent, something like

97 E67

97 is the line number and E67 is a number with only an exponent. You

cannot enter a line like this from the HP-41 keyboard, but it is just the

same as 1 E67 which you can enter by pressing EEX,6,7 . The exact reason

for this kind of line will be explained in Section 14.1.

-46-



ii. Foggy functions.

This delightful name was used in HP Key Notes to describe functions whose

behaviour the user is not sure of. A prime example is the MOD function -

OK it gives a remainder, but is it of X/Y or Y/X ? What happens when X or

Y are negative, or what if either is zero? The simple answer is to check

the manual if you are even a little uncertain. Otherwise you may forget

that you were unsure of the function’s meaning. Then you may get the wrong

answer if you are doing a keyboard calculation or you might write an

incorrect program. You will be totally lost when you come back to the

program later and begin to get wrong answers. If you do not have a manual

to hand, check any other HP-41 book you may have nearby, even this one (the

MOD function is described briefly in Section 5.2). Never put a function

into a program thinking "I’ll check it later" - you’ll forget. If you have

no helpful books or journals nearby, try out the function in Run mode. You

cannot physically harm the HP-41 by wrong use of a function, at worst you

will lose the contents of RAM memory and this is preferable to building a

bridge that will collapse. Check several examples of the function though,

this should prevent you from making incorrect assumptions based on

incomplete information. With foggy functions the motto has to be: if in

doubt, try it out!

iii. Sticky kevys.

If a keyboard has been used a great deal, or if the HP-41 has been dropped,

some of the keys may become "sticky". They might not respond at all, or

they may need to be pushed very hard, or they could do their job twice over

at a single push (this is called bounce). It is worth checking if a piece

of dirt is stuck on one of the sides of a key, but there is little else you

can do about the key except hope that it will get better: they sometimes

do. If you do not want to send your HP-41 for repair then you may be able

to reassign the key’s functions to some other key. With Synthetic

Programming (see Section 15.2) it is even possible to reassign the numeric

digits; the keys 0, 1 and point are often the first to suffer faults

-47-



because they are used the most. If you want to use the sticky key for

entering a letter then you can write a short program which appends that

letter to the Alpha register, then assign that program to another key.

The toggle keys at the top of the keyboard are especially likely to be

damaged if the HP-41 is dropped. The USER key can be replaced by SF 27 and

CF 27. The ALPHA key can be replaced in certain cases by executing AON to

get into ALPHA mode and by single-stepping an AOFF step in a program to get

out of ALPHA mode. USER, PRGM and ALPHA can all be assigned to other keys

by use of Synthetic Programming (Section 15.2). You can assign OFF to a

key but turning the HP-41 on if the ON key is damaged can be very

difficult. It is best to execute the ON function so the HP-41 does not

turn off at all or to set a repeating Time module alarm which turns the

HP-41 on every hour in case you need it.

If you have a Wand then you can do entirely without the keyboard. The Wand

will even turn the HP-41 on if you scan some dark lines on a light surface,

so you can turn the HP-41 on with the Wand without using barcode.

iv. Odd displays.

Sometimes the display does odd things or you do not know how to restore it

to normal. If BAT comes on at the bottom left, you need to change your

batteries soon. If RAD or GRAD appear at the bottom, you are in radians or

gradians mode and you can get rid of these by executing DEG. All of the

special annunciators have been described in Sections 3.2 and 3.3. Nothing

unusual should happen to numeric displays, at worst they will go into

exponential notation if the numbers are too big or too small to be

displayed otherwise. You can control this with the FIX, SCI and ENG

instructions followed by the number of digits you want to display. Read

the first paragraph of Section 4.4.1 for details of when these displays

round a number and when they truncate it. The printer function BLDSPEC,

and also some Extended Functions and many Synthetic Functions can produce

unusual display characters. There are also some display errors, described

in Appendix C.

-48-



The HP-41 occasionally displays error or warning messages that you may not

be familiar with, for example ROM means you have tried to edit a program in

ROM (Read Only Memory, so you can not alter it). All the messages are

described in the relevant manuals. You can clear messages created by the

HP-41 or by yourself by using the backarrow key (see ix. below). When a

program is running, the execution indicator (or flying goose, ) ) normally

appears in the display and moves across it. The goose takes one step to

the right every time the program executes a LBL function, so it may stay

still for a long time if the program has few labels.

Finally, the display may go completely crazy if the HP-41 is faulty. It

will do this as well if it is disrupted by static electricity, or confused

by the presence of incompatible plug-in modules. It will show unknown

characters, blink on and off, or even fade in and out slowly. See vi. and

xii. below, if the problem is not explained there then you will probably

have to get your HP-41 repaired.

v. NONEXISTENT and DATA ERROR.

Most error messages cover a limited number of possibilities, but these two,

particularly NONEXISTENT, cover many errors. When you see

NONEXISTENT, and you are not sure why, you should check the manual but

also remember the following. NONEXISTENT can arise when you use a

function which could be alright, but is wrong in this particular case. For

example statistics functions can be alright at one time, but when you

change SIZE then some or all of your statistics registers become

NONEXISTENT and you get this message. Or you may be using a function

from a plug-in module which has been taken out. (In the case of HP-IL you

may be using an HP-IL printer function with the printer switch set to

Disable.) You may also be referring to a program or a label that you have

deleted. A program written onan HP-41CX may give NONEXISTENT when you

try to run it on an HP-41C or CV because the HP-41CX has extra functions.

The flag functions (SF__ , FS?__ and so on) can all be recorded in a

program with any parameter from 00 to 99, but only flags 00 to 55 actually

-49-



exist, and only flags 00 to 29 can be altered. You can therefore write a

program with lines such as SF 99 or FS?C 32 but you will get NONEXISTENT

when a program comes to any use of flags greater than 55 or to any attempt

to change flags greater than 29.

The most difficult NONEXISTENT messages to trace are caused by Time

module alarms. A control alarm can be set to run a program or execute a

function at some future time. When the alarm time is reached, the alarm

goes off and gets deleted. Only then does the HP-41 try to execute the

function or program. The function or program name may have more than six

letters, the function or program may be on a module that has been removed,

or the program may have been deleted. In all these cases you will see

NONEXISTENT, but you will not know what is NONEXISTENT since

the alarm has already been deleted. If the alarm at fault goes off while a

program is running, the HP-41 will stop and you may think something has

gone wrong in the program itself. So be careful with alarms.

DATA ERROR also covers many errors though it is easier to check them.

If you want to look at DATA ERROR more carefully then try Exercise 3.B.

vi. Incorrect behaviour, crashes and static electricity.

A crash is what happens when a computer stops working or hangs up, and does

not respond to commands. On the HP-41 this can happen because you have

done something the designers did not allow for (this will be covered in

Chapter 14), because the HP-41 has been disrupted by static electricity, or

because it is faulty. (Instead of failing to respond to the keys at all,

the HP-41 may also react with the wrong functions when keys are pressed.

In particular the toggle keys may behave as if something had been assigned

to them and other keys may act as if adjacent columns had been exchanged on

the keyboard.)  The HP-41s are not very well protected against static

electricity. The worst affected are those made before 1981. Static

electricity can also cause the HP-41 to turn on with an unexpected (and

most unwelcome) MEMORY LOST, or to get MEMORY LOST when you

plug something into a port. (See Section 2.7 for advice on this.)

-50-



Alternatively it may come on but refuse to respond to the keyboard, and may

show the unusual displays mentioned in iv. It may also sound unexpected

tones, or chirrup softly as if it was trying to sound a tone but not

managing. In all these cases refer to the advice on restarting the HP-41

given in Section 4.1.

The worst case is if a static charge disrupts just a few registers, or

alters a few flags, or part of a program, and you do not notice what has

happened, but you get a wrong answer. If you are running really important

programs you should run them more than once, and if you are using data that

are put into the HP-41 separately from the program, you should put the

data in a second time (or at least double-check them). Always be aware

that static problems can occur, particularly:

When you turn the HP-41 on or plug something in.

Under cold, dry conditions.

On nylon carpets or near other material that encourages static.

During thunderstorms!

If none of the above seems to fit your problem then check the rest of this

chapter, and check Section 4.1 but be aware that the trouble could well be

due to a real fault in your HP-41. Sometimes a part of the RAM memory can

be faulty and data or program steps will not be recorded as you enetered

them.

vii, System flags.

Many of the flags are used to control HP-41 system features. For example

clearing flag 26 disables all tones and beeps until the HP-41 is turned off

next. You should know what the various flags do; see the list in Appendix

D and the details given below and in Section 4.4.1.

Flags 12 to 19 are used to control devices such as the printer and card

reader; these flags can be reset if necessary. If you turn the HP-41 off,

they all get cleared and you must remember to set them again as necessary

-51-



when you turn on again. Flags 31 to 35 also control external devices but

you cannot alter these flags in any normal way unless the external device

itself lets you alter them. Sometimes the state of these flags will be

altered by static electricity (see above). If flag 33 gets set then you

will not be able to use any HP-IL devices and should flag 35 get set then

the Auto-start module will not work. Flag 33 can be cleared if you have an

HP-IL Development module, but otherwise the only normal way to clear these

flags is to do a MEMORY LOST. Two special ROMs are however available

with functions that will toggle any flag (see Chapter 12) and Synthetic

Programming can be used to do this too (see program SCF in Chapter 14).

Flags 21 and 55 control printing and the display according to whether a

printer is attached or not. Flag 21 can stop program execution during VIEW

or AVIEW if it is set but flag 55 is clear, so be careful if you are using

it. Check the manual or Appendix D if you are not sure about flag 21.

Setting flag 25 allows the HP-41 to ignore an error. The function causing

the problem (for example LOG of a negative number or RCL of a nonexistent

register) is ignored, the stack remains unchanged, and flag 25 is cleared

(so the next error will not be ignored unless flag 25 is set again).

Ignoring an error can be useful (for example if you are taking square roots

and know that you will sometimes come across numbers that should be zero

but are actually very small and negative), but it can cause havoc if you

ignore a problem that you should not have ignored. You should therefore

set flag 25 only if you know an error might occur and that you can deal

with it, then you should clear flag 25 as soon as possible. If something

very strange is happening in a long program, check that flag 25 is clear,

so that errors will not be ignored. Flag 24 is similar to flag 25; it

allows the HP-41 to ignore overflow errors (numbers too large for the HP-41

to store are turned into 9.999999999E99, or -9.999999999E99 and the HP-41

carries on calculating). Flag 24 is not cleared after an overflow, and it

too can cause you to miss an error that should not be ignored.

Furthermore, flag 25 is not cleared if flag 24 is set and an overflow error

occurs. Be careful with flags 24 and 25, and check if they could be to

blame for strange results in programs or during keyboard calculations.

-52-



viii. Loose connections.

When the HP-41 is attached to something through a cable, the connection can

come loose. Even worse is the fact that cable connections can break inside

the cable, showing no external fault. The main culprits here are the AC

chargers which can develop a loose connection or a complete break at the

point where the cable enters the connector plug. When this happens you get

a BAT warning or the HP-41 stops working even though the AC adaptor is

connected. This has been a fault on previous HP calculators which ran off

the mains and could not recharge their batteries if the AC adaptor was

plugged in but the wire had broken at the plug. It is often possible to

get a plug to work again by twisting the wire that comes into it. You can

relieve the strain on the joints by strengthening them with acrylic cement

or some other substance that will harden around them.

Another item that can suffer the same fate is the pair of HP-IL loop wires

which can break at the point where they come out of the HP-IL module if

folded too hard. The Wand cable should not be wound too tightly either.

ix. Using the backarrow key.

The backarrow key, also called the correction key or the delete key, can do

many things, and it may not always be clear what is happening while you are

using it. During the entry of a number or an ALPHA text string this key

deletes digits or characters from the end of the string one at a time. (An

exception to this is that the minus sign in front of a number is deleted at

the same time as the last digit, other than zeroes or decimal points, is

deleted.) When digit entry or ALPHA entry has been completed, the same key

deletes the whole number or text string, and it also does this during entry

if it is pressed after SHIFT. ALPHA entry can be restarted by pressing

APPEND (SHIFT, K) and the backarrow key can then be used again for

corrections. ALPHA entry can also be restarted by the ARCL function, but

both these methods only work during keyboard operations, not in a program.

Digit entry cannot be restarted by any normal HP-41 function, which is a

-53-



nuisance if you want to change the last digit of a long number. A short

program to re-enable digit entry is provided in Section 16.3.

When a message is displayed by an HP-41 operation, or by AVIEW, VIEW or

PROMPT, the backarrow key deletes the message and restores the normal

display of X or ALPHA or the current program step. A second press of the

key is then needed to clear the value in X or Alpha. Some care is needed

if you are in ALPHA mode: in this case keyboard execution of AVIEW does not

display a message, so the first push on the backarrow key clears the Alpha

register. On most HP-41s execution of PROMPT in Alpha mode does not

display a message either; the contents of the Alpha register are displayed

anyway, so the first push of the backarrow key deletes the contents of the

Alpha register. Only the oldest HP-41s (those with bug 3, see Appendix C),

display a message and retain the contents of the Alpha register if

backarrow is pressed once following a PROMPT in ALPHA mode.

In PRGM mode the key deletes characters or digits one at a time during

character or digit entry, otherwise it deletes one whole program line every

time it is pressed, and then displays the previous program line. This

means that repeated use of the key in PRGM mode deletes program lines going

backwards. If you are entering a function that prompts for a parameter,

you can use the key to delete characters or digits from the prompt so long

as there are any left. If there are no characters or digits in the prompt,

the key cancels the function itself, and also clears ALPHA mode if an Alpha

parameter was being supplied.

Other things that are cancelled by this key are Catalogue displays (but

only if they have been halted), Stopwatch execution (you can also exit from

the Stopwatch by SHIFT,backarrow) and Card Reader prompts.

x. Misunderstanding special HP-41 features.

A number of HP-41 features that differ from other calculators or from what

the user expects may also cause trouble. (This is not quite the same as

the "Foggy functions”, which are just misunderstood.)

-54-



The subroutine return stack allows for a maximum of six subroutine

calls awaiting a RTN or END. If you use more than six XEQ or XROM

calls, only the first six returns will be honoured, and your program

will stop at the seventh. In cases like this it is better to use GTO

and save return values as indirect addresses in storage registers.

Alternatively, use Synthetic Programming to lengthen the return stack;

see Section 14.11. A control alarm that goes off while a program is

running and executes another program also uses the subroutine return

stack since it acts as if a subroutine had been called by the running

program. This too can take you past limit of six returns.

Unlike certain other calculators and some computers, the HP-41 does

not automatically clear a flag when it tests it with the FS? or FC?

functions. Use the FS?C and FC?C functions instead.

Certain I/O features of the printers and card reader are also unusual;

these are explained in Chapter 12.

The HP-41 works to 10 digit accuracy, so it can obtain results more

accurately than many computers, but it cannot be perfectly accurate.

You should not be surprised if results involving very small or very

large numbers, and particularly small differences between larger

numbers are not very accurate. Results smaller than 1E-99 or -1E-99

are too small for the HP-41 to deal with (they are called underflows)

so they are always replaced by zero. Results over 9.999999999E99 are

replaced by this number (negative results are replaced by minus this

value) if flag 24 is set and during statistics operations.

An unusual feature which can confuse but is very helpful concerns the

filling of numeric prompts. The top two rows of keys can be used to

fill in numeric prompts with numbers from 01 to 10. See the third

paragraph of Section 3.4 for details if you are confused by this. One

trick using these keys is to assign TONE to all of them. Then in

USER mode you can press any one of them twice in succession to get a

-55-



TONE from 0 to 9 (in the case of a prompt for one digit the TAN key

produces a 0 instead of a 10).

xi. Pressing keys too quickly or too slowly.

A few users seem to do everything correctly, yet they still get wrong

results or no results. This can happen if you press keys too quickly one

after another. The HP-41 reacts to one key and it can keep a record that

another key has been pressed, but it cannot react to a third key until it

has finished with the first one. If the first key is released and the

second one is still being held down then the HP-41 will immediately start

to process the second key without going into light sleep mode in between.

This is called a two-key rollover because the HP-41 rolls over to the

second key from the first one without a break. If you press a third key at

this stage then it will be obeyed next, but if you have already pressed and

released a third key, you will be in trouble. To see if you are pressing

keys too fast, go into ALPHA mode, type a row or a column of letters and

see if they are all recorded.

If you press a function key, and keep it down for too long, the function

will be previewed and then cancelled. The display will show NULL instead

to show the function has been cancelled, but you might not notice this if

you are copying instructions from a printout. This has already been

described in Section 3.3. Functions that need parameters do not behave in

this way, so you do not neced to worry that the function will be nulled,

except that it will be lost if you do not give a parameter within ten

minutes and the HP-41 automatically turns itself off. However when you

have filled in all the prompts of a function you can null it by keeping

down the last key used to fill the prompt. (Try pressing STO 10 and

keeping the 0 down; the STO 10 will be replaced by NULL. This will happen

too if you press STO, TAN and keep the TAN key down.) Neither numerical

entry nor ALPHA entry can get nulled just because you press the key for too

long.

-56-



xii. Plug-in modules and conflicting names or numbers,

Plug-in modules and devices can sometimes give rise to problems. The most

common one is that you may try to use a program or a function from

something that is not plugged in. This has already been mentioned in v.

You can also get into trouble if the same name is used by functions or

programs in more than one module. For example five different modules

contain functions or programs called "SIZE?". If more than one of these

modules is plugged into your HP-41 at the same time then you should check

which particular version of SIZE? will be used. See the last part of

Section 3.5 for details.

A third problem is that modules and plug-in devices use numbers from 1 to

31 to identify themselves to the HP-41. (These are the XROM numbers

mentioned in Section 3.5) In some cases the same number is used by more

than one item (because there are only 31 numbers but more than 31 different

plug-in items). For example both the Games module and the Auto-Start

module have been given the number 10. Only one plug-in module or device

with a given number should be attached to the HP-41 at a given time,

otherwise functions from one module may be confused with those from

another, or functions may not be found at all. (Example 4 in Section 15.5

provides a Synthetic way of running routines from two modules with the same

XROM number plugged in at the same time.) Warnings are printed in the

manuals of most modules concerned and a list of conflicting modules is

given in Section 12.5. The most common example of this problem is having

both an 82143A printer and an HP-IL module plugged in at the same time.

Each one acts as though it were the only printer attached to the HP-41 and

this usually stops the HP-41 from working; you should disconnect one of the

two or set the HP-IL module switch to "Disable" so as to avoid conflicts.

Finally, you can get strange displays, odd behaviour or crashes (see iv.

and vi.) if you plug something in and it has a static charge on it, or if

it is not plugged in properly. In cold, dry weather breathe gently into

the opening of a module before plugging it in, always push modules into the

-57-



ports as far as they will go, and check that your HP-41 is turned off when

you plug in or unplug a module. In case of trouble, check that the HP-41

is turned off, pull out the module, then plug the module in again.

xiii, Bugs

If your HP-41 system is doing something highly unusual and you cannot find

an explanation in the manuals or here then you may have been unlucky enough

to come across a bug! This word describes behaviour that is contrary to

what the manuals say and to what common sense leads you to expect. Some

bugs can bite painfully, others are beautiful. Many computer bugs are

removed by the manufacturer sooner or later, so they may not appear on all

devices of a given kind. The HP-41 system bugs have therefore been

relegated to Appendix C. Check through Appendix C, maybe your bug is

there, maybe you have found a new one, or maybe your HP-41 is broken.

Exercises

3.A Reverse Polish Notation was being used on calculators long before

electronic pocket programmable calculators were introduced. It is not even

obvious whether the first designers had heard of FEukasiewicz, although his

notation was certainly in existence before the first electric calculators

were made. What is the oldest RPN calculating machine that you can find?

Some of these machines had excellent manuals which are still worth reading

because they explain RPN well and provide good examples.

For example the Friden 130 and 132 were very popular RPN c¢lectronic desktop

calculators used up to the early 1970s. They had instruction books with

examples of geometry, financial calculations, statistics, algebra, matrices

and complex arithmetic using RPN. Many Universities and offices still have

these Fridens and their instruction books hidden in cupboards; the examples

are worth reading if you can find such a manual.

-58-



3.B The DATA ERROR message occurs sufficiently often that it is worth

knowing what can cause it. Go through the HP-41 manual and check what

mistakes you can make to get this message. You will also find that some

functions give DATA ERROR in certain cases and NONEXISTENT in others.

One such function is CAT. Store 10, then 100, then 1000 in register 01 and

try CAT IND 01 each time. Can you find any other functions that give both

types of error?

-59-





PART 1l

Calculating and programming from scratch

 





CHAPTER 4 - STARTING FROM THE KEYBOARD

4.1 Turning ON, and what to do if you cannot.

You have gone through the fundamentals, or skipped over them, and want to

get on with using the HP-41. First of all you will approach the HP-41

through its keyboard and most of the operations described in this chapter

will be done from the keyboard, not from programs. Start by pressing ON.

Easy enough? It should be unless the batteries are flat; go back and check

Section 2.4. Sometimes though, the HP-41 refuses to turn on or comes on

but later refuses to respond to the keyboard. Crashes and "Locking-up"

were mentioned in Section 3.6vi, it seems sensible to cover them in more

detail in this section about starting. Of course if you have got someone

else’s HP-41 they may have arranged to prevent unauthorised people from

using it. In that case, give it back at once and get your own HP-41!

If it is your own HP-41 that is misbehaving then try doing the following

before you decide to send it for repair. (Repairs are not cheap, they cost

at least 50 Pounds in the UK, since HP overhaul any HP-41 sent in for even

the most trivial repair. Even if the proposed repair costs you nothing

because it is done under warranty you will have to do without your HP-41

for about a week.) The suggestions below should be tried in the order in

which they are given, since the last few are rather desperate measures. If

your HP-41 has started up without any difficulty you may prefer to go on to

the next section and come back here only if you get into trouble.

i. First of all, if the display stays completely blank when you turn on,

it may simply be displaying an empty text string or one made up of

spaces. Press the backarrow key and see if the display becomes a zero

or press SHIFT and see if the SHIFT annunciator comes up, showing the

HP-41 is on.

-63-



1.

iii.

iv.

Try pressing ON and backarrow in turn a few times, waiting for about

ten seconds between key-pushes. After a few times the display should

show zero. Do not press backarrow and ON at the same time.

Reread the instructions on battery replacement and check that

everything is as described in those instructions. The battery pack

sometimes comes loose if the HP-41 has been travelling, or the

batteries may have been inserted the wrong way round. The battery

contacts may even have got dirty or corroded. In that case clean

them. If that does no good then replace the batteries even if they

have not been used much.

You can check if the batteries are still supplying power to your HP-41

by holding it close to a radio which is set to receive AM signals.

Press the ON key twice, if the batteries are still working then there

should be a burst of noise from the radio each time and when the HP-41

is on then the radio should continue to make some noise.

If you have a printer you can check whether the batteries are flat by

plugging it in and pressing the PRINT button. If nothing happens

press the HP-41 ON key and push PRINT again. The printer will print

something even if the HP-41 batteries are too flat to drive the

display, so long as the HP-41 is working.

After you have checked the batteries remove any plug-ins from the

ports. Some plug-ins, particularly the printer and the HP-IL module

can cause a hang-up (especially if both are plugged in and the HP-IL

switch is not set to "Disable"). Removing them and pressing ON once

or twice sometimes solves the problem.

If you have an HP-41 that can be reset by pressing backarrow and

ENTER, pressing ON while keeping the other two down, then releasing

all three keys, then try this procedure. This reset only works on HP-

41s made since the second half of 1982 (including all HP-41CXs) and on

HP-41s that have been repaired since that date. If this does not work

-64-



vi.

vii.

the first time, try it again once or twice. You could also try

pressing ENTER alone, keeping it down, then pressing ON and releasing

both. Do not press backarrow followed by ON as this normally results

in MEMORY LOST.

If none of this works, or if you have an HP-41 that cannot be reset,

then press the R/S key and keep it pressed down. Press and release

the ON key, then release the R/S key. If nothing happens, try this

again. It should clear many problems, in particular it will stop a

running program.

If you have a Wand, try plugging it in and reading some barcode. The

ON key of the barcode keyboard is a good choice, but even a blank

piece of paper should do. The Wand is designed so that it will turn

on the HP-41 if it is off; this has already been mentioned as a way to

turn on an HP-41 whose ON switch is faulty. You can use a Wand with

the paper keyboard to do everything if your HP-41 has a faulty

keyboard. Functions that are not available on the paper keyboard can

be spelled out (see Section 4.3.2) or you can use the barcodes

provided in Appendix F.

The HP-41 should have "woken up" by now. If the display is still

blank, press R/S again, and if nothing happens, go on to step vii. If

the display is showing something and the USER annunciator is on then

press the USER key once and check that the annunciator has switched

off. If the annunciator is off then press USER twice and check that

the USER annunciator turns on and off again. If this has worked then

the HP-41 is awake, otherwise carry on with step vii.

One further trick to try before you have to clear memory is to attach

a Card Reader and read a card through it. This sometimes jolts the

HP-41 out of its locked-up state. The method was suggested by

Clifford Stern and is described in Keith Jarett’s book "HP-41 Extended

Functions Made Easy"; see Appendix A. If the card goes part way

through and stops, take off the Card Reader, replace the batteries

-65-



Viil.

iX.

with a fresh set, and put the Card Reader back onto the HP-41.

Now try to reset your misbehaving machine by taking the battery pack

out and putting it in again. This is one of the methods suggested by

HP and it can be done even with the HP-41 turned on, but that clears

the time and date settings if you have a Time module, so it has been

left till now. After replacing the batteries press ON a few times

until the 41 comes on.

A refinement of this method was suggested by C.Close in an article on

HP-41 crash recovery in PPCCJ V9N2p2l. The whole article is worth

reading as it provides interesting information on HP-41 crashes, but

the method itself, called the ON procedure, is as follows. Press ON

and release it. Wait about a minute, then remove the battery pack and

replace it. Press the backarrow key for about five seconds; you

should see CLX and the HP-41 should be awake. If this fails, repeat

the whole process.

This is a good example of an idea provided by one member of a user

group to other members in the interest of sharing information and

helping each other. This particular idea has been included in the

book as it is well-known now, but other ideas remain within user

groups only, and readers should seriously consider joining a user

group to take part in (and advantage of) this exchange of information.

In some cases, particularly if you have been wusing Synthetic

Programming, the above methods will unlock an HP-41 but only until you

turn it off or do a GTO.. or PACK. (So if you have had a crash

following some Synthetic Programming you should not turn your HP-41

off and on unnecessarily nor should you press the ON key repeatedly as

has been described for some of the methods above.) The "unlocking"

procedures will work again, but it may be simpler to use Synthetic

Programming techniques to clear the section of memory that is at fault

(usually the Buffer Area, see Chapter 8). The alternative is to clear

the whole of HP-41 Continuous Memory. If you do not want to do this

-66-



X1.

but do not feel safe with Synthetic Programming, then try going to a

user group meeting and asking for help (see Chapter 13).

If none of the above has worked, you will have to clear your HP-41

memory. This will solve all problems except those involving hardware

faults. If the fault is intermittent, you can try to save the present

status of the HP-41 onto magnetic cards or onto a mass storage medium.

If your HP-41 is off, or if you can turn it off, then check it is

really off. Now press the backarrow key and keep it down, then press

and release ON, then release the backarrow key. You should see MEMORY

LOST and the HP-41 should be on the go again. (If you change your

mind at the last moment, rclease the ON key and press and release it

again, keeping your finger on the backarrow key all the time; then

release the backarrow key.) If the HP-41 cannot be turned off then

you might be able to do a MEMORY LOST by finding or creating a

synthetic instruction such as STO ¢ and executing CLX, STO c. If you

foresee doing this often and you have a card reader, then create a

magnetic card with flag 11 set and with a program containing CLX, STO

¢ on it. Then you can read this card through the Card Reader to clear

memory whenever necessary.

If the HP-41 is on and cannot be turned off, and you do not have

access to a Card Reader or Synthetic instructions, you will have to

discharge the HP-41 by taking out its batteries. This can take a very

long time, it can be speeded up by putting all the batteries upside-

down into the battery pack, and putting the battery pack into the HP-

41 for at least 15 minutes. This should drain any residual charge,

and the internal protective diodes should prevent any harm to the

circuitry. Unfortunately, a few HP-41s have diodes that can not cope

with a set of four completely fresh batteries, and the reverse current

will cause severe damage. You should therefore use old batteries, and

even so consider this as one of the last resorts before sending the

HP-41 to HP. (This method was suggested by Bill Hermanson in Volume

9, Number 1, Page 32 of the PPC Calculator Journal, abbreviated as

PPCCJ V9N1p32. See Appendix A for a description of this journal.)

-67-



X1i.

Alternatively, you can short together the battery terminals at the two

ends inside the battery compartment with a length of wire or even with

two fingers of one hand. You may need to keep the wire in place for

quite a while to remove the residual charge. Then put back the

batteries, the right way round, and press ON one or more times until

MEMORY LOST shows up in the display.

If you have got this far then you are in serious trouble. You might

possibly be suffering from a bad battery pack or from a loose

connection. If you have a rechargeable battery pack, try replacing it

with batteries or with a new, fully charged pack. OIld battery packs

can cause havoc, particularly on an old HP-41, as they may develop a

loose connection or be unable to hold a charge. If this has happened

to you, do not use the old pack again, though it may be safe to use it

on a newer HP-41. The methods given below will probably be necessary

to wake up an old HP-41 that has been locked-up by such a faulty

battery pack.

To check for a loose connection in the HP-41 or in an old battery

pack, tap the HP-41 gently. Set it down on a firm surface, lift up

one end about an inch and set it down fairly sharply. The rubber feet

will prevent any excessive shock. Never test the HP-41 for a loose

connection by banging it hard, this will cause loose connections or

worse, not cure them.

Your HP-41 may also have a massive charge of static electricity, or if

it is an early model the two display drivers may have failed to

synchronize because the batteries are flat. (If you do not understand

this, wait till you read Chapter 8.) These problems do not always

respond to the solutions described so far. They can be dealt with by

taking the HP-41 apart and putting all the parts down separately for

a few hours, then putting the HP-41 together again. This can also

solve some loose connection problems if you put the HP-41 together

again and tighten all the screws (but do not overtighten them). You

-68-



must be pretty brave or sure of yourself to do this, since the HP-41

contains CMOS circuits which are very easily damaged by stray charges

that you may introduce while taking the HP-41 apart. You also

invalidate any HP guarantees if you take your HP-41 apart.

Nevertheless, I have saved a couple of trips to HP in this way.

xiii. Unlucky thirteen! If none of the above work or you are unwilling to

attempt the more drastic techniques, you will have to get your HP-41

repaired. Some user groups have members with access to service

facilities but in general you should pack the HP-41 carefully and send

it to your local Hewlett-Packard repair centre. (The addresses should

be available from your dealer, some are provided in the back of the

Owner’s Guides.) Remove the batteries, but send a battery pack or any

other items that you think may be at fault. Include a Service Card,

and a description of the problem, if you can. Most repair centres

post the repaired unit back within five working days of receiving it,

but even so this means you will be without your HP-41 for about a

week. (If you go to a repair centre yourself they may be willing to

do a repair while you wait, but ask before you go.)

4.2 Look after your stack.

4.2.1 Using the whole stack.

Your HP-41, once it is ready to be used, provides a powerful set of

mathematical functions for execution directly from the keyboard. These

functions are based on the RPN system (explained briefly in Section 3.4)

which uses an operating stack of 4 registers: X, Y, Z and T. An L register

(Last X) is also available, this will be described in Section 4.5. The

stack lies at the heart of the HP-41 operations and some forethought in its

use can pay considerable dividends.

Many pcople tend to use only the X and Y registers although the Z and T

registers would simplify their calculations. As a very simple example let

us take the calculation of af2 + 2a. The most obvious method is to

-69-



calculate this as a*(2 + a) as follows. (Each line shows one step and is

followed by some comments. The comments are separated from the step by a

semi-colon.)

Type in a

Press ENTER

Type in 2

Press +

Type in a again

Press *

.
bl

.
9

This calculation only

a is now in the register you see, the X register.

a is now copied into the next register, Y.

following ENTER the value a is still in X, but 2

replaces it so the stack now contains 2 in register X

and a in register Y.

this adds the contents of Y to the contents of X, and

leaves the result in X.

this puts a into X and pushes the previous contents

of X up into Y again.

this multiplies together the contents of X and Y, and

puts the result into X so that it is displayed.

uses the X and Y registers, but it involves typing in

a twice. Registers Z and T can be used to store extra values and with a

little planning one can rewrite the calculation to use them. This can be

done by thinking of the equation as (2 + a)*a .

Type in a

Press ENTER

Press ENTER

Type in 2

Press +

Press *

.
bl

.
3

a in register X

a is in X and Y, but the contents of X will be

overwritten if a number is typed in now.

pressing ENTER again copies X into Y and Y into Z so

that a is in registers X, Y and Z.

this puts 2 into register X, replacing a but leaving

the value a in registers Y and Z.

this adds registers X and Y, putting the result (2+a)

into X and copying register Z into register Y so that

a is available in Y for the next step.

this multiplies together the values in X and Y,

giving the result (2 + a)*a.

In this case we use the Z register to store a second copy of a and thus

-70-



replace the second entry of a (which required a press of the ENTER Kkey).

It may have been rather difficult to follow what was happening to the

contents of registers X, Y and Z during the above example. It is often

helpful to use a stack analysis form such as the one in Figure 4.1. This

shows each step performed and the contents of X, Y, Z and T after that

step. Figure 4.1 shows how the stack contents move during the first

calculation above, and Figure 4.2 shows the stack movements during the

second calculation. Some functions cause stack lift which means that the

contents of Z are copied into T, then Y is copied into Z, then X is copied

into Y. Other functions cause stack drop which means that Z is copied into

Y, then T is copied into Z. What happens to X depends on what the function

does. The stack analysis form helps you see exactly what happens in each

case. Some functions like ENTER and CLX are said to disable stack lift.

This means that a new value put into X will replace the old value instead

of pushing it into Y. The figures have an extra column next to the X

column and a cross in this means that stack lift has been disabled.

Stack

Step Lift X Y Z T Comments

Disabled

a a Puts a in X

ENTER X a a Copies a into Y

2 2 a Puts 2 in X

+ 2+a Adds and puts in X

a a 2+a Puts a in X again

* a(2+a) Final result in X

Figure 4.1 : First Stack Analysis Form for (a+2)*a.

-71-



Stack

Step Lift X Y Z T Comments

Disabled

a a Puts a into X

ENTER X a a Copies X into Y

ENTER X a a a And again

2 2 a a Puts in the 2

+ 2+a a Adds,Z drops to Y

* (2+a)a Multiplies

Figure 4.2 : Second Stack Analysis Form for (a+2)*a.

There are some alternative ways of checking stack contents. The HP-41

Standard Applications Module (and also the Standard Applications Handbook

which came with each new HP-41C and CV) has a simple RPN primer program to

display the entire stack after ecach arithmetic operation and you can use

that instead of a stack analysis form. Printers and video interfaces on

HP-IL have a stack trace option (sece Section 12.4) which lets them display

the contents of the stack after each operation, but this option does not

work on the HP82162A printer. On the HP82162A and HP82143A printers use

the PRSTK command to print the contents of the stack registers. If you

have a Card Reader, use its 7PRSTK function, this prints the stack contents

if you have a printer attached, otherwise it shows the contents of the four

stack registers one by one in the display. After some practice with any

one of these methods you will be able to visualise the whole stack and its

contents.

-72-



Let us try another example of stack use, with the stack analysis form to

help see what is happening. To save space, instructions such as "type in

a" or "press 2" will be shown simply as "a" or "2". Say we want to

calculate (a*b + c/d)*sin(e) with one value of e but various values of a,

b, ¢, and d. First we work out SIN(e) and store it in a register, say

register 05, by doing STO 05. Now we do:

a, ENTER, b, *¢, ENTER, d, /, +, RCL 05, *

Check this on Figure 4.3 and see that SIN(e) is still in register Y. We

could have skipped the RCL 05 step and still got the same result. The

stack drop has actually left SIN(e) in registers Y, Z and T because the

contents of T are always copied into Z when the stack "drops". To

calculate the expression (a*b + c¢/d)*sin(e) again with different values for

a, b, ¢ and d it is enough to press CLX (or RDN) and then repeat the

operation above, without the RCL 05 step.

This example shows that use of a stack analysis form can remind you when a

useful value is still in the stack so that a numbered data register need

not be used. The message is simple: be aware of all the registers in your

stack and of what they contain. When calculations are to be performed

manually from the keyboard, this awareness of the stack can save

keystrokes, but in programs it has a further advantage. This is that long

programs use many data registers, and calculations which use the stack as

efficiently as possible will avoid using additional data registers where

this is unnecessary. If you are using two programs each of which needs 50

data registers, then you will be very glad to use the stack registers for

storing some of your intermediate values.

-73-



Stack

Step Lift

Disabled

ENTER X

ENTER X

RCL 05

X

ba

c/d

c/d + ba

sin(e)

result

sin(e)

sin(e)

ba

ba

sin(e)

c/d + ba

sin(e)

sin(e)

sin(e)

sin(e)

ba

ba

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

Comments

Puts in a

Makes room for b

Puts in b

Multiplies

Puts in ¢

Makes room for d

Puts in d

Divide, stack drops

Add,stack drops

Recall sin(e)

Get result in X

Figure 4.3 : Stack Analysis Form for (a*b + c¢/d)*sin(e)

4.2.2 Stack manipulation functions.

Many readers will already be familiar with the ideas outlined above but

they, as well as readers to whom the ideas are new, may want to be reminded

of the stack manipulation functions available on the HP-41.

-74-



0-9

EEX

CHS

PI

ENTER%

RDN

Rt

X<>Y

These number entry keys build up a number in register X. The

number consists of a signed mantissa followed by a signed

exponent (power of 10). The mantissa can have no more than ten

digits. The exponent is optional but if used with a mantissa

that has nine or ten digits it requires that a decimal point

should come before the ninth digit. CHS changes the sign of the

mantissa if pressed before EEX, otherwise it changes the exponent

sign. The decimal point (or comma if you are using European

radix mode, see Appendix D: flag 28) on its own acts as a zero

(and it is faster than 0 when used in a program).

Enters a ten digit approximation for pi into the X register.

Separates one number from another, copies the contents of Z into

T, Y into Z and X into Y. Disables stack lift so that a new

value, put into X immediately after ENTERY, replaces the value in

X. In this book the 1 after ENTER will usually be omitted.

ENTER really does two separate jobs (terminating number entry and

lifting the stack) which could be done by two separate keys.

Rolls down the stack contents. If the stack is visualised as

four registers with T at the top, followed by Z, Y and X, then

RDN pushes the contents of Y, Z and T down by one register each,

and copies the contents of X into T.

Rolls up the stack contents. Exactly the opposite of RDN. It

can also be imagined to be like ENTER except that the contents of

T are copied into X and stack lift is not disabled.

X exchange with Y. This is useful if X and Y are in the wrong

order, for example if you want to divide the value in X by the

contents of Y. Also useful for looking at Y, then replacing it.

-75-



X<>

RCL

STO

LASTX

CLX

Note:

CLST

In addition to X<>Y, the HP-41 has this general function to

exchange the contents of X with those of any other register, even

the other stack registers, for example X<>Z.

RCL recalls the contents of any register, even stack registers,

into the X register. The stack 1is lifted unless stack lift has

been disabled by the previous instruction.

STO stores the contents of X into any register, including stack

registers. The previous contents of the register are lost, but

the contents of X are unchanged. STO into a stack register does

not lift the stack.

Recalls the previous value of X from register L; see Section 4.5.

Clear X. Clears the contents of the X register, replacing them

with zero. This operation is often used to correct a mistake, so

it disables stack lift and the value put in directly after CLX

replaces the previous value.

Stack lift is disabled by CLX and ENTER, but the next operation

enables stack lift again unless it too disables stack lift or is

neutral. (Only CLX, ENTER and the statistics plus and minus

functions disable stack lift. SHIFT, ALPHA, PRGM, USER and

On/Off are neutral: they neither enable nor disable stack lift.

CHS and backarrow are also neutral during number entry.) If you

want to put a zero onto the stack, CLX alone will not do since a

number entry or RCL following it will write over the zero; you

should CLX,ENTER or press . or 0.

Clears the whole stack, replacing X, Y, Z and T with zeroes. It

does not clear L, so you can clear the whole stack except X by

doing +, CLST, LASTX. (Use SIGN instead of + if you know that X

might contain Alpha data; see the discussion under SIGN in

Section 5.2.)

-76-



4.2.3 Stack calculations, rearrangements and operations on X.

Most HP-41 mathematical operations use or alter the contents of register X.

The mathematical functions will be covered in the next chapter except for +

, -, ¥and /. These are well understood, though new users should remember

that the operations - and / produce the results Y-X and Y/X. If you want

X-Y or X/Y you must do X<>Y first. All these four functions save the

previous contents of register X in register L (Last X, see Section 4.5) and

drop the stack.

The functions ENTER, RDN, Rt, X<>Y, X<> RCL

various combinations to produce any required rearrangement of the stack.

STO__ can be used in- -9

On previous HP calculators which did not have R%1 it was sometimes much

quicker to use - (subtraction) in combination with the other operations to

get some arrangements, particularly ones involving zeroes. John Dearing’s

book "Tips and Routines" gives 4 pages of stack rearrangement operations

for the HP-41, and John Ball’'s "Algorithms for RPN Calculators" gives an

even more complete list including all combinations that involve zeroes in

the stack.

ST-

STO key and then one of the four arithmetic keys. They work like the four

The operations ST+ ST*__ and ST/__ are obtained by pressing the- -

ordinary arithmetic operations, but instead of combining X with Y they

combine X with any numbered or stack register. For example ST- 23

subtracts X from register 23 instead of subtracting it from register Y.

The value in X is not changed and so X is not saved in L. These four

operations are called storage arithmetic. Some calculators also have

corresponding recall arithmetic, but not the HP-41. Fortunately, recall

arithmetic can be simulated very easily. For example RCL*nn (multiply X by

the contents of register nn) can be performed by doing X<>nn, ST*nn, X<>nn.

The use of two X<>nn operations will let you perform all four recall

arithmetic operations in the same way. The PANAME module (Section 12.8)

provides some recall arithmetic functions as well.

-77-



Storage arithmetic is particularly helpful when it is used on the stack.

For example you can add X to Y and to Z by doing ST+Z, +. The steps ST+Z,

+, / let you work out (X+Z)/(X+Y) more quickly than is possible on ordinary

RPN calculators. The operations ST+X, ST-X, ST*X and ST/X are especially

interesting. ST+X replaces X with 2X without affecting registers Y, Z, T

or L. ST-X replaces X with 0 but unlike CLX it leaves stack lift enabled.

ST*X replaces X with X squared, again without affecting L. ST/X replaces X

with 1, this can be a useful alternative to SIGN which replaces a number

in X with 1 or -1 and changes L (see Section 5.2).

These operations on X can be combined to provide additional useful results

without altering Y or Z or T. For example ST+X, ST*X produces 4X12 and

ST*X, ST+X, SQRT produces the absolute value of X multiplied by the square

root of 2. An interesting use is 1/X, ST+X, 1/X which produces X/2 without

changing Y, Z or T. (2, ST/Y, RDN produces X/2 without changing L.)

RCL X pushes the stack up like ENTER but leaves stack lift enabled. X<>X

and STO X do nothing at all except that they enable stack lift if it was

disabled. Functions such as these two which do nothing are called NOPs

(Null Operations), and there are some uses for them in programs, especially

in combination with ISG and DSE as described in Section 6.8.

4.3 Make use of ALPHA.

4.3.1 Using the ALPHA register to display messages.

The alphabetic capabilities of the HP-41 allow meaningful messages,

instructions and results to be displayed or printed. This can be done from

the keyboard, under program control, or from alarms operated by the Time

module. All this is done through the ALPHA register which can hold up to

24 characters (described in Section 3.2). The information in the ALPHA

register is text or alphanumeric data, which means it contains characters

that can be letters, numbers, punctuation marks, or special characters such

as %. The ALPHA register can be imagined to be rather like the X register

which holds and displays up to 10 decimal digits and two signs, with points

-78-



and commas between them. Up to 12 characters in the ALPHA register can be

displayed at one time; punctuation marks between other characters do not

count among these 12 characters although they do take up one of the 24

places in the ALPHA register.

If the ALPHA register contains more than 12 characters (not counting

embedded punctuation marks), then it will initially show the first 12

characters, and then it will roll characters off to the left one at a time,

and add new characters from the right, until it is displaying the last 12.

This 1s called scrolling and it has the rather disconcerting effect of

making the first part of a long message disappear off the display as soon

as it has appeared. If a message is over 12 characters long then it is a

good idea to start it with a space, so that the first character which

scrolls off the display is this space, and the message can be taken in more

easily. This tip, along with several others, was suggested by R.Nelson

(founder of the original user group, PPC) in the journal, PPCCJ V6N5p32.

You put characters into the ALPHA register (often just called ALPHA or

Alpha) by pressing the ALPHA toggle key, then using the keys to type in

characters. Keys have letters marked in blue on the lower face, additional

letters and symbols are obtained by pressing SHIFT first. The shifted

letters are not marked on the keyboard, but they are shown on the ALPHA

keyboard sticker at the back of the HP-41, and on the ALPHA keyboard

layouts printed in the quick guide and the manuals. So long as characters

are being added to ALPHA one after another, they simply add on at the

right-hand end. Once you switch out of ALPHA mode though (by pressing

ALPHA), text entry is terminated. If you press ALPHA again and start

typing in a new text message then the old contents of ALPHA will be deleted

and the new message will replace them. CLA (SHIFT, backarrow in ALPHA

mode) will also delete the contents of the ALPHA register. Corrections to

the contents of ALPHA can, however, be made using the APPEND operation, as

will be explained later in this section.

Before going on to more mundane uses of ALPHA, try it out by entering a

message as follows. Turn on the HP-41 and press ALPHA, SPACE, T, H, E,

-79-



SPACE, L, O, R, D, SPACE, I, S, SPACE, M, Y, SPACE, S, H, E, P, H, E, R, D.

When you press the last D the HP-41 sounds a tone, just to let you know

that it has no more room for additional letters and will have to delete

letters from the left-hand end of ALPHA to make room for any more that you

put in on the right. Now press ALPHA, ALPHA and watch the message scroll

across the display. Observe that the space at the start of the message

makes it easier to read the first letter before it vanishes. While still

in ALPHA mode, press AVIEW (SHIFT, R/S); this displays the whole message

again, AVIEW is particularly useful for displaying information during

running programs. If you had a printer plugged in, AVIEW should have also

printed the message (unless the printer was OFF

Scrolling takes up time; you can stop it and get to the last 12 characters

at once by pressing any key (even ON or backarrow) while the message is

being scrolled. Be careful; if you press a key after scrolling is finished

then that key performs its normal action.

The use of the backarrow key to correct or delete the contents of ALPHA has

already been described in Section 3.6ix, and some short programs that used

ALPHA to display a result were shown in Section 3.5. These programs used

ALPHA to create messages such as "SIN(X)=", and then they used ARCL X to

recall the value from X into ALPHA and add it to the message. The format

of the X value would be the same as that seen in X because the display mode

controls how a value is brought into ALPHA, including the rounding.

Displays which lose their ninth or tenth digit because it is hidden under

an exponent will show all digits in ALPHA, so SCI 9, ARCL X, AVIEW can be

used to display all ten digits and the exponent of X. (See Section 4.4.1

for a description of display modes.)

ARCL adds a value to the end of what is already in the ALPHA register, but

what if you want to add more than one value, perhaps with some extra text

mixed in? Three things can be done to add more text to the right of ALPHA.

ARCL can be used more than once; each time it adds to the right. ARCL also

enables further addition from the keyboard. Thus ALPHA, Y, =, ARCL Y, F,

E, E, T produces the message "Y=1.23FEET" if register Y contains 1.23 and

the display has been set to FIX 2 (Section 4.4.1). Text that you have

-80-



typed in immediately following ARCL is added to the contents of ALPHA; it

does not replace the contents of ALPHA. The third way to add to the right

of ALPHA is to use the APPEND function. This function can only be

performed by going into ALPHA mode and pressing SHIFT, K. Text that is

typed after SHIFT, K will be added to the right of the ALPHA register

instead of replacing the previous contents. (When you are doing this from

the keyboard, APPEND simply displays the prompt character _ at the right of

the text in ALPHA, but in PRGM mode APPEND is stored as a special control

character - at the beginning of a text string.) You can use APPEND, and

then delete characters from ALPHA as well as adding characters to it. If

ALPHA already contains 23 characters then putting in more characters, or

using APPEND to add characters later will make the warning tone sound, but

ARCL will not produce the warning tone even if some characters are lost.

Quite often you will find that a message will not all fit into the 12

characters visible in the display at one time. Messages such as

X1=1.234579201E-32

will not fit all at the same time into the 12-character display and can be

positively dangerous if the user sees the last 12 characters only; the user

may think the answer was 34579201.E-32 since the true decimal point is not

visible. Here are some hints on making a message fit into the 12 visible

characters.

i. Use a display that shows as few digits as necessary. FIX 2 is better

than FIX 8 unless 8 digits after the decimal point are absolutely

necessary. SCI n is often a better display setting since it always

produces between n+4 and n+6 characters (depending on the signs of the

mantissa and exponent) whereas FIX n can produce various numbers of

characters.

This is also good discipline for students who would otherwise write

down answers to 10 significant digits just because their calculators

give answers to that many digits.

-81-



ii. Abbreviate words in messages. Use FT instead of FEET, or SN= instead

of SIN=. You may think that SN is not easy to recognise as an

abbreviation for SIN, but the context of the problem should make

abbreviations clear.

iii. Use the punctuation marks . and , and : as much as you can. They fit

between other characters and do not take up one of the 12 character

positions unless two punctuation marks are entered one directly after

the other. The colon is particularly helpful since it can be used

instead of a space to separate words. A display such as

X=12.34:Y=56.78 takes up 12 positions and is just as clear as

X=12.34 Y=56.78 which takes up 13.

A few additional points now about using the ALPHA register. The single

instruction PROMPT can be used in programs instead of AVIEW, STOP. Both

methods display the contents of the ALPHA register and stop a running

program. PROMPT is usually used to display a message that prompts the user

for a value during a running program. It is easy to forget that PROMPT can

also replace AVIEW, STOP to display a result and save one program step.

Even some HP Solutions books use the latter in places where the former

would do. The instruction ARCL can be followed by any stack register or

numbered data register, or it can be followed by an indirect address (see

Section 5.5) to allow the viewing of a set of registers one by one. The

value appended to ALPHA by ARCL is a representation in characters of a

numeric value, and this character representation cannot be wused in

calculations. (The Extended function ANUM converts characters back to

numbers; see Section 10.2.) The function ASTO does the opposite of ARCL;

it stores a text string, taken from ALPHA, in a data register. Remember

that ASTO overwrites the previous contents of the register, and it does not

lift the stack, so that ASTO X replaces the previous contents of register X

without changing Y, Z or T. ASTO only stores the first 6 characters of

the ALPHA register, counting from the left, into a single data register.

If there are fewer than 6 characters in ALPHA then these are stored with

null spaces to their left, making a total of 6 characters. If there are

-82-



more than 6 characters in ALPHA then the first 6 have to be removed before

the next 6 can be stored in another register. The function ASHF is used

for this purpose; it removes the leftmost 6 characters from the ALPHA

register. The HP manuals say that these characters are shifted out of the

ALPHA register but it may be better to say that they are deleted. ASHF can

be used repeatedly to store up to 24 characters in four data registers.

The contents of these registers can be returned to the ALPHA register at a

later stage by means of the ARCL function. A text string in a data

register can be displayed as text by the VIEW function and text can be

ASTOred in X so that a message is displayed instead of a number when X is

seen.

4.3.2 More uses of ALPHA.

The second use of the ALPHA keyboard is to provide parameters, particularly

for ALPHA execution, already described in Section 3.5. To execute a

function that is not on the keyboard, or a program, you press XEQ, ALPHA,

then spell out the function or program name, then press ALPHA again. The

name that you have spelled out is not stored in the ALPHA register, it is

used to find the function or program and then execute it (or store it in a

program). If you want to go to a program, but not to run it, you can press

GTO and spell out the program name. (You cannot GTO a function.)

To identify a program so that you can XEQ it or GTO it you must have a

label to identify the program. Once again you use the ALPHA keyboard:

press LBL, ALPHA, spell out a name of one to seven characters including

numbers and spaces but not punctuation marks, then press ALPHA again. If

you do this in RUN mode, the LBL instruction will stay in the display for a

while, then it will vanish, but if you do it in PRGM mode you will create a

label.

XEQ and labels will be discussed yet again in Section 6.3, for now it is

enough to note that this is the most common way used to execute programs

and functions that are not on the keyboard. The other way to execute

functions and programs is to assign them to a key (or a shifted key) and to

-83-



press that key in USER mode. (Programs can also be executed by pressing

R/S if the program pointer is already set to them. CAT 1 can be used to

move to a required program.) To assign a key for use with a chosen

function or program in USER mode you use the ASN (assign) function. Press

ASN, ALPHA, spell out a function name or the name on a program label, then

press ALPHA again. Unlike other functions that use parameters, ASN needs

two parameters not one, so it now displays ASN aaaa _ asking you to press a

key, or SHIFT and a key, to define which key is to be assigned. (aaaa is

used here to represent the name you have spelled out. If you press ALPHA

twice in succession then no name is displayed, and the HP-41 cancels any

assignment that was previously made to the key.) When you press a key, the

display shows ASN aaaa rc, where r is the keyboard row in which the key

lies, and c¢ is the column. (To be exact, ¢ is the key number in row r,

counting from the left.) If you press SHIFT before the key then rc is

preceded by a minus sign. Once you have (successfully) assigned a function

or a program to a key, you need only go into USER mode and press the key to

execute the function or program. This is obviously much simpler than Alpha

execution but assignments usually take up space in memory (see Section

8.6).

4.3.3 Extended uses of the ALPHA register.

Although the ALPHA register was originally intended as a place where

messages could be created, its uses have expanded a great deal. The Timer

module uses it for alarm messages, the Extended Functions and HP-IL system

use it to build up, or analyze, file names, commands or text strings.

These can be transferred to and from Text files in Extended Memory or HP-IL

devices. Further editing features are provided by the Extended I/O module,

the HP-IL Development ROM, and the PANAME module.

With Synthetic Programming you can use the ALPHA register for storage of

numbers, almost like a set of additional stack registers. You can even

create and run short subroutines in ALPHA. The extension of the uses of

the ALPHA register is a prime example of the way the HP-41 has grown from a

calculator into a pocket computer; these uses are part of the subject of

-84-



this book, to be covered in the later chapters.

4.4 Set your status.

4.4.1 Flags

A great deal of control over the status of the HP-41 is available to you.

Most of the status information is recorded by flags 00 to 55. Each flag

can be "set" or "clear". The flags can be thought of as answers to yes/no

questions, or as numbers which can only be 0 or 1. Understanding and using

the flags well can significantly extend your control of the HP-41. A

simple example of the HP-41 status is in the choice of angular mode. This

can be "degrees" mode or "radians" mode or "gradians" mode as described in

Section 3.3. The trigonometric mode is controlled by the settings of flags

42 and 43. Each flag answers one question; flag 43 answers the question

"is radians mode set?" and if flag 43 is clear then flag 42 answers the

question "is gradians mode set?" If the answer to both questions is "no"

then both flags are clear, and the HP-41 is in degrees mode.

Similarly the status of the display can be set by means of the FIX, SCI and

ENG functions which use combinations of flags 36 to 41. FIX 0 to FIX 9

make the display show numbers without an exponent if possible, with 0 to 9

digits after the decimal point (again if possible). If the number is too

large or too small to be displayed in FIX mode then it is shown in SCI

mode. SCI n instructs the HP-41 to display a mantissa with one digit

before the decimal point, n digits after the point, and an exponent. ENG n

is like SCI n but always displays an exponent that is a power of 3, so

there are one, two or three digits before the point. The last digit shown

is rounded up if the undisplayed part of the number is equal to or greater

than 5. However an exponent hides the last two digits of the mantissa if

the mantissa display is nine or ten digits long. In this case the rounded

digits are hidden, and the rounding is not seen. If you want to sec all

the digits of a number, set SCI 9 status, then ARCL X and look at the

display in the ALPHA register. (If you are not clear on this, do Exercise

4.C.)

-85-



Other status information that is controlled by flags includes the role of

the point and comma in the display, and switching off of audible signals.

The ALPHA, PRGM, USER and SHIFT status are also recorded by flags. Check

Appendix D for a list of all the flags and what they do.

Any flag can be tested using FS? to see if it is set and FC? to see if it

is clear. For example SHIFT, FS?25 tests if flag 25 is set. From the

keyboard, you would get a message "YES" or "NO" to show the answer. If you

look in Appendix D you will see that YES means that the HP-41 is set to

ignore the first error that occurs, and that no error has occurred since

this flag was set. The use of flags in programs will be described in

chapter 6. Only flags 00 to 29 can be directly set or cleared; the

commands SF (set flag) and CF (clear flag) are available for this purpose.

If you set any one of flags 00 to 10 you are saving information for your

own future use but not affecting any HP-41 operation. If you set or clear

any of the flags 11 to 29 then you are controlling the status of the HP-41

or of a device attached to it. Flags 30 to 55 are used by the HP-41

internal system to keep a record of what it is doing, so they are not

normally available for you to change even though you can test them. (You

can set some of these flags by using a function that sets the corresponding

status; for example RAD sets flag 43.) Flags 00 to 29 can also be cleared

by the operations FS?Cnn and FC?Cnn. These two operations test whether

flag nn is set or clear, and clear it before going on to do anything else.

What can you use flags for? You can record the answer to a simple yes/no

or up/down question, and then you can check this answer at a later stage.

You can also define your own modes for the HP-41. For example you may want

to calculate distances in either miles or kilometres. Set flag 05 (or any

flag you choose) when you are working in kilometres, clear flag 05 when you

are working in miles. Flag 05 becomes a mode flag for use in programs; you

can check it to see if you are working in miles mode or kilometres mode.

Setting flags 00 to 04 also turns on the corresponding annunciators 0 to 4

(see Section 3.2), so these flags can be used to display information

concerning a program.

-86-



Some subroutines that are used a lot may need to use a flag temporarily

while they are doing something. It is best to reserve a few flags for

these routines, say flags 08, 09, 10 and not to use them in any other

programs that call these subroutines. If you do a lot of matrix

mathematics, and your matrix addition routine needs a flag, then let it use

flag 10 and make sure that none of the routines which call this subroutine

use flag 10.

The message so far is: know your flags and use them correctly. Read

Appendix D or the section on flags in the HP-41 manual. (Appendix D has

more information though.) Always set any special status that you need, it

is disastrous for example to run a program that does trigonometry in

degrees and then find that someone or something (like another program) has

set your HP-41 to radians mode. Be particularly careful to clear flag 25,

the "error ignore" flag as soon as you have finished using it, otherwise

your HP-41 may ignore a serious error later on. And remember to reset any

flags that may be clearcd because the HP-41 was turned off. One extra

warning; the HP-41 turns off for a moment when you display the time using

the Time module functions CLOCK or SHIFT, ON. Check this in Section 9.2.

4.4.2 SIZE and I REG.

Two other functions affect the status of the HP-41. The first one to

consider is SIZE. The HP-41C has 64 data registers (in addition to the

stack and ALPHA). These can be used for storing data (any kind of numeric

or text information) and for storing programs, key assignments and

additional specialised information. The SIZE function tells the HP-41 how

many of these 64 registers are to be used for storing data. If you type

XEQ, ALPHA, S, 1, Z, E, ALPHA you will see SIZE ___ in the display. You

can enter any number between 000 and 063 in reply to the three prompts.

For example SIZE 017 means that 17 registers are to be used for data. The

other 47 will be used for storing programs, key assignments, alarms and

buffers. SIZE 017 is the default when the HP-41C is reset by a MEMORY

LOST. If you plug in extra memory modules or a quad memory module on an

-87-



HP-41C, all the extra memory is initially added to the data registers, so

you can do SIZE 017, then plug in two memory modules (64 registers each)

and have a SIZE of 145. On an HP-41CV, 47 registers are again kept for

programs, assignments and buffers after a reset, but the only way to change

the number of data registers is by means of the SIZE instruction because

you cannot plug in or remove any more ordinary memory modules. This is not

much good because the extra memory of an HP-41CV should be more fairly

divided between programs and data registers. On the HP-41CX the initial

SIZE is set to 100. Remember that the lowest numbered data register is

register 00, so a SIZE of 50 means that you can use registers 00 to 49. If

you try to use register 50, you will get NONEXISTENT.

Since you can repeatedly change the SIZE by executing the SIZE command or

by plugging in extra memory modules, you may need to check what the present

SIZE is. There is no easy way to do this on an HP-41C or CV, so a great

many SIZE-finding routines have been written. The simple-minded ones just

count from 0 upwards, recalling each register till a NONEXISTENT error

occurs. Cleverer versions use some secarch method, for example a binary

secarch. This starts at 319 (the largest possible, assuming there are no

programs and the search is done from a ROM or from the keyboard), and

repeatedly halves the difference between the last successful recall and the

last unsuccessful recall. The cleverest methods use Synthetic Programming

to recall the SIZE information directly from the place where the HP-41

itself stores it. The Extended Functions module provides a built-in SIZE?

function to solve this problem, but several Application modules also have

SIZE? functions which check what size you want, not what the SIZE actually

is, so you need to take some care with this function name, see Section

12.5. Alternatively, use the PPC ROM function S? (see Section 12.8).

The remaining status-setting function to consider here is I REG. This is

used to put the six statistics registers where you want them, by specifying

the location of the first one. After a reset, this is register 11, see the

Owners’ Manual for details. If, for example, you are using registers 11

and 12 for some data then you can set EREG 021 so that the six statistics

registers are in registers 21 to 26. To avoid accidentally destroying

-88-



important data when you do some statistical calculations, you can make the

statistics registers NONEXISTENT. To do this, set a large SIZE, say SIZE

090. Then put the statistics registers at the top of memory, say REG 080,

and then decrease the SIZE again, say to SIZE 050. Any use of the

statistical functions will now result in NONEXISTENT and there is no danger

of destroying important data. Just as with SIZE, there is no easy way of

checking where these registers are. The PPC ROM contains a function £? and

the HP-41CX has a I REG? function to tell you where the first of these six

registers is.

If you have a printer available then you can print all the status

information discussed in this section. Simply execute PRFLAGS and you will

get the SIZE, the number of the first statistics block register, the angle

mode, the display mode and a list of all the flag settings.

4.5 LASTX; corrections and constants.

As none of the worthy readers of this book ever make mistakes, there is

little point in explaining that LASTX recovers X so that corrections can be

made. But once a number is copied from X to LASTX (during a calculation),

it can be wused repeatedly, not only for corrections, but also for

arithmetic with a constant. The normal use of LASTX would be as follows:

You intend to multiply 7.5 by 3.9

7.5 ; you put in 7.5

ENTER ; put 7.5 in Y so you can put in the 3.9

3.9 ; put in 3.9

/ ; whoops, you divided instead of multiplying

LASTX ; get 3.9 back and ..

* ; multiply to get back to the original value

LASTX ; get 3.9 back again and ...

* ; multiply again to get the required answer

Note that LASTX,* was used twice, to multiply by 3.9 two times. Since you

never make mistakes, you will not need this for corrections, but you can

-89-



use the same process with 3.9 or any other number for repeated

multiplication by a constant. First you put 3.9 (or your chosen constant)

into the LASTX register by putting the number into register X and dividing

by it (or doing some other arithmetic operation) as above. Then you could

repeatedly put numbers into X and press LASTX, *. The same process can be

used for adding, or subtracting or dividing by a constant.

The function LASTX recalls a value from register L. Register L is rather

like an extra stack register (in addition to registers X, Y, Z and T). It

is used to store the previous value of X after most arithmetic operations

so that the function LASTX can be used to bring the value back. Register L

can be used just like X, Y, Z and T for operations such as X<>L or ST/L.

In fact LASTX is equivalent to RCL L. However register L is not exactly a

stack register because it does not move when the stack is changed by roll

up, roll down or ENTER. Register L is also not cleared by CLST. You can

therefore clear registers Y, Z, and T but keep X unchanged by doing

something like +, CLST, LASTX.

Any mathematical function that explicitly changes the value in X is

preceded by an automatic STO L. (Except that L is not changed if the

function fails for any reason.) HP-41 non-mathematical functions that use

X or change it, such as ASTO X, do not save X in L. A few Extended

Functions and Time module functions do save X in L though, because they

alter X, see Chapters 9 and 10. Mathematical functions that do not

normally change X, such as ST+, do not store X in L, even in the case of

ST+X. CHS really performs two different operations; during number entry it

negates the mantissa or exponent (and it is sometimes called the NEG

function under these circumstances). At other times CHS changes the sign

of the mantissa of X; this is really a mathematical operation on X, but it

is treated like the first case and does not save X in L (even though it

does enable stack lift).

Many new users of RPN calculators complain about the absence of a K

(constant) feature without, realising that the L register and LASTX provide

this same facility. If you need to do a lot of constant arithmetic, you

-90-



can write five very short routines that will allow ENTER to act as a

constant store key and + , - , * , / to act as constant operations. Write

the following five subroutines and assign them to the keys suggested. If

you are unsure about assigning keys, check Section 4.3.2, and if you are

unsure about writing subroutines or programs then come back here after you

have read Chapter 6. The subroutines are:

LBL"K ; Assign this to the ENTER key

STO L

RTN

LBL™+ ; Assign this to the + key

LASTX

+

RTN

LBL7- ; Assign this to the - key

LASTX

RTN

LBL™* ; Assign this to the * key

LASTX

*

RTN

LBL7/ ; Assign this to the / key

LASTX

/

END ; This can be an END or a RTN

To use these routines set USER mode, type in your constant, press ENTER to

store it, then enter any number and press + or - or * or / repeatedly to

use the constant. Of course you must not do any additional mathematics

that would change the value in register L. If you prefer not to use the

91-



keys suggested above then you can choose to assign the functions to

different keys.

An alternative way to do constant arithmetic is to use the stack drop

feature that repeatedly copies T into Z. This involves placing the

required constant into X, pressing ENTER three times, then repeatedly

typing in a number, and pressing + or - or ¥ or /. After each calculation

you must press CLX then type in the next number for the calculation with a

constant. This seems more cumbersome than using LASTX, but it allows you

to subtract from, or divide into, a constant (because the constant is in Y,

not in X).

User-written mathematical routines should, if possible, use only the stack

and save X in L just as the HP-41 functions do. Using only the stack

prevents any conflicts between different subroutines that might want to use

the same numbered data registers for temporary storage. Storing the

original X in L makes it much easier to treat user-written routines exactly

like HP-41 functions. A good example is a version of X713 suggested by

Frank Wales, published in HP Key Notes, and subsequently included in the

HP-41CX manual. The value that was in register X at the start is called x

(little x) here to distinguish it from the X register itself.

X12 ; Obtains x squared and puts the original x into L

X<>L ; Puts the original x into register X and x12 into L

ST*L ; Multiplies the contents of L by x giving x13

X<>L ; Puts x back into L and puts x13 into X

At the end of this subroutine, registers Y, Z and T are unchanged. The X

register contains x cubed, and register L contains x which was the original

value in X. If you compare this with the HP-41 function to square X, you

will find that it behaves in exactly the same way.

Register L can also be exploited by programs that need to use a single

register, without affecting the stack or any numbered registers. An

example of this is the program REGS given in Section 7.2. Experienced

-92-



programmers often use functions such as ABS or SIGN to copy X into L.

These functions are faster than STO L and use less memory. SIGN is

particularly good, since it works for text strings as well as for numbers.

4.6 Efficiency: keyboard operations vs. programming.

If you only wanted a calculator to do keyboard calculations, you are

unlikely to have bought an HP-41. (Or did you buy it to impress your

friends?) Presumably you will want to use programs to solve your more

complicated problems. In the following chapters, there will be more

emphasis on programming than on keyboard calculations. Do not forget

though that keyboard calculations also have their uses. Working through a

problem on the keyboard shows you all the intermediate answers. This is

one of the advantages of RPN: it lets you follow the problem and think of

better ways to approach it. Nor is it efficient to write a special program

for solving quadratic equations if you only have one equation to solve. If

you are very short of memory, you can do some preliminary calculations from

the keyboard so that the program you are writing will take up less space in

memory. One example: if a longish program starts by calculating SIN(1/X12)

then you can save three steps by doing X12, 1/X, SIN from the keyboard and

then running a program to do the rest of the long calculation.

This book is meant to help any reader get more from their HP-41, so it

provides suggestions that will simplify keyboard operations as well as

programming. Many of the programming tips are equally suitable for

keyboard calculations, and this should not be forgotten. The next chapter

will describe the mathematical functions of the HP-41 and will give tips

for their use. Many of these tips too will be suitable for keyboard use.

A point to note though is that programs should be as short and fast as

possible, whereas keyboard calculations do not have to be as fast, and they

need to be clear and to use few keystrokes. Thus multiplying a number by

two is best accomplished in a program by the instruction ST+X (add X to

itself, so doubling it). From the keyboard this is not very clear and

takes a lot of keystrokes. ENTER, + or 2, * is clearer.

-93-



2, ¥ is better than ENTER, + if you want to use the keyboard for this

simple operation, because it involves the least movement of your fingers.

Similarly if you are doing a lot of rapid calculations and entering a lot

of numbers then ENTER, * demands less extra movement of your fingers than

SHIFT, X12. Another tip is that -, CHS is easier than X<>Y, -. In all

these three cases you get the same result in X using either alternative,

but the first one is more efficient because it demands less motion of your

fingers.

Exercises

4.A Try to find a copy of John Ball’s book "Algorithms for RPN

Calculators”, published by Wiley. You may find it in a local university

library. He gives a list of stack rearrangements for use on calculators

without a R7 key. (See Section 4.2.3) Try to rewrite some of these

rearrangements for the HP-41, using the R1 key and the other extra

functions such as RCL Y, STO Z, X<>T. You will see how much more powerful

the extended HP-41 RPN functions are, and why the HP-41 language deserves a

special name since it goes further than the RPN on earlier calculators.

4.B Given the three values:

A=5.37 ; B=214E-2 ; C=1.18

find a way to put all this information (names and numbers) in the display

simultaneously by making a suitable choice of display characters.

4.C Put PI times 10110 into register X. Set FIX 7 mode, then FIX 8 mode.

Observe that the last displayed mantissa digit is rounded up to 7 in FIX 7

mode, but that the rounding is not seen in FIX 8 mode. This is because the

ncxt mantissa digit has been rounded, but it is not seen as it is covered

up by the exponent. Use the ALPHA register to check the last mantissa

digit in the two cases.

-94-



4.D A subroutine that works exactly like X712 but calculates X713 was shown

in Section 4.5. Try to write a similar subroutine to calculate X14. It

should save the original X in L, put X714 into register X and leave

registers Y, Z, and T unchanged. If you found this easy, try to write a

cube root subroutine that works in the same way. (I have been unable to do

this without using Synthetic Programming.)

-95-





CHAPTER S - KNOW YOUR FUNCTIONS

5.1 Choose your weapons.

There is a sufficient choice of functions on the HP-41 that most users

select a favourite few and rarely use the others. This is quite

satisfactory until a user spends hours creating a program to provide a

function that already exists. There was a maths professor who once wrote a

whole program to extract the "invisible" digits of a number instead of

using FIX 9. The best way to avoid forgetting about functions that are not

used much is to reread the manual once a year, but who has the time to

plough through 450 pages of HP-41CX manual every year?

This book is not a replacement HP-41 manual, so there is no point in simply

repeating all the function descriptions here. Many functions are mentioned

more than once in the book, some may not be mentioned at all. To help the

reader choose the most suitable weapons for dealing with mathematical

problems, the mathematical and statistical functions are described all

together in this chapter. The descriptions are not intended to be simply a

rewording of the manual, they concentrate on tips for the use of the

functions. The functions used specifically for writing programs will be

described in the next chapter.

5.2 General mathematical functions.

The functions will be described in groups of similar functions. Some

functions appear differently on the keyboard than in the display, the

version used in the display has been used here.

+-*/ CHS Need no special comment, they have been described in Section

ST+ ST- 4.2. Remember that CHS, ST+, ST-, ST* and ST/ do not save

ST* ST/ the previous value of X in L.

-97-



ABS SIGN

FRC INT

RND

Functions in this group alter X in a manner that seems

obvious but can be difficult to describe mathematically.

They are therefore more useful in programming operations than

in keyboard calculations. SIGN returns zero if X contains a

text value, and 1 if X contains a number that is positive or

zero. This provides a useful test for ALPHA values, but is

not a true mathematical signum function. The latter can be

provided by STO L, X#0?, SIGN. This replaces X with +1, 0 or

-1 if X is a number, and stops with an error if X is a text

value. SIGN is very useful for storing the contents of X in

register L; unlike + it works for text values, and it is

shorter than STO L.

Do not make the mistake of thinking that RND is a "random

number" function. The HP-41 does not have a built-in random

number generator, although these are available on plug-in

modules, and some are described in Chapter 7. RND is a

rounding function, it replaces the exact value in the X

register with the displayed value. This is very useful when

a number is obtained as a result of a set of calculations and

may be inaccurate. If such a number is to be compared to an

exact value, it should be rounded before the test X=Y? is

performed. The longer the calculation, the less accurate the

result, so choose a suitable number of digits for rounding,

something like SCI 4. FIX 4 would only round the fractional

part of a number, so a number greater than 1015 would not be

rounded at all in FIX 4 mode, but SCI 4 will round to five

significant digits in all cases. (If rounding would make the

number greater than the maximum that the HP-41 can store then

it rounds to the largest value it can store.) If the number

in the display contains an exponent then the last digits of

the mantissa may be hidden (see Section 4.4.1) so the result

of RND might not be exactly the same as the result in the

display.

-98-



MOD

X412 SQRT

Y4X

This is also called the remainder function. (It can be

considered to be an extension of FRC which finds the

remainder of X divided by 1.) It is sometimes difficult to

remember exactly what the result of this function is when X

or Y are negative. Best remember the formula

MOD =Y - MINT(Y/X)*X

MINT(Y/X) is the maximum integer not larger than Y/X. For

example Y=-4 , X=3 gives

-4 - MINT(-4/3)*3 = 2

because the largest integer not greater than -4/3 is -2. The

special cases are: X=0 returns Y as the result, and Y=0

returns 0. A typical use of MOD 1is to bring a value in

degrees into the range 0 to 360 degrees. Put the value (say

-790) into Y, put 360 into X, and execute MOD to see that

-790 degrees is equivalent to 290 degrees. This is simpler

than using a collection of X>0? and X<=Y? tests.

An additional amusement here. How can you compute the sum of

the digits of any integer N ? (For example the sum of the

digits of 1985 is 5 because 1+9+8+5=23 and then 2+3=5.)

Simply use N, ENTER, 9, MOD to get this number.

The limitations of these function should be remembered. SQRT

requires that X be positive. Y1X requires that X must be

integral for negative Y, and X must be positive for zero Y.

The sequence SQRT, X12 rarely returns exactly the original

value and should be followed by RND, as described above,

before any test is .made. Y{(1/X) - called involution - is

calculated by doing Y, ENTER, X, 1/X, Y1X.

-99-



% %CH

LOG 101X

LN EfX

LN1+X E1X-1

DEC OCT

Remember that these functions use X and Y, but leave Y

unchanged. The sequence 1, % is shorter and faster than 100,

/ but it leaves Y unchanged whereas 100, / drops the stack.

Similar sequences can be used in cases such as .03, * which

can be replaced by 3, % saving two keystrokes and some

program space. It is useful to remember that %CH provides

the value

((X-Y)/Y) * 100

Volume 2 of the HP-41CX manual gives a good description of

this function together with some extra tips.

The two functions E1X-1 and LN1+X should really have been

called (E1X)-1 and LN(1+X). They provide improved precision

for financial calculations and for some special mathematical

functions such as hyperbolics. In financial calculations,

compounding can be done more accurately, and in hyperbolic

function calculations, TANH and ATANH can be obtained more

accurately. See Chapter 7 for a hyperbolic function program

and Chapter 12 for a description of the PPC ROM which uses

these functions in an accurate financial program.

The HP-41 allows for arithmetic on hours-minutes-seconds

numbers (see below) but otherwise it works in decimal. This

stick-in-the-mud attitude is somewhat alleviated by DEC and

OCT. DEC allows for the conversion of octal numbers to

decimal so that arithmetic can be done on them; OCT allows

for the conversion of the results back into octal so that

they can be checked. Both DEC and OCT work only on integers,

so numbers with fractional parts have to be scaled by the

appropriate power of 10 or 8. DEC and OCT can of course also

be used just for conversions, say of octal numbers in a

computer dump. This is fine if you are using a computer that

displays results in octal, such as a CDC. It is less help if

your computer displays results in hexadecimal, such as IBM or

-100-



FACT

ISG DSE

Hewlett-Packard (!) computers. (Even the HP-41’s internal

microprocessor has a hexadecimal mode.) DEC and OCT are also

useful for shuffling digits in a number for random number

generation or encoding messages. See Chapter 12 for a

description of the HP-IL Development ROM which provides a far

more complete set of functions for working with binary, octal

and hexadecimal numbers. The ultimate tool for such work is

the HP-16C computer science calculator.

The factorial function (X! is wuseful for work with

combinations and permutations, but only works for integer

values of X up to 69. Setting flag 24 (to allow arithmetic

overflow) is dangerous when used with FACT since it can lead

to answers that are incorrect even though this is not

immediately obvious. For example 70!/69! will come to 58.4

if you have flag 24 set. This is incorrect, but is close

enough to 70 that the error may not be noticed till later if

at all.

Judging by the number of programs in the User Libraries, the

extension of the Factorial function to non-integer values and

values over 69 is important to many users. Any HP-41

successor should certainly have these two features, perhaps

in the form of a log Gamma function. In the meantime,

rearrangement of functions, logarithms, and use of Stirling’s

approximation and approximate Gamma functions (one is given

in the High-Level Maths Solutions Book) will have to do.

Although these are really loop control functions, they can

also be used to repeatedly add or subtract a constant. Sece

Section 6.8 for details, and also for a note on the Card

Reader functions 7ISZ, 7DSZ, 71SZI, and 7DSZI which can be

used instead.

-101-



5.3 Times and angles.

HR HMS

HMS+ HMS-

Very useful for converting to decimal hours (or decimal

degrees), and back to hours, minutes and seconds (or degrees,

minutes and seconds). Remember that fractions of a second

are decimal numbers, not parts of 60. See the warning (about

display formats) after HMS+, HMS- below.

Save the need for converting minutes and seconds to fractions

before doing arithmetic with them. (Very useful with the

Time module.) HMS- seems an unnecessary luxury since it is

equivalent to CHS, HMS+. The first HP programmable pocket

calculator, the HP-65, had the same function, called DMS-.

The successors to the HP-65, the HP-67 and the HP-97, did not

have such a function, and many users complained. This may be

why the HP-41 has HMS-, even though it is not strictly

necessary.

Be warned: the display will round up values such as 1 hour,

59 minutes, 59.6 seconds to 1 hour, 59 minutes, 60 seconds,

or even to 1 hour, 60 minutes. This is because the rounding

function knows nothing about rounding up Babylonian (base 60)

numbers; only the HMS functions know about that. It would

probably have been better to leave out the HMS- function and

provide a time rounding function on the HP-41. The simplest

way to avoid potentially embarassing time displays such as 1

hour, 60 minutes is to execute RND (round the value in X to

the displayed value), then HR (convert the value in X to

decimal hours), then HMS (convert the value in X back to HMS

format, but HMS will calculate and display times correctly).

-102-



DEG RAD

GRAD

R-D D-R

SIN ASIN

COS ACOS

TAN ATAN

P-R R-P

Use these to make sure the correct mode is set before

calculations with angles. Remember that many operations such

as integration require the natural mode for angles, namely

radians not degrees. See Sections 11.10 and 15.2 for

discussion of a single key assignment that will let you

toggle among all three angular modes.

Convert radians to degrees or degrees to radians. Faster

than using pi and 180, they do not lift the stack. See

Section 7.4 for a way to use R-D as part of a random number

generator.

SIN, ASIN becomes somewhat inaccurate for angles very close

to 90 degrees, and COS, ACOS has the same problem near zero.

ASIN and ATAN provide answers in the range -90 to +90

degrees, but ACOS provides answers in the range 0° to 180°.

SIN has a bug on early HP-41s when using very small angles,

see Appendix C.

Many computers provide an ATAN2 function to provide an answer

in any of the four quadrants (from -180 to +180 degrees). On

the HP-41 R-P can be used to provide the same function; see

below. If it is necessary to calculate both the sine and the

cosine of an angle, P-R can be used to do this quickly; see

below again.

These are extremely useful functions, not only for converting

between polar and radial coordinates in two dimensions but

also for several other operations.

i. To obtain the sine of an angle (in Y) and the cosine of

the angle (in X) at the same time. Put the angle in the X

register, then do: ENTER, 1, P-R. This is much faster in a

program than SIN, LAST X, COS. It does not save the angle in

L, but you can save the angle in Z by doing ENTER two times.

-103-



ii. To obtain SQRT(at2 + bt2 + ¢t2 + .. ). Type in a, press

ENTER, type in b, press R-P, type in ¢, press R-P and

continue for all the terms in the square root. At the end,

the result is ready in X.

iii. To obtain the angle between -180° and 180° whose tangent

is given by X/Y. This is a function provided on many

computers under the name ATAN2(X,Y). Type in X, ENTER, type

in Y, press R-P, X<>Y. The angle is now in register X. A

program to simulate ATAN2 exactly is given in the next

chapter. See Exercises 5.B and 5.C for additional uses of

R-P and P-R.

5.4 Summations and Statistics.

These differ from the other mathematical functions in several respects and

should therefore be used with care. The most important difference is that

these functions use, and alter, a block of six numbered data registers

without making it obvious which registers are affected. All other

mathematical functions leave the numbered data registers alone, except for

the storage arithmetic functions which have a parameter to show which

register they use. Overflow errors caused by I+ and I - are ignored, even

when flag 24 1is clear, but they may subsequently cause errors in the

calculation of MEAN or SDEV. I+ and I- can give error messages even if X

and Y contain valid data, since the statistics registers themselves may

contain unexpected values such as ALPHA DATA. It is always nececcary to

execute CLI before starting a new set of statistical operations. Once

again, this can affect unexpected registers in memory, so CLXZ should be

preceded by IREG nn. IREG allows you to define the block of six

consecutive registers that will be used for statistics. You have to give

the register number, nn, of the first register in this block, and you have

to ensure that the SIZE is set so that all six registers exist (the default

setting of nn after MEMORY LOST is 11). The six registers contain IX,

I x12, £y, Iy?2, Ixy and n, where n is the number of data values

accumulated. (This information is given in the Owner’s Manuals and in the

-104-



HP-41C Quick Reference Guide, but it is left out of the HP-41CX Quick

Reference Guide. Best put it into one of the large and wasteful blank

spaces of the HP-41CX Guide. Page 28 would be a good place.) The

statistics functions suffer from two (fairiy trivial) bugs; see Appendix C.

L+ -

CL

I+ and I - leave Y unchanged, save X in L, put n into X and

disable stack lift. This means that LAST X, I - immediately

after a X+ will cancel the effect of the r+ if you decide

you made a mistake. It is for this reason that stack lift is

disabled after X+ (and - in case you change your mind

again).

MEAN SDEV MEAN and SDEYV replace the contents of registers X and Y

IREG

without lifting the stack. X is saved in L but Y is

irretrievably lost. I+ and I - allow numeric overflow and

simply store 9.999999999E99, but MEAN and SDEV may give

overflow errors as a result. To correct this, you will have

to alter the register whose contents are too large, or store

a large number in n, then rescale the resultt MEAN and SDEV

calculate the mean and standard deviation of both X and Y;

since an overflow on Iy will prevent you from getting any

results forrX it is a good idea to clear the Y register

before doing any statistical accumulations that use X only.

SDEV gives the sample standard deviation; to obtain the

population standard deviation execute MEAN,z+, SDEV. This

operation will not change the mean, but it will turn the

result in terms of the original value of n into a population

standard deviation. See Exercise 5.D for details.

Once you have executed IREG nn, you cannot easily find out

LREG?(41CX) what nn is. The HP-41CX provides a £ REG? function for this

purpose. On the HP-67 and 97 there was a RCL function which

overcame this problem at least partly, by returning X x to X

and £y toY. The Card Reader provides the same function,

7RCLEZ, but if you do not have a Card Reader you will have to

-105-



write the function yourself; see Exercise S.E.

On the HP-67 and HP-97, the statistics registers always

started at register 14. The Card Reader therefore translates

HP-67/97 programs so that every statistics function except

RCLZ is preceded by IREG 14. This can waste a lot of

space. Any HP-67/97 program that contains a statistical

function immediately after a test (such as X=0? or 7ISZ) will

also go wrong because it will skip the IZREG 14 line, not the

statistical function itself. For these two reasons it is

best to delete all the EZREG 14 lines in a translated program

and just put EREG 14 at the start of the program. 7RCLZ

assumes that the statistics registers begin at register 14

and recalls register 14 to X and register 16 to Y,

overwriting the previous contents of X and Y. It does not

save X in L as it should, this too can cause errors on

translated HP-67/97 programs.

5.5 Indirections.

This chapter so far has contained lots of directions for using functions.

Now let us have some indirections! (What other name would you suggest for

"indirect directions" ?)

A simple example first; you want a program to execute all the TONEs from 0

to 9. One way to do this is to store the 10 instructions TONE 0 to TONE 9

in the program. A different way is to put the numbers 0 to 9 into the X

register one after another and to execute TONE IND X each time. The TONE

to be executed each time is given by the number in X; it is provided

"indirectly", not attached directly to the TONE instruction itself. You

need not put the numbers in X; you could put them in any other stack

register or data register numbered below 100. For example you can put

various numbers into register 12 and execute TONE IND 12 each time.

Instead of giving a TONE number, you give an address where the TONE number

is to be found - an Indirect parameter.

-106-



Here is another way of looking at it: In a moment of indiscretion I loaned

my HP-41 to Dave, now I want to go to Dave and get it back. But I do not

know where Dave lives. Instead I have to go to Ian first and ask for

Dave’s address, then go to Dave. This can be called Indirect Addressing.

Instead of going directly to Dave’s address, I have to go indirectly via

Ian.

The HP-41 allows similar indirect addressing. You can directly recall

something from register 10 by using RCL 10. You can also put 10 in

register 00 (or any other register up to register 99), then use RCL IND 00.

Instead of wusing address 10 directly, the HP-41 looks for an indirect

address in register 00, finds 10, and then recalls the contents of register

10. This means that you can write a program even if you do not know which

registers that program will use. The program can use indirect instructions

to work out for itself which registers to use.

To execute RCL IND 00 as above, you press RCL, then the SHIFT key, then 00.

The SHIFT key has an extra use, working as an "indirection" key when it is

pressed after a parameter function. Any numbered register from 00 to 99

can be used after IND. The stack registers X, Y, Z, T, and L can also be

used. (Press the point key after SHIFT and then press one of the keys

marked with the letters X, Y, Z, T, L. This works in just the same way as

using the stack registers for direct operations such as RCL Z.)

Let us take a more realistic example than RCL 10 used above. Say you need

to store a value in one of the numbered registers. Normally you would do

something like STO 20, but in some cases you may not know whether 20 is

free or if something important is already stored there. (For example if

you have a list of telephone numbers, you may want to add another telephone

number to the end of the list. You do not know how many telephone numbers

there are when you write the program; it must be written to let you find a

free register and put the next number in it, and also increase a counter

that tells you how many telephone numbers there are in the list.) So you

decide to use register 25 to tell you how many registers are already in

use. If registers 00 to 49 are all being used, then register 25 will

-107-



contain the number 49. This will tell you that register 49 is in use and

that register 50 is the first unused register. Your program (any program)

could then add one to the number in register 25, then do STO IND 25. This

will store the contents of register X in register 50, and you will also

have changed register 25 so that you know that registers 00 to 50 are in

usc.

STO, RCL, and X<> can only directly address registers 00 to 99 (unless you

use Synthetic Programming) so all registers over 99 have to be addressed

indirectly. For this reason registers 00 to 99 are sometimes called

primary storage registers and registers 100 and above are called extended

storage registers. This naming is not really necessary, and is best

avoided to prevent confusion of extended storage registers with Extended

Memory.

Most functions that take a direct parameter can also take an indirect one.

This includes storage arithmetic and flag operations. If you want a

program to set the display to show a chosen number of digits then the

program can ask the user for the number, store it in register nn, and later

use FIX IND nn to set the display when required. Indirect addressing is

particularly useful with the program control functions GTO and XEQ, this

will be discussed in Chapter 6. Of the non-programmable functions only CAT

takes indirect parameters. This is not really much use since it is easier

to press CAT n than to press n, then store it, then press CAT IND nn.

Indirect catalogues have a couple of rather trivial bugs (see Appendix C)

and the HP-41CX manuals deal with this by simply not mentioning the

indirect use of CAT.

During keyboard calculations the user normally remembers things such as

display settings and register numbers, so there is rarely much need for

indirect operations. The indirect functions are of most use in programs.

A particularly effective use is that of STO IND or RCL IND together with

ISG or DSE; this will be discussed in Section 6.8. Although the indirect

instructions can use stack registers to hold an indirect address, the

indirect address itself must be a number. Thus STO IND Z is allowed, but

-108-



the indirect address in Z must be a number, not a letter such as Y or L.

(The only indirect operations that allow stack registers as addresses are

the HP-41CX indirect test functions described in Section 10.6.)

Exercises

5.A CHS can be used both as a mathematical function and as part of a

numeric entry. How about EEX? What happens when you enter a number

without a mantissa by just pressing EEX? Does the same thing happen in

PRGM mode? Is this sensible? See Section 14.1.

5.B Just as R-P can be used to speed up the calculation of SQRT(at2 + b12)

so the SIN, COS, TAN, ASIN, ACOS, and ATAN functions can be used to

calculate results like SQRT(1-x12) in fewer keystrokes. Try to write out

combinations that will let you work out SQRT(1-x12) and SQRT(1+x12). Use

only registers X, Y, Z, T, and L.

5.C The functions R-P and P-R can be used for rotations in three

dimensions as well as for two dimensions. Work out the steps required to

go from a Cartesian X, Y, Z coordinate to a Spherical Polar R, Theta, Phi

coordinate and back again. Use only X, Y, Z, T, L.

5.D Prove that the operations MEAN, I+, SDEV provide a population

standard deviation instead of the sample standard deviation given by SDEV.

The formula for a sample standard deviation is:

SQRT{ [n£(x12) - (£x)12]/[n(n-1)] }

and the formula for a population standard deviation in terms of the same

valuesis:

SQRT{ [n£(x12) - (£x)12]/(n12) }

-109-



5.E Write a subroutine to recall Ix to register X and Iy to register Y

without altering the statistical values themselves. See if you can write

the routine so that the previous value in register X is saved in one of the

registers Z, T, or L. Hint: remember that £+ and - recall n to register

X.

5.F If you want to clear every second register from the keyboard so as to

leave only the even registers unchanged, you will have to press CLX,

STO 01, STO 03, STO 05, STO 07 and so on. After a while it is very easy to

slip up and press an even number by mistake. If you need to do something

of this sort, see if you can do the same thing more safely by putting

1.00002 in register Y, clearing X, and then alternatively pressing STO IND

Y and ISG Y until all the registers have been cleared and you get

NONEXISTENT. If you know about Synthetic Programming, or if you use the

GASN program in Chapter 11, you will even be able to assign STO IND Y and

ISG Y to keys so that each of these functions can be performed with a

single keystroke. The safest thing of course is to write a program to do

the whole job, and this leads us to the next chapter.

-110-



CHAPTER 6 - SOMETHING ABOUT PROGRAMMING

6.1 A Simple Program.

To calculate the area of a circle whose radius is in X, you need to press

X12, PI, *. For every new circle you need to press these three keys again.

It leads to fewer errors, and is much easier, if you store this sequence as

a program and execute it by pressing a single key. In effect, this key

represents a new HP-41 function which calculates the area of a circle.

When you put the HP-41 into PRGM mode, then press a set of keys, the HP-41

memorises the functions instead of executing them. The memorised sequence

of functions makes up a single program. If you want to try writing a

circle program, follow the next paragraph, otherwise skip over it.

Press GTO.. first. This packs program memory, removing unused space from

other programs and makes an area in memory rcady for the new program.

Next press PRGM to enter program mode and press X12, PI, * to write the

program. Each step is stored and displayed with its step number. Press

SST twice to go past the END of the program and back to its first step (the

step X712 and its line number appear in the display). Press PRGM again to

go back to RUN mode. Now you can run the program repeatedly by putting

different radii in X and just pressing R/S for each value. Try it and see.

Put 5.642 in X and press R/S - the answer should be just over 100.

If all programs were as simple, there would be no need for the rest of

this chapter. However most programs need to do more than go straight

through working out an equation. Special functions are used to let

programs make tests, ask for information, and display results. Further

instructions are wused to alter programs, and to identify different

programs. These and other functions will be covered in the rest of Chapter

6, and some example programs will be given in Chapter 7.

-111-



6.2 Using Labels To Identify Programs And Routines.

The example program given above works, but what happens when you write

another program, or ten more programs? Each program must be separately

identified, and in big programs each section may need to be identified. On

many calculators (and in some versions of BASIC) the only way to identify a

piece of a program is by the line number. You can do this on the HP-41

too, for example go to line 03 of the circle program by pressing GTO then .

(the . means go to a line number), then 003. Press PRGM and you will see

that the HP-41 displays line 3 of the circle program. The HP-41 with full

memory can however store up to 2238 lines of program, and looking for a

particular one of these could take a long time. To make life easier you

can split the program memory up into separate programs, by using GTO.. as

in Section 6.1 and each program can be identified by one or more labels.

Try putting a label at the front of the circle program. Press GTO.000,

this gets you to line 000 which is the front of the program. As there is

no step number 000, the HP-41 displays the number of free registers still

available for writing programs. Now press LBL, ALPHA, A, R, E, A, ALPHA.

This produces a new line 1: 01 LBL"AREA" and the other lines have all moved

down by one. The circle program can in future be identified by this label.

Now that the program has an identification, you can write a new program,

say to calculate the volume of a sphere. First press GTO.. to separate the

old program from the new one. You could go to the last line of the program

and press XEQ "END" instead (remember to press ALPHA before and after

pressing the alphabetic keys to spell the function or program name). Both

methods put an END at the end of the previous program, but GTO.. also packs

memory. Make sure you are in PRGM mode, then write the new program as

follows:

LBL "VOLUME", X12, LASTX, *, 4, *, 3, /, PL, *, PRGM

To run the program, you can press SST twice to get to the front, then

press R/S, or you can press RTN (on the SHIFT EEX key) to get to the front,

then press R/S. You can also press XEQ "VOLUME". Since R/S runs a program

-112-



from the step at which the HP-41 is positioned, you can no longer run the

circle program by pressing R/S. The step pointer is now positioned inside

the volume program. A program, in this meaning, is the set of instructions

from one END to the next END, including the second END, but not the first.

The steps in a program are numbered consecutively starting at 01, and the

step pointer points to the current line. The current line is the line that

would show up if you were in PRGM mode and the current program is the one

which contains this line.

You can run the circle program again by pressing XEQ "AREA". You can

also assign the program to a key by using ASN. Press ASN, "AREA" and then

the particular key that you wish to use, or shift and the shifted key. For

more details of ASN, sce Section 4.3.2. You can now run the arca program

whenever you wish just by pressing the selected key on the USER keyboard.

The labels AREA and VOLUME are called global labels. This means that they

can be recognised at any time and from any place in HP-41 memory. There

are also local labels which are only recognised inside their own program.

Local labels are numeric labels LBL 00 to LBL 99 and the special alphabetic

labels LBL A to LBL J and LBL a to LBL e¢. A typical example of wusing

local labels would be in a program that solves quadratic equations. One

label identifies a section that solves for real roots, with another label

for the section that solves for imaginary roots. If these two sections are

identified by LBL 00 (crecated by pressing LBL, 0, 0) and LBL 0l

respectively, then these two labels would be found by a GTO only if the HP-

41 was positioned at that particular program. Other programs could also

have their own LBL 00 and LBL 01 without causing confusion.

The same local label can be repeated several times in a program. Each time

the HP-41 needs to find a local label it starts searching from the

current line in the program. It searches down to the END, then restarts at

the top of the program until it comes back to where it started or finds the

label. The first time it finds a label, it finishes thc search, so another

label with the same number could be put further down in the same program.

This label would not be found by a GTO which has already found another

-113-



label with the same number. However another GTO further down in the

program could use the second label as its target.

The local labels identified by single letters A to J and a to e¢ behave like

numeric labels, but have an additional feature. You can create these

labels by pressing LBL, ALPHA, letter, ALPHA. If the letter is in the

range A to J or a to ¢ (obtained by pressing SHIFT followed by one of the

top row keys), then you get a local label. If you press any other letter,

or more than one letter, then you get a global label. Global labels appear

in the display with a text marker (7) in front of them while local labels

do not have this marker.

The special feature of the local alphabetic labels is that they are

automatically assigned to the top two rows, and the shifted top row, of the

keys. Thus in USER mode, you can press the [E] key (function LN), and the

HP-41 will look through the current program for a local LBL E and will run

the program after that label. If LBL E is not found, the function LN will

be performed. If a different program or instruction has been assigned to

that key, then that assignment will be used, and LBL E will not be searched

for. More than one LBL with the same letter can be put in a program, the

scarch always starts at the current line, and stops at the first

corresponding label. It is important to rcalise that a LBL E in another

program will not be found; only the current program is searched. It is

also important to realise that global labels A to J and a to e cannot be

created by normal means. Special methods to synthesize them will be

described in Chapter 14. It is possible to crcate global numecric labels

such as LBL "12" by pressing LBL, ALPHA, SHIFT, 1, SHIFT, 2, ALPHA. You

must be careful not to confuse a label like this with a local LBL 12.

6.3. Searching For Labels With GTO and XEQ.

A label is no use unless it can be found. One way of finding labels is to

assign them to keys, or use the default assignment of local alphabetic

labels to the top two rows of keys. This will only work if your target

label (the label you are aiming to find) is assigned to a key or is one of

-114-



the local labels (A to J and a to e¢). A more gencral method is

to use GTO followed Dby ecither a two-digit label number,

or by an alphabetic local or global label. In PRGM mode,

this will be recorded as an instruction whether or not the label can be

found. In keyboard execution, the label becomes the current program line,

or if the label cannot be found, the HP-41 displays NONEXISTENT. The GTO.

instruction (created by pressing GTO and the decimal point), cannot be

programmed and therefore can be used in PRGM mode. As described in the

previous section, it can be used to go to a specific line in the current

program. GTO. can also be used in PRGM mode to go to a global alphabetic

label. If you are looking at the program VOLUME in PRGM mode, you can

press GTO, ., ALPHA, A, R, E, A, ALPHA to go to LBL "AREA" without lecaving

PRGM mode. GTO. can also be used in run mode to go to linc numbers, which

can be uscful, and to global labels, which is not particularly wuseful as

GTO will have the same effect.

GTO will simply go to a label. If the GTO is a step in a running program

then the program will carry on running from thc labcl, but if GTO is

exccuted from the keyboard then it will just cause thc label to become the

current program line. If you want to go to a label and run a program

starting at that label then you should use XEQ instecad of GTO.

The XEQ instruction lets you perform or "execute" a function or a

subroutine starting at a local label, or run a program starting at a global

label. All these concepts, together with the idea of "Alpha cxecution",

were introduced in Section 3.5. (You may want to rcrcad Section 3.5 to

remind yourself of the basic ideas that will be used here.) When performed

as a keyboard operation, XEQ causes the immediate execution of a function

or routine. When performed as a step in a running program, XEQ cxccutes

the named function or routine as if it was a single line in thc program;

then the running program goes on to its next line. Let us take three

examples to make this difference clear. The first one shows what happens

when you use GTO to go to a routine in the HP-41. Imagine you go to the

beginning of the program "EX1" and press R/S. The arrows show the order in

which the steps will be carried out.

-115-



LBL "EX1"

X12

1/X

GTO "SINC"

LBL "SINC"

SIN

LASTX

/

END

You can see how the HP-41 goes from the routine EX1 to the label "SINC",

carries on from that label, and finishes at the END. (It would also have

finished at a RTN. Indeed RTN and END are supposed to do the same job here

except that END also marks the end of a complete program in HP-41 memory as

was described in Section 3.5.) Now sece what happens in the second example,

which contains XEQ "SINC" instead of GTO "SINC".

LBL "EX2"

. LBL "SINC"

X12 SIN

1/X LASTX

Y XEQ "SINC" /

SQRT «——— RTN or END

2
%

v END 
-116-



This time the routine SINC is executed as if it were a single step in the

routine on the left. When SINC is finished, the HP-41 goes back to the

routine from which it was executed, and this carries on from the next line

after the XEQ.

The routine SINC itself could execute another subroutine which would return

to SINC, since RTN or END send you back to the next line after the latest

XEQ. There will be no confusion between the return to SINC and the return

from SINC to EX3, because the HP-41 saves each return address separately.

The rcturn address is stored until there has been a corresponding return to

that address. Then it becomes the current address again and is removed

from the list of return addresses.

LBL "EX3"

LBL 'SINC' _«LBL "CHECK"
. XEQ "CHECK" 1 E-97
X412 SIN X<Y?
1/X LASTX CLX

' XEQ "SINC" / +
SQRT «——— RTN END
2
*

XEQ "CSINC"

Y END 
(The routine CHECK checks if the value in X is very small, and if so then

it replaces that value with a slightly larger one to avoid a possible

division by zero in SINC.) The routine called from SINC could contain yet

another XEQ, in fact up to six XEQ instructions can be saved, and the HP-41

will always return to the step after the latest XEQ. Until the return is

actually carried out, the HP-41 is waiting for it, and the return is said

-117-



to be pending (because it is suspended, or "hanging on"). The HP-41 stores

pending return addresses in a subroutine return stack, rather like the RPN

stack of X, Y, Z, T. This stack has room for six return addresses, so if

more than six XEQs are carried out without a corresponding return, then the

carlicst rcturn address is lost and the HP-41 stops instcad of returning at

the corresponding RTN or END. This is rather like losing the top valuc off

the X, Y, Z, T stack if more than four values arc ENTERed. After the SINC

routine has returned to the main program, therc arec no pending returns, so

later on XEQ "CSINC" counts as the first return in the stack, not as the

fourth.

The behaviour of XEQ requires some more explanations. When you press the

XEQ key you see XEQ followed by two prompt signs. You can fill these in

with two numbers representing a numeric local label, or you can press ALPHA

followed by a letter representing a local Alpha label and ALPHA again.

Instcad of a local Alpha label, you can use onc to scven characters which

represent the name of a routine or a function. The cffect of this differs

in PRGM mode and in run mode, let us consider PRGM mode first. The HP-41

will search for the namec through all of the programs and functions in

memory. The search goes through CATaloguces 1,2 and 3 in that order, as was

described in Section 3.5. If the name is found in CAT 1 it is rccorded as

XEQ "name". If the name is found in CAT 2 then 1t is recorded as

XROM "name" if it is the name of a routine, or as the name itself (without

quote marks) if it is a function. If the name has still not been found

then CAT 3 is searched, and the function name is recorded if found. (This

is why secarching for a CAT 3 function can be rather slow on an HP-41CX; it

is not found until CAT 1 and CAT 2 have been scarched, and CAT 2 contains a

lot of functions on an HP-41CX.) Finally, if the namec has still not bcen

found, it is recorded as XEQ "name", on the assumption that it is thc name

of a routine which you have not yet written, or that it rcfers to a name in

a module that is not plugged in. Local label XEQs arc immecdiately rccorded

without a search.

If you use XEQ in run mode, then the search is performed in the same order,

but the function or routine is executed at once if it is found. (If the

-118-



name is found in CAT 2 then the wrong instruction might be carried out if

two modules have the same number; see Section 12.5) Local labels are

searched for in the current program only dnd executed at once if they are

found. The NONEXISTENT message is displayed if the name (or local label

number) is not found.

The "non-programmable" functions such as GTO., PACK and SIZE cannot be

stored in a program. These functions are executed at once, even if you XEQ

them in PRGM mode. Some of these are available in programmable versions,

others can be made programmable by Synthetic Programming; this will be

covered in Chapter 16.

Once an XEQ instruction has been used to write a line in a program, the

corresponding label or function will have to be found when the program is

run. There is no problem with CAT 3 functions since these are always

available on every HP-41 (unless it is faulty), and are recorded as normal

program steps. A CAT 2 function or program is actually stored as a module

number and the number of the program or function in the module. If the

module is removed then the step will be displayed as XROM followed by these

two numbers (see Section 3.5 again) and the program will stop at the XROM

instruction displaying NONEXISTENT. If a different module with the same

module number is inserted then the HP-41 will try to find the program or

function with the specified number in that module, and will execute it if

found. This can produce entirely unexpected results; see Section 12.5.

The most complicated situation arises when a running program finds an

XEQ "name" instruction. The HP-41 first looks for the name in CAT 1, then

in CAT 2, in the order described in Section 3.5. In this case, confusing

results will be obtained if more than one module contains a program or

routine with the same name (Section 12.5 covers this as well). If the name

is not found in CAT 1 nor in CAT 2, it is most likely a name that you have

deleted from CAT 1 or forgotten to put into CAT 1 (such as a program which

you were going to read from a magnetic card, but had forgotten about). It

could also refer to a module or peripheral device that you have forgotten

to plug in. There is, however, a third possibility; it could be the name

-119-



of a CAT 3 substitute which you wrote and then delcted (for example an

alternative version of ATAN which you were checking out). If you have

deleted the substitute, you may have done so by accident, or you may have

done it on purpose so as to use the ordinary CAT 3 function. In the first

case the HP-41 should stop with NONEXISTENT, but in the sccond case you

would want the HP-41 to execute the CAT 3 function. Thec HP-41 designers

could not know in advance which of these cases to expcect, so they chosc the

safest action; CAT 3 is not searched, so for example XEQ "ATAN" in a

running program will not execute the ATAN function. This is particularly

important if the name of your routine was the same as fhc namec of a CAT 3

function but your routine did something complctely different. If you wrote

a random number genecrator called RND and later dcleted it then you would

not want the HP-41 to execute the CAT 3 function RND (round) instcad. This

behaviour of the HP-41 is consistent with HP policy which is to protect

users from their own possible stupidity, but it should have been explained

clearly in the HP-41 manuals.

Going into USER mode and pressing a key to which a function or routine has

becn assigned works just like Alpha execution. In run modec the routinc or

function 1s ecxecuted at once. In PRGM mode the routinec or function is

recorded as a program step, as a function name or as XROM or as XEQ. This

too shows how XEQ is designed to be as similar as possible to exccuting an

HP-41 internal function.

To summarise: the purpose of XEQ 1is to let users trcat their own

subroutines in exactly the same way as HP-41 functions. XEQ "MOD" means

the HP-41 should execute the HP-41’'s MOD function, then go on to thec next

step. XEQ 01 means the HP-41 should execute the user’s subroutine at

LBL 01 till it comes to a RTN or END then go back to the step after XEQ 01.

The subroutine at LBL 01 can call other subroutincs to a maximum depth

of 6. XEQ "FACT" means the HP-41 should execute or store thec CAT 3

function FACT. XEQ "FRED" means the HP-41 should exccute (cither

immediately in run mode or when the program bcing written is run) the

user’s own subroutine called FRED, exactly as if it wecre one of thc HP-41

functions.

-120-



6.4. Finding Your Place, Compiled Addresses, CAT 1 and Indirect Execution.

Both GTO and XEQ have to find their target labels by looking through

program memory. In a long program, this scarch may take some time and may

be repecated often. Local GTO and XEQ instructions thercfore store the

distance to the target label when they find it the first time. Every time

the GTO or XEQ 1is repeated it can then jump directly to the label, without

looking for it, and this saves a lot of time.

This process of storing the distance to a label is called compilation, and

the GTO or XEQ is said to have been compiled. When a program is altered so

that instructions are moved or deleted, the jump distance may change, so

the entire program is decompiled at the end of the cditing. This mecans

that cach jump distance is changed to zero, which tells the HP-41 that the

distance i1s unknown. As the program executes again, cach GTO or XEQ is

compiled again the first time it is encountercd.

It would be unreasonable to decompile every program in mcmory just because

onc program has been altered. Decompilation thereforc affects only local

labcls within the program that has been edited. (The editing of this

program will not affect jump distances within othcer programs anyway.) A

differcnt scheme is used to speed up a scarch for global labels. The HP-41

always keeps a record of the position of the last END in memory. To show

this is special, it is displayed as .END. (followed by xxx which 1is the

number of free registers left for writing programs). The distance to the

global label that comes before it is stored inside the .END. itself. Each

global LBL or END in turn stores the distance to the preceding END or

global LBL. In this way there is a chain of ENDs and global LBLs which can

be followed without a need to look through every program step. The last

END or global LBL in this chain is the first onec in memory, since the chain

runs backwards. This END or global LBL has nothing to connecct to, so it

storcs a zero as the distance to the previous itcm. A running program

scarches up this chain, starting at the .END. whcnever it comes across a

GTO or XEQ that refers to a global label. If the LBL is found, exccution

-121-



continues from it, otherwise CAT 2 is searched.

When you do a CAT 1, the HP-41 starts at the .END. and runs up the global

chain until it finds the LBL or END with a zero distance to the previous

item. It displays this as the first item in CAT 1. Then it runs up the

whole chain again, displays the previous item and repeats this again and

again. You may have noticed that CAT 1 actually spceds up as it progresses

since it has a shorter distance to go each time until it eventually rcaches

the .END. and finishes. You can stop CAT 1 by pressing R/S. The END or

global LBL displayed becomes the current instruction. You can then SST or

BST to any other global LBL or END (do not press backarrow at this time or

you will come out of CAT 1 and SST or BST will only move you through the

current program). This is the only simple way of getting to a program that

does not contain a global LBL. Use CAT 1 and stop at an END that docs not

have a global LBL before it, or stop the cataloguc somcwhere clsc and SST

or BST to that END. When you press the backarrow kecy you exit from CAT 1,

and you are at that program. Best put a global LBL in it.

To help save program memory, the local labels LBL 00 to LBL 14 and their

corresponding GTOs take less space than the others. This means that the

GTOs have less room for the distance to thc labels, and they can only

compile a distance of 112 bytes or less. Dectails of Dbyte distances and

GTOs will be given in Chapter 8. For now, it is best to recmember that

these short-form labels 00 to 14 and their GTOs save space but should only

be uscd if they are less than about 40 lines apart.

Another point to note 1is that a subroutinc can call itsclf. If a

subroutine at LBL 50 nceds to do a job that the subroutine does, it can

contain XEQ 50. This is called recursion and is impossible even in

computer languages like FORTRAN, but the HP-41 language, FOCAL, lects

you do it. Of course, the maximum number of pcending subroutines can still

only be six, as mentioned at the end of Section 6.3.

Both GTO and XEQ can also take indirect paramcters. You can calculate a

number depending on a sct of conditions, store it in rcgister nn, and XEQ

-122-



or GTO IND nn. This will let you skip over various picces of the program

that are necessary only in certain cases. Take the following example.

A program to work out personal tax has to allow for people who pay no

income tax, pay income tax only at standard rates, or pay income tax

at a standard plus a higher rate. An individual may have worked in

morc than onc kind of job during a year, so the tax has to bec worked

out in several places in the program. Do the following:

i)  Work out a number thatis O for no income tax

1 for standard tax rate

2 for high tax rate

1) Store this number, in a register, say STO 10

1ii) First work out tax for self-employecd occupations, using the

following piece of program

LBL A

Set self-employed tax to zero

XEQ IND 10 (if 10 does not contain 0,1 or 2,

GTO B you will gect a NONEXISTENT error)

LBL 02

Work out super-tax here and add it to self-employed tax

LBL 01

Work out standard tax here and add to sclf-employed tax

LBL 00

Work out any tax that appliecs regardless of income,

such as health insurance and add it

RTN

Go back to the line after the XEQ

-123-



iv)  You are now at the piece of the program to work out tax for

employment by a company:

LBL B

Set employee tax to zero

XEQ IND 10

GTO C

LBL 02

Work out super-tax and add it to employece tax

LBL 01

Work out standard rate tax and add it to employce tax

LBL 00

Work out any tax that applies regardless of income,

such as health insurance and add it

RTN

Go back to the line after the XEQ

v) Repcat the process of 1iii) for other cases such as periods of

unemployment or work abroad.

LBL C

Do the extra calculations here

GTO D

vi) Add up the different kinds of tax to provide the total.

This of course is a simplified version, but it shows two important points:

first, XEQ IND can save rcpetitious calculation, and sccond, a local label

can appecar more than once. The rules of local label scarching are

described in Section 6.3. These same rules apply to indirect label

scarches. Since the indirect value can change, indircct GTOs and XEQs arc

not compiled.

GTO IND and XEQ IND can usc the stack registers X, Y, Z, T, and L for the

indirect address. The register, whether numbered or in the stack can

-124-



contain a number for a local label, or an alphabetic valuec for a global

label. If the content is a number, its sign and fractional part are

ignored. If the indirect address is alphabetic, it can contain a maximum

of six letters. The single letters A to J and a to ¢ will not be found,

since they are local labels, not global labels. It is possible to create

the corresponding global labels, this 1is described in Chapter 14.

Alternatively, you can create a label containing the letter twice over, for

example LBL "AA". If you have the letter "A" in the Alpha register, you

cannot do:

ASTO 10, GTO IND 10

But you can do:

ASTO 10, ARCL 10, ASTO 10, GTO IND 10

This doubles the letter in the Alpha register, so that you can go to "AA".

Many plug-in modules have programs and functions whose names are scven

letters long, but GTO IND allows a maximum of six. To call "PINBALL" in

the HP GAMES PAC, you would like to put "PINBALL" in Alpha, ASTO X,

then XEQ IND X, but this would only give NONEXISTENT. You nced

to usc the following two lines in your program:

LBL "PINBAL", GTO "PINBALL"

The new label is six letters long; it will thercfore be found by the

XEQ IND, then the GTO will transfer execution to the ROM program, and that

program’s END will send you back to the original program that wanted to run

"PINBALL". This trick saves a RTN, but does not work with functions.

The printer function PRFLAGS, for example, must be exccuted as follows:

LBL "PRFLAG", PRFLAGS, RTN

HP-41s with bug 7 (sce Appendix C) will not let you ASTO the first six

lettcrs in Alpha, they store six and a half letters. However, this only

affccts the comparison operations X=Y? and X#Y?. The GTO and XEQ IND

instructions will still work properly. For example, the following sequence

-125-



will execute the "PINBAL" program:

"PINBALL", ASTO L, XEQ IND L

Here is one more tip, courtesy of Joseph Horn, concerning the local labels

A to J and a to e. In a long program that uses these labels it can take

some time when you press a key such as A for the HP-41 to find the label.

This is because the HP-41 has to search every step from the RTN or END

where it has stopped, until it finds the label.

To speed the search up, put another LBL A immediately after a RTN, and

follow it with GTO A. When you press A, the first LBL A will be found at

once, and the GTO A will go to the real LBL A. This GTO will be compiled

the first time you use it. From then on you can press A and the GTO A will

execute a compiled jump to the real LBL A at once. This saves the time

that would otherwise be lost while the HP-41 searched for the LBL A. You

can sprinkle LBL A, GTO A all over the program to make sure the real LBL A

is always found quickly, and of course you can do the same for other local

Alpha labels.

The fact that a pair of instructions such as LBL A, GTO A is useful and

saves time can only be realised by someone who understands how compilation

and labels work. This tip shows how studying the HP-41 can have clear uses

and is not just a matter of idle curiosity.

6.5 Checking, Correcting and Changing a Program.

It is difficult to write a program much more than ten lines long without

making some mistakes. This section will cover the HP-41 functions that

help you check a program and make changes. All these functions are

explained clearly in the HP manuals, so the descriptions here will

concentrate on features not mentioned in the manuals.

-126-



SST and BST

In PRGM mode, these functions simply move the program pointer forwards

or backwards by one line. The program pointer is a number that tells

the HP-41 what the current line number is. At the end of a program,

SST takes you straight back to line 1 of the program, and BST from

this line returns you to the END. SST and BST are cxecuted

immediately and cannot be cancelled by holding down the key. If you

are going to use BST a lot, it is a good idea to assign it to an

unshifted key, so you can save yourself pressing the SHIFT key for

every BST. If you want to move a long way in a program, it is quicker

to usec GTO.nnn to go to a line somewhere ncar the onc you want, then

SST or BST just a few steps.

SST works quickly, because it is easy to move forwards one step

in a program. BST is much slower. It goes back to the last global

label before the program pointer, then counts lines forwards and stops

onc line earlier than before. It is thercfore worth including scveral

extra global labels in a long program while it is being written. This

makes for shorter distances between global labels so BST has to go

back a shorter distance and works faster. After the program is

written and checked, these extra labels can be deleted. If you SST or

BST to a long text string you will be dclayed while the whole string

scrolls across the display. Remember that you can tcrminate the

scrolling by pressing any key.

In run mode, SST executes the current program line and moves the

program pointer onc step forward. If SST is held down a short time,

the current line is displayed, then execcuted. If SST is held down

longer, the step is NULLed, and the program pointer docs not advance.

Pressing SST quickly (so the current line is not displayed) after the

END linc moves thc program pointer forwards to linc 00, not linc 1.

Functions, but not programs, can bc cxccuted from the keyboard in

between SST execcution of steps without disturbing the SST process. A

BST moves the program pointer back onc step, but does not cxccute that

step, and will not be cancelled by holding down for a longer time.

-127-



GTO. GTO.. RTN R/S

GTO followed by a point and a line number takes you to that line,

whether you are in PRGM mode or not (unless the program is PRIVATE, in

which case GTO. does nothing). In a very long program you can press

EEX after GTO. to give a line number of over 1000. GTO. a linc number

greater than that of the END takes you to the END. Pressing a line

number of 000 takes you to line 000 at the start of the program. In

run mode, you can press GTO. and a local or a global label to get to

that label. GTO. followed by a global label also works in PRGM mode.

GTO followed by two points packs program memory, puts an ordinary END

after the last program in memory and puts the program pointer to line

0 of a new program at the bottom of program memory (the .END. is

line 1 of this program).

RTN, in PRGM mode, is recorded as an instruction that behaves like

END, but docs not separate one program from the ncxt. That is to say,

RTN in a subroutine causes the subroutinc to finish and rcturn to the

line after the last XEQ or XROM that had been exccuted. In a program

that has not done an XEQ, RTN causes the program to stop. Pressing

RTN in run mode puts the program pointer to linc 00 of the current

program and clears the subroutine return stack.

R/S, in run mode, alternatively starts and stops a program running

without changing the subroutine return stack. Holding R/S down for a

short time when a program is not running displays the current program

step, which will be the first step to bec executed when the program

starts running. Holding R/S down for a longer time cancels this

display, shows NULL, and prevents the program from running. This

provides a simple way of checking whether the program you are about to

run is the onc you want,

GTO "program" followed by R/S starts the program running as docs XEQ

"program", but it docs not clear the rcturn stack. This mecans that

-128-



you should not interrupt a running program then restart it nor run

another program with GTO "program", R/S. Otherwisc the END or RTN

that you expected the second program to stop at may simply act as a

return to some address in the program that you had previously

interrupted. Similar problems can arise whenever the return stack has

not been cleared, for instance when a program is interrupted by PROMPT

or STOP. Use RTN in run mode, as described above, to clecar the return

stack.

In connection with the above, note that when a program stops at an END

the HP-41 clears the return stack and the next step to be execcuted

after another R/S will be the first step of the program. When a

program stops at a RTN, the return stack is not altered, and pressing

R/S will restart the program from the next step after the RTN.

Inserting and Deleting Program Lines

To insert a new line in a program you just GTO or SST or BST to a line¢

and put the new line after it. You can GTO.000 to get to the start of

a program and insert a ncw line there. It is not possible to inscrt a

new line after the END, although the HP-41 may somectimes look as if it

were trying to do this. To see this, go to an END, scc its line

number, then press the STO key. You will sce STO__ with a line

number one greater than the END. When you put in the parameter nn,

the HP-41 moves the END past the STO nn and rcnumbers the line.

Whenever this happens, or if you put an extra line into a program, the

HP-41 has to move down program instructions to make room for this new

line. This moving will not happen if there is some sparc room at the

location of the new instruction (left over because an old onc has been

deleted), so it is best to delete lines beforc inserting new ones in

the same place.

To dclete a single line, you go to it and press the backarrow Kkey.

The line is replaced with invisible null spacecs, and the previous line

is displayed, ready to be deleted too if neccssary. You cannot dclcte

line 00 of a program, since it is only a place marker and docs not

-129-



really exist, nor can you delete the .END. since its cxistence is

required by the global chain. You can dclete an ordinary END, and

this allows you to merge two programs in memory.

To delete a block of lines, go to the first linc of the block, and XEQ

"DEL". DEL prompts for the number of lines to be delcted. If this is

over 999, you can press EEX as with GTO. to obtain a number up to

1999. DEL will delete this many lines, or if fewer lines exist, it

will delete all the lines from the program pointer to the END. DEL

will not delete the END itself, otherwise you may accidentally delete

part of the next program in memory or merge two programs. You can

also execute DEL in run mode, but it will do nothing except display

DEL nnn.

To delete a whole program, use CLP. XEQ "CLP", then enter the Alpha

name of any global label in the program to be deleted. You can also

go to the program, and just XEQ "CLP", ALPHA, ALPHA which clears the

current program. CLP is automatically followed by packing; DEL is

not.

Packing and Resizing

The HP-41’s memory 1is large for a calculator, but small for a

computer. You may therefore run out of memory while writing a

program. The first thing to do in this case is to pack mecmory, by

executing PACK. This will remove all the null spaces that have been

left in a program during editing, deleting lines and inscrting

numbers. Indced the HP-41 will automatically pack memory and display

PACKING, then TRY AGAIN when yourunoutof program memory. Program

instructions will be moved up to fill the empty spaces, so that all

the empty space will be left free at the bottom of the program memory.

PACK and GTO.. let you pack memory whenever you choose. If you

execute PACK, the program pointer will stay at the same line of your

program as you were at before PACKing. Should you wish to do a lot of

program editing, you could assign PACK to a key. You should not PACK

if you are in the middle of program execcution because this loses any

-130-



pending subroutine returns. Packing also removes any complctely

unused key assignment registers (details are given in Section 8.6) and

occurs automatically if you try to make a key assignment when there is

not enough room for the assignment. As this clears the subroutine

stack, you should not try to make key assignments while a running

program has been interrupted.

If you are still short of room for your program, you should execute

SIZE and make the size as small as possible. Remember that SIZE

defines the number of registers available for storing data. If you

execute SIZE 000 then no registers will be reserved for data storage

until you execute SIZE again.

After you are finished editing your program, you can increasc the SIZE

again. The editing operation generally requires one register (7

bytes) for cach inscrtion of a new instruction. The unused bytes are

rccovercd by packing.

Copying Programs From Application Modules

Programs in Application Modules can be run as they are, but some users

may want to copy them to RAM so that a module can be removed or a

program can be altered. You might want to remove a module because you

do not have enough ports to hold all the modules you are using, or you

may want to change something that a program in an Application Module

is doing. One reason for this is that some Application Modules have

program ecrrors;, sce Chapter 12. You cannot alter a program in ROM,

you have to copy it to RAM and edit it there. Use the COPY function

to make thec RAM copy. XEQ "COPY", then press ALPHA and spell out the

name of a a label in the program you wish to copy. The entire program

will be copied to the bottom of RAM program memory if there is room

for it. If therec is not then the HP-41 will display PACKING and

TRY AGAIN. Do try again; if the same thing happens again try

SIZE 000, and COPY again, then delete the parts of the program that

you do not neced in RAM and you will then be able to increase SIZE

again. COPY always puts an END before the program it copies, SO you

-131-



may finish up with some unwanted ENDs in program memory. (Actually,

the .END. is converted to an END, with a new .END. added.) Use CAT 1

to find them, then delete them.

After you have COPYed a program to RAM, the program pointer will be at

its first line so that you can edit the program. GTO and XEQ will use

the RAM copy because it is in CAT 1 and is found before the ROM

version in CAT 2. You cannot make another copy of the ROM program

though, because the RAM version will be found first, and you cannot

COPY programs from RAM. The way around this is to delete a global

label from the program copy in RAM, then execute COPY and specify that

global label. Now the label will be found in ROM (in CAT 2) and you

will be able to make a second copy of the program. If the program

pointer is already in the ROM program, then you can give COPY no name

(just press ALPHA twice) and the current program will be copied; this

provides an alternative way of making a second copy of the program,

and also works for any unnamed program in a ROM. Of course you have

to get to these programs firstt GTO will work for named programs,

but Synthetic methods are required for copying unnamed programs from a

ROM. You will not be able to copy PRIVATE programs from a ROM.

Some ROM programs XEQ other ROM programs, so if you want to make a

copy and remove a ROM, be sure to copy all the ROM programs you need.

You will also need to alter the RAM program, replacing XROM "label"

with XEQ "label" for every label that occurs in the copied program.

COPY is one of the few non-programmable functions that have not been

made programmable by Synthetic Programming (see Chapter 16) or by

Extended Functions (see Chapters 10 and 11). A programmable COPY

would have to be written in HP-41 machine language (see Chapter 17).

6.6 Watching Program Execution

Now for an amusing and useful trick before we carry on with serious

matters. When you test a new program, you need to check what happens

-132-



stcp by step. There are two methods approved by HP. Firstly SST

through the program in run mode (see above). Secondly run the program

with a printer attached and set to TRACE mode. The printer will

print every step, and each value put into X. This uses up a lot of

paper. The first method takes a lot of key-pushing. Why not program

the HP-41 itself to SST through a program and display every step?

This means running a program in PRGM mode.

Aha, you might say, a contradiction in terms. Run mode is for running

a program and PRGM mode is for editing and vicwing a program. But

actually, run mode is only needed to start a program (you can cven

get round that if you know enough about Synthetic Programming). Once

a program is running, it can set PRGM mode, and then PSE. PSE shows

the default display which can be X, ALPHA or thc current program step

in PRGM mode. If you were able to run a program in PRGM mode, the

default display would be the current step, which is the step that will

be executed next. This is possible because PRGM modc can be sct by

setting flag 52, see the flag table in Appendix D.

Flag 52 cannot be set by SF 52 (only flags 00 to 29 can be set and

cleared by SF and CF), but two of the bugs (sce Appendix C) let us do

it. On early HP-41Cs (made in mid 1979), bug 3 lcts you sct flag 52

as follows:

52, STO nn (where nn = any numbered register), SF IND nn

Try this - if your HP-41C has bug 3, it will go into PRGM mode. On

all latcr HP-41Cs this results in NONEXISTENT, but bug 10 lets you do

the same. Try entering the program below, the comments next to the

program listing explain what each linc docs. This program shows how

you can do things that the manufacturers never cxpected of the HP-41.

-133-



Lines 2 to 9 cause bug 10, which scts a lot of

flags including flag 52. Lines 10 and 11 clear

Bie#LBL =HOTOH® two flags that are best cleared as soon as

“'- SfE‘- 1 possible. Lines 12 to 21 alternatively PSE to
82 CLE . . .
a4 1 Fo display a function, then execcute it so that you

85 570 13 sce the indicators turning off onec by one. You
BE 17¥ .
fi: i.m 0 can run this program to amuse yourself or your

B3 SF 25 friends.

89 HEAN

i@ A0FF . . .
11 0F 11 Lines 2 to 11 can be included in any program to

12 PSE show what it is doing. A PSE has to be put before
13 BEG . . .
id E‘EF cach step that i1s to be displayed. Then sit back

15 CLD and watch the program run. When flag 52 is set,

i& PSEQ the HP-41 treats any numeric entry in a program as
{7 OF 68 . . .
12 PSE a programming instruction. Thercfore, any number

19 OF 83 entry instruction 0 to 9 or . or EEX will be
28 PSE . :
1 CF B4 copied repeatedly into program memory. Instead of
L4 L 0

22 PSE using numeric entry steps, put cach number into a

“4 E%F data register before setting flag 52, and RCL the
L% DRE

number from that register when you need it.

Bug 10 also sets flag 44, the continuous ON flag,

so remember to turn your HP-41 off when you finish

with this trick.

6.7 Using Tests To Control Program Execution

Back to serious matters now. One of the most powerful programming features

of the HP-41 is its collection of "do if true" tests. They all follow the

same rule: Make a test,

Perform the next step if the answer is yes,

Otherwise skip the next step.

Tests, something like this, are used quite frequently:

X>0?

SQRT

-134-



If X is positive, take its square root. The square root of zero is zero

anyway, and the square root of a negative number gives the HP-41

indigestion. The HP-41 has five tests for comparing X with zero, five for

comparing X with Y, and four flag tests (see Section 4.4). The HP-41CX has

additional indirect tests, and some plug-in ROMs, particularly the HP-IL

Development Module, have additional do-if-true tests.

GTO is the most useful instruction to follow a do-if-true test. For

example, if X is negative, go to a routine to deal with negative values. A

program can also test something at one place, and set or clear a flag. The

flag can then be tested whenever necessary - FS? 19, GTO IND 05, which

means "Go to the address specified by the register whose address is in 05,

but do this only if flag 19 is set."

Avoid wasteful use of GTOs. Both the following programs do one thing if

flag 19 is set and another thing if flag 19 is clear:

FS? 19 FC? 19

GTO 01 GTO 02

GTO 02 .

LBL 01 flag 19

. set

flag 19 operations

set .

operations GTO 03

. LBL 02

GTO 03 .

LBL 02 flag 19

. clear

flag 19 operations

clear .

operations LBL 03

LBL 03

next part of program

-135-



By inverting the flag test you have saved using the GTO 0l and the LBL 01 -

clearly more efficient.

If two instructions are dependent on the same test, it is best to make the

same test twice; the four lines on the left calculate SIN(X12) if flag 05

is clear more economically than the five lines on the right.

FC? 05

X12

FC? 05

SIN

It is sometimes useful

example below:

FS? 06

FS? 07

CHS

FS? 05

GTO 10

X12

SIN

LBL 10

to put one test directly after another as in the

This will change the sign of X if flag 6 is clear,

or if both flag 6 and flag 7 are set, but not

otherwise. To perform an instruction if either one

of two tests is true, or if both are true do:

step 1 opposite of test A (NOT A)

step 2 test B

step 3 instruction

An example of this is to simulate the missing test

X>=Y? by using X#Y? followed by X>Y?

To perform an instruction only if both test A and

test B are true do:

step 1 Test A

step 2 opposite of test B (NOT B)

step 3 FS? 53 (or some other test which is

never true)

step 4 instruction

-136-



These two suggestions arc given in "ENTER" by Jean-Daniel Dodin (see

Appendix A). His book, and "Calculator Tips and Routines" by John Dearing,

are both full of excellent ideas like this.

If a test generates an error, program execution will stop at the test. If

flag 25 1is set, then the error will be ignored, and the next instruction

after the test will be performed. For example X=0? with a text value in X

will generate an error, but if flag 25 is set then the error will be

ignored. As a result the next step will be performed even though X is

clearly not zero. It is therefore important to design tests with some

thought of possible errors. In the case of checking values that could be

alphabetic or numeric, it is better to use X#0?. With X#0?, if an ALPHA

DATA error occurs, flag 25 will be cleared and the following step will not

be skipped. Thus nothing unexpected or incorrect will happen.

6.8 ISG , DSE and NOPs

Apart from the do-if-true tests, the HP-41 has the loop control functions

ISG (increment and skip if greater) and DSE (decrement and skip if equal or

less). A loop is a set of instructions that are to be performed several

times. Your program may need to repeat a calculation seven times for the

seven days in a week, or ten times for a matrix with ten rows, or an

unknown number of times for a set with an unknown number of elements. A

typical loop has the structure:

1) LBL pp

i1) Instructions for element number n of set

i11)  Increase n

1v) Is n greater than number of elements?

V) If not, GTO pp

Vi) Otherwise carry on with the next program step

-137-



n is a control number which can be stored in the stack or any directly or

indirectly addressed data register. The general form of n is a 5-digit

integer followed by a 5-digit fractional part:

iiiii.fffcec

where: - 11111 1s  the initial value, and later the present value of the

control number n. It is assumed that only the integer part of

the control number will be used for controlling loops, and that

the fractional part will be used for other purposes as below.

- fff is the final value for n. This is taken to be three digits

long. A fractional part of .3 will be interpreted as fff = 300.

A fractional part of .003 will mean 3. When iiiii is greater

than fff (for ISG) or less than or equal to fff (for DSE) the

loop has completed and the step after ISG or DSE will be skipped.

- cc 1s the loop increment or decrement counter. Every time ISG or

DSE is executed, the number iiiii is incremented or decremented

by an integer cc. In most cases, the increment of a loop is 1,

so if cc is 00 or not given, then it is assumed to be 1.

A few examples should help. What will happen to a program that contains

the following ?

377.02577

DSE X

GTO A

The number 377.02577 is put in X. DSE X will decrement 377 by 77 leaving

300.02577 in X. 300 will then be compared with 025. Since 300 is greater

than 025, the next step will not be skipped, and the program pointer will

go to LBL A. Further opecrations would decrement the counter until it

rcached -8.02577 at which stage, the step following DSE X would be skipped.

-138-



Now look at this: 99976.30029

STO 01

ISG 01

BEEP

The ISG will change the value in 01 to 100005.3002. The number is

truncated to ten digits, and the cc part changes from 29 to 20. 100001 is

greater than 300, so there will be no BEEP. If register 01 is used again

for ISG or DSE, the increment or decrement will be by 20, not 29. The fact

that the last digit is truncated, not rounded, is surprising. (If 29 were

added to 99976.30029, the result would be 100005.3003.) A cc value of 09

will be truncated to 00, turning the increment to the default value of O01.

 

In most cases this would be a trivial error, but if the fraction is to be

used as a control number, this is serious, and is mentioned in Appendix C.

A third example: 1

ENTER

FIX 0

-54321.

STOIND Y

LBL 55

VIEW IND Y

PSE

ISGIND Y

GTO 55

TONE 0

TONE 2

TONE 4

TONE 0

TONE 8

The value cc has not been given, so it defaults to Ol. -54321 s

incremented by 1 and becomes -54320. The program displays a count down

timer. It may secem that the three-digit limitation of fff would limit

useful values of iiiii to five digits, but the use of a negative value

-139-



mcans you can use ISG with up to ten digits. If you try to use a number

less than -1 E10, then you will get into an infinite loop, since the result

of ISG will always be rounded back to the number you started with.

Nevertheless, cc and fff can have as few digits as are necessary, and iiiii

can have correspondingly more digits. If there are any digits after cc,

they arc simply ignored, but remember they will be truncated, not rounded,

if thc integer part gets too large.

Usc of a value other than 1 for the increment gives considerable

flexibility to ISG and DSE, but everything is done in integers. This is

acceptable if the control number is to be used as an indirect address or a

flag number when only the integer part is used. If a fractional part is

required, it is best to recall the counter to X, then use INT, 10, /.

A good use of ISG is to store values in a block of registers or to

set/clear a block of flags. The following loop will store 0 in every jth

register starting at bbb and ending at cee.

bbb.ceejj

ENTER

CLX

LBL 02

STOIND Y

ISGY

GTO 02

The HP-41CX function CLRGX will do exactly the same job of clearing the

registers specified by bbb.ecejj.

At times you will want to use ISG or DSE just as an arithmetic function, to

add or subtract a number cc, or to add or subtract 1. Under these

conditions you will not want to skip the next step. Take a case where you

want to calculate

SIN(X) + 1

-140-



without changing Y, Z, or T. Instead of SIN, 1, + use ISG as follows to

get the result to 3 decimal places:

SIN

FIX 3

RND

ISG X

ADV

The FIX 3 and RND steps make sure that cc is zero, so the value in X will

be increased by 1. Unfortunately the ISG X may or may not cause the next

step to be skipped. The way to avoid trouble is to put a do-nothing step

after the ISG instruction. Then it will not matter whether the step is

executed or skipped. ADYV is a fairly good choice for this purpose as it

does nothing unless there is a printer attached. A step like this is

called a NOP (no-operation or null operation, instructions called NOP were

provided on several HP calculators, but not on the HP-41). ADY is not a

good NOP if you use a printer though, and you may want to use some other

NOP. The instructions X<>X and STO X were mentioned at the end of Section

4.2.3 as possible NOPs and you may like to use them. Unfortunately, they

take up twice as much memory space as ADV, and they take more time too. I

prefer to use LBL 00 as a NOP, it is as fast as ADV, takes no more space,

and I recognise it as a NOP since I only use Labels 01 and higher for GTO

and XEQ. Many people who use Synthetic Programming prefer the "spare" byte

240 (hex. FO) which is known to be a NOP, and makes it clear that they know

about Synthetic Programming! FO is not quite as fast as LBL 00 though, and

it could be confused with a line of Synthetic text in a program printout.

Whatever you use as a NOP you should make a note somewhere to avoid

confusion when you come back to the program later or if someone else tries

to understand the program.

None of the NOPs described above are true null operations, because they all

enable stack lift, but who needs a NOP after a stack disabling or neutral

operation? Still, if you do ever need it, the ZENROM module provides a NOP

function which can be used as a true NOP, although if used that way it

takes up twice as much memory space as LBL 00 (see Section 12.8 and

-141-



Appendix B for dectails of ZENROM).

You can avoid trouble from fractions entirely by using the Card Reader

functions 7ISZ and 7DSZ which ignore fractional parts and always add or

subtract 1. These two functions always usec register 25 but two more

functions, 7ISZI and 7DSZI, use register 25 to provide an indirect address.

All four functions skip the next step if the integer part of register 25,

or of the indirectly addressed register, is zero. Thus a NOP is still

required after them, and of course you need a Card Reader.

If you want to avoid using a NOP at all, arrange for the ISG or DSE to be

the last step before an END instruction. A program cannot skip over an END

as this would drop it into the next program or into the waste land beyond

the .END. and therefore any of the increment or decrement functions will

have to execute the END even if they were going to skip the next step. You

can write a subroutine which is called to do a particular arithmetic

opcration, and you should put this subroutine right at the end of a program

with the increment step as the last step before the END.

6.9 Asking Questions and displaying results

While a program 1is executing, it normally displays the flying goose or

program execution indicator - . Alternatively, you can use VIEW nn where

nn is a register number, a stack register, or an indirect address. This

shows the contents of that register in the display until you use VIEW or

AVIEW again, get an error message, stop the program by pressing R/S, or use

CLD to clear the display. In this way, one result can be displayed while

another result is being calculated. VIEW will display a number or a text

string up to six characters long.

To show a longer result or message you need to put it in the ALPHA register

and display it with AVIEW. This can display up to 24 characters, 12 of

which can be scen in the display at any one time. AVIEW has already been

described in Scction 4.3.1, and the example program in Section 2.7 also

showed how the ALPHA register can be used to display a result.

-142-



Apart from displaying results in ALPHA, programs can also use ALPHA to ask

for information. It is not always convenient to have the user put all the

information for a program into the stack at the start. A program may need

to ask additional questions, such as "this date is after February 28,

please tell me if it is a leap year". The question only needs to be asked

if the date is after a leap year and the year is not given, so it would be

a waste of time to ask the question every time the program was used.

A collection of ways to ask questions will be given here. You may not need

all of them, but some of the ideas may help in your own applications.

i) To ask for a single value to put in X.

"WHAT IS X 7" The User should put in the number,

PROMPT then press R/S.

i1) In 1), the user could press R/S without entering anything. If you

want to check whether anything has been put in, use FS? 22 to check

the numeric entry flag. To force the user to put a number into X, you

can use:

CF 22 Now the question will be repeated until

LBL 01 something is put into X. Unfortunately,

"WHAT IS P ?" flag 22 will be set even if something is

PROMPT put into X, then deleted with the back-

FC?C 22 arrow key.

GTO 01

iii) Sometimes, you need to remind the user of the units used in a program.

Rewriting i) to prompt for X in feet per second gives:

"X <FT/S> 7"

PROMPT

-143-



iv) To ask for an alphanumeric value, for instance in a game of hangman,

usc:

"GUESS A CHAR."

AON

STOP

AOFF

A better, but longer, alternative is:

"LETTER ?" CLA prevents the user from pressing

AVIEW SHIFT, K, and appending the letter to

CLA the contents of ALPHA. The use of

AON PSE also limits the time available

PSE for a guess, and saves the need for

AOFF pressing R/S. PSE waits about one

second, but a new one-second wait

starts every time a key is pressed.

v) If you want to use an alphanumeric prompt without altering ALPHA,

store a six-letter message in a register and view that register as

necessary:

"NEW X?" This stores the prompt in a register

ASTO 99 unlikely to be accidentally altered.

Whenever the prompt is needed, do:

CF 22

VIEW 99

STOP The user can either put in a new

FS? 22 value of X and press R/S or just

GTO 10 press R/S to stop the program.

END

-144-



get lost.

vi) When asking for a large number of inputs, make sure the user will not

For instance, request a matrix one element at a time and

specify which element is wanted next. To ask for a 4*4 matrix and to

store the values in registers 1 to 16 you could use an ISG counter in

register 00.

BleLBL "MATRIX?"
a2 1.814
a3 STO o
A4 FIX B
85 CF 29
BeeLBL 12
T
A2 RCL ae
A9 DSE ¥
18+BL Aa
i1 4
12 7
13 INT
14 156 X
15¢LEL @@
16 ARCL ¥
1? -'-l"

18 LASTX
19 FRC
28 4
21 *
22 INT
23 156 X
24+LBL @@
25 ARCL ¥
26 "k
27 CL¥
28 PROMFT
29 STO IND @@
38 ISC 6@
31 GT0 12
32 END

vii) The examples so far

Lines 2 & 3 set the counter.

Lines 4 & 5 set a useful display mode.

LBL 12 starts the loop.

Line 7 starts the display.

Line 8 gets the current number.

Lines 9 & 10 decrease this by one, so the first

element counts as 0. The use of DSE followed by

a NOP was described in Section 6.8.

Lines 11 to 15 obtain the row number, using ISG

followed by a NOP.

Lines 16 & 17 put the row number into the

display.

Lines 18 to 24 obtain the matrix column number

using LASTX which was saved at line 13. The use

of ISG X instead of 1, + kept LASTX unchanged.

Lines 25 & 26 complete the prompt.

Line 27 puts a zero in X, so that the user can

press R/S without any numeric entry to store 0

in a matrix element.

Line 28 is the actual prompt.

Line 29 stores the value in a matrix element.

Lines 30 & 31 increment the counter and repeat

the loop 16 times. After that, the program can

use the matrix, or ask the user to check it.

This is not a particularly quick way to set up

a matrix, but it shows the uses of ISG and DSE.

have assumed that the stack can be used as

-145-



required, and contains nothing important. If you want to save

cverything that is in the stack, including the value in X, you can use

the following method to prompt for a value and save it in register nn

without altering any of the stack registers (not even LASTX):

CF 22 This routine stores X in register nn

X<> nn while the new value is being

RDN obtained. I am grateful to Jeffrey

"WHAT IS N 7" Smith who suggested the use of flag

PROMPT 22 to check if a number has been put

FC?C 22 into X. If the user just presscs

R? R/S then the stack is rolled up and

X<> nn the original values are put back in

X and in register nn.)

viii) One common type of question demands a YES or NO answer. A simple way

of dealing with this is to put a Y into register Y, put the reply in

X, and compare the two:

oy

ASTO Y This is fairly short, but it only

"TOO BIG? Y/N" checks for a "Y" answer. Any other

AON reply, or no reply at all, is taken

STOP to mean NO. Sometimes it is better

AOFF to check the letter N, or to check

ASTO X for both these letters.

X=Y?

GTO "REPEAT"

RTN

ix) One way to record the answer to a question, is to set or clear a flag.

If you nced to ask several questions, you can save space by having a

subroutine to ask the question, check the answer, and set or clear a

flag. To wuse the following subroutine, put the flag number in

register X, put the text of the question into ALPHA and XEQ "YN". The

-146-



characters :Y/N will be added to the question, which can be up to nine

characters long without scrolling. (If you are unsure about ALPHA

operations, reread Section 4.3). The flag whose number is in X will

be set if the reply is Y or cleared if the reply is N. The X and Y

registers will be unchanged.

Line 03 sets the flag given in X so

that it need only be cleared if the

@ieLBL “YH" answer is N. If the flag number in X

3: ';‘; ?:m g was not 01-29, then an error message

@4 BDH stops the program here before any

B3 RIN harm is done (flag 25 was cleared at

3;0?23 a1 02 to make sure this would happen).

AR "FoYsHe Lines 04 & 05 save X & Y in

;’3 ;1?2 ¢ registers T & Z.

1 =y~ Lines 8 to 10 add :Y/N to ALPHA,

12 ASTO Y display the question and store the
13 %=Y7 . .
14 £T0 92 answer 1n register X.

15 =H® Lines 11 to 14 check if the answer

i'; ?:;” f was Y and if so go to tidy up.

i3 %277 Lines 15 to 19 check if the answer

19 GTO 81
28 CF IND 2
21+LBL @2

was N, and if not, go back to LBL 01

to ask the question again. Line 17

22 ROFF makes sure only the question is

zi ;; seen, not the incorrect answer.

25 END Line 20 clears the flag if the

answer was N.

Lines 23 & 24 replace X & Y.

Lines 06 & 22 toggle ALPHA mode to

display the questions and answers.

Declete lines 04 and 24, and change line 20 to CF IND T if you

only need to save X. idea of a YES or NO subroutine was

given on page 14 of HP KEY NOTES Vol 5 Number 1.

-147-



x) Now for an original idea. Suppose you want to ask a yes or no

question without altering anything in the stack, ALPHA, or any

numbered data registers. All you neced is to set a flag if the answer

is YES. You can use flag 47, the shift flag to do this. SHIFT can be

pressed during a PSE without stopping the program and without altering

anything cxcept flag 47. Then you can check if the flag is set by FS?

47. You can e¢ven clear flag 47 with CLD.

Here is a short program that stores a question in register 19, and

views that register to ask the question so that ALPHA is unaffected.

The question asks the user to press SHIFT if the answer is yes. If

SHIFT is pressed, the program sets flag 00 to provide a permanent

record of the reply, because any message, including error messages,

will clear flag 47.

Lines 02 & 03 store the question.

Lines 04 to 06 could be anything you

BieLBL "F47" need.
g2 "t IF v- . . .
63 4ST0 19 Line 07 displays the question.

g4 = = = Lines 08 & 09 let the user sce the

32 question and press SHIFT to answer

A7 VIEH 19 YES. There are two pauses, not one,

#8 PSE to give the user more time to reply.

?2 g?gag Lines 10 to 12 clear flag 00, set it

i1 F57 47 if SHIFT is pushed, and clear SHIFT;

if g[i% you could use flag 47 itself if the

145 = o display is not altered first.

’fi oo Lines 14 to 16 could be anything.

i; F‘:‘ éfi : Lines 17 & 18 provide an audible

{8 BEEFP feedback - after all you normally

13 ERD press SHIFT to get a BEEP.

-148-



6.10 Using subroutines and structuring programs

To round off the chapter this section will provide some suggestions about

the structuring of programs and the use of subroutines. Two important

things to do when you are writing a program that will be used more than

just once are to plan out the program before you write it and to document

it afterwards. "Documenting" a program means writing down what it does and

how so that you can use it later or rewrite it without having to work out

what it does. Planning a program before writing it is just as important,

and indeed the original plans can be a useful part of the documentation.

When you are planning a long program you should split it up into several

parts each of which can be designed and tested on its own. Each part could

be written as a subroutine, with a main routine to call (i.e. execute) cach

subroutine. You can check each part, then put them all together and remove

unnecessary or duplicated pieces to make the program shorter.

A subroutine is a set of instructions which can be written as a separate

part of a program. The most common reason for writing a set of

instructions as a subroutinc is that this set is to be used more than once,

in morc than onc place. Instead of repeating the whole set you can write

it as a subroutine, then call that subroutine (by using XEQ) whenever

nccessary. A set of instructions that is to be used several times in the

same place is best made into a DSE or ISG loop, not a subroutine. A very

short set of steps is not worth turning into a subroutine: more space can

be wasted on LBLs, RTNs and XEQs than is saved. Exact formulae for space

savings will be given in Chapter 8 but it is rarely worth turning less than

four steps into a subroutine. Since a maximum of six subroutines can be

pending (see Section 6.3) you should not use subroutines if it is not

necessary.  (Synthetic Programming allows you to extend the subroutine

return stack; sce Chapter 14.)

In some computer languages cach subroutine can have its own set of data

values, different from variables that have the same names in the main

program. This set of local variables constitutes an environment which

belongs only to one particular call of a subroutine and to returns to that

-149-



subroutine. On the HP-41, FOCAL does not provide separate environments So

every subroutine uses the same set of flags and the same numbered data

registers, the stack and the ALPHA register. If a subroutine changes any

of these and returns to the main program, then the main program will have

to deal with the changed values too. Subroutines which do one specific job

should make as few alterations as possible so that the main program does

not have to make allowances for changing values or flags. Mathematical

subroutines in particular should be designed to do all their work in the

stack so that the program or routine which calls them can use all the

numbered data registers freely. If a subroutine is designed to prescrve

the stack, or has to use a large amount of data, then it should be very

clear which data registers it uses, so as to avoid conflicts with other

routines. One way of avoiding conflicts is to use "position-independent"

routines which only use indirect addressing. The main program can then

decide which subroutine uses which addresses (by putting into the stack the

numbers of the registers that the subroutine should wuse so that the

subroutine can pick up these register addresses).

Position-independent subroutines and those that use only the stack can be

transported from one program to another without trouble, but this demands

that they be properly documented so that you can use the same subroutine

later without puzzling about what it is doing. If you are going to write a

lot of subroutines like this, you will eventually be able to write entire

programs just by putting together a short main routine and a sct of pre-

writtcn subroutines that it calls. Under these conditions you may decide

to use register 00 to tell cach subroutine which registers it should use.

If you are going to write subroutines that handle a lot of information you

may find it easier to use data files; the Extended Memory and the functions

to use it are designed for this purpose, see Chapter 11. You can also use

the Extended Functions REGMOVE and REGSWAP to copy or exchange the

contents of a block of registers, moving them to a different place in

memory. This can be done to save the register contents while the registers

are used for another purpose, or to put the values into a set of registers

where a subroutine expects to find them.  Alternatively you can use

Synthetic Programming to renumber data registers so that every subroutine

-150-



scems to be using registers 0 to 10 (or any other selected set of

registers) but in fact different registers are used each time.

Apart from using XEQ to call a subroutine you can GTO to a routine. Any

pending returns will be unaffected, so you can XEQ one subroutine, then use

GTO to go from that subroutine to another one, then use RTN or END to

return to the point from which the first routine was called. The use of

GTO IND can however replace XEQ and RTN. This can be particularly useful

if a subroutine calls itself, since such a subroutine might well call

itself more than six times. (A subroutine which calls itself is

"recursive", see Section 6.4; for example a program which calculates the

third derivative of a function may require the derivative subroutine to

call itself twice over.) The following example shows how GTO IND can be

used instead of RTN. A program uses a subroutine to calculate

SQRT(1 + X172) but six subroutine levels have been used already. Instead of

using RTN at the end of the subroutine you can finish it with GTO IND 00 :

1 This part of the program

STO 00 stores 1 in register 00, so

GTO 22 that the routine at LBL 22

LBL 01 will come back here.

2 Here 2 is stored in register

STO 00 00 so that the routine will

GTO 22 come back to LBL 02.

LBL 02

LBL 22 This routine calculates the

RDN value SQRT( 1 + X12 ) after

X12 removing an unwanted number

1 from register X. Then it uses

+ the number in register 00 to

SQRT go back to the place where it

GTO IND 00 was called from.

-151-



If you are finding it difficult to trace an error due to an indirect GTO

then remember that you can check the values involved by using VIEW nn and

VIEW IND nn. You may find it easier to recall an indirect address to

register X before going to that address. This puts the address in X where

you can check it in case of problems. You can also use double indirection

by doing RCL IND nn, GTO IND X, which is like saying GTO IND IND nn.

A scparate use for subroutines is to allow a conditional test to execute a

group of instructions instead of just one. Consider the set of

instructions:

X>0?

LN1+X

STO 12

This calculates the logarithm of (1+X) only if X is greater than zero.

What if you want to calculate the logarithm of (2+X) under the same

conditions?

X>0? LBL "LN2+X"

XEQ "LN2+X" 1

STO 12 +

LNI+X

RTN

In general you would use a local label for a subroutine like this because a

local label and the corresponding XEQ take less space, and can be executed

more quickly since there is no need to search CAT 1.

The use of subroutines to help in designing a program was mentioned at the

start of this section. There are two separate ideas involved here,

structured programming and program structure. Structured programming means

adopting a particular method for writing programs. The purpose of the

program should be made clear, then the different tasks that the program

must carry out should be identified. A typical program will need the

following sections:

-152-



1. Set up program requirements, such as the angle mode (initialisation)

2. Get any information the program requires (data input)

3. Deal with the data and do the required calculations (processing)

4. Present the results (data output)

5. Tidy up (clear flags, delete files and so on)

If you undertake a structured programming approach, you will plan out how

to deal with each of these sections, perhaps by splitting some of them into

smaller parts. You will keep notes on what each part does. You will check

exactly what information you will be given, and what results are expected.

Perhaps you will even read a book about structured programming. Then you

will write and check each part of the program. Only then will you try to

put all the parts together and test the whole program. If something is not

working, or if the program is too big to fit in the memory available, you

will be able to go back to the separate parts and your notes about them.

You will be able to use your notes to find errors or remove duplicate

pieces of the program to make it smaller and faster. At the end you will

have a clear and well documented program. You will have done a lot of

paperwork, but you will have made fewer errors than otherwise.

The above may scem like taking a sledgchammer to open a peanut if you are

writing a short program for the HP-41 but it does provide a good plan for

writing large programs. If you are writing an ordinary HP-41 program then

you should still think about program structure, which means the structure

of the program itself. The position of various subroutines deserves some

thought. If a program or routine finishes by executing a subroutine more

than once then it is useful to put that subroutine at the end. For example

to execute the subroutine at LBL 90 twice in succession you could finish

your routine with:

XEQ 90

LBL 90

END

-153-



This runs the subroutine twice, or more times if there are two or more XEQs

before the LBL. (Be sure not to put XEQ 90 after LBL 90 since this

produces an unending loop.)

Another thing that deserves consideration is where the program stops. If a

program stops at a RTN or at a STOP then unexpected and nasty things might

happen if you press R/S afterwards. One way to avoid this is to follow

every RTN or STOP with a GTO that points back to some safe place such as

the beginning of the program or a LBL just before a STOP. You can safely

finish a program at the following loop:

LBL 90

STOP

GTO 90

Pushing R/S after the program has stopped here will just make it stop

again. (Both the above suggestions also come from John Dearing’s book,

described in Appendix A. It really is a very good book.) Another way to

stop a program is to make it finish at the END; the program is then

automatically ready to run from the beginning again when you press R/S. A

good trick is to put LBL 99 as the last step of a program and to put GTO 99

at any place where the program might finish.

Exercises

6.A Do you prefer to use global or local labels? A global label provides

an easy way to remember what the subroutine does, since it can give it a

meaningful name, but it takes up more space than a local label and slows

down a running program. Go through some programs (your own or somebody

else’s) and check if any global labels could be replaced by local labels,

or if some local labels could be usefully replaced by global labels.

-154-



6.B Try rewriting the matrix input routine (example vi in Section 6.9) to

make it more efficient by using some of the ideas suggested in this

chapter.

-155-





CHAPTER 7 - SOME EXAMPLE PROGRAMS

The chapters following this one will contain many items concerning HP-

41CVs, CXs and additional equipment. It is worth pausing and looking at a

few example programs that can be run even on the humblest HP-41C with no

additions. Some of the programs may be exactly what you need, or you may

find them a total waste of time. They are provided as examples of using

ideas from the first six chapters. If you wish, you can skip the whole

chapter; I won’t mind (much).

7.1 Hyperbolics And Inverse Hyperbolics

We are told in the HP-41 manual that the functions E1X-1 and LN1+X are

particularly useful in working out hyperbolic functions and their inverses.

In fact only TANH and ATANH gain in accuracy from the use of these extended

precision functions. Yet in the Math ROM neither TANH nor ATANH use

them.

Here is an alternative set of hyperbolic functions, a little shorter than

those in the HP Math ROM. They use only the stack and all preserve the Y

register unchanged. They do not call each other, so any selection of them

can be kept in the HP-41 without needing the others.

Despite the wide range of functions on the HP-41, there is often only one

way to do a job most efficiently; the COSH routine given here turns out to

be identical to that in the Math ROM. Moreover all of the routines SINH,

COSH, ASINH, ACOSH here are identical to ones written by John Kennedy and

given in John Dearing’s book "Calculator Tips and Routines". There seem to

be no obviously better ways to calculate these four, but TANH and ATANH

here are a bit shorter, more accurate and work over a slightly wider range.

Instead of giving the routines in the order SINH, COSH, TANH, ASINH,

ACOSH, ATANH, the listings show them in the order SINH, ASINH, COSH,

ACOSH, TANH, ATANH. This order makes it possible to put a value in X, then

press R/S twice to check the accuracy of SINH and ASINH. Another two

-157-



presses of R/S check the accuracy of COSH and ACOSH. A final two presses

check TANH and ATANH. This is a worthwhile trick whenever you are writing

routines to calculate a mathematical function and its inverse. Just to be

doubly sure, you can try executing each pair in reverse order too.

B1#LBL “STHH" {3¢LBL "COSH® 3I5¢LBL “TANH"
B2 Ef¥ 19 EtX 36 5T+ ¥
A3 ENTER4 2R ENTERt 37 TR~
4 1% 21 17% 38 RLL &
#5 - 22 4+ 39 2
B 2 232 48 +

B2 RTH 25 RTH 42 RTH
A9+LBL "ASTHH" Z64LBL "ACOSH" 43¢LBL “ATANH"
18 ENTER® 27 ENTERt 44 LN1+¥
{1 ¥4z 28 ¥4z 451
12 1 29 1 46 LASTY
13 + 38 - 47 -
14 3087 31 S8RT 432 LK

15+ 32 4+ 43 -
i6 LH 33 LN 38 2
17 RTH 34 RTH 3l /

52 END

7.2 Review Registers

Not everybody uses hyperbolics, so here is a program of potential use to

anyone with an HP-41. During keyboard calculations one tends to store

values haphazardly in any data register that happens to be free. The HP-41

Continuous Memory makes sure those values stay there until they are needed

again, but with so many registers available, there is a lot of work in

finding a value.

For example: you have four numbers in the stack registers and you want to

save them all for future use. You also want to find the register where you

put the value of the speed of light earlier on. How to do this without

disturbing the stack or losing any data values? You could spend 20 minutes

-158-



doing X<>nn for every nn from 00 to the last memory register, or you could

use VIEW nn for every register. (But what SIZE have you got anyway ?)

The program here displays the contents of every register that contains

anything other than zero. If you have a printer, the program can be used

instead of PRREG, saving paper because it will not print zero values. As

registers containing zero are not displayed, the process is speeded up;

those registers not displayed are free for use. The L register is used to

hold an ISG counter, so that the stack and numbered registers are

unchanged. Alphanumeric values are displayed with :A after them so that

numbers will not be confused with text displays of numbers.

Everyone has his or her favourite SIZE finder, but this program shows the

SIZE as a fringe benefit if you let it run until it stops. Alternatively,

you can stop the program whenever it displays a register. Do not stop the

program while the flying goose is displayed though, or you may find X

exchanged with a data register. In that case, just do X<> IND L. This

program will work even if the SIZE is zero.

BlelBL "REGS" 28 FIZ 4

82 5F 25 2l 5F 29

g3 Rix L 22 ARCL ¥
a4 [L¥ 23 FL2C 23
85 AL 24 “F:B"

Ac+lBL 81 23 ¥{y IRD L
87 R{F MR L 26 AYIEH

g3 FL? 25 27 PSE

B9 LT0 @3 23 CLE
18 X2@? 2% 5F 23
11 0GT0 83 JaeLBL Az
12 Ry IND L IS L

{2 670 a2 J2¢LBL w8

{4lBL @3 33 670 8l

{5 FIZ @ 344LBL A9
t6 OF 29 35 =SIZe="

{7 =ge 36 ARCL L
i3 ARCL L 37 AVIEW
19 poe 32 END

-159-



Lines 2 to 5 set the loop counter in L. LBL 01 starts the loop, trying to

get the next data register, and then going to the size display section if

the register cannot be found - thereby giving an error to clear flag 25.

Line 10 checks if X is non-zero and goes to the display section at LBL 03

if X is not zero. A text value will give an error, but because flag 25 is

set, the program will go on to the next step and will again get to LBL 03.

(See the remarks about errors in conditional tests, in Section 6.7.) Lines

12 and 13 restore X and go on to the section that prepares the next loop

execution. At LBL 03 the register number and its contents are displayed.

FIX 4 is used as it is the default display setting and prevents scrolling

in most cases - you can replace this with a display setting of your own

choice. Lines 23 and 24 put :A after alphanumeric strings. An

alphanumeric (text) string in X will have caused an error at line 10, so

flag 25 (the error flag) is clear if X contains a text string. Line 25 puts

back the value being displayed. Line 26 displays the register number and

contents, then line 27 pauses. The user can interrupt the program safely

here because everything is in its proper place, and flag 25 is clear so

that any subsequent error by the user will not be ignored. Line 28 clears

the display and only then is flag 25 set again to check for errors at steps

07 or 10. Lines 30 to 33 prepare the next loop execution. Lines 34 to 38

display the SIZE at the end of the program. At the end flag 25 is clear

(cleared at step 07) and the display mode is as set by lines 20 and 21.

This program follows general pieces of advice given earlier. It leaves

flag 25 clear, and stops at the END so that it can be re-run with R/S.

Register L 1s used so that the rest of the stack is unchanged. X#0? is

used (with flag 25 set) in preference to X=0? so that the alphanumeric

values will not cause trouble. Finally, a point is provided at which the

user can safely interrupt the program.

-160-



7.3 Integration With Infinite Limits

Most numecrical integration programs for the HP-41 integrate between finite

limits. The High-Level Maths Solution Book provides for an infinite upper

limit:

This also lets you integrate between minus infinity and infinity:

0
oo oo

I= ff(x) dx = /f(x) dx + /f(x) dx

- 00 -00 0

o) oo

= /f(-x) dx + /f(x) dx

0 0

a 0

In general ff(x) dx = /f(-x) dx

-00 -a

and so the formula in the Math Solutions book can be used for integration

from minus infinity to plus infinity. However the program in the book uses

sixteen-point Gaussian quadratic integration so if you want to use more

steps to obtain greater accuracy, or to use a different formula, you have

to try somecthing clse. Replacing infinity with the largest number the HP-

-161-



41 can handle can lead to nonsensical results since most of the values of

the integrand will be calculated at very large values of x. Looking for a

reasonable upper limit by trial and error can take a very long time. An

example to show that it does not work is given at the end of this section.

An alternative method is to use one of the general-purpose numerical

integration programs such as INTG in the Math ROM, or IN in the PPC ROM and

to change the variable that has infinite limits to one that has finite

limits. The programs use a user-supplied routine to calculate the function

f(x) at a value x and they make a choice of x values which lets them

estimate the integral. If the variable is changed from one that has

infinite limits to one that has finite limits then these general-purpose

programs can be used provided that the routine to calculate f(x) is

supplemented by a second routine that makes the change of variable. In the

following, I shall call these routines FX and TX respectively. A

reasonable choice for the change of variable is:

x = TAN(e)

or

e = ATAN(x)

because TAN(infinity) is pi/2 radians, so infinity can be replaced by pi/2,

and the integral can then be rewritten:

b arc tan b

fi[tan(e)] de

2
cose

Lo
an
]

Il

$

~

~
N

o > I

a arc tan a

-162-



When you make this change of variable the following things happen:-

Where the lower limit is -00 it becomes - pi/2

Where the upper limit is +00 it becomes + pi/2

Where the routine to evaluate f(x) was FX, it now becomes a new routine TX

which uses FX as follows:

01 *LBL "TX"

02 RAD

03 COS

04 ST* X

05 X=0?

06 RTN

07 STO nn

08 X<> L

09 TAN

10 XEQ "FX"

11 RCL nn

12 /

13 RTN

02 Put the HP-41 into RADians mode for correct integration.

03-04 Get Cos’e
05-06 If Cosze is zero, then return with zero since the integrand has

to be zero at pi/2 or -pi/2 if it is a closed integral. Cosze

is compared to zero in preference to Cos e as it reaches zero

sooner. This is not an exact test, but it i1s sufficient in

nearly all cases.

07 Store cosze in a register

08-09 Put tan e into X. It would be ocoif cos e were zero, but the RTN

at line 06 avoids this.

10 Now execute the original function FX, or whatever its name is.

Note that the angular mode is RAD; FX may neced to change it.

11-12 Divide the result by cosze

13 Return to the main integration routine.

-163-



To calculate a numerical integral with an infinite limit using one of the

standard HP-41 integration programs (Math ROM, PPC ROM,etc.) with TX do:

1) Enter the function f(x) as a program in the HP-41. The program is

assumed to start with x in the X-register and to return with f(x) in

X. It can have any global label up to six characters long.

2) Enter the function TX given above. At lines 07 and 11 use a numbered

data register that is not needed by the integration or the f(x)

program. At line 10, use the name of the f(x) program, or use an

indirect register containing the name.

3) Run the integration program as usual except:

i/ Give the lower limit as ATAN(a) in radians instead of a, or as

-pi/2 instead of - infinity.

ii/ Give the upper limit as ATAN(b) in radians instead of b, or as

pi/2 instead of + infinity.

i1i/ Give the function name "TX" instead of the original function

name (which I have called FX in these notes).

For example you can use the Math ROM program INTG to calculate:

oo

I = fi/xz dx

1

by doing the following:

-164-



1) Enter into your HP-41 the two functions given below

2)

3)

4)

5)

6)

7)

01 *LBL "TX"

02

03

04

05

06

07

08

09

10

11

12

13

RAD

COS

ST*X

X=0?

RTN

STO 08

X<> L

TAN

14 *LBL "FUNC"
15 1/X

16 X412

17 END

XEQ "FUNC"

RCL 08

/
RTN

Make sure the Math module is plugged into your HP-41.

XEQ "INTG" to initialise the integration program.

Execute RAD, 1, ATAN, PI, 2, /, SHIFT, A to give the upper and lower

limits to the integration program.

Key in 16, SHIFT, B to compute the integral using 16 sub-intervals.

Key in the function name TX, then press R/S to run the program.

Wait for the answer: 1.0000 accurate to four decimal places.

For comparison, an attempt to estimate a 16-point integral of l/x2 from 1

to infinity by using INTG with the limits shown, gives the following

results:

-165-



upper limit result

10 9071

100 2.2988

1000 20.8415

1 E9O 2.0833 E88 ()

None of these is reasonably close to the true answer.

Naturally enough this whole section assumes that the functions to be

integrated do not have any singularities in the range of integration and

that the integrals are closed (finite).

7.4 Random Numbers

Random numbers may be required in games programs, in statistical analysis

programs, or in the design and simulation of experiments. Obviously, it is

sensible to choose a Random Number Generator (RNG) to fit the job at hand.

A Monte-Carlo integration program demands a more sophisticated RNG than

does a Sub-Hunt game. Nevertheless, the best RNG used by HP on the HP-41

is in the Games ROM. 1 shall give a (relatively) short description of this

RNG and of other RNGs, then suggest a few RNGs suitable for various uses on

the HP-41. You can skip the theory if you prefer and go directly to the

list of RNGs at the end. A lot of work on RNGs for calculators has been

done by members of HP user groups and most of the suggestions here come

from user group journals. The references are given at the end of this

section; this is another good example of what you can learn and take part

in by joining a user group.

The purpose of a good RNG is to provide a sequence of randomly distributed

numbers X where:

0<X <1

Evidently, it is required of a RNG that its behaviour should be well known

and understood. Computer RNGs rely on mathematical algorithms, so the same

results are obtained if a RNG is used a second time. This means that they

-166-



are not truly random, (to underline this they are called Pseudo Random

Number Generators) but also that they can be studied. The best studied

type of computer RNG algorithm uses the Linear Congruential Method. This

algorithm takes three numbers ¢, a, m to generate a new random number

Xn+1 from the previous number Xn .

Xn+l = (a*Xn + ¢) MOD m

On calculators, the modulus, m, is nearly always taken as a power of 10,

usually 1. The formula then becomes:

Xp+1 = FRC (a*Xn + ¢C)

This is called a Mixed Congruential Method. To speed things up, ¢ is often

set to zero giving

Xp+1 = FRC (a*Xn)

This is often called a Multiplicative Congruential Method. The choice of a

and c¢ has been studied extensively. The initial choice of X, called the

seed, XO, also deserves some consideration.

An cxcellent book on this subject is "The Art of Computer Programming,

Volume 2" by Donald E.Knuth. Details of this book are given in Appendix A.

Knuth’s book tells us what to understand by a random sequence; in brief,

the numbers should have a mean of 0.5 and a standard deviation of

1/SQRT(12), they should not cluster around certain values, nor should they

show any marked relation between pairs, sets of three or any larger sets.

Ideally, a sequence should never repeat itself (cycle), but on a machine

capable of representing only a finite set of possible numbers cycling is

bound to occur eventually. The RNG used in the Games ROM, the PPC ROM and

the CCD module was originally developed by Don Malm for the HP-65 using

advice from Knuth’s book. It uses the algorithm:

Xp41 = FRC(9821*X + 0211327 )

This satisfies Knuth’s most stringent test, the spectral test, and has a

long cycle; it repeats the same sequence of a million numbers regardless of

the starting value (seed) used. For most purposes, this is eminently

satisfactory, though it is not a perfect RNG, as can be shown by additional

tests involving the sums and differences of consecutive pairs. This only

-167-



shows up in long runs; it has been demonstrated by Brian Steel on an HP-

110, and may therefore not really be a fair test for an HP-41 program.

For anyone sufficiently dedicated (or crazy enough) to want more than a

million random numbers, a suggestion by R. Moore (see references below) is:

X, = FRC[21*( X+ PI)]

which gives a cycle period of 100 million, and uses less memory on the

calculator because PI takes one keystroke, and 21 uses two. If you replace

the 21 with 61, 101, 121 or 161 you get a cycle of 10 million. These

numbers are too small for an ideal RNG (because two or three digits cannot

guarantee sufficient randomness), but the results are pretty good for a

handheld device.

There are just a couple of minor reservations about these wonderful RNGs.

The first is that they compensate for their long full cycle periods by

cycling rapidly from the back. The least significant digit goes through a

cycle of ten values, the least significant pair cycle every hundred values

and so on. If your use of RNGs is significantly affected by the low order

digits, you should take care. In particular, all digits but the first

repeat after one tenth of the cycle. The other reservation concerns the

use of the stack. An ideal RNG would behave like any other monadic

function. It would replace X, in the X register with Xn+1 without altering

registers Y, Z, T and X, would also be saved in register L. Since all RNGs

given here finish with FRC, register L cannot contain Xn unless numbered

data registers are used. Some RNGs can, however, preserve Y, Z, and T.

One such RNG, suggested by V. Albillo, R-D,FRC, gives:

Xh41 = FRC ( 180/PI*Xn )

This is simply a linear congruential RNG; given a negative seed it returns

a negative value.

Another short RNG that changes only X and L, suggested by J.W.Mills is:

ATAN, FRC. This does not work in RAD mode, but is surprisingly good in DEG

-168-



mode and not too bad in GRAD mode. Both these RNGs though are sensitive to

the seed used. Vic Heyman suggests PI, SIN, TAN (in DEG mode) as a good

sced for the second case (this is equivalent to just PI, SIN here, but it

can be used as a seed for other RNGs too).

If you do not choose a good seed, both these RNGs will soon hit cycles

which repeat, in the worst case, every 209 values for R-D and every 424 for

ATAN in DEG mode. (ATAN in GRAD mode has one cycle that repeats every 358

values.) Worse still, both get stuck at zero. I prefer adapting R-D to

provide a much longer worst cycle of 9432 with a reasonable distribution:

CHS, 101X, R-D, FRC

This does not get stuck at zero and will give positive values from a

negative seed. It also avoids the problem that R-D, FRC can produce pairs

of small numbers if you start at a value near zero (any number less than

0.0017 is bound to be followed by a second number smaller than 0.1). (Mind

you, any value close to 1.0 will be followed by a value close to 0.7309.

It is in the nature of pseudo random number generators that a given value

is followed by another one which is predetermined by the PRNG formula.)

The last three RNGs are shorter than the mixed congruential ones and

preserve registers Y, Z, and T. The first of them is the fastest RNG for

the HP-41. The first two are ideal for games programs, except that the

second one must not be used in RAD mode. The third one takes about 10000

steps from most starting values before it hits the cycle, and almost

another 10000 steps before the cycle first begins to repeat; a total of

20000 random numbers with a reasonable distribution, which is quite enough

for most purposes. With a seed of PI, SIN, TAN it takes more than 20000 to

reach a cycle and 16000 before the cycle repeats. Nevertheless, the mixed

congruential RNGs beat the others for most serious purposes. (The three

just given are only safe for one-dimensional distributions.) Another

linear congruential RNG, suggested by John Baker, uses 3579 as the factor a

and .031019 as a seed. This has an effective period of 25000 and passes

the spectral test, so it can be used for 2, 3, 4, and 5 dimensional

distributions.

-169-



Here then is a list of RNGs you can try for various applications:

1) 9821, *, 211327, +, FRC

2) PI, +, 21, *, FRC

3) 3579, *, FRC

4) R-D, FRC

5) ATAN, FRC

Provides 1076 values and comes out well

in the spectral test. Uses a lot of

memory though, unless you call it from

the Games, CCD, or PPC module.

Nearly as good as 1) and provides 1018

values. You can also use 61, 101, 121

or 161 instead of 21 -- use these if you

want the good properties of 2), but do

not want to use 2) itself. Note that 1)

and 2) cycle in their lower digits.

For a good linear congruential RNG use a

sced of .031019. If you want to avoid

disturbing the stack, store 3579 in a

numbered data register nn. Then

generate X. from X as follows. Put

X, into register X. X<>nn, ST*nn,

X<>nn, FRC. The effective period is

25000, and after this a new pattern

emerges, differing from the first one by

only a constant.

For a very fast RNG in games or quick

calculations.

(Not in RAD mode; preferably with a

seed of PI, SIN in DEG mode). Like 4),

but it is slower, has a slightly better

distribution, and shares the property of

not disturbing Y, Z or T.

-170-



6) CHS, 101X, R-D, FRC Another alternative to 4) and 3).

Slightly slower than 4), much longer

cycle and less influenced by the seed.

Will not produce an excess of pairs of

small values near zero which 4) can do.

Does not get stuck at zero, does not

disturb Y, Z, or T and gives positive

values from a negative seed.

One final word of advice. To paraphrase Knuth: Run each program that

depends on random numbers at least twice using different sources of random

numbers. This will give an indication of the stability of the results.

Better still, read Knuth or some other serious work on RNGs for yourself

before you embark on any important Monte-Carlo calculations.

All the references in this section except Knuth were taken from the PPC

Calculator Journal and its predecessor 65 NOTES. Volume, issue and page

are given below. Details of user clubs and journals are in Chapter 13.

Random Number Generators by Vic Heyman V4N8 pl-6

RN Generators by Rick Moore V6N2 p20

Fastest Random Number Generator by Valentin Albillo V7N6 p35

A simple RNG test program was given by Wm. Kolb in V7N4 pl7a

On Calculator RNGs by John L. Baker V8N3 p23-24

See also HP11C RNG simulator program V9N4 p17d (barcode VIN8p29d)

7.5 Complete Arc Tangent - ATAN2

Finally a short example: the ATAN function can only provide an angle

between -90 and +90 degrees, but you sometimes need an answer between -180

and +180 degrees. This can be obtained if the arc tangent is found in

terms of the ratio between two numbers x and y. The function ATAN2(X,Y)

gives an answer:

ATAN2(x,y) = arc tangent ( x/y )

-171-



A routine to simulate this function exactly like an ordinary bifid HP-41

function (such as division) should use the values in registers X and Y,

return the result in X, drop the stack so that Z was copied into Y and T

was copied into Z, and would save the previous X in L. Writing a routine

like this instead of just any routine to calculate the function demands a

little extra work, but the result is a routine that you can use without

worrying about its effects on the stack or other registers. Two ways of

doing the job assuming registers X and Y contain the numbers x and y are:

LBL "ATAN2" LBL "ATAN2"

P-R P-R

CLX RDN

RCL Z RCL Z

RDN RDN

RTN RTN

You can check that both simulate an HP-41 bifid function exactly. They work

in any of the angle modes. Both RDN and CLX followed by RCL Z copy the

original value of T into X, and then RDN puts it back into T. CLX followed

immediately by RCL Z does not lift the stack, because CLX disables stack

lift, and it is about 6 milliseconds faster than RDN (which is important

only in very long programs). If you are unlucky enough to press R/S just

after CLX though, you will enable stack lift again and the stack will be

wrongly arranged when you restart the program. It is therefore better to

use RDN, as on the right, not CLX whenever you are rearranging the stack.

Routines that you will use often or that you will give to other users are

best written to simulate the native (CAT 3) HP-41 functions if at all

possible, saving the stack values and placing X in LASTX. Some subroutines

to save the stack contents will be described in Section 11.4.

-172-



Exercises

7.A If you do not have a Math ROM or a PPC ROM then try to write a

numerical integration program yourself. It should request the upper and

lower limits of the integration interval, and the name of a CAT 1 routine,

FX, which will evaluate the function f(x) at the point x. The integration

program should then select a number of points between the lower and upper

limits, call the routine FX to evaluate f(x) at each of these points, and

then calculate an approximation to the integral.

7.B Try combining the hyperbolic functions and the infinite limits

integration routine to integrate 1 - TANH(x) from 1 to infinity.

7.C One use of RNGs is for numerical integration. The RNG is used to

select a large number of points between O and 1, the range is scaled up to

cover the integration range from the lower to the upper limit, and f(x) is

calculated at each point. The results are added up, divided by the number

of points and multiplied by the integration range to provide an estimate of

the integral. This method is used for functions which are difficult to

integrate using normal numerical methods, and also for multi-dimensional

integration; you generate two or more random numbers to produce each random

X,y or Xx,y,z point at which you then calculate f(x,y) or f(x,y,z). A use

like this obviously demands that the RNG should not produce related groups

of numbers. Try writing a random-number based integration program (they

are called Monte-Carlo integration programs) for the HP-41, and see how

many random points are nceded to obtain an integral as accurate as that

produced by an ordinary integrator on a module or written for Exercise 7.A

above.

-173-





PART Il

Extended Programming

 





CHAPTER 8 - MORE ABOUT MEMORY

8.1 Space, Time and Numbering

By now you should know enough about the normal functions available on every

HP-41 that you can do calculations from the keyboard efficiently and can

write good programs. (Or else you knew it all anyway and skipped the

earlier chapters; in that case you missed some useful tips: too bad.) You

have seen that the HP-41 can do much more than you would learn just by

reading its manuals, which are there to tell you how an HP-41 works, but

not necessarily what you can do with it. We shall now go on to more

ambitious uses of the HP-41 and to the devices available for use with it.

The kind of question that this chapter will help to answer is -- how can I

make my programs shorter and faster? Program speed and length are closely

related; a shorter program 1is usually faster just because it has fewer

instructions to perform. The answers to such questions can be found by

studying how the HP-41 memory is used to store programs and data. The

chapter will also help you understand how the HP-41 sends data to plug-in

accessories, and this information will be useful later on. The layout of

program instructions in memory may be of little interest to people who do

most of their calculations from the keyboard, but related topics such as

the storage of data or key assignments in memory are of interest to them

and will also be covered.

Before turning to details of data or program structure in the HP-41

memory let us have a quick look at information storage in general. A

popular type of quiz game consists of a panel asking questions to which the

answers can only be "yes" or "no". Any piece of information can be

obtained in this way if the right questions are asked. Electronic

computing devices work on the same principle, they store a mass of yes/no

answers which are meaningful only if the corresponding questions are known.

For example ecach HP-41 flag is stored as an answer to some question like

"is USER mode set?" or more gencrally "is the flag set?"

-177-



The answer to a single yes/no question is the smallest item of information

that can be stored. On celectronic devices this answer is treated as a

number, 1 for "yes" and 0 for "no", and it is called a bit; this is an

abbreviation for "binary digit" which means it is a number that can have

only two values. By combining bits a computer can do arithmetic with

binary, octal, decimal or hexadecimal numbers. The operations that a

computer carries out on bits are often called logical operations, not

arithmetic. Those readers who know about computer number systems can skip

the next two paragraphs if they wish.

If you do not know how a string of bits can be used to represent a number

consider the following set of yes/no questions:

i. Is the number odd or even? Write a 0 for even, or a 1 for odd.

ii. Is the result of dividing it by two odd? Write a 0 or 1 to the left

of the first 0 or 1.

1ii.  Is the result, if you divide by two another time, odd or even? Write

another O for even or 1 for odd to the left of the previous answers.

iv. If the result of dividing by two, once again, odd or even? Write

another 0 or 1.

The answers to these four questions, written down as four bits, will let

you uniquely describe any number from 0 to 15. Try it and see; if you take

the number 10, the answer to the first question is O (because 10 is even).

Divide 10 by two and you get 5 which is odd, so the answer to ii is 1.

Divide by two again, ignore the remainder, and the result is 2 so the

answer to question 1iii is 0. Divide by two again and the result is one,

which is odd, so the answer to iv is 1. Write these four answers down

right to left and 1010 is the result that you get. Repeat the process for

the number zero and the same four questions will give the result 0000

(because zero is an even number). Fifteen will be written as 1111. The

four questions and their answers let you describe any number from zero to

-178-



fifteen by writing down a binary string of four bits. The number sixteen

will give the same result as zero, so another question will have to be

asked to distinguish between sixteen and zero. All numbers bigger than

fifteen will need more than four questions, and more than four bits. With

another four bits any number between zero and 255 can be represented.

A row of eight bits is fine for a computer but difficult for a human being

to recognise or memorise. To make a long binary string more legible we can

split it up into groups of three or four bits, and write each group as a

single symbol. In octal arithmetic, groups of three bits each are replaced

by the symbols 0 to 7. In hexadecimal, groups of four bits are written

down as a number between zero and fifteen, using the symbols 0, 1, 2, 3, 4,

5,6, 7, 8 9, A, B, C, D, E, F. You can sce that F stands for fifteen.

Any number that would be written in the ordinary numbering system (decimal)

as a value from zero to 255 can be represented as two groups of four bits

(see previous paragraph) or as two hexadecimal digits, from 00 to FF. For

example the decimal number 139 can be written in binary as 1000 1011. If

you write this as two decimal numbers you get 8 followed by 11 and if you

use the hexadecimal symbols this becomes 8B. Converting numbers from

decimal to hexadecimal is a nuisance if you have to do it yourself, but you

can use a conversion table (there will be some of these later in the

chapter), and computers do it automatically anyway. Arithmetic and other

operations can be done on binary or octal or hexadecimal numbers, and

although this may be difficult for people who are accustomed to the

ordinary decimal numbers used in everyday life, it is easy for computers.

Hexadecimal numbers will be used in several places in this book because

they are closer to the symbols used inside the HP-41, but if you feel

uncomfortable about them then use one of the tables (Table 8.1 will do) to

convert them back to decimal. (The words "octal" and "hexadecimal" are

recent inventions; "hexadecimal" is a Latin-Greeck mixture and should really

be written as "hexagesimal" or "sexadecimal". Somehow it never is.)

The HP-41 stores your program instructions as groups of eight bits or two

hexadecimal digits. These groups are called bytes. Since a byte can have

one of the values from 0 to 255, there could be 256 program instructions

-179-



one byte long each. In fact many program instructions are more than one

byte long, but their basic unit is always a byte. Text characters are also

represented by one byte each. The numeric digits 0 to 9 can be represented

by half a byte (four bits). Half a byte is called a nybble; a small bite

is a nibble!

How are the bytes put together? The fundamental unit of memory available to

the HP-41 programmer is the register. We have met registers already, one

register is used to store one numeric data value; the SIZE is expressed in

terms of registers. A register contains seven bytes, so it can hold a text

string identifier and six letters, making seven bytes in all. This is

equal to fourteen nybbles. A register can hold a ten-digit number with a

sign, and a signed two-digit exponent, making fourteen elements. A

register is also equal to fifty six bits, so it can hold fifty-six flags,

and indeed the HP-41 flags are numbered from 00 to 55. Figure 8.1 shows

the different ways in which a register can be split up into its components.

Registers are often called words on computers, and the same is done on the

HP-41. What with bytes and nybbles inside their words, it seems that HP-41

users are talking with their mouths a bit full !

 

one register
 

(or word)

 

6 5 4 3 2 1 0 seven bytes

 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 fourteen nybbles
 

 

5555554444444444333333333322222222221111111111
54321098765432109876543210987654321098765432109876543210 fifty six bits

Figure 8.1 Different ways of seeing a register

-180-



Most HP-41 operations use bits, nybbles, bytes or registers, but

information can be handled in other units. We have already studied

programs; a program contains a whole number of bytes, it stretches from

immediately after one END (or from the start of program memory) to the next

END. Programs are identified by the global label or labels they contain,

and they are treated as units by CLP (which clears a whole program from

memory) and other functions. Extended Memory and Mass Storage (cassettes

or mini disks) are arranged to contain files. A file is a complete

collection of information, such as a program, a set of key assignments or a

personal telephone directory. Each file contains a whole number of

registers and is identified by a name. Files can be split up into smaller

units called "records", all this will be explained in Chapter 11 which will

describe Extended Memory. You can invent your own collections of

information too, for example you could decide to treat 9 registers as a 3*3

matrix. Information that is being handled by a computer or by the HP-41 is

often called data; this word 1is used to describe any quantity of

information that is being used in some operation. Anything that demands

the movement or use of a serious amount of data is called data processing.

Calculating a wages bill for ten employees is data processing, squaring the

sine of a number is not, because it uses little data although it does a lot

with it.

8.2 Contents of RAM memory

Now you know the possible ways of dividing up one register of the user’s

Random Access Memory. How are various kinds of information stored in such

a register? The HP-41 most commonly stores numbers; Figure 8.2 shows how a

number is stored in the fourteen nybbles of one register.

-181-



 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Nybble

Mant- Expo-

issa  m------ Mantissa =------ nent Exponent Contents

sign sign

Figure 8.2 A register containing a number

Nybble 13 contains the sign; a zero is used for positive numbers and a 9

for negative numbers. Nybbles 12 down to 3 contain ten numeric digits,

each digit being a number from 0 to 9. The most significant digit is in

nybble 12, this should only be zero if the whole number is zero. The

decimal point (also called a radix mark) lies between nybbles 12 and 11,

but does not take up any room. The exponent (power of ten) is stored in

nybbles 2 to 0. If it is positive then nybble 2 contains zero while

nybbles 1 and 0 contain the exponent value as two digits from 00 to 99. A

negative exponent is added to 1000 and the result is stored in nybbles 2 to

0. An exponent of -1 is therefore stored as 999, an exponent of -57 as

943. The HP-41 expects to use only exponents between -99 and +99 so nybble

3 should contain a zero or a nine. (So it is sensible to use 0 and 9 for

the mantissa sign too.) It can be seen though that the HP-41 could have

dealt with exponents from -500 to +499. It is even possible to create

numbers with exponents in this range (using Synthetics of course), and some

functions like LOG deal correctly with such numbers. Numbers with unusual

exponents like this, or with digits other than 0 to 9 (remember a nybble

could contain any value from 0 to 15), or with a zero in nybble 12 are

called Non Normalised Numbers and can do strange and exciting things (yet

another plug for Synthetic Programming).

An example of a number stored in a register is given below:

025400000O0O0°99 8

This is +2.54E-2 which is the number of metres in an inch. The unused

digits after 254 are all filled with zeroes and the exponent is 1000 - 2.

-182-



A number stored in this way, with only byte values from 0 to 9 used to hold

the digits is called a Binary Coded Decimal number. This is usually

abbreviated to BCD. (An extended version of this code, called EBCDIC is

used as an alternative to ASCII, see below.)

Apart from numbers, the registers can hold text strings (also called

Alphanumeric values). A register containing text has a 1 in nybble 13 (the

sign nybble). Nybble 12 usually contains a zero, but does not need to,

since it is ignored if nybble 13 is a one. This accounts for byte 6 of the

register, bytes 5 to 0 contain one text character each. The bytes are

filled from left to right, but if the string is less than six characters

long it is filled out with null bytes at the left (remember a null byte is

one whose value is zero). Figure 8.3 shows a register containing the text

string "HP-41". Each byte 1is represented as a two-digit hexadecimal

number. (Remember hexadecimal numbers? They were explained a couple of

pages ago.)

6 5 4 3 2 1 0 Byte number

10 00 48 50 2D 34 31 Byte contents

Text H P - 4 1 Meaning

Figure 8.3 A register containing a text string

Null bytes are not displayed if they are stored in a register like this, so

you could put this value into register X and would see just the characters

HP-41. The numbers used to represent the characters are in the ASCII code

(American Standard Code for Information Interchange) which is used by most

computers and printers, so that text can be easily exchanged between an HP-

41 and some other computer or sent to a printer. The ALPHA register is

treated differently from ordinary 7-byte registers on the HP-41; it can

contain up to 24 characters (bytes). Null bytes always fill it from the

left up to the first character of any text. These nulls at the left are

-183-



not displayed, but any nulls that come in between other characters do show

up (as a bar at the top of the display). Since the ALPHA register is

expected to contain text data it does not need to start with a 10 byte.

When a text string is ARCLed to ALPHA, its byte 6 (which should be 10) is

only checked to see if the register contains a text string, but is not

copied to ALPHA.

If the HP-41 needs to store non-numeric data in one of the user’s registers

it turns that data into a number or text string. For example the printer

function BLDSPEC and the Extended function RCLFLAG store special data as a

text string in register X. These text strings contain 1 in nybble 13 and

information in nybble 12, so this nybble is not always a zero. Such text

strings should not be copied to the ALPHA register as byte 6 will be lost.

Another example of storing non-numeric data is the Extended function X<>F

which turns the values of flags 0 to 7 into a number and puts this into X.

Any value that is stored in one of the user’s registers should either be a

number, with a sign nybble of 0 or 9 and obeying the rules for a number, or

it should be a text string, with a sign nybble of 1. The HP-41 checks this

whenever it recalls a value from a numbered data register and when it uses

the contents of a register as an argument for a function. If the value

does not obey the rules, it is first turned into one that does obey them,

by a process called normalisation (nothing to do with East-West relations).

This 1s why a value that does not conform is called a Non Normalised Number

(NNN for short). Many values used internally by the HP-41 are NNNs and

their use will be an important subject in Chapter 14.

Other kinds of information commonly stored in any HP-41 are programs and

key assignments. These will be dealt with in Sections 8.5 and 8.6.

8.3 The Layout of RAM and ROM

Now that we have studied the design of a single data register in RAM, let

us see how the RAM registers are put together in groups within the HP-41.

Then we can look at the layout of ROM (Read Only Memory which cannot be

-184-



altered, the memory that contains the HP-41 built-in system and

instructions in plug-in devices). Figure 8.4 shows the layout of the

Random Access Memory in an HP-41C without extra memory modules, assuming

that the SIZE has not been changed and the statistics registers have not

been moved.
 

 

 

 

    
 

Register 16

Data — Pointer to register 11,

64 Registers start of statistics registers.

registers Register 00 «— Pointer to register 00,

First program start of data registers.

for .

Program

Area

data,

Last program .END. «— Pointer to .END. ,

programs, . end of programs in CAT 1

buffers Free
Area

and

Buffer

key Area

Key Assignment

assignments. Registers

Empty
Space

16 Status

Registers

   
Figure 8.4 HP-41C Random Access Memory (RAM) Layout

-185-



The memory consists of one block of 16 registers and a second block of 64

registers. (On early HP-41s all memory came on chips of 16 registers, so

the memory was made up of multiples of 16.) The block of 16 contains the

X, Y, Z, T, and L registers, the ALPHA register (which is actually made up

of 4 ordinary registers) and the flag register. It also contains the

pointers to the .END. and to register 00 and the statistics registers, the

subroutine return stack and other intriguing things. All this information

is stored by the Card Reader on the first track of a "status" card, so

these 16 are called the Status Registers; much more will be said about them

in Chapter 14. Above the status registers lies an empty space, then the

main memory.

Going up through main memory (follow Figure 8.4) you first find the

registers which store key assignments, unless no CAT 2 or CAT 3 functions

have yet been been assigned. Next comes a Buffer area. Buffers are pieces

of memory used temporarily by some plug-in modules. For example the

Plotter module can create a buffer to hold plot information, this buffer is

no longer used when plotting is finished and the Plotter module has been

removed, so it is deleted. The Time Module creates a buffer to hold

alarms; this too is deleted if the Time Module is removed or all the alarms

have gone off. An HP-41C without plug-in ROMs does not contain any

buffers, but a module that wants to create a buffer will put it here, above

the key assignments. After the buffers is a free area. This can be

swallowed up by key assignments or buffers as they are created and expand

upwards. As new programs are written they move down into this area too.

If assignments, buffers or programs are deleted then this area gets bigger

again. Similarly if the SIZE is increased all the programs are pushed down

into this area to make room for more data registers, and if the SIZE is cut

down then the program area moves up again and the free area expands. This

is why you should make the SIZE as small as possible before writing a long

new program or reading one in; you make more room to let the program expand

into the free area. After the program has been written or read, you can

PACK to make the program area as small as possible, and then increase the

SIZE again.

-186-



Next comes the program area. The bottom register of the last program

contains the .END. in its last three bytes. The .END. points to the END or

global label immediately above it and this repeats up to the first link in

the global chain (CAT 1), with the programs themselves lying between the

ENDs. Immediately above the first program lies data register 00, and the

numbered data registers go upwards from it unless SIZE has been set to 000,

in which case there are no data registers. Register 00 is in effect a

curtain between data and programs, its address is sometimes called the

curtain address or just the curtain. If the SIZE is 000 then the non-

existent address above the top of memory is pointed to as the curtain. The

address of the curtain has to be stored in a special pointer which tells

the HP-41 where the data registers begin and where to look for the start of

the first program in memory (this is necessary as the program might not

have a global label at its beginning). Two other pointers keep track of

the position of the .END. and of the first register in the block of

statistics registers. If you change the SIZE then the statistics register

pointer has to move as well (so that the first statistics register is

always the same distance above register 00), and this can mean that the

pointer moves above the top data register. This does not give any warning,

but an attempt to use the statistics functions will result in NONEXISTENT

if any of the statistics registers are located above the top of memory.

The three pointers shown in Figure 8.4 must give addresses in terms of a

scheme that does not change when things move in the HP-41 or when memory

modules are added or taken away. An absolute addressing scheme is used;

this means that the addresses are absolutely fixed to the HP-41 hardware.

In this scheme, the bottom of memory is called address 000 (at the bottom

of the status registers) and all other addresses are numbered in sequence

upwards from address 000. Figure 8.5 shows the RAM memory of an HP-41C

with four memory modules (or of an HP-41CV), giving the addresses at the

top and bottom of each block of memory (in decimal and in hexadecimal

numbers). The extra memory provided by the memory modules behaves exactly

like part of the main memory shown in Figure 8.4; it merely increases the

total number of registers.

-187-



Absolute Register

 

 

 

 

   
 

 

Number

Hex. Dec.

IFF 511

Memory

Module 4

1CO 448

IBF 447

Memory

Module 3 4 Memory Modules,

180 384 or Quad RAM Module,

or HP 41CV with
17F 383 built in Quad RAM.

Memory

Module 2
140 320

13F 319

Memory

Module 1

100 256

OFF 255

HP 41C

Internal Memory

0CO0 192

Lower 64 Registers

V OI1D and 16 Status Registers

built into every HP 41.
00F 015

Status Registers

000 000   
 

Figure 8.5 HP 41 with additional RAM

-188-



Each of the three pointers of Figure 8.4 is stored as a three-digit long

hexadecimal number which is the absolute address of the .END., the curtain,

or the first statistics register. Once you know how the RAM memory is laid

out and how the three pointers are used, you will be able to understand how

data and programs are addressed. The way in which the Extended Memory fits

into the same RAM addressing scheme will be described in Chapter 15.

It has already been stated in Chapter 2 that the HP-41 internal

instructions, and instructions on plug-in application modules, are in ROM

(Read-Only-Memory which cannot be altered so you cannot change the HP-41

operating system or the instructions in plug-in modules). This ROM memory

is entirely separate from the HP-41 RAM and has its own addressing scheme.

Instruction bytes in ROM are 10 bits long, not 8. (Some instructions are

20 bits long.) A single 10-bit byte in ROM is sometimes called a word.

These words are grouped in blocks of 1024. (The symbol K is used to mean

1024 in computer jargon, so 1024 words make a 1K block.) The blocks are

grouped in pages of four blocks each. (A block is therefore a quarter of a

page and is sometimes called a quad. Just to add confusion, a page is

sometimes called a chip.) The whole of ROM memory is laid out in units of

4K pages; Figure 8.6 shows this layout. The starting address of each page

is given on the left and a brief description of each page is at the right.

-189-



Page

 

  

starting ROM Comments

address

F Upper 4K

F000 Port 4

E Lower 4K

E000
D Upper 4K\

D000 Port 3

C Lower 4K

C000

B Upper 4K:

B0OO T port 2
A Lower 4K

A000

9 Upper 4K\

9000 Port 1

8 Lower 4K

8000

7 HP-IL functions (except printer)

7000

6 Printer functions

6000 (HP-IL or 82143A printer)

5 Timer Module (page switched with

5000 additional HP-41CX functions)

4 HP Diagnostic Module

4000

3 Extended Functions (HP-41CX only)

3000

2

2000

1 HP-41 Internal operating system
1000

0
0000
 

Figure 8.6 HP-41 Read Only Memory layout

-190-



ROM chips 0, 1 and 2 are built into every HP-41 and contain the

instructions which make an HP-41 behave like an HP-41. Thirteen other

blocks can be addressed but they are not always used. Modules and devices

that are plugged into an HP-41 fit into these blocks. Originally block 3

was intended to be an additional part of the HP-41 system, containing a

special "language ROM", but this was never produced. On the HP-41CX, there

is a built-in chip 3 which contains the Extended Functions.

Each of the four HP-41 1/O ports is of a size to hold one RAM module (like

a memory module), or one ROM module (like an Application Pack or the

control module on a printer cable). If a ROM module is plugged into a

port, the ROM addressing scheme lets the HP-41 read up to 8K of

instructions from that module, split into two 4K pages. The 2 pages are

addressed separately, and most ROM modules only use one of these pages.

This one page can occupy the lower half or the upper half of the 8k space

available. Pages 8 to F are therefore split up into four pairs of pages,

as shown in Figure 8.6. Most of the time only a few of these pages will be

in use; the rest will be empty. ROM modules can be moved from one port to

another, except for the Card Reader whose shape will only let it fit into

port 4 so it uses page E.

Four special ROMs are not normally built into an HP-41 but are treated as

part of the HP-41 operating system if plugged in. Regardless of the port

they are plugged into, these modules are identified as system modules and

are addressed as pages 4 to 7. Page 7 holds all the functions of the HP-IL

module except for the printer functions. Page 6 carries the printer

functions. These can come from an HP82143A printer or from an HP-IL

module. If an HP82143A printer and an HP-IL module are both plugged in,

the HP-IL printer functions must be disabled by a switch. Otherwise two

sets of instructions are found on the same page, which causes the HP-41 to

do strange things and eventually stop working until one set is removed.

Page 5 contains the Time module functions. These can come from a plugged-

in module, but on the HP-41CX they are built-in. Plugging a Time module

into an HP-41CX can lead to the same sort of trouble as two printer

modules. On the HP-41CX, however, page 5 does serve two ROMs. One is the 

-191-



Time module, the other is an additional module containing the extra HP-41CX

Extended functions and Time functions. These functions were provided for

the HP-41CX in addition to the Extended and Time functions from the

Extended and Time modules. When any of these extra functions are needed, a

special page-switching instruction is used by the HP-41 to disable the Time

module and replace it with the alternative page (or bank). The special CX

function is executed, then the ordinary Time functions are enabled again.

This unusual operation was used by the HP-41CX designers because they did

not have any spare pages available for the extra functions. In principle,

bank-switching could be used for other modules, so that two 4K banks could

be connected to each page, and 12K or 16K modules could be designed.

What about page 4? If a ROM module is plugged in and identifies itself as

page 4 when the HP-41 is turned on, then the HP-41 stops obeying pages 0, 1

and 2. Instead the HP-41 tries to follow the instructions it finds in page

4. This is so that a special Diagnostic or Service module can be used to

check the HP-41. The Diagnostic ROM, used by HP Repair Centres, can be

plugged into an HP-41 to let the repair people look for faults. Even if

one of the pages 0, 1 or 2 is faulty, the Diagnostic ROM will usually work

since it is not part of the HP-41. Many HP calculators have built-in self

test programs, but these can fail if the whole calculator is damaged. With

the HP-67 and HP-97, a self-test program can be read from a magnetic card

provided in their Standard Applications Pack. Hewlett Packard have decided

not to make the HP-41 Diagnostic module available to most customers, though

some user groups or large customers have obtained such modules. It would

be possible to design other modules to take charge of the HP-41 in the same

way, for example a module that would let the HP-41 act as a pocket computer

using an alternative language. When the HP-IL printer functions are

disabled, they are redirected to page 4 but they jump back to page 0

instead of taking over the HP-41. A disabled HP-IL module can be used in

this way to stop a Diagnostic module from working, if the HP-IL module is

plugged into a port in addition to a Diagnostic module.

The layout of programs in ROM is too complicated to deal with in detail

now; it really deserves a separate book (or several). An outline is given

-192-



here for the interested reader and a little more will be said in Chapter

17, the best places to look for are the book "HP-41 MCODE for Beginners" or the

ZENROM (see Appendix A). Most ROM modules contain programs in the HP-41

User language (FOCAL), the same language as you use to write programs in RAM.

This consists of the familiar functions such as + or SIN or GTO which are

made up of 8-bit bytes. Instructions in ROM are 10 bits long, and the two

extra bits are not used in FOCAL programs, except to identify the start of

a program and the first byte of every instruction (as some instructions can

consist of several bytes). The ROM modules can also contain instructions

written in the HP-41 internal machine language, which will be referred to

here as M-code. M-code instructions use all 10 bits of a ROM word; they

are similar to instructions in other machine languages. Instructions such

as LDI (Load Immediate) or GOC (Go to if carry bit is set) are found in

M-code. These instructions are related to operations carried out by

specific circuits in the CPU (Central Processor Unit - the circuitry that

does the hard work, see next section) of the HP-41, whereas each User

language instruction actually tells your HP-41 to execute a whole

subroutine written in M-code. The HP-41 system ROM chips 0, 1 and 2 are

written entirely in M-code, but plug-in ROMs can carry a combination of

User code and M-code instructions. Programs in ROM always run from lower

addresses to higher addresses. This is the same direction as data

addressing in RAM, but the opposite direction to program addressing in RAM.

All this leads to several important results. The HP-41 has to know if a

User code program is in RAM or ROM since the instructions are read in the

opposite directions in the two cases. COPY has to reverse the instructions

when copying a program from ROM to RAM. M-code programs cannot be written

or stored in normal HP-41 RAM memory since this has only eight bits for

each instruction, not ten. M-code is however so much more powerful and

faster than User code that some HP-41 owners have developed ways of using

it; this will be mentioned again in Chapter 17.

The ROM layout is such that a single port could support several modules, if

only they could all fit in it. With a Port Extender (see Chapter 12),

several modules can be connected to one port. This port could then hold a

-193-



lower 4K ROM (for example a Maths module) and an upper 4K ROM (for example

an Auto Start/Duplication ROM), or a single 8K ROM. It could at the same

time hold a system extension ROM, such as an HP-IL module (since this is

actually addressed through blocks 6 and 7), and a Memory module, and an

Extended Memory module (since these are addressed separately via the RAM

addressing scheme). A Port Extender could therefore let you connect as

many as five modules to the HP-41 through just one port.

When you do a CAT 2, the HP-41 looks at each page in turn, starting at page

5, and lists all the functions it finds there if a module is connected to

that page. Pages 5, 6 and 7 are looked for first, so that the printer

functions will be displayed before the functions in a program module even

if the printer is plugged into port 4 and the program module is in port 1.

Page 3 was originally intended for a ROM that would work as a language

extension ROM together with the system ROMs 0, 1 and 2. Since this page

has been used on the HP-41CX to hold the Extended Functions, it was just

added to the end of CAT 2. The names and addresses of the additional CX

Extended functions are stored on page 3 together with those of the ordinary

Extended functions, so the names of all these functions come at the very

end of CAT 2. The additional CX Time function names are stored in page 5

with the other Time functions. All Time functions appear at the beginning

of CAT 2.

8.4 Peripherals, the Display, and the CPU

Figure 8.6 treats all plug-in ROMs as if they were the same. In fact some

plug-in ROMs are attached to peripheral devices such as a Wand, a printer

or a Card Reader. The scheme used to address these ROMs is the same as

that for other ROMs, but some plug-in devices also have their own RAM

memory. The printer has an area to store data it will print, the Wand has

two internal buffers to store the barcode it is reading. The Time module

has RAM memory to store the current date and time, the time display format,

accuracy factor and so on. Each of these pieces of RAM is controlled by

its owner and does not fit into the RAM layout of Figure 8.5. Some plug-in

ROMs also create temporary buffers inside the HP-41 main RAM memory, in the

-194-



Buffer Area shown in Figure 8.4. This RAM area is not owned by the plug-

in, it is only borrowed, and is returned to the HP-41 when it is no longer

needed or when the plug-in is removed.

The HP-41 display is treated as a peripheral which is always plugged in.

Information can be sent to the display and read from it. The display is

driven by two chips, the right-hand chip drives the left-hand half of the

display and vice-versa. These chips decipher instructions and turn them

into display characters. Only 83 of the possible 2114 characters are

produced by the drivers built into the HP-41; different drivers could be

designed to display more characters. In fact, HP-41s manufactured since

late 1985 have an updated display that supports a full set of lower case

characters. The display drivers are also used to count the 10 minutes

before the HP-41 turns off when it is not used. The two drivers must be

synchronized, on early HP-41s flat batteries can cause loss of

synchronisation which can hang up the HP-41; fresh batteries should solve

the problem.

The CPU is the piece of the HP-41 that really does all the work. Each M-

code instruction activates part of the electronic circuitry in the CPU,

making it move some bits, change some bits, or send some bits to an

address. When enough bits have been shunted around, a meaningful result is

obtained, for example 1 is added to a byte. Then the CPU picks up the next

M-code instruction and does another lot of bit-shuffling (and so on..).

The CPU has its own block of registers in which it does most of its work.

When two numbers are being added, they are copied into two of the working

registers belonging to the CPU (CPU registers are often called

accumulators) and added. Then the result is rounded (the CPU can do

arithmetic with a 13-digit mantissa, but has to round it to 10 digits),

normalised (to produce a mantissa whose decimal point lies between the

first and second digits on the left, while the power of 10 is contained in

the exponent), and finally copied into the HP-41 main RAM memory.

The internal registers of the CPU store additional information such as the

M-code program pointer, the M-code subroutine return stack (M-code

-195-



functions also call subroutines), and internal flags which are not

available to User code programs (such as the PRIVATE mode flag). The CPU

also looks after the keyboard. When a key is pressed, the CPU is alerted,

and a keycode is stored in a register so that the CPU can deal with it at

the right time. The CPU makes the TONEs as well, by setting and clearing a

register whose status controls the bender (a piece of metal that vibrates

to make sounds).

8.5 Program Instructions in RAM

M-code programming, analysis of peripherals, and other tricks require

special equipment. Let us come back now to ordinary programming on an HP-

41 which is after all what most users do. The layout of individual

instructions in a program is worth studying since it gives you the

knowledge needed to write shorter programs.

A program is stored as a string of bytes in RAM. Each byte value from 0 to

255 is used in a program as an instruction or part of an instruction. Let

us begin by studying the meaning of each byte if it is stored as the first

part of an instruction, using a table to organise the bytes. The 256 bytes

can be laid out in 16 rows and 16 columns, as in Table 8.1. Each byte is

written as two hexadecimal digits, the first digit down the side of the

table, the second along the top. Each box in the table represents one

byte, and the meaning of that byte in a program is written inside the box,

along with the decimal number equivalent to the hexadecimal value. As an

example, take byte 6E (row 6, column E); you can see that this is equal to

a decimal value of 110 and represents the function RND. As another

example, the byte 5A represents the function COS and is equal to the

decimal number 90.

-196-



-197-

Table 8.1 Byte Table of HP-41 Prefixes

 

6
7

8
A

B
C

D
 

CA
T

,
S
T
D
.

o
)

CL
P

_
R/
S

SI
ZE
__
_|
BS
T

 |s
ST

PA
CK

+(
PR
EN
)

US
R/
P/
A|
2_
_

SH
IF
T
 

NU
LL

LB
L

00
1

LB
L

83
LB

L
64

LB
L

€5
|L
BL

86
|L

BL
€7

b
7

8
LB

L
69

10
LB

L
1@

11
LB

L
11

|L
BL

12
12

13
LB

L
! 3

 

16
{ 17

20
21

b
7

8
22

23
24

25
26

EE
X

27
NE

B
67
07

28
29

YE
R”

39
 

RC
L

@0
32

RC
L

81
33

RC
L

64
36

RC
L

85

37
RC

L
66

|R
CL

87
[R
CL

68
38

39
40

RC
L

@9
4

RC
L

16
Y,

RC
L

11
43

RC
L

12
[RC

L
13

M
5

RC
L

1
44

4
RC
L

135
47
 

ST
O

96
48

ST
O

6!
49

ST
O

64

32
ST
0

65
33

ST
O

86
|S
TD

67
[S
TO

@8
54

55
56

ST
O

89

57
ST
O

10
58

57
0

11
59

§T
0

12
(S
TO

13
L)

61
ST

0
1

62

4
ST

O
15

63
 

b4
65

X
y
?

68

0
Y
?

69
X
=
Y
?

|+
&-

70
71

72
HN
S+

73
HN
S-

L
NO
D

75
1

IC
H

76
77

PR 78
79
 

LN 8o
X
2

81
Se
RT

Y#
X

82
83

84
E
N

85
LO
6

1e
tx

 [
Et

X-
1

84
87

88
SI
N

89
co
s

90
TA

N

91
AS
IN

 [
AC
DS

92
93

RT
AN

94
DE
C

95
 

1 94
AB

S
97

FA
CT

X#
6?

98
99

1>
8?

16
0

LN
1#
X

10
!

X0
92

 |
X=
0?

|I
NT

16
2

16
3

16
4

FR
C

10
5

D-
R

10
6

R-
D

16
7

HN
S

HR

16
8

16
9

RN
D

11
0

oc
T

11
1
 

CL
E

11
2

X
O
Y

1
3

Pl
CL
ST

11
4

11
5

Rt 11
4

RD
N

1
7

LA
ST
Y

|C
LX

1=
Y?

11
8

11
9

12
0

X#
Y?

12
1

SI
GN

12
2

X(
=0
?

12
3

ME
AN

 |
SD
EV

12
4

12
5

AV
IE
W

12
4

CL
D

12
7
  

2
3

3
S

b
7

8
9

Cc
D

E
F
 

DE
G

12
8

RA
D

12
9

GR
AD

EN
TE

R?

13
0

13
1

sT
O0
P

13
2

RT
N

13
3

BE
EP

 |
CL
A

AS
HF

13
4

13
5

13
6

PS
E

13
7

CL
RE

13
8

RO
FF

13
9

AO
N

OF
F

14
0

14
1

PR
OM

PT

14
2

AD
V

14
3
 

RC
L

_
14
4

51
0

_
14

5
ST

+
5T

-
_

14
4

14
7

ST
e

_
14

8
ST
/

_
14
9

IS
6

__
[DS

E
|VI

EW
1
5
0
|
1
5
1

[15
2

IR
E6

15
3

AS
TO

15
4

AR
CL

15
5

FI
X

_
[sc

l
_

15
6|
15
7

EN
G

_
15

8
TO
NE

_
15

9
 

16
0

16
1

-
Ca
ta
lo
g

2

16
2

16
3

F
u
n
c
t
i
o
n
s

-

16
4

16
5

=
-

-
[

16
6

16
7|

14
8

CF 1
6
9

FS
7C

_
17

0
FT
7C

_
17
1

F§
7

__
|FC

7
.

11
2

11
3

§i
g/
xe
e

17
4

Sp
ar
e

17
5
 

Sp
ar

e

17
6

  E6
T0

00

17
7

  6T
0

1|
67

0
62

17
8

17
9     6T

0
3

18
0

  6T
0

64

18
1

67
0

65
(6
70

64
6

|6
T0

67

18
2

18
3

18
4      

 67
0

08

18
5

67
0
9

18
6   67

0
16

18
7

 6T
0

1!
(6
70

12

18
8

18
9  67

0
1

19
0

3
67
0

14

19
1
 

{
-

-

19
2

19
3

19
4

19
5

19
6

19
7

Gl
ob

al
la
be
ls

or
EN
D

-
19

8
19

9
20

0
20
1

20
2

20
3

-
-

-
o

20
4

20
5

 X
_

20
6

 LB
L

_
20

7
 

20
8

20
9

21
9

21
1

21
2

21
3

-
-

-
-
@
-

A
5

2
21
7

21
8

21
9

22
0

22
1

22
2

-
o)

22
3
 

22
4

22
5

22
6

22
7

22
8

22
9

-
-

-
-
X
-

20
81

2
23

3
23
4

23
5

23
4

23
7

23
8

-
9

23
9
   TE

XT
@

24
9

 T
E
X
T

24
1

 TE
XT

2|
TE

XT
3

24
2

24
3

 
 TE

XT
4

24
4

 TE
XT

5

24
35

TE
XT

&
|T

EX
T

7
|T
EX
T

8
24
6

24
7

24
8

 
 

 
 TE

XT

24
9

9
TE

XT
10

25
0

 
 TE

XT
11

25
1

 TE
XT

12
|T

EX
T

13

25
2

25
3

 
 TE

XT
14

25
4

 TE
XT

15

25
5

 
 



-198-

Table 8.2 Byte Table of HP-41 Postf1Xes

  

(1S

80
2

02
83

05 5
2

7
08

09
18 19

11 11
12 12

13

 

16 16
17 17

18 18
19 19

21 2!
22 22

23 23
24

25 25
26 26

27 27
28 28

29 29
 

32 32
33

34 34
35 35

37 37
38 38

39 39
10 10

i M
42 42

43 43
M “

15 15
 

18 18
49 49

56 39
51 5!

53 53
54 54

55 55
56 56

57 57
58 58

59 59
89

61 81
 

64 &4
&5 65

b b
67 87

89 89
70 70

n 1
72 72

73 73
7 7

75 75
78

77 7
 

80 86
81 8!

82 82
83 83

85 85
86 86

87 87
89 89

96 90
91 91

92 92
93 93
 

9% 94
97 97

98 98
99 99

(1
06
)

10
0

(1
61
)

16
1

16
2

16
3

10
4

10
5

10
6

18
7

10
8

16
9

11
6

11
1
   112  13

 114  115  
 

11
6

N
I

11
7

 N 11
8

 0
1

11
9

 Pt 12
6

 121  P
T

 
12
2

12
3

 124  125  126
 127
  

o
1

3
S

b
7
 

IN
D

00
12
8

IN
D

61
12
9

IN
D

02
13

0
IN
D

63
13

1
IN

D
04

13
2

IN
D

65
13
3

IN
D

84
13

4
IN
D

07
13
5

IN
D

08
13
6

IN
D

69
13
7

IN
D

18
13
8

IN
D

11
13
9

IN
D

12
14
8

IN
D

13
14
1

IN
D

14
14
2

IN
D

15
14
3
 

IN
D

16
14

4
IN
D

17
14
5

IN
D

18
14
6

IN
D

19
14
7

IN
D

20
14
8

IN
D

21
14

9
IN
D

22
15

9
IN
D

23
15

1
IN
D

24
15
2

IN
D

25
15
3

IN
D

26
15
4

IN
D

27
15
5

IN
D

28
15
6

IN
D

29
15
7

IN
D

36
15

8
IN
D

31
15

9
 

IN
D

32
16
8

IN
D

33
16

1
IN
D

34
16
2

IN
D

35
16
3

IN
D

36
16

4
IN
D

37
16
5

IN
D

38
16
6

IN
D

39
16

7
IN
D

40
16
8

IN
D

&1
16

9
IN
D

42
17

9
IN
D

43
i

IN
D

M4
17
2

IN
D

45
17
3

IN
D

44
17
4

IN
D

&7
17
5
 

IN
D

48
17
6

IN
D

49
17
7

IN
D

56
17
8

IN
D

51
17

9
IN
D

52
18
0

IN
D

53
18
1

IN
D

54
18
2

IN
D

55
18
3

IN
D

56
18
4

IN
D

§7
18
5

IN
D

58
18
6

IN
D

59
18
7

IN
D

48
18
8

IN
D

61
18

9
IN
D

&2
19
6

IN
D

&3
19

1
 

IN
D

64
19
2

IN
D

65
19

3
IN
D

&6
19

4
IN

D
&7

19
5

IN
D

48
19
6

IN
D

&9
19
7

IN
D

78
19
8

IN
D

71
19
9

IN
D

72
20

0
IN
D

73
26
1

IN
D

74
20

2
IN

D
75

20
3

IN
D

76
26
4

IN
D

77
20

5
IN
D

78
20

6
IN
D

79
20
7
 

IN
D

B8
9

20
8

IN
D

8!
26

9
IN
D

82
21

9
IN

D
83

21
1

IN
D

84
21

2
IN
D

85
21

3
IN
D

86
21

4
IN
D

87
21

5
IN
D

88
21

6
IN
D

89
21

7
IN
D

99
21
8

IN
D

91
21

9
IN
D

92
22
8

IN
D

93
22
1

IN
D

94
22

2
IN
D

95
22

3
 

IN
D

96
22
4

IN
D

97
22

5
IN
D

98
22

4
IN
D

99
22

7
IN

D(
16

0)
22

8
IN
D{
10
1

22
9

IN
D

A
23
8

IN
D

B
23
1

IN
D

C
23

2
IN

D
D

23
3

IN
D

E
23

4
IN
D

F
23

5
IN
D

6
23
6

IN
D

H
23

7
IN
D

I
23

8
IN
D

J
23
9
   IN

D
T

24
8

 IN
D

Z
24
1

 IN
D

Y
24
2

 IN
D

X
24

3
 IN

D
L

24
4

IN
D

M
[

24
5   IN

D
N
\

24
4

 IN
D
0
]

24
7

 I
N
D
P

¢
24

8
 N

@
_

29
 IN

D
F

7]
25

8
 IN

D
a

25
1

 IN
D

b
25

2
 IN

D
¢

25
3

 IN
D

d
25

4
 IN

D
e

25
5
 

  



The table makes most sense if it is studied row by row. Functions that are

similar to each other are usually grouped in one row. For example the

trigonometric functions are all in row 5, and so are all the evolution

(something to the power something) functions. Rows 4, 5, 6 and 7 contain

the arithmetical, mathematical and conditional functions. Row 8 contains

the functions that implicitly set flags (RAD, AON and so on). It also has

the functions that might stop or interrupt program execution (STOP, RTN,

PSE, OFF, PROMPT). Thirdly it contains a few functions left over from rows

4, 5,6 and 7 (ENTER, CLRG, ADYV).

Functions in rows 4 to 8 are the simplest kind because they act on their

own, without needing anything after them (a register or flag number or

other parameter). Each of these functions is represented by one byte in a

program, and that’s all. The remaining functions can have several parts.

Most are two-byte functions like STO nn or LBL nn or FS? nn. In these, the

first byte or prefix defines the function. The second byte defines the

parameter nn and is called a postfix. (Suffix would be better but it is

too late to change the name.) XEQ nn and GTO nn are three bytes long

because an extra byte is used to hold the compiled distance to the LBL nn.

Numbers and text strings can vary in length. Global labels and GTO or XEQ

followed by a global label can also have a variable length, depending on

the number of letters in the global label. The structure of most multi-

byte instructions will be explained in the rest of this section, but some

of the more complicated ones will be left until Chapter 15.

A byte which comes second in a two-byte function is interpreted as a

postfix. The way bytes from 0 to 255 are used as postfixes can be seen in

Table 8.2 which again contains 16 rows and 16 columns, but this time each

box holds a parameter value, not a function name. You can see at once that

the first half of the table contains the direct postfixes while the second

half provides the indirect ones. You may not recognise some of the

parameters in this table, they will be explained in Chapter 14. Combining

Tables 8.1 and 8.2 lets you interpret any two-byte function. For example

-199-



the pair of bytes 90,CF is RCL (row 9, column 0 of Table 8.1 is the prefix

RCL) followed by IND 79 (row C, column F of table 8.2 is the postfix

IND 79). In other words 90,CF in a program stands for RCL IND 79. You may

wonder how the HP-41 knows if a byte is a prefix or a postfix. The

operating system has to start at the nearest global label before a byte and

count down to the byte, checking line numbers and byte layouts in each step

until it comes to this byte. That is why it can be some time after you

press the PRGM key before you see the current step displayed.

In order to help programmers save space, some two-byte functions have been

given special one-byte forms. RCL nn normally takes two bytes, but RCL 00

to RCL 15 are represented by just one byte each, using the bytes in row 2.

STO 00 to STO 15 are represented in the same way, using row 3. These

shortened functions are called short-form instructions. LBL 00 to LBL 14

are represented by the bytes in row 0. This row can be used for only 15

instructions because byte 00 is the special null byte which replaces any

byte that has been deleted. Null bytes in a program do not show up as

steps, but they do use up space until they are replaced with a program step

or are removed by packing. In parallel with the short-form labels 00 to 14

there are short-form GTOs in row B. They are two bytes long instead of

three, which means that they save a byte of space but have less room to

store a compiled GTO distance. Byte BO is one of four spare bytes on the

HP-41; it is not used as a GTO because byte 00 is not used as a LBL.

The short-form GTO instructions can only store a jump distance of 112 bytes

or less. When you understand the whole of the byte table you can work out

whether a GTO distance is 112 bytes or less. The short-form GTO distance

includes all the bytes from the end of the GTO up to the byte before the

target LBL. Consider the two examples below:

GTO 05 LBL 05

SIN - one byte - SIN

RCL 22 - two bytes - RCL 22

+ - on¢ byte - +

LBL 05 GTO 05

-200-



The program on the left jumps over 4 bytes from the end of the GTO 05 to

the front of the LBL to reach that LBL. The program on the right requires

a jump distance of 7 bytes, since the backwards jump takes in the GTO 05

(2 bytes) and the LBL 05 (1 byte) as well. The details of how jump

distances are stored in the short-form GTOs, in the ordinary long-form

GTOs, and in XEQs (which are all long-form) will be left until Chapters 14 and

15. A short-form GTO which jumps more than 112 bytes remains uncompiled and is

therefore slower than a long-form GTO, but it saves two bytes (one on the

LBL and one on the GTO). This is typical of the trade-off between speed

and space which is sometimes necessary. An understanding of how short-form

GTOs work, and how long other instructions are, lets you make the best use

of them. A knowledge of synthetic programming lets you use long-form GTOs

to jump to short-form LBLs, giving you the best of both.

Back to the tables: byte AF is another spare byte like BO (it makes a two-

byte instruction that is ignored in a running program), the rest of rows 9

and A in Table 8.1 are two-byte functions. Bytes 9C to 9F are the

functions that take a one-digit postfix. Bytes 90 to 9B are functions that

take a two-digit postfix (00 to 99) or a stack register postfix

(X,Y,Z,T or L). All the functions in row 9, and the flag functions in row

A (A8 to AD) can take indirect parameters too, using bytes from the second

half of Table 8.2. The function X<> nn really belongs in row 9 or A but

has been fitted in at the end of row C. LBL nn is also in row C with the

global labels, it is really a two-byte instruction but is not quite the

same as the others because it takes a different set of postfixes. These

can normally be 00 to 99, or the local alpha label postfixes A to J and a

to e.

Byte CF is the local label instruction whereas bytes CO to CD are used for

global labels and ENDs. The first nybble, C, identifies an instruction

that belongs in the global CAT 1 chain. The next three nybbles give the

distance back to the previous global instruction. Following these four

nybbles (two bytes) there is either one more byte in an END, or there are

two more bytes plus the characters that make up the name in a global label

-201-



Once again, details will be given in Chapter 15.

Rows D and E are GTO and XEQ instructions corresponding to the local

labels. These instructions can take 00 to 99 and A toJ or a to e as

postfixes and are 3 bytes long. This length lets them store any jump

distance up to 513 registers (3591 bytes, more than the largest distance

you can ever jump unless you use synthetic methods to jump to a program in

Extended Memory). GTO and XEQ of a global label lie in row 1; we shall

soon see why. GTO IND nn and XEQ IND nn cannot store a compiled distance,

since the jump length depends on the target label, and this can change.

GTO IND and XEQ IND are therefore both stored as a two-byte instruction.

The first byte is AE, and the second byte gives the indirect address. If

this second byte comes from rows 8 to F of Table 8.2, the instruction is

interpreted as XEQ IND nn, which is the usual rule for Table 8.2. The two

bytes AE,F3 therefore mean XEQ IND X. AE followed by a byte from the first

half of the table is interpreted as GTO IND. AE,73 thus stands for

GTO IND X. This breaks the rule that only rows 8 to F provide indirect

postfixes, but it apparently saves some work inside the HP-41 operating

system, although the spare byte AF could equally well have been used for

GTO IND.

What exactly does row 1 contain, and why are the global versions of GTO and

XEQ included in it? The rest of row 1 contains the number entry functions

0 to 9, radix mark, EEX and NEG. The NEG instruction means "negate the

following mantissa or exponent". It is stored as part of a row of digits

used to enter a number from a program, and is different from the CHS

function (byte 54) which stands on its own and means "change the sign of

X", even though both are obtained by pressing the CHS key. If you assign

CHS to a key, this key will perform only the CHS operation, not the NEG

function, so it cannot be used to change the sign of an exponent. The

special feature of bytes 10 to 1C is that they can be combined to create

functions without a fixed length (e.g. 1 which is just one byte long, or

-12345678.90E-12 which is 16 bytes long). After you have put one of these

bytes into a program you can put in additional ones which become part of

the same numeric string. There are a few limitations, of course. The

-202-



decimal point will be ignored if it is pressed a second time, or after nine

mantissa digits have been entered, or after EEX has been pressed. EEX is

ignored if it is pressed a second time, or after nine mantissa digits

without a decimal point. (If EEX is pressed on its own then a mantissa of

1 is automatically put in; this wastes a byte and can be avoided as will be

described in Chapter 14.) No more than ten mantissa digits and two

exponent digits can be entered in one numeric string. Deleting all the

digits of a mantissa except for a decimal point or leading zeroes (zeroes

at the front) causes the HP-41 to cancel a minus sign too, which can give

trouble. (Go into PRGM mode and press 0.52 then CHS. Now press backarrow

twice. You will see -0.52 then -0.5 and then 0., which means you have lost

the minus sign. If you had been trying to put in -0.62 then you must put

in the sign again, or you will finish up with 0.62 instead.) The other

rules are obvious and can be checked by trying out combinations of keys.

To put two numbers into a program one after another, you must terminate

numeric entry, then restart it, otherwise the digits all make up one

numeric string. If you press 1, then 2, then 3, and then 4 you will get

the number 1234. If you press 1, then 2, then press ALPHA twice, then

press 3 and 4 you will get the two numbers 12 and 34. Pressing ALPHA

terminated numeric entry but how does the HP-41 know later that these are

two numbers, not the single number 1234? Normally you would separate the

two by pressing ENTER, and this byte would tell the HP-41 that they are

separate, but if there is no byte between the numbers then the HP-41 leaves

a null between them as a separator. Indeed the HP-41 always puts a null

byte in front of a numeric entry, in case the previous step was a number

too. This makes sure that two numbers will never join up, but it wastes

space. When you pack memory, unnecessary nulls are removed, but if a null

is the only byte that separates two numbers then it can not removed, so it

is better to put a useful instruction whenever possible between two numbers

in a program.

You can see that row 1 contains bytes which are used to build up strings of

variable length. The global GTO and XEQ instructions can make up variable

length instructions too, so row 1 is a reasonable place to put them. You

-203-



press GTO or XEQ, then ALPHA, then any number of text characters from 1 to

7, then ALPHA again. The text characters are stored temporarily in a

special register until you press ALPHA a second time, and the same register

is used when a number is being entered into a program, so this too makes it

reasonable to keep these functions in the same row. When you press GTO or

XEQ, the HP-41 stores the bytes DO or EO, but if you press ALPHA next then

these become 1D or 1E and produce the row 1 versions. The label name is

stored after these bytes in the form of a text string; these will be

described in the next paragraph. Byte 1F, the last in row 1, does not

represent any real function. The other spare bytes; AF, BO and FO0 do

nothing if they are found in a running program, but byte 1F tries to act

like bytes 1D and 1E. In a program it displays as the letter W

followed by a text string and it usually does something when it is executed

from the keyboard (this requires a synthetic key assignment) or in a

program. On the HP-41C and HP-41CV the results depend on the module

plugged into port 2 and can be exciting, but generally cause the HP-41 to

crash (stop working until one of the methods described in Chapter 4 is used

to wake it up again), particularly if port 2 does not contain a ROM module.

On the HP-41CX, this function also tries to execute instructions from port

2, but often executes the Extended Function GETP, particularly if port 2

contains no ROM.

The last row of Table 8.1 contains bytes that come at the beginning of a

text string. When you put a text string into a program you are putting a

string of bytes into a program, not into the Alpha register. The text

string may be on its own, or it may be the name of a global label in a LBL

or GTO or XEQ instruction. In all these cases the HP-41 must be warned

that the bytes are to be treated as text, not as instructions. This

warning comes in the form of a byte in front of the text string. The first

nybble of the byte is an F, the second nybble gives the number of

characters in the string, from 1 to F (a maximum of fifteen characters).

For example, the bytes FB, 53, 4F, 4C, 49, 44, 41, 52, 4E, 4F, 53, 43 will

be treated as a text string of 12 characters, because FB means that a text

string of B (twelve) characters follows. The individual bytes are

interpreted and printed as characters according to the ASCII code (see

-204-



Section 8.2), but a few are displayed differently (Table 8.3 below shows

how characters are displayed, Table 14.1 will show how they are printed).

If the first byte were changed to F5, the same line of bytes would be

interpreted as:

"SOLID" , -, SQRT , P-R , R-P, Y1X , /

Since no byte can be larger than FF, no program text line can be more than

15 characters long. The Alpha register can hold a maximum of 24 characters

so any extra ones that are needed then have to be added to the first

fifteen. A text string with byte 7F as its first character appends the

following characters to the contents of the Alpha register (added to the

right-hand end). Any other text string replaces the contents of Alpha

(clears the present contents before putting in the new text). Byte FO is

interesting; it marks a text string of length zero. As its length is zero

it does not put anything into the Alpha register and therefore does not

clear it either. So far as HP were concerned this made FO a spare byte

(like AF and BO0), but it can be used in programs as an instruction that is

one byte long and does nothing, which makes it very useful as a NOP (null

operation; see Section 6.8).

-205-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

- ~~

w = SN SFI0- 30X 18 S| e =

<3 ~O

w = S|t elagzern s =

~Ng ™M o~ w - g I~ ~ g R

oS5 o~ o |Y @) | . o S S
U\-t o~ - o \l~o_Jr\/o- — -

~ ~»

@ = N+ 2 ~3xX RS = N

<] ~0 Nmm"fl‘ > g a
g — < IBTN R prt -

w -~

- >

© @ I QMMSB[X RIS = x

m|_ ol — = o~ '3 =
N ~ ~ mIMmBULR|IZ = — =

o o

J|F. SPAB|IWO S| > 3 = =

- ~~

N SIXBLMMMBWSINDE| o= =

=] ~0

¢ F< - SR 3S|IT HIFRIZF-I O =

w

M - IS MEBELSVN B UE =

-

o o~ Kl SUIMRIIxIO0S =

~”

K - SI--RBIT IS OO=] A% =

Q@

n o~
Ol = LSBT0 = =

® - N M <t N 9 ~N
 

Table 8.3 The HP-41 Display Characters

-206-

 



Table 8.3 shows how each byte from 00 to 7F is displayed as a text

character. Most characters follow the code known as ASCII, used by many

computers. The boxes that are left empty in Table 8.3 correspond to bytes

which the display does not recognise. These bytes are all displayed as a

boxed star, a character with all fourteen display segments turned on, like

the character on the right in the box for byte 3A. All the bytes greater

than 7F are also displayed as boxed stars, so they have not been included.

The characters 2C, 2E and 3A are special because they turn on the

punctuation marks instead of the normal fourteen segment positions. Only

three punctuation characters are available, because the display circuits

use just two bits to control punctuation. This gives four possible

combinations: no punctuation, dot, comma or colon. Under special

conditions, bytes 2C, 2E and 3A produce a left-facing goose, a right-facing

goose and a boxed star, so they have two characters in each box. The

right-facing "goose" is seen during a running program, the boxed star is

used for other non-standard characters anyway, but the left-facing goose is

extraordinarily difficult to get into the display. One time when the geese

would appear is during the creation of a global label. Pressing the dot or

comma during entry of a global label name would display the geese although

these would turn into a dot or comma once the label was completed. These

embarassing displays are avoided because it is impossible to put dots or

commas into global labels. Chapter 15 will show a way of getting the geese

into the display. All this may seem to be just idle amusement but it helps

one to get a better understanding of the HP-41.

We had not yet finished with row A. Bytes A8 to AD are the six flag

instructions. The postfix can be any byte from 00 to 99, even though there

are only 56 flags, and only 30 of these can be altered by the flag

instructions. Steps with larger postfixes can be recorded in a program,

but they will give NONEXISTENT when the program tries to execute them.

Bytes A0 to A7 are used as the first byte of a two-byte instruction to

execute a program or function from a plug-in ROM module or peripheral. For

example the Card Reader function RSUB is stored in a program as the two

bytes A7,84 and the Wand program WNDTST is stored as A6,C6. When the

devices are plugged in, these steps display in a program as the function

-207-



name RSUB and as the routine name XROM "WNDTST". When the devices are

removed, they show up as XROM 30,04 and XROM 27,06. To convert from the

pair of bytes to the XROM number in each case, first write out the

hexadecimal byte values and divide them into the nybble A followed by two

numbers of 6 bits each. Then write the two six-bit numbers in decimal.

(The nybble A followed by a zero bit identifies the instruction as an XROM

- eXecute from ROM.)

In this way, bytes AT 84 and A6 Cé6

become A,0111,1000,0100 and A,0110,1100,0110

then A 011110 000100 and A 011011 000110

and then XROM 30 , 04 and XROM 27 , 06

The first number is the ROM number and the second one is the function or

program number in the ROM. Therefore WNDTST is function/program number 6

in module 27. (As far as numbering goes, it does not matter whether an

entry is a function or a program.) The HP-41 Optical Wand is identified as

ROM number 27 regardless of which port it is plugged into.

The ROM number can be anything from 01 to 31 but ROM number 00 does not

work as an identifier (a ROM identifier value of 0 indicates to the HP-41

that the port is empty). XROM instructions cannot be followed by a

parameter, because they are already two bytes long and do not allow for an

extra postfix. It would be possible to follow an ordinary XROM instruction

with an XROM 00,nn instruction and use nn as a postfix but no-one has done

this yet. ROM numbers larger than 31 would not have a zero at the start of

the second nybble, so they would not be recognised as XROM instructions.

The function/program number can be anything from 0 to 63, but 0 is usually

used as the module name, not as a function or program.

When a program is running and finds a byte A0 to A7, it reads the next byte

too, works out the module number, and looks for a module with that number

in the 4K ROM blocks (see Section 8.3), beginning at block 5. (On the HP-

41CX block 3 is examined separately after all the rest if the XROM has not

been found anywhere else.) If the module is found, the HP-41 then looks

-208-



for the function/program number within the ROM to find if it exists and to

get its address. Once the port and the address have been found, the

function is executed using the ROM addressing scheme shown in Section 8.3.

We have almost finished with Table 8.1, but there are still the HP-41 non-

programmable functions such as CAT or SIZE. These cannot be put into a

program, but they still need a byte number to identify them, for example if

they are assigned to a key. (We shall come to key assignments in the next

section.) The bytes in row 0 are used for the non-programmable functions

as well as for the short-form local labels. Bytes from row 0 are treated

as short-form labels or as the null byte when they are found in a program,

but they are treated as non-programmable functions when they are assigned

to a key and executed from the keyboard. Row 0 in Table 8.1 therefore has

two halves. The top half tells you what the HP-41 will do if it finds that

byte assigned to a key, and the bottom half tells you how the HP-41 will

interpret the same byte if it encounters that byte in a program. Eleven of

the bytes are used for recognisable functions, but the other five were

meant to be "spare" bytes, which were not supposed to be used by ordinary

HP-41 programmers. With Synthetic Programming, or the generalised key-

assignment program in Section 11.10, these five bytes can be assigned to

keys, and the table shows what they do. Byte OE lets you assign the SHIFT

function to keys other than the yellow key. Byte 0B acts like the PRGM

mode backarrow key, deleting the current program line, but it does this

whenever it is pushed, even outside PRGM mode. Byte 0C acts like one of

the toggle keys USER, PRGM or ALPHA; which one depends on the keyboard row

used. These three bytes can sometimes be useful if assigned to a key

(particularly 0C which you can assign to some other key if one of the

toggle keys stops working), but the others are of less use. Byte 0D acts

just like the W function (byte 1F), but is not programmable. Finally, byte

01 is displayed as @c and sometimes acts like GTO.. while at other times it

does nothing.

By now you should have a good idea of how a program is arranged in the HP-

41 memory. In order that the current byte be interpreted correctly as a

prefix or a postfix the HP-41 needs to go to the beginning of the program,

-209-



or to the nearest previous global label, and count off bytes as one-byte

instructions or as instructions made up of several bytes. When you press

R/S to start a program running, the HP-41 assumes that the program pointer

is pointing correctly to the first byte of an instruction and it then

executes instructions one by one, interpreting each byte as an instruction

on its own or as part of a multi-byte instruction.

You should be able to make some of your programs shorter with the help of

Table 8.1. For example it will remind you which registers (00 to 15) can

be accessed with one-byte instructions, saving a byte every time one of

them is used in preference to registers numbered above 15. If you want to

divide a number by 100, you may think that 100, / and 1, % are both two

lines long, but Table 8.1 will show you that the first takes four bytes

while the second uses only two bytes. The second version is therefore

shorter (but it leaves the Y register unchanged unlike the first version).

Whenever possible you should use the short-form labels, GTO, RCL, and STO

instructions to save bytes. Section 8.8 at the end of this chapter will

give some tips for saving space.

8.6 Key Assignments of Instructions

When an HP-41 instruction is put into a program it is stored in the RAM

memory. An instruction that is assigned to a key has to be stored as well

but in a different way. Key assignment information is stored in three

different places in the HP-41. First of all, there are two status registers

which contain key assignment flags. One register contains a flag for each

unshifted key. A flag is set if the corresponding key is assigned, and

clear otherwise. The second register contains flags for each shifted key.

Just like the 56 system flags in the ordinary flag register, each key

assignment flag is stored as one bit.

If you press a key while the HP-41 is in USER mode, the operating system

first checks the corresponding key assignment flag. If this flag is clear

then there is no need to look further. The HP-41 executes the normal

function (unless the key is in one of the top two rows when the HP-41 must

-210-



first check for a corresponding local Alpha label). If the flag is set

then the HP-41 looks for the corresponding key assignment in a second

place; the Key Assignment Registers (shown in Figure 8.4). Any assignment

of a function or program from CAT 2 or CAT 3 will be recorded there. If no

CAT 2 or CAT 3 assignment is found, the HP-41 operating system knows that

the key must have been assigned to a global label in CAT 1. The

information that a global label has been assigned to a particular key is

stored as part of that label itself. The HP-41 therefore goes through the

global chain until it finds a label assigned to the corresponding key.

Once the assigned instruction has been found it is displayed, or executed,

or stored in a program.

If you assign a global label to a key, the assignment information becomes

part of the program. When you make a copy of that program on a card, or in

Extended Memory, or on an HP-IL device, the assignment is saved together

with the rest of the program. You can read the program back later into the

same HP-41, or a different one, and the key assignments will be re-

established automatically if USER mode is set when you read the program

back. This gives you a choice; you can make a new set of key assignments

and keep them when you read the program back, or you can read back the old

assignments used by that particular program. Should you want to recreate

the old assignments, you will clearly lose any new assignments you have

made to the same keys. CAT 2 and CAT 3 assignments are not stored as part

of a program, so they are not recorded with a program, and they are not

affected when a program is read back, except that they are replaced if the

program has a global label assigned to the same key. When a program is

read back with USER mode set, the key assignment flags have to be reset,

and the HP-41 takes advantage of this to recheck all key assignments and

reset all the key flags. This means that you can accidentally (or

intentionally) clear all the key assignment flags, then restore them by

reading a program with USER mode set. Furthermore, it turns out that this

restoration of the key assignment flags occurs even if USER mode is not

set. This peculiar fact was discovered by Clifford Stern.

While the key assignment flags are clear, the HP-41 will not use any key

-211-



assignments but will immediately execute the default key function (or the

corresponding local Alpha label). Chapter 14 will show how you can clear

the key assignment flags so as to use the default key functions, then

recover the assignments by reading in a program. Your CAT 2 and CAT 3 key

assignments can also be saved on magnetic cards or on HP-IL media by means

of the WSTS and WRTK functions. The CCD Module (see Chapter 12) lets you

save your key assignments in Extended Memory too, or you can use a

Synthetic program to do the same thing.

Every assignment from CAT 2 or CAT 3 has to be stored together with a code

for the assigned key. The CAT 1 assignments are stored within the assigned

global labels, but the CAT 2 and CAT 3 assignments are stored in a separate

area; the Key Assignment Area shown in Figure 8.4. The CAT 2 instructions

are stored in exactly the same way as in program memory; two bytes each

(for example A7,84 to store RSUB as described in the previous section).

The key code is stored as one byte following the instruction. This means

that each key assignment takes up a maximum of three bytes. Since a

register has seven bytes, the HP-41 can store two key assignments in a

register, with one byte left over. This byte is used to identify the whole

register as a Key Assignment Register (KAR). CAT 3 instructions are all

stored as a prefix (or a single byte) only, using just one byte. This is

the same byte as was shown in Table 8.1. A "filler" byte is put before the

instruction byte, this is byte 04 used to fill the other of the two bytes

to record the function. The keycode is again stored after the function.

Figure 8.7 shows a KAR containing the assignments of INT and RSUB to the

"-" key and the shifted "-" key.

Byte number 6 5 4 3 2 1 0

Byte contents FO 04 68 05 A7 84 0D

Figure 8.7 Layout of a Key Assignment Register

The contents of this register are shown in hexadecimal and are interpreted

as follows. Byte 6 contains FO to identify the register as a KAR. Every

KAR has FO in this byte. FO0 was considered a spare byte and HP did not

-212-



intend it to be used in programs, but it does serve the purpose of

identifying KARs. Bytes 5 to 3 contain one key assignment, and bytes 2 to

0 contain the other assignment. Byte 4 is the INT function (see Table

8.1). INT is a CAT 3 function and only uses one byte, so byte 5 contains

04 as a filler. Byte 3 contains 05 which identifies the - key (see below).

Bytes 2 and 1 contain the two-byte identification of the ROM function RSUB,

already mentioned in the previous section. Byte 0 contains 0D which

identifies the shifted - key. If the assignment in bytes 5 to 3 had been

of a two-byte function from CAT 3, byte 4 would have contained the prefix,

and byte 5 would still have contained the filler 04. For example the

assignment of STO would be achieved by putting 91 in byte 4. If bytes 2 to

0 were to contain a CAT 3 assignment then byte 2 would also contain the

filler 04.

When you first make a key assignment using ASN, the assignment shows up in

the display as for example ASN INT 51. INT is the name of the function,

and 51 is a keycode in which the first digit is the row and the second

digit is the column of the key on the keyboard (all of which is explained

in the HP manuals). The hexadecimal code used in the KAR to identify the

key is derived from this keycode. The first hexadecimal digit is the

column number minus one. The second hexadecimal digit is the row number.

If the assignment is of a shifted key then 8 is added to the second digit.

Looking back at Figure 8.7 you can see that the - key is in the first

column so the first digit is 0, and it is in the fifth row so its second

digit is 5. The shifted key is identified by adding 8 to the second digit,

giving 0D in hexadecimal.

Three additional explanations are needed for this scheme. First of all the

bottom row is row 8, and adding another 8 for the shifted keys means that

the second digit becomes 0, and 1 is carried and added to the first digit

(this is hexadecimal arithmetic). The four shifted keys in the bottom row

are therefore identified as 10, 20, 30 and 40. Secondly the three top rows

of the HP-41 keyboard have five keys each, whereas the lower four rows

contain four keys each. In both cases the keys are numbered sequentially,

starting from 0 for the leftmost key. The last key in the top row is thus

-213-



41 and the last key in the bottom row is 38. Thirdly, the fourth row is

treated as if there were a hidden key under the right-hand half of the

ENTER key, so the hexadecimal keycodes for this row are 04, 24, 34, 44.

The first CAT 2 or CAT 3 key assignment that you make after MEMORY LOST is

put in bytes 2 to O of absolute register 0CO. (This is the first KAR; see

Figures 8.4 and 8.5) At the same time, byte 6 of register 0CO is set to

FO and a bit is set in one of the two key flag registers. The next key

assignment goes into bytes 5 to 3. When you make a third key assignment,

register 0CO is copied into register 0Cl, then register 0CO is cleared, the

assignment is put in bytes 2 to 0, and FO is put in byte 6. This is

repeated for further assignments, with all the KARs being moved up one

place at every second assignment. If you assign the same CAT 2 or CAT 3

instruction to two different keys, two different assignments are stored.

(You cannot assign a CAT 1 label to two different keys because only a

single byte 1is available in the global label to store the assigned key

code. You could create one global label and assign it to a key, then

create a second global label with the same name lower down in CAT 1, and

assign that label to a different key.) If you have the same name in CAT 1,

CAT 2 and CAT 3, the CAT 1 label will be assigned, since the catalogues are

searched in the order 1,2,3 at the time the assignment is made. You can

assign several different functions with the same name to different keys by

first assigning the CAT 3 function, then plugging in a ROM and assigning 

the CAT 2 function with the same name to a different key, and finally

creating a global label with the same name in CAT 1 and assigning it to yet

another key.

When you cancel a CAT 2 or CAT 3 assignment (by assigning a blank Alpha

value to the key), the keycode (byte 3 or byte 0) is set to zero, but the

rest of the KAR is unchanged: the unused space is not returned to you.

Only if you delete both the assignments in one KAR, then PACK or GTO.. will

you recover the unused register. Should you want to get a register back by

cancelling assignments, you must always make key assignments in pairs, and

keep a record of the pairings so that you can cancel the same pairs and

recover the registers. The space left in a KAR will be reused however when

-214-



another assignment is made, so it will not be wasted if you cancel one

assignment then make another one.

It is obviously better to cancel any unnecessary assignments before you

make some new ones. If you make a new assignment from CAT 2 or CAT 3 to a

key that already carries a CAT 2 or CAT 3 assignment then two things

happen. First the old assignment is cancelled. Then the new assignment is

put into the first unused KAR space available, starting from register 0CO.

This may or may not be the same space as was freed by the cancelling of the

previous assignment, but in any case the new assignment will not take up

any additional space.

The inability of the HP-41 to recover unused KAR spaces, except to use them

for new assignments, can be a considerable nuisance to people who are short

of HP-41 memory space. The PPC ROM (described in Chapter 12) contains a

special routine which packs the KARs and recovers this space.

If you press an unassigned shifted or unshifted key from the top row, or an

unshifted key from the second row, and you are in USER mode, you may have

to wait a while before that key’s function is executed. The HP-41 first

checks the assignment flags, and if it finds none it then looks for a

corresponding local label. (This can take over a second if you are in a

long program.) Only then does it carry out the normal key function. If

you have the space available you can assign the key’s own function to

itself. This avoids the search for a local label and so speeds up

execution of the function. Especially helpful is assignment of X<>Y and

RDN to their standard keys.

A few more words are needed to explain how the CAT 3 functions are stored

in a KAR. Going through Table 8.1, you may recall that the row 0 bytes

represent both the non-programmable functions and the short-form local

labels. Obviously the non-programmable functions are the ones which will

be used for the purpose of key assignments. Rows 1 to 3 can only be

assigned by Synthetic methods. Rows 4 to 8 are the one-byte functions, and

are assigned as a single byte with a 04 byte before it. Row 9 and bytes A8

-215-



to AD are assigned as a prefix only. The first half of row A makes up the

XROM functions already described. Rows B to F can only be assigned by

Synthetic means, except that END is stored as byte C0, and bytes CE and CF

are stored as one-byte prefixes.

This section has shown how an understanding of the HP-41 can help to

improve its use. You have seen how the user can avoid wasting space in Key

Assignment Registers, and how execution of functions on the top two rows of

keys can be speeded up. The last paragraph will show another use for your

understanding of the KARs. All this should show that studying how the HP-

41 works is not just a matter of idle curiosity but also has practical

uses.

Figure 8.7 showed that a KAR can hold a two-byte ROM instruction as well as

a one-byte CAT 3 instruction. Soon after the introduction of the HP-41,

Richard Nelson (founder of the original user group PPC) suggested that two-

byte CAT 3 instructions could perhaps also be stored in a KAR. Instead of

having a filler (04) and a prefix, why not put a prefix and a postfix into

the two available bytes? It took a few months, but it worked! Not only can

you assign RCL to a key, you can also assign RCL 55 to a key if you like.

This may not seem very useful, but it does save a couple of keystrokes.

Assigning GTO IND X to an unshifted key saves four keystrokes (SHIFT, GTO,

SHIFT, . , 6 is replaced by one keystroke), it is achieved by storing the

bytes AE, F3 in a KAR. Byte combinations which cannot normally be put in a

program can also be put in a KAR, for example FIX 20 can be assigned, and

turns out to be very useful. The ASN function is not designed to do this,

but a general-purpose key assignment program to make such assignments will

be presented in Chapter 11. You can also use Synthetic Programming

techniques to make such assignments, but you may prefer the program in

Chapter 11 because it does not use any synthetic instructions.

8.7 41C or 41CV ?

The answer to the above question is still likely to be trite, but the

information in this chapter will help to quantify even a trite answer. If

-216-



you already have a 41 of one kind or another, the question is philosophical

anyway, and the next section will be of more interest.

The 64 data registers of the 41C on its own are enough to let you store 20

data values, 10 key assignments, two 20-line programs, and a longer 60-line

program. If you are sufficiently ruthless to delete programs and data as

soon as you have finished with them then this will be enough.

Unfortunately the Continuous Memory makes you want to hang on to old

programs "just in case", and you will soon be buying additional memory

modules, then a quad memory module. There is a large supply of spare

memory modules among HP-41C owners, and you will find it very difficult to

get much money back for them. If you are at all likely to expand your use

of an HP-41, better buy an HP-41CV directly, save money in the long run,

and leave vyourself with four free I/O ports. Better still read the next

three chapters and decide whether or not an HP-41CX might be the best buy.

A few cases will still arise where an HP-41C is clearly the best choice.

If the HP-41 is to be used strictly for one task only, it is better to use

an HP-41C and avoid the temptation to put in additional programs or data.

If you want to indulge in page-switching of memory modules to increase the

HP-41 memory (see the PPC ROM Manual) you must use an HP-41C unless you

are willing to pull apart a CV or a CX. If you really are short of money,

you could buy a second-hand 41C from someone who is getting a more

expensive model, then buy a second-hand quad memory module. Take this

second-hand 41 to a user group where someone will be able to tell you if

it is in working order before you finally pay for it. You could even go to

a user group meeting and ask if someone has a second-hand HP-41 for sale.

Some HP-41’s have had quad memory modules wired inside them; perhaps you

could get one of these or have your own module wired in, to get the

equivalent of a CV.

8.8 Space Saving Tips

Advice to buy an HP-41CV will be of little help to anyone who already has

an HP-41C. More to the point is some advice on how to fit more data and

-217-



programs into an HP-41C with restricted memory, and this advice will be of

help as well to HP-41CV and HP-41CX users who are short of memory space.

Here then to finish this chapter are some memory-saving tips. You will

find more tips in later chapters, but most of the ones given here need no

extra knowledge or equipment.

A. In programs

1. Make text strings as short as possible. Use abbreviations if you can.

Make global labels short. This saves space in the labels, but also in

GTO or XEQ instructions which refer to these labels. You can also

access the programs from the keyboard more quickly.

Use subroutines whenever a sequence of several instructions is used in

more than one place. If a repeated sequence contains S bytes and is

used in N different places then the use of a subroutine will save

bytes as follows:

Bytes saved using a subroutine called by XEQ nn = S*N - ((S+2) + 3*N)

Bytes saved using a subroutine with XEQ IND nn = S*N - ((S+2)+2*N+7)

The 7 in the second equation is the seven bytes of the register which

holds the indirect value. If you use a free stack register then these

bytes do not count as a separate register wasted, and you can remove

this 7 from the equation. These formulae were first given, together

with tables of bytes saved by direct and indirect execution, in an

article by Richard Nelson in PPCCJ V6N6p31. Tables like this are also

provided in the "HP-41 Synthetic Quick Reference Guide"; see Appendix

A. The tables are not given here as you can work out the numbers from

the formulae.

-218-



Use the short-form labels, GTOs, RCL and STO instructions whenever

possible. Table 8.1 shows these instructions, each one saves a byte

over the normal versions.

This 1s a particular example of 4: if you want to clear register nn

without disturbing the stack then X<>nn, CLX, X<>nn will do it in just

five bytes, but if the register is number 15 or less and if X contains

a number (not a text string) then STO nn, ST- nn will do the same

thing in 3 bytes.

Look through Table 8.1 to see where else you can change instructions

to make a program shorter. Some functions have very useful side-

effects. For example ABS or SIGN can be used to save a value from

register X to register L and both are one byte shorter than STO L.

(SIGN works for text strings, so it is best if X can contain a number

or a text string. ABS will produce an error message if X contains a

text string, so it can be used to save numbers only and to reject text

strings. Both are fast and do not affect Y, Z or T.) £+ can be used

to add 1 to a register (the last register in the statistics block),

and I- can be used to subtract 1 from the same register.

A good example of using shorter instructions lies in the use of flags.

SF nn and CF nn use two bytes each, but AON and AOFF set and clear

flag 48 and use only one byte each. You can therefore use combinations

of AON, AOFF, FS? 48 and FC? 48 to save several bytes in a program

that sets, clears and tests one flag. AON and AOFF are also faster

than SF nn and CF nn, but you will not be able to use FS?C 48 or

FC?C 48. Obviously you have to be careful if you also want to use AON

and AOFF for their real purpose of setting or clearing ALPHA mode; in

any case you should include a note in the program documentation to

remind yourself why you are using AON and AOFF.

Furthermore you can set or clear flag 27 by pressing the USER key

during a PSE, and you can even set or clear flag 47 (the SHIFT flag)

by pressing SHIFT during a PSE. You can test both these flags, and

-219-



you can clear flag 47 with CLD (one byte long, shorter than CF 27).

Executing CLOCK will clear all of the flags 11 to 20 in just two bytes

if you have a Time module, but not on an HP-41CX. The Extended

Function X<>F also lets you change several flags at once.

If you want to save some bytes while using a pair of flags, you can

use the angle mode flags wunless you are actually wusing the

trigonometry functions. GRAD sets flag 42 and clears flag 43. RAD

sets flag 43 and clears flag 42. DEG clears both flag 42 and flag 43.

All three are one-byte functions. Even more exciting, you will be

able to use synthetic functions like FIX 20 to set flag 43, then 42,

then both 43 and 42, then clear both, in a cycle, using only 2 bytes.

If you want to go further with this sort of thing to use combinations

of flags as binary counters you can use FIX, SCI or ENG with direct or

indirect values to set or clear combinations of flags 36-41. See

Appendix D for more details of flags.

Despite the remarks above it 1is often quicker to avoid flags

altogether and to use the one-byte comparison functions X--Y? or

X--0?. The tests comparing X with zero can be used in combination

with the one-byte functions ABS, CHS, CLX to set a value in X at one

place and check it somewhere else in a program. If you want to select

one of three possible choices, you can store 1 in X, use this for the

first choice, then use CHS for the second choice, and use CLX for the

third choice. Later on you can find which choice was made; the first

choice will be identified with X>0? or the second choice with X<0? or

the third choice with X=0?. You can even identify or reject

combinations of choices by using X<=Y? and X#0?

You can use ISG or DSE to increment or decrement a number without

making a test. Simply follow ISG or DSE with a NOP (see Section 6.8).

Save space by using a one-byte NOP such as LBL 00, or by putting the

ISG or DSE as the last instruction before an END (since an END cannot

be skipped so a NOP is unnecessary).

-220-



10.

11.

12.

13.

14.

Some functions are so rarely used that you forget about them. For

example CLST is not much used, but it will clear X and Y in one byte

whereas 0, ENTER or CLX, ENTER take two bytes. Check if a function

like this can make your program shorter.

Avoid unnecessary instructions. Do not use CLA if it is followed by a

text string which will clear the Alpha register anyway. Do not add

ten values together, then divide by 10, if you can use Z+ followed by

MEAN to do the same thing and save space. Remember to do CLZ first.

If you are taking the mean of the X values only, then use CLST to make

sure Y is empty while you are using I+.

Two numbers, one after the other have to be separated by some

instruction, otherwise a null is put between them and wastes a byte.

Wherever possible, put a useful instruction between two numbers. Use

72, DEG, 12 instead of 72, 12, DEG to save a byte for instance.

Keep numeric entries as short as possible. Never put zeroes at the

front or end of a number. Remember that exponents can be one digit

long, they do not need a leading zero. 60EO03 can be replaced by 6E4

saving two bytes (and 66 milliseconds). Avoid decimal points too.

6.0E4 can obviously be replaced by 6E4, but 2.997E8 can also be

replaced by 2997E5. Even better, 5.74E11 can be replaced by 574E9,

saving two bytes.

In some cases you can use functions to make number entry even shorter.

1,000,000 takes seven bytes, 1E6 takes three bytes, but 6,100X only

takes two bytes. Again 180 takes three bytes but PI, R-D takes only

two bytes.

If you have checked through all the above and you are still short of

space, try rearranging parts of your program. You might be able to

move a subroutine so that a program falls straight into it instead of

calling it. You might be able to change the order of some operations

so that numbers you want are still in the stack and do not need to be

-221-



15.

16.

re-entered or recalled. If you must use the same long number in

several places, try to store it in a register and recall it. This

uses 7 bytes for the register and two bytes for the STO and for each

RCL instruction (unless you use a register number below 16). If the

number entry is over 11 bytes long then using STO and RCL saves space

even if the number is used in only two places.

You might also be able to rewrite a program that included various

tests while you were writing it and checking it. Once the program

works you should be able to remove lines that were only used to check

that the program was OK, and you may be able to rearrange the program

too.

See if a piece of program that you are using is duplicated in another

program or in a plug-in module. You may be able to call that

duplicate piece of program as a subroutine and delete the same piece

from the program that is too long.

If all else fails, and you have not yet learned about the tricks of

Synthetic Programming, sleep on the problem. If even that fails, look

for someone who uses an HP-25 and ask for advice. HP-25 programmers

have only 49 program steps at their disposal so they have long

practice in writing short RPN programs. They will offer you their

sympathy if nothing else.

B. Key Assignments

17.

18.

Remember that every second key assignment from CAT 2 or CAT 3 takes up

another register. Do not waste space by making unnecessary

assignments.

Cancel unwanted key assignments before you make any new assignments.

The space freed by the cancelled assignments will be used for the new

ones. If you make the new assignments first, and later cancel the old

ones, then the space from the cancelled assignments will be wasted.

-222-



19. If you plan to make several assignments in a group, and then delete

them in a group, try to make all the assignments in pairs. If two

assignments are made together and fit into the same register, then

they can both be deleted later at the same time, and the register can

be recovered by PACKing. To see if two assignments are being put into

the same register, go to the .END. and go into PRGM mode. You will

sce .END. REG nnn. Make the first assignment; you can stay in PRGM

mode since ASN is not programmable. If the number nn goes down by one

after the first assignment then the new assignment has taken up half a

new register, and the second assignment will fit in the same register.

If in doubt, reread Section 8.6.

C. Use of data registers

20.

21.

Make SIZE as small as possible. This means you should rewrite your

programs to use as few data registers as possible. Sometimes a

program uses one data register to store one value which is not needed

later, and then the same program uses a different register to store a

different value. See if you can avoid this; try to make your program

use the same register several times for different purposes. This will

free other registers. If you do this, you must make sure that you
 

have a proper description of what the program does. Otherwise you

might come back to the same program later and make some changes

without realising that certain registers are used for more than one

purpose.

Use the stack registers, including register L as much as possible.

This will reduce your need to store values in numbered data registers.

(Using the stack registers 1is also faster than wusing numbered

registers.) If you want to use the value in X more than once, use

ENTER to store it in Y instead of using STO nn. You can often keep a

value in L unchanged by using arithmetic operations which change X but

not L. For example ST*X does the same as X12 but does not change L.

The first instruction is one byte longer but you save seven bytes that

-223-



would otherwise have to be used for a data register. In the same way

ST+X has the same effect as 2, * but it leaves registers T and L

unchanged. Remember as well that CHS does not alter L.

22. You can often store two separate numbers in the same register as the

integer and the fraction part of a single number (the fraction part

has to be positive unless you take special precautions). You can even

store a number between -99 and +99 in the exponent part of a register

if you know that the number in that register is larger than 1 but

smaller than 10. This can let you store three numbers in a register,

one signed value with N digits, one positive number with 10-N digits

and a signed number with two digits.

This scheme can be extended much further by data packing techniques. You

can for example store five positive numbers of two digits each in a single

data register. Multiply the first number by 100, add the second number,

multiply by 100 again, add the third number and so on. To get the numbers

back use 100,MOD or divide by 100 repeatedly; take the fractional part each

time, then take the integer part and divide by 100 again (save some more

space by putting 1 in the Y register and using % repeatedly).

Data packing need not be restricted to numbers which are smaller than a

selected power of 10. You can use any maximum value and pack several

values by repeated multiplication. For example you can store three byte

values each of which is in the range 0 to 255. Multiply the first by 256,

add the second, multiply by 256 and add the third. You will not be able to

fit in a fourth byte unless you use the exponent too. The rule is that you

must always multiply by a number that is one bigger than the largest number

you wish to store. Obviously this whole approach is only worth taking if

more space is saved by packing than is used by the data packing and

unpacking routines. If you have the packing and unpacking routines in a

plug-in program module then they will not take up any space in your program

memory. This is why the PPC ROM (see Chapter 12) contains packing and

unpacking routines.

-224-



D. Other tricks will be mentioned later in the book. Synthetic Programming

is a prime example of space-saving. It lets you use the Alpha register as

four spare data registers. Multi-purpose key assignments can be made so

that one key can be used instead of several. New short instructions can be

used instead of longer ones. GTOs can be used to jump anywhere into a

program, without the need for labels, and you can jump to any line of a

program in a plug-in module. Let’s wait till you reach Chapter 14 though.

The Time Module and Extended Functions Module also provide various places

where data can be stored. These will be discussed in the next three

chapters and at the end of Section 16.6.

Exercises

8.A How would an HP-41 interpret each of the following byte strings stored

in the X register?

93,14,15,92,65,40,00 01,20,00,00,00,00,34 00,01,20,00,00,00,35

10,00,00,45,41,53,59 20,00,00,48,41,52,44 00,00,00,00,00,00,00

Which of these are Non Normalised Numbers?

8.B What would the following bytes mean if they were in a program?

00,19,10,41,67,B2,00

8.C How would the HP-41 understand the following bytes if they were stored

at absolute address 0C0?

F0,00,00,00,04,69,32

-225-





CHAPTER 9 - TIME FUNCTIONS

9.1 A Growing System.

On their own the HP-41 and HP-41CV are advanced calculators which can do

some types of work that are usually done on a computer. Plug-in memory and

program modules let them store more information and run longer programs,

and we shall see that Synthetic Programming allows a user to have greater

control over their computer-like features. A real computer though is a

whole system which not only does calculations but can obtain data from

various sources, including instruments, and store it. After doing

calculations on this data, a computer can present its results on a display,

print the results, store them, or send them somewhere, for example to

another computer. Some of these operations have to be carried out at a

particular time, when an instrument has its results ready, or when another

computer is waiting to receive a set of results. In the next four chapters

you will see how you can extend the HP-41 by using it as part of a system

with a clock and extensive data handling features.

The HP-41 was always designed to be used as part of a system, not just a

calculator. At first the HP-41 system was made up of the HP-41 itself, a

printer, a card reader and then an optical barcode reader (wand). The

introduction of the HP-IL module, the Time module, and the Extended

Functions and Extended Memory modules was a major advance. The HP-IL

module allows the HP-41 to interact with many devices including computers.

The Time module lets the HP-41 turn on at chosen times and execute

programmed operations such as taking a set of measurements. The Extended

Functions/Extended Memory module allows the HP-41 to use its Alpha register

as an Input/Output area for sending or receiving data and commands.

Extended Memory can be used to store and transmit data or programs in

complete blocks called files. All these features are more at home on a

computer than on a calculator.

All this helps to explain why so many users call their HP-41 a computer.

It is the reason why separate chapters have been devoted here to the Time

-227-



module, to the Extended Functions, and to other HP-41 system devices.

Independent manufacturers make HP-IL compatible devices in the knowledge

that HP-41 owners will be able to use them without having to buy additional

control equipment. Yet if a faster or more powerful controller is required

at a later date, the HP-41 can be replaced with an HP-71, an HP-75, or

other more powerful computers. Modules such as the Extended I/O module,

provide features in addition to those of the HP-IL module; these will be

covered in Chapter 12 and mentioned again in Chapter 16.

HP-IL therefore provides a growing system of devices to be used with your

HP-41. The Time and Extended Functions/Extended Memory modules expand the

HP-41 as well as enhancing the whole HP-41 system. As these two modules

are built into the HP-41CX they can be considered to be parts of the HP-41

itself, so I shall describe them first. The Time module provides a clock,

a calendar and a stopwatch built into the HP-41, together with facilities

for setting alarms. There are also functions for setting, calculating, and

displaying times and dates.

The HP-41CX has all the features of the Time module and the Extended

Functions module built in, except for some of the bugs. It also has a

number of additional Time and Extended functions. These additional HP-41CX

functions will be described at the end of each of the chapters on the Time

functions, the Extended Functions, and the Extended Memory functions. The

Time module manual is so good that it needs little if any addition. The

Extended Functions manual by contrast is inadequate; two successful

independent books have been written on the subject of these functions. The

HP-41CX manuals cover them very well. The next three chapters are not

intended simply to repeat the information in the manuals for the Time and

Extended functions, they concentrate on how some of them can be used in

practice and describe features not covered in the manuals.

9.2 Times and Dates.

The first thing to know about a clock or a calendar is how it displays the

time or date. I shall begin by describing how the Time module uses the X

-228-



register to read or write times and dates and how it displays them. The

Time module date functions start off by reading dates from X and writing

them to X in the form MM.DDYYYY. The function DMY sets flag 31 and thereby

tells the HP-41 to treat the contents of X as DDMMYYYY. The function MDY

clears flag 31 and goes back to MM.DDYYYY. Dates are displayed in two

corresponding forms - either MM/DD/YYYY or DDMM.YYYY - and when the

display is set to show fewer than six digits after the decimal point then

only the last two digits of the year are shown. Days of the week are shown

as a three-letter abbreviation, but they are put into X as a number from 0

to 6, with 0 being Sunday. (This follows the ancient Jewish and Christian

tradition of treating Sunday as the first day of the week, unfortunately it

also follows the ancient HP tradition of using O instead of 1 as the first

number of a set - it would be easier to treat Sunday as day 1.)

Times are initially displayed on a 12 hour clock, and are followed by the

letters AM or PM, but the function CLK24 sets a flag inside the Time module

so that times are displayed on a 24 hour clock. CLK12 switches back to a

12 hour clock. In addition, CLKTD sets another flag so that times are

displayed as hours and minutes plus a date; CLKT switches back to an

HH:MM:SS display. Regardless of the display format, times are always put

into X by the Time module as HH.MMSSss on a 24 hour clock, ss being

hundredths of a second. The module reads times from X such that values

whose integer part is between 0 and 11 are treated as AM, and values with

an integer part between -1 and -11 are treated as PM. Values with an

integer part from 12 to 23 are also treated as PM.

Two small grumbles so far. X values that are negative but whose integer

part is zero are interpreted as AM, not as PM. Better use a 24 hour clock

with all times positive to avoid mistakes that can be caused by this. The

function DOW puts a day number into X, and it also puts a three-letter

abbreviation into the display, but not while a program is running, and

these letters cannot be put into the Alpha register. It seems pretty silly

to require an HP-41 program to interpret a number as a day; the information

is already in the Time module. The functions ATIME and ADATE will convert

times and dates in the X register into Alpha values, so it would have been

-229-



possible to provide an ADOW as well. Maybe HP preferred to let users write

this function in their own languages: times and dates are international,

but days of the week have local names. See Exercise 9.A.

Otherwise everything is very nice and you now know how to put times and

dates into X or read them back from it. To set a date, you put it into X

following the above rules and making sure that it is in the format you have

chosen; MDY or DMY. Then execute the function SETDATE. To set the time,

put a time into X then execute SETIME at that exact time. It is easier to

be accurate if you assign SETIME to a key (clear the assignment afterwards

or you will reset the clock accidentally). Remember that the function is

spelled with one T, not two (this saves one letter but is awkward, on the

HP-71 it is spelled more logically: SETTIME). There are two more time

setting functions. T+X will change the time by the value in X, CORRECT

will set a time in the same way as SETIME, but first it will check the

previous setting of the clock and use the difference to work out a timing

correction factor and store this. RCLAF lets you recall this accuracy

factor to X and SETAF lets you set it manually (you may need to do this

after changing the batteries). Do not forget that the HP-41 also has the

built-in functions HR, HMS, HMS+ and HMS- which can be used together with

the Time module functions.

To recall the date or time to the X register, execute DATE or TIME. If

executed from the keyboard, these functions not only put a number into X

but also set the display to show a more readable form of the date or time.

If a program is running then these more readable versions will not be

displayed, but the functions ADATE, ATIME and also ATIME24 can be used to

turn the number in X into this form and append it to Alpha. As mentioned

above, DOW converts a date in X into a day of the week, and displays the

day in text form if a program is not running.

The function CLOCK displays a running clock without altering the value in

register X. The clock will also be displayed if you press SHIFT, ON. How

does this happen? When you press ON, the HP-41 prepares to turn itself off.

Before going to sleep though it checks if any plugged-in module needs

-230-



something to be done. At this point the Time module breaks in, checks if

the SHIFT flag is set, and if so then it wakes the HP-41 up again and

displays the clock. Waking the HP-41 up is like turning it on; it clears

flags 12 to 20, sets flag 26 (audio enable), clears flag 44 (the continuous

ON flag), then sets the BAT flag if need be and sets flags 21 and 55 if a

printer is connected. This clock display process seems to have been

invented after the HP-41 had been designed. It is a very smart trick to

use SHIFT, ON, but it can lead to problems with the flags (these problems

will be described in Appendix C). The original Time module did this same

procedure when the CLOCK function was executed, but the later version used

in the HP-41CX will not turn the HP-41 off, so the flags will not be reset.

The time display uses a lot of electricity unless the clock display is in

CLKTD mode, in which case the display shows hours and minutes but not

seconds and therefore changes only once a minute. To avoid wasting the

batteries, the Time module cancels the clock display as soon as any key is

pressed. There are just two exceptions; if either the SHIFT or the USER

key are pressed and kept down for more than about a second, and then

released, the clock will continue to be displayed. If it is not being

displayed, and even when the HP-41 is off, the clock continues to run (and

the date and stopwatch also continue to be updated).

In addition to these time and date functions which could be expected on a

clock, the Time module has calculation functions as expected on a

calculator. In addition to the time calculation functions described

carlier there are two date calculation functions. DATE+ adds a number of

days in X to a date in Y and leaves the result in X, in date format. (This

is like the built-in functions HMS+ and HMS-, but days can only be

subtracted by the trick of adding a negative number.) If two different

dates are put in X and Y, DDAYS subtracts Y from X, drops the stack, and

puts the result into X as a number of days. A negative result means that

the date in Y came after the date in X. Be careful: this function works in

the opposite way to normal RPN operations where you would expect X to be

subtracted from Y. It is assumed instead that you will enter the earlier

date first (which is fairly natural), and then the later date, so they will

be in the order Y,X not X,Y.

-231-



The clock/calendar will only run for dates between Jan 1 1900 and

Dec 31 2199 A.D. The date calculation functions however will work for

dates from Oct 15 1582 to Sept 10 4320 A.D. All dates are according to the

Gregorian calendar. (Oct 15 1582 was the day when the Julian calendar was

replaced by the Gregorian calendar, although the British Empire, including

the American Colonies, did not start wusing it until Sept 14 1752)

Remember that on this calendar century years (1900, 2000, 2100 ..) are

leap years only if they can be divided exactly by 400. If you find the

rule difficult to remember, this is rather like other years which are leap

only if they are exactly divisible by 4. To use dates before or after this

range (for example in astronomy) you may like to buy the PPC ROM (see

Chapter 12) which has two calendar functions for all dates after March 1 of

1 B.C. and whose manual provides a routine for earlier dates and an

article on dates.

9.3 Using the Stopwatch

The Time module provides the HP-41 with sophisticated stopwatch facilities.

This is not surprising since several earlier HP calculators have had

various stopwatch functions. (Not to mention the HP-01 which was a watch

with calculator functions.) The HP-55 had a proper quartz timer; the HP-45

had several stopwatch facilities but they did not use a quartz timer so

they were not very accurate and were not officially described as an HP-45

feature. Even the original scientific calculator, the HP-35, can be

enticed to run as a timer, but this was also an unofficial feature, and

would only count in milliseconds, using all ten mantissa digits.

On the HP-41 the stopwatch can be used in three ways. It can be run under

full manual control, with the keyboard redefined to control the stopwatch

functions and allowing the storage of split timings. It can be run under

program control, for example to time execution of HP-41 functions. It can

also be used as a simple alarm. The stopwatch will even run while the HP-

41 is off, just like the clock, but independent of the clock. (The

stopwatch does use the same accuracy factor as the clock though.)

-232-



The keyboard controlled stopwatch mode is entered by the execution of the

function SW and is the most powerful of the stopwatch features. In this

mode the keyboard acts as a controller; the keys are redefined to control

the stopwatch features. (This is rather like the Alpha keyboard where the

keys are redefined to enter text instead of executing functions.) A

keyboard overlay is provided with the Time module and with the HP-41CX to

show what the keys do in the stopwatch mode. This mode allows the taking

of split timings (or splits) - times which are recorded while the stopwatch

continues to run. One way that splits can be used is for timing several

laps on a racetrack without stopping the cumulative stopwatch timing. At

the end of the race it is possible to calculate individual lap times by

recalling the split times for each lap in turn and subtracting the time at

the end of the previous lap. The stopwatch mode can be entered from a

running program if the program executes the function SW; the program stops

running and the stopwatch keyboard becomes active until you exit from

stopwatch mode, then the program continues to run. (You can leave the

stopwatch running and go back to the main program if you press SHIFT,

backarrow.)

As the keyboard stopwatch mode is of little use in most programs I shall

not describe it in more detail. Indeed it can be a positive nuisance since

it stores splits in data registers, starting at register 00 and overwriting

information you may have wanted to keep in these registers. (The HP-41CX

has a safer version of SW, called SWPT, or you can use the Extended

Function REGMOVE to save the contents of the registers at risk. See

Sections 9.5 and 10.3 for descriptions of these two functions.) For more

details of the keyboard stopwatch, read the excellent descriptions in the

Time module or HP-41CX manuals. The stopwatch keyboard functions are

similar to the functions provided by a stopwatch that costs less than the

HP-41 Time module on its own. The module is worth having only if you want

to perform calculations on stopwatch values, or print these values out, or

use other features of the module. Let us now turn to these other features.

Of more interest to the HP-41 programmer are the fully programmable

-233-



stopwatch functions. The first one to use in a program is STOPSW. This

stops the stopwatch and should always be used in case the stopwatch is

still running as a result of some previous operations. The next function

is SETSW which sets the stopwatch to a time defined by the value in X. Any

legal time from -99.59599999 (minus 99 hours, 59 minutes, 59.9999 seconds)

to 99.59599999 can be set but only the first six digits after the decimal

point will be wused. Further digits after the decimal point will be

ignored, not rounded; the stopwatch always works to the nearest hundredth

of a second. (If you use SETSW while the stopwatch is running then it will

carry on running from the newly set time.) After you have used SETSW,

probably to set the time to zero, you can use RUNSW to start the stopwatch

at any point you wish in your program. If the stopwatch is already running

then RUNSW will not affect it, otherwise the stopwatch will start running

at once. RUNSW will not enter the stopwatch keyboard mode or interrupt a

running program in some other way. Finally RCLSW recalls the value of the

stopwatch time to register X. RCLSW can be used while the stopwatch is

running, and repeated uses of RCLSW followed by HMS- can be used to

calculate stopwatch splits while a program is running. You must of course

allow for the fact that RCLSW itself takes some time to execute (about 58

milliseconds, check it now or see Exercise 9.B). You may prefer to use

STOPSW first, then RCLSW at a later place when you are ready for the

calculations using the stopwatch value. You can then restart the stopwatch

to continue timing, or you can reset it first and start timing a new

process.

There are two important uses for these programmable stopwatch functions.

The first is to allow the HP-41 to act as a controller for an external

device. For example the HP-41 can start a process on a device attached via

the HP-IL loop, then use RCLSW repecatedly until some fixed time has

elapsed, then stop or interrupt the device or take a measurement from it.

The same could be done with an alarm set by the Time module, but using the

stopwatch gives different options. For example an alarm will interrupt a

running program, whereas the stopwatch can be checked at a convenient point

in a program which can continue to run in the meantime, and do something

clse without being interrupted. It is also possible to use the HP-41 and

-234-



HP-IL to control two entirely separate operations using alarms for an

operation that must be executed at an exact time and using the stopwatch

for an operation whose timing is not so crucial. (The alarm will interrupt

whatever is happening and execute as soon as possible; the stopwatch can be

checked by means of RCLSW at any suitable moment.) Some devices can send

signals to the HP-41 when they start or stop an operation, and the HP-41

can use the stopwatch to time that operation.

The other important use of the programmable stopwatch functions is to time

the HP-41 itself. You can write a program that starts the stopwatch,

carries out a function or a set of functions, then stops the stopwatch and

recalls the time taken. You can use this to see which of two alternative

routines is the faster, or to time individual HP-41 functions. You must

take a few precautions when timing HP-41 functions with the stopwatch.

i. Always PACK a program before timing it. Otherwise you will be timing

any null bytes too, and these take about 4 milliseconds each, wasting

time in a program that has been edited. If the program contains any

local GTOs or XEQs then run it once to compile these before timing it,

otherwise the first timing will give a different answer from later

timings (since uncompiled GTOs and XEQs are slower than compiled

ones).

ii. Time the timer itself. If you execute CLX, SETSW, RUNSVW, STOPSW,

RCLSW you will get an average time of about 25 milliseconds which is

how long STOPSW takes to execute. Remember to subtract this from your

timings.

iii. The timer only works to the nearest 10 milliseconds so it is not

accurate enough to time a single execution of one of the faster

functions. Functions also slow down slightly if they come in the last

byte of a register, because the HP-41 has to spend some extra time

reading the next program register (remember there are just seven

program bytes in each register). For these two reasons it is always

best to time an instruction by executing it not once but a multiple of

-235-



iv.

7 times (for example time the sequence CLX, CLX, CLX, CLX, CLX, CLX,

CLX and divide the result by seven). This decreases the effect of

stopwatch inaccuracies and allows for the fact that on average in a

long program every instruction comes at the end of a word once in

seven times. (Multi-byte functions can also straddle the end of a

word, but this is automatically taken care of as well if you use a

multiple of seven copies of the instruction. This only breaks down

for instructions that are exactly seven bytes long, in that case put

some other function between them, time the whole lot, then subtract

the timing of the other function.) If you want to be very accurate,

you should also allow for this when checking the timing of the

stopwatch itself in point ii above.

If you are comparing different functions on the same HP-41 then the

above methods are sufficient to compare different ways of doing the

same thing. Your timings will not be absolute though, because your

HP-41 will run at different speeds depending on the state of its

batteries and on the weather. Plugged-in modules can slow the HP-41

down as well, in particular a printer can slow down the HP-41 by as

much as 50% even if the printer is turned off. The Time module slows

down the HP-41 too; after each step of a program it checks the time

and looks to see if an alarm is due to go off. The HP-41CX has been

speeded up by circuit modifications to make up for this.

If you want to compare different HP-41s then you must allow for

possible differences in speed due to slight variations in

manufacturing. Before the Time module was introduced, functions were

timed by seeing how many times they could be executed in 100 seconds

(using a stopwatch). To compare different HP-41s the loop

LBL 01, +, GTO 01 was compiled (run for a short time so the GTO 01

could find the LBL 01 and store the distance to it), then it was run

for 100 seconds with the number 1 stored in all four registers of the

stack. A standard speed HP-41 was defined to be one that showed 1,700

in register X when R/S was pressed after 100 seconds. You can turn

timings on your HP-41 into this standard by running the test, then

-236-



multiplying other timings on your HP-41 by 1,700 and dividing by the

result of your 100 second test.

You can use the stopwatch to time any programmable functions you are

interested in, but it requires some effort. Function timings standardised

in the way described above are given in the books: HP-41/HP-IL System

Dictionary, HP-41 Synthetic Programming Made Easy, HP-41 Extended Functions

Made Easy, and in the HP-41 Synthetic Quick Reference Guide (see

Appendix A). The speed of many functions depends on their arguments so

their timings are given as a formula, or else an average time is given.

It was stated above that SETSW can set a negative time. Unless it is

stopped the stopwatch will run forwards from a negative time until it goes

through zero, it will continue to run forwards up to 99.595999, then it

will restart at zero and run forwards again. If the stopwatch goes through

zero from a negative time it sets off a timer alarm, or countdown alarm.

If the stopwatch is being displayed this will merely sound a tone twice.

If the stopwatch is not being displayed then two tones will sound, the

message TIMER ALARM will be displayed, and a set of tones will repeat for

up to 16 times unless you press a key to acknowledge the alarm. The

stopwatch will continue to run. If a program is running then the alarm

will interrupt the program, but the program will continue to run when the

alarm finishes or when it is acknowledged. Only one alarm can be set in

this way and it cannot do all the things that an ordinary alarm can do (we

shall come to this in the next section), but it does not take up any space

in memory.

9.4 Using the Alarms.

In addition to the one countdown alarm provided by the stopwatch, the Time

module lets you create up to 253 alarms to go off at fixed times and dates.

(The countdown alarm is fixed relative to the time it was started, not to a

defined future time and date) The different kinds of alarms will be

described here before the functions for setting and cancelling alarms.

-237-



The simplest kind of alarm is a message alarm, similar to the countdown

alarm. A message alarm displays a blinking message and sounds a set of

tones at a chosen date and time. If a program is running, the alarm

executes after the next function has been completed (this can be a long

time for some functions, particularly the keyboard stopwatch), after the

alarm finishes or is acknowledged the running program continues. When such

an alarm goes off you need to acknowledge it while the display is blinking,

by pressing any key except STO, backarrow or ON. When you press a key, the

tones stop, the display stops blinking, and the second half of the message

is shown if the message was more than 12 display places long. Backarrow or

ON clear the alarm but also immediately clear the message from the display.

Pressing STO stops the alarm, but does not clear it. If the alarm is not

acknowledged at all, or if it is stopped by STO then it becomes a past due

alarm. The purpose of a past due alarm is to remind you that an alarm has

gone off but has been ignored, and you are reminded about any past due

alarms every time you turn the HP-41 off or on. If no message is provided

when the alarm is set, then it displays the time and date instead of a

message.

The next kind of alarm is a control alarm (or interrupting control alarm).

If you create a message alarm but the message starts with two up-arrow

characters (1 created by pressing SHIFT,N in ALPHA mode), then the message

will not be displayed. Instead the HP-41 will go through CAT 1 and CAT 2

when the alarm comes due, looking for a label or function whose name is the

same as the message after the two arrows. If the message is more than six

characters long then only the first six will be used in the search. The

whole operation is very similar to a XEQ IND instruction. If a

corresponding label or function is found, then it is executed. A serious

shortcoming is that CAT 3 is not searched, this too is like XEQ IND which

cannot execute CAT 3 functions. As examples, you can see that 11SIN will

not execute the CAT 3 function SIN, and MfRCLFLAG will not execute the

Extended Function RCLFLAG, but will execute a program starting at the label

LBL RCLFLA, if such a label exists. If you want to execute a CAT 3

function or any program or function with a seven-character name then you

will have to write a short program, with a label of six or fewer letters,

-238-



containing the required function or XEQ the required label. This too is

the same as with XEQ IND; see Section 6.4. If a control alarm goes off

while a program is running, then it interrupts the running program after

the current step, and the named program or function executes as if it was a

subroutine called from the running program. Once again this is like an

XEQ IND. The running program carries on when the interrupting function or

program finishes (unless the function or program stops execution by doing a

PROMPT or STOP or OFF). There is one danger here; if the running program

has six pending returns at the time when the control alarm goes off then

the top return will be lost if the control alarm executes a program, and

returns will also be lost if the new program has some subroutine calls and

the total number of pending returns exceeds six at any time. Losing the

contents of the RPN stack (X, Y, Z, T, and L) is also a danger, but you are

more likely to notice alteration of these values.

Control alarms can cause other nasty surprises. They may interrupt a

running program and then stop it with the message NONEXISTENT. If you go

into PRGM mode you will see a perfectly ordinary function which apparently

caused the error for no obvious reason. The alarm is no longer available

to check since it has already gone off and has been cleared, it can have

caused the NONEXISTENT message if it tried to execute a CAT 3 function, or

any name of more than six letters, or a deleted CAT 1 program. It could

also be something on a module that has been removed, or a non-programmable

function on a plug-in device, such as the printer function PRP. Just as

bad, you might have written a new program with the same name as that used

by a control alarm which you created long ago. The new name will be nearer

the .END. than the old program, so it will be executed instead of the old

program or CAT 2 function you had wanted to execute when setting the alarm.

For all these reasons it is important to check your alarms occasionally.

This can be done using the programmable function ALMCAT, or using CAT 5 if

you have an HP-41CX or a CCD module (see Chapter 12).

A control alarm whose message consists of two up-arrows but nothing more

will run a program starting at the current step in the current program.

This can be used for example if you want a program to turn itself off, then

-239-



restart the HP-41 and carry on running at a later time. To do this an HP-

41 program can set an alarm, with a two-arrow message, to go off at a time

when something should be done, then execute OFF. At the pre-selected time

the HP-41 will turn on and carry on running the program. If an alarm like

this goes off while a program is running then it just lets the program

carry on running. This is one way to create a conditional alarm which is

an alarm that goes off on condition that it does not interrupt something

else (another program or a calculation being executed from the keyboard).

A conditional alarm is like a control alarm except that it does not

interrupt, so it can also be called a non-interrupting alarm. A two-arrow

alarm will interrupt a keyboard calculation, whereas an ordinary

conditional alarm will only interrupt a clock display.

The way to create a normal conditional alarm is to set up an alarm exactly

like a control alarm, but with only one up-arrow at the beginning of the

message. This alarm will behave like a control alarm when it goes off if

the HP-41 is off or if it is displaying the clock. A conditional alarm

will not stop a running program, it will just sound two tones and become a

past-due message alarm. If the HP-41 is on but not running then the

conditional alarm will behave exactly like a message alarm and will become

a past-due alarm if it is not acknowledged.

The conditional alarms are most useful if you want to do something

automatically, but without interrupting a running program. Say your HP-41

is using the HP-IL to measure a temperature and record it on a cassette

once an hour. If you are also using the same HP-41 to calculate your test

results then you will not want the automatic temperature measurement to

interrupt your work. A conditional alarm will not interrupt your work, but

you will be reminded when you try to turn the HP-41 off that you should run

the measurement program manually.

Measuring the temperature once an hour could be done by having the

measurement program set a new alarm every time it runs. However, every

alarm can be set to automatically repeat at a specified interval. You

could set a repeating alarm to remind you of your wedding anniversary once

-240-



a year. (You would have to set the repeat time to 365.25 days to avoid

leap year problems since the repeat time is a fixed time. Your spouse

might then wonder why you wake up in the middle of the night every fourth

wedding anniversary... Maybe it’s not such a good idea after all.) You

could set a repeat alarm to wake you at the same time every morning, or to

go off every five minutes in the morning like an alarm clock with a snooze

button. And of course you could measure the temperature every hour.

The alarm repeat interval can be any length of time between 10 seconds and

10,000 hours (thirteen and a half months). On the HP-41CX the shortest

repeat interval is 1 second. An alarm interval this short 1is rather

inconvenient, the alarm is best cancelled by pressing SHIFT, C while the

alarm is going off. After a repeating message alarm is acknowledged, or a

repeating control alarm executes its task, it is reset. The resetting is

done by adding the repeat time to the alarm time and making this the new

alarm time. This new alarm time is compared with the clock and date. If

the new alarm time has already passed then the repeat time is added again,

and this is done until the alarm time is in the future. This makes sure

that when you acknowledge an alarm that is past due or an alarm with a very

short repeat interval then the next repetition will be in the future. You

can acknowledge a repeat message alarm just like an ordinary message alarm,

or you can press SHIFT,C to cancel the alarm and stop it from repeating.

If you do not acknowledge a repeating message alarm then it becomes past

due and stops repeating. This is sensible for alarms that repeat once a

day since you are reminded of the past due alarm when you next turn the

HP-41 on or off. Unfortunately it is a nuisance for short repeat intervals

such as a snooze alarm or an alarm that you set to go off every 10 minutes

to remind you to make an urgent telephone call. Such an alarm becomes past

due and fails to do its job if you do not acknowledge it. Instead it goes

off unnecessarily when you next turn the HP-41 on or off, and then starts

repeating again; you can avoid this on an HP-41CX by pressing SHIFT, C.

If the problem just described affects you then try the following. Instead

of setting a repeating message alarm which goes off first at a given time,

-241-



set a non-repeating control alarm to go off at that time. (If you do not

want the message to interrupt you then make this a conditional alarm.) The

control alarm should run a program to set a non-repeating message alarm to

go off within 3 seconds with the message you want. Then the same program

should check the time and if necessary set the same control alarm to go off

again within a fixed time. (For example a reminder to make a phone call

should be set to go off again in ten minutes, but only if the time is in

office hours.) This will make sure you are reminded at a fixed repeat

interval even if you do not acknowledge the message. Unfortunately it may

mean you get a lot of unacknowledged past due alarms at the end of the day.

To avoid even this, you need an additional function or routine which

cancels the most recent alarm. On the HP-41CX this is easily obtained by

the two steps 1, CLALMX.

Using an alarm clearing function you can get rid of the previous alarm

whether it is past due or not, then set a new alarm. An alternative method

for dealing with past due alarms is provided by the ALMNOW function.

Should a conditional alarm try to execute a program it will not succeed if

the HP-41 is doing something else. Instead this alarm will become a past

due alarm, but you can use ALMNOW in a program to execute this past-due

alarm later on, if you know that a conditional alarm might go off while the

main program was running. If a past due conditional control alarm does

exist, ALMNOW will cause it to execute, using one subroutine level to

execute it (as if it had been called as a subroutine). If no past due

conditional control alarms are found, ALMNOW will do nothing, and no

subroutine levels will be used. If more than one conditional past due

alarm exists, ALMNOW will execute the oldest. Additional details of past

due alarms are provided in the Time Module and the HP-41CX manuals. CLALMX

(mentioned above) and three further functions to control alarms are

provided by the HP-41CX. These will be described in Section 9.5.

Now that we have studied the uses of the alarms let us just quickly look at

the way in which the various types of alarms can be set. You need to

provide three arguments in registers X,Y and Z, then execute the function

XYZALM (naturally!). You can also give an argument in the ALPHA register.

-242-



Remember that an argument is a value (a number or character string)

provided for use by a function. The arguments are:

X register:

Y register:

Z register:

ALPHA:

Time when alarm is to go off.

In the case of a repeating alarm, this is the time when the

alarm is to be activated for the first time.

Date when alarm is to go off, or zero to set the alarm to go

off on the same day as it was set.

Repeat time for a repeating alarm, or zero for no repeat.

Once the alarm is activated, the repeat time is added to the

alarm time, and a new alarm is set to go off at the new

time. If the alarm is delayed, then the repeat is reset

only after the alarm goes off and a multiple of the repeat

time i1s added to the original time so that the alarm is set

for the first possible time in the future. The Time Module

allows a minimum repeat time of 10 seconds, the HP-41CX a

minimum repeat time of 1 second. Repeat times can be up to

(but not including) 10,000 hours.

If empty the time will be displayed when the alarm goes off.

If not empty, but the contents do not begin with an up-

arrow, then the contents will be displayed as a message when

the alarm goes off. If the ALPHA register contains more

than twelve characters then as many characters as possible

will be displayed when the alarm goes off, and the rest will

be displayed when the alarm is acknowledged by a key other

than ON or backarrow.

If the ALPHA register begins with 11 then a control alarm is

set, but remember that only the first six letters after the

two arrows are used for the control alarm name. If the

ALPHA register begins with 1 then a conditional alarm is

set, again using only the first six characters after the

arrow.

-243-



(It is unwise to use up-arrows as names for programs to be set off by an

alarm. The alarm-setting always uses the first two arrows as a control

alarm, so you cannot set a conditional alarm to run a program whose label

begins with an up-arrow. PMPROG will set a control alarm for PROG, not a

conditional alarm for 1PROG.)

Times and dates for alarms should be set in registers X,Y and Z according

to the rules laid out at the start of Section 9.1 and allowing for the

current choice of DMY or MDY. The same limits on dates also apply.

Seconds can only be set to the nearest tenth, not the nearest hundredth.

As a simple example of setting an alarm, try this. You need to make an

urgent phone call as soon as possible after 4p.m. today. Set an alarm to

go off every 5 minutes from 4p.m., displaying the message "CALL JO" :

1) .05, ENTER ; put in 5 minute repeat time

2) 0 , ENTER ; put in 0 as alarm date

; (sets the alarm for today’s date)

3) 16 ; put the alarm time as 4p.m.

4) ALPHA, CALL JO, ALPHA ; put in the message

5) XEQ, ALPHA, XYZALM, ALPHA ; set the alarm

Once you have set a few alarms you may need to cancel some of them or to

review them. The HP-41CX functions can be used if you have them and the

special plug-in Data Acquisition Module also has an alarm cancelling

function (see Chapter 12). You can also use Synthetic Programming to cancel

alarms from within a program. Alternatively you can review and cancel

alarms from the keyboard by using the alarm catalogue function ALMCAT.

When you execute this from the keyboard or from a program, the HP-41

displays all the alarms in the order in which they are set to go off, then

carries on running a program if ALMCAT was executed from a program. On the

HP-41CX you can also list the alarms by pressing CAT 5, and CAT 5 is

available on the plug-in CCD Module (see Chapter 12).

While the alarms are being displayed by ALMCAT or CAT 5, you can interrupt

-244-



the display by pressing R/S. The HP-41 stops with the keyboard redefined

to let you review, reset or cancel the alarms. You can press SST to see

the next alarm, BST to see the previous alarm or R/S to restart the

catalogue. The backarrow key stops the catalogue and displays or continues

a running program. The ON key turns the HP-41 off. You can also press M

(the RCL key) to see the message associated with the alarm displayed. If

the message is over 12 characters long, as many as possible will be

displayed when you press M, and the rest will be displayed when you release

M. If you have a control alarm or conditional alarm, then that will be

displayed. Furthermore, you have the following time and date options

available when you press the appropriate keys.

D display date when alarm will go off

T display time when alarm will go off

SHIFT T display current time

R display repeat interval

SHIFT R reset a repeating alarm by a multiple of the repeat interval

to the first time in the future after the current alarm time

SHIFT C cancels the alarm displayed, and if it is a repeat alarm

then it cancels the alarm completely, so that it will stop

repeating.

SHIFT, C is an easy way to cancel an alarm with a very short reset time,

since such an alarm will otherwise keep going off before you have time to

cancel it. On the HP-41CX SHIFT,C can also be used to cancel a repeating

alarm while it is going off. Press SHIFT,C instead of acknowledging the

alarm, or after you have acknowledged it but while the message is still in

the display, and the repeat alarm will be cancelled. The alarm times and

dates use the HP-41 clock as a cue when you set them and when they go off.

It is therefore important to check that the time and date in the HP-41 are

correct when you set an alarm. An alarm that is to go off within a given

time after the present time will of course not need the time and date; you

can set such an alarm using the stopwatch timer alarm, or you can write a

short program to do this (see Exercise 9.C for an example of this).

To avoid alarms going off in the middle of a running program you can move

-245-



the time into the past. If you execute -1,T+X then the clock is set back by

an hour, and any alarms due to execute will be delayed by an hour. An

hour’s delay should be sufficient, but if your program is likely to run for

longer, or if you need the correct time, then move the time back by a day.

Of course you must correct the clock at the end of your program.

Alternatively you could move the time forward, forcing any alarms due to go

off in the near future to execute immediately.

The above description will be sufficient for most users of the Time

Functions. For further details, particularly of multiple alarms and past

due alarms, look in the Time Module Handbook or the HP-41CX Handbook.

9.5 Additional HP-41CX time functions.

An alarm which goes off at an awkward time, particularly in the middle of a

running program can be a major nuisance. Alarms can be suspended by using

-1,T+X as described above, but the Time Module does not provide any

programmable way of cancelling an alarm. A programmable Synthetic

subroutine to clear any buffer, including an alarm buffer, will be given in

Chapter 16 but the HP-41CX provides the best solution; three alarm

cancelling functions. First of all, CLRALMS clears all alarms, including

past-due alarms. If this is too dramatic, CLALMA clears an alarm whose

message or control string is the same as the string in the Alpha register,

even if this is past-due. The contents of Alpha must match the alarm

exactly, including the up-arrows in control and conditional alarms. The

Alpha register can be left empty to cancel an alarm that was created with

no message. If more than one alarm has the same Alpha string, then the

alarm due to go off soonest (the first one shown by CAT 5) is cancelled.

The third alternative is CLALMX. This uses the number in X to specify

which alarm in the alarm catalogue should be cancelled. Unlike most HP-41

functions, CLALMX counts the first alarm as number 1, not zero. You have

to be careful when programming this function because alarm numbers can

change as new alarms are set and old ones go off. Both CLALMA and CLALMX

give the error message NO SUCH ALM if the given alarm is not found.

-246-



If you want to save a few alarms before using CLRALMS, or if you want to

check which alarm you neced to cancel, then RCLALM comes to your rescue.

Like CLALMX this uses the unsigned integer part of X to specify the number

of the alarm to be recalled. It too counts alarms as in the alarm

catalogue, starting from 1, and gives DATA ERROR if X is 0 or greater than

999. RCLALM sets the X, Y, Z and ALPHA registers to the time, date, repeat

and message values that XYZALM would use to set the alarm. X is in 24-hour

format and Y contains a date in the current date format (not a zero for the

current date). The previous value of X is saved in L and the previous

value of Y 1is lifted to T, even if stack lift was disabled. You can save

these alarm values so as to set the same alarm or a similar one later.

Saving all these values requires seven registers in general; they can be

saved in a data file or even in a text file (the numbers can be brought to

ALPHA by ARCL and can later be recreated by ANUM; see Section 10.2).

An alternative to cancelling alarms is to use conditional alarms. These

will not go off while a program is running. The function ALMNOW can be

used to set off any conditional alarm that has become past-due during the

program.

The remaining new time function is SWPT. This is like SW but it lets you

select the initial values of the storage register pointer and the recall

register pointer. These two values are obtained from a value sss.rrr which

has to be set in X before SWPT is executed. A negative value of sss.rrr

also sets the stop watch to delta split mode instead of regular split mode.

On exit from SWPT, X contains the current pointer values in sss.rrr,

including a minus sign if delta split mode was in operation. If either

pointer is undefined when the stopwatch is exited (for example it may time-

out while you are resetting a pointer) then that pointer value is set to

zero in X. The previous value of X is saved in L. A very small negative

number sets the stopwatch to delta split mode with both pointers at zero,

and is returned if SWPT is stopped with the stopwatch in this state. The

stopwatch itself need not be stopped, the value in X can be saved, and then

used again later to carry on recording times with SWPT.

-247-



SWPT is most useful for setting the stopwatch automatically, but it can be

used in programs, for example to check how many splits have been taken.

You must however be careful not to confuse those storage registers that

contain stopwatch values with other storage registers that contain

different values.

Exercises

9.A Try writing an ADOW routine to complement the functions ADATE and

ATIME. Hint: one way to achieve this is to check whether the number in X

lies between 0 and 6, then GTO IND X and have six labels each followed by a

text string and a RTN.

9.B If you use the stopwatch functions to time other functions then you

must know how much time the stopwatch functions take themselves. You can

time RCLSW, but try the following alternative: write the routine

CLX, STOPSW, SETSW, RUNSW, RCLSW, STOPSW

Pack, then run the routine to give you its timing. Now you can insert

between RUNSW and RCLSW seven copies of any instruction you wish to time.

Seven copies and packing will ensure that the word alignment of RUNSW and

RCLSW does not change. The difference between the two timings, divided by

seven, gives a good estimate of the function’s execution time. Now use this

method to time RCLSW and STOPSW.

9.C It can be useful to set an alarm that will go off within a fixed time

from the present (say in half an hour to let you have a short nap). Write

a routine that sets an alarm to go off within the time specified by

register X.

-248-



CHAPTER 10 - EXTENDED FUNCTIONS

10.1 Extending your control over the HP-41.

The bare bones HP-41C is just a calculator with nice additional features

such as an alphabetic display and tones. These can be used for better

communication with the wuser, but most instructions are mathematical

functions. Programmers who want to use an HP-41 for more than just

mathematical formulae are limited by their inability to control the HP-41

itself. A complicated program might need a lot of key assignments to be

made before it is run. If the same keys are to be used for other purposes

in different programs then the user must use ASN many times to assign the

functions before running the program, and again to clear them after running

the program. A programmable version of ASN or a programmable function to

clear all key assignments would extend the programmer’s ability to use the

HP-41 by automating the process of assigning or clearing functions.

The Extended Functions Module, or the Extended Functions built into the HP-

41CX provide this sort of extended control over the HP-41 itself. To

continue with the above example, there is a programmable assign function

and there is also a function to clear all key assignments. The Extended

Functions do not include any mathematical functions at all. These Extended

Functions are all used for controlling the HP-41 or for moving information

from one place in the HP-41 memory to another place.

The Extended Functions Module also provides additional memory called

Extended Memory, together with functions for moving information to and from

this memory; they will be described in Chapter 11. Chapter 10 will cover

those Extended Functions that do not deal with Extended Memory. The

functions will be described as in Chapter 4, with emphasis on programming

features that are not emphasised in the HP manuals. Much more detailed

descriptions of the Extended Functions together with examples can be found

in Keith Jarett’s book "HP-41 Extended Functions Made Easy", and in "Data

Processing on the HP-41C/CV" by William C. Phillips. Both are mentioned in

the book list, Appendix A. The Extended Functions were apparently written

-249-



by someone who was not a member of the team that originally programmed the

HP-41 itself, and contains a number of "bugs". Some of these are covered

in Keith Jarett’s book. More are described in Appendix C of this book. So

long as you are careful in the use of the Extended Functions, they will

help you get better use from your HP-41 without any trouble.

10.2 Alpha string control.

The ALPHA register and the text string handling features of the HP-41 were

designed to provide convenient messages, prompts and program names, but

little more. Operations such as interpretation of text strings or

alphabetic sorting are very difficult or 1impossible, unless you use

Synthetic Programming tricks which will be described in Chapter 14. Since

the HP-41 does have some ALPHA features, and because these ALPHA features

are used for the control of devices via HP-IL, it was logical to provide

additional alpha string control functions in the Extended Functions Module.

The functions are listed below. Remember that each character is stored as

a single byte, between zero and 255. The null character is represented by

the byte value zero and displayed as a line at the top of the HP-41

display. When the ALPHA register is empty it is actually filled with 24

null characters. The HP-41 was originally designed to treat a null

character in the ALPHA register as indicating an empty ALPHA register, so

null characters can produce odd behaviour. The results of using nulls will

be mentioned in several places in the following descriptions. (The HP-41CX

Owner’s Manual and the Extended Functions module manual contain appendices

describing the behaviour of null characters. You should read one of these

to help you understand what is said here about nulls. The Extended I/O and

the HP-IL Development Module manuals contain this information as well.)

ALENG This function works out the length of the text string in the

ALPHA register by counting all the characters in it and puts this

number in the X register, lifting the stack.

Another way of looking at this function is to say: the ALPHA

register is 24 characters long, count the number of unused spaces

-250-



on its left and subtract this number from 24 to give ALENG. This

means that null characters to the right of at least one non-null

character are counted in ALENG. If the ALPHA register is empty

then ALENG returns 0. This is the simplest of the alpha string

functions, it does not alter the contents of the Alpha register.

A typical use for ALENG is in storing the text from the ALPHA

register into some numbered data registers. You can store six

characters at a time, then delete those six characters using

ASHF, then use ALENG to check if there are any more characters

left to be stored. The following shows how this can be done to

store the ALPHA string into the registers starting at register 10:

1) 9 ; Register number last used, may already be in X

2) ENTER

3) LBL 12

4) SIGN ; turn the contents of X into a one

5) + ; adds the one to Y, and puts it into X

6) ASTO IND X ; store 6 characters into register

7) ASHF ; delete leftmost 6 characters

8) ALENG ; obtain number of characters left

9) X#0? ; 1s this zero?

10) GTO 12 ; if not, repeat the cycle

11) RDN ; otherwise get rid of the zero

These 11 lines can be included in a program which saves the

current status of the HP-41 before changing the status. Register

X can contain the number of the last register already used, these

lines will store the ALPHA contents into one, two, three or four

registers, and will finish by again leaving the number of the

last register used in X. This number must also be saved

somewhere so that the ALPHA register can be restored later.

-251-



XTOA This uses the contents of register X to append one or more

characters to the right-hand end of the ALPHA register. If

register X contains a text string, then this text string is added

to ALPHA, in just the same way as ARCL X would work. (The text

string would be put into X by an earlier ASTO X.) If register X

contains a number though, then that number is interpreted as a

byte code, and the character corresponding to that byte is

appended to ALPHA. For example, the code for the character & is

38, so the instructions 38, XTOA would append the character & to

the ALPHA register. Since & is not available on the ALPHA

keyboard, this is the quickest way normally available for putting

& into the ALPHA register. (Synthetic Programming provides an

even better way which will be described in Section 14.3. The

best way is to use the alternative ALPHA keyboard provided by the

ZENROM module described in Chapter 12.) XTOA does not change

the contents of X. If XTOA makes the Alpha register contain 24

or more characters then it beeps. If X contains zero, XTOA will

append a null character to the right of the ALPHA register; this

means that if ALPHA is already empty, it will stay empty,

otherwise it will contain a null character which is displayed as

an over-bar in the ALPHA register, but is not seen at all when

viewed in a text string stored in a data register.

XTOA ignores the sign and the fractional part of X, and only

works for numbers from 0 to 255. Table 8.3 showed how each

number is interpreted in the HP-41 display. Any code that does

not correspond to a character recognised by the HP-41 display

will show up as a character with all fourteen segments turned on

(often called a "boxed star" or "starburst").

The contents of the ALPHA register can be shown in the display,

but they can also be sent to a printer, and they can be sent to

any device connected to an HP-IL loop. Many of these devices,

such as video displays or printers interpret characters according

to the American Standard Code for Information Exchange (ASCII).

-252-



ATOX

AROT

In this code some numbers are treated as characters to be

printed while others are not printed but instead are treated as

instructions to the device. It is worth noting here that XTOA

can be used to put such instructions into Alpha for the purpose

of sending them to a printer or a video display.

This function is nearly the opposite of XTOA. It removes the

leftmost character from the ALPHA register, interprets it as a

number from 1 to 255 and puts this number in the X register,

lifting the stack. If the ALPHA register is empty then ATOX

returns a zero to X. (ATOX cannot be used to find a null

character in the ALPHA register, since it looks for the first

non-null character at the left of the ALPHA register.)

ATOX can be used to interpret a text string, one character at a

time, for example to interpret a string sent to the HP-41 from a

device on the HP-IL loop. ATOX can also be used to compare two

ALPHA values or put them in alphabetic order. Unfortunately, it

destroys the ALPHA strings in the process, so copies should be

made before the strings are checked. The HP-41CX indirect

comparison functions, described in Section 10.6, and the PPC ROM

program AL (see Chapter 12) compare text strings without

destroying them.

Rotates the characters in the ALPHA register left or right by

the number of places given in X. If X contains a positive

number, the rotation is to the left, and if the number is

negative, the rotation is to the right. This is best illustrated

by some examples. If the ALPHA register contains "SCAT" and you

put 1 into X then execute AROT, you will find "CATS" in ALPHA.

This is because 1, AROT rotates the contents of the ALPHA

register by one character to the left. If you now put -1 in X

and execute AROT again, then ALPHA will again contain "SCAT"

since you have rotated one letter to the right. Now do -3, AROT

-253-



and you will again see "CATS" in ALPHA. This shows that rotating

four letters one place to the left is the same as rotating them

three places to the right.

A problem occurs if you rotate a text string containing null

characters. Create the text string BAT followed by a null; you

can do this by putting BAT into ALPHA, then executing 0, XTOA.

You will see BAT™ in ALPHAif you execute AVIEW or press ALPHA

twice. Now do 1,AROT and you will see ATBin ALPHA. Do AROT

again (the 1 stays in X) and you will see T BA. Do AROT one

more time, and you will see BAT. The null character has been

rotated to the front of the text string and has vanished because

it has joined up with all the other null characters at the left

of the ALPHA register. You must therefore be careful not to

rotate null characters to the left-hand end of a text string

since they can only be recognised if they have at least one non-

null character to their left. A null character will also be lost

if the characters to its left are removed by ATOX.

One important use for AROT is to correct for the fact that ATOX

works at the right-hand end of ALPHA but XTOA works at the left-

hand end. Suppose you want to check what the first letter in

ALPHA 1is, without losing that letter. You can do the following:

ATOX ; take the left-hand end character from ALPHA

XTOA ; put the same character into ALPHA, at the right end

-1

AROT ; rotate this character back to the left-hand end

RDN ; roll down the -1, leaving the character code in X, where

you can now test it.

This is fairly quick, leaves register L unchanged, and saves the

previous contents of registers X and Y in registers Y and Z.

Unfortunately it does not work if ALPHA contains one or more

nulls after the first character. In such a case it is best to

-254-



POSA

check whether null characters have been lost by using ALENG to

see if the length of a character string has changed unexpectedly.

This searches the ALPHA register for the text beginning with the

string or character code contained in X. Say you are looking for

the letter A and the ALPHA register contains the text string

CATAPULT. You can put the number 65 in X (65 corresponds to the

letter A, see Table 8.3), then execute POSA. Positions in the

ALPHA register are counted from left to right, starting at 0, so

you will see the result 1. (This counting system may look silly,

but it works with AROT. If you want to find a character and put

it at the front of the ALPHA register then you can do POSA, AROT,

but see below for what happens if the character is not found.)

What if you wanted to find the second A in CATAPULT? You could

use the fact that the second A is followed by a P, not a T.

Store the text string "AP" in register X and do POSA. You will

see 3 in register X, indicating that the text string "AP" is to

be found in "CATAPULT" beginning at position 3. If you use POSA

with a text string in X then obviously that text string cannot be

more than six characters long.

If the character or string you are searching for is found, then

the number or string in X 1is replaced by the position, and the

previous contents of X are saved in register L (so that you can

get them back with LASTX). If the target (character or string)

is not found, then POSA returns -1 to register X, and again saves

the previous value of X in register L. As with XTOA, POSA

ignores the sign and fractional part of a number in X, and only

works with numbers from 0 to 255. Since POSA works with 0, it

can be used to check if the ALPHA register contains any nulls

buried in the text string. This is a useful extra test for nulls

that may later be lost because of ATOX or AROT as described

above.

-255-



ANUM Searches the ALPHA register for a number and brings that number

into register X, lifting the stack if stack lift is enabled. For

example, if the ALPHA register contains "POWER = 125 WATTS", then

ANUM will put 125.0 into register X.

This function is very useful because there is no other simple way

of turning a set of text characters into a number. The HP-41

treats all text strings in the same way, whether they look like a

string of letters "FRED", or a string of digits "17.530" or a

combination "ANS=25". None of these can be used for arithmetic.

If register X contains a number such as 17.530 (in FIX 3 mode)

and you execute ARCL X then the ALPHA register will not contain

the number 17.530, instead it will contain the text string

"17.530". If you now execute ASTO X, register X will contain the

text string "17.530", and if you try to do arithmetic with this

string you will get the error message ALPHA DATA. Execute ANUM

instead of ASTO X, to get the number 17.530 instead of the text

string "17.530".

ANUM is used for two main purposes. The first is to recover

numbers that have been turned into text strings by the ARCL

function. The second is to extract numbers from the ALPHA

register when the ALPHA register contains a string of text

received from an HP-IL device. Your HP-41 could be connected to

a telephone link which sends the vital message "NEW GOLD

FIX=$950.352". A program could then use POSA to see if the word

"GOLD" is in this string, then ANUM to find the number. (Then

it could work out if you can still afford to be using an HP-41 to

look after your finances.)

As with number entry from the keyboard, flag 22 is set if a

number has been entered, and it remains unchanged if no number

has been entered. (See Appendix D.) If you execute ANUM and the

ALPHA register does not contain a number, then the stack remains

unchanged and flag 22 remains clear if it was originally clear.

-256-



Your HP-41 could be connected to a telephone link and could use

the following instructions to check each message for the presence

of a number;

LBL 10 ; start subroutine to check for a number

INA ; receive an alphabetic message from HP-IL

CF 22 ; clear flag 22 first

ANUM ; try to read a number from ALPHA

FS? 22 ; check if a number has been used

GTO 20 ; go to deal with a number if one found

GTO 10 ; otherwise go and read the next message

ANUM sets flag 22 as if the number had been entered from the

keyboard, and it also interprets the contents of the ALPHA

register as if it were getting a number from the keyboard. This

leads to the following rules: you can press the CHS key several

times when you are entering a number from the keyboard; in the

same way, ANUM changes the sign of a number each time it finds a

minus sign, even if there are one or more minus signs in the

middle of the number. Therefore the text string "-1--23-4" is

interpreted as the number 1234.0, just as if you had pressed CHS

four times while entering the number 1234 from the keyboard.

(Pressing CHS before you start entering a number would of course
 

just change the sign of the previous number in X.) Plus signs

are simply ignored, wherever they may be in the number. In the

same way, the first decimal point is treated as a decimal point,

and any further decimal points are ignored, just as they would be

if you pressed the decimal point more than once while entering a

number from the keyboard. If the ALPHA string contains a row of

more than ten digits, only the first ten digits will be used,

just as with keyboard entry, and even if several digits at the

front are zeroes they will be included in the count of ten

digits. If a letter E followed by some numbers is found then it

is treated as an exponent, but only if it comes after less than 9

digits, or if a decimal point comes before the eighth digit.

-257-



Combined with the previous rule this means that in

123456789E12 the E is ignored (because it comes after the ninth

digit), so the number is made up of just the first ten digits and

is 1234567891. (A sign after the E would also be treated as part

of the number). However "12345.6789E12" becomes 12345.67890E12

or 1.234567890E16 since there was a decimal point before the

8th digit. The string "12345.67898765E12" is treated as

12345.67898E12 or 1.234567898E16 because the first ten digits

before the E are used as a mantissa, the remaining digits up

to the E are ignored, but the exponent is used. Decimal

points, additional letters E, and all digits except the first two

are ignored after the first letter E.

A number begins at the first numerical digit that is found in

the ALPHA register, going from left to right. This means that

"E12" 1is treated as 12.0 not 1E12. Decimal points and minus

signs that come immediately before the first digit are treated as

part of the number. Thus "-E-12" is treated as -12, because the

-E is ignored. -E--12 is treated as 0.12 because the decimal

point and both the minus signs after the E are included in the

number. "1E-.12" becomes 1E-12 as only the point is ignored.

A number ends when any character is encountered that cannot be

treated as part of the number. Additional E’s or signs or points

at the end of a number will not terminate the number, but a

letter F or a dollar sign, or a null character will terminate

numeric entry.

The behaviour of commas depends on the setting of flag 29 (the

digit grouping flag). If flag 29 is set, then commas are treated

as digit grouping marks, and are ignored no matter where they are

and how many of them there are. If flag 29 is clear, then it is

assumed that there will be no digit grouping marks, and a comma

terminates numeric entry. For example 123,456.7 is interpreted

as 123. if flag 29 is clear.

-258-



All of the above statements assume that flag 28 is set so that

the radix mark which separates the fraction from the rest of the

number is a decimal point. If you use European notation, with

flag 28 clear, the roles of points and commas are reversed in all

the above statements.

This is a truly amazing set of rules, but it follows logically from the

assumption that ANUM should work in exactly the same way as numeric entry

from the keyboard. In most cases you will only be interpreting simple

numbers such as 12.70 anyway and these rules will not matter. The most

awkward problem arises if the ALPHA register contains two numbers and you

want to find both of them. This can only be done easily if you know in

advance what character separates the two number strings. You can then do

ANUM, use POSA to find the separator, use ATOX to delete all the characters

before the separator, then use ANUM again. You can also use AROT to move

the first number to the back of the Alpha register, but in that case make

sure there 1is a non-numeric character following the second number,

otherwise the first number may become part of the second one after the

rotation. A space 1is suitable, since it is not treated as part of a

number.

If problems of this nature are going to affect you seriously, you should

consider buying the Extended I/O Module. This contains extra ALPHA control

functions including ANUMDEL which works like ANUM, but then deletes the

number just found from the ALPHA register. Other useful functions in this

module work like XTOA and ATOX, but can be used at the left-hand end or the

right-hand end or any position in the middle of an ALPHA string. Sce

Chapters 12 and 16 for details of the Extended I/O Module and of the HP-IL

Development module which contains similar functions, but not ANUMDEL.

10.3 Moving data and flags.

REGMOVE Moves the contents of a block of data registers to another

block of registers. If you have important data in some

-259-



registers, say registers 00 to 08 but you need to use those

registers for another purpose then you can move the data from

registers 00 to 08 into some other registers with REGMOVE.

Later on you could move the data back into registers 00 to 08.

In general, if you want to move a block of nnn registers,

starting at register sss into a block of registers starting at

register ddd then you put sss.dddnnn into X and execute REGMOVE.

If you wanted to move the registers from 00 to 08 (9 registers

in all so nnn = 009) as mentioned above you would use REGMOVE as

follows. Select a block of registers to take the values, say

registers 110 to 118. Then ddd is the first of these registers,

namely 110. The source is the first address of the block 00 to

08, so sss is 000, and sss.dddnnn must be 000.110009. You should

therefore put 000.110009 into X and execute REGMOVE. (Zeroes at

the front and at the end can be left out so you could just put

.110009 into X.) If nnn is zero, one register is copied.

Another use for REGMOVE is to make an extra copy of some data

registers. For example you may want to invert a matrix, then

check the inversion by multiplying the inverted matrix by the

original matrix. Most matrix inversion programs, including the

one in the Math Module destroy the original matrix they are

inverting. You could therefore copy a matrix with REGMOVE,

invert the original, then multiply the inverted matrix and the

copy of the original one to check how good the inversion was.

Unlike some other Extended Functions, REGMOVE could be

performed using just the functions of an ordinary HP-41, but this

would disturb the stack wherecas REGMOYVE is faster and leaves the

stack registers unchanged. If you find this description hard to

understand, then follow it on the diagram below.

-260-



register register

number number

118

117

116

115

114

113

112

111

110O
=

N
W

A
i

O
9

o

Lowest numbered source register is 000

Lowest numbered destination register is 110

Number of registers to be copied is 9

Therefore sss.ddd nnn is 000.110009

The copying is done by the two instructions .110009, REGMOVE.

REGSWAP This works exactly like REGMOVE except that the contents of

the source and destination blocks of registers are swapped. When

you put sss.dddnnn into X and execute REGSWAP then the contents

of nnn registers beginning at sss are swapped with the contents

of nnn registers beginning at ddd. We can take the same example

as for REGMOVE; two subroutines each of which uses registers 00

to 08. Every time one of the subroutines is used following the

other, REGSWAP could be used to bring its numbers into registers

00 to 08, while saving the numbers used by the other subroutine.

If the source or destination registers do not exist (because SIZE

is too small) then REGMOVE and REGSWAP will normally display

NONEXISTENT and do nothing. Unfortunately if you have all 319

data registers (a CV or a C with a quad memory module, or a CX),

and an Extended Memory Module in Port 1 or Port 3 you may get

into trouble. Early HP-41C’s with Bug 2 (see Appendix C) have

another problem. If your SIZE is smaller than S and you try to

-261-



REGMOVE or REGSWAP into registers above register number S (the

first nonexistent data register) then you might write into the

Extended Memory Module and destroy its contents. This is because

the calculator does not check whether the top registers of the

source and destination blocks are within the data register area;

it only checks that these registers exist.

Normally you will be using REGMOVE or REGSWAP to move data

between two separate blocks of registers. The two blocks could

overlap though, by accident or on purpose (depending on what kind

of programmer you are!). As a simple case, imagine doing REGMOVE

with sss.dddnnn = 001.003004. This means copy registers 001 to

004 into registers 003 to 006, and the two blocks overlap. The

diagram below shows what happens during the execution of REGMOYVE.

The source and destination are shown as two separate blocks even

though they overlap. Originally each register contains a value

equal to its register number. The operation is carried out as a

series of four moves:

source  content content destination

registers registers

(ss8) (ddd)

A) before any 04 4 6 06

moving 03 3 5 05

02 2 4 04

01 1 3 03

B) first move 04 4 4 06

03 3 5 05

02 2 4 04

01 1 3 03

-262-



C) second move 04 4 4 06

03 3 3 05

02 2 4 04

01 1 3 03

D) third move 04 2 4 06

03 3 3 05

02 2 2 04

01 1 3 03

E) fourth move 04 2 4 06

03 1 3 05

02 2 2 04

01 1 1 03

As you can see, the contents of registers 03 and 04 have been

changed. If ddd 1is greater than sss then the top (highest

numbered) register is moved first. If sss is greater than ddd

then the lowest numbered register is moved first. This means

that you can reverse the effect of REGMOVE on the original source

registers even if the source and the destination overlap, simply

by exchanging sss with ddd and executing REGMOVE again. In the

example above you could recover registers 01 to 04 by executing

3.001004, REGMOVE.

REGSWAP works in exactly the same way with overlapping blocks,

but it only shuffles the values around without losing anything.

This means that you can encipher a block of data by REGSWAPping

overlapping parts of the block, and you can recover the original

block if you know what sss.ddd nnn was, and execute REGSWAP again

with sss and ddd exchanged.

An extremely clever use of REGSWAP is to rotate a block of

registers to the left or to the right. This was suggested with

-263-



X<>F

details in "HP-41 Extended Functions Made Easy". As an example

you can rotate a block of nnn registers, starting at register

sss, upwards by one register by using sss.(sss+1)(nnn-1) with

REGSWAP. This moves the contents of every register up by one

register in the block, and moves the contents of the top register

to the bottom register. For more information about this, see

"HP-41 Extended Functions Made Easy".

This function stores the status of flags 00 to 07 as a number in

register X. At the same time it uses the number in register X to

reset the status of flags 00 to 07. This makes flags 00 to 07

much more useful, since many separate sets of flags can be stored

in them at different times. Any subroutine that uses flags 00 to

07 can save their initial contents before using them and restore

the contents when necessary.

A particularly helpful feature of X<>F is that 0, X<>F clears all

eight flags at once. The number 0 means that all flags are to be

cleared. 1 means that flag 00 is to be set, 2 means that flag 0l

is to be set, 4 means that flag 02 is to be set, 8 means that

flag 03 is to be set and so on. In general flag n is set if

register X contains 27n (two to the power n). If several flags

are to be set, the appropriate numbers can be added together in

the X register. For example you can set flags 00 and 03 (and

clear all the others) by putting 9 in register X and executing

X<>F (9 is equal to 1+8 so it sets flags 00 and 03). The largest

number that can be used with X<>F is 255; this sets all 8 flags.

Larger numbers cause an error. Signs and fractional parts are

ignored, so using X<>F twice in succession obtains the absolute

integer part of a number, without losing the value in register L.

X<>F can also be used to perform 8-bit arithmetic and logical

operations, by putting an 8 bit number into flags 00 to 07, then

treating individual flags as individual bits. X<>F can also be

used to store a number temporarily in the flag register, if you

-264-



have no space left elsewhere in the HP-41 memory. There is one

rather silly bug if you use X<>F with a conditional or control

alarm. This is described in Appendix C but is unlikely to affect

the average user.

RCLFLAG These two functions allow you to save the status of all the

STOFLAG flags from 00 to 43 and later to restore some or all of

these saved flags. RCLFLAG recalls the status of flags 00 to 43

and puts this into the X register as a text string. You can

change the status of some flags and later put this flag text

string into X and execute STOFLAG to restore all of flags 00 to

43, If you want to avoid losing the status of flags 11 to 20

then execute RCLFLAG before the HP-41 is turned off. When the

HP-41 is turned back on it will clear flags 11 to 20 but you can

use STOFLAG to put back their original status. If you have a

program that uses a special display format (for example to round

a number) then you can execute RCLFLAG at the beginning of the

program and restore the original display format with STOFLAG at

the end of the program.

To restore only some of the flags, put the flag text string into

register Y and a number bb.ece into X. bb is the first flag to be

restored and ee is the last flag to be restored. Should you wish

to restore only flags 11 to 20 you should put the flag text

string into register X, then put 11.20 into X (lifting the flag

text string into Y), then execute STOFLAG. If you want to

restore some more flags, press RDN, put a new value of bb.ee into

X and execute STOFLAG again; you will need to do this if you are

restoring some flags, but not other flags between them.

The sign of bb.ee is ignored, and additional fractional digits

after the first two are also ignored. If ee is smaller than bb

then only flag bb will be restored. This means that you can

restore a single flag by just putting its number in X and

executing STOFLAG while the flag text string is in Y.

-265-



STOFLAG can be used to play some interesting tricks. As an

example, you can set FIX 10 mode with it as follows. First set

FIX 2 mode and execute RCLFLAG. Then set FIX 8 mode. Next put

38.00 in X (lifting the flag text string into Y). Finally

execute STOFLAG. If you look at the flag table (Appendix D) you

will see that in FIX 2 flag 38 is set, and in FIX 8 flag 36 is

set. The four steps above have set both flag 36 and flag 38,

giving FIX 10. In this mode, the HP-41 is forced to display all

ten digits of the mantissa, so it does not display the exponent

at all; in effect FIX 10 is a "view mantissa" function.

Unfortunately this does not work for negative exponents, nor for

exponents that are 10, 11, 12 or 13 plus a multiple of 14. A

better "view mantissa" function is provided by the program APX

in Chapter 16. A more useful combination of flags is obtained by

setting both of the flags 40 and 41, producing FIX/ENG mode in

which large and small numbers overflow from FIX mode into ENG

mode (rather than SCI mode). RCLFLAG and STOFLAG do not give

access to flags 44 to 55; methods of accessing these will be

described in Chapter 14 with a program to set or clear any flag.

You may wonder if there is any point in having X<>F as well as

RCLFLAG and STOFLAG, but X<>F turns the flags into a number that

can be used in numerical operations, whereas RCLFLAG would

produce a number larger than the accuracy of the HP-41 can hold.

Instead of a number, RCLFLAG produces a text string which cannot

be used or altered. The text string can be stored in any data

register and recalled for later use, but it cannot be stored in

ALPHA and recalled from it. (This is because an ordinary text

string contains the hexadecimal value 10 in its first byte, but a

RCLFLAG text string is identified by IFF in its first three

nybbles. Bytes and nybbles were explained in Chapter 8.)

-266-



10.4 HP-41 status control

RCLFLAG and STOFLAG extend your control over the HP-41 status flags. This

section describes other functions that extend your control over the HP-41

status or provide information about the status.

SIZE? It is impossible to select a SIZE that will suit all uses of an

HP-41. By the time you have executed SIZE a few times and

perhaps put in or taken out a memory module neither you nor your

programs will know what SIZE the HP-41 is set to. The extended

function SIZE? can be executed from the keyboard or from a

program to check this; it returns the SIZE setting to X, lifts

the stack (unless stack lift is disabled), and leaves register L

unchanged. This is much simpler than finding your size setting by

trial and error or with a program, and SIZE? is clearly a

function that should have been built into the HP-41 itself if

there had been room.

SIZE? is rather a poor choice of name for this function, for two

reasons. To begin with, SIZE? ends with a question mark as do

the test functions such as X=Y? or FS? Nevertheless, SIZE? does

not skip a step, it just recalls the SIZE setting to X.

Secondly, several plug-in program modules contain subroutines

called SIZE? These subroutines do not work like the SIZE?

function, they only help to remind the user to reset SIZE if

necessary. If you have one of these program modules plugged in

but you want to used the extended function SIZE? then you should

take out the program module (Games, Real Estate, or Structural

Analysis X), assign SIZE? to a key, then put the module back in.

The HP-41 will know that the function assigned was the extended

function SIZE? since that was the only one available when the

assignment was made. If for some reason you do not want to take

out a program module then you can still assign the extended

function by using a key assignment program (such as GASN in

Section 11.10) and giving it the decimal codes 166, 108. Once

-267-



PSIZE

the extended function has been assigned to a key it will be

executed or stored when the key is pressed.

One more warning: SIZE? works by counting up from register 00

and stopping when it finds a nonexistent register. If you have a

missing register, either because you have been playing with

Synthetic Programming, or because part of your HP-41 memory is

damaged, then SIZE? may not find any registers above the missing

one, even though you can access these registers with STO and RCL.

Once you have found the current size setting you may want to

change it, from the keyboard or in a program. SIZE is not

programmable, so the Extended Functions Module provides a

programmable size function, PSIZE, which changes the size setting

to the value specified by a number in X. Sign and fractional

parts are ignored as usual, and a size that is too large for the

current memory available causes an error. If the SIZE is

increased, PSIZE will not allow any programs, key assignments or

buffers to be deleted. If the SIZE is decreased though, it can

delete data registers, even if they contain useful data. If you

increase size by more than is available from the keyboard then

both SIZE and PSIZE will pack memory and invite you to TRY AGAIN.

If you do this from within a program though, then PSIZE will not

pack, it will just display NO ROOM. Oddly enough, PASN

(described below) does cause PACKING and TRY AGAIN, even from

within a program.

A common use of PSIZE is to combine it with SIZE? so as to reset

the SIZE in a program that uses data registers. Such a program

could include the following steps:

SIZE? Find current SIZE

nn nn is the number of registers that the program needs

X>Y? Check if this many registers are available

PSIZE If not, change the SIZE setting.

-268-



PASN

You may think that the two steps nn, PSIZE would be enough, but

these could decrease the SIZE setting and lose some valuable

data, whereas the sequence above will only increase the size.

It may seem unnecessary for the HP-41CX to have both the SIZE

function and the PSIZE function built into it, but since SIZE is

a basic HP-41 function and PSIZE is part of the Extended

Functions Module, both were left in on the CX. PSIZE is slightly

faster during keyboard execution, because CAT 2 is searched

before CAT 3, but it changes the stack.

The programmable ASN function is similar to the programmable SIZE

function; it allows a program to control its own destiny more

completely. Before PASN came along, a program that needed

several key assignments had to ask the user to make those key

assignments; or it had to use the automatic assignment of the top

two rows of keys. PASN makes this unnecessary; you just put a

keycode in the X register, a function or routine name in ALPHA

and XEQ "PASN" to make the assignment. As with the ASN function,

PASN clears a key assignment if no name is given in ALPHA (that

is, if ALPHA is clear). The key codes are the same as those used

by ASN, the first digit is a row number, starting from 1 at the

top row (not counting the toggle keys which are row 0), the

second digit is the key number in the row, starting from 1 at the

left. A minus sign denotes a shifted key. PASN cannot be used

to make assignments to the toggle keys or to the SHIFT key. (The

SHIFT key can be assigned by means of Synthetic Programming; see

Chapter 14.)

In the next chapter we shall see that the ALPHA register used

with Extended Memory functions can contain two parameters

separated by a comma. It has been pointed out by Ulrich Jansen

(PPCTN 13 P16) that the same rule applies for PASN. The function

name is taken from the ALPHA register, but the first comma and

everything after it are ignored. This means that PASN with a

-269-



GETKEY

comma as the first character in ALPHA will clear anything

assigned to a key instead of giving NONEXISTENT as might be

expected. This feature is an unexpected side-effect of the way

in which other functions use ALPHA, but it can be useful. For

example to clear key assignments without clearing the ALPHA

register you can append a comma to ALPHA, then do -1, AROT,

keycode, PASN, ATOX.

This function can be used to identify a key for use with PASN or

it can be used on its own as an alternative to using key

assignments. When you execute GETKEY, the HP-41 waits for you to

press a key, then puts the keycode (identified by row and column,

see under PASN) into register X and lifts the stack if stack lift

is enabled. If no key is pressed within ten seconds then a 0 is

put into X. Obviously this can be used to get a keycode for use

with PASN. You could write the following short subroutine to

assign + to any key.

"WHICH KEY?", AVIEW, GETKEY, "+", PASN

Some warnings are necessary. The SHIFT key is just identified as

key 31, and so you cannot obtain a shifted key identification.

You must use CHS after GETKEY to do that. The SHIFT key cannot

be used with PASN, and neither can the four toggle keys which

GETKEY identifies as 01, 02, 03 and 04. Although these keys

cannot be used with PASN, their use with GETKEY lets you redefine

the whole HP-41 keyboard completely. You can for example follow

GETKEY with GTO IND X. Then if you prefer to use the ENTER key

to turn off the HP-41 (because it is the largest key on the

keyboard?), you could have LBL 41, OFF in your program. You can

do various novel things with GETKEY, e.g. assign short tunes to

keys and use the HP-41 as an electric organ, or assign routines

which append letters to keys in any sequence you like and touch-

type on the HP-41. A final warning;, you cannot use R/S with

GETKEY to stop a program. A loop such as LBLOl, GETKEY,

GTO 01 is very difficult to stop. One way to stop it is to press

any key except R/S, and keep that key pressed, then press R/S,

-270-



CLKEYS

PCLPS

release the first key, and release R/S. This uses the "two key

rollover" feature to delay the program. Should ten seconds seem

too long a time to wait if you do not intend to press any Kkey,

then you can use the CX function, GETKEYX, described at the end

of this chapter.

This function clears all key assignments. It does not use the

ALPHA or X registers. Its main purpose is to provide an

alternative to clearing keys one by one with PASN. There are two

particular reasons for doing this. One is to save space when you

are short of memory. Each key assignment takes up only half a

register, but the other half cannot always be recovered. To

avoid this waste, it is better to clear all key assignments, then

make the necessary ones again. (This is not always worth the

trouble since making key assignments in a program also uses up

memory.) The second reason is to clear assignments on the top

two rows of keys so that they can be used in their default mode

to XEQ A, XEQ a, and so on.

Clearing all keys can be a bit too dramatic unless the

assignments are saved somewhere first. They can be saved on a

magnetic card with the WSTS function, or on a mass storage medium

with WRTK. Unfortunately there is no function that saves key

assignments in Extended Memory. Programs to do this can however

be written with Synthetic Programming, and S.P. can also be used

to suspend key assignments temporarily. The temporary suspension

can of course be cancelled easily, or key assignments can be read

back from cards, mass storage, or Extended Memory.

This too is a programmable version of a non-programmable HP-41

function, CLP. There is one vital difference though; PCLPS

clears the named program and all the programs that come after it

in CAT 1. This can give you quite a shock! Should you execute

PCLPS from the keyboard then if your HP-41 has the reset facility

(see Section 4.1.iv) and you are quick you can cancel this

-271-



function by pressing ENTER and ON at the same time. PCLPS, like

CLP, requires the name of an Alpha label and clears the program

that contains this label. If no name is given in ALPHA, the

current program 1is cleared (that means the program which

contained the PCLPS function). Just like PASN, PCLPS expects the

label name to be in the ALPHA register, and ignores a comma and

everything that comes after it. There is a good reason why

PCLPS should clear a lot of routines all at once. This is that

the Extended Memory function GETSUB can fill up memory with a lot

of routines copied from Extended Memory, and these routines can

be interspersed with extra ENDS. These ENDS can be difficult to

get rid of, but if you name the first routine copied with GETSUB,

then PCLPS will delete that routine and all the routines that

came after it, together with all the extra ENDS.

As mentioned above, a routine that executes PCLPS with the ALPHA

register empty clears itself. The routine is replaced with .END.

and then that .END. is executed. This stops a running program

unless the routine had been called from another one, in which

case the .END. acts as a RTN, and you return to the calling

routine. This can be very wuseful since it lets you read

subroutines from Extended Memory or from mass storage, and each

routine can end with CLA, PCLPS which will clear the subroutine

from memory and execute a RTN.

Two warnings. Firstly do not execute PCLPS while the program

pointer is in a program module. For example you may have just

finished using a program in the Statistics Module. If you then

put a global label name into ALPHA and execute PCLPS from the

keyboard, you are likely to delete most of your programs from

memory, or even to get MEMORY LOST after a breathless pause. If

you realise what is going on, you may save the day by pressing

ENTER and then ON as well. Secondly, do not delete a routine to

which you are going to return. If the last routine in memory

contains XEQ "CLEAR", then the routine "CLEAR" must not

-272-



do a PCLPS, then a RTN. Otherwise the RTN will return to an

empty space where the deleted routine was. The first thing

following this empty space might be a buffer, or a timer alarm,

or a key assignment, or something else. The program GASN in

Chapter 11 wuses this feature, but in general the results are

unpredictable. This is one example of bug 11, described in

Appendix C.

10.5 Additional HP-41CX functions and features

The HP-41CX comes with a Time Module and an Extended Functions Module

built in. This means that all the functions described so far in this

chapter and the previous one are available in an HP-41CX. An additional

nineteen functions are available and some HP-41 features have been

enhanced. The five extra Time functions and the Time function enhancements

have already been described. Nine new Extended functions and two enhanced

features will be described here; five new Extended Memory functions will be

described in the next chapter. Some of these new functions can be replaced

by short subroutines (using Synthetic Programming in certain cases) and a

few such subroutines will be described in this chapter or later ones. So

don’t give up yet just because you do not have an HP-41CX.

The features that have been enhanced on the HP-41CX are CAT and the default

SIZE. To begin with, a CAT display would be slowed down if you kept a key

pressed (except for R/S and ON) on a 41-C or a 41-CV. Hewlett-Packard seem

to have accepted the fact that most HP-41 users can read pretty fast and do

not need this feature. On the HP-41CX, pressing any key (except R/S or ON)

causes the catalogue to speed up. This helps you get more quickly to the

point you want to reach. Should you really want to slow down a catalogue

display, you can still stop it with R/S and then SST (or BST) through it.

CAT 2 has been speeded up in a second way. When started, it displays only

those items in CAT 2 that are more than seven characters long. These are

the titles of modules or of sections of modules. Two examples: the only

name in the Machine Design Module that is more than seven characters long

-273-



is the module name "MACHINE 1A". The only function names that are over

seven characters long in the Extended I/O Module are the four headers:

"-X MASS 1A","-X EXTFCN","-X CTLFNS"and"-ADV CTL FN". When you reach

the function group that you are interested in, you can press R/S to stop

the display, then ENTER (wait until the display blinks after you push R/S,

then push ENTER) to restart CAT 2 and display every function name. You can

switch between the two display modes repeatedly by pressing R/S and ENTER.

This certainly speeds up your search for a given function or program if you

know which module it is in. There is just one problem with this scheme; a

module whose name has seven characters or less will not show up in CAT 2

unless you stop it and press ENTER before you have reached that module.

The only module known to be affected is MATH 1B.

You will notice that the Time Functions show up at the very beginning of

CAT 2 and the Extended Functions show up at the very end (each is

accompanied by a separate group containing the extra HP-41CX functions).

The reason for this lies in the fact that these are ROM modules which have

been wired into the HP-41; details were given in Section 8.3.

CAT 3 is unchanged, but CAT 1 also has an additional property; it shows the

length of each program. At each END it displays the distance from the

previous END in bytes. (The first END shows the distance from the start of

program memory.) The .END. however shows the number of registers left

free, so you cannot find the byte length of the last program in memory. On

the HP-41C and HP-41CV you could get the same information by doing CAT 1

with a printer attached in TRACE mode. If you run CAT 1 on an HP-41CX with

a printer attached in TRACE mode then the program lengths will be printed

but will not be displayed. It is not obvious whether this was intended or

whether it is a "bug".

Three additional catalogues are provided. CAT 4 is just another name for

EMDIR and CAT 5 is an alternative for ALMCAT. The only difference is that

CAT 4 and CAT 5 cannot be included in a program whereas EMDIR and ALMCAT

can. CAT 6 provides a list of key assignments, showing the function name

on the left of the display and the keycode on the right. You can use R/S

-274-



to stop CAT 6, and SST and BST to move through it. In addition you can use

SHIFT C to cancel key assignments as with CAT 5 (ALMCAT). If you have

managed to assign a function or program to the SHIFT key (see Chapter 14)

then you can use CAT 6 in this way to cancel that assignment. CAT 6

provides a feature not previously available on the HP-41 itself, but it

does much the same job as the printer function PRKEYS.

CATS 4, 5 and 6 use a lot of power so they time-out after two minutes if

you have used R/S to stop them. They only use the standard keyboard, so

you cannot reassign SST or BST and use the reassigned keys in USER mode

with these catalogues. The idea of extending the CAT function is a good

one, it has been taken even further by the CCD ROM Module (see Chapter 12).

The other feature that has been enhanced is the default SIZE value. On an

HP-41C the SIZE after a MEMORY LOST depended on the number of memory

modules plugged in. Forty six registers were set aside for programs,

buffers and key assignments; all the rest were left for data, giving SIZE

values between 17 on a bare 41C and 273 on an HP-41C with a quad memory

module or an HP-41CV. On the HP-41CX the SIZE after MEMORY LOST is

reset to 100; an easier and more convenient value.

Apart from indirect comparisons which will be described in the next

sections, the CX contains three new general-purpose Extended Functions,

IREG?, CLRGX and GETKEYX.

I REG? returns the address of the first statistics register. If you do

I REG 21, X REG? then 21 will be returned to the X register,

lifting the stack unless stack lift is disabled. If you do

r REG 21, SIZE 010, REG? then you will still get 21, even

though the registers are nonexistent.

This function is most useful in general-purpose subroutines that

use the results of statistical operations. You may for example

need the value Ixy/n and this could be obtained by the following

subroutine:

-275-



CLRGX

LBL "t XYN", ZREG?, 5, +, RCL IND X,

ISG Y, LBL 00, RCL IND Y, /, RTN

The subroutine can be called from various programs and will work

wherever the statistics registers may be. The LBL 00 does not do

anything; it serves as a null operation after the ISG.

lets you clear data registers selectively according to a control

word of the form bbb.eeeii in X. This control word has the same

form as the control word for ISG and DSE; bbb is the first

(beginning) address to be cleared, eee is the last (end) address

and ii is the increment. Signs and fractional parts after ii are

ignored, 1i is treated as 01 if it is zero. If eee is smaller

than bbb or smaller than bbb+ii but eece and bbb both exist then

bbb alone is cleared.

This function allows you to clear selected sections of memory

without the wholesale destruction caused by CLRG which clears all

registers. It is also very useful in clearing rows or columns of

matrices; a single column of an m x n matrix can be cleared if

you set ii equal to m.

CLRGX is one of the HP-41CX functions that can be easily

performed on other HP-41s. Enter the subroutine shown below and

execute it by doing: bbb.eeeii, XEQ "CLRGX"

LBL "CLRGX"

0

LBL 01

STOIND Y

ISGY

GTO 01

RDN

RTN

-276-



This stores zeroes into all the registers specified by bbb.eeeili,

and if eee is too small then it clears bbb only. The routine is

not exactly like CLRGX because it does not check first whether

register ece exists, this can be added with a few extra steps:

01 *LBL "CLRGX"

02 FRC

03 1E3

04 ST*Y

05 RDN

06 X<>L

07 CF 25

08 RCLINDL

09 CLX

10 LBL 01

11 STOINDY

12 ISGY

13 GTO 01

14 RDN

15 RTN

The above stops at line 08 if register eee does not exist and

stops at line 11 if register bbb does not exist.

GETKEYX "get key by X" is an improved version of GETKEY. Instead of

waiting 10 seconds for a key to be pressed, GETKEYX waits the

number of seconds specified as ss.s in X. This can be anything

from O up to 99.9 seconds. Small values are only useful in games

that demand a fast response, 1 second is much more useful than

the unbearably long 10 seconds of GETKEY, longer intervals can be

used to display a value for a specified period without stopping a

program. An additional feature is that ss.s can be negative and

this makes the HP-41CX react as soon as the key is pressed down,

not when the key is released. If a key is already being pressed

and X is negative then GETKEYX does not wait but carries on at

-277-



once. The user can then keep a key pressed down and a subroutine

can keep using GETKEYX to check if the key is still down. When

the key is released it acts in the normal way. This means that

any key except R/S or ON is ignored if the program is still

running. If the program has stopped though then the key behaves

like a normal keyboard operation.

GETKEYX always alters the stack as follows. It lifts Y and Z

into Z and T, it saves X in L, it puts the keycode into Y and it

puts a character code into X. In ALPHA mode (flag 48 set) the

character code is a number representing the ASCII code for a

character, or it is a zero for any other key (such as ASTO or

AVIEW). In normal mode (flag 48 clear), the character code

represents the ASCII code for numbers, digits and CHS. If you

press the dot key it returns 46 if flag 28 is set (decimal point)

and 44 if flag 28 is clear (decimal comma). For any other key it

returns zero in X. If no key is pressed, both X and Y contain

zero. Finally, GETKEYX allows you to use SHIFT. This restarts

the time interval and makes the key code negative, so that

shifted keys can be used, for example with PASN. Even the toggle

keys can be shifted.

10.6 Indirect comparisons.

The six indirect comparison tests are very powerful functions yet they are

described in only eight lines of the HP-41CX manual. Originally, the HP-

41C had five functions to compare X with Y and five to compare X with zero.

These were clearly designed for mathematical use, in particular the

comparisons with zero help you avoid errors such as dividing by zero or

taking the logarithm of a non-positive number. Only X=Y? and X#Y? allowed

you to compare text strings, and those were clearly no good for sorting.

All the new functions are really indirect comparisons through Y. For

example the original functions X=0? and X=Y? have a new companion X=IND Y?

though this is called X=NN?. X=0? uses only one register (X), X=Y? uses

-278-



two registers (X and Y), X=NN? uses three registers (X, Y which contains an

address, and the register addressed). To compare X with the value in

register 17 you used to have to do RCL 17, X<>Y, X=Y?. The new function

lets you do: 17, X<>Y, X=NN?. This takes one byte more but we shall soon

se¢ (point viii below) how useful it can be. Let us examine the various

properties of these functions:

i) The six functions can be considered as three pairs of opposite tests:

X=NN? X#NN?

X<NN? X>=NN?

X<=NN? X>NN?

Remember that a test followed by two GTOs (one if true, the next if

false) can be usually replaced by the opposite test followed by one

GTO and then by the instructions to be executed if the original test

was true. See Section 6.7.

i1) The functions are CAT 2 functions, so they take up two bytes each when

stored in a program whereas the direct comparison functions are CAT 3

functions and only take one byte each. It is therefore better to use

direct comparisons where they are available as an alternative to the

indirect comparisons.

i11) The tests form a complete set, whereas the direct tests do not have

X>=0? or X>=Y?. (The HP-41CX manual has an error in the list of

direct tests, it gives X>=Y? instead of X#Y?) However X>=Y? can be

simulated by X<Y?, X=Y? (this technique was described in Section 6.7,

the second test is always false if executed). You can also use

X<>Y, X<Y? but in this case the contents of registers X and Y are

reversed after the test and may need to be exchanged again.

iv) All the tests allow comparison of numbers or text strings. Alpha

strings are always greater than numeric data (so that the text string

"1.4" is greater than the number 1.4). Alpha strings are compared one

-279-



vi)

character at a time, starting from the left, and comparing the ASCII

values of the characters. Thus "a" (ASCII value 97) is greater than

"A" (ASCII value 65). The ASCII values were given in Table 8.1. "AB"

is greater than "A" because shorter strings are compared as if they

had nulls attached at their right end. (An exception to this rule is

that a string followed by a real null character is less than a string

which is identical but has no null character at the end.) All this

allows for alphabetic sorting which can be used in word games or in

applications such as checking lists of customers’ names.

As might be expected, the functions execute just like direct

comparisons. From the keyboard they display the answers "YES" or

"NO". When executed in a program they obey the rule: "do next step if

true, otherwise skip it."

Instead of a data register number, the Y register can also contain one

of the text strings "X", "Y", "Z", "T" or "L". These allow the user

to compare register X with any of the stack registers, but how much

use is this? Let us go through the stack registers one by one.

X allows you to perform the tests X=X?, X#X? and so on. Since X is

equal to itself, X=X? just provides a very esoteric NOP (a do-nothing

function, see Section 6.8). X<=X?, X>=X? are also NOPs, the other

three functions force you to skip the next step, but this can be done

by much simpler tests that are always false, for example FS? 53.

Y provides a roundabout alternative to the tests X=Y? and so on, but

register Y must contain the letter "Y". These tests are therefore of

little use unless you want to compare other text strings with the

letter "Y".

Z can be used when you want to make comparisons in the stack alone,

without using any data registers. This may be of some help when you

have a very large program or are even forced to use SIZE 000. For

numeric values it is usually easier to rearrange the stack so as to

-280-



use a test comparing X and Y, but text strings cannot be compared this

way (except for X=Y? and X#Y?) so this method does have uses.

L can be used in the same way as Z, but it can also be used

specifically to compare X with a value saved in L by an arithmetic

function. Mind you, the same test could nearly always be made by

doing LASTX, X=Y? and register Y would not have to be used just to

hold an "L". However there may be times when you want to make such a

test without moving the contents of the stack.

T can be used in the same way as Z. Another use for T is to check a

set of wvalues, particularly in a data file. Since the pointer is

automatically updated after each GETX, you could set the pointer, put

the test value in X and "T" in register Y then use the loop:

LBL 01

GETX

RDN

X<=NN?

GTO 01

This loop would extract values from the data file one at a time, put

them in T and compare them with X. When the test becomes false (any

test can be selected) then the program leaves the loop. This loop is

useful for a data file that contains text strings. If the data file

contains only numeric values then a direct test would be just as easy,

as follows:

LBL 02

GETX

X<>Y

X>Y?

GTO 02

-281-



vii)

Viii)

This works exactly like the LBL 01 loop above and is also one byte

shorter, but X>Y? does not work for text strings. If you use non-

normalised numbers (NNNs, see Section 8.2 and Chapter 14) then you

will know that recalling them (even for a test) normalises them. The

indirect stack comparisons are therefore very useful if you need to

compare NNNs, since they do not normalise anything.

In conclusion using the stack for indirect tests can be helpful if you

are comparing text strings in the stack (without using numbered data

registers) and vital if you are comparing non normalised numbers.

If Y contains any alpha value other than "X", "Y", "Z", "T" or "L"

then the DATA ERROR error occurs. If Y contains a number, then its

sign and fractional part are ignored. If the number is 1000 or more,

then you get a DATA ERROR. If it is less than 1000 but greater than

SIZE-1 then you get NONEXISTENT.

The indirect comparison functions are particularly useful if you want

to search through a set of registers. As an example, you may wish to

check if the value contained in register X has already been saved in

one of the registers 20 to 30. You can search through these registers

one by one, using the index 20.030 in register Y and incrementing it

by use of ISG Y. You could then have a loop as follows:

-282-



101

102

103

104

105

106

107

108

109

110

111

112

113

20.03 ; Set up the loop index

X<>Y ; and put it in register Y

LBL 03 ; Begin loop

X=NN? ; Is X equal to the next indexed register ?

GTO 04 ; If yes then go to say it is found

ISGY ; If not then

GTO 03 ; go and try the next index value

"NOT FOUND" ; Get here at end of index list, so display

PROMPT ; NOT FOUND

LBL 04 ; Get here if value was found, so display

"FOUND AT " ; where it was found.

ARCL Y

PROMPT

Of course the index can be anything you choose, and you can check

every second or third or nth value, not every single value. You can

use any test you like, and you can take specific actions instead of

just displaying a message at the end. Without the indirect comparison

functions you could still make the same tests, but you would have to

replace lines 104 and 105 with something like the following:

104

105

106

107

108

109

110

111

112

RCLIND Y

X<>Y

CF 10

X=Y"?

SF 10

X<>Y

RDN

FS?C 10

GTO 04

This mimicks lines 104 and 105 exactly but is 7 lines and 10 bytes

longer.

test 1s X=Y? or X=Y?, but they are necessary for the other tests.

The two X<>Y lines (105 and 109) are not necessary if the

-283-



ix) Use of the indirect comparison functions for sorting has already been

mentioned but an additional sorting technique called index sorting can

be used with these functions. Imagine you have a list of customers,

and for each customer you store the following information:

/Customer no./name/tel. no./no. of next customer in alphabetic order/

If you store this information in order of customer number you may not

need to store the customer number itself (it could be that customer 1

is in register 51, customer 2 is in register 52 and so customer n is

in register 50+n). But what if you want to print a list in

alphabetical order? You use the "next customer" pointer to go from

one customer to the next, not in numeric order but in alphabetic

order. These pointers (or indices) provide you with a "linked list".

You can have more than one set of pointers, another set could be used

to point backwards to the previous customer, another could start from

the customer who owes the most and end at the one with the best credit

and so on. Each linked list needs special pointers to show which is

the last register of the list, which element is the first in the

sequence, and also a special pointer value which says "there are no

more items, this is the last one in the sequence". In certain cases

it is better to use a "ring" with no first and last item. For the

purposes of an example, take a simple list in which each element

contains one word, and a pointer to the next word in alphabetical

order. The words are in registers starting at 51 and their

corresponding pointers are in registers starting at 10l1. Consider a

list containing just the words "A", "AND", "BUT", "ELLLLL

Register Value in Register Pointer to

number register number next word

50 54 (last register) 100 52 (first word in list)

51 BUT 101 53 (points to EZZZLLE

52 A 102 54 (points to AND)

53 ILIIIE 103 999 (last word in list)

54 AND 104 51 (points to BUT)

-284-



Each word in the list "owns" a pointer which is stored 50 registers

beyond the word and which points to the next word in alphabetical

order. You can add a new word to the list by putting in the next

register (55 in this case), and by rearranging the pointers, without

moving the words. For example, say you want to add the word "IS" to

the list at the next address, and to rearrange the pointers. Put the

word in the Alpha register and call the subroutine:

01 *LBL "ADDWRD"; Subroutine to add a new word to the list

02 ISG 50 ; Increment the address of the last word in the list

03 LBL 00 ; A NOP to follow the ISG

04 ASTO IND 50 ; Store the new word at this address

05 100 ; Register where address of first word of sequence is

06 RCL IND X ; Get address of first word in sequence

07 ENTER ; Lift stack so next step does not lose address

08 ASTO X ; Put word to be tested into X

09 LBL 01 ; Start loop to compare word in X with words in list

10 X<NN? ; Is new word less than current word in list

11 GTO 02 ; Yes, so go to put its pointer into pointer list

12 X<>Y ; No, get word address to X

13 50 ; Add 50 to it,

14 + ; to get address of this word’s pointer

15 X<>Y ; Put test word back in X

16 RCLINDY ; Fetch pointer to next word in sequence

17 X<>Y ; Put this pointer in Y

18 GTO 01 ; Go back to repeat the test

19 LBL 02 ; Get here if new word belongs before word tested

20 RDN : Roll the word out of the way (it was in X)

21 RCL 50 ; Recall address of the new word

22 STOIND Z ; Make the sequentially previous word point to it

23 50 ; Add 50 to address of the new word,

24 + ; to get location of the pointer it owns

25 X<>Y ; Put this pointer address in Y and

26 STOIND Y ; store address of sequentially next word there;

27 RTN ; (this was the last word tested) Finished, so return.

-285-



Try setting up the short word list and its index list, then putting

"IN" into the Alpha register and running the routine. It is much

quicker than a sort that needs to move values to make space for a new

one, and it works with alphabetic or numeric values. As the word "IN"

fits alphabetically into the sequence between "BUT" and "THE" the

pointer belonging to "BUT" (in register 101) should now point to "IN"

(address 55). The pointer belonging to "IN" (in register 105) should

point to "THE" (in register 105). The whole sorting operation just

changes the values in registers 101 and 105. Check that this is what

has happened. The original word is still in the Alpha register. If

you want to sort words of more than six letters then you can write a

very similar program using a text file.

The routine is rather long as it needs to set up initial and final

values, but the central part is the short loop in lines 09 to 18.

Various index sorting programs can be built around this loop. Index

sorting is faster than normal sorting because there is no need to

rearrange a set of values, only an index is changed, but it takes

twice as much space as normal sorting since registers are needed for

the pointers as well as for the data values themselves.

Exercises

10.,A  Write a routine to convert a string of upper case letters in the

Alpha register into lower case letters. You will need to use ALENG, ATOX,

X<>F and XTOA. If you cannot work out how to do this then look at the

beginning of Section 16.3. This operation is useful for work with printers

that do not use flag 13 to set lower case, and to encode text strings so

they can not be read in the display.

10.B If you have done Exercise 10.A then try writing a routine to convert

from lower case back to upper case. Change only those characters that are

lower case letters. See if you can deal with null characters too.

-286-



10.C Write a routine using the functions STOFLAG and RCLFLAG to display a

number in register X without showing its fractional part or decimal point,

and then to restore the original display mode.

10.D If you have an HP-41CX try writing a program to sort a list of words

which are entered into the Alpha register one at a time. Use the index

sorting routine shown in Section 10.6. When you store the first word you

will need to initialise the list by pointing to that word from the list

start and by making the word point to a nonexistent "next word" by setting

a large pointer value, such as 999 used in the example.

10.E If you have done Exercise 10.D then try writing a program to print the

list of words, both in the order in which they came, and in alphabetical

order. Programs like this are most useful if the words or items to be

sorted come from outside the HP-41, for instance from a telephone or other

device connected via HP-IL.

-287-





CHAPTER 11 - EXTENDED MEMORY

11.1 What is Extended Memory?

The largest group of functions in the Extended Functions/Extended Memory

module is that concerned with using Extended Memory. The normal RAM memory

of the HP-41, or Main Memory, as described in Chapter 8 provides numbered

data registers. It is also used for programs and so on, of course. Each

register can be used individually, for storing and recalling data and for

doing arithmetic. In general there is no particular connection between the

registers; a subroutine can use any combination of registers that seems

convenient: a subroutine that uses four registers could use 2, 3, 5, and

77, just as well as registers 21, 22, 23, and 24. Sometimes though it

makes sense to treat a block of several registers as one unit, for example

the six statistics registers, or the registers that contain a complete

programin program memory. Extended memory on the HP-41 is RAM memory used

specially for handling blocks of registers, in units called files. A file

could be made up of six registers, holding the results of some statistical

calculations, it could be twenty registers long and hold a set of telephone

numbers, or it could hold a program for which there is not enough room

available in main memory. Each file begins with a header consisting of two

registers, one to hold its name (up to 7 characters long) and the second to

hold the file type, length, and the file pointer. The last file is

followed by a partition register (or End-of-Memory marker).

The Extended Functions Module (and HP-41CX) contains 127 usable registers

of Extended Memory. You can also plug in one or two Extended Memory

modules each of which provides another 238 usable registers. If you plug

in two Extended Memory modules, one must go into Port 1 or Port 3, and the

other must go into Port 2 or Port 4. Never plug in two Extended Memory

modules one above the other. The Extended Functions module can go into any

free port though. With a full Main Memory and full Extended Memory, an HP-

41 has 6,458 bytes of usable RAM in addition to the stack registers and the

ROM memory. Details of how the Extended Memory fits into the RAM memory

layout of the HP-41, and of how Extended Memory can be treated as if it

-289-



were ordinary Main Memory, will be given in Chapter 16.

11.2 Creating and deleting files

The HP-41 Extended functions use three types of files. Data files contain

data in registers just like Main Memory, Program files contain complete

programs copied from Main Memory, and text files (or ASCII files) contain

text strings like those in the ALPHA register but up to 254 characters

(bytes) long. This section describes how files are created and deleted.

After a file has been created, it is immediately ready to be used with

additional commands, so it is called the working file or current file. If

you want to work with a different file then you have to use a command to

select the chosen file as your current file. The "current file" in

Extended Memory is rather like the "current program" in Main Memory; it is

the one that you are working with (using or altering it). There is only

one "current file" at a time. The safest commands to use for selecting a

current file are RCLPTA, SEEKPTA, FLSIZE or EMDIR because they do not

alter the file.

SAVEP is the simplest function to create a file. It copies a program

directly from Main Memory into Extended Memory without changing

it, creating a file just long enough to hold the whole program.

The X register is not used, but the ALPHA register should contain

two names separated by a comma:

NAMEI1, NAME2

The first name should be the name of any global label in the

program you want to save. The second name should be the name of

the file that you want to create. If you omit the comma and the

second name then the file will have the same name as the label

specified. If you omit the first name but leave the comma and

the second name, then the current program will be saved in a file

of the given name. If the ALPHA register is completely clear, or

if there is nothing after the comma then you will get a "NAME

ERR" message. The names can be more than seven characters long,

but all characters after the seventh will be ignored. A second

-290-



CRFLD

CRFLAS

comma and anything after that will be ignored too. A file name

less than 7 characters long will be filled out with blanks on the

right in Extended Memory (the Alpha register is not altered). As

names shorter than seven characters are filled out with blank

spaces on the right, file names such as "X and "X " are

exactly the same as "X". If more than one program contains a

label corresponding to the name in ALPHA, then the one nearest to

the .END. (bottom of CAT 1) will be copied. If no such label

exists, you will get the NAME ERR message. If a data file or a

text file with the same name exists, you will get a "DUP FL"

error message, but if a program file with the same name exists,

then be warned; it will be deleted and the new one will be added

at the end of Extended Memory. Once a program has been saved in

Extended Memory it can be cleared from Main Memory (with CLP or

PCLPS) to provide more room for other purposes. If you have the

older type of Extended Functions Module (EXT FCN 1B) then you

should never execute SAVEP while the current program is in a

plug-in module. For instance if you have been using a program in

a module such as the Maths Module or one of the printing programs

in the printer or HP-IL modules, always do a CAT 1 or GTO.

before doing SAVEP, otherwise you may get MEMORY LOST.

Creates a data file in Extended Memory. The length of the data

file (the number of registers in it) is taken from the value in X

(sign and fraction ignored as usual). When you work out the

length of the file, count just the number of registers you need;

the header length is added automatically. The name of the data

file is taken from the first seven characters in ALPHA. As with

SAVEP, characters beyond the seventh are ignored, spaces are used

for padding out a short name, and commas are treated as

separators. CRFLD will not replace a file that already exists.

Creates a text file (or ASCII file) in Extended Memory. The name

and length are given in ALPHA and X as for CRFLD, and CRFLAS will

not replace a file that exists. If you want to work out exactly

-291-



PURFL

how long a text file needs to be then proceed as follows.

i) Add up the number of all the characters in all the text

strings you will use.

ii) Add 1 for each text string and add 1 to the final result.

iii) Divide by 7 and round up to the next whole number.

This gives the number of registers you will need, but if you are

not sure exactly how much space you will need then increase your

estimate by about a quarter. You can increase a file’s size on

the HP-41CX or with Synthetic Programming, but otherwise you will

have to use one of the following roundabout methods:

A) Create a larger file and copy the text to it from the first

one, using the Alpha register to copy 24 bytes at a time.

B) Copy the file to a mass medium HP-IL device, delete the old

file in Extended Memory, create a new file, and copy back to

the new file. See the SAVEAS and GETAS functions.

Purges (deletes) the file whose name is given in ALPHA. A name

must be given, the rules about name length, use of blanks and

commas apply as for SAVEP. If you have one of the older Extended

Functions Modules (most of those that show up as -EXT FCN 1B in

CAT 2) then PURFL has the following nasty bug. After executing

PURFL you must make a file into the working file, otherwise you

lose all files in Extended Memory. The bug is described in

detail in Appendix C, and a way to recover from it is also

described. This can be used as a quick way to clear all Extended

Memory for re-use.

11.3 File pointers.

In Main Memory each data register can be identified just by its number, but

in Extended Memory the registers have to be numbered separately in each

file. To speed up the handling of data in the files, each file contains a

pointer to the current record. In data files, each record is simply a

-292-



single data register and the pointer is the number of the register that

will be read or written next. After every read or write the pointer number

is increased by 1: to access any record except the next one in a data file

you must reset the pointer. The first record in a file is record number 0

just as the first register in Main Memory is register 00.

In text files, the data are not stored one register at a time, and the

pointers are used in a different way. A text file contains records, each

of which can contain from 1 to 254 characters. A record is rather like one

line on a page; it may have a few letters or a lot. You can add text to

each record, or delete text, rather like adding to lines on a page, or

crossing out part of a line or a whole line. Just as you can pick any

letter on a page by giving the line number and saying which letter it is in

the line, so you can point to a character in a record by specifying the

record number and the character number in the record. The first record is

number 000, and the first character in a record, counting from the left is

again 000.

In general then a data file pointer is specified as a register number:

rrr

and a text file pointer is specified as a record and a character position:

ITr.ccc

In program files, the pointer cannot be used, since the file can only be

read or written as a whole. A pointer is set up when a program file is

written though. When a program is copied to a program file, the values of

all the bytes are added together and the remainder of dividing this number

by 256 is calculated. This becomes a checksum byte and is stored after the

last byte of the program. The file pointer is set to hold the number of

bytes in the program, for later use. Thus the pointer in a program file

contains the length of the program in bytes. When a program is to be

copied back from Extended Memory to Main Memory, the checksum is

recalculated, and if it differs from the value stored then the HP-41

assumes the program file has been damaged and refuses to copy the program

back. Instead it displays CHKSUM ERR. Once again, Synthetic Programming

will be able to help you recover from such a problem. If you are unsure

-293-



about the meaning of bytes, reread Chapter 8. Just as the current file is

the one you are working with, so the current pointer is the position of the

pointer in that file.

RCLPT

RCLPTA

SEEKPT

is used to recall the pointer value of the current file to

register X. The contents of the ALPHA register are ignored, the

stack is lifted unless stack lift is disabled. If the current

file 1s a data file then the current register number rrr will be

recalled. If the current file is a text file then the current

record and character pointer rrr.ccc will be recalled, and if the

current file is a program file then the program length in bytes

will be recalled.

works like RCLPT except that it first changes the current file to

that named in the ALPHA register. The file naming rules apply as

usual except that the ALPHA register contents must not begin with

a comma. If no name is given then the current file remains the

same, so RCLPTA acts exactly like RCLPT.

resets the pointer in the current file to the value specified in

X. Minus signs and irrelevant fractional parts are ignored.

SEEKPT cannot be used with program files; it gives FL TYPE ERR,

which is just as well, otherwise the checksum byte address would

be lost.

SEEKPTA works like SEEKPT except that it first changes the current file

to that named in the ALPHA register. The file naming rules apply

as for RCLPTA, and as with RCLPTA no name makes SEEKPTA

the same as SEEKPT. If ALPHA contains a valid text file or data

file name but the pointer cannot be positioned as required then

the file becomes the current file but its pointer position is not

changed.

It should be clear that recalling the pointer or resetting it are necessary

operations and we shall come back to these functions in the next two

-294-



sections. When a new data file or text file is created, its pointer is set

to the very start of the file. If a different file becomes the current

file, the position of the pointer in the previous current file does not

change, so you can go back to the same place in the file later with RCLPTA.

11.4 Using data files.

Data can be stored in data files, and retrieved from them, in three ways;

one register at a time, or in blocks of registers, or the whole of Main

Memory data at once.

SAVEX does what it says: it saves the contents of register X into the

current register in a data file. The pointer is then incremented

by one, so that the next SAVEX would save X into the next

register in the data file.

GETX gets the data in the current register and copies it from the data

file to register X, lifting the stack wunless stack 1ift is

disabled. The current pointer is incremented by one.

If the last register in the data file is accessed by SAVEX or GETX then the

pointer is incremented again so that its value becomes larger than the

number of registers in the file. The next SAVEX or GETX will then result

in "END OF FL" unless the pointer is reset first.

SAVERX saves a block of Main Memory registers according to the value in

X. The value in X should be of the form bbb.ecee where bbb is the

register at the beginning of the block and eee is the register at

the end of the block. The registers are copied to the current

file (if it is a data file) starting at the current pointer.

When SAVERX is finished, the pointer is set to the next value

past the end of the registers saved. Minus signs and irrelevant

fractional parts of bbb.ecce are ignored. If eee is smaller than

bbb then only register bbb is saved in the data file.

-295-



GETRX uses a value bbb.ecee as in SAVERX to copy a block of registers

from a data file into registers bbb to eece. The first register

copied is the one at the current pointer, and the pointer is

reset to the first register past the end of the block. If the

data file does not contain enough registers to fill from bbb to

ece then no registers are copied. (This is contrary to the

statement in the Extended Functions Manual, but in agreement with

the HP-41CX Manual.) If eee is less than bbb then information is

only copied into register bbb.

If eece is greater than the last register in Main Memory, then SAVERX and

GETRX display NONEXISTENT and do nothing.

SAVER

GETR

copies all the data registers from Main Memory to the file named

in the ALPHA register. If no file is named, the current file is

used (if it is a data file). SAVER sets the pointer to 000

before the copying starts and sets the pointer to the register

above the last one used when it finishes. This is different from

SAVEX and SAVERX but it is sensible because you are likely to use

SAVER only once in a data file, since there are so many registers

to copy. If the file is not big enough to hold all the data

registers in Main Memory then an END OF FL error occurs, no data

are moved, and the pointer is not changed. This makes SAVER very

safe to use, since no data can be lost, but it also is very

restrictive.

copies data registers from the file named in ALPHA (if it is a

data file) or the current file (if ALPHA is empty) to Main

Memory, starting at register 000 of the data file and at register

00 in Main Memory. The file pointer is not used, but at the end

it is set to the register after the last one copied. GETR

carries on copying registers until it comes to the end of the

Main Memory registers or to the end of the data file. Unlike

SAVER, GETR works even if there are fewer registers in the data

file than in Main Memory. This allows you to change SIZE after

-296-



doing SAVER, but since it lets you lose data, maybe SAVER need

not have been so strict about having to save all the registers.

Let us now look at a few uses of the three types of data saving.

i) SAVER and GETR are helpful when you want to store all or most of

your data registers before changing SIZE or running a program

that would destroy the data. They are easy to use because they

do not use pointers and do not require you to use a separate

command for selecting the current file (but the file must have

been created beforehand). Consider the following: you need to

set fifty registers to zero to use them for a long calculation,

but at the end you want to reset them to their original values,

without losing the new contents of the remaining registers. You

decide to set SIZE to 100, save the contents of registers 50 to

99, clear registers 50 to 99 and use them for the calculations,

then restore registers 50 to 99 to their original values, without

changing the new values of registers 00 to 49.

Using SAVER and GETR you can do this as follows:

line step comments

no.

101 100 ; Set SIZE

102 PSIZE ; to 100

103 "TMP" :

104 CRFLD ; Create a data file 100 registers long

105 SAVER ; Save all register contents

106 50 ;

107 PSIZE ; Reduce SIZE to 50

108 X<>Y ;

109 PSIZE ; Increase it to 100 again, so that

registers 50-99 are clear.

At this stage you can do your calculations, using registers 50-

99, for example a matrix summation and inversion. At the end you

want to recover the original values of registers 50-99, without

-297-



i1)

losing the new contents of registers 00-49.

201 50 ;

202 PSIZE ; Save the current contents of registers 00-49,

203 "TMP" ; placing them in registers 00-49 of the data

204 SAVER ; file "TMP". Registers 50-99 of the file

205 100 ; are not changed.

206 PSIZE ; Reset the SIZE to 100

207 GETR ; This restores registers 00-49 to their

208 PURFL ; latest values, and 50-99 to their original

values. Then we delete the data file.

The main disadvantage of SAVER and GETR is that they need a large

file in Extended Memory. SAVERX and GETRX are more selective and

allow you to save or recover only those registers that need to be

copied. In a way SAVERX and GETRX are like REGMOVE; they

copy a block of registers, but to and from Extended Memory, not

to another region of Main Memory. Since the example above really

only needs fifty registers, let us see how it can be worked with

SAVERX and GETRX using a file only fifty registers long.

101 100

102 PSIZE

103 50.099 ;

104 "TMP" ; Create a data file 50 registers long.

105 CRFLD ; CRFLD ignores the fractional part.

106 SAVERX ; Save registers 50 to 99 in the file.

107 PSIZE ; Clear registers 50 to 99 by

108 100 ; setting SIZE to 50, then back

109 PSIZE ; to 100 again.

(If you have a 41CX you can replace lines 107-109 with CLRGX.)

When you have finished your calculations you can recover

registers 50 to 99 as follows:

-298-



iii)

201 O

202 "TMP" ; Select the "TMP" data file as the current

203 SEEKPTA ; file, and set the pointer to 0.

204 50.099 ;

205 GETRX ; Recover registers 50 to 99.

206 PURFL ; Delete the file.

This takes two program lines fewer than the first version, but it

is 4 bytes longer (unless you have an HP-41CX, in which case it

is 1 byte shorter).

SAVEX and GETX are more useful when you want to store one value

at a time, not a whole block of registers. For example you may

want to save a set of results, calculated one at a time, but in a

place that will not be in danger of being altered by subsequent

calculations. A data file built up by SAVEX would be ideal for

this.

Another use for SAVEX and GETX is to save the contents of the

stack in a data file. The stack cannot be treated as a block of

registers (unless you use Synthetic Programming), so it cannot be

saved with SAVERX. The following can be used instead to save the

stack:

101 SIGN : Save X in register L

102 RDN

103 4

104 "STAK" ; Create a file of 4 registers

105 CRFLD

106 R?t

107 SAVEX ; Save T

108 R?t

109 SAVEX ; Save Z

110 Rt

111 SAVEX ; Save Y

112 LASTX

113 SAVEX : Recover X from L and save it

-299-



At this stage registers X, Y, Z, T are unchanged and have been

saved in the data file "STAK". Note that register L is altered

and is not saved.

To recover the stack use:

201 0

202 "STAK" ; Select the "STAK" data file and set the

203 SEEKPTA ; pointer at its start.

204 GETX

205 GETX

206 GETX ; GetT,Z, Y, X.

207 GETX

208 PURFL ; Delete the file.

At this point, X, Y, Z and T have their former values again.

Note that register L is not recovered.

CLFL Should you wish to delete the contents of a data file and replace

them with all zeroes then put the file name in ALPHA and execute

CLFL (clear file). The named file becomes the current file and

the pointer is set to zero. CLFL also clears text files; this

will be described under POSFL in the next section. CLFL needs a

file name; it will not just clear the working file.

11.5 Using text files.

You can change a text file much as you can change a page of text. Just as

you would change a few letters in a line, so you can use functions that

change a few characters in a record. Just as you can remove or add a few

lines on a page so you can use functions to remove or insert records.

APPREC This adds (appends) the contents of the ALPHA register as a new

record at the end of the current file (if it is a text file).

You can use this to put some records into a newly created file

which is empty to begin with. You can also use it to add new

records at the end of a file that already exists. You do not

-300-



INSREC

DELREC

need to reset the pointer before using APPREC, but afterwards it

1s positioned at one character past the end of the last record in

the file. This allows you to add more text to the last record

without resetting the pointer. You may need to do this often

since the ALPHA register can only hold 24 characters at a time

which may not be enough for a whole text record. Since the

contents of ALPHA are used to add text to text files, they cannot

be used at the same time to select the text file as the current

file. You must use a separate command such as RCLPTA,

SEEKPTA, or FLSIZE. On the HP-41CX you can use EMDIRX

too. (The HP-41CX contains an additional "text-editor" function

ED which you may find easier to use than the functions described

here. ED 1is described in Section 11.9. It can only be used for

manual alteration of a text file.)

This inserts the contents of the ALPHA register as a new record

immediately before the current record (the one pointed to by the 

pointer in the current file, assuming it is a text file). INSREC

can be used to insert extra records at any time, but it is

particularly useful when you are adding records to a file with

APPREC and realise you have just missed a record. Without

resetting the pointers you can put the record you skipped into

ALPHA, then execute INSREC, and the record will be put into the

file as the next-to-last record. After INSREC the pointer is

positioned at one character past the end of the record inserted,

so that you can add more text to the same record.

This deletes the record pointed to by the pointer. The pointer

is then set to the first character of the next record which means

the record number is not changed but the character pointer is set

to 0. Another DELREC will therefore delete the next record (if

there is one), but an INSREC will put a new record in the place

 

of the one just deleted. You may think that it would be

difficult to find the record you want to delete, but wait until

you read about POSFL.

-301-



The next three functions work like APPREC, INSREC and DELREC but

handle characters within a record. All work on the current file, but only

if it is a text file.

APPCHR appends the contents of the ALPHA register to the end of the

INSCHR

DELCHR

current record in the current file and moves the pointer to one

character past the end of the current record. This function lets

you build up records longer than 24 characters, by using APPREC

to create a new record, and APPCHR to add to it.

inserts the contents of the ALPHA register before (to the left

of) the current pointer. The current pointer points at the same

character as it did before INSCHR was executed. If the current

pointer is at the end of a record (one character past the last

character the in record) then INSCHR works just like APPCHR.

Like APPCHR, INSCHR can be used repeatedly to add characters

to a record, but at any point in the record.

A little different from the other functions because it uses the

number in the X register and deletes that many characters from

the current record, starting at the character pointed to by the

current pointer. The sign and fractional part of X are ignored

as usual. The current pointer value does not change, so after

DELCHR it is pointing to the first character past those deleted.

If there are fewer characters available to delete than the number

in X then all the characters from the current pointer to the end

of the record are deleted and the pointer is set one character

past the end of the record. (No error message is generated.) If

the number in X is greater than or equal to 1000 then no

characters are deleted and the "DATA ERROR" message appears.

(This fact is worth noting here because it does not appear in the

manuals.)

If any of the functions APPREC, INSREC, APPCHR, INSCHR fail because

-302-



there is not enough room in a text file then they generate END OF FL. The

pointer is not changed.

POSFL  You may have been wondering how you can find the place at which

you wish to make changes in a file. This is accomplished by use

of the function POSFL. POSFL goes through the current file,

starting at the current pointer and searches for a text string

that matches the contents of ALPHA. If a matching text string is

found, the pointer is set to the first character of that string,

and the pointer value is recalled to X, lifting the stack (unless

stack lift is disabled).

If you want to change SMITH to SMYTHE in the current file you can do the

following:

i) O0,SEEKPT to go to the start of the file

i1) "SMITH", POSFL to find the offending text string

i11)  5,DELCHR to delete the string (you can use ALENG instead

of 5 if you do not know the length of the string)

iv) "SMYTHE", INSCHR put in the new string.

Note that the pointer operations are designed to let you do all this without

having to reset the pointer yourself.

If more than one string matches the contents of ALPHA, POSFL locates the

first matching string at or after the current position. If you have found

a copy of the text string and want to locate a second copy then you must

move the pointer forwards. Otherwise you will find the first copy again

and the pointer will not have moved.

If the string is not found then the pointer is not changed and POSFL

returns -1 to X. This happens if the string does not exist in the file. It

also happens if the ALPHA register is empty, or if the search starts at a

point in the file past the last occurrence of the string. POSFL should put

this -1 into X and lift the stack in order to change the stack in the same

way whether the string is found or not. Unfortunately this does not happen

if you have the older EXT FCN 1B module. In this case, the -1 overwrites

-303-



register X and puts the previous value of X into register L. This means

that you have to be very careful if you are using POSFL while some

important values are stored in the stack. Any program you write can be

made to work with POSFL on a given HP-41, but it may fail on another HP-41

which has a different version of the Extended Functions and therefore

alters the stack in a different way. To get around this execute ENTER

immediately before POSFL. The stack will lift, stack lift will be

disabled, and the pointer value or -1 will always be written into X

without a second stack lift. Only the value in register L will differ from

one HP-41 to another, the rest of the stack will be the same whether you

have an older module, a newer module or an HP-41CX. If the string in ALPHA

is not found then the pointer position is not changed.

POSFL will not find a string which is split up between two records. Say

one record ends in the word SAD, and the next begins with AMAZING. The

result is that four consecutive characters spell out the word ADAM, but

POSFL will not find this, because it only searches one record at a time.

POSFL also gives up searching a record as soon as the piece remaining to be

examined is shorter than the contents of the ALPHA register. If you are

looking for the name FRED and a record contains the word DOMINIC then

POSFL will make just four tests, comparing FRED against DOMI, OMIN,

MINI, and INIC. On some computers, you would save time by testing a

shorter string, just FR for example. With POSFL this actually takes longer

because six unsuccessful tests will be made instead of the four if you

used FRED. You will therefore only save time testing short strings in

preference to long ones if you use very long records in your text files, or

if the text string to be found is near to the current position. As with

data files, you can delete the contents of a text file by putting the file

name in the ALPHA register and executing CLFL. A file name is required.

The number of records in the file is set to zero, the pointer is set to 0.0

and the named file becomes the current one.

How can you get the contents of a text file back into the HP-41? The

obvious answer is to use the ALPHA register again, but the records you want

to recall may be over 24 characters long. The two functions that let you

-304-



recall text therefore put a whole record into ALPHA if they can, and clear

flag 17 if they have got to the end of a record. If they have filled ALPHA

but there is more text still left in the record then flag 17 is set. You

can use this to check if a record is finished, and you can also use it with

the HP-IL function OUTA. HP-IL devices such as printers check if flag 17

is set, and attach a carriage return and line feed (for printers) to the

end of a character string only if flag 17 is clear.

GETREC, GETREC clears the ALPHA register first and then copies

ARCLREC characters to ALPHA, starting at the pointer and finishing

after 24 characters or at the end of the record if that comes

sooner. ARCLREC works like GETREC except that it does not clear

the ALPHA register firstt ARCLREC is therefore similar to ARCL

which also appends to what is already in ALPHA. (ARCL does not

stop when the ALPHA register is full though.) Obviously if the

ALPHA register is already full ARCLREC will not change the ALPHA

register or the pointer.

ARCLREC and GETREC reset the pointer to one character past the

last character copied. If the end of the record has been reached

they do not change the record pointer but set the character

pointer to one character past the end of the record. If the

pointer is not changed in the meantime, then the next call to

ARCLREC or GETREC will begin copying from the start of the next

record (if there is one).

SAVEAS Instead of copying from a text file to the ALPHA register piece

GETAS by piece you can copy the whole of a text file directly to

mass media on an HP-IL device. Later on you can copy the whole

file back to Extended Memory. To copy a text file to mass media

you must first create a data file on the medium using the HP-IL

function CREATE. (Put the file size, as a number of registers,

in X, and the file name in ALPHA, then XEQ "CREATE". Note that a

text file copied to Mass Storage might need up to 2 more bytes

per record than the file in Extended Memory.) You could also use

-305-



a file that already exists on the mass medium. Then put the

Extended Memory text file name in ALPHA followed by a comma and

the mass medium file name and execute SAVEAS. The text file will

be copied to the mass medium, starting at the beginning of the

source file (in EM) and at the beginning of the destination (mass

medium) file. To read a text file from a mass medium to Extended

Memory simply reverse the procedure. First create an Extended

Memory text file to copy the source file into (use CRFLAS unless

the file already exists). Then put the source file name, a

comma, and the destination file name in the ALPHA register and

execute GETAS. Note the following points:

i) A source file name must be given. The destination file name

can be omitted completely if it is the same as the source

file name. A comma on its own after the source file name

gives rise to NAME ERR.

11) Copying begins at the start of the source and destination

files and continues up to the end of the data in the source

file. If the destination file is too small then as many

complete records are copied as possible, then an END OF FL

€rror occurs.

111) The previous contents of the destination file are lost. If

the destination file on a mass storage device was previously

a data file (DA) then it becomes an ASCII file (AS).

iv) SAVEAS makes the source file into the current file but it

does not change the position of the pointer in the Extended

Memory file. GETAS makes the destination file the current

file and leaves its pointer set at the beginning of the

file.

v) If an HP-IL module is not plugged into the HP-41 or if there

is no mass storage device attached to the HP-IL then SAVEAS

and GETAS stop with the error NO DRIVE.

-306-



It may seem odd that these two functions which use HP-IL are part of the

Extended Memory functions. In fact though, the HP-IL Module works only

with HP-41 Main Memory, saving data registers, key assignments, programs,

status registers or all memory. Program files and data files can be copied

from Extended Memory to Main Memory and from these to mass storage, but

text files are not easily copied to Main Memory. That is why these two

extra functions are provided with the Extended Functions. No corresponding

functions have been provided for copying text files to the Card Reader, but

many people have used Synthetic Programming to achieve this (once again,

see Chapter 16).

Instead of using SAVEAS to save a text file you may want to print or view

the file. You can view a text file on the HP-41CX by using the text editor

ED, but it is important to be able to print a file if you have been using

ED to make notes to yourself. Here is a short program that will print any

text file on any printer, using the full page width. The file will also be

displayed 24 characters at a time, so you can use the same program with and

without a printer; flags 21 and 55 are used to make sure the viewing and

printing do not interfere with each other. To use the program just put the

file name in the Alpha register and execute PRFL. The program first

advances the paper by one line to print anything that may be left in the

print buffer. Then it prints the file name, advances another line, and

prints the file contents. Each record is separated from the next one by a

blank line; this is done by using flag 17 which is set unless the end of a

record is found by GETREC. The program is designed to be as short as

possible - it does not print record numbers, and records that do not fit on

one line overflow onto the next line or lines without hyphenation. Flag 25

is cleared when the program tries to read past the end of the file; at that

stage the printer is advanced again and the program stops. A zero is left

in register T but the rest of the stack and register L are unchanged, flags

17 and 21 are cleared.

-307-



AieLBL "PRFL" 11 PRE 21 F37 55

43
a4
a3 5
6
g7 v

83
14

12 ALY 22 ACA
13 5F 25 73 F§? 17
14+LBL @1 74 §T0 81
{5 CF 21 25 F§? 55
16 GETREL 26 PREIF
17 FC? 25 27 QDY
{8 670 82 22 §T0 81
19 AVIEM 294BL 87
28 SF 21 0 ALY

31 EWD 39 BYT r
m
D

11.6 Using program files

The only things you can do with a program file is create it, delete it,

find its size or copy it back to main memory. The first three have already

been dealt with, the last will be dealt with here.

GETSUB To copy a program back to main memory, put the file name into

the ALPHA register and execute GETSUB. This adds an END to the

last program in memory (even if the last program was empty and

contained only the .END). The .END. is converted to an END, with

a new .END. being created. GETSUB copies the file to program

memory, if the file exists, and is a program file. If there is

not enough room left in Main Memory to hold the program, then

nothing is copied but the program file becomes the current file.

In a running program, the message NO ROOM appears, but if you

execute GETSUB from the keyboard then you get PACKING and

TRY AGAIN.

When you save a program, some of its labels may be assigned to

various keys. This information is stored with the program. If

the HP-41 is in USER mode while GETSUB is executed then these key

assignments are restored, but if the HP-41 is not in USER mode

then the current key assignments are not changed.

-308-



GETP GETSUB puts the copied program after the last program in memory

and if it is executed by a program then that program carries on

running as usual. GETP puts the copied program in the place of

the last program in memory. This can be used to save space if a

program uses various subroutines and gets each one in turn from

Extended Memory. Each time GETP is used, the last program is

deleted from the bottom of program memory and the program read

from Extended Memory is put in its place. If you do GTO.. before

using GETP the first time then the bottom program in memory

contains only the .END., and it is this empty program that is

replaced when GETP executes. Normally you would execute GETP

from a program other than the last one in memory. If you execute

GETP from the last program in memory though, that program will be

replaced and program execution will continue from the first line

of the new program. (This is rather like a program using PCLPS

to clear itself and then continuing execution at the first step

of the replacement program, which is the .END.) One thing to be

careful of is calling a subroutine from the last program in

memory, then using GETP to replace the last program, then using

RTN to get back to the last program. If you do this then you can

finish up anywhere in the replacement program, or even beyond the

.END. . Apart from these differences, GETP acts in the same way

as GETSUB.

You can use GETSUB and GETP in various combinations to call up different

subroutines and execute them one after another. You may want to do this if

there is not enough room in Main Memory for all your routines at the same

time, or if more than one subroutine has the same label and you want to be

sure which one is used. Subroutines which call one another can use GETP to

delete themselves and get the next one at the same time. As was mentioned

under PCLPS, a subroutine can also delete itself and return to the calling

program by executing CLA, PCLPS.

-309-



11.7 Checking the contents of Extended Memory

The last two Extended Memory functions let the user check the contents of

Extended Memory. When you have created several files you may need to check

what they are called, or how large they are, or how much unused Extended

Memory is left.

EMDIR (Extended Memory DIRectory) lets you check all this information.

When you execute EMDIR you get a list of files in the same way as

you get a list of programs when you execute CAT 1. (Indeed CAT 4

on the HP-41CX is an alternative name for EMDIR.) The files are

listed in the order in which they were created; this is also the

order in which they are stored in Extended Memory. Each file

name is followed by its type (D for data, A for ASCII or text, P

for program), and its length in registers (not including the two

header registers). If you have no files in Extended Memory then

you get the message DIR EMPTY. (This is not an error, only a

message.) When EMDIR has finished, it puts the number of free

registers left into X, lifting the stack unless stack lift was

disabled. The number of free registers is also put into X if the

directory is empty; it already allows for two header registers

for the next file, and is the largest number of registers you can

use with CRFLD or CRFLAS. If you want to create as large a data

file as possible (e.g. for use with SAVER) then do EMDIR, "NAME",

CRFLD. You will get the result zero if you have 0, 1 or 2 free

registers left because in all three cases there is not enough

room for a header and data. If you interrupt EMDIR (see below)

the number of free registers will not be put into X. When you

execute EMDIR with a printer attached and set to TRACE mode you

will get a printed version of the EMDIR listing.

You can interrupt EMDIR on an HP-41CX by pressing R/S. You can

then use SST and BST to move among the files, or R/S to let the

list run again. After you have stopped the listing you can also

press the backarrow key to terminate EMDIR and to make the last

-310-



FLSIZE

file displayed into the current file. If you press any other key

except ON you will speed up the EMDIR list. Pressing ON

terminates the directory and turns off the HP-41. If you allow

EMDIR to finish, the current file will be the same one as before.

On an HP-41C or CV EMDIR behaves a little differently. Pressing

R/S or ON terminates the listing and makes the last file

displayed become the current file (ON also turns off the HP-41).

Pressing any other key "freezes" the display but EMDIR continues

when you release the key. If EMDIR is allowed to run till it

finishes then the last file will become the current file.

finds the size of a file in registers (excluding the two header

registers) and puts this number in X, lifting the stack wunless

stack lift is disabled. The name of the file should be put in

Alpha, and this file becomes the current file. If you leave the

Alpha register empty then the size of the current file is

returned. If ALPHA is empty and there is no current file, or if

Alpha does not contain a file name then you get FL NOT FOUND.

FLSIZE is a good way to select a file as the current one because

it does not affect the file in any way.

11.8 Additional HP-41CX Extended Memory functions.

There are four additional Extended Memory functions, plus a text editor

which will be described in Section 11.9.

EMROOM returns to X the number of unused Extended Memory registers.

This is the same number as would be put in X if EMDIR (or CAT 4)

were executed and allowed to run to the end. You are saved the

time you would otherwise have to wait for EMDIR to execute.

-311-



EMDIRX

ASROOM

RESZFL

provides information about one particular Extended Memory file,

that whose number, n, is specified in X. As with RCLALM, the

first item is number 1, not number 0. EMDIRX clears the ALPHA

register and returns the file name to ALPHA (if the file exists).

The number n is put into register L and a two-letter code is

returned to X. This is PR for a program file, DA for a data

file, or AS for a text (ASCII) file. If the file is not found, 0

is put in X. Unfortunately, it 1is possible (Synthetic

Programming again) to create file types other than PR, DA or AS,

and in that case the file type is returned as a number; 0 or 4

to 15. This means that a zero value in X does not always mean

the file does not exist. It is wise to use ALENG to check if a

file name has been returned to ALPHA. If the file is found, it

becomes the current file, otherwise the current file is not

changed. It may seem silly to use letters instead of numbers to

describe file types, but this was done for the purpose of

consistency with the HP-IL function DIR. It is also consistent

with the Extended I/O Module function FLTYPE which uses the same

two-letter codes.

allows you to check how much unused room there is left in a text

(ASCII) file. You can therefore check if there is a reasonable

amount of room in a text file before adding to it, and so avoid

running out of space during an operation. ASROOM returns the

number of free bytes in the current file to register X, lifting

the stack unless stack lift is disabled. The current file must

be a text file. If ASROOM tells you that there is not enough

room left, you can increase the size of the file by using RESZFL.

This function changes the size of the current file to the number

of registers specified in X. The size of a program file cannot

be changed. The size of a text file can be increased or

decreased but only unused space in a text file can be removed; an

attempt to remove registers that contain text or the end of file

marker results in FL SIZE ERR. The size of a data file can also

-312-



be increased or decreased. If the file size is being decreased

registers are removed from the end of the file and it is possible

that some data registers containing useful values will be

deleted; to force RESZFL to delete non-zero data registers you

must put a negative value in X.

11.9 The HP-41CX Text Editor

The text file functions let you write programs to create and edit text

files, but it is difficult to see what is happening to the file. The

HP-41CX has an "interactive" text editor which lets you examine and edit a

text file, showing you the result of each command as you execute it. In

principle a text file can contain lists of names, information, or even a

letter you are writing, rather like a text file on a full-sized computer.

In practice, the HP-41 is not at all well suited for writing letters or

books since it does not have a typewriter keyboard, it has only a one-line

12-letter display, it has limited memory and is rather slow. A full

Extended Memory could hold about two pages of text, but it would take about

10 minutes to read it all, and up to 20 seconds to insert or change a

single letter. In any case the text would either have to be in upper case

letters, or it would be illegible since most lower-case letters only show

up as boxed stars. (See Appendix E though.)

This does not mean that the Text Editor is useless, but only that it is

most suitable for purposes that fit the HP-41 design. These are,

typically, keeping lists of names, notes (an electronic pocket notebook) or

short memos (which can be typed out on a printer if necessary see program

PRFL at the end of Section 11.5.))

A separate use is for writing programs in a language such as BASIC, LISP or

FORTH. Each record can hold one statement in the chosen language, and the

record number can be used as a program line number. A long HP-41 program

which reads the statements one by one from a text file, and executes them,

can be stored in Main Memory, so the HP-41 can be made to operate on

programs in a variety of languages. Hewlett Packard has mentioned a

-313-



"language ROM" for the HP-41, but nothing has come of this. User group

members however, have written their own interpreters for BASIC, LISP and

FORTH. These interpreters can be obtained from User groups and a FORTH

language ROM has been considered by a user group in France.

The Text Editor function ED can be executed from within a program or

directly from the keyboard. Once the Text Editor has begun to operate, the

keyboard is redefined to act as described on the plate at the back of the

HP-41CX. This is very similar to the ALPHA keyboard layout, but it allows

for the creation and deletion of records. The ON key is used to exit from

ED, and if ED was executed from within a program then that program

continues to execute. (ED only responds to keyboard entry, so the program

will have been suspended while ED was active.)

The keyboard functions of ED are well described in the CX manuals and

summarised on the plate at the back of the CX. I shall therefore not

describe the operations of ED in detail, but shall mention some of its

quirks. First of all, ED normally operates in ALPHA mode where all keys are

available for entering text, but there is also a numeric keypad mode. This

can be entered by pressing the ALPHA key, or by executing ED from within a

program without having ALPHA mode set. Most people will rarely use the

numeric keypad and may find it a nuisance that ED falls into this mode when

executed from a program. It is generally best to precede ED in a program

with AON and to follow it with AOFF.

Secondly, ED is automatically set to add characters to a record, so it does

not need the Alpha Append character (Shift K). It treats this character

(+) like any other character on the ED keyboard. A second non-standard

character (7 called the text symbol or super-tee) is also provided by ED,

more by accident than on purpose. This is used as an "empty record

indicator" whenever a new record is created, but it is actually a real

character. If you type some text into a new record it will replace the

super-tee, but if you go into Insert mode (press SHIFT L) then the super-

tee will stay in the record. This appears to be either bad design or an

oversight, since an empty record indicator should be just that; an

-314-



indicator not a real character that takes up space. If you create an empty

text record by pressing R/S while using ED then that record would have zero

length; the Extended Functions do not expect zero length text records and

this may be why a real character had to be used.

The two characters - and 7 are the only non-standard characters provided by

the Text Editor but not by the ordinary ALPHA keyboard. Other characters

such as &, ", ) and ( would have been more useful. To enter these

characters into a text record you must exit from ED, type in their

character number (as given in the ASCII table), then execute XTOA, INSCHR

(or APPCHR) and go back to ED. If you need to do this often it is best to

write a short program which does it all and assign it to a key.

Thirdly, if you have the cursor positioned in the middle of a record, then

pressing the backarrow key deletes the current character and moves the next

character into its place. Repeated pressing of the delete key therefore

deletes characters towards the right. When the cursor is at the end of a

record though, it deletes characters to the left, because there are none to

its right. This behaviour may seem inconsistent and you should be aware of

it.

Fourthly, ED can be very slow if you are editing a record near the

beginning of a long file. This is because ED moves all characters after

the one that has been changed, and it uses the rather cumbersome Extended

Functions instead of providing its own rapid text shifting function. You

should therefore avoid editing records near the beginning of a long file.

It may even be simpler to create the edited text in the Alpha register and

then put it all at once into the file using INSCHR. Another problem is

that of getting to the start of a long record; pressing SHIFT, USER

repeatedly can take a long time. You should remember the advice given in

the manual, press SST, SHIFT, SST. Getting to the end of a long record is

more difficult, one method is given in the answer to Exercise 11.D.

Some people consider ED an unnecessary luxury; to others it is a very

useful tool. If you do not have an HP-41CX you may wish to write your own

-315-



text editor or get one from another source; several good ones have been

published in user group journals. A very powerful one by Frank Wales is in

DATAFILE V2N2, p23-26 (barcode was provided). If you get the PPC CJ then

you will find a good short editor by Arend van den Brug in V11N6p28-30.

Even if you do have an HP-41CX, you may find it helpful to write a program

around ED. This could prompt for the name of the file to be edited and

create the file if it does not already exist, then execute ED. On exiting

from ED, the program could insert a non-standard character, resize the

file, or even print it. (A short text file printer was described in

Section 11.5.) ED is versatile but you, the user, can be more versatile.

11.10 Generalised Key Assignment program - GASP

Figure 8.6 showed that a Key Assignment Register can hold a two-byte ROM

instruction as well as a one-byte CAT 3 instruction. Soon after the

introduction of the HP-41, Richard Nelson (founder of the User Group PPC)

suggested that two-byte CAT 3 instructions could perhaps also be stored in

a KAR. Instead of having a filler (04) and a prefix (such as STO), why not

put a prefix and a postfix into the two available bytes?

It took a few months to do, but it worked! Not only can you assign RCL to

a key, but you can also assign RCL 55 to a key if you like. This may not

secem very useful, but it does save a couple of keystrokes. Assigning

GTO IND X to an unshifted key saves four keystrokes (SHIFT, GTO, SHIFT, .,

6 is replaced by one keystroke). Assigning X<>IND Y saves ten keystrokes

compared with XEQ, ALPHA, X, SHIFT, COS, SHIFT, TAN, ALPHA,

SHIFT, ., *; this is achieved by storing the bytes CE, F2 in a KAR. The

key can be used for keyboard calculations or when entering a program.

The design of the HP-41 allows this to happen, but the designers did not

plan it. Any two-byte key assignment is therefore displayed as an XROM

function during the key preview, since XROM functions were meant to be

the only two-byte functions assigned. When the key is released, the

correct function is executed, and in a program it is stored as the expected

-316-



instruction. Sometimes the XROM number corresponds to a function on a

plugged-in module, and then that function is previewed, but the correct

function is still executed or entered into a program. The worst that can

happen is for the XROM number to correspond to a non-programmable function

on a plug-in module. These are PRP and LIST on the printers, VER, WALL and

WPRYV on the card reader, and NEWM on the HP-IL module. If a two-byte

function displays as one of these (or any other non-programmable function

on a plug-in ROM - such as ZENROM - see Chapter 12), then unplug the device

while you enter the function in a program.

But how do we achieve these non-standard two-byte assignments? The usual

method involves Synthetic Programming as will be described in Chapter 14,

but some users may want to try two-byte assignments before they read that

far. The programmable version of ASN, called PASN, has already been

described in Section 10.4. This section will provide a generalised version

of PASN called GASN. For those users who want to call GASN from another

program there is another version called GASP (Generalised ASN Programmable.

Why, what did you think it meant?). This is a "generalised" version of

PASN because it assigns any two-byte function, not just two-byte CAT 2

functions and one-byte CAT 3 functions.

The program does not use any Synthetic instructions but does require the

use of an HP-41CX or an HP-41C or CV with both an Extended Functions Module

and a Timer Module. If you do not have these you will have to wait till

Chapter 14 to see how to create two-byte key assignments. To use GASN/GASP

first enter the program into memory from the listing given here, or read it

in from the barcode in Appendix F. GASP is not really a separate program,

it is just a different label in GASN - called an "alternative entry point".

The following notes contain advice on entering and running GASN, if you are

in a hurry, read note 7 which tells you how to use the program:

-317-



- 32 *GASETUP* §? g;v?i
O rer i 33 SAVEP 61 §T-

Bas 4 R 13
B4 117 I5eLBL “GASH" 63 ot
i $T00 36 "PREAPOSTAKEY" 64 10

86 SIGH 37 PRONPY .
el 38LBL ~£ASP" 66 FRC
6 eTon 29 INT 67 168
a3 llé.% 48 ARS r; &H :r

1 X708 41 CHS 9RO L
1 186 2 o
12 xme, ' S 72 248
o 45 PASH 73 %T0A
(= 144 46 “GASETUP##{" 74 Rt

5 4700 47 185 73 X1
7 118 48 X708 i Rt

3 K708 49 RIN i
19 Rt B 12 e -
28 X708 31 ¥T0R Rt
21 R 52 RDH o §+
22 ¥T0R 33 43 6 ¥100
21 Rt 54 %(5Y 52 KTon

24 4TOR 3 - o
25 LASTY 56 ST X a4 AT
26 4700 57 1 b
27 *b@" 58 ATO0R ;E j

28 0LST 59 %70 o

o 79 ¥EQ A1
>0 i

o l -

31 XYZALY ;?*;Eipgl
92 END 212 BYTES

1) The program uses R? and XTOA a lot so you will find it useful to

assign these functions to two keys if you are entering the program

from the keyboard. Once you have entered the whole program, check

carefully that it is exactly as on the printout. Be particularly sure

that lines 13, 27, 32, 42 and 46 are entered correctly as text lines.

2) PACK or GTO.. after you have entered the program to eliminate all the

null bytes. If you like, you can save the program on an HP-IL device,

or on a magnetic card (it only takes up one card).

-318-



3)

4)

)

6)

The first part of the program, lines 02 to 34 is a setup routine. You

only need to run this once. Execute "GASETUP", and a copy of the

whole program will be saved as a file called "GASETUP" in Extended

Memory. This routine also creates a timer alarm with a very unusual

message. The contents of this message will actually be executed as a

subroutine by GASP. The alarm is set to go off on Jan 1 2100. This

should make sure that the alarm message is not lost unless you take

out the Time Module or doa MEMORY LOST, and that no other alarms come

later than it. If you do have an alarm in your HP-41 set to go off

after the year 2099 then change line 29 of the program to 1.012199.

When the program runs, it deletes itself with PCLPS, then the

subroutine in the alarm replaces it with GETP. Unfortunately, PCLPS

will delete any other programs that come after GASP in main memory.

GASP should therefore be the last program in CAT 1 unless you are

happy to lose subsequent programs. You can put programs before GASP

by doing GTO GASP, GTO.000, entering the new program, and

following it with an END (XEQ "END"). This will create a program

before GASP, separated from it by an END. You can also delete GASP

with CLP or PCLPS, put any new programs at the end of memory, then get

GASP back by putting "GASETUP" into the ALPHA register and

executing GETSUB.

GASP will not work if any buffers other than the timer buffer exist in

memory. Buffers were described in Section 8.3, they can be created by

the Plotter, HP-IL Development and CCD Modules. If you use any of

these regularly, you should make sure that you delete all buffers that

these modules create by putting the necessary instructions after line

38 of the program GASETUP. For a Plotter Module, put PCLBUF

between lines 38 and 39. For an HP-IL Development Module, put O,

BSIZEX, RDN in the same place. The CCD module function CLB can

delete any buffer.

The program first uses PASN to create two normal key assignments, then

replaces the last KAR with an alternative KAR set up to produce the

-319-



7)

chosen two-byte assignment. Normally the last KAR contains one or

both of the normal assignments just made so the special assignment

will successfully replace the normal assignments. This will not work

if you have any space left from cancelled key assignments, or if you

use GASP to assign to a key already used for an assignment. In either

of these cases, the assignments made by PASN may not go into the last

KAR. The last KAR will then be replaced by the alternative KAR, so

the last two assignments will be lost. Finally GETP will try to tidy

up the key assignments in case there are any global label assignments

in the program just read. This will nullify the two that were

originally in the last KAR and also any assignments to the key used

for GASP if GASP has been assigned.

You can check if the assignment has worked by pressing the key in USER

mode. If the assignment has not worked, you should try again by re-

running GASP. When you have rerun GASP enough times to fill in all

your cancelled key assignments, the assignment you want to make will

work. Alternatively you could cancel all previous key assignments

before running GASP; just use CLKEYS. Once you have made the required

key assignments with GASP you can recreate any other assignments in

the normal way.

Now for the actual running of GASP (or GASN). Before you use GASP or

GASN you must run the setup routine. Simply XEQ "GASETUP".

[Step (1) above explains what this does; GASETUP can be called as a

subroutine.] You will not need to do this again unless you clear the

alarm, remove the Time Module or do a Memory Lost, or reach the date

1.012100. It will not cause any trouble if you run GASETUP a second

time, but will waste space by creating a second alarm. If in doubt,

run GASETUP again.

You can then run GASN, which is best run from the keyboard, or GASP

which is more suitable for use as a subroutine called by another

program. GASP does exactly the same as GASN but it expects the input

values to be in the X, Y and Z registers whereas GASN prompts for

-320-



these values. To run GASN press XEQ "GASN", or if you have just run

GASETUP from the keyboard you can simply press R/S.

GASN prompts for a prefix, a postfix and a key code. The prompt

PRETPOSTTKEY is a very concise way of doing this, copied from a key

assignment program in the PPC ROM. (See Chapter 12; the PPC ROM is

full of excellent ideas of this sort. This particular idea came from

earlier programs by W. Wickes.) You should put in a prefix number,

press ENTER?, put in a postfix number, press ENTER? again, put in the

keycode, and press R/S. For example, to assign RCL IND X you should

first look up the prefix in Table 8.1 and the postfix in Table 8.2.

The prefix for RCL is hex 90, which is decimal 144. The postfix for

IND X is hex F3, decimal 243. If you want to assign RCL IND X to the

RCL key, you can check that this key is row 3, column 4, keycode 34.

Therefore you should press 144, ENTER?, 243, ENTERY, 34, R/S. GASN

will run for 20 seconds, then stop with an odd-looking value in the

display. If you have deleted the file "GASETUP" from Extended Memory,

then GASN will stop with a NONEXISTENT or DATA ERROR mesage.

Press GTO.. or use Catalog 1 or an Alpha GTO to get back to program

memory. The assignment will have been made despite the absence of

the "GASETUP" file.

To check if this assignment has worked go into PRGM mode, then press

and release the RCL key. When you press the key, you should see XROM

03,51. When you release the key, you should see RCL IND X. Delete

this step, otherwise it will mess up the program. As another example,

assign XEQ IND Y to the XEQ key. From Table 8.1 the prefix for XEQ

IND is hex AE, decimal 174. The postfix for XEQ IND Y is decimal 242

as you can see from Table 8.2. (Remember that the same prefix is used

for GTO IND and XEQ IND, but the postfix for GTO IND is from the first

half of the byte table. GTO IND Y would be 174, 114.) The XEQ key is

row 3, column 2, so the keycode is 32. To make the assignment, XEQ

"GASN", reply to the prompt by 174, ENTER?, 242, ENTERY?, 32, R/S.

Once again you can check the assignment by pressing the key in PRGM

mode, but remember to delete the step afterwards.

-321-



8)

9)

GASN is also generalised because it can assign instructions made up of

unusual combinations of prefixes and postfixes. When you press FIX on

the keyboard, you can only follow it with one of the keys 0 to 9.

GASN frees you from this limitation. You can create key assignments

such as FIX e¢ or TONE X. Try using the programmable version GASP to

create the key assignments FIX 20 and TONE E. Delete the GASN program

from memory (XEQ, "CLP", "GASN") and put in the following program.

LBL "DONE", "GASETUP", GETSUB, 156, ENTER*, 20, ENTER"®, 62,

XEQ "GASP", 159, ENTER*, 106, ENTER"®, 63, XEQ "GASP", "DONE",

AVIEW, PCLPS, .END.

(You should replace 62 and 63 by keycodes for two keys that

you have not yet used.)

Run this program, then go into USER mode. Press TONE E to obtain a

lower TONE than is normally available. Press FIX 20 four times and

see the angle mode toggle through RAD, GRAD, RAD, DEG and over again

while the display stays set to four digits.

The four key assignments used in the examples are all used often

enough by some people that they may want to assign them. RCL IND X

can be used whenever two levels of indirect addressing are needed. To

sort an array you can create a second array of numbers giving the

addresses of the items in sequence, without sorting the items

themselves. (This i1s much faster than sorting a long list of items;

it is called "index sorting" and was described in detail at the end of

Chapter 10.) To get the nth item, you can put n into X, press

RCL IND X once to get the address of the item (assuming the list of

addresses starts in register 1), then press RCL IND X a second time to

get the nth item itself. If the list of addresses starts at an

address other than 1, just add that address to n.

XEQ IND Y can be used to execute a chosen subroutine which uses the

value in X. For example you may wish to calculate SINH X at one time

and ASINH X at another time but in the same place in a program. Put

-322-



10)

"SINH" or "ASINH" into Y, put the value in X, and do XEQ IND Y. The

subroutine name in Y can also be a local label number. XEQ IND Y is

better than XEQ IND nn if you do not want to alter any numbered data

registers.

FIX 20 works like FIX 4 but toggles the angle mode. You can use your

favourite FIX n, ENG n, or SCI n display and by adding 16 to n you can

make it serve the extra purpose of toggling the angle mode. This is

very useful for keyboard calculations. Press the assigned key once to

obtain your preferred display setting, and press it a few more times

to get the desired angle mode. All on one key! The postfix 20 is not

ideal, because it can cause changes between FIX, SCI and ENG modes.

See Section 15.2 for more details and a better postfix. TONE E will

startle some people both by its display and by the sound it makes.

Hewlett-Packard consider such tones as frivolous and indeed their main

use is in games. But why should a serious HP-41 user not be allowed

to play games from time to time? TONE E does also have a serious use.

On older HP-41s it sounds for about as long as the normal tones, on

HP-41s made more recently it lasts 2.2 seconds. This means that

TONE E can be used as a quick test of the date of manufacture of the

HP-41 internal ROMs, for instance to check if the ROMs have been

updated during a repair. Special tones have also been used for

serious purposes such as a darkroom timer or acoustic control of

equipment.

GASN can be used to assign any combination of prefix and postfix and

then to execute it or put it in a program. Further uses to which such

combinations can be put will be described in Chapter 14. For now you

can test the results of such combinations, but avoid the prefixes 145

or 206 followed by postfixes 122 to 127. The use of these operations

can easily lead to MEMORY LOST. A few other combinations can

sometimes cause trouble by disrupting the global linkage in CAT 1. If

you make any mistakes in entering the program, or if you accidentally

alter it before running it you may also get into trouble. The moral

is: always make a copy of the HP-41 memory contents before you start

-323-



11)

12)

13)

exploring. Best of all do a WALL onto magnetic cards, WRTA onto an IL

storage device, or at least print out any important programs or data.

If you want to follow GASN or GASP you can SST through the programs.

Always SST until you come back to the line 01 RTN, and do not stop

part of the way through. Sometimes you will have to wait a few

seconds for some steps to work. Do not stop when you reach the .END.,

press SST again and see some unusual steps. It is most important that

you do not alter the stack between the first time you see X<>c and the

second time it occurs.

Whether you give a keycode for a shifted key or an unshifted key, GASN

assigns the function both to the shifted key and to the unshifted key.

This is a compromise to make the program shorter and faster. When you

have made all the assignments you want to make with GASN, you can

cancel any unwanted assignments, or assign something else to these

keys using ASN or PASN.

A note for experienced Synthetic Programmers. This program may seem

inelegant and some features such as (11) above may look inconvenient.

It cannot be used to make assignments to the SHIFT key. The point of

this program though is that it can be entered by any user since it

contains no synthetic instructions and it is not so long as to

discourage new users. It only uses one bug (Bug 11, see Appendix D),

which HP are very unlikely to correct; the same bug even exists in the

HP-71B (see Error Number 23 in the HP-71 Manual). The program works

by clearing itself and falling into a program in an alarm message, SO

make sure there is nothing between the .END. and the top of the Alarm

buffer.

Nothing has yet been said about possible problems other than point 5.

The first problem that can occur is that there may not be enough room

for the alarm created by the setup routine. The alarm requires three

registers, or five if no other alarms exist. Make this space by

reducing SIZE by three (or five), or by deleting some alarms, or an

unwanted program.

-324-



The second problem may be that there is not enough room in Extended

Memory to save the program. It takes 31 registers, plus a two

register header. If you are very short of space in Extended Memory

you can take lines 03 to 34 out of the program and put them in memory

as a separate program (with a different label, not "GASETUP"). Do

this by deleting line 1, replacing line 2 with a different label,

putting an END after line 33, then putting LBL "GASETUP" between the

RTN and LBL "GASN". The shorter version of GASN is missing the setup

routine, but it is now 21 registers long and the setup routine need

only be run once.

Next you may give an illegal keycode to GASN. If the program stops

with "KEYCODE ERR", press the backarrow key to remove the message, and

again to delete the illegal keycode, then put in the correct keycode

and press R/S. If you are not sure how to work out a keycode, use the

Extended Function GETKEY. Note that keycodes or prefixes and

postfixes can have fractional parts or be negative, but the sign and

fraction will simply be ignored except for the sign of the keycode.

There may not be enough room in memory to put in the extra

assignments. In this case you will see PACKING, TRY AGAIN. Press R/S

and the program will continue if the PACKING created enough space. If

not, reduce the SIZE by at least one, or delete a program and rerun

GASN (or GASP) from the beginning.

If the prefix or the postfix are greater than 255, the program will

stop with DATA ERROR. Run the program from the start, making sure

that the prefix and postfix values are valid. A few other problems

may turn up, such as running GASN without the alarm (because you have

removed the Time Module and lost the alarms), or without an Extended

Functions Module in the HP-41. Alarms are deleted whenever the Time

Module is removed and the HP-41 is turned on. The alarm can also be

lost if you cancel it or accidentally set the date to be past the year

2099. You should avoid all these conditions, and rerun GASETUP if

need be, otherwise you will get some thoroughly unpredictable results.

-325-



All the above may seem a lot of work, but in practice you should be able to

run GASN easily enough after just reading Step 7 of the instructions.

An explanation of the way GASN works and of the Synthetic Programming

principles used will be given in Section 16.4. Yes, SP is involved, even

though it is not directly visible in the program listing.

Exercises

11.A  Write your own routine to create a data file long enough to save the

stack, and to save the stack in it. Test your routine and compare it with

the one in Section 11.4, and with the one in Section 13 of the HP-41CX

manual if you have one.

11.B Write a routine which prompts the user for the name of a subroutine

which is stored in a program file, then gets that subroutine, executes it,

and clears it. You will find a routine like this useful if you write long

programs which do not fit into Main Memory all at once and have to get

subroutines from Extended Memory.

11.C Write a subroutine to insert the character "&" at the pointer

position in a text file. Then rewrite the subroutine to insert any

character whose ASCII code is given in register X.

11.D Do you remember how to get to the beginning of a long record while

using the HP-41CX text editor? Can you think of an alternative? To get to

the last character of a long record you may have to push SHIFT, PRGM up to

21 times. One way that is quicker is to exit from ED, put a character in

the Alpha register, then execute APPCHR, CLA, ED. It may be worth writing

this as a short routine and assigning it to a key. Once you are back in ED

you can delete this last character unless you need it. Can you think of a

different way to get to the end of a long record quickly?

-326-



CHAPTER 12 - PERIPHERALS AND PLUG-IN MODULES

12.1 More programs, more equipment.

You can often avoid the effort of writing a long and complicated program by

buying a plug-in module which contains a program that does the required

job. This type of module is small and light, it does not take up any extra

space since it plugs completely into the HP-41, and the programs in it are

ready to be used at once. The more complicated programs even come with

keyboard overlays that tell you which keys to press. If you buy a fairly

expensive piece of equipment such as an HP-41, then it makes good sense to

buy a relatively less expensive module which will let you start using the

HP-41 in your own special field immediately. A question that may bother

you is "which module or modules do I need?". Sections 12.5 to 129

describe the program modules and other other types of module available.

If you need to print, plot or display some information, record some data or

read it then you need an Input/Output device. These were introduced in

Section 2.7 but more details are needed. You can even send data or use

your HP-41 to control laboratory or field equipment through the Interface

Loop. Sections 12.2 to 12.4 provide information for prospective buyers and

useful details, especially those that are hard to find in manuals.

12.2 Printers and display devices.

The original HP-41 printer, the HP82143A, plugs directly into an I/O port

and acts as if it was part of the HP-41. It prints on blue or black

thermal paper which can take a maximum of 24 characters per line. Paper

sold by companies other than HP can be used, but unless the right kind of

paper is used then the print head will wear out prematurely and you may pay

more to repair it than you saved on the paper. Black paper produces copies

that are more permanent and photocopy more easily, but all thermal paper

fades with time, so it is best to photocopy any important printouts or

plots. Follow the advice in the handbook when loading paper, a sharp

crease with the heat sensitive surface on the outside and at least one inch

-327-



folded over helps you to push the paper into the slot. Avoid using the

beginning of the roll with glue on it; this may seem wasteful but it is

less of a waste than paying for the print head to be repaired. If the

paper jams you can slide out the clear window and pull out the paper, but

be careful not to damage the print head. Black paper is less likely to jam

because it is stuck down with just a small piece of tape at the beginning

of the roll.

The printer has three kinds of function - direct print functions, print

buffer functions which store data in a special memory area built into the

printer, then print the data from that buffer, and graphics functions which

create and print special characters and graphs.

Four flags are used with the printer. Flag 55 is set to inform the HP-41

that a printer is present, flag 21 is set to enable print functions; if it

is cleared then running programs ignore these functions, but they can still

be carried out from the keyboard. If flag 21 is set but flag 55 is clear

then the HP-41 assumes that you want to make a record of any data that is

displayed, but that there is no printer; it therefore halts execution of a

running program at every VIEW or AVIEW. Flags 55 and 21 are set by the

HP-41 if a printer is present, even if it is turned off. Printer

instructions are recorded in a program, even if the printer is off, but it

is unwise to attach a printer and leave it off; this can lead to a

PRINTER OFF error message and stops running programs. When flag 55 is set

the HP-41 sends everything to the printer in case it is in TRACE mode (see

below). This slows down running programs; Synthetic Programming can clear

flag 55 and disable print operations to speed things up. Setting flag 12

causes characters to be printed double wide. Setting flag 13 causes

letters to be printed in lower case mode - other characters are not

affected. Characters that are put into the print buffer will print

according to the way these flags were set when the characters were put into

the buffer.

The printer has a switch to set one of three modes, MANual, TRACE, and

NORMal. In MAN mode nothing is printed unless a print, VIEW, AVIEW or

-328-



PROMPT is executed from the keyboard, or from a program with flag 21 set.

In NORM mode, numbers, text and instructions are also printed when they are

keyed in, even if you are entering a program. In TRACE mode everything

that is keyed in is printed, along with intermediate and final answers, and

with each step of a running program in RAM. Running programs in ROM

modules are not printed - you cannot change them anyway, so why trace them?

(If you must trace them use SST.) Output from CAT functions (and EMDIR and

ALMCAT) is printed if you set TRACE mode.

The following are direct print functions. PRX, PRA, PRSTK, PRI print the

contents of X, of the Alpha register, of the four stack registers, and of

the six statistics registers. PRKEYS prints all the key assignments, and

PRFLAGS prints the status of all the flags together with other status

information - the SIZE, the position of the first statistics register, the

angle mode and the display mode. PRREG prints the contents of all the data

registers (the program REGS in Section 7.2 uses less paper because it

prints only the non-zero registers). PRREGX uses a number of the form

bbb.eee in X to print the contents of data registers from bbb to ece.

The function PRP prompts for a global LBL name and prints the whole of the

program which contains that label. If no name is given then the current

program is printed. LIST prompts for a three-digit number (which can be

turned into four digits by use of EEX) and prints that many program lines,

starting at the current line of the current program. LIST stops at an END

if it reaches one before finishing, and PRP is actually a LIST which is set

to print FFF (4095) lines, so it always stops at the END. Neither PRP nor

LIST will work in a program, which means you cannot get one program to

print another; a programmable PRP will be presented in Chapter 16. The

layout depends on the print mode; MAN, NORM or TRACE. TRACE will

print programs even if flag 55 has been cleared, but in an untidy layout.

Seven functions copy data into the print buffer. One advantage of using

the buffer is that it automatically prints a line whenever it becomes full.

It can store a maximum of 44 bytes, but one of these bytes is used for

printer control when you start using the buffer and every time you change

-329-



the print type, by setting or clearing flags 12 and 13, or by changing

between the use of whole characters and single print columns. A program

can keep putting information into the buffer and it will be printed

automatically without the need for print instructions. Once a line has

been printed, the characters in it are removed from the buffer, making room

for more. You can also position characters exactly where you want them in

the buffer, and you can make up your own special characters or symbols and

print them from the buffer. ACX and ACA "accumulate" the contents of X and

Alpha in the buffer which means that they add them to whatever is already

in the buffer. ACCHR accumulates a character whose number, from 0 to 127,

is in register X. ACSPEC accumulates a special character built up by

BLDSPEC. Each character is made up of seven printer columns with seven

dots in each column. ACCOL lets you accumulate one column, with the dots to

be printed specified by a number in X. SKPCOL and SKPCHR let you specify a

number of columns or characters to be left empty in the buffer before more

columns or characters are put in it.

Two functions print the present contents of the buffer and advance the

paper by one line, even if the buffer is empty. The HP-41 function ADV

prints the buffer such that its rightmost character is in the rightmost

print position ("right justified"), the printer function PRBUF prints the

buffer left justified. Once the information 1is printed, the buffer is

empty. The buffer should only be used in MAN mode, because its contents

will be printed whenever anything else is printed, and TRACE or NORM can

print information part of the way through an accumulation. To clear the

buffer without printing its contents turn the printer off and on again.

The remaining functions are for printer graphics. BLDSPEC is used to

specify the exact shape of a character seven dots wide and seven dots high.

BLDSPEC actually creates a text string up to six bytes long, and the

printer interprets the text string as a special character. You can use

BLDSPEC to create display characters not available from the Alpha keyboard;

use CLX, ENTER - then put the character number, 0 to 127, into X and execute

BLDSPEC. You can store this character or put it into the Alpha register by

using ARCL. This method was used before synthetic methods or the Extended

-330-



function XTOA were available. For byte values greater than 127, use CLX,

ENTER, 1, BLDSPEC, c-128, BLDSPEC, where ¢ is the character number.

A character created by BLDSPEC and stored in register 03 will be used by

the graph plotting functions to specify the character used for plotting

instead of a simple x.

PRAXIS is used to print the Y axis and the units for a graph. It uses

values from registers 00 to 04 to specify the axis parameters. REGPLOT

prints a single line for a graph, using the function value in X and plot

parameters in registers 00 to 02. If you do not want to use registers 00

to 02, for example because your program uses them, then STKPLOT lets you

print a single line using values in the stack (in this case the plot value

is in register T, not in X). PRPLOT is a complete program written in FOCAL

which asks the user for plot parameters and then uses the printer functions

to plot a complete graph. PRPLOTP is a routine which does not prompt for

plot parameters but expects them to be set up by a program which then calls

PRPLOTP to produce a plot as would PRPLOT. PRPLOT and PRPLOTP

expect the user to provide a routine to calculate function values; this

routine must not do any printing of its own or it will interfere with the

plotting. No graphics should be carried out in TRACE mode.

Buffer accumulation functions send a control character to the printer

before the printer data, whenever the type of printing changes. All

control codes are bytes greater than 127 (hexadecimal 7F). The normal

printer functions ignore the top bit of any byte sent to the printer, so

control codes cannot be sent by the user. However, all 8 bits are sent

when a program is printed by PRP or by LIST. The printer will not print

these bytes, but those which are control codes can make the program

printout suddenly go into a different mode or even turn into illegible

hieroglyphics. The bytes that do this are shaded in the Byte Table (Table

14.2). Only bytes from rows A, B, D, and E of the Byte Table affect the

82143A printer. Details were given in the PPC Calculator Journal V7IN6P19-

22, and are also in the Synthetic Quick Reference guide. Only Synthetic

programs can affect the printer this way because only they can have control

characters in text strings.

-331-



The HP82162A printer is an HP-IL version of the HP82143A. It has to be

connected to the HP-41 through an HP-IL module but it has all the same

features as the older printer. It responds to one extra printer function,

FMT which is provided with the other printer functions on the HP-IL

module. The printer functions are built into the HP-IL module, not into

the printer itself, and they are described in the HP-IL module manual, not

in the manuals for the various HP-IL printers. FMT can be used to justify

two character strings, one on the right and one on the left, or to centre a

single character string. It is actually sent to the printer as a control

byte, C0. The HP82162A printer, like all other HP-IL printers, changes a

few of the characters from those printed by the HP82143A, but in its Eight-

Bit mode it uses a character set very similar to that of the HP82143A. The

HP82162A can however be set to a different mode, called Escape Mode, in

which it prints characters differently, according to the standard ASCII

code. The print buffer can hold 101 bytes before it is full and prints a

line, not 44 as the HP82143A.

The manual for the HP82162A gives details of the control characters to be

used in both Eight-Bit mode and Escape mode. These include characters to

print barcode and graphics, but the manual does not make it sufficiently

clear how to go from one mode to the other, or how to select barcode or

parse modes. The printer normally starts up in Escape mode, but the HP-IL

module used with the HP-41 sets it to Eight-Bit mode. To get back to

Escape mode (which is needed for Parse mode for example) you should select

it as the primary device (this needs care if you have more than one printer

on the same HP-IL loop), then send it the decimal byte 252 (or 253),

followed by the bytes to be sent in Escape mode. If the HP82162A is the

only printer then you can select it as the primary device and set it to

Parse mode by executing the instructions shown below. Each byte is

equivalent to the instruction above it, and all these instructions are in

the Eight-Bit and Escape Instruction tables, but you need some examples

like this one to understand how these instructions are to be used. Be

careful not to confuse the letter "I" (lower case L) with the number "1" (one)

in the tables and remember to send the ASCII codes for "0" and "1", not just

the numbers.

-332-



Set

Esc Esc & k 1 H

CLA,PRA,252,XTOA,27,XTOA,38,XTOA,107,XTOA,49,XTOA,72,XTOA,OUTA

Following this you can print text in Parse mode (each line ends at a blank

space, not in the middle of a word) by sending characters to the printer

with ACA. A line will be printed whenever the buffer is full. As soon as

you execute a function that instructs the printer to print something, not

to accumulate it, the printer will go back to Eight-Bit mode. You can send

any sequence of bytes to the printer by using OUTA, except for null bytes,

which OUTA ignores. You can send a zero byte by executing the following

(you may need SF 25 to avoid a TRANSMIT ERR):

SF 25, 0, ACCOL

(Use ACCHR instead of ACCOL if you are accumulating characters.)

ACCOL and ACCHR will send out a null byte, but will not send the top bit of

a byte, so OUTA should be used for sending bytes greater than 127. In

Escape mode you send instructions to the printer in much the same way, with

the decimal value 27 as the first byte; 27 is the code for the Esc byte.

As the 82162A uses more control codes than the 82143A you have more chance

of getting an illegible program printout if you use Synthetic Programming.

You can clear the buffer by turning the printer on and off, by executing

the HP-IL function STOPIO, or by executing PWRDN,PWRUP. Turning off and on

is safest; it does not alter the status of other loop devices. To print a

program containing text strings with control bytes use LIST to print up to

the step with the text string, then LIST from the line after the text

string. The printer is reset every time a printing instruction is

executed, so the second LIST will set the printer back to normal. It may

be simpler to replace the string with a different one that does not contain

control characters, print the program, then put back the special text.

If you do not have an HP-IL module then you will not know what all this is

about, but if you have used one then you might agree with me that things

are much easier when you have an Extended I/O module, except that it is

expensive. "The HP-IL System: An Introductory Guide to the Hewlett-Packard

-333-



Interface Loop" may be of help if you have problems, but your nearest user

group could help more.

All HP-IL printers print the time and date at the beginning of a program

listing if the HP-41 has a Time module. HP-IL is less careful with flag 55

than the older printer, but this does not affect printing; if you execute a

printer function or FS? 55 and flag 55 is clear then the HP-41 will check

for the presence of a printer and reset flag 55 if necessary.

The larger printers, such as the HP82905B, or the Thinkjet, print on

normal-sized paper, but use ordinary ASCII characters which are not quite

compatible with the HP-41 characters. The worst problem is that the Sigma

and Append characters are printed differently, and these are used a fair

deal in HP-41 program listings. These printers will not respond correctly

to the graphics or plotting functions either.

Should you wish to show what your HP-41 is doing to a group of people, or

to someone who does not want to peer at a display, then you can connect

your HP-41 to a "display device" via HP-IL. This device is normally a

video monitor of the type used with computers. A display connected to an

HP-41 will act rather like a printer, showing standard ASCII characters and

not doing graphics. The display devices are driven by video interfaces

sold by HP, or by interfaces made by independent manufacturers. Some of

the latter can have more characters per line, and some graphics

capabilities. Most video interfaces are made to work with computer

monitors, not home TV sets, so they need an extra circuit if they are to be

attached to an ordinary TV set.

Display devices are intended mainly to let a group of people follow an

operation on the HP-41 (or some other computer such as an HP-71), for

example during a lesson or seminar. To help do this the display devices

and larger printers can be set to a "stack trace" mode in which they

display the contents of the whole stack after each operation. Since

printers and monitors do not have mode switches at the front, the print

mode is selected by flags 15 and 16. The modes are set as in Table 12.1.

-334-



Mode Flag 15 Flag 16

MAN clear clear

NORM clear sct

TRACE set clear

ST/TRACE set set

Table 12.1 Flag settings for HP-IL print modes

If you want to do a lot of printing you may find the extra functions

provided by the PPC ROM, the Paname ROM or the CCD Module useful. These

will be described in Sections 12.7 and 12.8.

12.3 Card Reader and Wand.

The Card Reader lets you save data, programs, assignments and other status

information on small magnetic cards, and read this information back onto

the same HP-41 or onto another one. Most card reading operations can be

carried out by just putting a card into the Card Reader, because it

recognises different types of information on a card and knows how to use

them. Most writing has to be done using special functions. During reading

and writing operations the Card Reader will display messages asking for

more cards if it needs them.

The function WDTA copies all the data registers onto as many cards as are

needed. (Each card has two sides, or "tracks", and each track can hold up

to 16 registers.) This is rather like the printer function PRREG. A

second function, WDTAX lets you copy selected registers beginning with

register bbb and ending at register eee; the number bbb.ecece must be in

register X. This function is similar to PRREGX.

WSTS writes one or more status cards; the first track is a record of the

stack registers, the Alpha register, flags, the SIZE and the location of

the summation registers. Key assignments of functions from CAT 2 and CAT 3

-335-



are recorded on track 2, and on further tracks if one is not enough. The

first track actually records most of the information in the lowest block of

16 registers (see Chapter 8), which is why these are called the Status

Registers. You can record just this information by pressing backarrow

after writing the first WSTS track. You can read back only this

information by reading the first track of a WSTS set and then pressing

backarrow. Reading back the first track will reset the SIZE, so you may

lose important data, so be careful. You can read back a set of key

assignments, without altering the status registers by reading track 2 and

any further tracks, without reading track 1. Ignore the prompt for track 1

and press backarrow when you have read all the key assignment tracks. If

you want to use WSTS to record only a set of key assignments then you can

write the first track, then record the second track over it on a card,

saving one track. WSTS does not record CAT 1 assignments, and such

assignments will not be changed when you read a set of key assignments,

except that a CAT 2 or 3 assignment on a status card will replace a CAT 1

assignment to the same key.

You can cancel all your assignments, pack, make one assignment, cancel

that, and record the cancelled assignment on a card (record track 02 over

track 01). This idea is due to R.H. Hall (HP Key Notes V5N1P11). Whenever

you read this assignment cancelling card it will cancel all CAT 2 and CAT 3

key assignments. You might find such a card very useful.

The WALL function saves "all" the information in an HP-41. In practice

this means all data, all status registers, buffers, and key assignments,

and all programs. This takes up a lot of cards, but it does not include

any Extended Memory registers. You can use several WALL sets of cards, for

example if several people are using the same HP-41 and each person needs to

save their work. It is unsafe to interrupt the reading of a WALL set, but

it does not always lead to MEMORY LOST as the manual says. Synthetic

programs to save buffers and Extended Memory files on cards have been

written; programs to do this are given in Chapter 10 of the book "HP-41

Extended Functions Made Easy".

-336-



To write a program onto cards you position the HP-41 anywhere in the

program, set PRGM mode, and feed cards through until the Card Reader stops

asking for more. It is best to PACK before saving a program, as this

removes unnecessary nulls which will otherwise take up space on the cards.

To read a program back, you should go to the .END. (use GTO..) and read the

cards, with PRGM mode off. The program replaces the last program in memory

- if you have just executed GTO.. then nothing is overwritten because the

last program contains only the .END.. You can read a program without going

to the .END. and it will still be read and will replace the last one. Key

assignments of global labels in the program are recorded with the program;

if you read it back with USER mode set then these assignments will be read

back and will replace any other assignments to the same keys. If you want

to know how many cards a program needs before writing it then execute WPRYV

(see below); this will prompt you for the first track and tell you how many

tracks you need. Another way is to insert a card in PRGM mode and quickly

remove it before the motor starts. Press backarrow to remove the prompt.

It is easy to forget which of these operations requires PRGM mode on and

which requires PRGM mode off. Either way it can be disastrous; you may

overwrite a program you are trying to save, or you may write a program on a

card which contains an important program you were trying to read. The

second problem can be avoided if you clip the corners of all cards

containing important programs. (Such cards can be written on again only if

you set flag 14. This flag will be cleared as soon as a write operation

has been completed so that you will not accidentally overwrite further

cards.) The easiest way to avoid overwriting programs on cards or in

memory is to remember:

WRITE ON - READ OFF (Mnemonic: right on!)

You write programs on cards with PRGM mode on, and you read programs of

cards with PRGM mode off. (You can also remember that you read programs

to run them in run mode.)

To record a program on cards so that it can be read back but cannot be

examined you use the WPRYV function. Go to the program and execute WPRYV;

-337-



you do not have to set PRGM mode, but you can execute WPRYV in PRGM mode as

it is a non-programmable function. When you read back this card the

program will be PRIVATE. You will be able to execute it, but you will not

be able to view it, alter it, copy it to another card, SST through it, or

GTO any line number. You will be able to GTO and XEQ labels in the

program. The main use of PRIVATE is to protect a program from accidental

alteration; it could be used to protect commercial programs but synthetic

programmers have found many ways to overcome this protection.

Although you can read programs and data back just by feeding the cards into

the reader, you may want to carry out these operations as part of a

program. RDTA reads a complete set of data cards and puts the data from

them into memory, starting at register 00. You can read a selected number

of registers, either by writing them to cards with WDTAX, or by

interrupting RDTA before all the cards have been read, but the data read in

begin at register 00, unless you do not read the first track. RDTAX uses a

number bbb.eece in register X to specify where data are to be put; it can

read cards recorded by WDTA or by WDTAX. Remember ece must be three digits

long; use 009 for register 9 and so on. If you want to keep all the data

you have in memory, but create ten empty registers at the bottom of memory,

then you can use the following instructions:

WDTA ; save all your data on cards

now check the SIZE and increase it by 10

7CLREG ; use this Card Reader function to clear registers 0-9

10.ece ; eee is the old SIZE plus 10

RDTAX ; read back the data, starting at register 10

You could do all this by writing a program to copy the registers one by

one, but this method may be faster. If you have the Extended Functions

then you can move registers by using REGMOYVE instead.

You can also read program cards under program control. RSUB reads a

program card, but if it is executed while the HP-41 is positioned at the

last program in memory it adds the new program after the last program in

-338-



memory, instead of using it to replace the last program in memory. This

means that a running program can ask for a subroutine to be read from a

card, but this subroutine will not replace the running program. MRG reads

a program from cards and wuses it to replace all lines in the current

program after the current line. If you are very short of program space you

can have a program which holds some control statements at the beginning and

is followed by MRG. Every time MRG is executed you can read in a selected

subroutine which will immediately follow the MRG and will be executed after

the MRG has been completed. MRG only works correctly if it is executed

while you are positioned at the last program in memory. MRG clears the

subroutine return stack, so if you call a subroutine, execute MRG, and try

to return to the calling program then the subroutine will stop instead of

returning. You can use MRG to read a PRIVATE card, but this becomes part

of your program so the whole program becomes PRIVATE which means you cannot

alter it and therefore cannot MRG any more cards. See Bug 11 in Appendix C

for another trap that affects RSUB.

VER verifies any card; it tells you what type of card it is, and which

track you are reading of a set. If the card is blank, dirty, faulty, or

does not have HP-41 or HP-67 or 97 information on it then you will see

CARD ERR or perhaps CHECKSUM ERR or MALFUNCTION. Check that

the card is what you think it is, then breathe gently on the black surface

and rub it on a soft clean cloth (actually your shirt may do). If this

still does not work then try cleaning the black surface with alcohol (use

methylated spirit - "denatured alcohol"). It is wise to write a

description of each card on it - a soft pencil writes well and can be

erased later.

Data and program cards written on an HP-67 or an HP-97 can be read, and

programs will be automatically translated to run on the HP-41. As the HP-

41 does not have some HP-67/97 functions, the Card Reader provides 67/97

compatibility functions. These need not be used only in translated

programs, they can be used in ordinary HP-41 programs as well, but the Card

Reader handbook does not give much explanation of what they do. Here are

some details for those HP-41 owners who do not have an HP-67 or 97 Guide.

-339-



7ENG, 7FIX and 7SCI set the display mode without changing the number of

digits shown. 7DSPO to 7DSP9 change the number of digits without changing

the mode. The HP-67 and 97 use only one register for indirect operations,

on the HP-41 the Card Reader uses register 25 for these operations. 7DSPI

is used to translate the indirect DSP instruction of the HP-67/97; it could

be called DSP IND 25 on the HP-41. Like HP-41 functions it ignores the

sign and fractional parts and gives DATA ERROR if the number is outside the

range 0 to 9. The direct increment and decrement functions are 7ISZ and

7DSZ. 7ISZI and 7DSZI are indirect via register 25; unlike the HP-41

functions all four ignore the fractional part of the control number. They

were described at the end of Section 6.8. The translation of statistics

functions, and the use of 7RCLZ have also been described already, at the

end of Section 5.4.

The HP-67/97 used register I for indirect GTO and GSB instructions; these

could be translated to GTO IND 25 and XEQ IND 25, but negative values had a

special meaning on the 67 and 97. Positive numbers from 0 to 19 were used

for going to the 20 possible labels of the HP-67/97, negative numbers were

used to skip backwards over the specified number of program steps. This

was called "rapid reverse branching" and made it possible to use GTO and

GSB without labels. If the program skipped past the beginning of program

memory it would go to the end and carry on up, so forward skipping was

possible too. Translation of this feature to the HP-41 would be very

difficult, and use of GTO IND 25 or XEQ IND 25 would execute a label

ignoring the sign, which would be wrong. The Card Reader translates

indirect GTO and GSB instructions into 7GTOI and 7GSBI which produce a

NONEXISTENT message if register 25 contains a negative number or a text

string. These functions are not perfect translations; they allow GTO or

XEQ to any label from 20 to 99, whereas this would have caused an error on

an HP-67 or an HP-97. You may find these two instructions useful if you

want an HP-41 program to treat negative numbers as illegal labels.

7P<>S exchanges registers 00 to 09 with registers 10 to 19; this can be

useful if you have two subroutines which both use registers 00 to 09. You

-340-



could also use 7P<>S if you are short of memory and want to use short-form

RCL and STO steps which will not access registers 15 to 19. P<>S uses two

bytes, so if you have more than four STO or RCL instructions using

registers above 14 then it can be better to use P<>S twice and STO or RCL

registers 05 to 09 instead.

7PRREG will print all HP-67/97 registers if a printer is attached. The HP-

67/97 registers are translated to HP-41 registers 00 to 09 and 20 to 25.

The secondary registers, 10 to 19, are not printed. If you do not have a

printer then the HP-41 displays each of these registers, showing "Rnn="

followed by the register contents. 7PRSTK will either print the stack

contents (using the printer function PRSTK), or display them if there is no

printer. The registers are displayed in the order T,Z,Y,X but without an

indication of which is which. The function 7PRTX prints X if a printer is

attached (using PRX), or else executes VIEW X.

A few more notes on HP-67/97 translation. Other indirect operations are

translated into IND 25 functions. Flag 3 which is used to test for numeric

entry on the HP-67/97 is translated as flag 22. The flag test F? on the

HP-67/97 cleared flags 2 and 3, so it is translated as FS?C 02 and FS?C 22.

The other translations are explained in the Card Reader handbook.

The functions WALL, WPRY and VER are supposedly non-programmable. This

means that if you XEQ them in PRGM mode they are executed at once, not

stored as a program step. If you assign any of these functions to a key,

remove the Card Reader, turn the HP-41 on, go into PRGM mode and press the

key, then the function will be recorded in the program. Turn off, attach

the Card Reader again, and see the function recorded in the program. When

the Card Reader was not attached the HP-41 could not check that the

function was non-programmable so it recorded it. These three functions

will actually work in a program. The same trick can be used for PRP and

LIST but they will not work properly because this method does not let them

prompt for parameters.

The Optical Wand lets you read data, programs, or single instructions from

-341-



barcode. Data consists of single numbers which are read into the X

register, or text strings which are read into the Alpha register. Single

instructions are provided on a "paper keyboard" which contains all the

normal HP-41 functions and Alpha characters, together with Printer, Wand

and Card Reader functions, but not the Card Reader HP-67/97 compatibility

functions. Each function can be scanned and will execute exactly as if it

had been assigned to a key and that key had been pressed. Functions that

are not on this keyboard can be spelled out, as with Alpha execution.

Barcode for all Extended and Time functions, including the new HP-41CX

functions is provided at the beginning of Appendix F. This also contains

barcode for all Card Reader functions including the compatibility

functions, for all printer and HP-IL module functions, and for the HP-IL

Development module functions. The barcode at the top of each set gives the

module identifier and can be included in a program followed by FS? 25 to

check if a module is attached to the HP-41. A complete set of Alpha

characters is provided as well. Byte 0 acts as a backarrow, a separate

code is provided to append nulls, but this only works in PRGM mode. Byte

127 acts as an APPEND function; it re-enables text entry, so a barcode

which appends byte 127 has been provided. The exact behaviour of byte 0

(and bytes 28, 37, 42, 43, 45, 47, 127) depends on the version of the Wand

you have, and on whether you have PRGM and ALPHA mode set. You can find

this out for your own Wand by experimenting - a table is given in the

Synthetic Quick Reference Guide, along with an Alpha barcode table.

If you want to use these barcodes a lot you will have to protect them, or

photocopy them (remember about the copyright of this book; you can make

copies for personal use). If they are too close together then you can cut

them out to make individual labels, like those that come with the Wand.

Complete programs can be read in much the same way as programs on cards.

No 1initial instruction is required and the program replaces the last

program in memory. The Wand prompts for each row in turn, if you cannot

read one row then press SST and the Wand will prompt for the next row. If

you have done this then all the steps that were in the missing row will

have to be entered from the keyboard later. Appendix A in the Wand manual

-342-



gives details of this procedure. You can have trouble reading barcode for

various reasons given in the manual. It pays to try reading difficult

barcode in both directions, at various speeds, and using a straight edge to

guide the Wand. One reason why barcode can be difficult to read is that

strong light can interfere with the light reflected by the Wand; try to

read barcode away from windows or strong electric lights if you have

unexplained problems. Electric currents can also interfere; do not read

barcode near AC power cables.

Two Wand functions let you read program barcode from a running program.

WNDSUB prompts for a subroutine much as the Card Reader function RSUB.

WNDLNK reads a subroutine in the same way but then immediately executes the

subroutine it has read, and then returns to the calling program unless the

subroutine stops instead of returning. WNDDTA lets a program prompt for a

single data or text entry to be scanned; this goes into X or Alpha and the

program resumes. WNDDTX prompts for data that will be read into registers

specified by a number bbb.cee in X (like RDTAX).

WNDDTX normally accepts data barcode in any order that you read it, so you

can have a collection of numbers and text strings which you can read in the

order you choose. You can also use "Sequenced Data" barcode which

specifies the order of each data item. This sequencing can be used to make

sure a user reads data in the correct order. Early Wands (those which show

up as WAND 1E in CAT 2) are unable to read sequenced data.

The function WNDSCN reads one to 16 bytes and stores them in registers

beginning with register 01. Each byte is converted into a decimal number

and stored in a register. These bytes can be normal keyboard, program or

data bytes in which case everything including barcode type identification

and checksums are read in and stored. They can also be single bytes from

the stick-on label sheet, intended purely for use with WNDSCN, to identify

data according to your own scheme. For example you can have a store which

holds different types of equipment and uses these barcode labels to

identify various items. The Wand provides one program, WNDTST, which uses

WNDSCN to read a row of barcode and analyse it; you can use this to check

-343-



if the Wand is reading exactly what it should, or to read and interpret a

row of barcode that is giving CKSUM ERR.

HP publishes an additional manual "Creating Your Own HP-41 Bar Code"

which tells you how to design and print barcode, and includes BASIC

programs to print barcode. This manual is worth reading even if you do not

plan to print barcode; you can hand-draw acceptable barcode without much

trouble if you need a small quantity. The manual tells you how barcode is

designed if you are interested; it tells you what you need to know if you

cannot read a piece of barcode and want to see what it should contain.

Synthetic instructions cannot be coded as individual barcode keyboard

functions, but complete programs containing Synthetic instructions can be

read because the Wand does not check each individual byte when it reads a

program.

12.4 HP-IL and other peripherals.

When you plug an HP-IL module into your HP-41 your horizons suddenly

expand. You can use printers and display devices as already described but

the HP-IL system is designed to recognise 16 classes of device, with 16

types in each class. A single HP-IL loop is designed to address 31 devices

but each of these can have up to 31 secondary addresses. HP produces many

devices that work with HP-IL (the best source of information on these is

the catalogue of HP equipment published each year), independent companies

produce HP-IL compatible equipment, and EPSON has now started to produce

HP-IL equipment. On the other hand your HP-41 system gradually becomes

less portable; individual items are portable but it is difficult to carry

many, say a portable Thinkjet printer and a portable cassette drive as well

as your smaller accessories and the HP-41 itself. If this book were to

cover all HP-IL devices then it would not be portable either! I shall

therefore only give brief descriptions in this section.

The HP-IL module provides three sets of functions: printer functions which

were described above, mass storage functions, and more general-purpose

interface control functions. The HP82162A printer and the HP82161A

-344-



cassette drive are the most popular examples of the first two device types,

I shall only describe others briefly. The general-purpose control

functions, particularly when used with Synthetic Programming, provide a

fair degree of control. More complete control of HP-IL devices is provided

by special modules which will be described later in this chapter.

The first HP-IL device class is 0, used for controllers. The HP-41 with an

HP-IL module attached is one of these. Some controllers insist on

controlling the loop to which they are attached, others can be made to

relinquish control. Unless you have an HP-IL Development ROM your HP-41

will insist on trying to control the loop, so you will not be able to use

it with another controller (for instance a second HP-41). HP series 70,

series 80, and series 100 computers can also be controllers.

Class 1 devices are Mass Storage devices. The standard HP-41 Mass Storage

device is the Cassette Drive, but the HP9114A 3 1/2 inch disk drive can be

used as well and is much faster. The HP-IL module functions are designed

for the cassette drive and cannot control all the features of the disk.

The Cassette Drive has been studied in great detail by members of wuser

groups who want total control of it; for instance it can be used as a

single large data file instead of being treated as a collection of data

files, each of which has to be accessed through the directory at the front

of the cassette. Articles about the cassette drive have been published in

PPC CJ VO9N4P42-44, VON6P4, VION6P28-29, VIONI10P9-11, VIINO9PS55-56,

in the PPCJ VI12NI1P6-8, VI2N2P15-17, and in PPC Conference Proceedings

6 and 7. Articles about using the disk drive with an HP-41 have come out

in the CHHU Chronicle VIN3P12-14 and V2N1P28-29. This list is not complete

but will give you enough to read for a while.

The HP-IL module functions to control Mass Storage devices are as follows.

NEWM lets you initialise a new cassette or disk; this destroys the previous

contents, so it is not programmable. NEWM can be recorded in a program

using the same trick as for the non-programmable Card Reader functions, but

it is unwise to do this. DIR provides a directory of the files on a

cassette or tape. Data files can be created by CREATE, and the Extended

-345-



function SAVEAS can be used to turn a data file into a text file and save

text in it. Programs can be copied to program files by WRTP and WRTPV

(which writes PRIVATE program files in the same way as WPRYV on the Card

Reader). Programs can be read back by READP and READSUB. Unlike the

Card Reader and Wand, the Mass Storage devices must be specifically

commanded to read and write programs and data. Data can be written to a

file by WRTR and WRTRX, which are similar to WDTA and WDTAX.

It can be read back by READR and READRX. READRX need not

start at the first register in a data file; you can select any register by

means of SEEKR. Following SEEKR you can use WRTRX to write more data

to a file as well. ZERO fills a data file with zeroes; CREATE does this

anyway when you create a new file. WRTS and READS write and read the

status registers; the same information as the first track of a status card.

WRTK and READK save and retrieve the key assignments, as do tracks 2

and up of a set of status cards. VERIFY checks if a file can be read,

rather like VER. RENAME changes the name of a file, SEC secures a

file, preventing it from being purged (see below), renamed, or altered.

UNSEC cancels this. Finally PURGE deletes a file from a tape. The space

used by the file is still there, and can only be reused if a file that is

smaller or the same size is created later. File names, where required, are

given in Alpha as "source,destination" in the same way as for Extended

Memory operations.

Additional commands to examine and copy Mass Storage files are provided by

the Auto Start/Duplication and Extended I/O modules described later. The

Extended Function GETAS reads text files back into Extended Memory; it can

be used to access the directory entry of any file, and the directory can

then be studied. If you want to study a cassette tape directory then do:

1) Select a file in the part of the directory that you want to study.

2) Put "filename," into the Alpha register.

3) SF 25, GETAS - this will read that part of the directory which

contains the file, but will then stop because of a NAME ERR due to the

comma after the file name.

4) You can now read the file, or use INA to read the directory.

-346-



The above is adapted from advice given by Mike Markov in the PPC 10th

Anniversary Conference Proceedings. These are available directly from PPC,

but if you are interested maybe someone in your local user group has a

copy. A good deal of information on cassette tape formats is given on page

9 of the Synthetic Quick Reference Guide.

Do not get upset if the above does not interest you; it interests some

users and you may want to come back to it later. To begin with you can use

the Mass Storage devices by following directions in the IL module manual.

Back to HP-IL device classes; 2 covers HP-IL printers with and without

graphics. These have already been covered in sufficient detail for the

purposes of this book.

Class 3 covers displays. The HP 82163A Video Interface was the first

device of this class, but HP now sells the HP 92198A 80-column Interface

made by Mountain Computer, Inc. Video interfaces are made by other

companies as well. The Paname ROM, described later, provides additional

functions to control displays.

Class 4 is for interfaces. This includes the HP 82168A HP-IL modem which

is used for remote data transfer over telephone lines. The transmission

rate is 300 baud. Other interfaces are the HP 82165A GPIO interface, the

82164A RS-232C interface, and the 82169A HP-IB interface. GPIO interfaces

are also available in kit form for users who wish to build them into their

own equipment. The kit part number is HP82166 followed by a letter

denoting the current kit type; at present this is C for a kit which

includes four interface units with development software.

Class 5 describes electronic instrumentation. This can include various

devices such as instrumentation controllers, but note that some instruments

are included in class 7.

Class 6 devices are Graphic I/O devices, like the HP 7470A option 003

-347-



plotter which can accept plot data but also send digitising information to

a controller.

Class 7 covers Analytical and Scientific Instrumentation. An example of

this is the HP 3421A Data Acquisition/Control unit. A special HP-41 module

has been produced to let the HP-41 control this device and others such as

the HP 3468A Digital Multimeter.

Classes 8 to D were left undefined when the HP-IL system specifications

were published.

Class E was used to cover devices that do not fit into other classes.

EPROM programmers were included in this class.

Class F was left for "Extended class" devices.

A list of HP-IL products made by independent companies was published in PPC

CJ VION2P32. Of these the Mountain Computer EPROM programmer was made in

only a Ilimited quantity. New products are advertised in HP related

publications such as the user group journals and Personal Computing, and in

the specialist press related to the products.

Some other peripherals should be mentioned here. Port Extenders, as

described in Section 2.7, are important if you need to connect more than 4

modules or devices directly into the HP-41. The best-known kind is

produced by AME and sold through EAuCALC (see Appendix B), others are also

made, some are advertised through user group journals and by Boekhandel

Prins (see Appendix B again). Devices that let you write programs onto

memory that the HP-41 will treat as plug-in ROMs, and devices that will let

the HP-41 read instructions from EPROMs instead of ROMs will be described

in Chapter 17. The Port-X-Lite plugs into a port like a module and has a

small bulb on a stalk, so that you can read the HP-41 display in the dark,

it was made by AME and advertised in the EAuCALC catalogue. The original

description was in PPC CJ V9N4P15. Carrying cases, power supplies and

magnetic card holders are all sometimes advertised in user group journals.

-348-



12.5 Plug-in modules and XROM conflicts.

Plug-in modules for the HP-41 will be divided into four types and described

in the next four sections, after a few general comments here. The first

type are the "application program" modules (also called "Application Pacs"

by Hewlett-Packard). These are modules such as "Circuit Analysis" or "Home

Management" which contain programs for one specific application of the HP-

41. The programs in these modules look just like user-written programs but

they can not be altered and they do not take up any space in the HP-41 RAM

memory. The second type is a "utility programs" module. The Mathematics

module and the Standard Applications module belong in this class; they

provide useful programs which can be applied in a variety of fields. The

third type can be called a "system enhancement" module. The Time module is

a good example, it does not contain programs but provides a built-in clock

and functions that let you use it. Among the other "system enhancement"

modules are the Memory modules, the Extended Memory modules, and the Auto-

Start Module. All these provide features which enhance the HP-41 system

and which would be difficult or impossible to achieve with programs alone.

A fourth type are the modules used by HP Repair Centres to check the HP-41.

Modules are also used to connect plug-in devices into the HP-41 and to

control either a single device, or in the case of the HP-IL Module, to

control many devices; these were described above.

This division into four types will help in further discussion but it should

be noted that the separation is not always very clear. For example the

Mathematics Module provides hyperbolic function routines which many people

would consider an essential part of a scientific calculator, so the

Mathematics Module could be treated as a system enhancement module. Again,

three application modules contain functions and routines which provide a

sophisticated set of unit conversions. These functions will be discussed

later in Section 12.6 and could be considered to be a system enhancement.

Another point is that Hewlett-Packard manufactures modules for other

companies. Several petroleum companies for example have written HP-41

-349-



programs for their own use and have put them into special modules so that

employees can use the same programs throughout the company. A few

organisations have also ordered "system enhancement" modules of their own

design. All these modules are manufactured by Hewlett-Packard to their

normal high standard, and the software in these modules is often also of a

high standard. A few of these modules are on sale to the public and some

will be mentioned in this chapter. Other groups, who do not wish to invest

in manufacturing a plug-in ROM, write HP-41 programs onto EPROMs

(Erasable Programmable ROMs) which are cheaper for small numbers of

copies than ROMs. Such EPROMs can be easily copied and are connected

to the HP-41 in specially-made "EPROM boxes". These EPROM boxes

and similar items will be mentioned in Chapter 17; the reader should be

aware that a great deal of specialist software is available only on EPROMs.

Each plug-in module and device is identified by an ID number. This is the

first of the two numbers that show up when the module is removed and

programs or functions show up as XROM id,fn. Only the numbers 1 to 31 can

be used for id’s, but far more than 31 plug-ins have been made, so there

are bound to be cases where several modules have the same ID number and

there are conflicts. If you look back to Chapter 8 you will see that some

modules contain two 4K blocks, and each of these has a separate ID, so

cases can arise where one of the two numbers is the same as the ID number

of another module; "module" because HP has been careful that devices such

as the Card Reader do not have the same number as anything else.

If you have two modules with the same number connected to your HP-41 then

all references to functions with that number are checked only in the first

module found by CAT 2, so you will be unable to use any programs or

functions from the module in a higher port number. The synthetic program

XRO in Example 4 of Section 15.5 will let you execute a program (but not a

function) by jumping straight to a selected address in a module. This does

not use an XROM number so you can use XRO to execute a program from a

module which is in a higher port number than another module with the same

ID. Take an example: you want a program to use the function JDAY which is

in the Securities module and has the number XROM 19,15. For some reason

-350-



the same program must also use a t-distribution function, and there is one

in the Clinical Lab module. Unfortunately the Clinical Lab module programs

are also identified as XROM 19,nn so you could not normally do this. If

you plug the Securities module into a lower port number than the Clinical

Lab module and enter XEQ "TDIST" then TDIST will be found to be

XROM 19,14 in the Clinical Lab module, so XROM 19,14 will be recorded in

your program, but this will be interpreted as XROM "ATP", which is

XROM 19,14 in the Securities module. You can however remove the Securities

module for a while and record the address of TDIST. Then you could use XRO

to jump directly to this address without using an XROM number at all. Note

that this would not work if the Clinical Lab module was in a lower port

number than the Securities module; you cannot use XRO to jump to a

function. If you want to use this method, read the details in Chapter 15.

Table 12.2 gives a list of XROM numbers and the modules that use each

number. Modules that appear twice in the table are the ones with two 4K

blocks. Two 4K modules occupy the upper 4K of their port, not the lower 4K

as is usual. HP makes modules to order for independent companies: the XROM

ID’s are written on the label at the bottom of these modules. Most such

modules use 31, or 21 and 31 if they are 8K modules; the Oilwell module is

given as an example of them. The Synthetic Programming Quick Reference

Guide gives a list like this and individual function names and numbers too.

-351-



XROM number Module

1
O

0
0
3

O
L
t
b

W
N

W
N
N
N

D
N
N

D
N
N

N
R

=
o

e
e
t
e

b
b

e
e

O
V
O

0
0
N

O
L
t
&

W
N

=
O

V
O

0
0
O

L
t
b

W
N

—
O

31

Math; functions in 1C have different numbers than 1A and 1B

Statistics module

Surveying

Finance

Standard Pac, ZENROM(upper 4K only), Paname lower 4K

Circuit analysis

Structural Analysis lower 4K

Stress Analysis

Home Management, Paname upper 4K, CCD module lower 4K

Auto/Dup(upper 4K only), Games, PPC ROM lower 4K

Real Estate, CCD module upper 4K

Machine Design

Thermal and Transport Science

Navigation

Petroleum lower 4K

Petroleum upper 4K

Plotter ROM lower 4K

Plotter ROM upper 4K

Aviation, Clinical Lab, Securities, Structural upper 4K *

PPC ROM upper 4K

Data Logger lower 4K,Daly Oilwell module lower 4K

HP-IL Devel module lower 4K, Advantage lower 4K

Extended 1/0

HP-IL Devel module upper 4K, Advantage upper 4K

Extended Functions, including HP-41CX Extended Functions

Time module, including HP-41CX Time functions

Wand

HP-IL Mass Storage and Control functions

Printer and HP-IL printer functions

Card Reader

Data Logger upper 4K, Daly Oilwell module upper 4K
*

The X on the label tells you to avoid using 2 of these at the same time.

Table 12.2 XROM numbers used for plug-ins

-352-



If you write a program which uses functions from one module, say the Games

ROM, and later run the same program without this module connected the

program will normally stop with the message NONEXISTENT. However if a

different module with the same ID, say the PPC ROM, is connected then the

program may run and you might not notice anything was wrong till later, so

be careful. If you assign an XROM routine or function to a key, then plug

in a different ROM with the same XROM number into a lower port, or remove

the first module altogether, then the corresponding function from the

second module will be executed. A particularly confusing thing can happen

in cases like the following: you have an Aviation module in port 4 and a

Structural Analysis module in port 2. You enter XEQ "CRUISE" to execute an

Aviation module program; the HP-41 searches for this function by name,

finds it in port 4 and notes that it is XROM 19,11. Then it tries to

execute XROM 19,11 and finds the Structural module, numbered XROM 19 in

port 2. It tries to execute the 11th XROM 19 function in this module, but

the highest number in this module is only XROM 19,07. You therefore see

NONEXISTENT, even though the HP-41 had already found the function you

wanted. This can happen with any two modules having the same XROM

numbers.

A second difficulty is that certain function or program names are used by

more than one module. The worst case is SIZE? which is used as a routine

name in the Stress, Structural, Games and Real Estate modules. It is also

used as a function name in the Extended Functions module and in some other

modules which contain a few Extended Functions, for example the Data Logger

module. All of the SIZE? routines check whether the current SIZE setting

is sufficient for a program to work and complain if it is not; the SIZE?

function returns the SIZE setting to register X. If you just enter

XEQ "SIZE?", which one will be executed?

Names like this are searched for in CAT 1 first, then in system devices in

CAT 2, then in other plug-ins, starting with port 1. If you execute SIZE?

then the first SIZE? to be found will be executed, so you have to check

which ports your modules are plugged into. If you have an HP-41CX then the

-353-



built-in Extended Functions come right at the end of CAT 2, so any other

SIZE? will be found before it and will be executed. The same CAT 2 search

rule applies if you are assigning a function, the first function found will

be assigned. Different functions with the same name can be assigned to

different keys by using this. Remove all plug-in modules from an HP-41CX

and assign SIZE? to the X<>Y key. Then plug in a module with a SIZE?

routine and assign SIZE? to the TAN key. Now you have two different SIZE?

key assignments, and each one will execute the chosen SIZE? ; you even have

a mnemonic - the function is at the left and the routine at the right.

12.6 Application Program Modules.

General Information.

A few general points concerning Application Program modules should be made

first. To begin with, you should always read the manual, preferably all of

it. That is the only way to make sure you will use the module correctly.

You should also do some of the examples to get practice, and to see if the

manual has any misprints. Hewlett-Packard provide Addendum Cards for

modules or manuals which contain possible faults or errors, but these cards

can only be produced after the problem has been discovered. The Hewlett-

Packard magazine "Key Notes" used to reprint the information from these

cards but it is no longer published. One way to get this information now

is from a wuser group. Modules are occasionally updated, but Hewlett-

Packard will not normally exchange an old module for a new one in Europe.

Application Program Modules are designed to be used by people who never

program an HP-41, as well as by experienced programmers. The instruction

manuals tell the users how to obtain a particular result, keyboard overlays

remind them which keys to press, and the programs in the modules ask

helpful questions. These questions are valuable to the non-programmer but

they often annoy programmers who want to use only part of the program or

perhaps to design their own questions.

You can copy programs from a ROM module to the HP-41 RAM memory (using the

-354-



COPY function) and then alter the copy in the same way as you would edit

any other RAM program (see Chapter 8 for a comparison of ROM and RAM). A

program that has been edited takes up room in the HP-41 memory, it cannot

be copied back into the module, nor can programs in a program module be

edited. The copy in RAM memory is in CAT 1 and will be executed instead of

the version in the module which is in CAT 2 because CAT 1 is searched

before CAT 2. The copy in RAM may still refer to other programs in the

module though. If you want to change any of these programs or if you want

to remove the module entirely, then you must COPY them to RAM too. You

must also delete every program step that says XROM "routine" and replace it

with XEQ "routine" after you have copied the routines to RAM. An exception

to this are the Petroleum Fluids calculation subroutines which have XEQ

instructions in them already. Details of COPY are given in Section 6.5.

In some of the modules, the initialisations and questions are put into

separate subroutines so that programmers can use just the routines that do

the calculations. Several modules have separate subroutines which do

useful jobs such as asking yes/no questions. It is a fault of most manuals

that these useful subroutines are not mentioned at all. If you want to

skip the questions at the start of a program which contains calculations

and questions you can use the synthetic program XRO, mentioned above, to

jump directly into the middle of a program in a module.

Many of the programs in the Application modules have been adapted from

programs written for the HP-65 or the HP-67 and HP-97. Indeed some of the

HP-41 modules are nearly identical copies of application packs available

for the older calculators. These programs have the great advantage of

being long-used products which are less likely to contain catastrophic

errors than new programs. The adaptation to HP-41 use has not always been

efficient, for example many programs finish with the two steps RTN, END.

END does exactly the same as RTN, so the only reason to have both is in

case a user presses R/S accidentally after a program has stopped. Never

mind, a program in a ROM runs faster than the same program in RAM anyway,

so some inefficiency is acceptable. Most of the programs are designed to

print their results on a printer if one is attached.

-355-



A lot of programs in the Application Modules work to U.S. Standards. This

means that some will be of little help to people in the United Kingdom or

elsewhere who have to work to their own national standards. A few programs

can be copied to RAM and easily modified, but others are of no use.

Warnings about this will be given where necessary. Several modules have a

mixture of some programs that are useful to everyone and others that apply

only in the U.S. - it can be worth buying these modules just for the

latter programs.

It is worth examining Application Modules outside your own field of work.

For example the Petroleum Fluids Module may be worth buying just for its

unit conversions, or the Clinical Medicine Module may be worth buying

because it has some statistical programs that are not available in the

Statistics Module. In some cases (unit conversions or vector operations in

particular) several modules may have the functions you need so it is worth

checking which one best suits your needs (or which one is cheapest).

In some cases, several modules contain programs with the same XROM numbers,

and you should only plug one such module into your HP-41 at a time. The

table above listed such conflicting modules. If you are not sure what XROM

numbers are, reread Section 3.5.

Unit Management.

The Unit Management or unit conversion functions are a very powerful

feature of three modules, and it is surprising that Hewlett-Packard have

advertised them so little. The general rules for Unit Management are that

you put a conversion equation into the ALPHA register, and the number to be

converted into the X register. The conversion equation consists of an

input and an output separated by a dash. The input and output are each a

formula in terms of acceptable units, with powers from 1 to 9 also allowed.

You can omit the output in which case the conversion is to S.I. units. You

then execute the conversion function (these functions are written in

machine code, so they are fast). The functions first check if they know

-356-



the units, and if the units are consistent. (You cannot convert centuries

to centimetres!) The Petroleum Fluids Module allows 82 units and provides

6 additional input and output routines to prompt for the inputs and display

or print the outputs. These routines can also store the names of your

input and output units separately. They can also record whether you are

working in English or S.I. units and can ask for the units of input and

output values. The Petroleum Fluids Module comes with an excellent manual,

but it is more expensive than other modules. The Thermal and Transport

Science Module allows for 55 units and provides one input and one output

subroutine. The Machine Design Module allows for 42 units and has no input

/output subroutines, but it allows for some units that are not recognised

by the Petroleum Fluids Module.

Units allowed for can be English, S.I. or other common units. For example

the Petroleum Fluids Module allows pressure to be specified in fourteen

different units; of pounds per square inch, pounds per square foot,

atmospheres, bars, millibars, megapascals, pascals, kilopascals, kip per

square inch, Torr (and also the nearly equivalent millimetres of mercury),

inches of mercury, feet of water, and inches of water. Use of the Unit

Management System can save you a lot of time and space. Executing a

conversion from UK gallons to US gallons for instance is simple and quick;

you do not need to look up the conversion factor or store it in the HP-41

memory. A serious shortcoming (for many users) is that electrical and

magnetic units are not allowed for. Hewlett-Packard had originally planned

to extend the Unit Management System. Even though these extensions never

reached the HP-41 users, the Unit Management System is still very much a

"good thing" in its present form.

Aviation.

This module turns the HP-41 into a "flight computer", but one best suited

for use with twin-engined planes (particularly Cessnas). If you fly wide-

bodied jets then you have more powerful computers on board anyway. If you

fly Beechcraft planes you may prefer the Beechcraft module (see below).

The Aviation Module is designed for flight planning (FCC rules limit its

-357-



use to pre-flight calculations only), and it certainly does this job, but

you may prefer to obtain a Navigation Module as well (see below again). A

few general-purpose subroutines are available in this module. "360+"

simply adds 360 to the number in X without altering registers Y, Z or T.

(This is quite different from "+360" in the Machine Design Module.) "*T"

is another useful subroutine - it displays a time or angle in hours

(degrees): minutes: seconds and prevents displays of 60 minutes or

seconds.

"Beechcraft"

This module is not sold by Hewlett-Packard; it was written under contract

for Beechcraft Corporation. It comes with the documentation for Beechcraft

Super King aeroplanes, or you can purchase it (without the plane) from

Beechcraft.

Circuit Analysis

This provides 63 routines split up into two general sections; general

network analysis and ladder network analysis. A circuit is described in

terms of branches and nodes together with a list of component values. The

circuit response can then be studied (and printed or plotted if you have a

printer) and programs that use the circuit analysis pack can vary one

parameter or several. These programs could even use minimisation functions

(available in the Math ROM and in the PPC ROM) to find best values for

components.

Two useful subroutines in this module are "*C*" (complex multiplication of

two numbers in the stack) and "*C+" (complex addition of two numbers in the

stack). These subroutines are described in Appendix B of the manual. You

should also be a little careful of the routine labelled "PI", or you may

confuse it with the function PIL.

-358-



Clinical Lab. and Nuclear Medicine.

The six Clinical Lab. programs in this module are Beer’s Law, Body Surface

Area, Creatinine Clearance, Blood Acid-Base Status, Oxygen Saturation and

Content, and Red Cell Indices. This is such a variety of programs that you

will need to look at the manual before deciding whether you should buy this

module. The more-commonly used of these values are now routinely

provided by the hospital labs using widely- available apparatus. The

practicing clinician may therefore have little use for the programs, but

research workers may find some of them useful.

The four Nuclear Medicine programs are "Total Blood Volume", "Thyroid

Uptake", "Radioactive Decay Correction" and "Radioimmunoassay". You may

want to read the next chapter to find out about other possible sources of

similar programs. The radioactive decay correction program contains data

for 15 isotopes and can be run with other isotopes. It may be useful to

people who perform decay calculations in fields other than medicine, for

example in Carbon-14 dating.

The module also provides programs for basic statistics, chi-square

evaluation and distribution, t-statistics and t-distribution. The last of

these is particularly useful since it is not available in the Statistics

Module. Be warned: the first two use CLRG and will destroy all your data.

Financial Decisions

This module provides several useful programs which in effect let you

calculate the future value of money. The programs are designed for the

United States, so if you plan to use the module elsewhere you might have to

copy and alter the programs or write additional routines. (One example is

that the interest rate on mortgages is calculated differently in some

European countries.) This module also contains a general-purpose "Days

between Dates" calculation, but the Time Module provides a faster version

called DDAYS. Several of the financial programs are also available in the

Real Estate Module.

-359-



Two additional financial modules, programmed by independent companies are

available; they too are clearly designed for the U.S. market. One is a

"Financial Planner" module; the other is a "Market Forecaster". This

provides an 80-day forecast of the Dow Jones Average (with a correlation

coefficient of r=0.78 for an ecighteen year test period). Both can be

ordered from EduCALC (address in Appendix B). There is an excellent

finance program in the PPC ROM; this can do non-U.S. calculations.

If you really want to do a great deal of financial calculation you may

prefer to purchase a financial calculator (such as the HP-12C). Hewlett-

Packard is at last beginning to think about non-U.S. financial calculations

in response to requests from Hewlett-Packard in Europe but we shall have to

wait and see if there will be any definite results.

Games

Why use your HP-41 for work only? Some of the best HP-41 programs are in

the Games Module. There is a number guessing game (inspired by

MASTERMIND), and there is a word-guessing game (which requires two

players). There 1is the almost obligatory "Biorhythms", and there is a

"subhunt" game and a "spacewar" game. These two are played on a square

grid which is provided separately because the HP-41 has only a one-line

display. There is a simple dice game, and finally there is a wonderful

pinball simulation. This provides eight scoring devices with sound

effects, two flippers, and even a "tilt" mechanism. It seems to be

extremely well-suited to the HP-41.

If you need an excuse to buy this module, it has two random-number

generating routines.

Home Management.

This module is a great aid for those HP-41 users who want to run their home

like a business. It helps with home budgeting, travel expenses and

-360-



chequebook balancing. It also helps with investment calculations,

including taxation, mortgages and insurance (suited to United States

applications of course). Several of the programs are similar to ones in

the Financial Decisions, Real Estate or Securities modules but the programs

selected for this module are for a typical (U.S.) householder rather than

an expert in one of the other fields. If you want a financial calculator

and do not need the other features of the module then you could buy a

financial-only calculator, or you could use the PPC ROM or Advantage ROM

which provide a financial program along with scientific and engineering

functions.

The Home Budgeting and Travel Expense Record programs use a fair amount of

stored data (as does the Stock Portfolio program). It is useful to have a

Card Reader to store all this data while it is not being used, the programs

have built-in facilities for using a Card Reader if you have one. These

programs can be used outside the United States with no trouble since you

can just replace Dollars with Pounds or Francs or whatever. One last

point: the manual for this module provides a useful introduction to some of

the financial problems tackled.

Machine Design

This module provides programs for design and analysis in mechanical

engineering. Topics include the design and analysis of four bar systems,

slider cranks, circular cams and various gears. There is a well-described

helpful ("user-friendly") helical spring design program. The examples for

this are good but the first answer to the first example is printed wrongly.

The write-up includes parameters for seven types of wire (American

Standards of course), for other types of wire you have to know the

parameters. This program works either in newtons and millimetres or pounds

and inches, but the module contains unit conversion ("Unit Management")

routines to let you use other units. Fewer units are recognised than by

the Petroleum Fluids Module, but five units not in the Petroleum module are

included in the Machine Design one because they are used in mechanical

engineering. (The Thermal and Transport Science Module provides all the

units that are in the Machine module and some more.)

-361-



There is also a program which provides numerical solutions for a damped

oscillator driven by a force. This force can be specified by a separate

routine (its label name must be 6 characters long or shorter though this is

not stated). The program solves a problem which is given in many

engineering and physics degree courses, I hope that students who own this

module will try the problems first without using the module! Finally there

are three geometrical programs: co-ordinate transformations, circle lying

on three specified points, and regularly spaced points on a circle.

Apart from these programs, the module contains several useful subroutines.

"KEY" prompts the user to press one of the keys in the top two rows, "+360"

brings an angle to within the range 0 to 360 degrees (it also works in

radians and gradians modes). "IN" checks for the existence of a printer

and if the SIZE setting is sufficient for a program. "*¥?" asks the

question Y/N (yes/no?). Any reply other than "Y" is taken to mean no;

this information should have been provided somewhere in the manual, since

"¥7" is used by several programs. Overall this module does a very good job

if you have a use for it.

Navigation

The people who use this module consider it one of Hewlett-Packard’s best.

It provides the necessary data and calculations for Great Circle and Rhumb

Line Navigation. The calculation routines are all independent of the

routines that prompt for input. This means that users can write their own

programs to call these subroutines, which is particularly important for air

navigation. The almanac routines are also very impressive, they contain

information on all 58 objects in "The Nautical Almanac" including the Sun,

Moon and four navigational planets. As usual the module was designed with

American users in mind, but a British navigator was a prime mover behind

its good design, so it is fairly international. Some users object to the

American-style emphasis on extensive prompting which meant that several

very useful calculation routines originally planned for it were left out

but you cannot have everything.

-362-



This module also provides a collection of subroutines for use in the user’s

own programs. The routines cover such subjects as Date and Time including

Sidereal Time, Co-ordinate calculations, and position analysis.

Additional Navigation programs are¢ being collected together by the Marine

Navigation group within HPCC. A large number of programs, and even a

module are produced by ADM Systems in the United States. (Their products

are available from EdJuCALC see Appendix B.)

Petroleum Fluids

This module provides programs concerning reservoirs of hydrocarbon fuels.

It can be considered as four parts; natural gases, oils (and gas-oil

mixtures), reservoir brines and rock compressibility, and utilities

(including unit conversions). The programs, including the unit

conversions, are divided into separate subroutines for prompting and for

calculations. Both the program material and the manual are exceptionally

well-designed and useful. The manual is 200 pages long, it contains more

detailed instructions concerning program use than do other manuals, at

least two worked examples for each program (in each case the first example

shows how to use the program as a whole), a special section on using

subroutines from the module and annotated listings of the programs. Only

two general-purpose subroutines are available apart from the unit

conversions; one prints a program title and checks if the SIZE is

sufficient, the other asks Yes/No questions, as usual any answer except Y

is taken to mean No.

Both the module and the manual are wonderful, but you are unlikely to have

an excuse for buying them unless you work in the petroleum industry or need

the unit conversions. If you do work in the petroleum industry you may

find it worth getting some of the other modules such as the Oilwell module

made by a UK company, Daly Drilling Enterprises (see Appendix B).

-363-



Real Estate.

The ten programs in this module are all related to cash flows and purchase

or renting of real estate in the United States. Those programs most likely

to be of use outside the United States are also available in other modules

such as Home Management. Several subroutines which calculate financial

formulae can be called from your own programs, but users should really

check the manual before deciding whether to buy the module. The manual is

helpful in that it does describe the general-purpose routines separately

from the programs.

Securities.

The ten programs in this module allow you to make calculations related to

investments, mostly on the U.S. market, in bonds, notes and stocks. Many

people who have a great deal of money invested or work in the financial

markets will find this a helpful module. Those readers who have barely

scraped together the cash for an HP-41 will not need this module (yet).

Once again, the advice has to be that you look at the manual and decide for

yourself. The manual contains an appendix with financial formulae, and the

module contains four general-purpose routines and a days-between-dates

function which works on a 360-day financial year. The module helps you to

save data on magnetic cards for future use.

Stress Analysis.

Eight programs intended for use by Mechanical Engineers are provided. Much

of the module is concerned with beams, cantilever beams, and columns.

Programs on Section Properties and Mohr Circle Analysis help with this.

Additional programs help with strain gauge data reduction and the solution

for the unknown variable in Soderberg’s equation for fatigue. The last

program allows the HP-41 to be used as an RPN calculator for vectors. Each

vector is represented as a magnitude and an angle, there is a four-level

stack, with a LASTX, and there are standard vector operations. (The

results of the cross product and dot product calculations are left in the

-364-



ordinary HP-41 stack, but not in the "vector stack".) A wuseful module and

many engineers will want either this or the Structural Analysis Module.

Structural Analysis.

This is similar to the Stress Analysis Module but is designed particularly

for Civil Engineers. Half of the programs are for analysis of structures

and the other half are for design (the module is sometimes called

"Structural Design"). The design programs are specifically for United

States specifications. The analysis programs can be useful anywhere and

some engineers have told me that this module is vital for their work,

particularly the beam programs. An RPN vector program is also provided, as

in the Stress Analysis Module.

Surveving.

This module is very clearly intended for land surveying according to United

States practice. Those parts that calculate land area and geometrical

properties can nevertheless be used anywhere. There is also a Co-ordinate

Transformations program, but this is available in the Mathematics Module as

well. As with several other modules I would advise potential users,

particularly outside the United States, to check the module manual before

buying. One problem is that the module uses CLRG in its initialisation

operations, so that it deletes all the data you had previously stored. You

may also consider purchasing a Survey Module programmed by a company

independent of Hewlett-Packard, there are at least two such modules at the

time of writing. Read the specialist press and check if companies such as

EduCALC sell a module that suits your purposes.

Thermal and Transport Science.

The "Transport Science" concerns the transport of fluids, in line with the

rest of the module (not Public Transport!). The whole module is designed

for Mechanical Engineers who work with the flow, heating and compression or

expansion of fluids. A black body thermal radiation program is included; a

-365-



slightly less sophisticated version with a smaller choice of wunits is

available in the Physics Solutions book. The Thermal and Transport Module

can provide a wide range of units because it contains Unit Management

functions, including seven units that are not allowed for in the Petroleum

Fluids Module. The manual provides a good description of the Unit

Management System.

Turning back to the programs, you will find that these cover equations of

state for gases (Ideal and Redlich-Kwong model), compression, expansion and

flow of ideal gases, and fluid flow in conduits (with an automatic option for

water). There are also programs for energy equations in steady flow (such

as a water tower), and analysis of flow in heat exchangers.

This is rather a specialised module, useful in its field and possibly of

interest to other people because of the equations of state program and the

Unit Management functions and routines.

Other non-HP modules.

As already mentioned HP make modules for users who supply their own

programs. A few modules have been mentioned above, most are ordered by

companies for internal use. Some are for customisation of HP-41s which may

then be resold or included in larger pieces of equipment, but a few have

been made for public sale. These include a hydraulics module, a module for

U.S. and Canadian horse-racing followers, and an Astrology Module. Look

for advertisements in specialist publications, or ask EduCALC.

-366-



12.7 Utility program modules.

This section covers five modules which contain programs that do not apply

in just one field.

Mathematics

This was the first module designed for the HP-41. Ten programs were

included in it, they were selected as programs that many HP-41 owners would

find useful. Eight were taken from the HP-67/97 Math Pack, one was taken

from the HP-67/97 Standard Pack, and one from the HP-67/97 Electrical

Enginecering Pack. (The selection was apparently made with an eye on the

standard plug-in module for the Texas Instruments TI58 and TIS59 calculators

which is not surprising, because these were the main competition for the

HP-41.)

The module and programs are described here in more detail than others

because the Math Module is the one with the most applications.

The programs are as follows:

1) Calculates the determinant and inverse of a matrix, or solves a system

of simultaneous equations. Matrices up to 16x16 can be solved if you

have a quad memory module or an HP-41CV or CX: 19x19 if you have

Extended Memory and use Synthetic Programming; see Chapter 16.

2) Finds a value of X that will provide a zero value of a specified

function. The program actually finds a value of X such that f(X)=0 to

the accuracy of the display.

3) Finds roots of polynomials of degree 5 or below and evaluates

polynomials. In version B of the module incorrect roots may be

calculated for 4th and 5th order polynomials. Check the roots by

evaluating the function using them as inputs.

-367-



4)

5)

6)

7)

Performs numerical integration of functions whose values are known at

a set of equally spaced points, or whose functional form is known

explicitly.

Solves first and second order differential equations of the form

y’=f(x,y) or y"=f(x,y,y’).

Computes up to ten consecutive pairs of coefficients of a discrete

Fourier sine and cosine expansion of a function. Any set of ten

consecutive coefficients can be selected, provided enough data points

are given. The second part of the program computes the value of the

Fourier series at a selected point. This is potentially the most

powerful program in the module; it can be used for many purposes such

as smoothing a data series. However the program was copied from the

HP-67/97 Electrical Engineering pack, and in Revision A of the module

allowance was not made for the fact that these calculators

automatically clear flag 2 when they test it. The unfortunate result

is that incorrect values for the Fourier series are computed if the

zero-coefficient (ao) is included. This can be corrected if you copy

the program to program memory and change line 160 to FS?C 02 but that

uses up a lot of memory which the module is supposed to be saving.

Alternatively you can halve the zero-order coefficient of the

expansion. (The correction card says you should halve both parts of

the zero-order coefficient, but in fact the second part ought to be

zero.) If you live in the United States you might be able to get a

replacement module for one with an error like this, but elsewhere this

is rarely possible.

Allows calculations involving complex numbers. Seventeen functions of

one or two complex numbers are provided, and if the result is a

complex number then it can be used in subsequent calculations. The

complex numbers must be in rectangular form.

-368-



8) Computes hyperbolic sines, cosines and tangents, and also their

inverses. The program given in Chapter 7 is slightly more accurate

for tanh and atanh, and it does not use any numbered registers, but it

takes up some memory space.

9) Provides triangle solutions and calculates the unknown values for a

triangle if one side and two other values (sides or angles) are given.

10) Calculates two- or three-dimensional co-ordinate transformations and

rotations. If you have revision B of the module you must make sure

flag 01 is clear before you attempt to do any transformations.

The errors in Math ROM revisions A and B have been pointed out above. You

can check which revision you have by doing CAT 2. On an HP-41C or CV you

will sece MATH or MATH 1A if you have revision A, MATH 1B if you have

revision B, and MATH 1C if you have revision C. On a 41-CX you should see

the same except that 1B will not show up at all unless you press the ENTER

key to get a list of all CAT 2 functions. Although revision C corrects the

earlier errors, it has the programs in a different order. This means that

programs written with a revision A or B module will not work correctly with

a revision C module. For example XEQ "ACOSH" is recorded as XROM 01,37 if

you have a revision A or B module. However XROM 01,37 appears as

XROM"ATANH" when a revision C Mathematics Module is plugged into an HP-41.

If you obtain any software using Mathematics Module programs you must check

that the right programs are called when you plug your module in.

If you need only a few of the Mathematics Module programs then you may find

similar programs in one of the other modules. The PPC ROM in particular

has several useful mathematical programs.

Statistics.

Like the Mathematics Module this provides a collection of general-purpose

routines. A very brief description of each program is given here.

-369-



1)

2)

3)

4)

5)

6)

7)

8)

9)

Basic statistics for two variables, grouped or ungrouped. The values

calculated are mean, sample standard deviation, population standard

deviation, coefficients of variation, correlation coefficient and the

standard summations provided by the HP-41 built-in statistical

functions.

Moments (first to fourth), and coefficients of skewness and curtosis

for grouped or ungrouped data.

One-way analysis of variance. Generates all twelve values for an

ANOVA table.

Two-way analysis of variance for the case where row and column effects

are separate and ecach cell in the set of data has only one

observation.

One-way analysis of covariance.

Curve fitting. Fits data to one of four possible curves; straight

line, exponential, logarithmic or power curve. Calculates

coefficients of regression and determination. The same program is

available in the Standard Applications, and one which requires less

data entry is available in the PPC ROM. The Advantage ROM has a good

curve fit routine too.

Multiple linear regression. Fits (by least-squares) a line of the

form t=a+bx+cy+dz to a set of points t and three corresponding

variables x, y, z. Also works for two variables x and y. Calculates

coefficients of regression and determination.

Polynomial regression. Fits sets of data points x, y to a second-

order or a third-order polynomial. Calculates coefficients of

regression and determination.

Calculates t statistics for paired observations or two independent

sets of observations (two means).

-370-



10) Calculates chi-squared (goodness of fit) for sets of observations.

Allows for unequal expected frequencies of observation and for equal

expected frequencies.

11) Calculates chi-squared and Pearson’s coefficient of contingency for

2xK and 3xK contingency tables. Can also be used to calculate column

sums, row sums, and table totals.

12) Calculates Spearman’s Rank Correlation coefficient. If a set of

observations (or individuals) is arranged in some order (ranked) two

times, this coefficient is an estimate of how similar the rankings are

in the two cases.

13) Calculates the normal density function, its integral, and its inverse.

14) Calculates the chi-squared density and its integral for a given number

of degrees of freedom.

Standard Applications

In order to provide some programming examples for the new owner of a

programmable calculator, Hewlett-Packard often provides a book of Standard

Applications programs. A book like this, containing ten programs, was once

provided with each HP-41C and HP-41CV. If you do not want to enter the

example programs from the keyboard then you can buy a Standard Applications

module which contains these programs. The module is sold without the book,

since you are supposed to have received the book together with your HP-41.

If you buy an HP-41CX, bad luck! You do not get a Standard Applications

Handbook because the HP-41CX manual itself has five example programs,

including barcodes. (You get barcode for the Standard Applications

programs in the Wand manual.) You can buy the Standard Applications module

for use with your HP-41CX but you will have to try to find a book for it

separately and pay extra for it. (You do get a card with some brief

-371-



instructions.) In case you are interested in this module and do not have

the handbook or want to check for errors in it, here is a list of the

programs. The RPN primer uses the Alpha features of the HP-41 to show you

how the RPN stack and LASTX are manipulated. The Calendar functions

program calculates dates, days of the week, and days between dates. (It is

correct from March 1 1900 to February 28 2100). There is a word guessing

game which uses the alphabetic features of the HP-41; you need a second

player to provide the words to be guessed. The Arithmetic Teacher can be

used to help teach your children to do simple arithmetic. (This uses the

same random number generator as the Games Module and the PPC ROM.) A

hexadecimal-decimal program converts integers between these two number

systems. The Financial Calculations program is similar to the one in the

Home Management Module, but has had some features removed. It solves for

the unknowns in a cashflow situation involving present value, interest

rate, number of payment periods, payment amount per period, and future

value of the loan or savings. (The PPC ROM provides a financial program

more sophisticated than either of the other two.) The Root Finder program

scarches for a root of f(x)=0, this is similar to the second program in the

Math Module, but less sophisticated. (Lines 44 and 45 are the wrong way

round in the original handbook, they should be 44 1E-8, 45 X>Y? Check if

this has been corrected in your book or module. You can also try another

guess by pressing A in User mode.) The Curve Fitting program is the same

as the one in the Statistics Module. There is a Vector Operations program

which adds, subtracts, multiplies, or divides two vectors. Only the stack

is used, the vectors must be two-dimensional vectors (or complex numbers)

in rectangular form. Finally there is a Blackjack game in which you play

against the HP-41.

HP-41 Advantage Module

After six years on the market the HP-41 continues to sell very well, but

newer calculators and pocket computers have been introduced. The HP-41

Advantage module (Advanced Solutions Pack) designed to give the HP-41 back

its advantage over the competition was introduced in August 1985. It gives

the HP-41 additional functions and programs in three main fields:

-372-



Mathematics and Matrix operations (similar to features on the HP-15C),

Computer Science (providing some functions of the HP-16C) and Financial

Calculations (giving some of the capabilities of the HP-12C).

Some of the functions and programs are rewritten versions of ones in other

modules. For example there is a Time Value of Money program that is very

similar to the main financial program of the Real Estate module (and also

much like the Home Management module "Financial Calculator" program or the

similar program in the Financial Decisions module). However like most of

the others, this program runs from a "menu" which is displayed when the

program is started and can be displayed again whenever necessary, so there

is no need for a keyboard overlay. The program description in the manual

is clear and explains what subroutines are used by the main program and how

you can call them directly from your own programs. This enhances the

manual since it lets you take full advantage of all the subroutines and

functions in the module for use in your own programs.

The manual has twelve chapters. The first describes complete programs for

creating and using real and complex matrices. The second chapter describes

the forty-five functions that are used by these programs. There are many

utility functions but also functions that can be called from the user’s

programs to multiply two matrices, find determinants, to invert and

transpose matrices, and to solve systems of equations. Previously these

operations were only available as programs in FOCAL; the functions are much

faster and finally make the HP-41 suitable for serious work with large

matrices. As matrices can be stored in Extended Memory as well as in Main

Memory a single matrix could be up to 599 registers long (one register is

used as a status header). Most of the matrix handling utility functions

come from the CCD module, while some of the matrix mathematics routines

come from the HP-15C. One additional general-purpose function, AIP (Append

Integer Part), is described with these functions. It appends the absolute

value of the integer part of a number in X to the contents of Alpha without

a decimal point, simpler than INT, RCLFLAG, FIX 0, ARCL Y, STOFLAG,

RDN, X<>L.

-373-



The third chapter describes a function SOLVE to find solutions to the

general equation f(x)=0; I shall describe this below. The fourth chapter

describes a program to find roots of polynomials of degree 2 to 5, and to

evaluate polynomials of degree 2 to 20. The fifth chapter describes a

function INTEG to perform numerical integration, also described below. The

sixth chapter covers a program for numerical solution of first and second

order differential equations using a fourth-order Runge-Kutta method to

step from one point to the next. The step size can be changed at any time.

A set of routines to operate on complex numbers is described in the seventh

chapter, routines to handle 2- or 3-dimensional vectors are in the eighth

chapter, and routines for three-dimensional coordinate transformations and

rotations are described in the ninth. These three sets of operations are

inter-related, for example a complex number can be considered to be a 2-

dimensional vector. Some of these calculations are available in other

modules, but the vector operations are arranged differently from those in

the Stress and Structural Analysis modules.

A set of functions for number conversion and Boolean logic comes in the

tenth chapter. The number functions allow entry and display of numbers in

binary, octal and hexadecimal using the keys A-F for the digits above 9.

With the Boolean functions they allow computer science operations to be

carried out on the 41. As they have been copied from the HP-IL Development

module, nice features of the CCD module functions, such as different sign

conventions, variable word length, and the ability to recall hex values to

Alpha, are not available. The bug in the BIT? function (which checks if

bit X of word Y is set) has been corrected but the BININ and OCTIN bug

(described in Appendix C under the HP-IL Development module) has not. The

cleventh chapter describes a curve fitting program similar to CV in the

PPC ROM; it fits one of four types of curve or finds the best type, without

destroying the data, and lets you estimate values using the fitted curve.

The last chapter describes the Financial program.

Actually over half the above are improved versions of programs in the Math

module; however SOLVE and INTEG are functions not programs, and so are

-374-



faster. They are copied from the HP-15C; the 41 uses larger batteries so

they run faster than on the 15C as well. To return to a machine language

function from a FOCAL subroutine they use the program SIRTN and the

function SILOOP in the Advantage module; as these are intended to be used

only for this they are not described in the manual. Both functions set up

a buffer with the identifier EE (buffers are described in Sections 8.3, 8.4

and 16.7). The buffer always begins at absolute address 0CO, below the key

assignmemts and other buffers; this means that SOLVE and INTEG can use

certain defined absolute addresses without looking for the buffer. If

SOLVE is used on its own then this buffer is 13 registers long, if INTEG is

used then the buffer is 32 registers long, with 12 of these reserved for

use by SOLVE. If you move this buffer then SOLVE or INTEG fail in SIRTN.

The buffer is deleted as soon as these functions complete their work but

there must be enough room below the .END. for it. SOLVE acts as a test

function; if executed from the keyboard it displays NO if it finds no

solution, and in a program it skips the next step. This is very easy to

forget when you are writing a program; try to think of the function name as

SOLVE? in analogy with X=Y? or BIT?. To compare INTEG with other

integration programs I ran it on 1/x12 in the same way as in Section 7.3.

The results were:

FIX 4 mode SCI 4 mode

upper limit result error estimate result error estimate

10 0.9000 0.0005 9.0000E-1 1.4301E-5

100 0.9905 0.0050 9.9000E-1 1.5614E-5

1000 0.0679 0.0500 9.9900E-1 1.5662E-5

1 E90 1.0E90 1.0E90 0.0000E00 5.0000E-14

The 1E90 result in the bottom row is wrong, and the stack is not tidied up.

The other values in the last two rows are not due to a bug, they are a

result of the way INTEG works. The HP-15C gives the same values for the

third row and an overflow error in the fourth row. Try to read the HP-15C

manual which describes this and SOLVE very well. Evidently it is better to

use SCI or ENG modes to specify the required accuracy as a relative value,

not FIX to specify it absolutely. One more point to beware of; all the

flags 0 to 10 are used somewhere in this module.

-375-



To fit all the 117 routines and functions into one module, page-switching

is used to make the module into a 12K ROM (see Section 8.3 for an

explanation of page-switching). The XROM numbers used are 22 and 24, the

same as for the HP-IL Development Module. The Advantage is a useful module

for the HP-41, particularly for new owners and people who are short of

ports and so want one module with commonly used utilities. It provides a

good selection of functions and routines and it should be considered an

addition to the range of HP-41 modules, not a replacement for any of them.

PPC ROM

This is a utilities module written not by Hewlett-Packard but by a users’

group. It contains those routines that a large cross-section of wusers

wanted most, in the light of their first two years’ experience. It is

called the PPC ROM simply because it was created by the user group PPC and

because it is a Read Only Memory module.

Several types of routines and programs are provided in the PPC ROM. First

of all, there are improved versions of programs that already exist in other

modules. These are an integrator, a curve fitting program, a financial

program, a root finder, complex arithmetic and a random number generator.

Then there are many additional programs of the same type; base conversions,

differentiation, Julian day conversions, alphabetic and numeric data

sorting programs, and a Gaussian random number generator are examples.

Thirdly there is a collection of routines and programs to handle blocks of

data and matrices. Blocks can be cleared, viewed, moved, rotated, matrix

rows can be initialised, added, multiplied or exchanged. Single elements

can be found and examined, maximum and minimum values can be found,

individual items can be removed from blocks or inserted in them. There is

also a block statistics program which can be used to find dot products.

Next there are several programs that enhance the use of HP-41 peripherals.

For the printer, there are histogram plotting routines and high resolution

-376-



graph plotting routines, including a routine to plot up to nine different

functions on the same graph. There is also a routine to arrange printer

output neatly in columns. For the Wand, there is a barcode analyser.

A range of mathematical functions come fifth. Some of these are the kind

of function that could have been included in the Mathematics Module, for

example combinations and permutations, operations with fractions and

fraction conversions, or prime number calculations. Others should really

have been built into the HP-41 itself if there had been room for them, for

example a modulus function that gives both the quotient and the remainder,

or a mantissa view function which displays all ten digits of the number in

the X register. Both those functions, and others like them, affect the

stack minimally, in the way that a true HP-41 function would.

These last two functions can really be considered to be HP-41 extensions,

not utilities, because they provide instructions that the HP-41 could well

have had built into it. In fact about half of the PPC ROM is made up of

HP-41 extension routines, and they will be discussed in the next section.

One of the good points of a users’ group (whether they be bulldozer users

or computer users) is that it provides the individual member with access to

a pool of experience, expertise and enthusiasm. The PPC ROM is a good

example of the workings of such a group provided it has dedicated

leadership; no single user would have provided such a product but a group

could create it. As a result, every member can get the module, take

advantage of other users’ knowledge, and contribute in turn by suggesting

uses for the routines or improvements to them. Over 40 members did in fact

contribute in this way by writing sections of the user manual. The PPC ROM

manual is 492 pages long, and the pages are twice as large as those of an

HP program module manual. Reading the manual itself (it can be purchased

separately) provides inspiration, education, and perhaps exhaustion.

-377-



12.8 System extension modules.

Memory-modules.

The first system extension modules provided for the HP-41 were the memory

modules. They were "extension modules" because they provided additional

memory for the HP-41C, not programs of any sort. Each module contained 64

data registers which could be used for storing programs or data. Since the

HP-41 has four ports, a maximum of four such modules could be plugged in,

providing a maximum of 256 extra registers. The HP-41 was designed with

this maximum in mind, and the HP-41CV and the HP-41CX already have all

this memory built in, so nothing can be gained by plugging memory modules

into them.

Most program modules and extension modules can be plugged into any I/O

port, but the memory modules must be plugged into ports 1, 2, 3 and 4 in

that order. If for example you have three memory modules you must plug

them into ports 1, 2 and 3. Port 4 is left free for another module, and

the Card Reader plugs into port 4 just because this leaves room for three

memory modules.

Quad Memory Module.

It rapidly became obvious that the single memory modules were very limited.

A user who needed a Card Reader, a Printer and a Mathematics Module could

only plug in one memory module, yet it was just this kind of system that

needed more memory. The quad memory module was introduced to overcome this

problem. It contains four times as much memory as a single memory module,

and it can be plugged into any port. Users of other equipment could now

have three ports for additional items, and still extend the HP-41 memory to

the full. Their only problem was what to do with their unusable single

memory modules (HP no longer makes single memory modules, but there is a

market for these in the user clubs because people need the module shells).

Hewlett-Packard also introduced the HP-41CV with the quad memory already

built in, so that the user had the full memory and four free ports.

-378-



The story so far is a repeat of what has already been said in Chapter 8.

Things got more complicated when Extended Memory was introduced, we shall

come to this soon.

The PPC ROM again

Some of the programs in this module have already been mentioned, but it

also contains many functions that are really system extensions. Two simple

examples are functions that replace X with its mantissa or its exponent

(power of ten). The original value of X is saved in L and registers Y, Z

and T remain unchanged. (The view mantissa function described earlier does

not change the stack at all.)) Another very useful routine takes you

directly to the last program in memory. This lets you interrupt the

writing of a new program, then go back to that program even if it does not

have a global label. Other functions test the display, delete the last

character in the ALPHA register, find the SIZE and the location of the

statistics registers. There is an alternative to the BEEP function. There

is a function to let you jump into the middle of a program in ROM, at any

selected point; this lets you skip over questions which may be unnecessary.

A very useful pair of functions let you extend the RTN stack to more than

six pending returns. Other routines let you analyse, alter and save the

ALPHA register, save and restore the display mode, suspend, reactivate, and

view the key assignments, compress or decompress data, view the flag

settings and perform other similar useful operations.

Most of the above routines use Synthetic Programming to achieve results

that would otherwise be impossible without microcode programming. The

final section of the PPC ROM routines helps you to do your own Synthetic

Programming. Some routines achieve easily understood results such as

executing unusual TONEs or inverting the status of any flag (including

flags 30-55, most of which cannot normally be altered). Others may be more

difficult to understand at once, for instance routines to create or decode

non normalised numbers, or routines to assign any function to any key (read

Chapter 8 if you do not understand these operations). Finally there is a

-379-



set of routines to give the user maximum control of memory, interchanging

programs and data, and even using one program to let the user automatically

write another program.

Most, but not all, of the PPC ROM routines have now been mentioned. A few

can be replaced by Extended Functions (such as SIZE?) or functions in other

modules, but the majority are still only available in the PPC ROM. Some of

the routines will be described in more detail in the chapters on Synthetic

Programming. The PPC ROM would be a good investment for many owners who

want to extend their HP-41.

After the PPC ROM had been made, it became possible to write machine code

programs on EPROM memory. Several collections of programs on EPROM have

been made and circulated within PPC and other user groups. Some of these

are called PPC EPROMs and should not be confused with the PPC ROM. There

has been a long-standing project to develop a second PPC ROM. This is

generally called PPC ROM II, but it has not been completed and perhaps it

never will be.

Timer, Extended Functions and Extended Memory.

These have already been described but it is worth remembering that they are

HP-41 extension modules. It is also important to remember that a maximum

of two Extended Memory modules can be plugged into an HP-41. If one is

plugged in it can go into any port, but if two are plugged in then one must

go into port 1 or 3, and the other must go into port 2 or 4. You should

make sure that you understand the differences between the various types of

memory modules or you may buy the wrong one.

ZENROM

This is a system extension module programmed for the HP-41 by Zengrange

Ltd., a UK. company. Its main purpose is to make Synthetic Programming

easy on the HP-41. In brief Synthetic Programming means the use of numbers

and instructions which cannot be created from the keyboard, but must

-380-



instead be put together (synthesised). Synthetic Programming will be

explained fully in Chapters 14 and 15; SP greatly extends the power of the

HP-41 but it is not easy to synthesise the required instructions. The

ZENROM makes it possible to create synthetic instructions directly from the

HP-41 keyboard as if they were ordinary instructions (hence its slogan

"direct key synthetics"). You will probably need to read Chapter 14 to

realise just how useful this is. The second purpose of ZENROM is to allow

its owner to program the HP-41 in its own machine language, but a special

type of memory must also be purchased to store the machine language

instructions. We shall come back to this in Chapter 17.

ZENROM provides other useful features. A special Alpha keyboard mode lets

you enter all the special display characters which cannot be keyed from the

normal keyboard. This includes parentheses, square brackets, the

ampersand, hash sign, underscore, and all lower-case letters. Most of the

lower-case letters do not show up properly in the display, but they are

worth using if you have a printer. The pound sign is also provided,

obviously useful in the UK. There are functions to clear main memory or

Extended Memory separately (unlike a master clear which clears everything

at the same time). There are functions to encode and decode non-normalised

numbers, to go to the last program in memory and to toggle a flag; all

these are similar to PPC ROM functions but faster because they are written

in machine code. Other functions allow the storing and recalling of non-

normalised numbers, and byte-by-byte editing of the contents of RAM memory.

In some ways ZENROM is an alternative to the PPC ROM; in other ways it

provides facilities not otherwise available, particularly the machine-code

writing and analysis section. As a compromise, I always have both modules

plugged into my HP-41!

The ZENROM manual is worth reading on its own. It provides a good

introduction to Synthetic Programming and M-code programming. For

information on ordering ZENROM, see Appendix B.

-381-



Modules for use with HP-IL.

Various HP-IL devices need many different commands, but the HP-IL Module

itself can only send a limited number of commands. The ALPHA register is

often used to send or receive loop messages, so control of the loop

requires complete control of the ALPHA register. Several modules have

therefore been produced to allow improved control of HP-IL devices and of

the ALPHA register. Most of these modules provide other functions which

can be used with HP-IL or to enhance the use of the HP-41 itself. (All of

these modules plug into the HP-41, which controls the Interface Loop, not

into the individual loop devices.) Seven such modules are available at

present as described below.

Extended I/O Module.

This is a general-purpose IL control module. Its main purpose is to

provide the commands needed to control IL devices such as modems, non-HP

printers and video monitors. A second group of functions is available to

control Mass Storage devices. These functions let you get a directory

listing of the files on a cassette or a disk, examine individual files, and

copy individual files. They also let you use all the space on a disk, not

just a part of it as is the case if you use only an HP-IL module. There

are functions to copy all the files from one Mass Storage unit into up to

30 other units, to copy all the files and make the copies PRIVATE, and to

verify that the copies can be read successfully. Example programs are

provided in the manual so that the owner of this module can use it at once.

The module also provides functions called extensions to the Extended

Functions, because they are similar to those in the Extended Functions

Module. These "Extended Extended Functions" can be very helpful for Alpha

operations even if you do not use HP-IL. One such function is ANUMDEL

which works like ANUM but deletes the number it has found (and everything

to its left) from the Alpha register, so that other numbers can be found in

Alpha if ANUMDEL is executed again. All these functions are particularly

useful in Synthetic Programming and are therefore described in Chapter 16.

-382-



Auto-Start and Duplication Module.

This module serves two fairly specialised purposes. If it is plugged into

an HP-41 and the HP-41 is turned on, then it immediately tries to run a

Catalogue 1 program called "RECOVER". Failing this, it tries to run a

CAT 2 program called "RECOVER". The module itself contains a program of

that name so this is normally executed; it tries to reinitialise the HP-41

memory from a Mass Storage write-all file called "AUTOST". These two

operations are similar to running a program automatically by turning on the

HP-41 with flag 11 set, but they do not require you even to set flag 11.

The main use of this auto-start facility is if you want the HP-41 to do

some job completely automatically; you just turn the HP-41 on and it does

everything according to a pre-written program (it could even turn itself

off when it finishes). This can be worthwhile if you want to sell a

customer a complete unit including an HP-41 to do some job and the customer

wants to have everything done automatically.

The other use of this module is for copying complete Mass Storage devices;

the module contains the same three Mass Storage copy and verify functions

as the Extended I/O module. The module also contains a program to automate

the task of copying and checking a cassette or disk, but this program is

provided in the manual for the Extended I/O Module. If you need these

functions it is therefore better to buy the Extended I/O Module since it

provides so many other useful functions.

An interesting feature of this module 1is that the auto-start can be

disabled by setting flag 35, but no way is provided for setting or clearing

this flag. In effect this acknowledges the need for Synthetic Programming,

or the PPC ROM, or ZENROM, or the CCD ROM, which are the only means

available for setting flag 35.

-383-



HP-IL Development Module.

This module provides features to allow complete low-level control of the

HP-IL module and loop. It also allows the HP-41 to be used to monitor

messages and commands sent round an HP-IL loop controlled by some other

device (another HP-41 or an HP-75 for example). As its name implies, these

features allow the module to be used by someone who is trying to develop a

specific use of HP-IL, for instance a complicated new program or a new

piece of HP-IL equipment.

Other people may also find the module very useful. It provides even more

complete control of HP-IL devices than does the Extended I/O Module. It

provides the same ALPHA register control functions as the Extended I/0

Module except for ANUMDEL. It provides a set of functions to enter numbers

in binary, octal and hexadecimal. The numbers are treated as if they were

unsigned thirty-two bit integers, but they are stored as decimal numbers,

so that decimal arithmetic can be performed on them. The following logical

(Boolean) operations can also be carried out on these numbers: AND, OR,

XOR, NOT, ROTXY (rotate to the right by n bits), and test bit n. This last

function, called BIT? will skip a step if the specified bit is clear, not

if it 1s set as stated on page 53 of the manual. The manual should also

point out that the least significant (rightmost) bit is bit number zero,

and the most significant bit is bit 31. In all these logical operations,

the sign and fractional parts of the decimal representation are ignored, so

that they are lost except in the case of the function BIT? There are also

functions to display numbers in binary, octal or hexadecimal, so the

results of all the arithmetic and logical operations can be displayed in

the required mode. BIT? does not always display the answer when executed

from the keyboard: see the list of bugs in Appendix C.

In order to provide full control of the IL loop, this module has functions

to copy, read, receive, analyse and compare bytes. These bytes can be in

the stack, in the ALPHA register, or in a special buffer which the module

can create (see Sections 8.3 and 8.4 if you do not know what a buffer is).

The buffer can be up to 253 registers long (1771 bytes), so it can be used

-384-



to send or receive much longer messages and commands than the ALPHA

register will hold. Any particular byte in the buffer can be identified by

a pointer similar to the pointers used in Extended Memory files. Numbers

can be extracted from the buffer in various ways, including a function

similar to ANUM but using a specified number of bytes. The contents of the

buffer can be printed or displayed as a string of bytes or of IL

instructions. Since the buffer only exists so long as the Development

Module is plugged into the HP-41, it is assumed that its contents will not

get scrambled, so its contents are never normalised. (Normalisation was

described in Section 8.2.)

All these features of the Development Module buffer, and the functions to

control it, make it an ideal tool for Synthetic Programming which is

largely involved with the creation, analysis and storage of bytes and non-

normalised numbers. Some people who do not use HP-IL at all have bought

Development Modules just to wuse the non-decimal numbers, logical

operations, or buffer operations. The module also contains a function

identical to X<>F, and a function to test if a plug-in ROM is faulty (this

is actually done by calculating the checksum for the ROM and comparing it

with a value saved in that ROM). Finally the Development Module can be

used to set the HP-41 so that it turns off, but will wake up and run a

user-written program (called INTR) if some other device on the HP-IL loop

requests to be serviced. This is done by setting flag 18 before the HP-41

is turned off, and it is similar to the flag 11 auto-start of the HP-41 and

to the action of the Auto-Start Module. In a way it is even more powerful,

since it allows the HP-41 to be turned on from some other device.

The HP-IL Development Module is an extremely powerful tool for control of

the HP-41 and of an HP-IL loop. This power was obtained at the cost of

some complication and a few bugs (described in Appendix C). For these

reasons and because of its name, it is nicknamed the "devil" ROM. An early

version of this module was copied onto EPROM and released to members of

PPC. This version is called PPC EPROM 5A or the Monitor ROM. It is like

the Development Module but contains fewer functions and more bugs.

-385-



Plotter Module

This lets you do two things: create barcode for printing on printers or

plotters (including the 82162A printer), and control the HP-7470A plotter.

The plotter commands could be generated one byte at a time with the HP-IL

Development Module, but that would be terribly time consuming. The Plotter

Module therefore provides functions each of which makes the plotter perform

a complete operation. These functions are compatible with the Hewlett-

Packard Graphics Language (HP-GL) used for plotting by larger computers. A

special function allows you to send the pen position from the plotter to

the HP-41 ALPHA register, where it can be interpreted by ANUM or ANUMDEL.

Repeated use of this function allows you to use the plotter as a digitiser,

sending a pattern to the HP-41 which can analyse or redraw it. There are

also some programs to create a complete plot making a line graph or a bar

chart.

Four kinds of barcode, including HP-41 barcode, can be generated using

functions in the module. These functions use a special buffer which can be

created and deleted using plotter module functions. The top register of

the buffer contains barcode parameters which are set to default values when

the buffer is created and which can be altered. This buffer is of less use

for general purpose operations than is the Development Module buffer, but

it is much easier to generate barcode with this module and the buffer than

in any other way.

The module’s manual provides some programs which let you use the module and

the HP-41 straight away to begin plotting or generating barcodes. You

should certainly buy this module if you use your HP-41 with an HP7470A

plotter or if you want to produce barcode without using Synthetic

Programming.

Data Acquisition Module.

A little-known (by HP-41 users) but powerful Hewlett-Packard instrument is

the HP3421A Data Acquisition/Control Unit. It is not normally sold in the

-386-



U.K. but can be ordered specially; it is a fairly low cost unit for

automatic measurement of voltages, resistances and temperatures. The unit

is normally sold with a Hewlett-Packard Series 80 computer to drive it and

store the results, but it can also be controlled from an HP-IL loop to make

it portable. The HP-44468A Data Acquisition Module provides functions and

programs that let an HP-41 control the HP3421A unit. With a Time Module in

the HP-41, a mass storage device and printer also on the HP-IL loop, and

internal batteries in the HP3421A a data collection unit for field use can

be set up. The Data Acquisition Module can also be used to control the

more modest HP3468A/B Digital Multimeter.

This module and its manual allow people who have not previously used an HP-

41 to treat it as a front panel for the Data Acquisition/Control Unit,

creating and editing sequences of commands for data collection and analysis

on up to 10 channels. The module contains some general-purpose functions

worth describing. Seventeen are just copied from the Extended Functions

Module. There are two extra functions called CLKY and AK; these are

alternative names for CLKEYS and PASN which are also in the module. Two

functions FINDT and FINDX are similar to the Extended I/O function FINDAID

for searching the HP-IL loop for a device of a particular type or class.

FINDT is actually described wrongly in the manual, it searches the loop for

a device whose type is given by MOD(ABS(X),16). Most interesting is the

function CLAL which is identical to the HP-41CX alarm clearing function

CLALMA. If you do not have an HP-41CX but need this function then you may

consider buying the Data Acquisition Module.

Paname ROM.

This is an HP-IL utilities and data array handling module written by

members of a user group in Paris. (Hence the module name: Paris Name or

just Paname; Paname is also a slang name for Paris.)) It contains 122

functions all written in HP-41 machine code. The functions are grouped as

follows:

-387-



1)

2)

3)

4)

5)

6)

7

8)

9)

10)

13 general-purpose HP-IL commands, some identical to Extended I/0

Module functions.

16 functions to control a video monitor. These include HOME (move

the cursor to the top left), cursor movement and scrolling.

7 functions to simplify control of the 82162A thermal printer.

10 functions to control the 82905B impact printer.

19 plotter functions for use with a Tandy CGP110 plotter or the Canon

equivalent. This is a cheaper and smaller alternative to using the HP

7470A plotter but requires an HP-IL interface.

12 ALPHA register control functions, including the Extended Functions

and Extended I/O Functions such as ANUMDEL.

11 Extended Functions and CX Extended Functions, including all the

indirect comparisons.

8 register arithmetic functions, including a function that prompts for

the other functions.

13 functions to allow the setting up, initialisation, and control of

arrays and matrices. These include the building and analysis of ISG

and DSE counters, and initialisation of matrices by name. (For

example you can initialise a matrix to contain the names MON, TUE,

WED, etc., you can then prompt for values to replace each day of the

week.)

13 other wutility functions, including integer division, data sorting,

Yes/No question, a NOP, reading and writing Extended Memory to Mass

Storage. A very clever idea is the CHFLAG function. When this is

entered into a program, the Paname Module automatically records the

status of all the flags as a text string following CHFLAG in the

program. If the program is executed later, the CHFLAG function uses

this text string to set all the flags to their status at the time when

the program was written.

This module is not designed as an aid to Synthetic Programming; it

should be seen clearly as a utilities module. As such it is amazingly

successful, combining the most useful features of the Extended

Functions, Extended I/O and CX Extended Functions together with

others. It is particularly worth buying if you want to upgrade your

-388-



HP-41CV into a CX without actually buying one. All the more

surprising 1is that the Paris group managed to write this module

despite the wunhelpful attitude of Hewlett-Packard in France.

(Hewlett-Packard reactions to people who write modules vary widely

from country to country. The Paris group were particularly unlucky,

but this need not be seen as a criticism of Hewlett-Packard, whose

employees have different expertise in different countries.) One more

point; the manual for this module will be available in English. See

Appendix B for information about ordering.

CCD module

This is another utilities module, written by members of the users’ club CCD

in West Germany. It concentrates on HP-41 enhancements including Synthetic

Programming, and has less emphasis on HP-IL than the Paname Module. The

functions can be considered in four blocks; HP-41 system enhancements,

utilities, mathematical functions and I/O operations.

The system enhancements are rather like the ZENROM enhancements, but not

the same. There is an extra Alpha keyboard, and 16 catalogues (0-F, CAT 0

is an HP-IL device catalogue for example) are provided. XEQ and ASN allow

direct entry of any two-byte function (see Chapter 8). Not all the direct-

key synthetic features of ZENROM are available.

The utilities allow direct access at the byte and register levels to all of

the HP-41 RAM. This too is similar to the ZENROM functions, but is

implemented in a different way, by PEEK and POKE functions (familiar to

BASIC programmers). Other utilities provide a programmable Alpha back-

arrow, save, get and merge key assignments and provide a permanent auto-

start (unlike setting flag 11 which gets cleared). You can save key

assignments and buffers in two special types of Extended Memory file, and

recover them from these files; key assignments can be merged with

assignments that are already present. Registers and files can be sorted.

The mathematical functions include a random number generator and logical

-389-



(Boolean) functions. There 1is also a set of functions for entering

matrices and performing matrix arithmetic and comparisons. Matrices can be

stored in Main Memory or as a new type of Extended Memory file.

The input/output operations include a set of functions to help a program

prompt for data and check the legality of the input (check for lower and

upper bounds, check for integer values, use default values). Output

operations include functions to put results into the right format and send

results to an HP-IL device.

There i1s a set of hexadecimal and logical functions that is more complete

than the set in the IL Development module. These allow various word sizes,

up to 32 bits, and various sign modes.

A set of "advanced functions" allow control of the return stack and finding

of the lengths and addresses of programs. A few functions not mentioned in

the manual provide additional wutilities; one allows entry into M-code

execution in much the same way as the program XRO (mentioned in Section

12.5) allows entry into any address of a FOCAL program in a ROM module.

You may prefer the selection of functions in this module to those in ZENROM

or the Paname ROM. You should be warned that this module contains more

bugs than ZENROM and is not designed to be compatible with ZENROM (which

came out earlier and should really have been allowed for). The manual is

not yet available in English (at the time when this book was printed).

Ordering information is provided in Appendix B. The worst bug is described

in Appendix C.

12.9 Diagnostic and Service Modules

A number of HP-41 modules are made purely for use by HP Repair Centres.

There is an HP-41C Service module which tests the HP-41C and also the HP-

41CV, Card Reader and plug-in modules for hardware faults. There is an HP-

41CX Diagnostic ROM module which tests the HP-41CX and plug-in modules for

faults. Some of the tests in this module can also be used to check the HP-

-390-



41CV, Timer Module, Extended Functions Module and Extended Memory Modules.

Further modules test the HP-41 printer and other peripherals.

In addition to these modules, Hewlett-Packard prints their own service

manuals which describe the hardware and how the modules can be used to test

it.  Neither the modules nor the manuals are available for sale to the

public, but a few copies have found their way into the hands of some user

groups. You may like to see if your local group has any; they are very

interesting to the really dedicated user, and they can help you check if

there is anything genuinely wrong with your equipment before you send it to

a Repair Centre.

Exercises.

Exercise 12.A Use a Wand (you may be able to borrow one) to read the Alpha

barcodes in Appendix F and make the text strings:

Y" = f(X,Y,Y’) "JACK & JILL"

Is this easier than other ways of making such strings?

Exercise 12.B Use a printer to print the two strings from Exercise 12.A.

You can make the strings by using a Wand, or by using ACCHR.

Exercise 12.C If you have bought any plug-in program modules and have

used them, try to assess their value to you. Do they save a lot of space

that would otherwise be taken up by programs in memory? Would you have

done as well to buy just a couple of programs from the User Library (see

next Chapter)?

Exercise 12.D Now that you have read about the system extension modules,

do you think you need any of them? If you have some of these modules, do

you think you could do without them in your HP-41?

-391-



Exercise 12.E Can you see any obvious features that you think the HP-41

should have but which are not provided by any of the modules described in

this Chapter? See the sections in Chapter 16 on non-programmable

functions, and the section in Chapter 17 on missing functions, for some

comments. The "wish lists" compiled by HP-65 and 67/97 user groups were

important in defining the HP-41; today’s "wish lists" may be fulfilled in a

future HP product. The HP-41 Advantage module gives the HP-41 some of the

advanced features of other HP calculators. However only a new model can

produce new hardware features, such as a large display with graph-plotting

as is provided by the Casio FX-7000G calculator.

-392-



CHAPTER 13 - ADVANCED PROGRAMS AND USER GROUPS

13.1 Advanced programs?

The previous Chapter described the advanced programs provided by plug-in

modules for the HP-41. This Chapter will continue the theme of advanced

programming by describing other sources of programs and by providing advice

on writing your own advanced or complicated programs.

You can greatly extend the usefulness of your HP-41 by knowing how best to

go about writing complicated programs for yourself, but it can be far

easier to combine your own programs with ones that have been written by

other people to do a particular job and tested by many users. It is

therefore important to realise that you can write advanced programs that

use ideas or complete subroutines provided by other people in books,

journals and elsewhere. This is one of the reasons why joining a user

group can be very helpful: you can borrow programs from other users who are

specialists in a particular subject, other users can help you by testing

your programs, and groups of users can work together on problems that no

single member could tackle efficiently.

Advanced programming can lead you to try out operations not described in

the manuals or not even foreseen by the manufacturers. The results of some

operations like this can be unexpected and very useful; the members of a

user group can provide a pool of knowledge and interest to develop the use

of such operations. We shall come back to this in the next Chapter.

13.2 Books and Journals.

Programs and programming tips for the HP-41 can be found in many kinds of

books. Some of these are written especially for the HP-41 such as

"Calculator Tips and Routines Especially for the HP-41C/CV" by John

Dearing. Some are written for the HP-41 and other pocket computers, for

example "Curve Fitting for Programmable Calculators" by William Kolb.

Others are written for RPN calculators in general ("Algorithms for RPN

-393-



Calculators" by John Ball) or indeed for all advanced calculators

("Scientific Analysis on the Pocket Calculator" by Jon Smith). There are

also a great many introductory books for calculator users, but most of

these are for calculators simpler than the HP-41. The manuals for the PPC

ROM and for ZENROM provide a great deal of useful information about the HP-

41 as well as about the modules themselves.

Ideas for programming the HP-41 can also be found in various types of

computer science publications. Books on programming style, algorithm

design or data structures often cover the subjects in such a way that their

suggestions can be applied to HP-41 programming. If the HP-41 is your only

programmable machine then you need not go out of your way to look at

computer science books, but if you have any reason for looking at such

books or journals, then look out for ideas that will apply to the HP-41.

An entirely different kind of programming book is that designed to cover a

particular application; flight planning, hydraulic engineering or interior

decoration for instance. Some of these books are written specifically for

calculator users, others provide programs almost in passing. Professional

journals may also publish HP-41 programs for specific applications. Some

of these carry advertisements for HP-41 programs written by professional

companies.

Of special interest are magazines and journals devoted solely to HP

products. Hewlett-Packard publishes in-house journals, which are sometimes

shown to users of their equipment, and the HP Digest which contains

articles about the design and use of new Hewlett-Packard equipment. HP Key

Notes was a particularly useful magazine especially for users of HP

calculators and portable computers, but this was discontinued when the

editor retired. A commercial magazine for Hewlett-Packard computer users,

called "Professional Computing" was intended to replace this; the original

publishers, John Wiley, withdrew after six months, fortunately Camden

Communications Inc. (Highland Mill-PO Box 250, Camden, Maine 04843, USA)

now publishes "Professional Computing" and have continued to print columns

for series 40 and series 70 computers. Old copies of both these

-394-



publications are well worth looking at, Key Notes in particular was full of

clever ideas submitted by HP calculator users. An alternative to Key Notes

is provided by the journals of the various user groups; see Section 13.6.

It would be impossible to list all relevant books and journals here, let

alone describe them, but a list of books and journals known to the author

is given in Appendix A. EduCALC (see Appendix B) regularly publishes a

catalogue providing up-to-date information about equipment and books, it is

a good idea to obtain this from time to time.

13.3 Adapting programs from other calculators.

You will often find that someone has already written a program to do the

same task as you need to do, or a program that does something similar. It

can be distressing to find out that the program has been written for a

brand X, or model Y, calculator - not for the HP-41. It may be worth

learning how to translate programs onto the HP-41, then you will provide

yourself with many new sources of programs; books, articles and program

libraries or user clubs which specialise in other calculators.

Translating programs from the HP-67 and HP-97 is no trouble at all if you

have an HP-41 Card Reader. This will read and translate program cards from

these calculators directly for use on the HP-41. A few incompatibilities

remain; these were described in Section 12.3.

Many of the programs in the HP-41 program modules and solutions books are

adapted versions of HP-67/97 programs. If you do not have a Card Reader,

or if you want to translate a program from some other RPN calculator then

the main problem is to find which HP-41 functions correspond to which

functions on other calculators. For example, most earlier calculators used

the name GSB (Go to subroutine) whereas the HP-41 calls the same function

XEQ (Execute subroutine). The best solution is to get a manual for the

other calculator and an HP-41 manual, then make up a translation table.

The book "Algorithms for RPN calculators" by John Ball contains a long list

of translations and differences between the HP-45 and various other RPN

-395-



calculators. You could use these translations, then make up your own

translation table from the HP-45 to the HP-41. Your table should include

warnings about features that cannot be translated directly, for example the

HP-65 skips the next two steps, not just one, if a test is false. This

particular feature can be replaced by inverting the test and following it

with a GTO label, then putting that label after the next two steps. Most

features of earlier calculators can be translated in a similar fashion, but

programs from some specialised calculators can be much more difficult,

because these calculators have specific features for their field.

Financial functions from the HP-12C can usually be replaced by programs in

the HP-41 Financial Decisions Module, or one of the other financial

modules. Matrix arithmetic and complex arithmetic on the HP-15C can be

performed by programs or functions from plug-in modules such as the

Mathematics ROM, the PPC ROM or the CCD ROM. Logical operations and

calculations in non-decimal bases on the HP-16C can be simulated by means

of functions on the HP-IL Development Module. Many of the above features

are provided in the new Advantage Module. All these modules were described

in Chapter 12; a module can be cheaper than buying another calculator.

Programs from calculators that do not use RPN, or from computers, can be

much more difficult to translate. If the program works out an equation

then it is best to find out what the equation is (by deciphering the

program if necessary), then writing it down and turning it into an HP-41

program. A similar method should be used if the program is more

complicated; the program should be deciphered and written out as a set of

instructions or as a flowchart. (A "flowchart" is a diagram which uses

boxes of different shapes to describe different operations, with the

operations described in words inside the boxes. Operations that follow one

another are connected by lines with arrows to show the order in which they

are carried out.)) The set of instructions or the flowchart can then be

rewritten as an HP-41 program. One of the advantages of using a flowchart

is that it can give you an overall view of a program, helping you to

redesign it for more efficient use on a different machine.

Once you have translated a program and put it into the HP-41 you must check

-396-



that it gives the same results as did the original program. Run a few

examples on both machines if you have both. If you are translating a

program from a printed article, run the program on the HP-41 and also do

the calculation going step by step through the original program on paper if

necessary. Do more than one test and use realistic numbers (not just 0, 1

and pi). Do not be alarmed if the answers are not exactly the same to ten

significant figures. Many calculators are less accurate than the HP-41,

but the TI-58 and the TI-59 are more accurate on some functions because

they have two extra guard digits which are not rounded off after each

instruction (whereas they are on the HP-41). If the results of several

tests are the same to seven significant figures on the original program and

the HP-41 program, then the translation is probably correct.

You may of course have to adapt an HP-41 program for use on (horror)

another calculator! The principles outlined above will also work, but what

if the other calculator does not have one of the functions you need? If

you are a computer scientist who uses an HP-16C most of the time but you

sometimes run HP-41 programs which calculate a sine then you might need a

short program to calculate SIN on the HP-16C. The easiest way out is to

use a truncated Taylor or MacLaurin series, if you know how to work out the

terms. If you do not then you could look up the series somewhere. The

book "Scientific Analysis on the Pocket Calculator" by Jon Smith includes a

list of series approximations to logarithmic, exponential and trigonometric

functions in Table 1-4.

13.4 Hewlett-Packard Solutions Books.

Apart from making plug-in program modules for the HP-41, Hewlett-Packard

has also published a range of programs in HP-41 Users’ Library Solutions

books. Each book contains a selection of fairly specialised programs,

taken from the Users’ Library. An example is the High-Level Math book

which provides programs to calculate special functions that are not

available in the Math Module. Each book contains about 10 programs which

can be covered by the same general title, although some users may find only

one or two of these programs to be much use. Each program comes with a

-397-



program description, user instructions, some examples, a listing and

barcode (except for very early editions which do not contain program

barcode). Some books have odd program steps or unusual instructions; these

were explained in point i. of Section 3.6.

There have been at least 29 Solutions books published for the HP-41, but

some are out of print (e.g. Cardiac/Pulmonary) and others have never been

widely sold or advertised (Applied Statistics I and II for example). New

books are also sometimes published (for example Games II), so a list is not

given in this book since it would be neither complete nor up to date. It

is best to obtain a Hewlett-Packard leaflet (these are updated every 6

months or more often) or ask your dealer what is available. You may also

find it worth getting one of the HP-67/97 solutions books (40 were

published) or application packs (there were 10, all with magnetic program

cards which can be read by the HP-41) although most of these can now only

be obtained second-hand. Some of the HP-41 advertising leaflets contain a

list of the programs available in each book and it is worth checking which

book or books contain programs of interest to you. Since the solutions

books are much cheaper than the plug-in program modules it may well be

worth buying one or two to provide some useful programs. You may want to

use the programs just as they are given, or you may want to change them, or

use parts of them in your own programs.

13.5 User Libraries and User Clubs.

In addition to providing program modules and solutions books, Hewlett-

Packard maintains libraries of wuser-written programs. This is a wuseful

service for people who need specialised programs but do not have the time

or means to write their own. Authors are encouraged to submit their

programs by being rewarded with coupons that can be exchanged for Hewlett-

Packard products or for other programs. Pecople who want programs from the

library can subscribe to it on an annual basis. Subscribers obtain

programs on payment of a fee for handling, postage, duplication (of

documentation and barcode) plus the cost of magnetic cards or cassettes

(the programs can be recorded on these if required). New programs and

-398-



their documentation must meet certain requirements (stated in a book that

you get when you join) before they are accepted for inclusion in the

library, but they are provided purely on an "as is" basis. This means that

users must check the programs for themselves and neither Hewlett-Packard

nor the contributor shall be liable for any incidental or consequential

damages. (Neither Hewlett-Packard nor the contributors could afford to run

a library of this sort at a relatively low cost if everyone had to be

insured against possible claims for damages.) The book that you receive

when you join the library, called the "Users’ Library Programmer’s

Reference Guide" can be bought separately from Hewlett-Packard for US$10.

It is well worth having because it provides a collection of useful advice

about writing and documenting programs. On joining the library you also

receive a catalogue of contributed programs so that you know what can be

ordered, and this is updated twice a year.

The Users’ Library has separate sections for different HP programmable

calculators and computers, but the HP-41 and HP-67/97 libraries were kept

together. This meant that HP-41 users could order HP-67/97 programs and

translate them for their own use. The HP-41 Card Reader’s ability to

translate HP-67/97 programs was advertised as a feature to allow easy use

of the many programs written for the HP-67 and HP-97 so it seemed sensible

to provide these programs to HP-41 wusers. Unfortunately, the library

decided to close down the HP-67/97 section when manufacturing of the HP-67

was wound down; this was obviously inconvenient for those HP-41 owners who

had bought a Card Reader for the very reason that they would be able to use

HP-67/97 programs. At present there is a combined library for HP-41 and

HP-71 programs, because the translation module lets HP-71 owners use most

HP-41 programs. HP-41 owners used to have access to a separate Users’

Program Library in Europe (UPLE), but this took the more logical (though

even more inconvenient) step of closing down entirely (HP-67/97, 41; the

lot) in October 1983. Among reasons given for the closure was the

widespread availability of programs sold by many independent companies; but

have you ever tried to get a list of all these companies from your local HP

office?

-399-



The loss of the libraries was not complete though, because Hewlett-Packard

promised to let user groups have access to the sections that were closed.

In the United States, the HP-67/97 programs were transferred to the largest

group, PPC. If you know of a program you want from this section you can

order it from PPC at: 67/97 Library, P.O. Box 90579, Long Beach, CA

90809, U.S.A. They have however disposed of programs that no one has

ordered for over 5 years. If you want to obtain such a program then your

best chance is to ask for it through the HELP columns of user group

newsletters. The European Library was to have been divided up by

languages, and programs in each language were offered to a user group using

that language. The UK group provided HP with a list of the English

language programs that seemed likely to be required, but as of August 1985

they had still not arrived. If you need a particular program it is best to

ask at your local group if one of the members has it.

This brings me back to the subject of user groups themselves. The members

of an HP equipment user group are usually expert in some subject and

enthusiastic to share their expertise and exchange ideas. The groups are

not financially supported by Hewlett-Packard or organised by HP though HP

employees or consultants are sometimes active members. This means that the

members of the groups are users who are sufficiently motivated that they go

out and join, or even set up, such a group themselves. (I am not writing

about large computer users whose employers usually pay to belong to a

manufacturer-supported group.)

13.6 The benefits of belonging to a User Club.

Up till now, I have described "User Groups" as if they were collections of

dedicated people programming calculators, treating it all terribly

seriously. This is indeed one thing that user groups are for: they allow

people to exchange ideas and help each other write better programs, but it

is not their only purpose. It is often more accurate to think of them as

clubs whose members share a common interest in using a particular make of

calculator, but then exchange ideas and help on a variety of subjects.

Club meetings can be informative and amusing or serious. You can discuss

-400-



the eclectronics of an HP-41, or electronics in general; you may find

yourself talking about econometrics on an HP-41 or the predicted

forthcoming collapse of the world economy. Some people have found new jobs

through user clubs, either with companies that use Hewlett-Packard

equipment or with HP themselves.

Help is available at all levels: a new user can find out what is meant by

something that is not clear in a manual, and a company director can find a

professional programmer to write a specialist application program. (A

special register of programming consultants has been printed - see Section

13.7.) All of them can learn of special reductions on equipment prices or

buy second-hand items from other members. User clubs often hear first of

new products, and some groups of wusers design specialist equipment, for

their own use or for sale to other members.

These groups vary in size and nature. Some are just small and temporary,

for example a few students at one college with a shared interest in using

one type of calculator. Others are large organisations with hundreds or

thousands of members. Some large groups have local sections (known as

"Chapters") or smaller locally based affiliated clubs, or just local

meetings (for instance the British club currently holds local meetings in

London and Leeds). Large groups will provide application forms and

information about themselves if you write to them at the addresses given

below and enclose a self addressed envelope with stamps or International

Reply Coupons. Smaller groups advertise locally, or you can obtain a list

of them from CHHU or PPC in the United States. The larger clubs can

provide advice if you want to set up a local section.

Some groups publish their own newsletters or journals. These are

particularly valuable for people who cannot attend meetings but want to

stay informed and to share in the constant exchange of information provided

by clubs. Back issues of journals, particularly the PPC Journal

(previously known as HP-65 Notes, later published for a time as the PPC

Calculator Journal, with a separate Computer Journal), contain a wealth of

information and show how certain subjects have evolved. Journals do not

-401-



contain all the information on a given subject, additional information is

published in Conference notes and reports, or is simply repeated by word of

mouth.  Occasionally there will be sufficient interest in a particular

topic that a group will twist the arm of a member until they extract a

promise to write a book. This book is the outcome of such an exercise; the

British group wanted one book answering common questions and problems, and

another book describing recent advances in Synthetic Programming,

particularly those connected with the use of Extended Functions. They got

this one book, covering both subjects and filling in the spaces between!

One problem with such a book is that it has to refer to material which has

been published in journals; but without infringing copyright. In this book

I have referred to items from journals but the references are generally in

review form; "you can obtain information of such-and-such a type in this

journal". This means that the book contains a wealth of introductory

material but for details of techniques or program listings you may have to

refer to the journals; another reason for joining a club, since you should

be able to borrow journals from members or a club library.

Overall then, a club provides programs and expertise, but it provides much

more; what comes out depends on what the members put in. Maybe you should

become a member too. The address of the UK club, HPCC, is given below,

followed by an alphabetical list (by country) of the national clubs that

have official contacts with HPCC: the addresses are correct at the time of

going to press. (Many other clubs exist, particularly in Europe.

Apologies to clubs I have left out, I used the HPCC list - please let me

know if you want to be included if I reprint the book.) The clubs are not

commercial organisations, so do not expect that a reply will always come by

return post, and remember to include a self-addressed envelope plus stamps

or International Reply Coupons to cover the cost of return postage.

-402-



The British club is HPCC (Handheld and Portable Computer Club):

HPCC

Geggs Lodge

Hampton Road

Deddington, Oxford OX5 4QG

United Kingdom

[Journal - Datafile]

PP Melbourne

Box 512

Ringwood, Victoria 3134

Australia

[Journal - PPM Technical Notes]

[Formerly PPC Technical Notes]

Austria

CCA, Computerclub Austria

P.O. Box 50

A-1111 Wien

Austria

[Journal - CCA Journal]

PPC-Danmark

c/o S. Petersen

G1. Landvej 19, 2620 Albertslund

Denmark

[Journal - USER]

CHHU-SYDNEY

c/o K. Besley

Charley Business Services

22 Elsie St.

Burwood, N.S.W. 2134

Australia

Belgium

PCX-Belgium

Postbus 205

B-8000 Brugge 1

Belgium

[Journal - PCX]

-403-



France

PPC-PARIS

B.P. 604

75028 Paris Cedex 01

France

[Journal - JPC]

West Germany

CCD e.V.

Postfach 110411

Schwalbacherstr. 50 Hhs.

D-6000 Frankfurt 1

West Germany

[Journal - PRISMA]

USA

Handheld Programming Exchange

P.O. Box 566727

Atlanta

GA 30356

USA

[Journal - HPX Exchange]

PPC-T

now closed

Holland

Contact the bookshop

TH Boekhandel Prins -

(address in Appendix B) or

HP-GC, Quellinjnstraat 47-3

1072 XP Amsterdam

The Netherlands

PPC (Personal Programming Center)

POB 90579

Long Beach

CA 90809

USA

[Journal - PPC Journal]

PPC has not published any journals for a year, but runs a bulletin board

and sells back issues.

The clubs are international in nature, you can join several or choose one

you like.

Incidentally, some of you may be familiar with PPC but not with HPX. HPX

is the successor to CHHU. CHHU was founded by Richard Nelson, and the CHHU

Chronicle proved to be an excellent source of information on both the HP-

41 and the HP-71. Back issues of CHHU are available through HPX. HPX was

founded by Brian Walsh in 1986, and like CHHU is a volunteer, member

supported noncommercial club of Hewlett-Packard handheld users focusing on

the selection, application and use of today’s true personal computers.

-404-



13.7 Buying and ordering programs.

Should you need a program that is not available through one of the sources

mentioned so far then you have three remaining choices. You can buy the

program from a company, you can pay someone to write the program, or you

can write the program yourself. A few companies sell specialist software;

they usually advertise in an appropriate journal or magazine, for example

the "Oil and Gas Journal". You may also be able to obtain the names and

addresses of these companies from your local HP sales offices.

If you want a really specialised program then you may need to get someone

to write it for you. Large companies can give the task to their own

workers, or they can employ people specially to do the job (they might even

look for people at the nearest user group). Smaller companies and

individuals usually need to find just one suitable programmer whom they can

seek through personal contacts or local advertising. A local user group

can be a good contact in these cases too, both for those needing a

programmer (often part-time or for just one particular job), and for those

seeking work. The American group PPC has taken this a step further by

printing a list of people willing to undertake specialist work in various

fields. This is available from PPC (address above) at a price of $4.25

plus the cost of mailing the 9 oz document. The list is called the "PPC

Consultant Register" and contains details of the kind of work, task size

undertaken and relevant experience of PPC members willing to take on

programming and allied tasks on HP portables. You may find it worth

getting a copy if you are looking for someone to do a specialist

programming job. Some entries represent not individuals but companies

willing to undertake extensive programming tasks.

-405-



13.8 Writing advanced programs yourself.

If you cannot find a program to suit your needs, and cannot find anyone to

write the program for you, then you may have to write the program yourself.

You may well be able to build most of it from pieces of other programs

(which can be obtained in the ways described above). Maybe you want to

write your own program, but you may dread the thought. In either case,

some helpful advice will do no harm, so here it is.

Look for similar programs because you may be able to re-write one instead

of starting from scratch. Look for several programs which each do part of

the task and see if you can put them all together, perhaps by using them as

subroutines called from your own program. You could for example obtain one

program that calculated Value Added Tax and a second program that converts

between various European currencies, then combine them to calculate the

total tax you expect to pay on a product which you plan to sell throughout

the EEC (European Economic Community -- the Common Market).

Write programs efficiently. Look at published programs, see what they do

well and avoid what you think is wrong in them. If you are writing a long

program you should make sure you fully understand the problem you are

dealing with and the answers you require. You should then plan out how you

will design the program, following the five points given in Section 6.10

(initialisation, input, processing, output, tidying). Once this has been

done, write the program as a set of program modules each of which does one

part of the job. "Module" as used here means a distinct piece of a

program, not a plug-in ROM module. A module can be a part of a program

that you call as a subroutine, or it could be a piece that does a

particular job, then goes straight on to the next section. Some of the

modules could be taken from other programs. Test each module separately,

then put them together, this is really a restatement of the advice in

Section 6.10; you should reread that section.

When you have finished writing the program and making it efficient, you

will need to test it. The first test is "does it give the right answers?"

-406-



This requires you to check how the program works on problems to which you

already know the answers. You should also check what will happen if you

use unlikely or meaningless values. (Will your orbital calculation program

allow a satellite to move faster than the speed of light without any

warning?) You must write a final version of the program documentation (see

Section 6.10 again). Serious problems often show up when you write the

documentation since you are forced to think about the whole program while

you are describing it, and it is far better to deal with these problems now

than later on. It is at this stage that you may decide to redesign parts

of the program, for example assign various functions to a conveniently laid

out set of keys or combine some subroutines to save space. Many

programmers imagine that they will be able to document their programs

months after these have been written, but few actually have the talent to

do this without rechecking the whole program from scratch. The moral is:

once you have written an advanced program, document it while you are still

proud of it and remember how it works.

Exercises

Exercise 13.A Find a list of the programs available in HP-41 solutions

books. Lists are available in pamphlets advertising the HP-41 series, and

in Users’ Library Catalogues. Go through the list and check how many

programs are useful in your own application. (You may find there are none,

for example the Physics solutions book covers thermal physics, mechanics

including relativity, and nuclear physics, but nothing about solid state

physics or plasma physics.)

Exercise 13.B Pick a fairly long program, either in this book or

elsewhere, and read through it. Look for clever programming tricks, but

also for inefficient and wasteful programming. It is much easier to

criticise someone else’s programs than your own. Now choose one of your

own programs, look for similar faults, and try to improve it by applying

some of the tricks you have seen in the other program.

-407-



Exercise 13.C A type of program required by many HP-41 wusers is a

polynomial fitting routine. User club journals publish many such programs;

if you need one try POLYFIT by Julian Perry in DATAFILE V2N5P24. If you do

not have DATAFILE, try to find some polynomial programs in your local group

journals.

-408-



PART IV

Synthetic Programming

 





CHAPTER 14 - SYNTHETIC PROGRAMMING

14.1 How many bytes make a million ?

In Section 8.8 I described three ways of writing the number one million in

an HP-41 program. The first was to put in a step consisting of 1,000,000

which takes seven bytes. The second was 1E6 which takes three bytes, and

the third was 6 , 100X which takes just two bytes but is slower. 1E6 takes

the least time in a running program, but it wastes one byte. Is the 1 at

the front really necessary though? After all, it is a common practice to

write 106 instead of l"‘lO6 in arithmetic expressions. Removing the 1 would

make a worthwhile saving in a long program, but could the HP-41 be made to

use E6 as a program step instead of 1E6 ?

The answer to this question may not seem to be important, yet it is an

example of saving space and it leads us to the whole subject of programming

techniques which the HP-41 designers made possible without themselves

realising it. In this chapter we shall delve into the area of operations

that cannot be executed immediately from the keyboard and yet can be

performed with just a few extra keystrokes. The power of some operations

described later should impress you if you have not met them before, but let

us first go back to the simple example above.

Can E6 be created and will it work? If you look at some of the HP-41

Solutions Books you will find programs that contain steps of exactly this

sort. Two examples: line 62 of the Bessel and Error Function program in

the High-Level Math book is E-9, line 56 of the Ventilator program in the

Cardiac/Pulmonary book is E2. If you try to enter these programs from the

keyboard you will only be able to get 1E-9 and 1E2, but if you have an

Optical Wand and read the barcode given in the books then you will get the

exponents on their own and the programs will work normally. It is clear

that exponents without a 1 in front can be created. In fact both the

programs mentioned were copied from HP-67/97 programs. The HP-67 and HP-97

do allow exponents to stand on their own, and the HP-41 Card Reader will

translate this directly to an HP-41 program as an exponent on its own.

-411-



(The HP-41 Card Reader makes no attempt to alter exponents and sign changes

in an HP-67/97 program. This can cause problems; see Bug 6 in Appendix C.)

If you have a Card Reader and an HP-67 or an HP-97 then you can write a 67

or 97 program containing the two lines EEX , 6. You could then save this

program on a card, read the card into your HP-41, and have the step E6.

Alternatively, if you have a Wand you could look for a Solutions Book

containing a program with the step E6, then read that program and delete

everything except the E6.

Even if you do have the equipment to do this, you would have to repeat the

whole process to create a different step, such as E7. It would be much

simpler if you could create 1E6, or 1E7, or any other exponent, and then

delete the 1 at the front. This would be rather like editing a program

with the function DEL, except that DEL deletes whole lines whereas we now

want to delete a single byte. What we need is a new program editing

function that works one byte at a time. Does such a function exist? It is

not described in the HP-41 manuals, but neither is E6. You will soon see

that a function which lets you delete one byte at a time does exist and can

be assigned to a key for use in USER mode, just like DEL.

14.2 Non-Normalised Numbers, tumble dryers and cement mixers.

Before we go on to byte editing, two warnings are necessary. First, you

must realise that you are going to alter the contents of the HP-41 memory

in ways that the HP-41 designers did not plan for. The HP-41 manuals are

therefore not going to be much help. You should read Chapter 8 instead; it

describes exactly how numbers, programs, key assignments and so on are laid

out in the HP-41 memory. What you are going to do is to create new

combinations of bytes in the HP-41 memory. A new combination might create

the step E6, or RCL 100. The keyboard will not allow you to enter either

of these directly. A new combination of bytes in the key assignment area

can create entirely new functions, as was mentioned at the end of Section

8.6. A new combination of bytes in the X register might create the number

5.2E270. This is a non-normalised number larger than the HP-41 can

normally handle but sometimes useful in itself. For example you can take

-412-



the LOG of this number and get the right answer. All these combinations of

bytes are impossible to create directly from the keyboard, but they can all

be put together, or synthesised, using well-understood techniques. Any

such unusual combination of bytes can be referred to as a Non-Normalised

Number (NNN for short), and the techniques of creating NNNs, storing them

in useful places, and using them are called Synthetic Programming. Chapter

8 laid the foundations for an understanding of Synthetic Programming (or

SP) by explaining the layout of the memory. This chapter, together with

the next two, will take you through the fundamentals of SP. You will not

learn everything about SP from this one book (nor from any other one book),

but it will introduce the ideas and will then provide new information on

how Extended Functions can be used with SP. The original SP book

"Synthetic Programming on the HP-41" by W.Wickes is always worth reading

and there are other books too. "Synthetic Programming Made Easy" by Keith

Jarett provides a good introduction to the subject. These books are

described in Appendix A.

The second warning concerns Hewlett-Packard’s attitude to Synthetic

Programming. Imagine, for a moment, that a construction engineer has

bought a new tumble dryer. After a few weeks of use, the tumble dryer air

pipe gets blocked and the machine begins to make strange noises. The owner

notices that these noises sound like a cement mixer in action and decides

to investigate further. Lo and behold, the damaged tumble dryer turns out

to work perfectly well as a cement mixer; what is more it is far cheaper to

buy than a cement mixer. Our construction engineer tells a few friends and

soon there is a brisk business in tumble dryers which are destined for use

as cement mixers. Now the company that makes these tumble dryers is

delighted at the upturn in sales, but they are not specialists in cement

mixing. They happily sell their tumble dryers to anyone, but they refer

all questions about cement mixing to the person who pioneered this new use

of their machines.

The attitude of Hewlett-Packard to Synthetic Programming on the HP-41 is

similar. They designed and built the HP-41 as an advanced calculator with

a well-defined instruction set, and they wrote the manuals with this in

-413-



mind. If the users want to do something extra, that’s fine and it helps to

sell more HP-41s, but Hewlett-Packard do not employ a team of Synthetic

Programming specialists. Instead they refer users to the groups which

pioneered Synthetic Programming and to the books which describe SP.

I hasten to add that Synthetic Programming does not damage the HP-41

(unlike cement mixing which is likely to impair the normal functioning of a

tumble dryer quite severely). The worst that can happen is that you might

get a MEMORY LOST, or a hang-up which can be dealt with as described in

Chapter 4. This is usually caused by improper storage of an NNN into a

register used by the HP-41 operating system. (The operating system is the

set of built-in programs that control the internal workings of a computer.)

Neither a MEMORY LOST nor a hang-up will harm your HP-41, but losing some

information can be painful so you should always make a separate record of

any important programs, data, or alarms before you embark on some SP

experimenting. If you do have any problems with SP you must bear in mind

the second warning above; SP is not an activity that the manufacturer will

help with. You must contact a user club, not HP. This is expressed by the

acronym NOMAS (NOt MAnufacturer Supported). Several documents which are

used by Synthetic Programmers have been given to the user groups by HP on

this understanding. Users are welcome to read these documents but they are

stamped "NOMAS - recipient agrees NOT to contact manufacturer". This is

not a severe imposition since the SP experts are members of user groups and

can be contacted through these groups anyway, we can thank Richard Nelson

for the NOMAS arrangement between the user groups and HP.

None of this is to say that HP has anything against Synthetic Programming.

After all, it does help to sell even more HP-41s. Programs containing

Synthetic instructions are accepted by the User Library, and Synthetic

Programming is discussed in publications about HP products. You can use SP

quite happily and so join the many other people who have learned to extend

their HP-41 through Synthetic Programming. So let’s get to it!

-414-



14.3 Your first synthetic tool.

You can begin Synthetic Programming by creating just one instruction. This

will be used to create other instructions and then complete programs.

These further instructions and programs can become your tools for more

complicated Synthetic Programming, but everything is "bootstrapped" from

just one instruction.

Some users will not really need to go through this bootstrapping process.

Owners of the PPC ROM will have the tools already available, and the ZENROM

provides not only the tools but even direct key synthetics (so that the

synthetic instructions can be entered directly from the keyboard like

ordinary instructions). Owners of Card Readers or Wands can read in the

programs from magnetic cards or from barcode in books. But even these

lucky people can learn something by starting from scratch; this section is

worth reading whether or not you already have access to synthetics.

Instead of a function to delete bytes one at a time (rather like DEL), we

shall use a function that splits up a row of bytes, chopping off the bytes

one at a time. This is more useful than deleting because the bytes can be

put back later if necessary. To see how that can be done, you need a

detailed understanding of how HP-41 programs are edited. Let us start with

a subroutine made up of the program steps:

LBL 21, 1E6, +, RTN

If you have entered the above subroutine from the keyboard, it will be

represented in memory by these bytes (the byte values here are in decimal):

207 ,21,0,17,27,22,64, 133

If you are lost then go back to Chapter 8 and you will see from Table 8.1

that each program step is represented in memory by a group of bytes or a

single byte. For example LBL 21 is made up of the prefix 207 (which stands

for LBL) and the suffix (or postfix) 21. The bytes in a program normally

-415-



come one after another without any spare bytes in between, but numbers

(like 1E6 above) are created with a spare byte (equal to zero) in front of

them. This is to prevent two numbers from being merged into one (see

Section 8.5). In this particular example, the zero (or null) byte before

the 1 is not actually necessary. (The 1 is represented by a byte value of

17.) You could get rid of this null byte by packing, or you could replace

it with an extra one-byte instruction. If you decided to round the number

to which this subroutine will add a million, you would go to the line

showing LBL 21 and key in XEQ "RND". The program would become:

LBL 21, RND, 1E6 , + , RTN

represented by the bytes:

207 ,21,110,17,27,22,64,133

The null is replaced by 110, which stands for RND. The HP-41 always tries

to fill out unused bytes in this way if you edit a program. What happens

though if there is no spare room for the new step? Say you decide to save

the number that is in X before adding a million to it. You go to the line

which shows RND and you press STO 30. The program becomes:

LBL 21, RND, STO 30, 1E6, + , RTN

The HP-41 had to make room for the new step. It did this by providing an

empty register (or seven bytes) after the RND. To do this, the HP-41 moved

everything below the RND down by seven bytes, starting at 1E6 and finishing

with the .END.; this left seven empty bytes between RND and 1E6. Two of

these were filled in by STO 30, the rest remained unused, so the bytes

representing the subroutine are now:

207, 21, 110, 145,30, 0, 0, 0, 0, 0, 17, 27,22, 64, 133

\ / \ / \_/

-416-



I have used braces to mark off each group of bytes that belongs together in

one instruction. You can see clearly that the new instruction, STO 30, has

taken up just two bytes (145,30), leaving five bytes free. What would

happen if we did not use a two-byte instruction but were to put in an

instruction that seems to be eight bytes long? Would it fill up all the

seven free bytes and grab the next byte too?

Indeed this might happen if an apparently eight-byte-long instruction was

put in all at once, but in fact an eight-byte instruction (such as a text

string) is usually created one byte at a time, and after the first seven

bytes have been put in another seven bytes are opened up for use. The way

to avoid this is to create a complete eight-byte-long instruction all at

once. If you could assign an apparently eight-byte-long instruction to a

key, then press that key, you would open up a new register, fill all seven

bytes, and grab the next byte too. Is there an instruction that seems to

be eight bytes long and that can be assigned to a key?

Most instructions are one, two, or three bytes long, but a text string

containing seven characters would be eight bytes long. It would contain

the seven characters, and an extra header byte (247) at the front to warn

the HP-41 that the next seven bytes are all one text string, not a series

of functions. You therefore need to make a key assignment of something

that seems to be a seven-byte text string. This can be done by assigning

the byte 247, followed by one text character, to a key. Any byte from 14

to 255 will work as the text character, but some values above 143 can cause

trouble. The byte 63 (which represents the question mark) is a good

choice. This assignment will only be two bytes long, but when it is copied

into program memory it will look like an eight-byte long instruction. You

must now create this key assignment before you can try using it. Three

methods of obtaining the assignment will be described before its use is

explained; you only need to use one of these methods but it worth reading

about all three.

An assignment of the sort described is obviously an unusual one and cannot

be made by using the ASN or PASN functions. It can however be made with

-417-



the more general GASN program which was introduced in Section 11.10, or

with similar programs (MK or 1K in the PPC ROM for example). To make the

assignment to the LN key (key 15) using one of these programs do:

247 , ENTER , 63, ENTER , 15, XEQ "program"

The "program" should be "1K" if you have a PPC ROM or "GASP" if you use the

program from Chapter 11. If you use GASP then remember that you must have

executed the initialisation routine GASETUP beforehand. If you use the PPC

ROM’s "MK" or "1K", clear your Time module alarms first, or they will be

turned into junk. Other key assignment programs of this type can be found

in the books by Wickes and Jarett and also in the PPC ROM manual; they do

not use the Extended Functions (except for the program in Jarett’s Extended

Functions book) or Time Functions but they do themselves contain Synthetic

instructions so they cannot be created until you already have some

Synthetic tools (or a Wand to read them). By the way, if you have a CCD

ROM you can make this assignment directly with the ASN function (unless HP

updates the part of the HP-41 operating system used by the CCD ROM).

A second way of getting the key assignment is to read it in from a magnetic

card or an HP-IL mass storage device if someone has already made the

assignment and recorded it for you. After you create the assignment for

yourself you should copy it to a card (using the WSTS function) or to an

HP-IL device (using the WRTK function) if you have either of these devices.

You will then be able to read it back into your HP-41 if you ever lose or

cancel the assignment.

A third way of obtaining this assignment is to get into the key assignment

area and to edit this area as if it was a program. To obtain the desired

result you need to replace an ordinary key assignment with a seven-

character text string. This method requires some precautions, firstly you

must find the right assignment to replace, and secondly you must delete

enough bytes to leave room for the text string;, otherwise the HP-41

operating system will try to move the contents of memory down by one

register to make room for the text string. Unfortunately the key

-418-



assignments are stored below the .END. so the HP-41 will not stop moving

registers until it comes to the very bottom of memory. The whole of

memory, including some registers used by the operating system, will be

moved down. This will result in MEMORY LOST.

The simplest but most dramatic way to avoid problems is to do a Master

Clear yourself (MC for short; turn the HP-41 off, press the backarrow key

and keep it down, press the ON key, release both keys, see MEMORY LOST).

This makes the rest of the process much easier, but it destroys everything

in your HP-41 except the time and date. When you start experimenting with

Synthetic Programming for yourself you will probably accidentally get

MEMORY LOST anyway, so you may as well start from this state. (In any case

remember the advice in the previous section; make a copy of any important

information on paper or on a device like a Card Reader.) If you do not

want to clear your HP-41 memory then you will need to take some extra steps

which will be described in the appropriate places and will be marked with

a *. Now proceed as follows.

1. Do a Master Clear and go on to step 2.

* If you do not want to MC then do all of the following five steps.

a. Create an extra label at the front of the first program in

memory. To do this, do CAT 1, press R/S at once, press RTN, go

into PRGM mode, press LBL "T", and exit from PRGM mode.

b. Delete all key assignments, except for global labels (those

labels in CAT 1 that are assigned to keys). You can delete the

assignments one at a time by assigning nothing to each key, or

you can delete your key assignments all at once with the Extended

Function CLKEYS. You can also clear all assignments except those

of global labels by using a "clear assignments" magnetic card

(described in Section 12.3).

-419-



c. If you have an Extended Functions module or an HP-41CX then make

sure there is at least one file in Extended Memory. Make sure as

well that the name of the first file in Extended Memory does not

contain the character "#" as one of its first five characters.

(In fact the bytes 30,31 or any value above 143 must also be

avoided, but it seems unlikely that anyone would normally use

them in a file name.) If the first file does have such a name

then you must copy the file contents from Extended Memory to main

memory, delete the file, then copy its contents back to Extended

Memory, and make sure the first file now has a name without these

characters; otherwise repeat the process.

d. If you have any module that creates buffers (HP-IL Development

module, Plotter module or CCD module) then take it out or delete

any buffers it has created.

e. Pack memory by executing GTO.. or PACK.

Assign LBL to the LN key and then DEL to the LOG key. The LBL

assignment will appear as LBL 65 when you come to edit the assignment

area; later on you will delete it and replace it by the new

assignment. The DEL will be useful when you need to do some deleting.

Go into USER mode and PRGM mode.

Execute CAT 1 and stop it at the first entry by pressing R/S at once.

If you do not press R/S soon enough then execute CAT 1 again and try

to press R/S more quickly. If you have done an MC then you will see

the .END., and if you do not press R/S soon enough then the display

will blink. You must press R/S before the display blinks.

Now press ALPHA, backarrow, ALPHA. You have deleted the first line in

program memory and the HP-41 has tried to go to the previous line -

which does not exist. Due to a bug in the operating system (see Bug 9

in Appendix C), the HP-41 has gone to the bottom of the key assignment

area instead and you see a line numbered 4094. You can now edit the

key assignment areca almost as if it was a piece of a program. If you

-420-



do not see a line numbered 4094 then g0 back to step 1 and try again.

This may still fail if Hewlett-Packard ever removes Bug 9; in that

case you will have to use one of the other methods of obtaining the

key assignment. Fortunately, Bug 9 is only likely to be removed in an

updated version of the HP-41CX - which may also have a new name - and

you should be able to run the GASN program on such an updated HP-41.

If Bug 9 is removed you may still be able to use one of the

alternatives described with Bug 9 in Appendix C - Bug 9R is the

easiest.

Press GTO.005 and wait until you see a step numbered 05. This will

take you to the point at which you need to delete an assignment and

replace it with a text string.

* If you have not done an MC and you have some timer alarms then

you neced the following three additional steps to find the key

assignment before deleting it.

a. When you see the step numbered 05, press PRGM to get out of

program mode.

b. Execute GTO 65 to reach the LBL which was assigned at step 2. If

the HP-41 responds with NONEXISTENT then you will have to delete

your alarms and go back to step 1 above.

C. Go back to PRGM mode and press BST. After a few seconds you

should see a step LBL 03. If you see anything else then SST

twice and go back to step b above.

Press DEL 002 (push the LOG key and then the 1/X key). This deletes

the first key assignment that you made in step 2.

* If you have not done an MC and you have an HP-41CX, or an

Extended Functions module in your HP-41, then press DEL 005 as

well (push LOG and LN), for a total of 7 lines deleted.

You have now made enough room to fit a seven character text string in

the last three bytes of the key assignment area. Create this string

by pressing ALPHA, ?, A, A, A, A, A, A, ALPHA. If you do not have any

Extended Memory then you will see the text string "?A~" (7A

-421-



followed by five nulls which display as overline characters; you have

pressed the letter A but there is no memory to store it so it is lost

and a null appears in its place). If you have some Extended Memory

then you will see "?AAAAAA", and the last five As will have replaced

the first five letters of the name of the first file in your Extended

Memory (you will have to use this new name from now on; check what it

is by doing an EMDIR or CAT 4).

9. To tidy up and get out of the key assignment area press PRGM and GTO..

- then press the LN key and hold it down. You should see XROM 28,63

and then NULL. If you see anything else then go back to step 1 and

try again. XROM 28,63 is a pseudo-XROM number - the HP-41 previews

any two-byte key assignment using an XROM number even if it is not a

real XROM function.

You have now assigned something that seems to be a seven character string

to the LN key. Later on you will be able to use a different key (if you

prefer to leave the top row free) by using the key assignment program in

Section 14.10. Let us go back to the subroutine we have been using as an

example and see what this new key assignment will actually do. The

subroutine was:

LBL 21, RND, 1E6 ,+, RTN

./ \_/
207,21, 110, 17,27,22, 64, 133

Delete the STO 30 if you put it in earlier, or if you have not yet put this

into your HP-41 then do so now, and remember to PACK so as to get rid of

any spare (null) bytes. Go to the RND step, make sure you are in USER and

PRGM mode, then press the LN key. You will see a very odd seven-byte long

text string and the subroutine will have become:

LBL 21, RND , TTYTTTTE , E6 ,+, RTN

\ / N/ \

207,21, 110, 247,0,63,0,0,0,0,17, 27,22, 64, 133

-422-



When you pressed the LN key, the HP-41 moved everything down by one

register and provided seven extra bytes for the new step. It then copied

the assigned bytes 247 and 63 into the first and third bytes available.

Four spare null bytes were left beyond the three bytes that were used up

when the key was pressed, so the HP-41 did not open up (i.e. insert) any

more registers. This looks fine until the result of pressing the key is

examined in detail. It turns out that the byte 247 is the header of a

seven-byte text string, so it takes over all of the next seven bytes,

producing an instruction eight bytes long, and therefore grabbing the first

byte of the next instruction.

To confirm this, just press SST and see the E6 standing on its own. The 1

at the front of 1E6 has been grabbed by the preceding text line. This is

what you have been working towards all this time. The new key assignment

is called a Byte Grabber for reasons which are obvious by now. The Byte

Grabber is a program editing tool, rather like DEL as I mentioned above.

It does not do anything very useful in a running program but it is your

first and fundamental tool for editing programs to create Synthetic

instructions. We shall continue in the next section by studying some

examples of the use of the Byte Grabber.

First though I should acknowledge the work done by many members of user

groups to develop Synthetic Programming as a whole, and the use of the Byte

Grabber in particular. A great deal of very clever and very hard work went

into the development of SP. Most of the pioneering work first reached a

wide audience through the pages of the PPC Calculator Journal. Bill Wickes,

encouraged by Richard Nelson and Henry Horn, published the first SP book;

this contains detailed descriptions of the achievements of the first year

of Synthetic Programming, many of the achievements are Bill’s own. The Byte

Grabber and its uses were only discovered after his book had been

published. The first Byte Grabber (or Prefix Masker - an alternative name)

was invented by Jack Baldridge, written up in the PPC Journal by Clifford

Stern as soon as he heard of Baldridge’s ideas, and also written up by

Baldrige (with extra notes by John McGechie) in PPC Technical Notes and

-423-



then in the PPC Journal. It used a 3-character text assignment. The

simplified 7-character byte grabbing technique was developed by Erwin

Gosteli, and Phi Trinh invented the first method of creating the the BG

assignment in an easy fashion. Roger Hill, who had independently

duplicated Erwin Gosteli’s extension of the Baldrige technique, thought of

the catchy name "Byte Grabber". The first book that included a description

of the Byte Grabber assignment was published by Keith Jarett ("HP-41

Synthetic Programming Made Easy" -- the assignment method described used

ideas provided by Keith Kendall).

If you are really interested in this sort of history then you should read

PPC TNS5; pages 50-60 describe Bill Wickes’ crucial role in the development

of SP. The list of names given here is not complete; perhaps someone will

one day write a history of the HP-41 and the people who used it! In the

meantime let us go on to some uses of the Byte Grabber, while reverently

muttering "I have stood on the shoulders of giants".

14.4 Using the Byte Grabber.

Your first use of the Byte Grabber has produced the subroutine:

LBL 21, RND , TTYTTTTR , E6 ,+, RTN

o/ \ J\ /
207,21, 110, 247,0,63,0,0,0,0,17, 27,22, 64, 33

Notice that the byte 17 which was immediately before the two bytes 27,22

(E6) is still there, but it is now part of the text string created by the

Byte Grabber. Since the 17 is now in a text string, it is displayed as a

text character, not as the numeral 1. If you look back to Chapter 8 you

will see that the byte value 17 prints as the Greek letter capital omega

but it is shown in a text string as a boxed star B. Most byte values

actually show up in the display as a boxed star (a character with all 14

segments turned on). This is the default for any byte which is not a

symbol recognised by the display. Some bytes will show up as a

recognisable character in a Byte Grabber string, but most will not. This

-424-



is why the question mark was chosen in the previous section as the second

byte in the Byte Grabber key assignment: a seven-character text string

which begins with a null and a question mark will be easily recognised as

the result of a Byte Grabber operation, not a normal text string.

If you ever see such a string in a program you are editing you can be

fairly sure that it is a Byte Grabber string. In the example above you

wanted to get rid of the 1 in front of the E6, so you can now delete the

text string by pressing the backarrow key, leaving the subroutine:

LBL 21, RND , E6 ,+ , RTN

207,21 110,  0,0,0,0,0,0,0,0 27,22 64 133

The entire deleted string has been replaced by nulls, which do not show up

as program steps. When you pack memory, these eight nulls will be removed,

and the program will move up in memory. Previously it moved down seven

bytes to make room for the new instruction, now it moves up eight bytes.

You have therefore saved a byte in program memory. The new instruction E6

takes a byte less than 1E6, and it takes 33 milliseconds less execution

time. Not much on its own, but in a long program you could save several

whole registers and a few seconds too if you converted every occurrence of

1En into the corresponding short-form exponent En. You could also create

the step 1E by just pressing EEX, then convert it into E. The symbol E on

its own acts exactly like a 1 on its own but takes 12 milliseconds less;

people who want to save every millisecond therefore use E instead of 1 in

their programs. (It also helps to confuse anyone who is trying to steal a

program from you.)

What should you do if you decided not to delete the 1 in the 1E6 after all?

You would have to remove the byte grabber string, but leave the 1 behind.

This is easy to do if you have not yet deleted the byte grabber string.

(If you have already deleted it then delete the E6 too, put in 1E6, pack,

go to the RND step and press byte grabber.) Backstep to the line before

the byte grabber string and press the byte grabber key again. The result

will be as below:

-425-



LBL 21, RND, TTYTTTTR, STO 15, , 1E6 , +,RTN

207,21 110  247,0,63,0,0,0,0,247 0 63  0,0,0,0 17,27,22 64 133

You have byte grabbed the Byte Grabber! The new byte grabber string has

grabbed the byte 247 of the previous byte grabber string. This has

released all of the bytes from the old string. The 17 has become part of

1E6 again and the 63 (? in a text string) is now a STO 15 when left to

stand on its own in a program. The other bytes were all nulls so they do

not show up as program steps (the null steps are shown here as blank spaces

above zeroes). If you delete the STO 15 and the byte grabber string and

pack then you will be back to the original state of the subroutine.

Byte grabbing a byte grabber can therefore be used to recover from an

unwanted use of the byte grabber key in a program, not just to create new

combinations of bytes. There is one exception; you may not be able to

recover easily if you byte grab the .END.. The first thing to do if you

accidentally grab the .END. is to BST once and byte grab again. If you SST

twice and see the .END. then you are safe. If you see anything else then

SST once more, next press the backarrow key four times to delete the

previous four instructions, and finally press GTO.. to tidy up. This will

sometimes work; you can check by doing a CAT 1. At other times it will not

work and you will have to do a Master Clear, so don’t byte grab the .END.!

You may have found the last few paragraphs confusing because they describe

several different ideas. If you just want to create a short form exponent

such as E6 then here is a review of how to do it with the byte grabber.

1) Put a program into the HP-41 memory step by step in the normal manner.

2) When you come to the exponent, put it is as usual, 1E6.

3) Backstep once (BST) to the line before.

4) Press the byte grabber twice (once to grab the null in front of the

number, and once to grab the 1).

-426-



5) Press backarrow twice to delete the two byte grabber strings.

6) Press SST to see the short form exponent E6 (or Enn or E-nn; the

method works for any exponent).

7) Remember to GTO.. or PACK in order to recover all the null bytes left

behind. If you are writing a program in which you are using the byte

grabber several times it is simpler to PACK just once, when you have

written the whole program.

From now on I shall often use the abbreviation BG to mean "push the Byte

Grabber key in USER and PRGM mode." After studying one use of the byte

grabber in detail you will want to see some other examples. Here is an

easy one. Have you ever wanted to use a few more registers than 100? You

can use the byte grabber to create instructions such as STO 102 and

RCL 102. To create STO 102 you have to put the postfix 102 behind a STO

prefix. This means that you must create some other instruction such as

STO 99, then use the byte grabber to separate the prefix and the postfix,

and then put in a new postfix. Do the following, all in program mode:

1) Put the step STO 99 into a program, then XEQ "PACK" to make sure there

are no null bytes to complicate matters.

2) Backstep once to get to the line before STO 99.

3) Press byte grabber to grab the STO prefix and leave the 99 postfix on

its own.

4) SST once. You will see X#0? From Table 8.1 you can see that the byte

99 stands for X#0? if it is on its own and not a part of some other

instruction.

5) Delete the X#0? line and put in X<0? in its place. From Table 8.1 you

can see that X<07? is byte 102.

6) BST twice and BG. This grabs the first byte grabber (as we saw in the

case of 1E6 above) freeing everything after it.

-427-



7) SST once and see STO 15. This is the question mark released from the

first byte grabber. SST again and you will see STO A. Why STO A

instead of STO 102? It just happens to be the case that the postfix A

(such as in LBL A) is represented by the number 102. Thus STO A means

STO 102. The STO prefix has been released and the X<0? after it has

become a 102 postfix (which is shown as the letter A).

8) If you want to put a synthetic instruction at the beginning of a

program, it is easiest to GTO.000 then put in a dummy step (say LBL

00) and then create the synthetic step after it. After you create

this synthetic instruction, you can BST and delete the dummy step. If

you do not have room to put in a dummy step, go to step 000 to make

the synthetic step and go to 000 again to byte grab it. A dummy step

is one that has no purpose of its own but is used to fill a space for

a time.

To check that STO A is really STO 102, delete the unnecessary instructions

which were left over by the byte grabbers and write the program:

PI,STO A, CLX, 102, RCL IND X, STOP

Do SIZE 103, then run the program (you will not be able to do this if you

have an HP-41C and no memory modules). You will see that RCL IND X which

recalls the contents of register 102 has brought back PI, and the first two

steps put PI into register A, so A and 102 are the same register.

You can create other instructions such as RCL 102 and X<>102 in exactly the

same way. Follow steps 1 to 7 above, but begin with the instructions RCL

99 or X<>99. The results, RCL 102 or X<>102, will show up as RCL A or

X<>A. This method will let you write instructions to use any register up

to 111. Why only 111? Back in Chapter 8, Table 8.2 showed the postfix

values of each byte from 0 to 255. Bytes 0 to 99 behave in the normal way,

bytes 102 to 111 represent the letters A to J (used in local labels).

Bytes 112 to 116 represent the stack registers T, Z, Y, X, L, so they

cannot be used to address the registers numbered 112 to 116. Bytes 117 to

127 will be explained in the next section, and bytes greater than 127 are

used for indirect addressing. Thus 111 is the highest numbered register

-428-



that can be addressed directly even if you wuse Synthetics. A simpler

method of creating instructions such as STO A will be described in the next

section.

It has just been shown that the postfix 102 shows up as a letter A; the

postfixes 103 to 111 show up as B to J, but what about postfixes 100 and

101? If you use these with STO (use X>0? or LN1+X instead of X<0? in step

5 above) then you will see STO 00 or STO 0l. This is because STO only

expects two-digit suffixes and simply drops the 1 at the front. The

letters A to J are only one character long so nothing gets dropped. It is

better to avoid STO 100 and STO 101 if possible because you cannot tell

them from STO 00 and STO 01 just by looking at a program. Even if you

avoid these two, Synthetic Programming has given you direct access to 10%

more registers.

STO is not the only function that drops the 1 at the front of a 3-digit

suffix. RCL, X<>, ISG, DSE will all do the same. So will the flag

functions such as SF and CF, but there are no flags greater than 55, and

the only purpose of creating FS?100 or CF J seems to be to confuse people.

Some instructions expect only a one-digit suffix though, so they drop two

digits. For example TONE 10, TONE 20, and so on up to TONE 100 can all be

created synthetically, but they all appear as TONE 0. It is easy to check

if they are the real TONE 0, since they all make different sounds when

executed by means of SST. As an example of a synthetic tone, try to create

TONE 87. The method is very similar to that described for STO 102. Create

a TONE 7 step, pack, BG the TONE prefix, delete the 7 postfix (it shows up

as LBL 06), replace it with an 87 postfix (press shift, 101X), BST twice,

then grab the first byte grabber and SST twice to sce TONE 7. Press PRGM

to get out of program mode, then press SST to hear the synthetic TONE. It

has exactly the same pitch as TONE 7, but is just half the duration (a

semi-quaver instead of a quaver). You may like to use this instead of

TONE 7 to provide a shorter attention-getting note. You could also use it

together with TONE 7 to provide Morse Code dots and dashes, or a short and

long pair of notes for audio control of equipment (such as automatic

telephone dialling). Other synthetic tones can be very short (TONE 89 is

-429-



one fifth the duration of TONE 9 but at the same pitch) or long (TONE 65

has the same frequency but is eight times as long as TONE 1) or at a lower

pitch. TONE 26 is more than an octave below TONE 2 and seventeen times

longer! To create TONE 26, create TONE 6 first, BST and BG, SST and delete

the suffix (LBL 07), then put in a decimal point (byte 26). After this you

have to pack to get rid of the null that is always put in front of any

number (otherwise this null byte will become the suffix, instead of the

byte 26). Now you can BST twice, BG, SST twice and see TONE 6, which is

actually a TONE 26. If you execute TONE 26 it lasts almost 5 seconds

(unless flag 26 is cleared).

Synthetic TONEs can be used in a variety of applications, for example as

timing signals in a photographic darkroom, and of course there is their

obvious use in games. Tables of Tone frequency and duration can be found

in Wickes’ book, the PPC ROM manual, Synthetic Programming Made Easy, and

in the "Synthetic Quick Reference Guide". A few tones vary significantly

from one HP-41 version to another. This is covered everywhere except in

Wickes’ book.

One more simple example before we go on to the next section; this one is a

useful tip for people who wuse the statistics registers. It is easy to

store a value accidentally in one of the statistics registers and thus

destroy some data you summed earlier. Typically you may execute ZREG 14,

CLZ and do some summations, then do STO 19 later on, forgetting that

register 19 is one of the statistics registers. You can make this far less

likely if you do ZREG 104, since STO 109 cannot be done accidentally; you

have to use a synthetic instruction or indirect addressing. ( EREG 104 is

displayed as ZREG C of course.) If you are working from the keyboard

only, then naturally you can do 104, :REG IND X (or with a ZENROM, do

tREG, EEX, LOG or 04), so the synthetic instruction I REG C is most

useful when you are writing a long program in several parts. By the time

you write the last part, you may forget where the statistics registers are,

but if you start the program with ZREG C then you will not accidentally

write an instruction that destroys the results of some summations.

-430-



You will find this instruction helpful if you use the statistics registers,

if you change their position from time to time, and you want to avoid the risk

of losing some data (either by overwriting the summation registers or by

using a statistics function to overwrite a data register). You create the

instruction by writing a program with an ordinary Z REG, then byte grabbing

the I REG prefix, deleting the postfix and putting in an appropriate

postfix (INT for 104), then grabbing the first byte grabber to release the

prefix and so producing a synthetic EREG. When you use this £ REG, make

sure you set a sufficient SIZE; you need SIZE 110 if you are going to use

I REG C.

14.5 The Byte Table and the Status Registers.

When the byte grabber is used to split up a function containing several

bytes, the bytes that are left free can change from postfixes to prefixes.

In the previous section, you were referred to Tables 8.1 and 8.2 to see

which byte did what. You may also need to use the information from Table

8.3 which shows how bytes are related to characters in text strings. It

would be much easier to have the information from all three tables put

together in one place (and in this chapter so that you do not have to keep

turning back many pages).

The Byte Table, Table 14.1, contains all the required information. Like

Tables 8.1 and 8.2 it has 16 rows and 16 columns, marked in hexadecimal.

Each box contains the prefix (or one-byte) function corresponding to that

byte, below that the postfix value of that byte and its display value, and

below that the printer character which that byte produces on an HP82143A

printer. Next to this, each box also contains the decimal equivalent of

the hexadecimal number describing the box.

-431-



HP
-4

1C
QU

IC
K

RE
FE

RE
NC

E
C
A
R
D

FO
R
SY
NT
HE
TI
C
P
R
O
G
R
A
M
M
I
N
G

©
19
82
,
SY

NT
HE

TI
X
 

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F
 

D
E
G

[R
AD

[G
RA

D
|[
EN
TE
RT
|S
TO
P

|[
RT
N

[B
EE
P

|[
CL

A
AS
HF

 |
PS

E
C
L
R
G

|[
AO

FF
JA

ON
|[
OF
F

 |
PR

OM
PT

|A
DV

IN
D
00

{I
ND

01
[I

ND
02

|I
ND

03
|I
ND

04
|I

ND
05

[I
ND

06
[I
ND

07
|I

ND
08

[I
ND

09
|I

ND
10

(I
ND

11
|I
ND

12
[I

ND
13

|I
ND

14
|I
ND

15
12
8
@

[1
29

=
[1

30
<

{1
31

«
J1

32
o

{1
33

8
|1
34

"
[1
35

4
|1
36

&
|1

37
0

|1
38

*
|1
39

=
]1

40
»

[1
4]

£
|
1
4
2

~
|1
43

&
 

RC
L

ST
O

S
T
+

|S
T—

ST
%

|S
T/

IS
G

DS
E

V
I
E
W

|E
RE

G
[A
ST
O

|A
RC

L
|F
IX

SC
l

E
N
G

 |
TO

NE
IN
D

16
[I
ND

17
[I
ND

18
|I

ND
19

JI
ND

20
|I

ND
21

|I
ND

22
|I

ND
23

JI
ND

24
|I

ND
25

|I
ND

26
|[
IN
D
27

JI
ND

28
|I

ND
29

[I
ND

30
[I

ND
31

14
4
B

14
5
O

[1
46

&
|1

47
A

|1
48
a

|1
49
A

|1
50

&
[1
51

O
J1
52

6
[1

53
O

|1
54

O
|1
55

FE
J1

56
e

[1
57

=
|1

58
£

|1
59
¥
 

X
R

0-
3

|X
R
4-
7

[X
R8
-1
1|
X1
2-
15
[X
16
-1
9|
X2
0-
23
|X
24
-2
7[
X2
8-
31
]S
F

CF
FS

?C
 |

FC
?2

C
 |F

S?
FC
?

I
O
IN
D

[S
PA

RE
IN

D
32

|I
ND

33
[I
ND

34
|[I

ND
35

JI
ND

36
|I
ND

37
[I
ND

38
|I

ND
39

|I
ND

40
|I
ND

41
|I

ND
42

|I
ND

43
JI
ND

44
|I

ND
45

|I
ND

46
|I

ND
47

16
0

[1
61

8
16

2
=
1
6
3
®

16
4
8

|1
65
%

[1
66
&

[1
67

*
16

8
€

16
9
1
7
0

=«
17

1
+

N7
2

,
N7
3
=
1
7
4

.
17

5
~
 

 
SP

AR
E

|G
TO

0
0
|
G
T
O
0
1
|
G
T
O
0
2
]
G
T
O
0
3
|
G
T
O
04
|G
TO

0
5
(
G
T
O
0
6
J
G
T
O
0
7
|
G
T
O
0
8
|
G
T
O
0
9
|
G
T
O

10
JG
TO

11
|G

TO
1
2
[
G
T
O

13
|G
TO

14
IN

D
48

|I
ND

49
[I
ND

50
[I
ND

51
JI

ND
52

[I
ND

53
[I

ND
54

|I
ND

55
|I

ND
56

|I
ND

57
|I

ND
58

|I
ND

59
|{

IN
D
60

|I
ND

61
|I

ND
62

|I
ND

63
17
6
@
1
7
7

1
1
7
8
2
1
7
9
3
1
8
0
4

|1
81
5

[1
82
6

|1
83
7

|1
84
8

|1
85
9

|1
86

:
|1

87
5

J1
88

<
|1

89
=
1
9
0

>
|1
91

?
 

-432-

GL
OB

AL
|G
LO
BA
L|
GL
OB
AL
|G
LO
BA
LJ
GL
OB
AL
|G

LO
BA

L|
GL

OB
AL

|G
LO

BA
L]

GL
OB

AL
|G

LO
BA

L|
GL

OB
AL

|{
GL

OB
AL

|G
LO

BA
L|

GL
OB

AL
|
X
<
>
-
-

[L
BL

--
IN

D
64

[I
ND

65
|I

ND
66

|I
ND

67
JI
ND

68
|I

ND
69

|I
ND

70
[I

ND
71

|I
ND

72
|I

ND
73

|[
IN

D
74

|I
ND

75
|I

ND
76

|[
IN
D
77

IN
D
78

|I
ND

79
19

2
@

[1
93
A

[1
94
B

[
1
9
5
C

J1
96

D
|1

97
E

[1
98
F

[1
99
G

]2
00
H

|2
01

I
|2

02
.

|2
03

K
J2
04
L

|2
05
M

|2
06

N
[2
07
O
 

G
T
O
-
-
|
G
T
O
-
-
|
G
T
O
-
-
|
G
T
O
--

]G
TO

-
-
|
G
T
O
--
|G
TO

-
-
|
G
T
O

--
}J

GT
O
-
-
|
G
T
O
-
-
|
G
T
O
-
-
|
G
T
O
-
-
}
G
T
O
-
-
|
G
T
O
-
-
|
G
T
O
-
-
|
G
T
O

--
IN
D
80

|[
IN
D
81

|I
ND

82
|I

ND
83

JI
ND

84
|I

ND
85

|[
IN
D
86

[I
ND

87
|I

ND
88

|I
ND

89
[I

ND
90

[I
ND

91
JI

ND
92

|I
ND

93
|I
ND

94
|I
ND

95
2
0
8
P

|
2
0
9
@

|
2
1
0
R

[2
11
S

2
1
2
T

|2
13
U

[2
14
¥

[2
15
W

|2
16
X

|2
17
¥

|2
18

2
|2

19
[

J2
20

~
|2

21
1

|2
22

T
|2
23

—
 

XE
Q

——
XE
Q
—-

|X
EQ

—-
|X
EQ

—I
XE
Q

—|
XE
Q

—|
XE

Q
—-

|X
EQ

——
|X

EQ
—|
XE

Q
——

|X
EQ

——
|X
EQ

—-
[X
EQ

—-
|X
EQ

--
|X

EQ
—-

[X
EQ

—-
IN

D
96

[IN
D
97

[IN
D
98

|IN
D
99

|I
ND

10
0{

IN
D1

01
{I

ND
10

2{
IN

D1
03

|I
ND

10
4|

IN
D1

05
]I

ND
10

6|
IN

D1
07

}I
ND

10
8|

IN
D1

09
|I

ND
11

0|
IN

D1
11

22
4

*
|2
25
a

[2
26

b
[2

27
c

[2
28
o

|2
29

e
[2
30

¢
|23

1
=2

]2
32

n[
23

3
1

[2
34

5
2
3
5

k
|2
36

1[
23

7
m

23
8

n[
23

9
©
 

Table 14.1 The Byte Table (first half -- rows 0 to 7)

TE
XT

O
|T

EX
T

1
[T
EX
T
2

|T
EX
T
3

JT
EX

T
4

|T
EX

T
5

|[
TE
XT

6
|T

EX
T

7
JT

EX
T
8

[T
EX

T
9

|T
EX

T1
0|

TE
XT

11
JT
EX
T1
2|
TE
XT
13
|T
EX
T1
4

|T
EX
T1
5

I
N
D
T

[I
ND

Z
[I
ND
Y

|I
ND
X

JI
ND
L

|[
IN
DM
L|
IN
D
N
\
|
I
N
D
O
J
]
|
I
N
D
P
t
|
I
N
D
Q
_
|
I
N
D
F
T
|
I
N
D
a

JI
ND
b

|I
ND
c

|I
ND

d
|I

ND
e

2
4
0
P

|2
41

a
[2
42

r
|
2
4
3
s

J2
44

t
|2
45

u
|2

46
v

|2
47
w

|2
48

x
|2
49

¥
[2
50

Z
[2

51
w

2
5
2

|
|2

53
»
|
2
5
4
Z

|2
55

+
  0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
0
0
0
0

00
01

0
0
1
0

00
11

0
1
0
0

01
01

0
1
1
0

01
11

1
0
0
0

10
01

1
0
1
0

10
17
1

1
1
0
0

11
01

1
1
1
0

11
11

  
   

   
  

   
    
 

Fo
r

pr
ic
e
in

fo
rm

at
io

n
an
d

a
li

st
of

de
al

er
s

in
yo
ur

ar
ea

,
se
nd

a
se

lf
-a

dd
re

ss
ed

st
am
pe
d

en
ve

lo
pe

to
:

 S
YN

TH
ET

IX
,
15

40
M
a
t
h
e
w
s

Av
e.
,
Ma

nh
at

ta
n

Be
ac
h,

C
A
90

26
6,

U
S
A

 



H
P
-
4
1
C
Q
U
I
C
K

RE
FE

RE
NC

E
C
A
R
D

FO
R

SY
NT
HE
TI
C
P
R
O
G
R
A
M
M
I
N
G

©
19

82
,
SY

NT
HE

TI
X
 

K
2

3
3

5
6

7
8

9
A

B
C

D
E

F
 

C
A
T

¢(
GT
0.
.)
]

 D
EL

C
O
P
Y

CL
P

R/
S

SI
ZE

BS
T

SS
T

O
N

P
A
C
K

|e
=(

PR
GM

)J
US

R/
P/

A]
2
_
_

SH
IF
T

A
S
N
 

NU
LL

[L
BL

00
|L

BL
0
1
{
L
B
L
02

JL
BL

03
|L
BL

04
|L
BL

05
[L
BL

06
|L
BL

07
[L

BL
0
8

LB
L
09

|L
BL

10
JL
BL

11
|L

BL
12

|L
BL

13
|L
BL

14
00

~
|0

1
%

|0
2
8

[0
3
B

JO
4

T
|0

5
<

|0
6

T
|0
7

&
JO

8
B

|0
9
8

[1
0

&
|1

1
8

|1
2

~
|1
3

<
|1

4
B

|1
5
8
|
0

0
|
1

x
|2

%X
|3

«
4
a
5

8
|
6
|
7

4
|
8
A
9

o
|1
0
«

|1
1

~
12

»
|1
3
<

|1
4

~
|1

5
&
 

0
1

2
3

4
5

)
7

8
9

.
EE

X
N
E
G

|[
GT
OT
™

|X
EQ

T
|
W
T

16
8
|
1
7

8
|1
8

B
|1

9
8

|2
0

8
|2

1
8

|2
2

8
|2
3

8
|2
4

8
|2
5

8
|2
6

8
|2
7

&
|2
8

&
[2
9

<
|3

0
&

|3
1

&
16

8
|1
7
Q
|
1
8

&
|
1
9

A
20

a
|2
1
A

|2
2
G

|2
3
O

|2
4
6
|
2
5

O
|2

6
U

|2
7

fE
|2
8

<«
|2
9
=

|3
0
£

[3]
1
¥
 

RC
L

00
|

RC
L
O
1
|
R
C
L

02
|

RC
L
O
3
J
R
C
L

04
|

RC
L
O
5
|
R
C
L
0
6
|
R
C
L
07

|R
CL

08
|

RC
L

09
|

RC
L

TO
|{

RC
L

11
JR

CL
12
|

RC
L

13
|R
CL

1
4
|
R
C
L

15
32

33
|
3
4

"
|3

5
H

|3
6

5
|
3
7

%
|3

8
39

'
|4
0

<
{4

1
|4

2
x

|4
3

-
|4

4,
<
|
4
5

-
(4

6
|
4
7

32
33

!
|3

4
|
3
5

#
|3

6
|
3
7

*
|3

8
39

"
J4
0

<
|4

1
>

|4
2
|
4
3

+
J4
4

-
|4

5
—

|4
6

-
|4

7
-
 

ST
O

00|
ST
O
0
1
|
S
T
O

02
|

ST
O

03
]
ST
O

04
|
ST
O
0
5
|
S
T
O

ST
O
07
]S
TO

0
8
{
S
T
O

09
|

ST
O

10
|

ST
O
11

|S
TO

12
|S
TO

13
|S
TO

1
4
|
S
T
O
1
5

48
2
|
4
9

!
|5

0
2
|
5
1

3
1
5
2

4
|
5
3

5
|5
4

55
T

|5
6

B
|5
7
9
|
5
8

8
|
5
9

-
J6
0
|
6
1

=
|6

2
|
6
3

48
49

1
|5

0
2
|
5
1

3
52

4
|
5
3

S
|5
4

55
7

|5
6
8
|
5
7

9
|
5
8

-
|5
9

;
)6

0
<

|6
1

=
]
1
6
2
|
6
3

ra 8| Sww

J0

 

-433-

-
*

/
X
<
Y
?

[X
>Y
?

|X
<Y

?
|[
E+

|I
-

H
M
S
+

H
M
S
-

|M
OD

%
%
C
H

|P
2+

R
|
R
P

64
65

R
|
6
6

3
|
6
7

C
|6

8
I

|6
9

=
|7

0
F

|7
1
5
|
7
2

H
|7
3

I
|7

4
J

|7
5

K
76

|
7
7

M
|7

8
N

|7
9
|
4

64
65

A
|
6
6

B
|
6
7

C
|6

8
D
|
6
9

E
|7

0
F

|7
1
G
}
7
2

H
|
7
3

1
|7

4
4

|7
5

K
}
J
7
6

L
|7
7
M

|7
8

N
|7

9
@O

e @

 

LN
X
t
2

|S
QR

T
|Y

tX
|J

CH
S

|E
TX

|L
OG

1
0
t
X

JE
tX

-1
|S

IN
CO
S

|T
AN

JA
SI
N

|[
AC

OS
|A

TA
N

|-
DE

C
80

81
5
|
8
2

R
|
8
3
S
8
4

T
|8
5

L
[8

6
|
8
7

i
|8
8

X
|8
9

vV
[9

0
2

|9
1

I
92

|
9
3

I
|9

4
|
9
5

_
80

P
|8

1
0
|
8
2

R
|
8
3
S
8
4

T
|8
5
U

|8
6
V
[
8
7
W
8
8

X
|8
9
v

|9
0
Z

|9
1

[
92

~
|9
3

1
|
9
4

+
]
9
5

—

o

 

17
X

A
B
S

|F
AC

T
X
#
0
?

|X
>0

?
|
L
N
I
+
X
|
X
<
0
?

[X
=0

?
JI

NT
FR
C

D—
-+

R
|
R
—
D

|-
+H
MS

|[
+H

R
|R

ND
|-
OC
T

96
T

|9
7

o
|9

8
b

|9
9

=
J
1
0
0
~
|
1
0
1
|
A

8
|
B

B
|
C

B
|
D

B
|
E

B
|
F

EB
|G
C

B
8
|
H

8
|

&
)

B
|
6

96
|
9
7

a
|9

8
b

|9
9
c

1
0
0
4
|
1
0
1
e

[1
02

£]
|1

03
=

J1
04
h

|1
05

1
|
1
0
6

4
|1
07

k
K
]
1
0
8
1

[
1
0
9
m
[
1
1
0
n
|
1
1
]
l
C
 

CL
X

X
<
>
Y

|PI
CL
ST

|R
?t

R
D
N

|L
AS
TX

[C
LX

I
X
=
Y
?

|X
#Y

?
[S
IG
N

|X
<O

?
|M

EA
N

|S
DE
V

|A
VI

EW
|C

LD
T

8
|
z

|
y

B
|
X
x

B
J
L

B
|
/
M
[
E
B
E
|
N
\
B
|
O
I
B
|
P
t
B
|
Q
_
8

|F
"
&

g
|
b

&
8
|
d

=
o

e
r

12
7
+

L a (A

 

Table 14.1 The Byte Table (second half -- rows 8 to F)

 
a

c
1
M
2
P
[
1
1
3
4
[
1
1
4
r
1
1
5
1
1
6

t
|1

17
U

11
8
V
1
1
9
w

J1
20
>

|1
21
>

12
2
Z

(1
23
w

J1
24

1
1
2
5
>

]1
26 E

F
6

7
8

9
A

B
C

D
1
1
1
0
0
0

10
01

1
0
1
0

10
11

11
00

11
01

1
1
1
0

1
1
N

  
  

  
  

 
 

 
5

0
0
0
0

00
01

0
0
1
0

00
11

0
1
0
0

01
01

0
1
1
0

O1
—
O
N
M
T
N
O
N
|
I
®

N
o

0
0
O

O
o
O
o
O
o
O
o
O
|
o

N
N
N

 
  

  
  

o
—
|
l
o
v
m

-
it

i
85

[8
8

$5
|2

SR
GR

RI
R|

e
bit

nu
mb

er
s
in

a
 

7-
by
te

re
gi

st
er

 



The Table is presented in two halves because it is an enlarged copy of a

pocket-sized plastic card which has half the table on each side. This

plastic card is made by Synthetix (See Appendix B for their present

address). It fits into the HP-41 case so that you can have it available

whenever you are programming the HP-41. Unless you can memorise the entire

contents of the Byte Table you would be well advised to obtain one of these

plastic cards and carry it with your HP-41. Some useful additional

information is provided: the bottom row of each half contains the binary

equivalents of the hexadecimal digits 0 to F. This can be used to convert

hexadecimal numbers into "bit patterns" (rows of bits representing a number

in binary notation), for example you can wuse this to translate the

hexadecimal number El into the binary number 1110 0001. Below the bottom

row of the first half there is a list of bit numbers in a register, this

can be used to locate which nybble of a register contains a given bit.

This row of numbers can also be used to help identify pseudo-XROM numbers

(see point 9 in Section 14.3); the method is described on page 14 of the

Synthetic Quick Reference Guide (on page 12 if you have the 1982 edition).

The second half of the table does not show how the bytes look in the

display as part of a text string because all these characters show up as

boxed stars. However normal print functions (such as PRA) print them on

the Hewlett-Packard thermal printers in the same way as the corresponding

bytes in the first half of the table, so this is shown. Some of the

printer characters in the second half of the table are shaded, these bytes

are used as "control characters" by the 82143A thermal printer. If a byte

from the second half of the Byte Table is included in a text string and the

program containing the text string is printed (using the functions PRP or

LIST) then any of these characters will disrupt the printer’s operation but

other bytes from the second half will not be printed. This was covered in

Section 12.2, and it was mentioned that the HP-IL printer, the HP82162A,

reacts to more control characters. The card produced by Synthetix also has

a list of the HP-41 flags and what they do, and a description of the

structure of multi-byte instructions.

-434-



Important Note: Now that we have introduced the full byte table, the rest

of this book will express byte values in hexadecimal. The 2-digit

hexadecimal form lets you find the byte you want very easily. The first

digit is the row number, and the second digit is the colum number.

The first five bytes in the eighth row (row 7 in the Table) provide the

stack register postfixes T, Z, Y, X and L. These are used by functions

such as VIEW Z (hexadecimal bytes 98,71). All the other bytes of row 7 can

also be used as postfixes, though Hewlett-Packard did not plan for this to

be done. You may remember from Chapter 8 that the HP-41 registers come in

blocks of sixteen, and that the five stack registers are part of the block

of sixteen status registers. The other eleven status registers are used by

the HP-41 operating system. It is these registers that are accessed if you

use the bytes of row 7 as postfixes.

Before going on to study these registers, let us create a program step that

uses a status register postfix. If you look at the byte table you will see

that the two bytes 91, 74 make up the function STO L. We can use the byte

grabber to make a similar instruction 91, 75. This could be done using

the method shown in the previous section, grabbing the byte 91, decleting

the byte 74 (R?7), replacing it with the byte 75 (RDN), and grabbing the

byte grabber. A simpler method is available though:

1) Create the two program steps RCL IND 17, RDN. This puts the three

bytes 90, 91, 75 into a program.

2) PACK; this is only necessary to remove nulls, so you may not need to

do it, but it is always safer. Then BST twice to get to the step

before RCL IND 17.

3) Press the Byte Grabber key (in USER mode of course). This grabs the

byte 90 and leaves the two bytes 91, 75 on their own.

4) Press the backarrow key to delete the byte grabber string, then SST

and see the program step STO M.

In the previous section we used well-known prefixes and postfixes but we

put them together in unusual combinations. STO M however contains a

-435-



completely new postfix. M just happens to be the next letter after L, so

the next postfix after L turns out to be M. Since the HP-41 designers did

not plan for this postfix to be used, they did not design the print

functions to interpret this postfix properly, and program listings will

produce the line STO [ instead of STO M. The byte table therefore shows

both M and [ for the postfix use of byte 75. You can check this if you

have a printer; print the program containing the STO M step we have just

made. The next four postfixes after M show up as N, O, P, Q in the display

and they print as \, ], ¥, _. Byte 7A shows up as the append sign }- in the

display, and prints as the text symbol ". Some people refer to it as R

(particularly if they do not have a (- symbol available), and the ZENROM

(see Section 12.8) uses the R key to provide this postfix. The remaining

postfixes from this row are the familiar lower case a to e, normally used

for local Alpha labels, but also able to provide access to the status

registers.

Most program steps containing these row 7 synthetic postfixes can be

created using the method just shown for creating STO M. For example to

create VIEW Q you need to produce the bytes 98, 79. You can do this by

using any two-byte function with IND 24 as the second byte and following

this with X#Y?, then byte grabbing the first byte of the two-byte function.

One way would be to produce the two steps TONE IND 24, X#Y?, then BST

twice, byte grab, delete the byte grabber string, SST, and see VIEW Q.

These synthetic postfixes can be used for functions such as TONE or FIX or

LBL (you can create additional local Alpha LBLs such as LBL X or LBL M, and

their corresponding GTO functions). Their most interesting use though is

with the register access functions STO, RCL, and X<> . The next few

sections will provide examples to show what the status register access

functions will let you do.

Indirect functions such as RCL IND P can also be created. The simplest way

to make these postfixes is to use text strings of the appropriate length in

combination with the byte grabber. An example will help again; to produce

RCL IND Q (90, F9) do the following:

-436-



1) Create the program steps RCL IND 16, "ABCDEFGHI". This provides the

bytes 90, 90, F9, 41, 42, 43, 44, 45, 46, 47, 48, 49. We only need

the bytes 90,F9 so any text string of nine bytes would do.

2) BST twice, BG, and delete the byte grabber text string.

3) SST and see the instruction RCL IND Q. If you see something else then

you probably left some nulls in the program at step 1), and should

have PACKed. Go back to step 1) and try again.

4) Delete all the unnecessary instructions after the RCL IND Q. If you

got it right the first time then you will have nine bytes left from

the text string so press SST once and then execute DEL 009.

The method of creating synthetic functions described in this section relies

on the use of the Byte Table. You first use the table to select a

combination of prefixes and postfixes, then grab one prefix so that its

postfix becomes a prefix and the next byte becomes a postfix. The next

sections will assume that you can use this method to create any synthetic

function to access the status registers. If you want to practice creating

a few more of these functions then try the following examples. Each

function is followed by one method of creating it. BG stands for "press

the Byte Grabber key in USER and PRGM mode". Remember to tidy up and check

each function after you have created it by pressing backarrow and SST.

TONE T (STO IND 31, CLz, BST, BST, BG)

LBL X (RCL IND 79, CLST, BST, BST, BG)

GTO L (STO IND 80, R?, Rt, BST, BST, BST, BG) As GTO is a 3-byte

function, it needs two postfix bytes. The first one can be

any byte, the second one must be R? for the postfix L. A

synthetic GTO created in this way has a compiled distance in

it but this will be removed when you finish the editing,

unless your HP-41 has bug 8 (see Appendix C).

X<>Q (STO IND 78, X#Y?, BST, BST, BG)

RCL d (STO IND 16, AVIEW, BST, BST, BG)

-437-



ST* IND M (RCL IND 20, "ABCDE", BST, BST, BG)

ISG IND O (RCL IND 22, "ABCDEFG", BST, BST, BG) Be careful not to

confuse register O ("Oh") with register 00 (zero, zero)

FIX IND ¢ (TONE IND 28, "ABCDEFGHIJKLMNO", BST, BST, BG)

In the last three examples remember to delete bytes left by the text

string. If you are going to do this a lot then you should assign DEL to a

key. I have suggested the use of STO or RCL to produce the first prefix in

all except the last example. This is just because STO and RCL need only one

keystroke; you can use other prefixes as is shown by the last example.

Figure 14.1 shows the sixteen status registers, together with the name of

each and its absolute address. The lowest five are the familiar stack

registers. The other eleven will be described in the next six sections.

14.6 Status Registers M, N, O, P.

The last three bytes of status register P together with the whole of

registers O, N and M provide the 24 bytes of the ALPHA register as shown in

Figure 14.1. The previous section showed you how to create the function

STO M. Now try out that function; first CLA, then put 1.4 into register X,

then go to the STO M step and execute it by pressing SST while you are in

run mode (not in PRGM mode). Go into Alpha mode and you will see that the

Alpha register (which you had just cleared) now contains the text string

rETTTTT. From Chapter 8 you can see that the number 1.4 is stored in

register X as the hexadecimal bytes 01, 40, 00, 00, 00, 00, 00. The byte

table will show you that the same bytes can be interpreted as the text

string just shown. When you put these bytes into register M and view Alpha

they are naturally interpreted as a text string. This is one way of

putting "non-keyable" characters into the ALPHA register. Non-keyable

characters are the one that are not available on the Alpha keyboard. The

last five characters in this text string are nulls. If you try to delete a

null character with the backarrow key in append mode, then the HP-41

assumes that the whole Alpha register contains nulls and it executes the

CLA function.

-438-



 

Register C O N T E N T S

name

e <----shifted key assignments ------> Scratch Pgm line no

d <mmmmememeea-- F1lags 00 to 55 -----ceccann-->

c Stat Pointer |[Scratchl 1 6 9 |R0O Pointer| .END. ptr.

b 3a 2nd Ist current address

------------ Subroutine Return Stack ---------------

a 6th 5th 4th 3b

+,7 <----unshifted key assignments-----><----- Scratch----->

Q.__ SCRATCH R EGISTER

P,t Extended Alpha/Scratch 24 23 22

0,] 21 20 19 18 17 16 15

- -- ALPHA Register Characters 1 to 24 -- -

N,\ 14 13 12 11 10 9 8

M,[ 7 6 5 4 3 2 1

L L A S T X

X STACK

Y

Z M A N T I S S A EXPONENT]

T SIGN1 2 3 4 5 6 7 8 9 10SIGN1 2  
Byte 6 Byte 5 Byte 4 Byte 3| Byte 2 Byte 1 Byte 0  
 

Figure 14.1 The HP-41 Status Registers

-439-

Absolute

dec hex

reg reg

no. no.

15 OF

14 OE

13 0D

12 0C

11 OB

10 0OA

09 09

08 08

07 07

06 06

05 05

04 04

03 03

02 02

01 0l

00 00

Nybbles

Bytes



This example has shown you that register M is part of the ALPHA register

and that it can be used to store numbers. It can also be used for

arithmetic. Create the two program steps ST+ M and RCL M (use the methods

described in the previous section), then execute them by using SST. ST+ M

should add 1.4 to the 1.4 that you have just put into M, and RCL M should

recall the result into X. Indeed you will see 2.8 in X. The three

registers M, N, O can be used for storing numbers, doing arithmetic on

them, and recalling them just like ordinary registers. Of course you

cannot use the Alpha register for other purposes while you are doing

arithmetic in it, but it provides you with three extra registers. This can

be very helpful, particularly if you have an HP-41C with only 64 registers.

If you need only one register then you can use register O, and still keep a

maximum of 14 characters in the Alpha register without disturbing them

since they all fit into registers M and N.

Registers M, N and O can be used if you need to save a number or do some

arithmetic without disturbing any of the numbered data registers. Say you

need a function to calculate 1/X%13 without disturbing registers Y, Z or T

and saving the old X in L. This should work just like the ordinary 1/X

function and should not disturb any of the numbered data registers, which

you may be using for something else. The following short routine will do

the job.

01 *LBL "RECUBE" (reciprocal cube routine)

02 1/X (calculate 1/X and put X into L)

03 STO O (store 1/X in register O)

04 ST*O (this step and the next one...)

05 ST*O (...put 1/X13 in register O)

06 CLX (put a zero in X)

07 X<> O (get the result in X and clear register O)

08 END (registers M and N are unchanged and O is clear)

The last three bytes of register P are also used to hold Alpha characters,

but the first four bytes are often used for other purposes. (An area like

this is called a scratch area, since it is used like a scratchpad.) In

particular the CAT functions (including EMDIR, ALMCAT and the CX catalogues

-440-



4, 5 and 6) use these bytes when a CAT is executed or searched (by a GTO or

XEQ operation). They are also used whenever a number is entered into

register X or when a number is displayed (showing X or using VIEW or PSE)

or register X is ready for a number to be entered into it. Further details

are given in the book Synthetic Programming Made Easy. If you stay in

ALPHA mode or display a text string in register X and do not enter any

numbers from a program then you can use register P just like registers M, N

and O. Another very useful feature is that characters pushed out of the

lowest 24 positions in the Alpha register are pushed into the top four

bytes of register P. Therefore you can store up to 28 characters in the

Alpha register so long as you do not alter register P by displaying or

entering a number or executing a catalogue. The Card Reader function WSTS

also changes register P. The top four characters will not be shown when

you use AVIEW, but they will be there and you can recall them by using

RCL P. These top four characters are moved and altered when you use

backarrow to make corrections or alterations to the ALPHA register.

Remember that you can edit the ALPHA register at any time by entering Alpha

mode and pressing APPEND (Shift K).

Since register P is altered whenever a number is put into a program, you

cannot safely use a set of steps such as

STO P, 5.795432E-11, RCL P

because the 5.7.. entry alters the first four bytes of P. If you recall

the number from a register then P will not be affected, so you could use

the steps

5.795432E-11, STO 10 ..... STO P, RCL 10, RCL P

Sometimes you might not have a free register to hold the number, or you may

not know which registers are free. Where can you put the number then? Why

not use the ALPHA register itself? You can always use RCL M to get a

number from the ALPHA register, and you can even use a text string to put

the number into Alpha. Continuing with the example of 5.795432E-11, try

translating it into a string of bytes. From Chapter 8 and the Byte Table

-441-



you can see that this number is stored as:

+5 79 54 32 00 0- 89

or as the hexadecimal bytes: 05 79 54 32 00 09 89

How can you create a text string containing these bytes? First create an

ordinary program text string with seven characters.

"ABT2EFG"

This i1s made up of the bytes F7, 41, 42, 54, 32, 45, 46, 47. Now go back

to the program step before this string, PACK and press the Byte Grabber

key. The F7 byte will be grabbed and the string of bytes 41, 42, 54, 32,

45, 46, 47 will appear as a string of instructions: -, *, CHS, STO 02,

X>Y?, X<=Y?, r+. If you compare this with the string of bytes above then

you will see that you need to replace a few bytes with different

instructions.

1) SST past the BG, delete the - (byte 41) and put in LBL 04 (byte 05).

2) SST again, delete * (byte 42) and put in X#Y? (byte 79).

3) SST again. Byte 54 is already in the right place, provided by the T.

4) SST again. Byte 32 is already there.

5) SST again. We want to replace X>Y? with a null byte, but not yet.

6) SST again, delete X<=Y? and put in LBL 08 (byte 09).

7) SST again, delete £+ and put in PSE (byte 89).

8) Now BST twice and delete the X>Y? This becomes a null byte 00. We

could not do this earlier, because deleting bytes X>Y? and X<=Y? would

have meant that LBL 08 would have gone into the first empty byte, not

the second one. You must not PACK now, or this null byte will be lost.

9) BST five more times, and BG the Byte Grabber string. This releases

the F7 byte so our new text string is ready.

10) Delete the BG string, SST and delete the next line, then SST again to

see the new text string instruction. (It is safe to PACK now since the

null byte created at step 8 is now safely hidden inside the text

string.)

-442-



If you SST this instruction and then execute RCL M (put a RCL M after the

text string in your program) then you will find the number 5.795432E-11 in

register X.

Now you can see that the program steps:

"TRT2BB"

STO P

RCL M

RCL P

will let you save a number in register P, put a new number into register X,

and later get the other number back from P without changing P or using any

numbered data registers.

You might also notice that the text string and RCL M use a total of 10

bytes whereas the program instruction 5.795432E-11 takes twelve bytes. The

method just described will let you save several bytes on any long number

that you want to enter from a program, and it is much quicker. In this

case 5.795432E-11 takes .37 seconds, whereas the text string followed by

RCL M takes .11 seconds, so you save a quarter of a second. This can be

quite important in a long program which enters many numbers, but you must

have the patience to build up the text strings required. In this

particular case you could have saved a byte by replacing 5.795432E-11 with

5795432E-17 but the synthetic method saves more bytes and much more time.

By using longer text strings you can put numbers into registers N and O as

well, then recall them to X. Instead of building up text strings you can

use a Q-loader - see Section 15.6.

The method just described for creating a text string with non-keyable

characters can be used to create other text strings too. For example the

text string " M~AMPS" can be created by first making the text string

"MAMPS", then byte grabbing the text byte, replacing the first character M

(byte 4D, instruction %CH) with the character (byte 0C, instruction LBL

11), and finally byte grabbing the previous byte grabber. The same trick

-443-



can be used to create text strings with lower-case characters. The lower

case characters (except a to e¢) will show up as boxed stars, but will print

correctly on the Hewlett-Packard printers, without the need for setting and

clearing flag 13.

Later on in this Chapter we shall use combinations of instructions like STO

M and RCL N with ordinary ALPHA operations like ASTO and APPEND. These

combinations will give us a new class of ALPHA operations, useful

particularly in manipulating non-normalised numbers. First let us study

some other status registers.

14.7 Register Q.

This is the next register up from M, N, O and P. You can see from Figure

14.1 that Q is the only complete status register available for temporary

storage, or scratch purposes. This register is therefore used by many HP-

41 functions and it is rarely safe to store values in it. If a printer is

attached, then Q 1is altered by every step of a RAM program; so normally

you cannot use Q in any program that might be run with a printer. If you

clear flag 55 (see next section) then the HP-41 will not know that a

printer is attached and you will sometimes be able to use Q.

Other functions that use Q are as follows:

Number entry: whenever a number is entered from the keyboard or from a

program it is built up in register Q and copied to register X only when

number entry is terminated. Register Q is not used when numbers are

recalled to X, so the text line number entry method described in the

previous section does not alter Q.

Alpha execution: whenever you spell out a function or program name, the

name is stored in register Q. For example CLA, create the program steps

RCL Q, STO M,then key in XEQ "SIGN". Now BST to the line RCL Q, go out of

PRGM mode and press SST twice. The first step will recall the contents of

register Q, the second will put them in register M. If you set ALPHA mode

-444-



you will see the text string NGIS. This is just "SIGN" spelt backwards;

names are always copied backwards into register Q.

GTO and XEQ: in addition to alpha execution, any direct or indirect GTO or

XEQ that spells out a program or function name will put that name into

register Q. The name is always put in Q, even if it turns out to be

NONEXISTENT. When you create a global alpha label by pressing LBL and

spelling out a name, that name is also put into register Q. Other

functions which demand an Alpha parameter also use Q. For example the

printer function PRP uses register Q to store the name of the program to

print. In all these cases the name is stored backwards, and the length of

all names is limited to seven characters because register Q is seven bytes

long (like all other data registers).

ALPHA: Text entry does not alter register Q, but viewing the contents of

Alpha (with AVIEW, PROMPT or by stopping a program in ALPHA mode) does. So

you can only keep Q unchanged while entering text if you do this in a

running program.

Mathematical functions: Y1X, R-P, P-R, SDEV alter Q, and so do SIN,

COS, ASIN, and ACOS. TAN and ATAN do not.

Extended functions: SAVEP and a few others use register Q as well. The

CCD module extended catalogue function CAT’ uses register Q, and so do some

of its other extended operations.

From the above you will see that register Q can rarely be used for storage

and arithmetic, but this does not mean that it is of no use. In Chapter 16

I shall describe a program which uses register Q to provide a programmable

version of the printer function PRP. Register Q can also be used for

writing synthetic programs. There is a whole class of synthetic

instructions called Q-loaders; these are used to "load" the contents of

register Q into a program, creating unusual text lines, labels, GTO and XEQ

instructions. Q-loaders can only be used if they are assigned to a key or

scanned with a wand, so they will be described after a key assignment

-445-



program has been developed that will work on any HP-41.

14.8 Register d, the flag register.

I shall now go on to register d because it is often used in combination

with registers M, N, O and P. Section 8.1 mentioned that a single register

can be treated as 56 bits; each of these bits can be used as a flag -

either set (and equal to 1) or cleared (and equal to 0). Register d

contains all 56 HP-41 flags. These are described in Appendix D and their

positions in register d are given at the bottom of the first half of the

Byte Table. If you execute RCL d then you recall into register X a value

that gives the setting of every flag. You can change some of the flags,

and later restore their original status by using STO d to copy the original

value from X back to register d. Say I want a program to recall the number

in register 02 and display it without showing its fractional part or the

decimal point, but then I want the program to go back to its normal way of

displaying other numbers. If I knew that only one person would read this

book and that this one person always used ENG 3 mode with digits grouped

into threes, then I could use the four instructions

FIX 0, CF 29, RCL 02, PSE

to recall the number and display it without a fraction or a decimal point.

After this I could reset the normal display mode by using SF 29, ENG 3.

However I hope that more than one person will read the book (at least two

have promised to do so!), so I cannot just set ENG 3 mode and hope everyone

is satisfied. Instead of this I could use

RCL d, FIX 0, CF 29, RCL 02, VIEVW X, PSE

to save the original display status. I could then replace the display

status by using

X<>Y, STO d, RDN

The X<>Y gets the old contents of register d into X, STO d puts this back

-446-



into the flag register, and RDN puts the flag register value into T, so

that the contents of registers X, Y, Z are as in the previous example.

Another occasion when RCL d is useful arises if you have some of flags 11

to 20 set and you want to turn off your HP-41 or you want to leave it

unused for more than 10 minutes. Turning the HP-41 off and on again clears

all of flags 11 to 20, but if you do RCL d before the HP-41 turns off then

you can save their status. After the HP-41 turns on again, you should use

STO d to put back the original settings. The contents of register d rarely

look like an ordinary number or text string; they are usually an NNN (non-

normalised number; see Section 8.2). This means that they can look very

unusual in the display, and it also means that you cannot store them in a

numbered data register and recall them unchanged. Remember that NNNs are

normalised when they are recalled from a numbered data register (see

Section 8.2). Numbers are not normalised when they are recalled from any

of the status registers, otherwise even the instruction RCL d would not

work properly, so you can save the contents of register d in any of the

stack registers or registers M, N, O, then recall them from that register

before doing a STO d.

Before going on to the rest of this section,

you should try out the example above or the

one to the left. Enter this program (it is

BLeLBL ~TRYd" just a modified version of the steps

82 ENG 32 described previously) and run it to see PI

o . displayed first in ENG 3 mode, then without
@5 RCL d the fractional part or a decimal point. Then

gf :ié:’:?g press the backarrow key to cancel the VIEW

a.f;, VIEKY function and see the contents of X in ENG 3

?: ;;8 d mode. Instead of VIEW Y you could print a

11 END number, or ARCL it to make it into part of a

message. You can use any display mode you

like, STO d will always restore the original

display mode. Just make sure that the

previous contents of d really are in register

-447-



X, otherwise you can get some odd results which may need to be tidied up by

the setting or clearing of a lot of flags. If you cannot remember how to

create the steps RCL d and STO d, refer back to the examples at the end of

Section 14.5. Use STO IND 16, AVIEW to produce RCL d; use STO IND 17,

AVIEW to produce STO d.

Of the flags in register d, only 0-29 can be altered directly by the user.

Flags 30-55 can be tested, and some can be set or cleared by special

functions. For instance flag 48 can be set in a program by AON and

cleared by AOFF. For various reasons it can be useful to set or clear some

of the flags 30-55 even though Hewlett-Packard did not consider it wise.

Let us begin with flag 55. This is set whenever the HP-41 detects the

presence of a printer. The HP82143A printer, which is designed for use

only with the HP-41, always sets flag 55, whereas printers attached via HP-

IL might not set flag 55 until they are used. Once flag 55 is set though,

the HP-41 knows a printer is present, and when a program is running in RAM

every program step is copied into register Q in case the printer is in

TRACE mode and wants to print that step. This means that register Q cannot

be used for synthetic programming (as mentioned in the previous section),

and that programs are considerably slowed down. Armed with our synthetic

programming techniques, we can try to clear flag 55 so that the presence of

a printer will not slow down programs or affect register Q. If we look at

the bottom of the first half of the Byte Table, we can see that flag 55 is

one of the eight flags in the last (rightmost) byte of register d. Storing

a zero in that byte will clear flag 55 (and all the other flags 48-54).

Normal HP-41 operations only allow us to alter complete registers, but the

ALPHA register can be altered one character, and therefore one byte, at a

time. The program below uses synthetic instructions and ALPHA operations

to clear flag 55. It clears flags 48 to 54 as well, but this does not

really matter as will be explained later. Even if you do not have a

printer it is worth studying the techniques used by this program. If you

are unsure how to enter the program, a detailed method will be given later.

-448-



01 *LBL "C55"

02

03

04

05

06

07

08

09

10

11

RCL d

STO M

"+-ABCDEF"

CLX

STOM

" ,l"G"

X<> N

STO d

RDN

END

Program name - clear flag 55 - a three letter

abbreviation is usually sufficient and saves space.

First copy register d into register X.

Copy the flag set from register X into the rightmost

seven bytes of the ALPHA register.

Append six characters to the ALPHA register. This

pushes the six leftmost bytes of the flag set into

register N, and leaves the rightmost byte (flags 48-55)

in register M, followed by six letters.

Put a zero into register X. This leaves all fifty-six

bits containing zeroes.

Copy the zeroes into register M. The rightmost byte of

the flag set, which contained the settings of flags 48-

55, now contains all zeroes.

Append one more character to the ALPHA register. The

former contents of register M have now been pushed a

total of seven bytes to the left, so they are entirely

in register N, except that the last byte has been

replaced with a zero.

Put a zero into register N, and copy the altered flag

set back into X.

Store the altered flag set into the flag register. The

last eight bits are all zeroes, so flags 48-55 are all

clear.

Replace the original contents of registers X, Y, Z.

L is also unchanged. T, M and N have been changed. The

previous contents of N are now in O and can be recalled

from there.

You can use this routine to clear flag 55 wherever a part of a program does

not need a printer. Simply XEQ "C55" and the printer will be disabled,

register Q will not be changed at each step, and the program will speed up.

This is a short yet effective example of the use of synthetic programming.

Flags 48-55 are all cleared in just 9 steps (not counting the label and

-449-



END). The settings of flags 49-54 do not really matter; flag 49 is set by

a low battery and will be reset at the next step if necessary, flag 50 is

set if a message is being viewed which is not necessary in this case.

Flags 51 to 54 are normally clear anyway in a running program. Clearing

flag 48 clears ALPHA mode, so if you run the program by pressing R/S while

in ALPHA mode then you will finish out of ALPHA mode, but this can be

corrected by an AON step in the program if it is necessary. Flag 55 will

stay clear until a PSE or until the program stops running if you have an

82143A printer and it is turned on. With an IL printer, flag 55 will be

set if you try to execute a printer function, or a function such as VIEW

which uses the printer, or after a flag test function. Be careful to clear

flag 21 if necessary; when it is set but flag 55 is clear then VIEW and

AVIEW will stop a running program.

If you are still not comfortable creating synthetic functions in a program

then the following step-by-step instructions should help you.

01 *LBL "C55" First enter the program printed alongside. Check

02 RCL IND 16 that it is correct and PACK. Next SST to the

03 AVIEW label, make sure you are in USER and PRGM mode, BG

04 RCL IND 17 (press your Byte Grabber key), and press the

05 RDN backarrow key to delete the BG text string. SST

06 "-ABCDEF" once and see the line RCL d. BG and backarrow

07 CLX again, and SST three times, until you see CLX. BG

08 RCL IND 17 and backarrow, SST twice. Then BG, backarrow, and

09 RDN SST once. BG, backarrow the last time, SST and

10 "-G" sce the last synthetic line, STO d. PACK again

11 RCL IND 78 and the program is ready. To try it out, even if

12 LASTX you have no printer, leave PRGM mode, press RTN,

13 RCL IND 17 ALPHA and R/S. After about one quarter of a

14 AVIEW second the program stops with ALPHA cleared.

15 RDN If you made a mistake then your flags may not be

16 END set correctly - you will have to reset some of

them, correct the program, and try again.

-450-



Although this is a simple example of synthetic programming, it is not

perfect. For one thing, the program could be made a little shorter though

this might make it less clear. A shorter version is given in the book

Synthetic Programming Made Easy. Secondly, eight flags are altered all at

once. If you do not have a printer you may still want to alter some other

flags. A more useful, but more complicated program would set or clear any

one of the flags 00 to 55.

The next program, SCF, can be used to set or clear any one flag. The flag

number should be put into register X, and then SCF should be executed from

the keyboard or from a program. If the flag number is positive then the

program sets the flag, if it is negative then the program clears the flag.

Since the HP-41 does not allow for a negative zero, use any negative

fraction between O and -1 to clear flag 00. Apart from this, the

fractional part of X 1is ignored. If only flags 00 to 29 were used, then

the whole job could be done by the three steps (lines 12 to 14)

SF IND X, X<0?, CF IND X

To deal with flags above 29, the program shifts the flag register contents

two bytes to the left (lines 23 to 27), and tries again. This will still

not work for flags 40-55. In that case the program shifts the flags

another two bytes to the left. After the desired flag has been set or

cleared, the flag register is shifted two bytes to the right (lines 29 to

36) once or twice as necessary, and the program stops at the RTN. In case

register X contains a number larger than 55, or a text string, the program

tries to test the flag number at line 03. If flag 25 is set then an error

at line 03 will be ignored, so the test is repeated at line 04; this time

an illegal value will stop the program with an error message. If X

contains a legal value then line 05 will usually be executed, but in some

unusual cases it may not be, so it should be a NOP. The LBL 01 acts as a

NOP at this stage, and later in the program it is used by a GTO as well

Lines 05 to 15 try to set or clear the flag; if the value is 30 or over

then they jump to line 16 so that the flag register can be shifted left and

these lines can be executed as a subroutine. LBL 03 is used so that the

-451-



program will not stop in the middle, where restarting could produce

incorrect results.

The program leaves registers X, Y, Z and N unchanged, and it does not use

any numbered data registers. In order to make this possible, the stack and

ALPHA registers are used a lot, and some unusual arithmetic operations are

carried out, particularly at steps 18 to 22 which decrease the absolute

value of the flag number by 16. The flag number is decreased by 16 each

time the flag register is shifted two bytes (sixteen bits) to the left.

AieLBL “5CF- 14 CF IND ¥ 27 %4 d
2 8TO [ {5 670 23 28 XEQ 81
87 FS? IND X 16¢LBL 82 29 %(> d
A4 FS? IHD X 17 RDM RO 0
BSeLEL A1 12 16 31 “HABCDE"
@k ABS 19 §7- ¥ 32 870 [
87 In 28 X(» L 33 RCL 4
82 X{=Y? 21 SIGN 34 8¢ T
3 GT0 @2 27 % 35 %O N
1@ RDN 23 8¢d 36 570 4
11 %0 L 24 X3 1 37 RN
12 SF IND X 25 *HPp* 33¢LBL A7
13 %7 26 ¥[ 39 RTN

48 END 82 BYTES

You should have had enough practice by now to be able to enter the program

from the listing given here. (If you are lazy and have a wand then you can

use the barcode in Appendix F.) As was mentioned in Section 14.5,

registers M, N, O, P print as L \, 1, 1 If you need detailed

instructions, then read through the next paragraph, otherwise skip over it.

Lines 02 and 32 are displayed as STO M. They can be created by entering

the two steps RCL IND 17, RDN, then backstepping twice, pressing your BG

key, and pressing backarrow. Lines 23, 27 and 29 can each be created by

entering RCL IND 78, AVIEW, backstepping twice, pressing BG and backarrow.

Lines 24, 26 and 30 are X<>M created from RCL IND 78, RDN, followed as

usual by the four steps BST, BST, BG, backarrow. Line 36 is made in the

usual way from RCL IND 17, AVIEW. Lines 33, 34 and 35 are RCL P,

X<>0O and X<>N. They are made from RCL IND 16, X=Y?, from

-452-



RCL IND 78, CLX and from RCL IND 78, LASTX respectively. As you go

through these steps, you should follow them on the Byte Table (Table 14.1)

so as to see how they are made. If any instruction fails to come out as

expected then repeat the steps given, and remember to PACK.

To check if you have entered the program correctly, put 49 into X and

execute SCF. The BAT annunciator should come on. You can clear it by

pressing CHS and running the program again, or by turning your HP-41 off.

The program will not work for flag 53 and may create problems with some

others. Flag 53 is used to check if any I/O device needs attention; it is

checked and cleared after every program step. Thus flag 53 will be cleared

as soon as you set it. Whenever flag 53 is cleared, flag 54 is also

cleared if it was set. Moreover if flags 53 and 45 are both set then flags

30, 45, 47, 50, 53 and 54 will all be cleared. When flag 53 is cleared in

a running program then the current program line number (see Section 14.10)

will be reset as well.

Flag 54 is the PSE flag; in a running program it does not execute a PSE

until the program comes to a stop at a RTN or END. Then the program does a

PSE, clears flag 54, and starts running again from the next step (after a

RTN) or from the beginning of the program (after an END). If you call SCF

as a subroutine and set flag 54 then your program might not stop where you

expect it to, unless you clear flag 54 later by calling SCF again with -54

in X. If you execute SCF from the keyboard then after setting flag 54 it

would not stop at an END but would run again. For this reason there is an

extra RTN at line 39; SCF can do a PSE at this line and stop at the next

one. If you set flag 52 then the HP-41 gets the idea that it is in PRGM

mode and that you are writing a program. Normally this does not matter,

but if flag 52 is set when a number entry line is executed, then the HP-41

begins programming itself, repeatedly putting the first digit of that

number into program memory. This may leave you a lot of tidying up to do,

so be careful with flag 52. One more warning: SCF may use one or two

subroutine calls internally so take care not to exceed a total of six

pending subroutine calls while you use it.

-453-



The program SCF can be used for a variety of purposes, including

exploration of the HP-41. As an example you could set flag 30 (the

Catalogue flag), then press R/S to restart a catalogue and see which

catalogue you have gotten into. If you have an HP-IL module you can

disable all IL operations by setting flag 33, and if you have an Auto

Start/Duplication Module then you can disable the Auto Start by setting

flag 35. You can set flag 44 (continuous ON) or flag 47 (SHIFT). Normally

these are non-programmable operations. If flag 40 is set alone then the

HP-41 is in FIX mode which displays numbers without an exponent if

possible, and otherwise displays them in SCI mode. You can use SCF to set

flag 41 as well as flag 40, giving FIX/ENG mode which displays numbers in

FIX mode if possible, and otherwise in ENG mode.

Some other books contain programs similar to SCF. These usually invert (or

toggle) the flag whose number is in X- if the flag is set then they clear

it and if it is clear then they set it. SCF lets you explicitly set or

clear a flag, this makes it a little longer. The other programs usually

use clever tricks to make them shorter and faster, I have avoided this to

make the program easier to enter and simpler to understand. After you have

read this book you may want to try the programs in other books. The

description of the program IF in the PPC ROM manual is particularly worth

reading, and the program is worth studying as it uses several clever

methods to make it as short as possible (it is only two-thirds of the

length of SCF). The ZENROM function TOGF does the same job as IF.

SCF 1is very useful for setting one flag, but rather slow if you want to set

a whole lot of flags. In such a case it is better to build up a non-

normalised number corresponding to the required flag settings, put this

number in X, and then STO d. How do we build up an NNN though? Maybe you

can guess - we use register d. By setting and clearing flags 00 to 07 we

can build up any required combination of bits in a byte. Then we use ALPHA

operations to append this byte to register M. By repeating this seven

times, we can append seven bytes to register M, then RCL M to provide a

complete NNN. This can be stored in register d to provide a flag set, or

-454-



it can be used for other synthetic purposes. A routine which builds one

byte and appends it to Alpha can also be used to create non-keyable

characters such as quotation marks or lower case letters. The program BAB,

"Build a Byte", shown below takes a number between 0 and 255 in register X

and appends the corresponding byte to register M.

  A3 0BS {6 RIN 29 %0 [
@4 RS {7¢LBL Az I8 Ey
as ig ! 31 RCL 4
Be 131 32 ROL 3
a7 2 33 CHET
ag 211 34 BCL »
a9 2z 35 CLA
16 P 23 %(=Y7 36 570 I
(1 o 24 SF IND 2 37 RIN
{2 25 156 2 38 ENMD
i

 

26 GTO 82

Line 02 saves the original X value, lines 03 and 04 check if it is a

number. The test is made twice (as in SCF) in case flag 25 is set, and it

leaves a positive value in X. Line 05 puts 256 into the stack for later

use, lines 06 to 08 save the value in Z, line 09 stores an ISG counter in

the stack: this will be used for a loop to set eight flags. Lines 10 and

11 save Y in register P; this could not be done earlier because number

entries alter P. Lines 12 and 13 put zero in register d so that all the

flags are clear and the original register d value is saved in the stack.

Lines 15 and 16 put 256 back in the X register. The absolute byte value is

now in register Y, the flag counter is in register Z, and the original

contents of register d are in T. Line 17 starts the loop which will turn

the byte value into a set of powers of 2, setting each of the flags 00 to

07 if the corresponding power of 2 is present in the byte value. Lines 18

and 19 obtain the remainder of dividing the byte value by the required

power of 2. At the first pass through the loop this makes sure that the

byte value being set is not larger than 255. There are no error checking

steps in this program except for lines 03 and 04 and these two lines.

Lines 20 to 22 halve the number in X. The steps 2, / cannot be used

because they would push the value in T off the top of the stack, and would

-455-



alter register P. Lines 23 and 24 set the required flag if X 1is not

greater than Y, meaning that Y contains the power of 2 that is stored in X.

Lines 25 and 26 increment the flag counter, and go back to repeat the loop

if necessary. At the end of the loop, flags 00 to 07 contain the byte we

need. Lines 27 and 28 get this into register X and restore the original

contents of register d. Lines 29 and 30 put the new byte at the left of

register M and put register M into register N while putting the previous

register N (the original Z) back in the stack. Lines 31 and 32 also

recover Y and X from P and O. Line 33 moves the byte from the lefthand end

of register M to the righthand end of register N. After this step register

N contains the previous value of M with the new byte appended at the right.

Line 34 recovers this value and line 35 clears out the ALPHA register.

Line 36 puts the value back into M and line 37 restores the original

contents of X, Y and Z.

When the program finishes, registers X, Y and Z are unchanged. Register M

has lost its leftmost byte and gained a new byte at the right. This byte

is byte number X. If X did not contain a positive integer between 0 and

255, the byte is ABS(X) MOD 256, with the fractional part of X ignored. If

X contained a non-numeric value, then the program should have stopped at

line 03 or 04. The ALPHA register is cleared except for register M; if you

do CLA before executing BAB then you can use BAB to put a single non-

keyable character into the ALPHA register and then ASTO this character in a

register for later use.

Lines 02, 07, 11, 13, 28, 29, 30, 31, 32, 34 and 36 are all synthetic lines

of the sort you have made in the previous examples. Use the same methods

to create these lines. If you have entered this program, you can try it

out by doing CLA, putting 12 into register X, and running the program. At

the end you should still see 12 in register X, but the ALPHA register

should now contain the Greek letter mu. You can ASTO this in a data

register, or you can add more characters to it, for example add the &

character by putting 38 into X and running the program again. Use BAB up

to seven times to build a NNN in register M, then RCL M and put it where

you want, for example STO d. If you begin with an empty register M and add

-456-



n bytes, then the leftmost 7-n bytes of M will still contain zeroes, so you

do not need to use BAB to create these null bytes. Several programs exist

to automate the whole procedure of converting fourteen nybbles (entered in

hexadecimal in Alpha) into a seven-byte NNN. These programs are usually

called CODE or ENCODE. Programs have also been written to DECODE an NNN

and display it as fourteen nybbles. Such programs are available in Wickes’

book, the PPC ROM and in ZENROM. A program to decode bytes one at a time

will be given in Section 15.3.

Be careful of three things. First of all BAB expects the byte number in X

to be a decimal value. Should you want to put the hexadecimal byte number

FC into register M, then you will have to check in the Byte Table, see that

the decimal equivalent of FC is 252, and put this number in X when you are

using BAB. Secondly, avoid running this program (or any other synthetic

program) with a printer attached and set to TRACE mode; in this mode the

printer can normalise numbers in X before printing them. Avoid single-

stepping through the lines 11 to 31 because this changes register P. In

general it is unwise to SST through any synthetic program that uses

registers P, d, or c¢; far better to run the program and wait for it to

stop.

Instead of using BAB, you can use the PPC ROM program DC,if you have a PPC

ROM. Byte values from 0 to 127 can also be entered from barcode if you

have an optical wand. Barcodes for these characters are given in the

Appendix F. Byte values from 128 to 255 cannot be entered directly into

Alpha with a wand. The astute reader will have noticed that BAB does the

same job as the Extended Function XTOA. BAB has been included here for

those users who do not have the Extended Functions, and as an example of

how register d can be used in Synthetic Programming. I shall now go on to

some other status registers, but you should keep the programs SCF and BAB

in your HP-41 as they will be used again later.

-457-



14.9 Register ¢, a vital register.

All sixteen registers accessed by bytes from row 7 can be called "status

registers”, but register ¢ is the status register. It records the

positions of the .END., of the "curtain", and of the statistics registers,

each as a three-digit pointer. Register ¢ also contains a three-digit

number whose value is frequently checked; if the value of this number

changes then the HP-41 assumes something has gone dramatically wrong and

initiates a MEMORY LOST. Figure 14.2 shows how these numbers are arranged

within register c.

 

 

 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Nybble

S S S 1 6 9 ¢ ¢ ¢ e e e Contents

6 5 4 3 2 1 0 Byte
 

Figure 14.2 Register ¢ contents

Each pointer is a three-digit hexadecimal number giving the absolute

address of the first statistics register, of register 00, or of the

register containing the .END. (the .END. is always stored in bytes 0, 1 and

2 of a register so the register number alone is sufficient to locate

it). As was explained in Chapter 8, absolute addresses are fixed to the

HP-41 hardware, for example register T is always at absolute register 000.

The pointers in register ¢ allow the HP-41 to use relative addresses, for

example data register 10 is 10 registers above data register 00; the

position of register 10 is known only relative to the position of register

00. On an HP-41CV the highest absolute register of normal memory is 1FF

hexadecimal (511 decimal). Thus if you set SIZE 100 on an HP-41CV then you

have 100 (decimal) data registers, and data register 00 is at absolute

register 19C hexadecimal (412 decimal). Nybbles 3, 4 and 5 will contain

19C and the position of data register 10 will be calculated relative to the

address of data register 00, at absolute register 1A6 hexadecimal (422

decimal). If you change the SIZE then the pointer in bytes 3, 4 and 5 will

-458-



change. If you add memory modules to an HP-41C then the position of data

register 00 will not change, but the total number of data registers

available will change. To avoid confusion here I shall give absolute

register numbers as three-digit hexadecimal numbers and relative registers

as two-digit decimal numbers.

The address of register 00 is called the curtain (named by Bill Wickes,

the originator of synthetic programming, who first suggested manipulating

it), because it separates data registers from the top of the program area.

The address of the .END. marks the other limit of the program area. Just

as the curtain address is used to find any data register, so the .END.

address is used to find any program in CAT 1. As was explained in Chapter

8, the .END. points to the preceding global label or END and this chain

extends back to the first END or global label in program memory. All

addresses below the .END. down to absolute register 0CO hexadecimal (192

decimal) are available for storage of buffers, alarms and key assignments.

The HP-41 sometimes checks this area starting at the .END. and going down.

This is called Method 1 (or just MI, see the article by Bruce Bailey in

PPCCJ VON7PI10-11), it 1s used to count the number of free registers below

the .END. whenever this number is displayed together with the .END. (or as

00 REG NNN). Method 2 (or M2) starts at absolute register 0CO and goes up

towards the .END.; this is used by PACK to remove unused key assignment

registers (KARs) or to delete unwanted buffers. M2 stops as soon as it

comes to an empty unused register, so PACKing will ignore any registers

placed by synthetic means in the middle of the free area. Since Ml stops

at the first non-zero register below the .END., storing anything in the

free area will also prevent the program area from expanding right down to

the key assignments. There is a third problem; a non-zero register in the

free area might be treated as a zero-length buffer. The HP-41 checks

buffers one after another by finding the length of each buffer and using

this to calculate the position of the next buffer. A zero length buffer is

therefore checked time after time without any stop, and the HP-41 hangs up.

These problems are described in the article by Bruce Bailey and in the

first paragraph of page 282 in the PPC ROM User’s Manual. The conclusion

is simple; avoid storing anything in the free area below the .END. unless

-459-



you know what you are doing.

The third pointer in ¢ gives the absolute address of the first of the six

statistics registers. When you do IREG nn, the HP-41 takes the absolute

address of the curtain, adds nn to this, and stores the new address in

nybbles 13, 12 and 11 of register c. When you change the SIZE, the curtain

address and the statistics pointer change by the same number of registers.

Nybbles 9 and 10 are a scratch area. When a copy of the contents of

register ¢ is put into the CPU then these bytes may be used by the printer,

but in register ¢ itself they are never changed. You can therefore use

them to store a byte of data. The CCD Module uses these nybbles to set

modes for hexadecimal arithmetic and for its permanent Autostart function.

That leaves the 169 in nybbles 6, 7 and 8. The HP-41 checks this number

when it turns on, after each function executed from the keyboard, and

whenever a program stops or pauses. It does not check this number while a

program is running; if a program starts running when the HP-41 is turned on

then the number is not checked till the program stops or pauses. If the

contents of these nybbles are ever found to be other than 169 then the HP-

41 operating system assumes something has gone badly wrong, most likely the

batteries have gone completely flat and the contents of Continuous Memory

have been disrupted. To prevent the user from working with corrupted data,

the operating system clears everything from memory and restarts from a

MEMORY LOST. An operation like this is called a cold start on computers

and the 169 is usually called a cold start constant. Matters are confused

by the fact that Hewlett-Packard calls this a warm start constant, since a

cold start is made only if the constant is lost, otherwise a normal warm

start is made. When the HP-41 checks the 169, it also checks whether the

first register below the curtain address actually exists. This should be

the top of program memory and if it does not exist then something has gone

wrong. Perhaps a memory module has been removed from an HP-41C. In any

case the absence of this register means that CAT 1 is not complete, and

again the HP-41 does a MEMORY LOST.

-460-



As you can see, register ¢ is indeed a vital register. It tells how the

memory is partitioned at any given time, and it controls whether you will

lose everything from your HP-41. So long as an "HP-41" was an HP-41C with

64 registers (and possibly one extra memory module), clearing all of memory

in case of trouble could be considered reasonable. Now that many users

have 41CVs or 41CXs with Extended Memory, a MEMORY LOST can mean

up to 923 data registers (6K bytes of data) lost. Even the people who

wrote the HP-41 operating system were not sure if clearing out all of this

memory would be a good idea, but the Hewlett-Packard view is that no data

is better than bad data. This could well be right if you are building

bridges or landing space shuttles; in such cases you will have stored the

data on a Card Reader anyway. (Won’t you? Well you will in future!) By

the way, some HP-41s on the Space Shuttle have extra loud beepers built

into Card Reader shells, but others do have real Card Readers.

In view of all this you must be very careful when altering register ¢. On

the other hand it can be very useful to change its contents. One example

is changing the curtain position to hide or uncover some data registers.

You can write a synthetic program by using BAB to build up several NNNs,

and store them in the data registers immediately above the curtain. Then

you can move the curtain up so that these data registers become part of the

first program in memory. To move the curtain you have to do a RCL c, copy

this to the ALPHA register, then use ALPHA operations and BAB to alter the

register. Finally you recall the new version of ¢ from Alpha and use STO ¢

to put it back.

Many synthetic programs change register ¢ temporarily. In these cases, the

instruction X<>c¢ is most useful; it lets the program change c, and later

put back the original contents. A common example is that one program has

stored important values in registers 00 to 10, but another program is also

written to use registers 00 to 10. You can move the curtain up by 11

registers and hide the original registers 00 to 10 inside the program area.

Then the registers that were previously numbers 11 to 21 become registers

00 to 10, and the second program can use them without affecting the real

registers 00 to 10. When the second program has finished, you can move the

-461-



curtain down by 11 registers again and thus recover the original registers

00 to 10. Another example is that you can pull the curtain down, turning

part of the program area into data registers. Then you can use CLRG to

clear these registers and later you can move the curtain back up. This

lets you clear part of the program area, rather like a programmable version

of DEL or CLP. Figure 14.3 shows the effect of raising the curtain by 10

registers. The contents of the registers do not change, the registers are

just renumbered.

Pointer value
  

increased by

 

 

10 but data in New position of

Original registers does Curtain at old

position of Reg. 10 not move. Reg. 00 Register 010

the curtain at Original contents

Register 00 Reg. 00 of old Reg. 00

are still in here

program program but are now inside

area area the program area.      

Figure 14.3 Moving the curtain

While the curtain is raised, ordinary data suddenly finds itself in a

program. A PACK or GTO.. would treat such data as program bytes and would

remove nulls, destroying the data. You must therefore make sure that PACK-

ing will not occur while the curtain is raised. Program memory now starts

at the new curtain position, so the first program will look for labels in

the data, and may try to execute the data as a program. Thus the first

program in memory should not be used while the curtain is raised; or at

least it should not execute any uncompiled backward GTOs. You can arrange

this by putting an END right at the beginning of memory. To do this,

execute CAT 1, stop it at once, GTO.000, turn on PRGM mode, and enter

XEQ "END". Then PACK memory and you are protected against problems

when you lift the curtain. If you lower the curtain and the first program

-462-



in memory does an uncompiled GTO then it will start the LBL search at the

first register below the curtain - this can lead to NONEXISTENT if the

label is now above the curtain. If you lower the curtain so far that it is

below the END of the current program then the label search will begin

immediately below the curtain, inside the program where the curtain now is.

This lets you execute a local LBL which is not inside the current program.

A RTN or END from that program will still return you to the calling

program. A curtain-raiser will be introduced soon.

You can use synthetic programming to change the .END. pointer but this is

rarely useful as it just loses you the CAT 1 linkage. An example of moving

the .END. to get into Extended Memory will be shown in the PPRP program in

Chapter 16. Another use is for suspending Time Module alarms, as explained

in PPC CJ VION7PI11, by Tapani Tarvainen. Changing £ REG has a few uses.

One is to move the statistics registers to a non-existent area so that

statistics functions cannot damage any real data. Another use is to move

the statistics registers so that they coincide with part of the stack. If

you have Extended Memory, you can locate the statistics registers in an

Extended Memory data file. A third use is for curtain raising as below.

If you move the curtain you need to know where it was previously so that

you can move it back later. A very clever synthetic operation is to

exchange the statistics pointer and the curtain pointer. If you execute

L REG 010 and then exchange the two pointers you will have hidden data

registers 00 to 09 as was described earlier. Since the original curtain

position is saved in the statistics pointer, you can recover the curtain

just by executing the same program again. The instruction ZREG 00 will

move the curtain to the statistics pointer, but moving the statistics

pointer to the curtain demands some byte shifting. The most difficult part

is to move nybble 11 to nybble 3 of register ¢ without changing nybble 2.

In actual fact, nybble 2 can only be a 0 or a 1 unless the .END. has been

moved synthetically, so a flag operation can be used to change the

necessary bit.

The program £ CX (Sigma - Curtain Exchange) will swap the statistics pointer

-463-



and the curtain so that you can try out curtain raising and lowering for

yourself. The version given here was inspired by the program ZIC in the

PPC ROM and by later versions published in the PPC Journal. The idea of

ZC came from Keith Jarett who together with Clifford Stern wrote several

versions.

BleLBL “ICH" {8 %y d 19 50
B2 RCL ¢ {1 SREG a8 28 K
A7 ¥y d 12 %¢ 20 "k
@4 COF 15 13570 1 22 %0
85 OF 14 {4 570+ 23 %0y ¢
#6 OF 13 15 "hears 24 RDH
#7 OF 12 16 % ¢ 25 CLA
a8 F§7 47 17 870 ~ 26 END
#3 SF 13 18 Fax-

Lines 02 to 10 use flag operations to clear nybble 10 of register ¢ in case

it has been set by the user or by the CCD Module, then they copy a 1 or 0

from nybble 02 to nybble 10. Lines 11 and 12 make a new register ¢ with

the statistics address at the curtain address and then put the old ¢ back.

Lines 13 to 15 shift the new version of register ¢ by 4 bytes, using two

copies of register ¢. Lines 16 to 21 combine the original version of c¢

with the new version using more shift operations. Lines 22 to 24 put the

final version of ¢ into ¢ and roll down the stack, with X, Y, Z unchanged.

No numbered data registers or flags are changed either but the ALPHA

register contains leftover rubbish, which is cleared by line 25.

You can now try curtain moving. Put 0 in register 00 and 10 in register

10. Execute IREG 10, rCX, and RCL 00. You will get 10 instead of 0

showing that the original register 10 is now register 00, but if you

execute ICX a second time then register 00 will again be the one

containing a zero. If you have raised the curtain to store some synthetic

instructions (codes stored in the data registers before you raised the

curtain) in your first program then you will not want to move the curtain

down again. In that case you should execute ZREG nn.

If you do want to restore the original curtain position, be careful not to

-464-



lose it. Should you want to do some statistics, do a RCL c first, then do

a IREG nn, do the statistics, and then replace the previous register c.

Never store the contents of ¢ in a numbered data register because they will

be normalised when you recall them.

You must be careful if you want to store any non-normalised numbers for

conversion to program steps using ZCX. IREG nn normalises the first and

last registers of the statistics block - registers nn and nn+5. The ICX

program includes a ZREG 00 instruction. This means you cannot store NNNs

into registers 00 or 05 if you plan to use ICX to raise the curtain over

them. Indeed you should always use this program with care, particularly if

you have synthetically set the curtain or the statistics pointer to point

to the status registers.

14.10 Registers - and e; making synthetic key assignments.

Whenever you press a key in USER mode, the HP-41 checks an internal flag,

part of an assigned key index, to see if something has been assigned to

that key. Flags for shifted keys are stored in register e, and those for

unshifted keys in register - (also called the append register or register

R). Figure 14.4 shows which bit corresponds to which key. The nine

nybbles at the left of each register cover all the keys, so the remaining

five are available for other purposes. Bit number 24 corresponds to a non-

existent key hidden under the right-hand side of the ENTER key. These bits

are not normally used for anything; ZENROM uses them to save the status of

the USER flag in ALPHA mode.

ilI )\IelBlsl BRI4'51515(414141413'41414(3131313]21313132121212( 1212127101010 p1t1t1tl

11 10 9 8 7 6 5

Byte 6 Byte 5 Byte 4 Byte 3 Byte 2

 

Figure 14.4 The key assignment flags

-465-



Each flag is shown as a box - the number in that box is the keycode for the

key whose status is stored in that flag. Register - has the flags for the

unshifted keys, and register ¢ has the flags for shifted keys.

The last three nybbles of register e¢ contain the current program line

number. During a running program or a CAT 1 this number is set to FFF

(which is 4095, higher than any possible valid line number) so as to

indicate that the line number will need to be recalculated. Other nybbles

are used for scratch purposes. You can change the line number

synthetically to any value up to FFF (4095 decimal). This will let you BST

from any program to the previous one. Line numbering will be corrected

when you SST an END. You can also correct line numbering by setting flag

53 in a running program (use SCF or a similar program).

By synthetic means you can set assignment flags to make new key

assignments. If no corresponding key assignment is stored in the

assignment area then CAT 1 is searched and, if no assignment is found there

either, then bytes left over from the CAT 1 search cause execution of some

function, most often ABS or CAT. Details will be given in Example 2 of

Section 15.5. You can clear individual flags, or you can clear them all.

When the flags are cleared, you can use the keys for their normal

functions. This is particularly useful if you need to use the top two rows

of keys for local labels in some programs, but you want to use them for

assigned functions at other times. The instructions:

CLX, X<>e, 0, X<> |-

will temporarily disable assignments, and you can re-enable the assignments

by storing the original values back in the registers. You can also recover

the assignment flags by reading a program from Extended Memory, from a

Card, or from an HP-IL device (using READP or the Extended I/O function

INP), even if USER mode is not set.

We have now reached a stage when a synthetic key assignment program will be

comprehensible. First of all BAB lets us use Alpha and register d to build

-466-



up a key assignment register (KAR) containing a synthetic key assignment.

We next change register ¢, moving the curtain down so that the KAR area can

be treated as data registers and the synthetic key assignment can be stored

in this area. Then we use SCF to set an assignment flag in register ¢ or

register -, and we have a new key assignment.

The writing of key assignment programs has been a major industry in HP-41

user clubs around the world. The most helpful programs check for errors

made by the user, and this makes them fairly long unless they use Extended

Functions. If you have a lot of HP-41 memory, and the patience to enter a

long synthetic program, or if you can afford a PPC ROM or an Extended

Functions Module or an HP-41CX, then these programs are what you want.

Readers who have an HP-41CX (or an Extended Functions Module and a Time

Module) can use the completely non-synthetic program given in Chapter 11 of

this book. That program is not long, but it is difficult to understand and

will not make assignments to the SHIFT key. The Key Assignment Program

(KAP) given here will make assignments even to the SHIFT key; it is

reasonably short because it does not check for errors and uses BAB and SCF

as subroutines. It is fairly easy to understand, as it follows the outline

given above and does not use any loops or GTOs. Experienced synthetic

programmers may be horrified at some of the shortcuts taken, but the

resulting program will fit even into an HP-41C, will do the required job,

and is fairly easy to enter even for a beginner. If you have an Extended

Functions Module you can speed the program up and make it shorter by using

XTOA instead of BAB in lines 13, 15 and 38.

-467-



BLOLBL *KaP" 17 Bt 33 LASTY 49 %y o 65 5T *92 CF 19 15 - 343 38 ROY 66 FC2L 18a7 %587 19 %(a7 35 F47 18 SUSTOIND 2 g7 570
a4 SF 1A 20 CHS 36 CLX 32 ROV 62 END
A5 ARS 24 DSF ¥ 37+ 514y
5 N7 22 BSE L 33 XEQ “BAB- 54 "HABCTE"
B7 1A%y 23 LASTY 33 36 55 %¢» [ 146 BYTES
B X0 L 24 19 4oL A89 181X 25 / - o18 %) L 26 INT b2 1 S1 s 27 LASTY 43 F5? 18 39 Xd
7 %0y 7 28 FRC 44 RCL ° 68 XOHY
(3 ¥E0 -BAg* 24 28 45 FL7 18 61 XEQ "SLF-
14 803 0 % 46 RCL ¢ 62 R{MY

15 XED “BAB® 3+ 47 %0 [ 63 &0 ¢1 47 3257+ L 43 3.00915901 64 F57 18

To enter the program’s synthetic instructions, use the methods described in

Section 14.5. Lines 44 and 65 recall and store the append register, which

is provided by the decimal postfix 122. You can create these lines by

writing RCL IND 16, SIGN and RCL IND 17, SIGN, and by Byte Grabbing the

first byte in each case. The only synthetic instruction that cannot be

recognised is at line 11; it consists of the five bytes F4, F0, 58, 58,

58. This is a text string containing 4 characters (so the first byte is

F4), but the second byte (FO0) is not recognised by the printer and does not

get printed. The remaining three characters are ordinary Xs and are

printed as such. There are several ways to make this instruction; here is

onec.

1) Enter the text line "XXXX", and PACK.

2) BST to the line before this line and press the Byte Grabber (BG).

3) Insert the step RCL IND T.

4) BST and BG, then delete the BG line. This leaves an F0O byte.

5) PACK; this pushes all the bytes together again.

6) BST, BG and backarrow. This releases the F4 text line header.

7) SST and backarrow, then SST again and see a text line with the first

"X" replaces by a boxed star (the FO byte).

8) SST again and delete the EtX-1. This is the fourth "X" which has got

pushed out of the text line.

-468-



Entering a program with a lot of synthetic instructions demands a lot of

editing, and the messages PACKING, TRY AGAIN might be displayed

occasionally by the HP-41. Do not worry about this, just carry on entering

the program when TRY AGAIN is displayed.

To use the program you put a function prefix in register Z, a function

postfix in register Y, and a function keycode in register X. Then you can

execute KAP from the keyboard, or call it from another program. In other

words prefix, ENTER, postfix, ENTER, keycode, XEQ "KAP". The prefix and

postfix are decimal numbers representing two bytes; the keycode is the same

as that used by ASN. If you are assigning a one-byte function then make it

the postfix and use a prefix value of 4. This is the same as using other

key assignment programs such as GASN in this book or the ones in Wickes’ or

Jarett’s books or in the PPC ROM. There is one major difference; KAP

stores the new assignment in the lowest key assignment register, destroying

any previous assignments that were there. (Wickes’ program and the PPC ROM

program store the assignment above the highest assignment register,

destroying the alarm buffer instead.) To avoid destroying any important

assignments, you should PACK and make at least two (three would be safer)

dummy assignments (using ASN or PASN) to two different keys (or the same

key shifted and unshifted), then delete the dummy assignments. This will

normally produce an empty assignment register which can be replaced by KAP.

You must make two dummy assignments and then delete them every time before

using KAP. KAP makes only one synthetic assignment per register; this is

wasteful but fast. The three programs BAB, SCF and KAP take up a total of

296 bytes, or just under 43 registers, and do not use any numbered data

registers. On an HP-41C with no memory modules this leaves a total of 21

registers for other programs, data, alarms, and key assignments. This is

sufficient for a few assignments, but not many. KAP uses flag 10 and

leaves it clear at the end.

If you are not interested how KAP works then skip this paragraph and the

next two, and go to the examples. Lines 02 to 06 set flag 10 if the

keycode is positive, and clear it if the keycode is negative (a shifted

-469-



key). Then they obtain the positive keycode and remove any fractional

part. Lines 07 to 10 check if the keycode is larger than 99; if so it

cannot be a valid keycode and the program stops. The test is made twice in

case flag 25 has been set. If you don’t care about preserving the status

of flag 25, use CF 25 instead. Line 11 puts the bytes FO, 58, 58, 58 into

register M. The FO is a key assignment register (KAR) header and the next

three bytes put a nonexistent key assignment in the first half of the KAR.

The rest of the program builds a real key assignment in the second half of

the KAR; although this is wasteful it is much faster than putting two

assignments in one KAR. Lines 12 to 15 append the prefix and then the

postfix to the KAR.

The program must now append a keycode to the KAR. This means that the

keycode RC (row R, column C) must be turned into the different code used in

a KAR. This is given as a decimal number by the formula 16*(C-1)+R. If

the key is shifted then the formula is 16*(C-1)+R+8. The program must

also work out which flag to set in the key assignment flags. The flag

number is given in decimal by 36 - 8*(C-1)-R. Flags for shifted and

unshifted keys are stored in two different registers, so the formula does

not change for a shifted key. If the key is 42, 43 or 44 (shifted or

unshifted) then C must be increased by 1 in all the above formulae because

the ENTER key is treated as two keys. Lines 16 to 22 take the code RC from

register Z and turn it into R and C-1 (unless the keycode is 42, 43 or 44

in which case C is left unchanged). Note that lines 14 to 16 produce a

value in X that is 1 or O for keys 42, 43 and 44. Line 21 then uses DSE X

to skip line 22 for any of these values. For integer values, DSE X acts

like an X<=1? instruction. If line 22 is executed then it turns the RC

(actually 10R+C) in register L into the code 10R+C-1. Line 23 will be

executed unless the value RC was 0 or 1 which would not be a legal keycode.

Lines 23 to 28 put R into Y and the new C divided by 10 into X. Lines 29

to 37 put the KAR code into X and 8*C+R into Y (using the new C). Line 38

appends the KAR code to the ALPHA register. At this stage the new KAR

value is ready in register M. The keycode is not fully checked to see if

it is legal; keycodes with rows 0 or 9 and with columns O or over 5 will

produce unusable assignments or cancel assignments but will not stop the

-470-



program.

Lines 39 to 41 calculate the assignment flag for the selected key. Line 42

puts the number 176 onto the stack for later use. Lines 43 to 47 put the

assignment flags into register M and the KAR into the stack. Lines 48 and

49 put a temporary value into register ¢. This value puts the cold start

constant in the right place and puts register 00 at absolute address 010

(=16 decimal) so that MEMORY LOST cannot occur. A total of 9 bytes could

be saved here and later by the use of a synthetic text string instead of a

number, but this would add extra difficulty to the task of entering the

program. Lines 50 and 51 store the KAR value into absolute register 0CO,

using the 176 entered at line 42 as an indirect address, then lines 52 and

53 restore the original register ¢ value. Lines 54 to 56 replace the last

two bytes of the key flag register with the first two bytes of the former

temporary register ¢. These two bytes are 08, 00 so no crucial flags are

affected and the program can be SSTed; the digits 800 were chosen as the

first three digits at line 48 for this reason. The last two bytes need to

be changed because the last byte of register ¢ normally contains FFF in a

running program and this would clear flag 30 when copied into register d

with a Time module (or CX) present. (Indeed this causes the PPC ROM

programs MK, 1K and +K to suspend assignments made to key -61.) Line 57

recovers the number of the status flag to be set, lines 58 to 61 set this

flag, and lines 62 to 67 replace the altered status flag register while

also restoring the original register d.

KAP can be used to assign any two-byte function to any key except the

toggle keys. It can also be used to assign any ordinary one-byte function

to any key, including the SHIFT key. As a simple example, use KAP to

assign PACK to the shifted SHIFT key. First make two dummy key

assignments. Use ASN to assign + to both ENTER and SHIFT, ENTER. Then use

ASN to cancel these two assignments. Put the prefix 04 (any number from

row 0 of the Byte Table will work, but 4 is the default) into X. Press

ENTER and put in the postfix 10. This is the byte for PACK; see the Byte

Table again. Press ENTER and put in the keycode -31; the shifted SHIFT key

- row 3, column 1, negative for a shifted key. Now execute KAP. Various

-471-



annunciators will turn on as register d is used. When the program

finishes, the stack and the ALPHA register will contain non-normalised

numbers which you can remove with CLA and CLST. You can add these steps to

the program if you like. If you now enter USER mode and press SHIFT

twice, you will get the PACK function. If you keep the SHIFT key pressed

down the second time then you will cancel PACK, and you will cancel SHIFT

too, which is what should happen when you press SHIFT twice. This is a

very useful assignment for synthetic programming because it lets you PACK

by pressing a single key twice, and PACK is used a lot in combination with

the byte grabber.

The program has been written to avoid the difficulties that some synthetic

programs have. It can be the first program in memory and you can SST

through it to see what it does. (In this particular case you can SST

through BAB and SCF because the contents of register P are not used.) You

can stop it at any time by pressing R/S and you can SST through part of it

and press R/S again to restart it. However, you must always let KAP run to

completion if you don’t want to risk MEMORY LOST. You can even call KAP as

a subroutine from another program if that program puts the required numbers

into the stack. KAP is also short and fairly easy to enter into memory;

this is partly due to the fact that it does not check carefully for

incorrect inputs. Any text strings will stop KAP at lines 03 or 05 or

within BAB. The stack will be mixed up but registers ¢ and d will not be

affected. Byte values over 255 will be turned into a number modulo 256 by

BAB. The keycode in register X is only checked to see if it is smaller

than 100.

No other tests are made by KAP. This means that it will overwrite whatever

is in absolute register 0C0. If you have not made a pair of dummy

assignments then this could be a pair of useful assignments, or the first

register of a buffer, or even the .END.. If an assignment has already been

made to a key then KAP will replace that assignment with a new one. So

long as you are careful with KAP it is a very useful program. Some of its

uses will be described in the next section and in the next chapter.

-472-



14.11 Registers a and b - the current address and RTN stack.

The rightmost two bytes of register b contain the absolute address of the

program step being performed. The program step displayed if you are in

PRGM mode is the next complete step following this address. This is called

the current address. When you XEQ a subroutine the next program step is

not performed until the subroutine does a RTN. Until then the current

address is pushed two bytes to the left in register b, and the first

address of the subroutine becomes the current address. When the routine

does a RTN or END then register b is pushed two bytes to the right so that

the address of the XEQ becomes the current address and the program carries

on from the address after that. A GTO replaces the current address with

the address of the label to which it goes. The previous current address is

lost, meaning that a program cannot return to the line after a GTO.

One subroutine can XEQ (or call) another subroutine; this is called nested

calling to distinguish it from the case when one subroutine is called and

returns, then another subroutine is called separately. If you XEQ a

subroutine and that subroutine does another XEQ then the contents of

register b are pushed two more bytes to the left and a second return

address is saved. The first RTN or END will return to this address,

another RTN or END will be needed to bring you back to the original

program. If the second subroutine executes a third subroutine then b is

pushed another two bytes to the left. This make 8 bytes in all so the

leftmost byte can no longer fit in register b. The eighth byte is put at

the right of register a instead. Register a contains six more bytes, so

another 3 subroutine calls can be made, giving a total of 6. If a seventh

XEQ is made then the oldest return is lost from the left-hand end of

register a. Figure 14.5 shows how this scheme fits into the two registers.

-473-



 

    
 

      

byte 6 5 -4 3 - 2 1 - 0

number

3rd second most current register b

rtn. return recent address

(part) return

sixth fifth fourth 3rd

return return return rtn. register a

(part)

byte 6 - 5 4 - 3 2 - 1 0

number

Figure 14.5 Registers a and b

Registers a and b are both pushed two bytes to the left whenever you

perform an XEQ. They are both pushed two bytes to the right whenever a RTN

or END is executed and two null bytes are pushed in at the left of register

a. When you have performed as many returns (RTN or END) as XEQs, then the

first return address contains two nulls; the next RTN or END has nowhere to

return to, so it stops the program. An END also clears the return stack

and sets the program pointer to the top of the program containing the END.

A RTN does not clear the return stack, so if you have put something in

register a and the HP-41 finds a zero return address in b then a RTN will

leave register a alone whereas an END will clear it before stopping the

program.

Details of how addresses are stored in these registers will be given in the

next chapter. For the present let us see what can be done with them. Use

an assignment program (KAP from the previous section, or GASN from

Chapter 11, or some other program) to assign RCL b and STO b to two keys.

The prefix and postfix for RCL b are 144, 124; for STO b they are 145, 124.

If you use KAP, remember to make two dummy key assignments and cancel them

each time before you execute KAP. Now go to line 001 of any program; it

-474-



does not matter which program you are in. Go out of PRGM mode and press

RCL b. Register X now contains the address of line 001. Go back into PRGM

mode and SST a few steps, say to line 010. Go out of PRGM mode, press the

STO b key and go back to PRGM mode. You will see the line number 010; this

has not changed because register e is unaltered, but you will actually be

positioned to line 001 of the program because you have replaced the

previous contents of register b.

The instructions RCL b and STO b let you save an address and then go back

to it at any time. One way of using them is to replace a LBL and GTO.

Look at the two programs below:

A1eLBL "VREGS® A1#LBlL "VRELS®
82 CL¥ g2 a

BielBL 58 B3I RCL b

B4 VIEW IND ¥ A4 VIEW IHE Y

#5 PSE A5 PSE
#r I5C 2 g6 IS Y
a7 AlY 87 AbY
83 GT0 58 88 STO b

89 EHD 24 BYTES #9 EHL 23 BYTES

Both programs display the contents of all your registers until they stop at

a nonexistent register on line 04. The program on the left uses GTO 50 at

line 08 to go back to line 03. The one on the right uses STO b at line 08

to go straight back to line 04. This makes it a little faster, and one

byte shorter, than the program on the left. If the one on the left used a

short-form label instead of LBL 50 then it would become one byte shorter

than the program on the right, and a little faster than before but still

slower than the one on the right. The method on the right is therefore

worth using if you are short of labels in a long program or if you want to

squeeze every last millisecond out of your programs. It also uses no

labels so the flying goose sits motionlessly. This can be used to confuse

other people or yourself!

-475-



A more important use of synthetic access to registers a and b is to

increase the depth to which subroutines can call other subroutines.

Normally a maximum of six returns can be pending, but if you save registers

a and b then you can make another six calls, return from them and restore

the original six returns in registers a and b. Consider the following

example.

A program to integrate a mathematical function FUNC(X) uses a depth of four

subroutines. The fourth level subroutine calls the program FUNC to

calculate the mathematical function. This leaves only one subroutine level

for use in the function calculation. If the function calculation routine

FUNC needs to call more than one subroutine level then it has to be

rewritten to use a set of GTO IND instructions in place of its subroutine

calls. The integration program would look as follows.

01 *LBL "INTEG"

100 LBL 04 Fourth subroutine level

101 RCL IND 10 Obtain the value at which FUNC is to be calculated

102 XEQ "FUNC" FUNC can only use one depth of subroutine call

103 STO IND 11 Store the calculated function value

104 RTN

200 END

The synthetic way would be to save registers a and b before executing FUNC.

Then FUNC would be able to use as many as five subroutine levels itself

without being rewritten. The new integration would look as follows.

-476-



01 *LBL "INTEG"

100 LBL 04 Fourth subroutine level

101 SF 09 Set flag 09 to mark the start of the routine

102 RCL a Recall a and store it in M

103 STOM

104 RCL Db Recall b and store it in N

105 STO N

106 FC?C 09 Do not RTN the first time this step is executed,

107 RTN but clear flag 09 so you will RTN the 2nd time

108 RCL IND 10

109 XEQ "FUNC" Now execute FUNC as before, but with

110 STO IND 11 5 subroutine levels available to it

111 RCLM When FUNC returns, restore the original a

112 STO a

113 RCL N Now restore the original b - this takes you back

114 STO b immediately to line 105, and the RTN there is

executed. You do not need a RTN after STO b

210 END because STO b takes you straight back to line 105.

Registers a and b contain non-normalised numbers so their values must be

stored in status registers such M and N, not in numbered data registers.

Your FUNC program should not disturb M, N, or flag 09.

In this way ten extra lines and one flag allow you to use a maximum of

twelve nested subroutine calls instead of six. The PPC ROM provides two

subroutines to extend the subroutine stack even further.

Register a is not used at all if subroutines are called to a depth of less

than 3, and some people are tempted to use it as an extra storage register.

This temptation should be avoided because a later change to the program can

use more levels of subroutines or may shift the contents of register a to

the right or to the left. A few extra returns might even cause part of the

value put into register a to be used as a return address.

-477-



On the other hand register a can be used to shift a register two bytes to

the right or left. You would normally do this by using the ALPHA register,

but if that is required for something else then use the subroutines SL2 and

SR2 to shift the contents of X left or right by two bytes. In each case

the program uses XEQ and RTN to shift the value after it has been put in

register a. SL2 always restores the original value of a and leave b

unchanged. SR2 restores register a unchanged unless it is executed with

five returns already pending: in that case it loses the first (earliest

XEQ) return. SR2 pushes two null bytes onto the left of the original value

in X. SL2 pushes two random bytes from register b onto the right of the

original value in X. These will only be nulls if SL2 is executed as a

first level subroutine.

01 *LBL "SL2" 01 *LBL "SR2"

02 X<>a 02 XEQ 01

03 XEQ 01 03 RCL a

04 STO a 04 X<>Y

05 RDN 05 XEQ 01

06 GTO 02 06 RDN

07 LBL 01 07 GTO 02

08 RCL a 08 LBL 01

09 X<>Y 09 X<>a

10 LBL 02 10 LBL 02

11 END 11 END

25 BYTES 26 BYTES

These two routines are entirely self-contained and do not change any of the

registers Y, Z, T, L, M, N, O, P. The only problem will occur if a timer

alarm interrupts them; this affects many SP programs and a way round it was

described at the end of Section 9.4.

This brings us to the end of a long chapter. Have a rest or do some of the

exercises before going on to the next one.

-478-



Exercises

Exercise 14.A Try the second half of exercise 4.D again, but use SP now.

Hint: the routine will be easier to enter if you make key assignments of

the functions STO O, RCL O, STO N and RCL N.

Exercise 14.B  Write a program which sets flag 45, then executes a number

entry step (such as 1.2345) and stops. Press a number key and you will

find that you are adding digits to the number which the program put into X.

This is one of the flag operations described in Wickes’ book; it simplifies

the entry of numbers whose first digits are known.

Exercise 14.C Assign STO b to a key, then execute CLA, 192, XEQ "BAB",

RCL M, STO b. Turn on PRGM mode and you will be in the key assignment

area (as address 192 is at the bottom of the KAR area) and will be able to

study the KARs. (This assumes you have made at least one key assignment.)

You can examine or alter assignments now, but read Chapter 15 before being

too adventurous. An insertion where there is no space gives MEMORY LOST.

STO b can be used to position you anywhere in memory.

-479-





CHAPTER 15 - USING SYNTHETIC PROGRAMMING

15.1 When should Synthetic Programming be used?

The examples of Synthetic Programming in the previous chapter let you do

things that would otherwise be difficult or impossible. Are they worth the

extra effort involved in Synthetic Programming? Can you do without extra

tones, additional characters or more than six nested subroutines? When

should you go to the trouble of making a synthetic key assignment or

writing a program containing synthetic instructions?

Similar questions can be asked about ordinary calculator functions.

Addition is necessary but the COS function is not really necessary on a

calculator with the functions SIN and SQRT. Nevertheless COS makes life

easier and is therefore used on scientific calculators and computers. Less

frequently used functions such as the Gamma function are not provided on

the HP-41 but can be added in the form of programs. If a problem requires

a Gamma function you write a program to provide it, or else you find an

alternative solution which does not use it.

Synthetic instructions are rather like the Gamma function; either you

create them or you find a way to do without them. If you want an HP-41

program to display a result with quotes around it then you use Synthetic

Programming or you make do without the quotes (or you buy an extra module

to provide quotes). If an HP-41 program is to be operated by touch alone

then you need more than ten tones to tell which key has been pushed -

either you use synthetic tones or you make do with combinations of tones.

If you want a single key assignment that replaces half a dozen separate

key-pushes then either you make a synthetic assignment, or you write a

special program, or you carry on pushing six keys each time. It is up to

you in each case to balance the extra trouble of creating the required

synthetic instructions against the value of having those functions. Of

course if you have a ZENROM then this is no extra trouble, and in any case

you will speed up with practice and use SP as quickly as normal functions.

-481-



In most cases Synthetic Programming extends the features of the HP-41;

additional stack registers, better control of the Auto Start Module, and

faster execution of programs. That is why SP is described in this book; it

lets you "Extend your HP-41". On the other hand a few synthetic

instructions let you do things that are otherwise completely impossible on

an ordinary HP-41. In particular they let you create additional synthetic

instructions and they allow you to study how the HP-41 works. This chapter

will show how additional synthetic instructions can be made, it will

explain how some HP-41 operations are carried out, and it will help you

decide when SP is worth using in your work.

15.2 More key assignments.

A selection of synthetic key assignments has already been described in

Chapters 10 and 14, but it is worth going through the whole Byte Table

systematically. If you want to test any of the assignments described here

you can now make them using the programs described earlier; of course you

can use any other assignment programs. The bytes will be given here in

hexadecimal, remember to use the Byte Table to convert them into decimal

values for the assignment program. All assignments take up two bytes, but

if the first byte is from row 0 of the Byte Table then it is ignored and

only the second byte is used. These are called one-byte assignments. The

HP-41 functions ASN and PASN always use 04 as the dummy first byte, but it

makes no difference which byte is used; the HP-41 assumes a one-byte

assignment if the leftmost nybble is a zero. Let us examine the one-byte

assignments first; the best way to study an assignment is to press the key

in PRGM mode where the result will be recorded for further study.

Assignments from row 0 were described in Section 8.5. Five of these are

synthetic assignments, the most useful is byte OC. This lets you reassign

the toggle key functions in case a toggle key gets damaged. The function

depends on which keyboard row is used; assignments to rows 1 or 5 produce

ALPHA, rows 2 or 6 give PRGM, the others provide USER. The ALPHA

assignment only works into ALPHA mode, use the ON key to get out of ALPHA

-482-



mode, or set the program line to an AOFF step and press SST. The USER

assignment also works in only one direction but you can use SF 27 to set

USER mode. An amusing anomaly; if you assign byte 0C to a shifted key in

rows 3, 4, 7, or 8 and press SHIFT followed by the key then USER mode will

be cancelled but the SHIFT mode will not be cancelled.

Byte assignments from row 1 are sufficiently interesting and complicated

that they are described separately in Section 15.6. Assignments from rows

2 and 3 result in some very interesting function previews and several of

them prompt for a parameter. When the key is released, and a parameter is

provided if necessary, nearly all of these assignments turn into the

expected RCL and STO functions. A few assignments do behave unusually.

Byte 30 displays as ASCI; this is not an ASCII character function but

merely the name of the SCI function with an extra A. If you fill in the

prompt with an IND or Alpha parameter it turns into an XEQ instruction.

The four bytes 20, 33, 37 and 3C are all immediate execution functions

(like BST and SST), their exact action depends on the modules plugged into

ports 2 and 4, they may have no effect at all or they may set PRIVATE mode

(do a CAT 1 to get out of this). I gave a more detailed description of

byte 33 in PPCCJ V1IN6PI13b.

Rows 4 to 9 produce ordinary non-synthetic one-byte assignments. In row A,

bytes A8 to AD behave normally. AE acts as a GTO IND 00. AF prompts for

an input but does nothing in run mode, because AF is a spare do-nothing

byte. In PRGM mode an input of nn produces GTO IND nn and an input of IND

nn produces XEQ IND nn (as if byte AF had taken on the role of byte AE).

The bytes A0 to A7 provide interesting and, in some cases, very useful

results. For example byte AQ is the first byte of all the two-byte XROM

functions from XROM 00,00 to XROM 03,63; the second byte decides which

XROM function is selected (see Section 8.5 for more details). If you

assign 04,A0 to a key you get a one-byte function which produces the prefix

A0; it displays as f__ and accepts a postfix. The parameters 00 to 99

produce the functions XROM 00,00 to XROM 01,35, and the postfixes IND 00 to

IND 99 produce the functions XROM 02,00 to XROM 03,35. You can also use

the postfixes IND T to IND L to obtain XROM 03,48 to XROM 03,52.

-483-



Consider how useful this assignment is. XROM 01 produces the Mathematics

Module functions, XROM 02 produces the Statistics Module functions, and

XROM 03 produces the Surveying Module functions. The one assignment 04,A0

allows you to execute all of these except the ten Mathematics Module

functions 01,36 to 01,45. (If you have a ZENROM then you can produce

postfixes greater than 99 or IND 99, so you can create all the Mathematics

Module functions.) Even if you do not have one of these modules plugged in

you can put its functions into a program by using the key. XROM 00

functions are less useful unless someone takes up the idea of using XROM

00,nn instructions in a program to provide an argument nn for a preceding

XROM function (see Section 8.5). XROM 00,00 gives NONEXISTENT on

an HP-41CX, otherwise it produces an immediate crash unless you have a Time

Module plugged in. You can work out the correspondence between programs in

a module and XROM numbers by counting through a CAT 2 list of functions

(the module name is XROM nn,00), or you can get a Synthetic Quick Reference

Guide and use the lists in it.

The assignment 04,A1 works in the same way. It displays as “__ and accepts

the parameters 00 to 99, T, Z, Y, X and L, as well as the corresponding

indirect parameters. This gives you access to XROM 04 (the whole of the

Financial Decisions Module), XROM 05 (most of the Standard Applications, or

all of ZENROM or most of the lower 4k of PANAME), XROM 06 (all of Circuit

Analysis or PANAME upper 4k) and XROM 07 (all of Structural Analysis A).

If you have a ZENROM then you can create all the XROM functions, otherwise

XROM 05,36 to XROM 05,47 and XROM 05,32 to XROM 05,63 will be

unavailable as well as the same XROM 07 numbers. Never use ,“65 or 66

if you have a ZENROM - can you see why not? The assignments of A2 to A6

are unhelpful; either they give no prompt or they only take an Alpha

parameter and then ignore it. Incidentally, if you have a Standard

Application Module (XROM 05) present, synthetic STO key assignments will

preview as module functions rather than the usual XROM 05,xx. However the

correct synthetic STO will still be executed.

The most useful and famous of these assignments is A7. This was discovered

-484-



by Robert W. Edelen just six months after the first HP-41Cs became

available, and while Synthetic Programming was still in its infancy. The

assignment produces the amazing display eGOBEEP__ and accepts the

parameters 00 to 99. These cover all the printer functions and all the

other HP-IL module functions too. If you have a list of function numbers

then this single key assignment lets you execute all 64 IL and printer

functions, or include them in a program, without spelling the names. (You

can also create the module "titles" such as "-PRINTER 2E".) eGOBEEP lets

you write programs for a printer even if you do not have one attached to

your HP-41, without spelling out the function names. The "non-

programmable" functions PRP and LIST can be included in a program, but this

is not much use; a programmable PRP will be described in Chapter 16. Out

of PRGM mode you can GTO "name" (or use GTO."name" in PRGM mode) then

press eGOBEEP 77 and the program called "name" will be printed.

If you provide an Alpha parameter for eGOBEEP it produces a label. If you

have a ZENROM then you can provide eGOBEEP with parameters from 128 to 164

which will give you all the Card Reader functions as well. (This was

described in my article in DATAFILE V3 N6 ppl6-17.) A list of eGOBEEP

results is given in the Synthetic Quick Reference Guide. This makes the

important point that eGOBEEP 003 wipes out HP-IL mass media - never press

003 (nor the SQRT button) after eGOBEEP.

The bytes in row B are rather like the bytes in rows 2 and 3. They produce

strange displays and some of them prompt for parameters, but they mostly

turn into the default GTO instructions. Byte B0 corresponds to a spare

byte; it prompts for an Alpha input, then turns into RCL 00. Byte Bl

becomes STO 00. Byte B2 prompts with a flying goose which is pretty, but

not much use in PRGM mode. Byte BA becomes XEQ IND if the prompt is filled

with IND nn or IND ST n. Bytes BB and BD can take Alpha parameters which

turn into labels. Some of these bytes behave like compiled GTOs if they

are pressed in run mode, and they can take you past the .END. into the free

area, so be careful. In particular, byte B2 is often used as a selectable

"byte jumper" in run mode. If you use the value 16b+r to fill in the

prompt, you will jump r registers and b bytes forward in program memory.

-485-



Use IND to jump backwards. To get back into the program area, execute

CAT 1.

Row C mostly produces ENDs, which behave like RTN when pressed in run mode.

Byte CO is the normal END assignment. The others produce some more odd

displays. Byte C4 can take Alpha prompts and become a label. Byte CB

becomes GTO. if . is pressed, GTO IND if SHIFT if pressed, and GTO "Alpha"

if Alpha is pressed. Byte CD can be used to produce labels with non-

keyable characters, it will be described in Section 15.6. Bytes CE and CF

are ordinary non-synthetic assignments.

Row D mostly produces GTO 00. Byte DO is the normal GTO assignment, the

others again produce odd displays. Bytes D1 and DB can take stack register

names as parameters and produce instructions such as GTO X which will go to

the synthetic LBL X (bytes D5 and DE do the same given an IND ST

parameter). In run mode bytes D1, DB and DE take IND nn parameters and go

to the corresponding synthetic indirect labels if nn is greater than 14.

For example you can assign 04,DB (decimal 004,219) to a key, press that key

in run mode, and fill the prompt with IND 83. This will take you to a

synthetic LBL IND 83, not to the label whose number is in register 83. You

can synthetically create LBL IND 83 by using the bytes CF,D3. If you are

writing a long program and editing it a lot then it can be useful to put a

few LBL INDs in at important places. You can then GTO these labels in run

mode to get to these places instead of having to check line numbers and

using the GTO. instruction. Since these labels cannot be reached by any

instruction in a running program you can delete them once the program is

working, without danger of removing an important label. The discovery of

these synthetic GTOs was first described by G. McCurdy in PPCCJ VON7P9-10.

Another use of the assignments DI, D5, DB and DE is described in the same

article. Filling in the prompt to any of these with IND 00 to IND 14

produces three-byte GTO 00 to GTO 14 instructions. Normally GTO 00 to GTO

14 are two-byte long instructions from row B. These save one byte but can

only store a compiled distance of 112 bytes or less within a program.

Using three-byte GTOs with the labels 00 to 14 lets you save a byte because

-486-



these are short-form labels, yet you can have compiled GTOs which will go

directly to these labels from any distance. In other words you can use a

long-form GTO with a short-form label.

Row E assignments resemble row D; EO is the normal XEQ assignment and most

of the others produce XEQ 00. E2, E4 and EF prompt for a number and

produce the corresponding XEQ. In run mode they will XEQ the synthetic

indirect labels just as bytes DI, DB and DE will GTO these labels. Bytes

ES5, E7, E9 and EB prompt for a three-digit label number which can be turned

into four digits if you press the EEX key. Filling in the prompt will

produce a number modulo 128, so that you can make any label with a postfix

in the first half of the Byte Table. You may consider this a useful device

for doing arithmetic modulo 128; fill the prompt with 1283 and you will see

XEQ 03, which tells you that the remainder of 1283 divided by 128 is 3.

Oddly enough most of the bytes from row F produce GTO 00 just like the

bytes from row D. Bytes F8, F9, FC, FE and FF behave differently. They

prompt for a two-digit number; if you provide a number below 15 they turn

into the corresponding short-form GTO . You can also fill in the prompt

with a number over 14, a stack register name, an indirect number or an

indirect stack register. In all these cases a text string is produced,

with a null character first, and a second character corresponding to the

parameter you have given. The total length of the character string is

given by the second nybble of the assignment. For example assign 004,248

to a key, press the key in PRGM mode and give the parameter 38. You will

see a string eight characters long because 8 is the second nybble of F8

(decimal 248). The second character of this string will be & which is

character number 38. All five of these assignments act as Byte Grabbers,

but they are not as clean as the F7 Byte Grabber because they grab more

than one byte. FF grabs nine bytes! Be careful not to grab the .END. with

any of these assignments.

You can use these assignments instead of BAB or the Extended Functions to

produce non-keyable characters. If you went through the example above you

will have produced a program character string containing an ampersand. SST

-487-



this string in run mode to put the character into the Alpha register.

There will now be seven characters after & How can the & be isolated?

Normally you could press SHIFT K (APPEND) and declete the unwanted

characters, but this does not work if there are any nulls in ALPHA.

An alternative is to use the synthetic key assignment ASTO M. Make this

assignment (154,117) and press the key in run mode. Go into ALPHA mode and

see that the & has moved one place to the right. What has happened? The

first six characters of ALPHA have been put at the right of M, with a text

identifier (10 hexadecimal) in front of them. This has moved everything

left one byte. Go out of ALPHA mode and press the key five more times.

The & is at the right, preceded by six hexadecimal 10 bytes which display

as boxed stars. Execute ASHF to delete these six rightmost characters and

you have & on its own in ALPHA. You can ASTO it in a register for later

use. This use of ASTO M to shift the Alpha register to the right by one

character at a time was described by W. Cheeseman in PPCCJ V9N4P13. A

list of one-byte key assignments was given in PPCCJ VI9N4P67-68 by

M. Katz. You will notice that I have made a lot of references to user club

journals on the last few pages. User clubs are an ideal forum for the

study of subjects such as synthetic key assignments; the journals allow

people to exchange discoveries and suggest uses for them.

Now let us turn to two-byte assignments and go through the Byte Table

again, looking at combinations of prefixes and postfixes. Prefixes from

row 0 are ignored and provide the one-byte assignments already discussed.

Prefixes from all other rows produce two-byte assignments which display as

XROM mm,nn or as names of XROM functions. An assignment displays as the

name of a function on a plugged-in device if the first nybble is not a zero

and the remaining three nybbles correspond to a function on a plugged-in

device. Take the Time Module function TIME as an example: its hexadecimal

code is A6,9C. The synthetic assignments 96,9C (ISG IND 28) and D6,9C (GTO

28) would also be displayed as TIME if they were pressed on an HP-41 with a

Time Module. If the function displayed prompts for a parameter then any

corresponding two-byte assignment will also prompt for a parameter, but

will ignore it. Otherwise no prompts are produced.

-488-



Two-byte assignments with a prefix from rows 1 to 8 act as if only the

prefix existed. They ignore the second byte, do not prompt, and execute

the first byte or store it in a program, ignoring the second byte entirely.

Two-byte assignments from row 1 will be mentioned again in Section 15.6.

They are the Q-loaders.

Assignments with a prefix from row 9 provide genuine two-byte functions as

was described in the previous chapter. The functions of most of these

assignments are obvious; assigning ST/ IND 17 to a key can save you four

keystrokes and is worth doing if you use this particular instruction often.

Assignments affecting the status registers, especially b, ¢ or d, can be

dangerous; they should be made and used with care.

ASTO and ARCL have many uses when combined with the status registers; they

let you put synthetic text strings into ALPHA then transfer them directly

to status registers. For example ASTO d lets you set your favourite

display format, angle mode, and time display mode all at once. ARCL and

ASTO to the ALPHA registers give you additional control of ALPHA and byte

shifting, as was shown above using ASTO M. To shift ALPHA left by n bytes

store the number n-2 in register qq and use PI, FIX IND qq, ARCL X. This

lets you calculate n in a program instead of using an Append instruction

with a predetermined number of bytes. FIX n, ARCL M can also be used to

shift the ALPHA register if you know what the contents of M are.

Synthetic TONEs provide 16 frequencies and a range of tone lengths from

.025 to 4.8 seconds. It is less obvious that synthetic FIX, SCI and ENG

functions can be useful. FIX 10 lets you see the whole 10-digit mantissa

of numbers greater than 10110, unfortunately exponents that are 1, 2, 3 or

4 less than an exact multiple of 14 may display strange characters at the

right. A better way to show all the digits is to use FIX 9, ARCL X or to

use the program APX from the next chapter. If your favourite display mode

is FIX n then try assigning SCI 112+n to a key and pressing that key four

times in USER and run mode. You will cycle through the possible angle

modes in the following combinations:

-489-



Display Angle

mode mode

First: ENG n+1 RAD

Second: FIX n GRAD

Third: FIX n RAD

Fourth: FIX n DEG

This lets you cycle through the three possible angular modes while keeping

your preferred FIX n display mode. For a more complete explanation of the

behaviour of synthetic display setting instructions, see PPC CJ VONIP10d by

Randy Cooper and V1IN8P27-28 by Mark Gessner.

Two-byte assignments from the first half of row A are the real XROM

functions. The next six can provide synthetic flag instructions. Only

indirect synthetic commands are useful; you can create the instructions

SF X and FC? I, but these do nothing as there are only 56 flags. Byte AE

followed by a postfix provides a GTO IND or XEQ IND assignment. Byte AF

followed by the same byte when pressed in PRGM mode produces an instruction

that looks like the AE instruction but does nothing.

Byte B0 displays as GTO 15 and treats the next byte as its postfix, but it

actually does nothing since it too is a "spare" byte. The remaining bytes

from row B act as the two-byte GTOs with the second byte providing a

compiled jump distance, unless it is a zero. By selecting the second byte

and pressing the assigned key in run mode you can jump forward or back in

program memory by any distance up to 112 bytes. The structure of the

second byte will be described in Section 15.4. Byte Bl is anomalous; if it

is followed by a postfix smaller than 16 (decimal) then in PRGM mode it

becomes a one-byte STO nn with nn given by the postfix. In run mode it

acts as a compiled GTO.

Bytes CO to CC produce an END in PRGM mode. The second byte is changed

into the byte required by an END in the position given. The third byte is

always OF indicating an unpacked END in a program which should be

-490-



decompiled. Byte CD produces a global label and will be described in

Section 15.6.

The two-byte assignment C7 85, discovered by Roger Hill, has a special use.

When a card reader is present it previews as VER, which is non-

programmable. The assignment therefore performs a RTN as if you had pressed

it in run mode, even if you are in PRGM mode. This is a handy way to

GTO.000 in PRGM mode.

Byte CF makes local labels and byte CE is a displaced person - it would

have been more at home in rows 9 or A. Byte CE can be followed by any

postfix to give X<> any register or any IND register. The postfix is

preceded by a space so you can see that X<> Y is not the same as X<>Y.

Byte CF can be followed by any byte from the first half of the Byte Table

to produce the numeric labels 00 to 101 and the local labels A to J, T to

append, and a to e. If the postfix byte is 00 to 14 then the corresponding

one-byte label is put into a program. Postfixes from the second half of

the Byte Table produce synthetic labels such as LBL IND 01 or LBL IND d.

The postfix FF behaves differently; pressing a key with CF,FF assigned to

it in PRGM mode puts a completely null register into the program if the

program pointer is at an END, otherwise it executes a SST. In run mode all

these assignments act like a LBL, so they do nothing.

Any byte from row D followed by any postfix produces a GTO instruction. In

PRGM mode the postfix gives the GTO label, for example D0,10 produces GTO

16. Assignments with postfixes 00 to OE turn into two-byte GTOs, all other

postfixes except FF give three-byte GTOs, with a null byte between the Dn

and the postfix. The FF postfix turns into a two-byte B0 instruction which

looks like GTO 15 but actually does nothing. Other postfixes from the

second half of the Byte Table do not produce GTO IND instructions, but

rather direct GTO instructions. The first bit of the second byte indicates

the GTO direction; this will be explained in Section 15.4. If pressed in

run mode, the assignment will search for a label; this will be a LBL IND nn

if the postfix is greater than 7F.

-491-



There are no short-form XEQ instructions so all Em,nn assignments turn into

3-byte XEQs in PRGM mode. The first byte is Em, the second is 00, the

third is nn. In PRGM mode the first bit of nn is again treated as a jump

direction and the remaining bits give a label number from 00 to 127. In

run mode, the XEQ will execute a LBL IND if the postfix is from the second

half of the Byte Table.

Fm,nn assignments behave like Dm,nn, they put the three bytes Fm, 00, nn

into a program. If nn is 00 to OE they produce two-byte GTOs, and if nn is

FF they produce the do-nothing GTO 15. F7,3F provides the standard Byte

Grabber but Fn assignments can be used for other purposes, particularly the

study of byte patterns in the HP-41. This will be described next.

15.3 Byte Grabbers, Byte Jumpers and program analysis.

The F7 Byte Grabber works by forcing the HP-41 to make a space seven bytes

long, but actually taking eight bytes. Since any Fm,nn assignment turns

into a three-byte instruction in program memory, it will open up seven

bytes unless three or more empty bytes are already available. If an F7

Grabber is used and one null is available it will grab that null. A set of

bytes such as:

COS, null, 174

bytes: 5A, 00, 11,17,14

will become the following if you press the Byte Grabber in PRGM mode at the

position of the COS:

COS, TTTTTTT, 174

bytes: 5A, F7,00,3F,00,00,00,00,00, 11,17,14

If there are three or more bytes already empty then the Grabber will fill

them and can grab more than one following byte. The set of bytes

COS, null, null, null, null, null, null, 174

5A, 00, 00, 00, 00, 00, 00, 11,17,14

would become

COS, TTYTTTERR, 4

5A, F7,00,3F,00,00,00,11,17, 14

-492-



This may not be what you want and is the reason why you should normally

PACK before using the Byte Grabber.

You may need to grab a byte without moving everything that lies below the

byte. If you use the Byte Grabber below the .END. then everything

including register ¢ will be moved down by one register and you will get

MEMORY LOST. Use the F3 Byte Grabber in these cases; make sure there are

exactly three nulls before the byte to be grabbed, then press a key which

has F3,nn assigned to it. This will fill the three nulls and grab the next

byte without moving anything. If there are more than three nulls ahead of

the byte to grab then fill in the unnecessary nulls with bytes that you can

delete later. The method can be taken further; use an F4 Grabber or an F8§

Grabber to remove two bytes for instance.

Using FO,nn or Fl,nn lets you put the byte nn directly into a program

(unless nn is 00 to OE or is FF). To create synthetic X<> instructions you

could assign F1,CE to a key. Then you would create X<>d as follows:

1) Put +, +, +, AVIEW into a program and PACK

2) BST once and delete the three pluses, using the backarrow key

3) Press the F1,CE key

4) Backarrow the text string and SST to see X<> d.

The Fm assignments behave quite differently when the keys are pressed in

run mode instead of PRGM mode. The F nybble is recognised as the beginning

of a text string, and the HP-41 looks at the second nybble of the previous

instruction in program memory to see how long the text string is. If a

running program has just stopped at a RTN, or if you have just single-

stepped past a RTN, then the previous instruction is RTN, or byte 85.

Should you press an Fm,nn key next, the HP-41 quite sensibly assumes you

have just executed a text instruction, and equally sensibly assumes that

the text string length will be given by the second nybble of the

instruction it has just gone past. The HP-41 therefore checks the second

nybble of the latest program instruction (a 5 in the case of RTN) and

-493-



copies that many bytes from the program into the ALPHA register, then puts

the program pointer at the next byte. Try the following:

1) Put the steps RTN, +, -, *, GTO 93 into a program and PACK.

2) Leave the program positioned at the + and go out of PRGM mode.

3) Press the Byte Grabber key (obviously you must be in USER mode).

4) Press ALPHA and sece the text string @AB® . You have copied the next

five program bytes into the ALPHA register.

5) Press PRGM and see ACOS. You have stepped over five bytes and the

sixth one, which was the 93 of GTO 93, now appears on its own as ACOS.

This operation is called Byte Jumping. It was discovered and analyzed by

Bill Wickes in the relatively early days of synthetic programming. You

have jumped over five bytes into the middle of an instruction and you can

edit that instruction by inserting or deleting bytes. Byte Jumping is not

quite as easy as Byte Grabbing because it requires a preceding byte to

determine the jump length, but it was discovered before Byte Grabbing and

made the creation of synthetic instructions much easier than it had been

before.

Step 4 above has shown you that Byte Jumping also copies program bytes

directly into Alpha where you can study them without altering the original

bytes. The last character of the text string is a null, showing that the

middle byte of the uncompiled GTO 93 is a null. In fact the middle byte of

any uncompiled three-byte GTO is a null. This is why synthetic assignments

of Dm,nn produce the bytes Dm,00,nn in a program. Actually all two-byte

assignments behave in this way if the leftmost two bits are 11, unless the

assignment can be turned into a two-byte form.

The Byte Jumper can be used to analyse any collection of bytes in an HP-41.

Just position the program pointer before the bytes you wish to study, and

immediately after a byte whose second nybble is large enough to let you

copy all you want. Press the Byte Jumper in run mode and analyse the

contents of the Alpha register. If the Fm,nn byte has the same values of

m,nn as an XROM function Am,nn plugged into your HP-41, and if this is a

-494-



non-programmable function then you can even use the Byte Jumper in PRGM

mode. With a Card Reader plugged in you have the non-programmable function

VER (A7,85). The text assignment F7,85 will therefore execute as a Byte

Jumper even in PRGM mode. To analyse data or the status registers you can

use STO b to move the program pointer where you wish, then Byte Jump to

copy into the ALPHA register. You can even analyse programs in ROM modules

this way. If the first byte you copy is 7F it will not be copied but the

bytes after it will be appended to the ALPHA register, since 7F is the

Append byte.

Once you have copied a set of bytes to the ALPHA register you need to

analyse them. The program RAB (Read a Byte) will let you do this. It

takes a string of bytes from ALPHA and converts them into decimal numbers

one at a time; in effect it does the opposite to BAB. An Fm Byte Jumper

cannot copy more than 15 bytes into ALPHA, so RAB starts at the fifteenth

byte from the right end of ALPHA and ignores any bytes to the left of that.

When you XEQ "RAB" it first displays the byte number it is examining. This

is number 15 to begin with. The number is shifted across the display from

left to right, then the fifteenth byte value is displayed and the program

stops to let you write down this number. If byte 15 is a zero then RAB

assumes it is a leading null and goes on to check byte 14 without stopping.

All leading nulls are treated in this way until a non-null byte is found or

all 15 bytes have been checked.

At the moment when RAB stops, the leftmost byte has been removed from the

ALPHA register, all the other bytes have been shifted one place to the

left, and the byte value is in register X. Register Y contains the

original value of X, and register T contains the position of the byte in

the ALPHA register, counting from the right and treating the rightmost

character as number 1. If you want to carry on analysing the contents of

Alpha, press R/S and the number of the next byte will be scrolled across

the display, then the byte value will be displayed. You can repeat this

until byte 1 has been displayed, then press R/S to see the display "DONE";

at this stage Alpha will be cleared and the original X will be in X again.

-495-



Alternatively you can quit whenever the program has stopped and is

displaying a byte value. The display is left set in FIX 0, and flag 09 is

cleared unless the string was all nulls.

The program will work if there are more than 15 bytes in the ALPHA

register, but it will ignore characters to the left of the fifteenth one.

Just as BAB is similar to the Extended function XTOA, so RAB is similar to

ATOX; RAB is much slower but it allows for null bytes within a text string

whereas ATOX ignores them.

A1#LBL “RER" i1 ¥y d 21 GT0 @7 11 %287
87 15 17 39,831 22 RDN 32 CF 89
B3 RIM 13 ENTER? 23 RIM 33 FC7 89
a4 FIy @ 14 CLY 24 ¥o 34 STOP
B3 SF @9 15 SIGNH 25 ¥4y L 35 R

RE4LEL @1 154LBL A7 2 . 3 DSET
87 YIEW T 17 F5? IND ¥ 27 %3 1 37 470 81
ag Rt 18 5T+ L 28 RIN 3§ *DONE"
B3 53 1 19 5T+ ¥ 29 *p-* 39 AVIEW
1a ¥E0 *SL2° 2% D5 ¥ 18 CLD 4@ CLA

41 END
2 BYTES

Lines 02 to 05 set up the byte counter, set flag 09 to mark the start of

the program and set FIX 0 to display bytes as integers. The main loop

starting at LBL 0l analyses one byte at a time. The byte number is shown

and exchanged with register O which contains the byte to analyse. This

byte is now at the right end of register X and at line 10 the routine SL2

(see Section 14.11) is used to shift this two bytes to the left; SL2 avoids

the need to append bytes to the Alpha register. The byte to analyse is now

in flag positions 32 to 39, where it cannot be affected by problems with

flags 53 or 30. The loop counter 39.031 is put into register Y by lines 12

and 13. Lines 14 and 15 store a zero in L and a 1 in X (this is much

faster than 1, STO L, RDN, 0). The loop at LBL 02 adds X to register L if

the corresponding flag is set, then it doubles X without altering L. This

lets you add 1 for the lowest bit, 2 for the next bit, 4 for the next, and

so on up to 128.

-496-



The use of SL2 at line 10 produces a flag register with flag 50 clear

unless RAB is called from a program that is itself called from a program in

RAM. When this flag set is stored in d at line 11 the HP-41 finds that

flag 50, the message flag is clear. This normally means that there is no

message in the display, only a goose, so the program shifts the display one

place to the right each time it comes across LBL 02. In fact flag 50 has

been cleared synthetically, and there is a message in the display, so this

message (the byte number) steps across the display. This helps to

distinguish it from the byte value which is displayed later.

When the loop finishes, lines 22 to 28 restore register d, put the byte

number back in register T, put the byte value in register X and the

original X value in register Y. Line 26 is a decimal point which puts a

zero in register X but is faster than a zero. This is exchanged with

register O to clear O and recover the byte number. Line 24 appends a minus

to Alpha, shifting the next character to analyse into register O. The byte

value in X is ready to be viewed, but if it is a zero and flag 09 is set

then it is a leading null and need not be displayed, so line 34 is skipped.

If the value is not a null then flag 09 is cleared at line 32 to show that

any later zero bytes are not leading nulls. Line 30 clears the display so

that the byte value will be seen if the program stops at line 34.

If the user pushes R/S after the program has stopped then line 35 recovers

the original value of X. Lines 36 and 37 continue the main loop if

necessary. If the value in T is zero then all the bytes have been

analysed, so the program displays a message and stops.

As is the case with the other synthetic programs, RAB does not use any

numbered data registers. If you want to analyse all 24 characters in Alpha

then you will have to replace lines 09 and 27 with X<>P. The leftmost

character byte is already in the third position in register P so XEQ "SL2"

will be unnecessary, but the byte count at line 02 has to be increased to

24. The numeric entry at line 12 alters register d, so you will have to

replace it with a RCL nn, and put the following three steps after line Ol:

39.031, STO nn, RDN

-497-



RAB is not as sophisticated as some other byte analysis programs but it

provides several examples of synthetic programming techniques, and can be

changed to analyse all 24 characters as shown above. Try using it by

putting a text string "ABCD" in Alpha and executing RAB. Bytes 15 to 5 are

nulls, then byte 4 will be displayed as the number 65. If you press R/S

you will see 66, then 67, then 68 and finally DONE.

15.4 Addresses and multi-byte instructions.

When Hewlett-Packard announced the HP-41 they provided PPC with three

articles about the HP-41 internal operations. These were printed in PPCCJ

(V6N4P11, V6N5P20, V6N6P19) and described the Byte Table, the structure of

multi-byte instructions, and the layout of memory and status registers.

With the aid of techniques such as Byte Jumpers and byte analysis programs,

further details were studied. An understanding of program addresses and of

multi-byte instructions that use these addresses allows synthetic

programmers to move around HP-41 memory without the normal limitations.

Chapter 8 described the division of memory into registers and bytes;

addresses are stored as byte and register numbers. The status register b

holds the address of the last byte of the last non-null program step before

the next one to be executed (in run mode) or displayed (in PRGM mode). The

address is contained in the rightmost four nybbles of b as a byte number n

(numbered from 0 to 6 as in Figure 14.1) followed by an absolute register

number rrr.

The structure of this address in nybbles is: nrrr

If this is split up into bits then a RAM address becomes

Onnn 000r rrrr rrrr

The three bits nnn are sufficient to give any byte number from 0 to 6, and

the nine bits marked r can describe any RAM register up to 1FF, which is

-498-



the highest address in main memory. One exception: with SIZE 000, at line

01 of the first program in CAT 1, register b contains the address 0200

(hexadecimal).

When a program is running, the length of each instruction is checked while

the instruction is being executed and this length is subtracted from the

address in register b. This way register b automatically points to the

next instruction. Any GTO or XEQ must provide the information to change

register b so that it points to the target label, not the next instruction.

We shall soon see how this is done.

When a subroutine is called by an XEQ then the current RAM address (the

address of the last byte of the XEQ instruction) is pushed two bytes to the

left and is rearranged as below

0000 nnnr rrrr rrrr

This means that the first nybble of a RAM return address is always a zero.

ROM addresses are stored in a different form:

pppp bbbb bbbb bbbb

The first four bits give the ROM page. ROM page numbers were explained in

Figure 8.6; the HP-41 system resides in pages 0, 1, 2, and system

extensions are in pages 3 to 7. Pages 8 to F address ordinary plug-in

modules. The remaining twelve bits of the ROM address give a byte number

between 000 and FFF within the page. Programs in ROM run from lower bytes

to higher bytes so the byte number is incremented as a program executes.

When a subroutine is called by a ROM, the return ROM address is pushed to

the left without any change.

On execution of a RTN or END the HP-41 checks the first return address. If

this is all zeroes then the program stops. If the first nybble is a zero

then the return could only be to page 0 of ROM, or to a RAM address. Since

-499-



page 0 1is part of the operating system it never calls subroutines,

therefore a zero means the return has to be to RAM and the address is

rearranged before a return is made to the RAM program. If the first nybble

is not zero then the return has to be to a ROM module.

You can see that the current program address looks much the same for

programs in ROM and RAM. For example, address 6108 could be byte 6 of

register 108 in RAM, or it could be byte 108 of ROM page 6 (LBL"PRAXIS" in

the printer module). The HP-41 has an internal flag (not one in register

d) to tell if the current program is in ROM or in RAM. You can therefore

use STO b to move from place to place in ROM, or from place to place in

RAM, but not to go from one to the other. More will be said about this in

the next section when the routine XRO is described.

The first time an XEQ or GTO local label is executed in a RAM program it

calculates and stores the distance to the label. After this the XEQ or GTO

can jump directly to the label; it is said to be compiled. In a two-byte

GTO the compiled distance is stored as a direction bit d, a byte number

nnn, and a register number rrrr

Two-byte GTO: 1011 mmmm  dnnn rrrr

The four bits at the left identify this as a row B function. The next

four bits, mmmm, identify the label number. Just as with the labels in row

0 the number stored is one more than the label number. A value of 1111 is

interpreted as the number 15 but refers to label 14. Note that a value

0000 has a 1 subtracted and therefore looks like a GTO 15 instruction, but

actually does nothing, as there is no corresponding one-byte label in

row 0.

The second byte contains a null when the instruction is created. This

tells the HP-41 that the distance to the label is not known; the GTO has

yet to be compiled. The byte should also be set to zero whenever the

program containing it is edited, since the distance to the label may have

changed. One of the important techniques in synthetic programming is to

-500-



prevent decompilation, either to save time or to create synthetic jump

distances. (There is more about this as well in the next section.)

When an uncompiled GTO is executed the jump distance byte is filled in,

assuming the label has been found. The bit d is set to a 0 if the jump is

forwards (towards the END) or a 1 if the jump is backwards. The four bits

rrrr give the number of complete registers to be jumped (a maximum of 15),

and the three bits bbb give the additional number of bytes. This allows a

maximum jump distance of 112 bytes to be stored; if the distance is greater

than this, the GTO is left uncompiled.

As soon as a running program comes to a two-byte GTO it changes the address

in b by two bytes to point to the next instruction (this is where the label

search begins if it is required). Then if the GTO is compiled a number of

bytes has to be added to or subtracted from the address so that it will

point to the label instead. The jump distance therefore includes all the

bytes from the end of the GTO to the target label. Two examples of this

were given in Section 8.5.

Three-byte GTOs have the bits arranged like this:

1101 nnnr Irrr rrrr dmmm mmmm

The nine bits used for the number of registers together with the three bits

nnn used for the byte number allow a jump distance of up to 512 (decimal)

registers. This allows any jump within main memory. It even allows

synthetically compiled jumps between the status registers and program

memory. The bit d gives the direction again and the remaining seven bits

can hold any label number from the first half of the Byte Table. During

execution of a three-byte GTO, the program pointer is advanced at first by

only one byte, so a forward jump distance has to include the second and

third bytes of the GTO. A reverse jump distance must include the first

byte of the GTO and both bytes of the LBL. A pair of examples will help

again:

-501-



steps bytes to jump steps bytes to jump

X=0? LBL 90 2

GTO 90 2 "X=" 4

"X=" 4 ARCL X 2

ARCL X 2 PROMPT 1

PROMPT 1 GTO 90 1

LBL 90 0

9 bytes 10 bytes

The example on the left displays a value unless it is zero, in which case

it jumps forwards to label 90. The forward jump includes 2 bytes of the

GTO, making a total of 1 register and 2 bytes. The compiled GTO label

looks like this:

forwards

I
1101 0100 0000 0001 0101 1010

\_/ NN/ \___7
D 2 1

bytes register label 90

The example on the right displays any value, and repeats the display if the

user accidentally presses R/S. The backward jump includes 1 byte of the

GTO and both bytes of the label, making a total of 1 register and 3 bytes.

The compiled GTO looks like this:

backwards

I
1101 0110 0000 0001 1101 1010

\_/ \AN/ \____/

D 2 1

bytes register label 90

Note that the text string in these examples contains an apostrophe which

has been included synthetically to display the value "X prime". This is a

typical example of the use of synthetic text strings. One way of creating

this string is to use the Q-loaders to be described in Section 15.6.

-502-



A compiled XEQ has exactly the same layout as a compiled 3-byte GTO, but it

begins with the nybble E instead of D.

The global GTO and XEQ instructions contain just a name, not a compiled

distance. The label is always found by a search up the CAT 1 chain. To

speed up this search each element of the CAT 1 chain stores the distance to

the previous element. As with three-byte GTOs, the distance is stored in

three bits n for a byte count and nine bits r for a register count. The

direction is known to be backwards, and the distance is calculated as for

three-byte GTOs. Global labels and ENDs have the form:

END 1100 nnnr rrrr rrrr 0zzz  apda

LBL 1100 nnnr rrrr rrrr 1111 nnnn kkkk kkkk  tttt  tttt...

The first nybble is always a C. In an END the third byte gives the type of

END; zzz is 010 for the .END. and 000 for a normal END. The bit p is set

if the program before the END should be packed, and the bit d is set if it

should be decompiled. The two bits marked a can be 0 or 1; when you do a

GTO.. the last byte of the .END. is set to 20 but when you begin to put in

a program this becomes 2F.

Bits p and d are set every time any steps in a program are moved or

deleted, so the last nybble of the program’s END becomes an F. As soon as

you leave PRGM mode all the local GTOs and XEQs are decompiled, and d is

cleared so the last nybble becomes a D. When you do a GTO.. or a PACK the

program is packed (and decompiled again) if the bit p is set, and the last

nybble becomes a 9. If you create an END by using a normal or synthetic

assignment from row C the last byte is always created as OF.

Global labels contain Fn as their third byte (shown above as 1111 nnnn).

The fourth byte (shown as kkkk kkkk) is the code for the key to which this

global label has been assigned. This keycode is obtained from the same

formula as for function assignments (see Section 14.10). If the label is

-503-



not assigned to a key then the code is zero. The remaining bytes of a

global label contain the label name, coded as in a normal text string

(shown as tttt tttt ... The n of the Fn byte includes the keycode, so

there are n-1 characters in the label name. Ordinary global label names

have a maximum length of seven characters so n should have a maximum value

of 8.

The first item in the CAT 1 chain stores zero as the distance to the

previous item. This means there are no global labels or ENDs before this

one; but there could be some other bytes between it and the curtain.

15.5 Four examples.

This section gives examples of how the information presented so far can be

exploited. The examples are; labels more than 7 characters long, the

results of setting a key assignment bit without storing an assignment, how

to avoid decompiling programs, and how to execute selected pieces of

programs from a ROM. If you are bored with examples you can skip these

four.

Example 1. If you want more meaningful labels in your programs and have

enough room in memory then you can make labels up to 14 characters long.

Such labels will not be found by GTO or XEQ but they can be assigned to

keys. They will also be displayed correctly by CAT 1, CAT 6 (on a 41CX or

with a CCD module), by the printer function PRKEYS and the PANAME

function VKEYS.

First of all go into PRGM mode and enter the instructions RCL IND 64, LBL

00. Follow these with a text string containing the label name you want.

The first character of this string will be a keycode and will not be

displayed as part of the name. If you want to assign this label to a key

then choose a character which corresponds to a real keycode. You can use a

synthetically entered character, or you can use any keyable character whose

decimal byte value is 76 or less, except 69 to 72.

-504-



Now PACK, BST three times and BG. Delete the BG string and SST to see your

new label. Since this label has been created synthetically it is not part

of the CAT 1 chain. You must PACK or GTO.. to get it included in the CAT 1

chain. If that doesn’t work, try deleting and replacing some steps near

your new LBL first.

If the label is to be assigned to a key then the corresponding key

assignment flag must be set. You can recall the register from the

keyboard, put it in register d, set the required flag, then copy it back

from register d to the assignment register. Use the key assignments RCL e,

X<>d, and STO e to do this, and use the program SCF to set the flag if it

is flag 30 or above.

To take a specific example - you have a rainfall prediction program which

you want to call RAINFALL and you want to assign it to the shifted TAN key.

The keycode for this key is calculated from the formula for a shifted key:

16¥(C-1) + R + 8

The keycode for TAN is 25 so the code is 74. This corresponds to the

character J (see Byte Table). The key flag given by the formula

36 - 8%(C-1) - R

is 2. As this is a shifted key, the flag is in register e.

1) Make sure that RCL e, STO e, X<>d. and BG are assigned. Cancel any

assignments to keys =25 and -12.

2) GTO0.000 and RCL e. The GTO.000 makes sure that the line number in

register ¢ is 000 so it is safe to put the contents of register e into

register d.

3) Execute X<>d, SF 02, set USER mode if necessary, and X<>d again.

4) Press the STO e assignment. The flag for a =25 key assignment is now

set. The flag for key =12 is also set because the USER mode flag had

to be set at step 3. This will be discussed in the second example.

-505-



5) Go into PRGM mode. You should still be at line 000 of your program.

If you are not then the operations in register d have reset the line

number and you must GTO.000 again.

6) Put in the program lines RCL IND 64, LBL 00, "JRAINFALL". The letter

J will become the keycode; the LBL 00 can be any one-byte step.

7) PACK, GTO.000 and BG. Backarrow the BG string and SST to see the

cight-character long LBL "RAINFALL".

8) PACK again, press PRGM, and then press the shifted TAN key in USER

mode to see the key previewed as "RAINFALL".

9) If you release the key soon enough then the RAINFALL program will be

executed. If you press the key in PRGM mode then the program step XEQ

"AINFALL" will be recorded. Only the last seven letters can fit into

a non-synthetic XEQ.

10) You can cancel the assignment in the usual way, by assigning nothing

to the key. The best use for long labels is to provide a meaningful

title at the start of a program.

Example 2. At step 4 above you set the assignment flags for keys =25 and

-12. You then created an assignment for key =25, but none for key -12. If

you press key =12 (SHIFT, 1/X) in USER mode then the HP-41 finds the key is

assigned but can find no assigned function or program. Something has to be

executed though!

The HP-41 actually searches all the key assignment registers first, then it

examines the key assignment byte in each global label, ending at the first

global label of CAT 1. At the end of this fruitless search the HP-41 is

left with the address of the first key assignment byte. This address is

stored in two bytes:

nnnr rrrr rrrr rrrr

When the search is completed the HP-41 assumes a valid assignment has been

found and executes this address as if it was a key-assigned function.

Suppose you have a 41C with full memory, or a 41CV or a 41CX, with SIZE set

to 100. Suppose also that the first instruction in program memory is the

-506-



global label at the start of the first program. Then this label will be

aligned in register 19B as below:

Byte 6 5 4 3 2 1 0

CO 00 Fn kc

The keycode (kc) is in byte 3 of register 19B, so the address will be

stored in two bytes as

61 9B

You can tell from Section 15.2 that this will execute like a one-byte

assignment of the function 61, the ABS function. To check this out PACK,

do a CAT 1, stop it immediately, GTO.000, set PRGM mode and press SHIFT,

1/X five times. You will have entered five ABS steps. The function

previews the first time as XROM 06,27 which is to be expected for an

assignment of 61,9B, but it becomes ABS when the key is released. After

the first ABS has been entered, the rest of program memory is shifted down

by one register, the keycode address becomes 61 9A, and the function

preview is XROM 06,26.

Now PACK again and the first keycode will be five bytes below its original

position, at byte 5 of register 19A. Its address will be stored as A1,9A.

When treated as a function this displays as XROM 06,26, and it actually is

XROM 06,26. If you have a Circuit Analysis Module plugged in it becomes

"RS=". Change the SIZE to 90 and the keycode address will be Al, A4 which

is the function XROM 06,36 or "LP=".

If the keycode is in byte 0 of a program register then its address will

always be 01,XX or 00,XX and the function executed will always be XX. The

whole business may be interesting but no one has found much use for it; it

is simpler to assign different functions to a key than to keep changing

SIZE so as to get various functions from one key. The reasons for this

behaviour were explained (with one error - he did not point out that the

byte position number is doubled, because nnn is stored in the leftmost 3

bits of a nybble) by T. Cadwallader in an excellent article in PPCCJ

-507-



VON7P20-21. To cancel the "non-assignment" to key =12 use ASN and assign

nothing to key =12.

Example 3. Synthetic ENDs can be created as well as synthetic global

labels, but they have different uses. The most important is to prevent

decompiling of programs. Each local XEQ and GTO in a program is compiled

the first time it is executed. This greatly speeds up future execution of

the program. There are three occasions when a compiled program can be

decompiled (and thus slowed down) although you do not want this to happen.

Firstly, all the compiled information is recorded whenever a copy of the

program is made, and this information is still there when the program is

read back from a Card Reader, from Mass Storage or from Extended Memory.

(There is one exception; when the Card Reader function MRG merges a program

the compilation information has to be removed.) This compiled information

makes the program run rapidly when it has been read back, but it is lost

the next time you do a GTO.. - this can seriously slow down a long program.

Secondly compiled distances will be lost if you enter PRGM mode and

accidentally press a key which records a new line. In this case you have

to delete the unwanted line, and the ideal thing to do would be to PACK

without decompiling.

Thirdly GTOs and XEQs can be created synthetically with the jump distance

already stored in them. This makes labels unnecessary, since a compiled

jump will be made without a check of the label, and the absence of labels

saves space and speeds up program execution. Pre-compiled steps like this

can even be used to jump from one program to another, or from a program in

main memory to one in Extended Memory or in the status registers. The

precompiled information will be lost if you leave PRGM mode by pressing the

PRGM switch; at this moment the HP-41 will check if bit d in the END is set

and will decompile the program.

If you have an HP-41C which was made before the middle of 1980 and has not

been repaired since then you can use Bug 8 (see Appendix C) to avoid

-508-



decompiling. Simply switch the HP-41C off without leaving PRGM mode, then

switch back on and the program is still compiled but you are out of PRGM

mode. You can use some tricks to make a program run while you are still in

PRGM mode, and let this program clear flag 52, but this is unsafe as any

number entry in the program will start the HP-41 programming itself. The

best way is to create a synthetic END with the pack and decompile bits both

clear.

The following method to do this is given in the HP-41 Synthetic Quick

Reference Guide. (Described by R. Hill in the Proceedings of PPC

Conference 5, and later in PPCCJ VI1IN7P22, it was invented by C. Stern.)

1. Go to the END (or .END.) of the program which is not to be decompiled

and insert the steps:

STO IND 77, SF 09

2. BST twice and press the Byte Grabber

3. Press backarrow to delete the BG string. You now have a synthetic

packed and compiled END, but it is not yet part of the CAT 1 chain.

4. GTO.. or PACK. The HP-41 will see the old END and will pack the

program (removing bytes left over by accidental keystrokes and by

steps 1 to 3.) until it reaches the synthetic END. Then it will

include this END in the CAT 1 chain. After this it will check the

decompile bit, find it is clear, and will not decompile the program.

5. To save space you should delete the extra END which was originally the

ordinary END of the program. This is only necessary if the program

finished at a normal END, not if it finished at the .END. . The

unwanted END can be found by going through CAT 1 and stopping at the

second of two ENDs with no LBL between them.

Note: to prevent accidental alterations in future you can make the program

private (and therefore difficult to alter accidentally) by replacing SF 09

with SF 73 in step Ol.

-509-



Example 4. You may find that you need to use two modules with the same XROM

number, as was described in Section 12.5. As was explained it is usually

impossible to use two such modules at the same time, but you can do it by

jumping directly to an address in the ROM in the higher-numbered port. At

other times it is useful to execute part of a program in a ROM module, not

the whole program. This is particularly true of some Math module programs

which always prompt for data. Each data prompt stops the program so it is

impossible to store all the data beforehand and let another program do

everything by calling the Math module program as a subroutine. Some

programs in the Standard Applications and Statistics modules have the same

problem. Most other modules have routines which prompt for data and

separate routines to do calculations. This lets you write programs which

prepare the data themselves and just call the calculation subroutines.

You could copy the whole program from a module into RAM, then edit it so as

to keep only the parts you need, but the point of buying a ROM is to get a

program which was written by someone else and takes up none of your

valuable RAM.

The routine XRO is a compromise: it takes up 46 bytes of RAM but lets you

jump to any ROM address and continue execution there. When the ROM routine

reaches a RTN or an END it returns directly to your program at the line

after XEQ "XRO". Since the ROM program may need any combination of values

in the stack and numbered registers, XRO leaves these (and all flags)

unchanged. It takes the ROM address from register M and uses the Alpha

register to store values. One subroutine call is required to call XRO and

another is wused internally, so there are four return addresses still

available, or 5 once the program in ROM is executing.

The following is a specific example of how XRO can be used, you can alter

it to suit your own purposes. Chapter 9 pointed out that the Time module

does not provide a function to put days of the week into the Alpha

register. You can write your own program to do this but it will take at

least 51 bytes even if you use 3-letter abbreviations for the days. If you

-510-



have a Standard Applications module then you can use a part of the CLNDR

program to provide names of the days of the week instead. Use the Time

module function DOW to compute a day number, add 2 to this, jump into the

CLNDR program at line 143 and you will get the day of the week in Alpha.

The RTN at line 149 of CLNDR will send you back directly to your own

program. (If you do not have a Time module or if you want the name of a

month then you can jump into CLNDR at different places to calculate day

numbers or to get the name of a month.)

1. Assign RCL b and STO M to two keys. Put the Standard Applications

module into the port where you want to have it when you want to run

the program. If you want to use ZENROM as well then put the Standard

Applications module into a higher-numbered port and remove the ZENROM

while you carry out steps 2 and 3.

2. GTO "CLNDR" and then GTO.143. Check if you are at the right place by

pressing PRGM and seeing the program step:

143 7

(If you do not see a 7 on line 143 then you might have a version of

the Standard Application module with the program steps numbered

differently. SST and BST a few steps until you find this one.) Press

PRGM again.

3. Press CLA, RCL b and STO M. The ROM address is now in register M.

4. You must make sure that this same address will be in the rightmost two

nybbles of register M before you execute XRO. One way is to use

ASTO nn now and ARCL nn just before XEQ "XRO". Another way is to

include the two bytes as synthetic text string in your program just

before you execute XRO. A simple way to do this will be explained in

the next Section. For the time being just leave register M as it is

and go on to the next step.

-511-



5. When you want to use XRO to access this piece of the ROM, write a

program that will put these two bytes at the right of Alpha and then

do XEQ "XRO". Make sure the Standard Applications module is in the

same port as it was when you carried out step 3. Make sure the stack

contains the required values (in this case X should contain the day

number + 2) then run the program. If you have already entered XRO and

carried out steps 1 to 4 then try putting a number into X and

executing XRO from the keyboard.

The idea for programs such as XRO came from Wickes (see his book, described

in Appendix A). Originally they were designed to eliminate the

shortcomings of the Math module, but they can be used to avoid XROM

conflicts too. If you have a ZENROM in port 3 and a Standard Applications

module in port 4 then you will be unable to execute the Standard

Applications programs, as was explained in Section 12.5. However XRO will

let you execute any program from the Standard Applications module, from the

very beginning of a program, or from any other point. You can choose the

place by going to it instead of carrying out step 2 above. The address

used by XRO will be the ROM address in port 4 and will not be checked as an

XROM number, so there will be no conflict. The same method can be used to

execute a routine (but not a function) from any other ROM module.

XRO works by storing the ROM address as a return address in register b,

then executing a RTN. The RTN moves the current program pointer to this

address, even though there was no XEQ at the previous step. The HP-41 uses

register b without asking how the addresses got into it! The trick is to

rearrange register b without losing the previous return addresses in it,

and without losing the values in the stack.

-512-



uielBL “¥RO”

a2 XEQ 14
AJeiBL 14
24 STO 1
#5 RDN
86 RCL b

87 STO ~

83 "FTBx"
A9 RDH
1@ RCL ]
1§ iot
12 ST~

13 "he

14 ¥{> ¢4

15 k%"

16 %{r
17 510 b

18 END

Lines 02 and 03 push the return stack up. The RTN to

line 03 will be replaced by a RTN into the ROM module.

This means that XRO will be able to RTN to the ROM

address, and the ROM program will return to the program

that called XRO. Line 04 saves X in register O. Lines

05 to 08 copy register b to register N and then push

the leftmost 3 bytes into register O. Line 10 puts

these bytes into register X while line 11 pushes

register M another two bytes to the left (only one of

these bytes is printed in the listing). Line 12 puts

the three leftmost bytes of register b back into N, and

lines 13 and 15 push Alpha four more bytes to the left

so that a new value of b is now in N. Line 14 recovers

the original X value from register P and line 16 puts

it in N. This use of register P means that the program

can only be single-stepped in ALPHA mode.

Line 17 puts a new value in register b. The current

program address becomes 60,05 hexadecimal; these two

bytes were put in by the synthetic text line at 08.

This address is at byte 6 of register M - in the Alpha

register! The next two instructions executed are X<>N,

RTN which were put into register M by lines 11 and 13.

X<>N restores register X and RTN causes a return to the

ROM address that was originally in M. Lines 05 and 09

were there to make sure nothing was lost from the

stack. The STO b at line 17 jumps to another address

so there is no real need for an END after it. You can

put a global label at line 18 and carry on with a new

program. The use of Alpha to execute X<>N, RTN makes

this program 12 bytes shorter than the PPC ROM

equivalent (which could not use this trick because it

is in ROM) but leaves Alpha uncleared.

-513-



The text lines 08, 11 and 13 have to be made synthetically. Line 08 is

made up of the bytes F4, 7F, 60, 05, 2A. You can create it by making a

normal text line such as " }- xx%" then grabbing the F4 and replacing the

first two stars (which become RCL 10 steps) with STO 12 and LBL 04, then

grabbing the BG string. 60,05 is the address in Alpha where the program

jumps to. The star could have been any character. Line 11 consists of the

bytes F3, 7F, CE, 76. It can be made in a similar manner but involves more

byte grabbing since CE,76 is the X<>N instruction and has to be made

synthetically too. Line 13 is F3, 7F, 85, 2A. The 85 is the RTN executed

after X<>N and has to be put in synthetically. The 2A is a star but again

could be any character, as could the stars in line 15 which is an ordinary

text line with no synthetic characters.

Putting in all these synthetic characters is a chore and can be simplified

by the use of a Q-loader as will be described next.

15.6 Synthetic text and Q-loaders

One way the HP-41 uses register Q is to build up a number when one is

entered from the keyboard or from a number entry in a program. This has an

unusual effect if one of the number entry keys from row 1 of the Byte Table

is assigned to a key and this key is pressed in PRGM mode. The previous

contents of register Q are reversed and copied into program memory as a

text string immediately after the digit assigned to the key, then

register Q is cleared.

Use a key assignment program to assign the bytes 1B,04 to a key. These

bytes represent the assignment of the EEX function to a key. Press GTO..

then GTO "XYZ" and wait till you see NONEXISTENT. If you have a

LBL "XYZ" somewhere then use a different label name which does not exist.

Now set USER and PRGM mode and press the key you have just assigned. You

will see an E on its own; if you SST you will see the text string "XYZ".

When you executed the GTO, the label name was reversed and stored in Q

during the search for the label. When you pressed the E assignment, the

contents of Q.were reversed again and copied into your program.

-514-



Press the key twice more, then SST twice. You will see two empty text

strings. These are the byte FO, used as a NOP. Register Q was cleared

after it had been copied into the program so a null text string was copied

the second and third times. Backarrow twice and you will see two Es in one

line. Assigning a digit to a key prevents the entry of a null before a new

number, so these two EEX instructions have merged into one line. BST three

times and you will come to the END of the previous program in memory. The

two Es were numbered as separate lines when they were entered but have

become one single line, so the line numbering has changed and you can get

into the previous program in memory.

This one assignment lets you:

1. Create the FO NOP by pressing the key twice.

2. Create the step E which is like an entry of the number 1 but faster.

3. Create an E E numeric string which will mystify people and let you BST

into the previous program.

4. Load text strings from register Q into a program. You can create any

string in Alpha containing up to seven bytes by building it up using

the program BAB or the Extended Function XTOA. Then you can put this

string into Q by executing RCL M, STO Q. Finally you can copy it into

a program by using this assignment. That is why it is called a Q-

loader. Remember that the string will be reversed; a way round this

is described below.

If you want to create a combination of bytes from the last quarter of the

Byte Table you may not be able to do it with the Byte Grabber alone. You

can store the bytes in register Q, then use a Q-loader to copy them as a

text string into a program. Then you can byte grab the leading Fn text

string header and leave the required bytes where you want them. A Q-loader

cannot create a text string with nulls at the end, but nulls can be put in

the middle or at the beginning.

For strings of six bytes or less you can avoid the need to enter the bytes

in reverse order. As an example you can make line 08 of the program XRO in

-515-



the previous section by doing the following:

CLA

127, XEQ "BAB"

96, XEQ "BAB"

5, XEQ "BAB"

ALPHA, Append * (use SHIFT, K, SHIFT, *)

ASTO . X, ALPHA. This puts the text string into register X.

GTO IND X. This reverses the text string and copies it into Q.

Wait for NONEXISTENT, or for the label to be found. Use CAT 1 and

GTO.nnn to get to the place in program memory where you want to put

®
N
o
L
A
W
~

the text string. This will not affect register Q unless you have a

CCD module whose CAT’ function alters register Q. In that case press

CAT, then 1 before you release the CAT key, then release CAT and then

the 1 key.

9. Set PRGM mode, then press the Q-loader key.

10. Delete the E, then SST to see the text line.

Most one-byte or two-byte assignments which execute bytes 10 to 1C will act

as Q-loaders in the same way. Some of them provide prompts or function

previews and many people like these since the prompt or preview

identifies them as unusual functions and allow the user to cancel the

function. I prefer the two-byte assignment 1B,nn (decimal values 27,xx),

as it loads the E and saves time because it does not prompt. One-byte

assignments of byte 17 prompt for an Alpha parameter and create a text

string; those of byte 1B can take an Alpha parameter and create a global

label. All the other one-byte assignments ask for no parameter, or ignore

it. These assignments can be used to produce very long or odd-looking

numeric strings but the normal keyboard number entry rules given in Chapter

4 still apply during program execution: only the first ten digits are used,

only the first EEX 1is used, multiple sign changes alternate between

positive and negative values. Two or more consecutive copies of byte 1A

display as a single comma, regardless of the setting of flag 28, but all

after the first one are ignored during numeric entry. Byte 1C on its own

should be avoided because it looks like a subtraction step in a program but

actually puts a zero in the stack.

-516-



Why do these assignments act like this? Because only bytes 2D and 2E of

row 2 were meant to be assigned to keys, any row 2 assignment is treated

like GTO or XEQ; it is put directly into a program, a null byte is not

inserted before it, and if any byte leaves ALPHA mode clear then register Q

is copied into the program at once as a text string (just the same as when

you finish enetering an alpha GTO or XEQ and go out of Alpha mode).

Assignments of bytes 1D and 1E act as Q-loaders too (because they leave

Alpha mode clear) but they make the instructions GTO and XEQ followed by

the contents of register Q. They can therefore be used to create

instructions such as GTO "1.5" or XEQ "A&B" which contain characters that

cannot normally be put into a global label. All assignments of 1D and I1E

act as non-prompting Q-loaders. Two-byte assignments of byte 1F create

non-prompting W Q-loaders. One-byte assignments prompt for a number (they

prompt 2__ just like assignments of byte 0D), but they too produce the

instruction W followed by a text string. The "spare" function W has been

described in Section 8.5, and all three bytes 1D, 1E and 1F will come up

again in the next section.

There is also a LBL Q-loader. Any assignment with byte CD as the first

byte can be pressed in PRGM mode to produce a global label made up of the

contents of Q. One-byte assignments (byte CD preceded by a byte from row

0) prompt for a number but then also produce a global label.

Assign the LBL Q-loader (bytes CD,00) to a key and try this:

1. ALPHA, 1, ., 5, ASTO X, ALPHA

2. GTOIND . X

3. PRGM,press the LBL Q-loader

4. See LBL "1.5", which cannot be made directly from the keyboard

The ordinary Q-loaders can be called "text Q-loaders" to distinguish them

from the others. A text Q-loader followed by a BG to remove the leading Fn

can load a maximum of seven arbitrary bytes into a program. Special

synthetic programs to load more than seven bytes have been written - not

surprisingly they are called "Byte Loaders".

-517-



The GTO, XEQ and LBL Q-loaders provide a very easy way of producing and

using the synthetic global labels "A" to "J" and "a" to "e¢". Simply put

the one letter into Alpha, ASTO X, GTO IND X and then press the appropriate

Q-loader. These synthetic global labels are different from the local

labels LBL A to LBL ¢ and can be used in programs that need to put a single

letter into a register then GTO IND to use that letter. An example is a

program that prints large letters and needs to use the labels "A" to "Z" to

specify each letter to be printed.

15.7 Other SP bits and pieces

Some synthetic instructions that are worth mentioning did not fit well into

other sections. They have all been gathered here. If your favourite SP

trick i1s not here - sorry. Maybe you should write it up and publish it in

one of the user group journals!

1. Decimal values are not well-suited for conversion to or from binary

numbers in the flag register. Instead of repeatedly multiplying or

dividing by 2 as in the programs BAB and RAB you can use OCT and DEC to

convert decimal numbers to or from octal. For example consider how the

decimal number 110 can be turned into the hexadecimal byte 6E. The decimal

number 110 can first be converted into the octal number 156 by the function

OCT. This can then be stored in register d where it will appear as the bit

pattern shown below:

0000 0001 0101 0110 - 156 stored at the left of register d

A set of flag tests can be used to shift all the bits into the second byte

of register d, from where the byte can be appended to the Alpha register.

0000 0000 0110 1110 - 156 converted to byte 6E

Since all octal numbers are made up of the digits 0 to 7, each digit uses

only the lowest three bits of a nybble and conversion to a hexadecimal byte

-518-



is carried out by pushing bits to the right, removing the empty bit at the

front of each nybble. This is done by a set of flag tests which produce

the lower of the two bit patterns shown. (In this case the first test

would be FS?C 11, SF 12.) There are several excellent examples of this

technique, invented by Roger Hill, in the PPC ROM. The method is explained

in the PPC ROM manual write-up for the routine "DC". (The author was

apparently so enthusiastic about it that the paragraph was printed twice.)

2. The above method can be used in reverse to convert hexadecimal vlaues to

decimal numbers into register X. These numbers, and others created by

synthetic techniques, might not be normalised. Operations such as RND or

HR or adding zero can be used to normalise these numbers. If you see such

an instruction in a program for no obvious reason then it is probably being

used for normalisation.

3. Until a number is normalised it may contain the nybbles A to F in places

where only the decimal digits 0 to 9 are expected. The HP-41 uses the

remaining characters of row 3 in the Byte Table to display these digits,

but it also tries to "carry" from one digit greater than 9 to the next, so

you will not always see them.

To study what happens, create the number 1.2ABCDEFO00 E00 in register M. To

do this set FIX 9 mode and CLA. Then put the bytes 01, 2A, BC, DE, FO, 00,

00 into M by using the program BAB or the Extended Function XTOA. (1,

XTOA, 42, XTOA, 188, XTOA, 222, XTOA, 240, XTOA, 0, XTOA, XTOA).

Use RCL M and see the number displayed as:

1. 28, /=\72700 Display in X

1 2ABCDEFO0O Digit values

1.2:,/=\200 Obtained by ALPHA, CLA, ARCL X

The second line shows the value of each digit, and the third line shows how

the number will look if recalled to the Alpha register (it will be followed

-519-



by a prompt). The character 3A (representing the hexadecimal digit A)

shows up in different guises in X and in Alpha. The other digits do not

change. This has been called the HP-41 natural notation because it is the

way the HP-41 displays hexadecimal digits unless told otherwise. It is

also called Australian notation as it was first studied by the user group

in Melbourne.

Now go out of ALPHA mode and set FIX 8. You will see:

1 . 31 2 3 45 50 Display in X

1 2 ABCDEFO Digits

1 2101112131415 0 Decimal digit values

Each digit is displayed now as a number below ten plus a "carry" from the

previous digit. The bottom row shows what each digit value is and you can

check that the digits are displayed with the "carry" from the previous one.

The display shows the effects of carrying except in FIX 9 mode and in the

synthetic FIX 10, SCI 10 and ENG 10 modes. These can be set by adjusting

register d directly, by wusing synthetic assignments, or by using the

Extended Functions RCLFLAG and STOFLAG (FIX 08, RCLFLAG,

FIX 2, 36, STOFLAG). You can also create the NNN 0A,00,00,00,00,00,00

then put it in X and execute FIX IND X (or SCI or ENG). The easiest way is

to use ZENROM and set FIX 10 directly from the keyboard. You can use these

display modes to examine nybbles 12 to 3 of NNNs so long as they display as

a number. The standard numbering of nybbles is 13 for the leftmost and 0

for the rightmost position in a register.

4. Numbers with non-zero exponents and particularly with non-normalised

exponents behave oddly too. Try 1.23456789E13, FIX 10 with flags 28 and 29

set. Clear flag 29 and the funny exponent will vanish. Clear flag 28 and

all the digits except the first one will display as characters from row 2

instead of row 3. If you try ARCL X now the HP-41 will give up and only

recall the 1. Set flag 29 and you will see a mixture of characters from

-520-



rows 2 and 3 with an exponent containing only a decimal point.

Clear flag 29 again, create the byte string 0B,00,0C,00,0E,00,13 and RCL M.

You will see a miniature 7 (the semicolon actually) and two flying geese:

7 -6 "

Wickes’ book "Synthetic Programming on the HP-41" describes more of this.

You can even get a "goose" in the exponent. Try entering and running the

program:

01 *LBL "GSE"

02 45

03 XEQ "SCF" See Note 1

04 F7,AF,FF,FF,FF,FF,FC,FF See Note 2

05 RCL M

06 STO Q

07 CLX

08 END

Note 1. You can use the PPC ROM routine IF or the ZENROM function TOGF

instead of SCF on this line.

Note 2. This is a way of writing "enter a text line made up of the text

string header F7 followed by the bytes AF,FF,FF,FF,FF,FC,FF". On a program

listing this line would actually show up as 04 " , which does not

reveal what the text string contains. In synthetic program listings this

method is often used instead to show that a synthetic text string (or some

other synthetically made set of bytes) is to be entered.

Run this program, then enter a number with an exponent from the keyboard.

The exponent will be entered as a negative exponent, not a positive one,

but you will see a backwards goose instead of the minus sign! If you XEQ

"GSE" then press 1.2 EEX 34 you will see:

1.2 €34

Press ENTER and you will see this is just 1.2E-34. Do not press EEX on its

own (nor after just a zero or a decimal point) after running GSE as this

-521-



will force the creation of a 1 to precede the exponent and that will

replace the special value in register Q which allows the strange exponent

to be displayed. The program GSE sets the "system data entry" flag to tell

the HP-41 a new number is in the process of being entered. Then it puts an

NNN into Q to show that no digits have yet been entered and that the

exponent sign is to be displayed as byte 2C instead of byte 20. The CLX

resets register P to accept the new number from the keyboard.

Numbers with a non-normalised mantissa can slow down the execution of

arithmetic functions. The arithmetic and mathematical operations expect

the most significant digit to be in nybble 12, and are designed to work

efficiently on this assumption. If you create the byte string

00,00,00,00,01,00,00

then put it into register X and press 1/X you will have to wait about 13

hours for the result (the time taken increases by a factor of about 10 for

cach additional zero to the left of the most significant digit).

Numbers with an exponent sign other than 0 or 9 will slow down the display,

particularly in FIX 10 mode. Set FIX 10 mode and put the NNN

00,00,00,00,00,03,00

into register X. Go into PRGM mode and turn off your HP-41. Turn it back

on and you will see the program step first, while the HP-41 is working out

how to display the contents of X. Press ENTER and the function will

preview for a longer time than normal while the display again tries to work

out how to display X. It is only the display that is slow as you can tell

by running a program and seeing it runs as usual.

5. During the entry of a number or text string flag 45 is set. It becomes

clear when number entry or text entry is terminated. In run mode Alpha

entry is restarted and flag 45 is reset when Append (SHIFT,K) or ARCL are

executed. Number entry in register X can be restarted by a short program

-522-



in Chapter 16. You can restart text entry in a program by setting flags

45, 48 (ALPHA) and 52 (PRGM). Register Q must be reset too, much as in the

example given above. In the case of text entry, nybble 13 of Q (the

leftmost nybble) must be cleared.

One way to do all this and so alter a text string that is already part of a

program is to use an NNN with nybble 13 clear and nybbles 0, 1 and 2

containing 488. Make this NNN, go to the program line to be edited, set

run mode and USER mode, then store the NNN in register Q and in register d.

Pressing a character key now will not add new characters to the text string

but will make it swallow up bytes that are already in the program after the

text string. Deleting characters does not delete bytes but just removes

them from the text string and leaves them in memory; this can be used as a

different way of freeing bytes put into a program by a Q-loader. Pressing

the backarrow key before any characters creates a character string which

incorporates the next fifteen program bytes. This can be used instead of

the Q-loader to make text strings.

The exact details of what happens can vary and can cause a crash depending

on the contents of Q and on the date an HP-41 was made, so you should test

exactly what this process does on your HP-41. The synthetic lines produced

can be made with the Byte Grabber, so this technique is not used much. You

may find it to your liking though; it was invented by W. Wickes and called

text enabling. It is described in his book "Synthetic Programming on the

HP-41".

6. The global GTO and XEQ instructions (bytes 1D and 1E) expect to be

followed by a text string no more than seven bytes long. Other bytes can

be made to follow them by synthetic means. Text strings of up to 15

characters can be used, producing GTOs and XEQs with longer names, but

these will not go to corresponding longer labels, because register Q can

hold a maximum of seven characters for a comparison. Instead they will go

to labels which just contain the last seven characters of the long name.

If the first byte after a 1D or 1E is not an Fn then the second nybble is

-523-



still used to give the length of a text string displayed after the GTO or

XEQ. When you SST past the first byte (and its postfix bytes, if any), the

HP-41 realises that there is no text string following. It treats the next

byte as part of the GTO or XEQ, but displays the following bytes in the

normal way. Imagine you have the following set of bytes at the beginning

of a program:

1D, F5,41,42,43,44,45, 46

This will be displayed as GTO "ABCDE", X<=Y?. If you replace the second

byte with 75 (RDN) you will have:

1D, 75,41 ,42,43,44,45, 46

which displays in a program as GTO "ABCDE", -, *, /, X<Y?, X>Y?, X<=Y2.

The byte 75 is treated as a text string header while the GTO is displayed.

When you SST past the GTO, the following byte is not a text header so the

HP-41 does not skip a string of text but just displays the bytes in their

normal guise.

I find this non-text GTO useful for program analysis. Try this to create a

seven-byte non-text GTO and see some examples. I assume you have BG,

RCL Q, and STO M assigned to keys.

i. Enter the program

LBL 38, RCL 29, CLX, LN, X412, SQRT, Y4X, CHS, E1X, LOG

ii. PACK and BST until you see the LBL 38.

iii. BG and delete the text line.

iv. SST and see GTO "PQRSTUV"

The 29 of the RCL 29 has become a GTO, and the CLX (byte 77) is being

treated as the header of a seven character name.

-524-



Vi.

Vil.

Viil.

1X.

X1.

SST twice and see LN, then X12

Insert the line XEQ 38.

BST three times and see GTO "PQB&~"

You have put an XEQ after the Q, so this takes up the next three

bytes. Inserting a new instruction produced seven bytes of which three

now contain the XEQ, but the other four are still empty - you can see

the first two after the & This & is the 38 of XEQ 38. The XEQ has

not yet been compiled so its middle byte is a null.

SST three times, go out of PRGM mode and press SST two more times.

This executes the XEQ and compiles it.

Go back into PRGM mode and you will now see GTO "PQ¥EE™"

The XEQ is now compiled so its last two bytes have changed.

PACK in PRGM mode and the GTO is now GTO "PQE ERS"

The null bytes at the end have been removed and the bytes RS have

moved back into the string. The XEQ has been decompiled so its middle

bit is null again but the jump direction has not been changed so the &

is still displayed as ®.

Go to run mode, press SST and wait for NONEXISTENT. Go back to PRGM

mode and see the line Y1X. All the bytes in the pseudo-text string

have been skipped, and the last one is displayed when you go into PRGM

mode. You can set flag 25 in a running program, then execute a test

immediately before a non-text GTO. If the test is false then only the

GTO and the next byte (plus any postfix bytes) are skipped. If the

test is true then the HP-41 tries to execute the GTO, finds it

nonexistent, and skips all the bytes of the GTO. This can be used as

a conditional test to jump over n bytes instead of just one byte.

Unfortunately, the time needed to complete the label search makes it

rather slow.

-525-



xii. Go out of PRGM mode, press RCL Q and STO M. Go to ALPHA mode

and see

SREEQP

These are just the bytes in the GTO string, copied to Q by the GTO,

then from Q to M, with their ordering reversed. You can use the

program RAB, or some other technique, to see what the bytes were. If

you do this you will see that the last byte of the GTO 38 (now the

third byte from the left in M) was indeed 168 decimal, in other words

38 with a backward jump bit (value 128 decimal) added to it.

You could use a non-text XEQ instead of a GTO for all this. The point is

that you have a relatively simple and harmless program analysis tool. If

you forget to delete the GTO before running the program you were analysing

then you will get NONEXISTENT - it is most unlikely that you will have a

global label with the same name as the text in the GTO. You can also use

the byte 1F for program analysis with similar results. However W will not

copy the text into register Q and may cause a crash (especially if the

byte after it is from row 0 of the byte table). It may even cause

execution of a program or function from the upper 4K of a ROM in port 2, or

FL NOT FOUND if you have a 41CX with nothing in the upper 4K of port 2.

When you SST past a text GTO or XEQ in PRGM mode the HP-41 skips past the

instruction immediately after the byte 1D or 1E. Normally this should be a

text string, so skipping the next instruction would correctly skip over the

string. If the next instruction is replaced synthetically by a one-byte

function then that one byte will be skipped as we have seen above. If it

is replaced by the first byte of a multi-byte function then interesting

things can happen. If the byte is from row C of the byte table then the

HP-41 will try to skip over the apparent global label prefix and will try

to use the jump information in the bytes after the "global label". After a

long wait you will find yourself at some random point in program or data

memory, unless you have put a chosen jump distance after the Cn byte on

purpose.

-526-



Should the GTO or XEQ be followed by one or more null bytes the HP-41 will

look for the next non-null instruction and will skip that. An amusing

thing happens if a global GTO or XEQ is followed by null bytes right up to

the END of the program. If you SST in PRGM mode the END is treated as the

step to be skipped, but it is still recognised, so the next step displayed

is line 01 of your program. How’s that for ENDless Synthetic Programming?

Even more amusing 1is Clifford Stern’s exploration of the recursive

properties of following the Alpha GTO prefix with another Alpha GTO prefix.

He has written a program to fill program memory with hex 1D bytes -- a

2240-byte single-line program that has no visible END!

7. As you get to know more details of what the HP-41 operating system

does you may think of new things to do. Among these is writing functions

that you would like but which the operating system does not provide. Some

of these are obvious extensions of the mathematical functions, such as the

hyperbolic functions in Chapter 7. Others are extensions of the functions

used to control the HP-41 itself; this is the realm of SP. Synthetic key

assigning and system flag altering are two such system extensions, achieved

by SP. Re-enabling the editing of register X is another case; this can be

done by the program APX in the next chapter. Programming with non-

programmable functions is yet another example; the next chapter will show

how a programmable PACK can be achieved. It will also show how the non-

programmable printer function PRP can be used in programs. A programmable

PRP for use in documentation will be given in Section 16.8 and a simple

programmable PRP which does not use any Extended Functions will be shown in

the last exercise of Chapter 16.

15.8 Do’s and Don’ts of Synthetic Programming

Following some serious uses of SP, and some frivolous ones, here is a list

of warnings and advice.

While writing HP-41 programs do bear in mind the possibility of making

programs better, shorter, or faster by using synthetic instructions or key

-527-



assignments. Do not use SP just for the sake of it though; at times it may

be equally easy to use ordinary HP-41 functions.

Do read about SP occasionally, but do not expect to remember everything.

If you have the time then try to keep a notebook (as suggested in Exercise

1.C) or an index of tips and ideas as you read of them.

If you decide to use SP in a program do make notes of what you are trying

to do. Do not begin to push keys at once unless the program is trivially

simple. See if someone has written a program to do the same thing, maybe

you can find such a program in this book or in one of the books or journals

in Appendix A.

Once you have decided to enter a synthetic program do make a complete

record of any important programs or data you have in your HP-41. Be aware

that MEMORY LOST can happen - do not think "I’ll be careful so it won’t

happen to me". It will.

While entering a synthetic program do be careful not to disrupt the CAT 1

linkage by byte grabbing ENDs or global labels. In particular avoid

grabbing the .END. - if you want to create some new globals synthetically

do not try to alter existing labels or ENDs. It is safer to create them

from other instructions. If you have created a new label or END, then do

GTO.. to rebuild the CAT 1 linkage and include the new globals in it. (If

you have edited the program in such a way that the pack and decompile bits

are clear then the program will not be packed, and the new global will not

be added to the CAT 1 chain. Normal editing, such as deleting and

reinserting an instruction, will set the decompile bit so the new global

will be added to the chain.) If you have lost the .END. you may be able to

make a new one; change the last three nybbles of register ¢ so they point

to a completely empty register below the position of the previous END, then

execute GTO.. - null bytes at the position of the .END. are treated as an

.END. that needs rebuilding and are turned into a real .END. which points

to the previous global, if one can be found.

-528-



Do be very careful when writing programs that alter register c¢. If there

is any chance that the program will be interrupted or single-stepped by

someone, or will stop at an error, then put acceptable values into

register c. Acceptable values are ones which:

1. Have 169 in the three cold start constant nybbles.

2. Have a register 00 pointer (curtain) for which the register

immediately below the curtain address exists. Do not put register 00

directly above a gap in memory.

There may be occasions when you are writing a very short routine and you do

not want to spend time and space on these precautions. If the routine is

sufficiently short and fast, and if it is impossible for it to stop at an

error then you might be able to put other values in ¢, but warn anyone who

is going to use it (including yourself). Make a note that the routine must

not be single-stepped. In such routines it is a good idea to set one of

the flags 0-4 while register ¢ contains an unsafe value, and remind the

user not to stop or single-step while this flag is set. Do not take risks

with register c!

Do be careful not confuse data register 00 with status register O. Even

more important, do not confuse synthetic access to register 104, which

shows up as a capital C, with status register c.

Do avoid assigning STO ¢ or X<>c to keys and leaving them assigned; you may

forget and accidentally press one of these keys later. The safest key for

these assignments is ISG; it is not used for keyboard operations - even if

you press it without realising USER mode is set then you are only likely to

do so in PRGM mode, and will not get an immediate MEMORY LOST. If you

have a ZENROM or a CCD module then do not press STO . c or X<> . ¢ just for

the fun of it. It’s not fun. Do not press STO 125 or X<>125 either if you

have a ZENROM, as they have the same effect.

If the first program in CAT 1 has any uncompiled GTOs or XEQs then the

-529-



label search goes down to the END, then restarts at the register below the

curtain. If you have raised the curtain then the search will begin in the

data registers. Do avoid this; make sure there is at least one END above

programs that raise the curtain and have any local GTOs or XEQs. If you

have lowered the curtain then no label search will be made above the

curtain - this might mean that labels near the top of your program are not

examined or it may even mean that the search begins in a program below the

one that is executing. These restrictions do not apply if the jumps are

already compiled. Do not run uncompiled programs with the curtain lowered

unless you are intentionally trying to jump from one program to another.

You can compile a program before running it by taking the next seven steps:

Assign RCL b and STO b. This is not necessary but speeds things up.

PACK, GTO.001 and set PRGM mode.

SST until you find a local GTO or XEQ.

Go out of PRGM mode. Press RCL b to save the present address.

SST - this compiles the GTO or XEQ.

Press STO b to get back to the GTO or XEQ, then go back to PRGM mode.

You can use GTO.nnn instead of RCL b and STO b to get back where you

were.

7. Repeat steps 3 to 6 until you reach the END.

AN
A
P
S

This compiles the steps without editing the program, so the steps will not

be decompiled. After you use STO b at step 6 the program line numbers will

be 1incorrect. Do not worry about this, as it does not affect the

compilation. Obviously this method cannot compile GTO IND, XEQ IND, nor

short-form GTOs to labels more than 112 bytes away, as none of these can

ever be compiled.

Do take care with register d as well. The setting of most flags in a

running program has little effect until the program stops, pauses or

prompts, but setting flag 52 and then executing a number entry makes the

HP-41 start to program its own memory. If you set flag 54 then the final

RTN or END will only execute a PSE, then the program will carry on running.

If you leave flag 25 set, serious errors could be ignored. If you leave

-530-



flag 24 set, all arithmetic overflow errors will be ignored until you clear

it. If you leave flag 47 set then pressing a key will execute its shifted

function, and executing OFF will start the clock running if you have a Time

module. Leaving flag 44 set will prevent the HP-41 from turning off to

save the batteries. Leaving flag 33 set will disable all HP-IL operations.

In summary, do not leave rubbish in register d.

Do be careful with the other status registers too. Do not risk losing

return addresses by playing with registers a and b, nor losing the key

assignment maps in registers Append and e.

Do remember that inserting instructions in a program moves everything down

by a register until the .END. is reached. If you insert instructions below

the .END. then everything is moved down, including register ¢, so a

MEMORY LOST is the result. Do not add bytes into areas such as the key

assignments until you have deleted enough bytes to make room for the new

ones. If you want to use a Byte Grabber in these areas then use the F3

grabber which does not insert a new register, but be careful with that too;

it needs three empty bytes. To make things a little safer, PACK and set

the maximum SIZE first, so that a mistake will give PACKING, TRY AGAIN,

rather than the less welcome MEMORY LOST.

Do remember that several operations normalise NNNs, so you must take care

if you are working with NNNs such as the contents of registers ¢ or d. STO

and ASTO do not normalise so you can put an NNN anywhere but RCL, ARCL,

VIEW and X<> all normalise an NNN unless it is in a status register. These

functions normalise the value that is being recalled or viewed, both at its

original position and the copy brought to X. X<>nn does not normalise the

value that is being stored in nn. Printer functions can also normalise; be

careful if a printer is attached and you run programs that deal with NNNs.

Even if you do not execute any print functions X can be normalised when it

is printed if program execution is being traced. Operations on blocks of

data often normalise one or both of the registers at the ends of the block;

they do this while checking if the block exists. IREG nn normalises both

ends of the statistics block (registers nn and nn+5), even if it uses SP to

-531-



put the block in the status registers. Normalisation by Extended Functions

is described in Section 16.1. Articles on normalisation have been

published by C. Close in PPCCJ VIONIP64 and by C. Harris in the PPC

Conference notes for the seventh conference (Aug. 27 and 28 1983). The

Synthetic Quick Reference Guide also explains how numbers are changed when

they are normalised.

Do be very careful if you use the free area below the .END. to store

anything, and clear this area again as soon as possible. Do not forget

that the .END. cannot move down further when it meets a register with

something in it. Remember too that a register with something in the

leftmost two nybbles might be treated as a buffer header, and that a zero

in the next three nybbles will cause a lock-up when you pack or turn on.

An HP-41 made or repaired since the Summer of 1985 (yes 1985 - this is a

recent change in the operating system) can be taken out of this lock-up if

you turn it on while holding down the backarrow key. This produces a

MEMORY LOST, but on earlier HP-41s the buffers were cleared before the

backarrow key was checked, so you could not even do a MEMORY LOST to get

out of this lock-up.

Once you have written your synthetic program do make a record of it on a

sheet of paper, on a magnetic card or on Mass Storage. If the program does

go wrong you will be able to check for possible errors, and if you get

MEMORY LOST you will be able to put it back and change the part that is

wrong instead of having to start all over again. If you experiment with SP

then keep a record of what you are doing. Do not finish up with a result

which you cannot repeat because you have no record of how you got there.

If you are planning to let other people use your synthetic programs then do

describe them very carefully and give warnings of what they do. If you are

planning to use someone else’s synthetic programs then check what they do.

A few synthetic instructions behave differently on various HP-41 models (W

is an example of this). Do not submit badly documented programs to the

Users’ Library; follow the guidelines in their Reference Guide. When the

Library began to accept programs with synthetic instructions they published

-532-



some helpful guidelines in PPCCJ V8NG6P14-15. One point that has come

across very clearly is that the Library refuses to accept programs with

synthetic tones, no matter how strongly you feel a program needs them.

Do consider joining a users’ group. Better still, go ahead and join one.

The journals themselves are worth the money, they provide programs, advice,

and information about new products, as well as new ideas on SP. Do not

imagine that the groups are for children who swap games programs, or for HP

fanatics, or an outlet for HP sales personnel. The groups tolerate all

these people, but they are really for serious users who are pleased with

good products, critical of poor products, and keen to learn and help.

Exercises.

15.A One way to understand a synthetic program is to rewrite it. SST the

original version (unless the author says this is dangerous), make notes,

and try to write a new version. Try to change RAB in Section 15.3 so it

will analyse up to 24 characters. Hints on this were given in Section

15.3.

15.B Instead of the non-text GTO you can make a global label with C0,00,F0

in its first three bytes to analyse instructions in program memory. The

next byte is treated as a key assignment and is not shown, the following

fifteen bytes are displayed as a label name. Make such a set of bytes and

study their effects. Avoid executing this instruction - it causes a crash.

-533-





CHAPTER 16 - SYNTHETIC PROGRAMMING WITH EXTENDED FUNCTIONS

16.1 New tricks for old

The Extended Functions made many SP tricks obsolete (at least for those who

have Extended Functions), but provided scope for new ones. Byte-building

and analysing programs can be replaced by XTOA and ATOX. Curtain raising

to hide data registers can be replaced by REGMOVE, REGSWAP, and data files

in Extended Memory. On the other hand, new tricks can be played with

register d by using X<>F, STOFLAG and RCLFLAG, and there are many ways to

use Extended Memory. Additional Extended Functions available in the CX and

in modules such as the Extended I/O module can be used in SP. Of course if

you do not have the Extended Functions then you need SP to do what they do.

Non-normalised numbers (NNN’s) remain important, for example they are used

to address Extended Memory directly. Several of the Extended Functions

allow greater control of NNNs - they will be described in the next section.

Other Extended Functions let you store NNNs in Extended Memory and recall

them without normalisation. These will be described in Sections 16.5 and

16.9 but it is worth noting at once that SAVEX, GETX, SAVER, GETR

and GETRX do not normalise any data. SAVERX normalises the first and last

registers moved, both in their original positions and in the data file to

which they are moved. For example 5.001, SAVERX and 1.005, SAVERX both

normalise registers 01 and 05. REGMOVE and REGSWAP normalise the top

registers of the source block and of the destination block. With a control

value of sss.dddnnn both the registers sss+nnn-1 and ddd+nnn-1 are

normalised.

The indirect comparisons on the HP-41CX (X=NN? etc.) normalise any value in

a numbered data register before making the comparison. They will compare

NNNs safely with X if these are in registers Z, T, or L.

-535-



16.2 Alpha register operations

XTOA lets you convert any byte number in X to a byte which it adds at the

right of the Alpha register. It can therefore replace the routine BAB from

Chapter 14 to build up NNNs in Alpha. The Extended I/O module (called the

XI0 as well) has two functions XTOAL and XTOAR which add a byte at the left

or the right of the characters already in Alpha. Evidently XTOAR is the

same as XTOA. XTOAL can be replaced by XTOA, -1, AROT, RDN if you

do not have the XIO module. The HP-IL Development module (the Devel) has

the functions X-AL and X-AR which are the same as XTOAL and XTOAR.

ATOX lets you analyse any string of bytes in Alpha, starting with the

leftmost character. It is similar to RAB in Chapter 15 but it does not

tell you which position the character was at, and it cannot handle null

characters. However it can handle up to 24 characters. A null in the

middle of a text string is lost as soon as the characters to its left have

been removed. To check for a null you need to use ALENG. Consider the

string of hexadecimal bytes:

28,00,29

If you use ATOX once, this string will turn into 00,29 which is just the

same as 29 alone. To check for a null you need a subroutine that will do

something like this:

CF 00, ALENG,1, -, ATOX, X<>Y, ALENG, -, X#0?, SF 00, X<>Y, RTN

This puts the ATOX value into X, but also sets flag 0 if any nulls followed

the character. Register Y contains the number of nulls. For keyboard use

you could assign this routine to a key and execute it instead of ATOX. The

XIO and Devel modules have functions called ALENGIO and ASIZE?

respectively; both are equivalent to ALENG. The XIO provides the functions

ATOXR and ATOXL. The first is equivalent to -1, AROT, RDN, ATOX

unless the character at the righthand end is a null; the second is the same

as ATOX. The Devel has the same functions called A-XR and A-XL.

-536-



At times it is useful to check one byte in an NNN at a given position,

without removing that byte. This can be achieved by a combination of AROT

to put the byte at the lefthand end, followed by ATOX, then XTOA to replace

the byte, and another AROT. If null bytes are to be checked for then this

becomes much more difficult. The XIO function ATOXX lets you put a number

in X to specify which character you want, and it puts the corresponding

byte value in X without altering the value in the Alpha register. The same

function in the Devel is called A-XX. A corresponding function YTOAX

(character in Y to Alpha position X; Y-AX in the Devel) lets you insert a

byte into the Alpha register, replacing the byte at that position.

ATOXX and YTOAX are particularly useful when you are dealing with strings

which might contain nulls. Both functions use the number in X in the same

way to define a byte position in the Alpha register:

i. If X 1is positive or zero then it gives the character position counting

from the first non-null byte at the left. The leftmost character is

counted as 0. Positions larger than or equal to the number of

characters in Alpha give DATA ERROR. The largest valid positive value

in X 1is therefore 23 (not 24 as stated in the manuals for both

modules).

ii. If X 1is negative then it gives the character position counting from

the righthand end of the Alpha register. The rightmost position is -1

and the leftmost is -24, numbers below -24 give DATA ERROR.

Only negative values of X can be used to put a character to the left of the

first character currently in the Alpha register. An example of the use of

YTOAX will be given in the next section.

POSA will let you find a selected byte in the Alpha register and will

return its position using the same numbering scheme as in i. above. You

can follow this immediately with nnn, X<>Y, YTOAX to replace the selected

byte with a byte value nnn, thereby altering an NNN.

-537-



ANUM lets you convert an ASCII number (a text string) in Alpha back into a

BCD value (number that you can do arithmetic with) in X. ANUM is rarely

used in SP, but see APX in the next section. The XIO function ANUMDEL

extracts a number from Alpha, then deletes it. This lets you take several

numbers from the Alpha register which you can therefore use as a temporary

store for numbers separated from each other by a non-numeric character.

This can be quicker than data packing, specially if the numbers only have a

few digits each. ANUMDEL has no equivalent in the Devel.

The Paname module (see Section 12.8) provides all the Alpha handling

functions of the XIO and Devel modules, including ANUMDEL. If you do not

need other functions from the XIO or Devel then you may prefer the Paname.

16.3 Flags and numbers

X<>F 1is useful not only for providing more flags, but also for synthetic

operations. For a start, CLX, X<>F rapidly clears flags 00 to 07 so you

can then use them to build up a byte. X<>F, X<>F will normalise a number

in X, remove its sign and fractional part, without changing L - but the

absolute value of the number must be smaller than 256.

If you have used Alpha operations as above to extract a byte from an NNN

then you can use X<>F to put this byte into register d and study or change

the individual bits of that byte. One example is that of turning upper

case letters into lower case or the other way round. Upper case letters

begin with a nybble 4 or 5, lower case begin with 6 or 7, so it is only a

matter of setting or clearing bit 2. To turn a string of upper case

letters in Alpha (assuming there are only letters in Alpha) into lower case

you can use the short routine:

ALENG, LBL 01, ATOX, X<>F, SF 05, X<>F,

XTOA, RDN, DSE X, GTO 01, RDN, RTN

The routine finds the number of characters in Alpha, then uses a loop to

change each character and put it back. At the end the registers X, Y, and

-538-



L are left unchanged. An improved version of this routine can be used to

make printed text more legible than all capitals, or it can be used to make

text illegible on an HP-41 display since lower case letters are mostly

illegible in the display.

Note that flag 05 had to be set to set bit 2 of the letter. This is

because X<>F converts bits to flags starting at the right, whereas ATOX and

XTOA begin at the left. For example the byte A3 (decimal 163) is turned

into two different bit patterns by XTOA and X<>F.

163 , XTOA gives 1010 0011 (A3 hexadecimal)

163 , X<>F gives 1100 0101 (C5 hexadecimal)

You can see that X<>F produces a mirror image of the normal bit order. If

you want to reverse the order of flags 00 to 07 you can use one of these

routines:

-7 RCL d

ENTER X<> M

CLX SIGN

SIGN X<>F

LBL 01 -7

FS? IND Y YTOAX

ST+ L X<> L

ST+ X X<>M

ISGY X<>d

GTO 01 Rt

LASTX Rt

X<>F

R1

The nonsynthetic version on the left is 20 bytes long; it leaves Alpha and

X unchanged but is rather slow because it uses a loop to do the same flag

trick as RAB. Note the use of -7 combined with ISG so that flags 00 to 07

can all be tested; 7 with DSE would only work for 07 to 01 and would skip

-539-



flag 00. The version on the right is 19 bytes long; it leaves X, Y and

Alpha unchanged, but requires the XIO function YTOAX (you can replace this

with the Devel function Y-AX). Other flag mirroring techniques by A. van

den Brug, F. de Vries and M. Markov were described in PPCJ VI2N1P24.

RCLFLAG produces a text string which contains flags 00 to 43 preceded by

the three nybbles 1FF. This makes it impossible to ARCL the string and

ASTO it again as the 1FF would become 10F. If flags 00 to 03 are all set

then the second byte of the string is FF and (due to a minor display bug

described in Appendix C) register X appears to be empty. This does not

affect the flag values themselves.

RCLFLAG and STOFLAG can be used for various synthetic purposes. On the

simplest level they provide an alternative to RCL d and STO d. Another

simple use is:

RCLFLAG, 0, STO d, RDN, STOFLAG, RDN

This leaves flags 44 to 55 cleared - it is a simple way to clear flag 55

and so disable the printer, but you should clear flag 21 as well.

Since RCLFLAG pushes register d 3 nybbles to the right it can be used in

cases where an NNN has to be shifted by an odd number of nybbles. One

example would be moving register ¢ to produce an alternative £ CX routine.

You may have wondered why Alpha entry and editing can be restarted from the

keyboard by the APPEND function (ALPHA, SHIFT, K), but numeric entry

cannot be restarted. An APPENDX function would be useful in several cases:

-540-



ii.

iii.

You have entered a long number and made an error in one digit.

e.g. you do: 1.23456789E25 , ENTER

Then you realise you wanted 1.23456709E25

If you could press APPENDX then you could delete the 89E25 and replace

it with 09E25. As it is you have to press CLX and start again.

You see a result with the last two digits hidden by an exponent and

you want to see those digits.

e.g. a program displays the result 2.7182818 10

Could this be e x 10102

If you had APPENDX you could press it, backarrow three times, and see

the whole mantissa. It could be:

2.718281895

Not only is this result different from e (2.718281828 to ten places)

but also the last two digits are well over 50 which you could not tell

as the HP-41 does not round up digits hidden by the exponent.

You are using a polynomial expansion program and want to "tweak" the

last digit of a parameter to see what value gives the best fit. (This

is also used to overcome rounding errors when writing polynomial

expansions.)

e.g. You want to try changing the last digit of PI/2. You would do:

PI, 2, /, APPENDX

and you could change the last digit at once instead of entering the

whole number (and easily getting one of the digits wrong).

-541-



iv. You want to change the sign of the exponent without altering the

mantissa of X.

e.g. Change 1.4793 E12 to 1.4793 E-12 by pressing APPENDX, CHS.

Digit entry can be restarted by having flag 45 set but registers P and

Q must contain the right values too. This can be arranged by means of

the ANUM function as in the program APX here.

gielBL “APX"

a2
K
A4
85
86
87
a3
29
18
i
{2
13

{5
i6
17
18

14 ;

YIEW ¥

“DBLI -
2yl

RIKH

RCLFLAG

ASTO 4
VIER [
ASHF
ArCL [
STOFLAG

RIH
-

aRoy
RIH
ARUHA
ERT

The program is fairly easy to enter except for line 03,

which is the 6-character text string F6, 44, 42, 4C,

49, 84, 20.

APX does not alter your display mode but finishes with

all the digits of X displayed and numeric entry is

enabled. None of the stack registers or L are changed,

so you can use APX in the middle of a keyboard

calculation, then carry on. The Alpha register

contains the number in ASCII form and in FIX 9 mode,

followed by the original X value in register M. This

means that you can edit the number, then view the

original value, or recover the original value by doing

X<>M. APX works by temporarily storing an NNN in

register d, displaying X in FIX 9 mode, then restoring

flags 00 to 43. Flag 45 is left set, flag 55 is left

clear to prevent a printer from changing register Q.

The other operations keep the stack and Alpha in order.

Try assigning APX to a key, then going through examples i. to iv. above.

(I assign APX to key -32 since this is the same key as is used in ALPHA

mode for APPEND.) If you have anything assigned to the numeric entry keys

then you will have to be out of USER mode after using APX. You can press

USER after executing APX, or include CF 27 after line 02 of the program.

When you use APX do not press any keys until the PRGM annunciator is

-542-



cleared: number keys pressed before APX finishes will be ignored, while

pressing R/S will stop the program before it has completed its job.

APX 1is an excellent example of what Synthetic Programming can do. It

extends the HP-41 by providing a useful new feature that takes little time

and does not use much memory. You can use the HP-41 without this feature

but it makes life easier. You are not redesigning the whole HP-41, just

making it more helpful.

16.4 Registers, keys and programs

This section will cover synthetic uses of the Extended Functions which

control registers and assignments. To begin with consider the wuse of

curtain raising to renumber data registers. This was suggested in Section

149 as a way of letting two subroutines both use the same registers, say

00 to 09. REGSWAP does this more easily, by exchanging the register

contents instead of renumbering the registers. Be careful not to move

blocks which overlap (unless you are doing this on purpose to rotate or

shuffle a block) - the results of moving overlapping blocks were covered in

Section 10.3.

SIZE? is not likely to have synthetic uses, but it replaces routines that

are slow or require synthetic functions. SIZE? is surprisingly slow (for

an M-code function) because it uses an internal HP-41 operating system

function to check each data register until it comes to a nonexistent one.

Fortunately this operation does not normalise anything.

PSIZE was never achieved by Synthetic Programming alone. Note that it is

faster to use PSIZE than SIZE from the keyboard, as CAT 2 is searched

before CAT 3.

-543-



GETKEY (and GETKEYX) can save you the need to make temporary

synthetic key assignments. If you need to use RCL d ten times from the

keyboard it might be quicker to write a short routine LBL 34, RCL d, RTN by

using the Byte Grabber than to find a synthetic assignment program and

assign RCL d to a key. You could write other routines that perform

synthetic operations like this, and use a single control routine to execute

them:

LBL "XKEY", "KEY?", AVIEW, GETKEY, RDN, GTO IND T

Assign XKEY to a key as well and you can push that key, then key 34 to

execute RCL d, or another key to execute some other synthetic function you

need. A few will not work in a program; for example RCL b will recall its

own address. You can still assign other functions to the same keys as

well, so GETKEY effectively increases your total number of key assignments.

If you want to use a lot of synthetic functions from the keyboard you could

assign control programs to several keys, and each control program would

redefine the entire keyboard - say one program for synthetic RCLs, and

another for synthetic STOs.

One use of GETKEY is to prompt the user for a key to be used by PASN. Many

synthetic assignment routines were written before PASN became available,

but these are still necessary because PASN does not assign synthetic

functions. However PASN can be used to help make such key assignments more

quickly and without affecting any buffers. GASN (see Chapter 11) uses

PASN, and like PASN it cannot make assignments to the SHIFT key. GASN only

uses byte codes to identify the function prefixes and postfixes to be

assigned, not function names, but it contains no synthetic functions. Some

extremely clever assignment programs have been written to use Alpha names

for synthetic functions, just like PASN. The programs by T. Tarvainen and

G. Westen in DATAFILE V2N3Pl1 and in the book "HP-41 Extended

Functions Made Easy" are an example. An alternative way to use Extended

Functions in key assignment programs is to write very short assignment

programs. A good one by J. Franklin in DATAFILE V2N1PI12 fits on one side

of a magnetic card.

-544-



CLKEYS can be used with PASN. It is more dramatic than storing zeroes in

the key assignment flags to disable the assignments. However it recovers

all the space used by assignments, without affecting any buffers.

PCLPS belongs with this group of functions as it too clears registers and

makes more space available. A useful trick is to call a subroutine from a

program, PCLPS the program, then return to it. The .END. is moved up by

PCLPS so the return is to the free area below the .END. - this is

considered to be a Good Thing by many users of synthetics. One example is

GASN which uses this method to fall into the alarm buffer. The setup

program GASETUP has put a synthetic routine into the alarm buffer, and this

is executed to make a key assignment.

If you look at GASETUP you will find that it uses non-synthetic methods to

create a text string whose bytes make up the routine:

RDN, X<>¢, GETP, /, RCL N, X<>¢, RCL M, STO 00

It then sets an alarm with this as its message. The bytes are rearranged

by XYZALM so the routine executed by GASN in the buffer is:

RCL N, X<>c, RCL M, STO 00, RDN, X<>c, GETP, /

The GETP at the end retrieves the program GASN from Extended Memory and

restarts execution of it from line 01, where GASN stops or returns to the

program which called it. If an error occurs and flag 25 is set then GETP

will be ignored and the alarm itself will be executed as program steps. To

avoid this, GETP is followed by / which attempts to divide Y by the value

in X. This results in an ALPHA DATA error and stops the program.

As well as creating this text string which is later executed, GASN creates

an alternative register ¢ in register N, and a key assignment register in

register M. All of this can be done non-synthetically by using XTOA and

appending characters to Alpha. Register O contains the program file name

"GASETUP"; this name is used by PCLPS to clear the program and later by

-545-



GETP to retrieve it. The file name is seven characters long so that none

of the characters in N are used in this name. The contents of register N

are:

1D, 1D, 31, 69, 0C, 01, 01

This means that register 00 is at address 0CO, so that STO 00 puts the new

key assignment there. 169 is in the right place and Extended Memory lies

immediately below register 0CO (we shall come to this in the next section),

so GASN can be safely interrupted or single-stepped.

16.5 Understanding Extended Memory

The normal user can treat Extended Memory as a single block containing 127

or 365 or 603 registers, depending on how many Extended Memory modules are

plugged in. At least two registers are used as file headers, and one is

used to contain an end-of-data marker, so a maximum of 600 registers can be

used to store data in files. Synthetic programmers need more details so as

to use these registers for other purposes. These details will be given

here before any programs. Extended Memory fits into the HP-41 RAM memory

layout as shown in Figure 16.1. If you compare this with Figure 8.5 you

will see that Extended Memory has been put below and above the Main Memory.

The 127 Extended Memory registers in the Extended Functions module (EFM)

lie below Main Memory, the registers in the two Extended Memory (EM)

modules fit in above Main Memory.

Each block of EM is connected to the others by a link register at address

040, 201, or 301. The total number of Extended Memory registers in the EFM

(or the HP-41CX) is 128, which is a multiple of 16. Why do the Extended

Memory modules not have 256 registers each?

-546-



Absolute

Address

3FF

3EF

301

2FF

2EF

201

200

IFF

OFF

0CO

O0BF

041

040

00F

000

 

16 register GAP
 

Extended Memory
Module 2

(port 2 or 4)
 

Link register
 

17 register GAP
 

Extended Memory
Module 1

(port 1 or 3)
 

Link register
 

1 register GAP
 

Memory Data
modules
or

Quad Programs
Memory
module MAIN
or MEMORY

built-in Free
Quad area

Internal Buffers
memory

Assignments

 

Extended Memory
in Extended

Functions module
 

Link register
 

GAP
  Status Registers  
 

16 unused spaces
+238 data registers
+ 1 link register
+ 1 unused space

/
N

16 unused spaces
+238 data registers
+ 1 link register
+ 1 unused space 
up to 256 registers in Quad
or single memory modules

—
/\

64 internal data registers
(built into every HP 41)

1 link + 127 data registers

/
N

)48 unused spaces

]16 Status registers

Figure 16.1 HP-41 RAM memory including Extended Memory

-547-



Whenever the HP-41 needs to address RAM built into a peripheral device (for

instance send messages to the printer or the display) it must select the

peripheral so that data will be sent to it. This de-selects the RAM in all

other peripherals so data will not be sent to them. However the RAM in the

HP-41 itself can never be de-selected. Anything sent to a peripheral is

also sent to the HP-41 RAM. To avoid writing to data registers when it is

addressing a peripheral the HP-41 must select an areca of RAM that is not

used. RAM is selected in blocks of 16 registers, so a single unused

register will not do - the block most commonly selected is in the gap above

the status registers, but other areas were used sometimes. The Card Reader

selects the top 16 registers 3F0O to 3FF, so these cannot be used to hold

data, as they would be overwritten by Card Reader operations. (In fact one

Card Reader function uses the next lower block of 16 registers, see the VER

bug in Appendix C.) Register 200 must also be absent, to provide a break

between Main Memory and Extended Memory. All Extended Memory modules

have to be the same so that they can be plugged into any port, so they must

all be without the bottom one and top sixteen registers. When the display

driver synchronization bug (see point xii. in Section 4.1) was fixed, the

block of registers 2F0 to 2FF was selected as an unused area, so even if

you do not use a Card Reader you must be prevented from using this block.

To allow all of Extended Memory to act as if it were a single block the

link registers connect the addresses in each module to the next one. They

are laid out as shown in Figure 16.2.

-548-



Nybbles 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 

Uu u ¢ ¢ C B B B N NNT T T

 

Figure 16.2 Extended Memory Link register contents

The fields T, N, B, C all contain three-digit hexadecimal numbers:

T =

N =

U =

Address at top of this module, OBF or 2EF or 3EF.

Address of next module, 2EF or 3EF or 000 if no next module.

Bottom address of module before this one, 040 or 201 or 301. The

first block (in EFM) has no previous module - B contains either zero

or the current file number after EMDIRX, or after EMDIR (or CAT 4) has

been executed on an HP-41CX and allowed to finish.

Current working file number. If you are using the second file in EM

then C contains 002. Only two digits are normally needed, but all

three are used. C 1is only used at address 040, it is left clear at

201 and 301.

Unused but useful. The EFM puts 00 in here when Extended Memory is

initialised (e.g. after MEMORY LOST) but does not use this field. If

you want to recall this register (to check the current file number)

you should put the byte 10 here, but you must get the fields N and T

right as well. This will avoid normalisation when you recall this

link register, but must be done carefully (John Franklin suggested

this in DATAFILE V1IN3P28d).

The link fields are needed to tell the Extended Memory functions where to

go if any operation moves from one block of EM to another. One important

use of these fields is to tell which port an Extended Memory module is

plugged into if only the EFM and one EM module are plugged in. When you

-549-



first plug in any Extended Memory the link registers might contain

anything. They are initialised as soon as you do an EMDIR, but not all the

fields are set as described above. Only when you create a file that uses

part of an Extended Memory module will all its link register fields be set.

The field N in register 040 points to 2EF if both EM modules are plugged in

when the pointer is initialised. If only one EM module is plugged in then

N in register 040 can contain either 2EF or 3EF; 2EF if the module is in

port 1 or 3, 3EF otherwise. The field N in the first EM module will

contain 000 if there is no second EM module, otherwise it will be

initialised to point to the other module when that comes into use.

All the above mean that you should store one of the following strings of

nybbles into register 040 if you want to be able to recall it later:

10,001,000,000,0BF if there is no EM module, or if you have not yet used

an EM module.

10,001,000,2EF,0BF if there is only one EM module and it is plugged into

port 1 or 3, or if there are two EM modules which were

plugged in at the same time, or if there are two EM

modules and one was plugged into port 1 or 3 first.

10,001,000,3EF,0BF under any other circumstances.

If all the fields are initialised in all three modules, then the middle one

is removed for a short time, the fields are re-initialised, and the module

which was in the middle is replaced then it will be outside the link

between the first and last module, and you will not be able to use it.

This is explained in Appendix C.

Each file in Extended Memory has two header registers. The first contains

the file name, up to seven characters long. Names of less than seven

characters are filled out with blanks (not nulls) at the right. Names with

commas are illegal, since commas are used as separators in the Alpha

register, but such names can be created synthetically to make a file

-550-



inaccessible. This i1s rather like having a program with no global label -

the remedy is the same; use EMDIR or EMDIRX to make this file the current

one. You will not be able to PURFL a file with a name containing a comma,

except by clearing all of Extended Memory. A name consisting of seven FF

bytes is also illegal, and dangerous - see below.

The second header register contains status information arranged as in

Figure 16.3.

Nybbles 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T U U U U C ¢ C R R R § S S

 

Figure 16.3 Extended Memory file status header

The fields T, U, C, R and S all contain hexadecimal numbers:

T = file type - 1 for program files, 2 for data and 3 for text files.

Other file types are not recognised by the EFM but can be used by

different modules. The CCD module uses 4 for matrix files, 5 for

buffer files and 6 for key assignment files. The Advantage module also

uses 4 for matrix files.

S = file size. This is the number of registers in the file, not including

the two header registers. The total file length is obtained by adding

2 to S; if you put FFF in this field then the total file length will

be interpreted as 1 register so the second header word of this file

will be treated as the name of a file that comes next, and the first

data register of this file will be used as if it was the file status

header of the next file. Each file contains a whole number of

registers so S is an integer.

-551-



R = record pointer. In data and text files this gives the number of the

current record (the first record in a file is number 0), in program

files it contains the program size in bytes.

C = the character pointer in text files. It holds the number of the

current character in the record pointed to by R; the first character

in a record is number 0. Only two hexadecimal digits are needed

because records cannot be over 254 bytes long, but three nybbles are

used.

U = four unused nybbles. The absolute address of the register last used

is often put in the leftmost three nybbles by operations on text and

data files, but it is only left here after the operation has finished

so you will not gain anything by putting values in here. You can use

this value to check which register has been used if you want to study

or alter Extended Memory.

You still need to understand file contents before you can begin to

manipulate EM files. Data files are easy; each register contains zero when

the file is created or cleared, otherwise it contains a seven byte value

copied to it from X, from a data register, or from an external device.

Each register in a data file is treated as a separate data record. Program

files are easy too; they are copied from program memory byte by byte,

including nulls (nulls that come before the first step of a program are

copied too), compiled GTOs and XEQs, global label key assignments and even

the .END. or END. The first byte of the program is copied to the first

byte of the file (byte 6 of the first register after the second header).

One extra byte is put in after the end of the program; this contains a

checksum (the sum of all the program bytes modulo 256). It is not included

in the byte count, but can add a whole register to the file length if the

program itself contains a number of bytes which is an integer multiple of

seven.

Text files consist of records each of which can contain from one to 254

characters. The first byte of each record gives the number of bytes in

-552-



that record. This header byte is not included in the calculation of that

number. A text record which contains "FRED" will be made up of the bytes:

04, 46, 52, 45, 44

length=4 F R E D

A text record header byte of 00 could only precede an empty record, so it

is not used. A header byte of FF marks the end of a file - the file can

expand into any space after it. If you delete one or more characters from

a record then the end-of-file mark is copied to its new position but the

data after it are not changed. This means that deleting six characters one

at a time will make six copies of the FF byte, producing a string of seven

FFs. If you delete the last record in a file by using DELREC (or by using

DELCHR on a record which contains only one character) then the record

header is replaced by FF but nothing else is changed.

Just as a text file is terminated by an end-of-file byte, the last file in

EM is followed by an end-of-memory mark, which is a register containing

seven FF bytes. If the last file in EM is deleted then this marker is just

inserted after the previous file, leaving all other data undisturbed. If

any other file is deleted then all the following files, and the end mark,

are copied up, but the data past the new end mark are left unchanged. If

all files in EM are lost (for example because register 040 is altered) then

an end mark is put at the top of EM but nothing else is changed. This

means that you can recover the data in EM just by putting a file name into

register OBF. Similarly you can recover the last file, if it was deleted,

by putting a file name into the register immediately after the end of the

previous file.

A simple way to access all the registers in Extended Memory so that tricks

like this can be played is to change the status register of the first file

in EM, making it into a data file with a length of FFF. This trick,

invented by Clifford Stern, lets you recall any register from EM, just by

using SEEKPT, GETX.

-553-



The end-of-memory mark is not unique. One way of making a string of seven

FF bytes is to delete six characters, one at a time, from a text file as

described above. You could also create a text string containing seven or

more FF characters by using APPCHR or INSCHR. Synthetic programs with text

strings containing seven or more FF bytes can be saved in program files.

Any of these operations could produce a register in EM containing seven FF

bytes. Furthermore NNNs made of seven FFs can be saved in EM by use of

SAVEX. The original version of the EFM would not check if a string of

seven FFs was at the end of a file but would stop copying, for example

during a PURFL, as soon as it came to any such string. This is a bug, and

can lead to further bugs described in Appendix C.

Extended Memory operations may seem to be slow. This is because they check

the integrity of Extended Memory every time they access a register. One

reason to make this check is that EM is not continuous, so addresses have

to be altered if a file is partly in one module and partly in another.

Another reason is that an EM module may have been removed since the

previous EM operation. Nevertheless, the checking is rather too thorough,

involving going through all files and then through the registers in the

current file (the "working file") to locate the current record. For most

EM operations this could have been replaced by a much faster test, for

instance field C in register 040 could contain the current address (field U

could contain the current file number), and it could just be checked to see

if it 1is still there. It is too late to change the Extended Functions, but

new modules could use methods like this. One part of the search is that

the current file is looked for by name, not just by the file number in

field C of register 040. The name is held in a CPU register which can be

altered by other HP-41 operations, such as STO. If this register contains

an NNN which is a file name then the original version of the EFM might stop

at the file whose name is stored, and then try to use that file instead of

the current file. This rarely happens, and can be gotten around by setting

flag 25, and STOring something that is not a file name, then trying again

if flag 25 is cleared. The current file number is still saved so a second

search should work. Newer EFMs and the Extended Functions in the HP-41CX

check both the file name and the file number so this problem cannot arise.

-554-



(My thanks to Bruce Bailey who helped me understand these EFM problems.)

16.6 Manipulating Extended Memory

Having explained the organisation of EM I shall now provide a few more

examples of manipulating it. The subject is too complicated to cover fully

in a chapter, but the rest of this section will serve as an introduction.

The example programs show the sort of thing that can be done. The book

"HP-41 Extended Functions Made Easy" goes into more detail and provides

some important programs for synthetic programmers who want to use EM. Mass

Storage will be mentioned under points 3 and 4, but only briefly.

1. Clearing Extended Memory

There is no single function to clear all files from Extended Memory. On a

41CX you can do 1, EMDIRX, PURFL repeatedly until an error occurs, showing

there are no more files. The PURFL bug on the older modules (which show up

as version 1B in CAT 2) lets you clear all EM by doing "filename", PURFL,

SEEKPT. ZENROM provides the function CLXM to do the job.

You can clear EM very quickly by altering the value in register 040:

4, X<>¢, CLZ, X<>c, RDN

This uses just seven bytes, alters only register T and is faster than CLXM.

It is sufficiently short that it can use an "unsafe" value in register c,

but of course it must not be single-stepped. It leaves the contents of EM

unchanged, except for clearing absolute registers 040 to 045. If you have

no EM then the CLZ will halt the program (unless flag 25 is set) and so

give MEMORY LOST. CXM below avoids all these problems: it can be single-

stepped, stores zeroes in all of EM except the first two registers and the

link registers, and it does not give MEMORY LOST if you have no EM.

-555-



@leLBL “CXM" 18 EMDIR
i1 CRFLD

@2 SF 25 1

B3 "gexiBee" 12 PURFL

84 %> [ 13 %43 [

85 ¥(> ¢ i; Ehg

35 g%g
29 BYTES

i X2 G

A8 ¥N
y o

@9 RIN
Line 83 is:-

F7.84,88,81,69,85,08,088

This works like the first version, by putting the statistics block at

register 040 and using CLZ to clear 040, but it uses an acceptable value

of register ¢c. Then it creates an empty data file which fills the whole of

EM, and is automatically filled with zeroes. Finally it purges this file,

leaving EM cleared and free. None of the stack registers are altered, and

Alpha is cleared. The use of CLZ to clear EM was suggested by AMM.

Canas in PPCJ V1IN8p31-32.

2. Using Extended Memory as normal memory for data or programs

Figure 16.1 shows that there is a continuous block of memory from 040 to

1FF. If you have an EFM or HP-41CX you can lower the .END. to register 040

and have a total of 448 registers for use as data and program space. If

you want to rewrite a program that used 300 registers to use 400 then it

can be easier to do this than to rewrite the program to use EM data files.

This trick is particularly useful when you want to use more than 300

registers with a program in a plug-in module. You cannot rewrite the Maths

module to use EM for example, and the normal memory limits the Maths module

matrix operations to 14x14 matrices if you have three memory modules, or

16x16 matrices with a quad memory module, a 41CV, or a 41CX. Should you

wish to use slightly larger matrices you can lower the curtain to address

061 and have room for matrices up to 19x19. A 19x19 matrix can take almost

20 minutes to invert with the Math matrix programs so it would be unwise to

go further even if it were possible.

-556-



Some precautions are obviously needed. You need to take great care to

protect any EM files, assignments, alarms or other buffers as they can be

overwritten if you use their area. It is safest to delete them all. If

the .END. is below register 0CO then the HP-41 will not let you lower it,

so you should not PACK or GTO.. until you have done all the program editing

you want to. PSIZE will let you move the curtain in both directions

though. It is safer to leave register 040 unused and to put the .END. in

register 041, so that you will see .END. REG 00 to remind you not to move

the .END. . You must never execute EMDIR or CAT 4 as this might put an

end-of-memory marker into register OBF, in the middle of your program.

Here is a step-by-step procedure for setting up 414 data registers (enough

for a 19x19 matrix) and 33 program registers (enough for a program on two

sides of a magnetic card).

i. Make sure you have STO c available either assigned to a key or inside

a program in a ROM. No other synthetics are required.

ii. Clear Extended Memory registers 041 to 060. These registers will be

used to store programs so they must be clear. You can use one of the

methods described above, or a function from a ROM (PPC ROM, ZENROM,

CCD module, or an EPROM set).

iii. Execute EMDIR or CAT 4 to re-initialise register 040.

iv. Put the number 4.100169041E40 into register X, then execute STO c.

This makes absolute register 041 into data register 00.

v. Do 1E20, STO 00. This simulates a packed .END. in register 041.

vi. Do 6.200169062E41, STO c. This puts the first statistics register and

register 00 at absolute register 061 and it puts the .END. at register

041.

-557-



vii. Execute CAT 1. This gets you into the new program area. RCL 00 is

displayed instead of the .END. because at present there is just a byte

20 in register 041 (put in at step v.) instead of a real .END. .

viii. GTO.000 to get to the top of the program area. You can now go into

PRGM mode and enter a program. Begin with a global label; this will

cause the bytes in register 041 to be turned into a proper .END. .

You can also read a program from a card or via HP-IL as this too will

set up an .END. .

ix. Execute CLRG to clear data memory, and CLKEYS to make sure no data

will be interpreted as key assignments.

You now have 414 data registers (and 33 program registers). You can check

this with SIZE? and change it with SIZE or PSIZE. You can enter programs

into the program area, but if you GTO.. or PACK then you cannot expand this

area again later. Now write a program to use the Math module routines for

up to 19x19 matrices, or execute them from the keyboard.

Another trick is to run programs that are in program files without copying

them back to main memory. To do this you need to change register b so that

it points to the required program in EM. This is easy if you know where

the program 1is, for example if it lies at the very beginning of EM.

Imagine you have a large program which needs a lot of data registers. You

test the program on a few registers, then clear EM (see above) and SAVEP

the program. If it is less than 124 registers long then it will all lie in

the EFM (the part of EM that begins at absolute register 0BD). You can now

delete the program from Main Memory (use CLP or PCLPS) and increase the

SIZE to a much larger value. Now go to the program by storing its first

address in register b:

CLA, 190, XTOA, RCL M, STO b

Press R/S to run the program. If the program file is not the first one in

EM then you must work out the absolute address where the program begins

(remember this is two registers below the beginning of the program file)

-558-



and store this in register b; ways to do this have been the subject of many

articles in user group journals. A program in EM will only run correctly

if it all lies in the same block of registers, so you must make sure that

it does not get saved partly in one block of EM and partly in another. If

you do not have any EM modules then either the program will all be saved in

the root area, or it will not be saved at all. If you have one or two EM

modules as well then do an EMDIR (or EMROOM) and if there are more than 237

unused registers then create a dummy file to leave only 237 registers.

Uncompiled backward jumps will work incorrectly if the program was the

first one in CAT 1 before it was saved, because the HP-41 will search down

to the END and will then go to the curtain and restart the label search

there. Placing a dummy END at the beginning of program memory before

SAVEPing the first program in CAT 1 will avoid this problem, as the

program’s END will then give the distance back to the beginning of the

program, even if it is in EM. If you run a program anywhere in EM with

some uncompiled forward jumps then these will work and will become

compiled, but the program checksum will be probably be changed so you will

not be able to read the program back into Main Memory. The same will

happen if you run any program with reverse jumps, unless it was the first

program in CAT 1. The program "RPF" in "HP-41 Extended Functions Made

Easy" corrects the checksum if something has happened to it. XEQ of global

labels in main memory and programs in ROMs will work if your program is in

registers 0BD to 041, but any return to an address above register 1FF will

fail because of the way that return addresses to RAM are stored (explained

in Section 15.4). For the same reason an END in registers above 1FF will

terminate program execution but will leave the current address at the wrong

place. Use RTN to stop a program at an address above 1FF if you want to be

able to restart it. RTN does not try to alter the return stack if the first

return is 00; it just stops the program.

3. Saving Extended Memory files.

There is no simple way to save EM files on magnetic cards or on Mass

Storage devices, unless you have the Paname module whose functions WRTEM

-559-



and READEM let you save all of EM on Mass Storage and read it back (in the

same way as the HP-IL module functions WRTA and READA let you save and read

all of main memory). Otherwise there is only SAVEAS which copies text

files to Mass Storage. The slow and safe method of saving other files is

to copy them back to Main Memory and then to save them on cards or Mass

Storage, provided you have enough room in Main Memory. This is not too bad

for programs, which can be copied to Main Memory with a single instruction,

and then to cards or Mass Storage with another. Data files can be copied

from a file "name" to Main Memory and then to cards with GETR as follows:

SIZE?, "name" ,FLSIZE ,X>Y? ,PSIZE ,E3,/ ,GETR ,WDTAX ,RDN, RDN

You can use the same method for copying to Mass Storage, but create a data

file and copy to it with WRTRX. Text files must be copied to the Alpha

register 24 characters at a time, then to data registers by means of

ASTO IND X, ASHF, ISG X, etc. and each end of record should be recorded in

some way too. The data registers used must then be copied to cards or Mass

Storage. This is a slow process, and it can lose null characters which is

another reason why synthetic methods are sometimes preferred. Reverse the

methods described above when you want to read a file back into EM.

The synthetic method is to move the curtain so that the file to be copied

appears to be in Main Memory, then use WDTAX or WRTRX to write out the file

registers directly (and later RDTAX or READRX to read them back). Some

care is needed to prevent the program stopping (for instance because the

Card Reader makes the batteries go flat) before the original version of

register ¢ is restored. Various programs to do this have been published,

one is in DATAFILE VI1N3P40, and several are in the book "HP-41 Extended

Functions Made Easy". Newer and better versions are published from time to

time in user group journals. The Card Reader and Mass Storage operations

save and replace registers without normalising them, except that the first

and last registers of a block are sometimes normalised. To read back the

files you must reverse the process.

-560-



A third method is to change the file type. If you make all of EM into one

large data file (as mentioned in the description of the end-of-memory

marker above), then you can find the file header, and temporarily change a

program or text file into a data file. Then you can read the file into the

main memory data registers and save it. As the first and last registers may

be normalised you could put the file length, (and its type as a fraction

added to the length) into them. It does not matter if this is normalised,

and you might need the length anyway. Once again reverse the whole process

to read the data back, then change the file type back to what it was.

4. Extended Memory and Mass Storage

One more way of saving program and data files is to change their file types

to "text" and use SAVEAS to write them directly to Mass Storage (and GETAS

to read them back). This is a quick but dirty method; SAVEAS copies text

records until it comes to one whose header is an FF byte. You will need to

take precautions against stopping too early at an FF byte or going past the

end of the file without finding an FF byte. The best thing to do is to

create files just long enough to hold the file you are copying to or from

EM. You will also have to save and restore the file status header.

The above is one example of Synthetic Programming with Mass Storage. In

some ways Mass Storage can be treated as an extension of Extended Memory,

and SP can be used to study Mass Storage files just as it was used to study

EM files. An important application of this is to recover data and

directories on damaged HP-IL cassettes or disks. That is really beyond the

scope of this book. Programs to repair cassette directories require an

Extended I/O module (one by C. E. Reinstein appeared in PPCCJ VION10p9-11)

or a Devel module (see program by M. Backe in PPCCJ V11N1p59-60). A set of

HP-41 Mass Storage Utilities by M. Markov 1is appearing in the CHHU

Chronicle in serial form, beginning with CHHU C VIN3pl2-14,

-561-



5. Other tricks

Two other synthetic uses of Extended Memory are to save assignments of keys

in EM and to store alarms or other buffers in EM files. Once these are

stored in EM they can be removed from Main Memory, to save space, or so

that key assignments can be edited without affecting any buffers. Programs

to do this are in journals and in "HP-41 Extended Functions Made Easy".

You can use SAVEP to save a program in EM and then find its length in bytes

by using RCLPT. What can you do if there is not enough room for the

program in EM? Even if SAVEP does not work it saves the program length in

bytes in nybbles 5, 4 and 3 of register Q, so you can get the length from

them. SAVEP also saves the program length in registers in nybbles 2 to 0

of Q. Perhaps the best feature is that it saves the address of where the

program begins in Main Memory in nybbles 12 to 9. This lets you alter,

analyse, or print the program without using the copy in EM.

Extended Memory and the Extended Functions provide some interesting places

for the synthetic programmer to hide data, particularly non-normalised

numbers (in addition to registers M,N,O,P and a few other status registers

available to every user of SP). Values stored in data files can be

recovered without normalisation by GETX, but the file header registers

provide extra room for a few bytes, and even the file name can be a NNN; on

an HP-41CX this can be recovered by EMDIRX. Similarly values can be put in

the message saved with an alarm and can be recovered by RCLALM. Numbers

can be stored for a short time in the time and date if you do not use

these, but remember that they will be changed continuously. A number

between 99.9 and -99.9 can be stored in the clock accuracy factor and

recalled to an accuracy of one decimal place, but this should only be used

if you do not use the clock. A much better way to store a number like this

is to use X<>F to store an integer between 0 and 255 in flags 0 to 7.

-562-



16.7 Understanding buffers and a programmable PACK

In computer jargon a buffer is an area of memory where data are stored

temporarily on their way between a computer and a device like a printer or

Mass Storage. This buffer prevents the data from running into the

computer’s main memory and causing trouble, rather as a railway buffer

prevents trains from running onto the platforms. On the HP-41 the buffer

area is used by some modules to store temporary data as well. For example

the Plotter module uses a buffer to store information being sent to the

plotter. The buffers can also be used for any information that belongs to

one particular module and which can be deleted when that module is removed.

For example the alarms cannot be executed if the Time module is taken out.

The alarm buffer is therefore deleted if there is no Time module, so that

the buffer area becomes free for other purposes. This is annoying if you

take out the Time Module for a short time, and you may want to prevent

deletion, for example by storing the alarms in EM.

Each buffer has a header, followed by data (in higher-numbered registers),

and some modules put an extra register at the top of their buffers too.

The buffer header is arranged as shown in Figure 16.4.

Nybbles 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 

X X NN P P P U U U UMU U

 

Figure 16.4 Buffer header structure

The two hexadecimal digits XX identify the module which owns the buffer.

AA identifies the alarm buffer, BB identifies the Plotter module buffer, CC

is the HP-IL Development module buffer, EE is an Advantage module buffer,

and 55 identifies a CCD module buffer. Other buffers may be used in

future.

-563-



NN is the length of the buffer in registers, including the buffer header,

and the buffer end register if there is one.

The Alarm buffer does not use any other fields; they all contain zeroes.

The HP-IL Development module buffer uses PPP as a pointer to a selected

byte, and M as a marker set to 1 if the buffer pointer is incremented

automatically every time a byte is examined, or 0 if the pointer is not

incremented. Other buffers can use this area in various ways. The areas

marked U are not presently used, but some future buffers may use them.

Whenever the HP-41 is turned on or packing is carried out the area

beginning at register 0CO and ending at the .END. is checked. (If you set

the .END. pointer below register 0CO then this search will not be carried

out, and you can put what you like in this area, or remove modules without

losing any buffers. Time module alarms will not activate either.)

Registers with FO in nybbles 13 and 12 are treated as key assignments and

removed if they are unused. Registers with anything else except 00 in

these two nybbles have them changed to 0X, and the HP-41 skips to the

beginning of the next buffer. A register with zero in it is treated as the

end of the buffer area and the checking is finished. (Another way to

protect buffers from deletion and to prevent hang-ups is to put a zero

register below them.) Then each module plugged into the HP-41 is allowed

to check for any buffers that belong to it and to reset the 0X back to XX.

Finally any buffers left with 0X at the beginning are deleted. If NN

contains 00 then the buffer length is zero, so the next address checked is

the same as the one that has just been checked, and the HP-41 hangs up.

Above the header are the buffer contents. These depend on the needs of the

module which made the buffer. The Time module puts one or more alarms into

the buffer. [Each alarm begins with a single register which contains the

alarm time and date, stored in nybbles 13 to 3 as a binary number of tenths

of seconds since the first of January 1900. Nybble 2 contains a 1 if the

alarm is a repeating alarm, nybble 1 contains an F if the alarm is

activated past due, and nybble 0 contains the number of registers used to

-564-



hold the message, or 0 if the alarm has no message. The repeat time, if

one was specified, is stored as a number of seconds in nybbles eleven to

five of the next register up. Any message is stored in one or more

registers above this, with register M at the top and the others below it.

If any of these registers is completely empty, the Time Module puts a byte

value 10 in byte 1 in its copy in the buffer. The structure of this buffer

and others is shown in the "HP-41 Synthetic Quick Reference Guide".

As an example of synthetic control of buffers, CLB is a program to delete

the first buffer in the assignment and buffer area. This is usually the

alarm buffer, and the main use of CLB is to replace the CLRALMS function of

the HP-41CX for those HP-41 owners who have Extended Functions and a Time

module but becareful if you have any other buffers). A RCL will normalise

the first byte of a key assignment register to 10 - the program replaces

this with FO and puts back the register. The first byte of all the buffers

that are used so far will be normalised from XX to 1X, and (if there are no

buffers) the first byte of an empty register above the assignment area will

be 00. Therefore if the first byte is not 10 then the program replaces it

with 00, puts the register back, and finishes. Since no module uses 00 as

its buffer identifier, the buffer will be deleted as soon as you pack or

turn the HP-41 off and on again.

To save you even this trouble the second part of the program does a

programmable PACK. You can use this routine, PPK, on its own. If you set

flag 52 and execute a numeric entry then the HP-41 starts to program itself

until there is no room left, then it does a PACK. By putting something

into the register immediately below the .END. , PPK forces this PACK to

be carried out at once, before any memory is changed. Then the register

below the .END. must be cleared again. The only problem with this process

will arise if the register immediately below the .END. already contains

something - this is extremely unlikely if you enter the program and pack it

manually before using it the first time.

-565-



The two programs contain several synthetic text strings:

Line 02 is F6,30,31,69,01,00,01. Line 06 is F1,10. Line 13 is F2,7F,F0.

Line 22 is not synthetic, it just appends 6 asterisks, other bytes will do.

Line 38 is not synthetic either, it just appends 5 asterisks.

Line 54 is F7,F0,00,00,00,00,00,00.

Line 56 is F6,30,31,69,01,00,01 - the same as line 02. Line 64 is F1,08.  

 

25 ¥{r B LASTY P2y ¢ g;_0x;;

27 51002 o8 * IOT g4 233
23 RON 51+ 74 PIM 85 3.';'.tm¥

23 150 ¥ 52 17 75 Ky ¢ B6 ALMCAT
38 670 Al 53 - 76 CLI a7 “BACK"
3Rt T4 Teereesn 77 CLST A% ASTO A1
iz R GRCL T 78 OLA 9 XEQ "rig-

WD ¥ 33 510 ¢ 56 “Blires” 79 CF 25 1BoLEL *BACK"

IR0 ¢ 58 %y ¢ 81 16N 12 END
Z 36 CLA 39 XY a3 ¥=@? s

14 RIN 37 870 I 6B STO IND 2 83 GT0 IND @1 43 BYTES
15C‘!s { 38 "hekrrxs f1 ¥y 34 TLY

; 39 0LY 62 (¥ ¢ 85eLBL 73
48 570 63 RCL o 86 ALENG
417 b "4 87 X#V?
42 XEQ 03 65 ASTO d o
41 16 £6 SF 25 89 ¥x@?

: 44 ol 67 . 9 ATOY
2z 43 6 634LBL A8 91 END 187 BYTES
23 %N 46 ¥EQ 3 69 5T0 d

By now you should have had a lot of practice at entering and using

Synthetic programs, so I shall only give an outline of what these do and

how they work. CLB first changes register ¢ so that the first data

register is at absolute address 010 (this makes sure there is a register

just below the curtain). It then recalls registers one at a time, starting

at register 176, which is absolute address 0CO, the first of the assignment

registers. The byte 10, which shows up as e in the listing, is compared

-566-



with the first byte of each register checked. If the two are equal then

CLB skips to LBL 02 where it restores the FO at the front of the assignment

and puts it back where it belongs. (The FO was put into Alpha at line 13,

then Alpha was rearranged to put the FO at the beginning of register N).

If the byte tested is not 10 then lines 19 and 20 replace it with 00, and

lines 26 and 27 put the zero into register Z as well so that line 29 will

not repeat the loop. Steps 31 to 33 replace register ¢ so that the routine

PPK does not need to make any assumptions about the stack if it is called

separately.

PPK must first find the address of the .END. - this can be done by the PPC

ROM routine E? but some people do not have this module, so lines 35 to 51

do the job. In case one of the bytes of the .END. address is a zero the

subroutine at LBL 03 is called twice to provide a zero or the ATOX value,

depending on whether or not there are any zero bytes at the beginning of

the text in Alpha. Lines 52 and 53 subtract 17 from this address to find

the number of the register immediately below the .END. when the curtain is

at absolute address 010. Lines 54 to 60 move the curtain (putting the same

value into register ¢ as at line 04) and then put the byte string

F0,00,00,00,00,00,00 below the .END. . This string is used because it will

be treated either as a buffer top (as with the alarm buffer) or as a null

key assignment, and should not do any harm. Lines 61 and 62 restore the

original register ¢ in case something goes wrong during the packing process

and you have to interrupt the program. Line 63 saves register d and lines

64 and 65 set flag 52, the PRGM mode flag. Line 66 sets flag 25 so that

the number entry at line 67 (a decimal point on its own) will cause a

PACKING but will not stop the program. When the HP-41 tries to program

itself in PRGM mode it puts a number at every second line, beginning one

line beyond the original number entry, and PPK therefore restarts at the

second line after the number entry, which is where it tries to put the

first number and fails. Line 68 is therefore a NOP which has to be there

just to fill the step which is skipped. Lines 70 to 75 put back an empty

register below the .END. and then restore the original register c. Lines 76

to 78 tidy up. If the display were not cleared it would continue to show

PACKING.

-567-



When memory is packed, the current program step is not lost (otherwise you

would lose your place every time you PACKed while entering a program), so

PPK will continue after the packing. However packing can move programs in

memory, so any return addresses could be wrong. Therefore PACK clears the

return stack. PPK can thus only return to the program which called it by

doing GTO IND global label. The version shown here looks for the label

given by register 01, but steps 80 to 82 check if register 0l contains a

text string - if not, then GTO IND 01 could restart execution of part of

the program, so GTO IND 01 is not executed. Now for a sting in the tail.

I have always said that programs should stop at their END - therefore I do

not put a STOP or RTN after line 83 but let the steps down to the end

execute too. They have no effect since the stack and Alpha have been

cleared, and the program finishes at the END. This may seem a painful

waste of time (hence a "sting") but it is insignificant compared to the

time taken by packing.

To show how CLB and PPK work I have included a short test program TSTCLB.

This sets an alarm, displays it with ALMCAT, then executes CLB to delete

the alarm (and any others that may be set). To let execution return to

TSTCLB it stores the text "BACK" in register 01, so that PPK goes back to

the LBL "BACK" at which the alarm catalogue can be seen to be empty.

When is a programmable PACK likely to be useful? The above case is a good

example. Other occassions will arise when you are changing assignments or

buffers and want to PACK to tidy up. If you are really keen and have

programs which write other programs then you can remove nulls from your new

programs by PACKing to make more room once you have finished. Part of it

is the sheer fun of doing something that the makers prevented you from

doing.

We now have a programmable PACK, and we have seen how the non-programmable

peripheral functions can be included in programs (by assigning them to a

key, then pressing that key in PRGM and USER mode while the peripheral is

not plugged in). Non-programmable functions that have not yet been made

-568-



programmable by Extended Functions or Synthetic Programming are CAT, COPY

and CLP in the HP-41, and PRP and LIST on the printer. (PCLPS is not an

exact alternative to CLP because it deletes not only the named program but

also all the programs after it.) DEL, SST and BST could also be considered

as candidates but it is not obvious how they should work - wvarious

programmable versions of SST and BST have been written in M-code (see the

next chapter). Some display one step at a time without user intervention,

others display and execute each step (the program WATCH in Section 6.6 did

something similar). A programmable DEL should be told how many steps to

delete, which one to begin at, and which program to delete steps from. In

principle someone could do this with SP if it were necessary.

Programmable versions of CAT, COPY and CLP have also been written in M-

code, and they can be written without M-code if you have a CCD module. An

understanding of M-code is required though, even if you use the CCD module

to write these functions, so I have not put them in here. The next section

will describe one more function that can be made programmable by the use of

Synthetics and Extended Functions alone.

16.8 A programmable PRP

The printer function PRP (PRint Program) can be included in programs like

other non-programmable peripheral functions, but when executed it just

displays NONEXISTENT. This is a pity because a programmable PRP could be

used in documentation programs; ones that print a listing and a description

of a program. Another use for a programmable PRP would be to print a

listing of a mathematical function automatically next to a plot of it made

by PRPLOT or PRPLOTP. It is surprisingly easy to plot a function which you

have called "FUNC" and then to forget just what the function was.

What is it that is NONEXISTENT when PRP stops? It has not prompted for a

label name, so it must be taking a label name from somewhere and finding

that label to be nonexistent. Like other Alpha parameters the global label

name is taken from register Q - but register Q is altered by every step of

a running program, and cannot hold a label name. If the label name cannot

-569-



stay in register Q, then we have to make a special label name which is the

same as the contents of register Q. This name can be put into Extended

Memory, with a temporary .END. below it, and with the program to be printed

lying above it (in a program file). Ah, but the contents of Q even depend

on where in a seven-byte register each program step lies, and the program

can move around in memory as it and other programs are edited. OK, so we

run the relevant part of the program (the piece which contains PRP) in the

Alpha register, whose alignment does not vary. One more problem: PRP stops

printing when it comes to the END of the program it is printing, but then

it executes that END so as to stop at it. By executing PRP in a subroutine

we can make this END return to the program which called the subroutine that

executed PRP. Any more problems? The program to be printed must be all

within one block of Extended Memory, not partly in one block and partly in

another. Oh, and one more thing - a programmable PRP should work like the

programmable versions of SIZE, ASN and CLP: the program name should be

taken from the Alpha register and the stack should not be changed.

Impossible? No -- merely difficult! I published an article with four

programmable PRP programs in the PPC Calculator Journal VI1N9P2-8. PPRP is

the best, most versatile and longest (a shorter version that does not use

Extended Functions is given in Exercise 16.B). It is given here as an

example of what can be done with a combination of Extended Functions,

Extended Memory, Synthetic Programming and an understanding of the HP-41.

-570-



IHOT531480P

N3822
i1a222

gt197922
§24352¢
T{3v22
v{2pdd

[{3¥222
01§122
708z

1436ig

Hdd812

H08dFEx4.12

HH17912
[{»¥512
277#12

d10W3£12
N4212

[0is112

440aig

G24568
fa197+882
s{0YB

12982

L{¥YCaZ

[{3pBC
273Al

28187e282
gl019182
s{3%@@

213661
A10W3861

HIY261
s{28961
T440dST

%139#61

%133£61

#4139261
%135161
HIIS86
#1393681

H1d4335&8

HIIS/281

Gé47981

cd=¥GSgl

Nild
wLS
T430d2

143
=TdRL".

#1373
AR

PGis
ALRR

HIIS
S¢¢54
id4335

i1
Had

-JN0T531484.

Z1384

B13
&¢41
@¥14d
Al

018

Hild

g{3
Httide.

&3
20
N(3K

pals

1{5
afids

1odb
‘_

14is

P14

1(3%
v
1(¥

¥

£3

344

HOLY
J08
{8

Hiix

-

paI
£81
281
181
a8l
6l1
821
£21
941
P41
bil
£l
g4l
il
8l
691
291
491
391
c9l
b9l
£91
291
191
a91
651
851
{51
351
851
pSl
EST
281
151
451
&bl
arl
bl
1
Cbi
aa!
£vl
Zbl
il

/Bkl

95¢BET

“1LS-

+4
Z134
104y

o=

1oS

134§
+

85
%

£3
Jdd

+4

+d
23405
1734
%3AHS£
R

={#itda

HOL

:
NOIS

§14774 ML

+
Ge45
2t43

82¢854
Hiigad

98013
Z350

BEl
2ET
95!
SET
PEl

£El
Zfl
I£1
arl
621

g821

221

421
5l
#21
£l
22l

121

8zl
611
811
21

911

gl

PIl
£11
211
11l
a1l

HHl

Bal
dHIJE281

9@1974981
dilgddSal
dH3J0a8l
HiHE41

3HITH28]
4i183d181

S8019a8l
A351&6
dHIJH86

581ET+d6
2y

g45
96
6

S¢43#6
Z}¢S54£

e=

+d31H

R
e
)
o

d

3
+

i0
o

N3
$

D
L
e

O
Q
0

S
l
D

O
P

33

14734
+

371514
HIY|

A19Ted

B0le

-8¢

NIIS24
A0iH92

@019G2

Bb

£ahers

g504d24
P12

1{al
s{3A9

[01589

27349

Z3AHS99
£150759
#3AHS#9

14£9

£3A0S29

419

£340SA9
465

%3AHSBS
T(¥45
w{3¥95

#3A0SG5
RS

1{38£S
7@g7e28
g804915
144

N6

{0i§58
211¢

N
R
R [y

o
o

280i09%

52¢S54Gk

17447¢4

143b

[{247f

 

27328
L+159

&
N4

A718

£3

NIY

AOMY
26013
LAY

A10K3
HIY

{0is

A{3K

gt
N4

N015

&8019

G2¢4

43AHS81
v{4

14187491
6801351
(KP

te043£1

85¢3421
Larx11
{281

4101368

82¢3488

4iig4d/8

GZ4594
41019@
12¢34va
68¢S54fa
G24178

«dddd~137+18

o
u
d
Y
o

M
o

0
2
0
0
O

0
5
0
0
e
t

O
T
P

N
S
l

N
G

e
t

O
n
[
0
y

O
n
d
O
l

0
N
S
S

i
y

o
r
e
-

eeokke

Fdddd#*
okkeok



To use the program, connect an HP82143A or any HP-IL printer, make sure you

have just an EFM module in your HP-41 (details of wusing PPRP with

additional EM modules were given in the original article - some advice is

given here with the explanation of lines 131-132 in the description below),

put the name of any global label from the program you want to print into

the Alpha register, and execute PPRP from another program or from the

keyboard. Your program will be copied to EM, a title will be printed, then

the program will be listed, then its length in bytes will be printed, and PPRP

finally returns with X, Y, Z, T, L and Alpha unchanged. The program file

is deleted from EM unless you give the name followed by a comma and a

different file name. (You may want to do this if you wish to print the

program and save a copy in EM as well.) The string containing both names

and the comma must be no more than seven characters long unless you use the

feature described under lines 16-20 of the program. The program will fail

if there is not enough room in EM, if the global label is not found in

RAM, if the printer is off or disabled or flag 21 is clear. In those cases

where it is possible the program length will still be printed, and an error

message will also appear. Flag 25 is set by the program if it succeeds,

and cleared if it fails, but it still returns. If you provide two names

separated by a comma then the EM file is not deleted; this is considered an

error so flag 25 is cleared even if everything else has worked. No other

flags are altered by PPRP. If the BAT flag becomes set while the program

is running then it will fail. If the printer stops, while the program is

being printed, because it runs out of paper or the batteries go flat then

you must reload it with paper or connect up a battery charger. Then press

GTO . EEX 999 to get to the END of the program you are printing, and press

R/S to let it return to PPRP so that everything can be tidied up. The

program listing above was printed by PPRP itself: Here is a detailed

explanation.

01 Title "Programmable PRP".

02-05 Return with flag 25 clear if flags 21 or 55 are clear.

06-09 Return with flag 25 clear if the printer is switched off or is

not connected; otherwise clear the print buffer.

10-13 Check that only seven or fewer characters are in the Alpha

-572-



14-15

16-20

21-26

27-29

30-37

38-43

register. This is not a foolproof test since only register N is

checked. However if register O contains something then either

the user has made a mistake and the SAVEP at line 18 should fail,

or the user is saving a program with a different file name - see

under steps 16-20 below. Lines 11 and 12 check for a non-zero

value in N; they cannot be X=0? because a non-numeric value with

that test would clear flag 25 but execute the step after it even

though the value in X is not zero. X#0? followed by a test which

is always false forces line 13 to be skipped if N contains

anything other than zero.

If N contains anything other than nulls then retore it and go to

the error completion part of PPRP.

N is clear, so assume O and P are clear too. (If a label name in

register O 1is followed by nulls in register N, and a comma

followed by a file name in register M then you can save a program

with a long name in a file with a name of up to six characters.)

Restore N, then try to save the program in Extended Memory. Go

to error completion if this fails because you do not have an

Extended Functions module plugged in (nor an HP-41CX) or because

there is not enough room in EM.

Store X in N and Y in O, put 8 in Y. Use RDN while doing this to

avoid lifting the stack and losing the values in Z or T. RDN

will be used for this purpose many more times.

Use EMDIR to get the number of free registers in EM. If this is

less than 8 then there is not enough room for the temporary file

that will be used later, so go to error completion. The 8 is put

in at this point as it will be used later on. EMDIR also

provides a list of the files in EM, including the name of the

program file just created. Use EMROOM instead for faster

execution on an HP-41CX.

The number of free registers in EM (abbreviated to NFR from now

on) is needed later, so put the number 8NFR in Y without

disturbing Z, T or L.

Now prepare to create a data file called ".TMP." - this name is

7 characters long so that it will exactly fill one register and

-573-



will be easy to move around. The name has to be put in register

O, in front of the other values being stored in Alpha, and the

file length must be in X, so 8NFR is put in X. The other

registers are rearranged at the same time: Y contains its

original value, N contains the name of the program to be printed,

M contains the original X value.

44-46 Try to create the .TMP.. data file. This may fail because a

file of this name already exists (made perhaps by an earlier run

of PPRP which was interrupted). If no error occurred then skip

over the next five steps.

47-51 If an error did occur then restore X and M, clear N and go to the

error completion point.

Note: At this point Y,Z,T,L contain their original values, X contains

8.NFR, M contains the original value from X, N contains the name of the

program we want to print, and O contains ".TMP.". We can now save these

values in the temporary data file.

52-66 Save stack and L, M in the file in the order M, L, T, Z, Y, X and

keep 8.NFR in register M.

67-70 Rearrange Alpha and the stack: clear O and N, put 8.NFR in X and

restore the file name in M.

Note: The file name in M can be of the form "filename" or "label,filename".

To obtain the program size we must use only the file name, so the next

lines have to remove all text up to and including the comma if there is

one. It does not matter if there is a second comma in M because it and

anything after it will be ignored by FLSIZE.

71-72 Check if there is a comma (character 44) in M.

73-79 So long as X contains a positive or zero value keep deleting

characters from M. Note the use of ATOX, SIGN, - to decrement X

by 1.

80-87 Obtain the program file size and add 8.NFR to it to obtain

OFF.NFR, where OFF is the offset of the first register of the

-574-



program file from the position at which a "special" label will be

put in the .TMP.. file. Then obtain the program length in bytes

(LEN) by using RCLPT and add LEN/E6 to OFF.NFR to produce the

packed number OFF.NFRLEN in X,

Note: We have now saved the numbers which will be used later on and can use

the stack to print a title. This consists of the program file name

surrounded by a box of stars all in double-wide characters.

88-92 Put the length of the title line into Y and X. Advance one line

to separate the title from anything that might have been printed

by PRBUF earlier on. If there was a comma in register M then the

title will consist of everything that came after the comma.

93-95 Save the present status of flag 12 in flag 25. This means that

the title can be printed double-wide but the program itself will

be printed according to the user’s setting of flag 12.

96 Put the code for "*" in X; OFF.NFRLEN is now in T.

97-101 Loop to print top line of box.

102-105 Print file name, with stars on either side.

106-110 Loop to print bottom line of box. The box length was stored in

both Y and Z so that it could be used in two loops.

111-113  Restore the setting of flag 12 and set flag 25 to allow for

possible errors later on.

Note: Next we build up a "special" global label pointing to the register

before the first register of the program in EM, and we build up an .END.

pointing to this label. This "special" global label corresponds to what Q

will contain when PRP is executed. These two items will be built up in the

Alpha register, then copied to the last two registers of the .TMP.. file.

114-125 Recover OFF.NFRLEN, make ..TMP.. the current file again, use the

pointer value (converted to a 1) to increment OFF by 1 so that it

now points to the second header register of the program file.

This register will look like an END so PRP will begin printing

from the step after it, which happens to be the beginning of the

-575-



126-130

131-132

133-144

145-147

148-152

program. OFF+1.NFRLEN is now in X and OFF+1 is equal to [9 plus

the size of the program file]. Use this to build in the Alpha

register a label pointing to 4 bytes and [9+size] registers above

itself. The label is LBL "" and 1is followed by an .END.

pointing to it. Move these to the .TMP.. file. Line 119

provides the first byte of the label, it is F1,C4. Line 120

provides the number of registers, line 121 appends the rest of

the label and the .END.; it is F7, 7F, F2, 00, 21, CA, 00, 29.

Recover NFR.LEN

Make NFR+58.LEN : NFR+ 58 is the absolute address of the new

.END. if there are no Extended Memory modules plugged into the

HP-41. If there are any EM modules plugged in and the program

file is in one of them then line 131 will have to be replaced by

507 or 763, and you will have to make sure the entire program is

in one module (by creating a dummy file as was described in the

last paragraph of point 2. of Section 16.6).

Build up an alternative register ¢ with the .END. address given

as NFR+58 (or NFR+ 507 or 763). note that this involves

obtaining the quotient and remainder of (NFR+58)/256 to put into

register ¢ as two separate Dbytes. This leaves the least

significant nybble of the curtain address as 0; this may well be

wrong in which case part of the first program in CAT 1 will be

lost until register c¢ is restored. This does not affect PPRP;

even if it is the first program in CAT 1 we are now way below the

part that could be hidden by the curtain, but we must make sure

the original contents of ¢ are restored at some stage.

Recover the program byte length, LEN. This was obtained long

ago, when the program file name was available, but is only going

to be used now.

Put the new ¢ into N and put d into M. This allows for fiddling

with register d even if it contains null bytes at the front. The

register ¢ value should not start with a null byte since that

would not be a valid address for the statistics registers (you

might have trouble if you run PPRP while the statistics registers

are located in the status register area). AROT can therefore be

-576-



153-157

158-159

used safely without fear of losing null bytes.

Replace the last byte of register d with "!" and copy this new

value into register d. (! is equivalent to having only the

message and printer flags set).

Now replace register ¢ with the value pointing to the .END. in

EM.

Note: At this point the stack has LEN in Z, the old d in Y, the old ¢ in X.

160

161

162

163-164

165-171

172-173

174-178

179-183

Put the address of the top of register N into register X, ready

for the X<>b which will move program execution into the Alpha

register.

Put into M and N the bytes which will be executed as a piece of

the program and will carry out PRP with some associated

instructions. The text string is FA, EC, 00, 06, 91, 7C, 07, 07,

A7, 4D, 85. This corresponds to the steps: XEQ 06 (compiled),

STO b (to return to the main program from Alpha after the RTN

takes us back to the step after XEQ - the old register b value is

still in X wunless PRP fails and the user disturbs the stack),

LBL 06(a NOP required to pad the PRP position), LBL 06, PRP, RTN

(in case the PRP failed and did not itself return to the STO b).

Jump into Alpha to execute the PRP section at a clearly defined

position in a register.

Restore the old value to register c.

Print the program byte length. The original register d value is

in register Y so the display mode can be changed. The program

length will be printed even if PRP failed.

Clear X and set the file pointer to the beginning of ..TMP.. .

Now restore the original register d value, however the status of

flag 25 records the success or failure of PRP. Therefore copy

the status of flag 25 into X (0 if clear, 1 if set) before

restoring the old register d (which has flag 25 set).

Get original register M contents from .TMP. , put ".TMP."

into X for later use, purge the program file, put ".TMP." into

register N. If the program file is not purged for any reason

-577-



184-186

187-188

189-194

195

196-197

198

199-200

201

202-207

208-210

211-215

216-218

then flag 25 will be cleared. (One reason is if the file name

was different from the program name because they were specified

as "label,filename".)

Clear flag 25 if the value in X records that flag 25 was clear

before line 177. Flag 25 1is clear anyhow if the PURFL at

line 182 failed, this step does not change flag 25 if it is clear

already.

Re-establish .TMP.. as the current file. Do this by using

SEEKPTA which also sets the pointer to the second register; it

was there after line 179 anyway, but SEEKPTA is a quick way of

re-establishing the current file.

Restore register L, then T, Z, Y, X from the values saved in .TMP.. .

Purge the .TMP.. file.

Save the X value in N and get rid of the text string "..TMP..".

Use EMDIR to confirm that the program file and .TMP.. have been

purged. EMDIR also establishes a current file and therefore

prevents the PURFL bug on earlier EFMs. If your EFM does not

have the PURFL bug (see Appendix C) then you can delete lines 197

and 198.

Recover X and clear N.

Go to the END of the program. This is safer than a RTN which

would stop the program here if it was executed from the keyboard,

so that an accidental R/S would restart the program and disrupt

the stack contents.

Reset the stack after finding insufficient room for .TMP.. (at

line 28).

Purge the program file if it had been created and an error

occurred afterwards. Set flag 25 because the purging will not

work if if the file name had been specified as "label,filename".

Use EMDIR to avoid the PURFL bug and show the user what is left

in EM. Use register O to store X while this is happening, then

restore X. You can delete all these lines if your EFM does not

have the PURFL bug.

Print the program name followed by "**ERROR" to tell the user

that something went wrong (not just a printer absent, off or

-578-



disabled).

219-224 Rearrange the Alpha register after printing this message (easily

done because "**ERROR" is seven characters long): shift O and N

into N and M, clear P and O.

225 Make sure flag 25 is clear to show an error was detected (flag 25

may be set as a result of line 209).

226 Come here from line 201 after successful completion.

227-228 Clear the display in case an EMDIR message is still on view after

a success or a failure of the program, and END.

This program is long - it just fits into the memory of an HP-41C with no

extra memory modules, but in that case it can only print itself. It is

best used as a documentation program which does not occupy your HP-41 much

of the time. You may prefer the shorter version given in Exercise 16.B.

16.9 Non-normalising recalls and RAMediting

To have complete control over the Random Access Memory of your HP-41 you

should be able to examine and alter any RAM register. Altering a register

is not very difficult because you can always move the curtain and STO into

any register. Just be careful to SF 25 in case the register is NONEXISTENT

and to avoid trouble if you put the curtain directly above a nonexistent

address. But don’t SF 25 if you are using the PPC ROM program SX (this is

not a problem with RX).

Often you will want to examine a register before you change it, and you

cannot just RCL it as that will normalise the contents. There are several

approaches to this problem.

The first method used to examine RAM registers was STO b to put the program

pointer to the address followed by a Byte Jump to copy bytes from it to the

Alpha register. The copy in Alpha could then be studied at leisure. The

method required a suitable byte just before the area to be examined.

Remember that the second nybble of the preceding byte gives the number of

bytes copied, and that a first byte of 7F is not copied but just appends

-579-



the following bytes to Alpha. You therefore have to find a suitable byte

before pressing the Byte Jumper.

Any method which allows copying of a selected number of registers under

program control would be much preferred. One way is to move the curtain so

that the register to be studied is in the data area, then writing the

register to a data card, then moving the curtain into the status register

area, and reading the data card back into a status register from which it

can be recalled without normalisation. A similar operation can be carried

out with a Mass Storage device. Both these methods are slow and demand

peripheral equipment. Even better would be a plug-in module which lets you

perform non-normalised recalls to X, or which lets you study and edit a

selected part of RAM. The Extended Functions SAVER and SAVERX do the job

fairly well; you can move the curtain, then copy registers to a data file

from which they can be recalled by GETX without being normalised. SAVERX

does normalise the first and last registers moved though.

If your HP-41C has Bug 2 (see Appendix C), another way to copy data

registers into EM is with REGMOVE and REGSWAP. You do not even have to

move the curtain: REGMOVE and REGSWAP only check if the top register of the

block to be moved exists (and they normalise this one register in each

block moved). This means you can specify a block of registers whose bottom

address is in Main Memory and whose top address is in EM (in other words

the block straddles the gap at address 200), and you can move this block so

that registers which were in Main Memory are copied into EM, from where you

can recall them with GETX.

All these methods still require considerable effort to move the right

registers and to move them to the right place. One of the first functions

written by the user club pioneers of M-code use was a non-normalising

recall function which could copy data from any absolute address to X, but

this was only available for people who had EPROM boxes or other special

equipment. Much easier to use is a plug-in module with one or more non-

normalising recall functions. Three such modules are available at present:

ZENROM, the CCD module, and the HP-IL Development module.

-580-



ZENROM and the CCD module have functions specially designed to recall any

RAM register without normalising it, and also to store data into any

absolute RAM address without moving the curtain. The Devel module function

RG-BUFX copies data to the buffer without normalising it - the registers to

be copied are specified as bbb.eece in register X. Another function BUF-AX

copies n bytes from the buffer to the Alpha register without normalising

them; n is given in X. RG-BUFX has the same register numbering "wrap-

around" bug as was described as Bug 2 in the early HP-41Cs (see Appendix C)

so it can be used to recall any RAM register. The only restrictions are

that register numbers greater than 999 cannot be used (they are described

as NONEXISTENT) and that SIZE must not be set to zero. Otherwise

you can use RG-BUFX to recall any RAM register, using the short program

NNR. If NNR does not recall the register you want then you will have to

move the curtain, either by changing SIZE or by synthetic methods.

Articles and programs on this subject have appeared in PPCJ V11N2P25-26 and

V12N1P28-29.

H14LBL "HHR" B7 RIN 13 BUF-RY
@2 SI7E7 aa 7 14 RIH

B3 1O A9 BSIZEX 15 LASTY
B4+ 18 ACY 16 ROL [
#5517 i1 RG-BUFY 17 END

86 ST+ ¥ 12 RO 73 BYTES

To use NNR put the number of the absolute register you want to recall into

X, and XEQ "NNR". If the register is accessible (SIZE is not 000 and

register number + SIZE + 512 is below 1000 decimal) its value will be

returned to X and the stack will be lifted. X will also be copied to

register L, and the required NNN will be copied to M as well, so the Alpha

register contents will be moved seven characters to the left. If the

register does not exist then a zero will be copied to X. If the register

number + SIZE + 512 is greater than 999 then the program will stop at line

11 and display NONEXISTENT, unless you have set flag 25. If you use NNR to

recall a register from the buffer area then allow for the fact that NNR

creates a buffer itself, so other buffers may be moved or deleted.

-581-



The number 512 at line 05 assumes that you have full Main Memory. If you

have an HP-41C without a quad memory module then replace the 512 with:

256 + n*64 - where n is the number of Memory Modules plugged in.

Even better than a non-normalising recall function is a program to let you

examine RAM and edit it as you go. The ZENROM has a function called RAMED

which is particularly helpful if you have an early HP-41 on which some of

the ZENROM direct-key synthetics do not work. If you do not have a ZENROM

then you can try to write a program that will edit RAM. Two such programs

have been published in the PPC Journal. One, by G. Peque, in V12N3P29-31

uses the Devel module. The other, by Bruce Bailey in V11N4P15-16, uses the

Extended Functions and the PPC ROM. It provides a good last example of

Synthetic Programming with the Extended Functions to finish this chapter,

so I am publishing it here, with Bruce’s permission, for which many thanks.

ED is fundamentally an editor for program memory, though it can be used for

any part of RAM as will be described later. It works by copying the region

to be edited to a data file in the EFM without normalisation, supporting a

range of editing functions, and replacing the edited region in program

memory. The PPC ROM and the EFM are required, as is SIZE 006.

Lines 33 and 168 are hexadecimal F5,01,69,00,80,07.

To use ED, insert LBL "2", XEQ "#######" before the region of memory to be

edited and LBL "1", XEQ "#######" after it (the LBLs can be reversed).

Purge any file named "#" and XEQ "ED". It will create a data file named #

which will require at most the number of registers to be edited plus four.

When execution halts you will be looking at the hex of the first register

in the region; the decimal point precedes and marks the "current byte".

Your key assignments will be suspended and local labels A to I will be

defined. The first byte, byte 0 in ED’s numbering, will always be 1D, part

of the XEQ "#######" instruction. Now follow the instructions given below.

-582-



R
O
R
R
R

L
A
B

G
l
P
e

)
L

G
G
B
]
P
e
O

T
R

T
l

(
0
0
b
t

o
o
t

fo
is
te
e
t
b

fo
os
be
s
t

o
o

o
t

e
t

R
0
T
O
D
O

o
l

G
B
]
P
e
O

o
G
l

da
ed

o
l

G
a
d
P
P
P

T
T
P

o
O
l
G
B
)
T
e

G
O
g

D
0
)

W

i
e
B
B
G
]
)

e
l

G
e
d
G
l

g
X
B

G
l
P
e

O
B

f
i
n

-

RCL b

CRFLD
RCL B2
::n\

RCL @5

LASTE

E: ad

+

Ezi4f”

RCL T
2 o

B8y

SAVEX
SAVERE

EDH
510 ¢

4

AROM *SH

43
&7

F 27 D

i . 1LBL T
CF 25
SF 18

W
O

D
D
)

-
o

L
G
R
R

o

T
k

P
l
e

L
R

=
L
o
Q
o

L
n
o
o
n

]
W
i

C
a
d

P
o
l
e

T
R

W
P
S
G
S
O
O
O

0
N

B
-

[
O

I
e
R

|
o

g
o

v
B
)
T
e
R

]
l

S
l
)
e
l

)
on
]

D
e
l

e
l

e
l

DY
=

Ou
]

D
O
I
S
]

s
R m
e

e
l

o -
I
e

g
O
B

e
]

]
L
T
I

T
e
l

|
)

"
DD

ogm
d
M
D
R
I
£

e
t

T
R
Y
A
T
T

e
t

o
5
o

D
]
r
m -

o -

#Pfifi'QP‘

203
RCL A8

570 a1

SEEEPT
GETZ
AR0K “HH"
AOFF

[

AROT

CLST

LF 23

* T Lo
e]

o s o
t

o
k

e
l

e

e

"
o

e
[

]

A
L
]
1
e

2W
g

P
] B

5

g
t

v

o
l
I

)

RL

L
g
l

o
5
)

G
R
S
D
O

L
R

B
e
l
T
k
e

e
y

Po
os

h
s
l

fe
as
he

fo
se
te

fos
set

e
 fo

rss
bs
o
o

fao
eet

e
O
O
O
R
Y
O

k
e R o
D

[ P
v

S
I
R

|
I
|
g

£}

Ne
ed

o
l

e
d

G
e
d
e
l

G
l
P

o
t

fos
est

e
for

set
e

o
o
k

fos
nnb

e
aa
nk
e

on
st

e

R

35 SIGH

37 ET0H
3 ¥

Pr
ad
e
s
b
b

fou
sab

s
foo

ret
e

N
G e

[
N
-
|

'l
i
O

147 GT0 @2

148 SEEKPT

149 GETX
{58 5370 1

31 RIM
152 ROL Y
53 POSA

154 ¥{n?

155 470 43
{56 E{HY

fr
or
ke

for
nnb

e
o
t

o
L
G
N

o
l
T

e
l

v
S
T
e
e
P
e

3
5
D

T

[
“

[
.

- o
|

L
Y
e o

[
]

e
l

)

®
o
Q
D

0
N

-
[T
.
b e

=

2
e
e

A
W
T
T

G e
w Y
o

-
-

]
G

B
G
l

P
l
e

C
E
D
g
0

e
t
r

]
L
o
l

e
r

B

T

)
g

]
e
l

Y
g

]

"
I-
l.
.
£
I

i



Commands available:

n A (Put n in register X, press the A key) moves the current byte

pointer (cbp) ahead n bytes.

n B moves cbp backwards by n bytes.

n C changes the current byte to decimal n (0<= n <=255).

"nn" C changes the current byte to hex nn (use legal hex digits 0-9,A-F,

and use exactly two digits).

m "nn" C first changes the current byte to nn, then advances m bytes.

m E1 n C first changes the current byte to decimal n then advances m bytes

(Et stands for ENTER?).

D replaces the region with your edited version, then exits.

E exits without replacing the edited region.

n F finds the next occurrence of decimal byte n, starting the search

at the next full register.

"nn" F finds the next occurrence of hex byte nn similarly.

n G moves cbp to byte n.

H displays cbp and the decimal RAM address from which the current

register came.

" replaces the whole current register with the hex string "." -

this must be 14 legal hexadecimal digits.

+-n R/S advances/backs up cbp by n bytes.

The version given here displays bytes using the "natural notation" in which

the hex digits A to F are displayed as :; < = > ? respectively. To use

the normal digits A B C D E F change line 44 to CF 10 (actually you can

remove this line entirely, but changing it will leave the line numbers the

same as before). When flag 10 is set, the routine NH displays hex numbers

in natural notation to speed up its operation. Clearing flag 10 slows the

program down but makes the results more legible.

ED is quite useful when entering synthetic text lines. It can be used to

create any sequence of bytes you desire; put place-holders into the program

as you are keying it in originally, then EDit them into the required final

form. It can also be used to explore the contents of program memory byte

-584-



by byte, including ENDs; the edited region can contain any number of ENDs.

If you want to edit a program without putting the first and last labels

(LBL "1" and LBL "2") into it, so that it will not be decompiled, then put

these labels into programs before and after the one to be edited.

Technical note: The synthetic strings at lines 33 and 168 are used to lower

the curtain in preference to the PPC ROM routine OM because they set the

address of the .END. to 007, thus deactivating all Timer alarms.

Unfortunately this device also renders ED non-SSTable until the curtain is

restored; also don’t use a printer in TRACE mode.

The purpose of the XEQ "#######" instructions is to supply a locatable

register guaranteed to be already normalised. ED uses SAVERX to move the

region to EM; SAVERX normalises the block end points as mentioned at the

beginning of this chapter.

Exit from ED only via the D or E options on pain of loss of your key

assignments. The final EFM function used is a PURFL; you may wish to

insert an EMDIR after it to dodge the PURFL bug (as was done in PPRP).

It is possible to encounter another EFM bug in ED; execution can halt at

line 106 with a spurious diagnostic (usually END OF FL - this bug was

mentioned at the end of Section 16.5). Simply press R/S and carry on. If

you prefer you can lower the chances of encountering this bug by inserting

a STO X after line 105. The STO X sets the register which is compared with

file names to a form most unlikely to be in use as a file name.

Instead of editing programs you can edit other parts of RAM. Lines 4 to 12

determine the decimal addresses of the region to edit. You can supply

these directly: for instance pick an area between the .END. and your KARs,

say from address 225 to 191. Do 225, ENTER, 191, GTO "ED", GTO.013, R/S.

Other areas in RAM can be accessed in like fashion, but not the status

registers.

-585-



As an exercise use ED to edit itself and change the D in the name into a C,

thus resolving the conflict with the HP-41CX function ED. While this use

is trivial it will serve to illustrate ED’s utility.

Exercises.

16.A Unlike most other synthetic routines presented here PPK wuses a

numbered data register. Try to rewrite PPK so that it can be called with

the global label in the Alpha register or in register X, and will not use

any numbered data registers.

16.B The program PPRP is long and involved. Here is a much shorter

programmable PRP routine, called PPR. It does not use any Extended

Functions and does not change register ¢. It will print any program from

RAM or ROM if that program has a one-letter global label which can be

copied to byte 0 of register d leaving flag 53 clear and flag 55 set. This

limits the usable global labels to:

ll+ll, "1", ll3"’ "9", IIK"’ "Q"’ "Sll, "Y"

and some synthetic global labels such as:

"A"’ "Cll, "Ill, lla", "!ll, ll;ll

If the Alpha register is completely empty then PPR will try to print a

program containing the label LBL "+". You can put LBL "+" as the last line

of a program you are debugging, then write the following short program and

assign it to a key:

LBL "PRPD", CLA, XEQ "PPR", END

This program will print a program by default: whenever you press the key to

which it is assigned it will print the program which contains LBL "+". In

other words, it is a non-prompting version of PRP which can be used while

you are developing a new program.

-586-



Try using PPR and if you are ambitious try to understand how it works. If

you cannot work this out but are still interested, get a copy of the PPC

Calculator Journal Volume 11 Number 9 and read the article on pages 2 to 8.

BisiRL “PPR® 25 RDH

g2 oF 25 26 RCL ~

82 FC? 2 27 Ax d

84 470 83 28 AEQ 8z

85 5F 25 29 F§7 25
@ PRBUF 38 ST0 4
87 FL7? 25 380 ]

Bg GT0 a3 3z CLA

a9 %> [ 33 670 82

18 X+8? 34+BL Ad
11 670 a8t I5eLBL B2
12 8[ 36 PRP
{3 "+ 37 (>~
14 2y [ I3¢LBL 88

15¢LBL @t I9¢LBL A8

16 2y [ 48 570 4
17 *Fdokkkk® 41 ¥y~

18 5T0 ~ 42¢LBL AR

15 RIK 43+LBL @4
28 BCL d 44 PRF
21 ¥{r [ 5 8T0 4

22 “hekkrexs 46 OF 25
2380 1 47+BL 83
24 “hxe 48 END 184 BYTES

-587-





CHAPTER 17 - WHERE NEXT?

17.1 A better machine?

Most individuals and organisations replace their computers every few years

with a bigger and better machine. At what stage should we replace our HP-

41s? Are the heroic efforts of the previous three chapters worth the

trouble or should we retire our HP-41s and get a better machine?

It really must depend on your uses for an HP-41. Like many HP-41 users I

have access to micros, minis, and mainframe computers, but still need a

pocket calculator. It would be pretty silly to use a Cray to work out the

square root of the speed of light, or the area of my garden. Once I have

an HP-41 in my pocket I want to do as much as is reasonable with it; that

way I have a portable computer too. The logical replacement for the HP-41

would be another calculator-shaped pocket computer, faster and with more

memory, a better display and more functions - but still a calculator. Many

people though use their HP-41 exclusively as a computer, not a calculator

as well; for them an HP-71 or some other small portable computer may be a

good replacement right now.

Those of us who want a calculator that is also a computer and which is

similar to earlier such machines are likely to carry on using the 41, at

least until HP produce a suitable successor. After all, it has recently

become common knowledge that 42 is the answer to everything !

The aim of this book has been to show how the HP-41 itself can become a

better machine. This last chapter will briefly describe some more ways of

making the HP-41 such a "better machine".

17.2 Personalised software and keyboards

You are yourself the best judge of how you need to use an HP-41. The types

of programs you use are determined by your activities and you have to

choose or write your programs. This book could not tell you how to write

-589-



surveying programs, financial programs, and programs for all other

applications - it has concentrated on advice and information that would let

you write programs as well suited to your work as possible.

This can be taken a stage further. Programs can be made to address you by

name, or to ask for a password in case someone else tries to use them.

They can be adjusted to use the units that you prefer to work in, and to

use abbreviations that you are familiar with. You can write games to play

in your spare time, or programs to do Number Theory. Hewlett-Packard

designed the HP-41 so that it could be personalised in such ways.

One particular way to personalise your HP-41 is to design one or more sets

of key assignments for your use. Synthetic assignments of functions which

you often use extend this; if you use GTO IND X or VIEW IND Y a lot then

assign them both to unshifted keys. You can write a single program which

asks what you want to do, then goes to a selected program; the CCD module

even provides a menu function to simplify this. (A menu is a list of

possible responses with a short explanation of each.) Each of the programs

could then use the local labels A to I, a to ¢, and XEQ followed by

pressing one of the keys in the top two rows to provide XEQ 01 to XEQ 10.

In this way the one main menu program assigned to a key could give you

access to a large number of further programs, each of which could have up

to 25 local labels which do not use any further assignments. The Extended

Functions GETKEY and GETKEYX provide another way of personalising the

keyboard without making additional assignments.

A question that is sometimes asked is "can I reassign the Alpha keys?" At

first sight this seems impossible because the Alpha keyboard is quite

separate from the others. You can however write a program with many global

labels, each of which is assigned to a key and appends a selected letter to

the Alpha register. Say you want to assign the following symbols to the

top row of keys:

KEY: A B C D E

ASSIGNED CHARACTER: " ’ X Y &

-590-



Not only is this quite a different layout, but also three of the characters

are ones which are not available at all from the Alpha keyboard. To do

this you would write the following program:

01 *LBL " 10 *LBL "Y"
02 " 11"y
03 GTO 01 12 GTO 01
04 *LBL ™" 13 *LBL "&"
05 " 14 "-&"
06 GTO 01 15 LBL 01
07 *LBL "X" 16 AVIEW
08 "-X" 17 END
09 GTO 01

Now you could assign each of the five global labels to one of the five top

keys. If you press any one of the keys in USER mode then you see a preview

of the one character it will enter, and if you release it before it is

nulled then the character is appended to the Alpha register and you see the

new contents of Alpha. If the Alpha register becomes full then you will

hear a tone, just as with the normal Alpha keyboard. To delete a character

you just set Alpha mode and press Append and backarrow.

Three of these five key assignments and text strings have to be made by

synthetic methods. An easy way is to use the Q-loaders described in

Chapter 15. The easiest way is to use the special USER ALPHA keyboard of

ZENROM; this lets you make special text strings and labels, and also lets

you assign such labels. In any case you might find that the USER ALPHA

keyboard does the job you want. The CCD module has a special character

keyboard as well, but this cannot be used to make labels or assignments.

17.3 Hardware modifications

The HP-41 is a lovely box of electronic tricks: so lovely that the more

curious users cannot wait long before they open it up to see inside. Once

-591-



the electronics are understood, maybe they can be modified. Then you will

have a truly "personal" HP-41 - maybe it will do something useful such as

working faster, or maybe it will do something useless like displaying

everything upside-down.

The first hardware modifications were made to the plug-in memory modules.

If you had four then you could not use any ports for anything else. Some

people opened two modules, took the memory chips out of one and fitted them

into the other. By suitable wiring they made it appear that these two

modules were in two different ports. Then they had a "double memory

module" - a dule in one port, and a spare port for a printer or some other

plug-in. The next trick was to take the circuits out of the modules and

wire them inside the HP-41; there is enough room on each side of the

display to hold two circuits taken out of their modules. This provided

four free ports and a full memory. When HP produced the Quad memory

modules they acknowledged the need for such efforts and introduced the HP-

41CV with the quad module officially attached to the main circuit board.

Nevertheless other things were still worth wiring up inside, for example

the Time modules or Extended Functions. Now that these are built into the

HP-41CX, people wire two Extended Memory modules into their 41CXs so as to

have a full Extended Memory and four ports. Other modules are also

considered fair game for wiring in; the PPC ROM or ZENROM or the Devel

module which extend the features of the HP-41 for example. Modules are

still doubled or tripled, for example an Extended Functions module and two

Extended Memory modules can be fitted into one module case if you know how.

All this is possible because different addressing schemes are used for Main

Memory, Extended Memory, system devices like the Time module, and normal

ROM modules. As was explained at the end of Section 8.3 they can all

communicate through the same port. What is more, the addressing lines on

the circuit in a module can be pulled high or low so that its address can

be selected independently of which port the module is actually wired to.

The other main hardware activity has been speeding-up of HP-41s. The speed

at which they run is regulated by a timing circuit. This is controlled by

-592-



a capacitor attached to pins 9 and 10 of the CPU chip. The normal value of

this capacitor is 150 pF, but lower values will make the HP-41 run faster.

If you know enough about electronics you can find this capacitor by

counting the pins on the CPU chip and replace it with one of about 50 pF

(but read the dire warning at the end of this section). The position of

this capacitor has changed as the internal layout has been redesigned from

time to time, so it is best to identify it by looking to see which pins it

is connected to, not where it is on the board (its latest position has been

described from time to time in updates published in PPCJ, and an HP-41C

circuit diagram has been given in DATAFILE V2N5P20-21). Most HP-41s can be

speeded up by a factor of at least two but odd things can begin to happen

beyond that. Some registers become intermittently NONEXISTENT, or data is

read or stored incorrectly. A good article on checking this appeared in

PPCJ V11N4P16.

A speed-up can affect HP-41 peripherals as well. Early Card Readers can

not read cards when the HP-41 is working at high speed. Wands seem to

actually like the higher speed and to read barcode more easily. The HP-IL

cassette drive takes some time to rewind a cassette if a file is partly at

the end of the first track and partly at the beginning of the second track.

On a speeded-up HP-41 the HP-IL circuit considers that the rewind operation

is taking too long and gives a DRIVE ERR message. (A file which spans the

two tracks will always slow things down; it is best to make a second copy

which will be on the second track only.) One way to overcome such problems

is to use a variable capacitor, but this has to be wired so that it can be

controlled from outside. A variable capacitor can be amusing though; the

frequency of the TONEs depends on the clock, so a speed-up makes the HP-41

give shorter TONEs at higher frequencies - a variable capacitor lets you

change TONE frequencies at will. A simpler solution is to use a switch so

the speed-up capacitor can be disabled when a plug-in device is in use.

One more hardware modification is the use of alternative power sources.

Some people redesign their battery holders so they will hold Lithium

batteries which have a long life. Others connect large batteries through

the adaptor socket (see Section 2.4). This is fairly easy if you have an

-593-



old HP-41C with the gold balls still in the socket. The socket does not

have protective diodes like the internal battery connectors, so it is up to

you to avoid blowing the CPU. An article about external power supplies

that is worth reading appeared in PPCCJ V6N7P33-35.

DIRE WARNING

Hewlett Packard neither supports nor approves hardware alterations to the

HP-41 equipment. If you open an HP-41 or any plug-in device then you

invalidate any warranty, as HP takes pains to point out in the Appendix on

Service Information (they refer to misuse, or service or modification by

other than an authorised HP repair centre). The HP-41 contains CMOS

circuits which are far more easily damaged by stray charges than normal TTL

circuits. This section is provided for information only, if you want to do

something then make sure you know what you are doing, get someone to

supervise if possible, and make sure you have enough money in your bank to

pay for any repairs that may become necessary. HP repair centres tend to

throw away anything inside an HP-41 that was not put there by HP, but they

might let you have it back if you ask nicely. If you do not know how to

open an HP-41 then you should certainly not try until you have some expert

advice: join a user group or apply for a job at HP.

17.4 Black boxes and M-code

The programs that you buy in a plug-in Applications Module have been

written to a Read Only Memory chip which is inside the module. As its name

suggests, Read Only Memory cannot be written to; it is written once and is

permanent. A less permanent type of memory chip is EPROM (Electronically

Programmable Read Only Memory) - in other words you can write a program to

it if you have the right instruments. If you want to try out a program

that will eventually go onto a ROM you can use the HP-41 to write that

program onto an EPROM first, then plug the EPROM into a box which connects

to an HP-41 port like any other plug-in peripheral. As far as the HP-41 is

concerned this EPROM box is just another plug-in ROM module. The user can

see it is not because the box is so much bigger. An EPROM programmer

-594-



(which writes the program onto EPROM) is fairly expensive, but an EPROM box

is no more expensive than other HP-41 peripherals.

Therefore if you want to try out some new programs you can start by writing

them on a few EPROMs, and give these to people with EPROM boxes. These

people will try out your software, then you can clear the EPROMs, and write

corrected versions of the software onto them for further testing.

Eventually the tests will be complete, and you may want to ask HP to put

your software on a real ROM module. This can be expensive; if there is a

limited market for your software then you may prefer to sell it only as

EPROMSs, and the people who need it will buy EPROM boxes to use it.

As with most computer equipment, EPROM boxes for the HP-41 have been

getting smaller. The standard size is a little bigger than an HP-41, but

you can buy thinner ones. One make is built into a Card Reader shell and

plugs into the top of the HP-41 just like a Card Reader. One difficulty

with EPROMs is that they store 8 bits per "word" whereas the HP-41 uses 10-

bit "words" in its ROMS. The usual solution is to use one chip for 8 bits

and a second chip for the other 2 bits of each word, so EPROMs for the

HP-41 usually come in "sets" of two chips - this makes it harder to fit

software that is on EPROM into a really small space. The ultimate EPROM

box is one that looks just like a plug-in module, some companies are

beginning to make these. Small numbers of modules with specialist software

can be sold on such EPROM modules instead of normal ROM modules which are

cheaper only for large numbers.

Before you start copying your programs to EPROMs you must test them out

somehow. Programs written in FOCAL can be tested in RAM, except for the

different behaviour of a few instructions like STO b, but even the smallest

plug-in ROM contains 4K words of program, which is more than the whole of

the HP-41 RAM Main Memory. You need a Software Development System which is

another box that plugs into an HP-41. This contains RAM to which you can

write programs, but this RAM is then read by the HP-41 as if it was on a

plug-in ROM module. RAM used like this with an HP-41 is often called

Quasi-ROM or Q-ROM.

-595-



The original Software Development System boxes were made by Hewlett-Packard

themselves. Several enterprising people later designed different Q-ROM

boxes with various names: ProtoCODER, MLDL (Machine Language

Development Laboratory) and MLI in particular. The RAM inside such a box

does not need to be different from ordinary RAM, but the box must allow the

HP-41 to write programs to this box, yet later to read programs from the

same box as if it was a plug-in ROM module. The box has to contain its own

ROM which contains instructions that control it, just like any other plug-

in device. These instructions are used to copy programs to the Q-ROM in

the box, and to alter or analyse them. Once the programs have been stored

in Q-ROM then the HP-41 can be told to execute them as if the Q-ROM was

itself a plug-in ROM module.

When you have a Q-ROM device you can write and test programs destined for

inclusion in ROMs. This includes programs written in the language used by

the HP-41 CPU. The language has been called M-code; it is quite different

from the ordinary user language FOCAL. It lets you control the HP-41

completely. Such things as non-normalised recall, any tones you like,

double precision arithmetic at the same speed as normal arithmetic are just

a sample of what can be done.

M-code programs can be up to 100 times faster than normal ones. Every

normal HP-41 operation is followed by a check of the flags, a test whether

any module wants to do something, and various other tidying-up. Every

arithmetic operation involves turning all numbers into binary and

separation of mantissa and exponent. Then the operation is performed, then

the result is turned back into a ten-digit mantissa with a two-digit

exponent, the value is normalised and stored in a register. In M-code all

these tests and operations can be left till the end of a complete

operation. For example the HP-41 goes through all these tests after every

step of calculating a hyperbolic sine in user language. In M-code all this

would only be done once, after the whole calculation had been completed.

All the fundamental operations required to run the HP-41 are already

available in the internal ROMs, so many operations can be carried out very

-596-



efficiently in M-code just by calling a set of internal routines one after

another.

Now for the disadvantages. An M-code program is a string of 10-bit

numbers, and you have to know these numbers or some symbols for them; such

symbols are usually called mnemonics. HP writes HP-41 M-code programs,

using their own mnemonics, on larger computers which translate them into

the final numbers and turn label names into addresses. Only a few HP-41

users have had the chance to write such assemblers. Most have to do their

M-code programming from an HP-41 keyboard. To make this simpler various

users have devised their own mnemonics, and each user has to understand the

mnemonics used by others. Before the mnemonics could even be invented the

users had to work out what each instruction actually did.

To begin with, this was done by systematic (and brilliant) guesswork,

supported by information from articles about the HP-41 published in some HP

technical journals. When HP realised that the users were succeeding in

this venture they decided to help, perhaps because it is to their long-term

financial advantage, as was the case with Synthetic Programming. Internal

M-code listings (called VASM listings by HP) were provided on a NOMAS basis

(see Section 14.2), and a few companies began to develop M-code software

with HP approval.

There is finally a book available to help you get started with M-code. It

is called HP-41 M-code for Beginners, by Ken Emery (published by

Synthetix). M-code is also described in the ProtoCODER manuals, in the

ZENROM handbook, and (briefly) in the book "Inside the HP-41", which is a

translation of the French book "Au Fond de la HP-41". The ZENROM

handbook is probably the most complete of these additional sources, as it

was published later than the ProtoCODER manual, and is designed for use

with the ZENROM to enable M-code programming on a Q-ROM device. Check the

CCD ROM manual as well.

Another difficulty with M-code is the need to have programs that help with

writing M-code programs. You need programs to translate mnemonics to M-

-597-



code numbers and to store these numbers in Q-ROM, programs to move or alter

the M-code in a Q-ROM, programs to copy numbers out of a Q-ROM and save

them on Mass Storage, and programs to turn these numbers back into a

legible listing (disassemblers). Such programs are available on several

EPROM sets, and on the ZENROM. If you want to avoid such difficulties you

may prefer to use an intermediate language which has many of the features

provided by M-code but looks more like FOCAL. Such a language is available

on EPROMs from the Melbourne user group; it is called I-code (Intermediate

code, what else?). In Europe it is available from PPC-T in France. I-code

has been described in PPCTN since issue 14, and summaries have appeared in

the PPCJ.

If you do not want to buy M-code equipment then you can use the CCD module

to execute sections of M-code from ROMs that are inside your HP-41 or are

plugged into it. This endeavour requires listings of the ROMs so that you

can work out where to go and why.

Finally, if you do decide to embark on M-code programming you must purchase

or build a Q-ROM device of some kind. Circuit diagrams and printed circuit

boards are available, but even so the equipment will cost about as much as

an HP-41 and will be about the same size as an HP-41. The ultimate M-code

device would be an MLI inside a plug-in module case, at the same price as a

module. Maybe we shall see one on the market yet!

17.5 Missing functions?

We are never satisfied with just what we have; there could always be a

little something extra. Every wuser would like just one more HP-41

function, but which function? That is why the designers made the HP-41 so

versatile; we can write our own programs to replace missing functions. If

you did not know before, you certainly know now that many users have taken

this process much further, and you can extend your HP-41 as far as you

like, with a few extra subroutines, with some peripherals, with system

extensions, Synthetic Programming, or even machine language programming.

You have seen how some of the non-programmable functions can be made

-598-



programmable, and how user groups have written their own modules to provide

missing functions. Extra functions have been provided in this book. The

tools for more have been described or else the sources of information have

been given - now you can go and extend your HP-41 !

Exercises

17.A If you have been keeping a notebook as was suggested in Exercise 1.C

then look through it and see how much you have learned about your HP-41,

and how much of it you are now using regularly. Would it be worth

joining a user group so as to carry on learning useful facts like this?

17.B If you have not yet rushed off to get an M-code device then stop and

ask yourself if you need one. Maybe it is just what you need, or maybe you

are happy to do what you can with a normal HP-41 and a couple of extra

modules. Do the complete control over your HP-41 and the extra speed

justify the use of M-code for your work ?

17.C We haven’t finished yet! Your final exercise will be to go through

the Appendices and look for any more useful information. They list books

and journals, sources of equipment, HP-41 bugs (good and bad) and the uses

of the HP-41 flags. Finally there is an Appendix with recent HP-41 news.

-599-





PART V

Appendices

 





APPENDIX A - Books and Journals for the HP-41

This Appendix is a list of books, journals and other publications referred

to in the text. Some additional books and journals are included but the

list does not claim to be complete. For addresses of suppliers see

Appendix B. I have not given prices here as they vary, check with the

shop.

Manuals

The HP-41CX Owner’s Manual (volumes 1 and 2) should be read by all users.

If you buy a second-hand HP-41 without a manual then you can order one on

its own from HP. Even if you have a 41C or 41CV the 41CX manuals provide

useful extra information. The HP-41CV is now sold with only one manual; a

second more detailed one has to be purchased separately, the CX manuals may

be worth buying instead.

Obviously you should read the manuals for any other equipment you use. The

manuals for HP-IL devices only explain how they work; the HP-IL module

manual for the HP-41 explains how to use HP-IL to control these devices.

The PPC ROM Manual can be bought separately from the PPC ROM. It contains

a wealth of information and advice, plus barcodes and listings for all the

programs in the PPC ROM and additional programs. It can be purchased from

PPC or EAuCALC. A Pocket Guide to the PPC ROM is also available.

The ZENROM manual contains excellent introductions to Synthetic Programming

and to M-code. Its purchase price can be credited against the ZENROM

module if you buy the module later.

The CCD Module manual (English language version) may be available

separately by the time you read this.

The Protosystem manual for the ProtoCODER?2 describes how this device works

and explains how M-code can be used on it. Available from Prototech, Inc.

-603-



HP-41 books

The following books were written specifically for the HP-41 rather than for

calculators in general, though some of them contain information that

applies to other calculators/computers as well.

"Synthetic Programming on the HP-41C" by Dr. W.C. Wickes (1980). Despite

its title it applies to the newer HP-41 models too. It was the first book

on SP, some techniques have been improved since, but it is still a valuable

and in-depth treatment of Synthetic Programming. Available directly from

Larken Publications, 4517 N.W. Queens Avenue, Corvallis, Oregon 97330, USA

as well as from the sources listed in Appendix B. It is one of the few

HP-41 books on sale in the UK; Dillon’s in London and Blackwell’s in Oxford

sell it. A German edition "Synthetische Programmierung am HP-41" is

available from Heldermann Verlag Berlin, see Appendix B.

"HP-41 Synthetic Programming Made Easy" (SPME) by Dr. K. Jarett (1982) is a

good beginner’s guide and contains some more up-to-date information than

Wickes’ book but does not go into as much detail on some subjects. It is

published by SYNTHETIX and is also available from the main bookshops listed

in Appendix B. A German edition "Synthetische Progammierung - leicht

gemacht" is available from Heldermann Verlag Berlin.

"HP-41 Extended Functions Made Easy" by Dr. K. Jarett (1983) explains the

Extended Functions and Extended Memory, including the HP-41CX functions.

It provides Synthetic Programs designed to use and control Extended Memory

in addition to those in SPME. Published by SYNTHETIX and available from

them or from bookshops. A German edition of the above will be available

from Heldermann Verlag.

"Calculator Tips and Routines - Especially for the HP-41C/CV" edited by

John Dearing (1981) published by Corvallis Software, Inc.,, P.O. Box 1412,

Corvallis, Oregon 97339-1412, USA and available from bookshops. An

extensive compilation of tips and utility routines, including some

-604-



synthetic routines. An expanded German edition "Tricks, Tips und

Routinen fur Taschenrechner der Serie HP-41" is available from Heldermann

Verlag Berlin.

"HP-41/HP-IL System Dictionary" by Cary E. Reinstein (1982) 3rd. printing

available from PPC and bookshops. This really is a dictionary - it lists

and briefly explains the functions in the HP-41 and the following devices

and modules: Time, Extended Functions, HP-IL (including printer functions),

Card Reader, Wand, and the PPC ROM. It also explains commonly used terms,

including a few terms that HP-67 and HP-97 users have carried over to the

HP-41. The Appendices include some useful programs and a list of modules.

Another dictionary-type book is in preparation for release in mid-1986.

Its title is to be "Catalog 2 -- a guide to HP-41 System Software", by

Sharyle Ann Price. This will contain one-line descriptions of over 4000

functions on HP-41 devices, plug-in ROMs, and EPROMs, sorted by name,

source, and XROM number. Kelly Publications, P.O. Box 28023, Santa Ana, CA

92799-8023.

"Curve Fitting for Programmable Calculators" by William M. Kolb 2nd.

edition (1983) from IMTEC, P.O. Box 1402, Bowie, Maryland 20716, USA or

bookshops. Describes 40 types of curves that can be fitted to data.

Includes an HP-41 program to fit 19 curves, together with barcode for this

program. Contains programs for other calculators too.

"Data Processing on the HP-41C/CV" Volume 1, by William C. Phillips,

published by EduCALC and available from them. This briefly explains the

HP-41 system, then gives some good programming advice and concentrates on

uses of Extended Functions with Extended Memory files and Mass Storage for

data processing. Two main sets of example programs are given; Simple

Ordinary Annuities and a Sales program including tax routines. The book is

equally well suited for the HP-41CX.

"Inside the HP-41" by Jean-Daniel Dodin (1985) is an English translation of

the French book described below, published by SYNTHETIX and available from

-605-



them or through bookshops. Briefly describes the electrical layout of the

HP-41, then concentrates on the HP-41 operating system as seen by the

ordinary programmer, the programmer who uses synthetics, and the M-code

programmer. Somewhat useful for M-code beginners, but the translation is

directly from the French, including the idioms, and some sentences may need

to be read twice. Several useful Appendices contain material from other

publications, some of these Appendices were added during translation. One

is a straight copy from an April fool column in DATAFILE - it is wise to

ask authors for permission to copy articles, otherwise you may not realise

what you are copying! The French language original is "Au Fond de la HP-

41C" by Jean-Daniel Dodin (1982) published by the author, who is leader of

PPC-Toulouse, available from Editions du Cagire or bookshops. It contains

few programs but the detailed explanations of the HP-41 are very useful for

those who take an interest in such things. "Het Onderste uit de HP-41C" is

a Dutch translation of this book available from Editions du Cagire and some

European bookshops.

"IND 41" Ed. R. Pulluard (1984), published by Editions du Cagire, is an

index of HP-41 programs published in professional, computing and user group

journals. The editorial material is in French and English, side by side.

Each program description gives the program’s title, where it was published,

the program size, and an abstract in the original language.

"An Easy Course in Programming the HP-41" by Ted Wadman and Chris Coffin

(1983) published by Grapevine Publications, Inc., P.O. Box 118, Corvallis,

Oregon 97339, USA, available from the publishers and bookshops. This is

just what it says - an easy course for new users of the HP-41. It has lots

of pictures and is very friendly, but it occasionally assumes that the

reader has already used some sort of simple calculator. You may have

noticed how many of the books mentioned are published in Corvallis, home of

the HP-41; in this case the authors are former Hewlett-Packard employees.

"HP-41 MCODE for Beginners" by Ken Emery (1985), published by

SYNTHETIX, is the first book specifically about M-code. The title is too

modest as a lot of the contents are useful for experts, not just beginners.

-606-



For example it gives details of the display functions, including those of

the newest 41s.

"Optimales Programmieren mit dem HP-41" by Gerhard Kruse (1985), published

by Friedr. Vieweg & Sohn, Braunschweig. Available from the publishers

(write to Friedr. Vieweg & Sohn, Verlagsgesellschaft mbH, Postfach 5829,

D-6200 Wiesbaden 1, FRG.), German bookshops and others that specialise in

the HP-41. Contains brief advice on HP-41 programming in general, then

covers Synthetic Programming, Extended Functions and the Time module.

Gives many short example programs, with barcode. The last two chapters

cover uses of the HP-IL Development module, particularly in Synthetic

Programming, and provide a financial program. 100 pages long and a very

nice book if you read German. Vieweg are publishing two more HP-41 books.

"OS-41, An Operating System for the HP-41 Handheld Computer and

Peripherals" by Thomas W. and Ted W. Beers (1984), available from 1808

Summit Drive, West Lafayette, IN 47906, USA. A 472 page reference book

with programs to automate complicated HP-41 tasks, particularly on HP-IL

devices. Also contains tips and summaries of the usual data transfer

functions.

"The HP-41 Synthetic Quick Reference Guide" by Jeremy Smith (1983),

published by CodeSmith, 2056 Maple Avenue, Costa Mesa, CA 92627, USA. This

is a 40-page pocket-sized reference book particularly for Synthetic

Programmers, but with useful information for any HP-41 user. It is printed

on tough, paper-like plastic and fits into the HP-41 case if you trim the

edges. It is available from the publisher, from bookshops which specialise

in the HP-41, and from some user groups (many of whose members have one or

more copies because it is such a useful reference).

The "HP-41C Quick Reference Card for Synthetic Programming" is a plastic

card with the Byte Table, flag functions, and other information (Table 14.1

is a copy of part of this card). Published by SYNTHETIX and available from

them, some user groups, and bookshops, it fits into an HP-41 case easily.

As it has hexadecimal codes and their equivalents in decimal and binary,

-607-



and the corresponding ASCII characters, it is useful for work on other

computers.

General Books

"Algorithms for RPN Calculators" by John A. Ball (1978), published by John

Wiley & Sons, Inc. This book is available from bookshops which sell Wiley

books, from EduCALC and other specialist bookshops, and you can probably

find it in a college library (but having your own copy is better). It was

published before the HP-41 was on sale, but provides a wealth of advice and

information on programming RPN calculators. If you feel that "Extend your

HP-41" has not provided as much mathematical advice as you need then you

should get "Algorithms for RPN Calculators". It has an excellent Appendix

of references and books.

"Scientific Analysis on the Pocket Calculator" by Jon M. Smith (1977) is

also published by Wiley and available from the same sources as Ball’s book.

It gives detailed instructions for a few important operations, including

difference tables, Fourier analysis, Linear Systems simulation, Chebyshev

and Rational Polynomial approximations, statistics and Financial analysis.

It describes and compares several types of calculator, and has appendices

with calculator tricks, matrix and complex number operations, and common

formulae. (If you have this book, try reading the cover upside-down.)

"The Art of Computer Programming", Vol. I "Fundamental Algorithms" (1973)

and Vol. 2 "Seminumerical Algorithms", (try to get the second edition) by

Donald E. Knuth, published by Addison-Wesley. Available from scientific

bookshops, and in many libraries.

"Sourcebook for Programmable Calculators" published by Texas Instruments

contains programs and algorithms for the TI-58 and TI-59 calculators. Many

HP users consider their machines superior to TI’s, but this book contains

some very useful calculator algorithms which can be translated directly to

the HP-41. Available from EAuCALC and other calculator bookshops.

-608-



Many other books on computers and calculators are worth studying; order a

catalogue from EduCALC or have a look around a technical bookshop.

HP publications

In addition to the manuals and Solution Books, some other HP publications

are worth examining. The Users’ Library Catalogue and the Users’ Library

"Programmer’s Reference Guide" are received by everyone who subscribes to

the Library (see Appendix B). The Users’ Library Solutions books described

in Chapter 13 can be bought from the Library or from HP dealers. The

"Creating your own HP-41 Bar Code" manual contains useful information.

Journals

I have referred to user group journals at many points in this book. Most

larger groups publish a journal, or at least a newsletter, and these

contain bright ideas and up-to-date information. A year’s membership

includes the group’s journal, usually at a lower cost than a single plug-in

module. For that price you get many times more programs than in a single

module, and much else besides.

In general I have referred to articles in journals by journal name,

followed by Volume number, issue number, and page number. If an article

covers several pages I have given the first and the last. If a particular

item of information needs to be located on part of a page, I have used the

letters a for the top left quarter, b for the bottom left quarter, ¢ for

the top right, and d for the bottom right.

The PPC Journal has gone through several name changes. Originally it was

65 Notes, from Vol. 5 to Vol. 6 it was the PPC Journal, from Vol. 7 to

Vol. 11 it was the PPC Calculator Journal (and three volumes of the PPC

Computer Journal were published), and from Vol. 12 it again became the PPC

Journal (with the Computer and Calculator Journals combined). Volumes 6

through 9 contain many useful articles on synthetic programming, and are

worth ordering if you are interested in learning more about that subject.

-609-



Recent topics include M-code and the HP-71. Write to PPC at their new

address: P.O. Box 90579, Long Beach, CA 90809.

The Club of HP Handheld Users (CHHU) was started in August 1984 by Richard

Nelson, founder of PPC and editor of the PPC Journals from 1974 to 1984.

Since October 1984, CHHU has published the CHHU Chronicle, which is an

excellent source of information on the HP-41 and HP-71 systems. Part of

this is due to the support that Richard has in his new effort from many of

the prolific long-time PPC members. CHHU has grown to 1300 members in its

first year., CHHU has ceased operation, and back issues are available from

HPX, P.O. Box 566727, Atlanta GA 30356.

The first two issues of the UK journal had no special name, then it became

known as DATAFILE. The PPC-T journal became a magazine for public sale in

1984 and has since been known as Micro-Revue. The Melbourne journal, PPC

Technical Notes (PPCTN, sometimes referred to as just TN) initially had a

volume number and an issue number, but after 8 issues of Vol. 1 they gave

up using volume numbers, and all issues of TN are referred to by the issue

number alone; it is now called PPMTN. Journals can be ordered from the

clubs that publish them; back issues are worth buying or borrowing from a

club library. The addresses of the user groups and details of their

journals were given in Section 13.6.

-610-



APPENDIX B - Sources of Information and Equipment

This Appendix lists companies that sell equipment and publications

mentioned in this book. It is not a complete list; if you want more

addresses then a good place to start is PPCJ V12N4P20-24. That is an index

of products offerred and reviewed in PPCJ from V6N3 (a month before the

HP-41 was announced) to V1IN9 (the end of 1984), and a splendid piece of

work it is. From there you will have to go to the relevant issue and find

who supplies the item described.

EduCALC Mail Store, 27953 Cabot Road, Laguna Niguel, CA 92677, USA. They

stock HP equipment made by HP and independent suppliers, and a very wide

selection of accessories and books. They accept payment in U.S. cheques

drawn on U.S. banks or on VISA and Master Charge (ACCESS in the UK) cards.

They regularly publish free catalogues with a lot of useful information.

A shop that is similar to EQuCALC but is in Europe is TH Boekhandel Prins,

Binnenwatersloot 30, NL-2611 BK, Delft, The Netherlands. They too

specialise in HP equipment and books and take mail orders.

No British shop specialises in HP equipment and publications to the same

extent as these two, but several shops do carry a large stock; one of these

is Metyclean Ltd., 92 Victoria St.,, London SWI1, UK.

An HP software specialist in the UK is Zengrange Ltd., Greenfield Road,

Leeds LS9 8DB, UK. They make and sell the ZENROM, and they are an HP ICC

(Independent Custom Consultant) which means they can help you in the design

and manufacture of software on ROMs for the HP-41 and other HP equipment.

The *Oilwell module mentioned in Chapter 12 is designed and sold by Daly

Drilling Enterprises, 146 Hamilton Place, Aberdeen AB2 4BB, UK.

-611-



Heldermann Verlag Berlin, Nassauische Str. 26, 1000 Berlin 31, Germany

publish German translations of the books by Wickes, Dearing, and Jarett.

The CCD module is sold by W & W Software Products GmbH, Odenthaler Str.

214, Postfach 200970, D-5080, Bergisch Gladbach 2, Federal Republic of

Germany. W & W has a range of products and services, including two

exciting new products for the HP-41: a 32K EPROM box and a 32K Quasi-ROM

box with a 4K operating system, each of which are inside a Card Reader

shell.

Apart from selling memberships, journals, and controlling the HP-67/97

library, PPC sells some hardware, software and books. Among the

interesting software related items they have are the HP VASM listings of

the HP-41 M-code ROMs. PPC, P.O. Box 90579, Long Beach,, CA 90809, USA.

HP-41 VASM Micro-Code listings are now available only from PPC and W&W.

User Program Libraries: Some language sections of the HP User Program

Library in Europe have been transferred to user clubs, HPCC now has the

English section and can provide copies of programs to members. The US

library has been transferred to an independent organisation: Solve and

Integrate Corporation, 460 S.W. Madison, Suite 5, P.O. Box 1928, Corvallis,

OR 97339, USA.

SYNTHETIX, P.O. Box 1080, Berkeley, CA 94701, USA publish books and the

plastic Byte Table. The address printed on the Byte Table card is out of

date.

Below is a list of companies that sell specialist plug-in equipment; most

of the names and addresses were taken from announcements in journals. Some

companies may have changed their names, addresses, and the products they

make -- write and ask first.

-612-



Port Extenders can be bought from EAuCALC or TH Boekhandel Prins.

A European maker of M-code equipment is ERAMCO Systems. Their present

address is Kruiszwin 2102, 1788 RL Den Helder, The Netherlands. Letters

sent to their earlier addresses can go astray; if you have written there

and not received a reply then write again to the above address. They also

sell other equipment and the David EPROM set which is one of the best for

M-code users. The Danish user group (see Chapter 13) also make such

equipment. ERAMCO products are sold in the UK by: SOFTWORD, Astage,

Rectory Lane, Windlesham GU20 6BW, England.

American makers of M-code and EPROM equipment are given below, the

equipment they sell is on the first line, followed by the company name and

address:

ProtoCODER (Quasi-ROM), ProtoEPROM (an EPROM box), and other products,

Prototech, Inc., P.O. Box 12104, Boulder, CO 80303, USA.

CMT-110 16K or 32K EPROM box (Application Module Simulator),

Corvallis MicroTechnology, Inc.,, Dept. 100A, 895 NW Grant Ave, Corvallis,

OR 97333, USA.

This company also sell the following:

CMT-200 Digital data acquisition and control system for the HP-41.

CMT-300 Programmable measurement system (digital multimeter for the HP-41).

CMT-10 plug-in module which at last allows the use of up to 16K of software

on EPROM in a standard size HP-41 plug-in module. It is a module-sized

equivalent of the EPROM box, suitable for limited production custom ROM

modules.

HHP Portable EPROM unit (EPROM unit one in a Card Reader case), and other

products, especially HP-IL related items,

Hand Held Products,Inc.,, 6401 Carmel Road., Suite 110, Charlotte, NC 28226,

USA.

-613-



-614-



APPENDIX C - System Bugs, Nasty Surprises, and ROM Revisions

A great deal of information about "bugs" in the HP-41 system is available,

but it is difficult to put it all together in one place. This Appendix is

an attempt to put together as much information as is reasonably possible.

It should help new users, old hands who can no longer quite remember what a

bug such as Bug 9R really is, and it should also help bug-hunters by

providing a rough map of a territory that is never fully explored. I have

included a reference to the original discovery whenever I could find it but

have not always given details of the discoveries or discoverers as these

are in the original articles. I have not given references if I have been

unable to find them, or if the bug is one I have discovered myself and not

previously published.

First of all, just what is a bug? In computer terms this word describes an

error in a program. Program bugs have to be hunted vigorously and

exterminated if the programmer is not to suffer professional and financial

embarrassment. (An alternative strategy is to claim that the error is not

a bug at all; it is a feature which produces odd results because the

programmer had a reason for wanting such results. Of course the reason is

entirely unconnected with the programmer having written the program at

three o’clock in the morning, a month after the original deadline.) On

pocket calculators and computers the word "bug" is used to describe

behaviour that differs from what the manual says should happen. This is

fairly apt because the pocket calculator/computer contains programs that

make it behave like a calculating device not a doorstop. The people who

write these programs are only human, and on something as complicated as an

HP-41 they are bound to leave some bugs. Most users do not know how the

programs inside the HP-41 work, but they do know when the programs fail to

work, and they call these failures "bugs".

If the manual does not describe the results of some particular action then

the user has to predict these results by commonsense. In cases where the

actual results are seriously at odds with the commonsense prediction, it

is also reasonable to cry "bug!". Where the action is very unusual, or no

-615-



clear prediction can be made by commonsense alone, unusual results cannot

really be called bugs. They can however have disastrous results, and

deserve to be called nasty surprises at the very least.

This Appendix contains HP-41 bugs arranged according to the source of the

bug, and a separate list of "nasty surprises". Many bugs were first

discovered and classified by members of PPC or other user groups, so the

numbering here follows the PPC classification wherever possible.

Some bugs are very trivial, since they do not affect any results obtained

from the HP-41. Others are produced by deliberate maltreatment of the HP-

41. These two types are generally ignored in this list, except for a

mention of a couple of examples here. Two trivial bugs concerning the CAT

functions were discovered very early on, and most users have discovered

these bugs indpendently. CAT n where "n" is any single digit other than 1,

2 or 3 (and 4, 5, 6 on the HP-41CX) produces CAT 3 instead of an error

message. CAT IND a where "a" is any stack register (or any other status

register) also produces CAT 3 regardless of the contents of the register.

These bugs might be slightly annoying, but they do not lead you to design

variable geometry aircraft with their wings attached backwards. Indeed

CAT IND seems a rather unnecessary luxury since CAT is not programmable

anyway. Rather than correct this bug on the HP-41CX (where they had to

rewrite part of the CAT function anyway) HP simply left all mention of

CAT IND out of the manual.

A second example; if you hold down a key while a program is running, you

can expect to get some odd results if flag 25 is set as well and an error

occurs. The key is ignored while the program runs, but can make the

program restart if flag 25 is cleared, the program stops, and you keep your

finger on the key. This does not necessarily deserve to be treated as a

bug, it just shows that you should not lean on the HP-41 keyboard while a

program is running.

-616-



Classical bugs

The first class of bug to consider is that of the bugs known to the PPC

community since classical times. They were discovered in the first months

and years of the HP-41 product life, and were given official designations:

Bug 1 to Bug 9. At about that point the numbering system seemed to break

down, additional bugs similar to Bug 9 were not clearly numbered or were

given numbers and letters, and further bug numbers were only tentative. I

have taken the liberty of giving numbers to two more of these well-

recognised bugs, but I have also given the names suggested by the people

who reported them.

Bug 1 Early HP-41Cs did not save X in register L when the functions I+

and g - were performed. A simple fix for this bug is to do STO L before

£+ or £-. Reference: PPCCJ V6N5SP27.

Bug 2 The early HP-41Cs allowed RCL IND nn and STO IND nn even if the

value in nn came outside the limits of the HP-41 memory (nn could be a data

register or a stack register). The contents of these registers could be

key assignments and programs as well as normal data. This allowed for

fiddling with programs and key assignments and led to many of the

discoveries that gave us Synthetic Programming. If you have a Time Module

plugged into an HP-41C with this bug then you can store splits into

registers 999 to 704 as well. Reference: PPC CJ V6NS5SP28.

The following explanation assumes you are somewhat familiar with the HP-41

RAM addressing scheme described in Chapter 8. The HP-41 adds the number in

register nn to the absolute address of the curtain and uses this result,

modulo 1024, as the absolute address of the register to be recalled. The

result of the addition should be checked to see if it is less than 1024

(decimal), but HP-41Cs with bug 2 do not make this check. A reference to

register 999 therefore accesses register 999-1024 = -25, twenty-five

registers below the curtain. The modulo 1024 nature of Bug 2 register

access is due to the fact that the HP-41 uses only 10 bits to store

register addresses. Early HP-41's did not check the higher bits of the

-617-



register address. You can use Bug 2 to recall the status registers, key

assignment registers, and Extended Memory registers, but it always

normalises them (use REGMOVE or REGSWAP to minimize the extent of this

normalisation). You should Master Clear afterwards before you PACK or turn

off the machine to avoid a hang-up due to a zero length buffer.

Bug 3 The early HP-41Cs also allowed you to SF IND nn and CF IND nn with

any number between 00 and 55 in data register nn. (FS?C IND nn and

FC?C IND nn will also work.) Unlike bug 2 this did not work with nn in the

stack registers. Bug 3 provides a great deal of control over the HP-41C

and was useful in the early development of Synthetic Programming but the

meaning of many of the flags was not immediately recognised and HP removed

this bug as fast as they could. You can find if your HP-41C has this bug

by doing: 49, STO 01, SF IND 01. If the BAT annunciator comes on then you

have Bug 3. Reference: PPC CJ V6N5P28.

Bug 3 produces a fascinating display if you do: 46, STO 01, SF IND 01, and

then press any numerical key, but only if you enter the 0l by pressing the

top left key, not by pressing 0 and 1. The display scrolls various

characters, mostly nulls for about 5 seconds. Interesting displays can be

obtained if you use any of the top two rows of keys to SF IND nn. If you

supply the parameter nn by using the ordinary number keys, then the display

will rotate to the left when you press the next key. When the bug was

removed the code that produced these displays was also changed, so you

cannot get them by using 46, XEQ "SCF" or 46, TOGF.

Bug 4 Early HP-41Cs would compute the SIN of small angles incorrectly.

The problem is that the HP-41 first converts an angle from degrees or

gradians to radians, and then calculates the SIN of the angle in radians.

If the angle is so small that it converts to less than 101-100 (ten to the

power -100) radians, then the leading 1 of the -100 is ignored. Thus the

SIN calculated is that of an angle 107100 bigger than that intended. This

error cannot occur in radians mode (since no conversion is necessary). It

can be avoided by using radians mode when working with small angles, or by

calculating the TAN instead of the SIN of angles smaller than 101-10 (since

-618-



the TAN and the SIN are equal to the accuracy of the HP-41 at such small

angles and TAN does not have this bug). Bug 4 was not fixed till later

than bugs 1, 2 and 3. Reference: PPC CJ V6N6P30.

Bug 5 CLP would only clear 1089 program lines on early HP-41s. With a

printer attached, turned on, and set to NORM or TRACE mode the number of

lines cleared would be 233. Get around this by using CLP several times or

using DEL 1999 instead, but the latter does not delete the END of the

program. Reference: PPC CJ V6N6P30. This reference also gave an update on

Bugs 1,2 and 3.

Bug 6 HP-67 and HP-97 programs which contain combinations of number entry,

EEX and CHS instructions are not correctly translated to HP-41 programs.

For example the HP-67/97 program:

EEX, CHS, 7, CHS, 5

should be translated by the Card Reader into the HP-41 program:

1 E-7, -5

but in fact it is translated as:

E-7-5

This is actually a Card Reader bug (see below). It allows you to create

numeric entry lines without a 1 before the exponent, and to create all

sorts of other odd-looking numbers. If you are translating a real HP-67/97

program it can be a nuisance. The bug is still uncorrected at the time of

writing; maybe HP thinks that anyone who buys an HP-41 nowadays will not

have an HP-67 or 97. Reference: PPC CJ V6N6P23.

Bug 7 The second nybble of the seventh byte in the Alpha register is

copied along with the first six bytes by an ASTO. If Alpha contains

ABCDEFGH then ASTO X should copy ABCDEF to register X, leaving the

hexadecimal value:

-619-



10,41,42,43,44,45,46

in X. This bug causes register X to contain the following instead:

17,41,42,43,44,45,46

The second nybble of the letter G has been attached to the 1 at the start

of the string. Try doing the above, then CLA,ARCL X,ASTO Y,X=Y? If your

HP-41 has bug 7 then the answer will be NO. Reference: PPC CJ V6N6P23.

Bug 8 Programs are not decompiled on early HP-41s if the HP-41 is turned

off while still in PRGM mode. Program compilation was explained in

Chapter 6; if a program is altered but not decompiled then local GTOs and

XEQs jump to the old address of the label. After an alteration something

else may be at the address of the label, and the program will execute steps

in an unexpected order. Write the short program:

LBL "BUGS", CF 25, GTO 01, "I#ZERO??", LBL 01

Now GTO.. and XEQ "BUGS8". This will compile the GTO 01 step. Turn PRGM

mode on, SST till you see 03 GTO 01, press X<>Y and ON. This will insert

seven new bytes after the GTO 01, so the "#" is where the LBL 01 was -

without decompiling the GTO 01 if you have Bug 8. Now turn the HP-41 back

on, press RTN to get back to the beginning of the program, and press R/S.

If your HP-41 has Bug 8 you will see NONEXISTENT - why? The compiled

GTO 01 jumps to the "#" and treats it as a global GTO. The Z after the #

makes the HP-41 think there is a 10-character long label after the GTO;

this label is not found, so you see NONEXISTENT. Turn PRGM mode back on

and you will see the .END. - the 10 characters of the assumed label

include the END of the program and the HP-41 jumps out of the program, to

the .END..

If you have Bug 8 then programs will not be decompiled if the HP-41 is left

in PRGM mode and allowed to turn off automatically after 10 minutes. You

can decompile a program by going out of PRGM mode before turning off, by

pressing PRGM twice after you have turned back on, or by doing GTO.. or

PACK. Reference: PPC CJ V6N8P23. This reference contains another update

of previously discovered bugs.

-620-



Bug 9 Executing CAT 1 while in PRGM mode and then interrupting it with R/S

can result in various oddities related to incorrect step numbering. The

original bug and several later versions were discovered by Mark MacLean.

ii.

iii.

If you stop at a LBL and put in a new step then that step remains

unseen. Press SST and you will see this step, with the step number

01; you will not be able to BST to the LBL, and all the line numbers

will be wrong until you SST past the END or use GTO.nnn.

If you stop at any LBL or END and do DEL 001 then you see the previous

step of the program, with the step number 4094. If the LBL you delete

is the first step of the program then you get back to the END of the

program unless it is the first program in CAT 1. Starting at this

large step number you can BST through your program, past the END, into

the previous program, and from there into earlier programs.

If you interrupt CAT 1 at the first LBL of the first program, and this

LBL is the first step in the program, then things are a little

different. Deleting this LBL gets you to the bottom of main memory,

which allows you to get to the Key Assignment Registers. (Depending

on the SIZE and number of memory modules, this sometimes just gets you

back to the .END. -- instead of executing DEL 001 you can press ALPHA,

backarrow, ALPHA; this method will get into the assignment registers

on all HP-41s, so far as is known.) If you start from MEMORY LOST

status, do CAT 1, and R/S then you will be at the .END. following

which this method will get you into the key assignment registers too.

If you have an ordinary END as the very first item in CAT 1 then

deleting that will also get you into the assignment area, but there is

a chance that the HP-41 will lock up if you use this method.

Point iii. is the most interesting as it lets you edit the key assignments

and create synthetic assignments, including the Byte Grabber as described

in Chapter 14. It is this that is usually referred to as Bug 9. The step

before the deleted one appears as 4094 because the step number is set to

-621-



hexadecimal FFF, decimal 4095, during CAT 1 (and during a running program).

The first reference to Bug 9 is in PPC CJ V7NO9P25, but a great deal has

been written about it in connection with Synthetic Programming. The second

reference, in PPC TN NS5P35-38 describes an independent discovery of bug 9

and gives the first description of two other CAT interruption bugs. This

article was reprinted in PPC CJ V8N4P8.

iv. Interrupt any one of CAT 1, 2 or 3 then XEQ "BST" and press backarrow.

The display will scroll backwards, put a G in the leftmost display

position (except on an HP-41CX) and lock up. Pressing ENTER or ON

gets you back to normal (on an HP-41CX press ENTER and ON at the same

time). Try spelling out "SST" instead of "BST", and pressing other

keys than backarrow.

v. PACK, execute CAT 1 in PRGM mode, interrupt it, and SST to the .END..

If you have nothing in CAT 1 except the .END. then execute CAT 1 and

stop it at once with R/S. Now press ALPHA and enter a string of text.

The string will not show up as you enter it, and the bytes are stored

further up in program memory. This is similar to i. above, but the

positions of the bytes are wrong, not just the line numbering.

The next three bugs are also very similar to Bug 9; they were all described

by M. MacLean and K. Jarett in PPCCJ V8N5P8-9. All involve line numbering

errors similar to the first three points above, and provide means of

entering the assignment area, so they are included here under Bug 9.

vi. Do a MEMORY LOST, then make any two assignments. Press SST, keep it

down, press ON and keep that down too. Release SST, then release ON.

If NULL appears while you are doing this then start again and do it

more quickly. While you had SST down, the HP-41 assumed it was going

to the line after the .END. , so it set the line number to 02. As you

turned the HP-41 off before the .END. was executed, it did not realise

that line number 02 does not exist. Turn the HP-41 on, press PRGM

then backarrow, and you are at an imaginary line 0l. Press GTO.001

and you get to the top of the "program" containing this step - in fact

-622-



vii.

viii.

this is the first byte of the buffer and key assignment area.

Also known as Bug 9R, because it is obtained by going to a program

label in a ROM, setting PRGM mode, and pulling out the ROM without

turning off the HP-41. If you do this and press the backarrow key

then you get into the key assignment and buffer area, and can use

GTO.001 to get to the top of it. This is not quite a bug since HP

warn users not to pull out modules while the HP-41 is on. Discovered

by K. Jarett it is the fastest entry to the key assignment registers.

If you have no room for more program steps, even after packing, then

you will see .END. REG 00. If you now SF 25, go into PRGM mode, and

press a key then the HP-41 will start running the program you are in.

If the program stops at a STOP instruction then the line number will

be the number that should have been given to the inserted step (unless

the program stops at a PSE or an END). This bug is really quite

separate from Bug 9, but it has not been given a number, and it fits

in with the other bugs that cause incorrect line numbering. By

including a backward GTO in the program, and putting a STOP after the

target LBL, you can make your program line numbers too high, and thus

get into the assignment area. To check if your HP-41 has this bug:

At the top of Catalog 1, GTO.000 and enter the program

LBL 01, STOP, BEEP, AON, GTO 01, END .

PACK and go to line 000 of the program again. Add the number of

registers shown to the present SIZE, and set the SIZE to this value.

The display should now show 00 REG 00.

SST to the step 03 BEEP, go out of PRGM mode, SF 25, go back into PRGM

mode and press ENTER. Sece PACKING, then 04 BEEP with ALPHA

mode set. Press the backarrow key 3 times and you are at step 01, in the

assignment area. Press ALPHA to get out of ALPHA mode. You cannot

BST, but you can use GTO.001 to get to the front of the assignment and

buffer area. The HP-41 still remembers that you had zero free

registers for program editing, so if you accidentally try to put in a

-623-



byte too many then instead of moving everything down and getting

MEMORY LOST the HP-41 will display PACKING and TRY AGAIN. The

second time you may get MEMORY LOST, so be careful.

All the above bugs are related, and most of them exist even on the HP-41CX.

They are interesting because they let you create synthetic assignments and

edit buffers too. Even if some of them are eventually corrected it seems

unlikely that they will all be removed. It is not surprising that having

this many bugs under one number caused the bug numbering scheme to go awry.

Bug 10 If flag 25 is set and MEAN or SDEV causes an overflow error then

the flag register can be altered. The overflow can only occur if the Ix

or Zy value divided by n exceeds 101100 and you execute MEAN, or if the

tx or Ly divided by the square root of n exceeds 101100 and you execute

SDEV. If there is an overflow on y then the original value in register d

changes to:

99,99,9x,xx,x9,99,99

where x marks bytes that are unchanged, except that flag 25 is cleared.

One serious result is that the HP-41 is in PRGM mode, and will alter

program memory if a running program comes across a numeric entry step.

If Zy does not overflow, but there is an overflow on I x then part of the

Ly value is copied to register d. Starting with the bytes in the Iy

register represented as:

AA,BB,CC,DD,EE,FF,GG

you finish with register d containing:

DD,EE,FF,xx,AA,BB,CC

The bytes xx are unchanged, except that flag 25 is cleared. The last three

nybbles are usually altered in some way because they are in flags 44 to 55

which are system flags that can change, and they can also have odd effects

on the HP-41 behaviour if set by this bug.

-624-



This bug can only occur if a number smaller than 1 is stored into the n

register, so it will not affect normal statistics operations, and HP have

been in no hurry to correct it. It will occur only for a limited range of

Zx or Ly values; it was used in the example in Section 6.6 to let a

running program set the PRGM flag. References: PPCCJ V8N6P45 and VON4PS.

Bug 11 Originally called the CWI1 bug, it is also called the "Return below

the .END. bug". If a program at the end of CAT 1 is replaced or deleted

then a return to that program will return into the new program, or below

the .END. . Originally the Card Reader function RSUB and the Wand

functions WNDSUB and WNDLNK were the ones that could replace the last

program in memory (the program containing the .END.), so the bug was named

after these devices by Bruce Bailey who first described it. Reference:

PPC CJ VIN2P40. Since that time new devices which can cause the bug have

been brought out, the functions affected are GETP and PCLPS in the Extended

Functions module, READP in the HP-IL module, and INP in the Extended I/O

module. A list and detailed explanation were given in DATAFILE V2N5P2-6.

A simple example is the following. Do GTO.. and put in a program

CLA, XEQ 01, LBL 01, PCLPS

If you execute this short program then PCLPS deletes the last program in

memory, which is this very program. Following PCLPS this program is

replaced by the .END. which is executed, and treated as a return. The

return is made to the line after XEQ 0l, which is now below the .END. and

does not exist. The HP-41 drops through to the next instruction it can

find which will be a buffer, a timer alarm, or a key assignment. This

trick is used by the non-synthetic assignment program GASN in Chapter 11.

One serious bug on early HP-41s did not get a number. LNI1+X gave wrong

answers for X values from -0.9990234375 to -0.9999999999 . The improved

accuracy of LNI1+X is not needed at these values, so it is probably best to

check for values below -9 and wuse 1, +, LN . This will not save X in

register L though.

-625-



Display Bugs

At about the time when the classical bug numbering scheme broke down,

several bugs connected with HP-41 display were discovered. 1 shall list

these bugs, together with ones that were discovered earlier, numbering them

roughly in the order in which they were described in PPCCIJ.

1. If a text string containing an FF byte is put into any stack or data

register and the register is viewed then the FF byte and all bytes after it

will be invisible. For example the string 10,41,42,FF,43,44,45 can be put

into register X and will be seen as "AB", not as "AB ¥ CDE". This can be

used in word games but not for much else. Reference: PPCCJ V6NS5P31a.

2. If you VIEW or AVIEVW something and execute an instruction that clears

flag 25 then the contents of the display will move around just as if they

were the "flying goose". Enter and run the following short program:

LBL "DSPL", PI, SF 25, "?", AVIEW, SF 60, LBL 01, ATAN, GTO 01, END

SF 60 generates an error and clears flag 25. Flag 50, the message flag is

cleared at the same time, but the display is not cleared, so the HP-41 acts

as if the display had been cleared and the "flying goose" was in it, but

actually moves whatever is in the display. The ATAN is just a delaying

tactic, without it the display would move too quickly in the LBL 01 loop.

You can use this bug to display your favourite message while a program is

running, but the message must not be more than 12 display positions long

(it can contain extra punctuation though). You can experiment with

interesting displays, for example try the string " . , . , ., ., ., . "

instead of the "?" in the program above. Reference: PPCCJ V6N8P24.

3. Enter a string of twelve spaces each followed by a comma into the Alpha

register, then press the backarrow key repeatedly. Instead of removing the

commas and the spaces, the display deletes only commas and ignores the

spaces; this is display bug 3. The Alpha register itself acts correctly,

commas and spaces are deleted alternatively. If you delete twelve commas

-626-



and carry on pressing the backarrow key, then the prompt will vanish, and

come back to the right of the display. This bug affects dots, commas and

colons with spaces between them. If you turn ALPHA mode off and on again

you will see what is really left in Alpha. Reference: PPCJ V7IN3P28b.

4. ASTO a text string beginning with a dot, comma or colon in X, stay in

ALPHA mode and put twelve characters into Alpha, then switch out of ALPHA

mode. The display will show the last Alpha character ahead of the dot (or

comma or colon) at the left. This bug occurs if any text string in the X

register begins with a punctuation mark and is viewed following any display

which had a non-punctuation character in the rightmost display position.

After the example above, enter 1E15, X<>Y, VIEW Y, backarrow and you will

see 5. -- the HP-41 pushes the display twelve places to the left before

showing the contents of register X, but this is not enough if the first

character in X is a punctuation mark and is appended to the previous

rightmost character. Reference: PPCCJ V9ONP6a.

5. If you try to GTO IND or XEQ IND a global label which consists entirely

of one or more @ characters, and the label does not exist, then the HP-41

will hang up instead of displaying NONEXISTENT. The label would have to be

synthetically created, but the bug can be caused by non-synthetic means

using the Extended Functions, for example: CLA, 64, XTOA, ASTO X,

GTO IND X will cause a hang-up. This is a display bug because the

character code for "@" is zero (when the character is in the display, not

in memory), and the HP-41 gets stuck in a loop trying to read back the

display before showing NONEXISTENT.

6. The second Card Reader bug described below affects the display.

Card Reader bugs

1. Classical Bug 6 above is really a Card Reader bug - the Card Reader

does not know where to put nulls to separate one numeric entry from

another. This applies when reading a program card and when using MRG at

the line following a numeric entry.

-627-



2. Following corrections to early HP-41 bugs, early Card Readers did not

treat the display correctly when a 3-digit prompt had one or two digits

entered, then backarrowed. If you have a Card Reader which identifies

itself as "CARD READER" in Cat 2 and an HP-41 without the early classical

bugs then try the following: SIZE 12 (not 012, just 12), backarrow,

backarrow and you will see the 1 at the left of the display with SIZE at

the right. Pressing backarrow will not clear this display, but most other

keys will. DEL, LIST and NEWM do the same thing. Reference: PPCCJ VON4P5b

and Pé6b.

3. You have this bug unless your Card Reader shows up as CARD RDR 1G or

a higher revision in CAT 2. Using VER will cause a register from the card

being checked to be written into address 3EF, the top register of an

Extended Memory module in port 2 (or port 4 via a Port Extender, or built

into a dual or triple Extended Memory module). This register may be

somewhere in a data file in which case you will have a bad data value, or

in a text file in which case the record lengths may go wrong as well as the

text being wrong, or a program will become unusable, or a file header will

be altered. Either refrain from executing VER while you are using an

Extended Memory module like this, or get your Card Reader ROMs updated by

HP. Alternatively take evasive action by using SP; if you copy this

register somewhere else while executing VER and then copy it back you will

be safe. "Extended Functions Made Easy" has a program to do this.

Reference: PPCCJ VONT7P19-20.

4. Up to now all Card Readers have a 7CLREG bug. If you have a complete

Main Memory (HP-41C with 4 memory modules or a quad, or a CV or CX) and a

SIZE less than 25 then 7CLREG can clear the top of Main Memory and the

bottom of the Extended Memory module in port 1 or 3 (or in a Port Extender

etc. as above). This will destroy the Extended Memory linkage as well as

some data. The solution is simple: set a SIZE of at least 25 before using

7CLREG, indeed the Card Reader manual advises you to do this before using

the 67/97 compatibility functions, so maybe this should be classed as a

"nasty surprise", not a bug. Still, the response should be NONEXISTENT as

-628-



with other 67/97 compatibility functions which try to use nonexistent data

registers. Reference: PPCCJ V10N4P6b-c.

5. 7RCLEI does not save X in register L as the corresponding 67/97

function does. This is pretty trivial unless you are using a translated

67/97 program which uses statistics and the L register.

6. One bug mentioned in HP reports, but never reported in PPCCJ is that

reading a program which fits on more than one card can sometimes put

rubbish into register T and/or some other unspecified register. This

sounds quite horrifying if the "other register" contains data or part of a

program, but if it has never been reported in PPCCJ then it is likely to be

a rare occurrence. Just in case, if you are running very important

programs, load data registers and the stack after reading a long program. 

The bug was fixed at the end of 1981, so Card Readers made or repaired

since then should not have it.

Extended Memory, Extended Functions, and the HP-41CX

Two Card Reader bugs which affect EM have been described above. If your

HP-41C has Bug 2 (see above), REGMOVE and REGSWAP will not notice the break

between Main Memory and Extended Memory. This can be used for non-

normalised recall as was described in Section 16.9, but is more likely to

destroy data and the EM linkage.

If you have two EM modules and the link registers are initialised because

you have created data files that use them all then avoid taking out the

middle module for a short time and then replacing it. If you have a single

large file which spans all three modules then you could delete it by

turning off the HP-41, removing the module that is in the middle of the

file, turning the HP-41 back on, and creating a new file. Now turn the

HP-41 back off, replace the other EM module, and turn back on. If you did

this quickly then the linkage register in the module you removed still

points to the second EM module. However the base module now also points to

the second module. If you do an EMDIR then the module you replaced cannot

-629-



be detected; its EM is unusable. If you leave the EM module disconnected

for a few minutes then the contents of the link register will discharge and

you will be able to plug it back in safely.

So much for EM itself, now for the Extended Functions. The original

version (-EXT FCN 1B) contained several nasty bugs. Some modules which

show up in CAT 2 as -EXT FCN 1B have had a few of these bugs removed; HP

apparently made some corrections without using a new version number; this

has happened with some revisions of the HP-41 internal ROMs too. Pre-

production models of the HP-41CX had most of these bugs, and users who had

access to these spread the rumour that many of the bugs were in the CX (I

did this myself in an article in DATAFILE). In fact -EXT FCN 1C had some

bugs corrected, and -EXT FCN 2D (in production models of the HP-41CX) had

more corrections. Some of the information here was provided by Frank

Wales, to whom many thanks. First of all, here are the version 1B bugs.

PURFL purges a file and so there is no working file. Until you establish a

working file by using EMDIR, or by using a function such as SEEKPTA, or

FLSIZE, with a new name in Alpha, you must not do anything to the working

file. If you do, the Extended Functions see there is no working file,

assume EM is empty, display DIR EMPTY instead of FL NOT FOUND, and clear

all EM. I gave a full list of which functions do this, and when, in

DATAFILE V2N5P5. In fact EM is not cleared completely, there is just an

end-of-memory mark put in register OBF. You can recover from this by

storing a file name synthetically in absolute register OBF. (For example

do "FIRSTFL", RCL M and then store this in register OBF by moving the

curtain, using the PPC ROM function SX, or using the ZENROM or CCD module

absolute storage functions.)

If you run a ROM program or go to a ROM program and stay at it, then put

the name of a CAT 1 label in Alpha and execute PCLPS from the keyboard,

then instead of clearing the required program and those after it, PCLPS

alters the contents of some of the status registers (which can lead to loss

of CAT 1 linkage or MEMORY LOST). This takes a few seconds, and you may be

able to avoid amnesia by removing the batteries quickly.

-630-



Much the same happens with SAVEP. If the program pointer is in a ROM and

you put a RAM label name in Alpha then SAVEP can destroy some EM files or

even do MEMORY LOST. A simple way around both these bugs is to do a CAT 1

before executing either function from the keyboard.

POSFL changes the stack in different ways depending on whether or not the

text 1s found. This problem was described under POSFL in Section 11.5 and

a way around it was suggested there.

Two more bugs were described in Sections 16.5 and 16.6. One is that a

string of seven FF bytes in one register is considered to be the end-of-

memory marker even if it is not at the end of a file. During the re-

packing of Extended Memory that follows a PURFL, the Extended Functions

module will copy files into the area left by the deleted file, but only up

to the first register of FFs found, not to the true end-of-memory. Since

EMDIR knows what the file sizes really are, it ignores the string of FFs,

so after a PURFL it can end up looking for the next file header in the

middle of the next file.

If the files that were moved up in memory after the PURFL include the one

that contained the string of FFs, then a copy of that file will still lie

further down in EM. Now EMDIR (and other functions that search EM) do not

search the directory in one pass through Extended Memory. Instead, they

ask an internal subroutine for the name of file number 1, then they ask it

for the name of the first file after the one just found, then the first

file name after that, and so on. This works fine as long as names are not

duplicated. But following a PURFL it is possible for a name to be

duplicated. Thus the file after file "X" is not wuniquely defined, and

the EMDIR can get into a loop. As is pointed out in Section 16.6, other

functions can also be affected by this unnecessary name check. For example

it sometimes stops the program ED in Section 16.9. The updated Extended

Functions still check the name, but they also check the file number, so

this bug does not affect CXs.

-631-



The following bugs or nasty surprises have survived in the updated Extended

Functions, so you will find them in old and new versions. ANUM does not

read numbers cleanly from Alpha but follows the convoluted logic outlined

under ANUM in Section 10.2; this is not really a bug as was explained

there, but you should be aware of it. REGSWAP and REGMOVE can move

overlapping blocks, resulting in the interesting results described in

Section 10.3; this too is not really a bug, except that the CX manual on

page 201 says "the blocks can’t overlap". This suggests an error message

will be displayed if they do; in fact it means they shouldn’t overlap. At

the bottom of the same page it says under REGSWAP that which block is the

"source and which 1is the destination "is immaterial" - in fact it 1is

immaterial unless they overlap.

GETP and PCLPS can put you into an unexpected position if you return to a

location which has been altered by either of them. This is really a

special case of Classical Bug 11, the CW1 bug.

STOFLAG does not change the display annunciators if it is used to copy the

status of all the flags 00-43 back from the X register. Try the following

program:

SF 01, RAD, RCLFLAG, CF 01, DEG, STOFLAG, 99, GETKEYX

The annunciators for 1 and RAD will not be set in this example until you

have pressed a key or waited for the 99 seconds. The annunciators will be

reset only when you alter the status of a flag which causes the display to

be changed.

Once I am on the subject of flags you may like to know that the function

X<>F has the same effect when executed by a control alarm; the function is

executed by the alarm, but neither the number in the display nor the flag

settings displayed are changed. I cannot think why anyone should want to

use X<>F in a control alarm, but it is nice to be warned.

The Extended Functions in the CX have two more nasty surprises. ED puts a

text marker into an empty record, and does not remove this marker if you

-632-



are in insert mode; this was mentioned in Section 11.9. The indirect

comparison functions normalise anything that is in a numbered data register

before they compare it, this was mentioned in Section 10.6.

The HP-41CX also has two bugs that are more serious and another nasty

surprise. The first bug concerns EMDIRX and file names. It is possible

for a file to have its first header register (the one with the name) at the

bottom of one block of EM and its second header register (the one with the

file type) at the top of another block of EM. If this happens then EMDIRX

takes the file type correctly from the second header register, but it then

takes the file name from the immediately preceding register which in this

case does not exist. In other words, if a file name is stored in absolute

registers 041, 202 or 302 (hex) then EMDIRX returns a null string to the

Alpha register instead of giving the file name. Reference: PPCCJ

VI1INI1p33b.

The second CX bug ocurs if you have an XROM NN,25 instruction in a program.

If a module with the identifier NN is plugged in and contains a function or

program with the number 25 then this is correctly displayed and executed.

For example if you plug in the Clinical Lab module and enter the step

XEQ "*9" then this is recorded as XROM 19,25 and is displayed as XROM 7*9,

If no module with the identifier NN is plugged in then such a step appears

as XROM NN,25 and generates NONEXISTENT if it is executed, for example if

the Clinical Lab module is removed then the step described above is

displayed as XROM 19,25. All this is normal behaviour so far.

Here is the bug: If another module with the same identifier NN but with

fewer than 25 functions is plugged in then this step is incorrectly

interpreted by the CX as INSREC. For example the Aviation module contains

instructions from XROM 19,00 to XROM 19,20. If this module is plugged into

an HP-41C or CV which contains an XROM 19,25 step then this step does not

change. However on an HP-41CX it turns into the step INSREC.

From Table 12.2 you can see that this may happen with several other

combinations of modules; another example is replacing a Standard Pack

-633-



which has functions XROM 05,00 to XROM 05,63 with a ZENROM which has

functions up to XROM 05,12. The most common way this can happen is if you

have an HP-IL printer and enter the printer function FMT (XROM 29,25), then

remove the IL module or set it to "Disable" and plug in an HP82143A printer

which has no FMT function. Instead of replacing FMT with XROM 29,25 an HP-

41CX will replace it with INSREC and will execute INSREC, with possibly

disastrous results. (On an HP-41C or CV the XROM 29,25 produces a quite

different bug; see "Bugs due to more than one device" below.)

A rather trivial nasty surprise on the HP-41CX is that CAT 2 will only show

module names if they are over seven characters long, as was mentioned in

Section 10.5. You can overcome this by pressing ENTER to force every

function and program name to be displayed; in any case it only affects the

MATH 1B module (so it can really be considered to be a Math module bug).

Wand

Some of the Alpha barcode functions are treated differently by different

Wands; this can be a nasty surprise if you change Wands. If you execute a

numeric function from the paper keyboard while the HP-41 is in Alpha mode

and not in PRGM mode then the Wand should clear Alpha mode and execute the

function. However if you scan the % function in Alpha mode it puts a %

into the Alpha register instead. There are several other anomalies in the

opposite direction too; if you scan some of the Alpha barcodes they can

execute as functions. The results depend on the Wand revision, and whether

Alpha and PRGM mode are set or clear. A list of these anomalies is given

in the middle of the Synthetic Quick Reference Guide. Another nasty

surprise is that revision 1E wands cannot read sequenced data barcode; see

Section 12.3.

HP-IL Development Module

This module has several bugs, some good, some bad, some indifferent. The

best bug is that RG-BUFX has the same register wrap-round feature as Bug 2

on the old HP-41Cs. This means that register numbers up to 999 can be used

-634-



to recall RAM registers to the buffer, without normalisation. The program

NNR in Section 16.9 shows how this can be exploited. The wrap-around does

not work if SIZE is 000, since in that case all registers are NONEXISTENT.

An indifferent bug is that an HP-41 used in SCOPE mode can sometimes leave

its display blinking at the end of displaying a set of IL messages and

printing them on an HP82143A printer. This does not affect the display of

further messages when more are sent round the loop being monitored. It is

usually a result of the IL module being monitored continuously checking

whether the printer PRINT button has been pressed; the messages involved

are not printed in SCOPE mode but are displayed and recorded in the buffer.

A bug that can be good or bad is that the hexadecimal entry keys A-F are

not disabled during execution of OCTIN and BININ. When one of these keys

is pressed before any numeric digits have been entered, the key’s default

function is displayed as if it was a program step and the input function is

terminated; this happens in USER mode too. If you release the key before

the function is nulled then the function you are executing (OCTIN or BININ)

is stored as a program step at the current position in the current program,

even if you are in run mode. If you have entered at least one digit,

numeric entry is terminated and the default function, or the assigned

function in USER mode, is executed, as should happen. As it alters

programs unexpectedly, this is a bad bug unless you are a synthetic

programmer who wants to change a program without decompiling it. The OCTIN

or BININ step will open up a new register if there are not two free bytes

available at the current position. This will change the positions of other

bytes in the program, but compiled jumps will still be made, and will move

by the originally compiled distance. The program will be decompiled when

you next enter and leave PRGM mode, or when you turn the HP-41 off and on

(unless you have Bug 8). If the OCTIN or BININ is executed in a running

program or single-stepped then the program pointer will move and a byte

will be entered into the program at its new position. These OCTIN and

BININ bugs are also present in the Advantage module.

-635-



BSIZE? does not display the least significant digit if the buffer size is

1000 or more bytes. Thus a buffer length of 1232 will be displayed as 123

- a nuisance, but you will probably remember if you have created a very

long buffer.

There are two problems with BIT? - first of all the manual says that when

it is executed in a program then the next program step is skipped if the

test is true. In fact the test works like all other do-if-true tests; the

next step is executed if the test is true - it is not skipped. Secondly

the result of the test is not always displayed if BIT? is executed from the

keyboard. What happens is that when the test is made the bit string in Y

is rotated 7 bits to the right, and the test is repeated. If the result of

the second test is true then the result of the first test is not displayed.

Two examples:

128, ENTER, 0, BIT?

the result should be NO, but nothing is displayed because bit 0 is set

after 128 is rotated 7 bits to the right.

1, ENTER, 25, BIT?

should also display NO but displays nothing. Both the action and

the description of BIT? are fixed in the Advantage module.

Bugs on other plug-ins

A list of all bugs in all plug-in modules and devices would take a lot more

room and would never be complete so long as new plug-ins are introduced and

old ones are updated. This is particularly true of the HP-IL module and

system; even things which seemed perfectly reasonable when the IL module

was introduced may turn out to cause problems when new devices are made.

For these reasons I have not tried to provide a list of HP-IL bugs or bugs

in Application Packs. You should always be aware that a plug-in module or

Application Pack might have a bug; never use them uncritically without

-636-



running a few tests. This is not a criticism of anyone, just plain common

sense. Even if your module has no bugs you should have checked if you had

the bad luck to get one that was damaged somewhere before it reached you.

Users of the PPC ROM should by now be aware of its hostility toward Timer

Alarms and I/O buffers (neither were known to the public at the time the

PPC ROM was developed). You should clear alarms and buffers before using

any of the PPC ROM’s key assignment programs. Also be aware that when a

Time module (or CX) is present, assignments to key -61 are likely to be

suspended. Just read in a program from Extended Memory or any other source

to reactivate your assignment.

One further bug does deserve a mention because it is not immediately

obvious but can lead to very serious problems. If you use the normal Alpha

keyboard to enter text lines in a program while a CCD module is plugged in

you should never press the SPACE key. Press USER, SPACE, USER if you must

enter a space. Pressing the SPACE key in normal Alpha mode can alter a

single program byte, either in the program you are editing or in some other

program in the HP-41. Since the altered byte need not be in the program

you are editing, this may go completely unnoticed, which can be disastrous;

it appears to have led to at least one error in a program listing in the

first printing of this book. This bug will probably be corrected quickly.

Bugs due to more than one device

Some of the bugs described above have been due to interactions between two

devices or modules. Here is one bug that is due to the interaction of the

printer with the Time module and the Extended Functions. It occurs if you

have a program which contains the HP-IL printer function FMT, or the

synthetically entered XROM 29,25 and you do not have an HP-IL printer

attached and enabled. On an HP-41C or CV if you do not have a Time module

but have an old HP82143A printer attached then this function causes a

fading crash - the display fades out, then returns after about a minute.

If you have a Time module as well then the function displays as TMIC@ and

turns the HP-41 off when executed.

-637-



On an HP-41CX this function brings about a different bug; the XROM NN,25

bug described above with the other 41CX bugs. FMT displays and executes as

INSREC if you have an old printer attached. This could be quite dangerous;

it is entirely possible that a CX user will get a program from someone who

has an IL printer, and will try to run it with an old printer. A novice

would certainly not expect their Extended Memory to be altered by this.

Nasty surprises

This is really a reminder of other nasty surprises not yet mentioned here

but described in the main body of the book.

ISG and DSE truncate instead of rounding the low order digits of the

control value.

Control alarms can suddenly interrupt a running program or a keyboard

calculation. They can also display NONEXISTENT if they go off but cannot

find a program or function because a required program has been deleted or a

module has been removed.

ALMNOW only executes control alarms; it is easy to forget that it ignores

other past-due alarms.

There is an SST function in the Devel ROM; do not Alpha execute SST if you

want to single-step while a Devel is plugged-in.

CLOCK and SHIFT, ON (except on the HP-41CX) clear flags 12 to 20.

Setting the time with a negative fraction does not give a P.M. time whereas

a negative number less than -1. does give a P.M. time.

X=0? and other comparisons with zero give an error if X contains a text

string, and if flag 25 is set then they execute the next step, though you

did not expect them to. See the notes on this at the end of Section 6.7.

-638-



The routines in the Math module have been renumbered, so a program which

was written using a routine from an old Math module might execute a

different one when executed with a new Math module.

Finally, you may have some nasty surprises if you come across any misprints

in this book; sorry, they are my contribution to the bug list.

ROM Revisions

Many of the bugs described above affect only certain versions of the HP-41

or of a plug-in. As the bugs are in the programs in the Read Only Memory

(ROM) of the HP-41 or module, you may like to know which ROM version you

have. If you publish a program which uses a particular bug you should

certainly include some information to let the readers determine if they

have the same ROM version as you do. This last part of Appendix C will

cover the subject of ROM versions. It assumes you have read Chapter 8.

The first thing to find out is the date when the HP-41 or plug-in was made.

At the bottom of every module there is a four-digit date code stamped into

the plastic. This is not the same as the type number on the label under

the module, the date code is in the plastic itself and is not so easily

seen. The four digits can be read as YYWW, where YY is a year code and WW

is a week code. Add YY to 1960 to give the year when the module was made.

WW gives the number of the week when the module was made in that year. WW

is actually the week of manufacture + 8 which is supposed to allow for an

8-week delay between manufacture and arrival at the retail outlet where the

module is to be sold. The year and week numbers are not always corrected

for the fact that there are only 52 weeks in a year, so a code of 2055

means the module was made 8 weeks earlier, in week 47 of 1980. Since 1984

some modules have a year code which gives the actual year of manufacture;

84, 85 and so on. Some custom modules have a serial number instead of a

date code, but this does not happen to modules made by HP for general sale.

-639-



Larger devices like printers or HP-41s themselves have the same date code

followed by a letter to give the country of manufacture (A for USA, B for

Brazil, J for Japan, Q for United Kingdom and S for Singapore). The letter

is followed by a five-digit sequence number within the week. These date

codes tell you when modules and devices were made, but if they have been

repaired then the ROMs have probably been updated and you need to identify

the ROM versions. The simplest way to do this is by looking at the module

header in a CAT 2. Some module versions have never been sold; for example

you can find Finance modules which show up in CAT 2 as FINANCE 1B or

FINANCE 1C or FINANCE 1D, but not FINANCE 1A.

Some modules have undergone more revisions than this version numbering

would suggest, and catalog inspection cannot be used to check the ROM

revisions of an HP-41, since these do not appear in any CAT. A ROM

revision code (as oppsed to the version number) is placed at the end of

every 4K module. This revision code can be read from these addresses (FFB

to FFE) by the Devel module’s function ROMCHKX; for example you can plug in

an Extended Functions module which shows up as -EXT FCN 1B and execute 25,

ROMCHKX to see the revision code show up as AP-1B. This is the module name

and revision, AP-1B stands for Advanced Programming ROM 1B (the Extended

Functions module was originally called the Advanced Programming ROM

by HP).

You have to own a Devel module to use ROMCHKX, and in any case it does not

work for the ROM revisions of the internal ROMs in the HP-41. However you

can use Synthetic Programming instead to find revision numbers. This will

work as well to find the revision numbers of the internal ROMSs; these are

stored as a single letter at address FFE in each internal 4K ROM. Here is

a method described by Jeremy Smith in PPCCJ V10N10p17-18. Before you start

you must have the synthetic functions RCL M and STO b assigned to two keys

and you must be in USER mode.

1. Create the non-normalised number 00000000000FFD and put it in X. One

way to do this would be to use the program BAB from Section 14.8 of this

book by doing: CLA, 15, XEQ "BAB", 253, XEQ "BAB", RCL M

-640-



2. Go to any program in any ROM. The important thing is that the program

pointer must be pointing to a program step in ROM, not in RAM. If you have

any Application Pack then GTO a program label in it (say GTO "SINH" if you

have a Math module), if you have a printer GTO "PRPLOT", if you have a Wand

then GTO "WNDTST". Do not try to GTO a function, nor to a label in CAT 1.

Now go on immediately to step 3 below, without moving the program pointer.

3. Press the key to which you have assigned STO b. This puts you at ROM

address OFFD.

4. Press SST and keep the key down to see the next program step (do not go

into PRGM mode, just stay in normal mode, press SST and keep it down). You

should see a program step which is a numbered label. LBL 00 corresponds to

a revision A, LBL 0l corresponds to revision B, and so on up to LBL 14

which corresponds to revision O.

5. This gives you a revision number for internal ROM 0, at address OFFD.

Now repeat steps 1 to 4 using the address 1FFD for internal ROM 1, and

again with address 2FFD for internal ROM 2.

6. Write down the three ROM revisions in the order 0,1,2. This will

identify your HP-41 and the bugs it has. The oldest HP-41Cs, which have

all the classical bugs 1 to 11 (except bug 6 which is a Card Reader bug)

have ROM revisions DDE and have date codes up to 1940. HP-41Cs with date

codes 1936 to 1952 have ROM revisions FDE and all the bugs except number 3.

Note that there is some overlap in date codes since new ROMs can be used at

the same time as stocks of older ones are being finished. The table below

gives a list of dates, bugs and ROM revisions. The information in it is

mostly taken from an article by Jeremy Smith in PPCJ V11N9p16-17, with some

additions. If you ever come across an HP-41 with ROM revisions earlier

than DDE then it will be a test version released only within HP, and it

will have some additional strange bugs which have not been described above.

HP-41s with combinations of ROM versions that are not given here will

either be new versions, or (most unlikely) they will have been repaired and

-641-



given an unusual combination of ROMs.

 

ROMs Date codes Comments

DDE 1926-1940 All classical bugs

FDE 1936-1952 Bug 3 removed

FEE 1951-2034 Bugs 1,2,4 removed as well

GFF 2035-847? Bugs 5,7,8 removed too.The first version of the CV

HFF 847?-present The current version of the HP-41CV

NFL 2329-present Current version of the HP-41CX

Revision numbers are not always changed when small changes are made to the

instructions in a ROM. The HP-41CX revision numbers have not been changed,

though a number of changes have been made to the reset code (what happens

when you press ON while holding down ENTER and backarrow). Even the change

in the turn-on code which makes it possible to do a MEMORY LOST when you

have a zero length buffer did not merit a new revision number.

7. If you want to use the same method to identify any other ROM them

replace the first digit of the address with any other digit from 3 to F

(check Section 8.3, Figure 8.6 to determine the address of any ROM) and

replace the last digit F with an A. At step 4 above press SST four times

to see four steps, each of which represents a letter or number. Do not

keep the SST key down too long or you will NULL the step and will see the

same step again next time you press SST. Use the Byte Table (Table 14.1)

to translate each step. Only the lower nybble is sure to be correct so you

will have to use your judgement to translate the program steps into the

appropriate codes, which are usually two letters followed by a number and a

letter. Note that the codes are read out in reverse order by this process.

-642-



APPENDIX D - HP-41 System Flags

The list below describes each flag and gives its status when the HP-41 is

turned on or reset (by a MEMORY LOST). C means that the flag is cleared, S

means set, and M means the status is maintained without change. ? means

the status is determined by external factors such as the presence or

absence of a printer.

Flag Flag Flag status at: Notes

Number Name Reset Turn-on

00-10  User Flags C M For user’s work, display shows if

any of flags 0 - 4 are set.

Flags 9 and 10 are used by some

functions in the PPC ROM, the

Advantage ROM, and some others.

Check the manuals before using

these flags in your own programs.

11 Automatic C C If this flag is set at turn-off,

Execution program execution will restart at

the current program line at turn-

on and a tone will sound. If the

flag is set before a program is

saved on card or cassette, that

program will begin executing when

it is read in.

12 Double-wide C C Set these flags to print in the

13 Lower case C C style indicated by their names.

14 Overwrite C C Set this flag to let the Card

Reader write on clipped cards.

It is cleared when the operation

ends.

-643-



Flag Flag Flag status at:

Number Name Reset  Turn-on

15-16 IL Printer C,C C,C

17 Record C C

Incomplete

18 Interrupt enable C C

-644-

Notes

These flags set the mode of the

larger IL printers in the same

way as the Mode switch on the

HP82162A Thermal Printer. The

modes are:

15 16 Printer mode

CLR CLR MAN

CLR SET NORM

SET CLR TRACE

SET SET TRACE/STACK

Set by EFM or IL if a record has

not been read completely into the

Alpha register because it will

not fit. When set it also

prevents OUTA adding an end-of-

line character, so that larger

printers will not go to a new

line every 24 characters.

Used by the HP-IL Devel. module;

if set then an interrupt from an

IL device will wake the HP-41

from standby or sleep mode and

execute a program with the label

INTR. One use for this is to

allow execution of programs by

pressing PRINT or ADV on an

HP82162A printer.



Flag Flag Flag status at: Notes

Number Name Reset Turn-on

19-20  General use C,C C,C For general use like flags 0-10

but cleared at turn-on like flags

12-18, and might be wused for

future peripherals.

21 Printer ? ? Automatically set with flag 55 if

Enable a printer is detected. If it is

set AVIEW and VIEW print their

results, or stop a program if the

printer is off or flag 55 is

clear.

22 Numeric C C Set if a number is entered into

Input X, even if X 1is then cleared.

Can be tested to check for

number entry, but clear it before

next use.

23 ALPHA C C Set when characters are entered

into ALPHA; use it like flag 22.

24 Range Error C C If set allows OUT OF RANGE errors

Ignore to be ignored and have no effect

on flag 25. +9.999999999E99 is

used to replace the result and

flag 24 remains set.

Note: Flags 22 and 23 are only set by keyboard entry and ANUM (or ANUMDEL),

not by entry from a program.

-645-



Flag Flag Flag status at: Notes

Number Name Reset Turn-on

25 Error Ignore C C Allows one error of any type to

be ignored (except Devel ROM I/0

errors) and is then cleared. Use

FS?C and FC?C to test and clear

it; otherwise it might cause a

serious and unexpected error to

be ignored.

26 Audio Enable S S Clear this to disable TONE/BEEP.

27 User Keyboard C M Set this to enable USER keyboard.

28 Decimal Point S M If set, a decimal point separates

the integer and fractional parts

of numbers and a comma acts as a

digit grouping mark (see below),

if clear these roles are

reversed.

29 Digit Grouping S M If set, groups of 3 digits are

separated by grouping marks, if

not this is suppressed as is the

mark after numbers displayed in

FIX 0.

30 CAT C C Set during CAT execution. Always

clear when tested unless set by

SP. If set it may produce odd

CATs.

-646-



Flag Flag

Number Name

31

32

33

34

35

36-39

Date Format

Manual I/0

IL Lock

Auto

Disable

Auto Start

No. of Digits

Flag status at:

Reset

C

CSCC

Turn-on

M

M

-647-

Notes

Set by DMY to display dates as

Day.Month.Year and treat numbers

in X as having the day in the

integer part. Cleared by MDY to

change the order to

Month/Day/Year.

Used by HP-IL; set by MANIO to

prevent automatic selection of

the device to carry out an

operation, cleared by AUTOIO.

Set to prevent sending commands

by IL; used by Devel module to

let the 41 act only as a loop

monitor.

Set by the Extended I/O function

ADROFF to prevent auto-

addressing and status changing of

IL devices.

When set, this disables the auto

start feature of the Auto-

start/Dup module. HP provide no

functions to control this flag;

you must use SP!

The number of digits to display

after the decimal point,

expressed as a hexadecimal digit.



Flag Flag Flag status at: Notes

Number Name Reset  Turn-on

40-41 Display Mode S,C M Stores the display mode as below:

40 4] Display mode

CLR CLR SCI

CLR SET ENG

SET CLR FIX

SET SET FIX/ENG: can only be

set synthetically and acts like

FIX but overflows to ENG instead

of SCI.

42-43  Angle Mode C,C M Store the angle mode as follows:

42 43 Angle mode

CLR CLR DEG

CLR SET RAD

SET CLR GRAD

SET SET RAD

44 Continuous On C C Set by the function ON to prevent

automatic  turnoff after 10

minutes.

45 System Data C C Set during number entry or Alpha

Entry entry or appending. Always clear

if tested unless set

synthetically, which can be

useful as described in Sections

15.7 and 16.3.

-648-



Flag Flag

Number Name

46 Partial Key

Sequence

47 SHIFT

48 ALPHA

49 Low Battery

50 Message

51 SST

Flag status at:

Reset

C

Turn-on

C

-649-

Notes

Set when the 41 is prompting with

the underscores for a parameter.

Indicates SHIFT 1is on, can be

tested in a program as shown with

the program F47 in Section 6.9.

This indicates that the ALPHA

keyboard is active.

Set whenever the 41 detects a low

battery condition. Worth

checking during long programs to

let these turn the HP-41 off if

power is low. Cleared if power

is OK at turn-on.

Set when a message is displayed

by the user with PROMPT, VIEW or

AVIEW, or by the HP-41, e.g.

after an error.

Set during an SST so it is always

clear in run mode but can be

tested in a program. FC? 51,

STO ¢ can be used to prevent

MEMORYLOSTIifaprogramisbeing

single-stepped.



Flag Flag

Number Name

52

53

54

PRGM Mode

I/0O request

PSE

Flag status at:

Reset

C

Turn-on

C

-650-

Notes

Set during program editing, but

not during a running program. If

it is set synthetically in a

running program then numeric

entry lines are not executed;

they start the HP-41 programming

itself.

Can be set by peripheral devices

to request some action. Tested

and cleared by the 41 after every

step, So 1t never appears to be

set in a FOCAL program. If set

synthetically it 1is cleared at

once and flag 54 is cleared as

well. If flags 53 and 45 are

both set then flags 30, 45, 47,

50, 53 and 54 are all cleared.

As this flag is never set it can

be used in tests that need a

definite result, for example to

skip a step as suggested in

Section 6.7.

Set during a PSE, always clear if

tested unless set synthetically.

If it is set and a running

program reaches the END or RTN

which should stop it then the 41

will only PSE and then continue

execution. This could be

disastrous.



Flag Flag Flag status at:

Number Name Reset  Turn-on

55 Printer ? ?

Existence

Notes

The HP-41 automatically sets flag

55 and flag 21 too when it

detects the presence of a printer

attached to the 41. In the case

of the older 82143A printer this

is even if the printer is off.

Clearing this flag synthetically

disables a printer and speeds up

program execution if a printer is

attached.

Note: Normal HP-41 flag functions can test all these flags, but can only

set or clear flags 0 to 29. All the flags 0 to 55 can be set or cleared by

the program SCF in Section 14.8 of this book. The PPC ROM, ZENROM,

Paname and the CCD module all provide functions to set and clear flags

above number 29. The HP-41 CPU has additional internal flags which can

only be affected by M-code instructions.

-651-





APPENDIX E - Recent changes to the HP-41 Series and New Products

1. The HP-41C is no longer made. Remaining stocks are still being sold,

some at reduced prices. The HP-41CV and HP-41CX have undergone an internal

redesign (see below) and will continue to be made.

2. The internal layout and circuits of the HP-41CV and HP-41CX have been

redesigned to make manufacture and repair easier; almost everything is now

on one chip. As far as sales are concerned there is no change and shops

will probably not even know anything has happened. The programming of the

new design is the same as before, and Synthetic Programming works on the

new HP-41s. They will gradually become available as old stocks sell out.

The display has been redesigned; in fact the only easy way to tell the new

design from the old one is that the display has a black "frame" with

rounded corners. The display has also been internally redesigned so that

it can show more characters, including all lower case characters, and its

contrast can be adjusted. However - to avoid confusing the customers - the

new characters are not accessible by any means except special M-code

programs. This means that an old user who buys a new HP-41 will not see

any difference; it also means there will be some frustrated customers.

The changed circuitry uses two extra RAM registers, and some of the CCD

module math functions affect these registers, causing the display to behave

oddly until another function is executed. This new design (code named the

halfnut inside HP, because the original HP-41 design was called the

coconut) has also been used for a new layout of the HP-41C. This new HP-

41C will not be sold, it will only be used by Repair Centres, so getting

your HP-41C repaired will be the only way to get a halfnut HP-41C.

3. Following the departure of Richard Nelson from PPC and his setting up

of CHHU there now exist two user groups which claim international support.

Many members of PPC have joined CHHU, and several local and national user

clubs have changed their names to eliminate the letters "PPC". These name

changes do not imply any serious changes in club policies; Richard Nelson

-653-



set the pattern for an effective and independent user group, and most clubs

have confirmed that imitation is the sincerest form of flattery.

4. The Math and Statistics modules have been combined and been sold as a

single plug-in module since late 1985.

-654-



APPENDIX F - Barcodes

The following pages contain three types of barcodes.

functions as these are not on the Paper Keyboard, and also for some plug-in

modules and devices.

of the Byte Table are given as well.

barcode were described in Section 12.3.

Function barcodes are

provided for all the Time and Extended Functions including the HP-41CX

Alpha barcodes for all characters from the first half

The uses of these two kinds of

Program barcodes are provided for

some longer programs and those with a lot of synthetic instructions.

—T IME

i
I
i
I
i
T
—CX TIME

I

CAaRD RDR

i
i
[min
[y

2C

fimfillllllllllllIIIIIIIIIIIIIIIIIIH

i ITIIIITIEIIIIIHIIIIIII

I
IIIIIIIIIIIIIIIIIIH IlIIIIIIIIIIlIIIIIII
|||IIIIIIII|||IIIIII IlIlIIIIIIIlIIIIHII
IIIIIIIIIIIIIIIIIIII |||II||III||||II||I|
HIIIIIIIIIIIIIIIIII IIIIIIIII|IHI|IIIII

IIIIIIIIII|HIIIIIII |||IIIIIIII||I|IIIII IIIIIIIIIIIIIIIIIHI
IHIIIIHIIIIIIIIIII IHIIIIIIIIIIIIIIIII ||I|||IIII|||III|I||
|||||IIIIII||IIIIII! i G
[

1E

-655-

||I|IIII||I||I|||lII
IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIHIIII
IIIIIIIII|IHII|IIII
I

i

fiffifilllllllllllll

IIIIIIIIIIIIINIIIII
IIIIIIIIIIIIIIIIIIII
|||I|IIIII||||IIIII|
||IIHIII|I||I||||I|
M

i

fiIEfiIIIIIIIIIIIIIII



—MASS ST

I
i |
fiflfifiifilllllllll

—CTL FNS

i
i
i
—FRINTER 2Z2E

NIIIIIIIIIIIIIHIII
IIIIIIIIIIIIIIIIIIII
||I||IIII|II||I|IIII
IIIIIIIIIlIIIIIIIIII
IJI_IIIIIIIIIIIIIIIII
IFHRRRER
—CX EXT

i

filElflifllllllllllll
fiIEICIIIIIIHIIIIIIII

i
ninmmm
i

Illlllllllllllllllll
IIIIIIIIIIIHlIIIIIl
IIIHIIIIIIIHIIlIIl
lIIIIIIIIIIIIIHIIll
I

FCN

 

i
i
A i

|||II|IIII|I|||IIII|
HIIIIlIIIIIIIIIIIII
I|||||||II|IIIIIIII|
HIIIIIIlIIIIIIIIIII
i

-656-

PURGE

L
READRX

[N
SEEKR

[
WRTP

[N
ZERO

IR

Illi‘filllllllllllllll

fiifiifiifllilll”ll

Iimm
fifiifiillllllllllll

fiICITIIIHIIIIIlIlII

IFITITIIIIIHIIIIIIIII



—HF—IL DEV

IIIIIIIIIIIIIHIIIII
|II|||IIIIII|IIIIIII
IHIIIIIIIIIIIIIIIII
||||IIIIIII||IHIIII
|||I||||||I||I|IIII|
|HIIIII|IIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
IIIIHIIIIIIIIIIHII
IIIIIlIIIIIIIIIIIIIl
HIIIIIIIHIIIIIIIII
IIIIIIIIIIIIIIIIIIII
||l|||II|IIIIII|||||
Illlllllllllllllllll
IHIIIIIIIIIIIIIHII
HIIHIIIIIIIIIHIII
I)[I_IJLIIIIIIHIIHH
(T

i
i
i
i
i
i
i
i
i
i
i
i |
T
i
i
i
I

fifITliilllllllllllll

-657-

fifiifllllllllllllll

fififillllllllllllll

fifiilllllllllllllll



—EXT FCN 2D

|||IIIII|||II|||III|
IIIlIIIIIHIIIIIIIIl
IIIII!IIII!IIIIIIIII
IIIIIIIIIIIIIIIIIIlI
IIIIIIIIIIIIIIIIIIII
HIIIIIIIHlIIIIIIII
HIIHIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
HIIIlIIIIlIIIIIIIII
i

FPFARNAME

—-ADV PRT3fi

filfiilllill I

I
fififiifilllllllllll
[
fifiififliummu

fifiTfiIIIIIIIIIIIII

T

-658-

fifilsliillllllllllll
fififilfillllmllll

filllfirl)filllll)llllllll
I
fii:filsfifillllllllll

T

IlIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIHII
IIIIIIIIlIIIIIlIIIII
IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
|||IIIIIIIIIIIIIIIII
||I||||I|I|IIIIIIII|
IIIIIIIIIIIIIIIIHII
i

It
i
I

I



IIIIIIIHIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
||||||IHI|II||I|III
IHIIIIHI!IIIIIIIII
IIIIIIIIIIIIIIHIIII
llllllllllllllllllll
IIIIIIIIIIIIIIIIHII
i
-UTILITIES

[T
IIIIIII!IHIIIIIIIII
IIIIIIIIIIIIIIIIHII
HIIHIHIIIIIIIIIII
||I|||IIIIIIIIIIIIII
||I|I|I||||||IIIIIII
IIIIIIIIIIIIIHINII
IIIIIIIIIIIIIIIIIIII
IIIlIIIIIIlIIIIIIIII
IIIIIIIIIIIIIIIIlIII
IIIIIIIIIHIIIIIIIII
i |

T
i

[T
i
i
i

flfiifilllllllllllll

fifiifififilllllill

AD-LC

[
AROT

IAER
BRKPT

A
LC-AD

(AR
HIIIIIIIIIIIIIIHII
IIIIIIIIIIIIIIIIIIII
|||I|II|I||IIHII|I|
IIIIHIIIHIIIIIIIII
llIIIIIIIIIIIIIIIIlI
 

-659-

A
i

fiffil’illlfllllllllll

I
i

||||I|I|II|IIIIIIIII
||II|III|||I|II|I|II
|||II|||I||I|||||III
i
ANUM

IR
ATOXR

R
CLINC

[N
NOP

[
IIIIIIIIIIIIIIIIHII
|||III|IIIIIIHIIII|
IIIIIIIIIIIIIIIIIIII
HIIIllIIIIIIIIIIIII
|||I||IIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
I



—WW CCD A

 

 

IIIIIIIIIHIIIIIIIII
IIIIIIIIIIIIIIIIIIII
HIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIHIIII
|||II|I|IHII||II|I|
IIIIIIIIIIIIIIHIIII
IIIIIIIIIIlIlIIIIIIl
HIIIIlIII!IIIIIIIII
!IIIIIIIIIIIIIIIIIII
IIIHlIIIIIIIIHIIII
|||IIII|I|I|||||||II
IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIiIIIIIlI
T

Cr+

III)IIIFIIIIIIIIIIIIIII

IIIIIIHIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
IHIIIIIIIIIIIIIIIII
||I||||!IIIIIIIIIIII
IIIIIIIIIIlIIIIIIIII
IIIIIIIIIHIIHIIII!
IIIIIIIIIIIIIIHHII
IIIIIIIIIIIIIIIIIIII
|l||I|||I||IIIIII||I
IIIIIIIIIIIIIIIIIIII
I

-660-

it

2?1Jd

I
CMAXAB

INFEREAN
1J=

[T
M*M

MR
MIN

[
R<>R

[N
IIIIIIIIIIIIIIIIIHI
IIIIIIIIIIIIIIIIIIII
||||||I|IIIII|I|I|||
||I|||||I|||I||||II|
i

I
I
(T

i

IIIIIIIIIHIIIIIIIII
IIIIIIIIIHIIIIHIII
IIIIIIIIIIIIIIIIIIII
|IIl||I|I||I|IIIIIII
HIIIIIIIIIIIHIIIII
Illllll!llllllllllll
I

IIIIIIIIIIIIIIIIIIII
||||III|I!II|IIIII||
I



T
i
i
it
it
i

—ZENROM 3B

CLXM

(L
NRCLX

i

@EE@HMHMM
U

A+

RN
PC<>RTN

AT
PLNG

I
X>RTN

[
IIIIIIIIIIIIIIIIIIII
I

||IIIIIIIIII|I||II||
HIHIIIIIIIIIIII!II
|||II|I||||I|III|II|
IIIIIIIIIIIIIIIlIIII
iT

T

IHHIIHIIIHHIIII

o

muuwmuml I
i

@Efi@@film
i

-661-



-662-

D o o o 3 a T

Append Null
PRGM Mode

only



127Alpha Barcodes &4 to

=2 3 4 5 & 78 2 A B C D E F1O S
T
L

A
R

=[
T

 
H
A
R
A
R
T
R

M
L

> I
R

I
R

[
T

» N
I

N
P
R
R
R

o |[ERIVERIIRVAR]
- A
R

o I
R

 [[AHITERITTALH
<
[

o [IHIITARITAIN
4

A
N

A
T
-AN
I

<
A
N
N

N
N

-(
I
R
S(
N
N
I[
T

A
N

(
[
N

N
I

)

- INHITERARRRA]
NITNERRARAIH
A
R
-A
R
S
N
I
R
R
T
IT
R
I

A
L

o N
I
R
R
T

- [
N

o
A

o R
N
]I
R

J

  
ord

-(
N
N

.[[ANHREARE
L
I

-[-(
W
A
R
N
AI
R

HIIITNRININ
x

g
Q
U
G

Q
U
L

L
T
I

A
R
N
I

I
A
R
R
I
N

oAIHATRI)
I
O

N

    



GASN  Row 1 of 17 (1-3)

                                                                                                                                    
GASN  Row 2 of 17 {

                                                                                                                                    
GASN  Row 3 of 17 (9-14)

AR
GASN  Row 4 of 17 (15-20)

                                                                                                                                    
GASN  Row 5 of 17 (21-28)

                                                                                                                                    
GASN  Row & of 17 (29-32)

OA
GASN  Row 7 of 17 (32-35)

                                                                                                                                    
GASN  Row 8 of 17 (33-34)

RS
GASN  Row 9 of 17 (Jb-44)

OA
GASN  Row 1@ of 17 (41-46)

A
GASN  Row 11 of 17 (46-56)

O
GASN  Row 12 of 17 (50-38)

O1OOAR
GASN  Row 13 of 17 (59-47)

OO
BASN  Row 14 of 17 (67-73)

RA
GASN  Row 13 of 17 (74-82)

ORARROAR
GASN  Row 16 of 17 (B3-91)

A
GASN  Row 17 of 17 {91-91)

AR

 

 

-664-



SCF  Row ! of 7 {1-8)

                                                                                                                                    
S5CF  Row 2 of 7 (5-13)

AOO
SCF Row 3 of 7 (14-21)

NG
SCF Row 4 of 7 (22-27)

                         

                                                                                                                                    
SCF Row 3 of 7 ¢

                                                                                                                                    
SCF Row 6 of 7 (31-3B)

ASREEREAERA
SCF Row 7 of 7 (39-39)

|

BAB  Row ! of & {1-%)

R
BAE  Row 2 of & (5-12}

A
BAB  Row 3 of & (13-23)

(i
BAB  FRow 4 of & (24-38)

RAR
BAB  Row 3 of & (31-37)

RO
BAB  Row & of & (38-38)

dui

 

 

-665-



KAP  Row ! of 12 (1-3)

                                                                                                                                    
KAP  Row 2 of 12 (6-12)

KAP  Row 3 of 12 {12-16)

AR
KAP  Row 4 of 12 (16-23)

KAP  Row 5 of 12 {26-33)

AAR
KAF  Row 6 of 12 (346-42)

dmmnnmm
KAP  FRow 7 of 12 (42-48)

AR
KAP  Row 8 of 12 (48-31)

 

                          

                                                                                                                                    
KAP Row 9 of 12 {51-33)

                                                                                                                                    
KAP  Row 19 of 12 (54-61)

OORORRRRORTARREAIO
KAP  Row 11 of 12 (61-67)

ORO
KAP  Row 12 of 12 (6B-68)

AR
ZCX  Row ! of 5 (1-4)

                                                                                                                                    
ZCX  Row 2 of § {5-11)

OORS00
2CX  FRow 3 of 5 (11-15)

A
ZCY  Row 4 of § (16-21)

                                                                                                                                    
XCX  Row 5 of § (21-25)

                                                                                                                    
-666-



RAB  Row | of 7 {1-5)

A
RAE  FRow 2 of 7 (5-11)

AARO
RAB  FRow 3 of 7 (11-17)

INIIIIiIlHIIIlIIIIIIIHIIIIIIIIHII|IIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllIIII|IllIIIIIII|II||II|I|||HIIIIIIIIIIIIIIIIIIIIIIII
RAB  Row 4 of 7 {18-25

IIIIIIIII|Il|||||||||||||||||| I IIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!
RAB  Row 5 of 7 (253-33)

    

                                                                                                                                    
RAE  Row & of 7 (33-3

IHHllllllIIIIIlIIIIIHH|||Illl|IIll|I!IIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIII||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllll
RAE  FRow 7 of 7 {40-48)

IEAA

IR0 Row 1 of 4 (1-4)

A
YR0 FRow 2 of 4 {3-1@)

ARR
IR0 Row 3 of 4 (11-15)

N
YRO  FRow 4 of 4 (15-17)

AR

    

  

 

APX Row | of 4

||I|I||II|HIIHIHHIIIIIIIHIIIHIllllllllllllllllllIIIIIIHHIIHlII||I|||III||IIIII!|IIIIIIIIIIIIIIIIIIIHIIIIIIIIHIIIIIIIIIIII
APY  FRow 2 of 4 ¢

HIIIIHIIIIIIINIIIIIIHlIIIIIHIIINII|||IIIIII|I|||IIIIII|I||IIlllIIIIIIIIIIIIIlIIIIIIIIIIIIII!IIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIII
APX  Fkow 3 of 4 (9-17)

AR
APX  Row 4 of 4 (18-18)

AR

-667-



CLBYPPK  Row | of 15 (1-2)

                                                           L
CLBYPPK  Row 2 of 13 (2-7)

N
CLBYPPK  Row 3 of 15 (7-14)

LRARERO                                                                          
CLBYPPK  Row 4 of 15 (15-22)

                                                                                                                                    
CLBYPPK  Row 5 of 13 (22-26)

AAR
CLBYPPK  Row 6 of 15 (27-34)

                                                                                                                                    
CLB&PPK  Row 7 of 15 (34-38)

                                                                                                                                    
CLBYPPK  Row 8 of 15 (36-43)

                                                                                                                                    
CLBSPPK  Row 9 of 15 (44-53)

                                                                                                                                    
CLBYPPK  Row 1@ of 15 (54-56)

                                                                                                                                    
CLBYPPK  Row 1l of 15 (54-62)

AR
CLBAPPK  Row 12 of 15 {62-69)

i
CLBYPPE  Row 13 of 15 (76-79)

g
CLBYPPK  Row 14 of 15 (79-89)

R
CLBYPPK  Row 15 of 15 (90-94)

A0

-668-



PFRF Row | of 35 ({-4)

IHIIHIIIHIINHIIlllllllllllIlllHIIIHIIIIlI!II!HHIHIIIIIIIIIIIIIIHIIIlllllllIHI||lll||IIIIIIIHIIIIIIIIIIIIIIIllllIIIIIIII
PPRF  Row 2 of 33 (4-

IIIIII||I|||||I|IIH|II!|IIIIIIIIIIIIIIIlII!IIIIIIIIIlllllllIIIllll|I|l|II|IIIIIIIIIIlIIIII|||IIII|IIII|IIIIHIHIIIIIIIIIIIIIIIIIII
PPEP  Row 3 of 32 (11-18)

i
PPRP  Row 4 of 33 (18-26)

IIIIlIIIIIHIIIIIIIIIIIIIHllllllllllllllIHlIIHIIIIIIIIHHIIIIIIIIIHIIIIIIIIlIIIIIIIIIIIIIIII|||III||IIIIIIlIIIIIIIlIIIIIIIIIIII
PFRP  FRow S of 3

HIHIIIIIIIIIIIIIIIHIIIIIIIHIIIIIIIIIIHHHIIIIIIIIHIIIIHIHII|l|I|I|IIll||||IIIIIIIIIIIIIIINIIIIIIIIIIIIIIIIIIHIHIIIIIIIII
PFRP  Row & of 35 (353-48

HIIIIIIIIHIIIIIIIIIHIIHIIII!IIIHIIIIIIIIIlllllllllIIlIlIIIIIIIIIIiIIIIIIIHIIIIIIIIIIIIIIlIIIlIIIIIIIHIIIIIHIIIIIIIIIHIIIIII
PPRP  Row 7 of 33 (48-45)

IIIIIIIIIIIHIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIHIIIIIIIIIHIIIIIIIIIIIIIIHIIIHIIIIIIIIIIIIIINI||II||III|II|II||||||III
PPRF FRow 8 of 3

IIIIIIIlIIIIIIlIIIII||IIIIIIIIIlII||IIIII|IIIIIIIIIIIIIHlIIIIIIIIIIIIIIII|IIIIIIIIlIIIIIIIIIIIIIIIIIIII|IIIIIIIHIIIIIIIIIIIIIIIIII
PPRF Row 9 of 35 (

IIIIIIIIIII||I||||||IIIIIIllIIlIlIIIIIIIIHIIIlII||IIIIllHIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIlllllllll
PPRP  Row 1@ of 35 {A8-43)

AR=
PPRP  Row 11 of 35 (49-76)

AR
PPRP  Row 12 of 35 (76-85)

O
PPRP Row 13 of 33 (B3-94)

AR
PPRP  Row 14 of 33 (93-161)

HIIIII||IIII||||I|||HIHIlllIHII|l||I|||||IIIHIIIIIIIIIIHIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIllIIIIIIIllllHIIIIIIIIIINIlIIlI
PPRF  Row 15 of 35 (162-168)

IIIIIIIIHIIIIIIIHIIIII||lllllllllllIHIlIlIlIIIIIIllIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIllllllllllllllIIIIIIIIIIIIHIIIIIIIIIHIIII
PPRP  Row 16 of 33 (169-113)

s
PPRP  Row 17 of 33 (115-126)

OR

-669-



PERF Row 18 of 35 (128-123

HIIIIHlIllll|I|IHIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIHIlllllHllIIIIIIIIIIIIIHHIIIIIIIIIlIII||||||IIIIIllllllllllllllllllllll
PFRP Row 19 of 35 (124-132

HIIIIIlllIIIIHIIHIIIIHIHIHIIIIIIIIIIIIIHIIIIlIlIHIIIIIIIIHIIIIIHIIIIIIIIHlIIIIIIIIIIIIIIIIIIIIII|IIIIIIIHIIHIIIIIIHIII
PFRF  How 28 of

IIIIIIII!IHIIIIIIHIIHI|IHIHHIIIIIIIIIl||IllII|IIIIIIHIIIIHIHIHIIIIIHIIIIIHIIIIIIIIIHIIIIIIIIIIIIIlIIIIIIIHIIIlIIIIIIIl
FPRF  Row 21 of 35 (139-147)

IllIIIIIIIIIIIIIIIIIIIIHH||IIIIIIIl|H|IIIIIIIIHIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIHIIIIlIIHIHIIIIIHIIII|
PERF  Row 22 of 35 (148-134)

O
PRRP  Row 23 of 35 (154-146}

IllllIIIII|I|IIIIIIHIIlIIIIIIIIIIIIIIHIIIIIIIlIIIIIHIIIIIIIIIIHIIIIIIIIHIIIIIlIIIIIIIIIHIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIII!IIII
PFRF  Row (168-162)

|IIIIHIHIHIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIHIHIIIIIIIHIIIIIIIIIIIIIIIIIIHIIIIII||IIIHIIIIII!IIIIIIIIIIIIIIIIIIIIIIHIIIIII
PPRP Row g (162-178

IIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIII!IIIIIIIIHIIIIIIIIIIIIIIIIIIHIIIIIIHIIIIIIIIIIIIIHlIIIIIIIIIIIIII|I|I|IIIIIIIIIIIIIIIIIIII
PPRF 35 (78-171)

Hlllll|IIIHIIIIIIIHIIIIIIIIIIIII|II|IIIIIIIIIIlllllIIIIIIIIIIIIIIIIIIIIIIIIHIIHIllllllllllllllllllllIIIHIIIIIIIIIIIIHIHIIIII
PPRF  Row 27 of 35 (171-179)

e
PPRP  FRow 28 of 35 (188-1B3)

AR
PPRP Row 29 of 33 {183-191)

IIIIIIIIIIHIIIIIIIIIIHHIIIIIIllIIIIIIII|I|||||IIIIIII|IIIlllllllIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIlI|II|IIII|I|||||IIIIIIIIIIIIIIIII!
PPRP  Row 30 of {192-198)

O
PPRF  Row 31 of 35 (199-207)

ARSRNN
PPRP  Row 32 of 35 (208-213)

AR
PPRP  Row 33 of 35 (216-219)

IIIIIIIIIIHIIIIIIIIIIlllllllllllllllllIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIlIHIIII||III|III|IIII|IlllllllllllllllIIIIIIIIIIIIIHII
PPRP  Row 34 of 35 (219-226)

IIIIIIIIIIHIIIHIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIlllII!IIIII||I|||I|IIII|II||II||IIIII|||IIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIII
PPRP Row 35 @

IIIIIIIIHIIIIIIIHIIHIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
-670-



ED  Row ! of 23 (1-4)

Illlll||I|H|I|HIllllllllI||||I|||||I||l|III|HIIIllIIIIIIIH|IIIlllIlI|II|Il|||IIHIIIIIIIIIIlIIIHIIIIIIHIIIlIIIIIIIIIIIIIIIIIII
ED  Fow 2 of Z

l||||II||I|IIIIlIIlIHHIlIIIIIHIHH|||I||IIIIH||IIII|HI|IIIII||IIIIIIIHIIIIIIHIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIII
ED  Row 3 of 23 {7

||II|||IIIIHIIIIIIIIIIIlIIIIlIIIIIIIIIIIIIIINIIIIIIIIIIIIIIIIIIIIIIII|Illlllllll|||||II|IIlllllllllllllllI||I||||IlIllllllllllllll
ED  Row 4 of 23 {

IIIIIIIIIIIIIIIIIIIHIIIIIIIIIIHIIIIIHIIIIIHHIHIIIIHIIIIHIHIIIIIHIIIIHIIIIIIIIIII||||II|||||||II||IH|IIIllIIHIIIHIIlIII
ED  Row 5 of 23 (27-33)

OROR
ED  Row & of 23 (34-41)

ARRRAOA
ED  Row 7 of 23 (42-48)

IHIIIHIIII'IIIIIIllllllllllllll||||||l||||||||||IIIIIIIIIIIHIII|IIIIlHIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|||l|l||||||||||||IIIIHII
ED  Row 8 of 23 (49-66)

IIIIIIIIIIIIIIIIIII|!||IlllllllllllllllllllllllIIII|IIIIIIllllllllllllllllllllllII||IIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ED  Row 9 of 23 (60-49)

IIIII||IIlHIlII|IIHII|||III|III|II|IIlIII|II|I!|IIIIIIIIIIIIll|II|IIIIIIIIIlIIIIIIIHIIIIIlIIIIIIIIIIlIIIIIIIIIIIHIIIIIlHIIIlIII
ED  Row 10 of 27 149-76)

0
ED  Row 1! of 23 (77-83)

IIIIIllIII|II|||IIlll|IIIIIl|II||IIIIIIIIIIIIIIIIIIIIIIIIIIIII||I|IIIIIIII|I||III||IIIIIIIIIIIII|IIIIIIIIIIIIIIH|II|||III||II|I||||
ED  Row 12 of 23 {86-92)

IIII!IIIIIIHIIIII|II|||HIIIIIIIIIIIIIHIIIIIIIIIIIIII|IIIIIIIIIllllllIIIIIIIlIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllII
ED  FRow 13 of 23 {93-162)

IlllllHIlIIIIIIIIHIIHIHIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIHHIIIII|IlIIIIIIIIIIIIIII||IlllllllllllllllllllllllIIIIIIIIIIHII
ED Row 14 of 23 (163-118)

O
ED  Row 15 of 23 (118-117)

A
ED  Row 16 of 23 (118-124)

IIIIIlIIIIIHIIIIIIIIIHlllIIIIlIIIII||||||IH|IIIIIIIIIIIIIIIHI||IIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllIIIIIIIIlIIIII
ED  Row {7 of 23 (127-133)

O

-671-



Row 18 of 23 (134-143)

|||IININIIIIHIIH|||IllIIIIIIIlIIIIIIIIIIIIIIIIIIIIlIlIIIIIIIIIIIIIIIIIIIIIIIII||IINIII|l||I||||I|||llIIlIIIIIIlIIlINIIIIIIIIII
Fow 17 of 23 (144-152)

HIIIIIIIIIHIRTR
Row 28 of 23 {1532-162)

IlllllllllllllOROAR
Row 21 of 23 (143-148)

IIIIIIIIIIIIIIiIHIHIIIIIIIIHHIIIIIIIHIHIIIIIIIIIIIIIIIIlII||IIII|||IIIIIIII|IlIllII|IIIIIIIIII|I|||IIIIlIIIIIIIIIIIIIIlIIIIIII
Row 22 of 23 (148-174)

IHIIIIIIIIIIIIIIIHIIIIIIIIIHIlllIIIIIIIIIIIIllllIIIIIIIIIllII||IIIIIIIIIIIHIIIIIIIIIIIIIIHIlIlIII|IllllIlllllllllllllllllllllll
Aow 23 of 23 (175-138)

IIIIIIHIIIMIIIIIIIIIHIIIIIIIIIIIIIIIII|IIIIlllIIIIIIIIIIII||IIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|||||||I|I|I|||l||||

    

    

-672-



A

absolute addressing, 188

AC adaptor socket, 15

accumulators, 198

accuracy factor, 230

ADOW, 248

ALPHA execution, 41

ALPHA register, 79

alphanumeric, 79

Annunciators, 30

argument, 36

assignments

cancelling, 336

ATAN2, 172

Australian notation, 520

B

backarrow, 54

backarrow key, 18

bank, 195

Bank-switching, 195

barcode, 23

Batteries, 17

battery compartment, 15

Battery pack, 18

BCD, 183

bender, 199

BG, 427

bifid, 37

binary, 178

Binary Coded Decimal, 183

bit, 178

blocks, 191

INDEX

Boolean functions, 384

bounce, 48

boxed star, 30

Buffer area, 187

Buffers, 187

Bugs, 59

Byte Loaders, 517

bytes, 179

C

Card Reader, 22

catalogues, 43

Central Processor Unit, 196

characters, 20

Charger, 18

checksum byte, 293

chip, 191

Coconut, 653

cold start constant, 462

compatibility functions, 339

compilation, 121

conditional alarm, 240

Continuous Memory, 19

control functions, 37

control alarm, 238

Conversion functions, 356

Copying Programs, 131

correction key, 54

countdown alarm, 237

CPU,196

crash, 51

current address, 474

current file, 290

-673-



current line, 113

current pointer, 294

current program, 113

current record, 292

curtain, 188

D

data, 20, 181

data packing, 227

data processing, 181

decimal, 178

decompilation, 121

dedicated, 23

deep sleep mode, 35

default, 19

delete key, 54

Devel, 536

digit, 20

disable stack lift, 71

Display, 15, 30

display annunciators, 30

Documentation, 150

dummy, 428

dyadic, 37

E

EBCDIC, 183

EFM, 249

EM, 289

End-of-Memory marker, 289

environment, 150

Execute, 35

execution indicator, 50

exponent, 20

extended storage, 110

F

Fading crash, 638

files, 181, 289

flag, 86

flag 22, 256

flag 53

special problems, 455

flowchart, 396

flying goose, 50

FOCAL, 13

function preview, 34

functions, 39

G

global labels., 113

goose, 50, 143

H

Halfnut, 653

hang-ups, 51

hangs up, 51

hexadecimal, 178

HHC, 14

HP-41 system, 227

HP-67, 339

HP-97, 339

HP-IL, 20

Hyperbolic functions, 158

I

I/0 ports, 15

idle, 35

index sorting, 284

Indirect, 109

Indirect Addressing, 109

-674-



Input/Output ports, 15

instruction, 39

interrupting control alarm, 238

K

K, 191

KAR, 215

Key, 15

Key Assignment Register, 215

keyboard, 15

Keyboard efficiency, 9

keyboard mode, 34

L

Eukasiewicz, 36

LCD, 30

leading zeroes, 206

light sleep mode, 35

line, 40

listing, 24

local label search, 126

logical operations, 178, 384

long labels, 125

long-form, 204

M

M-code, 196

M], 461

M2, 461

mantissa, 20

Mass storage, 22, 26

membrane Touchpad, 16

message alarm, 238

mode, 34

modules, 15

monadic, 36

Monte Carlo methods, 167, 174

N

natural notation, 520

nested subroutine calls, 475

NNN, 184, 413

NOMAS, 414

non-interrupting alarm, 240

non-text GTO, 524

Non Normalised Numbers, 182

NOP, 79

Normal keyboard, 34

normalisation, 184

null, 250

number entry, 75

nybble, 180

o

octal, 178

ON procedure, 66

operating system, 414

operating mode, 35

Optical Wand, 23

overlay, 16

P

Packing, 130

Page-switching, 195

pages, 191

parameter, 37

parameter keyboard, 38

partition register, 289

past due alarm, 238

pending, 118

-675-



peripheral devices, 15

plug-ins, 15

pointer, 188, 292

Port Extender, 27

ports, 15

postfix, 202

prefix, 202

primary storage, 110

PRIVATE, 338

Problems, 45

program, 40

program modules, 406

program step, 40

program structure, 153

prompt, 37

pseudo-XROM number, 422

Q

quad, 191

R

radix mark, 182

RAM, 20

Random Number Generator, 167

recall arithmetic, 78

Rechargeable battery pack, 18

recursion, 122

register, 180

register L, 91

registers, 20

Resizing, 130

RNG, 167

rocker switches, 15

ROM, 19

ROMs, 22

routine, 40

RPN, 36

RUN, 35

S

scratch, 440

scrolling, 80

seed, 168

SHIFT, 15

SHIFT, ON, 230

short-form, 122, 203

short-form exponent, 425

SP, 413

spare bytes, 203

split timings, 233

splits, 233

stack, 69

stack analysis form, 71

stack drop, 71

stack lift, 71

standby, 35

statements, 39

Status Registers, 187

step, 40

storage arithmetic, 78

structured programming, 153

subroutine, 39

subroutine return stack, 118

T

terminating numeric entry, 206

tests, 134

text, 25, 79

Text Q-loaders, 517

text string, 20

text enabling, 523

-676-



timer alarm, 237

toggle keys, 15

two-key rollover, 57

U

Unit Management, 356

up-arrow, 6

"user language, 14

vV

value, 20

View mantissa, 266

W

Wand, 23

warm start constant, 462

word, 180, 191

working file, 290

X

X-register, 36

XIO, 536

Y

Y-register, 37

-677-



ADDITIONS - MAY 1988

New Products

The Math and Stat modules are now sold as one combined module, but with the

same XROM numbers as before. A new infra-red printer module from HP lets

the HP-41 use the (cheaper) new cordless printer introduced for the HP-18C

and HP-28C. New modules for the HP-41 continue to be announced by third

parties. They include surveying, finance, forestry, navigation, astronomy,

racetrack and even a horoscope module. Most are available from Educalc

(see Appendix B). Five modules of special interest are: 1. The AEC module

which provides new math functions in machine-code, functions to display in

metric units or yards, feet and inches, and a routine which lets you type

in an equation in algebraic notation, then turns that into a program which

you can run with named variables. (Also available from SYNTHETIX.) 2. The

Extended IL module which lets an HP-41 exploit the full capabilities of the

HP9114 disk drive and the HP2225 ThinkJet printer (for example it allows

multi-column listings to be printed on an 80 character wide page). 3. The

SKWIDBC module which lets an HP-41 print barcode directly on HP LaserJet or

ThinkJet printers. (Available from SYNTHETIX, see order blank. Also

available combined with Extended IL module.) 4. The HEPAX module which

provides up to 16K memory and functions to use this memory for data storage

and machine language programming on the HP-41 with no external accessories.

(Referred to in section 17.4). 5. The ZEPROM module which can be used

repeatedly to store and run programs that will not be lost by a MEMORY LOST

nor when the module is removed from the HP-41. The module can be

programmed directly from an HP-41 using an EPROM programmer which is about

the same size as a module and requires no external power sources.

The new HP-17, HP-18, HP-19, HP-27 and HP-28 calculators have many new

features, but are not replacements for the HP-41. In particular, they

provide no means of storing programs or information outside the calculator.

They can be used with a printer, but there is no way to put printed data or

programs back into the calculator other than keying them again. There is

no provision for adding programs or memory on plug-in modules. (The HP-28C

-678-



and HP-28S provide an instruction which provides access to a form of

synthetic and machine language programming - this is described in a new

book "Customize Your HP-28", soon to be available from SYNTHETIX.)

If you want to run HP-41 programs on a larger computer you can use an HP-

71B with the HP-41 Translator Pac module. Some software companies provide

HP-41 simulation programs that run under MS-DOS. A complete HP-41CX

simulator is provided by Corvallis Micro Technology for their hand-held

MC-II computer. HP-41 programs can be typed directly into the MC-II or

they can be transferred to it via an MS-DOS computer. The MC-II can use

RS-232 and HP-Il for interfacing with other devices, it can be extended by

means of plug-in modules, and it runs typical HP-41 programs about 10 times

faster than an HP-41.

Bugs

-Version B of the CCD module, with the bugs corrected, is now available.

-If you print the Time Module Alarm Catalog, strange things can happen if

port 3 contains any plug-in except a printer, HP-Il or the Timer module.

-If the Plotter module function LIMIT gives an unexpeceted PL.RANGE ERR

message then SELECT the plotter as the primary HP-IL device. If BCREGX

gives NONEXISTENT this can be because two or more consecutive registers are

empty: just repeat BCREGX once for each empty register. On an HP-41C

without a quad memory module BCREGX should not be used with nonexistent

registers, otherwise the Alpha register may get corrupted.

-XROM bug: If you execute an XROM AB,CD instruction and a module with ID

number AB is not plugged in then you will get NONEXISTENT. If a module

with ID number AB but fewer than CD functions is plugged in, then the HP-41

does not give NONEXISTENT at once. Instead it carries on looking, but for

XROM CD,CD. Usually it will not find this and will give the message

NONEXISTENT as expected. The bug affects key assignments and keyboard

execution as well as programs. A detailed description of the bug is in PPC

V14N2p26-29.

-679-



NOTES

-680-



NOTES

-681-



NOTES

-682-



ERRATA for EXTEND YOUR HP-41, May 1988

p259 line -4 should mention that the Paname module has these functions too

p278 line -9 should mention that the Paname module has these functions too

p358 lines 6 & 7 should have hours: minutes (or degrees): seconds

p396 At the end of paragraph 1 add "The new Advantage ROM provides the HP-

41 with many of these features.

p625 add at the end:

"A less serious bug is the following: execute 8E99,ENTER,R-P. On old HP-

41s the result in X will be 1.13, not 1.13E100; this is similar to bug 4

which also ignored the leading digit of a three-digit exponent. On later

HP-41s the OUT OF RANGE error is shown as it should be, unless flag 25 is

set, in which case the operation is ignored but various flags are set

(which flags become set depends on the previous contents of register d).

This is similar to bug 10. Reference:DATAFILE V4N5/6p35."

INDEX Some pages have been renumbered during printing so the Index usually

refers to a page number that is one too high. If the page number seems

to be wrong, try looking back a page or two.

-683-



-684-





ORDER BLANK

 

 

Price
per
copy

For HP-71’S
HP-71 Basic Made Easy, by Joseph Horn $18.95

For HP-71'S & HP-41'S
Control the World with HP-IL, by Gary Friedman $24.95

For HP-41'S
HP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95

HP-41 M-Code for Beginners, by Ken Emery $24.95

Inside the HP-41, by Jean-Daniel Dodin $12.95

Extend Your HP-41, by W. Mier-Jedrzejowicz $29.95

HP-41 Extended Functions Made Easy, by Keith Jarett $16.95

HP-41 Synthetic Programming Made Easy, by Keith Jarett $16.95
(Includes one Quick Reference Card)

Quick Reference Card for Synthetic Programming $2.00

Synthetic Quick Reference Guide (SQRG) $5.95

For HP-10C, 11C, 15C, AND 16C
ENTER (Reverse Polish Notation Made Easy), by J.Dodin $5.95

Humor
It’s Amazing How These Things Can Simplify Your Life:
The Harold Guide to Computer Literacy $4.95

ROM’s
Barcode Generating ROM by Ken Emery $199.95

AECROM by Redshift Software $ 99.00

Sales tax (California orders only, 6 or 7%)
Add’l

Shipping Ist book books
within USA, book rate (4th class) $1.50 $0.50
USA 48 states, United Parcel Service $2.50 $1.00
USA, Canada, air mail $3.00 $1.50
elsewhere, book rate (6 to 8 week wait) $2.00 $1.00
elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Qty Amount

Free shipping for ENTER and It’s Amazing... with purchase of any other book
Free shipping for QRC plastic cards or SQRG (any number)
Free shipping for ROM’s

Enter shipping total here

Total due

Checks must be in U.S. funds, and payable through a U.S. bank.

Name
Address
 

 

City State Zipcode
Country
 

Mail to:
SYNTHiiTIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 339-0601





ORDER BLANK

 

Price
per
copy Qty Amount

For HP-71'S
HP-71 Basic Made Easy, by Joseph Horn $18.95

For HP-71'S & HP-41’S
Control the World with HP-IL, by Gary Friedman $24.95

For HP-41'S
HP-41 Advanced Programming Tips, by A. McCornack & K. Jarett $20.95

HP-41 M-Code for Beginners, by Ken Emery $24.95

Inside the HP-41, by Jean-Daniel Dodin $12.95

Extend Your HP-41, by W. Mier-Jedrzejowicz $29.95

HP-41 Extended Functions Made Easy, by Keith Jarett $16.95

HP-41 Synthetic Programming Made Easy, by Keith Jarett $16.95
(Includes one Quick Reference Card)

Quick Reference Card for Synthetic Programming $2.00

Synthetic Quick Reference Guide (SQRG) $5.95

For HP-10C, 11C, 15C, AND 16C
ENTER (Reverse Polish Notation Made Easy), by J.Dodin $5.95

Humor
It’s Amazing How These Things Can Simplify Your Life:
The Harold Guide to Computer Literacy $4.95

ROM'’s
Barcode Generating ROM by Ken Emery $199.95

AECROM by Redshift Software $ 99.00

Sales tax (California orders only, 6 or 7%)
Add’l

Shipping Ist book books
within USA, book rate (4th class) $1.50 $0.50
USA 48 states, United Parcel Service $2.50 $1.00
USA, Canada, air mail $3.00 $1.50
elsewhere, book rate (6 to 8 week wait) $2.00 $1.00
elsewhere, air mail $12.05 for Extend Your HP-41, $6.05 for others

Free shipping for ENTER and It’s Amazing... with purchase of any other book
Free shipping for QRC plastic cards or SQRG (any number)
Free shipping for ROM’s

Enter shipping total here $

Total due $

Checks must be in U.S. funds, and payable through a U.S. bank.

Name
Address
 

 

City State Zipcode
Country _—
 

Mail to:
SYNTHETIX, P.O.Box 1080, Berkeley, CA 94701-1080, USA Phone (415) 339-0601





LIGHT

WATCH

MATRIX?

YN

F47

Hyperbolics

REGS

X

ATAN2

ADDWRD

PRFL

GASP

TRYd

C55

SCF

BAB

ICX

KAP

VREGS

INTEG

SL2, SR2

RAB

XRO

GSE

APX

CXM

CLB, PPK

PPRP

NNR

ED

PPR

PROGRAMS IN THIS BOOK

: example of a program listing

CALCI and 2 :

CALC3 and 4 :

four examples of calculations

with functions and routines

: program displays each step before executing it

: prompts for input matrix

: asks a Yes/No question

: asks a question and uses status of SHIFT flag for reply

: efficient and accurate hyperbolics and their inverses

: displays values in non-zero registers and shows Size

: transforms a function to integrate with infinite limits

: complete arc tangent

: inserts a word in a list by indirect sorting

: prints and displays an Extended Memory text file

: makes synthetic key assignments, does not use S.P.

: example of saving and replacing flag status register

: example of using flags - clears printer flag

: sets or clears any flag specified in register X

: builds a byte value and appends it to Alpha

: exchanges the summation register and curtain pointers

: synthetic key assignment program

: views registers, loops by using RCL b and STO b

: example of prog. calling more than 7 subroutine levels

: shifts a reg. 2 bytes left or right,does not use Alpha

: reads a byte from Alpha, allows for 15 chars and nulls

: XEQ from ROM; allows 2 modules with same XROM no.

: displays a left goose instead of - sign in exponents

: allows appending to X as APPEND does to Alpha

: clears Extended Memory on any HP-41

: progs to delete a buffer and do a programmable PACK

: programmable PRP for use in documentation

: non normalised recall using HP-IL Devel module

: editor for RAM - requires PPC ROM

: shorter programmable PRP

Short example routines have not been included in this list.

Page

24

40

4]

134

145

147

148

158

159

163

172

285

308

318

447

449

452

455

464

468

475

476

478

496

513

521

542

556

566

571

581

583

587



LIGHT

CALCI1 and 2 :

CALC3 and 4 :

WATCH

MATRIX?

YN

F47

Hyperbolics

REGS

TX

ATAN2

ADDWRD

PRFL

GASP

TRYd

C55

SCF

BAB

ICX

KAP

VREGS

INTEG

SL2, SR2

RAB

XRO

GSE

APX

CXM

CLB, PPK

PPRP

NNR

ED

PPR

PROGRAMS IN THIS BOOK

: example of a program listing

four examples of calculations

with functions and routines

: program displays each step before executing it

: prompts for input matrix

:asks a Yes/No question

: asks a question and uses status of SHIFT flag for reply

: efficient and accurate hyperbolics and their inverses

: displays values in non-zero registers and shows Size

: transforms a function to integrate with infinite limits

: complete arc tangent

: inserts a word in a list by indirect sorting

: prints and displays an Extended Memory text file

: makes synthetic key assignments, does not use S.P.

: example of saving and replacing flag status register

: example of using flags - clears printer flag

: sets or clears any flag specified in register X

: builds a byte value and appends it to Alpha

: exchanges the summation register and curtain pointers

: synthetic key assignment program

: views registers, loops by using RCL b and STO b

: example of prog. calling more than 7 subroutine levels

: shifts a reg. 2 bytes left or right,does not use Alpha

: reads a byte from Alpha, allows for 15 chars and nulls

: XEQ from ROM; allows 2 modules with same XROM no.

: displays a left goose instead of - sign in exponents

: allows appending to X as APPEND does to Alpha

: clears Extended Memory on any HP-41

: progs to delete a buffer and do a programmable PACK

: programmable PRP for use in documentation

: non normalised recall using HP-IL Devel module

: editor for RAM - requires PPC ROM

: shorter programmable PRP

Short example routines have not been included in this list.

Page

24

40

41

134

145

147

148

158

159

163

172

285

308

318

447

449

452

455

464

468

475

476

478

496

513

521

542

556

566

571

581

583

587



GET THE MOST OUT OF YOUR HP-41'!

"Extend Your HP-41" is a complete guide to enhancing the performance

of your HP-41 system through more efficient keyboard and programming

techniques. Designed to supplement rather than replace HP’s

manuals, this book leads you from the basics of keyboard operation

and normal programming, to advanced techniques like synthetic

programming. Along the way, a variety of clever tips and tricks are

discussed, many of which will be new even to experts.

Containing over 650 pages of information, this is the ultimate

reference book for your HP-41 system. Concise and clearly written,

it will provide you with many hours of fascinating reading.

A few of the many topics covered are hyperbolic functions, efficient

use of flags and looping instructions, integration to infinite

limits, and random number generation. Also covered are extra hints

on using the Time module, Extended Functions, and Extended Memory

effectively. The full range of HP peripherals and modules is

described, including the exciting new Advantage module. Finally,

the last 200 pages provide a sampling of what Synthetic Programming

has to offer and how it works. Experts will marvel at the first key

assignment program that uses only normal HP-41 functions!

Two appendices list books and third party products for the HP-41.

Another appendix lists the "bugs". This will help you avoid losing

your valuable programs or Extended Memory files. Barcode is

provided for the programs.

"Extend Your HP-41" is by far the largest and most complete

collection of useful facts on the HP-41 system. Beginner or expert,

no HP-41 owner should be without it.

ISBN 0 9510733 0 3


	Cover
	Foreword
	Contents
	Table of Figures
	Table of Tables
	PART I - Fundamentals
	Chapter 1. Introduction
	1.1 The purpose of this book
	1.2 This book and other books
	1.3 Sources of information
	1.4 Notes for experienced users

	Chapter 2. About the HP-41
	2.1 Overview
	2.2 Some HP-41 history
	2.3 The layout of the HP-41
	2.4 Batteries and power
	2.5 ROM, RAM and Continuous Memory
	2.6 HP-41C, HP-41CV, HP-41CX
	2.7 Some accessories

	Chapter 3. Definitions and problems
	3.1 Using the HP-41
	3.2 The display and audible signals
	3.3 Toggle keys, Keyboards and modes
	3.4 Parameters, arguments and RPN
	3.5 Instructions and functions, routines and programs, catalogues
	3.6 Some common problems


	PART II - Calculating and programming from scratch
	Chapter 4. Starting from the keyboard
	4.1 Turning on, and what to do if you cannot
	4.2 Look after your stack
	4.3 Make use of Alpha
	4.4 Set your status
	4.5 LASTX, corrections and constants
	4.6 Efficiency: keyboard operations vs programming

	Chapter 5. Know your functions
	5.1 Choose your weapons
	5.2 General mathematical functions
	5.3 Times and angles
	5.4 Summations and Statistics
	5.5 Indirections

	Chapter 6. Something about programming
	6.1 A simple program
	6.2 Using labels to identify programs and routines
	6.3 Searching for labels with GTO and XEQ
	6.4 Finding your place, compiled addresses, CAT 1 and Indirect Execution
	6.5 Checking, correcting and changing a program
	6.6 Watching program execution
	6.7 Using tests to control program execution
	6.8 ISG, DSE and NOPs
	6.9 Asking questions and displaying results
	6.10 Using subroutines and structuring programs

	Chapter 7. Some example Programs
	7.1 Hyperbolics and inverse hyperbolics
	7.2 Review registers
	7.3 Integration with infinite limits
	7.4 Random numbers
	7.5 Complete arc Tangent - ATAN2


	PART III - Extended Programming
	Chapter 8. More about memory
	8.1 Space, time and numbering
	8.2 Contents of RAM memory
	8.3 The layout of RAM and ROM
	8.4 Peripherals, the display and the CPU
	8.5 Program instructions in RAM
	8.6 Key assignments of instructions
	8.7 41C or 41CV ?
	8.8 Space saving tips

	Chapter 9. Time Functions
	9.1 A growing system
	9.2 Times and dates
	9.3 Using the stopwatch
	9.4 Using the alarms
	9.5 Additional HP-41CX time functions

	Chapter 10. Extended Functions
	10.1 Extending your control over the HP-41
	10.2 Alpha string control
	10.3 Moving data and flags
	10.4 HP-41 status control
	10.5 Additional HP-41CX functions and features
	10.6 Indirect comparisons

	Chapter 11. Extended Memory
	11.1 What is Extended Memory ?
	11.2 Creating and deleting files
	11.3 File pointers
	11.4 Using data files
	11.5 Using text files
	11.6 Using program files
	11.7 Checking the contents of Extended Memory
	11.8 Additional HP-41CX Extended Memory functions
	11.9 The HP-41CX Text Editor
	11.10 Generalised key assignment program - GASP

	Chapter 12. Peripherals and plug-in modules
	12.1 More programs, more equipment
	12.2 Printers and display devices
	12.3 Card Reader and Wand
	12.4 HP-IL and other peripherals
	12.5 Plug-in modules and XROM conflicts
	12.6 Application program modules
	12.7 Utility program modules
	12.8 System Extension modules
	12.9 Diagnostic and service modules

	Chapter 13. Advanced programs and user groups
	13.1 Advanced programs ?
	13.2 Books and journals
	13.3 Adapting programs from other calculators
	13.4 Hewlett Packard Solutions books
	13.5 User Libraries and user clubs
	13.6 The benefits of belonging to a user club
	13.7 Buying and ordering programs
	13.8 Writing advanced programs yourself


	PART IV - Synthetic Programming
	Chapter 14. Introduction to Synthetic Programming
	14.1 How many bytes make a million ?
	14.2 Non normalised numbers, tumble dryers and cement mixers
	14.3 Your first synthetic tool
	14.4 Using the Byte Grabber
	14.5 The Byte Table and the status registers
	14.6 Status registers M, N, O, P
	14.7 Register Q
	14.8 Register d, the flag register
	14.9 Register e, a vital register
	14.10 Registers |- and e, making synthetic key assignments
	14.11 Registers a and b - the current address and RTN stack

	Chapter 15. Using Synthetic Programming
	15.1 When should Synthetic Programming be used ?
	15.2 More key assignments
	15.3 Byte Grabbers, Byte Jumpers and program analysis
	15.4 Addresses and multi-byte instructions
	15.5 Four examples
	15.6 Synthetic text and Q-loaders
	15.7 Other SP bits and pieces
	15.8 Do’s and don’ts of Synthetic Programming

	Chapter 16. Synthetic Programming and Extended Functions
	16.1 New tricks for old
	16.2 Alpha register operations
	16.3 Flags and numbers
	16.4 Registers, keys and programs
	16.5 Understanding Extended Memory
	16.6 Manipulating Extended Memory
	16.7 Understanding buffers and a programmable PACK
	16.8 A programmable PRP
	16.9 Non-normalising recalls and RAM editing

	Chapter 17. Where next ?
	17.1 A better machine ?
	17.2 Personalised software and keyboards
	17.3 Hardware modifications
	17.4 Black boxes and M-code
	17.5 Missing functions


	PART V - Appendices
	Appendix A: Books and journals for the HP-41
	Appendix B: Sources of information and equipment
	Appendix C: HP-41 system bugs, nasty surprises, and ROM revisions
	Appendix D: HP-41 system flags
	Appendix E: Recent changes to the HP-41 series and new products
	Appendix F: Barcodes
	Index
	Additions - May 1988
	Errata - May 1988
	List Of Programs


