l USER GROUPS
l PROGRAM LIBRARIES |

' TIMER FUNCTIONS |

' EXTRA MEMORY
' USEFUL ROUTINES
' PROGRAMMING TIPS

KEYBOARRD EFFICIENCY

W () S

{JR—
2= I v I ool un
A ] C
S00sg
F [] H
XEQ STO RCL, SST
HERas
EERooes
N O\ P
S22
Q R
- o B c O
U v W X
=
2 2522
\ﬂgwa@j

kl;

]

Q HP-41CX

—

J:J HP-41CV

HP-41C

Understand how the HP-41 works
and learn to expand its abilities

by W Mier-Jedrzejowicz






EXTEND

your HP-41

by
W.A.C. Mier-Jedrzejowicz, Ph.D.



"Extend your HP-41" by W.A.C. Mier-J¢drzejowicz, Ph.D.

Second printing November 1985

ISBN 0 9510733 0 3

Library of Congress Card Catalogue Number : 85-062787

Published by:

W.A.C. Mier-Jedrzejowicz
40, Heathfield Road
London W3 8EJ

United Kingdom

United States publishers:
SYNTHETIX

P.O. Box 1080

Berkeley, CA 94701-1080
U.S.A.

Write to the above addresses for price information.
Please enclose an addressed envelope for reply.

U.K. edition printed by:
Rank Xerox Copy Bureaux
30/34 High Street

Slough

Berkshire

United Kingdom

Copyright 1985, W.A.C. Mier-Jedrzejowicz

-ii-



FOREWORD

When is a calculator not a calculator? -- When it becomes a computer!

The Hewlett-Packard HP-41 works just like a pocket calculator and looks
like one, yet it can also be used as a powerful pocket computer. This book
takes you on a trip through the ins and outs of the HP-41, beginning with
simple calculations, and ending with sophisticated programs that let you
use your HP-41 as a computer with features far more powerful than those

described in the HP-41 manuals.

Why this book? As pocket calculators and computers have become more
powerful their users have come to be faced with a new dilemma. When out in
the field or in a laboratory and with only a pocket computer to hand,they
ask themselves "Should I try to work my problems out on the pocket computer
here, or should I go back to the office and use a larger computer?" The
answer is "I’ll have to go back and use my office computer" all too often
just because users do not realise how much can be done on a pocket
computer. This is particularly true of the HP-41 which at first sight looks
like an ordinary pocket calculator. Yet the HP-41 is extremely versatile,
more powerful than some pocket-sized BASIC computers, and can be used with
many accessories including interfaces to HP and IBM personal computers. The
HP-41 can be carried around and can serve as a pocket calculator, yet its
uses can be greatly extended whenever necessary, in the field or in the
laboratory. The purpose of this book is to show how any HP-41, not just the
HP-41C but also the HP-41CV or HP-41CX (including the latest versions, sce
Appendix E) can be extended by an understanding of its operations, by a
knowledge of special techniques and by the use of various accessories.

The book is divided into five parts with each part subdivided into chapters
and sections. Part I is a general introduction and also includes advice for
the complete beginner. Part II is made up of additional advice for users
with some experience of an HP-41. Part III contains suggestions for
advanced programming, including advice on selecting and using plug-in
modules, particularly the Time and Extended Functions modules. Part III

-iii-



also covers other accessories, and ways to obtain specialized programs
instead of writing them yourself. Part IV provides information on non-
standard programming techniques, information that is not provided in HP
manuals but allows you to greatly extend the use of your HP-41,
particularly if you have an Extended Functions module or an HP-41CX. This
part includes information about equipment that allows the user to program
the HP-41 in its own internal "machine language". Part V comprises a
collection of Appendices, among them a list of other books on the HP-41, a
list of known faults (bugs), and a list of HP-41 system flags and
barcodes.

Copyright: The material in this book is copyright and may not be reproduced
in any form, either in whole or in part, without the written consent of the
publisher and author, except that the programs contained herein may be
reproduced for personal use, and short extracts may be quoted for review
purposes.

Disclaimer: All material in this book is published without representation
or warranty of any kind. Neither the publisher nor the author shall have
any liability, consequential or otherwise, arising from the use of any
material in this book.

-iv-



AD MAIOREM DEI GLORIAM

Dedicated to my Father who introduced me to the joys of multiplication
tables and of computing, and who is still suffering the consequences and to
my Mother who made it possible.

Acknowledgements: Many people deserve to be thanked for their help or
contributions, and I fear that I may have omitted some names, so first of
all "Thank You" to all the calculator enthusiasts, named and unnamed, who
have provided information that is used by others. I must especially thank
the members of calculator user groups, and in particular Richard Nelson who
founded the original user group PPC and is now running the user group CHHU,
and David Burch who set up and is still running the UK club, HPCC. Many
thanks too to the following who have given me help and advice: Rob
Woodhouse, Dave Bundy, Brian Steel, George loannou, Jeremy Smith, Terry
Stancliffe; also Frank Wales and Graeme Cawsey (and Bill Regussy) and
Julian Perry. A special thank-you to Bruce Bailey who made many helpful
suggestions and provided a very useful program. Grateful thanks to Joanna
Tobiasiewicz and David Burch for their help in typing and checking the
text, to Rabin Ezra who helped with some of the Tables, and to Richard
Rijnbeek for proofreading. My thanks as well to those who have allowed me
to use equipment for this book: Geoff Hall, Robert Lewis, Brian Steel,
Metyclean Ltd. and of course Hewlett Packard Ltd. and their employees.

Keith and Catherine Jarett have worked hard to make the second printing
possible. An extra thank you to them and to Bruce Bailey for suggesting

corrections and changes for this printing.

-V-






Table Of FigUIeS. . ou ittt it it ettt et ettt et e ie s xiii
Table Of Tables. .ottt e e e ettt s Xiv
PART I - Fundamentals
Chapter 1. IntroducCtion .. ...c..iiintntntnt ettt et et e ananann 3

1.1 The purpose of this bOOK ..........coiiii .. 3
1.2 This book and other books ........... ..., 5
1.3 Sources of information .............. ..ttt 7
1.4 Notes for experienced USEIS ...ttt it ninnnnnnnn 8
Chapter 2. About the HP-41 .. ... i et e e 11
2.1 OVEIVIEW. ottt ettt ettt it e et e e e e 11
2.2 Some HP-41 RiStOry ...viininiie ittt it ittt et iienennnnans 11
2.3 The layout of the HP-41 .. ... ... ... ..ttt 14
2.4 Batteries and POWET .. ... ut ittt e 16
2.5 ROM, RAM and Continuous Memory............covvuurnunnn.. 18
2.6 HP-41C, HP-41CV, HP-41CX ... . ittt 19
2.7 SOME QCCESSOTIES .ttt ttete et teeieeneeeeenenennenenaennn 20
Chapter 3. Definitions and problems ........... ...ttt ininennnnennn 29
3.1 Using the HP-41 ... ... . . it ittt 29
3.2 The display and audible signals ...................couoint. 29
3.3 Toggle keys, Keyboards and modes. . ......................... 32
3.4 Parameters, argumentsand RPN ............................. 35
3.5 Instructions and functions, routines and programs,
CAtAlOBUES ittt e e 38
3.6 Some common problems ...t 44

CONTENTS

-vii-



CONTENTS

Page
PART II - Calculating and programming from scratch

Chapter 4. Starting from the keyboard ...............c.iiiiiiiiiininnnn.. 63
4.1 Turning on, and what to do if youcannot ................... 63
42 Look after your Stack ...........couiiiiinininennnnnnnann, 69
43 Make use of AIpha ... ..ottt 78
4.4 Set yOoUT StatUS ... itiittt ittt it tette et ieaeenenennannan 85
4.5 LASTX; corrections and constants ...............cuoveueunn.. 89
4.6 Efficiency: keyboard operations vs programming ............. 93
Chapter 5. Know your fUNCHIONS ... .vititntiitieiit i eneiieeeeeananens 97
5.1 ChOOSE YOUT WEAPOMS .ot vvevetntnennenenenennneeennenenens 97
5.2 General mathematical functions ................ oo, 97
53 Times and angles .....ovititiiiiniiii it ieeerinnennnannn 102
5.4 Summations and Statistics ............c it 104
5.5 IndireCtions .. ..uuiniiniitin et e 106
Chapter 6. Something about programming...............ccoirenneneennn.. 111
6.1 A simple program..........c.ouiineunernenennenennnnenannens 111
6.2 Using labels to identify programs and routines ............ 112
6.3 Searching for labels with GTO and XEQ.................... 114

6.4 Finding your place, compiled addresses, CAT 1 and
Indirect EXECUtiON ... ..ottt 121
6.5 Checking, correcting and changing a program ............... 126
6.6 Watching program €Xecution ..............c.ooveuuvenennnnn. 132
6.7 Using tests to control program execution .................. 134
6.8 ISG, DSE and NOPS .......ciiiiiiiiiiiiiiiiiiiiinnnnennn 137
6.9 Asking questions and displaying results ................... 142
6.10 Using subroutines and structuring programs ................ 149

-viii-



CONTENTS

Page

Chapter 7. Some example Programs. ... ...vvtnernrnennenenennnnenennens 157
7.1 Hyperbolics and inverse hyperbolics ....................... 157

7.2 REVIEW TeGISIEIS .. ivttti ettt ettt it ittt 158

7.3 Integration with infinite limits  .......................... 161

7.4 Random numbers .........o.vininniniinintneneinnenananns 166

7.5 Complete arc Tangent - ATAN2 . ......... ..., 171

PART III - Extended Programming

Chapter 8. More about MemoOTY. . ...ttt ittt it ittt ittt eee e 177
8.1 Space, time and numbering........... .. ... i, 177

8.2 Contents of RAM MEmMOTY......ooviniiniine i iiennenenn. 181

8.3 The layout of RAMand ROM. ..., 184

8.4 Peripherals, the display and the CPU ...................... 194

8.5 Program instructions in RAM ........... ... ... coiiuniun... 196

8.6 Key assignments of instructions ........................... 210

8.7 A1C 0r A1CV 2 L e e e 216

8.8 Space SAVING tIPS . vuvvit ittt ittt i e e 217

Chapter 9. Time fUNCtIONS ... ..ottt it ittt e ie et eeceieenens 227
9.1 A BIrOWINE SYSEIM . .u vttt tietiieie et enenenennenenenanens 227

9.2 Times and dates ........oouiiniiiiinii ittt 228

9.3 Using the stopwatch ...ttt 232

94 Using thealarms ........ ...ttt 237

9.5 Additional HP-41CX time functions ........................ 246

Chapter 10. Extended Functions ............ciininiininintnennenenennennnn 249
10.1 Extending your control over the HP-41 ..................... 249

10.2 Alpha string control ........... i 250

10.3 Moving data and flags ...t 259

10.4 HP-41 status control .......... ..o, 267

10.5 Additional HP-41CX functions and features................. 273

10.6 Indirect COMPATISONS ... ovutientnenennnneneneneenenenennnns 278



CONTENTS

Page

Chapter 11, Extended MemoOry. . .. .ovii it ittt it ittt it ineneanan 289
11.1 What is Extended Memory ? .......c.citiiiiinneninnnennnnnn 289
11.2 Creating and deleting files ...........co i ininnnnenn. 290
113 File POIMterS ..ttt ittt ittt ittt et et eieeeanennn 292
11.4 Using data files ........oiiiitiiinrn it 295
11.5 Using text files ...ttt it it e e 300
11.6 Using program files .........c.iiiiiriniiiiii i, 308
11.7 Checking the contents of Extended Memory ................. 310
11.8 Additional HP-41CX Extended Memory functions............ 311
11.9 The HP-41CX Text Editor...........ciiiiiiinennnnnnn.. 313
11.10 Generalised key assignment program - GASP................ 316
Chapter 12. Peripherals and plug-in modules ................c.civiivnin... 327
12.1 More programs, more equipment ...........c.cuvuerenennnnnn.. 327
12.2 Printers and display devices .............ciiiiiiiiiiinn. 327
123 Card Readerand Wand............... ..., 335
124 HP-IL and other peripherals ........... ... ... ..., 344
12.5 Plug-in modules and XROM conflicts ....................... 349
12.6 Application program modules.............c.civivenennn... 354
12.7 Utility program modules ...........coiitiiiirennenennann. 367
12.8 System Extension modules..........c.cuviririnininnnnennnn, 378
129 Diagnostic and service modules ............. ..o, 390
Chapter 13. Advanced programs and USer SroupsS...........eevueneennnnn.. 393
13.1 Advanced programs 2 .. .....ouiiiiitit et e 393
13.2 Books and journals ............uiiniirinininineniiiiaaa 393
13.3 Adapting programs from other calculators .................. 395
13.4 Hewlett Packard Solutions books ................civiunn. 397
13.5 User Libraries and user clubs ............ ... i, 398
13.6 The benefits of belonging to a user club .................. 400
13.7 Buying and ordering programs. . ..........ovueuennenenenenenn 405
13.8 Writing advanced programs yourself ........................ 406

-X-



CONTENTS

Page
PART IV - Synthetic Programming

Chapter 14. Introduction to Synthetic Programming ....................... 411
141 How many bytes make a million ? .......................... 411

142 Non normalised numbers, tumble dryers and cement mixers. . .412

143 Your first synthetic tool .......... .. ..ot 415

144 Using the Byte Grabber...........ccoiiiiiiiniinnnnnnn.. 424

145 The Byte Table and the status registers ................... 431

14.6 Status registers M, N, O, P .. ... ... .. . i 438

147 RegiSter Q ..ottt ittt et et e 444

14.8 Register d, the flag register  ................ciiiiiinn... 446

149 Register ¢, a vital register ... ... i e 458

14.10 Registers +- and e; making synthetic key assignments ....... 465

14.11 Registers a and b - the current address and RTN stack ..... 473
Chapter 15. Using Synthetic Programming ...............c.coiuiiinininn.n. 481
15.1 When should Synthetic Programming be used ? ............. 481

152 More key asSignments ..........veienunneneneneneenenennnn. 482

15.3 Byte Grabbers, Byte Jumpers and program analysis .......... 492

15.4 Addresses and multi-byte instructions ..................... 498

15.5 Four examples. .. ..oiiiiiit it et ittt et 504

15.6 Synthetic text and Q-loaders .............. .. i, 514

15.7 Other SP bits and pieces .........coviiiiiiiininennenennnnn. 518

15.8 Do’s and don’ts of Synthetic Programming .................. 527
Chapter 16. Synthetic Programming and Extended Functions............... 535
16.1 New tricks forold ........ ... ittt 535

16.2 Alpha register operations ...........c.coviiieiniineneaeannnn 536

163 Flags and numbers. . ........ouiininintnenieennenenennnns 538

16.4 Registers, keys and programs ..............c.o.iiiiiiiiiin. 543

16.5 Understanding Extended Memory........................... 546

16.6 Manipulating Extended Memory............. ... .o, 555

-xi-



CONTENTS

Page

16.7 Understanding buffers and a programmable PACK .......... 563

16.8 A programmable PRP...... ... . .. .. .. .. . . i 569

16.9 Non-normalising recalls and RAM editing................... 579
Chapter 17. Where next 7 ... . ittt e ettt e ettt e e 589
17.1 A better machine ? ... ...ttt ittt 589

17.2 Personalised software and keyboards ....................... 589

17.3 Hardware modifications .............coiiiiiriiiinrennnnn. 591

17.4 Black boxesand M-code ............. it 594

17.5 Missing fUunCtions . ......oiiiitiiiit ittt 598

PART V - Appendices

Appendix A: Books and journals for the HP-41 . ......................... 603
Appendix B: Sources of information and equipment....................... 611
Appendix C: HP-41 system bugs, nasty surprises, and ROM revisions ...... 615
Appendix D: HP-41 system flags . ......coiiniiiiiieen i ieiiin e 643
Appendix E: Recent changes to the HP-41 series and new products ........ 653
Appendix F: Barcodes. ...oovnt i e e e 655
I X ..o e 673
List Of PrOograms ... ...couiuntneiein e ie e Inside back cover

-Xxii-



TABLE OF FIGURES

Figure Title Page
2.1 The I/0 PoOrtS oottt ettt ettt e e e e 14
3.1 The HP-41 Display. . ..ottt e e et 30
4.1 First Stack Analysis Form for (a+42)*a ...........iiiniinininnnn... 71
42 Second Stack Analysis Form for (a+2)*a...............ccoiiiiiinn. 72
43 Stack Analysis Form for (a*b + c¢/d)*sin(e) ..........ccvviiiunennn.... 74
8.1 Different ways of seeing a number ............vtitiriinrinnan.n. 180
8.2 A register containing @ number.. ...ttt 182
8.3 A register containing a text String ......... ...t 183
8.4 HP-41C Random Access Memory (RAM) Layout ..................... 185
8.5 HP-41 with Additional RAM ... ... ... it 188
8.6 HP-41 Read-Only Memory (ROM) Layout .................iuinnnn. 190
8.7 Layout of a Key Assignment Register.............cvviiinennnnenan.. 212
14.1 The HP-41 Status Registers. ... ..outiri it it iiieiirenennnns 439
142 RegIStEr C COMEEMES . .\ttt t ettt ettt e e ettt e e anennnns 458
143 Moving the Curtain ........ ... ..ttt eenennenns 462
144 The key assignment flags. . ...ttt 465
145 Registers a and b, ... e e e 474
16.1 HP-41 RAM memory, including Extended Memory ................... 547
16.2 Extended Memory link register COntents. ......couvuetveenineneenennnn 549
16.3 Extended Memory file status header.............. ... .. .. 551
16.4 Buffer header StrUCIUTC . . vttt ettt ettt e et e e e 563

-xiii-



TABLE OF TABLES

Table Title Page
8.1 Byte Table of HP-41 Prefixes. .......couiiuiiniiniinn i iinnennnnnn. 197
8.2 Byte Table of HP-41 PostfiXes. .. ...oiiiiie ittt iii i 198
8.3 The HP-41 Display Characters. .....uuuuiunineereenenennnnenenennns 206
12.1 Flag Settings for HP-IL print mode . ..............coiiiiiininnnnan. 335
12.2 XROM numbers used for plug-ins .........cciuiiirinnnenenennnnnn.n 352
14.1 The Byte Table (first half --rows 0 t0 7). ......cviiiinnnennnnn. 432
142 The Byte Table (second half --rows 8 to F) ........ ... ... ... 433

-Xiv-



PART |

Fundamentals







CHAPTER 1 - ABOUT THIS BOOK

1.1 The purpose of this book.

What do you get when you buy an HP-41? First of all you get the HP-41
itself with a pocket guide. You also get the manuals whose size alone
suggests that the HP-41 is more than just a pocket calculator. What you
most certainly do not get is a friend to help you understand the HP-41 and
use it to full advantage. Most owners get along as best they can without
such a friend. Some have friends or colleagues who can help them, others
ring Hewlett-Packard to try to get the advice they need. A lucky few find
a user group whose members understand their problems and are willing to
help.

Certain questions and answers come up time and again at user groups. What
should I do if it locks up and refuses to respond to the keyboard? How can
I type in this program if there is no XROM key on the keyboard? Can you
suggest a good program for my work? A single collection of answers to
these questions would be valuable for new members of user groups and for
people who cannot or will not join a user group.

This book contains just such a collection of answers, along with other
information. It has grown out of the monthly meetings in London of the
user group HPCC, formerly called PPC (UK), but the questions and answers
should be of interest to HP-41 users everywhere. Even those owners who
have long been members of a user group will find useful reference material,
new tricks, and some interesting programs here. If you are thinking of
buying an HP-41 then Part I of the book will tell you what you can get and
will help you decide if that is what you really want.

Some questions can be answered with a straightforward "press this button"
or "look it up in such-and-such a book". Others can only be answered
through an explanation in detail of how the HP-41 works. Users who take
the trouble to understand their HP-41 will be able to write better and
faster programs, maybe even to write and sell specialist programs. This

-3-



book will therefore give detailed explanations of many HP-41 operations.

You may prefer to read the details after first looking quickly through the
whole book. No book can hope to answer all questions so there will be
places where you will be referred to another book or to a magazine article.
At times you will be advised to go to a user group meeting, since some
questions are impossible to answer in a book. Books which are referred to
are included in the reference list in Appendix A. Maybe you should look
through this Appendix right now and perhaps buy a different book! It is
most important to read the HP manual, but some people find this hard to
read or maybe they have a second-hand HP-41 without a manual. This book
will do as an introduction if you do not have the manual but you should
really read that too.

The book has five parts arranged to help the reader use it for reference as
well as to read through it. Part I covers the fundamental information
required by a reader, particularly if he or she is new to the HP-41. It
also explains some of the computer jargon that is used to describe the HP-
41, and it even covers some HP-41 history. Part II goes through normal HP-
41 operations. It does not give all the information available in HP
manuals but it includes further details, explanations and suggestions that
are not provided in them. Part III goes on to extended programming; this
means using the HP-41 with plug-in modules and with peripheral devices such
as printers, it also means writing or obtaining programs more complicated
than you would normally write yourself. Many users see advertisements for
HP-41 accessories but do not know how much use these are. Some users even
buy equipment that is completely unsuitable and this part of the book may
save readers from the same fate. Few owners know that some extremely
useful accessories for the HP-41 are made by other companies, some of these
are covered in Part IIL

Part IV covers the use of non-standard functions which means using
instructions that are not described in the HP-41 manuals. These functions
can be used on any HP-41 and do not require any extra equipment. Their use
(referred to as Synthetic Programming) greatly extends the capabilities of
the HP-41. This part ends with a short description of further ways to

-4-



stretch your HP-41, including the use of the HP-41 internal "machine
language". Part V contains Appendices with information that is best
collected in one place for easy reference. This includes an Appendix on
the latest changes to the 40 series of calculators, and on how these
changes reclate to what is written in the rest of the book. An Index is
provided but if you are looking for a particular piece of information you
may find it more quickly by checking through the Contents. Each part of
the book is divided into chapters with the chapters divided into sections.
Section numbers are used when one item refers to another.

By reading this book (and getting to understand the HP-41 better in other
ways) you will help yourself get more from the HP-41 by extending the range
of things you can do with it. Extending your HP-41 can mean many things -
using its memory better or adding to its memory, using the functions more
efficiently, recognising which peripheral devices will help you most - all
this and more will be covered. If you are a professional who uses the HP-
41 for engineering or scientific work, you should find advice that will
help extend the usefulness of your HP-41. It seems reasonable then to call
the book "Extend your HP-41", for that is its overall purpose.

1.2 This book and other books.

As stated above this book contains information that will help you
understand the HP-41. You may want to buy or borrow some of the books and
journals referred to for further details, see Appendix A. A few deserve to
be mentioned right away. First of all, you should make sure you get and
read the HP manuals. They vary in style and quality but it is unwise to
use any product without knowing what the maker has to say about it. The
HP-41CX manuals are particularly good and you may want to have a look at
them even if you do not have an HP-41CX.

Other books come in three kinds. There are specialist books on certain
features of the HP-41, such as the Extended Functions or Synthetic
Programming. Secondly there are specialist books on particular subjects,
such as navigation or forestry. Thirdly, there are general information or

-5-



reference books such as the HP-41 and HP-IL System Dictionary or "Tips and
Routines for the HP-41". The book you are reading now is definitely of the
third kind. It contains some of the same information as other books but
does not replace the lot. In particular "Tips and Routines" by John
Dearing is well worth having, and the "Synthetic Programming Quick
Reference Guide" by Jeremy Smith provides a very useful pocket-sized

reference.

This is primarily a programming book. It gives advice on solving your
problems by means of programs or keyboard calculations. The peripheral
devices have been left until Part III for this reason, and even then they
are treated mainly as aids to programming. In other words, this is more of
a software (programming) book than a hardware (nuts and bolts; and chips)
book. Some hardware advice, even on opening up the HP-41 and speeding it
up has been provided, but this too is designed to help in programming. If
you want detailed advice on rebuilding your HP-41, or using it as a
doorstop, then you need a book that is more concerned with the HP-41
hardware.

Now a few words about the way some information will be presented here. A
new word or idea will be printed in bold characters at the place where it
is explained. A short set of steps to be done on the HP-41 will be printed
with each step appearing as it is seen on the keyboard and separated from
the next step by a comma. For example the steps taken to work out the
logarithm of six would be printed as 6, LOG which means press the key
marked 6 then press the key marked LOG. Longer sets of steps and programs
will be shown as they appear on an HP-41 printer. You do not need a
printer to use this book, but if you do not have one then you should check
through Section 2.7 which shows what a program looks like when it is
printed. The up-arrow symbol, 1 will be used to mean "to the power of" in
arithmetic expressions, so that X712 means "X to the power of 2", or
"X squared". The HP-41 displays X12 and Y1X in the same way.

-6-



1.3 Sources of information.

The information in this book has been gathered from various sources and
these deserve to be mentioned here. First of all, some important
information from HP manuals has been repeated here albeit in a different
form. HP also used to publish a quarterly journal "Key Notes" which gave
much useful information including corrections, and suggestions from users.
Some information from "Key Notes" will be mentioned.

A great deal of information has come through user groups, specially the
oldest group, PPC, through its journals, through books published by its
members, and through discussions with individuals. The books and journals
are mentioned in Appendix A, many members of user groups have provided
information and I thank them all. Sometimes I have thanked particular
individuals for providing ideas or programs, but many bits of information
have come from more than one source or from a source I cannot identify.

Information that has been published is subject to copyright and it is
neither proper nor safe to copy text from other people’s books. It is
legal to publish short extracts for review purposes and in a few places I
do mention a particular book or article and include a short extract to show
what can be found in that particular text. In general though, books and
articles are mentioned as sources of further specialist information on a
given subject.

Of course some of the information has come from the author too. I have
used my HP-41 for serious work, particularly in Space Physics, and also for
playing about with in my spare time. Some of this has resulted in useful
routines, or in ideas for improved control of HP-41 operations; these have
formed a considerable part of the book, including some new uses of the

Extended functions for Synthetic Programming.



1.4 Notes for experienced users.

New HP-41 users should find a lot to interest them in this book, but what
is there in it for more experienced users? Those experienced users who are
not members of a user group or who have only recently joined one will find
much information that is not available outside user groups, and some
readers may even decide to join such a group. The generalised key-
assignment program in Section 11.10 is an example of a topic that should
interest these readers; it provides a convenient introduction to the non-
standard HP-41 functions without itself using any such functions.

It has not been my purpose here to publish a list of programs for use in
specific subjects; readers who are experienced HP-41 users will no doubt
have their own programs already. I have included a few programs for
mathematical or engineering calculations, but these are provided as
examples and my main purpose is to give answers to questions, and to make
suggestions as to how the HP-41 can be used more effectively. To this end
the book provides a mixture of new ideas and of information gained from the
experience of people who wish to use the HP-41 more efficiently and to
greater advantage.

If you are an experienced user but your normal use of the HP-41 has been
confined to the instructions in the manuals you may be surprised to find
that additional powerful instructions have been discovered and exploited.
Even the HP-41 internal machine language (M-code) can be used for
programming. You can compare the use of the normal instruction set to
programming in BASIC on a home computer. The use of the additional
instructions called "Synthetic instructions" is like using BASIC with PEEK
and POKE instructions to access the operating system. The use of M-code is

equivalent to programming a home computer in its own machine language.

Those readers who are experienced members of user groups will know already
about Synthetic Programming (SP) and about M-code. This is not a book
about M-code, although that is mentioned, so what use is it to an old hand?
It provides two things for these users; firstly a review of normal HP-41

-8-



programming including new tips, and secondly various information on SP,
particularly new ideas on the use of SP with the Extended Functions,
illustrated by examples. It also contains reference material such as a
list of bugs. It is a collection of ideas and suggestions concerning the
HP-41, all in one place, so that owners of this book may be able to avoid
looking through a stack of old journals every time they need to check
something. If you do not think you need a book like this then pass it on
to a new member of your local user group who asks all those silly questions
you can no longer be bothered to answer.

Exercises.

A textbook without exercises is like a calculator without an ENTER Kkey;
what was in your memory gets lost when you start on something new. For the
sake of those people who want to treat this book as a textbook each chapter
will end with a few exercises. They should help you remember what the
chapter was about, but you can ignore them if you wish.

1.A One of the subjects on the cover of the book is "Keyboard efficiency".
How efficiently do you use the functions on the keyboard? Test yourself by
finding the smallest number of keys you need to press (without using key
assignments) in order to work out the square root of (A12 + B12 + C12) and
display the result. Count every time you press a key including SHIFT, but
do not count the keys needed to put in A, B and C. Hint: you will find the
answer in Section 5.3 under P-R, R-P.

1.B Look through Appendix A. Do you recognise any of the books? Have you
read any of them? If you are serious about using your HP-41 you should
think about buying some of the books most closely related to your
interests. If no suitable book exists maybe you should write one yourself!

1.C Get a notebook and keep notes of interesting items as you go through
the book. This is particularly important if you are an experienced user:
otherwise you may quickly forget new ideas if they are mixed in with things

you already know.






CHAPTER 2 - ABOUT THE HP-41.

2.1 Overview.

This whole book is about the HP-41 so why a chapter "About the HP-41"? The
first chapter was an introduction to the book; this chapter is an
introduction to the HP-41. Its main purpose is to explain the HP-41, to
help new owners and to introduce words that are normally used as computer
jargon but have also come to be used to describe the HP-41. If you already
know your HP-41 and the jargon, and if you really do not care why the HP-41
system is the way it is, then you may as well skip this chapter.

2.2 Some HP-41 history.

The HP-41C was introduced by Hewlett-Packard on July 16 1979 as a portable
battery-operated programmable calculator with many "advanced" features
including a full alphabetic capability. Since that time two further HP-41
models have been produced along with a host of accessories, books and other
items. Whereas previous calculators were replaced by entirely new models
after two or three years the HP-41 has grown with these additions, some of
them foreseen in its planning, others introduced later. Thus the HP-41 has
not been replaced quickly but has been extended by these new features,
particularly the HP-IL interface loop.

The capabilities of the HP-41 series have been expanded so much that
Hewlett-Packard nowadays call the HP-41 a portable computer. Nevertheless
the HP-41 on its own looks very much like Hewlett-Packard’s original
scientific pocket calculator, the HP-35. The dimensions, the vertical
format, the position of the display and keyboard, even the number and
layout of the keys (buttons) are the same on the HP-41 computer as on the
HP-35 calculator.

The HP-41 is therefore a calculator-based computer, as opposed to other

pocket computers which are scaled-down versions of microcomputers used in
the home and office. This difference extends to the languages used; the

-11-



micro-based pocket computers generally use BASIC which is the language used
by most micros. In this language a single instruction (statement) can
include complicated arithmetic expressions. The HP-41 language is made up
of the instructions available on the keyboard together with other similar
ones, and a program is made up of a collection of these strung together one
by one. The relative merits of the two types of pocket computer can be
argued, but the fact is that an HP-41 can be used as a calculator which
turns into a computer when necessary. This evidently has strong appeal to
many scientists, engineers, navigators, astronauts and others; Hewlett-
Packard have sold over a million HP-41s.

Certainly most owners will defend the HP-41 against attacks on its supposed
shortcomings. Its high price can (perhaps) be justified by its high
quality and the level of after-sales service provided by Hewlett-Packard.
Its vertical format allows it to be held and used with only one hand. Its
language is as much a computer language as any other and has been named
FOCAL (Forty-One Calculator Language); not an ideal choice since a computer
language called FOCAL already exists (an operating system language for
CDC’s). The limited memory and speed are limited only in comparison to
bigger and less portable machines.

Hewlett-Packard have of course introduced other personal calculators and
portable computers since the HP-41. The series 10 calculators are lovely
pocket-sized machines, faster than the HP-41 at certain tasks but with
neither its general-purpose capability nor its features for communication
with other devices. The HP-75 is a true computer, faster than the HP-41,
but of a size to be held in the lap not in one hand, and much more
expensive. The HP-71 is also beautiful: it looks like a scaled-down
version of the HP-75 although internally it is more similar to the HP-41.
It is hand-sized (just) and has an amazing calculator mode but it is a
computer with a horizontal format and therefore less likely to travel with
people who like to do their calculations out in the field using just one
hand. An "HP-41 translator module" for the HP-71 has recently been
introduced; it allows the user to write and run HP-41 programs on an HP-71,
it also provides new HP-41 type functions and allows FOCAL programs to be

-12-



mixed with BASIC or FORTH routines and programs. This module is a great
help for someone who wants to transfer their work from an HP-41 to an HP-71
and take advantage of its greater speed, but it does not make the HP-71
smaller, change its shape, or make it any cheaper. In short, Hewlett-
Packard have introduced new items, but nothing to replace the HP-41
calculator/computer. No other company makes a device that is directly
comparable to the HP-41, the nearest is probably the Psion "Organiser".
This is the same size and shape as the HP-41 and is described as a pocket
computer but it is more an electronic pocket notebook, with better text
editing facilities than any current HP-41 but with only two ports for
plugging in memory modules or specialist software modules.

To avoid "calculator or computer" discussion all three models (HP-41C, HP-
41CV, HP-41CX) will be referred to as "an HP-41" or a "machine" without
specifying whether this may be a computer or a calculator. Perhaps the
best title for the HP-41 is an HHC - for Hand-Held-Computer which makes it
clear we are not talking about a computer such as a PDP-11 or a Cray-l.
The programming language will be referred to as FOCAL or simply as the
"user language" since it is the language employed by ordinary users. The
limitations of memory size and speed will be treated as obstacles to be
overcome, not as reasons for replacing the HP-41 with a bigger "machine".

The milestones in the history of the HP-41 since its introduction have been
the introduction of the HP-41CV with five times as much memory as the HP-
41C has, the introduction of the HP-IL and the Time module and the Extended
Functions module, and the introduction of the HP-41CX. If you ask members
of a wuser group they will probably add other milestones such as the
development of Synthetic Programming or the use of M-code. The
introduction of the HP-71B is often described as the final milestone,
actually more like a tombstone, but in fact the HP-71 is sufficiently
different that it will not entirely replace the HP-41. Those people who
prefer vertical format, calculator-style computers are waiting for Hewlett-
Packard to produce a true successor to the HP-4l1s, either an even more
extended HP-41, or an entirely new product.

-13-



2.3 The layout of the HP-41

Let us now examine the HP-41 itself. New owners should make sure they
recognise the various parts of an HP-41 and their names. Presumably most
readers will know that the word key means one of the buttons on the front,
but is it fair to assume everyone knows this? If you know about the layout
and names then skip this section and come back to it later if you need to.

At the top on the front is the display which shows results and messages.
Below this are four toggle keys or rocker switches which determine how the
HP-41 will react to any other keys on the keyboard below them. The SHIFT
key is the yellow (or gold) key. On the back of the HP-41 is a sticker
showing the ALPHA keyboard (or the Text Editor keyboard on the HP-41CX
although this is mostly the same as the ordinary ALPHA keyboard). Above
this sticker is the battery compartment. At the top of the HP-41 are four
Input/OQutput ports or I/O ports or simply ports. These let you plug in
modules or peripheral devices (known jointly as accessories or plug-ins )
that can be used with the HP-41. The ports are numbered as shown below.

Figure 2.1 The I/O ports.

The same numbering is shown on the panel at the top left of the back. The
serial number, including date of manufacture, is at the top right. You
should keep a note of this in case your HP-41 is ever stolen. Finally
there is an AC adaptor socket on the side to the right of the keyboard.

-14-



Since the HP-41 allows you to redefine the keys, it is designed to let you
put an overlay on the keyboard. You get two general-purpose keyboard
overlays with your HP-41 when you buy it. The overlays lie on top of the
normal keyboard; they have holes cut out so that they slip over the keys
and only cover up the printing above them on the flat part of the keyboard.
The new functions you have chosen for each key can be written on the
overlays so that you can check what each key does. Special overlays are
also provided for use with some plug-in modules and for certain functions
which redefine the keyboard, for example the Stopwatch. To hold down the
overlays the HP-41 has a tab at the top of the keyboard and three slots at
the bottom. You can also buy a super-overlay called a membrane Touchpad.
This covers the whole keyboard, keys and all, and it contacts each key
through a small pad. It can have the normal key functions printed on it or
companies that use many HP-41s can order touchpads with special functions
printed on them. The touchpad reduces the positive "click" that you
normally feel when you press an HP-41 key. Some people dislike this, but
the touchpad makes the keyboard quicker to use because it lets you slide
your fingers over its surface from one key to another without lifting them
of f each key after it has been pushed.

The I/O ports, the slots for the overlays and the sliding tab all leave
holes in the HP-41 case. There are also two holes to the left and right of
the I/O ports,these are designed to hold the Card Reader firmly in place,
you can sce them in Figure 2.1. Whereas many previous HP calculators were
encased in an impenetrable shell, the HP-41 will let in water and sand
fairly casily because of these gaps. Yachtsmen generally put two polythene
bags one inside the other around their HP-41s to keep out the water. In
sandy deserts or very dusty conditions you should stick some heavy duty
tape around the various gaps including the AC adaptor socket. You can use
a touchpad to cover the keyboard and hide the gaps around the keys and the
tab and slots. If you are the kind of person who often spills coffee (or
sulphuric acid) on the keyboard you will find the touchpad very useful.
(If your HP-41 dealers do not have the touchpad in stock tell them the part
number, it is HP 82200A, otherwise they will probably try to sell you an

-15-



overlay kit!) The worst problem with coffee or other drinks is that the
sugar in them dries out under the keys and jams them. If you drink coffee
without sugar you may get away with spilling some on the keyboard. The
touchpad is rather expensive, a much cheaper way to protect the keyboard is
to cut out a piece of card large enough to cover the whole keyboard and
hold this card down over the keyboard with sticky tape. Then glue one of
the overlays over the card. You will find that you can press the HP-41
keys through the card; the overlay shows you where each key is, and you can
write the key functions on the card, so that they can be read through the
holes in the overlay.

2.4 Batteries and power.

If you have bought a new HP-41 or if your HP-41 has not been used for over
a year then you should put in a new set of four 1.5 Volt alkaline size N
(also called 2/3 size AA) batteries. In the UK ask for Duracell MN9100,
VARTA 7245 or their equivalent. The battery replacement method is
described in the manuals but I shall repeat it here for anyone who has
still not obtained a manual. Remove the battery pack by pushing the inset
lip away from the ALPHA keyboard sticker. The holder pops out and you can
remove the old batteries and insert the new ones, making sure that each
battery has its + end or its - end facing the bottom of the holder as
marked on the underside of the holder. Replace the holder with the exposed
battery ends facing the top and push forward and down until the holder
snaps into place.

If you put in worn-out batteries, or if any of the batteries are the wrong
way round then the HP-41 should not be harmed but it will refuse to turn on
and the contents of its memory may be lost. Turn round any batteries that
are upside down and do not put in or leave in any old batteries since they
may leak. Instead of disposable alkaline batteries you could use a more
expensive type such as lithium cells of the same size, or mercury cells;
both types have a longer life. You could also use rechargeable Nickel-
Cadmium 1.5 V cells (Ni-Cads for short). Whatever type of batteries you
use, make sure the battery contacts are clean.

-16-



The HP-41 was originally designed to be run from an AC mains adaptor as an
alternative to batteries and the AC socket on the side had two small gold-
plated balls for contact with the adaptor plug. Instead of an AC adaptor
HP cventually produced a rechargeable battery pack (part number 82120A if
you want to order one) which replaces the whole battery holder. This
battery pack can be charged from the same AC charger as is used for the HP-
41 printer and the HP-IL printer and cassette drive. The charger plug can
be fitted through the AC socket, but the gold contacts are no longer
provided since an accidental electrical contact with them can damage the
HP-41 circuits.

When you are using your HP-41 you will need to change the batteries
occasionally, the BAT message will warn you of this, see Section 3.2. If
you are replacing the batteries after using the HP-41, make sure it is
turned off when you remove the battery pack. While the batteries are
removed after the HP-41 has been turned off, internal capacitors provide
enough current to maintain the contents of memory. You can be fairly slow
in changing the batteries, the internal capacitors on most HP-41s will
maintain memory for several days and some will last for up to a month! Do
not try to turn on the HP-41 while the batteries are removed as this will

speed up the discharge.

Once you have a set of good batteries correctly placed in the HP-41, you
should be able to turn it on by pressing the ON toggle key. Normally the
HP-41 comes on with its memory unchanged, but a new HP-41 or one whose
batterics have not been replaced soon enough may display MEMORY LOST to
show that the memory contents have been lost. If the display remains
completely blank or if it shows MEMORY LOST, press the backarrow key and
the display should show a zero value. If none of these things happen, see
Section 4.1 for further advice. To protect against unnecessary battery use
the HP-41 turns itself off automatically after 10 minutes if it is not
being used; you can prevent this, see last paragraph of Section 3.3.

Following MEMORY LOST, the HP-41 sets its display and other features to

-17-



default values. A default value is one that is assumed if no other value
has been specified. For example numbers are displayed with four digits
after the decimal mark by default unless you specify a different display.
(On previous HP calculators the default display was two digits after the
decimal mark.)

2.5 ROM, RAM and Continuous Memory.

Should the HP-41 batteries be removed for too long a time, it will lose
everything that the user has put into its memory (see previous section).
On the other hand it will still remember that it is an HP-41! The display
and the functions will work as before because their instructions are stored
in a permanent memory which cannot be changed unless the HP-41 is damaged.
This type of memory is called ROM (Read Only Memory). The HP-41 can only
read instructions and information from this memory; it cannot change them.
The ROM memory is written before the HP-41 is put together, it does not
change afterwards (unless it is replaced when the HP-41 is being repaired),
and it does not need batteries to be preserved.

The user must also be provided with memory that can be altered so that new
numbers and programs can be stored. This memory in the HP-41 is called
Continuous Memory, but it is only continuous so long as the user does not
change it and there is an electric current to maintain it. It is actually
called Continuous Memory because on earlier calculators all this user
memory was lost every time the calculator was turned off. Newer circuitry
takes a current of less than 0.lmA to maintain the memory and this is
provided by a small "leakage current" from the batteries even when the
machine is turned off, and from capacitors when the batteries are removed.

Memory that can be written to and read from used to be divided into two
types, sequential access and random access, although this division into two
types is rarely used now. Sequential access memory such as a magnetic tape
nceds to be read or written in sequence, from the beginning to the required
place. Random access memory allows the user to go directly to any place
without checking from the beginning every time. The Continuous Memory of

-18-



the HP-41 is of this type, called RAM (Random Access Memory). The layout
of the HP-41 RAM and ROM memory will be described in Chapter 8.

HP-41 memory is divided up into registers. Each register can store a
number with up to ten decimal digits, a decimal point and a sign followed
by a signed two-digit exponent (power of 10). The part of the number that
is not the exponent is called the mantissa, and each single figure (0 to 9)
is called a digit. Each register can also contain a text string made up
of zero to six characters. A character is any letter, numerical digit,
punctuation mark or special symbol (like + or & or a blank space). Other
things can also be stored in registers, and registers can be divided up
into smaller elements or treated as groups. This will be discussed in
Chapter 8. For now it is enough to say that the contents of a register
will just be called a value if there is no need to specify what that value
actually is. The contents of registers, and other items which are used
during programs and calculations are known collectively as data.

2.6 HP-41C, HP-41CV, HP-41CX...

The HP-41C, the original (and cheapest) version of the HP-41, has 64 memory
registers available for storage of programs, data and key reassignments.
64 registers may seem a lot for a pocket calculator but on an HP-41C they
will be quickly used up unless it is dedicated to one task only and is
never used for anything else. Up to 4 RAM memory modules, each with 64
memory registers, can be plugged in to extend the memory but they take up
the ports which can therefore not be used for other plug-ins. In January
1981 HP introduced a Quad memory module equivalent to four ordinary memory
modules. At the same time they introduced an HP-41 with a Quad module
built into it, the HP-41CV; the V is a roman five to say the CV has five
times as much memory as the C. The HP-41CV keyboard also had keys with a
more slanted lower face, which made the blue letters easier to read than on
the original keyboard. This improved keyboard is now used on all HP-41s.

In December 1981 HP announced the HP Interface Loop (HP-IL) and also the
HP-41 Time module and Extended Functions/Extended Memory module. These two

-19-



modules were useful for control of devices attached to the the HP-IL loop,
but they also extended the abilities of the HP-41 itself. It was soon
rumoured that a new HP-41 model with these modules built-in would appear,
as had been the case with the HP-41CV. In fact the HP-41CX (X for
Extended) was cancelled and resurrected several times before it was
officially announced in November 1983. The HP-41CX is just like an HP-41CV
with a Time module and an Extended Functions/Extended Memory module built
in, except that it has additional functions and features, including a Text
Editor. The Time and Extended functions will be described in Chapters 9,
10 and 11.

As of December 1984 the HP-41CV was marginally more expensive (in the UK)
than an HP-41C and a Quad memory module bought separately. An HP-41CX
however costs little more than an HP-41CV, the difference is less than the
cost of a Time module or an Extended Functions/Extended Memory module.
Unless you are buying an HP-41 for a specific application which is fitted
exactly by the HP-41C or the HP-41CV, then the HP-41CX is the best buy even
if you do not use many of its additional functions. (Few people really do
much text editing on a pocket computer, but it is nice to have a text
editor on the HP-41CX just in case you want to make a few notes.) More
details of the HP-41CV will be given in Section 8.7 and various features of
the CX will be described in Sections 9.5, 10.5, 10.6, 11.8, and 11.9.

It is possible that Hewlett-Packard could introduce an even more extended
version of the HP-41, perhaps with more Extended Memory and Extended
functions than the HP-41CX. Most of the advice and programs in this book
should work on such an additionally extended HP-41. (Any changes or
additions to the 40 series that are made after the main part of the book
has been written will be mentioned in Appendix E.)

2.7 Some accessories.
The plug-in modules and devices available for use with the HP-41 will be

discussed in some detail in Chapter 12. As it will be necessary to mention

them earlier here is an introduction to the plug-ins available.

-20-



As was explained in Section 2.5, the HP-41 uses ROM and RAM memory. RAM
modules provide additional memory for the user in the form of memory
modules, Quad memory modules and Extended memory modules. ROM modules,
sometimes just called ROMs, contain pre-written programs for special
applications, for example the Maths or the Petroleum Fluids Applications
modules. Some special ROMs contain additional functions, not programs, and
these modules may contain other parts such as a quartz oscillator in the
Time module, or RAM memory in the Extended Functions/Extended Memory
module. The plug-in modules are all the same size, just small enough to
fit entirely into one of the HP-41 ports.

Plug-in devices each have a plug that fits into a port but the devices
themselves lie outside the HP-41. The ports are called Input/Output ports
but many of the accessories are used only for input or only for output.
The Card Reader is used to store programs, data (information), and the
status of the HP-41 on small magnetic cards. These cards can be treated as
mass storage, an cxtension of the HP-41 memory without size limitations.
The programs, data and status can be read back into the HP-41 at a later
time and they can be transferred to other HP-41s. The Card Reader can also
read HP-67 and HP-97 program and data cards and interpret them for use on
the HP-41. This means that owners of these earlier calculators can carry
on using their programs, and that HP-41 owners can use HP-67/97 programs if
no available HP-41 programs meet their needs. The Card Reader provides 26
extra HP-41 functions designed to simulate HP-67/97 functions not available
on the HP-41. (Some of these functions are very useful on their own and
can be exploited in HP-41 programs.) It plugs into port 4 and looks like a
part of the HP-41. If you have wondered why the soft carrying case has a
piece of foam at the bottom, this is because the case is designed to hold
an HP-41 with a Card Reader attached to it when the piece of foam is
removed. The Card Reader is a true Input/Output device as information can
be written or read with it; it should really be called a
"Card Writer and Reader" but the name "Card Reader" has been borrowed from

computers and will not change.

-21-



The Optical Wand or Wand can be used to read single instructions, data and
whole programs from printed barcode which looks similar to the product
codes on items in shops. Barcode is easier to mass-produce and copy than
magnetic cards, it cannot be damaged by magnetic fields, and it can be
casily stored and transported (for instance in books). Barcode for several
programs has been included in this book whereas it would not have been easy
to include magnetic cards. Some people prefer to use a barcode keyboard
which provides all the functions they use; this can be easier than using
the keyboard and spelling out or assigning instructions that are not
available on the ordinary keyboard. Small amounts of barcode can be drawn
by hand without too much trouble or it can be made up from the sheet of
labels sold with the Wand. Barcode for the new fuctions available on the
CX is not yet provided with the Wand so it has been included in Appendix F
together with barcode for letters and some other functions. Large amounts
of barcode take a lot of work to produce directly from the HP-41, and only
printers and plotters available on HP-IL can print it. Even this is
difficult unless you have a Plotter module. Barcode can also be ordered
from companies which will produce it from magnetic cards. The Wand is
clearly only an input device.

The HP-41 printer, the HP82143A, plugs directly into the HP-41 and is used
to print data, programs and status information. It can also be used to
print graphs, histograms and simple pictures, and to trace program
execution. It increases the usefulness of the HP-41 enormously but costs
half as much again as an HP-41CX.

All the above devices plug directly into one of the HP-41 ports and are
designed for use with the HP-41 alone. (Devices like this, intended for
one particular use only are called dedicated devices.) The Hewlett-
Packard Interface Loop (HP-IL) works differently; it provides a means of
attaching a variety of devices to each other on a single loop. The HP-41
can be one of these devices, and normally it expects to control the others.
A different controller, for example an HP-75 computer can be used, and it
is even possible to have more than one computer on a loop. Devices for use
with HP-IL are designed to work with the HP-41 or any other controller that

222-



can send them commands along the loop. This is more versatile than using
items dedicated to the HP-41, but it is at the expense of having to use a
special HP-IL module. This plugs into one HP-41 port and has two cables
attaching the HP-41 to the rest of the loop.

When HP-IL was introduced, a printer very similar to the HP82143A was
provided. This new printer, the HP82162A, has all the features of the
HP82143A, plus the ability to format printing (space it out on a line as
required), to justify text margins, and to print barcode. It costs more
than the HP82143A and it can only work with an IL module which is itself
expensive, but it can be used with any HP-IL computer, not just the HP-41.
The older printer has one advantage; it can be used with an HP-IL
Development module to let an HP-41 connected to a loop monitor what other
devices attached to the same loop are doing. If an HP82143A printer is
attached to the monitoring HP-41 it can print out a full analysis of the
commands and data passed round the loop. An HP82162A printer cannot do
this since it is attached to the loop in general, not to the monitoring HP-
41. The HP82162A also prints some rarely used characters differently than
does the HP82143A. Both these printers produce rows of only 24 characters
and use thermal print paper which fades with age and exposure to heat or
light. Important information from these printers should be stored
carefully or photocopied to provide a more permanent copy if it is not to
be lost.

The next few Chapters will introduce fundamental ideas and describe how
the HP-41 is operated from the keyboard, but later on, particularly after
Chapter 5, a great deal will be written about programming, and various
programs will be printed out. HP-41 programs are shown in this book as
they would be printed on an HP82143A or an HP82162A printer. Most program
lines look exactly the same on such a printout as they would on an HP-41
display but there are a few differences, so a short example of a printed
program will be useful. The printout of a program is often called a
program listing. Here then is an example of a program listing:

-23-



4.8@PK 18,12
BieLBL "LIGHT"
Az 2,993 B8
83 "c="

84 ARCL ¥
85 RYIEM
86 EHID

The first line shows the time and date when the program was printed. This
is provided by HP-IL printers but not by the HP82143A, and it is only
printed if the HP-41 has a Time module attached or built-in. This helps
you find the latest version of a program but is not much use in a book, so
most listings in this book will be shown without it. The next line is line
01 of the program. Since it is a label it is printed with a lozenge on its
left. This lozenge, or diamond, is printed next to all labels to help you
find them in a long program listing. (In typed program listings, I shall
use an asterisk in place of this diamond.) The label consists of the LBL
function and its name "LIGHT" enclosed in quote marks. In the HP-41
display the name would not have quote marks around it but it would appear
as 01 LBL'LIGHT. The 7 is a text symbol showing that what follows it is a
string of text, not an instruction. The next line contains the number
representing the speed of light in SI units. This consists of a mantissa
(2.998) followed by a power of 10 (or exponent). In a program the exponent
is separated from the mantissa by the letter E. In a normal display the
separator is just a space. The next line contains no instruction, just the

-

text "c=". In the display this would appear as "c= . It is important to
realise that there is a difference between a piece of text on its own,
which is used for displaying messages, and a piece of text that is part of
a function such as the LBL above. The remaining lines of the program
display a message showing the speed of light. This program can be used to
get the speed of light for use in calculations and to display it clearly at
the same time. Programs and programming methods will be described in

detail in Chapter 6.

-24-



Larger printers are available for use with HP-IL, these generally have the
advantage that they print on ordinary computer paper and also on single
sheets but none of them have a set of characters that is fully compatible
with the HP-41 which uses a few unusual characters. The new Thinkjet
printer uses a thermal inkjet instead of a dot-matrix printer head (this
works best with one kind of paper which particularly suits the Thinkjet
printer) but otherwise it is fairly similar to the dot-matrix printers.
The more advanced of these can be used for graphics since the individual
dots can be addressed and used for printing any selected pattern. Video
interfaces are also available for the HP-41, these really work like on-
screen printers and do not provide any graphics. The printers are
fundamentally output devices, although some limited talk-back to the HP-41
is available from their control buttons.

The HP-IL version of the HP7470A Plotter can be used for graphics or as a
printer. It can also be used as an input device for digitising graphs and
figures since it has an Enter button which sends the X and Y coordinates of
the pen back to the HP-IL controller.

In addition to the Card Reader you can use magnetic cassettes and disks for
mass storage. Unlike the Card Reader these can only be controlled through
an HP-IL module. The printers and the cassette drive have a metal loop at
the top left for use with a security cable. This feature is not generally
advertised by HP.

Some care is needed in plugging-in and unplugging all modules and devices.
The HP-41 and the devices can sometimes be damaged if they are connected or
disconnected while either is turned on, but this very rarely occurs and you
should not be unduly worried if you remove a module and then find that you
forgot to turn the HP-41 off. The contacts in the HP-41 ports and on the
plug-ins have a thin layer of gold plating which slowly wears away so you
should not plug items in and out just for the fun of it. Hewlett-Packard
will replace the HP-41 port connectors at a price, but they will not
replace the contacts inside a module. (Some user groups have members who
are willing to do this though.) The modules and the ports can collect

-25-



static electricity and when they are connected this can affect RAM memory,
occasionally causing a "crash" or even a MEMORY LOST. This can usually be
avoided by breathing gently into the port and the module opening before
connecting them together. The moisture in your breath should be sufficient
to discharge the static, but water is bad for the connectors, so do not
breathe too heavily.

Early models of the Card Reader and the Time module may draw an excessive
current from the HP-41 batteries when they are first plugged-in. Turn the
HP-41 on and off after you plug them in to reduce the current drain to
normal.

The I/O ports are one of the best features of the HP-41, although four are
not enough. When the HP-41 was first introduced, cynics said that the
ports were only there so that people would have to buy their HP-41 in bits
and pay more for it. To some extent this may be true, but there are now so
many bits that you may well be unable to fit all the ones you are using at
once into the four ports. A partial solution is to buy an HP-41CX since
this has so much already built in, but even then you may soon be playing
"musical ports" as one HP-41 user (W. Kolb, PPCCJ V9N4p96) put it! A
better solution is to use a Port Extender. This is a box which fits
under the HP-41, plugs into one port, and provides more ports (the number
can depend on the make, but is typically six extra ports). Only
independent companies make port extenders, see Appendix B; Hewlett-Packard
do not produce such a device since there are some complicated rules about
what can go into each slot. Adventurous owners open up their modules and
combine the contents of several into one, or even wire the module contents
directly into the free spaces in their HP-41. Some companies provide this
service too, they are best contacted via local user groups. Once again
there are several rules about what can or cannot be done, one of these is
that you cannot expect HP to help with this kind of thing, or to sympathise
if the HP-41 has got damaged. Once again, ask for advice at your user
group.

-26-



Exercises

2.A The HP-41CX Quick Reference Guide lists 222 functions on the CX. The C
and the CV have 95 fewer functions and also less memory. The functions,
data registers and the April 1984 prices of the 41s in the UK (excluding
Value Added Tax) are given below.

HP-41C 64 data registers 127 functions price: 152 Pounds.
HP-41CV 320 data registers 127 functions price: 216 Pounds.
HP-41CX 446 data registers 222 functions price: 242 Pounds.

Assuming the price to be A for the basic HP-41, B per data register, and C
per function, work out A, B and C to the nearest hundredth of a Pound.

2.B When you have done Exercise 2.A work out how many extra functions would
have to be added to the HP-41CX to create an HP-41CZ (Z for zero) which
would cost nothing.

Which would you say is the more unrealistic, the cost scheme used in this
problem or HP’s pricing policy? Don’t take this problem too seriously!

2.C Have you ever really examined your HP-41 closely? What colour is it?
(It is not quite black.) Have a look at the keys; the number keys are
slightly larger than the others. It could be argued that this makes it a
little easier to identify them should you need to operate the HP-41 by
touch alone, but in in any case it is a carry-over from the design of
earlier HP calculators. If you have an earlier model (35,45,55,65,67),
compare it with the HP-41. You may need to be able to operate by touch
alone, particularly if you are reading numbers from an instrument and
keying them directly into the HP-41. Try entering a few numbers without
looking at the keyboard, obviously the large size of the ENTER key makes it
easy to find so that a new number can be separated from the previous one.
The R/S key is among the number keys as well so that you can run a short
program by touch alone.

-27-






CHAPTER 3 - DEFINITIONS AND PROBLEMS

3.1 Using the HP-41.

The first two chapters have been rather theoretical since they are intended
to provide information for people who are thinking about buying an HP-41 as
well as for users. Now we can start using the HP-41! One of the first
things that happen when someone uses a new device is that something goes
wrong and the manual says nothing about the problem. At other times the
manual does explain the problem, in great detail, but using words that mean
nothing to the reader. This chapter therefore goes through some uses of
the HP-41 but also contains a lot of definitions. These lead to
explanations of the more common problems encountered by HP-41 users. Do
not worry though, the main feature of the HP-41 is that it provides
solutions, not problems. Problems rarely occur and are described here only
to help the reader get solutions.

3.2 The display and audible signals.

When you turn on your HP-41 the display should show some letters or
numbers. This LCD (Liquid Crystal Display) consists of twelve positions
each able to display one character. Each character can be followed by a
punctuation sign (. or , or :). Each display position is made up of 14
segments so 16,384 different characters are possible but at present the
HP-41 only uses 79 of these (pity), and of course the three punctuation
signs. (If the display circuit does not recognise a character it uses a
default consisting of all fourteen segments turned on, & sometimes called a
boxed star.) These twelve positions normally show numbers, but you can use
them to display messages, and the HP-41 also uses them to display warnings,
messages and programs. You can select the number of digits to be used when
a number is shown and you can also choose how commas and points are used in
the display of numbers; this will be described in Section 4.4. Below the
twelve characters there are twelve display annunciators that tell the user
about special conditions, and these will be described below. Figure 3.1
shows a display with all the annunciators turned on.

-29-



BAT

12,3456 189

BAT USER GRAD SHIFT 01234 PRGM ALPHA

Figure 3.1 The HP-41 display.

The batteries are running low. With alkaline batteries there are
less than seven hours running time, or less than a month of
memory protection left. With rechargeable batteries you probably
have less than a minute of running time and only a few hours of
Continuous Memory protection. If you continue running a program
when the BAT annunciator is lit the display will eventually fade
out while the program continues to run, then the program will
stop but Continuous Memory will be maintained. After the program
has stopped the HP-41 will stay on for another 10 minutes and
will then turn itself off automatically as normal. You should
replace the batteries as soon as possible if the HP-41 has
reached this stage. BAT will also come on if the batteries
cannot drive a plugged-in card reader or optical wand, but if you
turn the HP-41 off and on again the BAT will vanish. In such
cases you should use fresh batteries for the card reader or wand,
then put back the old batteries and use them for normal HP-41
opecrations. If your batteries are flat but you have an HP82143A
printer attached then you will be able to carry on because the
printer’s batteries will provide power to the HP-41.

USER Sce next section.

-30-



GRAD The HP-41 will perform trigonometric functions in gradians, not
degrees (which is the default). 400 gradians = 360 degrees. The
letter G is actually a separate annunciator, used only in
conjunction with RAD to display GRAD.

RAD The HP-41 will perform trigonometric functions in radians.

Note: If neither GRAD nor RAD is displayed the HP-41 will work in degrees.

SHIFT The yellow SHIFT key has been pressed. See next section.

0,1,2,3,4 The flag corresponding to the displayed number has been set. For
example if 0 and 2 are displayed but 1,3 and 4 are not then flags
0 and 2 are set but flags 1, 3 and 4 are clear. See Section
4.4.1 for details about flags.

PRGM Displayed when the HP-41 is in program mode (see next section).
It is also displayed when the HP-41 is running a program.

ALPHA See next section.

Each display annunciator can be cleared by an appropriate action; putting
in new batteries, setting the HP-41 to work in degrees mode, clearing flags
0 to 4, and so on.

In addition to displaying information or sending it to attached devices,
the HP-41 can also use audible signals to communicate with the user. There
are ten individual tones and one compound signal called BEEP. Press SHIFT,
4 to hear this. It is loud enough to attract your attention in a quict
room, say to tell you that a long program has finished, but it would be no
use at all as a fire alarm. The tones are not intended to be particularly
musical, though if you play them in turn from TONE 0 to TONE 9 you will get
a scale of sorts (C minor). Combinations of tones have been used to let
blind people use HP-41s, and of course in games. Time module alarms and

the optical Wand produce additional tones.

-31-



Most HP-41s can also be persuaded to produce a high-pitched whistle. If
you remove the batteries at the right moment during a tone and replace them
then the HP-41 will make this whistle whenever you press any key or while
it is executing any function. On any HP-41 made after the middle of 1983
(including all HP-41CXs and most HP-41s repaired after that time) you can
get into this whistle mode by resetting during a tone. To do this press ON
and ENTER at the same time as the HP-41 is executing a BEEP. You may have
to try a few times to get this right, but it is worth it if you can: if you
display the clock when the HP-41 is in this mode then you will get a short
whistle once a second giving you a ticking clock. This mode is not cleared
when you turn off the HP-41 but it is cleared whenever you sound an
ordinary tone or BEEP.

3.3 Toggle keys, keyboards and modes.

The four keys below the display control how the keyboard will be
interpreted when other keys are pressed. The SHIFT key belongs with these,
called "toggle" keys because pressing them repeatedly toggles the HP-41
alternatively into and out of special states. The first time one of these
is pressed the display shows that the special state is active, the next
time the key 1is pressed the display shows that the state has been
cancelled. Sometimes the result of pressing one of these keys depends on
one of the other keys.

The ON key belongs with these since pressing it the first time turns the
HP-41 on so that the whole display becomes active and the keyboard responds
to other keys. The second time this key is pressed, all this is cancelled
and the HP-41 is turned off. This is therefore often called the ON/OFF
key. Pressing SHIFT, ON turns on the clock display if a Time module is
plugged in or if you have an HP-41CX.

When the USER key is pressed the USER display annunciator comes on and the

keyboard will respond according to the user’s definition of the keys,
unless ALPHA is also displayed. The USER setting is independent of the

-32-



other toggle functions, it changes only when USER is pressed again. When
the PRGM key is pressed the PRGM annunciator comes on and subsequent
keystrokes are recorded in a program instead of being obeyed at once. USER
and ALPHA can also be active in PRGM mode. Pressing PRGM again cancels the
program setting, and turning the HP-41 off also cancels it.

Pressing ALPHA makes the ALPHA display come on; the keys respond as shown
on their lower faces and on the sticker at the back of the HP-41. Pressing
the key again cancels this Alphabetic keyboard and so does pressing the
PRGM key or the ON key.

SHIFT turns on the SHIFT annunciator and selects the functions assigned to
the shifted keys (written above the keys, not on them). This is true in
USER and ALPHA as well as in the normal keyboard state. SHIFT is
automatically cancelled whenever any key except USER is pressed. Pressing
SHIFT a second time cancels it without doing anything else.

Each of the above keys selects a keyboard mode. If none of these modes is
set then the HP-41 keyboard behaves according to the normal functions
printed in white on each key. This is often called the Normal keyboard.
Pressing any of the ordinary keys in this state will make the HP-41 do what
is printed on the key. If you keep the key down, the function
corresponding to that key is displayed. When you release the key the
function is executed unless you have kept it down for more than half a
second in which case the function is cancelled and the display shows NULL.
This function preview also works in PRGM, and in USER mode where it is
particularly useful since it lets you check whether a key has been
redefined. The function preview does not work in this way for keys that
nced parameters, see next section.

When USER, ALPHA, or PRGM is pressed, the keyboard reacts differently than
with the normal keyboard. Some other functions, and many programs redefine
the keyboard for their own use. This leads to additional keyboard modes
such as the Stopwatch keyboard or the Text Editor keyboard. The word mode
is also used on its own to describe a state of the HP-41. For example the

-33-



HP-41 can be in degrees mode, or in radians mode or in gradians mode. This
will affect the results of trigonometric functions regardless of which
keyboard is active. If you press PRGM you take the HP-41 into program mode
so that instructions will be stored in a program, but any one of the three
keyboards ALPHA, Normal or USER can be active. The opposite of PRGM mode
is usually called RUN mode since programs are run more often than they are
written. This name is inherited from earlier calculators which did not
have toggle keys but instead had a switch that could be set to PRGM or RUN.
When a program is running or a function is working, they are often said to
be executing. This comes from the original meaning of the word execute -
to do something - in this case the program or function is doing what it is
told to do.

The word "mode" describes other things too. For example the HP-41 can do
trigonometry in one of three modes; degrees, radians or gradians. The GRAD
and RAD annunciators show the trigonometric mode. The "display mode"
determines how numbers are shown; FIX 9 or ENG 3 for example.

It is rather unfortunate that Hewlett-Packard has also chosen to use the
word "mode" to describe the level of power consumption, or electricity use,
of the HP-41. In deep sleep mode the HP-41 is off and only enough power is
used to maintain Continuous Memory and to run the Time module crystal
oscillator if one is present. In light sleep mode the HP-41 is on but is
not actively doing anything. It is however keeping the display on,
monitoring the keyboard for any keystrokes, and counting through ten
minutes at the end of which it will go into deep sleep if nothing has
happened. This is also called standby or idle mode. There is an ON
function which is separate from the ON switch, it sets flag 44 and is used
to stop the HP-41 from turning off after ten minutes of inactivity.
Finally operating mode means the HP-41 is executing a function, running a
program, performing a lengthy operation (such as packing the memory), or
displaying a running clock or stopwatch. The HP-41CX goes into this mode
too when it is displaying CAT 4,5 or 6 or when it is running the Text
Editor; it leaves this mode after 2 minutes of inactivity in any of these
states. If BAT is displayed and the HP-41CX is stopped at CAT 4,5 or 6

-34-



then it exits from this state after one minute. The clock will not be
displayed if BAT is on.

3.4 Parameters, arguments and RPN.

Most functions use the displayed value to work on, for example LOG normally
calculates the logarithm of the displayed number. The value used by a
function in this way is called its argument, and arguments must be provided
before a function is used. This is the basis of the RPN - Reverse Polish
Notation - system used by the HP-41. Arguments are always provided before
the function as in the example of LOG just above; even in the case of
addition you type in the first number, then ENTER, then the second number
and finally + . That is why the system is called Reverse; numbers are put
in before the functions that use them. It is called Polish because this

way of writing down expressions (or notation) was invented by a Polish
logician Jan Eukasiewicz, and not everyone can pronounce "Eukasiewicz" as
well as I can. By the way, the largest single user of RPN calculators
appears to be the petroleum industry, and one of the people who started the
petroleum industry was another Eukasiewicz! Ignacy FEukasiewicz refined
crude oil, sank one of the first European oil wells (in Eastern Poland) and
invented an efficient oil lamp (well, he had to do something with all that
oil). Just one Eukasiewicz after another!

If you are not familiar with RPN you should practice using it before
reading much more of this book. The HP-41 manuals give a fairly good
introduction or you may want to read one of the beginners’ books suggested
in Appendix A. Alternatively you could just practice with a few functions
on your HP-41.

For mathematical functions that use one argument (monadic functions) you
make sure the argument has been been made available, then press the
function key. The argument can be entered from the keyboard, recalled from
memory, or created as the result of a previous mathematical function.
Following any of these operations the argument is in the X-register which
is the register used for most mathematical functions and for displaying

-35-



results. After the function has done its job, the result is in the X-
register and is also displayed. Many functions take more than one argument
though, for example conversion from radial coordinates to polar coordinates
involves two values. The first is put into the X-register, then copied
into the Y-register when you press ENTER. The second argument can then be
put into the X-register, and the result can be obtained by pressing
SHIFT,R-P. The result consists of two values too, one in the X-register,
the second in the Y-register which can be thought of as sitting above the
X-register. R-P is a dyadic function which means that it starts with two
arguments and finishes with two resulting values. The most common
functions though are + - * (multiply) and / (divide). They start with two
arguments and finish with one result. These are called bifid functions;
they work very much like the dyadic functions, you put the first value in,
press ENTER, put the second value in, and press the function key. This
outline might help you understand RPN and more will be said about it in
Chapter 4. If you are a complete beginner though, remember the advice -
read the manual first.

The mathematical functions and most others expect an argument before the
function is performed. Some functions however require additional
information after the key has been pressed. This is because such
information is part of the function. For example pressing STO produces the
display STO
parameter; for STO it can be any number from 00 to 99 or one of several

—_ meaning store -- where? The answer to "where" is called a
other values. Functions that require parameters are control functions, not
mathematical functions, and they do not have a function preview since you
can cancel them by pressing the backarrow key instead of supplying a
parameter. You can use the backarrow key to cancel one of the numbers
(digits) you have used to reply, or to cancel the whole instruction.

The __ that comes after STO is called a prompt, it prompts you to provide a
two-digit parameter and this parameter replaces the __ prompt. Parameters
for different functions can be one, two, three or four digits long. For
example TONE can only take a one-digit parameter, so you can only create
TONE 0 to TONE 9 (until you read Chapter 14). STO takes a two digit

-36-



parameter so you can use STO 00 to STO 99. DEL takes a three digit
parameter, SO you can use it to delete any number of program lines from 000
to 999. You may however have a program that is 2000 lines long and you may
wish to delete the first 1100 lines. To change a three digit prompt DEL___
into four digits you can press EEX. This will change DEL___ into DEL 1___
so you can delete up to 1999 lines. All three-digit prompts can be changed
in this way with EEX, but the largest four digit parameter that can be
produced is 1999. Instead of pressing the number keys to fill in a prompt
you can also press one of the keys in the top two rows. The first row
produces the values 1 to 5 in reply to any prompt for one, two or three
digits. The second row produces 6 to 10, except that the TAN key produces
0 instead of 10 if the prompt is only one digit long. These keys cannot be
pressed after EEX to complete a 4-digit parameter, but if you own a ZENROM,
see Chapter 12, they can be used after EEX to complete a 3-digit parameter.

Some instructions can take either a number or an ALPHA value for a
parameter. For example GTO__ suggests that you should provide a two-digit
number, but if you press ALPHA you will see GTO_. Then you can type in a
parameter made up of 1 to 7 ALPHA characters. When you press ALPHA again
the parameter is complete and the instruction can be obeyed. A few
instructions such as ASN will only take ALPHA parameters; they provide a
single prompt but will only take a parameter after ALPHA has been pressed.
If you change your mind and decide to cancel an instruction with an ALPHA
prompt you can press the backarrow key even in ALPHA mode; the instruction
will be cancelled and ALPHA mode will also be cancelled. Most of the
instructions that take numeric parameters will also take the parameters X,
Y, Z, T or L. These refer to the stack registers which will be described
in the next chapter. Many instructions take indirect parameters too and
these will also be described in the next chapter. A stack parameter is
obtained when you press the decimal point key and then one of the above
letters. An indirect parameter is obtained if you press SHIFT and then a
number or the decimal point and a letter. As you can see, there are many
options for producing parameters, the HP-41CX manual covers them all by
describing a parameter keyboard.

-37-



3.5 Instructions and functions, routines and programs, catalogues.

What should we call the operation of calculating a sine on the HP-41? What
should we call the collection of operations that calculate a hyperbolic
sine? At the lowest level of computer programming each elementary
operation is called an instruction. To the average user of an HP-41 the
ordinary user-language instructions such as X=Y? or CLX or SIN are the low-
level instructions of the machine. Unfortunately the Owner’s Manuals also
give the reader "instructions" on how to use X=Y? and the others, so this
is not a very good word to use.

To a mathematician, sine or logarithm are "functions", and the HP-41 uses
the SIN and LOG instructions to work out approximate values of these
functions. By analogy SIN, LOG, X=Y? and all the other instructions on the
HP-41 are called functions. This may displease mathematicians but at least
it is fairly clear. In this book the words "instruction" and "function"
will both be used to describe things the HP-41 does.

High-level computer languages (ones that are more similar to written
algebra than the machine-level languages) have more powerful and longer
instructions called statements. A typical statement might be

X1 = (-B + SQRT( B**2 - 4*A*C ) )/2/A

The HP-41 does not have statements, the functions are the most complicated
level of single instructions available. On the other hand a single HP-41
function can do many things. For example SIN is equivalent to the
following two statements on a bigger computer

LASTX=X
X=SIN(X)

A collection of computer statements which perform a fairly simple task is

called a subroutine. On the HP-41 a collection of functions starting at a
label and ending at a RTN or an END makes up a subroutine. Such a

-38-



subroutine saves you the trouble of writing out the same group of
instructions every time they are needed and it can be called on whenever
the same task needs to be performed. A larger collection of statements,
often including many subroutines, and able to perform some complete task,
is called a program. A program may work out a shop’s tax for a financial
year, and a small subroutine in this program may be used to work out the
tax on the sales of odd socks. On the HP-41, a complete collection of
functions starting immediately after one END and going on to the next END
is called a program. The functions in a program, recorded one after
another, are given numbers, and each such numbered function is called a
program step, a step or a line. The use of labels, RTNs and ENDs will be
covered in detail in Chapter 6.

The trouble with HP-41 programs is that one person’s program may be
another’s subroutine. A program written to calculate hyperbolic sines may
do a complete job for one owner, but it may be used as a subroutine by
someone else who is working out complex integrals. As a compromise, the
hyperbolic sine routine can be called a routine, and so can other similar
programs. In fact any subroutine or program could be called a routine in
the right circumstances.

HP-41 functions always consist of just a name (sometimes followed by a
parameter) and are recorded in routines as one step by that name alone.
These functions are written in the machine-level language of the HP-41 and
are recorded only on ROM, in the HP-41 or on plug-in modules. HP-41
routines, on the other hand, consist of collections of steps, and can be
recorded either on ROM or in RAM in the HP-41 continuous memory. When a
routine is executed as a step in a program, the step is stored either as
XEQ "routine" if the "routine" is in RAM, or as XROM "routine" if it is in
a plug-in ROM.

-39-



The following programs show examples of functions and routines. Each
program asks the user to provide a value X, then calculates a mathematical
function of X and displays the result. The XEQ and XROM instructions are
obtained by pressing the XEQ key, then ALPHA, then spelling out the
function name, then pressing ALPHA again. This is called ALPHA execution,
it will be covered in detail in the next chapter.

AlelBL “CALLE"
82 “MHAT 15 X9¢
B3 PROMPT

a4 SIH

83 *SIN(ED="

86 ARCL ¥

87 AYVIER

A8 ERD

CALCI calculates the sine of X, using the HP-41 function SIN at line 04.
CALC2 calculates the sinc function of X [ SINC(X) = SIN(X)/X ] using a
user-written routine SINC. In the first case, the function name appears
without quotes, since it is an HP-41 function. In the second case, the
name appears as XEQ "SINC" since SINC refers to a routine name in RAM
memory.

BLeLBL “CALCT" BLOLBL “CALLI"
B2 “HHAT 15 %70 B2 “WHAT 15 ¥7"
83 PRONPT 83 PRONPT

B4 KRON “SIHK" B4 £ROM @1.33
85 "SINHCH=" =
#6 ARCL ¥ B ARCL

87 AVIEM 87 RYIEN

88 END 83 END

CALC3 calculates the hyperbolic sine of X, using the SINH routine in the
HP-41 plug-in MATH ROM. The program only stores the information that step
4 will execute function 33 in ROM module 01. The listing on the left was

-40-



printed with the Maths module plugged into the HP-41, so the HP-41 could
check the routine name. The version on the right is the same program, but
was printed with the Maths ROM removed from the HP-41. Since the module is
unavailable, the name of the routine cannot be found, and a numerical
identifier is printed on line 04 instead. In both cases, step 4 begins
with XROM which means "execute a routine from a ROM". If a program tries
to use a function or program from a module that has been removed then it
will stop at the XROM line and will display the message NONEXISTENT.

dielBL “CRLC4" BieLBL “CALCd"
B2 “MWHAT IS5 ¥7¢ 82 "HHAT 15 ¥7-
83 PROMPT 43 PROMPT

A4 SIHH a4 XROK 31,25
83 "SIHH(Z =" 83 "SIHH(H ="
#6 ARCL ¥ @6 ARCL ¥

A7 AYIEH @7 AYIEH

8% EHD @8 EHD

CALC4 is the same as CALC3 except that it was written while a special Maths
module was plugged into the HP-41. This module provides a SINH function,
written in machine language, not a SINH routine. When the module is
plugged in, the function appears like an ordinary HP-41 function as is seen
in the listing on the left. When the module is removed, the numerical
identifier shows up as an XROM but with a different identifier from that in
CALC3.

The programs in a plug-in module are made up of collections of functions,
just like programs you write yourself in RAM memory. You could therefore
print out a program from a module, or copy it out onto a piece of paper,
then write it line by line into RAM. This operation is made much easier by
a special COPY function which copies a whole program directly from a module
to RAM. You can then change the copy if you like, and use it instead of
the original in the module, even if you take the module out of your HP-41.
Functions in modules are different, they are written in HP-41 machine-level
language and cannot be copied into RAM, so they can only be used when the

-41-



module that contains them is plugged in.

Whenever you write a program and refer in it to a routine or to a function
by spelling out the name of the routine or function (using Alpha
execution), the HP-41 immediately tries to find the name you have spelled
out. This is done so that the name can be correctly stored in the program
as a function name, or as a reference to a ROM program, or as a reference
to a program in RAM memory. The HP-41 refers to the names of functions and
routines by means of three separate lists called catalogues. The first
catalogue (called CAT 1) gives the names of all routines in RAM memory,
identified by global labels; these are programs and routines you have
written yourself or read from some device such as a Card Reader. The
second catalogue (CAT 2) contains the names of all ROM modules plugged
into the I/O ports (plus the Time functions and Extended Functions built
into the HP-41CX), and the names of all routines and functions contained in
these modules. The third catalogue contains the names of those functions
that are built into all HP-41s (not the additional functions in the HP-
41CX). You can examine these catalogues yourself by pressing
CAT (SHIFT,ENTER) followed by a 1, a 2, or a 3. Notice that CAT 1 contains
global labels and the corresponding ENDs but no function names, CAT 2 can
contain routines and functions, CAT 3 contains only function names.

The catalogues are searched in the order of their numbers, starting at 1
and ending at 3. This is sensible because it allows you to write your own
alternatives to the HP-41 functions. For example you may want to write
your own ATAN routine as you are not sure if the HP-41 ATAN function works
the way you want it to. If you subsequently XEQ "ATAN" then your own
version will be used as it will be found in CAT 1, which will be searched
before CAT 3. (If you press SHIFT, TAN then you will still use the HP-41
function because this is tied to the SHIFT, TAN key.) Plug-in modules
(CAT 2) are also searched before CAT 3. A function called FACT in a
plugged-in ROM module will be found and stored (or performed) instead of
the CAT 3 function called FACT. Should you write your own program and give
it a particular name, forgetting that the same name is used in CAT 2 or in
CAT 3, then your own program will be referred to later when you refer to

-42-



that name. The CAT 2 or CAT 3 item will be ignored, and you might not even
be aware that you had used a duplicate name.

If you want to write a program which uses a function or routine from a
plug-in accessory, you can record a step to execute the function even if
the accessory is not attached. (Press XEQ and spell out the name of the
function or routine.) The step will be recorded as XEQ"function" and will
work rather slowly when the program is run (because the HP-41 will have to
look for the name in Catalogues 1 and 2), but the function or routine will
be found if the accessory has been plugged in. A whole lot of trouble can
be caused if more than one program or function in the HP-41 or in plug-in
accessories have the same name. Details will be given in Chapter 12, for
now you should bear the following in mind.

When you spell out a name (Alpha execution - remember?) the HP-41 searches
for a program or function with that name by going through different
possible locations in the following order:

1. Your own programs in RAM memory (CAT 1). The search begins at the end
of CAT 1 and goes backwards so that the most recently created programs
are checked first. This means that you can write two programs with
the same name and the more recent one will be used without your having
to delete the older version.

2. Time module, printer and HP-IL if any of these are connected (these
come at the beginning of CAT 2 whichever I/O port they are plugged
into).

3. Any other plug-in modules or devices (the rest of CAT 2), going
through ports 1,2,3 and 4 in that order. (Extended Functions are
searched last if you have an HP-41CX.)

4. The functions built into the HP-41 itself (CAT 3).

From this you can see that a program you have written yourself and called
SINH will be executed in preference to a program or function called SINH if
that is in a plug-in module. A function called SIZE? on a module in port 1
will be executed in preference to a function with the same name on a module

-43-



in port 2, and so on. A function called SST (there is one in the HP-IL
Development module) will get executed in preference to the HP-41 function
SST if you execute it by spelling out its name (the SST key will still
execute the normal HP-41 function). You should avoid writing programs with
duplicate names, and you should unplug modules that contain duplicate
names. If you are obliged to have several modules plugged in and some
names are duplicated then plug the modules into the ports in such an order
that the functions you want are on a module in a lower-numbered port than
other modules which contain the same name. (Read Sections 8.3 and 12.3 for
more details.)

If a particular program or function is named on a key (see Section 4.3.2
for details of assigning functions and programs to keys for use in USER
mode), then that program or function will be used without a search through
the catalogues for the name. Thus you can assign a function to a key, then
write a program with the same name, and then refer to the function by
pressing the key and refer to the program by spelling out its name. More
details of how the catalogues are searched will be provided in Section 6.3;
details of assigning names to keys will be given in Section 4.3.2.

3.6 Some common problems.

Certain problems are encountered often, particularly by new users of the
HP-41. Now that the required words have been explained, the problems can
be outlined, and you might even find a few solutions here. This list is
given here for the sake of completeness, do not let it frighten you; the
HP-41 is a reliable machine and most users never have serious difficulties.

i. Unrecognised instructions and confusing characters

You are copying a program from a book or article into your HP-41 when you
come across a function that you do not recognise. For example you are
ploughing through a long program and in the middle you find

100 OFF
What is that on line 100? If you press the ON key, you will turn the HP-41

-44-



off, but you will not record OFF in a program. There is no OFF function on
the keyboard so what do you do? You must use Alpha execution; press the
XEQ key, then ALPHA, and spell out the unrecognised function, then press
ALPHA again. This was described above in Section 3.5. Whenever you come
across a function you do not recognise, you should press XEQ,ALPHA, then
spell it out and press ALPHA again. This will also work for functions on
plug-in ROMs and even for functions on the Normal keyboard. If you see
XEQ "name" or XROM "name", you should do the same, press XEQ and spell out
the name in ALPHA. If the unrecognised name comes from a plug-in module or
a peripheral device such as the printer or Card Reader then the fact should
have been mentioned in the program description. Printer and Card Reader
functions will be covered briefly in Chapter 12. By the way, OFF is a
function used in programs to turn the HP-41 off since a program cannot
press the ON key.

Remember always to press XEQ before you spell out the name, otherwise you
will simply enter a line of alphabetic text, not a function. If a function
has a space in the middle, spell out only the part before the space; the
function will prompt for the part after the space. For example if you see
DSE Y press XEQ, Alpha, D, S, E, Alpha. After a moment the HP-41 will
display DSE _
then Y. You should not try to spell out the whole function or the HP-41

_ and you will be able to fill the prompt by pressing . and
will look for a function called "DSE Y", which is not the same thing at
all.

When you see XROM "name" do not try to spell out the word XROM, just press
XEQ and then spell out the "name". The difference between XROM and XEQ was
explained above in Section 3.5.

Program listings can be printed in lower case mode and with double-wide
characters. A long program line printed in double-width mode will overflow
onto the next line of a listing; the few odd-looking letters at the
beginning of a line are actually part of the previous line. Do not forget
that numbers can be displayed (and therefore printed) with or without digit
grouping marks at every third digit. The role of the dot and comma can be

-45-



reversed for use with European notation. As a result you might see a
printout with a comma on its own on a line; this will be the same as a
decimal point on its own; both have the same effect as a zero.

The up-arrow character 1 is used for three separate kinds of function and
this can be confusing. In the middle of an instruction 1 means "to the
power of", for example YtX means "Y to the power of X". At the end of an
instruction 1 means "move the RPN stack up", for example ENTER? means
"complete the number in the X register, then copy X into Y, Y into Z, and Z
into T" (this will be explained in Section 4.2.2). An up-arrow put in
front of an instruction or program name in the ALPHA register means that
the instruction is to be performed by an alarm, see Chapter 9.

You may have come across the instruction /// among the instructions for
using programs in HP-41 Solutions Books. This is Hewlett-Packard’s way of
writing "press the SHIFT key" in these books. Sometimes they use a small
black rectangle or the letter d followed by a full stop instead.

When you key in a program from a listing in a Solutions book, you may come
across functions that you do not recognise. These might be functions that
you have forgotten about, or they may be functions from some peripheral or
plug-in module; this should be mentioned in the program description, but a
few programs are provided without an explicit mention of the fact that they
use a printer or a Card Reader. Check above for advice on unrecognised
functions.

You may also have come across program steps which consist entirely of an
exponent, something like

97 E67
97 is the line number and E67 is a number with only an exponent. You
cannot enter a line like this from the HP-41 keyboard, but it is just the

same as 1 E67 which you can enter by pressing EEX,6,7 . The exact reason
for this kind of line will be explained in Section 14.1.

-46-



ii. Foggy functions.

This delightful name was used in HP Key Notes to describe functions whose
behaviour the user is not sure of. A prime example is the MOD function -
OK it gives a remainder, but is it of X/Y or Y/X ? What happens when X or
Y are negative, or what if either is zero? The simple answer is to check
the manual if you are even a little uncertain. Otherwise you may forget
that you were unsure of the function’s meaning. Then you may get the wrong
answer if you are doing a keyboard calculation or you might write an
incorrect program. You will be totally lost when you come back to the
program later and begin to get wrong answers. If you do not have a manual
to hand, check any other HP-41 book you may have nearby, even this one (the
MOD function is described briefly in Section 5.2). Never put a function
into a program thinking "I’'ll check it later" - you’ll forget. If you have
no helpful books or journals nearby, try out the function in Run mode. You
cannot physically harm the HP-41 by wrong use of a function, at worst you
will lose the contents of RAM memory and this is preferable to building a
bridge that will collapse. Check several examples of the function though,
this should prevent you from making incorrect assumptions based on
incomplete information. With foggy functions the motto has to be: if in
doubt, try it out!

iii. Sticky kevs.

If a keyboard has been used a great deal, or if the HP-41 has been dropped,
some of the keys may become "sticky". They might not respond at all, or
they may need to be pushed very hard, or they could do their job twice over
at a single push (this is called bounce). It is worth checking if a piece
of dirt is stuck on one of the sides of a key, but there is little else you
can do about the key except hope that it will get better: they sometimes
do. If you do not want to send your HP-41 for repair then you may be able
to reassign the key’s functions to some other key. With Synthetic
Programming (see Section 15.2) it is even possible to reassign the numeric
digits; the keys 0, 1 and point are often the first to suffer faults

-47-



because they are used the most. If you want to use the sticky key for
entering a letter then you can write a short program which appends that
letter to the Alpha register, then assign that program to another key.

The toggle keys at the top of the keyboard are especially likely to be
damaged if the HP-41 is dropped. The USER key can be replaced by SF 27 and
CF 27. The ALPHA key can be replaced in certain cases by executing AON to
get into ALPHA mode and by single-stepping an AOFF step in a program to get
out of ALPHA mode. USER, PRGM and ALPHA can all be assigned to other keys
by use of Synthetic Programming (Section 15.2). You can assign OFF to a
key but turning the HP-41 on if the ON key is damaged can be very
difficult. It is best to execute the ON function so the HP-41 does not
turn off at all or to set a repeating Time module alarm which turns the
HP-41 on every hour in case you need it.

If you have a Wand then you can do entirely without the keyboard. The Wand
will even turn the HP-41 on if you scan some dark lines on a light surface,

so you can turn the HP-41 on with the Wand without using barcode.

iv. Odd displays.

Sometimes the display does odd things or you do not know how to restore it
to normal. If BAT comes on at the bottom left, you need to change your
batteries soon. If RAD or GRAD appear at the bottom, you are in radians or
gradians mode and you can get rid of these by executing DEG. All of the
special annunciators have been described in Sections 3.2 and 3.3. Nothing
unusual should happen to numeric displays, at worst they will go into
exponential notation if the numbers are too big or too small to be
displayed otherwise. You can control this with the FIX, SCI and ENG
instructions followed by the number of digits you want to display. Read
the first paragraph of Section 4.4.1 for details of when these displays
round a number and when they truncate it. The printer function BLDSPEC,
and also some Extended Functions and many Synthetic Functions can produce
unusual display characters. There are also some display errors, described

in Appendix C.

-48-



The HP-41 occasionally displays error or warning messages that you may not
be familiar with, for example ROM means you have tried to edit a program in
ROM (Read Only Memory, so you can not alter it). All the messages are
described in the relevant manuals. You can clear messages created by the
HP-41 or by yourself by using the backarrow key (see ix. below). When a
program is running, the execution indicator (or flying goose, - ) normally
appears in the display and moves across it. The goose takes one step to
the right every time the program executes a LBL function, so it may stay
still for a long time if the program has few labels.

Finally, the display may go completely crazy if the HP-41 is faulty. It
will do this as well if it is disrupted by static electricity, or confused
by the presence of incompatible plug-in modules. It will show unknown
characters, blink on and off, or even fade in and out slowly. See vi. and
xii. below, if the problem is not explained there then you will probably
have to get your HP-41 repaired.

v. NONEXISTENT and DATA ERROR.

Most error messages cover a limited number of possibilities, but these two,
particularly NONEXISTENT, cover many errors. When you see
NONEXISTENT, and you are not sure why, you should check the manual but
also remember the following. NONEXISTENT can arise when you use a
function which could be alright, but is wrong in this particular case. For
example statistics functions can be alright at one time, but when you
change SIZE then some or all of vyour statistics registers become
NONEXISTENT and you get this message. Or you may be using a function
from a plug-in module which has been taken out. (In the case of HP-IL you
may be using an HP-IL printer function with the printer switch set to
Disable.) You may also be referring to a program or a label that you have
deleted. A program written on an HP-41CX may give NONEXISTENT when you
try to run it on an HP-41C or CV because the HP-41CX has extra functions.
The flag functions (SF__ , FS?__ and so on) can all be recorded in a
program with any parameter from 00 to 99, but only flags 00 to 55 actually

-49-



exist, and only flags 00 to 29 can be altered. You can therefore write a
program with lines such as SF 99 or FS?C 32 but you will get NONEXISTENT
when a program comes to any use of flags greater than 55 or to any attempt
to change flags greater than 29.

The most difficult NONEXISTENT messages to trace are caused by Time
module alarms. A control alarm can be set to run a program or execute a
function at some future time. When the alarm time is reached, the alarm
goes off and gets deleted. Only then does the HP-41 try to execute the
function or program. The function or program name may have more than six
letters, the function or program may be on a module that has been removed,
or the program may have been deleted. In all these cases you will see
NONEXISTENT, but you will not know what is NONEXISTENT since
the alarm has already been deleted. If the alarm at fault goes off while a
program is running, the HP-41 will stop and you may think something has
gone wrong in the program itself. So be careful with alarms.

DATA ERROR also covers many errors though it is easier to check them.
If you want to look at DATA ERROR more carefully then try Exercise 3.B.

vi. Incorrect behaviour, crashes and static electricity.

A crash is what happens when a computer stops working or hangs up, and does
not respond to commands. On the HP-41 this can happen because you have
done something the designers did not allow for (this will be covered in
Chapter 14), because the HP-41 has been disrupted by static electricity, or
because it is faulty. (Instead of failing to respond to the keys at all,
the HP-41 may also react with the wrong functions when keys are pressed.
In particular the toggle keys may behave as if something had been assigned
to them and other keys may act as if adjacent columns had been exchanged on
the keyboard.) The HP-41s are not very well protected against static
electricity. The worst affected are those made before 1981. Static
electricity can also cause the HP-41 to turn on with an unexpected (and
most unwelcome) MEMORY LOST, or to get MEMORY LOST when you
plug something into a port. (See Section 2.7 for advice on this.)

-50-



Alternatively it may come on but refuse to respond to the keyboard, and may
show the unusual displays mentioned in iv. It may also sound unexpected
tones, or chirrup softly as if it was trying to sound a tone but not
managing. In all these cases refer to the advice on restarting the HP-41
given in Section 4.1.

The worst case is if a static charge disrupts just a few registers, or
alters a few flags, or part of a program, and you do not notice what has
happened, but you get a wrong answer. If you are running really important
programs you should run them more than once, and if you are using data that
are put into the HP-41 separately from the program, you should put the
data in a second time (or at least double-check them). Always be aware
that static problems can occur, particularly:

When you turn the HP-41 on or plug something in.

Under cold, dry conditions.

On nylon carpets or near other material that encourages static.
During thunderstorms!

If none of the above seems to fit your problem then check the rest of this
chapter, and check Section 4.1 but be aware that the trouble could well be
due to a real fault in your HP-41. Sometimes a part of the RAM memory can
be faulty and data or program steps will not be recorded as you enetered
them.

vii. System flags.

Many of the flags are used to control HP-41 system features. For example
clearing flag 26 disables all tones and beeps until the HP-41 is turned off
next. You should know what the various flags do; see the list in Appendix
D and the details given below and in Section 4.4.1.

Flags 12 to 19 arec used to control devices such as the printer and card

reader; these flags can be reset if necessary. If you turn the HP-41 off,
they all get cleared and you must remember to set them again as necessary

-51-



when you turn on again. Flags 31 to 35 also control external devices but
you cannot alter these flags in any normal way unless the external device
itself lets you alter them. Sometimes the state of these flags will be
altered by static electricity (see above). If flag 33 gets set then you
will not be able to use any HP-IL devices and should flag 35 get set then
the Auto-start module will not work. Flag 33 can be cleared if you have an
HP-IL Development module, but otherwise the only normal way to clear these
flags is to do a MEMORY LOST. Two special ROMs are however available
with functions that will toggle any flag (see Chapter 12) and Synthetic
Programming can be used to do this too (see program SCF in Chapter 14).

Flags 21 and 55 control printing and the display according to whether a
printer is attached or not. Flag 21 can stop program execution during VIEW
or AVIEW if it is set but flag 55 is clear, so be careful if you are using
it. Check the manual or Appendix D if you are not sure about flag 21.

Setting flag 25 allows the HP-41 to ignore an error. The function causing
the problem (for example LOG of a negative number or RCL of a nonexistent
register) is ignored, the stack remains unchanged, and flag 25 is cleared
(so the next error will not be ignored unless flag 25 is set again).
Ignoring an error can be useful (for example if you are taking square roots
and know that you will sometimes come across numbers that should be zero
but are actually very small and negative), but it can cause havoc if you
ignore a problem that you should not have ignored. You should therefore
set flag 25 only if you know an error might occur and that you can deal
with it, then you should clear flag 25 as soon as possible. If something
very strange is happening in a long program, check that flag 25 is clear,
so that errors will not be ignored. Flag 24 is similar to flag 25; it
allows the HP-41 to ignore overflow errors (numbers too large for the HP-41
to store are turned into 9.999999999E99, or -9.999999999E99 and the HP-41
carries on calculating). Flag 24 is not cleared after an overflow, and it
too can cause you to miss an error that should not be ignored.
Furthermore, flag 25 is not cleared if flag 24 is set and an overflow error
occurs. Be careful with flags 24 and 25, and check if they could be to
blame for strange results in programs or during keyboard calculations.

-52-



viii. Loose connections.

When the HP-41 is attached to something through a cable, the connection can
come loose. Even worse is the fact that cable connections can break inside
the cable, showing no external fault. The main culprits here are the AC
chargers which can develop a loose connection or a complete break at the
point where the cable enters the connector plug. When this happens you get
a BAT warning or the HP-41 stops working even though the AC adaptor is
connected. This has been a fault on previous HP calculators which ran off
the mains and could not recharge their batteries if the AC adaptor was
plugged in but the wire had broken at the plug. It is often possible to
get a plug to work again by twisting the wire that comes into it. You can
relieve the strain on the joints by strengthening them with acrylic cement
or some other substance that will harden around them.

Another item that can suffer the same fate is the pair of HP-IL loop wires
which can break at the point where they come out of the HP-IL module if

folded too hard. The Wand cable should not be wound too tightly either.

ix. Using the backarrow key.

The backarrow key, also called the correction key or the delete key, can do
many things, and it may not always be clear what is happening while you are
using it. During the entry of a number or an ALPHA text string this key
deletes digits or characters from the end of the string one at a time. (An
exception to this is that the minus sign in front of a number is deleted at
the same time as the last digit, other than zeroes or decimal points, is
deleted.) When digit entry or ALPHA entry has been completed, the same key
deletes the whole number or text string, and it also does this during entry
if it is pressed after SHIFT. ALPHA entry can be restarted by pressing
APPEND (SHIFT, K) and the backarrow key can then be used again for
corrections. ALPHA entry can also be restarted by the ARCL function, but
both these methods only work during keyboard operations, not in a program.
Digit entry cannot be restarted by any normal HP-41 function, which is a

-53-



nuisance if you want to change the last digit of a long number. A short
program to re-enable digit entry is provided in Section 16.3.

When a message is displayed by an HP-41 operation, or by AVIEW, VIEW or
PROMPT, the backarrow key deletes the message and restores the normal
display of X or ALPHA or the current program step. A second press of the
key is then needed to clear the value in X or Alpha. Some care is needed
if you are in ALPHA mode: in this case keyboard execution of AVIEW does not
display a message, so the first push on the backarrow key clears the Alpha
register. On most HP-41s execution of PROMPT in Alpha mode does not
display a message either; the contents of the Alpha register are displayed
anyway, so the first push of the backarrow key deletes the contents of the
Alpha register. Only the oldest HP-41s (those with bug 3, see Appendix C),
display a message and retain the contents of the Alpha register if
backarrow is pressed once following a PROMPT in ALPHA mode.

In PRGM mode the key deletes characters or digits one at a time during
character or digit entry, otherwise it deletes one whole program line every
time it is pressed, and then displays the previous program line. This
means that repeated use of the key in PRGM mode deletes program lines going
backwards. If you are entering a function that prompts for a parameter,
you can use the key to delete characters or digits from the prompt so long
as there are any left. If there are no characters or digits in the prompt,
the key cancels the function itself, and also clears ALPHA mode if an Alpha
parameter was being supplied.

Other things that are cancelled by this key are Catalogue displays (but
only if they have been halted), Stopwatch execution (you can also exit from

the Stopwatch by SHIFT,backarrow) and Card Reader prompts.

x. Misunderstanding special HP-41 features.

A number of HP-41 features that differ from other calculators or from what
the user expects may also cause trouble. (This is not quite the same as
the "Foggy functions", which are just misunderstood.)

-54-



The subroutine return stack allows for a maximum of six subroutine
calls awaiting a RTN or END. If you use more than six XEQ or XROM
calls, only the first six returns will be honoured, and your program
will stop at the seventh. In cases like this it is better to use GTO
and save return values as indirect addresses in storage registers.
Alternatively, use Synthetic Programming to lengthen the return stack;
see Section 14.11. A control alarm that goes off while a program is
running and executes another program also uses the subroutine return
stack since it acts as if a subroutine had been called by the running
program. This too can take you past limit of six returns.

Unlike certain other calculators and some computers, the HP-41 does
not automatically clear a flag when it tests it with the FS? or FC?
functions. Use the FS?C and FC?C functions instead.

Certain I/O features of the printers and card reader are also unusual;
these are explained in Chapter 12.

The HP-41 works to 10 digit accuracy, so it can obtain results more
accurately than many computers, but it cannot be perfectly accurate.
You should not be surprised if results involving very small or very
large numbers, and particularly small differences between larger
numbers are not very accurate. Results smaller than 1E-99 or -1E-99
are too small for the HP-41 to deal with (they are called underflows)
so they are always replaced by zero. Results over 9.999999999E99 are
replaced by this number (negative results are replaced by minus this
value) if flag 24 is set and during statistics operations.

An unusual feature which can confuse but is very helpful concerns the
filling of numeric prompts. The top two rows of keys can be used to
fill in numeric prompts with numbers from 01 to 10. See the third
paragraph of Section 3.4 for details if you are confused by this. One
trick using these keys is to assign TONE to all of them. Then in
USER mode you can press any one of them twice in succession to get a

-55-



TONE from 0 to 9 (in the case of a prompt for one digit the TAN key
produces a 0 instead of a 10).

xi. Pressing kevys too quickly or too slowly.

A few users seem to do everything correctly, yet they still get wrong
results or no results. This can happen if you press keys too quickly one
after another. The HP-41 reacts to one key and it can keep a record that
another key has been pressed, but it cannot react to a third key until it
has finished with the first one. If the first key is released and the
second one is still being held down then the HP-41 will immediately start
to process the second key without going into light sleep mode in between.
This is called a two-key rollover because the HP-41 rolls over to the
second key from the first one without a break. If you press a third key at
this stage then it will be obeyed next, but if you have already pressed and
released a third key, you will be in trouble. To see if you are pressing
keys too fast, go into ALPHA mode, type a row or a column of letters and
see if they are all recorded.

If you press a function key, and keep it down for too long, the function
will be previewed and then cancelled. The display will show NULL instead
to show the function has been cancelled, but you might not notice this if
you are copying instructions from a printout. This has already been
described in Section 3.3. Functions that need parameters do not behave in
this way, so you do not need to worry that the function will be nulled,
except that it will be lost if you do not give a parameter within ten
minutes and the HP-41 automatically turns itself off. However when you
have filled in all the prompts of a function you can null it by keeping
down the last key used to fill the prompt. (Try pressing STO 10 and
keeping the 0 down; the STO 10 will be replaced by NULL. This will happen
too if you press STO, TAN and keep the TAN key down.) Neither numerical
entry nor ALPHA entry can get nulled just because you press the key for too
long.

-56-



xii. Plug-in modules and conflicting names or numbers.

Plug-in modules and devices can sometimes give rise to problems. The most
common one is that you may try to use a program or a function from
something that is not plugged in. This has already been mentioned in v.

You can also get into trouble if the same name is used by functions or
programs in more than one module. For example five different modules
contain functions or programs called "SIZE?". If more than one of these
modules is plugged into your HP-41 at the same time then you should check
which particular version of SIZE? will be used. See the last part of
Section 3.5 for details.

A third problem is that modules and plug-in devices use numbers from 1 to
31 to identify themselves to the HP-41. (These are the XROM numbers
mentioned in Section 3.5) In some cases the same number is used by more
than one item (because there are only 31 numbers but more than 31 different
plug-in items). For example both the Games module and the Auto-Start
module have been given the number 10. Only one plug-in module or device
with a given number should be attached to the HP-41 at a given time,
otherwise functions from one module may be confused with those from
another, or functions may not be found at all. (Example 4 in Section 15.5
provides a Synthetic way of running routines from two modules with the same
XROM number plugged in at the same time.) Warnings are printed in the
manuals of most modules concerned and a list of conflicting modules is
given in Section 12.5. The most common example of this problem is having
both an 82143A printer and an HP-IL module plugged in at the same time.
Each one acts as though it were the only printer attached to the HP-41 and
this usually stops the HP-41 from working; you should disconnect one of the
two or set the HP-IL module switch to "Disable" so as to avoid conflicts.

Finally, you can get strange displays, odd behaviour or crashes (see iv.
and vi.) if you plug something in and it has a static charge on it, or if
it is not plugged in properly. In cold, dry weather breathe gently into
the opening of a module before plugging it in, always push modules into the

-57-



ports as far as they will go, and check that your HP-41 is turned off when
you plug in or unplug a module. In case of trouble, check that the HP-41
is turned off, pull out the module, then plug the module in again.

xiii. Bugs

If your HP-41 system is doing something highly unusual and you cannot find
an explanation in the manuals or here then you may have been unlucky enough
to come across a bug! This word describes behaviour that is contrary to
what the manuals say and to what common sense leads you to expect. Some
bugs can bite painfully, others are beautiful. Many computer bugs are
removed by the manufacturer sooner or later, so they may not appear on all
devices of a given kind. The HP-41 system bugs have therefore been
relegated to Appendix C. Check through Appendix C, maybe your bug is
there, maybe you have found a new one, or maybe your HP-41 is broken.

Exercises

3.A Reverse Polish Notation was being used on calculators long before
electronic pocket programmable calculators were introduced. It is not even
obvious whether the first designers had heard of Eukasiewicz, although his
notation was certainly in existence before the first electric calculators
were made. What is the oldest RPN calculating machine that you can find?
Some of these machines had excellent manuals which are still worth reading
because they explain RPN well and provide good examples.

For example the Friden 130 and 132 were very popular RPN c¢lectronic desktop
calculators used up to the early 1970s. They had instruction books with
examples of geometry, financial calculations, statistics, algebra, matrices
and complex arithmetic using RPN. Many Universities and offices still have
these Fridens and their instruction books hidden in cupboards; the examples
are worth reading if you can find such a manual.

-58-



3.B The DATA ERROR message occurs sufficiently often that it is worth
knowing what can cause it. Go through the HP-41 manual and check what
mistakes you can make to get this message. You will also find that some
functions give DATA ERROR in certain cases and NONEXISTENT in others.
One such function is CAT. Store 10, then 100, then 1000 in register 01 and
try CAT IND 01 each time. Can you find any other functions that give both
types of error?

-59-






PART 1l

Calculating and programming from scratch







CHAPTER 4 - STARTING FROM THE KEYBOARD

4.1 Turning ON, and what to do if you cannot.

You have gone through the fundamentals, or skipped over them, and want to
get on with using the HP-41. First of all you will approach the HP-41
through its keyboard and most of the operations described in this chapter
will be done from the keyboard, not from programs. Start by pressing ON.

Easy enough? It should be unless the batteries are flat; go back and check
Section 2.4. Sometimes though, the HP-41 refuses to turn on or comes on
but later refuses to respond to the keyboard. Crashes and "Locking-up"
were mentioned in Section 3.6vi, it seems sensible to cover them in more
detail in this section about starting. Of course if you have got someone
else’s HP-41 they may have arranged to prevent unauthorised people from
using it. In that case, give it back at once and get your own HP-41!

If it is your own HP-41 that is misbehaving then try doing the following
before you decide to send it for repair. (Repairs are not cheap, they cost
at least 50 Pounds in the UK, since HP overhaul any HP-41 sent in for even
the most trivial repair. Even if the proposed repair costs you nothing
because it is done under warranty you will have to do without your HP-41
for about a week.) The suggestions below should be tried in the order in
which they are given, since the last few are rather desperate measures. If
your HP-41 has started up without any difficulty you may prefer to go on to
the next section and come back here only if you get into trouble.

i. First of all, if the display stays completely blank when you turn on,
it may simply be displaying an empty text string or one made up of
spaces. Press the backarrow key and see if the display becomes a zero
or press SHIFT and see if the SHIFT annunciator comes up, showing the
HP-41 is on.

-63-



ii.

iii.

iv.

Try pressing ON and backarrow in turn a few times, waiting for about
ten seconds between key-pushes. After a few times the display should
show zero. Do not press backarrow and ON at the same time.

Reread the instructions on battery replacement and check that
everything is as described in those instructions. The battery pack
sometimes comes loose if the HP-41 has been travelling, or the
batteries may have been inserted the wrong way round. The battery
contacts may even have got dirty or corroded. In that case clean
them. If that does no good then replace the batteries even if they
have not been used much.

You can check if the batteries are still supplying power to your HP-41
by holding it close to a radio which is set to receive AM signals.
Press the ON key twice, if the batteries are still working then there
should be a burst of noise from the radio each time and when the HP-41
is on then the radio should continue to make some noise.

If you have a printer you can check whether the batteries are flat by
plugging it in and pressing the PRINT button. If nothing happens
press the HP-41 ON key and push PRINT again. The printer will print
something even if the HP-41 batteries are too flat to drive the
display, so long as the HP-41 is working.

After you have checked the batteries remove any plug-ins from the
ports. Some plug-ins, particularly the printer and the HP-IL module
can cause a hang-up (especially if both are plugged in and the HP-IL
switch is not set to "Disable"). Removing them and pressing ON once

or twice sometimes solves the problem.

If you have an HP-41 that can be reset by pressing backarrow and
ENTER, pressing ON while keeping the other two down, then releasing
all three keys, then try this procedure. This reset only works on HP-
41s made since the second half of 1982 (including all HP-41CXs) and on
HP-41s that have been repaired since that date. If this does not work

-64-



vi.

vii.

the first time, try it again once or twice. You could also try
pressing ENTER alone, keeping it down, then pressing ON and releasing
both. Do not press backarrow followed by ON as this normally results
in MEMORY LOST.

If none of this works, or if you have an HP-41 that cannot be reset,
then press the R/S key and keep it pressed down. Press and release
the ON key, then release the R/S key. If nothing happens, try this
again. It should clear many problems, in particular it will stop a
running program.

If you have a Wand, try plugging it in and reading some barcode. The
ON key of the barcode keyboard is a good choice, but even a blank
piece of paper should do. The Wand is designed so that it will turn
on the HP-41 if it is off; this has already been mentioned as a way to
turn on an HP-41 whose ON switch is faulty. You can use a Wand with
the paper keyboard to do everything if your HP-41 has a faulty
keyboard. Functions that are not available on the paper keyboard can
be spelled out (see Section 4.3.2) or you can use the barcodes
provided in Appendix F.

The HP-41 should have "woken up" by now. If the display is still
blank, press R/S again, and if nothing happens, go on to step vii. If
the display is showing something and the USER annunciator is on then
press the USER key once and check that the annunciator has switched
off. If the annunciator is off then press USER twice and check that
the USER annunciator turns on and off again. If this has worked then
the HP-41 is awake, otherwise carry on with step vii.

One further trick to try before you have to clear memory is to attach
a Card Reader and read a card through it. This sometimes jolts the
HP-41 out of its locked-up state. The method was suggested by
Clifford Stern and is described in Keith Jarett’s book "HP-41 Extended
Functions Made Easy"; see Appendix A. If the card goes part way
through and stops, take off the Card Reader, replace the batteries

-65-



viii.

ix.

with a fresh set, and put the Card Reader back onto the HP-41.

Now try to reset your misbehaving machine by taking the battery pack
out and putting it in again. This is one of the methods suggested by
HP and it can be done even with the HP-41 turned on, but that clears
the time and date settings if you have a Time module, so it has been
left till now. After replacing the batteries press ON a few times
until the 41 comes on.

A refinement of this method was suggested by C.Close in an article on
HP-41 crash recovery in PPCCJ V9N2p2l. The whole article is worth
reading as it provides interesting information on HP-41 crashes, but
the method itself, called the ON procedure, is as follows. Press ON
and release it. Wait about a minute, then remove the battery pack and
replace it. Press the backarrow key for about five seconds; you
should see CLX and the HP-41 should be awake. If this fails, repeat
the whole process.

This is a good example of an idea provided by one member of a user
group to other members in the interest of sharing information and
helping each other. This particular idea has been included in the
book as it is well-known now, but other ideas remain within user
groups only, and readers should seriously consider joining a user
group to take part in (and advantage of) this exchange of information.

In some cases, particularly if you have been wusing Synthetic
Programming, the above methods will unlock an HP-41 but only until you
turn it off or do a GTO.. or PACK. (So if you have had a crash
following some Synthetic Programming you should not turn your HP-41
off and on unnecessarily nor should you press the ON key repeatedly as
has been described for some of the methods above.) The "unlocking"
procedures will work again, but it may be simpler to use Synthetic
Programming techniques to clear the section of memory that is at fault
(usually the Buffer Area, see Chapter 8). The alternative is to clear
the whole of HP-41 Continuous Memory. If you do not want to do this

-66-



Xi.

but do not feel safe with Synthetic Programming, then try going to a
user group meeting and asking for help (see Chapter 13).

If none of the above has worked, you will have to clear your HP-41
memory. This will solve all problems except those involving hardware
faults. If the fault is intermittent, you can try to save the present
status of the HP-41 onto magnetic cards or onto a mass storage medium.
If your HP-41 is off, or if you can turn it off, then check it is
really off. Now press the backarrow key and keep it down, then press
and release ON, then release the backarrow key. You should see MEMORY
LOST and the HP-41 should be on the go again. (If you change your
mind at the last moment, release the ON key and press and release it
again, keeping your finger on the backarrow key all the time; then
release the backarrow key.) If the HP-41 cannot be turned off then
you might be able to do a MEMORY LOST by finding or creating a
synthetic instruction such as STO ¢ and executing CLX, STO c. If you
foresee doing this often and you have a card reader, then create a
magnetic card with flag 11 set and with a program containing CLX, STO
¢ on it. Then you can read this card through the Card Reader to clear
memory whenever necessary.

If the HP-41 is on and cannot be turned off, and you do not have
access to a Card Reader or Synthetic instructions, you will have to
discharge the HP-41 by taking out its batteries. This can take a very
long time, it can be speeded up by putting all the batteries upside-
down into the battery pack, and putting the battery pack into the HP-
41 for at least 15 minutes. This should drain any residual charge,
and the internal protective diodes should prevent any harm to the
circuitry. Unfortunately, a few HP-41s have diodes that can not cope
with a set of four completely fresh batteries, and the reverse current
will cause severe damage. You should therefore use old batteries, and
even so consider this as one of the last resorts before sending the
HP-41 to HP. (This method was suggested by Bill Hermanson in Volume
9, Number 1, Page 32 of the PPC Calculator Journal, abbreviated as
PPCCJ V9NI1p32. See Appendix A for a description of this journal.)

-67-



Xii.

Alternatively, you can short together the battery terminals at the two
ends inside the battery compartment with a length of wire or even with
two fingers of one hand. You may need to keep the wire in place for
quite a while to remove the residual charge. Then put back the
batteries, the right way round, and press ON one or more times until
MEMORY LOST shows up in the display.

If you have got this far then you are in serious trouble. You might
possibly be suffering from a bad battery pack or from a loose
connection. If you have a rechargeable battery pack, try replacing it
with batteries or with a new, fully charged pack. OId battery packs
can cause havoc, particularly on an old HP-41, as they may develop a
loose connection or be unable to hold a charge. If this has happened
to you, do not use the old pack again, though it may be safe to use it
on a newer HP-41. The methods given below will probably be necessary
to wake up an old HP-41 that has been locked-up by such a faulty
battery pack.

To check for a loose connection in the HP-41 or in an old battery
pack, tap the HP-41 gently. Set it down on a firm surface, lift up
one end about an inch and set it down fairly sharply. The rubber feet
will prevent any excessive shock. Never test the HP-41 for a loose
connection by banging it hard, this will cause loose connections or

worse, not cure them.

Your HP-41 may also have a massive charge of static electricity, or if
it is an early model the two display drivers may have failed to
synchronize because the batteries are flat. (If you do not understand
this, wait till you read Chapter 8.) These problems do not always
respond to the solutions described so far. They can be dealt with by
taking the HP-41 apart and putting all the parts down separately for
a few hours, then putting the HP-41 together again. This can also
solve some loose connection problems if you put the HP-41 together
again and tighten all the screws (but do not overtighten them). You

-68-



must be pretty brave or sure of yourself to do this, since the HP-41
contains CMOS circuits which are very easily damaged by stray charges
that you may introduce while taking the HP-41 apart. You also
invalidate any HP guarantees if you take your HP-41 apart.
Nevertheless, I have saved a couple of trips to HP in this way.

xiii. Unlucky thirteen! If none of the above work or you are unwilling to
attempt the more drastic techniques, you will have to get your HP-41
repaired. Some user groups have members with access to service
facilities but in general you should pack the HP-41 carefully and send
it to your local Hewlett-Packard repair centre. (The addresses should
be available from your dealer, some are provided in the back of the
Owner’s Guides.) Remove the batteries, but send a battery pack or any
other items that you think may be at fault. Include a Service Card,
and a description of the problem, if you can. Most repair centres
post the repaired unit back within five working days of receiving it,
but even so this means you will be without your HP-41 for about a
week. (If you go to a repair centre yourself they may be willing to
do a repair while you wait, but ask before you go.)

4.2 Look after your stack.

4.2.1 Using the whole stack.

Your HP-41, once it is ready to be used, provides a powerful set of
mathematical functions for execution directly from the keyboard. These
functions are based on the RPN system (explained briefly in Section 3.4)
which uses an operating stack of 4 registers: X, Y, Z and T. An L register
(Last X) is also available, this will be described in Section 4.5. The
stack lies at the heart of the HP-41 operations and some forethought in its

use can pay considerable dividends.
Many people tend to use only the X and Y registers although the Z and T

registers would simplify their calculations. As a very simple example let
us take the calculation of at2 + 2a. The most obvious method is to

-69-



calculate this as a*(2 + a) as follows. (Each line shows one step and is

followed by some comments. The comments are separated from the step by a

semi-colon.)
Type in a ;
Press ENTER ;
Type in 2 ;
Press + ;
Type in a again ;

Press * ;

This calculation only

a is now in the register you see, the X register.

a is now copied into the next register, Y.

following ENTER the value a is still in X, but 2
replaces it so the stack now contains 2 in register X
and a in register Y.

this adds the contents of Y to the contents of X, and
leaves the result in X.

this puts a into X and pushes the previous contents
of X up into Y again.

this multiplies together the contents of X and Y, and
puts the result into X so that it is displayed.

uses the X and Y registers, but it involves typing in

a twice. Registers Z and T can be used to store extra values and with a

little planning one can rewrite the calculation to use them. This can be

done by thinking of the equation as (2 + a)*a .

Type in a ;
Press ENTER ;

Press ENTER ;

Type in 2 ;

Press + ;

Press * ;

a in register X

a is in X and Y, but the contents of X will be
overwritten if a number is typed in now.

pressing ENTER again copies X into Y and Y into Z so
that a is in registers X, Y and Z.

this puts 2 into register X, replacing a but leaving
the value a in registers Y and Z.

this adds registers X and Y, putting the result (2+a)
into X and copying register Z into register Y so that
a is available in Y for the next step.

this multiplies together the values in X and Y,
giving the result (2 + a)*a.

In this case we use the Z register to store a second copy of a and thus

-70-



replace the second entry of a (which required a press of the ENTER Kkey).
It may have been rather difficult to follow what was happening to the
contents of registers X, Y and Z during the above example. It is often
helpful to use a stack analysis form such as the one in Figure 4.1. This
shows each step performed and the contents of X, Y, Z and T after that
step. Figure 4.1 shows how the stack contents move during the first
calculation above, and Figure 4.2 shows the stack movements during the
second calculation. Some functions cause stack lift which means that the
contents of Z are copied into T, then Y is copied into Z, then X is copied
into Y. Other functions cause stack drop which means that Z is copied into
Y, then T is copied into Z. What happens to X depends on what the function
does. The stack analysis form helps you see exactly what happens in each
case. Some functions like ENTER and CLX are said to disable stack lift.
This means that a new value put into X will replace the old value instead
of pushing it into Y. The figures have an extra column next to the X
column and a cross in this means that stack lift has been disabled.

Stack

Step Lift X Y Z T Comments

Disabled
a a Puts a in X
ENTER X a a Copies a into Y
2 2 a Puts 2 in X
+ 2+a Adds and puts in X
a a 2+a Puts a in X again
* a(2+a) Final result in X

Figure 4.1 : First Stack Analysis Form for (a+2)*a.

-71-



Stack

Step Lift X Y Z T Comments
Disabled

a a Puts a into X

ENTER X a a Copies X into Y

ENTER X a a a And again

2 2 a a Puts in the 2

+ 2+a a Adds,Z drops to Y

* (2+a)a Multiplies

Figure 4.2 : Second Stack Analysis Form for (a+2)*a.

There are some alternative ways of checking stack contents. The HP-41
Standard Applications Module (and also the Standard Applications Handbook
which came with each new HP-41C and CV) has a simple RPN primer program to
display the entire stack after cach arithmetic operation and you can use
that instead of a stack analysis form. Printers and video interfaces on
HP-IL have a stack trace option (sece Section 12.4) which lets them display
the contents of the stack after each operation, but this option does not
work on the HP82162A printer. On the HP82162A and HP82143A printers use
the PRSTK command to print the contents of the stack registers. If you
have a Card Reader, use its 7PRSTK function, this prints the stack contents
if you have a printer attached, otherwise it shows the contents of the four
stack registers one by one in the display. After some practice with any
one of these methods you will be able to visualise the whole stack and its
contents.

-72-



Let us try another example of stack use, with the stack analysis form to
help see what is happening. To save space, instructions such as "type in
a" or "press 2" will be shown simply as "a" or "2". Say we want to
calculate (a*b + c/d)*sin(e) with one value of e but various values of a,
b, ¢, and d. First we work out SIN(e) and store it in a register, say

register 05, by doing STO 05. Now we do:
a, ENTER, b, *, ¢, ENTER, d, /, +, RCL 05, *

Check this on Figure 4.3 and see that SIN(e) is still in register Y. We
could have skipped the RCL 05 step and still got the same result. The
stack drop has actually left SIN(e) in registers Y, Z and T because the
contents of T are always copied into Z when the stack "drops". To
calculate the expression (a*b + c/d)*sin(e) again with different values for
a, b, ¢ and d it is enough to press CLX (or RDN) and then repeat the
operation above, without the RCL 05 step.

This example shows that use of a stack analysis form can remind you when a
useful value is still in the stack so that a numbered data register need
not be used. The message is simple: be aware of all the registers in your
stack and of what they contain. When calculations are to be performed
manually from the keyboard, this awareness of the stack can save
keystrokes, but in programs it has a further advantage. This is that long
programs use many data registers, and calculations which use the stack as
efficiently as possible will avoid using additional data registers where
this is unnecessary. If you are using two programs each of which needs 50
data registers, then you will be very glad to use the stack registers for

storing some of your intermediate values.

-73-



Stack
Lift
Disabled

Step

ENTER X

ENTER X

RCL 05

ba

c/d

c/d + ba

sin(e)

result

sin(e)

ba

ba

sin(e)

c/d + ba

sin(e)

sin(e)

sin(e)

sin(e)

ba

ba

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

sin(e)

Comments

Puts in a

Makes room for b

Puts in b

Multiplies

Puts in ¢

Makes room for d

Puts in d

Divide, stack drops

Add,stack drops

Recall sin(e)

Get result in X

Figure 4.3 : Stack Analysis Form for (a*b + ¢/d)*sin(e)

4.2.2 Stack manipulation functions.

Many readers will already be familiar with the ideas outlined above but

they, as well as readers to whom the ideas are new, may want to be reminded

of the stack manipulation functions available on the HP-41.

-74-



0-9

EEX
CHS

PI

ENTER?®

RDN

R?

X<>Y

These number entry keys build up a number in register X. The
number consists of a signed mantissa followed by a signed
exponent (power of 10). The mantissa can have no more than ten
digits. The exponent is optional but if used with a mantissa
that has nine or ten digits it requires that a decimal point
should come before the ninth digit. CHS changes the sign of the
mantissa if pressed before EEX, otherwise it changes the exponent
sign. The decimal point (or comma if you are using European
radix mode, see Appendix D: flag 28) on its own acts as a zero
(and it is faster than 0 when used in a program).

Enters a ten digit approximation for pi into the X register.

Separates one number from another, copies the contents of Z into
T, Y into Z and X into Y. Disables stack lift so that a new
value, put into X immediately after ENTER?Y, replaces the value in
X. In this book the 1 after ENTER will usually be omitted.
ENTER really does two separate jobs (terminating number entry and
lifting the stack) which could be done by two separate keys.

Rolls down the stack contents. If the stack is visualised as
four registers with T at the top, followed by Z, Y and X, then
RDN pushes the contents of Y, Z and T down by one register each,
and copies the contents of X into T.

Rolls up the stack contents. Exactly the opposite of RDN. It
can also be imagined to be like ENTER except that the contents of
T are copied into X and stack lift is not disabled.

X exchange with Y. This is useful if X and Y are in the wrong

order, for example if you want to divide the value in X by the
contents of Y. Also useful for looking at Y, then replacing it.

-75-



X<>

RCL

STO

LASTX

CLX

Note:

CLST

In addition to X<>Y, the HP-41 has this general function to
exchange the contents of X with those of any other register, even
the other stack registers, for example X<>Z.

RCL recalls the contents of any register, even stack registers,
into the X register. The stack is lifted unless stack lift has
been disabled by the previous instruction.

STO stores the contents of X into any register, including stack
registers. The previous contents of the register are lost, but
the contents of X are unchanged. STO into a stack register does
not lift the stack.

Recalls the previous value of X from register L; see Section 4.5.

Clear X. Clears the contents of the X register, replacing them
with zero. This operation is often used to correct a mistake, so
it disables stack lift and the value put in directly after CLX
replaces the previous value.

Stack lift is disabled by CLX and ENTER, but the next operation
enables stack lift again unless it too disables stack lift or is
neutral. (Only CLX, ENTER and the statistics plus and minus
functions disable stack lift. SHIFT, ALPHA, PRGM, USER and
On/Off are neutral: they neither enable nor disable stack lift.
CHS and backarrow are also neutral during number entry.) If you
want to put a zero onto the stack, CLX alone will not do since a
number entry or RCL following it will write over the zero; you
should CLX,ENTER or press . or 0.

Clears the whole stack, replacing X, Y, Z and T with zeroes. It
does not clear L, so you can clear the whole stack except X by
doing +, CLST, LASTX. (Use SIGN instead of + if you know that X
might contain Alpha data; see the discussion under SIGN in
Section 5.2.)

-76-



4.2.3 Stack calculations, rearrangements and operations on X.

Most HP-41 mathematical operations use or alter the contents of register X.
The mathematical functions will be covered in the next chapter except for +
, -, ¥and /. These are well understood, though new users should remember
that the operations - and / produce the results Y-X and Y/X. If you want
X-Y or X/Y you must do X<>Y first. All these four functions save the
previous contents of register X in register L (Last X, see Section 4.5) and
drop the stack.

The functions ENTER, RDN, R?1, X<>Y, X<> RCL

various combinations to produce any required rearrangement of the stack.

STO__ can be used in

- pp—}

On previous HP calculators which did not have R{ it was sometimes much
quicker to use - (subtraction) in combination with the other operations to
get some arrangements, particularly ones involving zeroes. John Dearing’s
book "Tips and Routines" gives 4 pages of stack rearrangement operations
for the HP-41, and John Ball’s "Algorithms for RPN Calculators" gives an
even more complete list including all combinations that involve zeroes in
the stack.

ST-
STO key and then one of the four arithmetic keys. They work like the four

The operations ST+ ST*__ and ST/__ are obtained by pressing the

- -

ordinary arithmetic operations, but instead of combining X with Y they
combine X with any numbered or stack register. For example ST- 23
subtracts X from register 23 instead of subtracting it from register Y.
The value in X is not changed and so X is not saved in L. These four
operations are called storage arithmetic. Some calculators also have
corresponding recall arithmetic, but not the HP-41. Fortunately, recall
arithmetic can be simulated very easily. For example RCL*nn (multiply X by
the contents of register nn) can be performed by doing X<>nn, ST*nn, X<>nn.
The use of two X<>nn operations will let you perform all four recall
arithmetic operations in the same way. The PANAME module (Section 12.8)

provides some recall arithmetic functions as well.

-77-



Storage arithmetic is particularly helpful when it is used on the stack.
For example you can add X to Y and to Z by doing ST+Z, +. The steps ST+Z,
+, / let you work out (X+Z)/(X+Y) more quickly than is possible on ordinary
RPN calculators. The operations ST+X, ST-X, ST*X and ST/X are especially
interesting. ST+X replaces X with 2X without affecting registers Y, Z, T
or L. ST-X replaces X with 0 but unlike CLX it leaves stack lift enabled.
ST*X replaces X with X squared, again without affecting L. ST/X replaces X
with 1, this can be a useful alternative to SIGN which replaces a number
in X with 1 or -1 and changes L (see Section 5.2).

These operations on X can be combined to provide additional useful results
without altering Y or Z or T. For example ST+X, ST*X produces 4X12 and
ST*X, ST+X, SQRT produces the absolute value of X multiplied by the square
root of 2. An interesting use is 1/X, ST+X, 1/X which produces X/2 without
changing Y, Z or T. (2, ST/Y, RDN produces X/2 without changing L.)

RCL X pushes the stack up like ENTER but leaves stack lift enabled. X<>X
and STO X do nothing at all except that they enable stack lift if it was
disabled. Functions such as these two which do nothing are called NOPs
(Null Operations), and there are some uses for them in programs, especially
in combination with ISG and DSE as described in Section 6.8.

4.3 Make use of ALPHA.

4.3.1 Using the ALPHA register to display messages.

The alphabetic capabilities of the HP-41 allow mecaningful messages,
instructions and results to be displayed or printed. This can be done from
the keyboard, under program control, or from alarms operated by the Time
module. All this is done through the ALPHA register which can hold up to
24 characters (described in Section 3.2). The information in the ALPHA
register is text or alphanumeric data, which means it contains characters
that can be letters, numbers, punctuation marks, or special characters such
as %. The ALPHA register can be imagined to be rather like the X register
which holds and displays up to 10 decimal digits and two signs, with points

-78-



and commas between them. Up to 12 characters in the ALPHA register can be
displayed at one time; punctuation marks between other characters do not
count among these 12 characters although they do take up one of the 24
places in the ALPHA register.

If the ALPHA register contains more than 12 characters (not counting
embedded punctuation marks), then it will initially show the first 12
characters, and then it will roll characters off to the left one at a time,
and add new characters from the right, until it is displaying the last 12.
This is called scrolling and it has the rather disconcerting effect of
making the first part of a long message disappear off the display as soon
as it has appeared. If a message is over 12 characters long then it is a
good idea to start it with a space, so that the first character which
scrolls off the display is this space, and the message can be taken in more
easily. This tip, along with several others, was suggested by R.Nelson
(founder of the original user group, PPC) in the journal, PPCCJ V6N5p32.

You put characters into the ALPHA register (often just called ALPHA or
Alpha) by pressing the ALPHA toggle key, then using the keys to type in
characters. Keys have letters marked in blue on the lower face, additional
letters and symbols are obtained by pressing SHIFT first. The shifted
letters are not marked on the keyboard, but they are shown on the ALPHA
keyboard sticker at the back of the HP-41, and on the ALPHA keyboard
layouts printed in the quick guide and the manuals. So long as characters
are being added to ALPHA one after another, they simply add on at the
right-hand end. Once you switch out of ALPHA mode though (by pressing
ALPHA), text entry is terminated. If you press ALPHA again and start
typing in a new text message then the old contents of ALPHA will be deleted
and the new message will replace them. CLA (SHIFT, backarrow in ALPHA
mode) will also delete the contents of the ALPHA register. Corrections to
the contents of ALPHA can, however, be made using the APPEND operation, as
will be explained later in this section.

Before going on to more mundane uses of ALPHA, try it out by entering a
message as follows. Turn on the HP-41 and press ALPHA, SPACE, T, H, E,

-79-



SPACE, L, O, R, D, SPACE, I, S, SPACE, M, Y, SPACE, S, H, E, P, H, E, R, D.
When you press the last D the HP-41 sounds a tone, just to let you know
that it has no more room for additional letters and will have to delete
letters from the left-hand end of ALPHA to make room for any more that you
put in on the right. Now press ALPHA, ALPHA and watch the message scroll
across the display. Observe that the space at the start of the message
makes it easier to read the first letter before it vanishes. While still
in ALPHA mode, press AVIEW (SHIFT, R/S); this displays the whole message
again, AVIEW is particularly useful for displaying information during
running programs. If you had a printer plugged in, AVIEW should have also
printed the message (unless the printer was OFF

Scrolling takes up time; you can stop it and get to the last 12 characters
at once by pressing any key (even ON or backarrow) while the message is
being scrolled. Be careful; if you press a key after scrolling is finished
then that key performs its normal action.

The use of the backarrow key to correct or delete the contents of ALPHA has
already been described in Section 3.6ix, and some short programs that used
ALPHA to display a result were shown in Section 3.5. These programs used
ALPHA to create messages such as "SIN(X)=", and then they used ARCL X to
recall the value from X into ALPHA and add it to the message. The format
of the X value would be the same as that seen in X because the display mode
controls how a value is brought into ALPHA, including the rounding.
Displays which lose their ninth or tenth digit because it is hidden under
an exponent will show all digits in ALPHA, so SCI 9, ARCL X, AVIEW can be
used to display all ten digits and the exponent of X. (See Section 4.4.1
for a description of display modes.)

ARCL adds a value to the end of what is already in the ALPHA register, but
what if you want to add more than one value, perhaps with some extra text
mixed in? Three things can be done to add more text to the right of ALPHA.
ARCL can be used more than once; cach time it adds to the right. ARCL also
enables further addition from the keyboard. Thus ALPHA, Y, =, ARCL Y, F,
E, E, T produces the message "Y=1.23FEET" if register Y contains 1.23 and
the display has been set to FIX 2 (Section 4.4.1). Text that you have

-80-



typed in immediately following ARCL is added to the contents of ALPHA; it
does not replace the contents of ALPHA. The third way to add to the right
of ALPHA is to use the APPEND function. This function can only be
performed by going into ALPHA mode and pressing SHIFT, K. Text that is
typed after SHIFT, K will be added to the right of the ALPHA register
instead of replacing the previous contents. (When you are doing this from
the keyboard, APPEND simply displays the prompt character _ at the right of
the text in ALPHA, but in PRGM mode APPEND is stored as a special control
character - at the beginning of a text string.) You can use APPEND, and
then delete characters from ALPHA as well as adding characters to it. If
ALPHA already contains 23 characters then putting in more characters, or
using APPEND to add characters later will make the warning tone sound, but
ARCL will not produce the warning tone even if some characters are lost.

Quite often you will find that a message will not all fit into the 12
characters visible in the display at one time. Messages such as

X1=1.234579201E-32

will not fit all at the same time into the 12-character display and can be
positively dangerous if the user sees the last 12 characters only; the user
may think the answer was 34579201.E-32 since the true decimal point is not
visible. Here are some hints on making a message fit into the 12 visible

characters.

i. Use a display that shows as few digits as necessary. FIX 2 is better
than FIX 8 unless 8 digits after the decimal point are absolutely
necessary. SCI n is often a better display setting since it always
produces between n+4 and n+6 characters (depending on the signs of the
mantissa and exponent) whereas FIX n can produce various numbers of

characters.

This is also good discipline for students who would otherwise write
down answers to 10 significant digits just because their calculators

give answers to that many digits.

-81-



ii. Abbreviate words in messages. Use FT instead of FEET, or SN= instead
of SIN=. You may think that SN is not easy to recognise as an
abbreviation for SIN, but the context of the problem should make

abbreviations clear.

iii. Use the punctuation marks . and , and : as much as you can. They fit
between other characters and do not take up one of the 12 character
positions unless two punctuation marks are entered one directly after
the other. The colon is particularly helpful since it can be used
instead of a space to separate words. A display such as
X=12.34:Y=56.78 takes up 12 positions and 1is just as clear as
X=12.34 Y=56.78 which takes up 13.

A few additional points now about using the ALPHA register. The single
instruction PROMPT can be used in programs instead of AVIEW, STOP. Both
methods display the contents of the ALPHA register and stop a running
program. PROMPT is usually used to display a message that prompts the user
for a value during a running program. It is easy to forget that PROMPT can
also replace AVIEW, STOP to display a result and save one program step.
Even some HP Solutions books use the latter in places where the former
would do. The instruction ARCL can be followed by any stack register or
numbered data register, or it can be followed by an indirect address (see
Section 5.5) to allow the viewing of a set of registers one by one. The
value appended to ALPHA by ARCL is a representation in characters of a
numeric value, and this character representation cannot be wused in
calculations. (The Extended function ANUM converts characters back to
numbers; see Section 10.2.) The function ASTO does the opposite of ARCL;
it stores a text string, taken from ALPHA, in a data register. Remember
that ASTO overwrites the previous contents of the register, and it does not
lift the stack, so that ASTO X replaces the previous contents of register X
without changing Y, Z or T. ASTO only stores the first 6 characters of
the ALPHA register, counting from the left, into a single data register.
If there are fewer than 6 characters in ALPHA then these are stored with
null spaces to their left, making a total of 6 characters. If there are

-82-



more than 6 characters in ALPHA then the first 6 have to be removed before
the next 6 can be stored in another register. The function ASHF is used
for this purpose; it removes the leftmost 6 characters from the ALPHA
register. The HP manuals say that these characters are shifted out of the
ALPHA register but it may be better to say that they are deleted. ASHF can
be used repeatedly to store up to 24 characters in four data registers.
The contents of these registers can be returned to the ALPHA register at a
later stage by means of the ARCL function. A text string in a data
register can be displayed as text by the VIEW function and text can be
ASTOred in X so that a message is displayed instead of a number when X is

scen.

4.3.2 More uses of ALPHA.

The second use of the ALPHA keyboard is to provide parameters, particularly
for ALPHA execution, already described in Section 3.5. To execute a
function that is not on the keyboard, or a program, you press XEQ, ALPHA,
then spell out the function or program name, then press ALPHA again. The
name that you have spelled out is not stored in the ALPHA register, it is
used to find the function or program and then execute it (or store it in a
program). If you want to go to a program, but not to run it, you can press
GTO and spell out the program name. (You cannot GTO a function.)

To identify a program so that you can XEQ it or GTO it you must have a
label to identify the program. Once again you use the ALPHA keyboard:
press LBL, ALPHA, spell out a name of one to seven characters including
numbers and spaces but not punctuation marks, then press ALPHA again. If
you do this in RUN mode, the LBL instruction will stay in the display for a
while, then it will vanish, but if you do it in PRGM mode you will create a
label.

XEQ and labels will be discussed yet again in Section 6.3, for now it is
enough to note that this is the most common way used to execute programs
and functions that are not on the keyboard. The other way to execute
functions and programs is to assign them to a key (or a shifted key) and to

-83-



press that key in USER mode. (Programs can also be executed by pressing
R/S if the program pointer is already set to them. CAT 1 can be used to
move to a required program.) To assign a key for use with a chosen
function or program in USER mode you use the ASN (assign) function. Press
ASN, ALPHA, spell out a function name or the name on a program label, then
press ALPHA again. Unlike other functions that use parameters, ASN needs
two parameters not one, so it now displays ASN aaaa _ asking you to press a
key, or SHIFT and a key, to define which key is to be assigned. (aaaa is
used here to represent the name you have spelled out. If you press ALPHA
twice in succession then no name is displayed, and the HP-41 cancels any
assignment that was previously made to the key.) When you press a key, the
display shows ASN aaaa rc, where r is the keyboard row in which the key
lies, and c¢ is the column. (To be exact, ¢ is the key number in row r,
counting from the left) If you press SHIFT before the key then rc is
preceded by a minus sign. Once you have (successfully) assigned a function
or a program to a key, you need only go into USER mode and press the key to
execute the function or program. This is obviously much simpler than Alpha
execution but assignments usually take up space in memory (see Section
8.6).

4.3.3 Extended uses of the ALPHA register.

Although the ALPHA register was originally intended as a place where
messages could be created, its uses have expanded a great deal. The Timer
module uses it for alarm messages, the Extended Functions and HP-IL system
use it to build up, or analyze, file names, commands or text strings.
These can be transferred to and from Text files in Extended Memory or HP-IL
devices. Further editing features are provided by the Extended I/O module,
the HP-IL Development ROM, and the PANAME module.

With Synthetic Programming you can use the ALPHA register for storage of
numbers, almost like a set of additional stack registers. You can even
create and run short subroutines in ALPHA. The extension of the uses of
the ALPHA register is a prime example of the way the HP-41 has grown from a
calculator into a pocket computer; these uses are part of the subject of

-84-



this book, to be covered in the later chapters.

4.4 Set your status.

4.4.1 Flags

A great deal of control over the status of the HP-41 is available to you.
Most of the status information is recorded by flags 00 to 55. Each flag
can be "set" or "clear". The flags can be thought of as answers to yes/no
questions, or as numbers which can only be 0 or 1. Understanding and using
the flags well can significantly extend your control of the HP-41. A
simple example of the HP-41 status is in the choice of angular mode. This
can be "degrees" mode or "radians" mode or "gradians" mode as described in
Section 3.3. The trigonometric mode is controlled by the settings of flags
42 and 43. Each flag answers one question; flag 43 answers the question
"is radians mode set?" and if flag 43 is clear then flag 42 answers the
question "is gradians mode set?" If the answer to both questions is "no"
then both flags are clear, and the HP-41 is in degrees mode.

Similarly the status of the display can be set by means of the FIX, SCI and
ENG functions which use combinations of flags 36 to 41. FIX 0 to FIX 9
make the display show numbers without an exponent if possible, with 0 to 9
digits after the decimal point (again if possible). If the number is too
large or too small to be displayed in FIX mode then it is shown in SCI
mode. SCI n instructs the HP-41 to display a mantissa with one digit
before the decimal point, n digits after the point, and an exponent. ENG n
is like SCI n but always displays an exponent that is a power of 3, so
there are one, two or three digits before the point. The last digit shown
is rounded up if the undisplayed part of the number is equal to or greater
than 5. However an exponent hides the last two digits of the mantissa if
the mantissa display is nine or ten digits long. In this case the rounded
digits are hidden, and the rounding is not seen. If you want to see all
the digits of a number, set SCI 9 status, then ARCL X and look at the
display in the ALPHA register. (If you are not clear on this, do Exercise
4.C.)

-85-



Other status information that is controlled by flags includes the role of
the point and comma in the display, and switching off of audible signals.
The ALPHA, PRGM, USER and SHIFT status are also recorded by flags. Check
Appendix D for a list of all the flags and what they do.

Any flag can be tested using FS? to see if it is set and FC? to see if it
is clear. For example SHIFT, FS?25 tests if flag 25 is set. From the
keyboard, you would get a message "YES" or "NO" to show the answer. If you
look in Appendix D you will see that YES means that the HP-41 is set to
ignore the first error that occurs, and that no error has occurred since
this flag was set. The use of flags in programs will be described in
chapter 6. Only flags 00 to 29 can be directly set or cleared; the
commands SF (set flag) and CF (clear flag) are available for this purpose.
If you set any one of flags 00 to 10 you are saving information for your
own future use but not affecting any HP-41 operation. If you set or clear
any of the flags 11 to 29 then you are controlling the status of the HP-41
or of a device attached to it. Flags 30 to 55 are used by the HP-41
internal system to keep a record of what it is doing, so they are not
normally available for you to change even though you can test them. (You
can set some of these flags by using a function that sets the corresponding
status; for example RAD sets flag 43.) Flags 00 to 29 can also be cleared
by the operations FS?Cnn and FC?Cnn. These two operations test whether
flag nn is set or clear, and clear it before going on to do anything else.

What can you use flags for? You can record the answer to a simple yes/no
or up/down question, and then you can check this answer at a later stage.
You can also define your own modes for the HP-41. For example you may want
to calculate distances in either miles or kilometres. Set flag 05 (or any
flag you choose) when you are working in kilometres, clear flag 05 when you
are working in miles. Flag 05 becomes a mode flag for use in programs; you
can check it to see if you are working in miles mode or kilometres mode.
Setting flags 00 to 04 also turns on the corresponding annunciators 0 to 4
(see Section 3.2), so these flags can be used to display information

concerning a program.

-86-



Some subroutines that are used a lot may need to use a flag temporarily
while they are doing something. It is best to reserve a few flags for
these routines, say flags 08, 09, 10 and not to use them in any other
programs that call these subroutines. If you do a lot of matrix
mathematics, and your matrix addition routine needs a flag, then let it use
flag 10 and make sure that none of the routines which call this subroutine
use flag 10.

The message so far is: know your flags and use them correctly. Read
Appendix D or the section on flags in the HP-41 manual. (Appendix D has
more information though.) Always set any special status that you need, it
is disastrous for example to run a program that does trigonometry in
degrees and then find that someone or something (like another program) has
set your HP-41 to radians mode. Be particularly careful to clear flag 25,
the "error ignore" flag as soon as you have finished using it, otherwise
your HP-41 may ignore a serious error later on. And remember to reset any
flags that may be cleared because the HP-41 was turned off. One extra
warning; the HP-41 turns off for a moment when you display the time using
the Time module functions CLOCK or SHIFT, ON. Check this in Section 9.2.

4.4.2 SIZE and I REG.

Two other functions affect the status of the HP-41. The first one to
consider is SIZE. The HP-41C has 64 data registers (in addition to the
stack and ALPHA). These can be used for storing data (any kind of numeric
or text information) and for storing programs, key assignments and
additional specialised information. The SIZE function tells the HP-41 how
many of these 64 registers are to be used for storing data. If you type
XEQ, ALPHA, S, I, Z, E, ALPHA you will see SIZE ___ in the display. You
can enter any number between 000 and 063 in reply to the three prompts.
For example SIZE 017 means that 17 registers are to be used for data. The
other 47 will be used for storing programs, key assignments, alarms and
buffers. SIZE 017 is the default when the HP-41C is reset by a MEMORY
LOST. If you plug in extra memory modules or a quad memory module on an

-87-



HP-41C, all the extra memory is initially added to the data registers, so
you can do SIZE 017, then plug in two memory modules (64 registers each)
and have a SIZE of 145. On an HP-41CV, 47 registers are again kept for
programs, assignments and buffers after a reset, but the only way to change
the number of data registers is by means of the SIZE instruction because
you cannot plug in or remove any more ordinary memory modules. This is not
much good because the extra memory of an HP-41CV should be more fairly
divided between programs and data registers. On the HP-41CX the initial
SIZE is set to 100. Remember that the lowest numbered data register is
register 00, so a SIZE of 50 means that you can use registers 00 to 49. If
you try to use register 50, you will get NONEXISTENT.

Since you can repeatedly change the SIZE by executing the SIZE command or
by plugging in extra memory modules, you may need to check what the present
SIZE is. There is no easy way to do this on an HP-41C or CV, so a great
many SIZE-finding routines have been written. The simple-minded ones just
count from 0 upwards, recalling each register till a NONEXISTENT error
occurs. Cleverer versions use some scarch method, for example a binary
scarch. This starts at 319 (the largest possible, assuming there are no
programs and the search is done from a ROM or from the keyboard), and
repeatedly halves the difference between the last successful recall and the
last unsuccessful recall. The cleverest methods use Synthetic Programming
to recall the SIZE information directly from the place where the HP-41
itself stores it. The Extended Functions module provides a built-in SIZE?
function to solve this problem, but several Application modules also have
SIZE? functions which check what size you want, not what the SIZE actually
is, so you need to take some care with this function name, see Section
12.5. Alternatively, use the PPC ROM function S? (see Section 12.8).

The remaining status-setting function to consider here is I REG. This is
used to put the six statistics registers where you want them, by specifying
the location of the first one. After a reset, this is register 11, see the
Owners’ Manual for details. If, for example, you are using registers 11
and 12 for some data then you can set ZREG 021 so that the six statistics
registers are in registers 21 to 26. To avoid accidentally destroying

-88-



important data when you do some statistical calculations, you can make the
statistics registers NONEXISTENT. To do this, set a large SIZE, say SIZE
090. Then put the statistics registers at the top of memory, say REG 080,
and then decrease the SIZE again, say to SIZE 050. Any use of the
statistical functions will now result in NONEXISTENT and there is no danger
of destroying important data. Just as with SIZE, there is no easy way of
checking where these registers are. The PPC ROM contains a function £? and
the HP-41CX has a I REG? function to tell you where the first of these six
registers is.

If you have a printer available then you can print all the status
information discussed in this section. Simply execute PRFLAGS and you will
get the SIZE, the number of the first statistics block register, the angle
mode, the display mode and a list of all the flag settings.

4.5 LASTX; corrections and constants.

As none of the worthy readers of this book ever make mistakes, there is

little point in explaining that LASTX recovers X so that corrections can be

made. But once a number is copied from X to LASTX (during a calculation),

it can be wused repeatedly, not only for corrections, but also for

arithmetic with a constant. The normal use of LASTX would be as follows:
You intend to multiply 7.5 by 3.9

7.5 ; you put in 7.5

ENTER ; put 7.5 in Y so you can put in the 3.9

3.9 ; put in 3.9

/ ; whoops, you divided instead of multiplying
LASTX ; get 3.9 back and ...

* ; multiply to get back to the original value
LASTX ; get 3.9 back again and ...

* ; multiply again to get the required answer

Note that LASTX,* was used twice, to multiply by 3.9 two times. Since you
never make mistakes, you will not need this for corrections, but you can

-89-



use the same process with 3.9 or any other number for repeated
multiplication by a constant. First you put 3.9 (or your chosen constant)
into the LASTX register by putting the number into register X and dividing
by it (or doing some other arithmetic operation) as above. Then you could
repeatedly put numbers into X and press LASTX, *. The same process can be
used for adding, or subtracting or dividing by a constant.

The function LASTX recalls a value from register L. Register L is rather
like an extra stack register (in addition to registers X, Y, Z and T). It
is used to store the previous value of X after most arithmetic operations
so that the function LASTX can be used to bring the value back. Register L
can be used just like X, Y, Z and T for operations such as X<>L or ST/L.
In fact LASTX is equivalent to RCL L. However register L is not exactly a
stack register because it does not move when the stack is changed by roll
up, roll down or ENTER. Register L is also not cleared by CLST. You can
therefore clear registers Y, Z, and T but keep X unchanged by doing
something like +, CLST, LASTX.

Any mathematical function that explicitly changes the value in X is
preceded by an automatic STO L. (Except that L is not changed if the
function fails for any reason.) HP-41 non-mathematical functions that use
X or change it, such as ASTO X, do not save X in L. A few Extended
Functions and Time module functions do save X in L though, because they
alter X, see Chapters 9 and 10. Mathematical functions that do not
normally change X, such as ST+, do not store X in L, even in the case of
ST+X. CHS really performs two different operations; during number entry it
negates the mantissa or exponent (and it is sometimes called the NEG
function under these circumstances). At other times CHS changes the sign
of the mantissa of X; this is really a mathematical operation on X, but it
is treated like the first case and does not save X in L (even though it
does enable stack lift).

Many new users of RPN calculators complain about the absence of a K

(constant) feature without, realising that the L register and LASTX provide
this same facility. If you need to do a lot of constant arithmetic, you

-90-



can write five very short routines that will allow ENTER to act as a
constant store key and + , - , * , / to act as constant operations. Write
the following five subroutines and assign them to the keys suggested. If
you are unsure about assigning keys, check Section 4.3.2, and if you are
unsure about writing subroutines or programs then come back here after you
have read Chapter 6. The subroutines are:

LBL"K ; Assign this to the ENTER key
STO L
RTN

LBL + ; Assign this to the + key
LASTX

+

RTN

LBL"- ; Assign this to the - key
LASTX

RTN

LBL™* ; Assign this to the * key
LASTX
*

RTN

LBL7/ ; Assign this to the / key
LASTX

/
END ; This can be an END or a RTN

To use these routines set USER mode, type in your constant, press ENTER to
store it, then enter any number and press + or - or ¥ or / repeatedly to
use the constant. Of course you must not do any additional mathematics
that would change the value in register L. If you prefer not to use the

-9]-



keys suggested above then you can choose to assign the functions to
different keys.

An alternative way to do constant arithmetic is to use the stack drop
feature that repeatedly copies T into Z. This involves placing the
required constant into X, pressing ENTER three times, then repeatedly
typing in a number, and pressing + or - or * or /. After each calculation
you must press CLX then type in the next number for the calculation with a
constant. This seems more cumbersome than using LASTX, but it allows you
to subtract from, or divide into, a constant (because the constant is in Y,
not in X).

User-written mathematical routines should, if possible, use only the stack
and save X in L just as the HP-41 functions do. Using only the stack
prevents any conflicts between different subroutines that might want to use
the same numbered data registers for temporary storage. Storing the
original X in L makes it much easier to treat user-written routines exactly
like HP-41 functions. A good example is a version of X13 suggested by
Frank Wales, published in HP Key Notes, and subsequently included in the
HP-41CX manual. The value that was in register X at the start is called x
(little x) here to distinguish it from the X register itself.

X12 ; Obtains x squared and puts the original x into L
X<>L ; Puts the original x into register X and x12 into L
ST*L ; Multiplies the contents of L by x giving x13
X<>L ; Puts x back into L and puts x13 into X

At the end of this subroutine, registers Y, Z and T are unchanged. The X
register contains x cubed, and register L contains x which was the original
value in X. If you compare this with the HP-41 function to square X, you
will find that it behaves in exactly the same way.

Register L can also be exploited by programs that need to use a single

register, without affecting the stack or any numbered registers. An
example of this is the program REGS given in Section 7.2. Experienced

-92-



programmers often use functions such as ABS or SIGN to copy X into L.
These functions are faster than STO L and use less memory. SIGN is
particularly good, since it works for text strings as well as for numbers.

4.6 Efficiency: keyboard operations vs. programming.

If you only wanted a calculator to do keyboard calculations, you are
unlikely to have bought an HP-41. (Or did you buy it to impress your
friends?) Presumably you will want to use programs to solve your more
complicated problems. In the following chapters, there will be more
emphasis on programming than on keyboard calculations. Do not forget
though that keyboard calculations also have their uses. Working through a
problem on the keyboard shows you all the intermediate answers. This is
one of the advantages of RPN: it lets you follow the problem and think of
better ways to approach it. Nor is it efficient to write a special program
for solving quadratic equations if you only have one equation to solve. If
you are very short of memory, you can do some preliminary calculations from
the keyboard so that the program you are writing will take up less space in
memory. One example: if a longish program starts by calculating SIN(1/X12)
then you can save three steps by doing X12, 1/X, SIN from the keyboard and
then running a program to do the rest of the long calculation.

This book is meant to help any reader get more from their HP-41, so it
provides suggestions that will simplify keyboard operations as well as
programming. Many of the programming tips are equally suitable for
keyboard calculations, and this should not be forgotten. The next chapter
will describe the mathematical functions of the HP-41 and will give tips
for their use. Many of these tips too will be suitable for keyboard use.
A point to note though is that programs should be as short and fast as
possible, whereas keyboard calculations do not have to be as fast, and they
need to be clear and to use few keystrokes. Thus multiplying a number by
two is best accomplished in a program by the instruction ST+X (add X to
itself, so doubling it). From the keyboard this is not very clear and
takes a lot of keystrokes. ENTER, + or 2, * is clearer.

-93-



2, * is better than ENTER, + if you want to use the keyboard for this
simple operation, because it involves the least movement of your fingers.
Similarly if you are doing a lot of rapid calculations and entering a lot
of numbers then ENTER, * demands less extra movement of your fingers than
SHIFT, X12. Another tip is that -, CHS is easier than X<>Y, -. In all
these three cases you get the same result in X using either alternative,
but the first one is more efficient because it demands less motion of your
fingers.

Exercises

4.A Try to find a copy of John Ball’s book "Algorithms for RPN
Calculators”, published by Wiley. You may find it in a local university
library. He gives a list of stack rearrangements for use on calculators
without a Rf key. (See Section 4.2.3) Try to rewrite some of these
rearrangements for the HP-41, using the R? key and the other extra
functions such as RCL Y, STO Z, X<>T. You will see how much more powerful
the extended HP-41 RPN functions are, and why the HP-41 language deserves a
special name since it goes further than the RPN on earlier calculators.

4.B Given the three values:

A=5.37 ; B=214E-2 ; C=1.18

find a way to put all this information (names and numbers) in the display

simultaneously by making a suitable choice of display characters.

4.C Put PI times 10110 into register X. Set FIX 7 mode, then FIX 8 mode.
Observe that the last displayed mantissa digit is rounded up to 7 in FIX 7
mode, but that the rounding is not seen in FIX 8 mode. This is because the
ncxt mantissa digit has been rounded, but it is not seen as it is covered
up by the exponent. Usec the ALPHA register to check the last mantissa
digit in the two cases.

-94-



4.D A subroutine that works exactly like X172 but calculates X173 was shown
in Section 4.5. Try to write a similar subroutine to calculate Xf4. It
should save the original X in L, put Xf4 into register X and leave
registers Y, Z, and T unchanged. If you found this easy, try to write a
cube root subroutine that works in the same way. (I have been unable to do
this without using Synthetic Programming.)

-95-






CHAPTER 5 - KNOW YOUR FUNCTIONS

5.1 Choose your weapons.

There is a sufficient choice of functions on the HP-41 that most users
select a favourite few and rarely use the others. This is quite
satisfactory until a user spends hours creating a program to provide a
function that already exists. There was a maths professor who once wrote a
whole program to extract the "invisible" digits of a number instead of
using FIX 9. The best way to avoid forgetting about functions that are not
used much is to reread the manual once a year, but who has the time to
plough through 450 pages of HP-41CX manual every year?

This book is not a replacement HP-41 manual, so there is no point in simply
repeating all the function descriptions here. Many functions are mentioned
more than once in the book, some may not be mentioned at all. To help the
reader choose the most suitable weapons for dealing with mathematical
problems, the mathematical and statistical functions are described all
together in this chapter. The descriptions are not intended to be simply a
rewording of the manual, they concentrate on tips for the use of the
functions. The functions used specifically for writing programs will be
described in the next chapter.

5.2 General mathematical functions.

The functions will be described in groups of similar functions. Some
functions appear differently on the keyboard than in the display, the
version used in the display has been used here.

+-*/CHS Need no special comment, they have been described in Section

ST+ ST- 4.2. Remember that CHS, ST+, ST-, ST* and ST/ do not save
ST* ST/ the previous value of X in L.

-97-



ABS SIGN
FRC INT

RND

Functions in this group alter X in a manner that seems
obvious but can be difficult to describe mathematically.
They are therefore more useful in programming operations than
in keyboard calculations. SIGN returns zero if X contains a
text value, and 1 if X contains a number that is positive or
zero. This provides a useful test for ALPHA values, but is
not a true mathematical signum function. The latter can be
provided by STO L, X#0?, SIGN. This replaces X with +1, 0 or
-1 if X is a number, and stops with an error if X is a text
value. SIGN is very useful for storing the contents of X in
register L; unlike + it works for text values, and it is
shorter than STO L.

Do not make the mistake of thinking that RND is a "random
number" function. The HP-41 does not have a built-in random
number generator, although these are available on plug-in
modules, and some are described in Chapter 7. RND is a
rounding function, it replaces the exact value in the X
register with the displayed value. This is very useful when
a number is obtained as a result of a set of calculations and
may be inaccurate. If such a number is to be compared to an
exact value, it should be rounded before the test X=Y? is
performed. The longer the calculation, the less accurate the
result, so choose a suitable number of digits for rounding,
something like SCI 4. FIX 4 would only round the fractional
part of a number, so a number greater than 1015 would not be
rounded at all in FIX 4 mode, but SCI 4 will round to five
significant digits in all cases. (If rounding would make the
number greater than the maximum that the HP-41 can store then
it rounds to the largest value it can store.) If the number
in the display contains an exponent then the last digits of
the mantissa may be hidden (see Section 4.4.1) so the result
of RND might not be exactly the same as the result in the
display.

-98-



MOD

X12 SQRT
Y1X

This is also called the remainder function. (It can be
considered to be an extension of FRC which finds the
remainder of X divided by 1.) It is sometimes difficult to
remember exactly what the result of this function is when X
or Y are negative. Best remember the formula

MOD = Y - MINT(Y/X)*X

MINT(Y/X) is the maximum integer not larger than Y/X. For
example Y=-4 , X=3 gives

-4 - MINT(-4/3)*3 = 2

because the largest integer not greater than -4/3 is -2. The
special cases are: X=0 returns Y as the result, and Y=0
returns 0. A typical use of MOD is to bring a value in
degrees into the range 0 to 360 degrees. Put the value (say
-790) into Y, put 360 into X, and execute MOD to see that
-790 degrees is equivalent to 290 degrees. This is simpler
than using a collection of X>0? and X<=Y? tests.

An additional amusement here. How can you compute the sum of
the digits of any integer N ? (For example the sum of the
digits of 1985 is 5 because 1+9+8+5=23 and then 2+3=5.)
Simply use N, ENTER, 9, MOD to get this number.

The limitations of these function should be remembered. SQRT
requires that X be positive. Y1X requires that X must be
integral for negative Y, and X must be positive for zero Y.
The sequence SQRT, X12 rarely returns exactly the original
value and should be followed by RND, as described above,
before any test is made. Yf(1/X) - called involution - is
calculated by doing Y, ENTER, X, 1/X, Y1X.

-99-



% %CH

LOG 101X
LN E4X
LN1+X E1X-1

DEC OCT

Remember that these functions use X and Y, but leave Y
unchanged. The sequence 1, % is shorter and faster than 100,
/ but it leaves Y unchanged whereas 100, / drops the stack.
Similar sequences can be used in cases such as .03, * which
can be replaced by 3, % saving two keystrokes and some
program space. It is useful to remember that %CH provides
the value
((X-Y)/Y) * 100

Volume 2 of the HP-41CX manual gives a good description of
this function together with some extra tips.

The two functions EfX-1 and LN1+X should really have been
called (E1X)-1 and LN(1+X). They provide improved precision
for financial calculations and for some special mathematical
functions such as hyperbolics. In financial calculations,
compounding can be done more accurately, and in hyperbolic
function calculations, TANH and ATANH can be obtained more
accurately. See Chapter 7 for a hyperbolic function program
and Chapter 12 for a description of the PPC ROM which uses
these functions in an accurate financial program.

The HP-41 allows for arithmetic on hours-minutes-seconds
numbers (see below) but otherwise it works in decimal. This
stick-in-the-mud attitude is somewhat alleviated by DEC and
OCT. DEC allows for the conversion of octal numbers to
decimal so that arithmetic can be done on them; OCT allows
for the conversion of the results back into octal so that
they can be checked. Both DEC and OCT work only on integers,
so numbers with fractional parts have to be scaled by the
appropriate power of 10 or 8. DEC and OCT can of course also
be used just for conversions, say of octal numbers in a
computer dump. This is fine if you are using a computer that
displays results in octal, such as a CDC. It is less help if
your computer displays results in hexadecimal, such as IBM or

-100-



FACT

ISG DSE

Hewlett-Packard (!) computers. (Even the HP-41’s internal
microprocessor has a hexadecimal mode.) DEC and OCT are also
useful for shuffling digits in a number for random number
generation or encoding messages. See Chapter 12 for a
description of the HP-IL Development ROM which provides a far
more complete set of functions for working with binary, octal
and hexadecimal numbers. The ultimate tool for such work is
the HP-16C computer science calculator.

The factorial function (X!) is wuseful for work with
combinations and permutations, but only works for integer
values of X up to 69. Setting flag 24 (to allow arithmetic
overflow) is dangerous when used with FACT since it can lead
to answers that are incorrect even though this is not
immediately obvious. For example 70!/69! will come to 58.4
if you have flag 24 set. This is incorrect, but is close
enough to 70 that the error may not be noticed till later if
at all.

Judging by the number of programs in the User Libraries, the
extension of the Factorial function to non-integer values and
values over 69 is important to many users. Any HP-41
successor should certainly have these two features, perhaps
in the form of a log Gamma function. In the meantime,
rearrangement of functions, logarithms, and use of Stirling’s
approximation and approximate Gamma functions (one is given
in the High-Level Maths Solutions Book) will have to do.

Although these are really loop control functions, they can
also be used to repeatedly add or subtract a constant. See
Section 6.8 for details, and also for a note on the Card
Reader functions 7ISZ, 7DSZ, 7I1SZI, and 7DSZI which can be

used instead.

-101-



5.3 Times and angles.

HR HMS

HMS+ HMS-

Very useful for converting to decimal hours (or decimal
degrees), and back to hours, minutes and seconds (or degrees,
minutes and seconds). Remember that fractions of a second
are decimal numbers, not parts of 60. See the warning (about
display formats) after HMS+, HMS- below.

Save the need for converting minutes and seconds to fractions
before doing arithmetic with them. (Very useful with the
Time module.) HMS- seems an unnecessary luxury since it is
equivalent to CHS, HMS+. The first HP programmable pocket
calculator, the HP-65, had the same function, called DMS-.
The successors to the HP-65, the HP-67 and the HP-97, did not
have such a function, and many users complained. This may be
why the HP-41 has HMS-, even though it is not strictly
necessary.

Be warned: the display will round up values such as 1 hour,
59 minutes, 59.6 seconds to 1 hour, 59 minutes, 60 seconds,
or even to 1 hour, 60 minutes. This is because the rounding
function knows nothing about rounding up Babylonian (base 60)
numbers; only the HMS functions know about that. It would
probably have been better to leave out the HMS- function and
provide a time rounding function on the HP-41. The simplest
way to avoid potentially embarassing time displays such as 1
hour, 60 minutes is to execute RND (round the value in X to
the displayed value), then HR (convert the value in X to
decimal hours), then HMS (convert the value in X back to HMS
format, but HMS will calculate and display times correctly).

-102-



DEG RAD
GRAD

R-D D-R

SIN ASIN
COS ACOS
TAN ATAN

P-R R-P

Use these to make sure the correct mode is set before
calculations with angles. Remember that many operations such
as integration require the natural mode for angles, namely
radians not degrees. See Sections 11.10 and 15.2 for
discussion of a single key assignment that will let you
toggle among all three angular modes.

Convert radians to degrees or degrees to radians. Faster
than using pi and 180, they do not lift the stack. See
Section 7.4 for a way to use R-D as part of a random number
generator.

SIN, ASIN becomes somewhat inaccurate for angles very close
to 90 degrees, and COS, ACOS has the same problem near zero.
ASIN and ATAN provide answers in the range -90 to +90
degrees, but ACOS provides answers in the range 0° to 180°.
SIN has a bug on early HP-41s when using very small angles,
see Appendix C.

Many computers provide an ATAN2 function to provide an answer
in any of the four quadrants (from -180 to +180 degrees). On
the HP-41 R-P can be used to provide the same function; see
below. If it is necessary to calculate both the sine and the
cosine of an angle, P-R can be used to do this quickly; see
below again.

These are extremely useful functions, not only for converting
between polar and radial coordinates in two dimensions but
also for several other operations.

i. To obtain the sine of an angle (in Y) and the cosine of
the angle (in X) at the same time. Put the angle in the X
register, then do: ENTER, 1, P-R. This is much faster in a
program than SIN, LAST X, COS. It does not save the angle in
L, but you can save the angle in Z by doing ENTER two times.

-103-



ii. To obtain SQRT(a12 + bt2 + ¢12 + .. ). Type in a, press
ENTER, type in b, press R-P, type in c, press R-P and
continue for all the terms in the square root. At the end,
the result is ready in X.

iii. To obtain the angle between -180° and 180° whose tangent
is given by X/Y. This is a function provided on many
computers under the name ATAN2(X,Y). Type in X, ENTER, type
in Y, press R-P, X<>Y. The angle is now in register X. A
program to simulate ATAN2 exactly is given in the next
chapter. See Exercises 5.B and 5.C for additional uses of
R-P and P-R.

5.4 Summations and Statistics.

These differ from the other mathematical functions in several respects and
should therefore be used with care. The most important difference is that
these functions use, and alter, a block of six numbered data registers
without making it obvious which registers are affected. All other
mathematical functions leave the numbered data registers alone, except for
the storage arithmetic functions which have a parameter to show which
register they use. Overflow errors caused by X+ and I - are ignored, even
when flag 24 is clear, but they may subsequently cause errors in the
calculation of MEAN or SDEV. :+ and I- can give error messages even if X
and Y contain valid data, since the statistics registers themselves may
contain unexpected values such as ALPHA DATA. It is always nececcary to
execute CLI before starting a new set of statistical operations. Once
again, this can affect unexpected registers in memory, so CLEX should be
preceded by ZIREG nn. IREG allows you to define the block of six
consecutive registers that will be used for statistics. You have to give
the register number, nn, of the first register in this block, and you have
to ensure that the SIZE is set so that all six registers exist (the default
setting of nn after MEMORY LOST is 11). The six registers contain Ix,
Ix12, Ly, £Iy12, Ixy and n, where n is the number of data values
accumulated. (This information is given in the Owner’s Manuals and in the

-104-



HP-41C Quick Reference Guide, but it is left out of the HP-41CX Quick
Reference Guide. Best put it into one of the large and wasteful blank
spaces of the HP-41CX Guide. Page 28 would be a good place.) The
statistics functions suffer from two (fairiy trivial) bugs; see Appendix C.

L+ -
CL

MEAN SDEV

LREG

I+ and I - leave Y unchanged, save X in L, put n into X and
disable stack 1lift. This means that LAST X, I- immediately
after a I+ will cancel the effect of the I+ if you decide
you made a mistake. It is for this reason that stack lift is
disabled after I+ (and - in case you change your mind
again).

MEAN and SDEYV replace the contents of registers X and Y
without lifting the stack. X is saved in L but Y is
irretrievably lost. I+ and I - allow numeric overflow and
simply store 9.999999999E99, but MEAN and SDEV may give
overflow errors as a result. To correct this, you will have
to alter the register whose contents are too large, or store
a large number in n, then rescale the result. MEAN and SDEV
calculate the mean and standard deviation of both X and Y;
since an overflow on Iy will prevent you from getting any
results forrX it is a good idea to clear the Y register
before doing any statistical accumulations that use X only.
SDEV gives the sample standard deviation; to obtain the
population standard deviation execute MEAN,z+, SDEV. This
operation will not change the mean, but it will turn the
result in terms of the original value of n into a population
standard deviation. See Exercise 5.D for details.

Once you have executed EIREG nn, you cannot easily find out

EREG?(41CX) what nn is. The HP-41CX provides a £ REG? function for this

purpose. On the HP-67 and 97 there was a RCL function which
overcame this problem at least partly, by returning Ix to X
and £y toY. The Card Reader provides the same function,
7RCLEZ, but if you do not have a Card Reader you will have to

-105-



write the function yourself; see Exercise 5.E.

On the HP-67 and HP-97, the statistics registers always
started at register 14. The Card Reader therefore translates
HP-67/97 programs so that every statistics function except
RCLZ is preceded by IREG 14. This can waste a lot of
space. Any HP-67/97 program that contains a statistical
function immediately after a test (such as X=0? or 7ISZ) will
also go wrong because it will skip the IZREG 14 line, not the
statistical function itself. For these two reasons it is
best to delete all the IREG 14 lines in a translated program
and just put EREG 14 at the start of the program. 7RCLZ
assumes that the statistics registers begin at register 14
and recalls register 14 to X and register 16 to Y,
overwriting the previous contents of X and Y. It does not
save X in L as it should, this too can cause errors on
translated HP-67/97 programs.

5.5 Indirections.

This chapter so far has contained lots of directions for using functions.
Now let us have some indirections! (What other name would you suggest for

"indirect directions" ?)

A simple example first; you want a program to execute all the TONEs from 0
to 9. One way to do this is to store the 10 instructions TONE 0 to TONE 9
in the program. A different way is to put the numbers 0 to 9 into the X
register one after another and to execute TONE IND X each time. The TONE
to be executed each time is given by the number in X; it is provided
"indirectly", not attached directly to the TONE instruction itself. You
need not put the numbers in X; you could put them in any other stack
register or data register numbered below 100. For example you can put
various numbers into register 12 and execute TONE IND 12 ecach time.
Instead of giving a TONE number, you give an address where the TONE number
is to be found - an Indirect parameter.

-106-



Here is another way of looking at it: In a moment of indiscretion I loaned
my HP-41 to Dave, now I want to go to Dave and get it back. But I do not
know where Dave lives. Instead I have to go to Ian first and ask for
Dave’s address, then go to Dave. This can be called Indirect Addressing.
Instead of going directly to Dave’s address, I have to go indirectly via

Ian.

The HP-41 allows similar indirect addressing. You can directly recall
something from register 10 by using RCL 10. You can also put 10 in
register 00 (or any other register up to register 99), then use RCL IND 00.
Instead of wusing address 10 directly, the HP-41 looks for an indirect
address in register 00, finds 10, and then recalls the contents of register
10. This means that you can write a program even if you do not know which
registers that program will use. The program can use indirect instructions
to work out for itself which registers to use.

To execute RCL IND 00 as above, you press RCL, then the SHIFT key, then 00.
The SHIFT key has an extra use, working as an "indirection" key when it is
pressed after a parameter function. Any numbered register from 00 to 99
can be used after IND. The stack registers X, Y, Z, T, and L can also be
used. (Press the point key after SHIFT and then press one of the keys
marked with the letters X, Y, Z, T, L. This works in just the same way as
using the stack registers for direct operations such as RCL Z.)

Let us take a more realistic example than RCL 10 used above. Say you need
to store a value in one of the numbered registers. Normally you would do
something like STO 20, but in some cases you may not know whether 20 is
free or if something important is already stored there. (For example if
you have a list of telephone numbers, you may want to add another telephone
number to the end of the list. You do not know how many telephone numbers
there are when you write the program; it must be written to let you find a
free register and put the next number in it, and also increase a counter
that tells you how many telephone numbers there are in the list.) So you
decide to use register 25 to tell you how many registers are already in
use. If registers 00 to 49 are all being used, then register 25 will

-107-



contain the number 49. This will tell you that register 49 is in use and
that register 50 is the first unused register. Your program (any program)
could then add one to the number in register 25, then do STO IND 25. This
will store the contents of register X in register 50, and you will also
have changed register 25 so that you know that registers 00 to 50 are in
use.

STO, RCL, and X<> can only directly address registers 00 to 99 (unless you
use Synthetic Programming) so all registers over 99 have to be addressed
indirectly. For this reason registers 00 to 99 are sometimes called
primary storage registers and registers 100 and above are called extended
storage registers. This naming is not really necessary, and is best
avoided to prevent confusion of extended storage registers with Extended
Memory.

Most functions that take a direct parameter can also take an indirect one.
This includes storage arithmetic and flag operations. If you want a
program to set the display to show a chosen number of digits then the
program can ask the user for the number, store it in register nn, and later
use FIX IND nn to set the display when required. Indirect addressing is
particularly useful with the program control functions GTO and XEQ, this
will be discussed in Chapter 6. Of the non-programmable functions only CAT
takes indirect parameters. This is not really much use since it is easier
to press CAT n than to press n, then store it, then press CAT IND nn.
Indirect catalogues have a couple of rather trivial bugs (see Appendix C)
and the HP-41CX manuals deal with this by simply not mentioning the
indirect use of CAT.

During keyboard calculations the user normally remembers things such as
display settings and register numbers, so there is rarely much need for
indirect operations. The indirect functions are of most use in programs.
A particularly effective use is that of STO IND or RCL IND together with
ISG or DSE; this will be discussed in Section 6.8. Although the indirect
instructions can wuse stack registers to hold an indirect address, the
indirect address itself must be a number. Thus STO IND Z is allowed, but

-108-



the indirect address in Z must be a number, not a letter such as Y or L.
(The only indirect operations that allow stack registers as addresses are
the HP-41CX indirect test functions described in Section 10.6.)

Exercises

5.A CHS can be used both as a mathematical function and as part of a
numeric entry. How about EEX? What happens when you enter a number
without a mantissa by just pressing EEX? Does the same thing happen in
PRGM mode? Is this sensible? See Section 14.1.

5.B Just as R-P can be used to speed up the calculation of SQRT(at12 + b12)
so the SIN, COS, TAN, ASIN, ACOS, and ATAN functions can be used to
calculate results like SQRT(1-x12) in fewer keystrokes. Try to write out
combinations that will let you work out SQRT(1-x12) and SQRT(1+x12). Use
only registers X, Y, Z, T, and L.

5.C The functions R-P and P-R can be used for rotations in three
dimensions as well as for two dimensions. Work out the steps required to
go from a Cartesian X, Y, Z coordinate to a Spherical Polar R, Theta, Phi
coordinate and back again. Use only X, Y, Z, T, L.

5.D Prove that the operations MEAN, I+, SDEV provide a population

standard deviation instead of the sample standard deviation given by SDEV.
The formula for a sample standard deviation is:

SQRT( [n£(x12) - (2x)12]/[n(n-1)] }

and the formula for a population standard deviation in terms of the same

values is:

SQRT({ [n£(x12) - (£x)12]/(n12) }

-109-



5.E Write a subroutine to recall Ix to register X and Iy to register Y
without altering the statistical values themselves. See if you can write
the routine so that the previous value in register X is saved in one of the
registers Z, T, or L. Hint: remember that £+ and - recall n to register
X.

5.F If you want to clear every second register from the keyboard so as to
leave only the even registers unchanged, you will have to press CLX,
STO 01, STO 03, STO 05, STO 07 and so on. After a while it is very easy to
slip up and press an even number by mistake. If you need to do something
of this sort, see if you can do the same thing more safely by putting
1.00002 in register Y, clearing X, and then alternatively pressing STO IND
Y and ISG Y until all the registers have been cleared and you get
NONEXISTENT. If you know about Synthetic Programming, or if you use the
GASN program in Chapter 11, you will even be able to assign STO IND Y and
ISG Y to keys so that each of these functions can be performed with a
single keystroke. The safest thing of course is to write a program to do
the whole job, and this leads us to the next chapter.

-110-



CHAPTER 6 - SOMETHING ABOUT PROGRAMMING
6.1 A Simple Program.

To calculate the area of a circle whose radius is in X, you need to press
X712, PI, * For every new circle you need to press these three keys again.
It leads to fewer errors, and is much easier, if you store this sequence as
a program and execute it by pressing a single key. In effect, this key
represents a new HP-41 function which calculates the area of a circle.

When you put the HP-41 into PRGM mode, then press a set of keys, the HP-41
memorises the functions instead of executing them. The memorised sequence
of functions makes up a single program. If you want to try writing a
circle program, follow the next paragraph, otherwise skip over it.

Press GTO.. first. This packs program memory, removing unused space from
other programs and makes an area in memory rcady for the new program.
Next press PRGM to enter program mode and press X12, PI, * to write the
program. Each step is stored and displayed with its step number. Press
SST twice to go past the END of the program and back to its first step (the
step X712 and its line number appear in the display). Press PRGM again to
go back to RUN mode. Now you can run the program repeatedly by putting
different radii in X and just pressing R/S for each value. Try it and see.
Put 5.642 in X and press R/S - the answer should be just over 100.

If all programs were as simple, there would be no need for the rest of
this chapter. However most programs need to do more than go straight
through working out an equation. Special functions are used to let
programs make tests, ask for information, and display results. Further
instructions are wused to alter programs, and to identify different
programs. These and other functions will be covered in the rest of Chapter
6, and some example programs will be given in Chapter 7.

-111-



6.2 Using Labels To Identify Programs And Routines.

The example program given above works, but what happens when you write
another program, or ten more programs? Each program must be separately
identified, and in big programs each section may need to be identified. On
many calculators (and in some versions of BASIC) the only way to identify a
piece of a program is by the line number. You can do this on the HP-41
too, for example go to line 03 of the circle program by pressing GTO then .
(the . means go to a line number), then 003. Press PRGM and you will see
that the HP-41 displays line 3 of the circle program. The HP-41 with full
memory can however store up to 2238 lines of program, and looking for a
particular one of these could take a long time. To make life easier you
can split the program memory up into separate programs, by using GTO.. as
in Section 6.1 and each program can be identified by one or more labels.
Try putting a label at the front of the circle program. Press GTO.000,
this gets you to line 000 which is the front of the program. As there is
no step number 000, the HP-41 displays the number of free registers still
available for writing programs. Now press LBL, ALPHA, A, R, E, A, ALPHA.
This produces a new line 1: 01 LBL"AREA" and the other lines have all moved
down by one. The circle program can in future be identified by this label.

Now that the program has an identification, you can write a new program,
say to calculate the volume of a sphere. First press GTO.. to separate the
old program from the new one. You could go to the last line of the program
and press XEQ "END" instead (remember to press ALPHA before and after
pressing the alphabetic keys to spell the function or program name). Both
methods put an END at the end of the previous program, but GTO.. also packs
memory. Make sure you are in PRGM mode, then write the new program as
follows:

LBL "VOLUME", X12, LASTX, *, 4, *, 3, /, PI, *, PRGM
To run the program, you can press SST twice to get to the front, then

press R/S, or you can press RTN (on the SHIFT EEX key) to get to the front,
then press R/S. You can also press XEQ "VOLUME". Since R/S runs a program

-112-



from the step at which the HP-41 is positioned, you can no longer run the
circle program by pressing R/S. The step pointer is now positioned inside
the volume program. A program, in this mecaning, is the set of instructions
from one END to the next END, including the second END, but not the first.
The steps in a program are numbered consecutively starting at 01, and the
step pointer points to the current line. The current line is the line that
would show up if you were in PRGM mode and the current program is the one
which contains this line.

You can run the circle program again by pressing XEQ "AREA". You can
also assign the program to a key by using ASN. Press ASN, "AREA" and then
the particular key that you wish to use, or shift and the shifted key. For
more details of ASN, sce Section 4.3.2. You can now run the areca program
whenever you wish just by pressing the selected key on the USER keyboard.

The labels AREA and VOLUME are called global labels. This means that they
can be recognised at any time and from any place in HP-41 memory. There
are also local labels which are only recognised inside their own program.
Local labels are numeric labels LBL 00 to LBL 99 and the special alphabetic
labels LBL A to LBL J and LBL a to LBL e¢. A typical example of using
local labels would be in a program that solves quadratic equations. One
label identifies a section that solves for real roots, with another label
for the section that solves for imaginary roots. If these two sections are
identified by LBL 00 (created by pressing LBL, 0, 0) and LBL 0l
respectively, then these two labels would be found by a GTO only if the HP-
41 was positioned at that particular program. Other programs could also
have their own LBL 00 and LBL 01 without causing confusion.

The same local label can be repeated several times in a program. Each time
the HP-41 needs to find a local label it starts searching from the
current line in the program. It searches down to the END, then restarts at
the top of the program until it comes back to where it started or finds the
label. The first time it finds a label, it finishes the search, so another
label with the same number could be put further down in the same¢ program.

This label would not be found by a GTO which has already found another

-113-



label with the same number. However another GTO further down in the

program could use the seccond label as its target.

The local labels identified by single letters A to J and a to ¢ behave like
numeric labels, but have an additional feature. You can crecatec these
labels by pressing LBL, ALPHA, letter, ALPHA. If the letter is in the
range A to J or a to e (obtained by pressing SHIFT followed by one of the
top row keys), then you get a local label. If you press any other letter,
or more than one letter, then you get a global label. Global labels appear
in the display with a text marker (7) in front of them while local labels
do not have this marker.

The special feature of the local alphabetic labels is that they are
automatically assigned to the top two rows, and the shifted top row, of the
keys. Thus in USER mode, you can press the [E] key (function LN), and the
HP-41 will look through the current program for a local LBL E and will run
the program after that label. If LBL E is not found, the function LN will
be performed. If a different program or instruction has been assigned to
that key, then that assignment will be used, and LBL E will not be searched
for. More than one LBL with the same letter can be put in a program, the
secarch always starts at the current line, and stops at the first
corresponding label. It is important to rcalise that a LBL E in another
program will not be found; only the current program is searched. It is
also important to realise that global labels A to J and a to e cannot be
created by normal means. Special methods to synthesize them will be
described in Chapter 14. It is possible to crcate global numeric labels
such as LBL "12" by pressing LBL, ALPHA, SHIFT, 1, SHIFT, 2, ALPHA. You
must be careful not to confuse a label like this with a local LBL 12.

6.3. Searching For Labels With GTO and XEQ.
A label is no use unless it can be found. One way of finding labels is to
assign them to keys, or use the default assignment of local alphabetic

labels to the top two rows of keys. This will only work if your target
label (the label you are aiming to find) is assigned to a key or is onc of

-114-



the local labels (A to J and a to ¢). A more gencral mecthod is
to use GTO followed Dby ecither a two-digit label number,
or by an alphabetic local or global Ilabel In PRGM mode,
this will be recorded as an instruction whether or not the label can be
found. In keyboard execution, the label becomes the current program line,
or if the label cannot be found, the HP-41 displays NONEXISTENT. The GTO.
instruction (created by pressing GTO and the decimal point), cannot be
programmed and therefore can be used in PRGM mode. As described in the
previous scction, it can be used to go to a specific line in the current
program. GTO. can also be used in PRGM mode to go to a global alphabetic
label. If you are looking at the program VOLUME in PRGM mode, you can
press GTO, ., ALPHA, A, R, E, A, ALPHA to go to LBL "AREA" without lcaving
PRGM mode. GTO. can also be used in run mode to go to linc numbers, which
can be uscful, and to global labels, which is not particularly uscful as
GTO will have the same effect.

GTO will simply go to a label. If the GTO is a step in a running program
then the program will carry on running from thec label, but if GTO is
exccuted from the keyboard then it will just causc the label to become the
current program line. If you want to go to a label and run a program
starting at that label then you should use XEQ instead of GTO.

The XEQ instruction lets you perform or "exccute" a function or a
subroutine starting at a local label, or run a program starting at a global
label. All these concepts, together with the idea of "Alpha cxeccution",
were introduced in Section 3.5. (You may want to rcrcad Scction 3.5 to
remind yoursclf of the basic ideas that will be used here.) When performed
as a keyboard operation, XEQ causes the immediate exccution of a function
or routine. When performed as a step in a running program, XEQ cxccutes
the named function or routine as if it was a single line in the program;
then the running program goes on to its next line. Let us take three
examples to make this difference clear. The first one shows what happens
when you use GTO to go to a routine in the HP-41. Imagine you go to the
beginning of the program "EX1" and press R/S. The arrows show the order in

which the steps will be carried out.

-115-



LBL "EX1"

X142

1/X
GTO "SINC"
LBL "SINC"
SIN
LASTX
/
END

You can see how the HP-41 goes from the routine EX1 to the label "SINC",
carries on from that label, and finishes at the END. (It would also have
finished at a RTN. Indeed RTN and END are supposed to do the same job here
except that END also marks the end of a complete program in HP-41 memory as
was described in Section 3.5.) Now sece what happens in the second example,
which contains XEQ "SINC" instead of GTO "SINC".

LBL "EX2"
. LBL "SINC"
X12 SIN
1/X LASTX

Y XEQ "SINC" /
SQRT <——— RTN or END
2
*

Y END

-116-



This time the routine SINC is executed as if it were a single step in the
routine on the left. When SINC is finished, the HP-41 goecs back to the
routine from which it was executed, and this carries on from the next line
after the XEQ.

The routine SINC itself could execute another subroutine which would return
to SINC, since RTN or END send you back to the next line after the latest
XEQ. There will be no confusion between the return to SINC and the return
from SINC to EX3, because the HP-41 saves each return address separately.
The rcturn address is stored until there has been a corresponding return to
that address. Then it becomes the current address again and is removed
from the list of return addresses.

LBL "EX3"
LBL "SINC" /LBL "CHECK"
. XEQ "CHECK" 1 E-97
X172 SIN X<Y?
1/X LASTX CLX
XEQ "SINC" / +
SQRT <«——— RTN END
2
*
XEQ "CSINC"
¢! END

(The routine CHECK checks if the value in X is very small, and if so then
it replaces that value with a slightly larger one to avoid a possible
division by zero in SINC.) The routine called from SINC could contain yet
another XEQ, in fact up to six XEQ instructions can be saved, and the HP-41
will always return to the step after the latest XEQ. Until the return is
actually carried out, the HP-41 is waiting for it, and the return is said

-117-



to be pending (because it is suspended, or "hanging on"). The HP-41 stores
pending return addresses in a subroutine return stack, rather like the RPN
stack of X, Y, Z, T. This stack has room for six rcturn addresses, so if
more than six XEQs are carried out without a corresponding rcturn, then the
carlicst rcturn address is lost and the HP-41 stops instcad of rcturning at
the corresponding RTN or END. This is rather like losing the top valuc off
the X, Y, Z, T stack if morc than four values arc ENTERed. After the SINC
routine has returned to the main program, therc arc no pending returns, so
later on XEQ "CSINC" counts as the first return in the stack, not as the
fourth.

The behaviour of XEQ requires some more explanations. When you press the
XEQ key you see XEQ followed by two prompt signs. You can fill these in
with two numbers representing a numeric local label, or you can press ALPHA
followed by a letter representing a local Alpha label and ALPHA again.
Instcad of a local Alpha label, you can use onc to scven characters which
represent the name of a routine or a function. The cffect of this differs
in PRGM mode¢ and in run mode, let us consider PRGM mode¢ first. The HP-41
will search for the namec through all of thc programs and functions in
memory. The search goes through CATalogucs 1,2 and 3 in that order, as was
described in Section 3.5. If the name is found in CAT 1 it is rccorded as
XEQ "name". If the name is found in CAT 2 then it is recorded as
XROM "name" if it is the name of a routine, or as the name itself (without
quote marks) if it is a function. If the name has still not been found
then CAT 3 is searched, and the function name is reccorded if found. (This
is why searching for a CAT 3 function can be rather slow on an HP-41CX; it
is not found until CAT | and CAT 2 have been scarched, and CAT 2 contains a
lot of functions on an HP-41CX.) Finally, if thc namec has still not been
found, it is recorded as XEQ "name", on thec assumption that it is thc namc
of a routine which you have not yet written, or that it rcfers to a name in
a module that is not plugged in. Local label XEQs arc immediately recorded

without a search.

If you use XEQ in run mode, then the search is performed in the same order,

but the function or routine is executed at oncc if it is found. (If the

-118-



name is found in CAT 2 then the wrong instruction might be carried out if
two modules have the same number; see Section 12.5.) Local labels are
searched for in the current program only dnd executed at once if they are
found. The NONEXISTENT message is displayed if the name (or local label
number) is not found.

The "non-programmable" functions such as GTO., PACK and SIZE cannot be
stored in a program. These functions are executed at once, even if you XEQ
them in PRGM mode. Some of these are available in programmable versions,
others can be made programmable by Synthetic Programming; this will be
covered in Chapter 16.

Once an XEQ instruction has been used to write a line in a program, the
corresponding label or function will have to be found when the program is
run. There is no problem with CAT 3 functions since these are always
available on every HP-41 (unless it is faulty), and are recorded as normal
program steps. A CAT 2 function or program is actually stored as a module
number and the number of the program or function in the module. If the
module is removed then the step will be displayed as XROM followed by these
two numbers (see Section 3.5 again) and the program will stop at the XROM
instruction displaying NONEXISTENT. If a different module with the same
module number is inserted then the HP-41 will try to find the program or
function with the specified number in that module, and will execute it if
found. This can produce entirely unexpected results; see Section 12.5.

The most complicated situation arises when a running program finds an
XEQ "name" instruction. The HP-41 first looks for the name in CAT 1, then
in CAT 2, in the order described in Section 3.5. In this case, confusing
results will be obtained if more than one module contains a program or
routine with the same name (Section 12.5 covers this as well). If the name
is not found in CAT 1 nor in CAT 2, it is most likely a name that you have
deleted from CAT 1 or forgotten to put into CAT 1 (such as a program which
you were going to read from a magnetic card, but had forgotten about). It
could also refer to a module or peripheral device that you have forgotten
to plug in. There is, however, a third possibility; it could be the name

-119-



of a CAT 3 substitute which you wrote and then deleted (for example an
alternative version of ATAN which you were checking out). If you have
deleted the substitute, you may have done so by accident, or you may have
done it on purpose so as to use the ordinary CAT 3 function. In the first
case the HP-41 should stop with NONEXISTENT, but in the sccond case you
would want the HP-41 to execute the CAT 3 function. Thc HP-41 dcsigners
could not know in advance which of these cases to expect, so they chose the
safest action; CAT 3 is not searched, so for example XEQ "ATAN" in a
running program will not execute the ATAN function. This is particularly
important if the name of your routine was the same as thc namec of a CAT 3
function but your routine did something completely different. If you wrote
a random number generator called RND and later deleted it then you would
not want the HP-41 to execute the CAT 3 function RND (round) instcad. This
bchaviour of the HP-41 is consistent with HP policy which is to protect
users from their own possible stupidity, but it should have been explained
clearly in the HP-41 manuals.

Going into USER mode and pressing a key to which a function or routine has
been assigned works just like Alpha execution. In run mode¢ the routine or
function is executed at once. In PRGM mode the routinc or function is
recorded as a program step, as a function name or as XROM or as XEQ. This
too shows how XEQ is designed to be as similar as possible to exccuting an
HP-41 internal function.

To summarise: the purpose of XEQ is to let wusers trcat their own
subroutines in exactly the same way as HP-41 functions. XEQ "MOD" means
the HP-41 should execute the HP-41’'s MOD function, then go on to the next
stecp. XEQ 01 means the HP-41 should execute the user’s subroutine at
LBL 01 till it comes to a RTN or END then go back to the step after XEQ 01.
The subroutine at LBL 01 can call other subroutines to a maximum depth
of 6. XEQ "FACT" mecans the HP-41 should execute or store thc CAT 3
function FACT. XEQ "FRED" means the HP-41 should cxccute (cither
immediatcly in run mode or when the program being written is run) the
user’s own subroutine called FRED, exactly as if it were one of thc HP-41

functions.

-120-



6.4. Finding Your Place, Compiled Addresses, CAT 1 and Indirect Execution.

Both GTO and XEQ have to find their target labels by looking through
program memory. In a long program, this scarch may take some time and may
be repeated often. Local GTO and XEQ instructions thercfore storc the
distance to the target label when they find it the first time. Every time
the GTO or XEQ is repeated it can then jump dircctly to the label, without
looking for it, and this saves a lot of time.

This process of storing the distance to a label is called compilation, and
the GTO or XEQ is said to have been compiled. When a program is altered so
that instructions are moved or deleted, the jump distance may change, so
the entirc program is decompiled at the end of the cditing. This mecans
that ecach jump distance is changed to zero, which tells the HP-41 that the
distance is unknown. As the program executes again, each GTO or XEQ is

compiled again the first time it is encountered.

It would be unreasonable to decompile every program in memory just because
onc program has been altcred. Decompilation therefore affects only local
labcls within the program that has been edited. (The cditing of this
program will not affect jump distances within othcr programs anyway.) A
different scheme is used to speed up a search for global labels. The HP-41
always keeps a record of the position of the last END in memory. To show
this is special, it is displayed as .END. (followed by xxx which is the
number of freec registers left for writing programs). The distance to the
global label that comes before it is stored inside the .END. itsclf. Each
global LBL or END in turn stores the distance to the preceding END or
global LBL. In this way there is a chain of ENDs and global LBLs which can
be followed without a need to look through every program stcp. The last
END or global LBL in this chain is the first onc in memory, since the chain
runs backwards. This END or global LBL has nothing to connect to, so it
storcs a zero as the distance to the previous item. A running program
scarches up this chain, starting at the .END. whenever it comes across a
GTO or XEQ that refers to a global label. If the LBL is found, exccution

-121-



continues from it, otherwisc CAT 2 is searched.

When you do a CAT 1, the HP-41 starts at the .END. and runs up the global
chain until it finds the LBL or END with a zero distance to the previous
item. It displays this as the first item in CAT 1. Then it runs up the
whole chain again, displays the previous item and repcats this again and
again. You may have noticed that CAT 1 actually spceds up as it progresscs
since it has a shorter distance to go cach time until it eventually rcaches
the .END. and finishes. You can stop CAT 1 by pressing R/S. The END or
global LBL displayed becomes the current instruction. You can then SST or
BST to any other global LBL or END (do not press backarrow at this time or
you will come out of CAT 1 and SST or BST will only move you through the
current program). This is the only simple way of getting to a program that
does not contain a global LBL. Use CAT 1 and stop at an END that docs not
have a global LBL before it, or stop the cataloguc somcwhere clsc and SST
or BST to that END. When you press the backarrow key you exit from CAT 1,
and you are at that program. Best put a global LBL in it.

To help save program memory, the local labels LBL 00 to LBL 14 and their
corresponding GTOs take less space than the others. This mcans that the
GTOs have less room for the distance to thc labels, and they can only
compile a distance of 112 bytes or less. Dctails of byte distances and
GTOs will be given in Chapter 8. For now, it is best to remember that
these short-form labels 00 to 14 and their GTOs save space but should only
be uscd if they are less than about 40 lines apart.

Another point to notc is that a subroutinec can call itsclf. If a
subroutine at LBL 50 necds to do a job that the subroutine does, it can
contain XEQ 50. This is called recursion and is impossible even in
computer languages like FORTRAN, but the HP-41 language, FOCAL, lcts
you do it. Of course, the maximum number of pcnding subroutines can still

only be six, as mentioned at the end of Section 6.3.

Both GTO and XEQ can also take indirect paramcters. You can calculate a
number depending on a sct of conditions, store it in rcgister nn, and XEQ

-122-



or GTO IND nn. This will let you skip over various picces of the program
that are necessary only in certain cases. Take the following cxample.

A program to work out personal tax has to allow for pecople who pay no
income tax, pay income tax only at standard rates, or pay income tax
at a standard plus a higher rate. An individual may have worked in
more than onc kind of job during a year, so the tax has to be worked
out in several places in the program. Do the following:

i) Work out a number thatis 0 for no income tax
1 for standard tax rate
2 for high tax rate

ii) Store this number, in a register, say STO 10

1ii) First work out tax for self-employed occupations, using the
following piece of program

LBL A

Set self-employed tax to zero

XEQ IND 10 (if 10 docs not contain 0,1 or 2,

GTO B you will gct a NONEXISTENT error)
LBL 02

Work out super-tax herc and add it to self-employed tax
LBL 01

Work out standard tax here and add to sclf-ecmployed tax
LBL 00

Work out any tax that applics regardless of income,
such as health insurance and add it
RTN

Go back to the line after the XEQ

-123-



iv)  You are now at the piece of the program to work out tax for

employment by a company:

LBL B

Set employee tax to zero
XEQ IND 10

GTO C

LBL 02
Work out super-tax and add it to employce tax
LBL 01
Work out standard rate tax and add it to employee tax
LBL 00
Work out any tax that applies regardless of income,
such as health insurance and add it
RTN
Go back to the line after the XEQ

v) Repcat the process of iii) for other cases such as periods of
unemployment or work abroad.
LBL C
Do the extra calculations here
GTO D

vi)  Add up the different kinds of tax to provide the total.

This of course is a simplified version, but it shows two important points:
first, XEQ IND can save repetitious calculation, and seccond, a local label
can appear more than once. The rules of local label scarching are
described in Section 6.3. These same rules apply to indircct label
scarches. Since the indirect value can change, indircct GTOs and XEQs arc

not compiled.

GTO IND and XEQ IND can usc the stack registers X, Y, Z, T, and L for the
indirect address. The register, whether numbered or in the stack can

-124-



contain a number for a local label, or an alphabetic valuc for a global
label. If the content is a number, its sign and fractional part are
ignored. If the indirect address is alphabetic, it can contain a maximum
of six letters. The singlc letters A to J and a to ¢ will not be found,
since they are local labels, not global labels. It is possible to create
the corresponding global labels, this is described in Chapter 14.
Alternatively, you can create a label containing the letter twice over, for
example LBL "AA". If you have the letter "A" in the Alpha register, you
cannot do:
ASTO 10, GTO IND 10
But you can do:
ASTO 10, ARCL 10, ASTO 10, GTO IND 10

This doubles the letter in the Alpha register, so that you can go to "AA".

Many plug-in modules have programs and functions whose names are scven
letters long, but GTO IND allows a maximum of six. To call "PINBALL" in
the HP GAMES PAC, you would like to put "PINBALL" in Alpha, ASTO X,
then XEQ IND X, but this would only give NONEXISTENT. You nced
to usc the following two lines in your program:

LBL "PINBAL", GTO "PINBALL"

The new label is six letters long; it will thercfore be found Dby the
XEQ IND, then the GTO will transfer execution to the ROM program, and that
program’s END will send you back to the original program that wanted to run
"PINBALL". This trick saves a RTN, but does not work with functions.
The printer function PRFLAGS, for example, must be exccuted as follows:

LBL "PRFLAG", PRFLAGS, RTN
HP-41s with bug 7 (scc Appendix C) will not let you ASTO the first six
letters in Alpha, they store six and a half letters. However, this only

affects the comparison opcrations X=Y? and X#Y?. The GTO and XEQ IND

instructions will still work properly. For example, the following scquence

-125-



will execute the "PINBAL" program:

"PINBALL", ASTO L, XEQ IND L

Here is one more tip, courtesy of Joseph Horn, concerning the local labels
A to J and a to e. In a long program that uses these labels it can take
some time when you press a key such as A for the HP-41 to find the label.
This is because the HP-41 has to search every step from the RTN or END
where it has stopped, until it finds the label.

To speed the search up, put another LBL A immediately after a RTN, and
follow it with GTO A. When you press A, the first LBL A will be found at
once, and the GTO A will go to the real LBL A. This GTO will be compiled
the first time you use it. From then on you can press A and the GTO A will
execute a compiled jump to the real LBL A at once. This saves the time
that would otherwise be lost while the HP-41 searched for the LBL A. You
can sprinkle LBL A, GTO A all over the program to make sure the real LBL A
is always found quickly, and of course you can do the same for other local
Alpha labels.

The fact that a pair of instructions such as LBL A, GTO A is useful and
saves time can only be realised by someone who understands how compilation
and labels work. This tip shows how studying the HP-41 can have clear uses
and is not just a matter of idle curiosity.

6.5 Checking, Correcting and Changing a Program.

It is difficult to write a program much more than ten lines long without
making some mistakes. This section will cover the HP-41 functions that
help you check a program and make changes. All these functions are
explained clearly in the HP manuals, so the descriptions here will
concentrate on features not mentioned in the manuals.

-126-



SST and BST

In PRGM mode, these functions simply move the program pointer forwards
or backwards by one line. The program pointer is a number that tells
the HP-41 what the current line number is. At the end of a program,
SST takes you straight back to line 1 of the program, and BST from
this line recturns you to the END. SST and BST arc cxecuted
immediately and cannot be cancelled by holding down the key. If you
arc going to use BST a lot, it is a good ideca to assign it to an
unshifted key, so you can save yourself pressing the SHIFT key for
cvery BST. If you want to move a long way in a program, it is quicker
to usc GTO.nnn to go to a line somewhere ncar the onc you want, then
SST or BST just a few steps.

SST works quickly, because it is easy to move forwards one step
in a program. BST is much slower. It goes back to the last global
label before the program pointer, then counts lines forwards and stops
one line earlier than before. It is thercfore worth including scveral
extra global labels in a long program while it is being written. This
makes for shorter distances between global labels so BST has to go
back a shorter distance and works faster. After the program is
written and checked, these extra labels can be deleted. If you SST or
BST to a long text string you will be dclayed while the whole string
scrolls across the display. Remember that you can tcrminate the
scrolling by pressing any key.

In run modec, SST executes the current program linc and moves the
program pointer onc step forward. If SST is held down a short time,
the current line is displayed, then execcuted. If SST is held down
longer, the step is NULLed, and the program pointer docs not advance.
Pressing SST quickly (so the current line is not displayed) after the
END linec moves the program pointer forwards to linc 00, not linc 1.
Functions, but not programs, can bc cxccuted from the keyboard in
between SST cxccution of steps without disturbing the SST process. A
BST moves the program pointer back one step, but does not cxccute that

step, and will not be cancelled by holding down for a longer time.

-127-



GTO. GTO.. RTN R/S

GTO followed by a point and a line number takes you to that line,
whether you are in PRGM mode or not (unless the program is PRIVATE, in
which case GTO. does nothing). In a very long program you can precss
EEX after GTO. to give a line number of over 1000. GTO. a line number
greater than that of the END takes you to the END. Pressing a line
number of 000 takes you to line 000 at the start of the program. In
run mode, you can press GTO. and a local or a global label to get to
that label. GTO. followed by a global label also works in PRGM mode.

GTO followed by two points packs program memory, puts an ordinary END
after the last program in memory and puts the program pointer to line
0 of a new program at the bottom of program memory (the .END. is
line 1 of this program).

RTN, in PRGM mode, is recorded as an instruction that behaves like
END, but docs not secparate one program from the ncext. That is to say,
RTN in a subroutine causes the subroutine to finish and rcturn to the
line after the last XEQ or XROM that had been excecuted. In a program
that has not done an XEQ, RTN causes the program to stop. Pressing
RTN in run mode puts the program pointer to linc 00 of the current
program and clears the subroutine return stack.

R/S, in run mode, alternatively starts and stops a program running
without changing the subroutine return stack. Holding R/S down for a
short time when a program is not running displays the current program
step, which will be the first step to be exccuted when the program
starts running. Holding R/S down for a longer timec cancels this
display, shows NULL, and prevents the program from running. This
provides a simple way of checking whether the program you are about to

run is the onc you want.

GTO "program" followed by R/S starts the program running as does XEQ
"program”, but it does not clear the rcturn stack. This mecans that

-128-



you should not interrupt a running program thcn restart it nor run
another program with GTO "program", R/S. Otherwisc the END or RTN
that you expected the second program to stop at may simply act as a
return to some address in the program that you had previously
interrupted. Similar problems can arise whenever the return stack has
not been cleared, for instance when a program is interrupted by PROMPT
or STOP. Use RTN in run mode, as described above, to clear the return
stack.

In connection with the above, note that when a program stops at an END
the HP-41 clears the return stack and the next stecp to be execcuted
after another R/S will be the first stecp of the program. When a
program stops at a RTN, the return stack is not altcrcd, and pressing
R/S will restart the program from the next step after the RTN.

Inserting and Deleting Program Lines
To insert a new line in a program you just GTO or SST or BST to a line
and put the new line after it. You can GTO.000 to get to the start of
a program and insert a ncw line there. It is not possible to inscrt a
new line after the END, although the HP-41 may sometimes look as if it
were trying to do this. To see this, go to an END, scc its line
number, then press the STO key. You will sce STO__ with a line
numbcer onc greater than the END. When you put in the parametcr nn,
thec HP-41 moves the END past the STO nn and renumbers the line.
Whenever this happens, or if you put an cxtra linc into a program, the
HP-41 has to move down program instructions to make room for this new
line. This moving will not happen if there is some sparc room at the
location of the new instruction (left over because an old one has been
deleted), so it is best to delete lines before inserting new ones in

the same place.

To dclete a single line, you go to it and press the backarrow Kkey.
The line is replaced with invisible null spaccs, and the previous line
is displayed, rcady to be dcleted too if nccessary. You cannot delcte
line 00 of a program, since it is only a place marker and docs not

-129-



really exist, nor can you delete the .END. since its cxistence is
required by the global chain. You can declete an ordinary END, and

this allows you to merge two programs in me¢mory.

To delete a block of lines, go to the first linc of the block, and XEQ
"DEL". DEL prompts for the number of lines to be deleted. If this is
over 999, you can press EEX as with GTO. to obtain a number up to
1999. DEL will delete this many lines, or if fewer lines exist, it
will delete all the lines from the program pointer to the END. DEL
will not delete the END itself, otherwise you may accidentally delete
part of the next program in memory or merge two programs. You can
also execute DEL in run mode, but it will do nothing except display
DEL nnn.

To deletc a whole program, use CLP. XEQ "CLP", then enter the Alpha
name of any global label in the program to be dcleted. You can also
go to the program, and just XEQ "CLP", ALPHA, ALPHA which clears the
current program. CLP is automatically followed by packing; DEL is

not.

Packing and Resizing
The HP-41's memory is large for a calculator, but small for a
computer. You may therefore run out of memory while writing a
program. The first thing to do in this case is to pack mecmory, by
executing PACK. This will remove all the null spaces that have been
left in a program during editing, deleting lines and inscrting
numbers. Indecd the HP-41 will automatically pack memory and display
PACKING,then TRY AGAIN when yourunout of program memory. Program
instructions will be moved up to fill the empty spaces, so that all
the empty space will be left free at the bottom of the program memory.
PACK and GTO.. let you pack memory whenever you choose. If you
execute PACK, the program pointer will stay at the same line of your
program as you were at before PACKing. Should you wish to do a lot of
program editing, you could assign PACK to a key. You should not PACK
if you are in the middle of program exccution because this loses any

-130-



pending subroutine returns. Packing also removes any complctely
unused key assignment registers (details are given in Scction 8.6) and
occurs automatically if you try to make a key assignment when there is
not enough room for the assignment. As this clecars the subroutine
stack, you should not try to make key assignments while a running
program has been interrupted.

If you are still short of room for your program, you should exccute
SIZE and make the size as small as possible. Remember that SIZE
defines the number of registers available for storing data. If you
execute SIZE 000 then no registers will be reserved for data storage
until you execute SIZE again.

After you are finished editing your program, you can increas¢ the SIZE
again. The editing operation generally requires one register (7
bytes) for cach inscrtion of a new instruction. The unused bytes are
rccovered by packing.

Copying Programs From Application Modules
Programs in Application Modules can be run as they are, but some users
may want to copy them to RAM so that a module can be removed or a
program can be altered. You might want to remove a module because you
do not have enough ports to hold all the modules you are using, or you
may want to change something that a program in an Application Module
is doing. One reason for this is that some Application Modules have
program crrors; sce Chapter 12. You cannot alter a program in ROM,
you have to copy it to RAM and edit it there. Use the COPY function
to make thc RAM copy. XEQ "COPY", then press ALPHA and spcell out the
name of a a label in the program you wish to copy. The entire program
will be copied to the bottom of RAM program memory if there is room
for it. If there is not then the HP-41 will display PACKING and
TRY AGAIN. Do try again; if the same thing happens again try
SIZE 000, and COPY again, then delete the parts of the program that
you do not nced in RAM and you will then be able to increase SIZE
again. COPY always puts an END before the program it copies, so you

-131-



may finish up with some unwanted ENDs in program memory. (Actually,
the .END. is converted to an END, with a new .END. added.) Use CAT 1
to find them, then delete them.

After you have COPYed a program to RAM, the program pointer will be at
its first line so that you can edit the program. GTO and XEQ will use
the RAM copy because it is in CAT 1 and is found before the ROM
version in CAT 2. You cannot make another copy of the ROM program
though, because the RAM version will be found first, and you cannot
COPY programs from RAM. The way around this is to delete a global
label from the program copy in RAM, then execute COPY and specify that
global label. Now the label will be found in ROM (in CAT 2) and you
will be able to make a second copy of the program. If the program
pointer is already in the ROM program, then you can give COPY no name
(just press ALPHA twice) and the current program will be copied; this
provides an alternative way of making a second copy of the program,
and also works for any unnamed program in a ROM. Of course you have
to get to these programs first. GTO will work for named programs,
but Synthetic methods are required for copying unnamed programs from a
ROM. You will not be able to copy PRIVATE programs from a ROM.

Some ROM programs XEQ other ROM programs, so if you want to make a
copy and remove a ROM, be sure to copy all the ROM programs you need.
You will also need to alter the RAM program, replacing XROM "label"
with XEQ "label" for every label that occurs in the copied program.

COPY is one of the few non-programmable functions that have not been
made programmable by Synthetic Programming (see Chapter 16) or by
Extended Functions (see Chapters 10 and 11). A programmable COPY
would have to be written in HP-41 machine language (see Chapter 17).

6.6 Watching Program Execution

Now for an amusing and useful trick before we carry on with serious
matters. When you test a new program, you need to check what happens

-132-



stcp by step. There are two methods approved by HP. Firstly SST
through the program in run mode (see above). Secondly run the program
with a printer attached and set to TRACE mode. The printer will
print every step, and each value put into X. This uses up a lot of
paper. The first method takes a lot of key-pushing. Why not program
the HP-41 itself to SST through a program and display ecvery step?
This means running a program in PRGM mode.

Aha, you might say, a contradiction in terms. Run mode is for running
a program and PRGM mode is for editing and vicwing a program. But
actually, run mode is only nceded to start a program (you can even
get round that if you know enough about Synthetic Programming). Once
a program is running, it can set PRGM mode, and then PSE. PSE shows
the default display which can be X, ALPHA or thec current program step
in PRGM mode. If you were able to run a program in PRGM mode, the
default display would be the current step, which is the step that will
be executed next. This is possible because PRGM modec can be set by
sctting flag 52, sec the flag table in Appendix D.

Flag 52 cannot be set by SF 52 (only flags 00 to 29 can be set and
cleared by SF and CF), but two of the bugs (sce Appendix C) let us do
it. On ecarly HP-41Cs (made in mid 1979), bug 3 lects you sct flag 52

as follows:

52, STO nn (where nn = any numbered register), SF IND nn

Try this - if your HP-41C has bug 3, it will go into PRGM mode. On
all latcr HP-41Cs this results in NONEXISTENT, but bug 10 lets you do
the same. Try entering the program below, thec comments next to the
program listing cxplain what each line docs. This program shows how
you can do things that the manufacturers never cxpected of the HP-41.

-133-



Lines 2 to 9 cause bug 10, which scts a lot of
flags including flag 52. Lines 10 and 11 clear

RI4LBL “HOTCH" two flags that are Dbest cleared as soon as
‘:5-' possible. Lines 12 to 21 alternatively PSE to
:4 '_ display a function, then execute it so that you
85 570 see the indicators turning off onc by one. You

can run this program to amuse yourself or your

friends.

Lines 2 to 11 can be included in any program to
show what it is doing. A PSE has to be put before

1; cach step that is to be displayed. Then sit back
i5 ¢ and watch the program run. When flag 52 is set,
lf the HP-41 treats any numeric entry in a program as

a programming instruction. Thercfore, any number

CF 83 entry instruction 0 to 9 or . or EEX will be
- copied repeatedly into program mecmory. Instead of
using numeric entry steps, put cach number into a
BEEP data register before setting flag 52, and RCL the

Bl P P Pl b e

B ) P e O
I
oy

number from that register when you need it.

Bug 10 also scts flag 44, the continuous ON flag,
so remember to turn your HP-41 off when you finish

with this trick.
6.7 Using Tests To Control Program Execution

Back to serious matters now. One of the most powerful programming features
of the HP-41 is its collection of "do if true" tests. They all follow the
same rule: Make a test,
Perform the next step if the answer is yes,
Otherwise skip the next step.
Tests, something like this, arc used quite frequently:
X>0?
SQRT

-134-



If X is positive, take its square root. The square root of zero is zero
anyway, and the square root of a negative number gives the HP-41
indigestion. The HP-41 has five tests for comparing X with zero, five for
comparing X with Y, and four flag tests (see Section 4.4). The HP-41CX has
additional indirect tests, and some plug-in ROMSs, particularly the HP-IL
Development Module, have additional do-if-true tests.

GTO is the most useful instruction to follow a do-if-true test. For
example, if X is negative, go to a routine to deal with negative values. A
program can also test something at one place, and set or clear a flag. The
flag can then be tested whenever necessary - FS? 19, GTO IND 05, which
means "Go to the address specified by the register whose address is in 05,
but do this only if flag 19 is set."

Avoid wasteful use of GTOs. Both the following programs do one thing if
flag 19 is set and another thing if flag 19 is clear:

FS? 19 FC? 19
GTO 01 GTO 02
GTO 02 .

LBL 01 flag 19

. set

flag 19 operations
set .
operations GTO 03

. LBL 02
GTO 03 .

LBL 02 flag 19

. clear

flag 19 operations
clear .
operations LBL 03
LBL 03

next part of program

-135-



By inverting the flag test you have saved using the GTO 01 and the LBL 01 -

clearly more efficient.

If two instructions are dependent on the same test, it is best to make the

same test twice; the four lines on the left calculate SIN(X1%12) if flag 05

is clear more economically than the five lines on the right.

FC? 05
X12
FC? 05
SIN

FS? 05
GTO 10
X12
SIN
LBL 10

It is sometimes useful to put one test directly after another as in the

example below:

FS? 06
FS? 07
CHS

This will change the sign of X if flag 6 is clear,
or if both flag 6 and flag 7 are set, but not
otherwise. To perform an instruction if either one
of two tests is true, or if both are true do:

step 1 opposite of test A (NOT A)
step 2 test B
step 3 instruction

An example of this is to simulate the missing test
X>=Y? by using X#Y? followed by X>Y?

To perform an instruction only if both test A and

test B are true do:

step 1 Test A
step 2 opposite of test B (NOT B)
step 3 FS? 53 (or some other test which is

never true)

step 4 instruction

-136-



These two suggestions arc given in "ENTER" by Jean-Daniel Dodin (see
Appendix A). His book, and "Calculator Tips and Routines" by John Dearing,
are both full of excellent ideas like this.

If a test generates an error, program execution will stop at the test. If
flag 25 is set, then the error will be ignored, and the next instruction
after the test will be performed. For example X=0? with a text value in X
will generate an error, but if flag 25 is set then the error will be
ignored. As a result the next step will be performed even though X is
clearly not zero. It is therefore important to design tests with some
thought of possible errors. In the case of checking values that could be
alphabetic or numeric, it is better to use X#0?. With X#0?, if an ALPHA
DATA error occurs, flag 25 will be cleared and the following step will not
be skipped. Thus nothing unexpected or incorrect will happen.

6.8 ISG , DSE and NOPs

Apart from the do-if-true tests, the HP-41 has the loop control functions
ISG (increment and skip if greater) and DSE (decrement and skip if equal or
less). A loop is a set of instructions that are to be performed several
times. Your program may need to repeat a calculation seven times for the
seven days in a week, or ten times for a matrix with ten rows, or an
unknown number of times for a set with an unknown number of elements. A

typical loop has the structure:

i) LBL pp

ii) Instructions for element number n of set

iii)  Increase n

iv) Is n greater than number of elements?

v) If not, GTO pp

vi) Otherwise carry on with the next program step

-137-



n is a control number which can be stored in the stack or any directly or
indirectly addressed data register. The general form of n is a 5-digit
integer followed by a 5-digit fractional part:

iiiii.fffcec

where: - iiiii is the initial value, and later the present value of the
control number n. It is assumed that only the integer part of
the control number will be used for controlling loops, and that
the fractional part will be used for other purposes as below.

- fff is the final value for n. This is taken to be three digits
long. A fractional part of .3 will be interpreted as fff = 300.
A fractional part of .003 will mean 3. When iiiii is greater
than fff (for ISG) or less than or equal to fff (for DSE) the
loop has completed and the step after ISG or DSE will be skipped.

- cc is the loop increment or decrement counter. Every time ISG or
by an integer cc. In most cases, the increment of a loop is 1,
so if cc is 00 or not given, then it is assumed to be 1.

A few examples should help. What will happen to a program that contains
the following ?

377.02577

DSE X

GTO A

The number 377.02577 is put in X. DSE X will decrement 377 by 77 leaving
300.02577 in X. 300 will then be compared with 025. Since 300 is greater
than 025, the next step will not be skipped, and the program pointer will
go to LBL A. Further operations would decrement the counter until it
rcached -8.02577 at which stage, the step following DSE X would be skipped.

-138-



Now look at this: 99976.30029
STO 01
ISG 01
BEEP

The ISG will change the value in 01 to 100005.3002. The number is
truncated to ten digits, and the cc part changes from 29 to 20. 100001 is
greater than 300, so there will be no BEEP. If register 01 is used again
for ISG or DSE, the increment or decrement will be by 20, not 29. The fact
that the last digit is truncated, not rounded, is surprising. (If 29 were
added to 99976.30029, the result would be 100005.3003.) A cc value of 09
will be truncated to 00, turning the increment to the default value of OI.

In most cases this would be a trivial error, but if the fraction is to be

used as a control number, this is serious, and is mentioned in Appendix C.

A third example: 1
ENTER
FIX 0
-54321.
STOIND Y
LBL 55
VIEW IND Y
PSE
ISGIND Y
GTO 55
TONE 0
TONE 2
TONE 4
TONE 0
TONE 8

The value cc has not been given, so it defaults to OI. -54321 is
incremented by 1 and becomes -54320. The program displays a count down
timer. It may scem that the three-digit limitation of fff would limit

uscful values of iiiii to five digits, but the use of a negative value

-139-



means you can use ISG with up to ten digits. If you try to use a number
less than -1 E10, then you will get into an infinite loop, since the result
of ISG will always be rounded back to the number you started with.
can have correspondingly more digits. If there are any digits after cc,
they arc simply ignored, but remember they will be truncated, not rounded,
if the intcger part gets too large.

Usc of a value other than 1 for the increment gives considerable
flexibility to ISG and DSE, but everything is done in integers. This is
acceptable if the control number is to be used as an indirect address or a
flag number when only the integer part is used. If a fractional part is
required, it is best to recall the counter to X, then use INT, 10, /.

A good use of ISG is to store values in a block of registers or to
set/clear a block of flags. The following loop will store 0 in every jth
rcgister starting at bbb and ending at ece.

bbb.ceejj
ENTER
CLX

LBL 02
STOIND Y
ISGY

GTO 02

The HP-41CX function CLRGX will do exactly the same job of clearing the
registers specified by bbb.ecejj.

At times you will want to use ISG or DSE just as an arithmetic function, to
add or subtract a number cc, or to add or subtract 1. Under these
conditions you will not want to skip the next step. Take a case where you
want to calculate

SIN(X) + 1

-140-



without changing Y, Z, or T. Instead of SIN, 1, + use ISG as follows to
get the result to 3 decimal places:

SIN

FIX 3

RND

ISG X

ADV

The FIX 3 and RND steps make sure that cc is zero, so the value in X will
be increased by 1. Unfortunately the ISG X may or may not cause the next
step to be skipped. The way to avoid trouble is to put a do-nothing step
after the ISG instruction. Then it will not matter whether the step is
executed or skipped. ADYV is a fairly good choice for this purpose as it
does nothing wunless there is a printer attached. A step like this is
called a NOP (no-operation or null operation, instructions called NOP were
provided on several HP calculators, but not on the HP-41). ADYV is not a
good NOP if you use a printer though, and you may want to use some other
NOP. The instructions X<>X and STO X were mentioned at the end of Section
4.2.3 as possible NOPs and you may like to use them. Unfortunately, they
take up twice as much memory space as ADV, and they take more time too. I
prefer to use LBL 00 as a NOP, it is as fast as ADV, takes no more space,
and I recognise it as a NOP since I only use Labels 01 and higher for GTO
and XEQ. Many people who use Synthetic Programming prefer the "spare" byte
240 (hex. FO) which is known to be a NOP, and makes it clear that they know
about Synthetic Programming! FO is not quite as fast as LBL 00 though, and
it could be confused with a line of Synthetic text in a program printout.
Whatever you use as a NOP you should make a note somewhere to avoid
confusion when you come back to the program later or if someone else tries
to understand the program.

None of the NOPs described above are true null operations, because they all
enable stack lift, but who needs a NOP after a stack disabling or neutral
operation? Still, if you do ever need it, the ZENROM module provides a NOP
function which can be used as a true NOP, although if used that way it
takes up twice as much memory space as LBL 00 (see Section 12.8 and

-141-



Appendix B for details of ZENROM).

You can avoid trouble from fractions entirely by using the Card Reader
functions 7ISZ and 7DSZ which ignore fractional parts and always add or
subtract 1. These two functions always use register 25 but two more
functions, 7ISZI and 7DSZI, usec register 25 to provide an indirect address.
All four functions skip the next step if the integer part of register 25,
or of the indirectly addressed register, is zero. Thus a NOP is still
required after them, and of course you need a Card Reader.

If you want to avoid using a NOP at all, arrange for the ISG or DSE to be
the last step before an END instruction. A program cannot skip over an END
as this would drop it into the next program or into the waste land beyond
the .END. and therefore any of the increment or decrement functions will
have to execute the END even if they were going to skip the next step. You
can write a subroutine which is called to do a particular arithmetic
opcration, and you should put this subroutine right at the end of a program
with the increment step as the last step before the END.

6.9 Asking Questions and displaying results

While a program is executing, it normally displays the flying goose or
program execution indicator ) . Alternatively, you can use VIEW nn where
nn is a register number, a stack register, or an indirect address. This
shows the contents of that register in the display until you use VIEW or
AVIEW again, get an error message, stop the program by pressing R/S, or use
CLD to clcar the display. In this way, one result can be displayed while
another result is being calculated. VIEW will display a number or a text

string up to six characters long.

To show a longer result or message you need to put it in the ALPHA register
and display it with AVIEW. This can display up to 24 characters, 12 of
which can be scen in the display at any one time. AVIEW has already been
described in Scction 4.3.1, and the example program in Section 2.7 also

showed how the ALPHA register can be used to display a result.

-142-



Apart from displaying results in ALPHA, programs can also use ALPHA to ask
for information. It is not always convenient to have the user put all the
information for a program into the stack at the start. A program may need
to ask additional questions, such as "this date is after February 28,
please tell me if it is a leap year". The question only needs to be asked
if the date is after a leap year and the year is not given, so it would be
a waste of time to ask the question every time the program was used.

A collection of ways to ask questions will be given here. You may not nced
all of them, but some of the ideas may help in your own applications.

i) To ask for a single value to put in X.

"WHAT IS X 7" The User should put in the number,
PROMPT then press R/S.

ii) In 1), the user could press R/S without entering anything. If you
want to check whether anything has been put in, use FS? 22 to check
the numeric entry flag. To force the user to put a number into X, you
can use:

CF 22 Now the question will be repeated until
LBL 01 something is put into X. Unfortunately,
"WHAT IS P 7" flag 22 will be set even if something is
PROMPT put into X, then deleted with the back-
FC?2C 22 arrow key.

GTO 01

iii) Sometimes, you need to remind the user of the units used in a program.
Rewriting i) to prompt for X in feet per second gives:
"X <FT/S> 7"
PROMPT

-143-



iv) To ask for an alphanumeric value, for instance in a game¢ of hangman,
use:
"GUESS A CHAR."
AON
STOP
AQOFF

A Dbetter, but longer, alternative is:

"LETTER ?" CLA prevents the user from pressing
AVIEW SHIFT, K, and appending the letter to
CLA the contents of ALPHA. The use of
AON PSE also limits the time available

PSE for a guess, and saves the nced for
AOFF pressing R/S. PSE waits about one

second, but a new one-second wait
starts every time a key is pressed.

v) If you want to use an alphanumeric prompt without altering ALPHA,
store a six-letter message in a register and view that register as

necessary:
"NEW X7 This stores the prompt in a register
ASTO 99 unlikely to be accidentally altered.

Whenever the prompt is needed, do:

CF 22
VIEW 99
STOP The user can cither put in a new
FS? 22 value of X and press R/S or just
GTO 10 press R/S to stop the program.
END

-144-



vi) When asking for a large number of inputs, make sure the user will not

get lost. For instance, request a matrix one element at a time and

specify which element is wanted next. To ask for a 4*4 matrix and to

store the values in registers 1 to 16 you could use an ISG counter in

register 00.

A1eLBL "MATRIX?"
82 1.814
a3 5T0 oa
A4 FI¥ @
85 CF 29
deelBL 12
a7 ~m{
A3 RCL 0@
89 DSE ¥
18+ BL 08
i1 4

12 7

13 INT

14 156 ¥
15¢LEL 0@
16 ARCL ¥
17 k"
18 LRSTX
19 FRC

28 4

21 *

22 INT

23 IS6 X
24¢LBL @8
25 ARCL X
26 "k"
27 CLX

28 PROMPT
29 ST0 IND 88
38 ISGC 6@
31 GTO 12
32 END

vii) The examples so far

Lines 2 & 3 set the counter.

Lines 4 & 5 set a useful display mode.

LBL 12 starts the loop.

Line 7 starts the display.

Line 8 gets the current number.

Lines 9 & 10 decrease this by one, so the first
element counts as 0. The use of DSE followed by
a NOP was described in Section 6.8.

Lines 11 to 15 obtain the row number, using ISG
followed by a NOP.

Lines 16 & 17 put the row number into the
display.

Lines 18 to 24 obtain the matrix column number
using LASTX which was saved at line 13. The use
of ISG X instead of 1, + kept LASTX unchanged.
Lines 25 & 26 complete the prompt.

Line 27 puts a zero in X, so that the user can
press R/S without any numeric entry to store 0
in a matrix element.

Line 28 is the actual prompt.

Line 29 stores the value in a matrix element.
Lines 30 & 31 increment the counter and repeat
the loop 16 times. After that, the program can
use the matrix, or ask the user to check it.

This is not a particularly quick way to set up
a matrix, but it shows the uses of ISG and DSE.

have assumed that the stack can be used as

-145-



required, and contains nothing important. If you want to save
everything that is in the stack, including the value in X, you can use
the following method to prompt for a value and save it in register nn
without altering any of the stack registers (not even LASTX):

CF 22 This routine stores X in register nn
X<> nn while the new value is being

RDN obtained. I am grateful to Jeffrey
"WHAT IS N 7" Smith who suggested the use of flag
PROMPT 22 to check if a number has been put
FC?C 22 into X. If the user just presses

Rt R/S then the stack is rolled up and
X<> nn the original values are put back in

X and in register nn.)

viii) One common type of question demands a YES or NO answer. A simple way
of dealing with this is to put a Y into register Y, put the reply in
X, and compare the two:

ny
ASTO Y This is fairly short, but it only
"TOO BIG? Y/N" checks for a "Y" answer. Any other
AON reply, or no reply at all, is taken
STOP to mean NO. Sometimes it is better
AOFF to check the letter N, or to check
ASTO X for both these letters.

X=Y?

GTO "REPEAT"

RTN

ix) One way to record the answer to a question, is to set or clear a flag.
If you nced to ask several questions, you can save space by having a
subroutine to ask the question, check the answer, and set or clear a
flag. To use the following subroutine, put the flag number in
register X, put the text of the question into ALPHA and XEQ "YN". The

-146-



characters :Y/N will be added to the question, which can be up to nine
characters long without scrolling. (If you are unsure about ALPHA
operations, reread Section 4.3). The flag whose number is in X will
be set if the reply is Y or cleared if the reply is N. The X and Y
registers will be unchanged.

Line 03 sets the flag given in X so
that it need only be cleared if the

BI#LBL *YH® answer is N. If the flag number in X
3;. gt_ ?:l‘ q was not 01-29, then an error message
a4 RDH stops the program here before any

85 RIN harm is done (flag 25 was cleared at
g;.sgt At 02 to make sure this would happen).
RS 0 Lines 04 & 05 save X & Y in

?z g;‘;g v registers T & Z.

11 == Lines 8 to 10 add :Y/N to ALPHA,
12 ASTD Y display the question and store the

13 ¥=Y? . .

(4 £TD 92 answer in register X.

15 "H* Lines 11 to 14 check if the answer

g’ ?t;n ¥ was Y and if so go to tidy up.

18 %77 Lines 15 to 19 check if the answer

19 G703 @1 . was N, and if not, go back to LBL 01
g?:ﬁgﬁgg . to ask the question again. Line 17
22 ROFF makes sure only the question is

';i :: scen, not the incorrect answer.

25 END Line 20 clears the flag if the

answer was N.

Lines 23 & 24 replace X & Y.

Lines 06 & 22 toggle ALPHA mode to
display the questions and answers.

Declete lines 04 and 24, and change line 20 to CF IND T if you

only need to save X. The idea of a YES or NO subroutine was
given on page 14 of HP KEY NOTES Vol 5 Number 1.

-147-



x) Now for an original idea. Suppose you want to ask a yes or no
question without altering anything in the stack, ALPHA, or any
numbered data registers. All you need is to set a flag if the answer
is YES. You can use flag 47, the shift flag to do this. SHIFT can be
pressed during a PSE without stopping the program and without altering
anything except flag 47. Then you can check if the flag is sct by FS?
47. You can cven clear flag 47 with CLD.

Here is a short program that stores a question in register 19, and
views that register to ask the question so that ALPHA is unaffected.
The question asks the user to press SHIFT if the answer is yes. If
SHIFT is pressed, the program sets flag 00 to provide a permanent
record of the reply, because any message, including error messages,
will clear flag 47.

Lines 02 & 03 store the question.
Lines 04 to 06 could be anything you

Bi#LBL =F47" need.

8z "t IF v~ . . .

43 ASTD 19 Line 07 displays the question.

B4 = = - Lines 08 & 09 let the user see the

22 : “ question and press SHIFT to answer
A7 VIEW 19 YES. There are two pauses, not one,
A3 PSE to give the user more time to reply.
?g EEEBB Lines 10 to 12 clear flag 00, set it

11 F5? 47 if SHIFT is pushed, and clear SHIFT;
;‘5 g{nea you could use flag 47 itself if the
4= = = display is not altered first.
[HI Lines 14 to 16 could be anything.

i; ;S? I;B ) Lines 17 & 18 provide an audible
i3 BEEP feedback - after all you normally

19 EHD

press SHIFT to get a BEEP.

-148-



6.10 Using subroutines and structuring programs

To round off the chapter this section will provide some suggestions about
the structuring of programs and the use of subroutines. Two important
things to do when you are writing a program that will be used more than
just once are to plan out the program before you write it and to document
it afterwards. "Documenting" a program means writing down what it does and
how so that you can use it later or rewrite it without having to work out
what it does. Planning a program before writing it is just as important,
and indced the original plans can be a useful part of the documentation.
When you are planning a long program you should split it up into several
parts each of which can be designed and tested on its own. Each part could
be written as a subroutine, with a main routine to call (i.e. execute) ecach
subroutine. You can check each part, then put them all together and remove

unnecessary or duplicated pieces to make the program shorter.

A subroutine is a set of instructions which can be written as a separate
part of a program. The most common reason for writing a set of
instructions as a subroutinc is that this set is to be used more than once,
in morc than one place. Instead of repeating the whole set you can write
it as a subroutine, then call that subroutine (by using XEQ) whenever
nccessary. A set of instructions that is to be used several times in the
same place is best made into a DSE or ISG loop, not a subroutine. A very
short set of steps is not worth turning into a subroutine: more space can
be wasted on LBLs, RTNs and XEQs than is saved. Exact formulae for space
savings will be given in Chapter 8 but it is rarely worth turning less than
four steps into a subroutine. Since a maximum of six subroutines can be
pending (see Section 6.3) you should not use subroutines if it is not
necessary.  (Synthetic Programming allows you to extend the subroutine
return stack; sce Chapter 14.)

In some computer languages cach subroutine can have its own set of data
values, different from variables that have the same names in the main
program. This set of local variables constitutes an environment which

belongs only to one particular call of a subroutine and to returns to that

-149-



subroutine. On the HP-41, FOCAL does not provide separate environments so
cvery subroutine uses the same sct of flags and the same numbered data
registers, the stack and the ALPHA register. If a subroutine changes any
of these and returns to the main program, then the main program will have
to deal with the changed values too. Subroutines which do one specific job
should make as few alterations as possible so that the main program does
not have to make allowances for changing values or flags. Mathematical
subroutines in particular should be designed to do all their work in the
stack so that the program or routine which calls them can use all the
numbered data registers freely. If a subroutine is designed to preserve
the stack, or has to usec a large amount of data, then it should be very
clear which data registers it uses, so as to avoid conflicts with other
routines. One way of avoiding conflicts is to use "position-independent"”
routines which only use indirect addressing. The main program can then
decide which subroutine uses which addresses (by putting into the stack the
numbers of the registers that the subroutine should use so that the
subroutine can pick up these register addresses).

Position-independent subroutines and those that use only the stack can be
transported from one program to another without trouble, but this demands
that they be properly documented so that you can use the same subroutine
later without puzzling about what it is doing. If you arc going to writec a
lot of subroutines like this, you will eventually be able to write entire
programs just by putting together a short main routine and a set of pre-
written subroutines that it calls. Under these conditions you may decide
to usec register 00 to tell cach subroutine which registers it should use.
If you are going to write subroutines that handle a lot of information you
may find it easier to use data files; the Extended Memory and the functions
to usc it arc designed for this purpose, see Chapter 11. You can also use
the Extended Functions REGMOVE and REGSWAP to copy or exchange the
contents of a Dblock of registers, moving them to a different place in
memory. This can be done to save the register contents while the registers
are used for another purpose, or to put the values into a set of registers
where a subroutine expects to find them.  Alternatively you can use

Synthetic Programming to renumber data registers so that every subroutine

-150-



secems to be using registers 0 to 10 (or any other sclected set of
registers) but in fact different registers are used each time.

Apart from using XEQ to call a subroutine you can GTO to a routine. Any
pending returns will be unaffected, so you can XEQ one subroutine, then use
GTO to go from that subroutine to another one, then use RTN or END to
return to the point from which the first routine was called. The use of
GTO IND can however replace XEQ and RTN. This can be particularly useful
if a subroutine calls itself, since such a subroutine might well call
itself more than six times. (A subroutine which calls itself is
"recursive", see Section 6.4; for example a program which calculates the
third derivative of a function may require the derivative subroutine to
call itself twice over.) The following example shows how GTO IND can be
used instead of RTN. A program wuses a subroutine to calculate
SQRT(1 + X%2) but six subroutine levels have been used already. Instead of
using RTN at the end of the subroutine you can finish it with GTO IND 00 :

1 This part of the program
STO 00 stores 1 in register 00, so
GTO 22 that the routine at LBL 22
LBL 01 will come back here.

2 Here 2 is stored in register
STO 00 00 so that the routine will
GTO 22 come back to LBL 02.

LBL 02

LBL 22 This routine calculates the
RDN value SQRT( 1 + X172 ) after
X712 removing an unwanted number
1 from register X. Then it uses
+ the number in register 00 to
SQRT go back to the place where it
GTO IND 00 was called from.

-151-



If you are finding it difficult to trace an error due to an indirect GTO
then remember that you can check the values involved by using VIEW nn and
VIEW IND nn. You may find it easier to recall an indirect address to
register X before going to that address. This puts the address in X where
you can check it in case of problems. You can also use double indirection
by doing RCL IND nn, GTO IND X, which is like saying GTO IND IND nn.

A scparate use for subroutines is to allow a conditional test to execute a

group of instructions instead of just one. Consider the set of
instructions:

X>0?

LN1+X

STO 12

This calculates the logarithm of (1+X) only if X is greater than zero.
What if you want to calculate the logarithm of (2+X) under the same

conditions?

X>0? LBL "LN2+X"
XEQ "LN2+X" 1
STO 12 +

LNI1+X

RTN

In general you would use a local label for a subroutine like this because a
local label and the corresponding XEQ take less space, and can be executed
more quickly since there is no need to search CAT 1.

The use of subroutines to help in designing a program was mentioned at the
start of this section. There are two separate ideas involved here,
structured programming and program structure. Structured programming means
adopting a particular mecthod for writing programs. The purpose of the
program should be made clear, then the different tasks that the program
must carry out should be identified. A typical program will need the

following sections:

-152-



1. Set up program requirements, such as the angle mode (initialisation)
2. Get any information the program requires (data input)

3. Deal with the data and do the required calculations (processing)

4. Present the results (data output)

5. Tidy up (clear flags, delete files and so on)

If you undertake a structured programming approach, you will plan out how
to deal with each of these scctions, perhaps by splitting some of them into
smaller parts. You will keep notes on what each part does. You will check
exactly what information you will be given, and what results are expected.
Perhaps you will even read a book about structured programming. Then you
will write and check each part of the program. Only then will you try to
put all the parts together and test the whole program. If something is not
working, or if the program is too big to fit in the memory available, you
will be able to go back to the separate parts and your notes about them.
You will be able to use your notes to find errors or remove duplicate
pieces of the program to make it smaller and faster. At the end you will
have a clear and well documented program. You will have done a lot of
paperwork, but you will have made fewer errors than otherwise.

The above may seem like taking a sledgechammer to open a peanut if you are
writing a short program for the HP-41 but it does provide a good plan for
writing large programs. If you are writing an ordinary HP-41 program then
you should still think about program structure, which means the structure
of the program itself. The position of various subroutines deserves some
thought. If a program or routine finishes by executing a subroutine more
than once then it is useful to put that subroutine at the end. For example
to execute the subroutine at LBL 90 twice in succession you could finish
your routine with:

XEQ 90

LBL 90

END

-153-



This runs the subroutine twice, or more times if there are two or more XEQs
before the LBL. (Be sure not to put XEQ 90 after LBL 90 since this
produces an unending loop.)

Another thing that deserves consideration is where the program stops. If a
program stops at a RTN or at a STOP then unexpected and nasty things might
happen if you press R/S afterwards. One way to avoid this is to follow
every RTN or STOP with a GTO that points back to some safe place such as
the beginning of the program or a LBL just before a STOP. You can safely
finish a program at the following loop:

LBL 90
STOP
GTO 90

Pushing R/S after the program has stopped here will just make it stop
again. (Both the above suggestions also come from John Dearing’s book,
described in Appendix A. It really is a very good book.) Another way to
stop a program is to make it finish at the END; the program is then
automatically ready to run from the beginning again when you press R/S. A
good trick is to put LBL 99 as the last step of a program and to put GTO 99
at any place where the program might finish.

Exercises

6.A Do you prefer to use global or local labels? A global label provides
an easy way to remember what the subroutine does, since it can give it a
meaningful name, but it takes up more space than a local label and slows
down a running program. Go through some programs (your own or somebody
else’s) and check if any global labels could be replaced by local labels,
or if some local labels could be usefully replaced by global labels.

-154-



6.B Try rewriting the matrix input routine (example vi in Section 6.9) to
make it more efficient by using some of the ideas suggested in this

chapter.

-155-






CHAPTER 7 - SOME EXAMPLE PROGRAMS

The chapters following this one will contain many items concerning HP-
41CVs, CXs and additional equipment. It is worth pausing and looking at a
few example programs that can be run even on the humblest HP-41C with no
additions. Some of the programs may be exactly what you need, or you may
find them a total waste of time. They are provided as examples of using
ideas from the first six chapters. If you wish, you can skip the whole

chapter; I won’t mind (much).

7.1 Hyperbolics And Inverse Hyperbolics

We are told in the HP-41 manual that the functions EtX-1 and LNI+X are
particularly useful in working out hyperbolic functions and their inverses.
In fact only TANH and ATANH gain in accuracy from the use of these extended
precision functions. Yet in the Math ROM neither TANH nor ATANH use
them.

Here is an alternative set of hyperbolic functions, a little shorter than
those in the HP Math ROM. They use only the stack and all preserve the Y
register unchanged. They do not call each other, so any selection of them
can be kept in the HP-41 without needing the others.

Despite the wide range of functions on the HP-41, there is often only one
way to do a job most efficiently; the COSH routine given here turns out to
be identical to that in the Math ROM. Moreover all of the routines SINH,
COSH, ASINH, ACOSH here arc identical to ones written by John Kennedy and
given in John Dearing’s book "Calculator Tips and Routines". There seem to
be no obviously better ways to calculate these four, but TANH and ATANH
here are a bit shorter, more accurate and work over a slightly wider range.

Instead of giving the routines in the order SINH, COSH, TANH, ASINH,
ACOSH, ATANH, the listings show them in the order SINH, ASINH, COSH,
ACOSH, TANH, ATANH. This order makes it possible to put a value in X, then
press R/S twice to check the accuracy of SINH and ASINH. Another two

-157-



presses of R/S check the accuracy of COSH and ACOSH. A final two presses
check TANH and ATANH. This is a worthwhile trick whenever you are writing
routines to calculate a mathematical function and its inverse. Just to be
doubly sure, you can try executing each pair in reverse order too.

AieLBL “STHH®

I5¢LBL “TANH"
365

82 Ef¥ 19 Et¥ 3T+ ¥
83 ENTERt 20 ENTER* 37 EfE-1
a4 1 21 1/%
85 - 22
g6 2 i ;
B2 RTH 25 RTH dz RN
BI4LBL ~ASIHH- 264LBL =ACOSH" 430LBL *RTAKH"
18 ENTER* 27 ENTER* 44 LHI+d
11 w2 28 %42 451
121 291 46 LAST
13+ i - 47 -
14 30PT 31 SERT 43 LK
15 + 32+ 49 -
16 LH 23 LM a2
17 RTH 14 RTH 3t/
52 END

7.2 Review Registers

Not everybody uses hyperbolics, so here is a program of potential use to
anyone with an HP-41. During keyboard calculations one tends to store
values haphazardly in any data register that happens to be free. The HP-41
Continuous Memory makes sure those values stay there until they are needed
again, but with so many registers available, there is a lot of work in
finding a value.

For example: you have four numbers in the stack registers and you want to
save them all for future use. You also want to find the register where you
put the value of the speed of light earlier on. How to do this without

disturbing the stack or losing any data values? You could spend 20 minutes

-158-



doing X<>nn for every nn from 00 to the last memory register, or you could
use VIEW nn for every register. (But what SIZE have you got anyway ?)

The program here displays the contents of every register that contains
anything other than zero. If you have a printer, the program can be used
instecad of PRREG, saving paper because it will not print zero values. As
registers containing zero arc not displayed, the process is speeded up;
those registers not displayed are free for use. The L register is used to
hold an ISG counter, so that the stack and numbered registers are
unchanged. Alphanumeric values are displayed with :A after them so that
numbers will not be confused with text displays of numbers.

Everyone has his or her favourite SIZE finder, but this program shows the
SIZE as a fringe benefit if you let it run until it stops. Alternatively,
you can stop the program whenever it displays a register. Do not stop the
program while the flying goose is displayed though, or you may find X
exchanged with a data register. In that case, just do X<> IND L. This
program will work even if the SIZE is zero.

(-~
R

#BL “REGS- FIZ 4

a
1 5F 29
3
3

ARCL ¥
FE2C 23
24 “F:f"
25 {3y THD L
26 AYIEH
27 PSE

23 CLD

2% SF 23
JaeLBL Az
HISG L
J2¢LBL AR
33 670 81
J4¢LBL A9
35 “SIZE="
36 ARCL L
37 AVIEH
38 END

Dt I ]

-159-



Lines 2 to 5 set the loop counter in L. LBL 0l starts the loop, trying to
get the next data register, and then going to the size display section if
the register cannot be found - thereby giving an error to clear flag 25.
Line 10 checks if X is non-zero and goes to the display section at LBL 03
if X is not zero. A text value will give an error, but because flag 25 is
set, the program will go on to the next step and will again get to LBL 03.
(See the remarks about errors in conditional tests, in Section 6.7.) Lines
12 and 13 restore X and go on to the section that prepares the next loop
execution. At LBL 03 the register number and its contents are displayed.
FIX 4 is used as it is the default display sectting and prevents scrolling
in most cases - you can replace this with a display setting of your own
choice. Lines 23 and 24 put :A after alphanumeric strings. An
alphanumeric (text) string in X will have caused an error at line 10, so
flag 25 (the error flag) is clear if X contains a text string. Line 25 puts
back the value being displayed. Line 26 displays the register number and
contents, then line 27 pauses. The user can interrupt the program safely
here because everything is in its proper place, and flag 25 is clear so
that any subsequent error by the user will not be ignored. Line 28 clears
the display and only then is flag 25 set again to check for errors at steps
07 or 10. Lines 30 to 33 prepare the next loop execution. Lines 34 to 38
display the SIZE at the end of the program. At the end flag 25 is clear
(cleared at step 07) and the display mode is as set by lines 20 and 21.

This program follows general pieces of advice given earlier. It leaves
flag 25 clear, and stops at the END so that it can be re-run with R/S.
Register L is used so that the rest of the stack is unchanged. X#0? is
used (with flag 25 set) in preference to X=0? so that the alphanumeric
values will not cause trouble. Finally, a point is provided at which the

uscr can safely interrupt the program.

-160-



7.3 Integration With Infinite Limits
Most numerical integration programs for the HP-41 integrate between finite

limits. The High-Level Maths Solution Book provides for an infinite upper

limit:

This also lets you integrate between minus infinity and infinity:

0
oo oo
I= /f(x) dx = /f(x) dx + /f(x) dx
- 00 -00 0
oo (o o]
= /f(-x) dx + ff(x) dx
0 0
a [o o]
In general /f(x) dx = /f(-x) dx
-00 -a

and so the formula in the Math Solutions book can be used for integration
from minus infinity to plus infinity. However the program in the book uses
sixteen-point Gaussian quadratic integration so if you want to use more
steps to obtain grcater accuracy, or to use a different formula, you have
to try something clse. Replacing infinity with the largest number the HP-

-161-



41 can handle can lead to nonsensical results since most of the values of
the integrand will be calculated at very large values of x. Looking for a
reasonable upper limit by trial and error can take a very long time. An
example to show that it does not work is given at the end of this section.

An alternative method is to use one of the general-purpose numerical
integration programs such as INTG in the Math ROM, or IN in the PPC ROM and
to change the variable that has infinite limits to one that has finite
limits. The programs use a user-supplied routine to calculate the function
f(x) at a value x and they make a choice of x values which lets them
estimate the integral. If the variable is changed from one that has
infinite limits to one that has finite limits then these general-purpose
programs can be used provided that the routine to calculate f(x) is
supplemented by a second routine that makes the change of variable. In the
following, I shall call these routines FX and TX respectively. A
reasonable choice for the change of variable is:

x = TAN(e)
or
e = ATAN(x)

because TAN(infinity) is pi/2 radians, so infinity can be replaced by pi/2,
and the integral can then be rewritten:

b arc tan b
I = /f(x) dx = ﬁ[tan(e)] de
C0526
a arc tan a

-162-



When you make this change of variable the following things happen:-

Where the lower limit is -0o it becomes - pi/2
Where the upper limit is +0o it becomes + pi/2

Where the routine to evaluate f(x) was FX, it now becomes a new routine TX

which uses FX as follows:
01 *LBL "TX"
02 RAD
03 COS
04 ST* X
05 X=0?
06 RTN
07 STO nn
08 X<> L
09 TAN
10 XEQ "FX"
11 RCL nn
12 /
13 RTN

02 Put the HP-41 into RADians mode for correct integration.
03-04 Get CosZe

05-06 If Cosze is zero, then return with zero since the integrand has

to be zero at pi/2 or -pi/2 if it is a closed integral.

is compared to zero in preference to Cos e as it reaches zero

sooner. This is not an exact test, but it is sufficient
nearly all cases.
07 Store cosze in a register

in

08-09 Put tan e into X. It would be ocoif cos e were zero, but the RTN

at line 06 avoids this.

10 Now execute the original function FX, or whatever its name is.

Note that the angular mode is RAD; FX may nced to change it.

11-12 Divide the result by cos?'e

13 Return to the main integration routine.

-163-



To calculate a numerical integral with an infinite limit using one of the
standard HP-41 integration programs (Math ROM, PPC ROM, etc.) with TX do:

1) Enter the function f(x) as a program in the HP-41. The program is
assumed to start with x in the X-register and to return with f(x) in
X. It can have any global label up to six characters long.

2) Enter the function TX given above. At lines 07 and 11 use a numbered
data register that is not neceded by the integration or the f(x)
program. At line 10, use the name of the f(x) program, or use an
indirect register containing the name.

3) Run the integration program as usual except:
i/ Give the lower limit as ATAN(a) in radians instead of a, or as
-pi/2 instead of - infinity.
ii/ Give the upper limit as ATAN(b) in radians instead of b, or as
pi/2 instead of + infinity.
iii/ Give the function name "TX" instead of the original function
name (which I have called FX in these notes).

For example you can use the Math ROM program INTG to calculate:

oo

1 = /1/;6’- dx

1
by doing the following:

-164-



1) Enter into your HP-41 the two functions given below

01 *LBL "TX" 14 *LBL "FUNC"
02 RAD 15 1/X
03 COS 16 X12
04 ST*X 17 END
05 X=07

06 RTN

07 STO 08

08 X<>L

09 TAN

10 XEQ "FUNC"

11 RCL 08

12 /

13 RTN

2) Make sure the Math module is plugged into your HP-41.
3) XEQ "INTG" to initialise the integration program.

4) Execute RAD, 1, ATAN, PI, 2, /, SHIFT, A to give the upper and lower

limits to the integration program.
5) Key in 16, SHIFT, B to compute the integral using 16 sub-intervals.
6) Key in the function name TX, then press R/S to run the program.
7) Wait for the answer: 1.0000 accurate to four decimal places.
For comparison, an attempt to estimate a 16-point integral of l/x2 from 1

to infinity by using INTG with the limits shown, gives the following

results:

-165-



upper limit result

10 9071
100 2.2988
1000 20.8415
1 ESO 2.0833 E88 (!

None of these is reasonably close to the true answer.

Naturally enough this whole section assumes that the functions to be
integrated do not have any singularities in the range of integration and
that the integrals are closed (finite).

7.4 Random Numbers

Random numbers may be required in games programs, in statistical analysis
programs, or in the design and simulation of experiments. Obviously, it is
sensible to choose a Random Number Generator (RNG) to fit the job at hand.
A Monte-Carlo integration program demands a more sophisticated RNG than
does a Sub-Hunt game. Nevertheless, the best RNG used by HP on the HP-41
is in the Games ROM. 1 shall give a (relatively) short description of this
RNG and of other RNGs, then suggest a few RNGs suitable for various uses on
the HP-41. You can skip the theory if you prefer and go directly to the
list of RNGs at the end. A lot of work on RNGs for calculators has been
done by members of HP user groups and most of the suggestions here come
from user group journals. The references are given at the end of this
section; this is another good example of what you can learn and take part

in by joining a user group.

The purpose of a good RNG is to provide a sequence of randomly distributed
numbers X where:
0<X<1

Evidently, it is required of a RNG that its behaviour should be well known

and understood. Computer RNGs rely on mathematical algorithms, so the same
results are obtained if a RNG is used a second time. This means that they

-166-



are not truly random, (to underline this they are called Pseudo Random
Number Generators) but also that they can be studied. The best studied
type of computer RNG algorithm uses the Linear Congruential Method. This
algorithm takes three numbers ¢, a, m to generate a new random number
Xpel from the previous number X, -

Xpe1 = (a*Xn + ¢) MOD m
On calculators, the modulus, m, is nearly always taken as a power of 10,
usually 1. The formula then becomes:

X,41 = FRC (a*Xn +¢)
This is called a Mixed Congruential Method. To speced things up, ¢ is often
set to zero giving

X 41 = FRC (a*X,)

This is often called a Multiplicative Congruential Method. The choice of a
and ¢ has been studied extensively. The initial choice of X, called the

seed, XO, also deserves some consideration.

An excellent book on this subject is "The Art of Computer Programming,
Volume 2" by Donald E.Knuth. Details of this book are given in Appendix A.
Knuth’s book tells us what to understand by a random sequence; in brief,
the numbers should have a mean of 0.5 and a standard deviation of
1/SQRT(12), they should not cluster around certain values, nor should they
show any marked relation between pairs, sets of three or any larger sets.
Ideally, a sequence should never repeat itself (cycle), but on a machine
capable of representing only a finite set of possible numbers cycling is
bound to occur eventually. The RNG used in the Games ROM, the PPC ROM and
the CCD module was originally developed by Don Malm for the HP-65 using
advice from Knuth’s book. It uses the algorithm:
X, 41 = FRC( 9821*X  +0.211327 )

This satisfies Knuth’s most stringent test, the spectral test, and has a
long cycle; it repeats the same sequence of a million numbers regardless of
the starting value (seed) used. For most purposes, this is eminently
satisfactory, though it is not a perfect RNG, as can be shown by additional

tests involving the sums and differences of consecutive pairs. This only

-167-



shows up in long runs; it has been demonstrated by Brian Steel on an HP-
110, and may therefore not really be a fair test for an HP-41 program.

For anyone sufficiently dedicated (or crazy enough) to want more than a
million random numbers, a suggestion by R. Moore (see references below) is:
X, = FRC[21%( X +PI)]

which gives a cycle period of 100 million, and uses less memory on the
calculator because PI takes one keystroke, and 21 uses two. If you replace
the 21 with 61, 101, 121 or 161 you get a cycle of 10 million. These
numbers are too small for an ideal RNG (because two or three digits cannot
guarantee sufficient randomness), but the results are pretty good for a
handheld device.

There are just a couple of minor reservations about these wonderful RNGs.
The first is that they compensate for their long full cycle periods by
cycling rapidly from the back. The least significant digit goes through a
cycle of ten values, the least significant pair cycle every hundred values
and so on. If your use of RNGs is significantly affected by the low order
digits, you should take care. In particular, all digits but the first
repeat after one tenth of the cycle. The other reservation concerns the
use of the stack. An ideal RNG would behave like any other monadic
function. It would replace X in the X register with X . | without altering
registers Y, Z, T and X, would also be saved in register L. Since all RNGs
given here finish with FRC, register L cannot contain Xa unless numbered

data registers are used. Some RNGs can, however, preserve Y, Z, and T.

One such RNG, suggested by V. Albillo, R-D,FRC, gives:
X1 = FRC ( 180/PI*X )

This is simply a linear congruential RNG; given a negative seed it returns

a negative value.

Another short RNG that changes only X and L, suggested by J.WMills is:
ATAN, FRC. This does not work in RAD mode, but is surprisingly good in DEG

-168-



mode and not too bad in GRAD mode. Both these RNGs though are sensitive to
the seed used. Vic Heyman suggests PI, SIN, TAN (in DEG mode) as a good
sced for the second case (this is equivalent to just PI, SIN here, but it
can be used as a seed for other RNGs too).

If you do not choose a good sced, both these RNGs will soon hit cycles

which repeat, in the worst case, every 209 values for R-D and every 424 for

ATAN in DEG mode. (ATAN in GRAD mode has one cycle that repeats every 358

values.) Worse still, both get stuck at zero. I prefer adapting R-D to

provide a much longer worst cycle of 9432 with a reasonable distribution:
CHS, 101X, R-D, FRC

This does not get stuck at zero and will give positive values from a
negative seed. It also avoids the problem that R-D, FRC can produce pairs
of small numbers if you start at a value near zero (any number less than
0.0017 is bound to be followed by a second number smaller than 0.1). (Mind
you, any value close to 1.0 will be followed by a value close to 0.7309.
It is in the nature of pseudo random number generators that a given value
is followed by another one which is predetermined by the PRNG formula.)
The last three RNGs are shorter than the mixed congruential ones and
preserve registers Y, Z, and T. The first of them is the fastest RNG for
the HP-41. The first two are ideal for games programs, except that the
second one must not be used in RAD mode. The third one takes about 10000
steps from most starting values before it hits the cycle, and almost
another 10000 steps before the cycle first begins to repeat; a total of
20000 random numbers with a reasonable distribution, which is quite enough
for most purposes. With a seed of PI, SIN, TAN it takes more than 20000 to
reach a cycle and 16000 before the cycle repeats. Nevertheless, the mixed
congruential RNGs beat the others for most serious purposes. (The three
just given are only safe for one-dimensional distributions.) Another
linear congruential RNG, suggested by John Baker, uses 3579 as the factor a
and .031019 as a sced. This has an effective period of 25000 and passes
the spectral test, so it can be used for 2, 3, 4, and 5 dimensional

distributions.

-169-



Here then is a list of RNGs you can try for various applications:

1) 9821, *, 211327, +, FRC

2) P1, +, 21, *, FRC

3) 3579, *, FRC

4) R-D, FRC

5) ATAN, FRC

Provides 1016 values and comes out well
in the spectral test. Uses a lot of
memory though, unless you call it from
the Games, CCD, or PPC module.

Nearly as good as 1) and provides 1018
values. You can also use 61, 101, 121
or 161 instead of 21 -- use these if you
want the good properties of 2), but do
not want to use 2) itself. Note that 1)
and 2) cycle in their lower digits.

For a good linear congruential RNG use a
sced of .031019. If you want to avoid
disturbing the stack, store 3579 in a
numbered data register nn. Then
generate X, ., from X as follows. Put
X, into register X. X<>nn, ST*nn,
X<>nn, FRC. The effective period is
25000, and after this a new pattern
emerges, differing from the first one by
only a constant.

For a very fast RNG in games or quick

calculations.

(Not in RAD mode; preferably with a
seed of PI, SIN in DEG mode). Like 4),
but it is slower, has a slightly better
distribution, and shares the property of
not disturbing Y, Z or T.

-170-



6) CHS, 101X, R-D, FRC Another alternative to 4) and 35).
Slightly slower than 4), much longer
cycle and less influenced by the seed.
Will not produce an excess of pairs of
small values near zero which 4) can do.
Does not get stuck at zero, does not
disturb Y, Z, or T and gives positive
values from a negative seed.

One final word of advice. To paraphrase Knuth: Run each program that
depends on random numbers at least twice using different sources of random
numbers. This will give an indication of the stability of the results.
Better still, read Knuth or some other serious work on RNGs for yourself
before you embark on any important Monte-Carlo calculations.

All the references in this section except Knuth were taken from the PPC
Calculator Journal and its predecessor 65 NOTES. Volume, issue and page
are given below. Details of user clubs and journals are in Chapter 13.

Random Number Generators by Vic Heyman V4N8 pl-6

RN Generators by Rick Moore V6N2 p20

Fastest Random Number Generator by Valentin Albillo V7N6 p35

A simple RNG test program was given by Wm. Kolb in V7N4 pl7a

On Calculator RNGs by John L. Baker V8N3 p23-24

See also HP11C RNG simulator program VIN4 p17d (barcode VIN8p29d)

7.5 Complete Arc Tangent - ATAN2

Finally a short example: the ATAN function can only provide an angle
between -90 and +90 degrees, but you sometimes neced an answer between -180
and +180 degrees. This can be obtained if the arc tangent is found in
terms of the ratio between two numbers x and y. The function ATAN2(X,Y)
gives an answer:

ATAN2(x,y) = arc tangent ( x/y )

-171-



A routine to simulate this function exactly like an ordinary bifid HP-41
function (such as division) should use the values in registers X and Y,
return the result in X, drop the stack so that Z was copied into Y and T
was copied into Z, and would save the previous X in L. Writing a routine
like this instead of just any routine to calculate the function demands a
little extra work, but the result is a routine that you can use without
worrying about its effects on the stack or other registers. Two ways of
doing the job assuming registers X and Y contain the numbers x and y are:

LBL "ATAN2" LBL "ATAN2"
P-R P-R

CLX RDN

RCL zZ RCL Z

RDN RDN

RTN RTN

You can check that both simulate an HP-41 bifid function exactly. They work
in any of the angle modes. Both RDN and CLX followed by RCL Z copy the
original value of T into X, and then RDN puts it back into T. CLX followed
immediately by RCL Z does not lift the stack, because CLX disables stack
lift, and it is about 6 milliseconds faster than RDN (which is important
only in very long programs). If you are unlucky enough to press R/S just
after CLX though, you will enable stack lift again and the stack will be
wrongly arranged when you restart the program. It is therefore better to
use RDN, as on the right, not CLX whenever you are rearranging the stack.

Routines that you will use often or that you will give to other users are
best written to simulate the native (CAT 3) HP-41 functions if at all
possible, saving the stack values and placing X in LASTX. Some subroutines
to save the stack contents will be described in Section 11.4.

-172-



Exercises

7.A If you do not have a Math ROM or a PPC ROM then try to write a
numerical integration program yourself. It should request the upper and
lower limits of the integration interval, and the name of a CAT 1 routine,
FX, which will evaluate the function f(x) at the point x. The integration
program should then select a number of points between the lower and upper
limits, call the routine FX to evaluate f(x) at each of these points, and
then calculate an approximation to the integral.

7.B Try combining the hyperbolic functions and the infinite limits
integration routine to integrate 1 - TANH(x) from 1 to infinity.

7.C One use of RNGs is for numerical integration. The RNG is used to
select a large number of points between 0 and 1, the range is scaled up to
cover the integration range from the lower to the upper limit, and f(x) is
calculated at each point. The results are added up, divided by the number
of points and multiplied by the integration range to provide an estimate of
the integral. This method is used for functions which are difficult to
integrate using normal numerical methods, and also for multi-dimensional
integration; you generate two or more random numbers to produce each random
X,y or Xx,y,z point at which you then calculate f(x,y) or f(x,y,z). A use
like this obviously demands that the RNG should not produce related groups
of numbers. Try writing a random-number based integration program (they
are called Monte-Carlo integration programs) for the HP-41, and see how
many random points are needed to obtain an integral as accurate as that
produced by an ordinary integrator on a module or written for Exercise 7.A

above.

-173-






PART Il

Extended Programming







CHAPTER 8 - MORE ABOUT MEMORY

8.1 Space, Time and Numbering

By now you should know enough about the normal functions available on every
HP-41 that you can do calculations from the keyboard efficiently and can
writc good programs. (Or else you knew it all anyway and skipped the
earlier chapters; in that case you missed some useful tips: too bad.) You
have seen that the HP-41 can do much more than you would learn just by
reading its manuals, which are there to tell you how an HP-41 works, but
not necessarily what you can do with it. We shall now go on to more
ambitious uses of the HP-41 and to the devices available for use with it.

The kind of question that this chapter will help to answer is -- how can I
make my programs shorter and faster? Program speed and length are closely
related; a shorter program is usually faster just because it has fewer
instructions to perform. The answers to such questions can be found by
studying how the HP-41 memory is used to store programs and data. The
chapter will also help you understand how the HP-41 sends data to plug-in
accessories, and this information will be useful later on. The layout of
program instructions in memory may be of little interest to people who do
most of their calculations from the keyboard, but related topics such as
the storage of data or key assignments in memory are of interest to them
and will also be covered.

Before turning to details of data or program structure in the HP-41
memory let us have a quick look at information storage in general. A
popular type of quiz game consists of a panel asking questions to which the

" " " "

answers can only be "yes" or "no". Any piece of information can be
obtained in this way if the right questions are asked. Electronic
computing devices work on the same principle, they store a mass of yes/no
answers which are meaningful only if the corresponding questions are known.
For example cach HP-41 flag is stored as an answer to some question like

"is USER mode set?" or more gencrally "is the flag set?"

-177-



The answer to a single yes/no question is the smallest item of information
that can be stored. On electronic devices this answer is treated as a
number, 1 for "yes" and 0 for "no", and it is called a bit; this is an
abbreviation for "binary digit" which means it is a number that can have
only two values. By combining bits a computer can do arithmetic with
binary, octal, decimal or hexadecimal numbers. The operations that a
computer carriecs out on bits are often called logical operations, not
arithmetic. Those readers who know about computer number systems can skip
the next two paragraphs if they wish.

If you do not know how a string of bits can be used to represent a number
consider the following set of yes/no questions:

i. Is the number odd or even? Write a 0 for even, or a 1 for odd.

ii. Is the result of dividing it by two odd? Write a 0 or 1 to the left
of the first 0 or 1.

iii. Is the result, if you divide by two another time, odd or even? Write
another 0 for even or 1 for odd to the left of the previous answers.

iv. If the result of dividing by two, once again, odd or even? Write

another 0 or 1.

The answers to these four questions, written down as four bits, will let
you uniquely describe any number from 0 to 15. Try it and see; if you take
the number 10, the answer to the first question is 0O (because 10 is even).
Divide 10 by two and you get 5 which is odd, so the answer to ii is 1.
Divide by two again, ignore the remainder, and the result is 2 so the
answer to question iii is 0. Divide by two again and the result is one,
which is odd, so the answer to iv is 1. Write these four answers down
right to left and 1010 is the result that you get. Repeat the process for
the number zero and the same four questions will give the result 0000
(because zero is an even number). Fifteen will be written as 1111. The
four questions and their answers let you describe any number from zero to

-178-



fifteen by writing down a binary string of four bits. The number sixteen
will give the same result as zero, so another question will have to be
asked to distinguish between sixteen and zero. All numbers bigger than
fifteen will need more than four questions, and more than four bits. With
another four bits any number between zero and 255 can be represented.

A row of cight bits is fine for a computer but difficult for a human being
to recognise or memorise. To make a long binary string more legible we can
split it up into groups of three or four bits, and write each group as a
single symbol. In octal arithmetic, groups of three bits each are replaced
by the symbols 0 to 7. In hexadecimal, groups of four bits are written
down as a number between zero and fifteen, using the symbols 0, 1, 2, 3, 4,
5, 6, 7,8, 9, A, B, C, D, E, F. You can sece that F stands for fifteen.
Any number that would be written in the ordinary numbering system (decimal)
as a value from zero to 255 can be represented as two groups of four bits
(see previous paragraph) or as two hexadecimal digits, from 00 to FF. For
example the decimal number 139 can be written in binary as 1000 1011. If
you write this as two decimal numbers you get 8 followed by 11 and if you
use the hexadecimal symbols this becomes 8B. Converting numbers from
decimal to hexadecimal is a nuisance if you have to do it yourself, but you
can use a conversion table (there will be some of these later in the
chapter), and computers do it automatically anyway. Arithmetic and other
operations can be done on binary or octal or hexadecimal numbers, and
although this may be difficult for people who are accustomed to the
ordinary decimal numbers used in everyday life, it is easy for computers.
Hexadecimal numbers will be used in several places in this book because
they are closer to the symbols used inside the HP-41, but if you feel
uncomfortable about them then use one of the tables (Table 8.1 will do) to
convert them back to decimal. (The words "octal" and "hexadecimal" are
recent inventions; "hexadecimal" is a Latin-Greek mixture and should really
be written as "hexagesimal" or "sexadecimal". Somehow it never is.)

The HP-41 stores your program instructions as groups of eight bits or two

hexadecimal digits. These groups are called bytes. Since a byte can have
one of the values from 0 to 255, there could be 256 program instructions

-179-



one byte long each. In fact many program instructions are more than one
byte long, but their basic unit is always a byte. Text characters are also
represented by one byte each. The numeric digits 0 to 9 can be represented
by half a byte (four bits). Half a byte is called a nybble; a small bite
is a nibble!

How are the bytes put together? The fundamental unit of memory available to
the HP-41 programmer is the register. We have met registers already, one
register is used to store one numeric data value; the SIZE is expressed in
terms of registers. A register contains seven bytes, so it can hold a text
string identifier and six letters, making seven bytes in all. This is
equal to fourteen nybbles. A register can hold a ten-digit number with a
sign, and a signed two-digit exponent, making fourteen elements. A
register is also equal to fifty six bits, so it can hold fifty-six flags,
and indeed the HP-41 flags are numbered from 00 to 55. Figure 8.1 shows
the different ways in which a register can be split up into its components.
Registers are often called words on computers, and the same is done on the
HP-41. What with bytes and nybbles inside their words, it seems that HP-41
users are talking with their mouths a bit full !

one register

(or word)

6 5 4 3 2 1 0 seven bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0 fourteen nybbles

5555554444444444333333333322222222221111111111
54321098765432109876543210987654321098765432109876543210 fifty six bits

Figure 8.1 Different ways of seeing a register

-180-



Most HP-41 operations wuse bits, nybbles, bytes or registers, but
information can be handled in other units. We have already studied
programs; a program contains a whole number of bytes, it stretches from
immediately after one END (or from the start of program memory) to the next
END. Programs are identified by the global label or labels they contain,
and they are treated as units by CLP (which clears a whole program from
memory) and other functions. Extended Memory and Mass Storage (cassettes
or mini disks) are arranged to contain files. A file is a complete
collection of information, such as a program, a set of key assignments or a
personal telephone directory. Each file contains a whole number of
registers and is identified by a name. Files can be split up into smaller
units called "records", all this will be explained in Chapter 11 which will
describe Extended Memory. You can invent your own collections of
information too, for example you could decide to treat 9 registers as a 3*3
matrix. Information that is being handled by a computer or by the HP-41 is
often called data; this word is used to describe any quantity of
information that is being used in some operation. Anything that demands
the movement or use of a serious amount of data is called data processing.
Calculating a wages bill for ten employees is data processing, squaring the
sine of a number is not, because it uses little data although it does a lot
with it.

8.2 Contents of RAM memory
Now you know the possible ways of dividing up one register of the user’s
Random Access Memory. How are various kinds of information stored in such

a register? The HP-41 most commonly stores numbers; Figure 8.2 shows how a
number is stored in the fourteen nybbles of one register.

-181-



13 12 11 10 9 8 7 6 5 4 3 2 1 0 Nybble

Mant- Expo-
issa  ------- Mantissa --—----- nent Exponent Contents
sign sign

Figure 8.2 A register containing a number

Nybble 13 contains the sign; a zero is used for positive numbers and a 9
for negative numbers. Nybbles 12 down to 3 contain ten numeric digits,
each digit being a number from 0 to 9. The most significant digit is in
nybble 12, this should only be zero if the whole number is zero. The
decimal point (also called a radix mark) lies between nybbles 12 and 11,
but does not take up any room. The exponent (power of ten) is stored in
nybbles 2 to 0. If it is positive then nybble 2 contains zero while
nybbles 1 and 0 contain the exponent value as two digits from 00 to 99. A
negative exponent is added to 1000 and the result is stored in nybbles 2 to
0. An exponent of -1 is therefore stored as 999, an exponent of -57 as
943. The HP-41 expects to use only exponents between -99 and +99 so nybble
3 should contain a zero or a nine. (So it is sensible to use 0 and 9 for
the mantissa sign too.) It can be seen though that the HP-41 could have
dealt with exponents from -500 to +499. It is even possible to create
numbers with exponents in this range (using Synthetics of course), and some
functions like LOG deal correctly with such numbers. Numbers with unusual
exponents like this, or with digits other than 0 to 9 (remember a nybble
could contain any value from 