
The HP 48 Handbook

James Donnelly

The HP 48 Handbook

2nd Edition

James Donnelly

Copyright © James Donnelly 1990-1994

All rights reserved. No part of this book may be reproduced,
transmitted, or stored in a retrieval system in any form or by any
process, electronic, mechanical, photocopying, or means yet to be
invented, without specific prior written permission of the author.

Second Edition

First Printing, June 1993
Second Printing, October 1994

ISBN 1-879828-04-9

A

ARMSTRONG
PUBLISHING
COMPANY

Armstrong Publishing Company
1050 Springhill Drive
Albany OR 97321 USA

Preface to the 2nd Edition

The Hewlett-Packard HP 48SX calculator was introduced in March,

1990 to an enthusiastic reception by students and engineers around the
world. In April 1991 a second model, the HP 48S, was introduced at a
lower cost, making the power of the HP 48 family available to a wider
audience.

In June 1993 Hewlett-Packard announced a major upgrade to both
models of the HP 48, extending the built-in command set and providing
new organization to the most used tasks with focused user interfaces.
Along with the new software, the HP 48GX has 128K of random access

memory (up from 32K), while the HP 48G remains at 32K.

The HP 48 Handbook has been used by many HP 48 owners to provide
a reference to the calculator and to the HP 82211 HP Solve Equation
Library Card. This new edition of the Handbook has been designed to
serve owners of both the original and new models of the HP 48 family.
HP 48 fans who are upgrading from the original model to the new
model will notice that in addition to the new functions and user
interfaces, certain areas, such as memory organization, are somewhat
different. Compatibility issues between new and old models are
discussed, and many ideas are provided to help you get the most out of
your new machine. The Example Programs and System Programming

chapters are new, and provide exciting new programs and tools to use.

Acknowledgements

This second edition includes changes and improvements that originate
from both reader feedback and HP’s enhancements of the HP 48
calculator. Special thanks go to Lee Buck, Joseph K. Horn, Wlodek
A.C. Mier-Jedrzejowicz, Jeremy Smith, and Eric L. Vogel for many
thoughtful comments, suggestions, and hours of hard work.

Lee Buck contributed the DSORT program for sorting directories and
the date utility programs. The program TANK is based on a program
of the same name originally written by Doug Cannon. Joeseph K. Horn
contributed the PFIT, SHWP, and SQPQ programs. The program
TRAIN was contributed by Jeremy Smith. The program TREE is based
on a program written by Charles Talbot, who credited the book “Fractal
Programming in C” by Roger T. Stevens as his source.

Ted Beers, Ron Brooks, Sharon Butterfield, Diana Byrne, Dan Coffin,

Tom Diamond, Russ Donnelly, Grant Garner, Richard Nelson, Charlie

Patton, Scott Rohrer, Bill Wickes, Bob Worsley, and Dennis York
contributed advice, ideas, support, and encouragement.

The cover photograph is by Peter Krupp.

Three outstanding books contributed to the creation of some of the
example programs relating to date utilities, Brownian motion, chaos,
and fractal images. All three are highly recommended:

Duffet-Smith, Peter Practical Astronomy With Your Calculator,
3rd Ed. (Cambridge University Press, 1988)
ISBN 0-521-35699-7

Lauwerier, Hans Fractals - Endlessly Repeated Geometrical
Figures (Princeton, New Jersey: Princeton University Press, 1991)
ISBN 0-691-02445-6

Gulick, Denny Encounters With Chaos (McGraw-Hill, Inc., 1992)
ISBN 0-07-025203-3

Last, but not least, this 2nd edition would have been utterly impossible
were it not for the support of my beloved wife Janet.

To Russell and Marian Donnelly

Contents

Introduction

Objects, Names, and Constants

ODbJECt TYPES...eouvierririiieiiiiiieiieriie niente steersese re eens

Real and Complex Numbers...........cocevviviiiiniininnnnnn,

Binary INte@erscceovvveviieeiiiiiiecece

Unit OBJECES ...evvieirieiiieiiieiiieiieiie sietesree ese evens

Backup ObjJECtS........ccuvevieiieiieniieiienienie nieces seers
Library ODBjects........ccoouiriiiiiiniieiieiienieseeee

ODbJECt SIZES.....covieiiiiiiiieiieeeeeee

Object Evaluationccccoeveeiiniiniiniiienienieeee

Operator Precedence............cccovvveviieeiniieeniienieeeeiieeen.
Variable Namesccccoooueviiiiiiiiiiniiiieiceee een

Symbolic Constants...........c..ceceeververrieninieneeieneenenens
Memory
Memory Organization............c.ccceevvveevveeniiiennveenineeennen

USEr MEMOTY.....uveiiiiiiiieiiieiieeseeeceteris
Temporary Memoryccocevvviviiiiiiiniinicieeeeeceeee

Configuring RAM Cards.........ccccoveeniiniiniiiiiciicnenne,

Graphics
Graphics Coordinatescceevveeruveenieennieeenieesnneennnes
Graphics Operationscocueeuerieriennieenieenee eee seeeees

Converting Text to GraphiCs..........cccecvevvirviniinicninnenn
Animation SEQUENCES...........cevvuverriienieeniienieeenieeenieens
Stack View Program...........ccccceevvvieiiiniieenieecieeeniee ee

Programming

Program EXecution...........cccccevvieiniiiiiiinnieniieeciieeenn
Single-Stepping Programs...........cccccevvvviviieiniieeniiennnen.

Local Variables...........cocuevveriiniiniiniinieeieeeeeeee
Programs as Subroutines............ccccceoveiviiniininniieniennn,

User-Defined Functionscccccooceevienienicnicniecnnennn

Looping StrucCtures...........ccceevveevieeneenieeneenieeeieeieenieenn
Conditional Structures.cocueevieeriieeniieeniieenieeeieeens
Error Trapping........cccccocvevieiiiiiinicniceeecece

Data ENtry...cocoooeiiiiiiiiiccece
Displaying Results............cccoviiiiiiniiniiiniiciceiecen
RECUTSIONoeuvre

List ProCeSSINGcccvvvviiieniiieiiieeniieeiieenieeeee
Meta-ObjJECtSoovueeiiiiiiiiiiieereeeeeeeee

 Example Programs 80

Greatest Common DiviSO=.........cccooeiieiiiinieniciieeneee 80

Least Common Multipleccccoiniininiiiininiinnen. 81
Square Root’s Partial Quotients.............cccceevvvernneennnne. 81

Polynomial Curve Fitting..........ccccoocevevieniniiniecneen, 83
Slope of ALINE ..cc.eoeuviiiiiiiiiiii 86

User Interface for User-Defined Functions.................... 87

Sorting Directoriescoceevvevinieiiiniinieneiieeeiee, 89

Date ULES......c.eoveieriieieieeeeeeeeee90

Status Line Animationcccceevvenienienienienieeneeeen 95

Customizing the Solver...99
Amortization Plotcocceoiiiiiiniii 109

Pascal’s Triangleccoceeviieiiiiiniiiiiieiececcee 111

Plotting Inequalitiesc..ccccevivvienininiiniiicniin, 113
Brownian Motionccocevieniiiniineenicneceeen 116

Entropyo.oo119

CRhaoS....cooiiiiieiieeee 123
Fractal TTees.......cccoevvivniiiiiiiiiiieiieeeeeeceeeeee 131
JULIA SELS....oiiiiiiiiiiiieeee 135

The Mandelbrot Set...........cccceovveieeiiieiieiieiieieceeee. 137

System Programming 139

User-RPL vs. System-RPL............cccccooeiiiiiniinn 139

SYSEVAL & Version Identification.............cccce.e.... 140
The Dangers & Benefits of System-RPL 141

Assumptions in This Chapter............c.ccceviiniininnn 141

Fixed Entry Points.........ccccooveviiniieniieniieiecececeee 141

Examples in this Chapterc..ccceceniniininiinnnnnn 142

Naming Conventions............c.cceceveniiiiineiiiiieninninens 143

Checking ATgUMENtS..........c.eevvveeriieniieniieeeniieeniieenieene 144
Binary Integersccc.eovveeniiiiiiiniicieccicceec 145
Character Constantsccocveerveenieenieenieenneeeenees 150

Character SIrngS........coovveviveiniieeiieenieeieeeee 151
Real and Extended Real Numbers...........cccccevvennnneen. 157
Composite ODJECESvveviveeiiieiiieiiieeeeeieeiee eee 168

TESESeve172

Stack Operations..........cccueevvevveniiieiieninieieeeenie eee 176
Graphics Operations............c.eevveernieeniieniiieenieeniieens 180

Keyboard Controlccooviiiiiiiiiiniiiiiiicece, 192
Streamlining Finished Programs..............ccoccconiinnne. 195
LIBEVAL.....c.ooiiiieeeeee197

HP TOOIS......oiiiiiiiiiiiiiecieeee 200

System Operations 201
Invoking System Operations.............ccceeveerviveeriveennnen. 201
System Halt LOg......cccooveviiiiiiiiiiiieeen 202
Interactive Self Testcovvemnoeeeeeeeeeee 203

Statistics Data

Character Codes

Data Transfer

Data Transfer Methods..........cccoevevvvvevennnnn

Kermit Protocol...........cooeevinviiiiiiiieiieen

Backing Upthe HP 48ccocvvennnnnn.
Restoring the HP 48ccoovvvvvinnnennnn.

ASCII File Transferccooevvvvvvvvvnneennnnn.

Printer Control

PRTPAR.........coiiiiiiiiiiii,
Messages

Menus

Custom MENUSevvevvieeieeeeeeeeeeeeeeeininnnnn

Built-In Menusooovvvvviveeeeieeeeeeeeeieeeeeienns

User-Defined Keys

Setting User Mode..........ccccceevvernvinieennnnne
Key Locationsccceeveeneenienieneenne.

Standard Keyscccoocvevvenienienienienne.
Flags

Built-In Units

 Equation Library Reference

Equation Reference..........c.c.cceeuvevveeennnene
Constants Reference..........cccccccovvvvveeninnnns

Command Index

 Command Reference

Alpha Keyboard

Program Index

204
204
205
206
208
208
209
211
212
213
214
215
216
217
219
220
228
228
230
233
233
233
233
234
237
242
242
247
249
265
338
339

Introduction

The HP 48 Handbook is designed with the programmer in mind — a
concise combination of system descriptions and detailed reference
information. Many example programs are provided to help you along
and to stimulate your imagination. A chapter is devoted to System
Programming, which opens a door into the world “under the hood” of
the HP 48. The Command Reference is your encyclopedic reference to
all commands.

Fundamental Concepts. The HP 48 world revolves around the
stack, which is implemented as a dynamically allocated last-in-first-out
(LIFO) structure which can hold any number of objects of different
sizes and types (see Objects, Names, and Constants). All commands
take their (zero or more) arguments from the stack and return any
results to the stack. For instance, consider the following display:

{ HOME }

4: "Janet"
3: (3,4)
2: 'S57+R!
1: aTd
OVERKOTKOLL[ROLLD]PCE[DEPTH]

Level 1 contains the number 2.47, level 2 the algebraic expression
‘57+X’, level 3 the complex number (3,4), and level 4 the string
“Janet”. Now execute the multiply function. While multiply is
executing, the arguments are removed from levels 1 and 2, leaving (3,4)
in level 2, and the string “Janet” in level 3. When the multiplication is
complete the result is returned to the top of the stack:

{ HOME }

4:

3: "Janet"
2s (3,4)
1: '(S7+R)*2. 47"
OVERKOTKOLL[ROLLD]PICK[DEPTH]

Introduction 1

Many commands are type-sensitive, that is, they perform different
operations for different types of input parameters. For the complete
descriptions for each command, see Command Reference.

Example Programs. There are several example programs and
program fragments in this book. Each complete program is named and
printed with a size and checksum.

All characters in the programs are case-sensitive. The names of
commands are always uppercase. By convention, the names of global
variables are uppercase, and of local variables are lowercase. If another
example program is used in an example, the name will be shown in
bold characters.

Verifying Example Programs. While the command line entry of a
program may be free form, with the keystroke being valid between
words, graphics objects must be entered exactly as shown, with no

extra breaks in the command line when entering the data.

If you enter a program into the HP 48, use the BYTES function to make
sure the program in the calculator matches the version in the book.

Computing Checksums. To compute a checksum for a named
program, enter the program and store it in a variable with the same
name that’s in the example. Then, place the name (such as ‘VSCAN)
on the stack and execute BYTES. The size (including the name) and
checksum will be returned to the stack.

To compute a checksum for a program fragment, place a copy of the
fragment in level 1 and execute BYTES.

For instance, the program

« DROP SWAP =»

is 15 bytes long and has the checksum #5197h.

2 Introduction

Objects, Names, and Constants

Object is a general term for anything that can be put on the stack or

stored in a variable. Any object may be described in terms ofits type
and value. For instance the number 247 has type “real number” with
value 247.

Objects may be classified into several broad categories:

® A data object contains information, such as a number or a

sequence of characters. Real numbers, complex numbers, binary
integers, arrays, and strings are examples of data objects.

® A procedure objectis a collection of objects that perform a task in

order. Programs and algebraic expressions are procedure objects,
and may be evaluated, placed on the stack or stored in variables
just like any other object.

® A name object permits an object to be referenced by name.

® Global names refer to corresponding variables that are

available at any time. By convention, global variable names
are written in uppercase (A).

® Local names refer to corresponding local variables that exist

only within the scope of the executing program that defines
them. By convention, local variable names are written in
lowercase (a).

In general, objects may be stored in variables or manipulated on the
stack regardless of their type. Some HP 48 functions and commands
perform different operations based on the type of object supplied as a
parameter. For instance, the + function executes differently for strings
(concatenates) than for real numbers (adds).

Objects, Names, and Constants 3

Object Types
Different object types are distinguished in the stack display through
their delimiters — characters that are unique to that type of object. For
instance, strings are surrounded by quote marks ("), and programs are
contained in French quotes (%#).

Type Object Example

0 Real number 1.2345
1 Complex number (2.3,4.32
2 String "ABC"
3 Real array [123]
4 Complex array [C1,2) (3,4> 1]
5 List { "ABC" Var

6 Global name X
7 Local name y
8 Program «A2+2»
9 Algebraic '¥=x"2!
10 Binary integer # 247d
11 Graphics object Graphic 131 x 64
12 Tagged object Dist: 34.43
13 Unit object 32_ftss"2
14 XLIB name XLIB 766 1
15 Directory DIR ... END
16 Library Library 766: ...
17 Backup object Backup HOMEDIR
18 Built-in function SIN
19 Built-in command SWAP
20 Internal binary integer <247d>
21 Extended real number Long Real
22 Extended complex no. Long Complex
23 Linked array Linked Array
24 Character object Character
25 Code object Code
26 Library data Library Data

27-30 External objects External

Some objects may only be manipulated by unnamed internal system
objects (see System Programming).

Objects, Names, and Constants

Real and Complex Numbers

Real Numbers. Real numbers have a 12-digit mantissa between 1
and 9.99999999999 and a 3-digit exponent between —499 and +499.
During math operations, real numbers are expanded to have a 15-digit

mantissa and a 5-digit exponent during the calculation, then rounded
back to the 12-digit value when returned as results.

Complex Numbers. Complex numbers are represented by pairs of
real numbers in parentheses: (2,3) (1.2,5). The Rectangular (x,y) and
Polar (r,0) display modes (flags —15 and —16) control the appearance of
a complex number on the stack, but do not affect the internal form. For
instance (2,3) is displayed in polar form as (3.60555127546,
£56.309932474), butit is still stored internally as (2,3).

Vectors and Matrices. Vectors and matrices may be composed of
either real or complex numbers. Some examples:

L121] Real vector

[C121 Real matrix
[341]

CL C1,1> 1,2) Complex matrix
[C2451) (2,2) 11]

Related Commands: The commands R—C and C—R convert
between real and complex numbers or real and complex arrays. C—R,
V—, and OBJ— decompose a complex number to its real and
imaginary parts. C—R separates a complex array into an array of real
components and an array of imaginary components. OBJ— separates a
complex array into a series of complex numbers followed by a list
containing the dimensions of the original array. If Complex Mode (flag
—-19) is set, >V2 creates a complex number instead of a two element
array. RE returns the real component of a number or array; IM returns
the imaginary component. ARG returns the polar angle 0 of a
coordinate pair (x,y). SIGN returns a unit vector in the direction of the

input argument(x,y).

Objects, Names, and Constants 5

Binary Integers
Binary integers are entered and displayed with a leading # delimiter
and a trailing b, d, h, or o to indicate the base. The trailing character
can be omitted if the HP 48 is already set to the desired base mode.

Examples: #181181b #247d #T7DACH

The commands STWS and RCWS may be used to store or recall the
wordsize, which may be up to 64 bits. The wordsize controls the
interpretation of arguments and the results of arithmetic operations. For
instance, if a binary integer is added to a real number, the real number
is truncated to the current wordsize, and the result is a binary integer
truncated to the current wordsize.

Note that changing the wordsize alone does not affect a binary integer —
you cannot truncate a binary integer merely by changing and restoring
the word size.

Binary Operators. The operators AND, OR, XOR, and NOT are
available for logical comparisons. The bit-by-bit comparisons are
performed up to the current wordsize according to the following table:

TRUTH TABLE

arg argp arg

arg, arg, AND OR XOR NOT
args args args arg

1 1 1 1 0 0
1 0 0 1 1 0
0 1 0 1 1 1
0 0 0 0 0 1

Related Commands: The following commands are useful for
working with binary integers: B—>R, RCWS, RL, RLB, RR, RRB,
R—-B, SL, SLB, SR, SRB, and STWS.

6 Objects, Names, and Constants

Unit Objects
Unit objects are entered and displayed in the form: number_units where
numberis a real number and units is an algebraic expression containing
unit names, prefixes, exponents and the operators *¥, #, and *. (A unit
object may only contain one # operator.)

Examples:
32_fts/s"2

Density: 25_g-/cm™3

Units in Menus. Unit objects in built-in menus or custom menus
provide three types of functionality:

® Primary keys append the unit on the key to the numerator of the

level 1 object.

® Left-shifted keys convert the level 1 object to the unit on the key.

® Right-shifted keys append the unit on the key to the denominator

of the level 1 object.

User-Defined Units. A user-defined unit may be created from any
combination of the built-in units or other user-defined units. To create

a user-defined unit, store the definition in a variable whose name is the

name of the new unit.

For example, create the user-defined unit week by storing 7_d in the
variable week. Executing UBASE on 2_week yields 1209600_s. The
object 1_week stored in a custom menu will now behave like any other
unit-related menu key.

Related Commands: The following commands are useful for
working with unit objects: CONVERT, OBJ—, UBASE, UFACT,
—UNIT, and UVAL.

Objects, Names, and Constants 7

Backup Objects
Backup objects are used to store backed-up data in independent
memory (ports 1 through 33 for the HP 48G/GX,or ports 1 or 2 for the
HP 48S/SX) or in port 0. A backup object may contain any object,
including directory structures.

Backup Identifiers. The contents of a backup object are referenced
by a backup identifier (eg: * 1: FRED), which is a port-tagged name.

The wildcard & may be used for the port number for the commands
RCL, EVAL, and PURGE. When the wildcard is evaluated, memory is

searched in the order of ports 2, 1, 0, and then main memory for the
first occurrence of the specified name.

If a backup object contains a directory structure, an object within that
directory structure may be recalled or evaluated by specifying the path
and name of the objectin a port-tagged list.

For instance, : 1: { EEDIR FRED 2 refers to the object FRED in a
directory stored in backup object EEDIRin port 1.

Creating Backup Objects. A backup object is created by executing
the STO command with the object in level 2, and the port-tagged name
in level 1. For instance, the sequence 'FRED' RCL :1:BFRED STO
recalls the contents of variable FRED to the stack and creates a backup
object called BFRED in port1.

Recalling Backup Objects. The contents of a backup object may
be recalled in two ways:

® Press (PJLIBRARY), FORTH, FORT1 ,or FORTE , then (P) and

the menu key for the backup object.

® Place the backup identifier on the stack and execute RCL.

8 Objects, Names, and Constants

Evaluating Backup Objects. The contents of a backup object may
be evaluated two ways:

® Press ([PJLIBRARY), FORTH, FORT ,or FORTE for the port

number, then the menu key for the backup object.

® Place the backup identifier on the stack and execute EVAL. EVAL

also accepts a list of backup identifiers.

Purging Backup Objects. To purge a backup object, place the
backup identifier on the stack and execute PURGE. A backup
identifier may be included in a list supplied to PURGE.

Related Commands: PVARS takes a port number as its argument
and returns two results:

® Level 2 contains a list of backup objects and library IDs.

® Level 1 contains the type of memory in the port — "SYSRAM",

"ROM", or a number showing the amount of available independent
RAM.

Library Objects
Library objects are collections of one or more objects that generally
extend the built-in command set. Libraries are referenced by a library#
or a library identifier (* port#: library#), depending on the command.
On the HP 48S/SX the title of the library may be displayed by pressing
& in the LIBRARY menu.

Installing a Library. Library objects only extend the command set
when they are stored in a port (0, 1, or 2) and attached to a directory in
user memory.

Objects, Names, and Constants 9

To use a library, perform the following:

® Store the library object in a port, such as port 0. For instance,if the

library objectis in level 1 of the stack, execute O STO.

® Turn the calculator off, then on again. The calculator will perform

a system halt, which updates the system configuration to recognize
the new library.

® Attach the library to the desired directory.

® To attach a library to the current directory, enter the library#

and execute ATTACH.

® To detach a library from the current directory, enter the

library# and execute DETACH.

Note: Most commercially produced libraries will automatically attach
to the HOMEdirectory. Any number of libraries may be attached to
HOME, but only one library may be attached to each subdirectory.

Removing a Library. To purge a library, perform the following:

® Ensure that the library object does not appear on the stack as

Library nnn: ... Either store the library in a variable or
execute NEWOB to create a unique copy.

® Change to the directory to which the library is attached.

® Enter the library#, such as : 2: 272 and execute DETACH.

® Enter the library ID, such as : 2: 272 and execute PURGE.

Note: When you detach a library, programs that use commands or
functions in that library will now read XLIB nnn mmm when displayed
on the stack. You cannot enter a library command into a program in
the form XLIB nnn mmm, so you can no longer edit the program.
When the program is executed, missing library commands generate the
error “Undefined XLIB Name”.

10 Objects, Names, and Constants

Object Sizes
The following table lists the typical sizes for selected object types.
Note that the HP 48 saves temporary memory by using built-in objects
for some common values. The most commonly used built-in objects
are the real integers from -9 to +9, the complex constant (0,1), the real
constants (e, T, MINR, and MAXR), and many internal binary integers.
When a built-in object is used, only 2.5 bytes are used. For instance,

the real number 9 is built into the HP 48, so when you enter 9 and
execute BYTES, only 2.5 bytes are used to store a pointer to the built-
in number, whereas 10.5 bytes are required to store the number 2.47.

Type Object Size (bytes)

0 Real number 10.5

1 Complex number 18.5
2 String 5 + number_of_characters

3 Real array 12.5 + 8 x number_of_elements

4 Complex array 12.5 + 16 * number_of_elements

5 List 5 + size_of_included_objects

6, 7 Unquoted name 3.5 + number_ofcharacters

6, 7 Quoted name 8.5 + number_of_characters
8 Program 12.5 + size_of_included_objects
9 Algebraic 5 + size_of_included_objects

10 Binary integer 13
11 Graphics object 10 + rows * CEIL(cols/8)

12 Tagged object 3.5 + tag_characters + object_size
13 Unit object 7.5 +

Real magnitude 10.5 (2.5 if built-in)
Prefixes 6

Unit names 5 + number_of_characters

Operators (*, /, or *) 2.5

Exponents 10.5 (2.5 if built-in)

14 XLIB name 5.5

15 Directory 6.5 + size_of_included_objects
17 Backup object 5 + no._of_name_chrs + incl._obj

18, 19| Function or command 2.5

20 Internal binary integer 5
21 Extended real number 13

22 Extended complex no. 23.5
24 Character object 3.5

Objects, Names, and Constants 11

Object Evaluation
Evaluation of an object may be either implicit or explicit. Objects
being entered on the command line, such as a real number or the name
of a command such as +, are implicitly evaluated unless surrounding
delimiters delay evaluation. An object on the stack may be explicitly
evaluated by executing EVAL.

Evaluation results vary with the type of object:

12

When a global variable name is evaluated, the contents of the

variable are evaluated. To place a global variable name on the
stack, enclose it in tick marks (' X"').

When a local variable name is evaluated, the contents of the local

variable are recalled to the stack, but not evaluated. If a local
variable contains a real number, the behavior is essentially the
same as for a global variable, but if the local variable contains a
program, the program will only be recalled to the stack. You can

use a subsequent EVAL to evaluate the program.

When a program is evaluated, global names are evaluated unless

surrounded by ticks ('), the contents of local names are recalled to
the stack, commands are executed, and all other objects are put on
the stack.

When an algebraic object is evaluated, the value it represents is

computed and returned to the stack. Algebraic objects being
evaluated obey rules of precedence — see the table on the next
page.

When a list is evaluated, global names are evaluated, programs are

evaluated, commands are executed, and all other objects are placed
on the stack.

All other objects are placed on the stack.

Objects, Names, and Constants

Operator Precedence
Operator precedence controls the order in which calculations take place
within an algebraic expression. Functions with the highest precedence
(1) are evaluated before those with the lowest precedence (11). The

evaluation order is left-to-right for operators having the same
precedence. For instance, in the expression '3+3#%7', the multiply
operation takes precedence over the add, resulting in the answer 38,
whereas the answer would be 56 if evaluated from left to right without
following the rules of precedence.

Level Operation

 —
o
0
X
N
U
n
R
W

—

Expressions within parentheses
Functions

I' (Factorial)
Power (*) and square root (1)

Negate (=) multiply(¥) divide (~)
Add (+) and subtract (-)
Relational operators (==3 #3; <3 >; £5 2)
AND and NOT
OR and XOR
Left argument for | (where)

Objects, Names, and Constants 13

Variable Names
Variable names may contain letters, digits, and most characters. Names
may not start with a digit, match a command name, or contain object
delimiters or the characters + = # » ~ f = < > £ 2 = a [|
space, comma, or @. Variable names that begin with € are interpreted
as local variables (see Local Variables).

Reserved Variables. The HP 48 stores information for various
commands in reserved variables. Reserved variables may reside in any
directory, and may be used in more than one directory at a time.

Name Description

ALRMDAT Current alarm editing data
CST Custom menu contents
EQ Current equation for SOLVE and PLOT
EXPR Current expression for symbolic operations
IERR Uncertainty of integration
IOPAR I/O parameters (HOME directory only)
MHpar Savesthe state of the Minehunt game
Mpar Multiple Equation Solver equation set
Nmines Specifies the number of Minehunt mines
PICT References the graphics display
PPAR PLOT parameters
PRTPAR PRINT parameters (HOME directory only)
VPAR 3D PLOT view volume parameters
ZPAR Stores a copy of PPAR from previous zoom
der... User-defined derivatives begin with der

nl, n2, ... Integers created by ISOL
sl, s2, ... Signs created by ISOL and QUAD
2DAT Currentstatistical matrix
2PAR Statistics parameters

14 Objects, Names, and Constants

Notes:

The I/O setup commands only modify the copy of IOPAR in the

HOMEdirectory.

The print commands only modify the copy of PRTPAR in the

HOMEdirectory.

PICTis not directory-dependent. It only refers to graphics display

memory.

With the exception of PICT, you can store any object into a

reserved variable, but the subsequent execution of commands that
depend on that reserved variable may be unpredictable or generate
an error.

You may purge a reserved variable to save memory.

Symbolic Constants
The HP 48 has five constants which may be used in symbolic form or
as approximate numerical values.

Name Machine Value

1 3.14159265359

e 2.71828182846

i 0,1)
MAXR 9.99999999999E499

MINR 1.E499
System flags —2 and —3 control evaluation of symbolic constants:

Flag Description Clear Set Default

-2 Symbolic Constants Symbolic Numeric Clear
form form

-3 Numeric Results Symbolic Numeric Clear
results results

Objects, Names, and Constants 15

Memory

Memory in HP 48 calculators is accessed in four-bit quantities (nibbles,
or 1/2 bytes) within a 20-bit address space, yielding a 512K byte
address space. The BYTES command, which returns the size and a
checksum for an object, will sometimes show a size such as 106.5,
reflecting that the object occupies 213 nibbles of memory.

The HP 48SX and the HP 48GX have two ports which may accomodate
plug-in cards containing either random-access memory (RAM) or read-
only memory (ROM). The rest of this chapter is devoted to a
discussion of system memory organization and possible uses of plug-in
cards.

Memory Organization
Memory in the HP 48 is organized as follows:

System ROM The operating system resides in 512K bytes (256K in
the HP 48S/SX) of read only memory (ROM). This
command set may be extended through the use of
library objects which reside in ROM or RAM (see
Library Objects). Half of this memory may be
layered with system RAM.

System RAM There are 32K bytes of random access memory
(RAM) in the HP 48S, HP 48SX, and the HP 48G.
There are 128K bytes of RAM in the HP 48GX.
Some memory is reserved for display memory and
temporary memory.

Plug-in ROM Plug-in ROM application cards, available from a
number of manufacturers, may extend the built-in
command set.

Plug-in RAM HP 48SX or HP 48GX RAM may be extended by
adding plug-in RAM cards that contain either 32K
(HP 82214A) or 128K (HP 82215A). Plug-in RAM
may be configured two ways (see Configuring RAM
Cards).

16 Memory

User Memory
User memory may be organized into a tree structure of directory

objects, which are implemented as variables stored in the HOME
directory.

HOME

|
| |

bos IOPAR hs DATA

Pak
PROG1 PROG2 PAGES PS PROG

P1 P2

The status line displays the current directory path, and the VAR menu
displays the current directory:

D
HOME PROG: PAGES }

—
P
I
B
=

In the example above, the current directory is PAGES, which contains

variables P1 and P2.

Memory 17

Creating a Directory. A directory may be created with the
command CRDIR. To store variables in the new directory move to the
new directory by evaluating its name or pressing the corresponding key
in the VAR menu.

Accessing Variables. When a variable name is evaluated, the
current directory is searched first. If the variable is not found, its parent
directories are searched in ascending order until the variable is found.
In the example above, there are two variables named PROG].
Different directories may have variables of the same name.

Changing Directories. To change to a lower directory, simply
evaluate its name. To return to the previous level, execute UPDIR (see
Menu Traversal Program). Evaluating a list that starts with HOME
followed by directory names can quickly change the current directory
to any other place in user memory. For instance, if the current directory
is PAGES, evaluating { HOME EQNS } will change the current
directory to EQNS. A port-tagged path may be used for RCL and
EVAL, but you must move to the target directory for STO.

Changing a Directory Name. To change the name of a directory or
move the directory to another location, perform the following steps:

® Recall the directory to the stack

® Purge the old directory

® Move to the new location

® Enter the new name and execute STO.

Purging a Directory. The PURGE and PGDIR commands may be
used to purge a directory. The PURGE command only removes empty
directories; PGDIR removes a directory and its contents.

Saving User Memory. The commands ARCHIVE and RESTORE
may be used to save and recover all of user memory (see Data
Transfer).

18 Memory

Temporary Memory
The data stack in the HP 48 is actually a stack of pointers which refer to
objects elsewhere in memory. Temporary memory is the calculator’s
“scratchpad”. All objects that are not stored in a port or in a user
variable reside in temporary memory. Many commands require

temporary memory to construct intermediate objects or new objects
returned as results to the stack.

Memory

High Memory

Data Stack

'
Available Memory

!
Return Stack

f— — — — — — — — — —

TEMPORARY MEMORY
(TEMPOB)

PICT Grob

Stack Display Grob

SoftKey Grob
 Dedicated System RAM

Low Memory

19

Use of Temporary Memory. To understand temporary memory a
little more, consider what happens when two math operations are
performed. Enter the numbers 1.5 and 2.6 on the stack. These numbers
now reside in temporary memory, referred to by pointers on the data
stack. When the numbers are added, the result, 4.1, is a number in
temporary memory referenced by a pointer in level 1 of the data stack.
The objects 1.5 and 2.6 remain in temporary memory, referenced by
pointers that save the Last Arguments.

Now add 2.8 to the result in level 1. The level 1 pointer on the data
stack refers to the object 6.9 in temporary memory. The last arguments
pointers now refer to the objects 2.8 and 4.1, and the objects 1.5 and 2.6
are no longer referenced.

Garbage Collection. From time to time the HP 48 will “hesitate”
during an operation. This hesitation is usually caused by the removal
of objects in temporary memory which are no longer being used.
Objects which are no longer referenced continue to accumulate in
temporary memory until memory has been filled. When memory is
full, the calculator scans the objects in temporary memory, deleting
those without references to them. This process, known as “garbage
collection”, is similar in concept to garbage collection in LISP.

A large number of pointers on the stack that point to temporary
memory can slow down the garbage collection process to an
uncomfortable degree. This occurs when there are a large number of
objects on the stack, or an object has been extracted from a large list. A
worst case scenario occurs when a list that has been stored in a local
variable has been broken out onto the stack using OBJ—. In this case,
the time required for garbage collection increases roughly with the
square of the number of objects that were in the list. List operations
can be optimized by storing the lists in global variables, effectively
moving the operations from temporary memory to user memory.

The MEM command returns the amount of available memory, forcing

an initial garbage collection to return an accurate result. It may be
helpful to insert the sequence MEM DROP to force garbage collection
prior to speed-sensitive program sequences.

20 Memory

The NEWOB Command. The command NEWOB may be used to
create a new copy of an object in temporary memory, whose only
reference is on the data stack. In general, the system will perform an
automatic NEWOB where it makes sense. For instance, if you recall
the contents of a variable to the stack and press [EDIT], the object will be
copied to temporary memory before editing begins.

There are two uses for NEWOB:

® NEWOB “frees” an object that was extracted from a list. Consider

the following program:

« { "AB" "CD" "EF" } 2 GET »

Level 1 of the data stack contains a pointer into the list, which still

resides in temporary memory. Executing NEWOB now would
create the unique object “CD” in temporary memory, and release
the list for garbage collection. Note: set the Last Arguments flag
(=55) to preventthe list from being referenced as a last argument.

® Recalling an object to the stack simply returns a pointer to the data

stack. To purge a backup object from a port while retaining a copy
in temporary memory, recall the object and execute NEWOB.
Then the original object may be purged because there are no
references to it.

Memory 21

Configuring RAM Cards

Initial Configurations. Before a plug-in RAM card is used, some
consideration should be given to its intended use. RAM cards may be
configured two ways:

Independent RAM may be thought of as an “electronic disk”,

which may be removed from the calculator. Individual objects or
entire directories may be placed in independent RAM (see Backup
Objects for more details). This configuration is most suitable for
backing up data, “hiding” data from the HOME directory, or
exchanging data with another calculator.

System RAM (128K)

Port 1 (128K)

Port 2

4Mb in 32

128K Banks

System ROM (256K) System ROM (256K)

22

Higher Addresses

HP 48GX Memory Organization (Port 1 Independent)

Independent RAM cards in port 2 may contain up to 32 banks of
128K bytes, each of which becomes a logical port. When
installing a large RAM card into port 2, the command PINIT is
useful forinitializing all the banks at once.

NOTE: Some objects, such as user programs which use new
HP 48G/GX commands will not work properly when read into a
HP 48S/SX.

Memory

® Merged RAM extends the built-in RAM, creating more room for

variables and directories, port 0, temporary objects, or graphics
display area. In the HP 48SX, a card used for merged RAM may
be installed in either port 1 or port 2. In the HP 48GX, merged
RAM can only be installed in port1.

[System RAM (256K)

Port 2

4Mb in 32

128K Banks

System ROM (256K) System ROM (256K) Bl

> Higher Addresses

HP 48GX Memory Organization (Port 1 Merged)

Merged RAM may not be removed from the calculator unless the
FREE1 command is used to free it. To free a card, make sure there
is enough available memory to hold all your variables (including
the contents of port 0), enter a blank list in level 2 and execute
FREE].

Changing Configurations. A merged RAM card may also be
“converted” to an independent RAM card containing objects that were
in port 0. To do this, enter a list containing the objects to transfer to
independent RAM and execute FREE].

The reverse operation is also possible. An independent RAM card may
be converted into merged RAM with the MERGE] command. Any
objects that were in the card will appear in port O.

Understanding Port 0. Port O is a portion of built-in memory
(which may include merged RAM) which behaves in the same manner
as an independent RAM card (except that it is not removable). Port 0
may contain either library or backup objects. The amount of memory
devoted to port 0 changes as objects are stored in it or purged from it.

Memory 23

Graphics

The HP 48 display is a 131x64 pixel LCD which may present either the
stack display or PICT, a portion of memory set aside for graphic
displays. To switch the LCD between the stack display and PICT, use
the commands PICTURE, PVIEW (to display PICT), and TEXT (to

show the stack display).

Graphics objects (often known as grobs) may be placed into either
PICT or the stack display, however the latter operation requires
commands described in System Programming.

The size of PICT must be at least 131x64 pixels (1098 bytes), and no
wider than 2048 pixels. PICT can be enlarged using the PDIM
command. PICT may also be removed from memory with the PURGE
command to make space available for memory-intensive applications
that do not need the graphics display. If PICT does not exist when a
command refers to it, a default size PICT will be created before the
command is executed.

Graphics Coordinates
Two systems of coordinates may be used to manipulate PICT and
graphics objects: user-unit coordinates and pixel coordinates. The
reserved variable PPAR (which may reside in any directory) stores
scaling information and parameters which pertain to plotting. The full
definition of PPAR is given later in this chapter.

The 3D plot types use an abstract space called a view volume to
visualize functions of two variables. The view volume is described
later along with the reserved variable VPAR, which stores the
parameters of the view volume.

24 Graphics

User Unit Coordinates. User units, represented as complex
numbers, are typically used to define the boundaries of plots. User unit

scaling information is stored in the reserved variable PPAR. The first
two entries in PPAR store the coordinates of the lower-left corner and

upper-right corner of PICT. The default plot boundaries are (—6.5,-3.1)
and (6.5,3.2).

(6.5.3.2) Default User Coordinates (6.5.3.2)

(0,0)

 (-6.5,-3.1) (6.5,-3.1)

Pixel Coordinates. Pixel coordinates are represented by a list
containing two binary integers, { #col #row }. Graphics objects on the
stack may only be described with pixel coordinates. The upper-left

pixel of PICT or any graphics object is represented by { #0 #0 }.

{ #0 #0 Pixel Coordinates {#130 #0}

GOR Coordinate

 { #0 #63 } O {#130 #63 }

Related Commands: The commands C—PX and PX—C convert
between user-unit and pixel coordinates based on the dimensions in
PPAR. The PDIM command changes the size of PICT. PMIN and
PMAX set the coordinates of the plot in user units, and SCALE

specifies the x and y scale in units per 10 pixels. Other commands that
affect scaling are AUTO, AXES, DEPND, INDEP, *H, and *W.

Graphics 25

Graphics Operations
The commands GOR, GXOR, and REPL may be used to superimpose
one graphics object onto another. GOR performs a logical OR for each
pixel. GXOR performs an exclusive OR (useful for cursors or
animation applications). REPL replaces the destination grob’s pixels
with those from the new grob.

The syntax for these commandsis:

Level3 Level2 Levell — Level 1
grob {#x#y } grob, — grobs

grob; (x,y) grob; —- grobj

PICT { #x #y } grob -
PICT (x,y) grob -

The level 3 argumentis the destination (or target) grob. The upper left
corner of grob, will be positioned on grob; at the location specified in

level 2. If the coordinate is specified in user-units the current scaling
values in the variable PPAR will be used. If no copy of PPAR is found
in the current directory, a new PPAR will be created with the default
settings (see PPAR).

If the destination grob is anything other than PICT, the new grob will
be returned to the stack. If the destination is PICT, no copy is returned.

26 Graphics

Truncation. If grob, extends beyond the boundary of the destination

grob it will be truncated, leaving the size of the destination grob
unchanged.

Destination Grob

GOR, GXOR, REPL

Coordinate

Truncated portio

Drawing Lines. The commands LINE and TLINE are available for
drawing lines in PICT. LINE sets the pixels in a line between two
given coordinates; TLINE toggles the state of the pixels in a line
between two coordinates.

Example: The program GREX illustrates the differences between
GOR, GXOR, and REPL, as well as between LINE and TLINE. The

program begins by defining a grob showing a small cross within a box.
For each command REPL, GOR, and GXOR, the cross is drawn on
black pixels and white pixels, then the inverted cross is drawn on black
and white pixels below. Then the commands LINE and TLINE are
used to draw two lines through a box.

Graphics

REPL GOR GHOR

CE

Bm:
 TLINE

27

GREX 1612.5 Bytes Checksum #DAODh

&

GROB 9 9 FF18108108111681118D716011181116818168FF 106

PICT RCL # cross pictsav

&

PICT PURGE {#0 #8 > PVIEW

#19d #19d BLANK NEG

PICT #114d #6d > cross GXOR
PICT #114d #32d > cross NEG GXOR
PICT #49d #51d > DUPZ2
{ #67d #63d > SUB NEG REPL
{ #39d #53d > { #77d #53d > LINE
{ #39d #60d > { #77d #66d > TLINE
PICT { #79d #51d > "LINE" 1 +*GROB REPL
PICT { #79d #58d > "TLINE" 1 +*GROB REPL
{ #68d #48d > { #136d #48d > LINE
{ #43d #6d > { #43d #48d > LINE
{ #835d #6d > { #85d #48d > LINE
{ > PVIEW pictsav PICT STO
®

PICT { #7d #1d > 3 PICK REPL

PICT { #49d #1d > 3 PICK REPL

PICT { #93d #1d > 3 PICK REPL

PICT { #7d #27d > 3 PICK REPL

PICT { #49d #27d > 3 PICK REPL

PICT { #93d #27d > 3 ROLL REPL

PICT { #12d #6d > cross REPL

PICT { #12d #32d > cross NEG REPL

PICT { #18d #21d > "REPL" 1 »GROB REPL

PICT { #28d #6d > cross REPL

PICT { #28d #32d > cross NEG REPL

PICT { #54d #6d > cross GOR

PICT { #54d #32d > cross NEG GOR

PICT { #61d #21d >» "GOR" 1 »GROB REPL

PICT { #78d #6d > cross GOR

PICT { #78d #32d } cross NEG GOR

PICT { #98d #6d > cross GXOR

PICT { #98d #32d } cross NEG GXOR

PICT { #183d #21d > "GXOR" 1 »GROB REPL

{

{

{

28 Graphics

Converting Text to Graphics
The command —GROB is used to create a graphic representation of

any object. —GROB takes an object in level 2 and a font size
expressed as a real number in level 1. The font number may be 0, 1, 2,

or 3. There are three font sizes in the HP 48:

Number Description

0 5x9 (fixed) or EquationWriter
1 3x5 (proportional spacing)
2 5x7 (fixed spacing)
3 5x9 (fixed spacing)

The small (3x5) font makes no distinction between lowercase and
uppercase characters. This is the font used to build menu labels. Note
that the small font is proportional. The character “I” is the narrowest,
and characters like “M” are wider than most.

The large font (5x9) is the font used for the stack display, and shows
the most detail for special characters.

Font size 0 is a special case. Except for algebraic and unit objects,
objects are expressed with the large (5x9) font. Algebraic and unit
objects are expressed in their form as seen in the EquationWriter, and
are displayed in a grob that has a minimum size of 131x56.

Graphics 29

Example: The program TXTEX displays the words “Small”,
“Medium”, and “Large” in the display, then displays the equation
'SINCRI>~X' in EquationWriter form. To illustrate the boundaries of
the text, the graphics objects are inverted with the NEG command. The
EquationWriter example, returned as a 131x56 grob,is reduced in size
with the SUB command.

TXTEX 359 Bytes Checksum #96D9%h

&
PICT RCL *pictsawv Preserve original PICT
&

PICT PURGE Purge original PICT
PICT { #14d #58d 2
"Small" 1 »GROB MEG GOR Draw smallfont example
PICT { #48d #56d >
"Medium" 2 +GROB MEG GOR Mediumfont example
PICT { #86d #54d >
"Large" 3 +GROB MEG GOR Draw large font example
PICT { #46d #15d 2
'SINCRIZK' B *GROB NEG EquationWriter example
{ #8d #13d 2
{ #37d #37d >
SUB Extract corner with equation
GOR Place into PICT
{2 PVIEW Show PICT, waitfor CANCEL)
pictsav PICT STO Restore original PICT

#
#

ES

 Aran Ele

30 Graphics

Animation Sequences
To display a sequence of graphics objects, use the sequence

« PICT { #0 #8 > grob REPL =»

rather than the sequence

€« grob PICT STO ».

This will be faster and will avoid flickering in the display.

The ANIMATE command is helpful for rapidly displaying a series of
grobs in PICT. ANIMATE takesa series of grobs and either a number
specifying the number of grobs to use or a list:

groby ... grob, n —

grobj ... grob, { n { #x #y } delay repeat } —

The list parameter must contain exactly the following four objects:

n The number of grobs on the stack

{ #x #y } The location in PICT (pixel coordinates) at which the
upper-left corner of the grobs will be placed.

delay The delay time (in seconds) between each grob. A zero
delay timeis fastest.

repeat The number of times to cycle through the sequence of
grobs. If the repeat count is zero, the program will cycle
through the grobs 1048575 times or until the
key is pressed.

ANIMATE may be interrupted by pressing at any time.

Graphics 31

Example. A series of four grobs can be used to simulate a hand
moving around a clock face.

ANIM 192.5 Bytes Checksum #D062h

&
GROB 9 9 83086DB0B2900811101118101828806CHH8300
GROB 9 9 83006CH0280010101F10101028006CHBB8308
GROB 9 9 33086CH0280010101118111029006D0B3308
GROB 9 9 83086CH028001010F1108101028006CHB8308
{ 4 { #61d #28d > .1 5 2
ANIMATE
5 DROPN

32 Graphics

Stack View Program
The stack-view program STKV displays up to ten levels of the stack
simultaneously. The display mode, plot parameters, stack values, and
graphics picture are preserved. The system remains halted until
CANCEL] is pressed, then the program restores PPAR and PICT.

STKV 377.5 Bytes Checksum #6C64h

« IF DEPTH THEN Make sure stack is not empty
PICT RCL PPAR
+ pictsav ppar Preserve PICT & PPAR
« PICT PURGE Purge original PICT

1 32 XRNG 1 64 YRHNG Set new X and Y rangesfor stack
1 DEPTH 1 = 18 MIN DUP Determine current stack height
IF 8 > If greater than 8, text row height
THEN 6 1 is 6 and text size is 1
ELSE 8 2 Otherwise, text row height is 8
EMD + rowht tsize and text size is 2
« FOR 1 PICT 1 1 rowht Loop forthe no. ofstack levels

*# R»C RCLF STD i Use STD display mode to build
": " + SWAP STOF stack level identifier
i 3 + PICK STR + Add stack value to identifier,
tsize 3*GROB GOR and add to picture

NEXT End loop
{ >» PVYIEW Show PICT, waitfor CANCEL]
'PPAR' PURGE ppar Purge new PPAR
IF 'PPAR' SAME NOT Did PPAR exist before?
THEN ppar 'PPAR' STO Yes, store old value
END pictsav PICT STO Restore original PICT

®
»
END

®

0: ay?
: '6.5_M/S'
STRING
(1.1.2.2)

: :TR3: 21.84
GROE 131 a4 0Q00Q000QQ0000000000)
'Y=gEug+3EN-Y"

E
o
n
m
m

=

Graphics 33

Graphics Object Structure
A graphics objectis structured as follows:

header

length

height

width

data

<header><length><height><width><data...>

This is a five nibble (1/2 byte) field that distinguishes a
graphics object from any other object type, and has a fixed
value of #02B1Eh.

This field is a five-nibble quantity that contains the distance in
nibbles from the start of the length field to the nibble past the
end of the object. This length is #Fh + the number of data
nibbles.

This field is a five-nibble quantity that specifies the height of
the graphics image in pixels.

This field is a five-nibble quantity that specifies the width of
the graphics image in pixels.

The data nibbles begin at the upper-left corner of the graphics
object and proceed left-to-right, top-to-bottom. Each row
must contain an integral number of bytes, so the data may be
padded with garbage bits. The bits in each nibble are written
in reverse order, so the leftmost displayed pixel in a nibble is
represented by the least-significant bit of the nibble.

If you are preparing a graphics object on a personal computer,
remember that the HP 48 CPU reads data from memory into registers in
reverse order, so the first four fields are written backwards. For

example, the header is written E1B20.

Graphics objects may be entered into the command line on the HP 48.
To enter a blank graphics object, type GROB width height, where width
and height specify the size in pixels.

34 Graphics

Examples. To enter a graphics object which represents “G” in the
small font, type GROB 4 5 EB10DB90ES.

On a personal computer, the graphics object looks like this:

E1B20 B1000 50000 40000 EOI0DO90EO
header length width height data

In the second example consider a blank graphics object thatis the size
of the display with the “G” from above in the upper-left corner. The
graphics object looks like this on a personal computer:

E1B20
F8800
38000
04000
E000000000000000000000000000000000
1000000000000000000000000000000000
D000000000000000000000000000000000
9000000000000000000000000000000000
E000000000000000000000000000000000
0000000000000000000000000000000000

...2176 total data nibbles

E000000000000000000000000000000000

Graphics

header

length
width

height
row 1

row 2

row 3

row 4

row 5

row 6

row 64

35

The fields for the example of the previous page are derived as follows:

® The display width is 131 columns = 83h pixels, or 17 bytes or 34

nibbles.

® The display height is 64 rows = 40h pixels.

® The data length is bytes-per-row X rows = 2176 nibbles. The

length field is calculated as 2176 + 15 =2191d = 88Fh.

PPAR
The reserved variable PPAR (which may exist in every directory)
contains scaling information and plot specifications.

PPAR
{ Xmin: Ymin) (Xmax Ymax) indep resolution (Xaxis, Yaxis) Ptype depend }

Parameter Description Default

(Xmin» Ymin) Lower-left pixel coordinates (-6.5,-3.1)

(Xmax>_Ymax) Upper-right pixel coordinates (6.5,3.2)

indep Independent variable for horizontal X
axis

resolution Real positive integer for user-unit 0
point spacing, or binary integer for
pixel spacing (0= every column).

(Xaxis> Yaxis) Axes intersection coordinates, tick (0,0)
specification, and axes labels.

ptype Plot type: FUNCTION, CONIC, BAR, FUNCTION
POLAR, DIFFEQ, PARAMETRIC,
HISTOGRAM, SCATTER, TRUTH,
SLOPEFIELD, WIREFRAME, YSLICE,

PCONTOUR, GRIDMAP,or
PARSURFACE.

depend Dependent variable Y
The lower-left and upper-right pixel coordinates are used to initialize
VPAR parameters if VPAR hasn’t been specified for 3D plots.

36 Graphics

INDEP and DEPEND. The parameters indep and depend specify the
independent and dependent variables, and can specify a plotting range,
which is used to control the range of a plot for plot types such as polar
and parametric. The full definition for these parameters is:

indep: { name Xgtart Xend }

depend: { name ystart Yend }

For BAR plots, xg, specifies the horizontal location ofthe first bar.

If the plot type is DIFFEQ, indep and depend are used as follows:

indep: { name tg ts} Default: { ‘T" 0 Xpax }

depend: { name yg ErrorTolerance } Default: { “Y’ 00 }

RES. The resolution parameter specifies the interval between plotted
points of the independent variable in user (real number) or pixel (binary
integer) units. The default value is 0, which specifies one point every
column. Some plot types use resolution differently:

BAR Specifies the width of each bar
DIFFEQ Specifies the maximum interval (unlimited if 0).

The initial interval is the smaller of llte—tgll and

res, or lite—toll/131 if resolution=0.

HISTOGRAM Specifies the bin width in pixels. The default bin
size is 1/13 of the difference between the
minimum and maximum data values.

PARAMETRIC The default value of 0 specifies an interval that is
1/130 of the difference between Xt and Xepg-

POLAR The default value of 0 specifies 2°,2 grads, or
7/90 radians.

The plot types PARSURFACE, PCONTOUR, SCATTER,

SLOPEFIELD, and WIREFRAME do not use resolution.

Graphics 37

AXES. The axes parameter can specify the intersection of the plot
axes, the spacing of tick marks, and axes labels. The tick mark
specification and the labels are optional. The full definition for the axes
parameter is:

{ intersection tick “x-label” “y-label” }

where:

intersection The axes intersection is specified as a complex
number.

tick The tick parameter may contain a tick spacing
parameter expressed in either user-units or pixels.
User unit spacing is expressed as a real number
specifying the spacing for both the x and y axes, or a
list containing two real numbers whichspecify the x

and y spacing. Pixel spacing is expressed as a binary
integer number of tick marks for both axes, or a list of

two binary integers which specify the x and y spacing.

Examples:

5 5 user unit spacing on each axis.
{110} 1 unit on the x-axis, and 10 units on

the y-axis.
#5d 5 pixel spacing on each axis.
{#5#10} 5 pixels on the x-axis, and 10 pixels

on the y-axis.

“x-label” Horizontal axis label.

“y-label” Vertical axis label.

If the plot type is DIFFEQ, the axes labels are used as follows:

“x-label”: Index for which independent variable, vector-valued
solution to plot on the horizontal axis “1”, “2”, etc.

“y-label”: Index for which dependent variable, vector-valued
solution to plot on the vertical axis “1”, “2”, etc.

38 Graphics

VPAR
The view volume is a region in abstract 3-dimensional space used by
the 3D plot types. The reserved variable VPAR stores the dimensions
of the view volume, the location of the eye point, the input ranges for
gridmap and parsurface plots, and the number of plotting steps. VPAR

can reside in any directory, like EQ and PPAR.

VPAR

{ Xiete Xright Ynear Year Ziow Zhigh Xmin Xmax Ymin Ymax Xeye Yeye Zeye Xstep Ystep |

Parameter Description Default

Xieft Xright Width of view volume -11

Yar Ynear Depth of view volume -11

Ziow Zhigh Height of view volume -11

Xmin Xmax X-input range for GRIDMAP and -11
PARSURFACEplots

Ymin Ymax Y-input range for GRIDMAP and -11

PARSURFACEplots

Xeye Yeye Zeye Coordinates of the eyepoint 0-30

Xstep Ystep Number of plotting steps 10 8

z

A
Zhigh

Zlow Yhar

Ynear

Xleft Xright

> X

Graphics

 NN

Eyepoint

(Xeye,Yeye,Zeye)

39

Programming

The HP 48 provides several avenues for customization: user-defined
keys, the CST menu, equations supplied to the solver, user-defined
functions, and programs, which offer the most flexibility for
customization.

In the simplest form, a program is an object consisting of a collection of
commands or functions enclosed by program delimiters (€ *). A
simple example returns the circumference of a circle given its radius in
level 1:

£2 * mw * >NUM »

When stored in a variable, this program can be executed simply by
pressing its menu key in the VAR menu or including its name in
another program.

Program Execution
When a program is executed, the objects that make up the program
have actions that are specific to their type. Data class objects (such as
numbers, arrays, strings, algebraic objects, or lists) or programs are
placed on the stack. Quoted global or local variable names are placed
on the stack. If a local variable name is unquoted, its contents are

placed on the stack. An unquoted global variable name will have
behavior dependent on the contents of the variable:

Contents Action
Program Executes the program
Name Evaluates the name
Directory Makes directory current
Any other object Puts contents on the stack

To illustrate the evaluation of variable names, store the number 8 in

variable C, the name ‘C’ in variable B, and the name ‘B’ in variable A.

The program € A *» will now return the value 8.

40 Programming

Single-Stepping Programs
The ERROR menu ((PRG) ERROR) provides several tools for

single-stepping through a program. There are two ways to halt
execution within a program:

® Place the name of the program on the stack and execute DEILIG .

This will begin execution of the program, but the program will be
suspended at the first step.

® Insert the HALT command in your program where you’d like to

suspend execution. When executed, the program will be
suspended and ready to execute the object after HALT.

Once the program has been suspended, the following operations are
available:

T Executes the next object in the program. If the next object
is a program, ==T executes the whole program as one
step, as opposed to SE T+.

SST If the next object is a named program, single-steps into
the program, otherwise just executes the object.

HE®T Displays the next one or two objects in the program.

(4J[CONT) Resumes program execution. The program will continue
until another HALT command is encountered or the
program ends.

ILL Cancels all suspended programs.

Programming 41

Local Variables
Programs which use a large number of variables and/or intermediate
results may use local variables to provide intermediate storage off the
stack.

The formal syntax for programs using local variablesis:

« * local-names defining-procedure *

If the values for local variables are established at the start of the

program, the syntax looks like this:

« establish-values + local-names defining-procedure *

The defining procedure may be either an algebraic expression or a
program:

« * local-names 'algebraic' *
€ * local-names & program¥ *

Local variables exist in a local (temporary) environment during
execution of the defining procedure and take precedence over global
variables of the same name when evaluated. Temporary environments
may be nested (programs within programs). In this case, evaluation of
a local variable name returns the contents of the most recently defined
local variable of that name.

When stack objects are first stored in local variables by the + operator,
the object in level 1 is stored in the last name in the series of local
variables. By convention, local variables are written in lowercase.

There are a number of advantages that come with the use of local
variables:

® Conflicts with global variables are avoided.

® Storing to a local variable is quite fast, because temporary

environments are typically quite small, and avoid the overhead of
moving all the data in global variables. Depending on the number
of global variables in the current path, fewer local variables may be
searched, reducing the time required for programs to store & recall
objects.

42 Programming

® Temporary environments are automatically removed at the end of

the defining procedure, so the defining procedure does not have to
spend time and extra code “cleaning up”after itself.

® Programs are often easier to write (and later on, to read) when

intermediate values are stored in named local variables than
programs which keep everything on the stack. (Imagine
remembering which value resides in stack level 22 two years after
you write a program.)

Example: To illustrate the action of + as it stores objects on the stack
into local variables, consider the program LCLV:

LCLV 78.5 Bytes Checksum #7AA3h

«abc
&

a "a" TAG

b "b" *TAG

c "c" *TAG

%

»

The program LCLYV tags the objects stored in local variables with the
names of the local variables. If you have the number 3 in level 3, 2 in

level 2, and 1 in level 1, the results from LCLYVare:

321 — a3 b2 cl |

Example: Suppose the stack contains the same values as above (3 in
level 3, 2 in level 2, and 1 in level 1). The following programs produce
the same result (17) by first assigning the values to local variables x, y,
and z:

€ +x yz '(xXFy+zd)x2+x' »

€ FX yz

Ex y*Fz+2Ex+ 2

*

Programming 43

Example: Consider two approaches to finding the roots of a quadratic

equation x=ax?+bx+c. We'll use the quadratic formula:

_b+Vb% —4dac
2a

The stack diagram for these program examples will be:

a b ¢ — root; root

Each example program will bind the values for a, b, and c into local
variables a, b, and c.

The first program, QRT1, places the intermediate result + (b%—4ac) on
the stack:

QRTI1 116 Bytes Checksum #6DE1h

« *abc Create local variables

&

bSRac#4x-17T Calculate ¥(b%—4ac)
b NEG OVER + a 2 * ~ Calculate first root
b NEG ROT — a 2 * ~ Calculate second root

»
»

44 Programming

The second program, QRT?2, uses two algebraic expressions. This
version is somewhat longer, but easier to read:

QRT2 159.5 Bytes Checksum #6C6Dh

£« *abc
&

"(b+(b"2-d4¥axcr))/(2¥a)' NUM

'(=b-T(b"2-4%axcl)) (2*%a)' *NUM
»

®

Programs as Subroutines
The HP 48 has no formal notion of a subroutine, as defined in other

languages such as BASIC. A subroutine in the HP 48 is simply another
program which follows the same basic rules as all other programs. The
moniker “subroutine” or “subprogram’” may be applied to any HP 48
program for the sake of clarity or convention. Subroutines may be
stored in global variables to simplify the structure of a program. If
you’re writing an application that will be distributed to other people,
it’s best to avoid excessive use of global variable usage for subroutines
and intermediate results.

Two techniques are available for minimizing the use of global
variables. Thefirstis to store subroutines in local variables, the second
is to use local variable compilation to reduce the use of global variables
for intermediate results. Some programs in the chapter Example
Programs use these techniques.

Subroutines in Local Variables. If you don’t want to store
subroutines in global variables, you can store them in local variables.

When a local variable name is evaluated, it only recalls the contents of
the variable. This is similar to evaluating global names that contain
data objects. Consequently, if the local variable contains a program,it
can only be executed by an explicit EVAL. To improve legibility, local
variables containing subroutines are often named in initial caps (like
Subr).

Programming 45

Example: To illustrate the use of subroutines in local variables,
consider a modification of the program QRT1, where the sequence

2 * 7

is placed in a subroutine:

QRT3 148.5 Bytes Checksum #89F1h

&

£2 % / 3% Place subroutine on stack

+ ab c Subr Create local variables
&

bSRac*4*%-17 Calculate I(b%ac)
b NEG OVER + a Subr EYAL Calculate first root
b NEG ROT - a Subr EVAL Calculate second root

»
»

Compiling Local Variable Names. Ordinarily, local variables (and
hence local variable name objects) exist only within the context of the
defining object. This yields a problem for sharing data between two
programs stored in global variables or a subroutine stored in a local
variable which needs to access local variables from the defining
procedure. Until the arrival of the HP 48G/GX models, the only way to
create a program stored in a global variable that uses another program’s
local variables was to HALT the program containing the defining
procedure, then enter and store the new program. In practice this is not
satisfactory, because you cannot edit the program without once again
setting up the temporary environment.

In the HP 48G/GX, variable names which are prefixed with the
character « ((a) (P] (4)) are compiled as local variable name objects,
and thus can access temporary environments when evaluated, even
though the temporary environment does not yet exist when the program
is entered into the HP 48.

46 Programming

Example: Notice that both uses of the program Subr in the program
QRT3 are preceded by the execution of the local name object a. These
two instances may be combined into Subr by using € to specify a as a
local name object.

QRT4 147 Bytes Checksum #7720h

&

€£ a3 2 %¥ 7% Place subroutine on stack

+ a b c Subr Create local variables

&

bSQ ¢ac#*4%-17J Calculate I (b>~4ac)
b NEG OVER + Subr EVAL Calculate first root
b NEG ROT - Subr EVAL Calculate second root

»
»

Example: The subroutine can also be stored in a global variable:

SUBR 31.5 Bytes Checksum #8CC2h

¥ €a 2 ¥ 7»

QRTS 109 Bytes Checksum #CDD1h

&

+ abc Create local variables

&

b SR ¢ac*4 %-17 Calculate I (b>~4ac)
b NEG OVER + SUBR Calculate first root
b NEG ROT - SUBR Calculate second root

»
»

Here you see that the program SUBR can be entered independently of
the program QRTS. One implication of this technique is that one
program can be used by several other programs without the burden of
sharing data through global variables.

Programming 47

User-Defined Functions
User-defined functions may be used to extend the function set of the
HP 48. A user-defined function takes its arguments from the stack and
must return exactly one result to the stack. The arguments may be
either algebraic or numeric.

The syntax of a user-defined function must be exactly:

« 3 local-names defining-procedure *

User-defined functions created with the DEFINE command use an
algebraic expression as the defining procedure. If the defining
procedure is a program, the program must remove all arguments from
the stack and return one real number.

The DEFINE command simplifies the creation of a user-defined
function by converting an expression in the form

" namearguments? =expression'

into a named program that consists of a local variable structure and an
algebraic expression. A user-defined function may be stored into a
local variable (see the program TREE in Example Programs for an
illustration of this technique).

The example program UDFUI shows how an input form can be created
from a user-defined function.

Example: Create a function POLY(x)=2x2+4x+7. Enter the
expression 'POLY (x)>=2%¥x"2+4%¥x+7' and execute DEFINE. The
variable POLY now contains the program:

€ Fx '2¥x"2+4Exx+T' ®

If the number 8 is in level 1, executing POLY yields 167. Assuming
that the variable S is undefined, POLY(‘S+5’) yields the expression
'2%(S+5)"2+4%(S+50+7".

Example: Create a function PTHG(x,y)=T (x2+y?2). Enter the
expression 'PTHG(x, yd=L(x"2+y”2>' and execute DEFINE. The
variable PTHG in the VAR menu now contains the program:

€ + xy 'J(x"2+yt2)' »

48 Programming

Looping Structures
Program loops are useful for repetitive execution of a procedure. There
are two general classes of loops:

® Definite loops execute a loop-clause at least once, and execute

a predefined numberofiterations.

® Indefinite loops execute a loop-clause repeatedly until a test-

clause returns a true (non-zero) result. One form of an
indefinite loop may not execute at all if an initialtest fails.

Definite Loops. There are two types of definite loops, both of which
can have an increment ofeither 1 or n:

start finish FOR index loop-clause NEXT

start finish FOR index loop-clause increment STEP

start finish START loop-clause NEXT

start finish START loop-clause increment STEP

In each case the start and finish values are taken from the stack and are
no longer available to the program. The index is a local variable that
may be referenced in the loop clause just like any other local variable.
The increment is also taken from the stack. This syntax shows it being
put there explicitly by the program, but it can be calculated also.

Increment=1 Increment=n

Index| FOR ... NEXT FOR ... n STEP

No Index| START ... NEXT START ... n STEP

Programming 49

The differences are:

® FOR loops keep their index in a local variable which is

available to the loop-clause. An early exit may be taken from
a FOR loop by one of the following two methods:

® Store MAXR in the index for loops with a positive step.

® Store -MAXRin the index for loops with a negative step.

® START loops save memory and execute faster than FOR loops

for applications where access to the index is not needed.

® Loops ending with STEP may have a varying increment.

When STEP is executed, the increment is added to the index.
The loop will repeat under the following conditions:

® The increment is positive and the incremented index is

less than the finish value.

® The increment is negative and the incremented index is

greater than the finish value.

® Loops ending with NEXT execute faster than those ending

with STEP, because the increment value is always 1.

Examples:
« 1 18 START loop-clause NEXT *

Executes loop-clause 10 times.

« 1 28 FOR x loop-clause HEXT *
Executes loop-clause 20 times; x is the index.

« 1 18 START loop-clause2 STEP *
Executes loop-clause 5 times.

« 1 28 FOR x loop-clause 2 STEP *
Executes loop-clause 10 times; x is the index.

50 Programming

Indefinite Loops. There are two forms of indefinite loops:

® DO loop-clause UNTIL test-clause EMD

DO loops execute at least once. The placement of UNTIL is
not important since the test occurs at the end, but by
convention is placed between the loop and test clauses to
improve legibility.

® WHILE test-clause REPERT loop-clause END

WHILE loops never execute if the test-clause returns an initial
false (zero) result. The placement of REPEAT is important, as
it isolates the test clause, which usually executes one time

more than the loop clause.

Loop Counters. The commands INCR and DECR may be used at
any time to increment or decrement a real number stored in a variable.

The command INCR takes a local or global variable name, increments

its contents, and returns the new value to the stack. For instance, if x

contains 23, 'x' IMCR stores 24 in x and returns 24 to the stack.

DECR behaves the same way as INCR, but decrements the variable’s
contents.

Examples: The first program (46.5 bytes, checksum #9910h) always
prints at least one carriage-right, up to the number of carriage-rights
specified in level 1. The second program (51.5 bytes, checksum
#449Fh) prints the number of carriage-rights specified in level 1.

¥ + x

< DO CR UNTIL 'x' DECR HOT END =»
»

« DUP +» x
<« WHILE REPERT CR x DECR END =»

»

The program DSORT uses INCR (see Sorting Directories).

Programming 51

Conditional Structures

IF Structures. The IF structures perform a test and execute a true-
clause if the test is true or a false-clause if the structure includes ELSE.

IF
IF test-clause

test-clause THEN

THEN true-clause

true-clause ELSE

END false-clause
END

Example: This program (82.5 bytes, checksum #ACFOh) stores a
value from the stack into variable a and returns .35%a or .45x*a if a > 10.

€ 3 a

« IF 'a>1@'
THEN .45
ELSE .35
END
a ¥

*

»

IFT and IFTE. IFT and IFTE may be used as commands, taking their
arguments from the stack. IFTE may also be used in an algebraic
expression.

IFTE test-clauses true-clauses false-clause ?

Level IFT IFTE

3: test-result

2: test-result true-clause

1: true-clause false-clause

52 Programming

CASE Structures. The CASE ... END structure combines a series of
IF ... THENstructures that ends when the first true condition has been

met. A “default” clause may be placed before the END command
which is executed if none of the conditions have been met.

CASE

test-clause THEN true-clause END

test-clause THEN true-clause END

test-clause THEN true-clause END

default-clause
END

Example: This program (127 bytes, checksum #A7F1h) accepts an
object and issues an error for non-real types, then executes the
procedure Xneg for numbers less than zero, Xzero for numbers equal to
zero, or Xpos in the default case.

The type for a real numberis zero, so a non-real object generates a true
condition. In this case the command DOERR will issue message
#202h, “Bad Argument Type”.

&

+ X

€ CRSE

x TYPE THEN # 2082h DOERR END

'x<@' THEN Xneg END

'x==8"' THEN Xzero END

Apos

»

»

Programming 53

Error Trapping
The IFERR structure is useful for trapping anticipated errors. The trap-
clause is executed first, and if no erroris encountered (or the
key has not been pressed) an optional ELSE normal-clause is executed.

IFERR
IFERR trap-clause

trap-clause THEN

THEN error-clause

error-clause ELSE

END normal-clause

END
If an error occurs within the trap clause, the following steps are taken:

1) The error is suppressed — the program will not be halted.

2) The keyboard input bufferis flushed.

3) If the Last Arguments flag (55)is clear (default), the arguments to

the command that generated the error are returned to the stack.

4) All three regions of the stack display are “unfrozen” (see
Displaying Results for a description of the display regions and the
FREEZE command).

5) The error-clause is executed.

Example: This program (63 bytes, checksum #29FBh) takes an object
from the stack and returns the object’s size in bytes. If the object is a
name and no variable of that name exists, the program returns 0.

&
IFERR BYTES
THEN IF -35 FC? THEN DROP END 8
ELSE SWAP DROP END

»

54 Programming

Example: Trapping [CANCEL]. The IFERR structures can be used to
trap the error generated by the keystroke (error number 0).
The program TRPCN illustrates this by embedding an infinite WHILE
loop within an IFERR trap. As a counter is incremented, its value is
displayed on successive lines of the display. The MOD function is
used to wrap the display sequence from the bottom of the display back

to the top. When is pressed, the program could be anywhere
in the trap clause when the branch to the error clause occurs. The error

clause compares the current number of objects on the stack with the
original number and drops the difference.

TRPCN 124.5 Bytes Checksum #1DDOh

&
DEPTH Save stack depth
+ depth
&

IFERR Set error trap
a Initial counter value is 0
WHILE 1 Loop forever
REPERT
DUP DUP 7 MOD 1 + Calculate display line number
DISP .1 WAIT Display counter value, pause
1 + Increment counter

END
THEN
DEPTH depth — DROPMH Error clause cleans up stack

END
®

®

Error Interpretation. The commands ERRM and ERRNreturn the
most recent error message and error number. ERRO clears the error
number. These commands may be useful in an error clause for taking
specific action for different kinds oferrors.

User-Defined Errors. The command DOERR accepts either a
system error number or a string. If the error numberis zero, the action
is equivalent to pressing [CANCEL], and ERRM and ERRN are set to ""
and 0. If a string is suppied, the string will be returned by ERRM and
the error number will be set to #70886hH.

Programming 55

Data Entry
A program may halt to obtain user input using a wide variety of
techniques. These techniques have varying levels of restrictions on
keyboard and stack operations, as well as varying cosmetic appeal.

The WAIT Command. When a single keystroke is required, the
WAIT commandis the preferred method. WAIT places the HP 48 into
a light sleep mode to conserve batteries and returns the next keystroke
in rc.p format. The rc.p encoding refers to the row, column, and shift
plane location ofthe key that was pressed.

Shift Planes
p Primary Planes p Alpha Planes

Oor 1 Unshifted 4 Alpha
2 Left-shifted 5 Alpha left-shifted
3 Right-shifted 6 Alpha right-shifted

The WAIT commandis interrupted when the key is pressed.
If an application must intercept [CANCEL], use an IFERR trap or the
System-RPL object WaitForKey described under Keyboard Control in
the chapter System Programming.

The HALT Command. When HALT is executed, program execution
stops and the stack is displayed. The program resumes when the
command CONTis executed or the user presses (QJCONT). The stack is

available for use while a program is HALTed. A program that has been
HALTed may be completely terminated by executing KILL.

The PROMPT Command. When PROMPT is executed the program
displays a message and halts until CONT or KILL are executed. Using
PROMPT is equivalent to the sequence:

« ... "string" 1 DISP 3 FREEZE HALT ... *

The stack is available for use while the program is halted.

56 Programming

The INPUT Command. The INPUT command suspends program
execution, displays a message and default answer, and waits for user
input. The INPUT command terminates and program execution
resumes when is pressed. The parameters supplied to INPUT
provide considerable control over the appearance of the display and
cursor placement. The stack is not available in this state, but menus
may be changed.

The parameters for INPUT can be specified in varying levels of detail:

“message” “prompt” — result”
“message” { mode(s) } — “result”

“message” { “prompt” column } — result”
“message” { “prompt” mode(s) } — result”

“message” { “prompt” column mode(s) } — result”
“message” { “prompt” { row column } mode(s) } — result”

In the simple case, “prompt” is the default answer, which will be
returned to the stack if (ENTER) is pressed immediately.

The cursor position may be specified as a column number or as a list
specifying the row and column number. A zero value for the column
position specifies the end of the row. Rows are numbered beginning
with 1 for the top row of the prompt text. A zero value for the row
number specifies the last row.

The cursor type is controlled by the value and sign of the column
number (or row number if both row and number are specified). If this

numberis negative, the replace cursor is displayed. If this value is zero
or positive, the insert cursor is displayed.

The modes may be any of the following (entered as unquoted names):

o Locks alpha entry on for text entry
ALG Selects Algebraic/Program-entry mode. The default entry

mode is Program-entry.
\% Verifies that the result string represents one or more valid

object. If the string fails this test, the error message “Invalid
Syntax”is displayed and INPUT does not terminate.

Programming 57

INPUT Example: The following program fragment (69.5 bytes,
checksum #C169h) prompts for two values using tags in the prompt
string to help enter and delimit the results. The = character in the
prompt represents a newline character ((P)(€)). The cursor is

positioned at the end ofthe first row, and V is used to ensure two valid
objects are contained in the result string.

€ "Enter x & Yi" { "iKie¥WI" {10 3V > INPUT »

PRG
{ HOME }

Enter X & Y:

1X4
HH
[OEJ++ARR3LIST]STR{3TRG [FUNIT

If you're writing a program for yourself, INPUT might be just the trick
for setting up a prompt. If you’re writing a program that needs to
prompt for multiple values and will be distributed to a wide audience,
there are three things to consider:

1) The display above shows the PRG TYPE menu. You may wish to
display the EDIT menu before executing the INPUT command.
This can be done by executing 28 MENU or 28 TMENU. A
custom menu can also enhance the use of the INPUT command.
There’s an example of this on the next page.

2) The action of the [CANCEL] key should be considered. Where there
is data in the command line, the first press of [CANCEL] acts to
clear the command line. When there is no data in the command
line (CANCEL) terminates the program.

3) Remember that regardless of the contents of the prompt message,
the use of the V option, or the use of a custom menu, the user can

still enter any number of objects of arbitrary type. It’s a fair
amount of work to create a truly bullet-proof program that uses
INPUT to return exactly the number of objects that you want and
that those objects are of the right type. The INFORM command
(described later) might be a better tool in some cases.

58 Programming

Data Entry With Custom Menus. A custom menu can be used to
provide significant additional flexibility when used in conjunction with
the INPUT, PROMPT, or WAIT commands:

¢ INPUT: A custom menu provides typing aids.

¢ PROMPT: A custom menu can provide execution objects

which optionally include CONT to resume program execution.

® WAIT: A custom menu can provide menu key labels for single

keystroke responses, such as menu keys YES or HI

Example: INPUT with Custom Menu. The following program
fragment (102 bytes, checksum #9067h) accepts a string while
providing a menu of common responses. The MENU command at the
end of the program restores the previous menu.

&
{ "RED" "ORG" "SEL" "GRNH" "BLU" "WHT" >

TMENU "Enter a color code:" "" INPUT 8 MENU

»

Example: PROMPT with Custom Menu. The program PRMCNT
displays a simple menu which stores zeros or accumulates numbers into
variables A and B. When [HE is pressed the CONT command
continues the program, which then displays the sums of A and B.

PRMCNT 281 Bytes Checksum #1261d

&
@ 'A' STO @ 'B' STO
{ { "CLRA" «8 'A' STO » 2

{ "CLRB" «8 'B' STO *
{ "A" « 'A' STO+ » 3
{ "B" « 'B' STO+ » 3

{ "DONE" CONT >
> TMENU
"Key values into A & B" PROMPT
A "A" TAG B "B" TAG © MENU

»

Programming 59

Example: WAIT with Custom Menu. The program WCM displays
a menu, waits fora CHHICL or [OFmenu key response, beeps on
invalid keys, and returns O if CHHIZL was pressed or 1 if [Ok was
pressed.

WCM 164 Bytes Checksum #21E3h

&
{ un umn an un n (ANCL "OK" 2

TMENU
DO -1 WAIT Waitfor a key.
UNTIL

{ 15.1 16.1 3
SWAP POS POS returns 0for invalid key.
IF DUP If the key was in the list...
THEN 1 - Subtractfor 0 or 1 result

1 and signal end of loop.
ELSE 1428 .874 BEEP Otherwise beep and let the O result
END from POS continue the DO loop.

END
8 MENU Restore the previous menu.

»

Note that the left parenthesis “(““ is used instead of the character “C” for
the menu label.

The INFORM Command. The INFORM command provides one of
the most powerful data entry options in the HP 48. The use of input
forms in the HP 48 allows you to enter data into labeled fields, then
press [FE to continue the program. The behavior of these input
forms is much like the input forms used for applications like Plot. The
parameters to INFORM are supplied in five stack levels:

“Title” {Field_Specifiers} Format_Options {Reset_Values} {InitialValues}
—-

{Final_Values} 1 or 0

If the the input form is terminated by pressing [0kor the
final values are returned in level 2 and the number 1 is returned in level

1. If the input form is terminated by pressing CHMHCLor
the number O is returned to level 1.

60 Programming

The parameters supplied to INFORM are specified as follows:

“Title”

{ Field_Specifiers }

Format_Options

{ Reset_Values }

{ Initial_Values }

Programming

The input form title specified as a string.

The field specifiers contain a label for each field,
an optional help string and optional data type
specifiers. A data type specifier is a real number
corresponding to the type of object allowed (see
Object Types). Each field specifier can take the
following forms:

“LABEL”
{ “LABEL” “HELP” }
{ “LABEL” “HELP” TYPE, ... TYPE, }

{}

If the field specifier is an empty list, the field to
its left will expand to span two columns. Empty
list field specifiers do not require corresponding
values in the reset and initial value lists supplied
in stack levels 2 and 1.

The format options specify the number of
columns in which the fields will be displayed,
and an optional tab width (the spacing between
the first character of the field label and the data):

{ } Default: 1 column, tab width 3 columns
Columns
{ Columns Tab_width }

The reset values are the values to be placed in the
fields when EEZET is pressed. The initial
value are the values placed in the fields when
INFORM is first executed. These lists may be
empty or may contain objects and/or the
placeholder command NOVAL to indicate
unspecified fields:

}
field-obj; NOVAL, obi... }r

m
pr

im
,

61

The arrangementoffieldsin the display is restricted to four rows of one
or more columns of fields. The portion of the display above the menu
keys is reserved for the help message and the command line. A wide
variety of input forms can be designed by using various combinations
of formatting options. To put the most information possible in the
display:

® Use small field names where possible.

® Keep the tab spacing to a minimum size (0 or 1 is best). In cases

where you have just one column, a larger tab width may be more
cosmetically appealing.

® Combine small fields onto one line.

Example. By specifying three columns and a tab width of 1, you can
place twelve fields in the display (as long as the field labels are small).

INF1 194.5 Bytes Checksum #A2F7h

&«

"TITLE"
£

"RH: n np: " "ca" "De" Bl HL "Fin

"Gs n "Hs: n wy ny: BH npn

}
£3173
{12345678910 11123
DUP INFORM

»

i - Hs

4 EE 5 FF 6
G: 7 H 8 I: 9

J: 18 K: 11 L: 12

ITTIII(TTTCT
62 Programming

Example. The program INF2 displays an input form for a
hypothetical phone list application. The use of empty list field
specifiers provides for wide fields for the name and phone number.
The phone numberfield does not really need to be wide, but doing this
moves the email field to the last line.

INF2 349.5 Bytes Checksum #A42Ah

&

"DEPARTMENT LIST"

{

{ "MAME: " "ENTER NAME" 2 >

{2

{ "EMP#:" "ENTER EMPLOYEE NUMBER" 6 X

{ "BLDG:" "ENTER BUILDING HUMBER" 8 X

{ "PHOHE#:" "ENTER PHOME EXTEWHSIOH" 8

{7

{ "EMAIL:" "EWMTER E-MAIL ADDRESS" 2 >
{>

¥

{2872

{

"dim Donnelly" 3.1416 5 3855 "jimd@cv. hp.com"

¥

DUP INFORM

»

2 22% DEPARTMENT LIST 33%
CEI" Jim Donnelly”
EMP#: 23,1416 BLDG: 5

PHONE#: 3355

EMAIL: " jimdEcyv. hp.com"

ENTER NAME
[Th II(TTYTE

Programming 63

The CHOOSE Command. A choose box provides an attractive
“dialog box”style alternative to menus for selecting from a finite series
of options. The parameters supplied to CHOOSE are:

“Title” { Data } start_row — object1 or 0

“Title” The choose box title specified as a string.

{ obj; ... obj, } The objects to be displayed. If each object in the

list is a 2 object list, then the first element in each
list is displayed in the choose box and the
corresponding second objectis returned.

start_row The highlightis positioned at the row specified by
a real number. If this value is 0, the objects in the
list may only be viewed (with no highlight) and 0
will be returned.

If the choose box is terminated by pressing [Ik or (ENTER), the
highlighted object (or its corresponding return object) is returned in
level 2 and 1 is returned in level 1. If the choose box is terminated by
pressing ZFAHMCL or (CANCEL), the number 0 is returned to the stack.

Example: The program CHOSI1 displays a choose box which returns
the object highlighted when [Ik or [ENTER] is pressed.

CHOSI1 123.5 Bytes Checksum #442Ah

%
"CHOOSE A COLOR:"
{ "RED" "ORANGE" "YELLOW" "GREEN"
"BLUE" "INDIGO" "VIOLET" 2

1 CHOOSE
?

{

Wn [CHOOZE A COLOR: _

3 ORANGE
2: |YELLOW
7: (GREEN :
IEI(TTYWT

64 Programming

Example: The program CHOS? calculates the weight of an object on
another planet. After prompting for the weight of the object on earth,

the program displays a choice of planets. The choose box returns a list
containing the planet’s name and a number corresponding to the force
of gravity relative to the earth. The new weight is then calculated using

the number and tagged with the planet’s name.

CHOS2 429.5 Bytes Checksum #994Bh

%

"Weight on Earth?" "" INPUT OBJ=

CLLCD

"CHOOSE A PLANET: "

{

{ "Mercury" <{ "Mercury" .38 I} >

{ "Venus" { "Venus" .89 2}

{ "Mars" { "Mars" .38 }

{ "Jupiter" { "Jupiter" 2.54 >

{ "Saturn" { "Saturn" 1.87 > 2

{ "Uranus" { "Uranus" .8 2}

{ "Neptune" <{ "Neptune" 1.2 2 >

¥

1

IF CHOOSE

THEN

0BJ+ DROP

ROT =

"Weight on " ROT + 2TAG

END

»

Programming 65

Displaying Results
The stack display is organized into three areas:

RAD Status (Area 1)
{ HOME } 05/16/93 02:30:00P

4:

3 Stack/Command-line (Area 2)

1:
(FACHANEIETERTNEEI Menu (Area 3)

The status area is contained in the top 16 pixel rows of the display, the
stack/command-line area is contained in pixel rows 17-56, and the
menu area occupies the last 8 pixel rows of the display.

The stack display can be modified with the commands CLLCD, DISP,

—LCD, and FREEZE.

The CLLCD Command. The command CLLCD clears the stack
display. If you execute CLLCD in a program, you may wish to use a
FREEZE command to prevent the display from being redrawn until a
key is pressed.

The DISP Command. DISP takes an object from level 2, a display
line number from level 1, and displays the object on one of 7 logical
lines of the display using the medium size font (see the example below
and Converting Text to Graphics). Line numbers less than 1 are
interpreted as 1; line numbers greater than 7 are interpreted as 7. DISP
blanks the specified logical line in the display, then displays as much of
the object as will fit in the line. If the object extends beyond 22
characters, the first 21 characters are displayed, followed by an ellipsis
character (““...”). Objects like programs or matrices and strings with
embedded newline characters (character 10) can be shown on more

than one line ofthe display with the DISP command.

66 Programming

The FREEZE Command. FREEZE is used to freeze one or more
display areas until a key is pressed. Each display area is represented by

a bit in the input value to FREEZE. The values used to identify each of
the display areas are:

Display Area Encoding

Bit Value Area

0 1 Status area

1 2 Stack/command-line area

2 4 Menu area
To freeze more than one display area with a single FREEZE command,
simply add up the values for each area to freeze. For example, to freeze
the status and stack areas, execute 3 FREEZE. To freeze the entire
display, execute 7 FREEZE.

Example: The following program illustrates each of the 7 logical
display lines associated with the DISP command:

LINES 65.5 Bytes Checksum #85A%h

&
CLLCD Clear the display
1 7FOR i Loop for each line
"Line " 1 + Build the textfor the line
i DISP Display the text

NEXT End of loop
T FREEZE Freeze the status and stack areas

»

Line |}
Line 2
Line 3
Line 4
Line 35
Line &
Line 7
WECTEIMATE]LITHYP|REAL|ERZE]

Programming 67

The -LCD Command. The command —-LCD may be used to place
a graphics object into the stack display. The graphics object will
replace the top 56 lines of the display.

Example: The following program converts an algebraic expression
into a graphics object and displays the result in the stack display. PICT
will remain unchanged.

ALGSTK 54.5 Bytes Checksum #503%h

&
CLLCD Clearthe display
'SINCRIZK' B 3*GROB Make graphic representation of eqn
+LCD Place into stack display
3 FREEZE Freeze the display

#

The counterpart to LCD is LCD—. This command places a copy of
the stack display onto level 1 of the stack as a 131x64 pixel graphics
object. Note that this is larger than the graphics object that can be
displayed with LCD. To display the entire result of LCD—, store the
graphics object in PICT, then execute PVIEW, GRAPH, or PICTURE.

The MSGBOX Command. The MSGBOX command displays a
string in a box and waits fora (ik , (ENTER), or keystroke.
MSGBOX will divide text between lines at word boundaries, but the
string may contain newline characters to format a message that has up
to five lines. Messages are displayed in the medium font, and can
display up to fifteen characters perline.

{ HOME 3a:[Warnings —

3 valueOut Of 3
5: |Range 2q

1: 95
ee——————

If you wish to produce a fancier result, you can add a graphic to a
message box — see LIBEVAL in System Programming.

68 Programming

Recursion
Three conditions must be met to permit recursive programming:

® The system must have an unlimited return stack.

® The system must have an unlimited data stack.

® Programs must be able to call themselves.

The HP 48’s data stack and return stack are limited only by available
memory, So recursive programming is a technique that is available for
some forms of problem solving. A recursive program uses a technique
for repetitive calculation that works by breaking a problem into smaller
pieces and calling itself for each piece.

Factorial Example. The most common illustration of recursive
programming is the factorial calculation: n!=n*(n-1)*(n-2)...2%1,

which repeats until n=1. The test for completion is to see if the input
parameter n<l. The program FACTRL (and TREE in Example
Programs) uses recursion:

FACTRL 85.5 Bytes Checksum #91DEh

[n — nl! |

&
+n
%

IF nl £ THEN 1
ELSE n 1 - FACTRL n *

END
»

%

Programming 69

List Processing
The HP 48G/GX has list processing capabilities that can simplify some
programming tasks.

Command Extensions. Commands that do not accept a list as one
of their arguments may take arguments in lists. In the simplest case,
{245} SF sets flags 2, 4, and 5. If the command returns a result, the
results from a list of arguments will be returned in a list. For instance,
{34} SQreturns { 9 16 }. If a command takes two arguments, the
arguments can be supplied in twolists or a list and one object:

{23}{45}%—> {815)
{AB} ‘X'/— { ‘AIX’ ‘B/X’ }
X° {AB }/— { XIA” X/B’ }

The command extensions do not apply to commands that have zero or a
variable number of arguments (like TEXT or DROPN), nor do they
apply to commands that accept any kind of argument (like DUP).
Program control structures like START do not accept arguments in
lists. The command + is defined to concatenate lists, so the ADD
command has been provided for element-wise addition.

Generalized List Processing. The command DOLIST generalizes
the command extensions discussed above. A command, program, user-
defined function, or named object can be applied to a list of arguments.
A command, user-defined function, or named object that requires n
arguments can also be applied to n lists of arguments. If n>1 then the
lists must all be of the same size. If the number of arguments cannot be
inferred from the command or user-defined function the number of
arguments must be specified.

DOLIST takes arguments in the following forms:

{ listy } ... { list, } object — { results }

{ list; }... { list, } n object — { results }

70 Programming

DOLIST is handy when you want to perform an operation on a list of
objects. For example, suppose you want to convert a series of names
into strings without quote marks. This can be done by adding a name
to an empty string. Instead of creating a FOR loop, use DOLIST:

CABXLY 31 «"" +» DOLIST —
{ "A" ng" nym yn 3

Generating Lists of Results. The command SEQ can be used to
generate a list of results from the repeated execution of an object given
a variable, start, end, and step values. (These examples assume flag —3
is clear.)

€«xnz2*®» '®' 13.5 5EQ > {23456
« 'A' x ¥» 'K'1315EQR CRA*¥2' 'A*3' 3

Processing Sublists. The DOSUBS command steps through a list
of arguments supplying groups of objects in the list as arguments to a
command or program.

{ list } command DOSUBS — { results }
{ list } n program DOSUBS — { results }

For each step through the list the specified number of arguments is
supplied to the object. This set of arguments can be called a frame, and
the position of the frame is defined as the position of the first object
used in the list. The current position within the list (the frame number)
can be determined with the NSUB command and the last position that
will be processed with the ENDSUB command. Consider a program
that requires two arguments as it is applied to the list { 12345}. As
DOSUBS executes, NSUB will step from 1 to 4, and ENDSUB will
return 4. The arguments used in each frame are underlined in the
following table:

NSUB Phe Used

1 {1.23 45}

2 { ; 23 4 5 1}

3 {12345}

4 {12345}
Programming 71

DOSUBS is handy for tasks like computing first differences or moving
averages.

Example: The command ALIST can be duplicated with DOSUBS:

{151125672 2 « SWAP — » DOSUBS — {461442

Example: Suppose you want to create a list containing the moving
average of pairs of numbers, with the first and last numbers of the
original list added to the respective ends of the result list. The program
MAYVG does this using the NSUB and ENDSUB commands to monitor
the position in the list.

MAVG 135.5 Bytes Checksum #9B72h

%
2
%

CASE
'NSUB==1' THEN OVER + 2 ~ END
'NSUB==ENDSUB' THEN SWAP OVER + 2 ~ SWAP END
+2 /

END
»

DOSUBS
»

{12345 2>MAVG > {11.5 2.5 3.534.553 72

Cumulative Argument Processing. The command STREAM
takes the first two elements from a list, applies an object to them, then
applies the object to the result and the next element, and so on.

{ list } object STREAM — result

The command [ILIST can be duplicated with STREAM:

{1311 2567 > « *¥» STREAM — 92123

72 Programming

Meta-Objects
The term meta-object refers to a group of objects and their count that

resides on the stack. Since stack operations are by nature very efficient,
there are times when decomposing a list onto the stack and performing
all operations on the stack will be more efficient than rebuilding the list
between operations.

The following display shows a meta-object consisting of three names
and their count:

{ HOME }

41 TCTOART
3: "KATHRYN"
2: "FREDERIC"

 MECTR[MATE]LIETHYPREALEAZE]

The term meta-stack refers to a group of objects on the stack, some of
which may be meta-objects. The term position is used instead of level
when discussing meta-stacks, because a meta-object actually occupies
multiple stack levels.

The following meta-stack consists of the string “JANET” in position 1,
and meta-objects in positions 2 and 3:

"LB" "JKH" "WMJ" "JS" "EV" 5 21 5 71 3 "JANET"
 —->

Position 3 Position 2 Position 1

Notation. To simplify discussions about meta-objects, the following
notation is presented. The count is always assumed to be below the
elements on the stack. The following symbols are used to indicate
objects and meta-objects on the stack, where the right-most element is
at the bottom of the stack:

Programming 73

<..>

< Ob; Ob; Obj >

< ..>0b

<Ob..>

<..0b>

An empty meta-object on the stack (which is just
a 0, because the meta-object must have a count).

An arbitrary meta-object on the stack.

A meta-object composed of three objects.

An object in level 1 and a meta-object that
begins in level 2.

A meta-object on the stack, with Ob at the head.
The head is the element farthest from the count.
This is equivalent to the decomposition of the list
{Ob... }.

A meta-object on the stack, with Ob at the tail.
Thetail is the element closest to the count. This
equivalent to the decomposition of the list

{..0Ob}.

<meta; > <meta; > Two meta-objects on the meta-stack.

Utility Names. A collection of short utility programs which
manipulate meta-objects is presented below. The names start with M,
for Meta-object, and use the following naming convention:

A Refers to the addition of an object to a meta-object.

Refers to the deletion of an object from a meta-object.

Refers to a meta-object.

Refers to a list.

Refers to the tail of a meta-object.

Refers to an empty meta-object.

Refers to the meta-object in position 2.

D

M

L

H Refers to the head of a meta-object.

T

Z

2

— The phrase “to” (converting to another form).

74 Programming

Utilities. To establish an empty meta-object on the stack, just place a
zero in level 1. To convert a list or vector into a meta-object, execute

OBJ—. To convert a meta-object back to a list, execute LIST. To

convert a meta-object back to a vector, execute ->ARRY.

There are many possible routines for meta-object manipulation. The
following utility programs are provided to suggest the possibilities.
Note that there is no error checking!

MAT 25 Bytes Checksum #3538h
Adds an object to the tail of a meta-object

<..>0b — <..0Ob>
 « SWAP 1 + »

MAT2 53.5 Bytes Checksum #546Eh
Adds an objectto the tail of the meta-object in position 2

<meta; > <meta; > Ob — <meta; Ob> <meta; >

&

OVER 3 + ROLLD DUP 2 + ROLL 1 + OVER 2 + ROLLD
®

MAH 32.5 Bytes Checksum #4F86h
Adds an object to the head of a meta-object

<..>0b — <Ob..>

« OVER 2 + ROLLD 1 + »

MAH2 66 Bytes Checksum #1CACh
Adds an objectto the head of the meta-object in position 2

<meta; > <meta; > Ob — < Ob meta, >< meta; >

&

OVER DUP 4 + PICK + 3 + ROLLD DUP
2 + ROLL 1 + OVER 2 + ROLLD 3

Programming 75

MAM2 31 Bytes Checksum #FAD4h
Concatenates two meta-objects

<meta; > <meta; > — <metajyp >

« DUP 2 + ROLL + *

MDH 32.5 Bytes Checksum #813Dh
Extracts an object from the head of a meta-object

<Ob..> — <..>0b

« 1 - DUP 2 + ROLL *»

MDH2 68.5 Bytes Checksum #BES54h
Extracts an object from the head of the meta-object in position 2

<Ob; Ob Ob3> <...> — < Ob; Ob3><...>0b;

&

DUP 2 + PICK OVER + 2 + ROLL OVER
3+ ROLL 1 - 3 PICK 3 + ROLLD

»

MDT 25 Bytes Checksum #5F4Dh
Extracts an object from the tail of a meta-object

<..0b> = <..>0b
 « 1 — SWAP »

MDT2 56 Bytes Checksum #A95Ch
Extracts an object from the tail of the meta-object in position 2

<0Ob; Ob; Ob3> <...> — < Ob; Ob; ><..>0bj
 & DUP 3 + ROLL OVER
3+ ROLL 1 - 3 PICK 3 + ROLLD

»

76 Programming

ML2M 36 Bytes Checksum #BF3h
Convertslists in levels 1 and 2 into meta-objects

{ listy } {list; } — <meta; > <meta; >

&
SWAP 0BJ+ DUP 2 + ROLL OBJ>

»

MM2L 36 Bytes Checksum #499Ah
Converts two meta-objects into lists

<meta, > <meta; > — {listy } { list; }

&
»LIST OVER 2 + ROLLD »LIST SHAP

®

MSWAP 73.5 Bytes Checksum #C18Fh
Exchanges two meta-objects

<meta; > <meta; > — <meta; > <meta >

&«

DUP 2 + PICK OVER + 2 + * n
« 1 OVER 1 + START n ROLLD MEXT *

»

MZ2 30 Bytes Checksum #5038h
Places an empty meta-object in meta—stack position 2

<meta; > — <> <meta >

&«

a OVER 2 + ROLLD
®

Programming 77

Related Commands: DEPTH, DOLIST, DROPN, DUPN, LIST—,
—LIST, OBJ—, PICK, ROLL, and ROLLD.

Example: Reversing a List. The following program expects a list
as input and returns the reversed list as output. LREV uses a technique
similar to that used by the HP 48’s REVLIST command.

LREV 57.5 Bytes Checksum #D8C1h

{ obj; ...obj, } — { obj, ... obj; } |

%
8 SWAP OBJ»
DUP 1 SHAP

START
MDT MATZ

NEXT
DROP »LIST

Example: Filtering a List. The following program expects a list as
input and returns a list of all string objects in the list in their original
order:

SFILT 81 Bytes Checksum #F4AFh

{ obj; ...obj, } — { “stringy”... “string,” } |

&

8 SWAP OBJ»

DUP 1 SWAP
START
MDT IF DUP TYPE 2 SAME
THEN MAHZ2
ELSE DROP
EMD

NEXT
DROP LIST

®

78 Programming

Example: Searching a Vector. The following program scans an
input vector and returns two lists: one with numbers <.5 in level 2, and

one with the remaining numbers in level 1:

VSCAN 105.5 Bytes Checksum #3418h

[vector] — [numbers<.5] [remaining numbers]

8 SWAP OBJ+ 0BJ+ DROP
DUP 1 SHAP
START MDT

IF DUP .5 >

THEN MAH2
ELSE MAH
END

NEXT
LIST

OVER 2 + ROLLD =»LIST

Programming 79

Example Programs

The example programs in this chapter are intended to be both
educational and entertaining — they seek to illustrate various techniques
for programming the HP 48. The HP 48 command set is rich enough
that there is usually more than one way to do everything.

You can use these programs as a “jumping off” point for your own
experiments. Sometimes it’s fun to modify an example to use a
different technique — look for modifications that make an example
program smaller, faster, or use less memory (or all three!).

Greatest Common Divisor
The program GCD uses a WHILE...REPEAT...END structure to
compute the greatest common divisor of two integers a and b. The
remainder r = MOD(a,b) is calculated, b is replaced by a, and a
replaced by r until r=0.

GCD 42.5 Bytes Checksum #EBD4h

| ab — GCD

&
WHILE DUP Loop until r=0
REPERT
SWAP
OYER MOD Calculate r=MOD(a,b)

END
DROP Drop r

»

Example: The G.C.D. of 75488266 and 32565428 is 14.

80 Example Programs

Least Common Multiple
The program LCM can be used to compute the least common multiple
m of two numbers a and b. LCM uses the formula m=a*b/GCD(a,b):

LCM 31.5 Bytes Checksum #EF3Ah

ab — LCM

&
DUP2 GCD ~ *

»

Example: The L.C.M. of 325 and 340 is 22100.

Square Root’s Partial Quotients
The program SQPQ uses an IF...THEN...ELSE...END structure and a
DO...UNTIL...END loop to compute a list of partial quotients of the

continued fraction equal to the square root of an integer. The list
consists of an integer followed by the repeating quotient sequence.

Example: 18 SQPQ returns { 4 4 8 }, which means SQRT(18) =
4+1/(4+1/(8+1/(4+1/(8+... with 4 8 repeating.

Example: 95 SQPQ returns { 9 1 2 1 18 } which means SQRT(95) =
9+1/(1+(1/(2+1/(1+1/(18+... with 1 2 1 18 repeating.

Example: 25 SQPQ returns { 5 }, which means it’s exactly 5.

Example Programs 81

SQPQ 315 Bytes Checksum #1D96h

n — {list}

&

IF DUP & DUP FP

THEN

B11 +n sqrt numerator denominator size

&

DO

sqrt numerator + denominator

IP DUP denominator *

'numerator' STO-

n numerator SQ -

'denominator' STO~

1 'size' STO+

UNTIL

denominator 1 ==

END
numerator DUP + size

»

ELSE SWAP DROP 1
END
LIST

®

82 Example Programs

Polynomial Curve Fitting
The program PFIT generates the coefficients for a polynomial which
passes through a given set of points. The data is supplied as a matrix,
where each row contains the x and y coordinates of a data point.

PFIT 205.5 Bytes Checksum #AF57h

&
DUP SIZE 1 GET Find number ofdata points
+ as
&

Make array ofy-values

TT
]
—

Q A
a
n

> GET
RRYm

n
> =
~

n
u
.

+ o
n

M
m

Make matrix ofx-powers

M
Z

Q A

wt cl m —

J
i
1
Rm

u
n

w

=
|
«

2

0
DUP k ~ SHAP

-1 STEP
DROP

NEXT
{ 5s 5 3 *ARRY
SWAP DUP2 OVER ~ Solve system ofequations
DUP 5 ROLLD RSD Add RSDfor greater accuracy
SWAP ~ +

*
»

Example: What polynomial passes through (-2,-3), (0,7), (1,6), and
(2,9)? Use the MatrixWriter to create the data matrix:

(

~
T
e
s
s
e

N
P
O
N

o
o

J
W
w

]

PFIT returns [1 —1 —1 7], representing the equation x3—x2—x+7.
Example Programs 83

Since there is considerable risk involved in forcing a polynomialfit to
experimental data, you might be interested to see what the function
looks like. The program SHWP takes a matrix containing the data from
the stack, plots the data, and the draws the function result from PFIT.

SHWP 277.5 Bytes Checksum #4804h

&
STOZ
ERASE { #0 #0 > PVYIEW
MINZ V+ MAXZ V=
ROT OVER -
1.24 * OVER + YRNG
OVER - 1.83 *

OVER + XRHNG
1 NZ

FOR J
PICT
ZDAT DUP
SWAP € J
GROB 5 3
REPL

NEXT
RCLZ PFIT
OBJ» 8 SWAP OBJ*» + 2

FOR J
'X' ¥ J ROLL +

-1 STEP
STEQR
FUNCTION DRAW
DRAX LABEL
{ > PVYIEW

{J 1 GET
2 3 GET R=C
FarTaTe9001

84

Save the data in JDAT
Show PICT

Find min and max data values

Adjust y rangefor menu area
Set plot ranges

Loopfor number ofdata points

Get x coordinate
Get y coordinate, make user-
unit coordinate
Add arrow grob to PICT

Calculate coefficients

Use Horner's method to
create algebraic polynomial

Save equation in EQ
Draw thefunction
Draw and label axes
Show PICT, waitfor CANCEL

Example Programs

After SHWP has executed, the equation is in PICT and the data is
stored in 3DAT.

Example: Find and display the curve that passes through the data
points (-1,3), (0,2), (1,4), (2,0), and (3,5). Use the MatrixWriter to
create the data matrix:

W
D
E
O
R

U
O
k
D

Ww
W

—
r
d
e
d
e
d
e
d

Now run SHWP:

0 12] aie

Example Programs 85

Slope of a Line
The program SLOPE provides a simple example of an application that
can be created using the INFORM and MSGBOX commands. A
WHILE...REPEAT...END loop runs for as long as INFORM returns 1
(when [FE is pressed). Each time INFORM returns with a new set
of values the slope and intercept are calculated. When CHHCL is
pressed INFORM returns 0, and the program ends.

SLOPE 751 Bytes Checksum #7A6h

&
BOOB BH xl x2yly2mb
&

WHILE

"EQUATION OF A LINE"

{

{ "X1:" "ENTER X COORDINATE OF POINT 1" 8 >

{ "Y1:" "ENTER ¥Y COORDINATE OF POINT 1" 8 >

{ "¥2:" "ENTER X COORDINATE OF POINT 2" 8

£ "¥2:" "ENTER ¥Y COORDINATE OF POINT 2" 8 2

{ "M:" "SLOPE OF LINE" 8 %

{ "B:" "INTERCEPT" 8

3

{2372

x1 yl x2 y2 mb 6 »LIST DUP

INFORM

REPERT

0BJ+ 3 DROPH

'y2' STO 'x2' STO 'yl' STO 'x1' STO

CASE

x1 x2 == yl y2 == AND

THEN "Equal Points!" MSGBOX END
yz y ==

THEM "Horizontal line Y=" yl + MSGBOX END

x2 x1 ==

THEN "Vertical line X=" x1 + MSGBOX EMD
y2 yl = x2 x1 =~ 'm' STOyYl x1 m ¥ = 'b' STO

END
END

86 Example Programs

User Interface for User-Defined Functions
Since user-defined functions have a fixed structure, it’s fairly simple to

isolate the input variables and create a “mini-application” featuring an
input form user interface. The syntax of a user-defined function must
be exactly:

« * local-names defining-procedure *

The defining procedure can be either a program or algebraic object, so
we know that the variable names reside between the + character and the
first € or ' delimiter. The function is converted to a string, and the
SUB command is used to extract the names in string form. To convert
the string to a list of names, a “{“ is prepended to the string, then the
string is converted to a list using OBJ—.

Example: Build an application for the user-defined function PTHG:

€ xy 'Tx"2+yt20)' »

Place the name ‘PTHG’ on the stack and execute UDFUI. Enter values
for the input fields x and y, then press Ik. . The result is placed into
the PTHG fied, and the input form is restarted:

Emr] ||JHNiL]Ok
The program continues until you press ZHHIZL or (CANCEL).

Example Programs 87

UDFUI 336.5 Bytes Checksum #FA7Ch

&«

®

88

{
&

2

} # name infdat

name RCL

+STR 4 OVER SIZE SUB
nign + i OVER min POS

3 PICK "«" POS MIN 2 - SUB
"{" SWAP + OBJ=
miu name +

SWAP name +

1 € "1" + 3%

DOLIST
DUP SIZE 4 ~ CEIL OVER
1 « DROP { NOVYAL > HERD *

DOLIST
DUP 5 ROLLD
4 3LIST

'infdat' STO
WHILE
infdat LIST» DROP S ROLL
INFORM

REPERT
DUP OBJ» DROPZ
name EYAL

OVER SIZE SWAP PUT
END

Remove leading % +
Find ' or«
Extract variables
Convertto list ofnames

Create title string
Addfn name to list to
create resultfield
Convert namestofield
labels with “:”
Calculate number ofcols

Create default values
Save copy ofdefault vals
Save parameters in infdat

Loop until INFORM
returns a zero

Put parameters on stack

Evaluatefunction
Put result into data list

Example Programs

Sorting Directories
Sorting the variables in a directory is as easy as executing the sequence
« VARS SORT ORDER =», but the program DSORT adds a useful

touch — subdirectories are placed at the beginning of the menu. This
program illustrates uses of the commands DECR, GETI, INCR, and

PUT. Two handy ways to use DSORT are to assign it to a key or store
it in port 0, then you can execute :0:DSORT from any directory.

DSORT 356.5 Bytes Checksum #18C2h

&
CLLCD Clear display.
"Sorting directory"

1 DISP PATH 2 DISP Display current path.
"Sorting VAR list..." 4 DISP NOTE: “...” is chr_31
YARS SORT Sort variables.
"Moving directories." 5 DISP
DUP DUP SIZE 8 +» n m Level 3 list is target,

« level 2 list is source,

11 n START and level 1 is list index.
GETI Get name, increment index.
IF DUP YTYPE 15 == If directory, put into target
THEN 4 ROLL 'm' INCR list, increment target count.
ROT PUT 3 ROLLD

ELSE DROP
END

NEXT Level 1 list index wraps to 1
IF m 8 = THEN If directories were moved,

1 n START make a 2nd pass to move
GETI the variables into the target
IF DUP VTYPE 15 = list.
THEN 4 ROLL 'm' INCR
ROT PUT 3 ROLLD

ELSE DROP
END

NEXT
END DROPZ2 Drop index and source list.

»

"Executing ORDER..." 6 DISP
ORDER Execute ORDER on new list.

»

Example Programs 89

Date Utilities
Some astronomical calculations require dates expressed as a specific
number of days after an epoch. Astronomers use the Greenwich mean
noon of January Ist 4713 B.C. as this epoch, and the number of days
since that epoch (expressed as a fractional quantity) is called the Julian
day number. Note that since the Julian day begins at 12:00:00
Greenwich time, it is half a day out of step with civil time. The
programs JDAYN and JDCAL are based on algorithms in Practical
Astronomomy With Your Calculator, cited in the acknowledgements.

JDAYN. The program JDAYN converts a date to a Julian day number.

JDAYN 361.5 Bytes Checksum #91B7h

year month day — Julian_day_number |

€« +ymd
&

ym leg ~ + d 18000 ~ + Date as YYYY.MMDDdd
IFm2<£
THEN 1 - m 12 +
ELSE uy m
END
+ dat yl ml
&

IF dat 1582.1015 2 If date is in Gregorian
THEN calendar, adjust yl, ml

yl 168 ~ IP DUP 4
/ IP SWAP - 2 +

ELSE 8 Constant B

END

365.25 ul *

IF y1 8 < THEM .75 - END IP Constant C

38.6881 m1 1 + * IP Constant D

+ + d+ 1728994.5 + JD=B+C+D+d+1720994.5

*
%

*

Example: May 16, 1992 is Julian day number 2448758.5.

90 Example Programs

JDCAL. The program JDCAL converts a Julian day numberto a date.

JDCAL 374.5 Bytes Checksum #3B06h

»

Julian_day_number — year month day]

.2 + DUP FP SHAP IP
IF DUP 2299168 >
THEN
DUP 1867216.25 -
36524.25 + IP
DUP 4 » IP - 1 + +

END
1524 +

DUP 122.1 - 365.25 ~
IP DUP 365.25 * IP
3 PICK OVER - 30.6001
7s IP 4 ROLL ROT -

4 ROLL + 38.60801
3 PICK # IP - SWAP
IF DUP 13.5 <
THEN 1 -
ELSE 13 -
END
ROT
IF OVER 2.5 >
THEN 4716 —
ELSE 4715 -
END
SWAP ROT

I =integer part, F=fractional part
If in the Gregorian calendar

A =IP(I-1867216.25)/36524.25)

B =I+1+A-IP(A/4)
Else B =I

C =B+1524
D =IP((C-122.1)/365.25)
E =IP(365.25*D)
G =IP((C-E)/30.6001)
Day no.: C-E+F-IP(30.6001 *G)

Month no.: If G<13.5
m =G-1

else m =G-13

Year: Ifm>2.5
y =D—4716
elsey = D—4715

Example: Julian day number 2449139.5 is June 1, 1993

Example Programs 91

The programs DAT2YMD and YMD2DAT convert between dates in
HP 48 format (MM.DDYYYY or DD.MMYYYY) and separate
numbers for the year, month, and day. Note that negative numbers may
be used to represent B.C. dates. For instance, -6.061242 is in 1242
B.C.

DAT2YMD. The program DAT2YMD converts a date in HP 48
formatto separate numbers for the year, month, and day.

DAT2YMD 113 Bytes Checksum #AE10h

date — year month day

DUP SIGH SWAP ABS
DUP IP
SWAP FP 1808 *
DUP IP
SWAP FP 10008 *
4 ROLL *

3 ROLLD
IF -42 FS?
THEN SHWAP
END

»

Determine sign of date, make positive
Isolate MM (or DD, will decide later)
DD.YYYY (or MM.YYYY)
Isolate DD (or MM)
Isolate YYYY

Get sign and adjust year
Assume order YYYYMMDD
If42 set, exchange MM and DD

Example: 6.011993 — 1993 6 1 (flag 42 clear)

92 Example Programs

YMD2DAT. The program YMD2DAT assembles separate numbers
for the year, month, and day into a date in HP 48 format.

YMD2DAT 95.5 Bytes Checksum #F806h

year month day — date |

&
IP Use only integer part of the day number
IF -42 FS? Assert YYYYDD MM order
THEN SLAP
END
188 ~ + MM.DD (or DD.MM)
SWAP
DUP SIGN SWAP ABS Get sign ofyear and use absolute value
18886868 ~» ROT + 0.00YYYY + MM.DD to get MM.DDYYYY
* Multiply by sign ofyear

#

Example: 1994 5 18 — 5.18.1994 (flag —42 clear)

DOW. The program DOW finds the day of the week given a date in
HP 48 format, based on an algorithm in Practical Astronomy With Your
Calculator, cited in the acknowledgments.

DOW 167 Bytes Checksum #239Fh

date — “day” |

&
DATZ2YMD Convert to year, month, and day

JDAYN Calculate Julian day number
1.5 +7 7 FP 7 ¥ —-1 RMD Find day number, 0 to 6

{ "Sunday" "Monday"
"Tuesday" "Wednesday"

"Thursday" "Friday"

"Saturday"

SWAP 1 + GET Day of weekfrom I to 7
»

Example: August 2, 1994 (8.021994) falls on Tuesday.

Example Programs 93

DAT2STR. The program DAT2STR converts a date in HP 48 format
to a string in “MM/DD/YYYY” or “DD.MM.YYYY” format,

according to the setting of flag —42. DAT2STR uses the program
DAT2YMD.

DAT2STR 272 Bytes Checksum #C8AOh

3

date —
“date”

RCLF

STD

&

GET

IF DUP 9 >
THEN nn

ELSE "@"

END

SWAP + ¢sep +

ROT

»

+ flg Tostr

&

DAT2YMD 3 »LIST

DUP DUP

IF -42 FS?

THEN 3 2 "."

ELSE 2 3 "~"

END

+ month day ¢sep
&

month Tostr EYAL

day Tostr EVAL

HERD + +
*

flg STOF

*

Save the system flags, set STD mode
for numberto string conversions
Subroutine Tostr
Get month or dayfrom list
Ifnumber is 2 digits
then no leading 0,
otherwise leading 0 required

Convertto string, add separator
Rotate nextlist into position

Create { year month day } list

Checkflag —42 for separator chr

Create MM/ (or DD.) string
Create DD/ (or MM.) string
Create YYYY string, add MM and DD

Restore systemflags

Example: 4.161930 DAT2STR — “04/16/1930” (flag —42 clear).

94 Example Programs

Status Line Animation
The HP 48 graphics display invites various forms of simple animations.
The example SLICEis provided in the EXAMPLES directory when the
TEACH command is executed. Two more are provided here for fun.

TANK. The program TANK recreates a brief moment of Operation
Desert Storm. This time, the battlefield appears to be the status area of
the display, butis actually a copy of the stack display thatis stored in
an enlarged PICT. Comments appear after the @ character. Note that
when you enter the program there is no gap between the characters of
grob data in the commandline.

TANK 1334.5 Bytes Checksum #74C8h

&

{
GROB 16 10 0C100EFFOFFFOF708FF14002CFF3AD67E6BS5CFF3

GROB 16 10 0C100EFFOFFFOF708FF14002CFF36BD66BD6CFF3

GROB 16 10 0C100EFFOFFFOF708FF14002CFF3E6B5SAD67CFF3

3

{
GROB 16 10 0830FF70FFE006C08FF14002CFF3E6B5SAD67CFF3

GROB 16 10 0830FF70FFE006C08FF14002CFF36BD66BD6CFF3
GROB 16 10 0830FF70FFE006C08FF14002CFF3AD67E6BS5CFF3

3

GROB 7 2 8787

{
GROB 14 14 00000000000008308F708FE006C00000C3E02001 EFF1D6B37BD2EFF1
GROB 14 14 000000700FFO0FD10C8100000000000000002001 E1E1D2B37BD2EFF1
GROB 14 14 0EF10EB3081300000000000000000000000000002001D0A370C2EFF1
GROB 15 14 003600100270C2E1E1
GROB 15 14 004082E0C1

¥

PICT RCL

6d # ad

+ tankl tank2 shell blast pictsav x y

Example Programs 95

96

IFERR @ Traps [CANCEL] key
@ Enlarge PICTso tank can enter from left
163d # 64d PDIM
@ Put copy ofstack display into PICT
PICT { # 16d # 8d > LCD+ REPL
@ Show PICT
{ # 16d # 8d > PYIEMW
@ Clearthe status area
PICT { # 16d # 6d > # 131d # 14d
BLANK REPL
@ Advance tank from left onto battlefield
112
START
13
FOR i
PICT x # 4d 2 »LIST tankl i GET REPL
1d 'x' STO+

NEXT
NEXT
148d 'y' STO
@ Advance tank from right
112
START
13
FOR i
PICT y # 4d 2 »LIST tank2 i GET REPL
'y' # 1d STO-

NEXT
NEXT
@ Bang! The thunder of the battlefield ...
208 .82 388 .02 BEEP BEEP
@ Show the shell
PICT { # 47d # 5d » shell GXOR
91 115
@ Moveshell
FOR i
PICT i R*B # 5d 2 LIST shell REPL

4 STEP

Example Programs

@ Explosion
15
FOR i
PICT € # 114d # 8d * blast i GET REPL
488 i ~ .01 BEEP 388 i ~ .81 BEEP

NEXT
@ Delay
@ (This is a good time to let MEM force garbage collection)
MEM DROP 1 WAIT
@ Move victorious tank off battlefield
1 38
START
13
FOR i
PICT x # 4d 2 »LIST tankl i GET REPL
'x' # 1d STO+

NEXT
MEXT
THEN @ End of IFERR trap
END
@ Switch back to the real stack display
TEXT
@ Restore original PICT
pictsav PICT STO

®
®

TRAIN. The program TRAIN features a steam train complete with
whistle and billowing smoke. Notice how the smoke dissipates! The
smoke coordinates are saved on the stack, and cleared at random. Note
that when you enter the program there is no gap between the characters
of grob data in the commandline.

Example Programs 97

TRAIN 911 Bytes Checksum #A7FDh
&
MEM DROP DEPTH 198 1 FS?C PICT RCL
+ depth x f1 pictsav
&

#191d #64d BLANK
{ #60d #8d > LCD+ REPL PICT STO
PICT { #60d #8d > #131d #14d BLANK REPL
{ #68d #8d > PVIEMW
WHILE x
REPERT
PICT x R+B #7d 2 »LIST

GROB 60 7 00E3000000000000E163000000000000CC6100CFFF8FFF30CFF5F7C
AAABAAA20EFF7FTDFFBAFFF20FFFFFFFFFFFFFF70CCC1630303060C00

REPL @ Draw train
IF RAND .23 > THEN @ 77% chance of clearing smoke
IF DEPTH depth —- DUP @ If there’s smoke on the stack
THEN RAND * ROLL PIXOFF @ then clear one smoke pixel
ELSE DROP END
END
'x' 1 STO- @ Movetrain left one pixel
IF 1 FS?C THEN @ If flag 1 set, emit additional smoke
x #4d + #7d 2 »LIST PIXON
x #6d + #5d 2 +LIST DUP PIXON @ Save on stack
x #7d + #5d 2 *LIST DUP PIXON @ Save on stack
EMD
IF RAND .98 > x 68 > AMD @ 2% chance to blow whistle
THEM 2112 DUP .28 BEEP .2 WRIT .4 BEEP
EMD
IF RAND .8 > THEM @ 20% chance of emitting smoke
1 SF @ Request more smoke after train moves
x #4d + #7d 2 LIST PIXON
x #4d + #6d 2 »LIST DUP PIXOM @ Save on stack
x #5d + #6d 2 »LIST DUP PIXON @ Save on stack
EMD
EMD
DEPTH depth - DROPHN @ Drop remaining smoke
1 IF f1 THEM SF ELSE CF EHD @ Restore flag 1
TERT pictsav PICT STO @ Restore original PICT
2

98 Example Programs

Customizing the Solver
In Menus the options available for menu customization are described.
You can create a fairly sophisticated calculating environment using
custom menu definitions. While the HP 48G/GX models have HP’s

best compound interest software built right in, the Time-Value-of-
Money (TVM) application remains a classic illustration of what a
custom menu definition can do.

The programs TVMCALC, MNU%, and CHOS% mimic some of the
most used functions in HP business calculators. Since many variables
are used by the equations, you might wish to make a directory BCALC
to hold your equations and variables. The programs MNU% and
CHOS% illustrate two methods for selecting an application. To reduce
directory clutter, these examples are written as single programs.

Compound Interest Calculations. The program TVMCALC
implements the classic equation for TVM calculations. The equation
supports compound interest calculations for applications where
identical payments occur over regular periods which coincide with the
compounding periods.

-N
1-(1+1

0=PV + PMTa(+1)

The variables are defined as follows:

N The number of periods of the loan or investment.

1 The periodic interest rate. If the loan is stated as 8% per year,
and payments are monthly, then /=.67.

PV The present value of the loan or investment. In the case of a
loan,this is how much you borrow.

PMT The periodic payment.

FV The future value of the loan or investment. The future value of a

loan that is to be paid in full by regular payments is zero.

Example Programs 99

To make the calculations more applicable to the real world, three
enhancements have been made to the basic equation:

Payments can be made at the beginning or end of a period, so the

variable PmtMode is used to indicate the mode. PmtMode is 1 if
payments are made at the beginning of the period (called Begin
Mode), or 0 if payments are made at the end of the period (called
End Mode).

In some loans or investments, payments are made on different

schedules than one per month. Interest rates are usually quoted on
an annual basis, so the variable I%YR stores the annual interest

rate, and the variable PYR is used to adjust for the number of

payments per year.

The equation has been adjusted to let you enter the interest rate as a

whole number, so you can enter 8 for 8% instead of .08.

After these changes have been added, the equation becomes a little
more complicated:

0=PV+{1+

- ,_I%YR J
* k1%YR paPMT 100 PYR

100 * PYR 1%YR
100 * PYR

1%YR J"
+1+—

100 * PYR

In TVM calculations money received is displayed as a positive number;
money paid out is displayed as a negative number. The diagrams on
the next page are called cash flow diagrams, and help to illustrate the
flow of monies in a loan or investment.

100 Example Programs

 an
Loan From Borrower's Point of View

Payments

147FesAEE
PV

Loan From Lender's Point of View

The program TVMCALC embodies the entire equation and user
interface into a single solver equation. When the equation has been
activated within the solver, the following menu keys are available:

H
Lev R
FY
FMT
F he

MORE

Store or calculate the number of periods of the loan.
Store or calculate the annualinterestrate.
Store or calculate the present value.
Store or calculate the payment.
Store or calculate the future value.
Display the option menu keys.

The option menu keys do the following:

BEG
EHD
FeYR
SHOR

REZEY
EXIT

Example Programs

Set begin mode.
Set end mode.
Store the number of payments per year.
Display the values ofall the variables.
Clear N, I, PV, PMT, FV. Set 12 pmts/year and end mode.
Return to the Solver menu.

101

The user interface is customized to mimic HP’s business calculators,

and so has extra code for cosmetic purposes. One way this example
could be streamlined would be to place the duplicated code that
displays the payment mode and number of payments per year into a
separate global variable. As you experiment with TVMCALC, you
may wish to add or delete other features to see how they work.

TVMCALC 1386 Bytes Checksum #350h

#
{

'B=PY+C1+IXYR¥Pmt Mode (100%¥PYR)*¥PMT*((1-
(1+I%X¥YR/C10B%¥PYRI D™=N)/(IXYR-C188%PYR) >)
+FVY%C1+I%YR/C180%¥PYR)Y > ™~=N'

{ N IXYR PY PMT FV
{ "MORE"

% {
{ "BEG" &

1 'PmtMode' STO

"Begin Mode" 1 DISP 1 FREEZE
»

¥
{ "END n &

8 'PmtMode' STO

"End Mode" 1 DISP 1 FREEZE

*

>
{ "PAYR"Y &

'PYR' STO

PmtMode "Begin" "End" IFTE

" Mode" + 1 DISP

PYR " PaumentssYear" +

2 DISP 1 FREEZE
»

>

102 Example Programs

{ "SHOW" «

PmtMode "Begin" "End" IFTE

" Mode" + 1 DISP

PYR " Pauments<Year" +

2 DISF

"WW ="H+ 3 DISP

"Ix¥YR= "1 + 4 DISP

"py =" PY + 5 DISP

"PMT = " PMT + 6 DISP

"FY =" FY + 7 DISP

T FREEZE

*

3

{ "RESET" «

8 'PmtMode' STO

12 'PYR' STO 8 'FY' STO

a 'PMT' STO 8 'PVY' STO

A 'I%XYR' STO B8 'H' STO

"End Mode" 1 DISP

"12 Pauments-Year" 2 DISP

1 FREEZE

»

I

{ "EXIT" «

8 MENU

PmtMode "Begin" "End" IFTE

" Mode" + 1 DISP

PYR " Payments-Year" +

2 DISP 1 FREEZE

*

¥

2X

TMENU

Example Programs 103

PmtMode "Begin" "End" IFTE

" Mode" + 1 DISP
PYR " Pauments-sYear" + 2 DISP 1 FREEZE

@ End of program for MORE label
} @ End of MORE key definition

+ @ Menu end

¥ STEQ
8 'PmtMode' STO 12 'PYR' STO 8 'FVY' STO
8 'PMT' STO 8 'PY' STO 8 'I%YR' STO 8 'N' STO
38 MENU @ Display the SOLVR menu
"End Mode" 1 DISP
"12 PaumentssYear" 2 DISP

1 FREEZE
»

The MIOEE key is implemented by taking advantage of the Solver’s
variable list feature. The basic strategy is a heavily customized Solver
equation list of the form:

{ ‘equation’ { variable list } }

Each entry in the variable list can be defined as a variable or as a list
containing the label and one or more associated programs. For more
details on menu key definitions, refer to the example MENUEX in
Menus.

To solve TVM problems, enter the values you know and solve for the
unknown by pressing (4) followed by the appropriate key.

104 Example Programs

To try out an example, consider a loan for a car. The loan amount is
$18,280, the annualinterest rate is 13%, and the term is for four years.

Payments are to be made monthly, so the number of periods (N) is 48.
Assume the HP 48 is in FIX 2 display mode, and begin by executing
TVMCALC:

Keys:

TMM

43 HH
13 IE
18280 FEW
0 FEW
(@ FHT

Now press MORE

Example Programs

Display:
End Mode

12 PaymentsYear

N: 48.068
I%¥YR: 13.88
PY: 18,280.00
FV: 0.88
PMT: -498.41

SHOW to see all the values at once:

9

Fv = a. bo’
[EEG |END[PAVE[HOMRESET]EXIT |

105

Percentage Calculations. The program MNU% consists of a
custom menu definition containing four commonly used percentage
equations, along with text to remind you which is which. The
equations are:

OLD

% oftotal =fol*100
TOTAL

Markup as % of cost =FE*100
CcoST

PRICE- COST
) *100

PRICE
Markup as % ofprice =

When you execute MNU%, the menu and prompts are displayed:

Select a function:

CHG Percent change
TOT Percent of total
UxC Markup as % cost
U*%P Markup as *% priceS

Z

“
“

 ESTER ERM [ETVERTVET:I

Pressing a menu executes the corresponding program in the menu
definition, which loads the appropriate equation into EQ and starts up
the solver menu. For instance, press “CHG to display the first

equation:

EQ: { '%CHG=C(NEW-0LD ..

—
M
W
h

CoieINEECHGIETARC10]
106 Example Programs

MNU% 683.5 Bytes Checksum #7905h

4
{

{ "XCHG" «

{ '%CHG=(NEW-0LD>-0LD*108'
{ OLD NEW XCHG 2

> STEQ 38 MENU
»

2
{ "XTOTL" «

{ '"XTOT=PART-TOTAL*108'
{ TOTAL PART XTOT 2

> STERQ 38 MENU
»

3
{ "MUXC" «

{ '"MXC=(PRICE-COST>~COST*188'
{ COST PRICE MXC >

> STER@ 38 MENU
»

3
{ "MUXP" «

{ 'M%XP=(PRICE-COST>-PRICE*166'
{ COST PRICE M=P 2

> STEQ 38 MENU
» 2

> TMENU Displays menu
CLLCD Clear display
"Select a function:" 1 DISP Show options
"%CHG Percent change" 3 DISP

"%“TOT Percent of total" 4 DISP

"MU%C Markup as % cost" 5 DISP

"MU%P Markup as % price" 6 DISP

3 FREEZE Freeze display
»

Once the equation has been initialized in the Solver, enter the variables
you know, then press (4) and the unknown variable.

Example Programs 107

The program CHOS% uses a choose box instead of a custom menu to
select an equation. The list supplied to the CHOOSE command
consists of four lists, each containing a description to be shown in the
choose box and the corresponding solver equation to be stored in EQ.

CHOS% 521 Bytes Checksum #4015h

&
CLLCD
"SELECT A FUNCTION: " Choose box title
{

{ "Percent change"
{ '%CHG=(NEW-0LD>-0LD*108'

{ OLD NEW CHG >
>

>
{ "Percent of tot"

{ '%“TOT=PART/TOTAL*188"'
{ TOTAL PART XTOT 2

>
>
{ "Mkp as X cost"

{ 'MXC=(PRICE-COST>~COST#*1806'
{ COST PRICE MXC 32

>
>
{ "Mkp as %X price"

{ 'MXP=(PRICE-COST>~-PRICE*108'
{ COST PRICE M%P 2

>
>

>
1 Choose highlight on 1st item
IF CHOOSE If 0k pressed...
THEN
STER Store equation
38 MENU Display the solver menu

EMD
®

108 Example Programs

Amortization Plot
Given a Time-Value-of-Money problem that’s been established in the
TVM variables, the command AMORT may be used to calculate the
amounts applied to principal and interest and the remaining balance of a
loan after a given number of payments. With this function in hand,it’s
interesting to plot the amounts applied to principal and interest over the
life of a loan.

The program AMPLT plots the amounts applied to principal and
interest for each year of a loan using the following algorithm:

® Calculate first year’s amortization data using PYR periods.

® Store new balance back into PV.

® Save amounts applied to interest and principal during the first year

in variables int and prin.

® For each year:

® Calculate next year’s amortization data, update PV with new

balance.

® Duplicate the new values for int and prin.

® Draw lines from last year’s intto this year’s int and last year’s

prin to this year’s prin.

® Update int and prin.

NT

RIN

Example Programs 109

AMPLT 569.5 Bytes Checksum #C4EBh

&«

{
CLLCD "Scaling ...
PICT PPAR } PURGE

PY N PYR ~

PYR AMORT
"PV! STO
MEG SWAP NEG
>

&

pv years int prin

1 years XRNG

8 PMT NEG PYR * YRNG

(1,8) AXES

1 18 PMT POH 1 + ©

2 »LIST ATICK

{ #8 #6 > PVIENW

DRAX

PICT

Purge PPAR and PICT
" 1 DISP Display status message

Calculate number ofyears
Amortize first year
Store new balance in PV
Principal and interest need to
be positivefor plotting

Scale x-axis

Scale y-axis
Set axes intersection

Set x, calc y-tick intervals
Set tick intervals

Show new PICT

Draw axes with tick marks

1 int RC C+PxX OBJ» DROP Calculate coordinatesfor INT
SWAP 3 + SWAP 5 - 2 LIST
"INT" 1 »GROB GOR
PICT

Put INT label into PICT

1 prin R2C C+Px 0BJ+* DROP Calculate coordsfor PRIN
SWAP 3 + SWAP 1 + 2 »LIST

"PRIN" 1 »GROB GOR

2 years FOR yr

Put PRIN label into PICT
Loopfor each year

PYR AMORT Amortize next year
'PY' STO Save new PV
NEG SWAP MEG DUPZ2 Positive values for plotting
yr SWAP RC New principal value coord.
gr 1 —- prin R2C Old principal value coord
LINE Draw line
yr SWAP R=2C New interest coord
yr 1 — int R=*C Old interest coord
LINE Draw line
'prin' STO 'int' STO Update old prin & int

HEXT pv 'PY' STO Loop end, restore original PV
PICTURE

®
»

110 Example Programs

Pascal’s Triangle
Pascal’s Triangle is the arrangement of rows of numbers where the nth

" withr=0, 1, n. When;row consists of the binomial cofficients

the numbers are displayed in rows centered about a vertical axis, you

n +1 n n . ..
can see that -(J J which are positioned to the left and

r r— r

6 5
right above it. For instance, § is 15, which is the sum of 0) , which

: 5)
is 5 and 3) which is 10.

The HP 48 display can comfortably display the first nine rows of this
arrangement. The program PASCAL on the next page generates the
following display:

Example Programs 111

PASCAL 361 Bytes Checksum #D4E8h

&«

&«

2

{132

+ Prevrow newrow
&

1 prevrow SIZE 1 -

FOR r

'newrow’

Prevrow r

DUP 1 + SUB

OBJ» DROP +

STO+

NEXT

newrow 1 +

»

PICT RCL
3

«

112

DoMewRow pict

PICT PURGE
{ #B6d #6d > PVIEW
{1132
19
FOR n
PICT
OVER 1 »GROB
DUP SIZE DROP
2 / 66 SWAP -
n #6d *

2 »LIST SWAP
REPL
DoNewRow EYAL

NEXT DROP
{ > PVYIEW
pict PICT STO

Subroutine DoNewRow
Initial value ofnew row

Loop for r subintervals

Extract elements
Add toform new element
Add to end of list in newrow

Add trailing 1

Save old PICT

Purge PICT
Create and show new PICT

Firstrowis {11}

Loop for 10 rows

Create a copy of row as grob
Find width ofgrob
Center the grob
Calculate row coordinate
Combine coords into list
Place grob in PICT
Calculate new row value
Complete loop, discard last row
Show PICT, waitfor
Restore old PICT

Example Programs

Plotting Inequalities
The program INPLOT plots the intersection of a series of two or more

inequalities stored in a list in the reserved variable EQ. The equations
must take the form y=f(x). The program assumes you have set the plot
scale in PPAR. The program tests the midpoint of vertical lines drawn
between the plot boundary and the functions to see if that point satisfies
all inequalities. A status pixel blinks along the top of the plot to
indicate the progress of the plot.

The program clears flag —3 to assert symbolic results mode. Since at
least two equations are being plotted, you might wish to set flag —22 to
draw the equations simultaneously.

Example: Plot the logical AND of the equations Y>SIN(X),
Y<COS(X), and Y>.3*X. Store the following list in EQ:

{ 'Y2SINCRY' "Y<COSCRY' 'Y2.3%X" 3

Assuming that Radians mode is set and PPAR contains the default
scaling parameters, the program INPLOT may be used to produce the
following plot:

Example Programs 113

INPLOT 753 Bytes Checksum #39D1h

&

-3 CF RCER DUP SIZE Symbolic results
IF DUP 2 < Require at least 2 equations
THEN DROPZ 513 DOERR
END
2403 Values for newegns and pts
PPAR 1 GET C2R Xmin & Ymin
PPAR 2 GET C=R Xmax & Ymax
OVER 3 PICK - Calculate plot step size
PICT SIZE DROP B3R ~
=>

oldeqns numegqns neweqns

pts min ymin xXmax umax

step
&

oldeqns 1 Convert inequality into
« 0BJ+» DROPZ = » form y=f(x)
DOLIST

DUP 'neweqns' STO STEQ Store in newegns and EQ
ERASE { #0 #08 > PVIEW Show PICT
DRAX DRAW Plot equation lines
oldeqns 1 Extract right side of eqns
« 0BJ+ DROPZ2 SWAP DROP =»
DOLIST 'newegqns' STO Store into newegns
Xmin xmax Loopfrom left to right
FOR x

x ymax R2C DUP Coordinate of top pixel
PIX? DUPZ2 Save coord & pixelstate
« PIXOFF » « PIXON »
IFTE Toggle pixel
x '¥' STO Update value ofX
ymin ymax 2 LIST Plot borders begin pts list
neweqns 1 « *NUM » Calculatefunction values
DOLIST + SORT Sort list into ascending order
'pts' STO Save into pts
1 numegqns 1 + Loopfor each line segment

114 Example Programs

FOR n

pts nnil + SUB

OBJ+ DROP

DUPZ + 2 ~ 'Y' STO

IF

1 1 numegns

FOR m

oldegqns m GET

NUM AND

HEXT

THEN

x SWAP R»C x

ROT R»C LINE

ELSE DROPZ2

END

NEXT

« PIXON » « PIXOFF »

IFTE

step STEP

PICTURE

Example Programs

Extract segment endpoints

Calculate midpoint

Loop for each equation

Test inequality, accumulate
into number on stack

Draw segment if true for
all equations
Otherwise discard points

End ofsegment loop

Restore status pixel
End ofplot loop
Display PICT

115

Brownian Motion
The Scottish biologist Robert Brown (1773-1858) first observed that
tiny particles in a liquid suspension make small, erratic movements.
This motion (later dubbed Brownian Motion) results from motion and
collisions at a molecular level that are proportional to temperature.
Two examples are presented here thatillustrate Brownian motion.

A Brownian Line. Brownian motion in one dimension can be
illustrated with a Brownian line. As a line is drawn from left to right, a

random incremental vertical step is taken. Each point P,, along the line

is defined as P,,_;+S*(RAND-.5), where S is a suitable scale factor and

RAND is a random number between 0 and 1.

The line could represent the landscape elevations on a straight line
between two cities. The line could also represent the cumulative
fortunes of two people gambling with each other — “up” motions
represent a win for one player, “down” motions represent a win for the
other player. Sometimes one player will do very well, sometimes very
poorly.

MEAN = -7.1661193341BE-2

mp Ean

- -Ag -

Vora . a

MEAN = -.105426398863

EE a
- aSA Te

EER ,pr
116 Example Programs

Over the long run, the line should hover around the axis. The program
BROWNLN draws the line, uses the statistics matrix YDAT to
accumulate the values, calculates and displays the mean.

BROWNLN 285 Bytes Checksum #AB17h

&«

2

PICT PURGE
{ #0 #0 > PVIEM
(@,-1> PMIN (138,1> PMAX
(8,8) (138,08) LINE

CLZ
a
6 138
FOR x

RAND .5 - .15 * +

DUP Z+
x OVER R=»C PIXON

NEXT DROP
PICT { #8 #0
"MEAN = "
MEAN + 1 *GROB

REPL
{ > PVYIEW

Example Programs

Purge existing PICT
Create and show default PICT
Establish scale (131 pixel width)
Draw axis
Purge existing DAT
Starting value
Loopfrom left to right

Calculate new value. S=.15.
Accumulate new value in DAT
Turn on pixel
End loop, dropfinal value
Coordinatesfor mean

Calculate mean, convert to grob
Place mean into PICT
Show PICT, waitfor CANCEL

117

A Random Walk. Brownian motion in two dimensions can be
illustrated with the classic example of an intoxicated person starting in
the middle of a large parking lot. From a starting position, each step is
taken in a random direction. The distance from the starting position is
proportional to the square root of the number steps taken multiplied by
the step size.

To calculate the position of step n in Cartesian coordinates, generate a
random number d between 0 and 360. Then:

X,=X,_1+COS(d) Y,=Y,_;+SIN(d)

RANWALK 183 Bytes Checksum #1D52h

%
PICT PURGE
{ #8 #0 > PVIEMW
DEG
(=32.3,-15.5> PMIN
(32.95,162 PMAX

a0
a 258
START
RAND 368 *
SWAP OVER SIN +
SWAP COS ROT +

SWAP DUPZ2 R=*C PIXON
NEXT DROPZ
{ > PVIEW
»

Purge existing PICT
Create and show default PICT
Assert degrees mode
Scale PICT

Initial valuesfor X and Y

Loopfor 250 steps
Random direction d
Add sin(d) to Y
Add cos(d) to Y
Turn on pixel
End loop, drop X and Y

Show PICT, waitfor

AT,

118 Example Programs

Entropy
Entropy is a measure of disorder in a system, and must increase over

time as stated by the second law of thermodynamics. An elegant
illustration of thisis the classic picture of a box divided into two halves
by a removable partition. The free expansion of a gas from the left half
across both halves when the partition is removed is a good example of
an irreversible process in which the entropy has increased.

Initial Conditions Final Conditions

The progress of the system can be simulated in the HP 48 graphics
display. Two programs are presented — one shows the proportion of
molecules on each side as a function of time, the other shows the box
itself.

Proportion Over Time. The program ENTROPY plots the
proportion of gases between two sides of a box over time after the
partition has been removed. The horizontal axis will represent time
starting at the left and the vertical axis will show the proportion of
molecules on each side of the box. The initial conditions state that
there are 64 molecules one side of the box. For each time that a
molecule croses the midline of the box the probability Pg_,1 that a

molecule will cross from the right side to the left side is given by
NL/(NL+NRr)*RAND, where N| is the number of molecules on the left

side, NR is the number of molecules on the right side, and RAND

returns a random number between 0 and 1.

For each crossing, the ratio is compared to a new random number
between 0 and 1, and if the random number is greater than the ratio, a
molecule is said to move from rightto left.

Example Programs 119

ENTROPY 247 Bytes Checksum #62EBh

&
PICT PURGE
{ #6d #6d > PVIENW
(8,12 PMIN
(138,64) PMAX
(8,32> (138,32 LINE

64
8 130
FOR x
RAND OVER 64 ~
IF <
THEN 1 =
ELSE 1 +
END
x OVER R»C PIXON

NEXT DROP
{ > PVIEW
»

120

Purge existing PICT
Create and show default PICT
Scale PICT

Draw midline
Initial number ofmolecules on left
Loopfor 130 crossings

Calculate left/right ratio
If ratio is less than random number
Then one molecule moves right
Otherwise one molecule moves left

Show proportion
Loop end, dropfinal value
Display PICT, waitfor CANCEL

NA

ay
Aan

Example Programs

Gas Simulation. The program FREXP sets up the initial conditions
for the experiment. The program begins by drawing 80 molecules,
beeping, and waiting for a key:

Now begin the experiment by pressing a key. The molecules will begin
to move from one side to the other. The program runs until you press a
key.

The WHILE loop in the program continues until a key is pressed.
During this time, the state of the system is represented by lists of
molecule coordinates for the left and right sides of the box in stack
levels 3 and 2, and the count of molecules on the left side in level 1.

Example Programs 121

FREXP 723.5 Bytes Checksum #3DC1h

&

88 PICT RCL # n pictsav

%

#131d #64d BLANK PICT STO

{ #8d #6d > PVYIEN

{ #0d #6d > { #1368d #63d > BOX

{ #65d #68d > { #65d #63d > LIHE

1 n START

RAND 63 * 1 + R3B

RAND 68 * 1 + R3B

2 »LIST DUP PIXON

MEXT n 2LIST

448 .1 BEEP 8 WAIT DROP

{ #63d #26d > { #65d #43d > TLINE
{In

WHILE KEY NOT
REPERT
IF DUP n ~ RAND >
THEN

1 - 3 PICK 1 GET PIXOFF
RAND 63 * 66 + R»B
RAND 68 * 1 + R»B
2 3LIST DUP PIXON
ROT SWAP 1 =»LIST + SWAP
ROT 2 OVER SIZE SUB 3 ROLLD
ELSE

1 + SWAP DUP 1 GET PIXOFF
2 OYER SIZE SUB SWAP ROT
RAND 63 * 1 + R»B
RAND 68 * 1 + R»B
2 2LIST DUP PIXON
1 »LIST + 3 ROLLD

END
END
4 DROPH TEXT pictsav PICT STO

»
»

122

Save PICT

Blank PICT
Show PICT
Draw box
Partition
Setup molecules
X coordinate
Y coordinate
Turn on pixel
Left list created
Waitfor key

Open partition
Rightlist, left count
Run until key hit

If left—right

Turn offpixel
Create new location

Turn on new pixel
Store in right list
Subtractfrom left
Otherwise right—left
Turn offpixel
Subtractfrom right
Create new location

Turn on new pixel
Add to left list

Clean up

Example Programs

Chaos
In the Brownian line example, we observed a system which is fairly
predictable — the results of successive iterations over time live in a
known range. There are functions whose domain and range live in the

same finite interval whose behavior is sensitive to initial conditions.

Sensitivity to initial conditions can be defined by stating that within the
domain of a function f the difference between f(x) and f(x+A) after n
iterations exceeds some critereon €.

Sensitivity to initial conditions can be illustrated with the baker’s
function B:

2x for 0<x <5

2x—1 for .5<x<1
B(x) =

Plotting the Baker’s Function. The program BAKER plots
successive iterates of B from left to right on a vertical scale from O to 1.
The following plots illustrate that the behavior of the baker’s function
can be periodic or apparantly random, depending on the initial value.

BAKER'S FUNCTION

INITIAL VALUE= .2

BAKER'S FUNCTION
~

: - . . .’ . ’

INITIAL VALUE= .0311

There is a hazard to putting too much faith in the plots for a large
number of iterates. For instance, an initial value of 1/3 yields the
sequence 2/3, 1/3, 2/3, 1/3, etc. Rounding errors can yield problems as
illustrated on the next page.

Example Programs 123

BAKER'S FUNCTION

INITIAL VALUE= .333333333333
BAKER 454.5 Bytes Checksum #304Fh

&
PICT PURGE
{ #8d #6d > PVYIEW
(1,-.15> PMIN
(131,1.15> PMAX
PICT { #34d #8d
"BAKER'S FUNCTION"
1 »GROB

REPL
{ #0d #6d > { #1368d #6d >
LINE
{ #0d #57d >
{ #1368d #57d > LINE
PICT { #8d #59d >
"INITIAL VALUE= "
4 PICK +

1 »GROB

REPL
1 131 FOR n
IF DUP .5 £
THEN 2 *

ELSE 2 * 1 -
END
n OVER R=C PIXON
NEXT DROP
{ ¥ PVIENW

»

124

Purge existing PICT
Create and show default PICT
Scale PICT

Create title grob
Display title
Coordinatesfor top line
Draw top line

Draw bottom line
Coordinatesfor value

Create value grob
Display value grob
Loopfor 131 iterations
Baker'sfunction

Display pixel
End loop, drop final value
Show PICT, waitfor CANCEL

Example Programs

Comparing Iterates of Baker’s Function. To illustrate the
sensitivity of initial conditions, use the program BAKDIFF. Starting
with two initial values x and y, B(x) and B(y) are computed at each
iterate n, and the difference between the iterates is calculated. If the

difference exceeds the value ¢, a line is drawn and n is displayed. The
value for € is defined as .5 and stored in local variable €.

Use BAKDIFF to compare the iterates of x=.222 and y=.2221:

d= .gdé ¥= .2ddl

 A tee, ele : as : =

MN: 14m i" in
Sometimes the differences do not exceed your critereon for g, but you
still can’t reliably predict a value for B,(y) based on B(x):

f= _.001 ¥= .002

m u
s
.

i
n
|
.
”

Example Programs 125

BAKDIFF 706 Bytes Checksum #2B3Fh

&
PICT PURGE
{ #06d #8d > PVYIEW
(ly,-.15> PMIN
(131,1.13> PMAX
&

IF DUP .5 £
THEN 2 *

ELSE 2 # 1 -
END

»

«J
+ x yy baker €
&

{ #8d #6d

{ #1368d #6d > LINE

PICT { #8d #6d >
N= 0 oy 4

n Y= n + y +

1 »GROB

REPL

{ #8d #57d >

{ #136d #57d > LINE

PICT { #8d #59d
Ne= n E +

1 +GROB

REPL

1 CF

1 131

FOR n

Xx baker EVAL

DUP 'x' STO

g baker EVAL

DUP 'y' STO

- ABS

n OVER R»C PIXON

126

Purge existing PICT
Create and show default PICT
Scale PICT

Baker'sfunction

Valuefor ¢

Draw top line

Coordinates forinitial values
Build initial value string

Convert to grob
Display value grob

Draw bottom line
Coordinatesfor €
Build € string
Convert to grob
Display €
Useflag 1 for line control

Loopfor 131 iterations
Calculate B(x)
Store new valuefor x
Calculate B(y)
Store new valuefor y
Calculate difference
Display difference

Example Programs

IF 1 FC? Ifno line has been drawn
THEN Then check against €
IF € >

THEN

n 8 R*C n 1 R3C TLINE Draw line if € exceeded
1 SF Set controlflag
PICT { #188d #59d Coordinatesfor n
"M: "n+ Build string for n
1 »GROB REPL Convert to grob and display n

END
ELSE DROP Discard difference if line drawn
END
NEXT End of iteration loop
£ > PVYIEMW Display PICT, waitfor

*
1 CF Clear controlflag

»

Chaotic Orbits. A model of a particle in a chaotic orbit may be
easily programmed on the HP 48. The HP 48 program ORBIT was
inspired by the program MIRA in the book Fractals by Hans Lauwerier
(cited in the acknowledgments). The successive iterates are calculated

by:

Xpy1 = Yn — F(x)

Yn+l = —bx, + F(x,41)

where:

2(1-a)x ?
F(x)=ax+ 7

1+ x

The value for a controls the chaotic behavior (orbits are stable when a
is 1). The value of b controls the spiral nature of the orbit. If b is just
slightly less than 1, the orbit spirals inward.

Ordinarily one might expect that the display of the HP 48 is too small
to yield interesting pictures from chaotic functions, but careful selection
of initial conditions and scaling parameters can yield many interesting
pictures.

Example Programs 127

ORBIT takes the number of iterates rn, initial values for a and b, the
starting position x and y, and scaling coordinates from an input form.

ORBIT 528.5 Bytes Checksum #8A6Eh

&
"ORBIT PARAMETERS"
{ "ITERRTES: n { 3 "A" "Bs: n ns u "ya n

"PMIM:" "PMAX:" > { 28 2
{800604 (8,8 (8,8) > DUP
IF INFORM

THEN
OBJ» DROP
PICT PURGE

{ #68d #6d > PVYIEW

PMAX PMIN

2 5 PICK 2 ¥ —-

3 PICK S@ DUP

3 PICK *

T PICK 6 PICK * +

SWAP 1 + # B

*abxycuwz

&

8 SWAP

FOR n x

IF n 18 >

THEN DUP y R3C PIXON

END

'z' STO
by=*w+

DUP 'x' STO

a OYER * SHWAP S@

DUP c #* SWAP 1 + ~ +

DUP 'w' STO

z —- 'y' STO

NEXT
»

{ > PVIEW

END
»

128

Purge existing PICT
Create and show default PICT
Scale PICT
Calculate intermediate value
Calculate inital valuefor w

Create local variables

Loopfor n iterations

Plot only after 1st 10 points
Set pixel at (x,y)

Save old x in z

Calculate new x

Calculate new w

Complete new valuefor y
Save y

Show PICT, waitfor

Example Programs

To get acquainted with ORBIT, begin with a somewhat stable orbit:

n a b x vy PMIN PMAX
700 95 1 75 (=25.-10) (27,10)

 O

The value of a controls the chaotic behaviour of the orbit. Reduce a to
see its effect on the orbit and adjust the scale to keep the picture large:

n a b X y PMIN PMAX
700 9 1 0 [75] (20-8) (22,8)

TN5 2
A 2
2. 5
Lome

Now reduce b very slightly to make the orbit spiral inward:

n

2200

b Xx y PMIN PMAX
998 0 7.5 (20,8) (22.8)

 ©

Example Programs 129

Now try something completely different:

n a b X y PMIN PMAX

600 -4 .99 4 0 (=12,-10) (13,10)

Joe A
Mere£5in

heVEEL] .
FSR

“id (hY r

or.

n a b X y PMIN PMAX

900 -48 .935 4.1 0 (=11,-10) (14,7)

Here’s some more to try. Remember that very small variations in
initial conditions can result in dramatic changes to the orbit. For

instance, try the second example in the table below with values for a of
-.24,-.25, and -.26.

Chaotic Orbits
n a b X y PMIN PMAX

500] -05 985 [98] 0 13-1) (17,11)
1000] -24 998 3 0 12-100 (14,10)
1000] 2 1 11 o (20-16) (22,17)
400] 3 1 0 (35-19) (35,19)
500] 4 1 0 5 13-8) (16,8)

130 Example Programs

Fractal Trees
The program TREE draws a fractal tree in PICT. This program was

adapted from a program written by Carlos Talbot. The use of global
variables for subroutines was changed to use local variables, and an
INFORM command is used to obtain the plot parameters. The program

parameters are maintained after the tree is drawn so you can remember
the parameters used or change one to see how the tree is affected.

There are six parameters to TREE.

Left ot

Right a

Left £

Right Z

Height

Levels

A number from 1 to 5 that controls the length of left
branches.

A number from 1 to 5 that controls the length of right
branches.

Controls the angle of left branches — larger angles produce
greater curvature.

Controls the angle of right branches.

The height of the tree trunk in pixels.

The number of recursion levels. It’s best to start out with a

small number to see how the tree begins to appear, then add
additional levels “to taste”.

The tree below was drawn with the following parameters:

Left a Right a Left £ Right £ Height Levels

2.0 2.2 24 26 12 6

Example Programs 131

Here’s some more sample trees to “grow” in your HP 48 display:

Fractal Tree Samples

Lefta Righta Left £ Right £ Height Levels

2.0 .00001 55 0 35 10
1.2 1.2 90 90 30 7
3.0 3.0 33 33 13 9
2.0 2.2 20 28 12 10

The program TREE has three small “subroutines” stored in the local
variables «Dline, «Point, and «Generate. These subroutines share

data with the main program via the stack and compiled local variables.

TREE 2112 Bytes Checksum #6A4h

&«

CLLCD
{8B0BBO
WHILE
"FRACTAL TREE"
{
{ "LEFT «:" "ENTER LEFT «" 8 2
{ "RIGHT «:" "ENTER RIGHT «" 8 X
{ "LEFT «£:" "ENTER LEFT «" 8 >
{ "RIGHT «:" "ENTER RIGHT «" 8 3
{ "HEIGHT:" "ENTER TRUNK HEIGHT" @ 32
{ "LEVELS:" "ENTER RECURSION LEVELS" @
3
{22%
4 ROLL DUP INFORM

REPEAT
DUP 0BJ+ DROP

€ @ «Dline

&

65 ROT + R*B 32 ROT - R*B 2 2LIST
ROT 65 + R3B 32 4 ROLL —- R*B 2 »LIST
LINE

®

132 Example Programs

4 @ «Point

+ x1 yl x2 y2

&

IF 'x2-x1==08"

THEN

IF 'y2>yl'

THEN 98 ELSE 278

END

ELSE

y2 yl - x2 x1 - ~ ATAN
9T7.2957795131 *

END

IF 'x1>x2' THEN 186 +

END

*®

3

€ @ «Generate

B08 + xy height angle level x1 yl

€

x '€turtx' STO

y '€turty' STO

height '<¢turtr' STO

'eturtx' €turtt 1.74532925199E-2 *

COS ¢turtr * STO+

'¢turty' €turtt 1.74532925199E-2 *

SIN €turtr ¥ STO+

«turtx 'x1' STO

«turty 'yl' STO

‘level’ 1 STO-

xy x1 yl ¢«Dline EYAL

IF 'level>@'

THEN

Xx y x1 yl «Point EVAL '€turtt' STO

'¢turtt' €1fang STO+

«turtx €turty €lhf

height * €1fang

level «Generate EVAL

x y x1 yl ¢«Point EVAL '<¢turtt' STO

'¢turtt' €rtang NEG STO+

x1 yl €lhf height ¥ €¢rtang

level «Generate EVAL

END

*

*

Example Programs 133

HBB BBE BA\B -300 08 RCLF
>

€«lfalp ¢rtalp €1fang €rtang

height level

¢Dline €Point €Generate

cturtt €turtr €turtx €turty

€lhf €rhf x y x1 yl flags

&

-3 SF RAD

131d # 64d BLANK PICT STO

{ #06d # 8d > PVIENW

'e€lhf=2"(-2/(3%¢1falp))' DEFINE

'erhf=27(-2-(3*¢rtalpd)' DEFINE

Xx J xl gy ¢height + €Dline EVAL

®¥x uy xl gy ¢height + ¢Point EVAL

'¢turtt' STO

'¢turtt' €lfang STO+

¥1 gy ¢height + €l1hf ¢height *

€lfang level ¢Generate EVAL

¥x uu xl gy ¢height + «Point EVAL

'‘¢«turtt' STO

'¢turtt' €rtang MHEG STO+

Xl y ¢height + €rhf €¢height *

¢«rtang level ¢Generate EVAL

{ > PVIEW

flags STOF

*

*» EVAL

END

*

134 Example Programs

Julia Sets
To display Julia sets the program JULIA calculates a non-attracting
fixed point zy for a starting position, then calculates preimages of the

function f.(z)=z2+c. The fixed point is calculated by first examining

I +4/1- 4c|. If this value is greater than I, then the fixed point is

I1-+1-4c¢ 1+4/1-4c
z, =——— otherwise z, =

2 2
The preimages of z, are+4/z,,, -c . As the program iterates, the

preimages are randomly selected, and the resulting image shows points
on the Julia set. This calculation method has the advantage of being
small and reasonably efficient, and so is well suited to the HP 48, but
you may notice differences with pictures resulting from other methods.

JULIA 206 Bytes Checksum #B5B9h

n (X,Y) XminsYmin) Xmax>Ymax) —

&
PICT PURGE Purge existing PICT
{ #8 #0 > PVIEW Show PICT
PMAX PMIN Scale PICT
nc
&

lcd*x-J01+ Calculate zg

DUP IF ABS 1 £
THEN 2 - NEG
END 2 ~
1 n START Loop for n iterations
c-4J Calculate preimage
IF RAND .5 < THEN MEG END Randomly use —preimage
DUP DUP PIXON Show new point and
MEG PIXON its mirror image
HEXT DROP
{ > PVYIEW Show PICT, waitfor CANCEL)
#

®

Idea: Modify this program to use INFORM.

Example Programs 135

Some examples:

136

n Cc PMIN PMAX

750 (=.75,0) (=1.6,-1) (1.5,1)

tL

An ro , ~~,

Sa a
ar
14

n c PMIN PMAX

400 (.11,.66) (=3.5,-1.25) (3.5,1.25)

EET

Wt

fi

n Cc PMIN PMAX

150 (2,00 [(=2.75-1.25)] (2.75,1.25)

[0
Lo
Na

Example Programs

The Mandelbrot Set
The Mandebrot set is the set of complex numbers c¢ in the complex
plane for which the sequence z;,;1=zn2+c is bounded. The HP 48 is not

well-suited to displaying the Mandelbrot set, but a crude approximation
can be created with the program MANDEL. There are many

algorithms for this problem. In MANDEL, the bound is calculated as

1+/T+4[c]
2

and 15 iterations are taken to test whether the sequence remains within
the calcuated bound. Since the Mandelbrot set is symmetric around the
x axis, the upper half of the plot is calculated and the points are
reflected below the axis. To speed up the process, a line from (—1.95,0)
to (-.12,.99) is used as the left boundary for iterates in x. The
equation xjef=(y—1.0655)/.5464 defines the left border for each row of

values to be calculated. The program can run for up to 20 minutes.

To “zoom in” on a small area requires more effort and is considerably
slower, because you can’t take advantage of symmetry about an axis.
A program that will do this is left an an exercise for the user and the
HP 48’s batteries.

Example Programs 137

MANDEL 390 Bytes Checksum #DFFAh

&
PICT PURGE

(-3,-1.2> (1,1.23> PDIM
{ #8d #6d > PVIEW
1 CF Ba .9

FOR y
gy 1.8655 -
FOR x

Xx yy R3C

DUP ABS 4 * 1 + |
1 +27
(8,8) 1 15

FOR n

IF DUP ABS 3 PICK >
THEN 1 SF 99 'n' STO
ELSE SQ 3 PICK +

END
NEXT DROP2
IF 1 FC?C
THEN

DUP PIXON COMJ PIXON
ELSE DROP
END

. 83853 STEP
. 83796 STEP
{ ¥ PVIEW

5464 / .6

>

138

Purge existing PICT
Scale PICT in user units
Display PICT

Initialize signalflag; loop 0-.96

Calculate rangefor loop

Generate c

Calculate bound

20
18 iterations
Ifbound exceeded

Then setflag, terminate loop
Else calculate nextiterate

Discard iterate, bound

Ifbound was exceeded

Set pixels

Show PICT, waitfor CANCEL

Example Programs

System Programming

This chapter provides a limited introduction to the potential benefits of

using some of the underlying system resources in your programs. It is
beyond the scope of this handbook to present a complete description of
all the resources available. Additional documentation and internal
development tools are provided by both Hewlett-Packard and other
third-party vendors. The Hewlett-Packard bulletin board (listed in the
HP 48 User’s Guide) is one place to find further information.

User-RPL vs. System-RPL
The kernel of the HP 48 operating system/language known as RPL has
been written in assembly language, and much of the functionality in the
HP 48 is implemented in what is sometimes called “System-RPL”.
Programs entered from the keyboard of the HP 48 are written in whatis
sometimes called “User-RPL”.

<< User-RPL >>

/ Protection \

:: System-RPL ;

/ Assembly Language Kernel \

Programs written in User-RPL and System-RPL share the same
resources, stack, etc. The commands available in User-RPL represent a
subset of the functionality available in System-RPL.

From a practical point of view there are three main distinctions between
User-RPL and System-RPL. First, User-RPL commands have names

that are recognized when you enter them into the command line,

System Programming 139

whereas System-RPL objects must be accessed via the SYSEVAL
command. Second, User-RPL commands have extra code responsible
for validating input arguments (and thus require a bit of extra execution
time), whereas programs written in System-RPL have no error
protection. This layer of protection insures that invalid input arguments
do not result in undesirable behavior by underlying code. Finally, there
are more resources available to System-RPL programs.

SYSEVAL & Version Identification
The command SYSEVAL is the “doorway” to System-RPL objects.
This command accepts a memory address formed as a user binary
integer and evaluates the object at that address. If the address is
incorrect, the HP 48 will likely “hang up” or lose memory. As you
experiment with System-RPL objects, you may wish to define user
programs that perform common System-RPL tasks. This chapter
includes an assortment of small user programs to help you along.
Frequent backups of memory are also a good idea.

The HP 48G/GX command VERSION returns the version of the
operating system and a copyright message. To identify the version of
the operating system on any HP 48, use the command SYSEVAL to
execute the internal object VERSTRING. To do this, place the user
binary integer #38794h (the address of VERSTRING) on the stack
and evaluate SYSEVAL. The resultis a string in the form "HPHP48-
A". The last letter represents the version of the operating system. The
following program returns a string in level 2 containing the letter
representing the operating system version, and O in level 1 if the
calculator is a HP 48S/SX or a 1 if the calculator is a HP 48G/GX:

GETVER 54.5 Bytes Checksum #6452h

— “version” T/F |

&
#38794h SYSEVAL Get the version string
8 8 SUB Extract the last character
DUP "J" > Duplicate and compare to “J”

*

140 System Programming

It is important to remember that SYSEVALis a command like any
other, and saves its last argument (if flag —55 is clear), not the

arguments processed by the system object.

The Dangers & Benefits of System-RPL
The danger of supplying improper arguments to a System-RPL object
can be gently illustrated with the multiplication function. In User-RPL
executing the program « 2 "JAMES" #* * results in the error Bad
Argument Type. If you place the arguments 2 “JAMES” on the stack
and execute #2A9BCh SYSEVYAL (the System-RPL object %* for real
number multiplication) you get an unexpected result:
—-1.86918683E16. In this instance the operating system remained
intact — the multiply code actually interpreted the data located at the
string “JAMES” as a number. The usual result for errors resulting from
the improper application of System-RPL objects is the total loss of
memory.

Applications written entirely in System-RPL can achieve greater
performance with a wider set of resources at the risk of being
completely responsible for error trapping. That level of implementation
is beyond the scope of this chapter. However, some applications may
benefit from a limited use of System-RPL objects. In this chapter a
series of objects will be presented which may be viewed as an
additional “toolbox” for your programming efforts.

Assumptions in This Chapter
There are two basic assumptions underlying the examples in this
chapter. First, the HP 48 is in HEX mode (the base mode affects the
display of internal binary integers and checksums), and second, you
have backed up your HP 48.

Fixed Entry Points
There have been many versions of the operating system software for the
HP 48 calculator since its original introduction in 1990. With the
exception of the dramatic changes embodied in the HP 48G and

System Programming 141

HP 48GX models, the operating system has remained fairly stable. In
order to produce a program that is guaranteed to run on all models of
the HP 48, the use of System-RPL objects should be restricted to those
objects whose location has remained stable. Objects reside at a specific
address in memory, often known as an entry point. It should be
obvious that robust programs should be able to run on all versions of
the HP 48. A program that works on only one version of the HP 48

operating system can generate a “Memory Lost” error when distributed
to a wide audience, because there is no guarantee that all users will
have the same version of the operating system. Hewlett-Packard’s list
of fixed entry points represents the only known list of entries that have
not changed since the first version of the HP 48 was introduced. The
objects listed in this chapter are a small subset of that list, and are
intended to expand your programming “toolbox”.

I! WARNING !!
The objects presented in this chapter are not supported by
Hewlett-Packard and must be used carefully. Please do not
contact either Hewlett-Packard or the author for further
technical advice on the use of these objects or other aspects of
System-RPL programming. Neither the author nor Hewlett-
Packard take any responsibility for improper use of system
commands that may result in loss of data or damage to your
calculator.

Examples in this Chapter
The example programs in this chapter are small, and intended to be
“building blocks” for larger applications. Some example programs call
other example programs. The example programs COERCE and
UNCOERCE are called most frequently. When an example program
calls another example program in this book, the program name will be
printed in bold. For instance, the program « 3 + FRED 2 * * calls
the example program FRED. Each program is documented with the its
size in bytes and a checksum value. When you enter the example
program into your HP 48, use the command BYTES to verify that you

142 System Programming

have entered the program correctly. BYTES returns the size of the

program and a checksum, which should match the checksum printed in
this book. The checksum comparison is especially useful for making
sure you’ ve entered addresses of System-RPL objects correctly.

Type Checking. Some example programs in this chapter contain
extra type checking code that is not absolutely required if you never
make mistakes. The program CHKARGS has been included to provide
a general argument checking mechanism. This approach has been
taken to let you experiment with system programming with some
reduced risk. Experienced programmers may wish to remove the type
checking to improve program performance.

Naming Conventions
Some System-RPL objects have names given by Hewlett-Packard that
contain more than 8 characters. Example programs that use System-
RPL objects have been given names that reflect the System-RPL object
being demonstrated where possible. Sample program names have been
chosen to make the programs distinct within the HP 48 VAR menu and
readable in a DOS directory.

Hewlett-Packard uses special symbols to distinguish object types in
names and stack diagrams. Some common symbols are listed below:

Symbol Object Type

Internal binary integer 20
% Real number 0

To% Extended real 21
C% Complex number 1
C%% Extended complex 22

$ String 2
chr Character object 24
hxs User binary integer 10
id Name 6
{} List 5

comp Composite object (list, program, unit, etc.) 5,8,9,13
Program 8

System Programming 143

Checking Arguments
The protection code for User-RPL command and functions validates the
number and type of input arguments. If an application is going to
accept input from an inexperienced user, it may be safer to check the
arguments before they’re supplied to unprotected System-RPL objects.

The program CHKARGS takes a list in level one that contains type
numbers for each required stack argument. The first number in the list
specifies the desired type for the object in stack level 1, the second
number specifies the desired object type for level 2, and so on. For
instance,if a string is required in level 2 and a real numberis required
in level 1, the input to CHKARGS would be the list { 02 }.

For a list of object types and their type numbers, see Object Types.

CHKARGS 151.5 Bytes Checksum 3981h

| obj, ... obj; { type; ... type, } —

&
DUP SIZE + types n
&

IF DEPTH n £ Verify # ofargs
THEN 513 DOERR
END
1 nFOR i Loopfor each argument

i PICK TYPE types i GET Get ob type, req’d ob type
IF # THEN 514 DOERR END Error out if not the same

NEXT
®

*

144 System Programming

Binary Integers
There are a number of object types used by System-RPL objects which
are not available in the User-RPL environment. The most prevalent of

these is the internal binary integer. Internal binary integers (sometimes
nicknamed bints) are unsigned 20-bit quantities that are useful for many
functions. These integers differ from user binary integers, which are
actually stored internally as hex strings. To avoid confusion, this
chapter will use the terms user binary integer and internal binary
integer. While user binary integers (object type 10) are displayed with
a leading # character, internal binary integers (object type 20) are

displayed within <> symbols. A trailing character indicates the base
display mode. For instance, if the base mode of the HP 48 is binary,
then the internal binary integer 5 would be displayed as <181b>.

Internal binary integers live in the range 0 < n < FFFFF. If you subtract
<1h> from <Oh>, you get <FFFFFh> (decimal 1048575). No overflow
or underflow indications are available.

Type Conversions. Internal binary integers cannot be entered
directly into the HP 48, so conversion routines are needed. There are a
number of useful System-RPL objects which convert between real
numbers and internal binary integers. The most basic of these are
COERCE and UNCOERCE. COERCE converts a real number to an
internal binary integer, and UNCOERCE converts an internal binary
integer into a real number.

The HP 48 will not recognize the names COERCE and UNCOERCE —
these are names that Hewlett-Packard gives the routines — so you must
refer to these objects by address. The address of COERCE is
#18CEAN, and the address of UNCOERCE is #18DBFh.

System Programming 145

To begin to experiment with internal binary integers, use the following
two programs, which we’ll name after the internal objects that are used.

COERCE 54 Bytes Checksum #60F4h

X 2 <> |

&
{ 8 ¥ CHKARGS Confirm real number as input

#18CERARh SYSEVAL Convert to internal binary integer
®

UNCOERCE 64 Bytes Checksum #52Ah

<> o> X

&
{ 28 > CHKARGS Confirm internal binary integer as input
#18DBFh SYSEVAL Convert to real number

*

A test has been added in each of these programs to be sure that the
proper object is being converted. You can remove the test later on
when you’re absolutely certain that you’ll never make a mistake.

Now use the program COERCEto convert the real numbers —1, 0, 4.49,
4.5, 5, and 6.75E37 to internal binary integers. Assuming that the
HP 48 is in HEX mode, you should get the following results:

Input Result

-1 <Bh>
<8h>

.49 {4h>
5 <5h>

<{5Sh>
. TS9E37 <FFFFFh>

146 System Programming

Notice that values less than 0 convert to <Oh>, values greater than
1048575 convert to <FFFFFh>, fractional parts < .5 round to the next
lowest integer, and that fractional parts > .5 round to the next highest
integer.

Some System-RPL objects require two internal binary integers as
parameters. The System-RPL object COERCE?2 (address #194F7h) is
useful for converting two real numbers into internal binary integers.
The program COERCE?2usesthis object after checking the arguments.

CRCE2 55.5 Bytes Checksum #F685h

| Xy > <x> <y> |

&
{ 8 8 > CHKARGS Both real numbers?

#194F7Th SYSEVYAL Convert 2 reals to bints
»

The corollary to COERCE2 is UNCOERCE?2 (address #1950Bh),
which converts two internal binary integers into real numbers. The
following program UCRC2 uses this object after checking the
arguments.

UCRC2 71.5 Bytes Checksum #C6Fh

<X> <y> > XY

&
{ 28 28 > CHKARGS Both bints?
#1958Bh SYSEVAL Convert 2 bints to reals

»

System Programming 147

Internal Binary Integer Operations. The following System-RPL
objects operate on a single internal binary integer (bint):

Command Address Description

#1+ #03DEFh Adds <1d> to a bint

#1- #03EOEh Subtracts <1d> from a bint

#2+ #03E2Dh Adds <2d> to a bint

#2— #03E4Eh Subtracts <2d> from a bint

#2* #03E6Fh Multiplies a bint by <2d>
#2/ #03E8Eh Returns FLOOR(bint/2d)
#3+ #6256Ah Adds <3d> to a bint

#3— #625FAh Subtracts <3d> from a bint
#4+ #6257Ah Adds <4d> to a bint

#4— #6260Ah Subtracts <4d> from a bint

#5+ #6258Ah Adds <5d> to a bint
#5— #6261Ah Subtracts <5d> from a bint

#8+ #625BAh Adds <8d> to a bint
#8* #62674h Multiplies a bint by <8d>
#10+ #625DAh Adds <10d> to a bint
#10* #6264Eh Multiplies a bint by <10d>
#12+ #625EAh Adds <12d> to a bint

The following System-RPL objects operate on two internal binary

integers:

Command Address Description

#* #03EC2h Multiplication: returns <bint>
#+ #03DBCh Addition: returns <bint>

#— #03DEOh Subtraction: returns <bint>

#/ #03EF7h Division: returns <remainder>

(level 2) and <quotient> (level 1)
#MAX #624C6h Returns <maximum of two bints>

#MIN #624BAh Returns <minimum of two bints>

148 System Programming

Internal Binary Integer Constants. The following objects place
bints on the stack:

Command Address Stack Output

MINUSONE #6509Eh <FFFFFh>

ZERO #03FEFh <0d>

ONE #03FF9h <1d>
TWO #04003h <2d>

THREE #0400Dh <3d>

FOUR #04017h <4d>

FIVE #04021h <5d>

SIX #0402Bh <6d>

SEVEN #04035h <7d>

EIGHT #0403Fh <8d>
NINE #04049h <9d>

TEN #04053h <10d>

ELEVEN #0405Dh <11d>

TWELVE #04067h <12d>

THIRTEEN #04071h <13d>

FOURTEEN #0407Bh <14d>

FIFTEEN #04085h <15d>

SIXTEEN #0408Fh <16d>

SEVENTEEN #04099h <17d>

EIGHTEEN #040A3h <18d>

NINETEEN #040ADh <19d>

TWENTY #040B7h <20d>

THIRTYTWO #0412Fh <32d>

FORTYEIGHT #64B3Ah <48d>

FIFTYFIVE #64B80h <55d>

FIFTYSIX #64B8Ah <56d>

FIFTYSEVEN #64B94h <57d>

SIXTYTWO #64BC6h <62d>

SIXTYTHREE #64BDOh <63d>

SIXTYFOUR #64BDAh <64d>

BINT_131d #64D24h <131d>

BINT255d #64E28h <255d>

ZEROZERO #641FCh <0> <0>

ONEONE #63AC4h <I> <I>

System Programming 149

Character Constants
A character constant is an internal object type that represents a single
character. A character objectis a distinct object type (object type 24),
not a one character string. The HP 48 displays the word Character
when a character object is on the stack. The following System-RPL
objects are available for conversion between character and other object
types:

Command Address Description

#>CHR #05A75h Converts a bint to a character
CHR># #05A51h Converts a character to a bint
CHR>$ #6475Ch Converts a character object to a 1

characterstring object

The program TOCHR creates a character object specified by a real
number. TOCHR calls the program COERCE to create an internal
binary integer, then uses the object #>CHR to create the character.

TOCHR 44.5 Bytes Checksum #3BFEh

Xx — chr_x |

&

COERCE Convert the real number to a bint

#5ATSh SYSEVAL Convert the bint to a character object
»

The #>CHR conversion uses only the lower 8 bits of the 20 bit binary
integer argument. The lower 8 bits of 999 are 11100111, so if you
supply 999 as the input argument to TOCHR, you get the character
whose number is 231 decimal. This conversion is most useful when
you already have an internal binary integer on the stack — otherwise the
User-RPL command CHR worksjust fine.

150 System Programming

Character Strings
A number of System-RPL objects are available for manipulating
character strings (object type 2). There is no error checking for these
objects, so it may be possible to specify an operation that extends
beyond the boundary of a string, or returns a meaningless result.

Converting Between Name Objects and Strings. The objects
ID>$ and $>ID may be used to convert between a name object (object
type 6, internally known as an identifier, or an id) and a string. For
example, the sequence « "FRED" #5B15h SYSEVAL * returns the
name object ‘FRED’.

$>ID #05B 15h
Converts string to name object

“string” — ‘name’

ID>$ #05BESh
Converts name object to a string

‘name’ — ‘‘string”

Converting Objects to Strings. The User-RPL command —-STR
converts a real number to a string in the current display format. If you
want to convert the number to a string using the STD or stack display
formats, the objects EDITDECOMPS$ and a%>$,are useful.

EDITDECOMP$ #15B13h
Converts an object to a string in a format suitable for editing in the
command line.

object — “string”

a%>$, #162ACh
Converts a real number to a string (with commas if format is FIX)

% — “string”

System Programming 151

Adding Character Objects to a String. The objects >H$ and >T$
may be used to add a character objectto the head (>HS$) ortail (>T$) of
a string.

>H$ #0525Bh
Adds a character objectto the head ofa string

“string” chr — “string”

>T$ #052EEh
Adds a character object to the tail of a string

“string” chr — “string”

Given a string in level 2 and real number that specifies a character in
level 1, the User-RPL program to add the character to the string would
be « CHR + ®». This same task can be performed with the System-
RPL objects COERCE, #>CHR, and >T$ (proving that User-RPL is

sometimes the more efficient tool):

ADDCHR 87.5 Bytes Checksum #E953h

“string” x — “stringchr_x |

&
{ 8 2 ¥ CHKARGS Confirm string and real number
#18CERh SYSEVYAL Convert the real number to a bint
#SATSh SYSEVYAL Convert the bint to a character object
#52EEh SYSEVAL Add the character to the end ofthe string

»

Creating a String of Blank Characters. The object Blank$ may
be used to create a string of space (character code 32) characters.

Blank$ #45676h
Creates a string of n spaces

<n> — “string”

152 System Programming

The program SPACES takes as input a real number in level 1 and
returns a string containing the specified number of spaces:

SPACES 45.5 Bytes Checksum #36DFh

Xx — “string” |

&
COERCE Convert the real number to a bint
#45676h SYSEVAL Create the string

»

Retrieving Messages. Messages can be retrieved from the built-in
message table with the object JtGETTHEMSG. If a localized message
table has been installed in the HP 48 the localized message will be
returned. Messages built into the HP 48 are listed in Messages.

JstGETTHEMSG #04D87h
Returns a message from the message table

<bint> — “string”
The program GETMSG takes as input a real number and returns the

corresponding message:

GETMSG 45.5 Bytes Checksum #DB2Fh

X — “string” |

&

COERCE Convert the real number to a bint

#4D87h SYSEVAL Get the message string
»

Example: 3095 GETMSGreturns the string “Invalid Name”.

System Programming 153

Searching Strings. The objects POS$ and POSSREYV provide more
control over string searches than is available with the User-RPL
command POS.

POS$ #645B 1h
Searches for $find in $search starting at pos (1 < pos < string length).
Returns <0> for unsuccessful search.

$search $find <pos> — <pos> or <0>

POS$REV #645BDh
Searches for $find in $search starting at pos (1 < pos < string length)
and searching backwards. Returns <0> for unsuccessful search.

$search $find <pos> — <pos> or <0>

The program NXTSTR uses the object POS$ to look for the instance of
a find string (in level 2) within a search string in level 3. The starting
position is given in level 1. If the search is unsuccessful, O is returned.

NXTSTR 90 Bytes Checksum #941Ch

| “search” “find” start — position |

&
{ 8 22 > CHKARGS Check arguments
#18CERARh SYSEVAL Convert the starting position to a bint
#645B1h SYSEVAL Perform the search
#18DBFh SYSEVAL Convert the result into a real number

#

Example: The sequence « "12341256127" "12" 3 HXTSTR *

EVAL returns the result 5.

154 System Programming

To illustrate reverse string searching, the program LSTSTR uses the
object POS$REV. The arguments are the search string in level 2 and
the string to find in level 1. The position is returned as a real number,
which is 0 if the find string is not found.

LSTSTR 92.5 Bytes Checksum #7563h

“search” “find” — position

%
{ 2 2 > CHKARGS Check arguments
OVER SIZE
#18CEAh SYSEVAL Length of the search string as a bint
#645BDh SYSEVAL Perform the search
#18DBFh SYSEVAL Convert the result into a real number

»

Example: The sequence « "123412561278" "12" LSTSTR »

EVAL returns the result 9.

Finding Character Codes. The object SUB$1# is useful for finding
the character code of an arbitrary character in a string. In User-RPL, a
program to do this given a string in level 2 and a real numberin level 1
would be « DUP SUB HUM *. If the result needs to be a bint, it’s
much more efficient to use SUB$1#, which is fast and avoids the

creation of a substring in temporary memory.

SUBS 1# #30805h
Returns the bint value of the specified character in a string

“string” <pos> — <value>

System Programming 155

Parsing a String. The object palparse performs the same parsing
action as the [ENTER] key. This object returns either the object
represented by the string and the internal flag TRUE, or the string,
position of the error, remainder of the string, and the internal flag
FALSE.

palparse #238A4h
Parses string into an object. Returns TRUEif the string represents a
valid object, or the position of the error, remaining string, and
FALSE.

“string” — object TRUE
or: “string” — “string” <pos> string’ FALSE

The object palparse is useful for instances when a string needs to be
parsed and the output should not be evaluated. For instance, you might
want to place the command + on the stack. Parsing the string “+” is
one way to accomplish this. The program PARSE simplifies the use of
palparse. A string is supplied, and the result in level 1 is O if the
parsing was unsuccessful, or 1 if the string was valid. If the result is 1,
the object is returned in level 2. This program uses the System-RPL

object COERCEFLAG" (address #5380E), which is described in Tests.

PARSE 108.5 Bytes Checksum #CCBCh

“string” — object 1 Successful

 “string” — 0 Failed

&
{ 2 3} CHKARGS Verify string input
#238RA4 SYSEVYAL Attempt to parse the string
IF « #5380BE SYSEVYAL » EVAL Convert the flag to 0 or 1
THEN 1 Return ob and 1 if OK
ELSE 3 DROPHN 8 Else return 0
END

»

* An extra program shell is required around COERCEFLAG to make
the program work, since COERCEFLAG does an implied *.

156 System Programming

Real and Extended Real Numbers
Internal calculations involving real numbers (object type 0) are
performed using extended real numbers (object type 21) to maximize

the precision of calculations. A real number consists of a sign, 12 digit
mantissa, and 3 digit exponent. An extended real number consists of a
sign, 15 digit mantissa, and 5 digit exponent. Exponents are stored in
10s complement form. Real exponents live in the domain —-500 < EEE
< 500, and extended real exponents live in the domain —50000 <
EEEEE < 50000.

When an extended real numberis on the stack, the HP 48 displays the
words Long Real.

The naming convention for System-RPL objects uses % to denote a real
number and %% to denote an extended real number. Object
descriptions in this chapter use the same notation.

Real Number Conversions. Sometimes it’s desirable to maintain
intermediate results of a long calculation as extended reals to minimize
roundoff errors. The following System-RPL objects are used to convert
between real and extended real numbers:

0>%Yo #2AS5C1h

Converts a real number to an extended real number

DP — 9%

90Yo>% #2AS5BOh

Converts an extended real number to a real number

%% —

2%>%% #2B45Ch

Converts two real numbers to extended real numbers

Do % — D% %%

2%%0>% #2B470h

Converts two extended real numbers to real numbers

%% 990% — % %

System Programming 157

The following two programs are useful for frequent conversions
between real numbers and extended real numbers. RTOER converts a
real number to an extended real number; ERTOR performs the reverse
conversion.

RTOER 53 Bytes Checksum #2D11h

% — %% |

&

{ 8 > CHKARGS Is this a real number?

#2ASC1h SYSEVAL Convert to extended real number

»

ERTOR 61 Bytes Checksum #E144h

%% — % |

4

{ 21 > CHKARGS Is this an extended real number?

#2ASBBh SYSEVAL Convert to real number
¥

Some System-RPL objects require two extended real numbers as
parameters. The System-RPL command 2%>%% (address #2B45Ch)
is useful for converting two real numbers into extended real numbers.
The program RTOE?2uses this command after checking the arguments.

RTOE2 55.5 Bytes Checksum #7783h

% %o — %% %%

&

{ 8 8 > CHKARGS Both real numbers?
#2B45Ch SYSEVYAL Convert 2 reals to extended

* real numbers

158 System Programming

The corollary to 2%>%% is 2%%>% (address #2B470h), which
converts two extended real numbers into real numbers. The program
ETOR?2usesthis object after checking the arguments.

ETOR2 71.5 Bytes Checksum #A5BDh

%% %% — Po %

&

{ 21 21 > CHKRRGS Both extended reals?
#2B47Bh SYSEVAL Convert 2 extended real

* numbers to reals

Extended Real Functions. The following objects operate on
extended real numbers:

To %0+ #2A943h
Adds two extended real numbers

%% 0% —> %%

ToJo— #2A94Fh
Subtracts two extended real numbers

%% J0% — %%

Poo* #2A99Ah
Multiplies two extended real numbers

%% G0% —> %%

Too! #2A9E8h
Divides two extended real numbers

%% Jo% — J%

%Po" #2AASFh

Raises extended real in level 2 to power of extended realin level 1
To% DP — Y%

%%ABS #2A8FOh
Absolute value of an extended real number

D%% — 9%

%%ANGLE #2AD4Fh
Angle from rectangular coordinates

Jo%x Yo%y — Yo%angle

System Programming 159

%%CHS #2A910h
Change sign

9% — %%

%9%COS #2AC57h
Cosine

%% — J%

%%COSH #2ADC7h
Hyperbolic cosine

Jo% — %%

9%%EXP #2AB1Ch
enx

%% — %%

%%FLOOR #2AF9%h
Returns greatest integer <= x

%% — Jo%

%%H>HMS #2AF27h
Converts decimal hours to HH.MMSS form

%% — %%%

%9%LN #2ABS5Bh
Natural log

%% — J%

%%1L.NP1 #2AB9%4h
In(x+1)

%% — J%

JMAX #2A6DCh
Returns larger of two numbers

%% Yo% — %%

%%SIN #2ACO06h
Sine

%% — J%

%%SINH #2AD95h
Hyperbolic sine

9% — %%

160 System Programming

%%SQRT #2AAEAh
Square root

%% — %%

%%TANRAD #2ACAS8h
Tangent using radians

 %% — J%

Rectangular/Polar Conversions. The following objects convert
between rectangular and polar coordinates using the current angle
mode:

%REC>%POL #2B48Eh
Real number rectangular to polar conversion

J%x Py — radius %angle

%POL>%REC #2B4BBh
Real number polar to rectangular conversion

%radius %angle — %x %y

%%R>P #2B498h
Extended real number rectangular to polar conversion

J%%x %%y — Jo%radius %%angle

%%0P>R #2B4C5h
Extended real number polar to rectangular conversion

Jo%radius %%angle — %%x %%y

System Programming 161

Example: Log to an Arbitrary Base. The common logarithm
(LOG) and natural logarithm (LN) functions are built into the HP 48,
but logs to other bases must be calculated, and the process often
introduces small roundoff errors. To calculate a log to the base a, use

the rule LOG,b = LOG(b)/LOG(a).

To demonstrate the the effect of roundoff errors, calculate 234, which
yields 17,179,869,184. Suppose you wish to reverse the process and
ask “What power of 2 is this?” Apply the rule above using both the
LOG and LN functions. Press: [ENTER](LOG](2)(LOG)(=)(SWAPJ[LN)(2)
[LN])(=). The answer should be 34, but notice that neither LOG or LN
got the right answer.

The program LOGB performs the calculation using extended real
numbers. LOGB requires the number in level two and the base in
level 1.

LOGB 87 Bytes Checksum #60C3h

x n => log,(x)

&
RTOE2 Convert reals to extended reals
#2ABSBh SYSEVAL Take the log of the base
SWAP
#2ABSBh SYSEVAL Take the log of the number
SWAP
#2A9ESh SYSEVYAL Divide
ERTOR Convert result to real number

»

162 System Programming

Displaying Extended Reals. When an extended real number is on
the stack, the HP 48 displays the words Long Real. If you wish to

examine the digits in the extended real number, you need a tool to
perform a conversion. Several small utility programs are presented
here to facilitate the use and display of extended real numbers:

MKERTOA Creates the program ERTOA.

ERTOA Converts an extended real number object to a string
object showing all the digits.

DSPER Displays stack levels 1 and 2 in the status area of the
display using the small graphics font.

ERCALC A custom menu for extended real calculations.

The program ERTOA may be used to display the digits in an extended
real number. The technique used is to execute an assembly language
code object that reads the data in the body of an extended real object
and writes the appropriate characters to the body of a new string object.

Since ERTOA cannot be entered from the keyboard the program
MKERTOA (shown on the next page) is used to create ERTOA. Enter
the program MKERTOA,verify its checksum, then execute it to create
ERTOA. Once ERTOA has been created, you can use it to see all the
digits in an extended real number.

Example: Display the extended real square root of 3:

« 3 RTOER #2ARERh SYSEVYAL ERTOA »
—-

"1.7328508875688TE+B0BBR"

Notice that the string is too wide to fit completely in the display. The
program DSPER (listed on the page after MKERTOA) can be used to
display the contents of stack levels 1 and 2 as graphics objects on the
stack display. By using the small graphics font, DSPER can easily
display an extended real number.

System Programming 163

MKERTOA uses the System-RPL objects CHANGETYPE,
INNERCOMP and ::N to build the program. These are described in
Composite Objects.

WARNING
Please verify the checksum of MKERTOA before you useit.
If any of the numbers are incorrect, the code object that gets
created will be incorrect, and will corrupt memory when used.

MKERTOA 1619.5 Bytes Checksum #EE15h

&
2808 8 78 18 65 6 125 47 142 165 246 168 24 23
29 65 158 166 138 46 167 234 4 19 65 132 24 65
132 24 64 143 80 23 29 65 45 19 2 20 81 113 212
16 32 214 137 66 80 2 180 48 17 23 29 65 69 19
234 95 186 23 29 65 150 166 138 46 168 24 126
168 209 51 113 61 81 158 166 138 46 8 51 94 163
1 48 24 23 29 65 45 19 6 128 146 1 48 24 114 81
T™@ 16 1 36 25 113 19 17 65 70 20 49 116 16 183
218 248 68 16 8 53 67 78 28 65 2 162 196 48 49
35 16 57 198 248 8 3 164 48 183 155 248 "" 1 143
START SWAP CHR + NEXT Loop to accumulate bytes
11724 #18CERAh SYSEVAL Create code object prologue
#5AB3h SYSEVAL Execute CHANGETYPE
« Program shell
IF DUP TYPE 21 = Confirms object is extended real
THEN 514 DOERR Invalid Argument Typeifnot
END

®

#54AFh SYSEVAL Execute INNERCOMP
12 ROLL 3 ROLLD Move code object into position
#3DEFh SYSEVAL Execute #1+
#5445h SYSEVAL Execute ::N to build program
'"ERTOR' STO Store program in ERTOA

2

Once MKERTOA has been executed, it may be purged to save
memory.

164 System Programming

DSPER uses the System-RPL objects BlankDA1, XYGROBDISP and
the example program XYGD, which are described further in this
chapter under the heading Graphics Operations.

DSPER 375.5 Bytes Checksum #43D4h

&
IF DEPTH
THEN

IF DUP DUP TYPE 21 ==
THEN ERTOR
ELSE 2STR
END
IF DEPTH 2 >
THEN

3 PICK
IF DUP TYPE 21 ==
THEN ERTOR
ELSE »*STR
END

ELSE nn

END
ELSE

END
#3AS46h SYSEVYAL
"2: " SWAP +
1 »GROB

{ #8d #8d > { #131d #6d >
SUB
A 8 XYGD
"1: " SWAP +
1 »GROB

{ #68d #8d > { #131d #6d >
SUB
8 8 XYGD
1 FREEZE

»

System Programming

Checkfor empty stack

If level 1 ob is ext real
use ERTOA
otherwise convert to string

Checkfor level 2 object

If exists, get it
If level 2 ob is ext real
use ERTOA
otherwise convertto string

Null $ if no level 2 ob

Display 2 null strings if
the stack is empty
Clear status display lines
Add level numberto string
Make grob with smallfont

Trim to display width
Display level 2 grob
Add level numberto string
Make grob with smallfont

Trim to display width
Display level 1 grob
Freeze display area 1

165

An Extended Real Calculating Environment. The program
ERCALC combines the tools described so far into a small extended real
calculating environment by creating a custom menu.

ERCALC 777 Bytes Checksum #72E3h

&
{
{ "R*ER" « RTOER DSPER * 2
{ "ER3*R" <« ERTOR DSPER »
{ Neg

« £ 21 21 > CHKARGS #2A%43h SYSEVAL DSPER ¥

£ nyse_n

« { 21 21 > CHKARGS #2A94Fh SYSEVAL DSPER ¥

£ "une

« { 21 21 » CHKARGS #2A99Ah SYSEVAL DSPER ¥

{ Weesn

« { 21 21 > CHKARGS #2A9ESh SYSEYAL DSPER ¥
{L We%An

« { 21 21 > CHKARGS #2AA5Fh SYSEVYAL DSPER ¥

{ "XXEXP"
« { 21 > CHKRARGS #2AB1Ch SYSEVAL DSPER ®

{ "HELNY
« { 21 CHKARGS #2RB5Bh SYSEVAL DSPER *

{ ner

« { 21 > CHKARGS #2AAERh SYSEVAL DSPER =»
>
DSPER
>
TMENU DSPER

»

166 System Programming

ERCALC creates a temporary menu and executes DSPER. Each key

performs its labeled function and executes DSPER to show the results.

Now you can use ERCALC to see what actually happened when you
calculated the log base 2 of 17179869184 (234).

Execute ERCALC to display the temporary menu, then enter 2 34
R+EF tel MH 2 R+EF wilH

2.35670041390381E+00001
6.93147180559945E-00001

Long Real
Long Real

IEEEEETEENIEEE33

=
p

e
u

Now press [NXT] + to do the divide operation:

3.39999999999993E+00001

E
q
W
p

w
u

Long Real
CECEEEEEEE

Notice that the result is still not exactly 34. The rounding process that
occurs during the conversion from an extended real number to a real
number has the effect of rounding up to 34.

System Programming 167

Composite Objects
The term composite object refers to any object built up of a series of
arbitrarily typed objects. Lists and programs are examples of
composite objects. (Note: an array is not a composite object.) While
many operations on composite objects may be performed with the
provided User-RPL commands, some additional System-RPL objects
are useful to have available. In the stack diagrams below, a composite
object is referred to as a comp.

The Size of a Composite Object. The objects LENCOMP and
DUPLENCOMP returns the number of objects in a composite object as
an internal binary integer:

LENCOMP #0567Bh
Returns the number of objects in a composite object

comp — <n>

DUPLENCOMP #63231h
Returns a composite and the number of objects in the composite

comp — comp <n>

First and Remaining Elements of a List. The objects
CARCOMP and CDRCOMP return the first object in a composite or
the composite object lessits first element:

CARCOMP #0508%h
Returns the first object in a composite

comp — obj

CDRCOMP #05153h
Returns a composite less its first object

comp — comp’

If a composite object is null, CARCOMP returns a null composite of
the same type. If a composite object is null or has one element,
CDRCOMP returns a null composite of the same type.

168 System Programming

The object NTHELCOMP returns the nth object within a composite
and the flag TRUE or the flag FALSEif n is out of range (see Tests for
a description of the flags TRUE and FALSE). If you're absolutely
certain that n specifies an object within the composite, you can use the
object NTHCOMPDROP. If you specify n out of range for
NTHCOMPDROP, the HP 48 will surely wander “off the range” with
possibly dire consequences (as has happened to the author on occasion).

NTHELCOMP #056B6h
Returns the nth object in a composite and TRUE or FALSE

comp <n> — ob TRUE or FALSE

NTHCOMPDROP #62B9Ch
Returns the nth object in a composite

comp <n> — ob

Decomposing Composite Objects. The object INNERCOMP
may be used to perform the equivalent of OBJ— for composite objects.

INNERCOMP #054AFh

Decomposes a composite object
comp — obj..ob, <n>

Examples:
{obj..ob,} — obj..ob, <n>

‘A+BxC’ —» ‘A’ ‘B’ ‘C * + <5h>

£2+% 5 « 2 + % <4h>
When a list is decomposed with INNERCOMP,the results are the same
that you would expect from OBJ—, except that the number of objects
in the list is returned as an internal binary integer. A list can be built
with the command { }N.

When a symbolic object is decomposed the objects are placed on the
stack in the order in which they would be evaluated. A symbolic object
can be built with the command SYMBN.

System Programming 169

INNERCOMP can be quite interesting when applied to a program
object, as shown in the stack diagram above. Notice that the program
delimiters « and #* are actually returned as commands. These
commands must be included at the appropriate ends of a User-RPL
program. A program object may be built with the object ::N.

Extracting a Subset of a Composite. The object SUBCOMP
may be used to extract a portion of a composite object, much the same
way that the User-RPL command SUB works.

SUBCOMP #05821h
Returns sub-composite.

comp <start> <end> — comp

Building Composite Objects. The objects { }N, SYMBN,and ::N
all perform a similar operation — building a composite object from a
series of objects on the stack.

{IN #0545%h
Creates a list object from <n> objects on the stack

ob; ... ob, <n> — { obj... ob, }

SYMBN #0546Dh
Creates a symbolic object from <n> objects on the stack

ob; ... ob, <n> — ‘symbolic’
“N #05445h

Creates a program object from <n> objects on the stack
ob; ... ob, <n> — :obj...ob,;

Building a program object is a special case, since ::N actually builds an
internal version of a program, sometimes called a secondary. When a
secondary is displayed on the stack, it merely looks like a program
without the program delimiters. Program delimiters are essential,
however, and should be included when you build a program object.
Note that the » (x>>, address #23639h) at the end of a program is
different from the * (x>>ABND,address #235FEh) used at the end of a

program object that stores local variables.

170 System Programming

Example:

» « x>>ABND (#235FEh)
» «— X>> (#23639h)

Some “shortcut” objects are available for building small lists:

NULL({} #055E9h
Returns a null (empty) list

- {J
ONE{}N #23EEDh
Creates a list containing one object

ob —» {ob}

TWO{}N #631B%h
Creates a list containing two objects

ob, ob; — {obj ob; }

THREE({}N #631CDh
Creates a list containing three objects

obs ob, ob; — {objob; ob; }
Composite Object Utilities.

EQUALPOSCOMP #644A3h
Returns index of first object in a composite that match ob. Returns
<0> if the object is not found.

composite ob — <pos>

Embedded? #64127h
Returns TRUE if object in level 1 is equal to or embedded in the
level 2 object, otherwise returns FALSE

ob ob — flag

apndvarlst #35491h
Adds an objectto a list if ob is not already in the list

{list} ob — {list}
System Programming 171

Tests
System-RPL objects which need to return “true” or “false” results do so
with the system flag objects TRUE and FALSE(object type 27):

TRUE #03A81h
The system TRUE flag

— TRUE

FALSE #03ACOh
The system FALSE flag

— FALSE

Stack diagramsin this chapter use the term FLAG to represent a system
flag that can be either TRUE or FALSE.

Flag Conversions. The object COERCEFLAG may be used to
convert the internal flags into real numbers: TRUE maps to | and
FALSE maps to 0.

COERCEFLAG #5380Eh
Converts a system flag to a real number

FLAG —> %
COERCEFLAG is useful, but performs an end-of-program action when
finished. This means you must include the call to COERCEFLAG in
an extra set of program delimiters:

« #538BE SYSEVAL * EMAL Convert the flag to O or 1

The program PARSE (earlier in this chapter) illustrates a use of
COERCEFLAG.

To convert a real number flag into a system flag, use the object %0<>:

%0<> #2A7CFh

Returns TRUE if a real number is non-zero

% — FLAG

172 System Programming

Flag Utilities. The following objects are available for manipulating
flags:

AND
Logical AND

FLAG FLAG —- FLAG

#03B46h

OR
Logical OR

FLAG FLAG —- FLAG

#03B75h

NOT
Logical NOT

FLAG —- FLAG

#03AF2h

XOR
Logical XOR FLAG FLAG —- FLAG

#03ADAQ
Binary Integer Tests.
binary integers:

The following objects compare two internal

H#= #03D19h

Equality
<bint> <bint> — FLAG

#<> #03D4Eh

Inequality
<bint> <bint> — FLAG

#> #03D83h

Greater than

<bint> <bint> — FLAG

#< #03CE4h

Less than

<bint> <bint> — FLAG

System Programming 173

The following objects test the value of a single internal binary integer:

#0= #03CA6h
Returns TRUE if bint = <0>

<bint> FLAG

#0<> #03CC7h
Returns TRUE if bint # <0>

<bint> FLAG

#1= #622A7h
Returns TRUE if bint = <1>

<bint> FLAG

#1<> #622B6h
Returns TRUE if bint # <1>

<bint> FLAG

#2= #6229Ah
Returns TRUE if bint = <2>

<bint> FLAG

#2<> #636C8h
Returns TRUE if bint # <2>

<bint> FLAG

#3= #62289h
Returns TRUE if bint = <3>

<bint> FLAG

#5= #636B4h
Returns TRUE if bint = <5>

<bint> FLAG

174 System Programming

Extended Real Number Tests. The following objects compare two
extended real numbers:

Yo %0> #2A87Fh
Greater than

%% %% — FLAG

To%0< #2A81Fh
Less than

%% %% — FLAG

ToJo>= #2A895h
Greater than or equalto

%% %% — FLAG

PoJo<= #2A8ABh
Less than or equal to

%% %% — FLAG
The following objects test the value of an extended real number:

%0%0= #2A75Ah
Returns TRUE if %% is equal to %%0

%% — FLAG

To%00<> #2A7BBh
Returns TRUE if %% is not equal to %%0

%% — FLAG

Jo%00> #2A788h
Returns TRUE if %% is greater than %%0

%% — FLAG

Po%00<= #2A80Bh
Returns TRUE if %% is less than or equal to %%0

%% — FLAG

System Programming 175

Stack Operations
In general, stack operations — even User-RPL stack operations — are
fairly efficient. When a program has been streamlined with CMP48
(page 195), the stack operations presented below provide a speed
increase.

2DUP5SROLL #63C40h

ob; obp obs obp obs obp obj ob;

2DUPSWAP #611F9h

ob; obp ob; ob, ob, ob;

20VER #63FBAh

ob; obp obj oby ob; ob, obj oby ob; ob,

2SWAP #62001h

ob; ob, obs oby obs oby ob; ob;

3PICK3PICK #63C68h

ob; ob, obj ob; ob, obj ob; ob,

3PICKOVER #630BSh

ob; ob, obj ob; ob, obj ob; obj

3PICKSWAP #62EDFh

ob; ob; obj ob; ob, ob; obs

4PICKOVER #630C9h

ob; ob, obs oby ob; ob, obj obs ob; oby

4PICKSWAP #62EF3h

ob; oby obs oby ob; obp obs ob; oby

4ROLLDROP #62864h

ob; obp obj oby ob; obs oby

4ROLLSWAP #62ECBh

ob; obj obs oby ob, obs ob; oby

4UNROLL3DROP #6113Ch

ob; obp obs oby oby

4UNROLLDUP #62D0%h

ob; ob; obs oby oby ob obj obs obs

176 System Programming

4UNROLLROT #63015h

ob; ob, oby obs — obyg ob obs ob)

SROLLDROP #62880h
ob; obp obs oby obs — obp obs oby obs

DROPDUP #627ATh
ob; ob, — ob; ob;

DROPOVER #63029h
ob; oby obs — ob; oby ob;

DROPROT #62FC5h
ob; ob, obj oby —- oby obj ob;

DROPSWAP #6270Ch
ob; ob; obj — obp ob;

DUP4UNROLL #61099h
ob; ob, obs — obj ob; ob; obj

DUPROT #62FB 1h
ob; ob, — ob, ob, ob

NDROP #0326Eh
ob, ...ob; <n> —

NDUP (Duplicates <n> objects as a group) #031D%h
ob, ...ob; <n> — ob, ...ob; ob, ...ob

NDUPN (Makes <n—1> copies of an object) #5E370h
ob <n> — ob...ob <n>

OVERS5PICK #63C90h
ob; ob, obs obs obs — ob; ob; obs obs obs obs ob,

OVERDUP #62CCDh
ob; ob, — ob; obp ob; ob;

OVERSWAP #62D3 1h ob; ob — ob; ob; ob;

System Programming 177

PICK #032E2h
ob, ...ob; <n> ob, ...ob; ob,

ROLL #03325h
ob, ...ob; <n> ob,.; ...ob; ob,

ROLLDROP #62F89h
ob, ...ob; <n> ob; ... 0b;

ROT2DROP #62726h
ob; obp obj ob,

ROT2DUP #62C7Dh
ob; ob, obj obp obj ob; obj ob;

ROTDROP #60F21h
ob; ob; obj ob, obj

ROTDROPSWAP #60FOEh
ob; ob, obj obj ob,

ROTDUP #62775h
ob; ob, obj ob, obj ob; ob;

ROTOVER #62CASh
ob; ob, obj ob, obj ob; obj

ROTROT2DROP #6112Ah
ob; oby obs obj

ROTSWAP #60EE7h
ob; oby obs ob, ob; obj

SWAP2DUP #6386Ch
ob; ob; ob, ob; obp ob;

SWAP3PICK #63C54h
ob; ob, obj ob; obs oby ob;

SWAP4PICK #63C7Ch
ob; oby obs oby ob; ob; obs obj ob;

SWAP4ROLL #63C2Ch
ob; ob ob3z oby ob, obs obz ob;

178 System Programming

SWAPDROP #60F9Bh
ob; ob; ob,

SWAPDROPDUP #62830h
ob; ob, obp obp

SWAPDUP #62747h
ob; ob, ob, ob; ob;

SWAPOVER #61380h
ob; ob, ob, ob; ob;

SWAPROT #60F33h
ob; ob; obj obs ob; ob;

UNROLL #0339Eh
ob, ...ob; <n> ob; ob, ...obj

UNROT #60FACh
ob; ob, obs obs ob; ob,

UNROTDROP #6284Bh
ob; ob, obs obs ob;

UNROTDUP #62CF5h
ob; ob, obj obs ob; ob, ob,

UNROTOVER #6308Dh
ob; ob; obs obs ob; ob ob;

reversym #SDE7Dh
ob, ...ob; <n> ob; ...ob, <n>

System Programming 179

Graphics Operations
The HP 48 contains three built-in graphics objects (nicknamed grobs)
for use in the display. These grobs are the stack grob, the graphics

grob (PICT), and the menu grob.

Pointers to Display Grobs. The following objects return pointers
to these built-in grobs. If the returned grob is to be modified for later
use, you should use NEWOB to create a unique copy in temporary

memory.

ABUFF #12655h
Returns a pointer to the stack display

— grob

GBUFF #12665h
Returns a pointer to the graphics display

— grob

HARDBUFF #12635h
Returns a pointer to the currently displayed ABUFF or GBUFF grob

— grob

HARDBUFF2 #12645h
Returns a pointer to the menu grob.

— grob

These pointers are useful for using the stack or graphics display as
arguments to other commands. For instance, to place a copy of the
stack display in PICT, execute

« #12635h SYSEVAL PICT STO *»

which is the same as « LCD+ PICT STO * except that the menu is
not included.

180 System Programming

Display Control. The following objects control the display:

TOADISP #1314Dh
Switches the LCD to the stack display

—->

TOGDISP #13135h
Switches the LCD to the graphics display

—-

CIrDA1IsStat #39531h
Suspends the ticking clock display

—-

RECLAIMDISP #130ACh
Switches LCD to stack display, clears the stack display, and resizes
the stack display to 131x56 pixels

—-

TURNMENUON #4E347h
Turns on the menu display

—-

TURNMENUOFF #4E2CFh
Turns off the menu display and enlarges the stack display to 131x64

—-
The program TOTEXT establishes complete control over a clear stack

display:

TOTXT 66 Bytes Checksum #4265h

&

#39531h SYSEVAL Executes CIrDA 11IsStat

#13BACh SYSEVYAL Executes RECLAIMDISP

#4E2CFh SYSEVAL Executes TURNMENUOFF
»

System Programming 181

Clearing the Display. The following objects clear either part or all
of the currently displayed grob (ABUFF or GBUFF). Display rows
(pixel rows) are numbered beginning with row number O at the top
down to 55 at the bottom.

BLANKIT #126DFh
Clears a specified number of rows

<startrow> <# of rows> —

BlankDA1 #3A546h
Clears rows 0 — 15

—-

BlankDA12 #3A578h
Clears rows 0 — 55

-

BlankDA2 #3AS55Fh
Clears rows 16 — 55

—-

CLEARVDISP #134AEh

Zeros out the entire grob pointed to by HARDBUFF
—-

CIr8 #0OEO083h
Clears the top 8 rows

—-

182 System Programming

Clearing Part of a Grob. The object GROB!ZERO clears a
rectangle from x,y; in the upper-left to x,,y,, which is one pixel below

and to the right of the area to be cleared. The upper-left corner of a
grob has the coordinates <0> <0>.

GROB!ZERO #11A6Dh
Zeros out a rectangular portion of a grob.

grob <x> <y;> <xp> <y;> — grob

WARNING
GROB!ZERO does no range checking, and will write
beyond the boundaries of the grob if given incorrect
coordinates. In that event, memory will be corrupted.

The grob parameter may be any arbitrary grob, including HARDBUFF.
GROB!ZERO writes directly to memory, and the pointer to the grob is
returned to level 1.

Note that PICT is not a valid parameter for the target grob for the
command GROB!ZERO To erase a portion of the stack display or
graphics display, use ABUFF or GBUFF.

System Programming 183

Creating a Blank Grob. The User-RPL command BLANK takes
two user binary integers (object type 10) from the stack and creates a
blank graphics object of the specified size. The System-RPL object
MAKEGROB does the work for BLANK. The input parameters are
internal binary integers (object type 20):

MAKEGROB #1158Fh
Creates a blank grob

<height> <width> — grob

Finding the Size of a Grob. The objects GROBDIM and
DUPGROBDIM return the size of a grob expressed in internal binary
integers:

GROBDIM #50578h
Returns the dimensions of a grob

grob — <height> <width>

DUPGROBDIM #5179Eh
Duplicates a grob before returning its dimensions

grob — grob <height> <width>

184 System Programming

Adding Graphics Objects to the Stack Display. The object
XYGROBDISP is used to place a grob into the grob pointed to by
HARDBUFF (the stack display or PICT — see page 179).

XYGROBDISP #128B0h
Adds a grob to HARDBUFF

<x> <y> grob —
Coordinates are specified with internal binary integers, and use pixel
coordinates (see Graphics Coordinates). The upper-left corner of the
display has the coordinates x=<0> y=<0>. If the grob being added to
HARDBUFF would extend beyond the boundaries of HARDBUFF,

then HARDBUFF is enlarged to accomodate the new grob.

The program XYGD takes a grob in level 3, x-coordinate as a real
number in level 2, and y-coordinate as a real number in level 1, and

displays the grob in HARDBUFF:

XYGD 45 Bytes Checksum #5095h

grob x y — |

&

CRCEZ2 Convert real coordinates into bints

ROT Order parametersfor XYGROBDISP
#128BBh SYSEVYAL Execute XYGROBDISP

»

To glue several of these examples together, try the program FUN:

FUN 95.5 Bytes Checksum #C47h

&
TOTHT Take overthe stack display
"SYSTEM PROGRAMMING IS FUN!"
1 »GROB Convert text to a grob
11 38 XYGD Place grob in stack display
T FREEZE Freeze the display

#

System Programming 185

Making a Box. The object GROB!ZERO may be used to create a
blank grob with a one-pixel-wide border around it. The program
MKBOX takes the desired height (in pixels expressed in real numbers)
of the box from level 2 and the width from level 1.

MKBOX 131 Bytes Checksum #7805h

height width — grob

&
CRCE2 Convert the real numbers into bints
#1158Fh SYSEVYAL NEG Create the grob and invert it
#63AC4h SYSEVYAL Put the bints <I> <1> on the stack

3 PICK (4: grob 3: <I> 2: <I> 1: grob)

Now get the grob dimensions for the lower-right corner with the
GROBDIM command

#50578h SYSEVAL (5: grob 4: <I> 3: <1> 2: <y> 1: <x>)
#3EBER SYSEVAL Subtract <1> from width

SWAP Swap to create x-coordinate
#3EBEh SYSEVAL Subtract <1> from height
#11A6Dh SYSEVAL Zero out the interior of the grob

»

Now use the program SHWBX to create a box of arbitrary size and
show it in the upper-left corner of the stack display:

SHWBX 54 Bytes Checksum #4C38

height width —

&
TOTKT Take overthe stack display
MKBOX Create the box
a8 8 XYGD Show the box in the upperleft
T FREEZE Freeze the display

®

186 System Programming

Placing Text in a Box. Suppose you’ve drawn a graph in PICT, and
you wish to place a nice title at the top of the graph. The programs
TXTBX and LBLPICT may be used to get the job done. The first
program, TXTBX, accepts a string in level 2 and a font number
(1=small, 2=medium, 3=large) in level 1.

TXTBX 89 Bytes Checksum #545Fh

| “string” font_number — grob |

&
+GROB Convert text to grob
DUP SIZE Getsize as user binary integers
B*R 3 + Calculate height ofbox as a real
SWAP B3R 3 + Calculate width ofbox as a real
MKBOX Create the box with a border
{ #2h #2h > Coordinatesfor text insertion
ROT GOR Place text in the box

*

Combining Graphics Objects. The User-RPL commands GOR
and GXOR are useful for superimposing one grob on top of another,
but when you want to place a smaller grob into a larger grob as a
replacement operation, the User-RPL command REPL or the System-
RPL object GROB! become very useful.

GROB! #11679h
Stores level 4 grob into level 3 grob at specified coordinates

grob grob <col> <row> —

WARNING
GROB! does no range checking, and will write beyond
the boundaries of the target grob if given incorrect
coordinates. In that event, memory will be corrupted.

Note that PICT is not a valid parameter for the target (level 3 input
parameter) grob for the command GROB! To write to the stack display
or graphics display, use ABUFF or GBUFF.

System Programming 187

Now you can use the program LBLPICT to place a boxed label at the
top center of PICT. LBLPICT takes the same parameters as TXTBX:

LBLPICT 150 Bytes Checksum #FA1h

| “string” font_number — |

&
TXTBX Create the label in a box
#12665h SYSEVAL Getpointer to graphics display
DUP SIZE DROP Find the width ofgraphics display
3 PICK SIZE DROP Get the real width ofthe label box
IF DUP2 2 + £ Make sure the label will fit
THEN
"Label Too Big" DOERR

END
-27 Calculate x positionfor label
B+R 8 CRCEZ2 Assemble coordinatesfor GROB!
#11679h SYSEVAL Add the label
{> PVIENW Display PICT, waitfor

»

To try out LBLPICT, plot the function SIN(X)/X in radians mode with
the range set to (-6.5< X <£ 6.5), (5 £Y £ 1.4), then execute
LBLPICT with the parameters “SIN(X)/X”2:

[SING7X]

ARN

The program « EQ *STR 2 LBLPICT =» will label the graph in
PICT with the contents of EQ (assuming that the equation is fairly
short).

188 System Programming

Drawing Lines. Several System-RPL objects are available for line
drawing. Lines are drawn from coordinates <x1>,<y1> to <x2>,<y2>.
The coordinates for these line drawing objects are expressed as bints
and require that input coordinates be placed on the stack in left-to-right

order — thatis, <x1> < <x7>. The command ORDERXY# is useful for

ordering the input parameters to the line drawing objects:

ORDERXY# #51893h
Asserts left-to-right order for line-drawing coordinates

<X1> <y1> <X3> <yp> — <X1> <Y1> <X3> <yp>

The program ORDXY accepts real-number coordinates, converts them
to bints, and executes ORDERXY# to prepare for the internal line
drawing commands. The stack diagram for ORDXY is:

ORDXY 67.5 Bytes Checksum #B2EDh

X| YI Xp Yo = <X> <y|> <xp> <y2> |

&
CRCE2 Convert coordinates to bints
#62881h SYSEVAL Swap coordinate pairs with 2SWAP
CRCE2 Convert other coordinate pair
#51893h SYSEVYAL Evaluate ORDERXY#

»

The User-RPL commands LINE and TLINE draw a solid line or a line
which toggles pixel states in the graphics display. The System-RPL
object LINEOFF3 clears a line of pixels:

LINEOFF3 #50ACCh
Clears a line of pixels in the graphics display

<X1> <y1> <Xp> <yp> —

System Programming 189

The System-RPL objects LINEON, LINEOFF, and TOGLINE draw
lines in the stack display:

LINEON #50B17h
Draws a line in the stack display

<X1> <y1> <X> <y> —

LINEOFF #50B08h
Clears a line ofpixels in the stack display

<X1> <yY1> <X3> <yp> —

TOGLINE #50AF9h
Toggles a line of pixels in the stack display

<X1> <y1> <Xp> <yp> —

Pixel Control. The User-RPL commands PIXON, PIXOFF, and
PIX? clear, set, and test pixels in the graphics display. Their System-
RPL counterparts for the stack display have similar names:

PIXON #1384Ah

Turns on a pixelin the stack display
<Xx> <y> >

PIXOFF #1383Bh
Turns off a pixelin the stack display

<> <y> >

PIXON? #13992h
Tests a pixel in the stack display

<x> <y> — FLAG
The PIXON? object returns an internal flag, which may be converted
into a real number 0 or 1 with the System-RPL command
COERCEFLAG.

190 System Programming

Menu Graphics. The following objects create menu label grobs
(8 pixels high by 21 pixels wide) given a string as input:

MakeStdLabel #3A328h
Creates a standard label

“string” — grob

MakeDirLabel #3A3ECh

Creates a directory label
“string” — grob

MakeBoxLabel #3A38Ah
Creates a label with a “mode box”at the right side

“string” — grob

MakelnvLabel #3A44Eh
Creates an outline box label

“string” — grob

The objects DispMenu and DispMenu.1 display the current menu:

DispMenu #3A1E8h
Displays the current menu and freezes the menu display line

—-

DispMenu.1 #3A1FCh
Displays the current menu —-

These objects are useful for updating the menu display without using
the HALT or WAIT commands:

« ... { menu > TMENU #3R1FCh SYSEVAL ... »

System Programming 191

Keyboard Control
Several objects are available to provide extra control over key detection
and maintenance of the key buffer.

Waiting for a Key. The User-RPL command WAIT returns a key
location in RC.P format, but does not return the key. If you
wish to trap the key, WaitForKey is the right tool for the job.
WaitForKey places the HP 48 in light sleep to conserve batteries,
processes alarms, and waits for keyboard activity. WaitForKey
processes the shift keys, maintains the shift annunciators, and returns
the key press expressed as two bints — a shift plane and a keycode.

WaitForKey #41F65h
Waits for a fully formed keyboard event

— <keycode> <plane>

Keycodes are returned in the range <1d> to <49d> (starting in the
upper-left corner of the keyboard), and planes are returned in the range
1 to 6:

Plane Description

<1d> Unshifted
<2d> Left-shifted
<3d> Right-shifted
<4d> Alpha
<5d> Alpha left-shifted
<6d> Alpha right-shifted

To convert a result to RC.P format (suitable for user key assignments),
use the object CodePI>%rc.p:

CodeP1>%rc.p #41D92h
Converts keycode and plane bints into real number rc.p key address

<keycode> <plane> — %rc.p

192 System Programming

The Key Buffer. The object KEYINBUFFERreturns an internal flag
that indicates whether a key has been pressed.

KEYINBUFFER? #42402h
Returns TRUEif a key is waiting in the keybuffer

— FLAG
Use the object COERCEFLAG to convert the internal flag into a real
number 0 or 1. Rememberthat the call to COERCEFLAG needs to be
enclosed in an extra set of program delimiters.

The program CKKB uses the objects KEYINBUFFER? and
COERCEFLAG to check the state of the key buffer. CKKB returns the
real number O if no key has been pressed, or 1 if a key has been
pressed:

CKKB 64.5 Bytes Checksum #43E7h

| — T/F

&
#42402h SYSEVAL Check the key buffer
« #538BEh SYSEVAL » EVAL Convertflag to 0 or 1

®

To detect whether the key has been pressed, use the object
ATTN?. This object will not affect the key buffer.

ATTN? #42262h
Returns TRUE if [CANCEL] has been pressed.

— FLAG

System Programming 193

Alpha-Lock. The INPUT command provides an option to specify
alpha-lock on the keyboard, but there may be other times that you wish
to insure that alpha entry mode is either enabled or disabled. Two
objects are available forthis:

LockAlpha #40D25h
Locks alpha entry mode

—-

UnLockAlpha #40D39h
Unlocks alpha entry mode

—-

1A/LockA #3AAOAA
Locks alpha entry for one keystroke (same as pressing [a] once)

—-

The MatrixWriter. The MatrixWriter can be started from a program
by executing either DoNewMatrix to create a new matrix or
DoOldMatrix to edit a matrix on the stack.

DoNewMatrix #44C31h

Starts the MatrixWriter

— [[matrix]] If terminated with
- If terminated with

DoOldMatrix #44FE7h
Edits matrix

[[matrix]] — [[matrix]]’ TRUE If terminated with
[[matrix]] — FALSE If terminated with

194 System Programming

Streamlining Finished Programs
Once you have perfected a new program that you plan to use
frequently, you may want to make the program smaller and faster. The

use of system objects can be streamlined by replacing the user binary
integers and SYSEVAL commands with a single 2-1/2 byte address of
the proper System-RPL object. This can be done with the program
CMP48. Once streamlined, the program will be smaller and faster.

The core of the streamlining strategy is embodied in a small piece of
assembly language code which is created by converting a string object
into an assembly language code object. This operation is critical, so
please double check the checksum of CMP48 before you use it.

The code object and the SYSEVAL command are stored in local
variables syseval and code, then each object in the program is examined
to see if a conversion is needed. The procedure used is similar to the
program example SFILT in the section Meta-Objects. If a SYSEVAL
command is found, it is dropped and its address argument is converted
into an object address. If a program object is found,it is streamlined
using CMP48. Note that CMP48 fails if an address is not found before
the SYSEVAL command.

This recursive approach carries a minor inefficiency — each time
CMP438is executed, the code objectis recreated. This program accepts
this cost to permit the entire process to be contained in a brief program
that can be entered from the keyboard.

To use CMP48, place the program to be streamlined into level 1 and
execute CMP48. The resulting program may be stored in a variable
and executed like any other program. When the streamlined program is
displayed on the stack, the SYSEVAL commands are replaced by the
word External.

WARNING
Once a program has been streamlined, it cannot be
edited. For this reason, it’s a good idea to keep a
copy of the original program in a safe place. When in
doubt, back up your HP 48 before using CMP48.

System Programming 195

CMP48 550.5 Bytes Checksum #4142h

&

IF DUP TYPE 8 #

THEN 514 DOERR

END

8 SWAP

NEWOB

#54AFh SYSEVAL

#18DBFh SYSEVAL

{ SYSEVAL > 1 GET

288 8 78 18 65 28 21

49 52 28 113 115 23 65

"" 1 14 START

SWAP CHR + NEXT

11724 #18CERh SYSEVAL

#5AB3h SYSEVYAL

+ syseval code
&

WHILE DUP 8 =

REPERT

1 - SWAP

IF DUP TYPE 8 ==

THEN CMP48

ELSE

IF DUP syseval ==

THEN DROP 1 - SWAP

B+R #18CEARh SYSEVYAL

code EVAL

END

END

OVER DUP 4 + PICK + 3 +

ROLLD DUP 2 + ROLL 1 +

OVER 2 + ROLLD

END DROP

#18CERh SYSEVAL

#5445h SYSEVYAL

*

*

196

Is this a program?
Bad Argument Type if not

Empty meta-ob in pos 2
Ensure program is unique
INNERCOMP
UNCOERCE
Place SYSEVAL on stk
Code object data

Accumulate data into
a string
COERCEcode prologue
CHANGETYPE

Loopfor every ob in prog

MDT
If this is a program
then compactit too

Ifwe have a SYSEVAL
throw it away, get address
and COERCE it to a bint
Convert bint to address

MAH?2

Loop end
COERCE
=N

System Programming

The data for the string has been compiled using HP’s SASM assembler
(see HP Tools). The object CHANGETYPE (#05AB3h) requires an
object in level two and a bint with the new object prologue in level 1.

To satisfy the advanced user of the HP tools and the curious, the
assembly language source code for the original code object reads:

NIBASC \HPHP48-A\

NIBHEX CCD20

REL (5) end

C=DAT1 A

CD1EX

D1=D1+ 5

A=DAT1 A

D1=C

DAT1=A A

A=DATO A

D0O=D0+ 5

PC= (A)

end

When assembled with the SASM assembler mentioned below,this code
produces the code object used by CMP48. The code should be
assembled with the command SASM —Hfilename.

LIBEVAL
Approximately half of the HP 48 operating system is implemented with
libraries, which requires a different access method. Access to objects
in libraries is possible through XLIB names (object type 14). To create
an XLIB name, use the system object #>ROMPTR:

#>ROMPTR #7E50h
Creates an XLIB name from two internal binary integers

<library no.> <object no.> — XLIB_name

System Programming 197

You can evaluate a library object by placing two internal binary
integers on the stack, executing #>ROMPTR, then EVALing the
resulting XLIB name.

The function LIBEVAL simplifies the process used to evaluate objects
in a library. The parameter to LIBEVAL is a user binary integer, just
like SYSEVAL. In the case of LIBEVAL, the integer must contain six
(hex) digits. The upper three digits specify the library number, and the
lower three digits specify the number of the object within the library.
Objects in libraries are numbered beginning with 0. It is important to
remember that LIBEVAL is a command like any other, and saves its
last argument(if flag —55 is clear), not the arguments processed by the
system object.

Example: The Multiple Equation Solver saves its equations,title,
variable status, and progress information in the reserved variable Mpar.
This variable is a Library Data object, and its contents are not visible.
To recall the contents of Mpar, execute the MESRcIEqn, which is the
18th object in library E4 (XLIB 228 18):

MESRCcIEqn #E4012h XLIB 228 18
Recalls the contents of the reserved variable Mpar

— { equation list }
#0E4012h LIBEVAL — { equation list }

Example: The program MSGBX (on the next page) uses the system
object DoMsgBox (XLIB 177 0) to display a message box with an
included graphics object. MSGBX requires a string in level 2 and a
grob in level 1. In theory, the grob may be as wide as the message box,
but in practice a smaller grob will leave more room for message text.

DoMsgBox #B1000h XLIB 1770
Displays a message box with a graphics object

“message” #maxwidth #minwidth grob menuob — TRUE

198 System Programming

The parameters are defined as follows:

“message”

#maxwidth

#minwidth

grob

menuob

A string containing the message you wish to display.
Carriage-returns may be embedded to force line breaks.

An internal binary integer specifying the maximum
character width of each text line in the message box.

An internal binary integer specifying the minimum
character width of each text line in the message box. No
word breaks occur before the minimum character width.

A graphics object to be displayed in the upper-left corner
of the message box.

A message box menu object, usually specified in the form
XLIB 177 2. Library object names (object type 14) can

be created using the system object #>ROMPTR.

DoMsgBox returns the internal flag TRUE. You may wish to
experiment with different values for the minimum and maximum
character widths. Neither value should exceed 15. Remember to leave
room for the grob.

MSGBX 123.5 Bytes Checksum #E966h

®

12
18

“string” grob — |

Maximum character width

Minimum character width

#194F7h SYSEVYAL Use COERCE?2to convert to bints

ROT
177 2

Move grob into position
Menu objectis in library 177, function 2

#194F7h SYSEVYAL Use COERCE?2to convert to bints

#T7ESBh SYSEVYAL Use #>ROMPTR to convert 2 bints to XLIB

#B1888h LIBEVAL Execute DoMsgBox
DROP Drop returned TRUEflag

System Programming 199

Try MSBGX with the program TRYMBX:

TRYMBX 87 Bytes Checksum #F68Fh

&

"Calculation Complete!"

GROB 11 11 8F004010202010409840104010409840272040108F00

MSGBX
»

RAD
{ HOME }

4: Calculation
3: © Complete!

11I|JOK]

HP Tools
Hewlett-Packard has developed tools for HP 48 software development
that run on a DOS-compatible personal computer. These tools provide
documentation and programming possibilities beyond those discussed
in this chapter. The tools are:

RPLCOMP A compiler for the internal RPL language
SASM The Saturn assembler
SLOAD The Saturn loader
MAKEROM A utility for building libraries from System-RPL code
USRLIB A utility for building libraries from user directories

These tools and documentation are provided on an “as-is” basis, and are

not supported by HP (or the author). You can find these tools on the
bulletin board mentioned in the HP 48 User’s Guide.

200 System Programming

System Operations

Invoking System Operations
To invoke a system operation, press and hold [ON], then press and
release the second key, then release (ON).

(ON) (AJand (F) Erases all memory (including port 0 and merged
memory) and performs a warmstart (see ©).
Merged memory remains merged.

Cancels the current selection if selected before all

keys are released.

Often known as a system halt or a warmstart, this
operation places the calculator in a known state
without resetting user memory. The stack is cleared,
the VAR directory is set to HOME, the MTH menu is
displayed, User mode is cleared, PICTis cleared, and
the system configuration is updated to recognize all
libraries.

DO) Starts the interactive self test (see below).

(E) Runs a continuous self test.

Coma mode: a deep-sleep shutdown which turns off
the system timers (including the clock) and clears the
system halt log.

Performs a graphics screen dump in HP 82240A/B8g
graphics format (regardless of the I/O port selection).

or(=) Adjusts the display contrast

TIME Cancels the next repeating alarm.

System Operations 201

System Halt Log
The command WSLOG returns four strings to the stack showing the
cause, date, and time of the four most recent system halt events. The

system halt log is not cleared when memory is erased, and may only be
cleared by placing the calculator in coma mode.

Example: 3-83-8690 89:38:18

This string shows a type 3 system halt that occurred on the morning of
March 6, 1990.

Code Condition

T
O
O

O
Q
O
W
>
O
0
O
0
d
U
n
h
W
N
~
R
O

Coma exit
Low battery system save
I/O timeout
Execute through address 0
Corrupt system time
Port change data
Corrupt CMOS test word
Hardware failure
Corrupt alarm list
Corrupt memory
Module pulled
Hardware reset
Missing RPL error handler
Corrupt configuration table
System RAM card pulled

Note: Some events will cause two events to be recorded, and some
system halt events will cause memory to be cleared (see [F)).

202 System Operations

Interactive Self Test
The (ON](D) sequence enters the HP 48 interactive self test. Once the
test has been started, there are a variety of options:

S
E
E
R

E
m
u
l
e
:

m
F
N
S

NTER

L

Displays the CPU speed
Press for display test patterns
Internal ROM check
Internal RAM check
Keyboard test
Partial keyboard test
ESD test monitor. Bars indicate battery status.

UARTloop back test
Wired UART echo
Shows what’s plugged in
Test port RAM devices
Blank display
Send system time from IR port
Receive system time from IR port
Wireless loop back
Wireless UART echo
Show test start time
Show test fail time
Looping test
Looping test

Looping test
Looping test
Initialize test times
Looping test
Looping test
Test summary

Press (system halt) to return to the stack display.

System Operations 203

Statistics Data

Data used by the STAT application resides in or is named by the
reserved variable DAT. Statistics data may be entered from the stack
one point at a time using (9) [DATA Z+ , or an entire matrix
can be stored into JDAT using the STOY, command. The command
EDITY. may be used to edit DAT using the MatrixWriter.

wu
Z+ and Z- operate as follows:

X Z+ — Append one data point with one
coordinate value

Reverses the effect of the last X.+
Append one data point with m

coordinate values

[X{ Xs... Xp] T+

[X11 X12Xm]
ve Z+ — Append n data points with m

Xn1 Xn2 -- Xoml] coordinate values

2DAT
The variable DAT contains either a statistics data matrix or the name

of a variable containing a statistics data matrix.

YDAT Statistics Matrix
Data Point Coordinate Number

1 2 3 4 ee m

1 Xin Xo Xi3| X14 + Xim
2 Xo1 Xoo X23 X04 + Xom
3 X31 X32 X33 X34 | X3m

n Xn1 Xn2 Xn3 Xn4 -- Xnm

204 Statistics Data

>PAR

The reserved variable PAR contains plot and scaling information.
Each directory may contain a unique JPAR. The entries for the
independent and dependent columns may be set using the COLY
command.

>PAR
{ indep dep intercept slope model }

Parameter Description Default

indep Independent column number 1

dep Dependent column number 2

intercept Intercept of current regression model 0

slope Slope of current regression model 0

model Current model: LINFIT, EXPFIT, LINFIT
PWREFIT, or LOGFIT

Statistics Data 205

Character Codes

DEC HEX CHR|DEC HEX CHR|DEC HEX CHR|DEC HEX CHR

0 00 = |32 20 64 40 © 96 60
1 01 = |33 21 ! [65 41 AH [97 61 a
2 02 = |34 22 " [66 42 B 98 62 b
3 03 = |35 23 # [67 43 C 99 63 «c
4 04 = [36 24 % [68 44 D [100 64 d
5 05 = [37 25 % |69 45 E |101 65 ee
6 06 = |38 26 & [70 46 F [102 66 f

7 07 = |39 27 '" |71 47 G [103 67 g
8 08 = [40 28 ¢ [72 48 H |104 68 h

9 09 = |41 29 >» |73 49 I |105 69 i

10 OA = [42 2A * |74 4A J |106 6A J
11 OB = [43 2B + |75 4B K [107 6B k
12 0C = |44 2C , |76 4C L [108 6C 1
13 OD = [45 2D = |77 4D HM [109 6D m
14 OE = |46 2E . |78 4E HN [110 6E n
15 OF = [47 2F ~ |79 4F 0 [111 6F o
16 10 = 48 30 @8 |8 50 FP [112 70 p
17 11 = 49 31 1 |8 51 @ [113 71 9
18 12 = [50 32 2 |8 52 R [114 72 r
19 13 = [51 33 3 |8 53 S [115 73 =
20 14 = |52 34 4 |8 54 T [116 74 t
21 15 = |53 35 5 |8 55 U [117 75 wu
22 16 = [54 36 © |8 56 VM [118 76 w
23 17 = |55 37 7 |8 57 HW [119 77 w
24 18 = 56 38 8 |8 58 » [120 78 x

25 19 = [57 39 9 |8 59 ¥ [121 79 ud
26 1A = [58 3A * |90 5A 2 [122 TA =
27 1B = |59 3B i |91 5B [[123 7B <(
28 1C = 60 3C < |92 5C ~ [124 7C |
29 ID = [61 3D = |93 5D 1 [125 7D 3
30 IE = |62 3E > |94 SE ~*~ [126 TE ~
31 1F ...}63 3F 2? |95 SF _ [127 TF #

206 Character Codes

DEC HEX CHR|DEC HEX CHR|DEC HEX CHR|DEC HEX CHR

128 80 « [160 AO 192 CO A [224 EO &
129 81 x [161 Al i |193 CI A [225 El1 &
130 82 w= [162 A2 « |194 C2 A |226 E2 &
131 83 I [163 A3 £ |195 C3 & [227 E3 &
132 84 J |164 A4 © [196 C4 A |228 E4 3
133 8 = |165 A5 ¥ |197 C5 A |229 ES5 a
134 86 PB [166 A6 | |198 C6 HK |230 E6 ==

135 87 mw [167 AT & |199 C7 CG |231 E7 ¢
136 88 a |168 A8 ~ |200 C8 E& [232 E88 #&
137 89 =< |169 A9 © [201 C9 E |233 E9 é&
138 8A 2 |170 AA 2 |202 CA & |234 EA &
139 8B = |171 AB <« |203 CB E [235 EB &
140 8C « [172 AC = 204 CC 1 [236 EC 1
141 8D + [173 AD =- |205 CD ff [237 ED i
142 8E « [174 AE B® |206 CE tt [238 EE 1
143 8F 4 [175 AF = |207 CF 1 [239 EF 1
144 90 +t [176 BO * |208 DO ® |240 FO 4&
145 91 ~~ |177 Bl + [209 DI HA |241 Fl A
146 92 & [178 B2 & |210 D2 & |242 F2 o
147 93 € [179 B3 3 |211 D3 ¢& |243 F3 &
148 94 =n |180 B4 °° [212 D4 & |244 F4 &
149 95 8 [181 BS w |213 DS & |245 F5 &
150 96 » [182 B6 1M [214 D6 & |246 F6 o
151 97 p |183 B7 = |215 D7 x |247 FI] +
152 98 wo [184 B8 , |216 D8 & |248 F8 x
153 99 «x [185 BY 1 [217 D9 © |249 F9 u
154 9A ww |186 BA 2 [218 DA 0 [250 FA 4
155 9B & |187 BB =» [219 DB & [251 FB 4
156 9C Tm [188 BC % [220 DC 0 [252 FC u

157 9D f |189 BD *% [221 DD + [253 FD yg
158 9E = 1190 BE % |222 DE PF [254 FE Pp

159 9F « [191 BF ¢& 223 DF fF |255 FF 4g
Character Codes 207

Data Transfer

Any named object, such as a variable, backup object, or complete
directory, may be transferred to another HP 48 or a computer. A
complete backup of user memory may also be transferred to another
HP 48 or a computer.

Note: Binary data, such as programs and libraries, may be transferred
from a HP 48S/SX to a HP 48G/GX, but programs orlibraries designed
for the HP 48G/GX may not work on an HP 48S/SX.

Data Transfer Methods
There are three methods of transferring data between the HP 48 and
another HP 48 or computer:

® Objects may be transferred between HP 48s using the infrared (IR)

link. The IR link is fixed at 2400 baud, no parity, and may be used
to transfer data in either ASCII or binary mode.

® Objects may be transferred between a computer and an HP 48

using the serial (wire) link. The wire link may be configured to
support a variety of baud rates and parity options. The Kermit
protocol provides the most reliable transfer mechanism, but the
Xmodem transfers are fastest for binary downloads of large
objects.

® Plug-in RAM cards may be configured as independent memory

and exchanged between HP 48s. The commands FREE],

MERGE], and PINIT are used to configure RAM cards. Only
library and backup objects can reside in independent memory.

208 Data Transfer

Kermit Protocol
The Kermit file transfer protocol ensures correct data transmission
between two HP 48 calculators or an HP 48 and a computer. Kermit
was developed at the Columbia University Center for Computing
Activities. Detailed information about Kermit is available in a book by
Frank da Cruz, KERMIT, A File Transfer Protocol, 1987, Bedford, MA
(Digital Press). For 9600 baud transfers, it’s best to disable the
updating clock display.

Kermit Configurations. Kermit protocol provides two basic
configurations for data transfer:

Local/Local Commands must be entered on both machines to effect
a transfer: a SEND command must be issued on the
sender, and a RECEIVE (RECV or RECN on the
HP 48) command must be issued on the receiver. New
commands must be issued for each object transferred.
(Some implementations of Kermit permit “wildcard”
characters to send a series of files with one command.)

Local/Server One machine is placed in server mode, which acts upon
commands received from the sender. The server:

® Transmits an object when it receives a GET

command with a file name.

® Receives an object when it receives a SEND

command.

® Exits Kermit when it receives a FINISH command.

The server may respond to multiple transfer requests
without keyboard intervention.

Data Transfer 209

Remote Kermit Operation. The HP 48 can respond to several
Kermit commands when in server mode. These commands initiate

actions, list variables, or transfer data.

GET: The Kermit command GET name instructs the HP 48 server to
transmit the contents of the named variable to the computer.

SEND: The Kermit command SEND name instructs the HP 48 server

to receive the contents of the named computerfile and store them in a
variable of the same name.

REMOTE DIR: The Kermit command REMOTE DIR (packet GD)
causes the HP 48 server to reply with the current directory path, the
number of bytes of free memory, and then a separate line for each
variable in the current directory. Each line contains the variable name,
length in bytes, type, and a decimal checksum. Examples:

Name Length Type Checksum

X 16 Real Number 7537

EQ 40 Algebraic 14632

CLK 6876 Directory 28291

IOPAR 29.5 List 7079

REMOTE HOST: The Kermit command REMOTE HOST (C "host-
command’ packet) may be used to execute HP 48 commands from the
computer. After the command has been executed, the HP 48 replies by
returning the stack contents. The stack is formatted in a manner similar
to the PRSTC (print stack compact) command. For instance, to add
two numbers on the HP 48, type “REMOTE HOST 2 3 +”. Assuming a
previously empty stack, the HP 48 replies with the string "1: a".
If the stack is empty, the HP 48 replies "Empty Stack".

FINISH: The Kermit command FINISH transmits the GF packetto the
HP 48 to turn off server mode on the HP 48. The GL packet,
associated with logout commands, has the same effect.

210 Data Transfer

Backing Up the HP 48
The ARCHIVE and RESTORE commands may be used to save and
recover the contents of user memory on a computer.

Note: ARCHIVE does not save the user and system flags, or the
contents of port 0. The flag settings may be preserved by executing
RCLF and storing the flags in a variable. After doing a restore, recall
the contents of the variable and execute STOF.

To back up all of user memory to a computer, perform the following
steps:

® Connect the HP 48 and the computer.

® Usethe[q9) IOFAE menu to set wire transmission mode,

the baud rate, parity, and checksum settings.

® Optional: Execute RCLF and store the flags in a variable.

® Enter the object : 10: name, where name is the computerfile

name that will contain the HP 48 archive. For 9600 baud

transfers, it’s best to disable the updating clock display.

® Issue the Kermit RECEIVE command on the computer.

® Execute ARCHIVE on the HP 48.

Data Transfer 211

Restoring the HP 48

CAUTION
The RESTORE command erases the entire contents

of user memory.
To restore HP 48 memory from an archive on a computer, perform the
following steps:

212

Be sure there is enough memory available to hold the

incoming file. Since RESTORE will replace all of user
memory, you might as well purge all variables.

Connect the HP 48 and the computer.

Transfer the file containing the memory image to the HP 48

the same was as for anyfile.

Put the file name on the stack and execute RCL. This puts

Backup HOMEDIR in level 1.

Execute RESTORE.

Optional: Recall the variable containing the user and system

flags and execute STOF.

Data Transfer

ASCII File Transfer

An ASCII file generated on a computer provides an alternative method
for entering data or a large program in the HP 48. To ensure that the
data is interpreted correctly by the receiving HP 48, the following
headerstring should be included which indicates the expected modes:

%XHP: TCtranslationdAC angle modedF Cfraction-mark? 3

The codes are defined as follows:

Code Purpose Settings Default

T See Character Translations 0, 1,2, 0r 3 1
A Sets the angle mode D,R,orG D
F Sets the fraction mark , Of .

The HP 48 will ignore text between two @ characters or between an @
character and the end of a line in the computer file.

Example: The following text on a computer may be transferred to the
HP 48 in ASCII mode to create a program that returns the area and
volume of a sphere given its radius. Notice the use of character
translations to represent various HP 48 characters:

¥%HP: T(3)A(D)F(.);

\<< \-> r \<< @ Comment information

4 \pi \->NUM * r 2 ~ * “Area” \->TAG

4 3 / \pi \->NUM * r 3 © * “Volume” \->TAG

\ >>

\>>

On the HP 48, the program looks like this:

££ 3

« NUM * r 2 © * "Area" »TAG

i

4

4 37 w3HUM ¥ rr 3 © ¥ "Volume" TAG

¥

Data Transfer 213

Character Translations
When data is transferred between the HP 48 and a computer using
translate code 2 (000—159) or 3 (000—255), conversions are used to
represent some characters.

For data being transferred to a computer with translate codes 2 or 3,

each ™ is replaced with ~~. For data being transferred to the HP 48,
characters may be converted using a text conversion or “xxx, where xxx
is the three-digit (decimal) character code.

The following table shows the text conversions for characters above

code 127.

DEC HEX HP48 ASCIl DEC HEX HP 48 ASCII
128 80 £ \<) 148 94 gL \Gn
129 81 X \x- 149 95 A \Gh
130 82 v \.V 150 96 8 \G1
131 83 I \v/ 151 97 P \Gr
132 84 I \.S 152 98 a \Gs
133 85 Z \GS 153 99 T \Gt
134 86 b \|> 154 9A W \Gw
135 87 m \pi 155 9B a \GD
136 88 S \.d 156 9C m \PI
137 89 £ \<= 157 9D R \GW
138 8A 2 \>= 158 9E . \[]
139 8B # \=/ 159 9F ® \ oo
140 8C o \Ga 171 AB & \ <<
141 8D + \-> 176 BO ° \"o
142 8E € \<- 181 BS H \Gm
143 8F + \ |v 187 BB # \>>
144 90 t \ |» 215 D7 x \.x
145 91 ¥ \Gg 216 D8 @ \O/
146 92 8 \Gd 223 DF p \Gb
147 93 € \Ge 247 FIT + \:-

214 Data Transfer

IOPAR
The reserved variable IOPAR may only reside in the HOME directory.
Other variables of the same name in subdirectories will be ignored by
the I/O commands.

IOPAR
{ baud parity receive-pacing transmit-pacing checksum translate-code }

Parameter Description Default
baud 1200, 2400%*, 4800, or 9600 9600

parity O=none*, 1=0dd, 2=even, 3=mark, 4=space None

Negative parity value = transmit only

receive-pacingf Value # 0 sends XOFF if HP 48 buffer full 0
transmit-pacingt Value # 0 stops transmission if XOFF 0

received
checksum 1=1 digit arithmetic, 2=2 digit arithmetic, 3

3=CRC
translate-code O=none, 1=LF to CR-LF, 2=128-159, 1

3=128-255

*IR is 2400 baud, no parity only {Not used by Kermit

Data Transfer 215

Cables
Serial cables are available for a PC (HP F1015A) or an Apple
Macintosh computer (HP F1016A). Connectivity kits include both a
cable and data transfer software — HP F1201A for the PC, HP F1202A
for the Macintosh.

5 — RX (input)

|4 —SGND

Macintosh end 3 — TX (output)

7-SGND

3 — RX (input)
— 2 — TX (output)

PC end with adapter —— | -SHIELD

113

OO0O00000000O00O0

O000000000O0O0

25 14

5 -SGND

3 — TX (output)

PC end 2 — RX (input)

5 1

O00O0O0

0000

7 6

HP 48 cable end
| L 1-SHIELD

2 — TX (output)

3 — RX (input)
4 — SGND

216 Data Transfer

Printer Control

The following system flags (default clear) control output to the printer
as follows:

Flag Clear Set

-34 IR printer Serial printer
=37 Single-spaced Double-spaced
-38 Line feeds No line feeds

The following control codes guide the operation of the HP 82240B
printer:

Printer Command Control Codes”
Carriage right 4
Carriage return/LF 10
Column graphics 27 nC;...C, fT

Roman 8 character set 1 27 248

ISO 8859-1 character set 27 249
Underline off i 27 250

Underline on 27 251
Single wide print 27 252
Double wide print 27 253
Self-test 27 254
Reset 27 255

*Decimal value t1<=n<=166 fDefault mode
Codes 248 and 249 were not included in the original HP 82240A
printer. Characters 148 and 160 were blank on early versions of the
HP 82240A printer. The HP 48 character set can be remapped to match
the HP 82240A printer with the OLDPRT command.

Printer Control 217

Example: The program COLS2 prints a simple graphics pattern on

the HP 82240.

Dot Example
Value

1] eo ° ° ° ° ° ° ° °

2] eo ° ° ° °

4] eo ° ° ° ° °

8| eo ° ° ° °

16] eo ° ° ° °

32| eo ° ° ° ° °

64| e eo o . .

128] eo ° ° ° ° ° ° ° °

255 197 171 149 169 213 163 255
COLS82 154.5 Bytes Checksum #ES8EDh

&
27 8
255 197 171 149
169 213 163 255
"" 1 18 START
SWAP CHR SWAP +

NEXT PR1
DROP

218

8-byte graphics command
Graphics data

Loop start
Accumulate data
Loop end, print graphics

Printer Control

PRTPAR
The reserved variable PRTPAR may only reside in the HOME
directory. Other variables of the same name in subdirectories will be
ignored by the print commands.

PRTPAR

{ delay “remap” linelen “lineterm”}

Parameter Description Default

delay Time required to print line: 0 <t < 6.9 1.8
seconds

“remap” Character set remapping string 7”
linelen Serialprint line length 80
“lineterm” Serial print line terminating characters “CRLF”

Printer Control 219

Messages

This chapter lists many of the messages built into the HP 48. Messages
not listed are those that support the various input form user interfaces.
The number ranges for those messages are listed at the end of this
chapter.

A message number supplied to the command DOERRstops a program
and displays the specified message number. The System-RPL object
JstGETTHEMSG returns a message (see System Programming).

Hex Dec General Messages
001 1 Insufficient Memory
002 2 Directory Recursion
003 3 Undefined Local Name
004 4 Undefined XLIB Name
005 5 Memory Clear
006 6 Power Lost
007 7 Warning:
008 8 Invalid Card Data
009 9 Object In Use
00A 10 Port Not Available
00B 11 No Room in Port
00C 12 Object Notin Port
00D 13 Recovering Memory
O00E 14 Try To Recover Memory?
OOF 15 Replace RAM,Press ON
010 16 No Mem To Config All
101 257 No Room to Save Stack
102 258 Can't Edit Null Char.
103 259 Invalid User Function
104 260 No Current Equation
106 262 Invalid Syntax

220 Messages

Hex Dec Object Types
107 263 Real Number
108 264 Complex Number
109 265 String
10A 266 Real Array
10B 267 Complex Array

10C 268 List
10D 269 Global Name
10E 270 Local Name
10F 271 Program
110 272 Algebraic
111 273 Binary Integer
112 274 Graphic
113 275 Tagged
114 276 Unit
115 277 XLIB Name
116 278 Directory
117 279 Library

118 280 Backup
119 281 Function
111A 282 Command
11B 283 System Binary
11C 284 Long Real
11D 285 Long Complex
11E 286 Linked Array
11F 287 Character
120 288 Code
121 289 Library Data
122 290 External

Messages 221

222

Hex Dec General Messages

123 291 Null message
124 292 LAST STACK Disabled
125 293 LAST CMD Disabled
126 294 HALT Not Allowed
127 295 Array
128 296 Wrong Argument Count
129 297 Circular Reference
12A 298 Directory Not Allowed
12B 299 Non-Empty Directory
12C 300 Invalid Definition
12D 301 Missing Library
12E 302 Invalid PPAR
12F 303 Non-Real Result
130 304 Unable to Isolate

Hex Dec Low Memory

131 305 No Room to Show Stack
132 306 Warning
133 307 Error:
134 308 Purge?
135 309 Out of Memory
136 310 Stack
137 311 Last Stack
138 312 Last Commands
139 313 Key Assignments
13A 314 Alarms
13B 315 Last Arguments
13C 316 Name Conflict
13D 317 Command Line

Hex Dec Stack Operations

201 513 Too Few Arguments
202 514 Bad Argument Type
203 515 Bad Argument Value
204 516 Undefined Name
205 517 LASTARG Disabled

Messages

Hex Dec EquationWriter

206 518 Incomplete Subexpression
207 519 Implicit () off
208 520 Implicit () on

Hex Dec Floating Point Errors

301 769 Positive Underflow
302 770 Negative Underflow
303 771 Overflow
304 772 Undefined Result
305 773 Infinite Result

Hex Dec Array

501 1281 Invalid Dimension
502 1282 Invalid Array Element
503 1283 Deleting Row
504 1284 Deleting Column
505 1285 Inserting Row
506 1286 Inserting Column

Hex Dec Statistics
601 1537 Invalid XY Data
602 1538 Nonexistent YXDAT
603 1539 Insufficient X, Data
604 1540 Invalid 2PAR
605 1541 Invalid X, Data LN(Neg)

606 1542 Invalid XY Data LN(0)
Messages 223

224

Hex Dec Plot, Solve, Stat

607 1543 Invalid EQ
608 1544 Current equation:
609 1545 No current equation.
60A 1546 Enter eqn, press NEW
60B 1547 Name the equation, press ENTER
60C 1548 Select plot type
60D 1549 Empty catalog
60E 1550 undefined
60F 1551 No stat data to plot
610 1552 Autoscaling
611 1553 Solving for
612 1554 No current data. Enter
613 1555 data point, press 2+
614 1556 Select a model

Hex Dec Alarms
615 1557 No alarms pending.
616 1558 Press ALRM to create
617 1559 Next alarm:
618 1560 Past due alarm:
619 1561 Acknowledged
61A 1562 Enter alarm, press SET
61B 1563 Select repeat interval

Hex Dec I/O, Plot, Solve, Stat
61C 1564 I/O setup menu
61D 1565 Plot type:
61E 1566 |""
61F 1567 (OFF SCREEN)
620 1568 Invalid PTYPE
621 1569 Name the stat data, press ENTER
622 1570 Enter value (zoom out if >1), press ENTER

Messages

Hex Dec 1/0, Plot, Solve, Stat
623 1571 Copied to stack
624 1572 x axis zoom w/AUTO.

625 1573 x axis zoom.
626 1574 |y axis zoom.
627 1575 x and y-axis zoom.
628 1576 IR/wire:
629 1577 ASCIl/binary:
62A 1578 baud:
62B 1579 parity:
62C 1580 checksum type:
62D 1581 translate code:
62E 1582 Enter matrix, then NEW
AO01 2561 Bad Guess(es)
A02 2562 Constant?
A03 2563 Interrupted
A04 2564 Root
AOS 2565 Sign Reversal
A06 2566 Extremum
AQ7 2567 Left
A08 2568 Right
A09 2569 Expr

Hex Dec Unit Management
BO1 2817 Invalid Unit
B02 2818 Inconsistent Units

Messages 225

226

Hex Dec I/O and Printing
C01 3073 Bad Packet Block Check
C02 3074 Timeout

C03 3075 Receive Error

C04 3076 Receive Buffer Overrun

C05 3077 Parity Error
C06 3078 Transfer Failed
C07 3079 Protocol Error

C08 3080 Invalid Server Cmd.

C09 3081 Port Closed

COA 3082 Connecting
COB 3083 Retry #
CoC 3084 Awaiting Server Cmd.
COD 3085 Sending
COE 3086 Receiving
COF 3087 Object Discarded
C10 3088 Packet #

Cll 3089 Processing Command
C12 3090 Invalid IOPAR
C13 3091 Invalid PRTPAR
C14 3092 Low Battery
C15 3093 Empty Stack
C16 3094 Row
C17 3095 Invalid Name

Hex Dec Time

DO1 3329 Invalid Date

DO02 3330 Invalid Time

DO03 3331 Invalid Repeat
DO04 3332 Nonexistent Alarm

Hex Dec Polynomial Root Finder

C001 49153 Unable to find root
Messages

Hex Dec Multiple Equation Solver
E401 58369 Invalid Mpar
E402 58370 Single Equation
E403 58371 EQ Invalid for MINIT

E404 58372 Too Many Unknowns
E405 58373 All Variables Known
E406 58374 Illegal During MROOT
E407 58375 Solving for
E408 58376 Searching

Start End Unlisted Message Numbers

B901 B99B Miscellaneous
BAO1 BA43 I/O operations
BBO1 BB3F Statistics
BCO1 BC3B Time system
BDO1 BD27 Symbolic operations
BEO1 BE77 Plotting
BFO1 BF56 Solver
E101 E129 Constants Library
E301 E304 Equation Library
E701 E708 Minehunt game

Messages 227

Menus
Custom Menus
A custom menu may be created using a list of objects supplied to the
MENU or TMENU commands.

{ Key, Key, Key; ... }

The objects that define each key in the menu may range in complexity
from a real number to a list definition with a graphics object for the
menu key label and separate actions for the primary and left- or right-
shifted planes.

The Variable CST. The MENU command stores the definition in the
reserved variable CST and immediately displays the menu. Each
directory may have a different variable CST. A name may be stored in
CST which references a variable containing the menu definition. The
TMENU command does not affect CST.

Menu Contents. Menus may contain any object, but the functionality
of the key is determined by the type of the object:

® Names work the same way as the VAR menu.

® Keys with string definitions echo the string.

® Directory names change to the directory.

® Unit objects act as unit catalog entries:

® Primary keys append the unit on the key to the numerator of the

level 1 object.

® Left-shifted keys convert the level 1 object to the unit on the key.

® Right-shifted keys append the unit on the key to the denominator

of the level 1 object.

® Backup objects act like the port 0, 1, and 2 menus.

® Labeled objects can be used to identify menu key actions and can

provide optional shifted functionality.

228 Menus

Labels. A menu key can have a label that is different than its key
action. The most versatile key definition provides separate objects for
the label, primary, left-shifted, and right-shifted actions. Either a string

or a graphics object 8 rows high by 21 columns wide may be supplied
as the label.

Example: The following list contains a menu definition for six keys:
a variable, string, unit object, labelled program, a definition that uses a
graphics object for the menu label, and labelled key definition with
shifted functionality:

MENUEX 226.5 Bytes Checksum #C051h

{
x
"HELLO"
1_m™3
¢ PROT «2% 34%

GROB 21 8 0000000404000A0A0005151080A020FFFFF100F100004000

"Kilroy was here!"

>
{ "CPL"

{
« CPL » primary action
« 'CPL' STO » left-shifted action
« 'CPL' RCL =» right-shifted action

>
>

>

{ HOME }
4:
3:
7

IEC0IEIEET
Two more extensive examples of custom menus can be found in the
Customizing the Solver example in Example Programs.

Menus 229

Built-In Menus
The commands MENU, TMENU, and RCLMENU store and recall

menu numbers in the form mm.pp, where mm is the menu number and
pp is the page number. The first two tables list menu numbers for the
HP 48G/GX,the third table lists menu numbers for the HP 48S/SX.

HP 48G/GX Menu Numbers

Menu Name # Menu Name

0 LAST Menu 30 (9) SOLVE ROOT SOLVR

1 CST 31 PRG WHILE

2 VAR 32 PRG TEST

3 MTH 33 PRG TYPE

4 MTH VECTR 34 PRG LIST

5 MTH MATR 35 PRG LIST ELEM

6 MTH MATR MAKE 36 PRG LIST PROC

7 MTH MATR NORM 37 PRG GROB

8 MTH MATR FACTR 38 PRG PICT

9 MTH MATR COL 39 PRG IN

10 MTH MATR ROW 40 PRG OUT

11 MTH LIST 41 PRG RUN

12 MTH HYP 42 (2) UNITS

13 MTH PROB 43 (2) UNITS LENG

14 MTH REAL 44 (2) UNITS AREA

15 MTH BASE 45 (2) UNITS VOL

16 MTH BASE LOGIC 46 (2) UNITS TIME

17 MTH BASE BIT 47 (2) UNITS SPEED

18 MTH BASE BYTE 48 (2) UNITS MASS

19 MTH FFT 49 (2) UNITS FORCE

20 MTH CMPL 50 (2) UNITS ENRG

21 MTH CONS 51 (2) UNITS POWR

22 PRG 52 (2) UNITS PRESS

23 PRG BRCH 53 (2) UNITS TEMP

24 PRGIF 54 (2) UNITS ELEC

25 PRG CASE 55 (2) UNITS ANGL

26 PRG START 56 (2) UNITS LIGHT

27 PRG FOR 57 (2) UNITS RAD

28 (9) EDIT 58 (2) UNITS VISC

29 PRG DO 59 (9) UNITS
230 Menus

HP 48G/GX Menu Numbers (cont.)
Menu Name # Menu Name

60 PRG ERROR IFERR 89 (9) PLOT STAT YPAR

61 PRG ERROR 90 (9) PLOT STAT PAR MODL

62 (9) CHARS 91 (9) PLOT STAT DATA

63 (9) MODES 92 (9) PLOT FLAG

64 (9) MODES FMT 93 [q) SYMBOLIC

65 (9) MODES ANGL 94 (9) TIME

66 (9) MODES FLAG 95 (9) TIME ALARM

67 (9) MODES KEYS 96 (9) STAT

68 (9) MODES MENU 97 (9) STAT DATA

69 (9) MODES MISC 98 (9) STAT YPAR

70 (9) MEMORY 99 (9) STAT >PAR MODL

71 (9) MEMORY DIR 100 (9) STAT 1VAR

72 (9) MEMORY ARITH 101 (9) STAT PLOT

73 (9) STACK 102 (9) STAT FIT

74 (9) SOLVE 103 (9) STAT SUMS

75 (9) SOLVE ROOT 104 (9) 10

76 (9) SOLVE DIFFEQ 105] (9) 10 SRVR

77 (9) SOLVE POLY 106 (9) 10 IOPAR

78 (9) SOLVE SYS 107 (9) IO PRINT

79 (9) SOLVE TVM 108 (9) IO PRINT PRTPA

80 (9) SOLVE TVM SOLVR| 109 (9) IO SERIA

81 |(9)PLOT 110 (9) LIBRARY

82 (9) PLOT PTYPE 111 (9) LIBRARY PORTS

83 (9) PLOT PPAR 112 (9) LIBRARY

84 (9) PLOT 3D 113 (9) EQ LIB

85 (9) PLOT 3D PTYPE 114 (9) EQ LIB EQLIB

86 (9) PLOT 3D VPAR 115| (9) EQ LIB COLIB

87 (9) PLOT STAT 116 (9) EQ LIB MES

88 (9) PLOT STAT PTYPE |117]| (9) EQ LIB UTILS
Menus 231

HP 48S/SX Menu Numbers

Menu Name # Menu Name

0 LAST Menu 30 SOLVE SOLVR

1 CST 31 |(9)PLOT

2 VAR 32 PLOT PTYPE
3 MTH 33 PLOT PLOTR

4 MTH PARTS 34 (9) ALGEBRA

5 MTH PROB 35 (9) TIME

6 MTH HYP 36 TIME ADJST

7 MTH MATRX 37 TIME ALRM

8 MTH VECTR 38 TIME ALRM RPT

9 MTH BASE 39 TIME SET

10 PRG 40 (9) STAT
11 PRG STK 41 STAT MODL
12 PRG OBJ 42 [9) UNITS

13 PRG DISP 43 UNITS LENG

14 PRG CTRL 44 UNITS AREA

15 PRG BRCH 45 UNITS VOL

16 PRG TEST 46 UNITS TIME

17 PRINT 47 UNITS SPEED

18 I/O 48 UNITS MASS
19 I/O SETUP 49 UNITS FORCE

20 (9)MODES 50 UNITS ENRG
21 (?)MODES 51 UNITS POWR

22 [q) MEMORY 52 UNITS PRESS

23 (P) MEMORY 53 UNITS TEMP

24 (9) LIBRARY 54 UNITS ELEC

25 LIBRARY PORT 0 55 UNITS ANGL

26 LIBRARY PORT 1 56 UNITS LIGHT

27 LIBRARY PORT 2 57 UNITS RAD

28 (9) EDIT 58 UNITS VISC

29 [q) SOLVE 59 (2) UNITS

232 Menus

User-Defined Keys

Variables, programs, commands, or strings may be assigned to any key
on the HP 48. When 1-User or User mode is active, these objects are

evaluated in place of the standard key definitions.

The ASN and STOKEYS commands may be used to assign an object to
a key. The command RCLKEYS recalls the current key assignments,
and DELKEYS deletes one or more assignments. These commands are
shown on the next page.

Setting User Mode
1-User mode may be set by pressing (q)J[USR). 1-User mode remains in
effect for only one operation. User mode may be locked by pressing
(a) twice or by setting flag —-62. When flag 61 is set (9)(USR)
toggles user mode, and 1-User mode is not available.

Key Locations
The notation rc.p specifies the location of a key where is the row,c is
the column, and p is the plane.

P Primary Planes

Oor 1 Unshifted
2 Left-shifted
3 Right-shifted

Alpha Planes

Alpha
Alpha left-shifted
Alpha right-shifted

N
Y
,

F
N

he
!

Examples: the key is 51 (or 51.1), the left-shifted (6] key is
74.2, and the alpha right-shifted is 23.6.

Standard Keys
When User mode is set, the standard key definitions apply to all keys
which have not been reassigned. The standard key definitions may be
disabled by supplying the S parameter to the DELKEYS command.
The symbol S refers to standard key definitions. An individual
standard key definition may be reactivated by supplying SKEY as the
assigned object for ASN. All standard keys may be reactivated by
supplying SKEY to STOKEYS.

User-Defined Keys 233

Flags

User flags are numbered 1 through 64. System flags are numbered
from —1 through —-64. By convention, application developers are
encouraged to restrict their use of user flags to the range 31-64.

All flags are clear by default, except for the wordsize (flags —5 to —10).

The related commands SF, CF, FS?, FC?, FS?C, and FC?C are found in
the TEST menu. RCLF and STOF return or store a list of two
binary integers representing the system and user flag sets (remember to
use a wordsize of 64).

Flag| Description | Clear Set | Default
Symbolic Math

—1 Principal Solution General solutions Principal solutions Clear

—2 Symbolic Constants Symbolic form Numeric form Clear

-3 Numeric Results Symbolic results Numeric results Clear

—4 Not used

Binary Integer Math

-5 Binary integer wordsize n + 1: 0 <=n <= 63 64

-10 Flag -10 is the most significant bit

Base -11 -12 DEC
-11 DEC Clear Clear

and BIN Clear Set

-12 OCT Set Clear

HEX Set Set

—13 Not used

Finance

-14 | TVM Payment Mode End of Period Begining of Period End

Coordinate System -15 -16 Rect.

—15 Rectangular Clear Clear

and Cylindrical Polar Clear Set

-16 Spherical Polar Set Set

Trigonometric Mode -17 -18 Degrees

—17 Degrees Clear Clear

and Radians Set Clear

—18 Grads Clear Set

234 Flags

Flag Description | Clear | Set | Default
Math Exception

—-19 Vector/complex Vector Complex Vector

—-20 Underflow Exception Return 0, Error Clear

set —23 or 24

—21 Overflow Exception Return tMAXR, Error Clear

set —25

—22 Infinite Result Error Return #MAXR, Error

set —26

—-23 Neg. Underflow Ind. No Exception Exception Clear

—24 Pos. Underflow Ind. No Exception Exception Clear

—25 Overflow Indicator No Exception Exception Clear
-26 Infinite Result Ind. No Exception Exception Clear

-27 Symbolic K+YH'=(XY) X+Y*'—'X+Y*' Clear
Decompilation

Plotting and Graphics

-28 Plotting Multiple Plotted serially Plotted simultaneously] Clear

Functions

—29 Trace mode Trace off Trace on Off
—-30 Not used

-31 Curve Filling Filling Enabled Filling Disabled Enabled

-32 Graphics Cursor Visible light bkgnd Visible dark bkgnd Light

1/0 and Printing

-33 I/O Device Wire IR Wire

—34 Printing Device IR Wire IR

-35 I/O Data Format ASCII Binary ASCII

-36 RECV Overwrite New variable Overwrite New

-37 Double-spaced Print Single Double Single

—-38 Linefeed Inserts LF Suppresses LF Inserts

-39 Kermit Messages Msg displayed Msg suppressed Clear

Time Management

—40 Clock Display No clock display All times Clear

—41 Clock Format 12 hour 24 hour 12 hour

-42 Date Format MM/DD/YY DD.MM.YY Clear

-43 Rpt. Alarm Resched. Rescheduled Not rescheduled Clear

-44 Acknowledged Alarms Deleted Saved Deleted

Notes: If flag —43 is set, unacknowledged repeat alarms are not rescheduled.

If flag —44 is set, acknowledged alarms are saved in the alarm catalog.

Flags 235

Flag| Description | Clear | Set | Default
Display Format

—45—| Set the numberofdigits in Fix, Scientific, and

—48 Engineering modes 0

Number Display Format -49 -50 STD

—49 STD Clear Clear

and FIX Clear Set

-50 SCI Set Clear

ENG Set Set

-51 Fraction Mark Decimal Comma Decimal

-52 Single Line Display Multi-line Single-line Multi

—-53 Precedence () suppressed () displayed Clear

Miscellaneous

—54 Tiny Array Elements Replaces “tiny” No replacement Replaces

pivots with 0

—55 Last Arguments Saved Not saved Saved

-56 Beep On Off On

-57 Alarm Beep On Off On

-58 Verbose Messages On Off On

-59 Fast Catalog Display Off On Off

-60 Alpha Key Action Twice to lock Onceto lock Twice

—-61 USR Key Action Twice to lock Onceto lock Twice

—62 User Mode Not Active Active Clear

—-63 Vectored Enter Off On Off

—64 Set by GETI or PUTI when their element indices wrap around

Equation Library

60 Units Type SI units English units SI

61 Units Usage Units used Units not used Used

Multiple Equation Solver

63 Variable State Change (2) recalls variable (2) toggles variable Recalls

state

236 Flags

Built-In Units

The prefixes y, Y, z, and Z are new to the HP 48G/GX.

UNIT PREFIXES
HP 48 Symbol Prefix Number Name

Y yotta +24
Z zetta +21
E exa +18 quintillion
pP peta +15 quadrillion
T tera +12 trillion
G giga +9 billion
M mega +6 million
k,K kilo +3 thousand
h, H hecto +2 hundred
D deka +1 ten
d deci -1 tenth
Cc centi 2 hundredth
m milli -3 thousandth
Hu micro -6 millionth
n nano -9 billionth
p pico -12 trillionth
f femto -15 quadrillionth
a atto -18 quintillionth
z zepto -21
y yocto -24

Prefix—unit combinations that match built-in units are: au, cd, ct,

cu, ft, flam, kph, mph, min, nmi, Pa, ph, pt, yd, and ur.

Built-In Units 237

Unit Name Type Value

a Are area 100 m?
A Ampere electric current 1A

A Angstrom length 1x10°19m

acre Acre area 4046.87260987 m?

arcmin Minute of arc planar angle 4.62962962963x1073

arcs Second ofarc planar angle 71604938272x10~7

atm Atmosphere pressure 101325 kg/mes?

au Astronomical unit length 1.495979x10!'! m
b Barn area 110728 m2

bar Bar pressure 100000 kg/mes?

bbl Barrel volume .158987294928 m3
Bq Becquerel activity 1/s

Btu Int'l Table Btu energy 105505585262 kgem?/s>
bu Bushel volume 03523907 m?
c Speed oflight speed 299792458 m/s

C Coulomb electric charge 1 Aes

°C Degree Celsius temperature

cal Calorie energy 4.1868 kgem?/s?
cd Candela luminous intensity lcd

chain Chain length 20.1168402337 m

Ci Curie activity 3.7x10'0 1/5
cm Centimeter length 01 m
cm”2 Square centimeter area .0001 m?

cm”3 Cubic centimeter volume .000001 m3

cm/s Centimeter per second speed .0l m/s

ct Carat mass .0002 kg

cu U.S. cup volume 0002365882365 m3

d Day time 86400 s

dyn Dyne force .00001 kgem/s?

erg Erg energy .0000001 kgem?/s?
eV Electron volt energy 1.60219x10~kgem?/s?

F Farad capacitance 1 A2es*/kgem?

°F Degree Fahrenheit temperature
fath Fathom length 1.82880365761 m
fbm Board foot volume .002359737216 m?
fc Footcandle illuminance 10.7639104167 cdesr/m?

Fdy Faraday electric charge 96487 Aes

fermi Fermi length 1x100m

flam Footlambert luminance 3.42625909964 cd/m?
238 Built-In Units

Unit Name Type Value

ft Int’l foot length 3048 m

ftA2 Square foot area .09290304 m?
ft"3 Cubic foot volume 028316846592 m3

ftus U.S. survey foot length .304800609601 m

ft/s Feet/second speed .3048 m/s

ft¥lbf Foot-pound—force energy 1.35581794833 kgem?/s>
g Gram mass .001 kg
ga Standard freefall acceleration 9.80665 m/s?

gal U.S. gallon volume .003785411784 m*
galC Canadian gallon volume .00454609 m>

galUK U.K. gallon volume .004546092 m3

of Gram—force force .00980665 kgem/s>
grad Grade planar angle .0025

grain Grain mass .00006479891 kg
Gy Gray absorbed dose 1 m%s?

h Hour time 3600 s

H Henry inductance 1 kgem?/A2es?

ha Hectare area 10000 m?

hp Horsepower power 745.699871582 kgem?/s3
Hz Hertz frequency 1/s

in Inch length .0254 m

in"2 Square inch area .00064516 m?

in"3 Cubic inch volume .000016387064 m*
inHg Inch of mercury pressure 3386.38815789 kg/mes?
inH20 Inch of water pressure 248.84 kg/mes?

J Joule energy 1 kgem?/s?

K Kelvin temperature 1 K

kcal Kilocalorie energy 4186 kgem?/s?

kg Kilogram mass 1 kg

kip Kilopound—force force 444822161526 kgem/s?
km Kilometer length 1 km

km~2 Square kilometer area 1 km?

knot Nautical mile per hour speed 514444444444 m/s

kph Kilometer per hour speed 277777777778 m/s

1 Liter volume 001 m?

lam Lambert luminance 3183.09886184 cd/m?

Ib Avoirdupois pound mass 45359237 kg

bf Pound—force force 4.44822161526 kgem/s?

Ibt Troy pound mass 3732417216 kg
Im Lumen luminous flux 1 cdesr

Ix Lux illuminance 1 cdesr/m?

lyr Light year length 9.46052840488x10'> m

Built-In Units 239

Unit Name Type Value

m Meter length I m

m”2 Square meter area 1 m?

m”3 Cubic meter volume 1 m?

u Micron length .000001 m

MeV Mega electron volt energy 1.60219x107!3 kgem?/s2

mho Mho electric conductance 1 AZes3/kgem?

mi Int’] mile length 1609.344 m

mi’2 Int’l square mile area 2589988.11034 m?
mil Mil length .0000254 m
min Minute time 60s

miUS U.S. statute mile length 1609.34721869 m

miUS2 U.S. statute sq. mile area 258998.47032 m?

mm Millimeter length .001 m

mmHG Millimeter of mercury pressure 133.322368421 kg/mes?

ml Milliliter volume .000001 m*
mol Mole amount of substance 1 mol

Mpc Megaparsec length 3.08567818585x10%2 m
mph Mile per hour speed .44704 m/s

m/s Meter per second speed 1 m/s

N Newton force 1 kgem/s?

nml Nautical mile length 1852 m

oz Ounce mass .028349523125 kg

ozfl U.S. fluid ounce volume 2.95735295625x10~5m3

ozt Troy ounce mass 0311034768 kg

ozUK U.K.fluid ounce volume 2.8413075x10™5m3

P Poise dynamic viscosity .1 kg/mes

Pa Pascal pressure 1 kg/mes?

pc Parsec length 3.08567818585x10' m
pdl Poundal force .138254954376 kgem/s?

ph Phot illuminance 10000 cdesr/m?
pk Peck volume .0088097675 m*
psi Pound per sq. inch pressure 6894.75729317 kg/mes>

pt Pint volume .000473176473 m*
qt Quart volume .000946352946 m*
r Radian planar angle 1591549343092

R Roentgen radiation exposure .000258 Aes/kg

°R Degree Rankine temperature

rad Rad absorbed dose 01 m%s?
rd Rod length 5.02921005842 m

rem Rem dose equivalent .01 m%s?
240 Built-In Units

Unit Name Type Value

s Second time ls

S Siemens electric conductance 1 A2es3/kgem?

sb Stilb luminance 10000 cd/m?

slug Slug mass 14.5939029372 kg

ST Steradian solid angle .0795774715459

st Stere volume 1 m3

St Stoke kinematic viscosity .0001 m%/s

Sv Sievert dose equivalent .01 m%/s?

t Metric ton mass 1000 kg

T Tesla magnetic flux 1 kg/Ass?

tbsp Tablespoon volume 1.47867647813x10~°m>
therm EEC therm energy 1055060000 kgem?/s?
ton Short ton mass 907.18474 kg

tonUK Long (U.K.) ton mass 1016.0469088 kg
torr Torr pressure 133.322368421 kg/mes?

tsp Teaspoon volume 4.92892159375x10%m?
u Unified atomic mass mass 1.6605402x10727 kg

Vv Volt electrical potential 1 kgem?/Aes3

Ww Watt power 1 kgem?/s?

Wb Weber magnetic flux 1 kgem?/Ass?

yd Int’] yard length 9144 m

yd"2 Square yard area 83612736 m?

yd"3 Cubic yard volume 764554857984 m®
yr Year time 31556925.9747 s

° Degree planar angle 2.77777777778x1073
Q Ohm electric resistance 1 kgem?/AZes3

Built-In Units 241

Equation Library Reference

Equation Reference
The command SOLVEQN may be used to place a set of equations from
the Equation Library into the built-in Solver for single equations or the
Multiple Equation Solver for multiple equation sets. The level 3 and 2
parameters specify the subject and title number. If the level I
parameter is non-zero, the picture associated with the equation set will
be placed in PICT.

SOLVEQN Command

Places Equation Library equation(s) in solver
subject_number title_number PICToption —

The following table shows the subject and title numbers that may be
used with the SOLVEQN command. If the TYPE is listed as S, the title

contains a single equation; M indicates a set of multiple equations. AY
listed under PICTURE indicates that a picture is associated with the
title.

1 COLUMNS AND BEAMS

TITLE# TITLE TYPE PICTURE

1 Elastic Buckling M Y
2 Eccentric Columns M Y
3 Simple Deflection S Y
4 Simple Slope S Y
5 Simple Moment S Y
6 Simple Shear S Y
7 Cantilever Deflection S Y
8 Cantilever Slope S Y
9 Cantilever Moment S Y
10 Cantilever Shear S Y

242 Equation Library Reference

2 ELECTRICITY

TITLE# TITLE TYPE PICTURE

1 Coulomb's Law S
2 Ohm's Law and Power M
3 Voltage Divider S Y
4 Current Divider S Y
5 Wire Resistance S
6 Series and Parallel R M Y
7 Series and Parallel C M Y
8 Series and Parallel L M Y
9 Capacitive Energy S
10 Inductive Energy S
11 RLC Current Delay M Y
12 DC Capacitor Current M
13 Capacitor Charge S
14 DC Inductor Voltage M
15 RC Transient S Y
16 RL Transient S Y
17 Resonant Frequency M
18 Plate Capacitor S Y
19 Cylindrical Capacitor S Y
20 Solenoid Inductance S Y
21 Toroid Inductance S Y
22 Sinusoidal Voltage M
23 Sinusoidal Current M

3 FLUIDS

1 Pressure at Depth S Y
2 Bernoulli Equation M Y
3 Flow with Losses M Y
4 Flow in Full Pipes M Y

Equation Library Reference 243

244

4 FORCES AND ENERGY

TITLE# TITLE TYPE PICTURE

Linear Mechanics
Angular Mechanics
Centripetal Force
Hooke's Law
1D Elastic Collisions
Drag Force
Law of Gravitation
Mass-Energy Relation n

n
n
I
Z
L
L

=
=<

GASES

Ideal Gas Law
Ideal Gas State Chg
Isothermal Expansion
Polytropic Processes
Isentropic Flow
Real Gas Law
Real Gas State Change
Kinetic Theory

HEAT TRANS R

Heat Capacity
Thermal Expansion
Conduction
Convection
Conduction+Convection
Black Body Radiation 2

z
2
2
2
2
2
M
z
u
z
z
e
z
n
z

m
o

MAGNETISM
 A

W
N

=
I
N
J
o
o
L
n
b
h
,
L
O
~
=
P
|
o
o
c
u
U
D
W
O
R
O
l
o
o
c
d
U
N
D
W
N
=

 Straight Wire
Force Between Wires

B Field in Solenoid

B Field in Toroid n
u
r
u
n
n

<
<

Equation Library Reference

8 MOTION

TITLE# TITLE TYPE PICTURE

Linear Motion
Object in Free Fall
Projectile Motion
Angular Motion
Circular Motion
Terminal Velocity
Escape Velocity n

u
n
T
X
E
L
Z

OPTICS

Law of Refraction
Critical Angle
Brewster's Law

Spherical Reflection
Spherical Refraction
Thin Lens K

o

OSCILLAT10

n
b
w
o
=
|
g
l
o
n
s
v
o
—
l
O
l
a
a
u
n
s
w

—

Mass-Spring System
Simple Pendulum
Conical Pendulum
Torsional Pendulum
Simple Harmonic 2

2
2
2
Z
2
|
5
|
2
w
z
Z
z
w
n

<
<

-
—
t

-
—
t PLANE GEOMETRY
 A

N
N

H
h
W
N
— Circle

Ellipse
Rectangle
Regular Polygon
Circular Ring
Triangle S

X
E
X
X
X C

L
R

Equation Library Reference 245

246

12 SOLID GEOMETRY

TITLE# TITLE TYPE PICTURE

1 Cone M Y

2 Cylinder M Y
3 Parallelepiped M Y
4 Sphere M Y

13 SOLID STATE DEVICES

1 PN Step Junctions M Y
2 NMOSTransistors M Y

3 Bipolar Transistors M Y
4 JFETSs M Y

14 STRESS ANALYSIS

1 Normal Stress M Y

2 Shear Stress M Y

3 Stress on an Element M Y

4 Mohr's Circle M Y

15 WAVES

1 Transverse Waves M

2 Longitudinal Waves M
3 Sound Waves M

Equation Library Reference

Constants Reference

Name Description

NA Avogadro's number
k Boltzmann constant
Vm Molar volume
R Universal gas constant

StdT Standard temperature
StdP Standard pressure

o Stefan-Boltzmann constant
Cc Speed of light in vacuum
£0 Permittivity of vacuum
no Permeability of vacuum
g Acceleration due to gravity
G Gravitational constant
h Planck's constant

hbar Dirac's constant
q Electronic charge
me Electron rest mass
gme g/me ratio (electron charge-to-mass)
mp Proton rest mass
mpme mp/me ratio (proton, electron mass)
o Fine structure constant
1%) Magnetic flux quantum
F Faraday constant
Reo Rydberg constant
a0 Bohr radius
uB Bohr magneton

Equation Library Reference 247

Name Description

uN Nuclear magneton
AO Photon wavelength
f0 Photon frequency
Ac Compton wavelength
rad 1 radian
two 2m radians
angl 180° angle (in current trig mode if no units)
c3 Wien's displacement law constant
kq k/q (Boltzmann, electronic charge)
€0q €0/q (permittivity, electronic charge)
qe0 q*€0 (electronic charge, permittivity)

esi Dielectric constant of silicon

€0X Dielectric constant of silicon dioxide

I0 Reference intensity

248 Equation Library Reference

Command Index

This index lists the commands and functions in the HP 48, grouped into
subject areas. Some commands or functions appear more than once.

BINARY INTEGER MATH

AND

ASR

STWS
XOR

Logical bit-by-bit AND

Arithmetic shift right

Binary-to-real conversion

One's complement

Logical bit-by-bit OR

Recalls the binary integer wordsize

Rotates left by one bit

Rotates left by one byte

Rotates right by one bit

Rotates right by one byte

Real-to-binary conversion

Shifts left by one bit

Shifts left by one byte

Shifts right by one bit

Shifts right by one byte

Sets the binary integer wordsize

Logical bit-by-bit XOR

COMPLEX NUMBER OPERATIONS

ABS

ARG

CONJ

C-R

i
IM

NEG

OBJ—

RE

R-C

SIGN

Vo

-V2
SQRT(x%+y?)

Returns the polar angle 0 of a coordinate pair (x,y)

Complex conjugate

Complex-to-real conversion

Symbolic constant i

Returns imaginary part of a number or array

Negates an argument

Complex decomposition

Returns the real part of a complex number

Real-to-complex conversion

Returns unit vector in the direction of the argument

Separates (x,y) into x and y or r and 6 Combines x and y into (x,y) or (r,0) if flag —19 is set

Command Index 249

ARRAY AND LIST OPERATIONS

ADD Same as +, but performs element-wise addition of objects in lists

ARRY- Separate array into individual elements

—ARRY Combines numbers into an array

CONVERT Performs a unit conversion

DOLIST Applies n arguments in list to an object

DOSUBS Executes a program or command using argumentsin a list

DTAG Removes all tags from object

ENDSUB Returns the maximum frame number for DOSUBS

EQ- Separates equation into left and right sides

GET Gets an element from a list or array

GETI Gets an element from a list or array, increments and returns the

index, and returns the list or array

HEAD Returns the first objectin a list

LIST— Separates a list into individual objects

—LIST Combines objects into a list

ALIST Computes first differences of elements in a list

SLIST Sums the elements in a list

[ILIST Returns the product of elements in a list

NSUB Returns the current frame number for DOSUBS

OBJ- Decomposes a composite object into individual components.

POS Finds an object in a list

PUT Replaces an elementin a list or array

PUTI Replaces an element in an array or list, increments and returns

the index, and returns the list or array

REPL Writes an object into another object
REVLIST Reverses the the order of elements in a list

SEQ Generates a list of results from repeated execution of an object

SIZE Finds the number of elements in a list

SORT Sorts elementsin lists

STREAM Cumulatively applies object to arguments in a list

SUB Extracts a portion of a list

—>TAG Builds a tagged object

TAIL Returns a list less its first object

—-V2 Combines two real numbers into a vector

-V3 Combines three real numbers into a vector

Vo Separates a 2- or 3-element vector

CONSTANTS

CONLIB Displays the Constants Library catalog

CONST Returns a constant from the Constants Library

i Symbolic constant i

e Symbolic constant e

MAXR Symbolic constant — maximum HP 48 rcal number
MINR Symbolic constant — minimum HP 48 real number

n Symbolic constant ©

250 Command Index

CUSTOMIZATION

ASN

DELKEYS

DEFINE

MENU

ORDER

RCLF

RCLKEYS

RCLMENU

STOF

STOKEYS

TMENU

Make a single user-key assignment

Clears user-key assignments

Creates variable or user-defined function

Selects a built-in menu or creates a custom menu

Rearranges the VAR menu

Returns a list containing the system and user flags

Lists user-key assignments

Recalls number and page of active menu

Sets system and userflags

Makes multiple user-key assignments
Displays temporary built-in or list-defined menu

DATA ENTRY AND EDITING

CHOOSE

FREEZE

INFORM

INPUT

KEY

LAST

LASTARG

MSGBOX

NOVAL

PROMPT

TEXT WAIT

Displays a choose box with specified elements

Freezes up to three display areas

Displays input form with specified fields
Suspends program and waits for data

Returns key in buffer

Returns LAST arguments (if saved)

Returns LAST arguments (if saved)

Displays message, waits for acknowledgment

No-Value placeholder for input form field data

Displays prompt and halts program

Selects the stack display

Pauses program execution or waits for a key

DEBUGGING AND ERROR HANDLING

DOERR

ERRO
ERRM

ERRN

HALT

IFERR

KILL

LAST

LASTARG

Generates system or user-defined error
Clears the last error number

Returns the last error message

Returns the last error number

Suspends program execution

Begins IFERR test

Cancels all suspended programs

Returns arguments (if saved)

Returns arguments (if saved)

Command Index 251

DIFFERENTIAL EQUATIONS

RKF Computes solution ofinitial value problem using RKF method

RKFERR Computes the change in solution and absolute error estimate

using the RKF method

RKFSTEP Computes the next solution step of the initial value problem

within a specified error tolerance using the RKF method

RRK Computes solution ofinitial value problem using RRK method

RRKSTEP Computes the next solution step of the initial value problem

within a specified error tolerance using the RRD method

RSBERR Computes the change in solution and absolute error estimate
using the Rosenbrock and RKF methods

DISPLAY MANAGEMENT

CLLCD Clears the stack display

DISP Displays an object on line n
FREEZE Freezes up to three display areas

PICTURE Enters the graphics environment

PVIEW Displays PICT at specified coordinate

TEXT Selectsthe stack display

EQUATION LIBRARY

EQNLIB Displays the Equation Library catalog

SOLVEQN Places an equation set into the Solver

FINANCE

AMORT Computes amortization

TVM Displays TVM solver menu

TVMBEG Sets payment mode to beginning of period

TVMEND Sets payment mode to end of period

TVMROOT Solves for TVM variable

GENERAL MATH

ABS Absolute value

ARG Returns the polar angle 6 of a coordinate pair (x,y)

CEIL Next greater integer

CONlJ Complex conjugate

FACT Factorial or gamma function

FFT Computes discrete Fourier transform

FLOOR Next smaller integer

FP Fractional part

HMS+ Adds in H.MS format

HMS- Subtracts in H.MS format

HMS— Converts a number from H.MS format

—HMS Converts a number to H.MS format
252 Command Index

GENERAL MATH (cont.)

IFFT

INV

IP

MANT

MAX

MIN

MOD

NEG

PCOEF

PEVAL

PROOT

-Q
-Qn

RE

RND

ROOT

RSD

R-D

SIGN

SQ
TAYLR

TRNC

XPON

XROOT

f
r
m
T
e
T
e

%CH

%T

Computes inverse discrete Fourier transform

Inverse (reciprocal)

Integer part

Mantissa of a number

Maximum of two numbers

Minimum of two numbers

Modulo

Negates an argument

Computes coefficients of a polynomial with specified roots

Evaluates a polynomial with specified coefficients at x

Computes roots of polynomial with specified real or complex

coefficients

Converts numberto fractional equivalent

—Q after factoring out ©t

Real part of a complex number

Rounds fractional part of number
Finds a numericalroot

Computes a correction to the solution of a system of equations

Radians-to-degrees conversion

Sign of a number

Squares a number

Computes a Taylor series approximation

Truncates number

Exponent of a number

x root of y
Square root

Integral

Derivative

Adds two objects

Subtracts two objects

Multiplies two objects

Divides two objects

Raises a number to a power

Percent

Percent change

Percenttotal

GRAPHICS AND PLOTTING

ANIMATE

ARC

ATICK

AUTO

AXES

BAR

BARPLOT Animates a series of grobs in PICT

Draws an arc in PICT

Specifies axes tick mark spacing

Scales y-axis

Sets intersection of axes and optionally stores labels

Selects bar plot

Draws a bar plot of the data in DAT

Command Index 253

GRAPHICS AND PLOTTING (cont.)

BLANK

BOX

CENTR

CLLCD

CONIC

C-PX

DEPND

DIFFEQ

DRAW

DRAX

ERASE

EYEPT

FUNCTION

GOR

GRAPH

GRIDMAP

—-GROB

GXOR

*H

HISTOGRAM

HISTPLOT

INDEP

LABEL

LCD-

—-LCD

LINE

NEG

NUMX

NUMY

PARAMETRIC

PARSURFACE

PCONTOUR

PDIM

PICT

PICTURE

PIXOFF

PIXON

PIX?

PMAX

PMIN

POLAR

PRLCD

PVIEW

PWRFIT

PX-C

Creates a blank graphics object

Draws a box in PICT

Sets center ofplot display
Clears the stack display
Selects conic plot

User-unit to pixel coordinate conversion

Specifies plot dependent column, variable, or range

Selects differential equation plot
Draws a plot

Draws axes

Erases PICT

Specifies location of eyepointrelative to view volume

Selects function plot
Superimposes graphics objects

Enters the graphics environment

Selects gridmap plot

Converts object into graphics object

Superimposes and inverts graphics objects

Adjusts the height ofa plot

Selects histogram plot

Draws a histogram ofthe data in DAT

Selects plot independent column, variable or range

Labels axes

Returns LCD as 131x64 pixel graphics object

Displays graphics object

Draws a line between two coordinates

Inverts a graphics object

Specifies number of 3D plot steps in x

Specifies number of 3D plot steps in y

Selects parametric plot

Selects parsurface plot

Selects pseudo-contour plot

Changesthe size of PICT

Returns the name PICT

Enters the graphics environment

Turns off a pixel in PICT

Turns on a pixel in PICT

Tests a pixel in PICT

Specifies the upper-right plot coordinates

Specifies the lower-left plot coordinates

Selects polar plot

Prints an image ofthe display

Displays PICT at specified coordinate

Selects power curve-fitting model

Pixel to user-unit coordinate conversion

254 Command Index

GRAPHICS AND PLOTTING (cont.)

RCEQ Recalls the current equation

REPL Writes one graphics object into another graphics object

RES Sets the plot resolution in user unit or pixel intervals

SCALE Specifies x and y scale in units per 10 pixels

SCATRPLOT Draws a scatter plot of the data in YDAT
SCATTER Selects scatter plot

SIZE Finds the dimensions of a graphics object

SLOPEFIELD Selects slopefield plot

STEQ Stores into reserved variable EQ

SUB Extracts a sub-grob

TEXT Displays the stack display

TLINE Toggles pixels on a straight line

TRUTH Selects truth plot

*W Adjusts the width of a plot

WIREFRAME Selects wireframe plot

XCOL Specifies YDAT column as independent variable

XVOL Specifies view volume width

XXRNG Specifies width of 3D target mapping range

YCOL Specifies a YDAT column as the dependent variable

YRNG Specifies y-axis plotting range

YSLICE Selects yslice plot

YVOL Specifies view volume depth

YYRNG Specifies height of 3D target mapping range

HYPERBOLIC OPERATIONS

ACOSH Inverse hyperbolic cosine

ASINH Inverse hyperbolic sine
ATANH Inverse hyperbolic tangent

COSH Hyperbolic cosine

EXPM Natural exponential minus |

LNPI Natural logarithm of (argument + 1)

SINH Hyperbolic sine

TANH Hyperbolic tangent

INPUT/OUTPUT AND DATA TRANSFER
 BAUDBEEP

BUFLEN

CHOOSE

CKSM

CLOSEIO

FINISH

INFORM

INPUT

Sets the baud rate

Sounds a beep

Returns number of characters in the serial buffer

Displays a choose box with specified elements

Select the checksum scheme

Closes the serial port

Terminates Kermit server mode

Displays an input form with specified fields

Suspends program and waits for data

Command Index 255

INPUT/OUTPUT AND DATA TRANSFER (cont.)

KERRM

KEY

KGET

MSGBOX

OPENIO

PARITY

PKT

RECN

RECV

SBRK

SEND

SERVER

SRECV

STIME

TRANSIO

XMIT

XRECV

XSEND

Returns the last Kermit error message

Returns key in buffer

Gets named data from a remote device

Displays message, waits for acknowledgment

Opens IR or wired port

Sets parity

Sends commands to server

Receives and renames file from remote Kermit

Receives file from remote Kermit, saves in a sender-named

object

Sends serial break

Sends object to another Kermit device

Selects Kermit Server mode

Reads characters from I/O port without Kermit

Sets serial transmit/receive timeout

Selects character translation mode

Sendsstring through 1/0 port without Kermit

Recieves an object using Xmodem protocol

Sends an object using Xmodem protocol

LOGARITHMIC OPERATIONS

ALOG

e

EXP

EXPM

LN

LNP1

LOG

XPON Antilogarithm

Symbolic constant e

Natural exponential

Natural exponential minus 1

Natural logarithm

Natural logarithm of (argument + 1)

Common (base 10) logarithm

Returns the exponent of a number

LOGICAL AND RELATIONAL OPERATORS

 ANDNOT

OR

SAME

XOR

I
#
I
v
V
V
I
A
A

Logical or binary AND
Logical or binary NOT

Logical or binary OR

Tests two objects for equality

Logical or binary XOR

Less-than comparison

Less-than-or-equal comparison

Greater-than comparison

Greater-than-or-equal comparison

Not-equal comparison

Tests two objects for equality

256 Command Index

MATRIX AND ARRAY OPERATIONS

ABS

ARRY-

—ARRY

C->R

CNRM

COL+

COL-

—-COL

COL-

CON

COND

CONJ

CROSS

CSWP

DET

—-DIAG

DIAG-

DOT

EGV

EGVL

GET

GETI

IDN
IM
LQ
LSQ

LU

NEG
PUT

PUTI

QR

R-C

RANK

RANM

RCI

RClJ

RDM

RE

RNRM

ROW+

ROW-

—-ROW

ROW

Square root of sum of squares of elements

Separate array into individual elements

Combines numbers into an array

Separates complex array into two arrays

Column norm

Adds a column vector to a matrix

Deletes a column from a matrix

Separates a matrix into column vectors

Combines column vectors into a matrix

Creates a constant array

Estimates the column norm condition number of a matrix

Complex conjugate

Cross product

Swaps two columns in a matrix
Determinant of a matrix

Returns a vector of major diagonal elements

Creates a matrix with specified diagonal elements

Dot product of two vectors

Computes eigenvalues and right eigenvectors of a square matrix

Computes eigenvalues of a square matrix

Gets an element from a list or array

Gets an element from a matrix, increments and returns the index,

and returns the matrix

Creates an identity matrix

Returns array of imaginary parts from complex array

Returns the LQ factorization of a matrix

Returns the minimum norm least-squares solution to a system of
linear equations

Returns the Crout LU decomposition of a square matrix

Negates elements in an array

Replaces an element in an list or array

Replaces an element in an list or array, increments and returns

the index, and returns the list or array

Computes the QR factorization of a matrix

Combines two arrays into complex array

Estimates the rank of a rectangular matrix

Creates an array of random integers
Multiplies a row in a matrix by a factor

Multiplies a row in a matrix by a factor and adds the result to

elements in another row

Redimensions an array

Returns array ofreal parts from complex array

Computes row norm of an array

Adds a row to a matrix

Deletes a row from a matrix

Separates a matrix into row vectors

Combines row vectors into a matrix

Command Index 257

MATRIX AND ARRAY OPERATIONS (cont.)

RREF Computes the reduced row-echelon form of a matrix

RSWP Swaps two rows in a matrix

SCHUR Computes the Schur decomposition of a square matrix

SIZE Finds the number of elements in an array or matrix

SNRM Computes the spectral norm of an array

SQ Squares a matrix

SRAD Computes the spectral radius of a square matrix

SVD Computes the singular value decomposition of a matrix

SVL Computes the singular values of a matrix

TRACE Computes the trace of a square matrix

TRN Transposes a matrix

—-V2 Combines two real numbers into a vector

-V3 Combines three real numbers into a vector

Vo Separates a 2 or 3 element vector

MEMORY MANAGEMENT

ARCHIVE Makes backup copy of HOMEdirectory

ATTACH Attacheslibrary to current directory

BYTES Returns the checksum and number of bytes of an object

CLTEACH Purges the examples directory

CLUSR Purges all user variables in the current directory
CLVAR Purges all user variables in the current directory
CRDIR Creates a directory

DEFINE Creates user-defined function

DETACH Detaches library from current directory

FREE Frees merged memory

FREEI Frees merged memory in port 1

HOME Selects the HOME directory

LIBS Lists libraries attached to current directory

MEM Returns available memory

MERGE Merges RAM card with main memory

MERGE] Merges RAM card in port 1 with main memory

NEWOB Separates object from list or backup name

ORDER Rearranges the VAR menu

PATH Returns a list showing the current path
PGDIR Purges specified directory and its contents

PINIT Initializes a RAM card in port 2

PURGE Purges one or more variables

PVARS Returns list of port objects

RCEQ Recalls the current equation

RCL Recalls the contents of a variable

RCLF Returns a list containing the system and user flags

RCLY. Recalls the current statistics matrix

RESTORE Replaces HOMEdirectory with backup copy
258 Command Index

MEMORY MANAGEMENT (cont.)

SAME

SIZE

STEQ

STO

STOY

TEACH

TVARS

TYPE

UPDIR

VARS

VTYPE
—

Tests two objects for equality

Finds the dimensions of an object

Stores into reserved variable EQ

Stores an object into a variable
Storesinto reserved variable DAT
Creates examples directory in the VAR menu

Lists the variables of specified type

Returns the type of an object
Makes parent directory the current directory

Returns list of variables in the current directory

Returns type of object in named variable

Assigns local variable(s)

MISCELLANEOUS FUNCTIONS & COMMANDS

DARCY Calculates Darcy friction factor

FO Calculates black-body emissive power

MINEHUNT Starts the Minehunt game

SIDENS Calculates intrinsic density of silicon

VERSION Displays operating system version and copyright

ZFACTOR Calculates gas compressibility factor Z

MODES AND FLAGS

BIN Sets binary base

CF Clears a system or user flag

CYLIN Sets polar/cylindrical angle mode

DEC Sets decimal base

DEG Sets Degrees mode

ENG Sets Engineering display mode

FC? Tests a system or user flag

FC?C Tests and clears a system or user flag

FIX Sets Fix display mode

FS? Tests a system or user flag

FS?C Tests and clears a system or user flag

GRAD Sets Grads mode

HEX Sets hexadecimal base

OCT Sets octal base

RAD Sets Radians mode

RCLF Returns a list containing the system and user flags

RECT Sets rectangular angle mode

SCI Sets Scientific display mode

SF Sets a system or user flag

SPHERE Sets polar/spherical angle mode

STD Sets Standard display mode
STOF Sets system and user flags
Command Index 259

MULTIPLE EQUATION SOLVER

MCALC Sets Multiple Equation Solver variable to not user-defined state

MINIT Establishes Mpar from EQ

MITM Specifiesthe title and order of menu in Mpar

MROOT Solves for single or all variables using the Multiple Equation

Solver

MSOLVR Displays the Multiple Equation Solver menu

MUSER Sets Multiple Equation Solver variable to user-defined state

PRINTING

CR Prints a carriage-right

DELAY Sets 0 <=n <= 6.9 sec delay between printed lines

OLDPRT Remaps to HP 82240A character set

PRLCD Prints an image ofthe display

PRST Prints the stack

PRSTC Prints the stack in compact format

PRVAR Prints the name and contents of one or more variables

PR1 Prints an object

PROBABILITY

COMB Combinations of n objects taken r at a time

FACT Factorial or gamma function

! Factorial or gamma function

PERM Permutations of n objects taken r at a time

RAND Returns a random number

RDZ Sets the random number seed

UTPC Upper-tail Chi-Square distribuion

UTPF Upper-tail F-distribution

UTPN Upper-tail normal distribution

UTPT Upper-tail t-distribution

PROGRAM BRANCHING AND CONTROL

CASE Begins CASEstructure

CONT Continues a halted program

DO Begins DO loop

DOERR Generates user-defined or system error

ELSE Begins ELSE clause

END Ends program structures

EVAL Evaluates an object

FOR Begins FOR loop

HALT Suspends program execution

IF Begins IF test

IFERR Begins IFERR test

IFT IF ... THEN ... END test
IFTE IF ... THEN ... ELSE ... ENDtest

260 Command Index

PROGRAM BRANCHING AND CONTROL(cont.)

INPUT

KILL

LIBEVAL

NEXT

-NUM

OFF

PROMPT

REPEAT

START

STEP

SYSEVAL

THEN

UNTIL

UPDIR

WAIT

WHILE

WSLOG
—-

Suspends program and waits for data

Cancels all suspended programs

Executes a library object

Ends FOR ... NEXT or START ... NEXT
Evaluates an object to yield a numeric result

Turns the calculator off

Displays prompt and halts program

Part of WHILE ... REPEAT ... END
Begins START ... NEXT or START ... STEP
Ends FOR ... STEP or START ... STEP
Executes a system object

Begins THEN clause

Part of DO ... UNTIL ... END
Makes parent directory current directory

Pauses program execution or waits for a key

Begins WHILE ... REPEAT ... END
Returns the four most recent system halts

Assigns local variable(s)

STACK MANIPULATION

—ARRY

CLEAR

DEPTH

DROP

DROPN

DROP2

DUP

DUPN

DUP2

LAST

LASTARG

—-LIST

OVER

PICK

ROLL

ROLLD

ROT

SWAP

Combines numbers into an array

Clears the stack

Counts the objects on the stack

Drops one object from the stack

Drops n+1 objects from the stack
Drops two objects from the stack

Duplicates one object on the stack

Duplicates n objects on the stack

Duplicates two objects on the stack

Returns LAST arguments (if saved)

Returns LAST arguments (if saved)

Combines objects into a list

Copies the object in level 2 into level 1

Copies nth object into level 1 (excluding n)

Moveslevel n+1 object to level 1 (excluding n)

Movesthe level 2 object to level n (excluding n)

Movesthe level 3 objectto level 1

Swaps the objects in levels 1 and 2

Command Index 261

STATISTICS

BAR
BARPLOT
BESTFIT
BINS
CLY
CNRM
COLY
CORR
Cov
EXPFIT
HISTOGRAM
HISTPLOT
LINFIT
LOGFIT
LR
MAXY,
MEAN
MINX,
NDIST
NY
PCOV
PVAR
PREDV
PREDX
PREDY
PSDEV
PWRFIT
RCLY
SCATRPLOT
SCATTER
SDEV
STOY,
TOT
VAR
XCOL
YCOL
XRNG
2
YLINE

Selects bar plot

Draws a bar plot of the data in YDAT
Executes LR and computes the best curve fit

Sorts DAT data into histogram bins

Purges the statistics matrix

Column norm of an array

Specifies dependent and independent columns in DAT

Correlation coefficient

Sample covariance

Selects exponential curve-fitting model

Selects histogram plot

Draws a histogram ofthe data in YDAT
Selectslinear curve-fitting model
Selects logarithmic curve-fitting model

Linear regression

Finds the maximum coordinate values in DAT

Means of the data in DAT

Finds the minimum coordinate values in DAT

Normal probability density

Number ofdata points in DAT
Population covariance

Population variances of the data in YDAT
Predicted dependent variable value

Predicted independent variable value

Predicted dependent variable value

Population standard deviation ofthe data in DAT

Selects power curve-fitting model

Recalls the current statistics matrix

Drawsa scatterplot of the data in YDAT

Selects scatter plot

Sample standard deviations ofthe data in YDAT
Storesinto reserved variable YDAT

Sums the columns in DAT

Sample variances of the data in YDAT

Specifies a YDAT column as the independent variable

Specifies a YDAT column as the dependent variable

Specifies x-axis plotting range

Summation

Best-fit line for data in DAT

Sum ofdata in independent DAT column

Sum of squares in independent YDAT column
Sum of data in dependent DAT column
Sum of squares of data in dependent YDAT column

Sum of products in independent and dependent ¥DAT columns

Appends one or more data points to YDAT

Deletes last row from JDAT

Command Index

STRING MANIPULATION

CHR

HEAD

NUM

POS

SIZE

STR—

—-STR

SUB

TAIL

Makes a one-characterstring

Returns the first character of a string

Returns character code ofa string's first character

Finds a substring in a string

Finds the number of charactersin a string

Parses and evaluates a string

Converts an object to a string

Extracts a portion of a string

Returns a string lessits first character

SYMBOLIC MANIPULATION

APPLY

COLCT

EQ-

EXPAN

e

i

TT

ISOL

LININ

TMATCH

{MATCH

->NUM

OBJ->

QUAD

QUOTE

SHOW

TAYLR

Returns an evaluated expression as the

argument to an unevaluated local name

Collectslike terms

Separates equation into left and right sides

Expands an algebraic

Symbolic constant e

Symbolic constanti

Symbolic constant ©

Isolates a variable in an equation

Test if an equation is linear in a variable
Match-and-replace, beginning with subexpressions
Match-and-replace, beginning with the top-level expression

Evaluates an objectto yield a numeric result

Separates outermost function and its arguments

Solves a quadratic polynomial

Returns argument expression unevaluated

Resolves all references to a name implicit in an algebraic
Computes a Taylor series approximation

Integral

Derivative

"Where": appends local name and value to evaluated expression

 TRIGONOMETRIC OPERATIONS

ACOS Arc cosine

ASIN Arc sine

ATAN Arc tangent

COS Cosine

D-R Degrees-to-radians conversion

R-D Radians-to-degrees conversion

SIN Sine

TAN Tangent

Command Index 263

TIME AND ALARMS

ACK Acknowledges displayed past due alarm

ACKALL Acknowledges all past due alarms

CLKADJ Add clock ticks to the system time

DATE Returns the system date

—DATE Sets the system date

DATE+ Adds a number of days to a date

DDAYS Number of days between two dates

DELALARM Deletes an alarm
FINDALARM Returns alarm index n

HMS+ Adds in H.MS format

HMS- Subtracts in H.MS format

HMS— Converts a number from H.MS format

—>HMS Converts a number to H.MS format

RCLALARM Recalls alarm from alarm list

STOALARM Stores alarm in system alarm list

TICKS Returns time in binary integer clock ticks

TIME Returns current time as number

—TIME Sets specified system time

TSTR Converts date & time numbers to string form

UNIT OBJECT OPERATIONS

CONVERT Performs a unit conversion

OBJ- Decomposes a unit object into a number and unit expression

TDELTA Calculates temperature difference
TINC Adds temperature increment

UBASE Converts unit object to SI base units

UFACT Factors specified compound unit

—UNIT Builds a unit object

UVAL Returns scalar portion of unit object

VARIABLE ARITHMETIC

DECR Decrements then returns value of a variable

INCR Increments then returns value of a variable

SCONJ Conjugates the contents of a variable

SINV Inverts the contents of a variable

SNEG Negates the contents of a variable

STO+ Storage arithmetic add

STO- Storage arithmetic subtract

STO Storage arithmetic multiply

STO/ Storage arithmetic divide

264 Command Index

Command Reference

This command reference provides information about all commands and
functions in the HP 48. Each entry lists the name, menu locations,

characteristics, description, stack diagrams, and related flags if
applicable.

NAME MEHL Characteristics
Description

Input Output
Level; Level, Level; — Level; Level, Level;

Related Flags: Flags which may affect the result
Notes: Notes about the command or function
The characteristics are encoded as follows:

Symbol Characteristic

G New HP 48G/GX command

{} Accepts arguments in lists
l Invertible

0 Differentiable
| Integrable

For instance, ACOSH is a function which has an inverse, is

differentiable, and can accept arguments in a list:

ACOSH HYF ACOSH { } { 0 Function
Inverse hyperbolic cosine

z — acoshz
‘symb> — ‘ACOSH(symb)’

 Related Flags: —1, -3

Commands or functions which can take their arguments in lists
(indicated by a { } characteristic) execute once for each argument in the
list. For instance, the program « £ 3 5 2» SF * sets user flags
3andS5. The program« £ 1 2 6 2 { 3 7 8 } * * returns the
list { 31448 }.

Command Reference 265

The following table lists the terms used in the stack diagrams. Note
that system modes may affect the interpretation of input parameters or
the results of some functions.

Term Description
obj Any object

Xory Real number
abcd Real number

(x,y) Complex number or user-unit graphics coordinates

z Real or complex number

morn Positive integer real number (rounded if non-integer)
#n or #m Binary integer

X_unit Real number with units

“string” Characterstring

{ list } List of objects

grob Graphics object
{ #x #y } Pixel coordinates
hms Real number in HH.MMSS format

time Time in HH.MMSS format
date Date in current MM.DDYYYY or DD.MMYYYY format

(flag —42)

T/F Test result: 0 (false) or non-zero (true)

‘symb’ Expression or name treated as an algebraic

[vector] Real or complex vector
[[matrix]] Real or complex matrix

[R-array] Real vector or matrix
[C-array] Complex vector or matrix

{row col} Coordinates of an element in a matrix
position Real number specifying an element in a list, vector, or matrix.

May be a list containing two real numbers specifying an
element in a matrix.

‘name’ Global or local name
‘global’ Global name
IC Or rc.p Key location: row-col or row-col.plane (see User Keys)

mm.pp Menu specified as menu.page
d.o.f. Degrees of freedom (positive integer)

port Port number: 0 — 33 or & (wildcard)
backup Backup object
library Library object

LID Library identifier (port:library number)

266 Command Reference

ABS YECTRE HES { } 0 Function
MATE HORM ARES

MTH) FEAL HES
CHMFL HES

Absolute value. Forarrays, returns the norm, defined as the square
root of the sum of squares of the absolute values of the elements.

x — Ix

x,y) — 24 y2

[vector] — llvectorll
[[matrix]] — lImatrixll

‘symb’ — ‘ABS(symb)’
x_unit — Ix|_unit

Related Flag: 3

ACK (€) ALRM ACE Command
Acknowledges displayed past due alarm
Related Flags: —43, —44

ACKALL (9) ALEM ACER Command
Acknowledgesall past due alarms
Related Flags: —43, 44

ACOS (€ { } 1 9] Function
Arc cosine

Z — acosz
‘symb’ — ‘ACOS(symb)’

Related Flags: -1,-3,-17, -18
 ACOSH HYF ACOSH { } { 0 Function
Inverse hyperbolic cosine

z — acoshz
‘symb’ — ‘ACOSH(symb)’ Related Flags: —1, -3

Command Reference 267

ADD LIZT ADD G | 9 Function
Adds two objects

21 2p — 21+7p

#n m — #n+m
n #m — #n+m

#n #m — #n+m
X_unit y_unit — x+y_unit

‘symb;’ ‘symb,” — ‘symb;+symb;’

z ‘symb’ — ‘z4+symb’
‘symb’ z — ‘symb+z’

‘symb’ x_unit — ‘symb+x_unit’
x_unit ‘symb’ — ‘x_unit+symb’

[vector] [vector] — [vectorj+vector;]

[[matrixy]] [[matrix,] — [[matrix;+matrix,]

grob; grob, — grobs

“abc” “def” — ‘“‘abcdef”
“string” object — “stringobject”
object “string” — “objectstring”

{ obj; obj, } { obj; objs} — { objj+objz objr+objs }
{ obj; objy... } objpew — { 0Objj+0bjpew Obj2+Objhey --- }

Objpew { Obj1 Objp ... } — { Objpew+0bj; Objpew+obj; ... }
Related Flags: -3, -5 through —10
Notes:
1) ADD is the same as +, except that element-wise addition is

performed on lists instead of concatenating lists. The lists must
contain the same number of objects.

1) Grobs must have the same dimensions
2) —»STR is executed on objects added to strings
3) Units must be dimensionally consistent
268 Command Reference

ALOG Gl) { } 1 9] Function
Antilogarithm

z — 107
‘symb’ — ‘ALOG(symb)’

Related Flag: -3

AMORT (9) TWH AMOR G Command
Calculates amortization from TVM variables 1%YR, PV, PMT, FV,

and PYR.

payments — principal interest balance
Related Flag: —14

AND BASE LOGIC FAHD { } Function
Tey AHL

Logical or binary AND
#n| #np, — #n3

xy — TF
x ‘symb’ — ‘x AND symb’
‘symb’ x — ‘symb AND x’

‘symb;’ ‘symby’ — ‘symb; AND symby’

“string” “stringy” — ‘“‘stringz”

Related Flags: -3, -5 through —10

Note: String arguments must have the same length

ANIMATE GROE AHIM G Command
Animates a series of grobs. The grobs may optionally be specified as
names. Delay is the delay in seconds between each grob displayed.
Repeat is the number of times to repeat the sequence (1048575 cycles
if repeat=0).

grobj ... grob, n — grob; ... grob, n

name; ... name, n — grobj ... grob, n

grob; ... grob, { n { #x #y } delay repeat } — grob; ... grob, {

name; ... name, { n { #x #y } delay repeat } — grob; ... grob, {

Notes:
1) If the list specifier is not used, the delay between each grob will

default to .1 second.
2) ANIMATEleaves its parameters on the stack.

}
}

Command Reference 269

APPLY & HAFFLY od Function
Returns an evaluated expression as the argument to an unevaluated
local name

{ symb; ... symb, } ‘name’ — ‘name(symby, ..., symb,)’

‘APPLY(symby, ..., symby)’

ARC FICT HEC Command
Draws an arc in PICT centered at (x,y), radius r, counterclockwise
from 0; to 6,

(x,y) r 616, —
{#x#y} # 0,6, >

Related Flags: —17, 18

ARCHIVE (gq) [MEMORY] (NXT) AF CHI { } Command
Makes a backup copy of HOME directory

:I0: name —
:port: name —

Related Flags: -33, -39
Note: ARCHIVE does not save the settings of user flags or the
contents of port 0.

ARG CHMFL ARG { } 0 Function
Returns the polar angle 0 of a coordinate pair (x,y)

z > 0
‘symb’ — ‘ARG(symb)’

Related Flags: —17, —18

ARRY- { } Command
Separates array into individual elements

[vector] — z;..z, {n}

[[matrix]] — z112z12 ..- Zym {nm}

—ARRY TYFE=HEE Command
Combines real or complex numbers into an array

Z]...2z5 {n} — [vector]

Z11 212 -- Zym {nm} — [[matrix]]
 ASIN «@ { } 1 9] Function
Arc sine

Z — asinz

‘symb’ — ‘ASIN(symb)’

Related Flags: —-1,-3,-17,-18
270 Command Reference

ASINH HYF ASIHH { } 1 9] Function
Inverse hyperbolic sine

z — asinhz
‘symb’ — ‘ASINH(symb)’

Related Flags: —1, -3

ASN (« KEYS A!
Make a single user-key assignment

object rcp —
‘SKEY’ rc.p — Reactivates standard key

Related Flags: —61, —62

+H { } Command

ASR EASE EIT FASE { } Command
Arithmetic shift right (preserves most significant bit)

#n; — #np

Related Flags: -5 through —12

ATAN G&G) { } 1 0] Function
Arc tangent

Z — atanz
‘symb’ — ‘ATAN(symb)

Related Flags: —1,-3,-17,-18

ATANH H¥F ATAHH { } { 9 Function
Inverse hyperbolic tangent

z — atanhz
‘symb’ — ‘ATANH(symb)

Related Flags: —1,-3, -22

ATICK (9) FEAF ATICE G Command
Specifies tick spacing on plot axes

n — User-unit spacing for both axes
{xy} — User-unit spacing for each axis

#n — Pixel spacing for both axes
{ #x#y } — Pixel spacingfor each axis
 ATTACH (9) ATTAL { } Command
Attacheslibrary to current directory

LID —
Note: Many libraries may be attached to the HOMEdirectory, but only
one library at a time may be attached to a subdirectory.
Command Reference 271

AUTO (9) AUTO Command
Scales y-axis

AXES (<) FFAR A®ES Command
Sets intersection of axes and optionally stores labels and tick spacing

(x,y) — Replaces entire axes parameter
{ (x,y) } — Replaces intersection only

{ “Xlabel” “Ylabel” } — Specifies labels only
{ (x,y) “Xlabel” “Ylabel” } — Replaces entire axes parameter

{tick } — Specifies tick spacing only
{ (x,y) tick } — Replaces entire axes parameter

{ (x,y) tick “Xlabel” “Ylabel” } — Replaces entire axes parameter

Note: “tick” specifies the spacing of tick marks on the axes, and can
have the following forms:

X User-unit spacing for both axes
#n Pixel spacingfor both axes

{xy} User-unit spacing for x- and y-axes
{ #x #y } Pixel spacingfor x- and y-axes

BAR € STAT FTIYFE EAE Command
Selects bar plot

BARPLOT (9) FLOT EBARFL Command
Draws a bar plot of the data in DAT

BAUD € I0FAR EALLD Command
Sets the serial baud rate: 1200, 2400, 4800, or 9600 (default)

n —
Note: The clock should not be displayed during 9600 baud transfers

BEEP aut EEEF { } Command
Sounds a beep. Maximum 4400 Hz, 1048 seconds.

Hz secs —
Related Flag: —56

BESTFIT [(q) (STAT) ZFARMOLL BEST Command
Selects the statistics model that yields the largest absolute value for the
correlation coefficient and executes the LR command
 BIN ERASE BEIM Command
Sets binary base
Related Flags: —5 through —12
272 Command Reference

BINS (€ 1WARE BIM= Command
Sorts the DATdata into N bins using the independent variable
column as the sort key. The level 1 result shows the number of data
points less than and greater than the available bins.

Xmin Width N= [[by] ... [bN]] [bp bg]

BLANK GROE BLAH { } Command
Creates a blank graphics object

#width #height — grob

BOX FICT BOX Command
Draws a box in PICT with opposite corners defined by user-unit or
pixel coordinates

xy) xy) —
{#x#y} {#Hy } >

BUFLEN (9)(I/0)(NXT) SERIA ELFLE Command
Returns the number of characters in the serial buffer and 1 if no error

occurred.

— n T/F

BYTES (4) EYTES Command
Returns the checksum and number of bytes of an object

‘global’ — #checksum size object + name
object — #checksum size object only

B-R EAZE E+E { } Command
Binary to real conversion

#n — n

Related Flags: —5 through —12

CASE ERCH CASE CASE Command
Begins CASE structure

CASE
test; THEN action; END

testy THEN action, END

test, THEN action, END

default-action (optional)

END

Command Reference 273

CEIL FEAL CEIL { } Function
Next greatest integer

X — n
‘symb’ — ‘CEIL(symb)’
X_unit — n_unit

Related Flag: -3

CENTR (¢9)(PLOT) FFHE CEHMT Command
Sets center of plot display. Supplying x implies (x,0).

xy) —
X —

CF TEST CF { } Command
(«) FLAG CF

Clears a system or user flag
tn —

CHOOSE (PRG) IH CHOOS G Command
Displays a choose box with the highlight positioned at the specified
element. For further details, see Data Entry.

“title” { list } start — obj 1 IE
“title” { {disp return} ...} start — 0 CHHICL or (CANCEL)

CHR (9) (CHARS) CHE { } Command
TYEE CHE

Makes a one—character string
n — “string”

CKSM (9) IOFAR CESH Command
Selects the checksum scheme

n —
1 1-digit arithmetic
2 2-digit arithmetic
3 3-digit CRC (default)

CLEAR (9) Command
Clears the stack

objects —

CLKADJ (4g) CLEA { } Command
Adds (subtracts) clock ticks to (from) the system time (8192 ticks/sec)

ticks —

CLLCD OUT CLL Command Clears the stack display

274 Command Reference

CLOSEIO (9)(170) CLOSE Command
Closesthe serial port, clears input buffer and KERRM

CLTEACH Command
Purges the EXAMPLES directory

CLUSR Command
CLVAR
Purges all user variables in the current directory

CLY (9) DATA CLE Command
Purges the statistics matrix DAT

CNRM MATE HORM CHEM { } Command
Computes the maximum value of the sums of the absolute values of all
elements over all columns

[vector] — column-norm

[[matrix]] — column-norm

Note: Since a vector is considered a 1-row matrix, CNRM returns the

sum of the absolute values of the elements in the vector.

COL+ MATE COL CoOL+ G { } Command
Inserts a column vector into a matrix or a number into a vector

[[matrix]] [vector] index — [[matrix]]’

[vector] z index — [vector]

COL- MATE COL CoOL- G { } Command
Deletes a column from a matrix or a number from a vector

[[matrix]] index — [[matrix]]’ [deleted_column]

[vector] index — [vector]’ deleted_element

COL—- MATER COL COL= G Command
Transforms a series of column vectors into a matrix

[vector] ... [vector,] n — [[matrix]]

—COL MATE COL =+COL G { } Command
Transforms a matrix into a series of column vectors

[[matrix]] — [vector]... [vector,] n
 COLCT COLT { } Command
Collects like terms

Zz > z
‘symb;” — ‘symby’

Command Reference 275

COoLY Command
Specifies dependent and independent columns in DAT

independent dependent —

COMB FROEB COME { } Function
Combinations of n objects taken m at a time

nm — Cyn,

‘symb’ n — ‘COMB(symb,n)’
n ‘symb’ — ‘COMB(n,symb)’

‘symb;’ ‘symby” — ‘COMB(symbj,symb,)’

Related Flag: -3

CON MATE MAKE COH Command
Creates a constant array or replaces the contents of an existing array or
named array

{rowscols } z — [[matrix]]

[vector] z — [vector]

[[matrix;]] z — [[matrix;]]

‘name’ Zz —

COND MATE HORM COHD G { } Function
Estimates the column norm condition number of a square matrix

[[matrix]] — condition-number

CONIC (qJ[PLOT) FTYFE COMIC Command
Selects conic plot

CONJ CHEL COM { } { 0 Function
Complex conjugate

X — X

xy) = (x-y)
[R-array] — [R-array]

[C-array;] — [C-array,]
‘symb’ — ‘CONIJ(symb)’

Related Flag: -3

CONLIB (qJ(EQLIB) COLIE COHMLI G Command
Displays the Constants Library catalog

CONST (9) COLLIE COMES G { } Function
Returns the value of the specified constant

‘constname’ —> constant
Related Flags: 60, 61
276 Command Reference

CONT € Command
Continues a halted program

CONVERT (9)(UNITS) CH { } Command
Performs a unit conversion

x_old y_new — x’_new

Xy — X

CORR © PLT wong Command
Correlation coefficient of DAT data in columns specified by COLY,

— correlation

COS CoS { } 4 9] Function
Cosine

Z — cosz
‘symb’ — ‘COS(symb)’

Related Flags: -3,-17, -18

COSH HYF COSH { } 1 9] Function
Hyperbolic cosine

Zz — coshz
‘symb’ — ‘COSH(symb)’

Related Flag: -3

cov (9) FIT CoO Command
Sample covariance of >DAT data in columns specified by COLY.

— covariance

CR 3 FRIMT LCF Command
Prints a carriage-right
Related Flags: -33, -34, -37

CRDIR (@)J(MEMORY] [IF CRLDIFE { } Command
Creates a directory

‘name’ —

CROSS WECTR CROSS { } Command
Cross product

[A] [B] —»> [AXB]
 CSWP MATER COL CSF G { } Command
Column swap

[[matrix]] index; index, — [[matrix]]’
Command Reference 277

CYLIN (9)(MODES) AHEGL FELT
YECTR CLIN

Sets polar/cylindrical coordinate mode

G Command

C-PX PICT CEFR
User-unitto pixel coordinate conversion

(xy) — {#x #y}
Note: Scaling information is derived from PPAR

{ } Command

C-R CHMFL C=*E
TYFE Caf

Complex-to-real conversion

(xy) = xy
[C-array] — [R-arrayeq] [R-arrayimag]

{ } Command

DARCY (qJ(EQLIB]) UTIL= [DHRRELCY
Calculates Darcyfriction factor

e/D Re —» d
‘symb’ x — ‘DARCY(symb,x)’
x ‘symb’ — ‘DARCY(x,symb)’

‘symb;’ ‘symb;” — ‘DARCY(symbi,symb,)’

Related Flag: -3

G { } Function

DATE € DATE Command
Returns the system date

— date
Related Flag: —42

—DATE (9) DAT Command
Sets the system date

date —
Related Flag: —42

DATE+ (q9)[TIME) (NXT) DATE +
Adds a number of days to a date

date days — date’
Related Flag: —42

{ } Command

 DDAYS (9) DDAYS
Number of days between two dates

date; date, — Adays

Related Flag: —42

{ } Command

278 Command Reference

DEC EASE [DEC Command
Sets decimal base

Related Flags: —5 through —12

DECR (9)(MEMORY] ARITH DELCFE Command
Decrements then returns the value of a variable

‘name’ — Xx

DEFINE (9) (DEF) { } Command
Creates user-defined function

‘name=expression’ —
‘name(name; ... name,)=expression(namej ... name,) —

Related Flag: -3

DEG (9) (MODES) AHGL [EG Command
Sets Degrees mode
Related Flags: —17,-18

DELALARM (9) HLEM DELAL Command
Deletes one alarm or all alarms from the system alarm list

n — Deletes specified alarm
0 — Deletes all alarms

DELAY € FRIMT FETFA DELAY Command
sets 0 <n < 6.9 second delay between printed lines (1.8 second
default)

n —

Related Flags: -33, -34

DELKEYS (4) KEYS DELE Command
Clears user-key assignments

rc.p — Clears a single key
{rc.pyrc.pa... } — Clears a list ofkeys

‘S’ — Clears standard key definitions
{ Src.pyrc.py... } — Clears list of keys & std key defs

0 — Clears all user keys Related Flags: —61, —62

Command Reference 279

DEPND (q)(PLOT) FFAR [EFH Command
Specifies plot dependent column, variable, or range

n
‘name’ —

{ name } —
start end —

—-

—-

—-

l

{ start end }
{ name start end }

{ name [initial values] tolerance }

DEPTH (9 DEFTH Command
Counts the objects on the stack

objects — objects n

DET MATE HORM DET { } Command
Determinant of a square matrix

[[matrix]] — determinant

DETACH (9) DETHLC Command
Detaches library from current directory

library-number —

—-DIAG MATE +DIAG G { } Command
Returns vector of major diagonal elements

[[matrix]] — [diagonals]

DIAG— MATE DIAG G Command
Creates matrix with specified diagonal elements

[diagonals] n — [[nXn matrix]]
[diagonals] { mn} — [[mXn matrix]]

DIFFEQ (4) FTYFE DIFFE G Command
Selects differential equation plot

DISP auT DISF { } Command
Displays an object in medium font (5x7) on line n, where n=1 is the
top line, n=7 is the bottom line

object n —
 DO BERCH [0 [rid Command
Begins DO loop

DO loop—lause UNTIL test—clause END
280 Command Reference

DOERR ERFOR DOERR Command
Generates system or user-defined error

0 — Simulates
n — Issues machine error n

#n — Issues machine error n

“string” — Issues string error

DOLIST LIET PRTals G Command
Applies n argumentsin lists to object. If object is a command, a
program containing one command, or a user-defined function then n
can be omitted.

{ list; } ... { list, } n object — { results }

{ list; } ...{ list, } command — { results }

DOSUBS LIST FROC DOSUE G Command
Executes a program or command using arguments in a list

{list} n « program®» — {list}
{list } n command — {list}

{list } n ‘name’ — {list}
{ list } « program® — {list}

{ list } command — {list }’
{ list } name — {list}’

DOT WECTRE DOT { } Command
Dot product of two vectors

[vector A] [vector B] — x

DRAW (9) DREAM Command
Draws a plot
Related Flags: -30, -31

DRAX (€) DRA Command
Draws axes

DROP @ Command
Drops one object off the stack

object —

DROPN (9) DREFH Command
Drops n and n objects from the stack

obj, ...obj; n —
 DROP2 [49)(STACK DROFE Command
Drops two objects from the stack

obj; obj; —
Command Reference 281

DTAG TYFE DTAG Command
Removesall tags from object

:tag:obj — obj

DUP (9) (STACK DF Command
Duplicates one object on the stack

obj — obj obj

DUPN «€ LF H Command
Duplicates n objects on the stack (excluding n)

obj, ...obj; n — obj, ... obj; obj, ... obj;

DUP2 (9) [STACK DLR E Command
Duplicates two objects on the stack

obj; obj, —- obj; obj, obj; objo

D-R FEAL [+R { } Command
Degrees-to-radians conversion

Xx — (m/180)x
‘symb’ — ‘D—R(symb)’

Related Flag: -3

e (J (CE) J Function
COMES OE

Symbolic constant e
— 2.71828182846
- ‘e’

Related Flags: -2, -3

EGV MATE EGY G { } Command
Computes eigenvalues and right eigenvector of a square matrix

[[matrix]] — [[eigenvector]] [eigenvalues]

EGVL MATE EGWL G { } Command
Computes eigenvalues of a square matrix

[[matrix]] — [eigenvalues]

ELSE ERLCH IF ELSE Command
ERROR IFEEE ELSE

Begins false-clause in IF or IFERR structures
 END ERCH IF EHD Command

ERCH CHASE EHD
BRCH [oO EH
ERCH WHILE EHD

ERROR IFEREE EHD

Ends program structures
282 Command Reference

ENDSUB LIST PROC EHDEZ G Command
Returns the number of frames in argumentlist for DOSUBS

— n

ENG (9)J(MODES) FMT EME Command
Sets Engineering display mode

n —

EQ- TYFE E+ { } Command
Separates equation into left and right sides

‘symbj=symb,” — ‘symb;’ ’symby’

z > z0
‘name’ — ‘name’ 0
Xx_unit — x_unit 0
‘symb’ — ‘symb’ 0

EQNLIB (9) ERQLIE ERHLI G Command
Displays the Equation Library Catalog

ERASE (4) ERASE Command
Erases PICT

ERRM ERROR EREH Command
Returns the last error message

— “error message”

ERRN ERROR EFREH Command
Returns the last error number. Returns #70000h if the last error was
generated by DOERR with a string argument.

— #n

ERRO ERROR ERED Command
Clears the last error number

EVAL EVAL Command
Evaluates an object

obj
:port:name

:port: {path name}
{ port:name; port:name; ... }

Related Flag: -3

L
i
l
l

 EXP @ { } 1 9] Function
Natural exponential

exp z
‘EXP(symb)’l

l

‘symb’ Related Flag: -3

Command Reference 283

EXPAN [(9)(SYMBOLIC] E “FH { } Command
Expands an algebraic

Zz > Z

‘symb;’ — ‘symby’

EXPFIT (9)(STAT) ZFAR HMODL EXFFI Command
Selects exponential curve-fitting model

EXPM HYFE EFM { } 1 9] Function
Natural exponential minus 1

x — exp(x)-1

‘symb’ — ‘EXPM(symb)’
Related Flag: -3

EYEPT (9)(PLOT 20 MPARE G Command

EYERT
Specifies the coordinates of the eye-point in a 3D plot

Xeye Yeye Zeye —
Note: yeye must be 1 unit less than ype,

FOx (Q)[EQLIB) UTILS Fix G { } Function
Calculates fraction of black-body emissive power at temperature T
between wavelengths 0 and %. If units are not supplied, » is assumed
to be meters and T is assumed to be K.

» T — fraction
‘symb’ T — ‘FOx(symb,T)’
» ‘symb’ — ‘FOn(%,symb)’

‘symb;’ ‘symb;’ — ‘FOx(symbj,symb,)’

Related Flag: -3

FACT { } Function
Factorial or gamma function

n — n!
x — I'(x+1)

‘symb’ — ‘FACT(symb)’
Related Flag: -3

FANNING (9)J(EQLIB) UTILS FAHHI G { } Function
Calculates Fanning friction factor

e/D Re —» f
‘symb’ x — ‘FANNING(symb,x)’
x ‘symb’ — ‘FANNING(x,symb)’

‘symb;’ ‘symby” — ‘FANNING(symb;,symb,)’

Related Flag: -3
284 Command Reference

FC? TEST FC? { } Command
(@)(MODES) FLAG FiZ7%

Tests a system or user flag

tn —» T/F

FC?C TEST =ee { } Command
(9) (MODES) FLAG FC7

Tests and clears a system or user flag
tn — T/F

FFT FFT FFT G { } Command
Discrete Fourier transform

[vector] — [vector]

[[matrix]] — [[matrix]]’
Note: Array dimensions must be a power of 2

FINDALARM (4) ALREM FIMDA Command
Returns alarm index n or O if no alarm is found
First alarm due after a date and time:

{ datetime } — n
First alarm due on a specified date:

date — n
First past due alarm:

0 > n

FINISH (9/0) sRYWE FIHIS Command
Terminates Kermit server mode

Related Flags: -33, -39

FIX (9) FMT FIX Command
Sets Fix display mode

n —

FLOOR REAL FLOOR { } Function
Next smallest integer

X — n
‘symb’ — ‘FLOOR(symb)’
X_unit — n_unit

Related Flag: -3
 FOR BRCH FOR FOR Command
Begins FORstructure

start end FOR counter loop-clause NEXT
start end FOR counter loop-clause increment STEP

Command Reference 285

FP FEAL FF { } Function
Fractional part

X = y
‘symb’ — ‘FP(symb)’
X_unit — y_unit

Related Flag: -3

FREE Command
Frees (makes independent) merged memory, moving specified objects
to the newly-independent RAM card. Retained for HP 48SX
compatibility.

{} port —
LID port —

:port:name port —
{ :port:names ... LIDs } port —

Note: Ports 1 & 2 may be merged in the HP 48SX, but only port 1 may
be merged in the HP 48GX.

FREE1 (9)(LIBRARY] FREE! G Command
Frees (makes independent) merged memory, moving specified objects
to the newly-independent RAM card in port 1

{} —
LID -

:port:name —
{ :port:names ... LIDs } —

FREEZE auT FREEZ { } Command
Freezes up to three display areas until a key is pressed. The least
significant bits of n control which areas will be frozen.

n —
Bit: 0 Status area

1 Stack & command line

2 Menu area

FS? TEST Foe { } Command
(9)(MODES) FLHG FZ

Tests a system oruser flag
tn —» T/F
 FS?C TEST FE3C { } Command

« FLAG Fg7C
Tests and clears a system or user flag

+n — T/F
286 Command Reference

FUNCTION (q)(PLOT) FTYFE FUHLC Command
Selects function plot

GET LIST ELEHM GET Command
Gets an element from a list, vector, or matrix

{ list } position — object
‘name’ position — object
[vector] position — z

[[matrix]] position — z
[[matrix]] {rowcol } — z

‘name’ {rowcol} — z
Note: Position arguments for matricies are specified in row order

GETI LIST ELEM GET] Command
Gets an element from a list, vector, or matrix, increments and returns

the position, and returns the list. Sets flag —64 if the position wraps to
the first element, otherwise clears flag —64.

{ list } position { list } position’ object
‘name’ position ‘name’ position’ object
[vector] position [vector] position’ z

[[matrix]] position [[matrix]] position’ z

[[matrix]] { row col } [[matrix]] { rowcol’ } z

‘name’ { row col } ‘name’ { row col’ } z
Relatedflag: —64
Note: Position arguments for matrices are specified in row order

L
i
d
l

GOR GROE GOR Command

Superimposes grob’ onto grob at the specified coordinates
grob (x,y) grob> — grob”’

grob { #x#y } grob® — grob”
PICT (x,y) grob’ —

PICT {#x #y } grob® —

GRAD (a) AMGL GRAD Command
Sets Grads mode

GRAPH Command

Enters the graphics environment until [CANCEL] is pressed
 GRIDMAP (4) Zr FTYFE GRID G Command
Selects the gridmap plot type
Command Reference 287

—GROB GROE =*GRO { } Command
Converts object into graphics object

object n — grob
0 EquationWriter picture
1 Smallfont (3X5)
2 Mediumfont (5x7)
3 Large font (5x9)

Related Flags: —45 through -51

GXOR GROE GHOR Command
Superimposes and inverts grob’ onto grob at the specified coordinates

grob (x,y) grob> — grob”’
grob { #x#y } grob> — grob”’

PICT (x,y) grob> —
PICT {#x #y } grob’® —

*H (a FFAR iH Command
Multiplies the vertical plot scale by specified factor (alters PPAR)

X —

HALT FUH HALT Command
Suspends program execution until either CONT or KILL are executed

HEAD (9) [CHARS HERD G Command
LIST ELEM HERD

Returns the first object in a list or the first character in a string
{ obj; oe obj, } > obj;

“ABCD” - “A”

HEX EASE HEX Command
Sets hexadecimal base

Related Flags: -5 through —12

HISTOGRAM (9) (PLOT =THT PIYPE Command
HISTO

Selects histogram plot

HISTPLOT & PLOT HISTFE Command
Draws a histogram ofthe data in DAT
 HMS+ &) HME+ { } Command
Adds in HH.MMSSs format

hms; hms, — hms; + hms,

288 Command Reference

HMS- € HIS — { } Command
Subtracts in HH.MMSSs format

hms; hms, — hms; — hms,

HMS-—> (9) HHS + { } Command
Converts a number from HH.MMSSs format

hms — x

—-HMS (9) HME { } Command
Converts a number to HH.MMSSs format

X — hms

HOME) Command
Selects the HOME directory

i «0 0 Function
COME I

Symbolic constant i

— (0,1)
- “i

Related Flags: 2, -3

IDN MATE MAKE IODH { } Command
Creates an identity matrix

n [[nXn real-identity—matrix]]

[[matrix]] [[identity—matrix]]

‘name’ — Replaces named matrix

—-

—

IF EBRCH IF IF Command
Begins IF structure
IF test THEN true-clause END
IF test THEN true-clause ELSE false-clause END

IFERR ERROR IFERFE IFERFR Command
Begins IFERR structure
IFERR trap-clause THEN error-clause END
IFERR trap-clause THEN error-clause ELSE normal-clause END

Related Flag: —55
 IFFT FFT IFFT G { } Command
Inverse discrete Fourier transform

[vector] — [vector]

[[matrix]] — [[matrix]]’

Note: Array dimensions must be a power of 2

Command Reference 289

IFT EBRCH IFT Command
IF ... THEN ... END test. Executes object if T/F is true.

T/F object —

IFTE ERICH IFTE 0 Function
IF ... THEN ... ELSE ... END test. Executes true-obj if T/F is true

T/F true-obj false-obj —
‘symb’ true-obj false-obj — ‘IFTE(symb,true-obj,false-obj)’

IM CHMEL IM { } Function
Returns imaginary part of a number or array

x => 0

xy) = y
[R-array] — [zero R-array]

[C-array] — [R-array]
‘symb’ — ‘IM(symb)’

Related Flag: -3

INCR (9) (MEMORY) ARITH IHLCE { } Command
Increments then returns the value of a variable

‘name’ — X

INDEP (49) FFARR IHLDEF Command
Specifies plot independent column, variable, or range

n
‘name’

{ name }
start end

{ start end }
{ name start end } L

i
d
l

 INFORM IM IHFOR G Command
Displays an input form and waits for user input. INFORM terminates
when the user presses CANCEL), CAHZL ,or 10k . For further
details, see Data Entry.
“title” {labels} format {defaults} {initial_values} — {data} 1
“title” {labels} format {defaults} {initial_values} — 0 cancelled
290 Command Reference

INPUT IN IMFUT Command
Suspends program, displays message, and waits for data. The modes
can be one or more of: ALG (algebraic/program-entry mode), a (alpha
lock), or V (verify syntax). If column is 0 it specifies the end of the
row. A positive value for row (or column if only the column is
specified) displays the insert cursor; a negative value specifies the
replace cursor. The level 1 list may contain any of these options in
any order. For further details, see Data Entry.

“message” “prompt” — “result”
“message” { mode(s) } — “result”

“message” { “prompt” column } “result”
“message” { “prompt” mode(s) } “result”

“message” { “prompt” { row column } mode(s) } “result”

—

—

“message” { “prompt” column mode(s) } — “result”
—-

{INV Y% + 1 9 | Function
Inverse (reciprocal)

z > 1/z

[[matrix]] — [[1/matrix]]
‘symb’ — ‘INV(symb)’
X_unit — 1/x_1/unit

Related Flag: -3

IP FEAL IF { } Function
Integer part

X — n
‘symb’ — ‘IP(symb)’
X_unit — n_unit

Related Flag: -3

ISOL (9) (SYMBOLIC) I=L { } Command
Isolates a variable in an equation

‘symb;’ ‘global’ — ‘symby’

Related Flags: —1, -3
 KERRM (¢) EERE Command
Returns the last Kermit error message

— “message”
Command Reference 291

KEY IH KEY Command
Returns 0 if no key has been pressed, otherwise 1 in level 1 and the

keycode in level 2

—- 0
— rc 1

KGET (Q/0) =RYE KGET Command
Gets named data from a remote device

‘name’ —
“name” —

{ remote-name local-name } —
{ name; name; ...} —

{ { remote-name; local-name; } name; ..} —

Related Flags: -33, -35, -36, -39

KILL RUM EILL Command
Cancels all suspended programs

LABEL (q)(PLOT)(NXT) LAEEL Command
Labels axes
Related Flag: -30

LAST ERROR LASTH Command
LASTARG
Returns arguments (saved if flag —55 is clear)

— Last_Arguments
Related Flag: —55

LCD- GROE LCDs Command
Returns LCD as 131x64 pixel graphics object

— grob

—-LCD GROE LCD Command
Displays graphics object at the upper-left corner of the stack display

grob —

LIBEVAL G Command
Executes library object given its six-digit (hex) binary integer
reference. The upper three digits are the library number and the lower
three digits are the function numberin the library.

#n —
 LIBS («) [LIBRARY] LIES Command
Lists library objects attached to current directory

— { “title,”library-number) port; ... }
292 Command Reference

LINE FICT LIME Command
Draws a line in PICT between two coordinates

(xX1y1) (x2,y2) —
{#x1#y1} {#xo#y2}) —

SLINE (9J(STAT) FIT ZELIHE Command
Returns best-fit line for data in 3;)DAT with values for a and b filled in

Linear model — ‘a+bxX’

Logarithmic model — ‘a+bxLN(X)’

Exponential model — ‘a*EXP(b*X)’

Power model — ‘axX”"b’

LINFIT (9)J(STAT) ZFAF MOLL LIMFI Command
Selects linear curve-fitting model

LININ TEST LIMIH G Command
Determines whether an equation is linear in a variable

‘symb’ ‘name’ — T/F

LIST- Command
Separates a list into individual objects

{ obj; ...obj, } — obj;...obj, n

—LIST LIST =LIST Command
Combines n objects into a list

obj; ...obj, n — { obj; ... obj, }

ALIST LIST LIT G Command
Computes the first differences of objects in a list

{ obj; obj, obj; “ee obj, } —- { objo_; obj3_» A. }

SLIST LIST ZLIST G Command
Sumsthe elements in a list

{ obj; obj; ... obj, } — obj;+obj,+...+0bj,

Related Flags: -5 through —10

[ILIST LIST wLIST G Command
Returns the product of elements in a list

{ obj; objs ... obj, } — obji*objy*...x0bj,

Related Flags: -5 through —10
 LN) { } 1 9] Function
Natural logarithm

z > Inz
‘symb’ — ‘LN(symb)’

Related Flags: —1, -3, -22
Command Reference 293

LNP1 HY F LHF1 { } 1 0 Function
Natural logarithm of (argument + 1)

Xx — In(1+x)
‘symb’ — ‘LNPI(symb)’

Related Flags: -3, -22

LOG 2) { } 1 0] Function
Common (base 10) logarithm

z — logz

‘symb’ — ‘LOG(symb)’
Related Flags: 1, -3, -22

LOGFIT (9) ZFAR MODL LOGFI Command
Selects logarithmic curve-fitting model

LQ MATE FACTRE LG G { } Command
Returns the LQ factorization of a matrix

[[matrix A]] — [[matrix L]] [[matrix Q]] [[matrix P]]

LR (9) (STAT) FIT LE Command
Computeslinear regression of DATdata

— intercept slope

LSQ MATE LS G { } Command
(9 SYS LER

Returns the minimum norm least squares solution to under- or over-
determined system of linear equations AX=B.

[vector B] [[matrix A]] — [vector X]

[[matrix B]] [[matrix A]] — [[matrix X]]

Related Flag: —54

LU MATE FACTE LU G Command
Returns the Crout LU decomposition of a square matrix

[[matrix A]] — [[matrix L]] [[matrix U]] [[matrix P]]

MANT FEAL MAHT { } Function
Returns the mantissa of a number

X = y

‘symb’ — ‘MANT(symb)’
Related Flag: -3
 TMATCH (9) (SYMBOLIC) (NXT) +MHAT Command

Match-and-replace, beginning with subexpressions
‘symb’ { ‘pattern’ ‘replacement’ } — ‘result’ T/F

‘symb’ { ‘pattern’ ‘replacement’ ‘conditional’ } — ‘result’ T/F
294 Command Reference

IMATCH (9) (SYMBOLIC) (NXT) +HMAT Command

Match-and-replace, beginning with top-level expression
‘symb’ { ‘pattern’ ‘replacement’ } — ‘result’ T/F

‘symb’ { ‘pattern’ ‘replacement’ ‘conditional’ } — ‘result’ T/F

MAX FEAL MAX { } Function
Returns the maximum of two numbers

X y — max(x,y)
Xx ‘symb’ — ‘MAX(x,symb)’
‘symb’ x — ‘MAX(symb,x)’

‘symb;’ ‘symby” — ‘MAX(symbj,symb,)’

X_unit y_unit — max(x,y)_unit

Related Flag: -3

MAXR COME MAHER d Function
Symbolic constant — maximum HP 48 real number

— 9.99999999999E499

— ‘MAXR’

Related Flags: 2, -3

MAX}, (a) IVARE MAE Command
Finds the maximum column values of the data in DAT

— X
— [X1Xm]

MCALC (4) MES HMCHAL G {} Command
Sets Multiple Equation Solver variable to not user-defined state

‘name’ —

“ALL” —
Related Flag: 63

MEAN (9) 1YAR MERAH Command
Computes means ofthe data in YDAT

— X
= | X] ... Xm |

MEM € ME IM Command
Performs garbage collection and returns available memory (see
Temporary Memory) — X

Command Reference 295

MENU «€ MEHL MEHL Command
Selects a built-in menu or creates a custom menu (see Built-in Menus)

mm.pp —
‘list-name’ —

{ names and commands } —

MERGE Command
Merges RAM card with main memory. Retained for HP 48SX
compatibility.

port —
Note: Ports 1 & 2 may be merged in the HP 48SX, but only port 1 may
be merged in the HP 48GX.

MERGE1 (9) MERG G Command
Merges RAM card in port 1 with main memory

MIN FEAL HMIH { } Function
Returns the minimum of two numbers

X y — min(x,y)
Xx ‘symb’ — ‘MIN(x,symb)’
‘symb’ x — ‘MIN(symb,x)’

‘symb;’ ‘symb;” — ‘MIN(symb,symb;)’

X_unit y_unit — min(x,y)_unit

Related Flag: -3

MINEHUNT (9) UTILS MIME G Command
Starts the Minehunt game

MINIT (a) MES MIMIT G Command
Establishes Mpar from EQ

MINR COME MIME d Function
Symbolic constant — minimum HP 48 real number

— 1.E499
— ‘MINR’

Related Flags: 2, -3

MINX © 1YAR MIME Command
FInds the minimum column values of the data in DAT

- X — [Xx]... Xm]

296 Command Reference

MITM (9) MES MITH G Command
Changesthe title and variable menu in Mpar

“title” { name; ... name, } —

Note: Use ““ to include a blank label.

MOD FEAL MOD { } Function
Modulo

Xy x mod y
X ‘symb’ ‘MOD(x,symb)’

—-

—-

‘symb’ x — ‘MOD(symb,x)’

‘symb;’ ‘symb;” — ‘MOD(symb;,symb,)’

Related Flag: -3

MROOT (4) MES HMEOO G Command
Solves for single or all variables using the Multiple Equation Solver

‘name’ — value
“ALL” —

MSGBOX auT HMESGE G { } Command
Displays a message (up to 75 characters) and waits for
acknowledgement keystroke

“message” —

MSOLVR (9) MES MSOL G Command
Displays the Multiple Equation Solver menu
Related Flag: 63

MUSER (9) MES MUSE G { } Command
Sets Multiple Equation Solver variable to user-defined state

‘name’ —
“ALL” —

Related Flag: 63
 NDIST FROE MOIST G { } Command
Normal probability density

mean variance Xx — ndist(mean, variance, X)

Command Reference 297

NEG { } { 9 Function
CHMPL HE

Negates an argument

Zz — -Z

#n; — #ny (two’s complement)

X_unit — —x_unit

[vector] — [-vector]

[[matrix]] — [[-matrix]]

‘symb’ — ‘—(symb)’
grob — inverted_grob
PICT — inverts PICT

Related Flags: -3, -5 through -10

NEWOB (4) HED Command
Separates object from list or backup object (see Temporary Memory)

object — object
Related Flag: —-55 (Should be set if freeing an object from a list)

NEXT [PRG) EF CH ESTHET HEHT Command
(PRG) ER CH FOF HE=T

Ends FOR ... NEXT or START ... NEXT

NOT EASE LOGIC HOT { } Function
TEST HOT

Logical or binary NOT
#n — #n

x — T/F
‘symb’ — ‘NOT(symb)’

“string” — “stringy”

Related Flags: -3, 5 through —10

NOVAL IH HOVA G Command
Placeholder for unspecified values in INFORM field data list

— NOVAL
Note: HP 48 operating system versions K and L contain an error —
NOVAL doesn’t place itself on the stack. If you're writing a program
to be distributed to a wide audience, it may be best to use the sequence
{ NOVAL > HEARD when you need to place NOVAL on the stack.
 NSUB LIST PROC HSUE G Command
Returns the current frame number for DOSUBS

— n

298 Command Reference

NUM (9) [CHARS] HLH { } Command
TYFE HLH

Returns character code of a string’s first character
“string” — n

-NUM (9) Command
Evaluates an object to yield a numeric result

object —» z

NUMX € 20 YFHAE G Command
HLM =

Specifies number of plot increments in X for 3D plot types (must be
272)

n —

NUMY (9) (PLOT 20 MPAR G Command

FLIP
Specifies number of plot increments in Y for 3D plot types (must be
>2)

n —
NY (9) (STAT) =LIME HE Command
Returns the number of data points in DAT

— n
OBJ— TYPE OBJ+ Command

(4) (CHARS) (NXT) CE.|+
Decomposes an object into individual components. String objects are
executed as a command line after the “ * delimiters have been
removed.

:tag:object — object “tag”

(xy) = xy
x_units — x 1_units
X+Y —-> XY 2 +

[x] ...Xp] = Xp...X, n

[x11 X12Xpml] = Xj. Xmp {nm}
{ obj; ...obj, } — obj; ...obj, n

“string” —

OCT EASE OCT Command
Sets octal base
Related Flags: —5 through —12
 OFF OFF Command
Turns the calculator off

Command Reference 299

OLDPRT (4 FRINTFETFHOLDFRE Command
Remaps printer output to the HP 82240A character set

OPENIO (9) SERIH OFEHI Command

Opens IR port or wired serial port
Related Flag: -33

OR EASE LOGIC OF { } Function
TEST oF

Logical or binary OR
#n #n) —- #n3

xy — TF
x ‘symb’ — ‘x OR symb’
‘symb’ x — ‘symb OR x’

‘symb;’ ‘symb,” — ‘symb; OR symb,’

“string” “stringy” — “strings”

Related Flags: -3, -5 through —-10

ORDER (¢)(MEMORY] [IF ORDER Command
Rearranges the VAR menu

{ names } —

OVER (€) OVER Command
Copies the object in level 2 into level 1

obj; obj; — obj, obj; obj;

PARAMETRIC (9) FTYFE FHEHR Command
Selects parametric plot

PARITY (9) IOFAR FARIT Command
Sets parity. n<0 indicates transmit parity only

n —
0 none
1 odd
2 even
3 mark
4 space

PARSURFACE (g](PLOT 2 FTYFE G Command
FARES

Selects parametric surface plot
 PATH (€ DIF FATH Command
Returns a list showing the current path

— { HOME directory—names }
300 Command Reference

PCOEF (9) FOLY FCOEF G { } Command
Computes coefficients of a polynomial with specified roots

[roots] — [coefficients]

PCONTOUR (4) 20 PTYFE G Command
FCO

Selects the pcontour plot type

PCOV (9) FIT Foo G 1 9 | Function
Population covariance of DATdata in columns specified by COLY,

— covariance

PDIM FICT FDIM Command
Changesthe size of PICT

XminsYmin) Xmax>Ymax) — Changes PICT relative to the
current user coordinates

#horizontal #vertical — Does not affect current user

coordinates

Note: The width of PICT cannot exceed 2048 pixels

PERM FROE FERM { } Function
Permutations of n objects taken m at a time

nm — Py

‘symb’ m — ‘PERM(symb,m)’
n ‘symb’ — ‘PERM(n,symb)’

‘symb;’ ‘symby” — ‘PERM(symbj,symby)

Related Flag: -3

PEVAL (9J(SOLVE] FOLY FEWAL G { } Command
Evaluates polynomial with specified coefficients at x

[coefficients] x — y

PGDIR (4) DIR FGLDIE { } Command
Purges specified directory and its contents

‘name’ —

PICK (<9) FICE Command
Copies nth object into level 1 (excluding n)

obj, ...obj; n — obj, ... obj; obj,

 PICT FICT PICT Command
Returns the name PICT to level 1

— PICT

PICTURE (4) G Command Enters the graphics environment until [CANCEL] is pressed

Command Reference 301

PINIT & FIMIT G Command
Initializes a memory card in port 2

PIXOFF FICT FIHOF Command
Turns off a pixel in PICT

(xy) —
{#x#y} >

PIXON FICT FISOH Command
Turns on a pixel in PICT

xy) —
{#x#y} —

PIX? gy FIs? Command
Tests a pixel in PICT

(x,y) —» T/F
{#x#y} — T/F

PKT «QO =rVE FET Command
Sends commands to server

“contents” “type” — “response”
Related Flags: -33, -35, -39

PMAX Command
Sets the upper-right plot coordinates

xy) —
PMIN Command
Sets the lower-left plot coordinates

xy) =
POLAR (9) FTYFE FOLAE Command
Selects polar plot

POS € Fos Command
LIZT ELEM FOZ

Finds a substring in a string or finds an object in a list
“string” “substring” — n

{list} obj — n

PREDV { } Command
Predicted dependent variable value

x — predicted_value
 PREDX (9J(STAT) FIT FEEL { } Command
Predicted independent variable value

y — predicted_value

302 Command Reference

PREDY (9) FIT FREDY { } Command
Predicted dependent variable value

x — predicted_value

PRLCD (49) FRIMT FRELCD Command
Prints an image ofthe display
Related Flags: -33, -34

PROMPT IH FROM Command
Displays prompt and halts program

“prompt” —

PROOT (9J(SOLVE]) FLY FROOT G { } Command
Computes roots of polynomial with real or complex coefficients

[z]..z,] — [roots]

Related Flag: -22

PRST (9) FRIMT FEST Command
Prints the stack

Related Flags: -33, -34, -37, -38

PRSTC (9) FRIMT FRESTC Command
Prints the stack in compact format
Related Flags: -33, -34, -37, -38

PRVAR (4) FRIMT FREWAR { } Command
Prints the name and contents of one or more variables

‘name’ —

port:name —

Related Flags: -33,-34, -37, -38

PR1 (@/0) FRIMT FR1 Command
Prints the level 1 object

object — object
Related Flags: -33, -34, -377

 PSDEV (9)(STAT] 1“AF FESDEY G Command
Computes population standard deviation of the data in DAT

— X
— [xX] X2 ... Xl

PURGE (9) (PURGE) { } Command
Purges one or more variables

‘global’ —
port:name —

LID —
PICT —

Command Reference 303

PUT LIST ELEM FUT Command
Replaces an element in an array or list

{ list; } position obj

‘name’ position obj —
[vector;] position z — [vector]

[[matrix;]] position z — [[matrix;]]

—-

—-

l { list) }

[[matrix]] { rowcol } z [[matrix;]]

‘name’ { row col } z

PUTI LIST ELEM FUTI Command
Replaces an element in an array orlist and increments and returns the
position. Sets flag —64 if the position wrapsto the first element,
otherwise clears flag —64.

{ list; } position obj

‘name’ position obj
[vector] position z

[[matrix]] position z

[[matrix;]] {rowcol } z

‘name’ {row col } z
Relatedflag: —64
Note: Position arguments for matrices are specified in row order

{ listy } position’

‘name’ position’
[vectorp] position’

[[matrix;]] position’

[[matrix;]] { row col }’

‘name’ { row col }’L
i
l
i
l
l

PVAR (4) IYAE FVAE G Command
Population variances of DAT data in columns specified by COLY,

- X
— [x1X2... Xm]

PVARS (4) FYARS Command
Returns list of backup objects and library objects and the type of
memory (or amount of memory if independent RAM)

port — {list} “ROM”
port — {list} “SYSRAM”
port — {list} bytes
 PVIEW FICT FYWIEL Command

OUT FMIEW

Displays PICT with the specified coordinate or pixel at the upper-left
corner. An empty list displays PICT centered in the display, ready to
scroll until is pressed.

xy) —
{#x #y } >

{} -
304 Command Reference

PWRFIT (9) ZFARE MODL FHEFI Command
Selects power curve-fitting model

PX-C FICT For Command
Pixel to user-unit coordinate conversion

{#x #ty} > (xy)
Note: Scaling information is derived from PPAR

-Q (€ 0 Command
Converts numbers to fractional equivalent

x — ‘ab’
(x,y) — ‘a/b+c/d*i’

‘X+1.4 —> ‘X+7/5
Note: The display mode (such as 2 FIX) affects the result

—-Qn «@ FE Command
—Q after factoring out ©

x — ‘albxw

x — ‘ab’
(x,y) — ‘a/bxm+c/dxm*i’

(x,y) — ‘a/bxm+c/dxi’

(x,y) — ‘a/b+c/dxm*i’

(x,y) — ‘a/b+c/dxi’

‘2.5,3.5)«X° > (52+72%1)*X’

Note: The display mode (such as 2 FIX) affects the result

QR MATE FACTR QF G { } Command
Computes the QR factorization of a matrix

[[matrix A]] — [[matrix Q]] [[matrix R]] [[matrix P]]

QUAD & CLAD
Solves a quadratic polynomial

‘symb;’ ‘global’ — ‘symby’

Related Flag: —1

{ } Command

QUOTE (9) (SYMBOLIC) (NXT) (NXT)LIT Function

Returns argument expression unevaluated
‘symb’ — ‘symb’

RAD (€) Command
(9) (MODES) RHEL RAL

Sets Radians mode
Related Flags: —17, 18

Command Reference 305

RAND FROE FAHD Command
Returns a random number in the range 0 < x < 1

— X

RANK MATE HORM EAHE G{ } Command
Estimates the rank of a rectangular matrix

[[matrix]] — rank
Related Flag: —54

RANM MATE MAKE EAHM G Command
Replaces or creates a random matrix of specified dimensions whose
elements are integers in the range -9 <n <9. 0 is twice as likely to
occur as other values.

[[matrix]] — [[matrix]]’

{ rows cols } — [[matrix]]

RCEQ (€ 2) Em Command
«© zr [@) En

Recalls the current contents of the variable EQ
— obj

RCI MATE FROM RCI G { } Command
Multiplies elements in a row of a matrix by a factor

[[matrix]] factor row — [[matrix]]’

RCI) MATE FEOM RCI G { } Command
Multiplies elements in row; of a matrix by a factor and adds the result

to elements in row;

[[matrix]] factor i j — [[matrix]]’

RCL) Command
Recalls the contents of a variable or backup object

‘name’ — obj
PICT — grob

:port:name — obj
:port:{path name } — obj
 RCLALARM (9) ALEM ECLAL { } Command
Recalls alarm from alarm list n — { date time action repeat }

306 Command Reference

RCLF (9) FLAG FCLF Command
Returns a list containing two binary integers representing the system
and userflags. The least significant bit of each binary integer
represents flag 1.

— { #system #user }
Note: The binary integer wordsize should be set to 64 bits

RCLKEYS (49) BEETS RCLE Command
Lists user-key assignments. S indicates standard keys are active.

— {obj rc.py ... obj, rc.py }

— { S obj; rc.pj ... obj, rc.p, }

Related Flags: —61, —62

RCLMENU (¢] MEHL RECLHM Command
Recalls number and page of active menu

— mm.pp

Note: Menu number assignments are different between the
HP 48S/SX and the HP 48G/GX. See Built-in Menus.

RCLY (9) (PLOT STAT DATH [@) E0AT Command
(9) (STAT) ATH ([P) Z0AT

Recalls the current contents of the variable DAT

— object

RCWS EASE ROCHE Command
Recalls the binary integer wordsize

— n
Related Flags: —5 through —12

RDM MATE MAKE REDH Command
Redimensions a matrix. Extra elements are dropped, missing elements
are padded with zeros.

 [vector;] {cols} — [vector;]

[vector] { rows cols} — [matrix]
[[matrix]] { cols} — [vector]

[[matrix;]] { rowscols} — [[matrix;]]

‘name’ {cols} —
‘name’ { rowscols } —

RDZ FROE EDZ Command
Sets the random number seed. 0 will use the system clock. X —

Command Reference 307

RE CHMEL RE { } Function
Returns the real part of a complex number, array, or unit object

X = X

(xy) = x
[R-array] — [R-array]

[C-array] — [R-array]

‘symb’ — ‘RE(symb)’
X_unit — X

Related Flag: -3

RECN (9 RECH Command
Receives file from remote Kermit and saves in an object named in
level 1

‘name’ —

“name” —
Related Flags: -33, -35, -36, -39

RECT (« AHGL RECT Command
WELTER Or

Sets rectangular coordinate mode

RECV (Q RECN Command
Receivesfile from remote Kermit and saves in a sender-named object
Related Flags: 33, -35, -36, 39

REPEAT ERCH WHILE REFEH Command
Begins loop clause in WHILE ... REPEAT ... END

TF —

REPL («@ FEFL Command
MATE MAKE FREFL
LIST REFL
GREOE REFL

Replaces the level 1 object onto the level 3 objectat the location
specified in level 2

{list} n {sublist} — {list’}
“string” n “substring” — “string”

grob (x,y) subgrob — grob’
grob { #x#y } subgrob — grob’

PICT (x,y) subgrob —

PICT { #x#y } subgrob —

308 Command Reference

RES G&G FFARR RES Command
Sets the plot resolution in user-unit or pixel intervals

n — Interval in user-units
#n — Interval in pixels

RESTORE (4) RESTO Command
Replaces HOMEdirectory with backup copy

backup —
:port:backup —

REVLIST LIST REWLI G Command
LIST FROC REWLI

Reverses the order of objects in a list
{ obj; ...obj, } — {obj,...obj; }

RKF (9) DIFFE REF G Command
Computes the solution of the initial value problem for a differential
equation using the Runge-Kutta-Fehlberg (4,5) method

{ to yo f(t,y) } tolerance ty — { tgypf(tyy)} tolerance

{ to yo f(t,y) } {tolerance hsize } tr — { tgyof(t,y) } tolerance

RKFERR (4) DIFFE EFEFE G Command
Computes the change in solution and absolute error estimate for a
specified step for a differential equation using the Runge-Kutta-
Fehlberg (4,5) method

{tyf(ty) } stepsize — {tyf(ty)} stepsize Ay error

RKFSTEP (49) DIFFE REFS G Command
Computes the next solution step of the initial value problem for a
differential equation within a given error tolerance using the Runge-
Kutta-Fehlberg (4,5) method
{ty f(tyy) } tolerance stepsize — {ty f(t,y) } tolerance next-step

RL EASE BIT RL { } Command
Rotates left by one bit

 #n, ad #n,

Related Flags: -5 through —12

RLB EASE EYTE ERLE { } Command
Rotates left by one byte

#n; — #n Related Flags: -5 through —12

Command Reference 309

RND EEHRL EHD { } Function
Rounds a number to n decimal places if 0 <n < 11, to n significant
digits if —-11 <n <-1, orto the current display format if n=12

Z1n = In

z ‘symb’ — ‘RND(z,symb)’
‘symb’ x — ‘RND(symb,x)’

‘symb;’ ‘symby’ — ‘RND(symbj,symby)

X_unit n — x’_unit

x_unit ‘symb’ — ‘RND(x_unit,symb)’

[vector;] n — [vector;]

[[matrix;]] — [[matrix,]]
Related Flag: -3

RNRM MATE HOEM EHEHM { } Command
Computes the maximum value of the sums of the absolute values ofall
elements over all rows

[vector] — row-norm

[[matrix]] — row-norm

Note: Since a vector is considered a 1-row matrix, RNRM returns the
element in the vector having the largest absolute value.

ROLL (9) (STACK) ROLL Command
Moveslevel n+1 objectto level 1

obj, ...obj; n — obj,_j ... obj; obj,

ROLLD (9) FOLLD Command
Moves the level 2 object to level n

obj; ... obj, n — obj, obj ... objy_;
 ROOT (@J(SOLVE]) ROT ROOT Command
Finds a numerical root ‘symb’ ‘global’ guess — root

‘symb ‘global’ { guess; guess, } — root

‘symb’ ‘global’ { guess; guess; guessy3 } — root

€«program® ‘global’ guess — root
«program#® ‘global’ { guess; guess; } — root

«program® ‘global’ { guess; guess, guessz } — root

310 Command Reference

ROT (€) ROT Command
Moves the level 3 objectto level 1

obj; obj, obj; — obj, obj; obj3

ROW+ MATE FOW REOM+ G { } Command
Inserts a row vector into a matrix or a number into a vector

[[matrix]] [vector] index — [[matrix]]’
[vector] z index — [vector]

ROW- MATE FROM ROM- G { } Command
Deletes a row from a matrix or a number from a vector

[[matrix]] index — [[matrix]]’ [deleted_row]
[vector] index — [vector]’ deleted_element

ROW- MATE EON REO G Command
Transforms a series of row vectors into a matrix

[vector] ... [vector,] n — [[matrix]]

—>ROW MATE ROM ROW G { } Command
Transforms a matrix into a series of row vectors

[[matrix]] — [vector] ... [vector,] n

RR EASE BEIT FE { } Command
Rotates right by one bit

#n; — #np

Related Flags: -5 through —12

EHSE EYTE EEE { } Command

Rotates right by one byte

#n; — #n

Related Flags: —5 through —12

RREF UHLY: PROT BEEF G Command
Computes the reduced row-echelon form of a rectangular matrix

[[matrix]] — [[matrix]]’

Related Flag: —54

RRK (9) LIFFE FRREE G Command
Computes the solution of the initial value problem for a differential
equation using the Rosenbrock (3,4) and Runge-Kutta-Fehlberg (4,5)
methods

{ to yo f(t,y) } tolerance ty — {tgypf(t,y) } tolerance

{ ty f(ty) of/0T of/dy } {tol hsize } ty —

{ ty (ty) of/0T of/dy } tolerance
Command Reference 311

RRKSTEP (4) DIFFE FREES G Command
Computes the next solution step of the initial value problem within a
specified errortolerance using the Rosenbrock (3,4) Runge-Kutta-
Fehlberg (4,5) methods

{ ty f(t,y) of/0T 0f/dy } tol stepsize —
{ ty f(t,y) of/dT dt/dy } tol next-step

RSBERR (9)(SOLVE) I'IFFE R:=SEEFR G Command
Computes the change in solution and absolute error estimate using the
Rosenbrock (3,4) and Runge-Kutta-Fehlberg (4,5) method

{ ty f(t,y) of/dT of/dy } stepsize —
{ ty f(tyy) of/oT of/dy } stepsize Ay error

RSD MATE Fos { } Command
Computes a correction to the solution of a system of equations

[vector B] [[matrix A]] [vector Z] — [vector B-AZ]

[[matrix B]] [[matrix A]] [[matrix Z]] — [[matrix B-AZ]]

RSWP MATE ROW RSHP G Command
Row swap

[[matrix]] index; index, — [[matrix]]’

R-B EASE E+E { } Command
Real-to-binary conversion

n — #n

Related Flags: —5 through —12

R—-C CHMPL R= { } Command
TYFE Fo

Real-to-complex conversion

xy — (xy)
[R-arraye,i] [R-arrayjmnael — [C-array]

R-D FEAL Fe { } Function
Radians-to-degrees conversion

x — (180/m)x

‘symb’ — ‘R—-D(symb)’
Related Flag: -3

SAME TEST SAME Command
Tests two objects for equality

obj obj, — T/F
 SBRK (a) SERIA SERE Command
Sends serial break

Related Flag: -33
312 Command Reference

SCALE («) (PLOT) FFAF ZCALE Command
Specifies x and y scale in units per 10 pixels

Xy —

SCATRPLOT (4) PEDT CRATE Command
Draws a scatter plot of the data in DAT

SCATTER (9)(PLOT STAT FTYFE SCATT Command
Selects scatter plot

SCHUR MATE FACTRE SCHUR G{} Command
Computes the Schur decomposition of a square matrix

[[matrix A]] — [[matrix Q]] [[matrix T]]

SCI (@ FMT =CI Command
Sets Scientific display mode

n —

SCONJ («) HEITH SCOH Command
Conjugates the contents of a variable (see CONJ)

‘name’ —

SDEV (@ 1WAR SDE Command
Computes sample standard deviations ofthe data in YDAT

— X
— [x1 x2... Xp]

SEND (€ SEHD Command
Sends object to another Kermit device

‘local-name’ —
{ { local-name remote-name } }

{ local-name; local-name; ..

{ { local-name; remote-name } local-name; ..

Related Flags: -33, -35, -39

—-

—-

>

-}
-}

SEQ LIST FROC SZE® G{} Command
Generateslist of results from repeated execution of object

object ‘name’ start end step — { list }

SERVER (P][) Command
Gl) SERVE SERVE

Selects Kermit Server mode

Related Flags: -33, -35, -36, -39
 SF TEST SF { } Command

(0) (MODES) FLAG =F
Sets a system or user flag

tn —
Command Reference 313

SHOW (9)(SYMBOLIC) =H Command
Resolves all name references or all name references except those in a

list
‘symb; ‘name’ — ‘symby’

‘symb;’ { name; name; .. } — ‘symby’

Related Flag: -3

SIDENS (9) UTILS SIDEH G { } Function
Intrinsic density ofsilicon as a function of temperature. If no units are
specified, T is assumed to be in K.

T — density (1/cm3)
‘symb’ — ‘SIDENS(symb)’

Related Flag: -3

SIGN REAL SIGH { } J Function
CHPL SIGH

Sign of a number. Complex numbers return a unit vector in the
direction of z

x<0 —» -1
x=0 -
x>0 — 1

ZT — Ip

X_unit — y
‘symb’ — ‘SIGN(symb)’

Related Flag: -3

SIN EIN) { } { 9] Function
Sine

Zz — sinz
‘symb’ — ‘SIN(symb)’

Related Flags: -3,-17,-18

SINH HYF SIHH { } { 9] Function
Hyperbolic sine

z — sinhz
‘symb’ — ‘SINH(symb)’

Related Flag: -3
 SINV (9) MEMORY] ARITH SIHY { } Command
Inverts the contents of a variable

‘name’ —
314 Command Reference

SIZE (9) [CHARS] SIZE Command
LIST ELEM SIZE
GROE mink

Finds the dimensions of an object

{list} — objects
‘algebraic’ — objects

“string” — characters
[vector] — { elements }

[[matrix]] — { rows cols }
grob — #width #height
PICT — #width #height

unit_object — objects
other — 1

SL EASE BIT = { } Command
Shifts left by one bit

#n; — #n

Related Flags: —5 through —12

SLB EASE EYTE SLE { } Command
Shifts left by one byte

#n; — #np

Related Flags: —5 through —12

SLOPEFIELD («) Zr PTYFE G Command
ZLOFE

Selects slopefield plot

SNEG (9) (MEMORY) AFITH SHEG { } Command
Negates the contents of a variable

‘name’ —

SNRM MATE HORM SHEH G { } Command
Computes the spectral norm of a matrix

[[matrix]] — spectral norm
 SOLVEQN (9) EQLIE SOLWE G Command
Places Equation Library equation(s) in solver, places corresponding
picture in PICT if PICT_option is non-zero. For equation numbers,
see Equation Library Reference.

subject_number title_number PICToption —
Related Flags: 60, 61

Command Reference 315

SORT LISTSORT G Command
LISTPROC (NXT) 20RT

Sorts the elements of a list in ascending order. If the list contains a
series oflists they will be sorted using their first object as the key.

{list} — {list }

SPHERE (4) AHGLSFHEFR G Command

MECTE ZFHER
Sets polar/spherical mode

SQ CQ@® { } 1 9] Function
Squares a number or matrix

z — 72
[[matrix]] — [[matrix * matrix]]

‘symb’ — ‘SQ(symb)’
X_unit — x2_unit?

Related Flag: -3

SR EASE EIT = { } Command
Shifts right by one bit

#n; — #n

Related Flags: -5 through —12

SRAD MATE HORM SEAD G { } Command
Computes the spectral radius of a square matrix

[[matrix A]] — spectral_radius

SRB EASE EYTE SRE { } Command
Shifts right by one byte

#n; — #ny

Related Flags: -5 through —12

SRECV (9) SERIA SEECW Command
Reads n characters from the I/O port, time-limited by the timeout
specified by the command STIME. T/F is 1 for successful receive.

n — “string” T/F
Related Flag: -33

START ERO ETAT ETART Command
Begins START ... NEXT or START ... STEP

start end START loop-clause NEXT
start end START loop-clause increment STEP
 STD (9 FMT =TD Command
Sets Standard display mode
316 Command Reference

STEP ERCH START STEF Command
ERCH FOR STEFF

Ends FOR ... STEP or START ... STEP

increment —

STEQ (@PLOTI(q) ER Command

(QPLOTI(NXT) =C (9) EH
Stores into reserved variable EQ

object —

STIME (9) I/O) (NXT) SERIA =TIME Command
Sets serial transmit/receive timeout. The valid range is 0 to 25.4
seconds. 0 means there is no time limit. The default timeout is 10

seconds.

seconds —

STO STO { } Command
Stores an object into a variable

obj ‘name’
obj :port:name

obj name(position)
grob PICT

backup port
library port L

i
d
d
i
l
l

STOALARM (9) ALRM STOAL Command
Stores alarm in system alarm list. Repeat interval is specified in ticks
(8192 per second).

time — alarm_number
{ date } — alarm_number

{ date time } — alarm_number
{ date time action } — alarm_number

{ date time action repeat } — alarm_number

Related Flags: —42, 43, 44
 STOF (<a) FLAG 2TOr Command
Sets the system flags or the system and user flags according to the
value of two binary integers in a list

#system —
{ #system #user } —

Related Flags: 5 through —10
Note: The wordsize should be set to 64 bits
Command Reference 317

STOKEYS (9) KEYS STOKE Command
Makes multiple user-key assignments. Including S activates standard
key definitions. Including SKEY restores standard key assignment.

S —
{SKEY rcp} —

{ obj; rcpy ... obj, rc.pp} —

{ Sobj; rcpy ... obj, rc.pp} —

Related Flags: —61, —62

STO+ (9)(MEMORY] ARITH =TiO+ { } Command
Storage addition (see +)

object ‘name’ —
‘name’ object —

STO- (9) (MEMORY) ARITH =Tio- { } Command
Storage subtraction (see —)

object ‘name’ —
‘name’ object —

STO* 9 ARITH =ToOx { } Command

Storage multiplication (see *)
object ‘name’ —
‘name’ object —

STO/ (9) (MEMORY) ARITH =T0O¢ { } Command
Storage division (see /)

object ‘name’ —
‘name’ object —

STOY, (CQ) (STAT) ATH (9) STOE Command
Stores into reserved variable DAT

object —

STR- Command
6 ¢¢Evaluates the commands defined by a string after removing the

delimiters

 “string” —

—STR (<a) (CHARS ETE Command
TYFE *E5TE

Converts an object to a string
object — “string”

Related Flags: -5 through —12, —49, -50
318 Command Reference

STREAM LIST PEOC STREA G Command
Executes object using first two objects in list, then executes object
using third object in list and the previous result until list is exhausted

{ list } object — object

STWS EASE STHE Command
Sets the binary integer wordsize

n —
#n —

Related Flags: -5 through —12

SuB (9) (CHARS) =LE Command
LIST ELEN SUE

GROE SUE

Extracts a portion of a list, string, or grob
{ list } start end — { sublist }

“string” start end — “substring”

grob (x1,y1) (x2,y2) — subgrob
grob { #x1#y;} {#xp#y,} — subgrob

PICT (x1,y1) (x2,y2) — subgrob

PICT {#x;#y,} {#xp#y,} — subgrob

SVD MATE FACTRE SYD G { } Command
Computes the singular value decomposition of a matrix

[[matrix A]] — [[matrix U]] [[matrix V]] [vector S]

SVL MATE FAHCTE WL G/{) Command
Computes the singular values of a matrix

[[matrix A]] — [vector S]

SWAP € Command
Swaps the objects in levels 1 and 2

obj, obj; — obj; obj;

SYSEVAL Command
Executes a system object at the specified address

#n —

—->TAG TWFE =+THG { } Command
Tags an object with another object

obj “tag” — :tag:obj
obj ‘name’ — :name:obj

obj x — :x:obj

Command Reference 319

TAIL (4) TAIL G Command
LIST ELEN THRIL

Returns a list less its first object or a string lessits first character

{ obj; obj, ...obj, } — { obj... obj, }

“ABCDE” — “BCDE”

TAN { } { 9] Function
Tangent

Zz — tanz

‘symb’ — ‘TAN(symb)’
Related Flags: -3,-17,-18, -22

TANH HYF THAHH { } 1 0] Function
Hyperbolic tangent

z — tanhz
‘symb’ — ‘TANH(symb)’

Related Flag: -3

TAYLR (9J(SYMBOLIC) TH'LF Command

Computes a Taylor series approximation
‘symb;’ ‘global’ degree — ‘symbj’

TDELTA (9) UTILS TODELT G Function
Calculates temperature difference

Ty T, — difference

‘symb’ x — ‘TDELTA(symb,x)’
x ‘symb’ — ‘TDELTA(x,symb)’

‘symb;’ ‘symb,” — ‘TDELTA(symb;,symbj)’

Related Flag: -3
Note: Values returned by TDELTA have level 2 units

 TEACH G Command
Creates examples directory in the VAR menu

TEXT OUT TEXT Command
Selects the stack display

THEN EFCH IF THEH Command
ERCH CHSE THEH

EREOF IFEEE THEH
Begins true-clause of IF, CASE, or IFERR structures

TF —

320 Command Reference

TICKS « TICES Command
Returns time in binary integer clock ticks (8192 per second)

— #n

TIME «@ TIME Command
Returns current time as number in 24-hour format

— HH.MMSSs

>TIME (9) +TIH Command
Sets the system time using 24-hour format

HH.MMSSs —

TINC Gl) UTILS TIMC G Function
Adds temperature increment

T, increment — T,

‘symb’ x — ‘TINC(symb,x)’

x ‘symb’ — ‘TINC(x,symb)’

‘symb;’ ‘symbp;” — ‘TINC(symb;,symb,)’

Related Flag: -3
Note: Values returned by TINC have level 2 units

TLINE FICT TLIHME Command
Toggles pixels on a straight line

(xpyn) (x2,y2) =
{#x1#y1} {#xo#y,} —

TMENU (9) MEHL THEM Command
Displays temporary built-in or list-defined menu (see Built-in Menus)

mm.pp —
‘list-name’ —

{ names and commands } —

Note: TMENU does not affect the contents of the variable CST

TOT &) 1WAR TOT Command
Sums the columns in 3DAT

— Xx
= [x1X2...Xm]
 TRACE MATE HORM TEACE G{} Command
Computes the trace (sum of diagonal elements) of a square matrix

[[matrix]] — trace
Command Reference 321

TRANSIO (9) (I/0) ILFAR TRAH Command
Selects character translation mode for I/O

n —
0 No translation

CR to CR/LF (default)
Chars 128-159

1
2
3 Chars 128-255

TRN MATE MAKE TEH { } Command
Transposes a matrix

[[matrix;]] — [[matrix;]]

‘name’ —

TRNC FEAL TRH { } Function
Truncates a numberto n decimal places if 0 <n < 11, to n significant
digits if —11 <n <—1, or to the current display formatif n=12

Zp n — 7p

z ‘symb’ — ‘TRNC(z,symb)’
‘symb’ x — ‘TRNC(symb,x)’

‘symb;’ ‘symb;” — ‘TRNC(symbj,symb;)

X_unit n — x’_unit
x_unit ‘symb’ — ‘TRNC(x_unit,symb)’

[vector;] n — [vector]

[[matrix;]] — [[matrix,]]

Related Flag: -3

TRUTH (9J(PLOT) FT%FE TRUTH Command
Selects truth plot

TSTR (9) (TIME) (NXT) (NXT) TESTE { } Command
Converts date and time numbers to string form

date time — “string”
Related Flags: 41,42

TVARS (9J(MEMORY] [IF TWHES { } Command
Lists the variables of specified type found in the current directory
(see Object Types)

type — { names }

 TVM G Command

Displays the TVM menu

TVMBEG G Command Sets Begin payment mode

322 Command Reference

TVMEND G Command
Sets End payment mode

TVMROOT (9) TWH TYME G Command
Solves for TVM variable using the other TVM variables

‘name’ — value
Related Flag: —14

TYPE TEST TYFE Command
TYPE TYFE

Returns the type of an object (see Object Types)
object — type

UBASE (9J(UNITS]) LIEASE { } Function
Converts unit object to SI base units

X = X
X_units — y_base-units

‘symb’ — ‘UBASE(symb)’
Related Flag: -3

UFACT (9)(UNITS]) LIFALCT { } Command
Factors specified compound unit

X y_units — X
X_units; y_units, — X’_unitsy * unitsj

—UNIT TYFE =+UHIT { } Command

«) +LMIT
Combines a number and unit object to create a new unit object

X y_units — X_units

UNTIL EEL A Tr Command
Beginstest-clause of DO ... UNTIL ... END

UPDIR [9] Command
Makes parent directory the current directory

UTPC FROE UTR { } Command
Upper-tail Chi-Square distribution

d.of. x — utpc(d.o.f.x)

UTPF FROE UTFF { } Command
Upper-tail F-distribution

d.o.f.; dof, x — utpf(d.o.f.j, d.o.f.y, x)
 UTPN FROE UTFH { } Command
Upper-tail normal distribution

mean variance Xx — utpn(mean, variance, X)
Command Reference 323

UTPT FROE UTFT { } Command
Upper-tail Student’s t-distribution

d.of. x — utpt(d.o.f. x)

UVAL (QJ (UNITS) LIAL { } Function
Returns scalar portion of unit object

X — X
X_unit — X

‘symb’ — ‘UVAL(symb)’
Related Flag: -3

—-V2 NECTR #ME { } Command
Combines two real numbers into 2D vector or complex number

xy = [xy]
xy = [x&y]
xy = (xy)
Xy = (x£y)

Related Flags: -15,-16,-19

—V3 NMECTE #43 { } Command
Combines three real numbers into 3D vector

Xyz > [xyz]
Xyz = [x£ygz]

Xyz > [x&£ygdzg]

Related Flags: 15, -16

Vo NECTR M2 { } Command
Separates a 2- or 3-element vector. If there are more than 3 elements,
the current Coordinate System (flags —15 and —16) is ignored.

[xy] = xy
[xr £y9] — X; yo

[xyz] —» xyz

[Xrsyoz] — Xr yp z

[Xr<Yo£zg] — Xr Yo 2g
xy) = xy

(XpLy) — Xr £Yyg
[x1 X2...Xp] = Xp X32... Xp Related Flags: -15,-16

324 Command Reference

VAR (€ 1WAF WHE Command
Sample variances of YDAT data in columns specified by COLY,

— X

= [XX ... Xp]

VARS (9) DIE WARS Command
Returns list of variables in the current directory

— { names }

VERSION G Command
Returns strings identifying the operating system version & copyright

— “version” “copyright”

VTYPE TYFE WTY PE { } Command
Returns the type of an object in the named variable, or —1 if the
variable is nonexistent (see Object Types)

‘name’ — type
:port:name —> type

*W (9) (PLOT) FFHE #h Command
Multiplies the horizontal plot scale by specified factor (alters PPAR)

X —

WAIT IH WALT Command
Pauses program execution or waits for a key

seconds —
0 — rc.p Doesn’t update menu

—-1 — rc.p Displays current menu

WHILE BRECH WHILE WHILE Command
Begins WHILE ... REPEAT .. END

WHILEtest-clause REPEAT loop-clause END

WIREFRAME (9) zr FTYFE G Command
WIREF

Selects wireframe plot

WSLOG Command
Returns four strings indicating the time, date, and source of the four
most recent system halts (see System Operations)

— “stringg” “stringy” “string;

Related Flag: —42

9 CCstring”

 XCOL &) ZFAR HCOL Command
Specifies DAT column as the independent variable

x-column —
Command Reference 325

XMIT (€) SERIA EMIT Command
Sends string through I/O port without Kermit

“string” — 1
“string” — “unsent string” 0

Related Flag: -33

XOR ERSE LOGIC HOR { } Function
TEST HOR

Logical or binary XOR
#n; #np, — #n3

xy — TF
x ‘symb’ — ‘x XOR symb’
‘symb’ x — ‘symb XOR x’

‘symb;’ ‘symb;’ — ‘symb; XOR symb;’

“string,” “stringy” — “strings”

Related Flags: -3, 5 through —10

Note: String arguments must have the same length.

XPON FEAL HEPOH { } Function
Returns the exponent of a number

X = n
‘symb’ — ‘XPON(symb)’

Related Flag: -3

XRECV (9) HREELY G Command
Receive an object using Xmodem protocol (binary mode only)

‘name’ —
Related Flag: -33
 XRNG (€ FEAR HEHG Command
Specifies x-axis plotting range
326 Command Reference

XROOT (PY) { } Function
Returns xt root of y

yx = ify

y_unit x — xy_ unit!’ *

y ‘symb’ — ‘XROOT(symb,y)’

‘symb’ x — ‘XROOT(x,symb)’

‘symb;’ ‘symby” — ‘XROOT(symbj,symb;)’

y_unit ‘symb’ — ‘XROOT(symb,y_unit)’
Related Flag: -3

XSEND (9) HEEH G Command
Sends an object using Xmodem protocol (binary mode only)

‘name’ —

Related Flag: -33

XVoL (qJ(PLOT 20 WFAR #¥0L G Command
Sets the width of the 3D plotting volume

Xleft Xright —

XXRNG (g9)J(PLOT 20 MEARE HEEH G Command
Sets the width of 3D target mapping range for gridmap and parsurface
plots

Xmin Xmax__

YCOL (9) (STAT) ZFAR wCOL Command
Specifies a DAT column as the dependent variable

y-column —

YRNG [(9)J[PLOT] FFAR YRHG Command
Specifies y-axis plotting range

Ymin Ymax

YSLICE (49)(PLOT Zr FTYFE %ELIC G Command
Selects yslice plot

YVOL € 20 MPAR YMVOL G Command
Sets the depth of the 3D plotting volume

Ynear Yfar
 YYRNG (4q](PLOT 20 YPHAE YYEH G Command
Sets depth of 3D target mapping range for gridmap and parsurface
plots Ymin Ymax

Command Reference 327

ZFACTOR (9) UTIL: ZFRALCT G { } Function
Calculates gas compressibility factor Z

Tr Pr » Z
‘symb’ x — ‘ZFACTOR(symb,x)’
x ‘symb’ — ‘ZFACTOR(x,symb)’

‘symb;’ ‘symby,” — ‘ZFACTOR(symbi,symb,)’

Related Flag: -3

ZVOL &) 2 “FARE Z%0L G Command
Sets the height of the 3D plotting volume

Zlow Zhigh —

Na { } 1 9] Function

Square root
Zz > Jz

X_unit — Vxunit’?

‘symb’ — “V(symb)’
Related Flags: —1, -3

|) { } 9] Function

Integral
lower_limit upper_limit ‘integrand’ ‘name’ — integral

‘[(lower_limit, upper_limit, integrand, name)’

Related Flags: —3, —45 through -50
Notes:
1) name is the variable of integration.
2) Set Numerical Results mode (flag —3) to perform a numerical

integration on the stack.
3) The display mode (such as 2 FIX) specifies the accuracy factor for

numerical integration, and the uncertainty of integration is stored
in reserved variable JERR
 d) 6) { } 0] Function
Derivative

‘symb;’ ‘name’ — ‘symby’ Complete

‘oname(expression)’ Stepwise
Related Flag: -3
Note: name is the variable of differentiation

328 Command Reference

Tt © od Function
Symbolic constant ©

— 3.14159265359
- ‘Tv

Related Flags: 2, -3

> PE { } 0 Function
Summation

‘summation_index’ initial_value final_value ‘summand’ — sum

‘>(summation_index=initial_value,final_value,summand)’
Related Flag: -3

yX (a) SUMS EE Command
Sum of data in independent DATcolumn

— 2X

YXA2 (€ SUMS EHCE Command
Sum of squares of data in independent >DAT column

— YX?

SY (9) SHMEs EY Command
Sum of data in dependent DATcolumn

— YY;

>YA2 &) SUMS EYE Command
Sum of squares of data in dependent >DAT column

ad YY?

>X*Y (@ SHME Zen Command
Sum of products of data in independent and dependent 3DAT columns

— >XiY;

+ [9 DATA Z+ Command
(@)PLOTJ(NXT) STAT LATA Z+

Appends one or more data points to >DAT
X —

[vector] —

matrix]] ——

 HTH ZE- Command

STHT DATH -

y— iPLO
w from

— SEDeletes last r To

— X

— [vector]
Command Reference 329

< TEST + { } Function
Less-than comparison

Xy x<y (T/F)
“string;” “string,” T/F

X_unit; y_unity T/F

X ‘symb’ ‘x<symb’
‘symb’ x ‘symb<x’

X_unit ‘symb’

‘symb’ x_unit’
‘X_unit<symb’

‘symb<x_unit’

I
l
l
i
l
l
l
l
i
l

‘symb;’ ‘symb;’ ‘symb<symb,’

:tag:object object T/F
object :tag:object T/F

object object T/F
Related Flag: -3
Notes:
1) Strings are compared alphabetically
2) Units must be dimensionally consistent
3) Tags are dropped before the comparison

> TEST Bo { } Function

Greater-than comparison
Xy x>y (T/F)

X_unit; y_unity T/F

Xx ‘symb’ ‘x>symb’
‘symb’ x ‘symb>x’

‘X_unit>symb’

‘symb>x_unit’
X_unit ‘symb’
‘symb’ x_unit’

L
i
l
d
d
l
i
l
l
l

‘symb;’ ‘symby’ ‘symb{>symb,’

:tag:object object T/F
object :tag:object T/F

object object T/F
Related Flag: -3
Notes:
1) Strings are compared alphabetically
2) Units must be dimensionally consistent
3) Tags are dropped before the comparison
330 Command Reference

< TEST 2 { } Function
Less-than-or-equal comparison

Xy x<y (T/F)

“string” “stringy” T/F

X_unit; y_unity T/F

Xx ‘symb’ ‘Xx<symb’
‘symb’ x ‘symbsx’

‘X_unit<symb’
‘symb<x_unit’

X_unit ‘symb’
‘symb’ x_unit’

N
R

A
SN
A
A
A
A

‘symb;’ ‘symby’ ‘symb{<symb;’

:tag:object object T/F
object :tag:object T/F

object object T/F
Related Flag: -3
Notes:
1) Strings are compared alphabetically
2) Units must be dimensionally consistent
3) Tags are dropped before the comparison

> TEST = { } Function
Greater-than-or-equal comparison

xy — x2y (T/F)
X_unit; y_unity — T/F

X ‘symb’ — ‘x2symb’
‘symb’ x — ‘symb2x’

X_unit ‘symb’ — ‘x_unit=2symb’

‘symb’ x_unit’ — ‘symb2=x_unit’
‘symb;’ ‘symby’ — ‘symb;=symb,’

:tag:object object — T/F
object :tag:object — T/F

object object — T/F
Related Flag: -3
Notes:
1) Strings are compared alphabetically
2) Units must be dimensionally consistent
3) Tags are dropped before the comparison
Command Reference 331

 2 TEET

Not-equal comparison

{ } Function

Xy x2y (T/F)
X Z T/F
ZX T/F

X_unit; y_unitp T/F

Xx ‘symb’ ‘x#symb’
‘symb’ x ‘symb=#x’

X_unit ‘symb’
‘symb’ x_unit’

‘X_unit#symb’
‘symb#x_unit’

L
I
L
I
d
l
i
L
l
i
l
l

‘symb;’ ‘symby’ ‘symbi#symby’

:tag:object object T/F
object :tag:object T/F

object object T/F
Related Flag: -3
Notes:
1) Strings are compared alphabetically
2) Units must be dimensionally consistent
3) Real-complex comparisons assume the imaginary part is 0
4) Tags are dropped before the comparison

= «QE { } Function
Equal operator. Creates an equation from two arguments

Z1 2 > ‘21=2)’

z ‘symb’ — ‘z=symb’
‘symb’ z — ‘symb=z’
X y_unit — ‘x=y_unit’

X_unit y — ‘X_unit=y’
X_unit y_unit — ‘Xx_unit=y_unit’

‘symb’ x_unit — ‘symb=x_unit’
X_unit ‘symb’ — ‘x_unit=symb’

‘symb;’ ‘symb,;’ — ‘symb;=symb;’ Related Flag: -3

332 Command Reference

== TEST ss Function
Logical equality comparison

xy = x==y (T/F)
xz — T/F
zx — TF

x_unit; y_unitp — T/F

X ‘symb’ — ‘x==symb’
‘symb’ x — ‘symb==x’

Xx_unit ‘symb’ — ‘x_unit==symb’
‘symb’ x_unit’ — ‘symb==x_unit’

‘symb;’ ‘symbp’ — ‘symbj==symb,’

:tag:object object — T/F
object :tag:object — T/F

object object — T/F
Related Flag: -3
Notes:
1) Units must be dimensionally consistent
2) Real-complex comparisons assume the imaginary part is 0
3) Tags are dropped before the comparison

- PI) Command
Assigns local variable(s)

obj; oe objn —-
 &) d Function
WHERE function. Substitutes symbolics for names in a symbolic

expression.
‘symbgly’ { name; symbj ... name, symb, } — ‘symbyey,’

z ‘symbg,4’ { name; symbj ... name, symb,} — z

‘symbg4l(name;=symb;, ..., name,=symb,)’

Related Flag: -3

Command Reference 333

+ 1 9 Function
Adds two objects

21 7p 21+Z2

#n m #n+m

n #m #n+m

#n #m #n+m

X_unit y_unit X+y_unit

‘symb;’ ‘symby’ ‘symb+symb,’

z ‘symb’ ‘z+symb’
‘symb’ z ‘symb+z’

‘symb’ x_unit
X_unit ‘symb’

‘symb-+x_unit’
‘X_unit+symb’

[vector] [vector;] [vector|+vector;]

[[matrix;]] [[matrix;] [[matrix;+matrix;]

grob; grob; grobj

“abc” “def” “abcdef”
“string” object “stringobject”
object “string”

{ list } object

object { list }

{ obj; obj } { objz objs }
Related Flags: -3, -5 through —
Notes:
1) Grobs must have the same dimensions
2) —»STR is executed on objects added to strings
3) Units must be dimensionally consistent
4) For element-wise addition of objects in lists, use ADD

“objectstring”
{ list object }
{ object list }

{ obj; obj objz objg }

S
L
l
L
L
L
L
L
l
i
l
l
i
i
i
i
i
i
L
l

334 Command Reference

- =) { } { 0 Function
Subtracts two objects

21 Zp — 711-1

#n m — #n-m

n #m — #n-m
#n #m — #n-m

X_unit y_unit — x-y_unit
z ‘symb’ — ‘z—symb’
‘symb’ z — ‘symb-z’

‘symb;’ ‘symby” — ‘symbj;-symby’

‘symb’ x_unit — ‘symb-x_unit’
x_unit ‘symb’ — ‘x_unit-symb’

[vector;] [vector] — [vectorj—vector;]

[[matrix;]] [[matrix,] — [[matrix;—matrix,]]

Related Flags: -3, -5 through —10
Note: Units must be dimensionally consistent

* { } { 0 Function
Multiplies two objects

2] Zp — Z1*Zp

#n m — #n*m

n #m — #n*xm

#n #m — #nxm

[vector] z — [vector*z]

z [vector] — [vectorxz]

[[matrix]] [vector] — [matrix*vector]

[[matrix]] [[matrix;]] — [[matrix*vector]]

z ‘symb’ — ‘zxsymb’

‘symb’ z — ‘symbxz’

‘symb;’ ‘symby” — ‘symbjxsymb,’

X y_unit — Xx*y_unit

X_unit y — X*y_unit

X_Uunit; y_unity — X*y_unitj*unity

X_unit ‘symb’ — ‘(Xx_unit)*(symb)’

‘symb’ x_unit — ‘(symb)*(x_unit)’ Related Flags: -3, -5 through —10

Command Reference 335

/ =
{ } { 0 Function

© EYE
Divides two objects

21 2 > z1/z7p

#n m — #n/m
n #m — #n/m

#n #m — #n/m
[vector] z — [vector/z]

[vector] [[matrix]] — [[vector/matrix]]
z ‘symb’ — ‘z/symb’
‘symb’ z — ‘symb/z’

‘symb;’ ‘symb,” — ‘(symb;)/(symb,)’

X y_unit — x/y_1/unit

X_unit y — x/y_unit

X_unit; y_unity — x/y_unitj/unitp

X_unit ‘symb’ — ‘(x_unit)/(symb)’
‘symb’ x_unit — ‘(symb)/(x_unit)’

Related Flags: -3, —5 through —10

A { } 1 9] Function
Raises a number to a power

Zz Zp — ANY4)

z ‘symb’ — ‘z°(symb)’
‘symb’ z — ‘(symb)*z’

‘symb;’ ‘symby’ — ‘(symb;)*(symb,)’

X_unit y — xy_unitly
X_unit ‘symb’ — ‘(x_unit)(symb)’
‘symb’ x_unit’ — ‘(symb)(x_unit)’

Related Flag: -3
 ! PROB | { } Function
Factorial or gamma function

ln n!
x = I'(x+1)

‘symb’ — ‘(symb)!’
Related Flags: -3, -20, -21
336 Command Reference

% FEAL i { } Function
Percent

xy — xy/100
x ‘symb’ — ‘%(x,symb)’

‘symb’ x — ‘%(symb,x)’
‘symb;’ ‘symby” — ‘%(symbj,symby)’

x_unit y — xy/100_unit

x_unit ‘symb’ — ‘%(x_unit,symb)’

‘symb’ x_unit — ‘%(symb,x_unit)’
X y_unit — xy/100_unit

Related Flag: -3

%CH FEAL “CH { } Function
Percent change from x to y as a percentage of x

xy — 100(y—x)/x
x ‘symb’ — ‘%CH(x,symb)’
‘symb’ x — ‘%CH(symb,x)’

‘symb;’ ‘symby’ — ‘%CH(symb;,symb,)’

Xx_unit y_unit — 100(y—x)/x

x_unit ‘symb’ — ‘%CH(x_unit,symb)’
‘symb’ x_unit — ‘%CH(symb,x_unit)’

Related Flag: -3
Note: Units must be dimensionally consistent

%T FEAL aT { } Function
Percent total of x thatis represented by y

xy — 100y/x
x ‘symb’ — ‘%T(x,symb)’
‘symb’ x — ‘%T(symb,x)’

‘symb;’ ‘symby,” — ‘%T(symbj,symbp)’

x_unit y_unit — 100y/x

x_unit ‘symb’ — ‘%T(x_unit,symb)’
‘symb’ x_unit — ‘%T(symb,x_unit)’

Related Flag: -3
Note: Units must be dimensionally consistent
Command Reference 337

338

Alpha Keyboard

(a ab bc oa d 4 e e f 0

LA [8B] [c|[Pp]|E]L[F]
9 ~~ h 9 i © J I kk + 1 p

LG | [HH] [] [9] [Kx][L]
m ' nn Wn oO Q op €« 9 Lr op

[M|[N] [Oo] [P][Q][R]
s ao t TT u XxX v ~ w nw x X

S T U Vv w X

& ed vu + =z T |! i 7? &

| ENTER | | Y | | Z | [DEL] [4=]
LC INS TA ~ etc. OQ #

lel [7] [8] Lo] [=]
$ <¢« £ ¥ Oo ° no

@] [a] [5s] [6] [x]
= = <£ > £ x « "

®] [+] [2] [3] [=]
CONTOFF = 3% 3 qa mw & {) =:

[ON] [o | [«| [spc] | + |
_ yy

Alpha Keyboard

ADDCHR
ALGSTK

AMPLT

ANIM

BAKDIFF

BAKER
BROWNLN

CHKARGS
CHOS%

CHOS1

CHOS2

CKKB
CMP48

COERCE
COLS82

CRCE2

DAT2STR

DAT2YMD

DOW

DSORT
DSPER
ENTROPY

ERCALC

ERTOR
ETOR2
FACTRL
FREXP
FUN
GCD

GETMSG
GETVER
GREX

INF1
INF2

INPLOT
JDAYN

JDCAL

JULIA

Program Index

Adds a character objectto the end of a string

Uses —»LCD to put an algebraic in the stack display

Amortization plot

Demonstrates graphics animation

Comparesiterates of Baker’s function
Plots Baker’s function
Draws Brownian line

Checks stack arguments
CHOOSEbox selects percentage calculations

CHOOSE example

CHOOSE example
Checks the key buffer

Streamlines a program that uses SYSEVALSs

Converts a real number into an internal binary integer

Prints graphics pattern on the HP 82240 printer

Converts two real numbers into internal binary integers

Converts date to string

Converts date to year, month, and day numbers

Finds the day of the week given a date

Enhanced directory sort

Displays extended real numbers
Plots proportion of gases in free expansion example

Extended real number calculating environment

Converts an extended real number to a real number
Converts two extended real numbers to real numbers
Illustrates recursion
Graphic illustration of free expansion of gas
Illustrates use of example program XYGD

Greatest common divisor
Gets a message from a built-in message table
Gets version of operating system and model designation

Illustrates graphics operations
INFORM example
INFORM example

Plots inequalities
Converts date to Julian day number

Converts Julian day number to date

Plots points on the Julia set

Program Index 339

LBLPICT
LCLV

LCM
LINES
LOGB
LREV
LSTSTR
MAH
MAH2
MAM2
MANDEL
MAT
MAT2
MAVG
MDH
MDH2
MDT
MDT2
MENUEX
MKBOX
MKERTOA
ML2M
MM2L
MNU%
MSGBX
MSWAP
MZ2
NXTSTR
ORBIT
ORDXY
PARSE
PASCAL
PFIT
PRMCNT
QRTI
QRT2
QRT3
QRT4
QRTS

340

Labels PICT with a boxed label

Illustrates use of — as it stores local variables

Least common multiple
DISP example

Log to an arbitrary base using extended real numbers

Reverses a list using meta-object programs
Searchesa string backwards from given position

Adds an object to the head of a meta-object
Adds an objectto the head of a meta-object in pos 2

Concatenates two meta-objects

Draws the Mandelbrot set
Adds an object to the tail of a meta-object
Adds an objectto the tail of a meta-object in pos 2

DOSUBSexample — computes moving average

Extracts object from the head of a meta-object

Extracts object from the head of a meta-ob in pos 2

Extracts object from the tail of a meta-object
Extracts object from the tail of a meta-ob in pos 2

Custom menu example

Creates a blank grob with a border

Creates the program ERTOA

Converts two lists into meta-objects

Converts two meta-objects into lists
Custom menu of percentage calculations
Displays message box with graphic icon

Exchanges two meta-objects
Places empty meta-object in position 2
Searches string at specified starting position

Plots chaotic orbits
Orders points for internal line drawing objects
Parses a string

Displays Pascal’s triangle
Polynomial curve fit
Illustrates use of PROMPT with a custom menu

Local variable example 1
Local variable example 2
Subprogram example 1

Subprogram example 2
Subprogram example 3

Program Index

RANWALK
RTOE2
RTOER
SFILT
SHWBX
SHWP
SLOPE
SPACES
SQPQ
STKV
SUBR
TANK
TOCHR
TOTXT
TRAIN
TREE
TRPCN
TRYMBX
TVMCALC
TXTBX
TXTEX
UCRC2
UDFUI
UNCOERCE
VSCAN
WCM
XYGD
YMD2DAT

Brownian motion in two dimensions

Converts two real numbers to extended real numbers

Converts a real number to an extended real number

Filters a list using meta-object programs

Places box with borderin the stack display
Polynomialfit with graphic view

INFORM example application — calculates line slope

Creates a string of spaces

Square root’s partial quotients
Displays up to ten levels of the stack

Subroutine example
Tank battle on the status line

Creates a character object given a real number

Completely clears the stack display
Steam train crossing the status line
Draws a fractal tree
Shows how to trap
I1lustrates use of example program MSGBX

Customized solver example implements TVM equation

Places text in a graphics box
Illustrates object to graphics conversions

Converts two internal binary integers into real numbers

Creates INFORM interface for user-defined functions
Converts an internal binary integer into a real number

Scan input vector using meta-object programs

Illustrates WAIT with a custom menu

Places a graphics object in the stack display
Converts year, month, and day numbers to date

Program Index 341

HP 48 Handbook Disk
Armstrong Publishing Company offers a disk containing all the named
example programs in The HP 48 Handbook. If you have access to an
IBM-compatible or Macintosh personal computer, you can transfer
these programs to your HP 48G/GX using the wired serial port, saving
time and avoiding potential keystroke errors. See the next page for
ordering information.

The HP 48 Pocket Book
The HP 48 Pocket Book goes where you go — providing a concise
collection of handy tables covering many aspects of HP 48 operations
and a 32 page abbreviated command reference. At 3.5” X 6.375” and
56 pages, The HP 48 Pocket Book is small enough to live in your purse
or backpack. See the next page for ordering information.

The HP 48 File Manager
The HP 48 File Manager has been designed to simplify data transfer to
or from an IBM or IBM-compatible computer.

{ HOME }

—4IEE
EEE

NE
ICES2TT

[ZEND[CEDIR]INFO[MARE]DIZE |GIT |

The arrow keys, (ENTER), (9) (UP), and (P) traverse the directory
structure of either the HP 48 or the server disk. Menu keys may be
used to show the directory of the Kermit server’s disk, transferfiles,
purge or rename files, create directories, show available free space, or

archive the memory of the HP 48. The HP 48 File Manager is
distributed on a disk for IBM-compatible computers, and includes a
free copy of the latest version of Kermit. You’ll need a serial cable to
connect the HP 48 and the computer (see Data Transfer). See the next
page for ordering information.

A Modern Difference Engine

Nineteenth century inventor Charles Babbage (1791-1871) is famous
for his designs of large mechanical calculating machines — the
Difference Engines and the Analytical Engine. The Difference Engines
were designed to subtabulate and print tables of polynomial
approximationsto log, trig, and other functions.

In 1991 the Science Museum in London completed construction of
Difference Engine No. 2 — a modern realization of one of Charles
Babbage’s never-fulfilled designs. The machine weighs 3 tons and has
4000 parts. Inspired by this machine, software simulators for the HP 48
and PCs have been written to provide you with a chance to experiment
with problems that could be put to the Engine. A Modern Difference
Engine explains the history and designs of these machines, and
provides instructions and examples for operation of the simulators.

Ordering Information

Qty Title Price Total

HP 48 Handbook Disk (IBM) $8

HP 48 Handbook Disk (Macintosh) $8

The HP 48 Pocket Book $7

HP 48 File Manager (IBM only) $16

A Modern Difference Engine (IBM only) $20 Shipping: Add $2.00 for each item: Total

Armstrong Publishing Company
1050 Springhill Drive

Albany OR 97321 USA

Checks should be payable to Armstrong Publishing Company. Orders
originating outside the United States must be paid in U.S. dollars with a
check drawn on a U.S. bank or paid with an international postal money
order. Do not send checks drawn on non-U.S. banks.

The HP 48 Handbook

Do you want to know more about your HP 48? The HP 48 Handbook

is the ultimate reference for people who want to get the most from the

HP 48 calculator. The HP 48 Handbook discusses fundamental

concepts, programming techniques, user interface tools, graphics, data

transfer, and memory management. Additional reference tables cover

the equation library, constants, keys, menus, units, and much more.

Over 100 example programs are included to demonstrate various

programming and graphics techniques. These programs are designed to

show the HP 48 at its best — illustrating everything from financial

calculations to fractals to polynomial curve-fitting.

The Command Reference lists complete stack diagrams, keystroke

access, characteristics, and related flags for every command.

Do you want to use the internal operating system that HP doesn’t tell

you about? Place graphics in the stack display? Perhaps work with

extended precision real numbers? Maintain total control over the

keyboard? The System Programming chapter introduces the magical

world of internal unnamed objects accessible with SYSEVAL.

Join the thousands of satisfied programmers who depend on The HP 48

Handbook to get the most from their calculator!

Contents

Introduction 1 Printer Control 217

Objects, Names, and Constants 3 Messages 220

Memory 16 Menus 228

Graphics 24 User-Defined Keys 233

Programming 40 Flags 234

Example Programs 80 Built-In Units 237

System Programming 139 Equation Library 242

System Operations 201 Command Index 249

Statistics Data 204 Command Reference 265

Character Codes 206 Alpha Keyboard 338

Data Transfer 208 Program Index 339

ISBN 1-879828-04-9

	Cover
	Contents
	Introduction
	Objects, Names, and Constants
	Object Types
	Real and Complex Numbers
	Binary Integers
	Unit Objects
	Backup Objects
	Library Objects
	Object Sizes
	Object Evaluation
	Operator Precedence
	Variable Names
	Symbolic Constants

	Memory
	Memory Organization
	User Memory
	Temporary Memory
	Configuring RAM Cards

	Graphics
	Graphics Coordinates
	Graphics Operations
	Converting Text to Graphics
	Animation Sequences
	Stack View Program
	Graphics Object Structure
	PPAR
	VPAR

	Programming
	Program Execution
	Single-Stepping Programs
	Local Variables
	Programs as Subroutines
	User-Defined Functions
	Looping Structures
	Conditional Structures
	Error Trapping
	Data Entry
	Displaying Results
	Recursion
	List Processing
	Meta-Objects

	Example Programs
	Greatest Common Divisor
	Least Common Multiple
	Square Roots Partial Quotients
	Polynomial Curve Fitting
	Slope of a Line
	User Interface for User-Defined Functions
	Sorting Directories
	Date Utilities
	Status Line Animation
	Customizing the Solver
	Amortization Plot
	Pascal's Triangle
	Plotting Inequalities
	Brownian Motion
	Entropy
	Chaos
	Fractal Trees
	Julia Sets
	The Mandelbrot Set

	System Programming
	User-RPL vs. System-RPL
	SYSEVAL & Version Identification
	The Dangers & Benefits of System-RPL
	Assumptions in This Chapter
	Fixed Entry Points
	Examples in this Chapter
	Naming Conventions
	Checking Arguments
	Binary Integers
	Character Constants
	Character Strings
	Real and Extended Real Numbers
	Composite Objects
	Tests
	Stack Operations
	Graphics Operations
	Keyboard Control
	Streamlining Finished Programs
	LIBEVAL
	HP Tools

	System Operations
	Invoking System Operations
	System Halt Log
	Interactive Self Test

	Statistics Data
	ΣDAT
	ΣPAR

	Character Codes
	Data Transfer
	Data Transfer Methods
	Kermit Protocol
	Backing Up the HP 48
	Restoring the HP 48
	ASCII File Transfer
	Character Translations
	IOPAR
	Cables

	Printer Control
	PRTPAR

	Messages
	Menus
	Custom Menus
	Built-In Menus

	User-Defined Keys
	Setting User Mode
	Key Locations
	Standard Keys

	Flags
	Built-In Units
	Equation Library Reference
	Equation Reference
	Constants Reference

	Command Index
	Command Reference
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Alpha Keyboard
	Program Index

