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1. Introduction

The HP 48 is a unique calculator. No other handheld device can match its combination
of mathematical capability, customizability, and extensibility. It uniqueness, however,
means that it contains facilities and uses methods that are new and special to it, making
it in many respects a challenge to learn to use effectively. If you are a new user of the
HP 48, you may well be a little overwhelmed or even intimidated by the sheer extent of
the HP 48’s capabilities. You might also imagine that it will take you a long time to
master the calculator. Fortunately, this shouldn’t be true. Running throughout the
HP48’s feature set and methodology are a few common themes and principles; under-
stand those and you will find it easy to assimilate and use each new calculator operation
that you study.

There are, of course, many different approaches to teaching the use of a device like the
HP48; no one approach is best for everyone. One method is to teach everything by
example, and trust that the underlying principles will become apparent. This is the style
of the HP48 owners’ manuals, which works quite well for many people. In this book we
will take a different tack and start with the principles, with examples to illustrate the
principles. We believe that a clear understanding of those principles helps you under-
stand the examples and extrapolate them more easily to problems for which you don’t
have explicit examples.

For example, here’s how you add two numbers on the HP 48:

1. Key in the first number.

2. Key in the second number.

3. Press .

If you’re familiar with traditional HP scientific calculators, you will recognize this as the
standard “RPN”keystroke sequence for addition. If you have only used so-called “alge-
braic” calculators, the sequence may seem a little awkward--but we’ll postpone explana-
tion and justification to Chapter 2. The principle involved is the application of a func-
tion, in this case +, to arguments that appear on a “stack” of such arguments; the
function’s result replaces its arguments on that stack. The specific example here shows
how two ordinary real numbers are added--once you’ve learned this sequence, you
immediately know also how to add, for example, two complex numbers or two vectors.
Just take the above instructions and substitute “complex number,” or “vector,” every-
where you see “number.” You follow the same logical sequence, and press the same
key, for all of the kinds of addition that the HP 48 provides. This consistency and uni-
formity runs through all HP 48 operations.



1.0 Introduction

When we use the term HP48, we are including the HP 48SX and any other HP 48 calcu-
lators that share a common package and operation with the HP48SX. Successful
Hewlett-Packard calculators in the past have often developed into families of several cal-
culators with the same number, such as the HP41C, HP41CV, and HP41CX. For the
sake of simplicity and generality, we will generally not use the trailing letters of a
calculator’s name unless referring to a specific model.

1.1 The Evolution of the HP 48

In 1972, Hewlett-Packard introduced the HP 35, an “electronic slide-rule” that revolu-
tionized the world of numerical calculations. It offered high-precision arithmetic, loga-
rithmic, and trigonometric functions at the press of a key, obsoleting slide-rules and
thick function tables. The HP35 was followed by numerous similar products, from HP
and from other manufacturers, that expanded on the HP35 theme by offering more
functions and more data storage registers.

A second generation of calculators was started by the HP65, the first programmable
calculator. This calculator allowed you to customize it by creating programs, in effect
extending the built-in command set. Like the HP35, the HP65 was followed by
numerous variations on the programming theme, including handheld computers pro-
grammable in BASIC. Perhaps the most successful of these was the HP 41 family, start-
ing with the HP41C in 1979, which quickly became the standard among engineering cal-
culators. The HP 41’s ten-year lifetime, remarkably long in this era of rapid changes in
computing technology, resulted from its powerful combination of built-in functions, cus-
tomizability, and extensibility--the same virtues we extolled above for the HP 48.

The HP 41 and all of the other first- and second-generation calculators share two com-
mon limitations. First, they are optimized only for dealing with real floating-point
numbers. Some calculators allow you to work with character strings, complex numbers,
and/or matrices, but typically each additional data type has its own special commands or
working environment, requiring you to learn new calculation methods and making it
hard to combine different data types in the same calculation. Second, none of these cal-
culators allow you deal with programs as unevaluated mathematical quantities. For
example, you can write programs to calculate @ +b, and ¢ +d, but there is no way for
you to manipulate the program results to produce a new result like a +b +c¢ +d except
by running the programs to produce numerical results, then combining the numbers.

A third generation of calculators was born with the advent of the HP 28C in 1987. The
first generation was characterized by the application of built-in functions to real
numbers. The second generation added extension of the built-in function set by user
programs. The HP28C made a major leap in calculator technology by making the pro-
grams themselves subject to logical and mathematical operations. In short, the HP 28C
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is the first symbolic calculator--on which calculations can be represented as unevaluated
expressions and programs, to which you can apply the same operations that you can
apply only to numbers on other calculators. Moreover, the HP 28C allows you to work
with a variety of data types, including the strings and matrices mentioned above, using
exactly the same logic and keystrokes that you use for ordinary numbers. The most
important of these new data types is the algebraic object. You can, for example, enter
algebraic objects that represent @ +b and ¢ +d symbolically, then press the key to
return the new symbolic result @ +b +c +d. The variables do not have to have numeric
values before you can add them. Most HP28C mathematical functions, in fact, can
accept symbolic inputs and return symbolic results. Not only does this mean that you
can perform symbolic algebra, and even calculus, right on the HP 28C, but at a stroke,
much of the work of programming disappears. These capabilities represent such a
dramatic advance over previous calculator technology that they merit the description
“third generation.”

The HP35 introduced a standard “user-interface” called RPN (short for Reverse Polish
Notation), that has been the hallmark of HP calculators ever since. RPN calculators are
organized around a stack of number registers, using a last-in-first-out logic that is
optimal for key-per-function operation. Throughout the evolution of HP calculators
from the HP 35 up through the HP 41, that standard RPN interface remained virtually
unchanged. If you were familiar with one HP calculator, you could pick up any other
and use it right away--that is, until the advent of the HP28C. The HP28C succeeded in
preserving the advantages of RPN while making important changes to generalize the
interface to handle the HP 28C’s wealth of new data types, most particularly including

variables and expressions for symbolic mathematics.

The HP 28C’s advances in calculation ability were so compelling that the calculator was
very popular despite a severe handicap--a small memory that made it impractical to use
the calculator for anything but modest-sized computations and programs. This defi-
ciency was corrected in a new HP28 model, the HP 28S, introduced in January, 1988.
The first public appearance of HP28S calculators were special models built to com-
memorate the 100th anniversary of the American Mathematical Society, delivered at the
joint annual meeting of the AMS and the Mathematical Association of America. This
was a highly appropriate forum for the introduction, because of the profound impact the
HP28C was having on the mathematics education community. Driven by students and
imaginative educators, with whom the HP28 was an instant hit, the HP28S is now a
standard teaching tool at many universities.

Although the HP 28 was quite successful in engineering and scientific disciplines, it is
fair to say that it did not have as dramatic an impact in those fields as in mathematics.
This is partly due to the earlier success of the HP 41 with technical users, since they
were accustomed to the extensibility provided by the HP 41’s plug-in memory ports and
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1.1 Introduction

consequently less ready to switch to a calculator that lacked that feature. The HP 41’s
utility was greatly enhanced by the availability of a large amount of professional and
amateur software, which could be loaded into the calculator by several automated
methods. A similar software base never developed for the HP 28, since its only program
entry method is the keyboard.

The HP 48SX, introduced in March, 1990, is a direct descendent of both the HP 41 and

the HP28. Normally, the numbers associated with HP calculators have little signifi-
cance, but it is hard not to notice that the number 48 itself is a cross between 41 and 28.

From the HP 41, the HP 48SX inherits:

¢ Plug-in memory ports.

e I/O capability (the HP41 used HP-IL; the HP48SX uses a serial communications
that is a standard on personal computers).

¢ A redefinable keyboard.

e The “vertical format” keyboard layout that is convenient for handheld operation.

The HP 28 contributed:

e Extensive real and symbolic mathematical capabilities.

e The operating system and user language.

¢ Plotting and a graphics display.

e The menu key system.

The HP48SX also benefited from users’ reaction to the HP28, adding the most-
requested features missing from the HP 28:

A bigger display.

More graphics and plotting features.

Bi-directional infrared I/O, especially for importing or saving software.

Symbolic integration, beyond the Taylor’s polynomials method used on the HP 28.

More “help” from the calculator in using some of its more complicated features.

Some of these features evolved into major HP 48 systems that considerably exceeded the
scope of a straightforward evolution from the HP41 or the HP28. For example, the
HP 48 EquationWriter was an outgrowth of a need to improve the HP 28’s mechanism
for setting up numerical integration problems. The EquationWriter obviously satisfies
that need, but has much broader application that just for integration problems.

-4-
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Similarly, both the HP41 (through plug-in programs) and the HP 28 contain some physi-
cal unit conversion capability, but the HP 48’s unit management system is enormously
more flexible, powerful, and usable than that of its predecessors.

In the matter of programming language, no simple convergence of the HP 41 language
and the HP 28 language was possible. Although using the HP 41 language in the HP 48
would have made the HP41 software base available for the new calculator, that
language was stretched to its limit already by the HP41 itself, and it is not capable of
supporting the symbolic calculations that are the heart of the HP28. Consequently, the
HP 48 follows the HP 28 design--the HP48 operating logic and programming language
are effectively a superset of those of the HP28. Computer languages are known for
their whimsical names; the HP 28/HP48 language is no exception, with the name RPL,
which stands for Reverse Polish Lisp. This name suggests its HP48’s derivation from
HP calculators (and from FORTH, another computer language that uses reverse Polish

logic), and from the computer language LISP, which is frequently used in computer
symbolic mathematics systems. Note that the HP 41 language was never given a name,
so many people call HP41 programming “RPN programming,” which is unfortunate
since, properly speaking, RPN is a mathematical logic that is not specific to any calcula-
tor or computer.

1.2 About This Book

The HP 48 naturally comes with an Owner’s Manual that covers most of the calculator’s
features in varying levels of detail. A Programmer’s Reference Manual is also available,
which presents detailed information on individual commands. HP48 Insights is not
intended to supplant those books, but to supplement them. As stated earlier, Insights
will concentrate on the principles and themes of HP 48 operation, and provide a depth

of analysis that is not possible in a comprehensive in-box manual.

We also hope to provide a little more motivation, and some more elaborate examples.
By motivation, we mean the purpose and use of many of the operations, and the con-
nections between various features of the calculator. The scope of the HP 48 is so broad
that we cannot show you how to use it for every imaginable problem, but we can try to
help you understand it enough to solve your own problems. We delve quite deeply into
the HP 48’s principles of operation, with the expectation that if you know the principles,
you will learn and remember keystrokes and methods much more easily.

We assume that you have read the HP 48 Owner’s Manual enough that you at least
know how to perform simple keystroke calculations, enter various object types, and find
a command in a menu. In some cases, where there are crucial ideas that we want to
communicate, we will show some actual keystroke sequences and certainly repeat some
material that is in the HP manuals. But for the most part we will assume that you know

-5-



1.2 Introduction

the rudiments of HP 48 operation so that we can concentrate on ideas and connections.

HP48 Insights Part I breaks roughly into two main sections. In the first section,
Chapters 1 through 7, we discuss primarily the principles and concepts of HP 48 opera-
tion, starting with the mathematical ideas that underlie the HP 48’s use of Reverse Pol-

ish Notation and the object stack, and finishing with a review of keyboard techniques
and customization features. The second section, Chapters 8 through 12, is an extended
discussion of HP 48 programming, beginning with a review of general problem solving
techniques, continuing with a study of the structures and objects central to program-
ming, and concluding with topics in program development.

The following summarizes the chapter topics:

Chapter Topics

1. Introduction Introductory material, notation conventions.

2. Understanding RPN The theory of RPN, and its electronic
implementation.

3. Objects and Execution Operations, objects, execution and evalua-
tion, quotes.

4. The HP 48 Stack Stack operations, recovering arguments, the
interactive stack.

5. Storing Objects Creating, storing, recalling, evaluating and
purging variables; directories; port vari-
ables; libraries; name resolution; calculator

resets.

6. Methods HP 48 keyboard design and methodology;
hidden operations; object entry and editing;
the MatrixWriter; the EquationWriter.

7. Customization Modes and flags; user key assignments;
custom menus; vectored ENTER.

8. Problem Solving Introduction to HP 48 problem-solving
methods; user-defined functions.
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9. Programming The principles of program objects; tests
and flags; conditional branches; loops;

error handling; local variables.

10. Display Operations and The text and graphics screens; graphics
Graphics objects; displaying text and graphics; pixel

drawing,

11. Arrays and Lists Arrays; coordinate systems;lists and their
applications; symbolic arrays.

12. Program Development The art of program construction; editing
and debugging; starting and stopping;
optimization; input and output; programs
as arguments; recursion.

You may find the early chapters occasionally to be heavy going, with their emphasis on
theory and terminology. Nevertheless, we recommend that you read those chapters
through at least enough to insure that you have a grasp of the definitions and terms that
we introduce there, which are used throughout the second part of the book. In particu-
lar, the concepts of operations, objects, execution, and evaluation, described in Chapter 3,

are used extensively in all of the material that follows.

The presentation of the book’s subject matter is not necessarily linear. That is, we often
make use of or refer to concepts or techniques that are not explained until later sec-
tions. For example, in Chapter 4 there are listings of some elaborate programs that are
relevant to the material under discussion. The programming methods used in the pro-
grams are not described until later chapters. Furthermore, wherever possible, examples
that illustrate a concept are chosen to have practical uses as well. This often requires
combining more techniques into an example than just the one currently being studied.
To alleviate this kind of problem, we include many cross-references between the sec-
tions, and a subject index. And, of course, you are encouraged to jump around in your
reading. When you read about error-trapping in section 9.6, you should go back and
look at the program XARCHIVE in section 5.3.4 to see how it deals with errors.

Part I of HP48 Insights touches only lightly on or omits altogether major HP 48 features
such as HP Solve, symbolic mathematics, and automated plotting. These topics and the
other integrated systems or applications are left for Part II. The use of all of those sys-
tems is greatly enhanced by programming, so we choose to present programming first,
as a foundation from which to explore the rest of the HP 48’s capabilities.
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1.3 Notation

In order to help you recognize various calculator commands, keystroke sequences, and
results, we use throughout this book certain notation conventions:

e All calculator commands and displayed results that appear in the text are printed in
helvetica characters, e.g. DUP 1 2 SWAP. When you see characters like these, you
are to understand that they represent specific HP 48 operations rather than any ordi-
nary English-language meanings.

Italics used within calculator operations sequences indicate varying inputs or results.
For example, 123 'REG’ STO means that 123 is stored in the specific variable REG,
whereas 123 ‘name’ STO indicates that the 123 is stored in a variable for which you
may choose any name you want. Similarly, << program >> indicates an unspecified
program object; { numbers } might represent a list object containing numbers as its
elements.

Italics are also used for emphasis in ordinary text.

HP 48 keys are displayed in helvetica characters surrounded by rectangular boxes,
e.g. , , or [EEX]. The back-arrow key looks like this: , and the cur-
sor keys like these: [],[>],[A], and [V].

e A shifted key is shown with the key name in a box preceded by a left- or right-shift
key picture, or , €.g. , Or . A shifted key is identified by
the orange or blue label above the key, rather than the label on the key itself-{%]

rather than .

Menu keys for operations available in the various menus are printed with the key
labels surrounded by boxes drawn to suggest the reverse characters you see in the
display, like these: =SIGN= or Z-LIST= .

Examples of HP 48 operations take several forms. When appropriate, we will give step-
by-step instructions that include specific keystrokes and show the relevant levels of the
stack, with comments, as in the following sample:

Keystrokes: Results: Comments:

123 456 1: 579 Adding 123 and 456
returns 579 to level 1.

For better legibility, we don’t show individual letters and digits in key boxes--we just
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show 123 rather than [1][2][3], and ABC rather than [« ][« ]J[A] [C]. Key boxes

are used for multi-letter keys on the keyboard and in menus.

In some cases, a printed listing of the stack contents isn’t adequate, so we use an actual
HP 48-generated picture of the calculator display, such as this picture from Chapter 6:

 

RAD 2
HOME TE:T } 01/19/91 0B:24:27Pi

4: 3. 14159265339
3: I."-l

e
]1:

 

(1,2)
H(RA2Y | (R=5)

+-MAT-EMAT]|[APPLY]2UDOTo    
A large number of the examples, however, are given in a more compact format than the
keystroke example shown above. These examples consist of a sequence of HP 48 com-
mands and data that you are to execute, together with the stack objects that result from

the execution. The “right hand” symbol = is used as a shorthand for “the HP48
returns...” In the compact format, the addition example is written as

123 456 + = 579

The = means “enter the objects and commands on the left, in left-to-right order, and
the HP 48 will give back--return--the objects on the right.” If there are multiple results,
they are listed to the right of the r= in the order in which they are returned. For exam-

ple,

A B C ROT SWAP = B A C

indicates that B is returned to level 3, A to level 2, and C to level1.

Because of the flexibility of the HP48, there are usually several ways you can accom-
plish any given sequence, so we often don’t specify precise keystrokes unless there are
non-programmable operations in the sequence. If there are no key boxes in the left-side
sequence, you can always obtain the right-side results by typing the left side as text into
the command line, then pressing when you get to the 7 symbol.

The = symbol is also used in the stack diagrams that are part of most program listings.
The stack diagrams show how to set up stack objects for execution of the program,
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where the objects to the left of the r= are the “input” objects, and the objects following
the = are the program outputs.

The most elaborate “examples” in this book are programs. Each program is listed in a
box that includes a suggested program variable name, a stack diagram, the actual steps
that make up the program, and comments to help you understand the steps. The follow-
ing sample listing illustrates the various features of the format:
 

  

 

  

  

SAMPLE Sample Program Listing checksum

level 3 level 2 level 1 | level 1

"string”  [matrix] n o [martrix’']

< A B - ab Start of program.

< Start of local variable procedure

IF C D Start of IF structure.

THEN 1 2 - n m

<< Start of local variable procedure.

START E F Start of definite loop.

DO G UNTIL H END DO loop.

NEXT End of definite loop.

> End of local variable procedure.

ELSE | J

END End of IF structure.

> End of local variable procedure.

> End of program.  
The name of the program (SAMPLE)is listed first, followed by an expanded ver-
sion of the name that is descriptive of its purpose. When you have entered the
listed program, you should store it in a variable with the specified name. If no
name is given, the program is just intended to illustrate some point in the text, and
there’s no need to give it any particular name.

The program’s checksum is listed at the end of the nameline, as a four-digit hexa-
decimal number. If you enter the program into your HP 48, you can verify that
you have entered it correctly by comparing the listed checksum with the value
returned by BYTES (section 12.5.1) for your program.

Below the program name is a stack diagram, that specifies the program’s input and
output on the stack. The program arguments are shown to the left of the =, and
the results to the right. In the example, the stack diagram indicates that the pro-
gram requires a string in level 3, a matrix in level 2, and a real number n in level
1, and returns a new matrix in level 1. The object symbols in the stack diagram
are as descriptive as possible, showing not only the required object type but also
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the conceptual purpose of the objects. A stack diagram

length width height ©= volume

shows that a program takes three real numbers (no object delimiters) representing
length, width, and height, and returns another real number that is the volume.

4. The program listing is broken into lines, where each line has one or more pro-
gram objects listed at the left, and explanatory comments on the right. There may

be just one object on a line, or several whenever the collective effect of the objects
is easy to follow. You do not have to use the same line breaks (or any at all)

when you enter the program.

5. Lists, embedded programs, and program structures start on a new line unless they
are short enough to fit entirely on one line. More frequently, each program or list
delimiter or structure word starts a new line. The sequences between the struc-
ture words are indented, so that the structure words stand out. In the case of
nested structures, each structure word of a particular structure is lined up verti-
cally at the same indentation from the left margin. (The structure word - does
not start a new line, but the local variable defining procedure that follows the -

does start a new line.) Note that when you edit a program on the HP 48, the pro-
gram display follows these same conventions, within the limitation of the 22-
character display or printer width.

6. The comments at the right of the listing describe the purpose or results of the
program lines at the left. If you are creating a program using a personal com-
puter text editor, you can include similar comments in your program, setting them
off from the program objects using the @ delimiter (section 6.4.3.1). An espe-
cially useful “comment” 1is a description of the contents of the stack that are
obtained after the execution of a program line. In our listings, the stack contents
are distinguished from ordinary comments by enclosing the stack objects between
| | symbols. The leftmost object in the series is in the highest stack level; the
rightmost is in level 1. Thus

la b ¢ d|

indicates that the object a is in level 4, b in level 3, ¢ in level 2, and d in level 1.

We recommend that you use similar conventions when developing and recording your
own programs. Whether you write programs out by hand and type them into the HP 48,
or use a personal computer to write programs and transfer them to the HP 48 via the
serial port, program stack diagrams and comments are invaluable for later understand-
ing and modification of the programs. Of course, there will be many occasions when
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you create a program directly in the HP 48 command line without benefit of any pro-
gram listing. In these cases, we still recommend that you afterwards make a listing, or
copy the program to a personal computer file, so that you can recover the program if
you lose it for any reason.

1.4 Terminology

Finding useful terminology to describe a computer system like the HP 48 with new or

unusual features can be a substantial problem. We have to use existing English words
that are close to the meaning we wish to convey, but the dictionary definitions of the
words usually differ from their meanings as applied to the HP48. Consider the word
object: for the HP 48, object means any of the mathematical or logical elements that con-
stitute the data and procedural building blocks of the RPL language, but you won’t find
that meaning in a dictionary (although it is close to the definition used in mathematics).

Our solution to this difficulty is to provide precise definitions of any terms that we use
that are specific to the HP 48, and then use those definitions consistently throughout. In
some cases, the definitions we offer may differ from those used in the HP 48 manuals,
usually because we need more careful definitions to get across a particular point. For

example, the owners’ manuals do not make a distinction between execute and evaluate.
We find that such a distinction is useful (section 3.3) because it simplifies the descrip-
tions of related subjects, such as the nature of global name objects (section 3.6.1).

Two other important terms that arise frequently are mode and environment. A mode is
a calculator setting, often associated with one or more flags (section 7.1), that deter-
mines how a particular keystroke or command will behave. For example, in polar mode,
complex numbers and vectors are displayed in polar coordinates rather than the usual
rectangular coordinates. An environment is a glorified mode, which determines the
entire calculator interface, including the display, key actions, and available operations.

The “home base” for the HP 48 is the standard environment. In this environment, the
display shows the status area, stack, and menu key labels. All keys are active, with their
ordinary labeled definitions. If you press , the HP48 switches to the plot
environment. Here the display is devoted to a graph or other picture, the menu keys are
restricted to a menu of plotting operations, and the remaining keys are either assigned
additional plot actions or are inactive altogether. Pressing returns to the standard
environment. Other environments include the EquationWriter, the MatrixWriter, and

the equation and statistics matrix catalogs.

While introducing and using this kind of specialized terminology, at the same time we
will be using an informal style that takes some liberties with the language to avoid
unnecessarily stilted descriptions. “You are in the program branch menu” is almost a
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non-sequitor when taken out of context, but it reads more easily than “the current
HP48 menu is the program branch menu,” and its meaning is clear.

1.5 Easy to Use or Easy to Learn?

It would be nice if you could pick up the HP 48 and use all ofits facilities without ever
referring to a manual. A common criticism of the HP 48 is that it takes a long time to
master, particularly by comparison with other recent HP calculator products such as the
HP17B and the HP19B, and with some of the simpler function-plotting calculators
made by other manufacturers that have become popular in mathematics education at
the pre-calculus level. But these calculators obtain their ease of learning by having very
limited computational capabilities and flexibility compared to the HP48. If your prob-
lem “fits” on one of these other calculators, then it is easy to use as well as easy to
learn. But if you want to do something just a little different, you will find that “easy to
learn”translates to “impossible to use.”

The HP 48 approach is to provide a broad, very flexible set of computational capabili-
ties, many of which have never before been available on a handheld calculator. Further-
more, it is expressly designed for “linking” calculations together--the results of one cal-
culation are always ready to be used as input for another, even if you didn’t know in

advance that your work would proceed that way, and even if the calculator designers
didn’t expect you to make that particular combination of calculations. These ideas are
what the HP 48 means by “case-of-use.”

“Ease-of-learning” is a different story. Unfortunately, the HP 48’s rich capability set
doesn’t leave enough built-in memory to provide “no-manual” learning. And there’s no
doubt that the HP48 does work differently from other calculators, even from its RPN
calculator predecessors like the HP41. You have no choice but to spend some time
reading the manuals and learning new procedures. But learning the basic ideas doesn’t
take long, and once you master them, a wide range of truly easy-to-use calculating capa-
bilities is available to you.
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The HP-48, like most of its Hewlett-Packard calculator predecessors, presents a user
interface centered around a logic called “RPN,” short for Reverse Polish Notation. If
you are unfamiliar with this logic, particularly if you are accustomed to so-called “alge-
braic” calculators, RPN may seem awkward and unfamiliar. In this chapter, we will
explain how RPN works, and whyits virtues make it the choice for the HP-48.

Many people use a calculator in a style that you might call “fingers in, eyes out.” That
is, they manually type in all of the data for a calculation and read out the result visually
from the display, perhaps writing it down on paper. For this type of use, a calculator

that uses “algebraic” entry seems desirable, because in at least simple cases the key-
strokes follow more-or-less the order of common written mathematical notation.

The algebraic style, however, is not well suited for exploratory calculation, where you
don’t necessarily know what to do next until you see the results of previous
calculations--and you need those results as part of the next calculation. When you press
an algebraic calculator’s [= key to complete a calculation, you had better be sure that
you’re finished, because the result you see in the display may vanish at the next keys-
troke.

The choice and design of an RPN system for a calculator arises from consideration of
one central principle:

o The result of any calculation, no matter how complicated, may be used as an input for
a subsequent calculation.

RPN calculators are designed to embody this principle, by providing a mechanism (the

“stack”) whereby you can apply mathematical operations to data already entered into
the calculator. The results of the operations are also held indefinitely, so that they, in
turn, can be the input data for subsequent operations.

In the calculator world, the term Reverse Polish Notation, or more specifically, the

abbreviation “RPN,” has come to mean “the way HP calculators work.” RPN actually
is a mathematical notation; HP calculators provide an electronic implementation of the
notation. In RPN, mathematical functions are written after their arguments, not before
or between the arguments as in ordinary written expressions. The notation appears
strange, because we are not used to visualizing or writing expressions this way. How-
ever, when you actually evaluate an expression to a numerical value using pencil and
paper, you must revert to an order of operations that exactly corresponds to RPN. We
will illustrate this point by examining how mathematical expressions are evaluated.

-15-



2.1 Understanding RPN

2.1 The Evaluation of Mathematical Expressions

A mathematical expression is an abstract representation of the calculation of a single
value. An expression combines data (numbers or other explicit quantities), variable
names, and functions. When you evaluate an expression, you perform all of the calcula-
tions represented by the expression. Examples of expressions are:

1+2

x+y+2

sin[In @ +2)]

x3+4x% - 6x+2

We will confine our attention to expressions that can be formed from the mathematical
functions included in the HP-48: arithmetic operations, powers, roots, transcendental
functions, etc. Expressions like these have the property that they are equivalent to a sin-
gle value. That is, if you perform the calculations represented by an expression, you end
up with a single value as the result.

In our discussions, we will be using the following terms:

e A function is a mathematical operation that takes zero, one, or more values as input,
and returns one value.

e A value used by a function as “input” is called an argument.

e A value returned by a function as “output” is called a result.

e A mathematical variable is a symbol that stands for a value. Evaluating a variable
replaces the symbol with the value.

e Algebraic syntax is the set of rules that governs how data, variables, and functions

may be combined in an expression.

As an example of these concepts, consider the following expression:

sin[123 + 451n (27-6) ]

The expression contains the functions sin, In, +, —, and X (implied multiply between
the 45 and the In), and the numbers 123, 45, 27, and 6. The expression is written in

common mathematical notation, but notice that the order in which you read or write the
expression, i.e., left to right, does not correspond very well to the order you would use if
you were actually going to evaluate the expression with pencil and paper and function
tables. For example, although the In function precedes the quantity (27-6), you can’t
actually compute (or look up) the logarithm until after you have computed the difference
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27-6. Similarly, the sin, which is the first function that appears in the expression, is
actually the /ast that you will execute. You can not compute the sine until the entire
rest of the expression [123 + 451n (27~ 6)] is evaluated.

The common mathematical notation that we are using here has been developed over the
centuries to present a readable picture of a mathematical expression that takes advan-
tage of a human’s ability to view an entire expression at once and draw conclusions from
its structure. But the notation is not a very good prescription for actually evaluating an
expression--as you step through a calculation, you have to jump back and forth, match
parentheses, etc. to find the next step. As we will show now, converting an expression
into an orderly procedure for evaluation leads directly to RPN. First we’ll adopt a uni-
form structure that treats all functions alike, then we’ll turn it around to match actual
calculation order.

Common notation is not uniform because the notation differs for one-argument and
two-argument functions. In our sample expression, the one-argument functions sin, In,
and cos, are written in front of their arguments (“prefix” notation), whereas the two-
argument functions + and - are written between their arguments (“infix”). Further-
more, there is an implied multiply between the 45 and the In that is not explicitly writ-
ten. Infix notation also leads to ambiguity. For example, does 1+2X3 evaluate to 9 or
7? You either have to introduce extra parentheses, e.g. (1+2)X3 or 1+(2X3), or use
so-called precedence conventions that specify which functions are executed first in ambi-

guous situations. One of the drawbacks of non-RPN calculators is that there is no
universal standard for precedence, so you have to memorize the precedence rules of
each calculator you use.

A general-purpose form for functions is to write each function name followed by its
arguments contained in parentheses, as in f(x), g(xy), etc. You can make expressions
more uniform by writing all of its functions in this prefix form:

sin ( + (123, X (45,1In( - (27,6)))))

In this notation, +(1,2) means “add 1 and 2”; X (1,2) means multiply 1 by 2; etc.

Writing expressions this way is called Polish notation, honoring the Polish logician, Jan
Kukasiweicz. Unfortunately, this notation appears practically unintelligible to people
accustomed to conventional notation. But it does show explicitly the hierarchical struc-
ture of the expression, which we will discuss later (section 3.5.2.1). Also, it is useful
becauseit is a step towards RPN. Thatis, you can obtain a form that corresponds more
closely to the actual order of evaluation of an expression by rewriting the Polish form so
that the function names follow their arguments’ parentheses. For example, rewrite
+(1,2) as (1,2) +. The example expression now becomes:
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((123, (45, ((27,6) - )In) X ) + ) sin

You have replaced Polish notation with Reverse Polish Notation. In this form, the
expression represents a step-by-step evaluation prescription for pencil-and-paper or elec-
tronic calculation, that follows the left-to-right order of the expression. To see this, con-
sider an orderly pencil-and-paper method for evaluation:

e Start at the left of an RPN expression, and work to the right.

e When you come to a number, write it down below any previous numbers.

e When you come to a function, compute its value using the last number(s) you wrote
as its arguments. Erase the argument number(s), and then write the function value.

Apply this procedure to calculate the example expression (keeping two decimal place
accuracy):

Object What to do What you see

123 Write 123 123

45 Write 45 123
45

27 Write 27 123

45

27

6 Write 6 123
45
27
6

- Subtract 6 from 27 123

45

21

In Find In(21) 123
45
3.04

X Multiply 45 and 3.04 123

137.00
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+ Add 123 and 137.00 260.00

sin Take the sine of 260° -.98

There are two things you can notice from this exercise:

e Whenever you encounter a function, you can execute it immediately because you
have already calculated its arguments.

e You can ignore parentheses. When you write an expression in RPN form, you don’t
need parentheses, because there is no ambiguity of precedence--functions are always
executed left-to-right.

The latter point means that you can eliminate parentheses from the notation. Doing so,
the example becomes:

123 45 27 6 - In X + sin

2.2 Calculator RPN

An RPN calculator allows you to substitute an electronic medium for paper. The
calculator’s key is the equivalent of “write it down” in paper calculations. You
“write” a number by pressing the appropriate digit keys, then , which terminates
digit entry and enters the number into the calculator’s memory. The memory takes the
place of paper.

For cases where you need to have more than one number written down at a time, calcu-
lator memory is organized into a “stack.” You can visualize the stack as a vertical
column of numbers, where the most recently entered numbers are at the bottom of the
column, and the oldest numbers at the top. Each new entry “pushes” previous entries
to higher stack levels. A function always operates on the latest stack entry or entries,
and replaces those entries with its result, where it is ready for use by the next function
to come along. If one or more entries are removed from the stack, older entries drop
down to fill in the vacant levels. Again, this is quite analogous to the pencil-and-paper
technique you used in the example.

To illustrate calculator RPN, redo the previous example on the HP-48. Start by setting
the numerical display mode for two decimal places:
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Keystrokes: Stack:

2SFIXE

123 1 123.00

45 2: 123.00
1: 45.00

27 3: 123.00
: 45.00

1; 27.00

6 4: 123.00
3: 45.00
2: 27.00
1: 6.00

=] 3: 123.00
2: 45.00

1; 21.00

3: 123.00
2: 45.00
1: 3.04

2: 123.00
1: 137.00

1 260.00

[SIN] 1: -0.98

Note how

a. each number entered goes into level 1, raising the preceding numbers to higher
levels;

b. each function removes its argument or arguments from the stack, and returns a
new result to the stack.

-20-



Understanding RPN 2.2

Here you can see how a stack provides for the realization of the principle stated at the
start of Chapter 2, namely, that every result can be an argument. The stack acts as cen-
tral exchange, where each function expects to find its arguments. Since each function
also returns its results to the stack, those results are automatically ready to be used as
arguments for the next function.

2.3 RPL RPN

Prior to the introduction of the HP-28C in 1987, RPN calculators provided only a lim-
ited form of RPN in which the stack was limited to four levels. This implementation is
adequate for many calculations, but has certain shortcomings:

¢ You can’t routinely convert any expression into RPN, then execute it left to right.
Instead, you have to study the expression, looking for ways to avoid piling up more
than four stack entries at a time.

e Some calculations intrinsically require more than four entries, no matter how clever
you are. This means that you have to save one or more intermediate results in
storage registers, then recover them later for further stack operations.

A four-level RPN stack is a restriction quite analogous to the limit in most “algebraic”
calculators on the number of parentheses that you can nest in a calculation. Such limits
are an even greater nuisance than the stack level limit, since algebraic entry does not
lend itself well to passing the results of one calculation on to another.

The RPL system employed by the HP-28 and the HP-48 is a thorough implementation
of RPN, in which the number of stack levels is not fixed. The stack grows and shrinks
as needed. The unlimited stack allows you to concentrate on the results of a calculation
without requiring extra mental effort to rearrange it to fit the constraints of a four-level
stack. Furthermore, the stack is a stack of general objects, not just of ordinary
numbers, so that calculations with extended objects such as matrices can be performed
in the same style as simple numerical calculations.

An important example of the multi-object-type stack is RPL’s ability to intermix expres-
sions, entered in algebraic form, with RPN operations. This ability is provided through
the use of algebraic objects, which are representations of expressions that you can enter
into the stack as entire units. We discuss algebraic objects in more detail in later sec-
tions of this book; for now, you can consider them as the means by which you can calcu-
late with algebraic notation.

In section 2.1 we showed how RPN is derived by considering the manner in which
expressions are actually evaluated. However, we do not mean to imply that a com-
pletely RPN approach is always the most convenient method of calculation. In fact, to
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evaluate certain expressions like our example sin[123 +45In(27-6)], it is arguably
simpler to key in the expression in a manner that corresponds as nearly as possible to
the written form, than to figure out the more efficient RPN keystrokes. RPN is most
useful for exploratory calculation, when you’re not merely evaluating a predetermined
expression. RPL allows you to have the best of both worlds, by combining algebraic and
RPN logic as follows:

e If you know in advance the complete mathematical form of a calculation, enter it as
an algebraic object.

e If you are working out the solution to a problem, and don’t know in advance all of
the steps, work through the problem with an RPN approach, applying functions to
the results as they appear.

¢ In both cases, the results are held on the stack ready for use in further calculations.

Our sample problem was originally expressed as an expression, so you can enter it as an
algebraic object:

'SIN(123 +45*LN(27-6))’

puts the algebraic object representing the expression into stack level 1. (Note thatit is
the expression itself that is present, not its evaluated value; the ability to handle expres-
sions withoutfirst evaluating them is one of the unique and most powerful RPL calcula-
tor capabilities.) In this example, you are interested in the numerical value, so press

. This replaces the algebraic object with its value —.98. Actually, if this result
were all that is of interest, you could omit pressing , and use to take the

expression directly from the command line and evaluate it.

Suppose, however, that at the beginning of the calculation you were only interested in
the expression 123 + 451n (27-6). In that case, you would compute the value by enter-

ing

'123+45*%LN(27-6)' EVAL = 260.00

Then, after obtaining this result, you realize that in addition to the value itself, you also
need to know the sine of the value. Because the result of the initial calculation is on the
stack, it is ready for further calculation. In this case, you can execute DUP to make a

copy of the number for later use, then SIN to compute the sine.

RPL calculators are unique in their ability to hold the results of algebraic expression
evaluation in a manner that allows you to apply additional operations to the results after
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they are calculated. Algebraic entry calculators require that you know the entire course
of a calculation before you start; RPN calculators overcome that problem, but you must
always mentally rearrange an expression into reverse Polish form as you proceed. The
HP-48 allows you to proceed with any mix of the two approaches that is appropriate for
the problem at hand.

-23-





3. Objects and Execution

In Chapter 2, we demonstrated how you perform calculations on the HP 48 by applying
functions to numbers that are present on a stack, which acts as the electronic equivalent
of a sheet of scratch paper. This RPN system is very uniform and flexible, and there is
no particular reason to restrict its use to real numbers and ordinary mathematical func-
tions. The HP48 generalizes the RPN approach to problem solving in two ways:

e Real numbers are just one of several types of objects that the HP48 can manipulate
on the stack and store in memory. (Several other English words might be substi-
tuted for object; item, unit, element, etc. The use of object for this purpose is com-
mon in mathematical jargon, and so that word is adopted for HP 48 terminology.)

e Mathematical functions are just one of several classes of HP 48 operations that can
be applied to numbers and other types of objects.

The terms object and operation are key terms for any discussion of the HP 48, and we
will study them in detail in this chapter. In addition, we will introduce the concept of
object execution, and the closely related term evaluation. In rough terms, operations are
“what things the HP48 can do,” and objects are “what the HP 48 can do things fo0.”
Execution and evaluation are the actual “doing.”

We will use these four words extensively throughout this book to make general state-
ments about HP48 principles, so it is important that you understand the meanings of
each. If you find occasionally that the statements are too abstract, you can relate them
to more familiar ideas by substituting concrete examples for the general terms. For
example, when we refer to an object, you can think of a number as an example; for an
operation, think of an ordinary math function like + or sine. Execution is the “activa-
tion” of an object--think of running a program. Evaluation differs from execution only
for algebraic and list objects: execution treats these types of objects as data and merely

returns them to the stack; evaluation actually performs sequences of calculations defined
by the objects.

3.1 Operations

“What things the HP48 can do” make up a very long list, and constitute the subject
matter of most of this book. Here we will concentrate on defining the different types of
operations, to facilitate later discussions.

We use the term operation to mean any of the built-in capabilities of the calculator.
Most calculator manuals use the term function for this purpose. In describing the
HP 48, the term operation is preferable, reserving functions to mean a specific group of
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HP48 operations that correspond to the mathematical meaning offunction.

There are two basic methods by which you can make the HP 48 "do" something; thatis,
perform an operation.

e Find the key that is labeled with the name or symbol for an operation, and press it.
Many important operations, such as the arithmetic operators, or STO and EVAL, are
permanently available on the keyboard. The remaining operations are available as
menu keys.

Spell out the operation’s name in the command line, then press . ENTER on
the HP 48 plays a role that combines its original RPN calculator purpose of ending
number entry with a more sophisticated meaning of "do these commands.” ENTER
is explored in detail in section 6.4.3.

HP 48 operations are classified as follows:

1. An operation can be a command or a manual operation, according to whetherit is
programmable or non-programmable, respectively. A command has a specific
name, so that you can

e cxecute the command by typing its name into the command line.

e include the command in a program that you write.

Manual operations don’t have names that you can spell out or include in a pro-
gram; you can only execute a manual operation by pressing a key. Examples are

ENTER], REVIEW] , and ESOLVRE .

Programmable operations--commands--are sorted into two classes. If a command
can be included in the definition of an algebraic object, it is called a function.
Examples of functions are +, SIN, LOG, and NOT. Commands that are not

allowed in algebraics are called RPN commands. These commands, such as DUP,
STO, or RDZ (randomize), are typically stack or memory operations that make no
sense in the context of an algebraic object, which is the HP 48 calculator represen-

tation of a mathematical expression or equation. The logic of expressions
demands that every part of an expression (including the entire expression itself) .
can be evaluated to a single value. So for an HP 48 command to be included in an
algebraic object, it must act like a mathematical function--use zero or more values
as input, and always return exactly one result.

The final classification of HP 48 operations is the division of functions into two
categories: analytic and non-analytic. Analytic functions are those for which the
HP 48 knows the derivative and inverse. “Knowing” the inverse of a function f
means the HP48 can automatically solve the equation f(x) =y for x. (In
mathematics, an analytic function is continuous and differentiable, which
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corresponds more-or-less to the HP 48 meaning of analytic function. For various
reasons, the HP 48 does not provide derivatives and/or inverses for every function

that is analytic mathematically. % is an example of a well-behaved function for
which no built-in derivative is provided. On the other hand, the function ABS can

be differentiated on the HP48, even though it is not properly differentiable at
zZero.)

The main reasons for sorting HP 48 operations into these categories is to make possible
general statements about various classes of operations, and to provide information about
individual operations without unnecessary repetition. Thus when we refer to DUP as an
RPN command, we are reminding you that DUP is programmable, but not allowed in an
algebraic expression.

3.2 Objects

The HP48 provides 18 distinct types of objects that can be created and manipulated
with ordinary built-in operations. These object types are listed by their type numbers
(as returned by the commands TYPE and VTYPE) in Table 3.1. In addition, there are
twelve system object types, including seven that are actually used by the HP 48 in internal
calculations, and five provided for future extensions. You won’t normally see any of
these while using only built-in operations, but external software may bring them to light.

The word object is the collective term for all of the different items listed in the table.
This list does not contain all imaginable object types; these are just the types that you
can create and use on the HP48. In the abstract, an object is a collection of data or
procedures that can be treated as a single logical entity. In practical HP 48 terms, this
means that an object is something that you can put on the stack.

Most objects are identified in the HP 48 by their characteristic delimiters, which are just
the symbols #, ", ’, etc., which you enter to tell the calculator what type of object you
are entering, and where it starts and stops. (If you enter a string of characters without
any delimiters, the HP48 attempts to interpret it as a real number, or failing that, as a
name or command.) Similarly, the calculator uses the same delimiters when it displays
an already entered object so that you can recognize its type.

An individual object is characterized by its type and its value. The fype (number, array,
etc.) indicates the general nature and behavior of the object. The value distinguishes
one object from another of the same type. For a real number object, the value is its
simple numerical value. For a string, the value is the text characters in the string. For
a program, the “value”is the sequence of objects and commands that make up the pro-
gram. For lists, programs, and algebraic objects, which are made up of other objects,
we will use the term definition rather than value.
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Table 3.1. HP48 Objects

TYPE Number Object Type Identification

0 Real number digits

1 Complex number (real number, real number)

2 String (text) "characters" (stack or command line)
C$ n characters (command line)

3 Real array (vector or matrix) [ real numbers|

4 Complex array (vector or matrix) [ complex numbers ]

5 List { objects }

6 Global name characterst

7 Local name characterst

8 Program << objects >>

9 Algebraic object ‘objects’

10 Binary integer number #digits

11 Graphics object Graphic n X m (stack)
GROB n m data (command line)

12 Tagged object characters: object (stack)
:characters: object (stack)

13 Unit object number_units

14 XLIB name characters (library present)
XLIB n, m (library missing)

15 Directory DIR name object ... END

16 Library object Library n: Title

17 Backup object Backup characters  
T Names can be entered with or without ’ ' delimiters. See section 3.7.
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A central theme of the HP48 is its uniform treatment of different object types. This
means that the basic calculation process--applying operations to objects on the stack--is
the same for every object type:

e Each stack level holds one object, regardless of type.

e The stack commands to copy, reorder, and discard objects are the same for all
object types.

e The processes of storing (naming), recalling, and executing are the same for all
object types.

e The same operation can be applied to as many different object types as make sense
for the operation.

These points have the very practical consequence of simplifying the learning and use of
the HP 48, for once you learn how an operation works for one object type, you automat-
ically know how to use it for any other object types to which it might apply. For exam-
ple, if you learn RPN arithmetic for real numbers, you don’t have to learn anything new
to do arithmetic with complex numbers or arrays--the steps and logic are the same.
There is no such thing as “complex mode” or “matrix mode” on the HP 48.

3.2.1 Operations as Objects
You might ordinarily think of operations as actions, and objects as the targets or results
of the actions. However, the existence of object types that are not simple data--names,
algebraic objects, and programs--blurs this distinction. As a matter of fact, all HP 48
commands are just built-in program objects. To demonstrate that a command is an
object, you can put it on the stack. Try this:

  
1 2 {+} [ENTER] [PRG] EOBJE :0BJ-= [&]  

 

 

  

{ HOME }
4:

3 1
o Z
]1: +

 

In level 1, you see the object +. (You have to enter the + originally in a list to prevent
its execution when you press Z0BJ-Z .) If you now press , the + is executed,
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adding the 1 and 2 you entered previously and leaving the result 3. This technique
works for any command.

This brings us to the subject of execution: when is an object “passive”--like the + just
waiting on the stack, for example--and when is it “active”--like the + actually perform-
ing the addition?

3.3 Execution and Evaluation

We have generalized the concept of an object to include not only data objects but also
user-defined programs and expressions, and built-in operations. We now similarly
define execution as the general term for the activation of an object: to execute an object
means to perform the “action” associated with that object. In the next sections, we will

look at the various actions associated with the different object types.

Most object types are considered as data, for which execution simply means “put the
object on the stack.” Five object types have a more energetic definition of execution:

e Executing a local name means to recall an object stored in a local variable (section
9.7) to the stack.

e Executing a global name means to execute an object stored in a global variable (sec-
tion 5.1).

e Executing an XLIB name means to execute an object stored in a library--an exten-

sion to the calculator’s built-in operation set (section 5.3.2).

e Executing a program means to execute the objects that make up the program’s defin-
ition.

e Executing a system code object executes the assembly language program that defines
the object.

Lists and algebraic objects are defined, like programs, by a sequence of other objects (in
fact, the internal structures of lists, programs, and algebraic objects are identical). Col-
lectively, the three types of objects are called composite objects. The HP 48 provides a
second form of execution, called evaluation, in which composite objects of any type are
executed like programs--the objects that make up a composite object are executed
sequentially. For non-composite objects, evaluation and execution are synonymous.

The primary means of evaluating an object is the EVAL command, which evaluates the
object in level 1, e.g.
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3 EVAL = 3

142’ EVAL = 3

{1 2 +} EVAL = 3

<1 2 +> EVAL = 3

The use of the term evaluation arises from its meaning of performing the calculations
represented symbolically by an algebraic expression to obtain the value of expression.
In addition to EVAL, algebraic objects are evaluated by “NUM, plus several other com-
mands that deal with expressions’ values, such as f, DRAW, and ROOT. EVAL is the
only means of evaluating a list.

3.3.1 When are Objects Executed?
Before studying the execution actions of the various object types, it is helpful to review
the circumstances under which objects are executed or evaluated. It is not unreasonable
to say that object execution takes place all the time while the HP 48 is on, since virtually
any HP48 activity--interpreting keystrokes, displaying objects, printing, etc.--can be
viewed as the automatic execution of built-in program objects. However, of most
interest are the times when objects are executed under your direction, particularly
objects that you have created. These times are as follows:

1. Execution

e When you execute ENTER (section 6.4.3), each object specified in the com-

mand line is executed, in the order in which it appears in the command line.
You can prevent execution of names or programs in the command line by
enclosing them in their respective delimiters ' ' or << >>_ as discussed in sec-
tions 3.8.

e When a program is executed, the objects that make up the program are exe-
cuted, following the same rules as command line execution.

e When a global name (section 3.6.1) is executed, the object stored in the
corresponding variable is executed. (Execution of a local name merely recalls
the stored object.)

e When an XLIB name is executed, the named object in a library is executed.

2. Evaluation

e EVAL removes the object in level 1 from the stack and evaluates it. This is the
most common means for evaluating an object after it is placed on the stack.
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e »NUM is similar to EVAL, except that it invokes numerical execution mode

(section 3.5.5.2), and does not evaluate lists.

e QUAD, ROOT, SHOW, TAYLR, 9, and [ also evaluate their stack arguments.

e HP Solve and DRAW cause evaluation of the current equation specified in the
variable EQ.

¢ Commands such as PUT or [ that use a list containing real numbers as an
argument numerically evaluate (-NUM) the objects in the list to convert them
to real numbers.

e Program structure words such as THEN, that take a flag value from the stack,
evaluate algebraic object arguments to obtain a numeric flag value.

e The conditionals |FT and IFTE evaluate the stack object selected by the value
of the stack flag (section 7.1).

It is useful to sort HP 48 objects into three classes of objects: data, name, and procedure.
This classification is made according to an object’s behavior when it is executed or
evaluated. Most types of objects are data class objects, which just put themselves on the
stack when executed. The execution of name class objects (global, local, and XLIB
names) causes the recall or execution of stored objects. Procedures are composite
objects; their evaluation causes the sequential execution of the objects contained in the
procedures.

Lists and algebraic objects classify differently depending on whether they are executed
or evaluated. Because lists are primarily used as data (the contents of lists are usually
not appropriate for sequential execution), we shall consider them as data class objects,
which occasionally are made to act as procedures by EVAL. Algebraic objects are
always suitable for evaluation, so we will consider them as procedures while keeping in
mind that they act as data objects when executed.

3.4 Data Objects

The idea of a data object should be quite familiar to you, since data objects are the only
quantities that can be manipulated as objects by other calculators (except for the HP 28)
and BASIC computers. The archetype data object is a floating-point real number. More
generally, an HP 48 data object is the calculator’s representation of a mathematical or
logical data entity such as a number, a vector, or a character string.

You would not expect a data object to be able to do anything; rather, it exists to have
things done to it. Nevertheless, data objects do have an execution action: they just enter
themselves onto the stack. When you type in a number, for example, and press ,
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the number object is executed and so ends up in level 1. When a data object is already
on the stack and you execute EVAL, nothing apparently happens. Actually, EVAL
removes the object and executes it, which putsit right back on the stack. Note classify-
ing an object as “data” does not imply that the object is small or simple--a directory is a
data class object, but it can occupy any amount of memory and have a very complex
structure.

The HP 48 data object class includes the following types: real number, complex number,
string, real array, complex array, list, binary integer, graphics object, tagged object, unit
object, directory, library, and backup object, plus all of the system object types except
the code object.

3.4.1 Real Numbers
A real number object is the HP48’s version of an ordinary real decimal number. The
number value of the object is stored in floating-point representation, as a combination of
a 12-digit mantissa (x/101%81* 1)) between 1 and 9.99999999999, and a 3-digit exponent
(IP(log | x |)) between —499 and +499. That is, a number is represented as

mantissa X 10Porer

When the HP 48 is in scientific number display mode (execute 12 £SCIE ),

you can see the mantissa and exponent explicitly; for example, the number 1.234X 10? is
displayed as 1.23400000000E23. The E is a one-character symbol for “X10 to the

power...”

When the HP 48 performs internal calculations during the execution of mathematical
functions, real numbers are expanded to fifteen-digit mantissas and five-digit exponents,
and all of the calculations are carried out to that accuracy. Functions’ results are
rounded back to twelve-digit mantissas and three-digit exponents when they are returned
to the stack. Note that this does not imply that calculations involving multiple functions
are always accurate to twelve digits. The error derived from rounding intermediate
results to twelve digits accumulates as each new function executes on the result of the
previous one.

Real numbers are entered and displayed without any delimiters. In the command line, a
real number is a consecutive sequence of decimal digits, optionally including a leading +
or —, a fraction mark (decimal point), and/or an “E” followed by an optional + or - to
mark the start of the exponent field.

e If you enter more than 12 digits in the mantissa, the resulting exponent will take the
extra digits into account, but the mantissa is rounded to 12 digits:
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9999999999999 r= 1.00000000000E13

¢ Entering more than three digits in the exponent causes a syntax error.

e In FIX display mode, real numbers displayed on the stack are shown with digit-group

commas (periods when flag —51 is set). However, you can not include such commas
when you enter numbers in the command line, since the commas are interpreted as
object separators:

123,456,789 r= 123 456 789.

3.4.2 Complex Numbers
Complex number objects consist of two real numbers combined as an ordered pair (x,y).
They have two primary uses:

e To represent complex numbers, where the first number in each ordered pair is the
real part of a complex number, and the second number is the imaginary part. A
complex number object (x,y) corresponds to the complex number z = x + iy, where
x = Rez and y = Imz. The object (3,2) represents the complex number 3+2i.
Complex number objects obey the rules of complex number arithmetic; for example,

(1,20 (34) + = (46).

e To represent the coordinates of points in two dimensions, such as points used in
conjunction with HP48 plotting (10.3). The real part (the first number of the pair)
of the complex number is the horizontal coordinate of the point, and the imaginary
part (the second number) is the vertical coordinate. In this context, complex
numbers act as two-dimensional vectors, and are suitable for vector addition and

subtraction. However, other common vector operations, such as dot and cross pro-

ducts, are not defined for the complex number object type; for those purposes, you
must use vector objects.

The standard entry form for a complex number is matched parentheses surrounding two
real numbers x and y: (xy). separated by spaces or commas (periods). The numbers
can also be interpreted as the absolute value r and phase 0, by separating them with an
angle sign 4, i.e. (r £6). Similarly, complex numbers by default are displayed on the
stack in rectangular format, but you can obtain a polar form display by selecting polar
coordinate mode (section 11.3.1).

When you enter a complex number within an algebraic object, you must separate the
real and imaginary parts (or the absolute value and phase) with a comma or a semi-
colon. However, you can enter a complex number as an ordered pair of real numbers
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or symbolic quantities. In the latter case, [ENTER] automatically converts the ordered
pair to an explicit complex number using the symbolic constant i (section 3.5.6.1):

'(A,B)’ rz 'A+B#’
'R, £0)' = 'R+COS(8)+R+*SIN(8)*

When you are performing manual calculations with complex numbers, the 2D (2-
dimensions) operation is a convenient tool for entering or obtaining parts of complex
numbers (2D by default works with two-dimensional vectors, but you can direct it to
work with complex numbers by setting flag —19). For example,if you find that you fre-
quently forget to press [$1][0] to start complex number entry, try entering the two real
numbers without the parentheses and then pressing . 2D combines the two real

numbers into a complex number, interpreting the first number as the real part (or the
absolute value, in polar mode), and the second as the imaginary part (or the phase
angle). Using 2D also makes it straightforward to compute the entries; e.g. you can
enter (1,\/3/2) with:

13V 2/ = (1, .866025403785)

(assuming rectangular coordinate mode).

2D is its own inverse: if there is a complex number in level 1, 2D takes it apart into two
real numbers, according to the current coordinate mode. There is no single program-
mable form of 2D; instead, the command -V2 (flag —19 set) serves to combine two real
numbers into a complex number, and V- takes a complex number apart. Both com-
mands respect the coordinate mode, unlike R-C (Real-to-Complex) and C~R (Complex-
to-Real) for which the real number arguments and results are always the real and ima-
ginary parts of the complex number:

(1,2) C-R = 1 2
DEG (1,445) C-R = .707106781187 .707106781187

3 4 R-C = (3,4)

You can also decompose a complex number with OBJ-, which is equivalent to C-R for
complex numbers.

HP 48 mathematical functions treat real number and complex number objects in a very
uniform manner. That is, you can intermix the two object types in almost any calcula-
tion involving arithmetic, trigonometric, logarithmic, or exponential functions. Two-
argument functions return complex results if either argument is complex:
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3 (23) * = (69).

The result of a single-argument function may be real or complex, according to the argu-

ment type and the appropriate mathematics. The functions RE (real part), IM (ima-
ginary part), ARG, and ABS always return real number objects. A trigonometric, loga-
rithmic, exponential, power or root function applied to a complex argument always
returns a complex results, e.g.:

02 V = @1,1).

Such functions applied to real arguments may return either a real or a complex result.
For example,

DEG .5 ASIN = 30,

but

2 ASIN = (1.57079632679,-1.31695789692).

On most other calculators, the last example would cause an error. The HP48’s
integrated treatment of real and complex numbers means that you can write programs
that work equally well for real and complex inputs and outputs. However, it also means
that you may have to include explicit range testing in a program that you want to stop
when a calculation strays out of the real number domain.

You should note that the last example gives the same result regardless of whether the
HP48 is in degrees mode or radians mode. Trigonometric functions consider all com-
plex arguments and results to be expressed in radians.

3.4.3 Strings
String objects (object type 2) are character sequences that are interpreted as simple text.
Strings are identified by the double quote delimiters " ". The characters within the
quotes can be any HP48 characters, including the other delimiter characters, which have
no special meaning in a string. You can use string objects to prompt for input or label
output, or as data to be processed logically, such as names to be alphabetized by a sort-
ing routine (section 11.6.3). The sequence "text” DROP can act as a program “comment”
that has no computational significance but helps you to document a portion of a pro-
gram. If you write or keep programs (or any object types) on a personal computer, the
comment delimiter “@” provides a better commenting method.

Strings are normally entered and edited by surrounding a sequence of characters with
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double quotes, e.g. "ABCDEF". However, if you want to enter a string object in which
one or more of the characters are double quotes, you can use the alternate command
line forms

C$ n characters

or

C$ $ characters

The first of these “counted string” forms makes a string object using the first n charac-
ters in the command line after the number n (not counting the first space or other non-
numeric character after the n):

C$ 10 ABCD"EFGHI = "ABCD"EFGHI"

C$ 2ABC123 = "BC" 123

When you edit a string object that contains double quote characters, it always appears in
the command line in this counted string form.

The second counted string form uses all of the remaining characters in the command
line following the C$ $:

C$ $ ABCDEFG = "ABCDEFG"

In this case, there must be a space after the second $.

3.43.1 Concatenation
One of the most common string operations is concatenation, the appending of one string
to another. This is achieved on the HP 48 by the + command, which appends a string
object in level 1 to the end of a string in level 2:

"ABC" "DEF" + = "ABCDEF"

String concatenation does not require that both arguments of + be strings; if either
argument is a string, the non-string object (unless it is a list--see section 11.5.1) is
automatically converted to a string (as by »STR) and then concatenated to the other
argument:

STD "Result=" 10 + = "Result=10"
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3.43.2 String Comparisons

String objects can be compared (ordered) by using any of the six comparison operators
==, ¥, <, >, =, and = (section 9.3.1). Comparisons are made on a character-by-
character basis, where pairs of characters are compared according to their character
codes. The character code is a number from 0 through 255, that represents the number
of a character in the ISO 8859 Latin 1 character set used by the HP48. Two strings are
equal if they contain the same characters in the same order. string; is “less than”
string, if the first character from the left that is not the same in both strings has a
smaller character code in string; than in string,. The following sequence orders two
strings so that the “smaller”is returned to level 2:

DUP2 IF > THEN SWAP END

Since lower-case letters have different character codes (97—-122) than upper-case letters
(65-90), the ordering produced by > or < is not a case-insensitive alphabetizing.

3.43.3 Other String Manipulation Commands

The program object menu ( £0BJE ) provides commands for performing simple

string manipulations.

e OBJ- with a string argument (same as STR-) is a programmable form of ENTER,

that “executes” the string object as if the string characters were entered in the com-
mand line:

"123 456 +" OBJ- = 579

OBJ- is useful in programs for creating objects (like other programs) by concatenat-
ing strings representing parts of the objects.

e »~STR converts any object to a string object, where the string characters represent
the display form of the object:

1,2) -STR = "(1,2)"

(If the object is already a string, ~STR has no effect.) Note that since STR-
respects the current number display modes, the combination ~STR OBJ- does not
necessarily leave an object unchanged unless the current number display mode is
STD, and the binary integer wordsize is 64 bits.

e SIZE returns the number of characters in a string:

"ABCDEFG" SIZE = 7.
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e POS (POSition) finds the position of one string (level 1) within another (level 2):

"ABCDEF" "CDE" POS = 3.

The position is counted from the left, starting with the first character as position 1.
POS returns 0 if the second string is not contained within the first.

e REPL (replace) overwrites a portion of a string (level 3) with another string (level 1),

starting at a specified position (level 2). Call the target string string, (length /,), the
replacement string string, (length /,), and the position n. Then for

n>l,, string, is concatenated to string,:

"ABCDE" 10 "FG" REPL = "ABCDEFG"

n +1l,-1=l;, characters n through n +1/,—-1 are replaced; the remaining /, -/,
characters in string, are unchanged:

"ABCDE" 2 "FG" REPL = "AFGDE"

n +1,-1>1,, characters n through /, are replaced, and the leftover /,—(I;—n)
characters from the end of string, are concatenated, so that the
result string has n + 7, -1 characters:

"ABCDE" 5 "FG" REPL = "ABCDFG"

n=0, the Bad Argument Value error is reported.

e SUB extracts a substring from a string (level 3), where the start and end character
positions are specified in level 2 and level 1:

"ABCDEFG" 3 7 SUB r= "CDEFG"

A character position argument less than 1 is treated the same as 1; a position greater
than the string length is treated as that length. A null string is returned if the speci-
fied end position is less than the start position.

e NUM returns the character code of the first character in a string:

"ABCDEF" NUM = 65

e CHR produces a one-character string, where the character is specified by its charac-
ter code:

189 CHR = "1»"
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CHR provides the only means of entering certain seldom-used characters, such as
the ¥ shown in the example, that are not available on the keyboard.

3.4.4 Arrays
Array objects (object types 3 and 4) are the HP48 representation of real or complex
vectors (one-dimensional arrays) and matrices (two-dimensional). Arrays are identified
in the command line and in the stack display by the square-bracket delimiters [ ]. A
sequence of numbers surrounded by a single pair of brackets is a vector. A sequence of
vectors surrounded by an additional pair of brackets is a matrix, where each vector is

one row of the matrix.

Arrays can be either real (type 3) or complex (type 4). In a real array all of the ele-
ments are real numbers; in a complex array the elements are complex numbers. As in
the case of number (scalar) objects, you can intermix real and complex arrays in calcula-
tions. You can also combine numbers and arrays for many operations, where it makes
mathematical sense. For example,

2 [1 2] * = [2 4].

However, you can’t add a number to an array, since that is not a mathematically defined

operation.

Arrays are discussed at more length in Chapter 11.

3.4.5 Lists
A list object (type 5) consists of a series of any types of objects entered between { } del-
imiters. The primary purpose of lists is to allow two or more objects to be manipulated
together as a single data object. Lists are described in detail in Chapter 11, and are used
in numerous program examples throughout this book.

3.4.6 Binary Integers
Binary integer objects represent unsigned integer numbers, stored as sequences of binary
bits (rather than decimal digits as for floating-point numbers). The maximum value of a
binary integer is the hexadecimal number FFFFFFFFFFFFFFFF, corresponding to 64
binary 1’s.

In addition to their immediate use for performing integer arithmetic, binary integers are
used in the HP 48 for

e a modest set of bit-shifting and logic commands common to computer science appli-
cations, provided in in the base menu ( [MTH]ZBASEE ); 
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e encoding the user and system flags (section 7.1);

e representing graphic object pixel numbers (section 10.3);

e computing object checksums (section 12.5.1).

For the four arithmetic operations, you can intermix binary integer and real number
arguments--the results will be binary integers.

You can control the entry and display of binary integers by executing one of the base
mode commands BIN (binary, base 2), OCT (octal, base 8), DEC (decimal, base 10) or
HEX (hexadecimal, base 16). To enter a binary integer, type the # delimiter followed
by the number digits. The digits are interpreted according to the current base; in hexa-
decimal mode, for example, you can use digits 0-9 and A-F. You can override the
current base by adding a lower-case letter b, 0, d, or h immediately after the number
digits. The objects are always displayed in the current base, including the trailing letter
that identifies the base, regardless of how they were entered.

When a binary integer is entered, it is always created with 64-bit precision. However,
integer operations and display are limited by the current wordsize, a number from 1
through 64 (the default is 64). STWS sets the wordsize from a real number argument;
RCWS returns the current wordsize as a real number. The stack display of binary
integers shows only the least significant wordsize bits, e.g.

HEX 10 STWS #FFFFh = #3FFh.

At this point, the number has not actually been truncates to 10 bits--if you execute 64
STWS you will see #FFFF. However, all arithmetic and logical commands that work
with binary integers truncate their arguments to the current wordsize before performing
their operations, and return results truncated to the wordsize. If you multiply the
#FFFh above by 1, then set the wordsize to 64, you will see #3FF, since the multiplica-

tion truncated the arguments and results. The truncation actually shortens the binary
integer to the specified number of bits, rather than just setting the most significant bits
to zero:

12 STWS #FFFh DUP 1 =* = #FFFh #FFFh.

Here we have two binary integers with the same numerical value. However, BYTES
(section 12.5.1) applied to those two arguments returns memory sizes differing by 6.5
bytes (and different checksums), showing that one is 52 bits (6.5%X8) longer than the

other.
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3.4.7 Graphics Objects
A graphics object (object type 11), or grob for short, encodes a display picture. It is
defined by its dimensions--width X height--and the picture data. The data consists of
one binary bit for each pixel, where 1 is “on” and 0 is “off”’, plus some additional bits
that pad the data so that each pixel row is an integer number of bytes. Grobs are not
restricted to the 131X 64 pixels display size--they can range from 1X1 (actually, you can
make a 0X0 grob, but it has no particular use).

Graphics objects are most frequently created by an operation such as DRAW, but you
can create them in the command line. The command line formatis

GROB width height ---data - -

GROB is the “delimiter” that identifies the start of a graphics object.

width is a real number indicating the horizontal width of the grob, in pixels.

height is a real numberindicating the vertical height of the grob, in pixels.

---data --- 1is a sequence of hexadecimal digits O-F that represent the pixel data in
a “readable” form.

The readable data consists of the data for each pixel row concatenated together into one
long sequence, in top-to-bottom order. Each hexadecimal digit represents four pixels;if
you consider a digit as a four-bit binary number, you can translate its value to a left-to-
right pixel pattern by reversing the order of the bits. The digit C, for example,
represents the pixel pattern 0101, where 0 is an “off” pixel, and 1 is “on.” The last one
or two digits in each row may be “padded” with zeros, in order to make each row an
integer number of bytes. Thus the smallest grobs are GROB 1 1 00 and GROB 1 1 10,
which are 1X1 grobs--the first has its one pixel off, and the second has its one pixel on.

There are a wealth of operations related to the creation and manipulation of graphics

objects. These are described in section 10.3.

3.4.8 Tagged Objects
Tagged objects (object type 12) are objects used for putting visible labels on stack
objects. That is, a tagged object contains a single object of any type together with a
character string that labels the object. In our discussions of tagged objects, we’ll use the
following terms:

e A tag is any character string. To tag an object is to combine it with a tag into a
tagged object.
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e An untagged object refers to the object inside a tagged object, when it is thought of
as a separate object.

e A tagged object is then an object that contains a tag and an untagged object.

Thus for :ABC:12345, the tag is ABC, the untagged object is the real number 12345,
and the combination :ABC:12345 is the tagged object. This terminology may be confus-
ing, but fortunately the design of tagged objects is such that you can generally use an
object in calculations with or without a tag, disregarding the distinctions.

When a tagged object appears on the stack,it is displayed as tag: object, where tag is the
label string, and object is the usual display of the object. You can create tagged objects
in the command line by typing the tag string, surrounded by : : delimiters, followed by
the tagged object in its ordinary syntax:

‘Result: 1.234

(there can be any number of spaces or other separators between the tag and the object).
The colons act as start and end delimiters for the tag string; between the colons you can
include any other characters including spaces. When a tagged object is displayed by
itself in a stack level, the leading : is not shown to make a more visually pleasing label,

but both colons are required in command line entry to mark the start and end of the
tag. Note that tags longer than 17 characters are not particularly useful, since 17 char-
acters is the longest tag that can be displayed including the final :.

You will find that direct command line creation of tagged objects is less common than
their automated construction in programs using “TAG. The HP 48 creates tags itself in
some cases; HP Solve tags its results, as does LR and certain plot environment opera-
tions. Similarly, programs you write can attach identifying tags to results (see also sec-
tion 12.7.1). For example,this simple program computes and labels the volume of a box
from three numbers on the stack:

< % * "Volume" -TAG >

-TAG tags an object in level 2 with a tag formed from a string or global or local name
in level 1.

You can remove the tag(s) from an object either with OBJ-, which splits a tagged
object into the untagged object (to level 2) and the tag string (level 1), or DTAG, which
strips any and all tags from an object. [Since a tagged object is an object, it can be
tagged itself, so that a tagged object can effectively have multiple tags. OBJ- splits off
one tag at a time; DTAG strips all tags, returning only the innermost untagged object.]
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The beauty of tagged objects is that normally you don’t have to worry about stripping

tags: a tagged object can be used as an argument for any operation that works with its
untagged object. Most operations apply directly to the untagged object, automatically
stripping its tags (including multiple tags). The only exceptions to this rule are:

e Stack operations that just move or duplicate objects on the stack treat tagged objects
like any other object, leaving the tags intact.

e STO of a tagged object into a local variable or a backup object does not strip tags
(STO into a global variable does strip tags).

e SAME (section 9.3.2) includes tags when comparing two objects.

e OBJ- and DTAG remove tags.

e TYPE returns type 12 for tagged objects.

These properties mean that you can use a tagged object interchangeably with an
untagged object of the same type as the tagged object. For example,

:Length:10_m :Area:100_m"2 * "Volume" -TAG 1= :Volume:1000_m"3

Here the * automatically strips the tags from the the length and area values before mul-
tiplying them to obtain the volume.

Furtherillustrations of the uses of tagged objects are given in section 12.7.1.

3.4.9 Unit Objects
Unit objects (object type 14) are the basic components of HP 48 unit management--its
ability to perform mathematical operations on quantities that include physical dimen-
sions. Unit management is discussed in Part II.

A unit object consists of a magnitude and a unit expression joined by the delimiter _ in
the format magnitude_expression. The magnitude is a real number; the unit expression is
an algebraic expression consisting of products of unit names raised to various powers. If
any of the powers are negative, the expression is defined as a single numerator that is
the product of names with positive powers, divided by a denominator that is the product
of the names with negative powers, expressed then with positive exponents. For exam-

ple, 1m2s~2K! is represented by the unit object 1_m"*2/(s*2+*K). Because there is no
closing delimiter on the unit expression, you must enter the expression immediately after
the _, and it may contain no spaces (there can be spaces between the magnitude and the

2

-44.



Objects and Execution 3.4

Unlike other object delimiters, the underscore _ is also a function. This allows the
straightforward use of the EquationWriter for unit object entry. _ takes two arguments,
which may be real numbers, names, or algebraic expressions. For most argument com-
binations, _ is equivalent to multiplication (*). But when the second argument is a
name or an algebraic, it is converted to a unit object before multiplication by the first
argument. Thus

2 3 _ = 6

6 1_cm _ rZ 6_cm

12 'X' _ = 12X

1 'm-cm’ Z 99.cm

In the first example, the extra (other than that implied by the r=) is necessary
because if _ is preceded by a real number in the command line,it is taken as a delimiter
and must be immediately followed by a unit expression. The last example illustrates the
conversion of an algebraic object into a unit expression: all names in the object are
converted to unit objects of magnitude 1, then the expression is evaluated. The result is
multiplied by the first argument.

3.4.10 Directories
A directory (object type 15) is an object that contains a sequence of global variables--
name/object pairs. A full explanation of the nature and properties of directories is
given in section 5.2; here we just note that a directory is a data-class object, meaning

that it can be recalled to the stack, copied, and stored. As data-class objects, their exe-
cution action is just to return themselves to the stack. (These are enhancements over
the HP 28, where directories were also objects, but no provision was made for manipu-
lating them as objects.)

The command line and display form of a directory is

DIR name, object; --- name, object, END

where DIR and END act as start and end delimiters. Each name; object; pair specifies
a variable. The order of the variables is the same as they appear in the VAR menu.

3.4.11 Libraries
A library object (object type 15) is similar to a directory object, in that it contains a
sequence of named objects (library commands). However, unlike a directory, a library
has a fixed internalstructure, so that you can not editit.

-45-



34 Objects and Execution

e In a library, the object names are separated from the objects into a table, providing
faster access by name to the objects than in a directory.

e Depending on the origin of a library, it may contain nameless or other special system
objects. There is no provision on the HP 48 for displaying the contents of a library,

other than the LIBRARY menu (section 5.3.1.1), which displays a library’s commands.

e All objects in a library are uniformly accessible--there is no sub-library structure

analogous to subdirectories in a directory.

The named objects or library commands within a library are extensions to the built-in
command set, and can be used in the same manner. A library is an object so that it can
be transferred from calculator to calculator or between calculator and personal com-
puter, moved between the ports (section 5.3), or stored in an inactive form in a variable.
When a library is displayed as an object, it appears as Library n: title, where n is a
decimal number that identifies the library, and title is a descriptive text string. You can’t
see more than a few characters of a library title when the library is on the stack, but you
can use or [V] to view all of the title in the command line (you should cancel

the edit with rather than using , since you can’t actually edit a library).

A library’s commands are executed by means of XLIB name objects, which are
described in section 3.6.3. The methods of attaching libraries to directories so that their
XLIB names are usable is described in section 5.3.2.1.

[As a matter of fact, built-in commands are also contained in libraries. Because they
are permanently located at fixed memory addresses, the commands can be represented
on the stack by pointers to the objects rather than by XLIB names.]

3.4.12 Backup Objects
A backup object is the object form of a variable (section 5.1), in that it contains a single
object of any type plus a name. As an object it is mobile and can be copied or stored,
unlike a variable, which is not an object but is a part of a directory. A backup object
also contains a checksum that is used by the HP 48 to verify its memory integrity when it
is transferred between main memory and plug-in memory.

If a backup object is stored in a port (section 5.3.1), the object it contains can be
accessed in a manner similar to an object stored in a global variable. Such backup
objects are addressed by means of global names tagged with a port number. Normally,
a backup object is created directly in port memory, so that you will seldom see backup
objects on the stack--the primary focus is on the object stored within the backup object.
Backup objects on the stack appear as Backup name, where name is the backup object’s
name. You can not create or edit a backup object in the command line.
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3.5 Procedure Objects

In the preceding review of data class objects, the concept of object execution is straight-
forward but not very interesting. Indeed, there is little point in executing a data object
(with EVAL, for instance) once it is on the stack; the main point of executing such
objects derives from their behavior when executed indirectly during the execution of a
name or a procedure.

In most calculators, a program is a series of numbered steps that are executed in
numerical order, with occasional breaks in the sequence caused by GOTO instructions
or subroutine calls. Each step in such programs either enters data, or performs a built-
in command. The step numbers indicate the order of execution, but they really have no
meaning other than for visual reference, or in some cases as labels for GOTO. The
HP28/HP 48 replacements for the conventional calculator program are procedure class
objects. A procedure is an object defined to be a series of other objects intended for
sequential execution. The procedure class of objects includes program objects, algebraic
objects and code objects (lists can also act as procedures-- see section 3.5.3).

3.5.1 Program Objects
An HP 48 program object (object type 8) is similar to a conventional program in thatit
contains a sequence of “steps”. The steps are either objects themselves, or combina-
tions of objects called program structures; together, the steps are called the program
definition or program contents. Execution of a program object causes execution in turn
of each object in its definition. Program structures such as branches and loops (section
9.2) can alter the order of execution beyond simple linear sequences.

A program object is identified by its start- and end-delimiters << >>. Objects entered
between the delimiters make up the program’s definition. Note that a program, like any
other object, has no intrinsic name. You name a program by storing it in a named vari-

able.

3.5.2 Algebraic Objects
An algebraic object (object type 9) is also a procedure-class object, but it resembles a
conventional program even less than a program object does, since it is displayed as an
algebraic formula. The delimiters for algebraic objects are the single quotes (usually
called “ticks”, for short) ' '; the objects that make up the algebraic object’s definition
are entered between the quotes.

Algebraic objects have internal structures indentical to programs, but they differ in these
respects:
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e Programs can contain any HP 48 objects; algebraics can contain only numbers, unit
objects, names, and the subset of HP 48 commands identified as functions.

e The objects in a program may appear in any combination, and may be grouped into
structures (section 9.2). In an algebraic object, the objects are always organized
according to specific rules, called algebraic syntax, that insure that the object looks
and behaves like a mathematical formula.

e For programs, execution and evaluation are synonymous. The execution action of a
program is to execute the contents of the program sequentially. For algebraic

objects, execution treats the objects as data objects, returning the unchanged object
to the stack. Evaluation of an algebraic object treats the object as a program, and

executes the objects that define the algebraic object.

e Evaluation of a program may take any number of other objects from the stack, and
return any number of arguments, depending on the program definition. Evaluation
of an algebraic object normally takes no arguments from the stack, and returns one
result. (This general rule can be broken if any of the names within the algebraic
object correspond to program variables; execution of those names causes execution
of the programs, which may have arbitrary stack effects.)

The ability of algebraic objects to act as data when executed, or as programs when
evaluated, is one of the foundations of the HP48s ability to perform symbolic
mathematics. When you rearrange a formula using mathematical rules, you are treating
it as data; when you perform substitution of variables’ values for their names, you are

evaluating the formula.

In section 2.1, we showed how RPN logic is derived from the desire to convert a
mathematical expression into a series of steps by which you can evaluate the expression
by hand or using a machine. Looking at this from a different point of view, you can
note that since any expression can be translated to RPN, any expression can be
represented in a calculator by an RPN program. In fact, this is what the HP 48 does--an

algebraic object is stored in calculator memory in an RPN program form just like that
of an actual program object. The HP 48 saves you from having to do the conversion
yourself by providing the algebraic object type.

The only difference between algebraic objects and program objects is that the two are
“marked” differently, so that the HP 48 knows which to display in algebraic form and
which to display in RPN. Also, functions that accept symbolic arguments can only
accept algebraic objects, not programs, since algebraics are by definition valid
mathematical expressions, whereas program objects are completely unrestricted in their
content and may not be suitable arguments for a mathematical function.
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To illustrate the program nature of algebraic objects, create this program B:

<< DUP 20 > 'B' STO

Next, enter the algebraic object ‘5+5+B’, and press . The algebraic object disap-
pears, and the numbers 10 and 30 appear on the stack. You can understand this result
by following the execution of the equivalent RPN sequence 5 5 + B +. When this
sequence is executed, two 5’s are entered, then summed to 10 by the first +. B exe-
cutes next, which duplicates the 10 and enters 20. Then the final + executes, returning

30. You can break down any algebraic object execution into RPN steps this way.
Knowing how algebraic evaluation works is the key to understanding some of the

subtleties of symbolic operations on the HP48 in general.

Picturing an algebraic object as a program will also help you understand why evaluation
of the object causes variable substitution “one level at a time.” Consider the object
‘A+B’, where A has the value 10, B has the value ‘C+D’, C has the value 20, and D
has the value 30. Evaluating 'A+B’ once does one level of substitution, returning
‘10+(C+D)’, not the numerical result 60. To see why, remember that 'A+B’ is
represented by the sequence A B +. Evaluating ‘A+B’ therefore executes A, B, and +

in sequence: A returns 10, then B returns 'C+D’, so that + returns ‘10+(C+D)’. [Note
that the latter in RPN is 10 C D + +, which is obtained from the original A B + by
substituting the RPN sequence C D + for B/]

These considerations also explain why you might get unexpected objects on the stack
when an error occurs during evaluation of an algebraic object. For example, if you exe-
cute EVAL on an algebraic object and an error occurs, you might expect that the original
object would be returned to the stack. But evaluating an algebraic object is the same as
executing a program, so that an error returns the arguments of whatever function
(within the algebraic) caused the error, along with anything else that was on the stack at
the time of the error. Again, you can predict the contents of the stack from the RPN
sequence that is equivalent to the algebraic object.

For example, suppose you execute ‘A+(B+C)’ EVAL, where A and B are undefined, but
C has a vector value [1 2]. The HP48 will halt and show the Bad Argument Type
error message, with the stack containing

3: ‘A’
2: 'B’
1: [12]

This configuration results because the RPN sequence A B C + + errored at the first +.
A, B, and C had already executed, leaving their values on the stack as shown; the +
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errored because the combination of a name (‘B’) and a vector ( [ 1 2] ) is not valid for
addition. These arguments of +, not the original argument of EVAL, are returned to
the stack. (Note that if you execute EVAL by using the key, you can restore the
original algebraic object by pressing )

3.5.2.1 Expression Structure

One advantage of writing a mathematical expression in Polish notation (section 2.1) is
that it makes explicit the organization of the expression into a hierarchy of subexpres-
sions (section 3.5.2.1). For example, consider the expression a + sin(b—c). Rewriting
this in Polish form, you obtain + (@, sin (- (b,c))). The “outermost” subexpression is

the entire expression, consisting of the function + and its arguments a@ and sin (- (b,c)).
Each of the two arguments is a subexpression--the first is just the name a, the second is

the function sin and its argument — (b,c). The latter in turn is a subexpression consist-
ing of — and its arguments b and c, and so on as you peel off the layers of parentheses.
The level of a subexpression is a measure of how deep it is in the hierarchy. The level
is defined as the number of pairs of parentheses that surround the subexpression. In
the example, the full expression is level 0; the @ and sin (- (b,c)) are level 1 subexpres-
sions, — (b,c) is level 2, etc.

There are two reasons for you to keep these ideas of expression structure in mind as
you work with the HP 48:

1. The structure of an expression determines the order of evaluation of its subexpres-
sions. For example, in the evaluation of ‘A+B+C’, the A and B are added first,
then the sum is added to C. You can alter this order by changing the expression
to 'A+(B+C)’, in which case the B and C are added first. This distinction is
important in a floating-point calculator, even though the two forms are formally
the same. To see this, assign the values 10° to A, —10° to B, and 1 to C. If you
evaluate ‘A+B+C’, you obtain 1, whereas if you evaluate ‘A+(B+C)’, you obtain
0.

2. Understanding the structure of an expression can help you follow the behavior of
HP48 symbolic manipulation commands. For example, EXPAN is defined to work
at one level of a subexpression at a time. 'A*{B+C+D)’ EXPAN returns
'A*(B+C)+A#*D’ rather than 'A*B+A*C+A*D’ as you might expect. This is
more obvious if you think of the original expression as *(A,+(+(B,C),D)). When

one of the arguments of * is a sum, EXPAN multiplies the other argument by
each of the two arguments of +, then adds the products. The fact that in this case
the first argument of the (first) + is also a sum is not considered--EXPAN only
works one level at a time.

We can use these ideas to re-express the basic RPN calculator principle (“any result can
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be an argument”) in “algebraic” terms by saying “any expression can be a subexpression.”
A subexpression is self-contained; it may or may not be embedded in a larger expres-
sion. The shortcoming of algebraic calculatorsis that they don’t recognize this principle.
They are designed for evaluating an expression as a whole--“from the outside in,” so to
speak. On the other hand, in a purely RPN calculator like the HP 41, you can only cal-
culate an expression “from the inside out,” since you can only enter one number or
function at a time. The HP 48 merges both approaches, by allowing you to enter any
subexpression in its algebraic form. You can evaluate an entire expression at once, or
you can divide it into subexpressions of any size, or you can work only with one object

at a time.

As with most of the principles of HP48 operation, the concept of algebraic object
evaluation is derived from a mathematical model. In ordinary terms, to “evaluate”
means “to find the value.” For a mathematical expression, this translates to “perform
the operations represented by the expression, to find its value.” Evaluation means to
“activate” an expression, which in turn means to execute sequentially the objects that
make up the expression.

As an example, consider the simple expression 1+2. We showed in section 2.1 that an
expression can be translated into an RPN form that represents a prescription for actu-
ally performing the operations of the expression--evaluating it. Thus the expression 1+2
is the sequence 1 2 + in RPN. This is a sequence of objects--remember (see section
3.2.1) that the +, as well as the 1 and the 2, can be considered as an object. When you
write the expression, the objects are passive; but if you execute each object in
succession--“enter the 1, enter the 2, do the +”--you obtain the value of the expression.

3.5.3 Lists as Procedures
As mentioned in section 3.5.3, lists are composite objects with internal structures like
programs and algebraic objects. As such, they can be evaluated as programs. The only
commands on the HP48 that treat lists as procedures are EVAL (section 3.9), IFT and
IFTE (section 9.4.2). The principal reasons for providing list procedure evaluation in
this manner is to permit the construction of new procedures by programs, and to facili-
tate changing directories by executing path lists (section 5.5.3). This form of list evalua-
tion is not available on the HP 28, wherelists are strictly treated as data-class objects.

3.5.4 Commands and Functions
Asillustrated in section 3.2.1, HP48 commands are objects. Because there is a per-
manent binding between command objects and their command names, command objects
are always entered and displayed using their names only--you never see the actual built-
in SIN program, for instance, only the name SIN. Actually, all commands are program
objects, but to help a program distinguish between commands and user-created
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programs, the TYPE and VTYPE commands return type 18 or 19 for commands rather
than type 8 (program). Type 18 indicates that the command is a function; type 19 indi-

cates an RPN command.

In most calculators, there is a distinction between user-written programs and built-in

commands:

e Programs are written in the user programming language, and are executed by means
of a command like RUN, XEQ, GOSUB, etc., combined with a program name or
label number. Programs can call other programs (subroutines), but there may be a
restriction on the number of pending returns of which the calculator can keep track
(six in the HP-41, for example).

e Commands, on the other hand, are executed or entered into a user program by
name, with no prefix command. In most calculators, executing a command by name

consists of pressing the key that has the command name on it. This either executes
the command, or enters a function code or the name itself into a program. Some
calculators have an alphabetic keyboard that allows you also to specify a command
by spelling out its name.

The fact that calculator commands themselves are just internal programs is not readily
apparent. The programs can’t be viewed or edited, and they are written in the
calculator’s assembly language, which would require much more information for the typ-
ical user to understand and apply than can be provided in owners’ manuals.

The HP-28/48 philosophy is that the distinction between user programs and built-in
commands is artificial and unnecessary, at least as regards their use from the keyboard
and as subroutines. That is, when you write a program and name it, you should be able
to use it exactly as if it were a built-in command. When you enter a program name into
the command line and press , or include a program name in another program
definition and execute the latter program, or just press a menu key labeled with the pro-
gram name--the program should execute. The central idea underlying the execution of
HP48 name objects follows from these ideas (section 3.6).

3.5.5 Function Execution
HP48 functions have two important execution properties that are not shared by RPN
commands. These are automatic simplification, and a choice of symbolic and numerical
execution modes.

3.5.5.1 Automatic Simplification

When certain functions execute, they check their arguments for special cases in which
ordinary calculation can be replaced by a mathematical simplification. For example, if
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you execute the sequence 1 ‘X’ #*you obtain ‘X', not '1*#X’. You can observe the
same effect by executing '1#X’ EVAL. This simplification is a property of the * func-
tion; when it is executed, * explicitly looks for cases where one ofits arguments is 1. In
such cases, the subexpression consisting of the * and its two arguments is automatically
replaced by the non-1 argument. Other examples are the replacement of SIN(ASIN(X))
by X, and EXP(LN(X+1)) by X+1. Again, these simplifications are built into the func-
tions SIN and EXP. Table 3.2 is a complete list of automatic simplifications built into
the HP 48.

Note that not all cases of a function applied to its own inverse are simplified. For
example, ASIN(SIN(X)) does not automatically simplify to X, since there are infinitely
many angles with the same sine as X. Similarly, since the HP 48 treats complex numbers
uniformly with real numbers, LN(EXP(X)) does not reduce to X.

Automatic simplification is not the same as the simplification that results when a numer-
ical expression is evaluated by COLCT. For example, although '2/2’ automatically sim-
plifies to 1 when you evaluate it, '2*X/2’ does not automatically simplify to X. In order
for the simplification to take place, the two 2’s must be the arguments of the /, as in
'(2/2)*X'. To simplify ‘2%X/2’, you can either use RULES to rearrange it to '(2/2)*X’,
or use COLCT.

3.5.52 Symbolic and Numerical Execution; -NUM
The key to the HP 48’s ability to perform symbolic calculations is the fact that HP 48
functions used with symbolic arguments (names or algebraics) return symbolic results.
Each time you evaluate an algebraic object, the names in the expression or equation are
executed, so that those corresponding to existing variables are replaced by the objects
stored in the variables. But the replacement objects are not evaluated, so that the final
result may still be symbolic. If you want to evaluate a symbolic object all the way to a
numerical value, you may have to use EVAL repeatedly until all of the names have been
replaced by numbers.

In some circumstances, it is desirable to evaluate a symbolic object to its final numerical
value in a single operation. For example, in the course of their execution, DRAW and
HP Solve both evaluate the current equation to numerical values. To deal with such
cases, as well as the symbolic evaluation described already, the HP 48 provides you with
the choice of symbolic execution mode or numerical execution mode. In symbolic execu-
tion mode, a function evaluated with symbolic arguments returns a symbolic result. In
numerical execution mode, a function of symbolic arguments evaluates its arguments,
repeatedly if necessary, until they are data objects (usually numbers). Then the function
returns a numerical result. If any name is encountered during the evaluations that has
no corresponding variable, the Undefined Name error is returned.
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Table 3.2. Automatic Simplification

 

 

 

Addition and Subtraction Powers

X-X wr 0 1°X o 1

0+X wr X (1,0°X r (1,0)

(0,0)+X o X SQ(V(X)) o X
0-X r CHS(X) SQ(Y*X) er Y(2*X)
0,00-X & CHS(X) SQ() r -1

X+0 war X X*0 r 1

X+(0,0) r X X*(0,0) er (1,0)

X+-p r X-p X*1 @ X

X-0 r X X*(1,0) r X

X-(0,0) a X X*(-1) w INV(X)

X--p wr X+p X*(-1,0) r INV(X)

(VX)*2
Multiplication and Division (VX)*(2,0) r X

INV(i) @ i i"2 r —1

Y*INV(X) o Y/X i*(2,0) e (-1,0)

Y/INV(X) r Y*X Parts
0*X r 0 ABS(ABS(X))  ABS(X)
(0,0)%X w (0,0) ABS(CHS(X)) > ABS(X)
i r -1 CONJ(CONJ(X)) @ X
1%X r X CONJ(IM(X)) r IM(X)
(1,0)*X r X CONJ(RE(X)) r RE(X)
(-1)*X e CHS(X) CONJ(j) o —i
(-1,0)%X r CHS(X) IM(CONJ(X)) er —-IM(X)
X*0 ar 0 IM(IM(X)) tr 0
X*(0,0) wr (0,0) IM(RE(X)) tr 0
X1 ar X IM(*p) r 0

X*(1,0) w X IM(i) w1
Xk(-1) ar CHS(X) MAX(X,X) r X
X*(-1,0) r CHS(X) MIN(X,X) r X
X/1 r X MOD(0,X) wr 0

X/(1,0) r X MOD(X,X) r 0
X/(-1) r CHS(X) MOD(X,0) r X
X/(-1,0)  CHS(X) XMODYMODY o« XMODY
0/X w 0 RE(CONJ(X)) r RE(X)
(0,0)/X wr (0,0) RE(IM(X)) r IM(X)
1/X r INV(X) RE(RE(X)) wr RE(X)
(1,0)/X rr INV(X) RE(w) o
(-1)/X r -INV(X) RE(i) o 0
(-1,0)/X tr -INV(X) SIGN(SIGN(X)) r SIGN(X)

 

  
 

X, Y are any subexpressions.

p is any positive real number.
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You can select numerical execution mode temporarily, for a single evaluation of a sym-
bolic object, or for an indefinite period:

e To evaluate numerically a single object containing functions, use “NUM instead of
EVAL. -NUM enables numerical execution mode, evaluates its argument in the
same manner as EVAL, then restores the original execution mode.

e To select numerical execution mode “permanently,” set flag —3. The

menu key SSYME is handy for this purpose; pressing that key toggles between sym-
bolic and numerical execution modes. If the key label shows a white box ( ESYMoZ ),
then flag -3 is clear and symbolic execution is active; the absence of the white box

indicates that numerical execution is in effect. You can also set and clear the flag
with SF and CF (in the second page of the menu). While flag -3 is set,
the execution of any function returns a numerical result, or an error message if
numerical execution fails. In this mode, EVAL and ~NUM produce the same results.
To restore symbolic execution mode, press ESYMo= or clear flag —3. Symbolic exe-
cution mode is the default mode following a memory reset (section 5.8).

To illustrate these ideas, execute

30 'X' STO X

to create a variable X with the value 30, and leave its name on the stack. Next select
degrees mode by executing DEG ( [<][MODES)EDEGE ) if necessary. Now,

1. In symbolic execution mode, compute the sine:

[SIN = 'SIN(X)'.

At this point, you still have a symbolic result. Find the numerical value:

EVAL| = .5.

When 'SIN(X)’ is evaluated, X is replaced by its value 30; then, since SIN has a
numerical argument, a numerical result is returned.

2. Now try the calculation in numerical mode:

syYmMo= ‘X' [SIN] = 5

This time, you immediately obtain the numerical result .5. This is because in
numerical execution mode, SIN evaluates the symbolic argument ‘X’ to its value

30, then returns the numerical sin30°.
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3.5.6 Symbolic Constants
A frequently asked questions about HP calculators is “why does the sequence 7 SIN (in
radians mode) not return 0, when everybody knows that sin7 = 0?”” On the HP-41,for
example, 7 SIN returns —4.1E-10. The answer is that the 7 key does not return
mathematical 7, but an approximation accurate to the numerical precision of the calcu-
lator, which is the 10 digit number 3.141592654 on the HP-41. When SIN uses this
approximation as an argument, it treats it like any other floating-point number and com-
putes its sine, again accurate to the calculator’s precision. To understand the approxi-
mate value, consider that for small x, sin(w +x)= —x. In this case, x is the difference
between 7 and the calculator approximation: T +x = 3.141592654. Thus

x = 3.141592654- 3.14159265359* =~ 4.1X107 10,

and

sin(m +x) = -4.1x1071,

which is just what the HP-41 returns. SIN is evidently returning an accurate result for
its argument, but the argumentis not .

Could a calculator be designed to recognize the approximation as its best numerical
representation of 7 and return zero for the sine of that number? Certainly it could, but
HP calculators generally don’t do this sort of thing, following the guideline that the limi-
tations of fixed-precision calculations make it unwise to try to guess when a numerical
value is supposed to be some special number. This sort of problem shows up in lots of
cases: for example, should 1/.142857142857 evaluate to 7.00000000001, which is the
most accurate 12-digit reciprocal of that argument, or 7.00000000000, on the chance
that .142857142857 was obtained originally by computing the reciprocal of 7? This
problem is a fundamental limitation of trying to represent arbitrary numbers with a fin-
ite number of digits.

The HP 28 and HP 48 provide a different approach to the problem of 7 other calcula-
tors. Assuming for the moment that flags —2 and -3 are clear, executing 7 returns the
expression 'm' (note that this is an algebraic object, not a name--e.g. TYPE returns 9).
If you execute w 2 *, you obtain '2*w’. As long as you don’t force numerical execu-
tion by executing “NUM, 7 retains its symbolic form through any number of operations.
This has two immediate benefits:

e An expression containing the symbol 7 gives you more information about the nature
and derivation of the expression. Once you convert it to a numerical form, no
matter how accurate, the presence of 7 in the expression becomes obscured. The
expression ‘1/4’ is more informative than the number 0.785398163398.

e Using symbolic 7 prevents errors arising from a finite precision numerical represen-
tation of 7 from accumulating in chained calculations. By delaying the substitution
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of a numerical value for 7 until a calculation is complete, you obtain maximum
accuracy.

A symbolic 7 also permits a new resolution of the sin7 issue. On the HP 48, if you
execute 7 SIN (with flags —2 and -3 clear, and radians mode active), you obtain 0.
This is an automatic simplification (section 3.5.5.1), not a numerical computation--when

SIN is executed, it checks its argument to see if it is symbolic 7. If so, the subexpres-
sion SIN(m) is replaced by 0. The following additional simplifications are also made, in

the same spirit:

e SIN(w/2) is replaced by 1 (note: SIN(1.5707963268) also returns 1);

e COS(w) is replaced by —1 (COS(3.14159265359) also returns —1);

e COS(m/2) is replaced by 0.

e TAN(T) is replaced by 0.

Only these four specific subexpressions are simplified. SIN(2*w), for example, is not
simplified, and returns 4.13523074713E - 13 when evaluated numerically.

3.5.6.1 Other Symbolic Constants

In addition to 7, the HP 48 provides four other symbolic constants: e (numerical value
2.71828182846), i (value (0,1)), MAXR (value 9.9999999999E499), and MINR (value
1E-499). There are no special simplifications associated with e, MINR or MAXR, but
the symbolic forms allow you to track the associated constants through calculations. i
has these simplifications:

Subexpression  Replacement

sQ(i) -1
i# -1
i"2 -1

i*(2,0) -1
RE()) 0
IM(i) 1

CONJ(i) -

You can use i to enter complex numbers in the form a + bi rather than the standard
object format (a,b). For example, 1+2i can be entered as '1+2*i’. You can perform
arithmetic with such expressions, using EXPAN and COLCT where appropriate to sim-
plify a multi-term expression into the form a +bi.
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3.5.6.2 Evaluation of Symbolic Constants

Symbolic and numerical execution modes affect the way all built-in HP 48 functions
evaluate symbolic arguments. The five symbolic constants 7, e, i, MAXR and MINR
behave as functions of zero arguments--and as functions they are sensitive to the execu-
tion mode. When flag -3 is clear, execution of any of these constants returns a sym-
bolic result, which is just the constant itself unchanged. When flag -3 is set, execution

of a symbolic constant replaces it with its numerical value.

It is possible by means of flag -2 to select a restricted form of numerical execution
mode that affects only these constants. When symbolic execution mode is active (flag
-3 clear), setting flag —2 causes symbolic constants to evaluate numerically, without
affecting the execution of other functions. This permits, for example, replacement of
symbolic constants with numerical values in expressions that contain formal variables
(undefined names). To see this, enter ‘X’ PURGE, then enter the expression '2*m X’
into level 1. Then,

-2 CF -3 CF EVAL = '2%g=*X

and

-NUM = Undefined Name error.

But if you set flag —2:

‘2%r*X' -2 SF EVAL = '6.28318530718*X’.

7 evaluates to its numerical value, while with flag —3 clear * still returns a symbolic
product.

3.6 Name Objects

The center of the action in the HP48 is the stack, where objects can be manipulated
and executed. However,it is impractical to keep all objects on the stack; in particular
built-in objects and those in libraries are most convenient if they can be executed
without ever putting them on the stack. To this end, the HP 48 provides several types of
name objects, that let you access objects indirectly. Executing a name object either
recalls or executes another object so that in many cases you can perform operations on
objects entirely by means of their associated name objects.

Since objects are intrinsically nameless, to name an object requires storing it in memory
in such a way as to preserve the association between an object and a name. In the
HP 48, to name an object means to store it; a named object is a stored object, and vice-
versa. Stored/named objects appear in several forms:
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® Built-in objects--operations--are permanently stored in the HP48s read-only
memory. A subset of operations called commands have names, and thus may be
included in procedures or entered on the stack by means of their names. It is gen-
erally not necessary to distinguish between command objects and their command
names, since they are not separable, and only the names are ever “visible.”

e Library objects (section 3.4.11) contain extensions to the built-in command set in the
form of stored objects that are accessed using XLIB name objects.

e Global variables (section 5.1) are the most visible form of storage of user-created
objects, corresponding to numbered or lettered registers on other calculators. Global
name objects (object type 6) are used to access the contents of global variables.
These variables exist in the so-called user memory , also called VAR memory because
of its association with the key. The structure of user memory is explained in
section 5.2.

e Local variables are created by programs for their own use, and only exist while the
associated programs are running. Their contents are accessed by means of local
name objects. See section 9.7.

e Port variables (section 5.3) are like global variables in port memory. Access to their
contents is provided by means of path-names, which are specially tagged global
namesor lists.

The execution actions of all three types of name objects, including the path-name varia-
tion of global names, are designed to enable use of the stored objects associated with
the names. Whether “use” of a stored object means execution of the object or merely a
recall to the stack depends on where the object is stored, i.e. which type of name object

is used.

You can view name objects as the HP48 version of the storage register numbers or
letters used on ordinary calculators, but this simple picture doesn’t really do justice to
their power. Register numbers are purely passive labels, of the most primitive sort--they
don’t tell you anything about what is stored in the register. Names, on the other hand,
label their variable contents with text that can help you remember what each variable
does, and which make programs more legible. Furthermore, HP 48 names are active
instead of passive: when you execute them, they cause automatic recall or execution of
another object.

3.6.1 Global Names
Global variables are intended for storing data for general access, and for containing
named programs that act to extend the HP 48 command set. With this in mind, global
name objects are designed to work like commands:

-59-



3.6 Objects and Execution

Execution of a global name causes execution of the object stored in the
global variable with that name.

The net result of the execution of a global name follows directly from the execution
action of the object stored in the corresponding variable--data objects and algebraics
return to the stack, programs (or commands) run, and name objects execute or recall
their stored objects in turn. There is one extension to this general rule: if the stored
object is a directory, execution of the associated name object does not leave the directory
on the stack but instead makes the directory the current directory (section 5.2).

The properties of global name execution listed here explain why is relegated to a
shifted key position on the HP 48 keyboard. Used with the names of variables containing
all object types except programs and names, EVAL (which is on an unshifted key) and
RCL are equivalent. The primary purpose of RCL, therefore, is to recall a stored pro-
gram or name to the stack without evaluating it, a relatively infrequent need.

Unquoted global names act just like built-in commands, so that you can define your own
command set by storing programs in global variables. You can execute a global name
by:

¢ Typing the name into the command line and pressing ; Or

e Pressing the VAR or CST menu key labeled with that name; or

¢ Including the name in a procedure (a program or an algebraic), and evaluating the
procedure.

These three methods are identical for global name objects and HP 48 commands.

[As it happens, HP48 commands are also programs written in a language that is a
superset of the HP48 user RPL, so there really is no structural difference between user
programs and commands. The practical difference is that since a built-in command is
fixed in read-only memory, it can be encoded in a program by its memory address and

hence executed more quickly than an object stored in a global variable. The latter are
referenced by name, and must be searched for in user memory whenever their names
are executed.]

The fact that executing the name of a stored algebraic object returns the object to the
stack without evaluation makes possible “step-wise” algebraic substitution. For example,
consider evaluating ‘A+B’, where A has the value 'C+D’, B is 5, C is 10, and D is 20.
The HP 48 will return ‘C+D+5’ at the first use of EVAL, and —2 at the next. If an
algebraic stored in a variable was automatically evaluated when the variable’s name was
executed, you would lose the intermediate step and obtain only the final result —2 at the
first EVAL.
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In the case where a global name is executed for which no variable currently exists, the
action is simple--the name itself is just returned to the stack as if it were a data object.
This behavior is necessary for symbolic operations; it means the HP48 can deal with
symbols (names) even when no value has yet been established. Thus ‘A+B’, where A is
undefined and B is 10, evaluates to ‘A+10’. Execution of the A returns 'A’, B returns
10, and + combines the symbolic ‘A’ and the number 10 into a new symbolic ‘A+10’.
We call A a formal variable, meaning you can work formally with the name in calcula-
tions just as if there were an existing variable named A.

If a variable contains a global name, the stored name is executed when the variable’s
name is executed. Thus if the number 8 is stored in the variable A, and ‘A’ is stored in
B, evaluating B returns 8. This property of names leads to the possibility of “endless
loops”--if ‘A’ is stored in B, and ‘B’ is stored in A, evaluating either A or B will start an
unending circle of executions, so that the HP48 will be busy indefinitely without any
apparent sign except that the hourglass annunciator stays on. You can just press
to stop execution.

3.6.2 Local Names
Local variables are intended primarily for temporary storing and naming of stack
objects, in order to simplify argument manipulations in programs. This implies that
generally the objects stored in local variables are to be recalled to the stack unchanged
(i.e. not executed). Hence local name execution is intentionally simpler than that of glo-
bal names:

Execution of a local name recalls the object stored in the corresponding
local variable, without executing the object.

The creation and use of local variables is described in section 9.7.

3.6.3 XLIB Names
XLIB names provide access to objects stored within library objects. The abbreviation
“XLIB” is short for “eXternal LIBrary”, the “external” referring to a library that is not
built into the HP 48’s permanent memory. In most respects, you use XLIB names in the
same manner as commands--executing an XLIB name executes the associated object in
the library. As long as its library is available (i.e. present in the current name resolution
path--see section 5.5), an XLIB name is entered and displayed as (unquoted) text, again
like a command. However, when its library is absent, a previously entered XLIB name
is displayed in the form

XLIB library-number, object-number,

where library-number is the library identification number of the library, and object-
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number is the number of the specified object within the library. Executing an XLIB
name whenits library is absent returns the Undefined XLIB Name error.

3.7 Quoted Names

We have shown that global and local names automatically replace themselves with their
associated variable values when executed. But there are many cases where you need the
name object itself on the stack, so that you can use it as an argument for a command
like STO or GET. You can accomplish this by enclosing the name within single quote
delimiters, e.g. ‘'name’. The quotes around a name instruct the HP48 to return the
literal name itself, and not to executeit.

To store the value 10 into a variable X, the correct sequence is 10 ‘X' STO. If you omit
the quotes, as in 10 X STO, you may very well get an error, since the value of X is
returned before the STO executes, rather than the name X. You can use 10 X STO if
the variable X does not yet exist, since that case executing X just returns to the stack the
name ‘X', which is a suitable argument for STO. In general, to avoid uncertainty you
should keep the habit of entering the quotes around the name when you want to store.
However, if you’re primarily performing symbolic calculations, you may want to take the
trouble to purge all of the variables you want to work with, just so you can put the
names on the stack without bothering with the quotes.

3.8 Quotes in General

There are three sets of quotation marks that are used as HP 48 delimiters:

e Single quotes ' ', (called “ticks,” for short) which identify algebraic objects, and also
create name objects on the stack;

e Double quotes " ", which create strings; and

e Program quotes << >> (guillemets), which create programs.

All three types of quotation marks have a common theme in the HP48. They mean
“put this object on the stack--don’t execute it yet.” Preventing execution of a string
object is not particularly meaningful, since strings are data objects, but we include the
double quotes " " in this discussion for completeness. The double quotes primarily dis-
tinguish text strings from names.

We stated in section 3.7 that placing single quotes around a global or local name enters
the name as an object on the stack. The quotes play the same role for algebraic
objects--the same symbolis used for the two different object types (name and algebraic)
because it makes sense in many contexts to treat a name object as an algebraic
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expression consisting of just one variable name. As we mentioned in section 3.3, an
algebraic object is a composite object and thus can be evaluated like a program--it hap-
pens to be displayed in algebraic form rather than RPN. Again, the quotes mean “don’t
execute this program, just put it on the stack.” The HP 48 doesn’t allow you to specify
an immediate-execute algebraic object (i.e., without quotes)--if you want the expression
to be executed immediately, you have to enter it in RPN form.

Although the same delimiters are used for algebraics and names, and for many cases
you can treat them the same, they are still different object types. The distinction is
maintained for the sake of commands like PUT and RCL, which would make no sense
with an expression or an equation as an argument. The HP 48 insures a smooth interac-
tion between names and algebraics by treating them uniformly (as a general symbolic
object type) as arguments for functions, and by automatically converting algebraics con-
taining only a variable name into name objects. Thus TYPE returns type 9 for the
expression 'A+0’, but if you evaluate the expression (assuming A has no value) to elim-
inate the 0, TYPE then returns 6, indicating that the object is a global name.

Understanding the meaning of quoted and unquoted programs starts with the recogni-
tion that the contents of the command line constitute a program--an arbitrary series of
objects intended for sequential execution. When you’re carrying out keyboard calcula-
tions, the execution is immediate as soon as you execute ENTER (section 6.4.3). The
command line program is created, then executed right away. However, you can post-
pone execution of the command line by inserting a << delimiter at the start. ENTER

then creates a program object containing the command line objects.

Because the command line is a program, and programs are deferred-execution com-
mand lines, it follows that whatever you can do in the command line, you can also do in

a program (and vice-versa). Thus programs can contain quoted objects: names, algebra-
ics, and even other programs. For example, here is a program named TEST that creates
a global variable containing yet another program:

<< ... << 10 *>> 'X10' STO ... > 'TEST' STO

Executing TEST executes its stored program, which in turn creates a variable X10 con-
taining the program << 10 * >>_ Because of the surrounding << >>, the sequence
10 * is not executed, but is put on the stack as a program, where it and the (quoted)
name X10 are the arguments for STO.

Adding a tag (section 3.4.8) is another method of entering an object without execution.
This point is particularly relevant for port names (section 5.3.1), since you can not add
single quotes to a port name--but you don’t have to because the tag prevents its execu-
tion anyway.
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3.9 EVAL

As you saw in the preceding section, the various types of quote delimiters cause objects
to be placed on the stack without being evaluated. The EVAL command is provided so
that you can later evaluate these “pending” objects, particularly programs, names, and

algebraics. Applying EVAL to a data object does in fact evaluate the object, but that just
returns the same object.

Perhaps the most common use of EVAL arises in symbolic calculation, where you have
entered an algebraic object and want to substitute values for the variable names that
appear in the object’s definition. The key also provides a handy way of making a
keyboard calculation in algebraic syntax. Just press [/ to start algebraic entry, enter an
expression, then press , which here acts like an algebraic calculator’s [=] . For

example,

[(J1+2*3 [EVAL = 7.

3.10 System Objects

In addition to the object types described in the preceding sections, the RPL system uses
several additional object types. Although these objects do not appear in normal use of
the HP 48, you may see them in these circumstances:

e A defect in a system program may leave one or more such objects on the stack.

e Future libraries may provide for intentional user-manipulation of the system object
types.

Table 3.3 on the next page summarizes the system object types.

Most built-in assembly language objects are also displayed as External when they are on
the stack, because their structure does not conform to any of the object types listed in
the table. You should not normally see such objects; if you do, it is due to a defect in

the HP 48’s built-in programming. We recommend that you immediately perform a sys-
tem halt ([ON] - [C]) to remove the object and reset the system to a safe condition.
Do not try to evaluate the object.

3.10.1 SYSEVAL
Built-in HP48 program objects--commands--are permanently stored in the calculator.
These objects are always in the same place in memory; any such object could in princi-
ple be executed by specifying its memory address rather than its name. In fact, this
execution-by-address is the most common form of execution within HP48 system
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Table 3.3. System Objects

 

Object Type TYPE Stack Display Class Definition
Number

System binary 20 <nnnnn> Data 20-bit unsigned integer

Extended Real 21 Ext. Real Data Extended precision (15-digit
mantissa, 5-digit exponent)
real number

Extended Complex 22 Ext. Complex Data Extended precision complex
number

Linked Array 23 Linked Array  Data Like ordinary array, but all
elements do not have to be
present.

Character 24 Character Data One text character.

Code Object 25 Code Procedure A program written in assem-
bly language.

Library Data Object 26 Library Data  Data Data-class object used by
libraries to save data specific
to each library.

External Object 27-31 External Data Data-class objects not specifi-
cally defined 1n the HP 48
(may be used by external
software).  

programs. Furthermore, the HP 48 contains many hundreds of objects that are not
named, and which are consequently not directly executable from the keyboard. The
majority of these objects are not useful for common HP 48 operations--those that are
most useful have names to make them commands. However, some unnamed objects do
have practical uses.

The SYSEVAL command provides for execution of any system object by means of its
address. That is, you enter the object address as a binary integer object, then execute
SYSEVAL, which in turn executes the specified system object. From time to time, in
response to customers’ requests, Hewlett-Packard has published the addresses of a few
system objects that help solve certain common programming problems.

For example, if a program creates a temporary display by means of DISP or other com-
mands, that display will persist until the end of the program. You can cause the
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calculator to restore the normal stack display while a program is running by executing
#39BADh SYSEVAL.

You must use extreme care when using SYSEVAL, for execution with an incorrect
address may cause a system halt or a memory reset (section 5.8). When you execute
SYSEVAL from the command line, or enter it in a program, you should do the follow-
ing:

e Be sure that the address you are using is correct.

e Be sure you enter the address correctly. This means not only getting all digits right,
but also making sure that the number is correct for the current binary integer base.
All of the SYSEVAL addresses listed in this book are given in hexadecimal, so you
should execute HEX before entering the binary integer address. (Remember that
including HEX in the command line does not affect the interpretation of binary
integers entered in that same command line).

e Do not attempt to single-step (section 12.2.2) programs containing SYSEVAL. If you
need to do this, replace the sequences #address SYSEVAL with global names, where
each name corresponds to a variable containing a program

<< #address SYSEVAL >>.



4. The HP48 Stack

The HP 48 stack is the center of all calculator operations. It is the place where the

great majority of commands find their arguments and return their results. It’s also the
primary and most efficient means for commands and programs to transfer data and
instructions so that a series of calculations can be linked together. In this chapter, we’ll
describe the fundamental stack operations by which you can manipulate the objects on
the stack. We will use real numbers and names as example objects, but all of the stack
operations described here apply uniformly to any of the various RPL object types.
There are numerous practical examples of stack manipulations in the program examples
in later chapters.

The stack consists of series of numbered levels, each of which contains one object of any
type. The stack is always filled from the lowest level up, so that there are never any
empty levels between full ones. ENTER always moves new objects from the command
line into level 1, pushing previous stack objects up to higher levels. Most commands
remove their argument objects from the lowest levels, whereupon the objects in higher
levels drop down. The only exceptions are some of the stack manipulation commands,
which can move objects to or from arbitrary stack levels. There is no limit on the
number of objects or levels of the stack; you can enter as many objects as available
memory will permit.

The HP48 provides an extensive set of stack manipulation commands, some per-
manently assigned to keys, and the rest contained in the stack menu ( [PRG]ZSTKE ). All
of the stack menu operations are programmable commands, which means that you can
execute them by pressing the appropriate keys or by spelling their names into the com-
mand line. Most stack operations can also be executed by using the interactive stack,
described in section 4.5.

If you have no previous experience with RPN calculators, a good way to get used to the
RPNstack is to view it at first as a “history” stack, which keeps a record of your calcu-
lations. That is, you can calculate in “algebraic” style by entering algebraic expressions
surrounded by ' ’ delimiters (see section 3.8) and pressing to perform the calcula-
tions. The successive results pile up on the stack, where you can then start to get the
“feel” of RPN by executing RPN commands to combine the results into new values.

Table 4.1 lists the stack operations found on the keyboard and in the STACK menu.
The individual operations are explained in subsequent sections. [Most of the HP 48
stack commands are adapted from the FORTH computer language. Indeed, many key
HP48 features are based on FORTH, with its unlimited data and return stacks, RPN
logic, and structured programming.]
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Table 4.1. HP48 Stack Manipulations

 

Command Action

Stack Clearing DROP Discard the level 1 object
DROP2 Discard the objects in levels 1 and 2
DROPN Discard the first n objects

CLEAR Discard all stack objects

Reordering Arguments  SWAP Exchange the objects in levels 1 and 2
ROT Rotate the level 3 objectto level 1
ROLL Rotate the level n objectto level 1
ROLLD Rotate the level 1 object to level n

Copying Objects DUP Copy the level 1 object
OVER Copy the level 2 object
PICK Copy the level n object
DUPN Copy the first n objects

Counting Objects DEPTH Count the number of objects on the stack

Object Recovery LASTARG Return the arguments used by the last
command
Restore the stack to its state prior to
ENTER  
 

4.1 Clearing the Stack

Perhaps the most common stack operation is “clearing” one or more objects, either to
discard unnecessary objects so that others are moved to lower levels, or just to clear the
decks for a new calculation. The latter is accomplished by CLEAR, which removes the
entire contents of the stack in a single operation. CLEAR is usually executed from the
keyboard ([>] ); a well-designed HP 48 program does not execute clear because
that might destroy stack objects needed by a second program that called it.

There are three commands for removing a specific number of objects from the lowest-
numbered stack levels: DROP, DROP2, and DROPN. The basic command is DROP,
which removes the object in level 1, and “drops” the remaining stack objects one level
to fill in the empty level. Each DROP discards another object, and the stack drops one
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level.

DROP2 and DROPN, are equivalent to repeated execution of DROP. DROP2 does just
what its name implies: it removes two objects, from level 2 and level 1, then drops the
remaining objects down two levels to fill in. DROPN drops n objects in addition to the
number #n in level 1 (so actually n+ 1 objects are dropped--see section 4.2.4 for a discus-
sion of stack depth parameters). Notice that although DROPN appears abbreviated as
SDRPNE in menus, its correct name in a program is DROPN.

The need to drop objects arises when extraneous or no-longer-necessary objects occupy
the lowest stack levels. For example, if you take a vector apart with OBJ-, level 1 will
contain a list { n } specifying the number of elements in the vector. But if you are work-
ing with vectors of a particular size, the size list may be redundant information, in which
case you can drop the list and continue with operations on the elements.

4.2 Rearranging the Stack

Dropping objects from the stack is not always the appropriate action when you need
access to objects in higher-numbered stack levels--you may also need to preserve the
low-numbered objects. In such cases, you must employ stack rearrangement commands
to change the order of the objects.

42,1 Exchanging Two Arguments
The simplest form of stack rearrangementis the exchange of the positions of the objects
in levels 1 and 2, which is accomplished by SWAP. SWAP is used for switching the
arguments for a two-argument command, or more generally for changing the order in
which the level 1 and 2 objects may be used. SWAP is easy to illustrate:

A B SWAP = B A

4.2.2 Rolling the Stack
A stack “roll” is an exchange of stack positions involving objects in two or more stack
levels. One object is moved to or from level 1, and other objects move up or down
together to make room for it. The commands ROLL (roll up) and ROLLD (roll down)
provide for stack rolls in both directions, where “up” and “down” refer to the apparent
motion of the stack objects other than the level 1 object. You must specify the number

of stack levels you want to roll by placing a number 7 in level 1. Either command drops
the number from the stack, then rolls the first n of the remaining stack objects. For
example, if n=4:
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Level Stack Contents

Before After 4 ROLL After 4 ROLLD
4; t z X

3: z y t

2: y x z
1: X t y

Although ROLL and ROLLD move several objects at once, the primary purpose of these
commandsis still focused on level 1:

e n ROLL means “bring the nth level object to level 1.” That is, ROLL retrieves a pre-

viously entered or computed object that has been pushed to higher stack stack levels
by subsequent entries.

e n ROLLD means “move the level 1 object to level n.” ROLLD moves the level 1
object “behind” other objects that you want to use first.

SWAP and ROT (rotate) are one-step versions of ROLL. SWAP is equivalent to 2
ROLL; ROT is the same as 3 ROLL. 0 ROLL and 1 ROLL do nothing, but the latter is
still useful in program loops that use objects from successive stack levels including level
1.

4.2.3 Copying Stack Objects
One of the strengths of RPN calculatorsis their ability to make copies of an object on
the stack, so that you can reuse it without having to stop and create a variable. The
simplest example of this facility is the HP48 command DUP, which makes a second
copy of the object in level 1, pushing the original copy to level 2, and all other stack
objects up one level. The HP 48 also lets you copy a block of stack objects with DUPN.
The sequence n DUPN, where n is a real integer, makes copies of the first n objects on
the stack. The order of the objects is preserved; for example

XY Z 3DUPN @ XY Z X Y Z

DUP2 is a one-command version of 2 DUPN:

XY DUP2 == X Y X Y.

In some cases it is desirable to copy an object that is not in level 1, by bringing a copy
to level 1 while leaving the objectin its original position relative to other objects. In the
HP 48, this combination of ROLL, DUP, and ROLLD is provided by PICK, the general
purpose stack copy command. PICK works like ROLL, returning the nth level object to
level 1, but it leaves the original copy behind. The original therefore ends up in level
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n+l1:

W XY Z 4 PICK = WXY Z W

DUP is the same as 1 PICK, and OVER is a one-step version of 2 PICK:

XY OVER = X Y X

Generally, you use PICK and ROLL when you are carrying out a complicated calculation
entirely with stack objects. When you need to use a certain object repeatedly, you use
PICK to get each new copy of the object. For the final use of the object, use ROLL
instead of PICK; then you won’t leave an unneeded copy around after the calculation is
complete.

4.2.4 How Many Stack Objects?
Several HP 48 stack commands require you to supply an argument that specifies how
many stack levels the command will affect. Because this argument is always taken from
level 1, you might be uncertain about what the argument should be--should you count
level 1, which contains the argument? The answer is no--always count the stack levels
you need before the count is entered into level 1.

For example, suppose the stack looks like this:

4:

>
W
O
0

3:

2:
1.

To roll D to level 1, execute 4 ROLL. But notice that at the point when ROLL actually
executes, the stack is:

N
W
H
O

A
>
T
O
O

Here D is actually in level 5. But don’t try to compensate for this by using 5 as the
argument to ROLL. ROLL removes its argument from the stack before it counts levels
for the roll. All other similar commands, such as DUPN, PICK, ROLLD, -LIST, etc,
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work the same way.

DEPTH, which returns the number of objects currently on the stack, works in conjunc-

tion with this class of commands. The count returned by DEPTH does not include
itself--it counts the objects before the new count object is pushed onto the stack. (Every
time you execute DEPTH, the depth increases by one.) Thus DEPTH ROLL rolls the
entire stack, DEPTH -LIST packs up all the stack objects into a list,etc.

4.3 Recovering Arguments

HP48 commands characteristically remove their arguments from the stack. Occasion-
ally, it is useful to recover a copy of one or more of a command’s arguments:

e To allow you to re-use the same argument(s) for a new command.

e To help you reverse the effect of an incorrect command, by applying the inverse of

the command to some combination of the result and the original arguments.

Traditional HP four-level RPN calculators have a LASTX command that combines these

two purposes. On the HP 48, there are two separate operations:

1. The capability of recovering an argument for reuse is provided by the last argu-
ments recovery system, whereby each command that uses stack arguments saves
copies of all of its arguments--up to five--in a reserved area of memory. No
built-in HP 48 command uses more than four arguments, but the last arguments
system provides for up to five for the sake of library commands. Commands like
DUPN or ~ARRY, which appear to use an indefinite number of arguments, are

considered for this purpose to use only one argument, which is the number or list
in level 1 that specifies the number of stack levels that are involved.

The arguments saved by the most recent command can be retrieved by the com-
mand LASTARG (also called LAST, for compatibility with the HP 28), which re-
enters all of the arguments onto the stack in their original order. Note that since
most HP48 commands use arguments, the last arguments objects change fre-
quently. Even simple stack rearrangements such as DROP and SWAP save their
arguments. Only commands like STD or HEX, that use no arguments at all, leave
the last arguments unchanged.

2. Manual recovery from incorrect commands is provided by the stack recovery sys-
tem. At the start of each ENTER, a copy of the entire stack is saved (see section
6.4.3) in a local memory (section 5.4). When all of the objects processed by
ENTER have completed execution, you can cancel their stack effects by pressing

. This discards the new stack and replaces it with the stack con-

tents saved by ENTER.
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The objects saved for stack recovery and last argument recovery can consume a substan-
tial amount of memory if the objects are numerous or large. When you are working
with objects that are comparable in size to available memory, such as adding large
arrays, the memory needed to save copies of objects for recovery can actually prevent
you from carrying out various operations. For this reason, the HP 48 gives you the
option of disabling either or both of these features (and also the command stack), by
means of the appropriate keys in the MODES menu. You can also disable argu-
ment recovery by setting flag —55.

Two notes:

¢ Disabling last arguments prevents commands that error from returning their argu-

ments to the stack. This makes it harder to recover from an error, and also affects
the design of error traps (section 9.6).

o If there is insufficient memory available to save the current stack as the recovery
stack, the HP 48 shows the error message No Room for LAST STACK, and automnati-
cally disables stack recovery. This last step is necessary, since you would otherwise
be unable to do anything--including trying to free some memory. Any command
would fail, since the HP48 tries to save the stack before executing the command.

LASTARG can also be used to recover accidentally purged or replaced variables. See

section 5.1.3.

4.4 Stack Manipulations and Local Variables

The following example illustrates the use of several of the HP 48 stack commands. If
you execute the commands one at a time, you can observe how to copy, move, and com-
bine stack objects.

m Example. Write a program that computes the three values

P+A+B
P+ BF + A/F
P + B/F + A'F,

leaving the results on the stack. Assume that P is in level 4, A in level 3, B in level 2,
and F in level 1.

-73-



4.4 The HP48 Stack

m Solution:

 

<< 4 ROLLD 3 DUPN 3 DUPN + +
8 ROLLD 7 PICK * SWAP 7 PICK
/ + + 5 ROLLD 4 PICK
/ SWAP 4 ROLL * + +

>>   
This example illustrates the use of stack manipulation commands, but it does not neces-
sarily represent the best way to solve the problem. Keeping track of numerous objects
on the stack takes considerable care when you are writing or editing a program. In gen-
eral, manipulating objects on the stack in a purely RPN manner yields the most efficient
programs (see section 12.4). However, there are other programming techniques that are
easier and produce more legible programs. For example, you can store the initial and
intermediate values in global variables, then recall each to the stack by name as it is
needed in the calculations. Better yet, you can avoid cluttering up user memory with a
lot of variables (which you may or may not need after the program is finished) by using

local variables.

With local variables, the solution to the example problem is

 

< - p ab f
<< 'p+a+b’ EVAL

'‘p+b¥f+a/f’ EVAL
'p+b/f+ad’ EVAL

>>

>>   
- p a b f takes the four initial values off the stack and assigns them to local variables p,
a, b, and f (here we are using the convention of lower-case characters for local names).
The rest of the program computes the three results, then discards the local variables.
The obvious advantage of this method is that you can write the program “instantly,”
since the program so closely resembles the written form of the expressions you are try-
ing to compute. The use of local variables is explored in detail in sections 8.5 and 9.7.

4.5 The Interactive Stack

HP 48 stack commands are available either on the keyboard (DROP, SWAP, DUP, and
CLEAR) or in the stack menu ( [PRG] ESTKE ). However, the HP 48 also provides the

-74-



The HP48 Stack 45

interactive stack environment, in which you can apply stack commands to objects in vari-

ous levels by selecting the objects with a pointer rather than a stack level argument.
The interactive stack also lets you view or edit any stack object, copy objects to the com-
mand line, combine objectsinto a list, and discard objects from the stack.

The interactive stack is activated by pressing [A] when there is no command line active.

The interactive stack menu appears, and the colon in the level 1 indicator 1: changes to
a triangle pointer, to show that the level 1 object is currently selected:

 

 

1734
(5,6)

'RPR2]

H

b [ 172 3]
|ECHO |VIEM |PICE |KOLL|ROLLDJ3*LIZT |   

Note that the stack is redisplayed in single-line format, so that four stack levels can
appear in the display. Pressing [A] moves the selector to level 2; pressing the key
repeatedly moves the arrow to the top of the stack display and then begins scrolling

objects from higher levels into the window. [][A] moves up four levels; [>][A] moves
the arrow to the highest stack level. You can also move the arrow down using [V],

[V], and [*][V].

"Selecting" an object consists of moving the arrow to point atit; the stack level number
of the selected object is then an implicit argument for the stack operations that appear
in the menu. For example, to move the object in level S to level 1, you press [A] five
times (or [A][<][A]), then press SROLLE . This is equivalent to executing 5 ROLL, but
it is easier because the very act of moving the pointer up to level 5 to see where the
object is not only automatically activates a menu containing ROLL, but also saves you
from having to enter the 5.

 

 
The interactive stack menu operations =PICK= , SROLLE , SROLLDZE , =-LISTS , EDUPNE ,

and ZDRPNE (DROPN) are self-explanatory, since they derive from the corresponding
stack commands (section 4.2), using a stack level argument provided implicitly by the
stack pointer. The remaining four operations in the interactive stack menu do not have
command equivalents:

 

e SECHOE is for copying an object to the command line when you want a new copy of
the object, either to modify to make a new object, or to embed in some command
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line sequence. It differs from EDIT or VISIT in that the new command line object
does not replace the original stack object.

e SVIEWE activates the appropriate viewer (section 6.5.1) for the selected object.

e EKEEPZ discards all stack objects in levels above the selected object. It is intended
for manual stack cleanup, and has no programmable equivalent since generally it is

not a good idea for a program to discard objects that might have been on the stack
before it began execution. It is, however, easy to write a program to replicate
EKEEPZ --see section 4.6.1.

e SLEVELE returns the selected level number to level 1 (pushing current stack objects

to the next higher stack level).

In addition to the interactive menu keys, these other keys are active:

o removes the selected object from the stack. It is equivalent to » ROLL DROP.

o (you can omit the edits the selected object in the command line (in
program entry mode), and returns it to its original level when you press .
Thus the interactive stack is equivalent to ordinary with a numerical

argument.

o takes the indirection of object editing one step further: it uses the selected
stack object as an argument for VISIT (section 6.5). If the selected stack object is a
number, the object in the stack level indicated by that numberis copied to the com-
mand line; if the selected object is a global name, the object stored in the

corresponding global variable is edited. (If the selected object is not a global name
or a valid stack level number, an error is returned and the interactive stack environ-
ment is terminated with the invalid argument copied to level 1.)

4.6 Managing the Unlimited Stack

If you have not previously used an RPN calculator, you should find that the HP 48’s
unlimited stack of objects is a straightforward implementation of RPN principles. How-
ever, if you are used to a four-level HP 41 style stack, there are several general aspects
of the use of the HP48 stack that will require some adjustment. The hardest part,
perhaps, may be changing keystroke and programming practices that you have
developed to use the advantages and to overcome the disadvantages of a four-level
stack. In the following sections, we will outline some suggestions for optimum use of
the unlimited stack.

-76-



The HP48 Stack 4.6

4.6.1 Stack Housekeeping
An important advantage of an unlimited stack is that objects are never lost by being
pushed off the end of the stack when a new object is entered. This is also a mild
disadvantage--if you don’t clear objects from the stack when you’re through with them,
more and more objects will pile up. This not only wastes memory, but causes the HP 48
to pause more frequently for memory packing (section 12.9.1). It can also be distracting
to see old objects appear in the display when you’ve long since forgotten their purpose.

A general recommendation for HP 48 stack managementis to clean up the stack after a

calculation is complete. By all means pile up as much as you want on the stack while
you are working through a problem--that is its purpose. But when you’re finished,
empty the stack. You can do this either at the beginning or the end of each calculation.

We recommend the latter, since at that point you will best remember what each object
is, and whether it’s all right to throw it away.

“Clean up the stack” doesn’t always mean to empty the stack with CLEAR ([>] .
You may very well want to keep certain objects, either leaving them on the stack or
storing them in variables. Notice that STO removes the object being stored from the
stack, reducing the number of objects on the stack.

The interactive stack is particularly useful for selective stack cleanup:

e To discard a single object, select it and press[&].

e To discard a block of objects at the low-numbered end of the stack, select the
highest-numbered object to discard and press ZDRPNZ .

e To discard a block of objects at the high-numbered end of the stack, select the
highest-numbered object that you want to keep, and press EKEEPZ .

e To discard a block of object in the middle of the stack, select the lowest-numbered
object to discard, and press repeatedly.

You can write programs that perform the different stack removal operations, although
their practical use is properly structured programs is limited. KEEP is a program form
of the interactive stack SKEEPZ operation; it discards all objects after the first n, where n
is specified in level 1. For example,

A B CDE 2 KEEP = D E

(This is our first example of a named program; you may wish to refer to the description

of the program listing format in section 1.3)
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KEEP Keep N Objects A24D

level 1 |

objects n or n objects

<< -LIST Combine » objects in a list.

-~ keep Save the list in a local variable.

<< CLEAR Clear the stack.

keep OBJ- DROP Put the saved objects back on the stack.

>>

>>    
 

MNDROP discards all objects from levels m through n. For example,

A B CDE 2 4 MNDROP = A E

 

 

 

 

 

MNDROP DROP m through n 13BF

level n+2 level 2 level 1 | level m—-n level 1

object,, m n o object,,1 object,

< SWAP DUP - n Save n.

< - 1 + 1 SWAP Set up to repeat m—n+1 times.

START n ROLL DROP Drop one object.

NEXT Repeat.

>>

>>    
 

Occasionally you may need to interrupt one ongoing keyboard calculation in order to
perform another, and wish to resume the suspended work later. In this case it is not
appropriate to clear the stack with CLEAR to provide an empty stack for the new calcu-
lation. You could take the trouble to save each object in a variable, but this is tedious,
and makes it hard to reconstruct the stack order of the objects. A better approach is to
preserve the entire stack in a single variable by combining the stack objects into a list.
From the keyboard, you can use the interactive stack; the keystrokes are

[A] [®I[A] E=uUSTE [ENTER].

Then you can store the list into a variable named OLDST (for example) by typing
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'OLDST’ . The stack is now cleared for another calculation. After completing any
number of subsequent operations, you can restore the old stack by pressing
 

[VAR] ZOLDSTE [PRGIZOBJE :£0BJ-= [¢&].

(The DROP removes the object count returned by OBJ-.)

In a program, a local variable (section 9.7) is ideal to save the stack contents:

 
DEPTH -LIST - keep Save the stack in local variable keep.
<< .. Any program steps here...

keep OBJ-~ DROP Restore the old stack.
>>     

4.6.2 A Really Empty Stack
An important property of the HP 48 stack not shared by an HP 41-style stack is its abil-
ity to be empty. That is, when you clear the stack with DROP or CLEAR, there’s nothing
left. If you try to execute a command that requires arguments, you’ll get an outright
error--T00 Few Arguments. The HP 48 makes no attempt to supply default arguments.

You can turn this property to advantage. The following sequence adds a series of
numbers on the stack, no matter how many there are:

WHILE DEPTH 1 > REPEAT + END 'TOTAL" -TAG

The sequence is an indefinite loop (section 9.5.2) that keeps adding (REPEAT +) as
long as there is more than one object on the stack (WHILE DEPTH 1 >), then quits,
leaving the labeled total in level 1. This routine is useful when you must add a column
of numbers--you can enter all of the numbers onto the stack, use the interactive stack to
review the entries, then perform all of the additions at once. Notice that if an empty
stack were treated as if it were filled with zeros, there would be no way for the program
to know when to stop adding.

4.6.3 Disappearing Arguments
The HP 48 itself takes some steps to insure that unnecessary objects don’t pile up on the
stack. In particular, most commands that use stack arguments remove those arguments
from the stack. You shouldn’t find this surprising; for example, you wouldn’t expect the
sequence 1 2 + to leave the 1 and the 2 on the stack as well as the answer 3. But it
may be a little disconcerting the first time you use STO on the HP48, to sece that the
object you just stored disappears from the stack.
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If commands did not remove their arguments from the stack, then you would have to
take the trouble to drop them when you no longer need them. On the other hand, since
HP48 commands do remove their arguments, you must remember to duplicate them
before executing the commands on those occasions when you want to reuse the argu-
ments. The HP48 chooses this approach for these reasons:

e Consistency with mathematical functions. You never want math functions to leave
their arguments on the stack--otherwise, the whole RPN calculation sequence would
be disrupted.

e Stack “discipline.” The fewer objects that are on the stack, the easier it is to keep
track of what they are.

¢ Efficiency. It’s easier to duplicate or retrieve a lost argument than it is to get rid of
an unwanted one.

To illustrate the last point, consider obtaining a substring from a string:

"ABCDEFG" 3 4 SUB = "CD".

This sequence returns only the result string "CD"; the original string "ABCDEFG", and
the 3 and 4 that specify the substring are discarded. If you want to keep the original

string, add a DUP after the original string object:

"ABCDEFG" DUP 3 4 SUB = "ABCDEFG" "CD".

If SUB left its arguments on the stack, the original sequence would yield a final stack
like this:

"ABCDEFG"
3
4

"CDII

T
N

In that case, to leave only the result on the stack, you would have to add 4 ROLLD 3
DROPN to the sequence. If you only want the two strings, you would have to add ROT
ROT DROP2. As we stated, either of these is more complicated than adding a DUP to
the start of the sequence.

When you use STO to preserve an intermediate result in the middle of a calculation,
you may prefer to keep the result on the stack so that you can continue the calculation.
In this case, just execute DUP (press if you’re performing manual calculations)
before you enter the variable name for the STO. If you forget, the stored object is
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always available by name in the VAR menu.

4.7 Design Insights

An alternative (and more accurate) picture of the HP 48 stack is that the stack consists
of the stack objects themselves, rather than a set of levels that may or may not contain
objects. The picture conveyed by the HP 48 display is slightly misleading in that it sug-
gests that the stack levels with their numbers actually exist in memory, including the
empty levels that are just waiting to have objects put in them. (This picture is literally
correct in the four-level RPN calculators that preceded the HP48.) In fact, the stack
consists of the stack objects placed adjacent to each other in memory, a starting memory
location, and a memory pointer. The pointer points to the location where the next stack
object will be placed. If the pointer points to the start, the stack is empty. When an
object is placed on an empty stack, it is stored at the starting location, and the stack
pointer is adjusted to point just past the object. As additional objects are added, they
are placed next to the last-entered object, and the pointer is adjusted. You can picture
the stack as growing like this:

Empty One Two Three
Object Objects Objects

D ONE ONE ONE
D TWO TWO

D THREE
D

The key idea here is that when objects are added to and deleted from the stack, the
remainder of the stack does not move (as you might think from the 48 display, since
entering an object shows the initial objects moving up the display, and dropping objects
shows objects moving down). Thus it takes no more time to add an object to a stack of
1000 objects than it does to an empty stack. Similarly, when you execute any stack rear-
rangement, the only movement takes place among the objects involved in the rearrange-
ment.

In the diagram we show the stack growing downwards, as in the HP 48 display. Descrip-
tions of stack-oriented computer languages usually show the opposite picture, with the
“top” of a stack being the most-recently entered object. HP RPN calculator manuals
have always shown level 1 (the x-register) at the visual “bottom” of any stack pictures.
The HP 28C was the first calculator in which more than one level was visible at a time;

it displays level 1 at the bottom ofits display. The HP 48 continues this model, which is
sensible since when you perform a simple operation like addition, the numbers appear
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on the stack the same way they would appear on paper, with the first-entered number
above the second. To avoid confusion, however, we will not refer to the “top” or the
“bottom” of the stack, referring instead to specific stack object/level numbers.

The stack-of-objects model needs further modification to correspond exactly to the
HP48 internal design. The real HP 48 stack is a stack of the memory addresses of the
visible stack objects rather than the object themselves. The objects may be in any of a
number of places--in user memory, in the built-in ROM, in plug-in RAM or ROM, or,
if not in one of these places, in a temporary object memory. All HP 48 operations that
deal with the stack “know” that the objects are only present indirectly on the stack.
Because of this consistent system design, you can deal with stack objects as if they were
literally in a stack without any concern about the indirection.

An understanding of the internal stack design can, however, provide some insights into
using the system efficiently, such as why stack manipulations are very fast. The
addresses on the stack are all the same size--2.5 bytes--so that copying them, counting
through them, etc. involves very simple operations that can be encoded in very efficient
assembly language. For example, DUP has only to duplicate the 2.5 byte address of the
level 1 object--it does not have to copy the object itself--and add 2.5 to the stack end
pointer. (This also means that copying an object with DUP only uses 2.5 bytes of
memory.) Also, finding an object on the stack is fast; to find the level one object, the
HP48 just reads the address indicated by the stack pointer. By contrast, to find an
object stored in a variable from the variable’s name, the calculator must search through
user memory until it finds a variable with the right name, which can require many
memory reads and comparisons.

The stack-of-addresses model implies that you can make any number of copies of an
object at a memory cost of only 2.5 bytes per copy. When you execute a program that
contains an explicit object that goes onto the stack, it still only costs 2.5 bytes for the
object, because the program literally contains the object. The resulting stack address
points inside the program, to the point in the program where the object is defined.
There is a catch here: if you purge the program while the objectit entered is still on the
stack, the HP48 copies the entire program to temporary object memory where it
remains until you finally drop the stack object. The memory occupied by the program is
only reclaimed when the object is dropped, not when the program is purged.

Other consequences of the RPL stack design are discussed in sections 11.6 (composite
objects and memory) and 12.9.1 (erratic execution). The complete logical description of
the internal design of RPL would constitute a book by itself. Fortunately, you can gen-
erally use the HP48 and write quite elaborate programs without concern about the
details of its internal design.
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The methods and organization of object storage on the HP 48 are quite straightforward
in practice, but can be a little convoluted to explain in the abstract. Therefore we will
develop this theme by means of a continuous example, where we will start with a
hypothetical “empty” calculator and start to fill it with stored objects, explaining the
principles as they are introduced in the example.

5.1 Global Variables

Imagine now that you want to enter the real number 123 and store it away for future
use. This is accomplished by using the command STO to create a global variable that
both stores the number and gives it a name. STO evidently requires two arguments: the
object to be stored (level 2), and a name (level 1). The name in this case is represented
by a global name object (section 3.6.1):

123 'ABC’ STO

This sequence enters the number 123 and stores it with the name ABC. The quotes '’
surrounding the name ensure that the name object itself is entered on the stack, rather
than executing the name (section 3.7). You should notice that both 123 and ‘ABC’ are
removed from the stack by STO; to leave a copy of the 123 on the stack, you should
copyit first:

123 DUP 'ABC’ STO

To see where the 123 has gone, press the VAR key:

 

OME }

o
™

E
E

E
E

E
E

a
n
-

   
You are seeing the VAR menu, which is an automatic catalog of all global variables that
currently exist. In this example, there is only one variable, ABC, which appears as the
label of the leftmost menu key. If you press that menu key, the number 123 is returned
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to the stack, which demonstrates the fundamental behavior of VAR menu keys:

e Pressing an unshifted VAR menu key executes the global name displayed on the key
label.

According to the principles of global name execution described in section 3.6.1, execut-
ing a global name executes the object stored with that name, which in this example is
the number 123. When the stored object is a program, a name or a directory, you may
want to recall the object without executing it, which leads to a second property of the
VAR menu:

e Pressing a right-shifted VAR menu key recalls the object stored in the corresponding
global variable.

Thus, pressing [>]EABCE is equivalent to executing ‘ABC’ RCL. For objects other than
programs, names, and directories, executing the object is the same as recalling it to the
stack, so the right-shifted and unshifted VAR menu keys have the same effect. When
you are unsure of a stored object’s type, and want to recall it without executing it, you
should use the right-shifted menu key.

For symmetry, the left-shifted VAR menu keys are also active:

e Pressing a left-shifted VAR menu key stores the object in level 1 in the correspond-

ing global variable.

456 [$1]EABCE is equivalent to 456 'ABC’ STO. When STO is executed with the name
of an already existing variable, the existing contents of the variable are replaced with the
object in level 1.

The action of the left-shifted menu keys as a shortcut for STO has the obvious disadvan-
tage that it is easy to overwrite the contents of a variable accidentally, when you press
the left shift instead of the right or forget that the left shift was left active from some
previous incomplete operation. To help you remember which shift is which, observe
that shifted menu key operations roughly match those of the shifted key:

performs RCL, like the right-shifted menu key; and executes DEFINE, which is
a type of storing. Also, if you do perform an unwanted store by pressing a left-shifted
menu key, you can undo the operation by immediately pressing

 
[>][LASTARG] [STO] [>][LASTARG] [&].

(see section 5.1.3).

The properties of the VAR menu keys described above apply only to immediate-execute
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entry mode; in algebraic (ALG annunciator) or program (PRG) entry modes, an unshifted
menu key merely echoes the key label name to the command line, and the shifted menu
keys are inactive.

Now create a second variable DEF:

456 'DEF’ STO

The VAR menu now looks like this:

 

 

   
The newer variable DEF appears on the left-most menu key, with ABC moved one posi-

tion to the right. In general, as each new variable is created, its menu entry takes the
first menu position. This ensures that the most recently created entries are the most
accessible in the menu, but it also means that menu entries move around as variables

are created or deleted (which can trip you up if you are pressing keys quickly, since the
display showing the menu positions is not updated until any type-ahead keystrokes are
processed). The command ORDER gives you control of the order of menu keys in the
VAR menu. ORDER rearranges the menu to match the order of names in a list. For
example, to put ABC on the first key label in our example menu, execute

{ABC DEF} ORDER.

Actually, the DEF entry in the list is superfluous in this case. ORDER moves the vari-
ables named in the list to the start of the VAR menu in the order specified, leaving any
other variables in their current order, following the final entry in the list.

is a handy way to make a quick check of the contents of the variables listed

on one page of the VAR menu. Each variable name is displayed on one line, followed
by a colon plus as much of the corresponding stored object as will fit on the line:
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ABC: 123
DEF: 456

WISTIIN
 

You can also catalog global variables using VARS and TVARS, described in section 5.8.3.

5.1.1 DEFINE
When the object to be stored in a global variable is an object that is permitted within an
algebraic expression, DEFINE ( ) provides a convenient alternative to STO.
DEFINE takes an algebraic equation of the form 'name=expression’ as its single argu-
ment, and stores the object expression in a global variable name. If expression consists
of a single real or complex number, name or unit object, the stored object will be of
that type. For more complicated expressions, the stored object depends on numeric
execution mode (section 3.5.5.2):

e With flag -3 clear (symbolic execution), expression is stored as an unevaluated alge-
braic expression. ‘A=1+2" DEFINE stores '1+2’ in the global variable A.

e With flag -3 set (numeric execution), expression is evaluated numerically (as by
-NUM), and the result object is stored. 'A=1+2" DEFINE stores 3 in the global
variable A.

Notice that numeric-mode DEFINE resembles a postfix form of the BASIC language
LET, providing a simple way of redefining a variable in terms of its current value. For
example, 'X=X+1' DEFINE adds 1 to the current value of X, which would be accom-
plished in BASIC with LET X=X+1 (or usually just X=X+1, with implied LET). (Don’t
do this with flag —3 clear,since that leads to a circular definition--see section 3.6.1).

DEFINE can also be used to create user-defined functions, which are described in section
8.5.

5.1.2 Deleting and Renaming a Variable
The command PURGE removes from memory the variable that is specified by a global
name argument. It does not error if the variable does not exist, so that you can delete a
variable without bothering to check to see if it is present. When a variable is removed,



Storing Objects 5.1

its position in the VAR menu is filled in from the right by the remaining labels in the
menu.

There is no built-in command for renaming a variable, but you can use the following
sequence, with the original name in level 2, and the new name in level 1:

SWAP DUP RCL SWAP PURGE SWAP STO

A program to perform more elaborate variable movesis listed in section 5.7.4.

5.1.3 Cancelling STO and PURGE
The HP-48 uses its argument recovery facility (section 4.3) in a non-standard way to
provide a method for recovering from an accidental overwrite of the contents of a global
variable. After the STO command itself is executed, LASTARG returns the stack argu-
ments: the variable name to level 1, and the stored object to level 2. However, if the

key is used in immediate-execute mode (section 6.4.1), the resulting store differs
from the normal STO command in two ways:

e The Circular Reference error is returned if the two stack arguments are both the

same (global name). This prevents simple endless execution loops (section 3.6.1).

e If the named variable already existed, LASTARG returns the object that was previ-

ously stored in the variable to level 2, rather than the newly stored object. Thus you
can use to cancel the effect of an incorrect store,
restoring the stack and the variable to their states prior to the incorrect store.

The variable protection of the key also applies to the other keyboard store

operations--pressing unshifted HP Solve variables menu keys, or left-shifted VAR or
CST menu keys. It does not apply to the programmable command STO, or to
when the name argument is other than an untagged global name.

A similar recovery facility works with the key, when the argument is an
untagged global name. In this case, LASTARG returns the purged object to level 2 as
well as the name argument to level 1, so that you can undo an accidental purge by
pressing . Again, PURGE executed from the command line or in a pro-
gram retains the normal last argument action.

You should realize that this non-standard but useful behavior of the and

keys means that replacing or deleting a stored object does not immediately
recover the memory associated with the object, since the object is kept in the last argu-
ment memory until replaced by the arguments of a subsequent command. You can use
the command form of the operations when you want to be sure to discard the old object
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immediately; e.g. use ENTRY instead of . Or you can execute
another command (or a system halt) to remove the old object from last argument
memory after the store or purge.

5.2 Directories

The HP48 allows you to create any number of variables like ABC and DEF. When you
have more than six variables, the VAR menu shows a page ofsix at time; (next page)

and (previous page) allow you to page forward and backward through the
menu (] moves to the first page of the menu). However, the menu becomes
cumbersome once you have more than a few pages of six variables. For this reason the
HP 48 provides directories, which allow you to organize logical groups of variables.

The variables ABC and DEF in our example so far together constitute the home direc-
tory, a permanent directory that serves as the “root” of the HP48’s global variable
organization. Like any directory, the home directory can be empty, as it is following a
memory reset, or it can contain any number of variables. You can picture the current
home directory like this:

 
ABC DEF 

123 456    

Each box represents a variable, showing its name and contents. The variables are
shown in the same order that they are presented in the VAR menu.

The HP 48 allows you to create variables within the home directory that themselves con-
tain directories--groups of additional variables. This process, which can be repeated
indefinitely within the new directories and their variables, allows you to organize user
memory--the complete collection of global variables--into a hierarchical structure. To
see how this works, create a directory variable DIR1:

'DIR1’ ZCRDIRE

Press to show the VAR menu again:
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A menu label has appeared for DIR1, indicating that CRDIR (CReate DIRectory) has
added a variable DIR1 in the home directory. The little “tab” above the label, which
makes it resemble a file folder, indicates that the corresponding variable is a directory.
Initially, the directory contains no variables. Now press ZDIR1E :

 

HOME DIE1 }
 

e
T
R
N

  
Executing a directory by name causes that directory to become the current directory,
which by definition is the directory whose variables are displayed in the VAR menu.
Since the directory DIR1 is empty, the VAR menu shows only blank menu keys at this
point. Notice also that the list { HOME DIR1 } is now displayed in the second line of
the status display. This list, called the current path, is the sequence of directories that
leads to the current directory. You can return this list as a stack object by executing
PATH (in the menu); if you later change current directories, you can evalu-

ate the list (EVAL) to return to the directory specified by the list. (In subsequent discus-
sions, we will simplify descriptions by using expressions like “switch to” or “go to”
rather than “make current.” Thus “switch to the DIR1 directory” means “make DIR1

the current directory.”)

 

Any variables that you create while a particular directory is current become part of that
directory. For example, create two new variables:

-123 'ABCY’ -456 'DEF1’ [sTQ].
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The new variables appear in the VAR menu:

 

HOME DIR1 }
 

I
p

™

  (DEFLpec1] |||
 

Meanwhile, what has become of the variables ABC and DEF created at the start of this
exercise? They are still available for execution or recall, but are not visible in the menu.
For example,if you execute ABC , the value 123 is returned. This illustrates the
essential property of HP 48 name resolution: when the HP 48 searches for (“resolves”) a
global name, it first searches the current directory. If it can not find a variable with that
name there, it proceeds to search the parent of the current directory--the directory that
contains the current directory as a variable. The search continues through the parent of
the parent, and so on to the home directory if necessary.

The following diagram represents the current structure of user memory:

 

DIR1 ABC DEF
 

DIR... 123 456     

 

 

    
The figure shows the contents of the DIR1 directory below the home directory. This
matches the HP 48 terminology in which DIR1 is considered as a subdirectory of the
home directory, and where the command UPDIR (($3][UP]) is named to suggest moving
upwards through the user memory structure. UPDIR goes to (makes current) the parent
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of the current directory; HOME is equivalent to executing UPDIR repeatedly until the
home directory is reached.

A key principle of HP48 name resolution (see section 5.5) is that global variable
searches always proceed upwards through the directory tree, but never downwards. In
the current example, if you execute HOME or UPDIR to return to the home directory,
then executing 'ABC1’ RCL returns the Undefined Name error since the search for
ABC1 does not include the DIR1 subdirectory. (The error message is somewhat inaccu-
rate, since it is the variable that is not “defined”, rather than the name.)

The HP48 does permit you to have any number of variables with the same name, as
long as there is only one such variable in any directory. For example, execute

987 'ABC’

'DIR2’ =CRDIRE

EDIR2= 654 'ABC’

Now user memory looks like this:

 
DIR2 DIR1 ABC DEF
 

DIR... DIR... 123 456      

  

  

/ 7N S S

// // \\ S~ -~

ABC ABC DEF1 ABC1

654 987 —456 —-123        

Executing ABC returns a different result when each directory is current:

ABC r 654

ABC = 123

SEpIR1Z ABC = 987.

The variable searches performed by commands that change the contents of variables,
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such as STO, PURGE, etc., are limited to the current directory. This provides a meas-
ure of protection against the accidental destruction of variables you can’t see in the VAR
menu.

5.2.1 Organizing User Memory
The properties of directories outlined in the preceding sections suggest the following
guidelines for organizing user memory:

e The home directory should contain utility variables that are needed in a variety of
applications, plus directories that contain groups of variables associated with indivi-
dual applications.

e Make a separate directory for each application program or set of programs, to avoid
variable name conflicts and to keep the individual directories short.

e Use ORDER to arrange each directory so that the variables you need most fre-
quently are at the start of the directory and appear at the beginning of the VAR
menu. Better yet, use a custom menu (section 7.3) to show a subset of a directory’s
variables, in an order that won’t change as you create or delete variables in the
directory.

e If a program uses variables that have no use in manual operations, put those vari-
ables in a directory that is a parent of the directory containing the program. This
keeps the variables from cluttering up the VAR menu that includes the program, and
helps prevent the program’s users from altering or deleting the variables.

The last guideline indicates a structure like the following:

 

Home:| MATH APPL1 APPL2 MDIR UTIL1 UTIL2

        
 

 

Math utilities: APPL UMAT1 UMAT2

     
 

 

Math programs: POLY ORDS3 TRI
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The example home directory “application” variable in the figure is MATH. The variable
MATH contains the program << MDIR APPL >> which first makes MDIR the current
directory, then APPL. When you press EMATHE , therefore, you bypass the math utility
subdirectory MDIR containing the programs and activate the APPL subdirectory. This
subdirectory contains the directly usable application programs, POLY, ORD3, TR, etc.,
that are associated with the EMATHE key. These programs use subroutines named
UMAT1, UMAT2, etc., which are stored in the directory MDIR that is the parent direc-
tory for APPL.

 

The programs in the APPL directory are those you are likely to use from the keyboard.
These programs can use any of the utility programs in MDIR or in the home directory.
But while the APPL directory is current, the VAR menu contains only keyboard-useful
programs--you’re not distracted by seeing utility programs in the menu. Also, while
APPL is current, you don’t have to worry about unwittingly overwriting one of the utility

programs.

5.2.2 Directory Objects
In the discussion so far we have described a directory only as a collection of variables.
However,it is important to note that a directory is itself an object, with all of the pro-
perties of a regular HP48 object--a directory can be recalled, edited, copied, executed,
etc. In the current example, you can recall the directory DIR2 by pressing
=DIR2= :
 
 

 

HOME }

DIR

T o
Dik2[0IRLOEFAEC||

 

L
¢
1

   
The directory object is now in level 1, displayed using the DIR...END syntax described in
section 3.4.10. You can now create a new directory variable by storing the stack object
in a new variable. This ability is convenient when you want to move the contents of a
directory--you can use the same move strategy as for any other variable, as described in
section 5.7.4. You can also edit a directory object: here, press or[V]:
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PRG
{ HOME 1}

+]R
EHEBE 654

£5KIP|SKIP3]€DEL|DEL%|IN38|15TK  
 

 Press ESKIP-E twice to put the cursor on the 654, then press to negate the 654, and
then :

 

HOME }
 

L
2
1 DIR

ABL -634
END
WTPTTI  
 

Now you have a new directory object, different from the original still stored in the vari-
able DIR2. However,if you try to replace the contents of DIR2 with the new object by
pressing EDIR2E , the HP48 returns the Directory Not Allowed error. Because
directories can contain major portions of user memory, variables that contain directories
are given a special protection. You can not apply STO, or any other operation that
changes the contents of an existing variable, to a directory variable. To replace the old
DIR2 with a new one, then, you must first delete the old version. But there is one more
level of protection that you must defeat: you can not apply PURGE to a directory vari-
able unless the stored directory is empty--contains no variables itself (Non-Empty Direc-
tory error). Try this:

DIR2: 'ABC’ 'DIR2'  [%][PURGE] .

This succeeds is purging the old DIR2, so you can proceed to store the new copy by
entering 'DIR2’ . Now recall DIR2 (press [>]ZDIR2Z ), and you can see that it con-
tains the new directory, with the value —654 in the variable ABC.
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The rule against storing into a non-empty directory variable also extends to VISIT. Exe-
cuting VISIT on the name of a directory variable proceeds normally until you press

to store the modified copy. Then the HP 48 returns the Directory Not Allowed
error. However, in this case, the modified directory and the variable name are left on
the stack, so you can delete the original directory if you want then store the new version
from the stack.

In addition to the special variable protection, directories exhibit two other peculiarities
that are not shared by any other object type. To demonstrate the first, execute the fol-
lowing, with the copy of DIR2 still on the stack (if you have changed the stack, execute

=DIR2E first):

 
DIR2= ABCE [ENTER] [+/-] [%]ZABCE=:i 1

 

HOME DIR2 }
 

{

:
% DIR ABC 654 Egg

Rt|||||   
Here you can see the surprising effect that changing the stored directory (by changmg
one of the variables within it) also changed the recalled copy of the directory, now in
level 2. For other types of objects, changing an object in variable has no effect on a
previously recalled copy--notice that the —654 in level 1 is unchanged. If you want to
modify a stored directory without changing a copy, you mustfirst execute NEWOB (sec-
tion 11.6) on the copy. [The reason for this behavior derives from HP 48 memory
management, which does not permit recalling objects from within unstored directories.]

The other idiosyncrasy of directories is that you can’t store a directory within itself
(which is not unreasonable, if you think about it). Try this, with DIR2 as the current
directory:

'DIR2’ 'XYZ' = Directory Recursion error.

This message means that you tried to define a directory in terms of itself, which is
something too hard even for the HP 48 to do.

-95-



5.2 Storing Objects

5.2.3 Purging Multiple Variables and Directories
In the previous section, we succeeded in removing a directory by purging its only vari-
able, then purging the directory itself. The HP 48 provides three methods for deleting
several variables simultaneously, or entire directories:

e PURGE works with a list of names as well as with a single name. Each variable
named in the list is purged, starting with the first and proceeding to the end of the
list. If a non-empty directory’s name is encountered in the list, the Non-Empty
Directory error is returned, and the variables named following the directory are not
purged. The list may also contain port names (section 5.3).

e CLVAR (CLear Variables) deletes all of the variables in the current directory. It is
equivalent to VARS PURGE, including stopping after partial completion if it
encounters a non-empty directory. [For sake of compatibility with the HP 28,
CLVAR can also be entered as CLUSR.]

e PGDIR (PurGe DIRectory) removes a directory specified by name. It does this by
recursively executing CLVAR and PURGE recursively on each subdirectory until the
original directory is empty. (This process can take a relatively long time if the direc-
tory is large.) Because it is such a dangerous command, PGDIR is deliberately
buried in the third page of the menu.

5.3 Ports

A port is a independent portion of memory that is established to contain libraries and
port variables. The HP48 system defines three such ports: ports 1 and 2, which
correspond to memory plugged into the HP 48SX’s two memory card slots, and port 0,
which is permanently defined in main RAM.

There are two methods for determining the contents of a port: the LIBRARY menu,
which is explained in subsequent sections, and the command PVARS. With a argument
of 0, 1, or 2 to specify a particular port, PVARS (Port VARiableS) returns a list analo-
gous to that of VARS (section 5.7.3), containing the number of each library and the
name of each variable in the corresponding port, with each object in the list tagged with
the port number. PVARS also returns (to level 1) one of the following objects:

Object Meaning

real number  Amount of free memory left in the port (RAM).
"ROM" The port contains ROM or write-protected RAM.
"SYSRAM"  The port memory is merged (the contents list will be empty).

The free memory reported by PVARS for port 0 is the same amount returned by MEM.
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PVARS provides a convenient means for deleting all of the objects in a port. For exam-
ple,

0 PVARS DROP PURGE

removes all of the objects from port 0.

5.3.1 Port Variables
One advantage of storing an object in the home directory is that it is always accessible
by name, no matter which directory is current. This makes the home directory the logi-
cal place to store general purpose variables, such as the program FIND described in sec-
tion 5.7.3. However, if you store too many variables in the home directory, the associ-
ated VAR menu becomes unwieldy.

Port 0 is another portion of memory that plays a role similar to that of the home direc-
tory. You can create one or more variables there; the variables are universally accessi-
ble by name; and there is an automatic menu associated with the port. Port 0 is always
available, but in an HP48SX you can also create two more similar memory regions, port
1 and port 2, by inserting RAM cards into one or both card slots. We will use port 0 as
an example here, but the properties of port 0 also apply to port 1 and port 2.

A named object stored in a memory port constitutes a port variable. Like a global vari-
able, it is a combination of a text name with any object, providing access to the stored
object by means of the name. The HP 48 does not define a unique name object type for
port variables as it does for global variables, local variables and commands. Instead, the
commands that access port variables recognize global or local names tagged with a port
number 0, 1, or 2, as designating port variables. For example, :0:ABC RCL recalls the

object stored in a port variable ABC in port 1. We will refer to such tagged names as
port names.

There are six commands that accept port name arguments of the form :n:name:

STO creates a new port variable name in port n. The object to be stored is taken
from level 2, and the port name from level 1.

RCL recalls the object stored in the specified port variable.

EVAL executes the object stored in the specified port variable.

PURGE purges the specified port variable. PURGE will also accept a list of global
names and port names, and purge all of the variables named in the list.

PRVAR prints the object stored in the specified port variable. Like PURGE, PRVAR
will operate on a list of global names and port names.
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ARCHIVE makes an archival copy of user memory and stores it in the specified port
variable.

The port number n used with these commands can be 0, 1, or 2, or, except for STO and
ARCHIVE, the character & When the latter is used, the HP 48 searches for a variable
with the specified name in port 2, port 1, and port 0 in that order; if no match is found,
the tag is ignored and the name is treated as an ordinary untagged global or local name.
This feature allows programs to use objects that may move around among the ports and
main memory. ARCHIVE also accepts a name tagged with :10:, for which the archived

user memory is transmitted to the serial port as a Kermitfile.

Only the six commands listed above recognize port names. Other commands ignore the
tag on a port name and operate on the untagged name. This can lead to some
surprises: for example, :0:ABC STO+ always attempts to add (see section 5.7.2.1 ) to
the contents of a global or local variable ABC, even when there is a port variable ABC
in port 0.

53.1.1 The LIBRARY Menu
As an example of creating port variables, enter the following:

234 :0:ABC 567 :0:DEF [sTQl.

Assuming that the home directory still contains the variable ABC created earlier in the
ongoing example, executing ABC still returns the value 123 stored in that global vari-
able. In order to return the value just stored in the port variable ABC, you must include
the port-number tag:

:0:ABC 7 234,

The LIBRARY menu ) is an automatic operational catalog of port vari-
ables, analogous to the VAR menu for global variables. When you press ,
you see a display similar to this:

 

= 2 = m [

 

I ATR ETEEI  
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You will always see at least the PORTO menu key label. If you have memory cards
plugged into card slots, you will also see labels for PORT1 or PORT2, or both. Further-
more, if you have libraries attached to the current directory (see section 5.2), there will
be an additional menu label for each library. In the ongoing example, press ZPORTO= :

 

HOME }
 

0
p
|
™

DEFABC||||    
This activates the port 0 menu, where you see menu keys for the port variables ABC and
DEF created earlier. Pressing either of the labeled menu keys returns the number
stored in the corresponding variable:

ABCE 7 234.

As for VAR menu keys, when you press a port variable menu key, the object stored in
the specified port variable is executed. The right-shifted menu keys also perform a RCL
like a VAR menu key; the left-shifted menu key attempts to execute STO, but like STO
itself, this fails because you can’t store into an existing port variable (section 5.3.1.2).

Because a port name is a tagged object, it is effectively already quoted and therefore
you do not quote a port name to enter it on the stack for use as an argument. If you do
attempt to enter a port name within single quotes ' ', you will obtain an Invalid Syntax
error message, because tagged names are not allowed in algebraic expressions. You can
nevertheless use LIBRARY menu keys to enter port names: press first to
activate program entry mode, then press the appropriate menu key. This enters the
port variable name preceded by the appropriate port number tag.

53.1.2 Altering Port Variables

Port variables are intended for object storage that is somewhat more permanent than
that offered by global variables. For this reason, the contents of port variables can not
be changed once they are created, short of deleting them with PURGE. STO returns
the Object In Use error if you attempt to overwrite the contents of an existing port vari-
able. Furthermore, you can’t delete a port variable if the stored object is referenced, in
which case PURGE returns the same error message as STO. Referenced means that a
stored object (or part ofit) has been recalled by one means or another, and the recalled
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copy is still present--on the stack, in argument recovery or stack recovery memory, on
the program return stack, or in a local variable. (Specifically, this means that there is a
pointer to the port variable object in any of these areas--see section 4.7). To succeed in
purging a port variable, you must first remove all such references to the object, either
individually, or collectively by executing a system halt -[€]). Some references
may be very subtle; for example, if you execute a program in a port variable which uses
DOERR with a string argument defined in the program, the program will be referenced
for the sake of the ERRM command until some subsequent error generates a new error

message.

If you want to delete a port variable but still keep a copy ofits stored object, you must
recall the object and either store it in a global variable or another port variable, or exe-
cute NEWOB (section 11.6) with the object in level 1. This creates a new copy of the
object and unreferences the port variable. Then you can use PURGE to delete the vari-

able.

5.3.2 Libraries
Commands are named objects that are stored for execution only, and which are not
available for recall or modification. A collection of commands is called a library.
Libraries are objects (section 3.4.11), which allows you to move them around within the
HP 48, primarily to transfer them from a personal computer or from HP48 to HP 48.
When you are dealing with a library as an object, the commands that comprise the
library are not visible or accessible. To activate the contents of a library, it must be
stored in a port and attached to a directory. On the stack, a library object is displayed
simply as Library n, title, where n is the unique library ID number assigned to the
library, and title is its text title.

All of the HP48’s built-in commands and program structure words (section 9.2) are
contained in libraries permanently stored in built-in ROM. The details of their organi-
zation into libraries is not important; the only place where the division manifests itself is
in the various error numbers, the leading digits of which identify the library in which the
error occurred.

Externally created libraries (at this writing, there are no facilities for creating libraries
on the HP 48 itself, although it is possible in principle) must be stored in a port in order
for its commands to be available. In a plug-in ROM card, the libraries are permanently
stored; in a port containing RAM, including port 0, you must store a library there using
STO. The “name” required by STO in this case is just the (real) port number. You
may also use any number tagged with the port number, such as :0:123; this allows STO
to use the same port-tagged library ID as used by RCL to recall a library from a port to
the stack, or by PURGE to delete the library.
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Imagine that you have a library on the stack, ID number 999. (If you have the HP48
Insights Program Disk, you can transfer this sample library from your personal computer
to the HP 48, and follow along with the example.) To store the library in port 0, enter
:0:999

 

 

  

{ HOME }

1
2: Library 999: HP48..
1: g: 999
TESTL[10PE]DIR2DIKLDEFREC
 

Press , then LIBRARY]ZPORT 0= :

 

HOME }
 

M
W

p
|
™

  999J0EFaec|||
 

The EABCE and ZDEFE labels correspond to the port variables created in the ongoing
example, in section 5.3.1.1. The new entry £999% indicates that the library has been
stored in port 0. However, at this point you still don’t have access to the commands in
the library. First, you must turn the HP 48 off, then on. You will observe that this
causes a system halt (section 5.8), so you should store any objects on the stack that you
want to keep before turning the HP48 off. The system halt occurs when the HP 48
detects that a library has been added to a port; during the halt operation, the HP 48
builds a table of all ofits current libraries thatit uses to find the libraries later.

 

The last step in making library commands accessible is to atftach the library to a direc-
tory. When a library is attached to a directory, the libraries commands are accessible
for execution or entry into a composite object whenever that directory is in the current

path (section 5.2)--just like the global variables in that directory. Each directory may
have one library attached to it, except for the home directory, which may have any
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number of attached libraries (including the built-in libraries, which are permanently

attached there). To attach a library to a directory, you make that directory the current
directory, then execute id ATTACH, where id is the library’s ID (expressed as a real
number). The library does not need to be present when ATTACH is executed, but the
attachment will have no consequence unless the library is installed in a port.

In the current example, execute HOME DIR1 to make DIR1 the current directory, then

execute 999 ATTACH (the menu key for ATTACH is in the second page of the
menu). Now press :

 

HOME DIR1 ¥
 

I
7
3
2
1  MEELEER IEE
 

There is a new entry in the menu: ZHP48IZ , arising from the newly attached library. In
addition to the library ID, a library contains a library fitle, a text string that describes the
library. The first four or five characters of the title is used to label the library menu
key. To see the full text of the title (up to 23 characters), use :

 

 

nsights Test Lib

—
~
—
{
—
{
0
0

M
-

  WPyl |PORTOJPORTL[PORTR]||
 

The tab on a library’s menu key label indicates that the key activates yet another menu.
Press SHP48I= :

-102-



Storing Objects 5.3

 

OME DIR1 }
 

   
This menu is created from the objects defined in the library. Pressing ERPN?= returns
the string "I love RPN!". If you press [<5][ {3 ]ERPN?ZZ, the list { RPN? } is placed on the
stack. The object RPN? within the list (you can take it out of the list with OBJ-) is an
XLIB name object (section 3.6.3). It is similar to a global name, in that executing it exe-
cutes an object stored with the name. However, you can not recall or view the stored
objectitself.

 

An XLIB name object does not actually contain the text of the name, which is stored in
the library. You can see this by purging the library (:0:999 PURGE); if you do so, the
list on the stack becomes { XLIB 999 0 }. Since the library is unavailable, the HP 48

does not know the XLIB name text, and reverts to the two number codes that constitute

the XLIB name object. The two numbers show that the name corresponds to command
0 in library 999. The fact that XLIB names contain number codes rather than text
makes them more compact and speeds up execution of library commands.

For a library intended to be attached to the home directory (which makes their com-
mands universally available), it is common for the library to attach itself automatically to
the home directory. This is useful, since unlike attachments to subdirectories, home
directory attachments are cleared by a system halt. During a system halt, each library is
given a chance to execute its configuration program, which can prepare any special HP 48
resources needed by the library, including attaching the library to a particular directory.
The HP 82211A Solve Equation Library Application Card contains several libraries, each
of which automatically attaches itself to the home directory. To access the card’s pro-
grams, therefore, you have only to insert the card in a port and turn the calculator on.

[When you transfer a library from a personal computer to the HP48, you can not
transfer the library directly to a port, but must transfer it first to a global variable.
Then you can recall the library to the stack and store it in a port. It is generally a good
idea not to leave a copy of a library in a global variable after you have copied it to a
port, not only to conserve memory, but because the Recover RAM process associated
with an accidental or deliberate memory reset ([ON] - [A] - [F]) does not work well
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when there are libraries stored in global variables.]

53.2.1 Other Library Commands
In addition to STO and ATTACH,the following commands are associated with libraries:

e PURGE. To remove a library from a port, execute :n:ID PURGE. As in the case of
port variables, you will be unable to purge a library if it is referenced in any way
(Object in Use). For a library, a reference can be obvious, such as recalling the
library to the stack. But references can also be more subtle--for example, if a library
program is executed and creates an object that is left on the stack or in a local vari-
able, the library will be referenced until the object is removed. An extreme case of
this situation is a library that uses DOERR (section 12.2.1) with a string argument;
the library will remain referenced for the sake of ERRM (section 9.6) until a subse-
quent use of DOERR changes the error message string. (In HP 48SX versions 1A -
1D, even a system halt does not clear the ERRM reference.) A library attached to
the home directory is “permanently” referenced; you must detach it (see below)
before purging.

When you purge a library, you may see the display jump briefly. This is caused by
the movement of display memory arising from the removal of an entry in the HP 48’s
internal table of libraries; it is quite harmless.

e DETACH. The inverse of ATTACH is DETACH, which detaches a library specified
by number from the current directory. A common reason to detach a library is to
disable the commands in that library. For example, a library might define a new
meaning for SIN; to use the built-in version you must either detach the library or
change to a directory in which the library is not in the current path.

e LIBS. This command catalogs the libraries attached to the current directory, return-
ing for each library the full library title, library number, and the number of the port
containing the library. In any directory except the home directory, there can only be
one attached library, so LIBS returns a list of three elements:

{ "Title" library-number port-number }

If no library is attached, LIBS returns an empty list. In the home directory, the list
can contain a multiple of three elements, with one group of three for each attached
library. Note that LIBS provides the only means for viewing a library’s full title
when thetitle is longer than 22 characters.
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5.3.1 Plug-In Ports
When you plug a memory card into either HP48SX card slot and turn the calculator on,
the calculator checks the card to determine whether the card memory contains a valid
sequence of libraries and port variables. When the HP 48 cannot recognize the card con-
tents, the message Invalid Card Data is displayed. If the card is ROM, the card is not
usable in the HP 48, and should be removed. If the card contains RAM, you can ignore
the message--the first attempt to merge the card memory or store a library or port vari-
able there will organize its memory properly, and prevent further Invalid Card Data
errors.

When a newly inserted card is recognized as valid by the HP48, the card memory is
configured as an independent port, and an entry for the port will appear in the
LIBRARY menu. The libraries and variables in the card are then available using the
procedures outlined in the preceding parts of this chapter. If the card contains RAM,
you also have the option to leave it as an independent port, or to merge the card’s
memory with main RAM. As long a card is configured as independent RAM, you can
remove and replace it at will (remember to turn the calculator off when inserting or
removing cards), or move it to another HP48. An independent RAM card is a very fast
and convenient means for transferring objects from one calculator to another.

The command MERGE merges the memory in a plug-in RAM card into main memory.
MERGE takes a real number 1 or 2 as an argument to identify the slot containing the
card to be merged; if the argument is another number, or if the read/write switch on
the card is set to write-only, the Port Not Available error is returned. If the card
memory contains port variables and libraries, these are moved automatically to port 0.
The amount of free memory returned by MEM is increased by the amount of memory in
the card (32K or 128K bytes) less the memory used by the port variables and libraries.
Once you have merged card memory, however, you can not remove the card without
potentially corrupting memory contents. If a merged card is removed (including the
case where the calculator is dropped hard enough to jar a card loose), the HP 48 warns
you of impending disaster by beeping and displaying Replace RAM, Press ON. By fol-
lowing that instruction, you can preserve memory contents; otherwise the contents of
main memory and the card memory are lost.

The reverse of merging a card’s memory is to free it using FREE. FREE needs two
arguments: one a real number (level one) 1 or 2 to specify the port to be freed, and the
other (level 2) to select objects from port 0 to the moved into the newly freed port. The
latter argument can either be a library number, or the name of a port 0 variable, or a
list containing any mixture of library numbers and names. If you just want to free a
port without moving any objects there, use an empty list.
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5.3.2 Archiving Memory
In addition to storing individual objects in port variables, the HP 48 allows you to store a
copy of user memory, including current alarms and key assignments, in a port variable.
This archival copy of memory can then be used to restore the calculator to a previous
state, especially after an accidental or deliberate memory loss, or to copy the contents of
one HP48 into another. You can make an archival copy quite safe by saving it in an
independent RAM port, then setting the read/write switch on the card to read-only
(archiving to a personal computer via the serial portis also a good alternative).

The ARCHIVE command takes as its argument a port number, then creates a port vari-
able in the specified port, to store a replica of the home directory. A good choice for
the port name is one that represents the date on which the archive was made, such as
NOV2590 or APR2191, to help you choose among multiple archive copies.

Once an archive is made, you can replace the current user memory with the archival
version by executing port-name RESTORE, where port-name specifies the port variable
created by ARCHIVE. RESTORE terminates by performing a system halt, so that the
display blanks momentarily then shows an empty stack, with the MTH menu and the
path { HOME }. Note: RESTORE begins by executing the equivalent of PGDIR on the
home directory. This can be very time consuming when user memory is large and con-
tains a lot of subdirectories. In such cases,it is much faster to perform a memory reset
( -[A]-[F], with the NO option) before executing RESTORE. 

If you recall the contents of a port variable created by ARCHIVE, you will see what
appears to be an ordinary directory object. However, this directory is unusual in that it
may contain a “nameless” subdirectory (if you use to copy the directory to the
command line, you can see a DIR entry with no name preceding it). The subdirectory
contains three variables: Alarms, UserKeys, and UserKeys.CRC. The first two, as you

might guess, contain the alarm catalog and the user key assignments; UserKeys.CRC
contains a memory checksum that is used by the HP 48 to verify the integrity of the key
assignments. The alarms and key assignments are kept in the nameless subdirectory in
order to prevent their being accidentally or deliberately edited into a form that might
corrupt the HP 48 system.

ARCHIVE only saves the contents of user memory; in particular, it does not save the
current flag values or the contents of port 0. The program XARCHIVE listed below
demonstrates a method of extending ARCHIVE to save these objects as well. XAR-
CHIVE takes an argument O, 1, 2, and calls the program DATENAME to automatically
create a destination name (for either a port variable or a computer file). The name has
the form n:mmmdd, where n is the argument, mmm is a three letter abbreviation for

the current month, and dd is the two-digit day of the month. Then XARCHIVE creates a
temporary directory archtemp, moves all of the port 0 objects to that directory, and also
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saves the current flag values there. Furthermore, XARCHIVE creates a program fixup in
the home directory, which is also saved as part of the archive. After the archive is
made, XARCHIVE moves the objects back to port 0, and deletes the temporary variables.
XARCHIVE requires enough free memory to make a copy of the largest port 0 object; if
it runs out of memory,it still restores the contents of port 0 and deletes temporary vari-
ables. After XARCHIVE is finished, you should turn the HP 48 off then on to reattach
any port 0 libraries.

To later rebuild HP 48 memory from the archival memory made by XARCHIVE, execute
RESTORE as usual using the name of the variable or file created by XARCHIVE. Then
press =FIXUPE . The latter step restores the saved port 0 objects and flags, and
purges the temporary variables, including fixup. (It is not possible to combine
RESTORE and fixup into a single program, because RESTORE performs a system halt,
preventing execution of any program objects following it.) If the archive includes any
port 0 libraries, you should turn the calculator off then on to reattach those libraries.

XARCHIVE also lets you substitute the string argument "IO" instead of a port number.
In that case, the archival user memory is transmitted as a backup object (section 3.4.12)
to either the serial or infrared output port, for storage on a personal computer or
another HP48. To rebuild memory from an external archive, you must transfer the
backup object into a global variable using a Kermit transfer. Then recall the backup
object to the stack, and execute RESTORE followed by FIXUP, as before.

 

 

 

 

 

 

DATENAME Create a Name from the Current Date 3A18

level 1 | level 1

or 'mmmdd’

<< RCLF -42 CF DATE TIME TSTR Get the time string.

"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"

OVER 5 6 SuUB OBJ- Get the month number.

1 - 3 * 1 + DUP 2 + SUB Get the month name.

SWAP 8 9 SUB Get the day number.

STD + ™" SWAP + OBJ- Make the name.

SWAP STOF Restore flag —42.

>>    
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XARCHIVE Extended Archive 3D84

level 1 |

"IQ" or

n o  

 

<< DEPTH PATH RCLF 0 - md p f e
<< IFERR HOME STD

DATENAME m -TAG
<< WHILE 0 PVARS DROP DUP SIZE

REPEAT 1 GET
IF DUP OBJ- DROP TYPE NOT

THEN DUP DETACH
END PURGE

END DROP
archtemp flags STOF -PO

>> 'fixup’ STO
‘archtemp’ DUP CRDIR EVAL
<< WHILE VARS DUP SIZE 2 >

REPEAT 1 GET DUP RCL
OVER PURGE SWAP
IF OVER TYPE 16 SAME
THEN DROP 0

END 0 -TAG STO

END DROP CLVAR HOME
{ archtemp fixup } PURGE

>> PO STO f ’'flags’ STO

THEN 1 ’e’ STO
ELSE
IFERR
WHILE 0 PVARS DROP DUP SIZE
REPEAT 1 GET
DUP RCL OVER OBJ- DROP
IF DUP TYPE NOT
THEN DUP HOME DETACH
archtemp "L" SWAP + OBJ-

END STO PURGE
END DROP
IF m TYPE NOT
THEN DUP PURGE
END ARCHIVE

THEN 1 ’e’ STO
END -PO

END p EVAL
IF e

THEN DEPTH d - 1 -
DROPN ERRN DOERR

END
>>

>>  

Save the port, depth, path, flags, signal.

Trap errors.

Tag the name with the port number.

Program for use after RESTORE:

Get the next port 0 name/number.

If it’s a library,

detach it.

Purge the object.

Restore archived flags and port 0 objects.

Create temporary directory.

Program to move objects back to port 0:

Recall and purge the variable.

If it's a library,

Substitute a number for the name.

Store in port 0.

Delete temporary variables.

Save program and flags in archtemp

Signal that an error occurred.

No errorso far.

Trap error in moving objects or archiving.

If there are port O objects...

Get the next port name.

If the object is a library,

then detach it, and

make a name from its number.

Store in archtemp, purge from port.

Purge existing archive.

Make the new archive.

Signal that an error occurred.

Return objects to port 0.

Restore path.

If an error occurred,

clean up the stack and report.
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5.4 Local Variables

Although we will defer a detailed discussion of local variables to section 9.7, they need
to be described briefly here in the context of storing objects. Local variables are vari-
ables created for temporary use by a procedure. They are handy because they can have
any name without conflicting with global variables (or another procedure’s local vari-
ables), and because they are automatically deleted when their defining procedure com-
pletes execution.

Local variables are created by the program structure words - (section 9.7) and FOR
(section 9.5.1). For example, enter the following program:

<< 'JACK’' "JILL" - locall local2

<< HALT
>>

>>

Store the program in the variable HILL, in directory DIR1:

"HILL'  [STO].

Now execute the program--press EHILLE . Notice that the HALT annunciator turns on,

but nothing else visible happens. But if you type localt , the name 'JACK’ is
returned to the stack. When the program executes, the — creates two local variables (as
many as there are names following the arrow), storing in them two objects taken from
the stack (one for each name). The inner program that follows the final name local2
(and marks the end of the series of names) defines the “duration” of the local variables:
the variables are maintained during the program’s execution, then deleted by the closing
>>_ In this case, execution is suspended by the HALT (section 12.2), so the two local
variables will remain available until you press to finish the program.

The names local1 and local2 are local names, which are a different object type than the
global names used so far in this chapter. As mentioned in section 3.6.2, executing a
local name recalls the object stored in the corresponding local variable without execut-
ing it, but otherwise local names are similar in use to global names.

For local variables, there is no automatic catalog like the VAR menu or the LIBRARY
menu. A portion of RAM containing local variables is called a local memory, and is
essentially invisible other than by recalling the stored objects. [Like the stack, a local
variable does not contain a copy of an object stored there, but only a pointer to the
object. Copying an object from a global variable to a local variable, for example, only
requires enough memory for the name text plus a few additional bytes of overhead.]
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5.5 Name Resolution

Figure 5.2 is a diagram of HP 48 memory showing schematically all of the named
objects we have created in this chapter’s ongoing example. The figure also has an entry
for the built-in command libraries, to show where they fit logically. Finally, the local
memory containing the local variables local1 and local2 created in the preceding section
is shown associated with the program HILL (here we are assuming that that program is

still suspended).

 

    

 

       

 

  

       

 

          

   
 

 

    

ROM

—— = 1
Built-in

lgserMemory —_ _ _ _ _ _ _ _ = .+ Libraries ||

| DIR2 DIR1 ABC DEF ] L — |

| ll DIR... DIR 123 456 I Port 0

- —— ]
S . T 1 |r 999 DEF ABC |

| /, // : \\\\\ |

—= | |Library| 567 234 ||
| ABC HILL ABC DEF1 ABC1 | | |

| || . .

|| 654 <<>> 987 -456 -123 |"-- I |
RPN?

Io | l

Local Memory | | love. |

s—— L _—_ _ _ |
| local1 local2 |

| "JILL" ["JACK']| |

L — — _|

Figure 5.2. Example Memory Organization

The figure is helpful in explaining the details of HP 48 name resolution, the process by
which the HP 48 creates name objects and finds named objects. Name creation and
name finding are similar but distinct processes. The first takes place when a command
line is entered and the HP 48 creates name objects from the command line text. The
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second happens when a name is executed or recalled, and the HP 48 must find the
stored object associated with the name.

5.5.1 Command Line Entry
A series of non-delimiter characters in the command line that does not start with a
number character (digit or fraction mark), and is not enclosed by string quotes "" or tag
colons ::, is presumed to be a name. The type of name object created by ENTER is
determined by a search through existing named objects for a name that matches the
command line name. The precedence of the search is as follows:

1. If the name is contained within a local variable structure (section 9.7) in the com-
mand line, and matches one of the names defined for that structure, the name is
entered as a local name.

2. If there is an'local memory present that contains a local variable with a matching
name, the name is entered as a local name.

3. If the name matches a global variable anywhere in the current directory, the name
is entered as a global name.

4. If the name matches a command name in a library attached to the current direc-
tory, the name is entered as an XLIB name.

5. The preceding two steps are applied to the parent directory, and its parent, and so
on back to the home directory. If the name is matched, it is entered as a global
name or an XLIB name, as appropriate. If the search proceeds to the home
directory, all of the libraries attached there are searched.

6. If the name matches a built-in command name, the name is replaced with the
built-in object.

7. If the name is not matched in any of the preceding steps, it is entered as a global
name.

= Examples from Figure 5.2 (DIR1 is the current directory, and the program HILL is

currently suspended):

e - X << XY > |ocall ABC. When this command line is entered, X and local1 are
entered as local names. The first X is local because it is one of the local names
defined by the arrow; the second X because it is included within the local variable
program. local1 is also entered as a local name, because locall is a local variable in
the local memory associated with the suspended program HILL. ABC is entered as a
global name, because it is matched by a global variable in the parent of the current
directory. Y becomes a global name because it is not matched by any global or local
variable, library command, or built-in command.
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- DEF1 << RPN? DEF1 >> DEF1. Here the first two DEF1’s become local names,
even though DEF1 is a global variable in the current directory, because DEF1 is
defined as a local name in the local variable structure. The third DEF1 is entered as
a global name, since it is not entered within the local variable program. RPN? is
entered as an XLIB name, since it is not one of the program’s local names, and is
first matched by the library command in the library attached to DIR1.

SIN RPN? - SIN RPN? << RPN? SIN >> COS. The first occurrence of SIN is
entered as a command name; the first occurrence of RPN? is entered as an XLIB

name. However, the subsequent uses of these names are entered as local names,
because their assignment by — takes precedence over their presence as built-in or
library command names. COS is entered as a built-in program object. The restric-
tion that global names can not match built-in command names does not apply to
local names. [This restriction is a property of the command line parser; the RPL
language puts no such restriction on global names in general. The restriction is pri-
marily to enforce structure rules for algebraic expressions.]

The rules described here for command line entry also apply to execution of OBJ- (or
STR-) on a string object, and to the processing of object files that are transferred to the
HP 48 via an ASCII Kermit transfer.

5.5.2 Executing Name Objects
When a name object is used to find the object stored with the name, the process of
searching for the named objectis similar to that used during command line entry. How-
ever, since the type of name object is already known, the search can be more restrictive:

For global names, the search is through user memory, starting in the current direc-
tory. Whether the search extends to parent directories depends on the nature of the
operation using the name. For simple execution of the name, and for use with RCL,
the search is made first in the current directory, and continues if necessary through
all parent directories until the name is matched. For all other commands, the search
is restricted to the current directory. The first variable checked is the leftmost vari-
able in the VAR menu, nominally the newest variable unless the order has been
changed by ORDER. You can achieve faster program execution by placing the glo-
bal variables a program uses at the start of the current directory.

For local names, the search extends through current local memories, starting with
the newest.

For XLIB names, no name matching is necessary; the stored object is found by
means of the library and command numbers stored in the XLIB name, and the table
of object locations that is part of each library.
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Notice that the use of one type of name will never find an object stored with another
type of name.

The resolution of XLIB names is usually significantly faster than that of global and local
names. Resolving a local name is usually faster than resolving a global name, because
local memories typically contain only a few variables. If a program stored in one direc-
tory frequently uses a variable in a parent directory or in another branch of user
memory altogether, the program will run faster if it recalls the remote object once and
stores it in a local variable, then retrieves it from the local variable for each subsequent
execution.

5.5.2.1 Resolution Failures
When you execute a global name for which no corresponding global variable exists any-
where in the current path, the HP 48 just returns the name to the stack (this property of
global names is central to the HP 48’s symbolic algebra capabilities). However, in all
other cases of name object resolution, an error is reported if no stored object is found.
The error depends on the type of name, and the particular use:

Type Execution Recall Store

(EVAL, etc.) (RCL, GET,etc.) (STO, PUT,etc.)

Global name no error Undefined Name no error*

Local name Undefined Local Name  Undefined Name Undefined Name
XLIB name Undefined XLIB Name  Bad Argument Type Bad Argument Type
*Unless the variable is a non-empty directory.

The recall and store errors for XLIB names occur because those operations are not
allowed, regardless of whether there is a corresponding library command.

5.5.3 Path Names
When one directory is current, but you want to recall a variable in another directory
that is not in the current path, you can switch the HP 48 to the second directory so that
the variable becomes available. If you save the original path first (using PATH), you can
easily return to the original directory after using RCL. However, this procedure is a lit-
tle cumbersome for repeated use, so the HP 48 provides an alternate method called a
path name. A path name is an extended form of a variable name, where the variable’s
global name is entered in a list, preceded by the names of the directories that make up
the path to the variable’s directory. In general, a path list has this form:

{ directory, directory, - -- directory, variable }
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The first object in the list can be HOME or a directory name; of the remaining objects,
all but the last must be directory names. The path defined by the directory names can
be any path that will lead to the desired directory, but usually it is most convenient to
start the list with HOME so that the path name will be usable no matter what directory
is current.

Using a path name as an argument for RCL, then, is equivalent to 1) saving the current
path, 2) switching to the directory defined by the path name, 3) recalling the named
variable, and 4) restoring the original path. For example, if in our example user
memory DIR1 is the current directory, recalling ABC returns 123, the value of ABC in
the home directory. However, { HOME DIR2 ABC } RCL returns 654, the value of
ABC in the DIR2 directory.

The HP 48 makes no special provision for the use of path names as described so far by
EVAL, since the ordinary behavior of lists with EVAL makes path names suitable argu-
ments. But notice that { HOME DIR2 ABC } EVAL, for example, is not quite
equivalent to { HOME DIR2 ABC} RCL EVAL:

e { HOME DIR2 ABC } EVAL switches to the DIR2 directory (before executing

ABC); { HOME DIR2 ABC } RCL EVAL does not.

e { HOME DIR2 ABC } EVAL evaluates the name ABC, wherecas { HOME DIR2
ABC } RCL EVAL evaluates the object stored in variable ABC. The difference is
significant if the stored object is a list, a directory, or an algebraic object (see section
3.3).

Also, a list argument for EVAL can contain any arguments, whereas a path name for
RCL can contain only HOME and global names.

There is yet another extension to path names, which does apply to EVAL as well as to
RCL. When one of these commands is applied to a path name list that is tagged with a
port number 0, 1, or 2, the command is directed to the specified variable in a directory

stored in a port variable. That is, the first name in the list is the name of a port variable
that itself contains a directory. The remaining names specify a path within that direc-
tory to the desired variable. (In this case, you do not want the path name list to start
with HOME.)

For example, try copying the directory DIR2 from our sample home directory to port O:

 
[]ZDIR2E  :0:DIR2P

Now you can recall the contents of the variable ABC in the port variable by executing
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:0:{ DIR2P ABC} RCL 1= 654.

This feature is especially useful when you have saved a copy of a large directory in a
port variable, and want to retrieve the contents of a particular variable, but there isn’t
enough free memory to copy the directory to user memory.

You can also use the “wildcard” tag & for path names. With that tag, the HP 48
searches port 2, port 1, and port 0 for the specified port variable; if it is not found, the
untagged path name is used to find the variable. In the latter case, EVAL switches to
the directory specified by the path name--if the directory is found in a port variable,
then the current directory does not change.

5.6 Named Objects vs. Registers and Files

Traditional calculators store data in fixed memory locations called registers, which are
identified by a register number or letter. These calculators’ programs are stored
separately from the data registers, but the programs too are commonly specified by a
number or letter; some advanced calculators permit multi-character program names.
Computers, on the other hand, store both programs and data in files, which have multi-

character names and are not generally limited in size or number. The HP 48 combines
elements of the memory management of both traditional calculators and computers, but
is generally closer in spirit to the latter. The named object is the closest analog in the
HP 48 to a computer file or a calculator register. A named object is an object that has
been stored in memory elsewhere from the stack, along with a text name that provides
identification of and access to the object.

In many respects it is appropriate call named objects files, especially global variables,
port variables, and library commands, but there are some differences between typical
computer files and HP 48 named objects:

e HP 48 objects can exist independently of their names, that is, objects can be created,

manipulated, changed, and executed without ever being named. Common computer
operating systems, without any user-accessible structure analogous to the HP 48
stack, require you to create and store everything as named files.

e All HP 48 objects are automatically executable, either directly or by name when they

are stored. Computer files must be designated as executable, e.g. executable MS-
DOSfiles are named with the extensions .EXE, .COM, or .BAT. Those that are not

executable are intended only for use as data, such as text files.

e The name associated with an HP 48 object does not "type” the object in any way, as
does the extension on computer file names. Any type of object can have any name.
You may choose names for objects that suggest the objects’ uses, but this does not
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affect the execution properties of the objects.

e Access to HP 48 stored objects is provided by name objects (section 3.6). This factis
central to the HP 48’s symbolic capabilities--name objects can be substituted in alge-
braic and other operations on stored objects.

e HP 48 named objects do not record their times of creation or modification.

5.7 Additional Global and Local Variable Operations

The commands described in this section apply to global and local variables, but not to
port variables.

5.7.1 Recalling Values
There are two fundamental ways to “recall” the value of a variable:

e Execute a name object. Executing a global name executes the object stored in the
named variable (section 3.6.1). For data objects and algebraic objects, this just
recalls the object to the stack. For example, if you have stored the number 25 in a
variable named X, pressing [X][ENTER] returns the number 25 to level 1. Executing a
local name always recalls the stored object without execution, regardless of the object
type.

e Use RCL. 'name’ RCL returns the object stored in the (local or global) variable
name to the stack, without executing the obJect RCL is primarily used for global
variables that contain programs and names, in cases where you just want to put a
copy of the stored object on the stack. For data and algebraic objects, ‘'name’ RCL

has the same effect as just executing name, which requires fewer steps.

The commands GET and GETI allow you to recall individual elements from arrays and
lists stored in variables, without having to recall the entire object to the stack. For GET,
the stack use is

object index GET = element,

where index specifies the element to retrieve:

e For a list or a vector, the index is a real number, or a list containing one real
number.

e For an array, the index is either a real number (the element number, counting in

“row order”-- left to right, top to bottom) or a list of two real numbers (the element
row and column).

e When the index is entered as a list, the list elements can also be names or pro-
cedures that numerically evaluate to real numbers (section 11.5.5.1).
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The object in the above sequence can either be the list or array itself, or the name of a
global or local variable in which the list or array is stored. Thus,

{A B C} 2 GET = 'B,

or

{A B C} 'D' STO 'D’' 2 GET = 'B'.

GET!I is designed for sequential recall of the elements in a list or array, and returns the
object or its name, and the index incremented to the next element, as well as the
recalled element. The general form of GETIis

object index GET| 1= object index+ element,

where object and index are the same as for GET, and index+ is the same as index except
that its value is incremented to represent the next element. Thus,

{A B C} 2 GETl = {A B C} 3 'B,

If index pointsto the last element, GETI returns either 1, { 1}, or { 1 1 } for index+, as
appropriate to cycle back to the first element. GETI also sets flag —64 when this occurs,
or clears the flag otherwise, so that a program can easily determine when it has come to
the end of a list or array.

GET can also be executed implicitly within algebraic expressions by using a function
syntax--see section 11.2.

5.7.2 Altering the Contents of Variables
The most straightforward means of changing the contents of a variable is to store a new
object into the variable using STO. However, there are a number of commands that let
you modify a stored object short of replacing it entirely, without having to recall the
object to the stack. (These commands apply to global and local variables, but not to
port variables.)

Nine commands of this type are collected in the storage menu ([?>][MEMORY] ). These
are the “storage arithmetic” commands STO+, STO-, STO#*, and STO/, and the spe-
cialized versions INCR and DECR, plus the single argument commands SNEG, SINV,
and SCONJ. In addition to the arithmetic commands, the four array commands CON,
IDN, RDM, and TRN can be applied to arrays stored in variables. PUT and PUTI, the
storing counterparts of GET and GETI, allow you to alter individual elements in a stored
list or array. Finally, there are several commands associated with the reserved-name
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variables EQ, PPAR, XDAT, 2PAR, PRTPAR, and IOPAR, used by various built-in sys-
tems. We will discuss these commands in the chapters of Part IT that describe the asso-
ciated systems.

5.72.1 Store Menu Commands
Storage arithmetic is the application of +, —, *, or / to two objects, where one object is
on the stack and the other stored in a variable, without having to recall the latter to the
stack. For example, 25 ‘X’ STO+ adds 25 to a number stored in X. More generally,
STO+, STO—-, STO#*, and STO/ use a syntax similar to that of STO:

object 'name’' STO®,

where the ® stands for any of the symbols +, —, * or /. Name is a global or local
name, which must refer to an existing variable. Furthermore,

'name’ object STO®

is also allowed. Either sequence combines the object in level 2 with the object stored in
the variable name, leaving the result stored in the same variable. The object and the
name are dropped from the stack. Note that (unlike on the HP 28) the two objects do
not have to be numerical--they can be any types that are suitable arguments for the
stack ® operation. For example, if the variable A contains the string "Hello there", then
the sequence

‘A" ", world" STO+

replaces the contents of A with the string "Hello there, world".

As for the corresponding stack operations, the order of the storage arithmetic com-
mands’ arguments is significant. In effect, the result is the same as if you replaced the
name object on the stack with the object from the named variable, then performed the
stack command:

e object 'name’ STO® computes

(new value) = (stack object) ; (old value).

In this case, STO® is equivalent to
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DUP RCL ROT SWAP e SWAP STO.

If X has the value 1, then 3 ‘X’ STO- stores 2 in X.

e ‘'name’ object STO® computes

(new value) = (old value) (stack object).

~
%

|
+

Here STO® is equivalent to

OVER RCL SWAP e SWAP STO.

With 1 stored in X, ‘X" 3 STO- stores —2 in X.

There is an ambiguity in this design when both stack arguments are name objects. In
this case, the HP 48 interprets the level 1 name as the variable name; this arbitrary
choice to match the sense of the arguments for STO was made as an easy-to-remember
rule. Thus if you have the list { C D } stored in variable B, ‘A’ ‘B’ STO+ returns the
list { AC D } to B (rather than adding or concatenating the name B to the contents of
A). The rule does imply that you can not use STO+ to concatenate a name to the end
of a list stored in a variable.

5.72.2 Counter Variables
INCR and DECR are specialized forms of STO+ and STO- that make it easy to use a
global or local variable as a simple counter. INCR adds 1 to a real numberstored in the
variable specified by a name argument; DECR subtracts 1. Both commands return the
result value to the stack, where you can compare it, for example, with some limit value.
Thus ‘name’ INCR is equivalent to the sequence 'name’ DUP 1 STO+ RCL, but exe-
cutes about twice as fast.

5.723 PUT and PUTI
PUT and PUTI allow you to store individual elements into an existing array or list, using

a syntax similar to that of GET and GETI (section 5.2).

For example,

{A B C}) 2 'D PUT == {A D C}L
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Here the targetlist itself is on the stack. The target can also be identified by name:

'MAT’ { 3 3 } 25 PUTI = 'MAT' { 3 4 }

stores the number 25 in the 3-3 element of a matrix stored in the variable MAT, and
leaves the name and the incremented index (here assumed to indicate the 3-4 element)
on the stack.

5.72.4 Additional Array Commands

The four storage arithmetic commands described in section 5.7.2.1 treat arrays stored in
global variables differently from other object types in order to save memory. For
objects other than arrays, the arithmetic is performed the same way you might do it
using stack commands-- the stored object is recalled to the stack, combined with the ini-
tial stack object, then stored back in the variable. For arrays, the arithmetic is per-
formed in place, with the result array elements replacing the stored elements as they are
computed. This makes it possible to perform the array arithmetic without needing
enough free memory to copy the destination array. (If you interrupt such an operation
with , the array will likely be worthless, since it will contain a mixture of old and
new values.)

The HP 48 provides seven additional commands that modify a stored array in place to
conserve memory. For each, the stored array is represented on the stack by the name
of the variable in which it is stored; the result replaces the original array.

SNEG  negates the stored object.

SINV computes the reciprocal of a stored number or square matrix.

SCONJ computes the complex conjugate of the stored object.

CON converts an arbitrary array into a constant array (all elements are the samc)
where the constant number is specified on the stack.

IDN converts a square matrix into the identity matrix.

TRN transposes and conjugates an array.

RDM redimensions an array according to the dimensions specified by a list of one
or two real numbers. Note that RDM can change the total size of an array if
the new dimensions correspond to more or fewer elements than are in the
original array.

PUT replaces an element in an array (or list, see section 11.5).

PUTI replaces an element in an array (or list) and returns the index of the next ele-
ment.
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SNEG, SINV, and SCONJ also work with stored real or complex numbers, unit objects,
global or local names, and algebraic objects, although there are no memory savings for
these types. There are also no savings for any of the nine commands if the target object
is stored in a local variable instead of a global.

5.7.3 Cataloging and Finding Variables
The VAR menu and are convenient for manual review of the current direc-
tory. For program application there are several commands that provide information
about directories and their variables. Two of these, VARS and TVARS, are used in the
following program:
 

 
 

 

 

 

FIND Find a Variable 460A

level 1 | level 2 level 1

'name’ or ‘name’ {}

'name’ or 'name’ {path '}

‘name’ o ‘name’ { {path,} ... {path,} }

<< DUP DUP - name dodir Save the name; create local variable dodir.

<< Put the directory subroutine on the stack.

<< {} Start with an empty list.
IF VARS name POS If the variable is in this directory,
THEN PATH 1 SLIST + then add the name to the list.
END 15 TVARS Now geta list of all the subdirectories.

IF DUP {} # If there are any,

THEN SWAP 1 3 PICK SIZE [then apply dodir to each.
FOR n OVER n GET Get the nth subdirectory.
EVAL dodir EVAL Execute dodir.
+ UPDIR Add any paths found to the list.

NEXT SWAP DROP Repeat, or discard the directory list.
ELSE DROP Discard the empty list.
END

>>

DUP ’dodir’ STO EVAL Store the subroutine in dodir, then executeit.

IF DUP SIZE 1 == If there’s only one path,
THEN OBJ- DROP then shed the outerlist.
END

>>

>>    
 

FIND locates a global variable by name anywhere in the user memory labyrinth, by
searching through the current directory and all of its subdirectories for variables with
that name. Given a global name as its argument, FIND returns (to level 1) a list con-
taining the path lists for any variables of that name. (To search all of user memory,
execute HOME FIND). If there is only one such variable, the result is a single path list;
if there are more than one, the result is a list containing two or more path lists. An
empty list indicates that the variable is not present. FIND leaves the original name
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argument in level 2.

FIND uses the command VARS to obtain a list of all the the variables in the current
directory. The list contains the variables’ names in the same order in which they appear
in the VAR menu. If you execute VARS 'name’ POS, for example, you will obtain the
numerical position of the variable name in the current directory, or zero if the variable
is not present. You can also create a list of variables containing objects of a certain
type or types, using TVARS (Typed VARiables). TVARS takes a real number or a list of
real numbers, and returns a list containing the names of all of the variables in the
current directory that contain objects of the types specified by the argument.

For a single variable, the command VTYPE applied to the variable’s name returns the
type of the object stored there, as a real number (see Table 3.1 in section 3.2 for a list
of object type numbers). It is equivalent to RCL TYPE, with the exception that VTYPE
returns —1 if the specified variable does not exist in the current directory.

5.7.4 Moving A Variable
 

 

 

 

 

MOVE Move a Variable C4D3

level 2 level 1

path-name, path-name, wr

<< PATH Subroutine to find a variable:

< |F DUP TYPE 5 SAME Is this a path name?

THEN DUP SIZE DUP2 GET Then get the variable name,

3 ROLLD 1 SWAP 1 - SUB |and the path list.

ELSE {} Otherwise, use a null path list.

END EVAL

> - new p s Save the new name, old path and subroutine.

<< s EVAL DUP RCL SWAP Recall the object.

IF DUP TYPE 12 == If object came from a port,

THEN SWAP NEWOB SWAP Then free the object.

END

IF DUP VITYPE 15 == Purge the variable:

THEN PGDIR Use PGDIR for a directory.

ELSE PURGE Use PURGE otherwise.

END

p EVAL new s EVAL STO Store the object in the new variable.

p EVAL Return to original directory.

>>

>    
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In section 5.1.2 we listed a simple sequence for renaming a variable, keeping the vari-
able in the same directory. The program MOVE on the previous page generalizes that
sequence so that you can move a variable from one directory to another, including to
and from a port. MOVE uses two arguments, either of which can be a name (tagged for
a port variable) or a path name. The path specified by the latter should be the path
from the current directory to the directory containing the new or old variable. The
name of the original variable should be in level 2, and the name of the new variable in
level 1.

5.8 Calculator Resets

The HP48 provides a special operation, called a memory reset, that clears all global and
port 0 variables and restores all of the calculator’s default modes. Part of the memory
reset is a system halt, that by itself resets the HP 48’s execution without affecting stored
objects.

A system halt is obtained by pressing and the [C] menu key together. This opera-
tion does all of the following:

e aborts all execution;

e clears the stack, the return stack, all local memories, last arguments, the recovery
stack, the command stack, and the graphics display;

e turns off user mode;

e sets the last error number to zero and the last error message (section 9.6) to an
empty string;

e detaches all libraries currently attached to the home directory, and executes the con-
figuration programs (section 5.3.2) ofall libraries in the various ports;

e reestablishes the home directory as the current directory;

e activates the MTH menu;

e leaves global or port variables, alarms, and key assignments unchanged. All flags are
also left unchanged, except flag —62, which is cleared (see section 7.2.2).

A system halt is performed automatically when you turn the HP48 on, if you have
stored or removed any libraries from any ports since the previous time the HP 48 was
turned on, or if you have inserted or removed memory cards, or changed aRAM card’s
write-protect switch position. This ensures that there are no references (section 5.3.1.2)
remaining to library objects that you may have removed.

A memory reset, for which you press the three keys ,[A], and all together,
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starts by executing a system halt. Then the HP 48 displays

 

Try To Recowver Memory?

== |NO|   
If you see this display when you turn the calculator on, or at any other time when you
have not deliberately performed a memory reset, it indicates that the calculator has
detected a corruption of memory contents such that it can not continue normal opera-
tion without at least a partial memory reset. This corruption can be caused by a
hardware fault, including the effects of static electricity, or by the execution of SYSEVAL
(section 3.10.1) with an incorrect system address.

If you choose ENOZ , the HP 48 performs a complete reset, deleting all global variables,
port O variables, key assignments, and alarms and resetting all flags to their default
values. The calculator displays Memory Clear when it is ready to resume manual
operation.

 

If you choose ZYESZ at the Recover RAM prompt, the HP48 attempts to recover or
restore as many user memory and port 0 variables as it can by scanning through
memory for recognizable objects. If it detects a valid user memory, then it can usually
restore it unchanged, except that key assignments and alarms are always lost. If it finds
invalid objects,it discards them and rebuilds as much of the user memory structure as it
can. In some cases when the home directory itself is corrupt, subdirectory objects there
can be reconstructed, but lose their names. Then the HP 48 makes up variable names
for these directories, naming them D.01, D.02, and so forth. When the automatic
reconstruction process is finished, the standard display is restored. Then you can
inspect the VAR menu to determine how much of user memory is intact.

During variable reconstruction, the HP 48 looks for library objects in memory to try to
determine where port 0 begins. Unfortunately, if it encounters a library that was stored
in a global variable,it takes that as the start of port 0, which means that some part of
user memory will be discarded. For this reason, you should not keep libraries in user
memory for long term storage--store them in a port instead.
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The HP 48 has such a large number of keys, commands, and methods that it is often dif-
ficult to sort out a correct approach for solving a particular problem. For example,
there are many “hidden” operations available, for which no keyboard label is provided.
Unless you know that the operations are there, and which keys to press, you may miss
out on useful shortcuts that can save you time and effort. In this chapter, we will review
the hidden operations, and some other HP 48 “methods,” that can increase your confi-
dence and comfort with the calculator before we launch into an exposition of its pro-
gramming.

6.1 The Basic Interface

The HP 48 is fundamentally a key-per-function calculator, which means that its basic
interface provides a platform for calculations on mathematical and logical objects, where
each calculation in principle can be performed by means of a single keystroke. The use
of an RPN stack as the focus of the interface combines facilities for the input of argu-
ments and the output of results into a single mechanism, allowing for the endless chain-
ing of arbitrarily complicated computations. Objects (section 3.2) are placed on the
stack, commands are applied to the objects, and new objects that represent the results
of the commands are returned to the stack.

Key-per-function means that any command can be executed by means of a single key-
stroke. This facility is important not only because of the mechanics of typing, but
because there is a certain psychological satisfaction to making something happen with a
single well-chosen keystroke. You think of a function like sine as one operation; the
key-per-function approach makes a nice one-to-one correspondence between the
abstract sine and the tangible keystroke. It is not an exaggeration to say that the pri-
mary goal of the HP48’s programming language, customization features, and plug-in
memory ports is to allow you to extend the key-per-function interface to calculations
that are not included in the built-in command set.

A central property of an RPN calculator is that the objects upon which you are operat-
ing are literally visible, as well as accessible computationally, in close proximity to the
operations (i.e. the keys) that you are to apply to them. This is a succinct description of
the HP 48 physical layout. In the basic HP 48 state, the display shows one or more
objects on the RPN stack, within the same field of view as the keys that represent the
current choice of operations. A typical display looks like this:
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The display rows numbered 1: through 4: show the first four objects on the RPN stack.
Immediately below are menu key labels that identify the operations associated with the
unlabeled keys below the labels. At the top of the display is the status area, that nor-
mally shows information about the status of the calculator, including the states of vari-
ous modes (section 7.1), the current directory path (section 5.2), and optionally, the time
and date. When you enter a new object, part or all of the stack display area is given"
over to a command line (section 6.4); when entry is complete, the display reverts to the
stack.

The HP 48 has a number of other display/keyboard states that are used in the course of

computations, but the state described above is basic in that it is the “rest” state that is
restored when all active and pending operations are complete, or when a system halt
(section 5.8) resets the calculator. We shall refer to this state as the standard environ-
ment, which includes the standard display (status area, stack, menu labels) and standard
keyboard (which may be redefined by user key assignments--see section 7.2). Another
state of almost equal stature is the plot environment, in which the key-per-function inter-
face is applied to graphical data instead of discrete objects. The graphical data is con-
tinuously presented to you, and the menus and keys are devoted to operations on that
data, with the results immediately visible.

Because of the parallel importance of the standard environment and the plot environ-
ment, the display memory associated with each is maintained independently, so that you
can switch back and forth between the two without losing data. We shall call the two
display memories the fext screen and the graph screen, from their respective activating
commands, TEXT and GRAPH. This terminology helps focus on the logical purposes of
the displays, and distinguishes them from the physical LCD and memory. We shall dis-
cuss more about these “screens” in Chapter 10.

While the plot environmentis largely self-contained, the standard environment is almost
indefinitely extensible. The menus and menu keys, for example, extend the basic key-
per-function interface to the hundreds of built-in operations for which there are not
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enough keys for unique keyboard assignments. When you create programs, you are
effectively adding to the built-in language (section 3.6) and providing more operations
that can be applied in the same simple manner. Some programs may become compli-
cated enough that they supplant the basic interface by redefining the keyboard and
presenting special displays, in order to provide improved ease-of-use and functionality
tailored to specific applications. The HP 48 itself contains several such programs, such
as the EquationWriter and the MatrixWriter, the various catalogs, HP Solve, etc. The

remainder of this book is essentially a description of the principles of the basic interface,
and how you can develop your own extensions to that interface that span the entire
spectrum from simple key-per-function operations to systems that rival the built-in
environments.

6.2 Keyboard Mastery

The HP48 keyboard may seem to be a complicated maze of nomenclature and colors,
but there is some method in the madness. Understanding the organization of the key-
board, including the extended keyboard available through the menus, will help you
remember what various keys mean, and where to find various operations.

Most personal computer keyboards are competely generic in the sense that they are not
optimized for any particular software-driven application, but offer a typewriter-like
“QWERTY” keyboard designed for text entry. Customization for a particular applica-
tion is provided by function keys that can be labeled by keyboard overlays, or by the use
of a mouse or other pointing device that makes the display into an extended keyboard.
But the HP 48 is not designed to be quite so generic; rather,its keyboard is laid out with
certain definite purposes in mind. The assignment of operations to the various keys
reflects the priority order of these purposes:

1. RPN calculator. All of the sophisticated features of the HP 48 are subordinated to
the requirement that the calculator must provide for convenient execution of ordi-
nary arithmetic. Thus the number pad and the arithmetic operators are primary
(i.e. unshifted), extra-wide keys. ENTER, of course,is given extra prominence due
to its central role; the three most common stack operations, DUP ( ),

SWAP ([=]), and DROP ([€&]) are available as primary keys.

2. Scientific calculator. The most commonly-used mathematical functions are gath-
ered on the primary and shifted keys of the fourth row.

3. Object entry. The delimiters and other symbols associated with object entry are
grouped on the shifted [+, ,[=], and keys. The cursor keys are pri-

mary, and the EquationWriter and MatrixWriter, which are essentially specialized
object editors, are available on shifted .
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Built-in Programs. These are what the owner’s manuals call applications: HP
Solve, automated plotting, algebra, time management, statistics, and unit manage-
ment. They are activated by the shifted[7],[8],[9]1,[a],[5], and[6]keys. The

associated menus are distinguished from ordinary menus by having special displays
or key redefinitions associated with them.

Customization. The top two rows of keys are associated with customization: the
menu keys (top rows), which provide access to the hundreds of operations for
which there are not permanent key assignments, plus the key, for navigating
within the menus; and which provide instant access to the additional
operations that you define; and and . The latter two keys are effectively
shift keys, for which the second part of each two-key combination is selected from
the menu keys as labeled in the display.

Text entry. Of course, the entry of text is important for almost all of the purposes
outlined above, so it may not deserve to be last in the priority list. However, we
list it last to highlight the fact that the HP 48 is optimized for calculator-style key-
per-function operation rather than for computer-style operation via text typing. If
this were not the case, the HP48 should also have primary alpha keys in a
QWERTY layout.

6.2.1 Keystroke Strategies
Almost every operation that the HP48 can perform is available ultimately as a single
key press, if you don’t count shifts and menu changes. On the other hand, you can exe-
cute most (but not all) operations by typing in one or more command names with alpha
characters, then pressing . You will probably want to choose an execution stra-
tegy that is intermediate between these two extremes, according to your personal skills
and preferences.

e If you are good at remembering where (which menus) to find various commands,
you may prefer to use menu keys for executing those commands or entering them
into programs. For manual operation,it is less visually disruptive to press a menu
key than to start up a command line for typing the name of a command. Also, you
don’t have to remember exactly how to spell each command. For programming,
using a menu key to enter a command has the additional advantage that the key
press also automatically enters spaces as necessary around the command name.

If you don’t like using menus, or whenever you can’t find a command in a menu, you
can just type the name of any command that does not appear on the keyboard or in
the current menu. All of the characters used in command names are available (and
labeled) on the alpha-shifted keyboard. This approach also has the advantage of
leaving the current menu unchanged.
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Regardless of which command execution method you prefer, you should select an alpha
keyboard style. By default, [« acts as a single-key shift, where only the next key (not
counting and is modified to produce an alpha character. To enter several con-
secutive alpha characters, you can hold [« down while typing, or press ][] initially
to activate alpha-lock, then [ again after typing, to turn alpha-lock off. If you fre-
quently find yourself forgetting to press [« twice for multi-character entries, you might
consider setting flag —60, which alters the behavior of] so that a single press activates
alpha-lock. With that choice, you must always press ] or to turn off alpha-

lock.

A similar style choice applies to user mode (section 7.2). Again, by default acts
as a single-key modifier unless you press it twice consecutively to lock on user mode.
This style is appropriate when you have a few user key definitions that you use occasion-
ally. But if you switch back and forth to user mode frequently, you can set flag —61 so
that a single press of locks user mode.

6.2.2 Navigating the Menus
The HP 48 menu system provides convenient, labeled access to the hundreds of HP 48
commands that don’t appear directly on the keyboard. To take advantage of the con-
venience, however, you must understand the mechanics of moving through the menus,
and also have a general idea of the menu organization--where to look for a command.

6.2.2.1 Mechanics
Most built-in HP48 menus are available by pressing a two-key combination. For those
that are labeled on the keyboard--PRINT, 1/0, MODES, MEMORY, LIBRARY, SOLVE,
PLOT, ALGEBRA, TIME, STAT, UNITS--the first key is one of the shift keys or

and act as shifts to activate twelve additional menus. Each actual menu con-
tains one or more “pages” of up to six operations each. When you activate a menu by
means of the menu key combination, the first page of the menu is visible in the menu
labels. pages forward through a menu, cycling back to the first page after the last
page. pages backward, wrapping to the last page from the first. You can
always return to the first page by pressing .

There are two methods to enter a menu on a page other than the first:

. returns to the menu and page that was active before the most recent
use of a menu key combination. If, for example, you are viewing the third page of
the parts menu ( [MTH]ZPARTSE ) and press [PRG]ECTRLE , then ,
you will return to back to the third page of the parts menu. Pressing

again goes back to the second page of the program control menu. Note that the
“intermediate” menus activated by , , and (including page
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changes), are not recorded for the LAST MENU] operation.

e Executing MENU or TMENU with a numerical argument (section 7.3) activates the
menu and page specified by the argument.

6.2.22 Content
Few people can memorize the location of every command in every menu. However, the
menu titles are generally sufficiently suggestive of the menus’ contents that you should
be able to pick out the correct menu for a command, then page through it with
until you see the command label. The process is complicated somewhat because some
menus “share” a keyboard label--for example, and activate
separate menus. This label sharing is used because the HP 48 designers felt that one
spelled-out label for related menus is preferable to two cryptic, abbreviated labels. A
rough guide for distinguishing two menus sharing a label is that the menu contains
operations and commands more commonly used in manual operation, whereas the
menu contains commands that frequently appear in programs. Thus the
menu contains mode-setting keys that make it easy for you to select various modes
without having to remember flag numbers. To achieve the same effect in a program,
you must use the flag commands presentin the menu.

Table 6.1 lists the various built-in HP 48 menus and their general content. The table is
not intended for memorization, but if you read through it once or twice you should get a
general picture of where to look for various operations.

Table 6.1. HP 48 Menus

Number Name Keys Content

1 Custom CST User-defined custom menu

2 Variables Global variables

3 Math Intermediate menu for math menus selection

4 Parts ZPARTSE  Commands for extracting “parts” of real and complex

numbers-—-mantissas, exponents, integer parts, percen-

tages,etc.

5  Probability m Permutations, factorial, random numbers

6  Hyperbolics SHYPS Hyperbolic functions, e* -1, In(x +1)

7 Matrix EMATRE Matrix computations

8 Vector SVECT= Coordinate system selection, dot and cross products,

degree/radian conversions
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10

11

12

13

14

15

16

17

18

19

20

21

22

G
R
S

26

27

29

31

32

33

35

37

39

Base Operations

Program

Stack Manipulation

Object Composition

Display

Program Control

Program Branch

Logical Tests

Printer

Input/Output

I/O Setup

Mode Switches

Customization

Memory Management

Storage Arithmetic

Library

Port 0

Port 1

Port 2

Edit

SBASE=

[PRG]ESTKE
[PRG]S0BJ=
[PRGIEDISPE

[PRG)ZCTRLE
[PRG] SBRCHE=
[PRG)STESTE

6.2

Binary integer operations, bit manipulations, logical

operations

Intermediate menu for program menus selection

Copying, moving, deleting stack objects

Assembling and disassembling objects

Controlling the display and working with graphics

objects

Program debugging,starting and stopping

Program branch structures

Logical operations and object comparisons

Printer output and control

Kermit transfers and serial operations

[I/O)ESETUPESerial handshaking configuration

LIBRARY
SEPORTS

EPORTS

SPORTS

HP Solve Equation Entry[<q][SOLV

HP Solve Variables

Plot Equation Entry

Plot Type Selection

Plot Execution

Algebra

Time Management

Clock Adjustment

Alarm Setting

Alarm Repeat

Time Set

£SOLVRE or []

EPTYPEZ

 

Toggle keys for mode selections

Key assignments, flags, custom menus

Management of global and port variables

“In-place” operations on stored objects

Access to libraries and port variables

Port 0 objects

Port 1 objects

Port 2 objects

Extended editing operations

Entry, editing, and selection of HP Solve equations

Interactive HP Solve

Entry, editing, and selection of plot formulae

Selection of automatic plot type

Execution of plots, plot screen configuration

Solving and manipulating symbolic expressions, -Qn

Time and date operations

TIME|EADJZ Correcting the current time

TIME|SALRM=

TIME|EALRM=
 
  
 

Setting appointment and control alarms

Choosing a repeat interval

Setting the time and date
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40  Statistics Statistics computations, plotting, distributions, regres-

sions

41 Regression Model STAT|EMODLE  Selecting the curve fit model

42 Unit Conversions Intermediate menu for unit categories

43-58 Unit Categories Interactive unit entry and conversions menus

ELENGE etc.
59  Unit Objects Creating, converting, and disassembling unit objects

6.2.2.3 Exiting
The HP48 menu system is defined without a “home menu”--there is no master menu to
which you return when you are finished with the current menu. Moreover, there is
always a menu present, except in the plot environment’s and the EquationWriter’s
graphics scrolling modes. Thus, in general you don’t “exit” from any menu, you just
select another menu. There are two kinds of exceptions to this general rule:

e “One-shot” menus. For most menus, you are at least as likely to select two consecu-
tive operations from a menu as you are to select one then return to the previous
menu. There are are several menus, however, that are designed for a single choice
followed by an automatic return to the previous menu. These menus are the plot
type menu ( EPTYPES ) the regression model menu ( EMODLE ), the alarm repeat
menu ( ZRPTZ ), and the zoom menu ( £ZOOME ) in the plot environment. The latter
two menus also include provide for returning to the previous menu when you don’t
use any of the current menu’s operations ( ENONEZ for the repeat menu, and SEXIT=
for the zoom menu). In the plot type and regression model menus, you can make a
similar exit by pressing the menu key corresponding to the current type, or by going
directly to another menu.

The various RULES operations menus also belong to this category, although execut-
ing a RULES operation does not return to the top-level menu containing ERULESE
but instead activates the transformations menu appropriate for the newly
transformed subexpression (which may be the same menu). To exit from one of
these menus you press a cursor key to select a new subexpression and return to the
main RULES menu.

e The main RULES menu in the EquationWriter and the function ( EFCNE ) menu in
the plot environment menu permit multiple operations, but are sub-menus of other
menus that are not directly accessible via labeled keys. The sub-menus therefore
include an SEXITE key that returns to the parent menu.

In this section we have been speaking of menus as distinct from environments such as
the plot catalog SCAT:= ), that provide their own special menus as part of their
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execution. These environments in general supplant the standard environment with a
redefined keyboard and their own special displays. ECATZ includes a menu as part of its
keyboard redefinition, but notice that the CAT label does not include the little tab that
indicates that the key is a menu selection key. The distinction is useful because whereas
you don’t need to exit a menu except as outlined above, you must terminate an environ-
ment by pressing , which returns to the standard environment.

 

6.2.3 ATTIN
The use of (ATTentioN!) to terminate environments like the EquationWriter or a

catalog is one example of the use of ATTN . The basic purpose of ATTN is to provide
an exit path from ongoing operations back ultimately to the standard environment. This
sometimes can be a multi-step process--for example, when you are using the interactive
stack from within the MatrixWriter, (section 6.6), a first exits from the interactive

stack and returns to the MatrixWriter display, a second clears the command line, and a
third terminates the MatrixWriter and returns to the standard environment.

ATTN also serves to halt program execution, including the programs you create and
built-in commands like [ or COLCT that may take a significant amount of time. It is a
“gentle” form of interruption, in that the stack is not cleared and no stored objects are
affected (except for the local variables associated with currently executing programs). In
general, you can use as the all-purpose “quit this and start fresh” operation. If
you using a catalog or a similar environment where the standard keyboard is unavail-
able, and there is no menu key provided for exiting, pressing will get you back to
the standard environment.

See also section 9.6.1 for more information about ATTN’s behavior as an error condi-

tion.

6.3 Hidden Operations

Unless you have perused the HP 48 owner’s manuals very carefully, you may not realize,
for example, that pressing [>]ECENTE (in the menu) returns the logical coor-

dinates of the current graphics screen. This is an example of a hidden operation--a use-
ful manual operation that is not explicitly labeled on the keyboard or on a menu label.
There are dozens of such operations, which you probably encountered as you read
through the owner’s manuals, but many of which you may have forgotten because of
their number and invisibility. In this section, we will review all such operations, and
present the various conceptual models that can help you remember what and where the
operations are. We have already discussed unlabeled menus (section 6.2.2.2); here we
will focus on operations other than menu selection.
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In almost all cases, the hidden operations can be executed by a non-hidden method.
The hidden operations are provided only as keystroke shortcuts that are useful when you
can remember them, but not vital. There are some exceptions, such as the use of [A] to

activate the interactive stack (section 4.5), which is not explicitly labeled on the key-
board. However, here and in the other cases the model (moving up the stack with [A])
is so clear that you should not have any trouble remembering it.

6.3.1 No-Command-Line Key Actions
Several primary key definitions are associated with the command line, and therefore
have no meaning when the command line is not present. An obvious example ofthis is
ENTER] , the primary definition of which is to execute the command line. When the

command line is absent, pressing executes DUP, copying the level 1 object into
level 2. The association between ENTER and DUP goes back to the key on pre-
vious HP calculators such as the HP 41, on which that key both terminates digit entry
and copies the x-register (level 1) into the y-register (level 2). When you enter a new
object on the HP48, the first press of creates a first version of the object, and

subsequent presses create additional copies, so the association is natural even without
the historical derivation.

The remaining no-command-line key actions may have less obvious relationships with
the key labels, but they are useful nonetheless:

° executes DROP.

¢ [>] executes SWAP. With the assignments of DUP and DROP, this means that the
three most common stack operations are available as primary keys. The remaining

operations are provided in the interactive stack.

¢ [J] executes GRAPH, providing single-key access to the graph screen (section 10.0).

e [A] activates the interactive stack.

e [] activates the command line, MatrixWriter, or EquationWriter, as appropriate to

view the level 1 object.

When the command line is present, you can enter the commands DUP, DROP, SWAP,
and GRAPH in the usual way by pressing the keyfirst (for DUP, works as

well).

6.3.2 Shift Key Meanings
There are number of hidden shifted-key operations that are derived from two models of
shift-key meanings. The first model associates the shift keys with “extended” actions of
the primary keys; the second relates the shifts to store and recall operations.
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63.2.1 Extended Actions
An obvious example of the action of a shifted key as an extension of the primary key
action is provided by [>] and [®][&>]. In the command line, [>] moves the cursor one
character to the right; [?>][>] moves it “all the way” to the end of the current line. The
cursor keys behave similarly on the graphics screen: [&] moves right one pixel, whereas
[>][=] jumps the cursor to the right edge of the display (if the cursor is already there,
[>][=] moves the display window to the right to bring the far right edge of the graphics
screen into view at the right edge of the display).

The “all the way” actions are most frequently associated with the key, but there are
some cases where is also used for intermediate extensions of the primary key. For
example, in the alarm catalog ( £CAT: ), [V] moves the catalog pointer down
one line, and [V] moves the pointer to the bottom of the catalog, as you might
expect from the model. [V] moves the pointer down by one “page” of five
entries, which is intermediate between the [{] and [>][{] actions.

This model of shifted actions as extensions is not limited to cursor motions. Consider

[&] for “erasing:” erases part of an object (in the command line); erases

a complete object; and (CLEAR) erases the entire stack of objects.

Another example is provided by the shift extensions to the menu keys in the program
branch menu ( ZBRCHE ). The primary menu keys enter the individual program
structure words (section 9.2) shown on the key labels, but wherever appropriate, the
shifted keys enter structure word combinations or entire structures. The IF key is the
most extreme case: pressing [>]SIF enters four lines simultaneously:

 

 

 

PRG
{ HOME }

IF 4
THEN
ELSE
END
IF_[CHZE[START]FOR00[HHILE]   

This is a great help in entering an IF structure (section 9.4.1). The cursor is initially
positioned at the start of the if-sequence; after entering it, press [V] (unless you have
entered a newline), and the cursor then is positioned for entry of the then-sequence, and
so on through the remainder of the structure. Not only do you not have to type the
other structure words, but you can’t forget to enter them. Notice also that ZIFs
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enters the IF structure words minus the ELSE, so that the model of
intermediate/extreme case is maintained.

Tables 6.2 and 6.3 list all of the hidden shift key actions that follow the primary key

extension model.

Key

NXT

Command line

[SI=][A]and [V]

Interactive stack

[Alor

hics screenGra

[SI=][A]and [V]

EquationWriter entry=]

EquationWriter subex-

pression environment

@E}mandlj]

MatrixWriter

[K=1[A]and [V]

¢~

Alarm, plot, solve, and

statistics catalogs

and

Table 6.2. Shift-key Extended Actions

Primary

Next menu page

Move cursor one charac-

ter or line

Move stack pointer up or Move up or down four

down one level levels

Move cursor or window

one pixel

Close subexpression

Move subexpression

highlight by one object

Move cell cursor in indi-

cated direction by one

row or column

Delete previous or next

“word”

Delete a character (com-

mand line)

Purge a variable

Backspace (command line) DROP

Move catalog pointer up  Move pointer up or down

or down one entry five entries
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First menu page

Move far left, right, up or

down.

Move to top or bottom of

stack

Move to edge of display

or edge of graphics screen

Close all subexpressions

Move to “edge” of

expression

Move to first or last row

or column

Delete to beginning or

end of line

Clear the current direc-

tory (CLVAR)

CLEAR

Move pointer to top or

bottom of catalog
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Table 6.3. Program Branch Menu Shifted Key Extensions

 

 
 

Key Primary
IF IF IF

=SIF THEN THEN

- END ELSE

END

CASE CASE THEN

SCASE= THEN END

END

END

START START START

ZSTART= NEXT STEP

FOR FOR FOR

=FOR= NEXT STEP

DO DO

e UNTIL

=Dos END

WHILE WHILE

SWHILES REPEATEWHILEE= END

IFERR IFERR IFERR

1FERR THEN THEN

=IFERR END ELSE

END    
6.3.2.2 Store and Recall Actions
When applied to a menu key associated with a name object, has the meaning “store
into this variable.” Similarly, means “recall the contents of this variable.” The pri-
mary key itself executes the name object. This is the default action for custom menu
keys (section 7.3) defined with global, local, and port names, and is extended to the VAR
(section 5.1) and the LIBRARY menu (section 5.3.1.1). It is also applicable to ECST= in
the customization menu ). As a mnemonic to help you remember which

shift key is which in this context, note that is right-shifted, and (which

is a form ofstore) is left-shifted.
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There are several instances of menu keys that are associated with commands rather than
names, but for which the key retainsits recall action. The ZCENTZ key cited earlier

is an example. Its primary definition is the command CENTR, which redefines the plot
parameters in the variable PPAR so that the new center of the graph screen corresponds
to its complex number argument. Although there is no center coordinates variable as
such, [[>]ECENTRE computes those coordinates and returns them to the stack as if recal-
ling them from an ordinary variable. This is handy when you want to recenter the graph
screen to a position based on the current position.

Table 6.4 (on the next page) lists all of the [>]/RCL extensions available in the various
HP 48 menus.

The menu keys in the HP Solve variables menu or ESOLVRE )
exhibit a deliberate reversal of the normal primary and left-shifted actions of menu keys
defined by names. In this menu, the primary key action is to store the level 1 object in
the labeled variable; the left-shifted action is to solve for the variable, which you can

view as a form of evaluation (especially since the solved value ends up in the variable).
This reversal of roles is motivated by aligning the HP 48’s HP Solve interface as closely
as possible with that on other HP calculators. The use of dark letters against a light
background for the menu labels, reversed from other menus, identifies the HP Solve
variables menu, and reminds you of the reverse key actions. (The right-shifted menu
keys maintain the usual RCL definition.)

6.3.2.3 Other Hidden Shift Actions
There remain a number of hidden operations that don’t conform to any particular
model, but which are reasonably obvious extensions of primary key actions. As with
other hidden operations, these are usually duplicates of operations that are available by
other means.

. executes PR1, which prints the object in level 1.

. activates Kermit server mode.

e Pressing[ON] - together prints an image of the current display.

o activates the HP Solve variables menu.

o activates the plot/solve equation catalog.

o activates the alarm catalog,.

. EDRAWE executes STEQ. This matches EDRAWE , which executes
RCEQ. The existence of these two hidden operations allows you to do simple one-
time plotting (i.e. where you don’t bother to store the plot equation in its own vari-
able) from a single menu.
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o [][STAT] [<1]ES + £ enters Z-.
 

den key is definitely worth remembering.

Table 6.4. Hidden RCL Operations

 

Menu Key

menu
ECST=

SOLVE| menu
SSTEQS

PLOT| menu
ESTEQ=

menu
=SDRAWE

EXRNGE

YRNGE

=INDEPZ

i
y
i

O m o < 1

 

1 e m w m

 

HI
E

o
y

oe
n

2 m o)
|

i
t

j
m
1

 

m o o = m

 

TIME|ZALRME menu
SEXECE

menu
ESTOs
=EXCOLE

SYCOLE 

Action

Return contents of CST.

RCEQ

RCEQ

RCEQ

Return xiy and x pay

Return y pin and y yax

Return independent variable name orlist from PPAR

Return dependent variable name or list from PPAR

Return plot resolution parameter from PPAR

Return coordinates of center pixel in graphics screen

Return x- and y-scale values from graphics screen

Return axes coordinates from PPAR

Return current dimensions of graphics screen

Recall current alarm execution object

RCL=

Recall current independent variable column

Recall current dependent variable column  
 

6.4 Object Entry

6.3

This is the only key for 2 —, so this particular hid-

The central focus of the HP48 is objects, the elements of data or procedure that you (or
the calculator) enter as representations of the calculations you are making. We dis-
cussed the theory and meanings of the various object types in Chapter 3; here we will
look more closely at how you create new objects.
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The basic mechanism for the manual entry of objects is the command line. The com-
mand line derives its name from the fact that you can enter a “line” of commands--a
series of calculator instructions that are executed all together when you press .
A better term might be command editor, since it is not restricted to a single line, or

better yet, object editor, since commands are only one of the many kinds of objects you
can create there. In any case, you create objects by typing text representing the objects
into the command line. You terminate a particular editing session by pressing or

any of the other keys that perform an implicit ENTER. At that point the HP 48 converts

the command line text into the objects you specify.

The double-width key has always been the trademark of HP RPN calculators
that sets them apart from so-called “algebraic” calculators with their prominent= key.
In all RPN calculators including the HP48, the fundamental purpose of ENTER is to
terminate object entry. In pre-HP 28 calculators, the only objects that can be entered
are real numbers, so that terminating entry just means turning off digit entry mode and
leaving the completed number in the X-register. In the HP 48, ENTERretains the basic
action of terminating entry and entering new objects. However, because the HP 48
replaces ordinary calculator digit entry with a command line that can contain any
number of objects and commands, ENTER can invoke almost any of the calculator’s
capabilities as well as just entering numbers onto the stack.

The fundamental definition of the HP 48 operation ENTERis:

Take the text in the command line, check it for correct object syntax, then
treat it as a program and execute the objects defined there.

This is a much-elaborated version of the old “terminate-digit-entry and enter a number
onto the stack,” but in simple cases, it amounts to the same thing. If you press a series
of digit keys, then , you will end up with a number in level 1. The same key

sequence on an HP 41 or a similar calculator yields the same result. For the sake of
keystroke efficiency and to preserve additional consistency with other RPN calculators,
many HP 48 keys besides also execute ENTER as well as their own specific defin-
itions. This feature is called implicit ENTER, to distinguish it from explicit ENTER,
which is the direct use of .

An example of the use of implicit ENTER is the sequence [1] 2] . This
adds the 1 and the 2, just as it always has in HP RPN calculators. At the time you
press , the 2 is still in the command line; the implicit ENTER performed by puts
the 2 on the stack before the addition is performed.

6.4.1 Key Definitions and Entry Modes
A key definition is the object assigned to the key, i.e. the object that is used when the
key is pressed. We say the object is “used” rather than “executed”, because the object
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may or may not be executed, depending on the object type and the current entry mode.
Any key does one of two things when you press it:

e The key acts as a typing key, merely adding one or more characters to the command
line. In this case, for example, it might be the name of the key definition object that
is used rather than the objectitself.

e The key acts as an immediate-execute key, causing any other kind of action.

With this distinction, we can sort HP 48 keys (including menu keys) into three types:

1. Keys that are always typing keys. These include the alpha-keyboard character
keys, the digit keys, and the delimiter keys, plus the program structure word menu
keys in the program branch menu ([PRG]ZBRCHE ). 

2. Keys that are always immediate-execute keys. These are keys that never add char-
acters to the command line. Examples are and menu selection keys such

as or :

3. Keys that may act either as immediate-execute keys or typing keys, according to
the current entry mode. These mode-dependent keys are the most common key
type in the HP 48; nearly all are command keys.

(Here we are speaking only of the standard key definitions, i.e. the keyboard that is
available when user mode is off. The key definition object of any key be changed--see
section 7.2--but the ideas presented here are common to the user and standard key-
boards.)

The mode-dependent keys are so-called because they are sensitive to the four entry
modes entry modes that determine their behavior. The entry modes are as follows:

e Immediate mode. All mode-dependent keys act as immediate-execute keys. This is
the default mode, to which the HP 48 normally returns after ENTER.

e Algebraic mode (ALG annunciator in the status area). Mode-dependent keys with
definitions that are functions permitted in algebraic expressions, such as SIN, +, or
LOG, act as typing keys. Parentheses are automatically added after the function
names if appropriate. Other mode-dependent keys act as immediate-execute keys.

e Program mode (PRG annunciator). All mode-dependent keys corresponding to pro-
grammable commands act as typing keys. Spaces are automatically added around

the command names to separate them from previous command line entries. There
are a few mode-dependent keys that have no command line text associated with

them, such as ESSTE , or programs used as user key definitions; these keys just beep
when pressed in program mode.
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e Algebraic/program mode (ALG PRG annunciator). Same as program mode, except
that the names of functions are not surrounded by spaces, and parentheses are
added where appropriate.

Whether or not a key performs ENTER depends on more than just the current entry
mode. It is true that only immediate-execute keys may do ENTER; there are no cases
where a key acting as a typing key adds characters to the command line, and then also
does ENTER. Furthermore, the great majority of immediate-execute command keys do
perform ENTER. For example, all keys for commands that use stack arguments do an

implicit ENTER to insure that the command is applied to the most recently entered
arguments, including those that are still pending in the command line. This saves you
the extra keystroke that you would otherwise need.

The command keys that do not perform ENTER regardless of the entry mode are menu
keys for the commands that control calculator numerical modes, and which require no
arguments: ESTD= , SDEGE , and RADZ in the MODE menu, and EDECE , SHEX= SOCT=
and EBINE in the BINARY menu. Because the modes can affect the 1nterpretat10n of
command line numbers, these exceptions to the general implicit ENTER rule are pro-
vided to allow you to change the modes after you have started a command line.

  
      

Generally, an immediate-execute non-programmable operation key performs ENTER if

the operation uses stack objects. For example, and use stack arguments,

and therefore do implicit ENTER before performing their respective operations.
is an example of an key that does not affect the stack, and can therefore execute

without ENTER, even in program mode. There are some exceptions to the general rule;
obviously changes the stack, but the operation executes without ENTER

and without changing the command line. You can also modify the stack from within the
command line editor using tSTKE in the edit menu, but this also does not require an
ENTER.

 

Most command keys are mode-dependent, but there are a few that always act as typing
keys. These are the program structure words (section 9.2) found in the program branch
menu, plus HALT and PROMPT (section 12.2). CLVAR ( [][PURGE] is also defined as
a typing-only key, because its effects are so drastic. By entering the command name
into the command line rather than executing CLVAR immediately, you get a chance to
double-check thatit is what you really want to do.

6.4.2 Controlling the Entry Mode
The preceding key-behavior rules may appear elaborate, but in actual use they are gen-
erally not difficult to master (in fact, you seldom need to think about them at all). This
is due in large part to the fact that the HP 48 automatically changes its entry mode to
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match the objects that you enter. Also, you can manually change the entry mode for

those cases when the HP 48’s automatic choice is not what you want.

1. The default mode following an ENTER is immediate entry mode. This choice is
derived from the traditional behavior of RPN calculators, where pressing a func-
tion key causes immediate execution of the function. When you type digits or
letters to start a new command line, the HP 48 remains in immediate entry mode.

2. The HP48 automatically changes to algebraic entry mode when you press [1] to
start entry of a quoted name or an algebraic object. The ALG annunciator appears.

3. If you press or [{7] to start entry of a program or list, the HP 48
automatically switches to program entry mode, indicated by the PRG annunciator.

4, While the HP48 is in program entry mode, pressing [*] activates

algebraic/program mode, turning on both the ALG and PRG annunciators. This is
intended to aid entering algebraic objects within programs and lists. Pressing a
key corresponding to an object or delimiter that is not allowed in algebraic expres-
sions restores ordinary program mode and turns off the ALG annunciator.

This progression works reasonably well to spare you from having to control the entry
mode yourself, especially if you are entering one object at a time. However, there are

some circumstances in which you may need to override the automatic entry mode selec-
tion. To accumulate a series of commands into the command line without creating a
program object, you must turn program mode on to prevent the commands from execut-

ing. Or, to enter a function into a program following a quoted name or an algebraic
object (e.g. ‘X’ SIN), you must turn off algebraic/program entry mode to prevent the
HP48 from adding parentheses to the function name. These mode changes are made

with :

¢ In immediate entry mode, pressing ENTRY] turns on program mode.

e In program entry mode, [>][ENTRY] turns on algebraic/program mode.

e In algebraic/program mode, restores program mode (turns ALG off).

Note that once you have selected program mode, you can’t return to immediate mode
while the current command line is still active.

6.4.3 ENTER in Detail

Now that we’ve established at some length which keys perform ENTER, and under what
circumstances, we can return to the precise definition of ENTER. The following are the
actions that take place at every explicit or implicit ENTER. (The normal ENTER
sequence described here can be redefined; see section 7.4).
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1. A copy of the current stack is saved. It is important to note that the stack save is
performed before the command line is processed. If the ENTER is caused by an
immediate-execute operation key, the stack save also precedes execution of the
operation. This means that although breaking up a series of commands with
ENTER (either explicit or implicit) gives the same computed results as executing
all of the commands at once in a single command line, the results of pressing

at the ends of the series are different. For example, each of the fol-
lowing keystroke sequences adds 1+2 and returns 3 to the stack. However,

gives a different result in each case (assume an empty stack to start
with):

Keystrokes: Stack after LAST STACK:

1] (2] 2: 1
1: 2

(1] (2] 1: 1

[1] (2] (empty)

The command line text is parsed--converted from text into a series of objects.
(This step can be bypassed or postponed by using vectored ENTER--see section
7.4). First, the text is broken into object strings, individual portions of the com-
mand line text that will become objects. The object strings are defined by delim-

iters and separators:

e A delimiter is one of the symbols (, ), ', ", [, ], {, }, <<, >>, _, #, GROB, C$,
and DIR, that identify the different object types. The comment character @
can also be considered as a delimiter, even though it doesn’t identify an object.

e A separatoris either a space, a newline, a semicolon, or whichever of “.” or «”
is not the current fraction mark. Separators are used to separate real
numbers, commands, and names, which have no special delimiters, from other
objects, and are generally used to make the command line more legible.
Unlike delimiters, separators can be repeated--extra ones are ignored.

For example, the command line

12345.789 'FRED’ "123" << DROP 'SAM’ STO >> PETE
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is broken into the object strings
12345.789
'FRED’
"123"

<< DROP 'SAM’ STO >>
PETE

The process is repeated as necessary within algebraic objects, programs and lists,
which contain other objects. In the above example, the program object is further
broken into the object strings DROP, 'SAM’, and STO.

3. Each object string is checked against the syntax rules appropriate for its object
type. As each object string passes its tests, an object is created from the string
and pushed onto the stack. (This step is invisible--you won’t see a stack display
again until all of the new objects have been executed.) If any object string is
found to violate a syntax rule, all of the newly created objects are dropped from
the stack, and the command line is reactivated, with the cursor placed at the posi-
tion in the command line where the error was encountered.

4. When the command line has successfully been converted into stack objects, a copy
of the original text string is saved in the command stack (unless it has been dis-
abled). Normally, this only happens if there are no syntax errors. However, if the
HP 48 runs out of memory while it is creating the command line objects, the com-
mand line is saved, giving you a chance to try again after you have cleared some
additional memory. If the command stack is disabled, the command line text is
never saved.

5. The new stack objects are combined into a program, which is then executed.

6. If the ENTER was implicit, the operation associated with the key that started the
ENTER is executed.

7. If vectored ENTER (section 7.4) is in effect, the post-entry object (BENTER) is
executed.

8. When the command line program plus the implicit ENTER key operation are fin-
ished, the HP48 checks to see if there have been any keys pressed since the
ENTER. If there have, the “busy” annunciator remains off, and those keys are
processed.

9. Finally, when all execution is complete, and no unprocessed keys remain, the stack
is displayed (unless some special display supersedes the normal stack display) and
the busy annunciator is turned off. Since the stack display can take an appreciable
amount of time, the display is postponed when keys are pending, to speed up the
overall process.
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There are several advantages of using command lines instead of immediate-execute
command keys:

e You can repeat a sequence of commands without having to make the sequence into
a program. Each time you execute the sequence, you can recover the command line
with , then press to execute it again. You can also modify the
sequence each time you execute it.

¢ If you get an unexpected result, you can press to recover the stack,

then to reexamine what you did. (Since itself does an
implicit ENTER, you should press STACK] before [LASTCMD] to recover
the original stack.)

e It’s the fastest way to execute the command sequence from the keyboard, since you
don’t have to wait for the stack display after each object is executed.

e Because the command line is a program, you can do anything within the command
line that you can in a program--create local variables, use program branch structures,
HALT, single-step, set error traps, etc.

You can also turn this picture around and imagine a program as a command line for
which execution is postponed. You can take any command line, surround it with <<

>>_and obtain a program that enters level 1 unexecuted when you press [ENTER] .

6.43.1 Comments
The @ character is a special delimiter that allows you to embed comments within com-
mand lines. A comment is text that is not converted into any object; it is discarded
when the command line is entered. This is obviously oflittle use when you are creating
objects directly on the HP 48; however,it is very useful when you are creating or editing
objects using a word processor on a personal computer. In that case, comments can be
very helpful in documenting a program for later review, or in keeping track of stack
objects as you are writing a program. When you transfer the program to the HP 48, the
comments are automatically removed by the calculator.

Any text between two @ symbols in the same line is treated as a comment. This allows
you to insert a comment at any point between objects--in fact, at any point where a
space is allowed, such as between the elements of a vector (within string and name
objects, the @ is treated as an ordinary character). If there is only one @ in a line,
then all of the line to the right of the @ becomes a comment. The latter form is most

common in programs, where you might include comments at the end of most program
lines.
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6.5 Object Editing and Viewing

Editing an objectis the process of recreating a text representation of the object, chang-
ing the text, then constructing a new version of the object from the altered text. For
most types of objects,this is achieved by recalling the object to the command line using
EDIT or VISIT:

° copies the object in level 1 to the command line in text form, automatically
activating program entry mode. There you can make any desired changes, then
press to replace the original object with the modified version (more precisely,

drops the original object, and executes the command line). If you press
instead, the command line is abandoned and the level 1 object is left intact.

o is an indirect form of EDIT, where the object to be edited is specified in
level 1 rather than being present in level 1 itself. If level 1 contains a real number,
that indicates the stack level of the target object, e.g. 3 edits the object in
level 3. VISIT’s argument may also be a global name, in which case the object stored
in the corresponding global variable is copied to the command line. In either case,
pressing replaces the original object with the edited version. More accu-
rately, when the argumentis a global name, replaces the stored object with
whatever object ends up in level 1 after the command line is executed. In the case
of a numerical argument, VISIT rolls the object in the specified level to level 1 and
then applies EDIT. drops the level 1 argument, executes the command line,
and rolls the resulting level 1 object back to the original VISIT level.

Asfor EDIT, cancels VISIT, discarding the command line (and the level 1 argu-
ment), and leaving the original object unchanged.

Both EDIT and VISIT automatically activate the edit menu, which contains additional
editing operations. You can also activate this menu when you create a command line to
enter new objects, or restore the menu after switching to another menu, by pressing

whenever the command line is present. The menu contains the following opera-
tions:

e =SKIP-Z and £-SKIP= move the cursor forward and backward by several characters at
at time, so that you can you move the cursor quickly to a point where you wish to
make changes. Each skip moves to the next or previous non-space character that
follows a space or a newline.

e ZDEL-Z and £.DELE “move” in the same manner as ESKIP-= and E-SKIPZ , except

that they delete the characters between the original cursor position and the destina-
tion (so the cursor doesn’t move on the display). ZDEL-Z deletes to the right, from
the current character up to (but not including) the destination character. Z-DELZ
deletes to the left, from the character to the left of the cursor through the
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destination character to the left.

e [>]EDEL-E is an extension of EDEL-Z , deleting all characters from the cursor posi-
tion through the end of the current display line. Similarly, Z-DELE deletes all

characters preceding the cursor position on the currentline.

 

 

e ZINSE turns insert mode off (and back on, if you press it again), so that subsequent
typing overwrites the characters under the cursor instead of inserting new characters.
This is useful when you are replacing a sequence of command line text with another
of comparable size. The state of insert mode is preserved during the current edit
session until you deliberately change it, but insert mode is always restored after

.

e S1STKE activates a restricted form of the inferactive stack (section 4.5), where the
menu contains the single key ZEECHOS . This key echoes, i.e. copies, the object
selected by the stack pointer to the command line at the cursor location. After

echoing any number of stack objects, press or to return to normal com-
mand line entry.

ZECHOES is particularly useful when you want to include in a program or a list an
object that you have previously entered or computed, without having to retype the
object. It also provides a means by which you can create an algebraic object using
the EquationWriter, or an array using the MatrixWriter, then enter the object into a
program without having to retype it in command line format.

6.5.1 Viewing Objects
The command line also is the standard mechanism for viewing all of an object even

when you don’t want to edit it. The standard display will show up to four 22-characters
lines of the level 1 object, but often this isn’t enough. Since viewing an object too large
for the display requires many of the same display scrolling operations as editing, the
HP48 just uses EDIT as its default object viewer. To streamline the operation, the [V]
key (when no cursor is present) provides single-key access to edit/view an object. This
key choice is associated with the interactive stack (section 4.5). You can picture the
standard display as a window on the stack, which shows all of the level 1 object, and
one-line displays of the remaining stack objects. Then just as you press [A] to view the
objects above the initial display, you press [V]to view the rest of the first object, hidden
“below”the initial display.

For most types of objects, viewing an object with [V] is the same as editing the object
with . However, for unit objects and algebraic objects, [V], with its emphasis
on viewing, activates the EquationWriter to display the objects. Similarly, for arrays [V]
copies the object to the MatrixWriter instead of to the command line. For these three
object types, therefore, you must choose which style of edit/viewing you want:
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e For an algebraic object or an unit object, use [] for the EquationWriter when you
want to view the object in a “textbook” form, or if you want to apply operations to
the object using RULES in the subexpression menu. Use when you want to
edit the object in a way that changes the structure or formal value of the object. For
example, consider the algebraic object ‘A+B+C+D’. To commute the last two
terms to obtain ‘A+B+D+C’, you can use RULES since the operation is an identity
operation that preserves the formal value of the expression. But a modification of
the expression to 'A+(B+D)/C’, for example, is essentially the entry of a totally new
expression where you are just using the original to save a few keystrokes. For this
type of change, RULES isoflittle use; is the appropriate choice.

e For arrays, [V] to the MatrixWriter is almost always the best choice because of the

superior viewing and editing resources it provides compared with the command line.
One case where the command line does provide an advantage is that of two- and
three-element vectors. For these objects, the command line allows you to enter or
edit the components in polar coordinates (section 11.3), whereas the MatrixWriter

can deal only with rectangular coordinates.

6.6 The Matrix Writer

Although command line entry of arrays is straightforward and efficient, the lack of any
automatic formatting as you enter numbers makes it easy for you to lose track of which
element is which. When you edit an existing matrix, its rows are displayed on separate
lines, but there is no attempt to align the columns. With the MatrixWriter, the HP 48
provides formatted entry, viewing, and editing of arrays, plus other operations that are
useful in array analysis.

There are three methods of activating the MatrixWriter:

e To start entry of a new array, press . This activates the MatrixWriter
display, with empty element cells.

e To view or edit an existing array, press [V] with the array in level 1. This copies the
array to the MatrixWriter.

e EDITZ (in the menu) copies the statistics matrix specified in ZDAT to the
MatrixWriter for viewing or editing.

When you start by pressing , the initial MatrixWriter display looks like this:
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5 £HI0 [WI0>GO0504    
The MatrixWriter is modeled in many respects after computer spreadsheet programs.
The row-column format of a spreadsheet is a natural one for working with an array,
where each cell contains one array element, real or complex. Since the HP 48 does not
provide symbolic arrays, the MatrixWriter does not implement a spreadsheet’s cell for-
mulae, but many other operations are common to the MatrixWriter and spreadsheets.
A spreadsheet’s row and column labeling translates to the matrix row and column
numbers that are shown in the small font along the top and left edges of the display. As
an additional reference, the current dimensions of the array are shown in the upper left
corner in the format rowscolumns. In a new array, the dimensions start as 00, as in the

picture above.

Also like a spreadsheet, the MatrixWriter provides a cell cursor that consists of an
inverse-video highlight of the active cell, which you can move to select any cell by using
the cursor keys (prefixing a cursor key with moves the cursor to the end of the array
in the indicated direction). The row-column indices of the cursor are initially displayed
in the line above the menu keys. If the current cell contains a value, that value is also
displayed with the coordinates in the format row-column: value. When you begin to
enter or edit an element, the index/value line becomes a command line where you can
enter one or more objects.

When you activate the MatrixWriter, a two-page menu of MatrixWriter operations is
provided. You can change to other menus as you enter array elements; to return to the
MatrixWriter menu, press MATRIX] .

The first page of the MatrixWriter menu contains the WID- and ~WID operations,
which you may use to increase or decrease the displayed column width to see more or
fewer characters in any cell. WID- increases the column width so that one fewer
column is displayed (minimum one), apportioning the extra display space to the remain-
ing columns. Similarly, «WID increases the number of displayed columns by one (max-
imum five). The HP 48 remembers the width setting between MatrixWriter sessions.
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6.6.1 Array Entry
Entering array elements in the MatrixWriter is quite similar to entering numbers onto
the stack. You can enter one number at a time, following each with , OF you can

use the command line (which is automatically set to program entry mode) to accumulate
several values to be entered sequentially with . The command line is executed in
the usual way (section 6.4.3), so you can include sequences that compute an array ele-
ment as well as entering the element directly. For example, to enter V'3 as an element,
you can type 3 V or 'V3' -NUM followed by . When you start a command
line for one or more elements, the HP 48 notes the current stack depth. After ,

if the stack depth has increased, each new stack object is moved in order to successive
array cells, starting with the highest stack level of the new objects. If the stack depth
has not increased, the array is not changed. Of course, all of the new objects must be
real or complex numbers; if any are other types, then the MatrixWriter exits with the
error message Invalid Array Element. When this happens, the existing array is returned
to level 1, and any objects from the command line are left in higher levels, with the
invalid object in level 2.

While the command line is active, the cursor keys move the character cursor within the
command line, not the cell highlight cursor. To move the cell cursor, you mustfirst use

(or [ATIN] ) to complete command line entry. When you start a new command
line, the array display remains visible during entry, unless you enter a newline, at which
point the array display disappears in favor of the command line. The array display is

restored when you complete command line entry (or if you back up to a single line).

Although our discussion here uses real arrays for examples, the MatrixWriter works

equally well with complex arrays. To create a new complex array, you must enter a
complex number into cell 1-1. After that, you can enter real or complex numbers; real
numbers are automatically converted to complex by . You can not, however,
enter a complex value into an array that has been established as a real array.

To enter a completed array onto the stack and exit the MatrixWriter, press with
no command line. clears the current command line; if there is no command line,

terminates the MatrixWriter but does not enter the current array, which is dis-

carded.

Initially, when you are creating a new array, the array dimensions are not determined;

successive elements that you enter are placed in cells starting at 1-1 and going across the
first row or down the first column. You can choose the direction of entry by using the
£GO-% and  GO: keys. The menu key labels for these keys indicate the current mode;
if a label has a white box in it, the cursor will move in the direction indicated by the
arrow in the label after each cell value is entered. Pressing either key toggles its box on
or off; if on, then the box in the other label is turned off.

-151-



6.6 Methods

e Choosing GO- (as indicated by the white box in the key label) causes successive ele-
ments to be entered in the first row:

SGo-= 1 2 3 =

B
 

340 el R1I   
e Selecting GO! causes the elements to be entered in the first column:

=Go:= 1 2 3 [ENTER =

3-1 -I_-_I

2
3

 

ST 0BT T   
e If you turn off both GO- and GO! (by pressing the key that has the white box), then

the cursor does not advance after a number is entered, and successive entries

overwrite the current cell unless you move the cell cursor to a new cell.

When you are entering an array by rows (GO-), you must specify the width of the array
by pressing [V] after entering the last element in the first row:

[>IMATRIXI 1 2 3 [ENTERl [V] =

-152-



Methods 6.6

 

   
ST TERTTNTD   

The cursor has moved to the beginning of the second row. Now succeeding entries will

automatically “wrap” at the end of each row:

4 5 6 7 8 9 [ENTER] =

 

   
0N €10[HI03|50504    

Similarly, if you are entering in columns (GOV), you must press [=] to mark the end of
the first column. Then succeeding entries will automatically wrap to the next column

after each columnis full.

You can change directions at any time. If you do so while the cursor is positioned in a
partially-completed row or column, the remainder of the row or column is automatically
filled with zeros. However, the white-box active symbol does not change to reflect the
new direction choice until you actually enter a new cell value.

The HP 48 remembers the GO-/GO! mode between MatrixWriter settings so that you
don’t have to reset it to your preference each time you activate the MatrixWriter.

6.6.1.1 Vector Entry
By default, the MatrixWriter assumes that when you create an array consisting of only
one row,it is to be entered as a vector. When you press , you can observe

that the EVECO= menu label contains a white square, which indicates that a one-row
array will be entered as a vector. If you press EVECOE (which removes the white square
from the label) any time before the final , a one-row array is entered as a 1Xn
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matrix.

When you activate the MatrixWriter via [V] to edit an existing array, the VEC setting
automatically matches the array type, indicating vector type (white square) if the array is
a vector, or matrix type (no white square) otherwise. Thus it is a simple matter, for
example, to change a one-row matrix into a vector by pressing [V]EVECE . Note
that the VEC setting is irrelevant if an array has two or more rows.

6.6.2 Editing Cells
You can change the contents of any MatrixWriter cell by moving the cursor there with
the arrow keys, then:

e To replace the current number, type a new command line and press [ENTER] .

e To copy the current value to the command line for minor changes, press ZEDIT= .
Then make any desired changes in the command line text, and press to
replace the old value ([ATTN][ATTN] cancels the change).

 
ZEDITE does not change the current menu; if you want the command line EDIT menu

(section 6.5), press .
 

6.6.2.1 Changing Array Dimensions
You can add a row or column to the current MatrixWriter array by placing the cursor in
the first empty row or column, and entering a value. Unless this happens to be the next
normal entry position (determined by GO- and GOV), zeros are automatically entered
into other cells as necessary to keep the array fully rectangular.

You can also add and delete columns and rows within the existing matrix by using the
keys in the second page of the MatrixWriter menu.

. inserts a row of zeros in the current cursor row, moving the current row and
below down by one row. Thus with

 

   
J0hi 1410 HID    
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[+ROW] yields

Y-3 -m_'.l

A @
9 B
8 9

-1: H
[+ROH |-FOKW]+COL |-COL [33TH |+3TE]   

 

 

e Z-ROWE removes the row containing the cursor, moving the contents of rows below

the cursor up by one row. From the preceding picture, Z-ROWE yields

3-3 -1_'2-‘:—1

2 B
8 9

 

[+ROM [-ROKW]+C0L |-COL [#3TH|[+5TE]   
e = +COLE inserts a new column of zeros at the cursor column, moving the contents of

columns at and to the right of the cursor to the right by one column.

e =-COLE deletes the column containing the cursor, moving the contents of columns to
the right of the cursor one column to the left.

6.6.2.2 Stack Access
The final two entries in the MatrixWriter menu provide for the exchange of numbers
between the MatrixWriter and the stack:

 
e =_STK= enters the contents of the cursor cell onto the stack. 
 

e S1STKE replaces the MatrixWriter display with the interactive stack (section 4.5). If

there is no command line active, the menu is the full interactive stack menu; other-
wise the menu contains only ZECHO= . In either case, you can use EECHOZ , to copy
a stack object to the MatrixWriter command line (since ZECHOZ creates a command
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line if one does not already exist, the interactive stack menu subsequently is res-
tricted only to SECHOZ ). Either or terminates the interactive stack and

returns to the MatrixWriter display.

6.7 The EquationWriter

The HP28C was the first calculator to combine the computational flexibility of RPN

with the ability to represent and manipulate algebraic expressions in a readable form.
The HP28’s expression format resembles that common to most computer languages--
expressions are shown as a line of text, using various precedence conventions to minim-
ize the use of parentheses. This linear format is much easier to read than the equivalent
RPN representation, but still falls short of common written notation (see also section
2.1), in which precedence and other information is conveyed by vertical and horizontal
positioning and various special symbols that are not available in the linear format. The
HP48 is the first handheld calculator to provide two-dimensional graphical entry and
display of expressions, by means of the EquationWriter.

It is fair to say at the outset that the EquationWriter strains the HP 48 processing sys-
tem to the limit. That system is limited to a modest performance by modern computer
standards for reasons of physical size and battery life. The EquationWriter can be frus-
tratingly slow, especially in the backspace operation, which requires rebuilding the entire
expression picture. Nevertheless, the EquationWriter is an invaluable tool:

® The entry of constructs such as integrals is much easier in the EquationWriter than
using the linear format, simply because the graphical format provides a visual guide to
the entry of arguments; when you see a picture like this:

 

|IF_|CAZE[ZTRRT]FOR |00JLHILE   
you know it is time to enter the lower limit of an integral. In the linear format, you see

T2+ (1/%)%(&)
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without any help except your memory for choosing which among four argumentsis to be
entered next.

e After you perform various symbolic calculations, the EquationWriter is very helpful for
viewing and understanding a result when the linear format is overwhelmed with
parentheses and precedence. The contrast between
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and
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™

   
speaks for itself.

e For the interactive application of mathematical identity rules to rearrange and solve

expressions the HP 48 RULES system using the EquationWriter is a distinct improve-
ment over HP28 FORM, in which specification of a subexpression often is effectively
impossible because of the superabundance of parentheses.

The EquationWriter is specifically not designed for editing expressions. It will not per-
mit operations that change the formal mathematical value of an expression, such as
inserting or deleting parentheses, substituting different functions, inserting or deleting
terms, etc., except by means of the operation in the subexpression menu, which
activates the command line editor for a selected subexpression.
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The subexpression (section 3.5.2.1) is a key concept in EquationWriter operation. Again,
a subexpression is any portion of a mathematical expression that can stand alone; that
is, it can be treated as a complete expression by itself. Specifically, a subexpression con-
sists of a number, a name, or a function and its arguments. A number--real or
complex--is the simplest case; if you like, you can think of a number as a function that
takes no arguments and always returns the same value.

For example, consider the expression a + sin(b—c). Rewriting this in Polish notation
(section 2.1), you obtain + (a, sin(-(b,c))). The “outermost” subexpression is the
entire expression, consisting of the function + and its arguments @ and sin (- (b,c)).
Each of the two arguments is a subexpression--the first is just the name a, the second is
the function sin and its argument — (b,c). The latter in turn is a subexpression consist-
ing of — and its arguments b and c, and so on as you peel off the layers of parentheses.

6.7.1 The EquationWriter Display
While the EquationWriter is active, the text screen is dedicated to the expression pic-
ture. Menu keys retain their normal definitions and menus; however, keys that

correspond to commands that have no meaning in an algebraic context merely beep and
do nothing. Similarly, the primary and shifted keyboard keys are usable only if they
make sense:

e Keys corresponding to algebraic functions enter those functions into the expression
in their graphical form.

e Menu keys, LAST MENU] , , and and switch menus as usual.

o Alpha-shifted keys retain their usual actions.

e User mode is available, although the USER annunciator is not visible; however, only
keys defined with algebraically legal objects are active.

e The cursor keys have special meanings that combine cursor "movement” with
mathematical function entry.

e [& performs a limited destructive backspace.

e [ enters a comma or semicolon, to separate the arguments of multi-argument func-

tions.

e =] enters the = sign for an equation, or for the lower limit of a sum.

o is used to enter any "required” characters--separators (comma or semicolon)
between arguments, = signs in 2 start assignments,etc.

o EDIT] transfers the current EquationWriter expression to the command line.
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° turns the HP48 off normally; pressing restores the active Equation-

Writer display intact.

° switches off the menu and the cursor so that you can use the cursor keys

to scroll the current expression picture through the display. This permits viewing
portions of the expression that have moved out of view during expression entry. A
second press of restores the menu and puts the cursor back at the end of

the expression for further entry.

o captures the current expression picture as a graphics object on the stack. (This
is analogous to the action in interactive plotting.)

e [EVAL] (or ) is equivalent to ( ENUM] ), for immediate entry

and evaluation of the current expression.

o toggles implied parentheses mode on and off (default on). See section
6.7.2.5.

° "] captures the current expression as a string object on the stack (section

6.7.5).

o takes an (algebraically legal) object from the stack and appends it to the
current expression. The object may also be a string, such as that captured by

],

. clears the current expression without leaving the EquationWriter.

EquationWriter execution is terminated by , which closes all pending subexpres-
sions and enters the current expression onto the stack, where you will see it in linear
form. and [ENUM] act as shortcuts; either key performs and then exe-
cutes its normal operation before returning to the standard environment. You can also
exit from the EquationWriter with , which returns to the standard environment
but abandons the current EquationWriter expression (if you activated the Equation-
Writer with [V], the original level 1 object is preserved).

6.7.1.1 Invoking the EquationWriter

You may activate the EquationWriter in three ways:

. EQUATION] starts the EquationWriter with an initially blank screen, for the entry
of an entirely new expression.

e Pressing [V] with an algebraic object or a unit object in level 1 activates the Equa-
tionWriter with that object as its current expression.

e ~GROB (section 10.3.2) specified with the 0 font argument creates a graphics object
containing the EquationWriter picture of an algebraic object or a unit object.
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6.7.2 Basic Expression Entry
Entering an expression in the EquationWriter environment consists of “drawing” the
expression in a two-dimensional graphical form, in more-or-less the same order as the
expression is written by hand, working left-to-right. Object entry takes place at the cur-
sor, which is always at the end of the new expression. All three HP 48 character fonts
are used in building an expression picture, starting with the large font for the main line
of an expression, dropping to the medium font for exponents and for the limits of
integrals and sums, and finally to the small font for exponents of exponents, etc. The
cursor grows and shrinks also to match the current font size at the cursor.

To minimize memorization of arbitrary key sequences, the EquationWriter makes as
close a correspondence as possible between cursor movement and the hand motions you
make when writing an expression on paper. The crucial key is [>], which terminates, or
closes, entry of a subexpression. The choice of [>] arises from a general model of enter-
ing expressions from left to right. The cursor is always at the right end during expres-

sion entry, so pressing [>] is taken to mean “go even farther right”--i.e. close the current
subexpression and start a new one. In some cases, such as when entering an exponent
or a numerator, the natural terminating motion is “down”; hence [V] is also allowed,
and is equivalent to[=>]. Closing a subexpression means:

e entering a right parenthesis (this is the only way to do this);

e finishing an exponent;

e finishing a numerator or denominator;

e completing a square root or XROOT argument;

e completing any of the various arguments in a multi-argument function. In this case,
[>] enters an argument separator “,” or “;” to separate parenthesized arguments, or
moves to the next argument location in structures such as integrals, sums, and |
(Where).

When the cursor is in a position representing the end of several nested subexpressions,
you can use [>] as a shortcut to complete all pending subexpressions. It is
equivalent to pressing [>] repeatedly until all subexpressions are closed and the cursoris
at the right end of the main entry line. Thus if you have entered

_A
BS°

pressing [][>>] closes both exponents and the fraction to
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A
BC°
 

The space key plays a role similar to, but not quite the same as [>] . (you can
also use [1][2]) is used to separate the required arguments of a multi-argument func-
tion (not counting infix functions, where the function itself separates the arguments).
Like [>], enters an argument separator “,” or “;” or moves to the next argument
location. However, you can not use to terminate the final argument of any func-

tion; it will beep and display Invalid Syntax to indicate that no further arguments are
permitted. Another distinction between and [>] is in their application to functions
of an indefinite number of arguments (including user-defined functions): must be
used to separate the arguments, since [>] will close the subexpression. For example, if
you have entered

UDF(10

then pressing yields

UDF(1,0

ready for another argument, whereas [=>] gives

UDF(1)0 .

Although there is some overlap between the actions of [SPC] and [&>], we recommend
that you use [SPC] for separating successive arguments within parentheses, and [>] for
moving between physically separated argument locations.

You naturally can not leave any required argument location empty; if you press [=] in
such a situation, it just does nothing and leaves the cursor in place. You can not prop-
erly close a subexpression unless all of the required arguments of the function that
defines the subexpression are present. in this case beeps and displays Incom-
plete Subexpression

Upward motion when writing an expression can arise from a number of constructs, in
particular exponents and division numerators. The EquationWriter chooses the latter
for its [A] action, since exponentiation is easily represented by the [Y<] key, and since
two keys are really needed for division--see the preceding section 6.7.2.4.

Finally, motion to the left implies a correction of already-entered symbols. The simplest
case is the erasure from the right represented by (section 6.7.4). [<]is directed to
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more elaborate manipulations;it activates the subexpression environment (section 6.7.6).

6.7.2.1 Number Entry
Numbers are entered into the EquationWriter in same manner as in the command line,
with certain exceptions that arise from the non-RPN context:

o merely echoes a minus sign at the cursor and does not affect any sign to the
left of a number. You can use either or =] to prefix a negative quantity or for
subtraction.

e [EEX]just types an E at the cursor.

¢ You must separate the real and imaginary parts of a complex number with a comma
or a semicolon. After you enter the real part, will enter the separator appropri-
ate for the current fraction mark mode.

6.7.2.2 Names and Prefix Functions

You can enter a global or a local name by typing the name with alpha keys, or by press-
ing a CST, VAR, or LIBRARY menu key corresponding to the name. The same method
applies to ordinary prefix functions (functions with their arguments following within
parentheses), including functions represented by XLIB names, except that the Equation-
Wiriter is also sensitive to their definitions. This means that when you complete entering
a function name, by pressing [], , , or another function key, the Equa-

tionWriter immediately checks the syntax, and adds a following left parenthesis if
needed. Furthermore, if the entry is an RPN command name, it is rejected with the

Invalid Syntax message.

Since the EquationWriter does not allow entry of spaces ( enters argument separa-
tors), you must enter those infix functions with multi-character names, such as MOD,

AND, NOT, etc., by pressing a menu key or a user key for the function.

6723 +, -, X

These infix operators (functions that appear between their arguments) appear in their
natural form, with the extension that the EquationWriter’s graphics allow substitution of
the centered dot “-” instead of the more obtrusive “#” of the linear format:

[AlIx][B] = AB.

Although the HP 48 does not explicitly support implied multiplication (in order to pro-
vide for multi-character variable names), the EquationWriter will automatically insert a
multiply (“-””) whenever the syntax is sufficiently unambiguous to permit it:
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e in front of an alpha character entered after a number: [1][A] = 1-AQ

e between right and left parentheses: ...) [][O] = ..)-(0O

e in front of prefix functions (unless typed in with alpha keys): [A][SINJez A-SIN([O

o in front ofthe divide bar: [AI[A] = A —

e in front of square root: [A][V] 1= A-\/E

You should need to use only to separate objects entered with typed sequences
rather than with single-keystrokes, such as the products of numbers and names. If you
are uncertain of whether implied multiplication will happen, it is always acceptable to
press directly.

6.7.2.4 Division
Symbolic fractions are displayed by the EquationWriter as a numerator above a divide
bar above a denominator, with the divide bar two pixels wider than the longer of the
numerator and the denominator (left-to-right length). There are two ways to enter a
fraction. The first is to enter the numerator, press [+ |, then enter the denominator,

terminating the latter with [&]. For example,

1OGEIRIGEIEIE] yields 543 0"

With this method, which is derived from the ordinary infix divide used in the linear for-
mat, it is not necessary to enclose the denominator in parentheses. However, if the
numerator contains more than one object, it is necessary to enclose the numerator in
parentheses to indicate the extent of the numerator subexpression. Requiring numera-

tor parentheses violates the spirit of entering expressions as you write them, so an alter-
nate method is provided.

 

The second method uses [A]to mark the start of the numerator, following the motion of

a pencil moving up the paper as you start writing a numerator. Pressing [A] moves the

cursor up half a line and draws a divide bar under the cursor:

 

1+2+3+1

  IR™AEE
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As you enter subsequent objects, the bar stretches under the new objects (the stretching
occurs when each object is terminated, not when individual letters or digits are typed):

 

{ +744200

  PARTZ| PROE MATE [YECTF] BERAZE
 

You signal the end of the numerator by pressing [V] or [>] , whereupon the cursor
moves down to the empty denominator:

 

1+2+3+4+S+5

  PARTZ| PROE MATE [VECTE] ERZE
 

Now the divide bar stretches further when and if the denominator width exceeds that of
the numerator. [>] terminates the denominator, redraws the fraction with the numerator
and denominator centered, and moves the cursor to the right end of the fraction.

The division initiated by [A] actually corresponds to the prefix function RATIO instead of
to /. This function is equivalent to / when executed, and is automatically converted to /
when you exit the EquationWriter with . Because it offers no non-
EquationWriter functionality not provided by /, RATIO does not appear in any menus.
Unless you deliberately enter it in the command line, the only time you are likely to see
RATIO by that name is in strings created by the [>][" "] key from within the Equation-
Writer (section 6.7.5).
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6.7.2.5 Exponents

You enter an exponent by pressing [y* immediately following the object or subexpres-
sion (the base) to be exponentiated. This causes the cursor to move up half a line, and
to reduce to the next-smaller font (unless already using the small font). If the base
expression is defined by a multi-argument function, parentheses are automatically added
around the expression if they are not already present. [>] or [V] terminates the
exponent entry, moves the cursor down to the base line, and returns to the previous
font.

You must parenthesize multi-term base expressions, as you would in written notation. It
is not necessary to parenthesize the exponent, regardless ofits structure. However, this
means that you must always use [>>] or [V] to terminate the exponent, which may appear
to be an inconvenience if you are entering, for example, a polynomial containing nothing

but single term exponents. For this reason, the EquationWriter allows you to disable
implicit parentheses.

In the normal operation of [+ ], V, and [¥*], subsequent entry adds objects to the
denominator, square root argument, and exponent subexpressions, respectively, as if
invisible parentheses surrounded the subexpression. If you press , the implicit
parenthesization is disabled (Implicit () off is displayed), and entry of the subexpression
following one of these operators is automatically terminated by any subsequent function
key. Moreover, that is the only way to terminate (except ); pressing [>>] has no
effect. This is convenient for entering polynomials: each exponent is completed by entry
of the function that starts the next term. A second use of (Implicit () on) reen-
ables implicit parenthesization (which is always active upon entry to the Equation-
Writer).

6.7.3 Special Forms
In addition to basic expression entry described so far, using names, numbers, prefix
functions, and the infix functions +, —, X and =+, the EquationWriter provides special

forms for square root, xth-root (XROOT), integral (), derivative (), sum (¥), and
where ().

6.7.3.1 Square Root

Pressing [V displays a square root symbol with an overbar above the cursor: VO. As
you enter the argument, the overbar stretches horizontally (in the manner of the divide
bar) and the leading \/ stretches vertically, to match the growing argument. As usual,
[>] or [V] marks the end of argument entry, whereupon the overbar shrinksif necessary
to the length of the argument without the cursor, and the cursor moves two dot columns
to the right of the end of the overbar.
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6.7.3.2 xth-Root
Whether XROOT is considered as a prefix or an infix function in its written form is
ambiguous. In the EquationWriter, you press the XW key before entering either argu-
ment. This moves the cursor up a half line, and reduces the font (but does not yet enter
the V' symbol). You then enter the x argument; when you press [=] (or [¥] or ) to
terminate the argument, the V' symbolis drawn as well:

+*\o

Now you enter the y argument, during which the V symbol stretches as for ordinary
square roots. Another [>] terminates the entire XROOT subexpression.

The fact that the x argument is written in the EquationWriter before the y argument
means that the linear format syntax for XROOT is XROOT(x,y). However, you should
note that the RPN syntax for XROOT is y x XROOT; x is entered after y. This makes

XROOT consistent with *, and more convenient for manual calculations, but it means

that XROOTis an (the only) exception to the usual HP 48 rule that the order of argu-
ments within parentheses is the same as the order in which they are entered for RPN
execution.

6.7.3.3 Derivative
Pressing] enters this form:

9
00

The cursor is positioned at the differentiation variable name field. Keying in a name
terminated by [>] then yields

d

dname
 (o

Now the cursor is positioned for entry of the expression to be differentiated; the
expression’s entry is also terminated by [>], which closes the parentheses.

6.7.3.4 Integral

[?>][T] draws a large (about three times a character’s height) integral sign, with the cur-
sor positioned at the lower integration limit:

L
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The integral sign changes in size as the integral’s arguments, so that the symbolis as tall
as the sum of the heights of the limits and the integrand. The integrand does not over-
lap either limit horizontally or vertically. It starts at the horizontal position beyond the
right ends of the of the lower and upper limits.

An integral has four fields:

upper

f integranddname
lower

You enter these in the order lower, upper, integrand, name, ending each successive field
with [>] . Terminating the integrand automatically enters the "d" symbol a half space
past the end of the integrand. Terminating the name (the integration variable) com-
pletes entry of the entire integral and moves the cursor a full space to the right of the
end of the name.

The integration variable name field can only contain a name; the other fields can con-
tain arbitrary expressions.

6.7.3.5 Summation

draws a large summation symbol X, with the cursor positioned at the lower
integration limit:

>
o

Unlike the integral sign, the summation symbol does not change in size as the various
arguments are entered. The start index expression grows downward and the stop limit
expression upward to avoid overlapping the 2 itself. Similarly, the summand expression
starts at the horizontal position beyond the right ends of the of the index expressions

An sum has four fields:

stop

>, summand
name =start

You enter these in the order name, start, stop, summand, terminating each successive
field with [>] , which moves the cursor to the next field. When you end the name field
(which can only contain a single name) [>>] automatically enters the "=" symbol after the
name (you can also use [=1). Terminating the summand completes entry of the
entire structure, and moves the cursor one space to the right of the end of the summand
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expression.

6.7.3.6 Where
The function | (pronounced “where”) is an infix function with one preceding argument

and an indefinite number of following arguments. Pressing| draws a vertical bar
and places the cursor at the bottom right of the bar:

AXY) |,

At this point, you enter a series of one or more assignments of the form name=value,
separated by commas or semicolons. You can use to enter either = or the comma,
or you can use [$][=] or [$1][s] as appropriate. A typical entry looks like this:

AX.Y) X=2,Y=30

Pressing [>] after completing an assignment expression completes the | subexpression.

6.7.3.7 Units
In the EquationWriter, the underscore delimiter _ is treated as an infix function (section
2.1); no other special provision is required for units. You enter a unit object in the
usual form magnitude_units, where the units part is a subexpression with exponents, mul-
tiplication signs, and divide bar displayed in the usual EquationWriter style. You can use
various UNITS menu keys function as typing aids during unit entry.

In the entry of the unit part, the EquationWriter does not attempt to prevent you from
entering otherwise valid subexpressions that contain functions not permitted in units. In
this respect the EquationWriter behaves the same as the command line for the case
where a unit object is entered within an algebraic object. No error is reported until the
resulting expression is evaluated.

6.7.4 Correcting Mistakes
The EquationWriter provides a simple destructive backspace operation ( ) for

correction of ordinary wrong-key-press errors. “Simple” here means that while you can
quickly erase digits and letters, backing up over a function or into any closed subexpres-
sion is slow. This is because the HP 48 must recompute the entire picture as if it had
been entered from the start. This is preferable to making you retype the expression
yourself, but the delay can be frustrating. Furthermore, the destructive backspace per-
formed by is not an suitable method for structural revisions, such as inserting new
terms and parentheses. For these reasons, the command line editor is made available
from within the EquationWriter. Pressing copies the entire current
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EquationWriter expression into the command line (this is also true in RULES operation,

where copies the selected subexpression to the command line). ' ' delimiters
are automatically inserted around the command line object to identify it as an algebraic
type. Note, however that you can only edit a complete expression; you must make tem-
porary entries for any missing arguments in order to start the command line edit (once
the command line is active, you can replace the dummy entries).

Normal command line facilities are available, including the interactive stack SECHOZ .
The entry mode is automatically set to ALG PRG. [ENTER] returns the edited cxpressmn to

the EquationWriter; [ATTN] cancels the edit and restores the original expression in the
EquationWriter.

6.7.5 Stack Access
In addition to the “back door” to the stack via EtSTKE from the command line, the
EquationWriter provides more direct object exchange with the stack. For example, you
can capture the current EquationWriter picture by pressing ; a graphics object
representing the picture is invisibly entered into level 1. The current expression does
not have to be complete, which is useful when you are trying to capture a series of
step-by-step pictures of EquationWriter operation.

You can also store the actual entry sequence that led to the current expression at any
time by pressing "] . The choice of this key arises from its association with
strings, since the key sequence is stored on the stack as a string. You can later use the
string as a typing aid for reentering the same expression: pressing with such a
string in level 1 drops the string from the stack and appends it to the current expression
as if the string characters were typed in. When you observe an EquationWriter string
object on the stack, you will notice that the expression represented by the string follows
different precedence rules than used in ordinary algebraic objects; for example, the
expression

4

1
[2+3]

" RATIO(1,2+3)"(4)"

appears as

in string form, but as

'(1/(2+3))"4’
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in the linear form of an algebraic object. This difference makes it impractical for you to
create these strings other than from within the EquationWriter. Instead, you can use
proper algebraic objects, since the EquationWriter can take any algebraic

object from the stack as well as an EquationWriter-generated string.

You may also see EquationWriter strings on the stack when the HP 48 runs out of
memory during EquationWriter entry, which causes the current expression to be saved
on the stack as a string. After you free some memory, you can restart the Equation-
Writer, and use to recover the expression.

6.7.6 Subexpression Operations
During expression entry, the EquationWriter cursor is an open box that is always at the

end of the expression--the point at which object entry is taking place. Pressing [<]
moves the cursor “back into” the expression, simultaneously activating the subexpression
menu. The box cursor disappears, to be replaced by the subexpression cursor, an
inverse-video highlight of an object, which you can move around the expression to select
different objects and subexpressions.

As discussed at the start of section 6.7, a subexpression is defined by a function and its
arguments, where we include the zero-argument cases of names, numbers, and symbolic
constants. All of the operations in the subexpression menu apply to the subexpression
selected by the cursor. As you move the cursor, it jumps from object to object, but at
any point you can expand the cursor to highlight an entire subexpression by pressing
ZEXPRZ . For example, with the cursor positioned like this:

 

((RB)Q(CD))-(EF)

  EULES| EDIT EXPRZUE REPL EXIT
 

pressing SEXPRE shows the subexpression defined by the object +: 
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(GEENED]) - (EF)

  RULES| EDIT EXPRSUE REPL EXIT
 

The exponentiation function ” is “invisible” in the EquationWriter, since an exponentis
defined by its geometrical position. However, when you move the cursor between the

base and the exponent, the * pops into view so that you can select the corresponding
subexpression:

 

((RE)+CO)

  RULES| EDIT EXPRSUE REPL EXIT
 

Then ZEXPRE :

 

((RB)+(CD))

  RULES|EDIT |EXPR |SUE |REPL |EXIT
 

All subexpression menu operations are applied to the selected subexpression. These
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operations are defined as follows:

e SRULESE provides a set of identity operations that you may apply to the subexpres-
sion. We will defer a detailed discussion of RULES to Part II, where we will
describe the broader topic of symbolic algebra on the HP 48.
 
EDITZ copies the selected subexpression to the command line, where you can use

character editing to change it to any new subexpression (the only restriction is that
certain arguments, such as a differentiation or summation variable names, must
remain as names). restores the EquationWriter picture, with the edited

subexpression replacing the original. You can also cancel the edit with , leav-
ing the initial subexpression intact.

 

e =EXPREZ switches the cursor between highlighting an object and highlighting a subex-
pression. Pressing a cursor key to move the cursor always reverts to the object
highlight.

e =SUBEZ enters the selected subexpression onto the stack. When you leave the Equa-
tionWriter, any objects entered by ZSUBE will appear starting in level 2, since the full
EquationWriter expression object is returned to level 1 (this is also true for objects

entered by or []["].

e SREPLE replaces the selected subexpression with an object taken from the stack. The
object is taken (and dropped) from level1. if you entered the EquationWriter via [V
on an algebraic object or a unit object, that object is removed from the stack for the
duration of EquationWriter execution. Objects intended for REPL should therefore

start in level 2 (before [V] ). For example, to replace the A+B in 'SIN(A+B)"2’

with V/(C+D), start with the 'SIN(A+B)*2’ in level 1, and 'V/(C+D)’ in level 2.
Then [VV] displays the sine expression:

 

2
SIN(A+B) O

IF_|CASE[STRRT|FORDO[IHILE   
[ four times highlights the +:
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SIH(HIB]E

G VTSSI T S A3l    
Now ZREPLZE makes the replacement: 

 

51r~4[!fl':'fi]2

  ONEG|DINY¥1~1/1|+1-1]
 

The highlight is now on the V, since it is the function that defines the replacement
subexpression. You might also notice that the menu changes to the RULES menu
appropriate for V/; the REPL substitution is treated as an extension of RULES even
though it is not necessarily an identity operation. Any cursor movement restores the
subexpression menu.
 

e ZEXITZ returns the EquationWriter to entry mode, with the box cursor at the end of

the expression.
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One of the strongest features of the HP 48 is its extensive customization ability. Thatis,
for the sake of a particular application, or just for general use, you can turn the HP 48
into a highly personalized tool, focusing on the computations and interactions that you
prefer. The customizing facilities of the HP 48 are as follows:

e 57 system flags give you on/off control over the many HP 48 modes.

e Custom menus enable you to augment the built-in menus with your own specialized
menus.

e Key assignments change the actions of any of the shifted or unshifted keys.

e The vectored ENTER mechanism allows you to redefine the way the command line
interprets its entries, and to change what the HP 48 does after each keyboard action.

The basis of all of these mechanisms is the HP48’s programming capability, which

allows you to define complicated procedures to associate with keys and menus. In this
chapter, we will concentrate on the explicit customizing techniques, including some pro-
grams that illustrate the methods as well as serving as programming examples.

7.1 Modes and Flags.

A mode is a calculator setting that acts as a form of global argument for certain opera-
tions, that saves you from having to supply that argument every time you execute the
operations. The classic example of a mode, which is common to most scientific calcula-
tors, is the trigonometric angle mode, which determines how the trigonometric functions
interpret their arguments and results. The sine function is defined mathematically in
terms of dimensionless arguments expressed in radians; to compute the sine of an angle
expressed in degrees, you must multiply the argument by /180 before applying the sine
algorithm. On the HP 48, you can skip the multiplication by setting the angle mode to
degrees, in which the SIN command assumes that its (real) arguments are entered in
degrees. Similarly, the ASIN command returns its (real) results in degrees, performing
the multiplication by 180/7 automatically.

The current setting of a calculator mode is recorded by means of one or more flags
where a flag is a memory location that contains one binary bit. For a simple “on/off”
mode like the ticking clock display, only one flag is needed. A single flag is usually con-
sidered to be set or clear--if the flag bit is 1, the flag is set; if it is 0, the flag is clear. For

a multi-state mode like the angle mode, which has three settings, two or more flags are
needed. In these cases the flag values taken together make up a binary number with
two or more digits, ranging from the two-bit number that encodes the angle mode up to
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the six-bit number that records the binary integer wordsize.

Some HP 48 modes are controlled by flags that are only accessible to the operating sys-
tem. You must switch these modes with manual operations; there is no programmable
control. Examples of these modes are the stack recovery or command stack
active/disabled modes, which are selected by means of menu keys in the

menu; command line insert/replace, selected by the EINSE menu key in the EDIT menu,

and the Matrix Writer entry-order mode, controlled by the £GO-= and GO: menu
keys.

The majority of HP 48 modes are represented by user flags, so called because you can
control their values manually and in programs. There are 128 user flags, numbered
from -63 to +64. Flags in the range —63 to —1 are used for HP 48 modes and signals.
Signal flags are used to convey the nature of certain results, such as floating-point over-
flow, when the use of an additional stack result would be inconvenient. There are a few

unused flags in this range, which is ordered to keep related flags in groups numbered
starting with a multiple of 5, plus 1. Flags 0-31 are strictly reserved for users’ programs.
The remaining flags 32-64 are nominally reserved for libraries (the HP Solve Equation

Library uses flags 60-62), but you can use any of these flags as long as they don’t con-
flict with the libraries’ use.

The least commonly altered modes, such as the Kermit receive overwrite mode, or the

vectored ENTER mode (section 7.4), can only be selected by means of their respective
numbered flags. More common modes like the ticking clock display or symbolic execu-
tion (section 3.5.5.2) can be user flag controlled but also have keyboard or menu keys
with mnemonic labels (e.g. ECLKE and £SYMZE ). Finally, the most important modes have
dedicated commands, like FIX and DEG, which are programmable as well as mnemonic.
(The relative importance of the various modes was decided by the designers--if your
favorite mode was relegated to a mere flag, you can always write a little program to
alter the mode, and give it a mnemonic name).

In the HP 48, the default state of all of the system mode flags is clear, except for the
binary integer wordsize flags —5 to —10, which are set. This means that in general, a
clear mode flag means "do the default behavior” and a set flag means "do the non-
default behavior” for the affected operations. Thus if you’re trying to remember
whether to set or clear a particular flag in order to select a mode, you can use the
calculator’s defaults as a guide (assuming that you can remember those).

7.1.1 Flag Commands
The commands you need to select a mode by means ofits flags are SF (Set Flag) and
CF (Clear Flag), which set and clear the flag specified by a real number argument. For
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example, —3 SF turns on numeric evaluation mode; —3 CF turns it off. You can also
determine the state of a flag; for example, 9 FS? returns a 1 to the stack if flag 9 is set,
or a 0 otherwise. The real numbers O and 1 used in this context are called stack flags,
because they can represent the binary values of a user flag so that you can manipulate
those values on the stack. The FS? command in effect copies a user flag value to the
stack. Stack flags are also useful in programming as logical false (0) or frue (1) values
(section 7.1). Note that set, true, and 1 are synonymous, as are clear and false, and 0.

In addition to FS?, the HP 48 also provides FC?, which returns true if a flag is clear;
and FS?C and FC?C which test a specified flag and then clear it. You can also recall
the values of all 128 flags by executing RCLF (ReCalL Flags). This command returns a
list of the form { #m #n }. #m is a 64-bit binary integer representing flags —63 to 0;
its leftmost, or most-significant bit corresponds to flag —63, and its least-significant bit is
flag 0. #n similarly represents flags 1 (least-significant) through 64 (most-significant).
The principal use of RCLF is to record the values of the flags so that those values can
be restored later by the complementary command STOF (STOre Flags). STOF takes a
list like that returned by RCLF and sets all 128 flags according to the values of the two
binary integers in the list. Examples of using RCLF and STOF are shown in the pro-
grams ASN41 (section 7.2.1.1) and XARCHIVE (section 5.3.4).

STOF and RCLF provide a convenient means for applying individual bit operations to
binary integers. The programs listed next allow you to set, clear, and test a specified bit
in a binary integer, where the bits are numbered from 0 as the least significant (right-
most) bit.

SB Set Bit

level 2 level 1

 

 

#n m

<< RCLF ROT STOF Swap system flags and binary integer.

SWAP NEG SF Set the bit.

RCLF 1 GET Get the new integer value.

SWAP STOF Restore the original flags.
>>    
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CB Clear Bit AC26

level 2 level 1 | level 1

m o #n'
 
 

<< RCLF ROT STOF

SWAP NEG CF

 
Swap system flags and binary integer.

Set the bit.

  
 

 

 
 

 

RCLF 1 GET Get the new integer value.

SWAP STOF Restore the original flags.

>>

BS? Bit Set? 822A

level 2 level 1 level 1

m or flag
 
 

<<

RCLF ROT STOF

SWAP NEG FS?

SWAP STOF
>> Swap system flags and binary integer.

Test the bit.

Restore the original flags.   
 

7.1.2 System Flag Assignments
Table 7.1 summarizes the HP48 mode and signal flags, showing the modes associated
with setting each flag.

Table 7.1. HP48 System Flags

Flag Name

Symbolic Mathematics

-1 Principal Values

-2 Symbolic Constants

-3 Numeric Execution

Binary Integer Math

-5to -10 Binary Integer Wordsize

-11, -12 Binary Integer Base

Floating Point Math

-15, -16 Coordinate System

-17, -18 Trigonometric Angle

Meaning when Set

"Solving” returns only principal values

Symbolic constants evaluate to numbers

Functions return numerical results

Encode binary integer wordsize

Specify base

Specify coordinate system

Specify angle mode
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-19 Complex 2D

-20 Underflow Exception

-21 Overflow Exception

=22 Infinite Result Exception

-23 Negative Underflow

-24 Positive Underflow

=25 Overflow

-26 Infinite Result

1/0 and Plotting
-30 Function Plot

-31 Curve Filling

-32 XOR Cursor

-33 I/O Device
-34 Printer Device

-35 Binary I/O
-36 RECV Overwrite
=37 Double Space Printing

-38 Linefeed

-39 No Kermit Messages

Time Management

-40 Ticking Clock

-41 24-Hour Clock

-42 DMY Date Mode

-43 Rescheduling Repeat Alarms

-44 Save Acknowledged Alarms

Display Format

—45 to —48 Decimal Number Digits

-49, -50 Decimal Number Format

=51 Fraction Mark Selection

=52 Single-Line Display

-53 Precedence

Miscellaneous

=55 Last Arguments

-56 Error Beeps

=57 Alarm Beeps

-58 Verbose Messages

-59 Fast Catalog

-60 Alpha Key Action

-61 USR Key Action

-62 User mode

-63 Vectored ENTER

-64 Index Wrap

7.1

2D, +V2 create complex numbers

Underflow is an error

Overflow is an error

Infinite result is not an error

Negative underflow occurred

Positive underflow occurred

Overflow occurred

Infinite result occurred

Equations y =f(x) plot y independently

No curve filling

Graphic cursor XOR’s with picture

I/0 is directed to the IR port

Printer output directed to the serial port

File transfer in binary mode

RECV overwrites variables of same name

Printed text is double-spaced

Suppress auto-insertion of linefeeds

Suppress display of Kermit messages

Date and time are displayed

Times in 24-hour format

Dates in DD/MM/YY format
Unacknowledged repeat alarms not rescheduled

Acknowledged alarms remain in appointment list

Specify number ofdigits for FIX, SCI, ENG

Select FIX, SCI, ENG or STD

European fraction mark choice

Single-line display of level 1

Display hidden parentheses in algebraics

No last arguments

No error or BEEP beeps

No alarm beeps

Suppress prompt messages

Show catalog equations by name only

One key alpha-lock

One key user keyboard-lock

User'mode active

User-defined ENTER active

GET! or PUTI index has wrapped
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7.2 Key Assignments

In many ofits built-in environments, such as the plot environment or the the Equation-
Writer, the HP 48 redefines the actions of various keys to perform operations specific to
the environments, and also disables other keys that have no relevance there. This same
capability is available for customizing purposes, through user key assignments. To assign
a key means to specify an object that is to be executed when you press that key, in place
of the normal built-in key action. You can assign any key, even , including any of
the six variations unshifted, left- and right-shifted, alpha-shifted, and alpha-left- and
alpha-right-shifted. Key assignments that you make are active whenever the HP 48 is in
user mode, and disabled otherwise; this makes it easy to switch between the normal key-
board and your custom keyboard.

In manual operation, you can switch the HP 48 into user mode by pressing the
key. By default, this key is a 3-state key similar to [a ; pressing it once turns on the
1USR annunciator, signaling that the action of the next key pressed will be the user key
assignment of that key. The next key after that reverts to its default definition. How-
ever, if you press twice consecutively, the 1USR annunciator changes to USER,
which indicates that user mode is locked on. All subsequent key presses will execute the
user key assignments for those keys (the EquationWriter and the MatrixWriter also
respect the user assignments; other built-in environments do not). User mode remains
in effect until you again press [$][USR] .

If you prefer, you can disable single-key user mode by setting flag —61. In that case, a
single press of [<1][USR] activates user mode, much like the behavior of the key on
the HP 41, which was the original upon which HP48 user mode is modeled (single-key
user mode was copied from the HP 71B). The state of user mode is reflected in flag
-62; setting that flag turns on user mode, clearing it turns it off, and —62 FS? indicates
whether the mode is active.

7.2.1 Single Key Assignments
To make an individual key assignment, the command ASN takes the object to be
assigned to a key from level 2, and a keycode number rc.p from level 1:

e The digit r is the key row counting from 1 at the top row (menu keys), and c is the
key column, counting from 1 at the leftmost column. The digit p represents the key
plane (shift):
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Shift Plane p

none Oor1l

2

3
[a] 4

(o] 5
[a] 6

Thus, for example,

'ABC’ 34.3 ASN

assigns the name ABC to (row 3, column 4, shift 3-{>]).

The key assignment object can be any single object, either a built-in command, an
XLIB name for a library command, or any user-created object. For most of these
object types, the user mode behavior of the assigned key is similar to the action of
default keys: in immediate-mode, the key object is executed; in algebraic entry mode
the key object is copied to the command line if it is allowed within algebraic expres-
sions; in program entry mode, the object is copied to the command line. There are
two exceptions:

e Keys assigned to string objects echo those strings to the command line, without
their surrounding "" delimiters, regardless of the entry mode. This allows you to
provide single-key entry for inaccessible characters or multi-character strings.
For example, if you need to use the X character, you can assign it to the [ex
key:

215 CHR 754 ASN

e Keys assigned to programs are not usable in program entry mode--they just beep.
This restriction is based on the assumption that keys defined by programs are
meant for immediate execution, and so to echo them into the command line
would more likely be a nuisance than a positive feature.

7.2.1.1 An Interactive Key Assignment Program

In the HP 41, ASN is an interactive operation in which you assign a command or pro-
gram by spelling its name, and specify a key by pressing it. This friendly style can be
imitated on the HP 48 by means of the program ASN41, listed below. Executing ASN41
prompts you to enter a key assignment object into the command line (you can press
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to cancel the new assignment), either by typing it in or by pressing a keyboard or
menu key for the object. When you then press , ASN41 displays (Press a key),
and waits for a key press. After the key press, the display shows the key code for one
second, and the assignment is complete. If you press ENTER at the first prompt without
entering any object, any current key assignment for the designated key is cleared.

 

ASN41 ASN HP41-style 9CF1
 

 

<< RCLF STD -55 CF Save current modes, activate STD

and argument recovery.

"Assign: * DUP {V} Prompts for definition object.

IFERR INPUT Enter definition.

THEN 3 DROPN If ATTN, then quit.

ELSE Otherwise, proceed.

IF DUP "" SAME

THEN "(Clear)" SWAP

ELSE "{" OVER + OBJ- 1 GET

END

3 ROLLD + 3 DISP

"To:" DUP 5 DISP

"(Press akey)" 10 CHR + 6 DISP

If no entry,

then show (Clear);

else convert entry to an object.

Show the object.

Prompt for a key.

IFERR 0 WAIT Wait for a key.

THEN DROP 91 If ATTN, then keycode 91.

END

SWAP OVER + 5 DISP Show the keycode.

"" 6 DISP

IF OVER "" SAME If definition is null,

THEN DELKEYS DROP clear the key definition;

ELSE ASN else make the assignment.

END 1 WAIT Pause to make the display visible.

END STOF Restore old modes.
>>    

7.2.2 Multiple Key Assignments
In application programs, it is often desirable to assign several keys, or even the entire
keyboard. You can achieve this with the command STOKEYS, which takes as input a
list of object-key pairs like those used by ASN:

{ object, rc.p, object, rcp, object, rc.p, }
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The assignments made by STOKEYS (and ASN) are cumulative; the new assignments
specified in the argument list are added to those already activated by previous uses of
STOKEYS and ASN.

You can recall the list of all current key-object pairs by executing RCLKEYS. Like
RCLF and RCLALARMS, RCLKEYS is most useful for saving the current state of the
HP 48 so that it may be restored later.

The list returned by RCLKEYS may include the name S (for Systern) at the start of the
list, without any corresponding key code (making an odd number of list elements). If it
is present, the S means that keys that are not otherwise assigned retain their default
unassigned behavior in user mode. Similarly, if you include an S at the head of a key-
object list used by STOKEYS, the default behavior of unassigned keys is restored.

Disabling unassigned keys is one of the features of DELKEYS (DELete KEYs). In gen-
eral, DELKEYS removes the user key assignment of one key specified by a keycode rc.p,
or of multiple keys specified by a list of keycodes. As a shortcut, 0 DELKEYS clears all
current user key assignments and restores all keys’ default actions. Furthermore, the
name S is also accepted as an argument by DELKEYS; 'S’ DELKEYS disables all keys
that do not have user key assignments, so that they merely beep when pressed in user
mode. This is useful for programs that want to halt for user input, and wish to restrict
the user’s choices to a few selected keys. A typical program sequence might look like
this:
 

RCLF RCLKEYS - flags keys Save the current key assignments

and flags.

<< 0 DELKEYS Clear current key assignments.

'S’ DELKEYS Disable unassigned keys.

{PRG1 82 PRG2 83 PRG3 84} Assignments for 1, 2, and 3 keys.

STOKEYS Make the assignments.

-62 SF Turn on user mode.

"Press 1, 2, or 3" PROMPT Stop and promptfor a choice.

keys STOKEYS Restore the original assignments.

flags STOF Restore the flags.
>>   
 

Executing this sequence shows the prompt Press 1, 2, or 3, inviting the user to press
one of those three keys. All other keys are disabled, so that you can not do anything
else that might disrupt what the program is trying to do. When you press one of the
indicated keys, it executes one of the names PRG1, PRG2, or PRG3, which presumably
are the names of programs. Each of those programs should terminate with CONT, to
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return execution to the above sequence, which finishes by restoring previous key assign-

ments and flag settings.

For cases where you want to suppress most, but not all, default key assignments,
STOKEYS accepts the name SKEY as a special object that you can assign to one or
more keys. When you do so, the selected keys retain their default behavior even if you
have executed 'S’ DELKEYS to disable unassigned keys. For example,

{ SKEY 25 SKEY 34 SKEY 35 SKEY 36 } STOKEYS 'S’ DELKEYS

disables all user mode keys except the four arrow keys.

You can paint yourself into a corner with DELKEYS: in user mode, if you execute O
DELKEYS 'S’ DELKEYS, you disable the entire keyboard--including the key
you need to turn off user mode. The only recourse in this situation is to execute a sys-
tem halt ([ON] - [A] together). A system halt turns user mode off (flag —62 is the only
flag affected by a system halt). Afterwards, you might want to execute { S } STOKEYS
or 0 DELKEYS to prevent falling into the same trap again.

7.2.3 Key assignments and memory
If you use MEM to check the amount of free memory beforeand after you make your
first key assignment, you will find that the assignment has used more than 275 bytes of
memory (to be precise, 275 bytes plus the size of the assigned object). Fortunately, sub-
sequent key assignments are not so expensive. The HP 48 stores its key assignments in
a list stored in a normally inaccessible part of the home directory. When there are no
assignments, the list is empty. However, upon the first execution of ASN, the HP 48
adds 49 objects to the list, each of which records the assignments for one key. With one
assignment, 48 of the objects are themselves empty lists (five bytes each). The remain-
ing object is a list that contains the assignment objects for each of the six planes of the
assigned key; five of these are empty lists, and the sixth is the assignment object (30
bytes plus the assignment object size). For subsequent assignments,

e Each previously unassigned key costs 25 bytes plus the new object size, as the empty
list for the key is replaced by a list containing five empty lists plus the object;

e Each assignment for a new plane of a previously assigned key replaces an empty list
with the new object, requiring the object’s size less five bytes.

You can assign any object to any key. However, if a large object is stored in a global
variable or a port variable,it is more efficient to assign the object’s variable name to a
key rather than the object itself, since the assignment list then contains the name rather
than the object. Keeping assignment objects small also generally maximizes the speed
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of key assignment execution by minimizing the size of the list that the HP 48 has to
search to find an assignment.

7.3 Custom Menus

The VAR menu (section 5.1) is a convenient facility for displaying the names of stored
objects, and providing single-key store, recall, and execution of the objects. However,
once you have more than few global variables, the VAR menu becomes harder to
manage, since the positions of entries in the menu changes as objects are stored and
purged, and also the variables may be distributed among several directories and so
harderto find.

The HP 48 custom menu system allows you to define one or more menus of your own

devising, in which you can mix commands and other objects as well as variable names,
in any order you choose. There is even a primary key that activates a custom
menu, making such menus extremely convenient. Custom menus can be temporary or
permanent, and you can associate one permanent custom menu with any directory.

A permanent custom menu is defined by a list of one or more objects, that is stored in
the reserved-name global variable CST. Thefirst six objects define the first page of the
menu, in left-to-right order, the second six define the second page, etc., just like the
VAR menu. When you press , the HP 48 searches the current directory for CST; if
it is not present, the search continues in the usual way up through the parent directories.
CST may contain a list of objects, or it may contain the name of a global variable (in
the current path) that contains a list. For example,if you execute

{ AB C} [fnlEcsTE,

then press , you will see a menu containing entries for A, B, and C. The
corresponding menu keys have the same behavior as VAR menu keys for those variables,
including the left- and right-shifted actions. In general, the actions of shifted and
unshifted CST menu keys depend on the type of the matching objects in the CST list.

The MENU command (also in the menu) provides an alternate way to store
a custom menu list. [MENU] takes a menu list (or the name of a list) and stores it in CST

in the current directory, then automatically activates the custom menu. Generally, the
only time you might use 'CST’' STO instead of MENU is when you want to define a cus-
tom menu for future use, but do not want to activate that menu immediately.

Like any other menu, the custom menu remains active until another menu is activated.
If you change directories while the custom menu is active, the menu is updated if neces-
sary to reflect the contents of CST in the new directory. However, storing a new menu
list in CST (or purging it) does not affect the displayed menu until you press again
or change directories.
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It is also possible to activate a temporary custom menu that does not use or change the
contents of CST, by using TMENU instead of MENU. The menu defined by TMENU’s
list or name argument persists until you change menus ([>] [LASTMENU] restores it).

Pressing reverts to the menu defined in CST, not that activated by TMENU.
TMENU is most useful in programs, where you wish to prompt the user with a particular

menu, then have no further use for the menu. In many cases a menu used within a pro-
gram has no meaning once the program is finished, so TMENU is a better choice than
MENU.

7.3.1 Built-in Menus
You can also use MENU and TMENU to activate a built-in menu, by supplying a real
number argument for either command (there is no difference between the commands in

this case). The number must be of the form mmmm.pp, where mmmm is a one- to
four-digit number that specifies the menu, and pp is a two-digit number that specifies
the menu page. For example, menu 1.01 is the first page (.01) of the custom menu
(menu 1), 2.02 is the second page of the VAR menu, and 12.04 is the last page of the

[PRG]ZOBJ= menu. (For page 1 of any menu, you can omit the pp digits and just specify
an integer menu number). Note that the contents of CST remain unchanged when you
use TMENU or MENU with a number argument.

Except for temporary custom menus (0), the menu (1) and the VAR menu (2), the
built-in menus are numbered in the order that they “appear” on the HP48 keyboard,
starting with the menu as menu 3, the [MTH]EPARTSE menu as 4, and so on across
and down the keyboard and through sub-menus. The number of a library command
menu (one activated by pressing followed by the menu key for the library)
is the same as the library number. However, the easiest way to determine a menu
number is not to count menus or even to look up the number in a manual, but simply to
activate the desired menu and page, then execute RCLMENU, which returns a number
mm.pp for the current menu. Of course, you have to execute RCLMENU by typing it
into the command line, or by assigning it to a user key--using the ERCLMENUZ key in the

menu always returns 21.02. (Executing MENU or TMENU with the number

of a non-existent menu returns a blank menu.)

To illustrate the use of MENU for built-in menus, suppose you find yourself using PUT
and GET more frequently than other PRG menu commands. Then it might be helpful
to assign << 12.04 MENU >> to (key 22); then in user mode, pressing [PRG] takes
you immediately to the menu containing PUT and GET.

7.3.2 Custom Menu Object Types
The precise action of a custom menu key depends on the type of the object correspond-
ing to that key in the custom menu list. As we mentioned previously, if an object is a
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name, the custom menu key action is the same as that of a VAR menu key. For most
other object types, the “execute this object” the immediate-mode meaning of an
unshifted menu key is retained from the VAR menu, but the shifted keys are only active
in a few cases. Furthermore, the effect of the menu keys in algebraic- and program-
entry mode also depends on the type of object. Table 7.2 shows the custom menu
behavior exhibited by each HP 48 object type, for all four entry modes.

Key-Object

Type

Name

Port Name

Number

String

Unit

Algebraic

Program

RPN Command

Table 7.2. Custom Menu Key Actions by Object Type

Entry

Mode

Immed.

ALG

PRG

ALG PRG

Immed.

ALG

PRG

ALG PRG

Immed.

ALG

PRG

ALG PRG

any

Immed.

ALG

PRG

ALG PRG

Immed.

ALG

PRG

ALG PRG

Immed.

ALG

PRG

ALG PRG

Immed.

ALG

PRG

ALG PRG

Unshifted

Action

Enter the name

Echo the name

Echo the name

Echo the name

‘name’ RCL EVAL

‘name’ RCL EVAL

Echo the name

Echo the name

Enter number

Echo with no spaces

Echo with spaces

Echo with no spaces

Echo string, no quotes

Enter unit, multiply

Echo unit part

Echo unit part

Echo unit part

Enter object

Echo object, no '’

Echo object with "’

Echo object, no '’

Enter program

Enter program

None

None

Enter command

Enter command

Echo, no spaces

Echo with spaces
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Left-Shifted

Action

‘name’ STO

‘name’ STO

None

None

‘name’ STO

"name’ STO

None

None

None

None

None

None

None

Enter unit, CONVERT

Enter unit, CONVERT

None

None

None

None

None

None

None

None

None

None

None

None

None

None

Right-Shifted

Action

‘name’ RCL

"name’ RCL

None

None

"name’ RCL

"name’ RCL

None

None

None

None

None

None

None

Enter unit, divide

Enter unit, CONVERT

None

None

None

None

None

None

None

None

None

None

None

None

None

None
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Function Immed. Enter function None None

ALG Echo, with alg. syntax None None

PRG Echo with spaces None None
ALG PRG  Echo, with alg. syntax None None

List (See section 7.3.3)

Other Immed. Enter object None None

ALG Enter object None None

PRG Echo object with spaces  None None
ALG PRG  Echo object with spaces  None None

“Enter object” means perform ENTER, then execute the object.

“Echo object” means copy the object to the command line.

“Alg. syntax” means appending parentheses where appropriate, and surrounding with spaces if the function

is a multi-character infix operator like MOD or XOR.

The actions associated with built-in RPN commands and functions also apply to XLIB names, according to

whether a name refers to a library command or to a function.

The actions described for port names also apply when the name has the extended form :tag:{ list } (section

5.5.3). Note, however, that the left-shifted store action fails if the corresponding port variable already

exists (section 5.3.1.2).

Some points worth noting from Table 7.2:

The menu key for a string echoes the string to the command line without quote del-
imiters, which enables you to define typing aids--keys that echo a character sequence
that you use frequently, or perhaps a special character that is unavailable or incon-
venient on the alpha keyboard.

The menu keys for unit objects work just like the keys in the various
menus. This is very useful for creating units menus that combine units from dif-
ferent built-in menus or pages plus units that you have defined yourself.

A program is the only object type that is not echoed to the command line when an
assigned key is pressed in algebraic or program entry mode. Generally, program
assignments are meant for immediate execution, so this is not a very important limi-
tation.

By default, a custom menu key label is derived from the associated menu list object,
showing the first few (up to five) characters from the display form of the object. Espe-
cially for extended objects like programs, where you can only see the leading << and
one or two characters from the first object in the program, such labels may not be too
helpful, since you can’t see enough of the object to recognize it. The HP 48 solves this
problem by allowing you to define labels that are independent of the objects that define
the menu key actions.
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7.3.3 Menu Key Labels and Shifted Menu Key Actions
If one of the objects in the custom menu key list is itself a list, the contents of that list
are used to create an extended form of menu key definition that permits specification of
the menu key label, and assignment of one or both shifted key actions. Usually the
(inner) list contains two objects:

{ label-object action-object }

e The first object in the list, normally a string or name with up to 5 characters, is used
to form the menu key label. If the object is other than a string, a name, or a 21X 8
graphics object, the label text will include the leading object delimiter, if any. If the
object is a 21X 8 graphics object, the label becomes an icon defined by the graphics
object.

The second object in the list defines the key actions, following the rules listed in
Table 7.2. (If the second object is absent, there will be a menu key with a label
defined by the first object, but it just beeps when pressed.) One more level of exten-
sion is available: if the second object is itself a list, it may contain one, two or three
objects, so that the most general custom menu list object looks like this:

{ label { no-shift left-shift right-shift } }.

The three objects in the inner list define the unshifted, left-shifted, and right-shifted
key actions for the menu key (which is labeled by the label object), following the
rules for unshifted actions listed in Table 7.2. Note that this applies to algebraic and
program entry mode (section 6.4.1) as well as immediate entry mode--the key action
object determines what text is echoed to the command line (and whether
parentheses are included), not the label object.

By way of example, consider a custom menu defined by the following list:

{ GET

}

"HELLO"
{ "5DROP" << 5 DROPN >> }
{SINH {SINH ASINH}}
{FOO {<<{HOME UTIL FOO} RCL EVAL >

< PATH HOME UTIL SWAP 'FOO’ STO EVAL >>
< {HOME UTIL FOO} RCL>>

}

{ GROB 21 8 FFFFF1D100711E0E0110F10110F1011EOE01D10071FFFFF1  KILL }

Executing MENU with this list yields a menu that looks like this:
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  GET [HELLO|SDROP| ZINH FOO[w=—=ai]
 

The individual menu keys are defined by the menu list as follows:

The first key SGETE illustrates the simple assignment of a command to a key, with no
shifted actions.

The section key ZHELLOZ comes from the string "HELLO". This is a “typing aid”;
the unshifted key echoes HELLO to the command line without delimiters or sur-

rounding spaces. The shifted key has no action.

The next key =5DROPE illustrates labeling a menu key with a string while the key

action is defined by a program.

The ESINHZ key has both an unshifted action (SINH) and a left-shifted action
(ASINH).

£FOO= has actions defined for both the left- and right-shifted key as well as the
unshifted key. It is designed to act like a VAR menu key for the variable FOO in the
HOME UTIL directory, that will work regardless of the current directory.

The next key is labeled by the 21X8 graphics object, and executes or echoes KILL
when pressed.

You can create the graphics object by executing the following sequence:

ERASE PICT {#0 #0} {#20d #7d} DUP2 DUP2
LINE BOX {#0 #7)} {#20d #0} LINE SUB

7.4 Vectored ENTER

The normal process associated with ENTER is described in section 6.4.3. As mentioned
there, however, you can modify that process by means of an HP 48 feature called vec-
tored ENTER (the name comes from computer science jargon, referring to the fact that
the system looks for a vector--a pointer to a replacement procedure--before executing a
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standard procedure). This feature gives you a powerful customization capability, since it
allows you to redefine the way command line text is interpreted, and a chance to exe-
cute additional commands after command line entry and execution are completed.

Three conditions must be met to activate vectored ENTER:

1. At least one of the variables cENTER and BENTER must exist, in the current
path.

2. Flag -63 must be set. The use of a flag prevents the HP 48 from searching for
the special variables when the flag is clear, thus speeding up the ordinary ENTER
process.

3. Flag —62 must be set. This is the user mode flag; including this flag as part of the
vectored ENTER setup gives you a convenient keyboard means ([<0] ) with
which to turn vectored ENTER on and off.

When the two flags are set, the HP 48 searches for the variable «ENTER before parsing
the command line in the usual way (step 2 in section 6.4.3). If the variable exists, the
command line text is not parsed but is just entered into stack level 1 as a string object,
following which then aENTER is executed. Since this execution replaces normal com-
mand line parsing and execution, you can store in «ENTER a program that interprets
and uses the command line text in any manner you please. Furthermore, since OBJ-
“executes” a string object asif its text were entered in the command line, you can define
oENTER as merely a preprocessor that modifies the command line text and then uses
OBJ- to continue with normal processing. This technique is used in the binary calcula-
tor program BINCALC described below, to save you from having to type a # when you
enter a binary integer.

After aENTER is finished, the object assigned to the key that started the ENTER pro-
cess is executed. Then, after its execution is complete, the HP 48 searches the current
path for a variable BENTER. If that variable exists, a string representing the key object
is entered into level 1 and BENTER is executed. In general, BENTER is intended to
contain a program that performs some operation on the result of a command line entry;
the key object string is made available for record keeping purposes.

A straightforward example of the use of vectored ENTER is to create a simple
calculation-tracing mode using a printer. Store the following program in aENTER:

<< PR1 OBJ- >>

This routine copies the command line contents to the printer, then uses OBJ- to do
normal command line processing. You also need this program for BENTER:
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< "[" SWAP + "]" + PR1 DROP PR1>>

The BENTER program surrounds the key object string with brackets [], then prints it,
followed by the level 1 result of the entire execution. This example reveals one limita-
tion of the BENTER process: only keys that correspond to programmable, named
objects--commands, XLIB names, global names, and local names--return a meaningful
string for BENTER. For other object types, plus unnamed built-in objects such as
ENTER itself, only an empty string is returned. For these cases, the above BENTER
program prints empty brackets [ ].

7.4.1 Examples
The vectored ENTER system along with the other HP 48 customization facilities enable
you to tailor the HP48 into many different specialized calculators. In this section, we
will give two examples, one that focuses the HP 48 on binary arithmetic calculations, and
another that turns the HP 48 into a “fraction calculator.”

 

 
 

| BINCALC Binary Integer Calculator 1F6D l

< oENTER program:

<< |F DUP "" # If there is command line text,

THEN "#" SWAP + OBJ- prepend #, then execute.
ELSE DROP
END
" Binary Calculator” 10 CHR + Show a message.
1 DISP 1 FREEZE

> "" OVER EVAL 'oENTER’ STO |Show the message and store the program.

RCLKEYS RCLF RCLMENU
- keys flags smenu Save the key assignments, flags, menu.

<< 0 DELKEYS Remove current key assignments.
{ nAn 41 va" 42 nC" 43

"D" 44 van 45 "F" 46

} STOKEYS Assign hexadecimalletters to row 4.
-63 SF -62 Activate vectored ENTER.

SF 9.01 TMENU Turn on the binary menu.
HALT Halt for binary calculations.

flags STOF Restore flags.
0 DELKEYS keys STOKEYS Restore key assignments.

'aENTER’ PURGE Discard a ENTER.
smenu MENU Restore the original menu.

>>

>>   
 

Executing BINCALC displays the message Binary Calculator, and activates an environ-
ment in which it is assumed that all command line entries are to be binary integer
objects, one per command line. The keyboard is redefined so that the fourth-row keys
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echo the hexadecimal digits A - F, to supplement the ordinary number pad for hexade-
cimal entry. The program uses those keys rather than the menu keys, in order to leave
the latter available for other menus, especially for the base operations menu (

=BASES ) menu. As long as the environmentis active, you can perform RPN arithmetic
and other operations on binary integers, entering the integers without the # delimiter.
You can temporarily disable the special environment with the key, and reenable
it with the same key. Finally, when you want to resume normal operations, press

. This restores the key assignments, flags, and menu that were present when you

executed BINCALC, and reverts to the standard environment.

BINCALC’s demands on vectored ENTER are modest. In the next example, FRACALC,

the program takes over command line interpretation entirely. FRACALC executes simi-
larly to BINCALC: an environment is established in which command line entries are
assumed to be fractional numbers. You enter numbers in the form i n.d, where i is the
integer part, n (separated from i by a space) is the numerator, and d is the denomina-
tor. n and d may be separated by a period or a comma. Examples:

123 = '1+2/3
-4 56 = '-4-5/6'
8.12 = '2/3'
-1,2 = '-1/2'

You can apply immediate-execute commands to the stack fractions, and their results will
also be fractions:

1 1.2 3 23 = '5+1/6'

You can disable fraction entry by turning off user mode. Press to terminate
the fraction environment entirely.

FRACALC uses -Q to convert decimal numbers to fractions, with 5 decimal places of
accuracy. You can change the 5 FIX in the program to another value to change this
accuracy when you want to deal with denominators larger than three or four digits.
However, too large a value may cause unexpected fractions to be returned for some

small denominators.
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FRACALC Fraction Calculator Co1B
 

 

<<

<<

IF DUP SIZE DUP

THEN OVER "" POS

3 PICK DUP "." POS

SWAP "" POS MAX

DEPTH 4 - - cmd len int div stk

<< |[FERR

IF div

THEN cmd int div 1 - SUB OBJ-

cmd div 1 + len SUB OBJ- /

IF int

THEN cmd 1 int SUB OBJ-

DUP SIGN ROT * +

END
ELSE cmd OBJ-
END

THEN
IF DEPTH stk - DUP 0 >
THEN DROPN
END cmd "Invalid Entry” DOERR

END
>>

ELSE DROP2
END " Fraction Calculator" 10 CHR +

1 DISP 1 FREEZE

>> "" OVER EVAL 'aENTER’ STO

<< DROP

IF DEPTH

THEN

IF DUP TYPE 9 OVER SAME

SWAP NOT OR

THEN -NUM

DUP IP SWAP FP

10 RND 5 FIX -Q STD +

END

END

> 'BENTER’ STO
RCLF - flags

< -62 SF -63 SF -51

flags STOF
>>

'aENTER’ PURGE

'BENTER’ PURGE
>>

CF STD HALT  

Start of a ENTER procedure.
If there is command line text, parseit.

End of integer part, if any

Find a “.”, or

find a “,”.

Store parameters and stack depth.

Error trap for invalid entries.

If there is a fraction,

separate out the numerator,

and divide by the denominator.

If there is also an integer part,

get the number.

Add the fraction with the same sign.

No fraction, so assume integer entry.

Error handler:

Discard extra stack objects.

Report the error

Discard empty command string and size.

Show the message and store the program.

Do nothing if stack is empty.

If the last entry is an algebraic,

or a real number,

then convert to a fraction:

Get the integer and fractional parts.

Convert to a symbolic fraction.

Save the currentflags.

Halt for binary calculations.

Restore originalflags.   
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The rich command set of the HP 48 allows you to solve many problems merely by press-
ing a few keys. However, where the HP 48 really excels is in the ease with which you
can link command sequences together into procedures. This allows you to solve com-
plex problems by breaking them down into simple pieces. Once a procedure
corresponding to a problem’s solution is developed and stored, you can execute it any
number of times while you vary the input data.

The term programming is conventionally used for the process of recording a sequence of
calculator instructions in such a manner that you can later replay the sequence any
number of times without having to reenter the instructions. Here, we will use the more
general term problem solving to describe the various HP 48 solution strategies, of which
programming--creating program objects--is just one of several.

A problem solution generally consists of three parts:

1. Data input;

2. Data processing and calculations;

3. Results output.

Each of these stages can be simple or complicated. To enter data, for example, you can
use a program that just takes one or more objects from the stack which are presumed to
be there when the program is executed. Or, your program can prompt for each
required value by halting with a text display that asks you for a specific input. Similarly,
a program can return its results to the stack, or it can display each result with an identi-
fying text label.

Regardless of the complexity of a calculation, in most calculators the only method of
automating calculations is to create a program, complete with labels and line numbers.
While this restriction has the virtue of simplicity in that there are no alternatives, the
process can be cumbersome for simple procedures, particularly for straightforward
mathematical expression evaluation. The HP48 provides a series of problem solving
alternatives, ranging from simple expression evaluation to programs with loops,
branches, recursion, etc. Problem solving can be both simpler and more complicated
than in other calculators. In general, it is easier to program any given calculation on the
HP 48; additional complication only arises really when you are dealing with problems
that are not soluble at all on other calculators.

The HP 48 problem-solving alternatives sort roughly into four approaches:
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e HP Solve;

e User-defined functions;

e Symbolic manipulations;

e General programming,.

These are listed roughly in order of increasing complexity; not so much in the complex-
ity of the mathematics involved but rather in the amount of mental effort you need to
translate a real problem into HP48 terms. The classification is somewhat imprecise
because there’s a great deal of overlap, such as programs that contain user-defined func-
tions; HP Solve exercises that use programs; even algebraic objects that execute pro-
grams. With all of these options, your challenge is to determine which approach is most
appropriate for a particular problem.

In the remainder of this chapter, we will show which types of problems are suitable for
each general problem solving method, then consider user-defined functions as an initial
exercise in HP 48 problem solving. HP Solve and symbolic algebra are left for detailed
study in Part II. The remaining chapters of Part I are devoted to various programming
tools and methods.

8.1 HP Solve

HP Solve, which is essentially a combination expression-evaluator and root-finder, pro-
vides an exceptionally easy method of problem solving on the HP48. It is suitable for
any problem that can be reduced to a single equation relating all of the variables in the
problem, and for which a real-valued numerical answeris sufficient. The greatest bene-
fit of HP Solve is that you don’t have to solve the equation formally for the unknown--
all you have to do is enter any equation that relates the unknown to the known vari-
ables. Furthermore, you can interchange the roles of known and unknown variables as
you go along, without doing any additional work to restate the problem.

A prototype problem ideal for the solver is the simple “cost-of-travel” equation:

COST = DISTANCE X PPG / MPG,

where PPG stands for “price per gallon,” and MPG stands for “miles-per-gallon.” This
single equation relates all the relevant parameters, and has the virtue of containing only
simple arithmetic operations, so that there is only one possible solution for any choice of
values for any three of the variables. To address this problem with HP Solve, all you
have to do is enter the equation in algebraic form as written above, press

SSTEQS to select it as the current equation, then press ESOLVRE . The calculator
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presents you with the solve variables menu, which provides a menu key for each of the
four variables:

 

ER: 'COST=DISTAMCE#*PPG
 

-
M

]
[cosT]lpiETallPPG[MPGIR]   

You can use the menu to store values in any three of the variables and solve for the
fourth.

Contrast this simplicity with the process you have to follow on other calculators without
HP Solve. For each choice of unknown variable, you have to

Solve the equation formally (on paper) for the unknown;

b. Translate the solved equation to program form;

¢. Add input prompting steps to the start of the program, and output labeling to the
end.

d. Enter the program using the calculator’s program editor;

e. Run the program for each new set of input parameters.

If you’re very clever, you can figure out how to combine the four separate programs into
one, where the program figures out from the inputs which variable is to be calculated
and thus which branch of the program to use--in other words, to duplicate what the HP
Solve does for you automatically.

8.2 Symbolic Manipulations

The HP 48 and its predecessor the HP 28 are unique among calculators in their ability to
apply mathematical operations to “symbolic” quantities--objects for which no numerical
value has been assigned. If you’re a student learning algebra or calculus, or using their
techniques in other mathematical or scientific studies, this capability may be very excit-
ing. However, if you’re not directly interested in algebra for its own sake, you might
wonder why these symbolic capabilities are important to you.
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Actually, if you use a programmable calculator at all for more than simple keyboard
arithmetic, you are already performing a kind of symbolic operation. Any time you per-
form a calculation more than once, using varying data, you probably represent the calcu-
lation symbolically at some point. In particular, when you write a program to automate
the calculation, that program is a symbolic operation. You write it to accept certain
inputs, without specifying their values, and to compute an unknown result. This is no
different in principle from writing an algebraic expression on paper. An expression also
“works” with unspecified inputs (variables) and returns a previously unknown value
when you evaluateit.

So in the sense that any program is a symbolic calculation, any programmable calculator
is a “symbolic” machine. The important contribution of the HP 48’s symbolic capabili-

ties is that they allow you to apply mathematical operations to the programs themselves,
and obtain new programs as results. For example, consider a program that recalls the
value of a variable and doubles it. In a conventional language like BASIC, the program
is

100 Y=2%X
200 END

But suppose that after entering the program you realize that you are really interested in
the sine of the result, sin(2x). You have no choice except to rewrite the program, in
this case, editing line 100, being sure to enter the SIN in the right place and to include
the parentheses.

On the HP 48, the original “program” consists of the algebraic object '2*X’. To change
this into the new program ’'SIN(2#X)’, all you have to do is execute SIN when the origi-
nal expression is in level 1. The parentheses are automatically inserted. In effect, the
calculator writes a new program for you--all you have to do is use the same keystrokes
on the symbolic “program” as you would use with a numerical quantity.

Another way to see the value of the HP48 capabilities is to consider a general
problem-solving process that consists of these steps:

1. Identify the problem.

Determine the known and unknown quantities.2

3. Figure out the mathematical relationships between the quantities.

4. Solve the relationships for the unknowns in terms of the knowns.

5 For each set of known quantities, evaluate the solved relationships to obtain
numerical values for the unknowns.
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When you use a conventional calculator, the calculator can only enter the process at the
final stage. Once you have equations for the unknowns, you can program those equa-
tions into the calculator, enter numerical values for the known variables, and run the
programs to return the numerical values for the unknowns. The HP48, on the other
hand, can enter the process as early as step 2. You can use its symbolic capabilities to
work out the relationships and solve for the unknowns--steps for which you would need
pencil and paper using another calculator. The symbolic solution that you find with the
HP 48 is also the “program” you can use for repeated evaluation of the unknowns with
different inputs. Even if the equations you derive can not be solved symbolically for the
unknowns, you can still use the Solver to obtain numerical results, without any further
programming.

As an example of this process, consider the classic introductory calculus problem:

A farmer has 100 yards offencing to enclose a rectangular field, which is
bounded on one side by a river. What length (L) and width (W) of the
field gives the maximum area?

m Solution:

Steps Keystrokes Results

1. The length of the fence
is 100 yards. 'L+2*W=100_yd' 'L+2+W=100_yd’

ENTER

2. Solve for L. 'L’ [<5][ALGEBRA]ZISOLE 'L=100_yd -2*W'

3. Assign this value to L.

4. The area of the field is
L times W. 'AREA=L*W’ 'AREA=L*W'

5. Substitute for L. 'AREA=(100_yd - 2*W) *W'

6. To find the maximum area,

differentiate the expression. ‘W' [a] ='—(2*W)+(100_yd -2*W)’

7. Collect terms. ECOLCT= '0=100_yd -4*W'

8. Solve for W. "W’ ZISOLE 'W=25_yd’
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9. Assign this value to W
and evaluate L. L 50_yd

Answer: The width of the field should be 25 yards, and the length 50 yards.

You can use the HP48 to formulate and solve the entire problem, incorporating the
physical units directly into the expressions. With a conventional calculator, all you can
do is evaluate the final numerical answer, once you have worked it out on paper; the

unit conversions have to be done separately.

As another example, in section 12.11.3 we list a program SIMEQ that solves a set of
simultaneous linear equations. Many other calculators provide this capability either
through built-in commands or as program applications. However, without exception
(including the HP 48’s own built-in method using matrices and vectors), these require
you to enter the coefficients and constants rather than the equations themselves. In
other words, you must to do the work yourself of inspecting the equations, collecting
terms and rearranging if necessary, to determine the coefficients and constants. The
SIMEQ program lets you enter the equations in any order, and without having to struc-
ture the individual equations in any particular way. It is the HP 48’s ability to deal with
expressions and equations as data to be manipulated--as symbolic objects--that makesit
possible for you to write a program like SIMEQ in a straightforward, compact manner.
In other calculator languages, writing a program like SIMEQ would require considerable
ingenuity, and would likely end up being harder to use than the usual method of enter-
ing coefficients in order.

HP 48 algebraic objects (section 3.5.2) are procedures that are internally the same as
programs. This means that creating any algebraic object is equivalent to writing a pro-
gram. The program’s “inputs” are the values stored in the variables named within the
algebraic object; its “output” is the symbolic or numeric result that is returned to the
stack. The beauty of an algebraic object as a program is that you can treat it as a sym-
bolic quantity, to which you can apply additional mathematical operations, obtaining new
algebraic objects--programs--automatically.

The best time to use algebraic objects as programs is when you have already defined a
set of user variables, and wish to make calculations using their values. You can, of
course, use the values directly by evaluating the variables as you go and using RPN com-
mands and functions to combine the values. But if a calculation is defined in algebraic
terms, you’ll do better to enter the appropriate formula as an algebraic object, so that
you can verify its definition before substituting specific values.

For example, to add the values of variables A and B, you can press [A]J[B][+]. Or you

can type 'A+B’ . The advantage of the latter is that you can see the entire
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calculation symbolically before making numerical substitutions. This advantage becomes
more important as the complexity of a calculation increases. You are also relieved of
the necessity for translating the calculation into RPN logic.

8.3 Programs

For problems for which the simplified problem solving methods that the HP 48 provides
are not adequate, your final option is to write a program. There is a wide range of
problems that don’t fit the requirements for using other methods, including many that
are mathematically very simple. For example, the three “simple” methods have the

common limitation of being able to return only one result at a time. If you want to
automate a process as trivial as returning the square and the cube of an argument, you
must write a program. Here are three HP 48 programs that make those calculations:

<< DUP SQ SWAP 3 ">

- X << X SQ x 3 & >>

< - x << 'x"2" EVAL 'x"3' EVAL >>>>

The last two versions illustrate that you don’t have to give up the advantages of the
alternate problem solving methods when you create program objects; you just incor-
porate them into your programs. Even HP Solve’s root-finding capabilities can be pro-
grammed, via the ROOT command.

The HP 48 is unusual among calculators in that it has no “program mode.” In other
calculators, you create a program by activating a mode where the keystrokes you press
are recorded sequentially as program steps or lines. A consecutive sequence of such
steps constitutes a program. To execute the program, you must leave program mode

and invoke the program by means of a command like RUN or XEQ (execute).

Programming the HP 48 differs from manual calculating only in that you don’t execute
sequences of objects individually, but instead combine them into procedure objects--
programs or algebraics--for later execution. You treat the procedure objects the same
as any other objects: you enter and identify them by characteristic delimiters (<< >> or
" "), and you can edit, visit, store, recall, evaluate, and purge them, or just move the
objects around on the stack using standard commands.

Many BASIC language computers share with the HP 48 the property of lacking a special
program mode. By placing a line number at the beginning of a command line, you tell

the computer to include the program line in the current program. However, that style
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of program entry is very context-dependent: you must be sure that the line number you

assign is appropriate. It must be in the proper sequence relative to other lines, and you
must have somehow established that you are adding the line to the right program.
Some computers solve that problem by only holding one program in memory at a time;
others permit multiple programs but you must use various means to select a particular

program for editing.

Other calculator programming also uses more “program-only” concepts, like GTO (Go
To), labels, line numbers, RTN (return), and commands that behave differently when
used in a program than when they are executed from the keyboard. An example of the
latter is the HP 41 command FS? (flag set?). From the keyboard, this command returns
a temporary display of YES or NO; when executed in program, FS? acts as a “skip-if-
false” operation, where the next program line is executed if the flag is set, and skipped
if it is clear.

These concepts are part of what can make programming a calculator a mysterious art
for many people. When you are solving a problem mentally, or with pencil and paper,
you don’t consider line numbers, GTO’s, program modes, etc. Instead, you think in
terms of a series of operations that you apply to data or symbols, which produces results
that may in turn be the input for additional operations. This translates nicely to key-
per-function manual use of an RPN calculator; the operations become keystrokes, and
the data is kept in front of you on the stack. “Keystroke programming” on calculators
originated as a process of preserving a series of keystrokes as a program. Unfor-
tunately, as calculators became more powerful, their programming languages required
you more and more to rethink a problem in order to cast it as a program.

The HP48 is designed to minimize or eliminate the differences between interactive
keystroke operations and programming. It does this in several ways:

e The command line is a program that is executed immediately; a program is a com-
mand line for which execution is deferred.

e Anything you can do in program you can do in the command line, including halting,
single stepping, using local variables, branches, loops,etc.

e Commands work the same way in programs as they do when executed manually.

e Programs contain no constructs that are artificial from the standpoint of the problem
being solved--no line numbers, no labels, no GTO’s. The only things that appear in
a program are objects and commands relevant to the calculation being performed,
plus certain program structures (conditionals, loops, etc.), that are local to a particu-
lar program.

The absence of GTO’s and the corresponding labels and line numbers is a manifestation
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of the HP 48’s insistence on structured programming (section 9.1.3). Every program is a
self-contained module, with a single “entry” and a single “exit”. A program can, of

course, “call” (execute by name) other programs, but only as subroutines that always
return to the same point in the same program that called them. These rules promote a
programming style whereby you break down a large programming task into smaller pro-
grams which are easily written and understood. As you write each “building block” pro-
gram, you can test it independently before it is included in any larger program.

8.4 Summary

Table 8.1. HP 48 Problem Solving Methods
 

Method Type ofProblem Advantages
 

User-defined Functions
¢ Automatic conversion of function

formulae to programs by DEFINE.
¢ Evaluation of algebraic functions,

with arguments taken from the

stack.

¢ Creation of new symbolic func-

tions.

¢ Can be used in RPN or algebraic

calculations.

¢ Does not require “permanent”

user variables.

 

 

 

  which the other methods are insuffi-

cient:

¢ Multiple results.

¢ Non-mathematical problems.

¢ Special prompting or labeling.

o Iteration.

¢ Complicated decisions and branch-

ing.  

HP Solve ¢ Numerical evaluation of an alge- ¢ Automatic input prompting and

braic expression for many values of labeling; automatic numerical equa-

its variables. tion solving.

¢ Symbolic substitution for variables. e Lets you interchange known and

¢ Numerical solution of an algebraic unknown variables.

expression, especially in combination

with DRAW.
¢ “What if” problems where the

independent/dependentroles of

variables are interchanged.

Symbolic Math ¢ Algebraic calculations using exist- o Symbolic results can be used as

ing user variables. new programs.

¢ Symbolic manipulations. ¢ Calculations can be verified before

they are performed.

Programs All problems, especially those for All calculator resources are avail-

able,including the algebraic evalua-

tion features of the other program-

ming methods.
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8.5 User-Defined Functions

The archetype of a small HP 48 program is one that takes a few arguments from the
stack, combines them according to some mathematical expression, and returns the com-
puted result to the stack. For example, the distance between two points (x;,y;) and

(x2,y2) is given by

[z —x1)? + 2=y1)*1"

This program takes the coordinates of two points from the stack, and returns the dis-

tance between the two points:

<< ROT - SQ 3 ROLLD - SQ + V >,

The program assumes that x,, y;, X, and y, have been entered onto the stack, in that
order (x; in level 4). It removes the four values, and returns the computed distance to

level 1.

This program is short and efficient, because you (the programmer) did the work of

translating the mathematics into the HP 48’s RPN logic. But writing a program this way

has two shortcomings:

1. When you develop the program, you have to keep track of the stack positions of
the various arguments as they are needed by the successive program commands.

2. After the program is written, it is difficult to decipher. Notice that the program
objects together bear little obvious resemblance to the original distance formula.

These problems become more severe as the number of arguments and the complexity of
the calculation increase. Imagine trying to alter the example program so that it works
with 3-dimensional points (x),z). Because the stack positions of all of the arguments
are changed, you have to rethink all of the stack manipulations, and almost rewrite the
program entirely.

The difficulty of managing stack objects is substantially reduced if your program stores
the objects in named global variables, then recalls the values by name as they are
needed. However, there are disadvantages to using global variables for temporary
storage in a program:

e You have to choose variable names that don’t conflict with those of other programs.

e The program has to purge the variables at the end to avoid leaving unneeded vari-
ables in the USER menu.
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The problem of program legibility is reduced if you represent the calculations by alge-
braic objects. Despite the virtues of RPN for interactive calculations, by and large peo-
ple are more adept at reading calculations in a form approximating conventional
mathematical notation than in RPN form. With this in mind, the HP 48 provides a very
simple method for creating programs that can be represented as mathematical functions,
using DEFINE. For example, to create a program for the distance formula, all you need
to enter is:

'DIST(x1,y1,x2,y2) =V(SQ(x2 - x1) + SQ(y2-y1))’

If you now look in the VAR menu, you will see a variable DIST, which you can use like
this:

 
 

If you recall the contents of DIST, you will see that DEFINE has actually stored the fol-
lowing program:

< - x1 yl x2 y2 'V(SQXx2-x1)+SQ(y2-y1))’ >

This program exhibits the form of a user-defined function, which is a program with a

particular structure stored in a global variable. User-defined functions are designed to
provide a simple means of programming without the problems discussed above. Specifi-
cally, they are commonly defined by algebraic expressions for easy development and
modification, and they employ local variables, which exist only as long as the functions
are executing. The local variables are used to provide names for stack arguments, and

to minimize the need to manipulate lots of objects on the stack. User-defined functions
are called functions because they act like built-in functions: you can use them like RPN
commands to compute from explicit stack arguments, or as prefix functions within alge-
braic objects, taking arguments from within parentheses.

Looking at the example DIST, the first part of the program (= X1 y1 x2 y2) takes
four numbers from the stack and names them x1, y1, X2, and y2, by storing them in
local variables with those names. The algebraic object that makes up the rest of the
program computes the distance from the four stored values. You can easily modify this
program for three dimensions: edit the program to add two more local names, and add
a term for (z,—z,)? to the algebraic expression:

<- x1 y1 z1 x2 y2 2z2 ’\/(SQ(x2—x1)+SO(y2—y1)+SQ(22—z1))’ >>
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8.5.1 User-Defined Function Structure
In general, to create a user-defined function you store in a global variable a program

object with the following structure:

x< - X1 X2 " X, ’f(x19x2’ e ’xn)' >>.

The variable’s name subsequently acts as a user-defined function. Let’s look at the

separate pieces of the general form, using the example DIST for illustration.

1. The first entry in the program is the symbol —. This symbol can be translated as
“take arguments from the stack, and assign them the following names...” The - is
always followed by a sequence of local names. The end of the sequence of names
is indicated by the start of an algebraic object that must follow the names. - takes
one object from the stack for each name in the sequence. In DIST, there are four
names, X1, y1, X2, and y2, so DIST requires four input arguments. The objects
that - takes from the stack are matched up with the names in the order in which
they are entered. The first object entered onto the stack, which was in the highest
numbered stack level (level 4 in DIST), is matched with the first name (x1) in the
sequence.

2. The names x; x, --- x, in the series are local names. The combination of a
local name and an object taken from the stack is called a local variable. Local
names and variables are described in detail in section 9.7; for now, the important
thing to know is that the variables exist only as long as the procedure that follows
the local name list is executing. Local variables are stored in special areas of
memory separate from the global variable memory; they don’t appear in the VAR
menu.

3. The final part of the user-defined function structure is the algebraic expression
'f1,x2, *** ,X,)'. This expression is called the defining expression, and consti-

tutes the mathematical definition of the function. In the example, the defining
expression is 'V(SQ(x2-x1)+SQ(y2-y1))’. Within the definition of this alge-
braic, you can use the local names as many times as you want, just as you would
global names.

When you execute the name of a global variable containing a user-defined function, the
stored program is executed as follows:

1. Objects are removed from the stack and stored in local variables, one object for
each variable name.

2. The defining expression in the user-defined function is evaluated.

3. The local variables are purged.
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To illustrate the function behavior of a user-defined function, consider a user-defined
function SEC that returns the secant of a number:

< - x 'INV(COS(x)' > 'SEC’ STO.

You can execute SEC

e as an RPN command, e.g.

DEG 60 SEC = 2.

e as an algebraic function, e.g.

'SEC(60)' EVAL = 2.

Some other results:

'X" SEC 7 'INV(COS((X))’ Symbolic arguments allowed.

RAD 'SEC(X)’ 'X’ a = 'SIN(X)/COS(X)"2’ Differentiation works.

'SEC(X)=Y’ ‘X’ ISOL = Unable to Isolate Error!

The last example shows that there is one important respect in which user-defined func-
tions differ from built-in analytic functions. There is no inverse automatically defined
for a user-defined function, so ISOL can not solve for a name that is contained in the
argument of the function.

One minor note: If the HP48 is in algebraic entry mode (section 6.4.1), pressing the
VAR menu key corresponding to a user-defined function appends the function name to
the command line, but does not add trailing (). Similarly, the EquationWriter does not
automatically add parentheses.

8.5.2 User-defined Functions as Mathematical Functions
It is interesting to note the extent to which a HP 48 user-defined function is a realization
of a mathematical function. That is, when you define a function such as
F(x) = 5x + 2x, you are stating that F is an operator that takes a single argument, and
returns a single result that is computed from the argument. The function’s definition
has three parts:

1. The name F of the function.

-207-



8.5 Problem Solving

2. A name x used to identify the function’s argument. For the purpose of the defini-

tion, x does not have a value.

3. The expression in x that indicates how the result is computed from x.

When the function is applied to a specific argument, that argument is substituted for the
name x in the defining expression, and the expression is evaluated. Thus

F(1) =512+21=7

F(y?) = 50°) +2(:%) = * + 2%

Each part of a function’s definition has a corresponding representation in an HP 48

user-defined function:

1. The function’s name is the name of the variable in which the user-defined function

program is stored.

2. The argument name is the local name that follows the —. A local name is
appropriate because the name is not intended to have a value except when the
function is actually being evaluated.

3. The expression defining the function is represented by the defining expression.

The example function F (x) = 5?2 + 2x is created in the HP 48 as:

<< - x 'Bx"2+2%" > 'F STO.

Then

'F(1)’ EVAL = 7,

and

'F(Y*2)' EVAL = '5%Y"2°2+2+%Y"2’

In this example, we have considered a function of one variable. User-defined functions
defined in terms of more than one local name naturally correspond to mathematical
functions of more than one argument.

The command DEFINE makes the correspondence between user-defined functions and
mathematical functions even more obvious, since DEFINE creates a user-defined func-
tion variable directly from a function definition expressed as an algebraic equation. In
section 5.1.1, we described the degenerate case where the left-hand side of the equation
is a name with no arguments. In symbolic execution mode (flag -3 clear--see section

3.5.5.2),
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'name =expression’ DEFINE

stores 'expression’ unevaluated in a global variable name. In numeric evaluation mode
(flag -3 set), expression is evaluated to a number before storing.

m Example:

'A=10+10" DEFINE

stores ‘10+10’ in variable A in symbolic execution mode; or stores 20 in variable A in
numeric execution mode.

DEFINE does a more extensive conversion if the left-hand side of its argument equation
is a name followed by a parentheticallist of arguments:

'function (name, - -+ nameyy = expression’ DEFINE

creates a user-defined function named function by storing

<< - name, - -+ namey 'expression’ >>

in a global variable function. function and name, - -- namey must be all be global or
local names. (The conversion from the right-hand side of the expression involves a rein-
terpretation of the expression as if you had re-entered it via the command line, so that
names other than the function arguments name; within the expression are converted to
global or local names according to the current local memories--see section 9.7.)

s Example:

'F(x,y)=x+y+COS(0)’ DEFINE

stores

<< - x y 'x+y+COS(8)>

in the variable F. X and y are listed as arguments on the left-side of the argument equa-
tion, so they are created as local names within the stored defining expression. 0 is not
listed as an argument, so it is entered as a global name (unless there is a currently exist-
ing local memory containing a local variable 8. F is thus a user-defined function of two
variables, which references the global variable 0

If DEFINE’s argument is not an equation with one of the forms described above, it will
return the error Improper Definition. Other errors not directly associated with DEFINE

may arise from the evaluation of expression in the 'name=expression’ case (numeric
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execution mode), for which the error message returned by the erring command is
reported. Also, when the evaluation is successful but leaves fewer than two objects on
the stack for DEFINE, Too Few Arguments is reported but no command is identified.

8.5.3 Defining Programs
The preceding discussion has focused on user-defined functions defined by algebraic
expressions, since these are the easiest to create (with DEFINE) and correspond natur-
ally to built-in functions. However, you can also create user-defined functions that use a
defining program in place of the defining expression. An important use of this facility is
to create function versions of various RPN commands that you can use in algebraic cal-
culations. For example, you can define a function from HMS +:

<- Xy <x y HMS+ > > 'HMSP' STO

Using HMSP, you can perform hours-minutes-seconds arithmetic within algebraic
objects, e.g. '5*HMSP(X,Y)’.

Note, however, that you can not evaluate user-defined functions defined this way with
symbolic arguments, unless all of the commands in the defining program can accept
symbolic arguments. For example, if you evaluate the algebraic '5*HMSP(X,Y)’, both X
and Y must have real-number values, since HMS + is not a function. Also, you can not
differentiate a user-defined function defined with a program.

User-defined functions defined either with expressions or programs are a special case of
the more general use of local variable structures (section 9.7). To qualify at all as a
user-defined function, a program must begin with —; otherwise, evaluating an expression
containing the program’s name with an argument list will return the Invalid User Func-
tion error.

8.5.4 Additional Examples: Geometric Formulae

= VCYL(r,h) returns the volume of a right-circular cylinder of radius r and height 4 from
the formula V = wrh:

'VCYL(r,h)=*SQ(r) *h’ DEFINE.

» SCONE(r,h) returns the curved surface area of a right cone of altitude # and radius r
from the formula 4 = 7r(r2 + h2)*:

"SCONE(r,h) =7 #r*V/(SQ(r) + SQ(h))’ DEFINE.
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m CSEG(r,x) returns the area of a segment of a circle, where r is the radius, and x is the

perpendicular distance of the chord from the center, from the formula

2
A = —Ezr——x Vr?-x? —rzsin'l(%).

'CSEG(r,X) = *"2/2 -x*V/(r"2-x"2) -r*2+ASIN(x/r)’ DEFINE.

= PPER(n,r) computes the perimeter of an n-sided polygon inscribed in a circle of radius
. LT

r from the formula perimeter = 2n r sin—:
n

'PPER(n,r) =2#n+*r*SIN(w/n)’ DEFINE.

These user-defined functions return symbolic results containing , unless you clear
either flag —2 or -3 (section 3.5.5.2) to cause automatic numerical evaluation of .
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Programming is the art of developing sequences of computer operations that can be
“replayed” automatically. Such sequences are called programs; on the HP 48, programs
are objects that you can use as arguments for various operations as well as executing
directly. “Programming” on the HP 48 then means the creation ofprogram objects, and
the use of those objects to achieve various computational tasks.

Creating a program object consists of entering a sequence of objects that are to be exe-
cuted in order automatically, surrounding the sequence with << >> delimiters. The
delimiters identify the sequence as a program, and prevent its immediate execution by
ENTER. When you name a program object by storing it in a global variable, you effec-

tively extend the calculator’s command set: you can use the variable name just as you
would a built-in command. Imagine, for example, that you have created two program
objects named DOTHIS and DOTHAT. Then if you want to create a program that per-
forms both of the tasks done by DOTHIS and DOTHAT, you just enter << DOTHIS
DOTHAT >>, perhaps naming it DOBOTH. This process is unlimited--you can use
DOBOTH as an element of another program. DOTHIS and DOTHAT themselves may
be combinations of other program names. As a matter of fact, the HP 48 commands
that you use in your programs are themselves programs written the same way, stored in
built-in libraries rather than in variables.

We have been using the term sequence to mean a series of objects (including com-
mands) that are executed in order. However, a more general definition of sequence
includes certain entries that are not objects but are used in building program structures.
The non-object “entries,” examples of which are FOR, DO, -, and END, are called pro-

gram structure words. These are not objects, because you can’t put them on the stack or
execute them individually, but must use them in certain specific combinations, like
FOR...NEXT, or IF..THEN..END. A complete combination, including the objects
between the program structure words, is called a program structure.

The more complete definition of sequence, then, is any series of objects and program
structures that can “stand alone,” i.e. could constitute a program if surrounded by <<
>> delimiters. A sequence can be all of a program, or part of a program. For example,
in

< 1 2 IF A THEN B C END D >

1 21is a sequence, B C is a sequence, and 1 2 IF A THEN B C END D is a
sequence. IF, IF A and IF A THEN are not sequences, because the program structure
is not complete--you can not enter these by themselves without obtaining an Invalid
Syntax message.
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9.1 Program Basics

The basic structure of an HP 48 program is very simple:

<< program body >>.

The << and >> are the program object delimiters that serve to identify this object as a
program. Program body is the sequence of objects and program structures that make up
the logical and computational definition of the program.

9.1.1 The << >> Delimiters
The << and >> that surround HP 48 programs serve a dual purpose. First, they are the
delimiters that identify an object as a program. When you enter a program into the
command line, the << tells the HP 48 to create a program object from all of the objects,
commands, names, etc., that follow, up to the next matching >>. Then, when the HP 48

displays a program object after it has been created, the << and >> identify the object to
you as a program.

The second role of these delimitersis to serve as logical “quotes” (see section 3.8) that
postpone execution of a program sequence. When << is encountered in program or
command line execution, it is interpreted by the HP 48 to mean “put the following pro-
gram object on the stack.” This behavior of << allows you to include programs within
other programs:

<< objects >> EVAL

executes objects, but

<< << objects > >> EVAL

leaves the program << objects >> on the stack. Notice that these are paired delim-
iters; for every <<, there is always a >>. The trailing >> ends the definition of the pro-
gram started by the matching <<. When you enter a program into the command line,
the HP 48 reminds you of this necessary pairing: pressing enters both delim-
iters (on separate lines) with the cursor in between. The key also activates program
entry mode, in which command keys echo their command names to the command line
rather than executing the commands. This makes the key the HP 48’s closest analog to
the more traditional program mode keys you find on other calculators (such as
on the HP 41).
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9.1.2 The Program Body
The “body” of an HP 48 program, that is, everything between the << and the >>, can
consist of any combination of objects and program structures:

¢ Data objects;

¢ Quoted names and procedures, which go on the stack like data;

e Commands--RPN commands and functions;

e Unquoted names--which act like user-defined commands;

e Program structures--loops, conditionals, and local variable structures.

To “run” a program, you execute the program object, either directly with EVAL, or more
commonly, indirectly by executing the program’s name. In general, when a program is
executed, all of the items from the above list that constitute the program body are exe-
cuted sequentially. The nominal order of execution is start-to-finish, or “left-to-right” in
the command line order in which the program was entered originally. Within a pro-
gram structure, there may be repetitive loops or conditional jumps. Of course, there’s
nothing remarkable about this program flow--any programming language exhibits similar
orderly execution.

Creating an HP 48 program is straightforward:

1. Press [S][<>];

2. Press the keys for, or spell out, the objects you want the program to execute, in
the same order used when you perform the calculation manually; then

3. End the program entry by pressing . Alternatively, you can use the cursor
keys to move the cursor past the final >>, to continue with additional command
line entries.

4. To name a program, enter a name (quoted) and press . You can consider
the resulting variable as a named program.

If you have a computer connected to the HP 48 via the serial port, you can also write
programs (and other types of objects) on the computer. There you may use any text
editor that can generate text-only (ASCII) files. When you transfer the file to the
HP 48, the calculator translates the text into a program object exactly as if you had
typed the text into the HP 48 command line. There are several advantages to using the
computer for program development:

e The computer’s keyboard provides for easier text entry.
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e The larger display allows you to format your programs in a more legible manner

(see section 1.4).

e Most text editors provide search-and-replace and other editing features to speed up
program entry.

e The computer text file provides an automatic archive of your program.

e You can include comments in your program text. A comment is text that serves to
annotate the program or any of its parts, but is not included in the execution action
of the program. Comments, delimited by “@” characters (section 6.4.3.1), are
stripped from a program by ENTER, so that they serve no real purpose when you
enter a program in the command line. The comment capability was included in the
HP 48 specifically for program editing on computers.

The simplest programs are those which contain no program structures. Such programs
only contain objects to be executed one after the other, starting with the first object
after the <<, and ending with the last object just before the >>. Examples:

1. < 1 2 3 > 'P123° STO creates a program named P123 that enters
the numbers 1, 2, and 3 onto the stack.

2. < 2 [/ SIN > 'HSIN'" STO creates a program named HSIN, that
returns the sine of 1/2 of the number in level 1.

3. < + + SQ >> 'SUMSQ’ STO creates SUMSQ, which adds three
numbers from the stack and squares the result.

You can alter the basic start-to-finish execution flow of programs by adding program
structures that define branches and loops. Branches are forward jumps in a program,
that cause program sequences to be skipped. Loops contain backward jumps, which
cause program sequences to be repeated one or more times. These structures are

described later in this chapter.

9.1.3 Structured Programming
A property of HP48 programs that is common among many computer languages, but
may be unfamiliar to HP 41 and other calculator language programmers, is their well-
determined “entrance” and “exit.” That is, in any program there is only one point--the
start--where execution can begin. Similarly, there is only one exit, or point at which a
program completes execution. A diagram to represent the execution flow in and out of
an HP 48 program is very simple:
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IN—>{ << | Body >> }——>0UT

This diagram is elegantly simple compared with one that represents the program flow in
an HP41 or BASIC program. In these languages, there is no limit on the number of
entrances and exits in a single program. The principal program constructs that make
this possible are labels and GOTO (go to) commands. A GOTO is an unconditional
jump, with no return, to a label (or line number in some calculators and in BASIC).
Using labels and GOTO’s, program execution can jump around from program to pro-
gram, in and out of portions of programs, or round and round within a single program.
Atfirst glance (and more, if you're used to programming this way), this capability seems
like an advantage. You may wonder why the HP 48 does not provide the same capabil-
ity.

The answer is that the HP 48 is designed for structured programming. Structured pro-
gramming consists of writing small programs as building blocks, or modules, from which
bigger programs are assembled as series of subroutine executions. A subroutine is a
program that is executed, or called, from within another program, and which returns to
the original calling program when it is finished. Bigger programs themselves may
become subroutines for even bigger programs, and so on. Each program, at every level,
has a single entrance and exit; there is no jumping in and out of programs at intermedi-
ate points. Structured programming has the following advantages:

e Programs are easy to write. Each program can be designed to fulfill a single task,
and can thus consist of relatively few steps. If a program gets too long, you just
divide it into smaller programs.

e Programs are easy to decipher. By choosing meaningful names for subprograms,
you can read a program almost as text. For example, a program might look like
this:

<< GETINPUT DOMATH
IF BIG
THEN IGNORE
ELSE SAVE
END

>>

It is easy to understand what this program does. It gets input (GETINPUT), then
does some calculations (DOMATH) on that input. Next, it checks a result to see if

it’s too large (IF BIG); if so, it discards the result (THEN IGNORE), otherwise saves
it (ELSE SAVE). Atthis level, you can see the overall structure of the program. To
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see more detail, you can examine the individual subroutines. For example, BIG must
be a program that tests the results returned by DOMATH, and returns a true flag if
the results are too big according to some criterion. BIG might be something like

this:

<< DUP2 + LIMIT > >,

This program makes copies of two numbers in levels 1 and 2, then adds them and
tests to see if the sum is greater than the value of LIMIT (which might be a number,

or another calculation to perform,etc.).

Programs are easy to alter. In the above example, you can completely change the
internal definition of BIG, without worrying about the main program. All you have
to do is ensure that BIG works the same from an external point of view--it must take
the right number of objects from the stack, and return the right number, etc. Simi-

larly, you can change the value of LIMIT from a specific number to a program that
computes a result, without any change in the design of BIG.

In a programming language that permits GOTO’s into the middle of a program, any
modification of a program must ensure that the correct entry conditions are met at
any point at which execution can start. This is especially difficult to manage in
languages like BASIC, where a GOTO can jump to any line in a program, with no
label or other indication to remind the programmer that execution may start at that
line.

Programs can be written without any regard to the internal behavior of programs
that call them, or programs that they may call. All that matters about a program is
its input and output, not the steps thatit uses in its execution.

The last point is a key concept in HP 48 structured programming. A program is defined
externally only in terms of its input and output:

1.

2

3.

4

The number and type of objectsit takes from the stack;

The number and type of objects it returns to the stack;

The variables that it uses;

Flags that are tested or changed.

From the point of view of one program calling another as a subroutine, the first pro-
gram doesn’t have to care af all about how many stack levels or additional subroutine
returns are needed by the subroutine. It just has to be sure to provide the correct
inputs for the subroutine, and know where to find the results returned by the subroutine
(usually on the stack). The calling program also can depend on having program
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execution return to it after the subroutine is finished, no matter how many other sub-
subroutines are called by the subroutine.

On the HP 48, there is no structural difference between a program and a subroutine.
Calling a particular program a subroutine is only a matter of convention, often deriving
from the circumstance that the program uses very particular arguments or returns spe-
cial results, that make it unlikely to be used as a stand-alone program.

9.2 Program Structures

A simple program consisting of a sequence of objects can be broken into two or more
programs at any point in the sequence. For example, the program

< 5 * 6 + 10 - >

is equivalent to the two programs

< 5 % > << 6 + 10 - >

executed consecutively.

A program structure is a program segment that can not be broken into stand-alone sec-
tions. A user-defined function (section 8.5) is an example of a program structure; for
example, the program

< - X '2#+3 >

can not be divided like this:

<K - X > << ox+3 >,

The first part would return a Invalid Syntax message when entered. Similarly, you can’t
break

<< 1 5 FOR n n SQ NEXT >

into

< 1 5 FOR > << n n SQ NEXT >>.

The FOR and the NEXT must be in the same program.

Program structures are defined by program structure words. These words are similar to
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object delimiters, in that they do not themselves represent objects, but are instructions
to the HP48 to build command line text into specific structures. As in the case of
object delimiters, the structure words always appear in specific combinations and satisfy
certain syntax rules.

Table 9.1 lists all of the built-in HP 48 program structures and their uses. Libraries can
add additional structures to the list.

Table 9.1. HP 48 Program Structures

 

Structure Type Typical Use

IF...THEN...ELSE...END Conditional Program decisions

CASE..THEN...END...END Conditional Selecting among
multiple choices.

START...NEXT/STEP Definite Loop Execute a sequence a
specified number of
times.

FOR index ... NEXT/STEP  Indexed Definite Loop Execute a sequence once
for each value of an
index.

DO...UNTIL...END Indefinite Loop Repeat a sequence until
a condition is satisfied.

WHILE...REPEAT...END Indefinite Loop While a condition is

satisfied, repeat a
sequence.

- ..names... procedure Local Variable Structure  User-defined functions.
Creating local variables.

IFERR...THEN...ELSE...END Error trap Handle expected and

unexpected command
errors.   

Before studying the various program structures, we need to describe HP 48 test com-
mands, which along with the flags introduced in section 7.1, are key concepts in
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understanding the execution of program structures.

9.3 Tests and Flags

A calculator program “asks a question” by executing a test command. A test command
is any command that in effect returns true or false as a result, which then may be used
to choose a particular program branch to execute. In the HP48, true and false are
represented as stack objects by real number flags, zero for false and any non-zero value
for true (when returned by a command as a result, 1 is used for true).

With these ideas in mind, we can make the following definitions:

Test: A command that returns a flag to the stack. Examples: SAME,
==, F§?

Logical operator: A function that makes a logical combination of two flags (AND,
OR, XOR), or inverts a flag (NOT), and returns a new flag.

Conditional: A program structure that includes a structure word which uses a
flag as an argument, and causes a program branch according to
the flag’s value. HP48 conditionals are IF, CASE, DO, and
WHILE structures.

Notice that a test and the corresponding conditional branch are separate operations. To
permit this separation, a test command returns its result in the form of a (real-number)
flag on the stack, which can then be manipulated like any other stack object. Consider a
typical test command, >. > compares real numbers in levels 1 and 2: if the number in
level 2 is greater than that in level 1, > returns 1 (true);it returns O (false) if the level 2
number is equal or smaller. For example, to compare the values of X and Y in a pro-
gram, you use the sequence

Xy >.

This returns 1 (true) if X is greater than Y, or 0 (false) otherwise.

In a conditional structure, one particular structure word actually makes the branch deci-
sion, taking a flag from the stack for this purpose:

e the THEN in IF...THEN...(ELSE...) END (section 9.4.1).

e cach THEN in CASE...THEN...END...END (section 9.4.3)

e the END in DO...UNTIL...END (section 9.5.2.1).
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e the REPEAT in WHILE...REPEAT...END (section 9.5.2.2).

But note that you can include any number of intervening objects and commands
between the point at which the flag is put on the stack, and the structure word that uses
the flag for a branch decision. This separation of tests and decisions makes possible the
use of logical operators to combine flags. For example, the logical operator AND takes
two flags from the stack and returns a true flag if both of the original flags are true, and
a false flag otherwise. The sequence

XY > Y Z > AND

returns 1 only if X is greater than Y, and Y is greater than Z. Furthermore, since the
logical operators and most tests (except SAME) are functions, you can rewrite the above

sequence in a more legible manner:

'X>Y AND Y>Z' -NUM.

The »NUM converts the algebraic expression into a real number suitable for use as a
flag. If the flag is intended for use in a conditional structure, you can omit the ~NUM.
All of the structure words listed above automatically perform a numerical evaluation on
an algebraic argument. For example,

IF 'X>1 AND Y>1" THEN

and

IF X 1 > Y 1 > AND THEN

are equivalent, with the former getting better marks for legibility.

You can even store a flag value then retrieve it for later use by a conditional. Rather
than using an ordinary variable, you can use a user flag as the storage location: the flag
number replaces a variable name, and the number 1 or 0 is the value. FS? plays the
role of RCL for a user flag--it transfers the flag value to the stack. Similarly, SF and CF
store the values 1 and 0, respectively, into a user flag. There is no single command to
store a stack flag directly into a user flag, but the sequence

IF SWAP THEN SF ELSE CF END

will accomplish that, where the flag number is in level 1 and the new flag value is in
level 2.
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One by-product of using real numbers as flags for conditionals is to make it easy to test

a real number against zero. In the sequence

IF 'X#0’ THEN A ELSE B END,

the #0 is superfluous. Instead, use

IF X THEN A ELSE B END.

9.3.1 HP 48 Test Commands
The HP 48 test command set is as follows:

e <, >, =, and =, for comparing the numerical or lexicographical order of two
objects. These operators are applicable to real numbers, binary integers, and binary
integers, strings, and symbolic arguments. Strings are ordered by their character
values, left to right; extra characters count as “higher,” e.g. "AA" "A" > returns
true.

e SAME, == and #, for testing equality and inequality. These commands may be
used with any types of arguments.

e The flag test commands FS?, FC?, FS?C, FC?C, discussed in section 7.1.1.

For those commands that compare two arguments, the order of the arguments is con-
sistent with the order for other HP48 functions: the arguments are entered onto the
stack in the same order as they appear in algebraic expressions. For example, consider
the “greater-than” operator >. In an algebraic expression, “is A greater than B?” is
written as “A > B” A is the first argument, reading left-to-right; B is the second. The

comparison is true if the first argument is greater than the second. If you rewrite the
infix operator > in Polish notation, the expression becomes '>(A,B)’. Converting to
RPN, this becomes A B >, which indicates that A should be entered into the stack
before B. When > executes, A should be in level 2, and B in level 1.

9.3.2 Equality
The HP 48 distinguishes two types of equality, physical equality and logical equality.
SAME tests the physical equality of two objects, i.e. whether the two have the same bit
pattern in memory. By contrast, for real and complex numbers, binary integers, units,
and symbolic objects, == and #* test the logical equality of their arguments objects,
using the logical values represented by the objects. In most circumstances, the two tests
return the same result--if two real numbers have the same numerical value, they also
have the same bit patterns. However, there are cases where the two tests will differ:
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e == and # can compare real and complex numbers numerically; a real and complex
number can be equal if the imaginary part of the latter is zero and the real part is

the same as the real number: (5,0) == = 1. SAME always returns false when
comparing objects of different types.

e == is a function, and thus returns a symbolic result when applied to symbolic argu-
ments. SAME compares the original objects themselves, always returning a flag.
Thus, '1+2’ 3 == returns the expression '1+2==3" (which evaluates to a true

flag), whereas '1+2" 3 SAME returns a false flag.

e When comparing binary integers, == ignores leading zeros and compares only the
numerical values, so that the relative wordsize of the two integers does not matter.
For SAME to return a true flag, the two integers must have the same wordsize as
well as the same value.

For other types of objects, == and # test physical equality in the same manner as
SAME. The interpretation of physical equality is so strict that SAME can surprise you
by returning false in cases where two objects are identical in all outward appearances.
For example, if you execute

1 'FOO’ STO FOO 1 -LIST { 1 },

you obtain two lists that certainly look the same. However, SAME and == return O for
these lists. This is because the object 1 is one of a substantial number of objects that
are built into the HP 48’s permanent ROM. For sake of memory efficiency, these built-
in objects are not copied into RAM except when they are stored individually in a global
or port variable. Otherwise, they are represented on the stack and in composite objects
(section 3.3) by 2.5-byte pointers. In the first list in the above sequence, the 1 is con-
verted to a RAM object (10.5 bytes) when it is stored, whereas the 1 in the second list is
a pointer. SAME therefore dutifully reports that the two objects are different. BYTES
(section 12.5.1) applied to the two lists also returns different sizes and checksums.

A similar analysis applies to units created by UBASE and UFACT: for example,

i_m DUP UBASE SAME = 0

When UBASE rebuilds a unit object from base units, the characters (in this case, the
“m”) in the unit part are taken from a ROM table. A 1_m created by any other means
does not contain the ROM character. In this case, however, == does return true for

these two objects, since this function tests logical equality for unit objects.

It is also important to distinguish == and =. = is not a test command, so it is funda-
mentally different from ==, which is a test. = is a function that creates an equation
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from two expressions. Its execution does not return a flag; in symbolic execution mode,
it does nothing other than evaluate its arguments. In numeric execution mode (includ-
ing using ~NUM) it acts the same as —, returning the numerical difference of the two
sides of the equation.

==, on the other hand, is a test, and always returns a flag when executed. == is pri-
marily intended for ordinary numerical equality comparisons. You can use == in alge-
braic expressions as an infix operator, just like <, >, etc. == and = must have dif-
ferent names to distinguish their quite different meanings, and to prevent ambiguity
within algebraic expressions. Note that A=B is an “assertion,” whereas A==B is a
“question.”

9.4 Conditional Branches

The program decisions discussed in the preceding sections are most frequently used in
conjunction with program branches, where execution can proceed along one of two or
more paths. The HP 48 does not provide for unconditional branches, in which program
execution jumps out of the middle of a program without any test. Such branches are
used in some programming languages to minimize program size through reuse of steps
common to more than one part of a program. On the HP 48,this is achieved by writing
the common part as a subroutine that can be called by other programs.

A Conditional branch can be one of the following types:

e A simple branch consisting of a choice between one of two or more paths, where one
or more program sequences are skipped as execution proceeds forward.

e An iteration loop, using backwards jumps to repeat execution of a sequence one or
more times.

e An exit from an iteration loop.

9.4.1 Simple Branches: The IF structure.
The most straightforward type of branch involves a choice between executing two dif-
ferent program sequences. On the HP 48, this is implemented with the IF structure, a
program structure that has the general form:

IF test-sequence THEN then-sequence ELSE else-sequence END

You can read this structure as “if test-sequence is true (returns a true flag), then execute
then-sequence and jump past the END. If faise, skip the then-sequence and execute else-
sequence.”
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m Example. If the [<][SIN] key has a user key assignment, display the assignment; other-
wise show Unassigned.

 

 

RCLKEYS DUP Get the assignmentlist.
IF 412 POS DUP If keycode 41.2 is in the list...
THEN 1 - GET ...then get the assigned object.
ELSE DROP2 "Unassigned" |...otherwise, enter a string.
END

1 DISP 1 FREEZE Display the result.  
 

This sequence uses the real number returned by POS both as a flag to indicate whether
the search was successful, and also, if non-zero, to specify the keycode’s position in the
list.

The ELSE else-sequence portion of an IF structure is optional. For cases where the
else-sequence is unnecessary, you can use this form:

IF test-sequence THEN then-sequence END,

which translates to “If fest-sequence is true, execute then-sequence; otherwise, skip past
the END.”

m Example. Order two numbers so that the smaller one is returned in level 1, the
greater in level 2.

 

 

DUP2 Copy the two numbers.
IF < Test if the first is less than the second.

THEN SWAP If so, switch the numbers.

END   
 

= Because it is THEN that actually removes a flag from the stack and makes the branch

decision, the position of the IF in the sequence that precedes THEN is unimportant:

1 2 IF > THEN
1 2 > IF THEN
IF 1 2 > THEN

.., and

..., and
esey

all produce the same result. You can choose to position the |IF wherever you want to
make a program the most readable. (The most memory-efficient form has a single
object between the IF and the THEN. Thus of the three forms above, the first uses the
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least memory. See section 12.5.)

9.4.2 RPN Command Forms
An alternate means of achieving IF structure branching is provided by the IFTE and IFT

commands. For these commands, the various sequences included in an IF structure are
entered as stack arguments, either as single objects or as programs. Thatis,

test-sequence << then-sequence >> << else-sequence >> IFTE

is equivalent to

IF test-sequence THEN then-sequence ELSE else-sequence END.

Similarly,

test-sequence << then-sequence >> |FT

is equivalent to

IF test-sequence THEN then-sequence END.

To use IFTE, you put a flag in level 3, an object (usually a program) representing the
then-sequence in level 2, and an object representing the else-sequence in level 1. IFTE

tests the flag; if the flag is true (non-zero), the else-sequence is dropped, and the then-
sequence is executed. If the flag is false (zero), the then-sequence is dropped, and the
else-sequence is executed. IFT works much the same way: the flag must be in level 2,
and a then-sequence in level 1. If the flag is true, the then-sequence is executed, other-
wise it is dropped.

m Example. Split a real or complex numberinto its real and imaginary parts.
 

 

 

 

 

 

RC-R Real/Complex to Real 8A8F

level 1 | level 2 level 1

x o x 0

*y) o x y

<< DUP TYPE Get the input type.

< C-R > Complex case (type # 0).

0 Real case (type 0)--just push zero on the stack.

IFTE Execute appropriate choice.

>>    
There is no particular advantage within a single program to using IFT or IFTE rather
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than the corresponding IF structure, so which form you use is mostly a matter of taste.
However, the RPN command forms have one advantage for more sophisticated pro-
gramming: their use allows you to place the test-sequence, the then-sequence, and the
else-sequence in separate programs or program structures. If you use an IF structure, all

must be contained in the same program.

IFTE is also a function, which means you can use it in algebraic objects as well as in
programs. It is a prefix function of three arguments:

IFTE (test-expression, then-expression, else-expression)

Notice that the arguments are in the same order as the stack arguments when IFTE is
executed as an RPN command. All three arguments are ordinary expressions. Test-
expression is evaluated, and its value is interpreted as a flag. If the flag is true, then-
expression is evaluated; if the flag is false, else-expression is evaluated. Typically, the
test-expression contains a comparison operator, so that evaluation automatically returns a
flag.

w Example. '[FTE(X==0,1,SIN(X)/X)’ computes SIN(X)/X, returning the value 1 when
X is zero.

IFT has no algebraic form. This is because algebraic objects must return a result when
evaluated--an algebraic conditional can’t “do nothing” if the test flag is false.

9.4.3 The CASE Structure
The IF structures described in the previous section are convenient for branching thatis
based on a single test to select between two choices. While it is possible to handle any
more elaborate combinations of tests and choices with “nested” IF structures, the

overall structure can get rather convoluted. For more straightforward handling of multi-
ple tests and choices, the HP 48 provides the CASE structure, which has the following
general form:

CASE
test-sequence ; THEN then -sequence ; END
test-sequence, THEN then-sequence, END

test-sequence, THEN then -sequence,, END
else-sequence

END
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You can read the CASE structure as “execute fest-sequenceq, then test-sequence,, etc.,
until one fest-sequence returns true. Then execute the corresponding then-sequence, and
skip to past the final END. If no test-sequence returns true, then execute else-sequence.

» Example. The program COUNT4 is a simple four “bin” counting routine.

 

 
 

 

 

 

COUNT4 Count in 4 Ranges 8F8C

level 1 | level 1

X e

<< CASE

DUP 0 < THEN DROP 1 END Range 1 if x<0.

DUP 0 == THEN DROP 2 END Range 2 ifx = 0.

1 = THEN 3 END Range 3 if 0<x=1.

4 Othertests failed, so x must be

greater than 1 (range 4).

END

"COUNTS’ SWAP DUP2 Make two copies of the vector name

and the index.

GET 1 + PUT Get the element, add 1, put it back.
>>   
 

COUNT4 tests an argument x to see in which of four ranges its value lies. The total in
each range is stored in the four-element vector COUNTS. The elements of the vector
represent these ranges:

Element Range

1 x<<0

2 x=0

3 0<x=1

4 x>1

Another way to make a multi-case choice is to create a list of programs, then select one
of the programs from the list according to an index. For example, this sequence takes a
real number from the stack, and executes a name corresponding to the number:
 

 

{ ONE TWO THREE FOUR FIVE }
SWAP
GET
EVAL

List of name choices.

Put the index in level 1.

Get the indexed choice.

Execute the selected name.  
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9.5 Loops and Iteration

A loop is a program structure containing a sequence thatis iterated--executed more than
once. In a definite loop, the number ofiterations is known in advance. In an indefinite
loop, the iteration continues until some specified condition is met, after which execution
exits from the loop and continues with the rest of the program.

9.5.1 Definite Loops
The most common form of definite loop structure is the FOR..NEXT loop. This kind
of loop is appropriate when you want a program sequence to repeat several times, mak-
ing use of an index that is incremented by 1 at each iteration of the sequence. The gen-
eral form of a FOR..NEXT loop is:

start stop FOR name sequence NEXT,

where

e start is the (real number) initial value of the index.

e stop is the (real number) final value of the index.

e FOR identifies the start of the structure; it removes the start and stop values from

the stack.

e name is the name of the (local) variable that contains the index.

® sequence is any program sequence, which can contain any number of uses of name.

e NEXT is the structure word that identifies the end of the sequence. It increments
the index by one, then tests its value against the stop value to determine whether to
repeat the sequence.

You can read a FOR..NEXT loop as “For each value from start through stop of an
index named name, execute the sequence that ends with NEXT.”

m Example. Enter onto the stack the squares of the integers from 1 through 100.
 

    

1 100 Start and stop values.
FOR n Create a local variable n, with initial value 1.

n SQ Square the current index.
NEXT Increment n by 1. If n=100, loop again.

A few obgn=rntinee
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e Start and stop as shown above are not part of the FOR..NEXT program structure.
FOR expects to take two real numbers from the stack, but those numbers can be
entered or computed at any time in advance of the FOR, as long as they are in levels
1 and 2 when the FOR executes.

e The start and stop values are removed from the stack by FOR. They are not accessi-
ble afterwards; if a program needs their values for other purposes, it should copy
them or store them in variables before executing the FOR.

e The index is kept in a local variable identified by the name that immediately follows
FOR. You can return the current value of the index by executing its name. You can
also change the value of the index after the loop has started, by storing a real
number into the local variable. The naming and use of the index variable are sub-
ject to the same restrictions as local variables created by — (section 9.7). After the
loop is finished, the index variable is automatically purged.

e The name following a FOR is not part of the sequence that is repeated. For exam-

ple,

1 10 FOR n n NEXT

puts integers 1 through 10 on the stack, but

1 10 FOR n NEXT

accomplishes nothing,

e The sequence between FOR name and NEXT always executes at least once, even if
the specified stop value is less than the start value.

e The start and stop values don’t have to be integers. NEXT always increments the
index by 1; the loop will repeat as long as the index is less than or equal to the stop
value.

5 .6 FOR n sequence NEXT

executes sequence once, with n = 5.

e The combination FOR name acts like a single operation when you single-step (sec-
tion 12.2.2) the FOR.

e Start, stop, and step can be algebraic objects, as long as they evaluate to real
numbers.

9.5.1.1 Summations

A common form of iteration is a summation, in which successive values are accumulated
to a total. To add the squared integers computed in the previous section, we can modify
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the example as follows:
 

   

0 Initialize the total.

1 100 Start and stop values.
FOR n Create a local variable n, with initial value 1.

n SQ + Square the current index, and add to the total.
NEXT Increment n by 1. If n=100, loop again.
 

Executing this sequence returns 338350.

For cases where the successive terms in the sum can be represented by algebraic expres-
sions, the HP 48 provides the summation function . X takes four arguments:

index start stop summand 2 ©F sum.

Index must be a name, and the other three arguments can be algebraic objects or any

objects permitted within an algebraic object. Summand, of course, is usually a function
of index.

As well as being more compact and legible compared to the FOR..NEXT form, 2 is
also a function; used itself in an algebraic object, it is a prefix function with this syntax:

2(index =start,stop,summand).

(Notice the required = sign). In standard mathematical notation, and in the Equation-
Writer display, this translates to

stop

> summand.
index =start

Summand is usually an expression containing index. Using the summation function, the
sum of squares computed above can be obtained by evaluating

>(n=1,100,n"2).

When 2 is evaluated, it evaluates start and stop, then returns:

e The same sum except with the evaluated limits, if either of the evaluated limits is
still symbolic;

e A sum of symbolic terms, if both limits evaluate to numbers and the summand con-
tains symbolic arguments other than the index, thus
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'2(1=1,2,1+A)’ EVAL = '1+A+(2+A);

e A numeric sum, if the limits and the summand all evaluate to numbers, thus

'2(1=1,21+1)" EVAL = 5.

A sum can be differentiated:

'2(01=ABFX)" ‘X 3 = 'Z(=AB,dX(F(X]I)’

A sum may also be integrated symbolically. When the integral is evaluated, if the sum-
mand is an integrable pattern, the result is the (unevaluated) sum with the summand
replaced by its definite integral. If the summand is not integrable, the result retains the
sum as the integrand (i.e. the integral is not pushed inside the sum).

9.5.1.2 Varying the Step Size
The FOR..STEP program structure is a variation of FOR..NEXT, which allows you to
increment the loop index by amounts other than one, including negative values. A
FOR...STEP structure looks like this:

start stop FOR name sequence STEP.

Start, stop, name, and sequence play the same roles as in FOR..NEXT loops. The struc-
ture word STEP plays a similar role to NEXT, but allows you to control the amount by
which the index is incremented (or decremented). STEP takes a real number from level
1, and adds it to the current value of the index. Then:

e If the step value is positive, the loop repeats if the index is less than (more negative)
or equal to the stop value.

o If the step value is negative, the loop repeats if the index is greater than (more posi-
tive) or equal to the stop value.

Note that since STEP takes a number from the stack, sequence must end with the step
value on the stack (the step value doesn’t have to be the same each time).

m Example. The program DFACT computes the double factorial n!!'=n (n-2)(n-4)...1,
where n is an integer.
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DFACT Double Factorial 605F

level1 | level 1

n o nl!

< 1 Initialize the product.

SWAP 2 Loop from n down to 2.

FOR m m is the index.

m ¥ Multiply the product by m.

-2 STEP Decrement m by 2. Repeat if m=2.

>>   
 

9.5.13 Looping with No Index

In some circumstances, there is no need for an index when a program sequence is to be
repeated a fixed number of times. In such cases, you can use START in place of FOR.
START..NEXT and START...STEP are the same as FOR..NEXT and FOR...STEP,
respectively, except that the loop index is not accessible. The index name that must fol-
low FOR is not used with START (if a name does follow START,it is just treated as part
of the loop sequence, and has nothing to do with the loop index).

m Example. The program VSUM sums the n elements of a vector.

 

 
 

 

 

 

VSUM Sum Vector Elements ACD8

level 1 | level 1

[ vector ] o sum

<«< OBJ- OBJ- Put the elements on the stack, with the

number of elements in level 2, and a 1 in

level 1.

SWAP OVER - Loop start and stop values for n—1 addi-

tions.

START + NEXT Execute + n-1 times.

>>   
 

9.5.14 Exiting from a Definite Loop

Definite loop structures are designed to repeat a predetermined number of times.
There is no “exit” command that can cause program execution to jump out of a loop
before it has completed the specified number of iterations. Ordinarily, you should use
an indefinite loop (section 9.5.2) for calculations where you don’t know in advance how
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many iterations are needed. However, indefinite loop structures don’t provide an

automatic index like that in FOR..NEXT/STEP loops, so for some problems you may
find it more convenient to use a definite loop with a contrived exit rather than an inde-
finite loop where you have to provide your own index.

All you have to do to cause a loop to exit before the prescribed number of iterations is
to store a number greater than or equal to the stop index value into the index variable.
In loops with a positive step size, an obvious choice for an exit value is MAXR, the larg-

est number that the HP 48 can represent, although you have to be sure to convert the
symbolic constant into a real number. For loops with a negative step, you can use
-MAXR.

Typically, the exit from a definite loop is taken as the result of a test. The general form
of such a loop is as follows:

start stop
FOR n sequence

IF test
THEN MAXR -NUM 'n’ STO
END

NEXT

This structure executes sequence for every value of n starting with start, and ends when
either n is greater than stop, or fest returns a true flag.

N
» Example. Determine the value of N for which 3 n2 = 1000.

 

n=1

0 1 10000 Initial value of sum; start and stop values.

FOR n Loop index is n.
n SQ + Increment the sum.
IF DUP 1000 > Is the sum =1000?

THEN n The current value of the index is N.

MAXR -NUM ’'n" STO Set the index past the stop value.
END

NEXT     
Executing this sequence returns the sum 1015, and the value 14 for N.

9.5.2 Indefinite Loops
An indefinite loop is a loop where the number of iterations is not determined in
advance. Instead, the loop repeats indefinitely until some exit condition is satisfied.
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The HP 48 provides two program structures for indefinite looping, the DO loop and the
WHILE loop. The primary difference between the two structures is the relative order of
the test and the loop sequence. In a DO loop, the sequence is performedfirst, then the
test; in a WHILE loop, the test is performed first.

9.5.2.1 DO Loops
The basic form of a DO loop structureis:

DO loop-sequence UNTIL test-sequence END.

Loop-sequence is any program sequence. Test-sequence is a second program sequence,
which must end with a flag on the stack. END removes the flag; if the flag is false
(zero), execution jumps back to the start of loop-sequence. Ifthe flag is true (non-zero),

execution proceeds with the remainder of the program after the END. You can read a
DO loop as:

“Do loop-sequence repeatedly, until test-sequence is true.”

» Example. Compute ), is
n=1"

= Solution: The sequence below sums terms of the form n~>, until two consecutive
sums are equal. Executing the sequence returns 1.03692775496, after 184 iterations.

 

   

1 'N’ STO Initialize a variable N as a counter.

0 Initialize the sum.

DO Start of loop.
DUP Copy the old sum.

N -5 ~ + Addn 3.
1 'N STO+ Increment the counter.

SWAP New sum in level 2, old in level 1.

UNTIL Start test-sequence.
OVER == True if old sum = new sum (leaves only new

sum in level 1).

END Repeatif test was true, otherwise done.
 

The position of the UNTIL between DO and END is unimportant. Thatis, the division
of the program steps into loop-sequence and test-sequence is only a matter of program
legibility. Both loop-sequence and test-sequence are executed at each iteration of the
loop, so it doesn’t matter where you put the UNTIL. We recommend that you use the
UNTIL to isolate that portion of the program that constitutes the logical test--the pro-
gram steps which produce the flag that determines whether or not to repeat. The
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portion that precedes the UNTIL should be the part of the loop that computes the
results used by the remainder of the program after the END.

To reverse the sense of the test, that is, to make a loop that repeats until a test is false,
you can either substitute an opposite test command (> for <, FC? for FS?, etc.), or
insert a NOT immediately before the END:

DO loop-sequence UNTIL test-sequence NOT END.

In the example above, we used a global variable N to hold the summation index. It is
not uncommon to have an indefinite loop that uses an index or a counter similar to that
used in definite loops. For simple incrementing by one, you may find it convenient to
use INCR, which takes a global or local name as an argument and executes the
equivalent of DUP 1 STO+ RCL, using fast “in-place” arithmetic. DECR serves a simi-
lar purpose when you want to decrement by one. These commands perform a final RCL
expressly so that the index value is available for testing for a loop exit condition. For

example, the following sequence is equivalent to a FOR...NEXT loop:
 

   

- index stop Initialize the index and save the stop value.
< DO

loop-sequence
UNTIL

‘index’ INCR stop == |[Iterate until the incremented index is equal

to the stop value.
END

>>
 

Here we have used local variables to hold the index and stop values. The point of the
example is not to suggest replacing FOR..NEXT loops, but to show how you might
write a loop that combines features of indefinite loops and definite loops. Such a loop
can use INCR or DECR to maintain an index, while using a more elaborate exit condi-
tion than is convenient with FOR..NEXT loops.

9.52.2 WHILE Loops
In a WHILEloop, a test sequence is defined in the first part of the structure:

WHILE fest-sequence REPEAT loop-sequence END.

Here again loop-sequence is any program sequence, and test-sequence is any sequence
that returns a flag. REPEAT removes the flag; if the flag is true, the program executes
loop-sequence, then loops back to fest. If the flag is false, loop-sequence is skipped, and
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execution proceeds with the remainder of the program after the END. You can read a
WHILE loop like this:

“As long as fest-sequence is true, keep repeating loop-sequence.”

m Example. The program GCD finds the greatest common divisor (GCD) of two

integers m and n. GCD repeatedly computes r = m modn; if each successive r is non-
zero, it replaces n with r, m with n, and repeats. When r is finally zero, the value of n is

the GCD.

 

 

 

 

 

 

 

GCD Greatest Common Divisor E895

level 2 level 1 | level 1

n m o GCD(nm)

<< WHILE Beginning of test-sequence.

DUP2 Make 2 copies of m and n.

MOD Compute r = m modn

DUP 0 # Test r#0.

REPEAT If true, do the following:

ROT DROP Replace m and n by new values.

END Loop back and repeat the test-sequence.

ROT DROP2 Leave n in level 1.

>>   
To reverse the sense of the test, that is, to make a loop that repeats while a test is false,
you can either substitute an opposite test (> for <, FC? for FS?, etc.), or insert a NOT
immediately before the REPEAT:

WHILE test-sequence NOT REPEAT loop-sequence END.

9.52.3 DO vs. WHILE
DO loops and WHILE loops are very similar in purpose, and often you can use either
form for a programming problem. Here is a summary of the differences between the
two structures:

e In a DO loop, the test for looping is made after the loop-sequence is executed. In a
WHILE loop, the test is made before the loop-sequence.

¢ In a DO loop, the loop-sequence is executed at least once, and again at every itera-
tion. In a WHILE loop, the loop-sequence may not be executed at all. In general,
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the WHILE loop loop-sequence is executed one time fewer than the test-sequence.

e The position of UNTIL between DO and END is arbitrary, and has no effect on
results. The position of REPEAT between WHILE and END is significant.

9.6 Error Handling

An HP48 error is a circumstance in which normal execution is stopped because the
HP 48 is unable to proceed without your intervention. Errors range from simple cases,
such as DROP executed with an empty stack, to the extreme case where there is so little
free memory that the HP 48 is unable even to display the stack contents. When an error
occurs, the HP 48 normally stops all current execution, beeps, and displays an error mes-
sage. Usually, if the error occurs during execution of a command, the error display also
identifies the erring command.

Whether a particular circumstance is an error or not is a matter of design and conven-
tion. On most calculators, taking the square root of —1 is an error; the HP48 is
designed instead to return a complex number result. The calculator could similarly
return some sort of default result in almost any situation. The Invalid Syntax error, for
example, could be eliminated by having ENTER return the command line as a string
when the object syntax in the command line is incorrect. That, however, would gen-
erally be more misleading and inconvenient than the immediate error signal that
requires you to fix a bad entry. This is the general philosophy behind all of the HP 48

error conditions--the calculator would rather stop and have you take action than to
proceed with a possibly inappropriate action of its own.

Most HP 48 capabilities are programmable, and error handling is no exception. By
using the IFERR structure, a program can intercept any or all errors (except Out of
Memory) and supply its own corrective action. The structure is also called an error trap,
since it “traps” an error before it can interrupt the overall program execution. The
IFERRstructure has the following general form:

IFERR error-sequence THEN then-sequence ELSE normal-sequence END,

where the three sequences are arbitrary program sequences. You can read an IFERR
structure as:

“If any error occurs during the execution of error sequence, then execute then-
sequence and continue execution after the END. If no error occurs, skip then-
sequence and execute normal-sequence, and continue on after the END.”

There does not have to be a normal-sequence--the ELSE normal-sequence is optional.

-239-



9.6 Programming

IFERR error sequence THEN then-sequence END

executes then-sequence if an error occurs during error sequence, but does nothing special

otherwise.

m Example. Compute sinx/x, where x is a stack argument, using an IFERR structure to
handle the undefined result error condition at x =0.

DUP SIN SWAP IFERR / THEN DROP2 1 END

This sequence returns 1 for an argument of zero.

The position of the IF structure word in the sequence preceding THEN in an IF struc-
ture is unimportant because it is THEN that actually makes the branch decision. How-
ever, the position of IFERR in an IFERR structure is significant; the IFERR and the
succeeding THEN define the extent of the sequence for which errors are trapped.
IFERR A B THEN intercepts errors in A and B, whereas A IFERR B THEN traps errors
occurring only in B. The jump to the then-sequence happens immediately upon the
error; any remaining steps preceding the THEN are skipped. Thus if an error occurs in
A in the structure IFERR A B C THEN D END, B and C are not executed--execution
jumps from the point in A where the error occurred directly to D.

Because the reaction to an error is usually specific to a particular error,it is generally a
good idea to keep the error-sequence short, containing as few as one object if possible.
Then there is no ambiguity about which object caused the error, and no part of the
sequence that will be skipped. Of course, even a single object may cause different types
of errors. To sort out such possibilities, you can use the ERRN command (in the third
page of the program control menu) to return the error number of the most recent error,
and ERRM to return the text of the error message. For example, suppose that a pro-
gram adds two arguments. The addition can fail either because the stack is empty, or
because the arguments are of the wrong type. The following error trap can deal with
either problem:
 

IFERR +
THEN ERRN Get the error number.

IF #201h == Is it error 201 (Too Few Arguments)?
THEN GETMORE Use GETMORE to get more arguments.
ELSE ERRM ABORT |[If the arguments are the wrong type,

return the error message as a string,.

END
END   
 

The number returned by ERRN, expressed in hexadecimal, is a (up to) five-digit
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number. The first three digits are the library number of the library containing the com-
mand that reported the most recent error. The last two digits are just the number of
the error message in the library’s message table. Built-in libraries have single-digit
library numbers; for example, the Too Few Arguments error illustrated in the preceding

example is the first error in library 2, which contains all of the error messages related to
generic stack operations.

It is sometimes useful for a program to determine whether a particular error has
occurred, after any trapping of that error has taken place. It is not always sufficient just
to check the last error number using ERRN, since that value might have been esta-
blished prior to the execution of the error trap. To prevent this ambiguity, you can use
ERRO to reset the error number to zero prior to an error trap. ERRO also resets the
error message returned by ERRM to an empty string.

9.6.1 The ATTN Key
Pressing normally aborts current procedure execution and returns the HP48 to
manual operation (see also section 6.2.3). thus behaves similarly to an error,
except that there is no beep or message display. In all other respects, you can treat

as an ordinary error that has error number zero and a null error message. In

particular, you can trap with an IFERR structure. You might do this in order for

a program that is interrupted by to have a chance to “clean up” before terminat-
ing execution, or to prevent termination entirely.

Examples of both of these uses of trapping are given in the program ASN41 in
section 7.2.1.1. In that program, the first error trap, around INPUT, lets you abort the
assignment but discards the three INPUT arguments before quitting. The second error
trap, around 0 WAIT, allows you to make an assignment to by pressing it--without
the trap, pressing would abort the program. Notice that in both cases, is
the only error possible, so the error trap does not need to check the error number.

In order to intrude less on program error handling, does not change the error
number and message returned by ERRN and ERRM whenit is pressed during the execu-
tion of non-programmable operations such as the EquationWriter, the interactive stack
(section 4.5) or any of the catalogs.

9.6.2 Custom Errors
An error trap lets you prevent an ordinary error from interrupting program execution.
However, the reverse situation may also arise: you would like to abort program execu-
tion and report an error when nothing has occurred that the calculator recognizes as an
error. This also includes cases where an error trap has intercepted an error then
decides to go ahead and report the error anyway. These purposes are accomplished by
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DOERR (DO ERRor).

You can create a custom error by executing DOERR with a string argument. "Message"
DOERR generates an error condition just like a command error:

e Procedure execution aborts, and the calculator beeps.

e The text of "message" is displayed in line 1 of the display. You can also create a
two-line message by including a newline character (10) in the message. Each line

should be 22 characters or fewer to fit on the display.

e Subsequent execution of ERRN and ERRM return #70000h and "message", respec-
tively. #70000h is a special error number reserved for DOERR.

¢ You can trap DOERR like any other error.

DOERR will reproduce an ordinary error condition when it is used with a numerical

argument. The number, which may be either a real number or a binary integer, should
be the error number of a built-in or library error (DOERR does not display any com-
mand name along with Error:). If there is no message corresponding to the number, the
display will show Error: with no additional text. 0 DOERR is a programmable
equivalent of ; execution causes a program to abort with no beep or error mes-

sage.

You can observe that the errors listed in the HP48 owner’s manuals are not always
numbered consecutively. There are, for example, apparently no errors between 106h
and 123h. However, if you execute #107h DOERR, the HP 48 will beep and display
Error: Real Number. The explanation is that all of the text used in HP 48 displays is
entered in the various libraries’ message tables, along with the error messages. Mes-
sages 106h-122h happen to be the object type text that the HP 48 uses to display the
stack contents in low memory situations. DOERR does not attempt to distinguish which
messages correspond to normal errors. The program MSGSHOW in section 12.6.4.4
lets you review all HP 48 messages.

9.6.3 Error Handling and Argument Recovery
The design of an error trap must take into account whether last arguments recovery
(section 4.3) is active at the time an error occurs. If argument recovery is enabled, the
arguments of the command that errors are restored to the stack. If recovery is disabled,
the arguments are discarded. This difference obviously can have an effect on error
traps, which may need to take into account the contents of the stack after an error. The
sinx /x example at the beginning of section 9.6 assumes that argument recovery is
enabled. The DROP2 in the then-sequence is intended to discard the two zeros that
cause the division error, and which are restored by the error system. If recovery is
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disabled, the DROP2 is inappropriate because the two zeros are not returned after the
error.

A well-designed program, including its error traps, should work correctly regardless of
whether argument recovery is enabled or disabled. There are two general approaches:

1. Set or clear flag —55 in the program before an error trap, then write the IFERR
structure accordingly. Returning to the sinx /x example, either

-55 CF DUP SIN SWAP IFERR / THEN DROP2 1 END

or

-55 SF DUP SIN SWAP IFERR / THEN 1 END

will work. This method has the disadvantage that it may alter the state of flag
-55 and thus affect other programs that may depend on the flag. As a rule, any
program that does depend on flag —55 or any other flag should itself set the flag
the way it wants, so this should not be a major limitation.

2. Include a conditional in the then-sequence that can react to the current state of

flag —55 without altering it. For example,

DUP SIN SWAP
IFERR /
THEN

IF -55 FC?
THEN DROP2
END
1

END

9.6.4 Exceptions
A mathematical exception is an error condition encountered in the execution of certain
functions, for which the HP 48 has a built-in error trap that lets you control how the
condition is handled. You can treat an exception as an execution-halting error, or have
the calculator supply a default result and continue normally. You make your choice by
means of the three exception action flags (-20, —21, and —-22).

A typical exception is division by zero. The behavior of / when the divisor is zero i
controlled by flag —22, the infinite result action flag. If flag —22 is clear (the default)
division by zero is treated as an error, causing the Infinite Result error. However,if fla
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-22 is set, no error is reported, and one of the values +9.99999999999E499 (+MAXR)
is returned, which are the HP 48’s best representations of +. The sign of the result is

determined by the sign of the dividend.

The choice to error or to supply a default generally depends on whether the exceptional
condition is expected. For example, if you don’t anticipate that a program might cause a
division by zero, it is better to clear flag —22 so that the program will halt and report
the error. On the other hand, if you know that the divide-by-zero situation can happen,
and that +MAXR is a good approximate result that lets a calculation proceed to mean-
ingful results, then setting flag —22 is a good choice.

A program can detect when an exception occurs even if the action flag is cleared to
prevent an execution halt. Flags —23 through -26 act as signal flags--when an excep-
tion occurs, the corresponding signal flag is set automatically. For example, flag —26 is

set by an infinite result exception. Therefore, a program can clear flag —26, carry out a
calculation with flag —22 set, and still determine if a division by zero occurred by testing
flag —26.

In addition to the infinite result exception, the HP 48 also recognizes two other excep-
tions:

e Overflow (action flag —-21, signal flag —25). Overflow occurs when a function
returns a result that is finite, but larger than the HP48 can represent, such as
FACT(2000). With flag —21 clear (the default setting), overflowing functions return
+9.99999999999E499. Setting flag —21 causes an overflow to return an error. An
overflow is not the same as an infinite result, for which the correct value is +

rather than a too-large finite number.

e Underflow (action flag —20, signal flags —23 and -24). Underflow occurs when a
function returns a result that is not zero but is smaller in absolute value than
1E-499 (MINR), the smallest non-zero number that the HP48 can represent. If
flag —20 is clear (the default setting), any underflowing function returns zero as its
default result. Since zero has no sign, two signal flags are used: flag —23 is set to
indicate that the function underflowed from the negative side of zero; flag —24 is set
to indicate underflow to a small positive number.

Notice that the sense of the underflow and overflow flags is reversed from that of the
infinite result flag. That is, you set flag —22 to prevent an error, whereas you clear flag
—-20 or —-21. HP48 mode flags are clear in the default state, and the defaults are that
an infinite result is an error but overflow and underflow are not.

0+0 is not an exception. That quantity is mathematically undefined--it is neither an
overflow nor an infinite result. There is no appropriate default result to supply, so the
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HP48 always reports the Undefined Result error and halts execution. You can, of
course, create your own exception handing by using an IFERR structure to trap this
error.

9.7 Local Variables

The variables that you see cataloged in the VAR menu are called global variables

because they are accessible from any procedure, and remain in memory until you specif-
ically remove them. However, the HP 48 also provides local variables that are associ-

ated only with individual procedures. The use of these variables and the corresponding
local name objects is a very useful and powerful programming technique.

It is possible, with the “unlimited” stack provided by the HP48, to carry out an arbi-
trarily complicated calculation on the stack without any use of variables to store inputs,
intermediate results, or final outputs. The fastest and most efficient computation is usu-
ally achieved in this manner.

A language like BASIC, which has no stack at all, requires that all input, output, and
intermediate results must be stored in variables. This makes individual BASIC state-
ments easy to read, but not particularly efficient. Nevertheless, the popularity of BASIC
suggests that it is not always program execution efficiency that is paramount, but rather
the overall “throughput” of the problem solving process. If a calculator is easy to pro-
gram, you can usually get a result in less total time even if the program itself may exe-
cute more slowly than if you developed a solution in an efficient but arcane language.
Thus while you can write a HP 48 program that is a marvel of structure and efficiency
by using only stack objects, the time and skill required for you to keep track of every-
thing on the stack during program development may be too high a price for the result.
In short, there is often a compelling advantage to assigning names to objects to simplify
the programming process.

Atfirst glance this seems to imply the use of global variables, which are always accessi-
ble and appear automatically in the VAR menu. However, while global variables are fine
for “permanent” data and procedures, they are not as attractive for storing intermediate
results. They stay around indefinitely, so that you have to remember to purge them to
avoid cluttering up the VAR menu and to conserve memory. Furthermore, you have to
be careful when you create a variable in one program to avoid using the same name as
that used by another program, unless you deliberately intend the two programs to share
a common variable.

HP 48 local variables are a means for saving intermediate data and results that is inter-
mediate between using the stack exclusively and using global variables. Local variables
exist in local memories, which are portions of RAM temporarily allocated for the local
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variables. A local memory is accessible only within a context defined by the program
structure that creates it. This means that there cannot be any name conflicts with global
variables or other procedures’ local variables. Also, when the defining structure has
completed its execution, its local memory with all of its local variables is automatically

deleted.

There are two methods by which you can create local variables. The primary method is
by means of local variable structures, which use the program structure word - to create
local variables. In addition, the FOR..NEXT/STEP loops described in section 9.5.1 use
local variables to store the current values of their loop indices. Although the index vari-

able is used for this special purpose,it is otherwise the same as a local variable created
by -, with the same applicable commands and restrictions. In the remainder of this sec-
tion, we will concentrate on local variable structures.

A local variable structure starts with the structure word - (called “arrow,” “bind,” or just
“to”) followed by one or more local names, and then by a program or an algebraic
object referred to as the defining procedure. The closing delimiter (' or >>) that ends
the defining procedure also marks the end of the structure:

-~ name, name, *°- name, << program >>, Or

- name, name, --- name, 'algebraic’.

The user-defined functions described in section 8.5 are a special case of local variable
structures. A user-defined function is a program containing one local variable structure,
with no additional objects before the - or after the defining procedure.

The primary purpose of local variables is to provide a means of manipulating by name
the stack arguments used by a procedure. You can think of the - as meaning “take
objects from the stack and give them the following names; then evaluate a procedure
defined using the names.” Note that the procedure is evaluated, even though it is
entered between quote delimiters ' ' or << >>,

- takes objects from the stack and matches them each with one of the names that fol-
lows the ». The number of objects taken is determined by the number of names that
are specified. The end of the series of names is marked by the delimiter ' or << that
starts the defining procedure. The objects are matched in the order in which they
appear in the stack; the object in the highest stack level goes with the first name; the
object in level 1 is matched with the last name. A local variable is created for each of
the names, with the local name as its variable name, and the matching object as its
value. For example,
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123 4 - abecd

creates the local variables a with the value 1, b with value 2, ¢ with value 3, and d with

value 4.

= Example. Compute the five integer powers x through x> of a number x in level 1.
This first method does not use any variables except a loop index:

< 2 5 Powers 2 through 5.
FOR n Loop with index n.

n 1 - PICK Get a copy of the number.

n * Raise to the nth power.

NEXT
>>

This is not a very complicated program. It is fast and efficient, because it uses only
stack operations to obtain copies of the input number. The sequence n 1 - PICK is
needed to return a new copy each time around because when the index is n, the original
number has been pushed to level n—1 by the growing stack of computed powers.

The program looks easy to write, but you do need a little thought to figure out where
the input number will be on the stack at each iteration, and what stack operations are
required to return a copy of the number. You can avoid the mental gymnastics by writ-
ing the program to remove the number from the stack at the outset, and name it with a

local name:

< - X Store the number as x.
< x 2 5 Powers 1 through 5.
FOR n Loop with index n.

X n * Compute x”.
NEXT Repeat.

>>

>>

The latter program is slightly longer than the previous version, but the time it takes you
to write it should be less because there is no effort required to keep track of the input
number on the stack. Any time the program needs the number, it just executes the
local name. The lesson of this simple example becomes more important as the com-
plexity of the programmed calculation increases, to the point where using local variables
can make the difference between success and failure in the development of a program.

You can use local variable structures at any point in a program, not just at the
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beginning as in the case of user-defined functions. The program CINT illustrates the
use of a local variable to name an intermediate result. CINT computes the radius of a
circle inscribed in a triangle, where the lengths of the sides of the triangle are specified
on the stack. The formula is:

_ [sG6-a)s-b)s-)]*

s

where g, b, and ¢ are the lengths of the sides, and s = Y%(a +b +¢).
 

 

 

 

 

 

 

CINT Circle in a Triangle 3EBE

level 3 level 2 level 1 | level 1

a b c or r

< - a b ¢ Name the lengths of the sides.

<< '(a+b+c)/2’ EVAL - s Compute and save s.

"V(s*(s—a)*(s—b)*(s-c))/s’ Compute r.

> End oflocal variable structure.

>>   
There are numerous additional examples of the use of local variables in programs
throughout this book. In the remainder of this section, we will review some of the
idiosyncrasies of local names and variables, and local variable structures.

9.7.1 Comparison of Local and Global Variables and Names
Local names and variables are very similar to ordinary names and variables, but there
are some important differences:

e Global variables are “permanent,” remaining in user memory until you explicitly
purge them. Local variables are stored in dynamically created local memories, which
are segments of memory associated with individual procedures. When a procedure
has finished evaluation, its local memory (if it has one) is deleted, including all of its
local variables.

e Local names are a different object type (7) from global names (6). This is how the
HP 48 system knows whether to find the variable corresponding to the name in VAR
memory (global variables) or in a temporary local memory. When the HP48
attempts to find a local variable, it searches the most recently created local memory
first, then previous ones in reverse chronological order, until it finds a local variable
matching the specified name.
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e Executing a local name recalls to level 1 the object stored in the corresponding local
variable, without executing the object. This means that when you store a program in
a local variable, to execute that program you must execute the variable name and
then the recalled program separately, usually with EVAL (or “NUM). The EVAL is
not necessary for programs stored in global variables, since execution of a global
name automatically executes the stored object.

¢ ISOL, QUAD, and TAYLR, which are designed to work with formal global variables
(names with no associated variables) do not accept local names as arguments. Also,
the independent variable used for plotting (DRAW) and solving (ROOT) must be
specified with a global name.

e You can not delete a local variable with PURGE.

e Local names can be the same as HP 48 command names (except for single-character
algebraic operator names like +, —, *, etc.). Notice that you can have local names i
and e, but you should be careful not to use these names when you also want to use
the symbolic constants i and e.

Occasionally you may encounter a local name for which the associated local variable no
longer exists. This is not a problem for global names, because of their role as formal

variables (section 3.6.1). However, executing a local name with no local variable is an
error. For example, a defining procedure may leave the name of a local variable on the
stack after it completes evaluation.

<< 1 - X << 'Y > >

leaves the local name "X’ on the stack after evaluation, but the corresponding local vari-
able x that was given the value 1 is gone. You can not successfully execute this “formal
local variable”--EVAL returns the Undefined Local Name error. You should try to
avoid leaving left-over local names on the stack or in algebraic objects that result from
symbolic calculations, to avoid confusion later.

9.8 Local Name Resolution

The general topic of name resolution was discussed in section 5.5. However, there are a
few details that are worth adding now in light of the more extensive treatment of local
names in the preceding sections. When ENTER processes a name in the command line,
it normally interprets the name as a global name. However,if the name follows a FOR
or an —, then ENTER treats the name as a local name whileit is handling the rest of the
structure that follows. After the subsequent >>, ', or NEXT that terminates the struc-
ture, further instances of the same names are again interpreted as global names. Thus
in
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K - X < X > X >,

the X in the inner program (<< X >>) is a local name, but the final X is a global name.
To help you keep track of which names are which type, we recommend that you adopt a
naming convention, such as using lower-case letters for local names, and upper-case
letters for global names. The above program then looks like this:

<<-»x<<x>>X>>,

making it clear that the global X is not to be confused with the two local x’s. We will
follow this convention in this book, except in certain examples in this section where we
are illustrating possible confusions between global and local names.

The resolution of names as global or local can be complicated when you nest local vari-
able structures. “Inner” structures can access the local variables of the “outer” struc-
tures that contain them, but not vice-versa. For example,

1 - X < 2 -y < XYy + > X + Yy + >

returns '4+y’ (not 6), as follows:

1 - X Store 1 in local variable x.
<< Start of program in which X is recognized.
2 -y Store 2 in local variable .
<< Start of program in which Yy is recognized.
X Yy + Add x from “outer” program to y from “inner”

program, returning 3.
>> End of inner program where Y is recognized.
X + Add X to 3, returning 4
y + This y is not a local name, because it is outside of

the program where y is local. It therefore names
a global variable, which we are here assuming to
have no current value. The sum is therefore
'4+y’.

>> End of outer program where X is a local variable.

If you rewrite the above sequence as

1 - X < 2 - y < Xy + X + Yy + > >

moving the final y back inside the program where the local variable y is defined, the
sequence then returns the value 6.

When two nested local variable structures define local variables with the same name,
two separate local variables are created. Any use of the name refers to the most
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recently created local variable. The fact that there is another local variable with the
same name in a previously created local memory does not matter. Thus

1 » X < 2 - X < x > >

returns 2, whereas

1 » X <K 2 - x < > x >

returns 1.

It is important to note that a procedure represented by a name (rather than the pro-
cedure itself) within a local variable structure can not access the local variables defined
by that structure (unless the procedure is created while the structure is evaluating or
suspended; see below). For example, if you create the program A:

< x y + > 'A" STO,

and invoke it in another program like this:

<<12—»xy<<A>> >>,

then executing the latter program returns 'Xx+y’ (global x and y), not 3. When you
enter the program A, X and y are created as global names. The search for their values
when A is executed in the second program therefore is made in VAR memory, even
though there are identically named local variables at the time of the search.

This property of local variables, which makes it possible for each program to define its
own variables without name conflicts with those of other programs, has the disadvantage
that you can’t always easily break a program containing a local variable structure into
smaller programs. For example, you can’t rewrite

< - X Y << sequence, sequence, >> >>

as two programs

<< sequence,; >> 'SEQ1’ STO

< - x Yy << SEQ1 sequence, > >>,

if sequence; contains either of the names X or y. There are several approaches that you
can use instead:
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e Use global variables. Rewrite the second program as

<< 'y STO ’'x'’ STO SEQ1 sequence, { x y } PURGE >>.

In this case you might keep the lower-case names X and Yy for the global variables, to

avoid editing sequence, and sequence,.

e Use the stack to pass the values from one program to the other. Rewrite the pro-

grams as:

< - Xy << sequence; >> >> 'SEQ1’ STO

< - X Yy << x y SEQ1 sequence, > >>

The latter program puts the values of X and y back on the stack, where SEQ1 can
store them in its own local variables X and y. This approach requires no change to
sequence;.

e Force X and y in SEQ1 to be created as local variables. You can achieve this by
entering the SEQ1 program while there is an existing local memory containing local
variables X and .

1. Type

0 0 - x y << HALT >> [ENTER]

You will see the suspended program annunciator turn on. Because the local
variable structure is executing when the program halts, the local memory con-
taining local variables X and Y is still present.

2. Enter the program SEQ1:

<< sequence; >> 'SEQ1’ STO.

Aill instances of X and y in sequence are treated as local names.

3. Now, when you execute the main program

< - X Yy << SEQ1 sequence, > >>,

execution of the names X and y in SEQ1 returns the values stored at the start
of the main program.

This method, although it solves the problem with no rewriting, is dangerous
because if you later edit SEQ1, you must remember to create again the halted
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program local memory. Otherwise, the command line reentry converts X and y

back into global names. Also, you won’t be able to use SEQ1 as a subroutine
for other programs unless those programs also define local variables X and .

9.8.1 Resolution Speed
Because typical procedures use relatively few local variables compared to the number of
global variables that might be in the current path, local name resolution is often signifi-

cantly faster than that of global names. This speed difference can be important when
you have, for example, a program loop that executes at each iteration a global name
that resolves to a global variable in the home directory, which might be several levels
above the current directory. In such cases, you may find you can improve the program’s
performance by having it recall the object in the global variable at the outset, and stor-
ing it in a local variable. Then all uses of the global name within the program should be
replaced by the local name (with EVALif needed).

Local variables are also preferable to global variables for temporary result storage for
performance reasons as well as because of their automatic deletion. When you store an
object in a global variable, room must be made for the variable in user memory by mov-
ing some or all of the current variables. The time it takes for this is roughly propor-

tional to the total memory size of existing global variables, which can be as much as a
second or more when user memory exceeds 100 Kbytes. By contrast, storing an object
in a local variable takes on the order of .01 seconds.
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In mechanical terms, the HP48 display is a liquid-crystal display (LCD), containing a
matrix of square picture elements, or pixels. The pixels are arranged in 131 horizontal
rows and 64 vertical columns. The individual pixels can be in two states, which we will
call light and dark, or off and on. A blank display has all pixels off; turning various pix-
els on forms characters and other patterns that make up the information content of the
display.

The logical capability of the HP48 display goes well beyond its simple mechanical
description. The HP 48 CPU has the ability to deal with display information up to 2048
pixels wide, and indefinitely high, so that the pictures you can create on the HP 48 are
not limited to the ordinary LCD dimensions. You can observe this capability when you
use the EquationWriter; if a formula display becomes too large for the LCD, you can
use the cursor keys to scroll the picture around in the display. Since the picture moves
to the left when you press the right cursor arrow, the appropriate model you can visual-
ize is that the physical display is a “window” through which you can view the picture.
Pressing a cursor key moves the window in the indicated direction.

Since the logical size of the HP48 display is not fixed, the calculator does not have
memory specifically dedicated to the display. Rather, display memory is allocated from
ordinary RAM, sharing that memory with the stacks, user memory, and all of the other
memory-consuming HP 48 systems. The maximum size of the pictures you can display

thus depends on the amount of current free memory, at (roughly) 1 bit of memory per
display pixel. By picture we mean the visual image represented by a pattern of pixels, as
distinguished from the actual pixels or display.

Furthermore, the HP 48 actually defines three separate memory regions for display pur-
poses. We will call these regions screens, deriving from their roles as media upon which
you can show various pictures. The screens are:

e The menu screen, which is permanently allocated memory for the menu labels, 131
pixels wide by 7 pixels high.

e The text screen is an expandable memory region a minimum of 131X 57 pixels in size.
The text screen is not limited to the display of text, but it is most commonly used for
displaying the stack and status information, in its minimum size configuration. How-
ever, the text screen is also used by the EquationWriter, for which it expands as
needed to accommodate the EquationWriter pictures. When you exit from the
EquationWriter, the text screen automatically collapses back to its default size.

e The graph screen is used by the plotting system and for program graphics. It does
not exist until needed by any plotting operation, when it is created if necessary with
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a size of 131X 64 or larger. If you check free memory with MEM before and after
viewing the graph screen for the first time, you will find that free memory has
decreased by over 1000 bytes; that is the memory assigned for the graph screen. Be
aware that the graph screen is deleted by a system halt (section 5.8); you may want
to save its contents in a variable before doing anythmg that requires a system halt,

such as storing a library in a port or inserting or removing a memory card.

In addition to the three dedicated display screens, the HP 48 also provides for storing
and manipulating an indefinite number of pictures as graphics objects (section 3.4.7).
The three screens are actually specially stored graphics objects. The HP48 has a
number of operations for creating graphics objects and displaying them on its screens.
In the remainder of this chapter we will study the programmable commands that are
available for prompting and presenting graphical and textual information.

10.1 Controlling the Display

Ordinarily, after completing any current and pending operations, the HP 48 revertsto its
standard display, which consists of the simultaneous display of the text screen and the
menu screen. Here the text screen is divided into two regions: the status area at the
top, and the stack area that is shared by the stack display and the command line. Fre-
quently, however, you can see the standard display superseded temporarily or indefin-
itely by some form of special display. Such displays ranging from the use of the status
area to show error messages, which persist only until the next key press, to a change an
environment like the plot environment, which remains with its own display you deli-
berately exit the environment. Environments may also use their own menus. This abil-
ity to supplant the standard display is also available to programs through various display
commands.

The most frequent manual display change is switching between the text screen and the
graph screen. To activate the graph screen from the standard display, you execute
GRAPH, usually by pressing --or just [<J] when no command line is present.
GRAPH displays the graph screen with the menu screen superimposed upon it (with the
plot environment menu). You can switch the menu screen on and off by pressing
and (=] or by pressing , which also allows you to scroll the display window

around on the graph screen if it is larger than 131X64. To return to the standard
display, press .

Executing GRAPH from a program activates the plot environment while suspending
further program execution. When you next press , the text screen is redisplayed
(the plot menu remains in the menu screen) and the program resumes execution. If you
returned any data from the graph screen to the stack, such as coordinates, graphic
objects, or solved results from the SFCNZ menu, that data is then available for the
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program’s use as it resumes execution.

You may also wish to make the graph screen visible while a program is running, but
without activating the plot environment. This is accomplished with PVIEW (Plot VIEW).
PVIEW requires an argument that specifies the position of the screen relative to the
display; in particular, you must enter the coordinates of the pixel in the graph screen
that you want displayed in the upper left corner of the display. The coordinates may be
expressed as a list of two binary integers { #m #n }, or as a complex number (x,y) that
specifies a point in logical coordinates (section 10.3.4). PVIEW allows you to watch the
graph screen while you change it, to help you monitor the progress of an ongoing plot,
or to present any kind of varying graphics display (see, for example, the program
GSAMP listed in section 10.3.1). The graph screen remains visible until the program
ends, or until you execute TEXT. This command returns the text and menu screens to
the display. Note, however, that TEXT does not try to display the current stack
contents--it merely redisplays whatever was on the text screen at the point when PVIEW
was executed.

As one more alternative, you can execute PVIEW with an empty list as its argument. In
that case, PVIEW is equivalent to executing GRAPH followed by pressing
immediately. Program execution is suspended, and the graph screen is displayed
without the plot menu or the cursor--the cursor keys scroll the entire window. {}
PVIEW is useful when you want to display a picture that is larger than the display, but
you don’t need any of the interactive plotting facilities. Again, when you press to
exit from the graph screen display, program execution resumes normally.

10.1.1 Postponing the Standard Display
While a program is running, it can use display commands to show special text or pic-
tures. However, once the program finishes, the standard display takes over unless the
program specifically prevents it. For example, if you execute

"Hi There!" 1 [PRGIEDSPLE EDISPZ 

you will see "Hi There!" displayed in the top line of the display. However, if you press
to turn on program entry mode, then execute "Hi There!" 1 DISP ,

the text is only flashed momentarily and then is replaced by the standard status display.
The difference here is that the ZDISPZ key executes the command DISP then “freezes”
the display. The current picture is not replaced by the standard display until you press
another key. The command DISP itself does not include the freeze step. To keep a
special display visible after a program stops, you must use an additional command,
appropriately named FREEZE. (The E-LCDE and ECLLCDZ= keys also have an automatic
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freeze built into their definitions, while the programmable commands do not.)

For the purposes of FREEZE, the three nominal areas of the HP 48 standard display are
numbered with powers of two: 1 for the status area, 2 for the stack area, and 4 for the
menu labels. To freeze one display area, execute FREEZE with a real number argument
equal to the desired display area number, e.g. 2 FREEZE preserves the stack area
display while the status and menu areas are updated. To freeze more than one area,
FREEZE’s argument is the sum of the display area numbers (hence the use of powers of
two): 3 FREEZE freezes the status and stack areas; 5 FREEZE affects the status and
menu areas; and so forth, up to 7 FREEZE, which freezes the entire display.

10.2 Text Displays

One of the most common program display tasks is to show one or more lines of text.
This is accomplished by means of DISP, which displays text in the medium font in any
of the top seven display lines. Here’s a simple example:
 

 

 

rCHARDISP Display HP48 Characters D423

<< CLLCD Clear the status and stack areas.

0 M1 Need a total of 12 lines.

FOR i "" Initialize each text line.

0 21 22 characters per line.

FOR j

'22%i+j’ -NUM Next character number.

CHR + DUP Add the character to the line string,

‘i MOD 7)+1’" -NUM DISP Display in the currentline.

NEXT DROP

NEXT
>>   
 

There are several things to notice in this program:

e CHARDISP starts with CLLCD. This command blanks the status and stack areas.

You might omit this command from the program if you want to see how DISP
overwrites the existing (standard) display.

e DISP takes two arguments: a string from level 2 and a real number from level 1,
where the latter can be from 1 to 7 (hence the (i MOD 7)+1) to indicate the desired
display line. In the medium font, the display has eight lines; DISP can display in any
of the top seven but will not overwrite the menu labels in line 8.
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e DISP displays an entire line at once, starting at the edge; you can not use it to

display part of a line. If the string argument is shorter than 22 characters, the
remainder of the display line is blanked.

e When CHARDISP starts, you see 10 “ = ” characters displayed in line 1, then the
next characters appear in line 2. This is because character 10 is the newline charac-
ter. You can use DISP to display multi-line messages by including one or more new-
lines in the display string. The displayed text will start on the line specified by
DISP’s number argument, and jump to the next line below after each newline char-
acter in the string argument. Without newlines, only the first 21 characters of strings
longer than 22 characters can be displayed, with ellipses “...” in the rightmost charac-

ter position to indicate missing characters.

e CHARDISP does not include FREEZE, so the character display disappears as soon as
the program is finished.

The string manipulation commands described in section 3.4.3 are the basic tools for
creating text displays. For example, a very common task is creating a display string
from an object and text that labels the object. The program OLABEL below illustrates
this process. OLABEL displays an object (taken from level 2) by converting the object
into a string, and appending it (with an “="") to a string provided in level 1. If the label
plus object does not fit in a single line, then the label and object are displayed on
separate lines. A copy of the objectis left in level 1.

 

OLABEL Output Labeling Utility E3CH
 

 

level 2 level 1 | level 1
 

object "label" o object
 

 

< "=" + Append “ = ” to the label.

OVER DUP2 Copy the string and object.

+ Append the object string to the label string.

IF DUP SIZE 22 > If the string is too long,

THEN DROP SWAP

10 CHR + SWAP + then insert a newline.

ELSE 3 ROLLD DROP2 Otherwise, discard the extra copies.

END

CLLCD 1 DISP Clear the LCD and display the string.
>>     

You may want to include FREEZE at the end of OLABEL to preserve the object display.
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10.3 Graphics Displays

To go beyond simple, line/character-oriented text displays, or to use the small and large
character fonts, you must create graphics displays. Here the key element is the graphics
object, or grob, which is the building block of graphics displays, analogous to string
objects for character displays. The HP 48’s text and graph screens provide the viewing
mechanisms for graphics objects. For simple prompt and information displays, you will
most likely use the text screen, so that normal calculator keyboard operations are avail-
able. Also, using the text screen for temporary graphics displays does not disturb a plot
or other picture currently on the graph screen.

The primary vehicle for viewing graphics on the text screen is the command -LCD.
-LCD stores a grob into the top 56 pixel rows of the text screen, with the upper left
corner of the grob in the upper left corner of the screen. If the grob is smaller in either
dimension than 131X 56, the remainder of the screen (other than the menu area, which
is not affected by —-LCD) is blank. If it is larger than 131X56, only the upper left
131X 56 portion of the grob is used. Several examples of using ~LCD are given in the
next section.

The counterpart of -LCD is LCD-, which returns the current combined text and menu
screen picture as a 131X 64 graphics object. Notice that the LCD— grob includes the
menu labels, even though -LCD does not overwrite the menu label display area. How-
ever, you can use SUB to extract the menu label picture from the LCD- grob for other
purposes, and you can view the entire grob by displaying it on the graph screen.

10.3.1 Graphics Object Operations
Graphics objects are the object representations of display pictures. They are character-
ized by their dimensions width X height, measured in pixels, and by the pixel data that
they contain. An individual pixel or position within a grob is specified by coordinates
expressed as a list of two binary integers: { #n #m }, where n is the column number,
counting right from column 0 at the left edge; and m is the row number, counting down
from row 0 at the top edge. These binary integers are interpreted as 20-bit signed
integers, so that only the least-significant 20 bits are used, and a number #n greater
than #80000h represents a negative number with absolute value #100000h-#n.
(Negative coordinates may be used with line, box, and arc drawing--see section 10.3.5.1).

HP 48 commands that apply to graphics objects are found in the third page of the pro-
gram display menu ( EDSPLE ), plus SIZE from the third page of the program
object menu ( [PRG] £0BJE ), and + and NEG ( [+/-]) from the main keyboard. To
illustrate the use of these commands, it is helpful to make two sample graphics objects,
which is accomplished by the program GSAMP. The program stores a grob containing

a filled circle in the variable SPOT, and another with a filled square in GBOX.
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'7GSAMP Graphics Samples A694

<< 'PPAR’ PURGE

ERASE {#0 #0} PVIEW Initialize and view the graph screen.

-3 1 Draw a filled circle as a series of lines:

FOR x

"X,V(4-SQ(x +1)))’

-NUM DUP CONJ LINE

A

STEP

PICT {#0, #3} {#131d #56d} SUB |Store the picture in SPOT.

'SPOT’ STO

ERASE

-1 3

FOR x Now draw a filled box:

"(x,2)’ -NUM DUP CONJ LINE

A

STEP

PICT {#0, #3} {#131d #56d} SUB

'GBOX’ STO Storethis picture in GBOX.
>>    

After executing GSAMP, you can try out the various graphics commands, starting by
looking at the grobs made by GSAMP. SPOT £-LCDE yields this picture:

 

 

FLCD JLCD+* JCLLCD FREEZ   
 

And GBOX E-LCDE shows the other picture: 
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  TSSR(W)Tl(T
 

Here if you execute ~LCD by means of its menu key, the grob display remains visible
until the next keystroke.

e SIZE returns the dimensions of a graphics object as two binary integers, with the width
in level 2 and the height in level 1:

SPOT SIZE o= #131d #56d.

e BLANKcreates new blank grobs, taking as arguments two binary integers that specify
in pixels the width (level 2) and height. #20d #30d BLANK makes a grob 20 pixels
wide by 30 pixels high.

e NEG inverts all of a grob’s pixels, turning dark into light and vice versa. For example,
SPOT NEG £-LCDE shows: 

 

 

 

 (L0[LEDS[CLLCD]DIZP[FREE2] TEXT
 

e + “adds” two grobs together. Specifically, + combines two grobs of the same dimen-
sions into a new grob also of that size, where the result has all pixels turned on that
were turned on in either of the original grobs. In effect, one picture is superposed on
the other. Thus SPOT GBOX + Z-LCDE yields:
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  [#LCOLD[CLLED]DIZP[FREEZ]TERT
 

e GOR (Graphics OR) is a generalized form of + for graphics objects, for which the two
argument grobs do not have to be the same size. Its name derives from logical OR,
which returns frue if either of two arguments are true, and false otherwise. GOR works
as follows:

goby {#m #n} gob, GOR 1= grob;

where grob , is superposed onto grob ;, with the upper-left corner of grob, positioned at
the { #m #n } pixel in grob; (you can also use a complex number to represent the pixel
position--see section 10.3.4). The result grob; is the same size as grob; any portions of
grob, that do notfit within the dimensions of grob, are clipped off. Example:

 
SPOT {#10d #10d} #8 #8 BLANK NEG GOR -LCD 1 =

 

 

  [*LCOJLED[CLLED]DISP[FREEZ] TE:
 

e GXOR (Graphics eXclusive OR) is modeled upon logical XOR, which returns true if
either of two argumentsis true, and false if both are true or both are false. For graphics
objects, the result picture is a superposition of the argument grobs, except that it will be
light where dark regions from both arguments overlap. GXOR’s argument orderis the
same as GOR’s; for example,
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SPOT {#0 #0} GBOX GXOR E:5LCDE =

1
Ea iO T(W) Tl 3R

 

 

  
 

An important use of GXOR is for placing temporary visible marks (such as a cursor) on
a picture that you can easily remove later. Thatis,

groby {#m #n} grob, GXOR

puts a mark represented by grob, on grob q; then with the result still on the stack,

{#m #n} gob, GXOR

removes the mark and restores grob;. You can observe the action of GXOR by execut-
ing the following program:
 

 

 

AGXOR Animate with GXOR OD7A

< SPOT PICT STO Store the spot on the graph screen.

# Ah # Ah BLANK NEG - s Make a black square.

< {# Oh # Oh} PVIEW View the graph screen.

0 130

FOR x PICT x R-B #14h 2 <LIST |For each x position:

s 3 DUPN GXOR GXOR Turn the square on and off.

NEXT
>>

>>   
 

e REPL provides a third method of combining two graphics objects, using the same

arguments as GOR and GXOR.In this case a region in grob starting from { #m #n } is
replaced by grob,. Thus
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SPOT { #55d #29d} GBOX REPL Z=LCD A

 

 

 [*#LC0LoD[LLcn]DisP[FREEZ]TERT  
e SUB is a counterpart of REPL that allows you to extract a portion of a graphics object
as a separate, smaller grob. SUB is useful when you want to trim a grob to a smaller
size, or to use part of a grob for building other pictures. SUB takes a grob from level
three, and two coordinate lists that specify the pixel positions of the corners of the
region to be extracted:

SPOT {#35d #9d} {#75d #49d} SUB

creates a 41X 41 grob that contains the black spot from the SPOT grob.

10.3.2 Graphical Text
A very useful command for the development of graphical displays is the object-to-grob
conversion command “GROB. Not only does this command simplify converting objects
to graphical text, but it gives you access to all three display fonts, plus the Equation-
Writer display.

~GROB requires two arguments: from level 2, the object to be imaged, and from level
one a real integer from 0 to 3 to specify the display font. For fonts 1, 2, and 3, the
object picture is a one-line text string like that obtained in a single line stack display,
respecting the real number and binary integer display modes, and the coordinate mode
for complex numbers and vectors. Unlike a stack display, however, the ~GROB result is
not truncated at the display width--this is because the grob may be intended for display
on the graph screen, which can be up to 2048 pixels wide.

Font numbers 1, 2, and 3 represent the small (variable width X 6 pixels ), medium
(6%8), and large (6X10) character fonts, respectively. (The width of a character cell
given here includes the blank column at the right edge of a character that separates
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successive characters). Font 0 is intended for algebraic and unit objects, for which
~GROB’s results are the EquationWriter pictures of the objects (for other object types,
font 0 is the same as font 3). Since the EquationWriter uses the active display to build
its picture, you will see the EquationWriter “in action” during 0 ~GROB execution, and
the display is blanked afterwards. Also, the grob returned is always at least 131X 64, so
you may wish to trim the grob to a smaller size by using SUB.

A nice example of the use of “GROB is provided by the program MINISTK listed below.
This program is handy when you want to view more than four stack levels simultane-
ously. It uses the small font (1) to display up to nine stack objects in single line format.
If you store << DROP MINISTK >> in the global variable BENTER, and set flags —62
and -63, then the HP48 will use MINISTK in lieu of the normal stack display after
every ENTER (see section 7.4).

 

l MINISTK Small-font Stack Display F76F ]
 

 

<< #131d #56d BLANK Create a blank display-sized grob.

DEPTH 1 - 9 MIN Make up to nine object grobs.

IF DUP If the stack is not empty...

THEN #50d - vy Start in row 50.

< 1 SWAP From 1 to depth...

FOR n #0d y 2 oLIST Coordinates of level number.

n -STR 1 DUP SUB Convert the level numberto a string.

=" + 1 -GROB REPL Add ™", convert to a grob, add to pic-

ture.

n 1 + PICK 1 -GROB Make the nth object into a grob.

{#0d #0d} {#120d #5d} SUB

#131d OVER SIZE DROP -

y 2 -LIST SWAP REPL

'y’ #6d STO-

NEXT -LCD 3 FREEZE

Clip to 121 columns,if necessary.

Right-justified position.

Add the object to the picture.

Decrement the vertical position.

Display the picture.

>>

ELSE DROP2

END

>>

Do nothing if the stack is empty.    
10.3.3 Displays on the Graph Screen
The text screen is adequate for many graphical display purposes. However, you must
use the graph screen in the following circumstances:
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You don’t want the menu to be visible.

You want to work with graphics objects larger in either dimension than 131X 56.

You want “animation,” or to watch a display continuously asit is being created.

You want to use any of the automated plotting or drawing facilities.

The graph screen is also more convenient than the text screen, because you can use the
pseudo-name PICT to manipulate the graph screen like an ordinary graphics object.
PICT is actually a command (type 19), but you can use it in two ways:

1. As a graphics object. PICT can be used as an argument for commands that work
with graphics objects: SIZE, SUB, GOR, GXOR, and REPL. For the last three
commands, PICT may only be used as the first (level 3) argument. With that
argument, the three commands return no result to the stack--the result becomes
the new graph screen. Furthermore, there are operations on the PICT grob that
are not provided for other grobs: line, box, and arc drawing, and the ability to con-
trol and test individual pixels in the grob.

As a “variable.” Using PICT like a quoted name allows you to treat the graph

screen like a variable, where the current value is a grob corresponding to the
graph screen picture. Specifically, grob PICT STO stores grob into the graph
screen, replacing the current contents; PICT RCL returns the current contents of
the graph screen to the stack as a graphics object, and PICT PURGE deletes the
graph screen and recovers the associated memory. Note: you do not need ' '
quotes aroung PICT.

There are several ways to create and dimension the graph screen. Any time you use any
plotting or drawing commands, the graph screen is automatically created with a size of
131X 64, if it does not already exist. This also occurs if you use GXOR, GOR, or REPL
with PICT. To create a new graph screen, you can:

e Store a grob with PICT STO. If you store a grob smaller than 131X 64 into the
graph screen, it will occupy the upper left corner of the graph screen, with the
remainder of the screen blank, but the graph screen will be at least 131X 64.

e Execute #m #n PDIM. This creates an m Xn graph screen (again with a minimum
size of 131X 64).

To observe some of these PICT operations in action, try executing the following three
programs (which use SPOT and GBOX from section 10.3.1):
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ASTO Animation with STO 92F5

< SPOT PICT STO Store the SPOT grob in PICT.
{#0 #0} PVIEW View the graph screen.
1 10 Repeat 10 times:

START GBOX PICT STO View the square.
SPOT PICT STO View the circle.

NEXT
>>

| AREPL Animation with REPL 5F31

<< SPOT PICT STO Store the SPOT grob in PICT.
{#0 #0} PVIEW View the graph screen.
1 10 Repeat 10 times:

START PICT {#0 #0} GBOX REPL View the square.

PICT {#0 #0} SPOT REPL View the circle.

NEXT
>>

| APVIEW Animation with PVIEW EA43

<< #131d #128d PDIM Create a 131X 128 graph screen.
PICT {#0d #0d} SPOT REPL Store thecircle in the top half.

PICT {#0d #64d} GBOX REPL Store the square in the bottom half.

1 10 Repeat 10 times:

START {#0d #0d} PVIEW View the circle.

{#0d #64d} PVIEW View the square.
NEXT

>    
 

All three programs demonstrate a simple kind of animation on the graph screen, where
the picture alternates between a circle and a square. ASTO and AREPL achieve this by
changing the actual contents of the graph screen. You can observe that using REPL
produces a faster and smoother animation than using STO. This is because STO actu-
ally replaces the graph screen grob, whereas REPL merely rewrites the pixels in the
existing grob. The “noise” you see between frames in ASTO occurs when the HP 48 is
moving the new grob into place, causing the temporary display of random memory bits.

The fastest animation is exhibited by APVIEW, since both frames of the picture are
stored in the graph screen in advance. All that is necessary then is to alternate which
half of the screen is shown, which can be done quite rapidly. Another variation on this
theme is illustrated in the program BOUNCE, where the appearance that the spot is
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bouncing around the screen is actually achieved by moving the window rather than
changing the picture.

 

| BOUNCE Bouncing Ball Demo 4CD8|
 

 

<< #222d #88d PDIM

#45d #11d #1d DUP
- X y VX vy

< DO

Xy 2

vx ’'x’ STO+

IF x #91d

x #1d

THEN ’'wvx’

END

vy 'y’ STO+

IF vy #23d ==

y #0d OR

THEN 'vy’ SNEG

END

UNTIL KEY

END DROP
>>

>>

OR
SNEG

 

PICT {#56d #14d} SPOT REPL

-LIST PVIEW

 

Dimension the graph screen.

Put the spot in the center of the

screen.

Initial values for window position

and increments.

Repeat the following:

View the graph screen.

Increment window x position.

If at the left edge,

or the right edge,

then negate the x increment.

Increment window y position.

If at the top edge,

or the bottom edge,

then negate the y increment.

Quit when a key is pressed.

Discard the key code.   
10.3.4 Logical Coordinates
All of the positions within graphics objects that we have specified so far have been
expressed as pixel numbers. However, when you refer to positions in the graph screen,
you also have the option of using logical coordinates. These are floating point numbers
derived from a coordinate system imposed upon the graph screen according to the plot
parameters in the variable PPAR. The first two elements in the list stored in PPAR are
complex numbers (Xpyin, Ymin) and (¢max Ymax), Which respectively specify the logical
coordinates of the bottom left pixel and the upper right pixel of the graph screen.
(Here x represents the horizontal direction, positive to the right, and y the vertical direc-
tion, positive upward.)

The conversion between pixel numbers and logical coordinates is as follows. A position
(x,y) falls on the m-n pixel ({ #m #n }), where
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RNDm

 

X = Xmin
M-1)—0oz )

max — Xmin

n RND

 

(N— 1) Ymax ~ Y ’0]

max ~ Ymin

M is the width of the graph screen in pixels, and N is the height. RND is the HP 48
function RND. Conversely, the x-y coordinates center of the m -n pixel are:

m
X = Xmin + OCmax = Xmin)3~

n

Y = Ymax~ (max ~ Ymin)-7

These formulae are implemented in the commands C-PX (Coordinates-to-PiXels) and
PX~C (PiXels-to-Coordinates). C-PX takes a complex number representing coordinates
(xy) on the graph screen, and returns a list { #m #n } containing the corresponding
pixel numbers. PX-C is the inverse, converting pixel coordinates to logical coordinates.
These commands are only relevant to the graph screen, or stack grobs that happen to
have the same dimensions as the current graph screen. The logical coordinate system is
always determined by the values in PPAR, which also are intended for use with the
graph screen.

The commands that can accept logical coordinates are GOR, GXOR, REPL, and PVIEW,
plus the pixel drawing commands described in the next section. Logical coordinates are
often more convenient for mathematical function graphics, whereas pixel coordinates are
preferable for making prompting displays and drawing simple geometric figures. Arith-
metic with binary integers is also faster than with floating-point complex numbers.

10.3.4 Pixel Drawing
The first two pages of the program display menu ( [PRG]EDSPLE ) provide several draw-
ing tools for producing simple graphics on the graph screen. These commands do not
work with stack grobs; if you want, for example, to draw a line in any grob you must
first store it into the graph screen.

 

The most basic tools are commands that turn individual pixels on and off. PIXON turns
on the pixel specified by its coordinates, entered either as logical coordinates (complex
number) or pixel coordinates. As an example of using PIXON, the program DRAWPIX
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imitates the command DRAW. As listed, DRAWPIX is only a slower substitute for
DRAW,but you can use it as a starting point for creating modified plotting programs to
obtain results you can’t get with DRAW.

 

 

 

DRAWPIX DRAW using PIXEL 2641

< PICT SIZE #64d - 2 /

SWAP #131d - 2 / SWAP

2 -LIST PVIEW View the center of the graph screen.

PPAR 1 GET RE Get X yin-

PPAR 2 GET RE Get X pay.

PPAR 4 GET Get the resolution.

IF DUP 0 SAME

THEN DROP #1

END

IF DUP TYPE

THEN

IF DUP #0 SAME

THEN DROP #1

END B-R OVER 4 PICK

PICT SIZE DROP B-R /

END

PPAR 3 GET

- step indep

<< |IF indep VTYPE 1 +

THEN

ELSE 0

END 3 ROLLD

FOR x

x indep STO

EQ -NUM

x SWAP R-C

PIXON

step STEP

IF THEN

>>

indep STO END

>> 
*

indep RCL 3 ROLLD 1

 

Default real case.

If it’s not a real number,

Default binary case.

then compute the step size.

Get the independent variable name x.

If the independent variable exists,

then keep its value and frue.

Otherwise false.

Save the flag.

Loop from Xi tO Xpay:

Store the current value of x in the independent

variable.

Evaluate the current equation (y).

Combine the coordinates into a complex

number.

Plot the point.

Increment x and repeat.

Restore the original value.  
 

The counterpart of PIXON is PIXOFF, which turns off a pixel specified by its
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coordinates. You can also test whether a pixel is currently turned on by executing PIX?,
which returns frue if the specified pixel is on, and false if it is off. It is a simple matter
also to reverse the state of a pixel, using the program TPIX:

 

 

TPIX T a Pixel

level 1

{#m #n} or
or

<< DUP Copy the coordinates.
IF PIX? If the pixel is on,

THEN PIXOFF then turn it off.
ELSE PIXON Otherwise turn it on.
END

>>    
 

LINE and TLINE allow you to draw straight lines much more rapidly than you can using
PIXON and PIXOFF. Both require two arguments, which specify the start and end
points of a line. The arguments can be either complex numbers or lists of binary
integers, but both must be the same type. LINE draws by turning on all of the pixels on
a straight line (allowing for the finite size of the pixels) between and including the start
and end point. TLINE reverses the pixels along the line, which is useful when you are
drawing lines across dark areas. The use of LINE is illustrated in the next two pro-
grams. STAR draw a five-pointed star, using the second program SKETCH. The latter

takes a list of coordinates and draws lines between each successive pair of points.

 

 

 

STAR Draw a Star F19D

< RCLF -16 SF DEG -19 SF Polar mode, degrees, V2 complex.

'PPAR’ PURGE Initialize.

(0,2.5) DUP Start at (0,2.5).

0 4

START V- 144 + =V2 Rotate by 144°.
DUP SWAP Add the point to the stack.

NEXT

DROP 6 -LIST Combine into a list.

{#0 #0} PVIEW Omit this if you don’t want to watch.

SKETCH Connect the dots.

STOF Restore previous modes.
>>    
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SKETCH Sketch Lines C1A7

level 1

{ list ofpoints } e

<< -+ points Store the list.

<< 1 points SIZE 1 - One fewer lines than points.

FOR n

points n GETI 3 ROLLD GET Get the next pair of points.

LINE Use TLINE to toggle the lines.

NEXT
>>

>>   
 

Executing STARyields this picture:

 

  
 

The command BOX provides an easy method for drawing rectangular boxes, specified by
two sets of coordinates (pixel or logical). For example, to draw a simple frame around
the graph screen, execute FRAME:
 

 

 

FRAME Frame the Graph Screen 2C4F

< {#0 #0} Upper-left corner.

PICT SIZE Screen dimensions.

#1 - SWAP #1 - SWAP 2 -LIST Lower-right corner.

BOX Draw the box.

>>   
 

The final built-in drawing command is ARC, which draws circular arcs on the graph
screens. ARC uses four arguments, either
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ky) r 6, 8,

or

{#x #y} #r 0, 0,

where x and y are the coordinates of the center of the arc, expressed either as a com-
plex number or as a list of binary integers; r is the radius in logical coordinates or pixels;
and 0; and 0, are the starting and ending angular positions of the arc. The following
sequence uses ARC and the other programs listed in this section to draw a circle around
a star, framing the whole graph screen for good measure:

STAR (0,0) 25 0 -1 ACOS 2 * ARC FRAME 7 FREEZE

 

 

     
 

ARC does not attempt to compensate for differing plot scales in the vertical and hor-
izontal directions--it will not draw an ellipse. It always draws an arc of constant radius
in pixels. The pixel specified by the coordinates (xy) + (r,£0;) is taken as the starting
point of the arc; the distance in pixels from that point to the center pixel (xy) is then
used as the actual radius 7, where 7 has the same sign as r. The arc drawing stops at
the pixel specified by (', £0,). Note also that

e If 6; = 0,, one pixel is turned on, at (x,y)+(r,£0,).

o If |0,-6,| > 360°then the drawing stops after one full circle is drawn from ;.

10.3.5.1 Off-Screen Coordinates
The drawing commands PIXON, PIXOFF, PIX?, LINE, TLINE, BOX, and ARC, and the
coordinate conversions C-PX and PX-C, all accept coordinate arguments that
correspond to pixel positions that do not fall on the current graph screen. This includes
negative pixel numbers in the range #80000h to #FFFFFh, which represent pixels that
are above or to the left of the screen. While you can never view pixels that are off-
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screen, their coordinates may be useful:

e When you are doing any kind of iterative plotting, you don’t have to check each set
of coordinates for PIXON or PIXOFF to verify that it falls on the graph screen. The
checking is done automatically by the commands, which just do nothing for off-
screen pixels. PIX? always returns false for off-screen positions.

e You can use LINE, TLINE, BOX, and ARC when their position arguments are off-
screen. This allows you to draw parts of figures too large for the screen by drawing
the entire figure without regard to off-screen portions. In particular, the center of
an arc drawn by ARC does not have to lie within the graph screen, nor do the start
and end points of the arc.

LINE, TLINE, and BOX are smart enough to “clip” any portions of lines that are off-

screen, so that they will not spend unnecessary time plotting invisible points. ARC is not
so enlightened; if you use ARC to draw a circle that only partially fits on the graph
screen, ARC takes just as long to execute as it would if the screen were large enough to
contain the entire circle.

For all four commands, keep in mind that the dynamic range of pixel coordinates is lim-
ited to #80001h-#7FFFFh (+524287); if you use logical coordinates that correspond to
pixel numbers out of this range, the coordinates are truncated to the allowed range.

You can see this when you use LINE, for example, to draw a line between two points
along the —45° line. With the default plot parameters, arguments of (—100,100) and
(100,-100) yield a line through the origin (0,0), as you would expect. But if you
increase the coordinates to (—100000,100000) and (100000, - 100000), the line is drawn
at —45° through pixel {#0 #0}, passing below the logical origin. This is because the
larger arguments are truncated to {#80001h #80001h} and {#7FFFFh #7FFFFh},
respectively.
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The HP 48 array and list object types allow you to deal with collections of numbers or

other objects as single units, as well as to access the individual objects in the collections.
You are probably familiar with one-dimensional arrays--vectors--and two-dimensional
arrays--matrices--from mathematics. These are one-dimensional (vectors) or two-
dimensional (matrices) ordered sets of numbers that satisfy certain rules of arithmetic
and transformation properties. However, you may find the idea of a list as a useful
computational tool to be a new concept, since other calculator languages and most com-
puter languages have no equivalents. (Lists will be very familiar to you if you have stu-
died LISP, or a similar computer language.) In mathematics the closest counterpart is
the set, usually a collection of objects with some common property.

11.1 Arrays

The most important feature of the HP 48 related to array computation is the calculator’s
ability to manipulate arrays as self-contained units--as objects. This means, for example,
that you can perform array arithmetic on the stack using the same steps and commands
as you would for real number arithmetic. Programs can use arrays as input and return
arrays as output; the arrays themselves contain all of the dimensional information that
the programs need to deal with the data in the arrays. The mathematical operations that
the HP 48 provides for matrices and vectors are not remarkable; it is the ease with
which you can apply the operations to arrays that is the strength of the HP48. We will
not dwell on the mathematical commands here, since they are described adequately in
the owner’s manuals. Instead we will focus on the array manipulation commands and
methods.

e To assemble a series of numbers on the stack into an array, use ~ARRY.

1 2 3 4 4 -ARRY = [1 2 3 4]

1 2 3 4 {4} ~ARRY = [1 2 3 4]

1 2 3 4 {22} -ARRY o= [[;fl].

The level 1 argument of “ARRY determines how many numbers are taken from
higher stack levels to form the array, and the dimensions of the array. When the
argument is a real number n, or a list { n }, then n additional numbers are taken
from the stack to form an n-element vector. If the argument is a two-element list,
e.g. { n m}, n'm numbers are combined into an n Xm matrix. The order in which
the array elements are taken from the stack is called row-order. This order has
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element 1 or 1-1 in the highest stack level, followed by the elements of the first row
in left-to-right order, then by the row 2 elements, if any, and so forth, ending in level

2 with the last element in row n.

e To take an array apart, use OBJ- (you can also substitute ARRY-). Reversing the

previous example:

[1 2 3 4] OBJ- o= 1 2 3 4 {4}

[[[;fl] OBJ~ = 1 2 3 4 {22}

OBJ- returns the elements of an array as individual numbers in row order, and
leaves the dimension list in level 1. Notice that OBJ- always returns the

dimension(s) in a list, even when its argument is a vector.

e To determine the dimensions of an array, use SIZE.

A
NHad] sz o (a2)

[56]]

e To extract individual numbers from an array, use GET or GETI (section 5.7.1).

[[12[ 1
[34

[
[
—

] {21} GET = 3.

e To substitute numbers into an array, use PUT or PUTI (section 5.7.2.3).

[[12 [[12]341] {21} 8 PUTI = fsal] (22}

the { 2 1 } element in the array is replaced with a new value 8, and the next index is

returned.

e To reorganize the elements of an array into an array with different dimensions, while
preserving the row order of the elements, use RDM (ReDiMension). The arguments
for this command are the original array in level 2 and the dimension list for the new
array in level 1:

[[
] - [1] {4 2} RDM 3 {

N
O
T
W
=

O
O

N
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If the dimension list { m n } specifies a new array with fewer elements than the origi-
nal, RDM uses only the first m=n elements of the original and discards the
remainder. If the new array requires more elements than the original, the missing

elements are filled by zeros.

You can also apply RDM to an array stored in a global or local variable by substitut-
ing the variable’s name for the argument array. The result array replaces the origi-
nal array in the variable.

e TRN (TRaNspose) replaces a matrix by its (conjugate) transpose, where the matrix

can be on the stack itself, or represented by a variable name:

[

A
W
O
N
=

o
~
N
O
O

[
T

|

W
y
S
—
)

[
[

[481]
TRN does not work with vectors: if you want to transform a vector into a single-row
matrix, use this sequence:

OBJ- 1 SWAP + -ARRY.

e Two commands are available for creating constant arrays. IDN (IDeNftity) creates an
n Xn identity matrix specified by a real number argument n:

[1
3 IDN = [0

0

IDN can also change an existing array (on the stack or specified by name) into an
identity matrix of the same size. In that case, of course, you don’t need to specify
the dimension of the matrix. If the initial matrix is complex, the resulting matrix will
also be complex, with diagonal elements (1,0).

CON (CONstant array) creates an array dimensioned according to a list in level 2,
where all of the elements have the same value, specified by a real or complex
number in level 1. Like IDN, CON will also use an array (or its name) asits level 2
argument. If the initial array is real, then the new constant value in level 1 must also
be real. For an initial complex array, the constant value can be real or complex; for
a real number x, the result array will remain complex, with elements (x,0).

The program MINOR listed below illustrates the use of array manipulation commands.
MINOR computes the nm minor of a matrix, which is defined as the original matrix with
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its nth row and mth column removed. Assuming that MINOR should start with the ori-
ginal matrix in level 3, the row number 7 in level 2, and the column number ¢ in level 1,
we can sketch a preliminary version of MINOR:

<< 3 ROLLD DELROW SWAP DELCOLUMN >>

DELROW must be a subroutine that removes the rth (level 1) row of a matrix (level 2);
DELCOLUMN removes the cth column. However, you can observe that removing a

column of a matrix is the same as removing a row of the transposed matrix, so that a
program that removes a row can do both jobs if combined with the transpose command
TRN. We choose to work with rows rather than columns because OBJ- puts elements
on the stack in row order, making it easier to delete the elements of a row than a
column.
 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

MINOR Minor ofa Determinant 4C4A

level 3 level 2 level 1 | level 1

[[ matrix ]] r c or [[ marrix’ 1]

<< 3 ROLLD | ¢ [[matrix]] r |

DELROW Remove the rth row.

TRN SWAP DELROW Remove the ¢ column.

TRN Transpose back again.

>>

DELROW Delete a Matrix Row OFC6

level 2 level 1 | level 1

[[ matrix ]] n o  |[[ marix’ ]]

< = Store the row number.

<< 0OBJ- Put the array elements individually on the stack.

OBJ~ DROP - n m Save the dimensionsin r and c.

< nr - m * -LIST

- s Save the last (n—r)m elements in a list s.

<< m DROPN Discard m elements.

s OBJ- DROP Recover the saved elements.

>>

n 1 - m 2 -LIST The new array has dimensions (n—1)Xm.

-ARRY Make the result array.

>>

>>

>>   
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Programs in subsequent sections of this chapter contain several additional examples of
the uses of array manipulation commands.

11.2 Arrays and Algebraic Objects

Although algebraic objects may not directly contain arrays, you can nevertheless use
algebraic objects to represent various array operations symbolically. Any name appear-
ing in an algebraic expression can refer to a variable containing arrays. You can apply
any symbolic manipulation to such an expression; but when you evaluate an expression,
the result can not be symbolic. For example, if variable A contains the vector [ 1 2 ],
and B is [ 3 4 ], then evaluation of 'A+B’ returns [ 4 6 ]. However, if B is undefined,
then evaluation of the expression returns the Bad Argument Type error.

In addition to this ordinary use of names within algebraic expressions to refer to stored
arrays, you can use a function-like syntax to access individual array elements. Consider
subtracting the second column from the first in a ten-row matrix '"MAT’, replacing the
first column with the difference. Using GET and PUT explicitly, this is accomplished by

1 10 FOR n MAT 1 n GET MAT 2 n GET - MAT 1 n PUT NEXT.

The following sequence accomplishes the same thing, but it is rather more readable:

1 10 FOR n 'MAT(n,1)-MAT(n,2)’ EVAL 'MAT(n,1)’ STO NEXT.

The general syntax for recalling an nth element is name(n) for vectors, and name(m,n)
for matrices, where name is the name of a variable containing an array, and m and n
are element numbers. For example, with variable A and B defined as above,

'A(1)+B@2)’ EVAL = 5.

(The vector syntax with a single element number also works when the named variable is
a list). Evaluating expressions like these actually invokes GET, e.g. '"M(1,2)' EVAL is
equivalent to ‘M’ { 1 2 } GET when variable M contains a matrix. (If the evaluation
fails because the element index is out of range, the error message will specify a GET
error.) To execute PUT in a similar manner, you can use an algebraic object as an
argument for STO:

object 'X(m)' STO

stores object as the nth element of the array or list X. If X contains a list, object may be
of any type. If X contains a vector or a matrix, object must be a number. In the case of
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a matrix, X can have one or two indices; either

25 'X(@)" STO

or

25 'X(2,1)’ STO

stores 25 into the 2-1 element of a 2X2 matrix stored in X.

The program SUBCOL demonstrates the use of this type of indexing. It replaces a
matrix with a new version in which the elements in column i have been replaced by their
original values minus the corresponding elements in column j.
 

 
 

 

 

 

SUBCOL Subtract Columns O0ADS5

level 3 level 2 level 1 level 1

([x1] i J =4 (=1

< - mati j Store column numbers.

< 1 mat SIZE 1 GET Number of rows.

FOR n

"'mat(n,i)-mat(n,j)’ EVAL Compute the difference.

'mat(n,i)’ STO Replace the value.

NEXT

mat Return the matrix.

>>

>>    
 

11.3 Vectors and Coordinate Systems

HP 48 vectors are one-dimensional arrays represented as a series of real or complex
numbers enclosed in single brackets [ ]. When a vector is entered or displayed, the ele-
ments are shown in a horizontal format suggesting a row (covariant) vector. However,
HP 48 vectors actually have the mathematical properties of column (contravariant) vec-

tors. This means, for example, that an n-element vector Vv is conformable for pre-
multiplication (A) by an m Xn matrix A. The vectors are displayed horizontally in
order to show as many elements as possible on the display. You can represent row
(covariant) vectors as 1 X n matrices.

The HP 48 provides two commands for computing vector products. DOT computes the
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dot, or inner, product of two vectors of the same dimension:if x; and y; are the ith ele-
ments of two vectors of size N, then the dot productis defined as

N

Exiyi-
i=1

ABS applied to a vector returns

  

which is equivalent to the square root of the absolute value of the dot product of the
vector with itself. The following program uses ABS to compute the angle between two
vectors

 

 

Between Vectors

level 2 level 1 level 1

0

<< DUP2 DOT Xy

SWAP ABS / X5/ | |

SWAP ABS / /(1% |V ])

ACOS 0

>>    
 

For two- and three-dimensional vectors, CROSS computes the cross-product Z =X X y
of two vectors, where

zi = X;Yk €ijk
Jk

0if i=j, j=k ori=k

€jx = {+1ifj j, k are in cyclic order

— 1 otherwise.

CROSS’s result is always a three-element vector. A two-element vector used as an
argument is treated as a three-element vector. If both arguments are two-element vec-
tors, then the result is a vector of the form [0 0z ].
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11.3.1 Coordinate Systems
Because two- and three-element real vectors are common in engineering and physics,
the HP 48 provides special capabilities associated with this class of objects. In particu-
lar, the vectors can be entered, displayed, and analyzed in polar coordinates as well as in

rectangular coordinate systems.

In two dimensions, the position of a point is represented by a radial coordinate p and a
polar angle &:

 

 
The conversions between polar coordinates (p,b) and rectangular coordinates (xy) are
given by:

p=@x+y)*® x =pcosd
b =tan"l(y/x) y = psind

In three dimensions, two types of polar coordinates are used, cylindrical and spherical.
The conversions between rectangular and cylindrical polar coordinates are the same as
for the two-dimensional case, with the z-coordinate the same in both systems. For
spherical polar coordinates (r,$,0), the conversions with rectangular coordinates (xy,2)
are
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r=(@?+y%+z%)% x =rsinfcosd

é = tan"1(y/x) y = rsin@sind

2 2%
0 = tan-1&Y z =rcos9

z

zZ zZ
A

Z N z N

| |

I 9 r |

| 1

| Y Y ! Y Y
~ | ,' ~ ] // =

~p S~ L
\\ |// \\ |,/

X e_¥ X SN7

X X

Cylindrical Polar Coordinates Spherical Polar Coordinates

HP48 vectors are always stored in memory in rectangular coordinates. However, you
can choose to display vectors in polar form, and to create and take apart vectors using
polar values. The display of vectors is controlled by the coordinate mode, controlled by
flags —15 and -16. You can change modes manually by pressing , or by
using one of the menu keys EXYZE (rectangular), ER«Z= (cylindrical), and ER<«<Z (spheri-
cal) found on the first page of the EVECTRE menu and the third page of the

menu. The key switches back and forth between rectangular mode,

and whichever of the two polar modes was last selected by one of the menu keys or by
setting or clearing flag —15. The current coordinate mode is indicated in the status area
of the display, where the symbol R«Z means cylindrical polar mode, and R<« means
spherical polar mode. If neither symbol is visible, rectangular mode is active.

  

In either polar mode, the HP 48 displays a two-dimensional vector in the form [p, L],
where the angle symbol £ indicates that the latter number is to be interpreted as the
polar angle. (This discussion also applies to complex numbers, using parentheses
(p,£&) rather than vector delimiters [p, £¢].) The numerical value of the angle also
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depends on the current angle mode, which can be degrees, radians, or grads:

[<7][MODES|STD=
[NXT][NXT)EDEGE 
  
  
  

EXYZE [1 1] = [1 1]
ER4Z= 7 [ 1.41421356237 «45]
ZRADZ= = [ 1.41421356237 «.785398163397 ]

ZGRAD= = [ 1.41421356237 4«50 ] 

You can also enter a two-element vector in polar form by including an angle symbol «
in front of the second number, which is interpreted as an angle according to the current
angle mode. Notice, however, that a vector entered in polar form may not keep exactly
the values that you enter:

DEG [25 «225] [ENTER] r= [25.0000000001 <«£-135]

This is because the polar coordinates are converted to rectangular coordinates to store
the vector, then are converted back to polar form for display. The finite precision
conversions may introduce changes in the twelfth decimal place. Also, since ATAN is
used in the conversion, the displayed polar angle will always have a value between —180°
and +180°.

The fact that all vectors are stored in the same rectangular format regardless of display
mode means that they are suitable for various operations without needing any prelim-
inary conversions. You can perform vector arithmetic, for example, directly in polar
form:

[1 «45] [1 «-45] + ©= [1.41421356237 0]

All of the properties described for two-dimensional vectors apply as well to three-
dimensional vectors, in which the second and third elements may include angle symbols
to indicate polar coordinates. If the second element (only) of a three-element vector is
entered or displayed with a leading angle symbol, the vector is being represented in
cylindrical polar coordinates [ p £ z]. A vector with the second and third elements
starting with angle symbols is interpreted in spherical polar coordinates [ r £b «£8 ].
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EIDE

NXT][NXT] =DEGE
EXYzz [1 1 1] = [1 1 1]
ER4Z= = [ 1.41421356237 «45 1]
SRS r= [ 1.73205080757 «45 «54.7356103172 ]

You can not use the MatrixWriter to enter or edit vectors in polar form; there is no
provision for including the angle symbol in any element field. However, you can enter
two- or three-element vectors without using [] delimiters or angle symbols by using the
2D and 3D operations and ). Both operations are “toggles” that con-

vert a vector to and from its elements. 2D, for example, converts two real numbers to a
vector:

EXYZE 1.23 4.56 = [1.23 4.56]

On the other hand, if level one contains a real vector, 2D takes it apart into separate
real numbers:

[1.23 456 ] = 1.23 4.56.

3D works similarly for three-dimensional vectors. Both 2D and 3D are sensitive to the
coordinate mode and angle mode:

  
SR{<= EDEG:
1 45 50 = [1 445 «50]
 

r= .766044443119 .785398163397 .642787609687

Actually, when the argument is a vector, 2D and 3D are equivalent, and both will
decompose vectors of any size. However, for vectors with more than three elements,
only rectangular coordinates are returned.

The operations 2D and 3D are combinations of the programmable commands V-, which
takes a vector apart, and -V2 and -V3, which respectively assemble two- and three-
element vectors from real numbers. (If there is an error during execution of 2D or 3D,
one of these commands will be identified by the error message.) V- breaks a vector of
any size into its component elements, following the current angle and coordinate modes
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for two- and three-element vectors:

  
[1 1 1] DEG V- = [1.73205080757 «45 «54.7356103172 ] 

(Unlike OBJ~ and ARRY~, which also decompose vectors, V- does not return a dimen-

sion list.)

If you are combining individual coordinates into a vector, -V2 and -V3 are equivalent to
2D and 3D, respectively. Of course, you can also use ~ARRY, but -V2 and -V3 allow
you to express their arguments as polar coordinates, following the current angle and

coordinate modes.

11.3.2 Example: Coordinate Transformations
Consider two coordinate systems, where the second is derived from the first by 1)

displacing the origin by an amount given by the vector T, and 2) rotating the axes

through an angle o about the direction specified by a (unit) vector N. A vector P’

expressed in the new system are obtained from the coordinates P of the same vector in

the original system using the following formula:

= |@-T)F] (- cosO)N + (P-T)cosd + |@-T)x] sino.

An easy wayto renderthis formula into a program is to store the four arguments 1_5, 7’,

N, and a as local variables, then evaluate an algebraic object matching the formula.
This is not immediately possible, however, since DOT and CROSS are not functions in
the HP 48 sense. But we can fix that problem by creating user-defined functions (sec-
tion 8.5) as follows:

DOTFunction

level 2 level 1 level 1
-
X
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CROSSF CROSS Function 4732

level 2 level 1 | level 1

X y or IXy

< - A B
 

< A B CROSS
>>  >>

 

With these two programs in hand, we can write the transformation program:

 

 
 

 

 
 

 

XFORM Coordinate Transformation 0D94

level4 level 3  level2  level 1 | level 1

P T N 0 @ P

<< SWAP DUP ABS / Unit vector.
4 ROLL 4 ROLL - PT = P-T.
- a N PT Save the parameters as local variables.

'DOTF(PT,N)*(1-COS(a)) *N
+ (PT)*COS(a) + CROSSF(PT,N) *SIN(a)’ |Evaluate transformation formula.

>>  
 

m Example. A coordinate system is translated a distance 3 in the direction specified by
the spherical polar angles ¢ =30° and 6=60°then rotated through 45° about the z-axis.
What are the coordinates of the vector [1 1 1] in the new system?

m Solution. In this problem, P= [111], T = [3 £30 £60 ], N = [0 0 1], and
a = 45°. Thus

DEG 3 FIX [1 1 1] [3 430 «60] [0 O 1] 45

XFORM = [ -1.095 0.672 -.500 ]

11.4 Lists

In this section, we will review the general ideas of list objects, and study their applica-

tion by means of examples.

A list is a composite object (section 3.3) made up of a series of other objects. It is simi-
lar to a program in this respect, but whereas a program is primarily intended for execu-
tion, a list is usually used as data. This difference is reflected in the execution actions of
the two types of objects: executing a program automatically executes the objects that
make up the program, but executing a list merely returns the list to the stack.

-289-



11.4 Arrays and Lists

Evaluating a list by means of EVAL treats a list as a program, and successively executes

the objects in the list.

There are other distinctions between lists and programs:

e You can take a list apart into its component objects, or combine objects into a list.

e You can extract and replace objects within a list, but not within a program (other

than by editing the program).

e The local variable command - can not be used within a list.

e Names and programs in a list can not be “quoted” (section 3.8). For example,

{<< 1 >} EVAL = 1,

compared with

K<< 1 >> EVAL 7 << 1 >,

Similarly, names entered in lists are not quoted--if you enter a name with ' ' quotes
in a list, the quotes are not retained. Therefore, to prevent the execution of a name

or a program in a list, you must embed it within another set of program delimiters,
eg { << <<1>>> }or{<<'ABC' > }.

e You can not single-step through a list. If you evaluate a list containing a HALT or
PROMPT, execution will suspend at the appropriate place, but SST in this case is
equivalent to CONT.

Lists also resemble vectors, since they are both one-dimensional arrays of objects. You
can create either a list or a vector out of a series of numbers (using »LIST or ~ARRY).
The difference is that in a list, the numbers do not necessarily have any particular asso-
ciation, whereas in a vector, they may be considered as the coordinates of a geometrical
point, and hence are subject to various arithmetic operations and transformation rules.

11.4.1 List Operations
The HP 48 provides several commands that enable you to manipulate lists and their ele-
ments. The commands are quite similar to those used for array operations.

e To assemble objects into a list, use —LIST.

1 (1,2) 'A+B’ 3 ~-LIST = {1 (1,2) 'A+B’}.

Note that the level 1 argument of —LIST (the 3 in this example) determines how
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many objects are taken from the stack to be combined into the list.

e To take a list apart, use OBJ-, or the equivalent for lists, LIST-.

{1 (1,20 'A+B’} OBJ- = 1 (1,2) 'A+B’ 3

OBJ- returns the elements of the list as separate stack objects, and leaves the
number of elements in level1.

e To determine the number of elements in a list, use SIZE.

{1 (1,2 'A+B'} SIZE = 8.

e To substitute objects into a list, use PUT or PUTI.

{1 (1,2 'A+B’} 2 "ABC" PUT = {1 "ABC" 'A+B’},

where the second element (1,2) in the initial list is replaced with the string "ABC".
PUTI makes a substitution like PUT, but also leaves the index of the next element in

level 1.

e To pull individual objects out of a list, use GET or GETI.

{1 (1,2 'A+B’'} 2 GET = (1,2).

e To combine (concatenate) lists, use +.

{1 2 3 4} {5 6 7 8} + = {1 2 3 4 5 6 7 8}

e + also add a stack object to a list, automatically applying 1 =LIST to the object:

{2 34} 1 + = {2 3 4 1}

This is similar to the concatenation of objects to a string (section 3.4.3.1), where a
non-string object is automatically converted to a string. If + is applied to a string
and a list together, precedence is given to the list operation:

"123" {456} + o= {"123" 456}

There is also an ambiguity when both objects are lists, which is resolved by giving
precedence to concatenation. Thus if you want to add a list itself as an object to
another list, you need an extra set oflist delimiters:
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{1 2 3 4} {{5 6 7 8}} + = {1 23 4 {5 6 7 8}}

e Since a list is an object, you can include lists within other lists. Notice the distinction

between

{1234} {65678} +r={12345678)

and

{1234} {5678} 1-ULUST +w={1234{5678}}

e To extract sublists from a list, use SUB. For example, the sequence

2 OVER SIZE SUB

takes a list from level 1 and returns a shorter list consisting of the original list minus
its first element (like the LISP function CDR). Thus,

{A B C} 2 OVER SIZE SUB = {B C}

e To replace several consecutive objects in a list, use REPL. REPL takes three argu-
ments: the target list in level 3, the first substitution position in level 2, and the
replacement list in level 1. The rules for use of REPL with lists are similar to those
for use with strings (section 3.43.3). Assume that the target list contains /; ele-
ments, the replacement list has /, elements, and the substitution position is n. Then
for

n>ly, the two lists are concatenated:

{A B CDE} 10 {F G} REPL
= {A B CDTETF G}

n +1,-1>1,, elements n through /, are replaced, and the leftover /,—(I;—n)
objects from the end of the replacement list are concatenated, so
that the result list has n + 7/, - 1 elements:

{A B CD}) 4 {E F} REPL = {A B C E F}

n +l,-1=<l,, eclements n through n +/,-1 are replaced in the target list; the
remaining /, -/, objects are unchanged:

{A B CD} 2 {E F} REPL = {A E F D}
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n=0, the Bad Argument Value error is reported.

e You can find an objectin a list by using POS:

{A B C} 'B" POS = 2.

The number returned is the element number in the list of the search object, or 0 if
the object is not contained in the list.

11.5 List Applications

The basic ideas of the use of the HP 48 object stack carry over into the principles and
applications of list objects. A list is like an auxiliary stack, in which you can store and
retrieve an indefinite number of objects, with no restrictions on the order or type of

objects in the list. To illustrate this point, try the following:

1. Enter several objects of any types onto the stack.

2. Now use the interactive stack to combine all of the stack objects into a list:

(In a program, you can obtain the same result with DEPTH —LIST.) Note that the
objects are present in the list in the same order in which they were originally
entered into the stack. The object that was in the highest stack level is the first
element in the list; the object that was in level 1 is the last element. The list thus
preserves an image of the original stack.

3. Save the list: ‘OLD’ . The stack is now empty.

4. Carry out any number of new calculations, leaving various objects on the stack.
Discard these objects with (CLEAR), then enter

OLD LIST- DROP.

This restores the stack as it was after step 1.

The ability to "freeze" a copy of the stack, store it away, then retrieveit later, is a useful
list application in itself. But the main point of the example is to bring out the similari-
ties between the stack and a list object, which suggests how you might use lists. The
stack provides a medium for the ordered presentation of objects as input arguments for
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procedures (built-in or user-created), and for receiving the result objects. Lists can be
used for the same purposes, especially for cases where juggling mixtures of input, inter-
mediate, and output objects during the course of a calculation can become complicated.

To summarize, lists are a valuable programming tool for any situation in which the
number of objects with which a program has to dealis not specified at the time the pro-
gram is written. When a program works with a definite number of objects, it is
appropriate to store those objects in variables, or to manipulate them on the stack as
individual objects. But when you don’t know in advance how many objects are to be
handled, the best approach by far is to manage the objects together in a list. We will
give some examples of this concept in the next sections.

11.5.1 Input Lists
Certain HP 48 commands provide examples of the use of lists to combine several input
objects into a single argument. There are two basic reasons for this approach:

1. To provide flexibility along with uniformity. For example, consider the command
CON, which creates an array in which all elements have the same value. CON
requires two pieces of information: 1) the common value for the elements, and 2)

the dimensions of the array. The first is easy; the value is specified by a real or
complex number in level 1. The second is a little more difficult, since an array
can either be a one-dimensional vector, or a two-dimensional matrix. The use of
a list as the level 2 argument for CON allows CON to handle both matrices and
vectors. If the level 2 list contains one number, CON creates a vector; if the list

contains two numbers, CON creates a matrix. If the dimensions were not com-
bined into a list, there would have to be two versions of CON: one that takes two
real numbers as arguments--the value and the vector dimension; and one that
takes three numbers--the value and two matrix dimensions.

2. To reduce the number of separate arguments. Many graphics commands such as

GXOR (section 10.3.1), use either complex numbers or binary integers to specify
pixel coordinates. If the binary integers were entered as separate arguments, then
these commands would violate the usual HP48 convention that any particular
command uses the same number of arguments for each of its allowed argument
type combinations. Instead, each pair of binary integers is combined as a list, to
match one-for-one the uses of complex numbers.

Of these two reasons, the first is the only one of significance as a model for the use of
lists as input arguments for user programs. Thatis, lists are ideal for situations where
you have an indefinite number of inputs. An example of this is provided by the program
MINL (section 12.3), which finds the minimum among a series of numbers in a list. The
program is written for series of any length--it has only to execute SIZE on the input list
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to determine how many numbers it needs to compare. Furthermore, during its execu-
tion, the numbers remain in the list, except for when they are extracted one-by-one from
the list for the comparisons. Keeping track of that single list, which could be stored in a
global or local variable if necessary, is much simpler than trying to maintain the series
of numbers as separate stack objects. If you are not yet convinced of the utility of lists,

try writing a version of MINL that uses no lists (or arrays). See also the recursive pro-
gram RMINL, in section 12.10.

11.5.1.1 Index List Arguments

Commands such as PUT and GET that use argument lists containing one or more real
numbers also allow you to substitute other types of objects for the numbers. The substi-
tute objects must evaluate (by means of “NUM) to real number values. In particular,
this means you can use symbolic values (names or expressions), or even programs,
rather than specific numerical values. For example, the sequence

- m <1 m SIZE 2 GET FOR n m {3 n} GET NEXT>

returns in order all of the numbers from the third row of a matrix. This capability can
lead to some convoluted executions when argument lists contain (directly or indirectly)
programs that manipulate the stack. You can predict the execution in such cases as fol-
lows:

1. Empty lists cause the Bad Argument Value error.

2. Lists containing only real numbers go directly on to the computation part of the
command.

3. When a list contains elements other than real numbers:

a. The stack depth (less the list) is recorded.

b. Each non-real number list element is evaluated numerically (-NUM). After
each evaluation, if the resulting stack is empty, the error Too Few Argu-
ments is reported. If the resulting level 1 object is not a real number, the
Bad Argument Type error is reported.

c. If the stack depth has decreased, the Too Few Arguments is returned. Oth-
erwise, the new objects, plus any excess, are combined back into a list.

d. The command execution is started over again with the new list.

Command errors that occur during evaluation of procedures within the argument list
identify the guilty command and return its arguments as usual. However, other errors
that occur in step 2 do not identify any command.
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If a non-numeric list is used as the index argument for GETl or PUTI, the incremented
index list is returned with real number indices.

11.5.2 Output Lists
Just as you can use a list to combine an indefinite number of input objects into a single
argument, you can use a list to receive the multiple-object output of a program. This
approach makes it easy to manipulate a program’s output--either to save it in a variable,

or to use it as the input for another program.

m Example. For any integer n, compute the first n+1 terms F, of the Fibonacci series.

This series is defined as follows:

 

 

 

 

 

 

F0= 0

F,=1

F, =F, 1+F,_,

FIB Fibonacci Series Generator ED29

level 1 | level 1

n o {o1--- £, }

«< {0 1} Start the list with Fy and F;.

SWAP DUP 1

IF > If nis < 2, quit.

THEN 0 1 Initial values F,_, and F,,;.

3 4 ROLL 1 + From 3 to n...

START DUP ROT + F,,+F,,.

ROT OVER + Add F,, to the output list.

3 ROLLD | {Fy} Fnp Fni |
NEXT DROP2

ELSE DROP

END

>>     
11.5.3 Lists of Intermediate Results
When a program contains loop structures, or is written recursively, it is usually neces-
sary to ensure that the stack has the same configuration at each iteration. A particularly
convenient means of achieving this is to use a list as an auxiliary data stack, to hold an
indefinite number of intermediate results in a constant position on the stack.

The program SORT illustrates the use of lists of intermediate results. SORT orders a
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list of numbers (or strings), so that the smallest (most negative, or alphabetically first)
object is moved to the start of the list, and so on to the largest (alphabetically last)
object as the last element. SORT uses a recursive algorithm that can be summarized as:

1. Remove an object from the middle of the list and separate the remaining objects
into. two lists, one containing objects that are smaller than the middle object, and
the other containing larger objects.

2. Sort the two lists using the same algorithm.

3. Combine the results back into a single list, with the sorted “smaller” objectsfirst,
followed by the original middle object, then the sorted “larger” objects.
 

 

 

 

 

 

 

SORT Sort a List in Increasing Order A1BE

level 1 | level 1

{ list } o { ordered list }

< |F DUP SIZE 1 > If the list has fewer than 2 elements, just

return.

THEN OBJ- Put the objects on the stack.

buP 2 / 1 + ROLL Get the middle object.

NEWOB - x Save the objectas x.t

< {} {} Initialize “less” and “greater”lists.

2 4 ROLL Iterate for n—1 elements:

START ROT Get the next element.

DUP x

IF < If the element is < x,

THEN ROT + SWAP add to firstlist.

ELSE + Element = x, so add to second list.

END

NEXT

SORT Sort the first list.

SWAP SORT Sort the secondlist.

x + SWAP + Combine the lists.

>>

END

>>  
 

1 NEWOB saves memory by separating x from the original list. See section 11.6.
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n Example.

{51243} SORT = {12345}

The algorithm used by SORT is not specific to numerical ordering; you can rewrite
SORT for other types of sorting by replacing the < comparison with any other test or
sequence of tests. A more general approach is taken by the program GSORT, which
sorts a list of objects according to a test defined by another program that is supplied as

a second argument to GSORT.
 

  

 

  

GSORT General-purpose Sort EFFC

level 2 level 1 | level 1

{list} <<test> 1= { list}

<< - ftest Save test program as test.

< |IF DUP SIZE 1 > If the list has fewer than 2 elements,just

 

return.

THEN OBJ- Put the objects on the stack.

DUP 2 / 1 + ROLL Get the middle object.

NEWOB - «x Save the object as X.

< {} {} Initialize “true’’ and “false’’ lists.

2 4 ROLL Iterate for n-1 elements:

START ROT Get the next element.

IF DUP x test EVAL

THEN ROT + SWAP

ELSE +

END

NEXT

test GSORT

SWAP test GSORT

X + SWAP +

>>

END

>>

>>  
If test is true,

add element to first list.

Otherwise, add element to second list.

Sort the firstlist.

Sort the second list.

Combine the lists.

  
To use GSORT, enter an unsorted list of objects, followed by a program test-program
that represents a logical test. Test-program should work like this:

object; object, test-program = flag.

Flag should be true if object, is to precede object,, or false otherwise. GSORT sorts the
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list so that the sequence

object, object,. test-program

will return a true flag for any two consecutive objects object, and object, ., in the list
(unless the order is ambiguous). For example, the numerical ordering performed by
SORT is represented by the program << < >>; therefore << < >> GSORT is
equivalent to SORT. Other examples:

e << > >> GSORT sorts numbers or strings in decreasing numerical or alphabetical
order.

e << ABS SWAP ABS > >> GSORTsorts in order of increasing absolute value.

o << SIZE SWAP SIZE > >> GSORT sorts strings or lists in order of increasing
length.

e To sort complex numbers in order of increasing polar angle from 0° to 360°:

<< << ARG DUP 0 IF < THEN -1 ACOS 2 * + END >
ROT OVER EVAL ROT ROT EVAL < >> GSORT

11.6 Composite Objects and Memory

There is a subtlety in the management of composite objects--lists, algebraics, and
programs--that you should keep in mind when programming with these objects. When

an object originates in a composite object, such as when GET extracts an object from a
list, or when executing a program leaves an object from the program on the stack, the
composite object remains in memory as long as any of its component objects remains on
the stack or is otherwise in use. If the composite object itself is stored in a global or
port variable (or is part of a program or another list in a variable), this point is unim-
portant, since the memory used by the object is accounted for in the variable. However,
if the composite object has not been stored, the memory it uses will not be recovered
until it and any objects that have been extracted from it are removed from the stack.
For the individual objects, “removed” means dropped, stored in a global or port variable
(not a local variable), or combined into a vector or another list.

To see this effect, disable the argument, stack, and command recovery systems so that
they will use no memory, and execute

1 50 FOR n n NEXT 50 -LIST

to create a list of 50 numbers. Now execute 50 GET, so that the number 50 (from the
list) is left on the stack. Next, execute MEM to determine how much memory is avail-
able. Use SWAP DROP to drop the 50, then execute MEM again. Notice that the
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difference is 447.5 bytes--far more memory than you would expect to be recovered by
dropping the single real number 50. The large difference between the successive MEM’s
actually arises because the removal of the 50 allowed the HP48 to delete the copy of

the List that it had been preserving.

As mentioned above, you can “uncouple” an object from the list from which it came by
either storing the object in a global variable, or by including it in another list (or an
array, if the object is a number). An even simpler method is to execute NEWOB (NEW
OBject). NEWOB may not appear to do anything, since the object it returns matches
the original, but in fact NEWOB creates a new independent copy of an object that is
disassociated from any other object. Using NEWOB in the SORT and GSORT pro-
grams listed in the preceding section enables those programs to sort lists substantially
larger than they could if NEWOB were omitted.

One additional note: if you are dealing only with a collection of numbers (all real or all
complex), you can often use a vector (or a matrix, if you want a rows-and-columns type
of organization) to store the numbers, instead of a list. For storing more than a few
numbers, a vector is more memory-efficient than a list, and you can perform many of
the same operations to assemble and disassemble vectors as you can with lists. The
main disadvantage of using a vector in place of a list is that there is no built-in com-
mand for adding (concatenating) numbers to vectors, or combining two vectors into a
longer one. The following program provides list-like concatenation for vectors:.
 

ADDV Concatenate Vectors 9645
 

 

level 2 level 1 | level 1
 

vector vector o vectortor tor, tor3
 

 

<<

<< DUP TYPE Program to apply to both vectors.

IF 1 = Is the object a number?

THEN 1 Then treat as a one-element vector.

ELSE OBJ- OBJ- DROP For a vector, put its elements on the stack.

END

DUP 2 + ROLL Get the object above the vector.

> - s Store the program as a subroutine s.

< SWAP s EVAL s EVAL Apply s to both vectors.

+ Total number of elements.

1 -LIST -ARRY Combine the numbers into the result vector.

>>

>>   
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11.7 Symbolic Arrays

HP48 array objects are designed for the efficient storage of real and complex numbers,
and can not contain symbolic elements. Nevertheless, it is possible to deal with sym-
bolic arrays on the HP 48 by using the more flexible list objects to represent the arrays.
In this section, we will present several programs for symbolic array calculations, which
also serve as examples of the use oflists and arrays, and other programming techniques.
These programs obviously do not exhaust the subject of symbolic array manipulations,
but you can use them as a basis for developing additional programs.

All of the programs follow the convention that a symbolic array is represented by a list

of lists. An n Xm array is represented as a list containing n m-element lists. For exam-
ple, the list {{a b} {c d}{e f}} stands for the matrix

ab
cd
e f

There is no special provision for vectors, which may be represented as 1Xn or n X1
arrays in this system. Since all of the arrays are two-dimensional, we will always use two
separate (i.e. not in a list) real numbers to specify elements or dimensions.

  

The programs do not check for the integrity of the lists you may enter--they presume
that all of the inner lists in a particular symbolic array list have the same number of ele-
ments, that all of the elements are either names, numbers, or algebraic expressions, and
that there are no extraneous elements in any of the lists. If the programs are applied to
lists that violate any of these assumptions, they may error or return nonsensical results.
If this is not satisfactory, you can easily revise the programs to include more argument
testing,

11.7.1 Utilities
To start with, here are several utility programs for symbolic arrays that are analogous to
various HP 48 array commands:

DIM returns the dimensions n (rows) and m (columns) of a symbolic array.

SA- unpacks a symbolic array into separate stack objects.

-SA combines stack objects into a symbolic array.

N-S converts an ordinary numerical array into a symbolic array. Vectors are con-

verted into n X1 symbolic arrays.

S-N attempts to evaluate all elements in a symbolic array into numbers. If suc-
cessful, it then converts the symbolic array into a numeric array.
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APLY1  applies a program to each element of a symbolic array.

APLY2  combines two symbolic arrays by applying a program to pairs of elements.

STRN  transposes a symbolic array.
 

 

 

 

 

 

 

 

  

 

  

  
 

 

 

 

 

 

DIM Symbolic Array Dimensions 2BA8

level 1 | level 2 level 1

{ary)} o n m

<< DUP SIZE SWAP 1 GET SIZE

>>

SA~ Symbolic Array to Stack 28D2

level 1 | " level 2 level 1

{ aray }} o ...elements... n m

<< OBJ» OVER SIZE - n m Store dimensions.

< 1 n

FOR i

‘i-1)*m+n-i+1’" EVAL ROLL Get the ith row.

OBJ- DROP Putits elements on the stack.

NEXT

nm Return the dimensions.

>>

>>

-SA Stack to Symbolic Array 98FD

level 2 level 1 | level 1

...elements... n m o { aray }}

< > nm Save the dimensions.

<< 1 n

FOR i

m ~LIST Make the ith row.

'm*(n-i)+i’ EVAL ROLLD Put it at the end.

NEXT

n -LIST Combine the rows.

>>

>>     
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>> 

N-S Numeric to Symbolic B665

level 1 | level 1

[aray]] o {{aray}}

<< OBJ- OBJ- Put elements on the stack.

IF 1 == Is this a vector?

THEN 1 Then add the other dimension.

END

-SA Combine into a symbolic array.

>>

S=N Symbolic to Numeric OACH

level 1 | level 1

{arey}} o [[aray]]

< SA- Put elements on the stack.

DUP2 * - n m p Save dimensions and number of elements.

< 1 SF Flag 1 clear will indicate a non-number.

Tp
START p ROLL Get the next element.

IFERR DUP -NUM Convert it to a number.

THEN DEPTH p - DROPN [If ~NUM fails, discard any partial results.

1 CF Remember the failure.

ELSE SWAP DROP

IF DUP TYPE If the result is not a number...

THEN 1 CF ..clearflag 1.

END

END

NEXT

n m Dimensions for result array.

IF 1 FC?

THEN -SA If there are non —numbers, return a symbolic

array.

ELSE 2 -LIST -ARRY Otherwise, return a numeric array.

END
>>    

S-N sets flag 1 to indicate a successful conversion, and clears it otherwise.
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APLY1 Apply Program to 1 Symbolic Array 5D68

level 2 level 1 | level 1

{{aray}} << program >> o {aragy'}}

< OVER DM - a f n m Store the array, program and dimen-

sions.

< 1 n

FOR i

1 m

FOR j

a i GET j GET Get the ij element.

f EVAL Apply the program.

NEXT

m -LIST Pack up the ith row.

NEXT

n -LIST Pack up the array.
>>

>>

APLY2 Apply Program to 2 Symbolic Arrays 9815

level 3 level 2 level 1 | level 1

{larray \}} {aray2}} << program >> o {{aray,}}
 

 

 
< ROT DUP DIM -

< 1 n

FOR i

i1 m

FOR j

al i GET j GET

a2 i GET j GET

f EVAL

NEXT

m -LIST

NEXT

n -LIST

>>

>>

a2 f at n m Save the arrays, the program, and

the dimensions

Get a1,-j.

Get 32,']'.

Execute the program.

Pack up the ith row.

Pack up the result array.   
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STRN Transpose Symbolic Array A128

level 1 | level 1

{{4; 1 or {4 1

< DUP DM - a n m Save array and dimensions.
< 1 m

FOR j 1 n

FOR i a i GET j GET Ajj

NEXT

NEXT Elements are now in transposed order.

m n

> Discard the original array.

-SA Pack up the new array.

>>    
11.7.2 Symbolic Array Arithmetic
Using the APLY1 and APLY?2utilities listed in the preceding section, it is straightforward
to create programs for simple symbolic array arithmetic.

 

 

 

 

 

 

 

 

 

 

 

 

SADD  adds two symbolic arrays.

SSUB  subtracts two symbolic arrays.

SMS multiplies a symbolic array by a scalar (number, name, or algebraic).

SMUL  multiplies two symbolic arrays.

SADD Add Symbolic Arrays E3E4

level 2 level 1 | level 1

{4; 3 {B; 1} or {4 +B; }}

< << + COLCT >> APLY2

>

SsuB Subtract Symbolic Arrays 87B2

level 2 level 1 | level1

{4; 1 {B;}} o {{A4;-B; }}

<< <« - COLCT =>> APLY2
>   
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You may wish to omit COLCT from SADD or SSUB, to speed up execution or to
prevent an unwanted rearrangement. You can execute << COLCT >> APLY1 on an

array to collect terms once after a series of calculations.

 

  

 

 
 

SMS Scalar Multiply Symbolic Arrays C58A

level 2 level 1 | level 1

{4; B z¥ o {{z4; }}

zt {4; o {z4;}

< IF DUP TYPE 5 == Put the array in level 2.

THEN SWAP

END

- 2z Save the scalar.

< <z * > Program for APLY1.

APLY1
>>

>>  
 

tz can be a number, a name, or an algebraic expression.

 

  

 

 
 

SMUL Multiply Symbolic Arrays 12A9

level 2 level 1 | level 1

ta; 1 {B;} o {{ 4B); }}

< DuUP2 DIM ROT DIM

- al a2 n2 m2 n1 mi Save the arrays and dimensions.

< 1 ni

FOR i 1 m2

FOR j 0 1 mi

FOR k Compute ZAikBkj:
k

al i GET k GET A

a2 k GET j GET Ayj

* 4

NEXT

NEXT

m2 -LIST Pack up the ith row.

NEXT

n1 -LIST Pack up the result array.

>>

>>    
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11.7.3 Determinants and Characteristic Equations
In this section, we develop a program DETM that computes the determinant of a sym-
bolic matrix from the formula

DETA =
n

=

(_ 1)i+1Ai1 A1C17
1

where Ag is the ij cofactor (unsigned) of element A;;, and n is the number of rows or
columns in the (square) matrix. This is a recursive form of the definition of DET, since
the cofactor of an elementis the determinant of its minor:

Af = DETAY.

(The minor Afi-’ is defined in section 11.1. Note that some textbooks may give different
definitions for the terms minor and cofactor. )

The programs to compute determinants of symbolic matrices, SDET (symbolic deter-
minant), SCOF (symbolic cofactor), and SMINOR (symbolic minor), are straightforward
realizations of the above definitions, including the recursion. They are presented in an
order (SDET first;, SMINOR last) that demonstrates a “top-down” programming
approach, where you write a program before writing the subroutines that it calls. This
kind of approach lets you concentrate on the essential main logic flow of a program,
before worrying about the details. Also, when you come to write the subroutines (the
“details”), you know exactly what the stack use of the subroutines should be. Note,
however, that the opposite, “bottom-up” order is usually more convenient for actually
entering the programs into the HP48. By entering the subroutines first, you can then
enter their names into other programs by pressing the appropriate VAR menu keys.

SDET computes the determinant of a matrix as a sum along the first column, of ele-
ments times their respective signed cofactors. (The sign —1°*! is computed explicitly in
this program, rather than as part of the cofactor program, so that the row and column
numbers that determine the sign don’t have to be passed along down through all of the
levels of recursion.) The unsigned cofactor of a matrix element is the determinant of
the corresponding minor; for a 1X1 matrix, the cofactor is 1. The program SCOF
called by SDET embodies these points. At the point in SDET where SCOF is executed,
the stack contains a matrix and the row and column number of the desired cofactor.

The two programs SDET and SCOF call each other back and forth--each is a subroutine
of the other. The calculation proceeds the same way it would if you were computing the
determinant by hand, where you use cofactors to compute the determinants and deter-
minants to compute cofactors.
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SDET Symbolic Determinant of a Matrix D39C

level 1 | level 1

{ marix}} o  determinant

<< DUP DIM DROP - a n Save the matrix (@) and its dimen-

sion.

< 0 Initialize the sum.

1 n

FOR i For each element in column 1...

a i GET 1 GET Get the element.

a i 1 SCOF =* Multiply by the (unsigned) cofactor.

-1 0 1 + ~ x Multiply by (- 1) *?

+ Add to the current sum.

NEXT

>>

>>

SCOF (Unsigned) Symbolic Cofactor 5785

level 3 level 2 level 1 | level 1

{{mamix}} r c o cofactor
 

 

<< 3 PICK DIM DROP

IF 1 ==

THEN 3 DROPN 1

ELSE SMINOR SDET

END

>> 
Get the dimension of the matrix.

If it’s a 1X 1 matrix...

..then just return 1.

...else, return the determinant of the cofactor.

 
 

SCOF uses a subprogram SMINOR to compute the nm minor of a symbolic matrix. It
would be straightforward to modify the programs MINOR and DELROW from section
12.1 to work with symbolic matrices; however, because the structure we are using for
symbolic arrays makes it easy to break an array into rows, we use a different approach
and write SMINOR as a single program.
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SMINOR Minor of a Symbolic Matrix D352

level 3 level 2 level 1 | level 1

{ marrix }} r c e {{ minor}}

< = r cC Save the row and column number.

<< OBJ~ Put the rows on the stack.

OVER SIZE OVER 1 - - m n |[Save the (final) dimensions.

< r - 1 + ROLL DROP Discard the rth row.

1 n For each remaining row:

START n ROLL Get the next row.

IFc 1 - r=1 is a special case.

THEN DUP 1 ¢ 1 - SUB Elements in columns < r.

SWAP ¢ 1 + m SUB Columns > r.

+ New row.

ELSE 2 m SUB r=1 case.

END

NEXT

n -LIST Pack up the result.
>>

>>

>>

A B
m Example. Compute the determinant of the matrix

  CD

m Solution.

{{A BHC D}} SDET = 'A*D-C*B’

You might note that for purely numeric matrices, SDET can occasionally produce more
accurate results than you obtain by applying the HP48 command DET to the same
matrix. For example, applying SDET to the matrix

123

456

789

returns 0, which is exactly correct, whereas using the command DET returns

2.14259999999E - 10. This happens because SDET actually carries out all of the matrix
element multiplications explicitly, whereas, except for 2 X 2 matrices, DET does not.
DET uses more advanced numerical methods to speed up calculation and minimize
memory use for large matrices, and to insure a reliable answer even for matrices with
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elements of widely varying values.

An excellent application of the symbolic array capabilities presented here is the compu-
tation of the characteristic equation of a matrix, which is used in the determination of
eigenvalues. The characteristic equation of a matrix A is defined as

DET (A -xI) = 0,

where x is an eigenvalue, and I is the identity matrix. The program CEQN returns the
characteristic equation of a symbolic or numeric matrix, where you specify the matrix in
level 2, and the name to be used for the eigenvalue variable in level 1. [Note: the
sequence X N TAYLR is used in CEQN to simplify the result (see section 9.8.3). You
can omit this sequence for faster execution of CEQN, which will then return an
equivalent but longer form of the equation.]
 

 

 

 

 

CEQN Characteristic Equation 1831

level 1 level 2 | level 1

{{matrix}} 'name’ o  'equation’

[[matrix]] 'name’ or 'equation’

< IF OVER TYPE 5 # If it’s a numeric matrix...

THEN SWAP N-S SWAP ...make it symbolic.

END

OVER SIZE - x n Save the name and dimension.

<< n IDN Make an identity matrix.

N-S Make it symbolic.

x SMS Multiply by X

SSuB Subtract from the original matrix.

SDET Determinant

x n TAYLR Simplify the expression.

0 = Make into an equation.

>

>>    
  

1 0 2
m Example. Find the characteristic equationin X of |0 1 4

0 1 2

m Solution:

[[102][014][012]] 'X CEQN 1= '-2-X+4#%X"2-6/3!*X"3=0".
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Program development is the process of transforming a computation problem into a cal-
culator program. No two problems are identical, of course, but in this chapter we will
consider certain elements that involve a common approach from program to program.
Such elements include program techniques for obtaining input from a program’s user
and presenting the program’s results in a manner that the user can interpret. There are
also mechanical aspects such as editing, debugging and program optimization--altering a
program to improve its speed or to minimize memory use. In all of these matters there
are elements of art, and of personal preferences and style, that preclude a authoritative
prescriptions. It is not even easy to define what distinguishes a good program from a
bad one. For example, one program might require less memory, or run faster, or have
fewer steps than another. But perhaps you can develop the less efficient program and
use it to obtain results in less time than it takes just to design the other; which, then, is
the “better” program?

In this chapter, we will study some general-purpose topics in HP 48 program develop-
ment, with examples to illustrate each topic. From these and other examples throughout
this book, you will see how various HP48 programming tools and techniques can be
combined. You can remember those methods that appeal to you, and through practice,
develop your own methodology.

12.1 Program Editing

To make any alteration to an existing program in order to correct an error, optimize
execution, or add features, you must edit the program. Because HP48 programs are
objects, you edit a program the same way you edit any other object. That is, you use
EDIT or VISIT to create a text version of the program in the command line, use the
facilities of the command line to make the alterations you desire, then execute ENTER
to replace the old copy of the program with the new one. Re-entering the entire pro-
gram this way ensures that objects and program structures are entered correctly. Even
if you develop or edit a program as text on a computer, as you transfer it to the HP 48 it
is subjected to the same syntax checking as it would had it been entered into the com-
mand line.

When an object is copied into the command line by EDIT or VISIT, any numbers in the
object are shown to their full precision, regardless of the current number display mode.
That is, floating-point numbers are shown in STD format, and binary integers with a
wordsize of 64 bits. This prevents the accidental changing of numbers during editing.
Also, binary integers are shown with an identifying character (b, d, h, or 0), so that
reentering a binary integer will not change its base regardless of the current mode.

-311-



12.1 Program Development

The advantages of the HP 48 program editing approach are:

e The same editing methods apply to all HP 48 object types, so that you don’t have to
learn special techniques for each object type.

e No changes you make during an edit are “final” until you press . If you
change your mind while you are editing a program, you can just press to cancel
the edit and leave the program intact.

On the other hand, there are two important disadvantages:

e For a large program, it can take a substantial amount of time for the HP48 to
translate the entire program object into its text form, and, when you’re done editing,
to build the new program from the command line text.

e During the execution of ENTER, there must be memory available for as many as
three versions of the program (the original, the command line text, and the new ver-
sion) simultaneously. This restricts the size of the program that can be edited.

The latter disadvantage is the most serious, because it can happen that there isn’t
enough memory to permit any changes to an existing program, even if the changes don’t
increase the final size of the program. Both disadvantages dictate that you keep pro-
grams small, typically less than a few dozen objects. If a program starts to get too big
as you develop it, break it up into smaller subprograms that are executed by a short
main program. Even though this costs a little more memory for the subprogram names
and variables, the smaller programs will be editable when a big single program is not.

12.1.1 Low Memory Editing Strategies
When the HP 48 runs out of memory as you try to enter an edited program (or any
other object), you can use the following steps to increase the available memory:

1. Remove any unwanted objects--clear the stack, kill any suspended programs (sec-
tion 12.2.1), and purge unneeded variables from user memory.
 

2. Disable last arguments and stack recovery: [<n][MODES][NXT]ESTKOZ SARGOE .

3. Recall the object you want to edit to level 1. If the object is stored in a variable,
purge the variable to save the memory used for the variable.

4. Press EDIT] .

5. Press ECMDoOs ECMDE . This empties the command stack, but leaves command
recovery enabled.

6. Make your changes, and press . If there still is insufficient memory, press
LASTCMD] to return the object to the command line, ECMDO= to disable and
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clear the command stack, then . This step is risky, because if there is still
not enough room, you will have lost the edited version of the object.

If the preceding steps fail, you can take the more drastic step of purging the object you
are trying to edit. Thatis,

1. With the objectin level 1, press ECMDE to reactivate the command stack.

2. Press to copy the object to the command line; make your changes.

3. Press . This will presumably fail due to insufficient memory.

4. Press[&]to discard the object from level1.

5 Press LAST CMD] to recover the command line with the altered text version of

the object.

6. Try again. If there is no error message, you're finished. But if ENTER
fails again, then...

7. Press I[CASTCMD] to retrieve the command line one more time. Now press
ZCMDoE to disable the command stack. Press . If this fails, you’re out of
options, and out of luck--all copies of the object are gone. Generally, however,
this process will succeed unless you are making major additions to the edited
object.

12.2 Starting and Stopping

As we have discussed in previous sections, HP 48 programs are highly structured, and
each has only a single entrance and exit. This fact makes starting and stopping an
HP 48 program a different proposition from the simple run/stop capability of calculators
(like the HP 41, for instance) that use a keystroke programming language.

In the HP 48, a program that has stopped execution at some point but can be restarted
from there is said to be suspended. This is different from a program that is terminated
while running by , which abandons all pending execution in the currently executing
program and cancels pending returns to any other programs that may have called that
program. (In more precise terms, the return stack is cleared, and the normal stack
display and keyboard are reactivated.) A program can suspend itself by including HALT
or PROMPT in its definition, or you can suspend it manually by using the debug and
single-step keys in the program control menu. For sake of illustration here we will con-
centrate on HALT, but the discussion generally applies to the other methods as well.

When one or more programs are suspended by any means, the HALT annunciator is
displayed in the status area. The keyboard is activated, and all calculator operations
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work normally. The HP 48 can maintain this state indefinitely--it behaves as if you had
started up another calculator “inside” the halted program. This suspended program
environment has its own local memory containing a new recovery stack, independent of
the usual saved stack that was present before the suspended program was started. The
calculator operates in the suspended environment until you execute CONT, whereupon
the suspended program resumes execution at the point at which it was stopped.

You can “nest” suspended program environments one within another without limit
(other than available memory). While one program is halted, you can run another pro-
gram that is suspended in turn, with another local memory for a recovery stack, and so
on. Each time you execute CONT, the latest suspended environment is deleted, includ-
ing its recovery stack. If you press immediately after a program com-

pletes execution, the stack that was saved by the ENTER that started the program is
restored. To demonstrate this, enter the following program and name it A:

<< CLEAR 1 2 HALT 3 4 > 'A" STO

Then:

Keystrokes: Results:

XY
ENTER 2: X'

1: "Y'

A 2: 1
1: 2  HALT annunciator is on. The

program has put 1 and 2 on
the stack, and halted.

2:
1:

2: 1
1 2 restores the

stack from prior to the pre-

vious :

4: 1
3: 2

2: 3
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1: 4  The program A resumes,
pushes 3 and 4 onto the
stack, and is finished.

2: X'
1 "Y' Back to the original environ-

ment; the last ENTER in

this environment was the

one that started the pro-

gram A,
restored the stack as it was

before that ENTER.

Since the command line itself is a program, you can include a HALT or a PROMPT in
the command line even if it is not explicitly contained in a program object delimited by
<< >>, When you press , the command line is executed up to the HALT or
PROMPT. Then you can perform any normal operations; when you finally press

, the rest of the suspended command line is executed. Among other uses, this
provides an easy way to save a copy of the current stack while you carry out some unre-
lated calculations. With an empty command line, execute HALT . You can now

clear the stack and perform any other operations; afterwards you can restore the origi-
nal stack by pressing .

Keep in mind when you’re working with a suspended program that local variables
created by the program may be present. For example, if a program halts while a local

variable A that it created still exists, then executing the name A from the command line
returns the value of that local variable, not the value of a global variable A that might
also exist. (Pressing theA key in the VAR menu always executes the global name A
regardless of any local variables that might exist.)

12.2.1 ATTN, DOERR and KILL
The (Attention!) key is intended to let you get the “attention” of the calculator.
Pressing it tells the calculator to stop what it is doing: stop all operations, procedures,
etc., clear any special displays, reactivate the normal keyboard, and show the standard
stack display. You also use the key to turn the calculator on, although that’s almost a
secondary role compared to the key’s ATTN role (labeling the key face with ON rather
than ATTN is primarily for the sake of people using the calculator for the first few
times).

is a “gentle” interruption--global variables are unaffected, the stack is preserved,
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and the recovery stack, arguments and command lines are left intact. However, you
can’t resume execution of a program stopped by because all of the subroutine
returns associated with that program are cleared. This does not apply to suspended pro-
grams, which can be resumed by CONT after any number of ATTN’s or other errors.

As discussed in section 9.6.1, although there is no associated beep or message display,
is treated as an error when it is pressed during command execution. The error

number is zero, and the error message (as returned by ERRM) is the empty string "".
Accordingly, 0 DOERR is the programmable form of . Executing 0 DOERR in a
program (or in the command line) acts as though the key were pressed at the
point in the program where the DOERR appears. The program stops, and all pending
returns to procedures that called that program are cleared. Like , DOERR works
in the current suspended program environment--if there are any suspended programs,
they are unaffected. You can use 0 DOERR in a program to terminate program execu-
tion early, when some situation is encountered that makes further execution pointless.

Usually this is done with an IF structure, such as

IF  situation-is-hopeless THEN 0 DOERR END.

Note that 0 DOERR,like , clears special displays. If you want to abort a program

and return an explanatory message, you can use DOERR with a string argument (section
12.2.1).

The only command that does affect suspended programs is KILL. KILL not only ter-
minates the current program like 0 DOERR does, but also cancels all suspended pro-
grams and turns off the suspended program annunciator. All of the local memories
associated with the suspended programs are removed. You can use KILL in a program,
but that is a rather drastic thing to do, since in general a program doesn’t “know” what
programs are suspended when it is executed. It is better to use 0 DOERR in a program,
then execute KILL manually if needed. Your most frequent use of KILL is likely to be to
abort some half-finished program that you have been single-stepping, after you have
found the problem you have been seeking.

12.2.2 Single-Stepping
The SST (single-step) operation is a combination of CONT and HALT thatlets you exe-
cute a program one object at a time. Single-stepping is an important debugging tool, as
it lets you follow the execution of a program step-by-step and discover where its calcula-
tions go awry.

To understand the mechanics of single-stepping, picture it as the equivalent of pressing
when a HALT is temporarily inserted immediately after the next object in the
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program. From this modelit follows that a program must be suspended before you can
single-step it. The easiest way to do this is to enter the program, or its name if it is
stored in a global or local variable,into level 1 and then press EDBUGE (DeBUG), found
in the program control menu ( =CTRLE ). This suspends the program before exe-
cuting its first object. If instead you wantto start single-stepping farther along in a pro-
gram, you must include a HALT or a PROMPT at the point where you want to start
stepping. Then when you execute the program, it will suspend execution after the HALT
and you can proceed with single steps.

 

At each ESSTE press, the HP 48 executes the next object in the suspended program, then
halts and suspends the program again. To help you keep track of where you are in the
program, each object is displayed in display line 1 afterit is executed. If you single-step
the >> that ends the suspended program, the program completes execution and the
suspended program environment is cleared. You can also execute CONT, which
resumes and completes normal program execution.

A consequence of the behavior of SST as a one-step CONT is that each SST clears the
current suspended program environment, then creates a new one after the step. This
means that you can’t cancel any stack effects of the object that was single-stepped by
pressing --the recovery stack present before the SST is deleted by the

SST.

Some additional notes about SST:

e An IFERR structure is treated as a single object by SST. That is, when you press

£SSTE at an IFERR, the entire IFERR...THEN...ELSE...END structure is executed. If
an error occurs between IFERR and THEN, the then-sequence between THEN and
ELSE is executed; otherwise the else-sequence (if it is present) between ELSE and
END is executed. The next ZSSTE will single-step whatever object follows the END.
If you want to step through individual parts of the IFERR structure, you must insert
HALT(s) within the structure.

e If a single-stepped object causes an error, the error is reported normally, but the

single-step execution does not advance. If you press ESSTZ again, the HP 48 will
attempt to execute the same object again. This gives you a chance to fix whateverit
is that causes the error, such as a missing stack argument, then proceed with single-
stepping.

12.3 Debugging

Debugging is the art of finding and removing programming errors--“bugs.” The process
ranges from simple visual inspection of a program to look for obvious errors, through
careful single-stepping of parts of a program to watch for incorrect results at each stage.

»
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Programming errors usually manifest themselves in two ways when you execute a pro-
gram: either the program halts due to an error, or the program completes execution but
returns incorrect results (which may be due to an incorrect algorithm, rather than a pro-
gram defect). In either case, you know something is amiss--the trick is to find out

where things go wrong in the program.

A good debugging technique for any programming language is to write the program
correctly in the first place. This sounds facetious, but chances are,if you take extra time
in designing a program before entering it into the calculator, you will save time in the
long run by reducing the amount of debugging time. For HP48 programs, a good
approach is to write out a program of any complexity on paper, or better yet on a per-
sonal computer using a text editor, with the program formatting conventions discussed
in section 1.4. Most importantly, as you add steps to a program, include comments or
simple stack contents listings at least every few steps. This will help you get the pro-
gram right in the first place; failing that, the comments stack listings will be your most
valuable tool for debugging.

When a program fails, the first step in finding errors is to verify that you have entered
the program correctly. If you know the correct checksum for the program, you can use
BYTES (section 12.5.1) to check that the actual program’s checksum matches the correct
value. If you don’t know the checksum, or if there is a discrepancy, then you should
view the program using or to see if it matches your program listing
(this should happen automatically if you download the program from a computerfile).
If you have a printer, you can use PRVAR to print out a complete listing of the program.
If these tests indicate that the program has been entered correctly, there must be a logi-
cal error in the program design.

Before resorting to single-stepping, you may be able to apply the HP 48’s symbolic capa-
bilities to find an error. That is, even when a program is designed for purely numerical
calculation, you can execute the program with symbolic arguments, then compare the
symbolic results with the intended program algorithms (this is a good thing to do to ver-
ify any numerical program, not just when you’re explicitly looking for an error).

For example, in section 12.4 we develop a program that finds the two roots of a qua-
dratic equation ax? + bx + ¢ = 0, where the three coefficients a, b and ¢ are specified.
Thefinal version of the program is:
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Qu Quadratic Root Finder 18E8

level 3 level 2 level 1 | level 2 level 1

a b c r x X,

<< la b c|

3 PICK / |a b cla|

SWAP ROT 2 * / NEG | c/a -bl2a |

DUP SQ | c/la -br2a b?*/4a? |
ROT - V | =br2a V[(b/2a)*-c/a] |
DUP2 + | -br2a V[(bra)*-c/a] x, |
3 ROLLD - | 1 x3 |

>   
 

Because this program involves a lot of stack manipulations, it’s easy to lose track of the
program flow as you develop it. Suppose that when writing the program, you
miscounted the number of stack objects, and entered SWAP in place of the 3 ROLLD at
the end. If you execute the program with numerical values for the coefficients, you will
obtain incorrect results--but no indication that they are wrong. To guard against this,
you can verify the program by executing it with symbolic arguments ‘A’, 'B’, and 'C’
(purging those variables first, if necessary, to ensure symbolic calculations). With these
arguments, the bad version of the program returns

 

HOME }

'-(Bs(Rx2))!
'=(B-CA*Z) )+ (SLC-C
B-(R*2)))-C-R)-J (50
(-(B~(A*Z)))-L-H)'

TNIIBB.

L
2
1

  
 

By inspecting the level 1 result, you can see that the program correctly added the radical
'V(SQ(- (B/(A*2)))-C/A)' to '—B/(A*2)’, but then subtracted the same radical from
the sum in level 1 rather than from the other '—B/(A*2)’ in level 2. This suggests that
the error is a stack error near the end of the program, and it is then a simple matter to
figure out that the SWAP should have been 3 ROLLD.

The final resort in debugging is to single-step the program, from the beginning if neces-
sary, until you discover an incorrect step. As described in section 12.2.2, in order to use
SST, you must either use EDBUGE , to start single-stepping at the start of the program, 
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or you must include a HALT (or a PROMPT) in the program at the point where you
want to start single-stepping. If you do the latter, remember to remove the HALT after
you have found the program error. If you are sure you have the solution, remember to
remove the HALT as you edit the program. Otherwise, you can leave it in until after

you verify the new version. When the program halts, press to resume.

In addition to SDBUGE and £SST= , the program control menu contains two other opera-

tions associated with single-stepping:
 

e =SST.E is a variation of SSTZ that you may use when you want to step through a
named program that is being used as a subroutine. That is, when the next object in
a suspended program is the (global) name of a program, pressing ZSST:Z is
equivalent to executing DBUG on that program, so that you can then single-step
through that program. While single-stepping the subprogram, at any time,
or ESSTZ on the final >>, completes its execution so that subsequent single-stepping
resumes in the original program.

SST! applied to any other types of objects, or to names of variables that don’t con-
tain programs, has the same effect as SST. [Through versions A-E of the HP 48,
there is an exception: applying SST! to the name of a directory just returns the direc-
tory object to the stack, whereas SST applied to the same name switches to that
directory.]

e ENEXTE previews the next single-step by displaying the next object in a suspended
program in the top display line (remember that the object displayed by SST or SST!
is the object that was executed last). Due to the intricacies of HP 48 program execu-
tion, usually two objects are displayed if there is room on one line, but in some cases
you will see only one object. (If the second object is a quoted name, you will see
only the leading quote. The quote is actually a separate object from the name, but
the two are generally treated as a single object.)

m Example. Find the error in the following program MINL. The program is designed to
return the minimum value from a list of numbers. Starting with an initial value of
MAXR, the program successively replaces the current value with the minimum (MIN) of

the current value and the next number from the list. If you execute this program with a
list of numbers, the program aborts with the Too Few Arguments error, identifying

ROLLD as the culprit. To see what the correction should be, single-step through the
program.
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MINL Minimum in a List (Bad version) E7EB

level 1 | level 1

{ numbers } o minimum

<< MAXR -NUM SWAP DUP SIZE

1

DUP ROT

START

GETI

4 ROLL MIN 4 ROLLD

NEXT

DROP2

>>

Keystrokes: Results:

{123} vARI["] 1: {1 2 3} The argument list.
SMINLE ZCTRLE

=DBUGS

=SST= 2 {1 2 3} 
1: 9.99999999999E499

  
=SST= (SWAP) SST=

) ESST= (SIZE)
 

9.99999999999E499
{1 2 3}

3

7
~ o Cc 35

- .
o

  

i w n - m (1) £ss71= (DUP)
£8ST= (ROT)
 

9.99999999999E499
{1 2 3}

1

1
3S

N
A
E
O

 
9.99999999999E499

: {1 2 3}

1: 1

£SST= (START)

N
w
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12.3

£SST= (GETI) 4:  9.99999999999E499
3: {1 2 3}
2: 2
1 1

ESSTE (4) ESST= (ROLL) 4: {1 2 3}
3: 2
2 1

1:  9.99999999999E499

£sST= (MIN) 3: {1 2 3}
2: 2
1: 1

=SST= (4) ESST= Too Few Arguments.
(ROLLD)

Program Development

Current minimum.

New GETI index.

First list element.

GETI index.

List element.

Current minimum.

GETI index.

New minimum.

Here you can see exactly what is wrong. The program tries to execute 4 ROLLD with
only three objects on the stack (attempting to put the objects back in the correct posi-
tions for the next iteration of the loop). The solution is to change the 4 ROLLD to 3
ROLLD. Here’s the correct program listing:

 

 

 

 

 

 

1

START

GETI

NEXT

DROP2

>> 
DUP ROT

MINL Minimum of a List (Good Version) 5BF7

level 1 | level 1

{ numbers } or X min

<< MAXR -NUM SWAP DUP SIZE | maxr{x; }n|

4 ROLL MIN 3 ROLLD

Initialize m (list index).

Loop from 1 to n.

| Xmin {%: } m |

Xm

' X min {xl } m |   
 

You can verify that this version works correctly by using a symbolic input. For example,

{ABC} MNL = "MIN(C,MIN(B,MIN(A,9.99999999999E499))) .
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12.4 Program Optimization

The fastest, most compact, and most memory efficient HP48 programs are usually those
that carry out all of their calculations on the stack, using no local or global variables,
and only fine-tuned RPN sequences for mathematics. These programs are also the
hardest to write, since you have to keep track of the stack positions of everything, and
spend time thinking about efficient ways to write the programs.

In this section, we will illustrate the process of program optimization, the process of
revising working programs so that they execute faster or more efficiently. In general,
program optimization involves

a. writing a first version of the program;

b. replacing parts of the program with more efficient sequences;

c. knowing when to stop optimizing and use the current version.

There is no fixed prescription for HP 48 program optimization. There are two general
purpose approaches that apply in mostsituations:

¢ Reduce the use of variables by keeping more objects on the stack.

e Replace long algebraic objects with RPN sequences that allow you to reuse inter-
mediate results.

We will illustrate the application and effect of these two ideas in an extended program
development example. Other methods are apparent in the program examples in this

chapter and elsewhere in the book.

m Example. Develop and optimize a program QU that computes both roots x of the

quadratic equation ax? + bx + ¢ = 0, where the (numerical) coefficients g, b, and ¢ are
supplied as stack arguments. The mathematical algorithm is

-b+Vb?-4ac

Using local variables and algebraic objects, it is easy to translate the algorithm into a
first version of the program. This version uses 151 bytes and takes .25 seconds to exe-

cute with arguments 8, -3, and 2:
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12.4

Version 1.

<< |a b c|
- a b c Name the arguments.

< '(-b+V/(b"2-4*a*c))/(2*a)’ EVAL X,

"(-b-V/(b"2-4*a*c))/(2*a)’ EVAL X,
>>

>    
 

To optimize this program, the first thing you might notice is that the solution algorithm

can be written more compactly as

x=-b+Vpi-_¢,

where b’ = b/2a and ¢’ = c/a. You can incorporate this revised form into a new ver-
sion of the program:

 

Version 2:

<<

- ab ¢

<< 'b/(2*a)’ EVAL ’c/a’ EVAL -

< '-b+V(b*2-c)’ EVAL

'-b-V/(b"2-c)’ EVAL

b ¢

|la b c|

Store ¢’ and b’.

X1

X2
>>

>>   >> 
 

Version 2 takes .23 seconds to execute, so compacting the algorithm has yielded a mod-
est speed improvement. However, version 2 is 162.5 bytes, 11.5 bytes larger than ver-
sion 1--the extra local variable structure has cost more in program size than the algo-
rithm compaction saved. As the next step in optimization, you can eliminate that extra
structure by computing b’ and ¢’ directly from the original stack arguments:

 

Version 3:

<< |a b c|
3 PICK / |a b c/a|

SWAP ROT 2 * / | ¢/a b/2a |
- c b Store ¢’ and b'.

< '-b+V(b*2-c)’ EVAL Xy

'-b-V/(b*2-c)’ EVAL X,
>>

>>    
 

Version 3 occupies 118.5 bytes of RAM, which is 32.5 bytes smaller than version 1. Itis
also slightly faster (.21 seconds) than version 2. To improve on this version, you can
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observe that the two algebraic objects in the program are very similar, which means that
the program performs some arithmetic twice. You should therefore be able to improve
matters by breaking up the algebraic objects into smaller parts that are common to both
expressions.

 

  

Version 4:

< |la b c|
3 PICK / |a b c/a|
SWAP ROT 2 * / | ¢/a b/2a |
- c b Store ¢’ and b’.

< '-b’ 'V(b"2-c) DUP2 Make 2 copies of the partial results.
+ EVAL | =b V(b2%-c) x; |
3 ROLLD - EVAL X3

>>

>> 
 

Version 4 has shrunk the program size to 100 bytes, but execution has slowed to .28
seconds. The slowdown has resulted from a subtle cause: the final + and - that com-
bine the partial results are acting on symbolic arguments, returning symbolic results
(which are then evaluated into the final numeric results using EVAL). Symbolic addition
and subtraction are intrinsically slower than numeric arithmetic. You can fix this prob-

lem with a simple rearrangement so that the partial results '~b’ and 'V/(b*2-c)’ are
evaluated before they are added or subtracted:

 

Version 5:

<< |a b c|
3 PICK / |a b c/a|
SWAP ROT 2 =* / | ¢/a b/2a |
- cb Store ¢’ and b'.

< '-b’ EVAL 'V(b*2-c)
EVAL DUP2 Make 2 copies of the partial results.

+ | =b V(b2-c) x, |
3 ROLLD - 2

>>

>>    
 

Version 5 is the same size as version 4, but it executes in .14 seconds, which is the

fastest time yet.

The progress made so far in optimizing this program suggests completing the process of
converting the algebraic expressions into pure stack arithmetic, eliminating the use of

variables.
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Version 6 (final version):
 

 
 

 

  

Qu Quadratic Root Finder 18E8

level 3 level 2 level 1 | level 2 level 1

a b c o Z zZ,

<< la b c|

3 PICK / |a b cla |

SWAP ROT 2 * / NEG | c/a -b/2a |

DUP SQ | c/a -br2a b%/4a? |
ROT - V | =br2a V[(b/2a)*-c/a] |
DUP2 + | =br2a V[(bra)*-c/a] x; |
3 ROLLD - |x1 X2 I

>>    
Version 6 requires only 57.5 bytes, and executes in .10 seconds. This represents a 62%
reduction in program size, and a 2.5X speed improvement over version 1.

The lesson here is not that algebraic objects evaluate numerically more slowly than their
RPN sequence equivalents. The execution time difference between, for example,
'1+2+3+4+5+6+7' EVAL and 1 2 + 3 + 4 + 5 + 6 + 7 +, is only a few
milliseconds--the time required to put the algebraic object on the stack. Instead, the
point is that RPN lets you avoid repeating mathematical operations by breaking calcula-
tions into unique elements, and then duplicating and reusing the results. Furthermore,
it is always faster for a program to leave results on the stack rather than storing them in
variables, and similarly faster to retrieve arguments from the stack than to recall them
from variables.

12.5 Memory Use

To help you in optimizing programs for minimum memory size, Tables 12.1 and 12.2 list
the memory size of various objects and structures included in a program. Table 12.1
shows the memory occupied by program structures, not counting the objects that are
entered between the structure words. Table 12.2 (next page) lists the memory size of
individual objects.

There are a few exceptions to the sizes listed in Table 12.2, since the HP 48 has built in

certain commonly used objects, to save memory. For example, the real number 1 uses
only 2.5 bytes, instead of the 10.5 bytes normally used by a real number. Similarly, each
of the following built-in objects uses 2.5 bytes:
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e Real integers from -9 through +9.

e The real constants 3.14159265359 (), 2.71828182846 (), 1E-499 (MINR), and
9.99999999999E499 (MAXR).

e The complex constant (0,1) (7).

" n
e The null string

Table 12.1. Program Structure Sizes

 

 
Structure Size (bytes)

IF ... THEN ...* END 12.5%

IF ... THEN ...* ELSE ...* END 20%

IFERR ...* THEN ...* END 17.5%

IF/IFERR ...* THEN ...* ELSE ...* END 25¢

CASE ... THEN ...* END ... END 20t

(additional) THEN ...* END 10t

DO ... UNTIL ... END 7.5%

WHILE ... REPEAT ...* END 12.5%

START/FOR ... NEXT/STEP 5

- <L > 7.5

- ! 75   
tA program savings of 5 bytes in each instance is obtained whenever any of the structure sequences marked

with an asterisk ( ...* ) consists of one object.

12.5.1 Using BYTES
The easiest way to determine the memory size of an object is to execute BYTES with
the object as its argument. BYTES returns (level 1) the actual memory size occupied by
the object, plus a checksum (level 2). The checksum, a four-digit binary integer, is com-
puted essentially by adding up the object’s memory bit pattern to produce a 16-bit
number. The chance of two different objects having the same checksum is only 1 in
65535, so the checksum provides an excellent test of the identity of two objects. This is
most useful to verify that you have entered a program correctly according to a listing; it
is easy to make an error that does not affect a program’s size, but any error is very
likely to affect the checksum.

BYTES treats global names slightly differently than other object types. Instead of
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Table 12.2. Object Sizes

 

Object Type Size (bytes)
 

 

Real number

Complex number

String

Vector

Complex vector

Matrix

Complex matrix

List

Unquoted global or local name

Quoted global or local name

Program

Algebraic

Binary Integer

Graphics Object

Tagged Object

Unit Object

real magnitude

each prefix

each unit name

each * ~or /

each exponent

XLIB name

Directory

Backup Object

Command

105

18.5

5 + number of characters

12.5 + 8 X number of elements

12.5 + 16 X number of elements

15 + 8 X number ofelements

15 + 16 X number of elements

5 + included objects

3.5 + number of characters

8.5 + number of characters

12.5 + included objects

5 + included objects

13

10 + rows X CEIL(columns/8)

3.5 + number of tag characters + untagged object

7.5 +:

250r105

6

5 + number of characters

25

2.5 0r 10.5

55

6.5 + included variables

12 + number ofname characters + included

object

2.5
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returning the size and checksum of the name, BYTES computes those parameters for

the object stored in the named global variable. Furthermore, the memory size returned
is the total size of the variable, which includes the memory for the objectitself, plus an
additional amount for the variable structure. Specifically, the variable “overhead”is 4.5
bytes plus one byte for each character in the variable name. The memory used by a
stored object is the same as the amount listed in Table 12.1, with one exception. Pro-
grams require 10 bytes (plus the included objects) rather than the 12.5 bytes listed in the
table for programs within programs.

12.6 Obtaining Input.

In programs and in manual operations, the stack is the basic input/output mechanism.
You can enter all the data a program needs as stack objects, execute the program, then
read its results from the stack. This works fine under two conditions: first, you know in
advance what objects to enter at the start, and second, there are not so many inputs or
outputs that you lose track of which is which among the stack objects. In the following
sections we will consider several methods for improving on this bare-bones approach.

12.6.1 Halting for Input
The most flexible method for obtaining input after a program has begun execution is to
include a HALT or PROMPT in the program to suspend its execution (section 12.2).
While the program is suspended, you have complete access to the calculator’s resources,
including the stack and variables. You can use those resources to calculate or otherwise
produce the input. For example, if you want to enter V3/2, you can compute it by any
means you want, such as '"\V/3/2' , rather than having to type in the digits of the
number. You can store values in variables, set flags, or even run other programs to
produce results that then become inputs for the suspended program. When you have
entered those inputs by whatever means, you then press to resume the
suspended program.

PROMPT suspends a program and displays a one- or two-line message in the status area
(in the medium font). It is equivalent to 1 DISP 1 FREEZE HALT, with the important
addition that the displayed message remains visible during command line entry instead
of disappearing at the next keystroke as a FREEZE display does. PROMPT’s display
persists until the next ENTER (and all of the execution caused by the ENTER is com-
pleted), or until some other display operation replaces it. In particular, the prompt is
visible during command line entry, which is convenient when you are typing in the input
indicated by the prompt.

w Example. The following sequence prompts successively for length, width, and height,

as might be needed by a program that computes the volume of a box:
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"Enter length:" PROMPT "Enter width:" PROMPT "Enter height:" PROMPT.

Upon execution, the sequence halts and displays "Enter length”. At this point, you
enter a value for the length, and press . Then the display shows "Enter
Width", and so on. Since PROMPT allows a two line message, the above sequence
could be more specific by including "and press CONT" in the prompts. This suggests
creating a general purpose input utility to save repeated entry of the same text:

 

 

 

 

 

 

 

PROMPTCONT Prompt with CONTDisplay E4BD

level 1 | level 1

"tm" G

<< "Enter" SWAP + Prepend "Enter " to the text.

10 CHR + Add a newline.

"and press CONT" + Append the second line.

PROMPT Stop for input.
>>  
 

(You could embed a newline directly in on or the other of the two strings in the pro-
gram, but using 10 CHR + instead makes program editing easier because you don’t
have to worry about invisible space characters at the end of a line).

Using PROMPTCONT, the sequence to prompt for volume parameters becomes:

"length” PROMPTCONT "width" PROMPTCONT "height" PROMPTCONT.

PROMPTCONTfits the definition of a subroutine, which is a program that performs a
task common to many programs but which doesn’t have much value for manual execu-
tion. There are many ways to extend this subroutine to do even more standard input
tasks. For example, a good program, after obtaining manual input, checks that input to
verify thatit is valid for the remainder of the program, and warns and reprompts you if
it is not. The next program, CHKINPUT, demonstrates this process.
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<< WHILE prompt PROMPTCONT

test EVAL NOT

REPEAT

"Invalid Input” 10 CHR +

1 DISP

200 .3 BEEP .7 WAIT

END

>>  >>

CHKINPUT Prompt and Check Input 2C9F

level 2 level 1 | level 1

"text" << test >> o object

<< - prompt test Save the test program.

Get the input.

Exit if the input is valid.

Display error message.

Beep and wait .7 seconds, then repeat.

 
 

12.6

CHKINPUT requires two arguments: the first (level 2) is the prompt string as used by
PROMPTCONT, and the second is a program to test the input. CHKINPUT does not
finish until it can return a valid object as determined by the test program, which should

take one object from the stack and return the object and true (1) if it is valid, and false
(0) otherwise. For example, when prompting for box dimensions, you might want to
accept only real numbers with values between 1 and 10. The test program then would
look like this:

 

<< IF DEPTH

THEN - object

<< IF object TYPE NOT
THEN

IF ’object=1 AND object=10’

THEN object 1

ELSE 0

END

ELSE O

END
>>

ELSE O

END
>> 

If the stack is not empty...

Save the object.

If the object is a real number,

andit is in the valid range,

Then return the object and #rue.

Return false (out of range).

Return false (not a real number).

Return false (empty stack).  
 

CHKINPUT is an example of the use of a program as an argument, which is discussed in
more detail in section 12.8.
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12.6.1.1 Verbose Prompts
By definition, PROMPTis limited to two lines of prompt text, so that text can fit within

the status area of the display. You can also use the stack area of the display for addi-
tional prompt text by preceding the execution of PROMPT with the use of DISP to
display text in lines 3 - 7. In that case the status area text will remain until ENTER, but
the stack area prompts will disappear at the next keystroke.

For even more flexible prompt displays, you can use HALT instead of PROMPT, preced-
ing the HALT with any of the display commands described in Chapter 10, including
FREEZE to preserve the special display when execution halts. The entire prompt
display is replaced by the standard display at the next keystroke.

The follow program is an example of an elaborate prompt intended to begin a tic-tac-
toe game program. The prompt mixes text, graphics, and a menu:

 

<< ERASE Clear the graph screen.
Display text:

PICT {#10d #0} '"Tic-Tac-Toe" 2 -GROB REPL

PICT {#21 #8} "instructions” 1 -GROB REPL

PICT {#0 #17d} "1.Choose™XXXor"OOO" 1 -GROB REPL |Carets """ here indicate

space characters.

PICT {#0 #25d} "2.PressPLAY" 1 -GROB REPL
PICT {#0 #33d} "3.AtXXXor 000 prompt,” 1 -GROB REPL
PICT {#0 #41d} "4.enter row-column,” 1 -GROB REPL

PICT {#60d #49d} "then press”*GO"” 1 -GROB REPL
Invert key labels:

PICT {#73d #16d} DUP2 { #93d #22d} SUB NEG REPL
PICT {#37d #16d} DUP2 {#57d #22d} SUB NEG REPL
PICT {#35d #24d} DUP2 { #55d #30d} SUB NEG REPL
PICT {#107d #48d} DUP2 {#127d #54d} SUB NEG REPL

Draw grid:

{#108d #27d} {#108d #2d} LINE
{#119d #27d} {#119d #2d} LINE
{#126d #9d} {#101d #9d} LINE
{#101d #19d} {#126d #19d} LINE
{XXX 000 "" "" "" PLAY} TMENU Make temporary menu.
PICT RCL ERASE -LCD 3 FREEZE Display the prompt.
HALT

>>    
 

Executing the program produces this display:
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Tic-Tac-Toe
INSTRUCTIONS

cHonsE IEEEE ok I
PRESS
AT Y% OR 000 PROMPT.
ENTER ROW-COLUMN.

THEN PRESS
man 000||PLAY]

 

 

 

  
1.
2.
3.
4.

  

 

 

12.6.12 Prompting with Menus

The tic-tac-toe example above includes a temporary menu as as part of its prompt.
Using a menu is a important enhancement to ordinary display prompting, since the
menu labels themselves can act as instructions, and they remain visible indefinitely.
Furthermore, a menu key can include a CONT as part ofits definition, so that pressing

a menu key not only indicates a choice, but also resumes execution of a suspended pro-
gram, all in one operation.

While you can use any built-in menu or the VAR or CST menus for prompting, a tem-
porary menu activated by TMENU is particularly useful for this purpose. A temporary
menu has all of the flexibility of a custom menu, but does not replace the normal cus-
tom menu defined by the variable CST. The construction of menus by TMENU and
MENU is described in section 7.3; here we will focus on the use of CONT directly or
indirectly in a custom menu.

In the prompting examples so far, resuming a program suspended for input has required
an explicit press of to resume execution after the input objects are entered.
However, because CONT is a programmable command, you can include it as part of a
menu key definition and eliminate the need to press an additional key. Incorporating
the continue operation into a menu is also a good practice because it allows you to
focus entirely on the menu for instructions without having to think about how to resume
a program.

The tic-tac-toe prompt sequence displays a temporary menu defined by { XXX OOO }.
Presumably XXX and OOO are the (global) names of subroutines that store the:choice
of whether you want to play X’s or O’s. Any easy way to record such information is
with a flag; for example, XXX might name the program << 1 SF >> and OOO is << 1
CF >>_ Butin this case there is no reason not to continue the main program as soon as
XXX or OO0 is executed, so XXX can be << 1 SF CONT >> and OOO can be << 1 CF
CONT >>. CONT should always be the last object in such programs, since any objects
following CONT will never be executed. [Last object also means last in the sense that

-333-



12.6 Program Development

there are no pending returns to any other programs. When CONT is executed, all
currently executing programs are terminated, and the most recently suspended program

is resumed.]

Actually, you don’t need global variables at all for the menu key subroutines, since the
custom menu system (section 7.3.3) allows you to associate unnamed programs with
menu keys. Thatis, the temporary menu list in the example might be:

{{"XXX" <<1 SF CONT>>} {"000" <<1 CF CONT >}}

In many programs, you may wish to enter several quantities during the same program

halt. In such cases, you might use separate menu keys for each item, then have a single
menu key to resume the program. To return to the box dimensions example, the input

sequence could look like this:

 

 

"Enter length, width” 10 CHR +
"and height, press GO" + Two-line promptstring.
{{"LENG" << 'L’ STO>>} LENG key.
{"WIDTH" << 'W’ STO >} WIDTH key.
{"HT" < 'H" STO >} HT key.

" Blank key.
{"GO" CONT} GO key.

} End of temporary menu list.
TMENU PROMPT Activate the menu and halt.  
 

This method has the advantage that you can enter the input values in any order, and can
re-enter a value if you change your mind. Only when you press GO are your current
entries locked in. However, you may not wish to use global variables to hold the box
dimensions; the following modification uses local variables during entry, then returns the
three values to the stack before exiting:

 

000 -1 wh Initialize |, w, and h.
<<

"Enter length, width" 10 CHR +

"and height, press GO" + Two-line promptstring.
{{"LENG" <<'I' STO>>} LENG key.
{"WIDTH" <<'w’ STO >} WIDTH key.
{"HT" < 'R’ STO >} HT key.

" Blank key.

{"GO" CONT} GO key.
End of temporary menu list.

TMENU PROMPT Activate the menu and halt.
I w h Return the parameters to the stack.

>>   
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12.6.2 Protected Entry.
An important advantage of suspending a program for inputis that you can perform arbi-
trary operations while the program is suspended. However, in many situations this
capability can actually be a disadvantage. Since you have access to the stack and
memory, you can accidentally or deliberately alter or remove objects used by the pro-
gram. There is nowhere a program can save information that is completely “safe” while
the program is suspended. The best recourse is to save objects in local variables with
offbeat names that are unlikely to be used inadvertently. For example, if all of a
program’s current parameters are on the stack, the following sequence protects them
while the program is suspended:

DEPTH -LIST - otaoc® << procedure >>

Procedure must contain both the prompt/input sequence and the stack retrieval
sequence (e.g. oTacgd LIST- DROP).

There are two alternative means of obtaining input, in which the stack and other calcu-
lator resources are not accessible during entry:

e Use INPUT to restrict entry to the command line.

e Use KEY to restrict entry to single keystrokes.

We will examine these methods in the next two sections.

12.6.3 Using INPUT.
INPUT is a special data entry command that activates the command line for entry.

Further program execution is postponed, although the program is not suspended in the
sense of HALT or PROMPT (in particular, pressing twice terminates the program).
INPUT finishes, and automatically resumes program execution, when you press ;
since program entry mode (PRG) is turned on, is the only option. The command
line is not executed; instead its text content is returned as a string object for use by the
remainder of the program.

INPUT also provides the following features:

e Optional multi-line text prompts.

e The ability to “pre-load” the command line with objects to assist with entry.

e Control over command line cursor type and position, and entry mode.

e The choice of whether or not to use normal command line interpretation.
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You can select one or more of these options by means of the two arguments for INPUT,
which may be either two strings, or a string (level 2) and a list. The string in level two
specifies a prompt that appears in the medium font in the stack display area (starting in
display line 3); this prompt persists during keystroke entry, until terminates the
INPUT operation. You can create a prompt of up to three 22-character lines, by includ-
ing one or two newline characters in the level 2 string.

The level 1 argument can also be a string, which is used as the initial contents of the
command line. For example, the following sequence prompts for a new value for a vari-
able X:

"Enter X:" X STD -STR INPUT OBJ- ‘X' STO

Here we have used the current value of X as the initial contents of the command line.

When the sequence is executed with 100 stored in X, the following display appears:

 

nter X,
en press CONT

=
R

=
=

a
m
I
I
:
'

E
14
3
2
1  PHETE]PROEHYP |MATEYECTR] BERSE
 

At this point, you can edit the current value, or press to clear the command line
and type a new value for X. (If you press again, or any time the command line is
empty, the program is aborted.) Pressing returns the contents of the command
line to level 1 as a string object, and the program resumes execution with OBJ-.

In the example, the command line initially contains the level 1 string argument, with the
insert cursor < at the end of the string; upon , the command line string is pushed
as is onto the stack. For additional control over the INPUT command line, you can use
a list as the level 1 argument. The list can contain one or more elements (the order
does not matter):

e To specify the initial command line text, include a string object (if this is the only

element, then you can use the string object by itself as in the preceding example).
The string may contain newlines, to produce a multi-line entry. If no string is speci-
fied, the command line will initially be empty.
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e To place the cursor at a particular position in the command line, include a real
integer to specify the character position, counting from the start of the command
line (and including newlines in the count). Character number 0 specifies that the
cursor is to be placed at the end of the command line (to the right of the last char-
acter). Alternatively, you can use a list { row column } that specifies the row (count-
ing from the top down) and column (counting from the left) position for the cursor.
Column number 0 indicates that the cursor is to be placed at the end of the specified
row; row 0 specifies the last row of the command line. If no cursor position is speci-
fied, the cursor will be placed at the end of the command line.

You can also use the cursor position object to select replace entry mode, in which
typed characters overwrite the characters at the cursor. This is done by entering a
negative character or row number. Positive numbers specify the default insert mode.

e To activate the command line in algebraic-program entry mode (ALG PRG), include

the name ALG.

e To activate alpha-lock, include the name a.

e Since the command line contents are returned to the stack as a string, INPUT nor-
mally does no syntax checking on the string following . However, if you
include the name V (for verify), the string is checked for valid object syntax. If there
is a syntax error, the HP48 beeps and reactivates the command line with the
highlighted error position, just as with ordinary command line entry. This is useful
when you are using INPUT to enter objects in their standard form, i.e. you follow
INPUT with OBJ- to convert the result string to objects. If you don’t use the V

option and an entry has invalid object syntax, OBJ— will error and abort the pro-
gram. The V option allows the HP48 to catch such errors before the program
resumes.

Note that the symbols a, ALG, and V are entered into the INPUT strings as name
objects--without any delimiters. However, these names are not executed, so it doesn’t

matter if you have variables with those names.

1HA

» Example. (In the following sequence, spaces within strings are marked by charac-
ters for clarity.)
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"Enter temperature
“and pressure" Two-line prompt string.
{"Temp:"

:Press:™ Initial command line text.
{10} Cursor at end of first line.
Vv

INPUT Stop for input.
OBJ- Convert entered text into objects.    

Executing this sequence yields the following display:

 

PRG
{ HOME }

Enter temperature
and pressure

:Temp:
:Press:
PHETE]PROE|HYP|MATKYECTE]ERSE|

 

   
The cursor is at the end of the first row, following the tag :Temp: that indicates that a
temperature should be entered. After entering the temperature, pressing [V] moves the
cursor to the second row, following the :Press: tag. For example, these keystrokes

300_ STEMPE K= [V]

100000_ ZPRESSE = PA

return the tagged object :Temp:300_K to level 2, and :Press:100000_Pa to level 1.
Here the primary purpose of the tags is to indicate the command line order of the
entries; the fact that the resulting stack objects are tagged will not interfere with any
subsequent program calculations.

 

L 

Unless you select the verify (V) option, INPUT does not require any structure or syntax
for the text returned from the command line. This means, for example, that you can
use INPUT to enter strings or names without quotes, binary integers without #’s etc.
(see also section 7.4.1). The ENEWE keys in the PLOT, SOLVE, and STAT menus actu-
ally use INPUT to prompt for and enter names without requiring quotes.
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12.6.4 Keystroke Input
All of the input methods outlined so far are designed for object entry, and permit
multiple-keystroke entry while waiting for a particular key press (e.g. or
[CONT] ) to resume program execution. The HP 48 also provides two commands for the
entry of individual keystrokes--either where a single key or key combination automati-
cally resumes program execution, or without stopping program execution at all.

12.6.4.1 KEY

When you press an HP 48 key, a code representing that key is entered into a special
memory location called the key buffer. Each time the HP 48 completes any operations in
process, it checks the key buffer to see if any key codes were recorded while it was busy.
If so, it removes the codes one at a time (in the same order in which they were
pressed), then performs whatever operations are associated with the keys. This two-
stage key processing is responsible for the HP 48’s “type-ahead” capability, whereby up
to 15 keystrokes can be stored in the buffer while the busy annunciator is on.

Programs can check and act on the contents of the key buffer by executing KEY. KEY
attempts to remove the oldest key code from the key buffer. If there are codes in the
buffer, KEY returns a two-digit real number key code rc to level 2 and a true flag (1) to
level 1. The first digit r of the key code is the keyboard row of the key; ¢ is the column.
If there are no codes available in the key buffer, KEY returns only a false flag (0) to
level 1, and no key code. Note that the key code does not include a key plane (shift)
digit like that used by ASN (section 7.2.1) and WAIT (section 12.6.4.2); the shift keys act
like any other keys in this case and return a two-digit code.

By using KEY, programs can accept keyboard input, on a key-by-key basis, without actu-
ally halting execution. If a program is to pause indefinitely to wait for a keystroke, then
0 WAIT is a better choice than KEY, since during the execution of 0 WAIT the HP 48 is
in a low power consumption state (and can even turn off after 10 minutes of inactivity).
KEY is better suited for requirements such as these:

e To provide for interrupting a long-running program in a manner that will let the
program save enough information to restart at a later time.

e To have a program wait for a key only for a fixed time, then continue whether or not

a key is pressed.

The first of these cases is illustrated by the program KEYHALT. If you interrupt a pro-
gram with ATTN, the program stops immediately, with no chance to exit gracefully. You
could put embed the entire program in an IFERR structure that traps ATTN, but that
still does not provide any information about the state of the program when it is inter-
rupted. Instead, you might include (the name) KEYHALT inside any time-consuming
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iterative loops in the program. Then, if you press any key other than while the
program is running, KEYHALT saves the current stack in a local variable and halts. To
resume the program, you need only press .
 

 

 

KEYHALT Halt if a Key is Pressed 5055 J

<< |F KEY

THEN DEPTH ~LIST - otao® Save the stack.

<< "Program interrupted.” First line of prompt.

10 CHR + Add a newline.

"Press CONT to resume.” + Second line of prompt.

PROMPT Suspend the program.

orac® OBJ- DROP Restore the stack

>>

END
>>     

The next program example, KEYTIME, waits a specified amount of time (specified in
HH.MMSSSS format) for a keystroke. If one is detected, then the program returns the
keycode and frue. If no key is pressed in the indicated time interval, KEYTIME returns
false.

 

 

 

 

 

 

KEYTIME Wait a Specific Time forA Key 62BE

level 1 | level 2 level 1

hh.mmssss  «r rc 1

hh.mmssss  or 0

< TIME - &t t Save the time interval, start time.

<< WHILE TIME t HMS- &t < True if elapsed time < 3t.

IF KEY If a key was pressed,

THEN SWAP DROP 1 0 then replace time flag with false,

return true key flag.

ELSE 0 SWAP Else, return false keyflag.

END

REPEAT DROP Drop the key flag and try again.

END
>>

>>     
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12.6.42 WAIT

The WAIT command nominally is designed to produce a simple pause in program execu-
tion. x WAIT produces a pause of x seconds, during which program execution does not
proceed, but the display is not changed and no key entry is processed (the key buffer
will still accumulate key codes). A common application of WAIT is to display messages
or other pictures while a program is running. If your program shows a series of mes-
sages, you can put a WAIT after one or more of the display commands to ensure that
the message remains visible long enough to be read conveniently.

It is also possible to make WAIT pause program execution indefinitely, by using 0 or -1
as its argument. For 0, the current display is not affected by WAIT; for —1, the menu
labels are updated to reflect the current menu. In either case, execution resumes only
when a key is pressed, when WAIT returns the corresponding key code to level 1. The
key code returned by WAIT is a three-digit code rc.p like that used by ASN (section

7.2.1), where r is the key row, ¢ the column, and p the key plane. Note that 0 or -1
WAIT only terminates when a “complete” key is entered, either a non-shift key by itself
or such a key preceded by one or more shift keys.

12.643 ATTIN

For the sake of KEY and WAIT (0 or -1 arguments), is not an ordinary key that
returns a key code. Pressing always interrupts program execution, even if you
have redefined this key and activated user mode. The only way for a program to treat

as an ordinary key to use an error trap that checks for error 0, and returns the
key code 91 when that error occurs. An example of such processing is given in the pro-
gram ASN41, in section 7.2.1.1.

12.6.4.4 An Input Programming Example

The program MSGSHOW listed below allows you to display all of the HP 48’s built-in
messages, both error messages and prompting text. The program itself is of limited
practical value, but it does illustrate a number of programming techniques:

e The use of WAIT to obtain single-keystroke input.

e The use of INPUT to enter a hexadecimal number using a command line preloaded

with the # and h delimiters.

e An error trap to handle .

e A CASE structure.

e A temporary menu (section 7.3).

e Extensive use of local variables.
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MSGSHOW starts with the following display:

 

# 1h

Insufficient Memory

IIITITR    
This shows the message number and text of the first HP 48 message, with a menu of
choices:

e ENEXTZ displays the next message. The program contains a list containing sublists

defining the message number ranges for which there are valid messages; if ENEXT=
advances past the end of one of the ranges, it skips to the start of the next range. At
the last message (#D04h), ENEXT= skips back to message 001. 
 
ZPREV moves backwards through the messages, in the same manner as SNEXTZ= .
 
 e =GOTO= allows you to skip directly to any message. It produces the following

display:

 

PRG
{ HOME }

Enter Message Humber
 

#4
[NEXT|PREV] |GOTO][QUIT   

Here you may enter any message number, followed by . If the numberis in
an allowed range, the corresponding message is displayed; otherwise No Such Mes-
sage is displayed briefly, and you are prompted for a new number. You can cancel
the change by pressing to clear the command line, then )

® SQUITE exits from the program, and restores the original menu.
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I MSGSHOW Show Messages FECE l

<< RCLMENU HEX CLLCD Get current menu.
{"NEXT" "PREV" " "GOTO" ™ "QUIT"} TMENU Set temporary menu.
{{#1h #10h} {#101h #122h} {#124h #13Dh} List of valid message numbers ranges.

{ #201h #208h} { #301h #305h}

{ #501h #506h} { #601h #62Eh}

{ #A01h #A06h} {#B01h #B02h}

{#C01th #C17h} { #D01h #DO04h}

} DUP SIZE 1 0 - L nmax N exit Save list, exit flag.

<< L 1 GET OBJ- DROP OVER - imin imax | Initialize message number, limits.
<< DO | Start indefinite loop.

IFERR DOERR Do the Ith error.
THEN ERRN 1 DISP ERRM 10 CHR + 3 DISP Show the message.
END
-1 WAIT - keycode Get a key.
<< CASE Actionsfor various keys:

'keycode==12.1' PREV key.

THEN 'I" 1 STO- Decrement|.
IF ’I<imin’ Out of range?

THEN Then go to the next range.

IF 'N==1’ First range?

THEN nmax ’'N’ STO Then go to the last.
ELSE 'N’ 1 STO- Otherwise decrement N.
END L N GET OBJ-
DROP DUP ‘I’ STO 'imax’ STO
‘imin’  STO Reset the limits.

END

END

'keycode = =14.1’ GOTO key.
THEN

WHILE "Enter Message Number"” Entry loop.

1 FREEZE {"#h" 2 V a} INPUT Get a message number.

IF "™ OVER SAME If the command line is null,

THEN DROP | N O go back to the main loop.
ELSE OBJ- - m Otherwise, see if it’s a valid number:

<1 1 L SIZE

FOR j L j GET OBJ- DROP

IF m = SWAP m = AND

THEN DROP m j 0 99

'’ STO

END

NEXT
>>

END    (continued on next page)
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MSGSHOMWcontinuedfrom previous page:

Program Development

 

REPEAT "No Such Message”

10 CHR + 1 DISP 300 .3 BEEP

END 'N’ STO ‘I STO L N GET

OBJ- DROP

‘imax’ STO ’imin’

END

'keycode==16.1"

'keycode# 11.1’

STO CLLCD

THEN 1 ‘exit’ STO END

THEN 300 .2 BEEP END

" 1 STO+

IF ’I>imax’

THEN

IF 'N==nmax’

THEN 1 'N’ STO

ELSE 'N’ 1 STO+

END L N GET OBJ- DROP

OVER ’'I'’ STO 'imax’ STO

‘imin’ STO

END

END
>>

UNTIL exit

END

>> MENU
>> >>  

Invalid message; try again.

Update counters and ranges.

EXIT key.

Beep unless NEXT key.

Increment|.

Out of range?

then goto the next range.

Last range?

Goto the first range.

Update counters.

Quit if exit is true.

Restore original menu.  
 

12.7 Displaying Output

A nice intelligible display of a program’s results is desirable for the same reasons that
motivate input prompting. Furthermore, the methods of producing the text and graphics
that show a result are essentially the same as those for producing input displays. The
program OLABEL (section 10.2) is a good general purpose utility for output labeling,
but you can easily create more elaborate displays using the methods presented in
Chapter 10 and the preceding sections ofthis chapter.

There are a few differences between input and output display methods that are worth
noting:

e Output display usually does not require program suspension, so PROMPT is not a
good way to display a result. Use DISP and FREEZE to display text that will remain
in view after a program finishes.

e You don’t need FREEZE to show results while a program is executing. However,

you should ensure that any display created while a program is running will persist
long enough to be read. Use WAIT in cases where a display might be replaced too
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quickly.

e When you want a program-ending display to be available after the next keystroke as
provided by FREEZE, create the display on the graph screen instead of the text
screen. You can still show the display at the end of a program using PVIEW and
FREEZE, but after the picture disappears, you can view it again by pressing [<] .
Using the graph screen also lets you use all of the display (or more, if you create a
large graph screen), whereas the menu area of the text screen is not available.

12,7.1 Tagged Objects
The tagged object type (section 3.4.8) provides a very useful method of output labeling
that is especially useful for programs that are intended both as stand-alone programs
and as subroutines. For the latter purpose, programs should return their results to the
stack where they may be used for subsequent calculations. However, the bare presenta-
tion of objects on the stack is not a very helpful style for programs used manually, espe-
cially when a program returns two or more objects of the same type. One solution is to

tag the output objects: the tags label the objects for visual identification, but do not
interfere with the objects’ use for further operations.

The command LR is good illustration of using tagged objects for output. Both of LR’s
results are real numbers; unless you use LR frequently you will be hard pressed to
remember which result is which without reference to a manual. Fortunately, you don’t
have to: the results are returned with the tags Intercept and Slope, clearly distinguishing
the two.

The program LCM&GCD listed below demonstrates the creation and use of tagged
objects for output. The least-common-multiple (LCM) of two numbers is equal to their
product divided by their greatest-common-divisor (GCD). LCM&GCD calls the program
GCD (section 9.5.2.2), then uses the result to compute the LCM, returning it and the

GCD as tagged objects.

 

 

 

 

 

 

LCM&GCD LCM and GCD BD0OO

level 2 level 1 | level 2 level 1

x y r  GCD(xy) LCM(xy)

< DUP2 * - p Save the product as p.

<< GCD Compute the GCD (section 9.5.2.2).
"GCD" -TAG Tag the result.
p OVER / Compute the LCM.
"LCM" -TAG Tag the result.
>>

>>    
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12.8 Programs as Arguments

An unusual and powerful feature of the HP48 is its ability to use procedures as argu-
ments for commands and other procedures. This capability is clearly illustrated in HP 48
symbolic algebra, where algebraic objects can be the arguments for functions. In this
section, we will demonstrate the use of programs as arguments. The fact that HP 48
programs are objects, and that therefore you can put an unexecuted program on the
stack, means that one program can transfer procedural information to another program

as easily as it can transfer data.

The program CHKINPUT presented in section 12.6.1 is a simple example of the use of a
program as an argument. Any program that is used to specify a test for CHKINPUT
could be included directly in the definition of CHKINPUT, but then the latter program
would only be usable for the specific case determined by the test program. By leaving
the test as an argument, CHKINPUT can be used as a general utility.

As a more ambitious illustration of the use of programs as arguments, we will develop a
program INFSUM to compute the sum

S £ (),
n=ngp

where f(n) is an argument for INFSUM, not part of the program. That is, to use
INFSUM, you enter n, and a program representing f (n), as stack arguments.

The following is an example of program development, where you start with a single-
purpose program, and expand it in stages to a more general case. The program SUM4
shown below serves as an example of a single-purpose program. It computes the
specific sum

M
s 1

A
n=1

SUM4 accumulates terms until successive sums are equal, i.e. additional terms are less
than 10~ 12 of the current total. It returns the result 1.08232323295.
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Sum 1/n*

| level 1

o sum

 

 

< 0
1

DO

bup -4 *

SWAP 1 +

ROT ROT OVER +

DUP 4 ROLLD

UNTIL ==

END DROP

>>

Initialize sum.

Starting value ofn.

| sum(n) n |

| sum(@n) n n? |

Increment n.

| n+1 sum(n) sum(n+1) |

| sum(n+1) n sum(n) sum(@n+1) |

Keep going until sum (n +1) = sum (n).

Drop n.  
 

12.8

In reviewing SUM4, you can observe that the sequence —4 " is the only part of SUM4
that is specific to the particular sum =n =4, The rest of the program just handles the
mechanics of adding successive terms and deciding when to stop. You can make the

program work for any sum 2f (n) by replacing —4 * in the fourth line of the program
with the name TERM. The variable TERM should contain a program that computes
f(n), where n is provided in level 1. The summation program becomes:
 

 

 

 

 

 

 

SUMTERM Compute an Infinite Sum from TERM E3BC

| level 1

e sum

< 0 Initialize sum.

1 Starting value of n.

DO | sum(n) n

DUP TERM | sum(@n) n f(n) |

SWAP 1 + Incrementn.

ROT ROT OVER + | n+1 sum(@n) sum@m+1) |

DUP 4 ROLLD | sum(n+1) n sum(n) sum@n+1) |

UNTIL == Keep going until sum (n +1)= =sum (n).

END DROP Drop n.

>>   
 

To compute n ~* with SUMTERM:

<< -4 "~> 'TERM’ STO SUMTERM = 1.08232323295.
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Actually, the use of the variable TERM is an unnecessary contrivance. The need is to
supply SUMTERM with the information of how to compute f(n)--but that information,

which is represented by the program << -4 ~ >>_ can just as well be supplied as a
stack argument. To see how, omit the 'TERM’ STO from the preceding sequence.
Then, at the point where TERM is about to be executed in SUMTERM, the stack looks
like this:

<< -4 ">

sum(n)
n
nT

N

Thus, the effect of executing TERM (evaluating f (n)) can be achieved by the sequence 4
PICK EVAL. The program INFSUM (listed on the next page) makes that replacement,
and to generalize further, makes the initial index n( an input argument as well.

2

» Example. Use INFSUM to compute the sum ' ;—n
n=1

In this case, the program argument is << - n 'n"2/(2"n)’ >>, and ny = 1. So the
sum can be obtained with

<< - n 'n"2/2"n" > 1 INFSUM r= 5.99999999999

or

<< DUP SQ 2 ROT * /> 1 INFSUM 1= 5.99999999999

(The second version is faster.) INFSUM may run for a considerable amount of time if
the sum converges slowly. For f (n) = n~*, it takes 670 terms to compute the result
1.08232323295, which is accurate to the tenth decimal place (the correct value is
1.08232323371). The program will take correspondingly longer for sums that converge
more slowly than this. We therefore list a second version, MINFSUM, that you can use

instead of INFSUM when you want to monitor the sum as it accumulates.

Additional variations of INFSUM are discussed in section 12.11.4.
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DUP 4 PICK EVAL | proc.

SWAP 1 +

ROT ROT OVER + | proc.

DUP 4 ROLLD | proc.

UNTIL ==

END ROT DROP2
>>  

INFSUM Compute an Infinite Sum 6840

level 2 level 1 level 1

<< term >> ny r sum

< 0 Initialize sum.

SWAP

DO | proc. sum(n) n |

sum(n) n f(@) |
Increment n.

n+1 sum(n) sum(n+1) |

sum(n+1) n sum(n) sum(n+1) |

Keep going until sum (n +1)= =sum (n).

Discard n and procedure.   
The argument << term >> must have the logical form << = n 'term (n)’ >>.

 

 

 

 

 

 

DUP 4 PICK EVAL | proc.

SWAP 1 +

ROT ROT OVER + | proc.

DUP 1 DISP

DUP 4 ROLLD | proc.

UNTIL ==

END ROT DROP2
>>  

MINFSUM Compute an Infinite Sum (Monitor) BD3B

level 2 level 1 | level 1

<< term >> no r sum

< 0 Initialize sum.

SWAP

DO | proc. sum(n) n

sum(@m) n f(n) |
Increment n.

n+1 sum(n) sum(@n+1) |

Display the running sum.

sum(n+1) n sum(n) sum(n+1) |

Keep going until sum (n +1)= =sum (n).

Discard n and procedure.  
 

The argument << term >> must have the logical form << - n 'term (n)" >>.

12.9 Timing Execution
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the best way is to create a general purpose timer program that takes an object (such as
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a program) as an argument, executes the object, then returns the execution time. The
program TIMED listed below illustrates this method;it returns the execution time of any
object, in seconds. The object may either be in level 1 or stored in a variable specified
by a name in level 1 (thatis, if the level 1 object is a name, it is replaced by the con-
tents of the corresponding variable). TIMED was used to determine the various execu-
tion times listed in this book.

 

 

 

 

 

 

TIMED Timed Execution 48A9

level 1 | level 1

object or time

name or time

< |F DUP TYPE 6 == If the object is a name,

THEN RCL then replace the name with the stored object.

END MEM Pack memory.

RCWS 64 STWS - t w Set maximum wordsize.

<< TICKS 't STO Save the start time.

EVAL Evaluate the object.

TICKS t - Compute the elapsed time in ticks.

B-R 8192 / Convert to decimal seconds.

0129 - w STWS Correct for local store, restore wordsize.

>>

>>    
TIMED uses TICKS, which returns the current system time as a binary integer in HP 48
clock “ticks,” which are equivalent to 1/8192 second. The correction factor of .0129
seconds at the end of the program compensates for the time used to store the first time
value in the local variable t, between the two executions of TICKS. This number may
vary slightly from calculator to calculator; you can adjust the value used in your calcula-
tor by timing the execution of the object 1. Within the resolution of the system clock,
executing 1 takes essentially zero time, so adjust the correction factor if necessary to
make 1 TIMED return 0.000.

m Example. How long does it take the HP48 to invert a 7 X 7 identity matrix?

7 IDN << INV>> TIMED = 227.

The answeris 2.27 seconds.

TIMED executes MEM not to determine available memory, but to force memory packing
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(see the next section) so that subsequent packing that might interfere with execution
timing is postponed as long as possible. The value returned by MEM is only used as a
dummy object for the creation of the local variable t.

12.9.1 Erratic Execution
You have probably noticed that HP 48 execution, in everything from keystroke entry to
user program execution, does not always proceed smoothly butis frequently interrupted
by momentary pauses. This is quite noticeable in plotting, for example, where the
orderly plotting of points is broken by periodic pauses as if the calculator were “catching
its breath.” This erratic execution is normal behavior for the HP 48, and should not
concern you except to keep it in mind when you are timing program execution. Two
consecutive identical operations may take quite different times to execute.

During the course of operations, the HP 48 creates dozens or even hundreds of “tem-
porary objects.” These are the objects that you put on the stack and which remain
unnamed (i.e., not stored). Between the times when the stack display is updated, various
operations may also create many temporary objects that you never see. When a tem-

porary object is dropped from the stack, either for use as an argument, or when it is
stored in a global or a port variable, or just by DROP, the memory used for the tem-
porary object is not recovered right away. Eventually, memory fills up with temporary
objects, and the HP 48 must perform some “memory packing” in order to continue.
This packing consists of reviewing all of the temporary objects, discarding those that are
no longer needed, then packing together the remaining objects into the minimum
amount of memory. It is this memory packing that is taking place during the execution
pauses that you observe.

Ordinarily, the execution pauses caused by packing are so short that they have little
effect on your use of the calculator. However, there are some circumstances in which
the packing can be very time consuming, effectively paralyzing the HP 48 for many

seconds or even minutes. For example, if you enter 1000 numbers onto the stack, exe-
cuting MEM takes about 2.5 seconds (MEM always performs a memory pack). The
worst situation, which you should be careful to avoid, involves the creation of large tem-

porary lists, and the extraction of the objects within the lists. After this sequence,

1 1000 FOR x x NEXT 1000 -LIST OBJ-

MEM takes about 10 minutes to execute, during which the keyboard does not respond
(type-ahead still works, however). You can only interrupt the packing with a system halt
(section 5.8), which also clears the stack.

If you find it necessary to work with large lists, you can avoid the delays due to memory
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packing by storing the lists in global variables before you take them apart. A similar
warning applies to stack programs that enter a large number of objects onto the stack
during their execution.

12.10 Recursive Programming

The unlimited depth of the HP 48 subroutine return stack provides that programs can
not only call other programs without limit, but they can even call themselves any

number of times. This feature permits so-called recursive programming, in which a
repetitive calculation can be achieved by a compact program that iterates by calling

itself.

A classic example of recursion is the calculation of a factorial n! = n(n—-1) - - - 2-1.
This definition can be restated in a recursive form:

If n=1 then n! = 1; otherwise n! = n (n-1)!.

The following user-defined function embodies the recursive definition:

'"FCT(n)=IFTE(n=1,1,n*FCT(n-1))’ DEFINE

The function is defined in terms of itself, so that the name of the variable in which it is
stored must match the name used within the defining procedure.

Recursion is not always the fastest or most memory efficient method of computing a
result. For the factorial (ignoring the built-in FACT function), a FOR...STEP loop is
better than the recursive version:

< 1 SWAP OVER FOR n n * -1 STEP >,

The looping done by FOR...STEP is faster than a program calling itself, and the pro-
gram structure also takes care of incrementing n. However, in cases involving nested
data structures, recursion may provide the only solutions.

The program MINL (section 12.3) finds the minimum in a list of real numbers. Using
recursion, it is a simple matter to extend that program so that any element of the input
list can itself be a list containing numbers or additional lists, and so on. Here’s the
revised version:
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RMINL Recursive Minimum of a List AF1E

level 1 | level 1

{ xl e xn } or xmin

<< MAXR -NUM SWAP DUP SIZE | MAXR {x;} n |

1 Initialize m (list index).

DUP ROT Loop from 1 to n.

START | Xomin { % } 1 |
GETI Xm

DUP TYPE Determine the type of object x,,.

IF § == Lists are type S.

THEN RMINL If it’s a list, find its minimum.

END

4 ROLL MIN 3 ROLLD | Xmin {%: }m |

NEXT

DROP2
>>    

This program provides another illustration of the power of the unlimited stack. At the
point in the program where RMINL calls itself, there is a list in level 1, which is the
required argument. It doesn’t matter that previous parts of the program have put other
objects on the stack--they will still be in the right place when RMINL returns (to the rest
of itself). RMINL returns one number to level 1, which is appropriate for the remainder
of the program. The initial list can be a list of lists of lists ..., nested indefinitely. For

example:

{1{23}{4{5{678}90}{11}}12} RMINL = O.

A classic example of recursive programming is provided by the program SORT, in sec-
tion 11.5.3. Lists also figure prominently in the recursive system of programs used for
computing the determinants of symbolic matrices, described in section 11.7, and in the
HP48S program FIND, listed in section 5.7.3. The latter program features a self-
recursive program created within a program and stored in a local variable.

A final note on recursive programs. Remember that if you change the name (variable)
of a program that calls itself, you have to edit the program to replace all incidences of
the old name with the new.
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12.11 Additional Program Examples

12.11.1 Random Number Generators
The HP48 command RAND generates uniformly distributed pseudo-random numbers x;,
where an x; is equally likely to have any value in the range 0 < x < 1. Using a uniform
distribution generator, it is possible to generate random numbers with various other dis-
tributions.

12.11.1.1 Poisson Distribution

Assume x 1s a random variable with a uniform distribution 0 < x < 1. If k is the smal-

lest integer for which

k-1
[Mx, =eV
n=1

is satisfied, then k is a random variable from a population conforming to the Poisson
distribution with mean N. This distribution is defined as

N* _
Pk) = 76 N

where P(k) is the probability of obtaining k¥ events in an interval where the mean
number of events is N.

The program POIS uses this algorithm to return one random value k, where the mean
N is entered as a stack argument.

m Example. Generate 500 random numbers from a Poisson distribution with mean 10,
and compute the mean and standard deviation of the 500 numbers.

m Solution. Use £+ to accumulate the random numbers into ZDAT, then use MEAN
and SDEV.

54321 RDZ CLZ 1 500 START 10 POIS NEXT {500 1} -ARRY X+

generates the numbers (include the sequence .54321 RDZ if you want to check your
results against those shown below). After executing the sequence (which takes several
minutes), you can compute the sample statistics:

MEAN = 9.994
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SDEV 1= 3.354

The nominal standard deviation of a Poisson distribution is VN, which is V10 =
3.1623 for N = 10.

We can use the automatic histogram plotter for a visual inspection of the distribution of
the data:

 

SPTYPEZ [NXT] EHISTS
-15 255 EXRNG:

-20 125 E=YRNG: =

 

 

tgge: HISTOGRAM
[SB6x]1 ]
1 Ycol:i2 Modl:LIN

-1.5 20,2
-2H 125

ERASE[DRAK AUTO YRNG [INDEP]

1ot
DAT
col

C
X
X
k

  
 

 
‘N’ EZINDEPE 'Freq’ |[NXT] EDEPNZ
[5][PREV] ZERASEZ :=DRAW:S =LABELE [-] =
 

 

 

  
 

Notice the longer tail on the right, which is characteristic of the Poisson distribution.
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POIS Poisson Generator 70B5

level 1 | level 1

N or k

<< NEG EXP exp(—-N)

-1 1 Start k at —1; the product at 1.

DO SWAP 1 + Increment k.

SWAP RAND * Multiply by the next x.

UNTIL DUP 4 PICK = Keep going until the product is <exp(-N).

END DROP SWAP DROP Return .

>>     
12.11.1.2 Normal Distribution

Assume x is a random variable with a uniform distribution 0 < x < 1. With a defini-

tion ofy as

y =V=2Inx; cos (2mx;),

where x; and x; are randomly drawn from the population of x, y is a random variable
from a population conforming to the normal (Gaussian) distribution with mean 0 and

standard deviation 1. The normal distribution for a variable with mean y and standard
deviation o is

vV

P(y) = 7—21—;;6XP [-%(fz)‘]

where P(y) dy is the probability of obtaining a value in the range between y and y +dy.
The program NORM computes normally distributed random numbers with zero mean
and standard deviation 1.

You can obtain random numbers y;/ from a normal distribution with mean y and stan-

dard deviation o by multiplying the values y; obtained with NORM by o and adding y.
The program MNORM returns such random numbers y;/, where the mean and standard
deviation are specified on the stack.
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NORM Normal Distribution Generator 88E7

| level 1

o Yi

<< RAND Xi

LN -2 * V \V -2Inx;

RAND x;

2 * i -NUM * RAD COS cos (2mx;)

* y
>>   
 
NORM leaves radians mode active.

 

  

 

MNORM Modified Normal Distribution Generator 7038

level 2 level 1 | level 1

y o o y'i
 
 < NORM * + Y >>   
 
MNORM leaves radians mode active.

m Example. Generate 500 data points from a normal distribution with mean 10 and stan-
dard deviation of 3.16, for comparison with the Poisson data in the previous example.

54321 RDZ 1 500 START 10 3.16 MNORM NEXT
{500 1} -ARRY STOZ

A histogram of this data, using the same plot parameters as in the previous example,
looks like this:
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Notice that this distribution is more symmetric than the Poisson data.

w Example. Create a ZDAT matrix that contains points [x; y;] representing a “noisy”

straight line:

yYi = O.5x,- + b,',

where b; is a normally distributed random variable with mean 1 and standard deviation
3, and the x; are the integers —50 through +50.

 

 

m Solution:

.54321 RDZ Random number seed.

CL= Initialize SDAT.

-50 50 x from —50 to +50.

FOR x x X;
1 3 MNORM x 2 / + V;.

NEXT

{101 2} -ARRY STO= Store the data.  
 

You can create a scatter plot of this data by executing

STAT SSCATRE .

 

 

T emt

200H|2-ED%| CENT |CODRD|LAEEL   
 

Then SFCNE draws the best-fit straight line:
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s

2000[2-E0X[CENT [COORD|LAEEL   
12.11.2 Prime Numbers
The program PRIMES returns a list of the first n prime numbers (not counting 1),
where n is specified on the stack. The program demonstrates the use of stack flags
(section 9.3) to “remember” the results of tests, so that those results can be used for
later decisions.

This program starts with a list of three prime numbers 2, 3, and 5, then successively
tests integers m greater than these to see if they are prime by dividing each by all prime
numbers n; for which n,-S\/m. If any quotient is an integer, m is not prime, and is dis-
carded. If m is prime, it is appended to the current list of primes. The process contin-
ues until the list grows to the specified size.

You can obtain a significant economy in the execution of this process by observing that
you don’t need to test every integer explicitly, but only those in the series 7, 11, 13, 17,

19, ..., obtained by alternately adding 2 and 4. All integers not in this series are divisible
by 2 or 3, and so are not prime.

The basic structure of PRIMES is as follows:

DO
DO Divide a number by the next prime from the list.
UNTIL (1) either a quotient is a non-integer.

or
(2) the prime is bigger than the number’s square root.

END
UNTIL enough primes are found.
END

The combination of tests (1) and (2) is complicated by the fact that there is no point in
making test (2) if test (1) is true. In PRIMES, therefore, the (flag) result of test (1) is
used twice, once by an IF structure than contains test (2), and again to determine
whether to continue through the list of prime number divisors.

-359-



12.11 Program Development

 

 

 

 

 

 

 

PRIMES Find Prime Numbers 9F2D

level 1 | level 1

n o { primes }

< 7 - X x is the next candidate number; start with 7.

< {2 3 5} First three primes.

1 SF Flag 1 determines incrementsize.

DO Main loop to test x.

2 SF Flag 2 set means x may be prime.

3 Start with n=3 (3rd numberin the list).

DO Inner loop--divide x by primes < Vix

GETI x OVER / | {primes} n p, x/p, |

UNTIL Keep going until FP(x/p,) = 0 orp,>x/p,

IF SWAP OVER > | {primes} n x/p, flag |

DuP If the testis true...

THEN SWAP DROP ..then return true to stop the loop.

ELSE Otherwise, check if evenly divisible.

SWAP

IF FP NOT If the fractional part is zero...

THEN 2 CF NOT

END

END

END DROP

IF 2 FS? If x is prime...

THEN x 1 -LIST + ... add it to the list.

END

IF 1 FS?C If flag 1 is set...

THEN 4 ..then add 4;

ELSE 2 1 SF ...else add 2 and set the flag.

END

x + 'x' STO Increment x.

UNTIL Repeat until list is the desired length.

DUP2 SIZE =

END SWAP DROP Leave the list on the stack.

>>

>>   
PRIMES uses flags 1 and 2.
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12.11.3 Simultaneous Equations
Consider the set of simultaneous linear equations

anpnxytapxy+ - tayux, =Cq

anxytanxy+ ° tayx, =C)

An1X1 taprxy+ °°° tapx, = Cy,

where there are n equations in n unknowns x; - - - x,. The a;; are the coefficients of the
unknowns, and the c; are the constant terms.

These equations are straightforward to solve on the HP48. Defining the coefficient
matrix

a1 Ay ° T ay

Az QA"' ay

A = ,

Qn1 Qpy " " 4y,

and the unknown and constant vectors

X1 C1

X2 C2
- -
X = CcC = , 

then the set of simultaneous equations can be represented as the matrix equation

AX = C

The solution can be found by premultiplying both sides of the equation by the inverse of
A:

¥ =A1¢

On the HP 48, you can obtain this solution by entering the constant vector ¢ into level 2
and the coefficient matrix A into level 1, then executing / (divide). This returns the
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unknown vector X to level 1.

This method is very simple, but has the drawback that it requires you to determine the
coefficients and constants from the equations, and enter them in a very specific order,
which is contrary to the spirit of the HP48. A better approach is demonstrated by the
program SIMEQ below, which does all of this work for you. SIMEQ expects to find a

list of names in level 1, preceded in higher levels by as many equations as there are
names in the list. The specified names indicate which of the variable names in the
equations are the unknown variables--all other variables that appear in the equations
must have numerical values (via “NUM). The equations may appear in any order, and
there are no restrictions on the form of the equations, except that they must be linear in
the unknown variables.

SIMEQ determines the constant terms in the equations by setting all of the unknowns to
zero, then evaluating the equations. It next subtracts the constants from the equations,
and determines the coefficients by assigning the value 1 to one unknown variable at a
time, and evaluating the equations. The coefficients are combined into a matrix, and
the constants into a vector so that the vector of unknowns can be obtained by dividing.
Finally, the values of the unknowns are stored in the corresponding variables.

m Example. Five packages are weighed in pairs, yielding the weights 90, 110, 120, 140,
120, 130, 150, 150, 170, and 180 pounds. What are the weights of the individual pack-

ages?

m Solution. Call the unknown weights A, B, C, D, and E, where A is the lightest weight
package and E is the heaviest. Then the lightest combination is 4 and B, so

A+ B = 90 lbs.

The next lightest combination must be 4 and C:

A +C = 110 lbs.

Similarly, the heaviest two combinations are

D+E 180 Ibs,

and

IC+E =170 Ibs.

Finally, you can observe that the total weight of all the combinations must be four times
the total weight of the packages:
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4(A+B+C+D +E) = 1360 lbs.

These are the five equations you need to solve the problem:

'A+B=90'

'A+C=110’

'‘D+E=180'

'C+E=170’

'4%(A+B+C+D+E)=1360’

puts the equations on the stack; then

{A B C D E}:ZsSIMEGE

solves the equations.

 
 SVAREZA:Z & 40
EB= = 50

=C= rF 70
Sp= = 80

ZEZ= = 100
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SIMEQ Simultaneous Equations 4AD3

level n ... level 2 level 1 |

‘equation,’ ... 'equation,’ { name, ... name, } or

< DUP SIZE - v n Save the list of names in v, and the number

of names in n.

< n -LIST - e Combine the equations into a list, and save

in e.
< 1 n

FOR x 0 v x GET STO |Store zero in each unknown variable.

NEXT
e OBJ- Put the equations on the stack.
1 SWAP
START n ROLL -NUM NEG |Compute each constant term.
NEXT
n -LIST - ¢ Combine the constants into a list, and save

in c.

< 1 n For each variable...

FOR x 1 v x GET STO| Assign the value 1 to the variable.
e OBJ- Put the equations on the stack.
1 SWAP For each equation...
FOR i n ROLL -NUM Evaluate the equation, and
c i GET + subtract the constant term,

leaving the coefficient.

NEXT
0 v x GET STO Reset the variable to 0.

NEXT
n DUP 2 -LIST
-~ARRY TRN Combine all the coefficients into a square

matrix.

¢ OBJ~ 1 -LIST -~ARRY [Convert the constant list in a vector.

SWAP / Compute the unknown vector.
OBJ~- DROP Put the values on the stack.
n 1

FOR m v m GET STO |Store each value in its variable.

-1 STEP
>>

>>

>>

>>   
 

12.11.4 Infinite Sums
In section 12.8 we presented a program INFSUM that computes an infinite sum of terms
defined by a separate program. For some sums, it is more accurate to compute each
term 7, from the previous one 7,_;, rather than computing each term independently.
The programs PTINFSUM and XPTINFSUM (listed in section 12.11.4.3) use this
approach. The first program PTINFSUM is a variation of INFSUM, for which you
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supply a stack program that computes 7, as a function of n and 7,_;. PTINFSUM also
requires you to specify the initial value n, of the index, and the value of the first term
T,,.

n3

u Example. Comput ?
|
|
M
8

 
3

m Solution: In this case, T, = 1[ ]ng =1,and Ty = 0.5. Thus,
(n-1)

<DUP 1 - / 3 ~ 2 / *> 5 1 PTINFSUM = 25.9999999997.

Many mathematical functions can be computed from an infinite sum for which the terms
are functions of a variable as well as of the summation index. The program
XPTINFSUM is a further variation of PTINFSUM, in which the value of a variable is also
an input argument, in addition to the arguments required by PTINFSUM. The program

that computes 7, from 7,_; and n can also be a function of the variable.

The programs Sl and Cl in the next sections illustrate the use of XPTINFSUM to com-
pute sine and cosine integrals, respectively. The series expansions for these integrals are
taken from M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
(National Bureau of Standards, 1964).

12.11.4.1 Sine Integral

The sine integral Si(x) is defined as follows:

Sl()—f-g-n—gt

The integral can be computed from the infinite series:

. (_1)x2n+l

Sir) = 2) (21 +1)(21 1))

for x>0, and Si (x) = -Si(-x) for x<O0.

The program Sl uses XPTINFSUM to compute this sum, with the assignments ny = 0,
Ty = x, and
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T, =T,|- gn—%)xz

" " 4n(n +.5)*

Since T, is a function of x2, Sl saves repeated computation of the square of x by using
x? rather than x as the variable argument for XPTINFSUM.

Examples:

5 S| = .493107418043

3 S| = 1.848652528

You could obtain these same results using the HP 48’s numerical integration capability,
such as with the following alternate form of Sl:

< - x 'f(0,x,SIN(t)/t1)’ -NUM >,

This program is obviously easier to write thanthe previous version. However, the pro-
gram using the infinite sum is considerably faster than that using [.

12.11.42 Cosine Integral

The cosine integral Ci(x) is defined by

X

GCi(x) = v + Inx +f&;‘idt,
0

where vy = .5772156449 (Euler’s constant). Ci(x) can be calculated from the infinite
series

— 12
CI(X) =y +Inx + ém

n=1

for x >0, and

Ci(x) = Ci(—x)—iw forx <0.

The parameters for XPTINFSUM are nq = 1, T; = -x%/4, and



Program Development 12.11

r -1 |- X6=1)
T w2y )

T, is a function of —x2, so Cl uses —x? rather than x as the variable argument for
XPTINFSUM.

Examples:

0.5 Cl = -.177784078808

3 Cl = .11962978602
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12.11.43 Sum Programs

 

  

 

 
 

PTINFSUM Infinite Sum from Previous Term 2DFB

level 3 level 2 level 1 | level 1

<< term >> T, ng or sum

< ROT - term Save << term >>.

<< OVER SWAP | Thy Tny n|

DO | sum(@m) T, n|

1 + Increment n.

SWAP OVER term -NUM | sum(r-1) n T, |

SWAP ROT 3 PICK OVER +||n T, sum(n-1) sum(n) |

DUP 5§ ROLLD | sum(n) T, n sum(@n-1) sum(n) |

UNTIL == Repeat until the sum is unchanged.

END DROP2
>>

>>   
 
The argument << term >> must have the logical form<< - ¢t n ‘'tem(t,n)’ >>.

 

  

  
 
 

XPTINFSUM Infinite Sum in x from Previous Term 11CD

level 4  level3  level2  level 1 | level 1

<term > T, ng x or sum

<< 4 ROLL - x term Save << term >> and x.

<< OVER SWAP | Tng Tny 7o |

DO | sum(n) T n |

1 + SWAP Increment n.

OVER x | sum(n-1) n T,., n x|

term -NUM | sum(n-1) n T, |

SWAP ROT 3 PICK OVER + |{| T, n sum(@m-1) sum(n) |

DUP 5 ROLLD | sum(n) T, n sum(@n-1) sum(n) |

UNTIL == Repeat until the sum is unchanged.

END DROP2
>>

>>   
 
The argument << term >> must have the logical form << = ¢ n x 'term (t,nx)’ >>.
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level 1

X

 

Sine Integral

r

level 1

Si(x)

 

<<

IF DUP

<<

SWAP - n

< n b5 -

>>

>>

4 ROLLD

XPTINFSUM

SWAP SIGN *

END

>> 

THEN DUP ABS 0 OVER SQ

* NEG 4 /
n 5+ 8SQ n * / *

If x =0, just return 0.

|x To no x%|
Start of << term >>.

End of << term >>.

| x <<term > x Ty ng x?

| x sum |

| Sitx) |  
 

Cl Cosine Integral

level 1

X r

 

 

< DUP ABS DUP LN

SWAP SQ NEG

DUP 4 / SWAP 1

< SWAP - n

< 2 / n SQ / n

n 2 *x 1 - / *

>>

>>

4 ROLLD

XPTINFSUM

+ 5772156649 +

SWAP

IF 0 <

THEN i

END

>>

T * - 

SWAP

1 *

 

level 1

Ci(x)

|x In|x| -x?|

| x In|x|] -x%4 1 -x?

Start of << term >>.

End of << term >>.

|x In|jx | <<term > x Ty ng x

> ||x In|x |

Subtract i w if x <0.

Ci (x).

2
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ADDV
AGXOR
APLY1
APLY2
APVIEW
AREPL
ASN41
ASTO
BINCALC
BOUNCE
BS?
cB
CEQN
CHARDISP
CHKINPUT
Cl
CINT
COUNT4
CROSSF
DATENAME
DELROW
DFACT
DIM
DOTF
DRAWPIX
FIB
FIND
FRACALC
FRAME
GCD
GSAMP
GSORT
INFSUM
KEEP
KEYHALT
KEYTIME
LCM&GCD
MINFSUM
MINISTK
MINL
MINOR
MNDROP
MNORM
MOVE
MSGSHOW
NORM

Program Index

Concatenate Vectors

Animate with GXOR

Apply Program to 1 Symbolic Array

Apply Program to 2 Symbolic Arrays

Animation with PVIEW

Animation with REPL

ASN HP41-style

Animation with STO
Binary Integer Calculator

Bouncing Ball Demo

Bit Set?

Clear Bit

Characteristic Equation

Display HP 48 Characters

Prompt and Check Input

Cosine Integral

Circle in a Triangle

Count in 4 Ranges

CROSS Function
Create a Name from the Current Date

Delete a Matrix Row

Double Factorial

Symbolic Array Dimensions

DOT Function

DRAW using PIXON
Fibonacci Series Generator

Find a Variable

Fraction Calculator

Frame the Graph Screen

Greatest Common Divisor

Graphics Samples

General-purpose Sort

Compute an Infinite Sum

Keep n Objects

Halt if a Key is Pressed

Wait a Specific Time for a Key

LCM and GCD

Compute an Infinite Sum (Monitor)

Small-font Stack Display

Minimum of a List

Minor of a Determinant

DROP m through n
Modified Normal Distribution Generator

Move a Variable

Show Messages

Normal Distribution Generator
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300

264

304

304

268

268

182

268

192

269

178

178

310

331

369

248

229

289

107

280

234

302

288

271

296

121

194

273

238

261

298

349

78

340

340

345

349

266

322

280

78

357

122

343

357



N-S
OLABEL
POIS
PRIMES
PROMPTCONT
PTINFSUM
Qu
RC-R
RMINL
SADD
SA-
SB
SCOF
SDET
Si
SIMEQ
SKETCH
SMINOR
SMS
SMUL
SORT
SSuB
STAR
STRN
SUBCOL
SuM4
SUMTERM
S-N
TIMED
TPIX
VANGLE
VSUM
XARCHIVE
XFORM
XPTINFSUM
-SA

Numeric to Symbolic

Object Labeling Utility

Poisson Generator

Find Prime Numbers

Prompt with CONT Display
Infinite Sum from Previous Term

Quadratic Root Finder

Real/Complex to Real
Recursive Minimum of a List

Add Symbolic Arrays

Symbolic Array to Stack

Set Bit

(Unsigned) Symbolic Cofactor

Symbolic Determinant of a Matrix

Sine Integral

Simultaneous Equations

Sketch Lines

Minor of a Symbolic Matrix

Scalar Multiply Symbolic Arrays

Multiply Symbolic Arrays

Sort a List in Increasing Order

Subtract Symbolic Arrays

Draw a Star

Transpose Symbolic Array

Subtract Columns

Sum 1/x*

Compute an Infinite Sum from TERM

Symbolic to Numeric

Timed Execution

Toggle a Pixel

Angle Between Two Vectors

Sum Vector Elements

Extended Archive

Coordinate Transformation

Infinite Sum in x from Previous Term

Stack to Symbolic Array
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356

360

330

368

326

227

353

305

302

177

308

308

369

364

273

309

306

306

297

305

272

305

282

347

347

303

350

272

283

234

108

289

302
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T 56, 211

- 206, 210, 246, 290

+ 262

= 224

== 223,224

< 223

= 223

> 223

= 223

# 223

9

V 165
£ 24, 285

" 62

<«<>> 213, 214

{}40
| 160, 168

[140
"M 36, 62

# 41

_44

1:43

@ 36, 146

1USR annunciator 180

24-hour format 179

2D 35, 287

3D 287

aborting programs 316

ABS 283

acknowledged alarms 179

action 30, 32

user key 179

activation 30

alarm beep 179

catalog 135

ALG annunciator 141

algebraic 48

calculator 21

entry mode 141, 143, 207

evaluation 49

object 3, 21, 25, 29, 30, 32, 47, 63, 200

syntax 16, 48

algebraic/program mode 142

alpha key action 179

analytic function 26

angle mode 175, 178, 286

annunciator, TUSR 180

ALG 141
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busy 145

PRG 141

user 180

ARC 273, 274

ARCHIVE 106

argument 16

disappearing 79

recovery 72, 87, 179, 242, 312

saving 87

array 40, 277, 301

entry 151

-~ARRY 72, 277, 288

ARRY- 278

ASCII files 215

ASN 180, 182, 184

assignment, key 175, 180

ATTACH 102, 104

attach library 101

ATTN 133, 241, 315, 339

automatic linefeed 179

mode change 142

simplification 52, 57

automating calculations 195

backspace 168

backup object 46

Bad Argument Type 49

base 165

BASIC 2, 32, 201, 245

beep, error 179

BIN 178

binary integer 40

binary transfer 179

BLANK 262

BOX 273, 274

branch 225

unconditional 225

built-in object 59

program object 31

busy annunciator 145

BYTES 10, 41, 224, 318, 327

CASE structure 228

cell 150

cursor 150

CENTR 138

CF 55, 176, 222

changing variable contents 117

character code 38, 39

characteristic equation 310
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checksum 327

CHR 39

Circular Reference 87
CLEAR68, 135

clear flag 175

clearing 68

clipping 275

CLLCD 257, 258

closing subexpression 160

CLUSR 96

CLVAR 96, 142

code object 30

cofactor 307

column number 116

column vector 282

combining RPN and algebraic 22

command 26, 59, 100

test 221, 223

command line 63, 139, 140, 144, 146, 202, 335

command stack 145

comment 146, 36, 216

common notation 17

compact format 9

complex array, MatrixWriter 151

complex number 34

complex result 35

composite object 63, 289, 51, 299

CON 117, 120, 279, 294

concatenation 37

conditional 32, 221, 225

configuration program, library 103

constant, symbolic 57, 170, 178, 211

CONT 183, 290, 314, 316, 317, 329, 333

contravariant vector 282

coordinate mode 285

coordinate system 178

coordinates, logical 269

cylindrical polar 284-286

polar 34, 284-286

rectangular 284

spherical polar 284-286

copying stack objects 70

counted string 37

counter 119

covariant vector 282

cylindrical polar coordinates 284-286

CRDIR 89

CROSS283, 288

CST 185

current directory 89, 111

current path 89, 101

cursor, cell 150
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graphic 179

subexpression 170

curve filling 179

custom error 242

custom menu 185, 186, 175

customization 175

cylindrical polar coordinates 284, 286

C-~PX 270, 274

C-R35

data object 32

date format 179

DBUG 317, 319

debugging 317

DEC 178

decimal digits 179

DECR 117, 119

DEFINE 86, 205, 208, 210

defining expression 206

procedure 11, 246

definite loop 230, 234

definition, object 27

deleting suspended program 316

delimiter 27, 127, 144, 214

~DEL 147

DEL~ 147

DELKEYS 183

denominator 163

DEPTH 293

DETACH 104

determinant 307

digit-group commas 34

directory 45, 60, 88

current 89, 111

PURGE 94

Directory Not Allowed 94, 95

Directory Recursion 95

disappearing argument 79

DISP 258, 332, 344

display 255

freeze 258

graphics 123, 124, 260

standard 126, 256

divide bar 163

DO 238

DO loop 236

DOERR 100, 104, 241, 242

DOT 282, 288

double quote 36, 62

double-space mode 179

DRAW 53, 249, 271

DROP 68. 134

DROP2 69
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DUP 70, 82, 134

DUPN 72

ECHO 148

EDIT 76, 147, 154, 311

edit menu 147, 154

edit/view 148

editing program 311

ELSE 225

else-sequence 225

empty 79

END 225

endless execution 87

endless loop 61

ENTER 19, 26, 72, 134, 140

explicit 140

implicit 140, 145

o ENTER 191

BENTER 191, 265

ENTRY 143

entry mode 141, 142, 187, 189

algebraic 141, 143, 207

entry, array 151

entry, text 128

environment 12, 126, 132

plot 12, 126

standard 12

EQ 118

equality 223

logical 223

physical 223

EquationWriter 134, 148, 156, 266

ERRO 241

ERRM 100, 104, 240, 241, 242, 316

ERRN 240, 241, 242

error 239

beep 179

trap 239, 242

custom 242

error-sequence 240

EVAL 31, 47, 51,55, 60, 64, 97, 114, 290

evaluate 16, 25, 31

algebraic 49

exception 243

action flag 243

exchange of arguments 69

executed 31

execution 25, 30, 31, 60, 116

by address 64

endless 87

local name 61

numerical 52, 55, 56, 58
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preventing 31

symbolic 52, 58, 225

exit 234, 225

EXPAN 50

explicit ENTER 140

exponent 33

exponentiated 165

EXPR 170

expression 16, 48

defining 206

fast catalog 179

FC? 223

FC?C 177, 223

flag 55, 175, 220, 333

-2 56

-3 56

-15 285

-19 36

-20--26 243-244

-51 34

-55 73, 243

-60 129

-61 129, 180

-62 180

clear 175

exception action 243

stack 177

system 175

user 176, 222

floating-point 33

font 265

FOR 230

FOR...NEXT 246, 230

FOR...STEP 233, 246

formal variable 61, 249

24-hour 179

compact 9

date 179

decimal number 179

linear 156

FORTH 5, 67

fraction mark 179

FREE 105

FREEZE 257, 329, 332, 344

freeze display 258

FS 222

FS? 223

FS?C 177, 223
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menu 132
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GCD 345
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GET 116, 117, 186, 278, 281, 291, 295, 299
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global name 30, 59, 60, 61, 83, 90, 245, 327

variable 45, 59, 83, 111, 245, 248, 329

GOR263, 267, 270

GOTO 217

GO~ 151
GO+ 151
GRAPH 126, 134, 256, 257

graph screen 126, 255, 260, 266

graphics 256

cursor 179

display 123, 124, 260

display of expression 156

object 42, 260

greatest common divisor 345

GROB 42

-GROB 265

guillemets 62

GXOR 263, 267, 270

HALT 109, 290, 313, 315,316, 317, 320, 329, 332, 335

helvetica 8

HEX 178

hidden operation 133

parentheses 179

HOME 91, 114, 121

home directory 88

HP Solve 53, 138, 196, 201

HP17B 13

HP19B 13

HP27S 13
HP35 2

HP41 2-5, 76, 140, 180, 181, 202, 216, 217

HP65 2

HP 71B 180

i35

IDN 117, 120, 279

IF 225

IF structure 135, 225

IFERR structure 317, 339

IFT 32, 51, 227

IFTE 32, 51, 227

IM 36

immediate entry mode 141, 143

immediate-execute key 141

implicit ENTER 140, 145

GET 117

parentheses 165

implied multiplication 162
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Improper Definition 209

Incomplete Subexpression 161

INCR 117, 119, 237

indefinite loop 230, 234, 235

independent RAM 99

index for GET 116

index wrap 179

infinite result 178

infinite result action flag 243

infix notation 17

operator 162

inner product 283

INPUT 335, 341

input and output 329

input list 294

insert mode 148

interactive stack 74, 134, 148

intermediate result list 296

intermix binary and real 41

real and complex 36

internal accuracy 33

Invalid Array Element 151

Invalid Card Data 105
Invalid Syntax 161

Invalid User Function 210

IOPAR 118

IR port 179

ISOL 207, 249

italics 8

iteration 225, 230

KEEP 76

Kermit message 179

Kermit overwrite 179

KEY 335, 339, 341
key assignment 175

buffer 339

code 341

format 8

menu 8

plane 180

shifted 8

type 141

typing 141, 142, 190

key-per-function 125

keyboard 127

standard 126

keycode 180, 339

KILL 316

label 217

LAST 72

last arguments 72, 87, 179, 242, 312

command 176
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error number 123, 124

menu 129

stack 72, 144, 176

LASTARG 72, 87, 242

-LCD 257, 260

LCM 345

least-common-multiple 345

LET 86

LEVEL 76

library 30, 96, 99, 100, 123, 124

attach 101, 102, 104

ID 100

title 102

LIBRARY menu 46, 96, 105, 137

LIBS 104

LINE 272, 274

linear format 156

LISP S

list 40, 277, 289

object 25, 30, 32, 51, 289

input 294

output 296

-LIST 290, 293

LIST~ 291

local memory 109, 110, 123, 124, 245, 248

name 30, 109, 111, 206, 208, 245

name execution 61

name resolution 249

variable 79, 59, 61, 74, 109, 205, 206, 231, 245, 248, 315
variable structure 111, 246

logical coordinates 269

equality 223

operator 221

loop 230

index 231, 246

definite 230, 234

DO 236

endless 61

indefinite 230, 234, 235

WHILE 236-238

loop-sequence 236, 237

LR 345

Yukasiweicz, Jan 17

GXOR 263, 267, 270mantissa 33

manual operation 26

mathematical function 207

matrix 40, 277

MatrixWriter 134, 148, 149, 176

MEM 96, 105, 184

Memory Clear 124, 125

memory reset 123, 124
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memory, local 109, 110, 123, 124, 245, 248

user 59, 88

VAR 59

MENU 130, 185, 333

menu, custom 185, 175

exit 132

key label 126

port 99

screen 255

subexpression 170

VAR 83, 112, 137, 185, 245

MERGE 105

message, table 242

message, prompt 179

minor 307

mode 12, 175

coordinate 285

entry 141, 142, 187, 189

insert 148

numeric 225

program entry 76, 143, 214

server 138

user 123, 124, 129, 158, 180

mode-dependent key 141

name, global 30, 59, 60, 61, 83, 90, 245, 327

local 30, 109, 111, 206, 208, 245

object 29, 58, 116, 233

port 97

quoted 62

resolution 90, 110, 249

XLIB 30, 46, 61, 103, 181

NEG 260, 262

negative pixel coordinates 274

newline 151

NEWOB 100, 297, 300

non-analytic function 26

Non-Empty Directory 94, 96

normal-sequence 239

NOT 238

notation 8

common 17

infix 17

Polish 17

prefix 17

Reverse Polish 15

NUM 39

-NUM 32, 55, 56

numbered register 59

numerator 163

numeric mode 225

numeric/symbolic execution 178

numerical execution 52, 55, 56, 58
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name 29, 58, 116, 233

program 30
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symbolic 63

system 27

tagged 42, 345

type 27

unit 44

untagged 43

value 27

Object In Use 99, 104
object-to-grob conversion 265

OBJ-~ 35, 38, 43, 44, 69, 112, 191, 278, 288, 291

OCT 178

operation 25, 59

manual 26

logical 221

ORDER85, 112

output, display 344

list 296

OVER 71

overflow 178, 244

Owner’s Manual 5

page 129

parent 90

parsing 144

PATH 89, 113

path name 113

path, current 89, 101

PDIM 267

pencil-and-paper 18

permanent custom menu 185

PGDIR 96, 106

physical equality 223

PICK 70

PICT 267

picture 255

PIX 274

PIX? 272

PIXOFF 271, 274

PIXON 270, 274

plot environment 12, 126

polar coordinates 34, 284

Polish notation 17

port 96, 97, 99, 100, 105
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name 97

variable 97, 96

POS 39, 293

postponed execution 146

PPAR 118, 138, 269, 270

PR1 138

precedence 17, 179

prefix notation 17

preventing execution 31

PRG annunciator 141
principal value 178

printer port 179

problem solving 195, 198

procedure 47, 200, 201

defining 11, 246

program 29, 47, 52, 196, 201, 213

as argument 331

body 214, 215

content 47

definition 47

editing 311

entry mode 76, 141, 143, 201, 214

legibility 205

object 30

optimization 323

quotes 62

quoted 63

structure 47, 202, 213, 215, 219, 326

structure word 32, 142, 213, 219

suspended 313, 329

unquoted 63

programming 195, 202

structured 203, 216, 217, 313
PROMPT 290, 313, 315, 317, 320, 329, 330, 332, 335, 344

prompt message 179

PRTPAR 118

PRVAR 97, 318

PURGE86, 92, 96, 97, 99, 100, 267

directory 94

recovery 87

PUT 117, 119, 120, 186, 278, 281, 291, 295

PUTI 117, 119, 120, 278, 291

PVARS 96

PVIEW 257, 270, 345

PX~ 270, 274

-Q 193

QUAD 249

quotation mark delimiters 62

quote, name 62

program 62

single 62
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tagged object 99

RATIO 164

RCEQ 138

RCL 60, 97, 100, 113, 116, 222, 267

RCLALARMS 183

RCLF 177

RCLKEYS 183

RCLMENU 186

RCWS 178

RDM 117, 120, 278

RE 36

real number 33

Recover RAM 124, 125

recovery 314

argument 72, 87, 179, 242, 312
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stack 72

rectangular coordinates 284

referenced 99

register 115

numbered 59

storage 59

REPEAT 237, 238

REPL 39, 172, 264, 267, 268, 270, 292

Replace RAM, Press ON 105
reschedule 179

resolution, name 110

local name 249

RESTORE 106, 107

result 16

Reverse Polish Notation 15

right hand 9

ROLL 69

ROLLD 69

ROOT 201, 249

ROT 70

row number 116

row order 277

row vector 282

RPL 5, 12, 21, 22, 60, 64, 82, 112

RPN 3, 15

command 26

principle 15, 50

RULES 132, 149, 157, 172

R-C 35

S 183
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saving, argument 87

SCONJ 117, 120

screen 126, 255
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SIN 175

single quote 62

single-step 316, 319
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spherical polar coordinates 284, 286

square root 165
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recovery 72, 312
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starting and stopping 313

statistics matrix 149
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structure, program 47, 202, 213, 215, 219, 326

structured programming 203, 216, 217, 313

STR- 112
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subroutine 217, 330
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suspended program 313, 329
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symbolic array 301
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symbolic constant 57, 170, 178

symbolic execution 52, 58, 225
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symbolic math 197

symbolic object 63

syntax 140

syntax, algebraic 16, 48

SYSEVAL 64

system flag 175

system halt 88, 100, 123, 124
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tag 42
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-TAG 43
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temporary custom menu 186
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test command 221, 223
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typing 188

typing key 141, 142, 190
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unit management 44
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UNTIL 236
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user annunciator 180

user flag 176, 222
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user memory 59, 88

user mode 123, 124, 129, 158, 180

user-defined function 86, 161, 196, 204, 205, 210, 288
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variable, formal 61, 249
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I. Principles and Programming

The HP48 is the most powerful calculator
ever developed. Along with its extensive
symbolic and numeric mathematical func-
tionality including automated graphics, the
HP 48 provides exceptional programming
and customization facilities that make it
applicable to a broad range of practical
problems. The sheer extent of the HP 48’s

capabilities do, however, make the calcula-

tor a challenge to learn and master.

 

 

HP 48 Insights Part | is the first volume of a two-part series by Dr. Wil-
liam Wickes on the operation and application of the HP 48. Part | con-

centrates on the underlying unified principles of HP 48 operation, and
the tools and techniques for programming the calculator. Special atten-
tion is given to object storage, display management, and customization
with key assignments, menus, and modes. All concepts are illustrated

with specific examples, including over 100 practical example programs
featuring programming techniques such as local variables, program
structures, recursion, and the uses of lists and arrays.
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the definitive exposition of HP 28 principles and operation. A companion
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family of calculators in adapting their HP 41 knowledge to the HP 48.
Part Il of HP 48 Insights will focus on the integrated systems of the
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