HP 48
INSIGHTS

PART I+ Principles and Programming

=
]a

ZZ

® OO

DOO®E®

William C. Wickes

HP 48 Insights Program Disk

As a convenience for readers of HP 48 Insights who use or have access to an IBM-
compatible or MacIntosh personal computer, Larken Publications is offering a disk con-
taining all of the HP 48 programs described in the book. By downloading the programs
individually or collectively from your computer to your HP 48, you avoid the effort and
errors of entering the programs manually from the calculator keyboard.

To order one or more of these disks, remove this page from your book, fill out the ord-
ering information below, and send it with your payment to:

Larken Publications
Department PC

4517 NW Queens Ave.
Corvallis OR 97330 USA

Make checks payable to Larken Publications (no charge or C.O.D. orders). Foreign
orders must be paid in U.S. Funds through a U.S. bank or via international postal
money order.

Name
Address
City State Zip
Country
&antitv Unit Price Price

HP 48 Insights Program Disk $10.00

(Optional) Airmail postage
outside of USA, Canada, Mexico 1.00

TOTAL $

Disk Type (check one): D I1BM 525" [IBM 35" U Maclntosh 3.5"

HP 48 Insights

I. Principles and Programming

William C. Wickes

Larken Publications
4517 NW Queens Avenue
Corvallis, Oregon 97330

Copyright © William C. Wickes 1991

All rights reserved. No part of this book may be reproduced, transmitted, or stored in
a retrieval system in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the
author.

First Edition

First Printing, February 1991

ISBN 0-9625258-3-9

Acknowledgements

I thank my wife, Susan, and my children, Kenneth and Lara, for their help in the
preparation of this manuscript.

Thanks also to the originators: Bill, Bob, Bob, Charlie, Diana, Gabe, Grant, Laurence,
Max, Nathan, Pat, Paul, Stan, and Ted, for converting brainstorms into bits.

Dedicated to Susan, Ken, and Lara

Author’s Note

Readers of this book who have previously read HP-28 Insights or HP 41/HP 48 Insights
may notice that there is some material here that is common to one or both of those books.
This is deliberate; HP 48 Insights was developed as a revision of HP-28 Insights just as
the HP 48 is a revision of the HP28. As the new book progressed, it became apparent that
there was too much material to be contained in a single volume. Accordingly, the book
has been split into three parts. The first of these is HP 41/HP 48 Transitions, which
contains all of the HP4I-related material that was present in HP-28 Insights plus
additional content to make that book self-contained. Part I of HP48 Insights, as its
subtitle suggests, focuses on the principles of HP48 design and various programming
methods and resources. Part 1I, to be published later in 1991, will cover more of the
integrated systems: HP Solve, unit management, plotting, statistics, etc.

Thanks to all of the readers of my books, starting with Synthetic Programming on the
HP-41C back in 1980, for their continued support and encouragement. Even in this day of
powerful desktop computing systems, there remains something special about a customizable
handheld calculator like the HP 48 that makes it fun to write about as well as to use.

William C. Wickes
January 28, 1991

1. Introduction .
The Evolution of thc HP48
About This Book

Notation

Terminology . .
Easy to Use or Easy to Learn" .

11
12
13
14
1.5

21
22
23

31
32

33

34

3.5

CONTENTS

Understanding RPN

The Evaluation of Mathematlcal Expresswns
Calculator RPN .
RPL RPN

Objects and Execution .

Operations

Objects

321

Operations as Objects 29

Execution and Evaluation

331

When are Objects Executcd" 31

Data Objects

341
3.4.2
343

344
345
3.4.6
3.4.7
3.48
349
34.10
3411
3.4.12

Real Numbers 33

Complex Numbers 34

Strings 36

3431 Concatenation 37
3432 String Comparisons 38
3433 Other String Manipulation Commands
Arrays 40

Lists 40

Binary Integers 40

Graphics Objects 42

Tagged Objects 42

Unit Objects 44

Directories 45

Libraries 45

Backup Objects 46

Procedure Objects .

351
352

353
354

Program Objects 47

Algebraic Objects 47

3521 Expression Structure 50
Lists as Procedures 51
Commands and Functions 51

38

1
1

15
16
19
21

25
25
27

WNoWLN R

30

32

47

3.6

3.7
38
39
3.10

3.55

3.5.6

Function Execution 52

3,551 Automatic Simplification 52

3,552 Symbolic and Numerical Execution; ~NUM
Symbolic Constants 56

3.5.6.1 Other Symbolic Constants 57

3.5.6.2 Evaluation of Symbolic Constants 58

Name Objects

3.6.1
3.6.2
3.63

Global Names 59
Local Names 61
XLIB Names 61

Quoted Names
Quotes in General .

EVAL

System Objects . . .
3.10.1 SYSEVAL 64

. The HP 48 Stack .
Clearing the Stack .

41
42 Rearranging the Stack ..
421 Exchanging Two Arguments 69
422 Rolling the Stack 69
423 Copying Stack Objects 70
424 How Many Stack Objects? 71
43 Recovering Arguments .
4.4 Stack Manipulations and Local Varlables
4.5 The Interactive Stack ..
4.6 Managing the Unlimited Stack
4.6.1 Stack Housekeeping 77
4.6.2 A Really Empty Stack 79
463 Disappearing Arguments 79
4.7 Design Insights . ..
. Storing Objects
51 Global Variables
511 DEFINE 86
512 Deleting and Renaming a Variable 86
513 Cancelling STO and PURGE 87
52 Directories . ..
521 Organizing User Memory 92
522 Directory Objects 93
523 Purging Multrple Variables and Directories 96
53 Ports
531 Port Varlables 97

i -

53

58

62
62
64
64

67
68
69

72
73
74
76

81

83
83

88

96

53.1.1 The LIBRARY Menu 98

53.12 Altering Port Variables 99
532 Libraries 100

53.2.1 Other Library Commands 104
533 Plug-In Ports 105
53.4 Archiving Memory 106

54 Local Variables .
5.5 Name Resolution
551 Command Line Entry 111
5.52 Executing Name Objects 112
5521 Resolution Failures 113
553 Path Names 113
5.6 Named Objects vs. Registers and Files .
5.7 Additional Global and Local Variable Operatlons .
5771 Recalling Values 116
5772 Altering the Contents of Variables 117
5721 Store Menu Commands 118
57722 Counter Variables 119
5723 PUT and PUTI 119
5724 Additional Array Commands 120
5.73 Cataloging and Finding Variables 121
5774 Moving A Variable 122
5.8 Calculator Resets
. Methods . .
6.1 The Basic Interface
6.2 Keyboard Mastery . . .
6.2.1 Keystroke Strategles 128
6.22 Navigating the Menus 129
6.22.1 Mechanics 129
6222 Content 130
6223 Exiting 132
623 ATTN 133
6.3 Hidden Operations .
63.1 No-Command-Line Key Actlons 134
6.3.2 Shift Key Meanings 134
63.2.1 Extended Actions 135
6.3.22 Store and Recall Actions 137
6.3.23 Other Hidden Shift Actions 138
6.4 Object Entry

641 Key Dcfmmons and Entry Modes 140
6.42 Controlling the Entry Mode 142

- 1ii -

109
110

115

116

123

125
125
127

133

139

6.5

6.6

6.7

6.43 ENTER in Detail 143
643.1 Comments 146
Object Editing and Viewing .
6.5.1 Viewing Objects 148
The Matrix Writer . .
6.6.1 Array Entry 151
6.6.1.1 Vector Entry 153
6.6.2 Editing Cells 154
6.6.2.1 Changing Array Dimensions 154
6.622 Stack Access 155
The EquationWriter
6.7.1 The EquationWriter Dlsplay 158
6.7.1.1 Invoking the EquationWriter 159
6.72 Basic Expression Entry 160
6.72.1 Number Entry 162
6.72.2 Names and Prefix Functions 162
6723 +,-,X 162
6.724 Division 163
6.72.5 Exponents 165
6.73 Special Forms 165
6.73.1 Square Root 165
6.732 xth-Root 166
6.73.3 Derivative 166
6.73.4 Integral 166
6.73.5 Summation 167
6.7.3.6 Where 168
6.73.7 Units 168
6.7.4 Correcting Mistakes 168
6.7.5 Stack Access 169
6.7.6 Subexpression Operations 170

7. Customization . . e e e e e e

71

72

73

Modes and Flags
711 Flag Commands 176
712 System Flag A551gnments 178
Key Assignments . .
721 Single Key Ass1gnmcnts 180
7211 An Interactive Key Assignment Program
7.22 Multiple Key Assignments 182
723 Key assignments and memory 184
Custom Menus e e e e e e .
73.1 Built-in Menus 186

v -

181

147

149

156

175
175

180

185

9.6.1
9.6.2
9.6.3

73.2 Custom Menu Object Types 186
733 Menu Key Labels and Shifted Menu Key Actions
74 Vectored ENTER e e e e e e e
741 Examples 192
. Problem Solving
81 HP Solve .
82 Symbolic Mampulatlons
83 Programs . . .
84 Summary .
8.5 User-Defined Functlons
851 User-Defined Function Structure 206
852 User-defined Functions as Mathematical Functions
853 Defining Programs 210
854 Additional Examples: Geometric Formulae 210
. Programming .
9.1 Program Basics
911 The < > Dehmlters 214
9.12 The Program Body 215
9.13 Structured Programming 216
9.2 Program Structures .« e
9.3 Tests and Flags . . .
93.1 HP48 Test Commands 223
932 Equality 223
9.4 Conditional Branches . . .
94.1 Simple Branches: The IF structure 225
942 RPN Command Forms 227
9.43 The CASE Structure 228
9.5 Loops and Iteration
9.5.1 Definite Loops 230
9.51.1 Summations 231
9.5.12 Varying the Step Size 233
9.513 Looping with No Index 234
9.5.14 Exiting from a Definite Loop 234
9.52 Indefinite Loops 235
9.521 DO Loops 236
9522 WHILE Loops 237
9523 DO vs. WHILE 238
9.6 Error Handling .

The ATTN Kcy 241
Custom Errors 241
Error Handling and Argument Recovery 242

189

207

190

195
196
197
201
203
204

213
214

219

221

225

230

239

9.7

9.8

9.64 Exceptions 243
Local Variables .

9.7.1 Comparison of Local and Global Varlables and Names

Local Name Resolution

9.8.1 Resolution Speed 253

10. Display Operations and Graphics

10.1

10.2
10.3

Controlling the Display

10.1.1 Postponing the Standard Dlsplay 257

Text Displays
Graphics Displays

10.3.1 Graphics Object Operatlons 260

10.3.2 Graphical Text 265

10.3.3 Displays on the Graph Screen 266

10.3.4 Logical Coordinates
103.5 Pixel Drawing 270

10.3.5.1 Off-Screen Coordinates 274

11. Arrays and Lists

111
11.2
113
114

11.5

11.6
11.7

Arrays .
Arrays and Algebralc Ob_]CCtS

269

Vectors and Coordinate Systems
113.1 Coordinate Systems 284

1132 Example: Coordinate Transformations

Lists

114.1 List Operatlons 290
List Applications .
11.5.1 Input Lists 294

11.5.1.1 Index List Arguments

11.5.2 Output Lists 296

295

11.5.3 Lists of Intermediate Results 296
Composite Objects and Memory

Symbolic Arrays
1171 Utilities 301

11.7.2 Symbolic Array Arithmetic 305
11.7.3 Determinants and Characteristic Equations 307

12. Program Development

12.1

12.2

Program Editing

1211 Low Memory Edltmg Strategles 312

Starting and Stopping .

1221 ATTN, DOERR and KILL 315

12.2.2 Single-Stepping 316

288

245

249

255
256

258
260

277
271
281
282
289

293

299
301

311
311

313

123 Debugging
12.4 Program Optimization
12.5 Memory Use

12.5.1

Using BYTES 327

12.6 Obtaining Input.

12.6.1

12.6.2
12.6.3
12.6.4

Halting for Input 329

12.6.1.1 Verbose Prompts 332
12.6.1.2 Prompting with Menus 333
Protected Entry. 335

Using INPUT. 335

Keystroke Input 339

12.64.1 KEY 339

12.6.42 WAIT 341

12.6.43 ATTN 341

12.6.44 An Input Programmmg Example 341

12.7 Displaying Output

12.71

Tagged Objects 345

12.8 Programs as Arguments
129 Timing Execution

129.1

Erratic Executlon 351

12.10 Recursive Programming
12.11 Additional Program Examples e
12.11.1 Random Number Generators 354

12.11.1.1 Poisson Distribution 354
12.11.1.2 Normal Distribution 356

12.11.2 Prime Numbers 359
12.11.3 Simultaneous Equations 361
12.11.4 Infinite Sums 364

Program Index

Subject Index

12.11.4.1 Sine Integral 365
12.114.2 Cosine Integral 366
12.11.43 Sum Programs 368

317
323
326

329

344

349

352
354

371
373

1. Introduction

The HP 48 is a unique calculator. No other handheld device can match its combination
of mathematical capability, customizability, and extensibility. It uniqueness, however,
means that it contains facilities and uses methods that are new and special to it, making
it in many respects a challenge to learn to use effectively. If you are a new user of the
HP 48, you may well be a little overwhelmed or even intimidated by the sheer extent of
the HP 48’s capabilities. You might also imagine that it will take you a long time to
master the calculator. Fortunately, this shouldn’t be true. Running throughout the
HP 48’s feature set and methodology are a few common themes and principles; under-
stand those and you will find it easy to assimilate and use each new calculator operation
that you study.

There are, of course, many different approaches to teaching the use of a device like the
HP48; no one approach is best for everyone. One method is to teach everything by
example, and trust that the underlying principles will become apparent. This is the style
of the HP 48 owners’ manuals, which works quite well for many people. In this book we
will take a different tack and start with the principles, with examples to illustrate the
principles. We believe that a clear understanding of those principles helps you under-
stand the examples and extrapolate them more easily to problems for which you don’t
have explicit examples.

For example, here’s how you add two numbers on the HP 48:
1. Key in the first number.
2. Key in the second number.
3. Press .

If you’re familiar with traditional HP scientific calculators, you will recognize this as the
standard “RPN” keystroke sequence for addition. If you have only used so-called “alge-
braic” calculators, the sequence may seem a little awkward--but we’ll postpone explana-
tion and justification to Chapter 2. The principle involved is the application of a func-
tion, in this case +, to arguments that appear on a “stack” of such arguments; the
function’s result replaces its arguments on that stack. The specific example here shows
how two ordinary real numbers are added--once you’ve learned this sequence, you
immediately know also how to add, for example, two complex numbers or two vectors.
Just take the above instructions and substitute “complex number,” or “vector,” every-
where you see “number.” You follow the same logical sequence, and press the same
key, for all of the kinds of addition that the HP 48 provides. This consistency and uni-
formity runs through all HP 48 operations.

1.0 Introduction

When we use the term HP 48, we are including the HP 48SX and any other HP 48 calcu-
lators that share a common package and operation with the HP48SX. Successful
Hewlett-Packard calculators in the past have often developed into families of several cal-
culators with the same number, such as the HP41C, HP 41CV, and HP 41CX. For the
sake of simplicity and generality, we will generally not use the trailing letters of a
calculator’s name unless referring to a specific model.

1.1 The Evolution of the HP 48

In 1972, Hewlett-Packard introduced the HP 35, an “electronic slide-rule” that revolu-
tionized the world of numerical calculations. It offered high-precision arithmetic, loga-
rithmic, and trigonometric functions at the press of a key, obsoleting slide-rules and
thick function tables. The HP35 was followed by numerous similar products, from HP
and from other manufacturers, that expanded on the HP35 theme by offering more
functions and more data storage registers.

A second generation of calculators was started by the HP65, the first programmable
calculator. This calculator allowed you to customize it by creating programs, in effect
extending the built-in command set. Like the HP35, the HP65 was followed by
numerous variations on the programming theme, including handheld computers pro-
grammable in BASIC. Perhaps the most successful of these was the HP 41 family, start-
ing with the HP 41C in 1979, which quickly became the standard among engineering cal-
culators. The HP 41’s ten-year lifetime, remarkably long in this era of rapid changes in
computing technology, resulted from its powerful combination of built-in functions, cus-
tomizability, and extensibility--the same virtues we extolled above for the HP 48,

The HP 41 and all of the other first- and second-generation calculators share two com-
mon limitations. First, they are optimized only for dealing with real floating-point
numbers. Some calculators allow you to work with character strings, complex numbers,
and/or matrices, but typically each additional data type has its own special commands or
working environment, requiring you to learn new calculation methods and making it
hard to combine different data types in the same calculation. Second, none of these cal-
culators allow you deal with programs as unevaluated mathematical quantities. For
example, you can write programs to calculate @ +b, and ¢ +d, but there is no way for
you to manipulate the program results to produce a new result like @ +b +¢ +d except
by running the programs to produce numerical results, then combining the numbers.

A third generation of calculators was born with the advent of the HP28C in 1987. The
first generation was characterized by the application of built-in functions to real
numbers. The second generation added extension of the built-in function set by user
programs. The HP28C made a major leap in calculator technology by making the pro-
grams themselves subject to logical and mathematical operations. In short, the HP 28C

.2-

Introduction 1.1

is the first symbolic calculator--on which calculations can be represented as unevaluated
expressions and programs, to which you can apply the same operations that you can
apply only to numbers on other calculators. Moreover, the HP 28C allows you to work
with a variety of data types, including the strings and matrices mentioned above, using
exactly the same logic and keystrokes that you use for ordinary numbers. The most
important of these new data types is the algebraic object. You can, for example, enter
algebraic objects that represent @ +b and ¢ +d symbolically, then press the key to
return the new symbolic result @ +b +c¢ +d. The variables do not have to have numeric
values before you can add them. Most HP28C mathematical functions, in fact, can
accept symbolic inputs and return symbolic results. Not only does this mean that you
can perform symbolic algebra, and even calculus, right on the HP28C, but at a stroke,
much of the work of programming disappears. These capabilities represent such a
dramatic advance over previous calculator technology that they merit the description
“third generation.”

The HP35 introduced a standard “user-interface” called RPN (short for Reverse Polish
Notation), that has been the hallmark of HP calculators ever since. RPN calculators are
organized around a stack of number registers, using a last-in-first-out logic that is
optimal for key-per-function operation. Throughout the evolution of HP calculators
from the HP35 up through the HP 41, that standard RPN interface remained virtually
unchanged. If you were familiar with one HP calculator, you could pick up any other
and use it right away--that is, until the advent of the HP28C. The HP28C succeeded in
preserving the advantages of RPN while making important changes to generalize the
interface to handle the HP28C’s wealth of new data types, most particularly including
variables and expressions for symbolic mathematics.

The HP28C’s advances in calculation ability were so compelling that the calculator was
very popular despite a severe handicap--a small memory that made it impractical to use
the calculator for anything but modest-sized computations and programs. This defi-
ciency was corrected in a new HP 28 model, the HP 28S, introduced in January, 1988.
The first public appearance of HP28S calculators were special models built to com-
memorate the 100th anniversary of the American Mathematical Society, delivered at the
joint annual meeting of the AMS and the Mathematical Association of America. This
was a highly appropriate forum for the introduction, because of the profound impact the
HP28C was having on the mathematics education community. Driven by students and
imaginative educators, with whom the HP 28 was an instant hit, the HP28S is now a
standard teaching tool at many universities.

Although the HP28 was quite successful in engineering and scientific disciplines, it is
fair to say that it did not have as dramatic an impact in those fields as in mathematics.
This is partly due to the earlier success of the HP 41 with technical users, since they
were accustomed to the extensibility provided by the HP 41’s plug-in memory ports and

-3-

11 Introduction

consequently less ready to switch to a calculator that lacked that feature. The HP 41’s
utility was greatly enhanced by the availability of a large amount of professional and
amateur software, which could be loaded into the calculator by several automated
methods. A similar software base never developed for the HP 28, since its only program
entry method is the keyboard.

The HP 48SX, introduced in March, 1990, is a direct descendent of both the HP 41 and
the HP28. Normally, the numbers associated with HP calculators have little signifi-
cance, but it is hard not to notice that the number 48 itself is a cross between 41 and 28.
From the HP 41, the HP 48SX inherits:

¢ Plug-in memory ports.

e I/O capability (the HP 41 used HP-IL; the HP48SX uses a serial communications
that is a standard on personal computers).

¢ A redefinable keyboard.

e The “vertical format” keyboard layout that is convenient for handheld operation.

The HP 28 contributed:

o Extensive real and symbolic mathematical capabilities.

e The operating system and user language.

o Plotting and a graphics display.

e The menu key system.

The HP48SX also benefited from users’ reaction to the HP28, adding the most-
requested features missing from the HP 28:

o A bigger display.

e More graphics and plotting features.

¢ Bi-directional infrared I/O, especially for importing or saving software.

e Symbolic integration, beyond the Taylor’s polynomials method used on the HP 28.

e More “help” from the calculator in using some of its more complicated features.
Some of these features evolved into major HP 48 systems that considerably exceeded the
scope of a straightforward evolution from the HP41 or the HP28. For example, the
HP 48 EquationWriter was an outgrowth of a need to improve the HP28s mechanism

for setting up numerical integration problems. The EquationWriter obviously satisfies
that need, but has much broader application that just for integration problems.

Introduction 1.1

Similarly, both the HP 41 (through plug-in programs) and the HP 28 contain some physi-
cal unit conversion capability, but the HP 48’s unit management system is enormously
more flexible, powerful, and usable than that of its predecessors.

In the matter of programming language, no simple convergence of the HP41 language
and the HP 28 language was possible. Although using the HP 41 language in the HP 48
would have made the HP41 software base available for the new calculator, that
language was stretched to its limit already by the HP41 itself, and it is not capable of
supporting the symbolic calculations that are the heart of the HP28. Consequently, the
HP 48 follows the HP 28 design--the HP 48 operating logic and programming language
are effectively a superset of those of the HP28. Computer languages are known for
their whimsical names; the HP 28/HP 48 language is no exception, with the name RPL,
which stands for Reverse Polish Lisp. This name suggests its HP48’s derivation from
HP calculators (and from FORTH, another computer language that uses reverse Polish
logic), and from the computer language LISP, which is frequently used in computer
symbolic mathematics systems. Note that the HP 41 language was never given a name,
so many people call HP41 programming “RPN programming,” which is unfortunate
since, properly speaking, RPN is a mathematical logic that is not specific to any calcula-
tor or computer.

1.2 About This Book

The HP 48 naturally comes with an Owner’s Manual that covers most of the calculator’s
features in varying levels of detail. A Programmer’s Reference Manual is also available,
which presents detailed information on individual commands. HP48 Insights is not
intended to supplant those books, but to supplement them. As stated earlier, Insights
will concentrate on the principles and themes of HP 48 operation, and provide a depth
of analysis that is not possible in a comprehensive in-box manual.

We also hope to provide a little more motivation, and some more elaborate examples.
By motivation, we mean the purpose and use of many of the operations, and the con-
nections between various features of the calculator. The scope of the HP 48 is so broad
that we cannot show you how to use it for every imaginable problem, but we can try to
help you understand it enough to solve your own problems. We delve quite deeply into
the HP 48’s principles of operation, with the expectation that if you know the principles,
you will learn and remember keystrokes and methods much more easily.

We assume that you have read the HP48 Owner’s Manual enough that you at least
know how to perform simple keystroke calculations, enter various object types, and find
a command in a menu. In some cases, where there are crucial ideas that we want to
communicate, we will show some actual keystroke sequences and certainly repeat some
material that is in the HP manuals. But for the most part we will assume that you know

-5-

1.2 Introduction

the rudiments of HP 48 operation so that we can concentrate on ideas and connections.

HP48 Insights Part I breaks roughly into two main sections. In the first section,
Chapters 1 through 7, we discuss primarily the principles and concepts of HP 48 opera-
tion, starting with the mathematical ideas that underlie the HP 48’s use of Reverse Pol-
ish Notation and the object stack, and finishing with a review of keyboard techniques
and customization features. The second section, Chapters 8 through 12, is an extended
discussion of HP 48 programming, beginning with a review of general problem solving
techniques, continuing with a study of the structures and objects central to program-
ming, and concluding with topics in program development.

The following summarizes the chapter topics:

Chapter Topics
1. Introduction Introductory material, notation conventions.
2. Understanding RPN The theory of RPN, and its electronic
implementation.
3. Objects and Execution Operations, objects, execution and evalua-

tion, quotes.

4, The HP 48 Stack Stack operations, recovering arguments, the
interactive stack.

5. Storing Objects Creating, storing, recalling, evaluating and
purging variables; directories; port vari-
ables; libraries; name resolution; calculator
resets.

6. Methods HP 48 keyboard design and methodology;
hidden operations; object entry and editing;
the MatrixWriter; the EquationWriter.

7. Customization Modes and flags; user key assignments;
custom menus; vectored ENTER.

8. Problem Solving Introduction to HP 48 problem-solving
methods; user-defined functions.

Introduction 1.2

9. Programming The principles of program objects; tests
and flags; conditional branches; loops;
error handling; local variables.

10. Display Operations and The text and graphics screens; graphics

Graphics objects; displaying text and graphics; pixel
drawing.
11. Arrays and Lists Arrays; coordinate systems; lists and their

applications; symbolic arrays.

12. Program Development The art of program construction; editing
and debugging; starting and stopping;
optimization; input and output; programs
as arguments; recursion.

You may find the early chapters occasionally to be heavy going, with their emphasis on
theory and terminology. Nevertheless, we recommend that you read those chapters
through at least enough to insure that you have a grasp of the definitions and terms that
we introduce there, which are used throughout the second part of the book. In particu-
lar, the concepts of operations, objects, execution, and evaluation, described in Chapter 3,
are used extensively in all of the material that follows.

The presentation of the book’s subject matter is not necessarily linear. That is, we often
make use of or refer to concepts or techniques that are not explained until later sec-
tions. For example, in Chapter 4 there are listings of some elaborate programs that are
relevant to the material under discussion. The programming methods used in the pro-
grams are not described until later chapters. Furthermore, wherever possible, examples
that illustrate a concept are chosen to have practical uses as well. This often requires
combining more techniques into an example than just the one currently being studied.
To alleviate this kind of problem, we include many cross-references between the sec-
tions, and a subject index. And, of course, you are encouraged to jump around in your
reading. When you read about error-trapping in section 9.6, you should go back and
look at the program XARCHIVE in section 5.3.4 to see how it deals with errors.

Part I of HP 48 Insights touches only lightly on or omits altogether major HP 48 features
such as HP Solve, symbolic mathematics, and automated plotting. These topics and the
other integrated systems or applications are left for Part II. The use of all of those sys-
tems is greatly enhanced by programming, so we choose to present programming first,
as a foundation from which to explore the rest of the HP 48’s capabilities.

13 Introduction

1.3 Notation

In order to help you recognize various calculator commands, keystroke sequences, and
results, we use throughout this book certain notation conventions:

e All calculator commands and displayed results that appear in the text are printed in
helvetica characters, e.g. DUP 1 2 SWAP. When you see characters like these, you
are to understand that they represent specific HP 48 operations rather than any ordi-
nary English-language meanings.

o Italics used within calculator operations sequences indicate varying inputs or results.
For example, 123 'REG’ STO means that 123 is stored in the specific variable REG,
whereas 123 ‘name’ STO indicates that the 123 is stored in a variable for which you
may choose any name you want. Similarly, << program >> indicates an unspecified
program object; { numbers } might represent a list object containing numbers as its
elements.

Italics are also used for emphasis in ordinary text.

e HP 48 keys are displayed in helvetica characters surrounded by rectangular boxes,
eg , , or [EEX]. The back-arrow key looks like this: , and the cur-
sor keys like these: [],[=],[A], and [V].

o A shifted key is shown with the key name in a box preceded by a left- or right-shift
key picture, or , €.g. , Or . A shifted key is identified by
the orange or blue label above the key, rather than the label on the key itself-{<]
rather than .

e Menu keys for operations available in the various menus are printed with the key
labels surrounded by boxes drawn to suggest the reverse characters you see in the
display, like these: ESIGNE or E-LISTE .

Examples of HP 48 operations take several forms. When appropriate, we will give step-
by-step instructions that include specific keystrokes and show the relevant levels of the
stack, with comments, as in the following sample:

Keystrokes: Results: Comments:
123 456 1: 579 Adding 123 and 456

returns 579 to level 1.

For better legibility, we don’t show individual letters and digits in key boxes--we just

-8-

Introduction 1.3
show 123 rather than [1][2]1[3], and ABC rather than [«][«]J[A][B][C]. Key boxes
are used for multi-letter keys on the keyboard and in menus.

In some cases, a printed listing of the stack contents isn’t adequate, so we use an actual
HP 48-generated picture of the calculator display, such as this picture from Chapter 6:

RAD 2
HOME TEST } 01/19/91 0B:24:27P

3. 14159265357

i
4z
3:
z: (1,2)
I: ' (4720 | (%=5)
[F-HAT[4HAT] | [APPLY]GUOT |

A large number of the examples, however, are given in a more compact format than the
keystroke example shown above. These examples consist of a sequence of HP 48 com-
mands and data that you are to execute, together with the stack objects that result from
the execution. The “right hand” symbol r= is used as a shorthand for “the HP 48
returns...” In the compact format, the addition example is written as

123 456 + = 579

The = means “enter the objects and commands on the left, in left-to-right order, and
the HP 48 will give back--return--the objects on the right.” If there are multiple results,
they are listed to the right of the = in the order in which they are returned. For exam-

ple,
A B C ROT SWAP = B A C

indicates that B is returned to level 3, A to level 2, and C to level 1.

Because of the flexibility of the HP48, there are usually several ways you can accom-
plish any given sequence, so we often don’t specify precise keystrokes unless there are
non-programmable operations in the sequence. If there are no key boxes in the left-side
sequence, you can always obtain the right-side results by typing the left side as text into
the command line, then pressing [ENTER] when you get to the = symbol.

The 7 symbol is also used in the stack diagrams that are part of most program listings.
The stack diagrams show how to set up stack objects for execution of the program,

Introduction

where the objects to the left of the = are the “input” objects, and the objects following
the = are the program outputs.

The most elaborate “examples” in this book are programs. Each program is listed in a
box that includes a suggested program variable name, a stack diagram, the actual steps
that make up the program, and comments to help you understand the steps. The follow-
ing sample listing illustrates the various features of the format:

SAMPLE Sample Program Listing checksum
level 3 level 2 level 1 | level 1
"string" [matrix] n o [marrix')
< A B - ab Start of program.
<< Start of local variable procedure
IF CD Start of IF structure.
THEN 1 2 = n m
<< Start of local variable procedure.
START E F Start of definite loop.
DO G UNTIL H END DO loop.
NEXT End of definite loop.
>> End of local variable procedure.
ELSE | J
END End of IF structure.
> End of local variable procedure.
> End of program.

The name of the program (SAMPLE) is listed first, followed by an expanded ver-
sion of the name that is descriptive of its purpose. When you have entered the
listed program, you should store it in a variable with the specified name. If no
name is given, the program is just intended to illustrate some point in the text, and
there’s no need to give it any particular name.

The program’s checksum is listed at the end of the name line, as a four-digit hexa-
decimal number. If you enter the program into your HP 48, you can verify that
you have entered it correctly by comparing the listed checksum with the value
returned by BYTES (section 12.5.1) for your program.

Below the program name is a stack diagram, that specifies the program’s input and
output on the stack. The program arguments are shown to the left of the =, and
the results to the right. In the example, the stack diagram indicates that the pro-
gram requires a string in level 3, a matrix in level 2, and a real number n in level
1, and returns a new matrix in level 1. The object symbols in the stack diagram
are as descriptive as possible, showing not only the required object type but also

-10-

Introduction 1.3

the conceptual purpose of the objects. A stack diagram
length width height = volume

shows that a program takes three real numbers (no object delimiters) representing
length, width, and height, and returns another real number that is the volume.

4. The program listing is broken into lines, where each line has one or more pro-
gram objects listed at the left, and explanatory comments on the right. There may
be just one object on a line, or several whenever the collective effect of the objects
is easy to follow. You do not have to use the same line breaks (or any at all)
when you enter the program.

5. Lists, embedded programs, and program structures start on a new line unless they
are short enough to fit entirely on one line. More frequently, each program or list
delimiter or structure word starts a new line. The sequences between the struc-
ture words are indented, so that the structure words stand out. In the case of
nested structures, each structure word of a particular structure is lined up verti-
cally at the same indentation from the left margin. (The structure word — does
not start a new line, but the local variable defining procedure that follows the -
does start a new line.) Note that when you edit a program on the HP 48, the pro-
gram display follows these same conventions, within the limitation of the 22-
character display or printer width.

6. The comments at the right of the listing describe the purpose or results of the
program lines at the left. If you are creating a program using a personal com-
puter text editor, you can include similar comments in your program, setting them
off from the program objects using the @ delimiter (section 6.4.3.1). An espe-
cially useful “comment” is a description of the contents of the stack that are
obtained after the execution of a program line. In our listings, the stack contents
are distinguished from ordinary comments by enclosing the stack objects between
| | symbols. The leftmost object in the series is in the highest stack level; the
rightmost is in level 1. Thus

la b ¢ d]
indicates that the object a is in level 4, b in level 3, ¢ in level 2, and d in level 1.
We recommend that you use similar conventions when developing and recording your
own programs. Whether you write programs out by hand and type them into the HP 48,
or use a personal computer to write programs and transfer them to the HP 48 via the

serial port, program stack diagrams and comments are invaluable for later understand-
ing and modification of the programs. Of course, there will be many occasions when

-11-

1.3 Introduction

you create a program directly in the HP 48 command line without benefit of any pro-
gram listing. In these cases, we still recommend that you afterwards make a listing, or
copy the program to a personal computer file, so that you can recover the program if
you lose it for any reason.

1.4 Terminology

Finding useful terminology to describe a computer system like the HP 48 with new or
unusual features can be a substantial problem. We have to use existing English words
that are close to the meaning we wish to convey, but the dictionary definitions of the
words usually differ from their meanings as applied to the HP48. Consider the word
object: for the HP 48, object means any of the mathematical or logical elements that con-
stitute the data and procedural building blocks of the RPL language, but you won’t find
that meaning in a dictionary (although it is close to the definition used in mathematics).

Our solution to this difficulty is to provide precise definitions of any terms that we use
that are specific to the HP 48, and then use those definitions consistently throughout. In
some cases, the definitions we offer may differ from those used in the HP 48 manuals,
usually because we need more careful definitions to get across a particular point. For
example, the owners’ manuals do not make a distinction between execute and evaluate.
We find that such a distinction is useful (section 3.3) because it simplifies the descrip-
tions of related subjects, such as the nature of global name objects (section 3.6.1).

Two other important terms that arise frequently are mode and environment. A mode is
a calculator setting, often associated with one or more flags (section 7.1), that deter-
mines how a particular keystroke or command will behave. For example, in polar mode,
complex numbers and vectors are displayed in polar coordinates rather than the usual
rectangular coordinates. An environment is a glorified mode, which determines the
entire calculator interface, including the display, key actions, and available operations.

The “home base” for the HP 48 is the standard environment. In this environment, the
display shows the status area, stack, and menu key labels. All keys are active, with their
ordinary labeled definitions. If you press , the HP48 switches to the plot
environment. Here the display is devoted to a graph or other picture, the menu keys are
restricted to a menu of plotting operations, and the remaining keys are either assigned
additional plot actions or are inactive altogether. Pressing returns to the standard
environment. Other environments include the EquationWriter, the MatrixWriter, and
the equation and statistics matrix catalogs.

While introducing and using this kind of specialized terminology, at the same time we

will be using an informal style that takes some liberties with the language to avoid
unnecessarily stilted descriptions. “You are in the program branch menu” is almost a

-12-

Introduction 14

non-sequitor when taken out of context, but it reads more easily than “the current
HP 48 menu is the program branch menu,” and its meaning is clear.

1.5 Easy to Use or Easy to Learn?

It would be nice if you could pick up the HP 48 and use all of its facilities without ever
referring to a manual. A common criticism of the HP 48 is that it takes a long time to
master, particularly by comparison with other recent HP calculator products such as the
HP17B and the HP19B, and with some of the simpler function-plotting calculators
made by other manufacturers that have become popular in mathematics education at
the pre-calculus level. But these calculators obtain their ease of learning by having very
limited computational capabilities and flexibility compared to the HP48. If your prob-
lem “fits” on one of these other calculators, then it is easy to use as well as easy to
learn. But if you want to do something just a little different, you will find that “easy to
learn” translates to “impossible to use.”

The HP48 approach is to provide a broad, very flexible set of computational capabili-
ties, many of which have never before been available on a handheld calculator. Further-
more, it is expressly designed for “linking” calculations together--the results of one cal-
culation are always ready to be used as input for another, even if you didn’t know in
advance that your work would proceed that way, and even if the calculator designers
didn’t expect you to make that particular combination of calculations. These ideas are
what the HP 48 means by “ease-of-use.”

“Ease-of-learning” is a different story. Unfortunately, the HP48’s rich capability set
doesn’t leave enough built-in memory to provide “no-manual” learning. And there’s no
doubt that the HP48 does work differently from other calculators, even from its RPN
calculator predecessors like the HP41. You have no choice but to spend some time
reading the manuals and learning new procedures. But learning the basic ideas doesn’t
take long, and once you master them, a wide range of truly easy-to-use calculating capa-
bilities is available to you.

-13-

2. Understanding RPN

The HP-48, like most of its Hewlett-Packard calculator predecessors, presents a user
interface centered around a logic called “RPN,” short for Reverse Polish Notation. If
you are unfamiliar with this logic, particularly if you are accustomed to so-called “alge-
braic” calculators, RPN may seem awkward and unfamiliar. In this chapter, we will
explain how RPN works, and why its virtues make it the choice for the HP-48.

Many people use a calculator in a style that you might call “fingers in, eyes out.” That
is, they manually type in all of the data for a calculation and read out the result visually
from the display, perhaps writing it down on paper. For this type of use, a calculator
that uses “algebraic” entry seems desirable, because in at least simple cases the key-
strokes follow more-or-less the order of common written mathematical notation.

The algebraic style, however, is not well suited for exploratory calculation, where you
don’t necessarily know what to do next until you see the results of previous
calculations--and you need those results as part of the next calculation. When you press
an algebraic calculator’s [=] key to complete a calculation, you had better be sure that
you’re finished, because the result you see in the display may vanish at the next keys-
troke.

The choice and design of an RPN system for a calculator arises from consideration of
one central principle:

o The result of any calculation, no matter how complicated, may be used as an input for
a subsequent calculation.

RPN calculators are designed to embody this principle, by providing a mechanism (the
“stack”) whereby you can apply mathematical operations to data already entered into
the calculator. The results of the operations are also held indefinitely, so that they, in
turn, can be the input data for subsequent operations.

In the calculator world, the term Reverse Polish Notation, or more specifically, the
abbreviation “RPN,” has come to mean “the way HP calculators work.” RPN actually
is a mathematical notation; HP calculators provide an electronic implementation of the
notation. In RPN, mathematical functions are written after their arguments, not before
or between the arguments as in ordinary written expressions. The notation appears
strange, because we are not used to visualizing or writing expressions this way. How-
ever, when you actually evaluate an expression to a numerical value using pencil and
paper, you must revert to an order of operations that exactly corresponds to RPN. We
will illustrate this point by examining how mathematical expressions are evaluated.

-15-

2.1 Understanding RPN

2.1 The Evaluation of Mathematical Expressions

A mathematical expression is an abstract representation of the calculation of a single
value. An expression combines data (numbers or other explicit quantities), variable
names, and functions. When you evaluate an expression, you perform all of the calcula-
tions represented by the expression. Examples of expressions are:

1+2

x+y+2
sin[In(x +2)]
x*+4x? - 6x+2

We will confine our attention to expressions that can be formed from the mathematical
functions included in the HP-48: arithmetic operations, powers, roots, transcendental
functions, etc. Expressions like these have the property that they are equivalent to a sin-
gle value. That is, if you perform the calculations represented by an expression, you end
up with a single value as the result.

In our discussions, we will be using the following terms:

o A function is a mathematical operation that takes zero, one, or more values as input,
and returns one value.

e A value used by a function as “input” is called an argument.
o A value returned by a function as “output” is called a result.

e A mathematical variable is a symbol that stands for a value. Evaluating a variable
replaces the symbol with the value.

o Algebraic syntax is the set of rules that governs how data, variables, and functions
may be combined in an expression.

As an example of these concepts, consider the following expression:
sin[123 + 451n(27-6)]

The expression contains the functions sin, In, +, —, and X (implied multiply between
the 45 and the In), and the numbers 123, 45, 27, and 6. The expression is written in
common mathematical notation, but notice that the order in which you read or write the
expression, i.e., left to right, does not correspond very well to the order you would use if
you were actually going to evaluate the expression with pencil and paper and function
tables. For example, although the In function precedes the quantity (27-6), you can’t
actually compute (or look up) the logarithm until after you have computed the difference

-16-

Understanding RPN 2.1

27-6. Similarly, the sin, which is the first function that appears in the expression, is
actually the /ast that you will execute. You can not compute the sine until the entire
rest of the expression [123 + 451n (27~ 6)] is evaluated.

The common mathematical notation that we are using here has been developed over the
centuries to present a readable picture of a mathematical expression that takes advan-
tage of a human’s ability to view an entire expression at once and draw conclusions from
its structure. But the notation is not a very good prescription for actually evaluating an
expression--as you step through a calculation, you have to jump back and forth, match
parentheses, etc. to find the next step. As we will show now, converting an expression
into an orderly procedure for evaluation leads directly to RPN. First we’ll adopt a uni-
form structure that treats all functions alike, then we’ll turn it around to match actual
calculation order.

Common notation is not uniform because the notation differs for one-argument and
two-argument functions. In our sample expression, the one-argument functions sin, In,
and cos, are written in front of their arguments (“prefix” notation), whereas the two-
argument functions + and — are written between their arguments (“infix”). Further-
more, there is an implied multiply between the 45 and the In that is not explicitly writ-
ten. Infix notation also leads to ambiguity. For example, does 1+2X3 evaluate to 9 or
7? You either have to introduce extra parentheses, e.g. (1+2)X3 or 1+(2X3), or use
so-called precedence conventions that specify which functions are executed first in ambi-
guous situations. One of the drawbacks of non-RPN calculators is that there is no
universal standard for precedence, so you have to memorize the precedence rules of
each calculator you use.

A general-purpose form for functions is to write each function name followed by its
arguments contained in parentheses, as in f(x), g(xy), etc. You can make expressions
more uniform by writing all of its functions in this prefix form:

sin(+ (123, X (45,1n(- (27,6)))))
In this notation, +(1,2) means “add 1 and 2”; X (1,2) means multiply 1 by 2; etc.

Writing expressions this way is called Polish notation, honoring the Polish logician, Jan
Yukasiweicz. Unfortunately, this notation appears practically unintelligible to people
accustomed to conventional notation. But it does show explicitly the hierarchical struc-
ture of the expression, which we will discuss later (section 3.5.2.1). Also, it is useful
because it is a step towards RPN. That is, you can obtain a form that corresponds more
closely to the actual order of evaluation of an expression by rewriting the Polish form so
that the function names follow their arguments’ parentheses. For example, rewrite
+(1,2) as (1,2)+. The example expression now becomes:

-17-

2.1 Understanding RPN

((123, (45, ((27,6) -)In) X) +)sin

You have replaced Polish notation with Reverse Polish Notation. In this form, the
expression represents a step-by-step evaluation prescription for pencil-and-paper or elec-
tronic calculation, that follows the left-to-right order of the expression. To see this, con-
sider an orderly pencil-and-paper method for evaluation:

e Start at the left of an RPN expression, and work to the right.
e When you come to a number, write it down below any previous numbers.
o When you come to a function, compute its value using the last number(s) you wrote

as its arguments. Erase the argument number(s), and then write the function value.

Apply this procedure to calculate the example expression (keeping two decimal place
accuracy):

Object What to do What you see
123 Write 123 123

45 Write 45 123
45

27 Write 27 123
45
27

6 Write 6 123
45

27

6

- Subtract 6 from 27 123
45
21

In Find In(21) 123
45
3.04
X Multiply 45 and 3.04 123
137.00

-18-

Understanding RPN 2.1

+ Add 123 and 137.00 260.00

sin Take the sine of 260° -.98

There are two things you can notice from this exercise:

e Whenever you encounter a function, you can execute it immediately because you
have already calculated its arguments.

e You can ignore parentheses. When you write an expression in RPN form, you don’t
need parentheses, because there is no ambiguity of precedence--functions are always
executed left-to-right.

The latter point means that you can eliminate parentheses from the notation. Doing so,
the example becomes:

123 45 27 6 - In X + sin

2.2 Calculator RPN

An RPN calculator allows you to substitute an electronic medium for paper. The
calculator’s key is the equivalent of “write it down” in paper calculations. You
“write” a number by pressing the appropriate digit keys, then , which terminates
digit entry and enters the number into the calculator’s memory. The memory takes the
place of paper.

For cases where you need to have more than one number written down at a time, calcu-
lator memory is organized into a “stack.” You can visualize the stack as a vertical
column of numbers, where the most recently entered numbers are at the bottom of the
column, and the oldest numbers at the top. Each new entry “pushes” previous entries
to higher stack levels. A function always operates on the latest stack entry or entries,
and replaces those entries with its result, where it is ready for use by the next function
to come along. If one or more entries are removed from the stack, older entries drop
down to fill in the vacant levels. Again, this is quite analogous to the pencil-and-paper
technique you used in the example.

To illustrate calculator RPN, redo the previous example on the HP-48. Start by setting
the numerical display mode for two decimal places:

-19-

2.2 Understanding RPN

Keystrokes: Stack:
2EFIXE
123 1: 123.00
45 2: 123.00
1: 45.00
27 3: 123.00
2: 45.00
1 27.00
6 4: 123.00
3: 45.00
2: 27.00
1: 6.00
= 3: 123.00
2: 45.00
1: 21.00
3: 123.00
2: 45.00
1: 3.04
2: 123.00
1: 137.00
1: 260.00
SN 1: -0.98

Note how

a. each number entered goes into level 1, raising the preceding numbers to higher
levels;

b. each function removes its argument or arguments from the stack, and returns a
new result to the stack.

Understanding RPN 2.2

Here you can see how a stack provides for the realization of the principle stated at the
start of Chapter 2, namely, that every result can be an argument. The stack acts as cen-
tral exchange, where each function expects to find its arguments. Since each function
also returns its results to the stack, those results are automatically ready to be used as
arguments for the next function.

2.3 RPL RPN

Prior to the introduction of the HP-28C in 1987, RPN calculators provided only a lim-
ited form of RPN in which the stack was limited to four levels. This implementation is
adequate for many calculations, but has certain shortcomings:

¢ You can’t routinely convert any expression into RPN, then execute it left to right.
Instead, you have to study the expression, looking for ways to avoid piling up more
than four stack entries at a time.

e Some calculations intrinsically require more than four entries, no matter how clever
you are. This means that you have to save one or more intermediate results in
storage registers, then recover them later for further stack operations.

A four-level RPN stack is a restriction quite analogous to the limit in most “algebraic”
calculators on the number of parentheses that you can nest in a calculation. Such limits
are an even greater nuisance than the stack level limit, since algebraic entry does not
lend itself well to passing the results of one calculation on to another.

The RPL system employed by the HP-28 and the HP-48 is a thorough implementation
of RPN, in which the number of stack levels is not fixed. The stack grows and shrinks
as needed. The unlimited stack allows you to concentrate on the results of a calculation
without requiring extra mental effort to rearrange it to fit the constraints of a four-level
stack. Furthermore, the stack is a stack of general objects, not just of ordinary
numbers, so that calculations with extended objects such as matrices can be performed
in the same style as simple numerical calculations.

An important example of the multi-object-type stack is RPL’s ability to intermix expres-
sions, entered in algebraic form, with RPN operations. This ability is provided through
the use of algebraic objects, which are representations of expressions that you can enter
into the stack as entire units. We discuss algebraic objects in more detail in later sec-
tions of this book; for now, you can consider them as the means by which you can calcu-
late with algebraic notation.

In section 2.1 we showed how RPN is derived by considering the manner in which

expressions are actually evaluated. However, we do not mean to imply that a com-
pletely RPN approach is always the most convenient method of calculation. In fact, to

_21-

23 Understanding RPN

evaluate certain expressions like our example sin[123 +45In(27-6)], it is arguably
simpler to key in the expression in a manner that corresponds as nearly as possible to
the written form, than to figure out the more efficient RPN keystrokes. RPN is most
useful for exploratory calculation, when you’re not merely evaluating a predetermined
expression. RPL allows you to have the best of both worlds, by combining algebraic and
RPN logic as follows:

o If you know in advance the complete mathematical form of a calculation, enter it as
an algebraic object.

o If you are working out the solution to a problem, and don’t know in advance all of
the steps, work through the problem with an RPN approach, applying functions to
the results as they appear.

¢ In both cases, the results are held on the stack ready for use in further calculations.

Our sample problem was originally expressed as an expression, so you can enter it as an
algebraic object:

'SIN(123 + 45 *LN(27 - 6))’

puts the algebraic object representing the expression into stack level 1. (Note that it is
the expression itself that is present, not its evaluated value; the ability to handle expres-
sions without first evaluating them is one of the unique and most powerful RPL calcula-
tor capabilities.) In this example, you are interested in the numerical value, so press
. This replaces the algebraic object with its value —.98. Actually, if this result
were all that is of interest, you could omit pressing , and use to take the
expression directly from the command line and evaluate it.

Suppose, however, that at the beginning of the calculation you were only interested in
the expression 123 + 451In (27-6). In that case, you would compute the value by enter-
ing

'123+45%LN(27-6)' EVAL r= 260.00

Then, after obtaining this result, you realize that in addition to the value itself, you also
need to know the sine of the value. Because the result of the initial calculation is on the
stack, it is ready for further calculation. In this case, you can execute DUP to make a
copy of the number for later use, then SIN to compute the sine.

RPL calculators are unique in their ability to hold the results of algebraic expression
evaluation in a manner that allows you to apply additional operations to the results after

Understanding RPN 23

they are calculated. Algebraic entry calculators require that you know the entire course
of a calculation before you start; RPN calculators overcome that problem, but you must
always mentally rearrange an expression into reverse Polish form as you proceed. The
HP-48 allows you to proceed with any mix of the two approaches that is appropriate for
the problem at hand.

.23-

3. Objects and Execution

In Chapter 2, we demonstrated how you perform calculations on the HP 48 by applying
functions to numbers that are present on a stack, which acts as the electronic equivalent
of a sheet of scratch paper. This RPN system is very uniform and flexible, and there is
no particular reason to restrict its use to real numbers and ordinary mathematical func-
tions. The HP 48 generalizes the RPN approach to problem solving in two ways:

e Real numbers are just one of several types of objects that the HP 48 can manipulate
on the stack and store in memory. (Several other English words might be substi-
tuted for object; item, unit, element, etc. The use of object for this purpose is com-
mon in mathematical jargon, and so that word is adopted for HP 48 terminology.)

e Mathematical functions are just one of several classes of HP 48 operations that can
be applied to numbers and other types of objects.

The terms object and operation are key terms for any discussion of the HP48, and we
will study them in detail in this chapter. In addition, we will introduce the concept of
object execution, and the closely related term evaluation. In rough terms, operations are
“what things the HP48 can do,” and objects are “what the HP48 can do things fo.”
Execution and evaluation are the actual “doing.”

We will use these four words extensively throughout this book to make general state-
ments about HP48 principles, so it is important that you understand the meanings of
each. If you find occasionally that the statements are too abstract, you can relate them
to more familiar ideas by substituting concrete examples for the general terms. For
example, when we refer to an object, you can think of a number as an example; for an
operation, think of an ordinary math function like + or sine. Execution is the “activa-
tion” of an object--think of running a program. Evaluation differs from execution only
for algebraic and list objects: execution treats these types of objects as data and merely
returns them to the stack; evaluation actually performs sequences of calculations defined
by the objects.

3.1 Operations

“What things the HP48 can do” make up a very long list, and constitute the subject
matter of most of this book. Here we will concentrate on defining the different types of
operations, to facilitate later discussions.

We use the term operation to mean any of the built-in capabilities of the calculator.

Most calculator manuals use the term function for this purpose. In describing the
HP48, the term operation is preferable, reserving functions to mean a specific group of

.25-

3.1

Objects and Execution

HP 48 operations that correspond to the mathematical meaning of function.

There are two basic methods by which you can make the HP 48 "do" something; that is,
perform an operation.

e Find the key that is labeled with the name or symbol for an operation, and press it.

Many important operations, such as the arithmetic operators, or STO and EVAL, are
permanently available on the keyboard. The remaining operations are available as
menu keys.

e Spell out the operation’s name in the command line, then press . ENTER on

the HP 48 plays a role that combines its original RPN calculator purpose of ending
number entry with a more sophisticated meaning of "do these commands." ENTER
is explored in detail in section 6.4.3.

HP 48 operations are classified as follows:

L

An operation can be a command or a manual operation, according to whether it is
programmable or non-programmable, respectively. A command has a specific
name, so that you can

e cxecute the command by typing its name into the command line.
¢ include the command in a program that you write.

Manual operations don’t have names that you can spell out or include in a pro-
gram; you can only execute a manual operation by pressing a key. Examples are
ENTER] , [<7][REVIEW], and ESOLVR= .

Programmable operations--commands--are sorted into two classes. If a command
can be included in the definition of an algebraic object, it is called a function.
Examples of functions are +, SIN, LOG, and NOT. Commands that are not
allowed in algebraics are called RPN commands. These commands, such as DUP,
STO, or RDZ (randomize), are typically stack or memory operations that make no
sense in the context of an algebraic object, which is the HP 48 calculator represen-
tation of a mathematical expression or equation. The logic of expressions
demands that every part of an expression (including the entire expression itself) ,
can be evaluated to a single value. So for an HP 48 command to be included in an
algebraic object, it must act like a mathematical function--use zero or more values
as input, and always return exactly one result.

The final classification of HP 48 operations is the division of functions into two
categories: analytic and non-analytic. Analytic functions are those for which the
HP48 knows the derivative and inverse. “Knowing” the inverse of a function f
means the HP48 can automatically solve the equation f(x) =y for x. (In
mathematics, an analytic function is continuous and differentiable, which

.26-

Objects and Execution 3.1

corresponds more-or-less to the HP 48 meaning of analytic function. For various
reasons, the HP 48 does not provide derivatives and/or inverses for every function
that is analytic mathematically. % is an example of a well-behaved function for
which no built-in derivative is provided. On the other hand, the function ABS can
be differentiated on the HP48, even though it is not properly differentiable at
zero.)

The main reasons for sorting HP 48 operations into these categories is to make possible
general statements about various classes of operations, and to provide information about
individual operations without unnecessary repetition. Thus when we refer to DUP as an
RPN command, we are reminding you that DUP is programmable, but not allowed in an
algebraic expression.

3.2 Objects

The HP48 provides 18 distinct types of objects that can be created and manipulated
with ordinary built-in operations. These object types are listed by their type numbers
(as returned by the commands TYPE and VTYPE) in Table 3.1. In addition, there are
twelve system object types, including seven that are actually used by the HP 48 in internal
calculations, and five provided for future extensions. You won’t normally see any of
these while using only built-in operations, but external software may bring them to light.

The word object is the collective term for all of the different items listed in the table.
This list does not contain all imaginable object types; these are just the types that you
can create and use on the HP48. In the abstract, an object is a collection of data or
procedures that can be treated as a single logical entity. In practical HP48 terms, this
means that an object is something that you can put on the stack.

Most objects are identified in the HP 48 by their characteristic delimiters, which are just
the symbols #, ", ', etc., which you enter to tell the calculator what type of object you
are entering, and where it starts and stops. (If you enter a string of characters without
any delimiters, the HP48 attempts to interpret it as a real number, or failing that, as a
name or command.) Similarly, the calculator uses the same delimiters when it displays
an already entered object so that you can recognize its type.

An individual object is characterized by its type and its value. The type (number, array,
etc.) indicates the general nature and behavior of the object. The value distinguishes
one object from another of the same type. For a real number object, the value is its
simple numerical value. For a string, the value is the text characters in the string. For
a program, the “value” is the sequence of objects and commands that make up the pro-
gram. For lists, programs, and algebraic objects, which are made up of other objects,
we will use the term definition rather than value.

.27-

3.2 Objects and Execution
Table 3.1. HP48 Objects
TYPE Number Object Type Identification

0 Real number digits

1 Complex number (real number, real number)

2 String (text) "characters" (stack or command line)
C$ n characters (command line)

3 Real array (vector or matrix) [real numbers]

4 Complex array (vector or matrix) [complex numbers]

5 List { objects }

6 Global name characterst

7 Local name characterst

8 Program << objects >>

9 Algebraic object ‘objects’

10 Binary integer number #digits

11 Graphics object Graphic n X m (stack)
GROB n m data (command line)

12 Tagged object characters: object (stack)
:characters: object (stack)

13 Unit object number_units

14 XLIB name characters (library present)
XLIB n, m (library missing)

15 Directory DIR name object ... END

16 Library object Library n: Title

17 Backup object Backup characters

T Names can be entered with or without ’ ’ delimiters. See section 3.7.

-28-

Objects and Execution 3.2

A central theme of the HP48 is its uniform treatment of different object types. This
means that the basic calculation process--applying operations to objects on the stack--is
the same for every object type:

e Each stack level holds one object, regardless of type.

e The stack commands to copy, reorder, and discard objects are the same for all
object types.

e The processes of storing (naming), recalling, and executing are the same for all
object types.

¢ The same operation can be applied to as many different object types as make sense
for the operation.

These points have the very practical consequence of simplifying the learning and use of
the HP 48, for once you learn how an operation works for one object type, you automat-
ically know how to use it for any other object types to which it might apply. For exam-
ple, if you learn RPN arithmetic for real numbers, you don’t have to learn anything new
to do arithmetic with complex numbers or arrays--the steps and logic are the same.
There is no such thing as “complex mode” or “matrix mode” on the HP 48.

3.2.1 Operations as Objects

You might ordinarily think of operations as actions, and objects as the targets or results
of the actions. However, the existence of object types that are not simple data--names,
algebraic objects, and programs--blurs this distinction. As a matter of fact, all HP 48
commands are just built-in program objects. To demonstrate that a command is an
object, you can put it on the stack. Try this:

1 2 {+} E0BJE EZOBJI= [&]

HOME }

1
2

+
OB | Eitd [+AER [3LIST]33TR | #TAG)

A0 fa ™

In level 1, you see the object +. (You have to enter the + originally in a list to prevent
its execution when you press E0BJ-Z .) If you now press , the + is executed,

.29-

3.2 Objects and Execution

adding the 1 and 2 you entered previously and leaving the result 3. This technique
works for any command.

This brings us to the subject of execution: when is an object “passive”--like the + just
waiting on the stack, for example--and when is it “active”--like the + actually perform-
ing the addition?

3.3 Execution and Evaluation

We have generalized the concept of an object to include not only data objects but also
user-defined programs and expressions, and built-in operations. We now similarly
define execution as the general term for the activation of an object: to execute an object
means to perform the “action” associated with that object. In the next sections, we will
look at the various actions associated with the different object types.

Most object types are considered as data, for which execution simply means “put the
object on the stack.” Five object types have a more energetic definition of execution:

e Executing a local name means to recall an object stored in a local variable (section
9.7) to the stack.

e Executing a global name means to execute an object stored in a global variable (sec-
tion 5.1).

o Executing an XLIB name means to execute an object stored in a library--an exten-
sion to the calculator’s built-in operation set (section 5.3.2).

o Executing a program means to execute the objects that make up the program’s defin-
ition.

¢ Executing a system code object executes the assembly language program that defines
the object.

Lists and algebraic objects are defined, like programs, by a sequence of other objects (in
fact, the internal structures of lists, programs, and algebraic objects are identical). Col-
lectively, the three types of objects are called composite objects. The HP 48 provides a
second form of execution, called evaluation, in which composite objects of any type are
executed like programs--the objects that make up a composite object are executed
sequentially. For non-composite objects, evaluation and execution are synonymous.

The primary means of evaluating an object is the EVAL command, which evaluates the
object in level 1, e.g.

Objects and Execution 3.3

3 EVAL = 3
"1+2' EVAL = 3
{1 2 +} EVAL = 3

<1 2 +> EVAL = 3

The use of the term evaluation arises from its meaning of performing the calculations
represented symbolically by an algebraic expression to obtain the value of expression.
In addition to EVAL, algebraic objects are evaluated by ~NUM, plus several other com-
mands that deal with expressions’ values, such as f, DRAW, and ROOT. EVAL is the

only means of evaluating a list.

3.3.1 When are Objects Executed?

Before studying the execution actions of the various object types, it is helpful to review
the circumstances under which objects are executed or evaluated. It is not unreasonable
to say that object execution takes place all the time while the HP 48 is on, since virtually
any HP48 activity--interpreting keystrokes, displaying objects, printing, etc.--can be
viewed as the automatic execution of built-in program objects. However, of most
interest are the times when objects are executed under your direction, particularly
objects that you have created. These times are as follows:

1. Execution

e When you execute ENTER (section 6.4.3), each object specified in the com-
mand line is executed, in the order in which it appears in the command line.
You can prevent execution of names or programs in the command line by
enclosing them in their respective delimiters ' ' or << >>, as discussed in sec-
tions 3.8.

e When a program is executed, the objects that make up the program are exe-
cuted, following the same rules as command line execution.

e When a global name (section 3.6.1) is executed, the object stored in the
corresponding variable is executed. (Execution of a local name merely recalls
the stored object.)

e When an XLIB name is executed, the named object in a library is executed.
2. Evaluation

o EVAL removes the object in level 1 from the stack and evaluates it. This is the
most common means for evaluating an object after it is placed on the stack.

-31-

33 Objects and Execution

e »NUM is similar to EVAL, except that it invokes numerical execution mode
(section 3.5.5.2), and does not evaluate lists.

e QUAD, ROOT, SHOW, TAYLR, 9, and [also evaluate their stack arguments.

e HP Solve and DRAW cause evaluation of the current equation specified in the
variable EQ.

e Commands such as PUT or [that use a list containing real numbers as an
argument numerically evaluate (-NUM) the objects in the list to convert them
to real numbers.

e Program structure words such as THEN, that take a flag value from the stack,
evaluate algebraic object arguments to obtain a numeric flag value.

e The conditionals IFT and IFTE evaluate the stack object selected by the value
of the stack flag (section 7.1).

It is useful to sort HP 48 objects into three classes of objects: data, name, and procedure.
This classification is made according to an object’s behavior when it is executed or
evaluated. Most types of objects are data class objects, which just put themselves on the
stack when executed. The execution of name class objects (global, local, and XLIB
names) causes the recall or execution of stored objects. Procedures are composite
objects; their evaluation causes the sequential execution of the objects contained in the
procedures.

Lists and algebraic objects classify differently depending on whether they are executed
or evaluated. Because lists are primarily used as data (the contents of lists are usually
not appropriate for sequential execution), we shall consider them as data class objects,
which occasionally are made to act as procedures by EVAL. Algebraic objects are
always suitable for evaluation, so we will consider them as procedures while keeping in
mind that they act as data objects when executed.

3.4 Data Objects

The idea of a data object should be quite familiar to you, since data objects are the only
quantities that can be manipulated as objects by other calculators (except for the HP 28)
and BASIC computers. The archetype data object is a floating-point real number. More
generally, an HP 48 data object is the calculator’s representation of a mathematical or
logical data entity such as a number, a vector, or a character string.

You would not expect a data object to be able to do anything; rather, it exists to have

things done to it. Nevertheless, data objects do have an execution action: they just enter
themselves onto the stack. When you type in a number, for example, and press ,

.32-

Objects and Execution 34

the number object is executed and so ends up in level 1. When a data object is already
on the stack and you execute EVAL, nothing apparently happens. Actually, EVAL
removes the object and executes it, which puts it right back on the stack. Note classify-
ing an object as “data” does not imply that the object is small or simple--a directory is a
data class object, but it can occupy any amount of memory and have a very complex
structure.

The HP 48 data object class includes the following types: real number, complex number,
string, real array, complex array, list, binary integer, graphics object, tagged object, unit
object, directory, library, and backup object, plus all of the system object types except
the code object.

3.4.1 Real Numbers

A real number object is the HP48’s version of an ordinary real decimal number. The
number value of the object is stored in floating-point representation, as a combination of
a 12-digit mantissa (x/1070%81* 1)) between 1 and 9.99999999999, and a 3-digit exponent
(IP(log | x |)) between —499 and +499. That is, a number is represented as

mantissa X 102ponent

When the HP48 is in scientific number display mode (execute 12 ESCIE),
you can see the mantissa and exponent explicitly; for example, the number 1.234X 10% is
displayed as 1.23400000000E23. The E is a one-character symbol for “X10 to the
power...”

When the HP 48 performs internal calculations during the execution of mathematical
functions, real numbers are expanded to fifteen-digit mantissas and five-digit exponents,
and all of the calculations are carried out to that accuracy. Functions’ results are
rounded back to twelve-digit mantissas and three-digit exponents when they are returned
to the stack. Note that this does not imply that calculations involving multiple functions
are always accurate to twelve digits. The error derived from rounding intermediate
results to twelve digits accumulates as each new function executes on the result of the
previous one.

Real numbers are entered and displayed without any delimiters. In the command line, a
real number is a consecutive sequence of decimal digits, optionally including a leading +
or —, a fraction mark (decimal point), and/or an “E” followed by an optional + or - to
mark the start of the exponent field.

e If you enter more than 12 digits in the mantissa, the resulting exponent will take the
extra digits into account, but the mantissa is rounded to 12 digits:

34 Objects and Execution

9999999999999 r= 1.00000000000E13

¢ Entering more than three digits in the exponent causes a syntax error.

¢ In FIX display mode, real numbers displayed on the stack are shown with digit-group
commas (periods when flag —51 is set). However, you can not include such commas
when you enter numbers in the command line, since the commas are interpreted as
object separators:

123,456,789 = 123 456 789.

3.4.2 Complex Numbers
Complex number objects consist of two real numbers combined as an ordered pair (xy).
They have two primary uses:

¢ To represent complex numbers, where the first number in each ordered pair is the
real part of a complex number, and the second number is the imaginary part. A
complex number object (xy) corresponds to the complex number z = x + iy, where
x = Rez and y = Imz. The object (3,2) represents the complex number 3+2i.
Complex number objects obey the rules of complex number arithmetic; for example,

1,2) B84 + o= (46).

e To represent the coordinates of points in two dimensions, such as points used in
conjunction with HP48 plotting (10.3). The real part (the first number of the pair)
of the complex number is the horizontal coordinate of the point, and the imaginary
part (the second number) is the vertical coordinate. In this context, complex
numbers act as two-dimensional vectors, and are suitable for vector addition and
subtraction. However, other common vector operations, such as dot and cross pro-
ducts, are not defined for the complex number object type; for those purposes, you
must use vector objects.

The standard entry form for a complex number is matched parentheses surrounding two
real numbers x and y: (xy). separated by spaces or commas (periods). The numbers
can also be interpreted as the absolute value r and phase 6, by separating them with an
angle sign «£, i.e. (r £0). Similarly, complex numbers by default are displayed on the
stack in rectangular format, but you can obtain a polar form display by selecting polar
coordinate mode (section 11.3.1).

When you enter a complex number within an algebraic object, you must separate the
real and imaginary parts (or the absolute value and phase) with a comma or a semi-
colon. However, you can enter a complex number as an ordered pair of real numbers

Objects and Execution 3.4

or symbolic quantities. In the latter case, [ENTER] automatically converts the ordered
pair to an explicit complex number using the symbolic constant i (section 3.5.6.1):

"(A,B)’ = 'A+B*’
'R, £8)’ = 'R*COS(8)+R*SIN(0)*’

When you are performing manual calculations with complex numbers, the 2D (2-
dimensions) operation is a convenient tool for entering or obtaining parts of complex
numbers (2D by default works with two-dimensional vectors, but you can direct it to
work with complex numbers by setting flag —19). For example, if you find that you fre-
quently forget to press [$7][(0] to start complex number entry, try entering the two real
numbers without the parentheses and then pressing . 2D combines the two real
numbers into a complex number, interpreting the first number as the real part (or the
absolute value, in polar mode), and the second as the imaginary part (or the phase
angle). Using 2D also makes it straightforward to compute the entries; e.g. you can
enter (1,V/3/2) with:

13V 2/ = (1, .866025403785)

(assuming rectangular coordinate mode).

2D is its own inverse: if there is a complex number in level 1, 2D takes it apart into two
real numbers, according to the current coordinate mode. There is no single program-
mable form of 2D; instead, the command -V2 (flag —19 set) serves to combine two real
numbers into a complex number, and V- takes a complex number apart. Both com-
mands respect the coordinate mode, unlike R~C (Real-to-Complex) and C-R (Complex-
to-Real) for which the real number arguments and results are always the real and ima-
ginary parts of the complex number:

(1,2) C-R = 1 2
DEG (1,445) C-R = .707106781187 .707106781187
3 4 R-C = (34)

You can also decompose a complex number with OBJ-, which is equivalent to C-R for
complex numbers.

HP 48 mathematical functions treat real number and complex number objects in a very
uniform manner. That is, you can intermix the two object types in almost any calcula-
tion involving arithmetic, trigonometric, logarithmic, or exponential functions. Two-
argument functions return complex results if either argument is complex:

-35-

34 Objects and Execution

3 23 * = (69)

The result of a single-argument function may be real or complex, according to the argu-
ment type and the appropriate mathematics. The functions RE (real part), IM (ima-
ginary part), ARG, and ABS always return real number objects. A trigonometric, loga-
rithmic, exponential, power or root function applied to a complex argument always
returns a complex results, e.g.:

02 V = (11).

Such functions applied to real arguments may return either a real or a complex result.
For example,

DEG .5 ASIN = 30,
but
2 ASIN = (1.57079632679,-1.31695789692).

On most other calculators, the last example would cause an error. The HP48’s
integrated treatment of real and complex numbers means that you can write programs
that work equally well for real and complex inputs and outputs. However, it also means
that you may have to include explicit range testing in a program that you want to stop
when a calculation strays out of the real number domain.

You should note that the last example gives the same result regardless of whether the
HP48 is in degrees mode or radians mode. Trigonometric functions consider all com-
plex arguments and results to be expressed in radians.

3.4.3 Strings

String objects (object type 2) are character sequences that are interpreted as simple text.
Strings are identified by the double quote delimiters " ". The characters within the
quotes can be any HP48 characters, including the other delimiter characters, which have
no special meaning in a string. You can use string objects to prompt for input or label
output, or as data to be processed logically, such as names to be alphabetized by a sort-
ing routine (section 11.6.3). The sequence "text" DROP can act as a program “comment”
that has no computational significance but helps you to document a portion of a pro-
gram. If you write or keep programs (or any object types) on a personal computer, the
comment delimiter “@” provides a better commenting method.

Strings are normally entered and edited by surrounding a sequence of characters with

Objects and Execution 34

double quotes, e.g. "ABCDEF". However, if you want to enter a string object in which
one or more of the characters are double quotes, you can use the alternate command
line forms

C$ n characters
or
C$ $ characters

The first of these “counted string” forms makes a string object using the first n charac-
ters in the command line after the number n (not counting the first space or other non-
numeric character after the n):

C$ 10 ABCD'EFGHI = "ABCD"EFGHI"

C$ 2ABC123 = "BC" 123

When you edit a string object that contains double quote characters, it always appears in
the command line in this counted string form.

The second counted string form uses all of the remaining characters in the command
line following the C$ $:

C$ $ ABCDEFG = "ABCDEFG"

In this case, there must be a space after the second $.

3.43.1 Concatenation

One of the most common string operations is concatenation, the appending of one string
to another. This is achieved on the HP48 by the + command, which appends a string
object in level 1 to the end of a string in level 2:

"ABC" "DEF" + = "ABCDEF"

String concatenation does not require that both arguments of + be strings; if either
argument is a string, the non-string object (unless it is a list--see section 11.5.1) is
automatically converted to a string (as by “STR) and then concatenated to the other

argument:

STD "Result=" 10 + 1= "Result=10"

.37-

3.4 Objects and Execution

3.43.2 String Comparisons

String objects can be compared (ordered) by using any of the six comparison operators
==, ¥, <, >, =, and = (section 9.3.1). Comparisons are made on a character-by-
character basis, where pairs of characters are compared according to their character
codes. The character code is a number from 0 through 255, that represents the number
of a character in the ISO 8859 Latin 1 character set used by the HP 48. Two strings are
equal if they contain the same characters in the same order. string, is “less than”
string, if the first character from the left that is not the same in both strings has a
smaller character code in string; than in string,. The following sequence orders two
strings so that the “smaller” is returned to level 2:

DUP2 IF > THEN SWAP END

Since lower-case letters have different character codes (97-122) than upper-case letters
(65-90), the ordering produced by > or < is not a case-insensitive alphabetizing.

3.43.3 Other String Manipulation Commands
The program object menu (£0BJE) provides commands for performing simple
string manipulations.

e OBJ- with a string argument (same as STR-) is a programmable form of ENTER,
that “executes” the string object as if the string characters were entered in the com-
mand line:

"123 456 +" OBJ- 1= 579
OBJ- is useful in programs for creating objects (like other programs) by concatenat-
ing strings representing parts of the objects.
e ~STR converts any object to a string object, where the string characters represent
the display form of the object:
(1,2) -STR = "(1,2)"

(If the object is already a string, ~STR has no effect.) Note that since STR-
respects the current number display modes, the combination -STR OBJ~- does not
necessarily leave an object unchanged unless the current number display mode is
STD, and the binary integer wordsize is 64 bits.

e SIZE returns the number of characters in a string:

"ABCDEFG" SIZE = 7.

Objects and Execution 34

e POS (POsition) finds the position of one string (level 1) within another (level 2):
"ABCDEF" "CDE" POS 1= 3.
The position is counted from the left, starting with the first character as position 1.
POS returns 0 if the second string is not contained within the first.

o REPL (replace) overwrites a portion of a string (level 3) with another string (level 1),
starting at a specified position (level 2). Call the target string string; (length /,), the
replacement string string, (length /,), and the position n. Then for

n>ly, string, is concatenated to string,:
g g

"ABCDE" 10 "FG" REPL = "ABCDEFG"

n +1,-1=<l;, characters n through n +1,-1 are replaced; the remaining 7, -/,
characters in string, are unchanged:

"ABCDE" 2 "FG" REPL = "AFGDE"

n +1,—-1>1,, characters n through /, are replaced, and the leftover /,—(/;~n)
characters from the end of string, are concatenated, so that the
result string has n + /,— 1 characters:

"ABCDE" 5 "FG" REPL = "ABCDFG"
n=0, the Bad Argument Value error is reported.

e SUB extracts a substring from a string (level 3), where the start and end character
positions are specified in level 2 and level 1:

"ABCDEFG" 3 7 SUB = "CDEFG"

A character position argument less than 1 is treated the same as 1; a position greater
than the string length is treated as that length. A null string is returned if the speci-
fied end position is less than the start position.

o NUM returns the character code of the first character in a string:

"ABCDEF" NUM = 65

e CHR produces a one-character string, where the character is specified by its charac-
ter code:

189 CHR = "©"

-39-

3.4 Objects and Execution

CHR provides the only means of entering certain seldom-used characters, such as
the ¥ shown in the example, that are not available on the keyboard.

3.4.4 Arrays

Array objects (object types 3 and 4) are the HP48 representation of real or complex
vectors (one-dimensional arrays) and matrices (two-dimensional). Arrays are identified
in the command line and in the stack display by the square-bracket delimiters []. A
sequence of numbers surrounded by a single pair of brackets is a vector. A sequence of
vectors surrounded by an additional pair of brackets is a matrix, where each vector is
one row of the matrix.

Arrays can be either real (type 3) or complex (type 4). In a real array all of the ele-
ments are real numbers; in a complex array the elements are complex numbers. As in
the case of number (scalar) objects, you can intermix real and complex arrays in calcula-
tions. You can also combine numbers and arrays for many operations, where it makes
mathematical sense. For example,

2 [1 2] * = [2 4]

However, you can’t add a number to an array, since that is not a mathematically defined
operation.

Arrays are discussed at more length in Chapter 11.

3.4.5 Lists

A list object (type 5) consists of a series of any types of objects entered between { } del-
imiters. The primary purpose of lists is to allow two or more objects to be manipulated
together as a single data object. Lists are described in detail in Chapter 11, and are used
in numerous program examples throughout this book.

3.4.6 Binary Integers

Binary integer objects represent unsigned integer numbers, stored as sequences of binary
bits (rather than decimal digits as for floating-point numbers). The maximum value of a
binary integer is the hexadecimal number FFFFFFFFFFFFFFFF, corresponding to 64
binary 1’s.

In addition to their immediate use for performing integer arithmetic, binary integers are
used in the HP 48 for

e a modest set of bit-shifting and logic commands common to computer science appli-
cations, provided in in the base menu ([MTH]EBASEZ);

-40-

Objects and Execution 34

¢ encoding the user and system flags (section 7.1);
e representing graphic object pixel numbers (section 10.3);

e computing object checksums (section 12.5.1).

For the four arithmetic operations, you can intermix binary integer and real number
arguments--the results will be binary integers.

You can control the entry and display of binary integers by executing one of the base
mode commands BIN (binary, base 2), OCT (octal, base 8), DEC (decimal, base 10) or
HEX (hexadecimal, base 16). To enter a binary integer, type the # delimiter followed
by the number digits. The digits are interpreted according to the current base; in hexa-
decimal mode, for example, you can use digits 0-9 and A-F. You can override the
current base by adding a lower-case letter b, 0, d, or h immediately after the number
digits. The objects are always displayed in the current base, including the trailing letter
that identifies the base, regardless of how they were entered.

When a binary integer is entered, it is always created with 64-bit precision. However,
integer operations and display are limited by the current wordsize, a number from 1
through 64 (the default is 64). STWS sets the wordsize from a real number argument;
RCWS returns the current wordsize as a real number. The stack display of binary
integers shows only the least significant wordsize bits, e.g.

HEX 10 STWS #FFFFh = #3FFh.

At this point, the number has not actually been truncates to 10 bits--if you execute 64
STWS you will see #FFFF. However, all arithmetic and logical commands that work
with binary integers truncate their arguments to the current wordsize before performing
their operations, and return results truncated to the wordsize. If you multiply the
#FFFh above by 1, then set the wordsize to 64, you will see #3FF, since the multiplica-
tion truncated the arguments and results. The truncation actually shortens the binary
integer to the specified number of bits, rather than just setting the most significant bits
to zero:

12 STWS #FFFh DUP 1 * = #FFFh #FFFh.

Here we have two binary integers with the same numerical value. However, BYTES
(section 12.5.1) applied to those two arguments returns memory sizes differing by 6.5
bytes (and different checksums), showing that one is 52 bits (6.5X8) longer than the
other.

-41-

34 Objects and Execution

3.4.7 Graphics Objects

A graphics object (object type 11), or grob for short, encodes a display picture. It is
defined by its dimensions--width X height--and the picture data. The data consists of
one binary bit for each pixel, where 1 is “on” and 0 is “off”, plus some additional bits
that pad the data so that each pixel row is an integer number of bytes. Grobs are not
restricted to the 131X 64 pixels display size--they can range from 1X1 (actually, you can
make a 0X0 grob, but it has no particular use).

Graphics objects are most frequently created by an operation such as DRAW, but you
can create them in the command line. The command line format is

GROB width height ---data - - -
GROB is the “delimiter” that identifies the start of a graphics object.
width is a real number indicating the horizontal width of the grob, in pixels.
height is a real number indicating the vertical height of the grob, in pixels.
-+ -data --- 1is a sequence of hexadecimal digits O-F that represent the pixel data in

a “readable” form.

The readable data consists of the data for each pixel row concatenated together into one
long sequence, in top-to-bottom order. Each hexadecimal digit represents four pixels; if
you consider a digit as a four-bit binary number, you can translate its value to a left-to-
right pixel pattern by reversing the order of the bits. The digit C, for example,
represents the pixel pattern 0101, where 0 is an “off” pixel, and 1 is “on.” The last one
or two digits in each row may be “padded” with zeros, in order to make each row an
integer number of bytes. Thus the smallest grobs are GROB 1 1 00 and GROB 1 1 10,
which are 1X 1 grobs--the first has its one pixel off, and the second has its one pixel on.

There are a wealth of operations related to the creation and manipulation of graphics
objects. These are described in section 10.3.

3.4.8 Tagged Objects

Tagged objects (object type 12) are objects used for putting visible labels on stack
objects. That is, a tagged object contains a single object of any type together with a
character string that labels the object. In our discussions of tagged objects, we’ll use the
following terms:

e A tag is any character string. To fag an object is to combine it with a tag into a
tagged object.

-42-

Objects and Execution 34

e An untagged object refers to the object inside a tagged object, when it is thought of
as a separate object.

e A tagged object is then an object that contains a tag and an untagged object.

Thus for :ABC:12345, the tag is ABC, the untagged object is the real number 12345,
and the combination :ABC:12345 is the tagged object. This terminology may be confus-
ing, but fortunately the design of tagged objects is such that you can generally use an
object in calculations with or without a tag, disregarding the distinctions.

When a tagged object appears on the stack, it is displayed as tag: object, where tag is the
label string, and object is the usual display of the object. You can create tagged objects
in the command line by typing the tag string, surrounded by : : delimiters, followed by
the tagged object in its ordinary syntax:

:Result: 1.234

(there can be any number of spaces or other separators between the tag and the object).
The colons act as start and end delimiters for the tag string; between the colons you can
include any other characters including spaces. When a tagged object is displayed by
itself in a stack level, the leading : is not shown to make a more visually pleasing label,
but both colons are required in command line entry to mark the start and end of the
tag. Note that tags longer than 17 characters are not particularly useful, since 17 char-
acters is the longest tag that can be displayed including the final :.

You will find that direct command line creation of tagged objects is less common than
their automated construction in programs using “TAG. The HP 48 creates tags itself in
some cases; HP Solve tags its results, as does LR and certain plot environment opera-
tions. Similarly, programs you write can attach identifying tags to results (see also sec-
tion 12.7.1). For example, this simple program computes and labels the volume of a box
from three numbers on the stack:

<< #* * "Volume" -TAG >

-TAG tags an object in level 2 with a tag formed from a string or global or local name
in level 1.

You can remove the tag(s) from an object either with OBJ-, which splits a tagged
object into the untagged object (to level 2) and the tag string (level 1), or DTAG, which
strips any and all tags from an object. [Since a tagged object is an object, it can be
tagged itself, so that a tagged object can effectively have multiple tags. OBJ- splits off
one tag at a time; DTAG strips all tags, returning only the innermost untagged object.]

-43-

34 Objects and Execution

The beauty of tagged objects is that normally you don’t have to worry about stripping
tags: a tagged object can be used as an argument for any operation that works with its
untagged object. Most operations apply directly to the untagged object, automatically
stripping its tags (including multiple tags). The only exceptions to this rule are:

e Stack operations that just move or duplicate objects on the stack treat tagged objects
like any other object, leaving the tags intact.

e STO of a tagged object into a local variable or a backup object does not strip tags
(STO into a global variable does strip tags).

e SAME (section 9.3.2) includes tags when comparing two objects.
e OBJ- and DTAG remove tags.
¢ TYPE returns type 12 for tagged objects.

These properties mean that you can use a tagged object interchangeably with an
untagged object of the same type as the tagged object. For example,

:Length:10_m :Area:100_m"2 * "Volume" -TAG 1= :Volume:1000_m"3

Here the * automatically strips the tags from the the length and area values before mul-
tiplying them to obtain the volume.

Further illustrations of the uses of tagged objects are given in section 12.7.1.

3.4.9 Unit Objects

Unit objects (object type 14) are the basic components of HP 48 unit management--its
ability to perform mathematical operations on quantities that include physical dimen-
sions. Unit management is discussed in Part II.

A unit object consists of a magnitude and a unit expression joined by the delimiter _ in
the format magnitude_expression. The magnitude is a real number; the unit expression is
an algebraic expression consisting of products of unit names raised to various powers. If
any of the powers are negative, the expression is defined as a single numerator that is
the product of names with positive powers, divided by a denominator that is the product
of the names with negative powers, expressed then with positive exponents. For exam-
ple, Im2s "2K ! is represented by the unit object 1_m"2/(s*2*K). Because there is no
closing delimiter on the unit expression, you must enter the expression immediately after
the _, and it may contain no spaces (there can be spaces between the magnitude and the

-)-

-44-

Objects and Execution 34

Unlike other object delimiters, the underscore _ is also a function. This allows the
straightforward use of the EquationWriter for unit object entry. _ takes two arguments,
which may be real numbers, names, or algebraic expressions. For most argument com-
binations, _ is equivalent to multiplication (¥). But when the second argument is a
name or an algebraic, it is converted to a unit object before multiplication by the first
argument. Thus

2 3 _ = 6

6 1_cm _ = 6._cm
12 'X" _ rF 12X
1 'm-cm’ 99_cm

In the first example, the extra (other than that implied by the =) is necessary
because if _ is preceded by a real number in the command line, it is taken as a delimiter
and must be immediately followed by a unit expression. The last example illustrates the
conversion of an algebraic object into a unit expression: all names in the object are
converted to unit objects of magnitude 1, then the expression is evaluated. The result is
multiplied by the first argument.

3.4.10 Directories

A directory (object type 15) is an object that contains a sequence of global variables--
name/object pairs. A full explanation of the nature and properties of directories is
given in section 5.2; here we just note that a directory is a data-class object, meaning
that it can be recalled to the stack, copied, and stored. As data-class objects, their exe-
cution action is just to return themselves to the stack. (These are enhancements over
the HP 28, where directories were also objects, but no provision was made for manipu-
lating them as objects.)

The command line and display form of a directory is
DIR name, object; --- name, object, END

where DIR and END act as start and end delimiters. Each name; object; pair specifies
a variable. The order of the variables is the same as they appear in the VAR menu.

3.4.11 Libraries

A library object (object type 15) is similar to a directory object, in that it contains a
sequence of named objects (library commands). However, unlike a directory, a library
has a fixed internal structure, so that you can not edit it.

-45.-

3.4 Objects and Execution

e In a library, the object names are separated from the objects into a table, providing
faster access by name to the objects than in a directory.

¢ Depending on the origin of a library, it may contain nameless or other special system
objects. There is no provision on the HP48 for displaying the contents of a library,
other than the LIBRARY menu (section 5.3.1.1), which displays a library’s commands.

e All objects in a library are uniformly accessible--there is no sub-library structure
analogous to subdirectories in a directory.

The named objects or library commands within a library are extensions to the built-in
command set, and can be used in the same manner. A library is an object so that it can
be transferred from calculator to calculator or between calculator and personal com-
puter, moved between the ports (section 5.3), or stored in an inactive form in a variable.
When a library is displayed as an object, it appears as Library n: fitle, where n is a
decimal number that identifies the library, and title is a descriptive text string. You can’t
see more than a few characters of a library title when the library is on the stack, but you
can use or [{] to view all of the title in the command line (you should cancel
the edit with rather than using , since you can’t actually edit a library).

A library’s commands are executed by means of XLIB name objects, which are
described in section 3.6.3. The methods of attaching libraries to directories so that their
XLIB names are usable is described in section 5.3.2.1.

[As a matter of fact, built-in commands are also contained in libraries. Because they
are permanently located at fixed memory addresses, the commands can be represented
on the stack by pointers to the objects rather than by XLIB names.]

3.4.12 Backup Objects

A backup object is the object form of a variable (section 5.1), in that it contains a single
object of any type plus a name. As an object it is mobile and can be copied or stored,
unlike a variable, which is not an object but is a part of a directory. A backup object
also contains a checksum that is used by the HP 48 to verify its memory integrity when it
is transferred between main memory and plug-in memory.

If a backup object is stored in a port (section 5.3.1), the object it contains can be
accessed in a manner similar to an object stored in a global variable. Such backup
objects are addressed by means of global names tagged with a port number. Normally,
a backup object is created directly in port memory, so that you will seldom see backup
objects on the stack--the primary focus is on the object stored within the backup object.
Backup objects on the stack appear as Backup name, where name is the backup object’s
name. You can not create or edit a backup object in the command line.

-46-

Objects and Execution 3.5

3.5 Procedure Objects

In the preceding review of data class objects, the concept of object execution is straight-
forward but not very interesting. Indeed, there is little point in executing a data object
(with EVAL, for instance) once it is on the stack; the main point of executing such
objects derives from their behavior when executed indirectly during the execution of a
name or a procedure.

In most calculators, a program is a series of numbered steps that are executed in
numerical order, with occasional breaks in the sequence caused by GOTO instructions
or subroutine calls. Each step in such programs either enters data, or performs a built-
in command. The step numbers indicate the order of execution, but they really have no
meaning other than for visual reference, or in some cases as labels for GOTO. The
HP28/HP 48 replacements for the conventional calculator program are procedure class
objects. A procedure is an object defined to be a series of other objects intended for
sequential execution. The procedure class of objects includes program objects, algebraic
objects and code objects (lists can also act as procedures-- see section 3.5.3).

3.5.1 Program Objects

An HP 48 program object (object type 8) is similar to a conventional program in that it
contains a sequence of “steps”. The steps are either objects themselves, or combina-
tions of objects called program structures; together, the steps are called the program
definition or program contents. Execution of a program object causes execution in turn
of each object in its definition. Program structures such as branches and loops (section
9.2) can alter the order of execution beyond simple linear sequences.

A program object is identified by its start- and end-delimiters << >>. Objects entered
between the delimiters make up the program’s definition. Note that a program, like any
other object, has no intrinsic name. You name a program by storing it in a named vari-
able.

3.5.2 Algebraic Objects

An algebraic object (object type 9) is also a procedure-class object, but it resembles a
conventional program even less than a program object does, since it is displayed as an
algebraic formula. The delimiters for algebraic objects are the single quotes (usually
called “ticks”, for short) ' ’; the objects that make up the algebraic object’s definition
are entered between the quotes.

Algebraic objects have internal structures indentical to programs, but they differ in these
respects:

-47-

3.5 Objects and Execution

e Programs can contain any HP 48 objects; algebraics can contain only numbers, unit
objects, names, and the subset of HP 48 commands identified as functions.

e The objects in a program may appear in any combination, and may be grouped into
structures (section 9.2). In an algebraic object, the objects are always organized
according to specific rules, called algebraic syntax, that insure that the object looks
and behaves like a mathematical formula.

e For programs, execution and evaluation are synonymous. The execution action of a
program is to execute the contents of the program sequentially. For algebraic
objects, execution treats the objects as data objects, returning the unchanged object
to the stack. Evaluation of an algebraic object treats the object as a program, and
executes the objects that define the algebraic object.

e Evaluation of a program may take any number of other objects from the stack, and
return any number of arguments, depending on the program definition. Evaluation
of an algebraic object normally takes no arguments from the stack, and returns one
result. (This general rule can be broken if any of the names within the algebraic
object correspond to program variables; execution of those names causes execution
of the programs, which may have arbitrary stack effects.)

The ability of algebraic objects to act as data when executed, or as programs when
evaluated, is one of the foundations of the HP48s ability to perform symbolic
mathematics. When you rearrange a formula using mathematical rules, you are treating
it as data; when you perform substitution of variables’ values for their names, you are
evaluating the formula.

In section 2.1, we showed how RPN logic is derived from the desire to convert a
mathematical expression into a series of steps by which you can evaluate the expression
by hand or using a machine. Looking at this from a different point of view, you can
note that since any expression can be translated to RPN, any expression can be
represented in a calculator by an RPN program. In fact, this is what the HP 48 does--an
algebraic object is stored in calculator memory in an RPN program form just like that
of an actual program object. The HP48 saves you from having to do the conversion
yourself by providing the algebraic object type.

The only difference between algebraic objects and program objects is that the two are
“marked” differently, so that the HP 48 knows which to display in algebraic form and
which to display in RPN. Also, functions that accept symbolic arguments can only
accept algebraic objects, not programs, since algebraics are by definition valid
mathematical expressions, whereas program objects are completely unrestricted in their
content and may not be suitable arguments for a mathematical function.

Objects and Execution 3.5

To illustrate the program nature of algebraic objects, create this program B:
<< DUP 20 > 'B' STO

Next, enter the algebraic object ‘5+5+B’, and press . The algebraic object disap-
pears, and the numbers 10 and 30 appear on the stack. You can understand this result
by following the execution of the equivalent RPN sequence 5 5 + B +. When this
sequence is executed, two 5’s are entered, then summed to 10 by the first +. B exe-
cutes next, which duplicates the 10 and enters 20. Then the final + executes, returning
30. You can break down any algebraic object execution into RPN steps this way.
Knowing how algebraic evaluation works is the key to understanding some of the
subtleties of symbolic operations on the HP 48 in general.

Picturing an algebraic object as a program will also help you understand why evaluation
of the object causes variable substitution “one level at a time.” Consider the object
'A+B’, where A has the value 10, B has the value ‘C+D’, C has the value 20, and D
has the value 30. Evaluating 'A+B’ once does one level of substitution, returning
'10+(C+D)’, not the numerical result 60. To see why, remember that 'A+B’ is
represented by the sequence A B +. Evaluating 'A+B’ therefore executes A, B, and +
in sequence: A returns 10, then B returns ‘C+D’, so that + returns '10+(C+D)’. [Note
that the latter in RPN is 10 C D + +, which is obtained from the original A B + by
substituting the RPN sequence C D + for B.]

These considerations also explain why you might get unexpected objects on the stack
when an error occurs during evaluation of an algebraic object. For example, if you exe-
cute EVAL on an algebraic object and an error occurs, you might expect that the original
object would be returned to the stack. But evaluating an algebraic object is the same as
executing a program, so that an error returns the arguments of whatever function
(within the algebraic) caused the error, along with anything else that was on the stack at
the time of the error. Again, you can predict the contents of the stack from the RPN
sequence that is equivalent to the algebraic object.

For example, suppose you execute ‘A+(B+C)’ EVAL, where A and B are undefined, but
C has a vector value [1 2]. The HP48 will halt and show the Bad Argument Type
error message, with the stack containing

3: 'A’
2: 'B’
1: [12]

This configuration results because the RPN sequence A B C + + errored at the first +.
A, B, and C had already executed, leaving their values on the stack as shown; the +

-49-

35 Objects and Execution

errored because the combination of a name ('B’) and a vector ([1 2]) is not valid for
addition. These arguments of +, not the original argument of EVAL, are returned to
the stack. (Note that if you execute EVAL by using the key, you can restore the
original algebraic object by pressing J)

3.5.2.1 Expression Structure

One advantage of writing a mathematical expression in Polish notation (section 2.1) is
that it makes explicit the organization of the expression into a hierarchy of subexpres-
sions (section 3.5.2.1). For example, consider the expression @ + sin(b-c). Rewriting
this in Polish form, you obtain + (a, sin(-(b,c))). The “outermost” subexpression is
the entire expression, consisting of the function + and its arguments a and sin (- (b,c)).
Each of the two arguments is a subexpression--the first is just the name a, the second is
the function sin and its argument — (b,c). The latter in turn is a subexpression consist-
ing of — and its arguments b and ¢, and so on as you peel off the layers of parentheses.
The level of a subexpression is a measure of how deep it is in the hierarchy. The level
is defined as the number of pairs of parentheses that surround the subexpression. In
the example, the full expression is level 0; the @ and sin (- (b,c)) are level 1 subexpres-
sions, — (b,c) is level 2, etc.

There are two reasons for you to keep these ideas of expression structure in mind as
you work with the HP 48:

1. The structure of an expression determines the order of evaluation of its subexpres-
sions. For example, in the evaluation of ‘A+B+C', the A and B are added first,
then the sum is added to C. You can alter this order by changing the expression
to 'A+(B+C)’, in which case the B and C are added first. This distinction is
important in a floating-point calculator, even though the two forms are formally
the same. To see this, assign the values 10° to A, —10°° to B, and 1 to C. If you
evaluate 'A+B+C’, you obtain 1, whereas if you evaluate 'A+(B+C)’, you obtain
0.

2. Understanding the structure of an expression can help you follow the behavior of
HP 48 symbolic manipulation commands. For example, EXPAN is defined to work
at one level of a subexpression at a time. 'A*(B+C+D)’ EXPAN returns
'A*(B+C)+A*D’ rather than 'A*B+A*C+A*D’ as you might expect. This is
more obvious if you think of the original expression as *(A, +(+(B,C),D)). When
one of the arguments of * is a sum, EXPAN multiplies the other argument by
each of the two arguments of +, then adds the products. The fact that in this case
the first argument of the (first) + is also a sum is not considered--EXPAN only
works one level at a time.

We can use these ideas to re-express the basic RPN calculator principle (“any result can

Objects and Execution 35

be an argument”) in “algebraic” terms by saying “any expression can be a subexpression.”
A subexpression is self-contained; it may or may not be embedded in a larger expres-
sion. The shortcoming of algebraic calculators is that they don’t recognize this principle.
They are designed for evaluating an expression as a whole--“from the outside in,” so to
speak. On the other hand, in a purely RPN calculator like the HP 41, you can only cal-
culate an expression “from the inside out,” since you can only enter one number or
function at a time. The HP 48 merges both approaches, by allowing you to enter any
subexpression in its algebraic form. You can evaluate an entire expression at once, or
you can divide it into subexpressions of any size, or you can work only with one object
at a time.

As with most of the principles of HP48 operation, the concept of algebraic object
evaluation is derived from a mathematical model. In ordinary terms, to “evaluate”
means “to find the value.” For a mathematical expression, this translates to “perform
the operations represented by the expression, to find its value.” Evaluation means to
“activate” an expression, which in turn means to execute sequentially the objects that
make up the expression.

As an example, consider the simple expression 1+2. We showed in section 2.1 that an
expression can be translated into an RPN form that represents a prescription for actu-
ally performing the operations of the expression--evaluating it. Thus the expression 1+2
is the sequence 1 2 + in RPN. This is a sequence of objects--remember (see section
3.2.1) that the +, as well as the 1 and the 2, can be considered as an object. When you
write the expression, the objects are passive; but if you execute each object in
succession--“enter the 1, enter the 2, do the +”--you obtain the value of the expression.

3.5.3 Lists as Procedures

As mentioned in section 3.5.3, lists are composite objects with internal structures like
programs and algebraic objects. As such, they can be evaluated as programs. The only
commands on the HP48 that treat lists as procedures are EVAL (section 3.9), IFT and
IFTE (section 9.4.2). The principal reasons for providing list procedure evaluation in
this manner is to permit the construction of new procedures by programs, and to facili-
tate changing directories by executing path lists (section 5.5.3). This form of list evalua-
tion is not available on the HP 28, where lists are strictly treated as data-class objects.

3.5.4 Commands and Functions

As illustrated in section 3.2.1, HP48 commands are objects. Because there is a per-
manent binding between command objects and their command names, command objects
are always entered and displayed using their names only--you never see the actual built-
in SIN program, for instance, only the name SIN. Actually, all commands are program
objects, but to help a program distinguish between commands and user-created

-51-

35 Objects and Execution

programs, the TYPE and VTYPE commands return type 18 or 19 for commands rather
than type 8 (program). Type 18 indicates that the command is a function; type 19 indi-
cates an RPN command.

In most calculators, there is a distinction between user-written programs and built-in
commands:

e Programs are written in the user programming language, and are executed by means
of a command like RUN, XEQ, GOSUB, etc., combined with a program name or
label number. Programs can call other programs (subroutines), but there may be a
restriction on the number of pending returns of which the calculator can keep track
(six in the HP-41, for example).

e Commands, on the other hand, are executed or entered into a user program by
name, with no prefix command. In most calculators, executing a command by name
consists of pressing the key that has the command name on it. This either executes
the command, or enters a function code or the name itself into a program. Some
calculators have an alphabetic keyboard that allows you also to specify a command
by spelling out its name.

The fact that calculator commands themselves are just internal programs is not readily
apparent. The programs can’t be viewed or edited, and they are written in the
calculator’s assembly language, which would require much more information for the typ-
ical user to understand and apply than can be provided in owners’ manuals.

The HP-28/48 philosophy is that the distinction between user programs and built-in
commands is artificial and unnecessary, at least as regards their use from the keyboard
and as subroutines. That is, when you write a program and name it, you should be able
to use it exactly as if it were a built-in command. When you enter a program name into
the command line and press , or include a program name in another program
definition and execute the latter program, or just press a menu key labeled with the pro-
gram name--the program should execute. The central idea underlying the execution of
HP 48 name objects follows from these ideas (section 3.6).

3.5.5 Function Execution

HP 48 functions have two important execution properties that are not shared by RPN
commands. These are automatic simplification, and a choice of symbolic and numerical
execution modes.

3.5.5.1 Automatic Simplification
When certain functions execute, they check their arguments for special cases in which
ordinary calculation can be replaced by a mathematical simplification. For example, if

-52-

Objects and Execution 3.5

you execute the sequence 1 ‘X’ * you obtain 'X’, not '1*X’. You can observe the
same effect by executing '1#X’ EVAL. This simplification is a property of the * func-
tion; when it is executed, * explicitly looks for cases where one of its arguments is 1. In
such cases, the subexpression consisting of the * and its two arguments is automatically
replaced by the non-1 argument. Other examples are the replacement of SIN(ASIN(X))
by X, and EXP(LN(X+1)) by X+1. Again, these simplifications are built into the func-
tions SIN and EXP. Table 3.2 is a complete list of automatic simplifications built into
the HP 48.

Note that not all cases of a function applied to its own inverse are simplified. For
example, ASIN(SIN(X)) does not automatically simplify to X, since there are infinitely
many angles with the same sine as X. Similarly, since the HP 48 treats complex numbers
uniformly with real numbers, LN(EXP(X)) does not reduce to X.

Automatic simplification is not the same as the simplification that results when a numer-
ical expression is evaluated by COLCT. For example, although '2/2’ automatically sim-
plifies to 1 when you evaluate it, '2*X/2’ does not automatically simplify to X. In order
for the simplification to take place, the two 2’s must be the arguments of the /, as in
'(2/2)*X’. To simplify '2%X/2’, you can either use RULES to rearrange it to '(2/2)*X’,
or use COLCT.

3.5.52 Symbolic and Numerical Execution; -NUM

The key to the HP 48’s ability to perform symbolic calculations is the fact that HP 48
functions used with symbolic arguments (names or algebraics) return symbolic results.
Each time you evaluate an algebraic object, the names in the expression or equation are
executed, so that those corresponding to existing variables are replaced by the objects
stored in the variables. But the replacement objects are not evaluated, so that the final
result may still be symbolic. If you want to evaluate a symbolic object all the way to a
numerical value, you may have to use EVAL repeatedly until all of the names have been
replaced by numbers.

In some circumstances, it is desirable to evaluate a symbolic object to its final numerical
value in a single operation. For example, in the course of their execution, DRAW and
HP Solve both evaluate the current equation to numerical values. To deal with such
cases, as well as the symbolic evaluation described already, the HP 48 provides you with
the choice of symbolic execution mode or numerical execution mode. In symbolic execu-
tion mode, a function evaluated with symbolic arguments returns a symbolic result. In
numerical execution mode, a function of symbolic arguments evaluates its arguments,
repeatedly if necessary, until they are data objects (usually numbers). Then the function
returns a numerical result. If any name is encountered during the evaluations that has
no corresponding variable, the Undefined Name error is returned.

-53-

35

Objects and Execution

Table 3.2. Automatic Simplification

Addition and Subtraction Powers
X-X wr 0 1"X o 1
0+X r X (1,0°X o (1,0)
0,0)+X o X SQ(V (X) o X
0-X r CHS(X) SQ(Y"X) r Y~ (2*X)
(0,0)-X r CHS(X) SQ() r -1
X+0 o X X*0 or 1
X+(0,0) r X X*(0,0) r (1,0)
X+-p o X-p X wr X
X-0 o X X*(1,0) o X
X-(0,0) ar X X*(-1) wr INV(X)
X--p r X+p X*(-1,0) r INV(X)
(VX2
Muitiplication and Division (VX)*(2,0) @ X
INV(i) o -i ir2 wr -1
Y*INV(X) o Y/X i*(2,0) r (-1,0)
Y/INV(X) r Y*X Pants
0*X r 0 ABS(ABS(X)) r ABS(X)
(0,0)*X wr (0,0) ABS(CHS(X)) r ABS(X)
i or -1 CONJ(CONJ(X)) o X
15X o X CONJ(IM(X)) r IMKX)
(1,0)*X o X CONJ(RE(X)) > RE(X)
(=1)*X r CHS(X) CONJ(i) o -i
(-1,0)%X r CHS(X) IM(CONJ(X)) r -IM(X)
X*0 o 0 IM(IM(X)) or 0
X*(0,0) w (0,0) IM(RE(X)) wr 0
X1 ar X IM(*p) o 0
X*(1,0) ar X IM(i) [|
X*(-1) r CHS(X) MAX(X,X) wr X
X*(-1,0) or CHS(X) MIN(X,X) o X
X/1 ar X MOD(0,X) wr 0
X/(1,0) o X MOD(X,X) r 0
X/(-1) 7 CHS(X) MOD(X,0) o X
X/(-1,0) r CHS(X) XMODYMODY o XMODY
0/X o 0 RE(CONJ(X)) r RE(X)
(0,0)/X o (0,0) RE(IM(X)) r IM(X)
1/X r INV(X) RE(RE(X)) r RE(X)
(1,0)/X o INV(X) RE(w) o w
(-1)/X r -INV(X) RE(i) o 0
(-1,0/X r -INV(X) SIGN(SIGN(X)) r SIGN(X)

X, Y are any subexpressions.
p is any positive real number.

-54-

Objects and Execution 35

You can select numerical execution mode temporarily, for a single evaluation of a sym-
bolic object, or for an indefinite period:

e To evaluate numerically a single object containing functions, use “NUM instead of
EVAL. -NUM enables numerical execution mode, evaluates its argument in the
same manner as EVAL, then restores the original execution mode.

e To select numerical execution mode “permanently,” set flag —3. The
menu key ESYME is handy for this purpose; pressing that key toggles between sym-
bolic and numerical execution modes. If the key label shows a white box (ESYMaE),
then flag -3 is clear and symbolic execution is active; the absence of the white box
indicates that numerical execution is in effect. You can also set and clear the flag
with SF and CF (in the second page of the menu). While flag -3 is set,
the execution of any function returns a numerical result, or an error message if
numerical execution fails. In this mode, EVAL and -NUM produce the same results.
To restore symbolic execution mode, press ESYMO= or clear flag —3. Symbolic exe-
cution mode is the default mode following a memory reset (section 5.8).

To illustrate these ideas, execute
30 'X' STO X
to create a variable X with the value 30, and leave its name on the stack. Next select
degrees mode by executing DEG ([$2][MODES]ZDEGE) if necessary. Now,
1. In symbolic execution mode, compute the sine:
BN = 'SINX).
At this point, you still have a symbolic result. Find the numerical value:
= .5.

When 'SIN(X)’ is evaluated, X is replaced by its value 30; then, since SIN has a
numerical argument, a numerical result is returned.

2. Now try the calculation in numerical mode:
‘X' [N = 5

This time, you immediately obtain the numerical result .5. This is because in
numerical execution mode, SIN evaluates the symbolic argument 'X' to its value
30, then returns the numerical sin30°.

SYMo

nn

3

3.5 Objects and Execution

3.5.6 Symbolic Constants

A frequently asked questions about HP calculators is “why does the sequence 7 SIN (in
radians mode) not return 0, when everybody knows that sin7 = 0?” On the HP-41, for
example, ™ SIN returns —4.1E-10. The answer is that the 7 key does not return
mathematical w, but an approximation accurate to the numerical precision of the calcu-
lator, which is the 10 digit number 3.141592654 on the HP-41. When SIN uses this
approximation as an argument, it treats it like any other floating-point number and com-
putes its sine, again accurate to the calculator’s precision. To understand the approxi-
mate value, consider that for small x, sin(m +x)= -x. In this case, x is the difference
between 7 and the calculator approximation: w +x = 3.141592654. Thus

x = 3.141592654 - 3.14159265359* =~ 4.1x1071°,
and
sin(m +x) = -4.1X1071,

which is just what the HP-41 returns. SIN is evidently returning an accurate result for
its argument, but the argument is not .

Could a calculator be d