
HP 48

INSIGHTS

PART I1: Prob em-jo/ving Resources

A L
PACKARD

assx SCIENTIFIC EXPANDABLE

Rl
£ HOME PARTL }

O TRRT vl

PURGE

HAD POLAR STACK ARG CMD MENU

HewLETT |©Pt
488X SCIENTIFIC EXPANDABLE

[

UP HOME DEF RCL

0
R

H
L

UsA ENTRY

@)

BRL

sy

T

03 58658
a88X SCIENTIFIC EXPANDABLE

[ueion]PREV

b Home [

0
P]

g
TR

P

RAD POLAR STACK ARG CMO MENU

R

@)
I

William C. Wickes

HP 48 Insights Il Program Disk

As a convenience for readers of HP 48 Insights II who use or have access to an IBM-
compatible or Maclntosh personal computer, Larken Publications is offering a disk con-
taining all of the HP 48 programs and examples described in the book. By downloading
the programs individually or collectively from your computer to your HP 48, you avoid
the effort and errors of entering the programs manually from the calculator keyboard.

To order one or more of these disks, remove this page from your book, fill out the ord-
ering information below, and send it with your payment to:

Larken Publications

Department PC
4517 NW Queens Ave.

Corvallis OR 97330 USA

Make checks payable to Larken Publications (no charge or C.O.D. orders). Foreign
orders must be paid in U.S. Funds through a U.S. bank or via international postal
money order.

Name

Address

City State Zip

Country

Quantity Unit Price Price

HP 48 Insights II Program Disk $10.00

(Optional) Airmail postage
outside of USA, Canada, Mexico 1.00

TOTAL $

Disk Type (check one): U IBM 525" UIBM 35" [Maclntosh 3.5"

HP 48 Insights

ll. Problem-Solving Resources

William C. Wickes

Larken Publications
4517 NW Queens Avenue
Corvallis, Oregon 97330

Copyright © William C. Wickes 1992

All rights reserved. No part of this book may be reproduced, transmitted, or stored in

a retrieval system in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the

author.

First Edition

First Printing, January 1992

ISBN 0-9625258-4-7

Acknowledgements

I thank my wife, Susan, and my children, Kenneth and Lara, for their help in the
preparation of this manuscript.

Dedicated to those mathematics teachers with the vision and

courage to adopt calculators like the HP48 for their classrooms,
to improve the understanding and enthusiasm of their students.

CONTENTS

13. Introduction to Part II.

13.1 About This Book

13.2 Notation

13.3 Terminology .

14. HP Solve

14.1 The Equation EntryMenu

14.2 Basic HP Solve Operation

14.3

14.4

14.5

14.6
14.7
14.8
14.9

14.2.1 Independent, Dependent, and Unknown Varlables 415
1422 An Example 417
14.2.3 Equation Management 420

14.23.1 Using Subdirectories 420
14.23.2 The Equation Catalog 421

Solving With Units . . .
14.3.1 Faster Solving with Umts 425

14.3.2 Monitoring Convergence 426
Interpreting Results . e
14.4.1 Qualifying Messages 428
First Guesses ..
14.5.1 How Many Gucsscs" 430
14.5.2 Examples Using x (x— 2)(x+ 2)=0 431
Obtaining Guesses

Finding Critical Points
Using ISOL with HP Solve
Programmable Solving

14.10 Secondary Results
14.11 Modifying the Solver Menu

15. Plotting

15.1
15.2

The Plot Menus
Plotting Essentials
152.1 DRAW 452

15.2.1.1 Autoscaling 453
15.2.2 EQ and 2DAT 453
1523 PPAR 454

15.23.1 Saving A Graph 455
15.2.4 The Plot Scale 456

15.2.4.1 Redimensioning the Graph Screen 458
15.2.5 The Independent Variable 459
15.2.6 The Dependent Variable 460

401
402

403
408

409
412
414

423

427

429

433
436
439
440
441
443

447
447
450

153

154

15.5
15.6

15.7
15.8

15.9

15.10
15.11

15.2.7 Resolution 460
15.2.8 Axes and Labels 461

15.2.8.1 Tick Marks 463

1529 Plot Type 464
The Plot Environment .

15.3.1 The Plot Cursor 466

153.1.1 The Mark 468
15.3.2 Recentering and Zooming 469

15.3.2.1 Programmable Zooming 472

15.3.3 Drawing on the Graph Screen 473
15.3.4 Working with Graphlc Ob]ects 476
Function Plots . . .

15.4.1 Plotting Programs 480
15.4.2 The Function Menu 483

Conic Sections
Polar Plots

15.6.1 Examples 493

15.6.2 Varying the Angle Increment 495
Parametric Plots e e e e e
Truth Plots .

15.8.1 Julia Sets 504

Scatter Plots . . .

15.9.1 Plotting Curve F1ts 509

Bar Charts .« e .

Histograms

16. Symbolic Objects and Solutions .

16.1
16.2
16.3

16.4

16.5

16.6
16.7

Motivations .
General Symbolic Problem Solvmg
Symbolic vs. Numerical Solutions
16.3.1 ~»Q and ~Qm 525
Automated Symbolic Solutions: QUAD and ISOL
16.4.1 ISOL 527
16.42 SHOW 527

1643 QUAD 528
Multiple Roots ..
16.5.1 Using the Solver Menu to Select Roots 532

Algebraic Objects as Programs .
Refining User-Defined Functions .
16.7.1 Preventing Evaluation: QUOTE 535
16.7.2 Applying Functions without Evaluation: APPLY 536
16.7.3 Preserving Local Variables’ Values: | 538

465

477

488
491

497
501

507

509
511

515
515
520
524

526

529

534

535

17. Expression Manipulations

18.

17.1 Extensive Manipulations
17.1.1 COLCT 545

17.1.2 EXPAN 547
17.2 The EquationWriter Subexpression Mode

17.2.1 Navigating the Expression 552
17.2.2 Editing Subexpressions 554
17.23 RULES 556

17.23.1 Repeated Operations 561

17232 Condensed RULES Notation 562
17233 Moving Terms 562

17.23.4 Commutation 564
17.23.5 Association 565
17.23.6 Distribution 566

17.23.7 Merging 567
17.2.3.8 Prefix Operations 567
17.23.9 Unit Identities 568

17.2.3.10 Adding Fractions 569
17.23.11 Logarithms 570
17.2.3.12 Exponentials 570
17.2.3.13 Definition Expansions 570
17.2.3.14 Addition Angle Formulae 570
17.23.15 Collecting Terms 572

17.3 Pattern Matching and Substitution .
17.4 Simplifying Polynomials . .

17.4.1 Polynomial Programs 580

Calculus

18.1 leferentlatlon

18.1.1 Calculus with Trlgonometrlc Functlons 589
18.1.1.1 User-Defined Derivatives 590

18.1.2 Formal Derivatives 592
18.2 Taylor’s Polynomials

18.3 Summations
18.3.1 Summation Patterns 596

18.4 Integration
18.4.1 Symbolic Integratlon 598

18.4.1.1 Integration Patterns 601
18.4.1.2 Derivative and Integral 602
18.4.1.3 Adding Integration Patterns 604

18.4.2 Numerical Integration 608
18.4.3 Integration Strategies 611

541
541

550

572

575

587
587

594

595

598

18.4.4 Programs as Integrands 615

18.4.5 Multiple Integrals 616
18.4.6 Polynomial Approximations 617

19. The Time System+ « « ¢« « « o « o o & o « « « . 0621
19.1

19.2

The Clock . . . T 74|
19.1.1 Setting and Readmg the Tlme 622

19.1.2 Time Arithmetic 625
19.1.3 Date Arithmetic 626
The Alarm System . . . e e e e e e e .o 627
19.2.1 Setting Alarms Manually 628

19.2.1.1 Cancelling Alarm Repeats 630
19.2.2 Appointment Alarms 630

19.2.2.1 Unacknowledged Repeating Alarms 635
19.23 Control Alarms 635
19.24 Alarm Commands 636

19.2.5 The Alarm Catalog 638
19.2.6 Automatic Alarm Deletion 640

20. StAtiSLICS '« v ¢ 4 o 4 e e e e e e e e e e e e e e e .o

20.1
20.2

20.3

204

20.5

20.6

Data Entry . . e e e e e e e e e e e .. 41
One-Variable Sample Statlstlcs e e e e e e e e e e .. 04
Two-Variable Statistics 646

20.3.1 Correlations 648
20.3.2 Regressions 649

20.3.2.1 Pseudo-Linear Regressions 650

20.3.3 Best Fit 653
20.3.4 Scatter Plots with Error Bars 653
20.3.5 Summary Statistics 655
General Least-Squares Fitting 65
20.4.1 Utilities 660

20.4.2 Polynomial Fits 662
20.4.3 Non-Linear Least Squares Fits 664
Probability Commands . . . s 143
20.5.1 Combinations and Permutatlons 669

20.5.1.1 Factorial and Gamma Function 671
20.5.2 Random Numbers 671
Upper-Tail Probability Distributions 673
20.6.1 UTPN 674

20.6.2 UTPT 674
20.6.3 UTPC 675
20.6.4 UTPF 675
20.6.5 Probability Density Functions 677

-iv -

21. Unit Management
21.1

21.2

213

214

Types of Units
21.1.1 Prefixes 681
21.1.2 Built-in Units 682

21.1.3 User-Defined Units 683
21.1.4 Unit Object Mechanics 683

Unit Conversions ..
21.2.1 The Unit Menus 685
2122 Using ? 687

21.23 Units in Custom Menus 687

Unit Object Mathematics
21.3.1 Unit Operations Requiring Dlmensmnal Consxstency 688
21.3.2 Unit Functions with Simplification 689
21.3.3 Operations on the Unit Magnitude 690
21.3.4 Trigonometric Unit Functions 691
21.3.5 Examples of Calculations with Units. 691
21.3.6 HP Solve 692
21.3.7 Plotting 692
21.3.8 Differentiation 693

21.3.9 Integration 694
Unit Management Idiosyncrasies
21.4.1 Non-integer Unit Powers 695
21.4.2 Temperature 696
21.43 Angle Units 698
21.4.4 Photometric Units 698

Program Index

Subject Index
Delimiters and Punctuatlon

Functions . .

RULES Operatlons .

679
680

684

688

695

701

705

717
717
717

13. Introduction to Part II.

The HP48 scientific calculator is renowned for its remarkable concentration of
mathematical computation features in a small, highly portable package. Even a quick
glance at the keyboard suggests its power and range--everything from the sines and
cosines that are traditional for scientific calculators to more exotic features associated
with customization and communications. The HP48 represents the culmination of
eighteen years of calculator development at Hewlett-Packard, incorporating virtually

every useful feature of its predecessors, plus many that have never appeared on any
other handheld calculator. The symbolic algebra system incorporated in the HP 48 and
its immediate forerunner the HP 28 is actually the most widely used computer algebra
system in the world.

By HP48 we are referring to the HP48SX, which was introduced in 1990, and the
HP 48S, which followed in 1991. The lower-cost HP48S shares an identical feature set
with the HP 48SX except that it lacks plug-in memory ports. Throughout this book, it
will generally not be necessary to distinguish between the two models, since all of the
operations discussed here, and all of the example programs, execute identically on both

types.

The HP 48 contains several hundred programmable commands that form the basis of its
programmability and customizability. You can supplement the built-in command set
with libraries, which are software packages designed to integrate with the permanent
ROM-based system, to provide additional programmable and non-programmable
features. Furthermore, you can use the built-in and library commands to create an end-
less variety of programs that make the HP 48 a very personalized tool. The straightfor-
ward and consistent design principles of the calculator ensure that this considerable
array of programmed and preprogrammed operations is manageable in a straightfor-
ward and simple-to-use manner. These principles and methods are the subject matter
of HP48 Insights I: Principles and Programming.

It is possible to accomplish most tasks for which the HP 48 is suited by using commands
or combinations of commands--programs. However, the HP 48 goes well beyond pro-
viding a simple list of commands, to provide a higher level of convenience and power for
certain common computation tasks. In particular, for five mathematical topics plus per-
sonal time management, the HP48 offers special menus that provide prompting and
special operations to facilitate manual interaction, in addition to programmable com-
mands. These six subjects are labeled by the single orange titles that appear above the

, , 91, [a], 5], and [6] keys: SOLVE, PLOT, ALGEBRA, TIME, STAT, and

UNITS. The interactive features associated with the ALGEBRA are actually accessed via

-401-

13.0 Introduction

the EquationWriter ([®] [EQUATION]), but with that exception the menus are self-
contained and focused on their respective subject areas.

Topics associated with these six menus form the principal subject matter of this book.
The HP 48 Owner’s Manuals refers to the menus as “applications.” We prefer to use
that term for the uses of the calculator and its features rather than for the features
themselves. The subtitle Problem Solving Resources is more descriptive of the nature
and intent of the six menus--the six are at least prime resources for tasks related to the
six areas, as part of the full problem-solving arsenal of the HP 48.

13.1 About This Book

HP48 Insights II: Problem Solving Resources is the second volume of the two-part

Insights series for the HP 48 calculator. For the sake of the master index provided at
the end of this book, the page and section numbering is made continuous with that of
HP48 Insights 1. Thus the first chapter of this book is Chapter 13 (apologies to triska-
dekaphobes), and the first page is page 401. (The last numbered page in part I is 381,
but starting part II at 401 makes it easier to remember for index page references, i.e.

pages numbered higher than 400 are in part II).

To a considerable degree, this book stands alone from HP48 Insights I. Assuming that
you have reviewed at least as much of the HP48 Owner’s Manuals as is necessary to
understand HP 48 rudiments such as keyboard and menu operations, object entry, etc.,
you should be able to read the material and exercise the examples here without refer-
ence to part I. There are, of course, numerous cross references between the two parts,
including a few uses in part II of programs that are listed in part I, but for the most part
these are not crucial to the material in part II. For the sake of readers who have not
read part I, at the end of this chapter we reproduce the descriptions of notation conven-
tions and important terminology from Chapter I that are used throughout this book.

The principal subjects of HP48 Insights II are those associated with the six special menu
keys mentioned in the previous section: numerical equation solving, plotting, symbolic
algebra and calculus, the HP 48 time system, statistics and curve fitting, and physical unit
management. There is no necessary order for presentation of these topics, so we will
just follow the order in which the menus appear on the keyboard. You can actually
study the chapters in any order; cross-references between the chapters will help you find
other material related to any section you happen to be reading.

The following summarizes the chapter topics:

-402-

Introduction

13.

14.

15.

16.

17.

18.

19.

20.

21.

Chapter

Introduction

HP Solve

Plotting

Symbolic Objects and Solutions

Symbolic Manipulations

Calculus

The Time System

Statistics

Unit Management

13.2 Notation

In order to help you recognize various calculator commands, keystroke sequences, and
results, we use throughout this book certain notation conventions:

13.1

Topics

Introductory material, notation conventions.

Interactive and programmable numerical
root-finding,

Plotting basics, menus, and parameters; the
plot environment; drawing; graphics
objects; the eight plot types.

Automated and interactive symbolic prob-
lem solving; +Q; user-defined functions.

Extensive manipulations; the Equation-
Writer subexpression mode; pattern-
matching and substitution; polynomials.

Derivatives; Taylor’s polynomials; sums;
symbolic and numerical integrals.

The HP 48 clock; date and time arithmetic;
alarms.

One- and two-variable statistics; regres-
sions; probability commands; upper-tail
probability distributions.

Unit objects and conversions; the unit
menus; unit functions; solving, plotting, and
calculus with units; idiosyncrasies.

e All calculator commands and displayed results that appear in the text are printed in
helvetica characters, e.g. DUP 1 2 SWAP. When you see characters like these, you
are to understand that they represent specific HP 48 operations rather than any ordi-
nary English-language meanings.

-403-

13.2 Introduction

e Italics used within calculator operations sequences indicate varying inputs or results.
For example, 123 'REG’ STO means that 123 is stored in the specific variable REG,
whereas 123 ‘name’ STO indicates that the 123 is stored in a variable for which you
may choose any name you want. Similarly, << program >> indicates an unspecified

program object; { numbers } might represent a list object containing numbers asits
elements.

Italics are also used for emphasis in ordinary text.

e HP48 keys are displayed in helvetica characters surrounded by rectangular boxes,
e.g , , Or . The back-arrow key lookslike this: , and the cur-
sor keys like these: [J],[>],[A], and [V].

¢ A shifted key is shown with the key name in a box preceded by a left- or right-shift
key picture, or , €.2. , OF . A shifted key is identified by

the orange or blue label above the key, rather than the label on the key itself-{<]
rather than .

e Menu keys for operations available in the various menus are printed with the key
labels surrounded by boxes drawn to suggest the reverse characters you see in the

display, like these: ZSIGN= or Z-LISTE .

Examples of HP 48 operations take several forms. When appropriate, we will give step-
by-step instructions that include specific keystrokes and show the relevant levels of the
stack, with comments, as in the following sample:

Keystrokes: Results: Comments:

123 456 1: 579 Adding 123 and 456

returns 579 to level 1.

For better legibility, we don’t show individual letters and digits in key boxes--we just
show 123 rather than [1][2][3], and ABC rather than [«][«][A] . Key boxes

are used for multi-letter keys on the keyboard and in menus.

In some cases, a printed listing of the stack contents isn’t adequate, so we use an actual
HP 48-generated picture of the calculator display, such as this picture from Chapter 6:

-404-

Introduction 13.2

RAD 2
HOME TEST } 01/18/91 0B:2Y4:27P

3. 14159265359
.nul

—
a
0

™

(1,7
A2y (W25

AHAT[4HAT]|[RPPLY]QUOT*@1r

A large number of the examples, however, are given in a more compact format than the
keystroke example shown above. These examples consist of a sequence of HP 48 com-
mands and data that you are to execute, together with the stack objects that result from
the execution. The “right hand” symbol r= is used as a shorthand for “the HP 48
returns...” In the compact format, the addition example is written as

123 456 + = 579

The =" means “enter the objects and commands on the left, in left-to-right order, and
the HP 48 will give back--return--the objects on the right.” If there are multiple results,
they are listed to the right of the = in the order in which they are returned. For exam-
ple,

A B C ROT SWAP = B A C

indicates that B is returned to level 3, A to level 2, and C to level1.

Because of the flexibility of the HP 48, there are usually several ways you can accom-
plish any given sequence, so we often don’t specify precise keystrokes unless there are
non-programmable operations in the sequence. If there are no key boxes in the left-side
sequence, you can always obtain the right-side results by typing the left side as text into
the command line, then pressing when you get to the = symbol.

The = symbol is also used in the stack diagrams that are part of most program listings.
The stack diagrams show how to set up stack objects for execution of the program,
where the objects to the left of the = are the “input” objects, and the objects following
the 7 are the program outputs.

The most elaborate “examples” in this book are programs. Each program is listed in a
box that includes a suggested program variable name, a stack diagram, the actual steps
that make up the program, and comments to help you understand the steps. The

-405-

13.2 Introduction

following sample listing illustrates the various features of the format:

SAMPLE Sample Program Listing checksum

level 3 level 2 level 1 | level 1

"string" [matrix] n r [matrix']

< A B - ab Start of program.

< Start of local variable procedure

IF C D Start of IF structure.

THEN 1 2 - n m

<< Start of local variable procedure.

START E F Start of definite loop.

DO G UNTIL H END DO loop.

NEXT End of definite loop.

>> End oflocal variable procedure.

ELSE | J

END End of IF structure.

> End of local variable procedure.

> End of program.

1. The name of the program (SAMPLE) is listed first, followed by an expanded ver-

sion of the name that is descriptive of its purpose. When you have entered the
listed program, you should store it in a variable with the specified name. If no
name is given, the program is just intended to illustrate some point in the text, and
there’s no need to give it any particular name.

2. The program’s checksum is listed at the end of the name line, as a four-digit hexa-
decimal number. If you enter the program into your HP 48, you can verify that
you have entered it correctly by comparing the listed checksum with the value
returned by BYTES (section 12.5.1) for your program.

3. Below the program name is a stack diagram, that specifies the program’s input and
output on the stack. The program arguments are shown to the left of the =, and
the results to the right. In the example, the stack diagram indicates that the pro-
gram requires a string in level 3, a matrix in level 2, and a real number n in level
1, and returns a new matrix in level 1. The object symbols in the stack diagram
are as descriptive as possible, showing not only the required object type but also
the conceptual purpose of the objects. A stack diagram

length width height = volume

shows that a program takes three real numbers (no object delimiters) representing
length, width, and height, and returns another real number that is the volume.

-406-

Introduction 13.2

4. The program listing is broken into lines, where each line has one or more pro-
gram objects listed at the left, and explanatory comments on the right. There may
be just one object on a line, or several whenever the collective effect of the objects
is easy to follow. You do not have to use the same line breaks (or any at all)
when you enter the program.

5. Lists, embedded programs, and program structures start on a new line unless they
are short enough to fit entirely on one line. More frequently, each program or list
delimiter or structure word starts a new line. The sequences between the struc-
ture words are indented, so that the structure words stand out. In the case of

nested structures, each structure word of a particular structure is lined up verti-
cally at the same indentation from the left margin. (The structure word -~ does
not start a new line, but the local variable defining procedure that follows the —
does start a new line.) Note that when you edit a program on the HP 48, the pro-
gram display follows these same conventions, within the limitation of the 22-
character display or printer width.

6. The comments at the right of the listing describe the purpose or results of the
program lines at the left. If you are creating a program using a personal com-
puter text editor, you can include similar comments in your program, setting them
off from the program objects using the @ delimiter (section 6.4.3.1). An espe-

cially useful “comment” is a description of the contents of the stack that are
obtained after the execution of a program line. In our listings, the stack contents
are distinguished from ordinary comments by enclosing the stack objects between
| | symbols. The leftmost object in the series is in the highest stack level; the
rightmost is in level 1. Thus

|la b ¢ dj

indicates that the object a is in level 4, b in level 3, ¢ in level 2, and 4 in level 1.

We recommend that you use similar conventions when developing and recording your
own programs. Whether you write programs out by hand and type them into the HP 48,
or use a personal computer to write programs and transfer them to the HP 48 via the
serial port, program stack diagrams and comments are invaluable for later understand-
ing and modification of the programs. Of course, there will be many occasions when

you create a program directly in the HP 48 command line without benefit of any pro-
gram listing. In these cases, we still recommend that you afterwards make a listing, or
copy the program to a personal computer file, so that you can recover the program if
you lose it for any reason.

-407-

13.3 Introduction

13.3 Terminology

Finding useful terminology to describe a computer system like the HP 48 with new or
unusual features can be a substantial problem. We have to use existing English words
that are close to the meaning we wish to convey, but the dictionary definitions of the
words usually differ from their meanings as applied to the HP48. Consider the word
object: for the HP 48, object means any of the mathematical or logical elements that con-
stitute the data and procedural building blocks of the RPL language, but you won’t find
that meaning in a dictionary (although it is close to the definition used in mathematics).

Our solution to this difficulty is to provide precise definitions of any terms that we use
that are specific to the HP 48, and then use those definitions consistently throughout. In

some cases, the definitions we offer may differ from those used in the HP 48 manuals,
usually because we need more careful definitions to get across a particular point. For
example, the owners’ manuals do not make a distinction between execute and evaluate.
We find that such a distinction is useful (section 3.3) because it simplifies the descrip-
tions of related subjects, such as the nature of global name objects (section 3.6.1).

Two other important terms that arise frequently are mode and environment. A mode is
a calculator setting, often associated with one or more flags (section 7.1), that deter-
mines how a particular keystroke or command will behave. For example, in polar mode,
complex numbers and vectors are displayed in polar coordinates rather than the usual
rectangular coordinates. An environment is a glorified mode, which determines the
entire calculator interface, including the display, key actions, and available operations.

The “home base” for the HP 48 is the standard environment. In this environment, the
display shows the status area, stack, and menu key labels. All keys are active, with their
ordinary labeled definitions. If you press , the HP 48 switches to the plot

environment. Here the display is devoted to a graph or other picture, the menu keys are
restricted to a menu of plotting operations, and the remaining keys are either assigned
additional plot actions or are inactive altogether. Pressing returns to the standard
environment. Other environments include the EquationWriter, the MatrixWriter, and
the equation and statistics matrix catalogs.

While introducing and using this kind of specialized terminology, at the same time we
will be using an informal style that takes some liberties with the language to avoid
unnecessarily stilted descriptions. “You are in the program branch menu” is almost a
non-sequitor when taken out of context, but it reads more easily than “the current
HP 48 menu is the program branch menu,” and its meaning is clear.

14. HP Solve

HP Solve is an interactive equation-solving system that has become an important feature

on several advanced HP calculators, starting with the HP18C in 1987. This system was
developed as a generalization of the “time-value-of-money” (TVM) key system that ori-
ginated with the HP80 calculator. In HP Solve, variable menu keys replace the fixed
TVM keys, and a general-purpose numerical root-finder replaces the TVM equation-
solver. A root-finder first appeared as a calculator function on the HP 34C. That origi-
nal algorithm has been refined several times in later calculators; the HP 48 is the first
calculator to permit its application to equations containing physical units.

In brief, HP Solve combines a menu key interface with an iterative root-finder, for the
numerical solution of any problem that can be expressed as a single equation containing
one unknown variable. This powerful system relieves you of the need to rearrange or
solve an equation by hand before entering it into the calculator, or to write programs to
find solutions.

A “solution” to such a problem is the determination of a value of the unknown variable,
called a root, for which the equation is satisfied--the left side equals the right side. The
root-finder is a built-in program that finds a root of an equation by an iterative process.
It starts with one or two estimates of the root that you supply, then adjusts the value of
the unknown variable repeatedly to minimize the difference between the two sides of
the equation.

The TVM system in HP calculators uses a highly refined solving algorithm that is cus-
tomized for the time-value-of-money equation

_ -N

PV + (1+ Ip)PMT- [1—(1—;—11—] - —Fv@+DN

where

PV is the present value;

FV is the future value;

I is the periodic interest rate;

N is the number of compounding periods;

PMTis the periodic payment; and

)4 has the value 1 for “Begin” mode and 0 for “End” mode.

-409-

14.0 HP Solve

This equation can serve as an initial illustration of the HP 48 implementation of HP
Solve. Using the EquationWriter, you can enter the equation as it is shown above; or,
you can use the command line to enterit in a linear format:

"BV + (1 +14p) #PMT*((1 — (1 +1)*=N)/I = —FV*(1 +1)* =N’

With the equation in level 1, press [<1][SOLVE|ESTEQ= SOLVRE:

EQ: '"PV+C1+I*¥p)xPMT* ..

4:
3z
%:

Ley1LPJIPMTHNEY

The =SOLVRE key does two things:

e It displays the current equation, an algebraic object or program that is selected for
solving, as specified by the contents of the variable EQ. In this case, the TVM equa-
tion was stored directly in EQ by ZSTEQE .

e It activates the HP Solve variables menu, or solver menu for short, which is derived
from the current equation. This menu contains a menu key labeled with a variable
name for each variable in the current equation.

The solver menu key labels are displayed in dark characters on a light background
rather the usual light-on-dark, to indicate that the menu keys have definitions that are
effectively reversed from those of normal menu keys. That is, in the VAR or CST
menus, pressing an unshifted menu key labeled by a global name executes the name
object. For data class objects (section 3.4), this is equivalent to recalling the object
stored in the corresponding variable. A left-shifted menu key stores a stack object into
the named variable. In the solver menu, the primary and left-shift definitions are
exchanged: a primary menu key stores a stack object, and the left-shifted menu key
returns an object to the stack. In this case, the returned object is not the object
currently stored in the variable, but instead is a number that is computed to be a solu-
tion of the current equation. This means that for this value of the specified variable, the
current equation evaluates to zero or near zero, given the stored values of all of the
other variables in the equation.

-410-

HP Solve 14.0

For example, use the TVM equation to compute the monthly payment on a 30-year loan
of $50,000, at an annual interest rate of 9%. Enter the values as follows:

2 =FIXE Set display to two decimal places.
50000 2PV E Principle value of loan.

09 12 [+=] E=1:= Monthly interestrate.
30 12 EN:Z Number of payment periods.
0 SpP= End mode.
0 =EFVE

 l

Now use the REVIEW] key to check the entries:

Future value (loan paid off).

ERQ: 'PVY+C1+I¥pl*PMT* ..
PVY: 56,004, 848
I: @.61

: Hd.84 _
MT: undefined

N: 360.88
FVY: 8.8
CeyI1LLBNPTlNIEY|

At this point, you have not specified a value for the payment, so it appears with the
value undefined. For this problem, you don’t need to specify any value (the calculator
will start with the value zero), so you can proceed to solve for the payment. In general,
even the unknown variable needs an initial value to guide the root-finder (see section
14.5). Press [GQ]EPMTE :

Zero

M
W

1 PMT: -46¢.31
CEICTICFIFHTICHCEY]

The TVM equation uses the convention that a payment (out) is a negative amount, so
the result is negative, returned as the tagged object PMT: —402.31. The status area of

-411-

14.0 HP Solve

the display also shows the result, plus a qualifying message, in this case Zero, that pro-
vides information on the nature of the solution (see section 14.4.1).

Underlying HP Solve is a numerical root-finder that iteratively adjusts the value of the

unknown variable until the equation is satisfied to within the numerical precision limits
of the calculator. Although the HP48 root-finder is uncommonly sophisticated and
robust, the unique power of HP Solve arises from its ability to analyze an equation
automatically to create the solver menu, relieving you of any need to program beyond
entering the equation as an HP 48 object. The menu is a great convenience, since it lets
you enter and keep track of the variables’ values, and solve for any of the variables. In
particular, you can solve for one variable, then enter a new value for that variable and
re-solve for another variable. In the current example, suppose that you can only afford
a monthly payment of $300. Then you can solve to see how large a loan you can obtain:

-300 EPMTE [¢R]EPVE = PV: 3728456

Some other HP calculators that provide HP Solve do not require a shift key press to
identify a variable for solving. Instead, solving occurs when you press two consecutive
menu keys. This shortcut assumes that normally you will solve for a variable immedi-
ately after storing a new values for one or more of the others, which is a very natural
way to use HP Solve. However, if you interrupt this flow by performing any non-store
operation, you must then do an extra store with a menu key. The HP48 instead uses
the less ambiguous shift-to-solve method in order to preserve more flexibility in HP
Solve calculations. For example, you can enter or compute values for several of the
known variables together, then store them into the variables by pressing their respective
solver menu keys. You could not do this if pressing two consecutive menu keys started
the root-finder.

14.1 The Equation Entry Menu

Interactive use of HP Solve is centered on the HP Solve equation entry menu. When

you press to activate this menu, you see a display like this:

ons
Pl EPMT*(..

S0LYR| KDOT NEW|EDEG [STEG

-412-

HP Solve 14.1

The status area displays the current equation, preceded by the name of the variable in
which it is stored. If there is no variable EQ in the current directory, the menu display
looks like this:

Mo current equation.
Enter eqns PpPress

 SOLYE| ROOT MEK

The message provides some guidance for new users on how to create a current equa-
tion. The menu contains the following menu keys:

SOLVR for activating the solver menu.

ROOT for entering ROOT, the command form of the root-finder.

NEW for entering and naming new equations.

EDEQ to copy the current equation to the command line for modification.

STEQ for storing an object directly from the stack into the variable EQ.
recalls the current contents of EQ to level 1.

CAT for reviewing and selecting potential current equations from memory.

ENEWE provides a convenient shortcut for activating a new HP Solve equation. After
you have entered a new object into level 1, pressing SNEWZ produces the following

display:

oL
RAD PRG

{ HOME }

Hame theeauatlon,
pPress

IDDR

-413-

14.1 HP Solve

You now type a name, and press . Notice that the o annunciator is on, and you

may type alpha-keys directly. stores the level 1 object in a global variable with
the name you supply, and also stores that name in EQ so that the new object becomes
the current equation.

When the level 1 object is anything other than an algebraic object, the initial ENEWE

display looks like this:

oL
KAD PRG

{ HOME 1}

Mame the eauation,
press ENTE

EQ
[1I|

The .EQ (or ,EQ when flag —51 is set) is a suffix for the variable name that ensures
that the variable will be included in the equation catalog (section 14.2.3.2). If you don’t
want to use the suffix, press to clear the command line before you enter the vari-
able name.

When the current equation object is a program or algebraic object of substantial size,
the time it takes to show the object every time you press or can
be a nuisance. You can suppress the automatic displays associated with these and all
other HP 48 menus by setting flag —58. With the flag set, you can still produce the spe-
cial displays on demand by pressing .

14.2 Basic HP Solve Operation

The general procedure for using the HP Solve is as follows:

1. Enter or compute the algebraic object or program representing a problem. Fol-
lowing the terminology of the HP48 Owner’s Manual, we call this object the
current equation, even whenit is notliterally an equation.

2. Store the problem object in a global variable, and store the variable’s name in a
global variable named EQ. The variable EQ in the current directory is always
used by HP Solve to identify the current equation. You can also store the current
equation object itself directly in EQ. This is most suitable when you have no
further use for the equation after solving it, since it is overwritten when you next
choose a new current equation. The NEW operation (in the menu)

-414-

HP Solve 14.2

provides a shortcut method of storing and selecting a new object.

3. Activate the solver menu. You can use ESOLVRE in the menu, or in the
equation catalog menu, or SOLVE] when any other menu is active. The solver

menu contains a menu key for each independent variable in the current equation.

4. Enter values for each of the “known” variables--the variables for which you
already know the values. Do this by entering a value into level 1, then pressing
the appropriate menu key.

5. Store a guess for the solution value of the unknown variable, again by entering a
value and pressing the variable’s menu key.

6. Solve for the unknown: press [<0], then the menu key for the unknown variable.
This starts the root-finder. When the root-finder is finished, it returns the solved
value for the unknown to level 1, tagged with the variable’s name, and stores that
(untagged) value in the unknown variable. You will also see a qualifying message
in the display that can help you interpret the result.

7. Verify the result, using the evaluation key ZEXPR=Z that appears at the end of the
solver menu.

8. Repeat steps 2 through 6 with new values for the variables, and perhaps a new
choice of the unknown variable.

A nice property of HP 48 Solve is that the current “equation” does not literally have to
be an equation. You can use programs, expressions, and equations almost interchange-
ably for solving purposes. In effect, HP Solve always solves f (x) = 0. In the case of an
HP48 algebraic expression object, f (x) is the expression represented by the object,
where x is the name of the unknown variable. For an equation object representing
g(x) = h(x), HP Solve solves f(x) = g(x)-h(x) = 0. For a program, f (x) is the
expression that is equivalent to that (RPN) program. Programs used for this purpose
must be equivalent to an algebraic expression, taking no arguments from the stack and
returning one real number or unit object.

14.2.1 Independent, Dependent, and Unknown Variables
Consider applying HP Solve to an equation ‘A+B=C+D’. If any of the four variables
takes only numeric values, we call it an independent variable, because you can choose
any values for it without regard to the other three variables. You can also choose any
independent variable to be the unknown variable, and solve for its value rather than
assigning it. The unknown variable is considered independent because you can at any
point assign it a value and solve for one of the other variables.

Suppose now that you store the expression '‘B+C+F’ as the value of the variable A.

-415-

14.2 HP Solve

This changes the role of A to that of a dependent variable--you can no longer set its
value arbitrarily, but must compute it from other variables. By storing an expression in
A, you are saying that the symbol A now is just an abbreviation for the expression.

Of all the variable names that appear in the current equation, only those that are
independent variables appear in the solver menu. To see this, enter 'A+B=C+D’ as
the current equation:

'A+B=C+D’ [<1][SOLVE] =STEQS Z=SOLVR:Z=:

ER@: 'A+B=C+D’

a
0

-
R

 A ICE ICc 1o 1IEmC

Here you see menu keys for A, B, C, and D, assuming that these variables do not have
procedures already stored in them. This indicates that they are all independent vari-
ables. Now execute

'‘B+C+F’' [ENTER] EAZ,

then rebuild the solver menu by pressing :

EQ: 'A+B=C+D'

—
I
R

 Ce IO ICE 1T 1Emml

-416-

HP Solve 14.2

Notice that F now appears in the menu instead of A. A is no longer independent, since
it is defined in terms of B, C, and F, so it has been removed from the menu. You are

really trying to solve 'B+C+F+B=C+D’; the name A now is effectively an abbreviation
for the expression '‘B+C+F'.

In some cases, you may wish to assign a value to a current equation variable and also
remove the variable from the menu. For example, a physical constant like the speed of
light might appear in the equation as a symbol, but there is no reason to include the
symbol (name) in the solver menu, since you won’t need to change the value. In such
cases, instead of storing the value itself in the variable, store a program consisting only
of the value, e.g. << 2.998E10 >> for the speed of light. The equation will evaluate
properly for HP Solve, but the solver menu will not include the variable. If you store
the program by means of the variable’s solver menu key, then press to
rebuild the solver menu, and the menu key will disappear.

In the context of the mathematical function plotting performed by DRAW, the term
“independent variable” is used to refer to the variable corresponding to the horizontal
axis (section 15.7.5). That is, the vertical coordinate represents the value of the current
equation as a function of the independent variable. The values of all of the other vari-

ables in the current equation are held constant during the plot.

When you use DRAW in conjunction with HP Solve, you should use INDEP (section
15.2.5) to select HP Solve unknown variable as the independent plot variable
corresponding to the horizontal coordinate. Then the plot will represent the value of
the current equation as a function of the unknown. In particular, the roots of an expres-
sion are shown by the intersections of the curve and the horizontal zero axis. For an
equation, DRAW plots two curves, which intersect at the equation’s roots.

14.2.2 An Example
All of the steps involved in HP Solve are demonstrated in the following problem, which
has appeared as a programming exercise in several HP calculator manuals.

» Example. Solve for ¢ in the equation

h = 5000(1-e ~"2*)-200¢ = 0.

(This is imagined as the equation of motion of a “ridget,” where h is the height in
meters of the ridget above the ground, and ¢ is the time since it was hurled into the air.
Thus you are to solve for the time at which the ridget strikes the ground.)

-417-

14.2 HP Solve

m Solution.

1. Start by entering the equation:

[<7][MODES]ESTDE 'H=5000%*(1 - EXP(—T/20)) - 200*T’

2. Name the equation, and select it as the current equation. Before doing this, how-
ever, you might want to save the TVM equation from the previous example:

‘'EQ" RCL 'TVM’' STO

Now press ENEWE , then RIDGET . The new equation is stored in the variable
RIDGET, and the name RIDGET is stored in EQ.

3. Activate the solver menu. You can do this by pressing ZSOLVRE in the
menu or in the equation catalog (section 14.2.3.2), or by pressing . In this
example, you see the following:

RIDGET: 'H=5880%C1-ExP

—
I
R

 CHICTelIJC__1]

Notice the menu keys for the two variables in the problem, T and H, and the ZEXPR=%
key. The latter appears as the last entry in solver menus, and is used for verifying solu-
tions (section 14.4). EXPR= is present on the second page of the TVM menu shown
earlier, but you must press to see it.

4. Enter values for the known variables. For this example, there is only one known vari-
able, H, which is to have the value zero. Enter 0Z HE.

5. Enter an initial guess for the solution, which is necessary as a starting point for the
root-finder’s iteration. You can take your chances and enter any number that seems
reasonable, but usually you can do better with a quick analysis. In this case, you can
observe from the equation that

-418-

HP Solve 14.2

e There is a solution for # = 0 at t = 0; that solution is of no interest, so you should
choose a positive guess away from zero.

e When ¢ is large, you can neglect the exponential term, approximating the equation as

5000200t = 0,

which has the solution ¢t = 25.

Since the exponential term is negative, the actual root must be less than 25. (The HP 41
Advantage Pac manual uses guesses of 5 and 6, which do return the right answer, but
guesses closer to 25 and farther away from 0 are safer--that is, they are less likely to
lead to the =0 solution. Try a guess of 20, by entering 20 T = .

Pressing shows the values of both variables:

fi;ngT: "H=5008% ¢ 1-EX=F

T: 28

 LoICTJEmm1L€]

6. Solve for the unknown, by pressing followed by the solver menu key for that vari-
able. Here you are solving for T, so you press [1]ET to start the root-finder. After a

few seconds, the HP48 returns the solution 9.28425508759, plus the qualifying message
Zero. The message indicates that the two sides of the equation are equal (difference
zero) to 12 decimal places, when evaluated for this value of T. You can verify the accu-
racy of the result by pressing SEXPR=% :

RAD
HOME SOLVE }

T: 9.284230H6753
LEF B

RIGHT: H
CHTJemat_IC__IC

—
T
N

-419-

14.2 HP Solve

This shows that both sides of the equation evaluate to the same value, suggesting that
the result is a valid root.

7. Vary the parameters, and re-solve the equation as desired. For example, you might
like to know how high the ridget is at T=5:

0 nETS [[H] = 105.99608464

As long as you don’t make any extreme changes in any of the variables’ values after
finding one solution, you should not have to enter new guesses for any variable you
select as an unknown.

14.2.3 Equation Management
Although it is possible to use HP Solve entirely by storing one equation at a time in EQ,
you can accumulate any number of equations stored in global variables, then pick and
choose among them as needed. Several HP 48 features help you organize their storage
and use.

14.23.1 Using Subdirectories

When working through any of the examples in the preceding sections, you may have
noticed that an HP Solve equation’s variables appear in the VAR menu along with the
equation itself and EQ. This is consistent with the usual HP 48 convention that storing
into any variable is always done in the current directory (section 5.2). However, the
convention is also that recall and evaluation of variables by name can take place from
any subdirectory of the directory containing the variables. For HP Solve, this means
that you can separate an equation from its variables by placing the variables in a sub-
directory. There are several advantages:

e The directory containing the equation can remain relatively uncluttered.

e You can have multiple sets of stored values for an equation’s variables, storing each
set in its own subdirectory.

¢ By using CLVAR, you can easily purge all of an equation’s variables at once, leaving
the equation itself undisturbed.

To carry out an HP Solve exercise using a subdirectory, store the equation object in the
parent directory and then switch to the subdirectory. The solver menu is built from the
object specified by EQ in the current directory, so you must store the equation’s name
in EQ in the subdirectory. Then activate the solver menu as usual, using ESOLVRE or

. The menu works the same as it does when the equation object is in the

-420-

HP Solve 14.2

current directory, but as you store values using the menu keys, the variables are created
in the current directory rather than in the parent directory with the equation.

You do not even need to keep all of the variables together. For example, when using
the TVM equation from section 14.0, you might want to solve several different problems
all using the same interest rate. In that case, you can store in the interest in a variable|
in the same directory as the TVM equation, then create a new subdirectory for each
problem. As long as you don’t store a new value for | in any of the subdirectories, the
root-finder will use the value stored in the parent directory. (As described in section
14.2.1, you can even remove | from the solver menu by storing the program << rate >>
in | instead ofrate byitself.)

14232 The Equation Catalog

As you accumulate stored equation objects for solving and plotting, the equation catalog
is a valuable tool for finding and managing the equations. The catalog is activated by
the ZCATE= key in either the or menus, or, from any other menu, by

. For example, assuming that you have created the TVM and the RIDGET
variables from the preceding examples in the current directory, then ECATE gives the fol-
lowing display:

{ HOME }

PRIDGET: 'H=5840%(1-E..
TVM: 'PV+(1+I%p)*PMT..

 PLOTE[SOLVE]E+ EDIT [#STHVIEW

The equation catalog is an environment (section 13.3), meaning that the display and key-
board are dedicated to its use. The primary feature of the display is a vertical listing of
variables, each in the format name: content. Only the first eight or fewer characters of a
name are shown, to leave room for displaying the stored object on the same line. The
variables are shown in the same order as they appear in the VAR menu. Up to five vari-
ables are shown, along with a selection arrow--the triangle in the leftmost column. If the
catalog lists more than five, you can move the arrow through the list with [A] or [V] .
[<2][A] and [$3][V] move the arrow up and down one “page” offive variables at a time.
[>]1[A] selects the first variable in the catalog, and [>][V] selects the last.

The catalog does not show all of the variables in the current directory, but restricts its

-421-

14.2 HP Solve

listing to the following:

e Variables containing algebraic objects. These are presumed to be the most common
entries for solving and plotting, so they are always included in the catalog.

e Variables with names ending in .EQ or ,EQ. This lets you include objects of any
type in the catalog, especially programs and lists.

e EQ, regardless of its content. This reminds you of which object is the current equa-
tion.

e Directories. These are listed in the shortened format name: dir.

The catalog display can be slow when the stored objects are large, because of the time
required to build the display form of each object. To move more quickly around the

catalog, press SFASTE (in the second page of the catalog menu). This option suppresses
the object display and shows only the variable names. The HP 48 remembers this mode
between catalog sessions by means of flag —59, which is set for the fast display, and
cleared for the full display. The white square in the key label indicates that the fast
display is selected; pressing SFASTOE again restores the full display.

You can move the catalog through the directory system without leaving the catalog
environment. Moving the selection arrow to a directory, then pressing , switches
to that directory and shows the catalog derived from its variables. [uP] and

are also active in the catalog environment, for moving upwards through the direc-

tory structure.

The selection arrow specifies a particular variable for the operations represented by the

catalog menu keys. For example, moving the arrow to a particular variable and pressing
ZSOLVRE stores that variable’s name in EQ and activates the solver menu. EPLOTRZE
similarly activates the menu. Other options:

e SVIEWE displays the selected object in its command-line form (up to four lines). The

display persists while you hold the key down.

e ZEDITE copies the selected object to the command line, where you can edit it. As
usual, stores the edited version back in the variable, and cancels the

changes and returns to the catalog display.

e =.STK= copies the selected object to the stack, tagged with its variable name. For
variables that are not directories, [ENTER] has the same effect as S-STK=

e SORDERZ (second page) moves the selected object to the beginning of the current
directory, so that it appears as the first entry in the catalog. Pressing ZORDERZ with
a variable name selected is equivalent to executing { name } ORDER (section 5.1).

-422.

HP Solve 14.2

e =PURGE purges the selected variable from memory.

ZEQ+ £ provides a means for applying certain catalog operations to a list of names. The
first time you press SEQ+Z , it creates a list containing the selected variable name. The
list is displayed in the status area. Then you can move the selection arrow to other
entries; each subsequent use of ZEQ+= adds the selected name to the list. While such a
list is displayed, pressing ESOLVRE stores the list in EQ and activates the solver menu;
ZPLOTRE works similarly. Also:

e ZEDITE copies the list to the command line for editing.

e =.STKE copies the list to the stack.

o copies the list to the stack, unless the selection arrow points to a directory.
In that case, the selected directory becomes current and the pending list remains
active.

e ZORDERE applies the command ORDER to the pending list, and clears the pending

list.

° returns to normal catalog operation, discarding the list.

=VIEW= and ZPURGE apply as usual to the selected variable, ignoring any pending list.

14.3 Solving With Units

The current equation and any of its variables may include unit objects, and the result
returned by HP Solve will be a unit object when appropriate. The general approach to
solving with or without units is the same, but there are a few points to bear in mind.

® If the unknown variable requires units to satisfy the current equation, then the initial
guess for the unknown must have units. The HP Solve result will be expressed in the
same units as the original guess. It is not possible for the HP 48 to provide a default
guess, nor can it determine even the dimensions of the result. (To do so would require
a symbolic solution, which is not within the scope of HP Solve. See section 14.8.)

® You can use the solver menu to store unit objects as values for the variables. Once
you have established the units of a variable by storing a unit object, you can change the
magnitude of the unit object by entering a real number and pressing the menu key; this
leaves the unit part unchanged. However, if you later want to use that variable in
another HP Solve problem where it has no units, you can store a dimensionless number
in the variable by enclosing the number in a list, or by purging the variable first.

m Example. A railroad car weighing 5 tons rolls with an initial speed of 4 ft/s down a

-423-

14.3 HP Solve

225 foot ramp with a vertical drop of 3 feet, then across a level track 175 feet long, ter-
minated by a spring-loaded bumper. The rolling friction of the car is 50 pounds force.
What must the spring constant be in order to stop the car by compressing the spring 2
feet?

m Solution. This example is most easily solved as a conservation of energy problem.
That is, the initial kinetic plus potential energy of the car must equal the energy dissi-
pated by friction plus the energy associated with compressing the spring by 2 feet.
Expressing this as an equation, we have

'M#*V*2/2 + M*g*H=F*(R+L+X)+K*X"2/2',

where M is the car mass, V is the initial speed, g is the acceleration of gravity, H is the

ramp height, F is the frictional force, R is the length of the ramp, L is the length of the
level track, X is the compression of the spring, and K is the (unknown) spring constant.

To use HP Solve, start by storing the above equation as the current equation:

'M#V*2/2 + M*g*H=F*(R+L+X) +K*X"2/2’ ENEW= RRCAR [ENTER]

The solver menu (ZSOLVRE) then looks like this:

RRCAR: 'M#Y"2-Z2+M¥g® ..
‘I'

c
]
L Iy g I H L E LK |

Since there are more than six variables in the equation, you must press to see the
remaining three variable keys plus ZEXPR=Z .

Now enter the parameters from the problem:

5_ton

4_ft/s
M

i < n
m

-424-

HP Solve 14.3

l

1.ga EGE
3_ft SHE
50_lbf SF=
225ft =RE=

175_ft =L

oft =x=

Since the equation is linear in K, any initial guess will do, as long as it includes the
appropriate units:

O_lbf/ft EKE [H]EKE 1= 6193.23_|bf/ft

14.3.1 Faster Solving with Units
Evaluation of algebraic objects containing units is intrinsically slower than ordinary
numerical evaluation due to the unit conversions that take place as the evaluation
proceeds. Since using a root-finder requires repeated evaluation of the current equa-
tion, solving an equation with units can sometimes take a long time. For faster solu-

tions, you can of course remove all of the units from an equation and solve with dimen-

sionless quantities, but then you have to do all of the unit conversions manually before
and after solving. Short of this, you can often obtain substantial speed improvements by
replacing the current equation with a modified version in which as many of the

equation’s calculations as possible have already been performed. (This will speed up
solving with any equation, but the effects are most dramatic for equations containing
units.)

The easiest way to preprocess an equation or expression to reduce its number of opera-
tions is to use SHOW (section 16.4.2). This command can selectively resolve some vari-

ables while leaving others unevaluated; for efficient solving the idea is to evaluate all
names except that of the unknown variable. For example, after entering values for all of
the variables in the railroad car problem, you can reduce the equation as follows:

RRCAR {K} SHOW 1= '16.2432380069_ton*ga*ft=20100_lbf+ft+ (K*4_ft*2)/2’

Now only K remains in the equation, and many of the arithmetic operations have been
carried out. If you make this result the current equation, then solve for K, you will see
that the solution is obtained much more rapidly. However, you can do even better by
changing the equation into an expression, since one more unit subtraction is eliminated:

EQ- - COLCT = '12386.4760137_Ibf*ft+(—2_ft"2)*K’

-425-

14.3 HP Solve

Using this expression as the current equation gives the fastest possible solution for K|
using HP Solve or ROOT.

14.3.2 Monitoring Convergence
When a particular HP Solve solution appears to be taking a long time, you can elect to
watch the root-search in progress, so that you can decide whether to continue or to ter-
minate the process. Pressing any key while the root-finder is active creates a display like
this:

—
M
N
W
-
A
+

|

 g - r ; | |

The status area shows two numbers, each preceded by a + or — sign; new values are
displayed at each root-finder iteration. The numbers are the values of the unknown vari-

able that bound the region in which the root-finder is searching; the + or — symbols
indicate the sign of the current equation evaluated at the two points.

There are several circumstances that can cause the root-finder to iterate for a long time.
For example:

e The current equation has the same sign at both edges of the region defined by the
initial guesses. If the region includes a root, the root-finder can usually home in on
it quickly. However, if there is no root in the region, the root-finder has to search
outside of the region. The search may take many iterations before finding a sign
change. In that case, when you monitor the search you will see the numbers chang-
ing while the two signs remain the same.

e The current equation is relatively “flat” around a root. In this case, the two signs
are opposite, but it takes many iterations to narrow the search region to isolate the
root. You will see the two numbers slowly get closer in value, with one or the other
changing by a few decimal places at each iteration. The example
"IFTE(X>0,1,-1)=0" discussed in the next section is an extreme case; it can take
several hundred iterations to refine the successive values to 0 and 1E-499.

e The root-finder is searching in a region where the current equation is constant.

-426-

HP Solve 14.4

14.4 Interpreting Results

Not all HP Solve problems work out as nicely as the ridget example. An equation may
have multiple solutions, no solution, discontinuities, infinities, etc. It is important when

you use HP Solve that you do not accept the “solution” at face value, but take some
steps to interpret the result to assure yourself that it is a meaningful solution. This is
the purpose of ZEXPR=Z and of the qualifying message.

The ZEXPR=Z key is provided in the solver menu as a ready means for evaluating the
current equation to verify a solution:

e When the current equation is an expression or a program, EXPR= evaluates it, tag-
ging the result with EXPR:. Following a successful HP Solve solution, the result

should be zero or near-zero.

e When the current equation is an actual equation, EXPR= evaluates the two sides of
the equation separately, returning two results tagged with LEFT: and RIGHT:. The
equality or near-equality of these two results is a measure of the validity of the solu-
tion.

EXPR= is handy for “table-filling” evaluation with symbolic values as well as numerical.

Consider, for example, filling in the following table:

A B C A+B+C

125 137 501 ?
14.9 64 750
11.7 222 643 ?

The task is to sum the each row of entries for A, B, and C. No root-finding is neces-
sary, but the solver menu is still helpful. After storing 'A+B+C’ as the current equa-
tion, each sum can be computed like this:

125zA= 13.7zB= 50.1ZC ZEXPR== = EXPR:76.3

You can also store an equation like 'SUM=A+B+C' in EQ, and use [<1] ESUME in the
solver menu to find each sum, but using the root-finder is always slower than a straight-
forward evaluation with EXPR=.

In some cases, EXPR= may not return numerical results. It uses EVAL rather than
-NUM, so that only one level of evaluation is performed (section 3.5.2). You can always

-427-

14.4 HP Solve

force a numerical result by setting flag —3 before using EXPR =, or by executing ~-NUM

afterwards.

14.4.1 Qualifying Messages
The message Zero obtained in the ridget example is the most welcome of the possible
qualifying messages. Zero means that the HP 48 has found a value of the unknown vari-
able for which the current equation numerically evaluates to exactly zero. “Exactly” in
this sense means exact to 12-digit precision, the numerical accuracy of the HP48. When
you see the Zero message, you are assured that SEXPR=Z will return a single value of
zero, or two equal values for the left and right sides of an equation.

When HP Solve returns the qualifying message Sign Reversal, it means thatit is unable
to find a value of the unknown that exactly satisfies the current equation. Butit did find
two values of the unknown that differ only in the twelfth digit, for which the correspond-
ing values of the equation have opposite signs. This means that the equation crosses the
zero axis somewhere between the two values, and so either value may be a good approx-

imation of a solution. However, the calculator can’t tell for sure that there is a solution
between the two values. For example, HP Solve returns the value 1.E-499 as the “solu-
tion” for the equation 'IFTE(X>0,1,-1)=0’, which has a discontinuity at X=0. The
Sign Reversal message warns you to check the solution.

The most immediate method of testing the result is to use ZEXPR== as described in the
previous section. In the case of 'IFTE(X>0,1,-1)=0', ZEXPR=% returns LEFT: 1 and
RIGHT: 0. The disparity between these two results indicates that this may not be a

proper solution. To check further, you should plot the current equation to get a visual
indication of its behavior.

If you solve the equation ‘X"2=2’, you obtain the result 1.41421356237, with the Sign
Reversal message. In this case pressing EEXPR=% returns LEFT: 1.99999999999 and
RIGHT: 2.00000000000. The near-equality of these two values indicates that you have a
good solution.

Other possible qualifying messages are as follows:

Bad Guess(es) The root-finder returns this error when it is unable to proceed because
the guess or guesses that you supplied yield equation values that are
not real numbers. For example, you will see this message if you solve
'V/X=2', and start with a guess of X=—-5 (for which VX is ima-
ginary).

-428-

HP Solve 14.4

Constant? This error occurs when the equation returns the same value for every
value of the unknown tried by the root-finder. The equation is either
a constant, or the guesses are in a region where the equation varies so
slowly that the root-finder can’t make any progress towards finding a
root.

Extremum The root-finder has found a local minimum or maximum instead of a

root. See section 14.7.

14.5 First Guesses

You may find it disappointing that a system as sophisticated as HP Solve requires you to
supply a “first guess” of the answer to start the root-finder, so that it will return the
“right” answer. After all, the TVM system on HP financial calculators, which is a spe-
cialized solver, doesn’t require a first guess, yet it always returns the right result.

The need for an initial guess arises because generally equations can have more than one
solution (or no solution at all). For example, x? + x—12 = 0 has solutions at x = 3 and
x = —4; the equation cos (sinx) = y has infinitely many solutions for x. Furthermore:

e It is not practical for the calculator to attempt to determine how many solutions a
particular equation has.

e Of all the possible solutions to an equation, there is no way for the calculator to
know which one you want, based only on the equation itself.

The first point is true because the calculator can find solutions only by searching for
them. Roots may occur anywhere between plus and minus infinity. To cover this range,
of course, would require an infinite number of steps--or at least a very large number for
the finite range of the calculator (from - 10°% to 10°®). This is obviously not practical.
On the other hand, if HP Solve took relatively few steps to cover the real number
domain, it could easily skip right over a region containing a root, and never find it. In
short, an automatic solver can never know when it’s finished finding roots, no matter
how many it finds. The only reasonable thing for it to do is search until it finds one

root, then quit.

The second point is a statement that a choice among multiple roots of an equation can-
not be represented within the equation itself--it has to come from external information,

often from some physical situation. For example, if the TVM equation somehow gave a
negative solution for the interest rate, you could reject that solution as meaningless. But
the information that the equation is only supposed to be valid for positive interest is not
contained in the equation itself. As another example, consider the equation
(x—2)(x—3) = 0, which has roots at x =2 and x =3. Which root is “correct?”

-429-

14.5 HP Solve

These considerations lead to the requirement that you must specify an initial guess for
the root-finder. Your guess tells the root-finder where to start looking for a root, and
guidesit to a particular root among multiple roots.

14.5.1 How Many Guesses?
The HP48 root-finder begins execution by trying to find a region of values of the
unknown variable in which the value of the current equation changes signs. Thatis, at
the two boundaries of the region, evaluating the equation must give values with opposite
signs. (The “sign” of an equation in this sense is the sign of the difference of the left
and right sides.) Then it narrows the region until it contains just one point at which the
equation is exactly satisfied (Zero message). Failing that, it finds two neighboring points
where the equation has opposite signs (Sign Reversal). You will obtain the fastest
results from HP Solve by specifying a good initial search region by means of the initial
guess.

The HP48 gives you the option of making single, double, or triple initial guesses for HP
Solve. A single guess is a number, a double guess is a list of two numbers, and a triple
guess is a list of three numbers. Any of the numbers can be complex--only the real
parts are used (this is a convenience provided to let you use the coordinates of points
digitized from plots, which are returned as complex number objects). The best choice is
usually the double guess; it is more reliable than a single guess, and the extra certainty
provided by the triple guess is seldom necessary. A good double guess contains two
values of the independent variable that

a. define a region in which the equation is well-behaved (no discontinuities, non-real
values,or infinities) and which contains the root you want, and only that root; and

b. yield values of the current equation with opposite signs.

With such a double guess, HP Solve will always home in quickly on the correct root.

It is often sufficient to supply only a single guess that is closer to your desired root than
to any other root or extremum. HP Solve takes your single guess and makes its own
second guess by duplicating the value and adding a small amount. Unless there actually
is a root between the two guesses, the search starts to look outside of the initial region.
Then, it is a matter of chance whetherit finds the root you want, or some other root or
extremum first. It is never guaranteed that the root-finder will find a particular root
from a single guess, unless the equation has only one root (and no extrema). However,
a single guess usually suffices in cases where you are using HP Solve repeatedly on the
same equation, where each time you vary one or more of the independent variables by
small amounts. The last solved value of the unknown variable is likely to be close
enough to the new value to be a good single first guess. Since that value is already

-430-

HP Solve 14.5

stored in the unknown variable, it will be used as the first guess unless you explicitly
replace it with another guess.

When you interrupt HP Solve by pressing , it returns a list of three numbers.
Thislist is a record of where the root-finder was searching when it was halted, and you
can use it as a triple guess to tell the root-finder where to resumeits iteration. If you
want to restart the root-finder, store the list in the unknown variable, then solve for the
unknown. You can also supply your own triple guess as the fastest way to make HP
Solve find a particular root. Choose the first number in the triple guess list as your best
estimate for the root, and choose the second and third numbers to bound the search
region as in the double guess case.

Table 14.1 summarizes the meaning and application of the single, double, and triple
guess options for HP Solve.

Table 14.1. HP Solve Guesses

Type of Guess Meaning When to Use

Single One value close to a root. To solve equations with only

one root; to re-solve after

adjusting the values of the
independent variables.

Double Two values on opposite sides To guarantee that the root
of a root, where the values of found will be the one between
EQ have opposite signs. the two guesses, for equations

with multiple roots and/or
extrema.

Triple First guess in the list is a best To resume an interrupted
guess of the root; the 2nd and root-search. Also is faster in
3rd surround the root as in general than the 2-guess case.
the 2-guess case.

14.5.2 Examples Using x(x—-2)(x +2) = 0
To illustrate the effect of different guesses, we will use various types of guesses in solv-
ing the equation x (x—2)(x + 2) = 0 repeatedly. This cubic equation obviously has roots
atx = —-2,x = +2, and x = 0, so you know what to expect from HP Solve. To get an
idea of how quickly the root-finder finds a root in each case, we will count the number
of iterations the root-finder makes, by recording each execution of the current equation.

This is achieved by the following:

"(X-2)*(X+2) X' 'CUBEX' STO

-431-

14.5 HP Solve

<< CUBEX 1 'N’ STO+ > STEQ

When you solve for X by pressing [F9]EX =, the value of N is incremented by 1 each
time the latter program is executed. The difference in N before and after solving is the
number of root-finder iterations. N appears in the solver menu, where you can use it
to reset N to zero before each trial, but it has no effect on the root search. Here are
the results of varioustrials:

Initial Guess Result Iterations Remarks

-10 -2 17 Found the most negative root.

+10 +2 17 Found the most positive root.

0.9 0 11 Found the root closest to the guess.

1.1 0 13 Did not find the root closest to the guess.

{11 10} 2 14 Found the root between the two guesses.
Fewer iterations than with the single
guess 10.

{-9 3} -2 9 Did not find the root between the two
guesses--the equation has the same sign
at both guesses.

{19 1.1 10} 2 8 Found the root between the two guesses;
faster than the {1.1 10} case because of
the additional “best guess.”

To specify multiple guesses for a problem involving units, you can use a list of two or
more guesses as in the dimensionless case. One of the list elements should be a unit
object with the correct units for that variable. If more than one element is a unit object,
the units of the last element with units are used for the root-finder--the other elements
are presumed to have the same units, and only their magnitudes are used. If you inter-
rupt the root-finder with , the first element of the three-element list returned will

be a unit object.

-432-

HP Solve 14.6

14.6 Obtaining Guesses

In the preceding sections we discussed the need for initial guesses for the root-finder,
without much explanation of how to obtain good guesses to supply. There are three
general approaches you can use:

e Use the default guess.

e Use mathematical approximation.

e Use guesses obtained from a plot of the current equation. This is the easiest
method, and generally the most reliable.

If you don’t explicitly store a guess in the unknown variable before solving, HP Solve

uses a default value to start the root-finder iteration. The default value is simply the
current number stored in the unknown variable, or the number zero if the unknown
variable has no current value. When you use the default guess, you are trusting that HP
Solve will happen to find the correct root. This will certainly be the case if the equation
has only one solution, and no extrema or other properties that might prevent the root-
finder from converging on that value. If the current value of the unknown happens to
be sufficiently close to a root, it is likely but not certain that the root-finder will return
that root.

Using mathematical approximation to obtain a guess consists of studying the equation

and trying to estimate the root from the mathematics of the equation. We did this in
the problem of the ridget flinger in section 14.2.2. As another example, consider solving

cosx = x. For small |x|, cosx = 1-%x2. Substituting this approximation in the equa-
tion, you obtain the quadratic equation 2-x2 = 2x, which has the solutions
x = +V3 - 1. The choice of the negative root gives a value of x too large for the
approximation to be valid, leaving the positive root x = V3 -1 = .732. With this value
as a first guess for X for a current equation ‘COS(X)=X', HP Solve returns the result
0.7391 for X, which is quite close to the guess. The approximation method evidently
can provide very good first guesses, but it does require some mathematical skill and
intuition.

The preferred method of obtaining guesses is to plot the current equation and view the
resulting curve to identify roots. Furthermore, you can invoke the root-finder directly
while in the plot environment, using the plot cursor to specify an initial guess. Usually,
you can place the cursor so close to a root that the single guess is sufficient to obtain
the desired solution. You can use a plot to obtain single, double, or triple guesses and
ensure that HP Solve finds the root you want. This application of plotting is an impor-
tant reason for the existence of the plotting feature in the HP 48.

The key point to remember when you plot an expression is that the roots of the

-433-

14.6 HP Solve

expression are the values of the independent (abscissa) variable for which the plotted
curve intersects the horizontal axis. Thus you can literally see the roots in the plot
(assuming that the drawn horizontal axis passes through the origin, which is the usual
case). For an equation, the HP 48 plots the left and right sides of the equation indepen-
dently. The roots of the equation are the independent variable values for which the two
sides have the same value. The roots of equations appear as the intersections of the two
curves.

To illustrate the plot/solve process, consider the following problem.

m Example. A rocket makes a round trip to a-Centauri, 4 light-years from the earth.
On both legs of the voyage, the rocket accelerates uniformly to the half-way point, then
turns around and decelerates at the same rate until it arrives at its destination. What
acceleration is required so that the trip can be accomplished in 20 years of earth time?
By uniform acceleration we mean that the astronauts experience a constant acceleration
in their own frame of reference, so that they feel as if they were in a uniform gravita-
tional field.

m Solution. Since the trip divides into four kinematically identical 2 light-year segments,
we only need to consider one segment, which must be traversed in 5 years. Looking at
the first segment, let X be the distance from the earth and T the elapsed time, both
measured on earth clocks. These are related by the formula

X = —CAi [\/1+(%)2—1].

where A4 is the unknown acceleration, and c is the speed of light. Enter this formula
using the EquationWriter, or enter the linear form in the command line:

'X-c2/A*(V(1 + (A*T/c)"2) - 1) +0_lyr’

and store it as the current equation:

SOLVE| =NEWE SPACE .

The O_lyr at the end of the equation ensures that both sides of the equation have the
same units. Without this, a plot of the equation would have a misleading appearance,
since the units are dropped when plotting (see section 21.3.7).

Now use the solver menu (ZSOLVRE) to enter the various parameters:

-434-

HP Solve 14.6

21lyr EXE
1c ECE
5yr ET=
0_ga EZAE

The last entry serves to establish the units for A, which are required to make a plot.
Continue as follows:

[<1][PLOT] ESPIYPEZ =SFUNC:E [>)SMODES: -30 SF

It is necessary to set flag —30 so that both sides of the equation will be plotted (see sec-
tion 15.4).

‘A’ EINDEPE .001 2 EXRNGZ 0 5

The units of the vertical coordinate are determined by the dimensions of X. The right-
hand side of the equation is the distance traveled in 5 years, which can not be greater
than 5 light years, so we choose a range from 0 to 5. The horizontal plot limits are set
from 0 to 2 (ga), which is a range of accelerations that might be tolerable to human
beings--if there is no solution in this range, then the space trip is certainly impractical.
Now make the plot by pressing EERASEE SDRAWE :

Since the plotting is fairly slow, you might stop the plotting by pressing as soon as
you see the curve representing the right-hand side intersect the horizontal line at X=2.
To find the solution, move the cursor over to the vicinity of the intersection, and press
EFCNE ZISECTE , which returns the coordinates of the intersection. The computed
acceleration, A=0.185 ga, is comparable to the acceleration of gravity on the surface of

the moon.

-435-

14.6 HP Solve

Once you have used the interactive plot environment to find a solution for a problem,
you can return to the solver menu to find additional solutions as you vary the problem’s
parameters. Generally, you won’t change any of the parameters enough from trial to
trial to require replotting for determining new first guesses. In the current example, you
might ask how long the trip might take if the acceleration were increased to 1 ga:

[™][SOLVE] 1 A [IETE o= T:281_yr

The round trip time is four times this result, or 11.2 years.

You can also use a plot to obtain guess values, without immediately using EROOTZ or
ZISECTE to find a solution. As described in section 15.3.1, pressing returns the
cursor coordinates to the stack as a complex number object. If the unknown variable is
dimensionless, you can store the complex number directly in the variable as a guess--HP
Solve uses only the real part. If the unknown requires units, you should not store the
complex number. Use RE, or , to extract the real part, and store that in
the unknown.

14.7 Finding Critical Points

Although HP Solve is designed for finding roots of expressions, you can also use it to
find critical points. These are points at which the derivative of a function is zero--that
is, the critical points of f (x) are the roots of df /dx =0. Therefore, if the current equa-
tion can be differentiated, the most straightforward method of finding its extrema is to
differentiate it, make the derivative the current equation, and solve for the roots of the
derivative. The roots of the derivative have the same abscissa values as the extrema of
the original expression. Note that this method will also find inflection points, which are
points at which the first and second derivatives are zero (at maxima, the second deriva-
tive is negative; at minimait is positive).

This process is automated by the EXTR operation, in the FCN sub-menu of the interac-
tive plot menu. To illustrate the process, reactivate CUBEX (section 14.5.2) as the
current equation, and plotit:

3 EFIXE

'CUBEX’ ESTEQS

[][PLOT] ENXT= ERESET=

[]EPREVE ‘X’ ‘X' EINDEPE ESERASEZ ZDRAWE: :

-436-

HP Solve 14.7

You can make better use of the plot screen by using the zoom operation:

SZOOM= =X:= .4 |[ENTER
SZOOMZ =Y= 1.5 |[ENTER]:

(You don’t have to wait for the first zoom to finish replotting before starting the second.
You can press immediately after the first [ENTER] , then SZOOMZ again to enter the
parameter for the second zoom.)

To determine the coordinates of the relative maximum, move the cursor to the left to
near the x-position of the maximum, then press ZFCN= EEXTRE= :

 EXTRM: (-1.155.3.079)

-437-

14.7 HP Solve

Notice that the cursor moves to the maximum point; this will always happen unless the
maximum is not visible. In that case, (OFF SCREEN) is displayed along with the qualifying
message.

It is instructive to combine the plot of the current equation with that of its derivative.
When the current equation is an expression or an equation, this is easy to achieve by
using £ P’ £ (in the second page of the FCN sub-menu):

The first curve drawn is the derivative, which for this example is a quadratic. The

second curve is the original (cubic) current equation. Notice that the extrema of the
cubic occur at the same values of x as the zeros of the quadratic.

When the current equation is not differentiable for any reason, you can still use HP
Solve to find its extrema. Since the root-finder searches for a minimum of absolute
value, it will stop when it encounters a local minimum that is above the horizontal axis,
since movement in either direction produces an increase in the current equation value.
A similar effect occurs for a local maximum that is below the axis. In either case, the
value returned by HP Solve or ROOT reflects the position of an extremum rather than a
root (HP Solve shows the qualifying message Extremum).

In the current example, the maximum is above the axis, and the minimum is below, so
the root-finder will not find either extremum. However, you can still find the extrema
without differentiating by adding a constant to the original equation such that a max-
imum is pushed below the axis, or a minimum is pushed above. For example, to find
the maximum near X=-1.15, add -4 to the equation, then solve:

 CUBEX 4 - ENEW= CUBEX2

SSOLVRE -1.15 EX= []EXE = X: —-1.15469997367

-438-

HP Solve 14.8

14.8 Using ISOL with HP Solve

Since ZEXPR=E is faster than numerical solving, it is often advantageous to attempt to
solve the current equation symbolically as a preliminary to using HP Solve. This is par-
ticularly true in cases where you only intend to solve for one variable in the current
equation. By using ISOL (section 16.4.1) once to solve the equation, you can reduce the
problem from a root-finding task to one of straightforward evaluation using SEXPR==% .

Consider, for example, the simple travel cost problem:

'COST =DIST*PPG/MPG’,

where DIST is the distance traveled in miles, PPG is the price per gallon of gasoline,
and MPG is the number of miles per gallon. Imagine that you want to construct a table
of distance as a function of cost. If you enter the above equation as the current equa-
tion, you have to solve numerically for DIST after every new entry for COST. To save
time, you can instead solve the equation for DIST symbolically. First, purge the vari-
ables, to ensure a fully symbolic solution:

{COST DIST PPG MPG} PURGE.

Then solve for DIST:

'COST=DIST*PPG/MPG’ 'DIST’ ISOL = 'DIST=COST*MPG/PPG’

If you store the result as the current equation, you can then use the solver menu to
enter the constant values for PPG, and MPG, and then successive values for COST.
After each COST entry, pressing ZEXPR=Z returns LEFT: DIST, and RIGHT: value,
where value is the distance computed for the latest COST value.

When you use ISOL as a preliminary to HP Solve, keep in mind that ISOL works only at
the “top level” of an expression or equation. It does not evaluate any of the names that
appear within the object, so that implied references to the unknown variable are not
made explicit. For example, consider the equation 'X+Y=Z', where Z has the value
'X+Y’. Solving the equation for X using ISOL, you obtain the result 'X=Z-Y’. But this
result evaluates to 'X=X-Y+Y’, showing that the “solution” is meaningless. To guard
against this type of problem, it is wise to use SHOW (section 16.4.2) before applying
ISOL to make explicit all references to a specified name. In the example, ‘X+Y=2Z' 'X’
SHOW returns 'X+Y=X+Y', making it obvious that the equation is trivial. SHOW is
preferred over EVAL for this purpose because a) you only need to execute it once,
whereas EVAL may have to be used repeatedly; and b) SHOW only evaluates names that
reference the argument name at some level, keeping the result expression as compact as

-439-

14.8 HP Solve

possible.

HP Solve on some other HP calculators automatically attempts an ISOL-like solution
whenever you solve for a variable. In many cases this can speed up the solution by
avoiding the use of the iterative root-finder, and in some cases may find a solution
where the root-finder can not. This is not done on the HP 48 for several reasons:

e HP Solve is oriented toward finding a single solution, selected by you by means of an
initial guess. A symbolic solution would have to be a principal value (section 16.5),
which might prevent you from obtaining the particular root you want. Or it could be
a general solution with arbitrary signs and integers, which would be inconvenient for
repeated solving,

e A symbolic solution is only possible in certain problems, but the calculator would
have to attempt it every time you solved, which could waste a lot of time. It would
have to execute SHOW as well as ISOL, to insure that all references to the unknown
variable are made explicit before solving.

e Since ISOL is an available command, you can choose whether to use it or HP Solve
in a particular situation, rather than have the HP 48 impose its choice on you.

14.9 Programmable Solving

The root-finder used by HP Solve is available for program use as the command ROOT.
This command requires as arguments the same elements that are needed for an HP

Solve exercise:

e A program or an algebraic object (level 3) that acts as the current equation. The

variable EQ is not used by ROOT.

e The name (level 2) of the unknown variable.

e A number or list of one, two, or three numbers (level 1), that acts as an initial guess
for the root-finder.

All of the same considerations of the number and nature of the initial guesses discussed
in section 14.5 apply to program root-finding as well. Of course, since a program can’t
make visual inferences from a plot, it must include specific guesses, or logic to deter-
mine appropriate guesses.

ROOT returns its result for the unknown variable to the stack, and stores it in the vari-
able. You can not monitor the root-finder during execution of ROOT as you can during
an HP Solve exercise.

m Example. Find the positive roots of cosnx = e*, for n=1,2, and 3.

-440-

HP Solve 14.9

m Solution. Executing the program below returns these results:

0.601346767726 0.466819325092 0.369256413055

<< RCLF RAD - f Set radians mode.

«< 1 3

FOR n For n=1,2,3:

'COS(n*X) =EXP(X)-1’ Equation to solve.

X' Unknown variable.

{0 2} Bracket the positive root.

ROOT Find the root.

NEXT

f STOF Restore trigonometric mode.
>>

>>

The HP 48 plot below shows the exponential curve intersecting the three cosine curves.
The current equation for the plot is the list (see section 15.2.2)

{ 'COS(X)’ 'COS(2*X)’ 'COS(3*X)’ 'EXP(X)-1'}.

14.10 Secondary Results

HP Solve is designed primarily to solve one equation for one unknown. However, the
system does allow you to work with more than one equation, helping you to find a value
for an unknown in one equation and use it as a known variable in the next (this process
is automated further by the multiple equation solver in the HP 82211A Solve Equation
Library Application Card). In place of the single object stored as the current equation,
you may use a list of objects--any mixture of programs, algebraic objects, and the names
of variables containing programs or algebraic objects.

-441-

14.10 HP Solve

For example, returning to the space voyage example of section 14.6, you might like to
know how fast the rocket is traveling at the midpoint of the trip each way, and how
much the astronauts age during the trip. Calling the astronauts’ time (proper time) T,
and the speed v, these quantities are given by

- I

c .. AT
— lnh —_arcsinh(-)

< I c tanh(%)

Because the HP-48 hyperbolic functions do not allow arguments with units, you must
include a UBASE function in the functions’ arguments in these equations. Enter the fol-
lowing:

'SPACE’ { 'v=c/A+ASINH(UBASE(A*T/c))’ 'V=c*TANH(UBASE(A*r/c)) } STO+

This replaces the contents of SPACE with a list containing the original equation fol-
lowed by the two new equations. The order of the equations in the list matches the
order in which they are to be solved.

Now make SPACE the current equation, by entering 'SPACE’ , or by

using the catalog (section 14.2.3.2). Then shows the following:

EA%KH*(H 1+CA*T-c

1_c

L832. 80623289867_yr

#=A
C
A
T

 g 1L C 1 a Il T IEEEHER

(The values shown are those that would be left from the example in section 14.6. To
work the examples below, you should re-enter these values for any variables that don’t
match these.) Notice that the menu now includes ENXEQZ , which stands for “next equa-
tion.” Pressing that key activates a menu for the proper time equation:

-442-

HP Solve 14.10

't=c-A*ASINHC(UBASE{A

—
M
W
-
p
A

 Lz JL ¢ Il & Il T IFTECHA

You can use the value of T as a first guess for T:

[PIET = =T T & 7. 1.72948030729_yr.

The astronauts age four times this amount, or 6.91 years, during the complete round
trip. Now you can determine the half-way speed, using ¢ as an initial guess:

ENXEQE [PJECE EV:E [@IEVE o= V:.945261928211_c.

When EQ contains a list, the solver menu is built from the first object in the list. Press-
ing ENXEQE changes the stored list by rotating its first object to the end of the list, so
that the second object moves to the head of the list and is then used to build the new
menu. If you look now at the SPACE variable, you will see that the equation for V is
the first object in the list. To restore the list to its original order, press ZNXEQZ again.

The equation catalog operation SEQ+ = provides a convenient means for making a list of
objects for HP Solve. See section 14.2.3.2.

14.11 Modifying the Solver Menu

One of the advantages of HP Solve is that it automatically analyzes the current equation
and builds the solver menu for you. This can, however, sometimes lead to a less-than-

ideal menu. Accordingly, the HP48 gives you the option of defining the menu in a
manner similar to ordinary custom menu construction (section 7.3).

Any object in EQ, or any entry in a list of objects in EQ, can be replaced by a list con-
taining the original object plus a custom menu list:

{ object { custom-menu } }

The object is used as the source for the root-finder as usual, but the normal solver menu
is replaced by a custom menu defined by the inner list. The menu can have any of the

features of a custom menu, with two modifications:

-443-

14.11 HP Solve

e Menu key labels corresponding to name objects in the custom-menu list appear as
black-on-white labels, and the corresponding key definitions are the usual solver
menu actions.

e ZEXPR=Z appears at the end of the menu.

In section 14.10 we showed how to use HP Solve with a list of related equations. In the
example there, we computed the proper time T and the speed v from separate equations
included in the current equation list. Since those computations required only evaluation
rather than root-finding, another approach is to add menu keys for evaluating T and v to
the original menu. For example, consider the following list:

{ 'X=c*2/A*(V(1+(A*T/c)"2) - 1)’ Original equation.

{ Start of custom menu list.
X X key.
T T key.
A A key.

(v
<< 'c¢/A*ASINH(UBASE(A*T/c))’ -NUM

"1_yr’ CONVERT
>>

T key.

(v
<< 'c*TANH(UBASE(A*r/c))’ ~NUM
>>

} V key.
} End of custom menu list.

}

With this list as the current equation, the solver menu looks like this:

EQ: { '"X=c"2/7A%¥CIC1+

w
W
-
H

c
]
L0TA]IWT

Here you can observe several things:

-444-

HP Solve 14.11

e The custom menu list lets you place the menu keys in the order in which they are
likely to be used, rather than the order defined by their appearance in the original
equation.

e No key is included for c, the speed of light. This quantity is a constant, so there is
little point in including the corresponding variable name in the menu. (Of course,
you must store a value for c initially, using STO.)

e The first three entries in the menu list are the names X, A, and T; these define ordi-
nary solver menu key actions.

e The next two menu list entries are lists themselves. In each case, the first elementis
a string that is used for the menu key label. If the element were a name, the label
would appear as dark letters on a white background. Using a string instead yields a
label with white letters on dark, indicating that the menu key is not an ordinary
solver menu key.

The second element in each individual key list specifies the unshifted menu key
action. For T and V, the actions are programs that evaluate to the values of these
variables derived from previously stored or calculated variables. You can also
specify left- and right-shifted menu key actions by adding additional objects to the
key list (section 7.3.3).

e EXPR= appears at the end of the menu. Pressing this key evaluates the main equa-
tion, as described in section 14.4.

If necessary, re-enter the values from the original problem:

21lyr =X 5yr=T=

then

[QIEAE o= A:.184521099199_ga

Eq = Z 4.44831376704_yr

SVE = .318993857812_c.i

As a final note to this example, we should mention that while the kinematics of the
problem--speed, time, and distance--look attractive, the dynamics--the fuel required,
radiation shielding, etc.--make such a trip effectively impossible.

-445-

15. Plotting

Much of the current interest in the use of calculators and computers in mathematics
education centers around plotting. A graph of a function or of data points provides a
view that is often more revealing than a symbolic expression or a table of data. Accord-
ingly, the HP 48 provides an extensive set of automated plotting facilities that make it
easy to create and work with plots. In Chapter 10 of Part I, we studied general purpose
HP 48 graphics and display control, with an emphasis on the creation of special displays
for program input and output. This chapter concentrates on mathematically oriented
plotting, specifically the capabilities associated with the DRAW command and the plot
environment.

A note on terminology: following common usage, we will use x and y as generic names
for the variables associated with the the horizontal and vertical directions on the graph
screen. The HP48 similarly uses X and Y as default names. However, you are by no
means restricted to those choices--you can substitute any other names.

15.1 The Plot Menus

The commands and operations associated with automatic plotting are found in two
menus, activated by the and keys. [41][PLOT] activates the plot equa-
tion entry menu, which is a near copy of the [<7][SOLVE] menu. The ENEWE , ZEDEQE ,
=STEQZ , and ZCATE operations are the same for plotting and solving, and both systems
share the same current equation identified by the variable EQ. The uses of these opera-
tions are described in section 14.1.

After pressing , you will see a display like this:

Qlttg OLAR
A *CDS(4*B)+SIH(m

—
M
0
D
-
R
M
T
™
M

 PLOTE[PTVPE| MEW|EDER[STEQCAT

The current equation display in the second line is the same as that described in section
14.2. The top line shows the current plot type. If the type is one of the three discrete
plot types, the current equation display is replaced by a current matrix display:

-447 -

15.1 Plotting

Plot t?ge= BAR
LERR:[18x11]
¢:
3=
%:

PLOTE|PTVPE]MEW|EDEGSTER|CAT|

The matrix is represented by its dimensions in the form [mXn], where m is the
number of rows and n the number of columns.

The plot menu replaces the solve menu’s EROOT= key with ZEPTYPEZ . This key activates
a menu that contains eight commands for selecting the eight automatic plot types.
Pressing any of the PTYPE menu keys changes the current plot type to that indicated on
the key label, and changes the menu back to the plot menu. The plot types are:

Function

Conic

Polar

Parametric

Truth

Bar

Histogram

Scatter

A curve y(x) is plotted by computing the vertical coordinates y for
each value of the horizontal coordinate x, as x is varied from the left
side of the screen to the right.

Both branches of the solution for y of a second-order equation in x
and y are plotted in the manner of a function plot, producing a conic
section figure.

Points (r,0) specified in polar coordinates are plotted, as the polar
angle 0 is varied over a specified range.

A curve (x(f),y(t)) is plotted as a parameter ¢ is varied over a speci-
fied range.

A pixel is turned on at every point (x,y) for which the evaluation of a
function of x and y returns true.

A bar chart is plotted that represents the values in one column of the
current statistics matrix.

A histogram is generated from a column of data values sorted into

equal-width bins.

Scattered points are plotted corresponding to coordinates specified by
two columns of the current statistics matrix.

The first five plot types are derived from the continuous variation of a particular

-448-

Plotting 15.1

variable; we will refer to these collectively as the continuous plot types. We will call the
last three discrete plot types, because they use discrete individual data points.

The first key in the equation entry menu is EPLOTRE (for “plotter”). This key activates
the plot execution menu, which is also generally available with . This menu
contains the actual plotting commands, ERASE, DRAW, and AUTO, plus all of the com-
mands related to the various plot parameters--plot scale, axes, labels, etc. The relation-

ship between the and menus is similar to that of the and
menus. You use the menu to set up the current equation (and the plot

type, for plotting), then activate the menu to do the actual plotting.

The plot execution menu has an automatic prompting display that shows several of the
current plotting parameters, e.g.

Plot tgpe: POLAR
EQ: *CO0SC4*8 3+5SIHC,.,
Indep: '8’

8 -6, 2 6.3

ys -1.55 1.6

ERAZE|[RkdAUTD#ENGYRNG[INDEP]

e The top display row shows the current plot type.

e The second row shows the name and partial contents of the current equation object
(for continuous plots), or the name and dimensions of the current statistics matrix

(for discrete plots).

e For continuous plot types, the next row shows the name of the independent variable.
For conic and truth plots, the dependent variable name is also listed. For discrete
plot types, the x- and y-columns (section 15.9) and the current pseudo-linear fit

model (section 20.3.2.1) are displayed on a single line.

e The current horizontal and vertical plot ranges are shown, in the format

y: Y min Y max

The menu commands and other operations are described in the rest of this chapter.

-449-

15.2 Plotting

15.2 Plotting Essentials

When you set out to make a plot of any type on the HP 48, you must specify a number
of elements that determine the nature and appearance of the graph. Obviously, you
must provide either a set of coordinates for points to be plotted, or a mathematical
expression from which the coordinates may be computed. But, in addition, you must
determine:

1. The type of plot--the manner in which the coordinates or the expression is to be
interpreted. For example, an expression might represent y as a function of x, or it
might specify a radial coordinate r as a function of a polar angle 6.

2. Which variables in the expression correspond to the two coordinate axes, and the
labels,if any, that are to be applied to the axes.

3. The range of an independent variable, or the portion of a discrete data set, that is
to be used in a plot.

4. The plot scale, i.e. the mapping of the logical coordinates associated with a graph

onto the physical display.

5. Whether axes are to be drawn, and if so, where.

6. The plot resolution, i.e. the frequency with which an expression is sampled to
determine plotted points. Also, whether the calculator should “connect the dots”
by drawing straight line segments between computed points.

Making a graph of sinx is a simple example that illustrates the elementary HP48 plot-
ting process. Step 1 is to enter the expression, and storeit in the variable EQ:

'SIN(X)' [>][PLOTIZSTEQS

As shown in the example in section 14.6, the plotting command DRAW uses EQ in the
same manner as HP Solve, to select an object for plotting. Since you are plotting a tri-
gonometric function, the result will be sensitive to the current angle mode, which should
be radians in this case (press if necessary). Next, make sure that the HP 48

will produce an ordinary function graph (step 2):

At this point, you should see a display like this:

-450-

Plotting 15.2

FUNCTION

I
I
D o
~

e
+
! =
0

-
~

x
-
.

)

—
M
W
-
A
M
T
M

E
N

®
E

E
E

=
N
E
H

 PLOTR|PTYPE| NEW|EDER[STEQCAT

Now enter the following:

SEPLOTRE SRESET= PREV]

 FUNCTION

RESET takes care of steps 3-6 by supplying default values for all of the remaining
parameters.

 Now you are ready to draw the graph. Press SERASEZ ZDRAWE:

 BTB[ETTAN

After drawing the graph, the HP 48 automatically activates the plot environment (see sec-
tion 15.3), where you can rescale the graph (zoom), read data from the graph, and for
function plots, compute intercepts, slopes, and areas. To return to the standard

-451-

16.2 Plotting

environment, press .

In the next sections, we will study in more detail each of the graphing steps illustrated in
the preceding example. We will first use ordinary function graphs to illustrate general
methods, then consider other types of graphs.

15.2.1 DRAW
The center of the automatic plotting system is the DRAW command, which translates an
expression or statistical data into a graph. Like HP Solve, DRAW uses an implicit argu-
ment, which may be either the object stored in the variable EQ, or the matrix stored in
2DAT, according to the current plot type. However, DRAW also requires a number of
other implicit arguments:

e The variable PPAR contains a list of parameters that determine the plot type, scale,
labels, axes, and variables.

e Flag -30 determines whether DRAW plots one curve (clear) or two (set) for func-
tion and polar plots with a current equation of the form y =f (x). See section 15.4.

e Flag —-31 determines whether DRAW connects successive computed points with
straight line segments (flag clear), or plots unconnected points (set). The ECNCT=
key in the second page of the menu toggles this flag: when the white box

appears in the menu label, the flag is clear and DRAW connects points.

(The program DRAWPIX in section 10.3.5 emulates DRAW for function plots; studying
the program can help you understand the detailed behavior of DRAW.)

The ZDRAWE key menu) is designed for interactive plotting, and so executes
three commands in sequence: DRAX to draw axes, DRAW to plot the specified data, and
finally GRAPH to activate the plot environment. In a program, you can use the three

commands separately or together. The ZDRAWE key also provides access to the current
equation: [$]EDRAWE executes STEQ, and [>]ZDRAWE executes RCEQ.

Note that DRAW does not erase the graph screen, which makes it easy to superimpose
various graphs. ERASE is a separate command; as its name suggests, it blanks the graph
screen, making a clean slate for subsequent plotting. You can interrupt DRAW with
ATTN] ; this terminates plotting but does not abort other program execution (e.g.
EDRAWE still turns on the plot environment). This is helpful when DRAW is still execut-
ing, but has already plotted the useful part of a graph.

-452-

Plotting 15.2

15.2.1.1 Autoscaling

When the default plot range parameters are inappropriate for a particular plot, and yet
you do not know in advance what ranges might be better, you can use AUTO as a substi-
tute for DRAW. AUTO attempts to find a vertical range such that at least a portion of
the plot is visible; for some plot types, AUTO also adjusts the horizontal plot range. The
algorithm is different for each plot type:

¢ Function Plots. AUTO samples the current equation at 40 points over the current x-
range, discards points that return +o, then sets the y-range to display the maximum
and minimum of the sample y values, plus the vertical origin.

e Parametric Plots. AUTO samples the current equation at 40 points over the
independent variable range, then sets the horizontal and vertical ranges to include
the minima and maxima in both directions, plus the origin.

e Polar Plots. Same as parametric.

e Conic Section Plots. AUTO only sets the vertical scale to be the same as the hor-
izontal scale.

e Truth Plots. AUTO does not change the plot ranges, executing the same as DRAW.

e Scatter Plots. AUTO sets the x-range to the minimum and maximum values in the
independent variable column (set by XCOL) in 2DAT, and the y-range to the
minimum and maximum values in the dependent variable column (set by YCOL).

e Bar Plots. AUTO sets the x-range from zero to the number of elements in ZDAT,

and the y-range to the minimum and maximum of the elements in the independent
column.

e Histograms. AUTO sets the x-range to the minimum and maximum of ZDAT ele-
ments, and the y-range from zero to the number of rows in 2DAT.

In all cases except conic section plots and truth plots, the y-range is stretched in the
negative direction by an additional 15% over that described above, to provide room for
the plot environment menu labels. More details of autoscaling are provided in the sec-
tions below discussing the individual plot types.

15.2.2 EQ and ZDAT
The five continuous plot types function, conic, polar, parametric, and truth, all use the
contents of a variable EQ in the current directory to specify the plotting “source,” in
much the same manner as HP Solve. Following the terminology of Chapter 14, we call
the source object the current equation, even whenit is not literally an equation (which is
even less likely in general for plotting than for solving). The precise interpretation of
the current equation varies according to the plot type, and is described in the

-453-

15.2 Plotting

corresponding sections below. The rules for indirection are the same as for HP Solve--
if EQ contains a name (or a list of names), then the actual source object(s) is that
stored in the named global variable(s).

When EQ contains a list of objects, each is plotted, one after another. Each object must
be suitable for the current plot type. If any of the objects is a name, then the object
stored in the global variable that matches the name is plotted rather than the name.

15.2.3 PPAR

With the exception of the modes established by flags —30 and -31, all of the informa-
tion required by DRAW to plot the current equation is recorded in a parameter list
stored in a variable PPAR (Plot PARameters) in the current directory. If PPAR does not
exist when DRAW (or any other command that affects the graph screen) is executed, it
is created with the following default values:

{(-65,-3.1) (653.1) X 0 (0,00 FUNCTION Y}

The commands XRNG, YRNG, INDEP, DEPN, RES, CENT, SCALE, AXES, *H, and *W
change the objects in the PPAR list. If the list does not exist when one of these com-
mands is executed, the default list is stored, then modified accordingly by the command.

Thelist above is a particular example of the general form of PPAR:

{ (xminay mm) (xmax’y max) indep res (xaxasayaxes) ptype depn }’

The entries are as follows:

(*min>Ymin) is a complex number representing the logical coordinates (section 15.2.4) of
the lower-leftmost pixel on the graph screen.

(*max>Y max) specifies the logical coordinates of the upper-rightmost pixel;

indep is the name of the independent variable. indep may also be a list { name
tmin fmax |, Where name is the name of the independent variable, and ¢,
and ¢., are the range of that variable over which the graph is to be plotted.

res is the plot resolution--the increment between successive values of the
independent variable.

(*axes»Y axes) Specifies the coordinates of the intersection of the axes.

ptype is the plot type, actually one of the eight plot type selection commands.

depn is the name of the dependent variable used by conic, parametric, and truth
plots. For truth plots, depn may also be a list { name ynin Ymax }, Where
name is the name of the dependent variable, and y.;, and y,.. are the

range of that variable over which a graph is plotted.

-454-

Plotting 15.2

The default values supplied for PPAR select the function plot type, and logical coordi-

nates with uniform scales of 1 per 10 pixels in both directions, with the origin and axes
at the center of the screen. X and Y are chosen as the independent and dependent vari-
ables, respectively. The value of 0 for the resolution (section 15.2.7) is a default for that
parameter, which indicates that one point is to be plotted for every pixel column. You
can restore PPARto its default values (except for the plot type) by pressing ERESET= in
the second page of the plot execution menu.

The variable 2DAT is the analog of EQ for the discrete plot types scatter, bar, and his-
togram. This variable may contain a matrix, or the name of a matrix. DRAW uses some
or all of the data in that matrix to create its plot. Because superimposing several
discrete plotsis not very useful, ZDAT may only contain a single matrix or name.

1523.1 Saving A Graph

The key (section 10.1) makes it easy to switch between the plot environment
and the standard environment, when you want to perform various calculator operations
and then view a graph again. However, if you clear the graph screen or plot another
graph, you must redraw the original graph if you want to view it again. One alternative
is to save the picture with a sequence like PICT RCL name STO (section 10.3.3). How-
ever, this method only saves the picture itself, without recording any of the contextual
information such as the plot parameters or the current equation. The programs listed
below provide a mechanism for the complete recording and restoration of a graph,
including the picture, the current equation, all of the plot parameters, the plotting flags
—-30 and -31, and the trigonometric angle mode flags —17 and —18. The latter are
included because trigonometric functions are common in plotting expressions.

PREST Plot Restore 3DC4

level 1 | level 1

'name’ or

<< RCL Recall the stored list.

OBJ- DROP Extract all of the objects.

IF THEN STOX ELSE STEQ END |Restore the current matrix or equation.

RCLF 64 STWS Set full wordsize.

1 GET #FFFFFFFFOFFCFFFF AND

+ STOF Restore plot flags.

'PPAR’ STO Restore plot parameters.

PICT STO Restore picture.

>>

-455-

15.2

Plot Save

r

Plotting

< PICT RCL Recall the current picture.

PPAR Recall PPAR.

RCLF DUP 64 STWS Recall currentflags, set full wordsize.

1 GET #60030000h AND SWAP Record the plot flags.

STOF { SCATTER HISTOGRAM BAR} [Restore wordsize.

3 PICK 6 GET Getthe plot type.

IF POS

THEN RCLE 1 Get the current matrix...

ELSE RCEQ O or current equation.

END

5 LIST Combine into a list.

SWAP STO Save in a variable.
>>

PSAVE takes a name as its argument, and saves the current picture and its associated
parameters in a variable with that name. PREST also takes a name, and restores the
plot state that is stored with that name.

15.2.4 The Plot Scale
When dealing with mathematical plots, it is most convenient to describe positions on the
graph screen in terms of logical coordinates rather than pixel numbers. As described in
section 10.3.4, logical coordinates are derived from a coordinate system imposed on the
graph screen, to reflect the ranges of values associated with the variables that
correspond to the horizontal and vertical directions. The translation between pixel
numbers and logical coordinates is determined by the first two entries in the PPAR list,
(*min>Ymin) a0d (Xmax.Y max)- These specify the logical coordinates of the lower-leftmost
pixel and the upper-rightmost pixel, respectively.

There are several ways to set or change the coordinate ranges. You can, of course, edit
or otherwise modify PPAR directly, but this is usually less convenient than using special-
ized commands.

e PMIN takes a complex number and storesit as the new first element in PPAR, i.e. as
(* minsY min)- PMAX similarly stores a new (Xmax,Ymax) replacing the second element in
PPAR. With these two commands, you can completely specify the logical coordinate
system. However, the commands listed next are usually easier to use, and PMIN and

-456-

Plotting 15.2

PMAX are provided primarily for compatibility with the HP 28S (they are not avail-
able in any menu).

e When you are preparing to make a graph, the most natural way to establish the
coordinate system is to enter xp;;, and x gy, together for the horizontal range, and
then y;, and y,, together for the vertical range. XRNG and YRNG perform these
tasks; each takes two real numbers from the stack, in the order minimum maximum,
and stores them as the new real and imaginary parts of the first two PPAR elements.
If you enter the parameters manually with the EXRNGZ and YRNGZ keys, you get

immediate confirmation since the plot menu display shows the new ranges that you
just entered. You can also recall the current ranges using those keys:

 ! > 0 < o mEIE
[">]ZYRNG

= Xmin Xmax

=

n Ymin Ymax

e You can specify the coordinates of the center pixel of the graph screen with CENTR,
and the plotting scale using SCALE. Using these two commands fixes the plot
ranges as effectively as using XRNG and YRNG. CENTR takes a complex number
representing logical coordinates from the stack, and readjusts the plot parameters so
that the “center” pixel will have those coordinates. The center pixel on the default
graph screen has the pixel coordinates { #65d #32d }.

SCALE takes two real numbers as arguments. The first (level 2) specifies the new
plotting scale along the x-direction, in logical units per 10 pixels (i.e. per tick mark).
The second argument similarly specifies the y-scale.

Executing

(0,00 CENTR 1 1 SCALE

establishes the default plot parameters, the same as executing SRESETE .

The ECENTRZ and SSCALEE keys return the current stored values of the

center and the scale.

e *H and *W are programmable “zoom” commands that magnify or demagnify the

plot scales in the y- and x-directions, respectively. See section 15.3.2.1.

e The plot environment menu (section 15.3) provides a number of interactive opera-
tions for changing the plotting ranges, using the cursor to provide the necessary
coordinates.

-457-

156.2 Plotting

15.2.4.1 Redimensioning the Graph Screen
When you want to extend the range of a plot without increasing the scale, you can resize
the graph screen to larger dimensions than the default 131X 64. In the plot environ-
ment, you can use the cursor arrow keys to scroll the display so that you can see hidden

portions of the larger graph screen.

All plotting and drawing commands work normally with large graph screens, with their
effects scaled to the larger size. DRAW, for example, takes longer to execute a function
plot, simply because there are more columns for which to compute points than in the
default case. The first and second elements in PPAR always specify the logical coordi-
nates of the lower-left and upper-right pixels, so the conversion between logical coordi-
nates and pixel numbers depends on the size of the graph screen.

The graph screen size can be changed by PDIM (Plot DIMensions). This command
takes two arguments that specify the new horizontal and vertical graph screen dimen-
sions. If the arguments are two binary integers #dim, (level 2) and #dim,, the result-
ing screen is dimensioned to dim,Xdim, pixels, leaving the PPAR range parameters
unchanged. The maximum horizontal width is 2048, but there is no limit other than
available memory on the vertical height. You can also change the screen size while
keeping the plotting scale unchanged, by using PDIM with complex number arguments
(¢ minsYmin) a0d (¢o,Vmax). These arguments are stored in PPAR as the new range
parameters, and the graph screen is expanded or shrunk keep the plot scales (logical
units/pixel) constant: given w and & as the original graph screen height and width in
pixels, the new screen will be w’ XA’ where

X =Xmi
w = M(W-l) +1

Xmax ~Xmin

Ymax =Ymip! = Jmax min (h-1) +1

Ymax ~Y min

In the plot environment, there are two ways to move the display window around on the
larger graph screen:

e Move the plot cursor to an edge of the screen, then continue moving the cursor in

the same direction. The cursor “drags” the window along with it. If you press
before any cursor arrow key, the cursor moves to the edge of the window in the
arrow direction. If the cursor is already at the window edge, it will jump to the edge
of the graph screen, moving the window accordingly.

e Press . This turns off the cursor and the menu labels. The cursor arrow

keys then scroll the window in the arrow directions. Pressing again
restores the cursor and the labels.

-458-

Plotting 15.2

15.2.5 The Independent Variable
The third element in PPAR specifies the independent variable. This variable is the one
that is varied automatically in continuous plots to produce the successive points that
constitute the graphs. (For discrete plots, the independent variable is only used to label
the horizontal axis.) Specifically:

e For function, conic section, and truth plots, the independent variable is associated

with the horizontal axis; plotting proceeds from right to left as the independent vari-
able is incremented.

¢ For polar plots, the independent variable is the polar angle.

e For parametric plots, the independent variable is not directly associated with either

axis. The horizontal and vertical coordinates of plotted points are computed as
separate functions of the independent variable.

The HP48 uses the name X as the default independent variable name. INDEP allows
you to change the name to any other; for example, '8’ INDEP selects 8 as the indepen-
dent variable, as might be appropriate for a polar plot. A common error when you
work with several different current equations and plot types is to forget that changing
either does not automatically change the independent variable; you should always check
its name before using DRAW. The menu helps here by displaying the

independent variable name as part of its prompting display. Also, ZINDEPZ= returns
the current independent variable object from PPAR.

When the independent variable is associated with the horizontal axis, its limits are obvi-
ous: its value is varied from that at the left edge of the screen to that at the right edge.
DRAW uses these values (obtained from x;, and x., in PPAR) as the default indepen-
dent variable range for function, conic section, and truth plots. For polar plots, the
default is one "circle,” i.e. 0° to 360° in degrees mode, 0 to 27 in radians mode, and 0 to
400 in grads mode. For parametric plots, DRAW also uses the x-range by default, but
this is seldom a useful choice.

To specify an alternate range, the independent variable entry in PPAR may be a list of
the form { name start end }, where name is the independent variable name and start

through end is the range of values of the independent variable over which the graph is
plotted. However, you don’t have to re-enter the entire list to change part of it; INDEP
makes various changes according to the type of its argument:

e 'name’' INDEP replaces the entire independent variable entry with name alone (thus
resetting to the default range).

e { name } INDEP replaces the name stored in PPAR, but leaves any existing ranges
unchanged. For example, if the existing entry is { X 0 10 }, { T } INDEP changes the

-459-

16.2 Plotting

entryto{ T0 10 }.

e start end INDEP or { start end } INDEP, where start and end are real numbers,
replace the existing range (or add a range if one is not present), without changing
the name of the independent variable. Thus if the existing entry is { T 0 10 } or just
T, then 5 50 INDEP or { 5 50 } INDEP changes the entry to { T 5 50 }. Note: LAS-
TARG returns a list even if two separate real numbers were entered.

e { namestart end } INDEP replaces the independent variable entry with the argument
list.

Even for function, conic section, and truth plots, it is sometimes useful to specify an

independent variable plotting range that is different from the x-range defined by the
screen limits. For example, if you are plotting VX' with the default x-range from —6.5
to +6.5, you might set the independent variable range from 0 to 6.5, to avoid unneces-
sary time spent “plotting” at negative values of X where the expression returns ima-
ginary values.

15.2.6 The Dependent Variable
The seventh entry in the PPAR list specifies the dependent variable, which is used as the

second variable required for conic section, parametric, and truth plots. For other plot
types, the dependent variable name is used only to label the vertical axis. The depen-
dent variable object is either a name, or a list { name start end }. Start and end are used
by truth plots to specify the range of y-values for the plot.

DEPND establishes a new dependent variable entry from an argument that may be a
name, a list, a complex number, or two real numbers, following the same logic as
INDEP. [>]SDEPNZ returns the current dependent variable object to the stack.

15.2.7 Resolution
The fourth entry in PPAR is a real number or a binary integer that specifies the plot
resolution. In general terms, this parameter determines the increment in the indepen-
dent variable between successive points that are plotted. If it is a real number, the
increment is in logical units; a binary integer specifies an increment in pixels. The pre-
cise meaning varies according to the current plot type; we will postpone detailed expla-
nations to the sections describing the individual plot types.

The initial default value of the resolution parameter is 0. This value is often the most
convenient, since it gives reasonable results for all of the plot types, so you don’t have to
change it when you switch types. When necessary, you can change the resolution with
the command RES, which takes a real number or a binary integer and stores it as the
new fourth entry in PPAR. ZRESE is found in the second page of the plot execution

-460-

Plotting 15.2

menu; [>]ERESE returns the current resolution parameter to the stack.

Table 15.1 below summarizes the interpretation of the resolution, and the meaning of
the default value 0, for each of the eight plot types.

Table 15.1. Plot Resolution

Plot type Resolution

real step=0 real step#0 binary #step

Function Ax = scale,/10 (1 column) Ax = step Ax = step-scale,/10

Conic Ax = scale,/10 (1 column) Ax = step Ax = step-scale,/10

Polar A® = 2 (degrees/grads mode) or A0 = step A9 = step-scale,/10

/90 (radians)

Parametric At = (topg —tsran/130 At = step At = step-scale,/10

Truth Ax = scale,/10 (1 column) Ax = step Ax = step-scale,/10

Scatter Not used

Histogram (bin width) Ax = (Xmay —XminY13 (10 columns) Ax = step Ax = step-scale,/10

Bar (bar width) Ax =1 Ax = step Ax = step-scale,/10

In the table, x is the horizontal coordinate (and the independent variable for function,
truth, and conic plots); ¢ is the independent variable for parametric plots; 6 is the
independent (polar angle) variable for polar plots. scale, is the plot scale in the x-
direction, logical units per 10 pixels. An increment Ax=scale,/10 is equivalent to mov-
ing one pixel width in the x-direction.

Leaving the resolution at its default value of zero is often a good choice, since then you
don’t have to worry about changing the resolution when you switch plot types or current
equations.

15.2.8 Axes and Labels
When you execute DRAW by means of the ZDRAWE key, the HP 48 automatically draws
axes on the graph screen to help you interpret the graph. SDRAWE actually invokes
DRAX (DRaw AXes); to reproduce the key’s effect in programs, you must include DRAX
as well as DRAW. The axes are drawn through the point specified by the fifth element
in PPAR. Usually, this element is a complex number that represents the coordinates of
the origin of the axes. It may also be a list of the form

{ CavesVaxes) "label,” label," }

-461-

15.2 Plotting

Here the first element specifies the intersection of the axes, and the remaining two ele-
ments are strings that are used to label the x- and y-axes, respectively.

AXES allows you to move the axis origin to another position, or to add or change axis
label strings to PPAR. This command takes a variety of arguments, much like INDEP or
DEPND:

e If the argumentis a single complex number, it replaces the current PPAR entry.

e If the argument is a list containing only a complex number, that number replaces the
current origin coordinates without affecting any current label strings.

e If the argument is a list containing two strings, the strings replace the current label

strings (the PPAR element becomes a list, if it is not already). The origin is
unchanged.

e If the argument is a list containing a complex number and two strings, the list
replaces the current PPAR entry.

The actual labeling is performed by LABEL, which you may execute as an ordinary com-
mand or by means of the ELABELE keys in the third page of the plot execution menu and
in the first page of the plot environment menu. LABEL labels the axes with variable
names or strings, and with the values of the coordinates at the edges of the plot. Labels
are placed on the graph screen like this:

5| YMAME

ENAME

This picture was generated by the following sequence:

STD 0 10 XARNG -5 5 YRNG (5,0) AXES
{ "XNAME" "YNAME"} AXES DRAX LABEL

STD is included in the sequence because LABEL formats its coordinate values according

to the current real number display mode.

-462-

Plotting 15.2

LABEL will make axis labels even if you haven’t stored label strings in PPAR. The hor-
izontal axis label shown as XNAME in the picture is chosen in the following priority
order:

1. The "label,"string.

2. The independent variable name.

(The latter choice is usually not too meaningful for polar or parametric plots.) The
vertical axis name is similarly chosen in the following priority order:

1. The "label," string.

2. If flag —30 is clear, and the current equation is of the form name = expression,
where name is not the independent variable, then name.

3. The dependent variable name from PPAR.

15.2.8.1 Tick Marks

The tick marks that are drawn on the axes by DRAX are placed at ten-pixel intervals
(measured from the axis origin). With the default plot scales, the marks are spaced one
logical unit apart; with other scales they may or may not be helpful as position indica-
tors other than to distinguish the axes from other lines.

Despite the modest pixel density of the HP48 display, tick marks at other spacings can
be useful, even if they end up with irregular spacing. The programs listed next let you
specify arbitrary and independenttick spacings for the horizontal and vertical axes (SET-
TICKS), and to draw axes with the custom tick marks (TICKAXES). The tick spacings,
which you may specify with real numbers (logical units) or binary integers (pixels), are
stored as a two-elementlist in a variable TICPAR.

SETTICKS Store Tick Spacings 1483

level 2 level 1 |

x y e

#n, #n, o

< 2 SLIST Combine parameters into a list.

'TICPAR’ STO Store as TICPAR.
>>

-463-

15.2

Plotting

| TICKAXES Draw Axes with Ticks 1E4E
<< (0,0) PIX? DROP Ensure PPAR exists.

PPAR OBJ- DROP Take PPAR apart.
TICPAR
IF DUP TYPE 6 SAME

THEN 1 DUP SETTICKS RCL

END

OBJ- DROP

IF DUP TYPE 10 ==

THEN {#0 #0} PX-C #O

ROT 2 -LIST PX-C - IM

END SWAP

IF DUP TYPE 10 ==

THEN #0 2 -LIST PX-C {#0 #0} PX-C - RE

END

9 ROLL GC+-R 10 ROLL C-R

9 ROLL

IF DUP TYPE 5§ == THEN 1 GET END

C-R

- dy dx xmin ymin xmax ymax Xxaxis yaxis

<< 4 DROPN
xmin yaxis R-C xmax yaxis R-C LINE
xaxis ymin R-C xaxis ymax R-C LINE
xaxis yaxis R-C DUP C-PX
OBJ- DROP 1 - SWAP 1
PX-C
DupP2 + 3 ROLLD -
C-R ROT C-R - xm ym xp yp

<< xmin xaxis - dx / O RND dx * xaxis +
Xxmax
FOR x x yp

dx

STEP

ymin yaxis -

ymax
FOR vy xp vy R-C xm y R-C LINE

dy
STEP

>>

>>

+ SWAP 2 -LIST

R-C x ym R-C LINE

dy / O RND dy * yaxis +

If TICPAR doesn’t exist,

then create a default version.

Take TICPAR apart.

If y-increment is binary,

convert to real.

If x-spacing is binary,

convert to real.

| Xmin Ymin *max Y max l

Axes entry.

Extract coordinates from list.

Store in local variables.

Discard extra parameters.

Draw x-axis.

draw y-axis.

Compute x- and y-coordinates

of points next to the axes.

| KasissYaxis) Faxis + Yaris +) |
| Karis + Yavs +) Favis—» Yauis-) |
Save coordinates in local variables.

Position of first x tick.

Draw the next x tick.

Position of first y tick.

Draw the next y tick.

>>

15.2.9 Plot Type
The sixth PPAR entry is one of the eight plot type commands FUNCTION, CONIC,
POLAR, PARAMETRIC, TRUTH, SCATTER, BAR, and HISTOGRAM. When any of
these commands is executed, it stores itself as the sixth entry in the PPAR list. There,
the command name is used by DRAW to determine the type of plot to create.

-464-

Plotting 15.3

15.3 The Plot Environment

When you press GRAPH (or just [<J] when no command line is present) or EDRAWE ,
the HP 48 switches to the plot environment (see section 6.1), where the keyboard and

display are dedicated to interaction with the graph screen. Here you can view graphs,
add labels, points, lines, and other geometric figures, change the plotting ranges and
scales, transfer coordinates and pictures to and from the stack, and perform various ana-
lytic operations on function graphs. As from other HP48 environments, you can exit
back to the standard environment by pressing .

To illustrate the use of the plot environment, create a simple function plot:

STD RAD ’'SIN(10*COS(X))’ ENEWE ENVEX

EPTYPEZSFUNCZ =PLOTR= [NXT|ZRESET= [4|[PREV] ZERASEZ Z=DRAW:=

 2001[2-E0#[CENT [CODRD]LAEEL] FCM |

The display is characteristic of the plot environment:

e The upper part of the display shows the graph screen, currently with the graph of

sin (10 cosx).

e The first page of the plot environment menu appears in the menu label area.

The menu labels actually overlay part of the graph screen. For example, if you press
SLABELE , you may notice that you can only see three of the four coordinate-limit values:

 200M|2-E04[CENTJCOORD|LAEEL] FCH
-465-

15.3 Plotting

To uncover the hidden part of the graph, press [-] (to “take away” the labels), or
SKEYSE in the third page of the menu. To restore the labels, press any menu key, or

again. You can also move the cursor downwards with [V] or [V]. When the

cursor reaches the top of the menu labels, further downward motion causes the graph
screen to scroll upwards, revealing the hidden part. Finally, you can press ,
which removes the menu labels and the cursor. This is especially useful when you want
to use - to print an image of the graph screen without the extraneous
features.

Along with the menu keys (including ; and), the rest of the
HP 48 keyboard is redefined for plot-related operations:

e [A],[],[V], and [=>] move the plot cursor in the indicated directions. Pressing

before any of the arrow keys moves the cursor to the edge of the screen in that
direction.

° copies the graph screen to the stack as a graphics object.

° returns the cursor position to the stack as a complex number object.

o switches the cursor type.

° erases a rectangular portion of the graph screen.

. erases the entire graph screen.

o sets the plot mark.

e -] turns the menu labels on and off.

. turns the coordinate display on and off.

15.3.1 The Plot Cursor
Not immediately visible in the display picture above is the plot cursor, which is initially
placed at the center of the screen. To reveal the cursor, you can move it away from the
axes with [>] and [A]:

 BTB[ANT

-466-

Plotting 15.3

Now you can see that the cursor is a small “+”. The cursor is used as a focal point for
various operations. For example, if you press ECOORDZ or , you can read the cursor
position in the menu label area:

(1.3.1.9)

The coordinate display follows the current number display format, which we set to stan-
dard format at the start of this example. If you move the cursor while its coordinates are
being displayed, the coordinates are changed along with the cursor position (this slows
cursor movement down somewhat). You can restore the menu labels by pressing ,
-1, or any menu key.

For use in further computations, you can copy the cursor position to the stack by press-
ing . You will see the busy annunciator flash momentarily, but there is no other
visible indication until you exit the environment by pressing :

KAD
HOME }

L
7
3
¢
1 (1.3,1.9)
TATTTA[T

Here you can see the cursor coordinates represented as a complex number. To return
to the plot environment now, press []].

Because the default plot cursor is drawn as a superimposed cross,it is invisible any time
it is situated on a dark screen region. This makes the cursor particularly hard to use
with bar charts and histograms. To remedy this situation, you can alter the nature of
the cursor by pressing (or £+/-% in the third page of the plot environment menu).

-467-

15.3 Plotting

This changes the cursor from a simple superposition of the cross to a pixel-by-pixel
reversal, in the manner of GXOR (see section 10.3.1). On a dark background, the cur-
sor is white, whereas on a white background, the cursor is dark. In an area with a mix-
ture of dark and white pixels, you can press several times to see where the cursor

is. The cursor type is encoded by flag —32, which allows you to set the type in a pro-
gram. The default superimposed cursor corresponds to flag —32 clear.

153.1.1 The Mark

For certain operations,it is necessary to specify two points on the screen. The cursor is
always available as one of those points; for the other, you set a mark. The mark is set
by moving the cursor to a point, then pressing or ZMARKE (in the third page of the
plot environment menu). This draws an X mark, which remains when you move the
cursor away. If a mark already exists, the old mark is erased and a new one drawn--
unless the cursor is actually on the mark, which just erases the mark.

If you press any menu key that requires a mark when no mark exists, that key will set
the mark rather than executing its labeled operation.

A simple example of a cursor/mark operation is , which erases the graph screen in

the region defined by the cursor and the mark. With the cursor and mark as follows,

 200H [2-e0%] CENT [COORDJLAEEL] FCN

erases like this:

3.2}v

%

4 %
' +

20011|2-E0%[CENT [CODRD|LAEEL

-468-

Plotting 15.3

This operation is also available via the menu key SDELZ | in the third page of the plot
environment menu.

15.3.2 Recentering and Zooming
Unless you are clever in choosing the plot ranges before you make a graph, chances are

the plot ranges will not be quite right. It is often easier to make a trial plot, then adjust
the ranges, than it is to choose the ranges in advance. The key operations for this pur-

pose are £ZOOM= and £Z-BOXZ , found in the first page of the plot environment menu.

Recentering is a simple one-step operation by which you can move a graph relative to

the screen so that some desired feature is centered on the screen. All you do is move
the cursor to the point where you want the new screen center, then press ECENTZ . For
example, with the cursor as shown here

3.1y

MARNE B
BTB[ETENA

I nSCENT= redraws the picture like this:

+

 [200H[2-E0%]CENT[CO0RD|LAEEL]FON |

You could achieve the same effect by pressing (to enter the cursor coordinates),
then CENTR ERASE DRAW, but for interactive use, performing the recentering

from within the plot environment is more convenient.

-469-

15.3 Plotting

The term “zooming” originated in photography, where use of variable focus lenses
allows you to change the magnification of a scene. In computer graphics,it has come to
mean a similar change of magnification of a plot, even though the speed implied by the
term may not be possible. For a computed plot, there is seldom any advantage to
changing the plot scales unless the plot is recomputed to add new data.

In the plot environment, you can zoom in on or out from a plot by specifying numerical
magnification factors, or, for zooming in, by selecting a region that you want to expand
to fill the screen. The latter is the most intuitive method; you position the mark and the

cursor to define a rectangular region, then press SZ-BOXE (Zoom-to-BOX). The plot is
redrawn so that the region fills the screen (the full 131X64). For example, with the cur-
sor and mark as shown,

X

+

200t[2-EDH[CENT[C00RO[LAEEL]FIN

£Z-BOXE yields this picture:

 2000[2-E0:[CENT|CO0RDJLAEEL]FCH

You can use £Z-BOXE to change the scale in only one direction by placing the mark and
the cursor in the same row or column. That is, if the mark and the cursor are in the

same column, £Z-BOXZ increases the y-scale to stretch the marked range to fit the
screen vertically, but leaves the x-scale unchanged. Similarly, using EZ-BOX= with the

-470-

Plotting 15.3

cursor and the mark in the same row increases the x-scale but does not change the y-
scale. (If the cursor is on the mark, ZZ-BOXZ does nothing.)

When you want to zoom out, i.e. increase the plot scale so that more of a curve or other
structure fits on the screen, you must use the numerical ZOOM operation. Here you
may specify a magnification factor by which to multiply the x- or y-scale, or both; a fac-
tor larger than 1 zooms out, shrinking plot features by that factor. A factor smaller than
1 zooms in, increasing the size of plot features.

With the picture as shown above, pressing ZZOOME changes the menu as shown here:

 mAuTOl#|v|wy||ERIT

EXITE allows you to cancel the change, returning to the main plot environment menu

without altering the plot. Pressing any of the other four labeled menu keys prompts you
for a zoom magnification factor. For instance, pressing = X = produces this display:

RAD PRG
{ HOME 1}

¥ axls Zoom.
Enter value (zoom out
if >1»s press ENTER

+
11111|

Now you may type in a zoom factor, or press to return to the zoom menu. Try 2
ENTER] :

-471-

16.3 Plotting

 2000[2-EDX[CEMT|COORD|LREEL

The plot is redrawn, with a doubled x-scale. The logical coordinates of the center of the
screen are preserved, so that the curve appears to be compressed along the x-direction,
around the screen center. An analogous behavior is produced by pressingY in the
zoom menu, with the y-scale varying according to the zoom factor and the x-scale held
constant. XY produces a uniform rescaling in both directions by the entered factor.
Thelatter is often the most useful when you are searching for a particular plot feature;
it lets you zoom out, repeatedly if necessary, until you can see the feature. Then you
can zoom back in to magnify that area of the graph.

The final option in the zoom menu is EXAUTOS . This operation rescales in the x-
direction according to the zoom factor you enter, then autoscales in the y-direction, fol-
lowing the autoscale logic described in section 15.2.1.1.

153.2.1 Programmable Zooming

The commands *H and *W are programmable commands that can stretch or shrink a
plot in height and width, respectively. For either command, you supply a real number
argument that is used by the command to multiply the appropriate coordinates of P,
and P,,. For example, to double the height of a plot (i.e. to flatten a curve to half its
original height on the screen), you execute 2 *H, then DRAW. To make a plot cover
twice the horizontal range of the previous plot (compressing the plotted curve sideways),
execute 2 *W. The effects are the same as manual zooming using the ZOOM menu in
the plot environment, with zoom factors of 2.

The effects on the plot range parameter of using *H and *W with arguments 4 and w
are listed below. The primed quantities are the new values, and the unprimed quantities
are the original values.

*H
32+ 31h 31 -31n

, (32-32n) (31 + 32n)

-472-

Plotting 15.3

*W

Xmin 1+ W)Xpin + 2(1 — W)Xmax

Il Y2(1 = W)Xin + (1 + W)Xpax

15.3.3 Drawing on the Graph Screen
In addition to the labels you can add automatically using LABEL (section 15.2.3), the
plot menu provides several other tools for embellishing a graph and for making
diagrams that may or may not be related to any mathematical plot. These tools are
interactive versions of the drawing commands described in section 10.3.4, using the cur-
sor and the mark to specify positions rather than stack-entered coordinates.

To illustrate these operations, we will start with a blank graph screen. To follow the
examples, you should exit from the plot environment by pressing (if necessary),

then =PLOT= ZERASEZ , and [] to return to the plot environment. (You can also
clear the screen without leaving the environment by pressing , but the preced-
ing method also returns the cursor to the center.)

The simplest operation is turning “on” (dark) a pixel, as you might with PIXON. Thisis
done by pressing SDOT+ (second page) twice, which turns on the pixel at the center of
the cursor. If you do this then move the cursor a few pixels to the right, you will see
the center pixel turned on:

 LINE |TLINE] EDY[CIRCL

Pressing SDOT+= just once activates a line-drawing mode in which the cursor leaves a
trail behind as you move it. Thus

£00T+= [AI[AAIAIAIALI

draws lines like this:

-473-

16.3 Plotting

h

 LIME |TLINE] EOH|CIRCL)

Notice that the DOT + key label contains a white square when the line drawing mode is
active. Pressing ZDOT+= when the square is visible turns the mode off and removes the
square from the label.

=DOT- turns the cursor into a pixel “eraser.” Pressing this key once erases the pixel at
the cursor center, and turns on a white square in the key label (turning off the square in
the DOT +, if present). While in this mode, the cursor erases pixels as you move it.
Pressing ZDOT-£ a second time deactivates the eraser mode.

For drawing lines in arbitrary directions, SLINEE is faster and more accurate than using
=ZDOT+= . ELINEE connects the cursor and the mark with a straight line. The mark is
automatically moved to the cursor position, which makes it easy to draw a series of con-
nected lines:

[BI[A] EZONEEZ [P][>] ELINES

(1] [®>I[Y] ELNEES

 LINE [TLINE]| EDYCIRCL)

For drawing lines through already-dark regions, STLINEZ reverses the pixels along the
line connecting the cursor and the mark:

Plotting 15.3

[PIAIx] [P][>] ETLNES

 (A1 NNLLS CIRCL

ZBOXE is the interactive counterpart of the programmable BOX , drawing a rectangle
defined by the cursor and the mark at opposite corners. With the cursor and mark
positioned like this:

+

LINE |TLINE] EDH|CIRCL]

EBOXZ draws a rectangle:

 LINE [TLINE]| ED:|CIRCL

The final simple drawing tool is ECIRCLE , which is the interactive version of ARC. This

-475-

16.3 Plotting

operation nominally draws a circle, with its center at the mark. For example, with the
cursor and mark still on the corners of the box just drawn, ZCIRCLE draws this circle:

 LINE [TLINE] ED:|CIRCL

To draw only a portion of a circle, place the mark at the center of the circle, and the
mark at the start of the arc you wish to draw. Then press ZCIRCLE ; when the arc is
drawn as far as you want, press to stop the drawing.

15.3.4 Working with Graphic Objects
The graphics operations embodied in the commands STO, SUB, and REPL, as they
apply to the graph screen via PICT (section 10.3.3), are available as interactive opera-
tions in the plot environment menu. As for the pixel commands described in the previ-
ous section, the mark and cursor are used in lieu of the screen coordinates used as com-
mand arguments.

Pressing in the plot environment enters a copy of the graph screen into stack level
1 as a graphics object. The object contains the full graph screen picture, but without the
menu labels, the cursor, or the mark. The action of in the plot environment is

apparently reversed from its action using PICT in the standard environment. That is,
plot environment is equivalent to the command sequence PICT RCL. This reversal
arises from the “direction” of the store: in the standard environment, the stack objectis
the visible focus, and you store that object into the graph screen (PICT). In the plot
environment, the graph screen is visible, and stores the picture onto the (invisible)
stack.

does not work in the plot environment, but you can bring a graphics object
from the stack to the graph screen by using EREPLE , in the third page of the menu.
This operation takes a graphics object from the stack and writes it onto the graph
screen, replacing the screen region with the cursor at its upper-left corner. ESUBZ pro-
vides the reverse operation; it copies a rectangular region defined by the mark and the
cursor to the stack as a graphic object. These operations are easily illustrated by a sim-
ple example. Starting in the plot environment with a blank screen (use), place

-476-

Plotting 15.3

the cursor and the mark as follows:

+

 LIME |TLINE| EOY|CIECL

Then

SuBE [ATIN] [+/-] [ZREPLE :

Miakk REPL SUEDEL+/-[KEVS

ESUBE copies the region bounded by the mark and the cursor to the stack as a graphics
object, where (NEG) reverses the image. Then, back in the plot environment,
ZREPLE replaces a region below and to the right of the cursor, in this case with a dark
rectangle. The region affected by ZREPLE is the same size as the stack object, except
that any rows or columns in the graphics object that would extend beyond the edges of
the graph screen are truncated.

15.4 Function Plots

The plot of sinx used as an example in section 15.2 is a typical example of a function
plot. In this type of plot, the y-coordinate is a function of the x-coordinate, where each
value of x yields a single value of y. In particular, the x-coordinate is incremented from
the left edge of the graph screen to the right, in steps determined by the resolution
parameter (section 15.2.7); one point is plotted in each column corresponding to the

-477-

15.4 Plotting

successive values of x. If the resolution is a real number, x is incremented by that
amount; if it is a binary integer #n, x is incremented by n pixel columns. (The default
value of 0 is equivalent to a value of #1, for plotting in every column.)

If the curve-fill flag (-31) is clear, computed points separated by more than one pixel in
either direction are connected by a “straight” lines to make continuous plotted curves.
Although plotting these filled curves is the default choice, you should use some care in
using that option, since it causes many points to be plotted that are not computed
directly from the current equation, which can be misleading.

The function f (x) that determines the y-coordinates of plotted pointsis specified by the

current equation. In its simplest form, this object is an expression in the independent
variable x. However, the current equation may also be any of the following:

e Multi-variable expressions. HP48 expressions can contain any number of variables,

e.g. 'SIN(A+B=*X)"C’. One variable is designated (by INDEP) as the independent
variable; you must supply values for the remaining variables so that the expression
evaluates to a number. Note that since HP Solve uses the same current equation in
EQ, you can use the solver menu (section 14.0) to store values for all of the vari-
ables.

e Programs. Any program equivalent to an expression (takes no arguments from the
stack, and returns one number) can be used instead of an expression.

Definition Equations. When plotting functions, we commonly speak of plotting
y=f (x), where f (x) is the function, and y is little more than a label for the vertical
axis. To accommodate this convention, when the current equation object is an equa-
tion of the form 'name=expression’, and flag —30 is clear, DRAW graphs as if the
object were just 'expression’. Thus, plotting 'F=SIN(X)' or 'G=SIN(X)' produces
the same curve. The only difference is that LABEL labels the vertical axis with F in
the first case and G in the second. Setting flag —30 cancels this special treatment of
defining equations, which are then plotted as two separate expressions, as described
below.

Vertical lines. When the current equation has the form 'x = constant’, where x is
the independent variable, and flag —30 is set, DRAW plots a straight vertical line.
With flag —30 set, DRAW plots a horizontal line at y=constant, and a diagonal line
y=X.

Other Equations. When the current equation is a true equation, that is, two expres-
sions combined with an “=" sign, the HP 48 graphs the two sides of the equation as
separate curves, regardless of the state of flag —30.

The treatment of equations as separate expressions arises from the deliberate

-478-

Plotting 15.4

connection between the HP 48’s plotting and solving systems. The solutions obtained by
HP Solve correspond to the intersection points of the two curves. This does provide a
simple method of graphing two expressions simultaneously; you can form an equation by
setting the two expressions equal to each other, then graph the equation. For example,

RAD [>][PLOT][NXT]ERESET=

'COS(X)=1/X" [*1]ZDRAWE EERASEZ :SDRAW:

yields the following display:

 BTETHETATR

Note that the two expressions are plotted simultaneously, unlike the case when EQ con-
tains a list of expressions, for which the curves are plotted sequentially.

Although function plots are nominally designed to plot y as a function of x, DRAW does
make special provision for current equations of the form x=constant, where x is the
independent variable. When flag —30 is clear, such equations are plotted as vertical
lines with x-intercept at constant. Thus 'X=2' plots as

o BTBTETWT

If flag —30 is set, the same equation plots as

-479-

15.4 Plotting

 BBREe

The horizontal line is the right side of the equation, representing the line y=2. The

diagonal line is the right side, corresponding to y=x.

15.4.1 Plotting Programs
As stated previously, a program used as a “current equation” should execute as if it
were an algebraic object, taking no arguments and returning one real number. How-
ever, as long as the program follows this input/output convention, it can perform any
number of additional operations on the stack or memory during its execution. There
are two restrictions:

e The program can not halt using HALT or PROMPT. Executing either of these com-
mands causes the HALT Not Allowed error.

e After completing its plot, DRAW restores the stack to the same number of objects
that were present when it started (this is done as part of DRAW’s error-handling
process). If a program is to return extra results that you want to keep after plotting,
it must store them in a variable or use some other strategy to protect them from the
stack reset.

You should note that a user-defined function (section 8.5) is a program, and moreover,
one that uses stack arguments. Therefore, you can not plot a user-defined function by
storing the program or its name in EQ. Instead, you must include it as part of an
expression, with the independent variable as its argument. Thatis, if you have a user-
defined function named F, you can plot 'F(X)’, but not 'F’ by itself.

The programs listed next give examples of what you can do by using a program as the
current equation object. The first, MANPLOT, lets you plot points manually, one at a
time. When you execute DRAW with MANPLOT in EQ, you will see the graph screen

briefly, then a display like this:

Plotting

RAD
{ HOME }

AR

Ki —B.3

ERRZE[ORAK]AUTOHENG[YENG|INDEP

PRG

15.4

At this point, you type the y value corresponding to the x value in the prompt, and press
. DRAW plots the specified point, then prompts you for the next one, and so on.

I MANPLOT Manual Plot Program CESF|

< PPAR 3 GET

IF DUP TYPE 5 ==

THEN 1 GET

END

-STR 2 OVER SIZE 1

T+

X +

™" PPAR 7 GET

IF DUP TYPE 5§ ==

THEN 1 GET

END

-STR 2 OVER SIZE 1

OVER + +

{V} + INPUT

OBJ- EVAL

{#0 #0} PVIEW

>>

- SuB

- SuB

Get the independent variable name.

Convert to a string.

Append a colon.

Append the current x value.

Get the dependent variable name.

Convert to a string.

Surround with colons.

Prompt for the next y.

Convert string to a number.

Show the graph screen

The next program, SCDRAW,is a replacement for DRAW that saves the coordinates of
all of the computed points as it plots them. Upon completion, SCDRAW returns a list
containing all of the points, in order. SCDRAW is designed for function plots where the
current equation is an expression or a program. If the current equation is an equation,
the y-coordinates returned by SCDRAW will be the differences between the y-
coordinates computed from the the left and right sides of the equation.

-481-

15.4 Plotting

SCDRAW Save Coordinates and Draw E5A3

| level 1

or { coordinates }

<< (0,00 PIX? DROP PPAR Get plot parameters.

3 GET

IF DUP TYPE 5§ ==

THEN 1 GET

END Get independent variable name.

'EQ" RCL - ind eq Save in local variables.

< {} Start with an empty list of coordinates.

IFERR

< eq -NUM Evaluate the current equation (y).

ind EVAL Current x value.

OVER R-C Combine x and y into a complex number.

ROT SWAP + Add to coordinate list.

SWAP Return y value for DRAW,

> 'EQ" STO Replace EQ with program.

DRAX DRAW Make the graph.

THEN 1 Signal that an error occurred.

ELSE 0

END

eq 'EQ’ STO Restore EQ.

IF THEN ERRN DOERR END Report any error.

>>

>

SLVDRAW uses an approach similar to that of SCDRAW, in this case to let you plot the
solutions of an equation, rather than treating an equation as two independent expres-
sions. For each value of the independent variable, SLVDRAW uses ROOT to find a
value of the dependent variable, and plots the corresponding point. Before plotting, you
must store in the dependent variable an estimate of its value at the left end of the
screen; subsequently, each solved value is used as an initial guess for the next solution.
As an example,

'X*2+Y"3=9" STEQ -3 'Y’ STO SLVDRAW

with the default plot ranges yields this plot (after adding labels):

-482-

Plotting

-31]

SLVDRAW Solve and Draw 99B1

< RCLF -31 CF Activate argument recovery.

IFERR 'PPAR’ RCL

THEN 1 *H RCL Get PPAR list.

END

7 GET

IF DUP TYPE 5 ==

THEN 1 GET Get dependent variable name.

END

‘EQ’ RCL - flags dep eq Save in local variables.

<< IFERR

<< eq dep DUP EVAL ROOT Solve for the dependent variable.

> 'EQ’ STO Replace EQ with program.

DRAX DRAW Make the graph.

THEN 1 Signal that an error occurred.

ELSE 0

END

eq 'EQ’ STO flags STOF | Restore EQ and flags.

IF THEN ERRN DOERR END
>>

>> Report any error.

15.4.2 The Function Menu

15.4

The EFCNE menu key in the plot environment activates a sub-menu of operations that
are applicable to function-type plots (for other plot types, SFCNE flashes Invalid PTYPE).
In general, the operations are designed for extracting information from a function curve
at one or more points, where the points in question are specified by means of the cur-

sor.

15.4 Plotting

To help in exploring the operations, we will use a list of expressions (stored as LIST.EQ)
as the current equation:

{'SIN(X)" 'COS(X)’ ‘(X/3)"2-1'} ENEW= LIST [ENTER
'PPAR’ PURGE -155 1.6 YRNG RAD ERASE

then produces this picture:

 2000[2-E0:[CENT[CDORDJLAEEL]FCN |

When the current equation is a single object, all of the function menu operations are
directed to that object. If you are working with a list of objects, all of the operations
select the first object in the list; ISECT may also use the second object. To determine
which object is the first in the list, you can either

® press EREVIEWE to show the beginning of the equation list, which is usually
enough to identify the first object; or

e (in the FCN menu) press =F(X)= . This displays the value of the selected object
at the horizontal position of the cursor, and moves the cursor to the selected curve.

In the current example, moving the cursor a few pixels to the right, then pressing =F
moves the cursor to the 'SIN(X)’ curve:

:

 F(X): 389418342308

-484-

Plotting 15.4

At the end of the second menu page is ENXEQZ , which selects the next object in the
current equation list:

 ‘s

Notice that ENXEQE also displays the newly selected object at the bottom of the screen.
Using this operation, you can cycle through all of the objects in the current equation list.
It works by actually moving the first object to the end of the list, so that the second
object moves to the front.

Returning to the first page of the menu, pressing ZROOTZ finds the zero of cos(x) at
/2

ROOT: 1.570789632678

ZROOTE invokes the root-finder on the selected object, using the horizontal cursor posi-

tion as an initial guess. When it has finished, it displays the result at the bottom of the
screen and move the cursor to the root.

Now press any key to restore the menu, then ZISECT= :

-485-

15.4 Plotting

 I-SECT: (2.10387707411.-.50818902H5!

ZISECTE finds the intersection of the curves corresponding to the first two objects in the

current equation list:

e When the first object in the list is an actual equation, SISECT= finds the intersection
of the two expressions that comprise the left and right sides of the equation; ZISECT=
is the same as SROOTE in this case.

e When the first two objects are both expressions, ZISECT= finds their intersection by
combining them into an equation and invoking the root-finder.

e When the first object is an expression, and the second is an equation, ZISECTZ substi-
tutes the first expression for the left side of the equation, and solves the resulting
equation.

The next entry in the function menu is ESLOPEZ . This operation computes the slope of
the selected curve at the x-position of the cursor:

N
$LOPE: -.B3209366648

It does this by symbolically differentiating the selected object, then numerically evaluat-
ing the result. Differentiation is also used by SEXTRE , which finds the critical points of
a curve. Pressing ZEXTRE here finds the local minimum of the cosine curve at 7r:

-486-

Plotting 15.4

 EXTRM: (3.14159285359.-1)

ZEXTRE differentiates the selected object, then applies the root-finder to the result to
find a critical point where the derivative is zero.

SAREAZ uses the HP 48’s numerical integration facility (section 18.4.2) to find the area of
a curve between two x-values selected by the cursor and the mark. For example, to find
the area of the “hump” of the cosine curve betweenits zeros at +1r/2:

1. Move the cursor near the zero at /2, and press SROOTZ (the first
just restores the labels).

2. Move the cursor near the zero at —/2, and press ZROOTE .

3. Press any key, then ZAREAE:

 ARER: -1.899914/205808

The difference between this result and the ideal result —2 (negative because we
integrated from right to left) arises primarily because the integration limits are the x-
coordinates of the centers of the pixels near the zeros, rather than the computed coordi-
nates. If you execute [using the values returned by EROOTE (which are actually on the
stack), you do obtain a result of 2.

The remaining FCN menu operation is EF’Z (on the second page). This operation adds
the derivative of the selected object to the head of the current equation list, then erases

-487-

15.4 Plotting

the screen and executes DRAW again. For example, press ENXEQZ to select the para-

bola, then EF' = :

 2000[2-EDR[CENT [COORD[LREEL] FEN

The derivative of the parabola is a straight line with slope 0.5.

If you exit to the stack at this point ([ATTN]), you will see a display like this:

RAD
{ HOME }

3: Root: 1,5/76736326/79
2: Root: -1.37B736326..

Area:
C"89914720600

[ERAZE|DEAKAUTOHEMGYEMG[INDEP

All of the function menu operations that compute results for display in the plot environ-
ment also return those results to the stack. Each result is tagged with the operation
name to help identify it.

15.5 Conic Sections

HP48 function plots normally do not attempt to plot solutions of equations (see section
15.4.1), because the solving process is relatively slow (using a root-finder to compute
each point), and because there may be multiple solutions. However, in the case of gen-
eral quadratic equations, it is possible to solve each equation symbolically, and to find
both branches of the solution. This is the basis of the conic section plot type, so named
because the graphs of second-order equations are called conic sections.

The general procedure for making a conic section plot is the same as for a function plot,

-488-

Plotting 15.5

where in this case you must execute CONIC, or use ECONICE in the PTYPE menu, to
select the conic plot type. The current equation must be an algebraic object, which
should be an expression or equation in two variables, nominally second order in both. If
you wish to use names other than X and Y as the independent and dependent variables,
you can use INDEP and DEPND to specify alternate choices.

You can understand what the HP 48 does to make a conic plot by considering how you
might do it yourself using function plots. Start with a general second-order equation:

'A*X"2+B*Y"2+C#X+D*Y+E*X*Y+F=0'

Applying "Y' QUAD (section 16.4.3) to this equation to solve for Y yields (after COLCT)

'Y= 5%(V(- (4*%(A*X"2+ C*X+ F) #B) + (E*#X+D)"2) *s1 - E#X-D)/B’

As you would expect for a quadratic equation, the solution is double-valued, as indicated
by the presence of the s1 that represents +1 (section 16.5). If you store 1 in s1, you
get an equation for one solution branch; storing —1 in s1 yields the other. To plot both
branches of the solution simultaneously, you can use a current equation formed by
equating the two right-sides of the separate branch equations, then execute an ordinary
function plot using DRAW. This is essentially what the HP 48 does for conic plots,
except that it makes a temporary version of the two-branch equation rather than dis-
turbing the contents of EQ.

To try out conic plotting, store the general equation above in EQ and use the solver
menu to store various values for the coefficients A-F, then execute DRAW. For exam-

ple, with A=1, B=2, F=-9, and zero for the remaining coefficients, you obtain an

ellipse (here we are using the default plot ranges):

™
-

\;'

There is a delay before you see the ellipse drawn. This happens because values of X to
the left and to the right of the ellipse give imaginary solutions for Y, for which no points
are plotted. Making E=1 produces a rotated ellipse with the same intercepts as the

-489-

15.5 Plotting

previous one:

Both of the ellipses have “gaps” at their extreme X values. This is characteristic of most
HP 48 conic plots;it is caused by the separate plotting of the two branches.

If A and B have opposite signs, the result is a hyperbola. Try A=1, B=-1, E=1, and
F=-1:

Adding a linear term displaces the conic section from the origin. For example, with
C=3:

-490-

Plotting 15.5

Removing the second-order term in X creates a parabola. Try A=0, B=1, C=1,
D=E=0, and F=-1:

The parabola is turned on end if you interchange X and Y. A=1, B=0, C=0, D=1 and
F=-1:

In this case, there is only one branch of the solution for Y.

The interpretation of the resolution parameter, and the effect of the curve-fill flag —31,
are the same for conic section plots as they are for function plots. Because x and y are
treated on a more-or-less equal basis for conic plots, you should generally use the same
plotting scale in both directions. AUTO will do this for you automatically; it adjusts the
y-scale to be the same as the x-scale, while preserving the y-coordinate of the center of
the screen.

15.6 Polar Plots

One way to plot an ellipse without the gaps produced by a conic plot is to re-express the
defining equation in polar coordinates, then use the polar plot type (POLAR). For
example, entering the equation for the first ellipse plotted in the preceding section,

'X"2+2%Y"2-9=0', make these substitutions:

-491-

15.6 Plotting

{ X 'R*COS(0)’} tMATCH DROP {Y ’'R#SIN(6)'} tMATCH DROP

which yields an equation in R and 6:

'(R*COS(8))"2+2*(R+*SIN(8))"2-9=0".

Solve for R:

'R'" QUAD COLCT o=
'R="V/(18+(2+COS(9)"2 + 4+SIN(0)"2))/(2+COS(6)"2 + 4*SIN(6)"2) *s1

Choose the positive branch, and make it the current equation:

{st 1} tMATCH DROP STEQ.

Now make a polar plot, with 8 as the independent variable (enter “0” with [a][>][F]):

POLAR ‘6’ INDEP ERASE =DRAW:=

AT
-

Polar plots follow much the same logic as function plots, except that the current equa-
tion is interpreted to represent the radial coordinate r as a function of the polar angle 6.
The resolution parameter (section 15.2.6) determines the increment in 6 between suc-
cessive plotted points. The default resolution 0 yields an increment of 2° in degrees
mode, 2 grad in grads mode, or 7/90 radians in radians mode. The same rules (section
15.4) for interpreting expressions, programs, defining equations (r=f(9)), and general
equations apply to polar and function plots, including the effect of flag —30. However,
you do need to pay more attention to the independent variable for polar plots:

-492-

Plotting 15.6

e Since the independent variable is the polar angle rather than the horizontal coordi-
nate, there is no obvious default for the independent variable range. If you don’t

specify one using INDEP (section 15.2.4), DRAW will plot one cycle: 0 to 360°, 0 to
400 grads, or 0 to 2, depending on the current angle mode.

e Selecting the polar plot type does not change the default independent variable name,
which remains as X. This is convenient for function and conic plots, but less so for
polar plots, where you are more likely to want to use a name like 6 ([][>][F]).

e According to the rules listed in section 15.2.7, LABEL will label the horizontal axis

with the independent variable name, which is not a good choice for polar plots.
Executing { "X" "Y" } AXES, for example, establishes X and Y as the labels, without
affecting the current axes’ positions.

The polar plot analog of the special function plot case x=constant is a current equation
of the form 0=constant, where 0 is the independent variable. In that case, with flag
-30 clear, DRAW plots a straight line through the origin, at an angle constant from the
x-axis. If flag —30 is set, the two sides of the equation are plotted separately, producing
a circle r=constant and a spiral r=9.

15.6.1 Examples
The following examples are plotted in radians mode, with the plot ranges and current
equations as indicated.

= Figure 8

EQ: R="ABS(3*SIN(6)’
INDEP: 6
XRNG: -6.5 6.5
YRNG: -31 32

-493-

15.6 Plotting

n Flower.

EQ: 'R=ABS(3*SIN(4*0))’

INDEP: 6

XRNG: -6.5 6.5
YRNG: -31 32

m Teddy Bear

EQ: 'R=-2*COS(4+0) + SIN(0)"5’
INDEP: 0
XRNG: -65 6.5
YRNG: -155 1.6
Flag -31: set

7.+ v
A

. U
. b

- '.’ -

B 2 B e .f. .l.. ‘xl B

T et s N

L g

If you are sufficiently imaginative, you can see the figure of a teddy bear peering around
the axes.

-494-

Plotting

m Spiral.

EQ:
INDEP:
XRNG:
YRNG:
Flag —-31:

'R=0/(2%m)’
{6 0 1268}
-6.5 6.5

-31 32

clear

Iy
7N

15.6.2 Varying the Angle Increment
If you plotted the last example, you may have noticed that the spiral appeared to be
drawn slowly at first, then faster as the spiral grew. This is because when the radial
coordinate is small, the default 2° increment is insufficient to cause consecutive points to
fall within different pixels, so that some pixels get plotted more than once. Increasing
the angle increment to 10° (.1745 radians), for example, speeds up the plotting dramati-
cally, but at the expense of loss of resolution in the outer parts of the spiral.

15.6

The HP 48 does not provide for a variable plot resolution, but it is straightforward to
make program replacements for DRAW that implement such a feature. The program
VARPOLillustrates one approach. Using VARPOL instead of DRAW:

-495-

15.6

VARPOL Variable 80 PolarDRAW 0276

<< RCLF - flags

< {#0 #0} PVIEW

DRAX

-3 CF

-19 SF

-16 SF RAD

-22 SF

'EQ’ RCL

IF DUP TYPE 6 SAME

THEN RCL

END EQ-

IF DUP 0 SAME NOT

THEN SWAP

END DROP

PPAR 3 GET

IF DUP TYPE 5 ==

THEN OBJ- DROP

ELSE 0 ’'2%x’ -NUM

END

ROT - 0

< ROT 6 SHOW

0 ’'0’ 2 -LIST tMATCH DROP

‘e’ DUP STO

DUP o & SQ

OVER SQ + COLCT V
{#0 #0} PX-C

{#1 #0} PX-C - RE ABS

SWAP / .18 MIN

- r do

< FOR 6 r -NUM

0 -V2 PIXON

de -NUM

STEP

>>

flags STOF

>>

>>

>>

Show the plotting.

Draw axes.

Symbolic execution mode.

Complex »V2.

Set polar mode, radians mode.

Don’t error for r=0.

Get the current equation.

Get the right side.

Get independentvariable.

If it’s a list, take it apart.

Otherwise, plot one cycle.

Save the independent var. name.

Show independent variable.

Replace with local name.

Save the modified expression.

Compute the radial coordinate.

Plot the point.

Compute the polar increment.

Increment 6.

-496-

Plotting

Plotting 15.6

VARPOL computes the derivative of the arc length as a function of 9, then increments 9

by the amount necessary to increase the arc length by one pixel width. If a is the arc
length measured along a curve, then the differential increment is related to the polar
angle by

(r2+112)%

where r=r(0) is the radial coordinate and ' = dr/d9. This program works only with
current equations that are expressions or defining equations, which must have sensible
derivatives;it also assumes that angular quantities are expressed in radians.

Notice that the plotting takes less time for small 0 than when using DRAW. VARPOL
generally takes longer than DRAW, because it has to evaluate the derivative of the
current equation as well as the object itself, but it will often produce a more satisfactory
plot.

15.7 Parametric Plots

Since HP48 pixels are addressed by rectangular coordinates, polar plots are actually
made by converting the polar coordinates of computed point to rectangular coordinates:

x(0) = rcos9
y(8) = rsin®

x and y are thus functions of the independent coordinate 8. Polar plots are a special
case of parametric plots. In the general case, the independent variable is not limited to
a polar angle, but may be anything.

The current equation for a parametric plot may be an expression or a program that
determines both coordinates at once by returning a complex number object. That is, an
expression must have the general form 'x (¢)+i+y(t)’, where ¢ is the independent vari-
able; a program must return an equivalent result. As for polar plots, you must ensure
that the independent variable and its range are set appropriately with INDEP. If you do
not specify any range, the HP48 will default to the current x-range, which is not likely to
be a useful choice.

A nice example of a parametric plot is a lissajous figure, produced by driving the x- and
y-coordinates with sinusoidal functions having different frequencies. Start by executing
PARAMETRIC [PLOT] SPTYPEZ ZPARAZ) to select the parametric plot type. Then
store the following expression as the current equation:

-497-

15.7 Plotting

'3*SIN(3*T) +2*SIN(4*T) *i’

Set the independent variable with

{T 0 6.5} INDEP.

Then, using the default x- and y-ranges, EDRAWE produces this figure:

!
Choosing a suitable resolution for plotting presents the same difficulties for parametric
curves as it does for polar curves. For example, consider the current equation

'SIGN(T) *\VABS(T) +T*SIN(T3) + (SIGN(T) *\VVABS(T) +T*COS(T3)) *i'.

Plotting this expression over the range -3<T=<3 ({ T -3 3 } INDEP), with the
default resolution of 0, produces the following plot:

For parametric plots, resolution 0 is taken to mean 130 points equally spaced across the
independent variable range. In this example, that resolution is too coarse, especially at
the beginning and end of the curve.

-498-

Plotting 15.7

Executing .01 RES for a finer resolution yields a smoother curve:

)

~ '

This is a more satisfactory picture, but an inordinate amount of time is spent plotting
near T=0. This suggests the program VARPAR, a variation of DRAW for parametric
plots analogous to VARPOL for polar plots. There a few differences between VARPAR
and VARPOL:

e VARPAR provides for variable resolution, rather than the one pixel spacing used by
VARPOL. You set the resolution by using RES with a binary integer argument,
which specifies the approximate pixel spacing between plotted points.

e Because of the variable resolution, VARPAR respects the curve fill flag —31, connect-
ing successive points with straight-line segmentsif the flag is clear.

¢ VARPAR uses a maximum spacing of 5% of the independent variable range.

Like VARPOL, VARPAR requires that the current equation is differentiable. To use
VARPOL with the current example therefore requires one addition: a derivative for
SIGN, which does not have a built-in derivative (see section 18.1.1.1). The derivative of
this function is not well-defined at zero, but for the current purpose we can just define
the derivative to be zero everywhere:

'derSIGN(x,dx)=0" DEFINE

With this definition, executing

#3 RES DRAX VARPAR

yields the picture shown next (following the program listing):

-499-

15.7 Plotting

VARPAR Variable 5t Parametric DRAW 4723

<< RCLF - flags

< {#0 #0} PVIEW

-3 CF

-16 CF

-22 SF

'EQ’ RCL

IF DUP TYPE 6 SAME

THEN RCL

END

PPAR 3 GET OBJ- DROP

ROT - t

<< ROT t SHOW

t 't 2 -LIST tMATCH DROP

't DUP STO

DUP t a8 ABS

{#0 #0} PX-C {#1 #0}

PX-C - RE ABS

PPAR 4 GET B-R =

SWAP /

3 PICK 5 PICK - ABS .05 * MIN

OVER 5 PICK 't STO -NUM

- f dt last

< FOR t f -NUM

IF -31 FS?

THEN PIXON

ELSE last OVER LINE

‘last” STO

END

dt -NUM

STEP

>>

flags STOF

>>

>>

>>

Save the flags.

Show the plotting.

Symbolic evaluation mode.

Set rectangular mode.

Don’t error for r=0.

Get the current equation.

Get independent variable list.

Save the independent variable name.

Show of independent variable.

Replace with local name.

Width of a pixel.

Multiply by resolution parameter.

ot.

Keep 8¢ < 5% of t range.

Expression, increment, and last point.

If no curve fill...

...then just plot the next point.

...else connect to last point,

and save.

Compute the increment.

Increment t

VARPAR assumes that variables EQ and PPARexist, that the resolution parameter is a binary integer,

and that the independent variable entry is a list that includes a range.

Plotting 15.7

The uniformity of the point spacing is more obvious if you plot with flag —31 set, and
omit the axes:

15.8 Truth Plots

A truth-valued function is one that evaluates to a logical value true or false. In HP 48
terms, this translates to an expression or a program that always returns 1 or 0, usually
the result of a test command (section 9.3.1). A truth plot is then a map of a truth-valued
function of two arguments. For each pair of coordinates (x,y) on the graph screen, the
current equation object is evaluated; if it returns true, the corresponding pixel is turned
on. The truth plot type is selected for DRAW by the command TRUTH (in the ZPTYPES
menu).

For example, consider the function x® +y2, mapped to truth values according to
whether the function value mod 4 is less than 2. To plot the mapping, use

'(X"3+Y~2) MOD 2<4'

as the current equation, and make a truth plot using the default plot ranges:

-501-

15.8 Plotting

Because truth plots involve two variables, you must specify names and ranges for the
two variables. The default names are X and Y, and the default ranges are just the hor-
izontal and vertical plot ranges. You can use INDEP (horizontal) and DEPND (vertical)
to specify alternate names, and to restrict the plotting ranges to any rectangular region.
For example, if you execute

-3 3 INDEP -2 2 DEPND,

then redraw the previous plot, you obtain:

Restricting the variables’ ranges is often helpful because truth plots take a long time to
generate. A typical function plot might require plotting 131 points, but a truth plot
using the full screen ranges requires over 8000 evaluations of the current equation. You
can use the resolution parameter to plot fewer columns, but it does not affect the y-
increment--every row is always plotted.

Because truth plots take so long, it is convenient to have a means of interrupting the
plotting such that you can resume it again later without having to start over. The pro-
gram ITDRAW provides this capability. It creates a truth plot like DRAW, but if you
press any key other than during its execution, the program halts. When you press

, ITDRAW resumes. While the program is suspended, you can perform any
normal operations except those that might change the graph screen; if you want to do
plotting, you should save the current picture, and restore it before continuing [TDRAW.

-502-

Plotting

ITDRAW Interruptible Truth DRAW OBEF

< 'EQ’" RCL

IF DUP TYPE 6 ==

THEN RCL

END

(0,00 PIX? DROP PPAR

OBJ- DROP 4 ROLLD 3 DROPN

ROT C-R 5 ROLL C-R

- egq X Yy Xxmax ymax Xxmin ymin

< PICT SIZE 1 - B-R

SWAP 1 - B-R

xmax xmin - SWAP /

ymax ymin - ROT / -~

< 'y x

IF DUP TYPE §5 ==

THEN OBJ- DROP

‘xmax’ STO

END 'y vy

IF DUP TYPE § ==

THEN OBJ~ DROP

'ymax’ STO 'ymin’

END STO STO

{#0 #0} PVIEW

xmin xmax

dx dy

'xmin’ STO

STO

FOR x ymin ymax

FOR vy

IF eq

THEN

END

IF KEY

THEN DROP HALT

{#0 #0} PVIEW

END

dy STEP

dx STEP

>>

{x y} PURGE

>>

-NUM

'(xy) ~NUM PIXON

>

Get current equation.

Be sure PPAR and PICT exist.

Create local variables.

Compute number of steps.

x and y increments.

If x is a list,

correct limits.

Same treatment for y.

Store local names in global variables.

Show the plotting.

x loop.

y loop.

If eq evaluates to true,

then turn on the pixel.

If a key has be pressed,

then suspend execution.

Restore the plot view.

Purge the global variables.

15.8

15.8 Plotting

15.8.1 Julia Sets
The Mandelbrot set and other Julia sets provide an excellent illustration of truth plots.
Julia sets are computed by the iterative process

z22+¢c-z

where z is a point in the complex plane, and ¢ is a constant. A point z is in the Julia set
for ¢ if the iteration never diverges. The Mandelbrot set is a variation in which the
iteration always starts at z=0, and the complex plane represents the constants ¢c. To plot
the Mandelbrot set, you can use the following program as the current equation:

MAND.EQ Mandelbrot Current Equation EAFB

< X Y R-C DUP candzg +c¢

1 15

START Iteration loop.

SQ OVER + 22 +e.

NEXT

SWAP DROP ABS 3 < Return true if z<3.

>>

With MAND.EQ selected as the current equation,

-21 CF -3.375 1625 XRNG -1.192 1.231 YRNG ERASE DRAW

producesthis picture:

Fifteen iterations is a reasonable choice for the amount of detail possible with the plot
ranges set to show the entire Mandelbrot set. Smaller scale pictures (“zooms™) of
regions near the boundary of the Mandelbrot set contain more interesting patterns, but

-504-

Plotting 15.8

more iterations per point are necessary to resolve the set to an acceptable level of
detail. Choosing Julia set constants ¢ from values at the Mandelbrot set boundary also
produces attractive Julia set patterns. The following program JULIA is a generalization
of MAND.EQ that can be used to plot either Julia sets or Mandelbrot zooms:

JULIA Julia Plot Utility 8566

level 3 level 2 level 1 | level 1

(Cx’cy) (xo,y 0) N or flag

<< 1 SWAP

START Iteration loop.

SQ OVER +

NEXT

SWAP DROP 3 ABS < Return true if |z| < 3.

>

JULIA takesas its arguments: (cy,c,), the Julia set constant; (xo,yo), the starting point of
the iteration; and N, the number of iterations per point. For plots of the Mandelbrot
set, (xg,yo) is always (0,0), and (c,,c,) are the points on the graph screen. For Julia
sets, (cx,cy) is different for each plot, and (xo,yo) are the pixel coordinates. For exam-

ple, this picture of the Julia set for c=(-.11, .65)

was produced by this sequence:

34 DUP SCALE (0,00 CENTR {X -1.344 1344}

INDEP {Y} DEPND ERASE DRAW (or ITDRAW)

with

-505-

15.8 Plotting

<< (-.11,65) X Y R-C 25 JULIA>

as the current equation.

For plots of regions that include a lot of points that are not in a Julia set, i.e. for which
the iteration diverges, it may be faster to use a variation of JULIA that is slower per
iteration but which terminates as soon as the iteration begins to diverge:

XJULIA Julia Set Utility with Exit 234D

level 3 level 2 level 1 | level 1

(cx’cy) (x0!y 0) N or flag

<< 1 SWAP Loop parameters.

IFERR Error trap for termination.

START SQ OVER + Do the iteration.

IF DUP ABS 3 > If |z| > 3,

THEN 0 DOERR Terminate the iteration.

END

NEXT DROP2 1 Return true.

THEN DROP2 0 Terminated, so return false.

END

>>

Julia set pictures may take several hours to plot; unfortunately, some of the most
interesting patterns may take 200 or more iterations per point, which is almost prohibi-
tive in time and battery consumption. However, using the HP 48 compiler tools that
Hewlett-Packard has published, it is possible to write an assembly language version of
JULIA thatis fifteen times as fast as the user-language version. This zoom of the Man-
delbrot set near (—.7454,.1130) was computed with 255 iterations per point:

=
‘l-.v:;, .

M Ay, -
-..:‘fi.’ x d _' 'l.:-i' '_'gf:";:.q I.\} A

vr A : "‘:1'&. . -A
. —di: £ . "= .

i': :'g& a.:;\' wj %,z " t‘r- 2
-V -...r::q ';\.1 e

.<-l

T

Plotting 15.9

15.9 Scatter Plots

A scatter plot is a plot of individual disconnected points that are derived from measured
or computed data. The term scatter plot indicates that the plotted points appear to be
scattered about the graph, in contrast to continuous plots, where the points usually fol-
low each other in a regular progression that forms a smooth curve. DRAW makes scatter
plots from data stored in the current statistics matrix, when the SCATTER plot type
option is selected. Most of the concepts that we have studied in this chapter for con-
tinuous plots carry over directly for scatter plots--digitizing, plot scaling and rescaling,
etc. Of the various plot parameters stored in PPAR, only the resolution is not relevant
for scatter plots.

DRAW takes the data for a scatter plot from the statistics matrix variable ZDAT (section
20.1), which plays a role for statistics analogous to EQ for function plotting and solving.
Scatter plots are made from any two of the columns of the matrix (ZDAT must have at
least two columns for this purpose). By default, the first column of data corresponds to
the horizontal coordinate, and the second column to the vertical. To make different

choices, use i XCOL (section 20.3) to select the ith column as the horizontal dimension,
and j YCOLto identify the jth column for the vertical. (ij COLX selects both columns
at once.) The selected coordinates are not independent and dependent as defined for
continuous plots, since the points are just coordinate pairs; but we’ll call them x and y as
before. The independent and dependent variable entries in PPAR are used only for axis
labels, as explained in section 15.2.7.

For example, if your ZDAT looks like this,

[11 12 13]
[21 22 23]
[31 32 33]|

then with column 1 selected as the horizontal coordinate, and column 2 as the vertical

coordinate, DRAW plots the points (11,12), (21,22), and (31, 32). 3 XCOL 2 YCOL
DRAW plots the points (13,12), (23,22), and (33,32).

An example of a scatter plot is given in section 12.11.1.2 to demonstrate the use of a
random number generator. Another example is given by plotting the “noisy” loga-
rithmic curve

Yi = 5lnxi +bis

represented by the data generated in the example in section 20.3.2.1. After creating the

-507-

15.9 Plotting

data, you can create a scatter plot using ESCATRE (in the third page of the
menu; also execute 1 XCOL 2 YCOL if necessary):

SCATRPLOT is a shortcut command that automatically selects the scatter plot type, then
executes AUTO to produce a scatter plot. Autoscaling a scatter plot chooses x- and y-
ranges according to the minimum and maximum x and y values in the data, so that there
will be at least one point plotted at each edge of the screen, and none outside, with the
usual addition 15% added at the bottom for the menu labels. For the current data, this
view “hides” the y-axis; zooming out by a small factor frames the plot more nicely:

SZOOM= = XY = 1.25|ENTER]:

et efl'.'.'.- YlPR

_.--.\"' '

- +

The command SCLX does the same autoscaling as AUTO for scatter plots, without
doing the actual plotting. This command is not present in any menu; it is provided for
HP 28 compatibility.

Plotting 15.9

15.9.1 Plotting Curve Fits
When you have data that corresponds to one of the linear or pseudo-linear curve
models, you can determine the model coefficients and other properties of the least-
squaresfit curve directly from the plot environment. The EFCNE key (see section 15.4.2)
computes and draws the curve that represents the least-squares fit of the current model
to the scatter plot data:

(You may need to reset the resolution to 0 to reproduce this plot, if you have changedit
while working some of the examples in previous sections.)

EFCNE= changes the plot type to FUNCTION, and stores the expression for the fit curve
in EQ, including the best-fit parameters. Pressing EFCNZ again activates the function
menu for further analysis. If you exit from the plot environment and recall the contents
of EQ, you will find an algebraic object representing the fit curve; in the current exam-
ple, the object is

’1.5848798893 +4.90171452%LN(X)'

The coefficients are the same as those computed by LR (section 20.3.2) for this data.
The difference between the coefficients in this expression and the ideal values of 1 and 5
arises from the random noise included in the data.

15.10 Bar Charts

A bar chart (plot type BAR) represents data values with vertical bars of lengths propor-
tional to the values. This provides a nice visual presentation of data consisting of rela-
tively few points, especially when there is no well-defined mathematical relationship
between the points. DRAW plots a single bar for each data point in the current statistics
matrix, from left to right in the order in which the points appear in the matrix. The
points are taken from the column specified in ZPAR by XCOL.

15.10 Plotting

For example, the following are the monthly sales figures for one of Larken Publications’
books for the period from August, 1990, through June, 1991:

Month Quantity

August 485
September 74
October 40
November 216

December 55

January 7

February 85
March 246
April 221
May 266
June 22

This data would make a relatively sparse scatter plot, and is better represented as a bar
chart:

This picture was created by entering each of the values from the table above, by enter-

ing each successive sales number with 2+ (section 20.1), then pressing

1 XCOLE =BARPL:=

(in the third page of the menu). The command BARPLOT provides a con-
venient means of creating a bar chart directly from the statistics menu. It automatically
selects BAR as the plot type, then executes AUTO. The latter command scales bar
charts as follows:

e The x-range is set from 0 to n, where n is the number of data points in 2DAT.

-510-

Plotting 15.10

e The y-range is set so that the highest bar (most positive data point) just reaches the
top of the graph screen. y.;, is chosen to be y.. less 115% of the distance from
the top of the highest bar to the bottom of the lowest bar (most negative). On a
default 64-pixel high screen, this just leaves room for the plot environment menu
labels at the bottom of the screen.

e The resolution parameteris set to zero, so that the bars have a width of one logical
unit. In combination with the x-range choice, this insures that the bars just fill the
graph screen in the horizontal direction.

The bars are presented on the screen in the order in which the corresponding data
points appear in 2DAT, so there is only a weak relationship between the bars and the
x-coordinate. With the plot parameters chosen by AUTO, the x-coordinate at the right
edge of a bar is approximately equal to the bar number. In general, the bars are plot-
ted, starting at the left edge of the screen, next to each other separated by a blank
column, with widths determined by the resolution parameter:

Parameter Bar Width

0 (default) 1 unit

Real number n n units

Binary integer #n n pixels

15.11 Histograms

A histogram is a bar chart made from data after it has been sorted into numerical
ranges, where each bar represents the number of data points that fall into a particular
range. With HISTOGRAM as the selected plot type, DRAW counts the elements in one
column (specified by XCOL) of ZDAT that fall into ranges determined by the plot
parameters in PPAR. In particular, the horizontal range is divided into N equal inter-
vals, where

N = CEIL [M’“—“-‘-]
resolution

DRAW then makes a bar chart of the interval counts, with bars (approximately) as wide
as the intervals they represent. As you can see from the formula above, the interval
width is equal to the resolution parameter in PPAR. If the resolution does not divide
evenly into the horizontal range, the rightmost bar will be narrower than the others.
For a default resolution of 0, DRAW divides the horizontal range into 13 intervals, mak-
ing the bars 10 pixels wide on a standard size graph screen.

-511-

15.11 Plotting

For example, we can plot a histogram of the Larken book sales data from the previous
section:

0 500 XBRNG -1 5 YRNG 50 RES HISTOGRAM ERASE =DRAWE=

Here you can see that the monthly orders tend to be of three sizes: fewer than 100,
between 200 and 300, and more than 450.

The command HISTPLOT, which appears in the third page of the menu, exe-
cutes HISTOGRAM to select the histogram plot type, then AUTO to select plot ranges
and draw the histogram. AUTO uses the minimum and maximum values in the selected
2DAT column as the x-range, and uses the current resolution parameter to determine

the bar widths. The y-range is set with y., equal to the number of entries in ZDAT,
and Y min = —-15ymay, leaving room for menu labels. Usually, this makes the bars fairly
short, but it does insure that the full vertical extent of the bars will fit on the screen
regardless of the actual distribution of the data.

You can make full use of the y range for histograms by computing the histogram data
separately, then using DRAW to plot a bar chart from the data. The histogram sorting
is done by BINS, so-called because histogram intervals are often colloquially named
“bins.’,

BINS (in the second page of the menu) takes three arguments:

® Xmin (level 3), which specifies the low (most negative) end of the data range that is
to be counted;

e w (level 2), the bin width; and

e N (level 1), the number of bins.

BINS sorts the elements in one column (selected by XCOL) of ZDAT into N+2 bins.

-512-

Plotting 15.11

For each element x in ZDAT, the nth bin count b, is incremented, where

X=X mi

n = IP[wmm] +1 for xpin=x<Xmax

where Xoy = Xmin + N'w. by is also incremented if x = x,,. BINS returns the bin
counts to level 2 as a one-column, N-element matrix:

[[b1] [b2] ... [bNn]]

It also returns a two element vector [b< b~] to level 1, where b is the count of
data points x<xi, and b is the count of data points x>x... For example, with the
book sales data still in 2DAT,

0 50 10 BINS = [[3][3][0][0]([3][1][0][o][O0][1]] [0 O]

You can observe that the maximum bin count is 3, so a y range from —-.45 (3 X .15) to
+3 is appropriate. Thus, if you store the level 2 matrix in ZDAT, and execute

0 500 XRNG -.45 3 YRNG 50 RES BAR ERASE DRAW,

you obtain this picture:

-513-

16. Symbolic Objects and Solutions

The HP 48 and its predecessor the HP 28 are unique among calculatorsin their ability to
apply mathematical operations to “symbolic” quantities--ones for which no numerical
value has been assigned. In these calculators, the quantities are represented by objects,
specifically names and algebraic objects.

In section 3.5, we discussed the procedure-class nature of algebraic objects, and their
similarities and differences with program objects. The name algebraic object is not a
particularly good one, since the objects may represent a wider variety of expressions
than a strict use of the mathematical term algebraic might suggest. The object name
originated in the early days of the HP28C design, when there was still considerable
debate among calculator users over the relative merits of RPN calculators and so-called
“algebraic” calculators. The HP28 was intended to end that debate by combining the
strengths of both calculator types into a unified interface; algebraic objects were so
named to convey that the HP28 could deal with objects formulated with a syntax fami-
liar to users of algebraic-style calculators.

In subsequent discussions, we will favor the term symbolic object, which includes alge-
braic objects and global and local names. Name objects can often be considered as
representing elementary expressions, and are usable in most contexts where algebraic
objects are allowed.

16.1 Motivations

If youre a student learning algebra or calculus, or using their techniques in other
mathematical or scientific studies, the HP 48’s symbolic capabilities may be very exciting
to you. However, if you're not directly interested in algebra for its own sake, you might
wonder why symbolic capability in a calculator is important to you.

The concept of “multiple views” is popular among educators in mathematics, referring
to different representations of a function. Each type of view provides different insights
into the nature of a function. One view is numerical, describing a function in terms of a
table of its values for various arguments. This is the only representation of a function
that is possible with a simple numerical calculator. In recent years, graphing calculators
have offered a second view--function plots that show functions’ behavior over extended
argument ranges. The HP 28 and the HP 48, however, remain the only calculators that
offer the third view--the symbolic representation of a function as a mathematical

expression--plus the ability to manipulate the expression itself.

Actually, if you use a programmable calculator at all for more than simple keyboard

-515-

16.1 Symbolic Objects and Solutions

arithmetic, you are performing a kind of symbolic operation. Any time you perform a
calculation more than once, using varying data, you probably represent the calculation
symbolically at some point. In particular, when you write a program to automate the
calculation, that program is a symbolic operation. You write it to accept certain inputs,
without specifying their values, and to compute an unknown result. This is no different
in principle from writing a mathematical expression on paper. An expression also
“works” with unspecified inputs (variables) and returns a previously unknown value

when you evaluate it.

So, in the sense that any program is a symbolic calculation, any programmable calcula-
tor is a “symbolic” machine. The major contribution of the RPL-based calculators is
that they allow you to apply mathematical operations to the programs themselves, and
obtain new programs as results. For example, consider a program that recalls the value
of a variable and doubles it. In a BASIC-language computer, for example, the program
might look like this, where the “variable” is named X:

100 Y=2*X
200 END

But suppose that after entering the program you realize that you are really interested in
the sine of the result, sin(2x). In BASIC, you must modify the program by editing it:
find the correct program line and enter the SIN in the right place, being sure to include
parentheses.

On the HP 48, the original “program” consists of the symbolic object '2*X’'. To change
this into the new program 'SIN(2*X)’, all you have to do is execute SIN when the origi-
nal expression is in level 1. The parentheses are automatically inserted. In effect, the
calculator writes a new program for you--all you have to do is use the same keystrokes
on the symbolic “program” as you would use with a numerical quantity.

Another way to see the value of the HP48 capabilities is to consider a general
problem-solving process that consists of these steps:

1. Identify the problem.

Determine the known and unknown quantities.2

3. Figure out the mathematical relationships between the quantities.

4. Solve the relationships for the unknowns in terms of the knowns.

5 For each set of known quantities, evaluate the solved relationships to obtain
numerical values for the unknowns.

-516-

Symbolic Objects and Solutions 16.1

When you use a conventional calculator, the calculator can only enter the process at the
final stage. Once you have equations for the unknowns, you can program those equa-
tions into the calculator, enter numerical values for the known variables, and run the
programs to return the numerical values for the unknowns. The HP 48, on the other
hand, can enter the process as early as step 2. You can use its symbolic capabilities to
work out the relationships and solve for the unknowns--steps for which you would need
pencil and paper when using another calculator. The symbolic solution that you find
with the HP48 is also the “program” you can use for repeated evaluation of the

unknowns with different inputs. Even if the equations you derive can not be solved in
closed form for the unknowns, you can still plot the equations or use HP Solve to obtain
numerical results, without any further programming.

As an example of this process, consider the classic introductory calculus problem:

A farmer has 100 yards offencing to enclose a rectangular field, which is
bounded on one side by a river. What length (L) and width (W) of the
field gives the maximum area?

= Solution:

Steps Keystrokes Results

1. The length of the fence
is 100 yards. 'L+2*W=100_yd’ 'L+2*W=100_yd’

2. Solve for L. L' SISOLE 'L=100_yd —2*W'

3. Assign this value to L.

4. The area of the field is
L times W. 'L*W=AREA’ 'L*W=AREA’

5. Substitute for L. '(100_yd —2+W)*W=AREA'

6. To find the maximum area,
differentiate the expression. 'W’ [a] '~ (2*W) + (100_yd -2*W) =0’

7. Collect terms. ZCOLCT= '100_yd-4*W=0’

8. Solve for W. "W’ Z1SOLE 'W=25_yd’

-517-

16.1 Symbolic Objects and Solutions

9. Assign this value to W
and evaluate L. L (EVAL] 50_yd

Answer: The width of the field should be 25 yards, and the length 50 yards.

You can use the HP 48 to formulate and solve the entire problem. With a conventional
calculator, all you can do is evaluate the final (dimensionless) answer after you have
worked it out on paper, keeping track of the units yourself.

Another example is given by the program SIMEQ (section 12.11.3), which solves a sys-
tem of simultaneous linear equations. Many other calculators provide this capability
either through built-in commands or as program applications. However, without excep-
tion (including the HP48s own built-in method using matrices and vectors), these
require you to enter the coefficients and constants rather than the equations themselves.
In other words, you must to do the work yourself of inspecting the equations, collecting

terms and rearranging if necessary, to determine the coefficients and constants. The
SIMEQ program lets you enter the equations in any order, and without having to struc-
ture the individual equations in any particular way. It is the HP 48’s ability to deal with

expressions and equations as data to be manipulated--as symbolic objects--that makes it
possible for you to write a program like SIMEQ in a straightforward, compact manner.
In other calculator languages, writing a program like SIMEQ would require considerable
ingenuity, and would likely end up being harder to use than the usual method of enter-
ing coefficients in order.

Some people express disappointment in the HP48’s limited symbolic manipulation
facilities--rearranging and collecting terms, solving equations, integration and the like--
especially when compared to the features of computer-based algebra systems. The
HP48’s capabilities are nevertheless useful, as we will discuss in this and the next
chapter, but symbolic manipulation is not the design center of the HP 48. The calcula-
tor is oriented towards practical engineering/scientific computation, with a underlying
foundation of floating-point arithmetic. Its manipulation operations are intended as an
adjunct to the numerical computation. The prime focus of the HP48’s symbolic pro-
cessing is to provide more power and flexibility than are possible with a numeric-only
calculator--the SIMEQ program is a prime example.

The RPL language itself is fully as capable as a basis for computer algebra as LISP or
the other similar languages that are commonly used in computer algebra systems. The
particular algebra feature set that is implemented in the HP 48 was chosen with regard
to practicality on a device with modest processor speed and limited memory. At this
writing, no other popular computer algebra system can execute from ROM, and none
could possibly execute with only a few kilobytes of free RAM, as the HP 48 commonly
does.

-518-

Symbolic Objects and Solutions 16.1

The HP48 takes a generally conservative approach to the execution of symbolic opera-
tions. This means that it does not attempt to make decisions for you, but allows you to
direct a symbolic calculation at each step. When you enter or compute an expression,

the HP 48 does not force the expression into any particular form, but provides expres-
sion manipulation commands so that you can rearrange it if necessary. For example,

'A+B’ 'B’ + = 'A+B+B’

The HP48 does not automatically collect terms to return 'A+2#*B’; if you want that
result, you can execute COLCT (section 17.1.1).

Another example of the conservative design is in the symbolic solutions returned by
ISOL and QUAD (section 16.4). These commands return expressions representing all
solutions to their arguments, not just one solution chosen for its “simplicity” or “fami-
liarity.” The solutions are structured so that you can choose the solution or solutions
that you want.

The HP 48 chooses a conservative approach for several reasons:

e The calculator can not know what you want. The factors that determine a choice of
expression form, or of one solution from among many, are usually not contained in
the expression itself but come from external considerations.

e There is no “standard” form for expressions.

e Solutions computed by the calculator should be general and should never obscure
any possible solution.

e In a finite-precision, floating-point calculation, the order of operations is important.
Two formally equivalent expressions, such as ‘(A+B)+C’ and '(A+C)+B’, may give
quite different results when evaluated numerically (see the discussion of expression
structure in section 3.5.2.1). When you set up an expression in a manner that takes
this point into account, you do not want the calculator to rearrange the expression.

e Symbolic operations often require a large number of individual steps. If the calcula-
tor attempted to standardize the result of each step, it would slow down the overall
process.

This approach to symbolic operations means that you will often obtain results that don’t
“look” like you expect, or which you have to take extra steps to rearrange.

-519-

16.2 Symbolic Objects and Solutions

16.2 General Symbolic Problem Solving

In the preceding section, we outlined a five-step general problem solving process. Now
we will review those steps, and see in more detail how they are realized on the HP 48.
To illustrate the procedure, we will solve the following problem:

Dad is 40 years old, Son is 10. In how many years will Dad be twice as old as Son?

1. Identify the problem.
Sometimes it’s helpful to restate a problem in a more general way, by using variables
even for values that are already known. For example:

Dad is D years old, Son is S. In how many years T will Dad be N times as old as Son?

This allows you to solve the problem logically once, then enter various choices for D
and S, and find a value of N for each set of choices.

2. Determine the known and unknown quantities.
The known quantities are the input parameters for the problem--these might be a single
value, or a set of input data, or several sets. The corresponding variables are called
known variables. Unknown variables represent the quantities you are going to calculate.
In the example, the known variables are D, S, and N. The single unknown is

represented by the variable T.

Keep in mind that the choice of which variables are known and which are unknown, is
often arbitrary. In the example, you can specify T and solve for N, rather than the
reverse as the problem was originally stated.

3. Figure out the mathematical relationships between the quantities.
This step consists primarily of converting the verbal or conceptual statement of the
problem into one or more mathematical relationships. Working the example on the
HP 48 proceeds as follows:

Verbal Statement Keystrokes Stack

(Purge existing variables) {D T N}

Dad is D years old now. D 1: ‘D’

T years later, he’ll be... T 1: 'D+T’

-520-

Symbolic Objects and Solutions 16.2

Similarly, Son is S+T 'S+T' [ENTER] 2: 'D+T’

years old. 1: 'S+T’

Dad is to be N times as NJ[<I=] 1: '‘D+T=(S+T)*N’
old:

The equation in level 1 is the relationship you need.

4. Solve the relationships for the unknowns.
In this step, you apply standard rules of algebra to rearrange the equation such that the
unknown variable is isolated as a single quantity on one side. The command ISOL (sec-
tion 16.4.1) will do this for you automatically if the variable appears just once in the
expression or equation. An automatic solution is also possible for general linear or qua-
dratic equations, for which QUAD (section 16.4.3) will find one or two solutions regard-
less of the specific form of the equation. Since the current example is linear in T,
QUAD can solveit:

'D+T=(S+T)*N’ 'T" QUAD 1= 'T=-((D-S*N)/(1-N))’

It is also instructive to solve the equation using rearrangement methods, to illustrate the
process when neither ISOL and QUAD is adequate. The steps on the HP 48 are essen-
tially the same that you might use to solve the problem on paper:

Verbal Statement Keystrokes Stack

Enter the expression '‘D+T=(S+T)*N’ 1 '‘D+T=(S+T)*N’
ENTER

Expand the product. [<][ALGEBRA]ZEXPAE 1: '‘D+T=S*N+T=*N’

Subtract T from both 'T' [ENTER][-] 1: 'D+T-T=S*N+T*N-T'
sides.

Simplify. ECOLCT= 1: '‘D=S*N+T*N-T'

Subtract S*N from both 'S*N’ [ENTER][-] 1 '—(S*N)+D=T*N-T'
sides. ECOLCT=

At this point all terms containing T are on the right side of the equation, but since there
are two such terms, you still can’t use ISOL. First, you must use operations in the
EquationWriter subexpression mode to merge the two terms. To activate this mode,
press [V1[<]] (if you don’t see a menu, press):

-5621-

16.2 Symbolic Objects and Solutions

=(SN)+D=T-N-ll

KULEZ| EDIT EXPE KEPL
We want to merge the arguments of the rightmost subtract function by factoring out the
common T. To do this, the two arguments must have a similar form. With the object
cursor on the last T, press SRULES= = *1 = :

~(SN)+D=TN-Tal

Now select the subtract object by pressing [<] twice. Then press ZRULESE to activate the
operations menu for subtraction:

~(5N)+D=TNET "1

 <7T+€tM»AF€+
The common factor T is on the left in both of the products, so press = <M = to merge left:

-522-

Symbolic Objects and Solutions 16.2

~(SN)+D=Ta(N-1)

Now T occurs only once, so the equation can be solved by ISOL. Exit from the Equa-
tionWriter environment by pressing , then

T ISOL = 'T=(-(S*N)+D)/(N-1)’

This is formally equivalent to the result obtained previously with QUAD, differing only in

the order of some of the terms.

There are, of course, many problems for which it is impossible in principle to obtain a
closed-form symbolic solution for a variable. sinx +x =y, for example, can not be
solved for x. This is where HP Solve is invaluable. If you are willing to forgo a sym-
bolic solution, you can skip the current step in the problem-solving entirely, and use the
solver menu to obtain numerical solutions for any equation, no matter how many times
the unknown variable occurs.

5. For each choice of known quantities, evaluate the solved relationships to obtain numer-
ical values for the unknowns.
Once you have an expression or equation that represents a solution to a problem, the
only remaining step is to assign specific numerical values to the independent variables,
and evaluate the solution object to obtain the corresponding values for the unknown.
You can do this in two general ways on the HP 48:

eAssign values to the independent variables using STO, and evaluate the algebraic
object that represents the solution. This causes substitution of the numerical values for
the variable names, yielding a numerical value for the unknown. In the current exam-
ple, you can assign values to D, S, and N from the original problem:

40 'D’ 10 'S’ 2 'N’

Then, with the solution 'T=(-(S*N)+D)/(-1+N)’ still in level 1,

-523-

16.2 Symbolic Objects and Solutions

EVAL] = 'T=20'

The result shows that in 20 years, when Dad is 40+20=60, and Son is 10+20=30, Dad
will be 2 times as old as Son. You can easily change values to obtain another result--
for example, if you give the value 3 to N, and reevaluate the expression, you find that
in 5 years, Dad (45) will be 3 times as old as Son (15). Note that if you want to evalu-
ate the expression several times, you need to make copies of it, or to store it in a vari-
able.

eUse HP Solve (Chapter 14). Make your solution object the current equation by press-
ing [<1][SOLVE]=STEQS , and press ZSOLVRE to activate the Solver menu. Then,

40D= 10ES:Z 2EN:E [@ETZ = T:20.

The solver menu makes it easy to solve again using different parameters. For N=3:

3N [QIETE = T:5.

16.3 Symbolic vs. Numerical Solutions

The following are reasons why a symbolic solution is desirable for almost any problem,
and preferable to the purely numerical answers that are provided by conventional calcu-
lators:

e A symbolic solution is a “global” solution. You can study the behavior of a problem
over a range of inputs, just by looking at the mathematical form of the solution.

e A symbolic solution acts as a “program” that allows you to determine numerical
results at any time. Once you have the symbolic solution, you can assign values to
the variables and evaluate the symbolic object to obtain specific numerical results.

e Even if you're using HP Solve for purely numerical answers, it is faster when you
want a series of results to rearrange the current equation symbolically so that you
can use EEXPR=E£ rather than solving numerically each time.

e A symbolic expression tells you something about the calculation “history” and
parameters that have contributed to an answer. Once you convert an expression to a
number, you wipe out the logical trail that led to the number.

To solve a problem symbolically means to take the equations that represent the problem
and rearrange them using the rules of algebra until you manage to isolate the unknown
variable’s name. (In this discussion, we will use the term equation to refer either to an
actual equation or to an expression f (x) that is understood to represent the equation
f(x)=0.) To “isolate” an unknown x means to obtain an equation of the form

-524-

Symbolic Objects and Solutions 16.3

x = f(y,z, - -+), where x does not appear in the right side of the equation, and y, z
etc. are known quantities.

The HP 48 provides two types of tools to help you obtain symbolic solutions once you
have entered the equation(s) for a problem. First, there are several commands for rear-
ranging expressions, which approximate the steps you carry out in pencil-and-paper cal-
culations. Included among these the EquationWriter RULES operations for detailed

expression manipulation, EXPAN (expand), for distributing multiplication and powers,
COLCT (collect), for combining like terms, and tMATCH and {MATCH for making a
variety of substitutions. Second, there are two automatic expression/equation solvers,
ISOL and QUAD, which can carry out several steps in the solving process at once.

ISOL and QUAD are certainly the easiest methods of solving for a variable. However,

both have certain restrictions in their application: ISOL yields a true solution only if the
unknown variable’s name appears just once in the equation. QUAD permits multiple
occurrences of the unknown’s name, but a QUAD result is only a solution if the equation
is second order (quadratic) or lower in the unknown. For equations that don’t fit either
of these criteria, the typical HP 48 symbolic solving process is a combination of the two
types of solving tools. You use the expression manipulation commands to convert an
equation into a form suitable for final solution by ISOL.

16.3.1 -Q and -Qmw
One of the problems associated with carrying out symbolic manipulations with floating-
point numbers is the loss of information and precision associated with representing
rational fractions with decimal numbers. The HP 48 provides two commands, -Q and
-Qmr, that can help you reconstruct a fraction from a number that has been converted
into decimal form.

-Q, which stands for fo quotient, attempts to find a rational fraction equivalent of a real
number, expressed as an algebraic object. For example,

3 FIX .494347379239 -Q = '43/87'

The number display setting is significant:

STD .494347379239 -Q = '481/973'

-Q attempts to find a quotient of integers which matches its argument to the number of
decimal places specified by the current number display mode. Standard (STD) mode
indicates 11 decimal places, and fixed, scientific, and engineering modes specify the

-525-

16.3 Symbolic Objects and Solutions

number indicated by the original mode argument, e.g. nine places for 9 FIX, etc. In
particular, ~Q finds the fraction with the smallest denominator that matches the argu-
ment within the error limit set by the display format. For example,

STD 1.61803398875 -Q = '514229/317811'.

Notice that the denominator does not have 11 digits. The fraction
139583862445/86267571272 is another representation of the original argument that
evaluates to the same decimal value as 514229/317811; »Q chooses the latter because
the denominator is smaller.

-Qm ([<1][ALGEBRA] menu, second page) is a variation of ~Q that includes a factor of =
in the fraction computation. That is, Q7 finds a quotient for its argument and another
for the argument divided by . It returns the quotient with the smaller denominator,
multiplied by 7 if appropriate. Since 7 itself is irrational, and not precisely represented
by a floating point number, Q7 will not necessarily return a result containing 7 even if
you started with a product of (floating-point) 7r:

w 2 / -.NUM 5 FIX -Qm = '1/2%x’

w 2 / -NUM STD = '573204/364913’

If you want to guarantee that a particular argument converts to a factor of 7, you
should divide the argument by 1, execute +Q, then multiply by 7 again:

10 FIX .7853981634 = / -NUM -Q 7 * = '1/4%m

16.4 Automated Symbolic Solutions: QUAD and ISOL

The commands QUAD and ISOL automatically carry out several steps toward the sym-
bolic solution of an expression or equation for an unknown. Each operates on an alge-
braic object in level 2, and a global name specifying the unknown variable in level 1.
Each returns an equation representing the solution, with the name of the unknown vari-
able on the left and an expression for the solution on the right. For example, using ISOL
to solve an equation for X,

"(A-B)*X)=(-(A*Y)+C)’ 'X' ISOL = 'X=(-(A*Y)+C)/(A-B)'.

X appears only on the left side of the result. This does not change the current value of
X; if you want to assign the right-side expression as the new value for X, you can execute
DEFINE (section 8.5). Or, if you want to extract the right-side expression itself for

-526-

Symbolic Objects and Solutions 16.4

some further calculation, you can take the equation apart using EQ~ (in the first page of
the [PRG]ZOBJZ menu).

16.4.1 ISOL
ISOL solves an equation for an unknown much the same way you would with pencil and
paper. It finds the (first) term containing the unknown, and moves it to the left side of
the equation, moving all other terms to the right side. Then, if the unknown is con-
tained in the argument of a function, the inverse of the function is applied to both sides
of the equation. If the result does not have the unknown by itself on the left, then the
whole process is repeated until only the unknown remains on the left side. For exam-
ple,

'2¥X+8=0" 'X' ISOL = 'X=-4',
and

'A+B#X/C=D' X' ISOL = 'X=(D-A)*C/B’

ISOL can find a solution for an equation if three conditions are met:

1. The unknown variable name appears just once in the equation.

2. The unknown appears only in the arguments of HP 48 analytic functions.

3. No variables in the equation contain algebraic objects or programs that have the
unknown in their definitions.

If either of the first two conditions is not satisfied, ISOL returns the Unable to Isolate
error. The second condition is really part of a circular definition--ISOL will only work
with analytic functions, but part of the definition of an HP 48 analytic function is that the
HP48 “knows” its inverse and hence can isolate its argument. The object description
analytic is loosely derived from the mathematical definition of an analytic function as
one that is continuous and differentiable. If you inspect the HP 48 function set, it is
usually easy to figure out why a particular function is analytic or not in the HP 48 sense
if you keep the mathematical definition in mind. Functions like IP, FP, MOD, or MANT
are not continuous, and hence are not classified as analytic. ABS is an example of a
function that is continuous but not differentiable--its slope changes abruptly at 0.

1642 SHOW
If the third condition listed for ISOL in the preceding section is not met, no error is
reported, but the result may not be meaningful. ISOL only works at the immediately
visible level of an expression. That is, it does not execute any of the variable names to
substitute their values. For example, if you isolate B in 'A+B=C’, the result is
'B=C-A’. But if A has the value 'B-C’, then the result ISOL returns does not

-527-

16.4 Symbolic Objects and Solutions

represent a proper solution. To prevent such occurrences, you can evaluate the original
equation repeatedly until all implicit uses of the unknown are revealed. This may have
the unwanted side effect of making other substitutions that you do not want, including
any current value of the unknown itself. The correct approach is to use SHOW, with
the same arguments as you would use for ISOL. This command makes any substitutions
necessary to make references to the specified name explicit in the level two object:

'A+B=C’' 'B’ SHOW = 'B-C+B=C'.

You can then proceed to solve the result equation.

SHOW has a second behavior that is complementary to that just described. If instead of
entering the second (level 1) argument as a name, you enclose that name in a list,
SHOW evaluates all names in the level 2 object except the specified name. The list may
actually contain more than one name, in which case none of the listed names are
evaluated by SHOW. Any functions with numerical arguments are executed. The pri-
mary use of SHOW in this manner is for cases where an algebraic object is to be exe-
cuted repeatedly; SHOW is used to remove as many functions and symbolic references
as possible from an expression to minimize its evaluation time. An example of this
application is given in section 14.3.1. Note that symbolic execution mode (flag —3 clear)
must be active when SHOW is evaluated with a list argument, to prevent the execution
of functions that use the listed names as arguments.

16.4.3 QUAD
QUAD is designed for solving quadratic equations ax? + bx +c¢ = 0, where x is the
unknown variable, and a, b, and ¢ are constants with respect to x. QUAD does not
require the equation to have this form. It takes an arbitrary expression or equation and
converts it to a second-order polynomial in the specified variable by computing a
second-degree MacLaurin polynomial (like TAYLR). This representation is exact if the
original expression is first or second order in the variable. QUAD then applies the
quadratic formula to the coefficients in the polynomial to obtain its solution.

As part of the process of determining the coefficients, the original symbolic argumentis
evaluated. Therefore, if you want to prevent substitution for the names in the object,
you must purge the corresponding variables before executing QUAD.

In keeping with the HP 48’s generally conservative approach to rearranging expressions,
QUAD does not attempt to constrain its result into a standard form, so you may have to
do some manipulation of the result to make it look like a “textbook” solution. For
example, if you solve the standard quadratic equation:

-528-

Symbolic Objects and Solutions 16.4

'A*X*2+B#X+C=0" ‘X' QUAD

7 'X=(-B+s1%V/(B"2-4%(A+2/2)*C))/(2+(A*2/2))’,

the result is clearly not as compact as it might be. You can improve the appearance of
the result with COLCT:

COLCT = '5*(V(-(4*A*C)+B"2)*s1-B)/A’,

which is closer to butstill not quite the same as the textbook result

-B+VB2-44C
ZA ’

however, the two forms are equivalent when evaluated. Note that the + is represented
in the QUAD result by the variable s1. This concept is explained in the next section.

When its argumentis only first order in the unknown, QUAD returns a single solution:

'A*X+B=0" ‘X’ QUAD = 'X=-(B/A)'.

It even attempts to solve the zero-order case:

‘A" X" QUAD = 'X=-(A/0)".

QUAD will not work, however, when the unknown variable must contain a unit object
for dimensional consistency with the rest of the expression (TAYLR, which shares com-
puting logic with QUAD, has the same problem.) If f(x) is the argument expression,
then QUAD computes

£ () +x-f"(0) +x>f" (0);

that is, f and its derivatives are evaluated at x=0, not at x=0_units, so that the successive

terms in the quadratic have inconsistent units. See section 21.3.8.

16.5 Multiple Roots

A fundamental result of algebra is that many expressions or equations, even some quite
simple looking, have more than one solution (root). This principle is recognized in the
behavior of QUAD and ISOL.

-529-

16.5 Symbolic Objects and Solutions

Quadratic equations always have two solutions, which are commonly combined into a
single expression with the use of a * sign. QUAD achieves this combination by return-
ing both solutions as a single expression containing the (global) name s1, which
represents a *. We will call a name of this type an arbitrary sign. The use of a global
name in this manner gives you a means of choosing one sign or the other. To choose

the positive root, you store +1 in S1 and evaluate the expression. For the negative root,
you similarly use —1. You can also leave s1 without a value as long as you like, so that
you can perform additional calculations on both roots together.

ISOL also returns a single expression representing all possible solutions for its symbolic
object argument. Such solutions may contain one or more arbitrary signs, so ISOL uses
the names s1, s2, ... to represent each successive *+ required by the solution. ISOL may
also include the global names n1, n2, ..., as needed, which represent arbitrary integers.

You may assign any integer value 0, =1, £2, ..., to each of these names; each combina-
tion represents a different solution to the original expression. For example,

RAD 'SIN(X*2)=Y’ 'X’ ISOL = 'X=s1#V/(ASIN(Y)*(~1)"n1+m*n1’

Here you can observe one arbitrary sign S1 and one arbitrary integer n1. n1 appears
twice in the expression, meaning that the same choice of integer must appear in both
places.

The appearance of arbitrary signs and integers may be confusing if you expect to find a
solution to a problem. However, it is not ISOL or QUAD thatis introducing complexity
into your problem; they are just showing you the mathematically complete result, and
not trying to choose one particular root as “better” than any other. As a matter of fact,
there is no automatic criterion that the commands could use to choose one root over
another; that is a choice that only you can make by considering factors of the problem
that are separate from the equation being solved.

For example, consider the equation x? = y2. For any y, there are two values of x that
satisfy the equation, x = y and x = —y. Mathematically, there is no distinction between
the two; either could be the correct choice for a particular physical problem. You might
prefer the positive root because it “looks nicer,” but such value judgments are not prac-
tical for an automated procedure like ISOL. Besides, —y might be the preferred choice
on other grounds.

This problem is obscured somewhat by HP Solve, which only returns one answer at a
time. In cases with multiple roots, HP Solve usually (but not always) returns the root
that happens to be closest to the value stored in the unknown variable (the “initial
guess”) when the solving starts. By supplying an initial guess (section 14.5), you are
choosing a particular root in advance. If you don’t supply an initial guess, you must take

-530-

Symbolic Objects and Solutions 16.5

your chances with whatever value was left in the unknown variable by a previous calcula-
tion. When the variable doesn’t exist, the root-finder uses zero as an initial guess--
which may or may not be a good choice for the problem at hand.

The HP 48 does provide a flag-controlled mode called principal value mode, in which a

default choice for all arbitrary signs and integers is supplied automatically. When this
mode is active (flag —1 clear), arbitrary signs are always chosen to be positive, and arbi-

trary integers are set to zero. The purpose of this mode is to provide an answer to a
problem, perhaps to give you a general idea of the appearance of the answer, without
the distraction of the arbitrary constants. However, the results returned by ISOL and
QUAD in this mode may not be appropriate at all for a real problem.

For example, consider the equation x> = - 1. You can see by inspection that x = -1 is
one root; imagine that —1 is the correct choice for a particular problem. Solve this
equation for x in principal value mode:

-1 SF 'X"3=-1" 'X' ISOL = 'X=(.500000000001,.866025403784)’.

The complex result is in fact one of the three cube roots of —1, but it is not the one we
have specified. Now try solving again, with principal value mode off:

-1 CF 'X"3=-1" 'X" ISOL

= 'X=EXP(2#*m*i*n1/3)*(.500000000001,.866025403784)".

Translated to common notation, this result is

2wini3,1 V3
x=e ()

where we have replaced the approximate decimal values with fractions. n; is an arbi-
trary integer, which means that you can choose any integer value 0, +1,*2, - - -, for n,
to obtain a cube root of —1. There are only three distinct roots for a cubic equation,
which you can obtain with any three consecutive values of n;. Other values of n; just
reproduce the same roots. The following table lists the values returned by the HP 48
along with the exact roots, for n; = 0, 1, and 2 (the errors in the last decimal place
arise from the inaccuracy of the floating-point representation of 1/3):

-531-

16.5 Symbolic Objects and Solutions

nq HP 48 Result Exact Value

0 (-500000000001,.866025403784) (-;—, —\-{2—3—

1 (-1,4.465E-12) -1

2 (.500000000001,-.866025403784) (- %,%

Unless you force it by setting principal value mode, the HP 48 does not attempt to
choose one possible root over any other when you use ISOL. There’s really no
mathematical grounds on which the calculator could make such a choice. As you can
see from this example, the “obvious” choice of n; = 0 does not return the “obvious”
answer to the problem, x = - 1.

You might wonder why ISOL and QUAD use arbitrary integer and sign names in their
results, rather than perhaps returning one or more expressions, each of which represents
a different root. There are three primary reasons:

1. In general, a problem may have any number of roots, even an infinite number. It

is obviously impossible to return an infinite number of objects, and the HP 48 has
no way to tell that there is a finite set of different roots among the infinite possi-
bilities represented by one or more arbitrary integers.

2. By returning a single expression to represent a general result, that expression is
immediately suitable for use as an argument for further operations, symbolic or
numerical. Dealing with even a finite set of multiple results would be very diffi-
cult in a program.

3. The use of ordinary names to represent the arbitrary constants allows you to use
the normal methods available for variables (STO, the VAR menu, HP Solve, etc.)
to select values for the arbitrary signs and integers.

16.5.1 Using the Solver Menu to Select Roots
The solver menu (section 14.2) provides a convenient method for selection of individual
roots from a multiple root solution provided by ISOL or QUAD. By storing an expres-
sion returned by one of these commands as the current equation, you obtain a solver
menu containing all of the arbitrary signs and integers, any other variable names in the
expression, and the SEXPR== key. Then you can use the menu keys to select values for
the variables, and press SEXPR=E to obtain the evaluated expression.

To illustrate, return to the example x> = —1. First, if necessary, press
ESYME to activate symbolic execution mode (make sure the white square appears in the
£SYMaE key label). Then:

-532-

Symbolic Objects and Solutions 16.5

Keystrokes: Results:

[>][MODES][NEXT] —1 ECF= Principal value mode off.

3EFIXE 3 decimal places.

X"3=-1"
‘X' [ALGEBRAJZISOLE 1: 'X=EXP(2*w*i*n1/3)*

(0.500,0.866)'

SOBJEEEQ-Z 2: 'X" Split the equation.

1: EXP(2% *i*n1/3) *
(0.500,0.866)’

SOLVE]ESTEQS Make the result the
ZSOLVR= current equation, and

activate the Solver menu.

n1 is the only variable in the current equation. To compute all three roots, use n1 = 0,
1, and 2:

Keystrokes: Results:

0 EN1ZSEXPR=% 1 EXPR: (.500,.866)

1 EN1ZSEXPR=Z 2: EXPR: (.500,.866)
1: 'EXPR: EXP(2#*1r *i*/3)

#(0.500,0.866)’

2: EXPR: (.500,.866)
1: (—1.000,4.465E-12)

EXPR=z [>]ENUM]N i = - L L
1 EXPR: (0.500,0.866)

(-1.000,4.465E — 12)
(0.500,-0.866)~

N
h
o

The stack now contains all three cube roots of —1.

16.6 Symbolic Objects and Solutions

16.6 Algebraic Objects as Programs

In preceding sections we have described expressions or equations as “programs.” In

most other calculators and computer languages, a program is not a mathematical
object--it might contain mathematical expressions, but the program itself is usually a
series of numbered lines, each containing one or more instructions. But take away the
line numbers, and what you have is just a series of data and instructions that are meant
to be executed sequentially and automatically. It is easy to recognize that an HP 48 pro-
gram works like this, since by definition a program contains a progression of any HP 48
objects that are executed when the program is executed. But it is not so obvious for
algebraic objects, since they look like mathematical expressions or equations, which are
not commonly thought of as programs (see also section 3.5).

Using the object decomposition tools discussed in Chapter 3 and elsewhere, it is a
straightforward matter to convert algebraic objects into RPN sequences, and vice-versa.
The program —RPN listed below automates this process, converting any algebraic object
into a list, in which the objects that originally constituted the algebraic object’s definition
are presented in the equivalent RPN order.

-~RPN Convert to RPN 7447

level 1 | level 1

'expression’ o { objects }

< OBJ~ Take the expression apart.

IF OVER If the argument count is non —-zero,

THEN - n f then store the count and the function.

<< 1 n

FOR i For each argument:

IF DUP TYPE 9 SAME If it’s an algebraic,

THEN RPN then convert it to a list.

END n ROLLD

NEXT

IF DUP TYPE 5 # THEN 1 -LIST END Make sure the first objectis a list.

IF n1 > If there is more than onelist,

THEN 2 n START + NEXT combine all of the lists.

END f + Append the function to the end of the list.

>>

ELSE 1 -LIST SWAP DROP Zero—argument function case.

END
>>

-534-

Symbolic Objects and Solutions 16.6

An example of using ~RPN:

‘A+2+SIN(B/C)’ ~RPN = {A 2 B C / SIN * +}

16.7 Refining User-Defined Functions

An important constituent of HP48 symbolic operations is the set of functions (section
3.1) that you can use within symbolic objects’ definitions. The HP 48 provides an exten-
sive set of real- and complex-valued functions; byinstalling libraries (section 3.4.11), you
can add even more. In section 8.5, we describe the construction of so-called user-defined
functions, which you can use to add to the built-in and library function set. User-
defined functions on the HP 28 were subject to certain limitations compared with built-
in functions; the HP48 has added three commands to remove these limitations.

16.7.1 Preventing Evaluation: QUOTE
In the course of the ordinary evaluation of an algebraic object, each function’s argu-
ments are evaluated before the function itself is executed. There are certain functions,

however, that have the ability to prevent the evaluation of one or more of their argu-
ments. 9 is a good example; neither the name representing the variable of differentia-
tion nor the expression to be differentiated should be executed prior to 9 itself. When

you enter an expression such as ‘0X(SIN(X))’, the HP 48 automatically (and invisibly)
enters the X and the SIN(X) as full algebraic objects themselves. That is, the overall
expression is equivalent to the RPN sequence

X' 'SIN(X) 8.

The first two objects are “quoted” (section 3.8) as algebraic objects so that execution
leaves them unchanged as the sequence is evaluated. For most functions, the internal
quoting is not done, e.g. 'MAX(X,SIN(X))’ translates to the sequence

X X SIN MAX

User-defined functions do not intrinsically have this ability to quote their arguments. If
you evaluate 'f(x,y,z)’, where f is the name of a user-defined function, X, y, and z are
evaluated before f. To correct this deficiency, the HP 48 provides the function QUOTE,
the execution of which simply returns its single argument unevaluated. Thus the evalua-
tion of 'f(QUOTE(X),y,z)’ executes Y and z as usual before f, but leaves X unchanged for

f.

As an example, suppose you want to make the polynomializer program POLY (section
17.4) into a user-defined function. Rather than rewriting POLY,it can be incorporated

16.7 Symbolic Objects and Solutions

into another program POLYF:

POLYF PolynomializingFunction CEC9

level 2 level 1 | level 1

fey X o PN

< - f x

< f x POLY

>> >>

Evaluating 'POLYF((X+1)"3,X)’, for example, will expand the cubic polynomial, but the
result will not contain X if that variable has a value. To keep X in the result regardless
of any value X might have, you can quote the arguments:

'POLYF(QUOTE((X+1)"3),QUOTE(X))’ EVAL 1= 'X"3+3#X*2+3#X+1".

16.7.2 Applying Functions without Evaluation: APPLY
Another capability of certain built-in functions is to test their arguments for special

cases for which the functions are to be returned unexecuted. For example, when SIN is
applied to a symbolic argument, it just returns itself unexecuted, unless the argument is
7, in which case it returns zero. The function APPLY extends this capability to user-
defined functions.

APPLYis used in expressions with the syntax

'APPLY(name, expression, ..., expression)’.

When this is evaluated, each of the argument expressions is evaluated, and then the
unevaluated name is appended to the result as if the name signified a user-defined func-
tion. For example,

'APPLY(F,1+1,X)) EVAL = 'F(2X)’

To understand the use of APPLY, consider the execution of a typical user-defined func-
tion with a symbolic argument. Create a user-defined function for the cosecant:

'CSC(X) =INV(SIN(X))’ DEFINE

Symbolic Objects and Solutions 16.7

Then, if Z is undefined,

'CSC(Z)’ EVAL 1= 'INV(SIN(2))'.

Compare this with the result of evaluating 'SIN(Z)’, which just returns the same expres-
sion unchanged. The following version of CSC uses APPLY for symbolic arguments:

CSC Cosecant Function 5D29

level 1 | level 1

x or csc (x)
lsymbr o 'CSC(symb)’

<-

<IF {6 7 9} & TYPE POS

THEN t 1 -LIST 'CSC’ APPLY Symbolic case.

"ty SHOW Defect work-around.

ELSE t+ SIN INV Numeric case.

END

>>

>>

CSC executes APPLY as an RPN command. Used this way, APPLY expects two argu-
ments: a global or local name in level 1 (the function name) and a list containing the
arguments to which the function is to be applied.

{expri .. expr,} 'name' APPLY 1= 'name (expry, - - ,expr,)’.

The apparently pointless sequence 't' SHOW in CSC has a definite purpose. Unfor-
tunately, all versions of the HP48 (A-E) at the time of this writing have a defect in
APPLY such that all of the expression arguments of its results are quoted in the sense
described in section 16.7.1. This means that such results can not be evaluated further,
since the internal quoting prevents the argument expressions from being evaluated.
Without the SHOW you would find, for example,

DEG 30 'Z’ STO ‘Z' CSC EVAL = 2,

but then

'Z+Z' CSC EVAL = ’'CSC(Z+2)

-537-

16.7 Symbolic Objects and Solutions

The last result would remain unchanged even after repeated uses of EVAL. During the
execution of SHOW,the result is taken apart and then reassembled correctly, so that

'Z+Z' CSC EVAL = 1.15470053838

The SHOW slows execution a little, but the result is more generally useful. You can

substitute any other name for t!, although it is best to use an uncommon one that you
are not likely to use for a variable (section 18.1.2). Future versions of the HP 48 may
correct this problem, in which case the SHOW would be superfluous.

The definition of CSC above uses a program its defining procedure (section 8.5), so that
a derivative is not automatically supplied. Butit is straightforward to define a derivative
for CSC (see section 18.1.1.1)

'derCSC(x,dx) =CSC(x)/TAN(X) *dx’ DEFINE

Then

'CSC(Y™2)' 'Y' 8 1= 'CSC(Y"2)/TAN(Y"2)*(2%Y)’.

16.7.3 Preserving Local Variables’ Values: |
If a user-defined function contains any functions that delay evaluation of their argu-
ments, such as d or QUOTE, the local names associated with the user-defined function

may be present in the function’s result. Since the corresponding local variables are dis-
carded after execution of the function, further evaluation of the result could result in the

Undefined Local Name error. To forestall this problem, user-defined functions defined
with expressions automatically inspect their results for the presence of any of the
function’s local names. If any are found, the result is returned as an argument of the
where function |.

For example, consider the following user-defined function:

'F(x)=x(SIN(x))’ DEFINE

Since 9 in an expression executes in a step-wise manner (section 18.1), it and the local
name X will be present in any result of evaluating F, e.g.

'F(2)' EVAL 1= 'COS(x)*9x(X)|(x=2)'

This result is more legible in the EquationWriter:

-538-

Symbolic Objects and Solutions 16.7

COS(x) -'%(x)
X=7

You can read the expression starting at the vertical bar as “where X equals Z.” Thatis,
the subexpression to the left of the bar is to interpreted normally, with the understand-
ing that ultimately the value Z is to be substituted for the symbol x. This is just what |
does when it is executed; it evaluates its first argument, repeatedly if necessary while
substituting for the names as indicated in the remaining arguments, until the names no
longer appear. Thus, evaluating the previous result:

EVAL = ’'COS(2)’

The syntax of the where construct provides for any number of variable assignments:

‘expression (x1, - * * ,Xx,) | (x1 = valueq, -+ + ,x, = value,)'.

Thus with FXYZ defined by

'FXYZ(x,y,z) =QUOTE((x+y+2)/(x*y*z))’ DEFINE,

then

'FXYZ(1,2,3)' EVAL 1= '(X+y+2)/(x*y*z)|(z=3,y=2,x=1).

Notice that there are no parentheses around the subexpression to the left of the |
(assuming that flag —53 is clear), even though that subexpression is an argument of |. |
has the lowest precedence of any function. In an EquationWriter picture, the extent of
its argument is shown by the bar’s vertical size:

-539-

16.7 Symbolic Objects and Solutions

(sety+z)

#*'dE Z=3y=2y %=1

The bar extends upwards to the top of the left argument, and downwards to the bottom
of the argument, plus enough additional to span the variable assignments on its right.

17. Expression Manipulations

The symbolic solution commands ISOL and QUAD are easy to use, but fairly limited in
the range of problems they can address. The HP48 therefore provides a number of
tools for performing symbolic manipulations on expressions and equations. These tools
may be used to rearrange a symbolic object into a form suitable for ISOL or QUAD, or
for any of a number of other purposes.

17.1 Extensive Manipulations

The most common operations you might perform in the course of finding symbolic solu-
tions are these:

® Reordering terms: changing the order of sums and factors. For example, you might
move all of the terms containing an unknown variable together so that multiple
occurrences of the unknown can be merged into a single occurrence. This is
achieved in the HP 48 by means of the various RULES operations in the Equation-
Writer subexpression mode, especially the term-moving operations «<T and T-, and
the association operations A- and <A. Also, to move one term from one side of an
equation to the other, you can subtract the term from both sides using the ordinary
— command.

e Expansion: distribution of products or powers over sums. The conversion of
aX(b +c¢) into aXb + aXc is an example of the distribution of a product over a
sum. An example of the distribution of a power is the expansion of (a + b)? into
a® +2ab + b2, Expansion in the HP48 is represented by EXPAN, and by the
RULES operations D- and +D.

e Merging terms. Once you have all of the terms containing an unknown gathered
together, the next step is usually to combine as many of these terms as you can, to
minimize the number of occurrences of the unknown--to a single occurrence, if pos-
sible. The principal tools for this purpose are COLCT and the RULES merge opera-
tions M- and ~M.

As an example of HP48 symbolic manipulation, consider solving the equation

a(x+y) = bx +c for x.

1. Press , and enter the equation:

-541-

171 Expression Manipulations

A:(R+Y)=B-¥+C[

 okl RaTindTGTRT

2. Distribute the term A-(X+Y):

(<] [P][<KI[=] (select the first multiply) ERULESE SD-=m m

AY=Bw+C

 EEECEETEETENETE

3. Move the term A'Y to the right side:

CI=][&=][=] (select the =) ERULESE [B]ET-=

A-¥=B-¥+(C-Y3]

 (OMEG| DNV |%1 |*1 |#1|+1-1]

-542-

Expression Manipulations 17.1

4. Move B-X to the left:

[<] nine times (select the =) ERULESE =T i

A-xmB»=C-YH

€TT+€MM3>#F€3

5. Now merge the terms that contain X: EM-Z

(A-B)&=C-Y-A

£TT*€MM3€0D3
6. Commute the factors of the first term: [NXT|E—==

®a(A-B)=C-YA

 £TT+<MM3€0D%
-543-

17.1 Expression Manipulations

7. Isolate X: [>] four times (select the =) ERULESE [P]ET-=

_(C=Y-A)
TR

 OMEG|DINY |%1 |=1 |/1[+1-1]

8. now returns the object 'X=(C-Y#*A)/(-B+A)’, in which X has been iso-
lated on the left side of the equation.

This result can also be obtained by using programmable commands:

Distribute: 'A*(X+Y)=B#*X+C' EXPAN 7 'A¥X+A*Y=B*X+C’

Move term right: 'A*Y' - COLCT 7 'A#X=-(A*Y)+B*X+C'

Move term left: 'B*X’ - COLCT 7 'A*X-B*X=-(A*Y)+C'

Merge terms: {'&1*8&2-8&3*8&2' '(&1-8&3)*&2' }
MATCH 7 '(A-B)*X=—(A%Y)+C' 1

Isolate: DROP 'X' ISOL = 'X=(-(A*Y)+C)/(A-B)’

The final result is formally equivalent to the result obtained previously using RULES
operations.

These examples illustrate the operation of EXPAN and COLCT compared with the use
of RULES operations. Both approaches allow you to alter the form of an expression
without changing its formal value. EXPAN and COLCT are “extensive” manipulation
commands--they perform wholesale rearrangements potentially involving many terms in
the same expression. Both have the shortcoming of trying to do many operations at
once without providing you with any control of the precise form of their results. In
many cases, you may be surprised or dissatisfied with the results because they don’t
match some particular form that you desire. For example, the expansion of x> could
return any of the formally equivalent expressions xxx, x2x, and xx2. There is no

-544-

Expression Manipulations 17.1

“correct” choice; EXPAN happens to return xx?:

'X*3' EXPAN 1= 'X*X"2',

You can obtain the other choices by using RULES to commute the arguments of the *

(switching 'X*X"2' to 'X"2*X"), or by using EXPAN again to obtain 'X*(X*X)’.

The RULES approach, on the other hand, suffers from being too specific. That is, it
allows you to rearrange expressions into a wide variety of equivalent forms, but you
must execute one careful step at a time. The path of individual operations you need to
follow to change an expression from one form to another requires some thought.
RULES also suffers from the general EquationWriter problem of display speed--for
large expressions,it takes a long time to show the result of each successive operation.

The best approach for general use of these three commands is to use COLCT and/or
EXPAN one or more times on an expression to get it roughly into the form you want.
Then use RULES to rearrange parts of the expression, until you obtain the desired final
version. To speed up the use of RULES on complicated expressions, you can extract
subexpressions using ZSUBZ in the subexpression menu, rearrange the subexpressions
using RULES, then substitute the subexpressions back into the main expression using
EREPLE .

In the next two sections we will describe the operations of COLCT and EXPAN. In
most cases you will not need to follow their workings to anywhere near the detail we
present. You may even want to skip these sections at a first reading. Typically, it is
easier to use these commands and “see what you get” than to try to predict the out-
comes exactly. Keep in mind that the net value of an expression is the same before and
after you apply either of the commands; you use them only to rearrange the expression,
either as a preliminary to ISOL, or to change the order of calculations, or just to recast
it into a more familiar form.

17.1.1 COLCT
The purpose of COLCT is to simplify an expression by combining sum and difference
terms that differ only in their numerical coefficients. COLCT tries to reconstruct each
term of an expression into the form c *subexpression, where c is a real or complex
number, and then combines all terms with the same subexpression by adding their coeffi-
cients ¢c. Any terms that consist only of numbers are combined into a single term. In
addition to this simple reconstruction, COLCT tries to improve the identification of like

terms by applying some standardization to the terms:

171 Expression Manipulations

e Functions whose arguments are numbers are executed. In the expression
'X+5*SIN(30)’, the arguments of SIN and * are numerical. COLCT therefore
returns ‘X+2.5' (in degrees mode).

e Factors (arguments of *) in a term are put into a standard order, and combined into
powers where appropriate:

'X*¥Y#X' COLCT = 'X*2x*Y’.

e Factors of similar quantities raised to powers are combined by adding their

exponents:

'X+Y)Z+(X+Y)"T" COLCT = '(X+Y)*(Z+T)".

Even these rearrangements aren’t enough to ensure that all terms which may appear
suitable are actually combined by COLCT. For example, consider '2*(X+Y)+X'. You
might expect COLCT to modify this expression to '3*X+2*Y'. However, COLCT leaves
this expression unchanged, because COLCT does not distribute multiplication (in this
case, it does not expand '2*(X+Y)' into '2*X+2*Y"). Without distribution, the terms
'2%(X+Y)’ and ‘X' do not contain common non-numerical factors, so they are not com-

bined.

The basic operation performed by COLCT is association--the reordering of the argu-
ments and functions in multiple sums and differences, and the reordering of factors in
multiple products (and quotients). The associative property of addition (and subtrac-
tion) means that the order of addition doesn’t matter: a + (b +c) has the same value as
(@a+b)+c. Similarly, (a-b)c has the same value as a(b-c); this is the associative pro-
perty of multiplication. COLCT applies these rules systematically throughout an expres-
sion. An easy way to understand COLCT is to view an expression in its RPN form; for
example, (@ +b)+(c +d t+e) is

a b + ¢cd + e + +.

Here the summands (arguments of +) a, b, ¢, d, and e represent any subexpressions
that do not consist of + (or —) and its two arguments, such as 2x or sin(3x + 4).
COLCT rearranges this expression by

1. Moving all of the summands @, b, ¢, d, and e to the left, and the + operators to

the right:

a b c d e + + + +.

2. Sorting the summands into a standard order.

-546-

Expression Manipulations 17.1

3. Combining consecutive summands that are the same except for a numerical coeffi-
cient by adding the coefficients.

This process is applied recursively to the individual summands, so that collection of
terms takes place at several levels at once.

To illustrate the process, consider the expression 'Y+2*(X+Y+X)+(X+Y+3*X)'. In
RPN form, this is

Y 2 XY + X + % 4+ XY + (83 X *® + +

Here we have inserted parentheses to help mark the sequences in which independent
collection can take place. Now apply COLCT:

1. Move the summands to the left:

Y @2 XY X + + % XY @ X % + + + +

2. Sort the summands:

@ X XY + + % X @ X % YY + + + +

3. Combine consecutive common terms:

2 2 X #® Y + * 4 X % (2 Y ¥ + +

Converting back to algebraic form,this is

'2%(2%X+Y) +4*X+2%Y’

Step 2, sorting the summands, may appear a bit mysterious. The sorting is necessary for
the combination of like terms, but often the final order produced by the sorting does not
correspond to any obvious rules. For example, ‘A+B+Q+R’ COLCT = 'A+Q+B+R’,
so the sorting is not a simple alphabetization. Actually, the ordering algorithm used by
COLCT is designed for optimum speed, and depends on the idiosyncrasies of the HP 48
CPU and the way it stores bits of information in memory. The design of COLCT
emphasizes speed rather than some form of standard ordering also because any choice
of “standard” ordering would be arbitrary, and generally as likely to be “right” or
“wrong” as any other, including the one actually used.

17.1.2 EXPAN
Although the usual effect of COLCT is to make an expression “smaller” by combining
terms, and of EXPAN is to make it “bigger” by expanding products of sums, you should
not consider them as inverses of each other. Whereas COLCT is based on the associa-
tive properties of addition and multiplication, EXPAN is derived from the distribution of
products, quotients, and powers of sums. The simple distribution rules are

-547-

171 Expression Manipulations

e multiplication: a(b+c) = ab + ac.

e division: (b+c)/a = b/a +c/a.

e involution (powers): a®*¢ = a®q°.

Each of these rules has a straightforward representation in the actions of EXPAN:

'A*(B+C)’ EXPAN 1= 'A*B+A*C’

‘B+C)*A’ EXPAN 1= 'B*A+C=*A’

'B+C)/A’ EXPAN = 'B/A+C/A’

'A*(B+C)’ EXPAN = 'A"B*A"C’

(You can also substitute — for + in the above examples.)

When both arguments of a product are sums, only the second sum is distributed:

'(A+B)*(C+D)’ EXPAN 1= '(A+B)*C+(A+B)*D’

There are two additional special cases of the distribution of powers:

e Expressions of the form a¢” expand to a-a"!, where n is a positive integer real
number. For example,

‘A”5" EXPAN 1= 'A*A"4’,

e Squares of sums are expanded from (a +b)? to a? + 2ab + b?:

'(A+B)*2' EXPAN 1= 'A*2+2+A*B+B"2’

'SQ(A+B)’ EXPAN 1= 'A"2+2*A*B+B"2’

It is also possible to distribute the logarithm of a product into a sum or difference of
logarithms:

'LN(A*B)’ EXPAN r= 'LN(A)+LN(B)’

'LN(A/B)’ EXPAN = 'LN(A)-LN(B)’

EXPAN distributes the antilogs of sums and differences as follows:

-548-

Expression Manipulations 17.1

'EXP(A+B)’ EXPAN 1= 'EXP(A)*EXP(B)’

'EXP(A-B)’ EXPAN t= 'EXP(A)/EXP(B)’

Similar expansions hold for the base 10 versions of these functions (LOG and ALOG).

These cases cover all of the potential rearrangements performed by EXPAN,if you gen-
eralize them by letting A, B, and C stand for any subexpressions. However, EXPAN
does not necessarily make all possible expansions in an expression; specifically, EXPAN
does not expand any subexpressions that are part of a distribution. For example,

'A*(B*(C+D)+E*(F+G))’ EXPAN = 'A*(B*(C+D))+A*(E*F+G)).

To understand this example, it’s useful to write the expression in Polish notation (sec-
tion 2.1):

*(A, +(*B,+(CD)), *E,+(F.G))))
EXPAN works into the expression, looking for products for which at least one argument
is a sum,i.e. patterns of the form *(+(a,b),c) or *(a, +(b,c)). When it finds one in
any subexpression, it distributes the multiplication, then does not attempt any further
operations on the arguments of the sum. In the current example, the outermost subex-
pression is such a product, so the multiplication is distributed. The arguments of the
sum, (B*(C+D)) and (E*(F+G)), are not expanded, even though they themselves are
products of sums.

If you expand the example expression twice with EXPAN, the “inner” products are
expanded. The result of the first expansion looks like this in Polish form:

+(*(A, *(B,+(CD))), *(A, *E+(F.G))))
Now the outermost subexpression is a sum, which is not a candidate for expansion.
Therefore, in the second use of EXPAN, each of the arguments of the outer sum is con-
sidered in parallel. Both arguments are products, but neither is a product of a sum, so
the analysis branches again, into four subexpressions--the two arguments of each of the
“outer” products. Of these, two--*(B, + (C,D)) and *(E, + (F,G))--are suitable for expan-
sion, and are duly expanded, completing the operation in those branches. The other two
branches--the two A’s--are dead ends, so the expansion is complete, and the second
EXPAN returns

' A*(B+C+ B#D) +A*(E +F + E+G))’

-549-

17.2 Expression Manipulations

17.2 The EquationWriter Subexpression Mode

The EquationWriter includes a powerful adjunct that we will call subexpression mode,
from the capabilities it provides for operations on individual subexpressions (the
Owner’s Manual calls this the selection environment). These operations range from
command-line editing to the application of various identity transformations. We intro-
duced this mode in section 6.7.6, with a brief discussion of the associated subexpression
menu; here we will elaborate on some of the topics, and focus on the operations collec-

tively called RULES.

Subexpression mode is one of three modes in which you can operate the Equation-
Writer. You can always tell which of the three is active by considering the cursor and

the menu:

e In entry mode, where you can extend the currently displayed expression with additional

objects, the cursor is an open box at the right end of the expression:

3

Zr-m A+005(2) I

[HMPI[HMPS[HMPY[HMPR]HMPL]
The menu can be any ordinary command menu.

e In subexpression mode, the cursor is an inverse highlight of one object or subexpres-
sion:

I 3
2

 RULES| EDIT EXPESUE KEPL

Expression Manipulations 17.2

The menu is either the main subexpression menu, as shown here, or one of the various
RULES menus (section 17.2.3).

e In viewing mode, no menu appears:

I HI HS

142: 3§t + |2+L05(2
N=8

This mode lets you view an expression that is too large for the display. Pressing any
arrow key scrolls the display window in the indicated direction over the expression. If
you enter viewing mode from entry mode, the cursor disappears. If you enter from
subexpression mode, the cursor remains, and is reactivated in place when you exit view-
ing mode.

You can activate viewing mode from either other mode by pressing . Press-
ing that key again, or , returns to the previous mode. To switch from entry mode
to subexpression mode, press [<J] (which suggests moving “back” into the expression).
Initially, the rightmost object in the current expression is highlighted. To return to entry
mode, press ZEXITE . In either of these two modes, exits from the Equation-
Writer, with the modified expression entered into level 1. exits as well, but dis-
cards the EquationWriter expression.

Note that you can not enter subexpression mode from entry mode unless the active
expression is complete--there are no functions without all of their arguments. Pressing
[<J] in such a situation flashes the Incomplete Subexpression warning and retains entry
mode.

The subexpression menu contains the following entries, which we will discuss in the next

sections:

e ZRULESE activates a context-sensitive menu of transformations that may be applied to
the selected subexpression.

 e ZEDITE copies the selected subexpression into the command line for editing as text.

-551-

17.2 Expression Manipulations

e ZEXPREZ extends the selection cursor to highlight the entire subexpression defined by
the selected object.

SUBE copies the selected subexpression to the stack.

e =REPLE replaces the selected subexpression with a number or a symbolic object from

level 1 of the stack.

e SEXITZ returns to the EquationWriter entry mode, with the open box cursor at the

right end of the expression.

17.2.1 Navigating the Expression
The subexpression highlight cursor serves to select one object at at time in the displayed
expression. For example, enter the following expression:

2 2
B..i'B.é.".E....F[]

D+E

PAETS]PROE |HYP[HATR[VECTR]BASE

Now press [<J] to activate subexpression mode:

2 2AT+B+C,
3D+E

IIITN
The four cursor keys, plus their right-shifted extensions, move the selection cursor

from object to object. The involution function ”~ is a special case, since it is not nor-
mally visible in the EquationWriter. But it does appear when you select it--with the F
highlighted, press [<1[Q[AIKQI[D]:

-552-

Expression Manipulations 17.2

AR,-
3

0+E

FEULEZ] EDIT EXPRZUE KEPL

As you move the cursor around an expression, it highlights one object at a time. How-
ever, for the purposes of the various menu operations, the cursor actually selects the
entire subexpression defined by the highlighted object and its arguments, if any. You
can make the entire selection explicit by pressing ZEXPRZE or (the latter is always
available, whereas ZEXPRE is not accessible when any of the RULES menus are active).

For example, with the cursorstill on the *, pressing SEXPRE highlightsits subexpression:

 RULEZ| EDIT EXPESUE KEPL

The rightmost + is the top-level function in this expression, so moving the cursor there
and pressing S EXPRE highlights the entire expression:

 ATEE TTR

-553-

17.2 Expression Manipulations

Notice that whenever you move the cursor, it always reverts to the single-object
highlight; otherwise the constant size-changing of the cursor as you move it about an
expression would be distracting and confusing. You can also shrink a subexpression
highlight back to a single object by pressing ZEXPRZ or again.

Although the highlight cursor motion is always generally in the direction indicated by
the key arrows,it is sometimes difficult to predict just which object is next as you move
the cursor. For example, with the cursor like this

AZ+B7+C,
D+o

AMEEEN RERE I
pressing [A] moves the cursor to the divide bar

2+ 2+
%L-LF

O+E

ATIAETETN
rather than to the 3 exponent, apparently because the 3 is not directly above the E.
There is, of course, a complicated set of rules that determines just how the cursor will
move. But it is not worth the trouble to list or learn the detailed rules. A little trial
and error in ambiguous situations is faster than trying to analyze an expression yourself
to save a few keystrokes.

17.2.2 Editing Subexpressions
It is useful to distinguish between two types of modification that you can apply to
expressions as they are represented in the HP48. The first, which we will call editing,is

-554-

Expression Manipulations 17.2

the alteration of the text form of an expression without regard to its original mathemati-
cal structure. The second, called transformation, is the application of various mathemat-
ical rules to subexpressions, preserving the structure of the overall expression and usu-
ally its formal value as well. Typically, you edit an expression when you have entered it
incorrectly or when you are using it as a typing aid to create a near copy of the expres-
sion. You transform an expression when you are trying to solve it or re-express it in a
different but equivalent form. In this section, we will discuss editing in subexpression
mode; transformation is described in section 17.2.3.

ZEDIT= copies the selected subexpression to the command line, where you can alter it
freely using any of the normal facilities of the command line. There are two reasons for
using the command line from the EquationWriter:

e You are already entering an expression with the EquationWriter, and you need to
correct a previously entered portion.

e You wish to edit a complicated expression, where it may be easier to use the Equa-
tionWriter to pick out a portion for editing than to decipher the maze of parentheses
that appears in the linear format display of the expression.

To illustrate the process, consider an expression entered and selected like this:

2 2io
D+E

EEDIT= copies the subexpression defined by the + into the command line:

RAD ALG PRG
{ HOME FORM }

'A2+B"2+

-555-

17.2 Expression Manipulations

When you have finished editing the subexpression, [ENTER] restores the EquationWriter
environment, with the new subexpression replacing the old. If you press when the
command line is active, the original EquationWriter expression is restored.. In the

example, changing the C to C"3/2, then pressing yields this picture:

A-+B05
3+F

D+E

FULE=] EDIT EXPRSUE REPL

There are a few restrictions on the contents of the command line that you can send
back to the EquationWriter:

e Only one object can be entered.

e The object must be of a type suitable for embedding in an expression: a real or a
complex number, a name, a unit object or an algebraic object.

e If the original selected subexpression was a name-only field, e.g. a variable of
integration or differentiation, then the returned object must also be a name.

If the command line contains a syntax error, then the Invalid Syntax error is reported,
and the command line remains active for your corrections. If one of the above rules is
violated, then the calculator beeps but returns to the EquationWriter, with the original
expression unchanged. However, the command line text is saved in the command stack,

where you can retrieve it by pressing EEDITE again, followed by .

The tSTK operation is available during a subexpression edit, for copying stack objects
into the subexpression. If the EquationWriter was activated by [V] with a stack object,
that object will not appear on the stack during the edit. Thus if you want to copy
object, into object,, enter object, into level 2, and object, into level 1. Then press [V]
to start the EquationWriter, activate subexpression mode, select a subexpression, and
press SEDITE . At this point, S1STKE will show object, in level 1, where you can use
ECOPYE to copy it into the command line. then returns the modified object to
the EquationWriter environment.

17.2.3 RULES
The ZRULESE key in the subexpression menu activates a menu of manipulation opera-
tions. These operations, which we are collectively calling the RULES operations,

-556-

Expression Manipulations 17.2

correspond to various mathematical rules for rearranging expressions (hence the name).
The menu that you see when you press ZRULESE varies according to the selected subex-
pression. At any time, the menu contains only those operations which may be applica-
ble to the function that defines that subexpression. Some operations appear in all of the
menus; others appear only for certain functions.

The selected function’s arguments determine which of the available operations are
usable in each individual case. For example, the RULES menu for * includes keys for
moving factors, commuting, associating, distributing, merging, double negating, double
inverting, and replacing the product of a logarithm with the logarithm of a power. In
most cases, only a few of these can be applied. For A#*B, the only options are commu-
tation (to B#*A), double negation (to -(-A#*B)), and double inversion (to
INV(INV(A)/B)).

We used RULES manipulations as part of an overall equation solving process in the
example in section. That example illustrates the basic use of RULES:

1. Activate the EquationWriter subexpression mode with an expression or equation.

2. Move the cursor to select an object; if necessary, use SEXPRE or to verify that
you have selected the correct subexpression.

Press ERULESE to activate the operations menu for the selected object.

Press an operation key.

Repeat steps 2-4 until the expression is rearranged as desired.

S
k
W

Press to place the revised expression on the stack, or ZEXITE to go to Equa-

tionWriter entry mode.

As another example, consider rearranging the expression 'X*(B+A)+X*(C+B)’ to fac-

tor out the common factor 'X*B’. Starting with the expression in EquationWriter

subexpression mode:

B+H+ C+5
7 7

 RULEZ] EDIT EXPRSUE KEPL

-557-

17.2 Expression Manipulations

First, commute the second exponent’s sum, so that the B has the same position in both
exponents. Move the cursor to highlight the +, by pressing [<J] once:

B+FI+ CoE
f “

 FULEZ| EDIT EXPESUE KEPL

Now press SRULESE=--= :

B+FI+ BulC
H H

 KlECNETTHTNETE

Now distribute the exponent. Press [<J][<J] to highlight the ~, then SRULESZ=D-= :

B+A B, C
+A ta Ix

Repeat the distribution for the XB*A. Press [] eight times to highlight the *, then

-558-

Expression Manipulations 17.2

PPb

Finally, press [>] four times to highlight the +, then SRULESE Z-M= :

B(e

 KLlECEETTEETENETE

RULES operations share with EXPAN and COLCT the fundamental property of being
identity operations, which never change the formal value of an expression. You can use
them to rearrange an expression into a form more suitable for further calculations, with
confidence you can’t make mistakes that alter the symbolic value of the calculation that
the expression represents. This differs significantly from the ordinary syntax checking
that the command line editor performs.

The RULES operations are the ultimate “conservative” HP 48 symbolic manipulation
system. They are primarily “single-step” operations that allow you to rearrange an
expression into almost any form you want, making no changes that you don’t explicitly
specify. Of course, this means that a substantial rearrangement of an expression can
require a long series of operations.

The expression manipulation facility called RULES here first appeared in the HP 28
under the name FORM. That implementation has two major problems:

e Subexpression selection is done with the linear format representation of algebraic
objects, with all parentheses shown explicitly (such as with flag —53 set in the
HP 48). With the line-wrapping necessitated by the 23-character display, this format
makes it very difficult to identify subexpression structure.

-559-

17.2 Expression Manipulations

e All transformations are strictly oriented to the calculator’s representation of expres-
sions as a subexpression hierarchy. That is, the HP28 “sees” the expression
a+b+c+d+e+fas nested sums, i.e. ((((@ +b)+c)+d)+e)+f. Eachsum is on a
different level, and may contain one or more of the other sums as one of its argu-
ments. We humans, on the other hand, tend to view the expression as a series of
terms, each on the same level, more like a +b +c¢ +d +e +f. One of the most
common pencil-and-paper operations is the simple reordering of the terms, such as
moving the a to the right end: b +c+d +e+f +a. This apparently simple rear-
rangement is a formidable task in HP 28 FORM, involving many commutation and
association operations.

These problems were addressed in the migration of FORM into HP 48 RULES. First,
FORM’s linear format representation is replaced in the HP48 by the EquationWriter
subexpression mode. The presentation of an expression in a two-dimensional format
with familiar graphical constructs makes it quite easy to pick out functions and their

arguments. The SEXPRE key lets you confirm visually that the function you select does
span the subexpression you want.

Second, the HP48 adds new ferm movement operations, T and T-, which allow you
easily to move summands and factors. For example, the rearrangement described above
becomes a one-step operation. With the left-most + selected:

agh+ctd+e+f

 ATHENEEFETIETE

ERULESE [>]=T-E moves the a all the way to the right:

b+c+d+e+f+5

 [ONEG|DINY|%1|*1|21[+1-1)

Expression Manipulations 17.2

This rearrangementis a very tedious exercise on the HP 28.

Of course, the (lack of) speed of the HP 48 EquationWriter remains as a deterrent to
the use of RULES operations to replace pencil-and-paper calculations. Whether the
latter is any faster than using RULES for a given problem is questionable, but at least
when you do a problem by hand, you are kept busy constantly so that the time seems to
pass more quickly.

17.23.1 Repeated Operations

HP48 RULES adds one more feature that is not present in HP 28 FORM: automatic
repeated operations. This means that in any situation where it makes sense to execute
an operation more than once consecutively on the same object, you can use the right-
shifted menu key as a shortcut. This applies to any of the following operations: £D-Z,

=-DZ ,ZA-Z ,5-AS ,EM-Z ,5.-ME,54)E,5(-5,ET-%, and E-T= . Pressing [®] followed
by any of these keys executes the associated operation repeatedly on one object until no
further change is possible. For example, you can distribute this entire product

AB(B+C+D+E+F)

 RULEZ] EDIT EXPESUE KEPL

at one stroke by pressing SRULESE [>]ZD-= :

A-E+A-C+A-D+A-EQAF

 £T7%€MM3AF€%

Similarly, you can merge the entire sum of products in one operation. From here

-561-

17.2 Expression Manipulations

A-BaA-C+A-D+A-E+A-F

 KULE=| EDIT EXPRSUE REPL

pressing ERULESE [D]E-ME yields

ABCB+C+0+E+F)

17232 Condensed RULES Notation
Although the use of screen pictures is helpful in explaining the various RULES opera-
tions, it can also spread out a description so far that it is hard to see it all at once.
Accordingly, in the following sections we will use a condensed notation to represent
operations, where the “before” and “after” expressions are shown together on a single
line, connected by the familiar = symbol. The selected object is indicated by a box
around it, and the RULES operation is represented by its menu keybox. Thus the first
step in the previous example would be shown as

AL (B+C+D+E+F) [®>]ED-2 = A-B+A-C+A-D+A-E[+]A‘F

17233 Moving Terms

As mentioned previously, we generally view expressions as a sequence of ferms added
(or subtracted) together. Because of the associative and commutative properties of
addition, the order of terms can be changed without affecting the formal value of an
expression. In manual calculations, this is one of the most common operations in the
process of rearranging or solving. For example, in beginning algebra classes we are

-562-

Expression Manipulations 17.2

taught to move all of the terms containing an unknown to one side of an equation and
the remaining terms to the other, or to put the terms of a polynomial in order of
ascending or descending power. To provide this same ability for symbolic objects, the
HP 48 RULES system includes two operations, «T (term left) and T- (term right), for
moving terms left and right in an expression. Furthermore, these operations incorporate
factors--arguments of * and /--in their generalized definition of term, so that you can
reorder products and quotients as well.

~T moves a term one position to the left:

A+B[#]C+D E0 = A[¥]C+B+D

There are several things to note in this example:

e The selected object for the operation is the + to the left of the term that is moved,
not the object C that is actually moved. This is because the term operations are
associated with the functions +, —, *, / and =, rather with than their arguments.

e The term moved left is to the right of the originally selected function. When a func-
tion is selected for a term operation, it defines the two terms on either side as the
“candidates” for the operation. With that limited focus, it is only the right term that
can be moved left, and the left term that can be moved right. For single movements,
«T and T- could have been combined in a single “local commute” operation. The
two separate operations are provided to aid in repeated movements of one term in
one direction.

e After the operation, the selection cursor has moved to the next + in the direction of
the term motion, staying to the left of the moved object C. Thus to move that object
further in the same direction, just push £-T= again:

AF]C+B+D =1 = [C]+A+B+D

After the second movement, there are no more +’s to the left, so the selected cursor
ends up on the C.

In general, you can move a term continuously in one direction by pressing E-T= or £T-2
repeatedly. To move a term all the way in either direction, use [>]E-T= or [D]ET-Z,
which yield the same results as using the unshifted versions repeatedly until there is no

further motion.

Term operations apply to factors as well:

-563-

17.2 Expression Manipulations

A-B[C-D n mTz = A[JC-B-D

When sums and products are intermixed, the extent of a particular term and the range
of its potential motion depends on the order of the functions. This is best illustrated by
examples:

A-B-C+D-E-F+G-H[]I Iz = A-B-C+D-E-F+G[]I‘H

A-B-C+D-E-F[#x]G-Hl 2= 1= A-B-C[+x]G-H-I+D-E-F

In effect, sequences of +’s (or —’s) and *s (or /’s) form a kind of term hierarchy; a
particular term can be moved around within its own sequence, but not beyond.

In most circumstances, = is treated the same as + or — for term movements, except for

a sign change as a term moves across the equals sign:

A'-B+C[z]D 1= = A-B=-C[+]D

However, an exception is made for the case where one side of an equation is a product
or quotient. Instead of moving the entire product or quotient across the equals sign, T-
or «T moves only the factor nearest the =, dividing or multiplying the expression on the
opposite side:

A-B[=z] -C+D ST-= = A=INV(B)[{(-C+D)

%E}C-D == = A-B[E(C'D)

This exception is provided for the purpose of solving an equation for a variable, where
you have isolated the variable on one side of the equation save for a multiplicative coef-
ficient.

172.3.4 Commutation

Commutation is the exchange of the arguments of a two-argument function. The com-
mutative laws of arithmetic can be summarized as

a+b =b+a Addition

Expression Manipulations 17.2

a-b=-b+a Subtraction

ab =b-a Multiplication

Division

A typical use of commutation (£-~%Z) is to reorder the terms of an expression so that
terms with a common factor can be grouped together, as a preliminary to factoring out
the common factor. For example, reordering ax + by + cx to by + ax + cx is done by
commuting the arguments of the first +.

17.23.5 Association
Association is a change in the precedence of calculation, the order in which the opera-
tions are carried out. A common form of association is the conversion of @ + (b +c¢)
into (@ +b) +c. The fact that this represents a change in the order of calculation is
easily apparent when you write the two expressions in RPN form, in which calculation
proceeds from left to right:

a+(b+c) is a b ¢ + +

(@a+b)+c is a b + ¢ +

There are two functions involved in any association (the two +’s in each example); for
RULES, you must select the one that defines the entire subexpression that is associated.
In a +(b +c¢), the first + should be selected; in (@ +b)+c, the second. Furthermore,
you need to specify a “direction” for the association. In an expression like
(@ +b) + (c +d), the middle + can be selected for association in combination with
either of the other two +’s. E-AZ (associate left) works when the selected operatoris to
the left of the second operator, moving the parentheses to the left. For example,

(A+B)[¥]1 (C+D) EA= = ((A+B)+C)[ED.

(Here we have set flag —53 to show all of the implied parentheses.) Similarly, SA-Z

works when the selected operator is on the right. The choice of “right” and “left” in
the operations’ names is rather arbitrary--equally good reasons could be offered for rev-
ersing the names. It’s often easier to try one of the two choices and see if you get what
you want, than to remember which is which. If you get the wrong effect, then use the

opposite operation twice.

-565-

17.2 Expression Manipulations

After execution of A~ or +A, the selected object is that function that defines the subex-
pression that contains all of the same objects as the original selected subexpression.

Additional operations provide for multiple associations in one step.

e (()) parenthesizes the sum-of-nearest-neighbors, or product-of-nearest-neighbors,
ignoring intervening parentheses:

A+B[+]C+D = AR (B+C)+D

This operation has no apparent effect if the selected function is the first (or only) in
the sequence, since these parentheses are already present, but hidden.

¢ (~ moves the parenthesis on the left of the selected subexpression to include the next
term to the left (which may result in a matched pair of parentheses disappearing):

A+B+(C[+]D)+E i = A+(B[+]C+D)+E

IA+B[+C)+D EE= = A[HFB+C+D

e —) moves the parenthesis on the right of the selected subexpression to include the
next term to the right:

A+(B[F]C)+D m 4 1
L = A+(B+C[ED)

1723.6 Distribution
Distribution operations allow you to perform EXPAN-like expansions on individual func-
tions and their associated subexpressions. Like association, distribution involves two
functions, and you must select the one that defines the subexpression containing both.
For example, to distribute the multiplication in the expression A- (B+C), you select the
-, then press =-DZ . This returns A-B+A- C, in which the + is highlighted becauseit is
the defining object for the new subexpression.

Two distribution operations are necessary because of the ambiguity of expressions like
(@ +b):(c +d). D- distributes the sum on the right:

(A+B)H (C+D) Eb-= 1= (A+B)-C[E](A+B)-D.

<D distributes the sum on the left:

Expression Manipulations 17.2

 (A+B)J(C+D) D= 1= A-(C+D)[EB-(C+D).

For logarithms and antilogarithms, which are functions of one argument, there is no
ambiguity, and only D- is allowed. Thus,

[LN](A'B) ED-E 1= LN(A)[=]LN(B)

17.23.7 Merging

Merging is the inverse of distribution. That is, where distribution expands a-(b + ¢) into
ab + a-c, merging reverses the process, factoring a-b + a-c into a-(b +¢). Two forms
of merge are necessary to handle ambiguous cases:

A-B[+]AB

M- n 5 (A+A)[1B,

and

AB[+]AB E-ME o= A[](B+B).

Note that <M and D~ are inverses of each other, as are M- and <D. <M also handles
the same logarithm and antilogarithm cases (in the opposite sense) as D-; for example

EXP(A) [EXP(B) £-mE o= [EXP] (A+B).

17.2.3.8 Prefix Operations

This group of operations is organized around the “prefix operators” — and INV, which

also happen to be their own inverses: ¢ = —(—a) and a = INV(INV(a)). The basic
operation is distribute-prefix-operator, »(), which “pushes” one of these operators “into”
its parentheses by altering the argument. For example,

£1(A+B) = -A[C]B
-

The inverse of »() depends on the operator that is distributed.

e For negation, the effect of »() is reversed by — (). Thelatter is called double negate

and distribute, since it is equivalent to double negation (see below) followed by a dis-
tribution of a — prefix operator. Examples:

[=] (A-B) = -A[]B.

= [=] (A-B).JE-A[lB

-567-

17.2 Expression Manipulations

e Inverse ofpower or inverse of inverse-product:

— -B

W (AB) === = AU

[IN\I;A] == = A[]B.

To return either of these subexpressions to its original form, you must use £1/~()Z,

which inverts a subexpression by inverting its arguments. Another example of 1/()

is

EXPl (A) S10= = INWIEXP(-(A)).
e Double inverse:

ONV]INV(A) =0 o= [A].

The reverse operation is DINV (double-inversion) which takes any subexpression A

and changes it into INV(INV(A)).

e Double negative:

] -A n ¥ i ¥ [A].

The reverse operation is DNEG (double-negation), which takes any subexpression A

and changes it into —(—(A)).

e Complex Operators. Distribution of negation and multiplicative inverse is extended
to the common complex operations of conjugate (CONJ), real part (RE), and ima-
ginary part (IM). Using (), you can “commute” the operator through certain other
real-linear functions: CONJ with +, —, * /, NEG, INV, and SQ. and RE and IM

with +, —, * and NEG.

 (SQ(A) =0 - (CONJ(A))
(A+B) =~ -~ RE(A)[+]RE(B)

M) (A-B) === - RE(A)IM(B) IM(A)-RE(B)

17.2.3.9 Unit Identities

The four simple identity operations *1, /1, 1, and +1-1, can be used with any subex-
pression. They are used as preliminaries for merging, in cases where some symmetry is
lacking that prevents the merge from working. For example, if you want to factor
A-B+A into A-(B+1), you can’t use M- or <M because the two arguments of the + are

-568-

Expression Manipulations 17.2

not both products. You can achieve the factoring like this:

A-B+ [A] == = A-B+A[]1

A-B[+]A-1 =M= o= A-(B+1).

Another example:
1

AR =z o pRAl
B+1

ABQA M= o AU

/1 is the division analog of *1. Note that you can use *1 and /1 effectively as inverses
of each other:

A1 A= = A

A SHME = A
]

The last in this class of operations is +1-1, which you can use to split off terms as fol-
lows:

B -A STioiz = @+1E1)-A

@+1[E1)-A Ea=scoier: = (@ +1)-A

2+1)[JA S-D= = 2-A[+]1-A

2-A+1[]A ESEE/1E = 2-A+ [A]

17.23.10 Adding Fractions

The AF operation allows you to combine a sum or difference of two subexpressions, one
or both of which are ratios, into a single numerator over a common denominator. The
most general form of this operation is

_ A-D+B-CAF s=r=
¥ TBD

A C

BD

The + in this example can be replaced by —. Two additional points:

e AF only requires one of the two original subexpressions to be a ratio--you can com-
bine A+B/C into (A-C+B)/C, for example.

-569-

17.2 Expression Manipulations

e If the two subexpressions have the same denominator, use M- rather than AF, so

that the final denominator is the same as the original.

17.23.11 Logarithms

L* and L() are a pair of operations based on the equivalence Ina® = (lna)b. L*

transforms the log of a power LN(A”B) into the product LN(A)-B; L() reverses the
transformation. Either works with natural logs (LN) or common logs (LOG). L()
expects the log to be the first argument of the product; if you have the form B-LN(A),

you will have to commute the arguments with < before applying L().

17.2.3.12 Exponentials

E” and E() are based on the equivalences e’ = (¢%)® and e*® = (¢?)V?. E" converts

left-to-right in these equations, changing EXP(A-B) into EXP(A)"B, for example. E() is

the right-to-left operation. Either works with division as well as multiplication, and with
ALOG instead of EXP.

17.23.13 Definition Expansions
The RULES menus for the trigonometric and hyperbolic functions include the -DEF

operation, which replaces these functions with their definitions in terms of EXP and LN.
The particular forms of the expansions are chosen from various possibilities to exhibit
the same branch-cut behavior as the corresponding HP 48 numeric functions. Table 17.1
shows an example of each operation, where the results are obtained in radians mode,

and X represents any subexpression.

The menu for EXP contains the ~TRG operation, which translates an exponential func-
tion into a sum of trigonometric functions:

(X) STRGE = COS [%]sm[é]-i

(The ALOG menu contains the same entries as the EXP menu, but ~TRG does not apply

to ALOG.)

17.23.14 Addition Angle Formulae

The addition angle formulae for trigonometric and hyperbolic functions are provided as
transformations by the TRG* operation (named by analogy with the multiply-argument

operation for exponential, EXP™). The specific transformations are listed in Table 17.2.

-570-

Expression Manipulations 17.2

Table 17.1. ~DEF Expansions

Function -DEF Expansion Function -~DEF Expansion

EXP (%) - EXP(~ (X-i
SIN(X) X - XD ASIN(X) -iN (V-2 +ix)

EXP(X) EXP(~ (Xi
COS(X) o9 +2 el ACOS(X) 12'—+i~LN(V1—X2+i-X]

EXP(Xi-2) -1 o [L0EX]TAN i——L ATAN —i-LN &-L
X (BXPoxi2) + 1) X ! [1+ X2

SINH(X) - (SIN(x-i)-i] ASINH(X) ~LN (V 1+ X2 —x]

2

COSH(X) COS(X) ACOSH(X) \/ - [% +iLN (V 1-X2 +i-X)}

TANH(X) TAN(XA)-—i ATANH(X) -LN [é‘;—f(%]
Table 17.2. TRG* Transformations

Function Transformation

SIN(X+Y) SIN(X)-COS(Y)+ COS(X)-SIN(Y)

COS(X+Y) COS(X)-COS(Y) - SIN(X)-SIN(Y)

!TAN(X)+TAN(Y)!

TANK+Y) 1-TAN()-TAN(Y)

SINH(X+Y) SINH(X)-COSH(Y)+ COSH(X)-SINH(Y)

COSH(X+Y) COSH(X)-COSH(Y)+ SINH(X)-SINH(Y)

(TANHEQ+ TANH())
TANHX+Y) 1+ TANH(X)-TANH(Y)

-571-

17.2 Expression Manipulations

17.23.15 Collecting Terms
The final entry in all of the RULES menus is COLCT. This operation is useful in subex-
pression mode for simplifying by combining like terms. For example, you can transform
(1+2)-X into 3-X by applying COLCT to the +.

In HP 48 versions through E, the COLCT operation in the RULES menu is a restricted
"one-pass” version of the COLCT command. It does collect like terms, but it does not
execute functions of numerical arguments other than the selected function itself. That
is, 2-X 3-X collects only to (2+3) [-] X; to simplify further to 5-X, you must use
COLCT again on the 2+3. Executed as a command outside of the EquationWriter

environment, COLCT reduces '2%X+3#*X’ to '5*X’ in a single execution.

17.3 Pattern Matching and Substitution

Ordinary algebraic object evaluation permits the substitution of expressions for names.
That is, if X is defined as 'Y+1', then '2*X' EVAL returns '2*(Y+1)’. However, this
does not provide for the reverse substitution--replacing instances of Y+1 with X. More
generally, there is an endless number of useful transformation rules that are not expli-

citly provided via EXPAN, COLCT, RULES, etc. To cover such cases, the commands
tMATCH and {MATCH let you create and execute your own transformation rules. A

simple example is the reverse substitution just mentioned:

2%(Y+1)! {'Y+1' X} tMATCH = ’'2#X' 1

The 1 returned to level 1 is a true flag (section 9.3), which indicates that a successful
match was made.

MATCH*t and MATCH! are similar in operation, so we will refer to them collectively as
MATCH except when the distinction is important. Both commands take as arguments
an expression to rewrite, a pattern expression, and a replacement expression. The result
is the original expression with the replacement expression substituted for every instance
of the pattern expression. The pattern and the replacement are entered together in a
list:

‘old'" { 'pattem’ 'replacement’ } MATCH 1= 'new’ flag.

The flag indicates whether any substitution was made. The flag is helpful to indicate
when an iteration or recursion with MATCH is making no further changes in an expres-
sion.

MATCH allows the pattern and the replacement result expressions to contain “wild
card” names which will match any subexpression. Any local or global name that starts

-572-

Expression Manipulations 17.3

with the “&” character is interpreted as a wild card. MATCH replaces the wild card
names in the replacement expression by the subexpressions each name matches in the
original expression. If the same wild card variable is used more than once in the pat-
tern expression, then it must match identical subexpressions. If a wild card occurs in the
replacement expression without occurring in the pattern expression, the Undefined
Name error results.

This powerful extension allows the straightforward application of rewrite rules. For
example, the addition law for cosines can be applied to any expression by means of the
following program:

COSSUM Cosine ofa Sum E417

level 1 | level 2 level 1

' expression,’ o 'expression,’ flag

<< { 'COS(&A+&B)’ Pattern.

'COS(&A)*COS(&B) - SIN(&A) *SIN(&B))’ Replacement.

}
tMATCH

>>

COSSUM can work with simple expressions:

'COS(X+Y)’ COSSUM = 'COS(X)*COS(Y)-SIN(X)*SIN(Y))" 1,

or with more complicated expressions:

'LN(COS(X*2+1/Y))’ COSSUM

r= 'LN(COS(X*2)*COS(1/Y) - SIN(X*2)*SIN(1/Y))’ 1.

You can just as easily define the inverse transformation TOCOSSUM:

'LN(COS(X*2) *COS(1/Y) - SIN(X*2) *SIN(1/Y))’ TOCOSSUM

= 'LN(COS(X"2+1/Y))’ 1.

-573-

17.2 Expression Manipulations

TOCOSSUM To the Cosine ofa Sum F8A4

level 1 | level 2 level 1

' expression,’ or ' expression ,’ flag

<< { 'COS(8A)*COS(&B) - SIN(&A) *SIN(&B))’ Pattern.

'COS(&A+&B)’ Replacement.

}
tMATCH >>

The pattern and replacement expressions are combined in a list in order to provide for
an optional third argument, a conditional test expression. That is, the most general level
1 argument has the form

{ 'patten’ 'replacement’ 'test' }.

When MATCH is executed, the replacement is only substituted for the pattern if test

evaluates to a true flag. Most commonly, a test is used to restrict the domain of a
transformation. For example, simplification of the square root of a square is only valid
when the argument of the square is positive:

'"V(3*2)+V((-3)*2) {'V(&1"2)' &1 '&1=0'}

IMATCH = '3+V/((-3)"2)" 1

The last refinement in the use of MATCH is the choice of tMATCH or {tMATCH, which
determines whether a pattern search is made upwards or downwards through a subex-
pression hierarchy (section 3.5.2.1). The distinction is illustrated by the following exam-
ples:

'A+B+C’ {'&1+8&2' D} IMATCH = 'D’' 1

'A+B+C' {'&1+&2' D} tMATCH = 'D+C' 1

IMATCH looks for a pattern match starting at the highest level of the subexpression. In
terms of the equivalent RPN sequence (section 2.1), this means that {MATCH works
from right to left through the object sequence. In this case, the second + is the highest
level function, which you can verify by setting flag —53 to show the original expression
as '(A+B)+C’, or by executing OBJ-:

-574-

Expression Manipulations 17.3

'A+B+C’ OBJ- 'A+B’ 'C' 2 +.

The pattern expression '&1+&2' matches any sum, so the entire expression is replaced
by 'D’.

tMATCH works “from the inside out,” working from the lowest level subexpressions

upwards (i.e., from left to right through the RPN object sequence). For this example,
the subexpression A+B matches the pattern, so it is replaced by D. However, the
subexpression defined by the second + in the original expression, which is now changed
to 'A+D’, is not considered for replacement. This rule is followed by both tMATCH
and ‘MATCH: A subexpression that has been matched once (and hence replaced), is not
considered as a candidate for any further matches. Consider the following examples:

'(A+B)+(C+D)’ {'&1+&2' 'E+F'} IMATCH = 'E+F 1

'(A+B)+(C+D)’ {'&1+&2' 'E+F'} tMATCH = ’'(E+F)+(E+F)’ 1

Again, {IMATCH replaces the entire expression, because it matches the pattern at the top
level (the middle +). However, it does not attempt to replace the new expression, even
though it does match the pattern. The reason for the rule is quite apparent in this
example: the replacement process would continue forever otherwise, as each successive
replacement matches the pattern. Similarly, tMATCH replaces the A+B and the C+D,
but not the expression defined by the middle +, because that sum’s arguments have
already been replaced.

17.4 Simplifying Polynomials

Because of the generality of the HP 48 manipulation commands, they can be difficult to
use for rearranging particular types of expressions into standard forms. A very common
case is ordinary polynomials, which are sums of powers of a variable

N

> ax”.
n=0

To expand the expression '(X+A)"4’, for example, into a sum of powers of X, you need
to execute EXPAN and COLCT several times. It is quite difficult to predict how many
executions of the commands are needed, and in what order they should be applied.
Furthermore, to rearrange the result terms in order of ascending or descending powers
requires the use of RULES. You can do better by taking advantage of the fact that a
Taylor’s series is a polynomial:

-575-

17.2 Expression Manipulations

'X+A)*4" 'X" 4 TAYLR COLCT

7 '6*%A"2*X"2+4*A"3*X+4*A*X"3+A4+X"4’,

To use TAYLR, you must specify the name of the polynomial variable (level 2), and the
order of the polynomial. If you don’t know the order in advance, you can try any
number that you are sure is larger than the actual order. You obtain the fastest execu-

tion if you specify a number equal to the polynomial order. This method is preferable
to the blind use of EXPAN and COLCT because it is faster and more predictable.

The built-in commands are awkward to use in many cases because of their generality.
You can do considerably better by making assumptions about the structure of certain
expressions and taking advantage of the HP 48’s ability to dissect objects. For polynomi-
als, the assumption is that an expression is a sum of arbitrary coefficients times powers
of a single variable. It can therefore be represented as a list of coefficients, with the
corresponding powers indicated by the position of each coefficient in the list. Whether

the lists are in ascending or descending order of powers is a matter oftaste; we will use
descending order in the programs presented below. For lack of a better term, we will
use the term polynomialize to refer to the conversion of any expression into this stan-
dard form, either as an expression including the variable or as a list of coefficients. For

example, (X+A)"4 polynomialized as a list becomes

{1 '4*A"3' '6#%A%2' '4*A’ 1},

where the X is implied, or stored as a separate object. Using the list representation,
common mathematical operations can be represented by programs that use and

preserve the list structure. In this section, we will describe a series of programs
designed for operations with polynomials. The programs are listed all together at the

end (section 17.4.1).

The first program, PADD, performs polynomial addition by adding the corresponding

terms in two coefficient lists:

{A2 A1 A0} {B1 B0} PADD = {A2 ’'B1+At1’ 'BO+A0’ }.

The programs for polynomial negation (PNEG), subtraction (PSUB), multiplication
(PMULT), division (PDIVD), and involution (PPWR) use methods similar to those of
PADD. PSUB could be written as a variation of PADD, but it is simpler to combine
PNEG and PADD.

{A2 A1 A0} {B1 B0} PSUB = {A2 '-B1+A1’ '-B0+A0' }.

-576-

Expression Manipulations 17.4

Polynomial multiplication is achieved by multiplying each term in one list by each term
in the other, and adding up the corresponding products.

{A2 A1 A0} {B1 BOo} PMUL

= {'A2+#B1’ 'A2+#B0O+A1*B1’ 'A1*B0+A0+*B1’ 'A0+*B0’ }.

Polynomial division is more difficult than the preceding operations, because it does not
in general return a polynomial. The division program PDIV returns three lists,
representing the remainderless quotient, the numerator of the remainder, and the
denominator, respectively.

{1 5 7} {1 2} PDIVD = {1 3} {1} {1 2}

represents the division of x2 + 5x + 7 by x +2, which simplifies to x +3 with a remainder
of /(x +2).

The involution program PPWR considers only positive integer powers, so that the result
is an ordinary polynomial. In this case, involution is equivalent to repeated multiplica-
tion of the base polynomial by itself. Howcver, programming the involution that way is
rather inefficient, since it involves computing the same products many times. On the
other hand, using a full-blown multinomial expansion is an involved process requiring a
substantial program just to compute the expansion coefficients. The approach used in
PPWR is an intermediate one, in which any polynomial above first order is treated as a
binomial:

Py(x) = ayx™ + Py_1(x)

An integer power of the polynomial can be computed from the binomial expansion:

. i ’ .

CIREDY {,’, }(aNx”)"Pxfl (x)
n=0

The powers of the lower-order polynomial Py_; are computed recursively by the same
method. This method works for any polynomial raised to any power, but it does require
a lot of free memory for large polynomials and powers.

For example, using PPWR to expand (x +2)°:

{1 2} 5 PPWR = {1 10 40 80 80 32}

-577-

17.2 Expression Manipulations

The programs illustrated so far become even more useful when combined with other
programs that convert between the list and symbolic object representations of a polyno-
mial. The conversion from list to symbolic object is quite straightforward, as you can
see in the program PEXPR. The level 1 argument for PEXPR can be any object allowed
in an algebraic object:

{1 2 3} 'X PEXPR 1= ’'X"2+2*%X+3’

{1 2 3} 10 PEXPR = 123

The conversion from an expression to a list is more difficult. One approach might be to

use tMATCH or {MATCH (section 17.3) to replace the operators +, —, *, / and ~ in an
expression with user-defined function versions of PADD, PSUB, etc., and convert names,
numbers, and non-polynomial functions to zeroth- or first-order coefficient lists.
Evaluating the result would then return the coefficient list for the whole expression.
However, that method is difficult to adapt for functions other than those for which expli-
cit polynomial versions are provided. Instead, the program PLIST takes an expression
apart one level at a time using OBJ-. Applying this command to an algebraic object
returns the “top-level” object, its arguments if any, and a count of those arguments:

'f(argy,argy, + - - ,arg,) OBJ— argy arg, --- ag, n f

PLIST operates on a symbolic object, or any object that can appear in an algebraic
object, plus the name of the designated polynomial variable. Its action depends on the
type of the level 2 argument:

e For a real or complex number, or a unit object, or any name other than the polyno-
mial variable name, PLIST returns the object in a one-clement list, representing a
zero-order polynomial.

e If the argument is a name that matches the polynomial variable, PLIST returns the
ist{1 0}

e If the argument is an algebraic object, it is dissected with OBJ-. If the top-level
object is not one of the polynomial operators, then PLIST just returns the original
object in a one-element list. For the two-argument operators, PLIST applies itself
recursively to each of the arguments, then executes the appropriate polynomial list
program to combine the arguments.

e Division is included as one of the special polynomial operators even though it does

not return a polynomial in all cases, primarily to permit simplification of expressions
where a denominator is actually a factor of its numerator, and so may be canceled
out. Any remainder is converted back to a fraction by PLIST, and treated as a zero-

-578-

Expression Manipulations 17.4

order term.

e PLIST calls LPWR for involution, rather than PPWR,since the second argument of *

may be a general expression rather than just a real number. LPWR is an extension
of PPWR that does additional argument screening and then calls PPWR if appropri-
ate.

o If PLIST’s first argumentis an equation, it still returns only one coefficient list, treat-
ing the = as a subtraction.

As an example of using PLIST, polynomialize (x +1)* - 4(x— 1)+2 into a list:

'X+1)"3-4*(X-1)+2" 'X’ PUST = {1 3 -1 7}

The goal set out at the beginning of this section is to devise a fast and automatic means
of simplifying polynomials. The final step towards this goal is the program POLY, which
polynomializes an expression into a new expression, “hiding” the intermediate list
stages:

'X+1)"3-4%(X-1)+2' ‘X' POLY 1= 'X*3+3*%X"2-X+7".

or

"((3%X"2-3)/(X +1))"2-(X+1)"2" 'X' POLY 1= '8#X"2-20%X+8’

Such reductions are essentially intractable using EXPAN, COLCT, and RULES. You can
achieve similar results in some cases using TAYLR, but POLY is faster and does not
evaluate of any of the names in the argument expression.

POLY takes an arbitrary expression and a name as arguments, and returns a new alge-
braic object expressed as a polynomial in the named variable. POLY invokes PLIST to

sort out the polynomial coefficients, then PEXPR to convert the coefficient list back into
an expression.

When applied to a polynomial containing names other than the polynomial variable,
POLY used as above returns the coefficients in unsimplified forms, e.g.

'A¥X+A*X" ‘X’ POLY = '(A+A)*X'

Some coefficients may be simplified by applying COLCT to the result, but this may also
defeat the polynomial ordering. To provide better additional simplification, POLY
accepts a list of names for its argument. The first argument is polynomialized with
respect to the first name in the list; each coefficient is polynomialized with respect to

-579-

17.2 Expression Manipulations

the second name; and so forth for each name in the list. Thus

'(X+A)"3+(X+A2)"2' ‘X’ POLY

Iz X3+ (1+3*A)#X2+ (2*A"2+3*A"2) *X+ (A"2"2+A"3)’

'X+A)"3+(X+A%2)"2" {X A} POLY

F X3+ (3*%A+1)*X"2+5%A"2%X+ (A4 +A"3)’

This strategy may not be helpful if the result contains a fraction, since it will be polyno-
mialized with respect to the second name, which counteracts the polynomialization with
respect to the first.

17.4.1 Polynomial Programs

PADD

level 2 level 1 level 1

{Pv} {Pu} {p" }

<< DUP2 SIZE SWAP SIZE Determine the lists’ sizes.

IF < THEN SWAP END Put longer list in level 1.

OBJ~ DUP 2 + ROLL OBJ- DUP

2 + ROLL Dump lists on stack.

- nshort nlong Save list sizes.

<< 1 nshort

FOR n Add each pairof terms:

nshot 1 + ROLL +

nshort ROLLD

NEXT

nlong -LIST Recombine into a list.

>>

>>

PSUB Polynomial Subtract 9282

level 2 level 1 | level 1

{Pv} {Pu} o { PmaxNy }

<< PNEG PADD Negate and add.
>>

Expression Manipulations

PNEG Polynomial Negate 351E

level 1 | level 1

{Px} o {-Pn}

«<OBJ> -+ n Explode list, save count.

<1 n

START NEG n ROLL Negate each term.

NEXT

n -LIST Recombine list.

>>

>>

PMUL Polynomial Multiplication BFeD

level 2 level 1 | level 1

{Pv} {P'um} o {P'Nim}

< DUP SIZE ROT DUP SIZE

IF DUP 4 PICK >

THEN 4 ROLL 4 ROLL

END -~ list1t n1 list2 n2

<«<{} 1 n2

FOR m

0 +

list2 m GET - mt

< listt1 OBJ- 1

START mt * ni

>>

ni -LIST PADD

NEXT

>>

SWAP

ROLL NEXT

>>

Getlist sizes.

Put longerlist in level 4.

Start empty result list.

For each element of list2:

“Multiply” the result list byx.
Get the mth element of list2.

Multiply by each listl element.

Add products to the result list.

-581-

17.4

17.2 Expression Manipulations

PDIVD Polynomial Divide 4D4C

level 2 level 1 | level 3 level 2 level 1

{Pn} {P'u} & {Pguctient} {Premaindert (P’m}

< DUP2 SIZE SWAP SIZE Getlist sizes.

IF OVER - DUP 0 < If the net order is negative,

THEN DROP2 {0} 3 ROLLD

ELSE SWAP ROT DUP 1 GET

- n dt

< {} 3 ROLLD

0 SWAP START

DuP 1 GET t /

ROT OVER +

3 ROLLD 1 n

FOR m

OVER m GET

d m GET

3 PICK * - ROT

m ROT PUT SWAP

NEXT

DROP 2 OVER SIZE

MIN 1E499 SUB

then return 0 as quotient.

divisor count,list, and first term.

Initial empty quotient list.

Repeat m—n +1 times (i =dividend size):

Divide leading term by t.

Append result to quotient list.

Subtract the result * divisor from

the dividend ...

Discard the first term.

NEXT d Repeat.

>

END
>>

PEXPR Polynomial Expression F240

level 2 level 1 | level 1

{Pyn} x wr 'Py(x)

<= X Save value.

<< OBJ- Explode the coefficientlist.

0 SWAP 1 Start with zero sum.

FOR n n 1 + ROLL Get the nth coefficient.

x n 1 - ~ =* 4 Add a,x.

-1 STEP Iterate.

>>

>>

-582-

Expression Manipulations

PPWR PolynomialPower 8E38

level 2 level 1 | level 1

{Pyn} n =4 { P}

<< CASE Check for simple cases:

DUP 0 == THEN DROP2 {1} END |n=0.

DUP 1 == THEN DROP END n=1.

OVER SIZE 1 ==

THEN SWAP 1 GET constant®™"** case,

SWAP ~ 1 -LIST END

OVER SIZE 1 - ROT DUP 1 GET |Get first coefficient ay.

SWAP 2 1E499 SUB “Rest” of list { Pxy_1 }.

4 ROLLD - n N aN Leave { Py_; } on stack.

< {0} SWAP Initialize a result polynomial.

0 n

FOR i For 0 to n:

DUP i PPWR Compute Piy_; -
n i COMB nCi.

aN n i - ~ =* ACial.
1 -LIST PMUL JCialPy1.

ROT

IF 'i#0'

THEN 1 N START 0 + NEXT Raise power of old sum by N.

END

PADD SWAP Add new polynomial.

NEXT DROP Return P};.

>>

END

>>

17.4

17.2 Expression Manipulations

PLIST Polynomial to List BFED

level 2 level 1 | level 1

&) X o { Py}

< - X Save polynomial variable name.

<< CASE

{6 7 9 01 13}

OVER TYPE POS DUP

{6 7} x TYPE POS AND NOT

THEN DROP x 514 DOERR END

DUP 3 >

THEN DROP 1 -LIST END

2 <

THEN

IF x OVER SAME

THEN DROP {1 0}

ELSE 1 -LIST

END

END

DUP OBJ-

{+ - =~ = NEG /}

SWAP POS DUP
THEN ROT x PLST

IF ROT 2 SAME
THEN ROT x PLIST SWAP ROT
ELSE SWAP
END
IF DUP 7 <
THEN

{ PADD PSUB PMUL
LPWR PSUB PNEG}
SWAP GET EVAL

ELSE DROP PDIVD x PEXPR
SWAP x PEXPR SWAP /
1 -LIST PADD

END SWAP DROP
END DROP DROPN 1

END
>>

~LIST

>>

Is f(x) a legal object type?

And is x a global or local name?

If not, then Bad Argument Type.

If fis a number or unit object,

return as zero-order.

If fis a name,

then if it’s the same as x,

then return as first order;

otherwise as zero-order.

Get top-level function and arguments.

If a polynomial function,

then polynomialize one argument.

If two arguments,

then polynomialize the other.

If it's not /,

then execute the polynomial operation.

For division, compute the fraction,

and add the remainder.

Discard copy off{(x).

Return f(x) as zero order.

-584-

Expression Manipulations

LPWR List to Power 00CA

level 2 level 1 | level 1

{Pv} {n} = {PN}

<< CASE DUP SIZE 1 #

THEN DROP SWAP END Power not zero-order.

1 GET DUP TYPE

THEN DROP SWAP END Power not a real number.

DUP 0 < THEN DROP SWAP END [Negative power.

DUP FP THEN DROP SWAP END Fractional power.

PPWR Do the involution.

END

>>

POLY Polynomialize Expression 99FB

level 2 level 1 | level 1

fE&) X' o 'Py(x)
'f(x) {names} o 'Py(x)

< IF DUP TYPE 5 SAME If the 2nd argumentis a list,

THEN OBJ- 1 - then explode it.

ELSE O Otherwise, “rest”is null.

END -LIST - x rest Save first name, and rest.

<< x PLIST Polynomialize with respect to x.

IF rest SIZE If rest is non-null:

THEN OBJ- - n Then explode the coefficient list,

<1 n and for each term,

START

rest POLY n ROLL polynomialize against rest list.

NEXT

n -LIST Recombine coefficient list.

>>

END

x PEXPR Convert list to expression.

>>

>>

-585-

17.4

18. Calculus

The HP 48’s mathematical capabilities extend into the realm of the calculus, including
differentiation, integration, and polynomial approximations. The derivative function 9
can symbolically differentiate expressions containing almost any combination of HP 48
functions for which sensible derivatives exist (see section 3.1). By applying the deriva-
tive repeatedly, the TAYLR command generates Maclaurin series for arbitrary expres-
sions, which can be generalized into Taylor’s polynomials at any point. Computing
antiderivatives is a more difficult problem, but the HP48 can symbolically integrate a
fixed set of common integrand patterns. For integrals that do not match the built-in

patterns, the HP 48 can still compute accurate numerical integrals.

Although summation might not strictly be considered as part of the calculus, we will dis-
cuss summations as a preliminary to the treatment of integration. Besides the close
mathematical association between summation and integration, the HP 48 functions X
and [have a number of similar properties.

18.1 Differentiation

The derivative function 9 is quite straightforward to use, except that you must choose

whether to carry out a chain-rule derivative in steps or all at once. In either case, you
have to identify

a. the expression to be differentiated, and

b. the variable of differentiation.

Since 9 is a function, you can specify these items as two RPN stack arguments, or as
arguments for d within an expression. This choice of RPN or expression format also
determines whether the differentiation is performed in a single operation (RPN) or one
step at a time (expression).

To use d as a stack command, you enter the expression to be differentiated into level 2,
and the name of the differentiation variable into level 1, then execute d. The result is
an expression representing the derivative of the original expression. It is fully
differentiated--the d function does not appear in the result.

The expression syntax for a derivative does not follow the normal HP 48 convention of
parenthesizing stack arguments, where A B 9 should become 'd(A,B)’. Instead, the
form of 9 within expressions is modeled after the standard written form DyA (derivative
of A with respect to B): this derivative is expressed in HP 48 syntax as 'dB(A)’. The
parentheses are necessary to separate the expression A from the name B, and from the

-587-

18.1 Calculus

remainder of the expression, if any. The more common ratio form is realized in the
EquationWriter presentation of derivatives (section 6.7.3.3), where the differentiation
variable can be shown as a denominator with the prefix 9:

8
EE(H]

The HP 48 uses the symbol d rather than d or D to leave the ordinary letters available
for names. dA/dB is perhaps a more common written form than DpA, but given the

general HP 48 rules for naming variables, ‘dA/dB’ could also mean dA divided by dB,
so this form is not used in the linear format.

d also differs from other HP 48 functions in that it executes differently as a stack com-
mand than it does when it is part of an expression. In the RPN case, the derivative is
repeatedly executed until the 9 function is no longer present. However, when an
expression containing 9 is evaluated, the derivative is only carried out as far as a single
application of the chain rule of differentiation, whichis:

oy - 9zT@) = 2%

For example, to compute é—ix—sin (cos (x)), multiply

daf d& msin(cos (x)) = cos (cos (x))

by

& = —sin (x),

to obtain the result

—cos (cos (x))sin (x).

Calculus 18.1

On the HP 48, you can watch this calculation unfold by entering

RAD "dX(SIN(COS(X)))’,

then

EVAL] = 'COS(COS(X))*3X(COS(X))’

rz 'COS(COS(X))*(-SIN(X)*3X(X))’

= 'COS(COS(X))*(-SIN(X))'.

Each EVAL applies the chain rule through one level. If you are not interested in the
intermediate result, you can obtain the final result in one step:

'SINCOS(X))’ 'X' & = 'COS(COS(X))*(-SIN(X))'.

The one-step derivative obtained by including d within an expression is consistent with
the general flavor of HP 48 expression evaluation (section 3.5.2), which substitutes values
for each variable in an expression, but does not recursively evaluate the substituted
subexpressions. This style of differentiation is quite useful as a teaching tool, whereby
you can observe results of successive applications of the chain rule.

18.1.1 Calculus with Trigonometric Functions
If you differentiate expressions containing trigonometric functions while the HP48 is in
degrees or grads mode, factors of /180 or /200 will appear in the result:

DEG ’'SIN(X)' 'X’ 8 = 'COS(X)*(rw/180)’

This is correct mathematically, but it may surprise you when you take a derivative

without thinking about the angle mode. In effect, any trigonometric function is a dif-
ferent function in each angle mode. For example, in radians mode, SIN corresponds
directly to the usual sine function, where the argument is expressed in radians. How-
ever, in degrees mode, SIN(x) is actually a representation of sin(180x/4r). Differentiat-
ing the latter expression returns (180/7) cos(180x/1r).

The same reasoning applies to integrals. For example, if you compute (see section
18.4.2)

™

fsinxdx
0

-589-

18.1 Calculus

in radians mode, you obtain 2, as you might expect. But in degrees mode:

J(0,180,SIN(X),X) -NUM = 114.591559026

The difference in the two results is the factor of 180/ that arises in the integral of SIN
in degrees mode. The result is easy to understand if you plot SIN between 0 and 180:

1.2at¥

7N

Even a quick glance at the picture shows that the area under the curve is certainly
closer to 115 than to 2.

18.1.1.1 User-Defined Derivatives
Almost all HP48 functions that represent continuous and differentiable functions have
derivatives included in their built-in definitions. The percent functions %, %CH, and %T
are exceptions, having no built-in derivatives. Attempting to differentiate an expression
containing any of these functions yields a strange-looking result:

"%TXY) ‘X' 9 = 'der®wT(X)Y,1,0)

This is an example of the HP 48’s provision for user-defined derivatives, which are deriva-
tives that you can define to substitute for missing derivatives. When the function 9
encounters a function ¢ for which no derivative is available, it does not error. Instead,
it evaluates the global name derd, created by appending the function name ¢ to the
letters “der.” If the corresponding variable exists, then the stored object, which should
be a user-defined function (section 8.5), is executed. Otherwise, the unevaluated sym-
bolic form of the function is returned, as in the example above. This strategy appliesto:

e Built-in or library functions with no associated derivatives, such as the percent func-
tions, or discontinuous functions like IP and MOD.

e User-defined functions for which no definition has been supplied.

-590-

Calculus 18.1

e User-defined functions with programs as their defining objects (section 8.5.3).

The value ofthis approach is that it allows you to continue with calculations that might
otherwise be stalled, by supplying the missing derivatives. If you define the necessary
derd’s before differentiating, you will not see them in the results. But you can also wait
until one appears in a result, then store a definition for it and evaluate the result to
compute the derivative. For example, the following creates a user-defined derivative for
%T:

'der%T(x,y,dx,dy) = (dy/x-y/(x"2) *dx) *100’ DEFINE

With this definition, you can evaluate the previous result:

'der%T(X,Y,1,0)' EVAL o= ’'-(Y/X"2%100)'.

(where neither X and Y has a current value).

In general, the user-defined derivative of a function of n arguments requires 2n argu-
ments. The first n of these are the arguments of the original function, and the second n

are the derivatives of the first n arguments with respect to the differentiation variable.
These latter arguments are necessary for chain-rule differentiation. You can see the
argument structure in this symbolic example:

"Oxd(y1y2, -t ya) EVAL = 'derd(yiyz, ya,0x (¥1),0x(y2), * -+ ,0x ()’

T% is an example of a two-argument function. It is defined as

T%(x,y)=100')%,

and its derivative with respect to z is

dT%

dx e+e

dT%/dx is —100y/x2, and dT%/dy is 100/x. The presence of the factors dx/dz and
dy/dz necessitates the extra two arguments for derT%. The easiest way to write derT%
as a user-defined function is to name the four arguments X, y, dx, and dy, and then
write the defining expression like the total differential of T%, i.e.

aT% dT% _ .oy dy& bt gy 100(-e +)

-591-

18.1 Calculus

Simplifying this a little, and converting it to HP48 syntax leads to the definition for
der%T given above.

User-defined derivatives are not necessary for user-defined functions that are defined
with algebraic objects. Differentiating such functions automatically carries the differen-
tiation through their internal definitions. For example, if you use the following to create
a user-defined function for the secant:

'SEC(x)=INV(COS(x)) DEFINE,

then you can differentiate expressions containing SEC:

RAD 'SEC(0)' ‘6’ 3 = 'SIN(9)/COS(6)"2'

The derivative of sec(0) can also be expressed as tan8/cos 0. You can write a derivative
for SEC that reflects this form:

'derSEC(x,dx) =TAN(x)/COS(x) *dx*(3.14159265359/ACOS(-1))’ DEFINE.

(The factor of m/cos™!(-1) provides for differentiation in any angle mode.) However,
d only uses user-defined derivatives when no default is available, so it will not use der-
SEC in differentiating SEC. If you want to force the use of derSEC, you must rewrite
SEC with a program asits defining object:

< - x <<x COS INV>> 'SEC' STO

For example, with these definitions, and ‘0”2’ stored in the variable X, then

'SEC(X)’ '0' 8 = 'TAN(6"2)/COS(8*2)*(2%0)'.

18.1.2 Formal Derivatives
Executing 0 as an RPN command may cause repeated evaluation of the differentiated
expression. If the differentiation variable has a value (anywhere in the current path),
the variable will disappear from the result. For example, with 0 stored in X,

‘SIN(COS(X))’ 'X' 8 = O,

which is not too helpful if you are looking for a symbolic result.

One simple way to ensure a symbolic result is to purge the variable of differentiation

-592-

Calculus 18.1

before executing 3. However, this is undesirable when you need to keep its stored value
for further calculations. You might save the value, purge the variable, differentiate, and
then restore the variable, but there may be one or more variables with the same name
in parent directories, so that you would have to find and treat all of them the same way.

The program FDER listed below illustrates a neat solution to this problem. It uses
tMATCH (section 17.3) to substitute a local variable for the differentiation variable, then

differentiates with respect to that local variable. The local variable is given its own
name as its value, so that repeated evaluation of that name during differentiation never
does anything except return the same name (with a global variable, this trick would lead
to endless execution--see section 3.6.1). After differentiation, the original global name is
substituted back for the local name. Using this program in place of d always produces a
result expressed in terms of the differentiation variable:

'SIN(COS(X))" ‘X’ FDER = 'COS(COS(X))*-SIN(X)’

FDER Formal Derivative 3B64

level 2 level 1 | level 1

'f(x) 'x' wr 'df /dx’

< DUP - x H Create dummy variable t4.

< x SHOW Make references to x explicit.

x {#} + WMATCH DROP Replace original variable with t4.

't DUP STO t4 will return t4.

t 9 Differentiate.

x 't STO EVAL Restore original variable.

>>

>>

The only flaw in FDER is that you can obtain an incorrect result if the differentiated
expression already contains the local name used by FDER. To minimize this possibility,
FDER and other programs listed later in this chapter use the unusual local name ti.
This name has no mnemonic value, is obviously not used in common mathematical exer-
cises, and gives a poor appearance to expressions containing it. If by some chance you
do like to use this (local) name in your calculations, you can always rewrite FDER using
any other name you prefer.

-593-

18.2 Calculus

18.2 Taylor’s Polynomials

The Nth degree Taylor’s polynomial for a function f(x) at the point x = xis defined by:

N -xnY* gn

e =3L),
n=0

The special case ofxo = 0 is called MacLaurin’s formula:

N .n nx" dFE) =AT@lems

These definitions are valid for functions for which all derivatives of f exist up to degree
n. For N = o, the polynomial is equal to the function f. For finite N, the polynomial
constitutes an approximation to the function; the higher the degree, the better the
approximation.

The TAYLR command computes the Nth degree Taylor’s polynomial for a function at
the origin (MacLaurin’s formula). To use TAYLR, you enter an expression for the func-
tion in level 3, the polynomial variable name in level 2, and the polynomial degree in
level 1.

m Example. Compute the fifth-order Taylor’s polynomial for sinx at x = 0.

RAD 'SIN(X) ‘X’ 5 TAYLR 1= 'X-1/3!%X"3+1/5!*X"5'

In this result, the even-degree terms are absent, because they are all proportional to
sin” 0 = 0.

To produce a Taylor’s polynomial at a point x, other than the origin, it is only necessary
to make a translation of the coordinate system such that x = x’ +x,, use TAYLR with
the variable x’, then translate the system back by substituting x' = x—x,. The program
TAYLRXO0 performs these operations. TAYLRXO uses the same input arguments as
TAYLR, with an additional argument to specify the point x,.

m Example. Compute the 3rd degree Taylor’s polynomial for sinx at the point x = /2.

RAD 'SIN(X)" 'X' '«w/2" 3 TAYLRX0 1= '1-5%X-w/2)"2'.

Note that the result is the same as the 3rd degree Taylor’s polynomial for cos (x— 1/2),
which follows from the identity sinx = cos(x— 7/2).

-594-

Calculus 18.2

TAYLRX0 Taylor’s Polynomial atx 47E3

level 4 level 3 level 2 level 1 | level 1

' expression’ 'name’ xot degree or 'polynomial’

< RCLF - x x0 n f Save the name, x(, degree, flags.

«< -3 CF Symbolic evaluation.

x SHOW Make all instances of x explicit.

x 'x+x0’ EVAL 2 -LIST Substitution patterns.

tMATCH DROP Substitute x + xg for x.

x n TAYLR Make the expansion.

x 'x-x0" EVAL 2 -LIST Reverse substitution pattern.

tMATCH DROP Substitute x-x¢ for x.

f STOF Restore flags.

>>

>>

txo may be a name, expression, or number.

You can only apply TAYLR meaningfully to functions for which the function itself and its
derivatives up to the Nth-order are defined at x = 0. For example, you can not com-
pute a polynomial for V&, since its first derivative is proportional to 1/Vx, which is

infinite at x = 0.

18.3 Summations

The summation function 2 provides an automated means for executing definite sums

stop

>, summand
index = start

Used as an RPN command, 2 uses four arguments:

index start stop summand 2 ©F sum.

Index should be a global or local name, and start, stop, and summand can be algebraic
objects or other objects allowed in expressions. Normally, summand contains at least

one use of the index name.

When 2 itself is embedded in an expression, the syntax is

3(index =start,stop,summand).

When 2 is evaluated,it returns one of the following:

-595-

18.3 Calculus

e The original sum, unchanged, if either of the limits are symbolic;

e A symbolic sum of terms, if both limits evaluate to numbers and the summand con-
tains symbolic arguments other than the index; thus

'2(1=1,3,1+A)’ EVAL = '1+A+(2+A)+(3+A)".

e A numeric sum, if the limits and the summand all evaluate to numbers; thus

'2(1=1,100,1"2)" EVAL = 338350

If you differentiate a sum, the derivative is just pushed inside of the summation:

'2(1=ABFXD)" ‘X" 9 = 'Z(=AB,dX(FX]))’

The derivative ignores the limits, which are presumed to be integer functions with no
continuous derivative. Differentiating with respect to the index always returns zero.

Similar considerations apply to the integration of a sum. When the integral is evaluated,
if the summand is an integrable pattern, the result is the (unevaluated) sum with the
summand replaced by its definite integral:

'[(AB,=(1=1,M,SIN(N*X)),X) EVAL EVAL
= 'S(1=1,M, - (COS(N*B)/N)) - =(I=1,M, - (COS(N*A)/N))’

This is more legible in EquationWriter form as

B

/%SlN(N-X) EVAL EVAL o= § _ [@%]_§ ~ [COSI\(‘N-A)]
Al=1 £ -~

If the summand is not integrable, the integral is not pushed inside the sum; the result
retains the sum as the integrand.

18.3.1 Summation Patterns
The HP 48 pattern-matching capabilities (section 17.3) may be used to develop a sum-
mation processor similar to the integral command [(section 18.4), which matches its
integrands against a table of pre-defined patterns. For example, a simple sum of

integers evaluates to
n

Si = nn+1)2.
i=1

In HP 48 pattern-matching terms, any sum of the form 2(&1=1,&2,&1) can be replaced
by &2*(&2+1)/2, assuming &2 is an integer.

-596-

Calculus 18.3

The program XSUM below takes any algebraic object and tests its sums against a small

database of patterns stored in the variable SPATTERNS. If a match is found, the
corresponding sum is replaced with a formula from the database. The ZPATTERNS
listed below contains replacements for the sum of integers, squared integers, and cubed
integers. You can add additional pattern/replacement pairs to ZPATTERNS as you
please.

'S1=1,N,J)) XSUM = 'N*(N+1)/2’

XSUM Extended Sum 8BFA

level 1 | level 1

expression, ¥ expression,

<< ZPATTERNS DUP SIZE - pats n Save arguments.

<< DO

pats n DUP 1 - SWAP SUB Next pattern.

UNTIL +MATCH Quit if there is a match,

‘' DUP 1 STO- DECR 0 == OR|orno more patterns.

END
>>

>>

SPATTERNS Summation Patterns 78CB

| level 1

or { list }

{'Z&1=1,82,&1) '82*(&2+1)/2' i

'T(&1=1,82,81"2)" '&2%(82+1)*(2*&2+1)/6' |2i?

'2(&1=1,82,&1"3)" '8&2"2*(82+1)"2/4 i3

}

The program INTMATCH in section 18.4.1.3 is similar in spirit to XSUM, but it uses a
more careful approach that permits more flexible matching than XSUM. The methods
used by XINT can easily be adapted to summation matching.

-597-

18.4 Calculus

18.4 Integration

Unfortunately, there is no analog of the chain rule of differentiation that allows you to
compute the integral of an arbitrary expression directly from the antiderivatives of the
functions in the expression. General-purpose symbolic integration algorithms require
considerable memory resources, so the HP48 limits itself to integration of a certain set
of integrands, using its pattern-matching ability to generalize the set. For these and any
other integrals, you also can invoke a sophisticated numerical integrator.

[is an HP48 function (section 3.1), so that it can be included in expressions or executed
as an RPN command. The RPN usage for [is as follows:

lower-limit upper-limit integrand name [1= result,

where name is a name object representing the variable of integration, and the other
three arguments can be arbitrary expressions. The arguments appear in the same order
in which they appear in the expression form of an integral:

' [(lower-limit, upper-limit, integrand, name)’

The single function f combines both symbolic and numerical integration, with the choice
of method determined implicitly by the current function execution mode (section
3.5.5.2). With flag -3 clear (symbolic execution), [uses the pattern-matching system to
return a symbolic result. With flag -3 set (numerical execution), [uses a numerical
algorithm to return a real number result. You can also obtain a numerical result
regardless of the flag setting by using “NUM to evaluate f.

18.4.1 Symbolic Integration
Evaluation of [in symbolic execution mode (flag —3 clear) searches the integrand for
functions for which the HP 48 knows antiderivatives, and which are linear in the variable
of integration.

¢ A function linear in a variable x has an argument of the form *ax +b, where a and
b are constants (relative to x). The HP 48 can integrate SIN(X), so therefore it can
also integrate SIN(2*X-6) or SIN(A*X+2Z).

e Functions may be multiplied or dividled by a constant, e.g. C#*SIN(X) or
SIN(X)/(A+B).

Each such function is integrated and removed from the integrand. The final result is a
sum of integrated terms plus an integral containing any remaining terms.

Note that symbolic integration (like ISOL--see section 16.4.1) does not attempt to find

-598-

Calculus 18.4

indirect references in the integrand to the variable of integration. When the integrand
contains variables that in turn contain expressions in the variable of integration (at any
level), you should execute SHOW as a preliminary to [, to make explicit all possible
references to the integration variable.

Symbolic integration is performed in two steps. The first step, which is performed by /,
uses the where function | to show a formal result prior to evaluation at the limits. For
example,

RAD '[(A,B,COS(X)X)’ EVAL

7 "SIN(X)/8X(X) | (X=B) - (SIN(X)/aX(X) | (X=A))".

This result is more legible in the EquationWriter environment:

SINGHI| [SINCH)
Y S
(R w5(K)W e R

This is an expanded form of the common “double-where” notation used with integral
results:

x=B

sinx

d
a(x) x=A

which represents the difference between the expression on the left evaluated at the
upper limit and at the lower limit.

The derivative that appears in the denominator of this result computes the linear coeffi-

cient of the integration variable as it appears in the argument of the function that is
matched. That is, if the current integrand were A*X+B, the result would have a
denominator of dX(A*X+B), which evaluates to A. Using the derivative in this manner

-599-

18.4 Calculus

is the most effective way to determine the linear coefficient.

The second step in symbolic integration is evaluation at the limits. Applying EVAL again

to the last result returns

'SIN(B) -SIN(A)’,

in which the integration variable has been replaced by its values at the limits.

You may find that most commonly you execute EVAL twice without even bothering to
view the intermediate result. The HP 48 preserves the two-step procedure for pedagogi-
cal purposes, and to permit manipulations before the final evaluation for cases where
automatic evaluation might lead to errors (see section 21.3.9).

Note that [always computes a definite integral, requiring explicit limits of integration.
You can obtain an indefinite integral by choosing formal (undefined name) limits, then
discarding the term arising from the lower limit. The user-defined function INDEF

automates this process:

INDEF Indefinite Integral 4CEE

level 2 level 1 | level 1

'integrand’ 'name’ or 'integral’

< - f x Create local variables.

«< x f x SHOW Show integration variable.

‘x’ DUP DUP2 STO Prevent evaluation of x.

ROT 4 PICK f Integrate with dummy formallimits.

IF {'f(&1,&2,&3,84)' x} IMATCH If true, integration failed.

THEN DROP f Return original argument.

ELSE OBJ- 3 DROPN Discard lower limit.

EVAL Evaluate at the upper limit.

x ROT 2 -LIST ‘MATCH DROP |Substitute original variable.

END
>>

>

INDEF takes two arguments, an integrand expression and the name of the variable of
integration.

'X+1/(1+4X*2)’ ‘X’ INDEF = 'ATAN(X)+X"2/2’

-600-

Calculus 18.4

Because of its user-defined function structure, INDEF may also be evaluated within an
expression. However, you should use QUOTE (section 16.7.1) to prevent evaluation of
the arguments, e.g. 'INDEF(QUOTE(F(X)),QUOTE(X))’.

18.4.1.1 Integration Patterns

The set of integrand terms that the HP 48 can actually integrate symbolically is listed in
Table 18.1 below. This set was chosen to include the following:

e All of the built-in functions which have closed-form anti-derivatives expressible in
terms of other built-in functions, except LNP1. Thus ATAN is included, but not !
(factorial/gamma function)

e Derivatives of all built-in functions. For example, since the derivative of ATAN(X)

with respect to X is given by the HP 48 as INV(1+X"2), the latter pattern is included,
along with some minor variants.

e Additional “common” patterns, such as 1/TANH(X) and 1/(SIN(X) *COS(X)).

e Summations using 2 (section 18.3).

e Derivatives.

¢ Linear combinations of the above patterns, where the coefficients are constants.

In a number of cases, the built-in integrator will fail to match a pattern that you may
think is obvious, especially if it is formally equivalent to a pattern that can be integrated.

For example, INV(1+X"2) integrates successfully to ATAN(X), but INV(1+SQ(X)) does
not. The integral pattern matching has a certain amount offlexibility, but not enough to
cover all permutations of a pattern that you can obtain with a chain of identity transfor-
mations. In many cases, you should try expanding, collecting, and otherwise reorganiz-
ing terms so that the integrator can find a good match. If you apply EXPAN to

INV(1+X"2), you obtain INV(1+X=*X), which still does not integrate. However, next

using COLCT returns INV(1+X"2), which is one of the recognized patterns. POLY (sec-
tion 17.4) is also a good way to reduce a general polynomial to a form that can be
integrated.

Table 18.1 lists the integrand patterns recognized by the HP 48, and their corresponding
antiderivatives. In the table, & represents a linear function of the variable of integra-
tion; the listed antiderivatives should be divided by the first order coefficient in ¢. Pat-

terns marked with a T work also when 1/(...) is replaced by INV(...).

18.4

Calculus

Table 18.1. HP 48 Symbolic Integral Patterns

Pattern Antiderivative Pattern Antiderivative

ACOS(d) $*ACOS($)-V(1-4"2) TAN() -LN(COS(4))
ALOG(¢) .434294481904%ALOG(¢)

ASIN(d) $*ASIN(d) +V(1-¢"2) TAN($)/COS(¢) INV(COS(4))
ATAN(d) ¢ *ATAN(d)-LN(1+4"2)/2 |1/TAN(d)+ LN(SIN(¢))

COS() SIN($) 1/(TAN($)*SIN($))T —INV(SIN($))
1/(COS($)*SIN(d))t LN(TAN(d)) TANH(¢) LN(COSH(4))
COSH(d) SINH(¢) TANH(¢)/COSH(d) INV(COSH(d))

1/(COSH(4)*SINH(d))t LN(TANH(d)) 1/TANH($)t LN(SINH(¢))

1/(COSH(¢)"2)t TANH(¢) 1/(TANH($)*SINH(¢))+ -INV(SINH(4))
EXP(d) EXP(d) Vo 2%$"1.5/3

EXPM(4) EXP($)-¢ 1/Vét 2¥V¢
LN(¢) $*LN($)-¢ 1/@*V@)t 2%V($)*.5
LOG(d) .434294481904%¢p *LN(¢) -|$*Z (Z symbolic) IFTE(Z==-1,LN(¢),

SIGN(¢) ABS($) $(Z+1)/(Z+1))

SIN(d) -COS(d) $"z (zreal, #0,-1) ¢@+1)/+1)

1/(SIN($)*COS(¢))t LN(TAN(d)) $"0 ¢

1/(SIN(d)*TAN($))T —INV(SIN(d)) -1 LN(o)
1/(SIN(d)*TAN($))t -INV(SIN(d)) 1/t LN($)

1/(SIN(d)"2)¥ —INV(TAN(d)) 1/(1-¢"2)% ATANH(d)
SINH(4) COSH(s) 1/(1+4°2)% ATAN(¢)

1/(SINH($)**2)t -INV(TANH(4)) 1/2+1)t ATAN(d)
1/(SINH(¢$) *COSH(¢))t LN(TANH()) 1/(V(e-1)*V($+1))t ACOSH($)
1/(SINH($) *TANH(d))t —INV(SINH(d)) 1/V(1-4"2)t ASIN(¢)

SQ(d) $"3/3 1/V(1+472)t ASINH(¢)

TAN($)2 TAN($)-¢ 1/V (e2+ 1)t ASINH(¢)

18.4.1.2 Derivative and Integral
The derivative of an integral, in the most general case where the limits and the
integrand are functions of the differentiation variable, is given by:

u(x)
d ou alarLTG0= FEr@)~f@)y + [5o@

-602-

ux) 3

Calculus 18.4

In HP 48 terms, this definition translates to:

TLX)UX),FXT).T) 'X 9 =

"FX,U(X)) *derU(X,1) - F(X,L(X)) *derL(X,1) + [(L(X),U(X),derF(X,T,8X(X),aX(T)),T)’

Here L, U, and F may be built-in, library, or user-defined functions, and derlL, etc.,
represent their derivatives. We have used user-defined functions here to illustrate the
most general case; built-in functions yield simpler results because their derivatives
(derF, etc.) are expressed in terms of other built-in functions.

For example,

'f(0,X*2,(T*X)*2,T)’ 'X' 8 COLCT

= 'f(0,X"2,2%(dX(T) #X + X(X) *T) *(T #X),T) + 2#X"3"2*X".

Although the integral in this result appears to be tractable, the presence of the 3’s
prevents it from being matched by any of the built-in patterns. Evaluating an integral
expression does not evaluate the integrand (as you would expect for the arguments of
most functions), so any further evaluation of this result does not remove the derivatives.
To finish the evaluation, you have to extract the integrand, evaluate it (keeping T unde-
fined), and then reapply the integration. Manually, you can extract the integrand by

selecting it in the EquationWriter subexpression mode and using ESUBE to copyit to the
stack, and EREPLE to replace it after it is simplified. Alternatively, you can apply the
program INTEVAL, which evaluates an expression while ensuring that integrands within
the expression get evaluated before the integrals.

INTEVAL Integrand Evaluation CO9E

level 1 | level 1

' expression ' or ' expression ,’

< DUP - fn fx Create local variables.

<<x<- f1 f2 3 f4

«<f1 f2 3 f4 [>

>> User-defined function definition.

'Ix’ STO fn Store in fx.

{'f(&1,82,83,84)" 'x(&1,82,&43,QUOTE(&4))’ } |Replacement pattern.

+{MATCH DROP Replace the integral.

EVAL Evaluate the expression.

>> >>

18.4 Calculus

If you execute INTEVAL on the result above, you obtain

'[(0,X72,24T#T#X,T) + 2 %X3"2%X’.

The derivatives are gone, but the integrand still does not match an allowed integral pat-

tern. However, COLCT helps here, by transforming the T*T into T"2:

COLCT EVAL EVAL 1= '2%(X"273/3)*X+2*X"3"2*X’

This result can be simplified further by using POLY (section 17.4.1):

‘X' POLY 1= '2.66666666667*X"7'.

The case of integration of a derivative is more straightforward than the opposite, so the
HP 48 realization is also correspondingly simpler. The definition

u

I%F(t)dt = Fu)-F())
l

translates on the HP 48 to

'f(LU,0T(F(T)),T)’ EVAL EVAL = 'F(U)-F()’

18.4.1.3 Adding Integration Patterns

The list of integration patterns built into the HP 48 is fixed, and there is no provision for
adding additional patterns for the | command itself. However, it is possible to use
MATCH commands to program a substitute for [that tests integrals against an extensi-

ble list of patterns. The program XINT listed below demonstrates one such approach.

XINT uses a list of patterns stored in a variable IPATS (Integral PATternS). Each pat-
tern is represented by a MATCH list, where the first object is an integrand pattern con-
taining t! as the integration variable, and the second is the antiderivative. The third
object is the optional MATCH test (section 17.3). For example, the MATCH patterns
needed for

Calculus 18.4

are represented by the list

{"1/(te(ti+1))" 'LN((ry/(14 +1))L

With this list stored as one element of the IPATS list,

'f(AB,1/(X*(X+1)),X)’ XINT EVAL = ’'LN(B/(B+1))-LN(A/(A+1))’

A powerful application of the optional MATCH test is to permit the generalization of
some patterns in a manner similar to that of [itself. For example, the above pattern
can easily be generalized to integrands of the form c¢/(x (x +d)), where ¢ and d are con-
stants. However, the IPAT entry should include a test to ensure that ¢ and d are not
functions of x:

{'&1/(1#11+82)" "&1#LN((14/(11+8&2))’

'NOT(FUNOF?(QUOTE(&2), 1) OR (FUNOF?(QUOTE(&1), 14’ }

The test here uses a user-defined function FUNOF? (listed below), which uses {MATCH

to check its first argument for the presence of its second argument.

Another extension provides for cases where the integration variable appears uniformly
as a linear form. The test for these cases is provided by the user-defined function
LINEAR?. It uses OBJ- to dissect its first argument (much in the manner of RPN in
section 16.6), looking for instances of a name specified by the second argument. It
returns true if the name appears at least once, and only to first-order.

Using LINEAR?, the integration of cosx-sinx can be represented in IPATS by

{ 'COS(&1)*SIN(&1)’

((-COS(2+&1))/(2% 11(&1))) *(ACOS(~ 1) /1)’

'LINEAR?(QUOTE(&1,QUOTE(1Y))’
}

Then

'[(A,B,COS(C*X)*SIN(C#X),X)’ XINT -2 SF EVAL EVAL

z ' -(COS(2#(C*B))/(2+C)) + COS(2#(C*A))/(2+C)’

-605-

18.4 Calculus

LINEAR? Linear Form Test B895

level 2 level 1 level 1

' expression ' 'name or flag

< e X
<0 0100 - args lin go non occ Initialize local variables.

<< <1 SWAP START

‘args’ STO
<< - sube

< |IF go

THEN

CASE sube TYPE 9 SAME

THEN sube OBJ-

CASE OVER NOT

THEN DROP2 END

{NEG + - =* /}

SWAP POS DUP NOT

THEN DROP 1 - non

<< args EVAL> END

DUP 4 <

THEN DROP args EVAL END
SWAP DROP 5 SAME

THEN 1 - non <<lin EVAL>

lin EVAL END

occ SWAP lin EVAL

occ DUP ROT - ROT

occ ROT -

IF AND

THEN 0 ‘go’

END

END

END

sube x SAME

THEN 1 ’occ’

IF non
THEN 0 ‘go’

END

END

END

END
>>

> 'lin" STO
e lin EVAL

go occ AND
>>

lin EVAL NEXT >

lin EVAL

STO

STO+

STO

>

>>

Subroutine for multiple arguments

Main test routing

Continue if go is true.

If current objectis an expression,

Then take it apart.

Do nothing for zero—arg functions

If non —linear,

Then make non true

and check the arguments.

Handle +, —, NEG.

For /,

treat denominator an non -linear,

and numerator as linear.

For *, check first argument,

and second arguments.

If x appears in both,

then quit.

Zero arguments. Is it x?

Then increment the occurrence count.

If inside a non —linear expression,

Then quit.

Save the subroutine.

Test the original argument.

Return zrue if x was found,

with no non —linear occurrences.

Calculus

{'f(&1,82,83,84)'

'$(&1,82,QUOTE(&3),QUOTE(&4))’

}
IF sMATCH THEN EVAL END

>>

>

FUNOF? Function Of? OBEF

level 2 level 1 | level 1

' expression’ 'name’ o flag

< f x Store arguments.

«<f x DUP 2 -LIST «MATCH Test iff contains x.

SWAP DROP
>>

>>

XINT Extended Integration EA6F

level 1 | level 1

'expression,’ o 'expression ;'

< << low up int x Start definition of f.

<int x {8} + tMATCH DROP Replace integration var. with ti.

IPATS DUP SIZE 0 - pats n t Set up for loop through patterns.

< DO pats n GET Get the next pattern.

UNTIL MATCH ’'t’ STO Repeat until a match,

'’ DECR NOT t OR or list is exhausted.

END

IF t If there was a match:

THEN DUP up 2 -LIST 'ff APPLY Dummy function of upper limit.

SWAP low 2 SLIST ' APPLY - |Dummy function of lower limit.

{'1(&1,82) ’'&1|(1=82)"}
IMATCH DROP Replace f with | forms.

ELSE DROP low up int x f No match; return integral.

END
>>

>>

> - f Store the function f

<< EVAL Try evaluating the argument.

If [’s remain,

Replace [with f,

and execute f.

-607-

18.4

18.4 Calculus

18.4.2 Numerical Integration
The HP 48’s symbolic integration capability is limited to a small number of integrand
patterns, but even the list of all known closed-form indefinite integrals is fairly short. In
many cases, especially in a practical problem-solving context, a numerical integral is as
useful or even better than a symbolic integral. The HP 48, like its HP calculator prede-
cessors back to the HP15C uses a Romberg numerical integration method (see, for

example, Press, Flannery, Teulkosky, and Vetterling, Numerical Recipes, Cambridge
University Press, 1986). The integrand is sampled at non-uniform intervals, which helps
prevents errors due to periodicity in the function. The integrand is generally not sam-
pled at the integration limits, which is helpful when the limits occur at a singularity or
other difficult point.

The numerical evaluation of [produces a series of increasingly accurate estimates of the
integral, derived from sampling intervals that are halved at each iteration. The process
terminates when three successive estimates differ by amounts less than an error toler-
ance that you specify, or after a maximum of sixteen iterations have produced no
apparent convergence (at this point the integrand has been evaluated 65535 times). The
error tolerance is determined by the current real number display setting: n FIX (or SCI
or ENG) specifies an error tolerance € = 107™". This in turn relates to the probable
error in the numerical integral:

errorseflf(x)ldx.

The use of the display format to determine the integration accuracy eliminates the need
for an another explicit argument for [in addition to those needed for symbolic integra-
tion (this use of the display format is similar to that of -Q--see section 16.3.1). The
syntax for the two forms of integration is therefore the same, so that you don’t have to
choose one form or another in advance. For example, if executing [in symbolic execu-
tion mode returns an expression that still contains an integral, you can go ahead and
obtain its numerical value by executing -NUM on the expression.

As a function, [can only return one result to the stack. However, it is also helpful to

obtain an estimate of the error of the calculation as well as the integral value itself. [
returns the error estimate as a real number stored in a variable |ERR, which is created
in the current directory if it does not already exist. A successful integration yields a
positive value for IERR; if the integrand is essentially always positive or always negative,
you should find that the value is approximately € times the integral. For example, with
a display setting of 5 FIX,

'[(0,1,EXP(X),X)’ -NUM r= 1.71828182875,

and then

Calculus 18.4

IERR = 1.71814488996E-5

(here we are showing the results in STD format). Dividing the latter result by the
integral value yields 9.9992E-6, which is comparable to the error tolerance 107°
derived from the display setting. When the integrand is a reasonably well-behaved func-
tion, the acual error can be substantially less than the prediction represented by IERR.
In this example, the result differs from the correct value (e— 1) only in the tenth decimal
place.

If the intregration results have not converged after sixteen interations, the number -1 is
stored in IERR. The value returned to the stack is the last estimation of the integral.

The choice of error tolerance for any integral is a trade-off of numerical precision
against execution time. Reducing the error tolerance increases the number of integrand
samples that are necessary. Consider, for example, the following integral:

™

J(5+x cos3x)dx = 5m-2/9 = 15.4857410458
0

Evaluating the object ’f(0,7,5+X*COS(3+*X)),X)’ with different display formats, we
find:

Display Result Error IERR Samples Time(sec)

1 FIX 15.6 0.1 1.6 7 0.8
3 FIX 15.486 55E-6 0.015 31 28
5 FIX 15.48574 83E-8 15E-4 63 54
7 FIX 15.4857410 0 1.5E-6 127 10.7
9 FIX 15.48574104 1IE-10 15E-8 127 10.8
STD 154857410457 1E-10 1.5E-10 255 213

Notice that reducing the error tolerance below €=10"7 (7 FIX) doesn’t appreciably
improve the integration, which has reached the intrinsic accuracy limit of the calculator.
This is because the integrand is a reasonably smooth curve in the region of interest, and
can be accurately represented by a fitted curve based on the 127 sample points.

It is interesting to show where an integrand is actually sampled, which you can do with
the following program. INTSAMP takes an expression containing an integral, and
replaces the integrand with a function that plots each value that it returns as it is

integrated.

18.4 Calculus

INTSAMP Integration Samples 77F1

level 1 | level 1

' expression’ o x

<0 - int Create a local variable int.

<< DRAX {#0 #0} PVIEW Watch the sampling.

< f x

<f -NUM DUP x SWAP R-C PIXON >> |Evaluate and plot a point.

> 'int’ STO Make int a user-defined function.

{'f(&1,82,&3,84)" '[(&1,&2,int(&3,84),84)' } Match patterns.

{MATCH DROP Replace integrand with int.

-NUM Evaluate the integral.

>>

>>
Using INTSAMP on the current example,

1 FIX -5 35 XRNG -.5 8 YRNG '[(0,7,5+X*COS(3*X),X)’ INTSAMP

yields this picture:

The seven sample points make a fairly sparse representation of the function. Repeating

the exercise after 5 FIX plots 63 sample points:

-610-

Calculus 18.4

You can see that increasing the number of sample points in this example should not
make a dramatic improvementin the integration accuracy.

18.4.3 Integration Strategies
Not all integrands are nice smooth functions like x cosx, and so will not always numeri-
cally integrate so nicely. For example, consider the integral

25

JVleD]|

Plotting the integrand from —.625 to 2.625 (y-range —0.4 to 1.5) shows a cusp at x=1:

The cusp makes the approximation of the function for numerical integration difficult;
with an error tolerance of 107, executing

'[(-.5,2.5,VABS(X-1),X)’ ~NUM 1= 2.44948455085

takes nearly four minutes (4095 samples).

In this case, and in many other numerical integration problems, a simple change in the

-611-

18.4 Calculus

setup of the problem can make a great deal of difference in the integration time and the
accuracy of the result. One useful strategy is to break up the domain of the integration
into two or more smaller regions. In the current example, the cusp at x = 1 is the obvi-
ous segmentation point:

'[(-.5,1,VABS(X-1),X)+ [(1,2.5,VABS(X-1),X)’ -NUM 1= 244948983536

takes only two seconds, and the result is accurate to two more decimal places than the
previous result.

The program SEGINT automates the process of segmenting an integral. It takes as
arguments an expression containing an integral, and a second object that specifies the
segmentation point. It returns a new expression containing the original integral split
into two parts:

'[(-.5,2.5,VABS(X-1),X)’ 1 SEGINT

= 'f(-.5,1,VABS(X-1)X)+f(1,2.5,VABS(X-1),X)’

SEGINT Segment an Integral 2F81

level 2 level 1 | level 1

fl limit or J;

<< - |imit Save intermediate limit as limit.

< {'[(&1,&2,83,84)’

' [(QUOTE(&1),limit,QUOTE(&3),84) +

J (imit,QUOTE(&2),QUOTE(&3),&4)’

} «MATCH DROP Split the integral.

EVAL Replace limit with its value.

{'J(&1,8&2,QUOTE(&3),84)’

'[(&1,82,&3,84)" }

{MATCH DROP Unquote the integrand.
>> >>

SEGINT goes to some trouble to avoid any evaluation of the integrand or limits, so that
you can check its result before proceeding with the integration. If you want to skip that
step, you can use NSEGINT:

'[(-.5,25,VABS(X-1),X)' 1 NSEGINT = 2.44948983536

-612-

Calculus 18.4

NSEGINT Numerical Segment Integral 8482

level 2 level 1 | level 1

'integral’ limit o value

< N Save intermediate limit as 4.

< {'[(&1,82,43,84)’'

' f(&1,14,83,84) +f(14,82,83,84)’

} IMATCH DROP Split the integral.

-NUM Evaluate the expression.

>>

>>
Not all cases have segmentation points as obvious as that in the previous example. For

example, consider the integral

T
——dx

‘{ x(x+1)

If you attempt to evaluate this directly on the HP 48, you obtain a nonsense answer:

'[(1,MAXR,1/(X*(X+1)).,X)’ -NUM o= 0

This is a numerical precision problem: the integrand is effectively zero over most of the

domain between the limits. You can do better by using NSEGINT to divide the domain
into two parts:

5 FIX [1,MAXR,1/(X*(X+1)),X)’ 100 NSEGINT = 0.68320

It is hard to have confidence in this result, since there is nothing special about the seg-
mentation point X=100. Indeed, using X=1000 instead returns 0.69215, suggesting that

these approximations may only be accurate to one or two places.

A better strategy is transform the integral into one more suited for numerical integra-
tion, by an appropriate change of variables. That is, if we define a variable y =g (x),

then an integral

J7 @)ax

can be re-expressed as

8(xy)

[f <g"(y)>-%cg'l(y»dy
8lxy)

-613-

18.4 Calculus

For integrals where one or both limits are infinity, a particularly useful transformation is

y =atan (x), which maps the entire real x-axis onto the interval — w/2<y=m/2.

The program CHVAR listed next transforms an integral expression according to the
rules given above, with the variable change specified by an equation of the form

'y=g(x)'. For the current example, we will use the arc-tangent transformation:

'f(1,MAXR,(1/(X*(X+1)),X)" 'Y=ATAN(X)’ CHVAR

= '[(ATAN(1),ATAN(MAXR),1/(TAN(Y)*(TAN(Y) + 1)) *(1 +TAN(Y)"2),Y)’

This symbolic result is not particularly illuminating, except that you can observe that the
integration limits have become atan(1) = w/4 and atan(®) = w/2. The result easily
integrates numerically:

STD -NUM 1= .693147180555

which compares well with the exact result (/7 2), which is 0.693147180560 to twelve
places.

CHVAR Change of Variables 011D

level 2 level 1 | level 1

Jfx)ax’ 'y=g(x)’ @ '[h(y)dy’

< DUP EQ- 4 ROLL OBJ- DROP2 Take apart the expressions.

RCLF - y g low up f x flags Create localvariables.

<< -1 SF Principal value mode.

x ISOL EQ- SWAP DROP -~ ginv |Compute and save g’ (y).
<«<g x low 2 -LIST tMATCH DROP |g(x)

g x up 2 -LIST tMATCH DROP |g(x,)
f x ginv 2 -LIST tMATCH DROP |f (')
ginv y FDER * dgY/dy
y 4 SLIST 4+ APPLY Create a dummy function.

{/14(&1,82,83,84)" '[(&1,842,&3,84)' }

{MATCH DROP Replace ti with f.

flags STOF Restore flags.

>>

>>

>>

Note that unlike the other programs in this section, CHVAR expects its first argument to

-614-

Calculus 18.4

be an algebraic object containing only an integral. CHVAR uses the program FDER
(section 18.1.2) to compute unevaluated derivatives.

18.4.4 Programs as Integrands
In the HP28 and earlier calculators, it is possible to obtain a numerical integral by
representing the integrand with a program (called implicit integration on the HP 28).
The program contains no explicit variable of integration, but instead is designed to take
a value from the stack (the integration sample point), and return the integrand value at
that point.

Although the HP 48 does not specifically provide for program integration, it is simple to
convert a program to an integrable form. It is only necessary to convert it to a user-
defined function, then integrate that function. Thatis, given a program << program >>,
you must recast it as

<K > Y<K X program >> >>

and store it in a variable. Then you can integrate it, e.g.

'f(A,B,F(X),X)’ -NUM,

where F is taken here as the user-defined function name.

As usual, it is possible to automate this process by means of a program:

PRGINT Program to Integral 8E67

level 3 level 2 level 1 level 1

<< program >> lower upper or integral

<< -+ Jow up prog Save arguments.

<<

< - X user—defined function.

<< x prog EVAL

>>

> - f Store as f.

<< ' f(low,up,f(x),x)’ -~NUM Evaluate the integral.

>>

>>

>>

-615-

18.4 Calculus

PRGINT takes three arguments: a lower limit, an upper limit, and a program for the

integrand. The program should take one value from the stack, and return one value.
PRGINT returns a numerical integral, computed to a precision determined by the
number display setting. For example, you can compute the integral

5

fx"dx
0

with

3 FIX 0 5 < SQ> PRGINT = 41.667

18.4.5 Multiple Integrals
Because [is an HP48 function, it is straightforward to use it to compute a double
integral, where the integrand itself contains an integral. Multiple integrals, where
integrals are nested any number of times, present no additional difficulties.

» Example. Find the area of a region bounded by the parabolasy = x? andy = 4-x2.

To help you visualize the problem, start by plotting the two curves:

'PPAR’ PURGE -124 128 YRNG 'X"2=4-X"2' STEQ ERASE DRAW

To find the points where the curves intersect, execute

RCEQ ‘X' QUAD COLCT = 'X=1.41421356237%*s1’,

which shows that the intersections are at x = +V2. The area bounded by the two
curves is therefore given by the integral

-616-

Calculus 18.4

V2 4-x2

de dyL
As an algebraic object, this integral is

"f(-V2,V2,[(X"2,4-X"2,1,Y) X)’,

which looks like this in the EquationWriter:

[Z [4-%°
_E HE

1dY di

Executing EVAL once, you obtain:

' [(~1.41421356237,1.4142135627,1 %Y | (Y =4 —X"2) — (1 %Y | (Y =X"2)),X)’

Because the integrand is invisibly quoted (section 18.4.1.2), further EVAL’s don’t change
this result. COLCT helps, by resolving the where forms:

COLCT 1= 'f(-1.41421356237,1.4142135627,4—X"2-X"2,X)’

Then

EVAL EVAL = 7.54247233266

This same result can be obtained in a single operation by applying “NUM to the original
integral, but the double numerical integration takes longer than the symbolic evaluation

to obtain the same accuracy.

18.4.6 Polynomial Approximations
The HP 28 provides an approximate form of symbolic integration, in which an integrand
is converted to a Taylor’s polynomial which is then integrated. This primitive type of
integration may not seem particularly useful, since an integral computed this way will

-617-

18.4 Calculus

not much resemble the correct symbolic form of the integral unless the integrand hap-
pens to be a polynomial in the integration variable. But in many circumstances, you
may be less interested in the precise mathematical form of an expression than in deter-
mining a reasonable view of its behavior over some region of interest. For this purpose,
the HP 28 approximate symbolic integral is an improvement over numerical integrals,
and you may want to apply the method on the HP 48 for integrands that do not match
any of the built-in patterns. It is much faster to compute the value of a polynomial as
you vary some parameter in the expression than to evaluate an integral numerically for
the same values of the parameter.

As an example of the appropriate use of such an approximation, consider the solution of
the equation

X

L f t cos’(t)dt = x> —-2
T w2

or, in HP 48 syntax,

"1/w*f(-w/2X,T*COS(T),T)=X"3-4%X-2'

Even executing 3 FIX to reduce the numerical integration times, it takes over six
minutes to plot this equation (default plot parameters, radians mode):

Then, using SFCN= ZISECTE with the cursor right at the rightmost intersection of the
curves,it takes an additional 30 seconds to find the root of the equation at X=2.203.

An alternate approach is to approximate the integrand on the left side of the equation

with a polynomial:

'T+COS(T)’ 'T' 6 TAYLR = 'T-3/31%T"3+5/5!4T"5'.

-618-

Calculus 18.4

Then, integrate this result from — /2 to X:

X" PURGE -2 SF '-w/2' 'X" ROT 'T" [EVAL COLCT

= ' -.577009430249+.5%X"2-.125%X"4 +6.944444444455E - 3%X"6'

(Here we have set flag —2 to convert 7 to a number, only to keep the final result short
enough to be reasonably legible.) To create the approximate equation representing the

original problem, divide this result by 7, and equate it to 'X"3-4*X-2":

w [/ 'X°3-4%X-2" = STEQ

For this equation, DRAW takes only 37 seconds:

ZISECTE (5 seconds) returns 2.205, which differs from the previous result by only 0.1%.
For more accuracy, you can increase the order of the Taylor’s polynomial. You can get
an idea of the validity of the approximation by plotting 'X*COS(X)’' and its polynomial
approximation together:

{'X*COS(X)’ 'X-3/3!*X"3+5/5!*X"5'} STEQ DRAW

-619-

18.4 Calculus

The two curves are substantially the same in the range |x | <2, and diverge elsewhere.
Repeating the exercise with a higher order approximation yields a better match over the
region of interest — w/2<x <2.3; for example, with a 9th order polynomial, the approxi-
mate root differs by 0.0003% from that obtained from the numerically evaluated

integral.

-620-

19. The Time System

The HP 48 time system provides these general capabilities:

e An optional real-time “ticking” digital clock display, including the current date.

e Commands that return the current time and date.

e Time and date arithmetic.

e Appointment and object execution alarms.

Ordinary manual time operations--setting or adjusting the clock, setting alarms, and the
alarm catalog--are straightforward and simple to use. This chapter will focus on aspects
of the time system that are not emphasized in the Owner’s Manual, especially the com-
putational and programmable aspects of the time system.

19.1 The Clock

The HP48 clock is based on a quartz crystal that nominally oscillates at 32,768 Hz. The
crystal is comparable in accuracy to that found in common quartz watches, except that it
does not usually enjoy the same temperature regulation as a wristwatch that spends the
day next to your skin, and so may not achieve a time accuracy quite as high. There is
no means on the HP 48 to adjust the clock rate. (There is a program available on the
Hewlett-Packard calculator electronic bulletin board that can determine the actual clock
rate experimentally, and set periodic alarms to adjust the time to maintain better time
precision.)

You can view the current HP48 time by activating the “ticking” clock display in the
status area. This happens automatically whenever you activate the the alarm catalog
(*>][TME]) or the time menu (($]TIME])

{ HOME } 05/01/92 08:00:18A

BCTONEITTTT

“Ticking” refers to the second-by-second update of the time display. By default, the

-621-

19.1 The Time System

time is displayed in 12-hour format, using A or P to indicate a.m. or p.m. You can select
a 24-hour format manually by pressing 12/24 in the time-set menu ([$5] £SETZ),
or in a program by setting flag —41. Similarly, you can use EM/DZ or set flag —42 to
change the default date display from month/day/year to day/month/year.

The current time is encoded in HP 48 memory by means of a 52-bit RAM register and a
32-bit electronic counter. The register stores the scheduled time of the “next event”--
the next time-dependent action that the HP48 must take, such as the next alarm to
come due, the next one-second display clock update, or the ten-minute inactivity calcula-
tor turn-off. (There is a second time counter that is used for cursor blink, which is
therefore independent of the rest of the time system.) The counter is a countdown
timer that represents the time remaining until that next event. The current “real” time
then is the difference between the values in the next event register and the counter.
That time can be anywhere in the range January 1, 1990 to Dec 30, 2089.

The counter decrements by one for each four crystal oscillations, meaning that the fun-
damental clock “tick” is actually 1/8192 second. With 32 bits for the counter, the long-

est the HP 48 can go without a time event is 23! ticks, slightly more than 3 days. That
occurs when the HP48 is turned off, and no alarms are scheduled within that time--then
the calculator wakes itself up just long enough to reschedule the next event time. Usu-
ally, all of this processing happens so fast that it is not noticeable. The only exception is
when you have a large number of alarms stored in the alarm catalog (section 19.2.5);
the time required to scan through the list of alarms to find the next due alarm could
make the digital clock display miss an occasional one-second display update.

The time encoded by the next event register and the timer is deliberately designed to be
protected from accidental reset. Even system halts and memory resets (section 5.8) do
not affect the time data, even if a reset is caused automatically by the detection of a
memory fault. A special checksum is maintained for the next event register; only if that
checksum indicates a problem with the time register content itself is the clock reset to
the default of midnight, January 1, 1990.

19.1.1 Setting and Reading the Time
The HP48 uses ordinary real numbers to represent the time and date in stack opera-
tions. A time number has the format hh.mmssssssss, where hh is one or two digits
representing the hour 0-23, and mm are two digits representing the minute 0-59. The
first two digits ss are a whole number 0-59 of seconds; the remaining digits encode the
decimal fraction seconds. Thus 11.0519801 represents 11 hours, 5 minutes, and 19.801
seconds.

Date numbers are real numbers used to represent calendar dates. These numbers use

-622-

The Time System 19.1

one of two forms mm.ddyyyy, or dd.mmyyyy, depending on whether the the date format

flag —42 is clear or set, respectively. Here the digits dd are the day number 1-31, mm is
the month 1-12, and yyyy is the four-digit year. You can switch the format by setting or
clearing flag —42, or by pressing EM/D= .

The time-set menu =SETZ) provides menu keys for setting the clock manu-

ally:

e =>TIMEE takes a time number from the stack and sets the clock to that time.

e =>DATEE uses a date number to set the system date.

e SA/PME switches the time between a.m. and p.m. It is normally used after E>TIME=
when a post-noon time is entered in a 12-hour form, i.e. 3 E>TIMEE ZA/PM= sets the
time to 3:00 p.m.

You can adjust the time by hour, minute, or second increments or decrements by using
the time-adjust menu (<][TIME]EADJSTE):

{ HOME } 05701782 09:00:37A

4:
3
%:

IRLDLRER

Each menu key adds or subtracts one of the indicated time units from the system time.
£HR+ = and ZHR-£ are handy when you change time-zones; the remaining keys are used

to correct the time to match an external clock. Note that none of these keys affects the
clock rate.

For programming purposes, the command TIME (in the second page of the
menu) reads the HP48 clock and returns the current time in time number format. The
inverse operation is ~TIME (first page of the SSET= menu), which takes a time
number from level 1, and sets the clock to match the specified time. Neither TIME nor
-TIME is affected by flag —41--both work with time numbers expressed in 24-hour for-

mat.

For timing applications where speed and consistency is important for reading the clock,
you can use TICKS menu, page 2). This command returns the time as a

-623-

19.1 The Time System

binary integer, which represents the system clock time in ticks--units of 1/8192 seconds.
The absolute magnitude of the number is not particularly useful; typically TICKS is use-
ful for computing the time difference between two executions. An example is provided
by the program TIMED, in section 12.9, which uses TICKS to mark the start and end of
a timed execution. After the execution, when speed is not critical, the difference in the
two times is converted to ordinary seconds.

A counterpart to TICKS is CLKADJ (CLocK ADJust), which adds a specified (real)
number of ticks to the system time. CLKADJ, found in the second page of the
EADJSTE menu, is the programmable version of the clock-adjust operations in the first
page. For example, to advance the clock by one hour, execute

8192 3600 * CLKADJ.

CLKADJ’s argument can be number of ticks up to *25,834,291,200, which is +365 days

(8192-3600-24-365). CLKADJ automatically corrects the date, if necessary. For this rea-
son, using CLKADJ to shift the system time is preferable to using TIME and -TIME, e.g.

TIME 1 + -TIME.

The latter method is less accurate because it doesn’t account for the time to execute

TIME 1 +, and takes no account of possible date changes.

DATE menu, second page) and ~DATE ([<a] [TIME] ESET= menu) read and set
the date using date numbers, much like TIME and -TIME use time numbers. However,
the date commands are sensitive to the date format flag; for example,if the date is July
1, 1992, then DATE returns 7.011992 when flag —42 is clear, or 1.071992 when flag
—42 is set.

For program display purposes, you can obtain the combined time and date as a string

object by using TSTR. This command takes a date number (level 2) and a time number
(level 1), and returns a string like those used in the alarm set menu (3][TIME]ZALRME):

-41 CF -42 CF 10.281991 18.12428 TSTR = "MON 10/28/91 06:12:42P"

TSTR respects flag —41 (12/24 hour mode) and —42 (date format). It truncates its time
argument to integer seconds. A simple application of TSTR is shown by the following
program, which takes a date number and returns a three-letter string for the day of the

week to level 2, and a number 1-7 for the numerical day of the week (Sunday=1).

-624-

The Time System 19.1

DOW Day of Week 6DDA

level 1 | level 2 level 1

date or "day" day-number

<«< 0 TSTR 1 3 SUB Get the DOW string.

"SUNMONTUEWEDTHUFRISAT" OVER POS |Find in master string.

1 - 3/ 1 + Convert position to day number.
>>

19.1.2 Time Arithmetic
The third page of the menu contains four commands that assist with time

arithmetic, by providing for conversion between time numbers and their equivalents in
decimal hours, and for direct addition and subtraction of time numbers. A more
thorough implementation of time (or date) arithmetic on the HP 48 would have pro-
vided separate object types for these quantities, so that ordinary + and — could be used.
That approach would, however, have consumed considerable additional built-in ROM,at
the expense of other HP 48 features. The use of time numbers in the hh.mmssss format
at least has historical precedent in HP calculators, all the way back to the HP 45.

Direct addition and subtraction of time numbers is provided by the commands HMS +
and HMS—. Each takes a pair of time numbers, and returns the sum or difference as a
time number. Thus, for example, to determine the time that is 3 hours and 45 minutes

later than 8:25:37 AM:

8.2537 345 + HMS+ = 12.1037.

These commands do not constrain their results to the normal time number range 0-24
hours--their action is to convert the minutes/seconds parts of the time numbers to
decimal hours, perform the addition or subtraction, then convert the decimal part of the
result into .mmssss format. This means that you can apply the operations equally well
to angles measured in degrees, minutes and seconds:

4512 56.37 HMS- = -11.25

finds the angle that is 56°37' less than 45°12'.

-HMS converts an angle or time from ordinary decimal form into the time number for-

mat:

1 R-D -HMS = 57.1744806247

-625-

19.1 The Time System

shows that 1 radian is 57°17'44'' .806247. Following the usual HP 48 naming convention,
the inverse of ~HMS is HMS-.

19.1.3 Date Arithmetic
The date arithmetic analog of HMS + is DATE +, which computes a new date by adding
a number of days (level 1) to an initial date (level 2). For example, the one hundredth
day of 1992 is found by

-42 SF 31.121991 100 DATE+ = 9.041992,

which is 9 April, 1992. In the example, we used the dd.mmyyyy format for the date
numbers; as you might expect, DATE + is sensitive to the date format flag —42. The
number of days argument can be positive or negative.

You can also determine the number of days between two dates by executing DDAYS
with the two date numbers as its arguments. For example, to find the number of days
between July 1, 1975 and February 17, 1978:

-42 CF 7.011975 2.171978 DDAYS = 962

Notice that the earlier date is entered first to return a positive result.

The allowed range of dates for the date arithmetic commands is from October 15, 1582
to December 31, 9999, which spans a range of 3,074,323 days. The latter numberis the
maximum number-of-days argument permitted by DATE+. A date number argument

outside of this range causes the Invalid Date error.

The next two programs provide a combined form of date and time arithmetic. The first,
ADDA&T, adds a specified number of days and hours (expressed as a time number with
minutes and seconds) to an initial date and time, returning a final date number and time
number:

1.151991 1230 32 4.15 ADD&T r= 2.161991 16.45

(with flag —42 clear) adds 32 days, 4 hours and 15 minutes to January 15, 1991, 12:30
p.m., returning February 16, 1991 at 4:45 p.m.

The second program, DD&T, finds the difference in days and hours between two events
each specified by a date number and a time number:

2161991 16.45 1.151991 1230 DD&T = -32 -4.15

-626-

The Time System 19.1

shows that January 15, 1991 is 32 days, 4 hours and 15 minutes earlier than February 16,

1991.

ADD&T Add Date and Time 6063

level 4 level 3 level 2 level 1 | level 2 level 1

datey time Adays Atime or date, datey

<< SWAP 24 * HMS+ Atime in hours.

HMS+ New time.

DUP 24 / FLOOR No. of days in new time.

ROT OVER DATE+ Add to date.

SWAP 24 * ROT SWAP HMS- Subtract from time.
>>

DD&T Delta Days and Time 7688

level 4 level3 level 2 level 1 | level 2 level 1

date, time date, date, o Adays Atime

< 4 ROLL ROT DDAYS 24 *
SWAP ROT HMS- HMS+
DUP 24 / IP
SWAP OVER 24 +*

Initial Adays in hours.

Total time difference.

Actual Adays.

Remaining Atime.

>>

19.2 The Alarm System

An HP48 alarm is an event that is scheduled to occur at a specified date and time.
There are two types of alarms, according to the type of action associated with the

scheduled events:

e An appointment alarm sounds an audible signal and displays a message.

e A control alarm executes an object, usually a program or the name of a program.

The HP48 can store any number of both kinds of alarms (limited by available memory).
The alarms are stored as a list in a global variable in a normally invisible subdirectory of
the home directory (see section 5.3.2). The alarm list is not accessible through ordinary
variable commands like STO or RCL because the data in the list is represented by
uneditable system objects for fast access by the time system. You can view the contents

-627-

19.2 The Time System

of the alarm list by activating the alarm catalog (section 19.2.5), or by recalling indivi-
dual alarms with RCLALARM (section 19.2.4).

When the clock reaches a time that matches an alarm time, we say that the alarm comes
due. Alarms that have not yet come due are called pending alarms; alarms set for times
earlier than the current time are called past alarms. The calculator also keeps track of
past due alarms--alarms that have come due but have not been acknowledged (see
below).

An alarm is specified by four parameters:

e The date of the alarm.

e The time.

e The repeat interval, for alarms that automatically reschedule themselves at constant
intervals. This parameter is zero for single-occurrence alarms.

e The alarm execution object. For appointment alarms, this object is a string object;
for control alarms, it may be any other type of object, which is executed when the
alarm comes due.

19.2.1 Setting Alarms Manually
Setting an alarm consists of storing the four alarm parameters into the alarm list. For

manual entry, the best way to do this is to use the alarm-set menu (<][TIME]ZEALRME):

{ HOME } 05/01/82 08:00:53R

Enter alarm, press SET
FRI @85-B1-92 12:08:B6A

 >DRTE]TIME

When you first enter the menu, this display looks as above. As you enter alarm param-
eters, the display in the stack area changes to reflect the new entries (the initial default
is the current date at 12 a.m.). For example, entering 9.3 Z>TIMEE stores 9:30 a.m. as
the alarm time:

-628-

The Time System 19.2

{ HOME 1} 05/01/92 09:01:07A

Enter alarm., press SET
FRI B5-81-9% BO: 39 BBA

 OATE[TIME[A/PM]|EXECKPT|SET|

£>DATEZ , =>TIMES , and £A/PM= work the same way as they do in the fime-set menu
(section 19.1.1). ERPTE activates another menu for entering repeat intervals:

Select repeat interval

L
]
e
I
Y

 : :] : : :i3

Here you enter a number of time units, using any of the units shown in the menu labels,
then press the corresponding menu key. For example, for a weekly meeting alarm you
would enter 1 EWEEKE (7 ZDAYE would work as well). If you change your mind and
don’t want to enter a repeat interval, or you want to clear a previously entered repeat
interval, press ENONE= . After pressing any of the repeat menu keys, the initial alarm-
set menu is restored.

EEXECE stores the alarm execution object, which also determines whether the alarm is
an appointment alarm or a control alarm. Entering a string object creates an appoint-
ment alarm; any other object creates a control alarm. There is no special provision here
for entering a string--you must use "] and [a as usual to enter a string. If you
want to modify a string already entered (such as when you are editing an alarm using

ZEDITE in the alarm catalog), SEXECE recalls the current string to the stack, where
you can use [V or to changeit.

Of the four alarm parameters, only the date and time are strictly required. If you do
not enter a repeat interval, zero is taken as the default, which means a non-repeating
alarm. If you don’t supply an execution object with SEXECZ , the alarm will be an

-629-

19.2 The Time System

appointment alarm that only displays the date and time when it comes due.

You can enter the alarm parameters in any order, and change the settings as many
times as you want. The alarm is not actually stored in the alarm list until you press
ESET=. When you do so, the alarm is set, and the menu is automatically changed to the
main time menu.

Between the time when you first enter a parameter in the alarm-set menu and when you
press ESETZ , the pending alarm parameters are stored as a list in a global variable
ALRMDAT created in the current directory. The list has the format used by
STOALARM (section 19.2.4). Storing the pending alarm data this way during alarm
entry allows you to maintain access to other calculator resources--in particular, you can
change menus and then return to the alarm-set menu without losing the entry in pro-
gress. If the alarm-set menu is activated when ALRMDAT already exists, the display will
show the parameters that are stored there. When you finally press SSET= , ALRMDATis
automatically purged. (Changing directories during alarm entry forces the start of a
new alarm. The ALRMDAT in the original directory will remain in place until you either

purge it, or return to the directory and complete entering that alarm.)

19.2.1.1 Cancelling Alarm Repeats
An alarm interval that is too small may cause an endless loop when it comes due,

because it executes and reschedules too fast for you to get a chance to delete it. Even a
system halt (section 5.8) won’t help, because that (by design) does not affect the
rescheduling of alarms. You can escape from this predicament by pressing - [a]
(together). This disables rescheduling of the next alarm, which allows you to activate
the alarm catalog and change the repeat interval for the alarm, or to delete it altogether.
Turning the calculator off, then on, re-enables rescheduling in case you used [ON] - [4]
unnecessarily.

19.2.2 Appointment Alarms
An appointment alarm is an alarm defined with a string stored as its execution object.
This type of alarm is intended for use as an appointment reminder: when it comes due,
it is announced--the HP48 beeps, turns on the busy and the alert annunciators, and
displays the day, date, time, and a one-line message. The “beep” in this case is a two-
stage audible alarm: first a brief preliminary “chirp,” then, after about four seconds, a
repeated two-tone “cuckoo” sound. The chirp gives you a chance to shut off the alarm
(by pressing any key) before the more annoying cuckoo starts, which is helpful in a
meeting or a classroom when you want to minimize the disturbance to other people.
You can also prevent the audible alarm entirely by setting flag —57. (This does not
affect other kinds of beeps--nor does setting flag —56, which suppresses error beeps and
BEEP sounds, affect alarms). Of course, if you disable the audible alarm, you must be

-630-

The Time System 19.2

watching the display to see an appointment alarm announced.

When the alarm chirps, its message is displayed in the medium font in the topmost
display row. The alarm’s day, date, and time are displayed in the second row:

) X
anrtant Mee
R

I ti
5 B5-01.,92 B9t 30: 0OA

3
’
] elu] ALEET

The cuckoo alarm sound repeats up to ten times, lasting until about fifteen seconds after
the original chirp. During that time, you may acknowledge the alarm by pressing any
key. This stops the alarm sound, turns off the busy and alert annunciators, and restores
the previous display contents. If you fail to acknowledge the alarm with a key press, the
alarm display and sound vanish, but the alert annunciator remains on. There are other
causes that activate this annunciator; when you see it, the best thing to do is turn the
HP48 off, then on, whereupon it will display a warning message that explains the alert.
With an unacknowledged alarm, you will see:

) X
Warning:
Alarm
4:
3=
%:

[ZDAT|*TIM[A/PH12724MAD||
This warns you to press TIME] :

19.2 The Time System

()

{ HOME } 05/01/82 08:30:46A

Past due alarm:
FRI 85-81-92 H9:38:8HA
Important Meeting

SET_[n0J3T]ALRM]oK[RCkACAT

This display shows the oldest unacknowledged alarm. You can then go ahead and
acknowledge the alarm by pressing EACK=E . If there are additional unacknowledged
alarms, the next oldest is displayed, which you can then acknowledge, and so on. You
can also execute ACKALL (EACKAE) to acknowledge all past due alarms at once.

An appointment alarm announcement can occur at any time when the HP48 is ready
for key presses, i.e. whenever the busy annunciator is off. This means that an announce-
ment can occur when any built-in environmentis active, including the plot environment,
the MatrixWriter, and the EquationWriter, but not when a command or a user program
is executing. If an alarm comes due when the busy annunciator is on, the alert annunci-
ator is turned on, but the alarm is not otherwise announced audibly or visibly until the
current execution is complete.

The alarm-set menu always requires you to enter the date of an alarm as a date
number. Sometimes, however, it is more convenient to enter days in terms of days of
the week or other intervals, such as “one week from tomorrow” or “the Tuesday after
next.” The program NEXTDAY listed below provides a means for doing this. You can
use it to enter an alarm date to begin an alarm entry; it always exits to the alarm-set
menu, where you can complete the entry. You can also execute NEXTDAY after starting
an alarm, but you should take care not to change directories and thereby lose track of
the data already stored in ALRMDAT. When you execute NEXTDAY, it displays this

menu:

HALT
OME }L

3
3
2
1
[MEAT2ND |THEK] TH+1 |IEEE [MNTH

The Time System 19.2

The first four menu keys add a predetermined number of days to the current alarm
date:

e ZTMRWE sets the alarm date to the next day--tomorrow.

e =TM+1= sets the alarm date to two days later--the day after tomorrow.

e SWEEKE increments the alarm date by one week.

e SMNTHE increments the alarm date by four weeks.

e SQUITE (in the second page) exits to the alarm-set menu without changing the
current date.

ENEXTE sets up a n€w menu:

HALT -

2 = m o
l

=
P
I

S
N

=
R

@
G

=
=
-

ELHETTETETET
Here you press one of the seven menu keys (ZSATZ is in the second page) to indicate
the day of the week. Thus, to set an alarm for next Wednesday, you execute NEXTDAY,

then press ZNEXTZ followed by SWEDE .

£2ND= works the same way as ZNEXT= except that it sets the alarm date to the specified
day one week later than the next occurrence of that day. That is, to set an alarm for the
Thursday after next, execute NEXTDAY, then press S2ND= STHUE .

When NEXTDAY exits to the alarm-set menu, the current alarm data is not automati-
cally displayed (that only happens when you activate the menu with ZALRMZ , and when
you press any of the menu keys). The data is displayed when you enter the next alarm
parameter, or you can display it immediately by pressing .

19.2 The Time System

NEXTDAY Next ...Day Alarm Utility 33B8

<< |[F 'ALRMDAT’ VTYPE

THEN DATE O "" 0 4 -LIST

'ALRMDAT’ STO

END

'ALRMDAT’ 1 GET - now

< |F

{
{"NEXT" << 0 1 CONT>}

{"2ND" <7 1 CONT>}

{"TMRW" << 1 0 CONT >}

{"TM+1" << 2 0 CONT>}

{"WEEK" <<7 0 CONT>}

{"MNTH" << 28 0 CONT >}

{"QUIT" << 0 0 CONT>}

} TMENU HALT

THEN - inc

<< {

{"SUN" << 1 CONT >}

{"MON" << 2 CONT >}

{"TUE" << 3 CONT>}

{"WED" << 4 CONT >}

{"THU" << 5 CONT>>}

{"FRI" <6 CONT>}

{"SAT" << 7 CONT>}

} TMENU HALT

now DOW SWAP DROP -

IF DUP 1 < THEN 7 + END

inc +

>>

END

now SWAP DATE+

'ALRMDAT’ 1 ROT PUT

37.01 TMENU

>>

-1 ==

>>

If ALRMDAT doesn’t exist,

then create default.

Get current alarm date.

Start of TMENU list.

Next ...day.

Second ...day.

Tomorrow.

Day after tomorrow.

1 week from now.

4 weeks from now.

No change.

Display the menu.

Sunday.

Monday.

Tuesday.

Wednesday.

Thursday.

Friday.

Saturday.

Show menu for ...day cases.

Days from now to alarm.

Add one week if necessary.

Add 7 for 2nd ...day case.

New date.

Store the new date.

Return to the alarm —set menu.

-634-

The Time System 19.2

192.2.1 Unacknowledged Repeating Alarms

When a repeating appointment alarm is not acknowledged by a key press as it comes
due, it is simply rescheduled to the next repeat time and does not become past due. If
you would prefer to be notified when you have missed such an alarm, you can set flag
-43. This prevents repeating appointment alarms from being rescheduled until they are
acknowledged, either by a key press or by one of the acknowledgement commands. A
past-due repeating alarm then also leaves the alert annunciator on, and issues the alarm
warning when the HP48 is turned on.

19.2.3 Control Alarms
A control alarm is characterized by an execution object that is not a string. When a
control alarm comes due, no audible or visible signal is given; rather, the alarm index
(section 19.2.4) is placed on the stack, and the execution object is executed. Control
alarms allow you to schedule calculator operations to take place without any manual
intervention. For example, on an HP48SX with a RAM card in port 1 configured as
independent memory, you might schedule an automatic memory archive into a port vari-
able SAVE to occur every night at 2 a.m. This is done with an alarm set for 2 a.m., with
a 1 day repeat interval, and the following execution object:

<< DROP :1:SAVE DUP PURGE ARCHIVE >

The initial DROP discards the alarm index, which is not needed in this case. In general,
a control alarm execution program can use the index to find the alarm itself in the
alarm list. In particular, since control alarms are not automatically deleted from the
alarm list after execution, a program might begin by executing DELALARM with the
index to delete the alarm.

Like appointment alarms, control alarms do not execute when they come due unless the

busy annunciator is off and the HP 48 is ready for key presses. But control alarms are
more disruptive than appointment alarms, in that they automatically terminate special

environments. In the command line, interactive stack, the catalogs, and the plot
environment, a control alarm coming due exits from the environment (as if were

pressed), then executes the alarm execution object. If the alarm comes due while the
EquationWriter or the MatrixWriter is active, the object currently entered in the
environment is saved into level 1 before the alarm index. (For the EquationWriter, the
object is saved as a string if it is newly entered or has been modified.)

The program CHIMES provides another example of a program useful as an alarm exe-
cution object. It “chimes the hour” by sounding a number of tones equal to the current
clock time (truncated to hours). An appropriate use is to make CHIMES the execution

object for an alarm set to come due on the hour, with a repeat interval of one hour.

19.2 The Time System

The program SETCHIMES in the next section does this automatically.

CHIMES Hour Chimes E5D1

<1 TIME IP 12 MOD Get the hour.

IF DUP NOT THEN DROP 12 END 12 chimes for 12 o’clock.

START 500 .5 BEEP .3 WAIT NEXT Sound the chimes.

>>

19.2.4 Alarm Commands
The four commands in the second page of the alarm-set menu provide complete pro-
grammable control over the HP48 alarm system. To start with, the alarm setting
features of the first page of the menu are combined into a single command,
STOALARM. This command uses a single argument, a list that combines the four alarm
parameters:

{ date time execution-object repeat }

Here date and time are real numbers in the date-number and time-number format,
respectively. execution-object is the alarm execution object, which may be any object--a
string indicates an appointment alarm. The final argument repeat is an integer real
number that specifies the alarm repeat interval, in ticks (section 19.1.1). A repeat inter-
val of zero defines a non-repeating alarm. The maximum repeat interval is
999999999999 ticks, about 3.88 years.

When STOALARM executes, it adds an alarm to the current alarm list with parameters
matching those in its list argument. For example, the following sets a weekly appoint-
ment alarm for 9:00 a.m., starting on February 2, 1992:

{2.121992 9 ‘'"Important Meeting" 4954521600} STOALARM = 6

The value 4954521600 for the repeat interval is obtained from I week X 7 days/week
X 24 hours/day X 3600 seconds/hour X 8192 ticks/second = 4954521600 ticks.

The number 6 returned here by STOALARM is just an example, which will vary accord-
ing to the current alarm list in your HP48. The number is the alarm index of the new
alarm. The index is a real number that indicates the position of the alarm in the alarm
list, where an index of 1 corresponds to the chronologically earliest alarm (including
date and time). You may not have a very frequent need for the index returned by
STOALARM, but that number is otherwise hard to determine afterwards, and it is easy

-636-

The Time System 19.2

to discard if you don’t needit.

SETCHIMES is an example of the programmed use of STOALARM to create an alarm.
The alarm is defined with the hour-chiming program CHIMES from the previous section
in its execution object.

SETCHIMES Set Chime Alarm 0B2E

<< DATE Today’s date.

TIME IP

IF DUP 23 == If the next hour is midnight,

THEN 0 SWAP 1 DATE+ SWAP |then set for midnight next day.

ELSE 1 + Otherwise set for next hour.

END

<< DROP CHIMES >> Alarm execution object.

29491200 Repeat interval one hour (in ticks).

4 SLIST Combine alarm parameters into a list.

STOALARM DROP Set the alarm.

>>

An alarm index is used as an argument by RCLALARM and DELALARM. RCLALARM
returns a parameter list for the specified alarm, or returns the Nonexistent Alarm error
if there is no such alarm. If you execute it after the STOALARM example above, with

the same index, the original list is returned:

6 RCLALARM = {2.121992 9 ‘"Important Meeting" 4954521600 }

Another example is given by the program DELCHIMES, which uses RCLALARM to find

the hour-chime alarm in the alarm list.

DELCHIMES uses DELALARM to delete the hour-chime alarm once it has been found
by RCLALARM. In general, DELALARM deletes the alarm specified by its argument,
reporting the Nonexistent Alarm error if no such alarm exists. You can also use
DELALARM to remove all alarms by using zero for the alarm index. The program
DELOLDALARMS is more selective: it deletes only alarms set for times earlier than the

current time.

-637-

19.2 The Time System

DELCHIMES Delete Chimes Alarm CBBC

<< RCLF -55 SF

1 - alarm

<< WHILE alarm

IFERR RCLALARM

THEN O

ELSE 1

END

REPEAT

IF << DROP CHIMES > POS

THEN alarm DELALARM

0 ’alarm’ STO

Disable last argument recovery.

Start with the oldest alarm

Find the next alarm.

If none, then quit.

If CHIMES is in the parameterlist,

then deleteit,

and quit.

ELSE 1 ‘alarm’ STO+ Otherwise, get next alarm.

END

END

>>

STOF Restore last arguments state.
>>

DELOLDALARMS Delete OldAlarms 5307

< DATE TIME "" O

4 -LIST STOALARM

1 SWAP

START 1

>>

Set an alarm for “now.”

New index is number to be deleted.

DELALARM NEXT Delete oldest alarm.

The final alarm command is FINDALARM, which finds an alarm by its date and time.
In particular, FINDALARM returns the index of the first alarm in the alarm list that is
set for a time equal to or later than the time specified by the argument. The latter may
be either a date number, or a list { date time }. A date number used by itself is
equivalent to using a list { date O }--FINDALARM returns the index of the earliest alarm
set for that date. Executing 0 FINDALARM returns the index of the oldest past-due
alarm.

19.2.5 The Alarm Catalog
The HP 48 time system includes an alarm catalog, which is similar in operation to the
equation catalog (section 14.2.3.2) and the statistics catalog (section 20.1). The alarm

The Time System 19.2

catalog lets you review, edit, copy, and delete the alarms currently stored in the alarm
list. It is activated by the ECATZE key in the menu, or by from any
other menu:

{ HOME } 05/01/82 09:39:02A

B3-81 B9:30A Importa.
MES-B7 B9:1UBAR Staff _m..
B3-23 12:88F « DOIT »
B87-81 B88:88FP Ken's b..

[PURS|[ERECE] EDIT |#STEYIEW
The catalog shown here is typical; the display you obtain naturally depends on the
alarms currently stored in your HP 48.

When you first activate the catalog, a triangle selection pointer points to the next alarm
due--the same one that is displayed in the menu. The alarms are displayed in
chronological order, with past alarms above the pointer, and pending alarms below. As
in the equation and statistics catalogs, you can move the selection up and down using [A]
or [V] --one alarm at a time with the unshifted keys, one “page” of five alarms with
[A] and [<1][V], and to the start and end of the catalog with [>][A] and [>][V]. The
selected alarm is the subject of the menu operations, with the exception of SEXECSE .
The latter toggles the catalog display between the initial date/time/execution object
display as shown above, and a display that shows only the execution objects:

{ HOME } 05/01/82 08:39:31A

Important Meeting
taff meeting rm.

< DOIT »
Ken's birthday party

[PURG| |EXECS]EMT|*5TK|VIEK|

The remaining menu operations work as follows:

e SPURGE deletes the selected alarm from the alarm list.

19.2 The Time System

 e ZEDITZ also deletes the selected alarm, but copies its parameters to ALRMDAT in the
current directory, and activates the alarm-set menu (exiting from the catalog). This
allows you to change any of the alarm parameters, then reset the alarm by pressing
=SET= . It is important to remember that the alarm is actually deleted by SEDITZ ,
because even if you decide not to change the alarm, you must still press ZSET= to
reactivate the alarm.

e =.STK= copies the alarm parameters to the stack in a list, in the format used by
STOALARM and RCLALARM (section 19.2.4). The message Copied to Stack is
briefly displayed in the top row.

e VIEW displays all of an alarm’s parameters, using the same display that you see in
the alarm-set menu. The expanded display persists for about two seconds, or as long

as you hold the menu key down.

The only keys other than the menu keys that are active in the catalog environment are
, which duplicates the action of £-STKE , and , which terminates the cata-

log.

19.2.6 Automatic Alarm Deletion
By default, both appointment and control alarms are automatically deleted from the
alarm catalog when they are acknowledged. For appointment alarms, acknowledgement
is accomplished by a key press as the alarm is announced (section 19.2.2), or for past-
due alarms, by ACK or ACKALL. For a control alarm, “acknowledgement” is just the
execution of the alarm execution object (section 19.2.3). Alarm deletion conserves
memory, and helps prevent execution delays associated with long alarm lists.

You may prefer, however, to prevent this automatic deletion by setting flag —44. The
old alarms in the alarm list are a record of past alarm events that you may find useful.
Furthermore:

e When an appointment alarm is announced, pressing a key to acknowledge it also
clears the alarm display. If the alarm is deleted, you can’t even use the alarm cata-

log to review the alarm message afterwards.

e For irregularly scheduled events, it is convenient to keep one copy of the alarm in
the alarm list. Then to schedule the next alarm, you can use the alarm catalog
ZEDITE to modify one or more of the parameters.

e OId control alarms may contain programs that have other uses (although it is better
for sake of time system efficiency to store long programs invariables, and use the
variables’ names as the alarm execution objects instead of the programs themselves).

20. Statistics

In the realm ofstatistical computation, the HP 48 provides a capable but not exhaustive
set of commands that deal with data entry, simple sample statistics, linear and pseudo-
linear regressions, probability, and plotting. The last topic is covered in sections 15.9-
15.11; in this chapter we will concentrate on non-graphical analysis tools.

20.1 Data Entry

The traditional HP calculator method of accumulating sample data is the ¥+ command.
In its original versions, 2+ takes a number from the stack and adds its value and its
squared value to running totals of these values from a series of such entries. £+ also
increments a count of the entries. From the three stored values, the total, mean, and
standard deviation of the entered data can be computed. Some calculators, such as the
HP 41, enhance the action of 2+ to accumulate pairs of numbers, allowing calculation
of cross-correlations and regressions along with the other statistics.

The HP 48 follows the general 2+ model of its predecessors, but generalizes the com-
mand to work with data points in any number of dimensions. Furthermore, 2+ saves
the entered data rather than just the summary statistics, which allows for data editing,
data transformation, and greater accuracy. The data is saved as an nXm matrix, each
row of which represents the coordinates of a data point in m-dimensional space. The
number of rows » indicates the number of points that have been entered. Sample statis-
tics are computed and linear regressions are performed on the columns of the data
matrix.

The statistics analysis commands are collected in the statistics menu, activated by
. Activating this menu when no data has been stored produces this display:

Mo current data. Enter
data point, press =+

=
0
A

 I+CLEWEW [EMTE[STOE

Notice the deliberate similarity to the plot and HP Solve entry menus. The SNEW=S

-641-

20.1 Statistics

ZEDIT=E, and ESTOSE keys play the same roles in the statistics menu as ENEWE , SEDEQ=
and ESTEQE in the plot and solve menus, except that the reserved name variable for
statistics is named 2DAT, and EDIT2 activates the matrix writer for editing. ZDAT is
called the current statistics matrix, by analogy with current equation EQ (section 14.2.3).
Like EQ, 2DAT may contain either the object of interest, in this case a matrix, or an

indirect reference to the object--the name of another variable containing a matrix. Sta-
tistical operations are always directed to the current statistics matrix in the current
directory. You can select one of several matrices for these operations by storing its
name in ZDAT, with either STO or STOX (which is a shortcut for '2DAT’ STO).

The statistics catalog (SCATZ) works generally like the equation catalog (section
14.2.3.2), except thatit displays variables containing matrices. The first three menu keys
also differ from those in the equation catalog. Each stores the selected variable name in
2DAT, and:

e =1-VARE activates the second page of the statistics menu, for commands related to

single-variable statistics.

e =PLOT= activates the third page, for commands related to the discrete plot types.

e =2-VARE activates the fourth page, for two-variable statistics commands.

The basic action of 2+ is to take a real m-element vector from the stack, and append it

as a new last row to an nXm matrix stored or named in 2DAT. If the designated vari-
able does not exist, it is created by Z +, by storing the vector there (as a 1Xm matrix).
For 1-dimensional data, you can use X+ either with a single real number or with a

one-element vector. CLZ purges 2DAT, to prepare for entry of a new set of data.

Once the matrix is established, subsequent entries with 2+ can either be vectors (of the
right length), or separate real numbers taken from the lowest stack levels. For example,
consider the 3-dimensional data points

(11,12,20)
(12,23,23)
(15,27,24)
(14,31,25)

To start entering this data, press SCL=Z, then

[11 12 20] n

i M + m

-642-

Statistics 20.1

The display shows this entry as XDAT(1):

=2DATC1>»=C 11 12 28 1]
ZDATC2)=
4
3=
%:

E+CLENEW [EDITE|STOECAT

The incomplete 2DAT(2)= indicates that the calculator is ready for entry of a second
data point. Now that 2DAT has been established, entering a data point as a vector is no

longer necessary. You can enter the coordinates as separate stack entries (maintaining

the same order):

12 23 23 2+

15 27 24 2+

14 31 25 2+.

Note that always returns a vector, even when you have entered separate
numbers:

= [14 31 25]

>+ will also enter several data points together if they are combined into a matrix the
same width as the current statistics matrix. For correction of a bad entry, -

ES+=) reverses the action of X+, stripping the statistics matrix of its last row, and
returning it to the stack as a vector:

2- = [14 31 25]

Repeated execution of 2 — returns each successive last row, allowing you to edit one or
more of them. You can then restore the entries by executing 2+ the same number of

times.

-643-

20.1 Statistics

Although 2+ is convenient for entering small data sets, using =+ for each data point
may not be the best method for larger sets. When you are using a program to enter
data automatically, it is more efficient to combine all of the data into a matrix, then use
2+ or STOX to store it (one large movement of memory contents is more efficient
than several smaller ones). For manual entry, you can use the MatrixWriter (section
6.6) to enter all of the data, taking advantage of the MatrixWriter’s facilities for review-
ing and correcting the data before storing it. After exiting the MatrixWriter via ,

you can

e Execute 2+ to append the new data to the current statistics matrix.

e Execute STOX to replace (or create) the current statistics matrix.

e Use STO to store the matrix, then store its name in ZDAT.

The last option is combined into a single operation by the statistics menu operation
ENEWE , which takes a matrix from the stack and prompts you for a name:

1
RAD PRG

{ HOME }

Hame the stat data,
press ENTER

When you press , the matrix is stored with the designated name, and the name is

stored in ZDAT.

20.2 One-Variable Sample Statistics

The second page of the statistics menu (which is directly accessible with [>][STAT]) con-
tains five commands for computing simple one-variable sample statistics. (The sixth
menu entry, BINS is associated with histogram plotting, and is described in section
15.11). For these commands, the columns in ZDAT are treated as samples of indepen-
dent variables, and the statistics of each sample are computed separately. For example,

with the data set of the preceding section, we find

MEAN = [13 235 23]

Each element of the result vector is the average of the numbers in the corresponding

-644-

Statistics 20.2

column of ZDAT. The result object and those of the other commands in this section are
single real numbers when 2DAT contains only one column.

Similarly, you can use SDEV to compute the sample standard deviations of the data:

SDEV = [1.82574185835 8.18026079454 2.16024689947]

This standard deviation is defined by the formula

\/ 13 x;)?oj = ;;—121(%7 ~%;)

where o; is the standard deviation for the jth column of data, x;; is the ith entry in that

column, and ¥; is the column mean. This definition constitutes an unbiased estimate of

the standard deviation of the population from which the data sample was drawn. This
differs from the standard deviation of the data itself. The latter is defined by the above
formula with » in the denominator rather than n» -1, making it smaller than the sample
standard deviation by a factor of Vn/(n-1).

The HP 48 also provides the command VAR for computing sample variances, which are

the squares of sample standard deviations. This command is not found in any menu,
but you can execute it by name or via a custom menu.

MAXZ and MINZ compute the most positive and most negative values of the data in the
separate columns:

MAXS = [15 31 25]

MINE o= [11 12 20]

The midpoints of the data ranges are easily computed using these two commands:

MAXZ MIN2 + 2 / = [13 215 225].

Because ZDAT contains the actual entered data rather than summary statistics, it is
straightforward to compute statistics other than those explicitly provided in the built-in
command set. For example, the following program uses the sorting program SORT
listed in section 11.5.3 to compute the medians of the data:

-645-

20.2 Statistics

MEDIAN Medians ofSDAT E736

| level 1

o median

o [median;]

<< ZDAT TRN Transpose the stat matrix,

OBJ- OBJ- DROP and take it apart.

DUP 2 / DUP FP NOT Find the middle.

{} Initialize outputlist.

- m n n2 even med Create local variables.

< 1 m Repeat for each column:

FOR i n -LIST SORT n2 Sort the entries in a column.

IF even If n is even,

THEN DUP 1 + SUB

OBJ- DROP + 2 / Then average the middle two entries.

ELSE GET Otherwise, get the middle entry.

END

'med’ STO+ Prepend to the output list.

NEXT med

IF 'm>1’ If more than one column of data,

THEN OBJ- -ARRY then convert result to a vector.

ELSE 1 GET

END

>>

>>

20.3 Two-Variable Statistics

The fourth page of the STAT menu contains commands related to two-variable statistics,
which deal with the interrelationships between pairs of columns of data in ZDAT. In
many applications, the values in one column are considered to be samples of an
independent variable, which may actually be a noise-free parameter rather than a ran-
dom variable. The second column then represents a dependent variable, the values of
which are measured or computed from the first variable. Alternatively, both columns
may be treated as independent, where you are interested in the correlations between the
pairs of data points.

In either case, you must designate which columns in ZDAT represent the independent
and dependent variables. This is accomplished by means of XCOL and YCOL, respec-
tively (see also section 15.9), the names of which follow the HP 48 plotting convention of

-646-

Statistics 20.3

associating the name x or X with the independent variable, and y or Y with the depen-

dent variable. Each command takes a single real number, nominally a positive integer,
and stores it as the independent or dependent column choice. The default choices are 1
for x, and 2 for y. These commands’ menu keys are in the third page of the statistics
menu. When that menu or the fourth page menu is activated, the status area shows the
current choices:

xcol:l Yecoli2 Modl:iLIM

ERFPLIHISTR|SCHTRIZLIME
The Modl: label at the right end indicates the current regression model; see section

203.2.

The current two-variable column selections are stored as real numbers in a list stored in

the reserved-name variable ZPAR. The list, which is analogous to PPAR (section
15.2.3), actually contains five entries:

{ independent dependent intercept slope model }

These objects specify, in order, the independent column number, the dependent column
number, the regression intercept and slope coefficients (or their analogs depending on
the regression model) from the most recent regression, and the name of the regression
model. The first four objects are real numbers; the model object is the command that
actually sets the model: LINFIT EXPFIT, PWRFIT, or LOGFIT.

If ZPAR does not exist in the current directory when a command that uses it is exe-
cuted, that command automatically creates 2PAR with the default values

{1 2 0 0 LINFIT}

If the command is one that stores a value in ZPAR, then that value is immediately sub-
stituted in the new list.

-647-

20.3 Statistics

20.3.1 Correlations
The sample covariance of two sets of data is defined as

1 2 —
cov(xy) = —1 > 0i=x)(yi-y)

n=li=

where the x; and y; are the corresponding data points in the two sets, and X and y are
their averages. The covariance is a measure of the mutual dependence of x and y. It is

positive if values x;>x tend to appear with values y;>y and x;<x with y;<y, and negative

if x;<x appears with y;>y and x;>x appears with y;<y. A covariance of zero implies
that the fluctuations of x and y around their averages are independent of each other.

The correlation coefficient corr(x,y) is a normalized version of the covariance:

n —

2 (=x)(i-y)
i=1

-

VEe057
i= =

The coefficient has values of +1 for perfectly correlated variables, —1 for perfectly
anticorrelated variables, and 0 for totally independent variables.

 corr (x,y) =

COV and CORR compute the covariance and correlation coefficient of the data in the
two columns of ZDAT specified in ZPAR. For example, consider two sets of 100
uncorrelated data points, created using RAND as follows:

12345 RDZ 1 200 START RAND NEXT {100 2} -ARRY STOZ.

CORR should return a near-zero correlation coefficient:

1 XCOL 2 YCOL LINFIT CORR = 4.85327453722E-2.

On the other hand, if one data set is derived from another by introducing a small
amount of noise:

12345 RDZ 1 100 START RAND DUP RAND .1 =* + NEXT

{100 2} -ARRY STOZ,

then CORR should return a coefficient close to one:

-648-

Statistics 20.3

CORR = .9961417813403.

LINFIT is included in the sequence above because COV and CORR compute their results
based on the ZDAT data transformed according to the current regression model. See
section 20.3.2.1.

20.3.2 Regressions
A linear regression is the computation of a linear relationship between two sets of data.
If x and y denote the independent (XCOL) and dependent (YCOL) variables, then the
linear relationship is y =ax +b, and is referred to the regression ofy on x. In a graph of
the line, a is slope, and b is the y-axis intercept. The regression used in the HP48 is a
least-squares fit, where values of @ and b are computed such that the sum of the squared
differences

(i —ax;—b)?e

i=1

is minimized. x; and y; are the individual measurements of the variables, and n is the
number of pairs of measurements. In effect, the following simultaneous equations are
solved:

n n

an +b>x; = Dy
i=1 i=1

n n n

aSx; +bDxt = Sxy;
i=1 i=1 i=1

To obtain this type of regression, you can execute LINFIT to select the regression model
(see the next section), then LR (Linear Regression) to compute the coefficients b and a.
The latter are returned to the stack as real numbers, with the tags Intercept: and Slope:

to identify them. They are also stored as the third and fourth elements in the ZPAR
list.

To illustrate ordinary linear regression, we will first create some noisy “data:”

12345 RDZ 1 100 FOR x x DUP 5 * 1 + RAND + NEXT

{100 2} -ARRY STOZ

From this sequence, we expect that a regression will produce values near 0.5 for @ and
1.5 for b (1 from the additive 1 plus .5 for the average value returned by RAND). In

-649-

20.3 Statistics

fact, we obtain

1 XCOL 2 YCOL LINFIT LR

= Intercept: 1.51222496525 Slope: .500206997492

In this example, we are using uniformly distributed noise, which is easy to generate
using RAND (section 20.5.2). In the next section, we give an example of a regression
applied to normally distributed pseudorandom numbers.

Once you have computed the regression coefficients, you can use them to compute esti-
mates of y for values of x that are not in the data set. This is achieved by PREDY
(PREDicted Y), which takes an x value from the stack and returns a y value computed
from the coefficients stored in 2PAR. For example, using the data from the current
example,

200 PREDY 1= 101.553624464

The HP 48 also provides PREDX, which computes a value of x given a value ofy:

60 PREDX = 116.927142819

Keep in mind, however, that x is the independent variable and may not even be continu-
ously variable, so that PREDX’s result may not be entirely meaningful. Note also that
PREDX computes x=(y—b)/a using the coefficients computed from the regression of y
on x. This is different in principle from the result that can be obtained by interchanging
the roles of x and y and recomputing the regression coefficient.

203.2.1 Pseudo-Linear Regressions

The HP 48 stretches the idea of least-squares analysis a little by providing additional
regression models in which the data is converted into a pseudo-linear form by loga-
rithmic transformations. Since this also distorts the noise associated with the variables,

the use of a least-squares approach loses some validity since the simple linear method
assumes at least that the noise has a constant variance. However, the accuracy of the
resulting fits is likely to be more than sufficient for simple modeling of many physical or
other systems.

The linear model and three pseudo-linear models, and the commands that activate each
model, are as follows:

Statistics 20.3

Model Relationship Command
Linear y=ax+b LINFIT
Logarithmic y =alnx+b LOGFIT
Exponential y bexp(ax) BESTFIT

Power y = bx*® PWRFIT

The four model selection commands (plus the automatic model selector BESTFIT) are
found in a sub-menu activated by the EMODLE key in the fourth page of the statistics
menu. Each of the four commands, like their plot type counterparts (section 15.2.8),
executes by storing itself as the fifth element in the 2PAR list. LR checks that element
to determine which type of transformation to perform prior to calculating a linear
regression.

The logarithmic, exponential, and power model regressions are calculated by applying
logarithms to the data to transform the model to a linear one, performing a linear
regression on the transformed data, then inverse-transforming the computed parameters
to the original model form. For example, for the logarithmic model, the data is
presumed to have the form y =a Inx + b. If we make the substitution x’ = Inx, then the
model becomes y =ax’ +b, which is the normal linear form. Similarly, the exponential
and power forms can be transformed to linear by substituting for x, y, and the linear
coefficient a. The actual substitutions for the four models are shown here:

Model a x' y

Linear a x y

Exponential Ina x Iny

Logarithmic a Inx y Power Ina Inx Iny

To illustrate a pseudo-linear regression, the following sequence creates data correspond-
ing to a noisy logarithmic curve with a=5 and b=1, where b is actually a normally distri-
buted random variable with mean 1 and standard deviation 1. The independent variable

values x; are the integers 1 through 100.

-651-

20.3 Statistics

.54321 RDZ Random number seed.

1 100 x from 1 to 100

FOR x x x;

1 1 MNORM x LN 5 * + y;.

NEXT

{100 2} -ARRY ’'LOGDAT’ STO Store the data.

(MNORM is listed in section 12.11.1.2.) The data is stored in the variable LOGDAT.
Then,

'LOGDAT’ STOX LOGFIT LR 1= Intercept: 1.5848798893 Slope: 4.90171452.

This data and the computed regression line are plotted in section 15.9.1.

m Example. In a high-school chemistry class experiment, the students measure the decay
of Ba'¥’ using a geiger counter. At 100 second intervals, they record the following count
rates, after subtracting the background rate:

Interval Rate

1611

1007

657

510

198
113

O
N
N

b
W

M
=

— o
O

29

Find the half-life of the isotope from this data.

m Solution. Radioactive substances exhibit an exponential decay in their radioactivity

£

R@O=RO)eX

where A is the half life. This formula matches the HP 48 exponential fit model, where
a = —In2/\ and b =R (0). Entering the data in the above table into ZDAT, we find

3 FIX EXPFIT LR = Intercept: 2626.418 Slope: —0.442

-652-

Statistics 20.3

The half-life is derived from the slope:

2 LN NEG SWAP / 1= 1.567

This result is in units of 100 seconds, so that the calculated half-life is actually 156.7
seconds.

20.3.3 Best Fit

BESTFIT is a variation of LR which performs a regression for each of the four models,

and chooses the best fit from among them. The coefficients from that best fit, and the
name of the corresponding model selection command are stored in ZPAR, but no
objects are returned to the stack.

“Best” in this context refers to the model for which linear regression returns the largest
correlation coefficient. For the first example in the previous section, separate execution
of LR for each of the four models yields the following correlations:

Model Correlation Coefficient

Linear 0.871

Logarithmic 0.976
Exponential 0.636
Power 0.863

From these results it is evident that the logarithmic model provides the best fit, and
indeed BESTFIT returns LOGFIT and the coefficients derived from that model to 2PAR.

A purist might question the value of a “best fit,” since the use of curve fitting at all
implies that you already know the nature of the curve you are fitting to the data. The
regression process should be to determine the unknown parameters of the model, not
the modelitself. Despite these reservations, finding a best-fit curve can be quite useful,
especially when you are attempting to find an analytic expression to approximate data
that isn’t derived from any simple theoretical model, like the price of a security or a
sales forecast.

20.3.4 Scatter Plots with Error Bars
An ordinary scatter plot (section 15.9) plots each point as a single dark pixel. It is com-
mon in experimental measurement problems to represent the error in a given measure-
ment (x;,y;) by drawing a vertical error bar through its plotted point, from y; + o; to
y;— 0;, where o; is the standard deviation of the ith measurement. In the next section,

-653-

20.3 Statistics

where we discuss weighted measurements, such plots can help to verify the results of a
least-squares fit. But even in unweighted cases, you may find it useful to plot with small
error bars to make the plotted points stand out against a fitted curve.

The program DRAWEBAR listed below is a variation of DRAW that makes a scatter plot
with error bars. It arguments are a measurement vector y (level 3), an independent
variable vector or nX1 matrix X, and an object that specifies the half-height of the bars.
The latter object can be a real number o, or a real vector comprised of the different
o;’s for each point.

For example, for the barium decay problem in the previous section, the measurement
error should be equal to the square root of each count, since radioactive decay rates fol-
low a Poisson distribution. To create a plot that reflects these errors, execute the fol-
lowing:

RCLY CLSPLIT OVER OBJ-

DROP 1 10 START V 10 ROLL NEXT 10 -ARRY

This creates a vector from the standard deviations. (CLSPLIT is listed in section 20.4.1.)

Then

-1 11 XRNG -200 1800 YRNG DRAWEBAR

makesthis plot:

These bars are relatively small, so you would expect a good fit of a logarithmic curve to
the data.

Statistics

DRAWEBAR Draw with Error Bars F544

level 3 level 2 level 1 |

y X o or

<< 3 ROLLD DUP SIZE

1 1 SUB RDM

SWAP (0,1) * +

DUP SIZE 1 GET ROT

IF DUP TYPE NOT

THEN OVER 1 -LIST SWAP CON

END (0,1) =*

- X n o

< {# Oh # Oh} PVIEW

DRAX 1 n

FOR i x i

o i GET

DUP2 -

NEXT

>>

GET

3 ROLLD + LINE

>>

Make sure x is a vector.

Combine x and y into a complex vector.

Get number of points.

If o is a number,

make a constant vector.

Make o complex.

Save data.

Watch the action.

Next point.

Corresponding o.

Connect (x,y + o) and (x,y-0).

20.3.5 Summary Statistics
The last page of the STAT menu contains commands that return one- and two-variable
summary statistics from XDAT. Each of these commands returns a real number

representing a sum:

Command

X

Y

2X"2

2Y"2

2X*Y

NZ

Sum

2 %
> i

> xf
>i
> XY

where the x; are the elements in the independent column, y; are the elements in the
dependent column, and 7 is the number of rows in ZDAT.

When ZDAT contains m>2 columns, you can obtain all of the summed squares and

-655-

20.3 Statistics

cross products by premultiplying the data matrix by its own transpose. You can also
obtain the summed columns as well by grafting a column of 1’s to either side of the
matrix:

2DAT CLADD1 DUP TRN SWAP =

(CLADD(1 is defined in section 20.4.1.) The resulting m+1 X m+1 square matrix ¢ has
the following elements, where the x;; are the elements of ZDAT:

Element Value

. n

cij (i,j =m) > XiaXig
k=1

n

Cm+1j =m) Xxi
k=1

n

Cim+1 (=m) Xxy
k=1

Cm+1,m+1 h

The sums obtained this way are not as accurate as those obtained with ZX, etc., since

the built-in commands accumulate the sums and products using 15-digit internal preci-
sion.

20.4 General Least-Squares Fitting

The linear regressions described in the preceding sections are simple cases of the appli-
cation of least-squares fitting. Given the HP 48’s powerful array-handling capabilities,it
is straightforward to program the calculator to handle a wider variety of curve fitting
problems than is provided by the LR command.

The principles of the least-squares method summarized below are presented without
proof. You are referred to any standard statistics or data analysis textbook for a more
complete discussion. One such source, which has a strong emphasis on numerical
analysis, is Applied Numerical Methods, by Carnahan, Luther, and Wilkes (John Wiley &
Sons, 1969).

The basic purpose of any curve fitting is to determine the values of parameters that
can’t be measured directly, from measurable quantities that are functions of those
parameters. Initially, we will consider the measurement of a variable ¢ that is a linear
function of m independentvariables x;:

-656-

Statistics 20.4

m

é = Yxja;
j=1

where the coefficients a; are the parameters that we are to determine. Assume that we
have a set of n measurementsy;, taken for various specific values x; of the independent
variables. The differences y;— & (x;;) are assumed to be random variables, with standard
deviations ;. We then want to compute values of the a; such that the sum of the
weighted squared errors is minimized:

2xl]aj)

Uz

The notation is simplified if we represent the y; as an n-element column vector y, the a;
as an m-element column vector a, and the x;; as an nXm matrix X. The weights l/o,é
can be combined into a nXn diagonal matrix W, with W; = 1/0?. Then the least-
square error computation is to minimize

= (y-Xa)" W (y-Xa)
To find the minimum, we differentiate with respect to each of the a;, and set the results
equal to zero. The resulting set of simultaneous equations is

2XT W (y-Xa) = 0.

Solving for a,

a=X'wXx)y'x"wy

Notice that if the o; are all the same (such as is assumed in the LR linear regressions),
W is a multiple of the identity matrix and so cancels out of this equation. The standard
deviations of the parameters a are the diagonal elements of the covariance matrix

V=X'wXxl,

If o; = o = constant, then

V= XT X)"la2.

Moreover, if the o; are not known a priori, but are assumed to be uniform, then that
standard deviation can be estimated from

n-m

which is the averaged squared difference between y; and (Xa);.

-657-

Statistics

The program LSFIT listed next embodies the principles outlined here:

LSFIT Least-Squares Fit B3B2

level 3 level 2 level 1 | level 3 level 2 level 1

y X w or a v o

< ROT DUP SIZE 1 + 1

ROT DUP SIZE 1 + 1 2 SUB RDM

DUP SIZE OBJ- - w y x n m w?

< CASE w 0 SAME

2 SuB RDM

THEN 1 ‘'w STO 0 ’'w?’ STO END

w TYPE

THEN w SIZE SIZE

IF 1 SAME

THEN n IDN 1 n

FOR i i i 2 -LIST w i GET

SQ INV PUT

NEXT 'w’ STO

END

END

w SQ INV 'w STO

END

x TRN w * x * INV
DUP x TRN * w * y =*
DUP m 1 -LIST RDM 3 ROLLD
y x ROT * - DUP TRN SWAP *
1 GET n m - /

IF w? NOT
THEN SWAP OVER * SWAP
END V

>>

>>

Convert y to a nX 1 array.

Likewise for x.

w? true means weights are supplied.

Unweighted case.

If w is not a real number,

then if it’s a vector of o's

remake into a diagonal matrix

oy

Vo?

w is a number; replace with Vo?.

Covariance matrix V.

Parameter vector a.

Convert a to a vector.

Estimate o2

If unweighted,

then multiply V by o2

Return o.

LSFIT takes the following arguments:

3y
2. X Vector or matrix

Vector or n X1 matrix

1: W Real number, vector, or square matrix

For cases of uniformly weighted measurements, W is entered as a real number o thatis
the standard deviation of each measurement. For non-uniform weights, W may be

-658-

Statistics 20.4

entered as a vector of 0;’s or as a square diagonal matrix where W; = /0. Entering 0
for W indicates unweighted measurements.

LSFIT returns the following:

3: a Vector of computed parameters
2: 'V Covariance matrix

1: o Standard dewviation

The standard deviations of the parameters a; are given by the square roots of the diago-
nal elements of the covariance matrix; o is the average deviation of each y; from the fit-
ted curve.

m Example. Find the parameters a and b that provide the best fit of the following data
to the function ax? + b:

x oy
5 1225
4 735
3 259
2 -28
1 -175
0 -288

-1 -164
-2 14
-3 242
-4 7124
-5 1255

» Solution. In this problem, the independent variables corresponding to the unknown
coefficients are x? and the constant 1. First, enter the vector y:

[1225 735 259 -.28 -1.75 -288 -1.64 .14 242 7.24 1255].

Next, enter the matrix X:

[[25 1][16 11[9 11[4 1][1 1][0 1]

[1 1][4 1]1[9 1]1[15 1][25 11]]

-659-

20.4 Statistics

Finally, enter the weight matrix, in this case a vector containing the o;:

[1 2 2 3 3 4 4 4 3 3 2]

Then

2 FIX LSFIT =

[060 -254] [[5.12E-5 -8.85E-4][-885E-4 0.02]] 0.30

The first result is the coefficient vector, corresponding to @¢=0.6, and b=-2.54. The

second result is the correlation matrix; looking at the square roots of the diagonal ele-
ments we can estimate o, = 0.007 and o, = 0.14. The last result is the average error
at each point, which matches reasonably well with the standard deviations of the indivi-
dual data points.

20.4.1 Utilities
In the previous example, we entered the y, X, and o arrays individually. For manual
entry, it may be more convenient to enter the data point-by-point using 2 +. Thatis, for
each pointi, the entry for £+ might have the form

Xi1 " Xim Yi Oy

Once the data is accumulated into 2ZDAT, it needs to be decomposed into the three
separate arrays for LSFIT. The following two programs are utilities that are useful for
that purpose. C1SPLIT removes the first column of an nXm array, returning the
column as a vector and the remainder as an nXm -1 matrix. CLSPLIT works similarly,
removing the last column.

C1SPUT Column 1 Split ADD9

level 1 | level 2 level 1

[[AxXm]] o [r] [[nxm-11]]

< TRN OBJ- OBJ- DROP - m n Take data matrix apart.

<m 1 - n 2 -LIST -ARRY TRN Recombine last m-1 rows.

n 1 + ROLLD n -ARRY SWAP Make first row into a vector.

>>

>>

Statistics 20.4

CLSPLIT Column Last Split 74D5

level 1 | level 2 level 1

([rxXm]] o [»] [[nxm-11]]

< TRN OBJ- OBJ- DROP - m n Take apart matrix.

< n -ARRY Make last row into vector.

m 1 - n * 1 + ROLLD Roll behind remaining data.

m 1 - n 2 -LIST -ARRY TRN Recombine remaining rows.

>>

>>
For cases where one of the unknown coefficients is simply an additive constant, using
one of the following two programs will save you from having to enter a 1 in each row of
the data matrix. C1ADD1 prepends a column of 1’s to an array; CLADD1 appends a
column of 1’s.

C1ADD1 Column 1 Added with 1’s 7343

level 1 | level 1

[[rxm]] o [[rxm+11]

< TRN DUP SIZE OBJ- DROP - m n |Save dimensions.

<n 1 -LIST 1 CON OBJ- DROP Enter n 1’s.

n 1 + ROLL OBJ- DROP Retrieve original matrix.

m 1 + n 2 -LIST -ARRY TRN Combine into new matrix.

>>

>

CLADD1 Column Last Added with 1’s 7343

level 1 | level 1

[[nxm]] o [[nxm+11]

< TRN OBJ- OBJ- DROP - m n Save dimensions.

< n 1 -LIST 1 CON OBJ- DROP Enter n 1’s.

m 1 + n 2 -LIST -ARRY TRN Combine with original matrix.

>>

>
-661-

Statistics

With these utilities available, the data for the example in the previous section can be
entered into 2DAT:

CL [25 1225 0.1] 2+
16 735 0.2 X+

259 0.2 X+
-28 03 X+

-1.75 03 2+

-288 04 X+

-164 04 2+
14 04 =+
242 03 =+

16 7.24 03 =+
25 1255 0.2 2+

O
H
h
—
=
-
2
0
-
=
5
p
0
O

Then

>DAT CLSPLIT CLSPLIT CLADD1 ROT

sets up the stack arguments for LSFIT.

20.4.2 Polynomial Fits
A common curve-fitting problem is that of fitting data to a polynomial, where there is a
single independent variable x, and the fit parameters are the coefficients of successive
powers of x. LSFIT is easily adapted to this problem by supplying a matrix X for which

the elements are x; = x7-J. The width m of the matrix is one greater than the highest
power of x that appears in the polynomial.

POLYFIT is an extension of LSFIT specifically for polynomials. It takes the same argu-
ments as LSFIT, plus a real number that specifies the order of the polynomial. The the
matrix X should be a vector or a one-column matrix, where each element is one value of
the independent variable x. POLYFIT creates a new X by computing the necessary
powers of each x;. POLYFIT concludes by calling LSFIT with the modified arguments.
Note that the (level 3) result a contains the polynomial coefficients in the same descend-
ing order that is expected by the polynomial programs in section 17.4.

m Example. Fit a fourth-degree polynomial to the data in the following table, where the
standard deviation of each measurement is 0.85:

-662-

Statistics 204

x oy
5 348
10 1347
14 1593
18 1569
24 1322
30 1174
35 1325
41 1866
50 3422

(This problem is taken from the HP 824844 Curve Fitting Pac Owner’s Manual for the
HP71.)

m Solution. Enter y:

[34.8 1347 1593 1569 1322 1174 1325 186.6 342.2]

Enter X:

[5 10 14 18 24 30 35 41 50]

Enter o and the order, and compute the fit:

.85 4 POLYFIT.

The level 3 result vector contains the following entries, to four places:

Coefficient Value Standard
Deviation

a, -0.0004781 0.000011
a; 0.07049 0.0013
a, -3.270 0.047
a, 57.48 0.66
a -179.2 29

The standard deviations are the square roots of the diagonal elements of the level 2
result matrix. The calculation returns (level 1) o = 0.811, which is comparable to the
presumed standard deviation of 0.85.

20.4 Statistics

POLYFIT Polynomial Fit 99BD

level 4 level 3 level 2 level 1 | level 3 level 2 level 1

y x w order o a v c

< 3 PICK SIZE 1 GET - x w o0 n [Store the input data.
<< 1 n

FOR i For each element in X:

1 x i GET Get the elementx;.

110

FOR j Compute powers ofx;.

OVER * DUP

j 3 + ROLLD

NEXT DROP2

NEXT

n o 1 + 2 -LIST -ARRY Combine into x.

w LSFIT Compute the fit.

>

>>

20.4.3 Non-Linear Least Squares Fits
The least-squares fitting process can be extended to non-linear cases, i.e. cases where
the fit parameters a; are not simple linear coefficients of the independent variables.
Thatis, the model to be fitted to measured data has the general form ¢ = $(x,a). We
can relate this general case to the linear problem discussed in section 20.4 by expanding
¢ about the point a:

(x,2)=(x,a0) + A -Aa
where

Ad; = %jg,(x,ao)

and Aa = a—a,. This is linear in the parameters Aa, and so can be translated to the
linear least-squares problem ¢ = Xa by replacing & with b(x,a) - d(x,a;), X with Ad,
and a with Aa.

Therefore, if we take a; as a first guess for a, and compute Aa by the least squares
method, then a + Aa should provide a better estimate of a. This process can be iterated
until Aa is arbitrarily small. The trick, of course, is to obtain initial values a, that are

-664-

Statistics

sufficiently accurate for the linear approximation to be valid. With initial values that are
too far from the correct values, the iteration may never converge.

The program NLFIT listed below demonstrates an iterative non-linear least-squaresfit,
for problems with a single independent variable x. It requires six arguments:

Vector of original measurements y;
Vector of values x; of the independent variable.
Weights, entered as for LSFIT.

x,a) Algebraic object representing ¢.
a; List of parameter names.

[ai0] Vector ofinitial values of parameters.2
N
e
r
M
r
O
O

o
g

%
<

To simplify the program itself and argument entry, NLFIT uses the specific name X to
represent the independent variable x (you can easily modify the program to use any
other global name). This means that the expression entered as the level three argument
should contain X, as well as the names of the fit parameters. NLFIT uses the actual
variables during program execution, so any previous stored values are overwritten.

After computing one iteration of the non-linear least squares fit, NLFIT halts and
displays the corrections Aa (level 2) and the average error per point o (level 1). You
can use that information to decide whether to repeat the iteration. Use ZMOREE in the
displayed temporary menu to continue with another iteration, or EQUITE to terminate the
program and return the final results, which are the parameter vector a (level 3), the
covariance matrix V (level 2), and the final 0. The two objects returned at each inter-
mediate halt are not required by the program, so you can drop them, use them in other
calculations, or leave them for comparison with the results of the next iteration. If you
change menus, you can resume execution by pressing 0 for EMOREZ , or 1

for ZQUITE .

The use of NLFIT is best explained by an example.

m Example. The data in the table below (following the program listing) was obtained by

measurement of a voltage at uniform time intervals. The voltage is expected to behave

sinusoidally with time, i.e.

V(t) = Vo +Asin(wt +0)

Find the unknown parameters Vj, 4, ® and 8, which are estimated to be ¥, = 9 volts,
A=11volts, » = .6, and 8 = .9. The measurement error is +1.75 volts.

Statistics

NLFIT Non-Linear Fit D7E6

level 6 5 4 3 2 1 | 3 2 1

y x W 'd(Xa){names} a (e a \4 o

< 5 PICK SIZE 1 GET n = no. of data points.
3 PICK SIZE m = no. of parameters.
RCLMENU cm = Current menu.

{{"MORE" <<0 CONT>>}

{"QUIT" <<1 CONT>}} tm = temporary menu.
- yxmw faa n m cm tm

< DO 1 m

FOR i

a0 i GET a i GET STO

NEXT

<< X' >» ’'X' STO

1 m

FOR i

f ai GET d

NEXT m -LIST - da
< 1 n

FOR i y i GET

xm i GET ’'X’ STO

f EVAL -

NEXT n -ARRY

1 n

FOR i xm i GET 'X’ STO

1 m

FOR j da j GET EVAL

NEXT

NEXT {n m} -ARRY

W LSFIT - a1l cm sig

<< atl ’'a0’ STO+

a1l sig

"o" -TAG tm TMENU

IF HALT

THEN 1 m

FOR i

a0 i GET a i GET STO

NEXT 'X' PURGE a0 cm sig
ELSE O

END
>>

>

UNTIL

END

cm TMENU
>>

>>

1

Create local variables.

Store initial values of a.

Prevent evaluation of X.

Create list of derivatives:

af/da;.

Save derivatives in da

For each data point:

Vi
Store x; in X.

yi-f (xi,a0)

For each data point:

Store x; in X.

For each parameter:

aflaaj(xi,ao)

Make data array.

Corrected a.

Halt and show results.

If done,

Store final values of a,

and return fit results.

Otherwise, repeat.

Restore original menu.
Compute, save fit parameters.

Statistics

m Solution.

0.0
03
0.6
0.9
1.2
15
1.8
2.1
24
2.7
3.0

V(1)
19.44
23.92
20.09
18.51
16.73
9.12
8.78
5.45
032
3.93
5.76

1. Enter the measurement vector:

2. Enter the vector of independent variable values. Either typeit in, or execute

[19.44 2392 20.09 18.51
-32 393 576 7.02 13.81
22.02 21.86 13.35

33
3.6
3.9
42

4.5
4.8
5.1
5.4

5.7
6.0

12.22 8.07]

0 6 FOR i i

3. Enter 1.75 for the measurement error.

V()
7.02

13.81
1933
22.86
2291
22,02
21.86
1335
12.22
8.07

16.73 9.12 8.78 5.45
19.33 22.86 2291

3 STEP

The objects on the stack at this point are also those needed to plot the data using
DRAWEBAR (section 20.3.4):

-4 24 YRNG 3 DUPN ERASE DRAWEBAR-1 7 XRNG

20.4 Statistics

4. Enter the fit expression:

'VO+A*SIN(w *X+0)’

Notice that the independent variable must be X. is [«][>][W], and 0 is [a][>][F].

So that you can plot this expression later, execute DUP STEQ.

5. Specify the unknown parameter names:

{VO A o 0}

6. Enter the initial guesses for the parameters:

[9 11 16 9]

7. Execute RAD 2 FIX NLFIT. This produces the following display:

RAD HALT
HOME :TAT REGR }1

7
3
e
1

[3.48 -1.16 -8,16,
K

The increments Aa returned to level 2 are substantial fractions of the initial guesses,
which suggests continuing with the iteration. Press ZMOREE:

RAD HALT
OME 5TAT KREGR }LH

4z .48 -1.16 -8,
3: ot 1
% [B.82 A.34 El?

Efilfl:--i_

Statistics 20.4

This iteration has not changed o very much, so further iteration is unlikely to produce a
better result. Now press SQUITE :

RAD
HOME ZTAT REGE }

gi 1.79
[12.5H 14,18 1.49..
[[B.12 -AB.684 318%g

ICNE IB

—
U
™

The final values a are also stored in the appropriate global variables. This means that
you can plot the expression stored in EQ to show it as evaluated with the fit parameters,
superimposed on the data:

FUNCTION DRAW 1=

20.5 Probability Commands

The probability menu ([MTH]EPROBE) contains nine commands that relate to common
probability calculations. The commands logically could have been included as part of
the statistics menu, but that menu is already five pages long.

20.5.1 Combinations and Permutations
The commands COMB and PERM compute the number of combinations and permuta-
tions, respectively, of n different objects taken m at a time. Each different ordering of
the m selected objects is a different permutation. Since there are n choices for the first
object, and n— 1 choices for the second, and so on, we obtain

-669-

20.5 Statistics

n!
Pom=n(m-1)(n-2)---(n-m+1)=m

PERM takes its arguments in the order n,m:

10 5 PERM o= 30240,

or

'PERM(10,5)" EVAL = 30240.

For combinations, the order of the selected objects doesn’t matter; since there are m!
ways to arrange m objects, the number of combinations is reduced by that factor from
the number of permutations:

n!
C;Jn = Iflhm/n1! = ;;]z;tgggi.

COMB takes its arguments in the same order as PERM:

10 5 COMB = 252

The C,,, are the same as the binomial coefficients {";2} in the expansion

x+y)y = i {’Z}x”’my’”.
m=1

COMB is therefore used to compute the binomial coefficients in the program PPWR, in
section 17.4.1.

The algorithms used in computing COMB and PERM do not use the factorial function
directly, to minimize numerical overflow problems. Factorial overflows for integer argu-
ments greater than 253, but COMB and PERM can deal with arguments up to 10%2.
Arguments within that range can still cause the overflow exception (section 9.6.4) when
the results are greater than 10°®. In general, both arguments for either command must
be zero or positive integers less than 102, Non-integer or too-large arguments return
the Bad Argument Value error.

-670-

Statistics 20.5

20.5.1.1 Factorial and Gamma Function

The HP48 factorial function ! computes the ordinary factorial of integer arguments

n=0: n! =n(n-1)(n-2) ---2-1. However, ! is actually a version of the gamma func-
tion

T(x) = fe't*tat.
0

That is, since I'(x+1) = x!, HP48 x! computes I'(x+1). If you want an ordinary
gamma function, create a user-defined function as follows:

'GAMMA(X)=(x-1)!I' DEFINE

The useful range of ! is —254.1082426465 <x < 253.1190554375. More negative x
causes the underflow exception; more positive x causes the overflow exception. Negative
integer values of x also cause overflow.

The factorial is represented as a postfix function for consistency with common written
notation. You may also enter it as a prefix function FACT, which is automatically con-
verted to the postfix ! when it is evaluated:

'FACT(X)’ EVAL = XV

assuming that X has no current value.

20.5.2 Random Numbers
Several examples in this chapter have used the random number generator command
RAND to create artificial “noise” in data. RAND is designed to produce random
numbers uniformly distributed between 0 and 1, meaning that any number in that range
is equally likely to be returned at each execution. Since there are 102-1 HP48-
representable numbers in this range, the probability density is

p, = V(102-1) 0<n<1

The expectation value of the average of a sample of numbers generated by RAND is
obviously 0.5. We can also estimate the standard deviation by treating the distribution

function as continuous:

1 %
o= [{(x—.S)zdx] = §%7§

-671-

20.5 Statistics

RAND uses the linear congruential method to create uniform random numbers (cf.
Donald Knuth, The Art of Computer Programming Vol. II, Addison-Wesley, Mas-
sachusetts 1981). In this method, a sequence of random numbers is generated from

x; = (ax;_1 + ¢) mod m

Such sequences inevitably repeat, so that they are not truly random. The period of the
cycles can be maximized by good choices of the constants a, ¢, and m. RAND uses

values that give a period of 5X 10", using 15-digit internal precision.

The last value returned by RAND is stored in 15-digit form in system memory, so that it
can be used for the next execution. You can change this “seed” value by executing RDZ

(RanDomiZe), which computes and stores a new 15-digit seed from its argument, which
can be any real number. RDZ is useful when you want to repeat a particular series of
random numbers--you can restart the same series whenever you want by executing RDZ

with the same argument. The examples in this book use RDZ prior to repeated execu-
tion of RAND, so that you can try the examples and get the same results. You can also
use RDZ to prevent accidental repeat of a series, by using an argument of 0. In that
case, RDZ creates a random seed based on a reading of the HP 48 clock.

As a rough check of the uniform distribution of the numbers generated by RAND, we
can compute the mean and standard deviation of a sample of 1000 numbers:

12345 RDZ 1 1000 START RAND NEXT {1000 1} -ARRY STOS,

then

MEAN = .507100107091
STD F .289199195881

These compare well with the ideal values of 0.5 and .288676134595 (1/2V/3). The
RAND algorithm also passes the spectral test (described by Knuth), a much more
stringent test of a random number generator.

It is possible to produce random numbers with non-uniform distributions by using func-
tions of uniform random numbers. The programs in section 12.11.1 illustrate the gen-
eration of numbers that follow the normal and the Poisson distributions.

-672-

Statistics 20.6

20.6 Upper-Tail Probability Distributions

A random variable is characterized by its distribution function, which is the (cumulative)
probability P(x) that a particular measurement of the variable will have a value less than
x. P(x) must be a monotonically increasing function of x (a step function for a discrete
variable), with P () = 1. The complement to the distribution function is the upper-tail
distribution function U(x), which is the probability that the variable is measured with a
value greater than x, i.e.

Ux) =1-P(x)

For continuous, differentiable distribution functions, the first derivative is called the pro-
bability density p(x)=dP (x)/dx; the probability that a measurement returns a value
between x and x+dx is p(x)dx. The normalization condition for p(x) is then

[p@)ax = 1.

Most probability distributions can be characterized most easily by the probability den-
sity, with the distribution functions calculated as integrals of the densities:

P@)= [p@)dx and UG) = [p@x)dr.

For example, the normal, or Gaussian distribution is defined by the density

_-x)?
1 202

€ ’
(2m)*%o
 pix) =

where X is the average of x, and o is the standard deviation. Common probability densi-
ties generally have a long “tail” that asymptotically approaches zero as x—oo--this is the
origin of the “upper tail” term that describes the HP 48 distribution functions.

Such densities are easily calculated on the HP 48 from their definitions; in section 20.6.5
we list user-defined function programs for the densities associated with the four HP 48
upper-tail probability commands. The distributions present a harder calculation prob-
lem since they involve numerical integrals with +o as one limit, as shown here for the
upper-tail probability of the normal distribution:

1 o st—xlz o2

Ux) = 2
® m)*o {e

-673-

20.6 Statistics

Because of the difficulty of computing such integrals, the HP 48 provides four commands
that use special algorithms for calculating upper-tail probabilities for common distribu-
tions. The upper-tail probabilities are chosen because they are used more frequently by
statisticians than the distribution functions, but of course you can compute P(x) from

1-U(x). The four commands are UTPN (Upper-Tail Probability--Normal), which embo-
dies the formula above, plus UTPF, UTPC, and UTPT, for the F-, x?-, and t-
distributions.

That these commands were not encoded as HP 48 functions was simply a matter of con-
serving ROM space in the HP48. You can easily make user-defined functions for these
commands, e.g.

< -> nl n2 x < nl n2 x UTPF > > 'FUTPF' STO

20.6.1 UTPN

UTPN takes three real number arguments: the distribution average X, the variance o2,
and the number x. It returns the probability that a measurement of x will return a value

greater than the specified x, given a normal distribution described by x and o.

m Example. On a standardized test with a mean score of 500 and a standard deviation
of 100, what fraction of students is expected to score 750 or better, assuming a normal
distribution of test scores?

m Solution. The variance is the square of the standard deviation, so

500 100 SQ 750 UTPN = .0062

20.6.2 UTPT
The sample mean

X =

S
=

n

X
i=1

(section 20.2) is itself a random variable. Its distribution is usually expressed in terms of

the normalized parameter ¢ =xn */s, where s is the square root of the sample variance. ¢
is described by the probability density

1“(‘%) _f+1
p(t) = a+efy ?,

1LV

-674-

Statistics 20.6

where f =n—1 is the number of degrees of freedom.

UTPTtakes f and ¢ as its arguments, and returns the probability that a measurement of ¢
will yield a value greater than the specified ¢.

20.6.3 UTPC
The sample variance (section 20.2)

 s = L3-9y
=1n-1;

is itself a random variable. If the sample is drawn from a normal distribution with vari-
ance o2, then the random variable

follows the so-called x>-distribution with f = n— 1 degrees offreedom. This distribution
has the probability density

) 2\-1, -x*2)
= Q(—)_— >0P(X) 2T00 X

where N = f/2. The density is zero for x2<0.

UTPC takes f and x? as its arguments, and returns the probability that a measurement
of x? will yield a value greater than the specified x2.

20.6.4 UTPF
The F-test compares the sample variances of populations that have equal means. The
random variable in this case is the variance ratio

F = s3/s3

where 5, and s, are the two sample variances, computed for n, and n, measurements,
respectively.

The probability density for F is given by

-675-

Statistics

; F(fl +f2)

_Jr2Tpua-t -W(fL 4y e
p(F) = [f) F(fl/z)F(fz/Z)F A+f1F/f3)), F=0.

=0, F<0

where f{ = n;—1 and f, = n,—1 are the numbers of degrees offreedom of the two dis-
tributions.

UTPF takes f1, f,, and F as its arguments, and returns the probability that a measure-
ment of F will yield a value greater that the specified value.

-676-

Statistics 20.6

20.6.5 Probability Density Functions
The following user-defined functions compute probability densities for the normal, x2, ¢,
and F distributions.

NDIST Normal Probability Density 7874

level3 level 2 level 1 | level 1

X o x o p(x)

<s m o x 'EXP(-(x-m)/a)*2/2)/(V(2*x)*c)’
>>

CDIST x? Probability Density 223C

level 2 level 1 | level 1

f x2 o p(x?)

<< f x

"IFTE(x=0,x" (f/2— 1)*EXP(-x/2)/ (2~ (/2)*(f/2- 1)1),0)’
>>

TDIST t Probability Density C980

| level 2 level 1 | level 1

f t o p(?)

< f t

"((=1)/2)1/(/2= 1)1*V() *(1 +4°2/6)- ((+1)/2)
>>

FDIST F-Distribution Probability Density 6EDD

level 3 level 2 level 1 | level 1

fi f2 F o p(F)

«<- f1 f2 F

'IFTE(F=0, (1 /82)* (1 /2)*(((1 +12)/2- 1)/((1/2-1)!

*(f2/2— 1)) *F~ (f1/2-1)*(1 +£1 /£2%F)~ — ((f1 +12)/2),0)’
>

-677-

21. Unit Management

A good deal of the effort involved in solving practical engineering and scientific prob-
lems comes from dealing with physical units. The results of most measurements are not
simple dimensionless numbers, but combine a numerical magnitude with various units of
length, time, mass, etc. Calculations with these values require keeping track of these
units, including converting between values expressed with different units. Calculators
have generally been unable to provide much assistance here. Many calculators contain
tables of multiplicative conversion factors, which allow you to convert a number
representing a measurement in one unit to another unit, such as multiplying a number
of inches by 2.54 to obtain the equivalent number of centimeters. But the real account-
ing work here--collecting and canceling units and checking for dimensional consistently-
-is still left to pencil and paper (reminiscent of the pre-calculator era, where we used a
slide-rule to perform operations on the mantissas of numbers, but had to keep track of
the exponents by hand). The HP 48 removes this burden from you by providing a unit
management system, incorporating physical units into a wide range of its calculation
facilities.

In the HP48, a magnitude and its associated units are combined into a single object
called a unit object (section 3.4.9). These objects are entered and displayed in the for-

mat

magnitude_dimensions,

where magnitude is an ordinary real number, and dimensions is an expression combining
products, powers, and (at most) one quotient, of unit names. The magnitude is
displayed in the same manner as a number within an algebraic object, following the
current number display format (STD, FIX, etc.), except that digit separators are not
used, and integers less than 1000 are displayed without any decimal part. The dimen-
sion part is displayed in a manner similar to an algebraic object. Since only products
and simple powers are allowed, plus one quotient, parentheses are used only to enclose
a denominator that contains a product.

When you enter a unit object in the command line, you can use same rules that are
used in the object display. Note that you must enclose a compound denominator in
parentheses, because of the usual algebraic operator precedence. That is,

1_m/s*s [ENTER] = 1_m.

The entry is equivalent to 1_(m/s)*s, so that the two s units cancel each other.

-679-

21.0 Unit Management

Parentheses are also important when you enter a unit object within an algebraic object,
to separate the unit object from the rest of the expression:

'Y+1_m/s*X’ = 'Y+1_m*X/s’

'Y+(I_m/s)*X' = 'Y+(1_m/s)*X'.

Whether a unit object is entered in the command line, or created through operations on
other unit objects, the dimension part is always simplified as follows:

e Any real numbers are multiplied together, then multiplied times the number part of
the unit object. Thus 1_5*m becomes 5_m.

e There are only positive powers (any unit with a negative power is shown in the

denominator).

e There is at most one / symbol; if the denominator is a product of units, it is

enclosed in a single pair of parentheses.

e If a unit operation returns a result with a null dimensions, the result is converted to
a real number. For example,

1im 1_m / = 1.

e Unit objects entered within expressions may be entered with symbolic magnitudes;
such entries are automatically converted to the product of the symbolic magnitude
times a normalized unit object. Thus 'A_m’ becomes 'A*1_m’

21.1 Types of Units

The HP 48 unit system is based on the System Internationale, commonly abbreviated as
SI. This system specifies base units, representing seven independent physical dimen-
sions:

Dimension Base Unit

Length meter
Time second
Mass kilogram
Temperature kelvin
Electrical current Ampere
Luminous intensity candela
Quantity of substance mole

-680-

Unit Management 211

These units are considered as fundamental; all other units are expressed in terms of the
base units.

The HP 48 system actually uses eight base units. The extra dimension is unspecified, i.e.
it is not related to any physical dimension, and so is reserved for use in user-defined
units (see section 21.1.3 below). One built-in unit named ? has this dimension.

21.1.1 Prefixes
A natural extension to the built-in unit table is the prefixing of unit names with any of

the following symbols:

Exponent Word Prefix SI symbol HP 48 symbol(s)

+18 exa E E

+15 peta P P
+12 tera T T

+9 giga G G
+6 mega M M
+3 kilo k k or K

+2 hecto h horH
+1 deka da D

-1 deci d d
-2 centi c c

-3 milli m m

-6 micro P B
-9 nano n n

-12 pico p p
-15 femto f f

-18 atto a a

These symbols are used immediately preceding the unit names they modify, without any
intervening symbols or spaces. Thus 1_cm represents 1 centimeter, and 1_ft/ns
represents 1 foot/nanosecond. Built-in unit names are given precedence over prefixed
unit names when there is an ambiguity. For example, 1_min is 1 minute, not 1 milli-
inch. This resolution requires single-character prefix symbols for simplicity, so the SI
prefix da is replaced in the HP48 by D. You may also use K for k and H for h when
entering unit objects, but the objects will always be displayed with the lower-case pre-

fixes.

-681-

21.1 Unit Management

21.1.2 Built-in Units
The HP 48 contains 122 units, which means that it has permanently stored their dimen-
sions and conversion factors relative to the SI base units. For example, the unit mph is
recorded with the dimensions length-time !, and the conversion factor 0.44704 that
expresses units of mph in base units m/s. We will refer to unit objects corresponding to
the built-in units as simple units, since each has a dimension part that is a single unit
name. A compound unit, such as 10_cm/s, contains a dimension part that is a compo-
site object similar to an algebraic object, comprised of unit names, prefixes, powers, and

special *, /, and © operators. For either type of unit object, the command UBASE con-
verts an object into an equivalent where the dimension part of the result contains only
base units. If the original magnitude is 1, then the result magnitude is the conversion
factor from the original units to base units:

1_mph UBASE = .44704_m/s

You can use the following program to determine the actual dimensions of a unit object:

UDIMS Unit Dimensions 8ASE

level 1 level 1

magnitude_units wr { dimensions }

<{}11111111 Initial values.

- list kg m s A K cd mol ? |Make local variables.

< UBASE OBJ- -STR Convert normalized unit object to string.

4 OVER SIZE SUB Strip off "' 1_".

"r SWAP + OBJ- Convert to an expression.

18 For each base unit:

FOR i i

{kg m s A K cd mol ?}

SWAP GET Get the ith base unit.

10 OVER STO Assign it value 10.

OVER EVAL LOG Get the powerof the base unit.

1 ROT STO Restore value 1.

‘list’ SWAP STO+ Add the powerto the list.

NEXT

DROP Discard the expression.

list Retrieve the list.

+ Add the unit magnitude at the head.

>>

>>

UDIMS converts a unit object into a list, where the first element is the equivalent

-682-

Unit Management 21.1

magnitude in base units, followed by the object’s dimensions expressed as (integer)
powers of length, mass, time, current, temperature, luminous intensity and quantity of

matter, in that order. (UDIMS only works for integer dimension powers--see section
21.4.1).

i_mph UDIMS o= {.44104 0 1 -1 0 0 0 O O}

21.1.3 User-Defined Units
You can represent any unit that can be reduced to SI base units by using compound
units. As an additional convenience, you can also create user-defined units, to add new
unit names that can be used like simple units. A user-defined unit is any global variable
that contains a single unit object: the stored object specifies the unit magnitude and

dimensions, and the variable name may be used as a unit name in the same manner as
any built-in name. Thus

.125_mi ‘'furlong’ STO

and

14_d 'fortnight’ STO

create new units furlong and fortnight; then 1_furlong/fortnight is a valid unit object
with the dimensions of speed. User-defined units may also be used to define new units,

e.g.

1_fudong/fortnight 'slow’ STO

defines a user-defined unit named slow. Any user-defined unit is subject to the same
operations as built-in units:

1_slow UBASE r= 1.6630952831E-4_m/s

The names of user-defined units should not match any built-in unit, with or without a
prefix, as the latter are given precedence in the interpretation of unit objects entered in
the command line.

21.1.4 Unit Object Mechanics
As for other object types that contain more than one part, the HP 48 provides simple
tools for taking unit objects apart, and for assembling them from other objects:

21.1 Unit Management

OBJ- decomposes a unit object into its magnitude (a real number returned to
level 2) and a normalized (magnitude 1) unit object of the same dimensions
(level 1).

600_W/sr OBJ- = 600 1_W/sr

-UNIT replaces the magnitude of a unit object in level 1 with areal number taken
from level 2:

50 100_km/s -UNIT = 50_km/s

UVAL extracts the magnitude of a unit object:

1.6E-19_.C UVAL = 16E-19

UVAL and -UNIT are available in the UNITS menu; OBJ- is found in the
£0BJ= menu.

21.2 Unit Conversions

The HP 48’s list of conversion factors for simple units to SI base units makes it straight-
forward for the calculator to convert any simple or compound unit into any other
dimensionally consistent unit. To do so, the HP48 computes a net conversion factor for
the original unit by applying the arithmetic in its dimension part to the conversion fac-
tors of the simple units represented there. This value is divided by a net conversion fac-
tor similarly computed for the output units, then multiplied by the original unit magni-
tude. The result is the magnitude of the converted unit.

The most obvious application of this process is in the command CONVERT, which con-
verts one unit (level 2) into an equivalent with its dimension part specified by a second
unit object:

1_b*Mpc 1_cm”3 CONVERT = 3.08567818585_cm”3

Note that the magnitude of the second argument unit object is ignored; that argumentis
only used to specify the new dimensions for the first argument.

If the dimensions of the two units are not consistent, i.e. they do not correspond to the
same powers of SI base units, CONVERT returns the Inconsistent Units error. An
attempted conversion of a unit object that contains undefined unit names returns the
Invalid Unit error.

-684-

Unit Management 21.2

21.2.1 The Unit Menus
The unit menus are the sixteen built-in menus associated with the key. All of
the built-in simple units, plus a number of compound units, are represented in these
menus, organized by common dimensionality or at least common application. For

example, the length menu (ELENGE) contains keys for 22 simple units of length. The
speed menu ESPEEDZ) has seven entries with the dimensions length/time, plus one, ga,
that is a unit of acceleration. (It is more practical to include ga in the speed menu than
to have a separate acceleration menu with only one entry). The first three speed menu
entries, m/s, cm/s, and ft/s, are compound units. Compound units are included in the
units menus as typing aids and for convenient conversions.

The units menus are useful catalogs of the built-in units and their dimensions. Since
unit names use upper and lower case letters, but the key label characters are upper-case
only, you may occasionally wish to use to see the correct spelling of a unit
name. For example, in the second page of the electricity menu (EELECE),
produces:

To determine the value of a particular unit in SI base units, you can use the menu keys

like this:

[<=][UNITS SENRGE 1 ZBTUZS

SUBASEZ 1= 1055.05585262_kg*m”~2/s"2

Here we entered the unit object 1_BTU by entering 1 then pressing EBTUS . This
behavior is characteristic of units menu keys. Their design arises from the observation
that the conversion of a unit object from one unit representation to another has certain
similarities to an HP Solve problem. Consider the conversion of square centimeters to
square inches. You could achieve such conversions by using a current equation

CM2*1_cm”2=IN2#*1_in"2.

-685-

21.2 Unit Management

To convert 100 cm? to in2, you would use the following keystrokes:

1002 CM2 = []ZIN2E o= [IN2: 15.5000310001.

Similarly, to convert a number of in? to cm?, you would store a value for IN2 and solve
for CM2.

The HP48 unit menus are deliberately modeled on the HP Solve system to provide con-
venient automated conversions among dimensionally consistent units. To achieve the
above cm2-to-in? conversion, you can use these keystrokes:

[C][UNITS]IEAREAE 100ECM™2= [H]EIN"2Z = 15.5000310001_in"2.

Notice that the keystrokes after the initial menu selection are identical to the previous
example. The result this time is a unit object with the same magnitude as the HP Solve
result.

The unit menu behavior demonstrated here is derived from specific menu key actions.
An unshifted unit menu key executes the sequence:

1. (if there is a command line);

2. 1_unit , where unit is the unit indicated by the menu key label;

3. (multiply).

A left-shifted menu key works the same way, except that the final multiply is
replaced by CONVERT.

Returning to the area conversion example, 100 £ CM"2 = enters 100, then multiplies it

by 1_cm”2, yielding 100_cm”2. Z IN"2 £ enters 1_in"2, then executes CONVERT,

returning 15.5000310001_in"2.

There are variations on the standard sequence of unit menu keys illustrated above. The
multiply performed by the unshifted keys allows you to create compound units by press-
ing successive menu keys. For example, to convert 2500 dyne-cm to joules, press

Unit Management 21.2

2500 [<][UNITS][NXTIEFORCEE =DYN

[C][UNITSIELENGE ECM:=

[][UNITSIINXTIEENRGE [H]ZEJ = = .00025_J.

A right-shifted unit menu key works like an unshifted key, except that it performs a
final / instead of *. Thus, with the previous result still in level 1,

[C][UNITSIETIMEE [P]ESE 1= .00025_J/s.

The unit menu keys literally execute the commands * CONVERT, and /--if an error
occurs, one of these commands is identified in the error message.

The various actions of the unit menu keys described here apply only in immediate-
execute mode (section 6.4.1). In algebraic entry mode (ALG) or program entry mode
(PRG), an unshifted menu key acts as a simple typing aid for the corresponding unit
name (note that this means that to enter a unit object, you must use the [—] key as
well as the menu key). The shifted keys are inactive.

21.2.2 Using ?
The ? unit allows you to create new kinds of units that aren’t tied to any ordinary base
units, but for which automatic dimensional consistency checking is still available. One
useful example is provided by currency conversions. Suppose you want to convert
between dollars and pounds, where the conversion rate is 1.91 dollars to 1 pound.
Define user-defined units as follows:

1.2 '$" STO

1.91_? 'g" STO

(The ? symbol is [e [R][&]; $ is[e][E][a]; £ is[«][%][5].) With these definitions,

you can use CONVERT to translate between the two currencies, e.g.

25£ 1.$ CONVERT = 47.75_%.

21.2.3 Units in Custom Menus
When a custom menu key (section 7.3) is specified by a unit object in the CST list, the
key exhibits the same actions as the menu keys in any of the units menus. This is

21.2 Unit Management

particularly useful when you are performing repeated conversions among units that don’t
happen to be in the same unit menu, or include one or more user-defined units. For
example, you can create a dollars/pounds menu as follows, using the user-defined units
from the previous section:

{1.$ 1.£ } MENU

yields this display

HOME }

=
)
™

 ¥£|11|

Here you can use the menu keys for conversions:

50 £$§= [M]E£E = 26.18_%

21.3 Unit Object Mathematics

The real power of the HP 48 unit management system comes from the unit conversions
that occur automatically when you apply various functions to unit objects. The conver-
sions entail a certain speed penalty compared with the same functions applied to the
real number magnitudes alone, but you gain a significant problem-solving efficiency
because the calculator does the dimensional bookkeeping for you.

21.3.1 Unit Operations Requiring Dimensional Consistency
A typical unit operation is the addition of two objects with different dimension parts:

1_mi 1_km + = 2.609344_km

In effect, + applies CONVERT to the two arguments to convert the first argument to
the same units as the second, then adds the two magnitudes. The result units are thus
always the same as those of the second argument, which is consistent with CONVERT.

-688-

Unit Management 21.3

If you want a result expressed in the units of the first argument, execute SWAP prior to
executing the combining function.

Automatic conversion is performed by all of the following functions:

e + and -.

e %CH, which computes 100-(x-y)/y from two objects x and y.

e %T. Here the first argument is converted to the dimensions of the second, then the
magnitudes are divided. The result is always a real number.

e =. In numerical evaluation mode (section 3.5.5), = is equivalent to —.

e == +# <, >=, =, These six predicate operators compare the magnitudes of two

objects after converting them to common units. Note that SAME does not perform
any conversions; two unit objects must have the same magnitudes and dimension
parts for SAME to return true. See section 9.3.2.

If one of the two arguments of any of these functions is the real number 0, it is
automatically replaced by O_units before the function is applied, where units is the
dimension part of the non-zero argument. considered to have the dimensions of the
other argument. Thus

1m0 + = 1.m

Besides being a simple convenience, this feature allows ISOL (section 16.4) to work with
expressions containing unit objects. ISOL starts with 0, then accumulates terms as the
various inverse functions are applied to the argument expression.

21.3.2 Unit Functions with Simplification
Multiplicative functions automatically simplify the dimension part of unit object results
so that no unit name appears more than once. Thus

i_cm/s 1_cm™2/s * = 1_cm”"3/s"2

1_g/l * 25| = 25_g.

Unit names in the result’s numerator and denominator are collected, and unit names
common to the numerator and denominator are canceled. Note that only identical unit
names with common prefixes are collected or canceled. When the net power of any
name is zero, the name is removed from the dimension part of the unit. If all of the
names in the dimension part cancel, the result is converted to a real number:

21.3 Unit Management

28s 4s [= 7.

Unit simplification is performed by the following functions:

e *%, /, and INV.

e ~, SQ, V, and XROOT. For ~ and XROOT, the level 1 argument is a real number,
which is multiplied or divided into the powers of the unit names in the dimension

part. If the argument is zero for XROOT, the Bad Argument Value error is
reported (unlike the case where both arguments are real numbers, which returns the
underflow exception).

The functions do not attempt to simplify specific combinations of units into equivalent

units. 1_N#*m, for example, does not automatically convert to 1_J. While this might be
convenient in some cases, there is no unambiguous set of rules that the calculator could
use to identify desirable combinations. The gasoline mileage of automobiles is an obvi-
ous case in point. We commonly express this quantity in miles/gallon or kilometers/liter,
but it actually has the dimensions length ~2. It would require a very intelligent conver-
sion algorithm to resist returning mileage in units of m ~2.

When you do want to convert a unit object to a specific form, you can use CONVERT,

where the second argument contains the desired dimension part. For cases where you
do not know exactly what form is required, but you do want to extract a particular com-
bination unit, use UFACT. This command takes a unit object (level 2) and convertsit
such that its dimension part becomes the product of the dimension part of a level 1 unit
object times whatever base unit factors are left over. Suppose you want to know what a
watt is in terms of newtons:

1_W 1_N UFACT = 1_N=*m/s

UFACTis equivalent to the sequence

OBJ-» 3 ROLLD / OVER / UBASE =

21.3.3 Operations on the Unit Magnitude
The following functions alter the magnitude of a unit object without regard to its dimen-
sions: ABS, CEIL, FLOOR, FP, IP, NEG, RND, SIGN, and TRNC. All of these except
SIGN apply a function to the unit magnitude, and combine the result with the original
dimension part of the argument. SIGN returns a real number -1, 0, or +1, according
to the sign of the magnitude.

RND and TRNC accept a unit object as the level two argument. The level one

-690-

Unit Management 213

argument, which specifies the rounding, must be a real number or a symbolic object.

21.3.4 Trigonometric Unit Functions
The trigonometric functions SIN, COS, and TAN can accept unit object arguments, pro-
vided the units are simple angle units--radians (r), degrees (°), arc-minutes (arcmin), arc-
seconds (arcs), or grads (grad). The results are independent of the current angular
mode. However, differentiation and integration of expressions containing these func-
tions with unit object arguments will produce correct results only in radians mode. Note
also that there are no corresponding inverse functions that return unit objects.

21.3.5 Examples of Calculations with Units
m Example. A mass of 15 g moves in a circle of radius 7 cm with a speed of 35 cm/s.
Computeits various kinematic and dynamic properties.

m Solution. Start by storing the parameters:

15.g ‘M STO 7_.cm 'R’" STO 35_cm/s 'V’ STO

Now compute the angular velocity:

VR / = 51/s

'w" STO

Moment of inertia:

'M*R"2' EVAL 1= 735_g*cm”"2

" STO

Angular momentum:

|l o * = 3675_g*cm”2/s

Kinetic Energy:

"*w"2/2' EVAL 1= 9187.5_g*cm”"2/s"2

1_J CONVERT = .00091875_J.

» Example. How large must a parallel-plate air-filled capacitor be to have a capacitance

-691-

213 Unit Management

of 1 farad, if the plate separation is 0.1 mm?

m Solution. The capacitance of a parallel-plate capacitor is given by C = €,4/d, where
A is the plate area, d is the separation, and €y = 89X 102coul?/N-m?. Rearranging,
A = dC/ey. Thus A can be calculated by

JA_mm 1_F =* 89E-12_C"2/(N*m"2) / UBASE = 1.1E7_m™2.

21.3.6 HP Solve
The current equation used by HP Solve and any of its variables may contain unit
objects, either explicitly in expressions or implicitly as the values of variables within
those expressions. The only constraint is that you must supply a guess for the unknown
variable which is a unit object with the correct dimensions for that variable. See section
14.3 for more detail and examples.

When the root-finder evaluates the current equation at each iteration, it evaluates it in
the normal way, then strips the units from the result for comparison with the previous
iteration. If the current equation happens to change its units at some point in its
domain, this would appear as a discontinuity to the root-finder, leading possibly to an
invalid result. This situation arises from terms like this:

IFTE(x<<0,1_cm,10_mm).

Such terms are unlikely to appear in practical problems.

21.3.7 Plotting
The automatic plotting provided by DRAW (Chapter 15) does not fully support units, in
that the plotting ranges may only be specified as simple real numbers. However, you
can still create function plots from current equations that contain unit objects, with the
following provisions:

e You must store a unit object with appropriate dimensions in the independent vari-
able. The magnitude of the object is not used, but the dimension part determines
the units of the independent variable at each evaluation of the current equation as
the plot progresses across the horizontal domain.

e The horizontal and vertical ranges are taken to be the magnitudes of unit objects.
That is, if the current equation evaluates to y_units,, then the vertical range is
assumed to be y min_unitsy to ymay_unitsy, where ypin and yey are the (dimension-
less) vertical plot limits. The horizontal range is effectively xmyin_units, to
Xmax_Hnits,, where units, is the dimension part of the unit object stored in the

-692-

Unit Management 21.3

independent variable.

e The left and right sides of an equation should evaluate to the same units. Otherwise
they will be plotted with different vertical scales. EROOT= and SISECTE will still give
valid results, but the graph will show the intersections in the wrong places.

As in the case of HP Solve, an artificial discontinuity can be introduced if the current
equation for plotting returns different units at different points in the plot domain.

21.3.8 Differentiation
Consider the simple conservation of energy for a falling body: ¥w? = gh, where v is the
body’s speed afterit falls a distance . Entering this equation into the HP48, you can
use QUAD (section 16.4.3) to solve for V:

'VA2/2=g#h’ 'V’ QUAD 1 ’'s1’ STO EVAL COLCT 1= 'V="V(2%g+h)'.

Then you can store values for g and h, and evaluate again:

1 FIX 9.81_m/s*2 'g’ STO 100_m ’'h’ STO EVAL UBASE r= 44.3_m/s.

But if you repeat the exercise, this time with the unit objects already stored, you get an
unexpected error:

'Vr2/2=g*h’ 'V’ QUAD =

+ Error:
Inconsistent Units

-981_m"2-s"¢
AVIEREN(2102

B_m
B_m-s™¢

TDTENETBRI

=
M
-
p

The problem arises from the differentiation performed by QUAD as it computes the
quadratic coefficients. During the course of chain-rule differentiation, an expression is
evaluated one or more times, which means that variable names are replaced by their
values. Try differentiating the right-hand side of the equation with respect to V:

'aV(g*h)’ EVAL = '3V(g)*h+g*aVv(g)’

-693-

21.3 Unit Management

At the next evaluation, both of the remaining derivatives are zero, but the values of A
and g are also substituted in the expression, so that you will be evaluating

'0*100_m+9.81_m/s"2+0'. This fails because the two terms have different unit
dimensions.

This problem affects 3, QUAD, and TAYLR applied to expressions with variables con-
taining unit objects. There are two ways to avoid the difficulty:

e Carry out the differentiations before assigning values to the variables, or switch to a
directory where the variables are undefined.

e Replace the variable names by their values before differentiating. For the variable

of differentiation, separate its units from the variable.

To illustrate the second method, start again by entering the equation 'V*2/2=g*h’.
First, evaluate g and h using SHOW (section 16.4.2):

'V*2/2=g*h’ {V} SHOW 1= ’'V"2/2=981_m"2/s"2’

Now replace V by 'v¥1_m/s’:

{V 'v¥i_m/s’} tMATCH DROP w= '(v¥1_m/s)"2/2=981_m"2/s"2’

Solve for v:

'v''. QUAD EVAL 1= 'v=44.3'

You can multiply this result by 1_m/s to obtain V.

21.3.9 Integration
For numerical evaluation of an integral, both the integrand and the integration limits
may contain unit objects. There is nothing special that you need to do to compute an
integral with units, except to insure that the units of the limits are compatible with the
units assumed for the independent variable:

e The units of the lower limit, determined by evaluating it numerically, are used for
the integration variable at every point at which the integrand is evaluated during the
approximation process. The limit’s units must therefore have suitable dimensions for
successful numerical evaluation of the integrand.

e The units of the upper limit must be dimensionally consistent with those of the lower
limit.

-694-

Unit Management 213

e The first time the integrand is evaluated, the units of the integrand are saved. Sub-
sequent evaluations of the integrand are converted to the dimensions of the saved
units. This prevents any variation of units at different points in the integral domain
from causing artificial discontinuities (integration is thus a little “smarter” than
DRAW or HP Solve).

e The units of the result are the product of the integrand units and the units of the
limits.

10s

» Example. Compute f (10_cm/s + Scm /s?-t)dt.
0s

= Solution.

'f(0_s,10_s,10_cm/s+(5_cm/s"2)#t,t)’ -NUM = 350_cm

Symbolic integration with units presents a somewhat different problem than numerical
integration. There are integrals that appear to be computable but which return an error
on the HP 48. Consider the integral

b
1

J‘k-x +vdx
a

where k has the dimensions s™1, @, b and x are expressed in m, and v is a speed in m/s..
Evaluating this on the HP 48 would return an error, because /n requires a dimensionless
argument. To compute the integral correctly, you must factor the units out of the
denominator before integrating.

21.4 Unit Management Idiosyncrasies

The HP48 unit management system is not perfect, in that in a few areas it compromises
universality for the sake of execution speed or simplicity. This may lead to some
surprises, but there are actually very few practical calculations that you can not carry out
as long as you allow for the system’s limitations.

21.4.1 Non-integer Unit Powers
The units in the dimension part of a unit object may be raised to arbitrary non-integer
powers. CONVERT computes its conversion factor accordingly, so that you can convert
between units with non-integer dimensions:

i_m*.5 1_cm”.5 CONVERT = 10_cm”.5

-695-

21.4 Unit Management

However, for the sake of dimension checking, unit powers are rounded to integers in the
range —128 to +127. This means that while you can successfully add 1_m".5 and
1_cm™.5, you can also add 1_m".5 and 1_cm".6 with no error report. The dimension
checking limitation also carries over to UBASE, and UFACT. Neither of these com-
mands will return meaningful results for units containing non-integer exponents.

This limitation is a deliberate design choice intended to make unit object arithmetic as

fast as possible. Representing base unit powers with small integers provides a consider-
able efficiency compared with using floating-point numbers. The loss of ability to han-
dle non-integer exponents in all circumstances is presumed to be a modest price to pay
for the speed gain, given that the great majority of physical problems involves integer
powers of units.

There are some cases where non-integer exponents appear in the course of a calculation
even though the final result has only integer powers. You can perform such calculations
on the HP 48, as long as you take care to simplify quantities to base units whenever pos-
sible, before any conversions are done. For example, evaluating

2_atm 8_b/gal * V UBASE 1= 13937.812022_kg*2/(m"3%*s),

which is dimensionally incorrect. The UBASE should be applied before the square root
to obtain the correct result:

2_atm 8_lb/gal * UBASE V 1= 13937.812022_kg/(m"2#s).

21.4.2 Temperature
The temperature units °F and °C have ambiguous meanings that prevent them from fit-
ting easily in the unit management system. They can be interpreted as units of thermo-
dynamic temperature; with that definition, °F and °C are interchangeable with °R and K|
respectively. Conversions associated with this interpretation work properly, such as con-
verting J/K to BTU/°F.

An alternate meaning for these units is as points on a thermometer scale. These are
not units in the usual sense, and intermixing thermometer points with thermodynamic

temperature units leads to problems. The HP 48 unit conversion scheme is based on
multiplicative conversions. This means that a conversion between two dimensionally
consistent units can be achieved with a simple multiplication. °F and °C considered as
thermometer points are not expressible as simple multiples of the base unit K. Additive
constants are needed as well, so the ordinary conversion scheme is inadequate for these
units. The thermometer points do not, for example, obey ordinary arithmetic rules. For

Unit Management 214

example, multiplication is not very meaningful--returning 20°F as the value of 2X 10°F is
not a very useful result. Also, addition is not commutative. If you write 5°C+ 10°F, you
probably mean “increment a thermometer reading of 5°C by 10°F (i.e. 5/9%10°C).”
But this does not yield the same result as 10°F+ 5°C.

The HP 48 does make some provision for the use of °F and °C as thermometer points.
In particular, when CONVERT is applied to two unit objects whose dimension parts are
cach any one of the four temperature units, the conversion accounts for the additive
constants. This allows CONVERT, including the automatic CONVERT built into the
TEMP menu keys, to be used for simple temperature conversions:

98.6_°F 1_°C CONVERT = 37_°C.

The HP 48 computes this result by converting the first unit object to kelvins, then con-
verting back to the units of the second object, including additive constants in both
conversions. For better or worse, a similar logic is applied to addition and subtraction.
Thus we have the somewhat surprising result

10_°C 5°C + 1= 288.15_°C.

Both arguments are converted to kelvins, added, then converted back to °C. This result
is justifiable, but it is hardly useful. The consolation is that the physical laws used in
practical problems are generally written in terms of absolute temperatures, and the
HP 48 units K and °R always work in calculations related to these laws.

A safe strategy when you do want to enter temperatures in °C or °F is to apply the
UBASE function to the temperatures prior to any further calculations. For example, in
problems of thermal expansion, you might have an expression of the form

Length=L0*(1 + o *(T—TO0)),

where LO is the length of a bar at the reference temperature TO, and a is the coefficient
of expansion. Calculations with this formula will not give correct results if the tempera-
tures are entered in °C or °F, unless it is modified to

Length=L0*(1 + o *(UBASE(T) - UBASE(TO0))).

Now the temperatures may be entered in any units. o may also be expressed in units
K1, °R-1 °F-1or °C~!. Note that applying UBASE to the temperature difference,
e.g. UBASE(T-TO0), does not solve the problem, because the subtraction is performed

before the conversion to base units.

-697 -

21.4 Unit Management

21.4.3 Angle Units
The angle units in the ANGL menu are dimensionless, which presents another problem
for the unit management system. Consider the radians unit r. A typical use of radians
is in formulae such as the definition of angular speed, ® = v/R. Here v has dimensions

length-time ™! and R has dimension length, and so w must have the dimension fime ~1.
But instead we like to assign w the dimensions radians-time™! to tie it to angular
motion. Evidently, UBASE(1_r) must have the value 1 (dimensionless) to make calcula-
tions like ®=v/R return correct results. But if this is the definition of 1_r, then 1_r/s
would convert to 1_Hz, which is certainly wrong by a factor of 1/2w. In order to make
this conversion correct, UBASE(1_r) must have the value 1/21r.

This contradiction is insoluble within the scope of the HP 48 unit management system,

which can not deal consistently with dimensionless units that appear or disappear
depending on what the visual appearance of an expression is supposed to be. The
HP48 makes the somewhat arbitrary choice that UBASE(1_r) is 1/2w (actually
.1569154943092). With analogous definitions for 1_° (1/360), 1_grad (1/400), 1_arcmin
(1/21600), and 1_arcs (1/1296000), conversions among all these units and Hz give
correct results.

To deal with formulae like the angular speed example where angle units can appear and
disappear, you can construct expressions in which each term must explicitly or implicitly
be uniform in angle units--specifically, each should have the same power of angle units.
For example, if the angular frequency equation is represented by the object
'w=(v/R)*1_r’, you can use it with values of w expressed in r, Hz, or any other units
angle/time (but you can’t use units of 1/time). Alternatively, you can leave the angular
units out entirely, since they do not contribute anything to the computation.

By extension from the plane angle case, and for the benefit of conversions involving
photometric units (see the next section), the solid angle unit sr is defined such that
UBASE(1_sr) returns 1/41r.

21.44 Photometric Units
The photometric units included in the LIGHT menu provide various measures of lumi-
nous power. The term luminous refers to the incorporation of the spectral response of
the idealized human eye into the units, so that they are not directly convertible into
ordinary units of power. For example, luminous intensity is the luminous power emitted
per steradian by a body. The base unit of luminous intensity is the candela, abbreviated
cd. It is defined as the luminous intensity of a body emitting 1/683 watt/sr of mono-
chromatic radiation at 5.4-10'2 Hz (5550 angstrom), which is the wavelength of maximum

sensitivity of the eye). Because of the spectral response factor, it takes more power at
any other wavelength to produce the same luminous intensity.

Unit Management 214

The fact that the definition of candela includes solid angle makes conversions among
related units problematic for the HP 48 unit management system, again because of the
elusive nature of angle units. For example, a lumen (Im) is a measure of luminous flux,
which is the power emitted by a surface per unit solid angle. A Iumen is defined as the
flux from 1 cd into 1 sr. However, if you execute 1_Im 1_cd CONVERT, you will obtain
7.95774715459E-2_cd. The numerical magnitude of the result is 1/41r; this factor is
included to cancel the 1/41 that is included in the definition of the HP 48 sr unit. That
is, a more proper conversion between lumens and candelas should include an explicit
solid angle factor:

1_Im/sr 1_cd CONVERT = 1_cd.

A conversion between cd and Im without including solid angle is essentially invalid, but
the HP 48 can not detect this because solid angle is dimensionless.

The LIGHT menu also includes three units of luminous surface brightness--stilb (sb),
lambert (lam), and footlambert (flam), and three units of illuminance--phot (phot), lux
(lux), and footcandle (fc). Surface brightness is the power emitted by a unit surface
area per unit solid angle, whereas illuminance is the power received by a unit surface
arca. Dimensionally, the two quantities are related to each other in the same manner as
luminous intensity and luminous flux. Therefore conversions between the two types of

units must include a solid angle factor, either multiplied times the surface brightness
unit, or divided into the illuminance unit:

I_stiib*sr 1_ph CONVERT = 1_ph.

ADD&T
ADDV
AGXOR
APLY1
APLY2
APVIEW
AREPL
ASN41
ASTO
BINCALC
BOUNCE
BS?
C1ADD1
C1SPLIT
CcB
CDIST
CEQN
CHARDISP
CHIMES
CHKINPUT
CHVAR
Cl
CINT
CLADD1
CLSPLIT
COSSUM
COUNT4
CROSSF
CSC
DATENAME
DD&T
DELCHIMES
DELOLDALARMS
DELROW
DFACT
DIM
DOTF
DOW
DRAWEBAR
DRAWPIX
FDER
FDIST
FIB
FIND
FRACALC
FRAME

Program Index

Add Date and Time

Concatenate Vectors

Animate with GXOR

Apply Program to 1 Symbolic Array

Apply Program to 2 Symbolic Arrays

Animation with PVIEW

Animation with REPL

ASN HP 41-style

Animation with STO
Binary Integer Calculator

Bouncing Ball Demo

Bit Set?

Column 1 Added with 1’s

Column 1 Split

Clear Bit

x? Probability Density

Characteristic Equation

Display HP 48 Characters

Hour Chimes

Prompt and Check Input

Change of Variables

Cosine Integral

Circle in a Triangle

Column Last Added with 1’s

Column Last Split

Cosine of a Sum

Count in 4 Ranges

CROSS Function
Cosecant Function

Create a Name from the Current Date

Delta Days and Time

Delete Chimes Alarm

Delete Old Alarms

Delete a Matrix Row

Double Factorial

Symbolic Array Dimensions

DOT Function

Day of Week

Draw with Error Bars

DRAW using PIXON

Formal Derivative

F-Distribution Probability Density

Fibonacci Series Generator

Find a Variable

Fraction Calculator

Frame the Graph Screen

-701-

627

300

264

304

304

268

268

182

268

192

269

178

661

660

178

677

310

258

636

331

614

369

661

661

573

229

289

537

107

627

638

638

280

234

302

288

625

655

271

593

677

296

121

194

273

FUNOF?
GCD
GSAMP
GSORT
INDEF
INFSUM
INTEVAL
INTSAMP
ITDRAW
JULIA
KEEP
KEYHALT
KEYTIME
LCM&GCD
LINEAR?
LPWR
LSFIT
MAND.EQ
MANPLOT
MEDIAN
MINFSUM
MINISTK
MINL
MINOR
MNDROP
MNORM
MOVE
MSGSHOW
NDIST
NEXTDAY
NLFIT
NORM
NSEGINT
N-S
OLABEL
PADD
PDIVD
PEXPR
PLIST
PMUL
PNEG
POIS
POLY
POLYF
POLYFIT
PPWR
PREST
PRGINT
PRIMES
PROMPTCONT
PSAVE
PSUB

Function Of?

Greatest Common Divisor

Graphics Samples

General-purpose Sort

Indefinite Integral

Compute an Infinite Sum

Integrand Evaluation

Integration Samples

Interruptible Truth DRAW

Julia Plot Utility

Keep n Objects

Halt if a Key is Pressed

Wait a Specific Time for a Key

LCM and GCD

Linear Form Test

List to Power

Least-Squares Fit

Mandelbrot Current Equation

Manual Plot Program

Medians of ZDAT

Compute an Infinite Sum (Monitor)

Small-font Stack Display

Minimum of a List

Minor of a Determinant

DROP m through n
Modified Normal Distribution Generator

Move a Variable

Show Messages

Normal Probability Density

Next ...Day Alarm Utility

Non-Linear Fit

Normal Distribution Generator

Numerical Segment Integral

Numeric to Symbolic

Object Labeling Utility

Polynomial Add

Polynomial Divide

Polynomial Expression

Polynomial to List

Polynomial Multiplication

Polynomial Negate

Poisson Generator

Polynomialize Expression

Polynomializing Function

Polynomial Fit

Polynomial Power

Plot Restore

Program to Integral

Find Prime Numbers

Prompt with CONT Display
Plot Save

Polynomial Subtract

-702-

607

238

261

298

600

349

603

610

503

505

78

340

340

345

606

584

658

504

481

646

349

266

322

280

78

357

122

343

677

634

666

357

613

303

259

580

582

582

584

581

581

356

585

536

664

583

455

615

360

330

456

580

Program Index

Program Index

PTINFSUM
Qu
RC-R
RMINL
-RPN
SADD
-SA
SA~
SB
SCDRAW
SCOF
SDET
SEGINT
SETCHIMES
SETTICKS
Sl
SIMEQ
SKETCH
SLVDRAW
SMINOR
SMS
SMUL
SORT
SPATTERNS
SSuB
STAR
STRN
SUBCOL
SumM4
SUMTERM
S-N
TAYLRXO
TDIST
TICKAXES
TIMED
TOCOSSUM
TPIX
UDIMS
VANGLE
VARPAR
VARPOL
VSUM
XARCHIVE
XFORM
XINT
XJULIA
XPTINFSUM
XSUM

Infinite Sum from Previous Term

Quadratic Root Finder

Real/Complex to Real
Recursive Minimum of a List

Convert to RPN

Add Symbolic Arrays

Stack to Symbolic Array

Symbolic Array to Stack

Set Bit

Save Coordinates and Draw

(Unsigned) Symbolic Cofactor
Symbolic Determinant of a Matrix

Segment an Integral

Set Chime Alarm

Store Tick Spacings

Sine Integral

Simultaneous Equations

Sketch Lines

Solve and Draw

Minor of a Symbolic Matrix

Scalar Multiply Symbolic Arrays

Multiply Symbolic Arrays

Sort a List in Increasing Order

Summation Patterns

Subtract Symbolic Arrays

Draw a Star

Transpose Symbolic Array

Subtract Columns

Sum 1/x*

Compute an Infinite Sum from TERM

Symbolic to Numeric

Taylor’s Polynomial at x,

t Probability Density

Draw Axes with Ticks

Timed Execution

To the Cosine of a Sum

Toggle a Pixel

Unit Dimensions

Angle Between Two Vectors

Variable 8t Parametric DRAW

Variable 80 Polar DRAW

Sum Vector Elements

Extended Archive

Coordinate Transformation

Extended Integration

Julia Set Utility with Exit

Infinite Sum in x from Previous Term

Extended Sum

-703-

368
319, 326

227
353
534
305
302
302
177
482
308
308
612
637
463
369
364
273
483
309
306
306
297
597
305
272
305
282
347
347
303
595
677
464
350
574
272
682
283
500
496
234
108
289
607
506
368
597

Subject Index

aborting programs 316

ABS 283

ACK 632, 640

ACKALL632, 640

acknowledge alarm 179, 631

action 30, 32

user key 179

activation 30

add fractions 569

alarm 627

acknowledge 179, 631

announcement 630

appointment 630

beep 179

catalog 135, 628, 638

commands 636

control 635

deletion 637, 640

execution object 628, 629, 636

index 635, 636

list 627, 636, 639

parameters 628

repeat interval 636

alarm-set menu 628

ALG annunciator 141

alert annunciator 631

algebraic 48, 515

calculator 21

entry mode 141, 143, 207

evaluation 49

object 3, 21, 25, 29, 30, 32, 47, 63, 200, 515, 534

syntax 16, 48

algebraic/program mode 142
ALOG 570

alpha key action 179

ALRMDAT 630, 632, 640

analytic function 26, 527

angle mode 175, 178, 286

annunciator, alert 631

ALG 141

busy 145, 631

PRG 141

USER 180

1USR 180

applications 402

APPLY 536

appointment alarms 627, 640, 629, 630, 636

arbitrary integer 530, 531, 532

sign 530, 531, 532

ARC 273, 274, 475

ARCHIVE 106

AREA 487

argument 16

disappearing 79

recovery 72, 87, 179, 242, 312

saving 87

array 40, 277, 301

entry 151

-~ARRY 72, 277, 288

ARRY- 278

ASCII files 215

ASN 180, 182, 184

assignment, key 175, 180

associate left 565

right 565

association 546, 547, 562, 565

attach library 101

ATTACH 102, 104

ATTN 133, 241, 315, 339

automatic linefeed 179

mode change 142

repeated operations 561

simplification 52, 57

automating calculations 195

AUTO 449, 453, 508, 510, 512

AXES 454, 462, 493

-~A 565

A~ 565

backspace 168

backup object 46

Bad Argument Type 49

Bad Argument Value 690

Bad Guess(es) 428

BARPLOT510

BAR 464, 509

base 165

base units 680

BASIC 2, 32, 201, 245, 516

beep, error 179

BEEP 630

best fit 653

BESTFIT 651, 653

BIN 178

binary integer 40

binary transfer 179

binomial coefficients 670

-705-

Subject Index

BINS 512, 644

BLANK 262

BOX 273, 274, 475

branch 225

unconditional 225

built-in object 59

program object 31

units 682

busy annunciator 145

BYTES 10, 41, 224, 318, 327, 406

calculus 587

CASE structure 228

catalog, alarm 638

equation 421, 638

statistics 642

cell 150

cursor 150

CENTR 138, 457, 469

CENT 454, 469

CF 55, 176, 222

%CH 590, 689

chain-rule 587

change of sign 430

changing variable contents 117

character code 38, 39

characteristic equation 310

checksum 327

CHR 39

CIRCL 475

Circular Reference 87
clear flag 175

CLEAR 68, 135

clearing 68

clipping 275

CLKADJ 624

CLLCD 257, 258

clock 621

setting 622

closing subexpression 160

CLUSR 96

CLVAR 96, 142, 420

CLZ 642

code object 30

cofactor 307

COLCT 519, 525, 544, 545, 559, 572, 576, 579,

601, 604

column number 116

column vector 282

COL= 507

combinations 669

combining RPN and algebraic 22

COMB 669, 670

-706-

comes due 628

command 26, 59, 100

test 221, 223

command line 63, 139, 140, 144, 146, 202, 335

command stack 145

comment 146, 36, 216

common notation 17

commutation 564

commutative property 562

compact format 9, 405

complex array, MatrixWriter 151

complex number 34

operators 568

result 35

composite object 30, 51, 63, 289, 299

compound unit 682

CON 117, 120, 279, 294

concatenation 37

conditional 32, 221, 225

configuration program, library 103

conic plots 459, 488

CONIC 464, 489

CONJ 568

conservative approach 519

constant, symbolic 57, 170, 178, 211

Constant? 429
CONT 183, 290, 314, 316, 317, 329, 333

continuous plot 449, 459

type 449

contravariant vector 282

control alarms 627, 640, 629, 635

conversions, unit 684

CONVERT684, 686, 687, 690

coordinate mode 285

coordinate system 178

coordinates, logical 269, 456

cylindrical polar 284-286

polar 34, 284-286

rectangular 284

spherical polar 284-286

copying stack objects 70

correlation coefficient 648

CORR 648

counted string 37

counter 119

covariant vector 282

COV 648

CRDIR 89

CROSS 283, 288

CST 185, 687

menu 185, 410

current directory 89, 111, 608

equation 414, 453

path 89, 101, 592

statistics matrix 642

cursor 457

cell 150

graphic 179

subexpression 170

curve filling 179, 499

flag 499

custom error 242

custom menu 185, 186, 175, 443, 687

customization 175

cylindrical polar coordinates 284, 286

C-PX 270, 274

C-R 35

D 566

data object 32

date display 622

format 179, 623

flag 623

numbers 622

DATE+ 626

DATE 624, 626

-DATE 624

DBUG 317, 319

DDAYS 626

debugging 317

DEC 178

decimal digits 179

DECR 117, 119

default guess 433

DEFINE 86, 205, 208, 210, 526

defining expression 206

procedure 11, 246, 407, 538

definite integral 600

definite loop 230, 234

definition equation 478

definition expansion 570

definition, object 27

-DEF 570

degrees mode 589

degrees of freedom 676

~DEL 147

DELALARM 635, 637

deleting suspended program 316

delimiter 27, 127, 144, 214

DELKEYS 183

DEL- 147

denominator 163

dependent column number 647

variable 416, 646

depn 454

-707-

Subject Index

DEPND 460, 462, 489, 502

DEPTH 293

der 590
derivative 436, 538, 587

DETACH 104

determinant 307

differentiation 436, 538, 587

with units 693

digit-group commas 34

digitize 430

dimensions 679

consistency 688

directory 45, 60, 88, 420

current 89, 111

PURGE 94

Directory Not Allowed 94, 95

Directory Recursion 95

disappearing argument 79

discrete plot types 455, 449

DISP 258, 332, 344

display 255

freeze 258

graphics 123, 124, 260

mode 525

standard 126, 256

distribute-prefix-operator 567

distribution 546, 547, 566, 568

function 673

divide bar 163

DO loop 236

DO 238

DOERR 100, 104, 241, 242

DOT 282, 288

DOT+ 473

DOT- 474

double guess 430, 431

integral 616

inverse 568

negate and distribute 567

negative 568

quote 36, 62

double-space mode 179

double-where 599

DRAW 53, 249, 271, 417, 449, 452, 453, 459, 461,

464, 469, 478, 480, 488, 489, 493, 495, 497, 498,

501, 502, 507, 509, 511, 619, 654, 692

DRAX 452, 461, 463

DROP 68, 134

DROP2 69

DROPN 69

DUP 70, 82, 134

DUPN 72

Subject Index

D- 566

ECHO 148

EDEQ 413

EDIT 76, 147, 154, 311

editing 554

menu 147, 154

program 311

edit/view 148

ELSE 225

else-sequence 225

empty 79

END 225

endless execution 61, 87

ENG 608

ENTER 19, 26, 72, 134, 140

explicit 140

implicit 140, 145

oENTER 191

BENTER 191, 265

entry mode 141, 142, 187, 189, 550

algebraic 141, 143, 207

entry, array 151

entry, text 128

ENTRY 143

environment 12, 126, 132, 408

plot 12, 126, 465

standard 12, 408

EQ 118, 410, 413, 414, 420, 450, 453, 478, 509, 642

EQ- 527

equality 223

logical 223

physical 223

equation catalog 421, 638

equation 534

EquationWriter 134, 148, 156, 266, 521

ERASE 449, 452, 469

ERRO 241

ERRM 100, 104, 240, 241, 242, 316

ERRN 240, 241, 242

error 239

bar 653

beep 179

trap 239, 242

custom 242

error-sequence 240

EVAL 31, 47, 51, 55, 60, 64, 97, 114, 290, 427, 572,

589, 600

evaluate 16, 25, 31

algebraic 49

exception 243

action flag 243

overflow 178, 244, 670, 671

underflow 178, 244, 671, 690

exchange of arguments 69

execution 25, 30, 31, 60, 116

by address 64

endless 87

local name 61

numerical 52, 55, 56, 58, 598

postponed 146

preventing 31

symbolic 52, 58, 225

exit 234, 225

EXP" 570

EXPAN 50

expansion 541, 547

EXPAN 525, 544, 545, 547, 559, 572, 576, 601

EXPFIT 647

explicit ENTER 140
exponent 33

exponentiated 165

EXPR 170

EXPR= 418, 419, 428, 445

expression 16, 48, 534

defining 206

manipulations 541

rearrangement 521

simplification 545

EXP 570

extensive manipulations 544

Extremum 429, 438

EXTR 436, 486

F(X) 484

F-test 675

FACT 671

factorial 670, 671

factors 546, 563

fast catalog 179

FC? 223

FC?C 177, 223

FCN menu 436, 483

filled curves 478

FINDALARM 638

first guess 429

FIX 526, 608

flag 55, 175, 220, 333

-2 56

-3 56, 428, 598

-15 285

-19 36

—-20--26 243-244

-30 478, 492

-31 499

-708-

-41 622

-42 622

-42 623

-5134

-53 539, 559, 565, 574

=55 73, 243

-60 129

-61 129, 180

-62 180

clear 175

exception action 243

stack 177

system 175

user 176, 222

floating-point 33

font 265

FOR 230

FOR...NEXT 246, 230

FOR...STEP 233, 246

formal derivatives 592

formal variable 61, 249

format, 24-hour 179

compact 9

date 179

decimal number 179

linear 156

FORM 559, 561

FORTH 5, 67

fraction mark 179

FREE 105

freeze display 258

FREEZE 257, 329, 332, 344

FS 222

FS? 223

FS?C 177, 223

function 16, 25, 26, 48, 205, 535, 598

analytic 26

execution mode 598

menu 132, 483

plot 459, 477

user-defined 86, 161, 196, 204, 205, 210, 288

FUNCTION 464, 509

gamma function 671

GCD 345

generations, calculator 2

GET 116, 117, 186, 278, 281, 291, 295, 299

GETI 116, 117, 278, 291

global name 30, 59, 60, 61, 83, 90, 245, 327

variable 45, 59, 83, 111, 245, 248, 329

GOR 263, 267, 270

GOTO 217

GO+ 151

Subject Index

GO- 151

grads mode 589

graph screen 126, 255, 260, 266, 465

GRAPH 126, 134, 256, 257, 465, 551

graphics 256

cursor 179, 466

display 123, 124, 260, 465

display of expression 156

object 42, 260

greatest common divisor 345

-GROB 265

GROB 42

guillemets 62

GXOR 263, 267, 270

GXOR 263, 267, 270mantissa 33

*H 454, 457, 472

HALT Not Allowed 480

HALT 109, 290, 313, 315, 316, 317, 320, 329, 332,

335, 480

helvetica 8, 403

HEX 178

hidden operation 133

parentheses 179

HISTOGRAM 464, 511, 512

HISTPLOT512

HMS+ 626

HMS 625

-HMS 625

HMS- 625, 626

home directory 88

HOME 91, 114, 121

HP Solve 53, 138, 196, 201, 409, 523, 524, 530,

532, 692

equation entry menu 412

solver menu 410, 416, 418, 443, 532

variables menu 410

HP 15C 608

HP17B 13

HP19B 13

HP27S 13

HP 28 617

HP 34C 409

HP35 2

HP 41 2-5, 76, 140, 180, 181, 202, 216, 217, 641

HP 65 2

HP 71B 180

HP 80 409

i35

identity operations 559, 568

IDN 117, 120, 279

IERR 608, 609

IF structure 135, 225

-709-

Subject Index

IF 225

IFERR structure 317, 339

IFT 32, 51, 227

IFTE 32, 51, 227

IM 36

immediate entry mode 141, 143

immediate-execute key 141

implicit integration 615

ENTER 140, 145

GET 117

parentheses 165

implied multiplication 162

Improper Definition 209

IM 568

Incomplete Subexpression 161, 551

Inconsistent Units 684
INCR 117, 119, 237

indefinite loop 230, 234, 235

independent column number 647

RAM 99

variable 415, 417, 459, 492, 646

INDEP 417, 454, 459, 460, 478, 489, 493, 497, 502

index for GET 116

index wrap 179

infinite result 178

action flag 243

infix notation 17

operator 162

inner product 283

input and output 329

inputlist 294

INPUT 335, 341

insert mode 148

integral 598

derivatives 602

limits 600

numerical 608

programs 615

strategies 611

symbolic 598

with units 694

interactive stack 74, 134, 148

intercept 647

Intercept: 649

intermediate result list 296

intermix binary and real 41

real and complex 36

internal accuracy 33

Invalid Array Element 151

Invalid Card Data 105
Invalid Date error 626

Invalid PTYPE 483

-710-

Invalid Syntax 161

Invalid Unit 684
Invalid User Function 210
Inverse of power or inverse of inverse-product 568

INV 568

IOPAR 118

IP 590

IR port 179

ISECT 485, 486

ISOL 207, 249, 439, 519, 521, 523, 525, 526, 527,

530, 531, 541, 598, 689

italics 8, 404

iteration 225, 230

KEEP 76

Kermit message 179

Kermit overwrite 179

key assignment 175

buffer 339

code 341

format 8

menu 8

plane 180

shifted 8

type 141

typing 141, 142, 190

KEY 335, 339, 341

key-per-function 125

keyboard 127

standard 126

keycode 180, 339

keys, format 404

keys, menu 404

keys, shifted 404

KILL 316

known variables 520

label 217

LABEL462, 473, 478, 493

last arguments 72, 87, 179, 242, 312

command 176

error message 123, 124

error number 123, 124

menu 129

stack 72, 144, 176

LAST 72

LASTARG 72, 87, 242, 460

~LCD 257, 260

LCM 345

least-common-multiple 345

least-squares fit 649, 656

LET 86

LEVEL 76

library 30, 96, 99, 100, 123, 124, 401

attach 101, 102, 104

ID 100

title 102

LIBRARY menu 46, 96, 105, 137

LIBS 104

limits of integration 600

LINE 272, 274

linear 598

coefficient 599

format 156

regression 649

linear congruential method 672

LINE 474

LINFIT 647, 649

LISP 5

list 40, 277, 289

object 25, 30, 32, 51, 289

input 294

output 296

-LIST 290, 293

LIST- 291

LNP1 601

LN 570

local memory 109, 110, 123, 124, 245, 248

name 30, 109, 111, 206, 208, 245, 538

name execution 61

name resolution 249

variable 79, 59, 61, 74, 109, 205, 206, 231, 245,

248, 315, 538

variable structure 111, 246

LOGFIT 647

logical coordinates 269, 456

equality 223

operator 221

logical units 460

loop 230

index 231, 246

definite 230, 234

DO 236

endless 61

indefinite 230, 234, 235

WHILE 236-238

loop-sequence 236, 237

LR 345, 509, 649, 651, 653

Yukasiweicz, Jan 17

«M 567

MacLaurin’s formula 594

magnitude 679

manual operation 26

mark, plot 468

MATCH 572, 574, 604

tMATCH 525, 572, 593

-711-

Subject Index

‘MATCH 525, 572, 605

mathematical approximation 433

mathematical function 207

matrix 40, 277

MatrixWriter 134, 148, 149, 176, 642

MAXS 645

MEAN 644

MEM 96, 105, 184

Memory Clear 124, 125

memory reset 123, 124, 622

memory, local 109, 110, 123, 124, 245, 248

user 59, 88

VAR 59

MENU 130, 185, 333

menu, custom 185, 175

exit 132

key label 126

port 99

screen 255

subexpression 170

VAR 83, 112, 137, 185, 245

MERGE 105

merging 541, 567

message, prompt 179

message, table 242

minor 307

MINZ 645

mode 12, 175, 408

coordinate 285

entry 141, 142, 187, 189

insert 148

numeric 225

program entry 76, 143, 214

server 138

user 123, 124, 129, 158, 180

mode-dependent key 141

Modl: 647

MOD 590

multiple integral 616

plots 454

roots 529

M- 567

name, global 30, 59, 60, 61, 83, 90, 245, 327

local 30, 109, 111, 206, 208, 245

object 29, 58, 116, 233

port 97

quoted 62

resolution 90, 110, 249

XLIB 30, 46, 61, 103, 181

NEG 260, 262

negative pixel coordinates 274

NEG 568

Subject Index

NEW 413

newline 151

NEWOB 100, 297, 300

next event 622

non-analytic function 26

Non-Empty Directory 94, 96

Nonexistent Alarm 637
normal distribution 673

normal-sequence 239

NOT 238

notation 8, 403

common 17

infix 17

Polish 17

prefix 17

Reverse Polish 15

=NUM 32, 55, 56, 427, 598, 608, 617

NUM 39

numbered register 59

numerator 163

numerical execution 52, 55, 56, 58, 598

integration 608

mode 225

numeric/symbolic execution 178

NXEQ 485

object 25, 139

class 32

composite 30, 51, 63, 289, 299

data 32

definition 27

entry 127

graphics 42, 260

name 29, 58, 116, 233

program 30

string 36, 144

symbolic 63

system 27

tagged 42, 345

type 27

unit 44

untagged 43

value 27

Object In Use 99, 104

object-to-grob conversion 265

OBJ~ 35, 38, 43, 44, 69, 112, 191, 278, 288, 291,

574, 578, 605

obtaining guesses 433

OCT 178

operation 25, 59

manual 26

logical 221

ORDER 85, 112, 422, 423

-712-

output, display 344

list 296

OVER 71

overflow 178, 244, 670, 671

Owner’s Manual 5, 402

w 56, 211

page, menu 129

PARAMETRIC 464, 497

parent 90

parsing 144

past due alarms 628

path, current 89, 101

path name 113

PATH 89, 113

PDIM 267, 458

pencil-and-paper 18

pending alarm 628

permanent custom menu 185

PERM 669

PGDIR 96, 106

physical equality 223

PICK 70

PICT 267, 476

picture 255

PIX? 272

PIXOFF 271, 274

PIXON 270, 274, 473

plot cursor 466

environment 12, 126, 408, 451, 465

resolution 460

ranges 692

with units 692

PMAX 456

PMIN 456

polar coordinates 34, 284

plots 491

POLAR464, 491

Polish notation 17

polynomial fits 662

polynomialize 576

polynomials 575

port 96, 97, 99, 100, 105

menu 99

name 97

variable 97, 96

POS 39, 293

postponed execution 146

PPAR 118, 138, 269, 270, 454, 456, 458, 459, 460,

461, 464, 507, 511, 647

PR1 138

precedence 17, 179, 565

predicate operator 689

PREDX 650

PREDY 650

prefix notation 17

operations 567

operators 567

unit 681

preventing execution 31

PRG annunciator 141
principal value 178, 531

printer port 179

probability density 673

probability menu 669

problem solving 195, 198, 516, 520

procedure 47, 200, 201

defining 11, 246

program 29, 47, 52, 196, 201, 213

as argument 331

body 214, 215

content 47

definition 47

editing 311

entry mode 76, 141, 143, 201, 214

legibility 205

object 30

optimization 323

quotes 62

quoted 63
structure 47, 202, 213, 215, 219, 326

structure word 32, 142, 213, 219

suspended 313, 329

unquoted 63

programming 195, 202

structured 203, 216, 217, 313

prompt message 179

PROMPT 290, 313, 315, 317, 320, 329, 330, 332, 335,

344, 480

PRTPAR 118

PRVAR 97, 318

pseudo-linearfits 650

pseudo-linear regression 650

PTYPE 448, 489

PURGE 86, 92, 96, 97, 99, 100, 267

directory 94

recovery 87

PUT 117, 119, 120, 186, 278, 281, 291, 295

PUTI 117, 119, 120, 278, 291

PVARS 96

PVIEW 257, 270, 345

PWRFIT 647

PX- 270, 274

-Q 193

QUAD 249, 489, 519, 521, 525, 526, 528, 530, 531,

-713-

Subject Index

541, 693

quadratic equations 528

qualifying message 412, 427, 428

quotation mark delimiters 62

quote, name 62

program 62

single 62

string 62

tagged object 99

quoted argument 535, 617

QUOTE 535, 538, 601

-Q 525, 608

-Qm 525, 526

radians mode 570, 589

random number 671

RAND 648, 649, 650, 671

RATIO 164

RCEQ 138, 452

RCL 60, 97, 100, 113, 116, 222, 267

RCLALARM 183, 628, 637, 640

RCLF 177

RCLKEYS 183

RCLMENU 186

RCWS 178

RDM 117, 120, 278

RDZ 672

RE 36

real number 33

recentering 469

Recover RAM 124, 125

recovery 314

argument 72, 87, 179, 242, 312

from PURGE or STO 87

stack 72

rectangular coordinates 284

referenced 99

register 115

numbered 59

storage 59

reordering terms 541

repeat interval 628

REPEAT 237, 238

REPL 39, 172, 264, 267, 268, 270, 292

REPL476, 545

Replace RAM, Press ON 105

reschedule 179

RESET451, 455

resolution, name 110, 460, 477, 507

local name 249

RESTORE 106, 107

result 16

RES 454, 499

Subject Index

Reverse Polish Notation 15

RE 436, 568

right hand 9, 405

RND 690

ROLL 69

ROLLD 69

root 409, 693

ROOT 201, 249, 413, 426, 438, 440, 482, 485

root-finder 409

ROT 70

row number 116

order 277

vector 282

RPL §, 12, 21, 22, 60, 64, 82, 112, 518

RPN 3, 15

command 26

principle 15, 50

RULES 132, 149, 157, 172, 522, 525, 541, 544, 545,

550, 556, 557, 560, 561, 563, 572, 575

R-C 35

S 183

X 587, 595, 601

3+ 510, 660, 641

3 - 641

SAME 44, 223

sample covariance 648

standard deviations 645

saving, argument 87

SCALE 454, 457

scatter plot 507, 653

SCATTER 464, 507, 654

SCI 608

SCL 508

SCONJ 117, 120

screen 126, 255

graph 126, 255, 260, 266, 465

menu 255

text 126, 255, 260

SDAT 118, 453, 507, 510, 642

SDEV 645

selection arrow 421

environment 550

separator 144

sequence 9, 213, 230, 233, 405

server mode 138

set flag 175

setting an alarm 628

SF 55, 176, 222

SHOW 425, 439, 440, 528, 537, 599, 694

signal flag 176, 244

SIGN 499, 690

simple units 682

-714-

simplification, automatic 52, 57

SIN 175

single guess 430, 431

single quote 62

single-step 316, 319

SINV 117, 120

SIN 589

SI 680

SIZE 38, 262, 267, 278, 291

SKEY 184

SKIP- 147

«~SKIP 147

slope 647, 649

Slope: 649

SNEG 117, 120

solve variables menu 197

solver menu 197, 410, 416, 418, 443, 532

modifying 443

space, in EquationWriter 161

SPAR 118, 509

spectral test 672

spherical polar coordinates 284, 286

square root 165

SQ 568

SST 316, 319

stack 9, 19, 21, 67, 125, 405

diagram 10, 406

flag 177

level 29, 67

recovery 72, 312

roll 69

interactive 74, 134, 148

unlimited 77

display 126, 256

environment 12

keyboard 126

standard environment 12, 408

start 230, 231, 233

START...NEXT 234

START...STEP 234

starting and stopping 313

statistics 641

catalog 642

matrix 149, 641

one-variable 644

summary 655

two-variable 646

status area 126

STD 525

step 233

step-wise substitution 60

STEQ 138, 410, 413, 452

STO 44, 83, 87, 92, 97, 100, 267, 268, 281, 476, 642

STO recovery 87
STO* 118

STO- 118

STO+ 118
STO/ 118

STOALARM 630, 636, 640

STOF 177, 183

STOKEYS 182

STOZ 642, 644

stop 230, 231, 233

storage arithmetic 118

storage register 59

-STR 38

string object 36, 144

counted 37

stripping tags 44

structure 50

local variable 111, 246

program 47, 202, 213, 215, 219, 326

word, program 32, 142, 213, 219

structured programming 203, 216, 217, 313

STR~ 112

STWS 41, 178

SUB 39, 265, 266, 267, 292

subdirectory 90, 420

subexpression 50, 158, 170

cursor 170

environment 521

level 50

menu 170, 551

mode 550

closing 160

subroutine 217, 330

substitution 64, 523

SUB 476, 545, 603

summands 546

summary statistics 655

summation 231, 595

patterns 596

suspended program 313, 329

SWAP 69, 70, 134

symbolic array 301

calculator 3

constant 57, 170, 178

execution 52, 58, 225, 598, 598, 608

fraction entry 163

integration

manipulations 196

math 197, 515

object 63, 515

solutions 439, 524

-715-

Subject Index

syntax 140

algebraic 16, 48

SYSEVAL 64

system flag 175

system halt 88, 100, 123, 124, 622

System Internationale 680

system object 27

«T 560, 563

T~ 563, 560

%T 591, 689

table-filling evaluation 427

tag 42

stripping 44

-TAG 43

tagged object 42, 345

object, quoting 99

Taylor’s polynomial 594, 617

TAYLR 529, 579, 587, 694

temporary custom menu 186

term movement operations 560

test 221

command 221, 223

test-sequence 225, 236, 237

text entry 128

screen 126, 255, 260

TEXT 126, 257

THEN 225

then-sequence 225

3D 287

tick marks 463

ticking clock 179, 621

ticks 62, 622, 624, 636

TICKS 623

time arithmetic 625

menu 621

numbers 625

number 622

system 621

value of money 409

TIME 623, 624

~TIME 623, 624

time-adjust menu 623

time-set menu 623

TLINE 272, 274, 474

TMENU 130, 186, 333

Too Few Arguments 210

transformation 555

trigonometric functions 570, 691

triple guess 430, 431

TRN 117, 120, 279

TRNC 690

truth plot 501

Subject Index

truth-valued function 501

TRUTH 464, 501

TSTR 624

TVARS 121, 122

TVM 409

24-hour format 179, 622

2D 35, 287

two-variable statistics 646

type number 27

TYPE 27, 44, 52, 63

type, object 27

type-ahead 339

typing 188

key 141, 142, 190

UBASE 224, 442, 682

UFACT 224, 690

Unable to Isolate 527

unconditional branch 225

Undefined Local Name 538

Undefined Name 53, 573

underflow 178, 244, 671, 690

uniformly distributed 671

unit built-in 682

conversions 684

in custom menu 687

differentiation 693

integration 694

magnitude 44

management 44, 679

menu 685

object 44, 679

plotting 692

prefixes 681

simplifications 689

-UNIT 684

unknown variable 415, 417, 520

unlimited stack 77

unquoted program 63

untagged object 43

UNTIL 236

UPDIR 90

upper-tail distribution function 673

user annunciator 180

flag 176, 222

key action 179

key assignment 180

memory 59, 88

mode 123, 124, 129, 158, 180

1USR 180

user-defined derivatives 590

user-defined function 86, 161, 196, 204, 205, 210,

288, 538, 590, 592, 600

user-defined units 683

UTPC 674, 675

UTPF 674, 676

UTPN 674

UTPT 674, 675

UVAL 684

-V2 35, 287, 288

-V3 287, 288

value, object 27

VAR 645

VAR menu 83, 112, 137, 185, 245, 410, 421, 532

VAR memory 59

variable 16

formal 61, 249

global 45, 59, 83, 111, 245, 248, 329

local 79, 59, 61, 74, 109, 205, 206, 231, 245,

248, 315

port 97, 96

VARS 121, 122

VEC 154

vector 40, 277, 282

contravariant 282

covariant 282

vectored ENTER 144, 145, 179, 190

vertical lines 478

VIEW 76

VISIT 76, 147, 311

VTYPE 27, 52, 122

V- 35, 287

*W 454, 457, 472

WAIT 341

where 168, 599, 617

WHILE 238

WHILE loop 236-238

«WID 150

WID- 150

wild card names 572

wordsize 41

x? distribution 675
X max 454

Xmin 454

Xaxes 454

XCOL 453, 507, 509, 511, 512, 646

XLIB name 30, 46, 61, 103, 181

XRNG 454, 457

XROOT 160, 166, 690

¥ min 454

¥ max 454

¥ axes 454
YCOL 453, 507, 646, 649

YRNG 454, 457

Zero 419, 428

-716-

zoom 470

ZOOM 469, 471

Z-B0OX 470

Delimiters and Punctuation
"r36, 62
41
[1 40
<> 213,214
t: 43

_ 44
177 62

{} 40
£ 24,285
@ 36, 146
~ 206, 210, 246, 290
? 687
& 9,405

Functions
+ 262
! 671
% 590
[596, 598, 608
a 538, 587, 590, 694
vV 165
| 160, 168, 599

224
223,224

223
223
223
223
223
223*

V
I
A
A
Y
V
H
o

RULES Operations
<A 565
A~ 565
AF 569
COLCT 572
<D 566
D~ 566
DINV 568
DNEG 568
E~ 570
E) 570
Lx 570
L() 570
M 567

-717-

Subject Index

Subject Index

M~ 567
<T 563
T- 563
TRG* 570
~TRG 570
(- 566
~) 566
—~ 565
(0) 566
~() 567
-() 567
1/() 568
+1-1 569
/1 569
*1 569
1 569

-718-

HP48 Insights
Il. Problem-Solving Resources

The HP 48S/SX Scientific Calculators provide
powerful symbolic and numerical computing
features that are applicable to a wide range
of problems. There is special emphasis on
six application areas, with special prompting

and operating environments to facilitate
interactive manual calculations. HP48
Insights Il focuses on these areas, which are

indicated by the legends above the top six
keys of the number pad: SOLVE, PLOT,
ALGEBRA, TIME, STAT, and UNITS.

This book is the second volume of a two-part series by Dr. William
Wickes on the operation and application of the HP 48. Part | concen-

trates on the underying unified principles of HP 48 operation, and the
tools and techniques for programming the calculator, including calcula-
tion methods, object storage, display management, and customization.
Part Il focuses on problem-solving in the six special application areas,
including discussions of design motivations, “how-to” descriptions and

examples for interactive operation, and methods for extending the built-
in functionality for custom applications. More than 60 programs are
included as examples and extensions, including two multi-program sys-
tems for polynomial manipulations and least-squaresfitting.

Part Il of HP48 Insights is self-contained, and can be appreciated by

anyone with a rudimentary knowledge of the HP48. Part / is not a
prerequisite, although many of its principles and methods are applied in
Part Il. Together, the two volumes constitute the most comprehensive
and effective exposition available of the principles and methods of the
remarkable HP 48.

Chapter Headings for Part Ii:

13. Introduction to Part Ii 401
14. HP Solve 409

15. Plotting 447
16. Symbolic Objects and Solutions 515
17. Expression Manipulations 541
18. Calculus 587
19. The Time System 621
20. Statistics 641
21. Unit Management 679

ISBN 0-9625258-4-7

	Cover
	Contents
	13: Introduction to Part II.
	13.1: About This Book
	13.2: Notation
	13.3: Terminology

	14: HP Solve
	14.1: The Equation Entry Menu
	14.2: Basic HP Solve Operation
	14.2.1: Independent, Dependent, and Unknown Variables
	14.2.2: An Example
	14.2.3: Equation Management
	14.2.3.1: Using Subdirectories
	14.2.3.2: The Equation Catalog

	14.3: Solving With Units
	14.3.1: Faster Solving with Units
	14.3.2: Monitoring Convergence

	14.4: Interpreting Results
	14.4.1: Qualifying Messages

	14.5: First Guesses
	14.5.1: How Many Guesses?
	14.5.2: Examples Using x(x-2)(x+2)=0

	14.6: Obtaining Guesses
	14.7: Finding Critical Points
	14.8: Using ISOL with HP Solve
	14.9: Programmable Solving
	14.10: Secondary Results
	14.11: Modifying the Solver Menu

	15: Plotting
	15.1: The Plot Menus
	15.2: Plotting Essentials
	15.2.1: DRAW
	15.2.1.1: Autoscaling

	15.2.2: EQ and SigmaDAT
	15.2.3: PPAR
	15.2.3.1: Saving A Graph

	15.2.4: The Plot Scale
	15.2.4.1: Redimensioning the Graph Screen

	15.2.5: The Independent Variable
	15.2.6: The Dependent Variable
	15.2.7: Resolution
	15.2.8: Axes and Labels
	15.2.8.1: Tick Marks

	15.2.9: Plot Type

	15.3: The Plot Environment
	15.3.1: The Plot Cursor
	15.3.1.1: The Mark

	15.3.2: Recentering and Zooming
	15.3.2.1: Programmable Zooming

	15.3.3: Drawing on the Graph Screen
	15.3.4: Working with Graphic Objects

	15.4: Function Plots
	15.4.1: Plotting Programs
	15.4.2: The Function Menu

	15.5: Conic Sections
	15.6: Polar Plots
	15.6.1: Examples
	15.6.2: Varying the Angle Increment

	15.7: Parametric Plots
	15.8: Truth Plots
	15.8.1: Julia Sets

	15.9: Scatter Plots
	15.9.1: Plotting Curve F1ts

	15.10: Bar Charts
	15.11: Histograms

	16: Symbolic Objects and Solutions
	16.1: Motivations
	16.2: General Symbolic Problem Solving
	16.3: Symbolic vs. Numerical Solutions
	16.3.1: ->Q and ->Qpi

	16.4: Automated Symbolic Solutions: QUAD and ISOL
	16.4.1: ISOL
	16.4.2: SHOW
	16.4.3: QUAD

	16.5: Multiple Roots
	16.5.1: Using the Solver Menu to Select Roots

	16.6: Algebraic Objects as Programs
	16.7: Refining User-Defined Functions
	16.7.1: Preventing Evaluation: QUOTE
	16.7.2: Applying Functions without Evaluation: APPLY
	16.7.3: Preserving Local Variables Values: |

	17: Expression Manipulations
	17.1: Extensive Manipulations
	17.1.1: COLCT
	17.1.2: EXPAN

	17.2: The EquationWriter Subexpression Mode
	17.2.1: Navigating the Expression
	17.2.2: Editing Subexpressions
	17.2.3: RULES
	17.2.3.1: Repeated Operations
	17.2.3.2: Condensed RULES Notation
	17.2.3.3: Moving Terms
	17.2.3.4: Commutation
	17.2.3.5: Association
	17.2.3.6: Distribution
	17.2.3.7: Merging
	17.2.3.8: Prefix Operations
	17.2.3.9: Unit Identities
	17.2.3.10: Adding Fractions
	17.2.3.11: Logarithms
	17.2.3.12: Exponentials
	17.2.3.13: Definition Expansions
	17.2.3.14: Addition Angle Formulae
	17.2.3.15: Collecting Terms

	17.3: Pattern Matching and Substitution
	17.4: Simplifying Polynomials
	17.4.1: Polynomial Programs

	18: Calculus
	18.1: Differentiation
	18.1.1: Calculus with Trigonometric Functions
	18.1.1.1: User-Defined Derivatives

	18.1.2: Formal Derivatives

	18.2: Taylors Polynomials
	18.3: Summations
	18.3.1: Summation Patterns

	18.4: Integration
	18.4.1: Symbolic Integration
	18.4.1.1: Integration Patterns
	18.4.1.2: Derivative and Integral
	18.4.1.3: Adding Integration Patterns

	18.4.2: Numerical Integration
	18.4.3: Integration Strategies
	18.4.4: Programs as Integrands
	18.4.5: Multiple Integrals
	18.4.6: Polynomial Approximations

	19: The Time System
	19.1: The Clock
	19.1.1: Setting and Reading the Time
	19.1.2: Time Arithmetic
	19.1.3: Date Arithmetic

	19.2: The Alarm System
	19.2.1: Setting Alarms Manually
	19.2.1.1: Cancelling Alarm Repeats

	19.2.2: Appointment Alarms
	19.2.2.1: Unacknowledged Repeating Alarms

	19.2.3: Control Alarms
	19.2.4: Alarm Commands
	19.2.5: The Alarm Catalog
	19.2.6: Automatic Alarm Deletion

	20: Statistics
	20.1: Data Entry
	20.2: One-Variable Sample Statistics
	20.3: Two-Variable Statistics
	20.3.1: Correlations
	20.3.2: Regressions
	20.3.2.1: Pseudo-Linear Regressions

	20.3.3: Best Fit
	20.3.4: Scatter Plots with Error Bars
	20.3.5: Summary Statistics

	20.4: General Least-Squares Fitting
	20.4.1: Utilities
	20.4.2: Polynomial Fits
	20.4.3: Non-Linear Least Squares Fits

	20.5: Probability Commands
	20.5.1: Combinations and Permutations
	20.5.1.1: Factorial and Gamma Function

	20.5.2: Random Numbers

	20.6: Upper-Tail Probability Distributions
	20.6.1: UTPN
	20.6.2: UTPT
	20.6.3: UTPC
	20.6.4: UTPF
	20.6.5: Probability Density Functions

	21: Unit Management
	21.1: Types of Units
	21.1.1: Prefixes
	21.1.2: Built-in Units
	21.1.3: User-Defined Units
	21.1.4: Unit Object Mechanics

	21.2: Unit Conversions
	21.2.1: The Unit Menus
	21.2.2: Using ?
	21.2.3: Units in Custom Menus

	21.3: Unit Object Mathematics
	21.3.1: Unit Operations Requiring Dimensional Consistency
	21.3.2: Unit Functions with Simplification
	21.3.3: Operations on the Unit Magnitude
	21.3.4: Trigonometric Unit Functions
	21.3.5: Examples of Calculations with Units.
	21.3.6: HP Solve
	21.3.7: Plotting
	21.3.8: Differentiation
	21.3.9: Integration

	21.4: Unit Management Idiosyncrasies
	21.4.1: Non-integer Unit Powers
	21.4.2: Temperature
	21.4.3: Angle Units
	21.4.4: Photometric Units

	Program Index
	Subject Index
	Delimiters and Punctuation
	Functions
	RULES Operations

