


Few calculator users are aware of the
computational power beneath their fin-
gers. Algorithms designed for one of the
many hand-held calculators that use
RPN (Reverse Polish Notation) can

solve remarkably complex numerical
problems, ordinarily given to large com-
puters.

This book explains how to write concise
and elegant algorithms for meeting spe-
cific, individual needs and for solving

numerical problems of surprising com-

plexity. Using only a RPN calculator and
the methods supplied, scientists, en-
gineers, and students can numerically
integrate differential equations, fit

curves to data using least-squares
techniques, solve transcendental alge-

braic equations, and evaluate many

special functions (such as Bessel func-
tions). In addition, existing algorithms
can be simplified and streamlined.

ALGORITHMS FOR RPN CAL-
CULATORS progresses logically: you
will understand and benefit from the first
chapters even if your background in-
cludes only high-school mathematics;
later chapters deal with more complex

problems involving calculus. And, a
large section of the book gives actual
RPN algorithms for a variety of common
problems. These are written to be

readily adapted or directly used on any
RPN calculator. This section alone con-
stitutes a valuable practical reference.

Each chapter ends with exercises (prob-

lem sets), and an appendix contains
numerical answers. In addition, the book
includes a critique of present calculator
designs with suggestions for future de-
velopments.
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PREFACE

The enjoyment of the tools one works with is, of course, an essential ingredient of

successful work.*

—Donald E. Knuth (1938- )

Reverse Polish notation (RPN) calculators are used by Nobel laureates
and grade school children, but few users are aware of the power beneath
their fingers. One can, for example, calculate the distance and heading
between points on the earth using an algorithm from Section A.7.2
(without knowing anything about spherical trigonometry). Section A.4.2
shows how to integrate a second-order differential equation using fourth-
order Runge-Kutta. Section A.12 illustrates the calculation of the interest
rate of an annuity using a very rapidly converging iterative algorithm. But
this book is intended primarily for those who want to write their own
concise and precise algorithms.
Many of the slide-rule tricks developed by engineers and many of the

techniques of classical numerical analysis and modern computer program-
ming are herein adapted to RPN. But RPN is different and needs special
attention if the resulting algorithms are to be optimum. RPN is an elegant
calculator system, and those who are willing to study it carefully can
write powerful RPN algorithms. But the difficulties are not as formidable
as they might seem, for RPN is a logical system—easy to remember and

use.
I have written for readers with a diversity of backgrounds. Much of this

book should be accessible to anyone who has an RPN calculator and has
read the accompanying instruction booklet. High school mathematics

through logarithms and trigonometry, but rarely calculus or advanced
mathematics, is needed as background for the first parts of this book. Later

*From Knuth (1969), p. 204.
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viii Preface

parts deal with more advanced concepts such as differential equations.
Sections 1.3.4 and 2.4, and Chapters 3, 4, and 5 use, at least to some extent,

concepts from calculus.

Although not really intended as a textbook—I know of no courses in
which it would so serve—I include exercises and other pedagogical devices
because I believe that they may be useful, even fun. Answers for all the
exercises are given in Appendix B.
Most of this book applies to all RPN calculators, programmable or not.

Contrary to popular opinion, I find the differences between programmable
and nonprogrammable RPN calculators less significant than, for example,
the differences discussed in Section 1.4 between RPN and algebraic entry
system (AES) calculators. Examples in the text and in Appendix A are
algorithms for specific calculators. I try to choose the simplest calculator
that will do the problem easily. Using the minimum necessary power for
the job is aesthetically pleasing, and converting upward is clearly easier.
That is, converting an HP-35 algorithm to run on an HP-67 is easier than

the converse.
In 1973 I began using an RPN calculator extensively both in my job

(radio astronomy) and for other calculations. No books of RPN algorithms
were available then, and I began writing some algorithms for my own use.
A few friends got photocopies, and in August 1974 several hundred copies
of “Algorithms for the HP-45 and HP-35" were printed as a technical
report. A later edition of this report was dated March 9, 1975. These
technical reports, which are similar to Appendix A in this book, are
collections of algorithms with enough explanatory material to enable the
reader to use them. As other collections of algorithms became available in
1974 (HP-35 Math Pac, and HP-45 Applications Book; see references in

Appendix C), I noted that my algorithms for the same problems were
frequently more compact and more elegant. This prompted me to analyze
carefully my techniques for writing algorithms and to try to describe these
techniques in a coherent manner. This book is the result.
Norman Brenner of MIT and IBM, and George Rybicki and Hays

Penfield of the Center for Astrophysics (CfA) wrote some of the algorithms
in Appendix A as noted. Norman Brenner also carefully read and com-
mented on the typescript. I also thank my other colleagues at the CfA for
help and encouragement. I thank the following persons and organizations

for useful ideas or information: C. V. Briggs, 111, of MIT; Win Chan, Roy
Martin, Jeff Nagle, J. Peter Nelson, and Sharon Northrup of Hewlett-
Packard Company; D. Jividen of Compucorp; Ron Ames of Monroe;

Bruce Balick of the University of Washington; Georgene H. Berglund of
Novus Consumer Products Division of National Semiconductor Corpora-
tion; R. C. Vanderburgh, Dayton, Ohio; and T. A. Bates, Montague,
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Massachusetts. Although I adopted only some of their recommendations,I
sincerely appreciate the comments and criticisms of Jon M. Smith and
Richard W. Hamming, who read a draft of this book. I thank my wife

Audrey for typing, and typing, and typing, and my daughter Fifi for
checking many of the algorithms.

This book and this author have given John Wiley & Sons rather more

trouble than usual. But the appearance of the result is, in my view,

outstanding. I thank the editorial and production people at Wiley, and
especially the compositor, for taking the time and effort to make it so.

I would sincerely appreciate having your comments and criticisms,
especially about any errors you may find. Thank you.

JOHN A. BALL

January 1978

Harvard, Massachusetts
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Introduction to RPN

I do not say: science is useful because it allows us to construct machines; | do

say: machines are useful, for by working for us they permit us more time to study

science.

—Jules Henri Poincaré (1854-1912)

It is unworthy of excellent men to lose hours like slaves in the labor of calculation.

—GQGottfried Wilhelm, Baron von Leibniz (1646-1716)

As the available computational power increases, some among us, perhaps

less-excellent men, take on progressively more complex problems, so that the

hours per day, lost in the labor of calculation, are nearly constant.

—Anomalous

...when you are declaiming, declaim; and when you are calculating, calculate.

—Samuel Johnson (1709-1784)



2 Introduction to RPN

1.1  INTRODUCTION TO RPN: HISTORY

RPN stands for “reverse Polish notation” and the “Polish” refers to Jan
Lukasiewicz (1878-1956), a great Polish logician and mathematician.
“Polish” is easier to pronounce than “Lukasiewicz” (wu-ka-sha’-vich) and
“reverse Polish™ is much easier to pronounce than “Zciweisakul.”*

In their advertisements and also in a letter to me, Hewlett-Packard

Company (HP), the best-known manufacturer of RPN calculators,’ says

that RPN is based on a suggestion by Lukasiewicz, and that RPN was
invented and is patented by HP. Aside from the apparent contradiction in
these two statements, I do not think that either of them is quite true. My
first experience with RPN involved a nice old Friden EC-130 desktop
electronic calculator, circa 1964. The EC-130 has RPN with a push-down
stack (defined in Section 1.2) of four registers,all visible simultaneously on
a cathode ray tube display. Furthermore, they are shown upside down, that
1s, the last-in—first-out register is at the bottom. The same orientation is

used in instruction booklets for HP calculators, perhaps by coincidence.
Around 1966, the Monroe Epic calculator offered RPN with a stack of

four, a printer, and either 14 or 42 step programmability. The instruction
booklets with these two calculators make no mention of RPN or Jan
Lukasiewicz. ,

In his book Aristotle’s Syllogistic from the Standpoint of Modern Formal

Logic (1951), p. 78, and in some of his other publications, Lukasiewicz
recommends a parenthesis-free algebraic notation in which the operation
symbols (e.g., +, —, X, =), which Lukasiewicz calls “functors,” precede

their parameters. Thus in his notation + 5 3 would add to 8. Compactness
1s the motivation for this notation; parentheses are eliminated, and the

number of symbols that must be written is minimized. Since with a
calculator, each symbol represents a keystroke, Lukasiewicz’s system has
obvious interest. Placing the functors after the parameters gives reverse

Polish notation, RPN.

But remember the old mechanical adding machine. One clearsit to zero,

keys a number, and presses to “enter” the number into the machine.
What has happened is that the number was added to zero, already in the
machine. Then one can key another number, press again, and see the
sum of the two numbers, and so on. Note that the operation comes
after the number. Using exactly this sequence, one can add numbers on an

*I am indebted to Peter Collins and Jerome Cherniack for pointing this out to me.

TThe terminology is sometimes confusing. I try to be consistent and use “calculator” to mean
a device. A calculator operator is a human who presses the keys of a calculator and performs
other useful functions such as buying this book.
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RPN calculator. RPN represents a reasonable extrapolation of this
mechanical calculator scheme, and would, and probably did, occur to
many people who might never have heard of Jan Lukasiewicz.

Hewlett-Packard Company is to be commended for the beautiful design
of the original HP-35 calculator (c. 1972). They avoided many pitfalls that
lesser minds would have become mired in. HP provided many features in a
truly concinnate way. But ignoring the foundations on which this accom-
plishment was built serves no purpose. In my view, the RPN calculator
owes about as much to the venerable mechanical calculator, and to a

number of anonymous designers, some of whom worked for Friden, as it
does to Jan Lukasiewicz.
More than a dozen models of scientific RPN pocket calculators are now

available from five manufacturers, plus other models intended for business
and financial calculations or for desktop rather than portable use. RPN
with its push-down stack of numbers and its post operators is also being
used extensively in computers. The FORTH software system by Charles H.
Moore, for example, is designed around RPN. And minicomputers now
exist with hardware that incorporates RPN. The motivation for using RPN
1s the same in calculators and computers—terseness.

1.2 PUSHING AND POPPING; EXCHANGING AND ROLLING

A push-down stack of numbers is named by analogy with the device that
holds plates in some cafeterias. A stack of plates rests on a mechanism
with a spring under it such that the weight of each added plate presses all
the other plates downward, usually into a hole in a table surface. Only the
top plate is accessible, and it is called the last-in—first-out plate. Adding a
plate to the stack is called “pushing,” and removing a plate from the stack
is called “popping” (the plate is not supposed to break).

In RPN calculators, the push-down stack usually has room for four
numbers, each of which can be up to ten digits long with a sign and
exponent. The last-in—first-out number is in the X register, which is, always
and only, displayed. The other three registers are called Y, Z, and 7, in
order. If one pushes five numbers, the first-in number is lost. On most

RPN calculators, however, T does not change on pop; thus a number
pushed into T can be reused indefinitely. This feature is remarkably useful.

Some calculators have room for only three or even only two numbers in
their push-down stack. Two registers are the minimum possible to have a
calculator at all, and perhaps such a calculator should not be called RPN.
Less than a four-register stack, regardless of what it is called, 1s very
undesirable.
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The registers in the push-down stack are usually shown upside down in
calculator instruction booklets (and in this book), giving one, in effect, a
push-up stack. This may seem illogical at first, but with the upside-down
arrangement, the registers are oriented so that [] and [-] are in the
correct order: [+] causes the number in Y to be divided by the number in
X, and B causes the number in X to be subtractedfrom the number in Y,

rather than the other way round. This convention in turn allows numbers
to be entered in the logical order; thus A4 B [-] gives A — B rather
than B— A4, and 4 B [=] gives A/B rather than B/A. The answeris
always displayed in the X register.

Operations such as [+], =], , and [E] are called dyadic func-

tors—two numbers popped from the stack are combined to give one
answer, which is pushed back onto the stack.

Figure 1.2.1 illustrates the effect of stack manipulators and functors.
Each part of this figure begins with a number 4 in X, B in Y, and so on.

The calculator is usually in a state called “auto-enter enabled,” “push
pending,” or “auto stack lift”’; a more exact name might be “auto-push.” A

new number keyed in this state pushes itself into X, the previous contents
of X go into Y, and so forth. The functor [1], called “enter,” duplicates the
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6 Introduction to RPN

contents of X into Y as shown in Figure 1.2.1, but also disables auto-enter;

therefore a number keyed following overwrites X—no push.
In Figure 1.2.1, represents a dyadic functor such as [+ ], [=], [X],

or [], and a monadic functor such as or log ]. This figure can
be taken to define dyadic, monadic, and bifid functors; an extended

discussion of these termsis in Section 1.3.2. The symbol is called “roll
down,” is “roll up,” and is “exchange.”

Figure 1.2.2 shows the contents of the stack after each step of a
particular problem written as

Is[r)IxJsa[tiax=[val1s[xzx][= 02 [z]  (see6).

This gives (15— V 152—54 x4 )/2 which is one of the roots of x?—15x +
54=0. The after 15 gives 152=225. Some calculators have an
key, which would save a keystroke. The before [—] gives
15—V --- rather than V--- —15. Try it. Another algorithm for this
problem is

s[rle]sa[tax=v=][=12[F]  (see6).

This section and these examples are intended to give just a hint of what
RPN calculating is all about. All these topics are more thoroughly dis-
cussed in later sections: Section 1.3.1 describes most of the keys on RPN
calculators, Section 1.3.2 discusses the functors in Figure 1.3.1 and consid-
ers auto-enter in more detail, and Section 1.3.3 compares two methods for
translating algebraic expressions into RPN keystrokes.

1.3 INTRODUCTION TO RPN CALCULATING

““Curiouser and curiouser,’” cried Alice.

—Lewis Carroll (1832-1898)

1.3.1 Key to Keys

Figures 1.3.1 through 1.3.9 present a selection of available or recently
available RPN pocket calculators. This selection is obviously incomplete;
many other RPN calculators are available, and a plethora of non-RPN
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Figure 1.3.1. The original RPN pocket calculator, the HP-35, was introduced in 1972.

(A later version is illustrated. On the top half of the keyboard of the 1972 model, the
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than on the keys themselves.) Figure courtesy of Hewlett-Packard Company.

calculators (discussed in Section 1.4) are now on the market. The following

tabulation shows most of the possible keystrokes from the devices

illustrated, with an explanation of the function. For this description, x is
the number initially in X, y in Y, and so on. Symbols inside dashed boxes

(e.g., 1y*)) require a prefix or shift keystroke. In the auto-enter column, E
means enable, D means disable, and U means unaffected. Auto-enter 1is

discussed in more detail in Section 1.3.2.
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. Figure courtesy of Hewlett-Packard Company.
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Semiconductor Corporation.
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tions of the Mathematician. Figure courtesy of National Semiconductor Corporation.
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features. The HP-45 was introduced in 1973 and, like the HP-35, has been discon-

tinued. The unlabeled shift key in the upper right-hand corner is gold (or yellow) and is

indicated in the text by . Figure courtesy of Hewlett-Packard Company.

1



 

-123456178-25

 

 

[ OFF -[MI[I] ON PRGM -_'flmmn RUN ]
 

 

F1X SCI ENG 1
SST BST GT f eG0 GN &5
X S -

x)

CLEAR

PREFIX PRGM REG STK
) CHS EEX

| TR ’I

<y log

'-a_» .

 
fl

A
T

bol
I

o
l

= i ¥ 0
E
E

= A o

= \V < ~ Q 3

 

 

 

|+ _ 6
<0 H ‘c_os" oY

XZY yx

- m 3]
=0 \ U FRAC Y X {_ABSY

xf)’ PAUSE

RIS
{x=0 Y\ .::- {NopPY

 

      (D] HEWLETT-PACKARD 25

Figure 1.3.6. The HP-25, which replaced the HP-45, has almost all the features of the

HP-45 and is also programmable with room to store 49 program steps. Figure courtesy

of Hewlett-Packard Company.

12



11 shes

=Pl = RAD

O
O
S

P
O
S
O

O
S
S
O
0
t

o
s

 
Figure 1.3.7. The Corvus 500 (which is internally identical to the APF Mark 55 and

Omron 12-SR) is closely modeled after the HP-45 and has most of the same features,

as well as some additional features. The unlabeled shift key in the top center is gold

(or yellow) and is indicated in the text by .

13



 

 

 

 

 

1/x x

.} ]eS8

2X=y =]

Yy —

  
 

 

PREFIX

      
   

Figure 1.3.8. The HP-65 is an expensive programmable RPN calculator with room for

100 program steps that can be written onto and read from a tiny (not tinny) magnetic

card. An impressive library of these programs is available (see Appendix C). Figure
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Keystroke Type Effect on Auto-enter
 

Stack manipulator D
o
o

m
Z
l
z
z
|
e

o
[

| = _’

w
2AV T -

Pushes x—»Y, y—>Z, and z—T and leaves x in X (see Figure 1.3.1).
is abbreviated herein as [1]. This key performs two functions

and can lead to some confusion. The old Friden EC-130 has two keys

labeled and [REPEAT]. is most frequently used as a number
separator, that is, to signify the end of one number and the start of the
next. But the repeat or duplicate function allows to be used also to
duplicate numbers on the stack.

xzy Stack manipulator E

s

,_ * A <
X i L

< N %

Exchanges x and y. See Figure 1.2.1.

z Stack manipulator E
3

ir-
A

I
w

o
=
l &

ROL

Rolls the stack downward; that is, x—>7T, y—»X, z—Y, and t—>Z. See

Figure 1.2.1.

2RT Stack manipulator E

(R
Rolls the stack upward; that is, x—Y, y—»Z, z—T, and t—X. See Figure
1.2.1.

[0] through [9] Number E
and [-]

Places the corresponding digit into X at the next available position. The
first number key pressed pushes the stack if auto-enter was enabled, or
overwrites x if not. A number is terminated by any keystroke other than
[0] through [9], [-], or (certain extraneous prefix keystrokes
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Keystroke Type Effect on Auto-enter
 

are ignored). If ] is pressed twice within the same number, the second
is ignored on some calculators but is taken to be the decimal point on

other calculators. [- after clears the exponent to zero on some
calculators and undoes the effect of on other calculators. If more
than two digit keys are pressed after EEX ], the last two are taken to be the
exponent.

Number E[EEX

“Enter exponent” tells the calculator that the following number keys are
the exponent (power of 10). If no number keys were pressed before EEX |,
“1” is assumed on most calculators.

Number E
IWI

- 4

r -

Puts 7=3.141592654 into X, terminates and pushes a previous number if
any, pushes the stack if auto-enter was enabled, or overwrites x if not. []
is an example of a special number key for frequently used constants to
avoid keying each digit of the number. Some calculators have other special
number keys as well as [7].

Monadic functor or minus sign U

Negates x; that is, replaces x by — x. This key (“change sign”) like [1],
performs two functions. can be used to key a negative number
(push after some or all of the digits are keyed on all calculators
except an HP-35), a negative exponent (push any time after EEX]),
or to negate a number already in X from a previous calculation. But on
most RPN calculators is not a number terminator, does not affect
the status of auto-enter, and thus is very different from the ordinary
monadic functors. Section 1.3.2 discusses more fully.

STO Storage operation ?

Stores x into a storage (memory) register, overwriting anything that was in

there before. On most RPN calculators does not pop, and it has no
effect on the stack. Although is always a number terminator, it may
or may not enable or disable auto-enter; disables auto-enter on the
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Keystroke Type Effect on Auto-enter
 

HP-35, does not affect auto-enter on the HP-45, HP-55, HP-65, Corvus

500, and APF Mark 55, and enables auto-enter on the HP-21 and HP-25.

Check the fine print in the instruction booklets for other calculators.

RCL Storage operation E

Recalls the number from a storage register and puts it into X;
terminates and pushes a previous number if any, pushes the stack if
auto-enter was enabled, or overwrites x if not.

Some RPN calculators have more than one storage register, and a
number key pressed after or designates the register to be
used. Some RPN calculators also have storage register arithmetic; that is, a
sequence such as [=] 5 divides the contents of storage register
number 5 by the contents of X and leaves the answer in the storage
register. The stack registers are unchanged. The [+] in this example could
also be +], [=], or [X]. On some calculators storage register arithmetic
is performed by keys labeled [M+ |, [M—], and so on. Similarly, the
HP-45 and HP-46 allow sequences such as [-] 6, which subtracts
the contents of storage register number 6 from the contents of X and
leaves the answer in X. The storage register, and the stack registers other
than X, are unchanged. If auto-enter was enabled, the sequence
[=] 6 (pop then push) differs from 6 [=] (push then pop) in not
losing the contents of 7. If auto-enter was disabled, [=] 6 uses, but

6 -] loses, the contents of X. Figure 1.3.10 gives examples of such
sequences. These capabilities are valuable for certain problems.*
Some calculators allow the sequence n or n,

where n is a storage register number. This sequence exchanges the contents
of X with the contents of the designated storage register.

CLX Special D

Clears X to zero, overwriting x regardless of auto-enter. This key is often
used to correct a miskeyed number, and so must disable auto-enter.
However will do as well for this purpose.

*Actually the situation is even more complicated. The very first HP-45s had

arithmetic but not arithmetic. Then beginning officially in January 1974 (unofficially

in August 1973), HP-45s featured both and arithmetic. HP-45s with an S
serial number higher than 1301S2000 or an A serial number higher than 1336A00000 are the
new model. Whenever “HP-45” is used herein, I assume the new model.
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Before Keystrokes After

T:D C

z:c 4 [+] c
Y:B B

X: A A/K

Auto-enter: E E

R,;: K K

T: D D

Z:C 4 [£] D
Y: B C

X: A B/K

Auto-enter: D E

R, K K

T:D D

z:C [+] 4 c
Y:B B

X: A A/K

Auto-enter: either E

R;: K K

Figure 1.3.10 Examples of the effect of recall arithmetic on the HP-45.

Keystroke Type Effect on Auto-enter
 

CLR Stack operation E

Clears the stack registers, and, on some calculators, some or all of the

storage registers. Except in connection with [£+], the key is not very
useful; between problems is almost never necessary.

Stack operation E

Performs the equivalent of +]. This would be a valuable function
except that on the Novus calculators on which appears, T (or Z)
clears on pop.
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Keystroke Type Effect on Auto-enter

Display U

FIXFIX manipulator

 

These keys affect the format of the displayed number. See the instruction
booklet with the individual calculator.

Prefix or shift U

— — -

[=
l[
e]
=]
]

—
| —

H
H
H
H
H

<
|
|
a

T - o

Affects a following keystroke by changing its effect to the shifted mode.

For example, gets sin~ ! and gets sinh!
rather than sine. These shifted functions are very valuable, of course, and

the shift keys save the cost and size of additional keys on the calculator,

but many errors occur through accidental misuse of shift keys. Do not hold
the shift key down while pressing the following keystroke.

represents an unlabeled gold-colored key and an unlabeled blue
key. is pronounced “glue” because it is a blue key with a “g” on it,
is “fold,” is “dolf,” and is “hack.” With just a little effort,
calculator manufactures could think of a more logical color scheme.

Dyadic functor E Pops x and y, adds

them (y + x), and

pushes the answer.

4]
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Type Effect on Auto-enter
 

[-]

1/x

- | ' 1 1 4

r

P ~ = -

S
r
=
"

1
1

1
=

L
o
J
d

[
[

N
I

r
=
n

1
%

!

[
:
4 p4

r
-
A | | | 1 4

| ' 1 L

n
a

'
H

w
2
,

-
d

Dyadic functor

Dyadic functor

Dyadic functor

Monadic functor

Monadic functor

Monadic functor

Monadic functor

Monadic functor

Monadic functor

Monadic functor

E Pops x and y, sub-
tracts them (y—x),
and pushes the
answer.

Pops x and y, multi-
plies them (y X x),
and pushes the
answer.

Pops x and y, divides
them (y + x), and
pushes the answer.

Replaces x by 1/x
for x+#0.

Replaces x by Vx for
x>0 orx>0.

Replaces x by x2.

Replaces x by sin(x).

Replaces x by cos(x).

Replaces x by tan(x).

Replaces x by the
principal value (—90°

to +90°) of sin~!(x)
for —1<x<1.
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Keystroke Type Effect on Auto-enter

1 cos~! : Monadic functor E Replaces x by the
principal value (0 to

180°) of cos™!(x) for
—I<x<1L

' TAN-!' © Monadic functor E Replaces x by the
principal value (—90°

to +90°) of tan~!(x).

For the six trigonometric functors above, the units of x and the restrictions
on the range of x depend on the individual calculator. Many calculators
allow a choice of degrees or radians as noted below.

! 1 1 1

Mode change U

r
F
-
A
a
r
-
a
r
-
A

L
o
d
L
_
J
L
-
J

Changes the units of the angle to degrees, radians, or grads for all
following trigonometric functors (a “grad” is a four hundredth of a circle
or a hundredth of a right angle). These keys affect direct and inverse
trigonometric functors, rectangular-to-polar-to-rectangular coordinate con-
versions, and also, on some calculators, the degrees-minutes-seconds con-

versions below.

Monadic functor E

Converts the angle or time in x into the format DD.MMSS (degrees,

minutes, seconds) or HH.MMSS (hours, minutes, seconds).

ED-MS—>} Monadic functor E

Converts the angle or time in x from DD.MMSS or HH.MMSS format
into decimal degrees or hours (or radians or grads).
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Keystroke Type Effect on Auto-enter
 

t >R : Bifid functor E

Some RPN calculators have rectangular-to-polar ([P|) and polar-to-
rectangular ([>R]) coordinate converters. Starting with x in X and y in Y,

puts R=1x?+y? into X and #=tan"'(y/x) into Y. The angle 8 is
in the correct quadrant (—180° to +180°) even if x or y is negative. Or
starting with R in X and # in Y, puts x=Rcosf into X and
y=Rsinf into Y. On some calculators, # and R are exchanged in the stack
from this description. With either or [5R], Z and T are un-
changed. These functors are extremely useful for many problems in which
trigonometric functions play a role. Appendix A contains examples in

plane and spherical trigonometry and complex numbers.

Monadic functor E Replaces x by
'LOG log,o(x) for x>0

Monadic functor E Replaces x by In(x);
LN} that is, log, (x), where

e =2.718281828, for

x>0.

Monadic functor E Replaces x by e”*;
that is, exp(x).

o< Monadic functor E Replaces x by 10~.

Dyadic functor E

' )_;_xu

Pops x and y, computes x” for x >0 or y* for y >0 and pushes the answer.

Neither x nor y needs to be an integer. Some RPN calculators can also do

for y<0 and x an integer. Most RPN calculators other than the
HP-35 have a rather than an key. Each has some advantages. For
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Keystroke  Type Effect on Auto-enter
 

example, A4 B gives A2, which seems more logical than A4
[x”], which gives B“. But the stack as usually drawn has Y above X so
might seem more reasonable. Sometimes saves keystrokes over |y*|.

&

The cube root of A, for example, would be 3 A or A4 [1] 3
[»*]. But other examples favor [y*]. On some calculators y*

requires a prefix or shift key, thus adding another keystroke.

tnl Monadic functor E Replaces x by x! for
X a positive integer.

Special functor D

2]

Sums Zx;, =x?, =1 (increment), and, on some calculators, Zy,, x,y;, and
Sy? also. In these sums x; is the quantity in X and y, in Y when is
pressed. These sums are accumulated in designated storage registers to be
used later to calculate means, standard deviations from the means, and

-1

perhaps linear regressions. Since =—: accumulates negatively, it can be
used to delete an incorrect (x;,y;) pair from the sums. On most RPN
calculators overwrites x with the latest 21 but disables auto-enter so a
subsequent number overwrites =1. :CLEAR: is used to zero all the ap-
propriate registers before the first [£+]. Check the instruction booklet for
details. is discussed further in Section A.1.2; see especially Table
A.l.l

e ! ! I ! 4

Special functor EXa
l

‘
v
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a
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-

H
n
»

n
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L
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v
L
-
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d

r 1 1

Computes means and standard deviations from the sums previously ac-
cumulated by [E+].

Bifid functor E
% '

d

r
=
"

L

Replaces x by xy/100; Y is unchanged.



1.3 Introduction to RPN Calculating 25

 

Keystroke Type Effect on Auto-enter

:A;‘%::L Bifid functor E

L %CHS|

'LASTX Storage operation E

Recalls the contents of the LASTX register; which was previously set from
X by any functor that “uses up” x. 'LASTX: terminates and pushes a
previous number if any, pushes the stack if auo-enter was enabled, or
overwrites x if not.

[ INT : Monadic functor E

Replaces x by its integer part. That is, x is truncated (not rounded) to an
integer. The sign is retained.

' FRAC ! Monadic functor E

Replaces x by its fractional part. That is, the integer part of x is subtracted
off. The sign is retained.

{ ABS Monadic functor E

Replaces x by the absolute value of x. That is, a minus sign on x, if
present, is deleted.

r--=-=-1

'RND' Monadic functor E
L2 d

Replaces x by x rounded off as selected by the display format.

The following keystrokes are on programmable RPN calculators. Using a
program on such a calculator is a two-step process: first one keys or reads
in the program, and then runs it, repeatedly if necessary, to give numerical
answers. A switch on the calculator determines whether keystrokes are
stored and saved (W/PRGR or PRGM) or executed (RUN).
Some quite significant differences exist among programmable RPN

calculators, even from the same manufacturer, and the descriptions below

are only approximations in some cases. Consult the instruction booklet for

details.
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Keystroke

(run/stop)
START|
[HALT|

In RUN mode, these keystrokes start or stop the operation of a program.
An internal program pointer determines which instruction will be executed
next. On encountering or HALT |, a running program stops to
allow operator intervention (e.g., keying a number).

 

GTO

In RUN mode, this keystroke sets the program pointer to the instruction
corresponding to the keystroke or keystrokes following, so that a subse-
quent starts there. On encountering in a running program,
the program pointer jumps (forward or backward) to the instruction
corresponding to the keystroke or keystrokes following, and the program
runs on from there.

There are two systems for labeling instructions within programs. The
HP-65, HP-67, and HP-97 use formal labels (A through E and 1 through 9)
which can be inserted anywhere in the program. This is a very versatile
system, but these labels occupy instruction locations. Other calculators use
a two-digit number for each instruction location.

LBL

This keystroke in a stored program defines the keystroke following to be
the label of this location, so that a can be used to start execution at
this point. The keystroke following must be through [E], [1]
through [9], or ia: through Ie.
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Keystroke
 

In RUN mode, these keystrokes start program execution at the corre-
sponding label and set the subroutine return address to the keyboard. In a
stored program, following LBL |, these keystrokes label the start of sub-
routines. In a stored program not following LBL |, these keystrokes cause
program execution to transfer to the appropriate subroutine (a subroutine
“call”) and the calling address is saved so that

at the end of the subroutine transfers control back to the instruction
following the subroutine call. If a subroutine is called from the keyboard,

is equivalent to and control returns to the keyboard. Sub-
routine calls and [RTN]s are very valuable for certain problems.
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The HP-65 has two and the HP-67 and HP-97 have four internal flags that
can be set or reset by these keystrokes.
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These are conditional skip instructions. When encountered in a running
program, they cause the instruction following (two instructions on the

HP-65) to be skipped if the indicated condition is false (i.e., no skip if true).
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Keystroke
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“Decrement and skip on zero” or “increment and skip on zero” adds or
subtracts 1 from the contents of a storage register and skips the next
instruction (or two) if the result is then zero.

“Single step” moves the program pointer ahead by one step in PRGM
mode to allow editing of a program. In RUN mode, [ SST | causes one
instruction of a program to be executed.

 

“Back step” or “delete” allows editing in PRGM mode by backspacing so
an incorrect instruction can be overwritten. In RUN mode resets
the program pointer to zero on the HP-55; ' PRGM_: performs this
function on the HP-25, on the HP-65.

This instruction in a running program pauses about a half-second—almost
long enough to be able to read the number in the display.

“No operation” does just that; it is used as a filler after skips or to wipe
out an instruction without affecting the locations of the other instructions.

Omitted from the foregoing list are some very specialized functors that
are not mentioned in this book. In any case the reader should peruse the
instruction booklet that accompanies the calculator. The instruction book-
lets with HP calculators, especially recent models, are very well prepared.
The instruction booklets with National Semiconductor and Novus calcula-
tors are not quite as good, and the instruction booklet with the Corvus-500

calculator is just awful. (Hence Corvus-500 owners will better appreciate
this book.)
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Everything You’ve Always Wanted To Know About RPN But Were Afraid

To Pursue—Comprehensive Manualfor Scientific Calculators (see Appendix
C) 1s, in effect, an instruction booklet for the Corvus 500. I recommend
Everything ... for Corvus-500 owners, even though it has at least 86 errors
(mostly typographical), including one on the cover.

1.3.2 Functors and Flags

Functors take at least one parameter or argument off the stack and put at
least one answer onto the stack. A monadic functor (e.g., SIN]) pops a
number, calculates the function, and pushes the answer. A dyadic functor
(e.g., [+]) pops two numbers, calculates the function, and pushes the
answer. A bifid functor (e.g., >P]) pops two numbers, calculates the
functions, and pushes the two answers. Other possibilities also occur. For
example, the functor found on some RPN calculators uses two num-
bers off the stack but pops only one of them; Y is unchanged. This is
logically equivalent to a bifid functor that pushes back as its first answer
the same number as its second parameter, that is, 4,(4,B)= B in Figure
1.2.1.
Three internal flags (one-bit numbers) in a typical RPN calculator

indicate the status. Auto-enter can be enabled or disabled, a number can

be in the process of being entered, or an exponent can be in the process of
being entered. Some keystroke operations check and others change the
status of these three flags. Only the auto-enter flag seems to cause any
confusion. When a new number goes into X, there are two possibilities: if
auto-enter is enabled, the new number pushes the stack as described
previously; but if auto-enter is disabled, the new number overwrites the old
number in X and leaves the contents of Y, Z, and T unchanged. The new

number can come from number keys, from [RCL], or from a special key
such as [7]. To save the previous contents of X, the first possibility above
(push, or auto-enter) is needed.
The key writes zero into X (no push) but disables auto-enter, so

that a number following overwrites the zero rather than pushing it.
And performs a “duplicate” function (push the contents of X into Y
also, etc.) but disables auto-enter so that if is followed by a new
number, X is overwritten and only one copy of the previous number
remains on the stack. Thus can be either a number separator or a
duplicator.
The minus symbol (—) in algebra serves three separate functions that are

performed by two keys—[— and [CHS|—on a typical RPN calculator.
[=] is unambiguous;it is the dyadic functor “subtract.” However,
can correspond either to a minus sign on a number or to the monadic
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T:

Z: A

Y: A A A —A A

X: A A —A B not: B nor: —B

Key: 4 B
Figure 1.3.11 A common error on calculators other than the HP-35: following

gets lost.

functor “negate.” In its minus-sign role is different from other
number keys in that it cannot begin a number (except on the HP-35) as it
logically would; and in its functor role, differs from other monadic
functors on most RPN calculators in not terminating a number and not
enabling auto-enter. Nevertheless, this combination of functions in a single

key is probably desirable because it reduces the number of keys on the
keyboard and may reduce confusion in some problems.

But confusion can arise on some calculators if precedes
because auto-enter will still be disabled after the [CHS]. The negated
number will then be overwritten (the will be lost) if a number or

follows CHS]. This erroris illustrated in the sequence in Figure
1.3.11. On some RPN calculators, other keystrokes such as can
occur between and B in Figure 1.3.11, without affecting auto-enter.

 

 

T:

Z:

Y: A A A
X: A A —A —B

Key: 4 CHS B

T
Z
Y A A A+B
X A A B A+B —(4+B) -C

Key: 4 B CHS c

STO: —A4 —A

T:

Z:

Y: A A A A
X: A A —A —A B

Key: 4 B

Figure 1.3.12 On an HP-35, never gets lost, but sometimesit attaches itself to

an unlikely number.
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On an HP-45, for example, the sequence A4 4 B puts—A
into storage register 4 but not onto the stack! But this is not necessarily an
error—it might be what the user wanted. If a functor follows [cHs],
the negated number is correctly used, and the functor will enable auto-
enter.
On an HP-35, is even curiouser. If precedes a number

entry, the first negates the number in X (as it must, for the
calculator cannot know which key will be pressed next). Then, when a
number key is pressed, the number in X is negated again (becomes what it
was originally), and the new number is negated and either pushed onto the
stack if auto-enter was enabled, or just written into X if not. Three such
sequences are illustrated in Figure 1.3.12.

1.3.3 Translating into RPN

In ordinary algebra the expression 4 /BC is ambiguous;* it might mean
(A/B)C, but more likely means A /(BC). In algebraic computer languages
such as FORTRAN and BASIC, the expression 4 /B*C is unambiguous;

it means (4 /B)*C (* means multiply). In translating 4 /BC and similar
expressions into RPN (which is not ambiguous), one may have to guess
whether the author of the expression intended A B[z] C[z] or4
B [£] € [Xx]. In really ambiguous cases, try working out the units (meters,
kilograms, seconds, etc.). This ambiguity sometimes occurs when authors

translate their equations into serial form (all on one line) at the urging of
the printer of a book or journal. The horizontal bar in a fraction in
nonserial form is a vinculum and implies parentheses around both numera-
tor and denominator.

Figure 1.3.13 is a flow chart of a method for evaluating arithmetic
expressions as recommended by Hewlett-Packard in instruction booklets
for some of their early RPN calculators. To use this method, first write the

expression to be evaluated on one line (serial form), adding parentheses as
necessary. This method has the advantage that one proceeds from left to
right through the expression, keying each number (but not each operation)
in turn. This method can be done mechanically with little thought, but it
would work for any expression only if the push-down stack were arbitrarily

long. The principal disadvantage of this approach is that it rarely yields the
shortest possible keystroke sequence.

I recommend, instead, a method that requires more thought, at least at

*“Please Excuse My Dear Aunt Sallie” is a mnemonic for the algebraic hierarchy: parenthe-
ses, exponentiation (involution or evolution), multiplication, division, addition, and subtrac-

tion. Interpreted literally, this hierarchy would make 4 /BC into A /(BC), but it would also
make A — B+ C into A —(B+ C)!
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Figure 1.3.13. A method for translating expressions in serial form into RPN, as

recommended by Hewlett-Packard.

first, but usually yields more nearly optimum keystroke sequences and
works for much more complicated expressions than the method above.
Essentially one works from inside out, starting inside the innermost
parentheses and proceeding outward. Products and fractions have implied
parentheses around them, and the arguments of functions usually must be
evaluated first of all. This method is just about what would be done with
pencil and paper or with slide rule and abacus, but intermediate answers

can be left on the stack for later use (unless it fills up). This second
method, or something very similar, is now also recommended by HP
(Martin, R., private communication). Perhaps the best way to show these
methods is through a series of examples. In the following, algorithm 1 is
from HP’s method in Figure 1.3.13; algorithm 2 is from my method.
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Expression Algorithms

A—BC 1. A[]B[]c[x][=].
2. B[] cCc[x]4 [x=y][=].

Note that BC has implied parentheses around it and that the two methods
yield algorithms of the same length. In method 2, the could be
omitted if a were appended at the end, but with no change in the
number of keystrokes.

A/(B+C) 1. A B[]c+] [&.

2. Bl c[+]4[x=2y] [&].

In method 2, the could be omitted if a were appended at the
end, but with no change in the number of keystrokes. These examples
show that method 2 sometimes needs an before [—] or [£] (or a

or afterward) because the parameters can be in the wrong
order on the stack. This never occurs with method 1.

A[T] B[] c[x][+]
B[t]Cc[x]4[+].

AB[] c[1] b [x][=][x].
c 1] p[x]B[x2y][-]4[X].
B[1]c[t] pD[x][=]14 [x].

c 1 p[x]B[xzy][-]4 [X].

Rewriting the expression algebraically sometimes shortens the resulting
algorithm. This occurs frequently with method 1, and occasionally with
method 2.

 

A+ BC

A(B—CD)

(B—CD)A

N
=
t

D
N

e
t
D
N

(A-B)C-D) L. at]B[-]Jctp[-][x]
2. AlB[-]ctp[-][x].

AB—CD . AB[x]c[t]p[x][=]
2. AN B[xX]c]Dp[X][=]

Note the similarity of these two forms—product of sums and sum of
products—both algebraically and in RPN.

A(B+C(D—E)) 1. No go: a five-level stack is needed.
2. D[TJE[=]C[x]B[+]4[x].
1. DNJE[-]C[X]B[+]4[X].
2. D[MJE[=]C[x]B[+]4[x].

To use method 1 efficiently, try rewriting the expression algebraically such
that all the opening parentheses are at the beginning.

(D—E)C+ B)A
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Expression Algorithms

1+sin?(24) L1204 [x][siN] [22] [+].
2. A [+][siN] 2] 1 [+].

On a calculator without [x2], use instead.* To calculate 24, A4
uses fewer keystrokes than 2 4 or A 2 [x]. Again method

1 would yield a shorter algorithm if the expression were rewritten as
sin?(24)+ 1.

 

1.3.4 Errors and Error Propagation {

When an approximate calculation is done, we usually need to know how
precise the answer is. Relative or absolute errors can be expressed in

several ways. If 4 is an approximate value and T is the true value, then

§E=A-T (1.3.1)

1s the absolute error, and

8=_A;T=§T (1.3.2)

is the relative error in A. The percentage error is 100 times the relative
error, that is, € expressed as a percentage. Some authors define —¢ as the
error, |£| as the absolute error, and |e| as the relative error. Usually £ and e
are unknown (because 7T is unknown), but one may be able to estimate a
value or an upper limit for || and |e|.
The number of decimal digits of precision in 4 is the number of correct

digits to the right of the decimal point in the standard decimal expression

for A. The number of significant figures in A is the number of correct digits

regardless of the decimal point. But until one specifies how precise a digit

must be to be “correct,” these definitions are unusable. Will =1 or 0.5

do? And does it matter whether the digit is 1, 5, or 9?

Rather than these imprecise definitions, define the number of decimal
digits of precision as

DD = —log,o([g]), (13.3)

*But loses the contents of 7. This is not important in this example.
T This section is somewhat more difficult and specialized than other material in Chapter 1 and

may be omitted on first reading.
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and the number of significant figures as

SF= —log,,(|e|)= DD +log,,(| T|). (1.3.4)

These definitions accord approximately with the imprecise definitions just
given. Specifically, 1+0.1, 5+0.5, and 9+0.9, each corresponds to one

significant figure, SF=1.
The absolute error of the sum or difference of several numbers is at most

equal to the sum of the absolute values of the absolute errors of the
individual numbers, and, if the errors in the numbers are uncorrelated, 1s

more probably approximately the square root of the sum of the squares of
the absolute errors of the individual numbers. Similarly, the relative error
of the product or quotient of several numbers is at most approximately
equal to the sum of the absolute values of the relative errors of the
individual numbers, and, if the errors in the numbers are uncorrelated, is

more probably approximately the square root of the sum of the squares of
the relative errors of the individual numbers. Symbolically, if

B=A,*A,*A;*--- + A4, (1.3.5)

then

61 + &+ 165+ - - +I£n|>‘£8|§[$]2+£22+$32+ .. +£n2}1/2, (1.3.6)

or if

C=AAA% *A (1.3.7)n’

where * represents either X or =+, then

&)+ &g +[e5] + - - - +le,[ 2[ec]

=[ej+es+es+- - +£3]l/2. (1.3.8)

In these formulas, §, represents the absolute error, and ¢, the relative error

in A,, and so on.
For operations more complex than sums or products, one can use the

approximate theory of linear error propagation with first derivatives. If D
1s any function of A4,

D=f(A), (1.3.9)
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then

§p=f(A)&,. (1.3.10)

This is only an approximate value for §;, since higher-order derivatives are
neglected. In general, if

E=f(A,,A)A5, ,A,), (1.3.11)

and if we write

of of
pl - —é—lrlgl, pz— Egz, CtC., (1.3.12)

then

1/2
loi| + o2l +1ps| + - -+ +]p,|> |£E|E[pf+p§+p§+ e +p,f] 2, (1.3.13)

As an example, suppose we average n numbers A4,

F==Y4,. (1.3.14)
i=1S

|
-

If the & are approximately equal and uncorrelated, using either equation
1.3.6 or 1.3.13, we get

I
Vn

In the denominator Vn—1 , rather than Vn , is a better estimate in most

cases.
As another example, suppose we raise a number 4 to a power a > 1, or a

root 0< a<1,

[ > |€F| = (1.3.15)

G=A". (13.16)

Then

¢ ad*'¢,  af
er—G—E—A=—i;a£A. (1.3.17)

Thus the relative error in G is approximately a times the relative error in
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A. Or if

H=InA; A=e", (1.3.18)

then

£
gHEFA;eA. (1.3.19)

Therefore the relative error in 4 is approximately equal to the absolute
error in H.
The overused example of what not to do involves subtracting two nearly

equal numbers or adding two numbers approximately equal in magnitude
but opposite in sign. From equation 1.3.6, the absolute error is not too bad,
but the relative error, with its small denominator, can be huge. “Avoid

subtracting nearly equal numbers” is an admonition sometimes unneces-
sary and sometimes impossible to follow. The relative error in an ap-
proximate value for zero is necessarily large.

If more than one algorithm is available for a problem, as is usually the
case, investigate the error in the answer with each algorithm, using the
formulas in this section, and bearing in mind that intermediate answers
can be expressed only to the calculator accuracy. This rule of thumb is
more difficult to follow but more reliable than the naive admonition
above. An example appears in Section A.9.5.
Some of the ideas in this section are unconventional. For a detailed

discussion of the conventional viewpoint, see Chapter 1 in Demidovich
and Maron (1973) or Chapter 1 in Scarborough (1962).

1.4 WHY RPN?

Although thefirst scientific pocket calculators employed RPN, many more
models are available today with some form of an algebraic entry system
(AES). RPN calculators have an [ENTERT], [ENT], or [ SAVE! | key, AES
calculators an [=] key. Advertisements for the two systems make what
seem to be contradictory claims: each system is said to be easier to learn,
remember, and use. This section attempts to separate sense from nonsense

in this area.
Simple AES calculators have two internal registers for numbers and do

each operation when the following operation key is pressed. Some expres-
sions can be keyed directly in this system. For example,

AB=E (1.4.1)
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can be done on a simple AES calculator by

A[X]B =] C[=]E[=]. (1.4.2)

Note that [=] is always needed at the end to complete the last operation.
But some expressions need to be rewritten to work in this system. For

example,

A—BC (1.4.3)

can be done on a simple AES calculator by

B[x]C[+/=][+]4[=]. (1.44)

The key corresponds to in RPN and is a post operator.If,
instead, one keys

A[=]B[x]C[=], (1.4.5)

the result is (4 — B)C.
Another AES scheme, referred to as AESH, has three internal registers

for numbers and an operational hierarchy according to which X and +
are done before + and —. This system is similar to the ordinary algebraic
hierarchy without parentheses. Any serial-form arithmetic expression
without parentheses and with the foregoing convention can be done in
AESH just by keying from left to right. For example, in AESH

A[=]B[x]C[<] (1.4.6)

gets A — BC rather than (4 — B)C. For this problem the AESH calculator
saves A and “—" internally and does this operation after the multiply;
both operations in this example actually take place when [=] is pressed at
the end.

Still another AES scheme, referred to as AESP, has four internal

registers for numbers and keys for two-level parentheses: and D]. Any
serial-form arithmetic expression with no more than two-level parentheses
can be done in AESP just by keying from left to right. For example,

A[=]IAB[x]CD][<] (1.4.7)

gets A — BC. On some (but not all) AESP calculators, the closing paren-

thesis before [=] can be omitted.
The most elaborate AES scheme is the algebraic operating system

(AOS), which combines AESH and AESP with several levels of parenthe-

ses and automatically closes all parentheses on [=].



Table 1.4.1 Comparative Algorithms

 

AES Number of
Case Algorithm Keystrokes Algoritl

a-b al-]b[=] 2 al-]b

axb=*c a[x] b [£] c[=] 3 1alx]b

axbx*xc aEbBCE‘ 3 aE]b

(a-b)-c al-]b[]c[=] 3lal-]b

(axb)*c al£]b[+]c[=] 3 |alx]b
(axb)xc al+]b[z]c[=] 3 1al*]b

a-(b-c) b[-]c[=] [sTo]a[-][rRcL] [=] 6 |b[]c
a+(b=*c) b+]c+]al=] 3 ab

a—(b*c) ble]e[+/=] [+ a[<] 4 lal-]b
aX(b=*c) b [x] c[X]al=] 3 1b[x]c

a+(b*c) blx]lcl[s]al=] [1/x 41b[]c

atb+c+d al=]b[2]c[z]d[] 4 |a[z]b
a*bxc*d aEbEchB 4 aE]b

(a-b)-(c-d) c[Jal=][st0]a[-]b[][rcL] [=] 7|clJd
(axb)*c*d abEcE]dE 4 ab

(axb)x(c+d) |c[x]d[=] [sTO]a [+] b [+] [RCL] [<] 7 |a[s]b
asbx(cxd) clz]d[xX]als]b[=] 4|clz]d
asb+(cxd) clg]d[z]a 5] [5] [1/x] 5|clz]d
(asb)*c+d al«]b[£]c[z]d[=] 4 |al+]b
(@axb)s(cxd) |c[z]d[s] [st0]a[=]b [+] [RCL] [<] 7 |c[z]d
a+b+(cxd) c[+]d[+]alx] b [=] 4 |alz]t

a+b—(c*d) c[s]dx=/"][Halz]b[=] 5|alz]t

a(b-(c-d)) ¢ [Ja[=] [sto] s [[][ReL] [=] [sTO0] a [-] [RCL] [=] 10| ¢ [[] 4
ax(b+(c*d)) c[+]d[+] b [x]al=] 4(b[+]c
a-(b+(c*d)) ch‘dbElaE 50b[+]c

aX(b—(cxd)) ¢ [+]d[+/=] [+] b [X] a [=] 5065
a+(b—(c*d)) c[*]d[+/=] [+] b [=] a [=] [/x 6|b[-]c
a+(bscxd) b[s]cl+]d[+]al=] 4| a[+]b
a—(bxc*d) bl+]c[+]d[+/=][+]al[=] 5(al=]b
arb*(cxd) Previously done.
aX(bxc*d) b[x]c[x]ld[x]al] 416 [=]c
a+(bxcxd) bx]clx]d[=]al=] [1/x 506 [=]c

at(bX(cxd) ¢ [x]d[X]b[+]al=] 4| c[z]d
a—(bX(cxd)) c[x]d[X]b[+/=] [+] a[=] 51c[x]d

at(b+(cxd) ¢ [x]a[s] [1/x] [X] b [+] a[=] 6| c[z]d
a—(b+(cxd) c[x]d[=] [/x][X]b[+/=] [+] a[=] 7|c[£]d
atbx(c+d) Previously done.  
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Table 1.4.1 Comparative Algorithms (continued)

 

AES Number of

Case Algorithm Keystrokes Algorithm

(a-b)-c)-d al[(Jb[]c[1d[=] 4 |a[]b[=
(axb)*c*d Previously done.

(asb)rc)sd  |a[+]b[Fc[x]d[5] 4 |a[+]b[z
(a*b*c)+d al+]b[*]c[z]d[=] 4 |al[]b[s
(a*b)*xc*+d Previously done.

(axbyro)td |a[Z]b[x]c[Fd[E 4 |afzx] b
(azbxcysd  |a[2]b[x]c[+]d[E] 4 |a[£]b [

a-((b-c)-d) b[Je[]d[=] [sT0]a[-][ReL] [5] 7|6 [[]c 2
ax(b*c*d) Previously done.

aX((bxcyxd) b[z]c[+]d[xX]al] 4 |b[x]c[=

ax((bxoyrd) b[x]c[-]d[z]alz] [1/x] 516 [2]c[=
axX((b*c)xd) bEcdaE 4 bE]cE

a+((bro)xd)

|

b[s]c[zx]d[s]al=] [1/x] 51b[+]c[z
ax(bxcxd) Previously done.

a+((b*c)xd) |b[+]c[x]d[+]a 4 |b[+]c[z
a—((bro)xd) |b[+]c[z]d[=] [+/=] [+] a [5] 6 |b[*]c[z
a+((bxc)xd) b[£]c[+]d[+]a[=] 4 b [z]c[=
a—((bxcyxd) b[£]c[+]d[+/=] [+]a[5] 516 [£]c[=

(a-(b-c))-d b[-]e[=] [sTo]a[][RcL] [-]d[5] 716 []c|=
(a+(bre)*d b [s]c[+]a[+]d[=] 4 |al[+] b [
(a=(b*c)*d b[s]c[+/=][*]a[+]d[5] 5|al=]b[
(ax(bxeo)*d b[£]c[X]al+]d[=] 416 [£] c =
(a+(bxc)*xd b[z]e[F]a7]d[=] [1/x] 51b[x]cl=
(a*bxc)xd Previously done.

(ax(bxe)xd b [£] c [X]a[£] d[<] 4|b[x]c|=
(@=(bxe)=d b[z]c[s] [/x] [X]alz]d[d] 6|6 [£] ez
a+(b*c)xd b[+]cl[+]alz]d][] 4 al+]b [
a—(b*c)+d b[x]e[+/=][+]alx]d[] 5lal=]b][
(axb*c)*d Previously done.  
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As one possible method to compare these systems, I wrote algorithms
for all possible problems involving up to four parameters and the four
basic dyadic operations (+, —, X, +). Table 1.4.1 contains a reasonably
systematic listing of this class of problems and what I believe to be the
shortest algorithms for the five systems. To simplify the notation, I use +
for either + or —, * for either X or +, and - to stand for any of these

four operations. Categories of problems are used to shorten the table
whenever this can be done without conferring an advantage on any of the
systems. In some cases a particular category can be done without knowing

which operation - represents. These cases are indicated in Table 1.4.1, but
the results are not included in Table 1.4.2. For the AESP scheme, I assume

that all parentheses need to be closed, although this is not necessary before

[=] on some AESP calculators. For the AES scheme, I assume that [=] has
no effect on the register. A bar over an operation in Table 1.4.1
represents the complement of the original operation. For example, [Z] =
[+], and = [z].
As a criterion to apply in choosing among these five systems, the total

number of keystrokes needed for each system appears in Table 1.4.2. These

tables contain some arbitrariness, particularly in the scoring system. Each
line in Table 1.4.1 represents a category of problems and has a weight
associated with it to approximate the frequency of occurrence of such
problems. Other scoring methods are possible, but the final outcome would
probably be the same. Clearly RPN wins if this type of problem is being
done and if minimizing the number of keystrokes is the criterion.
The problems in Table 1.4.1 are only a small subset of the arithmetic

problems encountered in life. But RPN wins also for more complex
problems. Since the AES and AESH calculators have already used up their
[sTO ] register for some types of problem in Table 1.4.1, the register
i1s not available for more complex problems. The additional internal
registers enable RPN, AESP, and AOS calculators to do more complex
problems that would require writing down and rekeying intermediate
answers on AES or AESH calculators with only one register.
Consider, for example,

  

A+B+ E+F

C+D G+H
  (1.4.8)

An RPN algorithm for this expression is

AIB+]C[tID[+ ][] EQIF+IGIIA[+] [H] [+],  (149)
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an AESP algorithm is

A+1B [ [dC+]pDIHAAE

[+1FD] [ [dG[+1HDID]E], (14.10)
and an AOS algorithm 1s

A[+1B[=] [] [AC[+IDDI[+][JE[+]FD] FIAG[+]H[E]. (14.11)
This problem cannot be done in AES or AESH without either writing
down and rekeying an intermediate answer, or rewriting the expression
and rekeying some of the parameters.
Although RPN and AESP calculators usually have the same number of

Table 1.4.2 Keystroke Summary

Sum of Wins X Weights from Table 1.4.1
 

 

 

RPN AESP Ties

RPN vs. AESP 28 0 328

RPN AES Ties

RPN vs. AES 54 0 302

RPN AOS Ties

RPN vs. AOS 122 38 196

RPN AESH Ties

RPN vs. AESH 156 30 170

AESP AES Ties

AESP vs. AES 16 0 340

AESP AOS Ties

AESP vs. AOS 110 40 206

AESP AESH Ties

AESP vs. AESH 144 30 182

AES AOS Ties

AES vs. AOS 110 48 198

AES AESH Ties

AES vs. AESH 122 31 203

AOS AESH Ties

AOS vs. AESH 44 0 312
 

Sum of Keystrokes X Weights from Table 1.4.1
 

RPN 1484
AESP 1512
AES 1528
AOS 1568
AESH 1626
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working registers (four), the additional control through the stack manipula-
tor keys ([x=y], Rl], and [1]) gives RPN an advantage over AESP in
many more complex problems. AOS calculators with more than two-level
parentheses have more than four working registers, which sometimes is an
advantage.
Monadic functions such as sines and logarithms are not considered in

this comparison because they are handled identically in the five schemes;
AES, AESP, AESH, and AOS calculators in fact use RPN!

This study has not really answered the question of which system is easier
because “easy” is not easy to define. I can only comment that I found
filling out the RPN column in Table 1.4.1 easier, I made fewer mistakes in
the RPN column, and I selected an RPN calculator for my personal use
and to write a book about.
Some of the material in this section is based on Ball (1975).

1.5 EXERCISES

15.1 (a) List all the calculator keys that undo themselves; that is, if
pushed twice, they are equivalent to no operation (ignore auto-

enter). (b) List all the calculator keys that can be pushed twice or
more and have the same effect as if they had been pushed only
once.

For each part of the following two problems, assume that the calculator
starts with 4 in all four stack registers (e.g., from A4 [1D:
1.5.2 Calculate each of the following in two keystrokes or fewer: (a) 24,

(b) A2, (¢) 242, (d) A3, (e) A(1— A).

1.5.3 What quantity is in X after each of the following sequences: (a)

[+] X [X] 0y [XT (X1 [+ (o) [X] [+] [X]; () [X] [=]
@LIE] B (9 [+ 2

1.54 Suppose the diameter of the earth were known precisely (it is
approximately 12,740 km). Estimate the inaccuracy in the circum-
ference calculated using only a 10-digit calculator.

1.5.,5 An approximation for « is 355/113. How many significant figures
and how many correct decimal digits are in this approximation?

1.5.6 Suppose the diameter of the earth were known precisely. Estimate
the inaccuracy in the circumference calculated using 355/113
instead of .

1.5.7 A railroad track a mile long is rigidly fixed at both ends. As a
result of a temperature change, the track increases in length by an
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1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.5.13

Introduction to RPN

inch and buckles up in the middle. Assume that the track forms an
approximate triangle with the ground and estimate how high the
buckled track is off the ground at its center.

The golden ratio ¢ is the first of a series of (positive) numbers each
characterized by being equal to the reciprocal of its own fractional
part. Calculate the first four numbers of this series.

The average distance between the earth and the sun is about
93,000,000 miles, from the earth to the moon about 239,000 miles,

and from the sun to the nearest star about 4.3 light years or
2.5% 10" miles. The diameter of the sun is about 865,000 miles, of
the earth about 7900 miles, and of the moon about 2160 miles. A

scale model is to be built with the sun represented by a ball one
foot in diameter. On this scale (a) what is the diameter of the
earth? (b) the diameter of the moon? (c) the distance from the sun
to the earth? (d) the distance from the earth to the moon? (e) the
distance from the sun to the nearest star? What is (f) the angular
diameter of the sun as seen from the earth? (g) of the moon as seen
from the earth?

As his reward for inventing the game of chess, Sissa asked his
Rajah for one grain of wheat for the first square, two grains for the
second, four for the third, eight for the fourth, and so on, up to the

64 squares of the chessboard. (@) If this request had been granted,
how many grains of wheat would Sissa have received? (b) If Sissa
had put his wheat into a granary 40X 80 feet, and if 200 grains of
wheat occupy a cubic inch, how deep a layer would have resulted?

Two hundred years ago you could buy a pound of butter, two
pounds of coffee, a pound of cheese, and a five-pound sack of flour
for less than a dollar. The same items in 1976 cost about $6.95. If
“less than a dollar” means $0.99, what is the average inflation rate

over the two centuries?

On April 26, 1976, the length of the shadow of a tower near Boston
was 93 feet when the shadow was shortest (local noon). How tall is
the tower? Hints: Use the “Sun Ephemeris” algorithm in Section
A.7.14 to find the declination é of the sun. Then at local noon, the

elevation of the sun is just 90° —latitude + 8. The latitude of Boston
1s about 42°20'.

Calculate or look up (a) the reciprocal speed of sound in seconds
per mile, (b) the reciprocal speed of light (or radio waves) in
microseconds per mile, (c) the number of cubic inches in a gallon,
and (d) the number of fluid ounces in a cubic foot.
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Terser and Tighter

Algorithms

How do | love thee? Let me count the [keystrokes]. | love thee to [calculate] the
depth and breadth and height...

—Corrupted from Elizabeth Barrett Browning (1806-1861)

Omit needless words. Vigorous writing is concise. A sentence should contain no

unnecessary words, a paragraph no unnecessary sentences, [and an algorithm

no unnecessary keystrokes.]*

—Corrupted from William Strunk, Jr. (1869-1946)

2.1 THE ALGORITHM METHOD

The preceding chapter contains techniques used to translate arithmetic or
algebraic formulas into RPN. For some problems these translations can be
done on sight (i.e., without writing down the RPN keystrokes). For more
complex problems one may write out the RPN keystrokes, along with any
other instructions or notes necessary to do the problem. Such a keystroke

*From Strunk and White (1972), p. 17.

43
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procedure or recipe for a problem is called an algorithm. The word
algorithm probably came from Al-Khowarizmi, author of a famous ninth-
century book on mathematics. For programmable calculators, in which
most or all of the algorithm is stored in the calculator’s memory, such an

algorithm should properly be called a program, and such a calculator
should be called a computer. In this book at least, these semantic distinc-
tions can be ignored and all keystroke procedures can be called algorithms.
Even for complex problems done only once (one set of numerical values

for the parameters), one may be able to do the translations into RPN on
sight. More typically, however, one needs to do a problem repeatedly with
different sets of numerical values for the parameters; thus the need to write
down an RPN algorithm. Books containing selections of algorithms are
available from Hewlett-Packard for their calculators (see references in
Appendix C), and Appendix A in this book contains a selection of
algorithms for a variety of problems.
One need not derive an algebraic expression to be able to put numbers

into it and get numerical answers; so also one need not understand how or
why an algorithm works to be able to use it. Furthermore, “blindly” using
an algorithm is not necessarily undesirable; one cannot know everything.
But one should be able to write one’s own algorithms; problems do come
up without algorithms “in the book.” This chapter is intended to help.
Many possible notational schemes exist for RPN algorithms. I use solid

boxes enclosing keystroke symbols (e.g., [<]), but usually no boxes around
numbers (e.g., 3). Key symbols following a shift key are on the land area
above or below the key on the calculator, or on the side rather than the top
of the key, and are indicated herein by dashed boxes (e.g., 1y*!). A symbol
for a parameter (e.g., A) occurs in an algorithm where the numerical value
should be keyed. Explanations and notes within the algorithm, and param-
eters requiring units or other explanation, are usually enclosed in parenthe-
ses. More compact notations are obviously possible, and Section 2.6
contains a different notation for algebraic manipulations in RPN.
McKelvey (1975) and Ball (1976) used an intermediate notation with
commas as separators.

2.2 WHAT IS A GOOD ALGORITHM?

Several different algorithms are usually possible, even for the simplest
problems. As an absolute figure of merit for an algorithm, I recommend
the total number of keystrokes—the fewer the better. This statement needs
to be qualified only by saying that each numerical parameter should be
keyed only once, because keying a parameter can cost up to 16 keystrokes,
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in principle if rarely in practice. And this statement needs only the
following qualification: that some parameters known to be small integers
(e.g., n in J,(x)) can be rekeyed if necessary. The number of keystrokes is
an appropriate figure of merit to choose among algorithms because
keystrokes cost time and effort, and also because each keystroke is a
potential error. The same criterion applies to programmable calculators,
although one might argue that it is somewhat less important; if the
algorithm fits and works, then in some sense, it is good enough. With cyclic
or iterative algorithms, the total number of keystrokes as written is less
than the number of keystrokes actually pressed on a nonprogrammable
calculator; one must multiply by the number of cycles. On a programma-
ble calculator, the number of keystrokes as written determines whether the
algorithm will fit; the total number of operations determines how long the
algorithm will run—usually a consideration of lesser importance.
Only if two or more alternative algorithms exist for the same problem

with the same number of keystrokes, are subsidiary criteria required. I feel
less strongly about these, but I recommend algorithms with repeated
keystrokes (e.g., ) or with cyclic patterns of keystrokes, since
one usually makes fewer errors with such patterns.
Although some rough rules of thumb aid in writing more concise

algorithms, the process is mostly dependent on cleverness, which has, by
definition, no rules. This section contains some of these rough rules that I
find useful, and some examples of problems with algorithms.
Although all RPN calculators have at least one register, to

and a number frequency costs more keystrokes than to leave it on
the stack for subsequent use. Try to rearrange the order of a problem to
have the numbers on the stack in the correct order for subsequent steps
with few stack manipulations ([Rl], [x=y], etc.), and without and

[ReL].
Try putting a number needed repeatedly into 7T (e.g., by [1])

rather than STO ], thus avoiding all [RCL |s. The number from 7T will turn
up in Y when needed, usually to no advantage if one remembers to negate
the number ([CHS]) or invertit ([1/x]) if necessary before putting it into
T. Section 2.4 contains examples of the usefulness of this idea. This
suggestion does not apply to National Semiconductor or Novus calcula-
tors.

To double a number (e.g., 24) use rather than 2 [X]. The
corresponding rule for squaring ([1] instead of [x2]) saves keystrokes
only with calculators on which needs two prefix keys. If 4 is already
in the stack twice, maybe even the can be omitted. To key a large
power of 10 (e.g., 1,000,000 or 0.0001), use just EEX], if necessary,
and an integer for the power. For example, 6 gets 1,000,000 in two
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keystrokes, and 4 gets 0.0001 in three keystrokes. This
suggestion does not apply to Novus calculators.

Often the most useful rule of thumb is the least clear-cut: rewrite the
expression algebraically. The length or elegance of the algebraic expression
is poorly correlated with the terseness of the resulting RPN algorithm, but

sometimes rewriting can save dozens of keystrokes, even if the resulting
algebraic expression is longer! Section 2.6 discusses the approach of
rewriting, instead, the RPN algorithm.

2.3 EXAMPLES OF WRITING ALGORITHMS

2.3.1 Normal or Gaussian Probability Function

Consider first a simple example—the normal or Gaussian probability
function (HMF* 26.2),

Z(x)=  exp( —2x2 ) (2.3.1)
™

A naive algorithm for the HP-35 might be

2[7vl7x[tx2[z] [cus]ler][X]  (see Z(x)). (2.3.2)

The first 2 and 7 can be in either order, and either way an is not
needed. The can also be moved around. If we calculate the
exponential first, so that V27 will be in X for a [<], we save a keystroke

(zxDy:

x[2fz)lens[27[X]Vx][=]  (see Z(x)).  (23.3)

To shorten this algorithm any further, rewrite the expression algebrai-
cally, either mentally or on paper. Since the /2 in the exponential corre-
sponds to a square root, and the minus sign to a reciprocal, we can write

1

V27 exp(x?)

and so write

XRXXV[17x (see Z(x)). (2.3.5)

*References are in Appendix C.

Z(x)= (23.4)
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Or, for a calculator that requires a prefix keystroke for 1/x ], we could
trade a for a by

x[xI[cns ][2[=][7 ][=]lva]  (see Z(x)). (2.3.6)

2.3.2 Coordinate Translation and Rotation

As another example, consider a point P with coordinates x and y in a
standard two-dimensional Cartesian reference frame. Suppose we want to
find the coordinates x” and y’ of P in a new reference frame defined by the
coordinates x, and y, of the new origin in the old frame, and by a, the
angle of rotation (positive counterclockwise) of the new frame with respect
to the old. The situation is sketched in Figure 2.3.1, from which the
transformation equations are

x'=(x—xg)cosa+(y—y,)sina,

Y =(y—yo)cosa—(x—x,)sina. (2.3.7)

    Yor —m———— — —
0  

|
|
|
|
I
]

0 x 0

Figure 2.3.1 Translation and rotation of Cartesian coordinates.
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In these equations, a appears four times, and x — x, and y —y, each appear
twice; therefore these three quantities must all be saved. A naive solution
might require three registers,* but we can also save some quantities
in the four-register stack.

First consider using a calculator that has a polar-to-rectangular coordi-
nate converter (. >R ), such as the HP-21. This feature is useful because
we can easily calculate 4cosa and A4sina simultaneously. Suppose we
begin by

x[1]xo[=Ja[x2][B];SR. (2.3.8)
This gives (x — xp)cosa in X and (x — xy)sina in Y, but « is not available
for the next step. Also the after a seems to be a wasted keystroke.
So try instead

a[s10Jx[1]xo[-][B]; oK. (2.3.9)

No is needed after a; serves as a number separator and enables
auto-enter on the HP-21. Then

y[t]yel=][ReL] [B];R ;. (2.3.10)
At this point the stack has

T: (x—xy)sina,

Z: (x—Xxy)cosa,

Y: (y—yg)sina, (2.3.11)

X: (y—ygcosa.

The cannot be moved in front of the y to eliminate the
because then a five-register stack would be needed to hold Yo Vs Q,

(x— xp)cosa, and (x — xy)sina when y, is keyed. Then

(see x") (2.3.12)

puts (x — xpg)cosa+(y —yg)sina= x’ into X, and then

] (seey) (2.3.13)
puts (y —yg)cosa —(x — xp)sina=y’ into X.

*The HP-45 Applications Book, pp. 70 and 71, has an algorithm that requires three
registers and 31 keystrokes, plus data.
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The same algorithm works on a calculator that has several storage
registers, such as the HP-45; change to and add a storage register
number after and [RCL]. Since this adds two keystrokes, however,
we might try to write an algorithm for this problem without using
and [RCL]. Consider the problem rather in reverse order. Suppose, some-
how, that the stack contained

T a,

Z: X— Xy

(2.3.14)
Y: a,

X y=yo

then we could finish up the algorithm nicely by

[B]>R[RI[RI[B]=R (2.3.15)

which gives

T: (y—yysina,

Z: (y—ypcosa,

(2.3.16)
Y: (x—xp)sina,

X: (x—xy)cosa,

and then

[E] (seey),

(see x'). (2.3.17)

To get the initial configuration assumed earlier, « must be keyed either
first (so that the pop on [-] will duplicate a in T and Z) or last (so that an

can be used to duplicate a). For example,

x[Mxo [=] y[1]ye =] al1] (2.3.18)
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gives

T: x—x,,

Z: y _yO,

Y: «, (2.3.19)

X: a,

and then

(2.3.20)

gives the initial configuration previously assumed.
Starting at the end of an algorithm and working backward or starting in

the middle and working both ways is often useful for more complex
problems.
Or a can be entered first, for example,

a[T)x[1]x, (5] vy 5] (2.3.21)

gives

T a,

Z: a, (2.3.22)

Y: x—Xxp

X y=yo

and we can finish this algorithm by

Ry [B] (SR [RY] [RY] [x2y] [B] { SR ]

(see x”)

-] (see y’). (2.3.23)

On the HP-21 these last two algorithms each have 17 keystrokes (plus
data) compared with 15 keystrokes for the first algorithm. All three
algorithms have the same number of keystrokes (17) on the HP-45.
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To write a shorter algorithm for this problem, we reconsider Figure
2.3.1. Clearly the translation and rotation can be done separately; the
translation alone is just

x"=Xx—Xg,

y'=y—y, (2.3.24)

Now if x” and y” were expressed in polar coordinates, the rotation would
be trivial—just subtract a from the polar angle. Thus the rotation can be
done by converting to polar coordinates, rotating, and converting back to
rectangular coordinates. Then the whole algorithm would be

r----

y[Myol=1x[t]xo[=][B]:=P;[x2r]a[-] B]i>R (see x))

X2y (seey’). (2.3.25)

The two [x=y]s are necessary because | —P: leaves, and | >R ! needs  in
Y. This algorithm for the HP-21 requires only 12 keystrokes plus data; the
HP-45 version requires only 11 keystrokes (because does not need a
prefix keystroke).
Now suppose we want to do the same problem on a calculator such as

the HP-35 or the Novus Scientist, without or >R|. Equation 2.3.7
shows that this will be a little more difficult because there are not enough
registers to save everything. But our success with the polar-coordinate
representation suggests another approach: we could write algorithms to
duplicate the effect of and for a calculator without them,
then combine these algorithms into a composite algorithm to do the
coordinate rotation.
The formulas for polar-to-rectangular coordinate conversion are just

x= Rcos#,

y=Rsin. (2.3.26)

Since both # and R are used twice in these formulas, they must be saved,

but is not needed. One approach is to begin by

o[1][ cos|R[T][R]. (2.3.27)
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At this point the stack has

T: R,

Z: 0,

Y: cosd, (2.3.28)

X: R

The [1] after both # and R serves as a duplicatorin this algorithm, and the
[ cos enables auto-enter. Thealternatives of beginning by 8 R---
or R §--- cost more keystrokes. We can finish the foregoing
algorithm by

 

(see x),

(seey). (2.3.29)

But the in the last line loses x from T on the HP-35 or the Novus
Scientist.
A shorter algorithm for polar-to-rectangular coordinate conversion re-

sults from using

y=xtan. (2.3.30)

That is,

o[t][cosTR[X]  (see x)

(seey). (2.3.31)

This algorithm, however, does not work around #= +90° because the

formula for y degenerates into the form 0X co. Alternatively,

O1)[sINJR[X]  (seey)

(see x) (2.3.32)

works except around #=0 or 180°.
The formulas for rectangular-to-polar coordinate conversion are

R=\FH57
0=tan“<

%
|
<

), (23.33)
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with @ placed in the correct quadrant. We can also use, for example,

f=cos" '(7’;—), (2.3.34)

if it saves keystrokes. Some experimentation leads to

yIIXIXAMRUX][+][Vx]  (seeR)  [z][ARC]

Cos (if y<O0: ; seef). (2.3.35)

Note that R is used in calculating # and is not saved anywhere. We can
save keystrokes by using

_R=—, (2.3.36)

rather than the square root relation, provided # is not too near 0 or 180°.
Then

y[11[1]x[Z][ARc][TAN]  (if x<O0: 180 [+];  see®)

[z]  (see R). (2.3.37)

These algorithms are, of course, useful in themselves, but the goal is to
combine them into an algorithm for coordinate rotation (and translation).
First suppose we try for a version with no restrictions against particular
values of the parameters. Begin by

y[yol=]- (2.3.38)

We need to remember the sign of y —y, in the display at this point. Then

(][t[[RUX][V ] (2.3.39)

Now R’ is in X and we need to save it. So

 

[sTo][:][ARC][cOs]  (ify—y,<0:[CHS][T])  (2.3.40)

The added is to preserve the negation; refer to the peculiarities of
on the HP-35 in Section 1.3. At this point, since § is in X and R’ is

in the register, subtract a from # and convert back to rectangular
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coordinates. That is,

OAEEIRELIE  (seex)
(see ). (2341)

This algorithm has 25 keystrokes if y —y, >0 or 27 keystrokes if y —y, <0,
and it works for all values of the parameters, although it gives an error
indication (flashing zero) in case x” and y’ are both zero.
We can write a slightly shorter algorithm if we avoid certain values of

the parameters. Try

YyDATxE]  (see x—xo; note sign)

EIARIEAN]  (if x-x<0: 180[F])) [ST0)(EN] [ (2342)
At this point R’ is in X and @ is in STO |; we must save # somewhere. So
now a

al-] (2.3.43)

puts R’ into Y and #'=0—« into X, ready to be converted back into
rectangular coordinates. Unfortunately the polar-to-rectangular coordinate
converter needs to be modified a little to accept arguments in this order. In
particular, we should save 8’ in, that 1s,

(see x”)

(seey’). (2.3.44)

Note that x must not equal x;, y must not equal y,, and #’ must not equal
+90°; that is, x" must not be zero. This algorithm has 20 keystrokes if
x—x¢>0, or 24 keystrokes if x — x,<0. Several other similar algorithms
are possible with different forbidden values.

Like a good fable, this rather belabored example has more than one
moral, including one not yet stated: don’t give up too soon, but do stop.

2.4 POLYNOMIALS, POWER SERIES, AND CONTINUED FRACTIONS

Efficient translation of polynomials or power series into RPN usually
requires that they be written in one of several possible parenthetical forms.
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A general polynomial or finite power series

n

> axk=ay+ax+axi+--- +ax" (2.4.1)
k=0

can be written as

ag+x(a;+x(ay+x(--+ +xa,) ) (24.2)

and evaluated by

xnanan—l

an—2Tee alaO' (2.4.3)

This method is possible because the RPN stack is only four high and T
does not clear on pop (on most RPN calculators); thus x remains availa-
ble. If any of the g, other than a, are negative, enter them as positive but
replace the following by [-].
As an example, the polynomial

32x6—48x*+18x%—1 (2.4.4)

could be evaluated by

x[AN0132[x] x]148[=] X1 <118+ X1 [x]1[=], (24.5)

or perhaps by

x[T]X[[1]32[x]48[=] [x]18[+] [x]1[=]. (2.4.6)

For x=0.5, get 1. But this is Chebyshev polynomial T¢(x), and Section
A.5.6 contains a shorter algorithm for such polynomials, based on their
relationship with cosines.
As an application of this procedure, consider the problem of converting

octal numbers to decimal. An octal number

dd,_,---dd, (2.4.7)

where each d represents a digit, is just

8"d +8" " 'd,_,+--- +8d,+d, (2.4.8)
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Therefore this is a polynomial and can be evaluated by

8dndn—1“.dld0' (249)

An octal fraction such as

dod_jd_5---d_,.,d_, (2.4.10)

can be handled by

8i/AMI[td_,X]d_, [FI - - - do [+ [Xdp[+]. (24.11)

As an example, 3721, would be

8] [t]1[1131x]7[+] [x2[+] [X]1[+] (see 2001(yp). (2.4.12)

Hexadecimal (or sedenary) numbers can be handled in the same way
with 16 substituted for 8 and with the letters entered as their two-digit
equivalents.
The preceding formulation is usually best for ordinary polynomials;

however an alternative scheme sometimes results in a shorter algorithm for
power series if the coefficients have a special relationship to each other.
The general polynomial can also be written as

a
" x)- s ) (2.4.13)

a, a,

 4 k a as
> axk=ay+ax|1+—x[1+—=x(---
k=0 a4

This form is preferable whenever g,/a,_, is simpler than g, alone. A
corresponding RPN algorithm is

an an—l a,|EE(2)EE- (2) e
1

K1EeRl
As an example, consider the ascending series expansion for the Bessel

function Jy(x) (HMF 9.1.10),

  xnnm(
an—l an—2

© (—x2/4)"Jo(x)= ———. (2.4.15(x) 2 o )
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This series, truncated after five terms, can be written as

2 3 4 5
y+y+y+y

@y @3N @) (N
 Jo(x)=1+y+ (2.4.16)

where y = — x?/4, or as

JO(x)_1+y(l+2—(l+§(l+Z—(l+5 )))) (2.4.17)

This form is preferable because the factorials are eliminated. A corre-
sponding RPN algorithm is

x[x2]4[=][cns[t][n][t]25[]1[+]] 16[1[+][x]9[=]1[+]
XMAEIHX[, (24.18)

This ascending series of five terms gives Jy(x) with an absolute error
<1072 for 0< x<2.3.
As another example, consider the general Taylor series expansion of any

differentiable function (HMF 3.6.1),

fx+h)y= D oFR(x), (2.4.19)
k=0

which can be written as

f(x+h)f+h(f+(f”+ (f”’+---)---)), (2.4.20)

where the x dependence after each f was dropped. This form comes from a
combination of the two schemes given earlier. An RPN algorithm for this
series truncated after the nth term is

ALX()[PX(= 1)

P=2)[ -[ (24.21)

2[]7[+

Minimax, near minimax, or best polynomial approximations to transcen-
dental functions (see e.g., Fike, 1968) can, of course, be evaluated in the
same way. However, such polynomials usually have irrational coefficients
that must be entered as up to 10-digit numbers. If the calculator has



58 Terser and Tighter Algorithms

enough storage registers to hold these coefficients, and if the function is
needed at a number of points, such polynomials may be desirable. More
typically, however, a power series with coefficients that are small integers
or ratios of small integers results in a shorter algorithm even though more
terms in the series must be taken to achieve the same precision.

But adjusting the last coefficient in the series (i.e., the first number in the
algorithm) in an informal way, may achieve a specified precision over a
wider range of x. This can be done without increasing the number of
keystrokes if a different integer, rather than a multidigit number, is chosen
for the last coefficient.
As an example, in algorithm 2.4.18 for Ji(x), if we change the coefficient

25 to 26, the range over which the absolute error is < 107> extends from
0<x<<2.3 to 0<x<52.65, as shown in Figure A.5.1. The change to 26

increases the absolute error by an amount that may be negligible, for
x<1.9. The number 26 was determined by trial and error.
We can also write algorithms for power series in ascending order.

Examples using the feature of the HP-45 appear in Section A.5.9 for
Bessel functions and in Section A.5.10 for the error function. Other
examples are in the HP-35 Math Pac, p. 90; the HP-45 Applications Book,
p. 27; and the HP-55 Mathematics Programs, pp. 100 ff. For a given
number of terms, these ascending-order algorithms are almost always
longer than the parenthetical forms already given. But an ascending-order
algorithm allows one to add terms until they become less than some limit,
thus achieving a specified precision with a minimum number of terms.
Ascending-order algorithms for power series are often desirable for pro-
grammable RPN calculators because the looping feature makes such cyclic
procedures easy.
A continued fraction can be thought of as a special form of a rational

function (i.e., the ratio of two polynomials) and formulas exist (Wall, 1948,
Chapter 9; Demidovich and Maron, 1973, Section 2.5) for converting a
rational function into a continued fraction or a continued fraction into a
rational function. A finite continued fraction such as

a,
b+ 

a,
 

b, (24.22)
can be evaluated by

a4b4(_£|b3a3ElbzazElblal Elbo .

(2.4.23)
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For example, the error function is (HMF 7.1.14)

erf(x)=l—e— X 1
Va X+ 1

2x+

 

 

 

X+ 

2x+ 

x+

2x+ 6 7
o

(2.4.24)

A corresponding HP-45 algorithm is

*MAMH7x=2r][]H6[x2y][=][+][+] (24.25)

S[xzy](][+4[x2y]]

3z2l

7=+[x22][2][ex][X][Glin]

[GlvaiXI[1/x J1[x2x][c]  (see=erf (x)).

This continued fraction of seven terms gives erf(x) to four or more
significant figures for 1.3x. If we change the last numerator (i.e., the first
number in the algorithm) from 7 to 3, the range over which this algorithm
gives four or more significant figures extends to 1 x, as shown in Figure
A.5.3.

In the “simple form” for a continued fraction, all the a; are unity (see,

e.g., Knuth, 1969, Vol. II, Section 4.5.3) and

_ I
/binbarby ’b"/=b1+1/(b2+ /(b +1/B)) (2.4.26)
 

This expression can be evaluated by

b,[1/x1, [#][1/x1b, ,[H[1/x |- - b,[+[/Jb, [+][1/x ] (24.27)

Every real number x between 0 and 1 has a unique “regular continued
fraction” expansion in this simple form with the b; all positive integers. But
n is infinite if x is irrational. This continued fraction expansion of a
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(positive) number x can be determined by

SETUP: x (mentally set j=0)

LOOP: (see b; as the integer part of the display) b; (i.e., key it back in) []

(mentally add 1 to) :|. (2.4.28)

The :| symbol in this algorithm means loop back to the last preceding
colon (%), in this case after the word “loop.” For a rational x, this process
terminates with zero, except possibly for round-off error. For an irrational
x, the process would go on forever, but on a calculator with a finite
number of digits, the algorithm fails to give the correct b; after a finite
number of loops.

If instead of all being unity, the a; are prescribed numbers, we have

SETUP: x [1] (mentally set j=0)

LOOP: (see b; as the integer part of the display) b, (i.e., key it back in) ]
(mentally add 1to) a; [x2y] [£] :|. (2.4.29)

Or if the b; are prescribed and the g; are integers to be found, then

SETUP: x [1] by [=] (mentally set j=1)

LOOP: b, (note integer part of display; key it back
in) 1 (see a)) =] 1 [<] (mentally add 1 to
)l (2.4.30)

These algorithms are based on the assumption that each of the partial
fractions is <1 and that all the a; and b, are positive. These are not
necessary assumptions, of course, but they are conventional.
Fewer arithmetic operations are usually required to evaluate a rational

function if it is converted into a continued fraction; however the total

number of keystrokes may be either greater or smaller depending on the
numerical values of the coefficients. In references such as HMF, continued

fractions usually appear when the coefficients in this form are simpler than
in some other form.

2.5 STACK REARRANGEMENTS (RPN CALCULATORS)

As discussed in Section 1.3.3, for any but the simplest problems, numbers
in the stack sometimes turn up in the wrong order. The and
keys are provided just to alleviate such difficulties. But one might need any
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of a large number of possible stack rearrangements. When working
through a complex algorithm, I find a table of such rearrangements to be
helpful. In computer jargon, they are macros to be inserted where needed
into a main algorithm.

Consider four numbers—A, B, C, and D—in order in the stack; that is,

AmmX,BinY, Cin Z, and D in T. And consider rearranging these

numbers in an arbitrary way and also zeroing any registers. Then the
5*— 1=624 possible rearrangements can all be done with some combina-
tion of [Rl], [*=y], [1], [cLx], [+], [-], and [0]. A few of these
rearrangements are in the HP-35 Math Pac, pp. 122-127, and in the HP-45
Applications Book, pp. 168-174. Table 2.5.1 contains most of these re-
arrangements in the following format. The first four columns are the
rearranged register contents from left to right; the first column is the new
contents of the X register, the second column the new contents of the Y
register, and so on. An algorithm to achieve this rearrangement follows. A
few blank lines are left in the table as exercises for the reader.

Auto-enter is assumed to be enabled at the start of the algorithms, but
this is necessary only for algorithms beginning with [0]. The status of
auto-enter at the end is ignored; if auto-enter needs to be enabled, append

to algorithms ending in [1], or append to algorithms
ending in or [0]. I assume that T does not clear on pop, but this is
necessary only for algorithms containing or [=]; thus most such
algorithms will not work on National Semiconductor or Novus calculators.

Consider an example from the HP-35 Math Pac, p. 125, and the HP-45
Applications Book, p. 171. To do the rearrangement

T: D B,

Z: C B, (2.5.1)

Y: B<—B,

X: A—A,

which HP calls “copy y into Z and 7,” HP recommends

2y][]RURRL. (25.2)

In my notation this rearrangement is ABBB, and Table 2.5.1 contains the
rather shorter

=) (25.3)



Table 2.5.1 Stack Rearrangements

XYZT

 

Keystrokes 

0000

[

CLX000B

000C

000D

0040

004 4

<S

2<

R[0] [1]

004C

2=

CLX00BO

00BA

00BB

00BC

00BD

00CO

00C4

=

xzy] [0]

[0] [x=y

<]

CLX

v] [cLx] 1] [Ri]x
[o] [*

N

Y

N

XY

N

CL

m
-

-
E

CLX00DO

00D 4

E

0O0DB

00D C

00DD

[9__l
(=] [eLx] [x=y] [cLx]
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Table 2.5.1 (Continued)

XYZT

 

Keystrokes 

N

CLX [x0404

040B

040C

040D

0AAB

044C

0AAD

04ABO

04ABC

0ABD

04CO

04CA4

0ACB

04CC

0ACD

04A4DO0

04ADA

>
<

(x=yX2y

=y -E}

x2y] [CLx]
X2y

R [-] [RY] [x24] [0]

X

0ADB

04DC

0ADD

x2y] [RY] [x22] [0] [*x=2x] [RY]
x2y] [Ri] [x22] [1] [£]

63



Table 2.5.1 (Continued)
 

 

 

 

XYZT Keystrokes

0B00
0BOA [x=»] [0] [x=»] [0]

0BOB xZy

0B0C  [cix] [x2y] [o]
0BOD xzy] [cLx] [x=2x] [0]
0BA0  [x=y] [o] [1] [R{]
0BA44 [1][1][Ry [H]
0B4B  [x=y][1] [1] [RY] [cLX]
0BAC [x=y][0]

OBAD xzy

0BBO [o] =] [f] E] R
0BBA xzy CLX

0BBB [1][1] [cx] [-] [£]
0BBC CLX

OBBD xzy] [RY] [£] [cLx] [x=»

0BCO

OBCA [0] [x=»

0OBCB xzy xzy

oBCcC [1][]

OBCD CLX

0BDO [cLx]| [R{] [x=y] [CLX]

O0BDA

0OBDB xzy| [CLX

0BDC [RY [x2y] [0] [x2x] [RY]
OBDD xzy] [1] []



Table 2.5.1 (Continued)

XYZT

 

Keystrokes 
(=]

[t] =] [Ry] [cLx0cocC

0CO0D

0CA40

CLX |x zy] [0]

[0] [x=» CLX

CLX0CAA

0CAB

0CcAC

0CAD

0CBO

[o] [=] [Ry] [cLx] [x2»] [Ri]
[x2y] [Ry] [x2»] [o]

xzy] [o] [1]=

0CBA

CLXOCBB

0CBC

[e]N2E[

xZ)ySEIE(IE
E
-
E
E
“

n
o
o
o
E

Eli=ici=i=IE

N
o

W
A

O
R
K

r
O

O
O

O
O

O
O

O
L

O
O

O
©
O
O

O
©oO

O

S

m
2Sm

0CDO

0CDA

OCDB

0CDC

0CDD

CLX

>
<

-E
CLX
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Table 2.5.1 (Continued)

XYZT

 

Keystrokes 
X2yCLXO0DAC

2

ODBD

0ODCO

CLX

xzy

[-] [cL

[=]
[-] [cL

x2y [-] CLX
[cLx] [=] [R] [cLX]
[=] [eLx] [xzy] [RY]
(=] [=] [cLx]

O0DDA

ODDB

0DDC

ODDD
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Table 2.5.1 (Continued)

XYZT

 

Keystrokes 

AO00D

CL
N

[o]
[€]

&
V
,
V
,
B
y

(=]
(o]
[
[

o
T

/
O

RN
A
Q
R

o
o

©
©

X
X

X
X
Y

[x2y] R [x20] [1] [] [x2/]AO0ODD
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T

RI] [-] [cLx] [-] [RY]

RI] [-] [cLx] [Ry] [RY
[o] [x=2y

X2y

Keystrokes

  Table 2.5.1 (Continued)

XYZT

AAO0D

AAAOQ

AAAA

AAAB

AAAC

AAAD

AAO0C

=
|

2
2

2
_
H
E
F

H
E
E

5
[1]

=
[<]

E
m
m

a

X2y

Y

m
[1]

>
<
-

.
x|

(W
[<]

1
o

S
E
E
E
R
E
N
g
o
Y

—

o
=[5

a
@
m
n
x
m
a
a
m
m
a

A
E
E
a
E
R
E
E
E
E
E
E
E
E
E
E

o
M

L
U
A
N
o
M

O
U
R
K
o
x
R

O
L
A
K

M
A
R
M
R

R
O

0
0
V

O
V
O
O
U
R
Q
R
A
A
Q
A
A
Q
A
A
Q
N
R
A

N
V
N

X
N

X
N

X
N
X
X

X
X

X
X
X
X
X
X

X
N
¥

X
N

X
N

X
X
X

X
X

X
X

X
X
X
X



Table 2.5.1 (Continued)
 

 

XYZT Keystrokes

ABO00  [o] [f] [RY [RY]
ABO0A CLX

AB0B [1][1][H] [RY [x2y] [rY]
ABOC CLX

ABOD CLX |[R{] [RI]

ABAO
ABAA
ABA4B [1][1] [cx] [£] [RY [x2y] [RY]
ABAC [1][RY [x=»

ABAD [Rl [x=y] [cx] [F] [x=y] [RY] [x=¥

ABB0 [ [ERY
ABBA cLx]| [-] [RY]

ABBB [t [1] [ [H
ABBC [x=zy
ABBD cLx] [-] [RY]

ABCO [o] [R

ABCA

ABCB xzy] [1] [RY] [x=y

ABcCccC o] []

ABDO
ABDA [RY[xz2y] [cx] [] [RY [RY [RY]
ABDpB [RY [RY [cx][-][RY] [>=2r] [RY

ABDC
ABDD



Table 2.5.1 (Continued)

XYZT

 

Keystrokes 

ACO0O x2y
o] o] [® [/ [0 [/
(=2 o) /] (R
X

ACO0A4

ACOB

[<]ACOC

ACAB

ACCO

IE
@

ACCA

ACCB

ACCC

ACCD

ACDO

ACDA

x=y] [cix] [
X

ACDB

ACDC

ACDD
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Table 2.5.1 (Continued)

XYZT

 

Keystrokes =

x2yADOO

RI| [-] [cLx] [x=2yADO0A

x2y

xZy

ADOB

ADOC

Ri] [-] [cLx] [Ri] [x2y]
RI] [£] [cLx] [o] [x=2»

ADOD

ADAO

ADAA

Ri] [x2] [cLx] [£] [RY] [*=y

B

ADAB

ADAC

2

Ri] [-] [R]ADAD m
-
m

YX

n

RX2yADBO

y

X

RI] [CLX] [x=2y x2

EEN

(x=y|

RI] [cLx] [-] [x=2y
RI] [

ADCO

ADCA

YADCRB

x2y] [RI] [x2y] [1] [=] [RY]ADDO

RI] [=] [RY] [1] [RI] [RY] [RY]ADDA

Y

N

ADDC

ADDD

n
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XYZT Keystrokes

B0O0O
Boo4  [o] [1] R [RY] [RY
BOOB [cLx] [x=»] [o] [x=»] [1] [R{]

B0O0OC [cLx] [x=y] [o] [x=¥]

B0OOD [RY] [x=y] [cLx] [x=»] [0] [x=]

B0AO  [x2y][o] [x2y] [0] [RY
B0AA 1] [1] RY] [5] [x=»

BOAB xzy] [0] [x=y] [1] [R{]

BoAC [x2y][o] [x2y]
B0AD xzy xzy| [CLX

BOBO [o] [x=y] [1] [-] [RY] [>=v

BOB A xzy CLx [x=y

BOBB
BOBC xZy

BOBD [xzy] [RY] [-] [cLx] [x=» xzy

Boco  [cx] [x=y][o] [RY
BOCA [o] [x=y] [RY] [x=»

BOCB X2y

Bocc [1][-] [x=y]

BOCD x2y

BODO xZy

BODA xzy||CLx]| [x=y

BODB CLX

BODC [RY [>x=y] [0o] [x=» X2y

BODD xzy] [1] [F] [x=Y

 

 

 

 

 

 



Table 2.5.1 (Continued)

XYZT

 

Keystrokes mmn

Yy

N

XBAOO

BAO0A

BAOB

BAOC

BAOD

BAAO

BAAA

  
BAAB

BAAC

BAAD

BABA

BABD

BACO

[t [RY] [=BACA

BACB

BACC

BACD

BADO

[0] [-] [x=/]

Rx2y] [RI] [RI] [x=yBADC

BADD
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Keystrokes  Table 2.5.1 (Continued)

XYZT

BBOO

[]

x=Z)yCLXBBOC

[ [=] Ry 1]

BBOD

BBCA

BBCB

BBCC

BBCD

BBDO

BBDA

BBDB

BBDC

BBDD

y

cix] [-] [xzy] [RY] [1]

N

X
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XYZT

 

Keystrokes 

BCOO

7] [RY [x2y] [RI] [RI] [R]

[0] [x=vy

N=[cLx]BCOD

BCAO

BCAA

[o] [=] [RY] [x2/]

BCAB

v] [Ry]
v] [Ri] [RI] [RE

flflfiflnmx@

E
E

[x2y] [RY] [x2y]BCAD

BCAC

BCBO

BCBA

[<]

2
2
2
[

[
[0

[0
[

e
l
<
[

o
X

/R
O

O
O

O
O

O
O

O
O

Q
A
R

BCCD

BCDA

BCDB

BCDC

BCDD

RI] [x20] [1] [RY] [x2)]

cix] [
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Table 2.5.1 (Continued)

XYzrT

 

Keystrokes 

xzyCLXBDOO

x2yCLXBDO A4

X2yBDO B

X2yBDOC

[

xZyBDOD (=] RY] [x=2y] [RY]
N
_
H
_
m

>l
[

|
[

Ol
[©

A
L

N
N

2|
=

<]ElE
~

E

BDAC

g

BDAD

BDBO

yN%
~N=

m
fl
B
z

BDBA

>
<
E

g
2BDBB

E

BDBC njE

-
E

-
_
M
_
~N=

BDBD

BDCO 22
~N

RI| [RI] [xBDCA =
H
gmmn

Y

N

XBDCB

E

BDCC

BDCD

BDDO

m

E

n
E

-
-
-
-
-
B

E
>
<
.

B
B
E

E

E

BDDA

S=O

BDDB

CLXBDDC

BDDD

B
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XYZT

 

Keystrokes 

c000

c00D

c040

y>
<

~

n
@

-
E
E
Ec044

C0AB

c04C

_
H
_yN=

=mm@
yNR

CLXCO0BO B
l

=)AN%COBA

COBB

COBC

CO0BD

cC0CO

l2 E-
E

@
m
-
n

E

_
H
:
H
_
E

<]
[2]cocCA4

COCB

cocCccC

co0CD

c0DO

EEICLX
CLX

x%y

[=] [cx] [x=ycC0ODD
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XYZT

 

Keystrokes 

[o] [x2»] [RY] [RY] [cLx] [RY]CAO0O0

2
[o] [x=»CAO0B

CAO0C

S
N

P
<
-
n
x
a
=

8
0

2
o
0

e
[
0

B
E
E
E
E
E

N
A

O
R
Q

o
x
R
/

R
AR

A
R
A
R
R
O
O

O

N
XN

X
N

X
N

X
N
X

T

O
O

O
L0

O
O

©

A
2 i N-=

i
-

-
-
a
-

N
--
m

~N

X

[x=»] [cLx] [-] Ixfl

N  CADD
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 Table 2.5.1 (Continued)

XYZT Keystrokes 

CBOD

CBAB

CBBA

=]
=][o]

CBCO

CBCA

[t =CBCB

X2yM= ECBCC

CBCD

CBDO

X2y

X2y
-ECBDA

CBDB

g
-
g

m
m
mCBDC

CBDD
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XYZT

 

Keystrokes

1] ] RY [cx

 2

cCcoo 22[N

RRX2ycCco4
=

2
F
E
E
n

g
a
R
E
O

clElE
-
B
-
-
-
a
g m
.
.
.

-
>
<

N
B

o5
B
E
E
E

RXy[1]
[o]
[1]
[t]
[Ri] [x=/]CCBD

cCccCo

n
n

B

E
I
B
E

HE

IE
[t =

cCccCcH4

CCCB

cccc

ccCbhD

CCDO

|m-ll
[cLx] [RY] [RY][1]
RI] [RY] [1]CCDA

CCDB

cchcC

cCCDD

[x=r] [RY] [RY][1]
RY][RI] [1] [1] [RY]

=] Ry [1]
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 Table 2.5.1 (Continued)

XYZT Keystrokes 

CDOB

cCDhOC

[=] [cLx X2yCDOD

CDAO

CDAA

CDAB

CDAD

CDBA

CDBB

X2y

[cLx] [£] [RY] [x=»

x2y

CDBC

CDBD 2|CDCO |

xXZy X=y xZy

x2y X2y

CDCA

CDCB

cDCC

(=] [Ry] [1] [RY] [x=2x] [R]
(=] [eLx] [Ry]

CDCD

CDDO

[(x2y] [cLx] [-] [RY]
[eLx [=] [RY]

CDDA

CDDB

=) R [ [R]

[=] [eLx] [£]

CDDC

CDDD
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Table 2.5.1 (Continued)

XYZT

 

Keystrokes 

n

-
E
-

E
-

CLX

CLX

DO00O

D00 4

D00 B

D00 C

D00 D

F
=

=
g

&

-
g
-
m

—

-
C

~

X2

X2yD0AC

D0AD

2|flX2yCLX

CLXx2yEDOBB

DOBC

DOBD

DO0CO

DO0CA

bDoCC

DOCD

DODO

DODA

DODB

DODC

DODD

mm2]SB]

AN%

y
X
y
y

>
<

-
>
<

>
<

=
C

=|
=N

m
-

be

mB

-

E]
E)ElX2y
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Table 2.5.1 (Continued)

XYZT

DAOO

 

Keystrokes 

DAOC

DAAC

DABA

DABB

5n-
-
-

[x2y] [RY] [x2y] [1] [] [RY] [x2/]

-
--
E

E--

DACO

DACA

DACB

DACC

DACD

DADO

[-]

[x=y] [cLx] [-] [x=¥]

DADA   DADC

DADD
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Table 2.5.1 (Continued)

XYZT

 

Keystrokes 

DBO0OO

X2yDBOB

[cLx] [x2yDBOC

[cLx] [=] [RY] [cLx] [RI] [RL]

R] [x=2y] [cLx] [-] [x2/]
Rl| [x=y

DBOD

DBAO

DBAA

DBAB ==2
Y

N

XDBAC 2]222N
XDBAD

D BBA

X2y

-
D BBB

DBBC

[cLx] [-] [RY] [€DBBD

xZyDBCO

x

DBCA

N

DBCB

DBCC

DBCD

DBDO

+

-

CLX
cLx] [=] [Ri] [RY]

Y

Ri] [Ri] [RY] [1] [R] [x=2»

=Rxzy] [1] [-] [RY [*
DBDA

[cLx] [-] [x2y X2y

[cLx] [] [x=y

DBDB

DBDC

DBDD Ri] [x2y] [1] 2] [] [x=4]
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Table 2.5.1 (Continued)

XYZT

 

Keystrokes 

=

DCCO

DCCB

2
o
y

S oERERYE
>
<

>
<
E

=

.
.
.
“
D
.
.

B
E
E

bDccCccC

bccCD

DCDO

DCDA

DCDB

DCDC

DCDD
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Keystrokes  Table 2.5.1 (Continued)

XYZT

ElcIEMo
-

Z
-

=
m
-
l
-
m
n
u
m
u
-
l
-
-
l
-
D
B

m
-
-
-
m
m
m
E
E
E
-
E
--

-
z
-
E
E
E
E
B
-
-
B
-

B
B
-
-
E
-

ol
[

[2-
E
B
B
-
B

CLX

CLX
x2y
CLX

DDOC

DDOD

DDAO

DDAA

DDAB

DDAC

DDAD

DDBO

DDBB

DDBC

DDBD

DDCO

DDCA

DDCB

DDCC

DDCD

DDDO

D DDA

DDDB

DDDC

DDDD 
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2.6 ALGEBRAIC MANIPULATIONS IN RPN

Given the problem of translating an algebraic formula into RPN for a
calculator, two approaches to optimization (i.e., minimizing the number of
keystrokes in the final algorithm) are as follows: (@) manipulate the
formula algebraically until it is in a form that will yield an optimum
algorithm, and translate into RPN; or (b) translate into RPN immediately
and manipulate the RPN algorithm to optimize it. Of scheme a, I would
only say that the shortest algebraic expression does not necessarily yield
the shortest RPN algorithm. Scheme » may seem quite foreign at first
because we have all learned well the rules of algebraic manipulation, but
the corresponding rules in RPN are strange. I do not wish to promote
scheme b over a, but I do believe that an RPN calculator user should have

at least some familiarity with scheme b and the rules for manipulations in
RPN, and he should be able to use scheme b or schemes a and b together
where appropriate.

First consider the dyadic functors—operators that take two arguments
and give one answer. The common dyadic functors are +, —, X, and +.

Also I define two new symbols | and | for the dyadic functors y*
(involution) and y!/* (evolution); thatis,

ath | =a’, (2.6.1)

and

ath | =a'/*="Va . (2.6.2)

The symbol | is intended to suggest a rising power and is pronounced
“roop” with rising inflection; | is pronounced “ramp” with falling
inflection. On some RPN calculators | and | require more than one
keystroke. On an HP-45, for example, | is [G]iy*} and | is
ty*1. This new notation is more compact and avoids reference to a specific
machine.
The following tabulation is the result of translating some of the elemen-

tary rules of algebra into RPN.

Cancellation

albX b+ =a; b#0, (2.6.3)

alb+bX =a; b0, (2.6.4)

atb+b—=a, (2.6.5)
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atb—b+ =a,

ath | b | =a; b#0,

atb | b ) =a; b#0.

Exchange of order (commutative and associative laws)

atb+ =bta+,

atbx =btax,

atbXcX =alcXbX,

atb+c+=alc+b~+,

atbXc+=alc+bX,

atb+c+=alc+b+,

atb—c—=aflc—b—,

atb+c—=alc—b+,

atb)c) =atc) b},

atbJc | =alc|b],

atb [c | =ate b |,

atbXctbX +=alc+bX,

atbXcbX —=altc—bX,

atb+ctb++=afc+b+,

atb+ctb+—=altc—b+,

ath | ctb | X =alcXb |,

ath | ¢tb | +=atc+b |,

ath | ctb | X =ateXb |,

atb | ctb | +=alc+b |.

(2.6.6)

(2.6.7)

(2.6.8)

(2.6.9)

(2.6.10)

(2.6.11)

(2.6.12)

(2.6.13)

(2.6.14)

(2.6.15)

(2.6.16)

(2.6.17)

(2.6.18)

(2.6.19)

(2.6.20)

(2.6.21)

(2.6.22)

(2.6.23)

(2.6.24)

(2.6.25)

(2.6.26)

(2.6.27)
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Replacing extra 1s

atbtc+ +=atb+c+, (2.6.28)

altbtc—+=atb+c—, (2.6.29)

atbtc+ —=atb—c—, (2.6.30)

atbtc— —=alb—c+, (2.6.31)

altbteX X =atbXcX, (2.6.32)

atblc+ X =albXc+, (2.6.33)

atbteX + =alb+c+, (2.6.34)

atblc+ +=alb+cX, (2.6.35)

atblex | =atb | c |, (2.6.36)

atbtc+ | =atb ) c |, (2.6.37)

atbtex | =atb | c |, (2.6.38)

atbte+ | =atb | c . (2.6.39)

The rule to go from the left-hand expression to the right-hand expression
is: move the outer (right-most) functor in to replace the second 1, and if a
—thereby crosses a + or a —, reverse it (i.e., +=—); if a + thereby

crosses a X or a +, reverse it (i.e.,, X==+); if a | thereby crosses a X or
a +, change the X to | orthe + to | ;orifa | thereby crossesa X or
a +, change the X to | orthe + to | .

Rules of exponents

ath | atc ] X =atbtc+ |, (2.6.40)

ath | atec | +=atbtc— | . (2.6.41)

Monadic functors

Next consider the monadic functors (one argument, one answer) as
defined in Table 2.6.1.



90 Terser and Tighter Algorithms

Tabie 2.6.1 Monadic Functors*
 

3 sin 3

c cos c

t tan t

I In=log, 2

e log=logy, v
e e* /

< 10 ¢

sin~!

cos”!

tan—
x2

Vx
reciprocal ([1/x])

negate ([CHS])

1

 

*Do not confuse the functor e with the number e=

2.71828 - - -, nor the functors / and +.

Rules of logarithms

atbx1=albl+; a>0, b>0,

atb+1=albl—;a>0,b>0,

ath | l=albX; a>0,

ath | [=alb+;a>0,

atbX=albl+;a>0,b>0,

alb+L=albl—;a>0,b>0,

ath | L=albX; a>0,

ath | {=alb+;a>0.

Change of base (logarithms)

al=alel +,

al=all0l+.

Cancellation (of logarithms and exponentials)

ael=a,

a¥il=a,

ale=a; a>0,

al&=a; a>0.

(2.6.42)

(2.6.43)

(2.6.44)

(2.6.45)

(2.6.46)

(2.6.47)

(2.6.48)

(2.6.49)

(2.6.50)

(2.6.51)

(2.6.52)

(2.6.53)

(2.6.54)

(2.6.55)



2.6 Algebraic Manlipulations in RPN 91

Equivalences among exponentials

eta ) =ae,

eta | =a/e,

10fa | =ag,

10ta | =a/%.

Rules of exponents

alb+e=aebeX,

altb—e=aebe~+,

altb+T=aTbIT X,

ath—T=aZThT +.

Change of base (exponentials)

aZl=10laXe,

ae=elaxX¥.

Equivalences involving squares and square roots

a*=a12 ) =a1x; (a>0),

ay/=af2 |.

Rules of squares and square roots

a’h*x =alb x?,

a’h?+ =ath+?,

ay/ by X=atbxX~/;a>0,b>0,

a\/ by +=atb++/;a>0,b>0.

(2.6.56)

(2.6.57)

(2.6.58)

(2.6.59)

(2.6.60)

(2.6.61)

(2.6.62)

(2.6.63)

(2.6.64)

(2.6.65)

(2.6.66)

(2.6.67)

(2.6.68)

(2.6.69)

(2.6.70)

(2.6.71)
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Cancellation (of squares and square roots)

a*y/ =lal,

av/*=a; a>0.

Miscellaneous relations involving squares

Rules of reciprocals

Rules of sign change

a’h*— =atb—atb+ X,

altb+2=a%albX2X +b*+,

atb—2=a%atbX2X —b*+.

1Ma+=a/,

a//=a; a0,

alb/ X =alb~+,

ath/+=atbX; b0,

a/bx=bta~+,

a/b+=b/a+=albX/.

aCC=a,

atbC+ =atb—,

atbC—=alb+,

aC1b+=bta—,

aC1b—=bCTa— =alb+G,

alb@X =albXC=a@1b X,

atb@+=atb+C=al1b~+.

(2.6.72)

(2.6.73)

(2.6.74)

(2.6.75)

(2.6.76)

(2.6.77)

(2.6.78)

(2.6.79)

(2.6.80)

(2.6.81)

(2.6.82)

(2.6.83)

(2.6.84)

(2.6.85)

(2.6.86)

(2.6.87)

(2.6.88)

(2.6.89)
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Rules relating reciprocals, exponentials, and sign changes

ath | =atb/ |, (2.6.90)

ath | =atb/ |, (2.6.91)

atb€ | =atb | /=a/b ], (2.6.92)

atb€® | =atb | /=a/b |, (2.6.93)

aCe=ae/, (2.6.94)

aC¥=a¥/, (2.6.95)

a/l=alG, (2.6.96)

a/2=age. (2.6.97)

Rules relating squares, square roots, logarithms, and exponentials

a*l=al2X; a>0, (2.6.98)

@*Q=a2 ¥, a>0, (2.6.99)

a\/l=al2+, (2.6.100)

a\/{=a2+, (2.6.101)

ae’=af2Xe=al +e, (2.6.102)

ae\/ =al2+e, (2.6.103)

aT?=a2XT=a1+g, (2.6.104)

a¥\/=al2+<T. (2.6.105)

Trigonometric identities

The tabulation below contains only a select few of the incredible
number of trigonometric identities.

csca=as/=acatx/, (2.6.106)

seca=ac/ = atad+, (2.6.107)

cota=at/=acad+, (2.6.108)
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csc”la=a/3,

secla=a/t,

cot"la=a/i,

sec’a=at*1 +,

cscla=at’/1+,

asac+ =at,

as’ac’+ =1,

a@s=as@,

aCc=ac,

alt = at@.

Examples of reductions

rs+tu

=rsXtfuX +s+u+ (rule 2.6.34),

=rfsXs+u+tfuXs+u++

=rfu+tfuXu+s++ (rules 2.6.12 and 2.6.3),

=rfu+tls++ (rule 2.6.3).

Un(ab?®) —In(b) = atb* X 12+ bl —

=alb’[+2+bl— (rule 2.6.42),

=albl2X +2+ bl—

=al2+b2X2+ +bl—

=al2+ b+ bl — (rule 2.6.3),

=ql2+ (rule 2.6.5),

=ay/l  (rule 2.6.100 backward).

=rfsXttuX +stuxX +  (as formed),

(as formed),

(rule 2.6.98),

(2.6.109)

(2.6.110)

(2.6.111)

(2.6.112)

(2.6.113)

(2.6.114)

(2.6.115)

(2.6.116)

(2.6.117)

(2.6.118)

(rule 2.6.22 backward),

(rule 2.6.22 backward),
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2.7 EXERCISES

2.7.1

2.7.2

2.7.3

2.74

2.7.5

2.7.6

2.7.7

(a) Write an RPN algorithm to sum two columns of numbers
simultaneously. The loop should contain no more than four
keystrokes plus data. Do not use [£+]|, [M+ ], or [STO]. Hint: For
a less elegant solution to this problem, see the HP-35 Math Pac, p.
141. (b) Sum three columns simultaneously with a 12-keystroke
loop and the same restrictions.

Write an RPN algorithm to use in the supermarket to (a) calculate
unit prices ($/0z, etc.) given package prices and contents, and (b)
keep a running total of the price of merchandise purchased, to
check against the cash register receipt. Remember that one does
not always buy everything for which one calculates a unit price,
but keying the package price twice for an item that one does buy
should not be necessary. Do not use E+], [M+ ], or STO].
Write an algorithm for an HP-45 to do complex multiply with 14
(rather than 21) keystrokes,

(a,+ib,)(a,+ib,) = u+iv.

Given a,, b, a,, and b,; find u and v; i’=—1.

Write an algorithm for an HP-45 to do complex divide with 15
(rather than 18) keystrokes,

a,+ib,

a,+ib,
 =u+iv.

Write an algorithm for an HP-45 to do complex reciprocal with 7
(rather than 17) keystrokes,

1
— =u+iv.

a+ib
 

Write an algorithm for an HP-45 to do complex square with 10
(rather than 14) keystrokes,

(a+ ib)’*=u+iv.

Hint for problems 2.1.3 to 2.7.6: Use and | >Rand work
with the polar-coordinate representation. See the HP-45 Applica-
tions Book, pp. 48-50.

Fill in the blank lines in Table 2.5.1, namely: ABCD, ADDB,

BADA, BADB, DADB.
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2.78

2.79

2.7.10

Let us begin with a single fertile pair of rabbits and suppose that at
the end of a month, each fertile pair produces another pair.
Assume that rabbits become fertile at the age of one month, that

foxes do not exist, and that rabbits never die. Thus after one

month there will be 2 pairs of rabbits, after 2 months, 3 pairs

(because one of the previous pairs is not yet fertile), after 3
months, 5 pairs, and so on. Write a cyclic RPN algorithm to
calculate the number of rabbits at the end of each month, and use

the algorithm to calculate the number of rabbits at the end of a
year. Hint: This is the famous Leonardo Fibonacci problem (c.
1202), and the answer is a sequence of Fibonacci numbers. The

loop should have no more than five keystrokes.

Convert the following octal numbers to decimal,

43172.,
43172,

431.72,

the following hexadecimal numbers to decimal,

AEI19C2,
FDA7.CBS,

and the following binary numbers to decimal,

1101011011101,
1011001.1110101101.

Hints: Hexadecimal numbers are base 16 and A=10, B=11,

C=12, and so on. For the binary numbers, either convert to octal

first, or use base 2 directly.

Without air resistance, the speed of an object falling in a constant
gravitational field is

v=al,

and the distance fallen is

s=at?,

where a is the acceleration of gravity and ¢ is the time since

release. (a) Write an RPN algorithm to calculate v and s given a
and ¢ (six keystrokes plus data). (b) If a stone dropped from a



2.7.11

2.7.12
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bridge strikes the water 4.2 seconds later, how high is the bridge
over the water, and how fast was the stone moving when it hit the
water? The acceleration of gravity near the earth’s surface is a =32
ft/s’.
The harmonic numbers are defined as

H=1,
k=1

and are approximately

  1 1
H =Inn+y+ — — + ,

" "2 222 120m°

where y=0.5772156649- - - is Euler’s constant. Write an algorithm
for each of these formulas and compare the answers for n up to 10.

Fresnel’s formula for reflection of unpolarized light at the interface
of a transparent medium is (FFP, II, p. 367)

1] sin®(i—r) tan’(i—r)

2| sin2(i+r)  tan?(i+r) |
 

where i is the angle of incidence, r is the angle of refraction in the
medium, and R is ratio of reflected light to incident light. Write an
algorithm for an HP-35 or HP-21 to calculate R given i and r.
Hints: Do not key i and r each more than once. Remember that
trigonometric functors lose the contents of 7' on the HP-35, and
that neither the HP-35 nor the HP-21 has an key. The
algorithm can be done in 24 keystrokes plus data. Test case:
i=40°, r=24°5, get R=0.05258 =5.258%.

Write an HP-45 algorithm to sum the first six terms of the series

SEAC) (—1<x<1),

where 7,(x) is a Chebyshev polynomial. Evaluate the series for
x=0.5 and n=1, 2, and 4. Hint: T,(cos@)=cos(nf).
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2.7.14 The length of the arc of a parabola is (CRC SMT, p. 13)

2 2x+\axt+y?
s=\4x*+y? +2%;ln ITVIETY

y

where x is the depth and y is half the mouth opening. Write an
HP-35 algorithm to calculate s given x and y. Test case: x=2,
y=3; get s=7.472.

27.15 The area of the segment of a circle is (CRC SMT, p. 12)

A=R2cos°‘(%)—d\/R2~—d2 ,

’

  

where R is the radius of the circle and 4 is the perpendicular
distance from the center to the cord. Write an HP-21 algorithm to
calculate A given R and d. Test case: d=3, R=5; get A=11.1824.

2.7.16 Prof. H. E. Schaffer (1976) challenges anyone to write an HP-25
program for the factorial function (for integers) shorter than

[sTo]1 1[=][sTo J[X]1 1[£]xy;[GTO]O3[RCL]1[GTO]ON,

where n!=n(n—1)(n—2)---3-2-1. Try it.

Rewrite and shorten the following five RPN expressions:

27717 AT2X12+ B2+ —.

2718 A1'BXA1B+ ~+.

2719 AM2+B12++C112+—D112+ +.

2720 At1/+Acx/.

2.7.21 AIB Xe.

2.7.22

 

  

2x*+45x3+381x2+1353x+ 1511 _ 4
=2x+3+

x3+21x%+ 157x +409 x4+54 9
x+7+ 8

x+9
 

Write an RPN algorithm to evaluate each side of this equation,
and compare the answers for x =2.

2.7.23 Convert 3 weeks, 2 days, 9 hours, 22 minutes and 18 seconds, into

(a) seconds and (b) decimal weeks.

2.7.24 Find the “regular continued fraction” expansion of 1/(e—1),
where e=2.718281828.
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2.7.25 The normalized poles in the complex s plane of a Chebyshev
low-passfilter are at

o, = —-sinh( L gnn-11 ) sin( —2k—_190°),
n & n

W, = icosh(l sinh ™! l)COS(M9O°),
n € n

where n is the order of the filter, that is, the number of poles; k is

the stage number, k=1to n/2 if nis even, or k=1to (n+1)/2if n
is odd; ¢ is the peak allowable bandpass ripple; and o, and w, are
the real and imaginary parts, respectively, of each pole. So s, = a;
+iw, where i=V —1 . If r is the peak-to-peak ripple in decibels
(dB), then ¢2=10"/19—1. Write an HP-21 algorithm to calculate s,
given n, k, and r. Hint: see Section A.5.1. Test case: r=0.5 dB,

n=3; get €¢=0.3493, a;=—0.3132, w,=+1.0219, a,= —0.6265,
w,=0. Reference: Lubkin (1970), Section 4.2.



3
lterative Solutions of

Elementary
Transcendental
Equations

...damnable iteration...able to corrupt a saint.

—William Shakespeare (1564-1616)

3.1 INTRODUCTION

Transcendental equations are equations whose solutions cannot be written
explicitly in terms of a finite number of elementary functions. And
elementary functions are easy to define—they are functions that appear on

the keys of the calculator. The definitions in mathematics textbooks are
somewhat different.

Certain functions that are solutions to transcendental equations were
considered previously. Bessel functions, for example, are solutions to
Bessel’s differential equation and are well-known functions in that they
have been thoroughly studied, tabulated, and graphed. However they are

100
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not elementary functions by the definition just given. Functions such as
Bessel’s are probably best dealt with in terms of their power series or
polynomial approximations, as in Section 2.4.

Consider, instead, elementary algebraic transcendental equations that
can be put into the form

x=f(x), (3.1.1)

where the functionf consists of some combination of elementary functions.
This is not quite a general form for algebraic transcendental equations, but
equations in this form occur very frequently in applications. Methods for
dealing with such equations have a long history, going back at least to
Newton, and an extensive literature. Almost any book on numerical
analysis or numerical methods has a chapter on such equations, and an
exhausting treatment can be found in Traub (1964). This section discusses
only the iterative techniques that I have found to be most useful.
We can think of f as an operator and apply it repeatedly to an initial

guess x,, to give, we hope, an improved approximation, at each iteration,

for the solution nearest x,. Such a procedure sometimes converges, some-
times diverges, sometimes oscillates between two or more solutions, and

sometimes oscillates between solutions of the derived equations

x,=f(x,),

x,=f(x))- (3.12)

Even more complex oscillatory behavior occurs in principle, but rarely in
practice.

Suppose x=a is a solution to the foregoing transcendental equation,

that is,

a=f(a). (3.1.3)

Then consider a Taylor series expansion of f(x) around the point x =a,

f(x)=f(a)+(x—a)f(a)+3(x—a)yf'(a)+---. (3.1.4)

Suppose x, is an approximate solution to the equation and let £, be the
error in x,, that is,

¢, =x,—a. (3.1.5)
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If we obtain the next approximation x, ., by iteration, we have

Xpi1=f(x,)=f(a)+§&,f(a)+ 382f"(a)+ - - -, (3.1.6)

or

=&(@) +38"(a)+---. (3.1.7)

Clearly this process cannot converge unless | f'(a)| <1. The HMF, p. 18,
gives the precise criteria of convergence as

|f'(x)|]<g<1l for A<x<B, (3.1.8)

where

)=l
A<x, +n l_q (3.1.9)

If 0<|f'(a)| < ¢<1, convergence is called “first order”; if f'(a) =0, conver-
gence 1s called “second order”; if f”(a)=0 also, convergence is called
“third order,” and so on (see Hartree, 1958, p. 212). With first-order
convergence, the magnitude of the error |§,| decreases exponentially with
increasing n. With second-order convergence, the number of significant
figures in x, approximately doubles with each iteration. Second-order
convergence is thus greatly preferable to first order, and, in any case,
| f'(a)| should be small if not zero.

3.2 THE g METHOD

What is wanted is a method for transforming an original function f(x) into
a new function F(x) that still satisfies

a=F(a) (3.2.1)

but also converges and satisfies

F'(a)=0, (3.2.2)

at least approximately. Then iteration on F(x) will converge rapidly
toward x = a, the desired solution of the original equation. Many methods
for obtaining an F(a) satisfy these criteria; three particular methods are
discussed here.
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Consider first

f(x)+xg(x) .
Flx)= g(x)+1

(3.2.3)

If f(a)=a, then F(a)=a also, provided only that g(a)# — 1. The function
g(x) 1s otherwise arbitrary and can be chosen so that F’(a)=0. The
derivative of equation 3.2.3 evaluated at x=a is

f'(a)+g(a) .
F(a)= g(a)+1

(3.2.4)

Thus we can make F’(a)=0 by taking

g(a)=—f"(a), (3.2.5)

provided f’(a)# 1. Since we are using an iterative procedure, g(a) needs to
have this value only approximately. The speed of convergence, but not the
ultimate answer, depends on the exact g(x). The simplest iteration scheme,
using just f(x), in effect takes g(x) to be zero and works well if | f'(a)| is
small compared to unity.

Since we do not know a in advance, we usually cannot set g(x)= —f'(a)

=constant (and we may not even want to). Therefore try instead

g(x)=—f(x), (3.2.6)

since this is obviously one possibility that gives F’(a)=0. Other possibili-
ties come from adding to g(x) any function that is zero at x =a. With g(x)
from equation 3.2.6 however, and with

h(x)=x—f(x), (3.2.7)

one can show that

h(x
F(x)=x— ;1/—(()%, (3.2.8)

and this is the famous Newton-Raphson iterative equation for solving
h(x)=0. Thus for the particular choice of g(x) in equation 3.2.6, the g
method reduces exactly to the Newton-Raphson method.

If we have an f(x) that is difficult to differentiate, or a derivative f'(x)
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that is difficult to evaluate on a calculator, we might approximate

f(x) %—g— _

S

7/: (3.2.9)
xn_xn—l

With this expression for — g(x),

xnf(xn—l)_ xn—lf(xn)

=)=))
 

my 1T (3.2.10)
Xn—1 _f(xn—l)
_1

X, —f(x,)
This is the Wegstein or modified secant iteration scheme (see the IBM SSP,
p. 215), also known as regula falsi (rule of false position) as applied to
h(x)=0, and is a double-averaging scheme in that x,,, is a function of
both x, and x,_,. Although we need not calculate f’(x) with this scheme,
we need to save both x,_, and f(x,_,) while calculating f(x,). Depending
on the form of f(x), we probably need at least two storage registers plus
the stack. Note also that this expression degenerates into 0/0 as x,
approaches a. We can rewrite the expression, of course, but such difficul-
ties persist.
A similar but not identical scheme approximates f'(x) as in equation

3.2.9 but takes another x near x, in place of x,_,. The two xs are not
allowed to come together, thus avoiding 0/0. Such a scheme appears in the
HP-25 Applications Programs, p. 76.
One way to implement equation 2.3.10 on an HP-45 is as follows:

serup:  x, [sTo] 1 [1] [1] [1] [-f---] [] [sT0] 2 [G] {LASTX]

Loop: [1] [F—1[5] [x=»] [ReL] 1 [x=y] [sTO] 1 []
RCL] 2 [x=y] [sT0]2 [=] 1 [-] [2] [2]  (see x,) :|.

  

 
(3.2.11)

This algorithm keeps x,_; in R, and x,_,—f(x,_,) in R,. The symbol
is a subroutine and represents any sequence of keystrokes that

accepts x in X, Y, Z, and T, puts f(x) into X, and leaves x in Y, Z, and T.

The symbol :| means loop back to the last preceding colon (:), in this case
after the word “loop.” The second approximation x,is taken to be f(x,); if
a better x, is known, substitute it for {LASTXat the end of the setup.
My experience with this scheme has not been very favorable. If the

derivative f'(x) is too much to calculate, try setting g(x) to an approximate
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Figure 3.2.1 A graphical interpretation of the g method. The straight line has a slope

of g(x,)+1 and goes through the points (x,,k(x,)), (x,4+,0).

algebraic expression for —f’(x) or perhaps to a carefully chosen constant;
g(x)= —f'(x,) =constant 1s sometimes called the modified Newton
method.
A geometric interpretation of the g method appears in Figure 3.2.1. The

slope of the straight line is g(x)+ 1, and for second-order convergence this
straight line becomes tangent to the curve when x =a. If g(x)= —f'(x), as
in the Newton-Raphson method, the straight line is tangent to the curve at
any x. The g method is substantially identical with Milne’s m method
(Milne, 1949, Chapter II).

3.3 THE a METHOD

For another possible method, consider

 - (3.3.1)FO=(@]/) I'

where a can be either constant or an arbitrary function of x. This F also

satisfies F'(a)=a, provided f(a)=a, and we need only avoid a=0. Since
for this F(x) we can show that

F'(a)=1—-a(a)[1-f(a)], (33.2)
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we can make F’(a)=0 by taking

a(a)= ——_—, (3.3.3)
1-f"(a)

provided f'(a)+# 1.
As before, since we do not know a in advance, we usually cannot set

a(x)= a(a)=constant; thus a reasonable choice would be

1
1-f(x)

Other possibilities can be obtained, for example, by adding to a(x) any
function that is zero at x =a, or by multiplying f’(x) in this expression by
any function that is unity at x=a. Another expression that sometimes
turns out to be simpler is

a(x)=

a(x)= (3.3.4)

1

1=/(x)/f(x) 22
If we redefine

h(x)=In[x/f(x)], (3.3.6)

and plot In x rather than x on the abscissa, we get a geometrical interpreta-
tion of the a« method, as shown in Figure 3.3.1. The slope of the straight
line is 1/a(x,). For second-order convergence, a satisfies equation 3.3.3,
and the straight line becomes tangent to the curve when x=a. If equation
3.3.5 is also satisfied, the straight line is tangent to the curve at any x.

A

hx,)p————————— —— — —

h
(
x
)   

0 /na ’lnx,,,,, Inx, -

Figure 3.3.1 A graphical interpretation of the a method. The straight line has a slope

of 1/a(x,) and goes through the points (Inx,,(x,)), (Inx, ;,0).

 



3.4 The S Method 107

3.4 THE 3 METHOD

As yet another possible method, consider

1 B 1B _JO+B[x—f(1)]
 = 34.1Fo) 70 PIEY G4D

This F(x) satisfies the same conditions as before, and since

F'(a)=1 —,B(a)[l—f'(a)], (34.2)

we can make F'(a)=0 by choosing

1B(a)=——. 343D=1 (343)

This is identical to a(a) above, and the same comments apply.
As an exercise, show that the 8 method with

1
Bx)=——m——— (344)

I+ xg(x)/f(x)

1s equivalent to the g method. Another expression that sometimes turns out
to be simpler is

 

o 3.4.5
PTe 34

If we redefine

_1_ 1h(x)=— )’ (3.4.6)

and plot 1/x rather than x on the abscissa, we get a geometrical interpre-
tation of the 8 method (Figure 3.4.1). The slope of the straight line is
1/B(x,). For second-order convergence, B satisfies equation 3.4.3 and the
straight line becomes tangent to the curve when x =a. If equation 3.4.5 is
also satisfied, the straight line is tangent to the curve at any x.

Mathematicians will recognize that the g method is based on the
weighted arithmetic mean of x, and f(x,), which would ordinarily be x, , |,
the a method on the weighted geometric mean, and the 8 method on the
weighted harmonic mean.
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A

hx) |7/———— —— — — —
h

(x
)    o

/I/a ,l/x"+1 Vx, -

Figure 3.4.1 A graphical interpretation of the 8 method. The straight line has a slope

of 1/B(x,) and goes through the points (1/x,,h(x,)), (1/x,,,,0).

We should choose among these methods, and select values for g(x),
a(x), or B(x) with the criterion of minimizing the total number of
keystrokes in the procedure—the number of keystrokes per iteration times
the number of iterations. Try to find simple, even if approximate, expres-
sions for g(x), a(x), or B(x). With programmable calculators, the criterion
may sometimes be different; an iteration algorithm thatfits the calculator’s
program memory and converges, however slowly, is preferable to an
algorithm that is too large to fit, no matter how fast it might converge.

3.5 EXAMPLE: x=Ax""

Consider next a relatively simple example of a transcendental algebraic
equation

x=Ax""*. (3.5.1)

Given A, the problem is to solve for x. If we think of the equation the
other way round—given x, solve for A—the solution is trivial,

A=x**1, (3.5.2)

or

[Tt[F]*]  (see A). (3.5.3)
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 ol | | | | | | 1
2

logyg A

Figure 3.5.1 Example: x=Ax~* with log,04 on the abscissa to compress the scale.

Thus we can plot 4 against x and use the graph to solve the original
problem, or at least to obtain first guesses for iterations. Figure 3.5.1 is
such a graph.

This is not a physical problem in that I do not know that the equation
occurs in a physical or real-life context; I choseit for its pedagogical value.
Section 3.6 contains examples of transcendental equations from the finan-
cial world, and Section A.10.7 contains an extensive example from electri-

cal engineering.
First try each of the three methods—g, «, and B—on the exponential

form of the equation

f(x)=Ax""*. (3.54)

The derivative is

f'(x)=—Ax"*(1+Inx). (3.5.5)

Note that since | f'(x)| <1 only for 4 <1 (see Figure 3.5.1), direct iteration
on this f(x) could converge only for 4 <1.
With g(x)= —f'(x), get

Ax"+ xAx *(1+Inx)
F(x)=

(%) 1+ Ax *(1+Inx)
 (3.5.6)
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or

1+ x(1+Inx)
— 3.5.7
x*/A+1+Inx (3:3.7)F(x)=

One possible algorithm for an HP-35 would be

SETUP: A X

roopr: [1] [t] [m] 1 [+] [X] 1 [+] [RY [»] [RcL] [5] [x=»] [in]
1 [=] (see x,) :|. (3.5.8)

Since x is in both X and Y on in this algorithm, the could as well
be [»*]. As a test case, take 4 =5, x,=2, and get

x;=2, 1.759340322, 1.782767549, 1.783016997, 1.783017025. (3.5.9)

This final answer has an absolute error less than =2 X 1077, as one can

verify by substituting back into the original equation, and was achieved by
four cycles through a loop of 18 keystrokes, starting from an x, with only
about one significant figure.
Next try the a method on the same problem, using

1
— 3.5.10
1+ x(1+Inx)’ ( )

a(x)=

from equation 3.3.5. In this case one should work with In F(x), rather than
F(x)itself, butthis is only a computational convenience and should not be
confused with the logarithmic form of the equation considered below.
After some manipulation, get

In4 + x(Inx)?
InF(x)=02
)= TT+

(3.5.11)

Thus an algorithm for an HP-35 would be

SETUP: A X,

or: M A MK KE R B =) @ [ 1 [
MiEEHE eex) (35.1)

As a test case, again take 4 =5, x,=2, and get

x; =2, 1.796776815, 1.783080391, 1.783017024. (3.5.13)
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This algorithm on this test case achieves an absolute error less than
+3X107° in three cycles through a loop of 18 keystrokes—clearly an
1mprovement.

Next try the 8 method on the same problem, with 8 from equation 3.4.3,
namely,

1

B=T~ (3.5.14)

We avoid using B8 equal to the form for a above because, as noted
previously, the 8 method would then reduce to the g-method case already
done. After some manipulation with this 8, get

x*/A+1+Inx
F(x)= 3 :

(x*/A4)"+(1+Inx)/x
 (3.5.15)

This form leads to a rather tortured algorithm for an HP-35, namely,

SETUP: A X,

roor: [1] [1] [w] 1 [¥] 1] ®RY [RI [RY [F] [x=y] [RY [RI]
] [ReL] [5] () RY [+ [x2zy] RY R X] [+ [E] (see
x;): |- (3.5.16)

 

With the same test case, get

x,=2, 1.67710983, 1761960934, 1.782130099, 1783015429, 1.783017024.

(3.5.17)

Therefore this algorithm on the same test case achieves the same absolute
error in five cycles through a loop of 25 keystrokes—worse than either of
the two previous algorithms.
Next try Wegstein’s iteration scheme with algorithm 3.2.11 and

= [cus][G]iy*14[x]. (3.5.18)

This is for an HP-45; thisiteration is difficult on an HP-35. Normally one
would store 4 in the setup and recall 4 inside the loop. With the same test
case, get

x,=2,1.828661057, 1792159254, 1782825859, 1.783017815, 1.783017025.

(3.5.19)
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This algorithm on the same test case thus achieves the same absolute error
in five cycles through a loop of (about) 27 keystrokes—not very impressive.

Using logarithms, we can manipulate the original transcendental equa-
tion into an alternative form. This occurs very frequently with transcen-
dental equations in practice; sometimes many different forms of a given
equation exist, all suitable for iteration. Taking logarithms and rewriting
gives an alternative

f(x)= 1. (3.5.20)
Inx Inx

And we can try the g, a, and 8 methods in turn on this expression. For a
possible g take

InA 

 

g(x)=—-f(x)= , (3.5.21)
x(Inx)?

and after some manipulation obtain

x(1+1Inx)InA4 — x(Inx)?
F(x)= ( ) (Inx) ) (3.5.22)

InA + x(Inx)?

Thus an algorithm for the HP-35 would be

SETUP: A X,

roor: [t] [1] [m] [1] [x] [x] R [RY [] 1 [#] [X] [Ra]
X] xzy] =] [xzy] [RCL] [#] [5]  (see x)):|. (3.5.23)

With the same test case, get

x;=2, 1.746507317, 1.781769069, 1.783015603, 1.783017024. (3.5.24)

Therefore this algorithm on the same test case achieves the same absolute
error in four cycles through a loop of 20 keystrokes—not the best perfor-
mance.
Next try equation 3.5.20 and the a method with a from equation 3.3.5,

namely,

_ 1

alx)= 1+In4/[InxIn(4/x)]’ (3:5:25)
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This leads to

and this rather unlikely equation yields, as a possible algorithm for the
HP-35,

setup: A [In] [1] [1] [1] x,

Loor: [ln]| [STO] E] RCL| [+] [mn] [>x=y] [RCL
RCL] [X] [x=y] [RcL] [-] [ReL] [X] [RY] [RY [RY [+]
=] [ex]  (see x):|. (3.5.27)

With the same test case, get

x; =2, 1.778882554, 1.783014341, 1.783017024. (3.5.28)

 
 

   

 

Thus this algorithm on this test case achieves the same absolute error in
three cycles through a loop of 24 keystrokes. This is not the best overall
performance (the @ method on the original equation is still the winner
because of fewer keystrokes per cycle), but note the very impressive second
iteration, which achieved an absolute error of about 3 X 10™¢; the previous

best case after two iterations was more than 20 times worse.

Then try the B8 method on the second form of the transcendental
equation with 8 from equation 3.4.3, namely,

x(Inx)?
Bx)=——. (3.5.29)

InA4 + x(Inx)

After some manipulation, get

x|l x(Inx)*|1 x)/Inx
F(x)= [Ind + x(n"Jin(4/x)/In : (3.5.30)

x?(Inx)’+[In4/Inx—1]InA
 

Thus a possible algorithm for the HP-35 is

SETUP: A [In] X

LOOP: ]I@IEIII-B
zy @IRCLH"%”B@EEE x=y

:]lRCL||x%y|E]lB RCL (=] e x):|.

(3.5.31)
 ] [

t

’?
’E
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With the same test case, get

x; =2, 1.678190505, 1.756526429, 1.78131194, 1.783009972, 1.783017024.

(3.5.32)

This algorithm on this test case therefore achieves the same absolute error
in five cycles through a loop of 34 keystrokes—very poor performance.
And finally try Wegstein’s iteration scheme with algorithm 3.2.11 for the

HP-45. Add 4 3 to the start of the setup, and

[---f---|=(RCL|3|XEYH—£]EIE- (3.5.33)

With the same test case, get

 

x;=2, 1.888479701, 1.835277232, 1.778269426,

1.783239593, 1.783017990, 1.783017024. (3.5.34)

Thus this algorithm on this test case achieves the same absolute error in six
cycles through a loop of (about) 29 keystrokes—very unimpressive.

Figure 3.5.2 gives an error plot for these eight algorithms on this test
case. For this particular problem, for this particular test case, and for the
particular expressions chosen for g, a, and S, either the original form of the
equation with the a« method or the logarithmic form of the equation with
the a method is preferable. I do not know of any general rule to use to
predict which form of the equation, which method, or which expression to
choose for g, a, or . In some cases the shortest algorithm depends on the
range of the parameters (see Section A.10.7). A more cheerful way of
considering this example is to note that each of the eight algorithms did
eventually converge to the right answer. But thisis also not a general rule.

3.6 EXAMPLE: INTEREST RATE FOR AN ANNUITY

Consider another example of an elementary transcendental equation—the
interest rate for an annuity. An annuity is a series of equal money
payments, each of value R (alias PMT for payment) made at the end of
each of n periods (e.g., each month or each year). The total value of an
annuity can be expressed either by P,its initial value (alias principal or PV
for present value) or by S,its terminal value (alias amount of FV for future
value). The interest rate per period is i (expressed as a decimal fraction
rather than as a percentage), and the interest is normally compounded at
the end of each period.
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Figure 3.5.2 An error plot for eight different algorithms used to solve x=5x"~*

starting from x,=2. The abscissa is the iteration number, and the ordinate is the

number of correct decimal digits to the right of the decimal point. The labels on the

curves correspond to numbered equations in the text.
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The equations connecting these four quantities can be written as

R i= = +____,

P (1+i)"—1

i_(]*—i)n—l (3.6.1)

R i ' o

From these equations, we can easily calculate S, P, R, or n, given the other

three parameters in each equation (see Section A.12). But the equations for
the interest rate i are transcendental and require an iterative procedure for
solution. For example, the interest rate in the PRin case can be written as

f(i)=%[1—(1+i)—"], (3.6.2)

and this expression is used in an iteration scheme in the HP-45 Applications
Book, p. 142. However f'(i) is not zero, and this f(i) does not converge

very rapidly; but then the loop does not have a great many keystrokes
because f(i) is rather simple. An alternative f(i) for the same case,
obtained from equation 3.6.1, is

NnR Pf()=73+ el (3.6.3)

For most problems this f(/) has a smaller |f'(i)|, as one can verify by
calculation. A corresponding algorithm for the HP-45 would be

serup: n[sTO]4 R [1] P[] 1] [t][1] 1

roor: [t][1]1[+][ReL]4[G] [yxi 1 [E] [Z] [2] (seei):|. (3.64)

The .1 at the end of the setup in this algorithm is a first guess for i.

Algorithm 3.6.4 converges slightly faster than HP’s for most values of the
parameters, has the same number of keystrokes (12) in the loop, and thus

1s somewhat preferable. But we can do better by getting F’ to be zero.

This example does illustrate, however, that sometimes the equation can

be manipulated algebraically to obtain an alternative f(x) that has a
smaller | f'(x)| and converges faster, even though one does not want to do
the work of deriving the algorithms for the g, «, or 8 methods.

Using equation 3.6.2 for f(i), we can derive

fy=nm(0", (3.6.5)



3.6 Example: Interest Rate for an Annuity 117

and with this for — g(i), after some rearranging, get

 
_ (1+)'"™""—i(14+n)—1

F(i)
(R/P)(1+i)'""—n

(3.6.6)

So a possible algorithm for the HP-45 would be

SETUP: P [1] R [+] [sTO] 1 n [sTO] 2 1 [+] [STO] 3 .1

LOOP: [x]31 [cHS] [x=y] 1 RCL] 3 Ly*
(LASTX! [RCL] 1 [ReL] 2 [=] [£]

(see i;) :|. (3.6.7)

 

  

The 3 near the beginning of the loop in this algorithm saves a
keystroke over 3 because another preceding would other-
wise be needed. Note that the loop in this algorithm has twice as many
keystrokes (24) as algorithm 3.6.4.

Let P=3$2000, R=9$203.61, and n=25, and try this test case with these

three algorithms. First with HP’s algorithm, get

i=0.101805, 0.092786161, 0.090728834, 0.090194545,

0.090051452, 0.090012818,etc. (3.6.8)

Then with algorithm 3.6.4, get

i =0.091636928, 0.090282299, 0.090048094, 0.090007169, 0.090000005,

0.089998750,etc. (3.6.9)

And finally with the g method, algorithm 3.6.7, get

i=0.09034752, 0.089999019, 0.089998484. (3.6.10)

The last number is the correct i with an absolute error less than about
+2x107°,
Despite its much more rapid convergence, the g-method algorithm is just

marginally preferable in terms of keystrokes, if one only needs, say, four or
five significant figures. And, in any case, one might ask whether enough is
saved in keystrokes to compensate for the labor of deriving the g-method
formulas.
An algorithm using Newton’s method for the “direct reduction loan

interest rate,” which turns out to be the same problem, is given in the

HP-55 Mathematics Programs, p. 49.
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Next consider the problem of finding the interest rate in the SRin case.
From equation 3.6.1, a possible f(i) is

()=(1+§)-1, (3.6.11)

and an algorithm for direct iteration on an HP-45 would be

SeTuP: n [1/x][st0]4 S [1] R [=] [*] [1] [1] .1

LOOP: 1 4 [Gliy=1[=]  (seei):|. (3.6.12)

As a test case, let S=$1000, R=3$11.81, n=25, and get

i;=0.09408038, 0.091702398, 0.090711015,

0.090291233, 0.090112309, 0.090035831, etc. (3.6.13)

This is a very short algorithm (only nine keystrokes in the loop), but it
converges slowly. As an exercise, show that the alternative

f(i)=§[(1+i)"—1], (3.6.14)

does not converge.

Try the g method on equation 3.6.11 with g(i)= —f’(i), and get

 

1+(1-1/n)iS/R—(1+iS/R)' """
F(l)= . 1-1/n

(1+iS/R) —S/(nR)
(3.6.15)

An HP-45 algorithm for this iteration is

setup: S [1] R [] n [1] [1/x] 1 [x20] [o] [s10] 1 [cix] [+] []
[s10] 2 [cLX] .1

roor: [x] [1] [RaL] [X] 11 [+] [x=2y] 1 [+] [RaL] 1 [G] (y*[] [q]
{LASTX; [RCL] 2 [-] [£]  (seed) . (3.6.16)

With the same test case, get

i;=0.09027327, 0.089978898, 0.089978593. (3.6.17)

This algorithm on this test case converges to an absolute error less than
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+2X 1077 in three cycles through a loop of 21 keystrokes and is preferable
to algorithm 3.6.12, even though the latter has half as many keystrokes per
cycle.
An algorithm using Newton’s method for the “sinking fund interest

rate,” which is the same problem, appears in the HP-55 Mathematics
Programs, p. 61. Perhaps in finance, as in astronomy, much of the mys-
tique involves knowing all 13 names for each entity or process. Further
algorithms for money calculators appear in Section A.12.
Some of the material in this chapter was taken from Ball (1976) with

permission of the American Association of Physics Teachers. See also
McKelvey (1975).

3.7 EXERCISES

3.7.1 From Figure 3.2.1, show (a) that the slope of the straight line is
g(x,)+1, and (b) that the straight line is tangent to the curve if

g(x)=—f(x).
3.7.2 Show that a way to achieve third-order convergence is to have

both g(a)= —f'(a) and also g'(a)= —3f"(a).

3.73 From Figure 3.3.1, show (a) that the slope of the straight line is
1/a(x,), and (b) that the straight line is tangent to the curve if
equation 3.3.5 is satisfied.

3.74 Show that the a method with

In[ f(x)+xg(x)]—In[ x(1+g(x))]
Inf(x)—Inx ’
 a(x)=

is equivalent to the g method.

3.7.5 From Figure 3.4.1, show (a) that the slope of the straight line is
1/B(x,), and (b) that the straight line is tangent to the curve if
equation 3.4.5 is satisfied.

3.7.6 Show that the 8 method with 8 from equation 3.4.4 is equivalent
to the g method.

3.7.7 Write approximate formulas for f'(i) from equations 3.6.2 and
3.6.3, and show that | f'(7)| is usually (but not always) smaller for
equation 3.6.3 than for equation 3.6.2.

3.78 (a) Write an algorithm to iterate on equation 3.6.14. Try a couple
of test cases to show that it does not converge. (b) Show that this
equation does not meet the convergence criteria of equations 3.1.8
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3.79

3.7.10

iterative Solutions of Elementary Transcendental Equations

and 3.1.9. (¢) Approximate f'(i) for typical values of the parame-
ters, write an a-method algorithm, and show, with test cases, that

this algorithm does converge.

Kepler’s equation in celestial mechanics is

M=EFE—esinkE,

where M is the mean anomaly, F is the eccentric anomaly, and e is
not 2.71828- - - but instead the ellipticity of the orbit (Smart, 1962,
p. 113); M and E are angles (in radians) and 0<e<1. Write an
RPN algorithm to solve Kepler’s equation for £ given M and e.
Test case: M=69°, e=0.2; get E=8072951668.

Consider a one-dimensional asymmetric potential well in quantum
mechanics (Figure 3.7.1). The wave function is u=0 for x<0;
u=sin(kx) for 0<x <A, where k=[2mE/#]'/? and u=
exp(—k’'x) for x> A, where k'=[2m(V—E)/#]'? and V>E
gives k' real. The derivatives of the logarithms of ¥ must match
across x=A, and this gives —k’=k/tan(kA). The problem is to
find E (usually a finite set of discrete values for E—energy levels),
given V and 4.

   
0 A

X—

Figure 3.7.1 A one-dimensional quantum mechanical potential well.
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Hint: Define /=[2mV/#*]'/? and y = Ak. The problem now is to
find y given 4 and /. Test case: Al=10; get y=2.85234190,
7.06817436, and 8.42320393. Reference: Dicke and Wittke (1960),
Chapter 3.

Two “Arabian problems” attributed to Beha Eddin Mohammed ben al
Hosian al Aamouli (1547-1622):

3.7.11 Express 10 as the sum of two numbers such that if each of them is
divided by the other and the resulting quotients added, the sum is
equal to one of the original numbers.

3.7.12 Express 10 as the sum of two numbers such that if we add to each
numberits square root, and form the product of these sums, we
obtain a given number A (0< 4.552.36). Test case: A=24; get 1
and 9.

3.7.13 In Aitken’s §> method, one iterates on

_ HU@)-L(x)
FF(x)=2f(x)+x

Derive an expression for g(x) that makes the g method equivalent
to Aitken’s 82 method.

3.7.14 Consider the spring pendulum as represented in Figure 3.7.2. The
downward force due to the weight is Mg (the rest of the apparatus
is massless), and this is balanced by a torque K@ due to the spring.
(If M =0, the system balances at §=0.) Calculate the equilibrium
value of 4 for a given M, g, K, and R. Test case: MgR/K=3 rad;

get #=1.17012095 rad.

F(x)

% R
| w4

- l
_ | 0

|

I

-
v

/

n,
/

Mg / /

Figure 3.7.2 ‘“‘No weights; honest spring.”



4
Curve Fitting

Dost thou laugh to see how fools are vexed

To add to golden numbers, golden numbers?

—Thomas Dekker (15707-16417?)

The purpose of computing is insight, not numbers.*

—Richard W. Hamming (1915~ )

4.1 INTRODUCTION: LEAST SQUARES

The problem offitting a curve to a set of numbers Y}, x;,- - - is one of the
most common problems in applied mathematics. Usually the numbers are
data from an experiment or observation. However a mathematical function
represented by a table of values to be approximated by a simpler function
presents the same problem. The functional form of the curve is specified,
but with one or more undetermined parameters to be calculated in the
fitting process. The problems considered in this section differ from the
problems of polynomial approximation in Chapter 5 in that the fitted

*From Hamming (1973), frontispiece.

122
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curve does not necessarily go through the Y;, but only near them. And in
this section we seek the curve itself rather than some derived property such
as the integral or derivative.
To specify the problem precisely, we need a criterion of best fit between

curve and data. The most common criterion is least squares: the sum of
the squares of the differences between the data and the curve (the sum of
the squares of the absolute errors) is minimized. That is, we minimize

2= 3 [Vf(x-)] @.11)
i=1

with respect to variations in each of the parameters g; that characterize the

function f. The \/sz/n is called the RMS, for “root mean square,” and
AY,=Y,—f(x,---) is called a residual. But minimizing s is not the only
alternative and is usually an arbitrary choice. We might, instead, minimize
the sum of the squares of the relative errors, or the sum of the absolute
values of the errors, or the maximum absolute error, or the maximum

relative error. These last two alternatives, referred to as “minimax” or

“best” criteria, are very popular for approximations used for computing
transcendental functions in computers (see, e.g., Fike, 1968). Minimax (or
near-minimax) polynomial or rational function approximations to certain
transcendental functions are presented in Sections A.5.7 and A.5.10. The
popularity of the least-squares (absolute-error) criterion probably results in
part from the relative simplicity of the mathematics involved. But this
criterion can be justified if certain assumptions are made about the
statistics of the errors in a measurement or observation (see Whittaker and
Robinson, 1944, Chapter IX, or Scarborough, 1962, Chapter 16). We

assume that the x; are known without dispersion.

4.2 LINEAR PROBLEMS

Considerfirst a linear problem, that is, one in which the function f can be
written in the form

m

flx,-)=> a;gi(x, - ). (4.2.1)
Jj=0

Thusf is a linear function of the g; but not necessarily of the x,- - - . In this
equation each g; is an arbitrary, but specified, function of x,- -, which

represents all the independent variables. The g;, for j=0 to m, are to be
determined from n data Y,x;,---,i=1 to n, where n>m. The case

n=m+1 is an exact fit (except in pathological cases), and s=0.
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Combining equations 4.1.1 and 4.2.1 gives

st=> [ Y,— g@&(xi,- . )]2. (4.2.2)
l

Since we want to minimize s*> with respect to variations in each of the a;,

we set the partial derivative of s? with respect to each a; to zero. This gives
the so-called normal equations,

5o =2NSamte)g20 @23)
i kg

or

DYg(xp)=Da,X gx, )gl(xs--),  j=0m. (42.4)
i k i

These are m+1 linear equations in the m+ 1 unknowns q,, thus this is, at

least in principle, a solvable problem, provided only that the determinant
of the coefficients matrix in this equation is not zero.
As a special case of the linear problem, consider a polynomial of one

independent variable, that is, g;(x,---)=x/, and

f(x)= 2> ax’. (4.2.5)
j=0

Then the normal equations become

DYxi=XaXxtr  j=0m. (4.2.6)
i k i

The simplest possible problem in this form is for m =0, that is,

D Y,=a,> 1=agn, (4.2.7)

thus f=q, is the arithmetic average of the Y,. With the key on some
RPN calculators, this operation is easy to perform.
The next case is a least-squares fit of a straight line or linear regression,

m=1, and

j=0.  XY,=aX1+a,2x,

j=1: N Yx,=ay> x;,+a, 2, x2. (4.2.8)
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These are two equations in two unknowns and can be solved to give

n2Yx,—(Zx)(2Y;)

nz'xi2 - (2 xi)2

EY,-—GIEX,-

 

1 ’

a, (4.2.9)

The loop in which the data are keyed must sum and save five
quantities—the five sums in these equations. An algorithm for straight-line
fitting based on these equations can be found in Section A.6.1. Other
straight-line fitting algorithms are given in the HP-21 Applications Book, p.
10, the HP-35 Math Pac, p. 144, the HP-45 Applications Book, p. 77, and

the HP-25 Applications Programs, p. 87. The HP-55, HP-91, HP-22, and

HP-27 calculators have linear regression as an internal function.
The parabolic case (least-squares fit of a parabola) is m=2, and

j=0: Y, =a21+a,Zx+a,2x?,

j=1: SYx;=a2x,+a,3x*+a,>x}, (4.2.10)

j=2: YxP=a=x}+a,2x’+a2x].

These are three equations in three unknowns and can be solved by
standard matrix-inversion techniques. Since the loop in which the data are
keyed must sum and save eight quantities—the eight different sums in
these equations—we need a calculator with about eight registers.
These equations can be solved to give

_ S (rsrg—rers) = (rsry—rors)(rsry—rqre)
2

S("s"z“"%)"(’s"1""7"6)

 , (4.2.11)a,

where S=rsre—r? and where r,=2x>, r,=3x}, r,=2Y,, r,=2Y,x;, rs
=n=31, re=3x7 r;=2x, and ry=2 Y,x?. These symbols correspond to
the register numbers in the algorithm for this problem in Section
A.6.3. Then

_ rsra— rars— ay(rsry—rare)
a, = 3 ,

ry—a)rg— ary

 

(4.2.12)an=
0 rs
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In addition to the algorithm for this problem in Section A.6.3, a similar
least-squares—parabola algorithm is given in the HP-45 Applications Book,
p. 82.
The next case, m=3 for a cubic fit, requires 11 quantities to be summed

and saved; thus it can be done in an elegant way only on a calculator that
has this many registers, such as an HP-55. In case the x; are equally
spaced, an alternative fitting procedure for cubics and higher-order poly-
nomials employs orthogonal polynomials. The Chebyshev-Gram poly-
nomials, for example, are orthogonal over a finite sum of equally spaced x;.
This fitting procedure is discussed in HMF 22.19, and in Hildebrand
(1956), Sections 7.10 and 7.11. See also Lanczos (1956), Chapter 5; Milne
(1949), Section 72; or Davidon (1977).
A comment on weightingfactors is appropriate here. Suppose that among

the data Y, x;, a given pair of values occurs w times over (w different i with
the same Y; and x;). Then we could combine or group these w data,
renumber the indices i, and perhaps save some keystrokes in the sums.
Specifically, we multiply each Y, and each x; by its w;. Then Zx; would
become Sw;x;, Sx? would become Sw;x? (not Tw?x?), =Y, would become
2w, Y, and so on. Note particularly that 31 becomes Zw,, rather than just
n. These w; are called weighting factors; they occur frequently, and for
various reasons, in least-squares fitting problems. The point is that adding
weighting factors to the problem complicates it only slightly, and we can
leave them out of the equations until needed.
Another fitting problem that occurs frequently and can be put into a

linear form is the so-called polarproblem (because it has something vaguely
to do with polar coordinates)

f=Asin(8+ B)+C. (4.2.13)

This problem occurs, for example, in radio astronomy in determining the
linear polarization parameters from data taken at a series of arbitrary
polarization position angles 6,/2 (see Ball, 1975c, p. 213). Using a trigono-
metric identity, this equation can be rewritten as

f=C+A4,y+A4,x, (4.2.14)

where

A,=AcosB,

A,=AsinB,

x =cos#, (4.2.15)

y =siné.
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Then the problem is to fit equation 4.2.14 in a least-squares sense to a set
of Y,,0, to find 4,, A,, and C, from which 4 and B can be calculated if
needed. In equation 4.2.1, m=2, g\(x,y)=1, g,(x,y)=y, and g,(x,y)= x.
Then equation 4.2.5 gives

Jj=0: 2Y,=C21+4,2y,+A,3x,

j=1: 2Y,y;=CZy;+A3y}+4,3xy, (4.2.16)

Jj=2: 2Yx=CIx;+AZxy,+A,3x}.

This time the loop in which the data are keyed should sum and save nine
quantities—the nine different sums in these equations—which calls for a
calculator with about nine registers. Furthermore, if we start with 6,
(rather than x; and y,), we need either a or some trigonometric
functors in this loop, thus destroying the contents of register 9 on
an HP-45 or HP-65. We can squeeze out of this difficulty by noting that
since sin’f,=1—cos’, and

Syi=21-3x2, (4.2.17)

we avoid calculating 3y,2 explicitly.
After some manipulation, equation 4.2.16 can be solved to give

_ (rsry—rarg)S —(rsra—rsry)(rsry = rarg)

(’52""5r6_”82)5—("5r1_’7r8)2

 : (4.2.18)
X

where S=r,rg—r,%, and where r,=3x,y,, r,=2Y,y;, ;=2Y,, r,=2Y,x,
rs=n=31, rg=3x2 r,=32x,, and ry=23y,. These symbols again corre-
spond to the register numbers in the algorithm for this problem.
Then

_ rsra—rary— A,(ryrs—rgry)
v S ’
 

C= (4.2.19)
rs

An algorithm based on these equations for the polar problem is given in
Section A.6.4. In case the 6, are equally spaced over a whole cycle, this
problem is somewhat easier to do using Fourier series techniques (see
Section A.5.5).
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Other examples of linear least-squaresfitting problems that can be done
fairly simply on an RPN calculator are m=2, gyo(x,y)=1, g(x,y)=x,

gx(x,y)=y, that is,

f=a,+ax+a,y. (4.2.20)

This is called multiple linear regression, and it is obviously very similar to
the polar problem. An explicit algorithm can be found in the HP-45
Applications Book, p. 79. If m=1, g,(x)=x*, g,(x)=x*, where a and B are
given constants, then

f=apx*+a;xP. (4.2.21)

An algorithm for this fitting problem is in the HP-45 Applications Book, p.
84. If m=1, go(x)=1, g,(x)=Inx, then

f=a,+a,lnx. (4.2.22)

This is called a logarithmic curve fit and is equivalent to a linear fit but
with x replaced by Inx. Thus the linear algorithm in Section A.6.1 can be
used (add after x;), or an explicit algorithm can be taken from the
HP-21 Applications Book, p. 16, the HP-55 Statistics Programs, p. 79, or
the HP-25 Applications Program, p. 95. If m=1, go(x)=1, g,(x)=e”, then

f=apy+ae”. (4.2.23)

This would be called an exponential curve, but that name applies to a
different formula discussed below. Nameless equation 4.2.23 is equivalent
to a linear fit but with x replaced by e*. Thus the linear algorithm in
Section A.6.1 can be used; add [ex]after x,.
There are almost endless variations on this theme; the essence of this

class of problems is that one specifies the functions g;(x, - - ), thus making
it a linear problem. Most such problems can be done fairly easily if m < 2.
For larger m, we run out of registers on most calculators, and the
calculations are longer, of course, but there are no essential additional

difficulties.

4.3 AN APPROACH TO CERTAIN NONLINEAR PROBLEMS

The nonlinear least-squares fitting problem, represented by equation 4.1.1
when it cannot be reduced to equation 4.2.2, is much more difficult. This
nonlinear problem is a multidimensional analogue of a transcendental
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algebraic equation discussed in Chapter 3, and a popular method of
solution is a multidimensional generalization of Newton’s method. The
problem can be linearized using derivatives, but then it must be iterated
because the derivatives change as the solution is approached. Another
method of solution involves “relaxing” the unknown a;, a process that is
not relaxing at all for the calculator (or calculator operator). Several such
techniques are discussed in Demidovich and Maron (1973), Chapter 13,
and in the IBM SSP (see especially pp. 221-226). See also Ball (1975c), p.
210.

But consider a nonlinear problem that can be linearized by some
operation F performed on both the Y, and f. Suppose Ff(x,---), rather

1

than f(x,- - -), is a linear function of the g,

Ff(x,--)= § a;gi(x,- ), (4.3.1)
Jj=0

as in equation 4.2.1. Then we would be tempted to apply F to the Y; and
proceed as before with a linear problem. Unfortunately, such a fit is no
longerleast squares in AY as advertised. Specifically, the fit would then be
done in FY space, and we would minimize

2= [FY,— Ff(x,-- )], (4.3.2)
1

rather than the s* in equation 4.1.1. This can be dramatically different,
especially with “noisy” Y,.

Consider a specific example. Suppose

f=CXP( > ax’ ) (4.3.3)
j=0

Then with F=In,

Inf= 2 ax’/ (4.34)
j=0

is a polynomial as in equation 4.2.5. For m=0 this is similar to the
previous m=0 case (equation 4.2.7); for m=1, equation 4.3.3 becomes the
exponential or geometric curve,

f=exp(ay+ a,x), (4.3.5)
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and for m=2, the Gaussian or normal curve of error

f=exp(ag+a,;x + a,x?). (4.3.6)

The exponential curve occurs, for example, in electronics in the model of a

semiconductor diode (see Section A.10.7), and the Gaussian, disguised by
various aliases, is an extremely important function in a half-dozen different
fields. We want to be able to fit these functions in a least-squares sense.
The m=0 case is not very interesting in itself but serves to illustrate the

difference between fitting in Y space versus fitting in In Y space. We noted
previously (equation 4.2.7), that a, for m=0 is just the arithmetic average

Y,
f= ag=T . (437)

If we fit equation 4.3.4 with m=0 to the In Y,, we get instead

 
2InY,Loy (438)

n

or

f=en=exp(13y, (43.9)

Depending on the Y, g, from equation 4.3.7 can be very different indeed
from e? from equation 4.3.9. A further difficulty occurs with negative
values for Y;; they are no longer permitted.
We can use weighting factors w; to ameliorate this problem somewhat.

We can choose w; such that the fit to In Y is least squares to first order in
AY. That is, we choose w; such that

Wi FY,— Ff(x,- - ) |=AY,= Y,f(x;,- - ), (4.3.10)

as closely as possible. We cannot make this equation exact because we do
not know f(x;,- - -) until the g; are calculated; but to the extent that the fit
is a good one, Y, is an approximation to f(x;,- - - ). With F=In, after some
manipulation, get

w=Y, (4.3.11)

independent of the form of f(x;,- - - ), but not, of course, independent of F.
Fortunately these are easy w; to work with.
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An algorithm to fit a power-law curve

f=agx® (4.3.12)

to In Y, using these w, appears in Section A.6.5. Algorithms for the same
problem but without w; are given in the HP-21 Applications Book, p. 14,
the HP-45 Applications Book, p. 86, the HP-25 Applications Programs, p.
98, and the HP-55 Statistics Programs, p. 82. For an algorithm to fit an
exponential curve, equivalent to equation 4.3.5, using w;, see Section A.6.5.
Algorithms for the same problem but without w; appear in the HP-21
Applications Book, p. 12, the HP-45 Applications Book, p. 88, the HP-25
Applications Programs, p. 92, and the HP-55 Statistics Programs, p. 76. An
algorithm to fit a Gaussian curve, modified from equation 4.3.6, using w;, is
given in Section A.6.7.

Fitting to In Y, without w; is an approximation to fitting by minimizing
the sum of the squares of the relative errors AY;/ Y.
A test case is shown in Table 4.3.1. Pseudo-random noise with an RMS

of about 0.1 was added to the values of the function 3x? for x=0.2(0.2)1.
The noise was obtained by averaging 10 numbers from a table of random
numbers evenly distributed between 0 and 1, and subtracting ; from the
average. These noisy data were then fit with a power-law curve using two
algorithms: (a) from Section A.6.5, which has w;, and (b) from the HP-45
Applications Book, p. 86, which has no w,. The function values from these
fitted curves, and the RMS of the residuals in the fits, are also listed in

Table 4.3.1. The RMS for the fit using w;, is less than half the RMS for the
fit without w,.

Least-squares fitting is discussed in more detail by Hamming (1973),
Chapter 17 and 18, and Hildebrand (1956), Chapter 7.

Table 4.3.1. Power-Law Curve Fitting—Test Case
 

 

 

x; 3x? Noise Y, Fit with w; Fit Without w,

(3x’+noise)  f(x) Ay, J(x) Ay,

0 0 — — 0 — 0 —
0.2 0.024 0.102756 0.126756 0.0658 —0.0610 0.0961 —0.0306
04 0.192 0.063622 0.255622 0.3256 0.0699 0.3733 0.1177
0.6 0.648 —0.001678 0.646322 0.8297 0.1834 0.8253 0.1789
0.8 1.536 0.099074 1.635074 1.6115 —0.0236 1.4490 —0.1860
1.0 3. —0.189405 2.810595 26966 —0.1140 22424 —0.5682

RMS — 0.1098 — — 0.1056 — 0.2843
 



132 CurveFitting

4.4 EXERCISES

 

 

 

4.4.1 Fit a straight line to the following data:

X; l 0 | 0.5 | 1.0 | 1.5 | 2.0 | 25

Yy, | o1 | o5 |15 | 28 | 42 | 59

44.2 Fit a parabola to the data of the preceding problem.

443 Fit a polar curve to the following data:

6. | 0 ] 60° | 120° | 180° I 240° | 300°

,.|6|2|0|2|0|2

44.4 Write an algorithm for a least-squares fit of

f=Acos*(0)+ B.

44.5 Use the algorithm from problem 4.4.4 to fit the data of problem
443.

44.6 Write an algorithm for a least-squares fit of

f=Acos(20 )+ Bcos(8)+ C.

Hint: Use a trigonometric identity on cos(28).

4.4.7 Use the algorithm from problem 4.4.6 to fit the data of problem
44.3.

448 Let Y;=i for i=1(1)10; calculate f from equation 4.3.7 and com-
pare with f from equation 4.3.9.

449 Show that equation 4.3.11 leads to approximate least squares in
fitting to In Y.

4.4.10 Fit a power law to most of the data of problem 4.4.1.

4.4.11 Fit a Gaussian to the following data:

o |1 |2 |3 |4 |5
Y, | 087|218 312|255 | LI9

4.4.12 If F=exp (instead of In), what w; give approximate least squares?
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44.15
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Using the answer from problem 4.4.12, write an algorithm to fit

f=In(ay+ a,x),

in an approximate least-squares sense.

Use the algorithm from problem 4.4.13 to fit the following data:

-~
 

Y.
-

X; ]0 |1 |2 |3 |4

|
Show thatfitting to In Y; without w; is an approximation to fitting
by minimizing the sum of the squares of the relative errors AY;/ Y.

The following data were taken on a particular semiconductor
diode:

I (amperes) |10—9 |10-8 |10—7 !10-6 [10*5 |10—4 |10—3 ]10-2
 

V (volts) |0.153|0.212{0.270{0.329]0.3880.447 |0.505] 0.564

The engineer suspects that the m factor of the diode may not be
constant. Split the data into two parts,fit each part separately, and

determine two different m factors. Compare also the two values for
I,,. Hint: Use the equations and discussion in Section A.10.7.

The flux of many continuum sources in radio astronomy varies as

-S,v

where » is the frequency, S, is the flux, and «a is the spectral index.
The following fluxes were measured on the radio source Taurus S:

»(MHz) | 200 | 1000 | 2000 | 10000 | 20000
S, (janskys) | 101o| 340| 220| 75 | 47
 

Using a least-squares procedure, determine a.

The human population on the earth increases more rapidly than
exponentially. In fact the growth rate (%/year) is approximately
proportional to the population, which suggests a curve of the form

K
 P(t)= ’

where P (¢) is the population at time ¢, K is a constant, and ¢, is a
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specific time called “doomsday.” Fit the following data to this
expression to determine K and ¢,.

| 1650| 1750| 1850| 1900| 1930 | 194o| 1950| 1960| 1964| 1967| 1970| 1972
 

P, (millions) | 490| 690|1080]1550 2050 |2280|2520|3005 3225|3420 3615 |373o

4.4.19

Hint: Use Fx=1/x (F is the reciprocal operator) and choose w; so
that the fit is approximately least squares in AP;. This corresponds
to the higher fractional error in our knowledge of the population in
the past.

Write an HP-45 algorithm for an approximate least-squares fit of

Y=sin(wt+8),

given a set of Y,,7. Use the algorithm to estimate w and 8 from

Y, | 007 | 036 | 0.62 | 082 | 095

o1 |2 |3 |4 |5
 

Hint: Assume that all the data lie in the first quadrant, that is,

0<wt+0<90°. Answers: w=16.995 (not 16.957), = —12°892
(not —12°806). (The units of w are degrees per unit of ¢.)



5
Numerical Integration

Differentiation,
and Interpolation

In order to solve this differential equation you look atit till a solution occurs to

you.*

—Anonymous mathematics professor quoted by

George Pélya (1887- )

It has been usual in discussing properties of matter to regard the medium as

continuous, to set up differential equations, look at them for awhile, give up, and

replace them by difference equations. The difference equations are then solved,

and no attention is paid to their physical significance, if any. An alternative

procedure is to handle the problem discretely from the beginning, lumping the

“molecules’” together in groups as small as the computing equipment can

handle.t

—dJohn Todd (1911- )

The better part of valour is discretion.

—Wiilliam Shakespeare (1564-1616)

*From Polya (1973), p. 208.
TFrom Todd (1962), p. 17.
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5.1 INTRODUCTION

The techniques of numerical integration, differentiation, and interpolation
are a last resort, to be used in desperation. Suppose, for example, one has a
differential equation to solve. The ideal would be to find a solution in
terms of elementary functions, using the analytic techniques of the theory
of differential equations. Failing this, one can try for a solution in the form
of a power series, either directly from the differential equation, or from a
power series expansion of well-known functions. Failing this as well, one
can try for a solution in terms of well-known (i.e., tabulated) functions and
use numerical interpolation to calculate intermediate values from the table.
Only if all these methods fail should the use of numerical integration on
the differential equation be considered. An exception to this desperation
statement occurs in work with data from an experiment or observation. In
such cases either curve fitting (Chapter 4) or the numerical techniques of
this chapter may be unavoidable.
Numerical interpolation is the process of estimating intermediate values

from a table of numbers. A typical table shows f(x) for equal increments
of x; but one may need to know f(x) for values of x between those in the
table. Numerical differentiation is the process of estimating the derivative
of f(x) from the same kind of table, for values of x not necessarily
coincident with the tabulated values.
Numerical integration of a specified function of x is called “quadrature.”

This nameis at least as old as Archimedes, and it originally referred to the
process of squaring (constructing a square with the same area as) a given
area bounded by a curve. There are two categories, and some subcate-
gories, of quadrature: one may need to know a definite integral of a
function f(x) that cannot be integrated analytically. The function may be
available as a table with equally spaced arguments, in which case one can
choose from several possible formulas for tabular quadrature; or if an

algorithm is available for calculating f(x) at any x, one of the so-called
Gaussian quadrature formulas is appropriate.
The result of doing a definite integral is a number; the result of doing an

indefinite or primitive integral is a function in principle, or a table of values
in practice. Indefinite numerical quadrature differs only slightly from
another category of problems—numerically integrating differential equa-

tions. For example, a typical quadrature problem would be

y=fxx"f(x)dx- (5.1.1)

If y is needed for a single set of values of x; and x,, this is a problem of
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definite integration or quadrature. If y is needed for a range of x, or x,,
this is a problem of indefinite or primitive integration or quadrature.
For a typical first-order ordinary differential equation (initial-value

problem)

Y(x)=f(xy), y(a)=b, (5.1.2)

the formal solution is

y(x)=b+ fo(x’,y)dx". (5.1.3)

This integration differs from quadrature in that the integrand is also a
function of y. Analytically this is a very important distinction, but numeri-
cally it is not particularly significant.
A friend of mine once expressed the view that numerical integration of

differential equations is rather much for pocket calculators and seemed
surprised that I was able to do it at all. If a FORTRANable computeris
available, perhaps it should be used for this purpose. However differential
equations were being integrated numerically before the invention of elec-

tronic calculators or computers, and in some cases without using even a
mechanical calculator.
The basic idea of any of these numerical techniques is that a polynomial

(or very rarely some other function) is fitted through f(x;) at a finite
number of selected x;, then the value, the derivative, or the integral of the

polynomial is used to approximate the corresponding operations on f(x).
The approximating polynomial usually does not appear explicitly. Instead,
the formula for finding the value, derivative, or integral of the polynomial
is combined with the formula for finding the polynomial itself, to give a
composite formula for an approximation for the value, derivative, or

integral of f(x), in terms of selected f(x;).

This technique succeeds to the extent that the polynomial is a good
approximation to f(x) over the range of interest. A continuous function
can be approximated well by a polynomial over a limited range of x, but,
generally speaking, the wider the range of x, the poorer the fit obtainable
with a polynomial of given order. For interpolation and differentiation, the

polynomialis required to fit only over a narrow range of x, but for definite

quadrature the polynomial must fit over the range of integration. And in

indefinite quadrature, errors usually accumulate as the integration pro-

ceeds. Therefore quadrature typically requires a higher-order formula for

the same relative error compared with interpolation or differentiation. By
contrast, tabular quadrature is less sensitive to “noise” or round-off errors
in the values of the function to be integrated, because such errors tend to
average out.
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5.2 TABULAR INTERPOLATION

In classical numerical analysis, higher-order interpolation of tabular values
was usually done by calculating and manipulating differences of various
orders. Some help is provided by an RPN calculator, but this process is
strongly oriented toward the use of pencil and paper. As an alternative,
one can use a so-called Lagrange interpolation formula. These formulas
give interpolated values directly in terms of sums of weighted tabular
values; in effect, the differences are taken implicitly. The Lagrange inter-
polation formulas are much better suited to RPN calculators, especially
since the weighting factors or coefficients need not be from a table but can
be calculated as required.

For example, the Lagrange three-point interpolation formula can be
written as (HMF 25.2.11)

fxo+ph)=5p(p—1)f_+(1-p>)fo+3p(p+1)f;, (52.1)

where f_, is f(x_)), f, 1s f(x,), and so on; A is the spacing between x;, that
18

h=Xx,— xo=Xy— X_,=etc.; (5.2.2)

and p=(x—xo)/h. The x; should be chosen so that |p|< 3, that is, x,
should be the closest x; to x. An algorithm for this formula for the HP-35
1s

WAEEEDE e -n) [
(seep) 1007FE]

15HEEEEEAT (523)
FIEARE  (see =£(x).

Algorithms for several other interpolation formulas are given in Secticn
A2

Lagrange interpolation formulas were criticized, for example, by Hartree
(1958), p. 75. The problem is that one cannot easily detect an error or
determine whether the formula being used is of too low (or too high) an
order. But in my view the advantages of using Lagrange formulas on an

RPN calculator outweigh the disadvantages. Doing Lagrange interpolation
to two different orders and comparing the results is usually easier than
doing one interpolation using a traditional method. In some cases tables
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have footnotes indicating what order of interpolation is necessary for a
specified precision, but a higher-order formula is necessary if x is midway
between tabulated points (|p|=3) than if x is near a tabulated point

(Ip|<3).

Table 5.2.1 Abstract from HMF Table 5.1
 

 

x xe*E(x) X xe*E(x)

1.5 0.89268 7854 8.0 0.898237113
7.6 0.89384 6312 8.1 0.899277888
1.7 0.89497 9666 8.2 0.90029 7306
7.8 0.89608 8737 8.3 0.901296033
7.9 0.897174302 8.4 0.902274695

l: ( - 6)3 *

5
 

*Somewhat different values are given in HMF, p. 243.

Let us follow an example given in HMF, p. x1. Suppose we need to know
xe*E(x) for x=7.9527. An abstract from HMF Table 5.1 is reproduced
here as Table 5.2.1. The footnote in square brackets means that the
maximum absolute error in linear interpolation is 3X107% and that a
five-point interpolation formula is needed to achieve full tabular accuracy
—nine decimal digits. Table 5.2.2 shows the results of applying several
Lagrange interpolation formulas from Section A.2 to this problem. The last
column in this table is —log,, of the magnitude of the absolute error and is
the number of correct decimal digits in the corresponding value. In HMF,
p. X1, the same example is worked using traditional methods employing
high-order differences. Another method for calculating E,(x) appears in
Section A.5.11.

Table 5.2.2 Example of Numerical Interpolation
 

= xe*E,(x) for

 

Lagrange Formula x=7.9527 DD= —log,,¢|

Linear 0.8977344034 5.6
Three-point 0.8977371499 7.4
Four-point 0.8977371942 9?7
Five-point 0.8977371929 9?
Six-point 0.8977371933 9?
From HMF, p. x1 0.897737193 9?
From nine-term continued 0.8977371938 10?

fraction (cf. Section A.5.11)
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5.3 TABULAR DIFFERENTIATION

Almost exactly the same comments made about tabular numerical inter-
polation in Section 5.2 apply to tabular numerical differentiation. The
Lagrange three-point differentiation formula can be written as (HMF
25.3.4)

-3 —1_2 % 1

f’(x);(P ) :f°+(p+ )f, (5.3.1) 

where the symbols have the same meaning as in equation 5.2.1. An
algorithm for this formula for the HP-35 is

YMIEEEANGE] (see —h)
SOl (seep)
foldx=r]5=X2] (53.2)

SEAMEIREE  (see =f(x)).

Algorithms for several other Lagrange differentiation formulas are given in
Section A.2.

Table 5.3.1 Abstract of HMF Table 6.1
 

 

X I'(x)

1.455 0.88562 20800
1.460 0.8856043364
1.465 0.88560 80495
1.470 0.8856331217
 

As a numerical example, suppose we need to know the derivative of the

gamma function I'(x) for x=1.461632145. An abstract from HMF Table

6.1 is reproduced here as Table 5.3.1; and Table 5.3.2 displays the results of

Table 5.3.2 Example of Numerical Differentiation
 

 

Lagrange Formula =T"(x) for x=1.461632145 DD = —log,|¢|

Linear 7.4262%x 1074 3.1
Three-point —-224 %107 5.6
Four-point 0 (10)
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applying linear, three-point, and four-point Lagrange differentiation for
this x. Numerical differentiation is discussed further by Kopal (1955),
Chapter III.

5.4 TABULAR QUADRATURE

The best-known formulas for numerically integrating a function specified
by a table of values with equally spaced arguments are the so-called
Newton-Cotes formulas (HMF 25.4). The lower-order forms of these
formulas are sometimes referred to by other names: the two-point form is
called the trapezoidal rule, the three-point form is called Simpson’s rule,
the four-point form is called the 3 rule, and the five-point form is called
Bode’s rule. The coefficients of f in these formulas are all rational
numbers, and RPN algorithms are easy to write; algorithms for up to eight
points are contained in Section A.3.1.

Simpleton’s formula (not to be confused with Simpson’s rule) gives an
approximation to the integral by just adding up all the f, or if both end
points of the interval are included, weighting these end points by ;. A
simpler formula is hard to imagine. For most cases, Simpleton’s formula is
much less precise than the Newton-Cotes formula of the same order. For
certain special cases, however, Simpleton’s formula is exact and Newton-
Cotes formulas are inexact! Such cases occur whenever the function to be
integrated has a Fourier transform that is band limited and the function is
tabulated at the Nyquist interval or closer (see Bracewell, 1965, Chapter
10, and Hamming, 1973, Section 21.5). Alternatively we can derive or
justify Simpleton’s formula by assuming that f(x) is to be approximated by
a truncated Fourier series rather than by a polynomial. This procedure
often works well for a cyclic function that is to be integrated over a
complete cycle.
As an example of the precision obtainable with these formulas, consider

two functions whose integral is known analytically: the notoriously intract-
able Vx , and the much easier e*. The trouble with Vx is that polynomial
approximations do not fit very well even over a limited range of x. Try
doing a MacLaurin series expansion of Vx ! If a polynomial is used as a
test function, when the order of the Newton-Cotes formula equals or

exceeds the order of the polynomial, quadrature becomes exact, except

possibly for round-off errors.

The results of integrating [(')\/; dx and |(l)e"dx with a variety of
quadrature formulas are presented in Figure 5.4.1. Fortunately, most
integrands behave more like e* than Vx . Nevertheless, numerical integra-
tion over a significant range of x is a tricky business. Tabular quadrature is
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Figure 5.4.1. Error resulting from applying a variety of quadrature formulas to two test

cases: |, [ge*dx; and I, [;Vx dx. The ordinate is log,, of the absolute error, and is the
negative of the number of correct decimal digits to the right of the decimal point. The

abscissa is the order of the formula. Then (a) shows the results of applying the

Gauss-Chebyshev algorithm (Section A.3.2) to test case I; (b) shows the same algo-

rithm applied to Il; (c¢) shows Simpleton’s formula (Section A.3.1) applied to I; (d) shows
the same algorithm applied to II; (e¢) shows the Newton-Cotes formulas (Section A.3.1)

applied to I; (f) shows the same algorithms applied to II; (g) shows the three-point
Gauss-Legendre formula (Section A.3.2) applied to I; (h) shows the same algorithm

applied to IlI; (i) shows the five-point Lobatto-Radau formula (Section A.3.2) applied to

I; and (j) shows the same algorithm applied to II.

142
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discussed further by Hartree (1958), Section 6.5, and by Hamming (1973),
Chapter 12.

5.5 GAUSSIAN QUADRATURE

The term “Gaussian quadrature” applies to a variety of methods in which
the x; are not uniformly spaced, but are assigned by the method. For an
n-point formula—that is, for n different x,—one has 2n—1 degrees of
freedom in assigning the x; and the weights w,. (It is 2n — 1 rather than 2n
because the sum of the w;, is fixed.) For this reason an n-point Gaussian
quadrature formula is exact for polynomials up to degree 2n—1; thus in
some sense it is a (2n—1)-order formula. This is sometimes a great
advantage.
The disadvantage is that one must be able to calculate f(x;) for the x;

given in the formula. Iff(x) is specified by a table of values, rather than by
an algorithm, the additional effort needed to interpolate in the table to
obtain the f(x;) usually wipes out the advantage of Gaussian quadrature
formulas.
Such formulas exist in several forms, depending on whether the range of

integration is finite (Gauss-Legendre or Gauss-Chebyshev), 0 to oo
(Gauss-Laguerre), or — oo to oo (Gauss-Hermite). The second half of each
hyphenated name designates the type of the associated orthogonal poly-
nomial used in the derivation of the formulas. The x; are zeros of the
associated polynomials, and the w; can be calculated from them.
As a simple example, consider the three-point Gauss-Legendre formula

for integrating

3

f_llf(x)dx= 2 w,f(x), (5.5.1)
i=0

as given in HMF 25.4.29. The x; are the zeros of Legendre polynomial

P;(x), namely, 0 and =V 3/5 . The w, are given by

_ 2
W= ——————,

(1=x2)[ Py (x)]

and for n=3 these are 3 for x,=0, and 3 for x,=*V3/5 . (The w, add to
2 because of the range of integration.) Thus the formula can be written

(5.5.2)

: 5f(—V3/5 )+8f(0)+5f(V3/5
f_lf(x)dx-:'—. (ZV3/5) 5 (V3/ ). (5.5.3) 
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An algorithm for an HP-35 would be

V][[T/)[sToJ[Ri]

5[x]Lsto JfeLx][]-F-- (554)

SRRV (see =[+ ),
In this algorithm is a subroutine and is any sequence of
keystrokes that accepts x in X, Y, Z, and T, calculates f(x) and leavesit in
X, and retains x in Y (Z and T are irrelevant on return from [---f---]).
As a test case try f(x)=e*, [--f---]=[e*], and get 2.350336929. The

precise answer is e —1/e=2.350402387.
Section A.3.2 contains a three-point Gauss-Legendre algorithm for an

arbitrary finite range of x, a five-point Lobatto-Radau algorithm (in which
the ends of the range of integration are taken for x; but the other x; are set
by the formula), an n-point Gauss-Chebyshev algorithm useful for a finite
range when the integrand has 1/Vx singularities at the ends, a two-point
Gauss-Laguerre algorithm for integrating from 0 to oo, and a three-point
and five-point Gauss-Hermite algorithm for integrating from — oo to oo.
These particular formulas were selected from the myriad available to give
relatively simple algorithms. The HP-45 Applications Book has algorithms
for three-point Gauss-Laguerre quadrature (p. 119) and six-point Gauss-
Legendre quadrature (p. 117).
The results of using the applicable algorithms on the same two test cases

used with tabular quadrature are also plotted in Figure 5.4.1. The poor
showing of the Gauss-Chebyshev formula is not an indication of poor
quality; rather, it points up the inappropriateness of these test cases to this

formula.
Gaussian quadrature is discussed in more detail in Kopal (1955),

Chapter VII; Hildebrand (1956), Chapter 8; and Hartree (1958) Section
6.6; for collections of formulas, see HMF 25.4.28 to 25.4.46 and CRC

HTM, pp. 839-847.

5.6 INDEFINITE QUADRATURE AND DIFFERENTIAL EQUATIONS

This section deals with both indefinite quadrature and numerically in-
tegrating certain kinds of ordinary differential equation. Like the tradi-
tional approach to numerical interpolation and differentiation, traditional
methods in numerical solutions of differential equations usually employed
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tables of differences and minimized the number of points at which f(x,y)
was evaluated. Among traditional methods, the predictor-corrector methods
associated with Milne, Adams, and Hamming are probably most popular.
These methods are oriented toward the use of either pencil and paper or a
fair amount of numerical storage, and they are not very appropriate for
RPN calculators.
As an alternative, Runge-Kutta integration formulas use no previous

information, but start anew at each point and calculate a polynomial to fit
only over the interval from one point to the next. These formulas are an
advantage with fast-changing functions because the approximating poly-
nomial needs to fit only over this narrow interval. With Runge-Kutta
methods, one does not need to remember previous values, and the tech-

nique requires no previous information to get started. The disadvantage is
that f(x,y) is calculated n times for each step in x, where n is the order of
the formula, rather than only once or twice per step, regardless of n, in
most traditional methods.

Consider a first-order* ordinary differential equation of the form in
equations 5.1.2 and 5.1.3. The simplest possible formula that might be used
to carry the solution away from x=a is the Euler or point-slope formula
(HMF 25.5.1), which is the same as the first-order Runge-Kutta formula,

yn+lgyn+hf(xn’yn)’ (561)

where h, as usual, is the step size in x. This is a first-order formula,

but other first-order formulas are possible; for example, one might use
f(x,+h/2,py,) or even f(x,+h/2,(3y,—y,_;)/2) in the formula. The
integration begins from x,=a, y,=b; h can be either positive or negative
and can change in size from one step to the next.
An HP-35 algorithm for the point-slope formula would be

serup: a [1] [1] [1] b [sTO]

LOOP: h [RCL] (s€€ Vy41) h
(see x,,,) (1] [RY] ] . (56.2)

In this algorithm [---f---] is any sequence of keystrokes that accepts y in
X,xin Y, Z, and T, produces f(x,y) in X and retains x in Y (Z and 7 are

irrelevant). Note that auto-enter will be disabled on the first call to
subroutine [---f---], but not on subsequentcalls. The requirement to key A

 

*Distinguish between the order of the differential equation itself, which refers to the order of
the highest derivative that appears, and the order of the method used to numerically integrate
the equation, which refers to the order of the polynomial used in the approximation, or

equivalently, to the number of different evaluations of f(x,y) appearing in the formula.
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twice in each loop is very undesirable, but the disadvantage can be
lessened by choosing /4 to be a number such as 0.1 or 0.01 that is easy to
key. On some calculators one could and h.

There are several possible formulas for second-order Runge-Kutta for
this problem; one is (HMF 25.5.6),

k,+k,
Ynt1Z=Vyt —5—, (5.6.3)

where

ky=hf(X7,

k,=hf(x,+h,y,+k,). (5.6.4)

One can easily see why this formula is a good approximation; k, is hy'(x,,),
and k, is an estimate of hy’(x,,,) based on the previous point-slope
formula. Then the average of k, and k,, which is used to step from y, to
Yn+1» Should be a good approximation for the average hy’(x) over the
interval x, to x,,,. This form of second-order Runge-Kutta is identical
with the S1mplest possible predictor-corrector formula and is also known as
the Euler-Cauchy method or as Euler’s second improved method.
Another second-order Runge-Kutta formula, also known as Euler’s first

improved method, is (HMF 25.5.7)

Vo1 =y + ks, (5.6.5)

where

ky=hf(x,,5),

k, hf(xbyLk) (5.6.6)2t 3

This formula is clearly a good approximation: since k, is an estimate of
hy'(x,41,2), (at the midpoint of the interval), it should also be a good
approximation for the average 4y’(x) over the interval x, to x,,,. Higher
order Runge-Kutta formulas are less obvious.

An HP-35 algorithm for formulas 5.6.5 and 5.6.6 would be as follows:

serup: a [1] [1] [1] & [sTO]

LOOP: _(h/Z)Inh
(see x,.y) [T][1] [Ri] [Ri] (h/2) [x] [ReL]
(see y,,,) [sTO] 1| . ( W 6.7)
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In this algorithm both 4 and A/2 need to be keyed in each loop, thus the
comments under algorithm 5.6.2 apply. Subroutine is the same as
before, but note that auto-enter will be sometimes enabled, sometimes

disabled on the call to [---f---].
Section A.4.1 contains other algorithms for second-, third-, and fourth-

order Runge-Kutta applied to this problem. To test and compare these
algorithms, we need a differential equation whose solution is known
analytically, but it must not be so simple that any of the methods become
exact. One possibility is

f(x.y)=2xy, y(0)=1. (5.6.8)

With A=0.1 except as otherwise noted, the results of numerically integrat-
ing this differential equation from x=0 to 1 or more are shown in Figure
5.6.1. The “hole” in two of the curves is a common occurrence and
corresponds to a change of sign of §£&. Note that second-order Runge-Kutta
(with h=0.1) is much better than the point-slope method even with
h=0.05, and requires the same number of evaluations of f(x,y). Other
generalizations, such as choosing between formulas of the same order, are
not possible from this figure because this comparison depends on the
particular differential equation.

Since the error term in each method is of order A"*! where n is the

order of the method, choosing a smaller # will improve the higher-order
methods by a larger amount and increase the differences between methods
of different order.

Consider next a second-order ordinary differential equation (initial value
problem) of the form

y'=f(x.y), y(a)=b, y'(a)=c. (5.6.9)
A possible third-order Runge-Kutta formula for this problem is (HMF
25.5.22)

k42K,
yn+lgyn+h(yn+ 6 )’

Vi=y +— (5.6.10)

where

kl =hf(xn’ yn)’

h(y.+k, /4
k2=hf(xn+g, yn+—(—y"—2fi), (5.6.11)

k
k3=hf(x,,+h, y,,+h(y,’,+—2—%)).
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Figure 5.6.1 Error resulting from applying a variety of numerical integration formulas

(Section A.4.1) to the test case y’=2xy through y(0)=1. The ordinate is log,, of the

absolute error and is the negative of the number of correct decimal digits to the right

of the decimal point. The abscissa is x. Then (a) shows the results of using the

point-slope formula with h=0.1; and (b) with A=0.05. For all the following cases h=0.1.
Then (c) shows the first-order bastard formula; (d) second-order Runge-Kutta from

HMF 25.5.7; (e) second-order Runge-Kutta from HMF 25.5.6; (f) third-order Runge-

Kutta from HMF 25.5.9; (g) third-order Runge-Kutta from HMF 25.5.8; (k) fourth-order

Runge-Kutta from HMF 25.5.10 or Gill’s modified fourth-order Runge-Kutta from HMF

25.5.12; and (i) fourth-order Runge-Kutta from HMF 25.5.11.
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An algorithm for this formula for the HP-45 is given in Section A.4.2. This
is a third-order formula and the three ks are calculated at the starting point
(k,), half-way along to the next point (k,), and approximately at the next
point (k;). The weighted average of the three ks is an estimate of the
average hy” over this interval. Note two interesting characteristics of this
formula: the y argument of f in k; is very nearly y,,,, and we could use
Yn+1 to calculate k5 because y,, ; does not depend on k. If this substitu-
tion is made, k5 for one pointis identical with &, for the following point—a
considerable simplification. Section A.4.2 provides an algorithm for this
simplified formula.
As a test case, we again need a differential equation whose solution is

known analytically. One possibility is

f(x,y)=2+4x»)y, y(0)=1,  y'(0)=0. (5.6.12)

With A=0.1, we can numerically integrate this differential equation with
these two algorithms, to obtain the results in Figure 5.6.2. The simplified
formula is not as good (on this test case), but the difference is not very
dramatic.

Suppose, instead, that we need to solve a second-order ordinary differen-
tial equation of the form

y'=f(xy.y),  y(a)=b, y'(a)=c. (5.6.13)

This is a more difficult problem because of the appearance of y’ in f. A
possible fourth-order Runge-Kutta formula for this problem is given in
HMF 25.5.20, and a corresponding RPN algorithm can be found in
Section A.4.2. The results of applying this algorithm to the test case

y'=2y+x"), »(0)=1 y(0)=0 (5.6.14)

are given in Figure 5.6.3.
Consider finally a set of two first-order ordinary differential equations

y'=f(x.y,2),

2’ =g(x,9,2), (5.6.15)

through

y(a)=b, z(a)=c. (5.6.16)

A second-order Runge-Kutta formula for this case is contained in HMF
25.5.17, and Section A.4.3 presents a corresponding RPN algorithm as well
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Figure 5.6.2 Results of applying two numerical integration formulas (Section A.4.2)

to the test case y” =(2+4x?)y, through y(0)=1 and y’(0)=0 with h=0.1. (a) y’, (b) y from
the simplified third-order Runge-Kutta, (c) y’, (d) y from the unmodified third-order

Runge-Kutta.
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Figure 5.6.3 Results of applying fourth-order Runge-Kutta from HMF 25.5.20 (Section

A.4.2) to the test case y” =2(y + xy’) through y(0)=1 and y’(0)=0 with h=0.1.
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Figure 5.6.4 Results of applying two numerical integration formulas (Section A.4.3)

to the test case y’'=2x/z, z’= —2x/y through y(0)=1 and z(0)=1 with A=0.1. (a) and
(b) are y and z, respectively, from second-order Runge-Kutta. (c) and (d) are y and z,
respectively, from the modified second-order Runge-Kutta.

as an algorithm for a slightly modified version of this formula. Figure 5.6.4
shows the results of applying these two algorithms to the test case

through

, —2x
Z= , 5.6.17; (5617)

z(0)=1. (5.6.18)
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As a special case of equations 5.6.15, we could have

y'=f(x.y,z)=z, (5.6.19)
thus

'=y"=g(x,y,y). (5.6.20)

Therefore the previous second-order problems can be dealt with as special
cases of the present problem, equations 5.6.15 and 5.6.16. But this is not
usually a simplification.
The Runge-Kutta formulas for numerically integrating differential equa-

tions are discussed in more detail in Hildebrand (1956), Sections 6.15 and
6.16, and a collection of formulas appears in CRC HTM,p. 619, and, of

course, in HMF 25.5.

5.7 EXERCISES

57.1 f"sin2 x dx.
0

572 F(x)= footx"e“’dt for test case x =4.
0

5.73 Given the following table of data from an experiment, estimate
y(x)dx using the eight-point Newton-Cotes formula, estimate

»(1.32) using three-point and four-point Lagrange interpolation,
and estimate y’(1.32) using three-point Lagrange differentiation.

X y

1.0 0.
1.1 0.0007
1.2 0.0064
1.3 0.0228
1.4 0.0562
1.5 0.1133
1.6 0.2009
1.7 0.3261

flx%cosl(x)i

575 F(x)= -fcos(xsinf)df for test case x=2.
0
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5.7.6

5.7.7

5.7.8

5.7.9

5.7.10

5.7.11

5.7.12

Numerical Integration, Differentiation, and Interpolation

F(x)= foe"’zdt for test case x=1.
Va Jo

F(x)=e_"2fxe’2dt for test case x=1.
0

F(x)= foxsin(wtz/2)dt  for test case x=1.

Integrate the differential equation y”=—xy from y(0)=
0.3550280539,  y’(0)=0.2588194038, in the positive x direc-
tion up to about the first zero. Hint: The first zero is around
x=23. Try h=0.1.

Integrate y’= Vo —2xy—1/x from y(1)=0.6051336526 to x=2.

Calculate o _p

— e ~

y(x)= j(; x+1t dt,

for x=2 and compare with problem 5.7.10.

Consider a simple pendulum (Figure 5.7.1). A mass m is connected

  
Figure 5.7.1 A simple pendulum.
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by a massless rod of length / to a pivot O. The force of gravity mg
acts directly downward and causes the mass to swing back and
forth. The equation of motion can be written as follows:

//__§ :0" = lsmfl,

where 8=0(¢) and ¢ is the time. We multiply this equation by 26’
and integrate to give

2
(0')* = Tg (cosf—cosb,),

where 6, is a constant and is the maximum value attained by 6.
The well-known first approximation for the period P comes from

taking sinf=tanf=6 and is P=27V//g . Beginning from 4 (0)=
0, integrate the 8’ equation until # reaches 6,, that is, for a quarter
period, and compare the period so derived with the approximation
above. Take §,=44° and g/I/=3.
One can show that

- fooln[2sin(

Write an algorithm to sum the first six terms of the series, ap-
proximate the integral numerically, and compare the two answers
for 8=50°.

Chebyshev’s formula for the approximate number of primes less
than or equal to n is

 

N
~ > sinkd)}dt=z P

k=1

P(n)___jz" dx
Inx’

Evaluate this integral for n=1000 and compare with the known
number of primes less than 1000.



6
Suggestions for Future

Developments

Every thesis should have a chapter of suggestions for future developments.

—Prof. Alan H. Barrett (1927- )

Conservatism discards Prescription, shrinks from Principle, disavows Progress;

having rejected all respect for antiquity, it offers no redress for the present, and

makes no preparation for the future.

—Benjamin Disraeli (1804-1881)

Old men and comets have been reverenced for the same reason; their long

beards, and pretences to foretell events.

—Jonathan Swift (1667-1745)

This chapter contains my ideas and recommendations (not predictions) for
the design of future RPN calculators. I am more concerned with the design

of inexpensive and portable models than with elaborate programmable
calculators. The challenge is to do a lot with a little; to do a lot with a lot is
easier.
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6.1 GENERAL SUGGESTIONS

To begin, I have a few suggestions for almost all future RPN calculators.
The first concerns the key. In Section 1.3.1 I pointed out that this
key can be confusing because it performs two functions. But the confusion
can be reduced and both functions retained by a simple change—[CHS
should enable auto-enter (but not terminate a number). Then the sequence

A[1][cns]B
would leave three numbers on the stack: B, — A, and 4; within
numbers would work just as it does now.

Second, I suggest that all RPN calculators would benefit from a
key. Only a few RPN calculators now have such a key. The operation
is, of course, equivalentto [Rl]; the usefulness of is indicated
by the frequency with which these three keystrokes occur in algorithms.

Third, I suggest that all RPN calculators have recall arithmetic as well as
storage register arithmetic. Only the HP-45 and HP-46 now have this
feature. In Section 1.3.1 I pointed out how useful this feature is, and
Appendix A contains many examples. Sometimes an HP-45 algorithm is
difficult to convert to work on a nominally more powerful calculator such
as the HP-27, because the HP-27 lacks recall arithmetic.

With programmable RPN calculators that merge keystrokes (e.g., the
HP-25, HP-67, and HP-97), recall arithmetic would have an additional

advantage. Sequences such as 4 would be merged into a single
program step, but 4 takes two. To see how important this saving
might be, I checked 17 programs from the HP-65 Standard Pac—all the
programs therein except the two user diagnostics. These 17 programs total
1465 program steps. For each occurrence of storage register arithmetic, two
program steps would be saved by merging; and for each place at which
recall arithmetic could be used, one or sometimes two program steps would
be saved. For these 17 programs, I counted 48 program steps that would be
saved by merging storage register arithmetic, and 63 to 66 program steps
that would be saved by going to merged recall arithmetic.
An ideal calculator would give round(A4 + B, n) as the answer for 4 B

, where round(x,n) is the round-off function, that is, x rounded to »

digits, and n is the number of digits of precision in the calculator (see
Knuth, 1969, Section 4.2.2). Most RPN calculators do not do this. Instead,

they calculate the sum to a larger number of digits (usually 13 if n is 10),
truncating any other digits in the smaller number, and finally round the
answer to n digits. This procedure is nearly, but not exactly, the same (see
exercise 6.6.10). I recommend the precise round(A4 + B, n) because it leads
to fewer difficulties, as pointed out by Knuth (op. cit.).
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My fifth suggestion concerns a special symbol ¢ for “clear,” distinct
from zero. When the calculatoris turned on, or when or is
used, the appropriate registers should be set to ¢ rather than 0. The display
should distinguish among three cases—true zero, shown as a single, full-
sized zero; £, shown as a half-sized zero; and “rounded off to zero,” shown

with a decimal point and as many (full-sized) zeros as are needed to
correspond to the selected display format. The distinction between true
zero and rounded off to zero is made in this way, for example, by most
FORTRAN systems.
The clear symbol ¢ behaves like a zero if it occurs in arithmetic

calculations. Functors accept ¢ as a parameter and treat ¢ as zero. A
functor can produce zero but not ¢ for an answer. However ¢ differs from
zero on the display and in not entering Yfrom Z on a normalpop. Thus if Z
contains £, any dyadic functor leaves Y (and also Z and T) unchanged.
This is an extension of the idea that T should not change on pop, a
remarkably useful feature, as noted in Section 2.4. Whenever £'is in X, and

a new numberis to be put into X, the new number overwrites ¢ rather than
pushing; in effect, whenever ¢ is in X, auto-enteris disabled. Thus [CLX],
which writes ¢ into X, automatically disables auto-enter. Using the g
system increases the value of the otherwise rather useless and
keys.
The idea of the ¢ system came from noting that in computer systems

that use RPN, the active register (corresponding to X)) is logically separate
from the stack or stacks, and the last-in-first-out register in a stack
(corresponding to Y) does not clear on pop. In computer systems this
enables a stack to be used in place of a register, because an
indefinite number of [RCL |s can follow a single STO ].
With the ¢ system and a key, can be used as a number

separatorinstead of [1]. On pressing , a £ appears in X, provided the
stack is not full. By watching for the ¢ after each [R?1], one can ensure that
no numbers are lost off the top of the stack. The ¢ in X after is
overwritten by the next number key, which means that after the number
key is pressed, the effect is the same as if had been used.

So should then enable auto-enter and serve only as a “duplicate”
key? I think not. The advantages are slight, and this system would lead to
errors by persons familiar with more conventional RPN systems. And
using as a number separator necessitates between problems.
The option of using as a number separator should be retained. In
certain cases one wants to lose numbers from the top of the stack.
The ¢ system has some of the advantages of the HP-35, which allowed

to precede a number (see Section 1.3.1), without the disadvantages.
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Since ¢ cannot be negated,if is pressed with £ in X, a new number
1s begun with a minus sign, overwriting ¢ into X. The display should show
just the minus sign until a number key is pressed.

More than four registers in the stack would be desirable for many
problems. To “fill up” the stack to save a number with the ¢ system
requires only one regardless of the length of the stack, provided it was
initially cleared. The difficulty occurs with and or with whatever

h——>h h————m>h

w §—»§ §—¢

vi f——f f——f

U e &——————>e

T d a d c

z c d c b

Y b c b a

X a b a d

Q: h a h 4

w h g f

vi f g f €

U e f e d

T d e d c

z c d c b

Y b c b a

X a b a h

Figure 6.1.1 A possible implementation of an eight-register stack. would
function as usual.
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new keys are invented to replace and [R?]. With upward compatibility
in mind, I suggest that and be retained with the same function as
on traditional RPN calculators—[R!] and should affect the bottom
four registers only. A different key or keys would rotate the whole stack.
One such scheme is represented in Figure 6.1.1. This scheme has rotates
containing two ([x=y]), four, and eight registers.
With the ¢ system, each register can be a stack also. Two STO|s

with different numbers in X can be followed by two [RCL |s to recover the
two numbers in reverse order. However an indefinite number of [RCL |s
could follow a single as usual.
For new programmable RPN calculators, I recommend (“go to

subroutine”) and keys for subroutines. There should be at least one
internal subroutine return-address register to be set by [GSR |, so that the

at the end of a subroutine would return control to the instruction
following the [GSR ]. The HP-65 and HP-67 have similar capabilities.

Finally, I recommend that a variable-length field be assigned to the
exponent—both internally and on the display. The characteristics of one
example of such a system are given in Table 6.1.1. The table is based on a
121 digit display (12 digits plus a preceding minus sign) and an internal
representation of 12 digits plus a bit for the sign of the number, a bit for
the sign of the exponent, and two bits to define the start of the exponent
field.

Table 6.1.1 Example of Variable-Length Fleld
 

Number of Figures
 

 

Range Internally Displayed

1079 t0 10~%° 9 8

107" to 10~° 10 9

107%to 102 11 10

1072to 107! 11 11

107"to 1 11* (12)f
1to 10 12 12

10 to 10'° 11 (12)
10'° to 103 10 (12)

10" to 10'%® 10 9

10'% o 101000 9 8
 

*Or 12, using the convention that —0 for the expo-
nent is interpreted as — 1 instead.
TThe parentheses indicate that the display could show

more figures than are available internally.



6.2 0, U, and oo 161

6.2 0, U, AND ©

“By every number canst thou divide, but by 0 shalt thou not divide!"" said the Lord

when he placed Adam in the Garden of Eden*

—Robzsa Péter (1905- )

6.2.1 oo Is a Number

In ordinary arithmetic, zero is a number with special properties and must
be treated as a special case in a calculator. For example, we cannot divide
by zero or find the logarithm of zero. Calculator designers are forced to
deal with zero, however, and if one tries to take the reciprocal of zero, the

punishment is a flashing display or “Error.”
Now infinity (o0) is also a number with special properties and should be

treated as a special case in a calculator. With a representation for co both
internally and on the display (perhaps two half-size zeros), some of the
difficulties with zero would be eliminated. We would then have, for

example, a representation for tan 90° and 1/0. An overflow from 10to
co is no worse (and no better) than an underflow from 10~%° to zero.
Either condition results in inaccuracies whose severity depends on the
particular problem. For no very good reason, most calculator designs
condone underflow but not overflow.
A calculator with a representation for oo would still have forbidden

operations: those that are indeterminate (e.g., 0/0 or 0 X 00) and those that
should be complex numbers (e.g., log(—2) and cos~!(4)); but such a
calculator would be, in my view, a considerable improvement over current
models.

6.22 And Sols U

In addition to the new symbols (numbers) ¢ and oo, I recommend a third
new symbol U, for “undefined,” to represent the answer to an inde-

terminate operation. A U on the display as the answer to a calculation is
essentially equivalent to flashing zero or “Error” on current models. But U
is a number; thus it can be manipulated on the stack, stored and recalled,

and used as an argument in functors. Most but not all functors operating on
U give U for the answer. If one thinks of U as an arbitrary, possibly
complex, finite number, then 0X U=0, U/00=0, U/0=00, U X 00 = o0,

U°=1, and so on. However U/ U= U (not 1) because the two Us can

*From Péter (1976), p. 138.
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represent two different undefined numbers. The rules for manipulating O,
o0, and U are given in Table 6.2.1.
With the U system, an undefined operation can occur in the middle of a

chain calculation and yet, at the end, one has either a U still in the display
to show the error, or maybe the right answer, in case the U did not matter.

I recommend that 0, U, and oo all be signed numbers. 1 agonized long
over this recommendation. The question is not whether to carry and
display the sign—that obviously is desirable—but what use to make of the
sign. The criterion is to minimize the number of special cases for which one
gets the wrong answer; but such cases cannot be eliminated altogether even
by going to full complex arithmetic. If we carry along the signs according
to the usual rules of arithmetic, we get fewer wrong answers. The sign
convention for + and X is the same as in ordinary arithmetic. For *, the
sign convention is indicated in Table 6.2.1; essentially we take the sign of

Table 6.2.1 Rules for Arithmetic with 0, U, and oo
 

0+0=U 0x0=0 0+x0=0 In(0)= — o0
0+o00=0 OXoo=U O*xoco=*00 In(o0) =00
0+U=0 0xXU=0 0xU==xU In(U)=U

= = — _Jasusual for A4>00+0=00 o0wX0=U o0*x0=00 ln(A)—{U for A<0

w+00=U 00X00=00 00+00=00 =1
w+U=00 owXU=0w w*xU=w0 et®=00
0+A=00 0XA=00 ow*xA=00 e*=0

U+0=0 UX0=0 U+x0=U eV=U
U+oo=0 UXoo=00 Uzxzowo=*ow0 sin(o0)= U
U+U=U UXU=U UzU=U cos(e0)=U
U+A=U UXA=U U+A=U tan(c0)= U
A+0=00 AX0=0 A*x0=4 sin(U)=U
A+00=0 AXowo=0 A*xoo=*o0 cos(U)=U

A+U=U AXU=U A=U=U tan(U)=U
tan(90°) = o0

tan(—90°)= — o0

sin~!(c0)=U
cosI(c0)=U

tan~!(+ 00)=90°
tan~!(— c0)= —90°

sin" '(U)=U
cos (U)=U
tan~}(U)=U
sin~!\(A)=U if |A|>1
cos"l(A)=U if |4]|>1
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the largest quantity whenever it is known. Sometimes the sign is arbitrary
(e.g., 0—0).

All the rules for powers and roots (y* and Vx ) follow from the rules
for logarithms and exponentials in Table 6.2.1, except that integer expo-
nents (0 and oo are even integers, but U is not) should be handled as
special cases, permitting one to do integer powers of negative numbers.
Most calculators use binary coded decimal (BCD) arithmetic internally,

and each digit is represented by four bits (16 states). The states correspond-
ing to 10 through 15 usually see little service; these unused states can be
pressed into action to represent ¢, U, and oo.
The numbers co and U were suggested for computers by K. Zuse (as

reported in Knuth, 1969, Vol. II, p. 192), and actually used in the IBM
7030 (stretch) and CDC 6600 computers.

6.3 EL CHEAPO, MODEL A

This section contains rough design specifications for an RPN calculator
affectionately known as El Cheapo, model A.It is to be relatively inexpen-
sive, an alternative to the “four-function” AES calculators that are now so

popular.
One would hope that such a calculator would cost no more than a

textbook, so that schools, for example, could afford to buy one for each

student. However this leads to some conflicting design goals. For a
student, a calculator should be (@) as simple as possible, but (b) upward
compatible, so that he need not relearn any of the simple operations on a
more powerful calculator. Thus one might just cut off the top half of the
keyboard of a scientific RPN calculator—that is, remove all the keys such
as [SIN ], [cos], [in], and [y*], but retain all the usual arithmetic
operations including the four-register stack. Such a topless calculator,
(Figure 6.3.1) would still be impressively powerful and would, for example,
run rings around a “four-function” AES calculator, but would probably
cost more, too.
For the model A, the two design goals above were relaxed to try to make

a calculator still less expensive but about equally powerful. The cost of a
calculator in this price range is a strong function of the number of
mechanical parts (e.g., keys and digits in the display) but not so strong a
function of the complexity of the integrated circuit chips. For a calculator
that sells in large quantities, the engineering costs (divided by the number
of units sold) and the incremental cost of a complex chip over a simpler
chip are usually small compared to the costs of the keyboard, display,
battery, and case. This suggests that the designer should extend the idea of
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Figure 6.3.1. A 20-key topless calculator made by removing all the keys such as

,,@ and from a scientific RPN calculator.

keys doing multiple duty, as already done in the and keys, and
in calculators with shift keys.
Now consider the display on the El Cheapo, model A (Figure 6.3.2).

There are eight digits plus a preceding half-digit that can display a minus
sign and a decimal point. For numbers too large or too small (more than
three leading zeros) for the decimal point to be on the display, the model A
automatically switches to scientific notation, but with room for only five
significant figures. The HP-35 has a similar display system, but it is
inefficient in its use of display digits. The HP-35 actually has a total of 15
digits (two of which display only minus signs) in its display, but only 10
significant figures. The model A always keeps (at least) eight significant
figures internally, regardless of the decimal point.
The two unusual keys on the model A, (pronounced “interchange”
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Figure 6.3.2. EI Cheapo, model A, has 17 keys and RPN with a stack of four registers.

The display shows either eight significant figures in floating decimal format or five

significant figures in scientific notation. The and keys are explained in the text.

to distinguish it from [x=y], “exchange”) and (pronounced “dotty”)
take the place (more or less) of [x=y], [Rl], [-], [EEX], and with [=], of

also. But of course a price must be paid for this reduction in
keys—some operations require both more keystrokes and more thought
with the model A than with a conventional RPN calculator.

Figure 6.3.3 illustrates the effect on the four-register stack of repeatedly
pressing [<]. By pressing the correct aumber of times, the effect of
many (but not all) combinations of and can be duplicated.
Missing, for example,is the effect of [Ri]. One need not memorize
this whole table. One press of is equivalent to [x=y], two presses of

are equivalent to (from the original arrangement), and then the
process starts over from this new arrangement. Each pair of pushes of
corresponds to a [Rl]; thus after eight [<]s (equal to four [Rl]s), we get
back the original arrangement as shown in Figure 6.3.3. If any other
keystroke occurs between s, the pattern restarts at the beginning.
The key functions as follows. The first time is pressed it is

equivalent to a [- (decimal point) and thus can begin a number or appear

within a number. The second time 1s pressed within the same number,

the effect is the same as EEX |, which means that the following digits are
taken as the exponent. If more than five number keys were pressed before
this second pressing of [.E], some of the digits can no longer be seen on
the display, but they are kept internally. Therefore one can key, but not
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Figure 6.3.3 The effect of repeatedly pressing on the model A.

see, an eight-digit number with a two-digit exponent in scientific notation.
The [-] key functions with [.E] as follows: if [=] does not immediately

follow [.E], the [=] means subtract as usual. Thus [-] without
immediately preceding is a number terminator and a dyadic functor. Butif
[-] immediately follows [.E], the [-] is taken as instead, and either
the number or the exponent can be negated. One can use [-] in this way
because neither [-] nor in the conventional RPN system is ever
needed at the end of a number.

Finally if is pressed a third time within the same number, [.E]
functions as [CLX]; the display shows g. Another way to correct a
number-keying error is (=[RL)).

This explanation of the model A system is specifically intended for
persons who have read the preceding chapters of this book; a very
different explanation would be needed in the instruction booklet supplied
with the calculator.
The following tabulation supplies examples of keying numbers in the

model A system.

Number

3.

3.3

-3.

—-33

1000. or 103

—1000. or — 10?3

—0.001 or —1x1073

1.6 x10*
-1.6x10*
1.6x 104
-1.6x107*

A <

 

el
le

lE

&

[f
e]
] (1
]

=
=

-

=] o
7]

2
[]

H
E
E
E
R
E
E
E
E
E
E

F
E

(]
[]
][

]
D
)
B
[
i
)

N
E
O
E
E
E
E
D
O
E

]
S

E
]
[
]

N
E
E

=
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This tabulation illustrates some simple arithmetic in the model A system.

 

Arithmetic Key

3+1.6 (3] (1] [x] [E] [6] []
3-16 [3] (1] [1] [E] [6] []
—3-16 (3] L] [=] [1] (] [E] [6] [=]
3+(-1.6) (3] (1] [1] L] [=] 6] [+]

(or [3] [1] [E] [6]E
3-(—4) BleI (or[3] [ 4 [+)

This system has, of course, some minor annoyances. Some operations
require more keystrokes than are needed on a conventional RPN calcula-
tor. To negate a number already on the display from a previous calculation
requires three keystrokes, [0] [=] (unless Y already contains 0 or £),
and also loses the contents of T. Reciprocal also takes three keystrokes, [1]

[+], and loses the contents of T. And for a [CLR], turn the calculator
off, then on again. But is not good for much anyway.
Most serious of all, of course, are missing functors such as ,,

and [y*]. These can be done on the model A using power series expansions
or iterative techniques, but if such functions are really necessary perhaps
one should consider the model B.

6.4 THE MODEL B

The next major step forward for RPN calculators is probably complex
arithmetic. 1 believe that the best way to implement complex arithmetic is
to have two stacks, one for the real and the other for the imaginary parts of
numbers. The registers should also be double. In a simple im-
plementation, one needs about two extra keys and two extra bits of

information in the display, but not two separate displays.
Two important design goals can be stated. (1) A person unfamiliar with

complex arithmetic, but familiar with traditional RPN calculators, should

be able to turn on the model B, use it just like an ordinary calculator, and

get all the right answers; he would have to avoid only pushing any
unfamiliar keys. If one tries a combination of keystrokes that yields a
complex number (which on an ordinary calculator would give a flashing
display or “Error”) the “other-non-zero” light (described below) will indi-
cate a complex answer, which would be interpreted as an error. Thus the
model B is upward compatible from an ordinary scientific RPN calculator.
(2) The object of many of the following rules is to ensure that the real and
imaginary parts of a given number are never separated accidentally.
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The model B has two registers labeled X, and X; (for real and im-
aginary), two labeled Y, and Y, and so on. The display shows the contents
of X, when the calculator is initially turned on. In this state (r stack
active), numbers keyed go into X, following the usual rules. [x=y], [R1],
and operate as usual but on both stacks simultaneously. writes
¢ into the active X only, and duplicates X, into Y, and X, into Y; (push
both stacks) and disables auto-enter as usual. The swap key [S] swaps the
display and the active stack from r to i or from i to r; [S] terminates a
number and enables auto-enter (by analogy with [x=y]); but whenever ¢
is in the display, in effect auto-enter is disabled (see Section 6.1).
Whenever one stack is pushed by a number entry (auto-enter), the other

stack pushes also with a ¢ written into the inactive X. This rule is essential
to avoid separating the real and imaginary parts of a number. Whenever a
number 1s overwritten in the active stack, either because auto-enter was

disabled or because the active X contained g, the other stack is unaffected.

The only other new key on the model B is (i conjugate), which
exchanges the contents of X, and X; and enables auto-enter, but has no

effect on which stack is active. As the name suggests, is equivalent to
conjugation (changing the sign of the imaginary part) followed by multi-
plication by i.

operates as usual on the active X only. Pushing when the i
stack is active gives conjugation. STO |, and operate as
usual, but each of these registers is double, to hold the real and imaginary
parts of a number.
The following functors should be implemented in full complex form, but

producing, of course, the principal value: [+], [=], [X], [£], [1/x], [x2],
[Vx], [In], [e*], and (or [x’]). As an aid in calculating alternative
values for some of these functions, a register, perhaps register O,
should be set to exp(2mix) on either or [y*], and to —1 on [Vx]. An
example below shows the usefulness of this feature for nonprincipal values.

As an exception to the rule that a noncomplex user should be able to get
all the right answers, I suggest that and should operate as usual
but on the X, and X, registers. Then, for example, gives the modulus
or absolute value and the phase of a complex number, and differs from
[1n], which gives the logarithm of the modulus and the phase. All these
functors should reset the active stack to r.

I feel less strongly about these recommendations, but I think that the
trigonometric functors ([ SIN], [cos], [TAN], 'SIN-i: 'cos-': and
'TAN-1") should be implemented in real numbers only, but on the active
X; they would have no effect on the inactive stack.

The display on the model B is conventional except that it must show two
additional bits of information: the stack thatis active (r or i), and whether
the inactive X contains 0 or ¢, or not (“other-non-zero” light). Both these
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b Figure 6.4.1 The left-most digit in the model B

display shows three bits of information: a is

called the ‘“‘other-non-zero” light and is lighted

whenever the inactive X contains anything other

than 0 or ¢{ b is the minus sign as usual; and

c represents i for imaginary and is lighted

whenever the i stack is active (the contents

of X; are displayed). Whenever the r stack is

active (the contents of X, are displayed), ¢ is dark.

additional bits can be incorporated into the left-most digit of the display
(Figure 6.4.1).

Consider some examples on the model B. Each example starts with the
stack active and auto-enter enabled (or else ¢ in X, and X)); a, b, ¢, and so

on, are real numbers.

(a+ib)(c+id)=u+iv  a[s]b[s]c[s]d[xX]  (seeu)

[s]  (seewv).

When a is keyed, both stacks push, ¢ is written into X, and this ¢ appears
in the display after the [s] following a, causing b to overwrite this ¢. The
[s] following b puts a back into the display (X, again), but with auto-enter
enabled, ¢ pushes the stack and writes & into X, again. Then [s] after ¢
reveals £ in X, for d to overwrite. The functor resets the active register
to r so that u rather than v is displayed first.

a[z]b[z]d[z]c[X] (see u)

(see v).

This alternative algorithm for this problem requires the same number of

keystrokes, but is, in my view, less obvious. There are also several other

alternatives.

 

Z:Z =utio a[slb[t]c[x]  (seeu)

[s] (see v).

Z::Z =utiv a[s]p[1][cus][]  (seeu)

(see v).
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As with real numbers, one can often use to avoid rekeying a number.

(a+ia)’ =u+iv a[1][Z][+]3[»*]  (see u)

[s]  (seewv).

araa-wtie  dOREEBOE]  (ew
[s]  (seev).

This is another trick to avoid rekeying a number.

V16 16[1]4[1/x J[»*]  (see2).

But the equation s*=16 has three other solutions. To get the others,
remember that storage register 0 contains exp(2wix) after [y*|, and

exp(2wi/4)=i. Thus

0 (see 0) [s] (see 2; i.e., anothers is 2i),
0 (see —2) [s] (see 0; i.e., another s is —2),
0 (see 0) [s] (see —2; i.e., another s is —2i),
0 (see 2; we are back to the first answer, s =2).

This scheme works for all real rational x on or [e*]. If x is irrational
(or nearly so) or complex, the contents of storage register 0 after or

are less obviously useful.

6.5 A PLOTTER!

Lest anyone think that this book is not perfectly serious, I have a final
suggestion for the design of future programmable RPN calculators. The
calculator should have a plotter, not as an attachment but built into the
case. The bottom of the calculator would have a retractable pen point and
three wheels (Figure 6.5.1). The two wheels in the back are idler wheels
and are not driven or steered (though they might want a parking brake
when the calculator is not plotting). The front wheel is steerable through
180° and can be driven forward or backward by the program.
The pen can move in any direction by any distance using a combination

of steering and driving the front wheel. One needs to assume that steering
and driving are independent so that the pen does not move on the paperif
the wheelis steered but not driven, and the drive wheel does not slip. This
would clearly be an approximation.
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Figure 6.5.1 A plotting calculator (bottom view) showing the retractable pen (top),

the steerable drive wheel, and the two idler wheels. The circled point outside the

calculator is the pivot point for the indicated steering position, and the dashed line

through the pen shows where it would move.

The calculations necessary to convert from xy-coordinate commands to
steering and drive commands are not trivial. But this conversion would be
done by a preprogrammed internal function and would not concern the
user. He needs only program the function to be plotted, place the calcula-
tor on a sheet of paper on a level surface, initially oriented and positioned
to define the coordinate axes, and push [R/S].

I recommend that the calculator not be left alone while plotting, for it
might try to spill coffee on itself or jump off the desk and run away.

6.6 EXERCISES

Write model A algorithms for each of the following four problems:

6.6.1 ax*+bx>+cx*+dx+e.

1
1/R,+1/R,+1/R;"

(This is the formula for three electrical resistances in parallel.)

6.6.3 Lagrange three-point interpolation. Hint: Convert the algorithm in
Section A.2.

6.6.2 
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6.6.4 All the tabular-quadrature formulas in Section A.3.1.

Write model B algorithms for problems 6.6.5 to 6.6.8.

Va+ib —Vc+id
6.6.5 =u+iv.

Vce+id

L+2)(1— 2
666 LrPU-D) s _ 

(1+3)2—i4) 14+:2

6.6.7 Find the three cube roots of —1.

(c+id)6.6.8 ’-"— =u+ iv, where e=2.71828- - - .
a+ib

6.6.9 Will the algorithm in Section A.5.3, “Real Roots of a Cubic by
Iteration,” work on the model B to find complex roots also?

6.6.10 Design and perform an experiment to determine how a calculator
handles round-off in or [=]. In what way does the answer from
A B differ from round(4 + B, n)?
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Who can count the sands of the sea,

the drops of rain, or the days of eternity?

Who can measure the height of the heavens,

the breadth of the earth, or the depth of the abyss?

—Ecclesiasticus |, 2.
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No collection of algorithms can ever be all inclusive. The algorithms in this
appendix deal with a wide variety of topics and fields (e.g., finance,
music); but astronomy, radio astronomy, and astrophysics are more com-
prehensively represented.

To some extent this appendix overlaps collections of algorithms avail-
able from HP Company (see references in Appendix C). HP’s algorithms
can be criticized in some cases for being plodding and mundane, but
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they are remarkably error-free and reliable. Nothing succeeds like success

—they give the right answer! Since HP’s algorithms are now widely
available, I edited the algorithms in this appendix to eliminate most
duplications, except for cases in which my algorithm is preferable to HP’s
for some reason (e.g., fewer keystrokes). Although I am critical of some of
HP’s algorithms in these pages, I strongly recommend the HP books and
“pacs.”
The algorithms in this appendix are either designated for a specific

calculator—most frequently the HP-45 or HP-35—or they will work on
either the HP-45 or HP-35. Section A.1.2 contains rules for adapting
algorithms to other calculators. I considered and rejected two alternatives
to this scheme: (a) write all the algorithms in a universal RPN notation
such as was used in Section 2.6, or (b) write each algorithm in 13 different
versions to fit all the currently popular RPN calculators. I rejected the first
alternative because algorithms in a universal notation are difficult to use;
in effect one must adapt such algorithms for every calculator. I feel that
the practical value of this appendix would have been reduced by choosing
alternative a. I rejected alternative b because of space limitations. Such a
scheme is inevitably obsolete by the time it is published, but so also is the
scheme I chose. At least I cannot be accused of trying to sell HP-45s and
HP-35s: both models have been discontinued.

The user of this appendix should be familiar with the instruction booklet
with the calculator, but not necessarily with the preceding parts of this book.

Notes on notation

Keystroke symbols in solid boxes (e.g., [+]) are printed on the top of the
key, those in dashed boxes (e.g., |-R) on the side of the key or on the
land area above or below the key. An exception is the original HP-35,
which has all the labels on the top half of the keyboard printed on the land
area above the keys. Keystroke symbols in dashed boxes are always
preceded by a shift keystroke explicitly in the algorithm. Numbers in the
algorithm are printed without boxes. Key numbers exactly as printed.

represents an unlabeled gold-colored key, an unlabeled blue key,
and stands for [ENTERT]. The symbol :| is analogous to a musical
repeat symbol and means loop back to the last preceding colon (:) not in
parentheses.The subroutines [---f---] and are explained where
they occur.

A symbol for a parameter (e.g., A) occurs in an algorithm where the
numerical value should be keyed. When units or explanations are needed, |
enclose the symbol and its unit or explanation in parentheses. Calculated
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answers are 1dentified by “see...” in parentheses, except in a few short
algorithms where this is unnecessary. After “(see...)” just look, do not key.
When a parameter is to be keyed, use number keys, [-], [EEX], and

as necessary. Use for negative parameters, not [—]. After a
miskeyed number, use or [R{]; then key the correct number. Do not
press or any other function key unless it is explicitly in the algorithm.
The symbol DD.MMSS means degrees, minutes, and seconds of arc,

with two digit locations for each. The decimal point after DD must be
keyed. Any digits following SS will be taken for a decimal fraction of a
second. In answers I write this as, for example, DD.MMSS_SS, where the

caret (.) means an implied but unseen decimal point. Similarly,
HH.MMSS means hours, minutes, and seconds of time or in time units.

For example, —5.420202 would mean —5°42'02702 with DD.MMSS or

—5742m02502 with HH.MMSS. Details are in the instruction booklet with
the calculator.
A period ends an algorithm. This is important whenever one algorithm

follows another with no text between. Since this period is not beside a
number, it cannot be confused with a decimal point.
The HP-45 is to be in the mode in which it turns on, that is, degrees.

After using radians, for example, change back to degrees, or turn the

calculator off, then on, before going to another algorithm with trigonomet-
ric functors. The display mode can be changed as needed, except in
algorithms that specify the display mode. No other clearing or presetting
operation is necessary unless it is in the algorithm; do not ! CLEAR
between problems unless the algorithm so specifies.

A.1.2 Converting to Other Calculators

This section contains rules for converting the algorithms in Appendix A
that are written for the HP-45 or HP-35 to work on other RPN calculators.
This section was rather difficult to write. One would like to have the
converted algorithms not only work but be elegant and concise. In many
cases, however, the peculiarities of a calculator would allow some simplifi-

cations, so that the algorithms resulting from converting directly, using the
rules in this section, are not optimum. For example, should
be replaced by on any calculator that has [Rt]. I hope that the reader
takes this as a challenge for creative thinking rather than as a criticism of
the book. In other cases, the algorithm must be rewritten rather than just

converted. This occurs, for example, with most of the algorithms that

employ because the effect of this key differs markedly among calcula-
tor models, as shown in Table A.1.1.
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Table A.1.1 Comparison of Capabilities on Varlous RPN Calculators

Register Numbers
 

 

 

Calculator >l Sx Sx? Sy Sy? Sxy X

National

Semiconductor

4640 3 1 2 — — - x
Corvus 500 } .

APF Mark 55 7 ? 8 o= — X
HP-25 3 7 6 4 —_ 5 >1*
HP-27 4 5 6 7 8 9 >1*
HP-45 5 7 6 8 — —_ >1*
HP-46 5 7 6 8 — —_ >1*
HP-55 0 .1 2 3 4 5 >1*
HP-91 0 .1 2 3 4 5 >1*
HP-67 .
HP.97 } S9 S4 S5 S6 S7 S8 >1
 

*With auto-enter disabled.fOn the Corvus 500 and APF Mark 55, =y is saved

in an arcane register, not accessible by number. Instead, puts Zx
into X and 3y into Y. This sequence gives Zx and Xy on many other
calculators also, but on the Corvus 500 and APF Mark 55 this is the only way
to get 2y.

The following notation is used throughout this section:

X No go; will not work,

[+] Any of [+], [], [X], or [£],
n Any number key, 1 through 9.

Novus Scientist

Although the Novus 4520 Scientist (see Figure 1.3.4) has RPN with a stack
of four registers and is superficially about as powerful as an HP-35,
enough differences exist to prevent the easy adaptation of many HP-35
algorithms to work on the Novus Scientist. Among the significant dif-
ferences are: T clears on pop; most monadic and all dyadic functors cause
T to be cleared. Furthermore, [In ], log ], and cause Y and Z also to
be cleared. Only and can be done without losing the contents
of T. SIN ], [cos |, and do not work for angles >90° or <0. And
[ARC]| [SIN and do not work for negative arguments.
Instead of assuming a 1, an without a preceding digit is ignored.
Some of these shortcomings can be understood as design economies, but
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there is no excuse for clearing T; this can only be described as a design
€ITOr.

Whenever these features are not needed, HP-35 algorithms will work on
the Novus Scientist with the following changes in notation:

1 W W N
~ to (Novus Scientist)

 

-
=

*
Q

.
2

Z
’
J
E
A
V
H
Q
I

s
=

<
~

=) 0Q O P
~ T g

2
5

<
||

National Semiconductor 4640

Turn calculator off, then on

]
=< L

@
E
i
l

c (l
:

™ Z - -

i

2l
E]

C|| sometimes, or X

In the design of this calculator from the same company, most, but not

quite all, of the shortcomings of the Novus Scientist were avoided. The
4640 has capabilities intermediate between the HP-45 and HP-35 including
rectangular-to-polar coordinate conversion and three storage registers with
[MS] (storage register) arithmetic. The principal shortcoming of the Na-

tional Semiconductor 4640, in my view, is that 7 clears on pop. Why?!
Most HP-35 and some HP-45 algorithms will work on the 4640 with the

following changes in notation:

1 W W ~
— to (National Semiconductor 4640)
 

0
e

aQ

Bl
zl
al
z]
x
[
z
l

§
=

(O
<

|l
a

~
= o9 o Y an -
0

L€

* |
-d

) 1 |
-4

=
=
l

I
:’
n
L

ROLL

1 (or 2 or 3)
MR] 1 (or 2 or 3)
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Change (HP-35) to (National Semiconductor 4640)

sometimes, or X

7]
Change (HP-45) to (National Semiconductor 4640)

(exceptions below)

Le” ]
DS;
X2

[P ][xoy
r==--12 r----=-12
' ' ||2R | [xor] [F]{ 5R ]

(The extra [x<y |s are necessary because on the 4640, § is in X and R in
Y)

[510] {nifn=1,2,3,
X otherwise

(HP-45 algorithms in this book that use only one register, use
number 4. Such algorithms can be converted for the 4640 by changing n
from 4 to 1 (or 2 or 3) wherever it occurs.)

[sT0] [+]n {-LT_'” if n=1,2,0r3,

otherwise

[RCL] n {@n if n=1,2,or3,
X otherwise

[+]n X

sometimes, or X
sometimes, or X

(Algorithms employing usually have to be rewritten to work with the
4640; see Table A.1.1.)

[ log log
t SCI No exact equivalent; t_r_y_ DS[ ]

and drop the n after | SCI:

L Jd Lo -4

Z)?s1 [SD} 0X!1 sometimes or X;

see note under
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Change (HP-45) to (National Semiconductor 4640)

-.‘-T-)'-D'M- } Provided mode is degrees
1DMS—; L2D

1A%! 'A%sometimes, or X

'GRD {GRAD
(CLEAR CA;
{LASTX: X

ro=n .

>—! sometimes, or X;

see note under

Corvus 500 and APF Mark 55

The Corvus 500 (Figure 1.3.7) and the APF Mark 55 are calculators with
most of the capabilities of the HP-45 (missing only [STO |

t 5D.MS  and | D.MS— ! conversions, and [GRDY LTarithmetic

 

and
mode), and   

they have some additional features. Most of the algorithms herein desig-
nated for the HP-45 will work on the Corvus 500 or APF Mark 55 with the
following changes in notation:

Change (HP-45) to (Corvus 500) or to (APF Mark 55)
 

G

[RCL] [+] n
[«]n

EE
ER

1] r
-
- ! 1)y = L-d

 

(exceptions below) (exceptions below)

 

  

 
  

        

X X
X X

1/x (1/x
[in

{ SCI ; { DSP D sci_

{ >POL Shift +—>pol
1] _

%! [shift ;%
ENT ENT

{ SCI; { DSP L sci_

 log}  log !
INV | [G] [ SPOL : INV shift | { —pol]
INV | SIN INV SIN ]

INV
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Change (HP-45) to (Corvus 500) or to (APF Mark 55)

n!] Lx!] x!]
{>D.MS; X X

(or convert separately)

[D.MS-] X X
(or convert to decimal separately and

if followed by a number or parameter)

{DEG {RAD | rad_ |
{GRD X X
{CLEAR] {CLR | clr

[LASTX] [o] [o]
=]

On the Corvus 500 the keys and [RCL |, and on the APF Mark 55
the keys and [INV], are marked on the land area above the
corresponding keys but in a box, to prevent confusion with shifted func-
tions. over [0] is a fake; use [0] instead as indicated.
The keys and =-! on these calculators do not use the same register

numbers as the HP-45, and =1 does not appear in X after [£+]. Thus
HP-45 algorithms involving usually need to be rewritten for the
Corvus 500 or the APF Mark 55. See Table A.1.1.

HP-21

The HP-21 (Figure 1.3.2) is a calculator with capabilities intermediate
between the HP-35 and HP-45. All the HP-35 and some of the HP-45
algorithms herein will work on the HP-21 with the following changes in
notation:

 

Change (HP-35) to (HP-21)

[B] {7
{LOG |
LN}
V|

ARC
] ]L-d

(Always use DEG mode on the HP-21 unless otherwise noted.)
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Change (HP-45) to (HP-21)

[in] LN}
FIX

(exceptions below)
sometimes, or X

[P
4 STO
n Xif n#4

4 RCL
RCL n Xif n#4

[«]n X
[+] n X if n#4

4 M+
[-]4 (M

sto |[x]4 CMX
(=] 4 M=

X
Cn! X
%] X

Il:):h:rfs_—;! X (or convert to decimal separately, and

if followed by a number or
parameter)

:{»_15_1\:4:8 X (or convert separately)

'DEG Switch to “DEG” mode

IIZQ\D: Switch to “RAD” mode

{CLEAR’ {CLR ;
[LASTX X
3] X

HP-25

The HP-25 (Figure 1.3.6) is a programmable RPN calculator with more
capabilities than the HP-45, and missing only arithmetic and {n! .
Almost all algorithms designated for the HP-45 will work on the HP-25 in
nonprogrammed form. Converting to HP-25 programs is possible for algo-
rithms that are short enough to fit into the 49 steps available. The
following tabulation shows the necessary changes in notation:

 

Change (HP-45) to (HP-25)

L 1/x ]
[in] (] {in
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Change (HP-45)
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Algorithms employing usually have to be changed to work on the
HP-25. In particular, [RCL]s in an algorithm containing must have
their register numbers changed. Such algorithms should be rewritten to
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to (HP-27)

take advantage of the increased capabilities of on the HP-25. See

Change (HP-45)

Table A.1.1.

HP-27

The HP-27 is an RPN calculator with more capabilities than the HP-45
and lacks only arithmetic. Essentially all algorithms designated for
the HP-45 will work on the HP-27 with the following changes in notation:
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As a rule, algorithms employing have to be changed to work on the
HP-27. In particular, [RCL]s in an algorithm containing must have
their register numbers changed. Such algorithms should be rewritten to
take advantage of the increased capabilities of on the HP-27. See
Table A.1.1.

HP-46

Although there are some minor differences, the HP-46 is essentially a
desktop printing version of the HP-45. Therefore all algorithms designated
for the HP-45 will work on the HP-46 with the following changes in
notation:

Change (HP-45) to (HP-46)
 

Rust-orange key, top center

SN SN
o5} s
AN ]
oK R
/i o]
0 ]
el /]
Dvs] DM
g Dy

{LASTX (but also works with preceding)

HP-55

The HP-55 is a programmable RPN calculator with more capabilities than
the HP-45, and missing only arithmetic. Essentially all algorithms
designated for the HP-45 will work on the HP-55 in nonprogrammedform.
Converting to HP-55 programs is possible for algorithms that are short
enough to fit into the 49 steps available. The following changes in notation

are necessary:

Change (HP-45) to (HP-55)

[i] i
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™M | ™M |

n | | L

© (but see note on below)
4r 1 |

Change (HP-45) to (HP-55)

(X}o
SIN  sin_!

[ cos]
TAN ! tan_!
Ly
[log  log
o o
Vi Vi
=y |Re
{SIN-' sin—1

(TAN"!} (tan"}
Gl in!} o

1%,5 152 1% (but see note on below)

f;gjl;% f?%‘s- provided mode is DEG

A% X
|DEG | DEG ;
{RAD {RAD
{GRD {GRD
{CLEAR! (CIR}
{LASTX 'LASTX
7] 7]
r-=19 r--

X

Algorithms employing usually have to be changed to work on the
HP-55. In particular, the register numbers of [RCL]s in an algorithm
containing must be changed. Such algorithms should be rewritten to
take advantage of the increased capabilities of on the HP-55. See
Table A.1.1.

HP-65

The HP-65 (Figure 1.3.8) is a programmable RPN calculator with more
capabilities than the HP-45 and lacks only and arithmetic.
Most algorithms designated for the HP-45 will work on the HP-65 in
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 rithms that are short enough to fit into the 100 steps available. The

Change (HP-45)

nonprogrammed form. Converting to HP-65 programs is possible for algo-

following changes in notation are necessary:
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HP-67

The HP-67 (Figure 1.3.9) is a very impressive programmable RPN calcula-
tor with more capabilities than the HP-45 and missing only
arithmetic. Most algorithms designated for the HP-45 will work on the
HP-67 in nonprogrammed form using the tabulation below. Converting to
HP-67 programs is also possible.
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Change (HP-45) to (HP-67)

[LASTX’ L LSTX |
o 5
=z =

Algorithms employing usually have to be changed to work on the
HP-67. In particular, [RCL Js in an algorithm containing need to have
their register numbers changed. Such algorithms should be rewritten to
take advantage of the increased capability of on the HP-67. See Table
A.l.l

HP-91

The HP-91 is a portable RPN calculator with a printer. It has more
capabilities than the HP-45; only arithmetic is lacking. Essentially
all algorithms designated for the HP-45 will work on the HP-91 with the
following changes in notation:

Change (HP-45)  to (HP-91)
 

[op]
Ly
Vi)
i SR’
1X,s! [G] {5 [G] {x: (but see note on [E+] below)

re--=-- | r-=-==-

'#312'}!1:82 .ET?P-I-I!I:S#} Provided mode is DEG
LD_M_S_—JJ {H.MS—;

k1 Set switch to

#4J corresponding mode.

E[fln X

Algorithms employing usually must be changed to work on the
HP-91. In particular, [RCL]s in an algorithm containing require a
change in register numbers. Such algorithms should be rewritten to take
advantage of the increased capability of on the HP-91. See Table
A.l.1.

HP-97

The HP-97 is essentially an HP-67 with a portable printer similar to the
HP-91. Although the HP-97 and HP-67 have almost identical capabilities,
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the keyboard and the keystrokes are different. Most algorithms designated
for the HP-45 will work on the HP-97 in nonprogrammed form using the
following tabulation. Converting to HP-97 programs is also possible.

Change (HP-45) to (HP-97)

[f]* (exceptions below)
 

m__iz)"X
6] Iy

{ SCI;
:L.:1::x:'1; l/x

|SR
X,s! ts1 [f] ix: (but see note on =+ below)

' SD.MS r SHMS |
FEECEr t:_:):::::,}Provided mode is DEG
_DMS ] T HMSS |
A% [%CH|

Algorithms employing usually have to be changed to work on the
HP-97. In particular, [RCL Js in an algorithm containing need to have
their register numbers changed. Such algorithms should be rewritten to
take advantage of the increased capability of on the HP-67. See Table
A.l.L

A.1.3 Powers of 10

Append the keystrokes from the following tabulation to convert prefixed
units into the corresponding units with no prefix:

 

exa E 18
peta P 15
tera T 12
giga G EEX 9
mega M 6
kilo K 3
hecto h 2
deca da EEX 1

*Most HP-97s have an “f” on the gold key.
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deci d 1
centi c 2
milli m 3
micro ® 6

nano n 9

pico p 12
femto f EEX CHS 15

atto a EEX CHS 18

For example, to key 1665 MHz in hertz, press 1665 6.

A.2 NUMERICAL (TABULAR) INTERPOLATION AND

DIFFERENTIATION

Algorithms of numerical interpolation and differentiation obtain ap-
proximations for the value or the derivative of a function specified by a
table of values with equally spaced arguments,

And

fo=f(x0) is the tabulated value at x,,

fi=f(x;) is the tabulated value at x,, etc.

Linear interpolation (x should be between x, and x,).
HP-45 or HP-35:

xo [0 [0 x [ Bx=2] x B &) [ [ A D Gz 1 [
C (e =/(x).

Lagrange three-point interpolation (x can be anywhere between x_, and x,
but should be closer to x, than to x_, or x,).
HP-45:

xoxB)fiEE [1] (1] [1] 1 Ef—-l

lf)n)2EllElfoEl (see
=f(x)).
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Lagrange four-point interpolation (x should be between x, and x,).
HP-45:

xoxEJx,BElllllllem2B
y [X] 5] [x=20] 1] [X] [X] 6 [+] [sTO] 4 [CLX] f, [X] [x2] I

E)folEl-I|32II2EIE4I (see =f(x)).

Lagrange five-point interpolation (x can be anywhere between x_, and x,
but should be closer to x, than to x_, or x,).
HP-45:

xo (1] (1] x [=] [x2o] o, [=] [=] [ [ [ 0[]/, [X] [x20] 1 [+]
fi [X] [+] [x=2y] [2] 4 [o] [X] [x] [s10] 4 [cLx] 2 [-] f, [X]
‘EZIAE (x2y] [2] 1 [-] [x] [x] 4 [s] [ReL] 4 [£] 6 [<]
RIJ [X] 1[o] [x2r] [2] 4 [2] [X] 4[] o [X] (see =f(x)).

Lagrange six-point interpolation (x should be between x, and x,).
HP-45:

  

   
  

  

 

 

   
 

xo [0 [0 x [2] [x=x] x[H1[E] [0 (] (1] 2 (] -y (Y] [x22] 1 [4]
L X E =y [XX 2 [=] [sto] 4 [eix] f; [X] [xzr] 1 []
fo X [E] Brzx] 1 [#] [X] x2x] 2 [H] [X] [ReL] 4 [+] [x2y]2 [+]
[x] [x2»]3 [2] [x] [sT0] 4 [cLx] 2 [+] f; [x] [x2»] 3 [] f_, [X]
]=zy] 2[5 [X] ] [x=»] [33] 1 [] [X] 10 RCL| 4 [+]
12 [£] (see =f(x)).

For an HP-35 (any of the above), replace by E3
after and [RCL].

Linear differentiation (x should be between x, and x,).
HP-45 or HP-35:

h fo (3 X1 X0 El E (see =f'(x)).

Lagrange three-point differentiation (x can be anywhere between x_, and
x, but should be closer to x, than to x_, or x,).
HP-45: |

xo (1] [1] x [=] [x2r] x, [-] [sT0] 4 [=] [1] [1] [1] [+] fo [X] [x2¥]
-SBff_IE-5f1E|4E
(see = f'(x)).

For an HP-35, delete 4 after and [RCL].

W
o = o
,

o
, o a — o S

 

Lagrange four-point differentiation (x should be between x, and x,).

HP-45:

xo [1] [ x [2] [x2»] x, [=] [sT0] 1 [=] [1] [1] [1]3 [x] 6 [=] [X

W
N

 

 

+]f_, [X] [sT0] 2 [cLx] 3 [x] [X] EJfImE2:CLX
[sto] [+]2 [X] 4 [-] [X] 1 [5] f, [x] [sTO El2[CLX I =]
[x] 2 [] £ [X] [ReL] 2 [+] 2 [5] [RcL] 1 [<] =f(x)).
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Lagrange five-point differentiation (x can be anywhere between x_, and x,
but should be closer to x, than to x_, or x,).
HP-45:

 

  

   

xolIxE xzy]x, [ [sto] 1 [=][1] [1] (12 [X] 3 [-] [x] I
D] [+ 2[=]f, [x] [sTo] 2 [cLx] 2 [x] 3 [+] [x] 1 [-] [X] 1
(2[4 [x] [s0] [+] 2 [eLx] 4 [X] 3 [-] [X] 8 [-] [x] 4 [+] /-,
[] [s10] [-] 2 [cLx] 4 [x] 3 [+] [x] 8 [-] [x] 4 [-] f, [x] [RCL] 2
I3 RODI2X] S XD fo X [ 2 [2] [REL] T [2] (see
=f'(x)).

TEST CASE: See Sections 5.2 and 5.3.

REFERENCES: HMF 25.2, 25.3, p. x.

A.3 QUADRATURE (NUMERICAL INTEGRATION)

A.3.1 Tabular Quadrature

Tabular quadrature algorithms approximate the integral of a function
specified by a table of values with equally spaced arguments,

h=Xx,— xy=x,— x,=etc.

And

fo=1(x,) is the tabulated value at x,,

fi=f(x)) is the tabulated value at x, etc.

The integration interval begins at x, and ends at x,, that is, the integral to
be approximated is

f"f(x)dx.
X0

Note that there are m+ 1 points.

Two points: Trapezoidal rule (HMF 25.4.1).

A2A (see = [f(x)dx).

Three points: Simpson’s rule (HMF 25.4.5).

A4AL 3 A (see = [f(x)dx).

Four points: 2 rule (HMF 25.4.13).
LAXAA8 ]33 XA X (see = [f(x)dx).



A.3 Quadrature (Numerical Integration) 195

Five points: Bode’s rule (HMF 25.4.14).

ALKAMNARTK ML 2K [H45E2 X
h (see = [f(x)dXx).

Six points: Newton-Cotes formula (HMF 25.4.15).

ALEB3XAA2H 25 X6 046 19 X [H
288 [=] 5 A (see = [f(x)dx).

Seven points: Newton-Cotes formula (HMF 25.4.16).

S [0 fs 8 [X] £, [+] £, 27 [X] 5 272 [+] /o [1] £ 41
140 [<] A (see = [f(x)dx).

Eight points: Newton-Cotes formula (HMF 25.4.17).

S [S (R 73 X1, (1) fs [+ 27 [X] [+ f; (2] £, (2] 61 [X] [+] 49 [X]
fo (1] f5 751 17280 [£] 7 h (see = [f(x)dx).

Any number of points: Simpleton’s formula (HMF 25.4.2).

mezg

Loop: f,[+] (for n=1to m—1) |
h[x]  (see = [f(x)dx).

TEST CASE: See Section 5.4.

REFERENCE: HMF 25.4 as indicated.

A.3.2 Gaussian Quadrature

Gaussian quadrature algorithms approximate the integral of a function
specified by a formula or algorithm.

Three-point Gauss-Legendre formula

The integral to be approximated is [f(x)dx. Subroutine is any
sequence of keystrokes that accepts x in X and leaves f(x) in X.

HP-45:

x, M) [1) 1] x, [x=z»] [=] [sTo] 1 [+] [+] 2 [5] [sTO] 2 [---f---] 8
%] [sTO0] 4 [RCL] 1 .15 [G] Vx: [X] [sTO] 3 [RCL] 2 [+] [---F---
[sto] 5 [RcL] 2 [RcL] 3 [=] [---F---] [RcL] 5 [+] 5 [X] [RCL] 4 [+]
[RCL] 1 [X] 18 [5]  (see = [f(x)dx).

TEST CASE: x,=0, x,=1, f(x)=e%, =[e*], get 1.718281005.
The precise answer is e — 1 =1.718281828.
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ANOTHER TEST CASE: x; =0, x,=1, f(x)=Vx, [--f--|=[G] Vx!, get
0.6691796339 The precise answer is% =
0.6666666667.

REFERENCES: HMF 25.4.30; HMF Table 25.4; and QG3 in IBM

SSP, p. 299.

Five-point Lobatto-Radau formula

Theintegral to be approximated is [f(x)dx. is any sequence of
keystrokes that accepts x in X and leaves f(x) in X.

HP-45:

xLFSToll|---f---][STo]3xu[SToJ2F--f---|[Rcfl3 9 [X]
STO]3|RCL|1|RCL|22|—£| 64r]|STO

[+] 3[RcL] 2 [RcL] 1 [] [sTO] 283[_5- STO 2
[RcL] 5 [+] [--f--- LSTo]4|RCL [RcL] 2 [-] [---f---] [RCL] 4
+]49 [X] [RcL] 3 [+] [RCL] 1 [X] 180 [5]  (see = [f(x)dx).

TEST CASE: x; =0, x,=1, f(x)=e* [--f-]=[], get
1.718281829. The prec1se answer is e— 1=
1.718281828.

ANOTHER TEST CASE: x; =0, x,=1, f(x)=Vx, [--f--]=[G] Vx., get
0.6621414106. The precise answer is 2 =
0.6666666667.

REFERENCES: HMF 25.4.32 and HMF Table 25.6.

n-point Gauss-Chebyshev formula

  

   
 

  

         

The integral to be approximated is

""&

o, Vx—x.)(x,—x)

is any sequence of keystrokes that accepts x in X and leaves f(x)
in X.

HP-45:

SETUP: X, x, [+]12 [z] [sT0] I [>2y] [{] |_s_T_q_l_2

2 [£] [s10] 3 [G] {RAD! [G] ;CLEAR;[+]

1 E] 3 2
---f---] [E+4] (Check: Is display n+1? If so,

CODA: --@3I x]  (see =/---).

 

LOOP:

 

'
_
Q
u
-
—
n

EH
' \
.
/
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TEST CASE: x;, =0, x, =1, f(x)—\/x(l—x), n=3,

-I[x?] E Vil get 1.04719755.
The precise answeris 1

REFERENCES: HMF 25.4.39; Hammmg (1962), p. 160.

Two-point Gauss-Laguerre formula

The integral to be approximated is [;°f(x)e ~*dx. is any sequence
of keystrokes that accepts x in X, Y, Z, and 7, leaves f(x) in X, and
retains x in Y (Z and T are irrelevant).

HP-45:

2 [1] [6] v} [(+] [0 (1] (1] [ F- ] [x=v] 4 [x=y] [ [1] [1] [RY]
[Ri] [] [st0] 4 [cLx] [] [f-] [x2r] 4 [x2yE] RCL] 4
4] Gee=[-)

HP-35:

2 [ ol [+ [0 (][] [x=2r] 4 [x2x] 1] [1] [1]
ISTOIIICLX =] [[x=r] 4 [x=y] [ [+] 4 [5]

(see =[---).

TEST CASE: f(x)V; HP-45 [--f--]=[G] Vx:, HP-35
=[Vx], get 0.9238795328. The precise

answer 1s Vo/ 2=0.8862269255.
ANOTHER TEST CASE: f(x)=x?, -[X], get 2.000000001. The

precise answer is 2 (the formula is exact for poly-
nomials of degree three or less).

REFERENCES: HMF 25.4.45, HMF Table 25.9; and QL2 in IBM

SSP, p. 303.

 

-

 

 

   
 

Gauss-Hermite formulas

The integral to be approximated is [*_ f(x)e Xy, [ f--] is any

sequence of keystrokes that accepts x in X, Y, Z, and 7, leaves f(x) in X,

and retains x in Y (Z and T are irrelevant).

Three-point form
HP-45:

1.5 [G] iVx; [1] f-] [s10] 4 [R|]
RCL|42|:L§EJ4|£L_@2I

[ReL] 4 [+] [6] in} [6] vai [X] 3 [z]  (see =[--).

 
 

x]
>]
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HP-35:
1.5 [Vie] [*] [1] (1] [---f---] [sTo] [RY] [cms] [1] [1] [t] [--/---]
[RCL] [+] 2 [+] [sto] [crx] [1] [1] [1] [of--] 2 [X] [REL] [+]
(7] V] [X]3[z]  (see =[--).

Five-point form
HP-45:

2.5 [1][6] x; [+] [sT Vax;
CHS 1] [--/-] [RCL .
[sTO] 2 5 [RCL] 1 [-] iVx: [--f--] [st0] 3
[CcHs 1] -f--] [RcL] 3 . .
RCL 2 [+] 2

RCL] 2 [+] [6] i} [G] iVx]
HP-35:

2.5 [1] [va] [+] [v=] [1] [#] [1] [.--f---] [sTO CHS
1] [(Re] 25 | =] 25 [1]
- 1

 
 

 

o gl 5 = ) 3= < 3 o N

 

   

 
  

0 4]
n
n
E
n
E

 
     

 

   
 

 
 

R

S el [ [ ] [25 v (=] [1] [X] [5] [ReL
sto] [RY] [cas] [t] [1] [t] [--f--] 2.5 [vx] 1 [-] [1] [X]
RCL]| [+] 3 [¥] 8 [£] [sTo] [cLx] [t] [t] [*] [--F---]1 8 [X] 3     [RCL] [+] [ [va] [X] 5 [5]  (see =[---).

TEST CASE: f(x)=cos(2x), HP-45 [---f---]=([G] {RAD))
[cos |, HP-35 [---f---|=[x] [z] 360 [cos]; get
0.7267617763 (three-point form) or 0.653223752

(five-point form). The precise answer is V7/e =
0.6520493323.

REFERENCES: HMF 25.4.46, HMF Table 25.10; and QH3 and QHS5
in IBM SSP, p. 308.

A.4. NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS

The algorithms discussed in this section approximately integrate differen-
tial equations of prescribed form from specified initial conditions (initial-
value problems).

A.4.1 First-Order Ordinary Differential Equations

The differential equation to be integrated is

y'=f(x,y)
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(a given function) beginning from y(a)=b, with step size &; thatis,

x=a,a+h,a+2h,---

Subroutine is any sequence of keystrokes that accepts y in X, x
in Y, Z, and T, puts f(x,y) into X, and retains x in Y (Z and T are

irrelevant). Note that with the HP-35 versions, auto-enter will be some-
times enabled, sometimes disabled, on the call to [---f---].

Point-slope formula (HMF 25.5.1)
HP-45 SETUP: hMSa.bm7

Loop: [---f---] [RCL [RCL] 7 [+]  (see y,,,) [ST

xzy] [RCL] 5 I (see x,.1) [1] [RY] [RY] :

LOOP: h [RCL (s€€ Y, 1) h
.

  

X © o w
2 g S Q = 5] = S
~ «
l
+
E
l

;
o

—
\
l

 ~ & a o + < = =]

First-order bastard formula

yn+l;yn+hf xn+

 

_11 3yn_yn—l

2’ 2 '

HP-45 seTup: b [sTO| 7 [sTO] 8 h [STO] 52 [5] a [x=y]
Loop: [RCL]S [+]  (see x,—h/2) [x=y

8 [=]2[:] [--f-] [ReL] 5 [X] [ReL] [sT
(Seeyn+1)7 .

Second-order Runge-Kutta (HMF 25.5.6)
HP-35 SETUP: a . [t] [1] b [sTO] (and precalculate &/2)

 

 

 

 

   

Loop: [---f- | (h/2) [x] [1] [1] [RCL x2y] h
El (see x,,,) [1] of] (h/2)
[RcL] [+]  (seey,,,) [STO] :|.

HP-45 seTup: h STO 52Em6ab STO 7
Loop: [---f---] [RCL] RCL] 7 7

[x=r] [RCL 5 (see x,.)
-f--][RcL] 6 [X] [RCL] 7 [+]  (seey,,,) [STO] 7 :|.  

Second-order Runge-Kutta (HMF 25.5.7)
HP-35 setue: a [1] [1] [1] b (and precalculate h/2)

Loop: [-f---] (h/2) [+] [x2r] (1/2) [R]
Rl] cefeen |   = ] i
_
’
;
’

Q - [+
]

~ & d ~ 3 + ~ w
2 — o

 [(x27] (h/2) (see X, ,) |
HP-45 seTup: h [sTO| 52 [] [sTO] 6 a [1] [t] [1] b [STO] 7
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A.4 Numerical Integration of Differential Equations

Gill’s modified fourth-order Runge-Kutta (HMF 25.5.12)
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HP-45 setup: h [sTO] 52 [=] [sTO] 6 a [1] [1] [1] b [sTO] 7
LOOP: 6 [x] [sto] 1 [RcL] 7 [+] [x=»] [RCL] 6

+] [RI] -f--] [RcL] 6 [X] [sTO] 2
RCL] 1 [=] 2 [G] Vai 1 [x=y] [-] [X] [RCL] 2 [+] [RCL
T+ [-f--][RCL] s10] 3 [RCL] 2 [-] 2 [G] iVx]

RCL] 3 2 [x] [+] [RcL] 7 [+] [x=y] [RCL] 6 [+]
(see_x,) Ry [--f-] [RCL] 6
[ReL] 1 [+] 2 [1] [6] ivx} [£] [ReL] 2 [X] [+] 2 [1] [G]
Vx) [+] [ReL] 3 [X] [+] 3 [z] [RCL] 7 [+]  (see y,4y)
STO 7 :|

TEST CASE: See Section 5.6.
REFERENCES: HMF 25.5 as indicated.

A.4.2 Second-Order Ordinary Differential Equations

The differential equation to be integrated is

y'=5(x,),

(a given function) beginning from y(a)=b, y’'(a)=c, with step size h, that
1S,

x=a,a+h,a+2h,---

is any sequence of keystrokes that accepts x in X, y in Y, and
leaves f(x,y) in X.

Simplified third-order Runge-Kutta (modified from HMF 25.5.22)

HP-45 setup: h [sT0] 52 [5] [STO] 6 ¢ [sTO] 8 b [STO| 7 a [STO] 4
 

  

 
 

 
 

 

 

   
 

—f---][RcL] 6 [X] [sTO] 12 [RCL] 8
roop: [+] [RcL] 6 [X] [RcL] 7 [+] [RcL] 6 [RcL] 4 [+] [---f---

[RcL] 5 [X] ST0|2 rRCL] 1 [+] 3 [£] [RCL 8-|RCL
5 [x] [rcL (seey,,,) [sTO] 7 [RCL] 4 [RCL] 5
[+]  (see ,,+1) [sTO] 4 [--f--]] cL] 6 [X] [RCL] 1
xzy] [sto] 1 [#] [RcL] 2 2 [X] [#] 3 [=] [RCL] 8 [+]

(see y.,,) [sTO] 8 [RCL] 12 [£] :|.

25.5.22Third-order Runge-Kutta (HMF
HP-45 seTup: h 52
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f(x,y,y") into X; R, and Rg are usable.

Fourth-order Runge-Kutta (HMF 25.5.20)

from y(a)

f(x,y,Z),

Z’=g(X,y,Z),

See Section 5.6.

HMF 25.5 as indicated.

Equations

y/

  

TEST CASE:

REFERENCES:

A.4.3 System of Two First-Order Ordinary Differential

The differential equations to be integrated are
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from y(a)=»b, z(a)=c with step size h. Subroutines and
are any sequences of keystrokes that accept x in X, y in Y, and z in Z, and
put f or g respectively into X; R, and R, are usable.

Second-order Runge-Kutta (HMF 25.5.17)
HP-45 SseTup: h [STO | S5c¢ [STO| 8 b [STO]| 7 a [STO] 6

Loop: [---f---] [RCL] 5 [X] [sTO] 1 [RCL] 8 [RC
[--g---] [RcL] 5 [X] [sTO] 2 [RCL] 8
7[+] [RcL] 5 [RCL] 6 [+]  (see x,,,)

5 [sTo| 3 |RCL|2 |RCL]| 8

 

 

- < fl0O = o)
)

  

      
    

X      2

[RcL] 8 [+]  (see z,,,) [sTO] 8 [RCL] 1 [RCL] 3 [+] 2

=] [ReL] 7 [+]  (seey,, ) [sTO] 7 [RCL] 6 ] 

Modified second-order Runge-Kutta (based on HMF 25.5.17)
HP-45 setup: h [STO] 5 ¢ [STO| 8 b [STO] 7 a [STO] 6
 

   

   

     

roop: [---f---] [RCL] 5 [x] [sT0] 1 [RCL] 8 [RCL] 7 [RCL] 6
-.-g---] [RcL] 5 [x] [sTO0] 2 [RCL] 8 [+] [RCL] 7 [RCL

+  1 [+] [RcL] 6 [RCL] 5 [+]  (see x,
RCL] 5 [RCL] 1 2 [5] [RCL (see y,,1)
sto| 7 [RCcL] 8 [RCL] 2 Ixzyl [RCL] 6 [---g---]
RCL] 5 [X] [RcL] 2 [+] 2 [£] [RcL] 8 [+]  (see z,,,)
STO 8 [RCL| 7 |[RCL | 6 :|.

TEST CASE: See Section 5.6.

REFERENCES: HMF 25.5 as indicated.

  

 

 

    

A.5 SPECIAL FUNCTIONS

This section contains algorithms dealing with mathematical functions and
operations that are not available on the keys of (most) calculators. Some of
these special functions can be expressed exactly in terms of simple func-
tions. For more difficult cases, one needs an approximation based on a

truncated series, an iterative algorithm, or some special technique depend-
ing on the properties of the function.

A.5.1 Hyperbolic Functions and Gudermannians

gd (Gudermannian) in degrees

HP-45: x [G] {TANZT} 2 90 [].
HP-35: x [ARC] 2 90 [-]. 
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gd ™! (inverse Gudermannian) (enter with degrees)

x [1] [TaN] [x2»] [cos] [1/x] [+] [in].

sinh(x)

x [-]2 [z

cosh(x)

x 2 [=].

tanh(x)

O = vHP-45: x [G] { TAN"'2
HP-35: x ARC]| [TAN] 2 (x

]x
]

Q
l
a

0 I » 

sinh~!(x)
HP-45: x [1] [x?] 1 [G] tvx: [+] [1n].
HP-35: x [T [ [X] I [in].

cosh ™ !(x) B
HP-45: x 1 [=]

[6]

v[#] [n].
HP-35: x [1] [1] 1 [=] va] [#] [m].

tanh~!(x)

HP-45: x [G] GiNF 2 (5] 45 )
HP-35: x [ARC] [SIN] 2 [] 45 [1n].

TEST CASES: gd(0.5)=27°5238, sinh(0.5)=0.5211, cosh(0.5)=1.1276,

tanh(0.5)=0.4621.

REFERENCES: CTC SMT, pp. 337-349; HMF 4.3.117, 4.5, and 4.6.

 

A.5.2 Roots of a Quadratic

The quadratic equation

Ax*+ Bx+C=0

has roots x, and x, (real) or a* ib (complex).

HP-45:

B[t]2[:] 4 [st0o] 4[] [cHs] (seea) [1] [¥*] C[RCL]4
=] [
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Check display at this point:
If negative, roots are complex: Vx'  (see b).
If positive, roots are real: W| (see x,) 'LASTX! 2

=]  (see x,).

HP-35:

BE‘2ElAE (see a)  [1] [1] [x] C [RCL]

Check display at this point:
If negative, roots are complex: (see b).
If positive, roots are real: (see x) 2
[=]  (see x,).

TEST CASE: x*—18x+77=0(4=1, B=—18, C=T77); get x,=11, x,=7.

—B+VB?—44C
24

X =

A.5.3 Real Roots of a Cubic by Iteration

A cubic equation

X34+ Ax*+ Bx+ C=0

has either three real roots (which may coincide) or a real root and a pair of
conjugate complex roots. The following iterative procedure finds the real
root nearest an initial guess x,. Probably a graphical method is best to get
Xo-

HP-45 setup: A [sTO] 12 [X] [STO] 2 B [sTO] 3 C [STO] 4 X,
oop: [f] [1] [1] [+] [ReL [ReL] 4[] [RI] [RY] 3

IZ- [+] Ix] [ReL] 3 [+] []  (see x) :|.
di

[RCL 2
Then the real root can be divided out, leaving a quadratic to solve.

 

 ._.
“l

[+
]

[x
]
E

   

TEST CASE: x> +x?—-2x—-2=0 (A=1,B=-2,C=-2), x; =2,
1.571428571, 1.430276168, 1.414408047, 1.414213592,

1.414213562 (= V2).

REFERENCE: Section 3.2. See also HP-45 Applications Book, p. 74.
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A.5.4 Random Numbers

The algorithm below generates a series of pseudo-random numbers ap-
proximately uniformly distributed over the range 0 to 1 and showing seven
figures. If random digits are wanted instead, use the left-most part of the
numbers (the right-most digits are not as random).

INITIALIZE: 987 7654321
HP-45 oNLY: [FIX ] 7

LooP: [X] (note integer part of display (three figures or
less) key it back in) [—] (see a random number)

ALTERNATIVE LOOP: 5[] [Eex] 9 [+] [EEX] 9 [] [-]
(see arandom number) : |.

 

The first few numbers of this series are: 0.4814827, 0.2234249,

0.5203763, ... . The series repeats after 5 10° numbers.
Other series of random numbers can be obtained by changing 0.7654321

to any other number between 0 and 1, but the right-most (seventh) digit
should be 1, 3, 7, or 9. The multiplier (987) also is not unique.
REFERENCE: IBM GC20-8011. See also Knuth (1969), Chapter 3.

A.5.5 Fourier Series Summation

The Fourier series is

A G nmx nmxF(x)==+ rzlancos(7 )+bsm(T )

For the + sign before b, and if neither the a, nor b, are all zero:

HP-45 seTup: {CLEAR; [G] [RAD: x [G] 7} [X] L [5] (1] a,
(1] 2 [z] E4] (mentally set  to1)

Loopr: [X]1[G] SRa, [X] [x=y] b, [X (see next n)
:| -

CODA: (see F(x)).

Or if the b, are all zero, change the loop to

LOOP: a, (see next n) |

Or if the a, are all zero, change the loop to

LOOP: b, (see next n) :|
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HP-21 setup: (switch to RAD mode) x L [£] a, 2
B (mentally set n to 1)

Loor: [Eix] n 1 5K4 b Y]
(mentally add 1 to n) :| o

CODA: |RCL (see F(x)).

 

Or if the b, are all zero, change the loop to

LOOP: n a, ' M+ ! (mentally add 1 to n)

|

Or if the a, are all zero, change the loop to

LOOP: n b, ' M+: (mentally add 1 to n)

|

HP-35 setup: x 180 L [£] a, 2 [£] (mentally
set n to 1)

oor: n [X] [1] [cos]a, [x] [x2»] [sIN] b, [X] [+] [RCL] [#]
(mentally add 1 to n) :|

CODA: (see F(x)).

Or if the b, are all zero, change the loop to

LOOP: n a, (mentally add 1 to

n) |

Or if the a, are all zero, change the loop to

LOOP: n b, (mentally add 1 to
n) :|

This HP-35 algorithm utilizes the special feature of the HP-35 that
disables auto-enter; do not convert to other calculators.

If the sign before b, is negative, replace in the loops by [=].

TEST CASE: ay=2, a,=1, a,=2, b;=1, b,=2, m=2, + sign on b,
x=2, L=4,; get 0.

REFERENCES: HMF 25.2.53; Bracewell (1965), Chapter 10; CRC SMT,p.
474; CRC HTM,p. 584; Lanczos (1956), Chapter 4.
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A.5.6 Chebyshev Polynomials

Chebyshev polynomials are related to sines and cosines, and these relations
can be used to evaluate the polynomials.

HP-45:

T,(x)  (=1<x<1I)
x cos:} n [cos].
TXx) O<x<1)

x [ [#] 1 [ [6] {cos!; n [x] [cos].
U(x) (—1<x<])

x [6] fcos:t; [1] [1] [1] n [X] [+] [siN] [x2»] [sIN] [=].
UX(x) (O<x<1

x [T [+ 1 [F] [6] icos™™} [1] [1] [1] » [X] [+] [sIN] [x=y] [SIN
[=].
C(¥) (=2<x<2)
x [1]2 [z] [6] {cosT} n [x] [cos] 2 [x].
S,(x)  (-2<x<2)
x M2 E (6 icosti} [ [ [t » [X] [+] [sN] [xzy] [siN] [=].

For an HP-35, replace : COS~!: by cos].

= N

To sum

m

> a,T,(x); —l<x<l
n=0

HP-45 SETUP: {CLEAR! x [G] [COS~!} l [t] [1] ao B+
LOOP: (see n) a,
CODA: E+].

HP-35 setup: x [ARC] [COS (mentally set n=1)
LOOP: [x=y a, +] (mentally add 1 to n) :|n

(see sum when n=m+ 1).

The following HP-25 program computes Chebyshev polynomials from
their recurrence relations, usually gives somewhat more precise answers
than the trigonometric algorithms above, and allows x to be outside the
normal range.

 

Line Code Key Entry

00 _ _

01 2400 RCL 0
02 23 06 STO 6
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Line Code Key Entry

03 22 R}
04 24 01 RCL 1
05 61 X
06 24 02 RCL 2
07 41 -
08 2307 STO 7
09 24 03 RCL 3
10 61 X
11 24 04 RCL 4
12 21 XZy
13 01 1
14 23 41 06 STO—-6
15 24 06 RCL 6
16 15 41 gx<0
17 13 26 GTO 26
18 41 -
19 22 R}
20 21 xZy
21 24 07 RCL 7
22 61 X
23 21 X2y
24 41 -
25 1312 GTO 12
26 22 R|
27 22 R}
28 22 R}
29 1300 GTO 00
 

To run this program, first set r, through r, from the following tabulation,

that is,

{PRGM n [810]0 r, [STO]1 r,[5T0] 2 r3[5T0] 3 r, [5TO4.

— 

7,(x)
T(x)
U, (x)
Uz(x)
C.(x)
Sn(x) S

S
S

S
X

S

—
_
—
—
N

A
N

ry I3 Iy

0 05 1
2 05 1

0O O 1
2 0 1
0 1 2

0 O 1
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Then:

X (see £, (x)) I,

where f is the selected Chebyshev polynomial. Repeat as often as needed.

TEST CASE: T6(02) = — 0.354752, T¥(0.2) = 0.752192, U4(0.2)
—0.163904, UX(0.2) = 0.257984, C¢(0.2) = — 1.649536,

S6(02)=-0.767936
If ay=0.5, a;=1, a,=2, then

2

> a,T,(0.5)=0.
n=0

REFERENCES: HMF 22.3, 22.5, 22.7.

A.5.7 Elliptic Integrals

The complete elliptic integral of the first kind is

K(k)=[=
V' 1—k?sin%6

and the complete elliptic integral of the second kind is

E(k)=f”’/2\/1—k2sin20 b,
0

where 0< k < 1. Beware; some authors define K(m) and E(m), or K(«)
and E (a) where k= m=sin’a.

K(k) (HMF 17.3.33)
HP-45:

k 1 [x=y] [-] 0288729 [X] .1213478 5 [+]
[x=y] [1n] [X] [R{] [RI] 0725296 [X] 1119723
1.3862944 [+] (see K(k)) (absolute error <3x107).

  

E (k) (HMF 17.3.35)

HP-45:

k[x2] 1 [x=iB-..O412496.2452727

[1/x] [In]. 1077812 [x] .4630151 1

(see E (k) (absoluteerror <4x107°).

For an HP-35, replace by [X].
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The following HP-25 program computes both K(k) and E (k) using
Gauss’s formula for the arithmogeometrical mean. Define a sequence of
number pairs (a,,b,) as follows:

a_1=1+k, b_l=l_k, an+1=(an+bn)/2, bn+l= \/anbn .

Compute these for n=0,1,2--- N, until a,=b, to an accuracy of 107°.
Then

K(k)= 54~

K(k)[2- (a3 b3) —2(ai—b})—4(a}—b3)-]
 

 

E (k)= > .

Line Code Key Entry

00 _ _

01 2300 STO 0
02 2301 STO 1
03 04 4
04 1522 gl/x
05 2302 STO 2
06 01 1
07 2303 STO 3
08 24 00 RCL 0
09 51 +
10 01 1
11 24 00 RCL 0
12 41 —
13 2300 STO 0
14 21 x2y

15 2361 00 STO X0
16 51 +
17 02 2
18 236102 STO X2
19 71 +
20 31 1

21 1502 g x?
22 24 00 RCL 0
23 41 —
24 24 02 RCL 2
25 61 X
26 234103 STO-3
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Line Code Key Entry

27 34 CLX

28 09 9

29 51 +

30 09 9

31 41 —

32 24 00 RCL O

33 14 02 fVx
34 09 9

35 51 +

36 09 9

37 41 —

38 14 61 fx#y

39 1313 GTO 13

40 1573 gm

41 21 xZy

42 71 +

43 02 2

44 71 +

45 23 6103 STO X3

46 2302 STO 2

47 1300 GTO 00
 

Run this program by

' PRGM k (Then K(k) is in the display and R,,

and E (k) isin R;) 3

TEST CASE: K(0.3) = 1.60808 or

1.53483347. (The second value in each case is from the
HP-25 program and is more precise.)

REFERENCE!: HMF 17.3, 17.6.

(see E (k)).

1.60804862, E(0.3)=1.53487 or

The incomplete elliptic integral of the first kind is

F\a)=[ dh

V1 —sin%asin?6

The following HP-25 program computes F(¢\a) using Landen’s descend-
ing transformation. Define a sequence of number triples (¢,,a,, F,) as



follows: ¢y=9¢, ay=a, F,=1, and
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tan(¢, ., — ¢,) =tang,cosa,,

sina,, , |

F,.\n

" l+cosa,
2

>

F,
n

" l+cosa,

Compute these for n=0,1,2--- N until a,=0 to an accuracy of 1010,

Then

F(qb\a) = Fyon,

with ¢y in radians. However, the program will operate correctly in any
angular mode. The two angles must be in the range 0 to sin™!1 inclusive.

 

Line Code Key Entry

00 _ _

01 31 1
02 01 1
03 2303 STO 3
04 32 CHS

05 1505 g COS™!
06 2300 STO 0
07 24 01 RCL 1
08 24 01 RCL 1
09 24 02 RCL 2
10 14 05 f COS
11 31 1
12 22 R}
13 21 xZy
14 14 06 f TAN
15 61 X

16 15 06 g TAN™!
17 21 x2y
18 51 +
19 1473 f LASTX
20 24 00 RCL 0
21 71 +
22 73
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Line Code Key Entry

23 05 5
24 14 71 fx=y
25 34 CLX
26 51 +
27 14 01 fINT
28 24 00 RCL 0
29 61 X
30 51 +
31 21 X2y
32 02 2
33 21 x2y
34 01 1
35 51 +
36 237103 STO+3
37 71 +

38 01 1
39 41 -

40 1504 g SIN~!
4] 1561 g x#0
42 13 10 GTO 10
43 34 CLX
44 24 00 RCL 0
45 71 +
46 1573 g
47 61 X
48 236103 STO X3
49 2403 RCL 3
 

Run this program by

{PRGM _ ¢ la 2 (see F(¢\ax)).

TEST CASES: F(w/4\w/4) = 0.82602, F(90° \sin~!0.3) = 1.60805

(= K(0.3)).

REFERENCE: HMF 17.5.

These HP-25 programs and their descriptions were written by Norman
M. Brenner (private communication) and are reproduced here with his

permission.
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A.5.8 Factorial and Gamma Functions

x!'=T(x+1), T'(x)=(x—1)!

 

  
 

2<x

HP-45:
x [ 462 B4X 07 30 [X] [1/x]

[

12 [X]
/x| [x=r] [o]

[e]

[x=2r] 2 (7] Ve

[X]

[x=2y
G] (y*} (see =x!)

-1<x

HP-45:
x 13 [+ [ [t [1] 4 =y [=] [+4 ] [0/x] [+] 30 [X] [1/x]
[+] 12 [X] [/x] [x20] [] [x=22] 2 ' Va3
Xy G] »* xzy|1[] xzy]|2[-] [5]  (see =x!).

For an HP-35,replace {7by [#], Vx_ by [Vx], and {y*! by
(sic) in either algorithm above.
The precision is about eight or nine significant figures for x<569.957

(overflow).

 
   

TEST CASE: 5!=119.9999996, (3)!=0.8862269253 (the precise value is

V7/4 =0.8862269254.)

REFERENCES: HMF 6.1.15, 6.1.17, 6.1.48.

This algorithm is based on an HP-25 program by Norman M. Brenner
(private communication).

The following algorithm calculates the incomplete gamma function
(HMF 6.5.3)

F(n,x)=f°°e_’t"_'dt,

for integer n, and the chi-square probability function (HMF 26.4.2)

-1 proo00 (2r) = [2”/21‘(%)] fz 1721~ 1/2 gy

X



216 Appendix A—Algorithms

for an even number of degrees of freedom ». For Q, use n=»/2 and
2x=x°/2.

 
FOR n=1: x [CHS] [e*]  (see Q(2x|2)=T(1,x)).
FOR n>2: x [1] [t] [1] (mentally set j=n—1)

LOOP: E] [+] (mentally subtract 1 fromj; is j=0? If so,
go coda) d

CODA! E-E] (see Q(2x(2n)),
HP-45 onLY: n[1] 1[-] in!: (see T'(n, x)).

This algorithm uses the sum of the Poisson distribution (HMF 26.4.21,
26.4.19)

 
I'(n,x)=x

Q(2x|2n)= =1 =e Jgo T

The sum in this formula is the truncated series for e* (HMF 6.5.11). Other
related functions are the chi-square distribution (HMF 26.4.1)

P(x?»)=1-0(x*»)

and the exponential integrals (HMF 6.5.9)

E, (x)=x""'T(1-n,x).

This expression is useful for finding E,(x) for n<O0; see also Section
A5.11.

TEST CASE:  (Q(6]6)=0.42319, I'(3,3)=0.84638.

This algorithm is based in part on an HP-25 program by Norman M.
Brenner (private communication). See also the HP-55 Statistics Programs,

pp. 16 and 50.

A.5.9 Bessel Functions

The ordinary ascending series can be used to calculate Bessel J functions
for all x and n, but the series converges slowly for large x.

J,(x) (ascending sg_ri_qs_ _for x positive and n integer) HP-45:
INITIALIZE: .'CLEAR! X-2E] 1] [>2] [cHs] [x=y] n [sTO] 1

w5 [ReL] 1[g] int} [1/x] [X] [1] B4

 



A.5 Special Functions 217

LOOP: 1 [£] (Check: is term negligible? If so,
go to coda.) |

CODA: (see =J,(x)).

For n=0 (Jy(x)), the foregoing procedure can be simplified to:

Jo(x) (ascending series) HP-45:

INITIALIZE: [CLEAR; x 2 [£] 1
LOOP: [£] (Check: is term negligible? If so, go to coda.)

:
CODA: [RCL] (see =J(x)). 

The approximate number of times one must go through the loop to get
four significant figures of precision is shown in the following tabulation:

 

x Number of Loops

0.5 2
1 3

5
4 8

8 14
16 25

The numbers in this tabulation are approximately true for all n, however
the series converges a bit faster for larger n.

Rather than the open-ended series just given, the following truncated
series are usually preferable.

Jo(x) (modified ascending series of five terms; gives absolute error <104
for 0< x53).

HP-45:

x [x2]4 [cas] [=] (1] (] (1126 [=] 1 [#] X 16 [=] 1 [+] [X] 9 [=] 1
4[:]1 1 (see =Jq(x)).

For an HP-35, replace by [X]. For Iy(x), use the algorithm
above for J,(x) but delete and change 26 to 24.

J,(x) (modified ascending series of five terms; gives absolute error < 10~4

for 0< x53.6).
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HP-45:

x [1]2 [£] [s10] 4 2] [cas] [1] [1] [1] 32 [<] 1 [+] [X] 20 [] 1
FXREIFEX6E[H[XI2[z]1 [+ [RaL]4[X]  (see
=J,(x)).

For an HP-35, replace by and delete 4 after and [RCL].
For I,(x), use the algorithm above for J,(x) but delete and change
32 to 28.

J,(x) (ascending series of five terms; gives absolute error <10™* for

0<x<83.3,n>2).

HP-45:

x [1] 2 [£] [sT0] 4 [x%] [cHS .n 5[5 [X] =] 1 [+ [X]

n[t]a+]4[x][]1[+] [X] n[1] H3EEI__[+] [x] n [1] 2
1 E 1 6] in] 2] [ReL] 4 n

For I,(x), use the algorithm above for J,(x) but delete [CHS].

Jo(x) (truncated asymptotic series from CRC SMT, p. 534, gives absolute
error <107* for 2.7<Sx).
HP-45:

i7x]8 5 @] [eas] 0] (1 [T 679 (X 1 [5] [X] 326.7
2] 1[+] [X]45[x] 1[+] [RY] [RY]98l1

8
4

  
  

Ji(x) (truncated asymptotic series from CRC SMT, p. 534, gives absolute
error <1074 for 2.9<x).
HP-45:

i/x] 8 [=] [ [cus] [1] [1 [T 300 (] 1 [5] [(x] 78.
7.5 CHS,11731H.17

' ' 2

o
0
9

 k
l
l

-[
X]

§
L
a
o
d
m
m

(
U

Figures A.5.1 and A.5.2 are error plots for these algorithms. The ascend-
ing series are (HMF 9.1.10)

& (=x2/4)"Lx)=(3)" =
k=0 k!(n'l"k)!
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and (HMF 9.6.10)

om(3)§
k=0 k!(n+k)' '

The asymptotic series are (CRC SMT, p. 534)

Jo ()~( j—x)'/2[P0 (x)cos(x~ T) ~ @ (x)sin(x - g)]

J, (x)~(;2;)1/2[},1 (x)Cos(x— %TW)_ 0, (x)sin(x— }f)],

where

2,72 2.72.52.72 2.122.52.72.02. 112Py ()1 — ] 32+1 3 547 1232527 2 1,
21(8x)°  4!(8x) 6!(8x)

5

12 123252 12325272.92
Qo (x)~————+ T~ — +

1I'(8x)  31(8x) 51(8x)

2,3. 2,32.52,7. 2.22.52.72.02.11.P, (x)~1+ 352_1 325 Z9+1 32527292 11-13 _

218x)"  4!(8x) 6!(8x)°
)

1-3 12.3%5-7  1%3%5%7%.9-110, ()~—13 35T, >l
1'(8x)  3!(8x) 5!(8x)

The point of diddling the constant in the last term of the truncated series is
discussed in Section 2.4 and shown in Figures A.5.1 and A.5.2.

TEST CASES: Jo(2.9)= —0.22436 or —0.224315, I(2.9)=4.50269, J,(2.9)=
0.37544 or 0.3755, I,(2.9)=3.61262, J,(2.9)=0.483221, I,(2.9)
=2.011289.

The first number in each case is from the modified ascending series, the

second number for J,(2.9) and J,(2.9) is from the truncated asymptotic

series.

A.5.10 Error Functions and Normal or Gaussian Distributions

One way to obtain numerical values for the error function

2 X _p
erf(x)=—— e "dt-2

is to use the ordinary ascending series.
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HP-45 INITIALIZE: [G] {CLEAR! x 2 [x] (1] [cus] [] [@] i7: 2 [£]

Ellx
roor: [1] [+] 1 [+] [=] [X]

so, go to coda) |
copa: [RCL] E4]  (see =erf(x)).

Each cycle through the loop adds another term to the series. The ap-
proximate number of times one must go through the loop to get four
significant figures of precision can be found in the following tabulation.

l
.
.
.
J = N H
m

Check: Is display negligible? If

nE
A

 

x Number of Loops

0.1 1
0.2 2
0.4 3
1 6
2 13

An alternative method for erf(x) is a polynomial approximation such as
the one suggested by Hastings and quoted in HMF 7.1.25,

erf(x)=1—(a,t + a,t* + ayt*)e ™,

where ¢=1/(1+px), p=0.47047, a,=0.3480242, a,= —0.0958798, a,=
0.7478556.

HP-45 INITIALIZE: .3480242 1 .0958798 2 7478556
3 47047 4

OPERATION: x54m-llm3
[x] 2 [+] [x] [ReL] 1 x] [RCL] 5 [¥7]
CHS| [x] 1 [-] [cHs] (see =erf(x)) :|.

The operation can be repeated for various xs so long as the storage
registers remain unchanged. This approximation gives about four signifi-
cant figures. More precise polynomial approximations are also available.
The following truncated series are usually preferable to the open-ended

series already given.

 

erf(x) (modified ascending series of seven terms; gives four or more
significant figures for 0 < x<1.2).
HP-45:

 

 
 

XEHm%EH-SEU
1/x] [+] [x] 4 [£] 7 m.[35_-2@3
i/x] [+] [X] 1 [+] [ReL] 4 [x] 2 [X] [6] in} [G] iVl [£]  (see   

= erf(x)).
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erf(x) (modified continued fraction expansion of seven terms; gives four or
more significant figures for 15 x).
HP-45:

x:llll3 x2y] [+] [+] 6 [xzy] [+] [+] [+] 5 [x=x] [£] [4]
:IlEIfijElr_!ZIx%ylElHHll/xll
[x2y] [2] [e] [x] [6] in} [G] vl [X] [0/x] 1 x22] 5] (see
=erf(x)).

For an HP-35, replace by [X], i=: by [7], and Vx! by [Vx];
and delete 4 after and [RCL].

The ascending series (from HMF 7.1.5) is

) (—x)"
erf(x) = Vi <2L nl2n+1)’

 
 

and the continued fraction (from HMF 7.1.14) is

 

 

 

 

C(x)
erf(x)=1— -,

Vae*

where  C(x)= 11 72

x+ 1

X+
3/2

x+ /

x+
x+...

Figure A.5.3 is an error plot for these algorithms. The point of diddling
the last term of the truncated series is discussed in Section 2.4.

The normal or Gaussian distribution functions are related to the error

function by

P(x)=1+1erf(x/V2),

Q(x)=12—1erf(x/V2),

A(x)=erf(x/V2), all for x >0.

TEST CASE: erf(1.1)=0.8802045 or 0.880206. (The first value is from the
ascending series; the second from the continued fraction.)

REFERENCE: HMF 26.2.
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Figure A.5.3. An error plot for four formulas for the error function erf(x). The

ascending series of seven terms with the last constant 78 (a); and 90 (b). The

continued fraction of seven terms with the last constant 3 (c); 7 (d). The ideal point to
change to the continued fraction is about x=1.1.

A.5.11 Exponential Integrals

The exponential integrals are

© —t

En(x)=x"_'f € _a,tn
 

Ei(x)=—E,(—x)=fx .

E,(x) (modified ascending series of eight terms, gives four or more signifi-
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For Ei(x), use series for E,(x) above, but delete (in three places).

E,(x) (modified continued fraction expansion of eight terms, gives four or
more significant figures for 1.9x).

x [T [0 [1]2 [xzx] [2] 1 [+] 4 [x2x] [] [+] 3 [x2y] [5] 1 [+] 3
[x2y] [5] [+] 2 [xzx] [=] 1 [+] 2 [x20] [=] [+] [0/ 0[] [0/x]

EEY (see = E(x)).
 

   

E,(x) (asymptotic expansion of seven terms, gives four or more significant
figures for 12<<x).

x[eas]071[HX6[x]1[+] X5 [X]
LA DG[ X301 X2 ] 1 [ X1 [H] %] =]
[1/x [X] [cHs (see ~E(x)).  

For Ei(x), use series for E,(x) above, but delete (in two places).

For E,(x), n> 1, first calculate E,(x), then use the recurrence relation:

SETUP: X E(x) (Note: after using the ascending series
above to get E,(x), skip this setup; it has already been done.)
(mentally set n=1)

LOOP: n[=] (see E,,,(x)) (mentally add 1 to n) :|.

The ascending series is

(=x)"
nn!
 E,(x)=—y—Inx— >

n=1

where y=0.5772156649- - - is Euler’s constant. The continued fraction



226 Appendix A—Algorithms

expansion is

 

E, (x)= €
X+ 

1+ 

x+ 

 1+

X+ 

1+

x+

1+ 
x+...

The asymptotic expansion is

Figure A.5.4 is an error plot. For n <0, see Section A.5.8.

TEST CASE: E(1.9)=0.056203 or 0.056208, Ei(1.9)=4.5935.
The first number is from the ascending series and the second
number for E,(1.9) is from the continued fraction.

REFERENCE: HMF 5.1.

A.5.12 Modulo, gcd, Icm

Modulo function

To calculate m modulo n, where m and n are positive integers
n m [] (note integer part of display, keyit back in) [=]

(see m modulo n).

TEST CASE: 39 modulo 9=3.
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Euclid’s algorithm (c. 300 B.C.) for the greatest common divisor

To calculate the greatest common divisor (gcd) of m and n—positive
integers,

SETUP: m n
LooP: [+] (note integer part of display,key it back in) [—] (Is display

<17 If so, go to coda) |
CODA: (round to an integer if necessary; see gcd (m,n)).

Rounding errors necessitate using <1 rather than zero as the criterion for
getting out of the loop. Choose n>m to save one cycle through the loop.
This “... may be called the granddaddy of all algorithms,” says Donald
Knuth (cited below).

Least common multiple

To calculate the least common multiple (Icm) of two positive integers m
and n, first use the preceding algorithm to calculate the gcd, then

m n (ged(m,n)) [z]  (see lem(m,n)).

TEST CASE:  gcd(36,63)=9, lcm(36,63) =252.

REFERENCES: FEuclid, Book 7, proposition 2; Knuth (1969), Vol. II, Sec-
tion 4.5.2.

A.5.13 Permutations and Combinations

The number of permutations of n different things taken n at a time ,P, is

r a

n int;,

and the number of permutations of n different things taken r at a time , P,
18

n (1] (6] {nt} [x20] r [] (6] int} [2].

The number of combinations of n different things taken r at a time ,C,
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is the same as the binomial coefficient (’;) and is

n [1][6] int x2x] r [1] [6] it} [R] [=] [G) int; [2] x2y] [2].

The preceding algorithms are for an HP-45. The following HP-25
program gives either ,C, or ,P,.

 

Line Code Key Entry

00 _ _

01 2301 STO 1
02 21 X2y

03 01 1
04 2302 STO 2
05 51 +
06 2303 STO 3
07 24 01 RCL 1
08 1571 gx=0
09 13 30 GTO 30
10 71 +
11 01 1
12 234101 STO—1
13 41 -
14 236102 STO X2
15 2403 RCL 3
16 13 07 GTO 07
17 01 1
18 2302 STO 2
19 41 -
20 2301 STO 1
21 15 41 gx<0
22 13 30 GTO 30
23 21 x2y
24 236102 STO X2
25 01 1
26 234101 STO—-1
27 4] -
28 24 01 RCL 1
29 13 21 GTO 21
30 2402 RCL 2
31 13 00 GTO 00
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Run this program by

n [1] r {PRGM; (see ,C,),

or

n[1]r 17 (see , P, ).

Both n and r are to be positive integers.

 

_(n\_ n!

"C’_(’)—(n—r)!r!’

'
p=—"
T (n—=r)!

TEST CASES: 5C;=10, sP;=060.
REFERENCES: Lewart (1976); CRC SMT, p. 103.

A.5.14 Number in Base 10 to Number in Base b

The HP-25 program below converts a positive number N, in base 10 into
the equivalent number N, in base b where 0< b < 100; b is an integer, but

N, need not be. When b is greater than 10, two display positions are
necessary for each digit of N,; the number must be partitioned both left
and right from the decimal point. For example, 41106.12 in base 16 stands
for 4B6.C in the usual notation.

 

Line Code Key Entry

00 — _

01 2307 STO 7
02 14 07 fln
03 24 00 RCL 0
04 01 1
05 00 0
06 2303 STO 3
07 14 51 fx>y
08 13 12 GTO 12
09 02 2
10 237103 STO =3
11 14 03 fy*
12 31 1
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Line Code Key Entry

13 22 R}
14 1522 gl/x
15 22 R}
16 14 07 fIn
17 71 +

18 14 01 fINT
19 14 03 fy~
20 2400 RCL 0
21 14 73 f LASTX
22 14 03 fy*
23 237107 STO =7
24 34 CLX
25 2305 STO 5
26 34 CLX
27 33 EEX
28 32 CHS
29 08 8
30 24 07 RCL 7
31 51 +
32 13 38 GTO 38
33 22 R|
34 61 X
35 24 00 RCL 0
36 24 07 RCL 7
37 61 X
38 23 07 STO 7
39 14 01 fINT
40 14 25 f2—
41 15 61 g x#0
42 1333 GTO 33
43 2405 RCL 5
44 32 CHS
45 1300 GTO 00
 

Run this program by

INITIALIZE: {PRGM [f] {FIX} 9 b 0
(see N, in the notation above) :|.LOOP: Ny

TEST CASES: 67.32=403.050114 (as displayed for b=16)=43.51FE. Or
3.141592654,,= 11.00100100,.
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To convert N, to N,,, see Section 2.4. This program and its description
were written by Norman M. Brenner (private communication) and are
reproduced here with his permission.

A.6 CURVE FITTING

The following algorithms obtain the parameters of a curve of specified
form to go through or near given points. The criterion of goodness of fit is
least squares or approximate least squares.

A.6.1 Straight-Line Fitting (Linear Regression)

The data, an indefinite number (> 2) of x,,y, pairs, are fitted in a least-
squares sense to

y=ay+ax,

where q, is the intercept and a, the slope. And o is the RMS of the errors
in this fit.

HP-45 INITIALIZE: 'CLEAR 3 [sT0] 4
ENTER DATA: x; [1] [1]y, [1] [sT0] [+] 3 [*] [+] 4 [RY] [¥]

CODA:

  

  

    

  

Then calculate the value of the fitted line at any x:

xnalao-

TEST CASE:

 

Get a,=3.14, a,=3.15, 6 =0.022.

REFERENCES: Elmore (1974); and Section 4.2.



A.6 CurveFitting 233

A.6.2 Parabola Through Three Points

The y values are y, at x=0, y_ at x=—1, and y, at x=1; thus the x
values are equally spaced and normalized. Then x, is the position of the
peak (maximum or minimumy value) in these units, W is the full width to
half-maximum (in these units), and 4 is the peak amplitude (maximum or
minimum y value) in the same units as the ys.
The parabola fitted is

y=ax*+bx+c,

and by inspection c=y,. In case a=0, then x,, 4, and W are undefined.

HP-45:
V)MOyB2y [F)2[E]  (eeb) R [] [x=2v]
[Ri] []  (see a) [sTO] 4 [x2y] [1] [RY [*x=»] [2] 2 [cHS] [£]
(see xo) [x=r] [RI] [X] 2 [£] [x=zy] [RI] [+]  (see 4) [RCL] 4[] 2

[G] vxi  (see W).

For an HP-35, change Vx_ to and delete 4 after and [RCL].
Then calculate the value of the parabola at any x:

x[M[Ha b+ [Xc[+]  (seey).

 

  

  

TEST CASE:

0|
3>

Get b=0.5, a=—1.5, x,= % A=3.04, W=2.0l.

A.6.3 Least-Squares Parabola

The data, an indefinite number (> 3) of x,,y; pairs, are fitted in a least-

squares sense to

y=ax*+bx+c.

In addition, x, is the position of the maximum or minimum y value, W is

the full width to half-maximum, and A4 is the peak amplitude (i.e., the
maximum or minimum y value). In case a=0, then x, 4, and W are

undefined.
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HP-45 INITIALIZE: Turn calculator off, t = [¢
]
= o =

 
 

 

  
 

   
    
 

   
 

 

ENTER DATA: x;[1] [1] [1] [X] [X] [sT0] [+] 1 [X] [sTO] [#] 2
[cLx] y; [s10] [+] 3 [X] [sTO] [+] 4 [X] [x=»

(see i) :|
coDA: [RCL] 5 [RCL 8 [RCL] 6 [RCL 3 []

RCL] 7 [x?] [RcL] 5 [RcL] [X] 6 [=] [sTO] 9 [X]
RCL| 5 [RCL] 4 [rcL] 7 [rRCL 3 [-]
RCL] 5 [RcL] [x] 1 [RcL] 7 [RcL] [X] 6 [-] [1]
RI] [X] [+] [RcL] 5 [RcL] [X] 2 [RCL] 6 [x2] [-]
[ReL] [x] 9 [RY [RY [] [x2y] [RY [+] [£]
(see a) [x=y] [RcL] 7 [RcL] [x] 3 [RcL] 5 [RCL
x] 4 [] RY [X] [x=y] [RY [+] RCL9

X| 6
 

(see b) [x] 7 Ry] [x2y] [RCL
[+] [RcL] 3 [x=y] [-] [RcL] [£]

Then calculate the value of the parabola at any x:

x[MHax]b[+] X e[+]  (seey)

Then calculate x,, 4, and W if needed:

b[t][t]2[chs][]a[s10]9[s] (seexq) [X]2[:]c
(see 4)  [RcL] 9 [:]2[cHs] [X] [G] ivx:  (see

W),

 

TEST CASE:

W

 

3|4

v | U] 3] 4| s  

Get a=—043, b=337, c=—2, x,=3.93, A=4.63, W=

4.65.

REFERENCE: Section 4.2.

A.6.4 Polar Curve Fitting

The data, an indefinite number (>3) of 6,Y, pairs, are fitted in a

least-squares sense to

Y=Asin(6+ B)+ C,
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or equivalently to

Ay+A4,x+C,Y=

=AsinB, x=cosf, y=sind.A cos B, A,A, =where

HP-45 INITIALIZE: Turn calculator off,then on (if # is not to be in

7
5
1
5
  

 
 

 
 

 

 

  

v
,
.
y
fi
L
b

-
%
:

EHEE
XIx]1]

E
I
I
E
E

—
I

~

l
9
-

-
W

-
e

-
B
-
e
(
E
A
M

l
X]

_
s
.
m

fi
c
L
E
-
l
_
y

m
m
m
a
m
a
n
Q

g
8
l

=/C=C
 
  

CODA:  
 

 

D]

N
’

v

Then calculate 4 and B if needed:

XZy (see B).(see A)4, 1] 4, GF

And calculate the value of the curve at any 6:

(see Y).o [1] B [+] [sIN] 4 [X] C [+]

TEST CASE:

300°

4.96

 

260°

4.32

 

190°

1.94

 

120°

1.04

 

100°

1.30

 

50°

2.72

 

400

3.07

 

10°

4.06

   
Y,

=3.00; or 4 =2.00, B=138".Get A, = —1.49, 4,=134, C

Section 4.2.REFERENCE!:
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A.6.5 Power and Exponential Curve Fitting

The data, an indefinite number (>3) of x, Y, pairs, are fitted in an
approximate least-squares sense to the power curve

Y=ax’

or to the exponential or geometric curve

Y= ae®*.

Power curve

HP-45 INITIALIZE: Turn calculator off, then on

ENTER DATA: Y, [1] [1] [s10] [#] 1 [In] [X] [sTO]

°
I
F N Ry

 

 

       
 

1] [RY] [x] [sT0] [+] 3 [Ry] [x] [s1O] [+] 4 [X]
sTo] [+] 5 ;|

coba: [RCL]1[RcL] 3 [x][RCL]4[RCL]2 [x] [-] [RCL] 1
RCL] 5 [x] [RcL] 4 [x2] [-] [5] (see b) [RCL] 4 [X]
[RcL] 2 [x=y] [F] [RcL] 1 [£] (see a).
 

Then calculate the value of the power curve at any x:

x[t]b[G] iya (see Y).

Exponential curve

Use the algorithm above but omit [In] after x,. Then calculate the value of
the exponential curve at any x,

x [1] b [X] [ a [¥] (see Y).

The fit is only approximately least squares because the algorithm fits to
In Y but with weighting factors chosen so that the fit is approximately least
squares in AY,. For the exponential curve fit Y;>0, and for the power
curve fit both Y;>0 and x; >0. These restrictions are necessary to work in
log space, and this, in turn, is necessary to linearize the problem to make it
solvable without iteration. Avoid points with Y; very much smaller than
the maximum Y,.

TEST CASE:
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Get a=1.00, b = 1.00 (power curve) or a =0.80, b =0.42
(exponential curve).

REFERENCE: Section 4.3.

A.6.6 Gaussian Through Three Points

The y values are y, at x=0, y_ at x=—1, y, at x=1; therefore the x
values are equally spaced and normalized. They are fitted to

—4In(2)(x — x,)* }
y=Aexp W

 

Then A is the peak amplitude (maximum y value), x, is the position of the
peak in the normalized x units, and W is the full width to half-maximum
in these units.
HP-45:

ye [My_ [2] [sTO] 1 [x2y] y, [sTO] 2 [] [1n] 2 [X] []
[t] [t1] [ReL] 12 [+] [x2r] [5]  (see xp) [*] 2 [+] [X] ] [RCL]  
2[x]  (Seed)[cLx]2[m] 8 [x] [x2y] [z] [G] Vx}  (see W).

HP-35*:

v+ [t [y [+] [m] [sTO] [x2y
Yo [£] [in] 2 [X] [=] [1] [1] [ReL] 2 [£] [x2x] [2]  (see xo) [1]
I2Elyo (see ) [cLx] 2 [in] 8 [X] [x2x] [vx]

(see W).

Then calculate the value of the Gaussian at any x,

HP-45: xxoB W [2] [2] 2 [in] [x] 4 [cBs] [X] [eX] 4 [x]

 

(see y)

HP-35: xlonWElll2@l4mllAl
(see y).

TEST CASE: ¥

X; | —1 | 0 | 1

v |1 ]3] 2
Get x,=0.23, A=3.12, W=1.92.

*Sorry about having to key y, twice; I do not see any way to avoid it.
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A.6.7 Gaussian Curve Fitting

The data, an indefinite number (>3) of x,y; pairs, are fitted in an
approximate least-squares sense to

y=Aexp W

 

—41n(2)(x — x,)* }

Then A is the peak amplitude (maximum y value), x, is the position of the
peak, and W is the full width to half-maximum.

  

 

       

 

 

   

 
 

 
 

    
 

   
  
 
 

  

  
 

 

 

      
 

 

 

n

ENTER DATA: x; [1] [1] [1] », [sT0] 9 [+2] [X] [sTO] [+] 1 [X]
sto] [+] 2 [X] [sT0] [+] 3 [X] [sTO] [*+] 4 [CLX
RCL| 9 [1] [In] [x=y sTo [+] 5 [X] [sTO
+] 6 [x] [sTO] [+] 7 [X] [sTO] [+] 8 |

cobA: [RCL] 5 [RCL] [x] 8 [RcL] 2 [RCL] [X] 6 [-] [RCL] 1
[x2] [RcL] 5 [RcL] [x] 2 [] [sTO] 9 [X] [RCL] 5
RCL] [x] 7 [RcL] 1 [RCL] [X] 6 [-] [RCL] 5 [RCL
x] 3 [RcL] 1 [RcL] [X] 2 [=] [1] [RY] [X] [#] [RCL
5[reL] [x] 4[reu] 2 [2] [-] [ReL] [X] 9 [RI] [RY]
[x2] [xzy] [RY] [+] [5] 2 [1n] 4 [cHS xzy] [1]
RI] [£] [G] Vx:  (see W) [R{] [X] [RCL] 5 [RCL] 7
[x] [=] [RcL] 1 [RcL] [x] 6 [+] [RCL] [] 9 [sTO] 9
xzy] [£] 2 [cHS] [£] (see x,) X2y
RCL] [X] 2 [RcL] 9 [RcL] [X] 1 [+] [RCL] 6 [x=y
] [ReL] [£] 5 [x=y] [-] [e¥] (see A).   

Then calculate the value of the Gaussian at any x:

x [1] xo [ W [2] [2] 2 [m][x] 4 [chs] [X] [e] 4 [X]  (seey).

The fit is only approximately least squares because the algorithm fits to
Iny, but with weighting factors chosen so that the fit is approximately least
squares in Ay;,. Low-noise data and points only around the peak are best;
avoid baseline. Negative y; are forbidden, and y; near the baseline (i.e., less
than the noise level) produce unpredictable results. Prescaling the x; may
be necessary in some cases to reduce the accuracy requirements in the
matrix inversion. As a rough rule, zero should be among the x;; if it is not,

subtract a constant from all the x; and add the constant to x, after the fit.
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TEST CASE:

 

Get W=4.16, x,=3.91, 4 =4.88.

REFERENCE: Section 4.3.

A.7 DATES, TIMES, AND POINTING IN ASTRONOMY

But Aristarchus of Samos published a book of some hypotheses in which the

premises lead to the result that the universe is many times larger than now

believed. His hypotheses are that the fixed stars and the sun do not move, that

the earth revolves around the sun along the circumference of a circle with the

sun at the center of the orbit, and that the sphere of fixed stars, with the sun at

the center,is so large that the circle on which he supposes the earth to revolve is

in proportion to the distance of the fixed stars as the center [point] of a sphere to

its radius.

—from The Sand-Reckoner, Archimedes (c. 287-212 B.C.)

A.7.1 Pointing Notes

Stars and other objects on the sky are known by their right ascension a
and declination §, usually for some standard epoch such as 1950. These
coordinates change only very slowly because of precession, nutation, and
annual aberration; the a,8 coordinate system is almost fixed on the sky.

The hour angle (HA), declination coordinate system is fixed with respect
to the earth, that is, with respect to the setting circles on an earthbound

telescope. The hour angle is the (local) sidereal time minus the right
ascension,

HA=LST— a,

and this expression can be taken to define LST. Objects moving with
respect to the sky, such as the sun, moon, and planets, have a,8 coordi-

nates that change more or less rapidly with time; an ephemeris gives a and
0 for such an object.

Beginning with a and § for a given epoch, Section A.7.9 precesses these
coordinates to date. If a more precise answer is needed, add nutation and
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annual aberration from Section A.7.10 (<47 arcseconds). Then calculate
sidereal time (LST) from Section A.7.4 and use the expression above to
calculate HA. If azimuth Az and elevation E! are needed, they can now be
calculated from Section A.7.6. For a more precise E/, add atmospheric
refraction from Section A.7.8. If only the rising and setting times are
needed, use Section A.7.5 instead.

In addition to a, 8, two other coordinate systems fixed on the sky are

sometimes useful: galactic latitude b" and longitude I" from Section
A.7.12, and ecliptic latitude 8 and longitude L from Section A.7.13.

REFERENCES: AENA, ESE, Smart (1962), and TN1969-42.

A.7.2 Distances and Headings Between Points on the Earth

From A,, the longitude (west is +) and ¢,, the latitude (north is +) of
station one on the earth, and A,, the longitude, and ¢,, the latitude of

station two, this algorithm gives H, the initial heading (north reference
clockwise azimuth) from station one toward station two, and the distance
as indicated. This algorithm is approximate because it assumes a spherical
earth.

HP-45:
: . _-- 1: . G

G DDMMSS) is3: 1) [x2)[0 EX ool 1] i
[Ri] P [x=2/] (¢1 DD.MMSS) [G D_M_S_? (-] [x=2y] [o] =K
[RY] [x=r] [R] -[x=y] (f <0; 360 [+]; see H in degrees)
=]

At this point choose one of the following options:

 

 

   

60 (see great-circle distance in nautical miles),

69.05 (see great-circle distance in statute miles),
111.19 [X] (see great-circle distance in kilometers),
2 [=] [sIN] 12742 (see straight-line distance in kilome-
ters).

O
S
R

TEST CASE: A;=71°05, ¢,=42°22" (Boston); A,=70°40", ¢,= —33°25
(Santiago de Chile); get H=179764 (slightly east of south)
and distance =5233 statute miles.

This algorithm is based on a suggestion by George Rybicki (private
communication). The spherical triangle solution is from Smart (1962), p.
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13. For a modification of this algorithm to give pointing angles and slant
ranges to an earth satellite, see Ball (1977).

A.7.3 Calendar

Day number from date

This algorithm calculates the day number (day of the year), given the
month m (1 through 12) and the day of the month 4 (1 through 31). Leap
years are evenly divisible by 4 (e.g., 1976); centennial years, however, are
not leap years, except that centennial years evenly divisible by 400 are leap
years.

m 1 [=] 31 d (if m <2, see day number; otherwise go
on) 4 [=] 1.8 [=] (ifthis is a leap year: 1 [+])

At this point choose either
HP-45: |[FIX |0 (see day number),
HP-35: [EEX] 9 9[-] (see day number).

 

   

TEST CASE: 1976 May 9, get day number = 130.

This algorithm is based on an HP-65 program by R. C. Vanderburgh
(private communication).

Day of the week

This algorithm calculates the weekday (day of the week), where Sunday is
1, Mondayis 2, and so on, given the current year Y (four digits, e.g., 1976)
unless it is January or February, in which case Y is the previous year, M,
the month number, unless it is January or February, in which case use 13
or 14 respectively (of the previous year) and d, the day of the month (1
through 31). This algorithm is for the New Style (Gregorian) calendar.

y (1] (1] [eex] 2 [+] [t] [1] 2 [=] 4 [2] 7 [EEX] 9 [+] [x=2r] 5[]
[ Bzr]SX]2[-]4 ] [+ M [ 13[X] 11 [+] 5[] [+] 4 [+] 1]

4[-]17[=]7[x] [c] (see weekday).

REFERENCES: HP-45 Applications Book, p. 213; Elmore (1976).

 

Day of the week, days elapsed, and phase of the moon

This HP-25 program computes the day of the week for a given date, the
number of days between two dates, or the phase of the moon for a given
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date, for any dates since February 1, 1 B.c. That date is assigned day
number one, and a corresponding number N is given to each succeeding
day. All calendrical corrections are made by the program provided it is
informed by the user whether the Old Style (Julian) or New Style
(Gregorian) calendar was in use on the given date. The program needs to
know the month number m (1 through 12), the day of the month 4 (1
through 31), the year y (e.g., 1976), and the style s (0=0Ild, 1=New). The
day of the week D is then 0 for Sunday, 1 for Monday and so on. Note
that this is not the same convention as in the previous algorithm. The phase
of the moon P is O for the first quarter, 0.25 for full moon. 0.5 for third
quarter and 0.75 for new moon.

 

Line Code Key Entry

00 _ _

01 24 01 RCL 1
02 02 2
03 41 —
04 01 1
05 02 2
06 71 +
07 31 1
08 34 CLX
09 14 51 fx>y
10 01 1
11 51 +
12 24 03 RCL 3
13 14 73 f LASTX
14 41 -
15 24 00 RCL 0
16 1521 g %
17 14 01 fINT
18 1571 gx=0

19 15 05 g cos™!
20 32 CHS
21 73 .
22 07 7
23 05 5
24 61 X
25 21 x2y
26 14 73 f LASTX
27 61 X
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Line Code Key Entry

28 04 4
29 08 8
30 07 7
31 61 X
32 14 01 fINT
33 51 +
34 21 xZy
35 03 3
36 06 6
37 07 7
38 61 X
39 14 01 fINT
40 51 +
41 14 01 fINT
42 24 02 RCL 2
43 51 +
44 74 R/S
45 07 7
46 71 +

47 1501 g FRAC
48 07 7
49 61 X
 

Run this program by

[¢] {RAD; s [sTO] 0 m [sTO] 1 d [sTO] 2 y [STO] 3 [f] [ PRGM
[R/S] (see N)

At this point choose one or the other of the following two options:

a. (see D),
b. 2953059 [Z] FRAG  (sec P).

 

The Julian day number (JD) used by astronomers (beginning on
January 1, 4713 B.C.*) 1s

JD =N+1721089.

*Bishop Usher (1581-1656) calculated that the world began in 4004 B.C., but astronomers

now know that he was incorrect by more than 700 years.
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The Julian calendar was used until about 1582 in Roman Catholic

countries such as France, Spain, and Italy, until 1752 in the British Empire
including the American colonies, and until 1873 in Japan, 1912 in China,

1918 in Russia, 1923 in Greece, and 1927 in Turkey.

The basic formula used in this program is

 N=d+ [367< ml—zz +x>] +[[365.25(y — x)] —0.75¢],

where

x={ 1 if m=1or2,
0 if not,

2 if s=0(Old Style),
c=

[(»—x)/100] if s=1 (New Style),

and [z] represents the truncation function { INT.

TEST CASES: July 4, 1776 (New Style) was Thursday, D=4. From May 27,
1948, until April 7, 1975, was 9872 days. George Washington
was born on February 11, 1732 (OS) which is the same as
February 22, 1732 (NS) because both dates give N =632623.
The phase of the moon when George was born was P=0.63
—four days past third quarter.

This HP-25 program and its description were written by Norman M.

Brenner (private communication) and reproduced here with his permission.

A.7.4 Sidereal Time

These algorithms compute the local (mean) sidereal time LST for any site
on the earth. There are two versions, differing in precision. Day number
means day of the year. Greenwich mean time GMT is the mean solar
(civil) time at Greenwich, England, or equivalently the universal time UT.
GMT differs from local (civil) time anywhere by an integer number of
hours. S is from the tabulation below. Note that the site longitude A is in
hours, minutes, and seconds; west is +.
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Precision =+ I°
HP-45:

(Day number) 24 [1](GMT: HH.MMSS) 'D.MS—:
1.0027379 [-] A: HH.MMSS) DMS>! [-] (S)
(Check: If negative: 24 [+]; if >24: 24 [-]) >D.MS!  (see
LST: HH.MMSS).

Precision ~ +0° 01 (if the longitude is known that well).
HP-45:

(Day number) 24 (GMT: HH.MMSS) :D.MS—!
1.002737909 [-] \: HH.MMSS_SS) ‘D.MS—! [=] (S)

(Check: If negative: 24 [+]; if >24: 24 [-]) i>D.MS!

(DMs-; [-] .36 6  (see LST:
HH.MMSS-SS; if either MM or SS- is 99, read 59 instead).

 

Year, A.D. S (hours)

1974 6.6183036
1975 6.6023892
1976 6.5864746
1977 6.6362698
1978 6.6203553
1979 6.6044408
1980 6.5885262
1981 6.6383215
1982 6.6224070
1983 6.6064925
1984 6.5905779

The Greenwich mean sidereal time S on January 0.0 of the indicated year
is shown. The precision of this tabulation may deteriorate with time; check
the AENA for the latest results.

TEST CASE: On May 9, 1976, (day number = 130), at the Harvard College
Observatory in Harvard, Massachusetts, (A=4"46™12:94) at
GMT=14" (9:00 aM local time), the sidereal time was LST=
0"123™48555.

REFERENCES: AENA; Smart (1962), Chapter VI.



246 Appendix A—Algorithms

A.7.5. Rising and Setting Times

This algorithm computes the local sidereal time (LST) ofrising or setting
(elevation=0) for a celestial object specified by its right ascension a and
declination 8. The latitude ¢ specifies the site on the earth. Because of
refraction, the object will actually appear a few minutes sooner and
disappear a few minutes later.

HP-45:

(¢: DD.MMSS) DMS-: (6: DD.MMSS) (DMS-:
[taN] [cus] [x] [6] ;cos!: 15 [<] [1] [1] [1]
(a:_ HHMMSS) DMS>; (=] Gf_<0: 24 [+])
‘>DMS:  (see LST at rise in HH.MMSS) (Gf >24: 24
[-]) i>DMs:  (see LST at set in HH.MMSS).

TEST CASE: ¢=42°30"21771. a=17"42™28°, §= —28°58'30"; get LST rise
=13"44™27¢, LST set=21"40"28".

REFERENCE: Smart (1962), pp. 46-48.

A7.6 Az, EleHA, S

Hour angle HA and declination § on the one hand, and azimuth Az and
elevation E/ on the other, are two possible coordinate systems for objects
on the sky, both referred to an observer on the earth: E/ is 90° minus the
zenith angle and Az is north reference, clockwise. West HA is +. The
latitude of the site on the earth is ¢; north is +.

HP-45:

(5: DD.MMSS) DMs=! 1 SR (HA: HHMMSS) [G]
.DMS—: 6 15 R x2y
(¢: DD.MMSS) DMS-} [-] [x27] R x2y

(if negative: 360 [+];  see Az in degrees)
[x=y]  (see El in degrees).

(EL, °) [1] 1 [6] DR (42, °) [x=»] [6] =K [x=y] [cHs][1]
o )

(¢: DD.MMSS) D.MS-: [-] R
[x=»] 15 [£] i>DMs:  (see HA: HH.MMSS)
[x2] (oDMS;  (see 5: DD.MMSS).

 

 

    

 
TEST CASE: HA=3"0401°, §=—13°11'10", ¢$=42°22’" corresponds to

Az=228°29, EI=20°24.
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These algorithms are based on a suggestion by George Rybicki (private
communication). The spherical triangle solution is from Smart (1962), p.
13.

A.7.7 Air Mass

The air mass (air path) a is the effective (normalized) thickness of the
earth’s atmosphere for an object seen at an elevation angle E/. The
curvature of the earth causes a to differ from cosecant (E/): We also use
Q, the ratio of the radius of the earth to the scale height in the atmosphere;
a typical Q is 500 to 1000. There are several different formulas for a. One
is

a=\Q?*sin’EI+2Q+1 — QsinEL

 

HP-45:

(&L, °) [siN] 0 [1] [1] [+] [RY] [X] [1] [RY] [x=x] [RY [2] [+] 1 [+]
E:_)_c [-] (see a). L

sM0el HEO G SN
(see EI, °).

HP-35:

(al°) [siN] 0 [1] [1] [+] [Ri] [X] [1] [R] [x=x] [RY] [1] [X] [+] 1
[+] [Vx] [x=v (see a).

(/=] [t] (/=] [t [/x] [2] @ [1] [+] [2] [=] [ARC] [SIN]
(see El, ).

I
I
I

An alternative formula is

2 1/0+1 .

1/Q+sin’El

HP-45: 0 [1/x] [1] [1] 1 [+] [x=2»] (&L °) [sN] [2] [+] [=] [G] V]
(see a).

a 2] /=] [0 [ 1 2] @[] [+] [6] Vxi [G] SINTE (see EL°).

HP-35:

Q-II [+ G=x] (&L °) [sinv] [ [X] [+] [2] Dva]
(see a).

a [1] X] (/=] (1] 1] 1 2] Q [£] [+] [¥2] [ARC] [SIN] (see EL,°).
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TEST CASE: El/=9°, 0=600, get a=6.19.

REFERENCES: Smart (1973), pp. 125 and 133; Marvin Litvak (private
communication). See also Allen (1973), pp. 124-125.

A.7.8 Atmospheric Refraction

This algorithm calculates the total atmospheric refraction R given the
elevation angle El, and, if standard conditions do not apply, the surface
temperature 7 and pressure P.

(EL, °) 0668 58.294
(see R in arcseconds at 7'=50°F, P=30 in. Hg; or go on:) (P, in. Hg)

17 (T, °F) 460 [f]  (see R’ in arcseconds).

The formulas are

R=58"294tanz — 070668 tan z,

(at P=30 in. Hg and T=50°F), where z is the zenith angle z=90° — El.
Then

/
(17°F/in. Hg)

~ 460°F+ T

These formulas deteriorate near the horizon (below E/=10°, say). For a
more precise R for E/<10°, use

a[1] El 58.294 (see R in arcseconds),

where a is the air mass from Section A.7.7 for Q =500.

TEST CASE: E/=10°, get R=318 arcseconds from the first formula or
320 arcseconds from the second.

REFERENCES: Smart (1962), especially p. 68; Allen (1973), p. 124.

A.7.9 Precession

The right ascension a declination § coordinate system moves very slowly
with respect to the fixed stars because of the precessional motion of the
earth’s axis. This motion is largely caused by the influence of the moon.
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There are two algorithms for precession; the second, more complex version
i1s needed only for very precise work over long periods of time. Add
precessions from this algorithm to epoch coordinates to precess to date.
“Day number” means day of the year.
These algorithms give precession only; nutation and annual aberration,

which are not included, may amount to as much as 47 arcseconds. See
Section A.7.10.

Precession from 1950 to date

HP-45:

(Year, e.g., 1974) 1950 [-] [EEX] 2 [z] (Day number) 36525
E]l- 0416|CHS [x] 46E|2004255(a:

______ =93 .

HH.MMSS) [G] :DMs—: 15 [X] [x=y R (see precession in
X

  

H8 in arcseconds) m (6: DD.MMSS) r:lid:s:—:f STO
L

4 [cx] 0371 [x] 1395 [+] [x] 4609.896 [+] [X] [RCL] 4 [+] 15 []
(see precession in « in seconds of time).

The formulas used for this version are

Aa= M+ Nsinatand,

Ad=Ncosa,

where N=60=2004"255T—0/426T*—0/0416T?,

M= {,+2z=46097896T+ 17395T*+00371T?,

and 7 is the time since 1950 in centuries.

Precession with more precision
HP-45:

(Original epoch, e.g., 1950) 1900 [-] 2 [£] [sTO]
(Year, e.g., 1974) [x=y] [-] 2

36525 [] (1] .042 [CHs|
2004.682 [-] [-] 3600 [=] [sTO] 2 [CLX
m11396.230425E|E]3
2.”.791EHOOEI STO 4

3

 
 w2 E

m [+
] g <« = s

>
3

28
=
]

-

   N S
o

4 o W 0 - o)

P F N N [+
]
- 5

 

 

 

   
 

   

RcL] 3 [cos] [] (5: DD.MMS) iDMs! RCL 2
sIN] [X] [reL] 3 [x24] [6] GR1 [x2y >P [R] [sTO] 5
RCL 4 240 [X] (see precession in a in seconds of time) [ RCL

3 [rer]22 [ [1aN] (6] &R [x=r] [Rer] 5 2 [ [maN] [x] ] 
' TAN-T 7200 see precession in & in arcseconds).L _J p
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The formulas used in this version are the so-called g formulas,

Aa= B+,

Ad _ 0 o B
tan(—z—) —tan( > )(cosA sinA tan( > )),

where  tanB=(gsind)/(1—gcosA),

g=sinf (tand+tan(d/2)cosA),

A=a+,

X={o+2=2{,+0/791T2,

$o=(23047250—17396T,) T+0:302T*+070187",

0= (20047682 — 07853 T, ) T— 07426 T*— 0042 T>,

T, is the time from 1900 to the original epoch in centuries, and 7 is the
time from the original epoch to the present in centuries. The constants in
these formulas are not really arcseconds as labeled, but rather arcseconds
per century, and so on. The answers in these formulas are in arcseconds;
the algorithm converts to degrees.

STORAGE ASSIGNMENTS: T, to 1, 8 to 2, first {, then 4 to 3, x to 4, B to 5.

TEST CASE: a=7"20™53% §= —25°4024", epoch 1950 gives
Aa=65%13, A= — 182761, to precess to 1976 day

number 132 using the first algorithm, or Aa=
65508, A6 = — 183”78 using the more precise algo-
rithm.

REFERENCES: TN1969-42, pp. 13, 14; AENA,; ESE, pp. 30, 31.

A.7.10 Nutation and Annual Aberration

The periodic (or short-term) components of the motion of the right
ascension a and declination § coordinate system are called nutation.
Annual aberration is the apparent displacement of a celestial object due to
the transverse component of the earth’s motion about the sun. To point an
earthbound telescope toward a celestial object, add nutation and annual
aberration to the precessed a and &, to give the apparent coordinates for a
given date. The following algorithm is approximate, probably =2
arcseconds (see references below).
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HP-45:
(Year, eg., 1974) 1900 [-] 2 [£] (Day number) [STO

 

 : . G

2 17 1 E 3
nutation in § in arcseconds) [RCL] 3 (8 DD.MMSS) G| 'D.MS—:
[sTO| 4 |TAN|[G] SR 1 [cos
RCL] [sIN [x] [RcL] 2 [cos] [+] [RCL]
B (see nutation in a in seconds of time) .98
[+] [sTO] 6 1.36 [CHS] [RCL 4 [cos] [£] [6] >R [RCL] 2
%] [RCL 3|cos|-lx RCL] 3 SIN (see
aberration in a in seconds oftime) [R[RcL] 2 [RcL] 6 [cos] [G] SR
RCL] 3 [RcL] 4 [sIN] [G] SR [RY] [X] [*=»] [RCL] 4 [cos] [X]
-] [x=y] [RcL] 6 [ sIN] [x] [-] 20.5 [X]  (see annual aberration
in § in arcseconds).

 

  
 

  

E    
  

 

  

       

   
TEST CASE: 1973, day number =2, a=1"03"49%, §=12°19'42"; get

nutation A6=6794, Aa = 1300, and annual aberration Ad =

2736, Aa =006.
REFERENCES: TN1969-42, p. 14; ESE,especially p. 44.

A.7.11 Angular Separations Between Stars

This algorithm calculates the great-circle separation between two celestial
objects specified by their right ascensions a, and a, and declinations 6,
and 9,.

HP-45:

(,:DD.MMSS)|G-G] (IDMS>:! 1 R! (8,: DD.MMSS)
i1() BR (1] (] (1) (9[x22][CLr] (ay: HELMMSS)

'DMS—: (a,: HHMMSS) [G] DMs-! [-] 15
1 COs~!: 60 (see separation in arcminutes).

TEST CASE: a, = 17%42™28%, §, = —28°58'30", a, = 17"44™10%, §, =
—28°22'50”, get separation=4217.

cos S =sind, sin§, + cos(a; — a,) cos §, cos §,.

A7.12 a,6o0M 0"

Right ascension a and declination § are astronomical coordinates defined
with respect to the earth’s equator. Galactic latitude b" and longitude "
are defined instead with respect to the galactic equator. The direction
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toward the galactic center is approximately [""=0"=0. The a,§ coordi-
nates for these algorithms are epoch 1950.

HP-45:

(8: DD.MMSS) [G] D.Ms>:1 SR (a: HH.MMSS) (D.MS—!

15 [x] 77.75 [+] [x=2»] oK [1] [RY] [RY] BB [x2r] 62.6 [-]
[x=2y] [6] R [x=y] 33

[+]

(If negative: 360 [+];
see [T in degree | (see bin degrees).

(b", degrees) [1] 1 II,egrees)[1]33 [-] [6] >R[1]
62-6-.L_R----[LT_Y
7775 [=] 15 [£] (If negative: 24 [+]) ‘>DMS!  (see a:
HH.MMSS) [SDMS] (see 5: DD.MMSS).

a
n

=1
7k  

 

:"
rg

 

TEST CASE: a=07"20™56%, §=—25°39'55" (1950), corresponds to ['=
239°35, b= —5°06.

REFERENCES: TN1969-42, p. 10; Allen (1973), p. 283.

These algorithms were written by George Rybicki (private communication)
and are reproduced here, in slightly modified form, with his permission.
The spherical triangle solution is from Smart (1962), p. 13.

A7.13 «8L,f

These algorithms convert right ascension a and declination § to and from
ecliptic longitude L and latitude B. The ecliptic is the apparent track of the
sun across the sky. The epoch for L, is the same as for «,6. If L and B
are for Doppler velocities in Section A.8.2, use precessed « and 4.

HP-45:

15.@.—%.---m234423|3m.
OR [RI] [RI] [RY] P [x2y]  (see L in degrees) [Ri] [P

(see B in degrees).

(8,°) [1] 1 [6] OR (L,°) [x2y] [6] oK [1] [RY [RI] R [x=25]
23.4423 [+] =] [6] SR R R [RU BFl x=2] 15 5] Gf
<0: 24 [+]) [G] (>DMS;  (see a:HH.MMSS) [Ri] [SP|

>DMS!  (see §: DD.MMSS).
TEST CASE: a =07"20M55%, &= —25°40'04", get L=117°31, B=

—47°221.

 

REFERENCE: TN1969-42, p. 11.
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These algorithms are based on a suggestion by George Rybicki (private
communication). The spherical triangle solution is from Smart (1962), p.
13.

A.7.14 Sun Ephemeris

This algorithm calculates the ecliptic longitude A, and the right ascension
a and declination § of the center of the sun. These are geocentric apparent
coordinates (do not precess) and are within about *1 arcminute. Day
number means day of the year, and g’ and ' are from the tabulation
below. Greenwich mean time (GMT) is the mean solar (civil) time at
Greenwich, England, or equivalently universal time (UT). GMT differs
from local(civil) time anywhere by an integer number of hours. GMT need
not be very precise for this algorithm.

HP-45:

(GMT: HH.MM) [G] [DMsS] 24EJ(umber) 9856 [X] (
] [0 [0 1] [+] [sin 02 [x] [x=/] SIN 1916(

(see Ain degrees) [1] m23442 xzy R [x27]
LI(1 '>D.MS! ee(see DD.M

i5 [Z] Gf <0: 24 [2]) [G] [oDMS! (seea HH.MMSS).

 
Year, A.D. g (®) W (°)

1974 3.213 71.50
1975 3.469 77.48
1976 3.725 717.46
1977 2.995 71.45
1978 3.251 77.43
1979 3.507 77.41
1980 3.763 77.40
1981 3.033 77.38
1982 3.289 71.36
1983 3.545 71.34
1984 3.801 77.33

The angle g’ is minus the mean anomaly on January 0.0 of the indicated
year, and «’ is minus the longitude of perigee.

TEST CASE: 1976 day number= 134 (May 13), GMT=0; get A=5223686,
a=3"19m50°, §=18°21'51". The AENA (1976, p. 25) has
A=52°3599, a =3"19™47598, § =18°21'38"4 (error =052).

REFERENCES: AENA; Smart (1962), Chapter V.
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A.8 DOPPLER VELOCITIES IN ASTRONOMY

A.8.1 Notes

Spectra of astonomical objects taken from the earth need to be corrected
for the motion of the observer. The two principal contributions to the
velocity of a site on the earth with respect to the sun are the velocity of
the earth in its orbit around the sun (earth revolution) and the velocity of
the site with respect to the earth’s center (earth rotation). These are two
velocity vectors changing as a function of time. What is needed is the
Doppler velocity, that is, the component of the total velocity as projected
onto the line of sight toward a specified celestial object. By convention, a
positive velocity corresponds to increasing distance between source and
observer; the Doppler velocity is the derivative of the distance.

Section A.8.2 calculates the earth revolution Doppler velocity V, which
can amount to almost +30 km/s. Section A.8.3 calculates the earth
rotation Doppler velocity V.,,, which can amount to almost +0.5 km/s.
The largest neglected velocity is the motion of the earth’s center with
respect to the earth-moon barycenter, which can amount to about *+0.015
km/s.

Optical astronomers traditionally use a velocity reference frame attached
to the sun, and radio astronomers traditionally use the local standard of
rest. Originally the local standard of rest was intended to be at the average
velocity of all the stars within a few hundred parsecs of the sun. But now,
by convention, the velocity of the sun with respect to the local standard of
rest is taken to be 20 km/s toward a=18" §=30°, epoch 1900. The

component V, of this solar velocity as projected onto the line of sight
toward a specified celestial object is a constant for the object and can be
calculated from Section A.8.4. Add ¥V, to Doppler velocities with respect
to the local standard ofrest to obtain Doppler velocities with respect to the
sun. Or subtract V,, from Doppler velocities with respect to the sun to
obtain Doppler velocities with respect to the local standard of rest.
The total Doppler velocity of a site on the earth with respect to the local

standard of rest is the sum of these three velocities, namely, V' from

Section A.8.2 plus V.,from Section A.8.3 plus V,, from Section A.8.4.
A “peculiar velocity” associated with the source itself may be added.
Section A.8.5 then can be used to convert this total Doppler velocity to a
Doppler frequency.

A.8.2 Earth Revolution Doppler Velocity

This algorithm calculates the component of the velocity of the earth in its
orbit around the sun as projected onto the line of sight toward a celestial
object specified by its ecliptic longitude L and latitude 8; L and B should
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be apparent coordinates (precessed to date), and they can be calculated
from Section A.7.13. Day number means day of the year, GMT is the
Greenwich mean time, and g’ and «’ are from the tabulation in Section
A.7.14.

HP-45:

(GMT: HH.MM)[G] ID.MS—: 24 [+] (Day number) .9856 (g")
-] SIN .02 [X] [x=y] [sIN] 1.916 [X] [+] (L,°)

01672 (=] [siN] [x=x] [=] (B,°)
see V in kilometers per second).

 
 8Q w2 [x

] 3 9 \O [x
]

o
~

HP-35: Key GMT in hours and change :D.Ms—: to [1].

TEST CASE: 1976 day number=135 (May 14), GMT=13", L=320°1,
B=073; get V= —29.42 km/s.

REFERENCE: TN1969-42, pp. 1-7.

A.8.3 Earth Rotation Doppler Velocity

This algorithm calculates the component of the velocity of a site on the
earth with respect to the earth’s center as projected onto the line of sight
toward a celestial object specified by its hour angle HA4 and declination 4.
There is a note on HA in Section A.7.1. The site on earth is specified by its
latitude ¢.

HP-45:

(: DD.MMSS) [bNis=] (5: DD.MMSS) (DM
(HA: HH.MMSS) (D.Ms-} 15 464

(see V.,1n kilometers per second).

__ 2mX6.368627 X 10° km

? (23"56™04509054) X 3600 s/h

TEST CASE: ¢=42°30121/71, §=—28°5830", HA=—3" get V=
—0.21 km/s.

 =0.464408 km/s.

REFERENCE: TN1969-42, p. 4.

A.8.4 Local Standard of Rest Doppler Velocity

This algorithm calculates the component of the (constant) velocity of the
sun with respect to the local standard of rest as projected onto the line of
sight toward a celestial object specified by its right ascension a and
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declination §, epoch 1950. The sun’s motion is taken to be 20 km/s toward
a=18" §=30°, epoch 1900.

HP-45

(see Vun 1IN kilometers per second)

TEST CASE: a=7"20"53%, §= —25°40'24" (1950); get V,,=19.04 km/s.

REFERENCE: TN1969-42, p. 2.

A.8.5 Doppler Frequencies

This algorithm calculates the sky frequency f,,, which is a line rest
frequency f, as offset by a Doppler velocity v in kilometers per second, and
Jsyn» the frequency to be set into a frequency synthesizer to tune a receiver
to fuy- The receiver hardware is specified by the frequency multiplier N,
usually an integer, and by the offset frequency f_;. The units of the fs are
arbitrary but must all be the same.

Jo v 299792.5 [+] [-] (see fuy)

foff N E (See fsyn)'

The appropriate formulas are

v
fas=ho(1=)

where ¢=299792.5 km/s is the speed of light. The minus sign occurs
because, by convention, a positive v corresponds to increasing distance
between source and observer. Then

fsky +foff

syn = N :

TEST CASE: v=11.3 km/s, f,=1612231 kHz, f;= —135000 kHz, N=7,
get f4,=1612170.231 kHz and f,, =211024.3187 kHz.

See also Section A.8.6.
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A.8.6 Relativistic Doppler Shifts

This algorithm converts a Doppler velocity v in kilometers per second into
or from a wavelength offset AA or a frequency offset Af, where f, is the line
rest frequency and A, is the line rest wavelength. The formulas are correct
if the velocity is radially toward or away from the observer.

HP-45:

(v, km/s) [7] 2997925 (5] [T] (1 (1) =2 1 =) @] B [©@
Vx; 1[Z]  (see z=BN/y)O\o) [X]  (see AN).
(o em5)[7] 2997925 [T 11 1 2] [ 1) 1 (] (&
Vx: 1 El (see g=Af/fo) (fo) [X] _(seeAf).
M) BT 0] (see 2) 1 [+] [o] iTANT2 [x] [cos] [cHs]
(see v/c) 299792.5 [x] (see v in kilometers per second).

@H () [ (see ) 1 [TAN1} 2 (see
v/c) 299792.5 (see v in kilometers per second).

For an HP-35, replace [G] Vx: by [Vx], [x*] by [1] [X], and [G] {TAN"1]
by [ARC] [TAN].

z 1 [£] (see q) f, (see Af).
q 1 CHs [£] (see z) A, (see AN).

 

A [l+o/c .

Ao —T l1-v/c ’

Af  _[1-v/c
 

To_q— 1+v/c v

v_ (z+1)°~1 = 1=(g+1D) =tanh(In(z+1))= —tanh(In(g+1)).
€ (z+1)41  1+(g+1)
 

TEST CASE: v=10° km/s, v/c=0.3335640485, \,=18 cm, f,=1665 MHz;
get z=0.414580707, A\ =7.462452726 cm, g= —0.2930767438,
Af=—487.9727784 MHz.

REFERENCES: Lang (1974), Section 2.17; Born (1962), p. 300.
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A.9 ASTRONOMY AND RADIO ASTRONOMY: SELECTED FORMULAS

When | heard the learn’d astronomer,

When the proofs, the figures, were ranged in columns

before me,

When | was shown the charts and diagrams, to add,

divide, and measure them,

When | sitting heard the astronomer where he lectured

with much applause in the lecture-room,

How soon unaccountable | became tired and sick,

Till rising and gliding out | wander’d off by myself,

In the mystical moist night air, and from time to time,

Look’d up in perfect silence at the stars.

— Walt Whitman (1819-1892)

Poets say science takes away from the beauty of the stars—mere globs of gas

atoms. Nothing is ““mere.” | too can see the stars on a desert night, and feel them.

But do | see less or more? The vastness of the heavens stretches my im-

agination—stuck on this carousel my little eye can catch one-million-year-old

light. A vast pattern—of which | am a part—perhaps my stuff was belched from

some forgotten star, as one is belching there. Or see them with the greater eye of

Palomar, rushing all apart from some common starting point when they were

perhaps all together. What is the pattern, or the meaning, or the why? It does not

do harm to the mystery to know a little about it. For far more marvelous is the

truth than any artists of the past imagined! Why do the poets of the present not

speak of it? What men are poets who can speak of Jupiter if he were like a man,

but if he is an immense spinning sphere of methane and ammonia must be

silent?*

—Richard P. Feynman (1918- )

A.9.1 RMS Noise: The Radiometer Equation

Perhaps the most important formula in radio astronomy, the radiometer
(noise) equation, gives the expected dispersion or RMS noise in terms of
system parameters and integration time. This RMS noise is AT, Tis the
system noise temperature (usually in °K, but in any case AT and Tare
in the same units), B is the resolution width or bandwidth in hertz, and 7 is

the total integration time in seconds. In its simplest form, appropriate for

*From Feynman, Leighton, and Sands (1963), Vol. I, p. 3-6.
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an analog or multibit processor and with equal time spent on and off the
signal (Dicke switching), we have

HP-45:

Tsys B T [\_/83 E‘ (see AT)

For a one-bit digital autocorrelator, we have approximately

HP-45:

T,[G] T2 B ~ Vi [5]  (see AT).

For other cases, this AT should be multiplied by v, a factor not too far
from unity (see references). For an HP-35, replace (V] by and

iz} by [7].

TEST CASE: T,,,=89°K, 8=750 Hz, r=3600 s; get AT=0.108°K (analog)sys

or 0.170°K (one-bit).

REFERENCES: Ball (1976b); Ball (1975¢), p. 206; Rice (1954), Section 3.9.

A.9.2 Beamwidths and Resolutions

The beamwidth of a radio telescope and the resolution of an optical
telescope are given by the same formula, although the units are sometimes
different. This algorithm calculates an approximate resolution or
beamwidth @ (full width to half-maximum) given D, the diameter of the
(circular) telescope, f the observing frequency, or A the observing wave-
length. For an optical telescope use A around 5500 A.

HP-45:

(f, MHz) 67625 (D, fty [£] SDMS;  (see #:
D.MMSS).

HP-35 or HP-45:
(f, MHz) 67625 (D, ft) [x]  (see @ in degrees),

or

(\, A) 9.7448 4 (D, in.) [=] (see @ in arcseconds).
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TEST CASE: f=1665 MHz, D=284 ft; get #=2901"; or A=6000 A, D

=8 in., get §=0"73.

0=12A/D=1.2 c/(vD) (converted from radians),

" 1 in. 1ft M 1801.2>2.997925 X101 em/X 5o X 33X 106 ¥ 7 (rad)
   

 

 
 

—6762537 Mt
(rad)s

—8 : o ” : ”12% 10 —cm 1 in. 5 180 5 36(§) —97448 % 104 om.

A 2.54cm

"

7 (rads) 1 A (rad)

A.9.3 Beamwidths and Source Widths from Scans

If a celestial source small in angular size is scanned with a telescope, the

scan gives information about the beamwidth. If, alternatively, the source
can be taken to be Gaussian shaped and more or less comparable in
angular size to the beamwidth, the source width can be calculated from the
scan if the beamwidth is known. In these algorithms, 6, is the beamwidth
of the antenna, 6 is the width of the celestial source, and 6y is the

response width of a scan through the source. The s are all full widths to
half-maximum, are all in the same units, and are for a given cut or

direction on the sky. Then a is the right ascension, § the declination, Az
the azimuth, and E/ the elevation. The formulas follow from the assump-
tion of Gaussian shapes for both source and antenna eam.

I Point source (03=0)
A. Scan in a (or drift curve) (HP-45 only)

(5: DD.MMSS)[] [ DM| (0%) (see 8,),
or (8,°) (G%) (see 8,).
B. Scan in azimuth

(EL,°) (G%) (see 6,).
C. Scan in § or elevation: 8, =0,.

II. Arbitrary (Gaussian-shaped) source
A. Scan in a (or drift curve) (HP-45 only)

(6: DD.MMSS) | D.MS-> ; (6g) 4,) (-]
Vxi (see Og),
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or (HP-35 only)

(9,)@(%)(“.E. (see by).

B. Scan in azimuth

(EL°) () 00 ] Vel (see ),

or (HP-35 only)

(EL°) (62) (6,) =] (see fy).

C. Scan in § or elevation (HP-45 only)

(0) [22] (8,) [x?] [=] [G] iVx: (see b),

or (HP-35 only)

(0r) () [ZI (see b).

TEST CASE: (drift curves) =0, §=14°, 0, =40'2;

get 0,=39, or 0, =51"; get §5=3046.

A.9.4 Antenna Efficiencies versus Surface Tolerance

These algorithms relate the aperture efficiencies (n, at wavelength A, and
1, at wavelength A,) to ¢ the RMS surface tolerance (departure from a
paraboloid); A;, A,, and ¢ are all in the same units. The formulas follow

from the assumption of noiselike departures from a paraboloidal surface.

Given ¢ and 81, find 7,
HP-45:

A 2] D, [2) [7x [F] 406 i e (3] 2] [X] [ my [X]
(see ).

HP-35:
Ai?\zEMZlem

(see ).

Given 7, at A, and 7, at A,, find ¢
HP-45:
m.anl-A (2] L= A 2] /] [ [ (6] vl 4
[G] ( (see e).

HP-35:
v‘gi_lanJlEMMElE]4E

(see &).
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TEST CASE: 1, =51%, A,=2 cm, 7,=42%, A,=1 cm, £¢=0.04 cm.

REFERENCE: Ruze (1952).

These algorithms were written by Hays Penfield (private communication)
and are reproduced here, in slightly modified form, with his permission.

A.9.5 Brightness (Specific Intensity)<—Brightness Temperature

The brightness temperature is the temperature to which a black body
would need to be heated to show the observed brightness or specific
intensity. Brightness temperature can be a function of wavelength and
need not equal any other temperature.

In these formulas 7 is the specific intensity in flux units per steradian
(1 flux unit (fu)=1 jansky=10"2° joule/m?), f is the frequency in mega-
hertz, and T is the brightness temperature in degrees Kelvin. There are two
formulas depending on the range of f and 7: use the Planck law if
f/T>10 MHz/°K (because the Rayleigh-Jeans approximation is no good
in this range) or use the Rayleigh-Jeans approximation if f/7<0.1
MHz/°K (because the calculator runs out of significant figures in calculat-
ing the difference in the denominator of the Planck law).

Rayleigh-Jeans approximation
HP-45:

(f, MHz) 03072297 (T, °K) (see I in fu/sr),

(I, fu/sr) 03072297 [5] (f, MHz) [5]  (see T in °K).
For an HP-35, replace by [X].

Full Planck law

HP-45 or HP-35:

(f, MHz) [1] 1.474527 CHs] 6 [X]- m

4.799428 [EEX (T, °K) [£] 1 [-] El (see I in

flux units per steradlan)

(f, MH2) 1474527 6 (1, fu/s)
=] 1 [£] 4.799428 5 (see T in degrees
Kelvin).

TEST CASE: f=5000 MHz, T=1953°K, I=1.5X10° fu/sr.

or

 

or

Rayleigh-Jeans approximation is

2kTf?
c2

I= 
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The full Planck law i1s

- 2hf? I
T2 eM/KTHY_ 1

where 22 = 14745271076 fu/MHZ,
C

% =4.799428 X 10~ °K/MHz,

2k _3.072297% 102 fu /(°K MHz22 =3 u/( z%).

A.9.6 Kinetic Temperature—~Linewidths

In the simplest case, the width of an observed spectral line is due to a
combination of turbulence (mass motions with a scale size smaller than the
angular resolution) and kinetic temperature. If other contributions to the
linewidth can be neglected, and if measurements are made with two
different molecules or atoms (two different masses), the two contributions
to the linewidth can be separated to give the kinetic temperature 7, (in
degrees Kelvin) and the RMS turbulent velocity Av, (in kilometers per
second). The equations follow from the assumptions that the two mole-
cules or atoms are intermixed (and so share the same turbulence and
kinetic temperature) and that the optical depth is small in both lines. The
turbulence is characterized by Gaussian random motion. If other effects
contribute to the linewidth, 7, from the algorithm is an upper limit, or Av
is a lower limit.

In the algorithm below, Av or Av, and Av, are the full widths to
half-maximum in kilometers per second of the corresponding lines;
and M or M, and M, are the masses in atomic mass units (amu) of the
corresponding emitters.

Case I: Only kinetic temperature affects the linewidths.
HP-45:

(Av, km/s) (M, amu) 21.69 (see T, in degrees Kelvin),

or

(T, °K) 21.69 [=](M, amu) [=] Vx}  (see Av in kilometers
per second).
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HP-35:
(Av, km/s) [X](M, amu) 21.69 (see T, in degrees
Kelvin),

or
(T, °K) 21.69 [=] (M, amu) =] (see Av in kilometers per
second).

Case II: Kinetic temperature and turbulence affect the linewidths.
HP-45:

(Ao, km/s) (Avy, km/s) [2] 21.69 (M), amu)
(M,, amu) [-] [z]  (see T, in degrees Kelvin),

(M,, amu) (M,, amu) [] .! (Av,, km/s) [x2] [X] (Ao,
km/s) [-] 1[-][5][G] :vx:  (see Av, in kilometers per
second).

HP-35:

(Av;, km/s) (Av,, km/s) [-] 21.69 (M,, amu)
(M,, amu) -] [£] (see T, in degrees Kelvin),

(M,, amu) (M,, amu) E (Av;, km/s) (Av,,
km/s) [-] 1 [-] [£] (see Av, in kilometers per
second).

or

or

TEST CASES: M=17 amu (OH), 7, =299°K, Av=0.9 km/s; or M,=17
amu (OH), M,=13 amu (CH), Av,=0.9 km/s, Av,=1.0
km/s, T, =228°K, and Av;=0.44 km/s.

The formulas are

_— M(Av)?

K™ 8kIn2 ’
1 °K——21.68986—>

8kIn2 amu(km/s)’

or

Avlz_szz

 T, =

& 8kIn2[1/M,—1/M,]’

M2_M1

Note that the error limits are sometimes very large.

2 __
ADT -

REFERENCE: Lang (1974), Section 2.18.
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A.9.7 The Saha (Equilibrium lonization) Equation

The Saha equation relates the free electron density N, in number per cubic
centimeter, the temperature 7 in degrees Kelvin, the ionization potential x,
(from the ground state to r) in electron volts, and the partition functions U,
and U, ., for the r and r+1 stages of ionization, to N, and N,,, the
number densities, in atoms per cubic centimeter, in the corresponding
stages of ionization; U, is approximately the statistical weight of the
ground state, and U,/ U,~3 very approximately.

HP-45:

(T,°K) (x,» €V) 11605 1.5 (y7]
(Ur+l/Ur) 4829 15 (SCC NeNr+l/Nr’ /cm3) (Ne’

/CmS) El (SCC Nr+l/Nr)'

For an HP-35, replace [y*} by [x].

TEST CASE: T=3000°K, x,=11.26 eV (carbon), U,,,/U,=0.65 N,=
10/cm®; get N,,,/N,=6.25 (i.e, most of the carbon is
ionized).

The Saha equation is an example of a large class of equations relating
excitations, ionizations, and chemical populations, all derivable by the

methods of chemical equilibrium.

REFERENCES:  Slater (1939), Chapter XX; Ambartsumyan (1958), Section
5.2; Allen (1973), Section 15; Lang (1974), Section 3.3.1.4.

A.9.8 Recombination Line Rest Frequencies

Recombination lines are misnamed. The physical process is the emission of
a photon by a highly excited (but not usually ionized) atom—either
hydrogen or hydrogenic in the sense that the nucleus and any other

electrons can be approximated as a point charge. This process gives rise to
a series of lines whose frequencies f can be calculated by this algorithm.
Recombination, by contrast, means the reuniting of an electron and an ion

to form a neutral atom, resulting in a bound-free continuum or band of
frequencies rather than lines. The inappropriate nomenclature arose be-
cause in astronomical HII (ionized hydrogen) regions, recombination to a

highly excited level, followed by a cascade by steps to the ground state, is a
frequently occurring process, and the lines resulting from the cascade are

observable toward HII regions by radio astronomers.
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In this algorithm, n is the principal quantum number, An is the change
in n and is 1 for an « line, 2 for a B line, 3 for a y line, and so on; M is the

total mass of the emitter in atomic mass units on the chemical scale. To
use the physical scale of atomic mass units instead, change the constant
5.48593 to 5.48742.

HP-45 INITIALIZE:  5.48593 [CHS | [EEX] [CHS] 4 [1] (M, amu) [=] 1 [+]
3289842311 [X]

caLcuLATE: (n) [1] [2] [1/x] [x=y] (An) [+] [2] (/<] [=] [X]
(see f in MHz) :|.

For an HP-35, replace by [X].

TEST CASE: HI1098, that is M=1.008 amu, n=109, An=2, is at

f=9883.082 MHz.
REFERENCE: Lilley and Palmer (1968).
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A.10.1 Noise Figure—System Temperature

The system noise temperature and the noise figure are alternative ways of
expressing the noise performance of an amplifier. The noise temperature
T, (usually in degrees Kelvin) is the temperature to which a resistor
would have to be heated to produce the same (input) noise level with a
noiseless amplifier as is produced by the real amplifier. The noise figure F
(usually in decibels, dB) is the ratio of the noise actually present to what
would be present with a noiseless amplifier with a resistor at 290°K
connected to its input. The resistance of this resistor in either case is
whateveris specified for the amplifier. System noise temperature is usually
the more useful quantity for an amplifier connected to a source that is
colder than room temperature (e.g., a centimeter-wavelength radio astron-
omy antenna) and noise figure is usually the more useful quantity for an
amplifier connected to a source at room temperature (e.g., a high-fidelity
audio preamplifier). In a cascade of amplifiers, usually only the noise of
the first amplifier needs to be considered because the noise of the second
amplifier is divided by the gain of the first amplifier to refer to its input.

HP-45

Ty°K) [1] 290 [£] 1 [+] [G] { Tog; 10 (see F in decibels).

For an HP-35, replace ' log@ by
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HP-45:

(F, dB) 10 [£] 0% 1 [=] 290 (see T, in degrees
Kelvin).

HP-35:

(F, dB) 10 [£] 10 1 [=] 290 (see T, in degrees
Kelvin).

TEST CASE: F'=1.6 dB corresponds to 7,,,=129°K.

T,+290°K

~ 290°K

F4g=10log,,F.

A.10.2 Noise Voltage and Noise Current from a Resistor

This algorithm calculates the open-circuit noise voltage e, (RMS volts) or
the short-circuit noise current i, (RMS amperes) for an ideal resistor at
room temperature (290°K); B is the noise bandwidth in hertz and R is the
resistance in ohms (£2).

HP-45:

(B, Hz) (R, ) 1.6 20 Vxi  (seee,in
volts). .

(B, Ho) (R, ) [£] 1.6 20 Vxl  (seei,in
amperes).

For an HP-35, replace 'Vx ' by [Vx].

TEST CASE: R=1 k{2, B=20 kHz; get e¢,=0.566 uV or i,=0.566 nA.

The available power from the resistor is just

p—krB=L(&Vg(2)mkrs= 1 (3) =x(3).
e,>=4kTBR,

i>=4kTB/R,

where T is the temperature, taken to be 290°K, k is Boltzmann’s constant,
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1.380622x 1072 J/°K; thus 4kT=1.6015215x10"2° J. These are the
Nyquist formulas, and they are intimately related to the Rayleigh-Jeans
approximation to the Planck black body law (see Section A.9.5).

A.10.3 Noise Level in a Receiver

In a radio astronomy receiver or other chain of amplifiers, one needs to
know the noise level at various points in the chain to avoid saturation and
other problems. This algorithm calculates the noise power P, and the RMS
noise voltage e, given G (the total system gain in decibels to the point
where P, and ¢, are measured), T, the total system noise temperature in
degrees Kelvin referred to the input, B, the noise bandwidth in hertz, and

R, the characteristic impedance (resistance) in ohms.

HP-45:

(G, dB)l 10 [£] [6] {10% 138mm2X (Ty, °K) [X] (B,
Hz) [x (see P, in watts) (R, Q) [X Vx!  (see e, in volts).

For an HP-35, replace [10% by 10 and Vx! by [Vx].

TEST CASE: G =135 dB, T,,,=89°K, B=20 MHz, R=50 Q; get P,=0.777sys

W, and ¢,=6.23 V.

REFERENCE: See Section A.10.2.

A.10.4 Reactance and Impedance

These algorithms deal with various combinations of resistors (R in ohms),
capacitors (C in farads), and inductors (L in henrys). Thenf is a frequency
in hertz, X is a (capacitive or inductive) reactance in ohms, Z is the
magnitude of a (complex) impedance in ohms, and @ is its phase angle in
degrees. For such quantities as microfarads (uF) millihenrys (mH), and

megahertz (MHz), see Section A.1.3.

Capacitive reactance
HP-45: ]

(C,F)

[q]

{7[X] 2

[X]

(f, Ha) (see X in ohms),

(X, Q) 7] 2 (f, Hz) (see C in farads),

or

or

(X, Q) ir} 2 (C, F) (see f in hertz).
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HP-35:

(C, F) [] 2 (f, Hy) (see X in ohms),
or

X, @) [7] 2 (/, Hy) (see C in farads),
or

X, Q) [=] 2 (C, F) (see f in hertz).

Inductive reactance

HP-45:

(L, H) i} 2 (f, Ho) (see X in ohms),

X, i: [£] 2[5l (, Hp) [5]  (see L in henrys),

X,[6] in: [F] 2 [5] (L, H) [z]  (see f in hertz).

HP-35:

(L, H) [7] 2 (f, Hz) (see X in ohms),

X,[#] [5] 2 [£] (f, H2) [z]  (see L in henrys),

X,[7][£]2[5] (L, H) [£]  (see f in hertz).

R and C in series
HP-45: _

(C, F) [6] (= [x] 2 [chs] [X] (f, Hz) [X]
(R, Q) (see Z in ohms) (see @ in degrees).

or

or

or

or

R and C in parallel

HP-45: ]

(C,F) [G] ir; [x] 2 [cBs] [X] (f, Hz) [X]
(R, Q) [P (see Z in ohms) (see @ in
degrees).

R and L in series

HP-45: _
(L, H) [6] ix: [X] 2 [X] (f, Hp) [X]
(R, ) (see Z in ohms) (see @ in degrees).

R and L in parallel
HP-45:

(L, H) [6] {r} [X] 2 [X] (f, Ha) [X] [1/x] (R, @) [1/x] BB [1/x]
(see Z in ohms) (see @ in degrees).
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R, L, and C in series

HP-45:

(f, Hz) [G] =} [X] 2 [X] [1] (1] (L, B) [X] [x=22] (C, F) [X][0/x] []
(R, Q) (see Z in ohms) [x=y]  (see # in degrees).

R, L, and C in parallel

HP-45:

(f, Hz) [G] i} [X] 2 [X] [1] [0/x (L, H) [£] [x=2x] (C, F) [X] [=] (R,
Q) (see Z in ohms) (see @ in degrees).

Resonance (X-=X,)
HP-45:

(L, H) [1/x] (C, F) [ [6] vx ! [6] i} ] 2[z]  (see fin herta),

(f, Hz) [7: 2 (L, H) (see C in farads),
r

(f, Hz) [6] (7; [X] 2 [X] [*] (C, F) [X] [1/x]  (see L in henrys).

HP-35:

(L, H) (C, F) [2] [] =] 2 [=] (see f in hertz),

(f, Ho) [7] (L, H) (see C in farads),

(f, Hz) [7] (C, F) (see L in henrys).

or

o

or

or

TEST CASE: R=1 k), L=10 mH, and C=0.1 pF, all in parallel at 5033

Hz give 1 k{2 at 0 degrees—resonance.

A.10.5 Standard Resistors

A resistance calculated from a formula does not usually coincide in value
with a real resistor available from a vendor. Given R, an arbitrary
resistance in ohms, these algorithms give R, the nearest (or at least a near)
EIA-RETMA or military standard resistance value as displayed. Values of
M are from the tabulation following the algorithms.

For 1 or 2% standard values or military preferred values
HP-45 seTup: [G] 1 SCI: 2

L=

toor: R [o] {1oz} M [ [EEx] 9 (1 [EEx] 9 @ M [H [g]r--3

10~ (see R)) :|.
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For 5, 10, or 20% EIA-RETMA standard values
HP-45 SETUP: ' SCI ! 1

Loor: R[G]; log : M [X] [EEX] 9 [+] [EEX] 9 [] M [+] [1] [1]
02 [+] 180 [x] [sIN] [x*] 6 [X] [e7] 2 [EEX] 4 [£] [+]

3[-][6] 10 (see R) ;|- 

M

96 (military standard values) (MSV)
48
24 (military preferred values) (MPV)

24
12} (EIA-RETMA standard values)

6

 

|
o
=
R

N O
O

W
n

TEST CASE: R=58 ©, get R,=57.6 Q (1%), R,=59.0 @ (2%), R,=56.2 &
(MPV), R,=56 Q (5%), R,=56 © (10%), and R, =68  (20%).

A.10.6 American Wire Gauge

These algorithms relate g, the American Wire Gauge (B & S) number (but
use — 1 for 00, —2 for 000, — 3 for 0000, etc.) to d, the diameter of the wire

in mils (milli-inches), 4, the cross-sectional area in circular mils (the area
of a circle one mil in diameter), and r, the resistance of the wire in ohms

per foot.

HP-45:

g [1]13[+]39[x] 92 [x=y] [G] 1»*1 460 [x=y] [5]  (see d in mils)
(see A4 in circular mils).

A [G] Vx; 460 [x2y] [+] [n] 39 [X] 92 [ln] [5] 3 []  (see ).
460 (1] d 5] [1a] 92 (] [5]39 (X 3 [5]  (see 2).

For an HP-35, replace 1yby [x7], by [X], and Vx:

by [vx].

10 4 [£] (see r in ©/ft for annealed copper).
17 A [z]  (see r in &/ft for aluminum).

TEST CASE: g =14 (number 14 wire); get d=64.08 mils, 4 =4107 circular
mils, r=2.4%x10"3 Q/ft for copper or 4.1x1073 Q/ft for
aluminum.
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The formulas are

d= (460 mils)92~+8&)/39,

A=d? (no 7/4 because of the funny units).

As an approximation

d= lo(so—g)/zo’

which is a formula for voltage decibels, and

A=100-8)/10

which is a formula for power decibels. These approximate formulas can be
estimated without a calculator.
The formulas for r use 10 € circular mils/ft for copper and 17 € circular

mils/ft for aluminum, which are approximations for 68°F.

REFERENCES: CRC HCP, pp. F-159 to F-161; 65 Notes, VIN3P1.

A.10.7 Diodes and Resistors (Diodes as Nonlinear

Circuit Elements)

Semiconductor diodes are usually characterized by the “diode equation”

1102)).
In this equation, 7 is the current through the diode; V is the voltage across
the diode; I(T) is the “leakage current” as a function of 7, the absolute
temperature. Typically /,=3 pA=3X10"'> A for silicon diodes and
T=295°K. And g is the charge of an electron, ¢=1.6021917x10""
coulomb (C); k is Boltzmann’s constant, k=1.380622x 10~J/°K; and
m is the “m factor” of the diode, 1 < m <2, depending on the construction
and material of the diode. Usually m is nearer 1 than 2. Note that
q/(kT)=39/V and that U=¢q/(mkT) is 20/V<SU=<40/V. The “nomi-
nal” forward voltage drop across the diode is (—In/,)/ U, which is about
0.68 V forsilicon diodes. For reverse bias, V<0, a good approximation is
just I=—1(T); and for forward bias, ¥ >0, the —1 is usually negligible
SO we can write

I=I,exp(UV),
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or

VIHJU[X] [e]1,[xX]  (seel),

and

- In/—InJ,
U

or

I[m] I, [mn] [-]U[5] (see V).

These equations, however, are not adequate in all cases to characterize
real semiconductor diodes. Two principal problems are that m is not really
constant but varies with 7; and the bulk resistance, or an equivalent series

resistance, may not be negligible. If either of these refinements is added to
the model, finding 7 through the diode for a given applied V' becomes a
transcendental equation to solve by an iterative technique. A transcenden-
tal equation also results if one puts an external resistor R in series with the
diode D and needs to know I for a given V; or if one puts an external
resistor in parallel with the diode and needs to know V for a given 1.

This section contains iterative solutions for the transcendental equations
for four cases,

Case I: R and D in parallel.
Case II: R and D in series.

Case III: Two Rs and a D in series-parallel.
Case IV: Two Rs and a D in parallel-series.

as shown in Figure A.10.1. These iterative solutions are based on the g
method with g(x)= —f'(x), and this case is equivalent to the Newton-
Raphson method. The diode itself is characterized by the equations above
in their simplest form for forward bias, ' >0. All these algorithms are for

the HP-45.

Case I: R and D in parallel (Figure A.10.1).
Case Ia: Given V, find /.

This is the trivial case; just use / from the equation for the diode alone,
and add V/R:

VIOU ] 4 X =yl R [+ (see)).
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Figure A.10.1. Four circuits containing diodes and resistors. (a) Case I: R and D in
parallel. (b) Case Il: R and D in series. (c) Case lll: two Rs and a D in series-parallel.

(d) Case IV: two Rs and a D in parallel-series,

Case Ib: Given /, find V.

Case Ib, formula 1 (exponential form).

I= % + Iyexp(UV),

IR+ I,R(UV—1)exp(UV)

I,RUexp(UV ) +1
 F(V)=
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servp: R [1] [T 1 [X] [5T0] 3 3=5] I, [X] [cms) [§10] 2 U
sto] 1 [cHs] [X] [sTO] 4 V,

Loor: [rRer] [X] 1 [ (1] [ 11 (o] (M) (5] [Ren] [(X] 2 [ReL]
4] 3 2o (RX413 [5] (e V)1l

RULE: If IR<S(—Inly)/ U use this algorithm and guess V,=1IR.
TEST CASE: I=5mA=5%X10"3 A, R=100Q, U=39/V, I,=3><10"2A

get V., =0.5, 0480130171, 0.4720860921, 0.4712488631,
04712414768 04712414762 V.

 

 

  
  

Case Ib, formula 2 (logarithmic form).

UV=In(IR—V)—In(IyR),

(IR=V)[In(IV—-V)—In(I,R)]+V

F(v)= I+ U(IR-V)
 

serup: R [1] [1] 7 [x] [sT0] 1 [x2y] I, [X] [ln] [sTO] 2 U [sTO] 3
vg

Loop: [1] [chs] [ReL] [+] 1 [1] [in] [RCL] [-] 2 [x=y] [1] [RY]
][] Bzy) [ReL] [X] 31 [+] [5] (see V) ;.

RULE: If IR=(—Inly)/U, use this algorithm and guess V,=

TEST CASE: I=10 mA=10"2 A, R=100 @, U=39/V, I,=3%x10""2 A;
get V;=0.68, 0.543924139, 0.5422029833, 0.5422028108 V.

 

Case II: R and D in series (Figure A.10.1).

Case IIa: Given /, find V.

This is the trivial case; just use V' from the equation for the diode alone,
and add /R.

It ][]U] F=yIR[X][+]  (see V).

Case IIb: Given V, find /.

Case IIb, formula 1 (exponential form).

I=1I,exp(U(V—1IR)),

 

IUR+1F(I)= .
(1) UR+exp(IUR—UV)/I,
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SETUP: UlllelmVlm3lo-
STO

Loop: [RCL (1] [ReL] [=]3 [ [ReL] [X] 2 [ReL] [+] 1
EIIEE (see 1)) :|.

RULE: If V<S(—Inly))/U, use this algorithm and guess I, =
I,exp(UV'); however this one does not converge very fast,
especially for large R.

TEST CASE: R= 1009, V=0.5V, U=39/V, [,=3X10"12 A; get I.=
8x 1074 1.39x107% 2.64x107% 2.87x107% 2.875848819
X 1074, 2.875852387x 107 * A.

 

 

   

Case IIb, formula 2 (logarithmic form).

 

 

=Y In/—Inl,

"RUR

F(I (Inly+1+UV—InI)I

(1)= IUR+1

SETUP:ll [x] [st0] 2 [x2x] ¥V [x] I [In] [+] 1 [+]
o] 11,

LOOP: jl@-IMBIm@lN
H [ (see D) 1.

RULE: If V=(—Inl,)/ U, then use this algorithm and guess I, =(V'+

(Inly)/ U)/R.
TEST CASE: V=1V, R=100 Q, U=39/V, I,=3%x10"12 A; get ,=3X

1073, 4.55x 1073, 4.577968412 % 103, 4.577971889x 1073 A.

Case III: Two Rs and a D in series-parallel (Figure A.10.1).

Ip,=I,exp(UVp),

V,
I= —I,+ R, ,

V=V, +IR,,

Inl,—1Inl,
=T-
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Case IIIa: Given /, find V.

V' =1IR, +solution to Case Ib.
Case IIIb: Given V, find 1.

Case IIIb, formula 1 (exponential form).

V_ IRl

R, ~’
 I=Iyexp[U(V~—IR,)]+

(IUR,— UV)+(1+ UV) +exp(IUR,— UV)V/(I,R,)
 F(I)=

(written in this peculiar form because it yields a shorter algorithm).

setup: U [1] [t] V [st0] 3 [X] [sTO] 11 [+] [sTO] 2 [*=y] R, [1]
1] 1, [x] [sTo] [£] 3 [1/x] [sTO] 5 [cLx] R, [1] [RY] [#]
[sto] [x] 5 [Ri] [x] [sTO] 4 [1] [1] Z,
] [ren] (] 1 (1] (1] ] [Rei] [¥] 3 (3] [Rel] (3] 2
[xzy] [*] [ReL] [X] S [ReL] [+] 4 [5]  (see 1) :].

RULE: If VR,/(R,+ Ry))<(—Inl;)/ U, use this algorithm and guess
I=V/(R,+R,).

TEST CASE: V=15V, R;=200 L, R,=100 , U=39/V, [,=3X10""2 A;
get I, =5%1073 5.089299525x 1073, 5.116045258 X 1072,
5.117590627 X 1073, 5.117595119X 1073 A.

 

  

  
 

  
LOOP:

  

Case IIIb, formula 2 (logarithmic form).

InZy—In(Z(1+R,/R,)—V/R,)
UR, ’
 1 R,

F(I)=

UV+Inly—In[(I(R,+R,)=V)/R,|+1(R,+R,)/[I(R,+R,))~ V]

(R,+R,)/[I(R,+R,)—V]+UR, '

 

 

    

setup: I, [n] U [sT0] 3 V [1] [RY [X] [#] 1 [+] [x=y] [In] [=] R,
1] [RY] [mn] [+] [sTo] 1 [RY] [*x=2y] R, [sTO] [X] 3 [+]
xzy| [] [sT0] 2 [t] [1] I

roor: [x]1[=] [1/x][1] [1] [m][+] [RcL] [#] 1 [x=y] [RCL
2 [RcL] [+] 3 [5]  (seel) :|. 
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RULE: If VR,/(R,+ R))=(—1Inl,)/ U, use this algorithm and guess
L=(V+(nl)/U)/R,.

TEST CASE: V=25V, R;=200 Q, R,=100 @, U=39/V, I,=3X10"" A;
get 1,=9.1x1073 9.765883757x 1073, 9.794523778 X 107,
9.794547023 X 1073 A.

Case IV: Two Rs and a D in parallel-series (Figure A.10.1).

Ip=1Iexp(UV)),

1 +YI=Ip+ &,

V="V,+I,R,,

Inl,—Inl,
LT

Case IVa: Given V,find /.

I= TQV— + solution to Case IIb.
2

Case IVb: Given /, find V.

Case IVb, formula 1 (exponential form).

UVR,

R,

IR,exp(UIR,— UV— UVR,/R,)— I,R,+ UVI,(R,+R,)
 

 

 

F(V)=
) exp(UIR,— UV— UVR,/R,)+ Ul, (R, + R;)

setup: I, [1/x ] [sT0] 2 [CHS] [STO] 4 R, [sTO] [=] 4 R,
I[sto] [X] 2 [X] U [x=y El

 
Loor: [x] 1 [1]
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RULE: If IR,S(—Inly)/ U, use this algorithm and guess V,=IR,.
TEST CASE: I=5 mA=5%x10"3 A, R,=100 @, R,=200 , U= 39/V,

I,=3%x10""2 A; get V,=0.5, 0492207442, 0.486832915,
0.485043932, 0.4849055156, 0.4849047923 V.

Case IVb, formula 2 (logarithmic form).

In(/R,— V') —In(IyR VR_ (R~ V)=In(loRy)VR
  

 

 

 
 

U " "R,

ooy [In(IR,— V) ~In(IR,)+ IR, U~1](IR,— V) + IR,

(V)= 1+ U(1+R,/R,)(IR,— V) ‘

SETUP: | R, [1] [RY [x]U[sTO] 3 [X][sTO ]I |CLX|_I_22-
st0] 2 [Ri] [+] [x=»] [£] [sT0] [X] 3 [G] |LASTX’

IO@IEEBIV
roor: [] 1] [1) [n] [kew] [2] 1 (] [reL B2 =2 &g

|XI3[ [ (see V)l

RULE: If IR,<(—Inly)/U, use this algorithm and guess V,=
IR\R,/(R,+ Rz)or V,=IR,—(Inly)/ U whicheveris smaller

TEST CASE: I=10mA=10"2A, R 200(2 R,=100 @, U=39/V, I,=
X 1072 A; get V,=0.67, 0.840195155, O.838496303
0.8384958477 V.

RULE OF RULES: If it is borderline between formula 1 and formula 2 (any
case), prefer formula 2 (logarithmic form).

A.11 TRIGONOMETRY AND COORDINATE SYSTEMS

A.11.1 Trigonometry Notes

There are essentially five cases to solve in plane trigonometry and a sixth
case in spherical trigonometry. These cases can be classified by the given
quantities: two sides and the included angle (SAS for side-angle-side), two

angles and the included side (ASA), two sides and an opposite angle
(SSA), two angles and an opposite side (AAS), and three sides (SSS). In

spherical trigonometry one can also solve a triangle given three angles
(AAA). In one case (SSA) there are usually two solutions—two triangles
with the given parameters. In spherical trigonometry, the AAS case also
usually has two solutions.
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Section A.11.2 contains complete solutions (i.e., the three unknowns can
be found) for the five cases of plane (oblique) triangles. Section A.11.3
contains incomplete solutions (i.e., only one or two unknowns can be
found) for the six cases of spherical triangles. A complete spherical triangle
solution then requires two of these algorithms, or two applications of an
algorithm with different parameters.

A.11.2 Plane (Oblique) Triangles

Angles A, B, and C are in the units for which the calculator is set; a, b,

and ¢ are the opposite sides. The following algorithms are all for the
HP-45.

Given a, b, C, find A, B, c: SAS.

Cbn&amE]- (see c) [RI]  (see B) [+]
cos [cHs 1COS~11  (see A).
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[733 x2y] [RY] 1G] 5R [RY [x2r] [RI [5]  (see
.S

K
~

C [1] [1] B [+] [cos] [cHs] [G] {cos™!;  (see 4) 1 [G] R [1]
RIU[RY [x=y] a[G] SR[RY] [x=y] [5]  (seec) [X] [+]  (see b).

BchlLKfifiT?f [Ri] [G] {SINZT}  (see C;
if C> B, then C'=180°—C is also a possible solution. To get C':

cos)[Cris] [G) [C0S7}  (see C), then go om) [1]
Gl (05} (sec A or 4) [514] [x2r] [siN] 5] (see a or
a’).

 

 

 

aCElizli‘leE..--b-
[-]12[5] [6] icos~1: [SIN] [X] 2 [z]  (see area). 
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Given a, b, C, find area.

C[siIN]Ja[x]b[x]2[5] (see area).

Given q, B, C, find area.

B [1] [sin] € [1] [RY [sIN] [X] a [xzy] [RY] [RY [+] [s1N] 5]
2 [£] (see area).

Given three vertices, (x,,y), (x2,¥,), (x3,3), find area.

szIysl-B x] [xzx]p, [2] [6] LASTX: [RY] [RY]
[l ] 2ol o X ] 2 (2] (see area).

 

TEST CASE: A =30°, B=45°, C=105° a=50, 6=70.71, ¢c=96.59, area=

1707.53.

REFERENCES: CRC SMT, p. 236; HP-45 Applications Book, pp. 190-198;

HP-21 Applications Book, pp. 37-48; or any trigonometry
book.

A.11.3 Spherical Triangles

Call 4, B, and C the angles, and a, b, and ¢ the opposite sides, all in the

units for which the calculator is set, and in the range 0 to 180° or the
equivalent; R is the radius of the sphere. The following algorithms are all
for the HP-45.

Given a, b, C, find A4, c: SAS.

 

  

..@C_[—}Eb
X2| x2y] [6] SR [RI] G [RI]  (see 4) [RY] [Ri] [P
xzy (see ¢)   

 

   

   

 
a [1] [siN] b [1] [RY] [siN] [=] [RY] [+] 2 [+] [1] [cos] [RY] []

Ry [Re] [+] B [1] [sIN] [Ry] [RY] [Re] [X] [SIN_T
(see A) (A’=180°— A is another possible solution. To get A”: [ COS|

{COS™!] (see A) then go on) 2 [£] (]
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Given A, B, b, find a, c: AAS.

A1) [siv] 8 [ [RY [51N] (& ®I) (]2 ] @1] [cos] [Ry] [-]
mj-Eblm---Efl(SNT
(see a) (a’=180° —a is another possible solution. To get a’: [ COS

1C0S7!} (see @), then go on) 2 [£] (6]
{TAN"1} 2 (see ¢ or ¢').

 

 

Given a, b, c, findC SSS.

a[11[6 5Rb[1][sIN] [RY] [cos] [x] ¢ [cos] [xz»] [-] [£]
X] [1/x] [G](cos1} (see C).

Given A4, B, C, find c: AAA.

Allf_%i_i__Bfl C [cos] [+] [=] [X]
1CosTi (see c).

Given A, B, C; find solid angle { and area.

A]B+]C[+] 1 [cns][G] {cos™ i [z] 1 [ [G] in} [X]  (see
€ in steradians) R (see area in (units of R)?).

Right-angled spherical triangles

For the special case C=90°, and assuming that all sides and angles are less
than 180°, the spherical triangle formulas are simpler.

Givena, b (C=90°), find 4, B, ¢: $90S.
a [TAN] [x2y] [cos] b [cos] [X] 1COS~': (see ¢)

[z] icos?!}  (see B) [sIN] [xzy] [cos]
cos-'i  (see A).
L eaanaa El

 

 

Given a, B, (C=90°), find 4, b, c: AS%0.

B [cos] [xzy] [SIN] a [Cos] [x] [G]:COST} (see A)
[£] 1COS~': © (seeb) [G] icos~i}  (see o).

Given g, ¢ (C=90°), find 4, B, b: SS90.

a c _E El_!___l[G] iCos=!]  (see B) [sIN][Ri]
[cos] [X] (o8~}  (see 4) [siN] [2] [G] [cos-']

(see b).

 

 

Given A4, ¢ (C=90_°_) find B, a, b: 90AS.

c [1] 1 [q6] =K 4 [1] [Ri] [cos] [] Rl  (see b) [COS]
[x=y] [siN] [X] [G] {cos™! : (see B) [Ri] [cos] [¥] [G] [cos~!:

(see a).
 Q O “
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Given 4, a (C=90°), find B, b, c: A90S.

a [1] [cos] [xzp] o] 4 () [0 R0 [ @ {887
(s_e_q_c_)_ [cos] [x=y] [&] [6] [cos’’] (see b) [cos][x] [c]
1COS~1 (see B).

The alternative solution for this case is B’=180°— B, b'=180°—b, and

¢’=180°—c.

 

Given 4, B (C=90‘i)_, find a, b, c: AA?Q ______

4 [1]1[c] R B [t] 1 [6]R [RY [=] [T [RY [6] [cosi}
(see a) =] 1Cos~1;  (see b) [RI] [x] [] [Cos~!:
(seec).

TEST CASE: A =60°, B=100°, C=90°, a=59°49, b=101°57, ¢=95284,

2=1.22sr.

REFERENCES: A good discussion of spherical trigonometry is in Smart
(1962), Chapter 1. The “trick” in the SAS and ASA algo-
rithms is from Figure 6 (p. 13) in Smart (1962) and the
associated discussion. I thank George Rybicki (private com-
munication) for his suggestions. See also CRC SMT,p. 238
or CRC HTM, p. 299.

A.11.4 Coordinate Translation and Rotation

This algorithm uses x and y, the coordinates of a point in an ordinary
Cartesian reference frame, to calculate x’ and y’, the coordinates of the
point in a new reference frame specified by x, and y,, the origin of the new
frame in the old coordinates, and by «, the angle of rotation in degrees
(positive counterclockwise) of the new frame with respect to the old. See
Section 2.3.2 and especially Figure 2.3.1.

HP-45:

y [ yo 5] x [1] %o [2] BBl [x20] o [F] [x22] [G] DR (see X))
(see ).

HP-35:

y [t]yo [5]  (see y —yo; note sign) x xo (=] [1]
] (if y —y<0: [cHS] [1]) &

-] [RCL] (see x) [x2] (see
Y).

TEST CASE: x=6,y=5, x,=2,y,=3, a=18°; get x'=4.42, y'=0.67.

 
  

REFERENCE: Section 2.3.2.
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2

 

 

Figure A.11.1 Spherical and rectangular coordinates.

A.11.5 Spherical<Rectangular Coordinates

HP-45:

y [l x A z 5B (seep) [RI]  (see ¢) [RI]  (see ).
¢ [1]p[c] GR  (eez) x2r] 0 [x2y] DR (see x) [x2)]

(see p).

TEST CASE: x=3,y=4,z=12, p=13, $=22762, §=53"13.

REFERENCES: CRC SMT,p. 385; CRC HTM, p. 513.

A.12 MONEY WITH INTEREST

The following algorithms deal with money invested or borrowed, with
interest. The interest rate for a single interest period is i, expressed as a
decimal fraction (i.e., 0.09 rather than 9%). Alternatively, key i in %
followed by 2. Then P is the principal or present value (alias
PV), S is the sum or future value (alias FV'), and R is a single payment
(alias PMT) in a series of n equal payments made at the end of each of the
n interest periods. There are three cases: SPin, in which a payment or
money transfer is made at the beginning (P) and end (S) of the time;
SRin, in which n payments of R are made through the time and S at the
end; and PRin, in which n payments of R are made through the time and



A.12 Money with Interest 285

P at the beginning. The SRin and PRin cases are called ordinary annuities.
All these algorithms apply to interest compounded at the end of each of

the n periods. For simple interest, set n=1 in the SPin case. For interest
compounded continuously, replace i in the algorithms below by i’, where

ile1[=]  (seei),

or

i [1]1 (see i).

Thus i’ is the effective period rate if i is compounded continuously.

SPin case
Given P, i, n, find S (single-payment compound amount factor).

HP-45:i 1 n[G] IyP (see S).
HP-35:i 1 n [x=y] P (see S).

Given S, i, n, find P (single-payment present worth factor).

HP-45: i [1] 1 El D [1/x]S[X]  (see P).
HP-35: i [1] 1 xzy| @] [1/x] S [X]  (see P).

Given S, P, n, find i. .

HP-45: S.PE:In[l/x [G] Iy 1 [=]  (seei).
HP-35:n [1/x] S P 1 [-] (see i).

 

 

 

Given S, P, i, find n.

=]

HP-450or HP-35: S[1] P[] [m] i 1] 1 [+] [n] [5]  (see n).

SRin case
Given R, i, n, find S (equal-payment-series compound amount factor)
(alias future value of an ordinary annuity).

HP-45: i [1] 1 [+] n[G] y* 1 [2] x=y] [2] R[X] (see S).
HP-35: i [1] (1] 1 [ n [x20][ 1 ) x2o] ) R[] Gsee ).

Given S, i, n, find R (equal-payment-series sinking fund factor).
HP45:i [t][t]1[+]n[c] iy~ 1[-] [5] S[X] (see R).
HP-35:i1nx2y|fl1E)E|S- (see R).

Given S, R, i, find n.

HP-45 or HP-35: i [1] [1] S [X] R [£] 1 [+] [1n] [x=»] 1 [#] [1n] [£]
(see n).

(To solve for i, see below.)
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PRin case
Given P, i, n, find R (equal—payment-serles capital recovery factor).

HP-45: 1.. [1]1 [+] n [G] (% 1E|E].P. (see R).
HP35: i [ [ 1 HnbA THEH PR (see R).

Given R,i, n, find P (equal-payment-series present worth factor)
(alias present valueof an ordlnary annult

HP-45: i [1] [t] [1]

1

[+] n [G] (7]IE]BI-RI
(seeP).

HP-35: i [0 ] [ 1 [ x22] @1 1 3 [E E O] R [X]
(see P).

Given P, R, i, find n.

HP-45 or HP-35: R [1] P[] 1] i [1] -] [£] 1

[n] [£]  (see n).
(To solve for i, see below.)

The equation for i in the SRin and PRin cases is a transcendental
equation and can be solved using some iterative technique. Each cycle
through the loop below gives an improved approximation for the interest
rate i. Three or four cycles usually give an approximation good to three or
four significant figures. The .1 at the end of the setup is a first guess at i; if
a better first guess is known, use it in place of the .1.

Given S, R, n, find i.

HP-45 setup: S [1] R [=] n [1] [1/x] 1 [x=y] [-] [sTO] 1 [CLX] [+]

=] [sT0]
[¥] [1] [R 1 [7] =2] 1 [ [Ren] 1 6] 5% [
G] (LasTx: [ROL] [-]2[5]  (see i):|-

HP-35 setup: S [t] R [£] [sTO] .1

Loor: [RCL] [X] [t] [1] 1 [+]n [1/x] 1 [x2y] [-] [1] [RY]1
IME[E‘

 

LOOP:  
 

 

      

Given P, R, n, find i.
HP-45 setup: P [1] R [z] [sTOo] 1 n [sTO] 21 [+] [sTO] 3 .1

LOOP: [RCL 3 xzy]1 RCL] 3 iy*

G] (LASTX] [RCL] 1[RCL] [Z]2[]  (see i):|.
HP-35 setup: P [1] R STO .1 (and mentally calculate n+ 1 for later

use)

 
 

 ) [+
] Q oo “
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roor: [1] [t]1[+] (n+1) [1] [RY] [x2x] [2] [1] [RI] [Ri] [X] [-]
L Bzy] [ReL] ] n [ 2] (see d)<.

TEST CASE: P =§2000, R=9%311.64, n=10, i=0.09, S=%$4734.73.

REFERENCES: Section 3.6; Thuesen (1950); CRC SMT,p. 634.

A.13 MISCELLANEOUS

A.13.1 Musical Scale

In common use today is the equal-tempered chromatic musical scale from
the standard concert pitch of A,=440 Hz. The 12 tones of each octave are
equally spaced (tempered) in log space. The following algorithms convert
from a note in standard notation to a frequency f in hertz, or from f to the
(nearest) note; V is the octave number in the standard scheme; middle C

begins octave number 4, and N is the note number from the following
tabulation.

1 ER 8 |9 |10]11 |12

c |ct ]D]Eb|E|F|F# | G | Gf |A | B| B
 

HP-45: N[1] 22 [F] 12 [z] V [+] 2 [x=y] [G] (»*1 55 [x]  (seef
in hertz).

HP-35: N 22 [0 12 5] V 2 55 (see f in hertz).
HP-45 ONLY: 6

ErTHER: f[1] 55 (5] [In] 2 [n] [5] 43 [1] 24 [5] [+]  (see V as
integer part of display) V (i.e., key V back in) [-] 12 .5

(see N; if N is not an integer, f falls in the crack

between notes; the nearest note is N rounded to an integer.)

TEST CASE: A, (N=10, V=4); f=440 Hz.

S/ N—-22
10g2(§)= V+ —12— .

REFERENCE: CRC HCP, p. E-48.
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A.13.2 Salilboat Speeds

The skipper of a sailboat beating to windward often needs to know S, the
speed made good to windward, that is, the component of the sailboat’s
velocity directly to windward. From the boat, the skipper can measure 8,
the angle (in degrees) of the apparent wind with respect to the bow of the
boat; v,,, the speed of the apparent wind with respect to the boat; and v,
the speed of the boat through the water. Assume no currents and no
leeway. Then the algorithm below calculates S and v,, the speed of the
wind over the water and ¢, the angle (in degrees) between the boat’s course
and the true wind. The units of S and the vs are arbitrary but all the same.

HP-45:

0vwbl =R o, [1] R [2] BB (see v,) [RI]  (see ¢)
(see S).

TEST CASE: 6=28°, v,,=17 knots, v,=9 knots, get v, =9.99 knots, ¢p=
53202, and S'=5.41 knots (which is a pretty hot sailboat!).

REFERENCE: Texas Instruments SR-50 instruction booklet, p. 39.

A.13.3 Stopwatch (Timer) on the HP-45

Some HP-45s have an arcane stopwatch or timer. The format of the
display in stopwatch modeis

HH.MM SS ASS
\,\./~/ .

optional

The timer is not very precise (typically +10%) because it is based on a
free-running metal oxide semiconductor (MOS) clock. Presumably this is
why Hewlett-Packard is officially unaware of the timer’s existence. The
timer in the HP-55 is very similar but much more precise.
A legal time number < 14" in HH.MMSS_SS format in the display on

entering stopwatch mode will be converted to timer display format. The
timer runs only to 12 hours; the next hour after 12 is 1. The numbers
originally in Y, Z, and T are preserved if the exit from stopwatch modeis
by [-], but if the exit is by [1], then

t T
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CHS

Into stopwatch mode:

(ie. , press [RCL ], then [CHS ], and all three simultaneously).

While in stopwatch mode:
Start timer: CHS |.
Stop timer and store time in LASTX (alias split 0): or B+].
Reset timer (i.e., clear display): [CLX].
Eliminate 1/100 second display: EEX].
Restore 1,/100 second display: EEX |.
Store a split: any number key 1 through 9 (timer running).
(The format of the stored number is very peculiar, namely
0.HHMMOSSO0E_SS, unless converted by [- below.)
Recall time when timer was stopped: O.
Recall a split: any number key 1 through 9. (For both these recalls the

timer must not be running and the split must not have been con-
verted by [- below.)

Out of stopwatch mode into calculator mode: [1].
Out of stopwatch mode into calculator mode and convert display

and all splits and LASTX into the format HH.MMSS_SS: [-].
I thank Charles V. Briggs, III (private communication) for pointing out

the stopwatch mode to me. See also 65 Notes, V3N8PS.

A.13.4 Temperature Conversions

(T,
(T,
(T,
(T,
(T,
(T,
(T,
(T,
(T,
(T,
(T,
(T,

°C) 1.8 32 (see T, °F).
°F) 32 [-] 1.8 [£]  (see T, °C).
°C) 273.15 (see T, °K).
°K) 273.15 0] (see T, °C).
°F) 459.67 1.8 [Z]  (see T, °K)
°K) 1.8 459.67 [-]  (see T, °F)
°C) 273.15 1.8 (see T, °R).
°R) 1.8 [5] 273.15 ] (see T, °C).
°K) 1.8 (see T, °R).
°R) 1.8 [z]  (see T, °K).
°F) 459.67 (see T, °R).
°R) 459.67 0]  (see T, °F).

TEST CASE: T=68°F=20°C=293.15°K =527.67°R.
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A.13.5 Weather

When two Englishmen meet, their first talk is of the weather.

—Samuel Johnson (1709-1784)

Everybody talks about the weather, but nobody does anything aboutit.

—attributed to Mark Twain (1835-1910)

The Tetens equation (as quoted in Haurwitz, 1941, p. 9), is a good
approximation relating the equilibrium (or saturation) partial pressure e,
of water vapor, to the temperature 7.

HP-45:
(T, °C) [1] [1] 236.87 [+] [£] 7.49 [¥] [G] (10~} 4.579 [X] (see e, In
millimeters of mercury).

Change the preceding constant from 4.579 to 6.105, then see e, in
millibars.

The relative humidity f (expressed as a decimal fraction, not as a
percentage) is the ratio of the amount of water vapor in the air to the
amount of water vapor that the air could have if saturated at the same 7.
Thus f is also the ratio of the actual water vapor pressure to the saturation
water vapor pressure at the same 7. The dew point 7', is the temperature
at which the actual water vapor pressure would equal the saturation vapor
pressure, or f would equal unity. If the actual temperature reaches the dew
point (T'=T)), fog forms (f=1).

HP-45:

(T, °C) 1] 236.87 [sT0] 4 [+] [£] (f) [G] [ Tog: 7.49 [=] [+]
Bm4|:|l/x| (see Tp, °C).

(Tp, °C) [1] [1] 236.87[sTO 4 EE T °C)IIE4I
[<] 2] 749 [x] [G] 107 (see f).

To convert the preceding algorithms to the HP-35, change [G] 10%: to 10
[»], [G] I Jog to , and delete 4 after and [RCL].

A psychrometer is a device for measuring humidity employing two
thermometers. The bulb of one thermometer is kept wet with water, and
the air in contact with the wet bulb is at the dew point. But since this air
was cooled by addition of water, the temperature 7,, of the wet bulb in a
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psychrometer is not the same as T,. The “psychrometer equation” (see,
e.g., Humphreys, 1940, p. 15) gives f from 7, and 7. There is also a weak
dependence on P, the atmospheric pressure; for approximate values, use
P=742.7 mm Hg.

HP-45:

(T,, °C) [1] [1] [1] 236.87 ST01E|1b'XIxy
(T°C) [s10] 2 [-] [1] [1] 870 [=] |
(=] [reL] 2 [1] [1] [ReL] 1 [2] 7.

HP-35:

(T, °C) [1] [1] [1] 236.87 [+] [+] 749 10 [] [x=x] (T, °C)
sto] (=] [1] (1] 870 [5] 1 [ [X] 6 (P, mm Hg) [x] [-]
RCL| [RCL] 236.87 [+] [£] 7.49 [x] 10 [»’] [z]  (see f).

The constants in all the preceding algorithms are for vapor over liquid
water. For ice instead, change 236.87 to 270.8 and change 7.49 to 9.67.
With this change, the psychrometer equation works with ice on the wet
bulb.

TEST CASE: T=30°C, T,=23°C, T,=20°C, P=750 mm Hg, f=0.55,

water vapor pressure=17.5 mm Hg.

 

 

@
E

 

   

The wind-chill temperature* is the equivalent temperature that would
produce, on a calm day, the same heat loss from exposed human skin (at
about 90°F) as is produced by the existing temperature and wind. The heat
loss due to wind is approximately proportional to Vv or v%62? (see Conrad
and Pollak, 1950, p. 195), where v is the wind speed. However the currently
popular wind-chill charts take the heat loss to be proportionalto log(v/v),
where v, is a wind speed below which there is no additional heat loss due
to the wind; v, is 4 to 5 mph.

In the algorithm below, AT is the depression of the effective temperature
due to the wind; that is, AT is the difference between the actual tempera-

ture and the wind-chill temperature.

HP-45:

634 [1] [1] (v, mph) [G] { Tog_; [-] X] (T, °F) [1] 90 [=] [X]  (see
AT in Fahrenheit degrees)
For an HP-35, change [G i to log |.

TEST CASE: v=20 mph, T=15°F, get AT=32 F°; thus it feels like

—17 °F.

*It is not a wind-chill factor because one does not multiply anything by it.
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The temperature-humidity index (7HI) is a measure of summer discom-
fort. Most people are uncomfortable for THI >80°F and somewhat un-
comfortable for 75°F < THI <80°F.

(T,, °F) (T, °F) 4 15 (see THI in degrees Fahrenheit).

TEST CASE: T,,=68°F, T=77°F; get THI="13°F.

See Section A.13.4 to convert temperatures from Celsius to Fahrenheit,
and vice versa.

REFERENCES: Humphreys (1940), Chapter 1; Conrad and Pollack
(1950), pp. 195 ff; Haurwitz (1941), Chapter 1; CRC
HCP, pages D-179 to D-181 and E-44 to E-45.
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Answers to Exercises

To find the solution of a problem by our own means is a discovery. If the problem

is not difficult, the discovery is not so momentous, but it is a discovery neverthe-

less. Having made some discovery, however modest, we should notfail to inquire

whether there is something more behind it, we should not miss the possibilities

opened up by the new result, we should try to use again the precedure used.

Exploit your success! Can you use the result, or the method, for some other

problem?*

—George Polya (1887- )

Round numbers are always false.

—Samuel Johnson (1709-1784)

Each answer in this appendix has the same number as the corresponding
exercise, but with a B prefix. Thus B.3.7.2 is the answer to exercise number
3.7.2, which i1s the second exercise in Section 3.7.

Even though one would normally round off, many of the numerical
answers in this appendix are given to the full calculator accuracy as a
check on computing techniques.

*From Pdlya (1973), pp. 64-65.

293
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B.1.5.1

B.1.5.2

B.1.53

B.1.54

B.1.55

B.1.5.6

B.1.5.7

B.15.8

  
(a) x=y]|, |CHS |, and 1/x provided x #0,
(b) [cLx], [cLr], [-], [EEX], [sTO], [ FIX], and any prefix or
shift keys. On a calculator that needs a register number after
RCL |, then is also such a key. On a calculator with
STO or [ RCL ] arithmetic, the arithmetic keys [+], [=], [X], and
=] following or are also such keys. There are
other special cases, for example, when X contains zero.

(a) [+], ®) [X], (o) [X], (@) [X], (&) [=]-
(@) 243, (b)) A(A%+1), (c) AHA+1), (d) AQ—A), (e) A(1-2A),

(N) 1/(1-4), (2) 3.
107 19% 7% 12740 kmXx(10° mm/km)=4 mm, or 107> X(10°
mm/km)= 10 mm.

SF=17.072, DD =6.575.

(355/113 — 7) X 12740 km X (10> m/km)=3 m.

Using the Pythagorean theorem, the height of the buckled track
at its center would be

  

        

 

 

  
 

2

W= (2640+ % ft) — (2640 f1)?,

since there are 2640 feet in a half-mile and 0.5 inch expansion in
the half-mile up to the peak of the buckle. Then h=14.8 feet!
Railroads avoid this problem by having expansion joints be-
tween segments of the rails, or by forcing the rails to flex in
compression.

If the numbers are ¢, then

¢, =1/(¢,—n),

where n is an integer. Then

bn—nd, =1,

or

g =ntVnitd
n 2 °

Only the plus sign on the radical will do (why?). Thus ¢,=
1.618033989 (the golden ratio), ¢, = 2.414213562, ¢, =
3.302775638, ¢,=4.236067977, and so on.



B.1.5.9

B.1.5.10

B.1.5.11

B.1.5.12

B.1.5.13

B.2.7.1
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The regular continued fraction expansion of these numbers

1s interesting; it is

¢l=l+/l,1’la”°/a

=2+4/2,2,2,--/,

¢;=3+/3,3,3,--- /, etc.

(a) 0.11 inch, () 0.030 inch, (c¢) 107.5 feet, (d) 3.3 inches, (e)
5500 miles (!), (f) approximately 865,000 miles/93,000,000 miles
X 180°/7 =0°53, (g) approximately 2160 miles/239,000 miles X
180° /7 =0°52.
Because the last two numbers are so nearly equal, we are able to
see both total and annular eclipses of the sun. The astronomical
numbers are from Allen (1973).

(a) 2% —1=1.844674407 X 10" grains. (b) About 3,159,091 miles
(13 times the distance to the moon).

In($6.95/$0.99)/200= 1%.

From the “Sun Ephemeris” with day number=117, GMT=T7"
(there are about 5 hours between Boston and Greenwich, but
this number does not matter much), get §=13°35 and then
elevation=61°15". Thus the tower is (93 feet)tan(elevation)=
169.5 feet tall. For any time other than local noon, calculate the

sidereal time, hour angle, and elevation from the appropriate
routines in Section A.7.

(a) About 4.7 s/mile. This is useful for estimating the distance
to lightning by timing the delay to the associated thunder. (b)
About 5.4 us/mile or about one ft/ns.
(¢) 231 cubic inches per gallon (exactly—why?). (d) Approxi-
mately 1000 fluid ounces per cubic foot.

(@) INITIALIZE:
LOOP: X, x2y

Vi x2y] |
CODA: (see Xx;) [x=y (see 2 y))

(b) INITIALIZE: |CLR

LOOP: X,

l1

CODA: (see 2X;)
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B.2.73

B.2.7.4

B.2.7.5

B.2.7.6
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(Package price, $)
(Contents, oz, |b, etc.)

(see unit price: $/o0z, $/Ib, etc.)  
 

  
     (see subtotal)

   

  
see total $

Figure B.2.1

(a1+1b,)(a2+1b2) u+iv,

by a) 5B [
b az--ll-- (see u)
[x=y]  (see v).

=u+iv,

N -

 

a,+ib,

b, a; [P= I

b, [1 azflmm-El.--EllL_E
(see u) [x (see v).

1
=u+iv,

+iba+

b [chs] [1]
a GP [1/x] [G] GR (see u) (see v).
(a+1b)2—u+zv,

b[1]a GH [xzy] 2 [X] [x2y] [2] [6] 5K (see w) [x=»]
(see v).
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The first one (ABCD) is, of course, no operation. The other four
rearrangements each require eight keystrokes (and these are the
only four rearrangements that do). Assume that the /last
keystroke is, say, [Rl], undo it, and look up the result in the
table. For example, if we have BADD, we can get ADDB with a
[R{]. But since BADD is in the table, we have

ADDB [xzy] [R{] [R{] [RI] [1] [RY] [RY] [RY].
BADA x=zy] [cLx] [-] [RU] [RI][RY] [x=»], or [RI] [xZ=»]

| xzy| [RI].

BADB [Ri] [RY] [cLx] [] [x=»], or [RY] [RY]

DADB [x=y|

There are other possibilities also.

Using almost any RPN calculator,

&

 

    

SETUP: | T

LOOP: (see the next number) :|.

Or, using the HP-45,

serup: 1 [1] [1] [#]  (see the first number)
LOOP: 'LASTX! (see the next number) :|.

Each Fibonacci number is the sum of the preceding two. The
sequence is 2,3,5,8,13,21,34,55,89, 144,233,377 (at a year).

REFERENCES: HP-35 Math Pac, p. 719; HP-45 Applications Book,

p. 113; Knuth (1973), Vol. I, p. 78.

 

 

(octal) (decimal)

43172 = 18042
43172 = 4.40478 51563

431.72 = 281.90625

(Do it in two parts and add them up.)

(hexadecimal) (decimal)

AE19C2 = 11409858
FDA7.CB5 = 64935.7941894531

(binary) (decimal)
 

1101011011101
1011001.1110101101

6877
89.91894 53125
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B.2.7.10

B.2.7.11

B.2.7.12

(a) t a (see v) 2 [5]  (see s).
(b) s=282.24 ft, v=134.4 ft/s.

These answers are imprecise because air resistance cannot be

neglected after 2 or 3 seconds.

Definition:

HP-45 SETUP: [G] !CLEAR!
LOOP: | 1/x| - (Check: If display is n+1, go

tocoda) :|
CODA: (see H).

Approximation: m(/x| [1] [1] 7] 120 [5] [X] 12 [1/x]m [-]
.2 [1/x] [+] [X] .5772156649 [x=vy]

[[]  (see =H,).

 

 

 

n “Exact” H, =H, —log,ol¢|

1 1. 1.002215665 2.65

2 1.5 1.500050345 4.30

3 1.833333333 1.833338242 5.31

4 2.083333333 2.083334245 6.04

5 2.283333333 2.283333577 6.61

6 2.45 2.450000083 7.08

7 2.592857143 2.592857176 7.48

8 2.717857143 2.717857158 7.82

9 2.828968254 2.828968261 8.15

10 2.928968254 2.928968258 8.40

REFERENCES: Knuth (1973), Vol. I, pp. 73-74; HP-45 Applica-
tions Book, p. 121.

HP-35 or HP-21:
i [1] [1] r [+] [sT0] [] [+], [t] [SIN] [RCL] [SIN
=] [x=] [TaN] [ReL] [TaN] [+] [+] 2 [£]

(see R).
Or for an HP-21 only, replace the first part of this algorithm, up
to the comma, with

i [sT0] r [V] {M+|

 

 

  

B.2.7.13 HP-45 serup: [G] !CLEAR: x [G] icos~': [1] [1] [1] [cLx]
=+]

LOOP: 5n {y7} [z] (Check:
Is display 7, if so, go to coda.) :|

CODA: (see sum).
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The sequence n ty*1 in the loop can be omitted for n=1,
replaced by for n=2, and replaced by for n=4.
With x=0.5 and n=1 get 0.05833333333 (the precise value of
the infinite series is 0), and n=2, get 0.2804166670 (the precise
value is 0.2741556780), and n=4 get 0.4560228011 (the precise
value is 0.4559787700).

REFERENCES: Section A.5.6; and HMF 27.8.6.

HP-35:

x [1] [+]y [s10] [=] [1] [t] [t] [X] 1 [+] [vx] (1] [RY] [+
[n] [x2y] [] [+] [RCL] [X]  (see s).

HP-21:

(Select RAD mode) R d [] {cos:!;
ON] [ X X2[2] (see 4).

I do not know of a strictly shorter algorithm (nine steps total),
but at the expense of more total steps (14), the following algo-
rithm has fewer steps in the loop (four rather than five), and thus
takes slightly less time for large arguments.

[sto] 11 [cas] [1] [1] [1] [ReL] 1 [+] [g] {x=0] [GTO]
13 1 [cTo] 08 [RCL] 1 [GTO] 00.

AT+ B+y/L

A/B/+/.

D1C—-6+A4A+B+2~+.

A8.

ATB | .

x [1] [1] [1] 21 [+] [x] 157 [+] [x] 409 [+] [sTO] [CLX] 2 [X]
45 [+] [x] 381 [+] [x] 1353 [+] [X] 1511 [+] [RcL] [5] (42
keystrokes plus data).
The after [ STO | can be omitted on an HP-35 (why?).

x [T [ [1]9[+] 8 [x=2x] [£] 7 [+] [+] 6 [x2x] [:] 5 [+] [+] 4
[=] 3 +] (24 keystrokes plus data).

For x=2, get 7.525153374. This example is from Fike (1968), p.
144.

(@) 3[1]7[x]2[+]24[x]9[+]60[x]22 [+] 60 18 [+]
(see 2,020,938 seconds).
(b) 18[1]60[=]22[+]60[x]9[+]24 (=] 2[+] 7[=] 3 [+]
(see 3.341498016 weeks).
These are called mixed-radix numbers; life contains all too

many of them.

1/(e—1)=/1,1,2,1,1,4,1,1,6,1,1,8,- - - /. Whence this pattern?
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B.2.7.25 HP-21 setup:

B.3.7.1

B.3.7.2

See Knuth (1969), Vol. II, Section 4.5.3 and especially his
exercise 16 on p. 336.

 

 

   

r 10 [£] [B] {107 Va1 [+] [x2y] 1
-] [B] :\Tf (see ¢) [£] n l/x v [1]
1/x

LOOP: szlk. =] [#] n [£] 90 [X] [1]

RI] [X]  (see a) RCL
[+] [x=y] [cos] [X] (see *w,) [RCL
1/x |[RCL| : 

*If n is odd, see (minus) the real pole at this point, thus avoid

going through the loop for k=(n+1)/2.

(a) From Figure 3.2.1, the slope of the straight line as drawn is

M) x—f(x)
Xn = Xnt1 xn_F(xn).

 

Then drop the subscript on x, and get

_ — »
ssee]

(b) The tangent to the curve has a slope of

, d ,W)= L[ x=f(x)]=1-7(x)=1+5(x),
provided g(x)= —f'(x).

Third-order convergence means both F’(a)=0 and F”(a)=0.

Substituting x =a, f(a)=a, and g(a)= —f'(a) into the second
derivative of equation 3.2.3 gives, after some manipulation,

f"(a)+2g'(a)

 

Fla)= 1+g(a)

which will be zero if

g'(a)=—3f"(a).

One possibility that satisfies this equation 1s

f[x=f(x)]
g(x)=—f'(x)+w,
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which leads to Halley’s method (see Grove, 1966, Section 1.13)
as applied to A(x)=0.

(@) From Figure 3.3.1, the slope of the straight line as drawn is

h(x,) Inx, —Inf(x,)
- Inx,—Inx, - Inx, —InF(x,) .
 s

Then drop the subscript on x, and get

Inx —Inf(x)

- Inx—Inx—a[lnf(x)—Inx]
 

1
s =—.

a

(b) The tangent to the curve has a slope of

dh(x) d[lnx—Inf(x)]  xf(x) |
dinx dlnx T f(x) ax)’
 

provided a satisfies equation 3.3.5.

Equate F(x) from equations 3.2.3 and 3.3.1 to give

 x( f)“= f+xg
x l+g

Take In of both sides,

aln(—f—)=ln[f+xg] —In[1+g]—Inxx 9

and rearrange to get the expression for « in the problem.

(a) From Figure 3.4.1, the slope of the straight line as drawn is

h(xn) — l/xn_l/f(xn)

1/x,—1/x,,, 1/x,—1/F(x,)
 s=

Then drop the subscript on x, and get

1/x=1/f(x) 1
TUx—B/f(x)-(1-B)/x B’
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(b) The tangent to the curve has a slope of

dd(hl(/xj) - d(ld/x) [%_ f(lx) ]==1[ 7o) T= péx> ’

provided B satisfies equation 3.4.5.

B3.7.6 Equate F(x) from equations 3.2.3 and 3.4.1 to give

xf _ f+xg

f+B[x—f]  g+l’
and rearrange to get equation 3.4.4.

B.3.7.7 Combine equation 3.6.5 (which is the derivative of equation
3.6.2) with equation 3.6.1 to give

N in 1

f(l)_(1+i)[(l+i)”—l] S+

     

 

 

where the approximation comes from

(14+i)"=1+in,  for small ..

For i <0.1, f* from this expression is 0.9<f" < 1.
Then from equation 3.6.3 derive

,'_1—[l—i(n—1)](1+i)"_l n—112

0 [1-(1+0)"]’ [ n ]

R

For n <20, f’ from this expression is f'<<0.9.

B3.78 (a) HP-45 SETUP: n 4R[S[H 1
LooP: 1 4[]y 1[] (see 7)) :[.

With the test case under algorithm 3.6.12, get i,=0.1161478772,
0.1723915739, 0.6177934666, 1973.895851,- - - .
(b) From equation 3.6.14, get

£iy=Rna+im.
S

Then using equation 3.6.1,

in(1+i)"~!
f(i)= Qv =1+i(n—1)>1.
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(¢) From equation 3.3.3, use

_
Ti-ny

or

(1+4i)"—1 V/Ea=m]

F(i)=i iS/R

  

Hp-45 serup: R [1] S [5] [sT0] 1 n [sTO] 2 1 [x=y] [-]
STO 3.1

roor: [t][t] [1] 1[+] [ReL]2([q] 1y¥ 1 [] [RCL] 1
x] [x2x] [] [xzx] [RCL] 3 L]

(see i) :|.
With the same test case, get i;=0.0939532846, 0.0915217762,

0.0905719265, 0.0902058066,- - - . So it converges slowly. Algo-
rithm 3.6.16 is preferable for this problem.

Try f(E)=M+esinE, f'(E)=ecosE. Now since 0<e< 1, and
|cos E| < 1, direct iteration on f(E) will almost always converge.
Convert to degrees by multiplying the equation by 180° /(7
rads). Then for an HP-35:
SETUP: e [7] [£] 180 (M,°) [1]; a good guess

for E, 1s just M, so go on to
LOOP: (see E;,°) :|.
A loop with only four keystrokes is hard to beat. For the test
case, get E. =69, 79.69804365, 80.27442207, 80.29446667,
80.29514321, 80.29516602, 80.29516679, 80.29516681. Thus this
algorithm takes seven cycles to converge to an answer with
about nine significant figures, but with only 38 keystrokes total
plus data. A g-method algorithm can be written for this problem
and it converges in fewer iterations, but takes more than twice as
many keystrokes for this test case. Only if e is very near unity
would a more sophisticated algorithm be desirable.

Using trigonometric manipulation get

 

  

y=Alsiny=f(y).

Then

f(y)=Alcosy=—g(y),
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B.3.7.11

B.3.7.12

and

Alsiny —yAlcosy

Fly)= 1—Alcosy

Therefore a possible algorithm for an HP-21 would be
SETUP: (switch to RAD mode) 4 [cHS] / [STO] y,

LOOP: [TaN] [] [x=»] [cos] [ReL] [1/x] 1
] (seey):l.

There are approximately Al/w solutions (bound energy levels)
and a graphical approximation can be used to get first guesses
for the algorithm. Plot both siny and y/(A4/) for y >0; intersec-
tions are solutions. For A/=10, there are three solutions near

y=mx, 27, and 37, as given. This exercise is from Ball (1976).

The problem is

After some manipulation, get

x3—8x2—-20x+100=0.

Thus this is a cubic and can be solved by any one of several
techniques (see Section A.5.3, HP-45 Applications Book, p. 74).
The answer is x =2.87836574, y =7.12163426.

The problem is

x+y=10,

(x+Vx)(y+Vy)=4.

After some manipulation, get

A——A4\x=f),
otVio—x /)

and

o )_A[l—l/(zx/lo—x)] 1

(10— x+V10—x )? 2Vx

 



+1 A ~ —1

fi(x) 0 7 - 0 glx)

 (b)
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Figure B.3.1 (a) 4 as a function of x (or y). (b) f'(x).
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B.3.7.13

B.3.7.14

Figure B.3.1a is a plot of A as a function of x (or y) and Figure
B.3.15 plots f'(x), showing that direct iteration on f(x) will work
for some values of 4, and —f’(x) can be read off this plot to use
for g=constant for other values. A possible algorithm for an
HP-35 is then
SETUP: A [STO] x,

Loor: [t [1] [1] 10 [x=y] [-] [1] [Va] [+] [RCL] [x2y] [=]
[x2r] [] [x22] g (g+1D) [z]  (see x)
:-

For A =24, use g=0, x,=2; get x; =2, 0.802174812,

1.066646477, 0.980261253, 1.006088122, 0.998145089,
1.000567276, 0.999826711, 1.000052954, etc.
Try again with 4 =24, g=0.3 (from Figure B.3.15), x,=2; get
x;=2, 1.078596009, 1.000330101, 0.9999986015, 1.000000006,
1.000000001, 1. For these and similar problems, see Kraitchik
(1953).

  
 

f(x)=f(f(x))

f(x)-x
Note that this formula requires two evaluations of f but no
evaluations of f’. This g(x) is an approximation for —f'(x)
based on linearizing f(x) between x and x’=f(x).

g(x)=

REFERENCES: Isaacson and Keller (1966), Chapter 3; Section
24.

The torque due to the weight is MgR cos# and the two torques
must be equal in equilibrium,

K= MgR cosé.

So set

MgR
f(0)= Ii cosf = Ccosd. 

Use the g method with g= —f" to get

Ccosf+0Csinb

F(6)= 1+ Csiné

Thus an algorithm for the HP-21 is
SETUP: (set mode to RAD) C 6,
roor: [1] [1] [TAN] [x=y] [SIN] [RCL]

/x]1[+#] [z]  (see B):|
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B.4.48

B.4.49
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For C=3 rad, starting from 8,=1 rad, get §.=1, 1.176173146,

1.170126582, 1.170120950 rad.
This exercise is very similar to exercise 3.7.10—exchange co-

sine for sine. Spring scales are not usually made this way, but
this version might be useful if one wanted a very nonlinear scale
to weigh a wide range of masses.

Using the algorithm in Section A.6.1, get a,=2.365714286,
ay= —0.4571428583, and 0 =0.3685234389.

Using the algorithm in Section A.6.3, get a=0.5785714286, b=
0.9192857143, ¢ = 0.025, x, = — 0.7944444444, A =
—0.3401607143, W=1.08437271, and 0 =0.07503967215.

Using the algorithm in Section A.6.4, get A =0, A,=2, C=2,

A=2, and B=90°.

Use the algorithm for straight-line fitting in Section A.6.1, but
change x; to 6, in the enter-data loop. Then 4 =gq,
and B=a,.

Get A=4, B=0, and 0=V2 .

Since

cos(20)=2cos*(f)—1,

the form to be fitted is equivalent to

f=2Acos* (§)+ Bcosf+ C—A.

Thus we can use the parabolic-fitting algorithm in Section A.6.3.
Change x; to 6, in the enter-data loop. Then 4=a/2,
B=b,and C=c+ A4.

Get A=2, B=2, C=2.

Get 5.5 from equation 4.3.7, and 4.53 from equation 4.3.9.

Beginning with equation 4.3.10 and F=In, define

and note that ¢; is usually small, |¢|<1.
So approximate

In(1—¢)=—g¢,
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B.4.4.10

B.4.4.11

B.4.4.12

B.4.4.13

B.4.4.14

B.4.4.15

InY,—

B.4.4.16

and get

 Y, 1
AY,=w,In| — |=w;In =wg, w=Y,.i i f, i 1—¢

Using the algorithm in Section A.6.5, get b=1.507986917, a=
1.487057458, and 6=0.03321305233 (excluding x;=0).

Using the algorithm in Section A.6.7, get W=3.146039603, x,=
3.139847725, A=3.137154187, 0=0.0000778271501. This o is
rather smaller than one might expect for fitting to data given to
only two decimal digits. The data were calculated from W= x,=
A =7 and were rounded to two decimal digits. However these 7
values give a ¢ more than 40 times larger!

Get w,=exp(—Y,), but this approximation is good only if |AY]]
<1, a requirement very different from |¢|<1 for exercise 4.4.9.

HP-45 INITIALIZE: {CLEAR’ 3 4
ENTER DATA: X, [1] Y, [CHS] 3

sTo [+] 4 [X] [x=» (see i) :|
copa: [RcL] 3 [RcL] 7 [X] [RcL] 4 [RcL] 5 [X]

-] [RcL] 3 8 4[] []
]  (seeap) [RCL] 4 [x] [RCL] 5 [x24]
-] 3[x]  (see ap).

Then calculate the value of the curve at any x:

x [T a; [X]ag [+] [m]  (see Y).
Get a,=2.012671607, a,=2.025952555, and ¢ =0.007954787674.
If the straight-line algorithm in Section A.6.1 is used, but with

after y;,, one gets a fit with a o (in Y space) that is only
slightly worse, namely, 0 =0.01.

Inf=In( = =1 1 — _mn[1-AF) LAY=il 7 |-la7)=-5 )=i

i

  

 

=   

=

  

The data could be fitted to either

I=1I,exp(UV),

with V as the independent variable, or, more reasonably, to

v In/—Inl,

=7
with I as the independent variable. The latter is preferable
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because [/ is given in presumably exact values, and because the
fitting process to this second equation is easier. Use the straight-
line fitting algorithm in Section A.6.1, but change x; to I, [in],
and y; to V,. Then interpret a,=1/U and ay,= —(Inl;)/ U. For
the first half of the data get a, =0.02544965694, a, =
0.6805000053, or m=1.001151044, and I,=2.439900198 x 10~ 1
A. For the second half of the data, get a,=0.02544965685,
ay,=0.681100018, or m=1.001151040, and I,=2.383050086 %
107!2 A. Thus the m factor does not seem to vary very much.
Write

S,=Sr

where S| is the flux at » =1 MHz (the units are arbitrary). This is
a power curve as in equation 4.3.12 and Section A.6.5. The fit
using this algorithm gives a=0.6659978463, S,=34352.30504,
and 0=2.702340997. Using the algorithm in the HP-45 Applica-
tions Book, p. 86 (no w;) gives a=0.6645659613, S, =
34018.88430, and o =3.130083748. Eitherfit is acceptable.

Choose w,= P? (why?), then
HP-45 INITIALIZE: turn calculator off, t

ENTER DATA: P, [1].

Ri] [x] [sTO
= |STO [+] 5]
[RCL] RCL] 5 RC
[RCL4 [RCL] 2 [X] [RCL
-] [5]  (see K) [RCL] 2 [X] [RCL
RCL] 1 [5]  (see 2.

From the given data get K=185476.7563 million years, and
t;=2021.553359 A.D.=July 21, 2021. From somewhat different
population data, von Foerster et al. (1960) calculated “Dooms-
day: Friday, 13 November, A.D. 2026.” See also von Hoerner
(1972).

The weighting factor is w,=cosa; (why?) where a;=sin"

Then, for 0 < o; <90°:
INITIALIZE: Turn calculator off, then on.

Y, [6] SN% [1] [] [cos] [sTO] [+] 1 [X] [STO
+] 2 ¢ [1] [RY] [X] [sTO] [+] 3 [R{] [COs] [X]
sto [+] 4 [x] [sTO] [+] 5
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The “not” answers given in the exercise result from omitting the
weighting factors. Writing a sine curve fitting algorithm that
works over all quadrants is much more difficult.

7/2=1.570796327. Simpleton’s formula (Section A.3.1) with n >
2 is exact for this integral. (Why?)

This is the gamma function I'(x), and I'(4)=3!=6. The two-
point Gauss-Laguerre formula (Section A.3.2) is exact for this
integral. (Why?) This is another way to calculate a gamma
function, but it is not very precise except for x a small integer,
and then the answer is known anyway.

REFERENCES: HMF 6.1; and Section A.5.8.

1.7

[ ()dx=0.0551359259,
1

y(1.32)=002812 or  0.0279056,

'(1.32) =0.283.

These data were calculated from y =(x —1)”, and the answers can
be compared with the exact answers if there were no round-off.

7?/4=2.467401100. The Gauss-Chebyshev formula (Section
A.3.2) 1s exact for this integral. (Why?)

Because it is a periodic function integrated over a full period
(why?), Simpleton’s formula (Section A.3.1) works as well as
any. For x=2 and n=6, get 0.2238907837. The precise answeris
Bessel function Jy(2)=0.2238907791. This is another way to
calculate a Bessel function.

REFERENCES: HMF 9.1.21; Section 21.5 in Hamming (1973);
and Section A.5.9.

For x=1, get 0.8426900188 from the three-point Gauss-
Legendre algorithm (Section A.3.2), or 0.8427003240 from the
five-point Lobatto-Radau algorithm (Section A.3.2). The precise
answer 1s error function erf(1)=0.8427007929. This is another
way to calculate an error function.

REFERENCES: HMF 7.1; HMF Table 7.1; Section A.5.10.

For x=1, get 0.5379904675 from the three-point Gauss-
Legendre algorithm (Section A.3.2), or 0.5380817906 from the
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five-point Lobatto-Radau algorithm (Section A.3.2). The precise
answer 1s 0.5380795069. This is Dawson’s integral.

REFERENCE: HMF Table 7.5.

For x=1, get 04380405866 from the three-point Gauss-
Legendre algorithm (Section A.3.2), 0.4382750839 from the five-
point Lobatto-Radau algorithm (Section A.3.2), 0.4385009355
from the five-point Newton-Cotes algorithm (Section A.3.1), or
0.4384277565 (!) from the five-point Simpleton algorithm (Sec-
tion A.3.1). The precise answer is Fresnel’s integral S(1)=
0.4382591474.

REFERENCES: HMF 7.3.2; HMF Table 7.7.

This is Airy’s differential equation and the particular solution
from these initial values is Airy function Ai(— x). Representative
values are as follows:

 
x Ai(—Xx) Approximatey

0.5 0.47572809 0.4757279328
1.0 0.53556088 0.5355595556
1.5 0.46425658 0.4642527094
2.0 0.22740743 0.2274026793
23 0.02670633 0.02670483264
24 —0.04333414 —0.04333355958
 

The third column in this tabulation is from the modified third-
order Runge-Kutta algorithm in Section A.4.2 with h=0.1. The
error plot for this case has holes at x=1.85 for y’ and at x=2.35
for y.

Integrating the differential equation is the preferred method
for evaluating the Airy integral,

o0 3
Ai(x)= —'71;'[0 cos(% +xt) dt.

“This quadrature is not feasible,” says John Todd (1962), p. 71.

REFERENCES: HMF 10.4; HMF Table 10.11.

Using second-order Runge-Kutta from Section A.4.1 (HMF
25.5.6), with A=0.1, get y(2)=0.3548042050. Or using third-
order Runge-Kutta from Section A4.1 (HMF 25.5.8), with A=
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B.5.7.11

B.5.7.12

0.1, get y(2)=0.3542997875. The precise answer is the
Goodwin-Staton function, y(2)=0.3543359288.

REFERENCES: Hartree (1958), p. 119; HMF 27.6

This is a tricky integral. The straightforward approach with
[]=[X] [£] x [£] in the two-point Gauss-
Laguerre algorithm gives 0.420748815, which is pretty far from
the truth. The substitution s=¢> leads to =[Vx] x

2 [=], which gives 0.2119397662—even farther from
the precise value given in the preceding answer. Higher order
Gauss-Laguerre formulas give better values of course, but the
improvement is slow. Goodwin and Staton tried several methods
and decided that integrating the differential equation, as in the
preceding problem, may be the easiest way to obtain values for
this integral. It can also be expressed in terms of Dawson’s
integral and the exponential integral. See the references in
B.5.7.10.

With third-order Runge-Kutta from Section A.4.1 with A=0.1,

some representative values are as follows:

 

t # (rad)

0.5 0.259422134
1.0 0.487260681
1.5 0.657309365
22 0.766128187
2.3 0.767986555 (sic)

Note that the last value is larger than 6,=0.767944871 rad.
Integrating the first-order differential equation near 6, is very
difficult. (Why?) The period is approximately 4x2.3=9.2. The
period from the approximate formula given in the problem is
8.885765875. The precise period is

P=4\1/g K(sinz(f‘l)),
2

where K(m) is the complete elliptic integral of the first kind (see
Section A.5.7). This precise formula gives P=9.224796844.

REFERENCES: MacMillan (1958), p. 311; Kopal (1955), p. 236.
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For the sum, HP-45:

SETUP: | CLEAR | 0 1
LOOP: 5 [=] (check:is display 7? If

so, go to coda.) |
CODA!: (see =---).

With §=50° get 0.9847817128. For the integral use =2
[<] 2 [in] in the three-point Gauss-Legendre formula
(Section A.3.2) and get 54°72469811 X 7/180° =0.9551261644.
Neither of these answers is very precise. The sum converges
slowly and the singularity at the end of the range of integration
makes its numerical evaluation difficult. One way out of this
difficulty uses the definite integral (CRC SMT p. 467)

f7r/zln(sinx) dx=—TIn2,
0 2

to write

6 .t _ _ T . _t_

foln(Zsmi)dt—(w 0)1n2+f0 ln(51n2)dt.

Then use the three-point Gauss-Legendre formula (Section
A.3.2) to get 1.001241512, or the five-point Lobatto-Radau for-
mula to get 1.000748143. This form of the log-sin integral is
called Clausen’s integral, and the precise value for §=50° is
1.000790624.

REFERENCE: HMF 27.8.1.

Using the three-point Gauss-Legendre formula (Section A.3.2)
with [---f---]= [1/x], get 170.6687071, and with the five-
point Lobatto-Radau formula (Section A.3.2) get 229.3720681.
This integral can be written in terms of exponential integrals,
namely, P (n) = Ei(Inn) — Ei(In2). The precise value of
P (1000) is 176.5644944, and there are 168 primes less than 1000.

REFERENCES: Hunter and Madachy (1963), p. 7; HMF 5.1.3;
HMF 5.1.50 (for a plot of the error in P(n)); Section A.5.11.

x [1]a [X] b [+] [X] ¢ [+] [X] 4 [#] [X] e [+]. This is the same as
the algorithm in Section 2.4, except that with the g system one
need notfill up the stack ([1] after x), provided the stack
1s initially clear.
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B.6.6.2

B.6.6.3

B.6.6.4

L[] [ [ R, [ [o] R, 2] [+ [<] Ry [2] [+ [
In the Lagrange three-point interpolation algorithm in Section
A.2, change to [« ], and change to [X].

The tabular quadrature algorithms in Section A.3.1 will all work
on the model A with no changes.

Each of the following answers works if the model B initially has the r
stack active and auto-enter enabled, or else g in X, and X..

B.6.6.5

B.6.6.6

B.6.6.7

B.6.6.8

B.6.6.9

B.6.6.10

al[s]b[s]c[s]d[z] [Vx] 1[z] (seeu)[s] (see v).

1 [s]2[t] [cas] [x]1[s]3 [=]2[s]4[]5[1] 14 [s]2[:]
[-]  (seeu=0)[s] (see v=0).

1 3 (see —1) [s]  (see 0), thus a
cube root of —1 is —1. Then 0 (see 3) [s]
(see —1V3), therefore another cube root of —1is 3 —i1 V3.
Then 0 (see 3) [S]  (see 2V3)), thus the third

cube root of —11is 3 +i3V3.

a[s]b[s]c[s]d][RCL]O[xzx] [z]  (seew)[s]  (see
V).

Probably. See Demidovich and Maron (1973), Section 4.11.

HP-45 or HP-35:

[EEX] 9 [1] .5 [+]  (see 1000000001.) [EEX] 9 [1]
4999999999 (see 1000000000.).

So far, so good. But,

9[1].5[+] .5[=] (see 1000000001.) .5009999999 [-]
(see 1000000001.) .501 [-] (see 1000000000.)!
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Acceleration of gravity, 96, 97
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Adams formula, 145

Adding machine, 2

AENA, see American Ephemeris and
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AES, see Algebraic entry system

AESH, see Algebraic entry system with

hierarchy

AESP, see Algebraic entry system with
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Air resistance, B.2.7.10, 96

Airy function, B.5.7.9

Airy’s differential equation, B.5.7.9

Aitken’s 82 method, 121
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Algebraic entry system (AES), 1.4, viii,

163
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(AESP), 1.4
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Algebraic operating system (AOS), 1.4
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Bessel functions, A.5.9, B.5.7.5, 5658,

100

Best criteria, 123

Best polynomials, 57

B method, 3.4, 111,113,119

Bibliography, C.

Bifid functor, 1.3.1, 4, 6, 29

Binary coded decimal (BCD), 163

Binary numbers, B.2.7.9, 96

Black body, 262, 268

Boat, 288

Bode’s rule, 141, 195

Boltzmann’s constant, 267, 272

Born, M., 257, 316

Boston, 42

Boxes, 7, 176

Bracewell, R. N., 141, 207, 316

Brenner, N. M., viii, 214-216, 232, 244

Briggs, C. V., 111, viii, 289

Brightness, A.9.5

Brown and Sharpe (B&S), 271

Browning, E. B., 43

Bulk resistance, 273

Calculator, defined, 2

other, A.1.2

Calculus, vii, viii

Calendar, A.7.3

Cancellation, 87, 90

Capacitive reactance, 268, 269

Capacitors, 268

Capital recovery, 286

Carroll, L., 6

Cartesian coordinates, 47, 283

Cash register, 95

Cauchy method, see Euler-Cauchy method

CDC, see Control Data Corporation

Celestial mechanics, 120

Center for Astrophysics (CfA), iii, viii



CfA, see Center for Astrophysics

Changesign, 17, 30, 31, 157-159, 166,

168

Chan, W., viii

Characteristic impedance, 268

Chebysheyvfilter, 99

Chebyshev formula, 155

Chebyshev-Gram polynomials, 126

Chebyshev polynomials, A.5.6, 55, 97

Chemical equilibrium, 265

Chemical populations, 265
Cherniak, J., 2, 316

Chess, 42

Chi-square distribution, 216

Chi-square probability, 215, 216

Circle, 98

Circular mils, 271

Clausen’s integral, B.5.7.13

Clear, 18,19, 29, 158, 166, 177

Clear symbol, 158, 168, 169

Collins, P., 2, 316

Combinations, A.5.13

Comets, 156

Commutative and associative laws, 88

Complex arithmetic, 6.4, 95, 162

Complex functors, 168
Complex numbers, 95, 161, 172

Complex roots, 172
Compound amount factor, 285

Compucorp, viii

Computer, vii, 3, 44,61, 123,137,158

Computer languages, 31

Conditionalskips, 27

Conjugate, 168

Conrad, V., 291, 292, 316

Continued fraction, 2.4, B.1.5.8, 98, 139

Continuum, bound-free, 265

Control Data Corporation (CDC), 163

Convergence, 101-103, 105-108, 119

third order, B.3.7.2, 119

Converting to other calculators, A.1.2

Coordinate rotation, 2.3.2, A.11.4

Coordinate systems, A.11

Coordinate translation, 2.3.2, A.11.4

Cozrd ofcircle, 98

Corvus 500, 13, 18, 28, 29,178, 181, 182

Cost, calculator, 163

CRC HCP, see Handbook of Chemistry and

Physics

CRC HTM,see Handbook of Tables for
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Mathematics

CRC SMT, see Standard Mathematical

Tables

Cube root, 24

Cubic, B.3.7.11, 172

roots of, A.5.3

Cubic fit, 126

Curve fitting, 4., A.6

Cyclic function, 141

Dashed boxes, 7, 176

Dates, A.7

Davidon, W. C., 126, 316

Dawson’s integral, B.5.7.7, B.5.7.11

Day number, 241, 244, 249, 253, 255

Days elapsed, 241

Day of week, 241

Decimal digits (DD), 34, 41
Decimal numbers, B.2.7.9, 96

Decimal point key, 16,17

Declination, 239, 246, 248, 250253, 255,

256, 260

Decrement, 28

Definite integral, 136

Definite quadrature, 137
Degrees of freedom, 143

Degrees-minutes-seconds, 22, 177, 181

Dekker, T., 122

Delete, 28

Demidovich, B. P., 37, 58, 129, 314, 316

Dew point, 290

Dicke, R. H., 121, 316

Dicke switching, 259
Difference, 138, 139, 145

Difference equations, 135

Differential equations, 5.1, 5.6, A.4, vii,

135-137

Differentiation, numerical (tabular), 5.3,

A.2

Diode, A.10.7, 130, 133

Diode equation, 272

Display, 160, 164, 168

Display manipulator keys, 20

Disraeli, B., 156

Distances on earth, 2.7.2

Divergence, 101

Doomsday, 134

Doppler,relativistic, A.8.6
Doppler frequencies, A.8.5, 254

Doppler velocities, A.8, 252, 257
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Dotty, 165, 166

Double, 45

Double-averaging scheme, 104

Duplicate function, 16, 29

Dyadic functor, 1.3.1, 4, 6, 29, 32, 87,

158

Earth, vii, 41, 42, 97, 239, 240

curvature of, 247

Earth-moon barycenter, 254

Earth orbit, 254

Earth revolution, A.8.2, 254

Earth rotation, A.8.3, 254

Ecclesiasticus, 173

Eclipses, B.1.5.9
Ecliptic latitude, 240, 252, 254

Ecliptic longitude, 240, 252—-254

Efficiencies, antenna, A.9.4

aperture, 261

EIA-RETMA, 270, 271

Eisberg, R. M., 316

El Cheapo,6.3

Electrical engineering, A.10

Electron density, 265

Electronics Industries Association—Radio,

Electronics, and Television Man-

ufacturer’s Association (EIA-RETMA),

270, 271

Elementary functions, 100, 101, 136

Elevation, 240, 246—248, 260

Elliptic integrals, A.5.7, B.5.7.12

Ellipticity, 120

Elmore, W. C., 232, 241, 316

Energy levels, B.3.7.10, 120

Enter, 4, 16, 29, 89, 158

Enter exponent, 17

Ephemeris, 239

sun, A.7.14

Equal-payment series, 285

Equals key, 1.4

Equilibrium ionization, A.9.7

“Error,” 161, 167

Error and errors, 1.3.4,123, 131, 133

Error function, A.5.10, B.5.7.6, 59

Error propagation, 1.3.4

ESE, see Explanatory Supplement to the

Ephemeris

Euclid, 228, 316

Euclid’s algorithm, 228

Euler-Cauchy method, 146

Euler formula, 145

Euler’s constant, 97, 225

Euler’s first improved method, 146

Euler’s second improved method, 146

Everything . . . (book), 29, 316

Evolution, 87

Exchange, 16, 18, 159, 165

Exchange of order, 88

Exchanging, 1.2

Excitation, 265

Exercises, viii, 1.5, 2.7, 3.7,4.4,5.7, 6.6

Explanatory Supplement to the Ephemeris

(ESE), 240, 250, 251, 316

Exponent, 89, 91

Exponential, 23, 90, 91, 93, 162, 163

Exponential curve, A.6.5. 128—131

Exponential integrals, A.5.11, B.5.7.11,

B.5.7.14,139, 216

Extra enters, 89

Factorial, A.5.8, 24, 98, 183

Falling object, 96

Fernbach, S., 315

Feynman, R. P., 258, 316

FFP, see Fundamental Formulas of Physics

Fibonacci, L., 96

Fibonacci numbers, B.2.7.8, 96

Figure of merit, 44, 45

Fike, C. T., 57, 299, 316

Filter, 99

Finance, 3.6, A.12, 175

Fitting curves, 4., A.6

Flags, 1.3.2, 27

Flashing display, 161, 167

Flux unit, 262

Foerster, H. von, 309, 318

Fog, 290

FORTH,3, 316, 318

FORTRAN, 31,137,158

Fowler, R. W., 316

Fourier series, A.5.5,127, 141

Fourier transform, 141

Foxes, 96

Fractional part, 25

Frequency, 256, 257, 259, 262, 265, 268,

287

Fresnel’s formula, 97

Fresnel’s integral, B.5.7.8
Friden Company, 2, 3, 16

Functions, transcendental, 3.



Functors, 1.3.1-1.3.3, 2, 4, 6, 87, 89, 90,

158, 161

Fundamental Formulas ofPhysics (FFP),

316, 318
Future developments,6.

Future value, 3.6, 284, 285

Galactic latitude and longitude, 240, 251

Gamma function, A.5.8, B.5.7.2

Gauss formula, 211

Gauss-Chebyshev formulas, B.5.7.4, 142—

144, 196

Gauss-Hermite formulas, 143, 144, 197,

198

Gaussian (curve), A.6.6, 130, 131, 260

Gaussian distribution, A.5.10

Gaussian fit, A.6.7, 132

Gaussian motion, 263

Gaussian probability function, 2.3.1

Gaussian quadrature, 5.1, 5.5, A.3.2

Gauss-Laquerre formulas, B.5.7.2,

B.5.7.11, 143,144,197

Gauss-Legendre formulas, B.5.7.6-

B.5.7.8, B.5.7.13, B.5.7.14, 142144,

195

Geometric curve, 129

Geometric mean, 107

Gill’s formula, 148, 201

g method, 3.2, B.3.7.9, 107,109, 110, 112,

117-119,121

Golden numbers, 122

Golden ratio, B.1.5.8, 42

Goodwin, E. T., 312

Goodwin-Staton function, B.5.7.10,

B.5.7.11

Go to, 26

Grad, 22

Gravity, 96, 97, 155

Great-circle distance, 240

Greatest common divisor (gcd), A.5.12

Greenwich mean time, 244, 253, 255

Gregorian calendar, 241, 242

Grouped data, 126

Grove, W. E., 301, 316

Gudermannians, A.5.1

Guesses,first, 109

Halley’s method, B.3.7.2

Hamming, R. W., ix, 122, 131, 141, 143,

145,197, 310, 317
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Handbook of Chemistry and Physics

(CRC HCP), 272, 287, 292, 316, 318

Handbook ofMathematical Functions (HMF),

57,59, 60,126, 138—-141,143—

147,149,151, 153, 194-204, 207,
210, 212, 214-216, 218, 222, 223,

226, 299, 310-313, 315, 317

Handbook of Tables for Mathematics

(CRC HTM), 144,153, 207, 283, 284,

316, 318
Harmonic mean, 107

Harmonic numbers, 97

Hartree, D. R., 102, 138, 143, 144, 317

Harvard College Observatory, ix, 245

Hastings, C., Jr., 222

Haurwitz, B., 290, 292, 317
Heading, 240

Herbert, G., 315

Hewlett-Packard Company (HP), viii, 2, 3,

7,8,11,12, 14,15, 28, 31, 32, 44, 61,
116-118,175,176, 288, 317

Hexadecimal numbers, A.5.14, B.2.7.9, 56,

96
High fidelity, 266

HII regions, 265

Hildebrand, F. B., 126, 131, 144,153, 317
HMF, see Handbook ofMathematical

Functions

Hoerner, S. von, 309, 318

“Hole”in error curves, 147
Hollis, J. M., 316, 318

Horizon, 248

Hour angle, 239, 246, 255

Hours-minutes-seconds, 22, 177

HP, see Hewlett -Packard Company

HP Key Notes, 317

HP’s method, 32, 33

HP-21, 8, 18, 48, 50, 51, 97-99, 125, 182,

183, 207, 298-300, 304, 306
HP-21 Applications Book, 125,128,131,

281, 317
HP-25,12,18,98,157,178, 183-185, 208,

211-216, 229, 230, 241, 244

HP-25 Applications Programs, 104,125,
128,131, 317

HP-27,125,157, 178, 185, 186

HP-35, A., viii, 3,4, 7,17, 18, 23, 30, 31,
46,51-53,97,98,110-113, 138, 145,
146,158, 164, 298, 299, 303

HP-35 Math Pack, B.2.7.8, viii, 58, 61,
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95, 125, 297, 317

HP-45, A., 11,18, 19, 31,49-51, 58, 59,

87,95,97,104,111,114,116-118,
127,134, 149, 157, 298, 302, 313

HP-45 Applications Book, viii, 48, 58, 61,

95,116, 125,126, 128, 131, 144, 205,
241, 281, 297, 298, 304, 309, 317

HP-46, 18, 157,178, 186

HP-55, 18, 125,126,178, 186, 288

HP-55 Mathematics Programs, 58,117,

119, 317

HP-55 Statistics Programs, 128,131, 216,

317

HP-65, 14, 18, 27,127, 160, 187, 188,
241

HP-65 Pacs, 317

HP-65 Standard Pac, 157

HP-65 Users’ Library, 317

HP-67, viii, 15,157, 160, 178, 189, 190
HP-67/97 Pacs, 317
HP-67/97 Users’ Library, 317
HP-91, 125,178, 190
HP-97, 157,178, 190, 191
Humidity, 290

Humphreys, W. J., 291, 292, 317
Hunter, J. A. H., 313, 317

Hydrogen, hydrogenic, 265

Hyperbolic functions, A.5.1

IBM, see International Business Machines

Corporation

IBM SSP, see Scientific Subroutine Package
Ice, 291

i conjugate, 168

Imaginary numbers, 6.4

Impedance, A.10.4

Implied parentheses, 31—-33

Increment, 28

Indefinite integral, 136, 137

Indefinite quadrature, 5.6, 137

Inductive reactance, 269

Inductors, 268

Infinity, 6.2

Inflation rate, 42

Initial-value problem, 137
Integer part, 25

Integral, definite, 136

Integration, numerical, 5.4, 5.5, A.3, A.4

Integration time, 258

Interchange, 164—167

Interest (rate), 3.6, A.12, vii, 284, 286

International Business Machines (IBM),

viii, 163, 206, 217

Interpolation, Lagrange, 5.2

numerical (tabular), 5.2, A.2

Involution, 87

Ionization potential, 265
Irrational numbers, 170

Iteration, 3., A.5.3

Iterative techniques, vii, 167, 273, 286

Isaacson, E., 306, 317

Jividen, D., viii

Johnson, S., 1, 290, 293

Julian calendar, 242, 244

Julian day number, 243

Jumps, 26
Jupiter, 258

Keller, H. B., 306, 317

Kepler’s equation, 120
Keys, 1.3.1

Keystrokes, number of, 39, 40, 44, 45,

108, 169

Keystroke symbols, 176

Kinetic temperature, A.9.6

Knuth, D. E., vii, 59, 157, 163, 206, 228,

297, 298, 300, 317

Kopal, Z., 144, 312, 317

Kopchenova, N. V., 317

Kraitchik, M., 306, 317

Labels, 26, 27,176

Lagrange differentiation, 5.3, A.2, 153
Lagrange interpolation, 5.2, A.2, B.6.6.3,

153,171
Lanczos, C., 126, 207, 317

Landen’s transformation, 212

Lang, K. R., 257, 264, 265, 317
Last-in—first-out number, 3

Last-in—first-out register, 158
LASTX, 25
Latitude, 240, 246
Leakage current, 272

Leap years, 241

Least common multiple (Icm), A.5.12

Least squares, 4., 232—-234

approximate, 237, 238

Legendre polynomials, 143
Leibniz (Leibnitz), G. W., 1



Leighton, R. B., 316

Lewart, C. R., 230, 317

Light, 42, 97

Lightning and thunder, B.1.5.13

Lilley, A. E., v, 266, 317

Line, o, 83,7, . . ., 266
Linear error propagation, 35

Linear fit, 128

Linear interpolation, 139

Linear problems, 4.2

Linear regression, A.6.1, 24, 124,125

multiple, 128

see also Straight-line fit

Line rest frequency, 256, 257

Line rest wavelength, 257

Linewidths, A.9.6

Litvak, M., 248

Loan, 117

Lobatto-Radau formula, B.5.7.6-B.5.7.8,

B.5.7.13,B.5.7.14, 142, 144,196
Local standard of rest, A.8.4, 254

Logarithm, vii, 23, 90, 93, 162, 163, 168

Logarithmic curve fit, 128

Log-sin integral, B.5.7.13, 155

Longitude, 240, 244

Longitude of perigee, 253

Loop symbol, 60, 104, 176

Lost negation, 30

Lubkin, Y. J., 99, 317

Wukasiewicz, J., 2, 3, 317

McKelvey, J. P., 44,119, 318

MacLaurin series, 141

MacMillan, W. D., 312, 318

Macros, 61

Madachy, J. S., 313, 317

Manipulations in RPN, 2.6

Maron, I. A., 37, 58, 129, 314, 316, 317

Martin, R., viii, 32

Mass, 155

Massachusetts Institute of Technology

(MIT), viii

Masses, 263

Matrix inversion, 125

Means, 24,107

Mechanical calculator, 2, 3, 137

Meeks, M. L., 315, 316

Memory register, 17

Menzel, D. H., 316, 318

Merged keystrokes, 157

Index 325

Metal oxide semiconductor (MOS), 288

m factor, B.4.4.16,133,272

Military preferred values, 270, 271

Military standard values, 270, 271

Milne, W. E., 105, 126, 145, 318

Milne’s m method, 105

Mils, 271

Minimax, 123

Minimax polynomials, 57

Minus, 29, 159

Minus sign, 17, 169
Miskeyed number, 18,177

MIT, see Massachusetts Institute of

Technology

Mixed-radix numbers, B.2.7.23

Model A, 6.3

Model B, 6.4

Modified secant iteration, 104

Modulo, A.5.12

Modulus, 168

Molecules, 135, 263

Monadic functor, 1.3.1, 4, 6, 29, 32, 41,

89, 90

Money, 3.6, A.12

Monroe Company, viii

Monroe Epic, 2

Moon, B.1.5.10, 42, 239, 248

phase of, 241

Moore, C. H., 3, 316, 318

Mora, P., 318

Motion, earth’s, 250

Multibit processor, 259

Music, 175

Musical scale, A.13.1

Nagle, J., viii

National Semiconductor Corporation, viii,

9,10, 28, 45, 61

National Semiconductor 4640, 178—181

Negate (negation), 17, 30, 31, 92, 93, 159,

166,167

Negative exponent, 17

Nelson, J. P., viii

Nelson, R. J., 318

Newton, Sir I., 101

Newton-Cotes formulas, B.5.7.8, 141, 142,

153,195

Newton-Raphson (Newton’s) method, 103,

105,117,119,129, 273

modified, 105
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Noise (electronic), 131, 267, 268

Noise figure, A.10.1

Noise level, A.10.3

Noise voltage and current, A.10.2

Nonlinear elements, A.10.7

Nonlinear problems, 4.3

Non-RPN calculators, 1.4, 6, 7

No operation, 28

Normal curve of error, 130

Normal distributions, A.5.10

Normal equations, 124

Normal probability function, 2.3.1

Northrup, S., viii

Notation, 44,176, 177

Note, musical, 287

Novotny, G., ix

Novus (calculators), viii, 4, 19, 28, 45, 46,

61,178-181

Novus (4520) Scientist, 10, 51, 52,178,

179

Novus Mathematician, 9

Number, in base b, A.5.14

Number entry, 29, 31, 32

Number keys, 1.3.1, 158,177

Number separator, 16, 29, 158

Number terminator, 17

Numerical analysis, vii, 101, 138

Numerical differentiation, 5.1, 5.3, A.2,

135

Numerical integration, 5.1, 5.4-5.6, A.3,

A.4,135

Numerical interpolation, 5.1, A.2, 135

Numerical methods, 101

Nutation, A.7.10, 239, 249

Nyquist formulas, 268

Nyquist interval, 141

Octal fraction, 56

Octal numbers, A.5.14, B.2.7.9, 55, 96

Offset frequency, 256

Omron 12-SR, 13

Operator, 101

Optimization, 87

Orbit, 120

Orthogonal polynomials, 126, 143

Oscillation, 101

Other-non-zero light, 167—169

Overflow, 161

Package prices, 95

Palmer, P., 266, 317

Parabola, A.6.2, 98,126

least-squares fit, A.6.3, B.4.4.6, 125, 126

see also Quadratic

Parabolic fit, 132

Paraboloid, 261

Parentheses, 31-33, 38, 39

Parenthesis-free notation, 2

Parenthetical forms, 2.4

Partial pressure, 290

Partition functions, 265

Pause, 28

Payment, 3.6, 284

Pendulum, 121, 154

Penfield, H., viii, 262

Pen point, 170

Percent, 24, 25, 29

Percentage error, 34

Permutations, A.5.13

Péter, R., 161, 318
Phase, 168

Phase angle, 268

Pi(m), 17,41

Pitch, musical, 287

Poincaré, J.H., 1

Pointing in astronomy, A.7

Point-slope formula, 145, 147, 148,199

Poisson distribution, 216

Planck law, 262, 263, 268

Planet, 239

Plane triangles, A.11.1, A.11.2

Plane trigonometry, A.11.1, A.11.2

Plotter, 6.5

Polar coordinates, 51, 53, 95, 126

Polar curve, A.6.4, 132

Polarization angles, 126

Polarization parameters, 126

Polar problem, 126—128

Polar to rectangular coordinates, 22, 23, 48,

51,52, 54

Poles, B.2.7.25, 99

Polish notation, 2

Pollak, L. W., 291, 292, 316

Pélya, G., 135, 293, 318

Polynomial, 2.4. 124, 126, 141, 143, 145,

171, 208

approximating, 137

Polynomial approximations, 123, 141

Polynomialfitting, 126

Pop (popping), 1.2, 158



Population, human, 133, 134

Post operators, 3

Potential well, 120

Power, available, 267

Power curve, A.6.5, B.4.4.17,131, 132

Power series, 2.4, 136, 167

Powers and roots, 87, 162, 163

Powers of ten, A.1.3, 45

Precession, A.7.9, 239

Precision, 1.3.4, 41

Predictor-corrector formulas, 145, 146

Prefix keys, 7, 20

Present value, 3.6, 284, 286

Present-worth factor, 285

Pressure, 248

PRGM mode, 28

Price, B.2.7.2, 95

Primes, B.5.7.14, 155

Primitive integral, 136, 137

Principal, 3.6, 284

Principal value, 168

Printer, 186, 190

Product of sums, 33

Program, 183, 186, 188, 189, 191

defined, 44

Programmable calculators, viii, 25—28, 45,

108, 156,157,160, 170, 183, 186,

187,189

Psychrometer, 290

equation, 291

Push, 16, 158

Push-down stack, 2, 3

Pushing, 1.2

Push pending, 4

Push-up stack, 4
Pythagorean theorem, 8.1.5.7

q formulas, 250

Quadratic, roots of, A.5.2. See also

Parabola

Quadrature, A.3

Gaussian, 5.1, 5.5, A.3.2

indefinite, 5.6

tabular, 5.1, 5.4, A.3.1

Quadrature defined, 136

Quantum mechanics, 120

Quantum number, 266

Rabbits, 96

Radau formula, see Lobatto-Radau formula
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Radio astronomy, A.9, viii, 126, 133,175,

266, 268

Radiometer equation, A.9.1

Radio telescope, 259

Railroad track, B.1.5.7, 41, 42

“Ramp,” 87

Random digits, 206
Random numbers, A.5.4

Rather, E. D., 316, 318

Rational approximations, 123

Rational function, 58, 60

Rational numbers, 170

Rayleigh-Jeans approximation, 262, 268
Reactance, A.10.4

Real numbers, 6.4

Recall, 18, 160

Recall arithmetic, 18, 19,157, 181, 183, 185,

187,189,190

Receiver, radio, 256, 268

Reciprocal, 21, 92,93, 134

Recombination lines, A.9.8

Rectangular coordinates, A.11.5

Rectangular-to-polar coordinates, 22, 23,

52-54,179

Reference frame, 47, 283

References, C.

Reflection, 97

Refraction, 97, 240, 246

atmospheric, A.7.8
Regula falsi, 104

Regular continued fraction, 59, 98

Relative errors, 1.3.4, 131, 133

Relative humidity, 290

Relativistic Doppler, A.8.6

Relativity, 257

Relaxing, 129

Repeated keystrokes, 45

Repeat function, 16

Residual, 123

Resistors, resistance, A.10.7, 171, 266—268,

270, 271

standard, A.10.5

Resolution, A.9.2, 258

Resonance, 270

Return, 27

Reverse Polish notation (RPN), vii, 2

calculating, 1.3
calculators available, 1.3.1

history, 1.1

why?, 1.4
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Rice, S. 0., 259, 318

Right ascension, 239, 246, 248, 250—253,

255, 260

Rising time, A.7.5

RMS, see Root mean square

Robinson, G., 123, 318

Roll (up and down), 1.2, 6, 16, 157—160,

165,177

“Roop,” 87
Roots, 87,162, 163,170,172

Root mean square (RMS), 123, 131, 232

noise, A.9.1

Rotation, coordinate, 2.3.2

Rotation angle, 283

Rotenberg, M., 315

Round-off, 25,157, 172, 293

RPN, see Reverse Polish notation

Rule of false position, 104

Runge-Kutta formulas, 5.6, A.4, B.5.7.9,

B.5.7.10, B.5.7.12, vii

RUN mode, 25-28

Ruze, J., 262, 318

Rybicki, G., viii, 240, 247, 252, 253, 283

Saha equation, A.9.7

Sailboat, A.13.2

Sallie, Aunt, 31

Sands, M., 316

Satellite, earth, 241

Scarborough, J. B., 37,123, 318

Schaffer, H. E., 98, 318

Scheibe, E., 318

Scientific notation, 9, 164, 165

Scientific Subroutine Package (IBM SSP),

104,129,197, 198, 317

Sedenary numbers, 56

(See...), 177

Segment of circle, 98

Selby, S. M., 316, 318

Semiconductor diodes, A.10.7, 130, 133,

273

Separation between stars, A.7.11
Serial form, 31, 38

Setting time, A.7.5
Shadow, 42

Shakespeare, W., 100, 135

Shift key, 7, 20,176

Sidereal time, A.7.4, 239, 240, 246

Sigma key, 24

Sign change, 92, 93

Signed numbers, 162

Significant figures (SF), 34, 35,41, 102

Silicon diodes, 272

Simple-form continued fraction, 59

Simpleton’s formula, B.5.7.1, B.5.7.5,
B.5.7.8, 141,142,195

Simpson’s rule, 141, 194

Sine curve fit, B.4.4.19

Sinking fund, 119, 285

Sissa (Sessa), 42

65 Notes, 272,289, 318

Skips, 27, 28
Sky frequency, 256

Slater, J. C., 265, 318

Slide rule,vii, 32

Smart, W. M., 120, 240, 245-248, 252,
253, 283, 318

Smith, J. M., ix, 318

Solar time, 253

Solid angle, 282

Solid boxes, 176

Sound,42

Source widths, A.9.3

Special functions, A.5

Specific intensity, A.9.5

Spectra, 254

Spectral index, 133
Speed of light, 42, 256
Speed of sound, 42

Speed of stone, 96, 97

Spherical coordinates, A.11.5

Spherical triangles, A.11.1, A.11.3, 240, 247

Spherical trigonometry, A.11.1, A.11.3, vii

Split, 289

Spring scale, B.3.7.14, 121

Squares and square roots, 6, 21, 34, 45,

91-93
Squaring, 136
Stack,6, 32,45,158-160, 163
Stack manipulators, 1.3.1, 4, 41

Stack operations, 1.3.1

Stack rearrangements, 2.5, B.2.7.7, 95, 165,

166

Standard deviation, 24

Standard Mathematical Tables (CRC SMT),

98, 207, 218, 221, 230, 281, 283, 284,.
287, 313, 316, 318

Star, 239, 254, 258

nearest, 42

separation between, A.7.11



Start and stop, 26

Statistical weight, 265

Staton, J., 312

Stegun, I. A., 315, 317

Step, 28

Stone dropped, 96, 97

Stopwatch, A.13.3
Storage operation, 1.3.1
Storage register, 17, 18, 39, 45, 160, 167,

168
Storage register arithmetic, 18, 157, 179,

181

Store, 17, 160

Straight-line fit, A.6.1, B.4.4.4, 124,125,

132. See also Linear regression

Strunk, W., Jr., 43, 318

Subroutines, 27, 104, 144,160, 176

Subtract, 29, 166

Siissman, G., 318

Sum, 24,177,178, 284
Summer discomfort, 292

Sum of products, 33

Sun, 42, 239, 254

motion, 256

Sun ephemeris, A.7.14, B.1.5.12, 42

Supermarket, 95

Surface tolerance, A.9.4

Swap, 168, 169

Swift, J., 156
Synthesizer frequency, 256

System temperature, A.10.1, 258

Tabular differentiation, 5.3, A.2

Tabular interpolation, 5.2, A.2

Tabular quadrature, 5.1, 5.4, A.3.1, B.6.6.4,

172

Taurus, S., 133

Taylor series, 57, 101

Telescope, 239, 259, 260

Temperature, 248, 258, 262

kinetic, A.9.6

noise, A.10.1

system, A.10.1

Temperature conversions, A.13.4

Temperature-humidity index, 292

Temperature scales, 289

Ten, powers of, A.1.3

Tetens equation, 290

Texas Instruments SR-50, 288

Thermometer, 290
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Three-eights rule, 141, 194

Thuesen, H. G., 287, 318

Thunder and lightning, B.1.5.13

Timer, A.7, A.13.3

TN1969-42, 240, 250—-253, 255, 256, 315,

318

Todd, J., 135, 311, 318

Topless calculator, 163, 164

Torque, B.3.7.14, 121

Transcendental equation, 3., 128, 129, 273,

286

Transcendental functions, 123

Translating into RPN, 1.3.3

Translation, coordinate, 2.3.2

Trapezoidal rule, 141, 194

Traub, J. F., 101, 318

T register, 3

Triangles, A.11

Trigonometric functions and functors, 4,
21-23,162, 168

Trigonometric identities, 93, 94

Trigonometric manipulation, B.3.7.10
Trigonometry, A.11, vii

Truncation, 25

Turbulence, 263, 264

Twain, M., 290

Undefined, 6.2

Underflow, 161

Unit prices, B.2.7.2, 95

Universal time, 244, 253

Upside-down stack, 2, 4

Usher, Bishop, 243

Vanderburgh, R. C., viii, 241

Velocity, Doppler, A.8

peculiar, 254

positive, 254

turbulent, 263

Vinculum, 31

Wall, H. S., 58, 318

Warranty, vi

Washington, G., 244

Washington, University of, viii

Water vapor, 290

Wave function, 120

Wavelength, 257, 259, 261

Wax, N., 318

Weast, R. C., 316, 318
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Weather, A.13.5

Weekday, 241

Wegstein’s iteration, 104, 111, 114

Weight, B.3.7.14, 121
Weighting factors, B.4.4.19, 126, 130,

131
Well-known functions, 136

White, E. B., 43, 318

Whitman, W., 258

Whittaker, Sir E. T., 123, 318

Wind, 288, 291

Wind-chill temperature, 291

Wire gauge, A.10.6
Wittke, J. P., 121, 316

X notation, 178

X register, 3

Y register, 3

Zenith angle, 246

Zero, 6.2, 158

Z register, 3

Zuse, K., 163
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