

Few calculator users are aware of the
computational power beneath their fin-
gers. Algorithms designed for one of the
many hand-held calculators that use
RPN (Reverse Polish Notation) can
solve remarkably complex numerical
problems, ordinarily given to large com-
puters.

This book explains how to write concise
and elegant algorithms for meeting spe-
cific, individual needs and for solving
numerical problems of surprising com-
plexity. Using only a RPN calculator and
the methods supplied, scientists, en-
gineers, and students can numerically
integrate differential equations, fit
curves to data using least-squares
techniques, solve transcendental alge-
braic equations, and evaluate many
special functions (such as Bessel func-
tions). In addition, existing algorithms
can be simplified and streamlined.

ALGORITHMS FOR RPN CAL-
CULATORS progresses logically: you
will understand and benefit from the first
chapters even if your background in-
cludes only high-school mathematics;
later chapters deal with more complex
problems involving calculus. And, a
large section of the book gives actual
RPN algorithms for a variety of common
problems. These are written to be
readily adapted or directly used on any
RPN calculator. This section alone con-
stitutes a valuable practical reference.
Each chapter ends with exercises (prob-
lem sets), and an appendix contains
numerical answers. In addition, the book
includes a critique of present calculator
designs with suggestions for future de-
velopments.

781

Algorithms for RPN Calculators

Algorithms for
RPN Calculators

John A. Ball

Center for Astrophysics
Cambridge, Massachusetts

A Wiley-Interscience Publication
JOHN WILEY & SONS
New York Chichester Brisbane Toronto

Copyright © 1978 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the 1976
United States Copyright Act without the permission of the
copyright owner is unlawful. Requests for permission or
further information should be addressed to the Permissions
Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data
Ball, John A. 1935-
Algorithms for RPN calculators.

“A Wiley-Interscience publication.”

Bibliography: p.

Includes index.

1. Calculating-machines. 2. Algorithms. 1. Title.
II. Title: RPN calculators.

QA75.B33 510°.28 77-14977
ISBN 0-471-03070-8

Printed in the United States of America
10987654321

For Professor A. E. Lilley
who helped keep the wolves away
while | wrote it.

Both the author and the publisher have taken considerable care to ensure
that the algorithms and other material herein are correct and will perform
as stipulated. Nevertheless, this material is supplied without representation
or warranty of any kind. The author and the publisher assume no responsi-
bility and shall have no liability, consequential or otherwise, arising from
any use of this material.

PREFACE

The enjoyment of the tools one works with is, of course, an essential ingredient of
successful work.*

—Donald E. Knuth (1938-)

Reverse Polish notation (RPN) calculators are used by Nobel laureates
and grade school children, but few users are aware of the power beneath
their fingers. One can, for example, calculate the distance and heading
between points on the earth using an algorithm from Section A.7.2
(without knowing anything about spherical trigonometry). Section A.4.2
shows how to integrate a second-order differential equation using fourth-
order Runge-Kutta. Section A.12 illustrates the calculation of the interest
rate of an annuity using a very rapidly converging iterative algorithm. But
this book is intended primarily for those who want to write their own
concise and precise algorithms.

Many of the slide-rule tricks developed by engineers and many of the
techniques of classical numerical analysis and modern computer program-
ming are herein adapted to RPN. But RPN is different and needs special
attention if the resulting algorithms are to be optimum. RPN is an elegant
calculator system, and those who are willing to study it carefully can
write powerful RPN algorithms. But the difficulties are not as formidable
as they might seem, for RPN is a logical system—easy to remember and
use.

I have written for readers with a diversity of backgrounds. Much of this
book should be accessible to anyone who has an RPN calculator and has
read the accompanying instruction booklet. High school mathematics
through logarithms and trigonometry, but rarely calculus or advanced
mathematics, is needed as background for the first parts of this book. Later

*From Knuth (1969), p. 204.
vil

viii Preface

parts deal with more advanced concepts such as differential equations.
Sections 1.3.4 and 2.4, and Chapters 3, 4, and 5 use, at least to some extent,
concepts from calculus.

Although not really intended as a textbook—I know of no courses in
which it would so serve—I include exercises and other pedagogical devices
because I believe that they may be useful, even fun. Answers for all the
exercises are given in Appendix B.

Most of this book applies to all RPN calculators, programmable or not.
Contrary to popular opinion, I find the differences between programmable
and nonprogrammable RPN calculators less significant than, for example,
the differences discussed in Section 1.4 between RPN and algebraic entry
system (AES) calculators. Examples in the text and in Appendix A are
algorithms for specific calculators. I try to choose the simplest calculator
that will do the problem easily. Using the minimum necessary power for
the job is aesthetically pleasing, and converting upward is clearly easier.
That is, converting an HP-35 algorithm to run on an HP-67 is easier than
the converse.

In 1973 I began using an RPN calculator extensively both in my job
(radio astronomy) and for other calculations. No books of RPN algorithms
were available then, and I began writing some algorithms for my own use.
A few friends got photocopies, and in August 1974 several hundred copies
of “Algorithms for the HP-45 and HP-35” were printed as a technical
report. A later edition of this report was dated March 9, 1975. These
technical reports, which are similar to Appendix A in this book, are
collections of algorithms with enough explanatory material to enable the
reader to use them. As other collections of algorithms became available in
1974 (HP-35 Math Pac, and HP-45 Applications Book; see references in
Appendix C), I noted that my algorithms for the same problems were
frequently more compact and more elegant. This prompted me to analyze
carefully my techniques for writing algorithms and to try to describe these
techniques in a coherent manner. This book is the result.

Norman Brenner of MIT and IBM, and George Rybicki and Hays
Penfield of the Center for Astrophysics (CfA) wrote some of the algorithms
in Appendix A as noted. Norman Brenner also carefully read and com-
mented on the typescript. I also thank my other colleagues at the CfA for
help and encouragement. I thank the following persons and organizations
for useful ideas or information: C. V. Briggs, III, of MIT; Win Chan, Roy
Martin, Jeff Nagle, J. Peter Nelson, and Sharon Northrup of Hewlett-
Packard Company; D. Jividen of Compucorp; Ron Ames of Monroe;
Bruce Balick of the University of Washington; Georgene H. Berglund of
Novus Consumer Products Division of National Semiconductor Corpora-
tion; R. C. Vanderburgh, Dayton, Ohio; and T. A. Bates, Montague,

Preface ix

Massachusetts. Although I adopted only some of their recommendations, I
sincerely appreciate the comments and criticisms of Jon M. Smith and
Richard W. Hamming, who read a draft of this book. I thank my wife
Audrey for typing, and typing, and typing, and my daughter Fifi for
checking many of the algorithms.

This book and this author have given John Wiley & Sons rather more
trouble than usual. But the appearance of the result is, in my view,
outstanding. I thank the editorial and production people at Wiley, and
especially the compositor, for taking the time and effort to make it so.

I would sincerely appreciate having your comments and criticisms,
especially about any errors you may find. Thank you.

JOHN A. BALL

January 1978
Harvard, Massachusetts

CONTENTS

1 Introduction to RPN 1

Introduction to RPN: History, 2
.2 Pushing and Popping; Exchanging and Rolling, 3
1.3 Introduction to RPN Calculating, 6
1.3.1 Key to Keys, 6
1.3.2 Functors and Flags, 29
1.3.3 Translating into RPN, 31
1.3.4 Errors and Error Propagation, 34
1.4 Why RPN? 37
1.5 Exercises, 41

2 Terser and Tighter Algorithms 43

2.1 The Algorithm Method, 43

2.2 What Is a Good Algorithm? 44

2.3 Examples of Writing Algorithms, 46
2.3.1 Normal or Gaussian Probability Function, 46
2.3.2 Coordinate Translation and Rotation, 47

2.4 Polynomials, Power Series, and Continued Fractions, 54

2.5 Stack Rearrangements, 60

2.6 Algebraic Manipulations in RPN, 87

2.7 Exercises, 95

3 Iterative Solutions of Elementary Transcendental Equations 100

3.1 Introduction, 100

3.2 The g Method, 102
3.3 The a Method, 105
3.4 The B Method, 107

xii Contents

3.5 Example: x=Ax"* 108
3.6 Example: Interest Rate for an Annuity, 114
3.7 Exercises, 119

4 Curve Fitting 122

4.1 Introduction: Least Squares, 122

4.2 Linear Problems, 123

4.3 An Approach to Certain Nonlinear Problems, 128
4.4 Exercises, 132

5 Numerical Integration, Differentiation, and Interpolation 135

5.1 Introduction, 136

5.2 Tabular Interpolation, 138

5.3 Tabular Differentiation, 140

5.4 Tabular Quadrature, 141

5.5 Gaussian Quadrature, 143

5.6 Indefinite Quadrature and Differential Equations, 144
5.7 Exercises, 153

6 Suggestions for Future Developments 156

6.1 General Suggestions, 157
6.2 0, U, and oo, 161
6.2.1 oo Is a Number, 161
6.2.2 And SoIs U, 161
6.3 El Cheapo, Model A, 163
6.4 The Model B, 167
6.5 A Plotter! 170
6.6 Exercises, 171

Appendix A: Algorithms 173
Appendix B: Answers to Exercises 293
Appendix C: References and Bibliography 315

Index 319

Algorithms for RPN Calculators

1

Introduction to RPN

| do not say: science is useful because it allows us to construct machines; | do
say: machines are useful, for by working for us they permit us more time to study
science.

—Jules Henri Poincaré (1854-1912)

It is unworthy of excellent men to lose hours like slaves in the labor of calculation.
—GQGottfried Wilhelm, Baron von Leibniz (1646-1716)

As the available computational power increases, some among us, perhaps

less-excellent men, take on progressively more complex problems, so that the

hours per day, lost in the labor of calculation, are nearly constant.

—Anomalous

...when you are declaiming, declaim; and when you are calculating, calculate.

—Samuel Johnson (1709-1784)

2 Introduction to RPN

1.1 INTRODUCTION TO RPN: HISTORY

RPN stands for “reverse Polish notation” and the “Polish” refers to Jan
Fukasiewicz (1878-1956), a great Polish logician and mathematician.
“Polish” is easier to pronounce than “Lukasiewicz” (wu-ka-sha’-vich) and
“reverse Polish” is much easier to pronounce than “Zciweisakul.”*

In their advertisements and also in a letter to me, Hewlett-Packard
Company (HP), the best-known manufacturer of RPN calculators,’ says
that RPN is based on a suggestion by Lukasiewicz, and that RPN was
invented and is patented by HP. Aside from the apparent contradiction in
these two statements, I do not think that either of them is quite true. My
first experience with RPN involved a nice old Friden EC-130 desktop
electronic calculator, circa 1964. The EC-130 has RPN with a push-down
stack (defined in Section 1.2) of four registers, all visible simultaneously on
a cathode ray tube display. Furthermore, they are shown upside down, that
is, the last-in—first-out register is at the bottom. The same orientation is
used in instruction booklets for HP calculators, perhaps by coincidence.

Around 1966, the Monroe Epic calculator offered RPN with a stack of
four, a printer, and either 14 or 42 step programmability. The instruction
booklets with these two calculators make no mention of RPN or Jan
Lukasiewicz.

In his book Aristotle’s Syllogistic from the Standpoint of Modern Formal
Logic (1951), p. 78, and in some of his other publications, Lukasiewicz
recommends a parenthesis-free algebraic notation in which the operation
symbols (e.g., +, —, X, =), which Lukasiewicz calls “functors,” precede
their parameters. Thus in his notation + 5 3 would add to 8. Compactness
is the motivation for this notation; parentheses are eliminated, and the
number of symbols that must be written is minimized. Since with a
calculator, each symbol represents a keystroke, Lukasiewicz’s system has
obvious interest. Placing the functors after the parameters gives reverse
Polish notation, RPN.

But remember the old mechanical adding machine. One clears it to zero,
keys a number, and presses to “enter” the number into the machine.
What has happened is that the number was added to zero, already in the
machine. Then one can key another number, press again, and see the
sum of the two numbers, and so on. Note that the operation comes
after the number. Using exactly this sequence, one can add numbers on an

*I am indebted to Peter Collins and Jerome Cherniack for pointing this out to me.

TThe terminology is sometimes confusing. I try to be consistent and use “calculator” to mean
a device. A calculator operator is a human who presses the keys of a calculator and performs
other useful functions such as buying this book.

1.2 Pushing and Popping; Exchanging and Rolling 3

RPN calculator. RPN represents a reasonable extrapolation of this
mechanical calculator scheme, and would, and probably did, occur to
many people who might never have heard of Jan Lukasiewicz.

Hewlett-Packard Company is to be commended for the beautiful design
of the original HP-35 calculator (c. 1972). They avoided many pitfalls that
lesser minds would have become mired in. HP provided many features in a
truly concinnate way. But ignoring the foundations on which this accom-
plishment was built serves no purpose. In my view, the RPN calculator
owes about as much to the venerable mechanical calculator, and to a
number of anonymous designers, some of whom worked for Friden, as it
does to Jan Lukasiewicz.

More than a dozen models of scientific RPN pocket calculators are now
available from five manufacturers, plus other models intended for business
and financial calculations or for desktop rather than portable use. RPN
with its push-down stack of numbers and its post operators is also being
used extensively in computers. The FORTH software system by Charles H.
Moore, for example, is designed around RPN. And minicomputers now
exist with hardware that incorporates RPN. The motivation for using RPN
is the same in calculators and computers—terseness.

1.2 PUSHING AND POPPING; EXCHANGING AND ROLLING

A push-down stack of numbers is named by analogy with the device that
holds plates in some cafeterias. A stack of plates rests on a mechanism
with a spring under it such that the weight of each added plate presses all
the other plates downward, usually into a hole in a table surface. Only the
top plate is accessible, and it is called the last-in-first-out plate. Adding a
plate to the stack is called “pushing,” and removing a plate from the stack
is called “popping” (the plate is not supposed to break).

In RPN calculators, the push-down stack usually has room for four
numbers, each of which can be up to ten digits long with a sign and
exponent. The last-in—first-out number is in the X register, which is, always
and only, displayed. The other three registers are called Y, Z, and 7, in
order. If one pushes five numbers, the first-in number is lost. On most
RPN calculators, however, T does not change on pop; thus a number
pushed into T can be reused indefinitely. This feature is remarkably useful.

Some calculators have room for only three or even only two numbers in
their push-down stack. Two registers are the minimum possible to have a
calculator at all, and perhaps such a calculator should not be called RPN.
Less than a four-register stack, regardless of what it is called, is very
undesirable.

4 Introduction to RPN

The registers in the push-down stack are usually shown upside down in
calculator instruction booklets (and in this book), giving one, in effect, a
push-up stack. This may seem illogical at first, but with the upside-down
arrangement, the registers are oriented so that [:] and [-] are in the
correct order: [+]| causes the number in Y to be divided by the number in
X, and E| causes the number in X to be subtracted from the number in Y,
rather than the other way round. This convention in turn allows numbers
to be entered in the logical order; thus A4 B [-] gives A — B rather
than B— A, and 4 B [=] gives A/ B rather than B/A. The answer is
always displayed in the X register.

Operations such as [+], [, , and [z] are called dyadic func-
tors—two numbers popped from the stack are combined to give one
answer, which is pushed back onto the stack.

Figure 1.2.1 illustrates the effect of stack manipulators and functors.
Each part of this figure begins with a number 4 in X, B in Y, and so on.
The calculator is usually in a state called “auto-enter enabled,” “push
pending,” or “auto stack lift”; a more exact name might be “auto-push.” A
new number keyed in this state pushes itself into X, the previous contents
of X go into Y, and so forth. The functor [1], called “enter,” duplicates the

Lost

c D——>D D

X < N N
> & 0
S N
> & 0
W » O
> W O

I?%

b
T O - »

T: DTD D————D (or) D———>D D c
7
4
Z: C\D C—f—> ¢ C—m—(C C B
Y: B\ c B—— > B B\ > h,(A, B) B A
(2]
x: A—>[fl—saB A—>[g]— glA) A" > h,(A, B) A D

Figure 1.2.1. The effect of various stack manipulators and functors: represents
any dyadic functor, any monadic functor, and any bifid functor. On an HP-35,
trigonometric functors lose the contents of T; C is duplicated into T as shown by the
dashed line. The bottom half of this figure does not apply to Novus calculators.

B =

‘9=2/(¥X¥5—:SL A —Gl) :eidwex3 g'g'L ainbid

a A & X v M

ST ¢ 6 91¢ 14 125
£ Y44 123 vs
gt ST

44

Sl

SI

6 Introduction to RPN

contents of X into Y as shown in Figure 1.2.1, but also disables auto-enter;
therefore a number keyed following |1 | overwrites X—no push.

In Figure 1.2.1, [f] represents a dyadic functor such as [+], [=], [X],
or [£], and [g£] a monadic functor such as or [log |. This figure can

be taken to define dyadic, monadic, and bifid functors; an extended
discussion of these terms is in Section 1.3.2. The symbol is called “roll
down,” is “roll up,” and is “exchange.”

Figure 1.2.2 shows the contents of the stack after each step of a
particular problem written as

IS5tV is[xzx] (=2 5] (see 6).

This gives (15— V 15?—54x4)/2 which is one of the roots of x2—15x+
54=0. The after 15 gives 152=225. Some calculators have an
key, which would save a keystroke. The before [—] gives
15—V --- rather than V--- —15. Try it. Another algorithm for this
problem is

SISV [=12[F] (see6).

This section and these examples are intended to give just a hint of what
RPN calculating is all about. All these topics are more thoroughly dis-
cussed in later sections: Section 1.3.1 describes most of the keys on RPN
calculators, Section 1.3.2 discusses the functors in Figure 1.3.1 and consid-
ers auto-enter in more detail, and Section 1.3.3 compares two methods for
translating algebraic expressions into RPN keystrokes.

1.3 INTRODUCTION TO RPN CALCULATING
“‘Curiouser and curiouser,” cried Alice.

—Lewis Carroll (1832-1898)

1.3.1 Key to Keys

Figures 1.3.1 through 1.3.9 present a selection of available or recently
available RPN pocket calculators. This selection is obviously incomplete;
many other RPN calculators are available, and a plethora of non-RPN

1.3 Introduction to RPN Calculating 7

-1.234567809-35§

]

BEDO0m
ooDoD@D
() (2] (&)
>]) () (2]

N

(orr [o~

Figure 1.3.1. The original RPN pocket calculator, the HP-35, was introduced in 1972.
(A later version is illustrated. On the top half of the keyboard of the 1972 model, the
keys were more nearly square and were labeled on the land area above the keys rather
than on the keys themselves.) Figure courtesy of Hewlett-Packard Company.

calculators (discussed in Section 1.4) are now on the market. The following
tabulation shows most of the possible keystrokes from the devices
illustrated, with an explanation of the function. For this description, x is
the number initially in X, y in Y, and so on. Symbols inside dashed boxes
(e.g., 1y*)) require a prefix or shift keystroke. In the auto-enter column, E
means enable, D means disable, and U means unaffected. Auto-enter is
discussed in more detail in Section 1.3.2.

-123yse1a-2l

Y/x SIN /| COS TAN

i O &1 &R

X%y RY | * STO RCL |
o W W e Wsro e

' CoG) 10*

ENTER 4 CHS |l EEX CLX |
A \ —_—

) e EEE &R

Sya=jy=aj=x
exly==ly=agy=s
alyenyeny=n

~ HEWLETT-PACKARD 21

Figure 1.3.2. The HP-21 calculator, which replaced the HP-35, has all the features of

the HP-35 and more. However, the HP-21 is smaller, the display is somewhat harder to

read, and prefix or shift keystrokes are required more often than with the HP-35. The

unlabeled shift key in the upper right-hand corner is blue and is indicated in the text by
. Figure courtesy of Hewlett-Packard Company.

A ey ey Y e e Y Ry B g
o ey Y Y A |

Mathematlaan

&

Figure 1.3.3. The Novus Mathematician is a simple and very inexpensive RPN calcu-
lator. However, it has only three registers in its push-down stack and does not have
scientific notation (for very large and very small numbers). Figure courtesy of National
Semiconductor Corporation.

10

Scientist

Figure 1.3.4. The Novus Scientist is also inexpensive and avoids some of the limita-
tions of the Mathematician. Figure courtesy of National Semiconductor Corporation.

-1.234567809-45

10" SCI
'ES >R SIN“' CcOos™' TAN"'
o - I ol
n! X,s -+DMS DMS-> A%
DEG RAD GRD CLEAR

cm/in kg/Ib Itr/gal

=)) (] (=]
(4] (5] [8]

L) (2]

LAST x

(o) 3

(@] HEwLETT.-PACKARD

Figure 1.3.5. The HP-45 is the big brother of the HP-35 and has many additional
features. The HP-45 was introduced in 1973 and, like the HP-35, has been discon-
tinued. The unlabeled shift key in the upper right-hand corner is gold (or yellow) and is
indicated in the text by . Figure courtesy of Hewlett-Packard Company.

1

-12345678-25

r orr [JII o~ prom [Ruv]

FIX SCI ENG w

SST BST |j GTO f g
600 ma

S I-
X%
5 0o

)
CLEAR

PREFIX PRGM REG STK

ENTER 4 CHS EEX CLX
d] R TR &R

X<y In log +R
(x0y (e Y (o 3V [—=r 3
X2y sin cos tan
_T J _4) 5 | 6
ooy Y sy Fam
X# INT x y*
x=0 "FRac 3 aBS Y
x=Y +H.MS LAST X PAUSE
X=0 *H | L4 \ NOP Y

|

Figure 1.3.6. The HP-25, which replaced the HP-45, has almost all the features of the
HP-45 and is also programmable with room to store 49 program steps. Figure courtesy
of Hewlett-Packard Company.

12

-R

f
5
z

Figure 1.3.7. The Corvus 500 (which is internally identical to the APF Mark 55 and
Omron 12-SR) is closely modeled after the HP-45 and has most of the same features,
as well as some additional features. The unlabeled shift key in the top center is gold
(or yellow) and is indicated in the text by .

13

(@] newterr-rackarn

Figure 1.3.8. The HP-65 is an expensive programmable RPN calculator with room for
100 program steps that can be written onto and read from a tiny (not tinny) magnetic
card. An impressive library of these programs is available (see Appendix C). Figure
courtesy of Hewlett-Packard Company.

14

-1.234567830-61

|m —
OFF I ON W/PRGM I RUN

Y ®
] m AV
P, \<

w
%]
=

-

ENTER ¢

(e}
-
E

=
M)
ay

W/DATA MERGE

:

T

3

-

X#£0 XzY SIN-?

x |
(PAUSEY
X<0 X<y R2P

"

it

X>0 X>Y % %CH INT FRAC

Figure 1.3.9. The HP-67 calculator, which replaced the HP-65, has all the features of

the HP-65 and more. The HP-67 has room for 224 program steps. Figure courtesy of
Hewlett-Packard Company.

15

16 Introduction to RPN

Keystroke Type Effect on Auto-enter

Stack manipulator D

ehfe]

ElE B

]| =
=
5

wn

AV

M
=

Pushes x—Y, y—>Z, and z—»T and leaves x in X (see Figure 1.3.1).
is abbreviated herein as [1]. This key performs two functions
and can lead to some confusion. The old Friden EC-130 has two keys
labeled [ENTER | and [REPEAT]. is most frequently used as a number
separator, that is, to signify the end of one number and the start of the
next. But the repeat or duplicate function allows to be used also to
duplicate numbers on the stack.

xzy Stack manipulator E

-
'
|
'
II
4

i
N
<

w?:r
Vil

[

Exchanges x and y. See Figure 1.2.1.

z

Stack manipulator E

2

r-A

I}

J

I:u
[l
g

ROL

Rolls the stack downward; that is, x—7, y—X, z—Y, and t—Z. See
Figure 1.2.1.

&

1 Stack manipulator E

R1}
Rolls the stack upward; that is, x—>Y, y—>Z, z—T, and t—X. See Figure
1.2.1.

[0] through [9] Number E
and [-]

Places the corresponding digit into X at the next available position. The
first number key pressed pushes the stack if auto-enter was enabled, or
overwrites x if not. A number is terminated by any keystroke other than

[0] through [9], [-], or (certain extraneous prefix keystrokes

1.3 Introduction to RPN Calculating 17

Keystroke Type Effect on Auto-enter

are ignored). If [-] is pressed twice within the same number, the second

is ignored on some calculators but is taken to be the decimal point on
other calculators. [-] after clears the exponent to zero on some
calculators and undoes the effect of on other calculators. If more
than two digit keys are pressed after [EEX |, the last two are taken to be the
exponent.

Number E
[EEX]

“Enter exponent” tells the calculator that the following number keys are
the exponent (power of 10). If no number keys were pressed before [EEX |,
“1” 1s assumed on most calculators.

Number E

m

r--a
[

Puts 7=3.141592654 into X, terminates and pushes a previous number if
any, pushes the stack if auto-enter was enabled, or overwrites x if not. [7]
is an example of a special number key for frequently used constants to
avoid keying each digit of the number. Some calculators have other special
number keys as well as [7].

Monadic functor or minus sign U

Negates x; that is, replaces x by —x. This key (“change sign”) like [1],
performs two functions. can be used to key a negative number
(push after some or all of the digits are keyed on all calculators
except an HP-35), a negative exponent (push any time after [EEX]),
or to negate a number already in X from a previous calculation. But on
most RPN calculators is not a number terminator, does not affect
the status of auto-enter, and thus is very different from the ordinary
monadic functors. Section 1.3.2 discusses more fully.

STO Storage operation ?

Stores x into a storage (memory) register, overwriting anything that was in
there before. On most RPN calculators does not pop, and it has no
effect on the stack. Although is always a number terminator, it may
or may not enable or disable auto-enter; disables auto-enter on the

18 Introduction to RPN

Keystroke Type Effect on Auto-enter

HP-35, does not affect auto-enter on the HP-45, HP-55, HP-65, Corvus
500, and APF Mark 55, and enables auto-enter on the HP-21 and HP-25.
Check the fine print in the instruction booklets for other calculators.

RCL Storage operation E

Recalls the number from a storage register and puts it into X;
terminates and pushes a previous number if any, pushes the stack if
auto-enter was enabled, or overwrites x if not.

Some RPN calculators have more than one storage register, and a
number key pressed after or designates the register to be
used. Some RPN calculators also have storage register arithmetic; that is, a
sequence such as [=] 5 divides the contents of storage register
number 5 by the contents of X and leaves the answer in the storage
register. The stack registers are unchanged. The [+] in this example could
also be [+], [=], or [X]. On some calculators storage register arithmetic
is performed by keys labeled [M+], [M—], and so on. Similarly, the
HP-45 and HP-46 allow sequences such as [=] 6, which subtracts
the contents of storage register number 6 from the contents of X and
leaves the answer in X. The storage register, and the stack registers other
than X, are unchanged. If auto-enter was enabled, the sequence
[=] 6 (pop then push) differs from 6 [—] (push then pop) in not
losing the contents of 7. If auto-enter was disabled, [=] 6 uses, but
6 [=] loses, the contents of X. Figure 1.3.10 gives examples of such
sequences. These capabilities are valuable for certain problems.*

Some calculators allow the sequence n or n,
where n is a storage register number. This sequence exchanges the contents
of X with the contents of the designated storage register.

CLX Special D

Clears X to zero, overwriting x regardless of auto-enter. This key is often
used to correct a miskeyed number, and so must disable auto-enter.
However will do as well for this purpose.

*Actually the situation is even more complicated. The very first HP-45s had
arithmetic but not arithmetic. Then beginning officially in January 1974 (unofficially
in August 1973), HP-45s featured both [STO | and [RCL | arithmetic. HP-45s with an S
serial number higher than 1301S2000 or an A serial number higher than 1336A00000 are the
new model. Whenever “HP-45" is used herein, I assume the new model.

1.3 Introduction to RPN Calculating 19

Before Keystrokes After
T:D C
z:.C 4[] C
Y:B B
X: A A/K
Auto-enter: E E
Ry K K
T: D D
zZ:C 4 [£] D
Y:B C
X: A B/K
Auto-enter: D E
Ry K K
T: D D
zc Hs+ ¢
Y:B B
X:A A/K
Auto-enter: either E
R4y K K

Figure 1.3.10 Examples of the effect of recall arithmetic on the HP-45.

Keystroke Type Effect on Auto-enter
CLR Stack operation E

{CLR]

CLEAR;

'CA

Clears the stack registers, and, on some calculators, some or all of the
storage registers. Except in connection with [£+], the key is not very
useful; between problems is almost never necessary.

Stack operation E
Performs the equivalent of [+]. This would be a valuable function

except that on the Novus calculators on which appears, T (or Z)
clears on pop.

20 Introduction to RPN
Keystroke Type Effect on Auto-enter

Display U
| FIX |

[FIX | manipulator

ENG

r B
LENG

These keys affect the format of the displayed number. See the instruction
booklet with the individual calculator.

Prefix or shift U

=
=
=y

FeEE

—
|

EEHHH
<(lO

T
=
o]

Affects a following keystroke by changing its effect to the shifted mode.
For example, gets sin~! and [INV | [HYP] [SIN | gets sinh !
rather than sine. These shifted functions are very valuable, of course, and
the shift keys save the cost and size of additional keys on the calculator,
but many errors occur through accidental misuse of shift keys. Do rot hold
the shift key down while pressing the following keystroke.

represents an unlabeled gold-colored key and an unlabeled blue
key. is pronounced “glue” because it is a blue key with a “g” on it,
is “fold,” [f~"] is “dolf,” and [h] is “hack.” With just a little effort,
calculator manufactures could think of a more logical color scheme.

Dyadic functor E Pops x and y, adds
them (y + x), and
pushes the answer.

[+]

1.3 Introduction to RPN Calculating 21

Type Effect on Auto-enter

5

rﬂ'\
L-J

2

r=n
1% 1
[NY}
L-d

,._
4
Z

.-

1
'

' '2

Z(Z
4

Dyadic functor E

Dyadic functor E
Dyadic functor E
Monadic functor E
Monadic functor E
Monadic functor E
Monadic functor E
Monadic functor E
Monadic functor E
Monadic functor E

Pops x and y, sub-
tracts them (y—x),
and pushes the
answer.

Pops x and y, multi-
plies them (y X x),
and pushes the
answer.

Pops x and y, divides
them (y + x), and
pushes the answer.
Replaces x by 1/x
for x#0.

Replaces x by Vx for
x>0 or x>0.

Replaces x by x2.

Replaces x by sin(x).

Replaces x by cos(x).

Replaces x by tan(x).

Replaces x by the
principal value (—90°
to +90°) of sin~!(x)
for —1<x<1.

22 Introduction to RPN

Keystroke Type Effect on Auto-enter

1 Ccos!} Monadic functor E Replaces x by the
principal value (0 to
180°) of cos™!(x) for
—-1<x<1L

' TAN-": Monadic functor E Replaces x by the
principal value (—90°
to +90°) of tan™'(x).

For the six trigonometric functors above, the units of x and the restrictions
on the range of x depend on the individual calculator. Many calculators
allow a choice of degrees or radians as noted below.

' DEG ! Mode change U

Changes the units of the angle to degrees, radians, or grads for all
following trigonometric functors (a “grad” is a four hundredth of a circle
or a hundredth of a right angle). These keys affect direct and inverse
trigonometric functors, rectangular-to-polar-to-rectangular coordinate con-
versions, and also, on some calculators, the degrees-minutes-seconds con-
versions below.

Monadic functor E

Converts the angle or time in x into the format DD.MMSS (degrees,
minutes, seconds) or HH.MMSS (hours, minutes, seconds).

'D.MS—! Monadic functor E

Converts the angle or time in x from DD.MMSS or HH.MMSS format
into decimal degrees or hours (or radians or grads).

1.3 Introduction to RPN Calculating 23

Keystroke Type Effect on Auto-enter

' LR Bifid functor E

Some RPN calculators have rectangular-to-polar ([>P |) and polar-to-
rectangular ([SR]) coordinate converters. Starting with x in X and y in Y,
puts R=1\x?+y? into X and §=tan"'(y/x) into Y. The angle 8 is
in the correct quadrant (—180° to +180°) even if x or y is negative. Or
starting with R in X and @ in Y, puts x=Rcosf into X and
y=Rsinf into Y. On some calculators, § and R are exchanged in the stack
from this description. With either [5P | or [5R], Z and T are un-
changed. These functors are extremely useful for many problems in which
trigonometric functions play a role. Appendix A contains examples in
plane and spherical trigonometry and complex numbers.

Monadic functor E Replaces x by
LLOG logyo(x) for x>0
Monadic functor E Replaces x by In(x);

LN} that is, log, (x), where
e =2.718281828, for
x>0.

Monadic functor E Replaces x by e*;
that is, exp(x).

0% Monadic functor E Replaces x by 10*.

Dyadic functor E

R

Pops x and y, computes x” for x >0 or y* for y >0 and pushes the answer.
Neither x nor y needs to be an integer. Some RPN calculators can also do
for y<0 and x an integer. Most RPN calculators other than the
HP-35 have a rather than an key. Each has some advantages. For

24 Introduction to RPN

Keystroke Type Effect on Auto-enter

example, A B gives A2, which seems more logical than 4 B
[x”], which gives B“. But the stack as usually drawn has Y above X so
might seem more reasonable. Sometimes saves keystrokes over [y*].
The cube root of A, for example, would be 3 A or 4
[»*]. But other examples favor [y*]. On some calculators iy

requires a prefix or shift key, thus adding another keystroke. o

W

>y

nl Monadic functor E Replaces x by x! for

X a positive integer.
Special functor D

=

Sums Zx;,, Ex,-z, 21 (increment), and, on some calculators, Zy;, 2x;y;, and
Sy? also. In these sums x; is the quantity in X and y, in ¥ when is
pressed. These sums are accumulated in designated storage registers to be
used later to calculate means, standard deviations from the means, and
perhaps linear regressions. Since =—: accumulates negatively, it can be
used to delete an incorrect (x;y;) pair from the sums. On most RPN
calculators overwrites x with the latest =1 but disables auto-enter so a

propriate registers before the first [E+]. Check the instruction booklet for
details. is discussed further in Section A.l1.2; see especially Table
A.l.l.

L-aJ

31l
'(ﬂl

Special functor E

FoAar-Aar-ar-A
ne nx|n
[T TR

%]
Loa

Computes means and standard deviations from the sums previously ac-

cumulated by E+].

Bifid functor E

0

r="
(R}

Replaces x by xy/100; Y is unchanged.

1.3 Introduction to RPN Calculating 25

Keystroke Type Effect on Auto-enter
:A%: . Bifid functor E
L %CHS ;

previous number if any, pushes the stack if auo-enter was enabled, or
overwrites x if not.

'INT | Monadic functor E
Replaces x by its integer part. That is, x is truncated (not rounded) to an
integer. The sign is retained.

" FRAC | Monadic functor E

Replaces x by its fractional part. That is, the integer part of x is subtracted
off. The sign is retained.

[ABS : Monadic functor E

Replaces x by the absolute value of x. That is, a minus sign on x, if
present, is deleted.

r----1

‘RND' Monadic functor E

LS STa

Replaces x by x rounded off as selected by the display format.

The following keystrokes are on programmable RPN calculators. Using a
program on such a calculator is a two-step process: first one keys or reads
in the program, and then runs it, repeatedly if necessary, to give numerical
answers. A switch on the calculator determines whether keystrokes are
stored and saved (W/PRGR or PRGM) or executed (RUN).

Some quite significant differences exist among programmable RPN
calculators, even from the same manufacturer, and the descriptions below
are only approximations in some cases. Consult the instruction booklet for
details.

26 Introduction to RPN

Keystroke

(run /stop)
[START |
[HALT]

In RUN mode, these keystrokes start or stop the operation of a program.
An internal program pointer determines which instruction will be executed
next. On encountering [R/S] or [HALT |, a running program stops to
allow operator intervention (e.g., keying a number).

GTO

In RUN mode, this keystroke sets the program pointer to the instruction
corresponding to the keystroke or keystrokes following, so that a subse-
quent starts there. On encountering in a running program,
the program pointer jumps (forward or backward) to the instruction
corresponding to the keystroke or keystrokes following, and the program
runs on from there.

There are two systems for labeling instructions within programs. The
HP-65, HP-67, and HP-97 use formal labels (A through E and 1 through 9)
which can be inserted anywhere in the program. This is a very versatile
system, but these labels occupy instruction locations. Other calculators use
a two-digit number for each instruction location.

LBL

This keystroke in a stored program defines the keystroke following to be
the label of this location, so that a can be used to start execution at

this point. The keystroke following must be through [E], [1]
through [9], or 'a: through Ie’.

FElC)=]>]

reAarsAarTsAarrTAarsA
10 e e ngrn
LodbodiLJdL-JdL -

1.3 Introduction to RPN Calculating 27

Keystroke

In RUN mode, these keystrokes start program execution at the¢ corre-
sponding label and set the subroutine return address to the keyboard. In a
stored program, following [LBL], these keystrokes label the start of sub-
routines. In a stored program not following [LBL |, these keystrokes cause
program execution to transfer to the appropriate subroutine (a subroutine
“call”) and the calling address is saved so that

at the end of the subroutine transfers control back to the instruction
following the subroutine call. If a subroutine is called from the keyboard,
is equivalent to and control returns to the keyboard. Sub-
routine calls and [RTN s are very valuable for certain problems.

Ar-Aar-ar-A
Qunan

r
"

r=ar-A

"

"
ey

"
LodL-d

The HP-65 has two and the HP-67 and HP-97 have four internal flags that
can be set or reset by these keystrokes.

Y
O N O 1o x|

A%

PIog 115 113 115¢ 113 IS¢ 115¢ 115 115 115 115 |

—~
los]
=o'k e 1O e

L Y | T | S | S | S Y S T S | S|

n
[SgETies]
S

[ECRT

FoAr = Ar=Aar-Aar-Aar-Aar-Aar-Aar-Aar-Aar-Aar-Aar-Aar-A

These are conditional skip instructions. When encountered in a running
program, they cause the instruction following (two instructions on the
HP-65) to be skipped if the indicated condition is false (i.e., no skip if true).

28 Introduction to RPN

Keystroke

reAar-na
"
"
LodL-J

L

Sz,

“Decrement and skip on zero” or “increment and skip on zero” adds or
subtracts 1 from the contents of a storage register and skips the next
instruction (or two) if the result is then zero.

“Single step” moves the program pointer ahead by one step in PRGM
mode to allow editing of a program. In RUN mode, | SST | causes one
instruction of a program to be executed.

“Back step” or “delete” allows editing in PRGM mode by backspacing so
an incorrect instruction can be overwritten. In RUN mode resets

This instruction in a running program pauses about a half-second—almost
long enough to be able to read the number in the display.

“No operation” does just that; it is used as a filler after skips or to wipe
out an instruction without affecting the locations of the other instructions.

Omitted from the foregoing list are some very specialized functors that
are not mentioned in this book. In any case the reader should peruse the
instruction booklet that accompanies the calculator. The instruction book-
lets with HP calculators, especially recent models, are very well prepared.
The instruction booklets with National Semiconductor and Novus calcula-
tors are not quite as good, and the instruction booklet with the Corvus-500
calculator is just awful. (Hence Corvus-500 owners will better appreciate
this book.)

1.3 Introduction to RPN Calculating 29

Everything Youve Always Wanted To Know About RPN But Were Afraid
To Pursue—Comprehensive Manual for Scientific Calculators (see Appendix
C) is, in effect, an instruction booklet for the Corvus 500. I recommend
Everything ... for Corvus-500 owners, even though it has at least 86 errors
(mostly typographical), including one on the cover.

1.3.2 Functors and Flags

Functors take at least one parameter or argument off the stack and put at
least one answer onto the stack. A monadic functor (e.g., [SIN |) pops a
number, calculates the function, and pushes the answer. A dyadic functor
(e.g., [+]) pops two numbers, calculates the function, and pushes the
answer. A bifid functor (e.g., [=P |) pops two numbers, calculates the
functions, and pushes the two answers. Other possibilities also occur. For
example, the functor found on some RPN calculators uses two num-
bers off the stack but pops only one of them; Y is unchanged. This is
logically equivalent to a bifid functor that pushes back as its first answer
the same number as its second parameter, that is, h,(4,B)= B in Figure
1.2.1.

Three internal flags (one-bit numbers) in a typical RPN calculator
indicate the status. Auto-enter can be enabled or disabled, a number can
be in the process of being entered, or an exponent can be in the process of
being entered. Some keystroke operations check and others change the
status of these three flags. Only the auto-enter flag seems to cause any
confusion. When a new number goes into X, there are two possibilities: if
auto-enter is enabled, the new number pushes the stack as described
previously; but if auto-enter is disabled, the new number overwrites the old
number in X and leaves the contents of Y, Z, and T unchanged. The new
number can come from number keys, from [RCL], or from a special key
such as [7]. To save the previous contents of X, the first possibility above
(push, or auto-enter) is needed.

The key writes zero into X (no push) but disables auto-enter, so
that a number following overwrites the zero rather than pushing it.
And performs a “duplicate” function (push the contents of X into Y
also, etc.) but disables auto-enter so that if is followed by a new
number, X is overwritten and only one copy of the previous number
remains on the stack. Thus can be either a number separator or a
duplicator.

The minus symbol (—) in algebra serves three separate functions that are
performed by two keys—[=] and [CHS]—on a typical RPN calculator.
[—] is unambiguous; it is the dyadic functor “subtract.” However,
can correspond either to a minus sign on a number or to the monadic

30 Introduction to RPN

T:

Z: A

Y: A A A —A A
X: A A —A B not: B nor: —B

Key: 4 B

Figure 1.3.11 A common error on calculators other than the HP-35: following

gets lost.

functor “negate.” In its minus-sign role is different from other
number keys in that it cannot begin a number (except on the HP-35) as it
logically would; and in its functor role, differs from other monadic
functors on most RPN calculators in not terminating a number and not
enabling auto-enter. Nevertheless, this combination of functions in a single
key is probably desirable because it reduces the number of keys on the
keyboard and may reduce confusion in some problems.

But confusion can arise on some calculators if precedes
because auto-enter will still be disabled after the [CHS]. The negated
number will then be overwritten (the will be lost) if a number or
follows [1] [CHS]. This error is illustrated in the sequence in Figure
1.3.11. On some RPN calculators, other keystrokes such as can
occur between and B in Figure 1.3.11, without affecting auto-enter.

T:

Z:

Y: A A A

X: A 4 —A -B

Key: 4 CHS B

T

Z:

Y: A 4 A+B
X: A 4 B A+B —(4+B) -C
Key: A B CHS c

STO: —A —A

T:

Z:

Y: 4 A A A

X: A 4 -4 -4 B

Key: 4 [CHs | [sTO] B

Figure 1.3.12 On an HP-35, never gets lost, but sometimes it attaches itself to
an unlikely number.

1.3 Introduction to RPN Calculating 31

On an HP-45, for example, the sequence A 4 B puts —A
into storage register 4 but not onto the stack! But this is not necessarily an
error—it might be what the user wanted. If a functor follows [cHs],
the negated number is correctly used, and the functor will enable auto-
enter.

On an HP-35, is even curiouser. If precedes a number
entry, the first negates the number in X (as it must, for the
calculator cannot know which key will be pressed next). Then, when a
number key is pressed, the number in X is negated again (becomes what it
was originally), and the new number is negated and either pushed onto the
stack if auto-enter was enabled, or just written into X if not. Three such
sequences are illustrated in Figure 1.3.12.

1.3.3 Translating into RPN

In ordinary algebra the expression 4 /BC is ambiguous;* it might mean
(A/ B)C, but more likely means 4 /(BC). In algebraic computer languages
such as FORTRAN and BASIC, the expression 4 /B*C is unambiguous;
it means (4/B)*C (* means multiply). In translating 4/BC and similar
expressions into RPN (which is not ambiguous), one may have to guess
whether the author of the expression intended 4 [1] B [5] C [=] or 4
B [=] C [X]. In really ambiguous cases, try working out the units (meters,
kilograms, seconds, etc.). This ambiguity sometimes occurs when authors
translate their equations into serial form (all on one line) at the urging of
the printer of a book or journal. The horizontal bar in a fraction in
nonserial form is a vinculum and implies parentheses around both numera-
tor and denominator.

Figure 1.3.13 is a flow chart of a method for evaluating arithmetic
expressions as recommended by Hewlett-Packard in instruction booklets
for some of their early RPN calculators. To use this method, first write the
expression to be evaluated on one line (serial form), adding parentheses as
necessary. This method has the advantage that one proceeds from left to
right through the expression, keying each number (but not each operation)
in turn. This method can be done mechanically with little thought, but it
would work for any expression only if the push-down stack were arbitrarily
long. The principal disadvantage of this approach is that it rarely yields the
shortest possible keystroke sequence.

I recommend, instead, a method that requires more thought, at least at

*“Please Excuse My Dear Aunt Sallie” is a mnemonic for the algebraic hierarchy: parenthe-
ses, exponentiation (involution or evolution), multiplication, division, addition, and subtrac-
tion. Interpreted literally, this hierarchy would make 4 /BC into 4 /(BC), but it would also
make A — B+ C into A —(B+ C)!

32 Introduction to RPN

START
|

1 —-

Key next number
(left to right through the expression)

1

Is any
monadic functor
possible?

Do it Yes

No

Is any
dyadic functor
possible?

Yes Do it

No

Has any
functor been performed
on the last number
keyed?

Yes

No

|

Figure 1.3.13. A method for translating expressions in serial form into RPN, as
recommended by Hewlett-Packard.

first, but usually yields more nearly optimum keystroke sequences and
works for much more complicated expressions than the method above.
Essentially one works from inside out, starting inside the innermost
parentheses and proceeding outward. Products and fractions have implied
parentheses around them, and the arguments of functions usually must be
evaluated first of all. This method is just about what would be done with
pencil and paper or with slide rule and abacus, but intermediate answers
can be left on the stack for later use (unless it fills up). This second
method, or something very similar, is now also recommended by HP
(Martin, R., private communication). Perhaps the best way to show these
methods is through a series of examples. In the following, algorithm 1 is
from HP’s method in Figure 1.3.13; algorithm 2 is from my method.

1.3 Introduction to RPN Calculating 33

Expression Algorithms

A—BC 1. A B Ccx][=].
2. B[1]c[x]4 [x=2y] [=].

Note that BC has implied parentheses around it and that the two methods
yield algorithms of the same length. In method 2, the could be
omitted if a were appended at the end, but with no change in the
number of keystrokes.

A/(B+C) 1. AQ)BO]c+] [&.
2. BA]c[+]4[>x=2y] [£].

In method 2, the could be omitted if a were appended at the
end, but with no change in the number of keystrokes. These examples
show that method 2 sometimes needs an before [—] or [=] (or a
or afterward) because the parameters can be in the wrong
order on the stack. This never occurs with method 1.

A1) B[1] c[x][+]
B[1]C[x]4[+].

A B[] ¢ b [x][=][x]
ctJp[x]B[x2y][-]4[X].
B[t]c[t] p[x][=]4 [x].

c [t p[x]B[x2y][=]4 [X].

Rewriting the expression algebraically sometimes shortens the resulting
algorithm. This occurs frequently with method 1, and occasionally with
method 2.

A+ BC
A(B-CD)

(B—CD)A

(A—B)C-D) 1. A)B[=-]Jct]p[=][x].
2. A)B[=]c[i]p[=][x].
AB—CD 1. A]B[x]c[t]p[x][=].

2. A)Bx]Jc]p[X][=].

Note the similarity of these two forms—product of sums and sum of
products—both algebraically and in RPN.

A(B+C(D—E)) 1. No go: a five-level stack is needed.
2. D[HJE[=]c[X]B[+]4[x].
(D—-E)C+B)4 1. D[MJE[=]C[X]B[+]4[x].
2. D[TJE[=]C[x]B[+]4[x].

To use method 1 efficiently, try rewriting the expression algebraically such
that all the opening parentheses are at the beginning.

34 Introduction to RPN

Expression Algorithms

1 +sin?(24) L1204 [x]0siN] 2] [+].
2. A [F]CsiN] 2] 1 [+].

On a calculator without [x2], use instead.* To calculate 24, A4
uses fewer keystrokes than 2 [1] 4 or A [1] 2 [X]. Again method

1 would yield a shorter algorithm if the expression were rewritten as
sin?(2A4)+ 1.

1.3.4 Errors and Error Propagation f

When an approximate calculation is done, we usually need to know how
precise the answer is. Relative or absolute errors can be expressed in
several ways. If 4 is an approximate value and T is the true value, then

E=A-T (1.3.1)
is the absolute error, and

A-T _§

E= ——— =

- (13.2)

is the relative error in A. The percentage error is 100 times the relative
error, that is, € expressed as a percentage. Some authors define —¢ as the
error, |¢| as the absolute error, and || as the relative error. Usually £ and ¢
are unknown (because 7 is unknown), but one may be able to estimate a
value or an upper limit for || and |e].

The number of decimal digits of precision in A is the number of correct
digits to the right of the decimal point in the standard decimal expression
for A. The number of significant figures in A is the number of correct digits
regardless of the decimal point. But until one specifies how precise a digit
must be to be “correct,” these definitions are unusable. Will =1 or *+0.5
do? And does it matter whether the digit is 1, 5, or 9?7

Rather than these imprecise definitions, define the number of decimal
digits of precision as

DD = ~log,o(I4)), (13.3)

*But loses the contents of 7. This is not important in this example.
+ This section is somewhat more difficult and specialized than other material in Chapter 1 and
may be omitted on first reading.

1.3 Introduction to RPN Calculating 35

and the number of significant figures as
SF= —log,o(|e])=DD+log,,(| T|). (1.3.4)

These definitions accord approximately with the imprecise definitions just
given. Specifically, 1+0.1, 5+0.5, and 9+0.9, each corresponds to one
significant figure, SF=1.

The absolute error of the sum or difference of several numbers is at most
equal to the sum of the absolute values of the absolute errors of the
individual numbers, and, if the errors in the numbers are uncorrelated, is
more probably approximately the square root of the sum of the squares of
the absolute errors of the individual numbers. Similarly, the relative error
of the product or quotient of several numbers is at most approximately
equal to the sum of the absolute values of the relative errors of the
individual numbers, and, if the errors in the numbers are uncorrelated, is
more probably approximately the square root of the sum of the squares of
the relative errors of the individual numbers. Symbolically, if

B=A,*A,*A;*---* A4, (1.3.5)

then

€]+ |&] + |&]+ - - +]&,|> |§B[z[$.2+€22+£32+ . +§n2]'/2, (1.3.6)
or if

C=ApA Az %A (1.3.7)

n’
where * represents either X or +, then
les| +[e5] + lesl + - - - +e,| 2 Jec]

=[ef+ei+es+- - +£ﬂl/2. (1.3.8)

In these formulas, £, represents the absolute error, and ¢, the relative error
in 4,, and so on.

For operations more complex than sums or products, one can use the
approximate theory of linear error propagation with first derivatives. If D
is any function of A4,

D=f(A), (1.3.9)

36 Introduction to RPN

then

Ep=f"(A),. (1.3.10)

This is only an approximate value for £, since higher-order derivatives are
neglected. In general, if

E=f(A]’A2,A37” '5An)’ (1.3.11)
and if we write
_of _ o
p]_ﬁgl9 Pz_Egz’ etc-’ (1.312)

then
2
ol + loal +los| + -+ +loa|> 16| =[p3+03+p3+ -+ +p2]"/% (1.3.13)

As an example, suppose we average n numbers 4,,

F=

N\ZE

4. (13.14)

1

S -

i=1
If the £ are approximately equal and uncorrelated, using either equation
1.3.6 or 1.3.13, we get

5 el = 2L (13.15)

Vn

In the denominator Vn—1 , rather than Vn , is a better estimate in most
cases.

As another example, suppose we raise a number 4 to a power a > 1, or a
root 0<a<1,

G=A" (1.3.16)
Then
¢ ad*7lE ag
EG;EG%TA=TA;‘“A' (1.3.17)

Thus the relative error in G is approximately a times the relative error in

1.4 Why RPN? 37

A. Or if
H=InAd; A=e", (1.3.18)
then
3
gﬂgj‘;%. (1.3.19)

Therefore the relative error in A is approximately equal to the absolute
error in H.

The overused example of what not to do involves subtracting two nearly
equal numbers or adding two numbers approximately equal in magnitude
but opposite in sign. From equation 1.3.6, the absolute error is not too bad,
but the relative error, with its small denominator, can be huge. “Avoid
subtracting nearly equal numbers” is an admonition sometimes unneces-
sary and sometimes impossible to follow. The relative error in an ap-
proximate value for zero is necessarily large.

If more than one algorithm is available for a problem, as is usually the
case, investigate the error in the answer with each algorithm, using the
formulas in this section, and bearing in mind that intermediate answers
can be expressed only to the calculator accuracy. This rule of thumb is
more difficult to follow but more reliable than the naive admonition
above. An example appears in Section A.9.5.

Some of the ideas in this section are unconventional. For a detailed
discussion of the conventional viewpoint, see Chapter 1 in Demidovich
and Maron (1973) or Chapter 1 in Scarborough (1962).

1.4 WHY RPN?

Although the first scientific pocket calculators employed RPN, many more
models are available today with some form of an algebraic entry system
(AES). RPN calculators have an [ENTER? |, [ENT], or [SAVE? | key, AES
calculators an [=] key. Advertisements for the two systems make what
seem to be contradictory claims: each system is said to be easier to learn,
remember, and use. This section attempts to separate sense from nonsense
in this area.

Simple AES calculators have two internal registers for numbers and do
each operation when the following operation key is pressed. Some expres-
sions can be keyed directly in this system. For example,

AB

& -E (1.4.1)

38 Introduction to RPN

can be done on a simple AES calculator by

A[X]B[=] C[=]E[=]. (1.4.2)

Note that [=] is always needed at the end to complete the last operation.
But some expressions need to be rewritten to work in this system. For
example,

A-BC (1.4.3)

can be done on a simple AES calculator by

B[x]c[+/=][+]4[=]. (1.4.4)

The key corresponds to in RPN and is a post operator. If,
instead, one keys

A[=]B[X]C[=], (1.4.5)

the result is (4 — B)C.

Another AES scheme, referred to as AESH, has three internal registers
for numbers and an operational hierarchy according to which X and +
are done before + and —. This system is similar to the ordinary algebraic
hierarchy without parentheses. Any serial-form arithmetic expression
without parentheses and with the foregoing convention can be done in
AESH just by keying from left to right. For example, in AESH

A[=1B[x]C[<] (1.4.6)

gets A — BC rather than (4 — B)C. For this problem the AESH calculator
saves A and “—” internally and does this operation after the multiply;
both operations in this example actually take place when [=] is pressed at
the end.

Still another AES scheme, referred to as AESP, has four internal
registers for numbers and keys for two-level parentheses: and D]. Any
serial-form arithmetic expression with no more than two-level parentheses
can be done in AESP just by keying from left to right. For example,

AJ[dBX]cD][=] (1.4.7)

gets A — BC. On some (but not all) AESP calculators, the closing paren-
thesis before [=] can be omitted.

The most elaborate AES scheme is the algebraic operating system
(AOS), which combines AESH and AESP with several levels of parenthe-
ses and automatically closes all parentheses on [=].

Table 1.4.1 Comparative Algorithms
AES Number of

Case Algorithm Keystrokes | Algoritl
ab al-]b[<] 2 al[]b
a+tb+c ach 3 ab
a*bxc aEbECB 3 aE]b
(ab)-c alJb[]ecls] 3al]s
(axb)sc alz]b[+]c[=] 3alx]b
(a*b)*c a[+]b[x]c[=] 31al*]b
a-(b-c) b[-]ec[=][sT0]a[-][RrRCL] [=] 6 |b[]c
a+(b+c) b[s)e[+]als] 3 |al+]b
a—(b*c) bl]c[+/=]1 [+ al<] 4 1al]b
ax(b+c) b[]e[X]al=] 306 [E]ec
a+(bxc) bl]e[als] [/ 4|6 E
a+tb+c+d al£]b[£]ez]d[] 4 la[x]b
axbxcxd al+]b[+]c[+]d[=] 4 |als]b
(a:b)-(c-d) c[Jd[=] [so]a[-]b[][rcL] <] 7|cl]d
(axb)yscrd alzgb[]c[-]a[s] 4 |alz]b
(axb)x(c+d) |c[+]d[=] [s10]a [+] 5[] [ReL] [5] 7|als]b
asbX(c+d) clzldX]al+]b[=] 4 |c[x]d
axb+(cxd) chaE’bE]m 5|c[x]d
(asb)*c*d alx]blz]czx]d[<] 4|al+]t
(axb)x(cxd) |c[z]d[=] [sT0]a[x] 6 [+] [RCL] [5] 7 | c[2]a
atb+(c+d) cls]d+]alz]b[=] 4|alz)t
a+b—(c*d) cld+/=)[Halz]b][] 5|alx)t
a(b-(c-d)) c[Jd[=] [sto] b [[Rer] [] [sT0] a [[] [RCL] [=] 10 | ¢ [[] 4
aX(b+(c*d)) c[s]a[+]bp[x]al=] 416 [+]c
axbriesd) | c[] a5 [a2 (7] 5o [H e
ax(b—(c*d) | ¢ [x]d[+/=] [+] b [X]a[5] 50b[-]c
ax(b—(c*xd)) | c[+]d[+/=][*]b[=]a[=] [1/x 6|62 c
a+(b*cxd) b[x]c[+]d[+]al=] 4 |a[+]¢
a—(bxc*d) b[+]ec[+]d[+/=] [*] a[=] 5|a[=]¢
axbx(cxd) Previously done.

aX(bxc+d) bcdaE 4bc
ax(bxcxd) b[x]elx]d[=]al=] [1/x] 506 2] c
a+(bX(cxd)) cdbaE 4 cd
a—(bX(cxd)) cdbma 5 cd
at(b+(cxd) | ¢ [£]d[=] [1/x] [X] b [#]a[=] 6 |c[x]a
a=(b+(cxd) | c[£]d[=] [/x] X b[+/=] [+ al=] 7| ¢ [2] g
axbx(c+d) Previously done.

44646454645\

EGME@I_EEBH

: 2 2 [opmspoye Cootlet) oo -

e et Hueead ol

| CEOOGSEEED EOEECHO 25T e

{0 GooStooeD GEOBECHONE COCRED Ctmm
Z m
(]
E o

0 E 2 m

Z 0] 2 ojin U@ @ BEBI
P 2 x

g o Uyaet -EIBI Bl@lj:

oy B O @@mdamlgn [
noe E-BEI- FEfg e -l-

o EBBBIEBEEB AR EERED

oD HiiEs
_@@@@@@ mgmm-
WEEEEEE FHEEEEH

Weights

0o ST T+ToNANANA
-’

~

A0w0068886888
<t = —

~—~

SN AN AN A 0

00 00 AN AN AN A

Number of
Keystrokes

RPN

Algorithm

nnononon ot oo

L
£ K3/ B B

R S S " S s I -)

2] I3[[= S = [

2 0 0 Q00 U VO

e 2 e = e

I I 83 8 8 8« 2 v 0 B-

t TNt NN TN

O O
23 3 3 [) [

I I T AIITI O

23 = I = 3 = [R [ER

(S L R I N

21038 e 2 [

RS SIS SIE SHEa s B SR SEE S)

2 2= = o e = e R

T I I I o OB

O T N O T n

L] []
IR E3 KN
LI SR

S RS S S TS BN

(AL

OOV O O

HHEEEEE

NN O O o0

e [

T o8 80 B

<t N T N n O

[1]
[[
IEEE S]

IV T

EJ/EIE3 EJ/ED ES

WOV ©

G EFHEEE

OV O OUR

]

L SIS SR SRR SN SN

Number of
Keystrokes

AOS

Algorithm

2la[t] b []

anE

NNt <t TN T

O] G [0
EEDEBDEEII
IEBEIIEEII

bbbbb

01 3 3 [

I I I IR

T T O N T NN O

E
B

[

=00 [0 M
D Edd < L]

< B
d..a. d.dd
IBDEEIIIEEE
28 3 A

Y EEEEREEEES

23 I 23 3 | [

I I I I 8 8B BT TR

O N N N N T

(]

= 000
_H_ddddEE

IEBEE

crre &

EES=crelle

LI

T I I IR

nyn i N N n

nnnon

"I III

2 [0 B[R B

CCCCCC

EEEB
..bbbb

MM

SIS RS SRS SRS BN

Table 1.4.1 Comparative Algorithms (continued)

AES Number of

Case Algorithm Keystrokes | Algorithm
(a-b)-c)-d a6 e[Jd[E] 4 |a[Jb [
(axb)xcxd Previously done.

@bz |a[Jo[Hc[ad[] 4jaldple
(a*b*c)xd al*]b[*]c[z]d[=] 4 fal]o[s
(a*b)xcxd Previously done.

(axbyro)td |a[z]b[-]c[x]d[5] 4 |a[z]b[-
(axb*c)*d alz]b[]c+]d[=] 4 |alz]b [z
a-((b-c)-d) b[Jel-]a[=] [sT0]a [] [RaL] [<] 716 [Je[z
ax(b*c*d) Previously done.

ax((bxoyxd) | b[x]c[+]d[X]al[=] 4 |b[]cl=
a+((bxoysd) | b[£]c[+]d[z]a 5] [1/x] 516 []cl=
axX(b*c)xd) b[Z'cdaE] 4 bE]cE
a+((bro)xd) | b[+]c[x]d[z]a5] [1/x] 51b[*]c[z
ax(b*xc*d) Previously done.

a+((bxo)xd) | b[+]c[x]d[+]a[5] 4|b[+]clz
a=((bra)xd) | b[]c[zx]d[s] /=] [Ha =] 6 [b[]cz
a+((bxe)xd) | b[x]c[+]d[+]a[=] 4|b[x]c[=
a—((bxo)rd) | b[x]c[+]d[+/=] [*] a[5] 516 [x]cl=
(a-(b-¢))-d b[-]el=][sT0]a[][RcL] [[]d[=] 716 []cl=
(a+(b*c))*d b[Z]caBdE] 4 abE
(a=brc)*xd | b[+]c[+/=] [+ a[*]d[3] 5 al=]b [
(ax(bxe)xd | blz]c[X]a[+]d[5] 4|b[x]cl
(a+(bxe)*d | b[z]c[=]a5]d[=] [1/x] 516 2] c -
(a*xbxc)*xd Previously done.

(ax(bxe)xd | b[2]c[X]ax]d][] 4|b[x]c
@+@zepxd | b[z]e 5] /] [X]alz]d[2] 6|6 [2]cls
a+(b*c)xd bEcadB 4|al+]b[
a—(b*c)xd b[+]ec[+/= adEl Slal[=]b [
(axb*c)*d Previously done.

1

Number of
Keystrokes

AESH

J[Je[E a5
Je[=] 114][]

Je[zld[]

it
“¥ BMEEEEEXEE
0 BH Bopgsd 3z
5 | @ 00 5 Ouom mm IBBBB Emg@
< ~ A Ta [S TS SRS TN AN JaN) S 3
B O HEE IEI- Dmmmm lll-
= S B SERD Bl
§ O FEE O llmm FOEE COEEEE EEEE

[ReL] [<]

E
m
Dm@@@ @ @@
oo - EEEI JBI WBBEE ok

30 o ool CEa oo mprd
05 el 0055 U5 s

Weights

A R g

<t T T T

o< <+ <+ <
N

<+ T <

Number of

RPN

Keystrokes

Algorithm

410

L o]
[l] L]

510

<t N T n

< N < n

Wt N N

A E0 e KT R TN R E R I R

EIRIEED

IS

DEEn

WO ©

EERE

O o0

[

SIS SR ST §

(L]

STEAS TS T

BB

"W ©

G-

O N O

[

R SIS SEL ST

U
COEEEE

O3 OoT 9

[

N o0 O

[

I Q0 30 8

<t VN N

d

E il
IIIE

g O 8 9

EE RS

O v

[

D I 0 T

Number of

AOS

Keystrokes

Algorithm

6|laltbo[Je[]a[]

[Jo[E ez e E]

Q9 Q9
L] x4
S < o
[He [H]
SIS ST
wv < wh

(]

nn
EIps

)
O 50
IE D
B G

7la[t]b [t c]d][]

e[JeDI[Ta[]

v O n n

o
~

nnnn

SIS B~ Ba |

LI

"R O ©

GGG

EEII
EENEIER

AN N e e

<t T N O

[

]

!
]
s
oann

L QN v 9

E3 NN ED KD

~ O AN e~

0 W Vi \ O

[

N

[

B [

EEBd

"V

DEEEI

=[]
.C C..

0=E0S

o a0

~ e AN e

v o T <

B

IIII
EIEE
K EN/E3 N

I O

EB

1.4 Why RPN? 39

As one possible method to compare these systems, I wrote algorithms
for all possible problems involving up to four parameters and the four
basic dyadic operations (4+, —, X, +). Table 1.4.1 contains a reasonably
systematic listing of this class of problems and what I believe to be the
shortest algorithms for the five systems. To simplify the notation, I use =+
for either + or —, * for either X or +, and - to stand for any of these
four operations. Categories of problems are used to shorten the table
whenever this can be done without conferring an advantage on any of the
systems. In some cases a particular category can be done without knowing
which operation - represents. These cases are indicated in Table 1.4.1, but
the results are not included in Table 1.4.2. For the AESP scheme, I assume
that all parentheses need to be closed, although this is not necessary before
[=] on some AESP calculators. For the AES scheme, I assume that [=] has
no effect on the register. A bar over an operation in Table 1.4.1
represents the complement of the original operation. For example, [Z] =
[+], and = [z].

As a criterion to apply in choosing among these five systems, the total
number of keystrokes needed for each system appears in Table 1.4.2. These
tables contain some arbitrariness, particularly in the scoring system. Each
line in Table 1.4.1 represents a category of problems and has a weight
associated with it to approximate the frequency of occurrence of such
problems. Other scoring methods are possible, but the final outcome would
probably be the same. Clearly RPN wins if this type of problem is being
done and if minimizing the number of keystrokes is the criterion.

The problems in Table 1.4.1 are only a small subset of the arithmetic
problems encountered in life. But RPN wins also for more complex
problems. Since the AES and AESH calculators have already used up their

STO | register for some types of problem in Table 1.4.1, the register
is not available for more complex problems. The additional internal
registers enable RPN, AESP, and AOS calculators to do more complex
problems that would require writing down and rekeying intermediate
answers on AES or AESH calculators with only one register.
Consider, for example,

A+B+ E+F

C+D G+H’

(1.4.8)

An RPN algorithm for this expression is

A[B+ct]p[+][] EMF+JGIIA+] [[+], (149)

40 Introduction to RPN
an AESP algorithm is
A[+1B [[AC[+]PD][+]IIIIE
[+1FD][E] [dG[+1HDIDIE], (1.4.10)

and an AOS algorithm is

A[+1B[=]1 [[AC+ DI [HAE+FD] E]LIGIHH[=]. (14.10)

This problem cannot be done in AES or AESH without either writing
down and rekeying an intermediate answer, or rewriting the expression
and rekeying some of the parameters.

Although RPN and AESP calculators usually have the same number of

Table 1.4.2 Keystroke Summary
Sum of Wins X Weights from Table 1.4.1

RPN AESP Ties

RPN vs. AESP 28 0 328
RPN AES Ties

RPN vs. AES 54 0 302
RPN AOS Ties

RPN vs. AOS 122 38 196
RPN AESH Ties

RPN vs. AESH 156 30 170
AESP AES Ties

AESP vs. AES 16 0 340
AESP AOS Ties

AESP vs. AOS 110 40 206
AESP AESH Ties

AESP vs. AESH 144 30 182
AES AOS Ties

AES vs. AOS 110 48 198
AES AESH Ties

AES vs. AESH 122 31 203
AOS AESH Ties

AOS vs. AESH 44 0 312

Sum of Keystrokes X Weights from Table 1.4.1

RPN 1484
AESP 1512
AES 1528
AOS 1568

AESH 1626

1.5 Exercises 41

working registers (four), the additional control through the stack manipula-
tor keys ([x=y], [Rl |, and [1]) gives RPN an advantage over AESP in
many more complex problems. AOS calculators with more than two-level
parentheses have more than four working registers, which sometimes is an
advantage.

Monadic functions such as sines and logarithms are not considered in
this comparison because they are handled identically in the five schemes;
AES, AESP, AESH, and AOS calculators in fact use RPN!

This study has not really answered the question of which system is easier
because “easy” is not easy to define. I can only comment that I found
filling out the RPN column in Table 1.4.1 easier, I made fewer mistakes in
the RPN column, and I selected an RPN calculator for my personal use
and to write a book about.

Some of the material in this section is based on Ball (1975).

1.5 EXERCISES

15.1 (a) List all the calculator keys that undo themselves; that is, if
pushed twice, they are equivalent to no operation (ignore auto-
enter). (b) List all the calculator keys that can be pushed twice or
more and have the same effect as if they had been pushed only
once.

For each part of the following two problems, assume that the calculator

starts with 4 in all four stack registers (e.g., from A [1):

1.5.2 Calculate each of the following in two keystrokes or fewer: (a) 24,
(b) A2, (c) 242, (d) A3, (e) A(1—A).

153 What quantity is in X after each of the following sequences: (a)
[+] B IxE o) X X [+ (o) [X] [+] [X]: (@) [<] []
[+1: (0 I = I] B (o [[22

154 Suppose the diameter of the earth were known precisely (it is
approximately 12,740 km). Estimate the inaccuracy in the circum-
ference calculated using only a 10-digit calculator.

1.5.5 An approximation for = is 355/113. How many significant figures
and how many correct decimal digits are in this approximation?

1.5.6 Suppose the diameter of the earth were known precisely. Estimate
the inaccuracy in the circumference calculated using 355/113
instead of .

15.7 A railroad track a mile long is rigidly fixed at both ends. As a
result of a temperature change, the track increases in length by an

42

158

159

1.5.10

1.5.11

1.5.12

1.5.13

Introduction to RPN

inch and buckles up in the middle. Assume that the track forms an
approximate triangle with the ground and estimate how high the
buckled track is off the ground at its center.

The golden ratio ¢ is the first of a series of (positive) numbers each
characterized by being equal to the reciprocal of its own fractional
part. Calculate the first four numbers of this series.

The average distance between the earth and the sun is about
93,000,000 miles, from the earth to the moon about 239,000 miles,
and from the sun to the nearest star about 4.3 light years or
2.5% 10" miles. The diameter of the sun is about 865,000 miles, of
the earth about 7900 miles, and of the moon about 2160 miles. A
scale model is to be built with the sun represented by a ball one
foot in diameter. On this scale (a) what is the diameter of the
earth? (b) the diameter of the moon? (¢) the distance from the sun
to the earth? (d) the distance from the earth to the moon? (e) the
distance from the sun to the nearest star? What is (f) the angular
diameter of the sun as seen from the earth? (g) of the moon as seen
from the earth?

As his reward for inventing the game of chess, Sissa asked his
Rajah for one grain of wheat for the first square, two grains for the
second, four for the third, eight for the fourth, and so on, up to the
64 squares of the chessboard. (a) If this request had been granted,
how many grains of wheat would Sissa have received? (b) If Sissa
had put his wheat into a granary 40X 80 feet, and if 200 grains of
wheat occupy a cubic inch, how deep a layer would have resulted?

Two hundred years ago you could buy a pound of butter, two
pounds of coffee, a pound of cheese, and a five-pound sack of flour
for less than a dollar. The same items in 1976 cost about $6.95. If
“less than a dollar” means $0.99, what is the average inflation rate
over the two centuries?

On April 26, 1976, the length of the shadow of a tower near Boston
was 93 feet when the shadow was shortest (local noon). How tall is
the tower? Hints: Use the “Sun Ephemeris” algorithm in Section
A.7.14 to find the declination & of the sun. Then at local noon, the
elevation of the sun is just 90° —latitude + 8. The latitude of Boston
is about 42°20'.

Calculate or look up (a) the reciprocal speed of sound in seconds
per mile, (b) the reciprocal speed of light (or radio waves) in
microseconds per mile, (¢) the number of cubic inches in a gallon,
and (d) the number of fluid ounces in a cubic foot.

2

Terser and Tighter
Algorithms

How do | love thee? Let me count the [keystrokes]. | love thee to [calculate] the
depth and breadth and height...

—Corrupted from Elizabeth Barrett Browning (1806-1861)

Omit needless words. Vigorous writing is concise. A sentence should contain no
unnecessary words, a paragraph no unnecessary sentences, [and an algorithm
no unnecessary keystrokes.]*

—Corrupted from William Strunk, Jr. (1869-1946)

2.1 THE ALGORITHM METHOD

The preceding chapter contains techniques used to translate arithmetic or
algebraic formulas into RPN. For some problems these translations can be
done on sight (i.e., without writing down the RPN keystrokes). For more
complex problems one may write out the RPN keystrokes, along with any
other instructions or notes necessary to do the problem. Such a keystroke

*From Strunk and White (1972), p. 17.
43

a4 Terser and Tighter Algorithms

procedure or recipe for a problem is called an algorithm. The word
algorithm probably came from Al-Khowarizmi, author of a famous ninth-
century book on mathematics. For programmable calculators, in which
most or all of the algorithm is stored in the calculator’s memory, such an
algorithm should properly be called a program, and such a calculator
should be called a computer. In this book at least, these semantic distinc-
tions can be ignored and all keystroke procedures can be called algorithms.

Even for complex problems done only once (one set of numerical values
for the parameters), one may be able to do the translations into RPN on
sight. More typically, however, one needs to do a problem repeatedly with
different sets of numerical values for the parameters; thus the need to write
down an RPN algorithm. Books containing selections of algorithms are
available from Hewlett-Packard for their calculators (see references in
Appendix C), and Appendix A in this book contains a selection of
algorithms for a variety of problems.

One need not derive an algebraic expression to be able to put numbers
into it and get numerical answers; so also one need not understand how or
why an algorithm works to be able to use it. Furthermore, “blindly” using
an algorithm is not necessarily undesirable; one cannot know everything.
But one should be able to write one’s own algorithms; problems do come
up without algorithms “in the book.” This chapter is intended to help.

Many possible notational schemes exist for RPN algorithms. I use solid
boxes enclosing keystroke symbols (e.g., [<]), but usually no boxes around
numbers (e.g., 3). Key symbols following a shift key are on the land area
above or below the key on the calculator, or on the side rather than the top
of the key, and are indicated herein by dashed boxes (e.g., { y*}). A symbol
for a parameter (e.g., A4) occurs in an algorithm where the numerical value
should be keyed. Explanations and notes within the algorithm, and param-
eters requiring units or other explanation, are usually enclosed in parenthe-
ses. More compact notations are obviously possible, and Section 2.6
contains a different notation for algebraic manipulations in RPN.
McKelvey (1975) and Ball (1976) used an intermediate notation with
commas as separators.

2.2 WHAT IS A GOOD ALGORITHM?

Several different algorithms are usually possible, even for the simplest
problems. As an absolute figure of merit for an algorithm, I recommend
the total number of keystrokes—the fewer the better. This statement needs
to be qualified only by saying that each numerical parameter should be
keyed only once, because keying a parameter can cost up to 16 keystrokes,

2.2 What is a Good Algorithm? 45

in principle if rarely in practice. And this statement needs only the
following qualification: that some parameters known to be small integers
(e.g., n in J,(x)) can be rekeyed if necessary. The number of keystrokes is
an appropriate figure of merit to choose among algorithms because
keystrokes cost time and effort, and also because each keystroke is a
potential error. The same criterion applies to programmable calculators,
although one might argue that it is somewhat less important; if the
algorithm fits and works, then in some sense, it is good enough. With cyclic
or iterative algorithms, the total number of keystrokes as written is less
than the number of keystrokes actually pressed on a nonprogrammable
calculator; one must multiply by the number of cycles. On a programma-
ble calculator, the number of keystrokes as written determines whether the
algorithm will fit; the total number of operations determines how long the
algorithm will run—usually a consideration of lesser importance.

Only if two or more alternative algorithms exist for the same problem
with the same number of keystrokes, are subsidiary criteria required. I feel
less strongly about these, but I recommend algorithms with repeated
keystrokes (e.g.,) or with cyclic patterns of keystrokes, since
one usually makes fewer errors with such patterns.

Although some rough rules of thumb aid in writing more concise
algorithms, the process is mostly dependent on cleverness, which has, by
definition, no rules. This section contains some of these rough rules that I
find useful, and some examples of problems with algorithms.

Although all RPN calculators have at least one register, to
and a number frequency costs more keystrokes than to leave it on
the stack for subsequent use. Try to rearrange the order of a problem to
have the numbers on the stack in the correct order for subsequent steps
with few stack manipulations ([Rl], [x=»], etc.), and without and
[ReL].

Try putting a number needed repeatedly into T (e.g., by)
rather than [STO |, thus avoiding all [RCL |s. The number from T will turn
up in Y when needed, usually to no advantage if one remembers to negate
the number ([CHS]) or invert it ([1/x]) if necessary before putting it into
T. Section 2.4 contains examples of the usefulness of this idea. This
suggestion does not apply to National Semiconductor or Novus calcula-
tors.

To double a number (e.g., 24) use rather than 2 [X]. The
corresponding rule for squaring ([1] instead of [x2]) saves keystrokes
only with calculators on which needs two prefix keys. If A4 is already
in the stack twice, maybe even the can be omitted. To key a large
power of 10 (e.g., 1,000,000 or 0.0001), use just [EEX |, if necessary,
and an integer for the power. For example, 6 gets 1,000,000 in two

46 Terser and Tighter Algorithms

keystrokes, and 4 gets 0.0001 in three keystrokes. This
suggestion does not apply to Novus calculators.

Often the most useful rule of thumb is the least clear-cut: rewrite the
expression algebraically. The length or elegance of the algebraic expression
is poorly correlated with the terseness of the resulting RPN algorithm, but
sometimes rewriting can save dozens of keystrokes, even if the resulting
algebraic expression is longer! Section 2.6 discusses the approach of
rewriting, instead, the RPN algorithm.

2.3 EXAMPLES OF WRITING ALGORITHMS
2.3.1 Normal or Gaussian Probability Function
Consider first a simple example—the normal or Gaussian probability
function (HMF* 26.2),
2

\/;_ exp(—2x) (2.3.1)

™

Z(x)=

A naive algorithm for the HP-35 might be

2[7)XV /e Ix[1] D2 () [ems [[ex][x] (see Z(x)). (2.3.2)

The first 2 and [7] can be in either order, and either way an is not
needed. The can also be moved around. If we calculate the
exponential first, so that V2«7 will be in X for a E], we save a keystroke

(/x)):
x[xR2[][cns][e2[][X][Vxl[z] (see Z(x)). (23.3)

To shorten this algorithm any further, rewrite the expression algebrai-
cally, either mentally or on paper. Since the /2 in the exponential corre-
sponds to a square root, and the minus sign to a reciprocal, we can write

1

V27 exp(x?)
and so write

X RXXIMAOZ] (see Z(x)). (2.3.5)

*References are in Appendix C.

Z(x)= (2.3.4)

2.3 Examples of Writing Algorithms 47

Or, for a calculator that requires a prefix keystroke for [1/x |, we could
trade a for a by

x[MXI[cas][e R [=Vx] (see Z(x)). (2.3.6)

2.3.2 Coordinate Translation and Rotation

As another example, consider a point P with coordinates x and y in a
standard two-dimensional Cartesian reference frame. Suppose we want to
find the coordinates x” and y’ of P in a new reference frame defined by the
coordinates x, and y, of the new origin in the old frame, and by «, the
angle of rotation (positive counterclockwise) of the new frame with respect
to the old. The situation is sketched in Figure 2.3.1, from which the
transformation equations are

x'=(x—xq)cosa+(y—yo)sina,

Y =(y—yo)cosa—(x—x,)sina. (23.7)

‘(_/Q
|
|

Yor —m——— — —
0

ap—————|———

g
|
|
|
|
|
]

X

0 0

Figure 2.3.1 Translation and rotation of Cartesian coordinates.

48 Terser and Tighter Algorithms

In these equations, a appears four times, and x — x, and y —y, each appear
twice; therefore these three quantities must all be saved. A naive solution
might require three registers,* but we can also save some quantities
in the four-register stack.

First consider using a calculator that has a polar-to-rectangular coordi-

nate converter ({ -R !), such as the HP-21. This feature is useful because
we can easily calculate 4 cosa and Asina simultaneously. Suppose we
begin by

x[1]xo[=Jalx2»][B]{ >R . (2338)

This gives (x — xp)cosa in X and (x — xp)sina in Y, but « is not available
for the next step. Also the after a seems to be a wasted keystroke.
So try instead

asTO Jx[1]xo[-][B]{ =R . (23.9)

No is needed after a; serves as a number separator and enables
auto-enter on the HP-21. Then

y[tyo[El[ReL][x22][B]; SR 1. (2.3.10)
At this point the stack has

T: (x—xg)sina,
Z: (x—Xxgpcosa,
Y: (y—yp)sina, (2.3.11)

X: (y—yp)cosa.

The cannot be moved in front of the y to eliminate the
because then a five-register stack would be needed to hold Yo Vs Q,
(x—xp)cosa, and (x — xp)sina when y, is keyed. Then

(see x') (2.3.12)
puts (x — xg)cosa+(y —yy)sina=x’ into X, and then
] (seey) (2.3.13)

puts (y —yp)cosa —(x — xg)sina=y’ into X.

*The HP-45 Applications Book, pp. 70 and 71, has an algorithm that requires three
registers and 31 keystrokes, plus data.

2.3 Examples of Writing Algorithms 49

The same algorithm works on a calculator that has several storage
registers, such as the HP-45; change [B] to [G] and add a storage register
number after [STO | and [RCL]. Since this adds two keystrokes, however,
we might try to write an algorithm for this problem without using
and [RCL]. Consider the problem rather in reverse order. Suppose, some-

how, that the stack contained

T «a,
Z: X—Xp
Y: «,
X: y=yo

then we could finish up the algorithm nicely by

[B]: -R J[RURI[B] R],

which gives
T: (y—ypsina,
Z: (y—ygcosa,
Y: (x—xp)sina,
X: (x—xg)cosa,
and then

[E] (seey),
(see x).

(2.3.14)

(2.3.15)

(2.3.16)

(2.3.17)

To get the initial configuration assumed earlier, « must be keyed either
first (so that the pop on [=] will duplicate a in 7 and Z) or last (so that an

can be used to duplicate a). For example,

XXOB Y)’O B a

(2.3.18)

50 Terser and Tighter Algorithms

gives
T: x—x,
Z: y=yo
Y: a, (2.3.19)
X: a,
and then
(2.3.20)

gives the initial configuration previously assumed.

Starting at the end of an algorithm and working backward or starting in
the middle and working both ways is often useful for more complex
problems.

Or a can be entered first, for example,

a[Mx[1]xo (5] y [Ty [(2.3.21)
gives
T a,
Z: a, (2.3.22)
Y: x—x,
X y=yo

and we can finish this algorithm by
[RY] [B] I 5K [RY [RY] [x22] [B] { SR]
(see x”)
-] (see y"). (2.3.23)
On the HP-21 these last two algorithms each have 17 keystrokes (plus

data) compared with 15 keystrokes for the first algorithm. All three
algorithms have the same number of keystrokes (17) on the HP-45.

2.3 Examples of Writing Algorithms 51

To write a shorter algorithm for this problem, we reconsider Figure
2.3.1. Clearly the translation and rotation can be done separately; the
translation alone is just

x"=Xx=Xq
y'=y =y, (2.3.24)

Now if x” and y” were expressed in polar coordinates, the rotation would
be trivial—just subtract « from the polar angle. Thus the rotation can be
done by converting to polar coordinates, rotating, and converting back to
rectangular coordinates. Then the whole algorithm would be

y[Myo[EIx[Txo[=I[B] 5P i[x2r]a[-][x2y][B]. SR (see x))
xzy (seey’). (2.3.25)

The two [x=y]s are necessary because | —P : leaves, and | SR needs 6 in
Y. This algorithm for the HP-21 requires only 12 keystrokes plus data; the
HP-45 version requires only 11 keystrokes (because does not need a
prefix keystroke).

Now suppose we want to do the same problem on a calculator such as
the HP-35 or the Novus Scientist, without or [>R]. Equation 2.3.7
shows that this will be a little more difficult because there are not enough
registers to save everything. But our success with the polar-coordinate
representation suggests another approach: we could write algorithms to
duplicate the effect of and for a calculator without them,
then combine these algorithms into a composite algorithm to do the
coordinate rotation.

The formulas for polar-to-rectangular coordinate conversion are just

x=Rcosb,
y=Rsiné. (2.3.26)

Since both # and R are used twice in these formulas, they must be saved,
but is not needed. One approach is to begin by

g[1][cos JR[1][R]. (2.3.27)

52 Terser and Tighter Algorithms

At this point the stack has

T: R,
Z: 0,
Y: cosé, (2.3.28)
X: R.

The [1] after both # and R serves as a duplicator in this algorithm, and the
[cos | enables auto-enter. The alternatives of beginning by 8 R---
or R #--- cost more keystrokes. We can finish the foregoing
algorithm by

(see x),
(see y). (2.3.29)

But the in the last line loses x from 7 on the HP-35 or the Novus
Scientist.

A shorter algorithm for polar-to-rectangular coordinate conversion re-
sults from using

y=xtané. (2.3.30)
That is,

6[1][cos]R (see x)
(see y). (2.331)

This algorithm, however, does not work around = *+90° because the
formula for y degenerates into the form 0X co. Alternatively,

o[1][sIN |R (seey)
(see x) (2.3.32)

works except around §=0 or 180°.
The formulas for rectangular-to-polar coordinate conversion are

R=\x2+y%

0=tan"(

|~

), (23.33)

2.3 Examples of Writing Algorithms 53

with @ placed in the correct quadrant. We can also use, for example,

8=cos™ '(=) (2.3.34)

if it saves keystrokes. Some experimentation leads to

yOXMRYXFVE] (seeR) [£][ARC]
cos] (ify<O0:[cHs]; see#). (2.3.35)

Note that R is used in calculating # and is not saved anywhere. We can
save keystrokes by using

_
R==, (2.3.36)

rather than the square root relation, provided # is not too near 0 or 180°.
Then

y[1I[T]x[Z][aRC][TAN] (if x<O0: 180 [+]; see8)
[sIN |[=] (see R). (2.3.37)

These algorithms are, of course, useful in themselves, but the goal is to
combine them into an algorithm for coordinate rotation (and translation).
First suppose we try for a version with no restrictions against particular
values of the parameters. Begin by

vyl (2.3.38)

We need to remember the sign of y —y, in the display at this point. Then

(1 D[e[S L T RU X [+ Ve (2.3.39)

Now R’ is in X and we need to save it. So

[sto][z][arc][cos] (ify—y,<O0: [cHS][T]) (2.3.40)

The added is to preserve the negation; refer to the peculiarities of
on the HP-35 in Section 1.3. At this point, since # is in X and R’ is
in the register, subtract a from # and convert back to rectangular

54 Terser and Tighter Algorithms

coordinates. That is,

a[ZJ[T][cos][ReL][X] (seex)
[zr][siN][RCL]] (seey). (2.3.41)

This algorithm has 25 keystrokes if y —y,>0 or 27 keystrokes if y —y, <0,
and it works for all values of the parameters, although it gives an error
indication (flashing zero) in case x" and y’ are both zero.

We can write a slightly shorter algorithm if we avoid certain values of
the parameters. Try

y[Wy A [Mx[=] (see x—xo; note sign)
[z][ARC][TAN] (if x—x,<0: 180[#]) ~ [sTO][SIN|[5]. (2342)

At this point R’ is in X and @ is in [STO |; we must save § somewhere. So
now a

[RcL]a[-] (2.3.43)

puts R’ into Y and #’'=60—«a into X, ready to be converted back into
rectangular coordinates. Unfortunately the polar-to-rectangular coordinate
converter needs to be modified a little to accept arguments in this order. In
particular, we should save ' in [STO |, that is,

(see x')
(see y"). (2.3.44)

Note that x must not equal x,, y must not equal y,, and #’ must not equal
+90°; that is, x" must not be zero. This algorithm has 20 keystrokes if
x— x>0, or 24 keystrokes if x —x,<0. Several other similar algorithms
are possible with different forbidden values.

Like a good fable, this rather belabored example has more than one
moral, including one not yet stated: don’t give up too soon, but do stop.

2.4 POLYNOMIALS, POWER SERIES, AND CONTINUED FRACTIONS

Efficient translation of polynomials or power series into RPN usually
requires that they be written in one of several possible parenthetical forms.

2.4 Polynomials, Power Serles, and Continued Fractions 55

A general polynomial or finite power series

n
> axk=a,+ax+ax*+--- +a,x" (24.1)
k=0

can be written as
ag+x(ay+x(ay+x(--- +xa,)--+) (2.4.2)
and evaluated by

x(t][1][t]a,[X]a,_,[+]
an-Z to alaO' (2.4.3)

This method is possible because the RPN stack is only four high and T
does not clear on pop (on most RPN calculators); thus x remains availa-
ble. If any of the g, other than a, are negative, enter them as positive but

replace the following by [=].
As an example, the polynomial

32x%—48x*+18x?—1 (2.4.9)

could be evaluated by

[[]32] [x]48[-] X <18 [+]] (X1 [=], (24.5)

or perhaps by
x[MX]]] 320x]48 =] [X] 18 [+] [X] 1[=]. (2.4.6)

For x=0.5, get 1. But this is Chebyshev polynomial T(x), and Section
A.5.6 contains a shorter algorithm for such polynomials, based on their
relationship with cosines.

As an application of this procedure, consider the problem of converting
octal numbers to decimal. An octal number

dd,_,---dd, (2.4.7)
where each d represents a digit, is just

8"d +8""'d,_,+--- +8d,+d, (2.4.8)

56 Terser and Tighter Algorithms

Therefore this is a polynomial and can be evaluated by

8dndn—l.”dldO‘ (249)
An octal fraction such as
dood_yd_y---d_,.d_, (2.4.10)
can be handled by

Smd—nd—n+l'”d—ld0' (24.11)
As an example, 3721, would be
8137+ X2+ X1 [+] (see 2001(yp). (2.4.12)

Hexadecimal (or sedenary) numbers can be handled in the same way
with 16 substituted for 8 and with the letters entered as their two-digit
equivalents.

The preceding formulation is usually best for ordinary polynomials;
however an alternative scheme sometimes results in a shorter algorithm for
power series if the coefficients have a special relationship to each other.
The general polynomial can also be written as

n a a a
S gxk=agtax|1+ Zx|1+=x(--- ——x|---|. (24.13)
o a, a, a

n—1

This form is preferable whenever a,/a,_, is simpler than g, alone. A
corresponding RPN algorithm is

an

N1[+] (X, [X]ag[+].

As an example, consider the ascending series expansion for the Bessel
function Jy(x) (HMF 9.1.10),

a, _ a
-)1(;2) (24.14)
n— 1

a, 2

= (—x2/4)
Jo(x)= D, —mi—, (2.4.15
(x) 2 o)

2.4 Polynomials, Power Series, and Continued Fractions 57
This series, truncated after five terms, can be written as
2 .\ 3 .\ y .\ S
@)y @y @ 6H

Jo(x)=1+y+ (2.4.16)

where y = — x?/4, or as

Jo(x)_1+y(1+2 (1+ 32(1+4 (1+5)))) (24.17)

This form is preferable because the factorials are eliminated. A corre-
sponding RPN algorithm is

x[2]a[=][ens][] [[]25[1[H x]16 [1+ [X]9[]1[+]
XJal=]1[+] [x]1[+]. (2.4.18)

This ascending series of five terms gives Jy(x) with an absolute error
<107% for 0< x52.3.

As another example, consider the general Taylor series expansion of any
differentiable function (HMF 3.6.1),

f(x+h)= 2 W), (2.4.19)
which can be written as

F(x+h) f+h(f+ (f”+ (f”’+---)~-~)), (2.4.20)

where the x dependence after each f was dropped. This form comes from a
combination of the two schemes given earlier. An RPN algorithm for this
series truncated after the nth term is

A P X " P (- 1)
[P (n—2)[=]- - 7 [H[X] (2.4.21)
2[] IS

Minimax, near minimax, or best polynomial approximations to transcen-
dental functions (see e.g., Fike, 1968) can, of course, be evaluated in the
same way. However, such polynomials usually have irrational coefficients
that must be entered as up to 10-digit numbers. If the calculator has

58 Terser and Tighter Algorithms

enough storage registers to hold these coefficients, and if the function is
needed at a number of points, such polynomials may be desirable. More
typically, however, a power series with coefficients that are small integers
or ratios of small integers results in a shorter algorithm even though more
terms in the series must be taken to achieve the same precision.

But adjusting the last coefficient in the series (i.e., the first number in the
algorithm) in an informal way, may achieve a specified precision over a
wider range of x. This can be done without increasing the number of
keystrokes if a different integer, rather than a multidigit number, is chosen
for the last coefficient.

As an example, in algorithm 2.4.18 for Jy(x), if we change the coefficient
25 to 26, the range over which the absolute error is < 107> extends from
0<x<52.3 to 0< x52.65, as shown in Figure A.5.1. The change to 26
increases the absolute error by an amount that may be negligible, for
x<1.9. The number 26 was determined by trial and error.

We can also write algorithms for power series in ascending order.
Examples using the feature of the HP-45 appear in Section A.5.9 for
Bessel functions and in Section A.5.10 for the error function. Other
examples are in the HP-35 Math Pac, p. 90; the HP-45 Applications Book,
p. 27; and the HP-55 Mathematics Programs, pp. 100 ff. For a given
number of terms, these ascending-order algorithms are almost always
longer than the parenthetical forms already given. But an ascending-order
algorithm allows one to add terms until they become less than some limit,
thus achieving a specified precision with a minimum number of terms.
Ascending-order algorithms for power series are often desirable for pro-
grammable RPN calculators because the looping feature makes such cyclic
procedures easy.

A continued fraction can be thought of as a special form of a rational
function (i.e., the ratio of two polynomials) and formulas exist (Wall, 1948,
Chapter 9; Demidovich and Maron, 1973, Section 2.5) for converting a
rational function into a continued fraction or a continued fraction into a
rational function. A finite continued fraction such as

a,

by+ a

b+

b, (2.4.22)
can be evaluated by

a4b4[_:_]b3a3 Ebzaz Eblal[_i—lbo .
(2.4.23)

2.4 Polynomials, Power Series, and Continued Fractions 59

For example, the error function is (HMF 7.1.14)

—x2 1
erf(x)=1—£—x
Var X+ I

2x+

x+

2x+

x+
2x+ 6 7

ST
(2.4.24)

A corresponding HP-45 algorithm is

e[| K3 g EEy | My | 3 ER | B (24.25)
sz FE
3z ER2EA
OZ] [x=zr][2][ex][X[Glix}

ClvaiXIO/x]1x=zx][F] (see=erf (x)).

This continued fraction of seven terms gives erf(x) to four or more
significant figures for 1.3 <x. If we change the last numerator (i.e., the first
number in the algorithm) from 7 to 3, the range over which this algorithm
gives four or more significant figures extends to 1 x, as shown in Figure
A53.

In the “simple form” for a continued fraction, all the a; are unity (see,
e.g., Knuth, 1969, Vol. 11, Section 4.5.3) and

_ 1
/b"bz’b3"”’b"/:b1+1/(b2+1/(b3+--- Ty) 240

This expression can be evaluated by

b,[1/x b, [#F)[1/x]b, o[+][1/x] - - b, [+ [1/x], [+][1/x] (24.27)

Every real number x between 0 and 1 has a unique “regular continued
fraction” expansion in this simple form with the b; all positive integers. But
n is infinite if x is irrational. This continued fraction expansion of a

60 Terser and Tighter Algorithms

(positive) number x can be determined by
SETUP: x [1] (mentally set j=0)

LOOP: (see b; as the integer part of the display) b; (i.e., key it back in) -]
(mentally add 1 to) :|. (2.4.28)

The :| symbol in this algorithm means loop back to the last preceding
colon (), in this case after the word “loop.” For a rational x, this process
terminates with zero, except possibly for round-off error. For an irrational
x, the process would go on forever, but on a calculator with a finite
number of digits, the algorithm fails to give the correct b, after a finite
number of loops.

If instead of all being unity, the a; are prescribed numbers, we have

SETUP: X (mentally set j=0)

LOOP: (see b; as the integer part of the display) b; (i.e., key it back in) =]
(mentally add 1t0) g, [x2x] [£] :|. (2.4.29)

Or if the b, are prescribed and the g; are integers to be found, then

SETUP: x [1] by [=] (mentally set j=1)

LOOP: b, (note integer part of display; key it back
in) [1] 1 (see a) =1 [(mentally add 1 to
il (2.4.30)

These algorithms are based on the assumption that each of the partial
fractions is <1 and that all the a; and b, are positive. These are not
necessary assumptions, of course, but they are conventional.

Fewer arithmetic operations are usually required to evaluate a rational
function if it is converted into a continued fraction; however the total
number of keystrokes may be either greater or smaller depending on the
numerical values of the coefficients. In references such as HMF, continued
fractions usually appear when the coefficients in this form are simpler than
in some other form.

2.5 STACK REARRANGEMENTS (RPN CALCULATORS)

As discussed in Section 1.3.3, for any but the simplest problems, numbers
in the stack sometimes turn up in the wrong order. The and
keys are provided just to alleviate such difficulties. But one might need any

25 Stack Rearrangements (RPN Calculators) 61

of a large number of possible stack rearrangements. When working
through a complex algorithm, I find a table of such rearrangements to be
helpful. In computer jargon, they are macros to be inserted where needed
into a main algorithm.

Consider four numbers—A4, B, C, and D—in order in the stack; that is,
Ain X, Bin Y, Cin Z, and D in T. And consider rearranging these
numbers in an arbitrary way and also zeroing any registers. Then the
5%—1=624 possible rearrangements can all be done with some combina-
tion of [Rl], [x=y], [f], [cLx], [+], [5], and [0]. A few of these
rearrangements are in the HP-35 Math Pac, pp. 122-127, and in the HP-45
Applications Book, pp. 168-174. Table 2.5.1 contains most of these re-
arrangements in the following format. The first four columns are the
rearranged register contents from left to right; the first column is the new
contents of the X register, the second column the new contents of the Y
register, and so on. An algorithm to achieve this rearrangement follows. A
few blank lines are left in the table as exercises for the reader.

Auto-enter is assumed to be enabled at the start of the algorithms, but
this is necessary only for algorithms beginning with [0]. The status of
auto-enter at the end is ignored; if auto-enter needs to be enabled, append
to algorithms ending in [1], or append to algorithms
ending in or [0]. I assume that T does not clear on pop, but this is
necessary only for algorithms containing or [=]; thus most such
algorithms will not work on National Semiconductor or Novus calculators.

Consider an example from the HP-35 Math Pac, p. 125, and the HP-45
Applications Book, p. 171. To do the rearrangement

T: D B,
Z: C B, 25.1)
Y: B< B,
X: A—A4,

which HP calls “copy y into Z and 7,” HP recommends

[zt R RI[RL. (252)

In my notation this rearrangement is A BBB, and Table 2.5.1 contains the
rather shorter

(MG (25.3)

62

Table 2.5.1 Stack Rearrangements

XYZT Keystrokes

0000

0004 [o] [1] [1]

000B

000C [cLx] [x=y] [cLx]
000D [RY] [cLx] [x=y] [cLX]
0040 [o] [1] [1] [RY]

0044 [o] [1][1][2]

004 B [o] [1]

004 C CLX

004D CLX
00B0

00BA xzy]| [o] [1]

00BB lo] [x=»] [1] [£]

00BC CLX

00BD xzy| [CLx
00CO [cLx] [x=y] [cLx] [1] [RY]
00CA [o] [x=»] [RY] [x=»] [cLX]
00CB xzy] [o] [1]
oocc [ex] [x=y] [1] [£]
00CD [cLx] [x=»y] [cLx]

0000 [cLx] [RY] [cLx] [x2»] [cLx]
00D A4 [R{] [cLx] [x=y] [cLx]
00D B [cLx] [x=y] [RY] [x=»] [cLxX]

00pC [y [RY [x2y] [0] [1]

00D D [-] [cLx] [x=»] [cLx]

Table 2.5.1 (Continued)

XYZT Keystrokes

0400 [o] [1] [1] [RY [RY]

0404 [1] [t [cLx] [x24] [0]
0408 [o] [x2] [o]

040C [x=y] [cLx] [*x=] [0]
040D [RY] [cix] [RY] [cLx] [x=y] [R1]
0440 [o] 1] [1] [[RY]

0444 MG

04A4B CLX

044C [rRY [cx] [F] [Ry] [cLx
0AAD [RY] [-] [cLx] [x=»
04B0 [o] [1] [RY]

04ABA CLX

04BB [1][t][]

04BC |[o]

04ABD CLX] [x=y
04CO
04CA xzy
04CB [x2y] [0] x=y] [RU]
oA4cc [xzy][1][5]

04ACD x2y

04ADO [x=y] [cLx] [R{] [x=»] [CLX]
0404 [RY[][RY [x25] [0]
04DB [x=y] [Rl] [x=y] [CLX]
04DC [xzy] [Rl] [x=27] [0] [*=y] [RY]
04DD [xzy] [RY [x=y] [1] [F]

63

Table 2.5.1 (Continued)

XYZT Keystrokes

0B00
0BOA [x=y] [0] [x=»] [0]

0BOB
0B0C [cLx] [x=y] [0]

0BOD RY] [x=y] [cx] [x=»] [0]
0BAO x=zy] [0] [1] [RY]

0B44 [RY[EH

0BAB
0BAC [x=y] [0]

0BAD xzy X2y
0BBO [o] [x=»] [1] [] [R{]
0BBA xzy CLX

0BBB [1][1] [cx] [£] [£]

0BBC

0BBD [(x=y] [RY] [-] [cLx
0BCO

0BCA [o] =y

0BCB x2y
oBCccC [1][]

0BCD CLX

0BDO [cLx] [RI] [x=y] [cLX]
0BDA xZy

0OBDB xzy| [cLx
0BDC [RrY [x2y] [0] [x2y] [R{]
0BDD xzy]| [1] 5]

Table 2.5.1 (Continued)

XYZT

Keystrokes

0CO0B

[1] [RY] [RY] [CLx]

[Ri] [RI] [x2] [CLX]

0CA44
0CAB
0cAacC
0CAD
0CBO

[0] [=] [Ri] [cLx] [x2x] [RU]

[x2r] [RY] [x2»] [0]

mﬁﬂ@nm

IS

B
)

E-
-l
ElElE
BIELE

>

0CBA
0CBB
0CBC
0CBD
0cco
0cc4
0CCB
occc
0occo
0CDO
0CDA
0CDB
0CDC
0CDD

-E

>< E
EEEB

EEEEEEE

[CLXJ [CLXJ

[Ri] [cLx]

[cLx] [xzy] [RY]

[Ri] [cLx] [x=2y] [1] [RY] [x2y]
[] [cLx]

65

Table 2.5.1 (Continued)

XYZT

Keystrokes

xm

CLX

0DO0O

0DO0 A4

CLX

0DO B

ICLXI ICLXI [x=y]

0DO0C

0DBO

[x2y] [RY] [=] [CLX]

0DBA

0D BB
O0DBC
0DBD
0DCO
0DCA

[cLx] lxzyl [x2r]

El

X2y

CLX

CLX E]
CLX

lCLXl mLXl

< [0 [0 [[x
[O Ro =
O 0O O A KA
RARRARRKA
© ©o o o ©

0DDC

66

Table 2.5.1 (Continued)

XYZT Keystrokes

4000 [o] [1] [1 [RY [RY [RY
A004 [o] [x=x] [0] [x=y] [1] [RI]
AO00B [o] [x=»] [o] [x=]

A00C [xzy] [cLx] [x=y] [o] [x=¥]
A00D [RY] [cLx] [RY] [cLx] [RY] [RY]
4040 [1][1] [cLx] [x2y] [o] [RY
4044 [0 0] H ==

AO0AB CLX]| [x=2y

404 cC [R [cx] [[] [RY [cLx] [x=y]
404D [RY [o] [cx] [xzy] [RY] [x2Y]
40B0 [o] [x2y] [0] [R]

A0B4 [o] [x2y] [1] [RY]

AOBB 1] [t] [=] [x=»

A0BC [0 =

AOBD [Ry] [x=y] [cLx
A0CO [x=y] [cLx] [x=»] [0] [RY]
A0CA [x2y] [cLx] [x=»] [1] [RY
AO0CB [x=y] [0] [x=y] [RY] [x=¥]
40cc [x=zy] [[H =2/]

AO0CD [x=y] [cLx] [x=y]

AO0DO [x=y] [cLx] [R}] [*=y] [cLX] [*=¥]
4004 [RY [£] [cx] [RY] [RI] [Ri]
A0DB [xzy] [Rl] [x2y] [cLX] [*x=y]
400 C Ry [cax] [RY x=r] R [RY
40D D [xzy] [RY [x=y] [1] [[x2/]

67

Table 2.5.1 (Continued)

XYZT Keystrokes

AA400 [o] x=y] [0] x=zr] [1]
4404 [o] [x=y] [1] [1] [Ri]
AAO0B xzy] [1]

440c [x=y][cx] [x=y][1]
A40D [R][] [cex] [RY] [RY]
AAAO0 [o] [x=»

AAAA

AAAB

AAAC [z

444D [RY [[cex] [F] [RI]
AABO

AABA

AABB cLx] []

AABC

AABD [Rl] [>xzy] [cLx] [-] [RY] [RI]
A44C0 [xzy][o] Ry [RY [1]
AACA
AACB [x=y
a44cc [of[o] [x=y] R [1]
AACD [r=y

AADO [R[-] [cLx] [x=»
AADA [R[-]RY [>x=y][T]
A4DB [xzy] R [x=y] RY [
AADC [R][cx] [F] [x=r] [RI] [R{]
AADD

Table 2.5.1 (Continued)

XYZT Keystrokes

A4B00 [o] [1] [RY [RY

ABO0OA CLX

4808 [1][1] [H] RY [x2y] [RY]
ABOC CLX
ABOD CLX][RY] [R{]
ABAO

ABAA

ABAB cx] [£] Ry [x=y] [RY]
ABAC [1[RY[=
ABAD [RY [>zy] [cx]] =] RY =]
ABBO [t [[RY

A4BB4 [1][1] [cx] [[RY

ABBB [t][

ABBC [x=y
ABBD cLx]| [-] [R{]

ABCO [o] [Ri]

ABCA

ABCB [x=»

ABCC [o][]

ABDO
A4BDa4a [R[x2y] [cx] [F] [RY [RY [RY]
4BpB [RY] [RY [cx] [F][RY [x=zy] [RY
ABDC [Rl] [R{] [x=2¥
ABDD

Keystrokes

Table 2.5.1 (Continued)

XYzrT
ACO00
ACOD

!CLXI EJ szyl [x=y]

mm Al = m m
n N m
= - . n
JERERERngRE

cLx| [-]

¢

2]

-m B
-

am ummaRB-aEl-
tad

REEENE
-
m-m_ M@\@Exﬂ >< ><
EEEEEEEE R -
T M O N oYM OUNKNowRr OAQOo
T T YN X AR OO0 00 00 00RA
O O O O O O O O O O L O L L O
XYY Y X X X XN X X X T

x=y] x=y]

x=y] [cix] (5]

ACDA
ACDB
ACDC
ACDD

70

Table 2.5.1 (Continued)

XYZT Keystrokes

X

ADOO y] [cLx] [R{] [x=y] [cLx
AD04 [RY[] [cex] [xzy] [RY] [RY] [RI]
ADO0B [R [x2y] [cLx] [RY] [RY] [x=¥

N
2]

M

ADOC [xzy] [cLx] [RY] [x2y] [RY]
ADOD x2y
ADAO0 [rY [] [cx] [RY] [x=¥]
ADAA [R][] [cx] [F] [x=]
ADAB CLX
ADAC [rR][cx] [F] [RY] [x=y
ADAD [R[F][RY[1]RY [>=y
ADBO cLx] [Ri]
ADBA xzy] [RY [x=»
ADBB [cLx] [-] [x=y]
ADBC

ADBD xzy
ADCO
ADCA [R [cix] [F] [x=y] [RY [RY] [R]
ADCB [Rl [>xzy] Rl [R{] [x=»
ADCC
ADCD [x=y][cx] [[] =r] R =y] [RY]
ADDO xzy] [1] [=] [RY
ADDA [R[-][RY 1] [RY [RY [RY]
ADDC [xzy][cx] [-] [x=y] [RI]
ADDD [z Rz [EHE

72

Table 2.5.1 (Continued)

XYZT Keystrokes

B00O
B004 [0 [1] Ry [RY] [RY]

BOOB [cLx] [x=y] [o] [x=»] [1] [RY]
B0OOC [cLx] [x=»] [0o] [x=»

BooD [RY [x=2y] [cLx] [x2y] [0] [x2
B0AO [x=y] [0] [x=»] [0] [R{]
Bo4a4 [[[RY [[x2]

BO0AB xzy] [0] x=y] [1] [RY
B0AC Ixzy—l@lxzyl

B04D [xzy] Rl [x2y] [cix] [RY] [RY] [RY]
BOBO @ xzy . [RI] [x2/]
BOBA
BOBB
BOBC
BOBD [Ri] [] [cLx] [x=r] [RY] [x=27]
B0OCO xzy]| [o] [RY]

B0CA [o] [x=y] [RY] [x=¥]

BOCB xZy

Bocc [1][][=»

BOCD x=y

BODO [cLx] [RY] [x=y] [cLx] [x=¥]
BODA [RY] [x=y] [cLx] [x=¥]
BO0DB [RY [x=y] [cx] [x=y] [T] [Ri]
BoDC [RY [x2y] [o] [x=y] [RY] [>2y]
BoDD [Ry [x2y] [1] [£] [x2~]

Table 2.5.1 (Continued)

XYzZrT

Keystrokes

El
El

BAOO

BAOA

BAOB

BAOC

BAOD

BlE
mjEl
B

BAAO
BAAA

BAAB

BAAC [1][RY] [RY [>x=y
BAAD [R[x
BABO

Yy

[] R[x=

~
N
=
ElE
0 [
=l [
°l <9
=
=Rk

BABA
BABB
BABC
BABD
BACO

[Ry] [RY] [cLx] [[RY] [x=2/]

[x2y] [0] [RY]

[o] [=] [x=/]

BACA
BACB
BACC
BACD
BADO

BADC
BADD

73

74

Table 2.5.1 (Continued)

XYZT Keystrokes

BBO0O [cLx] [x=»] [o] [x=v] [1]
BB0A [x=y] [0 =r] [0
BBOB
BBOC
BBOD [RY [x=r] [cx] =r] [1]
BBAO
BBAA [=y][1] [[cx] [E
BBAB
BBAC

BBAD [RY][RY [cix] [F] [x=y] [RY] [R]
BBBO x=y
BBBA X2y

BBBB

BBBC

BBBD x=y
BBCO [o] [Ry [rY [1]

BBC 4
BBCB
BBCcC [1][E[RY]O]

BBCD

BBDO [cix] [RY] [x=y] [R1] [1]
BBDA
BBDB X2y
BBDC X2y
BBDD [cx][£] =y [RY] [1]

Table 2.5.1 (Continued)

XYZrT

Keystrokes

BCOO

BCo0A4

[o]

BCOB

1] (2] RY 2] [RY]

BCOC

cLx] [x=y] [x=v]

BCOD

[0] [x2y

BCAO

BCAA

BCAB

[o] [=] [Ry] [x=y

BCAC

BCAD
BCBO

X2y

x2y

BCBD
BCCO

EREIE;

[=
[o]]
[=

BCCA4
BCCB
BCCC
BCCD
BCDO

[EE

BCDA
BCDB
BCDC
BCDD

cix] [5]

75

76

Table 2.5.1 (Continued)

XYZT Keystrokes

BDOO [cLx] [RY] [x=y] [cLx] [RI]
BDO 4
Bpo B [cx] R [x=y] RY [[RY
BDpo0 Cc [ax] R [x=2r] [RY]

Bpop [R[x2y] [1] 5] [RY [x27] [RY]
BD A0

BDAA [RY [x2y] [cLx] [£]

BDAB x=y

BDAC xzy

BDAD [x=y] R [RYRY] RY =y
BDBO [rRY [1] [RY [x=y] [cix] [RY]
BDBA [rRY [Rl] [cLx] [F] [x=y] [RY] [>x=v]
BDBB xzy] [RY] [-] [cLx] [=] [x=»]
BDBC xzy

BDBD [cux][-] Ry [cx] [F] [RY] [x=»
BDCO [RY [x=zy] [0] =] Ry [RY]
BDCA xZy
BDCB [R[=r
BDCC x2y

BDCD [cux] [] [x=r] [RY] [x=y] [RI]
BDDO xzy]| [1] [£] [RY]

BDD A
BDDB [cx][-] [x=y] [RY [1] [R{]
BDDC [cix][] [x=y] [Rl]

BpDpD [RY][x=r][][EH[E

Table 2.5.1 (Continued)

XYZT

Keystrokes

v,. &
zn
B

EEHE
B-l-
BNl

@@En
o X O
©o © o ©
o o © ©
O O O 0

!
y_] @ [(x=r]

N

ICLXI Ix

c00D
C0A40
c044
C0A4AB
co04cC
c0A4D
C0BO
C0BA

n El
n><

u
--E

-
EEEE

Y

_M

yyy

coDO
coDA4

77

CLX

B%yl szyl

—
n
E-I

-- -
— ->< ﬂ
2 0REG SEEEE
u- EEIREIEE
S - = -
ElE -EXQE -EBE
mmmamm B-

Table 2.5.1 (Continued)

XYzr

Keystrokes

[o] [x2y cLx] [Ry]

X2y

cA400

cA404

[o] [x=»

CAO0B

[o] [=] [RY] [cLx] [R{] [RY]
[RI] [cLx] [RY] [x=y] [R{]

c40cC

CAO0D

HEEEEE

CAAOQ

CAAA

CAAB

CAAC

CAAD
CABO

[

CABA
CABB

X2y

@-

CABC

CABD
CACO

CACA
CACB
cACC
CACD
CADO

CADA
CADB
CADC
CADD

EEN] [x=v]

[xzr] [Ri] [x27]

[xzy] [cLx] [-] [*x=y]

78

Table 2.5.1 (Continued)

XYZT

Keystrokes

N

n

X

R

CBOO

y
><

CBO0O A

- i
><

%] []

B
-B
EEE

CBOB

N

N
=

CBOC

ElE
=IFIE

N
N

CBOD

@x%y Xy
X2y

CBAO

CBAA

X2y

CBAB

[o] 5] x2x] RY [Ri] [RY]

CBAC
CBAD
CBBO

CBBD

CBCB
CBCC
CBCD
CBDO

N

ICLXI Ix

CBDA

RIE
e

(<]
2 =
=k
ElE
R O
Q Q
AR /A
o 0O

[cLx] [] [x=»

CBDD

79

Keystrokes

Table 2.5.1 (Continued)

XYZT

Ei =
ElE -I-B -l-E

Ivlv
E - 28 2o 7 8 o=
S -E-- Q -l- -l
ml-E--lm BEBIEB- -
BEBB EEE-MBBEE B-EE - E m
sltiisiciEielclieltiitiziEiziziE =t iEIEIELE Em
oM UAoTAAURoTAMUAowR LA xXROA
o0 0000 W XN XN XN X AR OO0 00AQRAQAQRRN
OO ULV UV UVLLVLOLOLVLOLULOLOLOLOLOLVLOLOLOLOLOLULOLV O L O
VLU U UL ULVLULULLLLOLOLOLUOLOLOLOLOLOLVLOLOL L O L O

80

Table 2.5.1 (Continued)

XYZT

Keystrokes

[cLx] [cLx]

cCDO0OO

CDO0A4

CDOB

cDOC

E lCLXl Ixzyl

CDOD

-B

CDAO

CDAA

CDAB

CDAC

El

)
N
=

ElE
nE-

-E

El

Y.
><

El

ﬂ-
—
-

-IIE

CDAD

CDBO

CDBA

CDBB

CDBC

CDBD

E

CDCO

j
&

N

xXZy

X2y

X

CDCA
CDCB

cbcCcC

] R [1] [RY [x=»

[=] [cLx] [RY]

CDCD
CDDO

=] [cx] [[’

[cLx] 2] [RY]

CDDA

CDDB

(=] [Ri] [1] [Ri]

[=] [eex] [5]

CDDC
CDDD

81

Table 2.5.1 (Continued)

XYZT
DO0O0O

Keystrokes

X2y

[cLx] [cLx]

D00 4

DOO B

D00 C

(=] [cLx] [cLx]

D00 D

[CLx | [cLx] [x=»]

D0AO

xZy
xXZ

EE

R

D0AB
bDo4cC
DOAD
DOBO

E

El
I-EE -

a---
--a-
| JEEEEE

X><
O

CLX

DOBA
DOBB
DOBC
DOBD
DOCO
D0CA
DOCB

El
Bie

N

)’

lCLXl ICLXI lx

[x=»] [0] Ixzyl

[cLx] [x=y]

[=] [cLx] [Ri] [RY] [RY]

DoCC
DOCD
DODO
DODA

-] [cLx] [cLx] [xzyl

-E

cLx] [-] [Ry] [cLx]
cLx] [-] [Ry] [cLx] [x2y]

X2y
DODB

DODC
DODD

zy]

(=] [cLx] [x=y] [RY] [

[2] [=) [eLx] [x=»

82

Table 2.5.1 (Continued)

XYZT Keystrokes

DAOO
DAO0 A [RY[] [cLx] [RY] [x=y] [RY]

DAOB
DAOC
DAOD
DAA40 [R][] [cx] [RY]

DAAA4a [R][] [cx] [H]

DAAB [RY [x=y] [cix] [F] [R]]
DaAcC [R[cx][][RY

DAAD [R[-][RY[1][RY
DABO
DABA [RY [>=y] [cx] 5] R [>=
DABB cLx]| [-]

DABC

DABD
DACO [R [cx] [x=»
DACA [RY[cx] [F] [RY [x2y] [RY]
DACB [Rl[>x=y
DACC
DACD [xzy] [cx] £ Ry [RY [RY
pDADO [z R L=y [E R =y
pAD4A [RY[EH R RY Gy RY
DADC |[xzy][cx][] [x=y xzy
DADD

Table 2.5.1 (Continued)

XYZT

Keystrokes

DBO0O

x=y] [x=»] [cLx]

DBO0 A

xzy

X2y

DBOB

B
Bl

C

[x2y] [RY] [£] [cLx] [R]

cLx] [£] [x2»

L

[x=»] [cLx] [] [*x=r]

X2y

cLx] [-] [R{]

X2y

DBOC
DBOD
DBAO

DBAA
DBAB
DBAC

DBAD
DBBO

DBBA

0 [
=
B“m
Elsin
v,nX
iELE
R O KA
A AR
A AR
RAR

[cLx] [x=z»] [x2r]

DBCO

DBCC

cLx] [-]

DBCD
DBDO

2y

xzy] 1] [

DBDA

[cx] [F] x=r]

[cLx] [-] [x=x] [(x=y]

Ri] [x2y] [1] 5] [2] [x2]

DBDB
DBDC
DBDD

84

Table 2.5.1 (Continued)

XYZT

Keystrokes

[cLx] [cLx] [(x=y]

DcCooO

[cLx] [-] [x=y]

DCAA

Ry [RY] [x=»

DCAD
DCBO

~
N

x

N

X

CLX

E
B -
><

--a

X2y
.
X2y

DCBA
DCBB
DCBC

|CLx|

DCBD

¢
mmm
ﬂEm
e
tIcE
Elnjn
q O RQ
o 0O 0O
o 0O 0O
QAAR

[-] [cx] [RY] [x2y]

DCDO

DCDA

DCDB

85

Table 2.5.1 (Continued)

XYZzrT

Keystrokes

DDOO

= -
- 2 -- =
mmlllal -Eym I-I-DB
mu----- mp-a--a-
mcn B-EEB-nB

T EEEEEEEEE
OmEEE mwBEB-
OCROSOS xTAMORNRKRo TR OLANox”M OLRKRoOoT
©C O XN X X X T MMM RO DD OLDOLDARN
QRRARRARRARARARAQRAQAARAAAQAQANAQAAQAAQNAANR
QA ARARAAQAQRAQRANQRAQAAQAQANAQAAQARNAAAN

- --a m- z

ElE

DDDB

DDDC
DDDD

86

2.6 Algebraic Manipulations in RPN 87
2.6 ALGEBRAIC MANIPULATIONS IN RPN

Given the problem of translating an algebraic formula into RPN for a
calculator, two approaches to optimization (i.e., minimizing the number of
keystrokes in the final algorithm) are as follows: (4) manipulate the
formula algebraically until it is in a form that will yield an optimum
algorithm, and translate into RPN; or () translate into RPN immediately
and manipulate the RPN algorithm to optimize it. Of scheme a, I would
only say that the shortest algebraic expression does not necessarily yield
the shortest RPN algorithm. Scheme » may seem quite foreign at first
because we have all learned well the rules of algebraic manipulation, but
the corresponding rules in RPN are strange. I do not wish to promote
scheme b over a, but I do believe that an RPN calculator user should have
at least some familiarity with scheme b and the rules for manipulations in
RPN, and he should be able to use scheme b or schemes a and b together
where appropriate.

First consider the dyadic functors—operators that take two arguments
and give one answer. The common dyadic functors are +, —, X, and +.
Also I define two new symbols | and | for the dyadic functors y*
(involution) and y'/* (evolution); that is,

atb | =a®, (2.6.1)
and
ath | =a"*=Va . (2.6.2)

The symbol | is intended to suggest a rising power and is pronounced
“roop” with rising inflection; | is pronounced “ramp” with falling
inflection. On some RPN calculators | and | require more than one
keystroke. On an HP-45, for example, | is [G]{y*} and | is
' y*1. This new notation is more compact and avoids reference to a specific
machine.

The following tabulation is the result of translating some of the elemen-
tary rules of algebra into RPN.

Cancellation

albxX b+ =a; b0, (2.6.3)
atb+bXxX =a; b#0, (2.6.4)
atb+b— =a, (2.6.5)

88 Terser and Tighter Algorithms
atb—b+ =a,
ath | b | =a; b0,
ath | b) =a; b#0.

Exchange of order (commutative and associative laws)

atb+=>bla+,
albxX =btaxX,
atbXcxX =atcXbX,
atb+c+=alc+b~+,
atbXc+=alc+bX,
atb+c+=atc+b+,
atb—c—=alc—b—,
atb+c—=afc—b+,
atb)c) =alc)b],
atb)c | =atc|b],
ath lc [=ate b |,
altbXctbX +=aflc+bX,
atbXctbX —=atc—bX,
atb+clb++=alc+b+,
atb+ctb+—=alc—b+,
atb] ctb) X =aleXb],
atb | ctb) +=alc+b],
ath | ctb | X =ateXb |,
ath | ctb | +=afe+b (.

(2.6.6)
(2.6.7)
(2.6.8)

(2.6.9)
(2.6.10)
(2.6.11)
(2.6.12)
(2.6.13)
(2.6.14)
(2.6.15)
(2.6.16)
(2.6.17)
(2.6.18)
(2.6.19)
(2.6.20)
(2.6.21)
(2.6.22)
(2.6.23)
(2.6.24)
(2.6.25)
(2.6.26)
(2.6.27)

2.6 Algebraic Manipulations in RPN 89
Replacing extra 1s

atbtc++=atb+c+, (2.6.28)
atblc—+=atb+c—, (2.6.29)
atblc+ —=atb—c—, (2.6.30)
atbtc— —=atb—c+, (2.6.31)
atbteX X =atbXcX, (2.6.32)
atbtc+ X =atbXc+, (2.6.33)
atbtex +=atb+c+, (2.6.34)
atblc++=atb+cX, (2.6.35)
atbtex | =ath) c), (2.6.36)
atbte+ | =atb] c |, (2.6.37)
atbtex | =ath | c |, (2.6.38)
atbte+ | =ath |c]. (2.6.39)

The rule to go from the left-hand expression to the right-hand expression
is: move the outer (right-most) functor in to replace the second 1, and if a
—thereby crosses a + or a —, reverse it (i.e., +=—); if a + thereby
crosses a X or a =+, reverse it (i.e., X=+); iff a | thereby crosses a X or
a +, change the X to | orthe + to | ;orifa [thereby crossesa X or
a +, change the X to | orthe + to | .

Rules of exponents
ath | atc | X =atbtc+ |, (2.6.40)
atb | afc) +=atbtc— | . (2.6.41)

Monadic functors

Next consider the monadic functors (one argument, one answer) as
defined in Table 2.6.1.

90 Terser and Tighter Algorithms

Tabie 2.6.1 Monadic Functors*

3 sin 3 sin”~

c cos g cos™!

t tan t tan~!

[In=log, 2 x?

< log=1log,, Vv Vx

e e* / reciprocal ([1/x])
Z 10* ¢ negate ()

*Do not confuse the functor e with the number e=
2.71828 - - -, nor the functors / and +.

Rules of logarithms
atbxXl=albl+;a>0,b>0,
altb+1=albl—;a>0,b>0,
ath | I=albx; a>0,
ath | [=alb+; a>0,
albxX=albl+;a>0,b>0,
altb+=abA—;a>0,b>0,
ath | Q=albX; a>0,
ath | {=alb~+;a>0.
Change of base (logarithms)
al=alel+,
al=all0l+.
Cancellation (of logarithms and exponentials)
ael=a,
aZl=aq,
ale=a; a>0,

alT=a; a>0.

(2.6.42)
(2.6.43)
(2.6.44)
(2.6.45)

(2.6.46)
(2.6.47)
(2.6.48)
(2.6.49)

(2.6.50)
(2.6.51)

(2.6.52)
(2.6.53)
(2.6.54)
(2.6.55)

2.6 Algebraic Manipulations in RPN 91

Equlivalences among exponentials

eta] =ae,

eta | =a/e,
100a | =ag,
100a | =a/%.

Rules of exponents

alb+e=aebeX,
altb—e=aebe~+,
atb+T=aThIT X,

atb—T=aZbT +.
Change of base (exponentials)
a¥=10la Xe,

ae=elaXg.

Equivalences involving squares and square roots

a’=a12] =atx; (a>0),
ay=a2 .

Rules of squares and square roots

a’h?*x =athx?,

a’h?*+ =ath+2,
ay/ by X=atbx+\/;a>0,b>0,
a\/by/ +=atb++/;a>0,b>0.

(2.6.56)
(2.6.57)
(2.6.58)
(2.6.59)

(2.6.60)
(2.6.61)
(2.6.62)
(2.6.63)

(2.6.64)
(2.6.65)

(2.6.66)
(2.6.67)

(2.6.68)
(2.6.69)
(2.6.70)
(2.6.71)

92 Terser and Tighter Algorithms

Cancellation (of squares and square roots)

>y =|d], (2.6.72)
a\/*=a; a>0. (2.6.73)

Miscellaneous relations involving squares

a’h?>— =atbh—alth+ X, (2.6.74)
atb+2=a%athxX2X +b*+, (2.6.75)
atb—2=a%athXxX2X —b*+. (2.6.76)
Rules of reciprocals

1ta+=a/, (2.6.77)
a//=a;a##0, (2.6.78)
ath/ X =atb+, (2.6.79)
ath/+=atbx; b#0, (2.6.80)
a/bx=bta~+, (2.6.81)
a/b+=b/a+=albxX/. (2.6.82)

Rules of sign change
aC€=aq, (2.6.83)
atbC+ =atb—, (2.6.84)
atbC—=ath+, (2.6.85)
a&tb+ =bta—, (2.6.86)
a@1b—=bCrta— =ath+G, (2.6.87)
atb@X =atbXC=aC@1bX, (2.6.88)

atbC+ =atb+E=aG b+. (2.6.89)

2.6 Algebraic Manipulations in RPN 93
Rules relating reciprocals, exponentials, and sign changes

atb] =atb/ |, (2.6.90)
atb | =atb/ |, (2.6.91)
atb® | =atb) /=a/b], (2.6.92)
atb€ | =atb | /=a/b |, (2.6.93)
aGe=aqe/, (2.6.94)
aC¥=a¥/, (2.6.95)
a/l=alG, (2.6.96)
a/Q=alC. (2.6.97)

Rules relating squares, square roots, logarithms, and exponentials

a*l=al2Xx; a>0, (2.6.98)
a’®=al2X,a>0, (2.6.99)
ayl=al2+, (2.6.100)
a\/{=aQ2+, (2.6.101)
ae’=al2Xe=al+e, (2.6.102)
aey/=al2+e, (2.6.103)
aP?=a2XT=al+Z, (2.6.104)
a¥y\/=af2+x. (2.6.105)

Trigonometric identities

The tabulation below contains only a select few of the incredible
number of trigonometric identities.

csca=as/=acatXx /, (2.6.106)
seca=ac/=atad+, (2.6.107)
cota=at/=acas+, (2.6.108)

94 Terser and Tighter Algorithms

csc la=a/3,
sec la=a/t,
cot”la=a/i,
sec’a=at’1 +,
csca=at?/1+,
adac+ =at,
ag?ac’+ =1,
a@3=as@,
aCc=ac,

aCt=atC.

Examples of reductions

rs+tu

=rsXtluX +s+u+ (rule 2.6.34),

=rfsXs+u+tfuXs+u++

=rfu+tfuXu+s++ (rules 2.6.12 and 2.6.3),
=rfu+ts++ (rule 2.6.3).

1In(ab?) —In(b)=ath*x 12+ bl —

=alb?[+2+bl— (rule 2.6.42),

=albl2X +2+bl—

=al2+bl2X2+ +bl—
—al2+bl+bl— (rule2.6.3),
=al2+ (rule 2.6.5),

=ay/l (rule2.6.100 backward).

=rtsXttuX +stuX + (as formed),

(as formed),

(rule 2.6.98),

(2.6.109)
(2.6.110)
(2.6.111)
(2.6.112)
(2.6.113)
(2.6.114)
(2.6.115)
(2.6.116)

(2.6.117)
(2.6.118)

(rule 2.6.22 backward),

(rule 2.6.22 backward),

2.7 Exercises 95

2.7 EXERCISES

2.7.1

272

273

274

275

2.7.6

2.7.7

(a) Write an RPN algorithm to sum two columns of numbers
simultaneously. The loop should contain no more than four
keystrokes plus data. Do not use [E+], [M+ |, or [STO|. Hint: For
a less elegant solution to this problem, see the HP-35 Math Pac, p.
141. (b) Sum three columns simultaneously with a 12-keystroke
loop and the same restrictions.

Write an RPN algorithm to use in the supermarket to (a) calculate
unit prices ($/0z, etc.) given package prices and contents, and (b)
keep a running total of the price of merchandise purchased, to
check against the cash register receipt. Remember that one does
not always buy everything for which one calculates a unit price,
but keying the package price twice for an item that one does buy

should not be necessary. Do not use [Z+], [M+], or [STO .

Write an algorithm for an HP-45 to do complex multiply with 14
(rather than 21) keystrokes,

(a,+ib))(a,+ib))=u+iv.

Given a,, b,, a,, and b,; find u and v; i2=—1.
Write an algorithm for an HP-45 to do complex divide with 15
(rather than 18) keystrokes,

a,+ib,

— =u+iv.
a,+ib,

Write an algorithm for an HP-45 to do complex reciprocal with 7
(rather than 17) keystrokes,

1
a+ib

=u+iv.

Write an algorithm for an HP-45 to do complex square with 10
(rather than 14) keystrokes,

(a+ib)*=u+iv.

Hint for problems 2.7.3 to 2.7.6: Use and | SR and work
with the polar-coordinate representation. See the HP-45 Applica-
tions Book, pp. 48-50.
Fill in the blank lines in Table 2.5.1, namely: ABCD, ADDB,
BADA, BADB, DADB.

96 Terser and Tighter Algorithms

278

279

2.7.10

Let us begin with a single fertile pair of rabbits and suppose that at
the end of a month, each fertile pair produces another pair.
Assume that rabbits become fertile at the age of one month, that
foxes do not exist, and that rabbits never die. Thus after one
month there will be 2 pairs of rabbits, after 2 months, 3 pairs
(because one of the previous pairs is not yet fertile), after 3
months, 5 pairs, and so on. Write a cyclic RPN algorithm to
calculate the number of rabbits at the end of each month, and use
the algorithm to calculate the number of rabbits at the end of a
year. Hint: This is the famous Leonardo Fibonacci problem (c.
1202), and the answer is a sequence of Fibonacci numbers. The
loop should have no more than five keystrokes.

Convert the following octal numbers to decimal,

43172,
4.3172,
431.72,

the following hexadecimal numbers to decimal,

AE19C2,
FDAT7.CBS,

and the following binary numbers to decimal,

1101011011101,
1011001.1110101101.

Hints: Hexadecimal numbers are base 16 and A=10, B=11,
C=12, and so on. For the binary numbers, either convert to octal
first, or use base 2 directly.

Without air resistance, the speed of an object falling in a constant
gravitational field is

v=at,
and the distance fallen is
s=at?,
where a is the acceleration of gravity and ¢ is the time since

release. (@) Write an RPN algorithm to calculate v and s given a
and ¢ (six keystrokes plus data). (b) If a stone dropped from a

27.11

2.7.12

2.7.13

2.7 Exercises 97

bridge strikes the water 4.2 seconds later, how high is the bridge
over the water, and how fast was the stone moving when it hit the

water? The acceleration of gravity near the earth’s surface is a =32
ft/s>.
The harmonic numbers are defined as

n
1
H = 2
=31
k=1
and are approximately

1 1
H =lnn+vy+—— + ,
"2 T 2n T 120n°

where y=0.5772156649- - - is Euler’s constant. Write an algorithm
for each of these formulas and compare the answers for n up to 10.
Fresnel’s formula for reflection of unpolarized light at the interface
of a transparent medium is (FFP, II, p. 367)

1] sin’(i—r) tan®(i—r)

© 2| sin2(i+r) tan¥(i+r) |

where i is the angle of incidence, r is the angle of refraction in the
medium, and R is ratio of reflected light to incident light. Write an
algorithm for an HP-35 or HP-21 to calculate R given i and r.
Hints: Do not key i and r each more than once. Remember that
trigonometric functors lose the contents of 7" on the HP-35, and
that neither the HP-35 nor the HP-21 has an key. The
algorithm can be done in 24 keystrokes plus data. Test case:
i=40°, r=24°5, get R=0.05258 =5.258%.

Write an HP-45 algorithm to sum the first six terms of the series

> T,
2 ”k(,,x) (—1<x<1),
k=1

where 7,(x) is a Chebyshev polynomial. Evaluate the series for
x=0.5and n=1, 2, and 4. Hint: T,(cos@)=cos(nd).

98 Terser and Tighter Algorithms
2.7.14 The length of the arc of a parabola is (CRC SMT, p. 13)

2 [2x+\4x2+y?
s=V4x*+y? +-;—)-;ln LTV TV

y
where x is the depth and y is half the mouth opening. Write an
HP-35 algorithm to calculate s given x and y. Test case: x=2,
y=3; get s=7.472.
2.7.15 The area of the segment of a circle is (CRC SMT, p. 12)

A=R2cos"(%)—d\/R2~d2 ,

’

where R is the radius of the circle and d is the perpendicular
distance from the center to the cord. Write an HP-21 algorithm to
calculate A given R and d. Test case: d=3, R=35; get A =11.1824.

2.7.16 Prof. H. E. Schaffer (1976) challenges anyone to write an HP-25
program for the factorial function (for integers) shorter than

[sto |1 1[=][sTO0][X]1 1[f]: x5 }[GTO]03[RCL] 1[GTO |00,

where n!=n(n—1)(n—2)---3-2-1. Try it.
Rewrite and shorten the following five RPN expressions:
2717 AM2X12+ B2+ —.
2718 ATB XATB+ +.
2719 A2+B12++C112+—-D112+ +.
2720 AtY/+Acx/.
2721 ALB Xe.
2.7.22

2x*+45x3+381x2+1353x + 1511 —2x43 4
3 > =2x+3+ 6
x°+21x*+157x +409 x+5+
x+7+

8
x+9

Write an RPN algorithm to evaluate each side of this equation,
and compare the answers for x =2.

2.7.23 Convert 3 weeks, 2 days, 9 hours, 22 minutes and 18 seconds, into
(a) seconds and (b) decimal weeks.

2724 Find the “regular continued fraction” expansion of 1/(e—1),
where e=2.718281828.

2.7 Exercises 99

2.7.25 The normalized poles in the complex s plane of a Chebyshev
low-pass filter are at

2k—

—smh(—smh ! 1)sm(90),

w, = *cosh —smh 11 cos 2k 190
k n €

where n is the order of the filter, that is, the number of poles; k is
the stage number, k=1to n/2 if n is even, or k=1to (n+1)/2if n
is odd; € is the peak allowable bandpass ripple; and &, and w, are
the real and imaginary parts, respectively, of each pole. So s, = o
+iw, where i=V —1.If r is the peak-to-peak ripple in decibels
(dB), then £2=10"/1—1, Write an HP-21 algorithm to calculate s,
given n, k, and r. Hint: see Section A.5.1. Test case: r=0.5 dB,
n=3; get £¢=0.3493, a;=—0.3132, w,=*1.0219, a,=—0.6265,
=(. Reference: Lubkin (1970), Section 4.2.

3

lterative Solutions of
Elementary
Transcendental
Equations

...damnable iteration...able to corrupt a saint.

—William Shakespeare (1564-1616)

3.1 INTRODUCTION

Transcendental equations are equations whose solutions cannot be written
explicitly in terms of a finite number of elementary functions. And
elementary functions are easy to define—they are functions that appear on
the keys of the calculator. The definitions in mathematics textbooks are
somewhat different.

Certain functions that are solutions to transcendental equations were
considered previously. Bessel functions, for example, are solutions to
Bessel’s differential equation and are well-known functions in that they
have been thoroughly studied, tabulated, and graphed. However they are

100

3.1 Introduction 101

not elementary functions by the definition just given. Functions such as
Bessel’s are probably best dealt with in terms of their power series or
polynomial approximations, as in Section 2.4.

Consider, instead, elementary algebraic transcendental equations that
can be put into the form

x=f(x), (3.1.1)

where the function f consists of some combination of elementary functions.
This is not quite a general form for algebraic transcendental equations, but
equations in this form occur very frequently in applications. Methods for
dealing with such equations have a long history, going back at least to
Newton, and an extensive literature. Almost any book on numerical
analysis or numerical methods has a chapter on such equations, and an
exhausting treatment can be found in Traub (1964). This section discusses
only the iterative techniques that I have found to be most useful.

We can think of f as an operator and apply it repeatedly to an initial
guess x,, to give, we hope, an improved approximation, at each iteration,
for the solution nearest x,. Such a procedure sometimes converges, some-
times diverges, sometimes oscillates between two or more solutions, and
sometimes oscillates between solutions of the derived equations

x,=f(x,),
x3=f(x))- (3.12)

Even more complex oscillatory behavior occurs in principle, but rarely in
practice.

Suppose x=a is a solution to the foregoing transcendental equation,
that is,

a=f(a). (3.1.3)

Then consider a Taylor series expansion of f(x) around the point x =a,

f(x)=f(a)+(x—a)f(a)+1(x—a)’ f(a)+---. (3.1.4)

Suppose x, is an approximate solution to the equation and let £, be the
error in x,, that is,

¢,=x,—a. (3.1.5)

102 Iterative Solutions of Elementary Transcendental Equations

If we obtain the next approximation x,,,, by iteration, we have

X, 01=f(x,)=f(a)+&, f(a)+3E2f"(a)+ -, (3.1.6)

or
&i=6f(a)+ 38 (@) + - (3.1.7)

Clearly this process cannot converge unless |f'(a)| <1. The HMF, p. 18,
gives the precise criteria of convergence as

|f'(x)|<g<1 for A<x<B, (3.1.8)

where

HEAEET

A< x, *+
n l—q

(3.1.9)

If 0<|f'(a)| < ¢<1, convergence is called “first order”; if f'(a)=0, conver-
gence is called “second order”; if f”(a)=0 also, convergence is called
“third order,” and so on (see Hartree, 1958, p. 212). With first-order
convergence, the magnitude of the error |§,| decreases exponentially with
increasing n. With second-order convergence, the number of significant
figures in x, approximately doubles with each iteration. Second-order
convergence is thus greatly preferable to first order, and, in any case,
| f'(a)| should be small if not zero.

3.2 THE g METHOD

What is wanted is a method for transforming an original function f(x) into
a new function F(x) that still satisfies

a=F(a) (3.2.1)
but also converges and satisfies
F’(a)=0, (3.2.2)

at least approximately. Then iteration on F(x) will converge rapidly
toward x = a, the desired solution of the original equation. Many methods
for obtaining an F(a) satisfy these criteria; three particular methods are
discussed here.

3.2 The g Method 103

Consider first

fO)+xg(x)

F(x)= g(x)+1

(3.2.3)

If f(a)=a, then F(a)=a also, provided only that g(a)# — 1. The function
g(x) is otherwise arbitrary and can be chosen so that F’(a)=0. The
derivative of equation 3.2.3 evaluated at x=a is

f(a)+g(a)

Fa)= g(la)+1

(3.2.4)

Thus we can make F'(a)=0 by taking
g(a)=—f"(a), (3.2.5)

provided f'(a)# 1. Since we are using an iterative procedure, g(a) needs to
have this value only approximately. The speed of convergence, but not the
ultimate answer, depends on the exact g(x). The simplest iteration scheme,
using just f(x), in effect takes g(x) to be zero and works well if | f'(a)| is
small compared to unity.

Since we do not know a in advance, we usually cannot set g(x)= — f'(a)
=constant (and we may not even want to). Therefore try instead

g(x)=—1"(x), (3.2.6)
since this is obviously one possibility that gives F’(a)=0. Other possibili-

ties come from adding to g(x) any function that is zero at x =a. With g(x)
from equation 3.2.6 however, and with

h(x)=x—f(x), (3.2.7)
one can show that
h(x
F(x)=x-— h—’((x_))’ (3.2.8)

and this is the famous Newton-Raphson iterative equation for solving
h(x)=0. Thus for the particular choice of g(x) in equation 3.2.6, the g
method reduces exactly to the Newton-Raphson method.

If we have an f(x) that is difficult to differentiate, or a derivative f'(x)

104 Iterative Solutions of Elementary Transcendental Equations

that is difficult to evaluate on a calculator, we might approximate

f’(x)zf—i = M (3.2.9)

xn_xn—l

With this expression for — g(x),

x =F(X)= xnf(xn—l)_xn—lf(xn)
m " xn_xn—l_f(xn)+f(xn—l)

S e M N (3.2.10)

xn—l_f(xn-l)

e |

x’l _f(xn)

This is the Wegstein or modified secant iteration scheme (see the IBM SSP,
p. 215), also known as regula falsi (rule of false position) as applied to
h(x)=0, and is a double-averaging scheme in that x,,, is a function of
both x, and x,_,. Although we need not calculate f'(x) with this scheme,
we need to save both x,_, and f(x,_,) while calculating f(x,). Depending
on the form of f(x), we probably need at least two storage registers plus
the stack. Note also that this expression degenerates into 0/0 as x,
approaches a. We can rewrite the expression, of course, but such difficul-
ties persist.

A similar but not identical scheme approximates f'(x) as in equation
3.2.9 but takes another x near x, in place of x,_,. The two xs are not
allowed to come together, thus avoiding 0/0. Such a scheme appears in the
HP-25 Applications Programs, p. 76.

One way to implement equation 2.3.10 on an HP-45 is as follows:

seTup: x, [s10] 1 [1] [1] (1] [-f---] [2] [STO] 2 [G] {LASTX;
voor: [1][1][1]] [E] x=y] [RcL] 1 [x=y] [sTO] 1 [<] [*=]
RCL| 2 [x=y] [sTOo] 2 [£] 1 [-] [5] [=] (see x,) :|.

(3.2.11)

This algorithm keeps x,_; in R, and x,_,—f(x,_;) in R,. The symbol

---f---] is a subroutine and represents any sequence of keystrokes that
accepts x in X, Y, Z, and T, puts f(x) into X, and leaves x in Y, Z, and T.
The symbol :| means loop back to the last preceding colon (:), in this case
after the word “loop.” The second approximation x, is taken to be f(x,); if

"""" A

a better x, is known, substitute it for [G] [LASTX: at the end of the setup.

My experience with this scheme has not been very favorable. If the
derivative f'(x) is too much to calculate, try setting g(x) to an approximate

3.3 The a Method 105

hx)pp—m—m—————— = —— — —

h (x)

|
|
|
|
|
|
|
|
|
1
X,

7,
0 /’ X+ 1

Figure 3.2.1 A graphical interpretation of the g method. The straight line has a slope
of g(x,)+1 and goes through the points (x,,k(x,)), (%, 1,0).

algebraic expression for — f’(x) or perhaps to a carefully chosen constant;
g(x)= —f'(xg)=constant is sometimes called the modified Newton
method.

A geometric interpretation of the g method appears in Figure 3.2.1. The
slope of the straight line is g(x)+ 1, and for second-order convergence this
straight line becomes tangent to the curve when x =a. If g(x)= — f'(x), as
in the Newton-Raphson method, the straight line is tangent to the curve at
any x. The g method is substantially identical with Milne’s m method
(Milne, 1949, Chapter II).

3.3 THE a« METHOD

For another possible method, consider
F(x)=[f(x)]axl_"=x[@} , (33.1)

where a can be either constant or an arbitrary function of x. This F also
satisfies F(a)=a, provided f(a)=a, and we need only avoid a=0. Since
for this F(x) we can show that

F'(a)=1-a(a)[1-f(a)], (33.2)

106 Iterative Solutions of Elementary Transcendental Equations

we can make F’(a)=0 by taking

a(a)= —1

—_—, (33.3)
1-f(a)
provided f'(a)# 1.

As before, since we do not know a in advance, we usually cannot set

a(x)= a(a)=constant; thus a reasonable choice would be

1
1-f(x)
Other possibilities can be obtained, for example, by adding to a(x) any
function that is zero at x =a, or by multiplying f’(x) in this expression by

any function that is unity at x=a. Another expression that sometimes
turns out to be simpler is

(3.3.4)

a(x)=

1

=3 (0)/f(x)" 02

a(x)=

If we redefine
h(x)=In[x/f(x)], (33.6)

and plot Inx rather than x on the abscissa, we get a geometrical interpreta-
tion of the a method, as shown in Figure 3.3.1. The slope of the straight
line is 1/a(x,). For second-order convergence, a satisfies equation 3.3.3,
and the straight line becomes tangent to the curve when x=a. If equation
3.3.5 is also satisfied, the straight line is tangent to the curve at any x.

\

hx)p———————————— —

h(x)

0 /na T Inx,

Figure 3.3.1 A graphical interpretation of the a method. The straight line has a slope
of 1/a(x,) and goes through the points (Inx,,k(x,)), (Inx,_, ;,0).

3.4 The 8 Method 107
3.4 THE 8 METHOD

As yet another possible method, consider

L _ B 1-8_SO+Elx—f()]

F(x) f(x) x xf (x)

(34.1)

This F(x) satisfies the same conditions as before, and since
F'(a)=1-B(a)[1-f(a)], (34.2)
we can make F’'(a)=0 by choosing

1

,B (a =T " 343
)=1C IZ0) (34.3)
This is identical to a(a) above, and the same comments apply.
As an exercise, show that the 8 method with
1
B(x)=—————, (344
1+ xg(x)/f(x)

is equivalent to the g method. Another expression that sometimes turns out
to be simpler is

x)= I . 345
BT 7T (349

If we redefine

-l__1
M=~ 75y (3.4.6)

and plot 1/x rather than x on the abscissa, we get a geometrical interpre-
tation of the 8 method (Figure 3.4.1). The slope of the straight line is
1/B(x,). For second-order convergence, 3 satisfies equation 3.4.3 and the
straight line becomes tangent to the curve when x =a. If equation 3.4.5 is
also satisfied, the straight line is tangent to the curve at any x.

Mathematicians will recognize that the g method is based on the
weighted arithmetic mean of x, and f(x,), which would ordinarily be x, , ,,
the a method on the weighted geometric mean, and the 8 method on the
weighted harmonic mean.

108 Iterative Solutions of Elementary Transcendental Equations

h (x,)

h (x)

|
/l la /l/x,, ‘1 1/x,, T

Figure 3.4.1 A graphical interpretation of the 8 method. The straight line has a slope
of 1/B(x,) and goes through the points (1/x,,h(x,)), (1/x,,0).

o

We should choose among these methods, and select values for g(x),
a(x), or B(x) with the criterion of minimizing the total number of
keystrokes in the procedure—the number of keystrokes per iteration times
the number of iterations. Try to find simple, even if approximate, expres-
sions for g(x), a(x), or B(x). With programmable calculators, the criterion
may sometimes be different; an iteration algorithm that fits the calculator’s
program memory and converges, however slowly, is preferable to an
algorithm that is too large to fit, no matter how fast it might converge.

3.5 EXAMPLE: x=Ax"*

Consider next a relatively simple example of a transcendental algebraic
equation

x=Ax"*. (3.5.1)

Given A, the problem is to solve for x. If we think of the equation the
other way round—given x, solve for A—the solution is trivial,

A=x**1, (3.5.2)

or

x[TJTN[+][*] (see A4). (3.5.3)

3.5 Example: x=Ax"* 109

6_
5.._.
41—
X
3.—
2.—
1_
ol L [[|
-2 -1 0 +1 2 3 4 5

logyp A

Figure 3.5.1 Example: x=Ax~* with log,p4 on the abscissa to compress the scale.

Thus we can plot A4 against x and use the graph to solve the original
problem, or at least to obtain first guesses for iterations. Figure 3.5.1 is
such a graph.

This is not a physical problem in that I do not know that the equation
occurs in a physical or real-life context; I chose it for its pedagogical value.
Section 3.6 contains examples of transcendental equations from the finan-
cial world, and Section A.10.7 contains an extensive example from electri-
cal engineering.

First try each of the three methods—g, a, and S8—on the exponential
form of the equation

f(x)=Ax"". (3.5.4)
The derivative is
f(x)=—Ax"*(1+Inx). (3.5.5)

Note that since | f’(x)| <1 only for 4 <1 (see Figure 3.5.1), direct iteration
on this f(x) could converge only for 4 <1.
With g(x)= —f'(x), get

Ax "+ xAx *(1+Inx)

F =
(x) 1+ A4Ax *(1+Inx)

(3.5.6)

110 Iterative Solutions of Elementary Transcendental Equations
or
1+ x(1+Inx)

—_. 357
x*/A+1+Inx (3:5.7)

F(x)=

One possible algorithm for an HP-35 would be

SETUP: A Xo

roor: [t] [1] [m] 1 [+] x] 1 [+] [RY [¢] [Rer] [] [x=2y] [in]
1[+][5] (seex):| (3.5.8)

Since x is in both X and Y on in this algorithm, the could as well
be . As a test case, take 4 =5, x,=2, and get

x;=2, 1759340322, 1.782767549, 1.783016997, 1.783017025. (3.5.9)

This final answer has an absolute error less than +2X 1077 as one can
verify by substituting back into the original equation, and was achieved by
four cycles through a loop of 18 keystrokes, starting from an x, with only
about one significant figure.

Next try the a method on the same problem, using

a(x)= ——

—_— 3.5.10
1+ x(1+Inx)’ ()

from equation 3.3.5. In this case one should work with In F(x), rather than
F (x) itself, but this is only a computational convenience and should not be
confused with the logarithmic form of the equation considered below.
After some manipulation, get

In4 + x(Inx)?

—_—. 3.5.11
1+ x(1+Inx) ()

InF(x)=

Thus an algorithm for an HP-35 w