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PREFACE

In writing about elementary physics at the level of a college course for en-
gineers and scientists, a textbook author is constantly faced with a serious
difficulty. Although it can be assumed that the intended reader knows or is
learning some calculus, it cannot be assumed that the reader knows any-
thing about differential equations. But, starting with Newton’s law of mo-
tion, many of the most important topics of physics lead to a differential
equation. If the equation is particularly simple, the author may carefully
develop an analytical procedure for solving it and hope that the reader will
be able to understand. Frequently, no attempt will be made to treat the
topic mathematically because the analytical solution of the equation is
just too complicated to be followed by someone who has not yet formally
studied differential equations. Then the author must quote results of im-
portance to physics with little or no mathematical justification, to the frus-
tration of both the author and the reader.

A way around this difficulty is to solve the differential equation by a
numerical procedure. Compared to analytical methods, numerical
methods have several significant advantages: (1) they are so simple in
concept that anyone who understands the definition of a derivative will
have no difficulty in immediately understanding how they are used to
solve differential equations (there is nothing more to them than a succes-
sion of multiplications and additions); (2) they are always applied in es-
sentially the same way to all differential equations (whereas the analytical
procedure for solving one equation may be drastically different from that
which must be used to solve another); and (3) they are almost always suc-
cessful (even though many important differential equations cannot be
solved by any analytical procedure).

A principal disadvantage of any numerical procedure for solving differ-
ential equations is that it involves very many repetitious (albeit trivial)
calculations, and so is practical only with the assistance of some sort of
computing facility.
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In the past few years since computers have become widely available on
college campuses, several authors have written material showing how
they can be used to teach mathematical physics, starting with the elemen-
tary course. But, with a few notable exceptions, conventional computers
seem to have had little impact on elementary students. This may be
because even the smallest conventional computer intimidates many
students. To use it the student must spend more time than may be avaii-
able learning a special programming language. If the student does not
type, there may be difficulty in operating the terminal. The computer may
not be available at a convenient location and time. And the student is em-
barrassed about mistakes because they are being made in public on a
machine whose costs are not low.

I believe that the advent of programmable pocket calculators provides
an almost perfect solution to the difficulty. These calculators, which are
actually miniature computers, are very easy to program and operate, inex-
pensive enough to be widely available, yet powerful enough to solve any
of the ordinary differential equations that would be of interest in elemen-
tary physics. This includes almost any linear or nonlinear second-order
equation, and even sets of two coupled second-order equations. Thus
they can be used for topics such as: fall with friction; harmonic and anhar-
monic oscillations; damped, driven oscillations; coupled oscillations; mo-
tion in an attractive or repulsive central force proportional to any power
of the distance; and Schroedinger’s equation for oscillator and finite
square-well potentials. In fact, these are the topics I have chosen to treat
in this short book.

In addition, the first two chapters present numerical procedures for dif-
ferentiating and integrating. The motivation is primarily pedagogical—to
start the development of numerical methods and their implementation on
programmable pocket calculators with topics that the reader is either fa-
miliar with or currently studying by analytical methods. (There is also a
practical motivation for numerical integration.) In the next to last chapter.
a diversion from the main stream of the book is taken to show how
programmable pocket calculators can be used for statistical simulation
and analysis by treating a topic involving entropy and the natural direc-
tion of flow of time.

The book is written so that it will be particularly easy to use with the
HP-25 calculator (produced by Hewlett-Packard, Cupertino, California)
or with the SR-56 calculator (produced by Texas Instruments, Dallas,
Texas). All of the programs appear in two versions—one suitable for
each. At the time of writing, these are the least expensive calculators
which have the necessary capability of conditional branching. The pro-
grams are also useable, with at most minor modifications, on more sophis-
ticated currently available pocket or desk-top programmable calculators.
If a calculator uses algebraic notation, then its programs will follow very
closely the SR-56 versions; if it uses parenthesis-free notation, they will
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be very much like the HP-25 versions. It is reasonable to expect that
inexpensive programmable calculators produced in the future will be
more versatile and faster, so they will certainly be more than capable of
running the programs in this book.

The most ideal situation would be one in which each student has a
programmable pocket calculator to work with in the same conditions of
privacy available when studying a textbook. For many students this has
been or can be realized now, and it does not take much of an extrapola-
tion of current trends to predict that it could soon be universal. Until then,
it would certainly be possible for any educational institution to purchase a
few calculators to be kept in security cradles on a table in an accessible
room. Comparing the ratio of their potential impact on a student’s ability
to learn physics to their price, with the same ratio evaluated for lecture
demonstration or student laboratory equipment, it would seem to be a
very cost-effective educational investment.

The only significant physics prerequisite for this book, except for the
last chapter, is a knowledge of Newton’s law of motion. Although many of
the differential equations that are solved have important applications in
electrical systems, only their applications to mechanical systems are
emphasized. I did this in the expectation that the book could be of use to
people whose primary interest is in applied mathematics, and under the
assumption that mechanical systems would be more familiar to them. I
have tried seriously to make the last chapter, concerning Schroedinger’s
equation, as self-contained as size limitations allow. But a little contact
with elementary quantum physics would certainly make that chapter easi-
er to follow.

As for the mathematical prerequisites, I have tried to make them as
few as possible. A prior or concurrent course in elementary calculus,
while not an absolute requirement, would be desirable. But it definitely is
not necessary to have any background in differential equations to profita-
bly study this book. That does not mean that the numerical methods de-
veloped in it will be uninteresting or unuseful for readers who have con-
siderable familiarity with the analytical methods for solving differential
equations.

The book is written to be used by a person who has had no exposure to
a pocket calculator, programmable or nonprogrammable, or to its instruc-
tion manual. This attribute was tested by such a person, who worked with
the book during its development.

I would like to emphasize that in no way is it my intent to replace the
standard analytical methods used to treat topics of elementary mathemati-
cal physics. What I am trying to do is to take advantage of technological
developments which make it possible to supplement these methods, and
thereby enhance the ability of students to learn the subject. Many
students find numerical methods easier to understand than analytical ones
because they are simpler and deal with actual numbers. I believe that all
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students will benefit very much from studying both methods, since under-
standing each method will help them to understand the other better. And
if they continue on in engineering or science they will, of course, repeat-
edly come back to numerical methods which are so widely used in profes-
sional work.

My deepest appreciation goes to my wife, Lila, who went way beyond
the call of duty in testing the book by working with it during its develop-
ment. I would also like to thank Alice Macnow and C. Robert Zappa of
McGraw-Hill for their assistance in the publication of this book and, in
particular, for their willingness to publish it despite its unusual character.

Robert M. Eisberg



Applied
Mathematical
Physics with
PROGRAMMABLE

POCKET
CALCULATORS







CHAPTER

ONE
NUMERICAL DIFFERENTIATION

1-1. INTRODUCTION

This chapter will introduce you to the application of numerical methods to
topics of mathematics that are central to the study of physics. It is likely
that you already have studied, or soon will study, many of these same
topics in math and physics courses by using the more conventional analyt-
ical methods. The intent is not to try to replace the analytical methods by
the numerical ones, but instead to use the latter to supplement the former.
Although numerical methods have tremendous advantages of great sim-
plicity and universal applicability, the two approaches are really not in
competition; analytical methods are better suited to doing certain things
and numerical methods to doing others.

Some subjects that are of interest to elementary physics because of
their importance must be treated numerically because analytical methods
are not universally applicable. But it is more commonly the case that, al-
though successful analytical treatments of an important physical system
are available, they are much too complicated to be used at the elementary
level. In these cases the great simplicity of the numerical treatments
allows them to be used instead. You will see many examples of this in
later chapters. Another situation that frequently arises in elementary
mathematical physics is one in which a topic can be handled fruitfully by
both methods. In these cases your study of each method can assist your
study of the other because the insight you gain into one will enhance your
insight into the other.

A good example is differentiation, a topic that certainly plays a vital
role in elementary mathematics and physics. This chapter contains two
programs, both of which make your programmable calculator automati-
cally evaluate the derivative of any function f(x) you might be concerned
with, at any value x = x, that you want. The first program follows directly
from the definition of a derivative, and the familiar figure used to illustrate

1



2 NUMERICAL DIFFERENTIATION

it, that you will find in any elementary calculus or calculus-level physics
textbook. It simply carries out the process that you have probably read
and heard so much about: Evaluate f(x) at x; and also at the nearby point
x; + Ax; subtract the former from the latter to calculate Af, the change in
f; divide by Ax to obtain the average rate of change Af/Ax; then let Ax
become smaller and smaller to find the limit as Ax — 0 of Af/Ax. The pro-
gram does not just talk about this fundamentally important procedure, it
actually does it. Using the program will give you concrete, hands-on expe-
rience with the concept of Af/Ax approaching its limit.

The second program involves a small change in the first and is based on
a slight variation in the standard definition of a derivative that you may
not have seen. In using it you will find that, for the same f(x) and x,, the
value of Af/Ax approaches the same limit as is obtained with the first pro-
gram. But it approaches the limit much more rapidly. This will introduce
you to a consideration of great practical importance that you will see
emphasized repeatedly in later chapters, i.e., rapidity of convergence.

These programs, particularly the second one, provide a practical
method of evaluating derivatives numerically. If you are now in the proc-
ess of learning to differentiate by the conventional analytical method, you
can use the second program for checking your mastery of the method (and
the accuracy of your homework). First, choose a form for f(x) and a value
of x,, find the analytical form of the derivative in the conventional way,
and evaluate it at x, by using the calculator manually. Then, insert f(x)
and x, into the program, run it, and watch the results displayed converge
to the limit. Finally, compare to see if your work in finding the analytical
form for the derivative, and also your evaluation of it at x,, were correct.
Even if you are way beyond this stage in your mathematical education,
you will enjoy doing it a few times.

Chapter 2 gives a completely parallel treatment of numerical integra-
tion. Its programs can also be used effectively by beginners for self-testing
and by experts for amusement. There is, however, more to numerical in-
tegration than that. If an elementary function (i.e., algebraic and/or tran-
scendental) has a derivative, it can always be evaluated by analytical
methods. But the same is not true for the integral. As you will see, there
are important elementary functions for which the integral can be
evaluated only by numerical methods such as are provided by the pro-
grams, particularly the second one.

A major purpose of this chapter is to acquaint you with the program-
mable pocket calculator. The chapter is written under the assumption that
you have had no prior contact with it or its instruction manual. As a
consequence, the pace is very deliberate. You can speed things up by
skipping the explanations of its operation and programs to the extent ap-
propriate to your familiarity with the calculator, but be sure to read the
other material as it will be referred to subsequently.
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1-2. DERIVATIVES BY FULL-INCREMENT METHOD
The derivative df(x)/dx of the function f(x) at x = x, is defined as:

[5@]15 limit as Ax approaches 0 of [ﬂx‘ + Asz ﬂxl)]

The definition is illustrated in Fig. 1-1 and is described in words in the
preceding section. The derivative of f(x) at x; is nothing more than its
rate of change at that point, and is measured by the slope of the straight
line that is tangent to the curve there. However, if you have never been
exposed to this definition before, it would be wise to look at one of the
books in Ref. 1. The concept of a derivative will be used throughout al-
most all of this book, but it will not actually be necessary for you to know
how to obtain derivatives analytically. All you will need to know is what a
derivative is, and you will certainly learn that in working through this
chapter.

Programs carrying out the procedure implied by the definition are
listed in Table 1-1 (HP-25) for the Hewlett-Packard HP-25 calculator and
others using parenthesis-free logic, and, separately, in Table 1-1 (SR-56)
for the Texas Instruments SR-56 and others using algebraic logic.

The two programs differ in detail, but are exactly the same in what they
do. After the appropriate general program is keyed into your calculator,
choose f(x) and key into an ample blank place in the program the steps
which will start from x and generate the chosen form of f(x) using, if nec-
essary, some of the storage registers not used by the program. Then, in-

/f(X)

7

X1 X, +Ax

Figure 1-1. Illustration of the full-increment definition
of a derivative.
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sert whatever values you choose of x;, and of the first Ax to be used, in the
designated storage registers and push the button that starts the calculator.
It will evaluate [f(x, + Ax) —f(x,)]/Ax and stop with the result dis-
played. Inspect the result, writing it down if you wish, and then push the
start button again. The calculator will reduce Ax by a factor of 3, repeat
the calculation, and then stop with the new result displayed. This cycle
continues every time you restart the calculator. The remainder of this
section shows you, by example, how to enter and use the program for
your calculator, but does not explain the operations performed by the
calculator when it is running the program. Such an explanation is given
in the next section.

Example
f(x) =x3, x, =2, initial Ax =1

For the HP-25

Switch to PRGM and clear by keying f PRGM. Then key steps 01 through
04 of the program. To do this, simply follow in sequence the key entries
listed in the third column of Table 1-1 (HP-25), noting that frequently
there are two or even three key entries per step. To be specific, key RCL 1.
This completes step 01, and the display shows 01 24 01. The first two
numbers are the step identification. The second pair identify the key entry
RCL by specifying its position on the keyboard—RCL is in row 2 from the
top and column 4 from the left. The third pair of numbers identify the key
for the digit 1. The display makes it easy to check your program keying
for errors. Next, key RCL 2 and note that the display shows 02 24 02.
The third step is obtained by keying + , which produces the display 03
51. Then key STO 3, and note that the display shows 04 23 03. If you
are careful in keying, it is usually unnecessary to watch the display while
doing it. If you feel you have made a mistake in a step preceding the one
currently displayed, each press of BST will make the display go back one
step. An error in, say, step 02 can be corrected by pressing BST once
more so that step 01 is displayed, and then correctly keying step 02.
Pressing SST will allow you to go forward in single steps to where you
were initially.

Now you come to steps 05 through 31, in which there is room to use
the calculator’s built-in functions and the unused storage registers to con-
struct almost any form of f(x) that you would like. For f(x) = x3, this is
done by keying 3 for step 05, f y* for step 06, and GTO 3 2 for step 07.
The latter will cause the calculator to bypass the unused steps when a pro-
gram is being run. Next, press the SST key repeatedly until the pair of
numbers on the left side of the display read 31, and then continue entering
the program by keying STO 4, RCL 3, etc. When you finish, switch to
RUN, and set the program to step 00 by keying f PRGM. Load x,, and the
initial Ax, by keying 2 STO 1,and 1 STO 2. Now you can run the pro-
gram by pushing the R/S button. To run it again, push R/S again, etc.
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For the SR-56

Clear the program by keying 2nd CP. Then prepare the calculator to
learn the program by keying LRN. The display will show 00 00. The first
pair of numbers tells you it is ready to receive step 00, and the second
pair shows that nothing is currently in that step. Now follow in sequence
the key entries listed in the third column of Table 1-1 (SR-56). To be
specific, first key RCL. The display will change to 01 00, indicating that
you should now enter step 01. Do so by keying the digit 1. Next, key +.
Any time you feel you have made a mistake, press 2nd bst as many
times as required to review the previously entered steps by means of a
code identifying the keys that were entered. If you do it once after hav-
ing keyed the + for step 02, you should see 02 84 on the display. The
second pair of numbers is the code for the location of the + key, which is
in row 8 from the top and column 4 from the left. If it is incorrect,
reenter the proper key and the error will be corrected. You can backstep
farther by continued use of 2nd bst. To return to where you were, press
SST to single step forward. Now key through step 06. Then push 2nd
bst and you will see 06 57. The code indicates that the operation in step
06 is 2nd subr; it is the second function of the key labeled ( , which is
the one shown above the key. The last digit in the code for a second
function starts with 6 for the first column on the left. So 57 means row 5
from the top, second function on column 2 from the left. Before entering
step 07, press SST once to get back to the proper location for that step.
Then continue entering the program through step 33.

Starting at step 34, there is room to use the calculator’s built-in func-
tions and all the unused storage registers to make a subroutine for con-
structing almost any form of f(x) you would like. For f(x) = x3, this is
done by keying y* for step 34, 3 for step 35, and =for step 36. Always end
the subroutine by keying 2nd rtn. Now press LRN again to get out of the
learn mode and press RST to set the calculator to step 00. Load x,, and the
initial value of Ax, by keying 2 STO 1,and 1 STO 2. You can now run
the program by pressing the R/S. To run again, press R/S again, etc.

This ends the instructions for running the example on the HP-25 or
the SR-56.

For either calculator the results, rounded off to three decimal places by
keying f FIX 3 on the HP-25 and 2nd fix 3 on the SR-56, are:

AflAx = 19.000, 15.250, 13.562, 12.766, 12.379, 12.188, 12.094,
12.047, 12.023, 12.012, 12.006, 12.003, 12.001, 12.001,
12.000, 12.000, 12.000

The results have converged, although not very rapidly, to the value
12.000. This is, of course, in agreement with the analytical method which
predicts a value of 12. If you know how to evaluate derivatives analyti-
cally, verify this. 1"
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The sequence of results was terminated when, as seen with three deci-
mal places, the repeated values 12.000 clearly indicated that convergence
had been achieved. But what happens if you nevertheless continue to
cycle the calculator? Try it. You will find that before long the results
begin to fluctuate about the value of 12.000. If continued, the fluctuations
grow until the results become meaningless. This behavior has nothing to
do with derivatives, except that their definition involves the difference be-
tween two numbers. It actually arises from roundoff error in the calcula-
tor, and if you think about what happens for a minute you should be able
to devise an explanation if you understand what a derivative is and what
the calculator is doing. In practice the fluctuations are not a significant
limitation to the utility of the numerical method of obtaining derivatives,
since the value of the limit can be seen with adequate accuracy before the
fluctuations set in. This is particularly true for the method described in
Sec. 1-4, which converges more rapidly.

If you want to try different values of x, and/or the initial Ax, still using
f(x) = x3, do the following:

For the HP-25
Key f PRGM to reset to step 00; key x, STO 1, initial Ax STO 2; then push
R/S.

For the SR-56
Key RST to reset to step 00; key x, STO 1, initial Ax STO 2; then push
R/S.

To change f(x) to a different form, proceed with the following instruc-
tions.

For the HP-25

While switched to RUN, key GTO 0 4, switch to PRGM, then key the steps
required to construct f(x) from x, assuming the result of step 04 is to
display x. Steps 05 through 31 are available, and also registers 0, 6, and 7.
If you use fewer steps, end by keying GTO 3 2. Then switch to RUN, and
reset to step 00 by keying f PRGM. Next key x, STO 1, Ax STO 2. Start by
pushing R/S.

To be specific, if you want to change to f(x) = x*, where n is any inte-
ger from O to 9, just key in n instead of 3 in step 05. If n requires more
than one key entry, the remaining steps used to generate f(x) will have to
be keyed in again because more steps will be used to enter n.

As another example, for f(x) = 2x + 3cosx, key in the following: Step
05is STO 0, 06is 2,07 isx ,08 isRCL 0,09is f cos, 10is 3, 11is X, 12
is+, 13is GTO 3 2. After switching to RUN, and keying f PRGM, be sure
to key g RAD to make the calculator operate with radians.



10 NUMERICAL DIFFERENTIATION

To see a listing of the key entries used to generate a more complicated
function, see Sec. 2-4.

For the SR-56

While still in the program execution mode, key GTO 3 4, key LRN, then
key the steps required to construct f(x) from x, assuming the result of step
33 is to put x in the display register. The steps through 98 are available,
and also registers 0 and 4 through 9. The last step of the subroutine must
be 2nd rtn. Then key LRN, and reset to step 00 by keying RST. Next, key
x, STO 1, Ax STO 2. Start by pushing R/S.

To be specific, if you want to change to f(x) = x", where n is any inte-
ger from 0 to 9, just key »n instead of 3 in step 35. If n requires more than
one key entry, the remaining steps used to generate f(x) will have to be
keyed again because more steps will be used to enter n.

As another example, for f(x) = 2x + 3cosx, key in the following: Step
34is ST0,35is0,36is X, 37is 2,38is+,39is 3, 40is X, 41 is RCL, 42 is
0, 43 is cos, 44 is =, 45 is 2nd rtn. After pushing LRN, and then RST, be
sure to key 2nd RAD to make the calculator operate with radians.

To see a listing of the key entries used to generate a more complicated
function, see Sec. 2-4.

1-3. EXPLANATION OF PROGRAM OPERATION

For both versions of the program, the columns to the right of the column
listing the key entries show what is happening when the program is being
run. You can ignore them now and throughout this book if you wish. The
major part of the Exercises at the end of each chapter does not require a
knowledge on your part of exactly how the programs operate and, as you
have just seen, the programs can be keyed into the calculator by simply
following the instructions in the third column. However, the operation of
the programs is easy enough to understand for it to be likely that in the
process of entering and using a few of them, you will learn what they are
doing without formally studying programming, provided you are given a
few clues at the beginning. If this interests you, read one of the following
explanations.

Although the program explained is the first one in this book, for the
HP-25 it is almost as sophisticated as any of them. So if you can under-
tand its operation with a little effort, you surely will be able to understand
how all of them operate. Then you will be able to obtain the even greater
satisfaction of writing your own variations on a program, or your own
original programs. Help can be found in the calculator instruction manual,
of course, and also in Sec. 3-4 where there is another detailed explanation
of the operation of a program. For the SR-56, the first program does not
require the use of a test routine that is needed in the two programs of
Chap. 2, and in Exercise 1-6. So if you are using that calculator, it might
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be appropriate to read the pertinent parts of Sec. 3-4 after you read this
section.

For the HP-25
In step 01 the contents of register 1, which will be x,, are recalled and
placed in the lowest, or X register, of four operating registers called the
stack. The entry in the column labeled X shows what is in that register
after the operation for that step has been carried out, and similarly for the
other columns and their associated stack registers. In step 02, register 2 is
recalled and its contents Ax are placed in X. One property of the stack is
that when a number is inserted in its X register, any number already there
will be displaced up to the next higher, or Y register. And if something
was already in Y (not so here), it would be displaced up to Z, etc. In step
03 the contents of X are added to the contents of Y. The results of this
operation, or of any other arithmetic operation carried out on the X and Y
registers, are put in the X register. Furthermore, if there was something in
the Z register initially (not so here), it would be displaced down and end
up in the Y register, and similarly for T. Thus step 03 produces x; + Ax in
X. In step 04 this is stored in register 3, so that it will initially contain
Xx; = x; + Ax.

Steps 05 through 31 are chosen by the user to construct f(x;) from the
x; present in X at step 04. In the example, f(x) = x3; step 05 is 3; step 06
isf y*; and step 07 is GTO 3 2. The first of these steps puts the digit 3 in
X, displacing x; to Y. The next step takes the contents of Y to the power
specified by the contents of X, thus producing x;?. (The prefix key fis used
to specify which of the three labels, y* 3 ABS, associated with the same
key is the one intended.) Just as in addition, the results of this arithmetic
operation are put into X. Step 07 makes the calculator skip directly to
step 32 where the contents of X, namely f(x;), are stored in register 4.

Now it gets interesting. Step 33 puts the contents of 3, which is the
value of x;, into X. [f(x;) is also displaced to Y, but it will no longer be
listed since when it is subsequently used it will be obtained not from the
stack but by recalling 4.] In step 34, x, is put in X, thereby displacing x; to
Y, by recalling register 1. In the next step a test is carried out comparing
the contents of the X and Y registers for the purpose of identifying the
value of x;. The reason why it is necessary is that the routine for generat-
ing f(x;) from x; must be used twice—the first time with x; = x; + Ax, and
the second time with x; = x,. At this stage of the explanation, you are at
the point where x; = x;, + Ax, so the contents of Y is a larger number than
the contents of X. The test in step 35 asks the question: Is x = y, where x
and y mean the contents of the X and Y registers? At this stage the an-
swer will be no. If the answer to this or any of the other tests available on
the calculator is no, then in executing a program it will automatically skip
the next step. Thus this time it will go to step 37. In step 37, register 4 is
recalled, putting f(x; + Ax) into X. Note that the value of x; has been
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specified since the test identifies what it is. Step 38 stores f(x; + Ax) in
register 5, and step 39 recalls register 1 to put x, in X.

Step 40 makes the calculator return to step 04, with x, in X. So step 04
causes x; to be stored in 3 this time. Then things proceed as before
through step 34, except that now x; = x; so that the contents of register 4
are f(x,). As a consequence, when the test of step 35 is made the answer
to the question will be yes. If the answer to any of the test questions is yes,
then the calculator does not skip a step. Thus it will go to step 36 which, in
turn, will cause it to go to step 41. In step 41 it recalls the contents of reg-
ister 4, thereby placing f(x;) in X. Step 42 causes the number in X to be
subtracted from the number in register 5; thus 5 will now contain
f(x; + Ax) — f(x;) = Af. Steps 43 and 44 obtain Ax from register 2 and
then divide it into the contents of register 5. Now register 5 will contain
Af]/Ax. To make this result visible to you, step 45 recalls 5 to the X regis-
ter and step 46 stops the calculator. The display always shows what is in
X, but it can be seen, of course, only when the calculator is stopped or at
least is pausing.

When you push R/S to actuate the calculator again, it will go to steps 47
and 48 that cause it to reduce by a factor of 3 the value of Ax stored in reg-
ister 2. Then it goes to step 49, which causes it to go to step 01 where it
immediatley begins to execute a new loop of the calculation with the
reduced Ax.

For the SR-56
In steps 00 and 01 the contents of register 1, which will be x,, are
recalled to a register that is capable of being displayed. The x, in the
Comments column shows the contents of that display register after the
operation for step 01 has been carried out. Comments are also used on
occasion to describe what is happening in words, e.g., the ‘“‘start loop”
listed for step 00. Step 02 prepares to make an addition. In the process,
x, is removed from the display register and stored elsewhere pending the
completion of the addition. Steps 03 and 04 recall the contents of regis-
ter 2, Ax, to the display register. The addition is completed in step 05
and the result, x; + Ax, ends up in the display register. All of the other
arithmetic operations performed on two numbers are handled in essen-
tially the same way as was this addition. At the = instruction the
calculator carries out all pending operations, first performing multiplica-
tion and division and then performing addition and subtraction. (If an
operation involving one number, e.g., taking the sine of the number, is
also pending, it will be carried out before the two number operations.)
Steps 06, 07, and 08 transfer execution of the program to the subroutine
for calculating f(x; + Ax) from x; + Ax, which starts in step 34.

Steps 34, 35, 36, .. ., plus any of the registers not employed in the main
program, are available to the user for constructing the function from its
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argument, which will be in the display register upon arrival at step 34. In
the example, f(x) = x3; step 34 is y*, step 35 is 3, and step 36 is =. The
first of these prepares the calculator to take an as yet unspecified power of
x; + Ax; the second specifies the power to be 3; and the third carries out
the operation, leaving f(x, + Ax) = (x; + Ax)? in the display register. Step
37 is the mandatory 2nd rtn, which automatically makes execution return
to the step immediately following the last one executed in the main pro-
gram. In this case the calculator will go back to step 09, carrying
f(x; + Ax) in the display register.

Steps 09 and 10 store that quantity in register 3. Steps 11 and 12 recall
register 1, which is x;, and put it in the display register. Steps 13, 14, and
15 carry it back in the display register to the same subroutine. Now the
subroutine calculates f(x,) and returns with that quantity in the display
register to the step after the one that led to the subroutine this time. Thus
f(x,) is in the register for step 16. That step instructs the calculator to per-
form on f(x,) the inverse of the operation called for in steps 17 and 18.
The net effect is to subtract f(x,) from the contents of register 3, leaving
that register with contents Af. Steps 19 and 20 recall Ax from register 2 to
the display register, where steps 21, 22, and 23 then divide it into the Afin
register 3. As a result, 3 contains Af/Ax at the end of step 23. Steps 24
and 25 recall 3 to the display register. Step 26 halts the program and
unblanks the display register so that Af/Ax can be seen.

After an R/S is keyed in manually to restart, step 27 puts the digit 2 in
the display register, and then steps 28, 29, and 30 divide it into the con-
tents of register 3. Steps 31, 32, and 33 take the program back to step 00,
where it immediately proceeds to start a new loop. This loop goes exactly
as the first one, except that it uses the new reduced value of Ax.

1-4. DERIVATIVES BY HALF-INCREMENT METHOD

A minor alteration in the definition of a derivative will make a major im-
provement in the rapidity of convergence of the sequence of numbers
produced in numerical differentiation. The altered definition is

[ﬂxl + Ax/[2) A—xf(xl — Ax/2)]

[M] = limit as Ax approaches 0 of
dx |,
and is illustrated in Fig. 1-2. In this so-called half-increment definition,
the derivative involves evaluating f(x) at two points symmetrically dis-
posed about the point x; where the value of the derivative is required. The
definition is completely equivalent to the standard definition, which may
be called the full-increment definition, in that both lead to the same limit
as Ax — 0. And neither definition is better or worse conceptually. But the
half-increment definition produces a much superior numerical method,
from a practical point of view, because the results it yields converge to
their limit much more rapidly.
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flx)

x;— Ax/2 X, x; + Ax/2

Figure 1-2. Illustration of the half-increment definition
of a derivative.

You can see why by inspecting Figs. 1-1 and 1-2. In both, the slope of
the straight line, tangent to the f(x) curve at x,, is a measure of the deriva-
tive at that point. The slope of the straight line connecting the value of
f(x) at the extreme ends of the interval of total width Ax is the approxi-
mation to the derivative generated by the definition for the value of Ax
shown in the figure. Clearly, for a given Ax, the altered definition gives a
much better approximation. Hence the more rapid convergence.

The alterations in the programs for each of the two calculators are
equally minor, as inspecting Tables 1-2 will show you. They are used ex-
actly as before and, for the same example, yield the following results.

Example
f(x) = x3, x;, =2, initial Ax =1

[entered and run in the HP-25 or SR-56 exactly as before, except for
the difference in the steps available for constructing f(x)]. The results to
three decimal places are:

AflAx =12.250, 12.063 or 12.062, 12.016, 12.004, 12.001,
12,000, 12,000, 12.000

(12.063 will be obtained on the HP-25 and 12.062 on the SR-56; the
variation arises from the difference in the way the calculators round off
to three decimal places.) 1

If you compare these with the results obtained for the same f(x), x;, and
initial Ax using the full-increment method, you will see why the half-
increment method is the preferred one to use. And you will see in the next
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18 NUMERICAL DIFFERENTIATION

chapters that this conclusion applies even more strongly to numerical in-
tegration and to the numerical solution of differential equations.

EXERCISES

1-1. Run the full-increment and half-increment programs to evaluate the
derivative of f(x) = x® at several values of x,. For each of these, compare
the speeds of convergence of the two programs.

1-2. Try other functions such as power laws, sinusoidals, and exponen-
tials in the two programs. For what functions is the discrepancy in speed
of convergence between the two programs most striking? Why?

1-3. Use the half-increment program to test your knowledge of the ana-
lytical expression for the derivative of a variety of functions and combi-
nations of functions. For each case run the program at some value of x,
and then compare the results with what you get by using the calculator
to evaluate the analytical expression at that value of x,.

1-4. Using the half-increment program to evaluate the derivative of some
function at a number of uniformly spaced values of x,, make a plot of its
derivative versus x,. Then use the calculator to evaluate the function at
the same values of x, and plot them. Compare the plots and comment on
them. Interesting functions to consider are sinx and cosx.

1-5. Study the details of the half-increment program and explain precisely
what happens in each step.

1-6. Write a modification to the half-increment program that will cause it
to stop and display the final result when Ax becomes less than some
preloaded value of 8. How should & be chosen? Is it better to stop when Af
becomes sufficiently small or, perhaps, when the change in Af/Ax from
one loop to the next becomes sufficiently small? Write program modifica-
tions to try these.

1-7. Write a half-increment program to differentiate a vector, the vector
being the velocity of a particle moving uniformly around a circle, and the
derivative taken with respect to time. Compare the results with the ana-
lytical expression for the centripetal acceleration of the particle.
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CHAPTER

TWO
NUMERICAL INTEGRATION

2-1. INTRODUCTION

In this chapter you will again start with a program which is based direct-
ly on a common textbook definition—in this case, of an integral. Then
you will again find that a slight variation in the definition, and a corre-
spondingly small change in the program, produces a very superior
numerical method. The second method of evaluating definite integrals,
called the half-increment method, is superior because it converges to a
result of useable accuracy very much more rapidly than does the first, or
full-increment method. This advantage is much more important than it is
in the case of numerical differentiation. Even the slower differentiation
program is quite fast, while the slower integration is really too slow to be
practical.

Are any of these programs of practical value? The principal justifica-
tion for numerical differentiation is pedagogical—it can help you master
the techniques and concepts involved in differentiation by analytical
methods. There is the same justification for numerical integration. But
there is an additional justification for studying numerical integration
which is actually much more significant, i.e., there are many important el-
ementary functions which cannot be integrated analytically. For these the
only available methods of integration are numerical ones.

An example which you will see worked out explicitly at the end of this
chapter is the integral over a certain wavelength range of the function
which specifies the spectrum of radiation emitted by the sun. When a solar
physicist (or an engineer working with the design of a solar-heating plant)
needs to know how much power is emitted in a particular range of the
spectrum, there is no choice but to employ numerical methods to evaluate
the integral.

19



20 NUMERICAL INTEGRATION

2-2. DEFINITE INTEGRALS BY FULL-INCREMENT METHOD

Inspect Fig. 2-1. Have you seen a figure before that looks something like

it? If so, then you probably are familiar with the so-called definite inte-
Ty

gral | f(x)dx of the function f(x) from x = x, to x = x,. The quantity is
T2

equal to the area under the curve of f(x) between these two points, and

is defined in terms of the area under the rectangles as

T2
J’ f(x)dx = limit as Ax approaches 0 of [; f(x) Ax]
T, i

where x; = x;, x; + Ax, x; + 2Ax, ..., x, — Ax. If the figure is familiar,
but the mathematical expression of the definition is not, you may be able
to understand the latter by comparing it with the former if you have the
hint that 3 ,, means ‘‘summation over the indicated range of values of x,.”
But if all of this is new, you should first look at one of the books of Ref. 1
at the end of this chapter.

Programs shown in Tables 2-1 (SR-56) and (HP-25) carry out the
operations indicated by the definition. After the general program appro-
priate to your calculator is keyed in, choose f(x) and key into the empty
region the steps which will generate f(x) from x. Use any of the available
storage registers, if required. Then preload two designated storage regis-
ters with the values selected for x; and x,, and push the start button. The
calculator will then evaluate X, f(x;) Ax, initially taking Ax = x, — x;, and
stop with the results displayed. On the next push of the button, it will
reduce Ax by a factor of 3, repeat the calculation, and again stop with the
results displayed.

fx)

X1
x; +Ax
x; +2Ax

3 %'
I
e

<

Figure 2-1. Illustration of the full-increment definition
of a definite integral.
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Example
) =xx,=1x=2

For the SR-56

Clear by keying 2nd CP, key LRN, then enter the program by keying steps
00 through 59. Step 60 is x2? and step 61 is 2nd rtn. Key LRN to return to
the execute mode, and key RST to set to step 00. Load x, and x, by keying
1 STO 1and 2 STO 2. Then push the R/S button. To rerun, push R/S
again.

For the HP-25

Switch to PRGM, clear by keying f PRGM, then key steps 01 through 08 of
the program. Step 09 is g x2 and step 10 is GTO 2 9. Next press SST until
you reach step 28, and then key in the remainder of the program. Switch
to RUN, and set to step 00 by keying f PRGM. Load x, and x, by keying 1
STO 1 and 2 STO 2. Then push the R/S button. To rerun, push R/S again.

For either calculator the results, rounded off to two decimal places by
keying 2nd fix 2 on the SR-56 and f FIX 2 on the HP-25, are:

;f(xi) Ax =1.00, 1.63, 1.97, 2.15, 2.24, 2.29, 2.31, 2.32, 2.33, 2.33

If you are willing to wait, this numerical integration method does con-
verge to the value § predicted by the analytical method. But each result
unavoidably takes twice as much time to obtain as the previous result
because it comes from computing and summing twice as many terms. And
since the results obtained converge to their limit only very gradually, the
net effect is that integration by this method is very time-consuming. ////

If, nevertheless, you want to try different values of x, and/or x,, or to
try different forms for f(x), consult the instructions for making these
changes in running the differentiation programs of the previous chapter.
Except for the obvious modifications required to account for the facts that
x, instead of Ax is to be loaded in a register, and that the steps available
for constructing f(x) are different, these instructions apply exactly here.

It may be worthwhile using this full-increment method to make a
numerical integration of a function that you can also integrate analyti-
cally, for checking purposes. But do not do too much with it before look-
ing at the half-increment method presented in the next section.

2-3. DEFINITE INTEGRALS BY HALF-INCREMENT METHOD

The half-increment method uses the slightly altered definition of a definite
integral illustrated in Fig. 2-2. Comparison with Fig. 2-1 makes it clear
why the half-increment definition provides the basis for a superior
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Figure 2-2. Illustration of the half-increment definition
of a definite integral.

numerical-integration procedure. For a given size of Ax, the area under
the rectangles whose tops straddle the curve is by far the better approxi-

mation to the area under the curve. The mathematical expression of the
altered definition is

flzf(x) dx = limit as Ax approaches 0 of [12 f(xi)Ax]

where x; = x; + Ax/2, x; + 3Ax/2, ..., x, — Ax/2.
Half-increment programs are listed in Tables 2-2 (SR-56) and (HP-25).
They are used in exactly the same way as are the full-increment programs.

For the same example considered before, they yield dramatically faster
convergence.

Example
fX)=x%x,=1,x,=2

[entered and run in the SR-56 or HP-25 exactly as for the full-increment
programs, except for the difference in the steps available for construct-
ing f(x)]. The results are:

;f(xi) Ax =2.25,2.31, 2.33, 2.33

They converge to the same limit as do the results of the full-increment
method applied to this example, and so are also in agreement with the
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predictions of the analytical method of integrating. But the half-increment
method is rapid enough to be of real practical utility, as you will see in the
next section. 11

2-4. INTEGRATION OF THE SOLAR-RADIATION SPECTRUM

The rate of emission of radiation per unit wavelength interval by 1 m?
(square meter) of the surface of the sun is (Ref. 2):

3.74 X 10716
R(N) = A5 (e252 X 10-5Ix 1)

W/m (watts per meter)
where the wavelength X\ is in meters. The integral

7.00x10—7

1= f R(M)dA
3.50x10—7

measures the power radiated in the range of visible wavelengths. Despite

its apparent simplicity the form of R(A) is such that its integral can be

evaluated only by numerical methods.

But this is easy to do. Key into the empty region of the half-increment
program appropriate to your calculator the entries listed in Tables 2-3
(SR-56) and (HP-25). These will construct f(A) with the aid of the con-
stants 2.52 X 107% and 3.74 X 1071¢ that you enter into the designated
storage registers.

For the SR-56

You do this: With the calculator in the execute mode, key GTO 6 7. Then
put it in the learn mode by keying LRN. Enter the subprogram by keying
steps 67 through 89. Key LRN to return to execute mode, and RST to set to
step 00. Load the constants by keying3 . 7 4 EE 1 6 +/— STO 7,and 2
.5 2 EE 6 +y— STO 8.Thenyoukey3 . 5 EE 7 +/— STO 1,and 7 EE
7 +H— STO 2, to load the limits of integration. Push R/S to start.

For the HP-25

You do this: With the calculator switched to RUN, key GTO 1 1. Then
switch to PRGM. Enter the subprogram by keying in steps 12 through 26.
Switch back to RUN, and set to step 00 by keying f PRGM. Load the con-
stants by keying3 . 7 4 EEX 1 6 CHS ST0 6,and2 . 5 2 EEX 6 CHS
STO 7.Thenyoukey 3 . 5 EEX 7 CHS STO 1,and 7 EEX 7 CHS STO
2, to load the limits of integration. It is convenient to then key f SCI 2.
Push R/S to start.

When rounded off to two decimal places, the results are:

I1=272x107%,2.55 x107,2.51 x 107,2.50 X 107, 2.49 X 107,
2.49 x 107 w
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34 NUMERICAL INTEGRATION

EXERCISES

2-1. Run the full- and half-increment programs to evaluate the integral of
f(x) = x2at several different sets of values of x, and x,. For each set, com-
pare the speeds of convergence of the two programs.

2-2. Try other functions such as power laws, sinusoidals, and exponen-
tials in the two programs. For what functions is the discrepancy in speed
of convergence between the two programs most striking? Why?

2-3. Use the half-increment program to test your knowledge of the ana-
lytical expression for the definite integral over the range from some x, to
some x, of a variety of functions. Do this by running them in the pro-
gram and then comparing the results with what you get by using the
calculator to evaluate the analytical expression.

2-4. Run the half-increment program to evaluate the definite integral over
some range for a function for which an analytical expression does not
exist. A particularly important example is the normal probability integral

1 fll —x22
e T 2dx
V2m J_g,

which plays an important role in the error analysis of experimental data.
Using several different values of x;, make your own table of the values of
this integral and compare these with the values that can be found in any
table of mathematical data.

2-5. Using the half-increment program to evaluate the definite integral of
some function from x; = 0 to a number of uniformly spaced values of x,,
make a plot of its definite integral versus x,. Then, using the calculator to
evaluate the function, plot it and compare it with the plot of its definite in-
tegral. Interesting functions to consider are sinx and cosx.

2-6. Explain why in the integration programs, in contrast to the difteren-
tiation programs, you never have to worry about calculator roundoff
error.

2-7. Study the details of each program and explain precisely what hap-
pens in each step.

2-8. There is another numerical integration procedure that converges
rapidly enough to be useful and is simple enough to run on a programma-
ble pocket calculator. It amounts to calculating the total area under a set
of trapezoids whose sides are perpendicular to the x axis and intersect it at
X3, X; + Ax, ..., x5, and whose tops are straight lines joining the intersec-
tions of the sides and the curve f(x). Show that the total area will be:

%Ax + f(x; + Ax)Ax + f(x; + 2Ax)Ax + - - -

+ f(x, — Ax)Ax + %Ax
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Then write a program to carry out this trapezoidal procedure and com-
pare its results with those of the half-increment program for f(x) = x2,
X = 1, Xo = 2.
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CHAPTER

THREE

NUMERICAL SOLUTION OF DIFFERENTIAL
EQUATIONS

3-1. INTRODUCTION

You now come to the heart of this book—solving differential equations
important to elementary physics on a programmable pocket calculator. It
is a lot easier than it sounds. There will be no assumption that you know
anything about analytical methods for solving differential equations, or
even that you know what a differential equation is. The only math
prerequisite is that you know what a derivative is. Specifically, if a par-
ticle moving along a straight line is at position y at time ¢, then you should
know that dy/dt is the time rate of change of y, or its speed, and that
d?y/dt? = d(dyldt)/dt is the time rate of change of its speed dy/dt, or its
acceleration. If you are not familiar with derivatives, look at Chap. 1.

The only physics prerequisite for this chapter and the three that follow

is that you know about Newton’s law of motion:
_,, a4
F=m W
which relates the force F acting on a particle to its mass m and its acceler-
ation d2y/dt2. If this is unfamiliar, consult one of the books in Ref. 1 at the
end of this chapter.

You will start by considering a very simple physical system: A particle
falling without friction, under the constant gravitational force it feels near
the surface of the earth. As applied to this case, the numerical method is
as rudimentary as it can be, and even the analytical method is so trivial
that its predictions can be obtained by a very short argument. This will
allow you to compare the results of the numerical and analytical methods,
thereby gaining confidence in the numerical method and your ability to
handle it.

36



3-2. FULL-INCREMENT SOLUTION FOR FREE FALL 37

Actually, two numerical methods will be developed. You guessed it!
There is a full-increment method and a half-increment method. The latter
is only a little more complicated than the former, but very much more ac-
curate. Furthermore, it is of very wide applicability. At the end of this
chapter it will be applied to a more interesting problem involving fall near
the surface of the earth: An object falling under a constant gravitational
force, but experiencing also a frictional force of strength proportional to
the square of its speed. A concrete example that will be treated is the case
of a skydiver.

In the three chapters that follow, the half-increment method will be
applied to a wide variety of mechanical systems that are important in
classical physics. You will see that the method employed to solve any one
of the differential equations that describe the systems is very much the
same as the method employed to solve the others, despite the fact that the
equations are sufficiently different that their analytical treatments vary
strikingly from one to the other. Furthermore, for some of the important
systems that you will learn to treat numerically, there is no analytical
solution to the differential equations. Herein lies the great advantage of
the numerical method. It almost always works, and in almost exactly the
same way!

Many of the differential equations you will solve in these four chapters
arise in exactly the same mathematical form in fields of classical physics
other than mechanics. If you are interested in electromagnetism, you cer-
tainly will be able to find many useful applications of the physics to be
learned from studying the behavior of the solutions.

In the final chapter the half-increment method will be applied, with an
interesting new twist, to solve Schroedinger’s equation. This equation
plays the role in quantum mechanics that Newton’s law plays in classical
mechanics. The chapter is written so as to make the least possible de-
mands on your prior background in physics.

3-2. FULL-INCREMENT SOLUTION FOR FREE FALL

All the objects studied in classical mechanics obey Newton’s law of mo-
tion, F = m d?y/dt?, which is a differential equation because it contains a
derivative. It is most convenient to write it as

d’y F

@ = m G-D
If you can find the form of the force F, and you know the mass m, then
you can always determine the behavior of the object by using numerical
methods to solve the equation and obtain its position y at closely spaced
values of the time ¢.

When unsupported near the surface of the earth, and neglecting fric-

tion, the only force F a body feels is the gravitational attraction of the
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earth; i.e., the force which makes it have weight. Since experiment shows
its weight is proportional to its mass, you can write

F=gm
where g is some proportionality constant. Substituting into Eq. (3-1) gives

2
r g, (3-2)
where, for simplicity, the downward direction is taken to be the direction
of positive y. See Fig. 3-1. The mass independence of the acceleration
d?y/dt? certainly agrees with experiment. In fact, measurements you may
have seen made, or made yourself, provide the following value of the pro-
portionality constant, which is the gravitational acceleration

g = 9.8 m/s? (meters per second squared) (3-3)

Now to develop a numerical method for solving the differential equa-
tion (3-2). First rewrite it as

ddy _
dr dr &
Then evoke the full-increment definition of a derivative in Sec. 1-2 as

applied to a case in which the quantity being differentiated is dy/dt. It
yields the approximate result

dy dy

ddy _dny, dy
dt dt;, At

where the equality is the more accurate the smaller the value of At, where
the subscript i means the entire term preceding it is evalued at some ini-
tial time, and where the subscript i + 1 means it is evalued at a time which
is later by the amount A¢. Using the previous equation you have

dy _ dy
dti, di
At

the influence of gravitational force F = mg. If there is also a fric-
tional force, it acts in the direction that will oppose the motion of
F=mg the body, or upward in this case.

Tm Figure 3-1. A body of mass m falling vertically downward under
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t y dy/dt
tg=0 Yo dy/dto
t, = At 1 dy/dt,
t, =24t ¥ dy/dt,
Figure 3-2. Scheme for the full-increment
solution of the differential equation for free
fall.

No subscript is needed on the g, of course, since it is a constant. The next
step gives one of the equations basic to the method:

@ 4
dn. = dr TEA (3-4)

The other equation comes directly from the full-increment definition of
a derivative:

dy _ Yie —Yi

dt; At

where the subscripts i and i + 1 have the previous meanings. This gives

d
Vier = yi+ Al (3-5)

Equations (3-4) and (3-5) form the basis of a numerical-solution
method which can be most easily understood by referring to Fig. 3-2. The
scheme indicated in the figure shows how Eqgs. (3-4) and (3-5) can be used
to determine approximately the position y and speed dy/dt of the object at
any of a closely spaced set of subsequent values of the time t, ifits posi-
tion y, and speed dy/dt, are known at an initial value of time ¢, which, for
simplicity, is taken to have the value ¢, = 0. It goes as follows. First, y,
and dy/dt, are used in (3-5) to determine y,. Then dy/dt, and the value of g
are used in (3-4) to determine dy/dt,. This completes the first loop of the
method, which has produced approximate values for y, and dy/dt,. The
second loop is carried out in exactly the same manner and produces ap-
proximate values of y, and dy/dt, from the values of y,, dy/dt,, and g.
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3-2. FULL-INCREMENT SOLUTION FOR FREE FALL 41

The programs in Tables 3-1 (HP-25) and (SR-56) implement this
method. They assume fall from rest, i.e., that dy/dt, = 0, and also that y is
measured from the point where fall begins, i.e., that y, = 0. To run them,
proceed with the following instructions.

For the HP-25

Switch to PRGM, clear by keying f PRGM, then key in steps 01 through 10.
If you want to make a graph of the results for y at uniformly spaced values
of ¢, key R/S in step 11. (When graphing, plot the points directly from the
displayed numbers.) If you only want to watch y, key f PAUSE in that
step. Then key the remainder of the steps in the program. Switch to RUN,
and set the calculator to step 00 by keying f PRGM. Then load At by key-
ing the value you choose, followed by STO 1, and, if you are using the
metric system (SI), load g by keying 9 . 8 STO 2. To start, push R/S. If
step 11 is R/S, the calculator will stop after obtaining each new value of y
and wait for you to restart it by pushing R/S again. Otherwise, it will only
pause for about one second to display y, but can be stopped during a
pause if you push R/S. If you want to see the value of # corresponding to a
displayed y, key RCL 5 while the calculator is stopped and displaying y.
This will not confuse subsequent calculations.

For the SR-56

Clear by keying 2nd CP, key LRN, then key in steps 00 through 18. If you
want to make a graph of the results for y at uniformly spaced values of ¢,
key R/S in step 19 and 2nd NOP in step 20. (When graphing, plot the
points directly from the displayed numbers.) If you only want to watch y,
key 2nd pause in both steps. Then key the remainder of the steps in the
program. Return to execute mode by keying LRN, and set the calculator to
step 00 by keying RST. Then load At by keying the value you choose,
followed by STO 1, and, if you are using the metric system (SI), load g by
keying9 . 8 STO 2. To start, push R/S. If step 19 is R/S, the calculator
will stop after obtaining each new value of y and wait for you to restart it
by pushing R/S again. In this mode you can see ¢ when stopped by keying
RCL 5 before you restart. If step 19 is a “pause” instruction, the calcula-
tor will do so for about one second to display, but can be stopped after a
pause by pushing R/S. If you then want to see ¢, key 2nd EXC 5, inspect
it, then key 2nd EXC 5 again. Neither procedure for seeing ¢ will con-
fuse subsequent calculations.

Before considering an example, it is appropriate to go through an ana-
lytical argument leading to a prediction of the dependence of y on ¢ so that
you will have something to compare to the results of the numerical
method. As advertized, the argument is so trivial that it can be presented
effectively without the aid of equations. Since the acceleration of an ob-
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3-2. FULL-INCREMENT SOLUTION FOR FREE FALL 43

ject falling freely from rest has the constant value g, when the elapsed
time is ¢ its speed has the value gt. And since its speed is increasing
uniformly from zero, the average speed over the time interval ending at ¢
is gt/2. As it is always true that the total distance covered is the average
speed multiplied by the elapsed time, it follows that when the elapsed time
is ¢, the value of y will be (gt/2)¢, or

t2
y=%- (3-6)

Example:
At=0.5,g=9.8

Results obtained from running either calculator program with these val-
ues for At and g are shown by points in Fig. 3-3. Since the value of g used
is in units of meters per second squared, the numbers on the ¢ axis are in
seconds and those on the y axis are in meters. The crosses are obtained by
evaluating the analytical prediction of Eq. (3-6) at a few values of z. Com-
parison shows that the results obtained by the numerical solution of the
differential equation are not too satisfactory. However, they would
improve if a smaller value of At were used, just as the accuracy of the full-
increment approximation for a derivative that the method is based on will
improve as At is reduced. 1

It is not feasible to do too much in the way of reducing A¢, and certainly
not feasible to do a set of runs for successively smaller values of Ar and
watch the results of the full-increment method converge to the analytical
results. They will so converge. But for each At a complete run must be
made, and it is necessarily the case that every reduction in At by a factor
of # increases the time required by a factor of 2, since it doubles the
number of increments used to reach a given value of ¢. It is better, in-
stead, to try to understand the reason for the method’s inaccuracy and
then to use that understanding to suggest a better method.

The inaccuracy arises from the fact that the method is based on the
full-increment definition of a derivative. Look at Fig. 1-1. Note that the
way the definition is used here amounts to taking the value of dy/dt at the
beginning of a time increment Az and employing it to estimate the change
in y that occurs in that increment. For a y-versus-¢ curve that is concave
upwards, as in both that figure and in Fig. 3-3, the result will be to un-
derestimate the increase in y, since the slope of the curve dy/dt, which is
the rate of increase of y, is always smallest at the beginning of the
increment. Furthermore, the error arising from the underestimate is
cumulative from each increment to the next. These considerations
suggest a very simple solution—use the half-increment definition of a
derivative.
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Figure 3-3. Analytical and full-increment numerical results for the distance y traveled in
time ¢ by a body falling freely from rest. With the gravitational acceleration g in meters per
second squared, y is in meters and ¢ in seconds.
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3-3. HALF-INCREMENT SOLUTION FOR FREE FALL

It is not necessary to repeat, with modifications dictated by the difference
between the half- and full-increment definitions of a derivative, the deriva-
tion leading to Eqs. (3-4) and (3-5). If you understand the basis and disad-
vantages of the full-increment method, you will immediately understand
the explanation in the next paragraph of the basis and advantages of the
following equations, and the scheme for using them shown in Fig. 3-4:

dy _dy At
dty, dt, te 2 3-7)
dy dy
Zo=2 4ear -
dtivye  dtiype & (3-8)
d
Yirr = yi + d—fm At (3-9)

The method involves first using dy/dt, and g to calculate the approxi-
mate value of dy/dt,,, the derivative at half a time increment later than the
initial time. This is done by using Eq. (3-7), which is just (3-4) with At
changed to At/2 and the subscripts then suitably modified. Then Eq. (3-9),
which is identical to (3-5) except for subscripts, is used to produce an ap-
proximation to y, from y, and dy/dt,,,. This completes the preliminary
loop of the calculation. The next loop, and all subsequent ones, uses Eq.
(3-8), which is identical to (3-4) except for subscripts, and Eq. (3-9) in the
scheme in exactly the same way that (3-4) and (3-5) are used in the full-
increment scheme of Fig. 3-2. The half-increment method is very much

t y dy/dt
t,=0 Yo dy/dtg
At[2 dy/jlt 12
t; = At »1
3At/2 dy/dty),
t, =24t ¥2 /
Figure 3-4. Scheme for the half-increment
solution of the differential equation for free
fall.
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more accurate than the full-increment one since the change in y in an
increment of ¢ is approximated by using the value of dy/dt at the midpoint
of that increment.

Programs for the half-increment method are listed in Tables 3-2
(HP-25) and (SR-56). They are entered and run in precisely the same way
as the corresponding full-increment programs and they also take
Yo =dyldty =t, = 0.

Example
At=0.5,g=98

The results obtained with these values are shown as points in Fig. 3-5,
along with crosses representing the analytical results for a few values of ¢.
The agreement looks very good indeed. If you run the half-increment pro-
gram for your calculator and compare the actual numbers produced with
those obtained by using the calculator to evaluate the analytical predic-
tion of Eq. (3-6), you will see that the two methods agree perfectly. ////

Before you become too enthusiastic about the half-increment method,
it should be pointed out that it is not typical for it to be perfectly accurate.
The reason why the half-increment method is error free, for any value of
At you happen to use, in the special situation of free fall has to do with a
relation particular to that situation that was used in the argument leading
to Eq. (3-6). As a self-test, see if you can explain the reason.

But it certainly is true that in all situations the half-increment method
of solving differential equations is far superior to the full-increment
method because for a given size of the increment in ¢ (or in whatever in-
dependent variable enters in the equation) the results are much more ac-
curate. To put the matter another way, for a given amount of running
time, the half-increment method produces much more accurate results.
As a consequence, it is the only method that henceforth will be used in
this book.

3-4. EXPLANATION OF PROGRAM OPERATION

The program in either version of Table 3-2 is the most important one in
the book because it can act as a prototype for all differential-equation
solving programs. Although there are some differences in detail, all the
differential equations you will encounter in this book and many, many
more can be solved by equations, a scheme, and a program which are in
spirit just like Egs. (3-7), (3-8), (3-9), Fig. 3-4, and Tables 3-2 (HP-25) or
(SR-56).

Therefore, it is appropriate to give you a detailed explanation of the
operation of both versions of the program, just as is done in Sec. 1-3 for a
program that is important because it is the first to be presented. The ex-
planation will assume that you have read that section.
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Figure 3-5. Analytical and half-increment numerical results for a body falling freely from
rest.
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For the HP-25

Step 01 puts the digit 0 in the X register of the stack so that steps 02, 03,
and 04 can use it to set registers 3, 4, and 5 to zero before the looping
starts. Step 05 recalls the contents of 2, namely g, and puts it in X where it
will be used later. Step 06 puts ¢ in X by recalling it from 5, thereby
displacing g up to the Y register of the stack. To identify the current value
of ¢, the test in step 07 asks the question: Does ¢t = 0?. If the answer is
yes, as it will be in the preliminary loop run through first while dy/dt,,, t,,
and y, are being obtained, the calculator goes to the next step. In that step,
08, the calculator is routed to step 21. As it reaches 21, it still has #in X
and gin Y. Step 21 makes the stack “roll down,” thereby putting g in X.
Steps 22 and 23 produce g/2 in X by first placing the digit 2 in X, which
raises g to Y, and then dividing the contents of Y by the contents of X.
The next step, 24, returns the calculator to step 10, carrying g/2 in X.

Step 10 recalls At from 1, pushing g/2 in the preliminary loop (or g in
the next loop) to Y. In step 11 multiplication produces (g/2) At in the pre-
liminary loop (or g At in the next loop) in X, which is added to the con-
tents of register 4 in step 12. Thus 4 will now contain dy/dt,, in the pre-
liminary loop (or dy/dts, in the next loop). Steps 13 and 14 recall At from
register 1 so that it can be added to 5, thereby making its contents ¢, in the
preliminary loop (or ¢, in the next loop). Step 15 recalls register 4, thereby
placing in X the quantity dy/dt,,, in the preliminary loop (or dy/dt;, in the
next loop), and also pushing the At that had been there up to Y. In steps
16 and 17, multiplication produces Atdy/dt,,, in the preliminary loop (or
Atdy/dt,, in the next loop), which is added to the contents of register 3.
Thus that register now contains y, in the preliminary loop (or y, in the
next loop). Steps 18 and 19 recall the new value of y to the always
displayed X register and make the calculator pause, or stop, so that it can
be inspected.

After the pause, or restart, step 20 makes the calculator return to step
05, where it begins the next loop. When it reaches the test in step 07, the
answer to the question posed will this time (and in all subsequent loops)
be no. So the calculator will skip step 08 and, thereby, not be routed to the
steps at the end of the program that insert the factor of 4 needed only in
the preliminary loop. Thus after the roll down called for in step 09, the
contents of X will be g instead of g/2. From here on, this loop and all
subsequent loops continue as before.

For the SR-56

Step 00 puts the digit 0 in the display register, and steps 01 through 06 use
itto “zero” registers 3, 4, and 5. Step 07 sets to zero a test register. Steps
08 and 09 recall g from 2 into the display register. Steps 10 and 11 store it
inregister 6. In steps 12 and 13, ¢ is recalled from 5 into the display regis-
ter. Step 14 compares ¢ with the value zero earlier stored in the test regis-
ter. Specifically, step 14 asks the question: Is the content of the display
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register equal to the content of the test register? If the answer is yes to this
question, or to any of the other test questions available to the calculator,
then it will go to the step specified by the digits in the two steps immedi-
ately below the test question. So, since the answer will be yes in the
preliminary loop in which dy/dt,,, t,, and y, are being obtained, the
calculator will go to step 42.

That step puts the digit 2 in the display register so that steps 43, 44, and
45 can divide it into the contents of register 6. So register 6 now contains
g/2. Steps 46, 47, and 48 send the calculator back to step 17.

This step, and step 18, recall Az from 1 and put it in the display register.
Step 19 prepares a multiplication. Steps 20 and 21 recall the contents of 6
into the display register. This will be g/2 in the preliminary loop (or g in
the next loop). So when the multiplication is completed by step 22, the
display register will contain Az g/2 in the preliminary loop (or At g in the
next loop). Steps 23 and 24 add this quantity to the contents of register 4,
which will now contain dy/dt,;, in the preliminary loop (or dy/dts, in the
next loop). Steps 25 through 28 recall At from 1 into the display register
and then add it into the contents of 5, which now contains ¢, in the prelimi-
nary loop (or ¢, in the next loop). But At remains in the display register so
it can be prepared for a multiplication by step 29. Steps 30 and 31 recall
the contents of register 4, which will be dy/dt,,, in the preliminary loop (or
dy/dts, in the next loop). The multiplication is completed in step 32,
producing Atdy/dt,,, in the preliminary loop (or Atdy/dts;, in the next
loop). Steps 33 and 34 add that number into register 3, which now con-
tains y, in the preliminary loop (or y, in the next loop). Steps 35 through
38 recall it to the display register, make the calculator pause, or stop, and
unblank the display.

After the pause, or restart, steps 39, 40, and 41 make the calculator re-
turn to step 08 where it begins the next loop. When it reaches step 14, the
answer to the question posed will this time (and in all subsequent loops)
be no. When the answer to this or any other test question is no, the
calculator goes to the third step below the test question. So it will go to
step 17 and, thereby, not be routed to the steps at the end of the program
that insert the factor of 4 needed only in the preliminary loop. Thus when
6 is recalled in step 21, the contents of the display register will be g in-
stead of g/2. From here on, this loop and all subsequent loops continue as
before.

3-5. FALL WITH FRICTION PROPORTIONAL TO (dy/dt)*

Real objects falling through the air experience a frictional-retarding force
due to their air resistance. For small objects moving slowly, experiment
shows that the magnitude of the frictional force is approximately propor-
tional to the first power of their speed, while it is approximately propor-
tional to the square of their speed for large objects moving rapidly (Ref.
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2). An example of the latter, which will be treated in this section by the
half-increment method, is the fall of a skydiver.

It is easy to write the differential equation governing the motion of a
skydiver falling with friction proportional to (dy/dt)?. Starting from New-
ton’s law of motion

d’y F

dar m
and expressing the total force F as the gravitational force mg minus the
frictional force f(dy/dt)?, for the reason indicated in the legend to Fig. 3-1,
the differential equation

LAY
azy M8 f<dt)

e m
emerges immediately. The proportionality constant f governs the overall
strength of the frictional force and depends on the size and shape of the
object and the viscosity of the material it is falling through. It is conve-
nient to rewrite the equation as

d? dy\?
dtzzg_a<dyt) G-10
where a=L (3-11)
m

It is almost as easy to modify the numerical method used previously so
that it can handle this differential equation. The first thing is to subtract
a (dyldt)? from g in Egs. (3-7), (3-8), and (3-9), producing

dy _dy At Yy (ﬂ)z .
dtye ~dts T €72 C=g—a{Yyr) (-12)
dy dy (dy >2
= ==  +CAt C=g—al= 3-13
dtiyye  dti_yp, g« dt )iy ( )
d
Ve =yt At (3-14)

The scheme for using these equations remains as before. The program
must be modified but, as inspection of Tables 3-3 (HP-25) or (SR-56) will
show, all that is involved is the addition of four or five very straight-
forward steps.

For the HP-25

The program is entered and run just as the preceding program, except
that o must be loaded by keying its value followed by STO 3. If you want
to see the value of dy/dt, or of ¢, corresponding to a displayed y, key RCL
5, or RCL 6, while the calculator is stopped to display y.
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For the SR-56

The program is entered and run just as the preceding program, except
that « must be loaded by keying its value followed by STO 3. You can see
the value of dy/dt, or of t, corresponding to a displayed y. Just follow the
RCL 5, or 6, or else the double 2nd EXC 5, or 6, procedure described
before.

It is not at all easy to change the analytical argument so that it will be
able to take square-law friction properly into account. That is why this in-
teresting physical system is not treated or even mentioned in most ele-
mentary physics textbooks. If you look at the results of the analytical
method (Ref. 3)

@2t 4 o—@9)l/2t

y:zln[ - ] (3-15)

you may get some idea of the complexity of the mathematical analysis
required to derive it. This formula is quoted, without proof, because it will
be useful in making a second test of the accuracy of the half-increment
method of solving differential equations.

Example
At=0.5,2=9.8, «=0.003

The results obtained by running either version of the program with these
parameters are plotted as points in Fig. 3-6, which shows both y and
dy/dt. Using the value 9.8 for g means that the units of y are in meters,
dy/dt in meters per second, and ¢ in seconds. Also, it is easy to see from
Eq. (3-10) that the units of o must be reciprocal meters so that o (dy/dt)?
will have the same units as g. The value of a was chosen to represent
the actual situation for a skydiver.

Note how the skydiver’s speed dy/dt builds up rapidly for the first few
seconds of the jump, but soon plateaus at a value around 60 m/s. This ter-
minal speed can be adjusted if desired by extending or retracting arms and
legs to change a. Also note that the distance y the skydiver falls versus the
time ¢ is roughly parabolic (as in Fig. 3-5) while speed is relatively low,
but becomes linear with the approach of terminal speed.

The crosses represent the results of the analytical method for y and can
be obtained by using your calculator to evaluate Eq. (3-15) at selected val-
ues of 7. The numerical results are slightly higher than the analytical ones.
For the conditions of this example, the error in the numerical results is 1.7
percent at t =35 and 1.3 percent at = 15. Their accuracy can be
improved by running with a smaller value of Ar. For instance, with
At = 0.25, the error drops to 0.87 percent at t = 5. 1

The physical reasons for the behavior of the skydiver are apparent. In
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