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PREFACE

In writing about elementary physics at the level of a college course for en-

gineers and scientists, a textbook authoris constantly faced with a serious

difficulty. Although it can be assumed that the intended reader knows oris

learning some calculus, it cannot be assumed that the reader knows any-

thing about differential equations. But, starting with Newton’s law of mo-

tion, many of the most important topics of physics lead to a differential

equation. If the equation is particularly simple, the author may carefully
develop an analytical procedure for solving it and hope that the reader will

be able to understand. Frequently, no attempt will be made to treat the

topic mathematically because the analytical solution of the equation is
just too complicated to be followed by someone who has not yet formally

studied differential equations. Then the author must quote results of im-

portance to physics with little or no mathematicaljustification, to the frus-
tration of both the author and the reader.

A way around this difficulty is to solve the differential equation by a

numerical procedure. Compared to analytical methods, numerical

methods have several significant advantages: (1) they are so simple in

concept that anyone who understands the definition of a derivative will

have no difficulty in immediately understanding how they are used to

solve differential equations (there is nothing more to them than a succes-

sion of multiplications and additions); (2) they are always applied in es-

sentially the same way to all differential equations (whereas the analytical

procedure for solving one equation may be drastically different from that

which must be used to solve another); and (3) they are almost always suc-

cessful (even though many important differential equations cannot be

solved by any analytical procedure).

A principal disadvantage of any numerical procedure for solving differ-

ential equations is that it involves very many repetitious (albeit trivial)

calculations, and so is practical only with the assistance of some sort of

computing facility.
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In the past few years since computers have become widely available on

college campuses, several authors have written material showing how

they can be used to teach mathematical physics, starting with the elemen-
tary course. But, with a few notable exceptions, conventional computers

seem to have had little impact on elementary students. This may be
because even the smallest conventional computer intimidates many

students. To use it the student must spend more time than may be avaii-
able learning a special programming language. If the student does not
type, there may be difficulty in operating the terminal. The computer may

not be available at a convenient location and time. And the student is em-

barrassed about mistakes because they are being made in public on a

machine whose costs are not low.

I believe that the advent of programmable pocket calculators provides

an almost perfect solution to the difficulty. These calculators, which are

actually miniature computers, are very easy to program and operate, inex-

pensive enough to be widely available, yet powerful enough to solve any

of the ordinary differential equations that would be of interest in elemen-

tary physics. This includes almost any linear or nonlinear second-order

equation, and even sets of two coupled second-order equations. Thus

they can be used for topics such as: fall with friction; harmonic and anhar-

monic oscillations; damped, driven oscillations; coupled oscillations; mo-

tion in an attractive or repulsive central force proportional to any power

of the distance; and Schroedinger’s equation for oscillator and finite
square-well potentials. In fact, these are the topics I have chosen to treat

in this short book.

In addition, the first two chapters present numerical procedures for dif-

ferentiating and integrating. The motivation is primarily pedagogical—to
start the development of numerical methods and their implementation on
programmable pocket calculators with topics that the readeris either fa-

miliar with or currently studying by analytical methods. (There is also a

practical motivation for numerical integration.) In the next to last chapter.
a diversion from the main stream of the book is taken to show how

programmable pocket calculators can be used for statistical simulation

and analysis by treating a topic involving entropy and the natural direc-

tion of flow of time.

The book is written so that it will be particularly easy to use with the

HP-25 calculator (produced by Hewlett-Packard, Cupertino, California)

or with the SR-56 calculator (produced by Texas Instruments, Dallas,

Texas). All of the programs appear in two versions—one suitable for

each. At the time of writing, these are the least expensive calculators

which have the necessary capability of conditional branching. The pro-

grams are also useable, with at most minor modifications, on more sophis-

ticated currently available pocket or desk-top programmable calculators.

If a calculator uses algebraic notation, then its programs will follow very

closely the SR-56 versions; if it uses parenthesis-free notation, they will
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be very much like the HP-25 versions. It is reasonable to expect that
inexpensive programmable calculators produced in the future will be
more versatile and faster, so they will certainly be more than capable of

running the programs in this book.
The most ideal situation would be one in which each student has a

programmable pocket calculator to work with in the same conditions of
privacy available when studying a textbook. For many students this has

been or can be realized now, and it does not take much of an extrapola-

tion of current trends to predict that it could soon be universal. Until then,

it would certainly be possible for any educational institution to purchase a
few calculators to be kept in security cradles on a table in an accessible

room. Comparing the ratio of their potential impact on a student’s ability

to learn physics to their price, with the same ratio evaluated for lecture

demonstration or student laboratory equipment, it would seem to be a

very cost-effective educational investment.
The only significant physics prerequisite for this book, except for the

last chapter,is a knowledge of Newton’s law of motion. Although many of

the differential equations that are solved have important applications in

electrical systems, only their applications to mechanical systems are

emphasized. I did this in the expectation that the book could be of use to
people whose primary interest is in applied mathematics, and under the

assumption that mechanical systems would be more familiar to them. I

have tried seriously to make the last chapter, concerning Schroedinger’s

equation, as self-contained as size limitations allow. But a little contact

with elementary quantum physics would certainly make that chapter easi-

er to follow.

As for the mathematical prerequisites, I have tried to make them as

few as possible. A prior or concurrent course in elementary calculus,

while not an absolute requirement, would be desirable. But it definitely is

not necessary to have any background in differential equations to profita-

bly study this book. That does not mean that the numerical methods de-

veloped in it will be uninteresting or unuseful for readers who have con-

siderable familiarity with the analytical methods for solving differential

equations.

The book is written to be used by a person who has had no exposure to

a pocket calculator, programmable or nonprogrammable, or to its instruc-

tion manual. This attribute was tested by such a person, who worked with

the book during its development.

I would like to emphasize that in no way is it my intent to replace the

standard analytical methods used to treat topics of elementary mathemati-
cal physics. What I am trying to do is to take advantage of technological

developments which make it possible to supplement these methods, and

thereby enhance the ability of students to learn the subject. Many

students find numerical methods easier to understand than analytical ones

because they are simpler and deal with actual numbers. I believe that all
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students will benefit very much from studying both methods, since under-

standing each method will help them to understand the other better. And
if they continue on in engineering or science they will, of course, repeat-

edly come back to numerical methods which are so widely used in profes-

sional work.

My deepest appreciation goes to my wife, Lila, who went way beyond

the call of duty in testing the book by working with it during its develop-

ment. I would also like to thank Alice Macnow and C. Robert Zappa of

McGraw-Hill for their assistance in the publication of this book and, in
particular, for their willingness to publish it despite its unusual character.

Robert M. Eisberg
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CHAPTER

ONE

NUMERICAL DIFFERENTIATION
 

1-1. INTRODUCTION

This chapter will introduce you to the application of numerical methods to

topics of mathematics that are central to the study of physics. It is likely

that you already have studied, or soon will study, many of these same

topics in math and physics courses by using the more conventional analyt-

ical methods. The intent is not to try to replace the analytical methods by
the numerical ones, but instead to use the latter to supplement the former.
Although numerical methods have tremendous advantages of great sim-

plicity and universal applicability, the two approaches are really not in

competition; analytical methods are better suited to doing certain things

and numerical methods to doing others.

Some subjects that are of interest to elementary physics because of

their importance must be treated numerically because analytical methods

are not universally applicable. But it is more commonly the case that, al-
though successful analytical treatments of an important physical system

are available, they are much too complicated to be used at the elementary
level. In these cases the great simplicity of the numerical treatments

allows them to be used instead. You will see many examples of this in

later chapters. Another situation that frequently arises in elementary

mathematical physics is one in which a topic can be handled fruitfully by

both methods. In these cases your study of each method can assist your

study of the other because the insight you gain into one will enhance your

insight into the other.

A good example is differentiation, a topic that certainly plays a vital
role in elementary mathematics and physics. This chapter contains two

programs, both of which make your programmable calculator automati-
cally evaluate the derivative of any function f(x) you might be concerned

with, at any value x = x, that you want. The first program follows directly

from the definition of a derivative, and the familiar figure used to illustrate

1
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it, that you will find in any elementary calculus or calculus-level physics

textbook. It simply carries out the process that you have probably read

and heard so much about: Evaluate f(x) at x, and also at the nearby point

x, + Ax; subtract the former from the latter to calculate Af, the change in

f; divide by Ax to obtain the average rate of change Af/Ax; then let Ax

become smaller and smaller to find the limit as Ax — 0 of Af/Ax. The pro-
gram does not just talk about this fundamentally important procedure,it

actually doesit. Using the program will give you concrete, hands-on expe-

rience with the concept of Af/Ax approaching its limit.

The second program involves a small change in thefirst and is based on

a slight variation in the standard definition of a derivative that you may

not have seen. In using it you will find that, for the same f(x) and x,, the

value of Af/Ax approaches the same limit as is obtained with the first pro-

gram. But it approaches the limit much more rapidly. This will introduce
you to a consideration of great practical importance that you will see

emphasized repeatedly in later chapters, i.e., rapidity of convergence.

These programs, particularly the second one, provide a practical
method of evaluating derivatives numerically. If you are now in the proc-

ess of learning to differentiate by the conventional analytical method, you

can use the second program for checking your mastery of the method (and

the accuracy of your homework). First, choose a form forf(x) and a value

of x,, find the analytical form of the derivative in the conventional way,
and evaluate it at x; by using the calculator manually. Then, insert f(x)

and x, into the program, run it, and watch the results displayed converge

to the limit. Finally, compare to see if your work in finding the analytical

form for the derivative, and also your evaluation ofit at x,, were correct.

Even if you are way beyond this stage in your mathematical education,

you will enjoy doing it a few times.

Chapter 2 gives a completely parallel treatment of numerical integra-

tion. Its programs can also be used effectively by beginners for self-testing
and by experts for amusement. There is, however, more to numerical in-

tegration than that. If an elementary function (i.e., algebraic and/or tran-

scendental) has a derivative, it can always be evaluated by analytical

methods. But the same is not true for the integral. As you will see, there

are important elementary functions for which the integral can be

evaluated only by numerical methods such as are provided by the pro-

grams, particularly the second one.

A major purpose of this chapter is to acquaint you with the program-

mable pocket calculator. The chapteris written under the assumption that

you have had no prior contact with it or its instruction manual. As a
consequence, the pace is very deliberate. You can speed things up by

skipping the explanations ofits operation and programs to the extent ap-
propriate to your familiarity with the calculator, but be sure to read the

other material as it will be referred to subsequently.
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1-2. DERIVATIVES BY FULL-INCREMENT METHOD

The derivative df(x)/dx of the function f(x) at x = x, is defined as:

df(x)] s [flx, + Ax) —flxl)]
[———dx = limit as Ax approaches 0 ofA

The definition is illustrated in Fig. 1-1 and is described in words in the
preceding section. The derivative of f(x) at x, is nothing more than its
rate of change at that point, and is measured by the slope of the straight
line that is tangent to the curve there. However, if you have never been

exposed to this definition before, it would be wise to look at one of the
books in Ref. 1. The concept of a derivative will be used throughout al-
most all of this book, butit will not actually be necessary for you to know

how to obtain derivatives analytically. All you will need to know is what a

derivative is, and you will certainly learn that in working through this
chapter.

Programs carrying out the procedure implied by the definition are
listed in Table 1-1 (HP-25) for the Hewlett-Packard HP-25 calculator and

others using parenthesis-free logic, and, separately, in Table 1-1 (SR-56)

for the Texas Instruments SR-56 and others using algebraic logic.

The two programs differ in detail, but are exactly the same in what they

do. After the appropriate general program is keyed into your calculator,

choose f(x) and key into an ample blank place in the program the steps
which will start from x and generate the chosen form off(x) using,if nec-

essary, some of the storage registers not used by the program. Then, in-

/f(x)

  
xl X1+Ax

Figure 1-1. Illustration of the full-increment definition

of a derivative.
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sert whatever values you choose of x;, and of the first Ax to be used, in the

designated storage registers and push the button that starts the calculator.

It will evaluate [f(x; + Ax) —f(x,)]/Ax and stop with the result dis-
played. Inspect the result, writing it down if you wish, and then push the

start button again. The calculator will reduce Ax by a factor of 3, repeat
the calculation, and then stop with the new result displayed. This cycle

continues every time you restart the calculator. The remainder of this

section shows you, by example, how to enter and use the program for

your calculator, but does not explain the operations performed by the

calculator when it is running the program. Such an explanation is given

in the next section.

Example

f(x) = x3, x;, =2, initial Ax =1

For the HP-25

Switch to PRGM and clear by keying f PRGM. Then key steps 01 through
04 of the program. To do this, simply follow in sequence the key entries

listed in the third column of Table 1-1 (HP-25), noting that frequently

there are two or even three key entries per step. To be specific, key RCL 1.

This completes step 01, and the display shows 01 24 01. The first two

numbers are the step identification. The second pair identify the key entry

RCL by specifying its position on the keyboard—RCL is in row 2 from the
top and column 4 from the left. The third pair of numbers identify the key

for the digit 1. The display makes it easy to check your program keying

for errors. Next, key RCL 2 and note that the display shows 02 24 02.

The third step is obtained by keying + , which produces the display 03

51. Then key STO 3, and note that the display shows 04 23 03. If you
are careful in keying,it is usually unnecessary to watch the display while

doing it. If you feel you have made a mistake in a step preceding the one
currently displayed, each press of BST will make the display go back one

step. An error in, say, step 02 can be corrected by pressing BST once

more so that step 01 is displayed, and then correctly keying step 02.

Pressing SST will allow you to go forward in single steps to where you

were initially.

Now you come to steps 05 through 31, in which there is room to use

the calculator’s built-in functions and the unused storage registers to con-

struct almost any form of f(x) that you would like. For f(x) = x3, this is

done by keying 3 for step 05, f y* for step 06, and GTO 3 2 for step 07.
The latter will cause the calculator to bypass the unused steps when a pro-

gram is being run. Next, press the SST key repeatedly until the pair of
numbers on the left side of the display read 31, and then continue entering

the program by keying STO 4, RCL 3, etc. When you finish, switch to
RUN, and set the program to step 00 by keying f PRGM. Load x,, and the
initial Ax, by keying 2 STO 1,and 1 STO 2. Now you can run the pro-
gram by pushing the R/S button. To run it again, push R/S again, etc.



1-2. DERIVATIVES BY FULL-INCREMENT METHOD §

For the SR-56

Clear the program by keying 2nd CP. Then prepare the calculator to
learn the program by keying LRN. The display will show 00 00. The first
pair of numbers tells you it is ready to receive step 00, and the second

pair shows that nothing is currently in that step. Now follow in sequence

the key entries listed in the third column of Table 1-1 (SR-56). To be

specific, first key RCL. The display will change to 01 00, indicating that
you should now enter step 01. Do so by keying the digit 1. Next, key +.

Any time you feel you have made a mistake, press 2nd bst as many
times as required to review the previously entered steps by means of a

code identifying the keys that were entered. If you do it once after hav-

ing keyed the + for step 02, you should see 02 84 on the display. The

second pair of numbers is the code for the location of the + key, which is
in row 8 from the top and column 4 from the left. If it is incorrect,
reenter the proper key and the error will be corrected. You can backstep
farther by continued use of 2nd bst. To return to where you were, press

S$ST to single step forward. Now key through step 06. Then push 2nd
bst and you will see 06 57. The code indicates that the operation in step

06 is 2nd subr;it is the second function of the key labeled ( , which is

the one shown above the key. The last digit in the code for a second
function starts with 6 for the first column on the left. So 57 means row 5

from the top, second function on column 2 from the left. Before entering

step 07, press SST once to get back to the proper location for that step.
Then continue entering the program through step 33.

Starting at step 34, there is room to use the calculator’s built-in func-

tions and all the unused storage registers to make a subroutine for con-

structing almost any form of f(x) you would like. For f(x) = x3, this is

done by keying y* for step 34, 3 for step 35, and =for step 36. Always end

the subroutine by keying 2nd rtn. Now press LRN again to get out of the
learn mode and press RST to set the calculator to step 00. Load x;, and the

initial value of Ax, by keying 2 STO 1,and 1 STO 2. You can now run

the program by pressing the R/S. To run again, press R/S again, etc.

This ends the instructions for running the example on the HP-25 or
the SR-56.

For either calculator the results, rounded off to three decimal places by

keying f FIX 3 on the HP-25 and 2nd fix 3 on the SR-56, are:

AflAx = 19.000, 15.250, 13.562, 12.766, 12.379, 12.188, 12.094,
12.047, 12.023, 12.012, 12.006, 12.003, 12.001, 12.001,
12.000, 12.000, 12.000

The results have converged, although not very rapidly, to the value

12.000. This is, of course, in agreement with the analytical method which

predicts a value of 12. If you know how to evaluate derivatives analyti-

cally, verify this. /]
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The sequence of results was terminated when, as seen with three deci-
mal places, the repeated values 12.000 clearly indicated that convergence

had been achieved. But what happens if you nevertheless continue to

cycle the calculator? Try it. You will find that before long the results

begin to fluctuate about the value of 12.000. If continued, the fluctuations

grow until the results become meaningless. This behavior has nothing to

do with derivatives, except that their definition involves the difference be-

tween two numbers. It actually arises from roundoff error in the calcula-

tor, and if you think about what happens for a minute you should be able

to devise an explanation if you understand what a derivative is and what

the calculator is doing. In practice the fluctuations are not a significant

limitation to the utility of the numerical method of obtaining derivatives,

since the value of the limit can be seen with adequate accuracy before the

fluctuations set in. This is particularly true for the method described in

Sec. 1-4, which converges more rapidly.

If you want to try different values of x; and/or the initial Ax, still using

f(x) = x3, do the following:

For the HP-25

Key f PRGM to reset to step 00; key x; STO 1, initial Ax STO 2; then push

R/S.

For the SR-56

Key RST to reset to step 00; key x, STO 1, initial Ax STO 2; then push
R/S.

To change f(x) to a different form, proceed with the following instruc-

tions.

For the HP-2§

While switched to RUN, key GTO 0 4, switch to PRGM, then key the steps
required to construct f(x) from x, assuming the result of step 04 is to

display x. Steps 05 through 31 are available, and also registers 0, 6, and 7.

If you use fewersteps, end by keying GTO 3 2. Then switch to RUN, and

reset to step 00 by keying f PRGM. Next key x; STO 1, Ax STO 2. Start by

pushing R/S.
To be specific, if you want to change to f(x) = x*, where n is any inte-

ger from 0 to 9, just key in n instead of 3 in step 05. If n requires more

than one key entry, the remaining steps used to generate f(x) will have to

be keyed in again because more steps will be used to enter n.

As another example, for f(x) = 2x + 3cosx, key in the following: Step

05is STO 0, 06is 2,07 isx ,08 isRCL 0,09is f cos, 10is 3, 111is X, 12
is+, 13is GTO 3 2. After switching to RUN, and keying f PRGM, be sure

to key g RAD to make the calculator operate with radians.
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To see a listing of the key entries used to generate a more complicated

function, see Sec. 2-4.

For the SR-56
While still in the program execution mode, key GTO 3 4, key LRN, then
key the steps required to constructf(x) from x, assuming the result of step

33 is to put x in the display register. The steps through 98 are available,

and also registers 0 and 4 through 9. The last step of the subroutine must

be 2nd rtn. Then key LRN, and reset to step 00 by keying RST. Next, key

x; STO 1, Ax STQ 2. Start by pushing R/S.
To be specific, if you want to change to f(x) = x", where n is any inte-

ger from 0 to 9, just key n instead of 3 in step 35. If n requires more than

one key entry, the remaining steps used to generate f(x) will have to be

keyed again because more steps will be used to enter n.

As another example, for f(x) = 2x + 3cosx, key in the following: Step

34is ST0,35is0,36is X, 37is 2,38is+,39is 3, 40is X, 41is RCL, 42 is

0, 43 is cos, 44 is =, 45 is 2nd rtn. After pushing LRN, and then RST, be

sure to key 2nd RAD to make the calculator operate with radians.

To see a listing of the key entries used to generate a more complicated

function, see Sec. 2-4.

1-3. EXPLANATION OF PROGRAM OPERATION

For both versions of the program, the columns to the right of the column

listing the key entries show what is happening when the program is being

run. You can ignore them now and throughout this book if you wish. The

major part of the Exercises at the end of each chapter does not require a

knowledge on your part of exactly how the programs operate and, as you

have just seen, the programs can be keyed into the calculator by simply

following the instructions in the third column. However, the operation of

the programs is easy enough to understand for it to be likely that in the

process of entering and using a few of them, you will learn what they are

doing without formally studying programming, provided you are given a

few clues at the beginning. If this interests you, read one of the following

explanations.

Although the program explained is the first one in this book, for the

HP-25 it is almost as sophisticated as any of them. So if you can under-

tand its operation with a little effort, you surely will be able to understand

how all of them operate. Then you will be able to obtain the even greater

satisfaction of writing your own variations on a program, or your own

original programs. Help can be found in the calculator instruction manual,

of course, and also in Sec. 3-4 where there is another detailed explanation

of the operation of a program. For the SR-56, the first program does not

require the use of a test routine that is needed in the two programs of

Chap. 2, and in Exercise 1-6. So if you are using that calculator, it might
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be appropriate to read the pertinent parts of Sec. 3-4 after you read this

section.

For the HP-25

In step 01 the contents of register 1, which will be x,, are recalled and

placed in the lowest, or X register, of four operating registers called the

stack. The entry in the column labeled X shows what is in that register

after the operation for that step has been carried out, and similarly for the

other columns and their associated stack registers. In step 02, register 2 is

recalled and its contents Ax are placed in X. One property of the stack is
that when a numberis inserted in its X register, any number already there

will be displaced up to the next higher, or Y register. And if something

was already in Y (not so here), it would be displaced up to Z, etc. In step

03 the contents of X are added to the contents of Y. The results of this

operation, or of any other arithmetic operation carried outonthe X and Y

registers, are put in the X register. Furthermore,if there was something in

the Z register initially (not so here), it would be displaced down and end

up in the Y register, and similarly for T. Thus step 03 produces x; + Ax in

X. In step 04 this is stored in register 3, so that it will initially contain

x; = x; + Ax.

Steps 05 through 31 are chosen by the user to construct f(x;) from the

x; present in X at step 04. In the example, f(x) = x3; step 05 is 3; step 06

isf y*; and step 07 is GTO 3 2. The first of these steps puts the digit 3 in
X, displacing x; to Y. The next step takes the contents of Y to the power

specified by the contents of X, thus producing x;3. (The prefix key fis used

to specify which of the three labels, y* 3 ABS, associated with the same
key is the one intended.) Just as in addition, the results of this arithmetic

operation are put into X. Step 07 makes the calculator skip directly to

step 32 where the contents of X, namely f(x;), are stored in register 4.
Now it gets interesting. Step 33 puts the contents of 3, which is the

value of x;, into X. [f(x;) is also displaced to Y, but it will no longer be

listed since when it is subsequently used it will be obtained not from the

stack but by recalling 4.] In step 34, x, is put in X, thereby displacing x; to

Y, by recalling register 1. In the next step a test is carried out comparing
the contents of the X and Y registers for the purpose of identifying the

value of x;. The reason why it is necessary is that the routine for generat-

ing f(x;) from x; must be used twice—the first time with x; = x;, + Ax, and

the second time with x; = x;. At this stage of the explanation, you are at

the point where x; = x; + Ax, so the contents ofY is a larger number than

the contents of X. The test in step 35 asks the question: Is x = y, where x

and y mean the contents of the X and Y registers? At this stage the an-

swer will be no. If the answer to this or any of the other tests available on

the calculatoris no, then in executing a program it will automatically skip
the next step. Thus this time it will go to step 37. In step 37, register 4 is

recalled, putting f(x; + Ax) into X. Note that the value of x; has been
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specified since the test identifies what it is. Step 38 stores f(x; + Ax) in
register 5, and step 39 recalls register 1 to put x; in X.

Step 40 makes the calculator return to step 04, with x; in X. So step 04

causes x; to be stored in 3 this time. Then things proceed as before
through step 34, except that now x; = x, so that the contents of register 4

are f(x,). As a consequence, when the test of step 35 is made the answer

to the question will be yes. If the answer to any of the test questions is yes,

then the calculator does not skip a step. Thus it will go to step 36 which, in

turn, will cause it to go to step 41. In step 41 it recalls the contents of reg-

ister 4, thereby placing f(x,) in X. Step 42 causes the number in X to be

subtracted from the number in register 5; thus 5 will now contain

f(x; + Ax) — f(x,) = Af. Steps 43 and 44 obtain Ax from register 2 and

then divide it into the contents of register 5. Now register 5 will contain

Af/Ax. To make this result visible to you, step 45 recalls 5 to the X regis-

ter and step 46 stops the calculator. The display always shows whatis in

X, but it can be seen, of course, only when the calculator is stopped or at

least is pausing.

When you push R/S to actuate the calculator again, it will go to steps 47
and 48 that cause it to reduce by a factor of4 the value of Ax stored in reg-

ister 2. Then it goes to step 49, which causes it to go to step 01 where it

immediatley begins to execute a new loop of the calculation with the

reduced Ax. '

For the SR-56

In steps 00 and 01 the contents of register 1, which will be x,, are

recalled to a register that is capable of being displayed. The x; in the

Comments column shows the contents of that display register after the

operation for step 01 has been carried out. Comments are also used on
occasion to describe what is happening in words, e.g., the *“start loop”

listed for step 00. Step 02 prepares to make an addition. In the process,

x, is removed from the display register and stored elsewhere pending the

completion of the addition. Steps 03 and 04 recall the contents of regis-
ter 2, Ax, to the display register. The addition is completed in step 05

and the result, x; + Ax, ends up in the display register. All of the other

arithmetic operations performed on two numbers are handled in essen-

tially the same way as was this addition. At the = instruction the

calculator carries out all pending operations, first performing multiplica-

tion and division and then performing addition and subtraction. (If an
operation involving one number, e.g., taking the sine of the number, is

also pending, it will be carried out before the two number operations.)

Steps 06, 07, and 08 transfer execution of the program to the subroutine

for calculating f(x, + Ax) from x; + Ax, which starts in step 34.

Steps 34, 35, 36,.. ., plus any of the registers not employed in the main

program, are available to the user for constructing the function from its
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argument, which will be in the display register upon arrival at step 34. In
the example, f(x) = x3; step 34 is y*, step 35 is 3, and step 36 is =. The
first of these prepares the calculator to take an as yet unspecified power of

x; + Ax; the second specifies the power to be 3; and the third carries out

the operation, leavingf(x; + Ax) = (x; + Ax)3 in the display register. Step

37 is the mandatory 2nd rtn, which automatically makes execution return

to the step immediately following the last one executed in the main pro-

gram. In this case the calculator will go back to step 09, carrying

f(x; + Ax) in the display register.

Steps 09 and 10 store that quantity in register 3. Steps 11 and 12 recall

register 1, which is x,, and put it in the display register. Steps 13, 14, and

15 carry it back in the display register to the same subroutine. Now the

subroutine calculates f(x,) and returns with that quantity in the display

register to the step after the one that led to the subroutine this time. Thus

f(x,) is in the register for step 16. That step instructs the calculator to per-

form on f(x,) the inverse of the operation called for in steps 17 and 18.
The net effect is to subtract f(x,) from the contents of register 3, leaving

that register with contents Af. Steps 19 and 20 recall Ax from register 2 to

the display register, where steps 21, 22, and 23 then divide it into the Afin

register 3. As a result, 3 contains Af/Ax at the end of step 23. Steps 24

and 25 recall 3 to the display register. Step 26 halts the program and

unblanks the display register so that Af/Ax can be seen.

After an R/S is keyed in manually to restart, step 27 puts the digit 2 in
the display register, and then steps 28, 29, and 30 divide it into the con-

tents of register 3. Steps 31, 32, and 33 take the program back to step 00,

where it immediately proceeds to start a new loop. This loop goes exactly

as the first one, except that it uses the new reduced value of Ax.

1-4. DERIVATIVES BY HALF-INCREMENT METHOD

A minor alteration in the definition of a derivative will make a major im-

provement in the rapidity of convergence of the sequence of numbers

produced in numerical differentiation. The altered definition is

[m [flx1 + Ax/2) — flx, — Ax/2)]
 

dx Ax

and is illustrated in Fig. 1-2. In this so-called half-increment definition,

the derivative involves evaluating f(x) at two points symmetrically dis-
posed about the point x, where the value of the derivative is required. The

definition is completely equivalent to the standard definition, which may

be called the full-increment definition, in that both lead to the same limit

as Ax — 0. And neither definition is better or worse conceptually. But the

half-increment definition produces a much superior numerical method,

from a practical point of view, because the results it yields converge to

their limit much more rapidly.

] = limit as Ax approaches 0 of
1
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Sx)

 
 

x,— Ax/2 X3 x; + Ax/2

Figure 1-2. Illustration of the half-increment definition

of a derivative.

You can see why by inspecting Figs. 1-1 and 1-2. In both, the slope of

the straight line, tangent to the f(x) curve at x,, is a measure of the deriva-

tive at that point. The slope of the straight line connecting the value of

f(x) at the extreme ends of the interval of total width Ax is the approxi-

mation to the derivative generated by the definition for the value of Ax

shown in the figure. Clearly, for a given Ax, the altered definition gives a

much better approximation. Hence the more rapid convergence.

The alterations in the programs for each of the two calculators are

equally minor, as inspecting Tables 1-2 will show you. They are used ex-

actly as before and, for the same example, yield the following results.

Example

f(x) =x3, x, =2, initial Ax =1

[entered and run in the HP-25 or SR-56 exactly as before, except for

the difference in the steps available for constructing f(x)]. The results to

three decimal places are:

AflAx = 12.250, 12.063 or 12.062, 12.016, 12.004, 12.001,
12,000, 12,000, 12.000

(12.063 will be obtained on the HP-25 and 12.062 on the SR-56; the

variation arises from the difference in the way the calculators round off

to three decimal places.) /]

If you compare these with the results obtained for the same f(x), x,, and

initial Ax using the full-increment method, you will see why the half-

increment method is the preferred one to use. And you will see in the next
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chapters that this conclusion applies even more strongly to numerical in-

tegration and to the numerical solution of differential equations.

EXERCISES

1-1. Run the full-increment and half-increment programs to evaluate the

derivative off(x) = x2 at several values of x,. For each of these, compare

the speeds of convergence of the two programs.

1-2. Try other functions such as power laws, sinusoidals, and exponen-

tials in the two programs. For what functions is the discrepancy in speed

of convergence between the two programs most striking? Why?

1-3. Use the half-increment program to test your knowledge of the ana-

lytical expression for the derivative of a variety of functions and combi-

nations of functions. For each case run the program at some value of x,

and then compare the results with what you get by using the calculator

to evaluate the analytical expression at that value of x,.

1-4. Using the half-increment program to evaluate the derivative of some
function at a number of uniformly spaced values of x,, make a plot ofits

derivative versus x;. Then use the calculator to evaluate the function at

the same values of x; and plot them. Compare the plots and comment on

them. Interesting functions to consider are sinx and cosx.

1-5. Study the details of the half-increment program and explain precisely

what happens in each step.

1-6. Write a modification to the half-increment program that will cause it

to stop and display the final result when Ax becomes less than some

preloaded value of 6. How should & be chosen? Is it better to stop when Af

becomes sufficiently small or, perhaps, when the change in Af/Ax from

one loop to the next becomes sufficiently small? Write program modifica-

tions to try these.

1-7. Write a half-increment program to differentiate a vector, the vector
being the velocity of a particle moving uniformly around a circle, and the

derivative taken with respect to time. Compare the results with the ana-

lytical expression for the centripetal acceleration of the particle.
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CHAPTER

TWO
NUMERICAL INTEGRATION
 

2-1. INTRODUCTION

In this chapter you will again start with a program which is based direct-

ly on a common textbook definition—in this case, of an integral. Then
you will again find that a slight variation in the definition, and a corre-
spondingly small change in the program, produces a very superior

numerical method. The second method of evaluating definite integrals,

called the half-increment method, is superior because it converges to a

result of useable accuracy very much more rapidly than does the first, or

full-increment method. This advantage is much more important than it is

in the case of numerical differentiation. Even the slower differentiation

program is quite fast, while the slower integration is really too slow to be
practical.

Are any of these programs of practical value? The principal justifica-

tion for numerical differentiation is pedagogical—it can help you master

the techniques and concepts involved in differentiation by analytical

methods. There is the same justification for numerical integration. But

there is an additional justification for studying numerical integration

which is actually much more significant, i.e., there are many important el-

ementary functions which cannot be integrated analytically. For these the

only available methods of integration are numerical ones.

An example which you will see worked out explicitly at the end ofthis

chapter is the integral over a certain wavelength range of the function

which specifies the spectrum of radiation emitted by the sun. When a solar

physicist (or an engineer working with the design of a solar-heating plant)
needs to know how much power is emitted in a particular range of the

spectrum, there is no choice but to employ numerical methods to evaluate

the integral.

19
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2-2. DEFINITE INTEGRALS BY FULL-INCREMENT METHOD

Inspect Fig. 2-1. Have you seen a figure before that looks something like

it? If so, then you probably are familiar with the so-called definite inte-
T

gral f(x)dx of the function f(x) from x = x; to x = x,. The quantity is
T2

equal to the area under the curve of f(x) between these two points, and

is defined in terms of the area under the rectangles as

f- f(x)dx = limit as Ax approaches 0 of [; f(xy) Ax]
I, i

where x; = x;, x;, + Ax, x; + 2Ax, ..., x, — Ax. If the figure is familiar,

but the mathematical expression of the definition is not, you may be able

to understand the latter by comparing it with the former if you have the
hint that £ , means ‘“summation over the indicated range of values of x;.”

But if all of this is new, you should first look at one of the books of Ref. 1

at the end of this chapter.

Programs shown in Tables 2-1 (SR-56) and (HP-25) carry out the

operations indicated by the definition. After the general program appro-

priate to your calculator is keyed in, choose f(x) and key into the empty
region the steps which will generate f(x) from x. Use any of the available

storage registers, if required. Then preload two designated storage regis-

ters with the values selected for x; and x,, and push the start button. The

calculator will then evaluate 2 ,, f(x;) Ax, initially taking Ax =x, —x,, and

stop with the results displayed. On the next push of the button, it will

reduce Ax by a factor of 3, repeat the calculation, and again stop with the
results displayed.

fx)

 

 

 

 

 

      
 

X1

x
;
+
A
x

x;
+
2
4
x 4 '

.
<

Figure 2-1. Illustration of the full-increment definition

of a definite integral.
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Example

fX)=x3x;=1,x,=2

For the SR-56

Clear by keying 2nd CP, key LRN, then enter the program by keying steps
00 through 59. Step 60 is x2 and step 61 is 2nd rtn. Key LRN to return to
the execute mode, and key RST to set to step 00. Load x, and x, by keying
1 STO 1 and 2 STO 2. Then push the R/S button. To rerun, push R/S
again.

For the HP-25

Switch to PRGM, clear by keying f PRGM, then key steps 01 through 08 of
the program. Step 09 is g x2 and step 10 is GTO 2 9. Next press SST until
you reach step 28, and then key in the remainder of the program. Switch
to RUN, and set to step 00 by keying f PRGM. Load x, and x, by keying 1
STO 1 and 2 STO 2. Then push the R/S button. To rerun, push R/S again.

For either calculator the results, rounded off to two decimal places by
keying 2nd fix 2 on the SR-56 and f FIX 2 on the HP-25, are:

Ef(xi) Ax =1.00, 1.63, 1.97, 2.15, 2.24, 2.29, 2.31, 2.32, 2.33, 2.33
T

If you are willing to wait, this numerical integration method does con-

verge to the value § predicted by the analytical method. But each result

unavoidably takes twice as much time to obtain as the previous result

because it comes from computing and summing twice as many terms. And

since the results obtained converge to their limit only very gradually, the

net effect is that integration by this method is very time-consuming. ////

If, nevertheless, you want to try different values of x, and/or x,, or to

try different forms for f(x), consult the instructions for making these
changes in running the differentiation programs of the previous chapter.
Except for the obvious modifications required to account for the facts that
x, instead of Ax is to be loaded in a register, and that the steps available
for constructing f(x) are different, these instructions apply exactly here.

It may be worthwhile using this full-increment method to make a

numerical integration of a function that you can also integrate analyti-

cally, for checking purposes. But do not do too much with it before look-

ing at the half-increment method presented in the next section.

2-3. DEFINITE INTEGRALS BY HALF-INCREMENT METHOD

The half-increment method uses the slightly altered definition of a definite

integral illustrated in Fig. 2-2. Comparison with Fig. 2-1 makes it clear

why the half-increment definition provides the basis for a superior
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/ f(x)
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Figure 2-2. Illustration of the half-increment definition
of a definite integral.

numerical-integration procedure. For a given size of Ax, the area under

the rectangles whose tops straddle the curve is by far the better approxi-

mation to the area under the curve. The mathematical expression of the

altered definition is

fo f(x)dx = limit as Ax approaches 0 of [; f(x,-)Ax]

where x; = x; + Ax/2, x; + 3Ax/2, ..., x, — Ax/2.

Half-increment programs are listed in Tables 2-2 (SR-56) and (HP-25).

They are used in exactly the same way as are the full-increment programs.

For the same example considered before, they yield dramatically faster

convergence.

Example

fxX)=x% x;=1,x,=2

[entered and run in the SR-56 or HP-25 exactly as for the full-increment

programs, except for the difference in the steps available for construct-

ing f(x)]. The results are:

Ef(x,-)Ax =2.25, 2.31, 2.33, 2.33
T

They converge to the same limit as do the results of the full-increment

method applied to this example, and so are also in agreement with the
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predictions of the analytical method of integrating. But the half-increment
method is rapid enough to be of real practical utility, as you will see in the
next section. 11

2-4. INTEGRATION OF THE SOLAR-RADIATION SPECTRUM

The rate of emission of radiation per unit wavelength interval by 1 m?

(square meter) of the surface of the sun is (Ref. 2):

3.74 X 10716
R(\) = N (25 XA) W/m (watts per meter) 

where the wavelength A is in meters. The integral

7.00X10—7

1= f R(N)d\
3.50xX10—7

measures the powerradiated in the range of visible wavelengths. Despite
its apparent simplicity the form of R(A) is such that its integral can be

evaluated only by numerical methods.

But this is easy to do. Key into the empty region of the half-increment

program appropriate to your calculator the entries listed in Tables 2-3

(SR-56) and (HP-25). These will construct f(A) with the aid of the con-

stants 2.52 X 107 and 3.74 X 107'¢ that you enter into the designated
storage registers.

For the SR-56

You do this: With the calculator in the execute mode, key GTO 6 7. Then
put it in the learn mode by keying LRN. Enter the subprogram by keying

steps 67 through 89. Key LRN to return to execute mode, and RST to set to

step 00. Load the constants by keying3 . 7 4 EE 1 6 +/— STO 7,and 2

.5 2 EE 6 +/— STO 8. Thenyoukey3 . 5 EE 7 +/— STO 1,and 7 EE
7 +— STO 2, to load the limits of integration. Push R/S to start.

For the HP-25

You do this: With the calculator switched to RUN, key GTO 1 1. Then

switch to PRGM. Enter the subprogram by keying in steps 12 through 26.

Switch back to RUN, and set to step 00 by keying f PRGM. Load the con-
stants by keying3 . 7 4 EEX 1 6 CHS STO0 6,and2 . 5 2 EEX 6 CHS

STO 7.Thenyoukey 3 . 5 EEX 7 CHS STO 1,and 7 EEX 7 CHS STO

2, to load the limits of integration. It is convenient to then key f SCI 2.

Push R/S to start.

When rounded off to two decimal places, the results are:

I1=2.72%x107,2.55 x 107,2.51 x 107, 2.50 X 107, 2.49 X 107,
2.49 X 107 W
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EXERCISES

2-1. Run the full- and half-increment programs to evaluate the integral of

f(x) = x?at several different sets of values of x; and x,. For each set, com-

pare the speeds of convergence of the two programs.

2-2. Try other functions such as power laws, sinusoidals, and exponen-
tials in the two programs. For what functions is the discrepancy in speed

of convergence between the two programs most striking? Why?

2-3. Use the half-increment program to test your knowledge of the ana-
lytical expression for the definite integral over the range from some x, to

some x, of a variety of functions. Do this by running them in the pro-

gram and then comparing the results with what you get by using the

calculator to evaluate the analytical expression.

2-4. Run the half-increment program to evaluate the definite integral over
some range for a function for which an analytical expression does not

exist. A particularly important example is the normal probability integral

1 1 2

—-x,

 

Van

which plays an important role in the error analysis of experimental data.

Using several different values of x,, make your own table of the values of

this integral and compare these with the values that can be found in any

table of mathematical data.

2-5. Using the half-increment program to evaluate the definite integral of
some function from x; = 0 to a number of uniformly spaced values of x,,

make a plot of its definite integral versus x,. Then, using the calculator to

evaluate the function, plot it and compare it with the plot ofits definite in-

tegral. Interesting functions to consider are sinx and cosx.

2-6. Explain why in the integration programs, in contrast to the differen-

tiation programs, you never have to worry about calculator roundoff

error.

2-7. Study the details of each program and explain precisely what hap-

pens in each step.

2-8. There is another numerical integration procedure that converges

rapidly enough to be useful and is simple enough to run on a programma-

ble pocket calculator. It amounts to calculating the total area under a set

of trapezoids whose sides are perpendicular to the x axis and intersect it at
Xy, X; + Ax, ..., X, and whose tops are straight lines joining the intersec-

tions of the sides and the curve f(x). Show that the total area will be:

@Ax +f(x; + Ax)Ax + f(x; + 2Ax)Ax + - - -

+ f(x, — Ax)Ax +%Ax
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Then write a program to carry out this trapezoidal procedure and com-

pare its results with those of the half-increment program for f(x) = x2,
Xy = 1, Xo = 2.
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CHAPTER

THREE

NUMERICAL SOLUTION OF DIFFERENTIAL
EQUATIONS

 

3-1. INTRODUCTION

You now come to the heart of this book—solving differential equations
important to elementary physics on a programmable pocket calculator. It

is a lot easier than it sounds. There will be no assumption that you know

anything about analytical methods for solving differential equations, or

even that you know what a differential equation is. The only math

prerequisite is that you know what a derivative is. Specifically, if a par-

ticle moving along a straight line is at position y at time ¢, then you should
know that dy/dt is the time rate of change of y, or its speed, and that

d?y/dt? = d(dy/dt)/dt is the time rate of change of its speed dy/dt, or its
acceleration. If you are not familiar with derivatives, look at Chap. 1.

The only physics prerequisite for this chapter and the three that follow

is that you know about Newton’s law of motion:

d?y
F=m ar° 

which relates the force F acting on a particle to its mass m and its acceler-

ation d2y/dt2. Ifthis is unfamiliar, consult one of the books in Ref. 1 at the

end ofthis chapter.

You will start by considering a very simple physical system: A particle

falling without friction, under the constant gravitational force it feels near

the surface of the earth. As applied to this case, the numerical method is

as rudimentary as it can be, and even the analytical method is so trivial

that its predictions can be obtained by a very short argument. This will

allow you to compare the results of the numerical and analytical methods,
thereby gaining confidence in the numerical method and your ability to

handle it.

36
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Actually, two numerical methods will be developed. You guessed it!

There is a full-increment method and a half-increment method. The latter

is only a little more complicated than the former, but very much more ac-

curate. Furthermore, it is of very wide applicability. At the end of this

chapter it will be applied to a more interesting problem involving fall near

the surface of the earth: An object falling under a constant gravitational

force, but experiencing also a frictional force of strength proportional to

the square of its speed. A concrete example that will be treated is the case
of a skydiver.

In the three chapters that follow, the half-increment method will be

applied to a wide variety of mechanical systems that are important in

classical physics. You will see that the method employed to solve any one
of the differential equations that describe the systems is very much the

same as the method employed to solve the others, despite the fact that the

equations are sufficiently different that their analytical treatments vary

strikingly from one to the other. Furthermore, for some of the important
systems that you will learn to treat numerically, there is no analytical

solution to the differential equations. Herein lies the great advantage of
the numerical method. It almost always works, and in almost exactly the

same way!

Many of the differential equations you will solve in these four chapters

arise in exactly the same mathematical form in fields of classical physics

other than mechanics. If you are interested in electromagnetism, you cer-

tainly will be able to find many useful applications of the physics to be

learned from studying the behavior of the solutions.

In the final chapter the half-increment method will be applied, with an
interesting new twist, to solve Schroedinger’s equation. This equation

plays the role in quantum mechanics that Newton’s law plays in classical

mechanics. The chapter is written so as to make the least possible de-

mands on your prior background in physics.

3-2. FULL-INCREMENT SOLUTION FOR FREE FALL

All the objects studied in classical mechanics obey Newton’s law of mo-

tion, F = m d?y/dt?, which is a differential equation because it contains a
derivative. It is most convenient to write it as

d’y F
"m (-1

If you can find the form of the force F, and you know the mass m, then

you can always determine the behavior of the object by using numerical

methods to solve the equation and obtain its position y at closely spaced

values of the time ¢.

When unsupported near the surface of the earth, and neglecting fric-

tion, the only force F a body feels is the gravitational attraction of the
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earth; i.e., the force which makes it have weight. Since experiment shows

its weight is proportional to its mass, you can write

F=gm

where g is some proportionality constant. Substituting into Eq. (3-1) gives

d? m
@= 62

where, for simplicity, the downward direction is taken to be the direction

of positive y. See Fig. 3-1. The mass independence of the acceleration

d?*y/dt? certainly agrees with experiment. In fact, measurements you may

have seen made, or made yourself, provide the following value of the pro-
portionality constant, which is the gravitational acceleration

g = 9.8 m/s? (meters per second squared) (3-3)

Now to develop a numerical method for solving the differential equa-

tion (3-2). First rewrite it as

ddy _
dr dr 8

Then evoke the full-increment definition of a derivative in Sec. 1-2 as

applied to a case in which the quantity being differentiated is dy/dt. It

yields the approximate result

dy dy

ddy _du, di
dt dt; At
 

where the equality is the more accurate the smaller the value of At, where

the subscript i means the entire term preceding it is evalued at some ini-
tial time, and where the subscript i + 1 means it is evalued at a time which

is later by the amount At. Using the previous equation you have

dy dy
21'7,-“ dt;

At

 

~

the influence of gravitational force F = mg. If there is also a fric-

tional force,it acts in the direction that will oppose the motion of

F=mg the body, or upward in this case.

Tm Figure 3-1. A body of mass m falling vertically downward under
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t y dy/dt

ty =0 Yo dy/dt0

Y

t; = At Y1 dy/dt,

ty, =2At ¥, dy/dt,

Figure 3-2. Scheme for the full-increment
solution of the differential equation for free

fall.

No subscript is needed on the g, of course, since it is a constant. The next

step gives one of the equations basic to the method:

dy _dyd. = aTeA (3-4)

The other equation comes directly from the full-increment definition of

a derivative:

fl ~ Yi+1 — Vi

dt; At

where the subscripts i and i + 1 have the previous meanings. This gives

d
Yit1 = Yi +d_ZAt (3-5)

Equations (3-4) and (3-5) form the basis of a numerical-solution

method which can be most easily understood by referring to Fig. 3-2. The

scheme indicated in the figure shows how Eqgs. (3-4) and (3-5) can be used

to determine approximately the position y and speed dy/dt of the object at

any of a closely spaced set of subsequent values of the time t, if its posi-

tion y, and speed dy/dt, are known at an initial value of time ¢, which, for

simplicity, is taken to have the value ¢, = 0. It goes as follows. First, y,

and dy/dt, are used in (3-5) to determine y,. Then dy/dt, and the value ofg

are used in (3-4) to determine dy/dt,. This completes the first loop of the

method, which has produced approximate values for y, and dy/dt,. The

second loop is carried out in exactly the same manner and produces ap-

proximate values of y, and dy/dt, from the values of y,, dy/dt,, and g.
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The programs in Tables 3-1 (HP-25) and (SR-56) implement this

method. They assume fall from rest, i.e., that dy/dt, = 0, and also that y is

measured from the point where fall begins, i.e., that y, = 0. To run them,

proceed with the following instructions.

For the HP-25

Switch to PRGM,clear by keying f PRGM, then key in steps 01 through 10.
If you want to make a graph of the results for y at uniformly spaced values

of t, key R/S in step 11. (When graphing, plot the points directly from the

displayed numbers.) If you only want to watch y, key f PAUSE in that

step. Then key the remainder of the steps in the program. Switch to RUN,
and set the calculator to step 00 by keying f PRGM. Then load At by key-

ing the value you choose, followed by STO 1, and, if you are using the

metric system (SI), load g by keying 9 . 8 STO 2. To start, push R/S. If
step 11 is R/S, the calculator will stop after obtaining each new value of y
and wait for you to restart it by pushing R/S again. Otherwise, it will only

pause for about one second to display y, but can be stopped during a
pause if you push R/S. If you want to see the value of ¢ corresponding to a
displayed y, key RCL 5 while the calculator is stopped and displaying y.
This will not confuse subsequent calculations.

For the SR-56

Clear by keying 2nd CP, key LRN, then key in steps 00 through 18. If you
want to make a graph of the results for y at uniformly spaced values of ¢,

key R/S in step 19 and 2nd NOP in step 20. (When graphing, plot the
points directly from the displayed numbers.) If you only want to watch y,

key 2nd pause in both steps. Then key the remainder of the steps in the
program. Return to execute mode by keying LRN, and set the calculator to

step 00 by keying RST. Then load Ar by keying the value you choose,

followed by STO 1, and, if you are using the metric system (SI), load g by
keying9 . 8 STO 2. To start, push R/S. If step 19 is R/S, the calculator
will stop after obtaining each new value of y and wait for you to restart it

by pushing R/S again. In this mode you can see ¢t when stopped by keying

RCL 5 before you restart. If step 19 is a “pause’ instruction, the calcula-

tor will do so for about one second to display, but can be stopped after a

pause by pushing R/S. If you then want to see ¢, key 2nd EXC 5, inspect
it, then key 2nd EXC 5 again. Neither procedure for seeing ¢ will con-
fuse subsequent calculations.

Before considering an example,it is appropriate to go through an ana-

lytical argument leading to a prediction of the dependence of y on ¢ so that

you will have something to compare to the results of the numerical

method. As advertized, the argumentis so trivial that it can be presented

effectively without the aid of equations. Since the acceleration of an ob-
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ject falling freely from rest has the constant value g, when the elapsed
time is ¢ its speed has the value gt. And since its speed is increasing
uniformly from zero, the average speed over the time interval ending at ¢
is gt/2. As it is always true that the total distance covered is the average

speed multiplied by the elapsed time,it follows that when the elapsed time

is ¢, the value of y will be (g¢/2)¢, or

t2

y="%- (3-6)

Example:

At=0.5,g=9.8

Results obtained from running either calculator program with these val-

ues for At and g are shown by points in Fig. 3-3. Since the value ofg used

is in units of meters per second squared, the numbers on the ¢ axis are in

seconds and those on the y axis are in meters. The crosses are obtained by

evaluating the analytical prediction of Eq. (3-6) at a few values of t. Com-

parison shows that the results obtained by the numerical solution of the

differential equation are not too satisfactory. However, they would

improve if a smaller value of At were used,just as the accuracy of the full-

increment approximation for a derivative that the method is based on will

improve as At is reduced. /1

It is not feasible to do too much in the way of reducing A¢, and certainly

not feasible to do a set of runs for successively smaller values of Ar and

watch the results of the full-increment method converge to the analytical

results. They will so converge. But for each At a complete run must be

made, and it is necessarily the case that every reduction in At by a factor

of 3 increases the time required by a factor of 2, since it doubles the

number of increments used to reach a given value of ¢. It is better, in-
stead, to try to understand the reason for the method’s inaccuracy and

then to use that understanding to suggest a better method.

The inaccuracy arises from the fact that the method is based on the

full-increment definition of a derivative. Look at Fig. 1-1. Note that the
way the definition is used here amounts to taking the value of dy/dt at the
beginning of a time increment At and employing it to estimate the change

in y that occurs in that increment. For a y-versus-¢ curve that is concave

upwards, as in both that figure and in Fig. 3-3, the result will be to un-

derestimate the increase in y, since the slope of the curve dy/dt, which is

the rate of increase of y, is always smallest at the beginning of the

increment. Furthermore, the error arising from the underestimate is

cumulative from each increment to the next. These considerations

suggest a very simple solution—use the half-increment definition of a

derivative.
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Figure 3-3. Analytical and full-increment numerical results for the distance y traveled in

time ¢ by a body falling freely from rest. With the gravitational acceleration g in meters per

second squared, y is in meters and ¢ in seconds.
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3-3. HALF-INCREMENT SOLUTION FOR FREE FALL

It is not necessary to repeat, with modifications dictated by the difference
between the half- and full-increment definitions of a derivative, the deriva-
tion leading to Egs. (3-4) and (3-5). If you understand the basis and disad-

vantages of the full-increment method, you will immediately understand

the explanation in the next paragraph of the basis and advantages of the

following equations, and the scheme for using them shown in Fig. 3-4:

dy dy At

dry, "1, 82 7
dy dy
—= = —= + At -
dtivie  dtioyg & (3-8)

d
Yit1 = )i +‘Ji‘;+1/2 At (3-9)

The method involvesfirst using dy/dt, and g to calculate the approxi-

mate value of dy/dt,,,, the derivative at half a time incrementlater than the

initial time. This is done by using Eq. (3-7), which is just (3-4) with At

changed to A¢/2 and the subscripts then suitably modified. Then Eq. (3-9),
which is identical to (3-5) except for subscripts, is used to produce an ap-
proximation to y, from y, and dy/dt,,. This completes the preliminary
loop of the calculation. The next loop, and all subsequent ones, uses Eq.

(3-8), which is identical to (3-4) except for subscripts, and Eq. (3-9) in the
scheme in exactly the same way that (3-4) and (3-5) are used in the full-

increment scheme of Fig. 3-2. The half-increment method is very much

 

 

t y dy/dt

t, =0 Yo dy/dt

At[2 dyldt

'

tl = At y]

3At/2 dyldty,

() = 2a¢
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l

Figure 3-4. Scheme for the half-increment

solution of the differential equation for free

J fall. 
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more accurate than the full-increment one since the change in y in an

increment of ¢ is approximated by using the value of dy/dt at the midpoint
of that increment.

Programs for the half-increment method are listed in Tables 3-2
(HP-25) and (SR-56). They are entered and run in precisely the same way

as the corresponding full-increment programs and they also take

Yo =dyldty =1, = 0.

Example

At=0.5,g=9.8

The results obtained with these values are shown as points in Fig. 3-5,

along with crosses representing the analytical results for a few values of ¢.

The agreement looks very good indeed. If you run the half-increment pro-

gram for your calculator and compare the actual numbers produced with

those obtained by using the calculator to evaluate the analytical predic-

tion of Eq. (3-6), you will see that the two methods agree perfectly. ////

Before you become too enthusiastic about the half-increment method,

it should be pointed out thatit is not typical forit to be perfectly accurate.

The reason why the half-increment method is error free, for any value of

At you happen to use, in the special situation of free fall has to do with a
relation particular to that situation that was used in the argument leading
to Eq. (3-6). As a self-test, see if you can explain the reason.

But it certainly is true that in all situations the half-increment method

of solving differential equations is far superior to the full-increment

method because for a given size of the increment in ¢ (or in whatever in-

dependent variable enters in the equation) the results are much more ac-

curate. To put the matter another way, for a given amount of running

time, the half-increment method produces much more accurate results.

As a consequence, it is the only method that henceforth will be used in

this book.

3-4. EXPLANATION OF PROGRAM OPERATION

The program in either version of Table 3-2 is the most important one in
the book because it can act as a prototype for all differential-equation

solving programs. Although there are some differences in detail, all the

differential equations you will encounter in this book and many, many

more can be solved by equations, a scheme, and a program which are in

spirit just like Egs. (3-7), (3-8), (3-9), Fig. 3-4, and Tables 3-2 (HP-25) or

(SR-56).
Therefore, it is appropriate to give you a detailed explanation of the

operation of both versions of the program, just as is done in Sec. 1-3 for a

program that is important because it is the first to be presented. The ex-

planation will assume that you have read that section.
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Figure 3-5. Analytical and half-increment numerical results for a body falling freely from
rest.
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For the HP-25

Step 01 puts the digit 0 in the X register of the stack so that steps 02, 03,
and 04 can use it to set registers 3, 4, and 5 to zero before the looping

starts. Step 05 recalls the contents of 2, namely g, and puts it in X where it

will be used later. Step 06 puts 7 in X by recalling it from 5, thereby

displacing g up to the Y register of the stack. To identify the current value

of 1, the test in step 07 asks the question: Does ¢t = 0?. If the answer is

yes, as it will be in the preliminary loop run through first while dy/dt,,, t,,
and y, are being obtained, the calculator goes to the next step. In that step,

08, the calculator is routed to step 21. As it reaches 21, it still has 7in X

and g in Y. Step 21 makes the stack “‘roll down,” thereby putting g in X.

Steps 22 and 23 produce g/2 in X by first placing the digit 2 in X, which

raises g to Y, and then dividing the contents of Y by the contents of X.

The next step, 24, returns the calculator to step 10, carrying g/2 in X.

Step 10 recalls At from 1, pushing g/2 in the preliminary loop (or g in

the next loop) to Y. In step 11 multiplication produces (g/2) At in the pre-

liminary loop (or g At in the next loop) in X, which is added to the con-

tents of register 4 in step 12. Thus 4 will now contain dy/dt,,, in the pre-
liminary loop (or dy/dts, in the next loop). Steps 13 and 14 recall At from

register 1 so that it can be added to 5, thereby making its contents 7,in the

preliminary loop (or ¢, in the next loop). Step 15 recalls register 4, thereby

placing in X the quantity dy/dt,,, in the preliminary loop (or dy/dts, in the

next loop), and also pushing the At that had been there up to Y. In steps

16 and 17, multiplication produces Atdy/dt,,, in the preliminary loop (or

Atdyldt,, in the next loop), which is added to the contents of register 3.

Thus that register now contains y, in the preliminary loop (or y, in the

next loop). Steps 18 and 19 recall the new value of y to the always

displayed X register and make the calculator pause, or stop, so that it can

be inspected.

After the pause, or restart, step 20 makes the calculator return to step

05, where it begins the next loop. When it reaches the test in step 07, the

answer to the question posed will this time (and in all subsequent loops)

be no. So the calculator will skip step 08 and, thereby, not be routed to the

steps at the end of the program that insert the factor of # needed only in

the preliminary loop. Thus after the roll down called for in step 09, the

contents of X will be g instead of g/2. From here on, this loop and all

subsequent loops continue as before.

For the SR-56

Step 00 puts the digit O in the display register, and steps 01 through 06 use

it to “zero” registers 3, 4, and 5. Step 07 sets to zero a test register. Steps

08 and 09 recall g from 2 into the display register. Steps 10 and 11 store it

in register 6. In steps 12 and 13, ¢ is recalled from § into the display regis-

ter. Step 14 compares ¢ with the value zero earlier stored in the test regis-
ter. Specifically, step 14 asks the question: Is the content of the display
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register equal to the content of the test register? If the answeris yes to this

question, or to any of the other test questions available to the calculator,

then it will go to the step specified by the digits in the two steps immedi-
ately below the test question. So, since the answer will be yes in the

preliminary loop in which dy/dt,,,, t,, and y, are being obtained, the

calculator will go to step 42.

That step puts the digit 2 in the display register so that steps 43, 44, and

45 can divide it into the contents of register 6. So register 6 now contains

g/2. Steps 46, 47, and 48 send the calculator back to step 17.
This step, and step 18, recall Az from 1 and putit in the display register.

Step 19 prepares a multiplication. Steps 20 and 21 recall the contents of 6
into the display register. This will be g/2 in the preliminary loop (or g in

the next loop). So when the multiplication is completed by step 22, the

display register will contain At g/2 in the preliminary loop (or At g in the

next loop). Steps 23 and 24 add this quantity to the contents of register 4,

which will now contain dy/dt,, in the preliminary loop (or dy/dt;, in the

next loop). Steps 25 through 28 recall At from 1 into the display register

and then add it into the contents of 5, which now contains ¢, in the prelimi-
nary loop (or 7, in the next loop). But Az remains in the display register so
it can be prepared for a multiplication by step 29. Steps 30 and 31 recall

the contents of register 4, which will be dy/dt,,, in the preliminary loop (or

dy/dt;, in the next loop). The multiplication is completed in step 32,

producing Atdy/dt,,, in the preliminary loop (or Atdy/dts, in the next
loop). Steps 33 and 34 add that number into register 3, which now con-

tains y, in the preliminary loop (or y, in the next loop). Steps 35 through

38 recall it to the display register, make the calculator pause, or stop, and

unblank the display.
After the pause, or restart, steps 39, 40, and 41 make the calculator re-

turn to step 08 where it begins the next loop. When it reaches step 14, the

answer to the question posed will this time (and in all subsequent loops)

be no. When the answer to this or any other test question is no, the

calculator goes to the third step below the test question. So it will go to

step 17 and, thereby, not be routed to the steps at the end of the program

that insert the factor of 3 needed only in the preliminary loop. Thus when

6 is recalled in step 21, the contents of the display register will be g in-

stead ofg/2. From here on,this loop and all subsequent loops continue as

before.

3-5. FALL WITH FRICTION PROPORTIONAL TO (dy/dt)?

Real objects falling through the air experience a frictional-retarding force

due to their air resistance. For small objects moving slowly, experiment

shows that the magnitude of the frictional force is approximately propor-

tional to the first power of their speed, while it is approximately propor-

tional to the square of their speed for large objects moving rapidly (Ref.
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2). An example of the latter, which will be treated in this section by the

half-increment method, is the fall of a skydiver.

It is easy to write the differential equation governing the motion of a

skydiverfalling with friction proportional to (dy/dt)?. Starting from New-

ton’s law of motion

d’y F
e m

and expressing the total force F as the gravitational force mg minus the

frictional force f(dy/dt)?, for the reason indicated in the legend to Fig. 3-1,

the differential equation

_ o4y \?
dzy_mg f(dt)

dre m

emerges immediately. The proportionality constant fgoverns the overall

strength of the frictional force and depends on the size and shape of the

object and the viscosity of the material it is falling through. It is conve-

nient to rewrite the equation as

 d? dy \?

where a= L (3-11)
m

It is almost as easy to modify the numerical method used previously so

that it can handle this differential equation. The first thing is to subtract
a (dyldt)? from g in Egs. (3-7), (3-8), and (3-9), producing

dy _ dy At Yy (flf )
dty,  dt, +C5 C=g—alYyr) (3-12)

dy dy <dy>2
dtiyre  dti_y, &7 \ar i-1/2 ( )

Yit1 = )i +Q At (3-14)
dtisys

The scheme for using these equations remains as before. The program

must be modified but, as inspection of Tables 3-3 (HP-25) or (SR-56) will

show, all that is involved is the addition of four or five very straight-

forward steps.

For the HP-25

The program is entered and run just as the preceding program, except

that « must be loaded by keying its value followed by STO 3. If you want

to see the value of dy/dt, or of t, corresponding to a displayed y, key RCL

5, or RCL 6, while the calculator is stopped to display y.
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For the SR-56

The program is entered and run just as the preceding program, except

that « must be loaded by keying its value followed by STO 3. You can see
the value of dy/dt, or of t, corresponding to a displayed y. Just follow the

RCL 5, or 6, or else the double 2nd EXC 5, or 6, procedure described

before.

It is not at all easy to change the analytical argument so that it will be

able to take square-law friction properly into account. That is why this in-

teresting physical system is not treated or even mentioned in most ele-

mentary physics textbooks. If you look at the results of the analytical
method (Ref. 3)

e(ay)1/2t + e_(ag)1/2t

y=—1In [———2—————] (3-15)

you may get some idea of the complexity of the mathematical analysis

required to derive it. This formula is quoted, without proof, because it will

be useful in making a second test of the accuracy of the half-increment
method of solving differential equations.

Example

At=0.5, g =9.8, «a=0.003

The results obtained by running either version of the program with these

parameters are plotted as points in Fig. 3-6, which shows both y and

dy/dt. Using the value 9.8 for g means that the units of y are in meters,

dy/dt in meters per second, and ¢ in seconds. Also, it is easy to see from

Eq. (3-10) that the units of o must be reciprocal meters so that o (dy/dt)?

will have the same units as g. The value of o was chosen to represent

the actual situation for a skydiver.
Note how the skydiver’s speed dy/dt builds up rapidly for the first few

seconds of the jump, but soon plateaus at a value around 60 m/s. This ter-

minal speed can be adjusted if desired by extending or retracting arms and
legs to change a. Also note that the distance y the skydiverfalls versus the

time ¢ is roughly parabolic (as in Fig. 3-5) while speed is relatively low,

but becomes linear with the approach of terminal speed.

The crosses represent the results of the analytical method for y and can

be obtained by using your calculator to evaluate Eq. (3-15) at selected val-

ues of 7. The numerical results are slightly higher than the analytical ones.

For the conditions of this example, the error in the numerical results is 1.7
percent at t =35 and 1.3 percent at ¢t = 15. Their accuracy can be

improved by running with a smaller value of At. For instance, with

At = 0.25, the error drops to 0.87 percent at t = 5. 11

The physical reasons for the behavior of the skydiver are apparent. In



T
a
b
l
e

3-
3.

(
H
P
-
2
5
)

Fa
ll

w
i
t
h

fr
ic

ti
on

p
r
o
p
o
r
t
i
o
n
a
l

t
o

(d
y/

dt
)*
 

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

0
1

2
3

4
5

6
7

—
At

g
o

y
dy

/d
t

t
—

p
r
e
l
o
a
d
e
d

P
r
o
g
r
a
m

 

S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

~

Y
Z

T
C
o
m
m
e
n
t
s
 0

1
0
0

0

0
2

2
3

04
|

S
T
O

4
4
z
e
r
o
e
d

0
3

2
3

05
|

S
T
O

5
5
z
e
r
o
e
d

0
4

2
3

06
|

S
T
O

6
6
z
e
r
o
e
d

02
2

0
3

3

0
5

5

0
2

St
ar
t
lo
op

C oo o &

0
5

2
4

R
C
L

R
C
L

o

0
7

2
4

R
C
L

d
y
l
d
t

0
8

15
g

x*
(d

yl
dt

)?

0
9

61
X

a(
dy

/d
r)

?

10
4
1

-
C

C
=

g
-
a
(
d
y
/
d
t
)
?

11
2
4

05
|

R
C
L

5
t

12
15

7
1

g
x
=
0

t

So

S I 3 %o 0 0

Te
st

¢
fo

r
ro

ut
in

g
to

pu
t

1/
2
in

p
r
e
l
i
m
i
n
a
r
y
l
o
o
p

13
13

26
|

G
T
O

2
6

t
14

22
R
)

C
15

24
01
|

R
C
L

1
At

16
61

X
C

At
17

23
51

05
|

S
T
O
+

5
C

At
S
n
o
w

dy
/d

t,
,,

in
pr
el
im
.
lo

op
S
n
o
w

dy
/d
ts
,

in
ne

xt
lo
op

QO C
Wi
ll

be
in

C/
2

in
pr

el
im

.
lo
op

 
 

  
  

 



57

18 19 20 21 22 23 24 25 26 27 28 29
 23 23

24
01

51
06

24
05 61

51
04

24
04

14
74

(o
r
74

)

13
05 22 02 71

13
15

 R
C
L

1

S
T
O
+

6

R
C
L

5

X

S
T
O
+
4

R
C
L

4

f
P
A
U
S
E

(o
r
R/
S)

G
T
O

0
5

R
} 2

G
T
O

1
5

  
  

 6
n
o
w

¢,
in

pr
el

im
.

lo
op

6
n
o
w

¢,
in

n
e
x
t
l
o
o
p

4
n
o
w

y,
in

pr
el

im
.
l
o
o
p

4
n
o
w

y,
in

n
e
x
t
l
o
o
p

T
o
n
e
w

l
o
o
p

T
o

co
nt

in
ue

lo
op
 



58

Ta
bl

e
3-
3.

(S
R-

56
)

Fa
ll

wi
th

fr
ic

ti
on

pr
op
or
ti
on
al

to
(d
y/
dt
)?
 

2
3

8
a

pr
el
oa
de
d

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

4 y

5
dy
/d
t

P
r
o
g
r
a
m

 

S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

C
o
m
m
e
n
t
s

S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

C
o
m
m
e
n
t
s
 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
 00 33 04 33 05 33 06 56 34 02 74 34 03 64 34 05 43 94

 0
0

S
T
O
4

4
z
e
r
o
e
d

S
T
O
5

S
z
e
r
o
e
d

S
T
O

6
6
z
e
r
o
e
d

2
n
d

C
P

Te
st

re
gi

st
er

ze
ro
ed

R
C
L

St
ar
t
lo
op

2
g

R
C
L

3
o

x

R
C
L

dy
ld
t

(d
yl

dt
)?

C
=

g
—

a(
dy

ld
t)

*

n =
o

 

31 32 33 34 35 36 37 38 39 40 41 4    4335 05 35 34
 S

U
M

5

R
C
L

1

S
U
M

S
U
M

R
C
L

 5
n
o
w

dy
/d

t,
,,

in
pr
el
im
.

lo
op

,

d
y
/
d
t
g
/
z

i
n
n
e
x
t

At 6
n
o
w

¢,
in

pr
el

im
.

lo
op

,
¢,

in

ne
xt

d
y
l
d
t
,
,
in

pr
el

im
.
lo

op
,
d
y
/
d
t
;
,

in
n
e
x
t

At
dy

/d
t,

;,
in

pr
el

im
.

lo
op

,

A
t
d
y
/
d
t
s
,

in
n
e
x
t

4
n
o
w

y,
in

pr
el

im
.
lo

op
,
y,

in

ne
xt



59

18 19 20 21 22 23 24 25 26 27 28 29 30

 33 07 34 37 05 34 01 34 07 94

 S
T
O

R
C
L

2
n
d
x
=
t

 7
n
o
w
C

t Te
st

¢
fo

r
ro
ut
in
g

in

p
r
e
l
i
m
i
n
a
r
y
l
o
o
p

C
R

in
pr
el
im
.

l
o
o
p
,

C
in

n
e
x
t
l
o
o
p

A
t
C
/
2

in
pr
el
im
.

lo
op
,

A
r
C

in
n
e
x
t
l
o
o
p

  45 47 48 49 50 51 52 53 54 55 56

 5
9

(o
r
4
1
)

5
9

(o
r
4
6
)

2
2 08 02 12 30 07 22 02 05

 4

2
n
d
P
A
U
S
E

(o
r
R/

S)
2
n
d
P
A
U
S
E

(o
r
2
n
d
N
O
P
)

G
T
O

0 8 2

I
N
V

2
n
d
P
R
O
D

7

G
T
O

2 5

y,
in

pr
el

im
.
lo

op
,
y,

in
ne

xt

T
o
n
e
w

l
o
o
p

2 7
n
o
w

C
/
2

T
o

c
o
n
t
i
n
u
e
l
o
o
p

 
 



60 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

1000

900

800

700

600

500

400+

300

200

100 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ¢

Figure 3-6. Analytical and half-increment numerical results for a body falling from rest with

friction proportional to the square of its speed.

the first second or two of falling from rest, the speed is so low that the
resulting air resistance is small and the only significant force in action is

the gravitational force. Acceleration at the beginning of the jump is almost

equal to g, and the distance traveled increases in approximate proportion

to the square of the elapsed time, as with free fall. But with continued ac-
celeration, speed builds up rapidly and the frictional force ofair resistance

builds up even more rapidly, since it is proportional to the square of the

speed. Since this force opposes the gravitational force, the net force act-

ing on the skydiver becomes smaller and smaller. The effect is to reduce
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acceleration, or rate of change of speed. The skydiver’s speed stops
changing when it reaches just that value for which the frictional force ex-
actly cancels the gravitational force.

It is interesting to go through a similar analysis of the mathematical

reasons for the behavior of the solution to the differential equation for the

skydiver. The term d2y/dt? on the left side of Eq. (3-10) is, at any value of
t, a measure of the curvature of a curve traced out by a plot of y versus t.

The reason is that d2y/dt? = d(dy/dt)/dt,that is, it is the rate of change of

the slope dy/dt of the curve. So if the slope is changing rapidly at some ¢
and the curve, therefore, has a high curvature at that ¢, then d2y/dt? will be

large. In any region of t where d2y/dt?is positive, the slope dy/dt is always
becoming more positive with increasing ¢ and the curve is concave
upward; if d*y/dt? is negative in some region of ¢, the curve is concave

downward in that region.

Now note that d%y/dt? in Eq. (3-10) has a positive value, g, at t =0 for

the case at hand, where dy/dt =0 at t =0. This means that dy/dt will
become positive as ¢ increases. But it can never exceed V g/a, since the
closerit gets to that value the closerits rate of change d*y/dt? gets to zero.

Therefore, d%y/dt? is initially positive and subsequently decreases to zero

without ever becoming negative. The resultis that the curve traced out by

the plot of y versus ¢ will be concave upward for small ¢ and subsequently

loose its curvature without ever becoming concave downward. Thatis,it

gradually approaches a straight line with slope equal to the terminal value

dyldt = Vgla.

3-6. SUMMARY OF HALF-INCREMENT METHOD

There is a general prescription for applying the half-increment method to

any second-order (containing no higher than second derivatives) ordinary

(containing no partial derivatives) differential equation. You write the

equation as

d?y _2 = C (3-16)

where C may involve any functions of any or all of the quantities y, ¢, and

dy/dt, as well as any constants. Then write the three half-increment equa-

tions, with C the coefficient of A¢/2 in the first and the coefficient of Az in

the second:

dy _dy At&@tCT (3-17)

dy _dy= + CAt (3-18
dtivye  dti—ipe )

Yi+1 =)’i+g At (3-19)
dtisqe
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Figure 3-7. General scheme for the half-
increment method. If the coefficient C de-

| pends on ¢, each t; will feed into dy/dt;,,.

The associated general scheme is shown in Fig. 3-7; note that there are
also arrows leading down and to the right to allow for the possibility that

C contains some function of y. Not shown are arrows connecting each ¢;

with dy/dt;, 5, which would be present if C contains some function of .

You can justify these equations and scheme either by deriving them by a

half-increment modification of a generalized form of the derivation in Sec.

3-2 or, more simply, by noting that they immediately produce Egs. (3-7),

(3-8), and (3-9), or (3-12), (3-13), and (3-14) when C is set equal to g or

g — a (dy/dt)®. Anyway, their validity is obvious. The first two equations

say that the new value of the first derivative approximately equals the

old value plus the rate of change of the first derivative, C, multiplied by
the appropriate change in the independent variable; the third equation

says the new value of the dependent variable approximately equals the

old value plus the rate of change of the dependent variable, dy/dt, mul-

tiplied by the change in the independent variable. In advanced work you

may encounter a C for which there is a problem in applying the method

because it becomes infinite within the range where it must be evaluated.

If this ever happens, try joining the numerical solution to a Green’s

function solution (Ref. 4) for the point where C becomes infinite.

If the dependent and/or independent variables are other than y and ¢,

all you have to do is rewrite these equations with the appropriate symbols.

It is easy to reduce the half-increment method so that it will solve first-

order, ordinary differential equations. It can also be extended to work

with third- or higher-order equations, butthis is not commonly required in

physics. The method for second-order equations can be applied to handle

sets of coupled equations of this type, as you will see in Chaps. 5 and 6.
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Most of the partial differential equations arising in physics can be separat-
ed into sets of uncoupled, ordinary differential equations, which then can

be solved by the half-increment method.

It is difficult to predict the accuracy of the method, but it is almost al-

ways true that: (1) the accuracy increases as you decrease the size of the

increment; (2) the larger the curvature of the solution to the equation,

the smaller the size of the increment you must use to achieve a certain

accuracy; (3) the accuracy decreases when the C coefficient involves a

first derivative. You can understand the third comment by inspecting

Eq. (3-18) and Fig. 3-7 and noting that the dependent and independent

variables are both evaluated in C at the middle of the interval where C is

used, whereas if the first derivative is present in C it is evaluated at the

beginning of the interval. More complicated numerical methods over-

come this source of inaccuracy, but the limitations of programmable
pocket calculators generally preclude their use of these methods. Fortu-

nately, it is frequently true that where the first derivative is large its rate

of change is small so that the value of C is insensitive to where the first
derivative is evaluated. The case you studied in Sec. 3-5 is an example.

In very infrequently occurring circumstances, the numerical solution to

a differential equation is unstable in that a point is reached where further
decrease in the size of the increment leads to decrease in the accuracy.

If you ever come across such an example, consult an applied mathemati-
cian.

EXERCISES

3-1. Run the full-increment free-fall program with a value of At smaller by

a factor of 1 than that used in the example. Compare the results with the

analytical solution for free fall plotted in the example.

3-2. Do the same for the half-increment program. Explain why for all val-
ues of At the half-increment solution for free fall is in exact agreement
with the analytical solution. Why would this not be true when the half-

increment procedure is applied to problems other than free fall?

3-3. Do the same for the half-increment program for fall with friction pro-
portional to the square of the speed. Compare the results with your dis-

cussion of 3-2.

3-4. The gravitational acceleration of an objectfalling freely near the sur-

face of the moon is 1.6 m/s2. An astronaut accidentally falls from the lad-

der leading to the door of the moon lander at a height of Sm. Use the half-

increment program to determine the time until impact on the surface. Also

determine the speed at impact by recalling the contents of the register that

contains dy/dt.

3-5. Run the fall with friction proportional to the square-of-speed pro-

gram with a« = 3.0 X 1072, Compare the results with the example.

3-6. Change the fall-with-friction program to make the frictional force
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proportional to the first power of speed by simply deleting the step in

which the speed is squared. Then find a value for « which will lead to the
same terminal speed as in the squared-speed program example. Run your

modified program with this «, plot y and dy/dt, and compare with the plot-

ted example. Discuss the difference.

3-7. Do the same, but with the program modified so that friction is pro-

portional to the cube of the speed. This is of practical importance in cer-

tain cases, but there is no analytical solution to the differential equation.

Note: If your calculator objects to evaluating y* for y = 0, fool it by set-

ting the initial value of dy/dt equal to some very small number.

3-8. Study the details of the programs in Tables 3-1 and 3-3 and explain

precisely what happens in each step.

3-9. Write a modification of the fall-with-friction program that will cause

J — 1 successive values of y to be calculated without being displayed. By

displaying only every jth value, it is convenient to improve accuracy by

reducing the value of Az, without increasing the work required to plot

results. Try it with j = 10, At = 0.05.

3-10. Write a half-increment program to solve the differential equation for

exponential growth, or decay,

dN
—— =+NR or —NR
dt

Then study the properties of the solutions for various values of the

growth, or decay, rate R. Explain which electrical circuits are governed

by the differential equation for decay and how the circuit parameters are

related to R. Do the same for exponential growth of bacteria.

REFERENCES

1. Bueche, Frederick J.: Introduction to Physics for Scientists and En-

gineers, 2d ed., McGraw-Hill Book Company, New York, 1975,

p. 541

Halliday, David, and Robert Resnick: Fundamentals of Physics,

John Wiley & Sons, Inc., New York, 1974, p. 63.

Sears, Francis W., and Mark W. Zemansky: University Physics, 4th

ed., Addison-Wesley Publishing Company, Inc., Reading, Mass.,

1970, pp. 15-16, 57.

Weidner, Richard, and Robert Sells: Elementary Classical Physics,

Allyn and Bacon, Inc., Boston, 1973, p. 106.

2. Ford, Kenneth: Classical and Modern Physics, Xerox, Lexington,

Mass., 1973, p. 513.

3. Ford, Kenneth: Classical and Modern Physics, Xerox, Lexington,

Mass., 1973, p. 515.

4. Dennery, Philippe, and André Krzywicki: Mathematics for Physi-

cists, Harper & Row, Publishers, Inc., New York, 1967, p. 273.



 

CHAPTER

FOUR
OSCILLATORS
 

4-1. INTRODUCTION

Now that a method for solving differential equations numerically has been

developed and its use with programmable pocket calculators has been

explained, the thrust of most of the remainder of this book will be to show

how it can help you study the behavior of many different physical sys-

tems.
Some of the most important of these are systems involving oscillations.

The oscillations can be in mechanical objects, like masses connected to

springs or pendulums. In fact these are examples you will come across in

the next two chapters, but other mechanical examples could just as well

have been used—the timing mechanism in a watch, the string of a guitar,
atoms in a heated solid, or in a gas transmitting a sound wave. Further-
more, very important nonmechanical systems involve oscillations, e.g.,

lightwaves, radiowaves, and electrical circuits. Oscillatory motion is
strongly emphasized in most elementary physics books because it is so

wide spread in nature, despite the fact that solving the differential equa-

tions that arise by analytical methods is not feasible at the elementary

level for many interesting cases, and cannot be done at all in some cases.

Such difficulties are not present, however, if numerical methods are used.

4-2,. HARMONIC OSCILLATIONS

Figure 4-1 shows the first oscillating system you will consider. An object

of mass m is at one end of a horizontal spring whose other end is fixed.

Since gravity does not act in the horizontal direction, the only horizontal

force exerted on the object arises from the extension or compression of

the spring relative to its normal length. The coordinate x measures the dis-

placement of the object from its position when the spring has its normal
length and, therefore, also the extension or compression of the spring.

65
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Figure 4-1. An example of a harmonic oscillator.

The quantity & is a measure of the stiffness of the spring and is the propor-

tionality constant in the relation

F=—kx (4-1)

between the extension or compression of the spring and the force F which

it exerts on the object. This experimental relation is called Hooke’s law

and applies to anything capable of flexing, providing the flexure does not

approach its “elastic limit.” (See Ref. 1.) Note the minus sign, which
properly makes F negative if x is positive, and vice versa, so that the

spring pulls on the object if extended and pushes on it if compressed.

Newton’s law of motion

d*x _F
dt* m

contains complete predictions about the possible behavior of the system.

To obtain them, the first step is to use Eq. (4-1) to evaluate F, which

yields

 

2 k

2

or I = —ax (4-3)

k
where o=— (4-4)

m

The second step is to solve this differential equation.

The prescription of Sec. 3-6 makes the job almost automatic. Compar-
ing the differential equation with Eq. (3-16), the coefficient C is seen to

have the value C = —ax. Using this in Eqgs. (3-17), (3-18), and (3-19), and

also changing the dependent variable in them from y to x, the formulas

you need are obtained immediately:

*"171/2 == E; + CT C =—ax, (4-5)

dx dx
— o= — + C At C = —ax; 4-6
dtivye  dti_ype ax (4-6)

X = x+5 A 4-7)
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The schemeis just the one shown in Fig. 3-7, except that y should be read

as x.

Tables 4-1 (SR-56) and (HP-25) contain the programs. Instructions for

using them follow.

For the SR-56

Clear by keying 2nd CP, key LRN, then enter the indicated key strokes

through step 08. Step 09 is a no-operation instruction which simply makes
the calculator go to the next step. It is entered to leave room for the opera-
tion of computing sin x, which will be used in Sec. 4-3 to treat the case of a

pendulum. Next key in steps 10 through 38. If you are only planning to

watch the display, key 2nd pause in steps 39 and 40; if you are planning
to graph the results, key R/S in the first and 2nd NOP in the second. Then
key the remainder of the program and return to the execute mode by key-

ing LRN. After setting the calculator to step 00 by keying RST, load the
values you choose for initial x, initial dx/dt, At, and « by keying the first
followed by STO 0, the second by STO 1, the third by STO 2, and the
fourth by STO 3. Then press R/S to start. If step 39 is R/S, the calculator
will stop there waiting for you to press R/S for the next loop. To see the
value of t when stopped by a program R/S, key RCL 4. To see ¢ in the
pause mode, key R/S after pausing and then key 2nd EXC 4, inspect¢,
then key 2nd EXC 4 again. The program always takes the initial value of ¢

to be zero.

For the HP-25

Switch to PRGM, clear by keying f PRGM, and enter the indicated key
strokes through step 04. Step 05 is a no-operation instruction which sim-

ply makes the calculator go to the next step. It is entered to leave room for

the operation of computing sinx, which will be used in Sec. 4-3 to treat the

case of a pendulum. Key in steps 06 through 19 next. If you are only plan-

ning to watch the display, key f PAUSE in step 20; if you are planning to
graph the results, key R/S. Then key the remainder of the program and

switch back to RUN. After setting the calculator to step 00 by keying f

PRGM, load the values you choose for initial x, initial dx/dt, At, and « by

keying the first followed by STO 0, the second by STO 1, the third by STO
2, and the fourth by STO 3. Then press R/S to start. If step 20 is R/S, the

calculator will stop there waiting for you to press R/S for the next loop. To

see the value of t when stopped by a program R/S, key RCL 4. To see ¢ in

the pause mode, key R/S while pausing and then key RCL 4. The pro-

gram always takes the initial value of ¢ to be zero.

Examples

initial x = 0.25, initial dx/dt =0, At=0.2, a =1

initial x = 1.50, initial dx/dt =0, At =0.2, a =1



T
a
b
l
e

4-
1.

(
S
R
-
5
6
)

Os
ci

ll
at

io
ns

1

dx
/d
t

pr
el

oa
de

d

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

2
3

4

At
a

t

ru
n

in
ra

di
an

m
o
d
e

fo
r
p
e
n
d
u
l
u
m

5
C

CI
2

P
r
o
g
r
a
m

 

S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

C
o
m
m
e
n
t
s

S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

C
o
m
m
e
n
t
s
 

01 02 03 04 05 07 08 09 10 11 12 13 14 15 16 17
 33 56 34 03 34 23 94 93 33 05 34 37

0
S
T
O
4

2
n
d

C
P

R
C
L

3 X

R
C
L

0
2
n
d
N
O
P

+
/
-

S
T
O

5

R
C
L
4

2
n
d
x
=
1
t  

 0 4
ze

ro
ed

T
e
s
t
re

gi
st

er
z
e
r
o
e
d

St
ar
t
lo
op

o x Al
lo

ws
r
o
o
m

fo
r
p
e
n
d
u
l
u
m

p
r
o
g
r
a
m

ax C
=
-
w
x

S
n
o
w
C

t Te
st

¢
fo

r
ro

ut
in

g
in

pr
el

im
in

ar
y
lo

op

27 28 2
9 30 31 32 33 34 35 36 37 38 39 40    34 02 35 04 64 34 01 9

4 35 00 3
4

0
0

5
9

(
o
r
4
1
)

5
9

(o
r
46
)

 S
U
M
o

R
C
L

0

2
n
d
P
A
U
S
E

(o
r
R/
S)

2
n
d
P
A
U
S
E

(o
r
2
n
d
N
O
P
)

 At 4
n
o
w

t,
in

pr
el

im
.

lo
op

,
¢,

in

ne
xt

dx
/d
t,
,
in

pr
el

im
.
lo

op
,
dx
/d
ts
,

in
ne
xt

At
dx

/d
t,

,,
in

pr
el
im
.

lo
op

,

A
t
d
x
/
d
t
s
,

in
n
e
x
t

0
n
o
w

x,
in

pr
el

im
.

lo
op

,
x,

in

n
e
x
t

x,
in

pr
el
im
.
l
o
o
p
,
x
,

in
n
e
x
t



69

18 19 20 21 22 23 24 25 26

 34 02 34 05 94 35 01

 R
C
L

R
C
L

 At C/
2

in
pr

el
im

.
lo
op
,

C
in

n
e
x
t
l
o
o
p

At
C/
2

in
pr

el
im

.
lo
op
,

A
t
C

in
n
e
x
t
l
o
o
p

1
n
o
w

dx
/d

t,
,,

in
pr
el
im
.

l
o
o
p
,

dx
/d

ts
;,

in
n
e
x
t

  41 42 43 45 47 48 49 50

 N838 12 30 05 22 01

 G
T
O
0 4

T
o
n
e
w

l
o
o
p

2
2

I
N
V

2
n
d
P
R
O
D

5
S
n
o
w

C
/
2

G
T
O

1 9
T
o

co
nt
in
ue

lo
op

 
 



70

T
a
b
l
e

4-
1.

(
H
P
-
2
5
)

O
s
c
i
l
l
a
t
i
o
n
s
 

1

dx
/d
t

2

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

3

A
t

o

p
r
e
l
o
;
d
e
d

r
u
n

in
r
a
d
i
a
n
m
o
d
e

fo
r
p
e
n
d
u
l
u
m

P
r
o
g
r
a
m

4
S

6
7

t
—
_

—
—

 

S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

X
Y

Z
T

C
o
m
m
e
n
t
s
 

01 02 03 04 05 07 08 09 10 11 12 13
23  23 24 24 15 24 15 13 24 41

22 22 02 61 01

 o

S
T
O

4
R
C
L

3

SO T = = A

<

-
o
o

R
|

-
C

X
-
C
A
t

S
T
O
-
1

-
C
A
t   

 

4
z
e
r
o
e
d

St
ar

t
l
o
o
p

A
l
l
o
w
s
r
o
o
m

fo
r
c
h
a
n
g
e

to
b
e

m
a
d
e

in
p
e
n
d
u
l
u
m
p
r
o
g
r
a
m

C
=
-
a
x

Te
st

¢t
fo

r
ro
ut
in
g
to

pu
t

1/
2
in

pr
el

im
in

ar
y
lo
op

W
i
l
l
b
e
—
C
/
2

in
pr
el
im
.
l
o
o
p

1
n
o
w

dx
/d

t,
;,

in
pr
el
im
.
l
o
o
p

1
n
o
w

d
x
/
d
t
;
,

in
n
e
x
t
l
o
o
p

  



71

14 15 16 17 18 19 20 21 22 23 24 25
 23 23

24 51 24

02 04

(o
r
74

)

13

03 22 02 71 11
 

 At At

dx
/d
t

A
t
d
x
/
d
t

A
t
dx

/d
t

 

4
n
o
w

¢,
in

pr
el

im
.
lo

op
4
n
o
w

¢,
in

n
e
x
t
l
o
o
p

0
n
o
w

x,
in

pr
el

im
.
l
o
o
p

0
n
o
w

x
,

in
n
e
x
t
l
o
o
p

T
o
n
e
w

l
o
o
p

T
o

c
o
n
t
i
n
u
e
l
o
o
p

  
 
 



72 OSCILLATORS

The results for both are plotted in Fig. 4-2. In both, if « = 1 means a = 1
N/m-kg (Newtons per meter-kilogram), then x will be in meters and ¢ in

seconds. Of course, you can use any system of units you want for the

input numbers, providing it is a consistent system. The calculator will out-

put values in the appropriate units of that system. As the physics to be

learned from all this does not depend on the units, they will usually be ig-

nored. /1]

In the first example the oscillator was displaced to x = 0.25 and then

let go from rest. You can see how it slowly starts to move to x = 0, picks

up speed, passes through x = 0, slows down as it approaches x = —0.25,
turns around there, repeats its motion in the opposite direction until it
again gets to x = 0.25, and then starts the next identical cycle. The points

look like they would fall accurately on a sinusoidal curve (a cosine), and

indeed they would. As sinusoidal functions are sometimes called har-

 
Figure 4-2. Harmonic oscillations of small and large amplitudes.
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monic functions, an oscillator satisfying the differential equation (4-3) is
sometimes called a harmonic oscillator.

The period T of the oscillation is the time required to complete one full

cycle, and the frequency v is 1/T. You can measure T from a plot of x

versus ¢ or, less accurately, without plotting by stopping the calculator

when you see x change sign at the beginning of a cycle, recording the con-

tents of the 7 register, then doing it again at the beginning of the next cycle.

Careful inspection of Fig. 4-2 will show you that for the o = 1 oscillator,

T =6.28 and v = 1/6.28. Do these numbers remind you of 27 and

1/27? They are. Can you think of how to run the program to verify this

with more accuracy, but withcut plotting?
In the second example the oscillator wasinitially displaced to x = 1.50

and released with no initial speed. It then proceeded to execute oscilla-
tions which look very much like those it made in the first example, except

with all the values of x scaled up in magnitude by a factor of 1.50/0.25. If

you look carefully at the plots, or the numbers you can record by running

the programs yourself, you will find that this is the case. The maximum

magnitude of x in an oscillation is called the amplitude. This scaling prop-

erty means that the characteristics of the oscillations, such as its period or

frequency, do not depend on the amplitude. The property reflects the fact

that the differential equation governing the oscillations, Eq. (4-3), is linear

in x. That is, each term in it is proportional to x to the first power. Thus if a

certain dependence of x on ¢ solves the equation, then the same depen-

dence, but with x scaled up or down by any constant factor you wish, will

also be a solution.

There are two interesting questions to ask: (1) Why does the oscillator

oscillate?, and (2) Why does the differential equation associated with the

oscillator have oscillatory solutions?

The first requires a physical explanation. If the object at the end of the

spring is pulled from its normal position and then released from rest, the
force exerted on it by the spring is free to act. It will pull on the object in

the direction toward the normal position because the spring is stretched.
This accelerates the object toward that position, and so it picks up speed

while moving in that direction. At the instant it passes through the normal

position, there is no force acting on it because the spring is at its normal

length. But the object must keep moving because it has mass and,

therefore, momentum which cannot change if no force is applied. As it

continues the body compresses the spring, so the spring exerts a force on

it acting back toward the normal position of the body. This slows it until it

comes momentarily to rest, having completed the first half cycle of an os-

cillation. The next half cycle is just the reverse of the first, and all

subsequent full cycles are like those that precede.

The second question is answered by analyzing the relation imposed by
the differential equation (4-1) between the quantity x and its second

derivative d%x/dt?. As explained in Chap. 3, d%x/dt? is a measure of the
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curvature of a plot of x versus ¢. If d2x/dt? is positive the curvature is con-

cave upward, and if it is negative the curvature is concave downward.

Since the quantity « is positive, the differential equation d2x/dt? = —ax

says that the sign of the second derivative of x is always opposite to the

sign of x itself. Thus if in some region of 7 the curve traced out by plotting

x versus ¢ lies above the ¢t axis, then x is positive, d%x/dt? is negative, and
the curve is concave downward. If the curve lies below the ¢ axisit is con-

cave upward. Simply put, the curve is under all circumstances concave

toward the ¢ axis. This means that the curve must oscillate about the axis,

so x is an oscillatory function of ¢.

4-3. LARGE OSCILLATIONS OF A PENDULUM

Figure 4-3 represents a pendulum consisting of a body of mass m at the

end of a cord of length / and negligible mass. At the instant shown, the

cord makes an angle 6 with respect to the vertical. The two forces acting

on the body are the tension T in the cord, which acts along its direction,

and the gravitational force, or weight mg, which acts in the downward di-

rection. In Fig. 4-4 the weight is resolved into two perpendicular compo-

nents. One is in the direction opposite to the tension and the other is

directed along the tangent to the path of the body at the instant illustrated.
The latter, which is of magnitude mgsin 6, is the one of interest becauseit

is the restoring force that leads to the oscillatory motion of the pendulum.

To study the motion, you may apply Newton’s law to the tangential di-

rection at the instant illustrated by writing x = /6, where x is distance trav-

eled by the body along its circular path, measured from its vertical posi-

tion, and 0 is measured in radians. Then

dx_o) _, d*
dr? dr? dr?
 

since /is a constant. If the last step escapes you, look at the definition of a

derivative in Chap. 1 and applyit to the derivative of the product of a con-

 
Figure 4-3. A pendulum consisting of a body of mass m suspended by a

cord of length /. The tension in the cord is T and the weight of the body

mg is mg.
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 Figure 4-4. The weight is resolved into components tangential

and perpendicular to the path of the body at the instant shown.

The tangential component mgsin @ provides the restoring force

that makes the pendulum oscillate.

 

stant times a variable. With this relation substituted into Newton’s law,

you have

/ d?’0 _ —mgsin6

dr m
2

or % = —asinf (4-8)

where a= § (4-9)

The minus sign reflects the fact that the sign of the restoring force is al-
ways opposite to the sign of the angular coordinate 6, as inspection of the

figures will demonstrate.
Note the similarity of Eqgs. (4-8) and (4-3). Except for the trivial dif-

ferences that one involves 6 and the other x, and that the meaning of « is
not the same, the two equations would be identical if it were true that

sin § = 6. Of course, that is not generally true. But it is approximately true

if the angle 6, expressed in radians, is small compared to 1. (If you are un-

familiar with that fact, set your calculator to the radian mode by keying

2nd RAD on an SR-56 or by keying g RAD on an HP-25, and try it for
6 =0.5, 0.05, and 0.005.)
The standard approach of elementary physics textbook treatments of

the pendulum at this point is to use the sin § = § approximation so that the

pendulum differential equation becomes essentially identical to the har-

monic-oscillator differential equation. The reason is that the change in the
form of the differential equation, caused by the presence of the sine of the

dependent variable instead of the dependent variable itself, converts it

from one that can be solved analytically without too much difficulty to one

that can be solved only by numerical methods.

But it is not necessary for you to make the approximation, and
therefore preclude yourself from investigating the large oscillations of a

pendulum, because it is extremely easy to modify the program in Tables

4-1 (SR-56) or (HP-25) so that it will solve Eq. (4-8).
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For the SR-56
Assuming that your calculatoris still programmed to run the harmonic os-

cillator, while in the execute mode key GTO 0 9, key LRN, key sin, key
LRN, and key RST to reset to step 00. You have instructed the calculator
to take the sine of the dependent variable in step 09, so it will now solve
Eq. (4-8). Since the dependent variable is 6, measured in radians, be sure

to key 2nd RAD to putit in the radian mode before running. Then operate

it just as before.

For the HP-25

Assuming that your calculatoris still programmed to run the harmonic os-

cillator, while switched to RUN key GTO 0 4, switch to PRGM, key f sin,

switch back to RUN, and key f PRGM to reset to step 00. You have in-

structed the calculator to take the sine of the dependent variable at step

05, so it will now solve Eq. (4-8). Since the dependent variable is 6,

measured in radians, be sure to key g RAD to put it in the radian mode

before running. Then operate it just as before.

Examples

initial 8 = 0.285, initial d0/dt =0, At =0.2, a =1

initial 8 = 1.50, initial d6/dt =0, At =0.2, a =1

For both examples the results are plotted in Fig. 4-5. Compare the oscilla-

tion in 0 of amplitude 0.25 with the harmonic oscillation in x of the same

amplitude plotted in Fig. 4-2. It is clear that for an amplitude of 0.25

rad = 14°, the motion of a pendulum is a very excellent approximation to

harmonic oscillation.

Not so for pendulum motion with an amplitude of 1.50 rad = 86°, as
the plot of the second example shows. The points for this plot do not trace

out a harmonic (or sinusoidal) curve, although they certainly fall on an os-

cillatory curve. Note that the period is lengthened, or frequency reduced,

for the large-amplitude oscillation. Can you use the force diagram in Fig.

4-4 to explain from a physical point of view the origin of this behavior?////

The plot for large-amplitude oscillations of the pendulum does not look

like the one for small-amplitude oscillations with all the values of 8 mul-

tiplied by some scale factor. The shape changes, although you may regard

the change as rather subtle. But the change in the period is certainly ap-

parent; so it is equally apparent that the scaling property discussed in con-

nection with the harmonic oscillator does not apply to the pendulum.

The reason for this involves the fact that the differential equation for a

pendulum, (4-8), is not linear in 6. If you reread the end of Sec. 4-2, you

should be able to explain it to yourself from a mathematical point of view.

The nonlinearity of Eq. (4-8) is also the reason why it can be solved

only by numerical methods. As a rule of thumb, you can expectthis to be
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Figure 4-5. Pendulum oscillations of small and large amplitudes.

the case for most nonlinear differential equations. But there are some

lucky exceptions such as Eq. (3-10).

4-4. DAMPED, DRIVEN OSCILLATIONS

Next you will reconsider the harmonic oscillator shown in Fig. 4-1, allow-

ing for two additional possibilities: (1) there may be appreciable friction

(e.g., the body at the end of the spring is moving through maple syrup);

(2) a periodically varying force may be applied to the body by some exter-

nal agency (e.g., you are pushing on it rhythmically). Since most oscillat-

ing bodies are not large ones moving rapidly, it is reasonable to assume

that the magnitude of the frictional force they experience is proportional

to the first power oftheir speed (see Sec. 3-5.) Another reason for making
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this assumption is that with a frictional damping force proportional to
dx/dt, the differential equation has exactly the same mathematical form as

one arising in certain aspects of electromagnetism. So you will be able use

it and what you learn aboutits properties if you want to study that subject

(see Ref. 2). As for the applied driving force, it is convenient and yet

sufficiently illustrative to take it to be proportional to sin wt, where wis its

angular frequency in radians per second. That is, the oscillator is driven

with a sinusoidally varying force of ordinary frequency v = w/27 Hz

(cycles per second).

Equation (4-2) for the undamped, undriven oscillator, which came di-

rectly from Newton’s law, was

d’x _F _ —kx
d® m m

Adding to the restoring force, —kx, terms representing damping and

driving forces gives

da’x _
dr? m

where f specifies the damping force for unit speed and a specifies the

amplitude of the driving force. The damping force term is negative, just

as in Eq. 3-10, because friction always tends to oppose the direction of
motion. Introducing

—kx —f% + asin wt
 

 

_k _f _aa=-—  B=-=  y=— (4-10)

allows the equation to be written as

2

%:—ax—fi—z—f-k'ysinwt

d?x dx .
or PTD =C C=—ax—,BE+ysmwt (4-11)

Now that the form of the coefficient C has been identified, the set of

basic equations for the numerical method analogous to Egs. (4-5), (4-6),

and (4-7) can be written immediately. But it is hardly necessary to do so to

make the additions required in the harmonic-oscillator program to allow it

to handle the present case. As you can see from inspecting Tables 4-2

(SR-56) or (HP-25), the only change required is the somewhat more

complicated routine used to generate the new form of C.

Both versions of the program are keyed in and run just as for the os-

cillator program, except for the following changes.

For the SR-56

The “no operation” instruction is absent, as a blank step will not be
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needed for a subsequent modification (unless you would later like to study

the damped, driven pendulum—if so, put it in step 26 and then increase all

the remaining step numbers by 1). The parameters B, vy, and w must be
preloaded in registers 4, 5, and 6. This is done in just the same way that
initial x, initial dx/dt, At, and « are inserted in registers 0, 1, 2, and 3. If

you want to recall ¢, remember that here it is stored in register 7. Above all
remember to put the calculator in the radian mode, before running a driv-
en oscillator, by keying 2nd RAD when in the execute mode. To see the

driving-force term sin wt when the calculator has been stopped by a pro-
gram R/S, push SST eleven times while remaining in the execute mode.
You will now be seeing the results of step 10. Then restart by pushing

R/S.

For the HP-25

The *“‘no-operation” instruction is absent, as a blank step will not be
needed for a subsequent modification (unless you would later like to study

the damped, driven pendulum—if so, putit in step 05 and then increase all

the remaining step numbers by 1). The parameters B, v, and w must be

preloaded in registers 4, 5, and 6. This is done in just the same way that

initial x, initial dx/dt, At, and « are inserted in registers 0, 1, 2, and 3. If

you want to recall ¢, remember that here it is stored in register 7. Above all

remember to put the calculator in the radian mode, before running a driv-

en oscillator, by keying g RAD when switched to RUN. To see the driving-

force term sin wt when the calculator is stopped and displaying x, push
SST until you get to step 12. Then restart by pushing R/S.

Examples

initial x = 1.5, initial dx/dt =0, At =0.2, a=1, 8=0.5

initial x = 1.5, initial dx/dt =0, At =0.2, a=1, 3=2.5

In both cases the oscillator has the same spring-stiffness-to-mass ratio «

as in the examples of an undamped oscillator plotted in Fig. 4-2, and also

the same initial conditions as used for the larger-amplitude oscillation of

that figure. Both cases are undriven. The first, for a damping-constant-to-

mass ratio 8 = 0.5, is said to be lightly damped;,the second, for 8 = 2.5, is

said to be heavily damped. You can see from the results shown in Figs.

4-6 and 4-7 why this terminology is appropriate. Note that the period, or

frequency, for the lightly damped oscillator appears to have the same

value as in the case of the undamped oscillator with the same value of «

(as far as you can tell from the plot). Neither a period, nor a frequency,

can be defined for the heavily damped oscillator. /]

Can you devise a physical explanation for the behavior of the damped

oscillator, and also a mathematical explanation for the behavior of the

solutions to its differential equation, which combines features of the ex-

planations given in Sec. 4-2 and Sec. 3-5?
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Figure 4-7. Heavy damping.

Examples

initial x = initial dx/dt =0, At=0.8, a=1,8=0.5,vy=1, ®=0.20

initial x = initial dx/dt =0, At=0.2, a=1,8=0.5, y=1, ® =0.95

initial x = initial dx/dt =0, At=0.2, a=1,8=0.5,y=1, 0 =2.00

In all three examples the oscillator starts at rest from the configuration it

has when the spring is at its normal length. But it does not stay there since

it is driven by an applied force of unit amplitude-to-mass ratio y which

starts from zero at the initial instant as a positive-going sinewave. For all

three, the stiffness-to-mass ratio o and damping-to-mass ratio B3 are as

they were in the lightly damped oscillator plotted in Fig. 4-6, and « is the

same as in the undamped oscillator plotted in Fig. 4-2.

Recall that the frequency of free oscillations for the undamped oscilla-
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Figure 4-8. A damped oscillator driven at a frequency lower than its resonant frequency.

tor with this «, which here will be written v,, has the value v, = 1/2 7 cor-

responding to an angular frequency of free oscillation w, =27y, = 1.

Recall also that the lightly damped oscillator of this 8 has approximately

the same oscillation frequency. In the first example, the driving frequency

o = 0.20 is considerably smaller than w,. It is plotted in Fig. 4-8. Al-

though the first part of the first half cycle of oscillation is noticably non-

sinusoidal, the oscillator has already well adjusted its motion to the be-

havior imposed by the driving force by the end of the second half cycle.

That is, after the first full oscillation, the system has reached a steady

state where each cycle exactly repeats the previous cycle. You can see by

inspection that the steady-state amplitude has a value slightly larger than

1.0. You should also look carefully enough to see that in steady state the

oscillation frequency equals the driving frequency.

The second example is plotted in Fig. 4-9. Here the driving frequency

o = 0.95 about equals the free oscillation frequency w,. The approach to

steady state takes several oscillations, and while it is taking place the os-

cillation amplitude builds up to its steady-state value of approximately
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Figure 4-9. A damped oscillator driven at its resonant frequency.

2.0. At steady state the oscillation frequency again equals the driving

frequency.

Figure 4-10 shows the third example for which the driving frequency

o = 2.00 is appreciably larger than the free-oscillation frequency w, = 1.

In this case the approach to steady state takes even more oscillations, and

the behavior of the oscillator seems quite chaotic for the first few oscilla-

tions. /11
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Figure 4-10. A damped oscillator driven at a frequency higher than its resonant frequency.

Why does the oscillator have such great difficulty in reaching steady

state when w is larger than w,, only moderate difficulty when w approxi-

mately equals w,, and very little difficulty when o is smaller than w,?

[Hint: Is the effect (the motion of the oscillator) always in step (in

phase) with the cause (the driving force acting on it)? ]

4-5. RESONANCE

Steady-state amplitudes of an a = 1, 8 = 0.5 oscillator and a y = 1 driving

force are plotted in Fig. 4-11 for the three values of driving frequency

used in the example just considered. The figure also shows steady-state

amplitudes obtained by running the program for a number of intermediate

values of w.

The points trace out the resonance curve for the o = 1, 8 = 0.5 oscilla-
tor, and make it clear that the system exhibits a maximum response when

the frequency of the applied force resonates with the frequency at whichit

would oscillate in the absence of such a force. Above or below resonance,

the response to a driving force of the same amplitude is considerably

smaller. This is certainly plausible if you think about what would happen

if you were rhythmically pushing a child on a swing at a frequency higher

than, equal to, or lower than the swing’s free-oscillation frequency.

The resonance curve is not perfectly sharp because the oscillator is
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Figure 4-11. The resonancecurve for a lightly damped oscillator.

damped. The effect is apparent if you look at results, plotted in Fig.

4-12, of runs made with 8 = 0.25. With half as much damping, the reso-
nance peak is approximately twice as high and half as wide.

If you look carefully at both figures, you will note that the resonance
peak occurs at a driving frequency somewhat smaller than the free-os-

cillation frequency w, = 1. The depression of the resonance frequency

from the free-oscillation frequency is less pronounced the lighter the

damping. Use physical considerations to explain why damping lowers the

resonant frequency of the oscillator.

EXERCISES

4-1. State which electrical circuits correspond to the harmonic oscillator,

the damped oscillator, and the damped, driven oscillator in that their be-

havior is governed by the same differential equations. How are the circuit

parameters related to o and B?

4-2. Run the harmonic-oscillator program with the same « as in the ex-
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Figure 4-12. The resonance curve for an even more lightly damped oscillator.

ample, but with a variety of different initial values of x and dx/dt. Discuss

your results.

4-3. Run the harmonic-oscillator program with several values of « to de-

termine how the period T of the oscillation, orits reciprocal the frequency

v = 1/T, depends on «. Plot your results for T or v versus «, but do not

bother to plot x versus ¢.

4-4. Run the large oscillation of a pendulum modification of the program,

using the same « as in the example, with enough initial values of 6 to de-
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termine how the period T or frequency v depend on the amplitude of the
oscillation. It is not fair for it to exceed 7/2. Why? Plot your results for T

or v versus 0., but do not bother to plot 0 versus ¢.

4-5. By running the damped-oscillator program with « = 1 and various

values of B, find the largest 3 for which x makes just one, imperceptably

small negative swing. Plot x versus ¢ for this so-called critically damped
case and compare it with the heavily damped case plotted in the example.

4-6. Use a value of B that is 5 percent less than the value found in 4-5 and

measure the period of the damped oscillations. How does it compare with
the undamped oscillator having the same value « = 1, and withthe 8 = 0.5

damped oscillator with that value of «, that were treated in the examples?

4-7. Make the damped, driven oscillator program run the three sets of

conditions shown in the example: a=y=1, 8=0.5, »=0.95;
a=vy=1,B8=05, 0=200;a=y=1, 3=0.5, o =0.20. After steady
state is achieved for each set, stop the program at a succession of values

of ¢ and record the values of sin wt. Plot them over the plots of x shown in

the example. Discuss the relations between the phase of the driving force

and the phase of the response in each case. Can you see how this is

related to the rapidity of the approach to steady state in each case?

4-8. Do the same for a driving force proportional to coswt? by simply

changing the appropriate step in the program from sin to cos. Explain why

the rapidity of approach to steady state is modified by doing this.

4-9. Make a set of damped, driven oscillator runs for « = 8=y =1, and
various values of w, to obtain a resonance curve for this case. It is not nec-

essary to plot x versus ¢ to determine the steady-state amplitude. Com-

pare your results with those shown in the example, discussing particularly

the height and width of the resonance curve and the location ofits peak.

4-10. Do the same as in 4-9 for a =1, 8=0.5, vy =2. Discuss your
results in terms of the linearity of the differential equation.

4-11. Study the details of each program and explain precisely what hap-

pens in each step.

4-12. For the harmonic oscillator, all of the plots of x versus ¢ look like
sinusoidals. They are. Write a small program to generate a cosine curve of
the appropriate amplitude and frequency, and plot some points on the

plots of x shown in the example.

4-13. For oscillations of the pendulum, the plots of 6 versus ¢ also look

like sinusoidals. But for large-amplitude oscillations they are not! Do the

same as in 4-12. Consider the forces acting on the pendulum near the

limits of its swing and interpret its behavior.

4-14. Modify the harmonic-oscillator program so that it will display for

each loop the kinetic energy K = m(dx/dt)%/2, the potential energy

V = kx2/2, and the total energy E = K + V of the oscillator. Plot these for

several oscillations and comment.
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4-15. Write a program for an anharmonic oscillator (undamped and

undriven) in which the restoring force is — kx — px3. This describes an os-
cillator in which with increasing extension or compression the spring
becomes more stiff if p > 0 and less stiff if p < 0. Run an example.

There is no analytical solution for this system, or for the one in 4-16.

4-16. Do the same for the anharmonic restoring force — kx + px2. For
p > 0, this describes a spring which is stiffer when compressed a certain
amount than when extended the same amount and can be used to model

the oscillations in the center-to-center separation of the atoms of a dia-

tomic mQlecule, as well as the way their average separation expands as

the amplitude of the oscillation increases with increasing temperature.
Make your program evaluate the average over a cycle ofx and run several

different amplitudes to study the thermal expansion of the molecule.
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CHAPTER

FIVE

COUPLED OSCILLATORS
 

5-1. INTRODUCTION

In this short chapter you will study the behavior of a system of two com-

ponent oscillators which are coupled to each other by a spring connected

between them. Perhaps you have seen a demonstration of such a system

or one of its many equivalents in a high-school or college physics course.
If an oscillation is set up in one of the components, with the other initially

not moving, their coupling causes the oscillation to be transferred from
the first to the second, then from the second to the first, and so on. But if

both components of the system are initially set into oscillation in certain

special ways, called normal modes, then the entire system will oscillate in

very simple manners with each cycle repeating exactly the preceeding

cycle.

Many mechanical, structural, and acoustical engineers spend much of

their time analyzing systems of two or more coupled mechanical oscilla-

tors. The same is true for electrical engineers and systems of coupled

electrical oscillators. Many physicists, particularly solid-state physicists,

are concerned with systems consisting of a large number of coupled os-

cillators. And mathematicians are interested in the coupled differential

equations that you will obtain and solve in the next section.

Another motivation for this chapter is that the extension of the half-

increment method used to solve these coupled differential equations will

be applied directly in the next chapter to solve the ones that arise in treat-

ing planetary motion and a-particle scattering.

5-2. COUPLED OSCILLATIONS

A system of two symmetrical coupled oscillators is shown in Fig. 5-1. It

consists of two bodies of the same mass m, each connected to the ends of

springs of the same stiffness constant k (see Eq. 4-1), the other ends of

93
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Figure 5-1. Coupled oscillators.

these springs being fixed. The two bodies are also connected to each other

by a spring ofstiffness constant K. When all three springs have their nor-

mal lengths, and the two bodies are in their corresponding equilibrium

positions, the coordinates x; and x, specifying the locations of the two

bodies are both equal to zero. Otherwise, the values of x; and x, give the

locations of the bodies relative to their equilibrium locations. They also

specify the extension or compression of the three springs. For instance, in

the situation shown in the figure the spring connecting the body on the left
to the support on the left is extended by the amount x,, the spring connect-

ing the two bodies is extended by the amount (x, — x;), and the spring

connecting the body on the right to the support on the right is compressed

by the amount x,.

There will be two differential equations for this system, one for x, and

the other for x,. The first is obtained by applying Newton’s law to the

body on the left

d*x;, F, —kx;+ K(x;—x,)
—t==% (5-1)
dr? m m

The quantity F, is the total force acting on the body on the left whose

mass is m and acceleration is d?x,/dt%. Again taking the situation illus-

trated in Fig. 5-1, you can see that one contribution to F,is the force —kx,

caused by the spring connecting it to the support on the left. Its magnitude

is kx, because the extension of the spring is x;, and it is negative since that

spring applies its force in the direction of negative x,. The other contribu-

tion to F,, namely +K(x, — x,), arises from the force applied to the body

on the left by the interconnecting spring, which is extended by the

amount (x, — x;) and so is pulling the body in the direction of positive x;

with a force of strength K(x, — x,).

You should go through a similar analysis of the forces acting on the

body on the right and thereby convince yourself that the differential equa-

tion for the coordinate x, is

d2X2 Eg_ _kX2 _K(.x2 '—xl) 

 

r-m-m (5-2)
Introducing the parameters

_k+K _K
a=—"- B= " (5-3)
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you can immediately convert (5-1) and (5-2) into the forms

 

 

d2

T5=—(ax; — Bx) = C, (5-4)
2

and ddt? =—(ax, — Bx;) = C, (5-5)

These forms allow you to write, by inspection of Egs. (3-17), (3-18), and

(3-19), the basic equations you need for their half-increment method solu-

tion. There will be six such equations, three in x, and three in x,,

 

 

dx, _dx

|o

At _
dtyy " dt, 6172 Ci=—(ax, —Bxs)  (56)

de, _ dx o
dtiyys - dti_ +C, At C,= (leli 'szi) (5-7)

d
Xip12 = X1y +E;%+1/2 At (5-8)

dxy _dx,

|o

At o
nd G, Tty T2 Co=—(axs, —fr)  (59)

dX2 . —(1{2_
_ _

dlivye Aty +A Cy = —(axy;

—

Bxy,) (5-10)

d
Xoipr = xzi + ?d':—i—i-llz = (5-11)

The scheme for using these equations to obtain a numerical solution to

the coupled differential equations is shown in Fig. 5-2. At first glance it

may seem terribly complicated, but if you spend a minute with it you will

see that it is nothing more than a superposition of two schemes of the gen-

eral form shown in Fig. 3-7, one for x, and the other for x,, plus inter-

connecting arrows that represent the coupling. For instance, the arrow
leading from x,_ to dx,/dt,, shows that the value of the latter depends on

the value of the former because C, in Eq. (5-9) contains x,,.

You will find a program for carrying out the scheme on your calculator

in Tables 5-1 (HP-25) or (SR-56).

For the HP-25

Switch to PRGM,clear by pressing f PRGM, then key steps 01 through 33.

Step 34 can be either a pause or a stop instruction; you might try f PAUSE
at first. After next keying steps 35 through 39, you again come to a choice

of display and running modes; try g NOP at first. Then key the remainder

of the program, switch to RUN, and key f PRGM to set to step 00. Preload

registers 0 through 6 with the four initial values of position and speed you

want to use and with the two values of the parameters specifying the

spring-stiffness-to-mass ratios, in the usual way. Push R/S to start and you
will be watching x,, the coordinate of the body on the left. Soon you will



96 COUPLED OSCILLATORS

 

 

   '
Figure 5-2. Scheme for the half-increment method applied to the solution of

coupled differential equations. If the C coefficients contain functions of ¢ (not so

for systems treated in this book), then each ¢; will feed into dx,/dt;.,, and

dx,/dt;;.

also want to look at x,. To do so, push R/S to stop, key GTO 3 9, switch to
PRGM, key f PAUSE, switch to RUN, key f PRGM, reload registers 0

through 3, then push R/S to run. For plotting you may either have both
steps 34 and 40 be R/S, or have 34 be f PAUSE and 40 be R/S. The second
way is more efficient, but takes some concentration. To see the value of ¢

any time the calculator is stopped by a program R/S, or by an R/S ex-

ecuted manually during a program f PAUSE, key RCL 7.

For the SR-56

Clear by keying 2nd CP, key LRN, then key steps 00 through 64. Steps 65

and 66 can either be 2nd pause 2nd pause or be R/S 2nd pause; you
might try the pause instruction first. After next keying steps 67 through

76, you again come to a choice of display and running modes; try 2nd

NOP 2nd NOP at first. Then key the remainder of the program, key LRN,
and key RST to set to step 00. Preload registers 0 through 6 with the four

initial values of position and speed you want to use and with the two val-

ues of the parameters specifying the spring-stiffness-to-mass ratios, in the
usual way. Push R/S to start and you will be watching x,, the coordinate of
the body on the left. Soon you will also want to look at x,. To do so, push

R/S to stop, key GTO 7 7, key LRN, key 2nd pause, key 2nd pause, key

LRN, key RST, reload registers O through 3, then push R/S to run. For plot-

ting you may either have both steps 65-66 and 77-78 be R/S 2nd NOP, or

have the first pair be 2nd pause 2nd pause and the second be R/S 2nd
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NOP. Thelatteris more efficient, but takes some concentration. To see the
value of # any time the calculatoris stopped by a program R/S, key RCL 7.
If it is stopped by a R/S executed manually after a pause, key 2nd EXC 7,
inspect ¢, then again key 2nd EXC 7.

Example

initial x, = 1, initial dx,/dt = 0, initial x, = 0,

initial dx,/dt =0, At =0.4, a = 1.25, 8 =0.25

The values used for « and B correspond to k/m = 1 and K/m = 0.25; that
is, the spring that does the coupling is less stiff by a factor of } than the

other two springs. The system was started with the body on the left

displaced by a unit distance to the right and released without giving it any

initial speed, while the body on the right was given no initial displacement

or speed. What happened next can be seen in Fig. 5-3.

It is interesting to observe how the oscillation in x, dies out while the

oscillation in x, builds up until, at # = 13, the motion in the system is com-

pletely transferred to x,. Then as time continues to unfold, the process

reverses itself until the oscillation has flowed back to x,, and so on forev-

er (in the absence offriction). /1]

 

Coupled oscillations

«a=1.25,8=0.25

 

Figure 5-3. Typical behavior of a system of coupled oscillators.
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It is possible to construct a physical explanation of the general behav-

ior of coupled oscillators by superposing two discussions similar to that

given in Sec. 4-2 for a single oscillator, providing account is taken of the

interaction caused by the presence of the coupling spring. The same can

be done to obtain a mathematical explanation of the general behavior of
the solutions to the coupled-oscillator differential equations. But these ex-

planations are too complicated to be of much use.

So take the experimental approach. Try running the program with dif-

ferent values of K, noting how K affects the rapidity of transfer of the mo-

tion from x, to x,, and back. Also try running with different initial condi-

tions, and perhaps you will discover ones that produce a particularly

simple behavior in which there is no flow of motion from one body to the

other because they both oscillate in each cycle in exactly the same way

they oscillated in the previous one. If you find such behavior, you have

found a normal mode of the system.

5-3. NORMAL MODES

Two special sets of initial conditions are used in the following examples.

Examples

initial x, = 1, initial dx,/dt = 0, initial x, = 1,

initial dx,/dt =0, At =0.4, a = 1.25, 3 =0.25

initial x;, = 1, initial dx,/dt = 0, initial x, = —1,

initial dx,/dt =0, At =0.4, a = 1.25, 3 =0.25

The behavior of x, and x, in the first example can be seen in Fig. 5-4. Fig-

ure 5-5 plots these coordinates versus the time ¢ for the second example.

Do you see what is meant by saying that the system has a particularly

simple behavior when it is in a normal mode?

Note that the period of the oscillations in x; and x, in the normal mode

shown in Fig. 5-4 is longer than the period of the oscillations in the normal

mode shown in Fig. 5-5. If you think of what the interconnecting spring is

doing in each of these, you will understand why the period is longer, or the

frequency is lower, in the first normal mode. /11

Can you find a third normal mode for the system? Before giving a su-

perficial answer, answer the next question: Are the normal modes ob-

tained by using the initial conditions x, =—1, dx,/dt=0, x,=—1,

dx,/dt =0, or the initial conditions x,=-—1, dx,/dt=0, x,=1,

dx,/dt = 0, really different from the two modes found in the examples,

for this system governed by linear differential equations?

The physical properties of the system when oscillating in the two nor-

mal modes illustrated in Figs. 5-4 and 5-5 can be exploited to simplify the
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Figure 5-5. Coupled oscillators in another normal mode.
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mathematical treatment of the coupled oscillator by using as coordinates

not x, and x, but, instead, two different combinations of these quantities.

Use the physical intuition that you have gained in this chapter to suggest

appropriate forms for the two new coordinates and, if you are mathemati-

cally inclined, reformulate the two differential equations in terms of them.

EXERCISES

5-1. State which electrical circuit corresponds to the coupled oscillator.

How are the circuit parameters related to « and 8?

5-2. Run the coupled-oscillator program with the same parameters

a=1.25,B8=0.25,0or k/m =1, K/m = 0.25, as are used in the example,
but with different initial values of x,, dx,/dt, x,, dx,/dt. For instance, try

x, =1, x; =dx,/dt =dx,/dt =0, and also try x; #0, x, # 0, with
X, # Xy, dx/dt =dx,/dt =0. Observe and describe the oscillations
without bothering to plot them.

5-3. See if it is possible to find a set of initial conditions which will

produce a third normal mode for the system, i.e., an oscillation in which

for both x; and x, each oscillation exactly repeats the preceding oscilla-

tion, but which is different from the two normal modes shown in the ex-

ample.

5-4. Run the program to study the behavior of the coupled oscillator with

various initial conditions using several different sets of o and B, or k/m
and K/m. In particular, investigate making K/k large and then making K/k

small. For each value of K/k, measure the frequencies of both normal

modes by stopping the calculator at the end of each successive cycle of x,
and of x, and recording the values of 7. Obtain enough data to make a plot

of the frequencies of both normal modes versus K/k for a fixed m, say

m = 1. Explain your results.

5-5. Repeat 5-4 for K/k =0 and then for K/k = « (that is, set kK =0).

Describe and explain the behavior of the system in both these limits, stat-

ing just what physical situation each limit pertains to. What is the relation

of the K/k = « limit to the motion of a diatomic molecule?

5-6. Study the details of the program and explain precisely what happens

in each step.

5-7. The normal modes look like sinusoidals, and they are. Write a small

program to generate two sinusoidal curves of appropriate amplitudes and

frequencies, and plot some points on the plots of x, and x, for the two nor-

mal modes shown in the example.

5-8. Using the procedure of 5-7, make the program generate one-half the

sum of the values of x,, or of x,, for the two sinusoidal curves you fitted

to the normal modes. Plot some points on plots shown in the example for

the oscillation with initial values x; = 1, x, = dx,/dt = dx,/dt = 0. Now
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explain the relation between the normal modes and the typical oscillation
studied in the example.

5-9. Using the same a = 1.25 and B8 = 0.25 used in the example, plot x,
and x, for the initial conditions x, = 1, x; = dx,/dt = dx,/dt = 0. Whatis
the relation ofthis oscillation to the normal modes? Modify the procedure
of 5-8 to demonstrate the relation.



 

CHAPTER

SIX

CENTRAL FORCE MOTION
 

6-1. INTRODUCTION

It would be reasonable to say that the most important problem in physics

is that of planetary motion. Many historians consider the field of physics

to date from the work of Newton, and the motion of the planets was the

principal problem Newton set out to solve. As you may know,in the pro-
cess of doing this he not only introduced his law of motion and discovered
the law of gravity, he also independently developed differential and inte-

gral calculus. So planetary motion has had an equally important place in

the history of mathematics.

In working through this chapter, you too will solve the problem of

planetary motion, including the case of unbound trajectories that has such

contemporary significance to NASA. Furthermore, you will solve the

closely related a-particle scattering problem which played the key role in
the discovery of the nucleus of the atom.

The method used for solving the differential equations that arise will be

taken directly from the extension of the general half-increment method

that was developed in the preceding chapter. It is interesting to point out

that the mathematical procedures employed in the method are more

closely related, at least in spirit, to those Newton himself employed than

are the procedures of the modern analytical methods. Once he got used

to the calculator, Newton would have felt very much at home here.

6-2. CENTRAL FORCE EQUATIONS AND SOLUTIONS

Centralforce motion is the motion of a body under the influence of an at-

tractive (or repulsive) force acting always to (or from) a point located at

the center of the coordinate system used to describe its motion (see Fig.

6-1). Examples involving attractive forces are the motion of a planet

about the sun or a satellite about the earth (the force is gravitational), and

an electron about a proton in a hydrogen atom (the force is electrical).

These are examples of central force motion if two approximations are

made. Thefirst is that you can ignore the forces acting between the mov-
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F Figure 6-1. Illustration of central-force

motion for the case of an attractive
force of magnitude F acting on a mov-

M ing body (e.g., the planet Mercury), of

mass m. The direction of the force is al-

ways toward the center of the coordin-

ate system where the other body (e.g.,

the sun), of very much larger mass- M,

can be considered to be fixed.

 

ing body and everything except the body fixed at the center of coordi-

nates. The second is that this body can actually be considered as fixed.

Both approximations are very well justified for planetary motion since the

sun is so massive. This means that the gravitational force acting between

it and any planet dominates the gravitational forces acting between the

planets, and also that the sun can be taken to be fixed at the center of an

appropriately chosen coordinate system. The approximations are also

well justified for satellite motion.

They are a little less justified for the motion of an electron in a hydro-

gen atom, since the proton mass M is only about 2000 times larger than

the electron mass m, and so the proton cannot be precisely stationary. But

it is easy to correct for this because it turns out that the body of mass m

moves relative to the body of mass M as though the latter were fixed and

the mass of the former were reduced slightly to the value mM/(m + M).

(See Ref. 1.)

An example of central force motion involving a repulsive force (provid-

ing a reduced mass correction is made) is the motion of a positively

charged a particle when it scatters from a positively charged nucleus due

to the electrical force acting between them.

Now, consider the equations. This two-dimensional problem will in-

volve two of them, one for the x coordinate of the moving body and the

otherfor its y coordinate. Applying Newton’s law of motion separately to

these coordinates gives

 

d* F,

&m (6D
2

and Tr_s (6-2)

Here F, and F, are the x and y components of the force acting on the
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y

Figure 6-2. Resolution of the force act-

ing on a moving body into its x and y

x components for the case of an attractive

force.

   

 

body. Figure 6-2 shows the relations between these components, the mag-

nitude F of the total force, and the angle 6 between the x axis and a line
drawn from the origin to the body, for the case ofan attractive force. You

can see from the figure that

F,=—Fcos# F,=—Fsin6

and also that

X ) y
cosf =——— sinf =——

\/x2+y2 ‘\/x2+y2

Therefore

XFom—F—2%— p__p—Y

Using these in Egs. (6-1) and (6-2) you obtain

2

ax __F_x (6-3)
dr? m Vx4 y?

2
and __d_y.=_£____}i____ (6-4)

dr? m VxZ+y?

For a gravitational force, Newton’s law of gravitation (Ref. 2) says

that the magnitude of F is

1

=0
where G is the gravitational constant. For an electrical force, Coulomb’s

law of electrostatics (Ref. 3) says that its magnitude is

F—_99 1
4me, (x2+y?)

F=GmM (6-5)

 (6-6)

where g and Q are the magnitudes of the charges of the moving and

fixed bodies, and where 1/4¢, is the Coulomb’s law constant. If the two
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charges are of opposite sign, as for an electron and a nucleus, then the
force is attractive and Eq. (6-6) can be applied directly to (6-3) and (6-4).

But if they are of the same sign, as for an « particle and a nucleus, then
when applying Eq. (6-6), the minus signs in (6-3) and (6-4) must be
changed to plus signs to account for the fact that the force will be repul-

sive.

Putting it all together, you can write the two differential equations as

d*x ax

e= egyHIx=Ca e
Ly_oy
dt2 (x2 _+_ y2)3/2

GM, for a gravitational force

where a= [qQ/4 meom, for an attractive electrical force (6-9)

—qQ/[4me,m, for a repulsive electrical force

and =—a(x2+y»)Py=C, (6-8)

and where3 = —3/2, for a gravitational or electrical force (6-10)

The reason for writing the equations in terms of B, instead of simply mak-

ing the —% power explicit, is that the program will allow for the possibility

of varying B and thus studying some interesting things that would happen

if the law of gravitation, for instance, was not an inverse-square law.

If you look at Egs. (6-7) and (6-8) from the perspective of the previous

chapter, you will immediately recognize that the problem of central force

motion has led you again to a pair of coupled differential equations. You

should be able to solve them in the same way you did in the last chapter.

Indeed, you can! All that is required is to rewrite Eqgs. (5-6) through

(5-11) by changing x; to x, x,to y, C,to C, = —a (x2 + y?)? x, and C, to
C, =—a (x?+ y?)#y. The scheme to be used is identical to the one in Fig.

5-2, except for changing x, to x and x, to y.

It is almost as easy to rewrite the programs of the last chapter. If you

look at the results shown in Tables 6-1 (SR-56) or (HP-25), you will see

thatit is just a matter of changing from x,, x, to x, y, and also changing the

routine for generating the C coefficients. The programs are entered and
used in exactly the same way as those of Chap. 5, except that there is

never any point in running without displaying both x and y.

6-3. ORBITS

You can put your calculator in orbit by operating the program with one of
the sets of conditions shown in the following examples.

Examples

initial x = 1, initial dx/dt = 0, initial y =0,

initial dy/dt = 1.0, At =0.1, a =1, B=—1.5

initial x = 1, initial dx/dt = 0, initial y =0,

initial dy/dt = 1.1, At=0.1, a=1, B=—1.5
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initial x = 1, initial dx/dt = 0, initial y = 0,

initial dy/dt =09, At=0.1, a=1, B=—1.5

initial x = 1, initial dx/dt = 0, initial y = 0,

initial dy/dt =0.8, At=0.1, a=1, B=—1.5

The first set of conditions produces the circular orbit plotted, along with

the others, in Fig. 6-3. The dots give the location of the orbiting body at

equally spaced time intervals. Thus the figure has the properties of a

strobe photo, and you can get a qualitative idea of the speed at any point

in the orbit as it is measured by the distance to the next point. Quantitative

values for dx/dt and dy/dt can be obtained for any point while running the

program by recalling the contents of the registers holding these quantities

when the calculator is stopped to display x or y. Observe that the speed is

constant everywhere in the circular orbit. The time required to complete

one orbit, or the orbital period T, can be measured by stopping the

calculator at the end ofthe first orbit and recalling the contents of the reg-

ister holding the time ¢. Forthe circular orbit the value is T < 6.3, where

the notation means that the point for = 6.3 was a little way into the next

 
Figure 6-3. A set of bound planetary orbits.
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orbit so that 6.3 is a slight overestimate. If a more accurate value is ob-

tained by using the plotted location of that point and the point for t = 6.2

to interpolate, the result is T = 6.28. Of course, this is really 2, as it

should be for a body moving with unit speed around a circle of unit radius.
In the next example the initial value of dy/dt is 10 percent higher than

the value leading to a circular orbit. The resulting orbit is no longer

circular, as you can verify by using a ruler to compare its ‘height’ with its

“width,” or by reading these dimensions from the x and y scales of the

plot. At the point in the orbit opposite to the initial point, the body is con-

siderably farther from the fixed body at the center of the coordinates.

Also, the orbital speed is no longer constant. As the spacing of adjacent

points shows, the speed is lowest when the orbiting body is at its greatest

distance from the fixed body. The period for the orbit is increased to the

value T < 9.0.
In the third example a noncircular orbit was obtained by making a 10

percent reduction in the initial value of dy/dt compared to the value lead-
ing to a circular orbit. For this case the orbiting body gets closer to the

fixed body at the point opposite its initial point, and there its speed is

higher than its initial speed. The orbital period is reduced to T < 4.9.

The final example involves an additional 10 percent reduction in the

initial value of dy/dt. The results are like the preceding one, but exagger-

ated. The orbital period is T > 4.0; that is, the point for t = 4.0 is just a

little before the end ofthefirst orbit, so 4.0 is a slight underestimate. ////

A circular orbit is obtained when two conditions are satisfied: (1) the

initial velocity must be directed perpendicular to the line connecting the

initial position to the center, for reasons that are immediately apparent if
you consider the geometry of a circle, and (2) the initial speed must have

precisely the value for which the centripetal acceleration in a circular

orbit (the acceleration towards the center of the circle), of radius equal to

the initial distance to the center, equals the force acting at that distance

divided by the mass of the body.

When the initial speed is somewhat higher, the force is not strong

enough at that distance to bend the trajectory into a circle because the ini-

tial linear momentum of the body (its mass times its velocity) is too large.

So the body starts off on a trajectory which lies outside the circular orbit.

When the initial speed is somewhat lower than the value leading to a

circular orbit, its initial linear momentum is reduced and so the central

force is more easily able to change the direction of motion, bending the
trajectory into an orbit inside the circular orbit.

The reason why the speed is not constant in a noncircular orbit has to

do with the fact that the force acting on the orbiting body is always

directed to the center. Thus it cannot exert a torque (twist) on it, and the

angular momentum of the body (the component of its linear momentum

perpendicular to a line extending to the center times the length of the line)
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must remain constant. For this to happen, the body must have a higher

speed when it is closer to the fixed body at the center and a lower speed

whenit is farther from that body.

For an orbit lying outside the circular orbit, there is an increase in the

total distance covered, and also a decrease in the average speed, so the

time T required to traverse an orbit is larger than for a circular orbit.

These two effects are both reversed for an orbit lying inside the circular

one, leading thereby to a reduction in the orbital period.

The quantitative aspects of the behavior discussed qualitatively in the

preceding paragraphsis stated succinctly in Kepler’'s three laws ofplane-

tary motion. Be sure to look at Exercises 5-2 through 5-6 which give these

laws and indicate how you can accurately verify them by using results of

running the program.

Example

initial x = 1, initial dx/dt = 0, initial y =0,

initial dy/dt = 1.5, At=0.1, a =1, B=—1.5

Here the body is given an initial speed which is 50 percent higher than the

value leading to a circular orbit. As a consequence, its initial linear

momentum is so high that the central force cannot bend the trajectory into

a bound orbit. Figure 6-4 shows that it escapes on a path approaching a

straight line and with a speed that approaches a constant value as it gets
farther from the central body. This happens because the force acting be-

tween the two bodies decreases rapidly as their separation increases, so
that before long the moving body has effectively escaped the influence of

that force. /11

Example

initial x = 1, initial dx/dt =0, initial y =0

initial dy/dt = 1.1, At=0.1, a=1, B=—(2.1 + 1)/2 =—1.55

In this example the versatility of the numerical method for solving dif-

ferential equations is used to study the behavior of a noncircular orbit

when the central force deviates slightly from the inverse-square law of

Eq. (6-5). Inspection of Egs. (6-5), (6-7), and (6-8) will show you that for

the inverse-square law B=—(2 +1)/2 =—1.5, where the 2 in the

numerator is the power in the force law. For an inverse 2.1 power force

law, the value will be 8 = —(2.1 + 1)/2 = —1.55, which is the one used in

the example.

In contrast to all the bound orbits investigated with the inverse-square

law, Fig. 6-5 shows this orbit does not close on itself. If you use a little

care in following the points around two consecutive orbits, you will see

that the location on the orbit that is farthest from the center advances, i.e.,

it rotates from one orbit to the next in the same direction as the rotation

within an orbit.
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-2.0 -1.5 -1.0 -5 0 .5 1.0

Figure 6-4. An unbound or escape trajectory.

This phenomenon is called precession. On a very much reduced scale,

it is actually found in planetary orbits. For example, the orbit of the planet

Mercury precesses by about 0.1° per century. Most of this is due to

inverse-square gravitational forces exerted on it by other planets. But
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Figure 6-5. Orbited precession in a noninverse-square force.

about one-tenth of the total observed precession, that is, 0.012° per

hundred years, is due to a slight departure from the inverse-square law in

the gravitational force acting between the sun and Mercury, which arises

from a relativistic warping of space in the vicinity of the sun caused byits

very large mass. 11

6-4. a-PARTICLE SCATTERING

You can use the program to study the behavior of a body under the influ-

ence of a repulsive force by simply reversing the sign of a.

Example

initial x = —3, initial dx/dt = 2, initial y = 0.2,

initial dy/dt =0, At =0.1, a=—1, B=—1.5

The results are shown in Fig. 6-6. They represent a body moving from the

left in the general direction of the origin of coordinates, where another
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-3.0 =25 =2.0 -1.5 -1.0 -5 0

Figure 6-6. o-particle scattering.

much more massive body can be assumed to have a fixed location. The

force exerted between the two obeys a repulsive inverse-square law. Thus

the example can represent an « particle making a close collision with a

nucleus, the force between them being the Coulomb repulsion between
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their positive charges, providing they do not actually begin to overlap
(Ref. 4). The stroboscopic properties of the plotted points make what hap-

pens during the scattering very apparent. The « particle moves to the right

with almost constant speed atfirst becauseit is far from the nucleus. Asit
approaches the nucleusit is slowed by the repulsion it begins to feel, scat-

tered through a large angle when it gets quite close, and then recedes

away regaining the speed it had lost.

If the initial value of y is decreased, will the scattering angle decrease

or increase? Use your intuition to make a prediction and then check it by

running the program. /11

EXERCISES

6-1. Using the same values a =1, 8 =—1.5 employed in the example,

run the program to find initial values for x, dx/dt, y, dy/dt which produce a

circular orbit of radius 2. It is easier and more accurate than plotting to

determine if an orbit is circular by comparing the value displayed for y at

x = 0 with the value displayed for x at y = 0. Measure the period of the

orbit by stopping the calculator at the end of two successive revolutions

and recording the values of .

6-2. Kepler’s third law of planetary motion, for the case of circular orbits,

states that the square of the period of the orbit is proportional to the cube

of its radius. Use the periods for the circular orbits of Exercise 6-1 and of

the example to test the law.

6-3. The law for the more general case of elliptical orbits states that the
square of the period of the orbit is proportional to the cube of half its

major axis. Test this form of the law by using data from the four orbits

plotted in the example.

6-4. Kepler’s first law states that each planet moves in an elliptical orbit

with the sun located at one focus of the ellipse. Run the program with ini-

tial conditions that will produce a pronounced ellipse, say a =1,

B =—1.5, and initially x = 1, dx/dt =y = 0, dy/dt = 0.75. One of the foci

of the orbit is at the origin, of course, and the other can be located by e-

voking the obvious symmetry. Use a divider or a ruler to show that the

orbit is actually an ellipse becauseit satisfies the condition that the sum of

the distances from any point on it to the two foci is a constant.

6-5. Kepler’s second law states that a straight line joining a planet and the

sun sweeps out equal areas in space in equal time intervals. Employing

the orbit generated in 6-4, verify this law for several typical sets of points

on the orbit. Use the fact that the calculator displays x and y at uniformly

increasing values of ¢, and use as a measure of the area of the long thin tri-

angles simply their length times their maximum width.

6-6. Take the points on the orbit of 6-4 for which the velocity is essen-

tially perpendicular to the line joining the point to the origin and run the
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program again, stopping at these points to record accurately the velocities
and distances to the origin at each. Calculate the velocity-times-distance

products for each. Explain the relation of these numbers to Kepler’s sec-
ond law, and also to the law of angular-momentum conservation.

6-7. Using the parameters a = 1, 8 = —1.5 of the example, and also the

initial conditions x = 1, dx/dt =y =0, find the largest value of dy/dt
which will still lead to an elliptical bound orbit instead of a parabolic or

hyperbolic escape orbit. Then evaluate the initial values of the kinetic

energy K = m(dy/dt)?/2, potential energy V = —am/x, and total energy
E = K + V. Whatis the value of E at other points on the orbit? What are

the values of E for bound orbits and for escape orbits?

6-8. The orbit for the precise value of total energy that separates bound

orbits from escape orbits is actually a parabola. Repeat 6-7 with a very

small increase in the initial dy/dt. Plot the orbit that results and compareit

with the hyperbolic orbit plotted in the example. Can you distinguish a

difference between the two visually? Can you devise a geometrical test

along the lines used in 6-4?

6-9. Find a set of initial conditions that, when run in the program, will

produce a circular orbit of radius 1, using the parameters a =2, 8 =—1.5
to represent doubling the mass of the star located at the origin. Measure

the orbital period by stopping the calculator to see ¢ at the beginning and

end of a revolution. By comparison with the circular orbit in the example,

determine how the period of a circular orbit of a given radius varies with
the mass at the origin. The same relation applies to the mass of a planet

and the period of its satellite and is used to determine the mass of the
earth.

6-10. Use the values of the gravitational constant G =6.67 X 1071

N -m2/kg2 (newton-meters squared per square kilogram), and of the solar

mass M = 1.99 X 103 kg, to evaluate « for the solar system. Then gener-
ate a circular orbit ofradius 1.50 X 10!* m, the radius of the earth’s almost

circular orbit about the sun. Determine the value of the period of the orbit

and compare it with the length of the year.

6-11. According to Bohr, the electron in the hydrogen atom moves in a

circular orbit about the nuclear proton with angular momentum
h/27 =1.06 X 10734 J-s (joule-seconds). The electron’s charge and mass

are ¢ =—1.60 X 107 C (coulomb) and m =9.11 X 1073 kg, while the

proton’s charge is Q = +1.60 X 107C. Evaluate « = qQ/4me,m, where

1/47ey, = 8.99 X 10° N-m?/C2. Then use the program to find a circular
orbit with a radius and velocity that will give the proper angular momen-

tum. Do this by making an initial guess at the radius, finding a circular

orbit by inspecting the x and y displays, calculating the angular momen-

tum, modifying the initially guessed radius as is appropriate, and repeat-

ing for one or two more iterations. The radius finally obtained will be

Bohr’s value of the radius of the hydrogen atom, which is a good approx-

imation to the ‘“‘average’ radius predicted by the more accurate Schroe-

dinger equation.
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6-12. Investigate the stability of circular orbits for inverse-square and

inverse-cube force laws as follows. Set up a circular inverse-square-law
orbit by running the program with « =1, 8 =—1.5, and initially x = 1,

dx/dt =y =0, dy/dt = 1. Go through approximately one quarter of an
orbit, stop the calculator, and compare the value ofy with the initial value

ofx to verify that the orbit is circular. Then represent giving the planet in

orbit a radially outward impulse, due to being hit by a very large meteor-

ite, by adding 0.1 to the contents of the dy/dt register. Restart and watch

the values ofx at y = 0 and ofy at x = 0. How would you describe the tra-

jectory of the planet after being hit? Next show that a circular orbit is pos-

sible with an inverse-cube force law by repeating the procedure for the

first quarter of an orbit, except using 8 =—2.0. Why is it that if a =1,

B = —1.5 allows a circular orbit of radius 1, then a = 1, 8 = —2.0 should

also allow a circular orbit of that radius? Now again give the planet the
same radially outward impulse and watch the values of x at y = 0 and of y

at x = 0. What is the trajectory like in this case? Would it be possible for
the sun to have a planetary system if gravity obeyed an inverse-cube law?

6-13. Run the program and plot a number of a-particle scattering trajec-

tories, using the same parameters « = —1, 8 = —1.5 and initial conditions

x =—3,dx/dt =2, dy/dt = 0, with a number of different initial values of y

ranging from 0.02 to 2.00.

6-14. Repeat 6-13 using a = —2 to represent doubling the nuclear charge.

6-15. Run the program for a-particle scattering trajectories with the same

parameters as in 6-13, but with the initial y =0 to generate a head-on

collision and a subsequent backscattering. Record the distance of closest

approach of the « particle to the nucleus at the origin. Then evaluate the

kinetic energy K = m(dx/dt)?/2, potential energy V = —am/x, and total

energy E = K + V initially and at the point of closest approach, and com-

ment on the relation between these quantities.

6-16. When « particles of kinetic energy K = m(dx/dt)?/2 =40 MeV

(megaelectronvolts) = 6.4 X 10712 ] are scattered from uranium nuclei at

angles larger than about 60°, departures begin to be apparent from the

behavior predicted by making the assumption that the only force acting

between the two bodies is their Coulomb force. This is interpreted as

due to the onset of the nuclear force arising from overlap of the « particle

and the nucleus. Use these experimental observations and the program to

estimate the radius of the uranium nucleus in the following way. Evaluate

a =—qQ/4mey,m, where the o particle charge is g =2 X 1.6 X 107° C,

the nuclear charge is Q =92 X 1.6 X 107" C, the « particle mass is

m=4 X 1.7 X 107%" kg, and 1/47e, = 9.0 X 10° N-m?/C2. Next use the

quoted value of K to evaluate dx/dt. Then make several runs of the pro-

gram using different values of y until you get a scattering angle of about

60°. The distance of closest approach of the trajectory giving that scatter-

ing angle provides the estimate you seek.
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6-17. Study the details of the program and explain precisely what happens
in each step.

6-18. Find some other system, not necessarily in the field of physics, to
which a coupled half-increment scheme similar to the one used in Chaps.
5 and 6 can be applied. Then write a modification of the programs in those

chapters to treat the system.
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CHAPTER

SEVEN
RANDOM PROCESSES
 

7-1. INTRODUCTION

This chapter will give you a break from the routine of setting up and solv-

ing differential equations. Its purpose is to show you that programmable

pocket calculators have other interesting applications in applied mathe-

matical physics. This will be accomplished by using the calculator to sim-

ulate and then analyze a simple experiment that has some profound

consequences.

The experiment is illustrated in Fig. 7-1. A box is divided down its

center by a partition with a small hole which you keep closed by a mov-

able vane while putting a certain number of molecules in the left half and
some other number of molecules in the right half. All the molecules are

identical (and their density is not so very high that you have to consider

interactions between them). Therefore, when you open the vane each

molecule has the same chance as any other to be traveling on a path which

happens to carry it through the hole. So it is equally likely for any mole-

cule in either side to be the next one to pass through the hole and end up

on the other side. In the experiment you monitor the number n;, of mole-

cules on the left, as that number changes each time a molecule passes

through the hole in one direction or the other.

It would be quite difficult to perform the experiment with real mole-

cules in a real box. Fortunately, it is not necessary since you can accu-

rately simulate it on the calculator by using a random-number technique

based on the following argument.

If at some instant there are n, molecules on the left and n, on the right,

then since each molecule has the same chance of being the next to go

through the hole, the probability is n;/(n;, + n,) that the next one to do so

will be one on the left. Now consider picking at random a number «; from

a uniformly distributed set of numbers in the range 0 < u; = 1. The prob-

ability that the one you get will have a value in the range

124
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] n,

Figure 7-1. Representation of molecules in

two halves of a box.    

0 = u; = ny/(n; + n,) is just equal to the probability that the next passage

of a molecule through the hole is from left to right. Do you see why?

Thus the behavior of the system can be simulated in a manner that is in

complete agreement with the laws of probability by at each stage making

the calculator: (1) generate a random number from 0 to 1; (2) test it

against the current value of the fraction of molecules on the left; and (3)

“move”’ a molecule from left to right if the numberis smaller than the frac-
tion, or in the opposite direction if it is larger, by subtracting or adding 1 to
the appropriate storage registers.

The results of the simulation will lead you to an understanding of why
there is an irrevocable tendency for the disorder, or entropy, of the sys-

tem to increase as time evolves, providing it contains a reasonably large

number of molecules. And you will also be able to connect this with the

fact that on the macroscopic scale (e.g., where systems contain very large

numbers of molecules), the direction in which time actually does evolve is

always apparent, even though on the microscopic scale (where the

numbers are very small) there is no way to tell the direction of the arrow

of time. Butfirst you must learn how to make your calculator produce ran-

dom numbers.

7-2. RANDOM NUMBER GENERATION

A convenient way to generate a sequence of quasi random numbers u;

which are uniformly distributed in the range 0 = u; = 1 is to start with
any ‘“‘seed” number u, in the same range and then generate the first
number u, by calculating

u, = fractional part of [(7 + ug)®]

The fractional part of a number is what remains after everything to the left

of the decimal point has been deleted. The number «,is used for whatever

purpose you wish and is also used to generate the next number u, of the

sequence by calculating

u, = fractional part of [(7 + u,)?]

The scheme can be continued almost indefinitely to yield numbers with

the desired properties. Because of the procedure used, a sequence will



126

T
a
b
l
e

7-
1.

(
H
P
-
2
5
)
R
a
n
d
o
m
-
n
u
m
b
e
r

g
e
n
e
r
a
t
o
r
 

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

0
1

2
3

4

Uo
,
Ui

—
—

—
—

pr
el

oa
de

d
P
r
o
g
r
a
m

 S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

X
Y

Z
C
o
m
m
e
n
t
s
 

01
15

73
|g

=
™

02
24

00
|R
CL

O
U

T

03
51

+
T
+
U

04
05

5
5

T
+
U

0
5

1
4

0
3

f
y°
©

(
m
+

u
,
)

06
15

01
g
F
R
A
C

U,

07
23

00
|

S
T
O

O
u,

08
14

74
f
P
A
U
S
E

U,

(o
r

74
)

(o
r
R/
S)

09
13

01
G
T
O

0
1

U,
 

 
 

 
 

 
 St

ar
t
l
o
o
p

u,
=

fr
ac

.
p
a
r
t
[
(
7
+

u)
°’
]

T
o

g
e
n
e
r
a
t
e

u
,

T
o
n
e
w

l
o
o
p
 



127

T
a
b
l
e

7-
1.

(
S
R
-
5
6
)
R
a
n
d
o
m
-
n
u
m
b
e
r

g
e
n
e
r
a
t
o
r
 

0

Uy
,

U;
— p
re
lo
ad
ed

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

3
4

5

P
r
o
g
r
a
m

 

St
ep

C
o
d
e

K
e
y
E
n
t
r
y

C
o
m
m
e
n
t
s

St
ep

C
o
d
e

K
e
y
E
n
t
r
y

C
o
m
m
e
n
t
s
 

00 01 02 03 04 05 06 07 08 09

69 84 34 00 94 45 05 94 12 29

2
n
d

=

R
C
L

ol Luw

I
N
V

2
n
d

In
t

,
st
ar
t
l
o
o
p

1
0

U
y

™
+

U
y

(
m
+

up
)®

u,
=

fr
ac
.
pa
rt

[(
m
+

u,
)’
]

11 12 13 14 15 16

33 00 59
(o

r
41

)
59

(o
r
46
)

22 00 00

 S
T
O
0

2
n
d
P
A
U
S
E

(o
r
R/
S)

2
n
d
P
A
U
S
E

(o
r
2
n
d
N
O
P
)

G
T
O

0 0

 T
o
g
e
n
e
r
a
t
e

u,

T
o
n
e
w

l
o
o
p

 
 

 
 

   



128 RANDOM PROCESSES

ultimately start to repeat itself. But this will only happen when a number

generated is rounded off by the internal limitations of the calculator (by

the fact that it only retains a limited number of digits) to be equal to a
number earlier in the sequence. This is in no way a practical limitation

because the two numbers must be equal to within all the digits retained in-
ternally by the calculator (in contrast to the generally smaller number of

digits that you choose to display).

The programs in Tables 7-1 (HP-25) and (SR-56) carry out this

scheme. They are entered and run as follows.

For the HP-25§

Switch to PRGM; key f PRGM to clear; enter the program, choosing either
the pause or halt instruction in step 08; switch back to RUN; set to step 00

by keying f PRGM. Then choose any seed u, in the range 0 to 1 and enter

its value on the keyboard, followed by STO 0. To start, push R/S; to re-
start after a program-controlled stop, push R/S; to stop when running, push

R/S. To generate a different sequence you must start with a different value

of the seed u,.

For the SR-56

Key 2nd CP to clear; key LRN; enter the program, choosing either the
pause-pause or the halt-no operation instructions for steps 12 and 13;

key LRN; set to step 00 by keying RST. Then choose any seed «, in the
range 0 to 1 and enter its value on the keyboard, followed by STO 0. To
start, push R/S; to restart after a program-controlled stop, push R/S; to

stop when running, push R/S. To generate a different sequence you must

start with a different value of the seed u,,.

Examples (HP-25)

u, =0.261832695

u; =0.6476, 0.1117, 0.4350, 0.2956, 0.7635, 0.1542, 0.8773, ...

u, =0.261832696
u; =0.6476, 0.1117, 0.4350, 0.2956, 0.7635, 0.1542, 0.8773,...

uy=0.261832697
u; =0.6476, 0.1141, 0.7648, 0.6122, 0.3665, 0.2970, 0.7524,...

Examples (SR-56)

u, =0.261832695

u; =0.6476, 0.1116, 0.3816, 0.8532, 0.4077, 0.2980, 0.4004, . ..

uy=10.261832696
u; =0.6476, 0.1123, 0.7697, 0.3213, 0.9876, 0.4094, 0.6001, . ..

uy=0.261832697
u; =0.6476, 0.1130, 0.1559, 0.8887, 0.3963, 0.2443, 0.0092, ...
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For convenience, all the sequences are shown as they appear when the

calculator is set to round off to four decimal places (by keying f FIX 4 on
the HP-25, or 2nd fix 4 on the SR-56). It is necessary to quote separately
the three sequences obtained for each calculator, even though the same

values of u, were used in both, because they are different. 1

The reason why the two calculators produce different sequences from
the same seeds has to do with the fact that one of them retains more digits
in the numbers used in its internal calculations than does the other (in con-

trast to the fact that for both, the maximum number of digits that can be
displayed is the same).

If you inspect the sequences obtained in the examples, keeping in mind

the method used to obtain them, you should be able to do the following:

Explain why the u; in any sequence are random. Explain why they are,

nevertheless, called quasi random numbers. Estimate how many different

sequences the calculators are capable of generating. Determine which of

the calculators retains a larger number of digits internally.

Less apparent than the randomness of the u; is the uniformity of their

distribution over the range 0 to 1. When you use these random numbersin

the program of the next section, you will find evidence that there are as

many in the upper half of the range as in the lower half. Exercise 7-8

suggests how you can test their uniformity with finer resolution.

7-3. ENTROPY AND THE ARROW OF TIME

The programs listed in Tables 7-2 (HP-25) or (SR-56) use the random-

number-generating programs to perform the simulation of the experiment

in the manner explained in detail earlier. They also have a feature not

mentioned earlier. Each time a new value is produced for n;, the number

of molecules present in the left half of the box, that value is entered in a

permanently programmed statistical routine which is accessed in each

calculator through the 3+ key. After the “experiment” is finished, it is

very easy to read out the average value of n;, the standard deviation of n,

(a measure of the fluctuations in its value), and the number N of values of

n; that were analyzed to produce these two quantities. To use these pro-

grams, proceed with the following instructions.

For the HP-25

Switch to PRGM, key f PRGM to clear, then enter the program. If you want
to record the results, both steps 22 and 28 should be R/S; otherwise both

should be f PAUSE. After it is entered, switch to RUN, and set to step 00

by keying f PRGM. Key in the value of the seed u,, followed by STO 0. Do
the same for the initial number n; of molecules on the left and n, of mole-

cules on the right, following the first by STO 1, and the second by STO 2.



130

T
a
b
l
e

7-
2.

(
H
P
-
2
5
)
E
n
t
r
o
p
y
a
n
d

th
e
a
r
r
o
w
o
f
t
i
m
e
 

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

0
1

2
3

4
5

6
7

Ug
,

U;
n,

n
y
n

o
o

e
o

u
s
e
d
b
y
X

+
;
N
i
s
i
n
r
e
g
i
s
t
e
r

3
.
.
.
.
.
.
.
.
.
.

)

p
r
e
l
o
a
d
e
d

P
r
o
g
r
a
m
 

S
t
e
p

C
o
d
e

K
e
y

E
n
t
r
y

X
Y

Z
T

C
o
m
m
e
n
t
s
 

01
01

0

02
23

03
|S

TO
3

03
23

06
|S

TO
6

04
23

07
|S
TO

7

05
24

01
|R
CL

1

0
6

2
3

51
0
2

|
S
T
O
+

2
n,

2
n
o
w

n
=
n
;
+

n
,

0
7

15
7
3

|g
«

™
St
ar
t
l
o
o
p

0
8

2
4

0
0

|[
RC

L
O

U
y

T

0
9

51
+

T
+

U
,

10
05

5
5

T
+

u,
11

14
0
3

[
y
°

(
7
+

up
)®

12
15

01
|g
F
R
A
C

U,
u,

=
fr
ac
.
pa
rt

[(
7
+

u,
)°
]

13
23

00
|S

TO
O

U,
T
o

ge
ne
ra
te

u,
14

24
01

|R
CL

1
n,

Uy
15

2
4

0
2

|
R
C
L

2
n

n,
u,

3
z
e
r
o
e
d

6
z
e
r
o
e
d

7
z
e
r
o
e
d

o o oo S

 
 

 
  

  



131

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

23 23

14 13 51 2
4 1
4 (o

r

13 41 24 14
(o

r
74
)

13

71 51 25 01 01 01 74 74
)

25 07 01 01 01 74 25 07

f
x
=
y

G
T
O

2
5

1

S
T
O
+
1

R
C
L

1

f
P
A
U
S
E

(o
r
R
/
S
)

S
+

G
T
O

0
7

1

S
T
O
-
1

R
C
L

1

f
P
A
U
S
E

(o
r
R
/
S
)

S
+

G
T
O

0
7

n n
;

U
,

u
, u
,

T
e
s
t

u
,

to
d
e
t
e
r
m
i
n
e

di
re

ct
io

n

m
o
l
e
c
u
l
e
m
o
v
e
s

1
n
o
w

n;
+

1
if
m
o
v
e
d

to
le

ft

T
o
n
e
w

l
o
o
p

1
n
o
w

n,
—

1
if
m
o
v
e
d

to
ri
gh
t

T
o
n
e
w

l
o
o
p
 

 
 

  
  

 



132

T
a
b
l
e

7-
2.

(
S
R
-
5
6
)
E
n
t
r
o
p
y
a
n
d
th

e
a
i
r
o
w
o
f
t
i
m
e

1
2

3

n
;

n
y
,
n

—
_

pr
el

oa
de

d

R
e
g
i
s
t
e
r
C
o
n
t
e
n
t
s
:

4
5

6
7

8
9

—
(u
se
d
b
y
X
+;
N

is
in

re
gi

st
er

7)
—

—

P
r
o
g
r
a
m
 

S
t
e
p

C
o
d
e

K
e
y

En
tr
y

C
o
m
m
e
n
t
s

St
ep

C
o
d
e

K
e
y

En
tr
y

C
o
m
m
e
n
t
s
 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
 00 33 05 33 06 33 07 34 0t 35 02 69 84 34 00 94

 0
0

S
T
O

5
S
z
e
r
o
e
d

S
T
O

6
6
z
e
r
o
e
d

S
T
O

7
7
z
e
r
o
e
d

R
C
L

1
n
;

S
U
M

2
2
n
o
w

n
=

n;
+

n
,

2
n
d

=«
m,

st
ar
t
lo
op

+

R
C
L

0
U
p

=
7
r
+
u
0  

31 32 33 34 35 36 37 38 39 40 41 42 43 44   0
4

0
5

0
1 3
5

01 3
4

01 5
9

(o
r
41

)

5
9

(o
r
46

)

2
6

0
4

2
2

0
1

0
1   

4 5 1
1

S
U
M

1
1
n
o
w

n;
+
1

if
m
o
v
e
d

to
le
ft

R
C
L

1
2
n
d
P
A
U
S
E

(o
r
R/

S)
2
n
d
P
A
U
S
E

(o
r
2
n
d
N
O
P
)

2
n
d

f(
n)

>
+

G
T
O

1 1
T
o
n
e
w
lo
op  



133

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 45 05 94 12 29 33 32 34 01 54 34 02 94 47

 I
N
V

2
n
d

In
t

S
T
O

x
s
t

R
C
L

R
C
L

2
n
d
x
=
t

 (
7
T
+

u
o
)
s

u,
=

fr
ac

.
pa

rt
[(

m
+

u,
)’
]

T
o

g
e
n
e
r
a
t
e

u,

T
e
s
t

re
gi

st
er

l
o
a
d
e
d
w
i
t
h

u,

n
; n n
,
n

T
e
s
t

u,
to

d
e
t
e
r
m
i
n
e

di
re

ct
io

n

m
o
l
e
c
u
l
e
m
o
v
e
s

  45 47 49 50 51 52 53 54 55 56 57

 01 12 3
5 01 3
4

0
1 5
9

(o
r
41

)

5
9

(o
r
46

)

2
6 22 01 01

 I
N
V

S
U
M

1

R
C
L

1

2
n
d
P
A
U
S
E

(o
r
R/
S)

2
n
d
P
A
U
S
E

(o
r
2
n
d
N
O
P
)

2
n
d

f(
n)

>
+

G
T
O

1 1

 

1
n
o
w

n;
—

1i
f
m
o
v
e
d

to
ri

gh
t

 



134 RANDOM PROCESSES

Key f FIX 0, for the most convenient display of the integral number n,.
Start by pushing R/S, and stop by doing the same. After a run, key f FIX

3, obtain the standard deviation of n, by keying f s,its average by keying f
X, and then push the =+ key to calculate the ratio of the standard deviation

to the mean, which is a measure of the fluctuations per molecule. To ob-

tain the number N of values of n, that were analyzed statistically, key RCL

3. Itis possible to zero the + key registers during a run, butthis is a cum-
bersome procedure that is best avoided.

For the SR-56

Key 2nd CP to clear, key LRN, then enter the program. If you want to

record the results, both steps 38, 39 and steps 51, 52 should be R/S, 2nd

NOP; otherwise both should be 2nd pause, 2nd pause. After it is en-

tered, key LRN, and set to step 00 by keying RST. Key in the value of the
seed u,, followed by STO 0. Do the same for the initial number n; of mole-

cules on the left and n, of molecules on the right, following the first by STO
1, and the second by STO 2. Key 2nd fix 0, for the most convenient
display of the integral number n,. Start by pushing R/S, and stop by doing

the same. After a run, key 2nd fix 3, obtain the average of n; by keying

2nd f(n) Mean, record it, obtain the standard deviation by keying 2nd
f(n) S.Dev, then calculate the standard deviation divided by the average to

obtain a measure of the fluctuations per molecule. To obtain the number

N of values of n; that were analyzed statistically, key RCL 7. It is possible

to zero the X+ key registers during a run, but this is a cumbersome

procedure that is best avoided.

Example

initial n; = 60, initial n, =0

Successive values of n; are shown in the lower part of Fig. 7-2. The seed u,

which produced these values is not quoted because it influences only the
details of the behavior of the experiment. The general features are the

same for all u,,.

When the experiment began, n, began to decrease as it obviously must.

The decrease was uniform until there were enough molecules on the right

side of the box that one of them happened to be the one to be chosen by

chance to go through the hole. At this point there was a small upward fluc-

tuation superimposed on the continuing downward trend in n,. The closer

n; got to 30 (one-half the total number of molecules in the box), the more

pronounced its fluctuations. It ended up fluctuating around an average

value of about 30.

To determine this value more accurately, a statistical analysis of the n,

values was made over an interval starting at the point indicated by the

small arrow and continuing until 128 molecules passed through the hole.

The average of n;, was found to be 30.156. Since n, fluctuates, you would

not expect its average over a restricted number of values to be precisely
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Entropy and the arrow of time

 

S. dev.=1.374

Zeroed T + Avg. =2.874

S. dev./avg. = 0.478

N=128

 

S. dev. =2.790

Zeroed T + Avg. =30.156

S. dev./avg. = 0.093

N=128

Figure 7-2. Bottom: Successive values of n;,, the number of molecules in the left-hand side
of the box, in an experiment in which n, was initially 60 and n,, the number in the right-
hand side, was initially 0. Top: The same, except with initial values for n; and n, of 6 and

0, respectively.

30. A measure of its fluctuations is given by the standard deviation of n,,

which was found to be 2.790. Also of interest is the standard deviation

divided by the average, which was 0.093. 111

Example

initial n, = 6, initial n, =0

The values assumed by n, in this example are shown in the upper part of
Fig. 7-2. Here there is also a decrease in n, at the very beginning of the ex-
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periment. There has to be since the first molecule to go through the hole

certainly moves from left to right. But that is about all that can be said

about the presence of a trend in this example. In fact, the behavior of n, is

completely dominated by its fluctuations. Note, for instance, that on sev-

eral occasions during the experiment all six molecules fluctuated back
into the left side of the box.

For comparison with the preceding example, a statistical analysis was
made on the n, values over the same interval. The average was 2.874, the

standard deviation was 1.374, and the standard deviation divided by the

average was 0.478.

The average of n; was almost as far from 3 (one-half the total number of

molecules) as the average of n; was from 30 in the experiment carried out

in the previous example. This is not surprising since the standard devia-

tion of n, was within a factor of 2 of being as large as in that example. Ac-

tually, a direct comparison of the standard deviationsis a little misleading,

as it fails to convey the obvious fact that the fluctuations in this example
are very much more significant. The standard deviation divided by the
average is more meaningful since it measures the fluctuations per mole-

cule. It was aboutfive times larger in this experiment. /11

What does all this have to do with entropy and the arrow of time? En-

tropy is a quantity that arises in two fields of physics—thermodynamics

and statistical mechanics. Definitions of entropy which are apparently dif-

ferent, but actually equivalent, are used in each field (Ref. 1). The one that

is pertinent here, expressed in qualitative terms,is: *“ Entropy is a measure

of the extent of the disorder in a system.”

Considerthe first experiment. It started off with all 60 molecules in the

left side of the box. In this state the system can be said to have a high
degree of order, or a low degree of disorder, defining thereby the meaning

of these two words as used in this context. Thus the initial entropy of the
system was low. After the experiment ran for a while, the molecules dis-

tributed themselves through both halves of the box. This happened spon-

taneously—the system was completely isolated from external influences

once you started the experiment by opening the hole. Since the system

lostits initial ordering and became disordered, its entropy became high.

The experiment provides and example of one form of the second law of

thermodynamics (Ref. 2):

In a natural process the entropy of an isolated system containing

many particles will spontaneously increase.

The basis of the law is that a state of disorder, or high entropy, is the most

probable one because there are many more ways to achieve disorder than

to achieve order.

How many particles must the system contain for the second law to

apply? The experiment just discussed shows you that it applies quite well
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with 60. Though there continue to be fluctuations in the number of mole-
cules in the left side of the box after that number works its way to approxi-
mately 30, it is apparent that you could wait yourlifetime without seeing

the giant fluctuation that would make most of the molecules temporarily

pile into the left side, significantly decreasing the entropy of the system. If
the box contained as many gas molecules as in a liter at atmospheric pres-

sure and room temperature, that is, ~ 10%,in the lifetime of the solar sys-

tem such a fluctuation probably would not occur.

On the other hand, the behavior of the experiment with only 6 mole-

cules in the box bore no relation to the predictions of the second law of

thermodynamics. The fluctuations were so large, because the number of

molecules was so small, that they completely overrode any general trend.

As for the arrow of time, what is involved is the question of how nature

defines the natural direction of the flight of time. To understand the ques-

tion you must understand that the basic laws of physics describing the be-
havior of individual particles apparently make no distinction as to the di-

rection of time. For instance, Newton’s law d2x/dt? = F/m is unchanged if

t is replaced by — ¢, since d%x/d(— t)%2 = d?x/dt%. You can see this if you

look again at Fig. 6-6. If you have not recently seen the figure, you may

not remember whether the « particle was incident on the nucleus from the

top of the figure moving down, or incident from the left of the figure mov-
ing right. In fact, either is a possible motion of the « particle. Therefore, if
you saw a motion picture of the process with the a particle incident from
the top moving down, you would not be able to tell whether that was what

actually happened or whether you were being shown a movie of the « par-

ticle incident from the left moving right, but with the direction of time

reversed because the film was being run backwards.

Another example is found in the top part of Fig. 7-2. If you were

presented with this sequence of values of n; for the system of 6 mole-

cules, you could not use it to distinguish the direction of the arrow of time.

It could just as well represent the results of an experiment in which the

initial value of n, was 3, plotted with that point on the right side of the fig-

ure and each subsequent value plotted one additional unit of distance to

the left.

Butif you look at the bottom part of Fig. 7-2, you can tell immediately

thatit is plotted with the natural direction of time increasing to the right. If

someone showed you a movie of the molecules in the box in which the ini-

tial value of n;, was 26, with n;, subsequently fluctuating around 30 for a

minute or two and then spontaneously building up to a value of 60, you

would know that the film was being run backwards. In its own way, nature
has contrived to define the direction of the arrow of time by the behavior

of many-particle systems, even though it is not defined by the behavior of

the few-particle systems which are their constituent parts.

Reference 2 contains an extensive discussion of the subject of this

chapter.
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EXERCISES

7-1. Explain precisely why the random-number-generating scheme

should, in fact, generate a sequence of numbers in which each has no ap-

parent relation to the other, and which are uniformly distributed from 0 to
1.

7-2. Do a number of additional runs of the molecules-in-the-box program

using the same initial values of n; = 60, n, =0, but a different «, each

time. Plot one or two, and just watch the display for the others. In what

ways are the results of the individual experiments different from each
other, and in what ways are they the same?

7-3. Run the program using the initial values n, = 0, n, = 60 and discuss

the results.

7-4. Make a run with n; = 30, n, = 30 initially, stopping it periodically to

record the standard deviation and average of n;, as well as the number N
of values of n, that have been analyzed. Then plot the standard deviation,

the average, and the standard deviation divided by the average, versus N.

Comment on your results.

7-5. Run the program for a few cases with n, = 6, n, = 0 and with n, =0,
n, = 6. Compare the results with Exercises 7-2 and 7-3.

7-6. Run the program starting with equal distributions for the following

cases:n; =n, =2,4,8,16,.... Stop the calculator the first time n; equals

the initial value of n; + n,. Record the number N of moves which was

required for all the molecules to go, in an extreme fluctuation, to one

side of the box. The number of molecules that are contained in one liter of
gas at room temperature and pressure exceeds 102°. How difficultis it for

an initial n; = 10%, n, =0 distribution to become a n; =0.5 X 10%,

n,=0.5 X 1020 distribution? How difficult is it for an initial

n, =0.5 X 10%, n, = 0.5 X 10%° distribution to become a n; = 102, n, =0

distribution?

7-7. Study the details of the programs and explain precisely what happens

in each step.

7-8. Write a program to test whether or not the quasi random numbers are

uniformly distributed by sorting them into, say 5, equal width bins. Use it

on the number-generation program. Then discuss the results you obtain

with particular reference to the following question: Since there is only

time to run a finite sample through the sorting program, how large can the

fluctuations in the contents of each bin be before there is reason to ques-

tion the uniformity of the distribution?

7-9. Devise your own scheme to produce uniformly distributed quasi ran-

dom numbers. Write a program to implement it. Inspect the results of a

number of runs for evidence of randomness. Then run a sample through

the sorting program of 7-8 to test for uniformity.

7-10. Write a program using quasi random numbers to simulate-a one-
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dimensional “‘random walk.”” Discuss how it can be used to model Brown-
ian motion, gas diffusion, or multiple small-angle a-particle scattering.
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CHAPTER

EIGHT

SCHROEDINGER’S EQUATION
 

8-1. INTRODUCTION

Schroedinger’s equation is to quantum mechanics what Newton’s law is

to classical mechanics. Like Newton’s law, it was obtained by postulates

designed to ensure its agreement with a few key phenomena, then later

was found to be capable of explaining a very large number of others. Its

field of application, quantum mechanics, is the mechanics of microscopic

systems—atoms, molecules, solids, nuclei, and elementary particles. For

this reason, the physical phenomena to which Schroedinger’s equation

pertains may be less familiar to you than the macroscopic phenomena,

such as those treated in earlier chapters, that fall within the field of clas-

sical mechanics. Nevertheless, the properties of quantum-mechanical

systems are just as important as the properties of classical-mechanical

systems. In this chapter you will see among other things how solutions of

Schroedinger’s equation explain the most important property—energy

quantization.

To obtain solutions of Schroedinger’s equation you will return to the

main stream of the book and employ the general half-increment method.

From the mathematical point of view, it is just another differential equa-

tion to which the numerical method can be applied immediately. But there

are interesting differences in the way the solutions are used, as you will

see.

8-2. PLAUSIBILITY ARGUMENT FOR SCHROEDINGER’S
EQUATION

Before solving the equation you must know its form. The purpose of this

section is to take you through an argument that starts with three proper-

ties it is postulated to have, employs them in a simple calculation, and

then makes a final postulate that produces the equation. The argumentis

140
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not a derivation; Schroedinger’s equation cannot be derived from some-
thing more basic, any more than Newton’s law can be so derived. But the
argument can help make the equation seem more plausible to you than it

would be if it were simply quoted without any prior consideration. This

section will make some minimal demands on your physics background. If

you are willing to take Schroedinger’s equation itself as the basic

postulate in the same way that you take Newton’s law as a basic

postulate, you can skip to the next section.

Schroedinger’s equation is a generalization of de Broglie’s relation

(Ref. 1)

my =~ (8-1)

between the momentum mv of a particle of mass m and constant speed v,

the wavelength A of a wave which is associated with the particle, and

Planck’s constant

h=6.63 X 1073 J-s (8-2)

It is said that a wave is associated with the particle because many experi-

ments show that in certain circumstances a particle moves as if it were
governed by the propagation of an associated wave. Specifically, experi-

ments show there are striking diffraction effects in the behavior of micro-

scopic particles (like electrons) and diffraction can be understood only on

the basis of the behavior of waves (Ref. 2). These effects are not seen in

the motion of macroscopic particles (like billiard balls) because Planck’s

constant is so small that the de Broglie wavelength X = h/mv is far too

minute to lead to measurable diffraction, unless the momentum mv is also

as small as it is for microscopic particles of extremely low mass m. The

first postulate is that Schroedinger’s equation be consistent with Eq. (8-1).

The second postulate is related to the first. It is that the function

describing the mathematical form of the wave associated with a particle

whose de Broglie wavelength is A must be a sinusoidal, say a sine, with

that wavelength. The justification is that a sinusoidal is the simplest os-

cillatory function for which a unique constant wavelength can be defined.

The function can be called the wavefunction and is symbolized by . Thus

for a particle moving along the x axis with de Broglie wavelength A, the

wavefunction is taken to be

 

27Tx> (8-3)
¢:=sin<

Note that A is indeed the wavelength of this sinusoidal wave since if x
increases by the amount A, then the argument of the sine increases by 2,

and so the sine will go through one full cycle. Note also that Eq. (8-3) is

meaningful only for the case of a particle of constant speed v at all posi-

tions x for which Eq. (8-1) says A will be a constant. It is not consistent to
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speak of a wavelength that varies with position significantly, as such a

concept is not well defined. (If you don’t believe this, draw a careful

sketch of an oscillatory function in which the oscillations bunch closer

and closer together with increasing x. Then try to decide, for a particular

x, what the wavelength is.) The second postulate is that Schroedinger’s

equation must be consistent with Eq. (8-3), i.e., that it have (8-3) as a solu-

tion for the case of a particle of constant speed.
The third postulate is the reasonable one that Schroedinger’s equation

be consistent with the law of energy conservation

K+V=E (8-4)

where K is the kinetic energy of the particle, V is its potential energy, and

E is its total energy.

The first step in the calculation is to combine Eqgs. (8-1) and (8-4). You

express the kinetic energy of the particle in terms of its mass and speed

 

 

2
K="3

Then (8-4) becomes

@fl+v=E (8-5)

Using (8-1) this immediately gives

7’:5\—2 =E—V

or % = Zh_r;z (E—V) (8-6)

You are trying to develop a differential equation which has (8-3) as a

solution and is also consistent with (8-6). So the next step is to generate

some derivatives. Try taking the second derivative of (8-3) with respect

to its independent variable x. You first have

i _23,(2
dx A A

fl__ 2 2. (2mx
Then you have dx® < A) Sm( A )

(If you do not know how to differentiate a sine or cosine, one thing you

can do is to use the numerical techniques of Chap. 1 to verify these two

equalities.) Using Eq. (8-3) on the right side of the second derivative,it

simplifies to

éfl__@gz
dx? A v
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Now substitute from (8-6) for 1/A2 to obtain

&y8wm
x>~
  (E—=V)¢ (8-7)

This equation is consistent with (8-1) and (8-4) and clearly has (8-3) for a

solution. In fact, it is Schroedinger’s equation for a special case. It is a

special case because it was obtained by using the wavefunction (8-3)

which pertains to a particle of constant speed v, as discussed above. This

means that the kinetic energy mv?2/2 of the particle is constant and so, ac-

cording to Eq. (8-9), its potential energy V' must also be a constant. Thus

in (8-7) the quantity V is a constant.

Now comes the final postulate. It is simply to take Eq. (8-7) as valid

even for the case where the potential energy V of the particle is not con-

stant but, instead, is a function of position V(x). Doing this, you have the

Schroedinger equation

d*y __ 8mm

dx? h?
 [E-V(X)]y (8-8)

written in a form to which it will be particularly convenient for you to

apply the half-increment method prescription for obtaining a numerical

solution.

Several things should be said. First, technically correct terminology

would be to call Eq. (8-8) the time-independent Schroedinger equation.

There is also a more complicated time-dependent Schroedinger equation,

but it is not needed in an elementary treatment of quantum mechanics.

Second, to distinguish between them, a solution to the time-dependent

Schroedinger equation is often called a wavefunction, written ¥, and a

solution s to the time-independent equation is then called an eigenfunc-

tion. But that distinction need not be made here, so it is unnecessary to

use the less picturesque terminology for . Third, and most important, is

to tell you what really has happened. The de Broglie relation mv = h/\

was known experimentally to be a quantitatively correct statement con-

cerning the wavelike behavior of a particle with constant speed v.

Schroedinger wanted to be able to treat also the case of a particle with
variable speed. He could not do this by continuing to use the algebraic

equation mv = h/\ since, as explained earlier, it becomes meaningless if

the speed v (and therefore the wavelength \) is not constant. But there is

no speed v in the equivalent differential equation (8-7); there is only the

related quantity V, the potential energy. Therefore, it was consistent for

him to generalize (8-7) by postulate to obtain (8-8), which is supposed to

pertain to the case of a particle moving with varying speed because its po-

tential energy V(x) varies with position. Whether or not it was correct is a

matter that experiment alone could decide. Suffice it to say that in the in-

tervening fifty years, countless experiments have shown the correctness

of Schroedinger’s equation.
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The Schroedinger equation for a particle of mass m, whose total energy is

the constant E and whose potential energy as a function of its position is

V(x), is

a*y _ 8mm _
o e [E-V()]Y (8-8) 

where h is the value of Planck’s constant quoted in Eq. (8-2). It deter-

mines the properties of the so-called wavefunctions ¢ since {5, which is a
function of x, is a solution to the differential equation for given m, E, and
V(x).

The wavefunctions in turn determine the behavior of the particle

through a postulate due to Born. According to him, the probability offind-

ing the particle in a small region surrounding the position x is proportional

to 2%, the square of the wavefunction, evaluated for that x. Born’s

postulate is as basic to quantum mechanics as is Schroedinger’s. It origi-

nally was justified by analogy to known properties of electromagnetism:

At any point the square of the function describing an electromagnetic

wave (i.e., the intensity ofits electric or magnetic field) is proportional to

its energy content in a small region surrounding that point, and this is a

measure of the probability of finding an electromagnetic particle (i.e., a

photon) in the region. But, as is true for the Schroedinger equation itself,
the ultimate justification for Born’s postulate is that it subsequently has

been found to agree with a very large set of experiments.

You will note that in quantum mechanics the physical properties of the

system containing the particle are specified by the potential energy V(x)
that the particle has as a result of the force F which the system exerts on

it, and not directly in terms of the force. However, F and V'(x) have the

relation

_dV(x)

F= dx
(8-9)

(If you are unfamiliar with this, a simple example is derived in Fig. 8-1.)

Thus you can always get V(x) from F, or vice versa. To illustrate the lat-

ter, the potential energy V(x) of the particle in the harmonic oscillator of

Fig. 4-1 is

kx2

2

where k is the constant describing the stiffness of the spring. This can be
verified by using Eq. (8-9) to calculate the corresponding force

__d (E) __2kx _
dx 2 2

and noting that the result agrees with Eq. (4-1). (If you do not know the

 V(x) = (8-10)

—kx
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Height, H(x)
Energy, V(x)

  

H(x) V(x)

\ T
|

dHC)| \om I
|A e

dx N6 /7F

AN
i\

mg \\

X

0

Figure 8-1. Gravitational example of the relation between

force and potential energy. A mass m is held in equilibrium

on a smooth track by an applied force A4 canceling the force

F, which is the sum of the gravitational force mg and the

force T exerted by the track. You can see that F cos 6§ = mg

cos ¢ =mg cos (90° — 6) = mg sin 6, or F = mg sin 6/cos
0 =mg tan 6. Also, tan § = —dH(x)/dx, where the sign is

minus since it takes a negative change in x to make a posi-

tive change in H(x). Thus, =—mg dH(x)/dx. But the po-

tential energy of the mass relative to its value at zero height
is V(x) =mg H(x). So, dV(x) =d[mg H(x)] = mg dH(x),

since mg is a constant. Therefore, F = —dV(x)/dx. If the

applied force is removed, the mass will move in the direction

of positive x under the influence of the force F.

analytical expression for the derivative used to obtain the result, you can

always verify it for a few values of x and k& by the methods of Chap. 1.)

The harmonic-oscillator potential V(x) = kx*/2 is plotted in Fig. 8-1.

Schroedinger’s equation for the harmonic oscillator is obtained by
using Eq. (8-10) in (8-8), yielding

&Y8mm kx?
e [E 2]"’ @-11)

This is the differential equation which quantum mechanics says governs

the behavior of the same system that classical mechanics says is governed

by d%x/dt? = —kx/m. What a difference! Yet in Exercise 8-9 you will find

that the two equations lead to equivalent predictions concerning macro-

scopic oscillators. For microscopic oscillators their predictions have no
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relation, and experiments show those made by Schroedinger’s equation to

be the ones that are correct.

Before applying the half-increment method to solve Eq. (8-11),it is

worthwhile working it over until it assumes a simpler form. To this end,

you can introduce the relation

1k=3 (8-12)vV

for the frequency v at which a particle of mass m at the end of a spring of

stiffness k& would oscillate, according to classical mechanics. Using this
relation does not mean that the results obtained from solving (8-11) will

depend on classical mechanics for their validity; actually, you are just

using classical mechanics to suggest defining the symbol v for the conven-
ient grouping of parameters (1/27) Vk/m. (If you do not know Eq.
(8-12), you can verify it by following Exercise 4-3.) In terms of v, the

Schroedinger equation becomes

ay _ _[8772mE _ <4w2mv)2 xz] v  

 

dx? h? h

Defining

8m2mE 4728= 1Th12n o= flhmv (8-13)

it reduces to the form

d2

=—(B—atx)y (8-14)
You can make it look even more attractive by writing it in terms of the

dimensionless variable (i.e., the variable is a pure number)

u=Vax (8-15)

@yBy d*y
Then =Y

dx? d(u/\/_)2 * du?

since ais a constant and the derivative is therefore like any other fraction,

as far as it is concerned. Using this in Eq. (8-14) you have

o« dl——(p—aur)y
v__(B_ eor dE (a u)w

Finally, writing

B_8mmE h
a h?  472mv
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or €= 2E (8-16)
hv

you have reduced the Schroedinger equation to its simplest form

ay
Tz~ e~ unHY (8-17)

It is also in its most universal form, since it contains no constants (they

have all been hidden in the definitions of € and «). This being the case, it

pertains to all situations no matter what the values of k and m. Once its

solutions have been obtained, they can be used to predict the behavior of

all quantum-mechanical harmonic oscillators.

Since Eq. (8-17) is of the form

d?y
gz C

required for application of the general prescription of Sec. 3-6, its solu-
tions are obtained in the now so familiar way. This is essentially a matter

of taking any program of, say, Chap. 4, and rewriting it by changing the in-

dependent variable to u, the dependent variable to s, and also using the
coefficient

C=—(e—u’y (8-18)

Programs are shown in Tables 8-1 (SR-56) or (HP-25). If you inspect

them, you will see that they do, however, have two new features. One is a

provision for the calculator to display s only after every jth calculational

loop. This is to allow you to attain a high degree of numerical accuracy in

the solution by reducing Au without the necessity of inspecting or plotting

too many closely spaced values of . The other feature is that to input the

numerical value of €, you key it into the calculator immediately before you

begin a run by pressing the start button. Although it would not have to be

done this way in these programs,it is to maintain uniformity of operation

with the program in Table 8-2 (HP-25) where there would otherwise be a

shortage of storage registers.

More specifically, the programs are run according to the following in-

structions.

For the SR-56

Key 2nd CP to clear, key LRN, then key in the program using the desired

display option in steps 51 and 52. Key LRN, and set to step 00 by keying

RST. Load initial values of ¢ and dys/du and the values of Au and jin regis-
ters 1, 2, 3, and 4, respectively. Then key in the value of € and press R/S to

start. To stop, or restart, or restart after a program-controlled stop, push

R/S. To see the value of u while stopped by the program, key RCL 7. To

do so while stopped manually, key 2nd EXC 7, inspect «, then again key

2nd EXC 7.
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For the HP-25

Switch to PRGM, key f PRGM to clear, then key in the program using the
desired display option at step 32. Switch back to RUN, and set to step 00

by keying f PRGM. Load initial values of y and d{s/du and values of Au
andjin registers 1, 2, 3, and 4, respectively. Then key in the value of € and
press R/S to start. To stop, or restart, or restart after a program-controlled

stop, push R/S. To see the value of u while stopped, key RCL 7.

Before giving examples, it should be explained how you can in-

telligently choose an initial ¥ and the corresponding values of { and

d{s/du. The harmonic-oscillator potential V'(x) = kx2/2 is an even function

of x and, therefore, also of u. Thatis,its value for a particular u; is exactly

equalto its value at —u;. The behavior of the particle moving under the in-

fluence of the potential can be expected to show the same symmetry as

the potentialitself. (This is certainly true for a classical harmonic oscilla-

tor.) As the behavior is governed by the value of %, according to Born’s

postulate, you can see that {2 should be an even function of . This means

that ¢ must be either even in u, or odd in u. The point is that if either

Y(—u;) = +P(uy)

or (=) = —(uy)
then 2 will have the required property

2(—u;) =+(uy)

Because of the symmetry of 2, it is only necessary to carry out the

numerical solution of the equation for the positive half of the « axis. (In

fact, the programs will automatically start at « = 0 and then increment it

positively.) And at u = 0 the wavefunction y must either have dys/du = 0,

or have ¢ = 0. The first condition gives the even s case, while the second

gives the odd s case, as you can see from Fig. 8-2. The values used for ¢

at u = 0 for the even case, or dy/du at u = 0 for the odd case, do not really
matter. Because the differential equation is linear in i, increasing or

decreasing these by some factor will only scale up or down all the values

of its solution i, without affecting its overall shape or any other vital

properties. The first example below considers an even solution by taking

¢ =1and d¢/du =0 at u = 0.

What about the value of the parameter €? You will observe from Eq.

(8-16) that it really is a dimensionless measure of the total energy E of the

harmonic oscillator. In classical mechanics, any value of E (or €) would be

a possible one for the oscillator. You will soon see that this is not true in

quantum mechanics; in fact, the game will be to find which values of € are

allowed and which are not. But this still leaves you with the question of

how to choose a value of € to start studying the solutions of the equation.

Since Eq. (8-17) contains no numerical constants, except the 1 that is the

unwritten coefficient of each term, you might as well try first e = 1.
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Figure 8-2. Top: An even function of «. Its value at any point — «; equals

its value at the corresponding point ;. Since it has this symmetry about

u =0, it is necessary for its slope dy/du to be zero at that point if the

slope is to be continuous there. Bottom: An odd function of u. Its value at

any point — u; equals the negative of its value at the corresponding point

u;. For this case the symmetry requires its value { to be zero a u = 0, as-

suming that the function is continuous at that point.

Example

initial ¢ = 1, initial d¢//du = 0, Au = 0.05, j =2, e = 1.000

The results are shown by the crosses labeled € = 1.000 in Fig. 8-3. Note

that the curve traced by the crosses starts off from « = 0 with a concave

downward curvature. This reflects the fact that d2¢/du?, which is a

measure of the curvature of y, is negative for small ¥ where the term

—(e—u?) of the equation d?y//du? = —(e — u?) s is negative, since s itself

is positive. At u =1, e —u?2 =0 since € = 1, so d?y/du? is zero at that

point. This is why the curve is locally straight at ¥ = 1. When u exceeds

this value, d*ys//du? changes sign since € — u? does, and so the curvature

becomes concave upward, at least while yy remains positive. But since the

slope ds/dt is negative at u = 1, the positive d2ys/du? does not prevent s
from crossing the u axis at about # = 3.2. When this happens, d?y/du?
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Y

 
Figure 8-3. The first wavefunction of a harmonic oscillator.

changes sign again because {y becomes negative, and yy becomes concave

downward. So its negative slope starts to increase and iy bends rapidly

away from the u axis. When this behavior gets started, nothing can

prevent it from continuing with ever increasing vigor, and ¢ diverges to

negative infinity. The reason is that the more negative the value of ¢, the

more negative is the value of d*y//du? because of the relation between
them that is imposed by the differential equation d?ys/du? = —(e — u?) .

I

The results of this example constitute a solution to the differential

equation which is, within the accuracy of the numerical method, a com-

pletely correct one for the initial conditions used. It is an acceptable solu-

tion to the differential equation from a mathematical point of view, but it is

not an acceptable wavefunction from a physical point of view. Born’s

postulate says that )2 is a measure of the probability of finding the as-

sociated particle in various locations on the « axis. The behavior of the s

found in the example will cause the corresponding /2 to increase without

limit when « becomes more positive than a not very large number (and

when it becomes more negative than minus that number). Thus you

must reject this solution because it says the particle has an infinite proba-

bility of being everywhere except where it is supposed to be. Where isit

supposed to be? Since the potential V'(x) has its minimum at « = 0, the

force acting on the particle is always directed toward that point and the

particle should be somewhere in its vicinity. (See Fig. 8-1.)
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Example

initial ¢ = 1, initial dy/du =0, Au=0.05, /=2, e=1.010

In this example an attempt is made to find an acceptable wavefunction by

increasing the value of €. Because of the obvious sensitivity of the dif-
ferential equation, € is increased by only 1 percent. The results are in-

dicated by crosses labeled € = 1.010 in Fig. 8-3. They show that increas-

ing € is the wrong thing to do. 111

Example

initial ¢ = 1, initial d¥/du = 0, Au = 0.05, j =2, € = 0.990

Here € is decreased, from the value guessed at first, by 1 percent. The

resulting behavior of yis shown in Fig. 8-3 by the dots labeled € = 0.990,

which fuse into the crosses for # smaller than about « = 1.8. Forthis € the

concave upward curvature of ¢ to the right of « = 1 is a little more pro-
nounced than for € = 1.000, since in this region where u2 > € the magni-
tude of the term € — u? is larger when € is smaller. But although the curva-
ture of ¢ is only slightly larger, its cumulative effectis to succeed in mak-

ing the slope of ¢y go through zero and become positive before  itself

crosses the axis and becomes negative. When this happens, iy again starts

to diverge to infinity—this time to positive infinity. The farther it gets

from the u axis, the largerits rate of change of slope, so the more rapidly it

increases. 11

Example

initial ¢ = 1, initial d¢s/dt = 0, Au = 0.05, j =2, € = 0.999

In this example € is made 0.1 percent smaller than in the first example.

The results are plotted as dots labeled € = 0.999 in Fig. 8-3. They are sim-

ilar in character to the preceding example, but the divergence to positive

infinity does not occur until # assumes larger values. 11

By now you can see how it goes. If runs are made with e = 1.0000 and

€ = 0.9999 using an appreciably smaller value of Au to reduce the in-

accuracy of the numerical method to the lower value dictated by these

narrowerlimits, the y found in the former will diverge to negative infinity

at a somewhat larger u than for the case shown in the first example, and

the ¢ found in the latter will diverge to positive infinity at about the same

larger u. If this is not apparent, try it.

Will you ever succeed in obtaining, from a numerical solution of the

Schroedinger equation, a i that never diverges? Not until you have

access to a computer of infinite speed that would allow you to use an infin-

itesimally small Au, and which also carries an infinite number of digits so

as to have zero roundoff error. Butis it necessary? What would happen if

the ultimate machine were put to work on this problem is apparent enough

anyway. The results would look like the points or crosses of the e = 0.999
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or € = 1.000 curves to about ¥ = 3, and then continue slowly approach-

ing, but never reaching, the « axis. The closer {y got to zero, the smaller

the value of its second derivative d2?y//du? =—(e — u?)y), and so the

smaller its curvature. Thus the differential equation is consistent with an

ever closer approach to a straight line lying along the « axis.

If you understand this, you will understand that there is no practical

need to go further than the first and fourth examples. These bracket the

shape of the allowed wavefunction § quite accurately, and bracket the

corresponding allowed value of the energy parameter € to within the nar-

row limits € = 0.9995 *+ 0.0005. To put it another way, the actual energy

value for this allowed wavefunction is

hv . .
E =5 (within S parts in 10,000)

where Eq. (8-16) has been used to go from € to E.

This is not the only value of the energy allowed by quantum mechanics

for a harmonic oscillator. See if you can find another allowed € in the

range from O to below 1. Do not bother to plot ys; just watch the display

when your calculator is running in the pause mode. You will soon

conclude that there are no values of € in this range for which the behavior

of ¢, as u becomes sufficiently large, is analogous to the behavior

displayed in Fig. 8-3. This will be your conclusion whether you search for

a Y which is an even function of u, as in the figure, or an odd function of u.

To search for an odd ¢, use the initial conditions ¢ =0, dy/du = 1, at

u=20.

Next continue the search to values of e greater than 1. You can speed it

up by using a relatively large Au, reducing the increment for accuracy

when you get into a promising range of €. Soon you will find that the next

allowed energy occurs at e = 3 and represents a case where s is odd in wu.

Examples

initial ¢ = 0, initial dy//du = 1.65, Au =0.02, j =4, € = 2.999

initial ¢ = 0, initial dys/du = 1.65, Au = 0.02, j =4, € = 3.000

The initial value of dys/du was adjusted after the critical values of € were

found by watching the calculator display, and before plotting, so as to

make the peak height of ¢ for results plotted in Fig. 8-4 be the same as

in Fig. 8-3. This facilitates comparison without affecting the shape of the

allowed ¢, or the value of the allowed ¢, since the Schroedinger equation

is linear in .

In this case { starts with a positive slope from a zero value at u = 0.

But since its curvature is much higher for small « than for the y in Fig.

8-3, it nevertheless is able to bend over before the sign of € — u? switches,

i.e., before 3 — u%2 =0 or u = V'3 = 1.73. Forlarger u it behaves much as

before.
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Figure 8-4. The second wavefunction of a harmonic oscillator.

The value of the allowed energy corresponding to the range

€ =2.9995 = 0.0005 found in this example is

3hv
E=2 (within 5 parts in 30,000)

11

Run the program to find the next higher allowed value of € (or E) and

the corresponding allowed wavefunction . Since the first one is even and

the second is odd, what do you think the symmetry of the next will be?

Use the appropriate initial conditions. Since the first value of eis 1 and the

second is 3, you may also be able to make a good guess about the next

value of €. As the curvature of s in the region of u where € — u? is posi-

tive will be even larger for a higher value of €, you can expect that the ¢

you seek will oscillate even more rapidly in that region.
The final examples give the ninth allowed solution to the Schroedinger

equation for the harmonic oscillator.

Examples

initial ¢ = 1, initial dy//du =0, Au =0.01, j= S5 for u < 5,
j=10 for u > 5, e =16.999

initial ¢ = 1, initial dys/du =0, Au =0.01, j=5 foru <5,

j=10 for u > 5, e =17.000
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Here the value of the allowed energy is

17hv

2

The plots in Fig. 8-5 show that the oscillations in ¢ build up until ¢

reachesits final peak just before € — u? = 0. Exercise 8-9 will give you an
understanding of the physical significance of this result. Can you explain
its mathematical origin from an argument similar to those above involving

the curvature of ¢? 11

E = (within § parts in 170,000)

Figure 8-6 summarizes some of the results of this section by showing

the harmonic-oscillator potential energy V'(x) plus a set of horizontal lines

representing the allowed values of total energy E for the oscillator. The
vertical scale is energy, either potential or total, and the horizontal scale is
position x. Since V(x) = kx2/2, the potential energy plots into a parabola.

As any particular E is a constant for all x,it is plotted as a horizontal line.

 
Figure 8-5. The ninth wavefunction of a harmonic oscillator.
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Figure 8-6. The potential energy function V(x) and the first few energy

levels E of the harmonic oscillator.

The solid ones are the allowed values of E found in the examples; the

dashed ones are other allowed values that you can find by running the pro-

gram. The entire set of horizontal lines is called the energy-level diagram

for the harmonic oscillator. Expressed mathematically, the entire set of

allowed energies for a harmonic oscillatoris

_hv 3hv S5hv Thv

or E=<n+%) hv n=0,1,2,3,... (8-19)

where A is Planck’s constant and v is the frequency at which the oscilla-

tor would oscillate classically.

For a given energy level, the two intersections of the curve V(x) and

the line E determine the range of x within which the particle of a classical

oscillator with that energy would be confined, or bound. Inside this region
E > V(x), so its kinetic energy is K = [E — V(x)] > 0. It would never be
found outside where E < V(x) since there K = [E — V(x)] < 0, whichis

impossible in classical mechanics because K = mvZ%/2; so K < 0 means
the speed v is an imaginary number. But this is not a strict limitation on

the location of the particle in quantum mechanics. The values of x for

which E — V(x) = 0 correspond to those of u for which e —u?=0. As

you have seen in analyzing Figs. 8-3, 8-4, and 8-5, ¢ and ¢ do extend
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outside the classical region somewhat. Thus quantum mechanics predicts,

and experiment confirms, that there is some probability of the particle
being outside. An explanation of how this comes about involves the un-

certainty principle and must be left to the references (Ref. 3).

The most important conclusion of this section and chapter can be

stated as follows: When the relation between the potential energy V of a

particle and its total energy E is such that in classical mechanics the par-
ticle would be bound to a limited region of space, then in quantum

mechanics only certain discrete values of E are allowed. In these circum-

stances the total energy of the particle is said to be quantized.

8-4. FINITE SQUARE WELL

Quantum mechanics makes interesting predictions about the behavior of

a particle moving under the influence of a potential-energy function that is

capable of binding it only if its total energy is below a certain value. The

harmonic-oscillator potential does not have this property since it can bind
a particle of arbitrarily high energy, but the potential '(x) shown in Fig.

8-7 does. It is called a finite square-well potential and is used as a one-

dimensional approximation to the potential function for an electron mov-
ing through a piece of metal or a neutron moving through a nucleus. If the
total energy E of the particle is lower than the rim of the potential at V,,

the particle will be bound. If E is higher than V,, it will not be bound by

the potential; all regions of the x axis will be accessible to it in classical
mechanics since K = [E — V(x)] > 0 for all x if E > V,,.
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Figure 8-7. The finite square-well potential V(x).
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The potential can be expressed as

1 1
Vo u< —3 or u > >

_ 1% 41V(u)= > u== > (8-20)

1 1
0 —'E <u< —2-

where the convenient dimensionless variable

_Xx -u== (8-21)

has been introduced. With this you have

Y_dL&
dx? d(au)®* a® du?

and the Schroedinger equation for the potential is, from Eq. (8-8)

d2 8 2 2

Gt = I[E— V@)

—B(e— Dy u<——1- or u >1
2 2

ey ) ( _l) _ 41or i Bl e > P u —iz (8-22)

—Bey —s<u<=

2 2

where B= SL’;—:;“-—Yi (8-23)

_Eand €= v (8-24)

The numerical solution of the differential equation (8-22) is pro-

grammed just asit is for the harmonic oscillator, except: (1) there are the

necessary changes to give the coefficient C in the general expression

d*¥/du?® = C the forms defined in (8-22); and (2) there is no provision for

skipping the display, as this feature will not be needed and would be dif-

ficult to provide because so much programming capacity is used for the

routings required to generate the various forms for C.

The programs are listed in Tables 8-2 (SR-56) or (HP-25). They are

used in the same way as the preceding ones, except: (1) the parameter 8

is preloaded in register 4 instead of the display skip index j; and (2) the

value of Au must be such that it divides evenly into 0.5 because the pro-

grams assume that one of the values of u; will be precisely equal to 0.5.
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Examples

initial ¢ = 1, initial dys/du = 0, Au = 0.05, B =64, ¢ = 0.0986

initial ¢ = 1, initial dy/du =0, Au = 0.05, B8 = 64, ¢ = 0.0987

The results obtained by running with these values can be seen in Fig. 8-8.

They define the shape of the wavefunction for the first energy level of a

square well whose strength parameter is B8 = 8w2ma?V,/h? = 64. Note
that this wavefunction is even in u, just as was the wavefunction for the

first energy level of an oscillator. The general shapes are similar for the

two potentials, but the divergence to positive or negative infinity is less

pronounced for the square well. Why? The values of € show that the low-

est energy level of this square well is at the energy

E = 0.0986 V,

where Eq. (8-24) has been used. /1]

Examples

initial ¢ = 0, initial d{/du = 5.00, Au = 0.02, B =64, ¢ = 0.382

initial ¥ = 0, initial dys//du = 5.00, Au = 0.02, B8 =64, ¢ = (0.383

The initial value of dys/du for this odd wavefunction was chosen so that its

peak value when plotted in Fig. 8-9 is approximately equal to the peak

value of the wavefunction plotted in Fig. 8-8. This example finds the

wavefunction and allowed energy for the second energy level of the

B = 64 square well. The energy levelis at

E =0.382V, /11

You should search for discrete levels of this square well at higher

energy. If you do, you will succeed in finding a third of the same general

character as the first and second levels, except that its wavefunction has

more oscillations within the confines of the well. But you will not succeed

in finding a fourth discrete energy level for the 8 = 64 square well. The

well does have a fourth level, in a certain sense that will be explained in

the next section, but it occurs at too high an energy for it to be bound by

the well. That is,it is found at a value of E above the rim of the potential

well.

8-5. CONTINUUM SOLUTIONS AND VIRTUAL LEVELS

The next example gives you a solution to the finite-square-well Schroed-

inger equation for € = E/V, chosen to have a typical value somewhat

greater than 1. That is, E is greater than V, so in classical mechanics the

particle would be unbound. (See Fig. 8-7.)
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Figure 8-8. The first wavefunction of a 8 = 64 square well.
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v

1.0

 
Figure 8-9. The second wavefunction of a 8 = 64 square well.

Example

initial ¢ = 1, initial dy/du =0, Au=0.02, 3=64, e = 1.4

Figure 8-10 shows that the solution ¢ is oscillatory in the region within

the well. The reason is the same as the reason why the differential equa-
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tion for a classical harmonic oscillator has an oscillatory solution. In fact,

except for the different independent and dependent variables, it is essen-
tially the same differential equation:

d®yldu® = —Bey

where Be is a positive constant. So, within the well ¢ is a sinusoidal. The
same is true of ¢ in the region outside the well, and of the differential
equation it satisfies there:

d*Yldu? = —B(e — 1)

 
Figure 8-10. Typical even continuum wavefunction of a 8 = 64 square well.
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since B(e — 1) is another positive constant. The exterior part of ¢ os-
cillates less rapidly than the interior part because B(e — 1) is smaller than
Be. As a consequence, the total { consists of a more rapidly oscillating
sinusoidal joined smoothly at the edge of the well on to a less rapidly os-

cillating sinusoidal. You should note that for the typical case illustrated in
Fig. 8-10, the amplitude of the exterior oscillation is larger than that of the
interior oscillation. 11

It is even more important for you to note that there is no difficulty at all

in obtaining a solution to the Schroedinger equation for an energy

parameter € > 1 (corresponding to an energy E > V) which is accept-

able from the point of view of Born’s postulate. The solution remains os-

cillatory no matter how large the », and no matter what the particular

value of E, so there is no tendency for i to diverge to infinity when the

energy E of the particle is above the rim of the well. Since classically such

a particle would not be bound within the well, you can conclude that:
When the relation between the potential energy V of a particle and its total
energy E is such that in classical mechanics the particle would not be

bound to a limited region of space, then in quantum mechanics all values

ofE are allowed. These allowed values of F are said to form a continuum.

Example

initial ¢ = 1, initial dys/du =0, Au = 0.02, B =64, € = 2.5

All values of E or € in the continuum above V, or 1 are equal in the sense

that all of them are allowed. But Fig. 8-11, which displays the { obtained
in this example, shows that some values of energy in the continuum are

more equal than others! For these special energies the curvature of the in-

terior part of  has such a value that dys/du = 0 at the edge of the well.

The result is that the amplitude of the exterior oscillation is the same as
the amplitude of the interior oscillation. To be sure you appreciate the

point, compare Fig. 8-11 with Fig. 8-10. I

Both of these figures show continuum wavefunctions which are even

functions of u. There are also continuum wavefunctions which are odd

functions of u. In fact, at any energy E in the continuum starting at

E =V,, there are two allowed wavefunctions, one being even and the

other odd.

Example

initial ¢ = 0, initial dy//du = 9.45, Au=0.02, B=64, e = 1.4

Figure 8-12 shows the odd wavefunction obtained from this example. It is

for the same value of the energy parameter € as was used for the even

wavefunction shown in Fig. 8-10. To make comparison easier, the initial

value of dys//du was adjusted so that the amplitude of the interior oscilla-
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Figure 8-11. First even virtual-level wavefunction of a 8 = 64 square well.

 
Figure 8-12. First odd virtual-level wavefunction of a 8 = 64 square well.
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tion here is the same as it is for the two preceding examples. The point to
note is that because the value of € leads to a curvature which makes the

condition d{s/du = 0 satisfied at u = 3, the exterior- and interior-oscilla-
tion amplitudes are equal. The values of € producing this condition are not

the same for the even and odd wavefunctions, as the two cases have quite

different initial conditions at u = 0. 11

The reason why the ratio of the interior to exterior amplitudesis inter-

esting is that Born’s postulate says its square is related to the ratio of the

probability of finding the particle within the well to the probability of find-
ing it, in a range of u of equal length, outside the well. Figure 8-13

displays values of the square of the ratio of the amplitudes found in the

preceding examples, plus values obtained by running the program with

both even and odd initial conditions for a number of other choices of € in

the range 1.0 to 3.0. Each of the symbols e (for even) or o (for odd) are

plotted so that its location gives the value of the ratio squared on the
horizontal scale and the value of the energy parameter on the vertical

scale.

Also shown on Fig. 8-13 are the three bound energy levels of this

B = 64 square well. They are represented, in the usual fashion, by hori-

zontal lines located at the proper values of € and are labeled e or o to show

whether they are even or odd in 4. The arrow heads are to remind you

that, although for bound levels an exterior amplitude cannot be defined,

for the wavefunctions of such levels a number measuring the ratio of the

probability of finding the particle inside the well to the probability of find-

ing it outside would have a large value.

The figure gives you an overall picture of the bound- and lower-lying

continuum states of this particular square well. It makes it clear that, al-
though any energy is allowed in the continuum, the continuum is not

structureless. In fact, the fairly sharp peak in the ratio for odd wavefunc-

tions at € = 1.4, and the somewhat broader peak for even wavefunctions

at € = 2.5, are sometimes called virtual levels. You can also see from the

figure that there are obvious relations between the bound and virtual
levels of the potential well.

If you would like to study a detailed development related to the subject

of this chapter or read about other aspects of the fascinating field of quan-

tum mechanics, Ref. 4 is recommended.

EXERCISES

8-1. Run the program and find the third wavefunction and allowed energy

value of the harmonic oscillator.

8-2. Run the program and find the third bound wavefunction and energy

value of the 8 = 64 square well.
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8-3. Show that there is no fourth bound wavefunction of the 8= 64
square well.

8-4. By trying larger values of B, find a value at which the fourth

wavefunction of the square well becomes bound.

8-5. By running the program for several successively smaller values of S,

show that no matter how small it is, i.e., no matter how weak the well,
there is always one bound wavefunction for a one-dimensional square

well. Explain why.

8-6. Find the second even and second odd virtual levels of a B = 64
square well. In the process, extend the plot of (interior amplitude/exterior

amplitude)? shown in Fig. 8-13.

8-7. Using a large value of B, say 8 = 1000, find the first three wavefunc-

tions and energy values of an approximation to an infinitely deep square

well. Plot the wavefunctions and make a comparison of them and of their

energy values with the corresponding ones of the 8 = 64 square well.

Consider particularly the behavior of the wavefunctions in the region out-

side the well. Does this behavior suggest a simpler way to treat the

problem of the infinitely deep square well?

8-8. Study the details of the programs and explain precisely what happens

in each step.

8-9. Modify the harmonic-oscillator program to display 2 by adding an x?

instruction before the display instruction. Then use it to plot {2 for the

first, third, and ninth wavefunctions. Now go back to the classical oscilla-

tor program in Chap. 4 and modify it to display (dx/dt)~!, and plot. To

avoid problems with calculating §, use initial conditions x = 0, dx/dt = 1.
When the oscillator comes to the end of its swing, the program will stop

for you automatically if you get a 3. Otherwise, stop it manually. Compare

(dx/dt)~* with ¢?* and discuss the relation between the behavior of the

classical and quantum-mechanical oscillators for higher and higher energy

values of the latter.

8-10. Follow the suggestion mentioned in 8-7 to formulate in a simple

way the problem of the infinitely deep square well; then write a program

to solve the Schroedinger equation for it and use the program to find the

first three wavefunctions and energy values. Plot the wavefunctions and

compare them and the energy values with 8-7.

8-11. Modify the program of 8-10 to display 2, as in 8-9. Explain why

(dx/dt)~* for the corresponding classical problem would be expected to be

constant within the well in this case, and then compare it with 2.

8-12. Write a program to solve the Schroedinger equation for an anhar-

monic-oscillator potential

kx2 N px*

Vi) == 4
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First reexpress the Schroedinger equation in the dimensionless form

d*y
ECEZ—(G—Lfi—Su")dJ

and find the relation between 8 and p. Incorporate in your program

provision for displaying ¢2. Then find the ninth wavefunction and energy
value and compare the latter with that found for the harmonic oscillator in

the example. Plot 2, compare the result with 8-9, and explain the dif-

ference. There is no analytical solution to this Schroedinger equation.

8-13. The Saxon-Woods potential, in one dimension and with distance

expressed in units of the well width gq, is

— VO

Vu) = 1 + e(u-05)p

It is used in nuclear physics to represent, more accurately than a square

well, the potential acting between a nucleus and a passing neutron. Write

a small program to plot V(«) for the typical value 6 = 0.05 and compare it

with the square-well potential.

8-14. Write a program to solve the Schroedinger equation for the Saxon-

Woods potential of 8-13. Find the three bound wavefunctions and energy
values for 8 w2ma?V/h? = 64 and compare them with the corresponding

ones for the square well of the same strength. Explain the small dif-

ferences. There is no analytical solution to this Schroedinger equation.
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