
gASIC

THE"HP-71

Up and Running in

CALC Mode, BASIC and Assembly Language

oy Richard E. Harvey

LoL

Preface

We can thank Hewlett-Packard for the HP-71, but more so, the user community for

demonstrating to HP that there is a need for this powerful, compact tool. This book

is dedicated to those users.

Introduction
In the early 1970's we had 15 pound "portable" calculators like the HP-46. 1972

brought with it the HP-35, the worlds first, handheld scientific calculator. 1974

brought us the programmable portable HP-65 with 100 step memory and built-in card

reader. At the close of the 70‘'s the HP-41, an engineering tour de force, became as
mnuch at home on a surveyor's belt, a student‘'s desk or floating in zero-G. Each of

these machines, and others between them share a design philosophy and RPN (Reverse

Polish Notation). Post-fix math has been a way of life for a generation.
The mid-80‘'s saw Hewlett-Packard looking to expand their market and exploit the

technological advances of the computer boom. The 71 has retained the HP design
philosophy, but traded in RPN for greater speed, memory, and an open, expandable
operating system with an advanced dialect of BASIC.

There are two camps of HP supporters: those who think that RPN is the only way

to run a calculator, and those who think that HP BASIC is the only way to run a

computer. Until the HP-71, those two factions barely knew each other existed.

Well, calculator factions, meet HP BASIC! This is not the checkbook-balancing,

Pong-playing, beginner only language found on home computers, but an advanced

mathematical tool with several hundred highly optimized functions. And, if you still

want it, RPN is just a ROM away.

This book is designed to introduce the novice or experienced user to the HP-7/1,

CALC mode, and HP BASIC, but not leave him there too long. We‘'ll discuss the 7!, not

as a mystical beast with powers known only by an elite few, but as a learning and

working tool. We will also introduce the internal design of the 7! and Assembly
Language programming, and support these discussions with a number of tables and

charts.

Much of the material covered in volumes one and two of the HP-7! Internal Design

Specification is paraphrased here making the purchase of those books (at about $100)

unnecessary except for the most devoted Assembly language user.

Personal computers were used for playing Star Wars long before dBase Il or

Lotus 1-2-3 were even contemplated. It was a well kept secret for quite a while that

computers are fun. Let‘'s get some work done, but, let‘'s make it an enjoyable

experience. That's the attitude of this book.

This book was formatted and printed by an HP-/1 using a program written by the

author.

(c) 1986 Richard E. Harvey

Box 5695

Glendale, Arizona 85312 USA

TIBLIBME 2=/
Up and Running in CALC Mode, BASIC and Assembly Language

Contents

Introduction BASIC Filesvovvuvenns Ceeeeeas 29
How to use this bookl FORTH FileS «cueveeneenanonss Ceeees 30
Why Program?ccccceeeeennnel LEX Files ...ccveuee cesseseseanes «e.30

Warning about Damaging your 712 DATA FileScvoveveencnrcnccnanns 31
Getting Started TEXT FileS «uveveeneneeneancacnneas 32

It Just Beepscccc0000000.l3 KEY Files .c.vceeeccceen ceesensK|

BASIC Keyboard Math 3 SDATA FileS ..uoveeeneeennacacnnens 34
Mathematical Precedence4 CALCulating with the HP-7!35

Parentheses REERES Long Formulascoceeenuennns 35
RES Registerccccevvecne..d Inside CALC Modeccoe0vveves 37
SPQCOS eecccecsccccsce ceesedd “CALCAID” Progran teececens 37

Multi-Statement Lines SRR User Defigned Functions 38
Stringscocoecececcecnenen. -6 Basic BASIC «.evvenenraneneananonenns 39
Calculator Variables 7 HP BASIC vvvvnveoeneannnonoennnns 40

Variable Names8 HP-71 BASIC Programming 43

Types of Variables8 "ACYDUCY" Programcoeeeeeon. 43
The HP-7] ...ieeeeeecceccosccnccsaasll » INCAT" SubProgran 44

Central Processing Unit1l Interpreted BASICvcvvvveenns 45
Clock Speedccevvvvcaeceell TOK@NS ..ccevevrconconcocnssoconnns 45
HeloryP0 | “DECIDE" Progral 47

tPORTsc... cecessccssccel2 BASIC Programming Hints49

Environmentscccc00000000000.13 PEEK$S & POKESo.....R58

Sub-Programscoeceeenn. 14 Strings in SDATA Filesc... 62
CALL Cautionscc...14 Converting From Other BASICs 65

Modes secscssascsse sececse 15 Assembly Language Introduction 71

Command Stack ...cevececccceans oo ld Parsing and Decompiling 78

Often Used Commandsccccoovee 15 The Math StACK o vreenneeennnenens 79

ACCeSSOri@8 ...ccococeccccccncnsocsssll Communicating With RS-232 88

Data Storage0.en. 20 RS-232 Cable .ueuvvevenenenranennnns 88
Card Readerccoceeveenneese 20 Setting Up The Interface 89

HP-IL Mass Storage 20 External Keyboardsccoceen. 90
Printerscccceeeecencecenans 22 Exchanging Filesceveeeeeenn. 93

Other HP-IL Devices 23 Display Devicesccoveverecnces 94
The File Chainccceeeveceenccess 24

Finding FileS vcceieeeeenccccncaanns 24 Decimal / Hex / Binary / ASCIl Table 95

File Header Structure 25 HP-71 MemOry Mapcccececencacas 98
data Files eesesssesecscn e 25 Systcn RAM vttt et e ieeennnennnnnnanns 99

Creating the data File 26 HP-71B Keymapcovveenenenennen. 100
The File Pointer 27 System Flagscevvuvenennns 101
Storing datac.eeeinnnnn 27 Assembler Instruction Set 102
Closing the data File 28 Minimum LEX File Requirements 104

HP-71 Assembler Entry Points 105

How to use this book
This book is laid out in a refrence style; it isn‘t necessary to read it from

start to finish. Most of the charts and tables are at the back of the book. While
this may cause some page shuffling at first reading, it makes this important refrence

material easier to find later without having to wade through several thousand words
of flowery prose.

Most subjects are given a cursory introduction first, then in greater detail.

To keep from having to dart back and forth, most material on a subject is in the same
section. For example, TEXT files are discussed in an introductory manner, then using
them in BASIC, then their internal structure (down to the nibble level), in the same
section. Each section begins with a main heading in BOLD type, and most topics have
a layout generally as follows:

Main Topic

What it does

Application
Fanatical Detail

The obvious disadvantage of this system is that, if you haven‘'t used HP BASIC or
your 7! much yet then some place about the middle of the third part it‘ll look like
it's drifting off into a foreign language. The glossary beginning on page 346 of the
HP-71 Refrence Manual will aid in the translation to English.

Examples are enclosed in boxes and are discussed in the text immidiately above
the box. Since the box may be at the end of a discussion, text which follows the box
will not necessarily relate to the example.

Why Program?
Plug in a ROM, fire it up, and there you have it: instant solutions. Many

people buy a 7! with that single intention in mind. Then they think, "what else can
I do with the data from the Finance ROM" or "If only my 7! could...”. With an
understanding of BASIC comes, not only the ability to write programs, but also the
ability to make better use of those we already have. This personal computer becomes
more personal when we learn to use it our way, not sombody elses; we can adapt the

machine to our needs, not the other way around.

A major use of personal programs is to solve little problems: To copy a list of
files between Discs, solve those math equations we always use, or set-up the printer
for compressed type. These personal solutions are needed every day. And, once we're

comfortable with these solutions we can do just about anything, for a large program

is a group of smaller solutions.

With this knowledge we can rewrite our favorite HP-41 or BASIC programs from
other machines to run on our 71. Or modify distributed programs to suit our own
needs.

Lest we forget, programming (and it‘s associated discoveries) is fun! Working
through a program provides as much pleasure as having it done. And, a program is

never really finished.

The Hacker
At one time "Hacker" was a positive term. It meant the person who saw the

problem then went at it with dedication, understanding and intuition to solve it.

The image is the lone worker with a bag of M3M Peanut (not Plain) candy, spending

what should be sleeping hours, coding and testing programs. Romantic perhaps, but

there are other ways. We hope to make a case for another work style, a little more

sleep, and Hershey Bars.

Limits
The material presented herein is for informational use only. While every effort

has been made to assure the accuracy of the materials, no liability is assumed.
Determination of suitability and implementation are the users responsibility. These

materials are the property of the author. By receipt of these materials the user

agrees to abide by applicable copyright laws.

1

Warning about Damaging your HP-71
There are no wrong keystroke combinations. The 71 may beep, scold you with an

error message or even display the ominous sounding "Memory Lost" and reset itself,

but there is no way to damage it by pressing keys. A controlled crash (INIT 3) is

often used to purge unwanted files and restore the machine to start-up conditions.

The 7! was designed to perform this operation, there is no damage. INIT 1 will

usually free the 7! from any "stuck” situation. INIT ! is performed by pressing the
ON key and / key at the same time, then pressing ENDLINE at the prompt.

No operations described in this book will cause a crash (freeze the display, or

keyboard or display "that" message) if the directions are followed exactly. The

operations least forgiving of improper actions are POKEing and testing Assembly

Language routines. It is suggested that you make backup copies of all important

files before trying the more esoteric operations.

A very rare crash won't respond to INIT 3. There are two courses of action:

Pull out the batteries (and un-plug the AC cord) and modules and hold the down ON key

for about 30 seconds. If that method doesn‘'t revive the poor confused beast then

leave the 7! sitting (without battery) overnight until the circuits are definately

discharged. HP has been known to suggest opening the card reader compartment (remove

the card reader if present) and shorting together the two taller pins on either end

of the row of pin connectors with a paper clip for just a second, though this is not

meant to be a recommendation for this method. The one time the author has seen the

need for this drastic fix was on a day of 105 degrees and under 10X humidity.

WorkBook71

A program package for the HP-71 is available by this author. WorkBook7!

includes Virtual Memory Spreadsheet, File manager, Data Format converter, Full Screen

Text Editor and Text Formatter. Contact the author for information.

o

Getting Started

When first turned on, the 71 is in BASIC Mode. The LCD display is blank except

for the BASIC prompt character ")>" and the flashing cursor. Whatever you type will
be accepted, without question, until you press ENDLINE. Pressing ENDLINE tells the
computer that you have entered a complete line and now it is time for it to do
whatever it is you have entered, and (possibly) display a result. In fact, just
about everything we do with the 7! terminates with ENDLINE. Since this is "a given",
this book will rarely even mention that you should press ENDLINE. The ENDLINE key
has the same effect as RTN, RETURN, EOL, ENTER or bent arrow keys on other computers,
but NOT the same effect as ENTER™ on RPN calculators.

The first part of this chapter will take advantage of a feature of HP BASIC: If
an expression is not explicitly assigned to a variable then it is implied that the

result of the expression will be displayed only. This feature of HP BASIC will

become self-evident in about four pages. 1f you would like to have the resuit of

each example printed then preceed each with the PRINT keyword.

It Just Beeps
It is likely that the first time you turned on your 71 and entered something

from the keyboard it displayed an error message then beeped. The messages aren‘t
intended to intimidate, but as an aid in using the computer. As with a calculator,

instructions have to be entered exactly as required for the 7! to understand them.

Unlike a calculator, the 71 can do several hundred things. A keyboard with hundreds

of keys is impractical, hence the command line and it‘'s series of messages.
This set of rules we follow when entering commands is called syntax. The 71

follows these rules of syntax when interpreting commands. This is called parsing.
Some ambiguity in syntax is accepted in speech and writing because people can infer

the meaning of a sentence from context, inflection, previous knowledge and such. The
computer, on the other hand, takes everything pretty much on face value; whatever we

tell it, it tries to do. If the 71 can‘t understand the command (it won‘'t parse)

then it will definitely let us know. Understanding syntax and how the computer

parses is as important in CALC mode as when writing a program. All commands and

syntax guidelines are listed in the HP-71 Refrence Manual.

BASIC Keyboard Math
When doing business as a BASIC mode calculator the 71 works in True Algebraic

fashion. Each operation is performed using rules of mathematical precedence, and a

final result is returned. The operator is placed between the arguments (numbers).

CALC mode displays intermediate values as operations are completed, but let's
consider BASIC mode calculations in this chapter.

Algebraic Calculator:

2 X 3 =

Hewlett-Packard RPN Calculator:

2 ENTER 3 =*

HP-71 BASIC Mode:

2 * 3 ENDLINE

Each of these methods has one thing in common: a single keystroke tells the computer

that you want it to process the data and return a result. The conventional

dollar-ninty-eight Algebraic calculator uses the = equals key and the RPN calculator

uses the # key. The 71 is similar to the Algebraic calculator in that the operator

(in this case the * which is computerese for multiplication, "X" is just that, an

"X") is placed between the operands (the numbers), however ENDLINE is used to tell it

that we are ready for it to get to work.

All calculators (and computers) have a stack: a place to store intermediate

results in a calculation. Without a stack there would be no way to do anything which

3

involves comparing two numbers. In the above example, the Algebraic calculator

places the first number on the stack when we press ¢+ then places the second number on

the stack and performs the mathematical operation when we press =. The RPN

calculator is friendlier to use because we can more readily control the values on the

stack and the order in which the operations are performed. An advanced True

Algebraic calculator can evaluate an expression using parentheses to designate which

of a series of operations will be evaluated first. In this way, the order of

calculation determines the intermediate results. We work with mathematical
expressions instead of entering operations from the "inside out"” to preserve the

order of precedence.

Mathematical Precedence
Algebraic calculations with the 7! are evaluated using the following set of

rules regarding precidence (which operation is performed first).

(... Nested Parentheses

= Exponentiation

NOT unary ¢+ unary - Operation on one operand (X=-X)

SIN RND Ccos FACT Functions

* / D1V %

* - & Operations on two operands (X=X-Y)

< = > % 7?7 <= >= <> Relational operators

AND

OR EXOR

Entered without parentheses, an expression will be performed in the sequence above.

Operations of the same level will be completed from left to right.

n+3%4-5 = 9

Notice that we didn‘t begin with DISP or PRINT, the 71 assumes that we wanted to
display the answer because it wasn't being assigned to a variable (we'll discuss

variables in a few minutes). Here, multiplication will be performed first. Since

addition and subtraction are on the same level of precidence, they will be evaluated

from left to right.

3% = 12, g#lg =14 , 14-5=9

Parentheses
Placing parts of an expression within sets of parentheses tells the 71 which

operations to perform first. Any number of parentheses may be used In fact, if you

are not sure of how an expression will be evaluated, add extra parentheses for

clarity; any extra will be ignored.

(Z+3)*¥4-3 = 13 Z+3%#(4-3) = -1 ’ (2+3) *¥(4-3) = -5

RES Register
The result of the last mathematical expression is stored in the Result register.

This is done regardless of if the value is assigned to a variable or just displayed.

This is quite helpful when an intermediate result is needed, then that value is to

again be used in the following expression. The RES keyword is used to recall the

contents of the register. Remember that RES changes with each expression.

c+3%4-5

9

RES*c
18

Other Operations

Not everything we do returns a value, and the flexible way the 71 does these

non-calculator operations is what sets it apart from a calculator. Operations return
a value are called functions, those which do not are statements. A statement tells
the computer to do something. For instance, EYE is a statement which turns off the

71. While the act of turning itself off is a function (as sleeping is a function

people perform), it does not return a value so it is deemed a statement. Several
system statements and functions are listed below.

Upper / Lowercase

Commands can be entered in either upper or lowercase, the 7! automatically
converts all commands to uppercase. In this book we will usually demonstrate
commands in UPPERCASE to help distinguish them from text. Either of the following is
acceptable.

beep

BEEP

Spaces
Spaces are entered between most statements for clarity. As a convenience, these

spaces can often be omitted when entering commands. The 7! will use it‘'s dictionary

of commands and syntax and try to evaluate the expression. Consider the following:

CALLIOPE XYZ
BEEPER MEMORY

In each of these examples the 71 will try to parse (interpret the meaning of the

expression) differently based on the context of the expression. Each example will

result in a different type of error. In the first case the computer will look for

the keyword CALLIOPE. It won't find it so it finds the next closest word which is
CALL which is used to call subprograms. So it looks for a subprogram named "10PE",
for our purposes we'll assume that "IOPE" is not the name of a program. This was a

complete operation and it just didn‘t work, so the 7! beeps and displays the error

message:

ERR:5ub Not Found

I1f you missed the message then press g (the blue shift key) then hold down ERRM (a
shifted function of the SPC key) to see it again. A message explaining the most
recent error can always be recalled this way.

The second example, BEEPER will be interpreted differently than the first. The

closest keyword is BEEP, which can specify a frequency (tone) and number of seconds
to beep. BEEPER will cause:

ERR:Excess Chars

Then the original line will return to the display with the cursor placed at the first

character in the line which the 7! did not recognize as part of a valid expression.

In this case the cursor is after the third E because E is a valid variable name, and

ER is not.

Let's modify BEEPER so that it will parse correctly. BEEP expects either

nothing, a single parameter, or two. If there are two parameters then they are

separated by a comma. Any one of the three following examples is acceptable.

BEEP BEEPS0@ BEEPS@Q, 1

The third problem we foisted on the 71 was XYZ which is not a complete expression,

and does not contain a complete keyword. Sinced there was no keyword found the 7!

assumes that we really meant to see the value of variable X and whatever followed was

a slip of the keyboard. Following the usual beep and error message the original line

will be returned to the display with the cursor over the Y because, again, it is the

5

first character the 71 didn't recognize as part of a valid expression.

In the fourth example, the 71 will return a value without an error (finally).

But, is it the result we wanted? MEMORY is not a command in the 7!‘s repetoire.
But, it did find MEM a function which returns the amount of memory currently
available. Then it looked for an operator that could follow the function; it found
OR which does a logical OR of two values. Since OR requires a second operator for
it's comparison, the 71 looked for a mathematical expression. It found Y which

referred to the variable Y. This is a complete expression, so the computer evaluates

it and returns a result. The answer is either the number one, if Y has no value, or

zero if Y contains a non-zero value. MEMORY is interpreted as:

MEM OR Y

This is hardly a useful expression. But it did not cause an error because it

evaluated to an expression which the 7! could successfully calculate.
As you can see, the computer will be able to detect and help us with syntatical

errors, but is of little help with logical errors.

Mult-stateaent lines
Several expressions can be evaluated in one session by the 71 by separating them

with the @ (commercial at sign).

C+3#4-3 @ (2+3)*#4-5

9

13

This will cause the first to be evaluated then displayed for the length of the DELAY

setting, then the second expression. The two expressions may also be evaluated and

displayed at the same time by using the ; semicolon. A semicolon at the end of the
expression tells the 71 that we are not finished displaying on that line, more will

follow.

2+3%4=53 (E+3) #4=5;2+3% (4-5)
g 15 -t

Each number is displayed with either a leading space or a minus sign, and followed by

a space. In this way numbers are displayed without runningintoeachother.

Strings
Much of computing involves text as well as numbers. A string is a group of

characters (letters, numbers, spaces...) enclosed between a pair of quotation marks.

Either single (’) or double (") quotes may be used, but both ends must match. & adds

two strings together, and [1 square brackets are used to extract just a portion of

a string (called a substring). HP BASIC has relatively few string functions (when

compared to Microsoft) because the versatility of brackets makes them unnecessary.

One or two parameters can be specified within the brackets.

[1,4] positions ! through 4 only

(3,7] positions 3 through 7 only

(5] from position 5 through the end of the string

We'll use the example of VER$ which returns the version of the 71‘s operating

system as well as that of many plug-in accessories. As with all functions which

return a string, the last character in VER$ is $ a dollar sign. "$" is usually

pronounced as dollar or string. For example, TIME$ is pronounced "time dollar" or

"time string”. Dollar is probably the preffered pronunciation when describing a

problem over the telephone.

Whenever a tunction contains a $ then 1t can only be used with string arguments.

Try using string expressions with numbers and experience a whole new world of error
messages.

VERS$ VER$ (3, 41 "This 1s the "&VER$[1,4]
HP71:1BBBB 71 This 1s the HP71

Notice that, unlike number functions, no extra leading or trailing spaces were added.
Again, a semicolon can be used to display more than one string, or even strings and
numbers, on the same line

MEM;VER$ (1, 4] ;2+3%#4-5

Numbers and strings are two quite different types of information. Therefore it takes

an extra step or two to move information between the two. Let's look at some of the

string operations.

CHR$, NUM
Each character can be expressed as either the character itself, or as a numeric

value representing the character. Characters are a single byte, and a byte can have

a value of from zero to two hundred fifty five. Therefore, there are 256 possible
characters, not all of which can be displayed. NUM takes a string and returns the
numeric value of the first character. CHR$ ends with $ since it returns a string.

CHR$ is the opposite of NUM in that it will accept a value of 0-255 and returns a

single character. A table of ASCIl1 / HEX / DECIMAL / BINARY conversions is listed in

the back of this book. Let's use the examples of "A" which is ASCIl 65 and """ which

is ASCII 94:

NUM("A™) NUM (")

63 94

CHR$ (63) CHR$(94)
Q 4N

VAL, STR$

An incredibly powerful function shared by the 7! and some larger HP computers is

VAL. 1t evaluates a string as a mathematical and returns a numerical result. While

not exactly the opposite of VAL (it can't restore a formula once it is gone), STRS$

turns a number into it's string equivalent. GS5TR$ follows the current FIX setting,

and truncates the fractional part or adds zeros as needed. These two functions are

the two main methods for exchanging data between strings and numbers.

VAL ("2+3%4-5")

STR$ (9)

Calculator Variables
Most calculators use data registers for storage of calculator and program data.

We'll define a register as a fixed size, pre-defined place to store data. The 7!, as

with other computers, uses variables. We make this distinction because variables,

unlike registers, can be of various sizes and types and possibly move about in memory

as ROMs or more memory are added to the computer. Unlike a register, a variable does

not exist (and does not use any memory) until it is actually needed.

In BASIC parlance and True Algebraic mathematics a variable is a symbol which

represents a value. The symbolic label used for each variable represents actual
individual location in memory reserved for that (if you will...) pigeon hole. Let's

assign our, now tiring, example to variable X. The keyword LET is optional (and

rarely actually used) but is included here for clarity.

LET X=2+3%4-5

Now X contains the result of the expression. This can be proven by entering:

X
9

This statement says "Look up the value of X and display it. We could use a boolean

operator to do a comparison and prove that X does contain the result of that formula.
In this boolean comparison the value is represented first to help the 71 to interpret

the statement; had the variable name been given first then it would merely have been
assigned the value. Another alternative to insure that a boolean comparison will be
made is to preface the expression with DISP. This consideration is only important

wvhen using = because there is no chance for ambiguity with other boolean operators.

9=X DISP X=9
1 1

The result of the argument will be either one which means the argument is true, or
zero would have been returned had our argument proven false. (whew!).

Previously we have been displaying results using an implied DISP. This means

that the results of an expression will be displayed unless the expression begins with

a variable assignment, in which case the result will be assigned to that variable and
nothing will be displayed. Remembering the optional keyword LET will help.

Symbolic Variable Names
The letters A through Z, as you know, are used to designate variable names.

Since programs often use more than twenty six variables HP has added the option of

adding a single digit suffix to give us A0 through A9, B0 through B9 and so forth.

Instead of 26 possible variable names we now have 286.

String variable names, like string functions, end with a $ dollar sign. As with

numeric variables they also offer the full 286 possible names. For example, X%, ES$,

RO%, Z9%. String variable names are separate from numeric variables; both X% and X

can be used at the same time. Unless otherwise specified (with DIM) a string

variable can contain a maximum of 32 characters.

Types of Variables

The rich library of operations the 7! can perform is further expanded by the

ability to use several types of variables. These types specify the mathematical

precision and usage of the variable. REAL variables are the full precision variable

with twelve significant digits (mantissa) plus three digit exponent. SHORT variables
have the same three digit exponent, but use only a five digit mantissa. INTEGER have

limited precision (only five digits), and round the fractional part to the nearest

whole number. Each of these three variable types use the same amount of memory;

there is no savings in using shorter precision. This was done to standardize the way

the 71 handles numbers internally, and simplifies things considerably.

Arrays

An array consists of a number of elements (either numeric or string) of one type

which are represented by a common symbolic label. Numeric arrays may be one or two

dimensions, string arrays are limited to a single dimension. A two dimension array

is also called a matrix. Unlike regular (scalar) variables, arrays consume less

memory per element than individual variables of the same precision. They may be

created in any of the three precisions.

OPTION BASE
The lower bound of the array is set at either zero or one depending on the

current OPTION BASE. Changing the Base setting does not affect the lower bound of

arrays previously created. The OPTION BASE setting is a global declaration (same for

programs and calculator variables). Either zero or one will be allowed.

OPTION BRSE @ OPTION BASE 1

Two dimension arrays are refrenced by row then column in the form X{(rcw,col) This

table represents an array of (3,4) created with OPTION BASE 0 for a total of twenty
elements. If OPTION BASE ! had been in effect then the zero elements would not
exist, it would contain only twelve elements.

1, 1,1 1,2 1,3 1,4
0 &1 2e 23 24
e 3,1 3& 3,3 3,4

Arrays can be implicitly created, though they will be created with elements zero

(if OPTION BASE 0) or one (if OPTION BASE !) through 10. Store something in any
element of a non-existant array and it will be created to the default size. If the
variable name specified is already being used for a non-array variable then the 7!
will cause an error. A more practical method for creating them is demonstrated in a

moment.

Arrays are refrenced by an element number following the array name.

A(5) element 5 of the single dimension array A

B(2,3) element 2,3 of the two dimension array B

X$(3) element 3 of the string array Xs$
Y$(5)(2,3] characters (2,3] from element 5 of the array Y%

Using Arrays
Indirect variable usage has long been a trick used by calculator programmers

(STO IND X). Arrays give BASIC this advanced capability as well as extending the
number of possible variables far beyond 286. The elements may be themselves

specified by mathematical expressions.

X=R (Z*R, 3%C)

String Arrays can only have a single dimension. As with regular string

variables, they are created to a maximum length of 32 characters per element unless

otherwise specified. An implicitly created string array will have 10 (or 11 if

OPTION BASE 0) elements of a maximum of 32 characters each.

Re-dimensioning an Array

Interestingly, if an already existant string or numeric array is re-dimensioned

without changing the element size (the number of characters which can be stored per

element or the precision of numerical elements) then elements are merely added or

eliminated without reseting unchanged elements to null.

Since elements in an array are not destroyed when re-dimensioning (if rules are

followed) this can be used in a program where an array will be created of minimal
size to conserve memory, then, if conditions change it can be increased in size

without losing information.

Variable names can only be used for a single variable type (again, strings and

numeric variables are a different case). If a variable name has been used for, for

example, a REAL number then it cannot also be used for an array.

The following table lists the available variable types plus memory consumption.

COMPLEX variables are included in this table, but are only available with the Math

ROM. A complex number can be either REAL or SHORT and has a real and imaginary part

represented as (@, @1) where the two parts are represented in parentheses separated by

a comma and i represents the imaginary part. Most mathematical expressions can be

evaluated using both real and imaginary part of complex numbers when the Math ROM is
present.

Type Precision Memory Usage
REAL 12 digit, exponent 9.5 bytes
INTEGER 5 digit, exponent 9.5 bytes
SHORT S digit 9.5 bytes

REAL ARRAY 12 digit, exponent &8*(Dim! - Base +1)*(Dim2 - Base +1)+9.5

INTEGER ARRAY b5 digit 3*(Diml - Base +1)*(Dim2 - Base +1)+9.5

SHORT ARRAY 5 digit, exponent 4.5%(Diml - Base +1)*(Dim2 - Base +1)+9.5

STRING Max length+!!.5
STRING ARRAY (Dim - Base +!)*(Max length +2)+9.5

Additional Data Types with MATH ROM:

COMPLEX 12 digit, exponent 25.5 Bytes

COMPLEX SHORT 5 digit, exponent 18.5 Bytes

COMPLEX ARRAY 12 digit, exéonent 16*(Dim! - Base +1)*(Dim2 - Base +1)+9.5

COMPLEX SHORT ARRAY 5 digit,exp 9*(Diml - Base +!)*(Dim2 - Base +1)+9.5
DIM, SHORT, INTEGER

These three keywords are used to explicitly create (or declare) variables. The

keyword REARL can also be used to create REAL variables, but only DIM can be used for
strings. The keyword DESTROY, discussed later, is used to get rid of unwanted

variables.

Remember, arrays are not necessarily initilized to zero if they already are in

existance. Variables of other types, if they already exist, are set to zero (or null

if string variable).

Create REAL or string variable
DImA, B, C, X$[961 , K$[11

REARL X , Y , Z

Create or re-dim a one-dimension array

DIM AR(S) , B$(9)L1@]

Create or re-dim two dimensional array

DIM X1(3, 4)

Create a SHORT variable or array
SHORT VvVt , Y(&3) , 2(5,8)

Create an INTEGER variable or array

INTEGER M , R(11) , B(3,2)
ZEN and Variables

Variable names, as we have discovered, are symbolic. Let‘'s recap some of the

other disconcerting realities of variables. A variable does not necessarily exist

even if it has been tested, until it has been explicitly (DIM) or implicitly (by

storing something in it) created. A variable which has been created as an array

cannot be tested as a simple (scalar) variable; nor can a simple variable be tested

as an array. A complex variable can only have an imaginary part if it exists; if it

does not exist then it cannot be tested for an imaginary part (BEEP, Err).

Strings are always created to zero length, but arrays are merely redimensioned
without being zeroed.

10

The HP-71

In many ways the HP-71 is a hybrid of calculator and computer; Part way between

the HP-4! and the HP-75. The 41 has a 1-bit CPU which evolved from as far back as
the HP-35. The 75, on the other hand is an 8-bit portable computer which evolived

from the desktop bound HP-85. Before introduction, HP had considered calling the 71

the "HP-44" because of the great popularity of the HP-41, then rationalized that,

since it is a true computer, it should have a computer name. Hewlett-Packard

attaches internal names to products; the HP-75 was the Kangaroo, the HP82161A

Cassette Drive was called Filbert (really!) and the 7! is Titan. In addition, the
microprocessor (CPU) which controls Titan is called the Capricorn.

Central Processor (CPU)
The 71 has a custom 4-bit CPU. This means that four address lines carry data

into and out of the processor; everything else being equal, this would make the 71

four times as fast as the HP-4!, and halif as fast as most desktop machines. However,

the 71 is a next generation machine with the ability to do full precision floating

point math in it's 8 byte registers. Registers in the CPU in most desktop computers,
by comparison, can only hold two bytes; thus making floating point math on the

desktop machine somewhat slower than integer only. These large registers mean that
the 71 is optimized for "hard” math and will provide greater accuracy than, for

instance, BASIC running on an 1BM PC. There are four main working registers and five
scratch registers in addition to two 5-nibble (2 1/2 byte) data pointers and nine

status registers.

Clock Speed
Another unique aspect of the 7! is the low power consumption. Partly

responsible for this is the relatively low clock speed. With the ease of doing high

precision math the engineers rationalized that great processor speed would not be

necessary. The 7! runs at about 600khz, though this speed varies with the number of

devices attached. This is the speed at which the CPU runs, and does not affect the

speed of the real time clock or frequency of the beeper. When doing speed

comparisons with other computers this compromise will be immediately apparent In

purly mathematical tests the 7! will keep up with or surpass the desktop machine,

while other operations, primarily those dealing with a great deal of memory

accessing, the desktop machine will win.

Clock speed is recomputed each time the 7! is reconfigured, which happens when
the 7! is turned on or :PORTs are altered. You can see your 7!‘'s current clock speed

with the following:

P$=PEEKS$ ("cF977",3)

HTD(P$[S1&P$[4,41&P$(3,3]1&P$L2,cI1&P$(1,1])*#16

Memory
The hexadecimal (base 16) memory location "2F977" is called "CSPEED". This 1is

the location in RAM used by the 71 to store the current clock speed setting. Notice
that we specified five characters ("2F977") for the location; memory 1s addressed as

five digit hex numbers. The maximum value possible 1s "FFFFF" in hex or 1048575 in

decimal. The HTD function used above converts a hex number to decimal. Since the

HP-71 has a 4-bit CPU, all locations are "nibbles"”, or |/2 bytes. This translates to

524,288 bytes, or simply 512K. So, the maximum amount of memory, RAM or ROM, is 512K

bytes. A listing of addresses or "memory map"” can be found at the back of this book.

A 71 with ostensibly 17.5K bytes only has about 16K available, even when first

turned on, nothing in it. This is because the Operating System reserves part of RAM

for pointers and other necessary system information (such as "CSPEED"). This

seemingly inflated rating of memory is actually less than most computers which can

The Operating System and BASIC live in four 16K ROMs in the the first 64K bytes

(from address 00000 through !FFFF) of the memory map. This is known as "hard

addressed” or "hard configured”", that is, regardless of how memory moves around (and

it does, whenever we add memory, or plug-in ROMs), it will always have that same

11

home. In this world of flux that 64K block of ROM will remain constant. This

stability is invaluable for the Assembly language programmer who wishes to use

subroutines from the Operating System. Hewlett-Packard has guaranteed that the
official entry points will remain constant even if the 71‘'s Operating Systea is

changed. An entry point is the hexadecimal address of a machine language subroutine.

Aproximately 120 entry points are documented in the back of this book.

In addition to the 3 timers which are programmable in BASIC, there is a timer

(TIMER2 at "2E2F8") reserved for alarm clock and appointment use. These functions

have to be implemented in Assembly Language, but the utility is there. If they

aren‘t already available as you read this, don‘'t be surprised to see them availabie
within a short time.

tPORTS

All of memory, indeed, all devices attached to the 71 are addressed through a

bus. That can almost be taken literally: a piece of data can tell the bus where it
is going, and it will be delivered to that address. The 71‘'s engineers took

advantage of this system to allow portions of RAM to be partitioned from MAIN RANM.

Thus creating Independent RAM, which looks much like ROM to the computer at many
times. The files are still accessable, and may be edited and copied. The advantages

to partitioning parts of memory into Independent RAM are many: Eliminate files from

the MAIN file chain to make it easier to find them, or perhaps, to keep them from
cluttering up MAIN RAM; and to keep from losing data in the event of a crash.

Port 0 contains the main RAM as well as the optional HP-IL ROM (if plugged in).

Memory in MAIN RAM can be partitioned in 4K blocks from .0 (or, simply, 0) through

.04. PORTs ! through 4 are the front module PORTs. PORT 5 is the Card Reader PORT.

There are also provisions for PORT Extenders to allow more than the standard 5 PORTs,

though no PORT Extender is currently available.
The BASIC keywords for moving files are fairly straightforward.

CAT :PART (@) Inspect file headers of files 1n :PORT (Q)

FREE PUORT(@) Reserve a block ofr KHM as i1ndeperaent

MEM (@) Return the currently available memory 1in :HOR(()

CLRIM PORT (@) Purge tiles from :PURT (@), reciaim memory

SHOW PORT List :PORTs arnd sizes

COPY FI1LENAME TO :PORT (@) Load a file to :FURI (@)

COPY FILENAME:PORT(Q) TO :TAPE Copy file from :PURT (&) tc mass storace

PURGE FILENAME :PORT (@)

As with the file chain, memory itself is daisy chained together, one device

points to the next. When a portion of RAM is designated as independent RAM it is

removed from the MAIN RAM and it's address is reconfigured to look much as a ROM and,

as such, is impervious to being cleared with INIT3. This is especially helpful to

Assembly Language and esoteric BASIC programmers.

12

Environments
The HP-71 is unique in the world of personal computers. It‘'s file structure,

operating system and advanced BASIC are unique. But another aspect of the computer
is often played down or at least taken for granted. An environment, in computer
terms at least, consists of a set of programs and data. The 71's proclivity for
rultiple environments is usually found only on very large computers, often using the
incredibly large and complicated UNIX operating system. Let‘'s spend a few minutes
discussing the interraction of files and environments in the 71.

The global environment includes the file system (programs, key assignments and
such) as well as all flags, the option base setting and calculator variables;
actually, pretty much the whole computer. When we RUN a program, the calculator
variables are directly accessable to that program. For example, let‘'s assi¢gn a value
to a variable, then see how it is used in a program. First, give variable X the
value of -3.

X=-5

Now, a program to display the contents of that variable. We'll create a BASIC
program file named "TEST", then place a a single line in it (line 10) to display the
contents of X.

EDIT TEST
i@ DISP "Variahle X=";X

Since it is the current edit file we can run it by pressing the RUN key. When the
program is run it will display the contents of X (the value -3). After the program
is through (that is, almost immediately, since it only runs for a fraction of a

second) we can confirm that X still contains -3.

X
e
-

Now, instead of RUN, let‘'s CALL the progranm.

CALL T&sT

Variahle X= @

What happened to X? The value is zero because we CALLed "TEST" which, in effect,
made it a sub-program. When a subprogram is CALLed, a temporary program environment

is created for it, and the calculator variables are ignored. So, naturally, X had no

value in that temporary program environment. When the CALLed program ends it's
environment is eliminated and the calculator variables are again active. In fact,

now that the CALLed program has ended, we can confirm that X still has the value -ZI.
The CALLed program can use the same variable names as the main (calculator)

environment without fear of altering them. Besides preserving the computer in the
state we want it, CALLing a program has the added advantage that all of the memory
the program used while it was running is reclaimed. The following is a simplified
"Memory Map", that is, a chart of how memory is laid out in the 7!. A more detailed
map can be found at the back of this book.

Memory Map
High Memory Plug-In ROMs & RAM

Calculator Variables

Unused Memory

Programs & other files
Global Enviroment

Low Memory Operating Systenm

13

As you can see, programs and variables are at opposite ends of memory, there is no

direct relationship between a program and calculator variables. When we RUN a
program (with some exceptions we‘'ll discuss in a minute) it will use these same
calculator variables. This is how memory is arranged when a program is CALLed.

Memory Map During CALL
High Memory Plug-In ROM & RAM Modules

Calculator Variables (on hold)
Active Temporary Program Environment

Unused Memory
Programs & other files
Global Enviroment

Low Memory Operating System

The calculator variables are left where they are, and new variables, in a separate
environment, are created below them in memory. As far as the CALLed program is
concerned, this temporary environment is all that exists. While it isn‘t necessary

to remember how memory is arranged (the 7! keeps everything organized for us), it is
important to understand environments and the differences between RUN and CALL.

A suspended environment also contains other program information such as the
current ON ERROR setting, FOR NEXT and GOSUB stacks. So, for instance, neither an

error in the sub-program nor will RETURN us to the calling environment.

Sub-Prograams
Many programs begin with a SUEH statement (in the program code) which declares

the entire program to be a subprogram. Again, the intention is to make it easier to
run the program and to preserve the calculator environment. Unless a special purpose

dictates otherwise, most commercially available programs for the HP-7! are written as
SUBprograms. We'll discuss programming in greater detail later.

A program which has been CALLed may, in turn, call another program (using the
CALL command which is programmable). It is conceivable that several environments may

be stacked in high memory. Each time a program CALLs another, it‘'s own envronment is
saved and the temporary environment is created. Again, when the CALLed program ends,

the calling environment is again active.
This unique rultiple-environment scheme is even more useful than first

impression leads. Up to fifteen data items may be passed between programs, and a
program may even CALL itself. The following little program is an example of CALLing
programs. The variable X is a counter which is passed from program to progranm.
However, the program CALLs itself, increments the counter, and, if the counter is

less than five, will call itself again. Once the program has ended, recall the value
of X and you will see that it is now 5 because that is the value returned in the last

SUB program CALL.

1@ X=@ ! initialize X
2@ CALL ENVIRON(X) ! call the program
3@ DISP "DONE" @ BEEP
49 END ! ernd of main program
5@ SUB ENVIRON(X) ! the sub program
6@ X=X+! @® DISP X;
7@ IF X<S& THEN CALL ENVIRON(X) ELSE DISP ! call 1tself, passing X

8@ DiSP "END,"; @ BEEP 4@0@ @ END SUB ! done

CALL Cautions
When a program is suspended by pressing ON, an error in the program, or the

keyword PRUSE the program environment is still active. If you then CALL another
program, or the same program, this environment will again be active when that program

ends. If you repeatedly CALL a program and suspend it, in very short order you will

be out of memory. The SUSP annunciator on the right edge of the LCD display is lit
whenever a program has been suspended. RUNning a program will automatically end all

programs which have been suspended.

14

Modes

A mode is a state of the computer which controls which operations may be
performed. BASIC calculator mode, in which we can enter calculations and edit

programs, is only one of many possible modes available in the 71. CALC mode performs
purely mathematical operations. FORTH and HP-4! emulation (available with plug-in
ROMs) offer other unique modes in which the personality of the computer is changed by
the operations which can be performed as well as the methods used to perform them.
BASIC, CALC, HP4! and FORTH modes each will remain in effect after turning off then
on the computer. BASIC is the most often used and is the "native” operating mode and
is always returned to when exiting, for instance FORTH.

> BASIC mode

<- CALC. "CALC" annunciator lit. Press f-CALC for BASIC

OK (0) FORTH. Enter "BYE" to return to BASIC

0.0000 HP-41 Emulation. "BYE" or "BASIC" to exit

\ Command Stack (in any mode)

Command Stack
Pressing g-CMDS as you know, enables the command stack. This can be done in any

mode. However, when a program is running, the stack is only usable when the program
is waiting for you to input a response. When a number is expected in the running
program you can alternately input a mathematical expression and the 7! will calculate
it and return the result as the number expected. Many programs, such as Text
Editors, Spreadsheets, and programs in some ROMs do not use the command stack,

instead the arrow keys perform other operations.

Usually the stack contains the five most recent commands, but it can be varied
between one and sixteen entries. A program called "CMDSTK" for changing the number

of entries is listed in the programming section.

Often Used Commands
These keywords handle most of the day to day, non-programming tasks we ask of our 71.

It would take a 400 page book to properly list all of the keywords available. In
fact, it did, all of the keywords are listed alphabetically in the HP-71 Refrence

Manual.

STARTUP

When we first turn the 7! on it does some self tests then returns to whatever mode

was active at power down. The STARTUP keyword can be used to have the 71 do anything
series of BASIC commands. This is helpful to automatically run a program or execute
a series of commands. The STARTUP sequence is ignored in CALC mode, but will be

performed in FORTH or HP4! modes, though still with BASIC syntax.

STARTUP "CAT ALL™ Tells the 71 tc do a CAT ALL when 1t turns an
STARTUF "IF TIME$)='13:00:00 THEN RUN LATE" conditicnally rurn a program
TARTLP ™" Deactivates the startup command

MEM
Available memory is always a concern when running programs, allocating variables, or

writing data files. The keyword MEM returns the amount of memory not currently being
used in main RAM. A PORT number may specified to show available memory in a PORT.

Note that the syntax for this command is different from others dealing with PORTs.

MEM(@) will display memory in :PORT(0).

DELAY
The 71 pauses between displaying a series of lines so that they may be more easily
read on the LCD. This delay setting, and the speed at which lines which are too long

to fit in the LCD will scroll can be set with the DELAY keyword. A setting of 8
(eight) or greater is interpreted as "INF", the 7! will display the current line

15

until you press a key. A delay of zero will cause the display to change whenever new
data is available. A scroll rate of INF will inhibit long lines from scrolling (the
left and right arrow allow you to view the whole line. Many programs alter this
setting without restoring it. The default (the way the 7! works when reset) setting
is a delay of .5 seconds and a scroll rate of .125

DELARY @ Sets lire delay rate to zero

DELAY .5,.125 Sets line delay rate to 1/2 second and scroll to 1/8.

VIDTH, PWIDTH
Ve can set the number of characters which the 7! will display or print on a single
line with the WIDTH and PWIDTH commands. If a displayed or printed line is longer
than the specified length then the 71 will automatically display the remainder on a
separate line. The default for both is 96 characters, maximum for both is 255.

Normally, when displaying lines longer than the WIDTH setting, pressing a key will

show the remainder of the line, However, if WIDTH is set to INF, the end of the line

will not be displayed.

WIDTH &2 Sets the maximum display line length to 22

PWIDTH 8@ Sets the maximum to be printed on on line to 8@

STD, FI1X, SCI, ENG
The display format of numbers can be set much as with a calculator. The default

is standard BASIC format (STD) which displays in floating point format, supressing
decimal point with integers and displaying in scientific notation when the number

exceeds 12 digits. This sets the display format but does not affect the numeric

precision used in calculations. The keywords set both the number of decimal places

and the display mode; valid settings are zero through eleven. The number setting is

used in BASIC, CALC, and in most programs, though some programs change this setting.

5TD Restores the standard BASIC display format.

FIX 4 Sets the display format to 4 decimal places.

§CI & Sets Scientific Notation format tc two decimal places.

cNG 3 Sets Engireering Notaticon to three decimal places.

TIME$, DATES$

The internal clock on the 7! runs all of the time, even if the computer is shut

off. TIME$ and DATE$ recall the current settings of the clock. Current clock
settings are also placed on the headers of all files when created or copied to or
from mass storage. Time is displayed in 24 hour format and the date is displayed
"YY:MM:DD". The clock is set with the statements SETTIME and SETDATE.

TIMES Displays the current time

DRTES$ Displays tcdays date

SETTIME"13:15:@@" Sets the clock to 1:15 pm.
SETDATE"86/@7/@4" Sets the date tco July 4,1586.

A simple program can be used to constantly display the time and date when other

programs are not being used. This can also be assigned to a key or used as the
STARTUP string.

FOR X=1 TO INF @ DISP TIMEs&" "SDATES$ @ NEXT X

DESTROY
The 7! automatically creates calculator variables as they are used in a program

or CALC mode. They do not exist until they are first used. The memory they consume

can be reclaimed when they are no longer needed using the DESTROY keyword. This is

not as lethal as it sounds; no smoke will rise from the card reader port, all that

will happen is the memory used by the variable will be reclaimed.

16

DESTROY ALL Frees memory used by all calculatcr variables
DESTRQY X,A$ Frees memory used by variables X and A$

CAT, CAT ALL

Many larger computers use a menu to display files currently available. CAT ALL
displays file names, type (BASIC, TEXT, etc.) size in bytes, date and time of
creation and the :PORT (if applicable) UP, DN, g-UP and g-DN keys move us through all
files in the chain. In addition, two other keys take on a special meaning during CAT
ALL. f-LINE moves to the next :PORT, and f-EDIT makes that file the current edit

file (if it is BASIC). The ON key terminates CAT ALL. The catalog entry for
individual files can be displayed with the CAT keyword by specifying a file name,
tPORT, or mass storage device name.

CAT ALL Catalcg of all files in RAM and :PORTs
CAT AFILE Catalog of file named "RFILE"
CAT :PORT(2) Catalog of all files in :PORT(Z)
CAT Catalog of the current file
CAT AFILE:PORT (@) Catalog of the file "AFILE" in :PORT (@)
CAT AFILE:TAPE Catalog of the file "AFILE" on Disc or Cassette

CAT CARD Catalce of a magnetic card track

COPY
The most often used file command. Used to copy files between RAM, Magnetic Card,
:PORTs and Mass storage.

COPY AFILE 70 BFILE Copy file named "AFILE" tc rnew file called "BFILE™

COPY AFILE:TAPE Copy "AFILE"” from Disc or Cassette to RAM
COPY AFILE TO :TAPE Ceopy a file from RAM to Disc or Cassette

COPY :CARD TO AFILE Copy a file from magretic card tc RAM

EDIT, PURGE
These two keywords are used to create new files and eliminate files when they are no

longer needed. PURGE can be used on any file type in RAM or on mass storage, unless
the file has been SECUREd (see below). The file will be eliminated and any memory it
consumed will again be available.

The cDIT keyword can only be used with BASIC file types. 1If the file specified

does not exist it will be created; this is the only way to create new BASIC files.

We can only edit files in MAIN RAM or :PORTs, not on mass storage.

EDIT Edit the warkfile

EDIT AFILE Edit a BRSIC file called "AFILE”
PURGE Purge the current file

AURGE AFILE Purge the file called "AFILE”

PURGE AFILE:TAPE Purge the file "AFILE" orn Disc or Cassette

NAME, RENAME
Since only one file of a given name may exist in RAM or on a given device, some

creative file name juggling is in order. RENAME makes it a breeze. NRAME is used

only to change the name of the "workfile", regardless of what is the current edit
file.

RENAME TG RPROG Changes name of the current file to "APROG”

NAME ARPROG Name the workfile to "APROG”

RENAME APRGOG 7O EPROG Changes the name of "APROG” to "BPROG"

 RENAME APRCG TO BPROG:TRPE Charnge name of a Disc or Cassette file

File names must begin with a letter (A-Z) and may contain numbers (0-9) as long as
they are 8 characters or less. While the 7! poses no other restrictions on file
names, several names should be avoided because of possible conflicts and confusion.

File type names (such as TEXT and KEYS) and device specifiers like TAPE, and MASSMEM

as well as ALL, CARD, MAIN and should be avoided.
17

as well as ALL, CARD, MAIN and should be avoided.

LIST, PLIST
Print or display the contents of the specified BASIC file. If a printer is assigned
and active The EDTEXT LEX file in the Text Editor, HP-4! Emulator and FORTH/Assembler

ROMs add the ability to LIST and PLIST TEXT files. File types other than BASIC and
TEXT cannot be LISTED or PLISTed.

PLIST List the current file toc the PRINTER IS device

LIST AFILE List all lines in file named "AFILE"

LIST AFILE, 10,100 List lines 1@ through 1@@ in file "AFILE”

PLIST AFILE List "AFIILE” to PRINTER 1S device

FETCH
Moving around the current BASIC file can be speeded by the non-programmable FETCH
command. Specify a line number or label and that line will be made the current line.
1f the line number specified is not found a blank line with that number will be
presented to you with the cursor positioned after the line number. However, if a
label specified is not found you will be presented with an error (beep, "ERR:Stmt Not

Found") .

FETCH 1zea Make line 120@ in the current BASIC file the edit lire

FETCH ZAP Make the line containing label "ZAP" the edit line.

RUN, CALL, CONT

RUN Run the current program file

CARLL Call the current file as a subprogram
RUN APROG Run the program file named "APROG"
CALL APROG(X,G%) Call "APROG"™ and pass two parameters
CONT Cont irwes running the current program where it stopped

f-CONT Pressing this key continues rurning the current program

END, END ALL
Many times we will suspend a program using the ON key. The END keyword can be
executed from the keyboard to properly terminate the program.

END end the current prcogram and restore calculator variables

END ALL End all suspended programs

OFF 10, RESTORE 10
The HP-IL Module tries to assign printer and display whenever the 71 is turned on.
This can take several seconds each time the computer is turned on if the loop is

broken (that‘'s HP for nothing is plugged in). UrfFf IC disables HP-IL operations and
speeds power up considerably. RESTCRE IU is used to reinable the HP-IL module.
However, if RESTORE I0 is used with a broken loop the 7! will hang up for few seconds

then issue an error message. When used in this context it is usually better to use
RESTORE 10 after connecting all devices. If flag -2! is clear then all devices
capable of being turned off remotely will be powered down when the 7! is turned off.

OFF 10 Disables HP-IL cperaticn
RESTORE IC Ernables HP-IL. Re-assigrs cdeviceec.

PRINTER 1S, DISPLAY 1S
Normally, HP printers and display devices will be assigned automatically when the 7!
is turned on. However, we can reassign these devices as needed. Printer output can
be directed to the display to test a print routine without wasting paper or to assign
the printer as a display for a kind of super-trace mode. Be cautious about assigning
devices; there is no protection against, for instance, assigning a Disc Drive as a
Display device (from which no good could possibly come). The easiest way to specify

18

HP-IL devices is with device words such as :DISPLAY and :PRINTEK.

DISPLAY IS #* Disables external cdisplay
DISPLAY 15 PRINTER Establishes the printer as the cisplay device
PRINTER IS DISPLAY Establishes the display as the arinter
PRINTER IS PRINTER Restores the printer to it's rightful job

INITIALIZE

Cassettes and Discs must be formatted before use the first time. This means that the

media must have a standard directory and data format before the computer can record
files on it. The INITIALIZE keyword is used to format the media to the HP-71 format.
The INITIALIZE command erases all data previously stored on the media. Unlike files
in RAM, a Disc (or Cassette) must allow for a pre-defigned number of files in it's
directory. The standard record (also called sector) size is 256 bytes. A record is
the fixed physical size set aside for each item or group of items. Files are stored
in multiples of records; for example if the file is 512 bytes then it will occupy two
records, however a 513 byte file will occupy three records.

The directory is allocated by records, 8 files per record, so the logical size
to specify would be a multiple of 8. Determine the maximum number of records the
media can contain and the average file size you use before formatting the disc.

Each media may also be given an identifying volume label of up to six
characters. When a Disc has a label then you can refrence is by name using a period
instead of a colon such as .V0LZ instead of by :TAPE. This is somewhat slower than
addressing the device name because the label is placed at the beginning of and must
be read each time it is refrenced. The media volume label can be ignored, and does

not even need to be specified when you INITIALIZtE a Disc.
We'll demonstrate the :TRPE device specifier (representing an accessory 1D of

16) which can be used for either HP82161A Cassette or HP9114 Disc. Mass storage
devices which do not respond to the :7APE device word can be referred to by :MASSMEM.

INITIALIZE :TAPE Formats mass storacge with 1Z8 file entries.

INITIALIZE :THPE, 0@ Formats the media with 20@ file ertries
INITIRLIZE VOLZ2:TAPE, 128 Formats mecia and labele 1t "VOLE"

When a file is stored on mass storage, a contiguous block is reserved. If the file

is copied to RAM and subsequently grows, it will no longer fit in the same place on
the media. When copied back to Disc the 7! looks for a new block of records large
enough to hold the entire file, if one is found then the entire file is placed there
and the original location is marked as available for use (in the same way FURCE works
with mass storage). If there is no single block of sectors available large enough
for the entire file then an "End of Medium" error will be displayed and the file will
not be copied. When the file is moved to it’s new home, the previous location of

that file is now available, the next file to be copied to the media which will fit
will be placed within that block of records, even if a considerable number of records
within that block are left unused. As you can see, after this scenario is replayed

several times, a considerable number of records may be wasted. The PHLA command may

be used to delete the unused records between files. Since the operation causes

considerable media wear and is subject to the vaguaries of battery power, PACKing

media should only be done as a last resort. C;%fl;?;fi;g

19

Rccessories

First there was the calculator and a few ROM‘'s and single density memory
modules. As technology (or marketing) progressed larger memory modules, new ROM's

and the Cassette Drive showed up. The author bought a Surveying ROM for the HP-41 a

few years ago; the only surveying [‘ve ever done was a philosophy class in college.

A coined term for this phenomenon is "The Barbie Doll Syndrome"; what you have is
nearly as important as what you'‘re going to get. There is a point at which we should
be saying "what do | need to get the job done?".

Data Storage

Unless you use your 7! just as a calculator or only run ROM programs, you will

need some sort of data storage medium. A lot of RAM costs (as of January 1986) more

than a Card Reader, Cassette or Disc drive, and, regardless of how much memory there

is, some sort of mass storage device will still be needed. In practical terms, the

only justification for investing in over, perhaps, 64K is if you can't carry a Disc

or Cassette because of weight or damage considerations and a great deal of memory is

needed. Lets compare the cost of storing 1K on various types of media:

4-K RAM Module 18.75

32-K RAM Module 8.00

Magnetic Card .55

Cassette .08

3 1/2 inch Disc .01

Each of these alternatives have their purposes. I|f media cost was the only concern

then everyone would use a Disc drive. The tradeoffs are in cost of hardware,

portability, capacity, reliability, ease of use and speed; each type of storage

excels in one or more of these fields.

RAM Modules

It's been said that there is no such thing as too much memory. That can be

easily defended when we are using a large data base or a carefully crafted

mathematical model. The other side of the coin is that we can become lackadaisical

about backing up files.

Card Reader

The card reader is a practical investment and a viable trade off compared to a

lot of memory. The per kilobyte cost is high, but the initial outlay is reasonable,

not even requiring the HP-IL Module. The cards come pre-formatted with a single 650

byte file on each of it's two tracks, and cannot be reformatted, but can be

re-written as needed. A file can extend to any number of tracks and recording

multiple tracks is as easy as single tracks.

The author has used these magnetic cards with a similar card reader (in the

HP-75) for about three years, recording several hundred cards each month; the plastic

bezel on the edge of the card reader is worn shiny from the passage of cards. In

that time the card reader has never failed and only one track has lost data.

New cards are the most likely to fail, and usually the first time they are used.

1f a card worked the first time then it is probably safe to assume it will continue

to do so. Data is rarely lost because the card will fail when trying to record on

it. A very unofficial (and unscientific) survey has found that one card in 350 will

have one bad track, and the quality has continued to improve as time goes by. Some

precautions are always necessary; don‘'t store cards near your magnet collection, and,

if the card won't read, wipe it off by pulling it through a hole in a clean t-shirt.

HP—IL Mass Storage
The file handling of the 7! was designed with mass storage in mind. The HP-IL

Module and a Disc drive could be installed and used without reading any of the

manuals. The COPY command and INITIALIZE are the only operations many users will

20

evey need. The 71's efficient use of memory allows a single drive to provide as much

(if not more) utility than larger computers with two or more drives. Currently

available are Hewlett-Packard 9114A8B 3 1/2", HPB82161A Cassette Drive, and Steinmetz

& Brown Ltd 5 1/4" (single & dual available). The S8B drive is less expensive than
the 9114, but does not run on batteries.

HP's Disc format is different from most others. While HP series 40,70, and 80

rachines can often read the same disc, Apple, IBM (including the HP 110 Portable and

115 Portable Plus) and most other Disk formats will not be readable by the 7!. File

exchange with non-HP machines is usually done through Modem or by directly connecting

the machines together with the HP 82164A HP-IL/RS-232C Interface. The drives are

usually used for storage for 7! files, not for sharing with other machines.

3 1/2" Disc Drive
HP 9114(A&B) Disc drives offer fast, reliable storage of programs and data.

Physically the 9114 is a five and one half pound brick which is more at home in the

office than the field. It averages five to ten times as fast as the Cassette drive.

The drive averages 6K per second transfer rate; the full memory of the 71 could be

exchanged in three seconds. A single Disc holds about 600 K, and the battery runs

for about 4 hours of normal use or 40 minutes of continuous use (as with copying an

entire medium). Lest the 9114 be considered just another accessory, consider that it

has 128K bytes of ROM and !6K bytes of RAM.

The Lead Acid battery pack may be left charging without fear of ruining it. In

fact, it works best at a duty cycle of less than 30X of capacity. Continual use

(such as duplicating several discs) will discharge the battery faster than the

standard charger can recharge it. A light flashes when the battery is getting low,
though this is usually not seen until the drive shuts down and refuses to work at

all. Many Disc drive users carry a spare battery pack, and third party compainies

are developing battery eliminaters and higher capacity chargers.

Early 9114A‘'s had some design problems which (hopefully) have been corrected to

a large degree in later releases. The two main problems were that the statement

PACKDIR didn*t work correctly, and battery consumption was excessive. A new ROM is

available from HP to upgrade these older machines (as of this writing it is

Part#09114-15516) and may be purchased from the Corporate Parts Center. Installation

requires a TORX T-9 screw driver and a static free environment and is probably best

left to technicians.
The 9114B has been re-engineered for greater battery conservation and has more

blatant low battery warnings.

Disc Media

Sony manufactures both the drive mechanism and the Discs Media for HP. The

drive is designed to work with only double side certified Discs. Sony and HP Discs

are preferred, though Maxell, 3M and others also manufacture them. Of the four

brands listed, the first three will probably give greater service life. HP Discs

have a life in excess of 1,000,000 revolutions; at 600 rpm that is at least 27 hours

of continuous use, and normal access is only a few seconds.

Double sided 3 1/2 inch Discs are becomming a standard and are much easier to

find than magnetic cards or cassettes. Open the shutter on a single sided Disc and

it will look just like & double sided Disc; the difference i1s that the second side 1s

not warrented to be any good at all. Perhaps the second side failed a test during

production or was simply not even finished properly or tested. In fact, a single

sided disc can often be formatted and used as double sided, thus saving about a

dollar and a half. However, lurking on that side may be head eating rough spots and

voids which probably will fail eventually, usually making it so that the drive can't

read either side. A rough spot smaller than can be seen may affect the drive: a

smoke particle will lower the signal strength to 15% of normal amplitude, imagine

what an innexpensive Disc will do.

A more serious problem with using single sided Discs is head wear. Since both

heads are in contact, even if only one side is being read, the top head is doing a

sand dance whenever the Disc is in the drive. HP suggests reading (not writing)

single sided Discs only, and immediately removing them from the drive when done.

21

Disc Drive Maintenance
The recording heads will usually not need cleaning for many years of use. The

minor contact the heads have with the Disc surface is enough to keep them free of
debris. The only time a recording head should ever be cleaned is if it has been

force fed a dirty Disc. HP sells a "Disc”" used for head cleaning.

If you Drop your 9114 Drive
The manual suggests that if the drive is dropped more than 5 inches the heads

will immediately be destroyed. What usually happens is that the top head comes to

rest on the Disc, and, if you pull the Disc out of the drive at this time the heads
will be pulled out of alignment. If you drop the drive, the first thing to do is

push the Disc release button to raise the heads. Do this even if the Disc (or

plastic/cardbord shipping protector) is partially ejected. If you pull out the Disc

before pushing the release button you will pull the heads out of allignment. In

fact, it is a good idea to always push this button whenever the 9114 has been carried

around. Using the shipping Disc is also an innexpensive insurance policy.

Several drives may be stacked without interference. A monitor would be the

ideal thing to place on the broad flat top, though don‘'t, the 9114 isn‘t shielded for

it. The ThinkJet printer will not interfere, though be cautious about placing other

devices there.

HP 82161A Cassette Drive
While it is a casseatte drive, it acts like a Disc drive, with random data

storage and retrieval, though speed which can‘t keep up with a steady hand and a card

reader. The 82161 Cassette drive is a mixture of good portability, relatively long

battery life (three hours), reliability (it has been in use since 1981) and

reasonable capacity (128K). The cassette drive will put up with fairly hostile

environments and work reliably while bouncing around in a car or airplane. A

Cassette running 30 i.p.s. searching for a file is much like the scream of a

dentists drill.

Cassettes do not have the life expectancy of Discs. As with the Disc, keep the

Cassette Drive away from Monitors.

Cassette Drive Maintenance
The two enemies of cassettes are stretching and dirt. The tape stretches

whenever it is used, until one day either too much of the magnetic surface as flaked

off, or it has stretched to the point of unreadibility. Keeping the drive head clean

will greatly increase tape and drive life.
The Cassette Drive uses Nickel-Cadmium batteries which have considerably

different characteristics than the Lead-Acid battery pack of the HP-9114 Disc Drive.

While opinions differ, most people suggest using the Cassette on battery until the

battery light has been on for some time (though before it starts acting erratically),

then plug it in and recharge it for the full 14-16 hour period. Continual short

charge-discharge cycles may not necessarily shorten the batteries life, though it

will, in time, limit the time the drive will run on a single charge. Placing the

power switch to ON instead of STANDBY will reduce power consumption considerably.

The small plastic washer used to hold the spindle (which looks like a tiny

washing machine agitator) to the metal shafts may, with time and heavy use, work it's

way off of older units, leaving the drive useless. Usually the spring, spindle and

washer can be slipped back on without necessatating a repair charge. HP Repair

Service in Corvallis Oregon will often supply spare washers without charge if

requested. A washer can be taped inside of the battery compartment door for that

rare need.

Printers

The ThinkJet Printer has just about taken over the 7! printer market. |It's

strong, silent and runs for a long time on batteries.

While some other brands of printers have more features or provide better print

quality, the difficulty of connecting them dissuades most people from using thenm.

The two standard printer interfaces are Parallel (Centronics) and Serial (R5-232C).

22

In neither case will the 7! automatically recognize the device as a printer. And

some programs, such as the Finance ROM refuse to recognize non-HP printers. HP

printer codes are quite different than, say, Epson‘s so programs using alternate

print styles or graphics may not run on other printers.

Display Devices
Most programs are not written especially for use with a monitor, but all

programs will be easier to use. The HP 92198A Interface (manufactured by Mountain

Computer) provides either 40 or 80 columns. A monitor can be very helpful for

writing programs or for testing how a program will format data without having to

print it. When used with a monitor the HP-7! becomes the equal to or superior to any

desk top computer.

The only Text Editor program currently available which provides full screen Text

Editing is a utility in WorkBook7! (the spreadsheet also supports a Video Interface).

Using a Terminal
Alone, the 7! is a fine handheld, a terminal provides a display and larger

keyboard Since most non-HP terminals use different display control codes some

compatibility problems will be found. The usual problem will be when lines are

longer than 80 columns or a program tries to do formatted display. Most

compatibility problems can be avoided by using a terminal or computer acting as a

terminal for the keyboard, and a Video Interface for the display. Adapting the 7! to

a terminal or other computer is discussed later in this book. Many people use a

separate computer for program development then transfer the file to the 7! to be

transformed into BASIC or Assembled.

Other HP—-IL Devices
The following is a partial list of available HP-IL devices. Many other third

party devices not listed are also available.

1630A/D/G Logic Analyzer
2225B ThinkJet Printer

2671A/G Alphanumeric/Graphics Thermal Printer 8.5" paper

3421A Data Aquisition/Control Unit

3468A Digital Multi-Meter
45643A HP-150 Interface

4945A Transmission lmpairment Measuring Set (opt 103)

5006A Signature Analyzer (opt 030)

7470A Graphics Plotter (opt 003) 2 color, 8.5 x 11 paper

9114A Single 3 1/2" Disc Drive

9114B Single 3 1/2" Disc Drive
82160 HP-4!1 HP-IL Interface

82161A Digital Cassette Drive

82162A Thermal Printer/Plotter 2 1/4" paper

82163A/B 32 Column Video Interface (discontinued)

82164A RS-232C Interface

82165A GPI10 Interface

82166C Interface Kit

82168A Acoustic Coupler. 300 baud, battery powered

82169A HP-IB Interface

92198A Mountain Computer 80 col Video Interface

82905B Impact Printer. Similar to Epson MX-80 (discontinued)

82938A Series 80 Interface

82973A IBM PC InterfaceT
S

Ocean Scientific A/D Interface

SB10161A Single Steinmetz&Brown 5 1/4" Disc Drive

SB10162A Dual Steinmetz&Brown 5 1/4" Disc Drive C;%agigi;)

23

The File Chain

Unlike many larger computers, the 7! can have many tiles in memory at the same

time; they are organized in what is called a file chain. As you know, there are many

different types of files, and an understanding of the interraction of these files is

a key to getting a "feel"” for the 71. We will discuss the file system in several

levels in this section.

There is little discussion of memory limitations in the Owner's manuals because

there are practically none. The 7! can work with a maximum of 512K bytes of memory,

of which relatively little is spoken for by the operating system; the rest is

available for add on RAM and ROM. Add to this a Disc or Cassette Drive and there is

almost limitless potential for losing things. The 71 uses a file system (or '"chain")

to keep all of this possible memory organized. This system can be compared to a

filing cabinet and each file within it to a, well, a file.

A plug-in ROM can contain from one to several files. For example, the Math ROM

contains only one large (LEX) file, while the Finance ROM contains six (sundry type)

files. When RAM or plug-in ROM‘s are added or removed (turn it off first please!)

the 71 automatically keeps track of where and how big they are. When we EDIT, CRERTE

or PURGE a file in RAM, again the 7! keeps everything sorted out.

Finding Files
The keywords CAT and CAT ALL let us view what files are in the 71 without the

chance of accidently mucking about with them. CAT with nothing following i1t lists

the entry for the current BASIC file being edited. CAT followed by a tile name (such

as CAT KEYS) displays information about that file. Let‘'s use the catalog entry for

the Math ROM;: in this example it is in :PORT(2), though it could have been 1in

:PORT(1) amongst others. If we did CAT :PORT(2) then first the standard header wouid

be displayed followedby the first (in this case only) file entry. Had there been

other files in the ROM then their information would be displayed when we pressed the

DN ARROW key. This same method can be used with CAT :TAPE. 1f we had entered only

CAT MATHROM then only the information about that file would be displayed.

CAT ALL is used to list the catalog information for every file. First the

general catalog header is displayed then the information for the first file. The

arrow keys are active to allow viewing other files headers. In addition to the arrow

keys, f -LINE is used to move forward to other :PORTs.

NRME S TYPE LEN DRTE TimE PORT

MATHROM E LEX 32745 {1/@1/83 12:0@ 2

The first information is, of course, the file name, followed by a space, S, H. or E.

A space means a regular file, or "do with it what you will, don't blame me 1f you

ruin it". S means the file has been secured so that it can‘t be accidently altered

or purged. P means "private" the file cannot be edited or altered teven with FOKE).

E means "execute only" and is a double whammy: you can neither alter nor purge 1t.

In the case of the Math ROM, merely making it PRIVATE would have been sufficient: the

only way you can PURGE a ROM file 1s to pull out the module; nevertheless 1t's a type

E.

Next comes the file type fully spelled out (i.e.: "BASIC", not "B" or "BA" as

with some other HP Computers). File types are discussed about two pages down.

Next we have the file size. This i1s the aproximate number ot bytes of KAM (or

ROM) without counting variables which the file occupies. The file size does not

include the file header information which takes another 18.5 bytes. Even 1f the file

size is ostensibly zero, it still consumes at least those 18.5 bytes. Enter the

following line (presuming there isn't a file already called "TEST"). Notice that

memory has decreased by 19 bytes (or 18, MEM is often off by a nib).

MEm; ® CRERTE TEXT TEST @ mEM

If the file is larger than 9999¢ bytes (pretty unlikely) then the tile size 1s

24

listed in number of kilobytes (or "K" which represents 1024 bytes): for i1nstance lI¢K

means a file of aproximately 110*1024 bytes.

The date and time of creation come next. This information is updated whenever a

file is saved to or read from Disc.

The final part of the catalog entry is the number of the :PORT containing the

file.

File Header Structure

The 7! maintains the file header in a much different format than it displays 1t.

This is to save memory, and speed up many operations. Since the native language of

the 71 is not English the file header is stored in "7lese" and is translated into

English when we do a CRT. The file header is a contiquous block of 37 nibs:

File Name 16 nibs

File type 4 nibs
Flags l nib
Copy Code 1 nib

Creation Time 4 nibs

Creation Date 6 nibs

File Chain Length 5 nibs

The file name is always eight characters (16 nibs) and is filled with spaces it

the name is shorter than 8 characters. The next four nibs are the i1nternal

representation of file type (in hex).

BASIC EZl4 LEX Ec08

BIN Ec@4 SDATA EVDY

DATA E@Fo TEXT a1

KEY EcaC

The copy code nib is 0 for normal access, 4 for private (P), 8 tor secure (5)

and B for execute only (E). Note that file types are encoded differently when stored

on Disc; this discussion is only for files 1n KRAM.

File creation time and date are stored in BCD (well, kind of). Both fields are

stored reversed so that 20:45 86/09/04 (8:45 p.m Sept 4,8b) looks like:

54 02 40 90 6 8

min hour day month vyear

The final 5 nibs are a pointer to the next file in memory. This 1s the key to

the file chain; one file points to the next. The first file contains a pointer to

the second, the second to the third and so on.

ADDRS

The function ADDR% returns the location of files i1in RAM or ROM 1n hex format.

This location is the first nib in the file header; the actual file contents begin
after the 37 nibs in the header and, 1f there i1s one, any subheader. Since ADDRS$

only works with normal, uppercase file names, the only way to find a file with, for

instance, a lowercase name is by finding it's position relative to the file

preceeding it in the file chain.

data Files

Programs, like everything else, are maintained i1n files. Many programs create

or alter data. This information often needs to be retained for later use after the

program ends. Obviously, calculator variables are not ‘the place to store this

information because any program could change 1t, and i1t 1s difticult to save 1t to

Disc. Information which doesn’t grow or change can be kept within & program in

"DATA" statements, but separate Data files are more flexible.

Data files (TEXT, DATA or SDATA) are a convenient place to store information 1n

an organized form. In this discussion we will use uppercase "DATA" to designate a

25

file type, and lowercase '"data" to designate information to be stored in a file,

regardless of the file type, and to designate a the general class of files which are

used to hold information. Since, unlike BASIC programs, we cannot directly edit a

data file, their use is more difficult to understand at first. Imagine a filing

cabinet which you cannot inspect, and which will only let you have something if you

know what you’re looking for and exactly where it is. Other than the

over-dramatization, that’s the superficial look of a data file. With some

understanding of BASIC, and planning how we are going to store information they

become easier to understand. Remember that programs usually maintain the data files,

so, once the program is written, the intrinsics of maintaining the file are

automatic.

Three types of data files (DATA, SDATA, TEXT) provide a variety of ways to

maintain information. To use this data we must be able to create the file, store

something in it, and recall the information. All three file types use the same

general methods and the same keywords, the differences in actual use (which are

extensive!) will be discussed when we cover each type.

Creating the Data File

Before storing or retrieved, the file must created or loaded from mass storage.

New data files are all created in the same manner. CREATE, like the other data file

keywords to be introduced in this section, is a statement which does not return a

value (you can’t use X=CREATE...), and will cause an error if the file named already

exists, there isn’t enough memory, or a funny sounding file name was used (well, at

least not a standard HP-71 file name).

CRERTE (file type) (riame)

A comma is not used to separate the file type and name, a space should be used.

If only the file name is specified then a DATA file will be created with that name.

Because of possible ambiguity, files with the same names as file types should are

best avoided (imagine a DATA file named "SDATA"). This operation merely creates an

empty file of the designated name and type.

Files may also be created to a a specific size. That is, a number of records

(standard unit size), or number of bytes of RAM may be reserved for the file:

CREATE (file type) (name). size

This method 1s required for data files on Mass Storage, because Disc (or

Cassette) files cannot be expanded once they are created. HP format for files on

mass storage requires the entire file to be in one contiguous biock, and another fiie

probably exists immediately after the one being used. Files loaded into RAM then

copied back to Disc do not have this restriction; if the file no longer tits in it’s

old resting place when you copy it bact to Disc, then the Disc looks for a new place

to put it where it will fit. When using Disc based files, they may be created up to

the maximum size of the medium (or whatever room 1s available in a single block),

then read directly without first loading them i1nto RAM; 1t wouldn’t even be a

challange to use a, say, 100K file in a 17.5K computer. If a file 1s of reasonable

size, it may at times be used in RAM, and others directly from disc (unless the

person who wrote the program being used didn’t realize that, and made it so that it

couldn’t).

Disc based files also have the consideration of the physical size ot a record,

which is 256 bytes. File record sizes should be established to be either multiples

of this size, or easily divisable tractions to minimize the number of file records

which are spread between two Disc records. This 1s done to minimize access time and

medium wear because the drive would have to read two physical records to read one

file record worth of information.

To be simplistic, imagine a dresser with drawers which can hoid si1x socks each

(the physical record size). Now, you’ve found an odd sock under the bed and placed

it in the first drawer, everything shifts down by one sock. Fine, until the third

26

day when you have to open two drawers to match a pair of socks (the logical tile

record size). Not a great analogy, but this chapter was begining to get a bit heavy.

Opening the data File
Before writing data to, or reading from a file it mnust be assigned a number.

This number is then used then used in data file operations instead of the file name.

This is called "opening a file”. Files may be on Disc or in RAM. There are some

restrictions on the use of these numbers: Valid numbers are 1-255. Only up to 64
files may be open at a time. And, each file can only be assigned one number at a

time. If the file specified does not exist, a DATA file of that name, with 256 byte

records,will be created.

ASSIGN # (variable) TO (filename’

ASSIGN # 1 TO MYFILE

Open files require an extra 34 bytes for the open channel. Disc based files

require another 256 bytes for a buffer to store the current record being accessed so

that the 71 doesn’t have to accessthe Disc constantly.

When a file is opened an entry is added to an invisible system file called the

File Information Buffer, or "FIB". The FIB is used by operations, such as PRINT#, to

locate the file quickly without having to look through the entire file chain. When a

file is opened the information about it is added to this buffer, and, when it is

closed, this information is deleted.

The File Pointer

When a file is open the FIB contains a pointer to the first 1tem 1n the tile.

Each time we read from or write to the file the pointer automatically moves to the

next item. This is called sequential access, normally working from the beginning to

the end of a file, reading each item 1n sequence.

The RESTORE statement is used to place the pointer at a specific place in the

file for random access. In this way we can move around the file, reading records as
desired.

RESTORE #1, 1@

This says to the 7! "restore the data pointer to record number ten, regardiess ot

where the pointer is right now". Record number ten 1s physically the eleventh record

in the file because the first record is always zero. Each tile type handles the data

pointer quite differently. keep the pointer in mind as you experiment with data

files.

Storing Data
The PRINT# statement merely places the data specitied at the current pointer

position in the file.

PRINT # Z:A

This statement would enter the contents of variable A at the pointer position in the

file associated with channel #2. If ther had been data at the pointer position then

this would replace it. If we had been at the end of the file then a new record wouid

be added at the end with that value in it. This 1s sequential writing. Strings can

be placed in files in much the same way, though be aware of the way strings are

handled in each file type.

PRINT # Z:R%

We can specify the record to which the pointer is placed when writing to a tile.

 PRINT # &,103A

27

This is the same as:

RESTORE #2,1@
PRINT #2;0s

Be sure that your program maintains an accurate count of the number of records when

randomly writing a file; moving the data pointer beyond the end of a DATA or SDATA

file generates an error.

More than one item may be printed to the file at a time by separating each with

a4 CcoRrma.

PRINT #2;A,B,C

Recalling Data

The pointer has the same importance when reading data as it does when writing to

the file.

RERD # Z:R%

This statement says "read the next record in file number two and return it’s contents

to the variable A$". Again, multiple items may be read at the same time

READ # Z:R,RA$

Be sure that the record which is to be read is of the right type tor both the data

file, and the variable to which it is being read. The following table demonstrates

how various types of files handle reads. Note that TEXT tiles with strings which are

formatted to look like numbers (and even complex formulas!) can be i1nterpreted and

read to numerical variables.

Rec.type Operation DATA SDATA TEXT

string READ#1;A¢ OK 0K 0K

string READ#];A ER ER 0K

number READ#1;A¢ ER ER

nuaber READ#|;A OK 0K

Closing the data File

When a program is done with a file it should be closed to reclaim the memory

used by the FIB entry, and so that the file may be used by other programs. Remember,

a file may only assigned to one "channel"” at a time. The ASSIGN# statement is also

used to close files.

ASSIGN # 1 TO *

ASSIGN # 1 TO "

RSSIGN # 1 TO "#"

When we run a program the files 1t opens are automatically closed when the

program ends. However, when exiting a SUB or any program which was CALLed, the files

are not automatically closed. 1f program is CALLed which tries to assign a file

which had been left open by another program then an error is generated. The

statements CLFLS and CLOSEALL available 1n some LEX files will close all files.

Files are also automatically closed when the files are purged, though not when

the current edit file changes.

28

HP-71 FILE TYPES

BARASIC Files

The type of file created when you execute the EDIT statement. Consists of one

or more BASIC programs. This is the only type of file which can (normally) be edited

(inspected and altered) directly using the cursor keys.

The BASIC workfile is the current file whenever you enter EDIT without specifying a
file name. If you enter EDIT workfile then a regular file called WORKFILE will be
created; lowercase names are used by the 71 to designate files which are maintained

by the machine (such as the keys file). The workfile catalog entry, as with the
active KEYS file is listed in lowercase; if this file is copied to, for instance,

Disc, without specifying a different file name then the name becomes UPPERCASE in the

destination file, and is therefore a conventional file.
The BARSIC workfile is the scratch file used for experiments and quick solutions

to small problems. Since BASIC is always in "program mode", it is suggested that
this file be made the current file most often to avoid the chance that an important
BASIC program could accidentally be changed.

BASIC File Format

In addition to the file header, a BASIC file has a 12-nibble Subheader with the

following format:

Sub-program Chain Header 9

Label/DEF FN Chain Header S nibs

End of line marker (F@ hex) 2

These headers are pointers to the first sub, label, or DEF FN in the file.

Additionally each of the locations pointed to contain a pointer to the next sub,

label or DEF FN in the file. In this way these items can be found much more quickly

than by sequentially reading the file. This means that it is relatively unimportant

where in a file these occur, it will only slow things down when there are a great

number of these tokens in the file. This system also makes it possible to place

labels anywhere within a line. This method of linking one label, sub or DEF FN to

the next is called chaining, and is the same system used in the main file chain.

Each line in a BASIC file begins with a line number (2 bytes,BCD), values to
99 99 followed by a byte representing statement length. If the line has more than

one item on it (multi-statement) then an "8" (4F hex) token preceeds the length byte.

Each statement in a multi-statement line is separated by an "@" token and yet another

statement length byte. Each line ends with an end of line byte (F0). Since the

sub-header ends with an end of line byte then each line number, even the first one in

the file, is preceeded by an end of line byte. A line in a BASIC file has the

following general format:

Line# StlLen Stmt 4F Stien Stmt arF

Line# The 4 digit BCD number

StLen - The length of the following statement. Adding this value to the current

position points to the next "@" token or the EOL byte (0F).

Stmt - The actual tokenized statement. This is the internal representation of the

statement, not as it is presented to the user (HP engineers like to call us "users").

BIN Files

The least common file found. This is a program written entirely in HP-71

Assembly Language. While they may be RUN and can become the current file, they

cannot be edited directly because they have no line numbers and are coded differently

than BASIC files. BIN files are used because they are often faster than BASIC and

29

they allow full access to the machine. The speed increase is not as great as might
be expected because they use most of the same utilities as BASIC, they just invoke

them directly instead of through the BASIC interpreter.

The disadvantages of BIN files are that they cannot be easily and quickly
changed, take much (much!) longer to write than BASIC, and there is a good chance

that even the simplest program will "crash” the computer several times during

testing. BIN files are written using the FORTH/ASSEMBLER ROM and require at least

Vols 1-2 of the HP-7! Internal Documentation (IDS) for a thorough understanding.

BIN File Format
Following the file header the BIN file has a 12 nib subheader which is similar

to the subheader in a BASIC file, though there are no labels or user defined

functions so that field is set to FFFFF.

Sub-program Chain Header 3 nibs

Place hcolder FFFFF 9 nibs

Filler byte <@ c nibs

FORTH Files
Files written in the FORTH language by the FORTH/ASSEMBLY and HP-41 Translator

ROM‘'s have their own special file type(s). These files contain the extensible user

written dictionary enteries which make up a FORTH program. Programs written in FORTH

often run up to twice as fast as those written in BASIC. It is a matter of personal

taste whether BASIC or FORTH is easier and more versatile to use.

LEX Files

Language Extension files. They add new BASIC keywords (such as KEYWAITS$) and

new operations such as the ability to PLIST TEXT files. LEX files are used when an

operation is too slow or difficult to do in BASIC. The typical keyword runs from 15

to 50 times than the equivalent operation in BASIC, and takes trom 15 to 50 times as

long to write. LEX files are more versatile than BIN files because, instead of

providing one-time solutions, they actually extend BASIC so that these solutions may

be incorporated time and again. From a programmers point of view, it is preferable

to use a LEX with a BASIC file instead of a BIN file because of it's greater

versatility. As with BIN files, they are written using the FORTH/ASSEMBLER ROM.

This book contains an introduction to LEX files and ASSEMBLY language.

Using LEX Files

LEX files are never the current edit file. When they are in the computer their

operations are automatically available. Most LEX files contain BASIC keywords which
may be incorporated in programs. The use of LEX files is one of the ways HP BASIC is

ahead of the pack.

Vhile special keywords should be used when available, keep in mind that i1f you

are going to share the program with another 71 user, the recipient will also have to

have that ROM or LEX file.

Should the program be run without the LEX file in the computer an error will

result, that is usually the only dammage that will result. If a program is corrupted

(trashed) by accidentally running it without the LEX file, then it 1s porbably better

to restart the program rather than CONT once the LEX file has been loaded.

Many new capabilities offered by LEX files are introduced for one specific

purpose and may not prove reliable in other usage. For instance, a complex number

may be placed in RES when the Math ROM is in the 71:

DISP (1z3,436)

 (123, 456)

However, the boolean operator NOT does not expect a complex number so 1t is

interpreted by the Math ROM, which doesn’t have the appropriate operation either

$0...
30

IF NOT RES THEN BEEF

ERR:XFN Noct Found

This isn’t necessarily a bug in the Math ROM, just beyond it’s intended use.

The point is that, while the built-in BASIC keywords are meant for general purpose
use, keywords in LEX files should be used in context of their intended application.
For example, one keyword was written by this author to be used at one place in a
single program; it was vital in that application, though virtually useless elsewhere.

DATA Files

These files may contain strings or numbers and are the most versatile file type,

though probably the least memory efficient. They may be of fixed size or expandable.

The file consists of fixed length records of from one to 1,048575 bytes.

Using DATA Files

Numbers always take eight bytes, but strings can be up to the size of one

record. Strings which overflow from one record to the next will be difficult to use.

If the information to be saved is primarily numbers then an SDATA file is preferred.

A TEXT file will often be preffered when working with primarily strings. When the
task calls for a mix of text and numbers, or when multiple data items are used for a

single purpose (such as name, address, phone), then DATA files are appropriate.

The DATA file can be created to a specific number of records, though if it is a

RAM based file, it can be enlarged by writing data past the end of it. The primary

reason for specifying file size at creation is to set the individual record length.

If not specified, the default record length is 256 bytes, which can be quite

difficult to use for random access.

let’s create a fixed length DATA file with only two records of twelve bytes

each, then assign it to channel #1:

CREATE DATAR TEST,Z, 12

ASSIGN #1 TO TEST

A number will take eight bytes regardiess of 1t’s complexity. Strings take an extra

two bytes plus their length. Let’s place a number followed by a string (which will

overflow into the next record) and another number in the tile. The pointer 1s stiil

at the beginning of the file since we haven’t written or read anything, so RESTOKE#

isn’t necessary:

PRINT # 1:123, "Synergetics”, 456

Record #0 now has the number 123, the string header and the first character of the

string "Synergetics". To prove this let’s RESTORE to the beginning of the second

record (which is rec#!, remember that records always start at zero), then read the

data there:

RESTORE # 1,1
READ # 1;G$,R
DISP B%;A

 ynergetics 436

Remember that the record length is 12 bytes, record #! can only hold

"ynergetic". The final "s" (with yet another string header) is in record #2 which

the 71 automatically added when it ran out of room in record #].

Kec#d: 123 §

Rec#1: yneroetic

Rec#&: s 456

31

The DATA file structure is quite versatile, and, therefore, quite

vague at first. The record size will be quite crucial when it becomes time to recall
data from the file, because RESTORE places the data pointer at the beginning of a

record. If it begins with a string which had overflowed from the previous record

then only part of the string will be returned.

When creating a DATA file keep in mind what use it is to have and set the record

length to a usable size.

Item unit Bytes

NAME: <&@ byte string(+hdr) ce
PHONE# 1@ byte string(+hdr) i

DUES real number 8

 Required record size 42

DATA File Format

Following the header is the data implementation field. As with many other

locations within the 7!, the values stored here are byte reversed to make it quicker

for the operating system to read them (the CPU is a bit backwards that way, you

know) .

Records 1n file 4 nibs

Record length 4 nibs

TEXT Files
This file type is also known as the HP Logical Interface Format (L1F). The TEXT

file can be thought of as two types of files in one. At their simplest, Text files

are used to exchange files with other computers. They are meant for sequential

access (that is reading or writing one line at a time in sequence). The HP-7! was

designed primarily as a number machine, Text was a secondary consideration. Since

the record size is variable, TEXT files are valuable for storing free form

information.

The EDLEX LEX file adds new operations to make TEXT files a versatile file type.

Fortunately, EDLEX is in the HP-41 Translator, FORTH/Assembler, and Text Editor ROMs.

Using TEXT Files
Since sequential access was the original intended use for TEXT files. Every

time the PRINT# statement is used it writes an end of file marker after it. If we

had a ten line file and used RESTORE to move to line five tactually record 5), then

PRINT#, that would become the end of the file, all information beyond that point

would be lost.

The data pointer can be moved to the end of the file by using the RESTORE#

keyword with a number which is greater than the length of the file.

RESTORE # 11,9999

The following keywords are in EDLEX. They work only on files in RAM, and only with

TEXT files.

DELETE# <{chnl#),<{rec#>

Used to delete a record from the file. All records after the specitfied record are

left unchanged.

FILESZR("flname")

Has two uses. It returns the number of records in a TEXT file if the file exists or

a negative number representing the reason it didn’t. For instance, if it returned
-57 ("ERR:File Not Found”) the file didn’t exist, -58 ("ERR:Ilnvalid Filespec") means

a bad file name, or -63 ("ERR:lnvalid File Type") for an existant file which isn’t

TEXT.
32

The number of records is returned, not the number of the last record in the

file. 1If FILESZR returned 10 then the last record is 9.

INSERT#<{chnl#)>,<{rec#>,{str>

The string specified is inserted IN FRONT OF the record specified. No information is

lost, everything from the record specified to the end of the file is moved. This

operation can be slow on a large file or on a file with several files following it in

memory because everything in RAM must be shifted to make room for the new record. It

is best to have the TEXT file as the last file in RAM if fast access is needed.

REPLACE#

Used instead of PRINT# to replace a current record with a new string. Does not alter
the position of the end of the file.

X=SEARCH# ((str>,<col>,<{start rec>,<end rec>,<chnl#>)
A function which returns a numerical result of the search performed. The required
parameters are the search string, P0S within the record to start the search, the

starting place (record) and final record to search, then the file’s channel number.

The string is compared literally to the file; upper and lowercase of the same
character will be treated as different characters.

If the file is empty or the string is not found then zero is returned.

Otherwise it returns a very calculator-like result. In the example, R stands for

record number, C is the position within the record (the column number) where the

match was made, and L is the length of the string. For most uses only the integer

(IP) portion of the number is used.

RRR. CCCLLL

TEXT File Format

The file does not begin with an implementation field therefore to find a record

within a file a utility mnust read each record sequentially. The file consists of

variable length lines (records) which do not begin with a line number. If files are
to be exchanged with an HP-75 then a four digit, sequentially numbered, line number

must be added. Each record begins with two bytes (NOT byte reversed) which state

record length followed by the actual data. Each record has an even number of bytes;

if a record is written with an uneven number of bytes then an extra byte is added to

the end (which could be of any value since it is never used). Unlike TEXT files

written by some other computers, there is no carriage return (ASCIl 13) at the end of

each record.

Adding the current location to the record length points to the next record. The

end of a file is marked by & record length of FFFF (which would not be a valid record

length).

KEY Files
Contain re-definitions for the keyboard. There may be more than one key file

type in RAM at a time. The key file is active only when USER mode is set and the

file is named keys.

KEY File Format

There is no sub header. Each entry in the key file is formatted as follows:

Keycode ¢ nibs

Entry lenath 2 nibs

1 rbAssignmenrit tyoe

String assigrned to key varies

The keycode is the actual keycode represented in hex. The next byte designates

the length of this entry or the end of the file. The assignment type is represented

as a nib with one of the following three values:

@ DEF KEY 1mmediate execute

1 DEF KEY __: typing aid

¢ DEF KEY ___: direct execute

33

The actual key definition string follows the assignment type nib.

SDATA Files
This type of data file has the same format as HP-4! DA file and is used

primarily for storing numbers. This is a very efficient, flexible and easy to use
file for the storage of numbers, though somewhat less so for strings. It is the

recommended file type for those times when you have a whopping lot of REAL precision

numbers to store and quickly recall. This is one case when you can ignore BASIC's
pedantic insistance on calling everything a variable, and call the records in SDATA

files "registers”.

Using SDATA Files

Each record can hold one full precision number or a six letter string.

RESTORE#, PRINT#, and READ# work very smoothly with SDATA files. Multiple variables
or even arrays and complex numbers can be stored to SDATA files. The same keywords

are used for an array, it is not necessary to designate it as an array.

PRINT # 1;R
READ # 1;A

The following is how a 2x2 array with option base zero is stored in an SDATA

file.

Record# Q 1 o 3 4 S 6 7

Element 0,06 0,1 1,0 11,1 ,2 2@ 2,1 &Z,¢

There is no mainframe method for storing strings in SDATA files. The end of the

BASIC Programming Hints chapter in this book describes a method for (fairly) easy use
of six byte (or shorter) strings in RAM based SDATA files.

SDATA File Format

This is physically the simplest file type. There is no subheader, each record

is eight bytes long and holds a BCD number (though in a modified format at times).

The first register begins on the 37th nib after the header.

34

CALCulating with the HP-71

Many people graduate to the 71 from Hewlett-Packard calculators such the HP-4]
or HP-12 and sometimes have an initial disappointment because the ease of use seems

to be gone. After using one for several years, it is easy to forget the learning
curve required to master RPN calculators; understanding how to evaluate an expression
and translate it to the particular syntax required. 1t‘'s a common situation: a

friend borrows your HP calculator to figure, for instance, sales tax and stares at

the keyboard for about three times as long as it would have taken to figure out the

tax in their head.

Hand the 71 to that friend and they will be able to at least compute sales tax
without a ten minute philosophical discussion about post-fix notation. CALC can be a
powerful, expandable computational tool, or it can be used for simple, spontaneous

calculations, just punch in an expression and watch the 71 earn it's keep. We've

already been discussing calculating with the HP-71, CALC mode is an extension of
BASIC mode calculating. Let's spend just a few minutes reviewing some of the basics
of CALC mode.

Unlike BASIC mode calculations, in which the 71 waits to evaluate the entire

expression until after it gets an ENDLINE, then, bang, an answer, CALC mode is always

on it's guard. As soon as an intermediate result can be evaluated the 71 replaces

that portion of the expression in the display with the resuits. A closing

parenthesis, comma or mathematical operator (such as / or +) signals the end of an

expression, so the 71 tries to evaluate the intermediate resuit. Pressing ENDLINE

designates the end of the formula.
There are actually two levels of CALC mode: the CALC editor during which the

insert cursor is at the right edge of the display, or editing a line in the stack,

during which the BASIC editing keys are active. String operations, including HTD and

DTH$ are not allowed in either CALC level.

Editing an expression with the command stack is much like BASIC mode

calculations. Intermediate results are not displayed. You can recall previous

expressions and modify them in two ways: by altering the entry as needed then

pressing ENDLINE, or by deleting the ENDLINE (crooked arrow) character at the end of
the line then pressing RUN to again be able to use the CALC editor with that
expression. Key assignments are allowed except immediate execute keys which don'‘t

cause an error while editing the stack, they are merely ignored.

Rules of Precidence

As with BASIC mode calculations, the ruies of precidence dictate how intermediate

results will be evaluated. Our earlier example of c+3#4-5 will be evaluated exactly

as it is in BASIC mode. Notice, again, that multiplication is evaluated before

addition so the intermediate result will be based first on the muitiplication, then

the addition. The Z+3 hangs there while the /1 waits for the next expression to be

completed.

G+3% , E+3%4 , 14-5, 9

Again, parentheses can be used to insure that the expression will be evaluated as

intended. As with BASIC mode calculations, extra sets of parentheses may be used to

insure that an expression will work the way desired. The 71 will automatically enter

a closing right parenthesis for each left parenthesis entered. Entering a closing

parenthesis, even though one is already displayed, will move the cursor outside of

that set.

(¢+3) , 9*4 , Z2@0-5 , 15

Long Formulas
CALC, as with all types of "input”, is limited to 96 characters per line. Enter

a long, complicated mathematical expression, or just add a column of numbers and when

35

the 96‘th character is reached the 7! will beep and send you back to the beginning of
the line. This leaves your formula in mid-number and mind in mid-thought. Instead
of entering the numbers until the error occurs, find a mid-point and do an

intermediate answer.

23. 7+64. 2+44. 2+33. 1432, 0+27.9+26. 3+19. 7+24. 6+29. 4+34. b+33. C+cl. 4+21.6

()+23.2+31, 0+35. 1+38. 6+46. 7+31. 5+63. 1+74,8+61. 3+39. 2+32. 6+43. 1 +31.6+c6. |

RES, (O

In the above formula the first portion of column of numbers was terminated with

ENDLINE. Vvhen we went to the second line we used () to recall the results of the
earlier calculation. Even more important than in BASIC mode, RES provides a
continuity between mathematical expressions. Note that RES does not change until
pressing ENDLINE so that intermediate results may again use () within the formula
without it having been changed by the intermediate resuit. The RES keyword, an empty

pair of parentheses or just ENDLINE without anything displayed will return the resuilt
of the previous calculation.

243 , O*4 , O-5 , 15

ENDLINE

Terminates the expression, closing necessary parentheses and completing any

partially evaluated expression. ENDLINE also places the result of the calculation in

the RES register.

ENDLINE actually places the carriage return character on the end of the line.

It is possible to exit CALC without having pressed ENDLINE. In that case, if you
edit that stack entry in BASIC mode the last character on the line will not be
displayed. This is because the BASIC editor assumes that the final character on the

line is a carriage return, which is not normally displayed.

ON
The "cancel" key. The formula being evaluated is cleared from the display. The

formula is not entered into the command stack nor is the intermediate resuilt placed

in RES. The expression will be placed on the stack if, for instance, a long line had

been entered and returned "ERR:Line Too Long".

RUN

Terminates an expression much like pressing an operator key. Evaluates as much of

the formula as it can and displays intermediate results. This does not suspend the

rules of precidence. Using our above example, press RUN

2+3 RUN

* "ERR:Precidernce”

Since the entire expression is maintained, regardiess of intermediate resuits

displayed, the 71 still expects the expression to be evaluated in sequence.

The real value of the RUN key in CALC mode is to partially evaluate an

expression with the intention of possibly altering it before obtaining a final

result.

f -BACK
The "undo”" key. Before pressing ENDLINE to terminate the expression. F-BACK used in

conjunction with RUN allows us to step backwards through an expression then alter it

as needed.

Arrov Keys

The UP and DOWN, g-UP and g-DOWN keys move us through the command stack. In CALC
mode, the left and right arrow keys are ignored unless the command stack is enabled.

36

Command Stack

Many jobs which might otherwise require writing a program can be performed within

CALC using the entries on the stack. Nominally five, but up to the last sixteen
calculations are available in the stack. You can look through the previous entries

to make sure that calculations were entered correctly, revise an expression, or

recall an entry to the CALC editor. If you delete the carriage return character then

press RUN, the expression can again be used with the CALC editor; adding and deleting
characters to obtain intermediate results.

Variables
As with BASIC mode calculations, values may be exchanged with the calculator
environaent just by refrencing them in an expression. Unlike BASIC mode, even if a

value is destined to go to a variable it is still displayed. The value is not
assigned to the variable until the end of the expression, so intermediate results may
still be performed, and the expression may be altered until you are satisfied with it

before pressing ENDLINE.

X=TIME/3600 Assigns the result of the expression to variable X
TIME/3600-X Uses the value previously stored in X in an expression

Since the calculator variables are used, they may be shared with programs.

Inside CALC Mode
When a BASIC program is running there is somewhat increased power consumption; the

computer is constantly working. Lest you think that the ever attentive state of CALC

mode will end with increased battery consumption, the 7! performs these tasks quite

fast and actually has time for a catnap (called "light sleep") between keystrokes.
It wakes up every now and again (well, in computer time) to flash the cursor, then

nods off again. In fact, given ten minutes of waiting for us, the computer will shut

down completely (called "deep sleep”). The 71 is eminently patient with us slow

humans, though less so when we press the wrong keys.
As with the rest of the HP-71's Operating System, all of CALC mode 1s written in

Assembly Language. The three main modules include the editor, decompiler (which
tries to interpret our keystrokes, and a group of utilities. Surprisingly, much of

CALC mode is contained within this 961 byte block of ROM. Part of the reason for

this efficiency is the use of utilities from the BASIC interpreter which helps

explain the similarity to BASIC. As an example of this efficency, when the Command

stack is enabled, CALC uses the very same editor as the BASIC keyword INPUT.
The environment is altered considerably while in CALC. Because of the

complexity of CALC, only single line FN's can be used, and an active display device
is ignored, though an active external KEYBORRD IS is allowed. This is probably

because the display device would have to be actively supported, thus slowing things

down as the insert cursor was constantly being moved around. Try to visualize how

CALC mode would look on a monitor and you can see the problem; the engineers dropped

the issue all together. Exernal keyboards, on the other hand, require no extra work

from CALC. They are interpreted using an interrupt which handles the key, then

returns it to CALC so that CALC receives the key without knowing where it came fronm.

"CALCAID"” Program

This little program is used for continuous addition without worrying about getting

over 96 characters. The current value of variable X is displayed followed by a

question mark and the flashing cursor.

0.00 ?

Enter a mathematical expression then press ENDLINE. The results are saved to

variable L (easy to remember - think of it as Last x) and the value 1s added to

variable X (as with RPN calculators). Any mathematical expressions which evaluate to

a single numerical result (including string functions which return a number) are

allowed, and the command stack is active. After each input the program continues to

prompt for further data. Re-enter CALC mode by pressing ENDLINE without any data.

37

The small "trick” in the program is that it will branch to line 100 with any
mathematical error (which no data at all certainly qualifys as), and line 100

"presses” the CALC mode key and ends the program. Any errors in data entry will also
put us back in CALC. The program should always be RUN, never called, so that the
calculator variables will be common with those used within CALC mode. A variation of
this program can be done to enter data into a statistical array, or any series of

variables (preferably using MAT INPUT from the MATH ROM), then return to CALC mode to

evaluate the data.

So, we're in CALC mode and want to run a column of numbers which will probably
exceed 96 characters so we exit CALC (press f-CALC again), and press RUN with this as

the current progran.

9 ! "CALCRID” program
10 ON ERROR GOTO 100
2@ DISP X; @ INPUT L
30 X=X+L @ GOTO c@
lé@ PUT "f,"” @ END ' go to calc mode

User Defigned functions
In addition to the power of adding new keywords using LEX files, we can write

functions "on the run” in BASIC to use in formulas and save time entering often used
or complex formulas. In the context of CALC mode a user defined function can be
thought of as a mini program or "macro”.

A user function is created with the BASIC statement DEF FN followed immediately
by a name which can be letters A-Z and optionally followed by an number. A single

line function evaluates an expression and returns a single numerical result. The

function must be in the current BASIC file, not in a SUB progranm.

1@ DEF FNT=TIME

A FN may consist of any number of nested parentheses incorporating the most

convoluted logic desired as long as it is a single expression which evaluates to a
numerical result.

While it may seea limiting that we may only use single line functions, remember

that they may also call other single line functions (or themselves!). Another

advantage of using FN's is that they may use strings within the formulas. Let’s

defign FNTZ which uses FNT twice, to see how long 1t takes to evaluate a function.

2@ DEF FNTe=FNT-FNT

Compare this to the time it would take to enter the expression directly in CALC to
see the actual time savings.

TIME-TIME

The "hook"” of allowing user defigned functions to be recursive as well as calling

other functions brings us a new application of BASIC as a threaded language to be

interpreted in CALC mode. These FNs can be added to a single file, such as at the

end of the "CALCAID" program for a custom function set.

38

Basic BASIC

Unlike most personal computers, the 71 is a useful tool without programs. With

programming, BASIC expands the 7! to help us solve problems with speed and
simplicity. This section introduces BASIC and simple programming concepts and is
intended for those who have not programmed in BASIC, or would like a refresher

discussion of how BASIC is implemented on the 71.

You've turned on your 7! and entered CALC mode to convert five centimeters to
inches. In algebraic logic (which is how BASIC works) you might enter:

3 * .3937 [ENDLINE]

Now, suppose you have a whole list of numbers (cms‘'s?). You could wander up and down

the command stack replacing one number with another until the job was done, or you

could write a program to help you.

At it's simplest, a program is a series of keystrokes which have been recorded

so that they can be used time and again without having to re-enter them each time.

To differentiate between entering commands for immediate exectution and writing

programs, programs are stored as a series of lines each beginning with a line number

of from one to four digits. When we run the program the computer reads each line and

interprets the instructions.

Let's make a program of our metric problem. We have the math part (X*.3937),

let's add a program structure to it and have the computer do the work. To begin

with, we need to have the computer ask for the number, we do this with an INPUT

statement. INPUT, in it's various forms, is used to display a prompt, wait for you

to input something, then store the information where the program tells it to.

1@ INPUT "cm:";3X

Line 10 tells the 71 to display the prompt (“cm:") then wait for the user to enter

the number and press ENDLINE. The number is then automatically assigned to variable

X, though we could have used any variable. Now that we have the number (safely
stored in X) we need to do the math with it:

20 Y=X*,3937

The solution is in variable Y; let's display the results. INPUT gave us an input,

the math operations worked pretty much as they do in CALC mode, so it would figure to

display the results we would use something like DISP:

3@ DISP Y

Fine, a simple solution. We can embellish the results to be a little more

informative:

3@ DISP Y;"1in. "

The semicolon tells the 71 that more is to follow, then we add the "in.". Note that

the quotation marks (either single or double, but both ends must be the same) are

required. Otherwise there would be no way for the 7! to distinguish the end of the

prompt from the rest of the universe.

GOTO

We are writing the program to save some time converting a lot of numbers. So

let's modify our program so that it will continue working until we press ATTN to stop

it. We'll do this by adding a line to tell the computer to go back and start over

when it's done with the program:

4@ GOTO 1@

39

What will happen now is that the result will stay in the display for as long as the

delay setting (usually a half second), then the program will GOTO line 10 and start

over. Remember that ending DISP with a semicolon tells the computer that it is not

done with displaying on the current line. We can modify line 30 so that the resuits
will stay on the left of the display when the program goes back to line 10. DISP

formats numbers with a leading space if the number is positive or a minus sign if it
is negative; in either case it is followed by a space so it isn't necessary to add
extra spaces to separate the numbers from the words displayed. With the final
modifications the program will run until you press ATIN to halt it.

16 INPUT "centimeters"” ;X
2@ Y=X#%,3937
30 DISP X;"ir.,";

4@ GOTO i@

The main difference between a four line program and a five hundred line program is

four hundred ninty-six lines. This is not as casual a statement as it sounds. A
large program can be thought of as a problem or group of problems which can be broken

down into a series of small solutions. These small solutions, like the one above,

are then combined to form the whole. A plan, whether in the form of a list of

necessary tasks, a flowchart, shopping list, or any other form which you find
comfortable makes the difference between a programaing nightmare and a problenm

brought down to size.

HP BASIC
BASIC was born in the 60's as a learning tool for computer novices. As such, it

used easy to remember commands and simple syntax. Hewlett-Packard has taken the
approach of a multitude of commands with an editor which checks syntax when you enter
the code. HP BASIC is an excellent environment for learning programming because of
it's completeness and consistancy of operation. While you will probably need to

refer often to the HP-71 Reference Manual and will hear your share of beeps, the only

damage likely to occur to the 7! is from physical abuse to the keyboard.

Let's take the concept from our centimeter to inch converter program and give it

another function. This will look a little less like generic BASIC, and more like

HP‘'s. We will begin with a prompt which is in the form of a simple menu. When you

run the program all you will have to do is press the appropriate key to select a

function.

In order to save a little space we will have more than one statement on a line;

each statement is separated by a commercial at "8" sign; this is called

concatenation. The lines which begin with an exclamation mark are remarks and are

ignored when the program runs.

1 ! inch/cm converter

9 ! set the keyboard to uppercase

i@ LC OFF @ DISP "metric converter” @ WARIT.S

19 ! the main menu prompt

Z@ "MENU": DISP "convert to:Cm/In”

23 ! wait for a key

3@ IF KEYDOWN("C") THEN "CM"

39 ! if the wrong key then go back for another

4@ IF NOT KEYDOWN("I1I") THEN 3@

99 ' inch--) cm !
1¢@ "IN": DISP “"cm:"3; @ GOSUB "INP"

110 v=X#%,3937 @ GOGTC "DSP"

2@e "CM": DISP "in:"; @ GOSUE "INP"

210 Y=X*2,54

498 !

499 ' input subroutine

S@@ "INP": INPUT X @ RETURN

598 !

40

599 ' display routine

6Q@ "DSP": DISP Y @ WARIT 1

619 ! we're done, return to menu

Z@ GOTO "mENU”

GOSUB, RETURN
GOTO, as you recall, is used to go to a portion of the program. Often we will

want to use a portion of a program several times to save memory or link together

separate modules to keep from having to write similar code several times. In these
situations we use a subroutine. To get to the subroutine we use GUSUB and to return
the subroutine ends with RETURN. When GUOSUE is executed by the computer the address

(location in memory) of the GOSUB statement in the program i1s stored. When RETURN is

next encountered the computer looks up where it came from and execution continues
from the statement following the GUSUE.

Lines 100 and 200 both have GOSUE "INP" These refer to the label on line 500.

We could have just as easily used GOSUE 5@@, but when programs begin to get complex

it is often helpful to use labels to refer to subroutines. Line 500 does an INPUT

then RETURNs. Labels will be discussed in more detail later.
A subroutine may call another subroutine by again using GOSUB. Each additional

GOSUE adds another entry to the list. This list is called, conveniently enough, the

gosub stack and it is maintained automatically by the 7!1. As you can see, for every

GOSUE there must be a pending RETURN, although there may be some time and quite a bit

of program between them. The gosub stack works as last in first out; whenever a
RETURN is encountered the last entry is "popped” from the stack and program execution

continues at the next statement following that last GUOSUB. Every GOSUB adds one to

the stack, every RETURN pops one. 1f the stack is empty and the program encounters a

RETURN then an error message is displayed because the 7! doesn‘'t have any place to

return to.

FOR, NEXT

While GOTUO can be used to loop through a series of statements. FUR and NEXT

provide a more elegant method for looping for a predetermined number of times.

Consider the following. Line 10 does a piece of business, the program talls through

to line 100 for some more work, then the end of line 100 sends us back to line 10;

the problem is that line 500 never gets executed.

1@ DISF "HP-71"

1@@ BEEP @ GOTO 1@

S0@ DISP "end of loop”

In addition to having the 71 run around in circles we can have i1t loop for, say, 10

times:

1@ FOR L=1! TO 1@ @ DISP "HP-71"

10@ BEEFP @® NEXT L

S5@@ DISP "end of loop”

Now the 71 will loop for only ten times then it will fall through to line 500. FOR

and NEXT are paired like GOSUB and RETURN except that there is an association between

the two so that you cannot have multiple NEXT s for one FOR, though any amount of

program may exist between the two and you can jump in and out of the loop at will.

When the computer comes upon the NEXT statement it increments the value by one

then compares it to the final value designated. If the resulting value is less than

or equal to the final value (the TO value) then the computer goes back to the

statement following the FOR. In the above example the value of L after completing

the loop is eleven since it was incremented before comparing it to the final value.

Each FOR - NEXT loop is associated with a numerical variable (like X! or L) and

the initial loop value may be set in any way. Since the variable is a regular

program variable you may use it or change i1t within the loop. HP BASIC allows us to

exit a loop and even start another loop using the same variable without causing an
error. 41

Loops are always incremented by one each time through them unless we specify the

STEP value:

i@ FOR L=1@ TO 10@ STEP 1@

This would still resuit in ten times through the loop, however, at the termination of

the loop L would equal 110. Positive or negative STEPs may be specified. The

advantage of using a negative number is that we can have the counter decrement each
time instead of increment. You can create an endless loop by specifying FOR L=1 TO

INF since when the counter gets above twelve significant digits adding one to it

doesn‘'t increment it at all. The same effect can be seen with FOR L=0 T0O @ STEP @

but it takes more memory and isn‘t as clean looking.

IF, THEN
BASIC has the ability to alter program flow based on whether or not IF

{expression} THEN (do something}

The expression can be a mathematical or string comparison which evaiuates to a

non-zero (true) value boolean argument. Note that negative values are non-zero. If

the expression evaluates true (that is it is not zero) then the statement after THEN

is performed, otherwise it is ignored.

The statement to be evaluated (after THEN) may be almost any BASIC statement or

series of statements. The exceptions are DIM, FOR, NEXT, DHTAR and DEF FN. A

traditional usage of IF THEN is to be followed by GOTO or GOSUH; for this reason if a

line number or label follows THEN then it is interpreted as an implied GOTO. This is

saying to the 7! "if the following expressing returns a non-zero result then goto

this line, if not then forget that | ever brought up the subject and continue with

the next line". The syntax allowed is very liberal and as such usage is incredibly
versatile.

1@ 1IF X)Y THEN Z@@@ ' 1mplied GOTO

S@@ IF TIME)648@@ THEN GOSUF "LATE" @ GOTO 10@

3@ IF (R+B)*(X-Y))Z THEN R=R-12.75

We can evaluate the expression as false by using the keyword NOT. This is saying "if

the expression is not true then...":

2@ IF NOT (X-Y)*Z THEN Sea

786 IF NOT M THEN X=Y

S@@a IF X OR NOT Y THEN BEEP @ GOTU 10@

Multiple comparisons may be made using AND or OK:

10 IF X AND Y OR MEM(c@@@ THEN BEEF @ DISF X%

ELSE

1f the expression evaluates as false then the program ignores the remainder of

the line and continues on the next line. We can redirect the program to continue on

the same line but after the statements which would have been evaluated had the

argument been true. A disadvantage to using ELSE is reduced readibility of the

program listing.

1@@ IF X=1 THEN 4@@ ELSE IF X THEN 5@@

11@ BEEP

12@ DISP "end of chapter” @& END C;%flgi;i;}

42

HP-71 BASIC Programming

The BASIC line editor used in keyboard calculations serves several purposes. If
we give it a mathematical expression then it tries to evaluate it and return a
result. Enter a command like CAT ALL and the 71 will do just that. However, begin
the expression with a line number and you have entered a line of HP-71 BASIC. Same
syntax requirements, same beeps and error messages. Since BASIC uses English like
words and algebraic logic, once we are familiar with it‘'s workings, the logic of a
program can usually be figured out just by reading the listing. An advantage of

BASIC over FORTH or Assembly language is that we can edit and modify programs at a

moments notice.

Some of the material presented here is informational only, it has little to do

with the act of programming in BASIC. It is included to give you a feeling for what
happens when you press ENDLINE in BASIC.

Let's begin by sharing a little program called "ACYDUCY". The program presents
two cards and asks the user to guess if he thinks a third card will fall between the
first two. The user can pass either by betting zero or by clearing the input. It
uses an infinite deck and maintains the users bank. The program ends if you go

broke, but, then, that‘s only fair.

1@ 5TD @ B=100 @ Q=5 @ RANDOMIZE @ ON ERROR GOTO 3@ ! initialize variables
2@ 'START': DISP "Bank:$";STR$(B) @ WARIT 1
3@ 'BET': C=1P(11#RND)+2 @ IF C<(2 OR C)11 THEN "BET" ! get first cards
4@ D=IP(14*RND)+c @ IF D(5 OR D)14 THEN 4@
9@ IF C)=D-& THEN "BET" ! an implied goto

6@ E=C @ GOSUB "CRRD" @ E=D @ GOSUB "CARD"
7@ INPUT "bet:$",S5TR$(Q);Q @ IF Q(=@ THEN "BET" ! an 1mplied GOTO
80 IF @B THEN DISP "Bank:$";S5TR$(B); @ GOTO 7@
9@ F=IP(14*RND)+2 @ IF F<(2 OR F)14 THEN 90
16@ £=F @ GOSUB "CRRD"
11@ IF F)C AND F(D THEN DISP "WIN!',"; @ B=B+Q @ GOTO "STRKT"
1¢@ DISF "Sorry..."; @ BEEP 500,.2 @ WAIT 1
13@ IF @G<B THEN B=BE-Q @ GOTO "START” ! any money left?
14Q DISP "You're EBroke!" ® END

15@ 'CARD : IF E=1@ THEN DISP "TEN"; ELSE IF E=11 THEN DISP "JRCK;:
16@ IF E=12 THEN DISP "QUEEN"j; ELSE IF E=13 THEN DISP "KING";
17@ IF E=14 THEN DISP "ACE":
18@¢ IF €(1@ THEN DISP STR$(E);
15@ DI1SP ","; @ RETURN

Line 10 follows standard BASIC practice of initializing variables to a known value

before starting. ON ERROR is used to trap bad input if the user had, for instance,

entered no bet at all. This is necessary because the program assigns the input to a

numeric variable and a null string is not a valid numeric expression (beep,

"Err:Numeric Input”). RANDOMIZE is used to place a new seed in the random number
generator. No parameter has been specified, the 71 automatically will use the

current clock setting for the new seed. For programs which need a very random
sampling specify at least a 12 digit number.

Line 20 (label "START") is the greeting; many programs begin with a prompt to

let the user know he has run the right program. Label "BET" finds the two cards and
makes sure they are at least two cards apart. Line 70 prompts the user for a bet.

The default bet is the same as the previous bet (variable Q). While only a string

may be furnished as the default input, the result may be returned to numeric

variables. In fact anything which will evaluate to a string may be used.

INPUT "numbers:",*1,&, "&STR$ (IP(C)) 3R, B,C

43

The subroutine "CARD" is used to display the string equivalent of the current card.

It is a subroutine to save some memory because it is used three times within the

program.

There are no string variables used within the program. Each number is displayed

as a string (using STR$) to suppress the leading and trailing spaces in the LCD

window.

While "ACYDUCY" is relatively compact for what it does, it does have several

weaknesses. It uses calculator variables without reason, uses more variables than
absolutely necessary and it will run until the user either runs out of money or

presses ATIN.

Sub—-Programs
As we‘'ve discussed, entire programs are often used as subprograas in order to

presarve the calagulator enviraonmant. An equally important usage of subproqgrams 1s
make commonly used modules available to several programs; Thus saving memory and

simplifying programming. "INCAT" is an example of a subprogram which has little
value as a stand along program, it has no user interface at all, but quite helpful in

programs dealing with data files.
The program returns a value which represents the file type of a specified file.

It requires two parameters: a string with the file name in question, and a numeric

variable in which to return the result. Syntax for use is CALL INCAI ("tilename",)
Possible results returned in the numeric variable can be:

0 File is nonexistent 6 It is KEY

! It is a TEXT file 7 1t is BASIC

2 1t is SDATA 8 It is FORTH

3 It is DATA

4 1t is BIN 20 Unknown type

5 It is LEX 2! Invalid name

A BASIC file will return the value seven. If you have entered "ACUDUCY" then you can

test "INCAT":

CALL INCAT ("ACYDUCY",@) @ DISP @

We could have used ADDR$ to find a file, then PEEKSed out it's file type from

the data in the file header, but that wouldn't have helped if the file resides on

Disc. Instead we keep in on a very high level: display the CAT entry for the file,

then read the information using DISP$. The problem with this method is that DISHF$ s

intended to recall information after an INPUT, it usualiy will return a null string

otherwise. This is because displayed data is not accumulated into the input buffer

unless the cursor is on. The escape sequence CHR$(Z27)&")" on line 9610 turns on the

cursor then is followed immediately by CAT. Since the HP-IL Moduie uses two extra

spaces in the CAT entry, line 9620 looks for those spaces and trims them 1f found.

Finally, line 9630 compares the f{irst two characters of known file types to this

file. Using "INCAT” is demonstrated in the Communicating with RS232 section of this

book in a program called "NEC".

96@@ SUE INCAT(F$,T) @ ON ERROR GUTO 9660

961@ DISP CHR$(27)&")"; @ CAT F$ @ T$=DISP$(1, 31

5620 IF NUM(T$(12]1)=32 THEN T$=T$(3]

963@ T=POS("TESDDABILEKEBRFO",T$(12,131)

964@ IF NOT MOD(T,Z) THEN T=2@ ELSE T=(T+1) DIV &

965¢@ GOTO 967@

966@ T=21 @ IF ERRN=37 OR ERRN=¢33@2c THEN T=@

967@ DISP CHR$(Z27)&" (" @ END SUB

The sub program receives values, evaluates them, and returns the resuit in the

same variables. When a sub is called the parameters passed point to the actual

variable in the calling program's environment, though a different variable name may

44

be used. Thus saving some time and memory because a copy of the variable does not

have to be present in both environments. I[f actual values are passed as with CALL

SUBPGM (1,2, "test”), then, of course, nothing is returned. Of course a SUB can be

called without passing any data; the maximum number of parameters we can pass between
programs is 15. Variables which the sub creates are in it‘'s own environment and do
not affect the CALLing progranm.

Line numbers in "INCAT" begin with 9600 because it is expected that it will be

added at the end of a BASIC file. Any number of SUBs may be placed in a file."SKl
Interpreted BRSIC

BASIC on the HP-7! is an interpreted language. What that means is that the
computer reads each line, looks up the meaning of the current statement then goes to
the part of the operating system which contains the actual instructions for that

operation. Consider the following:

10 BEEP c@@@ @ DISP "1 love my [(HP-71)1"

The computer skips past the beginning of the line until it finds the word "BEEP"

(actually, a token representing beep). It then looks up the location in memory of

the machine language code which makes the beep happen, calls that routine, which
itself interprets the line to see if frequency and duration had been specified, and,

finally, the computer beeps.
With all of that done the 71 returns to the next statement on the line, in this

case is an "@"; which it interprets as saying there is another statement following on
the line, and so on. This may seem like a long and involved process but it is

streamlined and happens hundreds of times per second. An extra benefit to us is that
HP-71 BASIC will not allow us to do something really stupid, while Assembly code or

FORTH will blindly run the computer off of a cliff if we tell it to.

Tokens
To both save memory and speed things up, each statement on the line 1s

“tokenized”. This means that when we enter the line the computer substitutes a code

of from one to four bytes for the actual keyword. Because of this DISP and PRINT

take the same amount of memory even though they have a different number of
characters. The spaces separating items do not take any memory; they are actually

part of the keywords themselves. This explains why we can‘'t insert extra spaces

between statements for clarity, they are not part of the keyword, so were never

entered into the line.

When we edit a line in a BASIC program the computer looks up each token and

displays the keywords and other data associated with it. And, if you press ENDLINE
while editing the line, the whole process of tokenization starts again.

Statements versus Functions

All tokens can be summed up into these two categories. In general, a statement

is free standing and does not necessarily require any parameters. An example of a

statement requiring no parameters is OFF. BEEF is a statement which may optionally

have up to two parameters. The 7! lumps together statements and commands which some

BASICs treat separately.

A function may require zero or more parameters, does something with the data and

returns either a numerical or string result. An example of a function is MAX which

requires two numeric parameters and returns a number. One of the strengths of

functions is that they may be used within expressions containing several other

arguments as long as the final result is a single number or string. For example:

1@ X=MAX(FP(Y),ABS(FP(Z)))

The distinction between statements and functions is often blurred, and the HP-71 has

a penchant for allowing liberal BASIC syntax. The only blanket statement to made

about functions and statements is that functions may be preceeded with the keyword

LET and statements may not. If you are in a crowd of sticklers and don‘'t wish to

misrepresent a function as a statement then you can usually call it a “token” or

45

"keyword" without anyone ever catching on that you are not sure what it is. In this

chapter we‘'ll usually say "token” or "statement”; you can nod with a knowing smile.

Writing Readable BARSIC
BASIC program lines are numbered in order from ! through 9999. Because of the

way the line numbers are stored, each line number requires the same memory regardless

of whether the line number has one, two, three or four digits. For readibility you

may want to begin different modules within a program with different groups of line
numbers. For instance main input may be on 1000-2000 and subroutines may be on

8000-9999. It is generally a good idea to number lines by 10's or 100's so that the
inevitable changes may be inserted without having to renumber the program. While the
following is by no means etched in stone, it gives an example of how a singie purpose
program might be organized.

1 - 999 1initialize vars

18@@ - 1999 1input data

c@00@ - 4999 process data

20@@ - 7999 output results

8088 - 3399 subroutines

When you later go back to make changes It will be easier to find the problem code.

Multiple items may appear on a line if you separate each item with an "6"
(commercial at sign). This is called concatenation. The advantages of placing a lot
of code on one line are a savings of two bytes per item, (theorically) somewhat
faster operation, saving paper when listing the program and because it is easier and

more efficient to have a conditionally executed series of statements follow on the

same line instead of using a GOSUB. The disadvantage is that it is nearly impossible

to keep in mind the layout of a program with long lines with a 22 character window
view of it.

Be sure that the code you are writing has the appropriate syntax or the long

line; for instance, the 71 does not allow NEXT after ELSE. Perhaps the ideal way to

work is to write and debug the program using many short lines. Then, when things
seem to be going well, see how much can be fit on a line.

To make programs even easier to understand we use remarks. REM is a statement

wvhich tells the computer to ignore whatever else follows on the line. A more elegant

looking way to say REM is with ! (exclamation mark), it also takes up less of our

little window.
Remarks are used during program development to annotate code which may be

confusing to read or designate parts of the program which haven't been written yet.

l1f memory is at a premium (isn't it always?), the remarks may be deleted when the

program is finished, but, a copy of the program with remarks should probably be kept

to make it easier to change the code later. A method to help keep programs readable

while conserving memory is to separate different modules in programs with a line with

just a ! on it; memory cost is minimal.

10@ ! 310 IF X THEN !

7¢@ ! FOR X=1 TO INF 94@ X=NOT X !

Readabiality also means entering code using easily understandable syntax. For

example, line 9620 in "INCAT" could have been entered as:

6ca Ts=T$L(NUM(T$[12])=3c) *#3]

There is a savings of a couple of bytes. But which line is more readable?

The "DECIDE"™ Prograa
This is not so much a program as a demonstration of programming. "DECIDE" 18 a

decision making aid. Enter a series of up to 9 items and up to 9 factors. Press

ENDLINE without any input when through entering and it will move to the next prompt.
When the final data is input it will display the results one by one; press any key to

46

1@
e
30
4@

20
6@
7@

1000
1010
10c0
1038
1040
1050
1060

1070
1080
1890
1100

1110
11c0
1130

c00
210
coco
2030

4000
4010
4020
4030
4040
4050
4060
40790

8000
ae1e
aoce

8100
a110
a1ze
8130
8140
8150

8200
8300

CALL DECIDE @® SUB DECIDE ! create separate ernvironment

=FLAG(-16) ! recall current option base setting
D=IP(HTD(PEEK$ ("2F949", 1) & PEEK$ ("2F948",1))/32) ! recall current DELRY
OPTION BRSE @ @ INTEGER K(3,9) ! two dimensicn int. array
OPTION BRSE 1 @ DIM E$L71,T$¢(9)[81,F¢$(72] ! simple, arvray, long string
L=FLAG(-164L) ! restore option base
E$=CHR$ (27)&"H"&CHR$(27)&"J"&CHR$ (27)&" (=" ! display clear string
! input loops

DISP E$&"Decide-" ! start of program display
Q¢="item" @ GOSUB °'PROMPT' @ T=F ! get items to evaluate
FOR L=1 TO 9 @ T$(L)=F$[L*8-7,L%8]3 @ NEXT L ' move string toc array
Fé="" @ Q¢="factor’' @ GOSUB 'PROMPT" ! get the factors
DISP "Repeat ratings Y/N";
GOSUB "WKEY® @ L=POS("NY",K$) @ IF NOT L THEN 1040 ' go get a keystroke
L=FLAG(O,L-1) ! clear flag @ if repeating ratings
! rate each item

DISP E$&"Rate:” @ FOR L=1 TO T @ ON ERROR GOTO 108@ @ FOR L2=1 TO F

DISP FNT$(T$(L))&" ("EFNT$(F$(L2*8-7,L2#81);")="; ! display item
GOSUB ‘WKEY ' @ Ki=VAL (K$)
IF FLAG(@) THEN 1130 ' if flag @ set then don’'t check for repeats
! see if rating has already been used
FOR L3=1 TO L-1 @ IF K(L3,L2)=K! THEN BEEP @ DISP Ki;"USED" ® GOTC 1@8@
NEXT L3
K(L,L2)=K! @ NEXT L2 @ NEXT L
! calculate results -
FOR L=t TO T @ FOR L2=! TO F ! calculate ratings
KL, @)=K(L,0)+K(L,L2) @ K(@,L2)=K(Q,Lc)+K(L,L2) @ NEXT L2 @ NEXT L
Ki=@ @ FOR L=1 TO T @ IF K1<(K(L,@) THEN Ki=K(L,@) @ L3=L
NEXT L
! display results -=

DISP E$&"Results-" @ DELAY INF ! set delay to wait for keystroke
DISP "Highest is "&T$(L3)
FOR L=1 TO T @ DISP FNT$(T$(L))&" ' rated ;K(L,@) @ NEXT L ! list items
FOR L=1 TOF @ Ki1=@8 @ FOR L2=1 TO T @ IF K(LZ,L))YKl THEN Ki=K(LZ,L)
Y=L2 @ NEXT L&
DISP "Top "&FNT$(F$(L*#8-7,L*63)&" 15 "&FNT$(T$(Y)) @ NEXT L ! list factors
DELAY @ @ DISP "New data, Results, End"; ' dorne, go again?
GOSUB ‘WKEY' @ ON POS("RNE",K$)+1 GOTO 4060, 400@,40 8300
! subroutines ee
! wait for a key ——) replace with KEYWARIT$ or WTKEY$ (--
‘WKEY ": DISP CHR$(27)& ") '; ! turn on cursor

K$=UPRC$(KEY$) @ IF NOT LEN(K$) THEN 8010 ' wait for a key
DISP CHR$(27)&" ("&K$ @ RETURN ' turn off cursor, return

' main input routire

"PROMPT ': Q$=FNT$(Q%$) ! trim trailing spaces

FOR F={ TQ 9 ! loop through irnputs
DISP "What is "&Q$&"#";F; @ INPUT K$
IF NOT LEN(K$) AND F)>2 THEN F=F-1 @ RETURN '! two items are encugh
IF NOT LEN(K$) THEN BEEP @ GOTO 8ize ! reed at least two
F$[F#8-7,F*8]=UPRC$ (K$) @ NEXT F @ F=9 @ RETURN
! user FN to trim trailing spaces from prompts

DEF FNT$(K$)=K$(1,POS(K$&" "," ")-11 ! FNT$ trims trailing spaces

DELAY D @ PUT "#4“" @ END SUB ! restore DELARY, press ATIN, bye

47

move to the next item. The main purpose of the program is to demonstrate some HP

BASIC principles; The rest of this chapter will refrence that program.

Strings
Unless DiMmensioned at the outset, strings can contain up to 32 characters. The

four strings used by "DECIDE" each have a different purpose and are created in a
different way. K$ is not dimensioned, so it defaults to 32 characters. E$ is a
constant, containing an escape sequence, and never changed in the program. T$ is a

string array with 9 elements (since OPTION BASE 1| is set), each element can contain
up to eight characters. F$ is a traditional (for HP) string, DIMmed quite large and
used exactly the same as T$. Each item in F¢ is eight characters, the same as an
element in the T$¢ array. Let's display element n in F$ and array T$:

F$[n*8-7, n*8] T$(n)

A single string is often used instead of an array for applications which would seem

natural for an array when we know that we will be doing string comparisons.

POS(Rs, "'") Finds the first ! 1n R$

POS(Rs, "™, 8) Finds the first ! i1n A% starting at position 8

LEN(RS) Returns the length of the string.

Or extracting substrings. By giving us fewer but more versatile string functions, HP

has enabled some incredibly complex string operations to be done almost automatically

A$(2, 71 Positions ¢ through 7 of A$

R$ (2, 7121 Positions 2 through 7 of A%, then position

2 through then end of the resulting string

A$LPOS (A%, *?",3)+1]1 Return substring following ?

s

9 CALL FROG @ SUB FROG
1@ As$='XXXX 0000’ € FOR T=1 TO 99
40 DISP USING "ZZX")))",9R, " ((("'3T,R$
50 Q$=KEY$ @ IF NOT POS("123456789",Q$) THEN 50
60 L=POS(AR$," ") @ S=VAL(A¢) @ IF S=L THEN BEEP & GOTO 5@ ELSE DISP S;
78 IF ABS(S5-L))2 THEN BEEP @ DISP ‘'Too far!' @ GOTO 4@ ELSE DISP *--)";L
80 B$=R$(5,5] @ A$(5,S1=R$(L,L]) @ ASLL,LI=Bs € IF A$="0000 XXXX" THEN 100
9@ NEXT T @ BEEP @ BEEP @ T=39
168 DISP T;"moves” @ WAIT 1 @ DISP "go again Y/N"

110 Q$=UPRC$(KEY$) @ IF NOT LEN(Q$) THEN 110
120 DISP @ IF Q$# 'N° THEN 10

48

BASIC Programming Hints

There are usually several ways to perform the same task in BASIC. We can go
from sloppy to concise to sacrificing clarity to save a few bytes and still reach the
same goal. This section is about the point between "wow, it works!" and "I wonder
what‘'s on TV"; The program is functional, but let‘'s conserve, memory, make it a

little more elegant looking and try to make it run faster. The two aspects of memory

conservation are minimizing code used and economical allocation of variables; we will

discuss both together. Using multi-statement lines (concatenated) is not discussed

here; you should be comfortable using them before using the techniques discussed in

this chapter.

There are a few negative aspects of using memory conservation methods. Remarks,

for example, are invaluable for following program flow but use a lot of memory. And,
since all BASICs differ, even between HP computers, some of these techniques will

make it difficult to adapt programs to (or from) other machines. A bigger problenm,

even if you are using just the 71, is that programs can become nearly unreadable and

therefore difficult to debug with the more extreme methods.

Planmning
We begin writing efficient code and saving memory before writing the first line

of code. Flowcharts and pseudo-code are discussed elsewhere, but let‘'s recap to say

that organization and anticipating subroutines early on are critical to efficient

programming.

Variable Lists
As programs grow so does the number of program variables. A written list can be

invaluable to see that X! is X! throughout and doesn‘'t become X0 somepiace. The
added benefit is that the list helps spot unnecessary vars or over-DIMmed strings.

Saving Scratch
As an example, consider writing a spreadsheet program. We need a pointer for

the current column, current row, cell format and so forth. The problem is that the

program does so many different things that we can‘t afford to use separate variables

for each section. We will reserve some variables to be used within the various

modules and for passing information between them. Since simple variable retrences

(like A,B,C) use one byte less each time they are refrenced than if they have an

optional numeral (like Al1,B2,C3) we try to use single letter names. In our

spreadsheet we might use:

X= temporary X coordinate

Y= temporary Y coordinate

Z= general purpose scratch

L= temporary loop counter

Designating these variables as scratch means that they may be used by any routine

within the program because they can generally be assumed to contain nothing important

or "trash". They may also be used to pass information between modules; we pass the

coordinates in X&Y, the subroutine does it‘'s business then returns the results in,

perhaps, Z. By the use of scratch variables we conserve memory (by reusing) and

assure ourselves that important variables within the program are not accidently

corrupted.

Regardless of the program being worked on, you might use the same names for

various types of usages. This will make the program easier to read without having to

constantly refer to the variable list. For instance, the author often uses Q and Qs$

for inputs and A and A$ for results; L for loop counter and X,Y,Z for scratch. Usage

of variables | (the letter eye) and 0 (the letter oh) look similar to | and 0 on many

printers and are best avoided, though many people use ! to represent Index or

lIteration.

49

Variable names

A numeral suffix in variable names costs | extra byte each time the variable is

refrenced. Xl=1 uses one byte more than X=1.

OPTION BRSE, DESTROY ALL, RESET
Programs written for distribution should avoid selecting OPTION BASE | because

it is a global setting and affects the operation of the entire variable chain. Even

at the expense of wasting the possible zero element.

DESTROY ALL (which also destroys calculator variables) and RESET (which resets

all user flags-including LC) should be avoided when possible for the same reason. As

an example, EDTEXT in the FORTH/Assembler ROM which sets uppercase mode; nice for

Assembly source files but not for writing letters.

String Arrays

When first refrenced, if they haven‘'t been DIMmed, string arrays are created to

11 elements (or 10 if OPTION BASE 1) of 32 characters each. They also use 3 bytes

per element and 9.5 bytes for the array.

The following is excerpted from a commercially available HP-71 program. The
line numbers have been changed to protect the innocent:

912 A$(1)="n "

920 As(Z)="1% " @ Y4=15

5930 R$(3)="pV "

940 R$(4)="PMT *

95@ A$(S)="FV "

These are the only values stored in A$(). Since OPTION BASE 0 had been established
earlier on and the array had not been DIMensioned, it has, by default, used 32%]]

bytes for the strings plus 31.5 bytes for the array; a total of 383.5 bytes to store

15 characters of information. If it had been DIMmed to 5 elements of 4 bytes each it

would have required about 39.5 bytes plus 7 bytes for the DIM statement. As you can

see, it is important to properly DIM string arrays before use. Now, about those

short lines...

DIM Strings

It requires 5-7 bytes to DIM a string; There is some memory savings by not

DiMming a string which will contain from 25-28 characters. The exception is ROM

based software where it is worth spending 6 bytes of ROM to save 2 bytes of RAM.

INTEGER, SHORT

The 71 uses 9 1/2 bytes to store simple variables, regardless of their

precision. Unless INTEGER is required to round a number, specifying INTEGER or SHORT

precision will not save memory.

Clearing an Array

Often we may want to "zero out" a numeric or string array from within a progranm.

Usually this is done with a loop:

100@ FOR L=@ 70 c@ # X(L)=@ @ xs(L)="" @& NEXT L

DESTROY followed by recreating the array(s) with DIM is much faster (the example is 5

times as fast) and is 46 bytes shorter. This second method is more work for the

computer but, then, that‘'s it‘'s job.

1Q0@ DESTROY X,X$ @ DIM X (Z@), Xx$(2¢)

User Defined Functions

User Functions (DEF FN‘s) make it easy to pass variables to subroutines and use

the results within a mathematical expression. Two disadvantages are that it is

considerably slower than GOSUB and there is memory overhead for the environment in

50

addition to the extra code required in the program. Instead of using:

1@@@ Z=FNX(Y)

Ve would assign the values to "scratch" variables (in this case A) and use GOSUB:

100¢ A=Y @ GOSUB 92e@ @ Z=k

If we have a commonly used routine, need to pass several parameters, want the

advantages of nesting the FN or just want elegant looking code, then by all means use
user functions. If execution speed and memory conservation are important then GOSUB

is recommended.

Nesting Mathematical Expressions
While BASIC is an algebraic language, the 7! is internally a stack oriented

machine vaguely reminscent of HP's RPN calculators. When an expression is

interpreted the 7! passes parameters to the functions and places intermediate results

in a section of memory called the Math Stack (although it is also used for strings).

Let's start with a simple set of expressions. We want the current time in 12 hour

(but decimal fraction) format; not the most useful value, but easy to explain. TIME

returns the number of seconds since midnight.

1@ X=TIME @ IF X)>43200 THEN X=X-432@Q

2@ DISP X/ea/b@

Besides saving some code, the following is considerably faster than this example.

The speed increase is from simplified code and from doing it in one expression which

keeps the numbers "floating” on the stack. Whenever a value 1s assigned to a

variable then the expression is completed and the stack is not used to the greatest

efficiency.

1@ DISP MOD(TIME, 43c@@) / 360@Q

The way the HP-7! engineers use the math stack is also responsible for versatile

handling of string subscripts. Since strihgs all go on the stack, they can be

trimmed as we like them; extra parentheses may be added to designate a new string
expression for which subscripts apply. This example takes the substring (2,4] of

element 5 of array A$ adds the entire length of B$ to it then displays the results

starting with the second character.

i@ DISP (A$(3) (2, 41&B%) (2]

TRANSFORM
Lines as long as 120 characters are allowed by the 7! even though we can ed:t

only edit lines up to 96 characters long. In addition to saving memory by allowing

more information (such as after THEN), there is greater security of the code because

the lines are uneditable. Unfortunately, they are also uneditable by you. Somewhat

longer lines may be entered by deleting spaces between statements. A usetul method

is to write the program as a TEXT file then transform it to BASIC. Some other

computers allow long lines so it might be useful to use another machine to write the

program. Be forewarned that many people find program security methods disgusting.

Quoted Strings

Enter GOTO's to labels and HP-IL device specitiers without quotation marks.

GOTO label

GOSUE label

CAT :tape

CALL pgmname

51

A token representing quote will be entered by the 71 instead of the actual quotes so

that (single) quotes will be displayed when you edit the line but a byte will be

saved because there is no literal quote. 1If you later edit the line and press

ENDLINE then the actual quotes will be entered and the savings will be lost so be

sure to eliminate the quotes again.

IF, THEN, ELSE
GOTO is implied following THEN and ELSE if followed by a label or line number so

the keyword GOTO is optional for a savings of 3 bytes. In this example the program
will branch to line 800 if X#0, otherwise it will GOTO the label "start":

61@ IF X THEN 800 ELSE STRRT

An implied GOTO to a label may take any form which evaluates to a string. Note that

this only applies to labels, calculated line numbers won't work (alas). In the two

following examples the program will branch to label "Al" if X=1, to "Bl" if X=2 and
so forth.

34@ IF X THEN CHR$(X+64)&"1"

44@ IF X THEN "ABCDE"[X, X1&"1"

This syntax may be used with GOSUB and GOTO outside of the context of a conditional

to provide highly flexible (and compact) branching.

5@ GOSUB "A1EBICIDIEIF1"[X, X+11

Instead of using a subroutine which may only be refrenced once, follow the

conditional with the actual code, presuming it will fit.

S@@ IF NOT X THEN DISP "No value" @ BEEP @ X=.@4@@1 @ Y=NOT Y

A disadvantage of IF, THEN and ELSE is that they restrict what may follow on the same

line and therefore limit concatenation. One of the strengths of BASIC is that

boolean arguments may be nested within mathematical expressions. In the exampie we

will replace IF THEN with an argument which uses the same amount of memory but places

no restrictions on what may follow on the line.

16@@ IF X THEN Y=Y+lo@

If X=zero then we want to add nothing, and, since one hundred times nothing is

nothing we can use the following:

1Q00@ Y=Y+ (10@*X#Q)

Other comparisons including NOT, MAX, MIN and MOD may be used inthe same form.

If a variable is to be toggled between two values based on a comparison then

assign the number to the second condition first and make only one comparison:

18 IF X THEN Y=1 ELSE Y=¢

Replacing this with the following will save three bytes:

10 vy=2 @ IF X THEN Y=1

NUM

When using NUM with a substring, only the first character in the string wiil be

used. NUM(Q$(5])) will suffice, the second subscript (as with Q$(5,6])) 1s

unnecessary.

52

ON ERROR

One of the primary usages of ON ERROR is during an INPUT to trap bad data.
Since any error which occurs will cause the branch then we can purposfully allow
errors to happen to eliminate a series of IF THEN'‘s.

1@ IF NOT X THEN 1@

11@ ON X GOTO "X1,"Xx2","X3"

We could have used ON X+! GOTO... but this wouldn‘t have helped if X=37. The

simplest approach is to change the program to trap anything which may cause problems.

In this example line 10 would contain code to interpret the error or provide the

equivalent of an ELSE.

14@ ON ERROR GOTO z@
t1@ ON X GOTG "AL","BI","C1"

We can also use ON ERROR to allow branching to different routines at an intentionally
caused error, for instance:

1@@ IF NOT X THEN DISP @/@

Optional Parameters

Several statements may optionally be entered without parameters or in an

abreviated fornm.

CLEAR HP-IL statement. Operates the same as CLEAR LOOP. Saves 5 bytes.

DEGREES/RADIANS OPTION ANGLE is optional, DEGREES or RADIANS is sufficient. Saves 4

bytes.

RUN Vithout parameters re-starts the same program.

Recalling a displayed 1line
Normally un-recoverable data may be assigned to a variable by turning on the

cursor before displaying the data. Display the escape character (chr$(27)) tollowed

by ">" and terminated by a semicolon to supress the CR/LF to turn on the cursor. The

example assigns the CAT to C$. Line 520 is optional and is used to turn off the

cursor again to keep from having the cursor (occasionally not even flasning!) present

at odd times. The INCAT subprogram listed later is a practical application of this
operation.

5@@ DISP CHR®(Z7)&")";

5168 CAT @ C$=DISP$

Sc@ DISP CHR$(Z7)&" (",

String Operations

These routines are not necessarily the most memory efficient way to do the

operations, though they have been tested for speed.

Filling a string with spaces
A previously unused string (or one nulled by using X$="") can be filled with

spaces to any length needed by placing a single space on it's extreme right.

1@ DIM X$(20Q] @ X$(z@@i=" "

Trimming Leading Spaces

10@ IF G$(1,11=" " THEN Q%=@%{z] = GOTO t@@

53

Trimming Trailing Spaces

10@ IF Q$ILEN(G$)I=" " THEN Q${LEN(G®)I="" @ GOTU 1@

Centering a String

Where Q¢ is the string to center W is the width of the finished line and X$ is
scratch. Fills the left of the string with spaces.

10 X$="" @ X$[(W-LEN(Q@$))/2]1-" " @ Q$=X$&0%

1@ PRINT TAB(MRX{({W-LEN(QG%))/2,1)) ;0%

Reversing a String

This routine is demonstrated as both a SUB and a DEF FN. The operation the same

in both versions. This function is designed to use only one string variable and is

slower than the same operation using two variables. A 5SUB using two string

variables, which is somewhat faster, follows these two examples.

@ SUB REV(R$) © FOR L=1 TO LEN(R$)/& ® P=LEN(KS)+1-L
@ R=NUM(R$L]) @ R$IL,LI=R$CP,P]
@ R$[P, PI=CHR$(R) ® NEXT L & END SUEG

M
g
e

1@ DEF FNR$(R$) @ FOR L=1 TO LEN(R$)/2 @ P=LEN(KS$)+i-L

20 2@ R=NUM(R$[L1) @ R$[L,LI=R$[P,P]

3@ R$[P, PI=CHR$(R) @ NEXT L @® FNR$=R$ @ END DEF

The following has the same operation as the string reversing method listed above, but

uses two string variables.

1@ SUE REV(R$) @ DIM R$[LEN(RS)]

2@ FOR L=LEN(R$) TO 1 STEP -1 @& A$=A$&R$LL,L] @& NEXT L

3@ R$=A% @ END SUE

Replacing one Character with Another

10 X=POS(B¢,5%) @ IF X THEN G$(X, X+LEN(S5%)-11=5% @ GUTO 1@

Rotating Left

While this is presented as a DEF FN, a SUB or a simple subroutine could use the

same basic operation. The FN rotates the string left by the number of characters

specified by X.

1@0@ DEF FNL$(A$, X)
11@ FOR L=1 TU X @ A$=A$[21&AS(1, 1] © NEXT L
120 FNL$=A$ & END DEF

Rotating Right

1@@ DEF FNR$ (A%, X)

1186 FOR L=1 TO X @ A$=AS[LEN(A$)I&AS[1,LEN(RS) 1] ¥ NEXT L

120 FNR$=R%

The Alternate Character Set

Characters above ASCII] 127 are displayed in inverse video on a monitor or using

the alternate character set on the built-in LCD. The function HGL$, found in some

LEX files, sets the high bit on all characters in a string about 50 times as fast as

can be done in BASIC. The following method assumes that each character is below

ASCI] 128 to begin with.

54

FOR X=1 7O LEN(G$) @ Q${X, XI=CHRS (1Z8+NUM(GSLXT)) = NEXT X

Creating the Character Set

The two options of the following routine are Underlined and Inverse (white on
black). It uses the KEYWAIT$ function. The program is 329 bytes long and builds the
character set in blocks of 8 characters.

Note line 110 which uses GDISP to display alternate characters starting at

uppercase "A". Since each character takes 6 bytes for the definition and "A" is
CHR$(65), we begin displaying at 65%6, or position 390 in the 768 byte string.

1@ CALL CHARSET @& SUB CHARSET
¢@ DIM Cs(7681,Y$(48]1 @ DISP "Urderline/Inverse")
3@ T=POS("UI",KEYWRIT$) @ IF NOT T THEN 3@
4@ DELRY @ @ CHARSET "" ® FOR X=128 TGO 255 STEP 8
2@ FOR Y=@ TO 7 @ DISP CHR$(X+Y): @ NEXT Y @& Y$=GDISP$([1, 481
6@ IF T=1 THEN 8@
7@ FOR Y=1 TO 48 @ Y$[Y,YI=CHR$ (ZSS-NUM(Y$[Y])) @

NEXT Y @ GOTO 1o@
8@ FOR Y=1 TO 48 ® Z=NUM(Y$LY]) @® IF Z(128 THEN

Y$LY, YI=CHR$ (Z+128)
9@ NEXT Y
16@ Ce=Cs&Y$® @ DISP @ NEXT X @ CHARSET C%
116 GDISP CHARSET$(39@1 = BEEP

Alternate Character Set in Programs

Prompts for input, title lines, and warnings have more impact when displayed in

inverse video. The easiest way to enter these characters into a program is to assign
them to keys. The easiest way is with HGL$, but it can be done (with a few more

keystrokes) without that keyword. Don't forget the ";" to designate it as a typing

aid key assignment.

DEF KEY "2HGL$("?");

DEFKEY "%, CHR$ (128+NUM("2")) ;

Waiting for a Key

KEYDOWN and KEY$ give us the ability to wait for single keystrokes and use the

key within the program. The program would look something like:

10@ 1F KEYDOWN("R") THEN 5@@

110 IF KEYDOWN("B") THEN 600

120 1F NOT KEYDOWN("C™) THEN 10w

In addition to the extra memory used, the 71 stays in the battery-slurping program

running state regardless of how long it waits for the proper keystroke. INPUT goes

to low power between keystrokes but requires ENDLINE to terminate the input, doesn't

automatically qualify input and can't be used within mathematical expressions since

it is a statement. Several LEX files contain the keyword KEYWAIT$ which does go to

low power, waits for a keystroke and, unlike KEY$, always returns a string. Many

plug-in ROMs have the function, you may already have it since 1t isn‘'t always

docummented. KEYWAIT$ is a function which returns a string we can use in conjunction

with POS or NUM to do some fancy branching. This will work best with single

character key definitions.

1@ DISP "Option :R/B/C/D" @ GUSUB CHR$(POS (7%, UPRCS (KEYWRITS))+63)

Sometimes we may want to trap shifted or control keys; this is a little more

complicated. Most shifted keys return two character strings and control keys return

three or four characters. This example assumes there is an ON ERROR trap in case the

user presses the wrong key.

55

5@@ K$=UPRCS$ (KEYWRITS)
51@ IF LEN(K$)=1 THEN GOSUB CHR$(POS(T$,K$)+63) @ GUTO 509
S2@ IF LEN(K$)=2 THEN GOSUE CHR$(POS(TZ$,K$)+65)&"2" @ GOTO 300
93@ GOTO See

Another version of KEYWAIT$ is called WIKEY$ which returns the ASClII character of the

key instead of the keymap value. It always returns a single character; for instance,
[(ENDLINE] returns CHR$(13) instead of "#38".

If one of these keywords isn‘t available (or we don‘'t want to use any LEX
files), we can define a user function to simulate it. Remember that this does not

place the 7! in low power mode, but it does allow it to be used like KEYWAIT$. A

KEYWAIT$ LEX file is about 55 bytes (WIKEY$ is somewhat larger) while the DEF FN is
42; the main savings is in the convenience of not needing the LEX file. The first

example returns a null string if the user presses one of the shift keys. The second
example (FNK!$) allows shifted keystrokes, but requires a string variable.

9@@@ DEF FNK$
9@1@ IF NOT KEYDOWN THEN 9@10@
90c@ FNK$=KEY$ & END DEF

9100 DEF FNK1$
911@ K$=KEY$ @ IF NOT LEN(K$) THEN 911@
9120 FNK1$=K$ @ END DEF

Constants

Pl (3.14 etc) is a constant, and is part of BASIC because it is used so

frequently. Programs often use other values time and again, often it will save

memory to assign the number to a variable. Let's take the memory required to create

a single digit constant variable:

Variable 9.5

Statement 5.0

14.5

Entering a single digit number in a program (for instance: X=1) takes the 5 bytes,

the same as recalling a variable (X=C). When we go to a two digit constant the
"break even" point for using the variable is 16 usages. 1t is only when multi-digit

numbers are used frequently that it becomes practical to use variables for constants.

We can thank the engineers for entering numbers in the program line with only as

much precision as needed. The HP-75, for instance, enters numbers in a program in

full precision even if they have a single digit. In fact, the most memory efficient

way to enter the constant ! on the HP=75 is with X=SGN(EPS).

Inverting a Flag
Flags are often used to represent a certain state which may change as the

program runs. For this reason an efficient method to toggle between set and clear 1is

a very high priority. The function FLAG sets or clears the flag accordingly but also

returns one if the flag was not inverted, and zero if it was. Two common methods of

inverting a flag are shown. The first method uses no variables, but limits what may

follow on the line. The second method is four bytes shorter but requires a scratch

variable to store the results of the FLAG function (unless we want to display an

occasional spurious zero or one while the program runs, in which case DISP can be

used).

IF FLRG(1) THEN CFLRG 1 ELSE SFLAG 1

 X=FLAG(1,NOT FLRG(1))

56

Flag Variables

In the same respect we can invert a variable used as a flag quite simply. If a
flag is to be inverted often in several different locations within a program and it
isn't important that it be displayed (flags 0-4) then it will be more efficient to
use a variable as the flag.

X=NOT X

G60TO, GOSUB to a "label™”

Refrencing labels of four characters requires the same memory as refrencing line
numbers. If a line number is refrenced several times then there is some memory

savings in using three character (or shorter labels).

END, END SUB
The END and END SUB statements are not required if the program flows to the last

line in the file or if the program is followed by another SUB in the same file.
While a SUB may only have one END SUB, END may be used within the SUB to terminate it
without the necessity of branching to the last line in the SUB.

1@ SUB TEST

2@ IF (expressiorn) THEN END

30 GOTO ze

4@ SUB TESTZ

(el

57

PEEKS$s & POKEs

The 71 is a nibble oriented machine; many operations which take a full byte on
some other computers can be done in a nib on the 71. Any location within the full
memory address range of the 71 (which isn’t in a private file) may be inspected using

PEEK$. In addition, RAM locations may be altered using POKE. Remember that PEEK$
and POKE work with nibs which are a "half-byte"”, or four bits. A nidb can have a

(HEX) value of "@-F” which translates to @-15 in decimal.
Many of the routines in this section use REV$. If you do not have this function

available in your 7! it can be simulated with the REV subprogram in the String

Operations section earlier in this book.

Let’s look at System RAM. A chart at the back of this book lists most of system
RAM. This is information the computer needs (such as the current PWIDTH) and some

scratch space used by Assembly Language routines. Since the CPU reverses data when

it reads and stores it, just about everything is stored nib-reversed or the whole
location reversed. Since most of the system functions work in HEX machine
internally, most information is in HEX.

For these reasons DTH$ and HTD aren’t going to give an accurate conversion when

the nibs are reversed. Remember that DTH$ fills with leading "¢" so it will have to

be trimmed to the proper size before POKEing. REV$ is almost a necessity when
working with system RAM. Let’s use the example of the location DWIDTH, two nibs
which contain the current WIDTH setting. First let’s set the WIDTH to 96:

WIDTH 96

Now, let’s PEEK the two nibs at DWIDTH(2F94F):

PEEKS$ ("2F94F", 2)
@6

Converting 96 (decimal) to hex gives us "6@". As you can see DWIDTH is backwards, or
"nibble reversed”. REV$ reverses the order of characters so that our "06" becomes

*6@". Now HTD (Hex TO Decimal) can convert it to a Decimal value:

HTD (REVS$ (PEEKS$ ("2F34F",2)))
36

There is a problem going the other way (Decimal To HEX) because a five character,
right justified, string is always returned:

DTH$(96)

00066

We need two nibs. PUOKE always uses the full length of the string furnished to it; if

we had just POKE’d the above then DWIDTH would have gotten the first two nibs ("0@")

and the next three nibs would have gone to the next higher addresses. The following
shows what would happens if we POKE DTH$(96) to any (unnamed) location in RAM:

-—) THIS IS AN EXAMPLE, DON'T DO IT (—

POKE DTH$(X),DTH$ (96) DTH$ (X) "e"

DTH$ (X+1)= "@"

DTH$ (X+2)= "@"

DTH$ (X+3)= "6&"

DTHS (X+4)= "@"

As you can see, PUOKE places the first nib at the location specified, the second at

the next nib higher in memory, and so forth, for the full length of the string.

58

System RAM Chart

The first item on each line of the System RAM chart is it’s five digit (hex)
location in RAM. Each location has a four to six character symbolic name. These
names are used to identify the names in documentation and for equate tables used by
the Assembler. The third item is the number of nibs reserved for that utility, and

finally, some remarks.

ROWDVR(2E350) These 16 nibs control the appearance of the LCD display. Slight
modifications can give us bold characters which will stay in effect until we do an

INIT | when the normal display returns. Be careful changing some of the nibs or the
display can become pretty much unintelegible and various display flags (like PRGM and
the shift annunciators) may be lit at odd times. The following are are reasonable
looking character sets. They enhance the horizontal lines which is not as attractive
as fatter vertical lines. Experiment with various combinations to give your 7! a
“free form” look.

POKE "2E357", "22" Normal

"63" Bold

*23" Bold Top

"62" Bold Bottom

DCONTR (2E3FE) contains the current contrast setting as set by the CONTRAST keyword.
The value is in hex so the possible contrast range is from 9-15. We can recall the
current setting:

HTD (PEEK$ ("2E3FE", 1))

The first value in the example is "2F3FE" which is the memory location, the second is
the number one, the number of nibs we wish to see. Again, the function HTD is used

to turn the hex number into decimal. In the same manner we can set the contrast.

POKE *2E3FE”, “F"

This set the contrast setting to 15 (which is "F"” in hex). PEEK$ and PUKE always use
strings because all memory locations are five digit hex numbers which must be
represented as strings.

ATNDIS (2F441) Used to disable the ATIN key so that it will not stop a program. The
normal value for this location is "@". POKE an "F" here and ATIN will be treated

like any other key by KEYWAIT$ and KEY$. Also, INPUT cannot be suspended. This is
helpful when a program uses the ATIN key to, for instance, enter a command level

(such as EDTEXT, the HP Text Editor), or if a program is doing a critical operation
which could cause probleas if interrupted. KEYWRIT$ returns "#43" and WTKEY$ returns

CHR$ (14) when you press ATIN.

The Key Buffer
Up to the previous 15 keystrokes can be saved in a location called the key

buffer. This is why you can type ahead before an INPUT occurs and press keys faster

than they can be displayed. Remember that the key buffer is emptied after each DIGP

unless the current DELAY is zero. The buffer is filled from low memory to high
memory, the oldest key down is the one at the beginning of the buffer.

KEYPTR(2F443) Tells us how many keys are in the buffer.

KEYBUF (2F444) is the beginning of the 30 nib (fifteen byte) key buffer. The first
key is at "Z2F444", each additional key is plus "2" hex. Enter the following, without

extra spaces, exactly as written for an example of how the key buffer is filled:

POKE"2F443", "E"

59

The "P" is gone, but the other characters remain. If we had used "F" instead of "E"
then the CHR$(13) entered when we pressed ENDLINE would have caused an "Excess Chars”
error when the 71 tried to interpret:

OKE)D2F443”, "F”

Setting CMMD stack size
The command stack usually has five levels, though it can be altered between one

and sixteen entries. The 71 does not have a function for this operation, though it
has been done in several LEX files. The stack can be altered between one and sixteen
entries. This program limits it to fifteen entries because of some peculiar things
which can happen with the full sixteen. CALL the program with a parameter, for
instance: CALL CMDSTK(1@) to set it to ten entries.

The following BASIC program is quite similar to SETCMDST (in the HP-71 Utilities
Solution Book), but is listed here for those who do not have that book. Since the
program alters system pointers, it cannot be interrupted during operation without a

dreadful belly-up crash, so the ATIN key is disabled. Enter the program exactly as
written (without remarks) and double check it before running.

9 ! disable ATTN key
1@ SUB CMDSTK(X) @ POKE "2F441",“F"
19 ! make # cmmds @< X (16, find the command stack

2@ X=MIN(1S,MAX(1,IP(X))) @ A=HTD(REVS$ (PEEK$("2F376",3)))
29 ! create empty cmmd entries
3@ DIM S$(X*6]1 @ FOR Y=1 TO X @ S$=5$&£"00@308" @ NEXT Y
39 ! set stack pointers

4@ E$=REV$ (DTH$(R+X*#6)) @ POKE "2F58@",EEE&ES
49 ! place empty commands in buffer

5@ POKE DTH$(R),S$ @ POKE "2F376",DTH$(X-1)[3]
39 ! enable the ATIN key, bye
6@ POKE "cF441","@" @ END SUB

Display Devices

If there is a display device active then a program may want to support it. The
usual (and HP recommended) method to find the device is by checking the loop for one.

The disadvantages of this are that if there is no HP-IL module then it will cause an

error when the function is encountered. Another problem is that if the loop is

broken then everything will get hung up waiting for the HP-IL ROM to realize it.

Regardless, the operations are quite time consuming. The following method is quite

fast and cannot cause an error. Two locations are used by the 7! when dealing with
display devices.

DSPCHX (2F674) contains five nibs which relate to various aspects of the device. If
the most significant bit of the first nib is set (the PEEK$ is "8" or greater) then a
device is active.

1S-DSP (2F78D) is used by the HP-IL ROM to describe the device. This 1s much like

1S-PRT for the printer, and IS-PLT for the plotter (the what?). The first two nibs
are the address of the device; values of "1@" (decimal l) to "E!" (nib-reversed hex

for decimal thirty) mean a valid address. OQOutside of that range means not a good
device.

We can take these two pieces of information and determine if a display is

active, and where it is. This routine has also been done in Assembly language as a

function called TVIS (issued to the author). In the following example variable D
will contain either the address of the display or zero if there is none, it isn’t

active, there is no HP-IL module, or the device is assigned with extended addressing.

10 D=HTD(REVS$ (PEEK$("2F78D",2))) @ IF D)3@ THEN D=@
2@ D=D* (HTD(PEEK$("cF7E1",1)))=8)

60

PEEKing at Flags

User and system flags are stored in system RAM in a contiguous block. One of
the nicest uses for PEEKing and POKEing flags is to save current configuration, alter
the machine as needed, then restore the former conditions when through. While SFLAG
and CFLAG won’t work with system flags, there is no restriction when using PEEK$ and
POKE. Be forewarned that altering some system flags (as with POKEing anywhere) will
lock up the computer beyond INIT 3.

SYSFLG(2F6D9) System flags.
FLGREG(2F6E9) User flags.

Flags are stored in order with four flags per nib, therefore the smallest unit
we can alter is four flags (one nidb). Clearing a block of user flags by POKEing is
much more flexible than using RESET and faster than individually altering several
flags. It is more memory efficient only when altering more than about 12 flags in a
statement (assuming the flags could be changed using SFLAG or CFLAG). This example
will set flags @-3:

POKE "2FEEF", "F"

Now, to clear those same four flags enter:

POKE "cFeET", "@"

Since we are dealing with locations in RAM, the next four flags (4-7) are located

plus ! nib at 2F6ER flags 8-11 are at cFG6EB and so forth. A chart in the back of
this book lists the locations of system flags and their uses.

LOCKWD (2F7B2) The security password set by the LOCK statement is stored in eight
bytes, nib reversed with the most significant byte in lower memory. Be sure not to

POKE any characters which cannot be entered from the keyboard (such as several
CHR$(10)’s) into this location because you will not be able to turn the 7! back on.

To view the current password:

100 Q$=CHR$(126) @ FOR X=HTD(*2F7B2") TO X+14 STEP &
110 R$=Q$&CHR$ (HTD (REVS$ (PEEK$(DTH$(X),2))))
126 NEXT X @ DISP Q$&CHR$ (126)

RESREG(2F7C1) The results register can contain a REAL number, stored backwards in BCD
(Binary Coded Decimal) in the first 16 nibs at RESREC. A complex number (if there is
a Math ROM) uses the full 34 nibs. The internal representation of a 16 nib BCD

number is as follows:

SMMMMMMMMMMNMXEEE

From left to right, the "S" stands for the sign. Following this is the 12 digit
mantissa ("M"), the sign of the exponent("X"), then the three digit exponent ("E").

The decimal place is implied to be after the first digit (from the left) in the

mantissa (though it doesn’t really exist). This standard is followed with any REAL

number. For more information on numerical fields refer to the section on Assembly

programming.

Since the RES register changes whenever a number is displayed or assigned to a

variable, this location will constantly change. Try some values with this little

program:

10 DISP REVS (PEEK$("2F7C2", 16))

INF: 0399999999999F60
EPS: 0100000000000501
PI: 8314159265359000

-PI: 9314159265359000

61

ERR#(2F7E4) These four nibs are the hex (reversed) equivalant of the value ERRN

returns.

ERRL# (2F7EC) This is the same value as returned by the ERRL function. The line
number is stored reversed in four BCD (not hex!) nibs.

Display/Print settings

SCROLT(2F946) The 2 nib representation of the scroll setting. This is the second

parameter of the DELAY statement. The value is the number of 1/32nd’s of a second

(.03125 sec. for decimal fans) in nib reversed hex. INF is stored as “FF".

DELAYT(2F948) The first parameter in the DELAY statement. Stored in the same format
as SCROLT.

DWIDTH(2F94F) Current WIDTH setting in two reversed hex nibs. INF is "@a".

PWIDTH(2F958) The current PWIDTH setting in the same format as DWIDTH.
Determining program size

As you know, the 7! works with nibbles so that an operation which may take full
bytes on some machines can be done in multiples of nibs. We can access how changes
have affected program size by beginning the program with:

! DISP MEM @ END

This tells us available memory. But that may have changed because of other causes
besides editing the program. We could also use CAT, but that is often off by one

nib. The following routine returns the size of the program to the nib:

1 DISP (HTD(REV$(PEEK$("2F567",5)))-HTD(REVS (PEEKS$ ("2F562",5))))/2-49 @ END

What this line does is subtract the end of the file from the beginning, then divide

it by two to turn it into bytes, then it subtracts 49, the size of this line. This

line can be changed into a remark when not needed and, or course, should be removed

when the program is finished.

Program Memory usage
Another routine can be used to determine the amount of memory used by variables

(which are not counted in the program size). O0f course, we should already know what

free memory was available before the program was run.

1 DISP (HTD(REV$(PEEK$("2F599",5)))-HTD(REV$ (PEEK$("2F5334",5))))/2-186.5

Finding the Card Reader
1f there is no Card Reader then the following will return "0", other values mean

there is one. This is not part of System RAM, but memory allocated for the Card

Reader.

 PEEKS ("2C014", 1)

Strings in SDATA Files
We can read either numbers or strings from SDATA files, however, the 71 only

allows writing numbers to these files. Since a string can be read there is no reason

we can’t write strings, hence this section. The format used is, to say the least,

unusual looking; physically seven characters can be used, though RtAD# will only

recognize six (for HP-41 compatibility); a byte is wasted. We’ll discuss the actual
register (record) format in a moment.

The SDATA file has a 36 nib header followed by as many 8-byte registers as
specified. The file can be expanded by RESTOREing to the end of the tile then using

PRINT#nsn. To store a string in an SDATA file you must first place a number (pick a

62

number, any number) in that register, then POKE a string over top of that number.
The reason for first entering a number is to make sure the file is large enough for
the string. Remember that registers begin with register®# 0. The file doesn’t have

to be open (It isn’t necessary to use ASSIGN#) in order to replace a current
register with a new string. First let’s create an SDATA file and give it three
registers:

CREATE SDATA TEST @ ASSIGN #1 TO TEST
PRINT #1;0,0,@

Next turn "QUACK!" into the SDATA Text format:

 G$="QUACK'" @ CALL SDTEXT(Q$)

Third, find out where the first register in the SDATA file is:

A=HTD (RDDR$ ("TEST")) +37

Now put "QUACK!" in register @, which begins at the first nib past the header, then
read the file to confirm it’s there:

POKE DTH$(A),0Q%
RESTORE#! & READ #1;X$ @ DISP X%

QUACK'!

Let’s print "HP-71" to register #!, the second register, which is +16 nibs from the

beginning of the file.

@$="HP-71" @ CALL SDTEXT(G$)
POKE DTH$ (A+16),G$
RESTORE#1 @ RERD#1;G$,AS$,
DISP @$,A$,0

 GQUACK'! HP-71 @

The SDATA file now has three records (0K, registers), the first two are strings and

the third still has the value of zero.

The SDTEXT SUB

The string passed to SDTEXT must be DIMmed at least 16. Only up to the first

six characters will be returned in a sixteen character string suitable for POKEing
into an SDATA file. Of course, this can be used as a subroutine in a program to save

some time and memory. If this routine is added to a program instead of being used as

a SUB, be sure that X=@ before entering. SDTEXT always returns a 16 byte string

which is the correct length for POKEing into a single register. The program uses
REVS$, as usual.

1@ SUB SDTEXT(Q%) @ Q%=QG$(1,6] @ A%="0010000000000000"

2@ X=c+X @ C=NUM(QG%) @ Q$=0Q%[2] @ IF NOT C THEN 6@

30 A$(16-X,17-XI=REVS(DTH$(C)[41) @ 1IF X<(8 THEN c@

4@ IF LEN(Q@$) THEN A$[4,4]1=DTH$ (NUM(Q$)) [S]1 @ A$L[7,71=DTHS (NUM(G$)) [4,4] @ Q$=Q%[c]

5@ IF LEN(Q$) THEN R$(1,2I=REVS(DTH$ (NUM(Q$)) [(4])

60 Q$=A%$ @ END SUE
SDATA Register Format

Let’s use the register as it appears in memory (which is backwards, as usual).

The HP-4! has 1@ digit accuracy and a two digit exponent, while the HP-7! has 12

digit mantissa and three digit exponent, s0 some differences are found in the

63

handling of SDATA files by both machines. Physically, first come the last two digits

of the exponent then the sign of the mantissa (which is also the flag for a string:

0=positive, 9=negative, l=string), then the first digit of the exponent (which is not
used by the HP-41). The last byte of the mantissa (lower case "m"’s) is not
recognized by the HP-41 so a string byte there would be ignored).

Strings are stored nib reversed, but also the two nibs of character number 5 in
the string are separated by a null byte. The first digit of the mantissa is zero and

the sign is one for strings.

low mem high mem

EESEmmMMMMMMMMMM
CHR# 66 3 944332211

P1 000R353562951413
PI(HP-41) @Q@@Q@A456c951413

3EC7 7c00000000000009
. 23456 99@300000006543
-1@ 1@9eaeeeaovaeeal
"HP-71" Q01100373Dc@5840
"QUACK'” 121BO@434145515@

12 1 B @@ 4 34 14 535 15 @

Il sign | Frr it

I \ /A R R R

i N/ e

! K C A U @&

Lo

64

Converting from other BASICs

As BASIC has grown it has followed divergent paths. Microsoft has been the
dominant force because of shear number of units sold. There are probably more

computers running Microsoft BASIC than any other implementation or any other

language. In this discussion we will lump BASIC together into two camps: HP, and
everybody else; Apologies to Dartmouth for this generalization. Most of the
discussions here apply to IBM PC, APPLE, TRS-80, Atari and Commodore. Sinclair and
other propriatary variations are intentionally "included out"”. We will also discuss

the HP-75 to compare BASICs evolution within HP‘s own walls.

HP has taken other paths to the point that most published BASIC programs won't

run on HP computers without considerable changes. Northstar computers have the most

HP-like BASIC. BASIC, even MS BASIC, is not a standardized language. It can be said
that Microsoft BASIC and HP BASIC are two different languages with similar syntax.
This is not a tutorial; every example will not work in all cases.

Don‘t expect any PEEK$ or POKE from any other computer to work on the 71. Try
to find out what the operation does then look for either an HP keyword or try to find

an equivalent PEEK in the chart in the back of this book. Not ail PEEKs will have an
HP-71 counterpart.

Microsoft BASIC

The differences between Hewlett Packard and Microsoft BASIC are as much

philosophy as code; generally speaking, HP has more keywords than MS because of a

desire to make programming easier. Where MS will require a POKE, HP will have a

keyword; in fact, while HP usually does a very complete version of BASIC, some HP's

don‘t even have PEEK and POKE. Both languages use tokenized code, but HP tokenizes

and checks syntax as code is entered, thus, while there may be a short delay after

pressing ENDLINE, most typing errors are caught immediately, instead of while the

program runs. If you rave about MS BASIC then you aren‘t familiar with HP BASIC. If
we had a computer with both BASICs running a similar program, the HP language version

would operate considerably faster. Thus, while the 7! actually runs fairly slow (for

fuel efficiency), programs run relatively fast because of the slick way they are

coded.

Numerical precision and round off error are usually quite extreme with MS, while

the 7! uses quite accurate BCD routines. Be sure that a given line is not expecting

the sloppiness of MS to limit number of loops or to induce an error purposfully.

Varible names are often quite long with MS. Expect variables named "LOOP" or

maybe "DAYS". These are not keywords, even though they often look like thenm.

Replace them with the usual character or character and a number variable names (A,
Al...) the 71 can accept.

With all of that aside, let's concentrate on similarities and converting
programs. The two most obvious differences that can be seen at first glance are

string functions and the use of the "@" (commercial at) instead of ":" (colon) to
delimit statements on concatenated lines.

HP also uses "&" (amperstand) to concatenate strings where MS uses "+" (plus),
the same operator used with numbers.

MS: ‘“stri1"+"streg”

HP: "stri"&"stra"

Graphics and Escape Sequences

HP-71 BASIC does not have graphics functions (except GDISP and GDISP$, but they

are quite unlike Microsoft). Most escape sequences are quite similar with one

exception which will require major surgery. Placing the cursor at a specific

location on the display is done with CHR$(27) followed by a three character command.

MS specifies CHR$(27) then uppercase Y followed by a character specifing the row

coordinate and a character for the column coordinate. The col/row coordinates are

65

offset by 31 so that the first row is CHR$(32), the second is CHR$(33) and so forth.

HP uses CHR$(27) followed by the percent character (X) followed by col then row

specifyier characters. The coordinates begin at zero for col | and row 1. The first

row is CHR$(0), the second is CHR$(1).
The scheme used by MS assures that most coordinates can be represented by

displayable characters, so the program will often contain literal strings. In the
example C is the column and R is the row coordinate.

MS: CHR$(27)+"Y"+CHR$ (R+31)+CHR$(C+31);
HP: CHR$(27)8"X"&CHR$(C-1)&8CHR$(R-1);

CLEAR
This does not clear the display. It is used by MS to free an area of RAM for

strings. Unless otherwise DIMmed, strings share a common buffer which is usually
about 256 characters by default. This statement is used to increase the size of this

buffer. Check the maximum string length used in the program and DIM strings

individually.

CLS, CHR$(27)+“E"

These are two alternative methods of clearing a display device by MS and 1s one

instance where HP has not included a keyword!

The simplest method would be to use CHR$(27)&"E" which resets both display
device and the LCD. The problem with this method is that it also turns the cursor

on. When you clear the display using CHR$(27)&"E" and follow it by an INPUT then the

prompt string will be included within the default input. Even if an INPUT does not

follow, the flashing cursor can be a distraction, so a more useful solution i1s to use

CHR$ (27) &"H"8CHR$ (27)&"J" which homes the cursor then clears the display from that

point; if the cursor had been off (quite likely) then this operation will not turn it

on.

MS: CLS

MS: CHR$(Z7)+"E";

HP: CHR$(27)&"H"&CHR$ (E7)&"J":

CHR$ (27) +"p", CHR$(27)+"q"

MS uses escape plus lowercase "p" to enable i1nverse video (black characters on

white background), then escape plus lowercase "g" to restore the normal display.

There is not an exact counterpart with HP.

HP uses characters above CHR$(127) for inverse video on a monitor or for the

alternate character set on the LCD. We can display any character in inverse video by

adding 128 to it's ASCII value. For instance, "A" is CHR$(65) and inverse "A" is

CHR$ (65+128). This must be done on a character by character or string by string

basis (unlike MS which displays everything inverse until told not to).

HGL$ is in some LEX files (including the one in WorkBook71) and may be used to
quickly "set the high bit" (add 128 to each character). As an alternative this

simplified line may be used:

FOR X=1 TO LEN(S%) @ 5%[X,XI=CHR$ (128+NUM(S$[X1)) @ NEXT X

! ’* REM

The use of REM to designate a remark is universal in BASIC. While MS uses a

single quote (’) as an alternative, HP uses the exclamation mark (!).

MS: REM this 1s a remark

HP: REM this 1s a remark

M5: ' this 1s a remark

HP: ! this is a remark

66

Microsoft accepts only the double quote character (") to delimit strings while

HP allows single or double quotes. As discussed above, a single quote (‘) in MS
designates a remark.

If a string 1s either the only or last item on a line then MS allows the closing

quote to be optional, while it is required by HP.

MS: PRINT "a strino

MS: PRINT "a string”

HP: PRINT "a string"

HP: PRINT 'a string’

ASC

Used to recall the ASCI1 value of a character.

MS: N=ASC(X%$)

HP: N=NUM(XS$)

EOF

This function tests to see if you have reached the end of a file; a true result

means you have. There is no equivalent function for the 71. Use an ON ERROR trap to

branch when the computer generates ERRN32 ("No data").

FRE

An example of a function whic really doesn’t need a parameter, but MS requires

one anyway because of the limited parser. This is the same as MEM.

MS: FRE(@

HP: MEM

INSTR

Compares two strings and returns the a number representing the position within

the match occured or zero if there was no match. Note that the P0S keyword 1s also

used by MS but for a different purpose.

MmS: P=INSTR({start at}l}, "abcde","cd")

HH: P=PUS("abcae”, "cd”,tstart atl)

KILL

Hardly a term GreenPeace would appreciate. HP 1s much more humaine 1n their

usage of PURGE:

Ms: KILL "filename”

HP: PURGE f1lename

LEFT$

Returns the specified number of characters from left most portion ot the string.

MS: X$=LEFTS$ (X$,S)
HP: X$=X$[1,5]

MIDs$

Returns a substring beginning at the starting position and i1ncluding the

specified number of characters. MS will usually pad with spaces on the right if the

number of characters specified 1s longer than the string, HP-/1 will not add the

spaces.

MS: X$=M1L$(X$, S, 7)
HP: X$=X$(S,5+71

67

OPEN "filename” FOR APPEND AS #n
OPEN “filename” FOR INPUT AS #n
OPEN "filename” FOR OUTPUT AS #n

Many dialects of MS BASIC require you to designate what you are going to do with

a file when it is assigned. In the case of all of the examples above use:

HP: ASSIGN #n TO "filename"

PRINT, LPRINT, ?
Keywords for displaying information stem from large machines with terminals

connected to them, therefor you would PRINT to your Terminal. "?" is an abreviation

of "PRINT" and is used by most dialects of BASIC (the 71 uses "?" for a numerical
comparison). HP has added the keyword DISP to simplify writing and understanding

things, and eliminate the ambiguity of where the the information is to go. HP uses

PRINT to mean send this to a printer while MS may use LPRINT (meaning "Line Print"
because it is destined to be printed on a line printer). Occasionally a software

switch is used to designate that the PRINT information is to be sent to a printer

(less common).

MS: ? "display this"”

HP: DISP “display this”

MS: PRINT "display this”

HP: DISP “display this"”

MS: LPRINT "print this"

HP: PRINT "print this"”

PRINT AT, PRINT @
Print at is used to locate the cursor then print a string. Read the section on

Graphics and escape sequences for conversion.

RIGHT$
Returns the specified number of characters starting from the right most portion

of the string.

MS: X$=RIGHT$(X$,3)

HP: X$=X$[LEN(X$)-51]

READ, OPEN, INPUT#, INPUT$ CLOSE#

With the exception of INPUT$¢, file functions have direct counterparts. The 71

must create a file before using ASSIGN# while MS implictly creates one if it doesn't
exist.

INPUT$ (syntax is Q$=INPUTS$ ({channel>,<#chars>) is used in MS to read Text files

which may or may not have a carriage return at the end of each line, 1t usually reads

a single character at a time then adds it to an output string. A file could

conceivably not have a single carriage return, in which case a string could not

contain the entire string read by INPUT#. Since each line in a 71 file is of a

finite length this function is not needed so it is safe to "blunder in" and read a

whole line.

MS: OPEN "file” FOR {INPUT,UUTHUT} WS # 1
HP: ASSIGN # 1 TO "file"
MS: INPUT#1,X$
HP: READ #1,X$
MS: CLOSE #1
HP: ASSIGN #1 TO *

68

HP-73 BASIC

The HP-75 is a sibling which came into production about 18 months before the 71.
It has BASIC in ROM, 32 character single line display, ROM and RAM ports, HP-IL
interface and a Card Reader. While the HP-7!1 can be traced back to the HP-41, the 75
descended from the series 80 (specifically the HP-85) and a different engineering
team. HP-85 programs (such as found in solutions books) are similar to HP-75

progrars. HP-75 is most similar to HP-83 and HP-85 BASIC, while the 7! is most
similar to HP-86 and HP-87.

BASIC as furnished with the 75 has fewer keywords than the 71 and can be thought
of as a sub-set of it, with conversion being fairly easy for primarily mathematical
programs. Most HP-75 owners have the 1/0 ROM (with 150 keywords) and VisiCalc ROM
(VisiCalc is a registered trademark of VisiCorp 83 keywords). Programs using
either of these ROMs will be more difficult to convert, in the latter case often
nearly impossible though WorkBook7! by this author has a LEX file which makes it
easier). As a side benefit, the converted program will take 20-30X less memory on

the 71 than it did on the 75.
Many 75 programs use CHR$(27)&°’E’ to clear the display device. To avoid

unnecessarily turning on the cursor, this should be changed to:

CHR$(27)& '"H'&CHR$(27)& 'J "

Transferring files

Connect the 7! and 75 together using HP-IL. Set CONTROL OFF and edit a new file

on the 71. Designate the 7! as the PRINTER IS device on the 75, place the 7! in
REMOTE mode, then PLIST the program. 11t is suggested that the program be edited on
the 75 first to look for lines which will not be interpreted properly, and place an
exclamation mark at the beginning of these lines. The 71 will beep and respond with

an error message whenever it cannot interpret a line, and the line will be lost so it

is best to "comment” these possible offenders first.

PRINTER 1S ":C1” @ REMOTE ":Ci1" @ PLIST "filename”

Programs may also be transferred using Cassette, Disc, or even Card Reader. The

common file type is called LIF! on the 75, which corresponds to TEXT files on the 71.

TRANSFORM the file to the specified type then merely save it to the medium. When

sending a TEXT file to the 75 be sure each line begins with a 4 digit line number
(leading zeros for <1000) or the 75 won't be able to TRANSFORM 1t.

File handling

The file chain on both machines is operationally the same (although i1nternally

they are totally different). On the 75 all editing commands (including EDIT and
FETCH!) are programmable and the current edit file is often not the tile being run.

While READ (without specifing a file number) refers to the running program, not edit
file, DELETE, RENUMBER, PURGE etc refer to the current edit file. These operations

can usually be simulated with ASSIGN#, PRINT# and READ#. On the 75, new files are

created using EDIT or ASSIGN#; 1f they do not exist they will be created as the same
type of file as the current edit file if the type is not specified; the default 1s

not DATA as on the 71!.

File types that may be edited are BASIC and TEXT (with line numbers). Un the /75

a DATA file is actually a BASIC program file in which each line begins with DATA.

DATA and TEXT files may be read and printed to randomly by specifying line numbers.

Intermediate lines are not required, you may, for instance, enter data on line 9000

without there being data on any other line. Files automatically grow and shrink as

needed. If data is read from a non-existant line an error is generated. Since TEXT
lines begin with a number, most programs writing to TEXT files insert a leading space

to separate the line number from possible following ASCIl numerical characters, these

are obviously not needed on the 7!. Random read/write may be simulated by using the

INSERT#, DELETE# and REPLACE# commands in the EDLEX file furnised with the 7! FORTH

and Text Editor ROMs. Unlike the 71, the 75 will not place an EOF marker at the end

of the current PRINT# line in a TEXT file. PRINT#n,n;"" will erase a record on the

69

75 while it will make a blank (though still existant) record on the 71. DATA files
would be easier to use if created to the maximum size the program will need then

filled with place holding data (null strings, spaces or zeros) so that random

read/write will work properly.

HP-75: ASSIGN #1 TO “"filename"”, TEXT

HP-71: CREATE "file" TEXT @ ASSIGN #1 TU "filename"

Interpreting keystrokes

KEY$ operates as with the 71 except that it returns a single ASCIl for any

keystroke; RTN (ENDLINE on the 7!) returns CHR$(13) while the 7! will return "#38"
and UP ARROW returns CHR$(132) instead of "#50". The 75 has several keys without

counterparts on the 7! (TIME, APPT, FET, CLR, TAB). SKEY$, WKEY$ and KEYWAITS$() from

the two ROMs may be substituded by KEYWAITS or a user function (described elsewhere).
Read the program documentation for the program and alter the keys accordingly.

HP-IL

Devices (display, Disc, etc) are always refrenced by a quoted string or variable

name, the same as used by ASSIGN 10 on the 71, device words (such as ":MASSMEM") are

never used. Generic device names (again, such as ":MASSMEM") are easy to substitute

for assignments the 75 gives to devices. The following are the default names given
devices by the HP-75 1/0 ROM and the HP-7! equivalent. Additional devices of a given

type are incremented to the next number; beyone number 9 they next move letters

beginning with A.

75 71

:Al (analytical)

:B! :HPIB

:Cl tHP71

:D1 :DISPLAY

tEl(elect.Inst) : INSTRMT

:Gl :GRAPHIC

dI1 : INTRFCE :GP10 :RS232

‘Ml :TAPE :MASSMEM

:01(general)

:P! :PRINTER

:U!l (unknown)

: X! (extended)

(el
70

Assembly Language Introduction

This is an introductory discussion of some of the concepts of Assembly Language

programming on the 71. Even if BASIC solves all of your programming problems you
might find this section to be interesting reading to get a feel for the interraction
between interpreted BASIC and the actual Machine language which it invokes. This

section will deal with Assembly Language at a fairly high level, and should get the

average user started writing Functions without having to purchase any of the IDS.
At it's lowest level, a computer is not even a very good calculator; it can't

even multiply or divide properly. It can add, subtract, make comparisons and shift

data around. This is the level at which machine code operates. To make 1t even more
of a challenge, we can't even edit machine code directly.

To overcome what must seem like an insurmountable task we have an Assembler.

This is a prograr which read a Text file and creates machine code from commands

within that file. And, so we don‘t have to re-invent the computer every time we sit

down to write even the simplest thing, the HP-71 has a library of utility programs

within it's 64k operating system. These utilities operate much like keywords in

BASIC. With these utilities, inspiration and some ingenuity comes LEX and BIN

(binary) files. For clarity, it might help to reter to the finished code as Machine

code (or language) and the Text file as Assembly Source code. Because Functions are

most usable for most users, we will discuss writing Functions and leave statements,

polls and interrupts to the more adventuresome users with access to all volumes of

the IDS.

HP-71 LEX files are used to either respond to polls (which the operating system
issues when, for instance, errors occur), or extend BASIC with new keywords, or both.

With LEX files, HP-71 BASIC remains a living and growing language. When new concepts

in programming are discovered or often used or tedious routines are found, new BASIC

keywords can be created to implement thenm.

BIN files are RUN or CALLed in the same manner as BASIC programs. While BASIC
programs are interpreted, BIN files contain executable code rather than BASIC tokens.
Advantages of BIN files are faster execution, keeping private code private and doing

things which are difficult to do in BASIC. You may not find extreme speed gains over

BASIC in many operations because you usually call the same code that BASIC uses.

Direct access to hardware such as beeper, display, keyboard and all aspects of 1/0

are primary reasons for using BIN files. While some argue that BIN files are easier

to write than LEX, the following discussion is directed towards LEX files because of

their versatility.

Assembly language is written as Text files which are then interpreted by the

Assembler which directly creates executable BIN and LEX files. The FORTH/Assembler

ROM is the usual method for creating these files. Although there 1s an Assembler

available for use on the HP series 200 machines, don‘'t expect to walk into your

dealer and buy 1it.

Since the source files are Text they may be written on any machine which can be

made to communicate with the HP-71. Whatever machine you use be sure that the text

editor does not imbed control codes within the text. For instance, some computers

use CTL-1 (ASCIl 9) for the TAB character instead of accumulating spaces.

Since comments are a vital part of writing Assembly code, the source text file

is often quite large. One known LEX file of about 800 bytes has a source file of

approximately 9k without remarks and 18k with remarks. I1f memory 1s at a premium,

write and debug the file in sections then do the final assembly from a Disc based

file containing all of the completed modules. The Assembler can take twenty minutes

or more for a large file, be sure that all of the batteries involved aren't waiting

to surprise you.

The HP-71

The 4-bit Capricorn processor is a decendent of the 1-bit CPU which has powered

over a million HP-41's since 1979. The four bit data path combined with higher clock

speed give a considerable speed gain over the 41. It is a highly evolved processor

71

with four 64-bit working registers enabling us to do BCD (binary coded decimal) math

with reasonable speed. five 64-bit scratch registers and two 20-bit data-pointers

help enforce the look that the processor might be as much math co-processor as CPU.

The address space is 1024K nibs, or 512K bytes. The first 64K bytes are the

operating system and BASIC. Addresses are always referred to in 5 digit hex, either

in BASIC or Assembly Language. After operating system ROM comes memory-mapped 1/0

and the display RAM. Following that area is the hard addressed (can't be moved)

System RAM. A memory map and listing of System RAM are at the back of this book.

These big floating-point registers help insure that HP-71 BASIC won't be subject to

the rounding errors of most versions of Microsoft BASIC.

CPU Registers
Assembly Language operations involve moving data into or out of or altering data in

the CPU. Before understanding movement of RAM, the usage of the CPU Registers.

Working Registers
Registers A&C are the most versatile because they are also used for memory access. A

is often used to pass hex values between subroutines. By far the most operations are

available for the C register.

There are operations to use the B register with C and A. B can be used for

shifts and tests as well as other math. Except for lack of memory access, B 1s

nearly as useful as C or A.

D has the fewest operations available and is used tor tests and some arithmetic.

D is only accessable through the C register; there are no operations to move data

between D and A. It is the most cumbersome register to use because ot the iimited

number of instructions for it.

Carry

This is a flag set or cleared to signify the result of an operation 1s true (using

RTNCC, RTNSC). In calculations, CARRY is set if the calculation overflows or

borrows. CARRY is useful in subroutines for situations like 1f a string 1s over a

certain length then use RTNSC, else use RTNCC. The associated tests are GOC (goto if

carry set) and GONC (goto if no carry).

Scratch Registers
RO, R!,R2,R3 and R4 are used for temporary storage of information trom C or A.

Moving data into and out of is slower than moving between the main arithmetic

registers, though much faster and easier and safer than placing the information 1In

RAM. Relatively few system entry points use these registers (except for K4) so they

are the ideal place to store intermediate results when calling a subroutine.

The A field of R4 is used whenever an interrupt occurs, which can be at any

time. Don‘t expect to be able to place anything in the A field and have it still be

there.

Control Registers DO, D!

D0 (dee zero) and D! are data pointers used for memory access. DO or D! would be set

to point at a location in RAM, then the apporprate instruction (such as C=DAT() loads

C or A with the data. Since they can be incremented and decremented quite easily

they are also used as counters in loops.

When execution 18 passed to a Function, D0 points to the next instruction i1n a

program, and D! points to the top of the Math Stack. While the Function may (and

usually will) alter both of these registers, they MUST be restored to the proper

value when the Function terminates so that the BASIC interpreter can keep track of

program flow and memory. This usually means DO and Dl are copied to a scratch

register (usually R2 or R3) or a "safe" location in RAM, then copied back to DO and

D1 later.

Return Stack (RSTK)

Each GOSUB, GOSUBL or GOSBVL leaves an address on the Return Stack. When the next

RTN instruction is found the address is popped from the stack and execution continues

72

RSTK has eight levels available. When one level 1s popped, the

If more than eight addresses are

trom that address.

rest move down and "00000" is placed at the top.

pushed on the stack then the oldest entry is lost.

Interrupts require one level on the stack, thus leaving seven tor most

operations. Statememts may use the full seven levels.

Because functions may be nested, the operating system may have several pending

operations when it turns control over to each function. For this reason functions

are further limited to four levels. C=R8TK can be used to save the top address to

(the A field of) C temporarily before using an operation which will use more than
four levels. RSTK=C is used later to return it to the stack.

Fields Within Registers
Each working register can contain a single 8 byte floating point value. Many

operations require less than full mathematical precision, and can be done in hex or

as simple numbers. Each register can be addressed by fields within the register,

thus adding to it's capacity, or speeding operations.

The most memory efficient way to use registers is in 5-digit hex in the A field

of a register. Even if smaller values are used (such as string length), using the

full A field is the most common method used by entry points.

P Pointer
Fields within a register may be specified by field name or by the value of the

pointer P, or by a combination of the register from nib zero through the pointer

value (WP). P is also useful as a flag and can contain values of up to 15. P may be

tested for any value using 7?P= or 7P#. P is more versatile and useful than you could

imagine 4-bits being.

Most system entry points exit with P=0 and others require that

P=0.

Fields i1n Working Registers

15 14 13 12 11 10 9 8 7 6 5 4 3

B 1-0 Exponent or single byte

X 2-0 Exponent and sign

XS 2 Exponent sign only

A 4-0 Address. Full

w 15-0 Whole word

M 14-3 Mantissa only

S 15 Sign nib only

P As pointed to by P

WP P-0 Word through to P

WORKING REGISTERS

Carry | Carry Flag

A 64

B 64

C 64

D 64

RO 64 Scratch

Rl 64 Scratch

R2 64 Scratch

R3 64 Scratch

R4 64 Scratch. A field used for interrupts

P 4 Register Pointer

DO 20 Program pointer

D! 20 Math stack pointer

PC 20 Program counter

RSTK 20*8 Return Stack

ST 16 Program status flags

SB 1 Sticky Bit
73

MP ! Module Pulled Bit

XM 1 External Module Missing Bit

ouT 12 Keyscan use

IN 16 Keyscan use

LEX File Requirements

Following the file header are many requirements for LEX file construction.

LEX 1D 2 nibs

Lowest Token # 2 nibs

Highest Token # 2 nibs
Next LEX Table link 5 nibs

Speed Table flag I nidb \

Opt. Speed Table 78 nibs > | nib if no Speed Table

Speed Table flag 1 nid /

Text Table Offset 4 nibs

Message Table Offset4 nibs

Poll Handler Offset 5 nibs
Main Table 9* (#keywords)

TEXT Table 3* (#keywords) ¢+ 2*total #chars + 3
Message Table

Poll Handler Code
Exception Code

Next LEX Table (optional)

If that table didn‘t thwart any desire to write a LEX file then you should know

that much of the above is written automatically by the Assembler. All we have to do

is provide the appropriate OP Codes (operations for the machine to pertform) and

Assembler Pseudo-0Ps (operations the Assembler interprets) and the Assembler will

generate a complete LEX file for us. 1It's not as simple as BASIC is, but, then

neither was BASIC the first time. Let's look at what is actually required by the
Assembler to write a LEX file, and introduce the worlds simplest LEX file in the

process. If you have the FORTH/Assembler ROM then enter the following into a Text

file as listed. Use the Text file name "REVTEXT" to differentiate from the resulting

LEX file (which is called "REVLEX").

! LEX "REVLEX '

1D #5C aC, 50,5 allccatea for testinag

mSG @ no message table

POLL @ we will 1grnore oclls

REVE EQU #1B38E entry point to reverse a string on the stack

EXPR EQU #AFc3C exit nere because results are already on stack

ENTRY revstr

CHAR #F

KEY ‘REVS ' the "$" sigriaties that we will return a string

TOKEN 1 values from 1-255 available far scratch

ENDTXT the end of the text table

NIBHEX 4 this paramater 1s a string

NIBHEX 11 wi1ll accept minn 1 and max 1 parameters

* execution code

revstr GOSBVL REVS reverse the string on the math stack

GOVLNG EXPR everything 1s sti1ll 1n order, exit
L

As with any Assembly Language operations, copy every important file 1n your 7!

to Disc in case an error during testing crashes the 71. The 7! will not crash during

Assembly. Now, go to FORTH environment and assemble the file.

" REVTEXT" ASSEMBLE

When the Assembler is done...

74

BYE

Now, turn off the 7! then turn it back on. This adds "REVLEX" to the LEX file chain.

Enter the following to test your new keyword.

REVS ("AECDEFG™)

REVLEX is listed in the form used for source files by the Assembler. The first
seven spaces are reserved for labels; lines without labels are filled with spaces up

to the mnemonic (the OP or psudo-OP code). Modifiers (such as field specifiers) are

separated from the mnemonic by at least a space, and usually begin at the 15th

column. Anything following a modifier, or after an OP such as SETHEX which doesn't

call for a modifier, is ignored. Remarks usually begin at column 24, though a space

is all that is needed. In addition, lines beginning with "*" are also remarks. Only

one operation is allowed per line. There is no such thing as an optional parameter

with Assembly language.

Marking the display at 8, 15 and 24 columns with a piece of tape (or a felt tip

pen if you're adventuresome) makes it easier to maintain column alignment. As a

coincidence of this, most of the example program steps in this book are indented to

the eight column because of the markings on the display.

Any display format wide enough to allow for the mnemonic and modifier on the

same line is sufficient. Since line numbers are not used, it can be difficult to

keep track of where we are in a fairly large file. Source code (the TEXT file) often

exceeds 500 lines. A screen oriented Text Editor with a width of at least 40 columns

is the easiest way to write LEX files. When using just the built-in LCD stop often

and PLIST the file (EDLEX adds PLISTing of TEXT files).

The FORTHRAM file does not have to have free room for the Assembler. About 2K

of free memory can be gained using a newly created FORTHRAM file (one without any

user words defigned in it) reduced to about IK.

380@ SHRINK

If only the 71 is used, and with limited memory, edit the file in sections using

EDTEXT (the HP TEXT Editor) or TED (the Screen Oriented TEXT Editor in WorkBook7!),

then merge the files on Disc for Assembling.

The Assembler is sensitive to upper and lowercase. The entire instruction set

rust be entered in uppercase. Labels may be from one to six characters and cannot

begin with equals, sharp, single quote, left parentheses or digits 0-9

{ = # * (0123456789 }. Again, the Assembler recognizes upper and lowercase as

different characters. An advantage to this system is that local labels (within the

file) can be entered in lowercase, and UPPERCASE labels would designate calls to the

Operating System. Single quotes or the backslash (\) may be entered when quotes are

needed. The \ must be assigned to a key for use. Labels may be refrenced as otten

as needed. However, labels must only exist one time in the file.

The LEX File
LEX

The first line 1s the name of the LEX file to be created. 1t cannot be the same name

as the source file. The source file cannot begin with a remark.

ID #
Each file is identified by a hex byte. ID "00" and "0l1" are used by the maintranme.

Of the total 256 possible ID‘'s three are allocated for exper:imentation: 5C,5D & 5E.

Distributed products should not use these ID‘'s. These are the ones we usually use as

we are developing new files or those for personal use.

If two different LEX files were in the /1, both using the same token numbers, a

conflict will exist. The proper keyword will be tokenized when entered, but

wvhichever one that came first in the file chain would be the one executed in a

program. The 7! would probably go down in flames as the parameters of a function

75

were passed to another, or worse yet, to a statement. To be safe, even for personal

use, keep a list of the usage of ID‘s,token numbers, and keywords.

Once a LEX file has been tested, you may want to distribute it. HP (Corvallis)

will allocate an ID for the file and token numbers for each keyword to eliminate
possible conflict. Write Systems Engineering Support in the HP Portable Computer
Division Product Support Group in Corvallis Oregon for an application. Be aware that

the allocation of ID‘'s can take some time (several months!) because HP also checks

for conflict with keywords.

MSG
This line refers to an error message table. In the examples given here this will

always be "0" because of the expense of memory and bulk for RAM based LEX files. The
usual errors of bad parameters are handled by the mainframe when entering the keyword

in the BASIC program, and by the entry points when getting the data off of the stack.

The most likely error to occur with strings is not enough memory to move them to a

temporary buffer (usually at the beginning of free memory "AVMEMS"). A function

which helps BASIC by qualifying data instead of balking whenever an error occurs can
actually make BASIC programming easier. For instance, if a numerical paramater must

be in the range 1-15, then zero could default to ! and lE27 could default to 15.

Some entry points for error messages are listed in the back of this book, they may be

used in lieu of creating new error messages.

POLL

At various times (such as when certain errors occur) the operating system polls LEX

files to see if they want to intercept them. An example of this is PLIST when the

file type is TEXT. This is not a mainframe valid operation, so before the operating

system generates an error to the user it polls to see if anyone wants a shot at

PLISTing, which EDLEX does. Another example is the VERS poll during which everybody

gets a chance at displaying their revision number. The use of these and other polls

is discussed in Vol | of the IDS.

EQU

All refrences to locations are done using labels. The equate table is usually

(though not necessarily) at the beginning of the file. It lists all of the entry

points and System RAM points used in the LEX file. In REVLEX we used the entry

"REV$" with GOSBVL and EXPR after GOVLNG.

ENTRY

This is a refrence to the label designating the location within the file where the

actual code for the function lives.

CHAR

The charactarization nib tells the operating system what kind of keyword lives at the

above refrenced label. "F" is the most common and refers to a function which returns

either a string or a number and may be used either from the keyboard or program. 1If

a function is restricted to not being usable in a program (such as EDIT) it would be

"5" the bits in the nib mean the following:

Legal from keybocard bit @

Unused bit 1

Legal after THEN/ELSE bit &

Programmable b1t 3

KEY

Each keyword is listed quoted following the psudo-UP "KEY". Only uppercase letters

and numbers from 0-9. The keyword must begin with a letter and be no longer than

eight characters. Functions which return a string have the dollar sign ($) as their

final character; this is the only way that the Assembler can tell a function which

returns a string from one which returns a number. Be sure that function names do not

conflict with program variable names (don‘t call a function "Al").

76

The list of keywords is called a Text Table. Entries in this table must be

listed in alphabetical order. 1If a shorter keyword is contained within the beginning
of a longer keyword then the longer keyword must be listed first, though

alphabetically it would not be. The keyword "ABCD" would appear BEFORE the keyword
"ABC" or the second keyword would not be found.

TOKEN
Each keyword within the file has an exclusive token number. As with LEX ID‘s,

keywords may be 1-255. The scratch ID‘'s have all of the tokens available. As with

LEX ID numbers, tokens are issued by HP. Again, be sure to maintain a list of LEX
ID's as well as tokens used in files for your own use.

Parsing Functions
The primary reason we are discussing functions exclusively and not statements 1s that

the mainframe automatically qualifys the operation when the user enters the keyword.

With statements the LEX file must contain code to make sure the user input the proper

number and type of parameters, and insure parentheses, spaces and commas are 1n the

correct position. This takes longer to write, is less reliable, and adds

considerably to the size of the LEX file. If you wish to write statements refer to

BOTH VOLs 1&11 of the IDS.

Often what one would think of as a statement can be written as a function. It

could return a flag to signify that the operation went as it should. An example of a

statement as a function is the mainframe FLAG.

In order to help the mainframe parse our functions we must give it several

pieces of information:

Does it return a number or string

How many parameters are required

Are parameters numbers or strings

The keyword itself tells the parser if it returns a string (if the keyword ends

with a "$") or number (no "$"). Several nibs at the beginning of the actual code

(before the entry point) signify what type of parameters are required. In REVLEX the

actual code began with:
—

NIBHEX 4
NIBHEX 11

revstr GOSBVL REVS
L

The NIBHEX pseudo-op tells the Assembler to place the following hex nibs (up to

16 maximum) in the file. The first two nibs preceedinag the actual code designate the

Rinimum and maximum number of parameters the function will accept. The minimum 18§,

obviously, "0", maximum "F", so & function can have between zero and fifteen
parameters. In the example we used NIBHEX 1! which says that the function will

accept a minimum and maximum of | parameter. The mainframe function FLAG can use

either one or two parameters.

Types of parameters

In addition to telling the 71 how many parameters, we can tell it what kind. The

nib(s) preceeding the two describing the number of parameters tell the 7! if they are

strings or numbers. "8" designates a number, "4" is a string. The code for FLAG

looks something like:
-

NIBHEX 88

NIBHEX 1&

FLAG GOSUB PARMCT
L

The "12" designates that FLAG will accept either one or two parameters. The

"88" means that both paramaters are numbers. Let's create a function which takes a

string, but can optionally use a second parameter ot a number:

77

NIBHEX 8 the secord param (a number)
NIEHEX 4 the first param (a string)

NIBHEX 12 we'll accept either ore or two params

entry
L

No problem, so far, but what do we do with the parameters when we get them, and

what happens if the user supplies a quoted string or mathematical expression or

sticks my function in the middle of a bunch of other functions...

PRARSING and DECOMPILING
Or: "The Lexical Analyzer ta the rescua"

The Lexical Analyzer is the one responsible for deciphering the users code,
making sure parameters and syntax are correct, and turning it into tokens. It

searches the TEXT tables until it finds the correct keyword; the keyword indexes it
into the main table and from there it finds the execution code and looks up the

parameters requested. If all goes well the code is accepted and it either is entered

as a line of BASIC or immediately executed. 1f something is wrong it issues a rude

comnment to the user (an error message). Parentheses and hierarchy are it‘'s task, a

function never worrys about it.

Decompiling

After a successful parse of a keyboard operation or during BASIC program

execution, the 7! gathers up the requested parameters, places them on the math stack

and transfers execution to the function at the label designated as the entry point by

the main table in the LEX file.

Since all functions are interpreted from the innermost parentheses out, all our

function will ever see is complete numbers or strings. Functions can, at times, be

supplied with pointers to arrays, but all of the functions we‘'ll deal with here will

use real values.

Entry Conditions
When the 71 turns things over to our function several registers reflect the

conditions:

D0 points to next expression

D! points to top (low memory end) of Math Stack

C(S)= number of actual parameters (if variable)

B(B)= function table entry#

1f there are optional parameters then C(15, the sign fieid) contains the actual

quantity. In our example from above we'll expand it to see how we will handle the

situation with either one or two parameters by loading the quantity i1nto F because 1t

is a fast and memory efficient way to do a | nib comparison:

 f

NIBHEX 8

NIEBREX 4

NIBHEX 1&

functn P=C 15 load C(S) 1ntc P

P= c 1t P=Z then two params

GOYES paramc

daraml
1

In all other cases we can assume that the proper number and type ot parameters

specified were supplied, or it never would have gotten this far (BEEP! ERROK!,

without us having even done anything).

Now, the 71 is ours, all qualified, everything in it's place, all we have to do

is... Wait a minute! where is everything...

78

The Math Stack

Up in high memory, hanging upside down, is the Math Stack. Intermediate results are

stored there during function execution. The oldest entry 1s in higher memory and
grows towards low memory as items are added and shrinks again as items are dropped.

The location of the top (low memory, first item) of the Math Stack is pointed to
by MTHSTK, the bottom of the stack (high memory, end of oldest item on the stack) is

pointed to by FORSTK. The location of the stack changes with the amount of user
memory and the number of environments (suspended up there in limbo). In fact, FORSTK

points to the FOR/NEXT Stack (which itself can grow and shrink), just above it
(higher address) in memory.

Format of data on Math Stack
While ostensibly a "math" stack, it contains each type of intermediate result a
function can handle. Notice that all non-array numbers are REAL; there is no speed
or memory savings by using SHORT or INTEGER.

The first nib in the item on the Math Stack is the data type code. Usually a
system routine is used to recall data from the stack; they test this nib to insure

the proper data type then issue an error if it doesn’t match the type needed.

0-9 REAL D COMPLEX SHORT
A INTEGER E COMPLEX REAL
B REAL SHORT F STRING
C REAL ARRAY

Real Numbers

There is no header, but it can be easily seen that the value on the stack 1s a real

number because the first nib (low memory) is "9" or smaller. Add 16 to DI to move it

past this item on the stack. Note that most number-popping routines do not move DI

past the number.

Low exp mantissa sign High

Complex Numbers

A complex number is exactly like the format of two simple REAL numbers, but preceeded

by "E0". The imaginary part is in lower memory. Add the length of the two numbers

plus the "E0", a total of 34 nibs, to D! to move it past this item on the stack.

r

imaginary part real part

Low exp mantissa sign exp mantissa si1gn High
L

Strings
Strings begin with "F0", followed by five nibs representing it’s length (i1in nibs, NOT
bytes). Beyond that are nine nibs which refer to the destination of the string and

the maximum length allowed, but both of these values have no meaning for functions

and can be ignored, in fact, they may prove unreliable. Once it has been determined

that a string is there then the important parts are the five nibs representing string

length and the string itself. Add the length of the string header (16) plus the

length of the string to DI to move it past the string.

The actual string is stored backwards with the beginning in high memory, and

it’s end at the end of the string header. System entry REVPOP is otten used to

reverse a string and return it’s length to A(A), so this format 1s nearly

transparent. Be sure a string needs reversing, because it will have to again be

reversed when placing the results back on the stack.

A non-existant string array will begin with "F8" and will have zero length, but

will still have 16 nibs for the header

Low FO len Address MaxLn ...5tring High

Array Descriptors

Arrays do not actually get placed on the Math Stack, the may not even fit, so why

even try. The address is the actual location in RAM of the array.

79

1 1 1 8 5

Low t # b Dim Lengths Address High

t = type of array

= number of dimensions (1 or 2)

b = option base (0 or 1), if "8" then a STAT array

The first 4 nibs of DIM lengths are the second dimension. The second are for the

first dimension. The pointer points to the array. To calculate actual data address

of the variable, subtract the relative pointer value from the address of the relative

pointer.

System Entry Points
The entry points can be thought of as subroutines or ready made functions, used

much as in BASIC. Shifting a register left or right can be used for simple
multiplication and division, but more complicated operations require several

instructions to accomplish. The Entry Points greatly simplify writing LEX files.

Several Entry Points are listed in the back of this book. There are several

important things to look for when deciding to use a System Entry Points: What does
it require for entry (D0,D!,P,HEX/DEC,data) and how does it leave the CPU when done.

A major consideration is the number of stack levels it requires. Remember than

Functions are restricted to four levels under most circumstances. Also, how does it

handle errors, and will control never come back if some requirement isn‘t met. Be

sure when using these subroutines that they don‘t take more memory to set up for than

they save by using them. Many routines, such as those to pop data from the Math

Stack, are helpful whether they save memory or not, because they handle the routine

more accurately than we might otherwise.

Vol 11 of the IDS is a listing of all of the System Entry Points and discussion

of their requirements; in effect it is a much larger (and even less organized)
version of the Entry Point Table in the back of this book. Vol 11l includes the

information in Vol Il plus complete listings of the Operating System (and it costs
four times as much as Vol 11). Vol Il is much better organized and easier to use.

The advantage of having Vol I1l is to check for errors and ommisions in the write-ups

for the Entry Points (there are several). For most casual use, the tabie 1n this

book should be sufficient.

The SAMPLE LEX File

The four operations in this file demonstrate some fairly simple uses ot LEX

files. These functions could be written several ways, they are just an example of

one way they can be done. Each keyword has been researched by Hewlett-Packard to be

compatible. Without this research there could be conflict with other similar words
in which perhaps neither keyword would work properly. For personal use any keywords

may be used, in fact, mainframe keyword names may be given new meanings; you could,

for instance, have PASSWORD not work at all to thwart people with a strange sense of

humor. To be sure of compatibility, keywords which are spelled slightly differently.

For example use "CEL" instead of "CELL" or "NXT" for "NEXT", or a contraction such as

"CLFLS" for CLOSE FILES".

REV$ and CLFLS are mainframe routines, "SAMPLE" does little more than add

keywords. CLFLS is a statement which requires no parameters and returns nothing; it

is the only statement we'll demonstrate. CLFLS calls the routine to close all files.

This is valuable when exiting a program which was CALLed, because the files are not

automatically closed (as they are when RUNning a program). This is the same

operation that the FORTH word CLOSEALL uses. This is an example of using a nearly
bullet proof Entry Point which saves yards of code and weeks of research.

REV$ uses the string on the stack without moving it or altering it‘s header.
For that reason it exits through EXPR, which assumes that DO 1s in the same condition

as when entered, D! points to the first nib of the string header on the Math Stack,

and the string already has a proper header on it. REVS 1s often used as a subroutine

within string functions.

HGL$ calls for a single string paramater then sets the high bit on each

80

character, then it too exits through EXPR. The method used is to do a logical OR on

the high nib on each character using the "C=C!B" OP code and hex "8". This is one
case where it is easier to write the code in Assembly language than it is in BASIC.

REV$ and HGL$ are demonstrated in BASIC in the section on BASIC programming for
comparison. HGL$ as listed does not have a bug, but shows an alternative, and less
efficient method to perform the function. The "morehi" loop contains two DI=Dl+|
instructions. As you know, a loop which is to be repeated several times should be

written as efficiently as possible; a cleaner method would have D! decremented by one

nib before entering the loop, then a single D!1=D1+2 instruction could have been used.
As with BASIC, programs in Assembly Language can be written in several ways.

WIKEY$ is an alternative to KEYWAIT$ (which is in the Finance ROM and several
other LEX files). Unlike KEYWAIT$ and KEY$, WIKEY$ returns the actual ASCIl code for

the key pressed, not the key code. For instance, ENDLINE returns CHR$(13), not

"#38", and g-CMDS returns CHR$(25), not "#150". The advantage of this keyword is
that all keys return a single character making it easier to respond to a variety of

keystrokes with the use of POS or NUM. WTKEY$ is a modification of a similar,

copyrighted, function being marked by this author. 1t is not being released into the

public domain. However, it sure is nicer to use than KEYWAIT$. A BASIC version of
KEYWAITS is demonstrated in the BASIC section.

Crashes

Assembly language programming is full of crashes, even when the code is written

properly errors occur. Entry points can be entered incorrectly (a common one for

this author) or conditionals could be reversed. DO and Dl are constantly being

changed so it is easy to forget to restore them. Regardless of the reason, the 7!

will occasionally crash. Maybe taking with it all of your :PORT‘'s. Always be sure

that everything in the computer is backed up on Disc or Card.

The crashes will only happen after Assembly, when testing the file. Unlike

common belief, the 71 can‘t sense that you are making a mistake in the source file,

though it sometimes seems like it.
Most common mistakes will be caught by the Assembler, which will issue a warning

at appropriate times. At that point you can stop Assembly (press ON, then Y at the

prompt) and call the Text Editor to see what was wrong with the line mentioned. 1If a
part of the file is known to have bugs you might complete Assembly, and test only

those keywords which are completed.

A monitor, listing file, or "DISPLAY IS PRINTER" is invaluable to watch the

Assembler because it‘'s messages will dissapear from the LCD when the next line in the

file is read.

Instruction Set
A listing of the Assembler Instruction Set 1s i1ncluded at the back of this book.

While all of the instructions are also listed 1n the FORTH/Assembler Manual, this

listing will probably prove easier to use because i1t requires little page fli1pping.

Many operations will take one nib less memory when specifying the A field, this 1s

noted in the nib column. [f two values separated by a comma are li1sted, then the A

field version will be one nib shorter. For example "A=0 A" takes two nibs, while

"A=0 X" would require three. The third page also lists the Psudo-0Ps (that 1s,

instructions for the assembler), and an example of the bare minimum required for the

source file. "fs" stands for field select, "n" means a hex nib, and "tsd" means

Field select fs or d (number of digits).

Why is Everything Backwards?
In the case of SDATA files, it's inside out and backwards. BASIC PEEK$s data

from RAM directly, left to right, or low memory to high. The CPU works in the same

way for Assembly language. However, when loading from RAM the lowest addressed nib

is loaded to the lowest nib of the CPU register, the next nib in the next higher

location, and so on. In effect, the data wraps into the register. The same is true

when writing data from the CPU registers to RAM. While this method of working is

often confusing in BASIC, in Assembly language it is transparent, and can often be

ignored.

81

ah Low

1 13 1

(=

1 7

MX
u

X
n 111

M X
0

>
B4 g 1 @

M E E E2
2
N4 0 g 6

M M M M
T

w
m
L

-

Only the C and A registers may be used for accessing memory. DO and D1 are The
following codes load data from or store data to RAM using DO to point to the lowest
nib. The equivalent operations are also available using D! as the pointer.

C=DAT@ A Copy S nibs to C(R) from location pointed to by D@
A=DAT@ W Copy 16 nibs to A(W) from location pointed to by D@

DAT@=C A Copy C(R) to RAM location pointed to by D@
DATO=A W Copy whole A register to RAM pointed to by D@

The instructions for loading constants work in the same manner. Both of the

following will load C with "HP-71". The first load the hex code, the second uses the
ASClI] representation. Both are byte reversed because, again, the 71 reads and writes

from low memory to high and from lower nib of the CPU towards the higher.

Use the P pointer to designate which nib in the CPU is to receive the first nib.

LCHEX 3137cDS@48

LCASC "17-PH’

The RETURN Stack

The stack is referred to in the same way FORTH uses 1t. The last entry goes on

the top of the stack and the oldest is on (or at least nearer) the bottom. When a

RTN in encountered the newest address is popped off the top, the others move up one,

and, instead of using an arbitrary number, "00000" is added at the bottom. Then the

71 goes back to the address it just popped otf the stack, and reads the next command.

Each time a new entry is pushed onto the stack (by using a variation of GOSUB)

the other seven entries drop one level to make room for it. If there already had

been eight then the oldest one would have been pushed off the bottom of the stack
never to be seen again.

When the 71 gets to our function there are already as many as three entries on

the stack (pending RTNs). There is a real number waiting for us on the Math Stack,

so we call a subroutine in our LEX file which itself the calls the system routine

"POPIR". Now there are five entries. "POPIR" itself calls another routine which

makes six. That routine does a RTN to bring us back to tive, then "POPIR"” RTNs to

our subroutine which brings it to four levels. Our subroutine finishes it‘'s business

and returns it to the main code and our original three levels.

It is important to keep in mind the operation of the stack as subroutines are

called because of the limit of seven levels, or actually four when using Functions.

Whenever writing code you should be able to ask yourself at any moment "how deep is

the stack?".

Remember that every time we pop an address (using RTN) a zero entry 1s added at

the bottom. There must be an absolute relationship between GOSUBs and RTNs. If a

RTN is encountered when the stack has nothing but zeros then the 71 will return to

the address it finds on the stack, which i1s "00000". "00000” i1s the address of the

code to reset the computer. And it will. |If nothing eise, that's enough reason to

re-read this section.

There are times when four levels just aren‘t enough. To the rescue come

"C=RSTK" and "RSTK=C". Respecitvely they pop the top item off of the stack to the A

field of C, or push whatever is in C(A) onto the top ot the stack. It a routine is

going to require five levels then save one to, for instance, R3:

C=RSTK

Ra=C

82

And, when done...

C=R3

RETK=C

Another use of these two codes is to temporarily store a tive nib value when it

can be assured that the stack has room. Used carefully, this can save a byte or two,

and this operation 1s faster than saving it elsewhere.

GOSUB, GOSUBL, GOSBVL GOTO, GOVLNG

Unlike BASIC, there are three commands for gosub, and two for goto. The reason

is distance. GOTO and GOSUB are for distances within +2047 or -2048 nibs from the

current location. GOSUBL is for distances within +32767 and -32768 nibs. GOSBVL and

GOVLNG are for anywhere within the address range of the computer. The shorter

versions save a few clock cycles, and a nib or two. The Assembler Instruction Set

listing in the back of this book includes number of nibs for each instruction, but
for files of about 'K the short form can be used for subroutines within the file, and

the long form elsewhere. If a jump is greater than allowed the Assembler will 1ssue

a wvarning.

Strings From the Math Stack
As discussed earlier, strings live on the Math Stack upside down. At the end of

the header is the tail end of the string. Operations which leave the string shorter

can often use the string on the stack without moving it first. Since strings can

often be larger than the scratch allowed for functions, the easiest place to work

with them is at the opposite end of free memory from the Math Stack: at AVMEMS. [t

a numerical result is to be returned then the remains of the string are not

important, and will get tromped the next time memory moves.

The two usual methods for getting information are "POP1S" which returns A(A)

with the length of the string and D! pointing to the tail (low memory). It the

string needs to be reversed then we usually use "REVPOP", which 1s the same as

"POP1S", except it calls "REV$" first. Either of these entry points will return A(A)

with the number of NIBs; since ASCIl characters are all two nibs each, this can be

assumed to be an even number.

Assume that we are writing a function which trims just spaces trom both ends ot

a string. The string will either be shorter or remain the same length when we're

done, so there is no concern about checking for enough memory. First, spaces at the

back end of the string could be removed, reverse the string, then trim spaces from

the beginning, then reverse it again and exit. The same thing could be done by

moving the middle of the string to AVMEMS then exit through BF2STK, which will move
the truncated string back again. A third, and faster way to trim both leading and

trailing spaces is to find the first non-space on the front end of the string (high

memory), then start at the other end and find the first non-space in that direction,
then shift what's left up a byte at a time, then exit through ADHEAD which will put a

new string header on it.

Numbers From the Math Stack

Regardless of if the number is REAL, INTEGER, or SHORT, it 1s always on the Math
Stack as a REAL number. "POPIN"” checks the number on the Math Stack then returns the

number 1n A. It exits in decimal mode. The D! pointer 1€ not ohanged, you wil! have

to increment it past the number if more data is to be read or i1f a string 1s
returned. Of course, if a number 18 returned then Dl 18 at the proper location.

This routine exits in decimal mode; since various routines alter hex/dec modes often,

be sure the proper math mode i1s 1n effect. To get a hex i1nteger trom a tloating

point number the easiest way is to use "PUPIR" (which returns a 12 torm number to A)

followed by a call to "FLTDH" to turn 1t into hex 1n A(A). It the number doesn't

round to 0-FFFFF then "FLTDH" returns with carry set. So, these three routines can

give us real, floating point numbers, 12 torms, or 5 digit hex.

83

Temporary Scratch
Several parts of System RAM are reserved for function use. 0One caution should

be made first, if a location is alocated for functions, then a routine that expects

to be called from a statement may use it. For example, CHEDIT, the mainframe
character editor, uses FUNCRO and FUNCDO, because input type of routines are nearly
always statements.

The System RAM chart at the back of this book lists all of the buffers which are

reserved for functions. Remember, since this RAM is available for all functions,

don‘t expect it to remain unchanged between uses. This RAM can be used as one block

or split up in 5-nib sections (plus one) as needed. The transform buffer is used

during execution of the TRANSFORM keyword. For that reason it is unavailable for any

parse, decompile or transformation routine, but fine for regular functions.
r

FUNCR@ 16 nibs divided as tollows:

F-R@-@ S nibs

F-Ré-1 S rabs

F-R@-2 5 nibs

F-R@-3 1 ni1b
FUNCKR! 16 nibs divided as follows:

F-R1-@ S nibs
F-R1-1 & nibs

F-KRi-¢ & nibs
F-R1-3 1 b

IRFMBF (the transform buffer) 6@ nibs

Leewvay

There has been determined a minimum amount of memory for the 7! to be able to

operate. It needs enough memory to be able to at least beep and say "ERR:

Insufficient Memory". That amount has been determined to be 106 bytes because that

is the minimum that it would take to copy a file to Disc. They worked it out as

follows:

25 bytes for CMMD stack to enter CUFY commana

23 bytes to move the tokenized statement to statement buffer

29 bytes to save COPY file informatiorn on the Save Stack

31 bytes to 1ssue COPY paoll to external device

166 bytes = leeway

What this means to us 1s that we may execute any routine which uses ail ot free

memory from AVMEMS to the top of the Math Stack while a function operates. BHBut, when

the function terminates, there must be at least 106 bytes tree atter the result 1s on

the stack. All of the function returns listed will make sure that leeway 1s

preserved. Remember that most functions return an equal amount or less than they

started with as a resuit. The only operations which need be concerned with

maintaining memory are those which either could return a large string, or which

affect the size of a file in memory (which most functions don‘t).

Exiting the Function

When the function has completed it's business either a numerical or string

result must be returned to the stack and D! must point to the header. Additionally

D0 needs to be restored (if altered) to the value it had when our function began.

BF2STK, EXPR, FNRTN!, FNRTN2, FNRTN3, FNRTN4 are system utilities to return values to

the Math Stack. It is the responsibility of the function to see that the results

conform to the proper data type. Numbers with F's in them and seven and one half

byte strings are sure to cause problems. Be sure to read the requirements tor these

routines and then GOVLNG. We'‘'re gone.

Subroutines

"SAMPLE" uses "getD!"” and "saveD!” 1n most operations. Subroutines are very

important to saving memory and keeping the number of errors to a minimum. Let's

demonstrate with some routines which would be used by a tile with several keywords.

84

"moveit"” is a variation on several mainframe utilities, but was written because the

mainframe required the CPU registers to be quite different from how they were being

used in the rest of the keyword. The other subroutine called by "moveit” is "getavm"
which places D0 at the beginning of free RAM, as with other movable locations, DO

should not contain AVMEMS, but instead the location it points to. The main use of
"moveit" is to move a string from one location to the end of free RAM so that it may

be manipulated. Usually this would add an "FF" byte to designate the end of the

string, but the assumption is that this string might be added to an existing one

already at the end of memory. "movblk" is an alternate entry point if DO already
points to the destination. You might use "moveit" to move a large block, then

"movblk" to drop another string in the middle of it. There is no memory check, it

the string pointed to is on the top of the stack then it will still be moved without

worry of overwriting itself since it starts at the low memory end and there will

always be at least a string header worth of space between then.

I

* move HA(R) bytes to (AVMEMS)

D1 points to the string, nc memory check

AVMEMS EQU #2F594
moveit GOSUB getavm place D@ at (AVMEMS)

movblk ?RA=@ R any more bytes?

RTNYES

C=DAT! B move a byte

DATe@=C E

D1=D1+ ¢ increment pointers

De=Da+ =

A=A-1 A decrement string length

A=A-1 A

6aT movblk
%

getavm D@=(3) AVMEMS place D@ at the beginriing of available KHM

C=DAT@ A read pointer

Da=C place 1t 1n Du

RTN

L

The following routine is used to make sure there is sutficient tree memory for

creating a buffer.

 ¥

Assumes that D1 has been saved because MEMCKL uses D1

* 1f not encugh memory theri 1t restores D1, then exits

MEMCKL EQU #ALCAS

MEMERR EQU #8'944D

memck P= v will add leeway

GOSBVL MEMCKL

RTNNC no carrv= 0K

C=RSTK pap the pending returrn, we re not golnt back

GOSUE getD1l restare Ul

GOVLNG MEMERK BEEP'! Err:lnsufficient Memcry
L

Assembler Bugs

VER$ "FTH:1A" of the Forth/Asseabler ROM has at least two known bugs, the first

of which can be fatal. When Assembling a file with more than nine keywords be sure

that you first use the FORTH word "DECIMAL" to set the FORTH environment to decimal

mode. The code for "B=B+B" does not always work correctly. If you have trouble with

"B=B+B" contact HP for the current FORTH language fix.

85

LEX "SAMPLE "

1D #5C a scratch ID. DON‘T USE FOR DISTRIBUTION
MSG Q no message table

POLL @ ignore polls

CLOSEA EGU #120E4 closes ASSIGN#'s
NXTSTM EQU #08A48
OUTELA EQU #05303
POPIS EQRU #0@BD38 pop a string from math stack

EXPR EGU #OF23C return from expression, doesn't change stack

FUNCR@ EQU #2F89B scratch buffer for functions

BFEZSTK EQU #18663 move buffer to math stack

SLEEP EQU #006Cc power down, wait for a key
POPBUF EQU #010EE pop last key from keybuffer

KEYCOD EQU #1FD22 look-up table for keycode to ASCII

FNRTN1 EQU #0F216 return from a function

CKSRER EQU #00721 used by WTKEY$ & KEYWAIT$ to ckeck KEYBOARD IS
REV$¢ EQU #1B38E reverse string on stack

CSLCS EQU #1B433 shift C Left 35 nibs circular

CSRCS EQU #1B41B shift C Right 5 nibs circular
ENTRY clfls
CHARR #D

ENTRY hgl

CHAR #F

ENTRY rev

CHRR #F

ENTRY wtkey

CHRR #F

KEY 'CLFLS" closes all open files RSSIGN#n TO *# on everything

TOKEN ¢ start with token #c

KEY ‘"HGLS$ ' sets high bit on all chars in a string

TOKEN 3

KEY "REVS ' reverse chars in a string (mainframe functicn)

TOKEN 4

KEY ‘WTKEY$ ' wait-for-a-key, return RSCII, not the keycode

TOKEN S

ENDTXT **#% end of the text table #*%*#

REL (53) decom point to decompile routine for statement

REL (S) par point to parse routine

clfls P= @ *#%%#% CLFLS - does ASSIGN#n TO * on everything *x*#

GOSUB saveDl copy DO,D1l to RZ (sub 1s at end of this file)

60SBVL CLOSER call mainframe

GOSUB getD1 restore DO,D1 from RZ

GOVLNG NXTSTM bye

decom GOVLNG OUTELA decompile routine for cifls. Pointea to by REL(S) decom

par RTNCC parse routirne for clfls. Pointed to by REL(S) par

NIBHEX 4 param 1s a string

NIBHEX 11 miniimum and maximum of cne paramater

hal SETHEX ##% HGL$($) Set high bit on all chars 1n a string ***#

GOSUB saveD! save D@ & D! pointers toc RZ

GOSBVL POPLS get string stats D1 points at start of string, R=str len

P= 15 pointer to § field

LCHEX 8 load constant "8" into S field of B

B=C .8

morehi ?A=@ A any chars left 1n string

GOYES hibye ro, then exit

86

hibye

wtkey

nxtkey

exit

cksreq

saveDl

getD1

Di1=D1+
C=DAT1
C=C'B
DAT1=C
A=A-1
A=A-1
D1=D1+
GOTO
GOSUB
GOVLNG
NIBHEX
SETHEX
GOSUB
GOSBVL
GOC
GOSBVL
A=B
A=A+A
D1=(3)
CDI1EX
=C+A

CD1EX
C=DAT1
D1=(5)
DAT1=C
D1=D1+
P=

LCHEX
DAT1=C
60SuUB
LC(3)
ST=0
GOVLNG
GOSBVL
60TO
NIBHEX
NIBHEX
GOSBVL
GOVLNG
RO=C
CD1EX
D1=C
GOSBVL
CDeEX
De=C
R2=C
C=ke
RTN
R@=C

C=Re
Do=C
GOSBVL
D1=C

C=Re
RTN

-
~
D
D
U
W
U

-

morehi

getD1

EXPR

"]

saveDl

SLEEP

cksreq

POPBUF

A

A

KEYCOD

A

B

FUNCR@

e
n
o
m

FF
B
getD1

FUNCR@
@
BF2STK
CKSREQ
nxt key
4

11
REVS
EXPR

CSLCS

CSRCS

move pointer to hi rab of current character
load the nib to S field of C

logical OR of B into C

restore the nib to string

decrement string length counter

move to rnext nib

go back for next character

restore D@,D1 to beginning of string header, then exit

bye

no params so rnc nib to describe param type

*##%% WTKEY$ wait for a key, return ARSCII #***
save D@,D1 to Re

nod off and wait for a keystroke

carry set 1f KEYBOARD IS pressed the key

keycode is in B(R), (B=H+B bug in assembler)

move key to A(B), save a nib by using R field

look-up ASCII from keycode table (index by key#)

add this key to keycode tc offset into list

key pos back to Dl

read RASCII to C(B)

point D1 to scratch buffer

put key 1in buffer

enter here to move anything at FUNCR@ then exit

Just to make sure P=d

place "FF" after key 1in buffer for end of string char

restore pointers from RZ

needed by BFZSTK

move this buffer to math stack, exit

used by WTKEY$ to see if KEYBOARD IS pressed a key

param 1s a string

min and max of one param

*#%%% REVS - same thing used everywhere else #¥##

copy D@,D! tc Re

uses R@ for scratch so i1t doesn’'t trash C

restore D@,D1 from R2, uses RO for scratch

87

Communicating with RS—232C

There are times when you may want to connect your 71 to something other than the

standard HP offering of accessories which plug directly into the HP-IL Interface.
Most often these devices will be modems (telephone hookups), printers, terminals

(used as a keyboard and display for the 71), BSR controllers (have your 71 turn on

lights or water the garden), other computers (to share information) or lab equipment

(so it can check if the plants need watering). RS-232C is called "serial" because
data is transferred using a single set of wires, one bit at a time.

HP-1B, also known as lEEE-488, is often used for controller applications, and is

usually expensive to use. For instance, HP-1B cables can cost ten times as much as

HP-IL cables. HP-IB can be thought of as the big brother of HP-IL. We also have
Parallel (also known as "Centronics” after the printer company who standardized on

it). The parallel interface is most often used for printers. To communicate with

non-HP-IL devices we most often use an HP-IL/RS-232C Interface. Much of the world

(with the exception of parallel printers) accepts RS-232C so we will discuss a few

applications using this device.

The Electronic Industry Association (EIA) has designated RS-232 as a standard.

The standard establishes protocol, connectors and other specifications to insure that

products from different manufacturers will be able to work together.
Most new computers either come with it or offer it as an option. Be sure that

vhatever you want to connect to your HP-71 has an "RS-232C port"” or "serial port"”.

The Black Box
In order to "speak RS-232" you will need an HP-82164A HP-1L/RS-232C Interface

(in addition to the 8240!A HP-IL Interface). Unfortunately it cannot run on

batteries or a car adapter which makes using it on the run difficult. The first

things you will notice when you plug it into the loop are that it doesn‘t do anything
and the manual was written for electronics engineers and people with an intimate

relationship with the lower level commands of HP-IL. The next thing you will see is
that there isn‘'t a clue about using it with the HP-71.

The HP-82164A RS-232 Interface does not have the innate ease of set-up of most

HP-IL devices. This is because the standard is somewhat flexible and many companies
have taken it upon themselves to create the ultimate RS5-232 standard, usually

slightly different than the other guy. The HP-1L/RS-232 Interface is designed to

adapt to most of these quirks. Before deciding to spend the rest of your life

communicating with pencil and paper, remember that you only have to go through this

one time for each RS5-232 device, so read on.

The RS-232 Cable

Once you‘'ve determined what you want to hook up to your 7! you must next

physically connect thea together, so we will first discuss acquiring a cable.
The interface doesn't come with a cable, perhaps in theory that it probably

wouldn't work anyway, so why bother. "RS" stands for "Revised Standard" and, as

such, it is (usually) fairly easy to connect things together using it, though even

under the best of circumstances it will be much more work than connecting, for

instance, a 9114A Disc drive. Many companies (HP included) have used the "standard"

25 pin connector (called "DB-25) for other purposes, or other connecters for RS-232.

For instance, IBM has used the 25 pin connector for parallel, and HP has used a 9-pin

connector for RS-232 on the larger HP-110 and HP-115 Portable Computers, as has Apple

for the Macintosh. This 9-pin connector has even been used for power cords (imagine

the zap!). For these reasons it is often necessary to have custom cables made. The

alternative is to make your own cable.

Dealers will sell you cables for $50 or so plus, perhaps, $20 consultation fee

during which they will glance at your RS5-232 owners manual, tell you that HP makes a

good product, and, pointing to the deor, nod and say "Yup, it‘ll work... course, ya

might have ta switch two and three”. You leave not knowing which two and three

things he's talking about. It might take a few go-arounds with the dealer to make

sure it works properly.
88

You can save time and money if you go to Radio Shack or other local electronics

hobbiest store and explain your problems and ask for the wires and connectors to make

your own cable. Make sure you get the appropriate male and female ends. This will
cost about $15 and the ubiquitous electronics jock employee there will probably give

you free consultation. I[‘ve made several cables using a large Weller soldering gun
vhich is more suited for car radiators. They will sell you a little soldering pen
more suited for the job, and less likely to vaporize wires.

Vhen you look at the front end of a male connector (the kind that is on the
HP-1L/RS-232 Interface itself) you will see that the pins are numbered from !-13,
left to right, on the first row and from 14-25 on the second row. A female connector

mates directly so that the pins are a mirror image of the male connector with pin 1
in the upper right corner. There is never any reason to use pins other than 2-8 and

20. The simplest circuit will use only 2 and 3 (that's what the salesman was telling
you to switch).

Look inside of most devices and you will see that the other pins don't do

anything, often the pins have been left off of a male connector. The chart on the

back of the interface is usually all that you will have to refer to when making a

cable. Pin 2 generally transaits data while pin 3 receives it, and this is the
problem: many companies reverse the use of 2 and 3. There are other variations.

For instance Okidata printers use pin 1! for what HP uses pin 8; hook it up 8 to 8
and the printer will loose data when the computer gets ahead of it. Your printer or

modem manual will probably have some criptic chart to show if all is normal.

l1f it appears that everything is going to be pretty much standard, create the

cable with pins 2-8 and 20 connected straight through. If it doesn‘t work, "switch
two and three™. If it still doesn‘t work or works only marginally (loses data or

occasionally garbles it) then re-read the sections below and the manual for the
device.

A switch inside of the interface comes set for DTE (Data Terminal Equipment).

If you are going to use a modem, or hooking to another computer, leave it that way.
For some devices (like an Okidata printer) you have to open the interface and turn

the plug around. This is illustrated on pages 21-22 of the interface manual.
If you are going to use two or more types of devices, a separate cable for each

will save you constantly opening up the interface to change that plug, or cable to

change a wire.

Switch boxes are available to allow connecting several devices through the same

interface. The price range is $50 to $160 for a box with little more in it than some

wires, plugs and switches. However, (in the case of the $50 unit) this box is a time

and equipment saver when working with several devices and only one RS-232 Interface.

0f course, another option is to have a separate RS5-232 interface for each device.

Setting up the Interface
Once hooked up, it's time to configure the interface to the 7! and device.

Since RS-232 is versatile, it can interpret data in many ways. The interface does

not save it's configuration when you shut it off. You need a set-up program (or key

assignment) to run each time you turn it on. Since the whole loop can slow down with

some set-ups, it may also be helpful to have a program to clear the Interface.

The 14 control registers and 12 character registers in the RS-232 Interface give

complete control over what is sent through the Interface. For example you can set a

printer to use 7 bit data instead of the usual 8 bits so that characters above ASCII

127 will be printed as the equivalant minus 128. This is useful if you PLIST a

program which has characters from the alternate character set so that the characters

will print as normal characters instead of the wierd graphics cartoon characters that

many printers provide for characters above 127. Lets use an example of a program for

a printer which runs at 2400 Baud. It is listed as a program, but if the extra

spaces were removed it could be assigned to a key.

A printer set-up program:

18 REMOTE :R5&23¢
2@ OUTOUT :RS823& ;"SEC;SE4;5E5;S5E7;L1@:L15;5L23;5L455WL 55BAPasCa”

30 LOCAL @ PRINTER IS :RS23&
89

The easiest way to change registers is in REMOTE mode during which anything

received by the RS5-232 is assumed to be a command. We entered REMOTE mode on line
10; be sure to designate which device is to be used. Line 20 sends various commands

as found on pages 37-40 of the RS-232 Manual. Look up the nemonic for the coamand,
then enter them in the string, each separated by a semicolon, as many commands as are

needed. Line 30 restores everything to LOCAL mode then assigns the printer. In the
example we used "P0" to set even parity and "SBA" to set the interface to 2400 dbaud.

So, we've used the REMOTE command to tell the RS-232 how to communicate with the

printer, now the RS5-232 becomes pretty much invisible and sends whatever we tell it

to to the printer; at this point we can tell the printer how to work with it's own

brand of commands.
Printers use special commands to change character style, size and such. This is

usually done with characters below CHR$(32) or with a series of characters which
begins with CHR$(27). CHR$(27) is called the "escape” character, and signifies that
the next character to follow is to be interpreted as a command to do something, and
neither the CHR$(27) or the command following it will be printed. In fact, CHR$(27)
is almost never displayed or printed; if you want to see what it looks like then

enter DISP CHR$(27+128). These control codes are sent to the printer in a PRINT

statement and may be within a string containing data to print. Normally, when

anything is printed, a line is advanced each time. End the PRINT statement with a
semi-colon to keep from having this line printed.

Sending an escape code only:

1@ PRINT CHR$(Z7)&"1";

Escape code plus printed data:

2@ PRINT CHR$(27)&"1))) HP-71 ((("

In the first example nothing will be printed, however the printer will receive
the escape sequence (assuming that escape "!" is a valid code). The second example

will print:

Y}y HP=71 ((«

The interface's default (how it works when first turned on) configuration will

allow you to connect a HP Terminal with only minimal configuration (see the Zenith

program below). The major concerns when writing the configuration are Baud rate and

handshake.

Baud rate refers to the speed at which data will be transferred. Basically it

represents the number of bits per second (plus some overhead) the device can send or

receive data. Terminals will usually operate at 2400 or 9600, modems at 300 or 1200.
An elusive problem can often be worked around by slowing the Baud rate; if the

computer you are using starts throwing garbage characters at your 71 at 9600 Baud

("SBE") then try 4800 ("SBC"), or, as a last resort (because it‘'s kind of slow for

everyday life) try 2400 or less. The maximum selectable Baud rate is 19200 and, on a

loop with several devices, it is unlikely that you would see any effective speed gain
over 9600. If you just can‘t get it to work consistently then go back and check the

cable.

Protocol refers to how the device expects data to look and the messages to be

used by the interface to tell it when it is ready for data. Check the conditions

your device requires and, again, look up the appropriate codes on pages 37-40 to send

it in REMOTE mode.

External Keyboards
The 71 can use an external keyboard to aid in entering long programs. One

method of using a keyboard is to have the 71 designated as a device (CONTROL OFF) and

have the controller place the 7! in REMOTE mode (the 71 can‘t make i1tself REMOTE).

90

The controller then sends complete lines of data (such a program lines) which the 7!

will accept without displaying them unless there is a syntax error. This can be done

using an HP-75 as the controller. In fact, if the 75 designates the 7! as the

printer and PLISTS a program then the 71 will try to enter each line as a program

line. This is all well and good if you have a 75, but a more elegant solution is

actually easier.
A LEX file called "KEYBOARD 1S" is available in the FORTH/Assembler ROM and from

the Users Library as LEX file #03194-71-5. It adds the keyword KEYBOARD IS which
operates like PRINTER IS and and ESCAPE which is used to trap the escape sequences
sent out by the keyboard and turn them into keystrokes the 7! can understand. The
ESCAPE keyword creates a buffer (like a file, but it doesn‘t show up with CAT) of the
characters which you tell it to look for. The 71 does not go to low power state when
vaiting for keystrokes when an accessory keyboard is active, so it is usually best to

have a wall plug handy. The interface is set-up to tell the 7! when it has data (to

"interrupt”), unlike other usages when the 7! tells the interface when it has

information or perhaps polls it to see if it has data to send (which is why the

external keyboard doesn‘t slow the 7! down. With this method of using the interface

the device can also turn the 7! on by "pressing” the ON key if flag -2! is set. This
is the flag which disables the 7! from automatically powering down devices when it

turns off, so be sure to clear it when not using a keyboard.
The two examples below use this LEX file. The first uses a NEC PC-8201A as the

keyboard. The second uses an innexpensive Zenith terminal.

Both examples use the RS-232 at it‘'s default 9600 Baud rate. This is done for

simplicity, but also because slow transmission speeds cause a delay in respond to

keystrokes. The 7! has a built-in buffer for keys which have been pressed, but the
71 has been too busy to notice them. What often happens if you type very fast is
that the keys will get bogged down in the RS-232 and may still be processed after a

DISP statement (which wouldn't happen normally because the key buffer is emptied by

the 71 during a DISP).

A computer as a Keyboard
The advantages of using a NEC PC-8201A, Radio Shack Model 100 or Olivetti M-10

as a terminal are many. They have a reasonable Text Editor, built-in communications

programs, and give us an exposure to Microsoft Basic. These machines have been
superseeded by more advanced (and expensive) models with larger displays and better

softwvare, but we'll concentrate here on the less expensive models. Of the three

machines, the NEC might be preffered for our uses; it comes with more memory, better

keyboard, is usually cheaper, and the Basic goes faster. Since we are going to write

a communications program in Basic to map the keys on the big computer to our

purposes, fast Basic is important. The program is used so that the cursor keys and

such can be made to work properly on the 7! instead of merely entering the code for

the key which TELCOM (or a real terminal) would do.
The program below was written for use with the NEC PC-820!1A and may require

modification to run on the Radio Shack or Olivetti. Since i1t is written in Microsoft

Basic, it should also be possible to modify the program to run on other machines

which use that dialect, presuming you know how the cursor keys and RS5-232 port are

handled. The program reads keystrokes individually and maps them to escape sequences

if they are below ASCI] 32. The 7! traps to the escape sequences and turns them back

into 71 keystrokes.

Our sample program adds some new editing features to the 71. The TAB key does 6

cursor rights to aid in moving across the screen. The ESC key works as ATTN or ON.

CTL UP ARROW and CTL DN ARROW scroll a display device one line up or down; helpful

for looking at a line when it has scrolled off the display, though it does not alter

what is on the LCD so be aware that the monitor and LCD may not display the same

thing. INS toggles insert mode on/off as with (I/R]l. BS is the same as [BACK]. DEL
works like (-CHAR] the vertical bar key (!) works the same as [CMDS]. Back slash (\)

adds a clear key which erases the current line from the display. The function keys

are not displayed, but they still operate and may be used and reassigned as desired;

for instance, f-5 enters "Run". The cut and paste buffer is not altered, if you
press PAST then the entire contents of that buffer will be sent to the 71. The other

g1

keyboard characters work as on the 7!, however, remember, any key which does not have

a counterpart on the 71 will be ignored. The (LC] key on the 7! inverts the way the

71 interprets case, so that if you are set to lower case on the 7! then uppercase
characters from the NEC will be turned into lowercase, and vice versa.

The program runs over 40 words per minute. In fact, there are some delays built
in because of the problem of repeating keys all being interpreted. An alternative

wvay to write the program would be to allow only one key pressed at a time, but this

would slow it needlessly. Without the delays you could easily have over 50 UP ARROW
keys waiting in the RS-232 buffer when you inadvertently left your finger on the key.
With the delay, the most you could get is about 5 keys. Line 800 of NECKBD sets the

NEC for 9600 baud.

KBD program for the HP-71 using NEC PC-8201A:

10 RESTORE 10 @ CONTROL ON & REMOTE
2@ QUTPUT :RS232;"SEQ@;SE3;" @ LOCAL @ KEYBORRD IS :RSz23z
3@ RESET ESCAPE @ ESCAPE "'",43 ® ESCAPE "/",47
4@ ESCAPE "@",48 @ ESCAPE "2",5@
5@ ESCAPE "3",51 @ ESCAPE "g", 103
6@ ESCAPE "i", 105 @ ESCAPE CHR$(15@), 15@
7@ ESCAPE CHR$(159),159 @& ESCRPE CHR$(16@), 160
8@ ESCAPE "&",38 @ ESCAPE CHR$(162), 16¢

"NECKBD" HP-71 KEYBORRD for the NEC PC-82@1A

10 E$=CHR$(27) :PRINT E$+"U":CLS:PRINT

16@ PRINT" [ESC1 = ATIN (11 = CmmD

2@@ PRINT" [INSI = I/R (\1 = CLR

40@ PRINT:PRINT"[STOPI , ([SHIFTI+[f.3] to exit";

80@ OPEN "COM:8N81XN" FOR OUTPUT AS #1

6010 K$=INKEY$:IF K$="" THEN 6@:1@

60c@ K=ASC(K$) :IF K(3¢ THEN 7@0@

6025 IF K=127THEN K$=E$+"P" 'S-del

6@2c6 IF K= 92THEN K$=E$+CHR$ (159)+E$+"J" ' \ (backslash)

6027 IF K=124THEN K$=E$+CHR$(15@) '| cmd

6@3@ PRINT#1,K$; : GOTO 601@

7000 IF K= 13THEN K$=E$+"&" 'rtn

7010 IF K= Z9THEN K$=E$+"/" 'left

702@ IF K= 3@THEN K$=E$+"2":6070750@ ‘up

7030 IF K= 31THEN K$=E$+"3":607T0 750@ ‘dowr

7@4@ IF K= ZBTHEN Ks$=E$+"@" ’'right

70350 IF K= S9THEN K$=E$+"Q"+E$+"Q"+E$+"Q"+ES+"Q"+E$+"Q"+E$+"Q@" 'tab

7060 IF K= 18THEN K$=t$+"1" 'ins

707@ IF K= 1THEN K$=E$+CHR$(153) ’'S-left

7080 IF K= 6THEN K$=E$+CHR$(16@) 'S,ctl-right

709@ IF K= Z6THEN K$=E$+"T" ‘ctl-dcown

7100 1F K= COQTHEN K$=E$+CHR$(162) 'S-up

7110 IF K= Z3THEN K$=E$+"5" ’‘ctl-up

71z@ 1F K= ZTHEN K$=E$+CHR$(163) 'S-down

7130 IF K= B8THEN K$=E$+"g" 'back

714@ 1IF K= Z7THEN Ks$=E$+"'" ‘esc

7200 GOTO 6@30

750@ PRINT#1,K$; : FOR K=1 TO 45@:NEXT: GOT0 6@Q1@
Using a Terminal as a Keyboard

The KEYBOARD LEX file is easier to use with a terminal than another computer,

though innexpensive terminals have few special keys to use for the 71‘'s special

keystrokes. We have mapped the QUIT key (escape+chr$(124))to (ATTN] and HELP

(escape+chr$(126)) to [CMDS]. 1If your terminal has other dedicated keys they may be

used for [1/R}l, (-CHAR] and others.

92

10 RESTURE [0 = CONTROL ON @ REMOTE
2@ OUTPUT :R5&3& ; "SEQ@;SES;" @ LOUCAL @ KEYBOARD IS :RS23c

3@ RESET ESCAPE @ ESCAPE CHR$(124),43 @ ESCAPE CHRe(126),15@

4@ ESCAPE "R",5@ = ESCARPE "B",31

5@ ESCARPE "C",48 @& ESCAPE "D", 47

6@ ESCAPE "S", 162 © ESCAPE "T", 163

7@ ESCAPE "U",16@ & ESCAPE "V", 139

Exchanging Files
Since we're using an external keyboard at times, why not exchange Text files

with the other computer? The following program, in conjunction with the TELCOM

program in the NEC and the "NECTALK" program below allow fairly easy exchange.

the built-in program TELCOM to receive files and "NECTALK" to send files. When

transferring files to the 71 the program will display the length of each line and

will end automatically. When transferring files to the NEC in TELCOM mode watch the

file as it is displayed; the 71 will beep when it is done, and a second or two later

the last line of that file will be displayed on the NEC. At that point press (SHIFTI

(£.5] on the NEC to stop TELCOM. The main incompatibilities between the 71 and the

NEC are that lines do not necessarily end with a carriage return, and when the NEC

sends a line it does not add a line feed character after it, which the 71 (and most

of the world) expects, so we use these small BASIC programs to adapt.

Since the NEC and Radio Shack do not add a line feed (chr$(10)) at the end of

each line, and do not tell the "host" (the 71) when the file is done, so we usually

use a program written in BASIC. These machines can be made to add a line feed while

in the TELCOM program by a simple POKE. The program on the 71 will have to be

stopped manually when the NEC has completed it‘'s transfer. To enable the automatic

line feed after escape enter BASIC on the NEC or RS machine and use the following on

the:

Use

NEC PC-8201AR: POKE 62469 , 1 Olivett: M-1@: POKE 63063, 1

RS Model 1@0@: POKE 630Q66 , 1

Be sure to restore the location to zero for normal use.

When qsin? TELCOM for sending files be sure to type 'END followed by RTN and CTL
J (for a line leed) unless you modify line 140 of the "NEC71" progran.

For conformity with HP-71 file structure, each line, including the last line in
the file, must end with a carriage return. Otherwise the resulting lines could be

longer than the 7] allows. Be also aware that the TAB will be transferred to the 71
as a tab character [CHR$(6)]1, not as a series of spaces.

The options are to send a file, receive a file replacing any existing data in

that file or receive a file appending data to the end of the file. Files may be in

RAM or on Disc. If you specify a Disc file then the file size is not limited to

available RAM in the 71. VWhen transferring files to the 7! run NECTALK first to find

the length of the Text file to create on the 71. If you have specified a file size

and it is to be in RAM then the size will automatically expanded as needed; Disc

based files must have their size specified accurately (or too large).

The INCAT subprogram and KEYWAIT$ function used in this program are discussed in
the programming section in this book. The program assumes that the computer with

vhich you are exchanging data is also the KEYBOARD. Delete the KEYBOARD IS on line

80 and CALL KBD on line 1000 if this is not the case.

HP-71 file transfer program

1@ CALL NEC @ SUF NEC @® DIM G$(2S61

20 INPUT "text file:";F$ @ IF NOT LEN(F$) THEN CHT ALL @ GATO ze

30 CALL INCAT(F$,X) & IF X AND X#1 THEN 2@

4@ DISP "Receive/Send"” @ F=POS("KRS5",UPKRCS(KEYWAIT®)) ™ IF NUT F IHEN 20

5@ IF NOT X AND S=2 THEN 2@

6@ IF NOT X OR F=2¢ THEN 6&@

70 DISP "Append/New"” @ X=POS("AN",UPRCS(KEYWAIT$)) @ IF NOT X THEN 2@

80 KEYBOARD 15 * @ CLEAR :R5e3c @ IF x THEN 11@

90 INPUT "size:";L @ CREATE TEXT F$,L

10@ DISP "start transfer”
93

110 DISP "working” @ ASSIGN #! TO F$ @ ON ERROR GOTO 1099
@ IF 1=F THEN (3@

120 RERD #1;Q0¢ @ OUTPUT :RSz232 ;G¢ @ GOTO 1c@
130 IF X=1 THEN RESTORE #1,9999
14@ ENTER :RS232 ;Q¢ @ IF G$="'END" THEN 1@0@
15@ DISP LEN(Q$) @ PRINT #1;Q¢% ¢ GOTO 140

1000 ASSIGN #1 TO * @ CALL KBD @ BEEP @ DISP "done" @ END
96@@ SUB INCAT(F$,T) @ ON ERROR GOTO 964@ ® DISP CHR$(&7)&")";

@ CAT F$ @ T$=DISP$(1, 321
961@ IF NUM(T$[123)=32 THEN T#=T$(3]
96c@ T=POS("TESDDABILEKEBARFO",T$(12,131) @ IF NOT MOD(T,2) THEN T=2@

ELSE T=(T+1) DIV &
963@ END

9640 T=c¢1 @® IF ERRN=37 OR ERKN=c33@Z¢ THEN T=@
"NECTALK" program for the NEC PC-8201A

1@ MAXFILES=C:PRINT CHR$(c7)+"U":CLS:FILES: INPUT"f1le”;F¢%
4@ OPEN F$FOR INPUT RS #1:X=0:M=0:PRINT"checking len

6@ INPUT#1,Q%:X=X+LEN(Q$) :M=M+1:1F NOT EOF (1) THEN 6@
70 CLS:CLOSE:PRINT"Len:";X;",Lines:";M:PRINT"min file size:"; (M#3)+X
8@ INPUT"press [RTN1I";Q$
180 OPEN F$ FOR INPUT AS #1
11@ OPEN "COM:"FOR OUTPUT RS #&
150 Q$=INPUT$(1,1) :PRINT#Z,Q%;:IF NOT EOF (1) THEN 1S@
200 PRINT#Z2, " 'END":CLOSE :MAXFILES=1

Display Devices

The HP 82163A (32 columns, 16 rows) and HP 92198A (80 columns, 24 rows) are the

preferable Video Interfaces. HP terminals are preferred over other terminals because

of compatibility. If other computers or other brands of terminal are used be aware

that HP uses unique escape sequences which make formatted display and word wrap at

the end of the line an iffy situation. Programs which offer formatted display (such

as the spreadsheet in WorkBook71) may not display properly due to different escape

code interpretation. 1f possible, check the Terminal manual before purchase to

insure that it can interpret HP escape sequences or can be programmed to do so. Some

of the most problematic escape sequences are listed below.

HP Commcri usage

Cursor to Address: X col row Y row ccl

Insert Cursor: G

Replace Cursor: R

Cursor on:)

Cursor off: ¢

If you are using a terminal as both keyboard and display and find that yyoouu

ggeett ttwwoo of each character on the display then the terminal is echoing the

transmitted data, set FULL DUPLEX on the terminal to eliminate the double vision.

The TELECOM program in the NEC PC-8201A could be used for keyboard as well as

display operations. The disadvantages are that you loose the special key assignments

of the "NECKBD" program, and the NEC does not allow word wrap or other HP escape

sequences. A separate display device would be more appropriate.

If a display device ignores insert and delete mode the 71 can be fooled into
thlnkin% that an HP 82163A (but without limiting to 32 columns) display is being
used. his will not enable the insert cursor (presumln?tthe terminal Kas one). As a
last resort the 7! can be made to only display a line atter you press ENDLINE. This
POKE will have to be done each time the HP-7! is turned on or devices are
re-configured.

POKE"2F7B1", “D” Mimic HF Display
POKE"2F7EL","B" Mimic a Printer (;gZEii;i;J

94

o o Q

e =
~
U
D
O
N
D
W
U
M
P
D
L
M
N
—
-
&

[
V na

J

[
T o

- D
n

[
y u

O
=
e
e
e

J
M
~
Y
O

N
D
U
N
D
L
U
N
N
~
E
Y
D
O
D
N
D
N

J
W
O
L
M
M
M

M
U
M
M
W
M
I
M

L
I
L
I
O
L

U
S

Y
)
G

U
~
y

G
J

&S
>
0

-
8

>
b
G

S
b

Q
o
~
N
D
O
W
U
>

cn

Decimal /7 Hex / Binary / ASCII Conversions

Hex Binary Asc Dec Hex Binary Asc

@ QAR 1=8 8z 12uQARY
1 Qraeeeal 129 81 1ol
= QoeeRal1Q 13@ 8z 12eeuRlo
3 Qoeeeall 131 83 1@0eQQll
4 Qrara10e 132 84 120001001
S eeQealal 133 85 1oeea1@l
6 Qreral11a 134 86 12@p@al11l@
7 aaea111 135 87 1ee@a11l
8 Qooalooa 136 88 10012
3 Qrealeal 137 83 1eeai1aal
A Qeoeiei1@ 138 8R 1@i121@
E Qreaiail 139 8 1Q@@ai1@11l
c Qrea1 10@ 14Q 8C 1Qee112@
D Qeeai1ial 141 8D 1eoeaiial
E oQQo111@ 142 8E 1l1ee@ii11@
F oeaai1111 143 8F 1ee@1111
12 Qo1 144 9@ 10@10¢eQ
11 @oei12@al 145 91 1Q@i1@eal
12 00210010 146 9z 1e@1@21@
13 ooei12a11 147 93 1@ei1e@11
14 Q@eeiei10e 148 94 1QQ@1@10@
15 oeei1eai1al 149 9% 1@@i1@1@1
16 ©@veialia 15@ 96 12@1211@
17 oeeaie111 151 37 1g@i1@111
18 0©Qoli1eea S 398 10@11@@@
13 oeeeal110al1 153 33 10@11@a1
1A @ovi1101@ 154 3R 1geliale
1 Qeai1i@11 185 SF 1Q@11@11
1C vevil1iee 156 39C 1e@l11Q@
1D e@uaiili@i 157 5D 1@@iii1a@il
1E 0ee11110 158 SE 1@@11t1@
1F @eei11111 155 9F 12@11111
2@ Qo1o0eed 16@ AR 1@1Qraee
21 euieeeeir ! 161 A1 1@1ee@al !
2s eeie@ei1e 162 RS 1@i1eeaia
23 Qaileaa1l # 163 A3 121Qe@1l #
24 QQ10@120 % 164 R4 10100102 %
25 Qei1ea1@1 * 165 AS 1e1e@1@1 %
26 Qeieai1i1e & 166 R6 l1@12@112 &
27 o@ieai1iy 167 A7 1Q1@@111
28 QQ12100Q (168 A8 1@i@i1aea (
23 e@i1ei1e@1) 169 A3 1@i1ar1@a@al)
ZA 01010210 * 170 RA 121Q121Q *
ZE Q12111 + 171 AE 1@1@a1@11 +
&C @eiei112a@ |, 172 AC 1w1@110Q .
2D ea@aiei1i1@¢1 - 173 AD 1@1@11@1 -
2E @@10111@ . 174 ARE 1Q1@111@ .
cF e@eai1e1111 / 175 AF 1@1@1111 /
3¢ Q110000 @ 176 E@ 1021100002 @&
31 @ai1i1eee1 1 177 El1 1@110@@1 1
32 @eui1i1eei1e =2 178 Bz 1@1i1Q@1@ Z

95

Dec
51
e
o

33

4
=
J

56
57
58
59
6@
61
62
63
64
65
66
67
68
69
7@
71
72
73
74
75
76
77
78
79
8@
81
a&
a3
84
a5
86
a7
88
a3
9@
91
9z
33
4
=
J

96

97

28

99

1Qa

Decimal /7 Hex / Binary / ASCII

Hex Binary
33
34
35
36
37
38
39
3A
3K
3C
3D
3E
3F
4@
41
42
43
44
45
46
47
48
49
4A
4E
4C
4D
4E
4F
S@
S1
S&
53
S4
S5
56
S7
58
S9
=A
SH
5C
SD
SE
SF
6@
61
62
63
64

Qea11@011

Qa11@1Q

Qa1121021

Qeal11a11@

2110111

Qa111@ea@

Qa1110a1

Qriiiela@

@a111011

ea11110@

eei1111@1

eei11111@

@a111111

@10

@i1Qaeeal

Qlreea@la

Qi1oeeall

@Qi1eea1a

Qleeeaial

Qireeei1i@

Qieea1il

Qleel1eaa

Ql1eai1ea1

Qleaiela@

@l1ee1011

@leel 1@

@10011a1

@leQi111@

a1ee1111

Qial1eeea

Q1210021

Qlraleeia@

@1ai10@11

Qlraleiea

Q1111

Qlai1a11@

ailea1a111

@1a11Qaa

ala11eal

Qileai11@1@

Q1e11@11

@l1al1l1ea@

QQlrai111al

Qiai1111@

@1211111

@110@Qa&

211aQQa1l

Qlri@eel1a

@110QQ11

Q11@Q12Q

Asc

P
H
A
Z
A
R
A
N
S
I
X
Z
I
C
C
O
C
H
O
D
O
U
O
Z
I
r
X
G
U
~
I
O
M
M
U
O
O
M
D
R

D
A
Y

I
A
v
w

«
Q
O
N
O

U
S
U

‘
I

a
n
o
w

96

Conversions

Hex BinaryDec

173

18@

181

18&

183

184

185

186

187

188

189

13a

191

132

193

134

135

196

1397

138

1939

ZQ@

zal1

zas

ca3

24

cas

26

ca7z

za8

cZ@9

zl@

211

z1ie

213

214

215

216

217

=18

213

))
O
N
O
W
U
M
P
U
M
L
~
Q

M
M
M

m
i
n

M
m
N

B3

E4

ES

E6

B7

E8

B9

EA

BE

EC

ED

EE

EF

Ca

Ci

ce

(B

C4

CS

Cé

c7

c8

Cc3

CA

CE

cC

CD

CE

CF

D&

D1

D&

D3

D4

DS

D6

D7

D8

D3

DA

DE

DC

DD

DE

DF

E@

El

EZ

E3

E4

19110Q11

la11a10@

1a11@101

1e11211@

1a11@111

1@11100@

1@111@@1

i@a111Q1@

1@111211

1@11110Q

1a1111@1

1@11111@

12111111

11@@

l11geeeadl

l1ee@1@

11Q00011

l11e@a1Qa

11002121

11Qe@l 1@

1100@111

11e@1@0@

11021001

11e@1@1@

l11e@1@11

110@11Qa

11001121

11@e@111@

l11e@1111

11@1202a

11010021

l1@1e@1@

11@10@11

l1e1a1Q@

11012121

11@1@11@

11210111

11@11QQ@@Q

11@110Q1

11@011Q1@

11@11@11

11@111@@

11@111@1

11@1111@

11@11111

1110@@@@

1110Q21

111e@01@

11100011

111@1@@

n Q

M
m
N

Z
I
C
I
C
I
H
M
n
@
I
v
I
o
I
Z
I
R
I
N
X
I
~
I
T
|
I
G
I
M
M
I
D
|
O
o

I
D
I
@
I
I

e
Lo

J
O
D
N
I
V

A
T
I
S

(0
1
>

‘
l

l
a
n
i
o
w
l

Decimal / Hex / Binary / ASCI Conversions

Hex Binary Asc Dec Hex Binary Asc

65 ©11Q21@1 e 229 ES 111001@1 e
66 @11Q@11@ f Z3@ E6 111e@ii@ f
67 @11@@111 g 231 E7 11ie@iil g
68 @11@10Q@ h 232 E8 11101@@@ h
69 @11010@1 i £33 E9 111Q@1@@1 i
6A @1i@i@la j 234 ER 1ll@i@i@ 3
6B 01101011 k 235 EB 111Q1@011 k
6C @ii@iie@ 1 236 EC 111@1i@@ 1
6D @11@11@1 m 237 ED 111011@1 m
6E @11@111@ n 238 EE 111@111Q@ n
6F @1101111 « 239 EF 111@111l o
7@ @111000@ p Z4@ F@ 1111000@ p
71 @ii1ieeel q 241 F1 1ii1ee@t g
72 @11i1e@1@ r 242 F2 11110@1@ r
73 @111@0011 s 243 F3 11110@11 s
74 @111@10@ t 44 F4 1111010@ t
75 @11101@1 u E45 FS 111101@1 u
76 @111@11@ v 246 F6 1111@11@ v
77 @1110111 w 247 F7 11110111 w
78 @ii11e@e@ x 248 F8 1111100@ x
79 @11110@1 y 249 F9 11111e@l y
7R @1111@1@ : Zs@e FA 11111@1@ z
7B @1111@11 < 251 FE 11111@11 {
7C @ii111e@ | g5 FC 111i111e@@ 1
7D @11111@1 > 253 FD 111111@1
7E @itiiii@ ~ 254 FE 111iit1@ ™
7F @1111111 ® 255 FF 11111111 R

97

HP-7/71

—-— Qeooe

Operating System ROM

c0aed

Memory Mapped 1/0

cCaee

Card Reader

eceElo@

Display RAM

= cE4Q0

System RAM

- 2F9E6

Reserved RAM

e —--CONFST

Configuration Buffer

MAINST

Main File Chain

MAINEN

I0BFST

System Buffers

IOBFEN

———————— CLCBFR

Command Stack

_ - -RFNBFK

Calc Mode Buffers

OQUTES

Gutout Buffer

-AVMEMS

Free User RAM

AVMEME

MTHSTK

Math Stack

================zz=================FRSTK

{ For/Next Stack

=eGSESTK

! GOSUB Stack

RtACTIVE

i Active Variables

————————————CALSTK

Prior Environments (from CALLs)

Includes:

FOR/NEXT Stack,(0SUB Stack, Vars
 S RAMEND

Plug-In ROMs, Independent RAM

————————————————————————————————— FFCeoe

Reserved for Configuration

(don’'t use)

————————————————————————————————— FFFFF

98

MEMORY MAP

Reserved For Card Reader

Addresses from here on are pointers

List of devices configured

Files 1n MAIN RAM begin here

End of Main File Chain

Unused RAM Available for temo buffers

during function execute

The newest entry 1n Math Stack

This 1s the current prcagram envircnment

Wwhen orograms are CRLLed the previous

envirorments are saved here

Read FORTH ROM Manual for hard config

Addr

cE100

ctial

ctlee

cE104

E160

ZEL1FS

2ELIFF

2Ezee

2E260

2ECF8

CECFF

2E30@

2E34C

2E34E

2E350

E3F8

2E3FE

ZESFF

ZE400Q

ZF41@

cFaca

2F43@

2F438

oF43C

IFa4l

2F442

2F443

ZF444

2F471

2Fa73

2F4735

ZF47B

2F47C

2F480

cFS4@

2F358

2F33D

2FS6e

ZFS67

2F36C

2F371

2F376

ZF376

ZF37B

2F580

2F583

2F38A

ZF38F

2F594

2F599

SYSTEM

——————————— Display Driver -——————-—-—-
Name #nibs

ANNARDY 1

ANN1.S 1

ANNRDZ &

DD3ST

DD3END

TIMERS3

DD3CTL 1

DDeST

DD2END

TIMERZ

DDeCTL 1

DD1ST

ANNADS &

ANNAD4 ¢

ROWDVR

TIMER1

DCONTR 1 Contrast nib

DDICTL

—————————— Interrupt RAM -—————-—————-

INTR4 16

INTR 16

INTH 16

INTM 8

CMOSTW 4 CMOS test #168F

VECTOR 3 Interrupt vectcor

ATNDIS 1 RTTN key disable

ATNFLG 1 ATTN key hit?

KEYPTR 1 Key buf pointer

KEYBUF 15%2 Key buffer

WINDST & Disp window start

WINDLN & Window length

DSPSTA 6 Display status

ESCSTA 1 Escape status

FIRSTC &2 Buf pos of 1st chr

DSPBFS 2#96 Input buffer

DSPMSK 96/4 Input mask

——————————— System Pointers ——————————-

MAINST S Main Pgm mem start

CURRST S Current file start

PRGMST S Current Program

PRGMEN 35 Current Pam end

CURREN S Current file erd

IOBFST & System buffers

IOBFEN 35 System buf end

CLCBFR S Calc Mode ptrs

RFNBFR S

RAWBFR 3

CLCSTK 5

SYSEN o End of system ram

OuTBS 3 Qutput buffer

AVMEMS & Free memcry start

AVMEME S Free memory end

MTHSTK S Math stackZF399

99

rRAM

2FS9E

2F3A3

cF35A8

ZFSAD

2F5B2

2F3B7

2FSBE

cF674

2F679

2F67E

2F683

2r688

cF68D

ZFe9e

ZF697

cF&39C

2F6A1

ZF6R6

ZF6AE

2F6B6

cF6C1

cF6C6

cF6eCH

2F6CF

2F6D4

ZF6D4

2F6D9

cFEEY

2F6FS

2F6FA

2F6FB

2F6FC

2F6FD

ZF6FE

cF735

ZF761

FORSTK

GSBSTK

ACTIVE

CALSTK

RAMEND

PRMPTR

CHNLST

DSPCHX

PCADDR

CNTRDR

ERRSUB

ERRADR

ONINTKR

DATPTR

TMRAD1

TMRADZ

TMRAD3

TMRINI

TMRINC

TMRINS

LDCSPC

INES

AUTINC

LEXPTR

CMDPTR

INADDR

SYSFLG

FLGREG

- Math

INXNIB

UNFNIBE

OVFNIB

DVZINIEB

IVLNIB

RNSEED

NXTIRQ

ALRM1

RLRMZ

ALRM3

ALRM4

ALRMS

RLRM6

PNDALM

FOR/NEXT stack

GOSUE stack

Active vars space

CALL stack

End of memory

t
h
W

o * ~

External display

Pgm counter

Cont address

ON ERROR addr

ON ERR stmt addr

ON INTR stmt addr

DATA stmt pointerU
L

TMR#1 stmt addr

TMR#c stut addr

TMR#3 stmt addr

TMR#1 1nterval

TMR#Z 1nterval

TMR#3 1nterval@
®
©
®
T
®
©
W
L

Space after line#

Input buf start

Increment for AUTO

Temporary RESPTRe

CMMD stack ptr

Stmt len parse/dec

System flags

User flaags—
=

o
o

Exception traps ——————---

1 Inexact result

Underflow

Overflow

Divide by zero

Invalid result

S Random# seedP
e
s
s
e

Alarm Clock —-—-——————=———

1 Next SREQR

Timer #1

12 Timer #Z

12 Timer #3

1¢ Timeout timer

12 WRIT timer

12 External alarm

2 Eitmap pending alm

——————————— Clock Accuracy ————=—=———---
ZF763

2F76F

2F77H
cF787

cF78D

cF794

TIMOFS

TIMLST

TIMLAF

TImAr

1 Time error offset

1e Time last set

1c Last AF corection

6 Accuracy factor

HP-IL Device Assigrmernts ——————-—

15-DSP

15-PRT

7 Display

7 Printer

2F73B
2F7R2
cF7R9

cF7RC

2F7RD
ZF78Q
2F7B1

2F7Be
eF7Ce

2F7ES
cF78E
2F7eC

cF89k
2F898B F-RO-@ 3

2f8RO

SYSTEM RAM

IS-INP 7 Keyboatrd 2F8AS F-RO-2 5

IS-PLT 7 2F8AR F-RO-3 1

MEQX” 3 HP-IL Mailbox otr

LOOPST 1 HP-IL loopo status 2F8AB FUNCR1 16

STATAR 3 STAT array name cF8AE F-R1-@ S

TRACEM 1 TRACE mode(@,2,4,6 2¥8B@ F-Ri-t1 5

DSPSET 1 Display status 2F8BS F-R1-¢ S

2F8BAR F-R1-3 1

LOCKWD 8#2 Password 2F8BE FUNCDO 3 Temp D@

RESREG 34 RES register 2F8C@ FUNCDLI S Temp DI

ERR# 4 ERRN

CURRL 4 Current line # 2FBCS TRFMBF 6@ TRANSFORM scratch
ERRL® 4 ERRL o2F9@1 SCRST@ 4#16 Scratch stack(Mant

2F941 SCREX@ S Scratch stack(exp

——————— Scratch RAM —-———————-——-

STMTR@ 6 eee————— Display/Print —==—————~—-
S-R@-@ S 2F946 SCROLT ¢& Disp scroll rate

S-Re-1 S 2F948 DELAYT ¢ Disp delay rate

S-R@-2 S 2F94AQ NEEDSC 1 Scroll needed

S-Re-3 1 2F94D DPOS c Current DISP col

2F94F DWIDTH ¢ Disp width

STMTR1 16 c¢F356 PPOS c Current PRINT col

S-R1-@ S 2F9S8 PWIDTH 2 Print width

S-R1-1 S 2F9SR EOLLEN 1 Len of ENDLINE

S-R1-2 3 2F95B EOLSTR ENDLINE strinag

S-R1-3 1 cF976 MAXCMD | #CMMD stack entries

STMTD@ 35 Temp D@ cF977 CSPEED S Clock Speed(Hz/16)

STMTDL S Temp DI

——————————————— HP-IL -—————————————

—————---—-= Function Scratch -—-—-----— 2F97C ERRLCH 1

FUNCRO 16 2F97D TERCHR ¢ ENTER term chr

2F97F HPSCRH 7 Reserved

F-R@-1 S5 2F986 RESERV 48%2 Reserved

HP-71B Keymap

g-| 113| 114 115| 116 117 118| 119 12@| 1et| 1ee| 1&3| 124 135| 16
- 57 s8 s9 60 61 62 63 64 65 66 67 68 70

1 2 3 4 5 6 7 4. 9 10 11 12 13 14

g-| q " e r t y u 1 o p ! { } ”

f- IF THEN ELSE FOR TO NEXT DEF KEY ADD |[<4R PRED MEAN SDEV SGK
Q W E R T Y u I a P 7 & 9 /

g- 127 128 129 130 131 132 133 134 135 136 137 138 139 140

- 71 72 73 74 75 76 77 78 79 a0 81 &z 83 84
15 16 17 18 19 e 21 a2 e3 ca 5 e6 e c8

g-| a s d f] h) K 1 . $ % & ¢
f- cALL Gosu RETU GOTO INPU PRIN DISP DIM BEEP FACT SIN CGS TAN EXP

A S D F G H J K L = 4 5 6 .

g- 141 142 143| 144 145 146 147 146| 149 15| 151 15| 153 154
f-| as 86 a7 88 89 90 91 92 93 94 95 96 97 98

29 30 3t 32 33 34 35 36 37 36 39 40 41 4e

g- z X c v b n m C] CMDS ! . " @

f- EDIT| CAT NAME PURG FETC LIST DELE AUTO COPY RES ASIN ACOS ATAN LUG
Z X C v B N M () 1 g 3 -

END

g-| 155 156 159 16| 161 16| 163| L 165 166| 167 164
f-| 99 102 103 10a| 105| 106 107| I 108 o3| t1ef 111

43 46 a7 48 49 S 51 N 53 54 55 56
E

g- CTRL H M |ERRM & ¥ LUSR <) ?
f- OFF SST BACL -CHR 1/R| LC -LIN USER VIEW CALC CONT

ON f- g- RUN < » SPC - v 0 o . +

100

Addr

ZF6D9

ZF6&DA

F6DB

ZF6eDC

fix

ZF6DD

ZF6DE

ZF6DF

cF6E@

ZF6EL

ZF6EC

&

-1

-11

-12

-13
~14

-13

-16

| n
o
e

) 2

b
b
b

B
G
G
G
G

L
G
G
O

U
G

E
O
R
E
E
R
E
Y
R
N

-39

| > [~

SYSTEM

If set means:

Suppress warning messages

Beeper 1s off

Continuous power cn

Inexact result trap (INX)

Underflow trap (UNX)

Overflow trap (OVF)

Divide by zero trap (DVZ)

Invalid ooperation trap (IVL)

USER mode set

OPTION ANGLE RADIANS

Round Off Settinag

rear zerc pos rieg

to INF @ @ 1 1

Neg Rcund @ 1 a 1

Display Format

STD FIX SCI ENG

@ 1 @

@ @ 1 1

Lowercase mode (LC ON)

OPTION BARSE 1

Display Digits

0612345678693 1e11

ol1el1et1e1@1 @ 1

o1 1001102 1 1

G001 111@eae @ ¢

6o a@oeeoaoe1l 1 1 1

Autc locp power dowrn off

Use extended HP-IL addressing

HR-IL ENTER terminated by EQT

Don’'t re-assign dev RESTOREIC

Beep loud

Don’'t show BRSIC prampt

Alt. error message languape

'TEST ONLY

'TEST ONLY

'TEST ONLY

'"TEST ONLY

'TEST ONLY

'"TEST ONLY

'TEST ONLY

'"TEST ONLY

'TEST ONLY

'TEST ONLY

'TEST ONLY

'"TEST ONLY

'"TEST ONLY

FLAGS

101

ZF6E4

“F6E6

ZF6E7

ZF6ES

42

-61

-6¢

-63

'TEST ONLY

Plug-in module was pulled

HP-71 1s dormant

Always return from MEMERK

Clack mode (1 second update)

Clcck EXACT

Command stack active

Control key hit

DSLEEP from power down

Req set TRNOF 1n MAINLP

Turnoff at MAINLP

VIEW key pressed

'Future use

'Future use

'Future use

'Future use

"AC" Annurciator 1lit

USER suspended (see flag -9)

Key repeated

“((#))" Alarm annunciator 11t

"BAT" annunciator lit

"PRGM" annunciator 1lit

"SUSP" arnunciator 1lit

"CALC" arnunciator 11t

ASSEMBLLER INSTRUCTION SET

ISIS A=A+E fs 2,3 sum A+E into A
U B B == A=A+C fs 2,3 sum A+C into A
7R#E fs 5 test A#E A=R-1 fs 2,3 decrement A
TRAC fs 5 test AMC A=A-E fs 2,3 A-B into A
AR fs S test A(=B A=A-C fs 2,3 A-C into A
?A(B fs S test A(B A=B fs 2,3 copy B to A

=@ fs 3 test A=0 A=B-A fs 2,3 B-A into A
R=B fs 5 test A=H A=C fs 2,3 copy C to A
=C s J test R=B A=DAT@ fsd 3,4 load A from mem using D@
=B fs 2 test A)=B A=DAT! fsd 3,4 load A from mem usino D1
MB fs 3 test AVB A=IN 3 load A(@-3)=input reg
7B#0 fs o test E#@ A=R0O 3 copy R® to A

7B#A fs 9 test B#A A=R1 3 copy Ri to A

?B#C fs S test EB#C A=Re 3 copy RZ to A

7B(=C fs S test B(=C A=R3 3 cooy R3 to A

?B<(C fs) test EB(C A=R4 3 copy R4 to A

’B=@ fs 3 test b=@ ABEX 2,3 exchange R and B
’B=R fs 9 test B=A ACEX 2,3 exchanage R and C
?B=C fs 3 test B=C AD@E X 3 excharge A(A) and D@
B=C fs 3 test Bi=C AD@XS 3 exchange A(@-3) and D@
B0 fs 3 test B)C AD1EX 3 exchange A(A) and D1
240 fs 3 test C#@ AD1XS 3 exchange A(@-3) and DI
LR fs 3 test C#A ARGEX 3 exchange A and R@
LB fs 3 test (#B ARLEX 3 exchange A and Ri
?C#D fs 3 test C#D ARZEX 3 exchange A and RZ
2C(=A fs o test C(=R AR3EX 3 exchange A and R3
LA fs 3 test C(A AR4EX 3 exchange A and R4
’t=e fs o test (=0 ASL fs 2,3 shift A left 1 nib
’L=A s 5 test (=R ASLC 3 shift A left 1 nib circ
=B fs 3 test (=B ASR fs 2,3 shift A right 1 nib
°t=D fs 3 test (=D ASRE 3 shift A right ! bit
20=R fs 2 test O)=A ASRC 3 shift A right 1 nib cire
00R fs 3 test OA B=-B fs 2,3 two's compl of B intc E

’D#0 fs 5 test Dwa B=B-1 fs 2,3 one's campl of K intc B
?D#C fs 2 test D#C B=0 fs 3.3 set B=@

2D(=C fs 9 test D(=C B=AQ fs 2,3 cooy A to B

2D fs 5 test D«C B=E'A fs 4 E OR A into E
T B=E'C fs 4 F ORC into B
D=L fs 3 test D=C B=B¢A fs 4 B AND A 1intc B
M=C fs 3 test I)=C B=B&C fs 4 B AND C into B
2bC fs 3 test IOC B=B+1 fs 2,3 1ncrement B
MP=@ 3 test module pulled bat B=E+A fs 2,3 sum B+A into E
0% n 2 test pointer#n B=E+B f< 2.3 sum B+B into B

=0 SR B=B+C fs 2,3 sum B+C 1into B
?5B=0 9 test sticky bit=@ B=B-1 fs 2.3 decrement b

?GR=@ 3 test service requst bi1t=0 B=B-A fsg 2;3 BRIe

725T#0 n 2 test status bit n#@ B=E-C fsg 2,3 B minus C into E

7ST#! n S test status bit n#l B=C fs o3 copy C to B
?285T=@ n] test status bit n=0 B=C-B fs 2,3 C minus B to B

?28T=1 n 9 test status bit n=1 BREX fs 2,3 exchange B and A

2XM=@ 3 test external mod missing BCEX fs 2,3 exchange B and C

R=-A fs 3 two's compl of A 1nto A BSL e 2,3 shift B left 1 rib

A=R-1 fs 3 one’'s compl of A 1nte A ESLC 3 R NPT RPR

=@ fs 2,3 set A=0 BSR fs 2,3 shift B right 1 nib
A=A'E fs 4 AORE Intc A ESRB 3 shift B right 1 bit
A=A!C fs 4 A ORC into A BSRC 3 shift B right 1 rab circ
A=A&B fs 4 A AND B 1nto A BUSCC 3 enters bus command "C”
A=ALC fs 4 AANDC 1into A C+P+1 3 increment C plus P pointer
A=A+l fs &,3 increment A C=C-C fs 2,3 two's compl of C into C
A=A+A fs €y 3 sum A+H 1nto A C=C-1 fs 2,3 one’'s compl of C into C

102

C=@
C=A

C=R-C

C=B

C=C'R

C=C'B

C=C'D

C=C&A

C=C&B

C=C&D

C=C+1

C=C+R

C=C+B

C=C+C

C=C+D

C=C-1

C=C-R

C=C-B

C=C-D

C=D

C=DATa

C=DAT1

C=1D

C=IN

C=P

C=Ra

C=R1

C=Re

C=R3

C=R4

C=RSTK

C=ST

CREX

CBEX

CDeEX

Cbaxs

CD1EX

CD1XS

CDEX

CLRHST

CLRST

CONF1G

CPEX

CR@EX

CR1EX

CREEX

CR3EX

CR4EX

CsL

C5LC

CSR

fs

fs

ts

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fsd

fsd

fs

fs

fs

fs

fs

nn

nnnn

nrnnti

ASSEMBLER

G
l
L
G
y

O
A
N
N
N
R
N

Y
ro
R

-
-

S
L
W

W
L
L
W
L

W

a4
@

4
A

@
N

e
-

a
wu

L
W
L
l
W

W
W
M
m
N

w
W

“
a

-
R
N
W
R
W
L
W
L
M
M

L
)

G
l
L
W
N
0
L

(
A
J
I
L
"
G
G
G
b
W

o

set C=@
copy A to C

A minus C to C

copy B into C

CORRA inte C

CORB inte C

CORD inte C

C AND A into C

C AND B into C

C AND D into C

increment C

sum C+R into

sum C+B into

sum C+C 1into

sum C+D 1into

decrement C

C minus A into C

C wminus B into C

C minus D into C

copy D into C

load C from mem using DO

load C from mem using DI

request chip ID to C(R)

lcad C(@-3)with input reg

copy P pointer to C(n)

copy RO to C

copy Rl to C

copy Re to C

copy R3 to C

copy R4 to C

pop return stack to C(A)

copy status reg to C(X)

exchange C and A

exchange C and B

exchange C(A) and D@

exchange C(@-3) and D@

excharige C(R) and DI

exchange C(@-3) and D1

exchange C and D

clear hardware status bits

clear program status bits

configure (see hardwar spec)

exchange C(n) and P

exchange C and R@

exchange C and Rl

exchange C and k&

exchange C and R3

exchange C and R4

shift left 1 rnib

shift left 1 n1b circ

shift right 1 nmb

shift right 1 bat

shift right 1 nib

exch C(X)and status

load € nibs into DO

load 4 nibs into D@

load 5 nibs i1nto D@

copy R(R) to De

copy R(0-3) to D@

copy C(R) to Da

o
o
O
o
o
0
o
n

o
0
0
0

circ

reg

103

Da=CS

DO=D2+ n

DO=D@- n

D@=HEX hh

D@=HEX hhhh

D@=HEX

D1=(2)

Di=(4)

D1=(3)

D1=A

D1=AS

D1=C

D1=CS

Di1=Di+ n

Di1=D1- n

Di=HEX hh

D1=HEX hhhh

D1=HEX

D=-D

D=-D-1

D=@

D=C

D=C-D

D=D!'C

D=D&C

D=D+1

D=D+C

D=D+D

D=D-1

D=D-C

DRTO=A

DRTe=C

DAT1=A

DART1=C

DCEX

DSL

DSLC

DSR

DSRE

DSRC

GOC

GOLONG

GONC

GOSBVL

GOSUB

GOSUBL

GOT0

GOVLNG

GOYES

INTOFF

INTON

LC(m)

LCASC

LCHEX

mMp=@

NOP3

NOP4

NOPS

ouT=C

oQuT=CSs

nn

nnnn

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fed

fsd

fsd

fsd

fs

fs

fs

hhhhh

nnrnnmn

hhhhh

S
O
L
N
D

&
0
D
L
)
L

L
)
G
G

L
)
L
y

&
S
R
O
L

L
W
S
W

W
L
L
W

-
-

B
-

-
-

a
-

S
2
O
N
S
0

>
N
U
D
U

L
)
W

I
U
G
O

N
0
G

L
H
L
)
G
O
M

L
+

+
+

3
3

L
I
L
I
S

L
L
L
G

W
Y

INSTRUCTION SET

copy C(0-3) to D@

add n to D@ (@(n{(=16)

subtract n from D@

load

lcad

lcad

load

load

load

D@ with hex

D@ with hex

D@ with hex

Z nibs into

4 nibs into

3 nibs into

censt

censt

const

D1

D1

D1

A{R) to DI

R{Y-3) to DI

C(R) to D&

copy C(@-3) to D1

add n to D1 (@(n{(=16)

subtract n from DI

copy
copy
copy

lcad D1 with hex const

load D! with hex const

locad D! with hex const

two's compl of D into D

one’'s compl of D into D

set D=@

copy C to D

C-D into D

DORC intce D

D AND C into D

increment D

sum D+C to D

sum D+D to D

decrement D

D mirwus C to D

copy to mem from R using D@

copy to mem from C using D@

copy to mem from A using D1

ccpy to mem from C using Dl

exchange D and C

shift D left 1 nib

shift D left 1 mib circ

shift D right ! nib

shi1ft D right 1 bit

shift D right 1 nib circ

go label 1f carry set ((=127)

go long to label ((-32767)

go label 1f no carry ((=127)

gosub very long to label

gosub to label ((=2@47)

gosub long label ((=32767)

goto label ((=2@48)

go very long to label

jump 1f test 1s true

interrupt off

1interrupt on

load C with const. (@ (m(=6)

load C with ASCII using P

lcad C with hex using P

clear mcdule pulled bit

three nib no—-op

four nib no-op

five nib no-op

load output reg with C(X)

lcad output reg with C(@)

=C N

P=p+1
P=p-1

RO=A

Re=C

R1=RA

R1=C

Re=R

Re=C

R3=AR

R3=C

R4=R

R4=C

RESET

RSTK=C

RTI

RTN

RTNC

RTNCC

RTNNC

RTNSC

RTNSXM

RTNYES

SB=@

SETDEC

SETHEX

SHUTDN

SR=0

SREQR?

S57=@ n

ST7=1 n

57=C

UNCNFG

Xm=@ Gl
B
P
0
G
0
W
G

Gy
o

ro
G

RO
PO

RO
G

PO
G

PO
O
O
G
G
G
G
G

GJ
)
G
O
G
G

o
R

RS
b

ASSEMBLER

copy P te C at nib n

increment P pointer

decrement P pointer

set P pcinter to n

copy R to R@

copy C to R@

copy A to RI

copy C to RY

copy R to Re

copy C to Re

copy A to R3

copy C to R3

copy R to R4

copy C to R4

system bus reset command

push C(A) onto rtn stack

return from interrupt

return

return 1f carry set

clear carry, return

return 1f carry clear

set carry, return

set ext mod missing,return

return 1f test 1s true

clear sticky bit

set cpu to decimal mode

set cpu to hexadecimal mode

shut down bus and cpu

clear service request bit

poll for service request

clear program status bit n

set program status bit n

copy C(X) to status reg

unconfilgure

clear ext mod missing bit

INSTRUCTION SET

e — expression

b - byte

1 - label

guoted string
n — nib or nibs

BIN

BSS e

CHAIN

CHAR n

CON(1) e

EJECT

END

ENDTXT

ENTRY 1

EQU 1

FORTH

1D b

KEY '

LEX

LIST OFF

LIST ON

MSG 1

NIBASC

NIBHEX n

POLL 1

STITLE

TITLE

TOKEN n

WORD

WORDI

‘ assemble a BIN file

evaluate, then enter n nibs of '@°

‘'’ subheader for BIN files

type of BASIC keyword

evaluate expr,enter (1) nibs

form feed in the listing

mark end of file (optional)

mark end of keyword table

begin def of BASIC keyword

define a label for entry point

assemble a FORTH primitive

LEX ID of the file

define keyword rniame

assemble a LEX file

disable use of listing file

enable use of listing file

point to message tbl (or @)

" enter up to 8 ASCII chars

enter up to 16 hex nibs

define poll handler (or @)

formfeed, add subtitle

" title the listing

token number of keyword

" defirie FORTH primitive

‘" defirne 1mmediate FOKRTH primitive

Minimum LEX File Requirements

SC-SE scratch

keyword erntry

F= all uses

LEX "FILENAME -

1D #nn

MSG @

POLL @

222227 EQU #ninnnin

ENTRY 1bl

CHAR #r)

KEY "KEYWORD © add

TOKEN b 1-255

ENDTXT

*# beginning of code

181

104

$ for strings

HP-71 Entry Points

A-MULT 1B349 Multiplg two 2@ bit Hex integers
Entry: integers 1irn A(A),C(A)
Exit: P preserved. Q(Qs=product. Carry set it ok. Carry set 1f overflow; A(R)=FFFFF
Levels:
Uses: A(R),B(R),C(R),C(14)

ADHEAD 181B7 Add string header to string on stack.
Entry: R1(R)=start of item (high mem). Dl=end of item (low mem). 5@ set if RTN
needed else jumps to EXPR. P=@
Exit: D! points at str hdr
Levels: &. Uses: R(AR),C(W),D1

ARGPRP QEBEF Pcp & normalize a REAL. As ARGPR+ but user modes not checked.
SRGP§+ @EBEB Read user modes, pops & normalize real. 5plit and normalizes arg to 135
1gits.

Entry: Number on tcp of stack. DI points to top of stack.
Exit: DECMODE, AR/B=13 digit form of arg. If signaling Nan then carry set, XM=1 else
carry clear.
Levels: &. Uses: A,B,C(R),D(AR),S5HB,XM,58-11

ARGSTA OESGC Read user mcdes. Pop & test real number for array or complex.
Entry: Number on top of stack.
Exit: DECMODE. A 12 digit number. Carry clear 1f finite, set 1f INF. Fatal err 1f
arra{, complex, NaN.
Levels: ¢&. Uses: A,B(X),D(A),P,5B,XM,58-11

ASCII @@79B Bit pattern tables. Each char has 10 nibs. & nibs per display column.
Least significant bit of byte (nib pair) 1s top row. Read using RASCI1 + 1U * (chr#).
Table on 6 not an entry point
Entry: DUN'T

ASLW3 @EDc1 Shift
ASLW4 O@EDIE Shift
ASLWS O@EDIB Shift

ASRW3 @ED1@ Shift
ASRW4 OEDOD Shift
ASRWS OED@A Shift

ATNCLR 00510 Clear ATTN flags to inhibit effect of ATIN key.
Entry: Doesn’'t matter.
Exit: Carry clear 1f ATNFLG was set
Levels: @. Uses: RA(AR),D!

left 3 nibs.
left 4 nibs.
left 3 nibs.

right 3 nibs.
right 4 nibs.
right 3 nibs.D

D
D
X
I
D

AVS2DS 09708 Serd buffer at AVMEMS to display.
Entry: Buffer of chars at AVMEMS terminated with fF byte. P=a.
Exit: P=@, Carry clear.
Levels: 3. Uses: P,AR,H,C,D,Di,RO(1@-5),R2,5TMTRO

BFZDSP @1COE Send a buffer to display.
Entry: D1 points to chars terminated with an FF byte. Otherwise same as BEfFZDSP

BFZSTK 18663 Push a string buffer ontc math stack.
Entry: Di=math stack,P=@. 5@=@ to go to EXPR when done or S@=2 to return when dore.
Exit: P=@,D! adjusted for string, DO urichanged.
Levels: 1. Uses: A(A),E(R),C(R},D(A),R1,D@,D1

CHIRP QECS5A Dces a shart "error” beep.
Entry: HEXMODE.
Exit: HEXMODE
Levels: 2. Uses: AR,B,C,D,P,DQ

CK"ON" @76RD Check tc see 1f ON/RTIN key has been pressed. Needs to be called atter
each statement. Use within operatiorns which you may want to be able to interrupt 1in
process.
Entry: Nothing special
Exit: Carry set 1f ATIN not hit. Carry ciear, 514 (nc cont) set 1t AilN nas been nhit.
Levels: @. Uses: A(5),D1,514

CLRFRC OC6FC Clear fracticnai part of 18 form 1 H/B.
Entry: A/B=15 digit form
Exit: DECMODE, A/B=digit with fracticnal part cleared. Larry set 1t nc tF, clear
atnerwlse. ,
Levels: 2. Uses: AR, B,C(H),P

CMPT 125B2 Return current time in number of 31Zths second since Jan 1,000¢ 1n hex.
Entry: Not 1mportant. »
Exit: HEXMODE, P=Q, Carr¥ clear, C and K1 have current time, KU=timer value

1corresponding to current me.
Levels: 1. Uses: A,H,C,D,P,R@Q,K1,DQ,D1,50-511

105

HP-71 Entry Points

COLLAP @91FB Ccllapse math stack.
entry: MNot imporiarnt.
=x1t: DI=MTHSTH, C(R)=new (MTHSTK), Carry clear.
Levels: @. Uses: C(A),D1

CRLFND @223E Sernc CR/LF to display ignoring current delay setting.
Enteyv: P=@
Zx1t: U=@
Levelrs: 5. \ises: R,BH,C,D,D¥,D!

CRLFOF @c2=236 Sernd curs off, replace curs, CR/LF to display i1gnoring current deiay
setting.
cntry: P=@
Exit: P=9¢
Leveis: 3. Uses: H,B,C,D,D@,D1

CS5LC1S 1B427 C shift left circular.
CSLC14 1B424 CSLC8 1B4cC
CSLC13 1B421 CSLC7 1B4cF
CSLC12 1BALE CSLC6 1B43e
CSLC11 1BaiB CSLCS 1B435
CSLC10e 1B418 CSLC4 1B438
CStC9 1B4i1S CSLC3 1B43B

CSRC1S 1B441 C shift right circular.
CSRC14 1BA3E CSRCA 1B4cC
CSRC13 1B43B CSRC7 1B4135
CSRC12 1B438 CSRC6 1B418
CSRC11 1B435 CSRCS 1B41B
CSRC10 1B432 CSRC4 1BALE
CSRC3 1BacF CSRC3 1B4<2i

glC=R3 03047 Restore C(R),D1 from R3. Ooposite of using R3=D1C.
ntry:

Exit: C(RAI=R3(A), AR(R)I=R3(5-9),D1=R3(5-9). Carry not affected.
Levels: @. Uses: AR,C(AR),D1

EQYEJD 13407 Convert #days since Jan 1,0000 to Julian date (year and day of vear).
ntry: ay#

Exit: SETEEC. R(N)=£ear(BCD), B, C=day of year (BCD).
Levels: . Uses: A,B,C,D,

DAYYMD 133335 Convert dav# to year,month,day.
Entry: C=day# (in hex)
Exit: A=year (BCD decimal), B=month(BCD decimal), D=day (BCD aecimal)
Levels: 1. Uses: A,B,C,D,P

DCHX=C 1iBcDhe
DECHEX 1BeDe Convert dec integer to hex inteager.
Entry for DCHX=C: C(W)= dec 1integer.
Entry for DECHEX: RA(W)= dec integer.
Exit: =@, HEXMODE, R(A)=hex 1integer. Carry set for gcod numper, carry clear 1t
aoverflow; AM= not carrg.
Levels: 1. Uses: AR,B,C,P,XM

DCHXF 1B223 Convert 12 digit floating point to 5 digit hex integer.
Entry: A(W)= floating point number.
Exit: =@, HEXMODE, A{(R)=hex integer, Carry set if number 1s in range ard positive.
Carry clear if out of range. If carry clear and XM=1 tihen number 1s out of range and
FFFFF is returned. If carry clear and XM=@ then number is negative and 1s returned 1in
c’'s compliment.
Levels: 1. Uses: H,B,C,P,XM

DCHXW @ECDC Convert full word decimal to hex.
Entry: P=@, HEXMODE, C=number.
Exit: R,B,b= hex number, carry clear.
Levels: @. Uses: Q,B,b,

DRANGE 1B@76 Verify a byte 1s in range ASCII "@"-"9".
RANGE 1B@7C Verify a byte 1s in specified ranage.
Entry for DRANGE: P=0,R(B)=Byte to check.
Entry for RANGE: P=@, A(H)=byte to check, C(H)=lower bounary, C(3—-Z)=upper boundry.
Exit: P=@, Carry clear 1f the byte was 1n the range.
Levels: @. Uses: C(R)

DSPBUF @9723 Send buffer of chrs to display. Versatile routine; sena until terminator
byte is found or a specified number of chars. Can observe or 1grnore width.
Entr¥: D@ points to buffer.
P=@ to send until terminator byte (specifiea in A(HE)) 1s found.
P=¢ to send number of chars as specified in A(A), Ignore WiDTH.
P=4 As with P=@ but ocbserve width. B(R) must be zero.
Exit: P=@, Carry clear.
Levels: &. Uses: A,8,C,D,D4,Di,R@,R1,R2,5TMTRE@

106

HP-71 Entry Points

ESCSER 023C1 Sena escaoe (ASCII 27 decimal) feollowed by one cther char to display.
Entry: P=@,C(B)=chr to follow the esc.
Exit: ©9=@
ieveis: 4, Uses: A,R,C,D,D@8,D1. If an interrupt cccurs alsco uses S(KSTK /7 KRSTK(K -
oe aware that this uses scme RAM.

EXPR @F23C Function return. HAssumes D@ and D1 are 1in order and stack 1s tree of trash.
Entry: D@=pgm counter, Dl=stack pointer.
Exit: Back to BASIC
Leveis: 4. Uses: Everything.

FILEF @9FB@ Find a file in MRIN file chain only.
FINDF @SF77 Find a file 1n specified chain.
FINDF+ @9F63 As with FINDF but checks for bad data.
Entry: File name in A(W)
For FINDF alsc D(S5)=F for main & piug-ins or D(5)=@ for main oniy.
Exit: P=@, If Carry clear then file was found and Dl=file start, H(W),B(W)=T1le name,
D(5)=device type. (Current device types: U=main RAM, 1=1RAM, ==KUM, JIS=EEFRUM) D(B}=
extender#/oort#.
Levels: &. Uses: H,B,C,D,D1,56,58,R1,K2(1f outside of main search), K3(1f singie
PORT search).

FLOAT 1B3cZ Convert dec integer to 12 digit floating point.
Entry: AR{W)=unsigned integer
Exit: DECMCDE,A(W)=floating point number, Carry set.
Levelis: @. Uses: RW),P

FNRTNY @F216 Return to BASIC from a function.
FNRTNZ2 @F219
FNRTN3S @F235
FNRTN4 @Fc38
Pushes results of a function onto the math stack and go to expression controllier aftter
evaluation. These arethe easiest ways to exit a function which returns a numoer.
Entry for FNRTNL1: A(A)=Pgm counter, Di=stack ptr, C(W)=number.
Entry for FNRTNZ: A{(R)=PC, Di=stack ptr, C(W)=number.
Entry for ENRTN3: A(R)=PC, D! already adjusted for number, C(W)=number.
Entry for FNRTN4: D@=PC, Dl already adjusted for number, C(W)=number.

HDFLT 1B31B Cconvert hex integer (=FFFFF to decimal floating point.
Erntry: R(R)=hex 1integer.
Exit: DECMODE, P=@, A(W)=floating Boint number, Carry set.
Levels: 1. Uses: AW ,B(W),C(W),

HEXASC 17148 Convert up to 7 hex digits to ASCII. Returns the string reversed.
Entry: P=@,A{W)=hex digits, C(5)=number of nibs to convert ((=7).
Exit: P=0,R(W),B(W)=converted string, C(S)=F, Carry set
Levels: @. Uses: A(W),B(W),C(5)

HXDCW @ECB4 Convert full word hex to decimal.
HEXDEC @ECAF Convert A field hex to decimal.
Entry for HXDCW: C{(W)=full hex word.
Entry for HEXDEC: A(R)= 3 hex digits.
exit: DECMODE, A,8,C=result in decimal, Carry clear.
Levels: @. Uses: A(W),B(W),C(W)

HMSSEC 13274 Convert decimal hours,mins,sec to hex seconds since midnigoht.
Entry: A(W)=hours (BCD integer), B(W)=minutes (BCD), D(W)=seconds (BCD).
Exit: P=@,HEXMODE, A,B,C=seconds since midnight in hex, Carry cilear.
Levels: 1. Uses: A,B,C,D,P

INFR13 @C73D Integer/Fraction Split 13 digits.
Returns position of decimal point in P. (f the exponent 1s 14 (representirng a 19 digit
integer) then C(R)=@. If the exponent 1s)14 (but a finite number) then L (H)=3500€d.
Entry:
Exit: A/B=split number
Levels: 1. Uses: A,B,C,P

I1/0AL+ 1197B Allocate 1/0 buffer without leeway check.
I/0ALL 1197D Allocate 1/0 buffer with leeway check.
if buffer already exists will adapt it to size specified.
Entry: C(X)=buffer ID#. I/0ALL needs P=a.
Exit: 1f Carry set then buffer allocated and D1 points past burter header, D@ pcints 1
nib past buffer nheader front (at buf ID), B(A)=buf size or amount 1t was changed 1in
size. C((6-@)=header 1info, C(@)=# aadresses to upgate, C(1-3)=[D#,C(4-b)=pbutrter length.
Iftbqualready exists and was expanded then H=01, D(R)= pcint trom which expanded (from
aocttom).
If carry clear then no room, C(4)=err#, P=4.
Levels: 3. Uses: A,B,C,D,D0,D1

I,0C0OL 11979 Collapse [/0 burfer to zero length. Leaves header. Laution: 1f puf
doesn 't exist then 6 nihs of RAM wi1ll be used without checkirno ieeway. Use L1/0DHL to
eliminate tne header.
Entry: C(X)=bufrfer (D# 107

HP-71 Entry Points

t: It Carry ciear then zero len buffer created. [f Larry set tnen D1= past neager.
« D@=past neader at [0%
eis: <. Uses: H,B,C,D,D@,DI

I/0DAL 11R41 Deallocate an 1/0 burfer.
Ertry: C(X)= buffer I1D#
Exit: Carrv set if buffer deallccated. Carry clear 1f puffer wasn't found.
Levels: &. Uses: A,B,C,D,D@,D1

I/0FND 118BR Find an I/0 buffer and set high bit on buffer ID# so that it will be
ceallocatea at next configuration.
IOFND@ 118Ct Find an I/0 buffer.
Entry: C(X)=Buffer I1D#.
Sxit: If Carry set then C(X)=buffer ID#,Dl1 points past buffer header, A(A)=burfer
lenatn fTield., C(5)=number of addresses thhxn buffer to update. If carry 1s ciear then
buffer was not found.
Leveis: @. Uses: RA,C(R),D1

IDIV @EC7B Hex or decimal full word integer dividge. Caution: 1f denominator=¢ then
this routine will loop indefinitely.
Entry: hex or dec mode, A=dividend, C=divisor.
Exit: mode not changed, P=13, ouotent 1n A, remainder in B ana C, Carry cilear.
Levels: @. Uses: R,B,C,P

IDIVA @ECBE Integer divid in hex or decimal mode. Zeros nipbs 5-13 of A&L then goes to
IDIV. GSee IDIV.

IVAERR @292@ Report an "Invalid Arg” Error. Doesn't return.

KEY$ 1ACA8 The KEY$ function. Pops the last key from key burfer. Can ne used arter
SLEEP to implement KEYWRIT$ function.
Entry: P=@
Exit: Pops the key and places 1t on the stack then returns to BASIL. Does not returr,
be sure D@,D! are accurate.
Levels: 3. Uses: R,8,C,D(A),R@,R1,RZ,50-52,04,D1

KEYCOD 1FD22 Keyccde map. NOT AN ENTRY POINT. Maps the keycode to the defrinition.
%xample:DUEND%INE is #38 which maps to @D hex (RSCII 13).
Entry: t

MEMBER 1B@98 Check 1f a byte i1s a member of a set of up to 8 bytes.
Entry: A(B)=byte to be compared. C(P-@)=set of bytes in the set starting at nib @ of
C and extending to P pointer.
Exit: P=@, Carry set 1f byte was found and 1n set.
Levels: @. Uses: C(WP),P

MEMCKL @12RS Check available mem with or without leeway. Userul before creating
temporary buffer.
bgtPV'd C{R)=amount of mem to check for. P=@ 1f leeway to be adged to amount to be
checked.
Exit: P=@., If carry clear then enough memory, B(A)=amount to chec, R(A)=RAVMEMS.
D1=({AVMEMS), C(R)=available memory minus reguested amount [(f Carry set tnen ncot encugn
memory, B(A)=amount to check for, C(A)=eMmEM.
Levels: @. Uses: AR(A),B(AR),C(A),D1

MPOPIN @BD8D Poo cne number from stack, give Signaled Up message 1t necessary.
Entry: Dl=stack ogointer.
Exit: DECMODE, A(W)=number. If Carry set then number 1s compiex, 1maginary part 1in

Levels: 3. Uses: R,B,C,D,R3,58-11

MPY QECBB Multlfily hex*hex or hex#¥dec.
Entry: [f hex*hex then SETHEX, arguments in R,C. If nhexw®gec then SeETDEL. hex argument
in C, dec argument in A.
Exit: P unchanged, Mode not changed, (Carry clear. Result in H,H,L. {f hex®*hex tnen
result is hex. If hex#dec then result is dec.
Levels: @. Uses: A,B,C

POPIN @BDIC Pop one real number from math stack. Will error cut 1f non-numeric data.
Note: does not move D! past the number on the stack.
Entry: Di=math stack pointer.
Exit: =@, DECMODE. 1If Carry clear then result 1s real and in H(W). It Carry set
then rnumber is complex, real part in RA(W), imaginary part 1in R@.
tevelis: @. Uses: A,B(@). If Carry then uses R@

POPiIN+ @BD91 Pco ! number from stack, check for NaN. Signai 1t aoprooriate.
POP1R @EBFD Pco 1 number from stack, check for NaN.
Entry: Dl=too of math stack.
Exit: DECMODE, A=1iZ digit form of number, Carry clear. Doesn’'t return 1T bad data.
Levels: 1. Uses: A,B{X),P

POP1S @BD38 Poo 1 string from math stack. Exits with DI pointing past header at end of
string (low mem). Errors out i1f bad data. 108

HP-71 Entry Points

Entry: SETHEX, D1 points at string neader.
Exi1t: P=@, RH{H)=string ienagth 1n nips, Ul points at iast char (lOW memory ena’/ 1in
string.
Leveis: W. Uses: HiW),Di P

POPBUF Q@1QEE Pop the last key from kev bdurfer. interrupts are g:sapleg during tnis
routine.)
crtry: Nothing special
exit: Larry set 1f buffer was empty. If Carry clear then Key 1s 1n B(H).
Leveis: @. Uses: B(A),CiW,Dd

POPMTH 1B3DB Skip past first 1tem on math stack. Useful for counting 1tems or SK1p01ng
stuff. Works with strings and complex numbers.
Entry: P=@,Dl=top of math stack.
Exit: P- ,bl.moved past item.
Levels: @. Uses: R,C,D!1

PUTRES 18113 Put a number in the RES register.
Entry: D1 points to numoer.
Exi1t: HEXMODE, P=8, D! unchanged. Carry clear 1f real number, Carry set 1f complex
numoer.
~evels: 1. Uses: R(W),B(@),D0,R@ (If number 1s compliex).

53:010 03526 Save D@,Di in R3.
Entry:
Exit: R3(R)=D@,R3(5-35)=D1,A(R)=C(AR), Carry unchanged.
Levels: @. Uses: A,C(A),R3

RDTEXT 17489 Read a line from a TEXT file to output buffer. File must have a FiH#
(using ASSIGN# in BRSIC). _
Entry: R4(15-14)=file F1B#, OUTES= start of output buffer, AVMEMSD=(UUTES).
Exit: P=@, AVMEMS= after last nib read. If Carry set then C(3-d)=error code. it
Carry clear then S7 set 1f file positioned at £0F, C(H)=length ot line 1inciuding
header, or zero 1f no EOF marker at end of file. Line ienoth header or EUF marker not
copied to output buffer.
Levels: 3S+1 on RSTKBF. Uses: A,K,C,D,D0,D1,R@,R1,RZ, K3, 9,511-59,57,56,54-50

REV$ 1B38BEReverse characters in a string on math stack.
entry: HEXMODE, Di=pointing at string header.
Exit: Dl unchanged, C(A),D{A)=DA. Wiil error out 1f 1tem on stack doesn t begin with
Eroper string header.
evels: 1. Uses: A,B,C,D,P

REVPOP 0BD31 Does a REV$ then POP1S. See POP1S for details.

RNDAHX 136CB Pop, test, round a decimal number from stack.
Entry: Di=top of math stack.
Exit: HEXMODE, P=@, A(R)=hex integer, XM=@. If Carry set then it 1s non-negative
{(incl -@). 1If Carry clear then negative. Will error out if array, compliex, or Nai.
Levels: 3. Uses: A,B(5),B(AR),C(A),D(R),P,S5B, XM

RPLLIN @13F7 Replace a line in a file in memory. Used to insert, delete or replace.
Entry: P=@, OQUTBS=start of replacement line, end of line 1s at AVMEMS, A(A)=address of
last nib+l of file, R3(A)=length of old line in ribs (use zero toc insert).
Exit: P=@, R3(A)=offset to move (destination end minus source end). H(A)=end or
replaced line in file plus one, B(R)=length of replacement iine in nibs, C(R)=(UUTES).
If Carry clear then output buffer is collapsed. If Carry set then unsuccessful and
C(3-@)=err4#.
Levels: 3. Uses: A,B,C,D,DQ,D1,R1,RE,R3

SECHMS 13252 Convert hex seconds time of day to decimal hours, minutes, seccnds.
Entry: C(W)=time of day in hex. ’
Exit: HEXMODE, P=153, A(W)=hours (BCD integer), B(W),C(W)=minutes(BCD), D(W)=seconds
(BCD). Carry clear.
Levels: 1. Uses: A,B,C,D,P

SETALM 1290D Set absolute alarm time.
Entry: A{(11-0)=number of 512ths second since Jan i,ddQd, Cid)=alarm numper (¥-35).
Exit: P=@, Rl=current time in 312ths since year zero, RU=timer value corresponding to
current time. Carry clear.
Levels: &. Uses: A,B,C,D,P,D@,D1,5@-511,R@,Kl1.

SETALR 12917 Set alarm relative to current time. Details same as SETHLM.

SFLAG? 1364C Test a system flaag.
Entry: HEXMODE, P-@0, C(B)=flag number in hex (FF= flag-1).
Exit: HEXMODE, P=@, D(R)=D@. Carry clear 1f flag clear, set 1f flag set.
Levels: 1. Uses: R(R),C,D(A)

SFLAGC 13601 Clear a system flaom and update the annunciators.
Entry: HEXMODE, P=@, C(B)=flag number in hex (FF=flag -1).
Exit: HEXMODE, P=@, D(R)=D@, flag cleared, Carry clear.
Levels: 2. Uses: A(A),B(A),{,DIA),P, plus RAM at ANNAD1-4, SYSFLG.

109

HP-71 Entry Points

SFLAGS 135FA Set a system flag ana update annunciator. Detalls same as SFLHGC.

SFLAGT 136@8 Tcogle a system flag ang undate annunciator. Details same as SFLAGC.

SLEEP @06C2 Scan the keybeoard., go to light sleep 1if key bufter empty. Wakes up when
Key pressed. Leaves the key in the bufrer. Sirnce 1t gebources 1t wlil not recognize a
xev that was down when i1t was entered (won't repeat).
tfltPV'

:x1t_ =3, Carry clear if xeys 1in buffer. Carry set 1f no keys in buttrer.
Levels: . Uses: R,B,C,D@.

SPLITA @CE6BF Split 1z-form in A into A/B. If carry then we nave NaN or I(NF.
NaN= A(R)=0@ra@1, B(XS)=F
Inf= A(AR)=Q@FQ@@, B(XS)=F
Entry: A=numoer to split.
Exit: A/B= split number.
Levels: @. Uses: A,B

STR$@@ 1813C Convert a number on the stack into a string back on the stack using
current display settings.
Entry: Dl=top of math stack. 5@ set if return when done, else jums to EXPR. 51 set
if leading and trailing blanks are to be added.
Exit: P=@, Dl points to string on stack, returns i1f S@ was set. Errors to MEMERN 1f
memory overflows.
Levels: &. Uses: A,B,C,D(R),R@,R1,R2,D1,58,51.

STRTST 1B1C7 Test two strings for equality. Returns position within strings where
equality test failed.
gntry: D@ and D1 at nhigh memory end of the two strings. C(A)= number of nibs tc
compare.
Exit: B(R)=(block comparison length -1)/16, P=(block comparison lenath) mcd l6. D@,01
set at first words not equal. If comparxson length= zero then Carry clear, iM=1. It
strings equal then Carry clear, XM=@. If strings not equal Carry set, XM=d.
Levels: @. Uses: A,B(R),C,P,Da,Di1.

STUFF 1B@Be2 Fill memory with l6-nibble pattern of "stuff”.
WIPOUT 1BOAF Fill memory with "@".
Entry: HEXMODE, Dl=start of area to be filled, C(AR)=length in nibs of area to Stuff.
For STUFF entry A(W)=pattern to stuff, WIPOUT presets H(W) to zero.
Exit: P=@, Dl=past last nib stuffed, Carry clear.
Leveis: @. Uses: #P,C,D1. WIPOUT also uses A.

TODT 13229 Convert time in hex seconds since Jan 1,008 to time of cay, dav#.
Entry: HEXMODE, C(W)=hex seconds.
Exit: HEXMODE, P=135, A=number of days since zero 1n hex, H,C=numober ot seconds sirce
midnight. Carry set.
Levels: @. Uses: AR.B,C,P

WFTMDT @83DD Zero flags(including nib &), write time,date to tile header.
WFTMD— @85D6 As WFTMDT but does not zero nib 2 (nib 2 1s copy code).
Entry: D@=start of file.
Exit: P=@, Ri=file start, D@=time field header.
Levels: 3. Uses: A,B,C,D,P,D0,D1,RO,R1,50-57, pius 32 nibs at SCKTLC.

YMDDAY 13304 Convert vear, month, day to absolute day number.
Entry: A=year (BCD),B=month (BCD), D=day (BCD).
Exit: HEXMODE, P=@, RA,H,C= number of days since Jan 11,0008 in hex.
Levels: 1. Uses: R,B b D,P

YMDHOL 13@ES Convert a time to @0QQYYMMDDHHMMSS.
Entry: C(W)=time in seconds since Jan 1, 0@00.
Exit: HEXMODE, C=0000YYMMDDHHMMSS, Q(B)'HH. B(B)=MMm, D(B)=55, Carry clear.
Levels: 2. Uses. R,B,C,D,P,D@,Dl R@,R1,50-511.

YMDHMS 13@DB Return current time and date. See YMDH@1 for details.
Entry: Doesn’'t matter

Lo

110

	Cover
	Contents
	Introduction
	How to use this book
	Why Program?
	Warning about Damaging your 71

	Getting Started
	It Just Beeps
	BASIC Keyboard Math
	Mathematical Precedence
	Parentheses
	RES Register
	Spaces
	Multi-Statement Lines
	Strings
	Calculator Variables
	Variable Names
	Types of Variables

	The HP-71
	Central Processing Unit
	Clock Speed
	Memory
	:PORTs

	Environments
	Sub-Programs
	CALL Cautions

	Modes
	Command Stack

	Often Used Commands
	Accessories
	Data Storage
	Card Reader
	HP-IL Mass Storage
	Printers
	Other HP-IL Devices

	The File Chain
	Finding Files
	File Header Structure

	data Files
	Creating the data File
	The File Pointer
	Storing data
	Closing the data File

	BASIC Files
	FORTH Files
	LEX Files
	DATA Files
	TEXT Files
	KEY Files
	SDATA Files

	CALCulating with the HP-71
	Long Formulas
	Inside CALC Mode
	“CALCAID” Progran
	User Defined Functions

	Basic BASIC
	HP BASIC

	HP-71 BASIC Programming
	ACYDUCY Program
	INCAT SubProgram
	Interpreted BASIC
	Tokens
	“DECIDE" Program

	BASIC Programming Hints
	PEEK$S & POKES
	Strings in SDATA Files

	Converting From Other BASICs
	Assembly Language Introduction
	Parsing and Decompiling
	The Math Stack

	Communicating With RS-232
	RS-232 Cable
	Setting Up The Interface
	External Keyboards
	Exchanging Files
	Display Devices

	Decimal / Hex / Binary / ASCII Table
	HP-71 Memory Map
	System RAM
	HP-71B Keymap
	System Flags
	Assembler Instruction Set
	Minimum LEX File Requirements
	HP-71 Assembler Entry Points

