

BASICHP-71
Up and Runnmg in »

"CALC Mode, BASIC and Assembly Language

by Richard E. Harvey

=000

The BASIC HP-71

Up and Running in

CALC Mode, BASIC and Assembly Language

Version: 3.0

by: Richard E. Harvey

|

o|

Contents
Introduction

How to Use This book
Why Program?
Limits
Cautions

2 The HP-71
Central Processor (CPU)

Clock Speed
Hexadecimal Numbers

Memory
Environments

Sub-Programs
CALL Cautions

3 Command Performance
4 Getting Started

The Parser at Work
BASIC Keyboard Math

Mathematical Precedence
Parentheses

Strings
Calculator Variables
ZEN and Variables

5 CALC Mode
6 Basic BASIC

HP BASIC
7 HP-71 BASIC Programming

Sub-Programs
Interpreted BASIC
Strings
Control Codes

8 HP-71 Files
The File Chain
BASIC Files
BIN Files
FORTH Files
LEX Files
DATA Files
TEXT Files
KEYFiles
SDATA Files

9 HP-71 Data Files
Creating the Data File
Opening the Data File
The File Pointer
Storing Data
Recalling Data
Closing the Data File

10 BASIC Programming Hints
11 PEEKS$s & POKEs

N
b
y

—
m
E
m
O
O
V
J
A
N
N
A
L
&
W
N
-
=

22

System RAM
Strings in SDATA Files

12 Convert From other BASICs
HP-75 BASIC

13 Assembly Language
Source Files
The HP-71
CPU Registers
Return Stack (RSTK)
Assembling the LEX File

The LEX File
Parsing Functions
Types of Parameters
Decompiling
Entry Conditions

The Math Stack
System Entry Points
Crashes
Instruction Set

The RETURN Stack
Strings From Math Stack
Numbers From Math Stack

Temporary Scratch
Exiting the Function
Assembler Bugs

14 Non—obfuscating Programs
Modular Programming
User Friendly Programming
Menus and Command Lines

15 Accessories
Data Storage

How Much RAM Can I Add?
HP-IL Mass Storage
Printers
Display Devices
Other HP-IL Devices

16 Communicating
Communicating with RS-232C
HP-IL to PC Interface Card

Tables
System RAM
Memory Map
Assembler Instruction Set
Minimum LEX File Requirements
Fields in Working Registers
System Entry Points
System Flags
Display Escape Codes
Dec/Hex/Oct/Bin/ASCII Table
Keyboard Map

85
90
93
98

101
101
102
102
103
105
107
109
110
111
111
111
113
117
117
118
120
120
120
121
123
125
126
128
128
130
130
130
132
135
135
135
137
142
145
148
148
149
150
152
153
154
160
160
161
164

The BASIC HP-71

We can thank Hewlett-Packard for the HP-71, but also the user community, for demonstrating to

HP that there is a need for this powerful, compact tool, and for following though in the years since
its introduction. This book is dedicated to those users.

Introduction
In the early 1970’s we had 15 pound "portable" calculators like the HP-46. In 1972 we saw the
introduction of the HP-35, the worlds first handheld scientific calculator. 1974 brought us the
programmable portable HP-65 with 100 step memory and built-in card reader. At the close of the
70’s the HP-41, an engineering tour de force, became as much at home on a surveyor’s belt, a
student’s desk orfloating in zero-G. Each of these machines, and others between them, share a
design philosophy and RPN (Reverse Polish Notation). Post-fix math has been a way oflife for a
generation.

The mid-80’s saw Hewlett-Packard looking to expand their market and exploit the technological
advances of the computer boom. The 71 has retained the HP design philosophy, but traded in
RPN for greater speed, memory, and an open, expandable operating system, with an advanced
dialect of BASIC.

There are two camps of HP supporters: Those who think that RPN is the only way to run a
calculator, and those who think that HP BASIC is the only way to run a computer. Until the HP-
71, those two factions barely knew each otherexisted.

Well, calculator factions, meet HP BASIC! Thisis not the checkbook-balancing, Pong-playing,
beginner only language found on home computers, but an advanced mathematical tool with several
hundred highly optimized functions. And if you still want it, RPN is just a ROM away.

Personal computers were used for playing Star Wars long before word processors or spreadsheets
were even contemplated. It was a well kept secret for years that computers are fun. Let’s get some
work done, but, let’s make it an enjoyable experience. That’s the attitude we’ll share in this book.

This book is designed to introduce the novice or experienced user to the HP-71, CALC mode, and
HP BASIC, but not leave him there too long. We’ll discuss the 71, not as a mystical beast with
powers known only by an elite few, but as a learning and working tool. We'll also describe the
internal design of the 71 and Assembly Language programming, supporting these discussions with
several tables and charts. Much of the material covered in volumes one and two of the HP-71
Internal Design Specification is paraphrased, making the purchase of those books (at about $100)
unnecessary except for the most devoted Assembly language user.

Copyright © 1986, 1987, 1988
Richard E. Harvey
Box 5695

Glendale, Arizona 85312 USA

The BASIC HP-71 1

How to Use This book 1

Much ofthis book is reference style,it isn’t necessary to read it from start to finish. Most of the
charts and tables are at the back of the book. While this may cause some page shuffling at first
reading, it makes this important reference material easier to find later without having to wade
through several thousand words of flowery prose.

Most subjects are given a cursory introduction, followed by greater detail. We’ve tried to include
most material on a subject in the same section to minimize darting back and forth. For example,
TEXTfiles are discussed in an introductory manner, then using them in BASIC,then their

internal structure (down to the nibble level), in the same section. Each section begins with a main
heading, and most topics have a layout generally as follows:

Main Topic
Whatit does
Application
Fanatical Detail

The obvious disadvantage of this system is that, if you haven’t used HP BASIC or your 71 much
yet, then some place about the middle ofthe third part it’ll look like its drifting off into a foreign
language. The glossary in The HP-71 Reference Manual will aid in the translation to English, or you
could reserve reading those sections in this book until a later date.

Examples are indented from the left margin, and are explained in the immediately preceding text.
Since an example may be at the end of a discussion, text which follows will not necessarily have
anything to do with it. Numbers are printed in STD display format. Remarks in examples are
preceded by and exclamation mark, even when we're illustrating Calc Mode;this is the standard
HP BASIC wayto indicate remarks, so there’s no time like the beginning to become comfortable
with it. Boxes with a simulated flashing cursor (actually, a "§" character) simulate the LCD display
on the 71, though they occasionally overflow quite a bit on the right. Nested boxes along the left
side of the page demonstrate a series ofsteps to follow. When relevant, a second box on the right
showslikely results of the experiment (usually without the flashing cursor).

Listings of Assembly Language follow the standard Assembly indentation format: Labels are left
flush and code is indented eight spaces. Programs supporting a topic are listed with the topic.
Other sample programs and subroutines are scattered throughout the book, and many are not
mentioned in the text at all; we’ll leave it to you to make these discoveries.

The 71 understands commands written in either upper or lowercase. In this book, we’ll usually
show commands in UPPERCASE to help distinguish them from text. Either ofthe following is
acceptable.

beep BEEP

We'll also often say "Now, create a file called TEST" thoughit isn’t always necessary, andit really
doesn’t matter what you call the file. If you want to follow the example and you already have a file

2 How to Use This Book The BASIC HP-71

called TEST, feel free to use anotherfile name. Computer technical journals, for example, often
call things FOOBAR; these are personal computers,after all.

While we’ll cover quite a bit of information quickly, there are no prizes for speed reading. Take
your time and explore your 71, you may be surprised about how much you'll find. If you are new to
your 71, Chapter 3, "Command Performance" should help you get started without having to wade
too deeply through the HP-71 Reference Manual.

Version 3?
There’s little you can’t do with a 71. To help prove that point, the first version of this book was
printed with one. Files were either written on the 71 connected to a terminal, or transferred to the
71 over RS-232 and stored on the 9114 Disc Drive (on a single disc). All file management, text
formatting, and printing tasks were handled by an HP-71B with 17.5K of RAM using programs
written by the author. Because of the long battery life of the HP82161A Cassette Drive, most
printing was done from Cassette based files. While there’s much to be said for the right tool for
the job, who can define whatis the right tool in all cases? Most often, the job is made to fit
available tools. Our 71 is a more portable, personal, and versatile computer than the desk-bound;
what can it do? Whatever you want! While version 3.0 was edited with a desk-top computer, the 71
was alwaysatits side, usually connected by HP-IL cable. Changes in this latest revision include
more consistent organization, clearerillustrations, and an index.

Handheld computing has changed considerably in the nearly two years since this book was first
printed. The HP-75 has been discontinued, leaving the 71, and the singular HP-94, alone in data
collection and system monitoring. New HP calculators, including the HP-19B business calculator
and HP-28S scientific calculator, share some of the technology, though not the expandability or
BASIC language of the 71. And the amazing 71 itself has undergone changes to provide more
immunity to static energy. Perhaps the most important development is the variety of new memory
modules, opening up the 71 to tasks previously requiring many pounds of hardware.

Why Program?
Plug in a ROM,,fire it up, and there you have it: Instant solutions. Many people buy a 71 with that
single objective in mind. Then they think, "What else can I do with the data from the Finance
ROM"or "If only my 71 could..." With an understanding of BASIC comes not only the ability to
write programs, but also the skill to make better use of those we already have. This personal
computer becomes more personal when we learn to use it our way, not somebody else’s; we can
adapt the machine to our needs, not the other way around.

A principal use of personal programsis to solve little problems: To copy a list offiles between
Discs, solve those math equations we always use, or set-up the printer for compressed type. And
once we're comfortable with these solutions, we can do just about anything, for a large program is
a group of smaller solutions. With this knowledge we can rewrite our favorite HP-41 or BASIC
programs from other machines to run on our 71. Or modify distributed programs to suit our own
needs.

Lest we forget, programming (along with its associated discoveries) is fun! Working through a
program provides as much pleasure as having it done. And, a program is nevertruly finished.

Chapter 1 How to Use This Book 3

Limits
The material presented herein is informational only and not warranted for any application. While
every effort has been made to assure the accuracy of the information, no liability is assumed.
Determination ofsuitability and implementation are the users responsibility. These materials are
the property of the author. By receipt of these materials the user agrees to abide by applicable
copyright laws.

Cautions
There are no wrong keystroke combinations. The 71 may beep, scold you with an error message, or
even display the ominous sounding "Memory Lost" and resetitself, but there is no way to damage
it by pressing keys. No operations described in this book will cause a crash (freeze the LCD, or
keyboard or display that message) if the directions are followed exactly. The operations least
forgiving of mishaps are POKEing, and testing Assembly Language routines. It is suggested that
you make backup copies of all importantfiles before trying the more esoteric operations. Don’t
assume thatfiles in a PORT aresafe.

A controlled crash (INIT-3) is often used to purge unwanted files and restore the machineto start-
up conditions. INIT-1 will usually free the 71 from any "stuck" situation. The 71 was designed to
perform this operation, there is no damage. You can do an INIT-1 by pressing the ON key and /
key simultaneously, then pressing ENDLINE at the prompt. For INIT-3, press the 3 key before
pressing ENDLINE.

A very rare crash won’t respond to INIT-3. There are two courses of action: Pull out modules and
batteries (and un-plug the AC cord), and hold the down ON key for about 30 seconds. If that
method doesn’t revive the poor confused beast then leave the 71 sitting (without battery) overnight
until the circuits are completely discharged. HP has been known to suggest opening the card
reader compartment (remove the card readerif present), and shorting together the two taller pins
on either end of the row of pin connectors with a paperclip, forjust a second. The one time the
author has seen the need for this drastic fix was on a day of 105 degrees and under 10% humidity.

WorkBook71
WorkBook71is a software package for the HP-71 including Virtual Memory Spreadsheet, File
Manager, Data Format Converter, Full Screen Text Editor and Text Formatter. The ROM version
includes an RPN calculator and several other utilities. Please contact the author or dealer from
whom you purchased this book for information.

L)

4 How to Use This Book The BASIC HP-T71

The HP-71 2

In many ways the HP-71 is a hybrid of calculator and computer, part way between the HP-41 and
HP-75. The 41 has a 1-bit CPU which evolved from the HP-35 in the early 70’s, and the newer
HP-19B and HP-28S calculators use a processor similar to the 71. The 75, on the other hand,is
an 8-bit portable computer which evolved from the desk-bound HP-85. Before introduction, HP
had considered calling the 71 the "HP-44" because of the great popularity of the HP-41, then
rationalized that,since it is a true computer, it should have a computer name. Hewlett-Packard
attaches internal names to products under development; the HP-75 was the Kangaroo, and the
HP82161A Cassette Drive was called Filbert (really!), and the 71 is Titan. In addition, the
microprocessor (CPU) which controls Titan is called Saturn, and the internal bus structure is
Capricorn.

Central Processor (CPU)
The 71 has a custom 4-bit CPU. Fourbits means that four address lines carry data into and out of
the processor. Everything else being equal, this would make the 71 four times as fast as the HP-41,
and halfas fast as most desktop machines. However, the 71 is a next generation machine, handling
full precision floating point mathin its 8-byte CPU registers. Registers in the CPU in most
desktop computers, by comparison, can only hold two or four bytes, thus making floating point
math on the desktop machine somewhat slower than integer only. These large registers mean that
the 71 is optimized for "hard" math and will provide greater accuracy than, for instance,
interpreted BASIC running on an IBM PC.

Clock Speed
Another unique aspect of the 71 is the low power consumption. Partly responsible for this is the
relatively low clock speed. With the ease of doing high precision math, the HP engineers
rationalized that great processor speed would not be necessary. Most 71’s run ata little over 600kz,
though this speed varies with the number of devices attached (combined city and highway, your
mileage maydiffer). This is the speed at which the CPU runs, and does notafféct the speed of the
real time clock or tone of the beeper. When doing speed comparisons with other computers,this
compromise will be immediately apparent. In purely mathematical tests the 71 will keep up with or
surpass the desktop machine, while other operations, primarily those dealing with a great deal of
memory accessing, the desktop machine will win.

Clock speed is re-computed each time the 71 is reconfigured, which happens when the 71 is turned
on or :PORT:sare altered. You can see your 71’s current clock speed with the following:

! Find the current CPU speed.
LP$=pEEK$(~2F977-,5m] ! Then display it.

DISP HTD(P$[S5])&P$[4,416PS$S[3,3]1&PS$[2,2]14PS[1,1]) 168

Hexadecimal Numbers
In the above example, "2F977" is a location in memory expressed in hexadecimal (base 16).
Numbers are generally handled in standard decimal (base 10) format, so the 71 keeps hexadecimal

Chapter 2 The HP-T1 5

(usually called just "hex") in strings. The keyword HTD converts the results of the expression to
standard decimal (base 10) format, and DTHS$ converts decimal numbers to hex strings. The
hexadecimal number system is often used to simplify communications with the binary world of the
computer. Everything within the HP-71 is represented in the binary (base 2) numbering system
internally. Binary digits or "bits" (a contraction of parts of both words) can have a value ofeither
zero or one. This limited range is made usable by grouping units of four bits into a nibble or, as
we’'ll call it throughoutthis book, a nib (an alternate spelling is "nybble"). Various combinations of
zeros and onesin these four bits represent values from zero (all bits clear) through fifteen (all bits
set). So, hex is a convenient way to deal with binary numbers.

Decimal Hex Binary Decimal Hex Binary

0 0 0000 8 8 1000

1 1 0001 9 9 1001

2 2 0010 10 A 1010

3 3 0011 11 B 1011

4 4 0100 12 C 1100

5 5 0101 13 D 1101

6 6 0110 14 E 1110

7 7 0111 15 F 1111

In hex, "9" plus "1" is "A"; values between 10 and 15 are represented as a single digit of "A" through
"F". The 71 represents values larger than 15 (or "F" in hex) in groups of nibs called words. The
most common word size is two nibs, or one Fyte, though word size differs with other machines.

Memory
To keep things sorted out, the 71 assigns an individual number, called an address, to each nib of
RAM and ROM. Memory location "2F977", named CSPEED,is where the 71 stores the current
clock speed setting. Notice that we specified five hex digits for the location; since the HP-71 has a
4-bit CPU,all locations are nibs or 1/2 bytes. A five nib word size, therefore, addresses "FFFFF"
or 1048576 nibs (including nib "00000") of memory. This translates to 524,288 bytes, or simply
512K. So, the maximum amount of memory, RAM or ROM,is 512K bytes.

A 71 with ostensibly 17.5K bytes of RAM has only about 16K available, even when first turned on,

nothing in it. This is because the Operating System reserves part of RAM for pointers and other
necessary system information, like CSPEED. This seemingly inflated rating of memory is actually
less than most portable computers which often usurp 4K or more just to be able to power-up. And
desktop computers can squander as much as 80K or more before loading any programs.

The Operating System and BASIC live in four 16K ROMs in the first 64K bytes (from address
00000 through 1FFFF) of the memory map. This is known as "hard addressed" or "hard
configured." Thatis, regardless of how memory moves around (and it does, whenever we add
memory or plug-in ROMs), the Operating System will always have the same home. In this world of
flux, that 64K block of ROM will remain constant. This stability is invaluable for the Assembly
L.anguage programmer who wishes to use subroutines from the Operating System. Hewlett-
Packard has guaranteed that the official entry points will remain constant, even if the 71’s
Operating System is changed. An entry pointis the address of the beginning of a machine language

6 The HP-T1 The BASIC HP-T71

subroutine. While these addresses won’t change, the code following may; for this reason you
should only use documented entry points. Over 100 entry pointsare listed in the back of this book.

:PORTs
All of memory, indeed all devices attached to the 71, are addressed through a bus. That can almost
be takenliterally: A piece of data can tell the bus whereit is going, and the 71 delivers it to that
address. The 71’s engineers took advantage of this system to allow portions of RAM to be
partitioned from MAIN RAM. When a portion of RAM is designated as independent RAM,;it is
removed from MAIN RAM, and its address is reconfigured to look much like a ROM. Thefiles
arestill accessible; you can edit and copy them like files in MAIN RAM. Files in PORT RAM will
usually not be lost in the event of a crash (though, nothing is truly secure). There are also
provisions for PORT Extenders to address beyond the standard S PORTs, though no PORT
Extenderis currently available.

Port 0.04 Port 5

HPIL Card Reader
Main RAM
Ports: 0, 0.01, 0.02, 0.03

Port 1| |Port 2 Port 3| |Port 4

0 This is main RAM as well as the optional HP-IL ROM. Memory in MAIN
RAM can be partitioned in 4K blocks from .0 (or, simply 0) through .03, and is
followed by the HP-IL Module. If any RAM is added internally, it becomes an
extension to PORT 0, and the HPIL Module moves up one (for example: 0.05).

1-4 The front module PORTs.

5 The Card Reader port, though it’s justas likely to have a large RAM module
addressed there.

Environments
The HP-71is unique in the world of personal computers. Itsfile structure, operating system and
advanced BASIC are brilliant. But environments are often played down or at least taken for
granted. An environment, in computer terms at least, consists of a set of programs and data. The
71's proclivity for multiple environments is usually found only on very large computers, often using
the incredibly large and complicated UNIX operating system. Let’s spend a few minutes discussing
the interaction of files and environments in the 71, and what that has to do with us.

The global environment includesthe file system (programs, key assignments and such) and all
flags, the option base setting, and calculator variables; actually, pretty much the whole computer.
When we RUN a program,the calculator variables are directly accessible to that program. For

Chapter 2 The HP-71 7

example,let’s assign a value to a variable, then see how it is used in a program. First, give variable
X the value of 5:

 ! Assign the value -5 to
=-5§ ! the variable X.

Now, a program to display the contents ofthat variable. We'll create a BASIC program file named
TEST,then place a single line in it (line 10) to display the contents of X.

 ! Create a BASIC program
| I file.I_EDIT TESTH

10 DISP "Variable X=";X# ! Write a line to the file.

Since it’s the currentedit file, we can run it by pressing the RUN key. When the program runs,it
displays the contents of X (the value -5). After the program is through (that is, almost
immediately, since it only runs for a fraction of a second), we can confirm that X still contains -5:

x3 -5

Now,instead of pressing RUN, let’s CALL the program.

CALL TESTH# Variable X= 0

What happened to X? The value is zero because we CALLed TEST which, in effect, made it a sub-
program. When a sub-program is CALLed, a temporary program environment for its own
variables is created, and the calculator variables are ignored. So naturally, X had no value in that
temporary program environment. When the CALLed program ends,its environment is eliminated
and the calculator variables are again active. In fact, now that the CALLed program has ended,its
environment is gone and we can confirm that X still has the value -5 in the main environment.

x# -5

The CALLed program can use the same variable names as the main (calculator) environment
without fear ofaltering them. Besides preserving the computerin the state we want it, CALLing a
program has the added advantage that all of the memory the program used while it was running is
reclaimed when the program ends. Now that we’re done, you can erase the file to reclaim memory:

 ! Delete the BASIC program
PURGE TEST# ! file from memory.

8 The HP-T1 The BASIC HP-71

The following is a simplified "Memory Map," that is, a chart of how memory is laid out in the 71. A
more detailed map can be found at the back ofthis book.

Memory Map What’s There

High Memory Plug-In ROMs & RAM.
Calculator Variables.

Unused Memory
Programs & otherfiles.
Global Environment.

Low Memory Operating System.

As you can see, programs and variables are at opposite ends of memory, there is no direct
rclationship between a program and calculator variables. When we RUN a program (with some
exceptions we'll discuss in a minute) it will use these same calculator variables. This is how
memory is arranged when a program is CALLed:

Memory Map When a program is CALLed

High Memory Plug-In ROM & RAM Modules.
Calculator Variables (on hold).
Active Temporary Program Environment.

Unused Memory
Programs & otherfiles.
Global Environment.

Low Memory Operating System.

When the program is CALLed, the calculator variables are left where they are, and new variables,
in a separate environment, are created below them in memory. As far as the CALLed program is
concerned, this temporary environmentis all that exists; it couldn’t find the calculator variables
with a Bloodhound. While it isn’t necessary to remember how memory is arranged (the 71 keeps
everything organized for us),it is important to understand environments and the differences
between RUN and CALL.

A suspended environment also contains other program information, such as the current
ON ERRORsetting, FOR-NEXT and GOSUB stacks. So, for instance, neither an error in the
sub-program nor RETURN will return us to the calling environment;it requires END or END
SUB.

Sub-Programs
Many programs begins with a SUB statement to declare the entire program to be a sub-program.
Again, the intention is to makeit easier to run the program and to preserve the calculator
environment. Unless a special purpose dictates otherwise, most commercially available programs
for the HP-71 are written as sub-programs.

A program which has been CALLed may, in turn, call another program (using the CALL
command which is programmable). It is conceivable that several environments may be stacked in
high memory. Each time a program CALLSs another,its own environment is saved and the

Chapter 2 The HP-71 9

temporary environmentis created. Again, when the CALLed program ends, the calling
environment is again active.

This unique multiple-environment scheme is even more useful than first impression leads. Up to
fifteen data items may be passed between programs, and a program may even CALL itself. The
following little program is an example of CALLing programs. The variable X is a counter which is
passed from program to program. However, the program CALLSs itself, increments the counter,
and, if the counteris underfive, will call itself again. Once the program has ended, recall the value
of X and you will see thatit is now 5 because thatis the value returned in the last SUB program
CALL. To get a teel for how it runs, press ATTN to suspend the program while it runs, then single-
step throughit by repeatedly pressing the £-SST key to watch it loop.

10 X=0 ! A recursive program.

20 CALL ENVIRON(X) ! call the program.
30 DISP "DONE" @ BEEP
40 END ! end of main program.

60 SUB ENVIRON(X) ! the sub-program.
60 X=X+1 @ DISP X;
70 IF X<5 THEN CALL ENVIRON(X) ELSE DISP ! call, passing X.
80 DISP “END,"; @ BEEP 4000 @ END SUB ! done.

CALL Cautions
When a program is suspended by pressing ON, an error in the program, or the keyword PAUSE,
the program environmentis still active. 1f you then CALL another program, or the same program,
this environment will again be active when that program ends.If you repeatedly CALL a program
and suspend it, in very short order you will be out of memory. The SUSP annunciator on the right
edge of the LCD displayis lit whenever a program has been suspended. RUNning a program will
automatically end all programs which have been suspended.

A second problem with suspending programsis open data files. Suspend a program which has
opened a file or two, then CALL that program again, and those files will still be open. The 71, not
liking files opened more than once at a time (especially with the same file number), will cause an

error in the program. You could end up with a nasty mess when the program has an error trap that
keeps asking you for a differentfile name and keepstrying to give it the same channel number.

Lo

10 The HP-T1 The BASIC HP-T71

Command Performance 3

These keywords handle most of the day to day, non-programming tasks we ask of our 71. It would
take a 400 page book to properly list all of the keywords available. In factit did, all of the keywords
are listed alphabetically in the HP-71 Reference Manual. We'll introduce keywords used in pro-
grams later when we talk more about programming.

ASSIGN IO Assign HP-IL Devices.
When the 71 powers-up,it assigns devices found on the loop. Though you may use ASSIGN IO to
assign device codesif you want,it isn’t necessary. The problem is that the device code is associated
with the address on the loop, not the device, and you will have to use ASSIGN 10 again each time
you re-configure the loop. It’s much easier to address a device by its device name such as :TAPE
or :DISPLAY orthe location on the loop. For these reasons, most 71 users don’t assign device
codes. The HP-IL Interface Manual notes syntax and usage of ASSIGN IO. If you've experi-
mented with device codes and wish to eliminate them enter:

ASSIGN IO * | Cancel HPIL device code assignments.

CALL,CONT, RUN Running Programs.
When you RUN a program (by pressing the RUN key or entering RUNfilename), that program be-
comes the current edit file when the program ends. If you often use a single program, you might
RUN it once,then it will only be necessary to press RUN the next time you need the program
because it will become the current editfile. On the other hand, after a CALL the current editfile

does not change. You can use these two features together: CALL for the utilities and programs in
ROM, RUN for the workhorse program you often use. RUNning and CALLing programsis
covered in greater detail Chapter 2, "The HP-71."

RUN ! (or the RUN key) Run the current program file.
CALL ! Call the current file as a sub-program.

RUN APROG ! Run the program file named “APROG".
CALL APROG(X,Q$> ! Call "APROG" and pass two parameters.
CONT | Continue running the current program where it stopped.

f-CONT ! Pressing this key continues running the current program.

CAT,CAT ALL View Catalog Listings.
CAT ALL displays file names, type (BASIC, TEXT, etc.), size in bytes, date and time of cre-

ation, and the :PORT (if applicable) UP, DN, g-UP and g-DN keys move us through all files in the
chain. In addition, two other keys take on a special meaning during CAT ALL: £-LINE moves to
the next :PORT, and £ -EDIT makes thatfile the currenteditfile (if it is BASIC). The ON key
terminates CAT ALL. The catalog entry for individual files can be displayed with the CAT key-
word by specifying a file name, :PORT, or mass storage device name.

Chapter 3 Command Performance 11

CAT | Display the catalog entry of the current file.
CAT AFILE ! Catalog of file named “"AFILE".
CAT :PORT(2) ! Catalog of all files in :PORT(2).
CAT AFILE:PORT(0) | Cat of the file "AFILE" in :PORT(0).
CAT ALL ! Catalog of all files in RAM and :PORTs.

CAT :TAPE ! Cat of the entire medium; similar to CAT ALL

CAT AFILE:TAPE ! Cat of file "AFILE" on Disc or Cassette.

CAT CARD ! Catalog of a magnetic card track.

COPY File Utility.
The most useful file command. It copies files between RAM, Magnetic Card, :PORTSs and Mass
storage. How it works depends on where you are copying the file to, and if a file by that name al-
ready exists at that destination. If you are copying to RAM from a mass storage device, you cannot
overwrite a file already in RAM by that name. However, copy a file from RAM to Disc and the
copy will be made, possibly overwriting a file already there with that name. The idea is to make it
easier to make a backup copy of a new versinn of a file without first purging the old one.

COPY AFILE TO BFILE | Copy "AFILE" to new file called "BFILE".
COPY AFILE:TAPE | Copy "AFILE" from Disc to RAM.
COPY AFILE TO :TAPE ! Copy a file from RAM to Disc.
COPY :CARD TO AFILE ! Copy a file from magnetic card to RAM.

CLAIM PORT, FREE PORT, SHOW PORT
The most readily apparent PORTs are those four along the front edge of the computer, and the
Card Reader. When we plug RAM modules into the 71, they become part of main RAM,and files
there are part of the main file chain. To organize things, we can partition memory into separate
PORTs. In addition to the front PORTSs (numbered 1-4 from left to right), we can separate main
RAM into PORT:sof4K each, called PORT(0) through 0.04. PORT(0)is the first 4K,
PORT(0.01) is the second, and so forth; the HPIL Modaule is the last part of PORT(0).
Commands to reserve and reclaim PORTed RAM are not programmable;if you are writing a pro-
gram requiring PORTed RAM, be sure the memory is set aside before the program begins.
BASIC keywords for moving files between PORTs arefairly straightforward, though the names
may be difficult to remember:

CAT :PORT(0) ! View headers of files in :PORT(0).
FREE PORT(0) ! Reserve a block of RAM as Independent.

MEM(0) ! Return the free memory in :PORT(0).
CLAIM PORT(0) ! Purge :PORT(0) files, reclaim memory.

SHOW PORT | List :PORTs and sizes.

COPY AFILE TO :PORT(0) ! Copy a file from main RAM to :PORT(0).
COPY AFILE:PORT(0) TO :TAPE | Copy file from:PORT(0) to mass storage.
PURGE AFILE:PORT(0) ! Purge "AFILE" from :PORT(0).

DEF KEY Customize the Keyboard.
Press £-USER and the "USER" annunciator in the LCD lights (or turns off) and little else happens.
Unless you want to countletting you create your own custom 71. How about running a program by

12 Command Performance The BASIC HP-71

pressing a single key, a keyboard full of custom typing aids, or a completely redesigned DVORAK-
style keyboard?

The three types of key assignments (aside from those the 71 was born with) are typing aids,
immediate execution, and direct execution. The character following the key assignment string tells
the 71 which type of assignment:

; Semicolon for a typing aid.

Colon for direct execution. These commands are directly executed without
entering them in the display or onto the Command stack. These assignments do
their business without entering anything in the display.

" No punctuation (or a space). These are called Immediate Execute key
assignments. Like a typing aid, but also automatically "presses" ENDLINE at the
end ofthe string. The command is entered onto the Command stack.

We won’t eventry to list a key map here; if you’d like to see one, you'll find one at the back of this
book. While you could use the keymap codes to define keys, why would anyone want to try to re-
member those codes? Instead, we usually leave the bottom row editing keys as they are, and assign
to the £ - and g- shifted keys on the top three rows. Since the g- shifted keys are already assigned
for useful typing aids (suchas the lowercase alphabet), the £~ shifted keys are the most convenient
to re-assign. For example,to assign the character " =" (which is not normally on the keyboard) to
the £ - shifted Q key as a typing aid:

DEF KEY "fQ",CHR$(126); ! Assign ~ to the f- shifted Q key.

These examples show the "f"in lowercase for readability, though it’s not really necessary. Now,
restore the key to its original definition:

DEF KEY "fQ" | Removes key assignment from f- Q key.

Ifyou have the KEYWAIT$ (not WTKEY$) keyword, you can simplify key assignments a bit.
Instead of the assignment key, specify KEYWAITS$ and the 71 will wait for you to press any key
and assign the string to that key. You can tell if you have KEYWAITS by trying it: Type the com-
mand and press ENDLINE,;if the computer seems to "hang" until you press the next key, then
displays that key’s code,it’s there.

DEF KEY KEYWAITS$,CHR$(96); | Assign ‘ to the next key pressed.

Key definitions may be any number of characters which will fit on a single line. You can eliminate
the spaces between commands if yourstring is quite long. This next exampleis also a typing aid,
butit includes four escape codes to move the cursor left over the "1" in "+ @[1,4]". Since it’s a typ-
ing aid, we could have used CHR$(8), the backspace character, instead of CHR$(27)&"D",
because the 71 interprets them the same. These typing aids are often called "boilerplate text;" that
is, they contain standard information useful for things like entering data in a spreadsheet.

DEF KEY “fS", “+@[1,4]1"&CHRS(27)&"D"&CHRS (27)&"D"&CHRS (27) &"D"&CHRS (27) &"D" ;

+e[§, 4]

Chapter 3 Command Performance 13

Direct Execute keys do exactly that; press the key and whateveris assigned to it is performed with-
out displaying anything, and without altering the contents of the Command Stack. Many programs
ignore Direct Execute key assignments, though others which use INPUT will accept them and the
automatic ENDLINE they "press." This key assignment calls a program called RPN:

DEF KEY “f£3","CALL RPN": ! Directly execute a program.

If you often use complex formulas which really aren’t complex enough to require programs, you
can assign them to keys instead of writing those programs. The trick is the keyword DISP$, which
reads whatever you've typed onto the command line. DISP$ returns a string, so if your formula re-
quires a number, you can use VAL to interpret the string as a mathematical expression and return
the number to the function. These examples do decimal to hex and hex to decimal conversions.
Simply type a number (or a mathematical expression), then press the key; the number you typed is
passed to the function via DISP$, and the answeris displayed. The stack is unchanged.

DEF KEY "fH","DTH$(VAL(DISP$))": | Reads display as a number.
DEF KEY "fD","HTD(DISP$): ! Enter a hex value and press the key.

The third type of key assignment, Inmediate Execute, appends the string to whatever you've
already typed in the display, then surreptitiously presses the ENDLINE key for you. If you haven’t
typed anything, they operate like Direct Execute keys, except that the string is added to the
Command Stack. Less versatile and usetul than the other two types, they seem almost to be a
throwback from an earlier computer.

Once you are comfortable with them, you’ll probablyfind yourself often using temporary key as-
signments instead of writing programs. A key assignment might even be a little program in itself,
one long line with FOR... NEXT loops and such. You can even assign regular keys to special tasks
and use £-USER as g-1USER as extended shift keys. Though watch for programs which set user
mode (like the HP Text Editor), because you're stuck in user mode, with whatever you've assigned
to the un-shifted keys in the way, while the programs run. g-1USER is an interesting key. If you are
in User mode, pressing it will cause the 71 to ignore the key assignment of next keystroke and will
instead return the regular key assignment. However,if you are not in User mode, pressing g-
1USER will return whateveris assigned to the next keystroke. It’s a clever key which can get you out
of situations like accidentally re-assigning the ENDLINE key.

So, how do you recall what’s assigned to a key without pressing it, and how do you preserve these
carefully hewn jems for posterity? If you want to look at a key assignment without changing it,
press £ -VIEW followed by a key which has an assignment, and the definition will remain in the dis-
play for as long as you hold the key down. FETCH KEY brings the key back for editing, and
KEYDEEFS returns the definition as a string.

FETCH KEY "f1" | Recall the string for editing.

K$=KEYDEF$("f1") ! Recall the key as a string to KS$.

Key assignments are maintained in a file called "keys" of the file type called "KEY" (no confusion
there?). When you create a key assignment, you are writing to this file. It's a realfile, so you can
treatit like one. You can have multiple key files, though only one at a time can be called "keys".

14 Command Performance The BASIC HP-T71

COPY keys TO MYKEYS ! Creates a spare copy of the keys.

COPY MYKEYS TO keys | Copy, not rename, a file to the key file.

MERGE MYKEYS | Add the keys to the current definitions.

PURGE KEYS ! Eliminates key assignments.

DELAY Display Delay Rate.
The 71 pauses between displaying a series of lines to make sure we have time to read them on the
L.CD. The amount of time for the delay, and the speed at which lines which are too long to fit in
the LCD will scroll, are set with the DELAY keyword. A setting of 8 (eight) or greateris inter-
preted as "INE" (infinity), the 71 will display the current line until you press a key. A delay of zero
causes the display to change whenever new data is available. A scroll rate of INF will inhibit long
lines from scrolling (the left and right arrow keys let you to view the whole line). Many programs
alter this setting without restoring it. The default (the way the 71 works when reset) setting is a
delay of .5 seconds and a scroll rate of .125. Many people prefer zero delay with INF scroll rate.

DELAY 0 ! Line delay rate to zero.

DELAY .5,.126 ! Line delay 1/2 sec, scroll 1/8.

DELAY O,INF ! Zero delay, don/t scroll.

DESTROY Erase Unwanted Variables.
The 71 automatically creates calculator variables as they are used in a program or CALC mode.
They do notexist until they are first used. The memory these variables consume can be reclaimed
when they are no longer needed using the DESTROY keyword. This is not as lethalas it sounds,
no smoke will rise from the card reader port, all that will happen is the memory used by the vari-
able will be reclaimed. You can use DESTROY with a variable name, evenif the variable doesn’t
exist, without causing an error. It isn’t necessary to include the parentheses when you specify an
array to be trashed.

DESTROY ALL ! Frees memory used by calculator vars.

DESTROY X,A$! Frees memory used by vars X and AS.

EDIT, PURGE File Utilities.
These two keywords create new files and eliminate files when they are no longer needed. PURGE
can be used on any file type in RAM or on mass storage, unless the file has been SECUREGA(see
below). The file will be eliminated and any memory it consumed will again be available. There is no
undo; when you’ve PURGEA a file, it would be difficult to POKE it back into shape.

The EDIT keyword can only be used with BASIC file types. If the file specified does not exist,it
will be created; this is the only way to create new BASIC files. We can only edit BASIC files in
MAIN RAM or :PORTs, not on mass storage.

The BASIC workfile is the currentfile whenever you enter EDIT without specifying a file name. If
you enter EDIT workfile, a regularfile called WORKFILE will be created. The workfile catalog
entry is, like the active KEYSfile,listed in lowercase. If this file is copied to, for instance, Disc
without specifying a difterent file name, the name becomes UPPERCASEin the destinationfile,
and is therefore a conventionalfile.

Chapter 3 Command Performance 15

The BASIC workfile is the scratch file used for experiments and quick solutions to small problems.
Since BASIC is always in "program mode", it’s suggested that this file be made the currentfile
most often to avoid the chance that an important BASIC program could accidentally be changed.

EDIT ! Edit the workfile.
EDIT AFILE ! Edit a BASIC file called "AFILE".
PURGE ! Purge the current file.

PURGE AFILE | Purge the file called "AFILE".
PURGE AFILE:TAPE ! Purge the file "AFILE" on Disc.
PURGE ALL ! Careful with this one: it deletes everything not secured!

END,END ALL Ends Suspended Programs.
Many times we will suspend a program using the ON key. The END keyword can be executed from
the keyboard to properly terminate the program. The main reasons for doing this are to close any
possibly open data files and to regain the memory used by variables in these programs. If a SUB
program has been suspended, yourcalculator variables won’t be available until the program ends.
You can tell that you need to enter END ALL if you notice the "SUSP" annunciatorlit and you
aren’t planning on continuing the program. Another use for END is to save a few keystrokes
closing datafiles opened from the keyboard (as opposed to in a program).

END ! End the current program and restore calculator variables.

END ALL ! End all suspended programs.

FETCH Finds a Line Number or Label.
Moving around the current BASIC file can be speeded by the non-programmable FETCH com-
mand. Specity a line number or label, and the computer will jump to thatline, displaying it, ready
for editing. If the line number specified is not found, a blank line with that number will be pre-
sented to you with the cursor positioned after the line number. However,if a label specified is not
found you will be presented with an error (beep, "ERR:Stmt Not Found"). FETCH without a line
number or label will bring back the last you edited or, if you’ve just moved to the file, will bring up
the first line in thefile.

FETCH 1200 ! Make line 1200 in the current BASIC file the edit line.

FETCH ZAP ! Make the line containing label "ZAP" the edit line.

INITIALIZE Format a Disc.
If you’ve ever seen the "ERR:Invalid Medium" message, you know that Cassettes and Discs must
be formatted before you first use them. This means that the media must have a standard directory
and data format before the computer can record files on it. The INITIALIZE keyword formats the
media to the HP-71 format and erases all data previously stored on the media. Unlike files in
RAM, a Disc (or Cassette) must allow for a pre-defined numberoffiles in its directory.

The standard record (also called sector) size is 256 bytes. A record is the fixed physicalsize set
aside for each item or group of items. Files are stored in multiples of records; for example if the
file is 512 bytes,it will occupy two records, however a 513 bytefile will occupy three records. The
directory is allocated by records, 8 files per record, so the logical size to specify would be a

16 Command Performance The BASIC HP-71

multiple of 8. Determine the maximum number of records the media can contain and the average
file size you use before formatting the disc.

We can give each Disc an identifying volume label of up to six characters. When a Disc has a label,
you can reference is by name using a period instead of a colon such as ".VOL?2" instead of
"TAPE". This is somewhat slower than addressing the device name because the labelis placed at
the beginning of the Disc, and must be read each timeit’s referenced. The media volume label can
be ignored, and does not even need to be specified when you INITIALIZE a Disc. We'll demon-
strate the :TAPE device specifier (representing an accessory ID of 16) which can be used for
either HP82161A Cassette or HP9114 Disc. Mass storage devices which do not respond to the
:TAPE device word (which are quite rare) can be referred to by :MASSMEM.

INITIALIZE :TAPE | Formats mass storage with 128 entries.
INITIALIZE :TAPE,200 | Formats the media with 200 file entries.

INITIALIZE VOL2:TAPE,128 ! Formats media and labels it "VOL2".

Now, let’s look at how the computer handles the mass storage media when we COPY files. When
the 71 stores file is on mass storage, a contiguous block of Disc space is reserved. If the file is
copied to RAM and subsequently grows, it will no longerfit in the same place on the media. When
the 71 copies the file back to Disc, it looks for a new block of records large enough to hold the en-
tire file. If one is found, the entire file is placed there, and the original location is marked as avail-
able for use (in the same way PURGE works with mass storage). If there is no single block of
sectors available large enough for the entire file, an "End of Medium" error will be displayed and
the file will not be copied, though there may be more than enough sectors scattered throughout
the Disc. Whenthe file is moved to its new home, the previous location ofthat file is now available.
The nextfile to be copied to the media which will fit will be placed within that block of records,
even if a considerable number of records within that block are left unused.

Alfter this scenario is replayed several times, a considerable number of records may be wasted. The
PACK command reorganizesfiles, squeezing out the unused records between files, and crunching
the file allocation table. Whenit’s done, the unused records are at the end of the media, ready to
be used again. Since PACK causes considerable media wear and is subject to the vagaries of bat-
tery power, PACKing media should only be done as a last resort. Usually it’s better to copy the
files to a new Disc and start over. Earlier versions of the HP-9114A Disc Drive did not handle the
PACK command correctly, so avoid using it on those early machines. If you do decide to use
PACK, make sure you have spare copies of all importantfiles on another Disc before starting.

LIST, PLIST List a File.
Prints or displays the contents of the specified BASIC file. If a printer is assigned and active,
PLIST will send the data to it, otherwise it acts like LIST and displays the data on the LCD and,if
there is one, the monitor. The LEX file in the Text Editor, HP-41 Emulator, FORTH/Assembler,

and WorkBook71 ROMs add the ability to LIST and PLIST TEXTfiles. File types other than
BASIC, KEY, and TEXT cannot be LISTED or PLISTed.

Chapter 3 Command Performance 17

PLIST ! List current file to PRINTER IS device.

LIST AFILE ! List all lines in file named "AFILE".

LIST AFILE, 10,100 ! List lines 10 through 100 in "AFILE".

PLIST AFILE ! List “AFILE" to PRINTER IS device.

LIST KEYS ! List the key assignments.

MEM How Much Available Memory?
Available memory is always a concern when running programs, allocating variables, or writing data
files. The MEM keyword returns the amount of unused main RAM memory. Note that the syntax
for this command is unlike others dealing with PORTs; MEM(0) will display memory in
:PORT(0).

MEM ! Display amount of RAM currently available.
MEM(0) ! Display available RAM in :PORT(0).

NAME, RENAME File Utilities.
Since only onefile of a given name may exist in RAM or on a storage device, some creative file
name juggling is in order; RENAME makesit a breeze. NAME is used only to change the name of
the "workfile", regardless of whatfile you are currently editing.

RENAME TO APROG ! Rename the current file to "APROG".

NAME APROG ! Name the workfile to "APROG".

RENAME APROG TO BPROG | Change name of "APROG" to "BPROG".

RENAME APROG TO BPROG:TAPE ! Change name of a Disc file.

File names must begin with a letter (A-Z) and may contain numbers (0-9) as long as the total
length is 8 characters or fewer. While the 71 poses no other restrictions on file names, several
names should be avoided because of possible conflicts and confusion. File type names (such as
TEXT and KEYS) and device specifiers like TAPE, LOOP, and MASSMEM,as well as ALL,

CARD and MAIN should be avoided.

OFF IO, RESTORE IO, RESET HPIL
The HP-IL Module tries to assign a printer and display whenever the 71 is turned on; this can take
several secondsif the loop is broken (that’s HP’s way of saying nothing is plugged in). OFF IO dis-
ables HP-IL operations and speeds power-up significantly. RESTORE 10O is used to re-enable
the HP-IL module. However, if RESTORE 10 is used with a broken loop, the 71 will hang up for
few seconds then issue an error message. When used in this context it’s usually better to use
RESTORE 10 after connecting all devices. If flag -21 is clear, all devices capable of being turned
off remotely (such as the Cassette and ThinkJet printer) will be powered down when the 71 is
turned off.

OFF I0 ! Disables HP-IL operation.

RESTORE I0 ! Enables HP-IL.
RESET HPIL ! Address loop, re-assign all devices.
SFLAG -21 ! Enable auto power-down of loop devices.

18 Command Performance The BASIC HP-71

PRINTER IS, DISPLAY IS
Normally, the 71 automatically assigns HP printers and display devices as needed. Printer output
can be directed to the display to test a print routine without wasting paper, or to assign the printer
as a display for a kind of super-trace mode. Be cautious about assigning devices; there is no
protection against, for instance, assigning a Disc Drive as a Display device (from which no good
could possibly come). The easiest way to specify HP-IL devices is with device words such as
:DISPLLAY and :PRINTER.

DISPLAY IS * | Disables external display device.

DISPLAY IS PRINTER | Establishes printer as the display.
PRINTER IS DISPLAY ! Establishes the display as the printer.
PRINTER IS PRINTER ! Restores the printer to its rightful job.

PRINTER IS NULL ! Throw away all printer output.

SECURE,UNSECURE File Utilities.
To insure that a file is not accidentally PURGEd or otherwise altered, they may be designated as
temporarily SECUREGJ. This is especially useful with BASIC files;it’s easy to forget which file
you’re in and accidentally change the wrong one.

SECURE AFILE ! Secure "AFILE" against alterationms.

UNSECURE AFILE ! Make "AFILE" no longer secure and therefore alterable.

SETDATE, SETTIME Set the Clock.
These commands set the system clock. When setting the time, remember that the 71 uses a 24
hour clock; be sure to add 12 for hours past noon. Usually we set time and date with strings;
numeric expressions are better handled within programs.

SETDATE "88/09/04" | Set date with a string to September 4,1988.
SETDATE 1988366 ! Set date to day number 366 of 1988 (a leap year).
SETTIME "20:30:00" ! Set the clock to 8:30 pm.
SETTIME 28800+(30%60) ! Set clock using seconds since midnight.

STARTUP
When we first turn the 71 on, it does some self-tests then returns to whatever mode was active at

power down. With the STARTUP keyword, you can make your 71 do any BASIC commands when
you turn it on. This is helpful to automatically run a program or execute a series of commands.
You might use it to set certain status like delay rate or display machine status. Halt the STARTUP
routine by pressing ENDLINE. Think of the STARTUP sequence as a direct execution key assign-
ment that the 71 presses wheneverit turns on. The STARTUP sequenceis ignored in CALC mode
or when a program turned off the computer, but will be performed in FORTH or HP41 modes,
though still with BASIC syntax.

STARTUP “CAT ALL* | Do a CAT ALL when it turns on.

STARTUP "IF TIME$>='13:00:00’THEN RUN LATE" ! A conditional.

STARTUP "FOR X=1 TO60QTIME$QWAIT.S@NEXT X" ! Display time for awhile.

STARTUP "" | Deactivate startup command.

Chapter 3 Command Performance 19

STD, FIX,SCI, ENG Number Format.
Much like a calculator, these statements set the number display format. The defaultis standard
BASIC (STD) which displaysin floating point format, showing only as many decimal places as
necessary, and displaying in scientific notation when the number exceeds 12 digits. Thissets the
display format rounding, but does not affect the numeric precision used in calculations. These
keywords set both the number of decimal places and the display mode; valid settings are zero
through eleven. The number display format setting is used in BASIC, CALC, and in most
programs, though some programs changethis setting (and may not restore it when they are done).

STD ! Restores standard BASIC display format.

FIX 4 ! Sets display format to 4 decimal places.
SCI 2 | Scientific Notation format 2 places.

ENG 3 ! Engineering Notation 3 decimal places.

TIMES$, DATES, SETTIME, SETDATE
The internal clock runs all of the time, even when the 71 is shut off. TIME$ and DATES recall the
current time from the system clock. Current clock settings are also placed on the headers ofall
files when they are created or copied to or from mass storage. Time is displayed in 24 hour format
and the date is displayed "YY:MM:DD". The statements SETTIME and SETDATE set the clock.

TIME$! Displays the current time.
DATE$! Displays todays date.
SETTIME "13:15:00" ! Sets the clock to 1:15 pm.

SETDATE "86/07/04" | Sets the date to July 4,1986.

A simple program can be used to constantly display the time and date when other programs are
not being used. There is a short delay built into this program to reduce power consumption. This
routine could also be assigned to a key or used as the STARTUP string.

FOR X=1 TO INF @ DISP TIME$&" “4DATE$ @ WAIT.5 @ NEXT X | Display time.

WIDTH, PWIDTH Set Line Length.
We can set the maximum number of characters which the 71 will display or print on a single line
with the WIDTH and PWIDTH commands; both may be set to different values. If a displayed or
printed line is longer than the specified length, the 71 will automatically display the remainder on a
separate line. The default for both is 96 characters, maximum for both is 255. Normally, when
displaying lines longer than the WIDTH setling, pressing a key will show the remainder ofthe line;
however, if WIDTHis set to INF,the end of a long line will not be displayed (ever). Again, many
programsalter these settings.

WIDTH 22 ! Set max display line length to 22.
PWIDTH 80 ! Set max to be printed on one line to 80.

o)
20 Command Performance The BASIC HP-71

Getting Started 4

When youfirst turn on the 71, it’s in BASIC Mode; the LCD display is blank except for the BASIC
prompt character ">" and the flashing cursor. It’s not really a blank stare, but a blank slate with
which to work. The 71 accepts whatever you type, without question, until you press ENDLINE.
Pressing ENDLINEtells the computer that you’ve entered a complete line and now it’s time forit to
do whateverit is you have entered, and (possibly) display an answer. In fact, just about everything
we do with the 71 ends with ENDLINE. Since this is "a given," we’ll often forgo even mentioning it.
ENDLINE is the same as RTN, RETURN, EOL, ENTER or bent arrow («—!') keys on other
computers, but it is not the same as ENTER © on RPN calculators.

We'll take advantage of an interesting feature of HP BASIC: If the result of an expression is not
explicitly assigned to a variable then it is implied that the 71 should only display the result of the
expression, and do nothing else with it. What this means is that when you enter a formula, the 71
will display the result; you could include the DISP keyword, but why bother. Thistrait of HP
BASIC will become self-evidentin a few pages. If you would like to have the result of each
example printed, just precede each with the PRINT keyword.

It Just Beeps
More than likely, the first time you picked up your 71 and typed something, it displayed an error
message then beeped; it happens to everyone. These messages are an aid in learning and using the
computer; instead of curtly not doing what you've asked,it tells you why it can’t do it. The 71 isn’t
trying to harass,just be helpful. Unlike a calculator, the 71 can do several hundred things. A
keyboard with hundreds of keys is impractical, hence the command line and its series of messages.
By the way,if you're tired of hearing the beep, just set flag -2.

! set flag -2 to turn off beeper.
SFLAG -2§ |

— ! Clear flag -2 to let the
CFLAG -2§ ! beeper work.

! Set flag -25 to beep even louder.
LSFLAG -25% I

! Clear flag -25 to beep quietly.
CFLAG -25§

Syntax
We humans accept some ambiguity in syntax in speech and writing because we can infer the
meaning of a sentence from context, inflection, previous knowledge, body language, and such. A
computer, on the other hand, takes everything pretty much on face value; whatever we tellit, it
tries to do. If the 71 can’t understand the command (it won’t parse) then it will certainly let us
know. Other times, the computer will carry out the command but the results might not be what we
had expected. Understanding syntax and how the computer parses is as important while working in
CALC mode as when writing a program. Once you have a feel for how a new computer or
programming language expects commands to look, all that’s left to mastering the machine is
learning its commands.

Chapter 4 Getting Started 21

As time goes on, you'll tind that your 71 beeps at you less and less. That’s because you’re learning
the syntax rules for 71 commands. The 71 follows these rules of syntax when interpreting
commands we type. This is called parsing.

The Parser at Work
We usually type spaces between BASIC statements forclarity, and a space separates each state-
ment when you look at a BASIC program. As a convenience, these spaces can often be omitted
when we enter commands. The 71 will use its dictionary of commands and syntax and try to
evaluate the expression. Consider the following:

CALLIOPE XYZ
BEEPER MEMORY

In each of these examples the 71 will try to parse (interpret the meaning of) the expression based
on the context of the expression. Each example will result in a different type of error.In the first
case, the computer will look for the keyword CALLIOPE. It won't find it, so it finds the next clos-
est word which is CALL, which calls sub-programs. So it looks for a sub-program named "IOPE",
and for our purposes we'll assume that "IOPE" is not the name of a program. This is a complete
operation and it just didn’t work, so the 71 beeps and displays the error message:

 ! The 71 displays an error message
! without the flashing cursor. ERR:Sub Not Found

If you missed the message, press g (the blue shift key) then hold down ERRM (a shifted function of
the SPC key) to see it again. You can always view a message explaining the most recent errorthis
way.

The second example, BEEPER,is a different kind of problem, and the 71 "logics it out" with an-
other sct of rules. The closest keyword is BEEP, which works alone, or we could optionally specify
a frequency (tone) and number of seconds to beep. BEEPER will cause:

 { Another error message when the
! 71 tries to interpret BEEPER. ERR:Excess Chars

After a short pause, the originalline returns to the display, with the cursor pointing at the first
character in the line which the 71 didn’t recognize as part of a valid expression. The computer
placed the cursor after the third E because E is a valid variable name, and ER is not.

Let’s modify BEEPERso that the 71 can parse it correctly. If there are two parameters, BEEP,
like most commands, expects themto be separated by a comma. Any one of the following is
acceptable:

BEEP BEEP 500 BEEP 500,1 BEEP E,R

The third problem we foisted on the 71 was XYZ, which is not a complete expression, and does
not contain a complete keyword. Since there was no keyword found, the 71 assumes that we really
meant to see the value of variable X, and whatever followed was a slip of the keyboard. Following

22 Getting Started The BASIC HP-71

the usual beep and error message, the 71 returns the original line to the display. Again, the cursor
pointsto the first character the computer didn’t recognize as part of a valid expression.

In the fourth example, the 71 returns a value without an error (finally). But isit the result we
wanted? MEMORY is not a command in the 71’s repertoire, butit did find MEM, a function
which returns the amount of memory currently available. Then it looked for an operator that could
follow the function,;it found OR which does a logical OR of two values. Since OR requires a sec-
ond operatorfor its comparison, the 71 looked for a mathematical expression. It found Y, which
referred to the variable Y. This is a complete expression, so the computer evaluates it and returns
a result. The answeris either the number one, if Y has no value, or zero if Y contains a non-zero

value. The computer interprets MEMORYas:

DISP MEMOR'Y

This is hardly a useful expression, butit did not cause an error because it evaluated to an expres-
sion which the 71 could successfully calculate. As you can see, the computer will be able to detect
and help us with syntactical errors, butis of little help with logical errors.

Multi-Statement Lines
We can evaluate several expressions in one session by separating them with the "@" (commercial
at sign). Often these will be system commands like DELAY 0or OFF 1O, but just about any-
thing is fair game. This is the same format we use when writing programs, so we’re actually writing
a mini-program; add a line number and it’s a program.

2+3%4-5 @ (2+43)*4-5§ |_9 |

15

The 71 evaluates and displays the two expressions, one at a time, for the duration of the DELAY
setting. If the DELAY is short you might miss the first number asit flashes by. A more useful
method is to evaluate and display the formulas at the same time. The semicolon (;) concatenates
(joins together) the two expressions so that they will display together on one line. A semicolon at
the end of the expression tclls the 71 that we are not finished displaying on that line, more will
tollow.

2+3%4-5; (2+3)*4-5;2+3%(4-5)§ 9 15 -1

The 71 displays each number with either a leading space or a minus sign, and followed by a space
so that they don’t runintoeachother.

BASIC Keyboard Math
When doing business as a BASIC mode calculator the 71 works in True Algebraic fashion. Each
operation is performed using rules of mathematical precedence (which type of function the 71 will
perform first), and a solution is returned. CALC mode displays intermediate values as operations
are completed, but let’s consider BASIC mode calculations in this chapter. Let’s look at how
various types of calculators handle multiplication:

Chapter 4 Getting Started 23

Keystrokes Calculator

2X3= Algebraic Calculator.
2ENTER 3 * Hewlett-Packard RPN.

2 * 3ENDLINE HP-71 BASIC Mode.

Each of these methods has one thing in common: A single keystroke tells the computerthat you
want it to process the data and return an answer. The conventional dollar-ninety-eight Algebraic
calculator uses the = equals key, with the RPN calculator,it’s the * key. Algebraic logic places the
operator (+, -, etc.) between the arguments (numbers). The 71 is similar to the Algebraic
calculator in that the operator ("*" is computer-ese for multiplication, "X" is just that, an "X") is
placed between the operands. However, ENDLINE tells the computer that we are ready forit to
get to work.

Most computers (and calculators) have a stack: A place to store intermediate results in a
calculation or data passed between functions. Without a stack there would be no way to do any-
thing which involves comparing two numbers. In the above example, the Algebraic calculator
places the first number on the stack when we press +, then enters the second number on the stack
and performs the mathematical operation when we press =. The RPN calculatoris friendlier to
use because we can more readily control the values on the stack and the order in which the opera-
tions are evaluated. An advanced True Algebraic calculator can evaluate an expression using
parentheses to designate which ofa series of operations will be evaluatedfirst. In this way, the
orderof calculation determines intermediate results. We work with mathematical expressions
instead of entering operations from the "inside out"to preserve the order of precedence. The True
Algebraic calculator gives us complete control of operations, without concern for the stack.

Mathematical Precedence
To avoid voluminous parentheses in everything we do,it pays to be conversant in precedence.
Precedence, simply put,is the order in which mathematical expressions are evaluated. This order
of priority probably differs a bit from what you remember from Algebra 101, butit’s fairly
consistent between various versions of BASIC.

... Nested Parentheses.
- Exponentiation.
NOT unary+ unary- One operand (X=-X).
SIN RND COS FACT Functions.

* / DIV %
+ - & Operations on two operands (X=X-Y).
< = > # 7 <= >m <O Relational operators.

AND Logical operators.
OR EXOR

Enter them without parentheses, and the 71 evaluates mathematical expressions in the sequence
above. Operations of the same level are interpreted from left to right.

24 Getting Started The BASIC HP-71

2+3%4-5§ 9

Notice that we didn’t begin with DISP or PRINT; the 71 assumes that we wanted to display the
answer because we didn't assign it to a variable (we’ll discuss variables in a few minutes). Here,
multiplication is performed first. Since addition and subtraction are on the same level of
precedence, the 71 interprets from left to right as they appear in the expression.

B] 12 |
L2+12$ | I_14 I

14-5§ 9

Parentheses
Enclosing parts of an expression within sets of parentheses tells the 71 which operations to per-
form first. If you’re not sure of how an expression will be evaluated, add extra parentheses for
clarity. As long as you include complete opening and closing pairs or parentheses, the 71 ignores
leftoversets.

L(2+3)*4-5m I I_ 15 I

|_2+3*(4-5)fi | I_-l I

(2+3)*(4-5)§ -5

RES Register
The result of each mathematical expression is stored in the RESult register, regardless ofif the
value is assigned to a variable orjust displayed. This is quite helpful when you need to see an in-
termediate result, then use that value again in the following expression. The RES keyword, as-
signed to the £-ENDLINE key, recalls the contents of the register. Remember, RES changes with
each expression.

L2+3*4-5m | I_ 9 |

RES*2§ 18

Other Operations
Not everything we do returns a value, and the flexible way the 71 does these sophisticated non-
calculator jobs is what setsit apart from a calculator. Operations returning an answerare called
functions, those which do not are statements. A statementis just that, a complete statement which
tells the computer to do something. For instance, BYEis a statement which turns off the 71. While
the act of turning itself off is a function (as sleeping is a function people perform),it does notre-
turn a value so it is deemed a statement.In fact, following English rules,it is a complete statement.

Chapter 4 Getting Started 25

Strings
Computers work with text as often as with numbers. A string is a group of characters (letters,
numbers,spaces...) enclosed in a pair of quotation marks. Eithersingle (*) or double (") quotes
may be used, but both ends must match. A numeric variable with no value is zero by default, while

a string with no value is null, or. Yes,it’s possible for a string to exist without any value at all.
String "math" operators are the ampersand (&) to add two strings together, and Square brackets []
to tell the computer to extract just a portion of a string (called a substring). HP BASIC has rela-
tively few string functions (when compared to Microsoft) because the versatility of brackets makes
them unnecessary. You may designate one or two parameters within the brackets.

Substring returned

[1,4] Positions 1 through 4 only.
[3,7] Positions 3 through 7 only.
[5] From position 5 through the end ofthe string.

We’ll use the example of VERS, which returns the version of the 71’s operating system, as well as
that of many plug-in accessories. As with all functions which return a string, the last character in
VERS is a dollar sign. 'I'ry using string expressions with numbers and experience a whole new
world of error messages.

"$" is usually pronounced as dollar or string. For example, TIMES is pronounced "time dollar" or
"time string." Dollar is probably the preferred pronunciation when describing a program over the
telephone.

LVERSN | LHP?I : 1BBBB |

I_VERS[a,dm | l_?l |
VER$[1,4]&" Computer“§ HP71 Computer

Notice that, unlike number functions, the 71 adds no extra leading ortrailing spaces to the results
of string functions. There is no equivalent "RES$" function to recall the last string result. Again,
we can use a semicolon to display more than one string, or even strings and numbers, on the same
line:

MEM;VERS[1,4];2+3%4-5§ 16438 HP71 9

Numbers and strings are two quite different types of information. Therefore, it takes an extra step
or two to move information between the two. Let’s look at some string operations.

CHR$, NUM
The 71 expresses each characteras either the characteritself, or as a numeric value representing
the character. Characters are a single byte, and a byte can have a value of from zero to two-
hundredfifty-five. Therefore, there are 256 possible characters, notall of which are displayable.
NUM takes a string and returns the numeric value of the first character. CHRS is the opposite of
NUM, accepling a value of 0-255 and returning a single character. A table of

26 Getting Started The BASIC HP-T71

ASCII/HEX/DECIMAL/BINARY conversionsis listed in the back of this book. Let’s use the

examples of "A" which is ASCII 65 and "%" which is ASCII 37:

NUM("A")§ I 65 |

CHRS (65)§ A

NUM("“$*)# I 37 I

CHRS$ (37)§ 3

VAL, STR$
An incredibly powerful function shared by the 71 and a few larger HP computers is VAL. In most
dialects of BASIC,it simply extracts a number from a string; the 71 carries this to the extreme, and
evaluates a string as a mathematical expression (parentheses, variable references, the whole nine
yards), and returns a numerical result. While not exactly the opposite of VAL (it can’t restore a
formula once it’s gone), STR$ turns a numberinto its string equivalent. STR$ follows the current
FIX setting, and truncates the fractional part or adds zeros as needed. These two functions are the
main methods for exchanging data between the otherwise incompatible world ofstrings and
numbers.

I_VAL(~2+3*4-5~)$ | Ls

“Total="&STRS (9)§ Total=9

ASCII Codes
No computeris an island. Nor is a terminal, modem, or printer. ASCIIis an acronym for
American Standard Code for Information Interchange, the common format used for text by most
computers. This standard, developed by the American National Standards Institute (ANSI),
standardized assures that ASCII 65 is an uppercase "A", regardless of the machine. The computer
drawing the television weather map, your bank’s all-night-teller machine, an HP 1000, and the 71
could, given a way to connect them, have a reasonable conversation. Though it’s hard to say what
they’d have in common to talk about.

The standard is 8 bits (one byte) representing each character, with the eighth bit (the high bit in
codes above 127) reserved for parity. A parity bit is a checksum of one kind or another which is
tagged onto the data to assure that, when the byte gets to where it’s going,it hasn’t been garbled by
a gremlin along the way. Add-up the bits when the byte gets to the destination and see if the
checksum has changed. Computerdom has become much more reliable in the last 20 years, so the
parity bit is rarely used today in data communications. Which left the engineers at each company
to decide how to use the bit; while one might display hieroglyphics, another might printitalics.

As are most "standards", ASCIIis only partially recognized as standard; codes 32 through 126 are
usually displayed or printed the same on any machine. While the 71 displays many of them as
special characters (Greek to me), ASCII Codes zero through 31 are often reserved for printer or

Chapter 4 Getting Started 27

display orfile handling codes. For example, printing CHR$(15) sets many printers in condensed
type mode, and CHR$(7) usually rings a bell (probably a squeaky little beeper), and isn’t printed
or displayed at all when you send it to a printer or terminal. Most HP 70 and 80 series computers
display CHR$(7) as a pictograph of a bell; the IBM PC displays it as a left arrow character.

A byte is a byte, and since there are only 256 variations, the characters serve a second purpose be-
yond displaying ASCII codes. Programs and data are also represented with the same codes; you
can tell the purpose of a byte by context and data structure. Regardless of how complex things
seem, you can eventually reduce them down to one of those 256 numbers, and beyond that to the
8-bits (the one’s and zero’s) which make up the byte.

Calculator Variables
This book makes a distinction between calculator and program variables, though there really is
none. So, why this extra complication when we usually try to make things easier on ourselves?
Recall that the 71 can have multiple environments at the same time; often a running program will
use an entirely separate set of variables. That’s why we’ll define the calculator variables as those in
the main environment, used in CALC mode and BASIC mode, and in utility programs you write
for your own solutions. A polite program will either use the main environment only with your
permission, or not useit at all. This insures that your calculator variables are just that.

Mostcalculators use data registers for storage ofcalculator and program data. We’ll define a reg-
isterasa fixed size, pre-defined place to store data. The 71, as with other computers, uses vari-
ables. It’s not just a philosophical difference, variables, unlike registers, can be ofvarious sizes and
types and possibly move about in memory as ROMs or more memory are added to the computer.
Unlike a register, a variable does notexist (and does not use any memory) untilit is needed.

We've been calling RES a register because it technically is: It’s of a fixed size, type, and location,
and can neither be created nor destroyed.

In BASIC parlance and True Algebraic mathematics, a variable is a symbol which represents a
value. The symbolic label used for each variable represents actual individual location in memory
reserved for that (if you will...) pigeon hole. Let’s assign our, now tiring, example to variable X,
then read the variable to verify the answer. The keyword LET is optional (and rarely actually used)
butis included forclarity.

 I ! Assign the results to a variable.
l_LET X=2+3v4-5§ ! Then display the variable.

x§ 9

This statement says "Look up the value of X and display it." We can use a boolean (logical) opera-
tor to do a comparison and prove that X does contain the result of that formula. A boolean re-
turns a true (the number 1) or false (the number zero) result; any non-zero result is true. This
boolean comparison lists the value on the left to help the 71 interpret the statement; had the vari-
able name been givenfirst, the 71 would have assigned it the value. Another alternative to insure
that a boolean comparison will be made is to preface the expression with DISP. This consideration
is only important when using = because there’s no chance for ambiguity with other boolean
operators.

28 Getting Started The BASIC HP-T71

B E |
DISP X=9§ 1

The result of this argumentis either one which means the argumentis true, or zero is returned if
our argument proves false. (whew!).

We'll get back to boolean comparisonslater, but you may wantto try this little program now to see
how the 71 uses logical operators. Substitute the keyword PRINT for DISP if you'd like a printed
table.

10 DISP " X # = NOT AND OR EXOR" ! Boolean truth table.

20 FOR X=0 TO 1 ! Loop through zero and one comparison.

30 DISP X;X#1;X=1;" " ,NOT X;" “;X AND 1;" “;X OR 1;" ";X EXOR 1

40 NEXT X ! The end of the loop.

Previously we’ve been displaying results using an implied DISP. This means that the results of an
expression is displayed unless the expression begins with a variable assignment, in which case the
result is assigned to that variable and nothing will be displayed. Remembering the optional
keyword LET will help.

Symbolic Variable Names
Variable names, as you know, are represented by the letters A through Z. Since programs often
need more than twenty six variables, HP has added the option of adding a single digit suffix to give
us A0 through A9, BO through B9 and so forth. Instead of 26 possible variable names we now have
286.

String variable names,like string functions, end with a $ dollar sign. As with numeric variables they
also offer the full 286 possible names. For example, X$, B$, A0$, Z9$. String variable names are
separate from numeric variables; we can use both X$ and X at the same time. Unless otherwise
specified (with DIM) a string variable can contain a maximum of 32 characters.

Types of Variables
The rich library of 71 operations is further expanded by the ability to store strings and numbers in
several types of variables. These types specify the mathematical precision and usage of the vari-
able. REALvariables are full precision, with twelve significant digits (mantissa) plus three digit
exponent. SHORTvariables have the same three digit exponent, but use only a five digit mantissa.
INTEGER have limited precision (only five digits); the 71 rounds the fractional part to the nearest
whole number when you store in an INTEGER. Each of these three variable types uses the same
amount of memory; there is no memory savings in using shorter precision as there is with some
other computers. This was done to standardize the way the 71 handles numbers internally, and
simplifies things considerably.

DIM, SHORT, INTEGER
These three keywords explicitly create (or declare) variables. The keyword REAL can also be used
to create REAL variables, though DIM worksjust as well.

Chapter 4 Getting Started 29

Remember, arrays are not necessarily initialized to zero if they already are in existence. Variables
ofothertypes,if they already exist, are set to zero (or null if a string variable). The keyword
DESTROY is used to get rid of unwanted variables.

DIM A,B,C,X$[96] ,K8[1] ! Create REAL or string variable.
REAL X,Y,Z ! This creates a REAL variable, just like DIM.

DIM A(5),B$(9)[10] ! Create or re-dim a 1-dimension array.

DIM X1(3,4) ! Create or re-dim 2-dimension array.

SHORT V1,Y(23),Z(5,8) ! Create a SHORT variable or array.

INTEGER M,R(11),B(3,2) ! Create an INTEGER variable or array.

DIM S$(4)[10] ! 4 element string array, maxi 10 characters per element.

Arrays
An array consists of a group of elements ofa single type, represented by a common symbolic label.
Numeric arrays may be one or two dimensions, string arrays are limited to a single dimension. A
two dimension arrayis also called a matrix. Unlike regular (scalar) variables, arrays consume less
memory per element than individual variables of the same precision. We can create variables in
any of the three precisions.

Two dimension arrays are referenced by row then column in the form X(row,col). This table rep-
resents an array of (3,4) created with OPTION BASE 0 fora total of twenty elements. If OPTION
BASE 1 had been in effect the zero elements would not exist, it would contain twelve elements.

Col O Col 1 Col 2 Col 3 Col 4
oooooooooooooooooooooooooo

RowoO - 00 =+ 01 - 02 =+ 0,3 =+ 0,4 -

Rowl - 1,0 - 1,1 - 1,2 =+ 1,3 - 1,4

Row2 - 2,0 =+ 2,1 - 2,2 =+ 2,3 =+ 2,4 -

Row3 - 3,0 =+ 3,1 - 3,2 =+ 3,3 = 3,4 -
oooooooooooooooooooooooooo

OPTION BASE
The lower bound ofthe array is set at either zero or one, depending on the current OPTION
BASE. Changing the Base setting does not affect the lower bound of arrays previously created.
The OPTION BASEsetting is a global declaration (same for programs and calculator variables).

OPTION BASE 0 ! Start arrays with element zero.

OPTION BASE 1 ! The first element is one.

Using Arrays
Arrays can be implicitly created, though they will be created with elements zero (if OPTION
BASE 0) or one (if OPTION BASE 1) through 10. Store something in any element of a
nonexistent array and it will be created to the default size. If the variable name specified is already
being used for a non-array variable then the 71 will cause an error; when in doubt, use DESTROY

before creating the array. We’ll talk about more practical method for creating them in a moment.

30 Getting Started The BASIC HP-71

The MATH ROM is invaluable if you often use arrays. The MATH ROM function TYPE returns
the type ofthe specified variable, and UBND and LBND return the bounds (number of elements
in one direction or the other). If you do not have a MATH ROM, the most practical way to deal
with arrays is to always explicitly DIM them, then keep track oftheir usage, and DESTROY them
immediately when they are no longer needed.

Since we usually use single character names for scalar variables, it’s often less confusing to use less
common names for arrays. Arrays are referenced by an element number following the array name.

A(5) ! Element 5 of the single dimension array A.
B6(2,3) ! Element 2,3 of the two dimension array B6.

X08(3) ! Element 3 of the string array XO0$.

Y9$(5)[2,3] ! Characters [2,3] from element 5 of the array Y9S$.

Indirect variables have long been a trick used by calculator programmers (STO IND X). Arrays
give BASIC this advanced capability and extend the number of possible variables far beyond 286
(to a maximum of 65535). Elements may be themselves specified by mathematical expressions.

! Read an element of the array.

X=A(2*R,3*C)§

As we said earlier,string arrays can only have a single dimension. Like regular string variables, the
71 creates string arrays to a maximum length of 32 characters per element unless otherwise
specified. An implicitly created string array will have 10 (or 11 if OPTION BASE 0) elements of a
maximum of 32 characters each. A single element may be null (empty) orfilled to the maximum
number of characters for which it is DIMmed without atfecting other elements in the array.

Re-Dimensioning an Array
Interestingly, if an already existent string or numeric array is re-dimensioned without changing the
elementsize (the number of characters which can be stored per element or the precision of
numerical elements) then elements are merely added or eliminated without resetting unchanged
elements to null.

Moreover, we can use re-dimensioning in a program, conserving memory by DIMing the array
small. Then,if conditions change during the program run, we can increase the number of elements
without losing information.

The 71 allows variable names be used for a single variable type at one time (again, strings and
numeric variables are a different case). If a variable name has been used for, for example, a REAL
number then it cannot also be used for an array.

Variable Memory Use
The following tablelists the available variable types plus memory consumption. COMPLEX vari-
ables are included in this table, but are only available with the Math ROM. A complex number can
be either REAL or SHOR'T and has a real and imaginary part represented as (0,0i) where the two
parts are represented in parentheses separated by a comma and i represents the imaginary part.
Most mathematical expressions can be evaluated using both real and imaginary part of complex
numbers when the Math ROM is present.

Chapter 4 Getting Started 31

Type Precision Memory Usage

REAL 12 digit+exp 9.5 bytes
INTEGER 5 digit+exp 9.5 bytes
SHORT 5 digit 9.5 bytes
REALARRAY 12 digit+exp 8*(Dim1-Base+1)*(Dim2-Base+1)+9.5
INTEGER ARRAY S5 digit 3*(Diml-Base+1)*(Dim2-Base+1)+9.5
SHORTARRAY Sdigit+exp 4.5*(Dim1-Base+1)*(Dim2-Base+1)+9.5
STRING Max length+11.5
STRING ARRAY (Dim - Base +1)*(Max length +2)+9.5

Additional Data Types with MATH ROM:

Type Precision Memory Usage
COMPLEX 12 digit +exp 25.5 Bytes
COMPLEX SHORT digit+exp 18.5 Bytes
COMPLEX ARRAY 12 digit+exp
COMPLEX SHORTARRAY

5 digit+exp

ZEN and Variables

16*(Dim1-Base+1)*(Dim2-Base+1)+9.5

9*(Diml-Base+1)*(Dim2-Base+1)+9.5

Variable names, as we have discovered, are symbolic. Let’s recap some of the other disconcerting
realities of variables.

° A variable does not necessarily exist, even if it has been tested, until it has been

explicitly (DIM) or implicitly (by storing something in it) created.

° A variable which has been created as an array cannot be tested as a simple
(scalar) variable; nor can a simple variable be tested as an array.

° A complex variable can only have an imaginary partif it exists; if it does not
exist it cannot be tested for an imaginary part (BEEP, Error).

° Strings are always created to zero length, but arrays are merely redimensioned
without being zeroed.

(L)

 60 NEXT L @ Cs="" @ GOTO 20 |

10 CALL GRAPHIX @ SUB GRAPHIX @ DIM C$(132] |
20 FOR L=1927 TO 2027 STEP 2 | let’s look at ROM chars, including cursors
30 C$=C$&CHRS C(HTD(REVS (PEEKS(DTHS(CL) ,2>>)>) |
40 GDISP C$&GDISP$ | display pattern plus what is already being displayed

will loop forever, don’'t get hypnotized!

GDISP demonstration

accumulate the pattern

32 Getting Started The BASIC HP-T71

CALC Mode 5

Many people graduate to the 71 from Hewlett-Packard calculators such the HP-41 or HP-12 and
sometimes have an initial disappointment because the ease of use seems to be gone. After using
one for several years,it’s easy to forget the learning curve required to master RPN calculators:
Understanding how to evaluate an expression and translate it to the particular syntax required. It’s
a common situation: A friend borrows your HP calculatorto figure, for instance,sales tax, and
stares at the keyboard for about three times as long as it would have taken to figure out the tax in
their head.

Hand the 71 to that friend and they will be able to at least compute sales tax without a ten-minute
philosophical discussion about post-fix notation. CALC can be a powerful, expandable computa-
tional tool, or we can use it for simple, spontaneous calculations; just punch in an expression, and
watch the 71 earn its keep. We've already been discussing calculating with the HP-71, CALC mode
is an extension of BASIC mode calculating. I.et’s spend just a few minutes reviewing some of the
basics of CALC mode.

Unlike BASIC mode calculations, in which the 71 waits to evaluate the entire expression until after
it gets an ENDLINE, then bang, an answer, CALC mode is always on guard. As soon as the 71 can

evaluate an intermediate resull,it replaces that portion of the expression in the display with the re-
sults. A closing parenthesis, comma or mathematical operator (such as / or +) signals the end of
an expression, so the 71 tries to evaluate the intermediate result. Pressing ENDLINE designates the
end of the formula. There are really two levels of CALC mode: The CALC editor, during which
the insert cursoris at the right edge ofthe display, and editing a line in the stack, during which the
BASIC editing keys are active. String operations, including HTD and DTHS are not allowed in
either CALC level.

Editing an expression with the command stack in CALC mode (press g-CMDS or one of the up or
down arrow keys) is much like BASIC mode calculations, intermediate results are not displayed.
You can recall previous expressions and modify them in two ways: By altering the entry as needed
then pressing ENDLINE, or by deleting the end ofthe line character (crooked arrow <) at the end
of the line then pressing RUN to again use the CALC editor with that expression. USER keyboard
assignments work while editing the stack, except immediate execute keys which don’t cause an
error, they are simply ignored.

Rules of Precedence
Like back in BASIC mode, rules of precedence dictate how the 71 evaluates intermediate results.
Our earlier example of 2+3*4-5 is evaluated exactly asit is in BASIC mode. Notice again, multi-
plication is evaluated before addition so the intermediate result is based first on the multiplication,
then the addition. The 2+3 hangs there while the 71 waits for us to enter the next expression to be
evaluated.

Chapter 5 CALC Mode 33

 ! With the next keystroke:

243% < I

— ! The addition “hangs" there.
L 243%4 < I

! The multiplication is evaluated
I_ 14-5 < I ! followed by the addition.

9 « ! Finally, press ENDLINE.

Again, we can use parentheses to insure that the expression will be evaluated as intended. The 71
will automatically enter a closing right parenthesis for each left parenthesis entered while in
CALC, though BASIC mode requires matcning sets. Entering a closing parenthesis, even though
one is already displayed, will move the cursor outside of that set. Just in BASIC mode, the
compuler ignores extra sets of parentheses; and they’re free, when in doubt use several.

! Evaluate the addition.

L (2+3) <« l

! Now, the multiplication.
I_ 5e4 < |

20-5 «

! The answer when we press ENDLINE. 15 «

Long Formulas
CALC is, as are all types of input, limited to 96 characters per line. Enter a long, complicated
mathematical expression, or just add a column of numbers, and when the 96’th characteris

reached the 71 beeps and sends you back to the beginning ofthe line. This leaves your formula in
mid-number and mind in mid-thought. Instead of entering the numbers until the error occurs, find
a mid-point and do an intermediate answer.

[_23.7+64.2+44.2+33.1+32.0+27.9+26.3+19.7+24.6+29.4+34.6+33.2+28.4$

()+23.2+31.0+35.1+38.6+46.7+51.5+63.1+74.8+61.3+59.2+52.6+43.1§

RES,()
Wesplit the list above into two portions, pressing ENDLINE at a comfortable point (somewhere be-
fore the 96th character). When we went to the second line we used () to recall the RESults of the
earlier calculation. Even more important than in BASIC mode, RES provides a continuity
between mathematical expressions. Note that RES changes only when you press ENDLINE,so that
intermediate results may again use () within the formula without changing RES. The RES
keyword, an empty pair of parentheses, or just ENDLINE without anything displayed, will return the
result of the previous calculation.

ENDLINE
Terminates the expression, closing necessary parentheses and completing any partially evaluated
expression. ENDLINE also places the result of the calculation in the RES register.

34 CALC Mode The BASIC HP-71

ENDLINE places the carriage return character on the end ofthe line. It’s possible to exit CALC
without pressing ENDLINE. In that case, if you edit the latest stack entry in BASIC mode, the last
character on the line is not displayed. This is because the BASIC editor assumes that the final
character on the line is probably a carriage return, which is not normally displayed.

ON
The cancel key. The formula is cleared from the display. The formula is not entered into the
command stack noris any intermediate result placed in RES. The expression will be placed on the
stack if, for instance, a long line had been entered and returned "ERR:Line Too Long."

RUN
Terminates an expression much like pressing an operator key. Evaluates as much of the formula as
it can and displays intermediate results. This does not suspend the rules of precedence. Using our
above example, press RUN.

! Now press RUN
L 243 < |

! Intermediate result.

L s « |
* 4 ERR:Precedence

Since the entire expression is maintained, regardless of intermediate results displayed, the 71 still
expects the expression to be evaluated in sequence.

The real value of the RUN key in CALC mode is to partially evaluate an expression with the
intention of possibly altering it before obtaining the final answer.

f-BACK
The "undo"key. Before pressing ENDLINE to terminate the expression. f-BACK, used with RUN,
allows us to step backwards through an expression and alterit as needed.

Arrow Keys
The UP and DOWN , g-UP and g-DOWN keys move us through the command stack. In CALC mode,
the left and right arrow keys are ignored unless the command stack is enabled.

Command Stack
Many jobs which might otherwise require writing a program can be performed within CALC using
the entries on the stack. Nominally five, but up to the last sixteen calculations are available in the
stack. You can look through the previous entries to make sure that calculations were entered
correctly, revise an expression, or recall an entry to the CALC editor. If you delete the carriage
return character («—!) then press RUN, the expression can again be used with the CALC editor;
adding and deleting characters to obtain intermediate results. If you’d like more than the standard
five entries, run the program CMDSTK,listed later.

Chapter 5 CALC Mode 35

Variables
As with BASIC mode calculations, values may be exchanged with the calculator environmentjust
by referencing them in an expression. Unlike BASIC mode, even if a value is destined togo to a
variable it is still displayed. The value is not assigned to the variable until the end of the expression,
so you maystill evaluate intermediate results, changing formulas until you are satisfied, before
pressing ENDLINE.

X=TIME/3600 ! Assigns the result of the expression to variable X.

TIME/3600-X | Uses the value previously stored in X in an expression.

CALCAID Program
Thislittle BASIC program is useful for continuous addition without worrying about getting over
96 characters. The program displays the current value of variable X, followed by a question mark
and thce [lashing cursor.

0.00 2 § ! CALCAID program display.

Enter a mathematical expression then press ENDLINE. The program saves results to variable L
(easy to remember--think of it as I.astX) and the value is added to variable X (as with RPN
calculators). Any mathematical expressions which evaluate to a single numerical result (including
string functions which return a number) are allowed, and the command stackis active. The pro-
gram continues through this little loop, prompting for input and adding the result to X, until you
end it. Re-enter CALLC mode by pressing ENDLINE without any data. The small "trick" in the pro-
gram is that it will branch to line 100 with any mathematical error (which no data at all certainly
qualifies as), and line 100 "presses" the CAL.C mode key and ends the program. Any errors in data
entry will also put us back in CALC. The program should always be RUN, nevercalled, so that the
calculator variables will be common with those used within CALC mode. A variation ofthis pro-
gram can be done to enter data into a statistical array, or anyseries of variables (preferably using
MATINPUTfrom the MATH ROM), then return to CALC modeto evaluate the data.

So, we're in CALC mode and want to run a column of numbers which will probably exceed 96
characters. We exit CALC (press f-CALC again), and press RUN with this as the current program.

10 ON ERROR GOTO 100 ! “"CALCAID" program.

20 DISP X; @ INPUT L ! don’t forget the semi-colon (;).

30 X=X+L @ GOTO 20 ! loop until we get an error.

100 PUT “f," @ END ! go to calc mode.

User Defined functions
In addition to the power of adding new keywords using LEX files, we can write functions "on the
run" in BASIC to use in formulas and save time entering often used or complex formulas. In the
context of CALC mode, a user defined function can be thought of as a mini-program or "macro."

A user function is created with the BASIC statement DEF FN followed immediately by a name
which can be lctters A-Z and optionally tollowed by an number. A single line function evaluates an

36 CALC Mode The BASIC HP-71

expression and returns a numerical result. The function must be in the current BASIC file, not in a
SUB program.

200 DEF FNT=TIME ! A simple one line function.

A FN may consist of any number of nested parentheses incorporating the most convoluted logic
desired as long as it is a single expression which evaluates to a numerical result.

! Using a single line DEF FN in
FNT <« ! calc mode.

While it may seem limiting that we may only use single line functions, remember that they may also
call other single line functions (or themselves!). Another advantage of using FNs is that they may
use string functions. Let’s define FNT2, which uses FNT twice, to see how long it takes to evaluate
a function. Exit CALC mode and type the following:

210 DEF FNT2=FNT-FNT ! Single line FN referring to another function

Go back to CALC mode and comparethis to the time it would take to enter the expression
directly in CALC to see the actual time savings.

! Call the nested DEF FN.

|_ FNT2 < |
! Compare this result to the time

TIME-TIME < ! the FN takes to run.

The "hook" ofallowing user defined functions to be recursive as well as calling other functions
brings us a new application of BASIC as a threaded language to be interpreted in CALC mode.
These I'Ns can be added to a single file, such as at the end of the CALCAID program, for a
custom function set.

Inside CALC Mode
When a BASIC program is running there is somewhat increased power consumption; the com-
puteris constantly working. Lest you think that the ever attentive state of CALC mode will end
with increased battery drain, the 71 performs these tasks quite fast, and actually has time for a cat-
nap (called "light sleep") between keystrokes. It wakes up every now and again (well, in computer
time) to flash the cursor, then nods off again. In fact, given ten minutes of waiting for us, the
computer will shut down completely (called "deep sleep"). The 71 is eminently patient with us slow
humans, though less so when we press the wrong keys.

Asis the rest of the HP-71’s Operating System, CALC modeis written in Assembly Language.
The three main modules include the editor, decompiler (which tries to interpret our keystrokes),
and a group ofutilities. Surprisingly, much of CALC mode is contained within this 961 byte block
of ROM; not very much code space considering the complexity and versatility. Part of the reason
for this efficiency is the use of utilities from the BASIC interpreter which helps explain the
similarity to BASIC. As an example ofthis efficiency, when the Command stack is enabled, CALC
uses the very same editor as the BASIC keyword INPUT.

Chapter 5 CALC Mode 37

The environmentis altered considerably while in CALC. Because of the complexity of CALC,
only single line FN’s can be used, and an active display device is ignored, though an active external
Keyboard is allowed. This is probably because the display device would have to be actively sup-
ported, thus slowing things down as the insert cursor was constantly being moved around. Try to
visualize how CALC mode would look on a monitor and you can see the problem; the engineers
dropped the issue all together. External keyboards, on the other hand, require no extra work from
CAIL.C. They arc interpreted using an interrupt which handles the key, then returns it to CALC, so
that CALC receives the key without knowing where it came from.

Ll

6 CALL MATHQUIZ @ SUB MATHQUIZ @ £$=CHR$(27)&’H’&CHR$(27)>&’J’
10 DISP E$&"Math Quiz" @ RANDOMIZE TIME
20 ON ERROR GOTO 20 @ T=0 @ INPUT "Largest number? ","10";M
30 M=ABS(IP(M>) @ IF NOT M OR M>999 THEN 20 ! make sure it’s in range

40 DISP “"function: + - * /" | prompt for type of function
60 F=POS("+-x/" KEY$) @ IF NOT F THEN b0 | wait for a proper key
60 FOR Q=1 TO 10 | loop through 10 questions
70 X=INTCRND*M) @ Y=INT(RND*M) @ IF X<=Y OR NOT Y THEN 70 | get numbers
80 IF F=4 AND NOT FP(X/Y> OR Y=1 THEN 70 | integer answer for division
90 C=0 @ DISP E$&"Question number";Q €@ ON ERROR GOTO 100

100 IF F=1 THEN DISP X;"plus";Y; Q@ B=X+Y
110 IF F=3 THEN DISP X;"times";Y; @ B=Xx*Y
120 IF F=2 THEN DISP X;"minus";Y; @ B=X-Y
130 IF F=4 THEN DISP X;"divided by";Y; @ B=X/Y
140 INPUT A @ IF A=B AND NOT C THEN T=T+1 @ DISP "Very good!";B @ GOTO 180
150 IF A=B AND C=1 THEN DISP "Yes,";B @ GOTO 180
160 IF A#B AND NOT C THEN DISP "Sorry, not ";A @ C={ @ GOTO 100
170 DISP "The answer is:";B
180 NEXT Q | end of the loop
190 IF T=10 THEN DISP "GREAT! PERFECT SCORE" @ GOTO 220
200 IF T>7 THEN DISP "Goodl";
210 DISP T:"of 10 correct" | the lazy way to wait for a keystroke
220 WAIT 2 © INPUT "quiz again? ","Y";E$ @ IF UPRCSCE$)="Y" THEN 10

38 CALC Mode The BASIC HP-T71

Basic BASIC 6

This section introduces BASIC and simple programming. If you’re new to programming in BASIC,
or would like a refresher in the 71 dialect, read on.

BASIC is a child ofthe 60’s, created at Dartmouth College, and raised as a learning tool for com-
puter novices.It has easy to remember commands, simple syntax, and is probably the easiest com-
puter language with which to learn programming. The acronym, Beginner’s All-purpose Symbolic
Instruction Code,is an understatement; BASIC has grown into a powerful programming tool.

Unlike most personal computers, the 71 is a useful tool without programs. BASIC programming
expands the 71, helping us solve problems with speed and simplicity. Any complex pursuit, be it
programming, surgery or farming, requires patience and a willingness to get your hands dirty.
Back-up everything in RAM onto Disc, and let’s get started.

You’ve turned on your 71 and entered CALC mode to convert five centimeters to inches. In
algebraic logic (which is how BASIC works) you might enter:

5+.3937§ 1.9865

Now, suppose you have a whole list of numbers (cms’s?) to convert. You could wander up and
down the command stack replacing one number with another until the job was done, or you could
write a program to help you.

A program is a series of keystrokes we’ve recorded to use time and again without having to re-
enter them. To differentiate between entering commands for immediate execution and writing
programs, programs are stored as a series oflines, each beginning with a line number of from one
to four digits. When we run the program, the computer reads each line and interprets the
instructions.

The 71 reads a program file a line at a time, and each line from left to right, a statement at a time.
Each mathematical expression is evaluated using the same rules of precedence we use in BASIC or
CALC mode. Contrary to popular myth, a computer does not wander up and down a program in a
relentless quest, looking for what’s most logical to do next. It does what we tell it to.

Let’s make a program of our metric problem. We have the math part (X*.3937), let’s adda
program structure to it and have the computer do the work. To begin with, we need to have the
computer ask for the number, we do this with an INPUT statement. INPUT,in its various forms,
displays a prompt, waits for you to input something, then stores the information where the
program code tells it to. The 71 knows that we are entering a line in a BASIC file because we’ve
begun it with a line number; without the line number, the computer evaluatesit in immediate
mode and displays the answer.

10 INPUT “cm:*;

Chapter 6 Basic BASIC 39

Line 10 tells the 71 to display the prompt ("cm:") then wait for the user to enter the number and
press ENDLINE. The number is then automatically assigned to variable X, though we could have
used any variable. Now that we have the number (safely stored in X), we need to do the math with
it:

20 Y=X*.3937§

Now the solution is in variable Y; let’s display the answer. INPUT gave us an input, the math
operations worked much as they do in CALC mode,it would figure to display the result we would
use something like DISP.

30 DIsSP Y§

Fine, a simple solution. Let’s embellish the answer to be more informative.

30 DISP Y;"inches"#

The semicolon tells the 71 that moreis to follow on the line, then we add the "inches". Note that

the quotation marks (either single or double, but both ends must be the same) are required.
Otherwise there would be no way for the 71 to distinguish the end ofthe string from the rest of the
universe.

GOTO
We're writing the program to save time converting a lot of numbers. Let’s modify our program so
that it will continue working until we press ATTN to stop it. We'll do this by adding a lineto tell the
71 to go back and start over when it’s done.

40 GoTo 108§

The answerstays in the display for as long as the delay setting (usually a half-second), then the
program will GOTO line 10 and start over. Ending the DISP with a semicolon tells the computer
that it is not done with displaying on the current line. We can modify line 30 so that the answer will
stay on the left of the display when the program goes back to line 10. DISP formats numbers with a
leading space if the numberis positive, or a minus sign ifit is negative. In either case it’s followed
by a space, so it’s not necessary to add extra spaces (o separate the numbers from the words
displayed. With the final modifications, the program runs until you press ATTN to haltit.

10 INPUT "centimeters" ;X

20 Y=Xx k3937

30 DISP X;"in.,"%;

40 GOTO 10

40 Basic BASIC The BASIC HP-71

The main difference between a four line program and a five-hundred line program is four-hundred
ninety-six lines. ‘I'his is not as casual a statement as it sounds. A large program can be thought of as
a group of problems which can be broken down into a series of small solutions. Small solutions like
the one above combine to solve big problems. A plan, whether in the form ofa list of necessary
tasks, a flowchart, shopping list, or any other form which you find comfortable, makes the
difference between a programming nightmare and a problem brought down to size.

HP BASIC
Hewlett-Packard has taken the approach of a multitude of commands with an editor which checks
syntax when you enter a line of code. HP BASIC is an excellent programming environment be-
cause of its completeness and consistency of operation. And it’s a language to grow with because
of its speed and power. While you will probably need to refer often to the HP-71 Reference
Manual, and you'll hear your share of beeps, the only damage likely to occurto the 71 is from
physical abuse to the keyboard.

Let’s take the idea from our centimeter to inch converter program and give it another function.
This will look a little less like generic BASIC, and more like HP’s. We’ll begin with a prompt in the
form of a simple menu. When you run the program, all you will have to do is press the appropriate
key to select a function.

In orderto save a little space we'll enter more than one statement on a line. Each statementis
separated by "@", the commercial at sign; this is called concatenation. Lines beginning with an
exclamation mark are remarks which are ignored when the program runs. Line 50 gives us the
opportunity to exit the program by pressing E; this is usually better than suspending with ATTN.

1 ! inch/cm converter.

10 LC OFF @ DISP "metric converter" @ WAIT.5

20 MENU’: DISP "convert to: Cm/In" ! the main menu prompt.

30 IF KEYDOWN("C") THEN 'CM’ ! wait for a key.

40 IF KEYDOWN("E") THEN END | the escape hatch.

50 IF NOT KEYDOWN("I") THEN 30 ! if wrong key, go back for another.
100 ’IN’: DISP “cm:"; @ GOSUB 'INP’ ! inch--> cm

110 Y=X*.3937 @ GOTO ’DSP’

200 'CM’: DISP "in:"; @ GOSUB ’INP’

210 Y=X*2.54
500 ’INP’: INPUT X @ RETURN ! input subroutine.

600 ’DSP’: DISP Y @ WAIT 1 ! display routine.

620 GOTO ’MENU’ ! we’re done, return to menu.

Labels
As the program name describes the program, labels identify the purpose of a subroutine.
'ERRTRAP’ handles errors, ’ASKYN’ might handle input, and '"MAINLOOP’ is probably just
that; a descriptive label makes the program easier to write and maintain. While long labels con-
sume a few extra bytes, a line which says GOSUB 'READFILE’ won’t need a remark to remind us
what it does, or hours in debugging if line numbers are changed. Since the label is independent of
the line number, we can insert, dclete, and re-numberlines without affecting the logic or flow when

Chapter 6 Basic BASIC 41

the major modules are distinguish by program labels. Within 5 minutes of using labels, you’ll won-
der how you ever got along without them.

There are few restrictions on labels; anything may follow on the line without an "@", and the al-

lowed names follow the same rules as program names. Some rules of thumb with labels are:

° Don’t use function names for label names (it’s confusing).

° Don’t use same label twice (only the first one will be found when the program
searches forit).

° Enter label references without quotes. When you enter the label or labelrefer-
ence without quotation marks, the 71 tokenizes the label with an implied quote,
thus saving a byte over entering literal quotes.

Labels are especially useful with DATA statements. Begin each line or series of DATA statements
with a label, then use RESTORE to place the pointer at the beginning of that sequence.

200 RESTORE ’'NAMES’ @ READ X$ @ DISP "Salesperson: "&X$

210 RESTORE ’DISTRICT’ @ READ X$ @ DISP "District: "&X$

220 RESTORE ’SALES’ @ READ X @ DISP "Total Sales:";X

500 ’NAMES’: DATA Bob,Mary,Vern,Carol

510 'CITY’: DATA San Jose,Palo Alto,Livermore,Mountain View

520 ’DISTRICT’: DATA Valley,Downtown,East Bay,South Bay

530 ’SALES’: DATA 5600,6700,3400,5100

GOSUB, RETURN
GOTO,as you know, tells the 71 to go-to a line or label in the program. This is unconditional
branching. Often we use a portion of a program several times to save memory, link modules, or to
keep from having to write similar code several times. In these situations we use a subroutine. To
get to the subroutine we use GOSURB, and to return the subroutine ends with RETURN. When
the 71 executes the GOSUB, the address (location in memory) of the GOSUB statementis stored
in a list. When the 71 encounters the next RETURN,it looks up where it came from, and the 71
continues from the statement after the GOSUB.

Subroutines may call other subroutines by again using GOSUB, adding new entries to the list. This
list is called, conveniently enough, the gosub stack, and it’s maintained automatically by the 71
while the program runs. As you can see, for every GOSUB there’s a pending RETURN, though
there may be quite a bit of time and program between them.

° The gosub stack works as last in first out. Whenever a RETURNis encoun-
tered,the last entry is "popped" from the stack and program execution contin-
ues at the next statement following that last GOSUB. Every GOSUB adds one
to the stack, every RETURN pops one.

® If the gosub stack is empty and the program encounters a RETURN, an error
message is displayed because the 71 doesn’t have any place to return to.

42 Basic BASIC The BASIC HP-71

° Statements following a GOSUB on the sameline will not be executed if you
press ATTN to suspend the program, then £-CONT to continue. It’s good pro-
gramming practice to account forthis by placing GOSUBsasthe last statement
on the line.

An oversight even experienced programmers make is to follow a GOSUB with RETURN. When a
subroutine calls another, that routine will also end with a RETURN,giving the 71 two RETURNSs
to execute one after the other, plus the overhead of an extra entry on the gosub stack. It will save
some time and code if you place the call to the nested subroutine at the end of your routine and
use GOTO. Be sure to note in a remark that the GOTO isin lieu of nesting the subroutine.
Overuse of GOTOsin this or any manner results in "spaghetti code," which will be difficult to
unravel later.

2000 GOSUB 3900 @ RETURN ! Readable, but wastes code and time.

2000 GOTO 3900 ! Shorter and faster.

POP
If a RETURNstatement following a GOSUBis never encountered, the pending RETURN re-
mains on the gosub stack. Sometimes this is because of an error in program design; often condi-
tions change and you may not want to return at all. The POP keyword cancels the RETURN from
the most recent GOSUB. When the 71 POPs, the newest entry on the gosub stack is deleted, and
execution continues from the POP statement.If you’re using an all-purpose error trap, and the
number of pending RETURNS will differ depending on how you gotthere, use the maximum
number of POPs you will possibly need. Unlike extra RETURNSswhich cause an error, the 71
ignores extra POPs. 'The HELP subroutine, listed later, uses POP.

Computed GOTO, GOSUB
The 71 can help us write.compact, readable, and quick programs, with program structures like
ON...GOTO and ON...GOSUB. These are very advanced forms of conditional branching. The
computer evaluates the expression, then uses the result to decide which line numberor label to

branch to. An answer of 1 sends the computerto the first line, 2 sendsit to the second, and so
forth, for as many line numbers (or labels) you've included. While superficially looking like the
ON ERRORstatement, syntax and use are quite different.

10 FOR L=1 TO 3

20 ON L GOSUB 100,200,300

30 NEXT L @ DISP "end of program" @ END

100 DISP "subroutine #1" @ RETURN

200 DISP "subroutine #2" @ RETURN

300 DISP “subroutine #3" @ RETURN

Line 20 says "IF X=1 THEN GOSUB 100 ELSE IF X=2 THEN GOSUB 200 ELSE IF X=3
THEN GOSUB 300." If the expression evaluates to a number outside of the number of program
lines (or labels), the 71 will cause an error; used carefully, this is a versatile program structure.

Chapter 6 Basic BASIC 43

There’s a bug in HP71:1BBBB which requires OPTION ROUND NEAR or OPTION ROUND
ZERO for computed gosub and computed goto to work correctly. Use only simple numerical
operators (+, -, *,/, DIV).

FOR, NEXT
While GOTO jumps between a series of lines, FOR and NEXT provide a more elegant and struc-
tured method for looping for a predetermined number of times. In the next example,line 10 does a
piece of business, the program falls through to line 100 for some more work, then the end of line
100 sends us back to line 10. The problemis that line 500 never gets executed.

10 DISP "HP-71"
100 BEEP RND*1000,.1 @ GOTO 10
500 DISP "end of loop"

Besides running around in circles, we can haveit loop for, say, 10 times.

10 FOR L=1 TO 10 @ DISP "HP-71"

100 BEEP FP(TIME)*1000, .1

200 NEXT L

500 DISP "end of loop"

Now the 71 will loop for only ten times, then fall through to line 500. FOR and NEXT are paired
like GOSUB and RETURN, except that you should not have multiple NEXTs for one FOR; any
amount of program may exist between the two and you can jump in and out of the loop at will. A
few BASICs (including this one) allow multiple NEXTs for a single FOR, but it is poor program-
ming practice because of the dilemma of following the programs logic.

When the computer comes upon the NEXT statement, it increments the counter by one, then
compares it to the TO value. If the resulting value is less than or equal to the TO value, the com-
puter goes back to the statement after the FOR. In the above example the value of L is eleven
after completing the loop, since it was incremented before comparing it to the TO value.

Each FOR-NEXT loopis associated with a numerical variable (like X1 or L), and the initial loop
value may be set in any way. Since the loop counter variable is a standard variable, you may use it
or change it within the loop. HP BASIC allows us to exit a loop and even start another loop using
the same variable without causing an error.

Loops are always incremented by one each time through, unless we specify the STEP value.

500 FOR L=10 TO 100 STEP 10

This will still loop ten times. Howeverat the termination of the loop, L equals 110, because the
computer incremented it by 10 each time.

You can create an endless loop with FOR L=1 TO INF.Infinity is an unreachable goalfor the 71;
when it gets above twelve significant digits, adding one to it doesn’t incrementit at all. The same
effect can be seen with FOR L=0 TO 0 STEP 0, but it takes more memory and isn’t as clean
looking.

44 Basic BASIC The BASIC HP-71

We can use positive or negative STEPs. The advantage of a negative numberis to decrement the
counter each time,instead of increment. A program called NOREMS, in the communications sec-
tion, uses a negative loop counter to read a TEXT file backwards from end to beginning. This next
little program shows the effect of negative and positive steps. This program prints a list of system
and userflags which are set. Unlike the HP-41 function which prints the status of all flags,this
program prints only tlags which are set. If a flag isn’t set,its status isn’t printed. If no flags are set,
nothing is printed.

10 CALL PRFLAGS @ SUB PRFLAGS ! print system flags, then user flags.

20 FOR L=-1 TO -64 STEP -1 ! a negative step value.

30 IF FLAG(L) THEN PRINT "system flag";L;"is set" | print it if set.

40 NEXT L ! the end of the first loop.

50 FOR L=0 TO 63 ! the default step is +1.
60 IF FLAG(L) THEN PRINT "user flag";L;"is set"
70 NEXT L @ END SUB

IF, THEN
The IFstatement begins a powerful and easy to use method to conditionally execute a passage of
program code.

° If the expression evaluates true (it’s not zero), then the statement after THEN
is performed, otherwise it’s ignored. That’s the same syntax as the previous
sentence.

° The expression can be a mathematical or string comparison which evaluates to
a non-zero (true) value boolean argument.

° Note that negative values are non-zero.

° The statement to be evaluated (after THEN) may be almost any BASIC state-
ment orseries of statements. The exceptions are DIM, FOR, NEXT, DATA

and DEF FN.

A traditional use of IF...THEN is followed by GOTO or GOSUB, called conditional branching.
Forthis reason ifa line numberor label follows THEN,it’s interpreted as an implied GOTO. This
is saying to the 71 "if the next expressing returns a non-zero result then goto thisline, if not then
forget that I ever brought up the subject, and continue with the next line."

10 IF X>Y THEN 2000 ! implied GOTO to line 2000.

500 IF TIME>64800 THEN GOSUB ’LATE’ @ GOTO 100

630 IF (A+B)*(X-Y)>Z THEN R=R-12.75

We can evaluate the expression as false (zero) with the keyword NOT. This is saying "If the expres-
sion is not true then..."

20 IF NOT (X-Y)*Z THEN 500

70 IF NOT M THEN X=Y

500 IF X OR NOT Y THEN BEEP @ GOTO 100

And we can do multiple comparisons with AND or OR:

Chapter 6 Basic BASIC 45

10 IF X AND Y OR MEM<2000 THEN BEEP @ DISP X$

ELSE
If the expression evaluates asfalse, then the program ignores the remainderofthe line and contin-
ues on the next line. We can redirect the program to continue on the sameline but after the state-
ments which would have been evaluated had the argument been true. A disadvantage to nested
Else’s is reduced readability.

1600 IF X=1 THEN 400 ELSE IF X THEN 500
150 IF P=46 THEN PRINT CHR$(12); @ P=0 ELSE P=P+1 @ GOTO 80

Lol

5 CALL FROG @ SUB FROG | leap frog game. Jump only 1 char at a time
10 A$="XXXX 0000’ @ FOR T=1 TO 99 | 99 tries to reverse order of chars

40 DISP USING °’ZZX%" >>>%" QA , "<<<"’ ;T A8 | display current board

50 Q$=KEY$ @ IF NOT POS("123456789",Q%) THEN 50 | get jump position
60 L=POS(AS.," ") @ S=VAL(Q$) @ IF S=L THEN BEEP @ GOTO 60 ELSE DISP S;
70 IF ABS(S-L)>>2 THEN BEEP @ DISP ’Too far!’ @ GOTO 40 ELSE DISP "-->":L
80 B$=A8[S,S] Q@ AS$(S,S1=ASIL,L) @ ASI[L,L1=BS @ IF A$="0000 XXXX" THEN 100
90 NEXT T @ BEEP @ BEEP @ T=99 | end of the loop

100 DISP "You took";T;"moves" @ WAIT 1 @ DISP "go again Y/N"

110 Q$=UPRC$(KEYS> @ IF NOT LENCQ$> THEN 110 ! a good score is under 10

120 DISP @ IF Q$#’N’ THEN 10 | replay?

46 Basic BASIC The BASIC HP-71

HP-71 BASIC Programming 7

The BASIC line editor does severaljobs. If we give it a mathematical expression,it tries to evalu-
ate it and return an answer. Enter a command like CATALL and the 71 will do just that.
However, begin the expression with a line number and you’ve entered a line in a BASIC program.
Same syntax requirements, same beeps and error messages. Since BASIC uses English-like words
and algebraic logic, once we’re familiar with its workings,the logic of a program can usually be fig-
ured out by reading the listing. An advantage of BASIC over FORTH or Assembly languageis
that we can edit and modify programs on-the-fly.

Let’s begin by sharing a little program called ACYDUCY. The program presents two cards and
asks if you think a third card will fall between the first two. You can pass either by betting zero or
by clearing the input. It uses an infinite deck and maintains the bank. The program ends if you go
broke, but that’s only fair.

9 ! ACYDUCY
10 STD @ B=100 @ Q=5 @ RANDOMIZE @ ON ERROR GOTO 30 ! initialize.
20 'START’: DISP "Bank:$";STR$(B) @ WAIT 1
30 ’BET’: C=IP(11*RND>+2 @ IF C<2 OR C>11 THEN ’'BET’ ! get cards.
40 D=IP(14*RND)+2 @ IF D<5 OR D>14 THEN 40
50 IF C>=D-2 THEN ’BET’ ! an implied goto.
60 E=C @ GOSUB ’CARD’ @ E=D @ GOSUB ’CARD’
70 INPUT "bet:$",STR$(Q);Q @ IF Q<=0 THEN ’BET’ | an implied GOTO.
80 IF Q>B THEN DISP "Bank:$";STR$(B); @ GOTO 70
90 F=IP(14*RND)+2 @ IF F<2 OR F>14 THEN 90
100 E=F @ GOSUB ’CARD’
110 IF F>C AND F<D THEN DISP "WIN!,"; @ B=B+Q @ GOTO “START"
120 DISP "Sorry..."; @ BEEP 500,.2 @ WAIT 1
130 IF Q<B THEN B=B-Q @ GOTO ’START’ ! any money left?
140 DISP "You’re Broke!" @ END
150 ’CARD’: IF E=10 THEN DISP “TEN"; ELSE IF E=11 THEN DISP "JACK";
160 IF E=12 THEN DISP "QUEEN"; ELSE IF E=13 THEN DISP "KING";
170 IF E=14 THEN DISP “ACE";
180 IF E<10 THEN DISP STR$(E);
190 DISP ","; @ RETURN

Line 10 follows standard BASIC practice ofinitializing variables to a known value before starting.
ON ERRORtraps bad input if the user, for instance, enters no bet at all. This is necessary be-
cause the program assigns the input to a numeric variable, and a null string is not a valid numeric
expression (beep, "Err:Numeric Input"). RANDOMIZE places a new seed in the random number
generator. We've specified no parameter for RANDOMIZE,the 71 automatically uses the current
clock setting for the new seed. For programs which need a very random sampling, specify at least a
12 digit number.

Line 20 (label 'START) is the greeting; many programs begin with a promptto let the user know
that he has run the right program. L.abel 'BE'T” finds the two cards and makes sure they are at least

Chapter 7 HP-T71 BASIC Programming 47

two cards apart. Line 70 prompts the user for a bet. The default betis the same as the previous bet
(variable Q). While only a string may be furnished as the default input, the result may be returned
to numeric variables. In fact, we can use anything which evaluates to a string as the default.

INPUT "numbers:","1,2,"&STR$(IP(C));A,B,C

The subroutine "CARD’ displays the string equivalent of the current card. It’s used three times
within the program, so we’ve made it a subroutine to save memory.

There are no string variables used within the program. Each numberis displayed as a string (using
STRS) to suppress displaying extra leading and trailing spaces. While ACYDUCYisrelatively
compact for what it does,it does have several weaknesses. It uses calculator variables without rea-
son, uses more variables than absolutely necessary and it will run until the user either runs out of
money or presses ATTN.

Sub-Programs
As we'vestressed, entire programs are often used as sub-programs in order to preserve the calcu-
lator environment. ACYDUCYis not a SUB, and uses the calculator variables, a problem if
you've created the calculator variables to other types. For example, if B is an array, and line 20
tries to use it as a scalar variable, the program will halt (ok, "crash") with an error message. An
equally important use of sub-programsis to make commonly used modules available to several
programs, thus saving memory, and simplifying programming.

° While a subroutine begins with a local label and we enterit with GOSUB, a
sub-program begins with a SUB statement, then we CALLit; separate pro-
gram, separate variables.

INCATis a sub-program which has little value as a stand alone program,it has no user interface at
all, but is helpful in programs dealing with data files. INCATreturns a value representing the type
of a specified file. It requires two parameters: A string with the file name, and a numeric variable
in which to return the result. Possible answers returned in the numeric variable can be:

0 File is nonexistent 6 ItisKEY

1 Itis a TEXT file 7 Itis BASIC
2 Itis SDATA 8 Itis FORTH

3 Itis DATA

4 Itis BIN 20 Unknown type
5 Itis LEX 21 Invalid name

A BASIC file will return the value seven. If you have entered ACYDUCY, you can test INCAT.

! Call the program with a file name
IEALL INCAT("ACYDUCY',Q)“I ! and a variable for the results.

DISP Qf 7

48 HP-71 BASIC Programming The BASIC HP-T71

We could use ADDRS tofind a file, then PEEKS$-outits file type from the data in thefile header,
but that won’t help ifthe file resides on Disc or it doesn’t exist. Instead we keep in on a very high
level: First we display the CAT entry for the file, then read the file type from the display using
DISPS$. The problem with this method is that DISPS$ is intended to recall information after an
INPUT;it usually will return a null string otherwise. This is because displayed data is not accumu-
lated into the input buffer unless the cursoris on. The escape sequence CHR$(27)&">" on line
9610 turns on the cursor, then is followed immediately by CAT. Since the HP-IL. Module adds two
extra spaces in the CAT entry, line 9620 looks for those spaces and trims them if found. Finally,
line 9630 compares thefirst two characters of mostfile typesto this file. If you use APPT or ROM
files, change line 9630 to recognize them. A program called NEC, in the communications section,
uses INCAT.

9600 SUB INCAT(F$,T) @ ON ERROR GOTO 9660 ! trap filename error.
9610 DISP CHR$(27)&">"; @ CAT F$ @ T$=DISP$[1,32] | turn on cursor.

9620 IF NUM(T$[12])=32 THEN T$=T$[3] ! trim spaces if Disc file.
9630 T=POS("TESDDABILEKEBAFO",T$[12,13]1) | look for the file name.
9640 IF NOT MOD(T,2) THEN T=20 ELSE T=(T+1) DIV 2 ! file type #.
9650 GOTO 9670 ! good data

9660 T=21 @ IF ERRN=57 OR ERRN=255022 THEN T=0 ! error trap.
9670 DISP CHR$(27)&"<" @ END SUB ! turn off cursor, exit.

The sub-program receives values, evaluates them, and returns the answer in the same variables.
When a sub is called, the parameterlist points to the actual variable in the calling program’s envi-
ronment, though a different variable name may be used (more confusing for the 71, easierfor us).
Thus saving some time and memory, because a copy of the variable does not have to be present in
both environments. If actual values are passed as with CALL MYPGM(1,2,"test"), nothing is re-

turned, because there were no variable names passed to return the data in. Of course a SUB can
be called without passing any data; the maximum number of parameters we can pass between
programsis 15.

° The number and type of parameters must match in both the SUB and CALL
statements.

® Variables which the sub creates are in its own environment and do not affect
the CALLing program.

® You can have any number of SUBsin a file.

° A sub-program can only be CALILed, never RUN; we can only RUN program
files.

° Thefirst sub-program in a file usually has the same name as the file.

To share the advantages of a SUB program,files often begin with a line which CALLs the SUB
within the file; if it did not, the program would end whenit ran into the SUB statement.

10 CALL MYPGM @ SUB MYPGM | a separate program environment

20 ! the program begins here...

Chapter 7 HP-T71 BASIC Programming 49

Interpreted BASIC
BASIC on the HP-71 is an interpreted language. What that means is that the computer reads each
line, looks up the meaning of the current statement, then goes to the part of the operating system
which contains the machine language instructions for that operation. Consider this fragment:

10 BEEP 2000 @ DISP "I love my [(HP-71)]"

The computerskips past the beginning of the line until it finds the word BEEP (actually, a token
representing BEEP). It then looks up the location in memory of the machine language code which
makes the beep happen,calls that routine, which itself interprets the line to see if frequency and
duration had been specified, and, finally, the computer beeps.

With that done, the 71 returns to the next statement on the line. It finds an "@", which it interprets
as saying there is another statement followiag on the line, and so on. This may seem like a long and
involved process, but it’s streamlined and happens hundreds of times per second. An extra benefit
to usis that HP-71 BASIC will not allow us to do something really stupid, while Assembly code or
FORTH will blindly run the computeroff a cliff if we tell it to.

Tokens
To both save memory and speed things up, each statement on the line is tokenized. This means
that when we enter the line, the computer substitutes a code of from one to four bytes for the
actual keyword. Because ofthis, DISP and PRINT take the same amount of memory, though they
have a different number of characters. Spaces separating items do not take any memory. This ex-
plains why we can’t insert extra spaces between statements for clarity, they are not part of the key-
word, so were never entered into the line.

When we edit a line in a BASIC program, the 71 looks up each token and displays the keywords
and parameters and such. When we press ENDLINE while editing the line, the whole process of
tokenization starts again.

Statements versus Functions
Tokens can be summarized in these two categories. In general, a statementis free standing and
does not necessarily require any parameters. An example of a statement requiring no parameters
is the keyword BYE. BEEPis a statement which may optionally have up to two parameters. The 71
lumps together statements and commands, which some BASIC:s treat separately. Operators (like
+ or DIV) are a special case.

Functions may require zero or more parameters, do something with the data, and return either a
numerical or string result. MAX, for example,is a function which requires two numeric parame-
ters and returns a number. One of the strengths of functions is that they may be used within ex-
pressions containing several other arguments, as long as the result is a single numberor string.

10 X=MAX(FP(Y) ,ABS(FP(Z))) ! Nesting functions.

The distinction between statements and functionsis often blurred, and the HP-71 has a penchant
for allowing liberal BASIC syntax. One blanket statement about functions and statements is that
functions may be preceded with the keyword LET and statements may not. In the strictest sense, a
function, its operators, and the variable assighment, form a complete statement, though we’ll let

50 HP-T71 BASIC Programming The BASIC HP-T71

that pass. If you are in a crowd of sticklers and don’t wish to misrepresent a function as a state-
ment, you can usually call it a token or keyword without anyone ever catching on that you are not
sure what it is.

Spread among computer languages are a numbcer of names for commands, parameters and data
structures. Among them are (in alphabetical order) atoms, conditionals, definitions, directives,
functions, keywords,library routines, macros, operations, operators, predicates, procedures, rou-
tines, statements, utilitics, and words. In this chapter we’ll usually say command or statement, and

you can nod with a knowing smile.

The DECIDE Program
DECIDE is a decision making aid. Enter a series of up to 9 items and up to 9 factors. Press
ENDLINE without any input when through entering and it will move to the next prompt. When the
final datais input, it displays the answers one by one; press any key to move to the next item.
DECIDE doesn’t do very much, and what it does,it does elaborately; much ado about nothing.

The purpose of the program is to demonstrate some HP BASIC principles.

10 CALL DECIDE @ SUB DECIDE | create separate environment.

20 L=FLAG(-16) ! recall current option base setting.
30 D=IP(HTD(PEEKS$ ("2F949", 1)&PEEK$("2F948%,1))/32) | find DELAY.
40 OPTION BASE 0 @ INTEGER K(9,9) ! two dimension int. array.

50 OPTION BASE 1 @ DIM E$(7],T$(9)([8],F$[72] ! simple,array,long str.
60 L=FLAG(-16,L) ! restore option base.

70 E$=CHR$(27)&"H"&CHR$ (27)&" J"&CHR$ (27)&"<-" | display clear string.
999 ! input loops ===---==-=------sc-cccccccsccccmccoccccsoccconcconoano
1000 DISP E$&"Decide-" ! start of program display.
1010 Q¥$="item" @ GOSUB 'PROMPT’ @ T=F | get items to evaluate.

1020 FOR L=1 TO 9 @ T$(L)=F$(L*8-7,L*8] @ NEXT L | move string to array

1030 Fé¢="" @ Q$="factor’ @ GOSUB 'PROMPT’ | get the factors.
1040 DISP "Repeat ratings Y/N";
1050 GOSUB 'WKEY’ @ L=POS("NY",K$) @ IF NOT L THEN 1040 ! get a key.
1060 L=FLAG(0,L-1) ! clear flag 0 if repeating ratings.
1069 ! rate each item.

1070 DISP E$4"Rate:" @ FOR L=1 TO T @ ON ERROR GOTO 1080 @ FOR L2=1 TO F
1080 DISP FNTS$(TSCL))&" ("&FNT$(F$[L2%8-7,L2%*8]);")="; | display item.
1090 GOSUB °'WKEY’ @ Ki=VAL(KS$)

1100 IF FLAGCO) THEN 1130 ! if flag O set then don’t check for repeats.
1109 ! see if rating has already been used.
1110 FOR L3=1 TO L-1
1115 IF K(L3,L2)=K1 THEN BEEP @ DISP K1;"USED" @ GOTO 1080
1120 NEXT L3
1130 K(L,L2)=K1 @ NEXT L2 @ NEXT L
1999 ! calculate results ----=-=-=------cccccccccmmrrrccccccccccee

2000 FOR L=1 TO T @ FOR L2=1 TO F ! calculate ratings.
2010 K(L,0)=K(L,0)+K(L,L2) @ K(0,L2)=K(0,L2)+K(L,L2) @ NEXT L2 @ NEXT L
2020 Ki=0 @ FOR L=1 TO T @ IF Ki1<K(L,0) THEN Ki1=K(L,0) @ L3=L
2030 NEXT L

Chapter 7 HP-71 BASIC Programming 51

3999 | display resultg ---------=-e--cceccccccccmccccacmcecccscccnconaaa
4000 DISP E$&"Results-" @ DELAY INF | set delay to wait for keystroke.
4010 DISP "Highest is "&T$(L3)
4020 FOR L=1 TO T @ DISP FNT$(T$(L))&’ rated’;K(L,0) @ NEXT L ! ratings.
4030 FOR L=1 TO F @ Ki=0 @ FOR L2=1 TO T @ IF K(L2,L)>K1 THEN Ki=K(L2,L)
4040 Y=L2 @ NEXT L2
4050 DISP "Top "&FNTS$(F$[L*8-7,L*81)&" is "&FNT$(T$(Y)) @ NEXT L | facts
4060 DELAY 0 @ DISP "New data, Results, End"; | done. Go again?.
4070 GOSUB °WKEY’' @ ON POS("RNE",K&)+1 GOTO 4060,4000,50,8300
7998 | subroutineg -----------------c-ccccccccccccrcnccannccncccncconnaa
7999 | wait for a key --> replace with KEYWAIT$ or WTKEY$ <--.
8000 'WKEY’: DISP CHR$(27)&%’>’; | turn on cursor.

8010 K$=UPRC$(KEY$) @ IF NOT LENCKS) THEN 8010 | wait for a key.
8020 DISP CHR$(27)&%< "4&K$ @ RETURN ! turn off cursor, return.

8099 ! main input routine.
8100 'PROMPT': Q$=FNT$(Q$) ! trim trailing spaces.
8110 FOR F=1 TO 9 | loop through inputs
8120 DISP "What is “&Q$&“#",F; @ INPUT K$
8130 IF NOT LENCKS$) AND F>2 THEN F=F-1 @ RETURN ! two items are enough.
8140 I1F NOT LEN(K$) THEN BEEP @ GOTO 8120 | need at least two.
8150 F$[F+8-7,F+*8]1=UPRC$(KS) @ NEXT F @ F=9 @ RETURN
8199 | user FN to trim trailing spaces from prompts.
8200 DEF FNT$(K$)=K$[1,POS(K$&" "," ")-1] | FNT$ trims trailing spaces.

8300 DELAY D @ PUT "#43" @ END SUB | restore DELAY, press ATIN, bye.

Strings
The four strings used by DECIDE are created differently. Unless dimensioned at the outset,
strings can hold upto 32 characters. K$ is not dimensioned, so it is implicitly DIMmed to 32 char-
acters. E$ is a constant containing an escape sequence and never changes. T$ is a string array with
9 clements (since OPTION BASE1 is set), each element can contain upto eight characters. I'$ is
a traditional (for HP) string, DIMmed large and used the same as T$. Each item in F$ is eight
characters, the same as an clementin the T$ array; F$ and T$ have similar uses. Let’s display ele-
ment 3 in F$ and array T$:

DISP F$[3*8-7,3*8] | An element from a simple string.
DISP T$(3) ! An element in a string array.

A single string is often used instead of an array for applications which would seem natural for an
array. One reason to avoid string arrays is for compatibility with versions of HP BASIC which do
not have them. The second is that an "¢lement"in a single string can overflow or be shifted easily.
A single long string surpasses arrays when we know that we will be doing comparisons. It’s easier
to searcha single string than use a FOR-NEXT loop t~ check individual elements in an array. The
71 makes a temporary copy ofthe string.in free memory whenever it does string manipulation; be
sure that you have enough memory for the string and its clone.

52 HP-T1 BASIC Programming The BASIC HP-71

POS(A$,"?") | Finds the first ? in AS$.

POS(A$,"?",8) | Finds the first ? in A$ from position 8.

LEN(A$) ! Returns the length of the string.

By giving us fewer but versatile string functions, HP makes some incredibly complex string opera-
tions almost automatic. These extract sub-strings:

A$(2,7]1 ! Positions 2 through 7 of AS.

A$(2,71[2] ! 2-7 of A$; then pos 2 through end of resulting string.
A$[POS(AS$,"?",3)+1] ! Return the substring following "?"

Control Codes
Control codes are ASCII characters 0-31, which form yet another language to grapple with the
built-in LCD, external displays, printers, and some other HP-IL devices. When we display or
print these codes, the device performs the task instead of displaying the character. If the device
can’t understand the code, it’s usually ignored. The ASCII table in the back ofthis book lists con-
trol codes. The 71’s built-in LCD only understands four control codes; others are displayed as
special characters.

CHR Purpose HP-71 response

8 Backspace. Movethe cursor one character position to the left.
10 Linefeed Advance paperor display one line w/o homing cursor.
13 Carriage Return Returns the cursor to the beginning ofthe line.
27 Escape The beginning of a multi-character control sequence.

Escape codes are a special breed of control code, beginning with the escape character CHR$(27),
and followed by one or more other characters. Escape sequences multiply the number of available
control sequences and opportunities for confusion. If the device can’t understand the escape se-
quence, it’ll ignore the escape character plus one following character; the remainder ofalien es-
cape codes longer than two characters will be displayed or printed. We used display escape codes
in INCAT to turn the cursor on then off, and in DECIDEto clear the display; let’s look at some
ThinkJet printer codes.

810 SUB NORMAL @ PRINT CHR$(27)&"&k0S"; | normal printer font.
820 SUB EXPAND @ PRINT CHR$(27)&"&kis"; ! expanded width printer font.
830 SUB BOLDON @ PRINT CHR$(14); ! print characters in bold type.

840 SUB BOLDOFF @ PRINT CHR$(15); ! turn off bold printing.
850 SUB LINES6 @ PRINT CHR$(27)&"&16D"; ! print 6 lines per inch.
860 SUB LINES8 @ PRINT CHR$(27)&"&18D"; ! print 8 lines per inch.

The SUB NORMALprints a five-character sequence, while BOLLDON prints a single character.
Each ends with a semicolon; if they had not, the 71 would add it’s own control codes (carriage re-
turn and line feed), which would make the printer print a blank line (control codes are invisible).

Akin to its workings with printers, the 71 speaks to display devices in a constant stream of escape
sequences; moving the cursorleft, right, word-wrapping, and occasionally displaying something.
Whatever the computer displays on the LCD is echoed to the external display device. The HP-IL
command OUTPUT is useful when we want to send data to an external display without it also

Chapter 7 HP-T71 BASIC Programming 53

showing up on the 71’s LCD. Line 10 in this program fragment clears the LCD and display device
then displays "Hewlett-Packard HP-71". Remember, as with printing or displaying anything, con-
trol codes apply from the current cursor position. Line 20 uses OUTPUT to move the cursor to
the column 20, row 12, then display a logo, without changing what’s on the LCD display.

10 DISP CHR$(27)&"H"&CHR$27)&"JHewlett-Packard HP-71"

20 OUTPUT :DISPLAY ; CHR$(27)&"%"&CHR$(19)&CHR$(11)&" [(hp)]"

e

54 HP-71 BASIC Programming The BASIC HP-T71

HP-71 Files 8

The File Chain
Unlike many larger computers, the 71 can have manyfiles in memory at the same time; they are
organized in whatis called a file chain. As you know, there are many different types offiles, and
understanding workings of these files is a key to getting a feel for the 71.

There is little discussion of memory limitations in the Owner’s manuals because there are practi-
cally none. The 71 can work with a maximum of 512K bytes of memory, of which relatively little is
spoken for by the operating system; the rest is available for add-on RAM and ROM. Add to this a
Disc or Cassette Drive and there is almost limitless potential for losing things. The 71 uses file
system (or "chain") to keep all ofthis possible memory organized. This system can be compared to
a filing cabinet and each file within it to a, well, a file.

A plug-in ROM can contain one or several files. For example, the Math ROM contains only one
large (LEX) file, while the Finance ROM contains six (sundry type) files. When RAM or plug-in
ROMs are added or removed (turn the computerofffirst please!) the 71 automatically keeps track
of where and how big they are. When we EDIT, CREATE, PRINT# or PURGE a file in RAM,

again the 71 keeps everything sorted out.

Finding Files
The keywords CAT and CAT ALL, discussed in Chapter 3, "Command Performance," let us view

whatfiles are in the 71 without mucking about. Iet’s use the catalog entry for the Math ROM. In
this example it’s in :PORT(2), though it could have been in :PORT(1) amongst others. If we did
CAT :PORT(2), the standard header would be displayed followed by the first (in this case only)
file entry. Were there otherfiles in the ROM, the 71 would display their catalog information when
we pressed the DN ARROW (1) key. If we had entered only CAT MATHROM,only the informa-
tion aboutthatfile would be displayed. CAT ALL lists the catalog information for every file.
First the general catalog headeris displayed then the information for the firstfile.

NAME S TYPE LEN DATE TIME PORT
MATHROM E LEX 32745 11/01/83 12:00 2

Thefirst information is, of course, the file name, followed by a space, S, P, or E. A space means a

regularfile, or "do with it what you will, don’t blame me if you ruin it." S meansthe file has been
sccured so that it can’t be accidentally altered or purged. P means private, the file cannot be edited
or altered (even with POKE). E means execute only, and is a double whammy; you can neither
alter nor purge it. In the case of the Math ROM, merely making it PRIVATE would have been
sufficient; the only way you can PURGE a ROM file is to pull out the module; nevertheless it’s a
type E.

Next comes thefile type fully spelled out(i.e.: "BASIC", not "B" or "BA"as with some other HP
Computers). File types are discussed about one page down.

Next we have the file size. This is the approximate number of bytes of RAM (or ROM) without
counting variables which the file occupies. The file size does not include the file header informa-
tion which takes another 18.5 bytes. Even if the file size is ostensibly zero,it still consumes at least

Chapter 8 HP-T71 Files 55

those 18.5 bytes. Enter the following line (presuming there isn’t a file already called TEST). Notice
that memory has decreased by 19 bytes (or 18, MEM is often off by a nib).

MEM; @ CREATE TEXT TEST @ MEM§ ! How much memory for a file header?

Sizes forfiles larger than 99,999 bytes (pretty unlikely) are listed in numberof kilobytes (or "K",
which represents 1024 bytes); for instance 110K meansa file of approximately 110*1024 bytes. The
date and time of creation come next. This information is updated whenevera file is saved to or
read from Disc.

The final part of the catalog entry is the number of the :PORT containing the file.

File Header Structure
The 71 maintains the file header in a much different format than it displays it. This is to save
memory, and speed up many operations. Since the native language ofthe 71 is not English, the file
headeris stored in 71ese and is translated into English when we do a CAT. The file header is a
contiguous block of 37 nibs:

Size Description

16 nibs File Name.

4 nibs File type.
I nib Flags.
1 nib Copy Code.
4 nibs Creation Time.

6 nibs Creation Date.

5 nibs File Chain Length.

Thefile name is always eight characters (16 nibs) and is filled with spaces if the name is shorter
than 8 characters. The next four nibs are the internal representation offile type (in hex).

BASIC E214 LEX E208
BIN E204 SDATA EODO
DATA EOFO0 TEXT 0001
KEY E20C

The copy code nib is 0 for normal access,4 forprivate (P), 8 for secure (S) and B for execute only
(E). Note thatfile types are encoded differently when stored on Disc; we'll only coverfiles in
RAM here.File creation time and date are stored in BCD (well, kind of). Bothfields are stored
reversed so that 20:45 89/09/04 (8:45 p.m Sept 4,89) looks like:

54 02 40 90 98
min hour day month year

The final 5 nibs are a pointer to the next file in memory. This is the key to the file chain; one file
points to the next. The first file contains a pointer to the second, the second to the third, and so on.

56 HP—171 Files The BASIC HP-71

ADDRS$
The ADDRS function returns the location offiles in RAM or ROM in hex strings. This location is
the first nib in the file header; the file contents begin after the 37 nibs in the header and,if there is
one, any sub-header. Since ADDRS$ only works with normal, uppercase file names, the only way to
find a file with,for instance, a lowercase name (such as the key file or LEX files in some ROMs) is
by finding its position relative to the file preceding it in the file chain.

BASIC Files
The type offile created when you execute the EDIT statement. A BASICfile contains one or
more BASIC programs. This is the only type of file which can (normally) be edited (inspected and
altered) directly using the cursor keys.

BASIC File Format
In addition to the file header, a BASIC file has a 12-nibble Sub-header with the following format:

Size Description

5 nibs Sub-program Chain Header.
5 nibs Label/DEF FN Chain Header.
2 nibs End of line marker (FO hex).

These headers are pointers to the first sub, label, or DEF FN in the file. Additionally each of the
locations pointed to contain a pointerto the next sub, label or DEF FN in the file. In this way
these items can be found much more quickly than by sequentially reading the file. This means that
it is relatively unimportant where in a file these occur, it will only slow things down when there are
a great number of these tokensin the file. This system also makes it possible to place labels any-
where within a line. This method oflinking one label, sub or DEF FN to the next is called chaining,
and is the same system used in the main file chain.

Each line in a BASIC file begins with a line number (2 bytes,BCD), values to 99 99 followed by a
byte representing statement length. Iftheline has more than one item on it (multi-statement), an
"@" (4F hex) token precedes the length byte. Each statement in a multi-statementline is separated
by an "@"token and yet another statement length byte. Each line ends with an end of line byte
(F0). Since the sub-header ends with an end ofline byte, each line number, even the first one in
the file, is preceded by an end ofline byte. A line in a BASIC file has the following general format:

Line# StlLen Stmt 4F StLen Stmt OF

Line# The 4 digit BCD number.

Stl.en The length of the following statement. Adding this value to the current position
points to the next "@" token or the EOL byte (0F).

Stmt The actual tokenized statement. This is the internal representation of the
statement, not asit is presented to the user (HP engineers like to call us
"users").

OF The end ofthe line.

Chapter 8 HP-171 Files 57

BIN Files
The least commonfile found. Thisis a program written entirely in HP-71 Assembly Language.
While they may be RUN and can become the currentfile, BIN files cannot be edited directly be-
cause they have no line numbers, and are coded differently than BASIC files. BIN files often run
faster than BASIC, and allow full access to the machine. The speed increase is not as great as
might be expected because they use most of the same utilities as BASIC; they just invoke them di-
rectly instead of through the BASIC interpreter.

The disadvantages of BIN files are that they cannot be easily and quickly changed, take much
(much!) longer to write than BASIC, and there is a good chance that even the simplest program
will "crash" the computer several times during testing. BIN files are created with the
FORTH/ASSEMBLER ROM and a thorough understanding of Vols 1-2 of the HP-71 Internal
Documentation (IDS).

BIN File Format
Following the file header, the BIN file has a 12 nib sub-header which is similar to the sub-header in
a BASIC file. There are no labels or uscr defined functions so thatfield is set to FFFFF.

Size Description
5 nibs Sub-program Chain Header.
5 nibs Place holder FFFFF.
2 nibs Filler byte 20.

FORTH Files
Files written in the FORTH language with the FORTH/ASSEMBLY and HP-41 Translator
ROMs have their ownfile type(s). While files created with these ROMs share the same name, they
are incompatible with each other. These files contain the extensible user written dictionary entries
which make up a FORTHprogram. Programs written in FORTH often run up to twice as fast as
those in BASIC.It is a matter of personal taste whether BASIC or FORTH is easier and more
versatile to use. Commercial programs lor the 71 are rarely in FORTH because they would re-
quire the user to own one of the two ROMs. One custom 71 ROM written in FORTH includes a
FORTH interpreter.

LEX Files
Language Extension files add new BASIC keywords (such as KEYWAIT$) and new operations
like the ability to PLIST TEXTfiles. LEX files are used when an operation is too slow or difficult
to do in BASIC. The typical keyword runs from 15 to 50 times than the equivalent operation in
BASIC, and takes at least 15 to 50 times as long to write. LEX files are more versatile than BIN
files because instead of providing one-time solutions, they actually extend BASIC so that these
solutions may be incorporated time and again. From a programmers point ofview, it’s preferable
to use a LEX with a BASIC file instead of .« BIN file because ofits greater versatility. Like BIN
files, they are usually written using the F'ORTH/ASSEMBILER ROM.

Using LEX Files
1LEX files are never the current edit file. When they are in the computertheir operations are |
automatically available. The use of LEX files is one of the ways HP BASIC is ahead of the pack.

58 HP-T1 Files The BASIC HP-T71

While special keywords should be used when available, keep in mind that if you are going to share
the program with another 71 user, the recipient will also have to have that ROM or LEX file.

Trying to run a BASIC program without a required LEX file in the computer will cause an error;
that’s usually the only damage. If a programis corrupted (trashed) by accidentally running it with-
out the LEX file, it’s probably betterto restart the program once the LEX file has been loaded
than to CONT.

Many new capabilities offered by LEX files are introduced for one specific purpose, and may not
prove reliable in other usage. For instance, a complex number may be placed in RES when the
Math ROM is in the 71:

 ! Display complex number and
DISP (123,456)§ ! enter it into RES.

However the boolean operator NOT doesn’t expect a complex number, so it’s interpreted by the
Math ROM, which doesn’t have the appropriate operation either. So...

IF NOT RES THEN BEEP{ ERR:XFN Not Found

This isn’t necessarily a bug in the Math ROM,just beyondits intended use. The pointis that, while
the built-in BASIC keywords are meant for general purpose use, keywords in LEX files should be
used in context oftheir intended application. For example, one keyword was written by this author
to be used at one place in a single program; it was vital in that application, though virtually useless
elsewhere.

When significant events happen (like an error or even turning on the computer), the 71 polls LEX
Liles to see if they have anything special to do. Some LEX files use keyboard or clock-tick inter-
rupts to add a running clock display or add special keyboard features. This latter group, especially
if you have several of them, will clearly slow down the computer. If your computer seems to have
gotten sluggish lately responding to keystrokes, a LEX file may be the culprit.

DATA Files
These files may contain strings or numbers, and are the most versatile datafile type, though prob-
ably the least memory efficient. They may be of fixed size or expandable. The file consists of fixed
length records of from one to 1,048,575 bytes.

Using DATA Files
Numbers always take eight bytes (unless they are complex), but strings can be up to the size of one
record. When information to be saved is primarily numbers, an SDATA file is preferred. A TEXT
file is best for strings. When the task calls for a mix of text and numbers, or when multiple data
items are used for a single purpose (such as name, address, phone), DATA files are appropriate.

The DATA file can be created to a fixed number of records. If it’s RAM based, you can enlarge it
by writing data past the end. The primary reason for specifying file size at creation is to set the
individual record length. If not specified, the default record length is 256 bytes, which can be quite
difficult to use for random access.

Chapter 8 HP-171 Files 59

Strings which overflow from onc record to the next will cause problems which will be hard to
straighten out. For example, let’s create a fixed length DATA file with only two records of twelve
bytes each, then assign it to channel #1:

 ! Create a fixed-length file.
LCREATE DATA TEST,2,12§ |

! Open the file.

ASSIGN #1 TO TEST§

As wesaid earlier, a numbertakes eight bytes, howeverstrings take an extra two bytes plus their
length. Let’s place a number followed by a string (which will overflow into the next record), then
another numberin the file. The pointeris still at the beginning of the file since we haven’t written
or read anything, so RESTORE# isn’t necessary:

PRINT % 1;123,"Synergetics*,456

Record #0 now has the number 123, the string header, and the first character of the string
"Synergetics". To prove this, let’s RESTOR.Eto the beginning of the second record (which is
rec#1, remember that records always start at zero), then read what'’s there:

 ! Move the pointer to rec#l
LR.ES‘I'ORE ¥ 1,18 l
 ! Read then display the record.

READ 1;0%,A%]
e

DISP Q$;A§ ynergetics 456

Since record length is 12 bytes, record #1 can only hold "ynergetic". The final "s" (with yet another
string header) is in record #2, which the 71 automatically added when it ran out of room in record
#1.

Contents Record

123 S Record # 0.

ynergetic Record # 1.
s 456 Record # 2.

It a string or number overflows into a record containing data, that data is lost. The DATA file
structure is quite versatile, and therefore vague. The record size will be quite crucial whenit
becomes time to recall data from the file because RESTORE places the data pointer at the begin-
ning of a record. If it begins with a string which had overflowed from the previous record, only part
of the string will be returned.

When creating a DATA file, keep in mind what use it is to have and set the record length to a
usable size.

Bytes Item Unit

22 Name 20 byte string(+ hdr).

60 HP—71 Files The BASIC HP-71

12 Phone# 10 byte string(+hdr).
8 Dues Real number.

42 Record size needed.

DATA File Format
Following the header is the data implementation field. As with many other locations within the 71,
the values stored here are byte reversed to make it quicker for the operating system to read them
(the CPU is a bit backwards that way, you know).

Size Description

4 nibs Number of Records in file.

4 nibs Record length.

TEXT Files
This file type is also known as the HP Logical Interface Format (LIF). TEXTfiles are designed for
sequential access (that is reading or writing one line at a time in sequence). The TEXT file can be
thought ofas two types offiles in one: Sequential and random. Since the record size is variable,
TEXTfiles are valuable for storing free form information such as used by a Text Editor. TEXT
liles are also used to exchange files with other computers. The HP-71 was designed primarily as a
number machine, Text was a secondary consideration at the outset, so random file writing requires
an additional LEX file.

Using TEXT Files
PRINT# writes an end offile marker afterit. If we had a ten line file and used RESTORE to

move to line five, then used PRINT#, line five would become the end of the file; information

beyond that point would be lost.

The EDLEX and TEXTUTIL LEX files add new operations to make TEXTfiles a versatile file
type. Fortunately the HP-41 Translator, FORTH/Assembler, WorkBook71, and Text Editor
ROMs each contain one of these files.

The data pointer can be moved to the end ofthe file by using the RESTORE# keyword with a
number which is greater than the length ofthe file.

! Move to the end of the text file.

RESTORE # 1,9999§

Special TEXT File Keywords
As you can probably tell from the preceding, the authoris fond of TEXTfiles, though not when
they are used with PRINT#. The following keywords are in EDLEX (and TEXTUTIL) and make
TEXT the most versatile files. These keywords work only on files in RAM, and only with TEXT
files. These keywords are documented here because they are rarely explained fully in owner’s
manuals. These operations can be slow on a largefile or on a file with several files following in
memory because everything in RAM must be shifted when a record is inserted or deleted.

DELETE Delete Record.
DELETE# <channel>, <record>

Chapter 8 HP-T1 Files 61

Deletes a single record from an open TEXT file. Specify first the channel number, then the record
number. All records after the specified record are left unchanged. Remember,the first record in
the file is record number zero; to delete line 10 from a file whichis assigned to channel 3 we enter:

DELETE# 3,98

FILESZR Text File Size.
X=FILESZR("textfile")

A function returning the number of records in the specified TEXT file if the file exists, or a nega-
tive number representing the reason it didn’t. The number of records is returned, not the number
of the last record in the file. If FILESZR returned 10 then the last record is 9.

To differentiate the error message from a possible number of records, the function returns a nega-
tive number for the error number. Use the absolute value of the numberto look-up the error
number; obviously a file cannot contain a negative number of records, so, in the case of a negative
result, you will know that thefile is not a valid RAM-based Text file. For instance,if it returned -

57 ("ERR:File Not Found") thefile didn’t exist, -58 ("ERR:Invalid Filespec") means a bad file
name, or -63 ("ERR:Invalid File Type") for an existentfile which isn’t TEXT.

INSERT Insert Text File Line.
INSERT#<channel>,<record>, "new record data"

Adds a record to an open TEXTfile. The new record is inserted in front ofthe specified record.
No information is lost, everything from the record specified to the end of the file is moved. It is
best to have the TEXTfile as the lastfile in RAM iffast access is needed. We usually use this
statement instead of PRINT# because INSERT# does not write an end offile marker.

REPLACE Replace Text File Line.
REPLACE#<channel>,<record>,"data to replace old record"

Used instead of PRINT# to replace a current record with a new string. Does notalter the position
of the end ofthe file marker. The new string does not have to be the same length as the one
replaced.

SEARCH Text File String Search.
X=SEARCH("str",<column>,start record>,<end record>,<channel>)

A function which returns a numerical result of the search performed. As the names imply, use
SEARCH# and REPLACE# to for a quick and effective search & replace. Required parameters
are the search string, POS within the record to start the search, the starting place (record) and
final record to search, followed by the file’s channel number. The string is compared literally to the
file; upper and lowercase of the same character will be treated as different characters. Keep in
mind that the searches are usually made from the end ofthe line, so the longest occurrence of any
search string on each line will most likely be found.

If the file is empty or the string is not found, zero is returned. Otherwise it returns a very
calculator-like result. For most uses only the integer (IP) portion of the numberis used.

RRR.CCCLLL

62 HP—T1 Files The BASIC HP-71

R Record number within the file.

C Position within the record (the column number) where the match was found.

L The length ofthe string.

The backslash character (\)is the switch to enable special functions. If you do not want the fol-
lowing options to be performed, do not begin the search string with the backslash. The control
options are:

\ (backslash) Start orstop a search feature.
. (period) Wild card character.

@ (at) Multiple wild cards.

~ (up arrow) Search from the beginning of the line.

$ (dollar) Search from the end ofthe line.

SEARCH# period (.) option
The wild card. A period represents any single character. The example could find "quick" or "quack"
or any word with that four character sequence and an unknown character.

“qu.ck

SEARCH# at (@) option
The commercial at sign (@) represents any number of unknown characters on a single line. Since
any number of characters may be represented by the @, the string should be specified carefully.
The following could find "quack"or "quarterback".

\q@k

SEARCH# up arrow (©) option
The up arrow following a backslash specifies that the search will be conducted from the beginning
of the line. In the example we will look for the string "quack" beginning at the start of the line. The
word will only be found if it occurs at the beginning of a line.

\“quack

SEARCH# dollar ($) option
While up arrow () specifies a search starting at the beginning ofthe line, the dollar sign specifies
that the comparison is made from the ead of the line. The dollar must appear at the end of the line
to designate this switch; a dollar sign anywhere else in the line is interpreted as the characteritself.

\quack$

TEXT File Format
The file does not begin with an implementation field therefore to find a record within a file a utility
must read each record scquentially. The file consists of variable length lines (records) which do
not begin with a line number. If files are to be exchanged with an HP-75, each line must begin with
a fourdigit, sequentially numbered, line number.

Chapter 8 HP-T71 Files 63

Each record begins with two bytes (NOT byte reversed) which state record length, followed by the
actual data. Each record has an even number of bytes; if a record is written with an uneven number
of bytes, an extra byte is padded to the end (which could be of any value since it is never used).
Unlike TEXT files written by some other computers, there is no carriage return (ASCII 13) at
the end of eachrecord. If you are exchanging files with other computers, be sure to transfer the
TEXTfile using their file format; this will happen automatically if you use a communications pro-
gram. Adding the current location to the record length points to the next record. The end of a file
is marked by a record length of FFFF (which would not be a valid record length).

KEY Files
Contain re-definitions for the keyboard. There may be more than one key file type in RAM at a
time. The key [ile is active only when USER mode is set and the file is named keys.

KEY File Format
There is no sub header. Each entry in the key file is formatted as follows:

Size Description

2 nibs Key code.
2 nibs Entry length.
1 nib Assignment type.
varies String assigned to key.

The key code is the actual key code represented in hex. The next byte designates the length ofthis
entry or the end of the file. The assignment type is repre.ented as a nib with one of the following
three values:

O0DEFKEY ___ Immediate execute.
IDEFKEY __; Typing aid.
2DEFKEY __: Direct execute.

The actual key definition string follows the assignment type nib.

SDATA Files
This type of data file has the same format as HP-41 "DA"files, and is used primarily forstoring
numbers. This is a very efficient, flexible, and easy to use file for numberstorage, though some-
whatless so for strings. It is the recommendedfile type for those times when you have a whopping
lot of REAL precision numbers to store and quickly recall. This is one case when you can ignore
BASIC’s pedantic insistence on calling everything a variable, and call the records in SDATA files
"registers."

Using SDATA Files
Each record holds one full precision number, or a six letter string. RESTORE#, PRINT#, and
READ# work very smoothly with SDATA files. Multiple variables or even arrays and complex
numbers can be stored to SDATA files. The same keywords are used for an arrayj,it is not neces-
sary to designate it as an array. The standard 8-byte length makes indexing into thefile efficient in
Assembly language, and a breeze in BASIC.

64 HP-T71 Files The BASIC HP-71

LPRIN’I‘ $ 1;A8

READ # 1;Al

The following is how a 2x2 array with option base zero is stored in an SDATAfile.

Record# 0 1 2 3 4 5 6 7

Element 00 o1 10 LI 1,2 20 21 22

There is no mainframe method for storing strings in SDATA files. The end of Chapter 10, "BASIC
Programming Hints" describes a method for (fairly) easy use of six byte (or shorter) strings in
RAM based SDATA files.

SDATA File Format
This is physically the simplest file type. There is no sub-header, each record is eight bytes long and
holds a BCD number (though in a modified format at times). The first register begins at the 37th
nib after the ADDRS of the header.

L)

Chapter 8 HP-71 Files 65

HP-71 Data Files 9

The Data File
Many programs create oralter data which often needs to be retained for later use after the pro-
gram ends. Obviously, calculator variables are not the place to store this data because any program
could change it, and it is difficult to save it to Disc. Information which doesn’t grow or change can
be kept within a program in DATA statements, but separate Datafiles are more flexible.

Data files (TEXT, DATA or SDATA) are a convenient place to store information in an organized
form. In this discussion we will use uppercase "DATA"to designate a file type, and lowercase
"data" to designate information to be stored in a file, regardless of the file type, and to designate a
the general classoffiles. Since, unlike BASIC programs, we cannot directly edit a data file, their
use may be dilficult to understand at[irst. Imagine a filing cabinet which you cannot inspect, and
which will only let you have something if you know what you’re looking for and exactly where it is.
Otherthan the over-dramatization, that’s the overall look of a datafile. Pre-planning how we are
going to store information makes data files easier to understand. Remember that programs usually
write the data; once a program is written, the intrinsics of maintaining the data file are automatic.

Three types ofdata files (DATA, SDATA, TEXT) offer a variety of ways to maintain information.
To use this data we must be able to create the file, store something in it, and recall the informa-

tion. All three file types use the same general methods and the same keywords. Differences in how
these keywords work with each file type (which are extensive!) will be covered when we cover each
lype.

Creating the data File
Before storing or retrieving information, the file must created or loaded from mass storage. New
data files are all created in the same manner. CREATE,like the other keywords introduced in this
section,is a statement which does not return a value (you can’t use X=CREATE...), and will
cause an errorif the file named already exists, there isn’t enough memory, or a funny sounding file
name was used (well, at least not a standard HP-71 file name).

CREATE <FlType> <name>§ ! Create a data file.

A space, not a comma, separates the file type and name. Most keywords require a comma between
all parameters, so keep this in mind. If only the [ile name is specified, a DATA file will be created
with that name. Because of possible ambiguity, files with the same names as file types should are
best avoided (imagine a DATA file named "SDATA"). This operation merely creates an emptyfile
of the designated name and type.

We can also createfiles to a a specific size. That is, a number of records (standard unitsize), or
number of bytes of RAM may be reserved for the file. As you’ll see in a minute,it’s often neces-
sary to declare the file size up front.

CREATE FlType name,sizef ! Create a fixed-length file.

66 HP—71 Data Files The BASIC HP-71

This method is required for data files on Mass Storage, because Disc (or Cassette) files cannot be
expanded once they are created unless you load them into RAM. You cannot increase a data file
on Disc because HP’s formatforfiles on mass storage requires the entire file to be in one contigu-
ous block, and anotherfile probably lives immediately after the one being used. Files loaded into
RAM then copied back to Disc do not havethis restriction,;if the file no longerfits in its old rest-
ing place when you copy it back to Disc, the 71 looks for a new place to put it where it will fit. Disc
based files may be created up to the maximum size of the medium (or whatever room is available
in a single block), then read directly without first loading them into RAM,;it wouldn’t even be a
challenge to use a, say, 100K file in a 17.5K computer. If a file is of reasonable size, it may at times
be used in RAM, and others directly from disc (unless the person who wrote the program didn’t
realize that, and made it so thatit couldn’t).

The HP-IL. module uses a 256 byte buffer when accessing Disc based files. As you move through
the file, the module grabs 256 byte chunks into the buffer. You’ll notice the slight delay every 256
bytes if you edit a Disc based file with, for example, a spreadsheet program. There is no simple way
to increase this buffersize short of writing new file 1/0 code, a task to be avoided by the faint of
heart.

Disc based files also have the consideration of the physicalsize ofa record, which is 256 bytes (the
same size as the bufter). While this isn’t a fixed rule, we usually create file record sizes in either
multiples ofthis size, or easily divisible fractions, to minimize the numberoffile records which are

spread between two Disc records. This minimizes access time and medium wear because the drive
would otherwise have to read two physical records to read one file record worth of information.

To be simplistic, imagine a dresser with drawers holding six socks each (the physical record size).
Now, you’ve found an odd sock under the bed and placed it in the first drawer; everything shifts
down by one sock. Fine until the third day, when you have to open two drawers to match a pair of
socks (the logicalfile record size). Not a great analogy, but this chapter was beginning to get a bit
heavy.

Opening the data File
Before writing data to, or reading from a file, it must be assigned a number. This numberis then
used in data file operations instead ofthe file name. Thisis called opening a file.

 ! Open the file.
ASSIGN # 1 TO MYFILEY

There are a few things to remember when opening files:

Valid file channel numbers are 1-255.

A maximum of 64 files may be open at a time.

Each file can only be assigned one number at a time.

If thefile specified with ASSIGN# does not exist, a DATA file of that name,
with 256 byte records, will be created.

Openfiles require an extra 34 bytes for the open channel.

Chapter 9 HP-T1 Data Files 67

° Disc based files need another 256 bytes for a buffer to store the current record
being accessed, so that the 71 doesn’t have to read the Disc constantly. The
record in this bulfer is written to the file when you move to a different record
or when thefile is closed.

° You should never remove a Disc from the drive when there are open Disc-
basedfiles.

When a file is opened, an entry is added to an invisible system file called the File Information
Buffer, or FIB. The FIB is used by operations, such as PRINT#, to locate the file quickly without
having to look through the entire file chain. Whena file is opened, the information aboutit is
added to this buffer, and when it’s closed, this information is deleted.

The File Pointer
When a file is open the FIB contains a pointer to the first item in the file. Each time we read from
or write to the file, the pointer automatically moves to the next item. This is sequential access,
working from the beginning to the end ofa file, reading each item in sequence.

The RESTORE statement moves the pointer at a specific place in the file for random access. We
can move around the file, pointing to records, then reading them as desired.

 ! Move the file pointer to
RESTORE #1, 10§ ! record#10 of file #1.

This says to the 71 "Restore the data pointer to record numberten, regardless of where the pointer
is right now." Record number ten is physically the eleventh record in the file because the first
record is always zero. Each file type handles the data pointer quite differently. Keep the pointer in
mind as you experiment with data files.

Storing Data
The PRINT# statement merely places the data specified at the current pointer position in the file.

 ! Write a record (the value of A)
PRINT # 2;A§ ! to file #1.

This statement enters the contents of variable A at the pointer position in the file associated with
channel #2. If there had been data at the pointer position, this would replace it. If we had been at
the end ofthe file, a new record would be added at the end with that value in it. This is sequential
writing. Strings can be placed in files in much the same way, though be aware of the way strings are
handled in each file type.

 ! Write string record to file #1.

PRINT # 2;AS§

We can specify the record to which the pointer is placed when writing to a file:

! Move to record 10

PRINT 4 2,10;A8# ! then write to file.

68 HP-T71 DataFiles The BASIC HP-T71

This is the same as:

! Move to record.

I_RESTORE $2,108
 ! Separate write.
PRINT #2;QS#

Be sure that your program maintains an accurate count of the number of records when randomly
writing a file. Moving the data pointer beyond the end of a DATA or SDATA file causes an error.

Print more than one item at a time to the file by separating them with commas:

 ! Write three values sequentially
PRINT #2;A,B,C§ ! to file# 2.

Recalling Data
The pointer has the same importance when reading data as it does when writing to the file.

! Read a record from file# 2 to AS.

READ # 2;ASH

This statement says "Read the next record in file number two and return its contents to the
variable A$." Again, we can read multiple items:

! Read records to variable A
READ # 2;A,ASH ! then A$ in sequence.

Be sure that the record which is to be read is of the right type for both the data file, and the vari-
able to which it is being read. The following table demonstrates how various types offiles handle
reads. Note that TEXT files with strings which are formatted to look like numbers (and even com-
plex formulas!) can be interpreted and read to numerical variables.

Record type Operation DATA SDATA TEXT

String READ#1;A$ OK OK OK

String READ#LA ERROR ERROR OK
Number READ#1,A$ ERROR ERROR

Number READ#I1;A OK OK

Closing the data File
When a program is done witha file, it should be closed to reclaim the memory used by the FIB
entry, and so that the file may be used by other programs. Remember,a file may only assigned to
one channel at a time. The ASSIGN# statement also closes files.

! Close file associated with #1.

ASSIGN # 1 TO *#

Chapter 9 HP-T71 Data Files 69

You can also furnish a quoted string to ASSIGN#;if it’s null or contains an asterisk ("*") it will
close the file.

When a program we RUN ends,the files it opens are automatically closed. However, when exiting
a SUB or any program which was CALLed, the files are not automatically closed. If a CALLed
program tries to assign a file left open by another program, an erroris generated. The statements
CLFLS and CI.LOSEALL, available in some LEX files, will close allfiles. Files are automatically
closed when they’re purged, though not when the currenteditfile changes.

o))
10 CALL BIOR @ SUB BIOR ! biorythm printer. With TAB and PRINT USING
20 DIM E$[b511,S8(561]1 ,M8(36] | date format: month#, day#, 4-digit year
30 DEGREES @ M$="JanFebMarAprMayJunJulAugSepOctNovDec"

500 LINPUT "What is your name? ";E$
65620 INPUT "Birthdate(m,dd,yyyy>: ":M,D,Y @ IF Y<1880 THEN 520
630 PRINT TAB(20);"Birthdate " ;M$[M*3-2,M*31;D;",";Y
540 GOSUB 9000 @ X1=J @ S$=DATES ! don’t concatenate DATES.
550 INPUT "Biodate(m,dd,yyyy):".S$(4,51&", "&S$[71&",19"&S8[1,2]1;M,D,Y
660 GOSUB 9000 @ X2=J @ R=X2-X{
570 INPUT "Plot number of days:","30";B @ DISP "print instructions Y/N"
580 Q=POS("YN" ,UPRC$(CKEY$)>-1 @ IF Q<0 THEN 580 | wat for a good key
5690 IF LENCES)> THEN PRINT "Biorythm plot for: ";ES
600 PRINT TAB(20);"Age "“;R;" Days"
610 PRINT TAB(20);"Blorythm for";B;" days from ";M$(M*3-2,M*31;D;" ";Y
620 PRINT TAB(20);"p=Physical s=Sensitivity c=Cogn1t1ve" Q PRINT
630 PRINT USING "14X '-100’,10X, 'Low’, 10X, ’0’ 9X,’'High’,9X,’+100°’"
640 S$=CHR$(124)&"----=----m-cmccccccccccc$omccccccccecee"&CHRS (124)
650 PRINT TAB(17);S$
1000 FOR L=1 TO B @ E$=CHR$(124) Q@ E$[26]1=E$ @ E$[26]=E$S
1010 X=ABS(25*SIN(360%R/23)+26) Q@ ES$[X, X]1="p"
1020 X=ABS(26*SIN(360*R/28)>+26) @ ES[(X, X]="g"
1030 X=ABS(25*SIN(360%R/33>+26> @ ES([(X, X]="c"
1060 X=J-1721119 €@ Ni=X+2 @ Yi=IP((N1-.2)/365.25)

1060 N2=N1-IP(365.25+Y1) @ Mi=IP((N2-.56)/30.6) @ D=IP(N2-30.6*M1i+.5)
1080 IF Mi<=9 THEN Y=Y{ @ M=M1+3 ELSE Y=Y1+1 @ M=M1-9
1090 PRINT USING "6X,3A,3D,4X,51A";M$[M*3-2,M*31,D,ES
1100 R=R+1 @ J=J+1 @ NEXT L @ PRINT TAB(17);S$ @ PRINT @ IF Q THEN END
2000 PRINT °’"P" = The 23 day Physical cycle.’
2010 PRINT * Relates to Vitality, Endurance and Energy.’
2020 PRINT ’'"s" = The 28 day Sensitivity cycle.’
2030 PRINT ® Sensitivity, Intuition and Cheerfulness.’
2040 PRINT ’'"c" = The 33 day Cognitive cycle.’;
2050 PRINT ® Mental Alertness and Judgment.’ @ PRINT TAB(41);’-+-"’

2060 PRINT ° Greater than "0", high values, Energetic and Dynamic.’
2070 PRINT ° Less than "0", low values, Recuperative periods.’
2080 PRINT ° "0" values, critical days, Accident prone days,’
2090 PRINT ° especially for the physical and sensitivity cycles.’
2100 END
9000 Yi=Y+(M-2.85)/12
9010 J=IPC(IPCIP(367*Y1)-IP(Y1)-.76%IP(Y1)+D)-1.6)+1721116 @ RETURN

70 HP—71 Data Files The BASIC HP-71

BASIC Programming Hints 10

There are usually several ways to do the same task in BASIC. We can go from sloppy to concise to
sacrificing clarity to save a few bytes, and still reach the same goal. This chapter is about the point
between "wow,it works!" and "I wonder what’s on TV." The program is functional, but let’s con-

serve memory, make it a little more elegant looking, and try to makeit run faster. The two aspects
of memory conservation are minimizing code used, and economical allocation of variables; we'll
cover both together.

Keep in mind that these techniques form the modules of efficient programs, and efficiency is the
real bottom line. There are a few disadvantages in using memory conservation methods:

° Remarks are invaluable for understanding program flow, but use up memory.

° Convoluted programs can be difficult to maintain.

® Since BASIC:differ, even in the HP camp, many ofthese techniques will make
it difficult to adapt programs to (or from) other machines.

Nesting Mathematical Expressions
While BASIC is an algebraic language, the 71 is internally a stack oriented machine vaguely remi-
niscent of HP’s RPN calculators. When an expression is interpreted, the 71 passes parameters to
the functions, and places intermediate answersin a section of memory called the Math Stack
(althoughit is also used for strings). Let’s start with a simple set of expressions. We want the cur-
rent time in 12 hour (but decimalfraction) format; not the most useful value, but easy to explain.
TIME returns the number of seconds since midnight.

10 X=TIME @ IF X>43200 THEN X=X-43200
20 DISP X/60/60

Besides saving code, the next solution is considerably faster than this code. The speed increase is
from simplified code and from doing it in one expression which keeps the numbers "floating" on
the stack. Whenevera valueis assigned to a variable, the expression is completed and the stack is
not used to the greatest efficiency.

10 DISP MOD(TIME, 43200)/3600

The way the HP-71 engineers designed the math stackis also responsible for versatile handling of
string subscripts. Since strings usually go on the stack, they can be trimmed as we like them; extra
parentheses may be added to designate a new string expression for which subscripts apply. This
fragment takes the substring [2,4] of element S of array A$ adds the entire length of Bto it then
displays the results starting with the second character.

10 DISP (A$(5)([2,4]1&B$) [2]

Testing Execution Speed
Code which is to be repeated often should be optimized for speed oversize. For example,
MIN(2,1) is faster than MIN(1,2); placing the largest likely argument first, with either MIN or
MAX,is most efficient. The only way to know this by testing.

Chapter 10 BASIC Programming Hints 71

A fair test of any procedure is 500 iterations; this typically runs underfive seconds, and is small
enough that you can run it two or three times for each combination. Change the arguments or or-
der ofvariable assignment and run the test again. You mightfind that some code runs faster not
concatenated! If you want to use the results ofthe test again, don’t begin it with a SUB statement.

1 X=1 @ Y=2 | assign some values to test.

9 T9=TIME @ FOR L9=1 TO 500
100 Z=MIN(X,Y) | the code we’'re testing for speed.

9999 NEXT L9 @ DISP (TIME-T9)/(L9-1)-.01 ! iteration minus correction.

The core of the program uses normally unused line numbers so that we can copy lines directly
trom the program we’re developing. We're using odd variable names (T9, L9) which are unlikely to
be found in the code you're testing. Line 9999 divides the time by the loop counter and subtracts a
fudge-factor (some overhead) to get a reasonably un-distorted time for a single iteration. Test the
loop with a simple variable assignment (X=1) and correct the fudge factor to zero-out the result
to make the differences in actual runs more flagrant. Watch for machine differences between runs;
the run file or a data file could move, distorting file access times. Don’t use remarks within the
loop; everything counts. And, if you work late, watchfor time roll-over at midnight.

OPTION BASE, DESTROY ALL, RESET
Programs writtentor distribution should avoid selecting OPTION BASE 1, even at the expense of
wasting the possible zero element, because it is a global setting, and affects the operation of the
entire variable chain. BUBLSORT,in Chapter 14, "Non-obfuscating Programs," ignores zero ele-
ments (if they exist). DECIDE shows how to save the current OPTION BASE, changeit as
needed, then restore it when done;if you must set OPTION BASE,this is the preferred method.

DESTROY ALL (which also destroys calculator variables) and RESET (which resetsall user
flags-including I.C) should be avoided when possible for the same reason. Representative is
EDTEXT, in the FORTH/Assembler ROM, which sets uppercase mode; nice for Assembly
sourcefiles, but not for writing letters.

Variable Names
A numeral suffix in variable names costs 1 extra byte each time the variable is referenced. X1=1
uses one byte more than X=1.

DIM Strings
It requires 5-7 bytes to DIM a string. There is some memory savings by not DIMing a string which
will contain from 25-28 characters. An exception is ROM software, where it is worth spending 6
bytes of ROM to save 2 bytes of RAM.

INTEGER, SHORT
The 71 uses 9 1/2 bytes to store simple variables, regardless of their precision. Specifying
INTEGER or SHORT precision will not save memory; use INTEGER to round a number.

FOR-NEXTL.oops and numeric comparisons are slower with integers.

72 BASIC Programming Hints The BASIC HP-71

Constants
PI (3.14 etc) is a constant, and is part of BASIC because it is used so often and never changes.
Programs often use other values time and again, many times it will save memory to assign the
numberto a variable. Let’s take the memory required to create a single digit constant variable.

95 Variable

5.0 Statement

14.5 Total

A single-digit number in a program (for instance X=1) takes the 5 bytes, the same as recalling a
constant (X=C). When we go to a two-digit constant, the break even point for using the variable is
16 uses. Only when multi-digit numbers are used frequently does it become practical to use vars
for constants.

We can thank the HP engineers for entering numbers in the program line with only as much preci-
sion as needed. The HP-75, for instance, enters numbers in a program in full precision evenif they
have a single digit. In fact, the most memory efficient way to enter the constant 1 on the HP-75 is
with X=SGN(EPS).

Inverting a Flag
Flags are often used to represent a state which may change as the program runs. The function
FLAGsets or clears the flag accordingly but also returns one if the flag was not inverted, or zero if
it was. Two common methods ofinverting a flag are shown. The first method uses no variables, but
limits what may follow on the line. The second method is four bytes shorter but requires a scratch
varfor the result of the FLAG function; use DISP to save a variable if you don’t mind displaying
an occasional spurious zero or one.

IF FLAG(1) THEN CFLAG 1 ELSE SFLAG 1 ! invert a flag.
X=FLAG(1,NOT FLAG(1)) ! invert a flag using a scratch var.

Flag Variables
In the same respect, we can invert a variable used as a flag quite simply. When a flag is to be in-
verted often, and it isn’t important that it be displayed (flags 0-4), it’s more efficient to use a
variable than a realflag.

X=NOT X ! invert a variable used as a flag.

Clearing an Array
Usually we zero out numeric or string arrays in a loop:

1000 FOR L=0 TO 20 @ X(L)=0 @ X$(L)="" @ NEXT L ! clear an array.

DESTROYfollowed by recreating the array(s) with DIM is much faster; the next program frag-
ment is 5 times as fast and 46 bytes shorter. This second method is more work for the computer
but, then, that’s its job.

100 DESTROY X,X$ @ DIM X(20),X$(20)[10] ! clear array quickly.

Chapter 10 BASIC Programming Hints 73

User Defined Functions
User Functions (DEF FN’s) make it easy to pass variables to subroutines and use the answers
within a mathematical expression. Two disadvantages are thatit is considerably slower than
GOSUB,and there is memory overhead for the environment besides the extra code required.
Instead of using:

1000 Z=FNX(Y) ! Calling a used defined function.

We would assign the values to scratch variables (in this case A) and use GOSUB:

1000 A=Y @ GOSUB 9200 @ Z=B ! in lieu of a DEF FN.

If we have a commonly used routine, need to pass several parameters, want the advantages of
nesting the FN, or just want elegant looking code, then by all means use user functions. If
execution speed and memory conservation are important then GOSUB is recommended.

END, END SUB
The END and END SUB statements are not required if the program flows to the last line in the
file or if the program is followed by another SUB in the samefile. While a SUB may only have one
END SUB, END may be used within the SUB to terminate it without the necessity of branching to
the last line in the SUB.

10 SUB FRED
300 IF <expression> THEN 100 | the implied end of the program.

400 SUB BARNEY ... ! new program. implied END SUB.
600 SUB WILMA ... ! another new program.

IF, THEN, ELSE
GOTO is implied following THEN and ELSE if followed by a label or line number so the keyword
GOTO is optionalfor a savings of 3 bytes.In this example the program will branch to line 800 if
X#0, otherwise it will GOTO the label ’start’.

610 IF X THEN 800 ELSE 'START’ ! implied goto.

An implied GOTO to a label may take any form which evaluates to a string. Note that this only
applies to labels,calculated line numbers won’t work (alas). The two fragments will branch to label
'Al’if X=1, to’BI’ if X=2 and so forth.

340 IF X THEN CHR$(X+64)&’1’ ! calculated goto to a label.
440 IF X THEN ’ABCDE’ [X,X]&’1’

This syntax may be used with GOSUB and GOTO outside of the context of a conditionalto
provide highly flexible (and compact) branching.

90 GOSUB ’'A1BiCID1E1F1’ (X, X+1]

Instead of using a subroutine which may only be referenced once, follow the conditional with the
actual code, presuming it will fit.

74 BASIC Programming Hints The BASIC HP-T71

500 IF NOT X THEN DISP "No value" @ BEEP @ X=.0001 @ Y=NOT Y

A disadvantage of IF, THEN and ELSE is that they restrict what may follow on the same line and
therefore limit concatenation. One of the strengths of BASIC is that boolean arguments may be
nested within mathematical expressions. In the example we will replace IF THEN with an argu-
ment which uses the same amount of memory but places no limits on what may follow on the line.

1000 IF X THEN Y=Y+100

If X=zero then we want to add nothing, and, since one hundred times nothing is nothing we can
use.

1000 Y=Y+(100*X#0)

Other comparisons including NOT, MAX, MIN and MOD are usable in the same form.

If a variableis to be toggled between two values based on a comparison then assign the number to
the second condition first and make only one comparison.

10 IF X THEN Y=1 ELSE Y=2

Replacing this with the following will save three bytes.

10 Y=2 @ IF X THEN Y=i

ON ERROR
One of the primary uses of ON ERROR is during an INPUT to trap bad data. Since any error
which occurs will cause the branch, we can purposefully allow errors to happen to eliminate a
series of IF THEN’s.

10 IF NOT X THEN 10 ! if X=0

110 ON X GOTO ’X1°’,°’X2’,°X3’

We could have used ON X+1 GOTO... but this wouldn’t have helped if X=37. The simplest
approach is to change the program to trap anything which may cause problems. The code at label
’ERRTRAP’ would contain code to interpret the error or provide the equivalent of an ELSE.

100 ON ERROR GOTO ’ERRTRAP’ ! set the error trap.

110 ON X GOTO *A1’,’B1’,°’C1’

We can also use ON ERRORto branch to an all purpose routine following an intentionally
caused error. This is an implied GOTO to a nonexistent label.

200 IF NOT X THEN ** | implied goto to a null label to cause an error.

GOTO, GOSUB to a Label
Referencing labels of four characters requires the same memory as referencing line numbers. If a
line numberis referenced several times then there is some memory savings in using three
character (or shorter labels).

Chapter 10 BASIC Programming Hints 75

Enter Labels Without Quotes
A token representing quote will be entered by the 71 instead of the actual quotes so that (single)
quotes will be displayed when you edit the line but a byte will be saved because there is no literal
quote. If you later edit the line and press ENDLINE then the actual quotes will be entered and the
savings will be lost so be sure to eliminate the quotes again.

Optional Parameters
Several statements may optionally be entered without parameters or in an abbreviated form.

CLEAR
HP-IL statement. Operates the same as CLEAR LOOP. Saves 5 bytes.

DEGREES, RADIANS
OPTION ANGLEis optional, DEGREES or RADIANSis sufficient. Saves 4 bytes.

RUN
Without parameters re-starts the same program.

Recalling a Displayed Line
Normally unrecoverable displayed data may be assigned to a variable by turning on the cursor be-
fore displaying the information. Display the escape character (chr$(27)) followed by ">" and
ended by a semicolon to suppress the CR/LF to turn on the cursor. The example assigns the CAT
to C$. Line 520 is optional and turns offthe cursor to keep from having it (occasionally not even
flashing!) present at odd times. The INCAT sub-program listed earlier is a practical application of
this operation.

500 DISP CHR$(27)&">":. | turn on the cursor.

510 CAT @ C$=DISP$! display the data.
520 DISP CHR$(27)&"<"; ! turn the cursor off.

Passing Parameters
DISP$ offers a unique way to pass parameters to programs. You can start the program in three
ways: First, CALL or RUN the program normally,it will pause and ask for the parameter. assign
the program to a key using DEF KEY "?""CALL PASS", then enter the parameter on the edit
line and press the key assignment. The third method is to CALL it from another program which
displayed the parameter with the cursor on (which is how INCAT,in Chapter 7, "HP-71 BASIC
Programming," works).

10 CALL PASS @ SUB PASS
20 X$=DISP$! read the input line."
30 IF NOT LEN(X$) THEN INPUT “"parameter:";X$! input if none passed.

Checking For a LEX File
Most larger LEX files answerto the version poll. Therefore you can see if they are in the computer
by looking for their name in the string returned by VERS. Don’t look for an exact match unless it
is important to know which version of the LEX file is there (such as working around a bug).
Except for the beginning of the line ("HP71:"), each LEX file is separated by a space; the revision

76 BASIC Programming Hints The BASIC HP-71

number follows a colon. Include both the space and colon to insure that another LEX file name
doesn’t contain the one you want.

IF POSC(VERS," HPIL:") THEN DISP "HPIL Module present"
IF NOT POSC(VER$," MATH:") THEN DISP "No MATH ROM present"

ON TIMER
Timers are an under used feature; every ten minutes the program might save to disc, or twice a
minute it will update the time on the monitor, or every other minute it’ll take a reading from an
HP-ILdevice. ON TIMER GOSUB is more useful than the GOTO variety; we can have two or
more processes effectively running concurrently. Since the timer could interrupt at any time, be
sure to designate separate variables for use only within the timer subroutine. If your program uses
INPUT, KEYWAITS, or calls another program, the timer won’t "go off" until that procedure ends.
So, while the 71's clock is very accurate, the time the timer subroutine was entered may be off by
the amount of time it took for any of these unrelated tasks. Be sure 1o set timers for one second or
longer; a bug causes VER:BBBB 71’s to occasionally "hang" when timers are set for under about .7
seconds. Chapter 11, "PEEKS$s and POKEs," has a program fragmentto check if a timeris active.

ON TIMER #1,5 GOSUB ’INTERUPT’ ! set-up a 5-second timer interrupt
OFF TIMER #1 ! disable the timer

The three timers are global. Change them in a sub-program and you’ve
changed them in the main program.

Use variables in timer subroutines which are not used in the main program.

Avoid setting timers recursively.

Don’t forget to turn them off!

Set times longer than one second.

Timerinterrupts will be delayed until after INPUT or sub-program calls.

Remember, they won’t interrupt an INPUT or KEYWAITS.

END or STOP de-activates timers.

Displaying a Help Line Using a Timer
One HP-41 innovation is on-line help; press a key to see whatit does without executing the
function. This routine is generally called from a menu driven sub-routine to display a line ofhelp if
the user continues to hold down the key. Since your subroutine was entered when the user pressing
a key, this routine checks to see if a key is still down. If the user releases the key immediately it re-
turns without displaying anything. If the user holds down the key for more than one second,it dis-
plays "cancel" and never returns, but instead goes to the label 'MAINLOOP’. From your subrou-
tine, place a help message in X$, then GOSUB HELP. The second version does not use a timer
and can be used for duration shorter than one second.

Chapter 10 BASIC Programming Hints 77

6800 'HELP’: IF KEYDOWN THEN DISP X$ | display prompt if key down.

6810 ON TIMER #1,1 GOTO 6820 ! set the timer .

6820 GOSUB 6850 @ OFF TIMER #1 @ RETURN

6830 DISP "cancel" @ OFF TIMER #1 @ GOSUB 6850

6840 POP @ POP @ POP @ GOTO ’*MAINLOOP' ! timeout, don’t return.

6850 IF KEYDOWN THEN 6850 ELSE RETURN ! wait for no keys down.

8150 ’'HELP2’: T=TIME @ IF KEYDOWN THEN DISP X$! doesn’t use a timer.
8160 IF NOT KEYDOWN THEN RETURN ! exit if no key is down.
8170 IF TIME<1+T THEN 8160
8180 DISP "cancel" @ GOSUB 8190 @ POP @ POP @ GOTO ’MAINLOOP’
8190 IF KEYDOWN THEN 8190 ELSE RETURN ! wait for no keys down.

Input without INPUT
Many of the commandsin high level languages like BASIC are complete utilities, almost sub-pro-
grams. INPUT and LINPUT are among the most powerful, automatic and complex statements,
with machine language subroutines nested fourteen levels or deeper (amazing on a machine with
an 8-level hardware return stack). There are a few cautions in using INPUT:

Limited to 96 characters.

ON TIMER will not interrupt.

Cursor keys enable the command stack.

Require a keyfile to trap special keys.

Will time-out and turn off the computer after 10 minutes.

Many programs work around INPUT by re-assigning the cursor keys to immediate execute keys,
and use DISPS$to recall the input string. The following routine is primitive, slow, and limited it its
simulation of INPUT, but gives an idea of how complex INPUT really is. It displays a default
string, allows minimal editing, and returns a string. If flag -3 is set, the computer won’t time-out
while waiting for keys. It assumes delay is set to 0 and displays one character longerthan fits in the
LCD so the arrow annunciator will light when the string exceeds 21 characters. The routine can be
enhanced to use overstrike mode and trap the arrow keys.

X Maximum number of characters allowed.
X$ Inputstring (dim it as large as necessary).
K$ Current keystroke (dim at least 4 characters).

ENDLINE Enterthe line and return.
LEFT Backspace.
g-ERRM display the latest machine error.

4000 ’MEMO’: DISP CHR$(27)&"E"&X$[MAX(1,LEN(X$)-20)]1; | cursor on.
4010 K$=KEY$ @ IF NOT LEN(K$) THEN 4010 ! wait for a key.
4020 DISP CHR$(27)&"<" | turn off the cursor.
4029 ! see if the user pressed g-ERRM
4030 IF K$="#161" THEN DISP ERRM$ @ GOSUB KEYUP @ GOTO °MEMO’

18 BASIC Programming Hints The BASIC HP-T71

4039 ! flush the key buffer. if ATTN then cancel and return.

4040 POKE "2F442","00" @ IF K$="#43" THEN RETURN
4049 ! if left-arrow then delete a char from X$, go back for more.

4050 IF K$="#47" THEN X$[LEN(X$)]="" @ GOTO ’'MEMO’
4060 IF K$="#38" THEN RETURN ! is the key ENDLINE? if so then exit.
4069 ! if K$ >1 char, we have an unwanted control key, ignore it.

4070 IF LEN(K$)>1 THEN GOTO ’MEMO’
4079 ! is the string under max # chars? then add this char.

4080 IF LEN(X$)<X THEN X$=X$&K$ @ GOTO ’'MEMO’
4099 ! the char was valid but the string was too long.

4100 DISP @ DISP “"<<<string too long>>>"

4110 BEEP 900, .2 @ BEEP 1200,.2 @ GOTO 'MEMO’
4499 ! wait for no keys down. has no effect on any variable.

4500 KEYUP: IF KEYDOWN THEN 8060 ELSE POKE “2F442","00" @ RETURN

Quoted Strings
Enter GOTOs to labels and HP-IL device specifiers without quotation marks.

GOTO label CAT :tape

GOSUB 1label CALL pgmname

String Arrays
When first referenced, if they haven’t been DIMmed,string arrays are created to 11 elements (or
10 if OPTION BASE 1) of 32 characters each. They also use 3 bytes per element and 9.5 bytes for
the array. The next example is excerpted from a commercially available HP-71 program. We've
changed the line numbers to protect the innocent.

910 A$(1)="n "
920 A$(2)="i% " @ Y4=15
930 A$(3)="pPV "
940 A$(4)="PMT "
950 A$(5)="FV "

These are the only values stored in A$(). Since OPTION BASE 0 was established earlier on, and
the array had not been DIMensioned, it has by default used 32*11 bytes for the strings, plus 31.5
bytes for the array; a total of 383.5 bytes to store 15 characters of information. If it had been
DIMmed to S elements of 4 bytes each it would have required about 39.5 bytes plus 7 bytes for the
DIM statement. As you can see, il is important to properly DIM string arrays before use. Now,
about those short lines...

The Alternate Character Set
Characters above ASCII 127 are displayed in inverse video on a monitor or using the alternate
characterset on the built-in LCD. The function HGL$ (or HI$), found in some LEX files,sets the
high bit on all characters in a string about 50 times as fast as can be done in BASIC. The following
method assumes that each characteris below ASCII 128 to begin with; use it on a string with the
high-bits already set, and it will clear them.

Chapter 10 BASIC Programming Hints 79

FOR X=1 TO LEN(Q$) @ Q$[X,X]I=CHR$(128+NUM(Q$(X]1)) @ NEXT X

Creating the Character Set
The two options of the next routine are Underlined and Inverse (white on black). It uses the
KEYWAITS function. The program is 329 bytes long and builds the character set in blocks of 8
characters. Note line 110 which uses GDISP to display alternate characters starting at uppercase
"A". Since each character takes 6 bytes for the definition and "A" is CHR$(65), we begin displaying
al 65*6, or position 390 in the 768 byte string.

10 CALL CHARSET @ SUB CHARSET ! create alternate charset.

15 DIM C$(768],Y$[48] @ DISP "Underline/Inverse"

20 T=POS("UI",KEYWAITS) @ IF NOT T THEN 20 ! wait for a keystroke.

25 DELAY 0 @ CHARSET "" @ FOR X=128 TO 255 STEP 8

30 FOR Y=0 TO 7 @ DISP CHR$(X+Y): @ NEXT Y @ Y$=GDISP$[1,48]

35 IF T=1 THEN 45

40 FOR Y=1 TO 48 @ Y$(Y,YI=CHR$(255-NUMCY$[Y])) @ NEXT Y @ GOTO 55

45 FOR Y=1 TO 48 @ Z=NUM(Y$[Y]) @ IF Z<128 THEN Y$[Y,Y]I=CHR$(Z+128)

50 NEXT Y

55 C$=C$&Y$ @ DISP @ NEXT X @ CHARSET C$

60 GDISP CHARSET$[390] @ BEEP ! Display the character set.

If you have HGLS$ or HIS, this second version is faster. It is initially slower because it appends to
the charactersetas it goes, instead of maintaining it in a string variable. The speed gain is using
HIS$ on line 35 to set the high-bit on each character; since the high-bit is the bottom, this

underlines the character.

10 CALL CHARSET2 @ SUB CHARSET2 ! this version uses HIS$.

15 DIM Y$[48] @ DISP "Underline/Inverse"

20 T=POS("UI" ,WTKEY$)) @ IF NOT T THEN 20 ! WTKEY$ similar to KEYWAIT$

25 CHARSET "" @ DELAY 0 @ FOR X=128 TO 255 STEP 8

30 FOR Y=0 TO 7 @ DISP CHR$(X+Y); @ NEXT Y @ Y$=GDISP$([1,48]

35 IF 1=T THEN Y$=HI$(Y$) @ GOTO 55

40 FOR Y=1 TO 48 @ Y$([Y,Y)=CHR$(255-NUMCY$[Y]1)) @ NEXT Y

55 CHARSET CHARSET$4&Y$ @ DISP @ NEXT X

60 GDISP CHARSET$[390] @ BEEP

Alternate Character Set in Programs
Prompts for input,title lines, and warnings have more impact when displayed in inverse video.
Once the characters are in the program, they will be displayed in the alternate character set when-
ever one is assigned. The easiest way (o enter these characters into a program is to assign them to
keys. The easiest way is with HI$ (or HGLS$), but it can be done (with a few more keystrokes)
without that keyword. Don’t forget the ";" to designate it as a typing aid key assignment.

DEF KEY "?", HIS$("?");
Or...

DEFKEY "7" CHR$(128+NUM("?"));

80 BASIC Programming Hints The BASIC HP-71

Filling a String With Spaces
A previously unused string (or one nulled by using X$="") can be filled with spaces to any length
needed by placing a single space on its extreme right or a null after the end. This does not work
with all other HP BASICs; on the HP-75, for example,it brings back the old string.

10 DIM X$[2001 @ X$[200]=" "
10 DIM X$[200] @ X$[201]=""

Centering a String
Where QS is the string to center W is the width of the finished line and XS$ is scratch. Eitherfills
the left of the string with spaces.

10 X¢="" @ X$[(W-LENCQ$))>/2]1-" " @ Q$=X$&Q$
10 PRINT TAB(MAX((W-LEN(Q$>1>/2,1));Q$

DATE$
There are several ways to extract the day or month number from DATE$. However, 71’s with
VERS$ "IBBBB" orearlier have a random and rare bug which may cause an unexpected error when
concatenating DATES. The problem is time-related, and may not show up in hundreds oftests,
only to happen repeatedly other times. Forthis reason, you should assign the DATES$ to a string
variable before concatenation. Even if you have a later 71, in order to assure that your program
will run on earlier machines,it’s best not to concatenate DATES.

X$=DATE$[4,5] ! sure to cause an error occasionally.
X$=DATE$ Q@ X$=X$[4,5] ! correct.

Lowercasing a String

10 SUB LWRC(X$) @ FOR L=1 TO LEN(X$) @ X=NUM(X$[L])
20 IF X>64 AND X<90 THEN X$[L,L]1=CHR$(X+32) ! is it in the range?
30 NEXT L @ END SUB

NUM
Only the first character in a string or substring is significant to NUM. NUM(X$[5]) will suffice,
the second subscript (as with X$[5,6]) is unnecessary.

Replacing one Character with Another

10 X=P0S(Q$,S$) @ IF X THEN Q$[X,X+LEN(S$)-11=S$ @ GOTO 10

Reversing a String
This routine is listed as both a SUB and a DEF FN; a BASIC keyword called REVS islisted in the
Assembly language section. The operation is similar in all versions. These first examples use only
one string variable and are slower than the same operation using two strings. REV2 is similar, but
uses two string variables.

Chapter 10 BASIC Programming Hints 81

10 DEF FNR$(R$) @ FOR L=1 TO LEN(R$)/2 @ P=LEN(R$)+1-L
20 R=NUM(R$(L])> @ RS$([L,L1=R$(P,P]
30 R$(P,P]1=CHR$(R) @ NEXT L @ FNR$=R$ @ END DEF

70 SUB REV(R$) @ FOR L=1 TO LEN(R$)/2 @ P=LEN(R$)+1-L
80 R=NUM(R$(L]1)> @ R$[L,L]=R$([P,P]
90 R$[P,P]=CHR$(R) @ NEXT L @ END SUB

10 SUB REV2(R$) @ DIM AS[LEN(R®)]
20 FOR L=LENCR$) TO 1 STEP -1 @ A$=AS&LRS([L,L] @ NEXT L
30 R$=A%$ @ END SUB

Rotating Left
This FN rotates the string left by the number of characters specified by X.

100 DEF FNL$(A$,X) | rotate left.
110 FOR L=1 TO X @ A$=A$[2]1&A$([1,1] @ NEXT L
120 FNL$=A$ @ END DEF

Rotating Right

100 DEF FNR$(A$,X) ! rotate right.
110 FOR L=1 TO X @ A$=AS$[LEN(CA$)1&AS$[1,LENCA$)-1] @ NEXT L
120 FNR$=A$ @ END DEF

Trimming Leading Spaces

100 IF Q$[1,1]=" " THEN Q$=Q$[2] @ GOTO 100 ! trim leading spaces.

Trimming Trailing Spaces

100 IF Q$(LENC(Q$)>]=" " THEN Q$[LENCQ$)>]="" @ GOTO 100 ! trailing spcs.

Waiting For a Key
KEYDOWN and KEYS$give us the ability to wait for single keystrokes without using INPUT, then
use the key within the program. KEYDOWN returns one if the specified key is down or zero
otherwise. Used without a parameter, KEYDOWN checks to see if any key is being pressed. The
program is something like:

100 IF KEYDOWN("A") THEN 500
110 IF KEYDOWN("B") THEN 600
120 IF NOT KEYDOWN("C") THEN 100

In addition to the extra memory used, the 71 stays in the battery-slurping program running state
regardless of how long it waits for the proper keystroke. By the way, you can tell when your 71 is in
the low-powerstate by placing an AM radio nearit and tuning it until the 71 causes interference.
When the 71’s waiting for a keystroke, you can heara little blip of a heart beat when the cursor

82 BASIC Programming Hints The BASIC HP-71

flashes. And when it’s busy, such as in a continuous loop, the beat changes to a hummingbird-like
pace.

INPUT goes to low power between keystrokes but requires ENDLINE to terminate the input,
doesn’t automatically qualify input, and can’t be used within mathematical expressions since it is a
statement. KEYS$is easier to use than KEYDOWN, but will return a null string for no key presses;
westill have to use it in a loop. Several LEX [iles contain the keyword KEYWAITS$ which does go
to low power, waits for a keystroke and, unlike KEYS$, always returns a string. Many plug-in ROMs
have the function, you may already have it since it isn’t always documented. KEYWAITS returns a
string we can use with POS or NUM for fancy branching. This will work best with single character
key definitions.

20 DISP "Option :X/Y/?" @ GOSUB CHR$(POS("XY?",UPRC$(KEYWAITS$))+65)

This routine branches to label A’ for the wrong keystroke, or labels 'B’, ’C’, or 'D’ for the correct
key; no errortrap is needed. Since the program label need not be the same as the keystroke, any
key can be used.

Sometimes we may want to trap shifted or control keys; this is a little more complicated. Most
shifted keys return two character strings and control keys return three or four characters. This
example assumes there isan ON ERRORtrap in case the user presses the wrong key.

500 'MAINLOOP’: K$=UPRC$(KEYWAITS$)
510 IF LENCK$)=1 THEN GOSUB CHR$(POS(T$,K$)+65) @ GOTO 'MAINLOOP’
520 IF LEN(K$)=2 THEN GOSUB CHR$(POS(T2$,K$)+65)&"2"
630 GOTO ’'MAINLOOP’

Another version of KEYWAITS is called WTKEYS$, which returns the ASCII characterof the key
instead of the keymap value. It always returns a single character; for instance, ENDLINEreturns
CHRS$(13) instead of "#38".

If one of these keywordsisn’t available (or we don’t want to use any LEX files), we can define a
user function to simulate it. Rememberthatthis does not place the 71 in low power mode, butit
does allow it to be used like KEYWAITS$. A KEYWAITS$ LEX file is about 55 bytes (WTKEYSis
somewhat larger) while the DEF FN is 42; the main savings is in the convenience of not needing
the LEX file. The first example returns a null string if the user presses one ofthe shift keys. The
second example (FNKI1$) allows shifted keystrokes, but requires a string variable.

9000 DEF FNK$

9010 IF NOT KEYDOWN THEN 9010
9020 FNK$=KEY$ @ END DEF

9100 DEF FNK1$

9110 K$=KEY$ @ IF NOT LEN(K$) THEN 9110

9120 FNK1$=K$ @ END DEF

If you are using ON TIMER# interrupts, you’ll want to be sure not to use KEYWAITS or
WTKEYS$ because the timer won't interrupt the function. If the timer goes off during KEYWAITS$
(or even INPUT), it will be ignored until the function terminates.

(L]
Chapter 10 BASIC Programming Hints 83

PEEK$s & POKEs 11

PEEKS$s & POKEs
The 71 is a nibble oriented machine; many operations which take a full byte on other computers
can be done in a nib on the 71. Any location within the full memory address range of the 71 (which
isn’t in a private file) may be inspected using PEEKS. In addition, RAM locations may be altered
using POKE. Remember that PEEK$ and POKE work with nibs, which are a half-byte, or four
bits. A nib can have a (HEX) value of "0-F" which translates to 0-15 in decimal.

X$=PEEK$ ("2E3FE",1) ! Returns value of 1 nib from specified address.
POKE “2E3FE","A" | Sets the nib at that address to "A".

Many of the routines in this section use REVS$. If you do not have this function available in your
71, it can be simulated with the REV sub-program in Chapter 10, "BASIC Programming Hints."
REVS$is called REVR$ or REVRSS in some LEX files.

Let’s look at System RAM. This is information the computer needs (such as the current
PWIDTH) and scratch space used by Assembly language routines. Since the CPU reverses data
when it reads and storesit, just about everything is stored nib-reversed or the whole location
reversed. Since most of the system functions work in HEX internally, most information is in HEX.
A chart at the back of this book lists most of system RAM.

For these reasons DTH$ and HTD aren’t going to give an accurate conversion when the nibs are
reversed. DTHSfills with leading "0" so it will have to be trimmed to the proper size before
POKEing. REVSis almost a necessity when working with system RAM. Let’s use the example of
the location DWIDTH, two nibs which contain the current WIDTH setting. First set the WIDTH

to 96, then PEEK the two nibs at DWIDTH(2F94F).

 ' ! set the display width.
LWIDTH 96§ I ! Then PEEK at it.

PEEKS ("2F94F*",2)# 06

Converting 96 (decimal) to hex gives us "60". As you can see, DWIDTH is backwards, or nibble
reversed. REVS reverses the order of characters so that our "06" becomes "60". Now HTD (Hex
To Decimal) can convert it to a decimal value.

HTD(rev$ (PEEKS ("2F94F*,2)))# 96

There is a problem going the other way (Decimal To HEX) because HTD$ always returns a five
character, right justified, string.

DTHS$ (96)# 00060

We need two nibs. POKE always uses the full length ofthe string furnished to it. If we had just
POKE'd the above, then DWID'TT would have gotten the first two nibs ("00") and the next three

84 PEEKSs & POKEs The BASIC HP-71

nibs would have gone to the next higher addresses, corrupting (as they say) the data that lives
there. The following shows what would happens if we POKEd DTH$(96) to location x in RAM.

Action Returns

DTHS$(PEEKS(x, 1)) "0"

DTH$(PEEKS$(x+1,1)) "o"

DTHS$(PEEK$(x+2,1)) "o"

DTHS$(PEEKS$(x+3,1)) "6"

DTH$(PEEKS$(x+4,1)) "o"

POKE places thefirst nib at the address, the second at the next nib higher in memory, and so
forth, for the full length of the string. For a POKE-able 96 in HEX, we first trim leading zeros,
then reverse what’s left, something like:

rev$ (DTH$(96) [4]1)

System RAM
Thefirst item on each line of the System RAM chart is its five-digit (hex) location in RAM. Each
location has a fourto six character symbolic name. These names identify the locations in documen-
tation, and are used in equate tables for the Assembler. The third item is the numberofnibs re-
served for that utility, and finally, a few remarks. ’

ROWDVR (2E350) These 16 nibs control the appearance of the LCD display. Slight modifica-
tions can give us bold characters which will stay in effect until we do an INIT-1, when the normal
display returns. Be careful changing some of the nibs or the display can become unintelligible, and
various display flags (like PRGM and the shift annunciators) may be lit at odd times. The follow-
ing are reasonable looking charactersets. They enhance the horizontallines, which is not as attrac-
tive as fatter vertical lines. Experiment with various combinations to give your 71 a free form look.

' ! Normal.
I_POKE “2E357%,%22"§ |

! Bold.
I_poxz “2E357*,%63*§ |
 { Bold Top.
LPOKE “2E357%,%23"§ |
 ! Bold Bottom.
POKE "2E357%,%"62"§

DCONTR (2E3FE) contains the current contrast setting as set by the CONTRAST keyword. The
value is in hex so the possible contrast range is from 0-15.

! Read the contrast setting.

HTD (PEEKS$ (*2E3FE",1))fi

The first value in the example is "2F3FE", the memory location, the second is the number one, the
number of nibs we wish to see. Again, the function HTD is used to turn the hex number into deci-
mal. In the same manner we can set the contrast. This sets the contrast setting to 10 ("A" in hex).

Chapter 11 PEEKSs & POKEs 85

 ! Set contrast to 10.

POKE *“2E3FE*,“A"§

ATNDIS (2F441) Used to disable the ATTN key so that it will not stop a program. The normal
value forthis location is "0". POKE an "F" here and ATTN will be treated like any other key by
KEYWAITS and KEYS$. Also, INPUTcannot be suspended. This is helpful when a program uses
the ATTN key to,for instance, enter a command level (such as EDTEXT, the HP Text Editor), orif
a program is doing a critical operation which could cause problemsif interrupted. KEYWAITS$
returns "#43" and WTKEYS$ returns CHR$(14) when you press ATTN..

! Disable ATTN key.

LPOKE “2F441*,"F"'§ |
! Enable ATTN key.

POKE "2F441*,"0*§

The Key Buffer
The 71 stores up to the last 15 keystrokes in a location called the key buffer. This is why you can
type ahead before an INPUT occurs and press keys faster than they can be displayed. Remember
that the key buffer is emptied after each DISP unless the current DELAY is zero. The bufferis
filled from low memory to high memory, the oldest key down is at the beginning of the buffer.

KEYPTR (2F443) Tells us how many keys are in the key buffer. If your program has been busy for
awhile, the user might think it has died, and may start pressing keys. Later, the program stops for
an INPUTand those keystrokes come back to haunt. You can keep this from happening by
POKEing a zero at KEYPTR before the INPUT statement.

KEYBUF (2F444) is the beginning of the 30 nib (fifteen byte) key buffer. The first key is at:
"2F444", each additional key is plus "2" hex. Enter the example exactly as written, without extra
spaces, to see how the key bufferfills.

POKE"2F443",“E*§ OKE"2F443",“E*§

The "P"is gone, but the other characters remain. If we had used "F" instead of "E", the CHR$(13)
entered when we pressed ENDLINE would have caused an "Excess Chars" error when the 71 tried to
interpret the "OKE" statement.

Setting CMD stacksize
‘The command stack usually hasfive levels, though it can be altered between one and sixteen
entries. The 71 does not have a function for this operation, thoughit is in several LEX files. This
program limits it to fifteen entries because of peculiar things which can happen with the full
sixteen. CALL the program with, for instance, CALL CMDSTK(10) to setit to ten entries.

This program is similar to SETCMDST (in the HP-71 Ultilities Solution Book), but is listed here
for those who do not have that book. Since the program alters system pointers,it cannot be inter-

86 PEEKSs & POKEs The BASIC HP-71

rupted during operation without a dreadful belly-up crash, so the ATTN key is disabled. Enter the
program exactly as written (without remarks) and double check it before running.

10 SUB CMDSTK(X) @ POKE "2F441" ,"F" | disable ATTN key.
19 ! make max cmds 0< X <16, find the command stack.

20 X=MIN(15,MAX(1,IP(X))) Q@ A=HTD(rev$(PEEK$("2F576",5)))
29 | create empty cmd entries

30 DIM S$[X*6] @ FOR Y=1 TO X @ S$=S$&"000300" @ NEXT Y
40 E$=rev8(DTH$(A+X*6)) @ POKE "2F580" ESYESLE$ | set stack pointer.
50 POKE DTH$(A),S$ @ POKE "2F976" ,DTH$(X-1)[5] ! blank commands in buf.
60 POKE "2F441","0" @ END SUB ! enable the ATTN key, bye.

Display Devices
If there is a display device active, a program may wantto support it. The usual (and HP recom-
mended) method to find the device is by checking the loop for one. The disadvantages of this are
that,if there is no HP-1L. module, it will cause an error when the function is encountered, and if

the loop is broken, everything will get hung up waiting for the HP-IL ROM to realize it. Regard-
less, these operations are quite time consuming. This following fast and cannot cause an error.
Two locations are used by the 71 when dealing with display devices:

DSPCHX (2F674) Contains five nibs which relate to various aspects ofthe device. If the mostsig-
nificant bit ofthe first nibis set (the PEEKS is "8" or greater) then a device is active. If a non-HP
display device is active the 71 will generally clear bit 2. This causes keeps the 71 from re-displaying
the line when inserting and deleting characters, a unkempt looking affair when the 71 is connected
to a terminal.

Bit Status

Bit 3 Set if Device is active.

Bit 2 Set if HP82163 Video Interface is active.

Bit 1 Set if output to printer (full lines only).
Bit 0 Set if display is on.

IS-DSP (2F78D) Used by the HP-IL ROM to describe the display device. This is much like IS-
PRT for the printer. The first two nibs are the address of the device; values of "10" (nib-reversed
hex for decimal 1) to "E1" (decimal thirty) mean a valid address. Outside of that range means not a
good device.

We can use thisinformation to determine if a display is active, and where it is. In the example,
variable D will contain either the address of the display or zero if there is none, it isn’t active, there
is no HP-IL module, or the device is assigned with extended addressing. The information won’t be
accurate if nothing has been displayed since the loop has changed, though this is very unlikely.

10 D=HTD(rev$ (PEEK$("2F78D",2))) @ IF D>30 THEN D=0
20 D=D*(HTD(PEEK$("2F7B1",1))>=8)

Chapter 11 PEEKSs & POKEs 87

Checking ON TIMER
You can sce if timer #1 is set by checking if the address at TMRAD1 (2F697) is non-zero, then
TMRINI1 (2F6A6) has the setting. Usually it’s enough to see if a timeris set; the examples return
non-zero values if a timeris set.

*CKTIMER1’: X=HTD(PEEK$("2F697",5)) @ RETURN | timer # 1.
’CKTIMER2’: X=HTD(PEEK$("2F69C",5)) @ RETURN ! Timer # 2.
"CKTIMER3’: X=HTD(PEEK$("2F6A1",5)) @ RETURN | Timer # 3.

PEEKing at Flags
User and system flags are stored in system RAM in a contiguous block. One ofthe nicest uses for
PEEKing and POKEing flags is to save current configuration, alter the machine as needed, then
restore the former conditions when through. While SFLAG and CFLAG won’t work with some
system flags, there is no restriction when using PEEKS$ and POKE. Be forewarned thataltering
some systemflags (as with POKEing anywhere) will lock up the computer beyond INIT 3.

SYSFLG (2F6D9) System flags.
FLGREG (2IF6E9) Userflags. Flags are stored in order with four flags per nib. Therefore the
smallest unit we can alter is four flags (one nib). Clearing a block of user flags by POKEing is
much moreflexible than using RESETand faster than individually altering several flags. It is more
memory efficient only when altering more than about 12 flags in a statement (assuming the flags
could be changed using SFLAG or CFLAG). This example will set flags 0-3:

I ! set flags 0-3.

Lpoxs “2F6E9", "F"§
 ! Clear flags 0-3.
POKE “2F6E9","0"§

Since we are dealing with locations in RAM,the next four flags (4-7) are located plus 1 nib at
2F6EA flags 8-11 are at 2F6EB and so forth. A chart in the back ofthis book lists the locations of
system flags and their uses.

LOCKWD (2F7B2) The security password set by the LOCK statementis stored in eight bytes, nib
reversed with the most significant byte in lower memory. Be sure not to POKE any characters
which cannot be entered from the keyboard (such as several CHR$(10)’s) into this location
because you will not be able to turn the 71 back on. To view the current password:

100 Q$=CHR$(126) @ FOR X=HTD("2F7B2") TO X+14 STEP 2
110 Q$=Q$&CHRE$ (HTD(rev$ (PEEK$ (DTHE(X),2))))
120 NEXT X @ DISP Q$&CHR$(126)

RESREG (2F7Cl) The results register can contain a REAL number, stored backwards in BCD
(Binary Coded Decimal) in the first 16 nibs at RESREG. A complex number(if there is a Math
ROM) uses the full 34 nibs. The internal representation of a 16 nib BCD numberis as follows:

88 PEEKSs & POKEs The BASIC HP-T71

"151413121110 9 8| 7|6 |5|4]|3|2]1 ou
1 1 1 1 I 1 1 1 1 1 | 1 1 I I v

S M M M M M M M M M M M X E E E

From left to right, the "S" stands for the sign. Following this is the 12 digit mantissa (M), the sign
of the exponent(X), then the three digit exponent(E). The decimal place is implied to be after the
first digit (from the left) in the mantissa (though it doesn’t really exist). This standard is followed
with any REAL number. For more information on numericalfields, refer to the section on
Assembly programming.

Since the RES register changes whenever a numberis displayed or assigned to a variable, this loca-
tion will constantly change. Try various values with this little program:

10 DISP rev$(PEEKS$("2F7C2",16))

INF 0999999999999F00
EPS 0100000000000501
Pl 0314159265359000
-PI 9314159265359000

ERR (2F7E4) These four nibs are the hex (reversed) equivalent of the value ERRN returns.

ERRL (2F7EC) This is the same value as returned by the ERRL function. The line numberis
stored reversed in four BCD (not hex!) nibs.

Display/Print settings
SCROLT (2F946) The 2 nib representation of the scroll setting. This is the second parameter of
the DELAYstatement. The value is the number of 1/32nd’s of a second (.03125 sec. for decimal
fans) in nib reversed hex. INF is stored as "I

DELAYT (2F948) Thefirst parameter in the DELAY. Stored in the same format as SCROLT.

DWIDTH (2F94F) Current WIDTH setting in two reversed hex nibs. INF is "00".

PWIDTH (2F958) The current PWIDTH setting in the same format as DWIDTH.

Determining Program Size
Since the 71 works with nibbles, an operation which may take full bytes on other machines can be
done in multiples of nibs. We can access how changes have affected program size by beginning the
program with:

1 DISP MEM @ END

This tells us available memory. But that may have changed because of other causes besides editing
the program. We could also use CAT, but that is often off by one nib. This routine returns the size
of the program to the nib.

Chapter 11 PEEKS$s & POKEs 89

1 DISP(HTD(rev$(PEEK$("2F567",5)))-HTD(rev$ (PEEK$("2F562",5))))/2-49 @ END

What this line doesis subtract the end ofthe file from the beginning, then divide it by two to turn
it into bytes,then it subtracts 49,the size ofthis line. This line can be changed into a remark when
not needed and, or course, should be removed when the program is finished.

Program Memory Use
Another routine can be used to determine the amount of memory used by variables (which are not
counted in the program size). Of course, we should already know what free memory was available
before the program was run.

1 DISP (HTD(rev$(PEEK$("2F599",5)))-HTD(rev8(PEEK$("2F594",5))))/2-106.5

Finding the Card Reader
If there is no Card Reader then this PEEK returns "0", other values mean there is one. This is not

part of System RAM, but memory allocated for the Card Reader.

1 Is there a Card Reader?

PEEKS$ (*2c014",1)§

Strings in SDATA Files
We can read either numbers or strings from SDATA files, however, the 71 only allows writing
numbers to these files. Since a string can be read there is no reason we can’t write strings, hence
this section. The format used is, to say the least, unusual looking; physically seven characters can
be used, though READ# will only recognize six (for HP-41 compatibility); a byte is wasted. We'll
discuss the actual register (record) format in a moment.

The SDATA file has a 36 nib header followed by as many 8-byte registers as specified. The file can
be expanded by RESTORE:ing to the end ofthe file then using PRINT#n;n. To store a string in
an SDATA file you mustfirst place a number (pick a number, any number) in that register, then
POKE a string over top of that number. The reason for first entering a number is to make sure the
file is large enough for the string. Remember that registers begin with register# 0. The file doesn’t
have to be open (It isn’t necessary to use ASSIGN#) in order to replace a currentregister with a
new string. First let’s create an SDATA file and give it three registers:

 ! Create the file.
LCREATE SDATA TESTH# |
 ! Open it.
LASSIGN #1 TO TEST§ |

! Write to it.

PRINT #1;0,0,08

Next turn "QUACK!" into the SDATA Text format:

l ! The string.

LQ$="QUACKI “$

CALL SDTEXT(QS$)#
 ! Call the program.

90 PEEKSs & POKEs The BASIC HP-T71

Third, find out where the first register in the SDATA file is:

A=HTD (ADDRS (“TEST"))+37§

Now put "QUACK!" in register 0, which begins at the first nib past the header, then read the file to
confirm that it’s there:

LPOKE DTHS$ (A),QS# l ! Replace the old record.

lEESTORE #1 @ READ #l;xS&l ! Read then display the record.

DISP Xx$§ QUACK!

Let’s print "HP-71" to register #1, the second register, which is + 16 nibs from the beginning of the
file.

 ! Call the program.
LQ$="HP-71" @ CALL SD’I‘EXT(Q$)m

! Write the string to SDATA file.

LPOKE DTHS (A+16),QS§ l

LRESTORE $1%

I_READ #1;08,AS8,08

DISP Q$,AS$,QR QUACK! HP-71 0

 l ! Move pointer to start of file.

 | ! Read the string and a number.

The SDATA file now has three records (OK,registers), the first two are strings and the third still
has the value of zero.

The SDTEXT SUB
The string passed to SDTEXT must be DIMmed at least 16. Only up to the first six characters will
be returned,in a sixteen character string suitable for POKEing into an SDATA file. Of course,

this can be used as a subroutine in a program to save time and memory. If this routine is added to a
program instead of being used as a SUB, be sure that X=0 before entering. SDTEXT always
returns a 16 byte string which is the correct length for POKEing into a single register. The
program uses REVS, as usual.

10 SUB SDTEXT(Q$) @ Q$=Q$(1,6] @ A$="0010000000000000"
20 X=2+X @ C=NUM(Q$> @ Q$=Q$[2] @ IF NOT C THEN 60
30 A$[16-X,17-X]1=rev$(DTHE$(C) [4]) @ IF X<8 THEN 20
40 IF LENC(Q$) THEN A$([4,4])=DTH$(NUM(Q$)) (5] @
A$(7,71=DTH$(NUM(Q$)) [4,4] @ Q$=Q$[2]
50 IF LEN(Q$) THEN A$[1,2]=REV$(DTH$(NUM(Q$)) [4])
60 Q$=A% @ END SUB

Chapter 11 PEEKSs & POKEs 91

SDATA Register Format
Let’s use the registeras it appears in memory (which is backwards, as usual). The HP-41 has 10
digit accuracy and a two digit exponent, while the HP-71 has 12 digit mantissa and three digit ex-
ponent, so some differences are found in the handling of SDATA files by both machines.
Physically, first come the last two digits of the exponent then the sign of the mantissa (which is also
the flag for a string: 0=positive, 9=negalive, 1=string), then the first digit of the exponent (which
the HP-41 usesfor sign of the exponent). The last byte of the mantissa (lower case m’s) is not rec-
ognized by the HP-41 so a string byte there would be ignored.

Strings are stored nib reversed, but also the two nibs of character number5 in the string are sepa-
rated by a null byte. The first digit of the mantissa is zero and the sign is one for strings.

Numbel‘:"EESEmmMMHMMMMMMMH

 SDATA:"151413121110 9 8 7 6 5 4 3 2 1

0

. .

String: l Byteé6 I “ Byte5 ,|| Byte4 " Byte3 " Byte2 " Bytel " :

T - T T T T T TTITT:
1 2 1 B 0 0 4 3 4 1 4 5 5 1 5 0

L] | L) L] L L
1 1 1 I

! K C A U Q

"QUACK!" 121B004341455150
Pl 0000953562951413

PI(HP-41) 0000004562951413
9E27 7200000000000009

23456 9909000000065432

-10 1090000000000001

"HP-71" 001100373D205840

Lo

92 PEEKSs & POKEs The BASIC HP-T71

Converting From Other BASICs 12

As BASIC has grown,it has followed divergent paths. Microsoft (registered trademark of
Microsoft Corp.) is the dominant force because of shear number of units sold. Microsoft intro-
duced BASIC to small computers (recorded on paper-tape). There are probably more computers
running Microsoft BASIC than any other implementation, or any other language. In this discus-
sion we'll lump BASIC together into two camps: HP, and everybody else. Apologies to Dartmouth
(where BASIC originated) forthis generalization. A third category, modern BASIC compilers,re-
sembles Microsoft, but without line numbers. Most of this section applies to IBM PC, APPLE,
TRS-80, Atari and Commodore. Sinclair and other proprietary variations are intentionally
"included out." We will also cover the HP-75 to compare BASICs evolution within HP’s own walls.

HP has taken other paths to the point that most published BASIC programs won’t run on HP
computers without considerable changes. Northstar computers have the most HP-like BASIC.
BASIC, even MS BASIC,is not a standardized language. It can be said that Microsoft BASIC and
HP BASIC are two different languages with similar syntax.

Examples will not work inall cases. Don’t expect any PEEKS$ or POKE from any other computer
to work on the 71. Try to find out what the operation does then look for either an HP keyword, or
try to find an equivalent PEEK in the chart in the back of this book. Not all PEEKSs will have an
HP-71 counterpart.

Microsoft BASIC
The differences between Hewlett Packard and Microsoft BASIC are as much philosophy as code.
Generally speaking, HP has more keywords than MS, because ofa desire to make programming
easier. Where MS will require a POKE, HP will have a keyword, in fact, while HP usually does a
very complete version of BASIC, some HP’s don’t even have PEEK and POKE. HP BASIC is
easier to read because of the consistent program formatting, and because of the highly mnemonic
keyword names (some MS keywords are just plain goofy). Both languages use tokenized code, but
HP tokenizes and checks syntax as code is entered, thus, while there may be a short delay after
pressing ENDLINE, most typing errors are caught immediately, instead of while the program runs.
If you rave about MS BASIC then you aren’t familiar with HP BASIC. If we had a computer with
both BASICs running a similar program, the HP language version would operate considerably
faster. Thus, while the 71 actually runsfairly slow (forfuelefficiency), programs run relatively fast
because of the slick way they are coded.

Round-off errors are often extreme with MS, while the 71 uses quite accurate BCD routines. Be
sure that a program is not expecting the sloppiness of MS to limit number of loops orto intention-
ally induce an error. Programs compiled in Borland TurboBASIC (trademark Borland) and
Microsoft QuickBASIC version 3.0 (and later) may use full 80-bit precision for floating point.

Variable names often end with a charactersignifying the variable type. Interpreters generally allow
a single variable of a given name, while compilers accept multiple variables with the same name as
long as the suffix is included.

Chapter 12 Converting From Other BASICs 93

X$ Astring. X! Single precision.
X% Integer. X# Double precision.
X& Long Integer.

Variable names are often quite long with MS. Expect variables names like COUNTER or DAYS.
These are not keywords, though they often look like them. Replace them with the usual character
or character and a numbervariable names (A, Al...) the 71 can accept. Starting with version 4,
QuickBASIC no longer requires user defined functions to begin with "FN".

HP also uses "&" (ampersand) to concatenate strings where MS uses "+" (plus), the same operator
used with numbers. Even the plus is often optional.

MS: "str1" VAR "str2"

MS: "strl"+"str2"

HP: "str1"&"str2"

The two most obvious differences are string functions, and the use of the "@" (commercial at) in-

stead of "." (colon) to delimit statements on concatenated lines.

Graphics and Escape Sequences
HP-71 BASIC does not have graphics functions (except GDISP and GDISP$,but they are quite
unlike Microsoft). COLOR and SCREEN can often be ignored, though the rest can cause prob-
lems. When you run into programs with the following graphics keywords, it’s probably best to send
up a white flag.

CIRCLE COLOR GET PRESET SCREEN
CLEAR DRAW PCOPY PSET VIEW

Most escape sequences are similar with one exception which will require major surgery. Moving
the cursorto a specific location on the display is done with CHR$(27) followed by a three charac-
ter command. MS specifiecs CHR$(27) then uppercase Y followed by a character specifying the
row coordinate and a character for the column coordinate. The col/row coordinates are offset by
31 so that thefirst row is CHR$(32), the second is CHR$(33) and so forth.

HP uses CHR$(27) followed by the percent character (%) followed by col then row specifier. The
coordinates begin at zero for col 1 and row 1. The first row is CHR$(0), the second is CHR$(1).
The scheme used by MS assures that coordinates can be represented by displayable characters, so
the program will often contain literal strings. In the example, C is the column, and R is the row.

MS: CHR$(27)+"Y"+CHR$(R+31)+CHR$(C+31);
HP: CHR$(27)&"%"&CHRS$(C-1)&CHR$(R-1);

"’ (Quoted String)
Microsolft accepts only the double quote character (") to delimit strings while HP allows single or
double quotes. As discussed above, a single quote (*) in MS designates a remark. If a string is
either the only or last item on a line then MS allows the closing quote to be optional, while it is
required by HP. The use of REM to designate a remark is universal in BASIC.

94 Converting From Other BASICs The BASIC HP-71

MS: PRINT "a string
MS: PRINT "a string"
HP: DISP "a string"
HP: DISP ’astring’

ASC
Used to recall the ASCII value of a character.

MS: N=ASC(XS$)
HP: N=NUM(X$)

BEEP,SOUND
The BEEP statement takes no parameters and does a short beep of about 800 Hz. The two param-
eters for SOUND are frequency and duration. Frequency is expressed like HP, but duration is
usually representing as clock ticks. These units are often 1/18th second for desk-top machines, or
0.02 second for portables.

MS: SOUND 500,9’ this is 9/18th’s of a second.

HP: BEEP 500,.5! this is 1/2 second.

CHR$(27)p, CHR$(27)q, COLOR
Some versions of MS BASIC use escape plus lowercase "p" to enable inverse video (black charac-
ters on white background), then escape plus lowercase "q" to restore the normal display. There is
not an exact counterpart with HP. HP uses characters above CHR$(127) for inverse video on a
monitor or for the alternate character set on the LCD. The COLORstatement also changes the
color of the current character.

CLEAR
This does not clear the display. It is used by MS to free an area of RAM forstrings. Unless other-
wise DIMmed, strings share a common buffer which is usually about 256 characters by default.
This statementis used to increase the size of this buffer. Check the maximum string length used in
the program and DIM strings individually. On larger machines, CLEAR requires no parameter,
since 64K is allocated for vars. In those cases CLEAR works like DESTROY ALL on the 71.

CLS,CHR$(27)E
These are two alternative methods of clearing a display device by MS, and is one instance where
HP has not included a keyword! The simplest method would be to use CHR$(27)&"E" which re-
sets both display device and the LCD. The problem with this method is that it also turns the cursor
on. When you clear the display using CHR$(27)&"E" and follow it by an INPUT, the prompt
string is included within the default input. Even if an INPUT does not follow, the flashing cursor
can be a distraction. A more useful solution is to use CHR$(27)&"H"&CHR$(27)&"J", which
homes the cursor then clears the display from that point; if the cursor had been off (quite likely)
then this operation will not turn it on.

MS: CLS
MS: CHRS$(27)+"E";
HP: CHR$(27)&"H"&CHRS$(27)&"I",

Chapter 12 Converting From Other BASICs 95

CSRLIN, POS
CSRLINreturns the current vertical cursor position (row), and POS returns the horizontal cursor
position (column) on the display. There is no equivalent. HP’s POS keyword is the INSTR
keyword in Microsoft BASIC.

DEFINT, DEFLNG, DEFSNG, DEFDBL, DEFSTR
Used in lieu of DIM. Create integer, long integer, single precision, double precision, and string
variables. All vars beginning with the designated letter are of the specified type unless dimmed
individually later.

Be cautious of programs using DEFSTR to create variables because the string variables do not
require the dollar sign on many versions of MS BASIC.

EOF, LOF
EOFteststo see if you have reached the end ofa file; a true result means you have. There is no
equivalent function for the 71. Use an ON ERROR trap to branch when the computer generates
ERRN 32 ("No data"). LOF returns the number of bytes in a file.

FRE
An example of a function which really doesn’t need a parameter, but MS requires one anyway be-
cause of the limited parser. This is the same as MEM. Many MS programs use FRE() even when
they don’t care about current memory, because it performs a garbage collection in the limited
string space.

Some BASIC compilers running on computers with segmented architecture (like the IBM PC) use
the parameterto tell it what kind of memory (string space, for example) you want to know about.
Since the 71 has linear memory addresses, you can ignore the param type.

MS: FRE(0)
HP: MEM

INSTR
Compares two strings and returns the a number representing the position within the match oc-
curred or zero if there was no match. Note that the POS keyword is also used by MS but for a
different purpose.

MS: P=INSTR(<start at>,"abcd=","cd")
HP: P=POS("abcde","cd",<start at>)

KILL
Hardly a term GreenPeace would appreciate. HP is much more humane in their usage of PURGE:

MS: KILL "filename"
HP: PURGE filename

96 Converting From Other BASICs The BASIC HP-T71

LEFTS$
Returns the specified number of characters from left most portion of the string.

MS: X$=LEFT$(X$,5)
HP: X$=X$[1,5]

LOCATE, PRINT AT, PRINT
Print at is used to locate the cursor at a column and row coordinate. Read the section on Graphics
and escape sequences for conversion.

NEXT
The loop counter variable in FOR-NEXT loopsis often implied; this implicitly refers to the most
recent FOR. If more than one variable is listed in a single NEXT statement, they are listed from
the most deeply nested loop to the least.

MS: FOR X=1TO 10: NEXT
MS: NEXTAB,C
HP: FOR X=1TO 10 @ NEXTX
HP: NEXTA @NEXTB @ NEXTC

Most versions of BASIC loop faster when using integers for the loop counters. The 71 is faster
with REAL variables; check the program initialization routines to see if the variable has been
declared an integer and is used only within loops.

RIGHT$
Returns the number of characters starting from the right-most end of the string.

MS: X$=RIGHT$(XS,5)
HP: X$=XS$[LEN(X$)-5]

MID$
Returns a substring beginning at the starting position and including the specified number of
characters. MS will usually pad with spaces on the right if the number of characters specified is
longer than the string, HP-71 will not add the spaces.

MS: X$=MID$(X$,S,7)
HP: X$=X$[S,S+7]

OPEN filename FOR APPEND AS n
OPEN filename FOR INPUT AS n
OPEN filenamg I{;\Os{%OUTPUT A n
Many dialects of require you to Jisignatc what you are going to do with a file (read
from or write to it) when it is assigned. In the case ofall of the examples above use:

HP: ASSIGN #n TO "filename"

Chapter 12 Converting From Other BASICs 97

PRINT, LPRINT,?
Keywords for displaying information stem from large machines with terminals connected to them,
therefore you would PRINT to your Terminal. "?" is an abbreviation of PRINT and is used by
most dialects of BASIC (the 71 uses "?" for a numerical comparison). HP has added the keyword
DISP to simplify writing and understanding things, and eliminate the ambiguity ofwhere the
information is to go. HP uses PRINT to mean send this to a printer while MS may use LPRINT
(meaning L.ine Print, because it is destined to be printed on a line printer). Occasionally a software
switch is used to designate that the PRINT information is to be sent to a printer (less common).

MS: ?'display this"
MS: PRINT "display this"
MS: LPRINT "print this"
HP: DISP "display this"
HP: PRINT "print this"

READ,OPEN, INPUT, INPUT$,CLOSE
With the exception of INPUTS,file functions have direct counterparts. The 71 must create a file
before using ASSIGN# while MS (and many variations of HP BASIC) implicitly creates oneifit
doesn’t exist.

MS uses INPUTS (syntax is Q§=INPUTS$(<channel>,< #chars>) to read Text files which may
or may not have a carriage return at the end of each line; it usually reads a single character at a
time then addsit to an outputstring. A file could conceivably not have a single carriage return, in
which case a string could not contain the entire line read by INPUT#. Since lines in a 71 Textfile
is a finite length this function is not needed, it’s safe to blunder in and read a whole line.

MS: OPEN "file" FOR <INPUT,OUTPUT> AS # 1
HP: ASSIGN # 1 TO "file"

MS: INPUT#L1,X$
HP: READ #1,X$

MS: CILOSE #1
HP: ASSIGN #1TO *

HP-75 BASIC
The HP-75 is a sibling which came into production about 18 months before the 71. It has BASIC
in ROM, 32 charactersingle line display, ROM and RAM ports, HP-IL interface and a Card
Reader. While the HP-71 can be traced back to the HP-41, the 75 descended from the series 80

(specilically the HP-85) and a diffcrent engineering team. HP-85 programs (such as found in solu-
tions books) are similar to HP-75 programs. HP-75 is most similar to HP-83 and HP-85 BASIC,
while the 71 is most similar to HP-86 and HP-87.

HP-75 BASIC has fewer keywords than the 71, and can be thought ofas a sub-set, conversion
being fairly easy for primarily mathematical programs. Variable names may be used for scalar and
arrays at the same time. Most HP-75 owners have the I/0 ROM (with 150 keywords) and VisiCalc
ROM (VisiCalc is a registered trademark of VisiCorp; 83 keywords). Programs using either of

98 Converting From Other BASICs The BASIC HP-T71

these ROMs are more difficult to convert, and usually require STRINGLX or CUSTUTIL for
functions notin standard 71 BASIC.

Transferring Files
Connect the 71 and 75 together using HP-IL. Edit the program on the 75 first to look for lines
which will not be interpreted properly, then place an exclamation mark at the beginning of these
lines. The 71 will beep and respond with an error message wheneverit cannot interpreta line, and
the line will be lost so it is best to turn these possible offenders into remarks first. Set CONTROL
OFF and edit a new file on the 71. Designate the 71 as the PRINTER IS device on the 75, place
the 71 in REMOTE mode, then PLIST the program.

I ! 71 is the printer.

LPRINTER Is ":C1*§
 ! Put 71 in remote mode.

LR.EMOTE “:C1*§ |
! Send file to 71.

PLIST “filename“§

Programs may also be transferred by Cassette, Disc, or even Card Reader. The common file type
is called LIF1 on the 75, which corresponds to TEXT files on the 71. TRANSFORM the file to
the desired type, then save it to the medium. When sending a TEXTfile to the 75 be sure each line
begins with a 4-digit line number (leading zeros for <1000) or the 75 won’t be able to
TRANSFORM it. As a side benefit, the converted program will take 20-30% less memory on the
71 than it did on the 75.

File Handling
The file chain on both machinesis operationally similar (although internally they are totally differ-
ent). On the 75 all editing commands (including EDIT and FETCH?!) are programmable, and the
current edit file is often not the file being run. While READ (without specifying a file number)
refers to the running program, not edit file, DELETE, RE-NUMBER, PURGEetc refer to the
current edit file. These operations can usually be simulated with ASSIGN#, PRINT# and
READ#. On the 75, new files are created using EDIT or ASSIGN#;if they do not exist they will
be created as the same type offile as the currenteditfile,if the type is not specified; the default is
not DATA as on the 71.

File types that may be edited are BASIC and TEXT (with line numbers). On the 75 a DATA file is
actually a BASIC program file in which each line begins with DATA. DATA and TEXT files may
be read and printed to randomly by specifying line numbers. Intermediate lines are not required.
You may,for instance, enter data on line 9000 without there being data on any otherline. Files
automatically grow and shrink as needed. If data is read from a nonexistent line an erroris
generated. Since Text lines begin with a number, most programs writing to TEXT files insert a
leading space to separate the line number from possible following ASCII numerical characters,
these are obviously not needed on the 71. Random read/write may be simulated by using the
INSERT#, DELETE# and REPLACE# commands in the EDLEX file furnished with the 71

FORTH and Text Editor ROMs. Unlike the 71, the 75 will not place an EOF marker at the end of
the current PRINT# line in a TEXTfile. PRINT#n,n;™will erase a record on the 75 while it will

make a blank (though still existent) record on the 71. DATA files would be easierto use if created

Chapter 12 Converting From Other BASICs 99

to the maximum size the program will need then filled with place holding data (null strings, spaces
or zeros) so that random read/write will work properly.

HP-75: ASSIGN #1 TO "filename", TEXT
HP-71: CREATE "file" TEXT @ ASSIGN #1 TO "filename"

Interpreting Keystrokes
KEYS$ operates as with the 71 except that it returns a single ASCII for any keystroke; RTN
(ENDLINE on the 71) returns CHR$(13) while the 71 will return "#38" and UP ARROW returns
CHR$(132) instead of "#50". The 75 has several keys without counterparts on the 71 (TIME,
APPT, FET, CLR, TAB). SKEY$, WKEY$ and KEYWAIT$() from the two previously men-

tioned ROMs may be substituted by KEYWAITS or a user function. The most 75-like key reading
routine is WTKEYS$. Read the documentation for the program and alter the keys accordingly.

HP-IL
The 75 I/O ROM solved several problems on the 75. If you find an older HP-75 program which
doesn’t use that ROM, a goodly portion of the program will do things like turning on or off the
loop,setting up error traps, waiting for the loop to error when addressing it, and assigning devices.
Pre-1/0 ROM 75 owners were known to spend some time waiting for the loop to hang-up and is-
sue the beep and "ERROR: Loop Timeout." Once you've determined the purpose of the code in
these programs, you can mostlikely eliminate it.

Devices (display, Disc, etc) are always referenced by a quoted string or variable name, the same as
used by ASSIGN IO on the 71. Device words (such as ":MASSMEM") are never used. Generic de-
vice names (again, such as "MASSMEM") are easy to substitute for assignments the 75 gives to
devices. The following are default names given devices by the HP-75 1/0 ROM and the HP-71
equivalent. Additional devices of a given type are incremented to the next number; beyond the
number 9 they next use letters beginning with A ((M1,:M2....MA,;:MB...).

HP-75 HP-71 HP-75 HP-71
:Al(analytical) 1 :INTRFCE :GPIO :RS232
:B1 :HPIB :M1 :TAPE :MASSMEM
:Cl :HP71 :PC :0l1(general).
:D1 :DISPLAY :P1 :PRINTER
:El(elect.Inst) :INSTRMT :Ul(unknown)
:G1 :GRAPHIC :X1(extended)

L)

100 Converting From Other BASICs The BASIC HP-71

Assembly Language 13

Assembly Language Introduction
This chapter introduces Assembly Language programming on the 71. Even if BASIC solves your
programming needs, you mightfind this section to be interesting reading to geta feel for the inter-
action between interpreted BASIC, and the actual Machine language it invokes. We'll deal with
Assembly language at a fairly high level, which should get the average user started writing func-
tions without having to purchase any of the IDS (Internal Design Specifications).

At its lowestlevel, a computerisn’t even a very good calculator: It can’t even multiply or divide
properly. It adds, subtracts, makes comparisons and shifts data around. This is the level at which
machine code operates. To make it even more of a challenge, we can’t even edit machine code
directly.

To overcome what must seem like an insurmountable task, we have an Assembler. This is a pro-
gram which reads a Text file and creates machine code from commands within that source file.
And so we don’t have to re-invent the computer every time we sit down to write even the simplest
thing, the HP-71 has a library of utility programs within its 64k operating system. These utilities
operate much like keywords in BASIC. With these utilities, inspiration, and some ingenuity, comes
LEX and BIN (binary) files. For clarity it might help to refer to the finished code as machine code
(or language), and the Textfile as Assembly source code. We'll introduce writing functions for
BASIC,and leave statements, FORTHprimitives, polls and interrupts to the more adventuresome
users with access to all volumes of the IDS (Internal Design Specifications).

HP-71 LEX files either respond to polls (which the operating system issues when, for instance, er-
rors occur), or extend BASIC with new keywords, or both. With LEX files, HP-71 BASIC remains
a living and growing language. When new concepts in programming are discovered, or often used
or tedious routines are found, new BASIC keywords can be created to implement them.

BINfiles are RUN or CALLed in the same manner as BASIC programs. While BASIC programs
are interpreted, BIN files contain executable code rather than BASIC tokens. Advantages of BIN
files are faster execution, keeping private code private, and doing things which are difficult to do in
BASIC. You may not find extreme speed gains over BASIC in many operations because you usu-
ally call the same code that BASIC uses. Direct access to hardware such as beeper, display, key-
board, and all aspects of 1/O, are primary reasons for using BIN files. While some argue that BIN
files are easier to write than LEX, we’ll focus LEX files because of their versatility.

Source Files
We write Assembly language as Textfiles, then feed them to an Assembler which interprets them,
and directly creates executable BIN and LEX files. The FORTH/Assembler ROM is the usual
method for creating these files. Although there is an Assembler available for use on the HP series
200 machines, don’t expect to walk into your dealer and buyit.

Since the sourcefiles are Text they may be written on any machine which can be made to commu-
nicate with the HP-71. Whatever machine you, use be sure that the text editor does not imbed con-
trol codes within the text. For instance, some computers use CTL-I1 (ASCII 9) for the TAB
character instead of accumulating spaces.

Chapter 13 Assembly Language 101

Comments are a vital part of writing Assembly code, so the source text file is often quite large.
One LEXfile of about 800 bytes has a source file of approximately 18k with remarks, which trims
to 9k without remarks. If memory is at a premium, write and debug the file in sections then do the
final assembly from a Disc (or RAM Disc) based file containing the completed modules.

The Assembler can take twenty minutes or more for a largefile, be sure that all of the batteries in-
volved aren’t waiting to surprise you.

The HP-71
The 4-bit Saturn processoris a descendent of the 1-bit CPU which has powered over a million HP-
41’s since 1979. The four bit data path, combined with higher clock speed, gives a considerable
speed gain over the 41. It’s a highly evolved processor, with four 64-bit working registers handling
BCD (binary coded decimal) math with reasonable speed. There are four main working registers
and five 64-bit scratch registers in addition to two 20-bit (5-nibble) data pointers and nine status
registers. It looks as much like a math co-processor as a CPU. These big floating-point registers
help insure that HP-71 BASIC won’t be subject to the rounding errors of most versions of
Microsoft BASIC.

The address space is 1024K nibs, or 512K bytes. The first 64K bytes are the operating system and
BASIC. After operating system ROM comes memory-mapped I/O, and the display RAM. Fol-
lowing that area is the hard addressed (can’t be moved) System RAM. Addresses are always
referred to in 5 digit hex in BASIC and Assembly language; the 71 uses linear addressing, not the
segmented architecture found on many desktop machines. A memory map and listing of System
RAM are at the back ofthis book.

CPU Registers
Assembly language operations involve moving data into or out of, or altering data in the CPU.
Before understanding moving data around, it’s necessary to be familiar with the CPU Registers.

Working Registers
Registers A and C are the most versatile because they are also used for memory access. A is often
used to pass hex values (usually in the A field of A) between subroutines. By far the most opera-
tions are available for the C register. There are operations to use the B register with Cand A. B is
used for shifts and tests, as well as other math. Except for lack of memory access, B is nearly as
useful as C or A.

D has the fewest operations available and is used for tests and some arithmetic. D is only accessi-
ble through the C register; there are no operations to move data between D and A. It’s the most
cumbersome register to use because of the limited number of instructions forit.

Carry
This is a flag which is set or cleared to signify the result of an operation is true (using RTNCC,
RTNSC). In calculations, CARRYis set if the calculation overflows or borrows. CARRYis useful
in subroutines for situations like if a string is over a certain length, then use RTNSC,else use
RTNCC. The associated tests are GOC (goto if carry set) and GONC (goto if no carry).

102 Assembly Language The BASIC HP-T71

Scratch Registers
RO, R1,R2,R3 and R4 are used for temporary storage of information from C or A. Moving data
into and out of these scratch registers is slower than moving between the main arithmetic registers,
though much faster and easier and safer than placing the information in RAM. Relatively few sys-
tem entry points use these registers (except for R4) so they are the ideal place to store intermedi-
ate results when calling a subroutine.

The A field of R4 is used whenever an interrupt occurs, which can be at any time. Don’t expect to
be able to place anything in the A field and have it still be there. Remember, interrupts occur when
you least expect them, such as when the user presses a key.

Control Registers DO, DI
DO (dee zero) and D1 are data pointers used for memory access. D0 or D1 would be set to pointat
a location in RAM,then the appropriate instruction (such as C=DATO) loads C or A with the
data. Since they can be incremented and decremented quite easily, they are also useful as loop
counters.

When execution is passed to a Function, DO points to the next instruction in a program, and D1
points to the top of the Math Stack. While the Function may (and usually will) alter both of these
registers, they must be restored to the proper value when the Function terminates, so that the
BASIC interpreter can keep track of program flow and memory. This usually means D0 and D1
are copied to a scratch register (usually R2 or R3) ora safe location in RAM, then copied back to
D0 and D1 when you no longer need them.

Return Stack (RSTK)
Each GOSUB, GOSUBL or GOSBVLleaves an address on the Return Stack. When the next

RTN instruction is found the address is popped from the stack and execution continues from that
address. RSTK has eight levels available. When one level is popped, the rest move down and
"00000" is placed at the top. If more than eight addresses are pushed on the stack then the oldest
entry is lost.

Interrupts require one level on the stack, thus leaving seven for most operations. Statements may
use the full seven levels.

Because functions may be nested, the operating system may have several pending operations when
it turns control over to each function. For this reason, functions are usually further limited to four
levels. C=RSTK can be used to save the top address to (the A field of) C temporarily before using
an operation which will use more than four levels. RSTK=C is used later to return the address to
the stack.

Fields Within Registers
Each working register can contain a single 8-byte floating point value. Many operations require
less than full mathematical precision, and can be done in hex or as simple numbers. Each register
can be addressed by fields within the register, thus adding to its capacity, or speeding operations.

Chapter 13 Assembly Language 103

The most memory efficient way to use registers is in 5-digit hex in the A field of a register. Even if
smaller values are used (such asstring length), using the full A field is the most common method
used by entry points.

P Pointer
Fields within a register may be specified by field name or by the value of the pointer P, or by a
combination of the register from nib zero through the pointer value (WP). P is also useful as a flag
and can contain values of up to 15. P may be tested for any value using ?P= or ?P#. P is more ver-
satile and useful than you could imagine 4-bits being. Most system entry points exit with P=0 and
others require that P=0.

WORKING REGISTERS

Reg Size Purpose
Carry 1 Carry Flag
A 64
B 64
C 64
D 64
RO 64 Scratch.
Rl 64 Scratch.
R2 64 Scratch.
R3 64 Scratch.
R4 64 Scratch. A field used for interrupts.

P 4 Register Pointer.
DO 20 Program pointer.
D1 20 Math stack pointer.
PC 20 Program counter.
RSTK 20*8 Return Stack.
ST lo Programstatus flags.
SB 1 Sticky Bit.
MP 1 Module Pulled Bit.
XM 1 External Module Missing Bit.
ouT 12 Keyscan use.
IN 16 Keyscan use.

104 Assembly Language The BASIC HP-71

FIELDS IN WORKING REGISTERS

|[151413121110987654321o||
1 T I 1 I ! 1 1 I T I I 1 ! I

s Xs
< w >

. M >

-« A >
«— X—>

<+« B>

Name| Nibs Description

S 15 Sign.
XS 2 Exponent Sign.
W 15-0 Full Word.
M 14-3 Mantissa.
A 4-0 Address.
X 2-0 Exponent and sign.
B 1-0 Exponent or byte.
WP P-0 Word through pointer.
P Al pointer.

LEX FILE REQUIREMENTS
Following the file header are many requirements for LEX file construction.

Remarks Size

LEXID 2 nibs

Lowest token # 2 nibs

Highest token # 2 nibs
Next LEX table link 5 nibs

Speed table flag I nib
Opt. speed table 78 nibs } 1 nib if no Speed Table.
Speed tableflag I nib

Text table offset 4 nibs
Message table offset 4 nibs
Poll handler offset S nibs
Main table 9*(total_keywords)
Text table 3*(total_keywords) + 2*total_chars + 3
Message table
Poll handler code
Exception code
Next LEX table (optional)

Assembling the LEX File
If that table didn’t thwart any desire to write a LEX file, then you should know that much of the
aboveis written automatically by the Assembler. All we have to do is provide the appropriate OP

Chapter 13 Assembly Language 105

codes (operations for the machine to perform), and Assembler Pseudo-OPs (operations the
Assembler interprets), and the Assembler will generate a complete LEX file for us. It’s not as easy
as BASIC is to you now, but then neither was BASIC the first time. Let’s look at what is actually
required by the Assembler to write a LEX file, and introduce the worlds simplest LEX file in the
process. If you have the FORTH/Assembler ROM, enter the following into a Text file aslisted.
Use the Text tile name REVTEXTto differentiate from the resulting LEX file (which is called
REVLEX).

LEX "REVLEX’ the LEX file name

1D #5C 5C,5D,5E allocated for testing.

MSG 0 no message table.

POLL O we will ignore polls.

REVS EQU #1B38E entry point to reverse a string on the stack.

EXPR EQU #0F23C exit here because results are already on stack.

ENTRY revstr

CHAR #F
KEY "'REV$’ the "$" signifies that we will return a string.
TOKEN 1 values from 1-255 available for scratch.
ENDTXT the end of the text table.

NIBHEX 4 this parameter is a string.
NIBHEX 11 will accept min 1 and max 1 parameters.

* execution code

revstr GOSBVL REVS$ reverse the string on the math stack.
GOVLNG EXPR everything is still in order, exit.

As with any Assembly language operations, copy every importantfile in your 71 to Disc before
Assembly, in case an error during testing crashes the 71. The 71 will not crash during Assembly.
Now go to FORTH environment and assemble the file then return to BASIC.

 i ! Assemble the LEX file.
L' REVTEXT" ASSEMBLE# |
 ! Get out of FORTH.

BYER

Turn your 71 off then back on. Now test our keyword.

REVS ("ABCDEFG")§ GFEDCBA

REVLEX is listed in the form used for source files by the Assembler. Thefirst seven spaces on
each line are reserved for labels; lines without labels are filled with spacesup to the mnemonic
(the OP or pseudo-OP code). Modifiers (such asfield specifiers) are separated from the
mnemonic by at least a space, and usually begin at the 15th column. Anything following a modifier,
or after an OP such as SETHEX which doesn’t call for a modifier, is ignored. Remarks usually be-
gin at column 24, though a spaceis all that is needed. In addition, lines beginning with "*" are also
remarks. Only one operation is allowed perline. There is no such thing as an optional parameter

106 Assembly Language The BASIC HP-T71

with Assembly language. Marking the display at 8, 15 and 24 columns with a piece of tape (or a felt
tip pen if you're adventuresome) makesit easier to maintain column alignment.

Any display format wide enough to allow for the mnemonic and modifier on the sameline is suffi-
cient. The source code may exceed 500 lines, and there are no line numbers; it can be difficult to
keep track of where we are in a large file. A screen oriented Text Editor with a width of at least 40
columns is the easiest way to write source files. When using the built-in LCD, PLIST the file often.

The FORTHRAM file does not have to have free room for the Assembler. About 2K offree
memory can be gained using a newly created FORTHRAM file (one without any user words
defined in it) reduced to about 1K.

 ! Reclaim some memory used
3800 SHRINK§ ! by the FORTH environment.

If only the 71 is used, and with limited memory,edit the file in sections using EDTEXT (the HP
Text Editor) or TED (the Screen Oriented Text Editor in WorkBook71), then merge the files on
Disc for Assembling.

The Assembleris sensitive to upper and lowercase. The entire instruction set must be entered in
uppercase. Labels may be from one to six characters and cannot begin with equals, sharp, single
quote, left parentheses or numbers.

=#’(0123456789

Again, the Assembler recognizes upper and lowercase as different characters. An advantage to this
system is that local labels (within the file) can be entered in lowercase, and UPPERCASElabels
would designate calls to the Operating System. Single quotes or the backslash (\) may be entered
when quotes are needed. The \ must be assigned to a key for use. Labels may be referenced as
often as needed. However, labels must only exist one time in the file.

The LEX File

LEX
The first line is the name of the LEX file to be created. It cannot be the same name as the source

file. The source file cannot begin with a remark.

ID
Each file is identified by a hex byte. ID "00" and "01" are used by the mainframe. Of the total 256
possible ID’s, three are allocated for experimentation: SC,5D & 5E. Distributed products should
not use these ID’s. These are the ones we usually use as we are developing new files, or those for
personal use.

If two different LEX files were in the 71, both using the same token numbers, a conflict will exist.

The proper keyword will be tokenized when entered, but whichever one that came first in the file
chain would be the one executed in a program. The 71 would probably go down in flames as the
parameters of a function were passed to another, or worse yet,to a statement. To be safe, even for
personal use, keep a list of the usage of ID’s, token numbers, and keywords.

Chapter 13 Assembly Language 107

Once a LEX file has been tested, you may want to distribute it. HP (Corvallis) will allocate an ID
for the file and token numbers for each keyword to eliminate possible conflict. Write Systems
Engineering Support in the HP Portable Computer Division Product Support Group in Corvallis
Oregon for an application. Be aware that the allocation of ID’s can take some time (several
months!) because HP also checks for conflict with keywords.

MSG
Thisline refers to an error message table. In the examples given here this will always be "0" be-
cause of the expense of memory and bulk for RAM based LEX files. The usual errors of bad pa-
rameters are handled by the mainframe when entering the keyword in the BASIC program, and by
the entry points when getting the data off of the stack. The mostlikely error to occur with stringsis
not enough memory to move them to a temporary buffer (usually at the beginning of free memory
AVMEMS). A function which helps BASIC by qualifying data, instead of balking wheneveran er-
ror occurs, can actually make BASIC programming easier. For instance, if a numerical parameter
must be in the range 1-15, then zero could default to 1 and 1E27 could default to 15. Some entry
points for error messages are listed in the back of this book, they may be used in lieu of creating
NEw Error messages.

POLL
At various times (such as when certain errors occur) the operating system polls LEX files to see if
they want to intercept them. An example ofthis is PLIST, when the file type is TEXT. This is not a
mainframevalid operation, so before the operating system generates an error to the user,it polls
to see if anyone wants a shot at PLISTing, which EDLEX does. Another example is the VER$
poll, during which everybody gets a chance at displaying their revision number. The use of these
and other polls is covered in Vol 1 of the IDS.

EQU
All references to locations are done using labels. The equate table is usually (though not necessar-
ily) at the beginning ofthe file. It lists all of the entry points and System RAM points used in the
LEX file. In REVLEX we used the entry REV$ with GOSBVL, and EXPR after GOVLNG.

ENTRY
Thisis a refercnce to the label designating the location within the file wherethe actual code for the
function lives.

CHAR
The characterization nib tells the operating system what kind of keyword lives at the above refer-
enced label. "F" is the most common, and refers to a function which returns either a string or a
number and may be used either from the keyboard or program. If a function is restricted to not
being usable in a program (such as EDIT), it would be "5". The bits in the nib mean the following:

108 Assembly Language The BASIC HP-71

Description

Bit 0 Legal from keyboard.
Bit 1 Unused.
Bit 2 Legal after THEN/ELSE.
Bit3 Function is Programmable.

KEY
Each keyword is listed quoted following the pseudo-OP KEY. Only uppercase letters and numbers
from 0-9 are allowed. The keyword must begin with a letter and be no longer than eight characters.
Functions which return a string have the dollarsign ($) as their final character; this is the only way
the Assembler can tell a function which returns a string from one which returns a number. Be sure
that function names do not conflict with program variable names (don’t call a function Al). While
they don’t cause conflicts, HP will not allocate keywords ending with a question mark (because it’s
confusing to read).

The list of keywords is called a Text Table. Entries in this table must be listed in alphabetical
order. If a shorter keyword is contained within the beginning of a longer keyword, the longer key-
word must be listed first, though alphabetically it would not be. The keyword ABCD would appear
BEFOREthe keyword ABC, or the second keyword would not be found.

Each keyword for commercial distribution must be researched by Hewlett-Packard to be
compatible. Withoutthis research there could be conflict with other similar words in which per-
haps neither keyword would work properly. For personal use, any keyword names may be used. In
fact, mainframe keywords may be given new meanings; you could, for instance, have PASSWORD
not work at all to thwart people with a strange sense of humor. To be sure of compatibility, use
only keywords which won’t be confused with mainframe keywords. For example use "RTN"instead
of "RETURN" or "NXT" for "NEXT", or a contraction such as "CLFLS" (which is an allocated
keyword in WBLEX) for "CLLOSE FILES." To minimize conflicts, HP restricts two-character
keywords, and requests that the keyword be as long as possible. If you’re keyword does the same
thing as a simple PEEKS$ or POKE, HP will probably not allocate it.

TOKEN
Each keyword within the file has an exclusive token number. As with LEX ID’s, keywords may be
1-255. The scratch ID’s have all of the tokens available. As with LEX ID numbers, tokens are is-

sued by HP. Again, be sure to maintain a list of LEX ID’s, as well as tokens used in files for your
OWn USeE.

Parsing Functions
The primary reason we are discussing functions exclusively and not statements is that the main-
frame automatically qualifies the operation when the user enters the keyword. With statements,
the LEX file must contain code to make sure the user inputs the proper number and type of pa-
rameters, and insure parentheses, spaces and commas are in the correct position. This takes longer
to wrilte, is less reliable, and adds considerably to the size of the LEX file. If you wish to write
statements, refer to both VOLs 1&I1 of the IDS.

Chapter 13 Assembly Language 109

Often what one would think ofas a statement can be written as a function. It could return a flag to
signify that the operation went as it should. An example of a statement as a function is the main-
frame FLLAG. In order to help the 71 parse our functions, we must answer three questions:

° Does it return a number or a string?

® How many parameters are required?

° Are parameters numbers or strings?

The keyword itself tells the parserifit returns a string (if the keyword ends with a "$§") or number
(no "$"). Severalnibs at the beginning of the actual code (before the entry point) signify what type
of parameters are required. In REVLEX the code begins with:

NIBHEX 4

NIBHEX 11

revstr GOSBVL REV$

The NIBHEX pseudo-op tells the Assemblerto place the following hex nibs (up to 16 maximum)
in the file. The first two nibs preceding the actual code designate the minimum and maximum
number of parameters the function will accept. The minimum is obviously "0", maximum "F", so a
function can have between zero andfifteen parameters. In the example, we used NIBHEX 11,

which says that the function will accept a minimum and maximum of 1 parameter.

Types of Parameters
In addition to telling the 71 how many parameters, we can tell it what kind. The nib(s) preceding
the two nibs describing the number of parameters tell the 71 if parameters are strings or numbers.
"8" designates a number, "4"is a string. The mainframe function FLAG can use either one or two
parameters. The code for FLAG looks something like:

NIBHEX 88
NIBHEX 12

FLAG GOSUB PARMCT

The "12" designates that FLAG will accept either one or two parameters. The "88" means that both
parameters are numbers. Let’s create a function which takes a string, but can optionally use a
second parameter of a number:

NIBHEX 8 * the second param (a number)
NIBHEX 4 * the first param (a string)
NIBHEX 12 * we’'ll accept either one or two params

entry

No problem so far, but what do we do with the parameters when we get them, and what happens if
the user supplies a quoted string or mathematical expression or sticks my function in the middle of
a bunch of other functions...

PARSING and DECOMPILING
Or: The Lexical Analyzer to the rescue.

110 Assembly Language The BASIC HP-T71

The Lexical Analyzeris the one responsible for deciphering the users code, making sure parame-
ters and syntax are correct, and turning it into tokens. It searches the Text tables until it finds the
correct keyword; the keyword indexes it into the main table, and from there it finds the execution

code, and looks up the parameters requested. If all goes well, the code is accepted and it eitheris
entered as a line of BASIC or immediately executed. If something is wrong,it issues a rude com-
ment to the user (an error message). Parentheses and hierarchy are its task, a function never
worries about it. Whata relief!

Decompiling
After a successful parse of a keyboard operation, or during BASIC program execution, the 71
gathers up the requested parameters, places them on the math stack, and transfers execution to
the function at the label designated as the entry point by the main table in the LEX file.

Since all functions are interpreted from the innermost parentheses out, all our function will ever
see is complete numbers or strings. Functions can, at times, be supplied with pointers to arrays,
butall of the functions we’ll deal with here will use real values.

Entry Conditions
When the 71 turns things over to our function, several registers reflect the conditions:

Register/Field Description
DO Points to next expression.
Dl Points to top (low memory end) of Math Stack.
C(S) Numberof actual parameters (if variable).
B(B) Function table entry#.

If there are optional parameters, C(15, the sign field) contains the actual quantity. We'll expand
our example from above to see how we will handle the situation with either one or two parameters.
Loading the quantity into P is a fast and memory efficient way to do a 1 nib comparison:

NIBHEX 8
NIBHEX 4
NIBHEX 12

functn P=C 15 load C(S) into P
7P= 2 if P=2 then two params
GOYES param2

paraml

In all other cases we can assume that the proper number and type of parameters specified were
supplied,or it never would have gotten this far (BEEP! ERROR!, without us having even done
anything). Now, the 71 is ours, all qualified, everything in its place, all we have to do is... Wait a
minute! where is everything...

The Math Stack
Up in high memory, hanging upside down,is the Math Stack. Intermediate results are stored there
during function execution. The oldest entry is in higher memory, and grows toward low memory as
items are added, and shrinks again as items are dropped.

Chapter 13 Assembly Language 111

The location of the top (low memory, first item) of the Math Stack is pointed to by MTHSTK, the
bottom of the stack (high memory, end of oldest item on the stack) is pointed to by FORSTK. The
location of the stack changes with the amount of user memory and the number of environments
(suspended up there in limbo). In fact, FORSTK points to the FOR/NEXT Stack (which itself can
grow and shrink), just above it (higher address) in memory.

Format of data on Math Stack
While ostensibly a "math" stack, it contains each type of intermediate result a function can handle.
Notice that all non-array numbers are REAL, there is no speed or memory savings by using
SHORT or INTEGERin BASIC.

Thefirst nib in the item on the Math Stackis the data type code. Usually a system routine is used
to recall data from the stack;they testthis nib to insure the proper data type, then issue an errorif
it doesn’t match the type needed. This first nib represents:

0-9 REAL D COMPLEX SHORT

A INTEGER E COMPLEX REAL

B REAL SHORT F STRING

C REAL ARRAY

Real Numbers
There is no header, but it can be easily seen that the value on the stack is a real number because
the first nib (low memory) is "9" or smaller. 2A.dd 16 to D1 to moveit pastthis item on the stack.
Note that most number-popping routines do not move D1 past the number.

Low Memory High Memory

Exp Mantissa Sign

Complex Numbers
A complex numberis exactly like the format of two simple REAL numbers, but preceded by "E0".
The imaginary part is in lower memory. Add the length of the two numbers plus the "E0", a total of
34 nibs, to D1 to move it pastthis item on the stack.

Low Memory High Memory

Imaginary Part Real Part
Exp Mantissa Sign Exp Mantissa Sign

Strings
Strings begin with "F0", followed by five nibs representing its length (in nibs, not bytes). Beyond
that are nine nibs which refer to the destination of the string and the maximum length allowed, but
both of these values have no meaning for functions and can be ignored, in fact, they may prove un-
reliable. Once it has been determined that a string is there then the important parts are the five
nibs representing string length and the string itself. Add the length ofthe string header (16) plus
the lengthofthe string to D1 to move it past the string.

112 Assembly Language The BASIC HP-71

The actualstring is stored backwards with the beginning in high memory, and its end at the end of
the string header. The System entry REVPOP reverses a string and return its length to A(A), so
this format is nearly transparent. Be sure a string needs reversing, because it will have to again be
reversed when placing the results back on the stack. A non-existent string array will begin with "F8"
and will have zero length, but will still have 16 nibs for the header

Low Memory High Memory

"FO" Len Address MaxLn ...The String

Array Descriptors
Arrays do not get placed on the Math Stack; they may not even fit, so why even try. The address is
the location in RAM ofthe array.

Low Memory High Memory

1 1 1 8 5

t # DIM Lengths Address

t Type of array.

Number of dimensions (1 or 2).

b Option base (0 or 1), if "8" then a STAT array.

Thefirst 4-nibs of DIM Lengths are the second dimension, the second are for the first dimension.
The address pointer points to the array. To calculate data address of the variable, subtract the rel-
ative pointer value from the address ofthe relative pointer. See entry point RECADR.

System Entry Points
The entry points can be thought of as subroutines or ready made functions, used much as in
BASIC. Shifting a registerleft or right can be used for simple multiplication and division, but more
complicated operations require several instructions to accomplish. The Entry Points greatly sim-
plify writing LEX files. Several Entry Points are listed in the back of this book.

There are several important things to look for when deciding to use a System Entry Points: What
doesit require for entry (D0O,D1,P, HEX/DEC, data) and how does it leave the CPU when done. A

major consideration is the number ofstack levels it requires. Remember, functions are restricted
to four levels under most circumstances. Also, how does it handle errors, and control will never

come back if some requirement isn’t met. Be sure when using these subroutines, that they don’t
take more memory to set up registers for than they save by using them. Many routines, such as
those to pop data from the Math Stack, are helpful whether they save memory or not, because they
handle the routine more accurately than we might otherwise.

Vol II of the IDSis a listing of all of the System Entry Points, and contains a listing oftheir re-
quirements. In effectit is a much larger (and even less organized) version of the Entry Pointlist in
the back of this book. Vol Il includes the information in Vol II plus complete listings of the
Operating System (and it costs four times as much as Vol IT). VolIl is better organized and easier
to use. The advantage of having Vol IIl is to check for errors and omissions in the write-ups for the
Entry Points (there are several). For most casual use, the table in this book should be sufficient.

Chapter 13 Assembly Language 113

The SAMPLE LEX File
The four operations in this file demonstrate some common uses of LEX files. These functions
could be written several ways, they are just an example of one method.

REVS$ and CLFLS are untapped mainframe routines, SAMPLEdoes little more than add key-
words to them. CLFLSis a statement which requires no parameters and returns nothing;it is the
only statement we’ll demonstrate. CLFL.Scalls the routine to close all files. This is valuable when
exiting a program which was CALLed, because the files are not automatically closed (as they are
when RUNning a program). This is the same operation that the FORTH word CLOSEALL uses.
This is an example of using a nearly bullet-proof Entry Point, which saves yards of code and weeks
of research.

REVS uses the string on the stack without moving it or altering its header. For that reason it exits
through EXPR. EXPR assumes that DO is in the same condition as when entered, D1 points to the
first nib of the string header on the Math Stack, and the string already has a proper header on it.
REVSis often used as a subroutine within string functions.

HGLS (or HI$ in WorkBook71) calls for a single string parameter then sets the high bit on each
character,then it too exits through EXPR. The method used is to do a logical OR on the high nib
on each character using the C=C!B OP-code and hex "8". This is one case where it is easier to
write the code in Assembly language than it is in BASIC. REV$ and HGLS are shown in BASIC in
the section on BASIC programming for comparison. HGLS$ as listed does not have a bug, but
shows an alternative, and less efficient, method to perform the function. The morehi loop contains
two D1=D1+1 instructions. As you know, a loop which is to be repeated several times should be
written as efficiently as possible; a cleaner method would have D1 decremented by one nib before
entering the loop, then a single D1=D1+2 instruction could have been used. As with BASIC, pro-
grams in Assembly language can be written in several ways.

WTKEYS is an alternative to KEYWAIT$ (whichis in the Finance ROM and several other LEX
files). Unlike KEYWAIT$ and KEY$, WTKEYS$ returns the actual ASCII code for the key
pressed, not the key code. For instance, ENDLINE returns CHR$(13), not "#38", and g-CMDS re-
turns CHRS$(25), not "#150". The advantage ofthis keyword is thatall keys return a single charac-
ter, making it easier to respond to a variety of keystrokes with the use of POS or NUM. WTKEY$
is a modification of a similar, copyrighted, [unction being marked by this author;it is not being
released into the public domain. However, it’s often more convenient to use than KEYWAITS. A
BASIC version of KEYWAITS is demonstrated in the BASIC section.

LEX ’SAMPLE’
ID #5C A scratch ID. DON’T USE FOR DISTRIBUTION!
MSG 0 No message table.

POLL O Ignore polls.

CLOSEA EQU #120E4 Closes ASSIGN#’'s.

NXTSTM EQU #08A48
OUTELA EQU #05303
POP1S EQU #0BD38 Pop a string from math stack.
EXPR EQU #0F23C Return from expression, doesn’t change stack.
FUNCRO EQU #2F89B Scratch buffer for functions.

BF2STK EQU #18663 Move buffer to math stack.

114 Assembly Language The BASIC HP-71

SLEEP EQU

POPBUF EQU

KEYCOD EQU

FNRTN1 EQU

CKSREQ EQU

REVS EQU

CSLCS EQU

CSRCS EQU

ENTRY

CHAR

ENTRY

CHAR

ENTRY

CHAR

ENTRY

CHAR

KEY

TOKEN

KEY

TOKEN

KEY

TOKEN

KEY

TOKEN

ENDTXT

REL(5)

REL(5)

clfls P=

GOSUB

GOSBVL

GOSUB

GOVLNG

decom GOVLNG

par RTNCC

NIBHEX

NIBHEX

hgl SETHEX

GOSUB

GOSBVL

P=

LCHEX

B=C
morehi ?7A=0

GOYES

Di=D1+

Chapter 13

#006C2

#010EE

#1FD22

#0F216

#00721

#1B38E

#1B435

#1B41B

clfls

#D

hgl

#F

rev

#F

vtkey

#F

'CLFLS’

2

*HGLS$’

3

"REVS’

4

"WTKEYS’

5

decom

par

0

saveD1

CLOSEA

getD1

NXTSTM

OUTELA

4

11

saveD1

POP1S

15

8

S

A
hibye

1

Power down, wait for a key.

Pop last key from key buffer.
Look-up table for key code to ASCII.
Return from a function.

Used by WTKEY$ to check KEYBOARD IS.
Reverse string on stack.

Shift C Left 5 nibs circular.

Shift C Right 5 nibs circular.

Closes all open files.

Start with token #2.
Sets high bit on all chars in a string.

Reverse chars in a string (mainframe function).

Wait-for-a-key, return ASCII, not the key code.

* End of the text table *

Point to decompile routine for statement.

Point to parse routine.

* CLFLS - do ASSIGN#n TO * on everything *

Copy DO,D1 to R2 (sub is at end of this file).

Call the mainframe routine.

Restore DO,D1 from R2.

Bye.

Decompile for clfls. Pointed to by REL(5) decom.
Parse for clfls. Pointed to by REL(5) par.
Param is a string.

Minimum and maximum of one parameter.

* HGL$($) Set high bit on all chars.
Save DO & D1 pointers to R2.

Get string stats D1 points at start of string,

A now =string length.

Pointer to S field.

Load constant "8" into S field of B.

Any chars left in string?
no, then exit

else move pointer to hi nib of current char.

Assembly Language 115

C=DAT1

C=C!'B

DAT1=C

A=A-1

A=A-1

D1=D1+

GOTO

hibye GOSUB

GOVLNG

NIBHEX

wtkey SETHEX
GOSUB

nxtkey GOSBVL

GOC

GOSBVL

A=B

A=A+A

D1=(5)

CD1EX

=C+A

CD1EX

C=DATI1

D1=(5)

DAT1=C

exit Di=Di+
P=

LCHEX

DAT1=C

GOSUB

LC(5)
ST=0
GOVLNG

cksreq GOSBVL

GOTO

NIBHEX

NIBHEX
rev GOSBVL

GOVLNG

saveD1 RO=C

CD1EX

D1=C

GOSBVL

CDOEX

DO=C

-
2

u
n
n
n

morehi

getD1

EXPR

00

saveD1

SLEEP
cksreq

POPBUF
A
A
KEYCOD

A

B

FUNCRO

B

2

0

FF

B

getD1

FUNCRO

0

BF2STK

CKSREQ
nxtkey

4

11

REVS

EXPR

CSLCS

116 Assembly Language

Load the nib to S field of C.
Logical OR of B into C.
Restore the nib to string.

Decrement string length counter.

Move to next nib.

Go back for next character.

Restore DO,D1 to beginning of string header,
then exit. bye.

No params so no nib to describe param type.

* WTKEY$ wait for a key, return ASCII.

Save DO,D1 to R2.

Nod off and wait for a keystroke.

Carry set if KEYBOARD IS pressed the key.

Key code is in B(A), (B=B+B bug in assembler).

Move key to A(B), save a nib by using A field.

Look-up ASCII from key code table.

Index by key#

Add this key to key code to offset into list.
Key position back to D1.

Read ASCII character to C(B).

Point D1 to scratch buffer.
Put key in buffer.
Enter here to move anything at FUNCRO then exit.
Just to make sure P=0.

"FF" after key in buffer for end of string char.

Restore pointers from R2.
This is needed by BF2S%.K.

Move this buffer to math stack, exit.

See if KEYBOARD IS pressed a key.

Parameter is a string.

Min and max of one param.

* REV$ same thing used everywhere *

Copy DO,D1 to R2

Uses RO for scratch so it doesn’t trash C.

The BASIC HP-71

R2=C
C=RO
RTN

getD1 RO=C Restore DO and D1 from R2; uses RO for scratch.
C=R2
D0=C
GOSBVL CSRCS5
D1=C
C=RO
RTN

Crashes
Assembly language programming is full of crashes, even when the codeis written properly errors
occur. Lintry points can be entered incorrectly (a common one for this author) or conditionals
could be reversed. D0 and D1 are constantly being changed, so it’s easy to forget to restore them.
Regardless of the reason, the 71 will occasionally crash. Maybe taking withit all of your :PORTs.
Always be sure to back up everything in the computer on Disc or Cards.

The crashes will only happen after Assembly, when testing the file. Unlike common belief, the 71
can’t sense that you are making a mistake in the source file, though it sometimes seemslike it.

Most common mistakes will be caught by the Assembler, which will issue a warning at appropriate
times. At that point you can stop Assembly (press ON, then Y at the prompt), then call your Text
Editor from FORTHto see what was wrong with the line mentioned. If a part of the file is known
to have bugs. you might complete Assembly, then test only those keywords which are completed.

A monitor, listing file, or DISPLLAY IS PRINTERis invaluable to watch the Assembler because

its messages will disappear from the LCD when the next line in the file is read.

Instruction Set
A listing ofthe Assembler Instruction Set is included at the back ofthis book. While all ofthe in-
structions are also listed in the FORTH/Assembler Manual, this listing will probably prove easier
to use because it requireslittle page flipping. Many operations will take one nib less memory when
specifying the A field, this is noted in the nib column. If two values separated by a comma are
listed, the A field version will be one nib shorter; often we use the entire A field ofa register when
we really need only a few nibs, in orderto save this code. For example, A=0 A takes two nibs,
while A=0 X would require three. We've also listed the Pseudo-OPs (that is, instructions for the
assembler), and an example of the bare minimum required for the source file. Field specifiers are:

fs Standsforfield select.

n Means a hex nib.

fsd Means field select fs or d (numberofdigits).

Why is Everything Backward?
In the case of SDATA files, it’s inside out and backwards. BASIC PEEKS$s data from RAM di-
rectly, left to right, or low memory to high. The CPU works in the same way for Assembly lan-

guage. However, when loading from RAM, the lowest addressed nib is loaded to the lowest nib of

Chapter 13 Assembly Language 117

the CPU register,the next nib in the next higher location, and so on. In effect, the data wraps into
the register. The same is true when writing data from the CPU registers to RAM. Whilethis
method of working is often confusing in BASIC, in Assembly languageit is transparent, and can
often be ignored.

High Memory Low Memory

 — 1 T T T T T T T T T T T T T T
S M M M M M M M M M M M X E E

II151413121110 9 8| 7|6 |5|4]3]|2]1 o"
|

E

Only the C and A registers are used for accessing memory. The following codes load data from or
store data to RAM,using D0to point to the lowest nib. The equivalent operations are also
available using D1 as the pointer.

C=DATO0 A Copy 5 nibs to C(A) from location pointed to by DO
A=DATOW Copy 16 nibs to A(W) from location pointed to by DO
DATO=CA Copy C(A) to RAM location pointed to by DO
DATO=A W Copy whole A register to RAM pointed to by DO

The instructions for loading constants work in the same manner. Both of the following will load C
with "HP-71". The first load the hex code, the second uses the ASCII representation. Both are byte
reversed because, again, the 71 reads and writes from low memory to high and from lower nib of
the CPUtowards the higher.

Use the P pointer to designate which nib in the CPU is to receive the first nib.

LCHEX 31372D5048
LCASC ’17-PH’

The RETURN Stack
The stackis referred to in the same way FORTH usesit. The last entry goes on the top of the stack
and the oldestis on (or at least nearer) the bottom. When a RTN in encountered, the newest
address is popped off the top, the others move up one, and, instead of using an arbitrary number,
"00000" is added at the bottom. Then the 71 goes back to the address it just popped off the stack,
and reads the next command.

Each time a new entry is pushed onto the stack (by using a variation of GOSUB), the other seven
entries drop one level to make room [orit. If there already had been eight, then the oldest one
would have been pushed off the bottom ofthe stack never to be seen again.

When the 71 gets to our function there are already as many as three entries on the stack (pending
R'TNs). Imagine there's a REAL number waiting for us on the Math Stack, so we call a subroutine
in our LEX file which itselt the calls the system routine POP1R. Now there are five entries.
POPIRitself calls another routine, which makes six. That routine does a RTN to bring us back to
five, then POPIR RTNs to our subroutine, which bringsit to four levels. Our subroutine finishes
its business and returns it to the main code and our original three levels.

118 Assembly Language The BASIC HP-71

It is important to keep in mind the operation of the stack as subroutines are called, because of the
limit of seven levels, or actually four when using functions. Whenever writing code, you should be
able to ask yourself at any moment "how deepis the stack?"

Remember that every time we pop an address (using RTN) a zero entry is added at the bottom.
There must be an absolute relationship between GOSUBs and RTNs. If a RTN is encountered
when the stack has nothing but zeros then the 71 will return to the addressit finds on the stack,
which is "00000". "00000" is the address of the code to reset the computer. And it will. If nothing
else, that’s enough reason to re-read this section.

There are times when fourlevelsjust aren’t enough. To the rescue come C=RSTK and RSTK=C.
Respectively, they pop the top item offof the stack to the A field of C, or push whateveris in C(A)
onto the top ofthe stack. If a routine is going to require five levels, save one to, for instance, R3:

C=RSTK * pop first return from stack to C(A).
R3=C * copy C to R3 for safe storage.

And, when done...

C=R3 * recall R3 back to C.

RSTK=C * push C(A) on return stack.

Another use of these two codes is to temporarily store a five nib value when it can be assured that
the stack has room. Used carefully, this can save a byte or two, and this operation is faster than
saving it elsewhere. -

GOSUB, GOSUBL, GOSBVL GOTO, GOVLNG |
Unlike BASIC, there are three commands for gosub, and two for goto. The reason is distance.
GOTO and GOSUB are for distances within +2047 or -2048 nibs from the current location.
GOSUBL is for distances within +32767 and -32768 nibs. GOSBVL and GOVLNG are for any-
where within the address range of the computer. The shorter versions save a few clock cycles, and
a nib or two. The Assembler Instruction Set listing in the back of this book includes number of
nibs for each instruction, but for files of under 1K, the short form can be used for subroutines

within the file, and the long form elsewhere. If a jump is greater than allowed, the Assembler will
issue a warning. This tablelists the variations (including conditional jumps) and number of nibs
used to record the jump distance; the instruction itself requires one additional nib.

2 Nibs 3 Nibs 4 Nibs S Nibs
GOC GOSUB GOLONG GOSBVL
GONC GOTO GOSUBL GOVLNG
GOYES

As you can see, there’s memory to be saved by using the shortest jump possible. Conditional jumps
require short jumps. At an average of 4 nibs perline of source code, a conditional jump can’t leap
any farther than about 30 lines of source code. GOTO and GOSUB are suitable any jump within
the average LEX file, while GOVLNG and GOSBVL are used for calls to system entry points.

Chapter 13 Assembly Language 119

Strings From the Math Stack
As discussed earlier, strings live on the Math Stack upside down. At the end of the headeris the
tail end ofthe string. Operations which leave the string shorter can often use the string on the
stack without moving it. Since strings are often too large to fit in the scratch RAM allowed for
functions, the easiest place to work with themis at the opposite end of free memory from the Math
Stack, at AVMEMS. It a numerical result is to be returned, the remains of the string are not im-

portant and will get trampled the next time memory moves.

The two usual methods for getting information are POP1S and REVPOP. POP1S returns A(A)
with the length ofthe string, and D1 pointing to the tail (low memory). If the string needs to be re-
versed then we usually use REVPOP, which is the same as POP1S,exceptit calls REVSfirst.
Either of these entry points will return A(A) with the number of NIBs. Since ASCII characters are
two nibs each, this can be assumed to be an even number.

Assume that we are writing a function which trims just spaces from both ends ofa string. The
string will either be shorter, or remain the same length when we’re done, so there is no concern
about checking for enough memory. First spaces at the back end ofthe string could be removed.
Then we reverse the string, trim spaces from the beginning, then reverse it again and exit. The
same thing could be done by moving the middle of the string to AVMEMS then exit through
BIF2STK, which will move the truncated string back again. A third, and faster way to trim both
leading and trailing spaces, is to lind the first non-space on the front end ofthe string (high mem-
ory), then start at the other end and find the first non-space in that direction. We then shift what’s
left up a byte at a time, exiting through ADHEAD which will put a new string header on it.

Numbers From the Math Stack
Regardless of if the number is REAL, INTEGER, or SHORT,it is always a REAL number on the
Math Stack. POPIN checks the number on the Math Stack then returns the number in A. Tt exits
in decimal mode. The D1 pointeris not changed, you will have to incrementit past the numberif
more data is to be read orif a string is returned. Of course if a numberis returned, then D1 is at
the proper location. This routine exits in decimal mode. Since various routines alter hex/dec modes
often, be sure the proper math mode is in effect. The easiest way to get a hex integer from a float-
ing point numberis to use POPIR (which returns a 12 form number to A), followed by a call to
FLTDH to turn it into hex in A(A). If the number doesn’t round to 0-FFFFF then FLTDH re-
turns with carry set. To recap, these three routines can give us real, floating point numbers, 12
forms, or 5 digit hex.

Temporary Scratch
Several parts of System RAM are reserved for function use. One caution should be made first: If a
location is allocated for functions then a routine that expects to be called from a statement may
use it. For example, CHEDIT, the mainframe character editor, uses FUNCRO0 and FUNCDO,

because input-type routines are nearly always statements.

The System RAM chart lists the buffers which are reserved for functions. Remember, since this

RAM is available for all tunctions, don’t expectit to remain unchanged between uses. This RAM
can be used as one block orsplit up in 5-nib sections (plus one) as needed. The transform buffer is
used during execution of the TRANSFORM keyword. For that reasonit is unavailable for any
parse, decompile or transformation routine, but fine for scratch use by regular functions.

120 Assembly Language The BASIC HP-71

FUNCRO0 16 nibs divided as follows:

F-R0-0 5 nibs

F-RO-1 5 nibs

F-RO-2 5 nibs

F-R0-3 1 nib

FUNCR1 16 nibs divided as follows:

F-R1-0 5 nibs

F-R1-1 5 nibs

F-R1-2 5 nibs

F-R1-3 1 nib

TRFMBF 60 nibs the transform buffer)

Leeway
There has been determined a minimum amount of memory for the 71 to be able to operate. The
computer needs enough memory to be able to at least beep and say "ERR: Insufficient Memory".
That amount has been determined to be 106 bytes, because that is the minimum that it would take
to copy afile to Disc. The TP enginecrs worked it out as follows:

25 bytes For CMMD stack to enter COPY command.
25 bytes To move the tokenized statement to statement buffer.
25 bytes To save COPYfile information on the Save Stack.
31 bytes To issue COPY poll to external device.
106 bytes Total required leeway.

What this means to usis that we may execute any routine which uses all of free memory from
AVMEMSto the top of the Math Stack while a function operates. But, when the function termi-
nates, there must be at least 106 bytes free after the result is on the stack. All of the function re-
turns listed will make sure that leeway is preserved. Remember that most functions return an
equal amount or less than they started with as a result. The only operations which need be con-
cerned with maintaining memory are those which either could return a large string, or which affect
the size of a file in memory (which most functions don’t).

Exiting the Function
When the function has completed its business, either a numerical or string result must be returned
to the stack, and D1 must point to the header. Additionally, DO needs to be restored (if altered) to
the value it had when our function began. BF2STK, EXPR, FNRTNI1, FNRTN2, FNRTN3, and
FNRTN4 are system utilities to return values to the Math Stack. It is the responsibility of the func-
tion to see that the results conform to the proper data type. Numbers with F’s in them and seven
and one half byte strings are sure to cause problems. Be sure to read the requirements for these
routines and then GOVLNG. We’re gone.

Subroutines
The SAMPLE LEX file uses getD1 and saveD1 in most operations. Subroutines are very impor-
tant to saving memory and keeping the number of errors to a minimum. Let’s demonstrate with

Chapter 13 Assembly Language 121

some routines which would be used by a file with several keywords. moveit is a variation on several
mainframe utilities, but was written because the mainframe required the CPU registers to be quite
ditferent from how they were being used in the rest of the keyword. Usually we verify how Entry
Points we’ll call use the CPU registers, and try to use them similarly.

The other subroutine called by moveit is getavm, which places DO at the beginning of free RAM
As with other movable locations, D0 should not contain AVMEMS, but instead the location it

points to. The main use of moveit is to move a string from one location to the end of free RAM so
that it may be manipulated. Usually this would add an "FF" byte to designate the end ofthe string,
but the assumption is that this string might be added to an existing one already at the end of
memory. movblk is an alternate entry point if DO already points to the destination. You might use
moveit to move a large block, then movblk to drop another string in the middle of it. There is no
memory check;if the string pointed to is on the top of the stack then it will still be moved without
worry of overwriting itself. Since it starts at the low memory end, there will always be at least a
string header-worth of space between them.

* move ACA) bytes to (AVMEMS).
* D1 points to the string, no memory check.

AVMEMS EQU #2F594
moveit GOSUB getavm Place DO at (AVMEMS).

movblk 7A=0 A Any more bytes?
RTNYES
C=DAT1 B Move a byte.

DATO=C B
Di1=D1+ 2 Increment pointers.

DO=DO+ 2
A=A-1 A Decrement string length.

A=A-1 A
GOTO movblk

getavm DO=(5) AVMEMS Place DO at the beginning of available RAM.
C=DATO A Read pointer.
DO=C Place it in DO.

RTN

This routine makes sure there is sufficient free memory to create a buffer:

MEMCKL EQU #012A5 Assumes that D1 has been saved because MEMCKL uses D1

MEMERR EQU #0944D if not enough memory then it restores D1, then exits

memck P= 0 will add leeway

GOSBVL MEMCKL

RTNNC No carry= 0K

C=RSTK Pop the pending return, we’re not going back

GOSUB getD1 Restore D1
GOVLNG MEMERR BEEP! Err:Insufficient Memory

122 Assembly Language The BASIC HP-T71

Assembler Bugs
VERS "FTH:1A" of the Forth/Assembler ROM has at least two known bugs, the first of which can
be fatal. When Assembling a file with more than nine keywords, be sure that youfirst use the
FORTH word DECIMALto set the FORTH environment to decimal mode. Also, the code for

B=B+B does not always work correctly. If you have trouble with B=B+B contact HP for the
current FORTHlanguage fix.

LEX CKSUM’ * This file includes the keyword °’CKSUM$’ *

ID #5C *(c) Copyright 1987 Richard E. Harvey Ver:1.0 %
MSG 0 * Does a summation of all of the set bits in a *

POLL O * string of up to 31 characters and returns a *

AVMEMS EQU #2F594 * one char string. *
POP1S EQU #0BD38 * Syntax: X$=CKSUM$(X$) *
STKCHR EQU #18504 x This file demonstrates the slippery sticky bit *

ADHEAD EQU #181B7 * experiment with other ways you can do a bit *
ENTRY cksum$ * summation in 71 Assembler. Hint: Most checksumsx

CHAR #F * use carry instead of the sticky bit. ok

KEY 'CKSUM$’ This is not an allocated keyword name!!!

TOKEN 6 Scratch token number in decimal.

ENDTXT

NIBHEX 4 The parameter required is a string.

NIBHEX 11 A single parameter is required.

cksum$ SETHEX Make sure the machine is in HEX mode.

GOSBVL POP1S Pop the string from the stack.

* we now have: A(A)=string len in nibs, D1 points at end of string, P=0
CD1EX Move D1 past the first character in the string.

C=C+A A add the length of the string

D1=C place the number back in D1

R1=C Save this pointer to R1 to use when we exit.

* if the string is longer than 62 nibs then use just the first 62.
LCHEX 0003E Place hex equivalent of 62 in C(A)
7C<A A if string len is over 62

GOYES undr62 then use 62 (the value of C(B))
C=A B else use the whole string (the value of A(B)).

undr62 D=C B move string length to D(B).

A=0 B zero the checksum counter.

loop 7D=0 B If no string is left then exit
GOYES exit

D1=D1- 2 Decrement the string address by two nibs.

D=D-1 B Decrement the string length counter.

D=D-1 B

C=DAT1 B Read two nibs into C(B).

* calculate the number of 1’s.

P= 8 P is our loop counter, set to 8 for 8 bits.

bit SB=0 clear the sticky bit.

CSRB shift C(W) right one bit.

Chapter 13 Assembly Language 123

7SB=0 is the sticky bit clear?
GOYES clear then ignore this bit.

A=A+1 B else add one to the checksum.

clear P=P-1 decrement the counter.

7P# 0 any more bits left?

GOYES bit go back for more

GOTO loop else exit with P=0 and A incremented by set bits.
exit D1=(5) AVMEMS Get current available memory start.

C=DAT1 A Read current (avmems) to C(A).
D=C A Copy (AVMEMS) to D(A) for STKCHR and ADHEAD.
C=R1 Restore D1 which was saved in Rl when we started.

D1=C
C=A B Copy our checksum byte to C(B).

* Rl=start of string. D(A)=(AVMEMS), Di=points to stack, C(B)=character.
* this routine decrements D1 (the stack pointer) by 2 nibs.

GOSBVL STKCHR 15-35 place the character on the stack.
P= 0 Set the pointer to zero (tho it already is).
ST=0 O Means don’t return from the following routine.

GOVLNG ADHEAD 14-13 add the string header, return to basic.

Lo

124 Assembly Language The BASIC HP-71

Non-obfuscating Programs 14

This chapteris seemingly at odds with much ofthe rest of the book; endorsing form over function,
the difference between deftly pounding forminto raw marble and creating mortar. First, let’s look
at an approach to program planning, then spend a few minutes on the user interface.

BASIC, many argue, encourages plan-as-you-write programming; start on line 10 and continuing,
akin to a novel,to the thrilling conclusion. Then do the re-write until there’s a happy ending. The
happy ending can come a little faster and smoother with planning. Surprisingly, many program-
mers who wouldn’t think of assembling a child’s toy without the instruction manual, begin multi-
hundred line programs without a plan. The longer you spend planning, the less time you’ll need to
spend programming and correcting errors. We start by asking ourselves questions like:

o Whatis the purpose of the program? What are the tasks? Try to state the pro-
gram’s job in a single sentence.

° What data do we need? How will we get the data?

° What will we do with the data? How will we store the data?

o How can we maintain that data in the mostefficient and flexible manner?
Remember, as the project develops, the data requirements may change.

° Who is the user and what user interface is most suitable?

° What are the individual tasks the program will do?

° Have we planned for program maintenance? The program will go through revi-
sions and may be the basis for another program.

Your project may have other considerations like hardware requirements. After answering these
questions, we're ready to attack the project, dividing and conquering. Many programmers next
write an outline or flow chart, others use pseudo-code, which is simply a series of remarks de-
scribing what the code (whenit is finally written) will do. At this point, you might review the origi-
nal questions to insure that they’ve been answered. Then begin to assemble the program, not wor-
rying that modules are missing or incomplete. There are as many program developmentstyles as
there are programmers; once you've developed your own style, programming becomes more
efficient--and restful.

You may want to begin modules within a program with different groups of line numbers; main
input might be on 1000-2000, and subroutines on 8000-9999. It’s generally a good idea to number
lines by 10’s or 100’s so the inevitable changes may be inserted without having to re-number the
program.

0001 - 0999 Initialize

1000 - 1999 Input data
2000 - 4999 Process data
5000 - 7999 Output results
8000 - 9999 Subroutines

While this table is by no means etched in stone,it’s one way to organize a single purpose program.
When you later make changes,it will be easier to find the problem code.

Chapter 14 Non-obfuscating Programs 125

Modular Programming
A modaule is just a segment of code which you often use. We’ll define a program module as any one
of the following:

Subroutines beginning with a label within current program file.

SUB within the current program file.

SUB in a separate program file.

DEF FN user function in the currentfile.

LEX or BIN file.

Call them procedures, atoms, routines, or functions if you will, the logic is the same: Divide the job
into manageable pieces. Many examples in this book, such as the REV sub-program and the REV$
keyword form complete statements and utilities.

Depending on your application, modules within the main program file, or in an external file, may
be preferred. More thanlikely you’ll use a combination of both. Programs for distribution usually
maintain all modules within the same file to simplify use. A computer used for a dedicated pur-
pose, say data analysis,is the ideal home for a separate library program file. Creating a library of
sub-programs is similar to writing new LEX files with the Assembler; the procedures become in-
stantly available for other programs, or easy to customize and add to a program.

For example, you may often need to sort small amounts of data, so you place a bubble sort routine
in a program file:

900 SUB BUBLSORT(E,X(),X$()) ! bubble sort; ignores zero elements.

910 FOR J=1 TO E @ FOR I=E TO J+1 STEP -1 @ IF X$(I>>X$(J) THEN 930

920 T=X(I) Q@ T$=X$(I) @ X(I)=X(J) @ X$(I)=X$(J) @ X(J)=T @ X$(J)=T$

930 NEXT I @ NEXT J @ END SUB

We've written and carefully debugged the module; now, other programs can CALL
BUBLSORT(TotElements,PointerArray,SortStrArray) with little development time and few wor-
ries about bugs. And, this routine ignores the zeroth elementin arrays, so OPTION BASE is
unimportant; it’s often best to leave global machine status as it is in these routines.

To make modular programming easier, we begin each internal module with a label, and only refer-
ence line numbers within the module. In this way, we can re-number a module to makeit fit in the
next program wherever a contiguous group of line numbers allow.

Not all modules are called as subroutines. Your library might contain convenient forms of INPUT
or IMAGEstatements or formulas whichare tedious to write from scratch. With modular pro-
gramming, the last program you wrote becomes the seed for the next. Though one might have been
a game and the next an accounting program, you'll find that most programs share many elements.

Remarks
The REM statement, or the more readable exclamation mark (!), make programs easier to under-
stand and maintain. If memory is at a premium (isn’t it always?), the remarks may be deleted when

126 Non-—obfuscating Programs The BASIC HP-T1

the program is completed, but a spare copy with remarks will simplify later changes. An easy to
use, though very non-standard, type ol remark is the un-numbered line in a BASIC source Text
file. We'll list techniques for using this special type of remark in Chapter 16, "Communicating with
Other Computers."

A method to help keep programs readable while conserving memory is to separate modules in
programs with a REM-line; memory cost is minimal. If you are planning to remove remarks later,
they will be easier to locate if they are whole lines, not tagged on the end of a line of code. Be sure
that no GOTOs or GOSUBs refer to remarked lines or you’ll have to re-write these references
before you can delete these remarks.

110 IF X THEN !
700 ! FOR X=1 TO INF

Variable Lists
As programs grow so does our use of program variables. A written list is invaluable to insure that
X1 is X1 throughout, and doesn’t become X0 some place. The list also helps spot unnecessary vars
or over-DIMmed strings.

Saving Scratch
Consider variables we would use in a spreadsheet program. We need a pointerfor the current col-
umn, current row, cell format and so forth. Since the program does so many difterent things, we
can’t afford to use separate variables for each section. We'll reserve scratch vars for use within the
various modules, and for passing information between them. Simple var names (like A,B,C) use
one byte less each time they are referenced than if they have an optional numeral (like A1,B2,C3),
so we try to use single letter names. In our spreadsheet we might use:

C Temporary column coordinate.

R Temporary row coordinate.

L Temporary loop counter.

X General purpose scratch.

Designating these variables as scratch means that they may be used by any subroutine as local
variables because they can generally be assumed to contain nothing important or "trash." Scratch
vars also are used to pass information between modules; we pass the coordinates in C&R, the sub-

routine doesits business, then returns the answerin, perhaps, X. Scratch vars conserve memory
(by reusing), and guarantee that important variables aren’t accidentally trampled.

Regardless of the program, you might use the same names for various classes of use. This will
make the program easier to read without having to constantly refer to the variable list. For
instance, the author often uses Q and Q$ for inputs and A and A$ for results, L for loop counter,
and X,Y,Z for scratch. Variable names I (the letter eye) and O (the letter oh) look similar to 1
(one) and 0 (zero) on many printers, and are best avoided, though many programmers use I to

represent index oriteration.

Chapter 14 Non-obfuscating Programs 127

User Friendly Programming
We've been talking about programs from a programmers point of view, now it’s the users turn.
The objective is to get the job done and provide a usable tool, not to show how clever we are. The
most complex program often is the easiest to use; it places few restrictions on the user. Here are a
few common courtesies.

° Leave modes alone or restore them. If your program alters key files,flags, FIX,
OPTION BASE,startup sequence, or other globalsetting, restore them when
your program ends.

° Don’t make the users run their machine your way. Begin your program with a
SUB statement and leave it open to custom configuration.

® Let the user decide file names and locations. Let the user use files on Cassette,

even if testing proves that time or media wear are problems; technology moves
on, and that Cassette may really be a RAM Disc.

® Minimize hardware requirements. Use error traps to insure that the program
will run even without the HP-IL. Module.

° Conserve memory to speed up program loading, allocation, and data manipula-
tion. If applicable, offer small and large memory versions.

o Try to support a monitor, but don’t require one.

° Only beep if you have to. Flashing lights and strange noises are strictly from the
bad science fiction movies of the 50’s. The computeris a tool; the last thing the
average user wants is a nagging machine.

° Expect the worst and plan forit. ‘Things happen. People press the wrong keys,
the loop may be configured wrongor batteries may die.

° If a state is toggled and the user knows the current state, then just toggle; Y/N
is annoying except as a confirmation. An otherwise friendly HP-75 Spread-
sheet program asks it you'd like video updating enabled or disabled; obviously,
one of those states is currently active, and the user is undoubtedlytrying to
change to the other or he wouldn’t be in that menu.

° Ask the user for confirmation on major decisions. "erase everything:Y/N".

° If something is going to take a long time, keep the user entertained so that he
doesn’t think the machine has died.

° Anticipate execution time. Plan to process data on-the-fly or wait until after all
inputs: Spread outthe lulls, or give the user a coffee break.

° Be helptul. Offer default inputs and try to look-up the data for the user. When
practical, use mnemonics for options.

° Be consistent. If you are using a command line or a menu "userinterface,"
maintain it throughout the program.

Menus and Command Lines
The BASIC language is a command driven program; you're presented with a blank line and a
flashing cursor, and you’re expected to know what to do with it. It’s worth the effort to learn, so
you've read the owner’s manuals, this book, and other books, magazines, and manuals on the
subject. Now you can type complex commands and the 71 only occasionally gives you a bad time

128 Non-obfuscating Programs The BASIC HP-71

about them. Many programs work with a command line; one Text Editor enters "command level"
when you press ATTN, then waits for you to type a command. The advantage ofthis system is that
you can accomplish several things in a long line of abbreviated command names, parameters, and
such; merging files or search & replace are only a few cryptic commands away. Providing that you
can remember all of the commands.

The antithesis is a Text Editor which offers a menu of available options whenever you press the
ATTN key. You then press a single key representing a mnemonic of available options. The program
immediately carries out the task, or perhaps falls into a second menu level. File utilities could, for
example, be in the second level deep. This is an casy way to remember what to do in a multi-level
program, one with, for instance, edit and command modes.

A single level program, like the Finance ROM,is an ideal example of a menu driven program, en-
ter commands assigned to keys and labeled with a keyboard overlay. When the task is completed,
the menu returns.

An easy to use program is preferable to a fantastic manual.

Lo

Chapter 14 Non—obfuscating Programs 129

Accessories 15

First there was the calculator; only a few ROMs and single density memory modules were avail-
able. With technological (or marketing) progress, larger memory modules, new ROMs, and the
Cassette drive showed up; every year or two, a new generation. The author bought a Surveying
ROM for the HP-41 a few years ago; the only surveying I've ever done was a philosophyclass in
college. A coined term for this phcnomenon is "The Barbie Doll Syndrome;" what you have is
nearly as important as what you're going to get. There is a point at which we should be saying
"What do I need to get the job done?"

Data Storage
The 71 data storage picture has changed in the year and a halfsince the first version ofthis book
was released: RAM is less than half the cost, though a lot of RAM still costs more than a Card
Reader, Cassette or Disc Drive. Unless you use your 71 justas a calculator or only run ROM pro-
grams, you will need some variety of media for archival storage. In practical terms, the primary jus-
tification for investing in over perhaps 64K is if you can’t carry a Disc or Cassette because of
weight or damage considerations, and you need to carry several programs or a large data base.
Since needs expand to fill available RAM, how much memory you need is a individual considera-
tion. The more memory you have, the more personal and portable the 71 becomes. And unlike
HP-IL devices,it’s in the machine, not dangling from wires. Lets compare the cost of storing 1K
on various types of media. These are approximate list prices as of January, 1988.

per K List Device

18.75 75.00 4K RAM Module.
5.00 160.00 32K Front port.
4.60 295.00 64K Card Reader port or front port.
4.12 395.00 96K Card Readerport.
3.87 495.00 128K Card Readerport.
55 70 Magnetic Card.
.08 9.50 Casseltte.
01 3 1/2 inch Disc.

Each of these alternatives have their advantages. If media cost were the only concern, everyone
would use a Disc drive, and nobody would use a 4K front port module. The tradeoffs are in cost of
hardware, portability, capacity, reliability, ease of use and speed; each type of storage excels in one
or more of these criteria. It’s been said that there is no suchthing as too much memory; that can
be easily defended when we are using a large data base or a carefully crafted mathematical model.
The otherside of the coin is that we may become lackadaisical about backing upfiles. Thefirst
version of this book was written with a standard 17.5K HP-71, as was the RAM version of

WorkBook71; obviously a disc drive was more important than monster-memory.

How Much RAM Can I Add?
Everything within the 71 shares the same 512K linear address space. The Operating System,
HP-IL. module, System RAM, and an area reserved in high-memory used during configuration,
account for less than 100K. Therelore, about 400K is the addressable limit for add-on RAM and

130 Accessories The BASIC HP-T71

ROM.If you were to manage to connect more than 400K worth of "things" (ok, devices), the 71
would only recognize the first 512K.

Each ofthe six ports (including PORT 0) supports up to 16 devices, inviting RAM-cram. The au-
thor has used a 71 with 256K wired internally, with 128K in ROM modules in the front ports, for a

total of 464K of RAM/ROM.It a 128K RAM module had been added in the Card Readerport,
the 71 wouldn’t have been able to find it; it would have exceeded the address space.

A 256K 71 takes little extra battery power and doesn’t degrade performance for most uses. Delet-
ing files in the middle of the file chain or inserting data in a file or gigantic array can take a minute
or more. Building a string 100,000 characters long requires the 71 to have 200,000 bytes available
to later use the string. This is because most operations will require the string to be copied onto the
Math Stack for use (see Chapter 13, "Assembly language," for discussion of the Math Stack). A
string array requires, at most,a single clement to be on the stack for most operations. When
working with large amounts of data, it’s generally faster to use an array orfixed-size Data file than
scalar variables or a Textfile. This is because, in arrays and Datafiles, the memory has already
been allocated, an there is less data movement.

RAM Modules
Currently, RAM is available in 4K, 32K and 64K front port modules, 32-128K Card Reader port
modules, and 128-512K RAM Discs. Front port modules limit the number of ROM modules you
may use. A great advantage of using any RAM module is to port-out blocks to keep access fast and
CAT ALLuncluttered. Ported RAM isless susceptible (though not totally immune) to loss of
data in a crash than main RAM. Remember, it you port-out your RAM modules, it will generally
be in 32K segments; in this case a 4K RAM module may be a viable choice.

Third parties (and some hotshot users) sometimes wire modules inside of their 71s, to keep the
front ports free for ROMs. Because space is limited, the first module will usually fit easily, though
additional modules may require removing an internal RAM module. These mongerings will obvi-
ously void the warranty and can usually be avoided by using RAM Discs or port five modules.

EPROMs
Like ROM modules, Erasable Programmable Read-Only Memory (EPROMSs) modules, available
in 32K and 64K, contain permanent programs and data, and are virtually immune to erasure.
However, EPROMSs may be erased by a concentrated dose of ultraviolet light, then re-
programmed with an EPROM Burner. Programming requires expensive equipment, so most are
done by programming services. When programs and data will not likely change, or the 71 will be
used by "casual" (i.e. not 71 enthusiasts) users, not familiar with the gubbins inside the 71,
EPROMs provide the most reliable storage. PROMs are similar, but are not erasable, primarily
because they don’t have the little window. Though suitable tor one-time use only, they are less
expensive than EPROMSsand are better suited for commercially distributed software in volume.

Card Reader
The card readeris a practical investment and a viable trade off compared to a lot of memory. The
per kilobyte cost is high, but the initial outlay is reasonable, not even requiring the HP-IL module.
Cards come pre-formatted with a single 650 byte file on each of its two tracks, and cannot be re-

Chapter 15 Accessories 131

formatted, but can be rewritten as needed. A file can extend to any number oftracks, and record-

ing multiple tracks is as easy as single tracks.

The author has used these magnetic cards with a similar card reader (in the HP-75) for over four
years, recording several hundred cards each month; the plastic bezel on the edge of the card
readeris worn shiny from the passage of cards. In that time the card reader has neverfailed and
only one track has lost data.

New cards are the most likely to fail, and usually the first time they are used. If a card worked the
first time, it’s probably safe to assumeit that will continue to do so. Data is rarely lost because the
card will fail when trying to record on it. A very unofficial (and unscientific) survey has found that
one card in 350 will have one bad track, and the quality has continued to improve as time goes by.
Some precautions are always necessary: Don’t store cards near your magnet collection, and if the
card won’t read, wipe it off by pulling it through a hole in a clean t-shirt.

HP-IL Mass Storage
File handling on the 71 was designed with mass storage in mind. The HP-IL module and a Disc
drive could be installed and used without reading any of the manuals. COPY and INITIALIZE are
the only commands many users will ever need. The 71’s efficient use of memory allows a single
drive to provide as much (if not more) utility than larger computers with two or more drives. The
drives currently available are the Hewlett-Packard 9114B 3 1/2", HP82161A Cassette drive, CMT
RAM Disc, and the IBM PC.

HP’s Disc format is different from most others. While HP series 40, 70, and 80 machines can often

read the same disc, Apple, IBM (including the Vectra, HP-110 Portable and Portable Plus) and
most other Disk formats will not be readable by the 71. File exchange with non-HP machines is
usually done through Modem or by directly connecting the machines together with an HP-IL/RS-
232C interface. These drives are usually used forstorage for 71files, not for sharing with other
machines.

3 1/2 Disc Drive
The HP 9114B Disc drive offers fast, reliable storage of programs and data. Even the most indus-
trious pack-rat among us would tire before filling a single 9114 Disc; the average library of pro-
grams is unlikely to fill the over 600K capacity of a single Disc. More than likely it’s under 100K,
hardly enough to make the Disc drive break out in a sweat. Physically the 9114 is a five and one
half pound brick, which is more at home in the office than the field. It averages five to ten times as
tast as the Casseltte drive. The drive averages 6K per second transfer rate; the full memory of the
71 could be exchanged in three seconds. The battery runs for about 4 hours of normal use or 40
minutes of continuous use (as with copying an entire medium). Lest the 9114 be considered just
another accessory, considerthatit has 128K bytes of ROM and 16K bytes of RAM.

Early 9114A’s had some design problems wiich have been corrected to large degree in the 9114B.
The two main hurdles were that the statement PACKDIR didn’t work correctly, and battery con-
sumption was excessive. A new EPROM is available from HP to upgrade these older machines (as
of this writing it is Part #09114-15516) and may be purchased from the Corporate Parts Center.
Installation requires a TORX T-9 screw driver and a static free environment and is probably best

132 Accessories The BASIC HP-71

left to technicians. The 9114B has been re-engineered for greater battery conservation and has
more blatant low battery warnings.

The standard 4-Ah, 6-volt Lead Acid battery pack may be left charging withoutfear of ruining it.
In fact,it works best at a duty cycle ofless than 30% of capacity. Continual use, such as duplicating
several discs, may discharge the battery faster than the standard charger can recharge it. A light
flashes when the battery is getting low, though this is usually not seen until the drive shuts down
and refuses to work at all. Many Disc drive users carry a spare battery pack, and third party com-
panies have developed battery eliminators for desktop use. A large external battery, say 10 Ah, can
keep the 9114 alive for extended ficld use, though it could take three days to recharge when you
get home.

Several drives may be stacked without interference. A monitor would seem ideal to place on the
broad flat top, though don’t, the 9114 isn’t shielded forit. The ThinkJet printer won’t interfere,
though be cautious about other devices.

Disc Media
HP wasthe first major company to use these sturdy and reliable 3 1/2" discs, and the industry has
followed their lead. Double sided 3 1/2 inch Discs are becoming a standard, fast replacing 5 1/4"
Discs on desktop machines, and are much easier to find than magnetic cards or cassettes.

The drive is designed to work with only double side certified Discs. HP Discs have a life in excess
of 1,000,000 revolutions; at 600 RPM that is at least 27 hours of continuous use, and normal access

is only a few seconds. Open the shutter on a single sided Disc and it will look just like a double
sided Disc; the difference is that the second side is not warranted to be any good at all. Perhaps the
second side failed a production test or was simply not even finished properly or tested. In fact, a
single sided disc can often be formatted and used as double sided, thus saving about a dollar and a
half. However, lurking on that side may be head-eating rough spots which probably will fail even-
tually, usually making it so that the drive can’t read either side. A rough spot smaller than can be
seen may affect the drive. Smoke particles lower the signal strength to 15% of normal amplitude;
imagine what an inexpensive Disc will do.

A more serious problem with using single sided Discs is head wear. Since both heads are in contact
even if only one side is being read, the top head is doing a sand dance whenever the Disc is in the
drive. HP suggests reading (not writing) single sided Discs only, and immediately removing them
when done.

Disc Drive Maintenance
Disc recording heads usually won’t need cleaning until after many years of use. The minor contact
the heads have with the Disc surface is enough to keep them free of debris. The only time a
recording head should ever be cleaned isif it has been force fed a dirty Disc. HP sells a Disc for
head cleaning.

1f you Drop your 9114 Drive
The manual suggests thatif the drive is dropped more than 5 inches the heads will immediately be
destroyed. What usually happens is that the top head comes to rest on the Disc, and,if you pull the
Disc out of the drive at this time the heads will be pulled out of alignment. If you drop the drive,

Chapter 15 Accessories 133

the first thing to do is push the Disc release button to raise the heads. Do this even if the Disc (or
plastic/cardboard shipping protector) is partially ejected or there was no Disc in the drive. If you
pull out the Disc before pushing the release button you will pull the heads out of alignment. In
fact, it is a good idea to always push this button whenever the 9114 has been carried around. Using
the shipping Disc is also an inexpensive insurance policy.

HP 82161A Cassette Drive
Whileit is a cassette drive, it acts like a Disc drive, with random data storage and retrieval, though
speed which can’t keep up with a steady hand and a card reader. The 82161 Cassette drive is a mix-
ture of good portability, relatively long battery life (three hours of continuous use), reliability (it
has been in use since 1981) and reasonable capacity (128K). The cassette drive will put up with
fairly hostile environments and work reliably while bouncing around in a car or airplane. A
Cassette running 30 i.p.s. searching for a tile is much like the scream of a dentists drill.

Cassettes do not have the life expectancy of Discs. A minimum of 500 accesses perfile can be ex-
pected, though a tape file can usually be read reliably at least 1500 times. Re-wind tapes before
removing them fromthe drive, and be sure to take up any slack (insert a pencil in the hub and
turn) before inserting a tape into the drive, to minimize stress when the drive motor engages.

Cassette Drive Maintenance
Dirt is the main enemy ofcassettes, making Cassettes unreadable long before their time is up.
Keeping the drive head clean will greatly increase tape and drive life. The tape stretches whenever
it is used, until one day either too muchof the magnetic surface as flaked off, orit has stretched to
the point of being unreadable. Keep the Cassette drive away from Monitors.

The Cassette drive uses Nickel-Cadmium batteries which have considerably different characteris-
tics than the Lead-Acid battery pack of the HP-9114 Disc drive. While opinions differ, most peo-
ple suggest using the Cassette on battery until the battery light has been on for some time (though
before it starts acting erratically), then plug it in and recharge it for the full 14-16 hour period.
Continual short charge-discharge cycles may not necessarily shorten the batteries life, though it
will, in time, limit the time the drive will run on a single charge,asis the case with most Nickel-
Cadmium powered devices. Placing the power switch to ON instead of STANDBY will reduce
power consumption considerably.

The small plastic washer used to hold the spindle (which looks like a tiny washing machine agita-
tor) to the metal shafts may, with time and heavy use, work its way off of older units, leaving the
drive useless. Usually the spring, spindle and washer can be slipped back on without necessitating a
repair charge. HP Repair Service in Corvallis Oregon will often supply spare washers without
charge if requested. A washer can be taped inside of the battery compartment doorfor that rare
need.

RAM Discs
Living out on the loop and disguised as a Cassette drive, the latest new twist is the RAM Disc. The
RAM Disc is not a new concept; basically, it’s a covey of RAM chips and a 9-volt battery in a box
slightly smallcr than the 71. For the combat zone oflife, away from battery chargers, a RAM Disc
providesreliable off-line storage. Working completely in silicon, no motors or magnetic media,
these are often the fastest HP-IL based storage. As ofthis writing, the HP Disc drive supports a

134 Accessories The BASIC HP-T71

faster transferrate, though the current RAM Disc does not have the start-up lag, making speed
comparisons a toss up. Remember, they are ofa finite size, so you will most likely also need
another form of archival storage.

Printers
The ThinkJet printer has just about taken over the 71 printer market. It’s strong, silent and runs
for a long time on batteries. In February of 1988, HP announced improved ThinkJet print quality
on regular bond paper. While some other brands of printers have more features or provide better
print quality, the difticulty of connecting them dissuades most people from using them.

I you decide to use another brand ofprinter, be sure that it has the correct interface. The two
standard printer interfaces are Parallel (Centronics) and Scrial (RS-232C). In neither case will the
71 automatically recognize the device as a printer. And some programs, such as the Finance ROM,
refuse to recognize non-HP printers. HP printer codes are quite different than, say Epson’s, so
programs using alternate print styles or graphics may not run on other printers.

The second consideration is connecting the printer. There are a number of HP-IL to RS-232
converters available, making it a case of wading through manuals and plugging the devices to-
gether. As of this writing, connecting the 71 to parallel printers requires an understanding of the
processes at work and a parallel converter such as the HP82166A or PAC Screen Video interface.
It you need to use a printer other than the ThinkJet, RS-232 will be somewhat easier to get
started with than parallel. We'll cover RS-232 in greater detail in Chapter 16, "Communicating
with Other Computers."

Display Devices
Most programs are not written especially for use with a monitor, butall programs will be easier to
use. The HP 92198Ainterface (manufactured by Mountain Computer) provides either 40 or 80
columns, and will wraptext to the next line when it exceeds that width. The PAC Screen is an 80-
column device which also supports graphics and can send those graphics to a parallel printer. A
monitor can bevery helpful for writing programs, or testing how a program will format data with-
out having to print the data. When used with a monitor, the HP-71 becomes equalto or superior to
a desk top computer.

Terminals
Alone, the 71 is a fine handheld, a terminal provides a display and larger keyboard. Since most
non-1P terminals use different display control codes, some compatibility problems will be found.
The usual problem will be when lines are longer than 80 columns or a program tries to do format-
ted display. Most compatibility problems can be avoided by using a terminal or computer acting as
a terminalfor the keyboard, and a Video interface for the display. Adapting the 71 to a terminal or
other computeris discussed in Chapter 16, "Communicating with Other Computers."

Other HP-IL Devices
This is a partial list of HP-IL devices; notall are available at retail stores. There are other third-
party devices not listed available.

Chapter 15 Accessories 135

Part Number

HP 1630A/D/G

HP 2225B

HP 2671A/G

HP 3421A
HP 3468A

HP 45643A

HP 4945A

HP 5006A

HP 7470A

HP 82160

HP 821601A

HP 82162A

HP 82163A/B

HP 82164A

HP 82165A

HP 82166A

HP 82166C

HP 82168A

HP 82169A

HP 82402

HP 82905B

HP 82938A

HP 82973A

HP 9114A

HP 9114B

HP 92198A

ADCT71A

CMT RAM Disc

HP-ILL A/D

Modem 300 Plus

PAC-Screen

RS-232/HP-IL
#111
#130
#200
#210
SB10161A
SB10162A

Lol

136 Accessories

Description

Logic Analyzer.
ThinkJet Printer.
Alphanumeric/Graphics Thermal Printer 8.5" paper.
Data Acquisition/Control Unit.
Digital Multi-Meter.
HP-150 Interface.
Transmission Impairment Measuring Set (opt 103).
Signature Analyzer (opt 030).
Graphics Plotter (opt 003) 2 color, 8.5 x 11 paper.
HP-41 HP-IL. Interface.
Digital Cassctte Drive.
Thermal Printer/Plotter 2 1/4" paper.
32 Column Video Interface (discontinued).
RS-232C Interface.
GPIO Interface.
Interface Kit (discontinued).
Interface Converter Kit.
Acoustic Coupler. 300 baud, battery powered.
HP-IB Interface.
Dual HP-IL Adapter (for HP-71 only).
Impact Printer. Similar to Epson MX-80 (discontinued).
Series 80 Interface.
IBM PC Interface.
Single 3 1/2" Disc Drive (discontinued).
Single 3 1/2" Disc Drive.
Mountain Computer 80 column Video Interface.
Interface Instruments Analog to digital converter.
128-512K RAM Disc; optional RS-232.
Ocean Scientific A/D Interface.
Direct Connect modem&Bar Code Reader. Firmware.
80-col/graphics Video Intrfc with parallel printer port
and mouse port by PAC Hardware GMBH (Germany).

Battery powered RS-232. Firmware Specialists.
HP-IL Repeater. Interloop.
HP-IL Twinax Terminator. Interloop.
HP-IL Step Motor Driver. Interloop.
HP-IL IO Interface. Interloop.
Single Steinmetz&Brown 5 1/4" Disc Drive(discontinued)
Dual Steinmetz&Brown 5 1/4" Disc Drive (discontinued)

The BASIC HP-71

Communicating with Other Computers 16

There are times when you may want to connect your 71 to something other than the standard HP
offering of accessories which plug directly into the HP-IL Interface. Most often these devices will
be modems (telephone hookups), printers, terminals (used as a keyboard and display for the 71),
BSR controllers (have your 71 turn on lights or water the garden), other computers (to share in-
formation) or lab equipment (so it can check if the plants need watering). RS-232C is called serial
because datais transferred using a single set of wires, one bit at a time.

HP-IB,also known as IEEE-488,is often used for controller applications, and is usually expensive
to use. HP-1B cables for example can cost ten times as much as HP-IL cables. HP-IB can be
thought of as the big brother of HP-IL. We also have Parallel (also known as Centronics after the
printer company whostandardized on it). The parallel interface is principally used for printers.
Much of the world accepts RS-232C, so we'll introduce a few applications.

External Keyboards
The 71 can use an external keyboard to aid in entering long programs. One method of using a key-
board is to have the 71 designated as a device (CONTROL OFF) and have the controller place
the 71 in REMOTE mode (the 71 can’t make itself REMOTE). The controller then sends com-
plete lines of data (such as program lines) which the 71 will accept without displaying them unless
there is a syntax error. This can be done using an HP-75 as the controller.In fact, if the 75 desig-
nates the 71 as the printer and PLISTS a program, the 71 will try to enter each line as a program
line. This is all well and good if you have a 75, but a more elegant solution is actually easier.

A LEX file called KEYBOARD is available in the FORTH/Assembler ROM,from the Users

Library (now Solve and Integrate of Corvallis) as LEX file #03194-71-5, and with the HPILLINK
program for the IBM PC. It adds the keyword KEYBOARD IS which operates like
PRINTER IS, and ESCAPE, which traps escape sequences sent out by the external keyboard,
and turns them into keystrokes the 71 can understand. With this LEX file, any device which you
can connect to the 71 and does not operate as a controller, can be a supplementary keyboard,
without affecting how the 71’s own keyboard operates. If you don’t own the FORTH/Assembler
ROM,the KEYBOARD LEX file must be in a higher numbered port than the HP-IL module;
the LLEX file doesn’t operate correctly in main RAM. This means that you must purchase a RAM
module and FREE PORT it to hold the LEX file.

The 71 does not go to low powerstate when waiting for keystrokes when an accessory keyboard is
active, so it is usually best to have a wall plug handy. The device can turn the 71 on by "pressing"
the ON key if flag -21 is set. Thisis the flag which disables the 71 from automatically powering down
devices when it turns off, so be sure to clear it when not using a keyboard.

The two examples below use the KEYBOARD LEX file. The first uses a NEC PC-8201A as the
keyboard, both use the RS-232 at the default 9600 Baud rate. The second example uses an inex-
pensive Zenith terminal. This is done for simplicity, but also because slow transmission speeds
cause a delay in response to keystrokes. The 71 has a built-in buffer for keys which have been
pressed, but the 71 has been too busy to notice them. What often happensif you type very fast is
that the keys will get bogged down in the RS-232, and maystill be processed after a DISP state-
ment. This wouldn’t happen normally because the 71 empties the key buffer during DISP.

Chapter 16 Communicating with Other Computers 137

A Computer as a Keyboard
The advantages of using a NEC PC-8201A, Radio Shack Model 100 or Olivetti M-10 as a terminal
are many: They have reasonable Text Editors, built-in communications programs, and offer us ex-
posure to Microsoft BASIC. These machines have been superseded by more advanced (and
expensive) models with larger displays and better software, but we'll concentrate on the less
expensive models.

The program below was written for use with the NEC PC-8201A and may require modification to
run on the Radio Shack or Olivetti. Since it is written in Microsoft Basic,it should also be possible
to modify the programto run on other machines which use that dialect, presuming you know how
the cursor keys and RS-232 port are handled. The program reads keystrokes individually and maps
themto escape sequences il they are below ASCI 32. The 71 traps the escape sequences and turns
them back into 71 keystrokes. If we had used TELCOM,the cursor keys would send their
keycodes, not the keymap the 71 wants.

Our sample program adds some new editing features to the 71. The [TAB] key does 6 cursor rights
to aid in moving across the screen. The [ESC] key works as ATTN or ON. [CTL.] [UP ARROW]
and [CTL] [DN ARROW] scroll a display device one line up or down; helpful for looking at a
line whenit has scrolled off the display, though it does notalter whatis on the LCD so be aware
that the monitor and [.CD may not display the same thing. [INS] works like I/R. BS is the same as
f-BACK. [DEL] works like -CHAR,[|] (the vertical bar key) works the same as g-CMDS. [\] (Back
slash) adds a clear key which erasesthe current line from the display. The function keys are not
displayed, but they still operate and may be used and reassigned as desired; for instance,[f-5]
enters "Run". The cut and paste buffer is not altered;if you press [PAST] the entire contents of
that buffer will be sent to the 71.

The other keyboard characters work as on the 71, however, remember that any key which does not
have a counterpart on the 71 will be ignored. The £-LC key on the 71 inverts the way the 71 inter-
prets case, so that if you are set to lower case on the 71, uppercase characters from the NEC will
be turned into lowercase, and vice versa. The program runs over 40 words per minute. In fact,
there are some delays built in because of the problem of repeating keysall being interpreted. An
alternative way to write the program would be to allow only one key pressed at a time, butthis
would slow it needlessly. Without the delays you could easily have over 50 Up Arrow keys waiting
in the RS-232 buffer when you inadvertentl; left your finger on the key. With the delay, the most
you could get is about 5 keys. Line 800 of NECKBD sets the NEC for 9600 baud. This program
assigns arbitrary escape codes and some thoroughly non-standard key assignments; you may
change themif you’d like to traditional escape codes. The Zenith Terminal program uses standard
escape sequences.

5 ! KBD program for the HP-71 using NEC PC-8201A:

10 RESTORE IO @ CONTROL ON @ REMOTE

20 OUTPUT :RS232;"SEO;SE3;" @ LOCAL @ KEYBOARD IS :RS5232

30 RESET ESCAPE @ ESCAPE "!",43 @ ESCAPE "“/%,k47
40 ESCAPE "0",48 @ ESCAPE "2",50

138 Communicating with Other Computers The BASIC HP-71

50 ESCAPE "3",51 @ ESCAPE "g",103
60 ESCAPE "i",105 @ ESCAPE CHR$(150),150
70 ESCAPE CHR$(169),159 @ ESCAPE CHR$(160),160
80 ESCAPE "&",38 @ ESCAPE CHR$(162),162

5 REM "NECKBD" HP-71 KEYBOARD for the NEC PC-8201A
10 E$=CHR$(27) : PRINT E$+"U" : CLS : PRINT
100 PRINT " [ESC] = ATTIN (1] = CMMD
200 PRINT " [INS] = I/R [\] = CLR
400 PRINT : PRINT "[STOP] , [SHIFT]+[f.5] to exit";
800 OPEN "COM:8N81XN" FOR OUTPUT AS #1
6010 K$=INKEY$: IF K$="" THEN 6010
6020 K=ASC(K$) : IF K<32 THEN 7000
6025 IF K=127 THEN K$=E$+"P" ’S-del
6026 IF K= 92 THEN K$=E$+CHRE(159)+E$+"J" * \ (backslash)
6027 IF K=124 THEN K$=E$+CHR$(150) * | (vertical bar) cmd
6030 PRINT#1,K$; : GOTO 6010
7000 IF K= 13 THEN K$=E$+"&" rtn Waste time by falling
7010 IF K= 29 THEN K$=E$+"/" * left through the rest of
7020 IF K= 30 THEN K$=E$+"2":GOTO 7500 ' up the conditionals.

7030 IF K= 31 THEN K$=E$+"3":GOTO 7500 ’ down
7040 IF K= 28 THEN K$=E$+"0" ’ right
7050 IF K= 9 THEN K$=E$+"0"+E$+"0"+ES+"0"+ES+"0"+ES+"0"+ES$+"0" °’ tab

7060 IF K= 18 THEN K$=E$+"i" ' ins

7070 IF K= 1 THEN K$=E$+CHR$(159) * Shift-left
7080 IF K= 6 THEN K$=E$+CHR$(160) ' Shift-right, ctl-right

7090 IF K= 26 THEN K$=E$+"T" * ctl-down
7100 IF K= 20 THEN K$=E$+CHR$(162) > Shift-up
7110 IF K= 23 THEN K$=E$+"S" ' ctl-up

7120 IF K= 2 THEN K$=E$+CHR$(163) > Shift-down
7130 IF K= 8 THEN K$=E$+"g" ’ back arrow
7140 IF K= 27 THEN K$=E$+"!" '’ esc
7200 GOTO 6030
7500 PRINT#1,K$; : FOR K=1 TO 450 : NEXT K : GOTO 6010 ' delay loop

A Terminal as a Keyboard
The KEYBOARD LEX file is as easy to use with a terminal as with computer, though inexpensive
terminals have few special keys to use for the 71’s special keystrokes. We have mapped the [QUIT]
key (escape+CHR$(124)) to ATTN and [HELP] (escape+chr$(126)) to g-CMDS.If your terminal
has other dedicated keys, they may be used for I/R, ~CHAR and others.

10 RESTORE IO @ CONTROL ON @ REMOTE

20 OUTPUT :RS232 ; "SEO;SE3;" @ LOCAL @ KEYBOARD IS :RS232

30 RESET ESCAPE @ ESCAPE CHR$(124),43 @ ESCAPE CHR$(126),150

40 ESCAPE "A",50 @ ESCAPE "B",51

Chapter 16 Communicating with Other Computers 139

50 ESCAPE "C",48 @ ESCAPE "D", 47
60 ESCAPE "S",162 @ ESCAPE "T",b163
70 ESCAPE "“U",160 @ ESCAPE "Vv*,6159

Exchanging Files
Since we’re using an external keyboard at times, why not exchange Text files with the other
computer? The following program, in conjunction with the TELCOM program in the NEC and
the NECTALK program below, allow fairly easy exchange. Use the built-in TELCOM program to
receive files and NECTALK to send files. When transferring files to the 71, the program will dis-
play the length of each line and will end automatically. When transferring files to the NEC in
TELCOM mode, watchthe file asit is displayed; the 71 will beep when it is done, and a second or
two later the last line of that file will be displayed on the NEC. Atthat point, press [SHIFT] [£.5]
on the NEC to stop TELCOM. The main incompatibilities between the 71 and the NEC are that
lines do not necessarily end with a carriage return, and when the NEC sendsa line, it does not add
a line feed characterafterit, which the 71 (and most of the world) expects.

Since the NEEC and Radio Shack do not add a line feed (CHR$(10)) after the carriage return at
the end of each line, and do nottell the host (the 71) when the file is done, we usually use a pro-
gram written in BASIC. The program on the 71 will have to be stopped manually when the NEC
has completed its transfer, or enter ""END" then press [RTN] then press CTL J (forline feed)
whilestill in TELCOM. These machines can be made to add a line feed while in TELCOM by a
simple POKE. Be sure to restore the location to zero for normal use. From BASIC on the NEC,
RS or Olivetti machine, enter one ofthe following:

NEC PC-8201A: POKE 62469,1 Olivetti M-10: POKE 63069,1
RS Model 100: POKE 63066,1

For conformity with HP-71 file structure, each line, including the last line in the file, must end with

a carriage return. Otherwise the resulting lines could be longer than the 71allows. Be also aware
that the TAB will be transferred to the 71 as a tab character (CHR$(9)), not as a series of spaces.

The options are to send a file, receive a file replacing any existing data in thatfile, or receive a file
appending data to the end ofthe file. Files may be in RAM or on Disc. If you specify a Disc based
file, the file size is not limited to available RAM in the 71. When transferring files to the 71, run
NECTALK first to find the length of the Text file to create on the 71. If you have specified a file
size and it is to be in RAM,the size will automatically expand as needed; Disc based files must

have theirsize specitied accurately (or too large).

The program assumes that the computer with which you are exchanging data is also the
KEYBOARD. Delete the KEYBOARD IS on line 80 and CALL KBD online 1000 if this is not
the case.

5 | HP-71 file transfer program
10 CALL NEC @ SUB NEC @ DIM Q$[256]
20 INPUT "text file:“;F$ @ IF NOT LEN(F$) THEN CAT ALL @ GOTO 20
30 CALL INCAT(F$,X) @ IF X AND X#1 THEN 20

140 Communicating with Other Computers The BASIC HP-T71

40 DISP "Receive/Send" @ F=POS("RS",UPRC$(KEYWAITS))

45 IF NOT F THEN 20

50 IF NOT X AND S=2 THEN 20

60 IF NOT X OR F=2 THEN 80

70 DISP "Append/New" @ X=POS("AN",UPRC$(KEYWAITS))

75 IF NOT X THEN 20

80 KEYBOARD IS * @ CLEAR :RS232 @ IF X THEN 110

90 INPUT "size:";L @ CREATE TEXT F$§,L ! create the output file

100 DISP “"start transfer"

110 DISP “"working" @ ASSIGN #1 TO F$ @ ON ERROR GOTO 1000

115 IF 1=F THEN 130

120 READ #1;Q% @ OUTPUT :RS232 ;Q$ @ GOTO 120 ! loop until EOF error

130 IF X=1 THEN RESTORE #1,9999

140 ENTER :RS232 ;Q% @ IF Q$="!END" THEN 1000

150 DISP LEN(Q$) @ PRINT #1;Q% @ GOTO 140

1000 ASSIGN #1 TO * @ CALL KBD @ BEEP @ DISP "done" @ END

9600 SUB INCAT(F$,T) @ ON ERROR GOTO 9640

9605 DISP CHR$(27)&">"; @ CAT F$ @ T$=DISP$[1,32]

9610 IF NUM(T$(12])=32 THEN T$=T$[3]

9620 T=POS("TESDDABILEKEBAFO",T$[12,13])

9625 IF NOT MOD(T,2) THEN T=20 ELSE T=(T+1) DIV 2

9630 END

9640 T=21 @ IF ERRN=57 OR ERRN=255022 THEN T=0

5 REM "NECTALK" program for the NEC PC-8201A

10 MAXFILES=2 : PRINT CHR$(27)+"U" : CLS : FILES : INPUT"file";F$

40 OPEN F$ FOR INPUT AS #1 : X=0 : M=0 : PRINT "checking len

60 INPUT#1,Q¢ : X=X+LEN(Q$> : M=M+1 : IF NOT EOF(1) THEN 60

70 CLS : CLOSE : PRINT "Len:";X;",Lines:";M

80 PRINT "min file size:"; (Mx3)+X

90 INPUT "press [RTNI";Q$

100 OPEN F$ FOR INPUT AS #1

110 OPEN "COM:" FOR OUTPUT AS #2

160 Q$=INPUTS$(1,1) : PRINT#2,Q%$; : IF NOT EOF(1) THEN 160

200 PRINT#2,"!END" : CLOSE : MAXFILES=1

Display Devices
The HP 82163A (32 columns, 16 rows), HP 92198A (80 columns, 24 rows), and PAC Screen,

are the only video interfaces available as of this writing. HP terminals are preferred over other
terminals because of compatibility. If other computers or other brands of terminals are used, be
aware that HP uses unique escape sequences which make formatted display and word wrap at the
end of the line an iffy situation. Programs which offer formatted display (such as the spreadsheet
in WorkBook71) may not display properly due to different escape code interpretation. If possible,
check the terminal manual before purchase to insure that it can interpret HP escape sequences or
can be programmed to do so. Some of the troublesome escape sequences are listed below.

Chapter 16 Communicating with Other Computers 141

HP Code Operation

% col row Cursor to Address (MS: Y col row)
Insert Cursor

Replace Cursor
Cursor on

Cursor offA
V
R
O

If you are using a terminal as both keyboard and display and find that yyoouu ggeett ttwwoo of
each character on the display, the terminalis echoing the transmitted data. Set FULL DUPLEX
on the terminal to eliminate the double vision. If nothing at all is displayed, set HALF DUPLEX.
If you are getting garbage on the screen, go back and make sure the parity, stop bits and other
protocol requirements match.

If a display device ignores insert and delete modes, the 71 can be fooled into thinking that an HP
display is being used. This will not enable the insert cursor (presuming the terminal has one). As a
last resort the 71 can be made to display a line only after you press ENDLINE. This POKE will have
to be repeated each time the HP-71 is turned on or devices are re-configured.

 l ! Mimic a Hewlett-Packard

POKE"2F7B1","D"§ ! display device.

POKE"2F7B1",*B"§ ! Mimic a printer used as
! a display.

Communicating with RS-232C
The Electronic Industry Association (EIA) has designated RS-232 as a standard. The standard es-
tablishes protocol, connectors and other specifications to insure that products from different
manufacturers will be able to work together. Most new computers either come with it or offerit as
an option. Be sure that whatever you want to connect to your HP-71 has an "RS-232C port," "serial
port," or "Asynchronous Communications Adapter."

The Black Box
In order to "speak RS-232" you’ll need an HP-IL/RS-232C interface (in addition to the 82401A
HP-IL adapter). The HP-82164A cannot run on batteries or a car adapter, if this is important to
you consider one of the third-party adapters. The first things you will notice when you plug it into
the loop are that it doesn’t do anything, and the manual was written for electronics engineers and
people with an intimate relationship with low-level HP-IL commands.

An RS-232 interface does not have the innate ease of set-up of most HP-IL devices. This is be-
cause the standard is somewhatflexible, and many companies have taken it upon themselves to
create the ultimare RS-232 standard, usually slightly different than the other guy. The HP-IL/RS-
232 interface is designed to adapt to most of these quirks. Before deciding to spend the rest of
your life communicating with pencil and paper, remember that you only have to go through this
one time for each RS-232 device, so read on.

The RS-232 Cable
Once you've determined what you want to hook up to your 71, you must physically connect them,
so we will first discuss acquiring a cable. "RS" stands for "Revised Standard" and as such,it’s

142 Communicating with Other Computers The BASIC HP-71

(usually)fairly easy to connect things together using it, though even under the best of circum-
stances it will be much more work than connecting a 9114B Disc drive. Many companies (HP in-
cluded) have used the "standard" 25 pin connector (called DB-25) for other purposes, or other
connectors for RS-232. For instance, IBM has used the 25 pin connectorfor parallel, and HP has
used a 9-pin connector for RS-232 on the larger HP-110 and HP-115 Portable computers, as do
Apple and newer IBM computers. This 9-pin connectoris often used for monitor connectors and
has even been used for power cords (imagine the zap!), though it is becoming a de facto standard
for serial connectors. Usually, on the computer end, a DB-9 or DB-25 connector will be male, and

monitor or parallel connector will be female. For these reasons it’s often necessary to have custom
cables made, and be sure what you’re plugging into is really a serial port.

The alternative is to make your own cable. Dealers will sell you cables for $50 or so plus perhaps
$20 consultation fee, during which they’ll glance-at your RS-232 owners manual, tell you that HP
makes a good product, and, pointing to the door, nod and say "Yup, it’ll work... course, ya might
have ta switch two and three." You leave, not knowing which two and three things he’s talking
about. It might take a few go-arounds with the dealer to make sure it works properly.

You can save time and money if you go to yourlocalelectronics parts store and explain your
problems, and ask for the wires and connectors to make your own cable. Make sure you get the
appropriate male and female ends. This will cost about $15 and their ubiquitous electronics jock
employee will probably offer free consultation. I've made several cables using a large Weller
soldering gun which is more suited for car radiators; they will sell you a little soldering pen more
suited for the job, and less likely to vaporize wires. A new generation of connectors has come
around which no longer require soldering. Merely strip the ends of the wires, clamp the pins on
with a pair of pliers, and insert the pins into a pre-drilled connector.

When you look at the front end of a male connector (the kind that’s on the HP-IL/RS-232 inter-
face itself) you will see that the pins are numbered from 1-13, left to right, on the first row and
from 14-25 on the second row. A female connector mates directly; the pins are a mirror image of
the male connector with pin 1 in the upper right corner. There is never any reason to use pins
other than 2 through 8 and 20. Look inside of most devices and you’ll see that the other pins don’t
do anything, often the pins have been left off of a male connector. Because of individual
companies improved standards, it’s possible that some of these extra pins will have strange voltages
going through them, so it’s safest to not connect anything to them. The simplestcircuit will use
only 2 and 3 (that’s what the salesman was telling you to switch). Pin 2 generally transmits data
while pin 3 receives, and this is the problem: Many companies reverse the use of 2 and 3.

A chart on the back of the interface is usually all that you will have to refer to when making a
cable. Your printer or modem manual will probably have some cryptic chart to show if all is
normal. If it appears that everything is going to be pretty much standard, wire the cable with pins 2
through 8 and 20 connected straight through. If it doesn’t work, "switch two and three." Ifit still
doesn’t work or works only marginally (loses data or occasionally garbles it) then reread the
sections below and the manual for the device.

A switch inside ofthe interface comes set for DTE (Data Terminal Equipment). If you are going
to use a modem, or connect to another computer, leave it that way. For some devices you will have
to open the interface and turn the plug around. A separate cable for each device will save you con-
stantly opening up the interface to change that plug, or cable to change a wire.

Chapter 16 Communicating with Other Computers 143

Setting up the Interface
Once hooked up,it's time to configure the interface to the 71 and the device on the other end of
the interface. Since RS-232 is versatile,it can interpret data in many ways. The HP interface does
not save its configuration when you shut it off; you'll need a setup program (or key assignment) to
run each time you turn it on. Some RS-232 Interfaces, such as CMT battery powered units, do re-
member configuration between sessions. Since the loop can slow down with some set-ups, it may
also be helpful to have a program to clear the interface. The 14 control registers and 12 character
registers in the HP RS-232 interface give complete control over what is sent through the interface.
For example, you can set a printer to use 7-bit data instead of the usual 8-bits, so that characters
above ASCII 127 will be printed as the equivalent minus 128. This is useful if you PLIST a pro-
gram which has characters from the alternate character set, so that the characters will print as
normal characters instead of the weird graphics cartoon characters that many printers provide for
characters above 127. Lets use an example of a program for a printer which runs at 2400 Baud.

10 REMOTE :RS232 ! A printer set-up program

20 OUTPUT :RS232 ;"SE2;SE4;SE5;SE7;LIO0;LI5;SL2;SL4;SW1;5BA;P0;CO"
30 LOCAL @ PRINTER IS :RS232

The easiest way to change registers is in REMOTE mode, during which anything received by the
RS-232 is assumed to be a command. We entered REMOTE mode on line 10; be sure to designate
which device is to be used with the REMOTE statement. Line 20 sends various commands as
found on pages 37-40 of the HP RS-232 Manual. Look up the mnemonic for the commands, then
enter them in the string, each separated by a semicolon, as many commands as are needed. In the
example we used "P0" to set even parity and "SBA"to set the interface to 2400 baud. Line 30 re-
stores everything to LOCAL mode then assigns the printer.

So, we've used REMOTE mode to tell the RS-232 how to communicate with the printer, and re-
turned the loop to LOCAL mode, now the RS-232 becomes pretty much invisible and sends what-
ever we tell it to the printer.

The interface’s default (how it works whenfirst turned on) configuration will allow you to connect
an HP Terminal with only minimal configuration (see the Zenith program below). The major con-
cerns when writing the configuration are Baud rate and handshake.

Baud rate refers to the speed at which data will be transferred. Basically it represents the number
of bits per second (plus some overhead) the device can send or receive. Terminals will usually op-
erate at 2400 or 9600, modems at 300 or 1200. An elusive problem can often be worked around by
slowing the Baud rate; if the computer you are using starts throwing garbage characters at your 71
at 9600 Baud ("SBE") then try 4800 ("SBC"),or,as a last resort (because its kind of slow for
everyday life) try 2400 or less. The maximum selectable Baud rate is 19200, and on a loop with
several devices,it is unlikely that you would see any effective speed gain over 9600.

Protocolrefers to how the device expects data to look and the messages to be used by the interface
to tell it whenit is ready for data. Check the conditions your device requires and, again, look up
the appropriate codes in the interface manual to send it in REMOTE mode. If you just can’t getit
to work consistently then go back and check the cable.

144 Communicating with Other Computers The BASIC HP-71

HP-IL to PC Interface Card
Many people use a separate computer for program development, then transferthe files to the 71
to be transformed into BASIC or Assembled. HP has seen this need andfilled it with the
HP 82973A HP-IL./IBM PC Adapter. This card plugs into a short slot on the PC and comes
with software to connect it with the HP Portable Plus. The Link card does not come with software
to connect the 71; HPILLINK is HP’s extra-cost program to connect the PC and 71 to use the PC’s
display and keyboard. We’ll discuss this program exclusively, though third-party packages are
available. With this card and software, the 71 becomes an ideal data collection device, dumping the
information to the PC when you get back to your desk.

It can be difficult moving between computers. Commands differ, and it’s rare to find a program
which will easily translate between the divergent BASICs. The work style requires a different mind
set; the PC doesn’t like to have more than one program in memory at a time, and bogs down each
time you start a program. A prime number program takes 15-30 secondsto load, then runs in a lit-
tle over a minute in BASIC (it runsin just a few seconds in compiled BASIC). On the 71,it starts
immediately, but takes 5 minutes to run. Text files on the PC may have incredibly long lines (the
end ofthe line often marks a paragraph), or embedded codes using high-bit set characters, while
the 71 likes straight Text in lines under 96 characters. These differences surface in all manner of
things: You may sit down to the keyboard and not rememberifyou should KILL, PURGE, DEL
or ERASE a file. These caveats in mind, if you are prepared to play arbitrator in a marriage of
machines, a PC and a 71 can be a powerful pair.

HPILLINK is compatible with most display escape sequences and handles word-wrap well, though
it does not support <esc>%, so programs which do formatted display (screen editors or graphics)
won’t run correctly.

Once the 71 is connected to the PC and you have HPILLINK running, there are many ways to ex-
change information. The easiest is to copy files to or from the PC with the F1 function key; these
files retain the original 71 format so that you can save LEX or BASfiles on the PC. HPILLINK is
a very polite program in PC terms. It'll run on an inexpensive "clone" MS-DOS computer and with
RAM-resident programs on the PC such as Borland SideKick and Lotus Metro and the Microsoft
Windows operating shell (copyrights of their respective manufacturers). These programs have
cut&paste to help you move Text a line or screen-full at a time.

The PC Disk (we’ll use the PC-world spelling of "Disk") is a great place to store 71 files of any
kind, and can replace HP-IL storage devices. Nevertheless, Text is the choice if you want to easily
read thefiles with PC programs. Text files to send to the 71 should be limited to 96 character line
length and have the file name extension ".TEX". With this new freedom in editing andfile size
comes an interesting extension to program development: Self-documented program code. Writing
BASIC for the 71 in Text files on the PC is a joy because you can add remarks as needed, without
concern for memory use. To make the program more readable, we'll define a remark as any line
which does not begin with a line number; you can use an exclamation mark for clarity, but it isn’t
essential. When the file is loaded into the 71, this program drops any un-numbered lines, then
checks that line numbers are sequential (nasty crash otherwise).

Chapter 16 Communicating with Other Computers 145

10 CALL NOREMS @ SUB NOREMS @ DELAY 0, INF
20 INPUT ’source file: ’ S$ @ IF FILESZR(S$)<1i THEN 20
30 DISP ’trimming file...’

40 DIM X$[256] @ ASSIGN #1 TO S$
50 FOR X=FILESZR(S$>-1 TO 0 STEP -1
60 READ #1,X; X$ @ IF NOT POS(X$([1,1],°0123456789°) THEN DELETE #1,X
70 NEXT X
90 DISP ’'done trimming’

200 DISP ’verifying line numbers...’
210 L=10000 @ FOR X=FILESZR(S$)-1 TO 0 STEP -1
220 READ #1,X; X$§ @ L2=VAL(X$)
230 IF L2>=L THEN DISP ’pgm line:’;L2;’text line:’;X;’incorrect’
240 L=L2 @ NEXT X
260 ASSIGN #1 TO * @ DISP 'done verifying’

260 FOR X=1 TO 8 @ BEEP X*200 @ NEXT X

Once the source file with remarks becomes too large to fit in available RAM in the 71 (and it will
when you get comfortable with all of those remarks), it’s more practical to drop the remarks be-
fore copying the file to the 71, keeping the source file intact on the PC for later revisions.
Assembler source liles would be interpreted somewhat differently: Delete lines which begin with
"*" NOBLANKS was written for BASIC compilers,if you are using interpreted BASIC,the pro-
gram will have to be modified to ask the userfor the file name, and of course, it will require line
numbers instead of label references; the compiled program is preferred because of much greater
speed. This program does not verify line numbers. Syntax is quite simple: Furnish a source file and
a destination file name. You cannot copy a file onto itself. From the DOS prompt enter:

NOBLANKS source.fil output.tex

> NOBLANKS.BAS for Microsoft QuickBASIC and Borland TurboBASIC Compilers.

PRINT " NOBLANKS.EXE deletes lines which do not begin with a number."

PRINT " The output file, if it exists, will be overwritten."

PRINT " CAUTION: THERE IS NO ERROR TRAPPING."
x$ = COMMAND$ ’ Replace with INPUT X$ for BASIC interpreters.
DEFINT L, X ' Integer loop counters.

DEFDBL T ' Double precision timer.

LineCount = 0 : t = TIMER : ON ERROR GOTO ErrTrap

’ Enable keyboard interrupts. Stop pgm with Ctrl-C, Ctrl-Z, or Ctrl-Break

KEY 15, CHR$(&H4) + CHR$ (&H2E) ' Ctrl-C

KEY 16, CHR$(&H4) + CHR$ (&H20) * Ctrl-Z

KEY 17, CHR$(&H4) + CHR$(&H46) ' Ctrl-Break

KEY(15) ON : KEY(16) ON : KEY(17) ON ’ Enable key trapping.
ON KEY(15) GOSUB KeyTrap : ON KEY(16) GOSUB KeyTrap :0N KEY(17) GOSUB KeyTrap
GOSUB wtrim : x = INSTR(x$, " ") : IF x = 0 THEN GOTO Scold
source$ = LEFT$(x$, x - 1) ' Get the source file name.

x$ = MID$(x$, x + 1) : GOSUB wtrim '’ Get the second file name.

dest$ = x$ ' dest$ has the file name.

146 Communicating with Other Computers The BASIC HP-71

PRINT "Deleting lines which do not begin with a number..."

OPEN source$ FOR INPUT AS #1 : OPEN dest$® FOR OUTPUT AS #2
WHILE NOT EOF(1) ' Loop until out of data.

LINE INPUT #1, x$ ' Read a line from the file.

IF LEN(x$) THEN ' If the line has data, then

IF INSTR("1234567890", LEFT$(x$, 1)) THEN ’ Do a line number check.

PRINT LEFT$(x$, 5) : PRINT #2, x$: LineCount = LineCount + 1

END IF

END IF

WEND ' We're out of data.

CLOSE : PRINT "The un-numbered lines have been deleted."

done:

PRINT "Total lines:"; LineCount

PRINT "Elapsed time:"; TIMER - t : END ' End of program.

KeyTrap: > Keyboard interrupt handler.

KEY(156) STOP : KEY(16) STOP : KEY(17) STOP '’ Disable key interrupts.
PRINT : PRINT "Do you want to end program early? Y/N"

YNLoop: ' Loop and wait for a good keystroke (Y or N).
YN% = INSTR("YyNn", INPUT$(one%)) : IF YN% < one% THEN GOTO YNLoop
IF YN% > two% THEN KEY(15) ON : KEY(16) ON : KEY(17) ON : RETURN

RETURN done ’ Give partial stats, end pgm.

wtrim: ' Drop leading spaces in X$.
IF LEN(x$) = 0 THEN GOTO Scold ’ Not needed by some BASICs.
WHILE ASC(x$) = 32 ' Is first char a space?

x$ = MID$(x$, 2) ’ then delete it.
WEND
IF LEN(x$) THEN RETURN ’ If no string then error-out.

ErrTrap:

ON ERROR GOTO O 'Disable err trap (not needed)

CLOSE : PRINT : BEEP : PRINT "A run-time error has occurred" : PRINT

Scold:
PRINT " skkskokokokokoskok ok o ok ok sk ok ok ok sk ok ol o ok o ok ke ok ok K KoK oK oK oK ok oo oo oookkoK ok Kok ok ok ok o sk o ooook

PRINT " * Specify two valid file names, separated by a space. *N

PRINT " =* xW
PRINT " * enter: NOBLANKS SOURCE.FIL OUTPUT.FIL * N
PRINT % skokokokokok okok sk ok ok sk ok ok ok ok o ok sk ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok W

END

Lzl

Chapter 16 Communicating with Other Computers 147

System RAM
Display Driver
2E100 ANNAD{
2E101 ANN15
2E102 ANNAD2
2E104 DD3ST
2E160 DD3END
2E1F8 TIMER3
2E1FF DD3CTL
2E200 DD2ST
2E260 DD2END
2E2F8 TIMER?2
2E2FF DD2CTL
2E300 DDIST
2E34C ANNAD3
2E34E ANNADA4
2E350 ROWDVR
2E3F8 TIMERI1
2E3FE DCONTR
2E3FF DD1CTL

Interrupt RAM
2E400 INTRA
2F410 INTA
2F420 INTB
2F430 INTM
2F438 CMOSTW
2F43C VECTOR
2F441 ATNDIS
2F442 ATNFLG
2F443 KEYPTR
2F444 KEYBUF
2F471 WINDST
2FA73 WINDLN
2F4T5 DSPSTA
2FATB ESCSTA
2F47C FIRSTC
2F480 DSPBFS
2F540 DSPMSK

N
=
i

—

16
16

System Pointers
2F558
2F55D
2F562
2F567
2F56C
2F5T1
2F576
2F576
2F57B
2F580
2F585
2F58A
2F58F
2F594
2F599
2F599
2F59E

MAINST
CURRST
PRGMST
PRGMEN
CURREN
IOBFST
IOBFEN
CLCBFR
RFNBFR
RAWBFR
CLCSTK
SYSEN
ouTBS
AVMEMS
AVMEME
MTHSTK
FORSTK

148 System RAM

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

Contrast nib

cmos test wrd #168F
Interrupt vector
ATTN key disable
ATTN key hit?
Key buffer pointer
Key buffer
Display window start
Display window length
Display status
Escape slatus
Bulfer pos of 1st char
Input buffer
Input mask

Main pgm mem start
Current file start
Current program
Current program end
Current file end
System buffers
System buffer end
Calc Mode pointers

End of system RAM
Output buffer
Free memory start
Free memory end
Math stack
FOR/NEXT stack

2F5A3 GSBSTK 5 GOSUB stack
2F5A8 ACTIVE 5 Active vars space
2F5AD CALSTK 5 CALL stack
2F5B2 RAMEND 5 End of memory
2F5B7 PRMPTR 5
2F5BE CHNLST 26*7
2F674 DSPCHX 5 External display
2F679 PCADDR 5 Program counter
2F67TE CNTADR 5 Cont address
2F683 ERRSUB 5 ON ERROR address
2F688 ERRADR 5 ONERROR stmt addr
2F68D ONINTR 5 ON INTR stmt.addr
2F692 DATPTR 5 DATA stmt pointer
2F697 TMRAD1 5 TMR#1 stmt address
2F69C TMRAD2 5 TMR#2 stmt address
2F6A1 TMRAD3 5 TMR#3 stmt address
2F6A6 TMRIN1 8 TMR#1 interval
2F6AE TMRIN2 8 TMR+#2 interval
2F6B6 TMRIN3 8 TMR#3 interval
2F6C1 LDCSPC 5 Space after lineff
2F6C6 INBS 5 Input buffer start
2F6CB AUTINC 4 Increment for AUTO
2F6CF LEXPTR 5 Temporary RESPTR
2F6D4 CMDPTR 5 CMMD stack pointer
2F6D4 INADDR 5 Stmt len parse/decom
2F6D9 SYSFLG 16 System flags
2F6E9 FLGREG 16 User flags

Math Excegtion traps
2F6F9 INXNI 1 Inexact result
2F6FA UNFNIB 1 Underflow
2F6FB OVFNIB 1 Overflow
2F6FC DVZNIB 1 Divide by zero
2F6FD IVLNIB 1 Invalid result
2F6FE RNSEED 15 Random## seed

Alarm Clock
2F70D NXTIRQ 12 Next SREQ
2F719 ALRM1 12 Timer #1
2F725 ALRM2 12 Timer #2
2F731 ALRM3 12 Timer #3
2F73D ALRM4 12 Timeout timer
2F749 ALRMS 12 WAIT timer
2F755 ALRMG6 12 External alarm
2F761 PNDALM 2 Bitmap pending alm

Clock Accuracy
2F763 TIMOFS 12 Time error offset
2F76F TIMLST 12 Time last set
2F77B TIMLAF 12 Last AF corection
2F787 TIMAF 6 Accuracy factor

HP-IL. Device Assignments
2F78D IS-DSP 7 Display
2F794 IS-PRT 7 Printer
2F79B IS—INP T Keyboard

2FTA2
2FTA9
2FTAC
2FTAD
2F78B0
2F78B1
2F7B2
2F7C2
2FTEA
2FT8E
2FTEC

IS—PLT
MBOX"
LOOPST
STATAR
TRACEM
DSPSET
LOCKWD
RESREG
ERR#
CURRL
ERRL#

Scratch RAM
2F871
2F871
2F876
2F878B
2F880
2F881
2F881
2F886
2F888B
2F890
2F891
2F896

Function Scratc
2F89B
2F89B
2F8A0
2F8AS5
2F8AA
2F8AB
2F8AB
2F8B0
2F8B5
2F8BA
2F8BB
2F8C0
2F8C5
2F901
2F941

STMTRO
S—R0-0
S—R0-1
S—R0-2
S—R0-3
STMTR1
S—-R1-0
S—-R1-1
S—-R1-2
S—R1-3
STMTDO
STMTD1

FUNCRO
F-R0-0
F-R0-1
F-R0-2
F-R0-3
FUNCR1
F-R1-0
F-R1-1
F-R1-2
F-R1-3
FUNCDO
FUNCD1
TRFMBF
SCRSTO
SCREX0

Display/Print
2F946
2F948
2F94A
2F94D
2F94F
2F956
2F958
2F95A
2F95B
2F976
2FoT77

SCROLT
DELAYT
NEEDSC
DPOS
DWIDTH
PPOS
PWIDTH
EOLLEN
EOLSTR
MAXCMD
CSPEED

B
O
O
V

s
(
T
e

(=
)

()
]

(
)

m
w
m
m
m
m
;
b
—
-
m
w
w
u
—

HP—IL Mailbox ptr
HP—IL loop status
STAT array name
TRACE mode
Display status
Password
RES register
ERRN
Current line #
ERRL

Temporary D0
Temporary D1

Temporary DO
Temporary D1
TRANSFORM scratch
Scratch stack (Mant)
Scratch stack (exp)

Display scroll rate
Display delay rate
Scroll needed
Current DISP column
Display width
Current PRINT col
Print width
Len of ENDLINE
ENDLINE string
#CMD Stack Entries
Clock Speed (Hz/16)

HP-IL
2F97C ERRLCH 1
2F97D TERCHR 2
2F97TF HPSCRH 7
2F986 RESERV 4

ENTER term char
Reserved

8*2 Reserved

Memory Map
00000

Operating system ROM.
P B 20000

Memory mapped 1/0.
1y Tappe 2C000

Reserved for card reader.
2E100

Display RAM.
2E400

System RAM.
2F9E6

Reserved RAM.
CONFST

Configuration buffer.
MAINST

Main file chain.
MAINEN

System buffers
IOBFEN
CLCBFR

Command stack..
RFNBFR

Calc mode buffers.
ouTBS

Output buffers.
AVMEMS

Free RAM available for temporary buffers

during function execution. AVMEME
MTHSTK

Math stack.
FORSTK

For/next stack.
GSBSTK

GOSUB stack.
ACTIVE

Active variables.
CALSTK

Environments saved during CALLSs.
RAMEND

Plug-in ROMs, independent RAM.
FFC00

Reserved for configuration.
FFFFF

Memory Map 149

Assembler Instruction Set
7A#0
7A#8B
1A#C
7A<=B
7A<B
7A=0

7A=B
7A=C
7A>=B

7A>B
7B#0
7B#A
B#C
B<=C
7B<C
7B=0
7B=A

7B=C
7B>=C
B>C
CH#0
CH#A
C#B
C#D
7C<=A
7C<A
7C=0

7C=A
7C=8B
7C=D
7C>=A
7C>A
D#0
D#C
D<=C
7D<C
=0

0=C

D>=C
D>C
MP=0
PH#
P=

7SB=0
7SR=0
?STH0
ISTH#1
ST=0

$T=1
XM=0

A=-A

A=A-1
A=0

=AIB

A=AIC

A=A&B s
E
a
E
a
p
N
D
O
O
U
U
O
T
L
L
T
U
T
U
U
I
O
I
U
T
O
I
U
I
T
O
T
U
O
I
U
I
T
O
I
T
O
I
U
T
L
I
O
T
U
T
O
I
L
I
T
O
I
T
U
O
I
T
U
I
T
U
O
I
T
U
I
T
U
O
I
T
L
I
T
U
I
T
L
T
U
I
T
L
O
I
L
T
U
L
L
T
L
T
U
I
T
U
L
I
T
L
I
U
U
L
I
T
U
L
T
L
T
L
T
U
L
T
L
U
L
T
L
Y
T
O
T
L Test A#0.

Test A#B.
Test A#C.
Test A<=B.
Test A<B.
Test A=0.
Test A=B.
Test A=B.
Test A>=B.
Test A>B.

Test B#0.
Test B#A.
Test B#C.
Test B<=C.
Test B<C.
Test B=0.
Test B=A.
Test B=C.
Test B>=C.
Test B>C.
Test C#0.
Test C#A.
Test C#B.
Test C#D.
Test C<=A.
Test C<A.
Test C=0.
Test C=A.
Test C=B.
Test C=D.
Test C>=A.
Test C>A.
Test D#0.
Test D#C.
Test D<=C.
Test D<C.
Test D=0.
Test D=C.

Test D>=C.
Test D>C.
Test module pulled bit.
Test pointer#n.
Test pointer=n.
Test sticky bit=0.
Test if srvc req bit=0.
Test if status bit n#0.
Test if status bit n#tl.
Test if status bit n=0.
Test if status bit n=1.
Test ext mod missing
Two's compl of A into A.
One's compl of A into A.
Set A=0.
A OR B into A.

A OR C into A.

A AND B into A.

150 Assembler Instruction Set

=A&C

A=A+1
A=A+A
A=A+B

A=A+4C
A=A-1
A=A-B

A=A-C

A=B

A=B-A
A=C

A=DATO
A=DAT1
A=IN
A=R0

A=R1

A=R2
A=R3
A=R4

ABEX
ACEX
ADOEX
ADOXS
AD1EX
AD1XS
AROEX
ARIEX
AR2EX
AR3EX
ARAEX
ASL
ASLC
ASR
ASRB
ASRC
B=-8B
B=B-1

B8=0

B=A

B=BIA
B=BIC

B=B&A
B=B&C

B=B+1
B=B+A
B=B+B
B=B+C
B=B-1

B=B-A
B=B-C
B=C
B=C-B
BAEX
BCEX
BSL
BSLC
BSR

fs

fs

fs

fs

fs
fs

fs

fs

fs
fs

fs

fsd

fsd

fs

fs

fs
fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

fs

P
R
L
V
O
U
W
L
W
L
V
L
W
W
L
W
L
W
W
W

w
w

W
W
W
W
W
W
N
M
N
W
W
W
W
W
W
W
W
N
R
N
N
N
O
D
M
O
D
M
O
D
O
D
N
O
D
M
O
D
N
D
&

w
w

W
W
W
w
W
w
W
w

W
L
L
w
w
w
w
w
w
L
w
w
w
w

N
W
N
N
M
N
M
O
M
N
O
N
O
D
D
O
D
D
O
D
D
D
M
O
D
N
O
N
D
N
N
E
E
E
E
N
M
N
D
N
N
N
O
W
O
W
L
O
N
O
N
W
W
W

w

A AND C into A.
Increment A bye one.
Sum of A+A into A.
Sum of A+B into A.
Sum of A+C into A.
Decrement A by one.
A-B into A.
A-C into A.
Copy B to A.
B-A into A.
Copy C to A.
Load A from mem use DO
Load A from mem use Di
Load A(0-3)=input reg.
Copy RO to A.
Copy R1 to A.
Copy R2 to A.
Copy R3 to A.
Copy R4 to A.
Exchange A and B.
Exchange A and C.
Exchange A(A) and DO
Exchange A(0-3) and DO.
Exchange A(A) and D1.
Exchange A(0-3) and D1.
Exchange A and RO.
Exchange A and Ri.
Exchange A and R2.
Exchange A and R3.
Exchange A and R4.
Shift A left 1 nib.
Shift A left 1 nib circular.
Shift A right 1 nib.
Shift A right 1 bit.
Shift A right 1 nib circular
Two's compl of B to B.
One's compl of B to B.
Set B=0.

Copy A to B.
B OR A into B.
B OR C into B.
B AND A into B.
B AND C into B.
Increment B by one.
Sum B+A into B.
Sum B+B into B.
sum B+C into B.
Decrement B by one.
B minus A into B.
B minus C into B.
Copy C to B.
C minus B to B.
Exchange B and A.
Exchange B and C.
Shift B left 1 nib.
Shift B left 1 nib circular.
Shift B right 1 nib.

Inst. Field Nibs Inst. Field Nibs
BSRB 3 Shift B right 1 bit. CSRB 3 Shift C right 1 bit.
BSRC 3 Shift B right 1 nib circular CSRC 3 Shift C right 1 nib circ.
BUSCC 3 Enter bus command "C". CSTEX 2 Exchg C(X) and status reg
C+P+1 3 Increment C plus P pointr. D0=(2) nn 4 Load 2 nibs into DO.
C=C-C fs 23 Two's compl of C to C. D0=(4) onnn 6 Load 4 nibs into DO.
C=C-1 fs 23 One's compl of C to C. D0=(5) nnnnn 7 Load 5 nibs into DO.
C= fs 23 Set C=0. DO0=A 3 Copy A(A) to DO.
C= fs 23 Copy A to C. D0=AS 3 Copy A(0-3) to DO.
C=A-C fs 23 A minus C to C. D0=C 3 Copy C(A) to DO.
Cc=8 fs 23 Copy B into C. D0=CS 3 Copy C(0-3) to DO.
C=CIA fs 4 C OR A into C. D0=DO0+ n 3 Add n to DO (0<n<=16).
c=CiB fs 4 C OR B into C. D0=D0- n 3 Subtract n from DO.
C=CID fs 4 C OR D into C. DO=HEX hh 4 Load DO with hex const.
C=C&A fs 4 C AND A into C. DO=HEX hhhh 6 Load DO with hex const.
C=C&B fs 4 C AND B into C. DO=HEX hhhhh 7 Load DO with hex const.
C=C&D fs 4 C AND D into C. D1=(2) nn 4 Load 2 nibs into D1.
C=C+1 fs 23 Increment C. D1=(4) nnan 6 Load 4 nibs into D1.

C=C+A fs 23 Sum C+A into C. D1=(5) annnn 7 Load 5 nibs into D1.
C=C+B fs 23 Sum C+B into C. Di=A 3 Copy A(A) to D1.
C=C4+C fs 23 Sum C4C into C. D1=AS 3 Copy A(0-3) to Di.
C=C+D fs 23 Sum C+4D into C. D1=C 3 Copy C(A) to DI.
C=C-1 fs 2,3 Decrement C by one. D1=CS 3 Copy C(0-3) to Di.
C=C-A fs 23 C minus A into C. D1=D1i+ n 3 Add n to D1 (0<n<=16).
C=C-B fs 2,3 C minus B into C. D1=D1- n 3 Subtract n from D1i.
C=C-D fs 23 € minus D into C. D1=HEX hh 4 Load D1 with a hex const.
C=D fs 23 Copy D into C. D1=HEX hhhh 6 Load D1 with a hex const.
C=DATO0 fsd 34 Load C from mem use DO D1=HEX hhhhh 7 Load D1 with a hex const.
C=DAT1 fsd 34 Load C from mem use Di D=-D fs 23 Two's compl of D to D.
C=ID 3 Request chip ID to C(A). D=-D-1 fs 2,3 One's compl of D to D.
C=IN 3 Load C(0-3) w/input reg. D=0 fs 2,3 Set D=0.
C=P n 4 Copy P pointer to C(n). D=C fs 23 Copy C to D.
C=R0 3 Copy RO to C. D=C-D fs 23 C minus D into D.
C=R1 3 Copy R1 to C. D=DIC fs 4 D OR C into D.
C=R2 3 Copy R2 to C. D=D&C fs 4 D AND C into D.
C=R3 3 Copy R3 to C. D=D+1 fs 2,3 Increment D by one.
C=R4 3 Copy R4 to C. D=D+C fs 2,3 Sum D+C to D.
C=RSTK 2 Pop return stack to C(A). D=D+D fs 23 Sum D+D to D.
C=ST 2 Copy status reg. to C(X). D=D-1 fs 2,3 Decrement D by one.
CAEX fs 23 Exchange C and A. D=D-C fs 23 D minus C to D.
CBEX fs 2,3 Exchange C and B. DAT0=A fsd 3,4 Copy A to mem using DO.
CDOEX 3 Exchange C(A) and DO DAT0=C fsd 34 Copy C to mem using DO.
CDOXS 3 Exchange C(0-3) and DO. DATI=A fsd 3,4 Copy A to mem using D1.
CD1EX 3 Exchange C(A) and D1 DAT1=C fsd 34 Copy C to mem using D1.
CD1XS 3 Exchange C(0-3) and D1. DCEX fs 23 Exchange D and C.
CDEX fs 2 Exchange C and D. DSL fs 2,3 Shift D left 1 nib.
CLRHST 3 Clear hardware status bits. DSLC 3 Shift D left 1 nib circular.
CLRST 2 Clear program status bits. DSR fs 2,3 Shift D right 1 nib.
CONFIG 3 Configure. DSRB 3 Shift D right 1 bit.
CPEX fs 4 Exchange C(n) and P. DSRC 3 Shift D right 1 nib circular
CROEX 3 Exchange C and RO. GOC 3 Goto label if carry <=127
CRI1EX 3 Exchange C and Ri. GOLONG 6 Go long to a label.
CR2EX 3 Exchange C and R2. Range: <=32767.
CR3EX 3 Exchange C and R3. GONC 3 Go to label if no carry.
CR4EX 3 Exchange C and R4. Range: <=127.
CSL fs 2,3 Shift C left 1 nib. GOSBVL 7 Gosub very long to label.
CSLC 3 Shift C left 1 nib circular. GOSuUB 4 Gosub to label.
CSR fs 2,3 Shift C right 1 nib. Range: <=2047.

Assembler Instruction Set 151

Inst. Field Nibs Inst. Field Nibs
GOSUBL 6 Gosub long to a label. " quoted string

Range: <=32767. n nib or nibs
GOTO 4 Goto a label.

Range: <=2048. BIN " Assemble a BIN file.
GOVLNG 7 Go very long to label. BSS e Evaluate, enter n nibs of '0'.
GOYES 2 Jump if Test is true. CHAIN " Subheader for BIN files.
INTOFF 4 Interrupt off. CHAR n Type of BASIC Keywqrd..
INTON 4 Interrupt on. CON(i) e Evaluate expr, enter(i) nibs.
LC(m) 3+m Load C w/const 0<m<=6. EJECT Formfeed in the listing.

LCASC 3+n Load C with ASCIl use P. END Mark end of file (optional).
LCHEX 3+n Load C with hex using P. ENDTXT Mar'k end of keyword table.
MP=0 3 Clear the mod. pulled bit. ENTRY | Begin def. of BASIC keywqrd.
NOP3 3 Three nib no—op. EQU | Define a label for entry point.
NOP4 4 Four nib no—op. FORTH Assemble a FORTH primitive.
NOPS 5 Five nib no—op. ID b LEX ID of the file.

ouT=C 3 Load output reg with C(X) KEY " Define a keyword name.
ouT=CS 3 Load output reg with C(0) LEX " Assemble a LEX file.
P=C n 4 Copy C at nib n to P. LIST OFF Disable use of .Ilsyng file.
P=P+1 2 Increment P pointer. LIST ON Enable use of listing file.
P=P-1 2 Decrement P pointer. MSG | Point to message tbl (or 0).
P= n 2 Set P pointer to n. NIBASC " Enter up to 8 ASCII f:hars.
RO=A 3 Copy A to RO. NIBHEX n Enter up to 16 hex nibs.
RO=C 3 Copy C to RO. POLL | Define poll handler (or 0).
R1=A 3 Copy A to R1. STITLE " Formfeed, add subtitle.
R1=C 3 Copy C to Ri. TITLE " Title the listing.
R2=A 3 Copy A to R2. TOKEN n Token number of keyword.
R2=C 3 Copy C to R2. WORD " Define FORTH primitive.
R3=A 3 Copy A to R3. WORDI " Def immed. FORTH primitive.

Ra=t : Egg; ok Minimum LEX File Requirements
R4=C 3 Copy C to Ré. LEX 'FILENAME’
RESET 3 System bus reset. ID #nn
RSTK=C 2 Push C(A) onto rtn stack. MSG 0
RTI 2 Return from interrupt. POLL 0
RTN 2 Return. 777777 EQU #nnnnn

RTNC 3 Return if carry set. ENTRY label keyword entry
RTNCC 2 Clear carry, return. CHAR ifn , F= all uses
RTNNC 3 Return if carry clear. KEY KEYWORD® keyword name
RTNSC 2 Set carry, return. TOKEN b 1-255
RTNSXM 2 Set ext mod misg bit, rtn label start of code
RTNYES 2 Return if test is true.
SB=0 3 Clear the sticky bit.
SETDEC 2 Set cpu to dec mode.
SETHEX 2 Set the cpu to hex mode.
SHUTDN 3 Shut down bus and cpu.
SR=0 3 Clear service request bit.
SREQ? 3 Poll for service request.
ST=0 n 3 Clear program status bit n
ST=1 n 3 Set prgrm status bit n.
ST=C 2 Copy C(X) to status reg.
UNCNFG 3 Unconfigure.
XM=0 3 Clear external module

e
|
b

missing bit.

expression
label

byte

152 Assembler Instruction Set

FIELDS IN WORKING REGISTERS

"15 14 |13 |12 (11 |10 9 8 7 6 5| 4] 3|21 o“
1 ! ! 1 I T T LI 1 1 I 1 1 I I

S Xs
<4 w -

- M »

@ A D

+—X —>

<« B>

Name| Nibs Description

S 15 Sign.
XS 2 Exponent Sign.
W 15-0 Full Word.
M 14-3 Mantissa.
A 4-0 Address.
X 2-0 Exponent and sign.
B 1-0 Exponent or byte.
WP P-0 Word through pointer.
P At pointer.

HP-71 System Entry Points
A—MULT 1B349 Multiply two 20 bit Hex integers.
ENTRY: integers in A(A),C(A).
EXIT: P preserved. A(A)=product. Carry if ok. Carry clear if overflow; A(A)=FFFFF.
LEVELS: 0. USES: A(A), B(A), C(A), C(14).

ADHEAD 181B7 Add a string header to a string on the math stack.
ENTRY: Ri(A)=start of item (high mem). Di=end of item (low mem). SO set if RTN needed else jumps
to EXPR. P=0.
EXIT: D1 points at string header. LEVELS: 2. USES: A(A), C(W), D1.

ARGPRP OEBEF Pop & normalize a REAL. As ARGPR+ but user modes are not checked.
ARGPR+ OE8BEB Read user modes, pops & normalize real. Split and normalizes arg to 15 digits.
ENTRY: Number on top of stack. D1 points to top of stack.
EXIT: DECMODE, A/B=15 digit formn of arg. If signaling NaN then carry set, XM=1 else carry cir.
LEVELS: 2. USES: A, B, C(A), D(A), SB, XM, S8-11.

ARGSTA OE90C Read user modes. Pop & test real number for array or complex.
ENTRY: Number on top of stack.
EXIT: DECMODE. A 12 digit number. Carry clear if finite, set if INF. Fatal error if arry, cmplx, NaN.
LEVELS: 2. USES: A, B(X), D(A), P, SB, XM, S8—11.

ASCIl 0079B Bit pattern tables. Each character has 10 nibs. 2 nibs per display column. Least significant
bit of byte (nib pair) is top row. Read using ASCIl + 10 * (chr#).
ENTRY: DON'T! This is a table only, not an entry point.

ASLW3 O0ED21 Shift A left 3 nibs. ASRW3 0ED10 Shift A right 3 nibs.
ASLW4 O0EDI1E Shift A left 4 nibs. ASRW4 0EDOD Shift A right 4 nibs.
ASLWS5 O0ED1B Shift A left 5 nibs. ASRWbS 0OEDOA Shift A right 5 nibs.

ATNCLR 00510 Clear ATTN flags to inhibit effect of ATTN key.
ENTRY: Doesn't matter.
EXIT: Carry clear if ATNFLG was set. LEVELS: 0. USES: A(A), Di.

HP—-T1 System Entry Points 153

AVS2DS 09708 Send a buffer at AVMEMS to display.
ENTRY: Buffer of chars at AVMEMS terminated with FF byte. P=0.
EXIT: P=0, Carry clear. LEVELS: 3. USES: P, A, B, C, D, D1, R0(10-5), R2, STMTRO.

BF2DSP 01COE Send a buffer to the display.
ENTRY: D1 points to chars terminated with an FF byte.

BF2STK 18663 Push a string buffer onto math stack.
ENTRY: Di=math stack,P=0. S0=0 to go to EXPR when done or S0=2 to return when done.
EXIT: P=0,D1 adjusted for string, DO unchanged.
LEVELS: 1. USES: A(A), B(A), C(A), D(A), R1, DO, D1.

CHIRP OEC5A Does a short "error" beep.
ENTRY: HEXMODE. EXIT: HEXMODE. LEVELS: 2. USES: A, B, C, D, P, DO.

CK"ON" 076AD Check if ON/ATTN key has been pressed. Needs called after each statement. Use within
operations which you inay want to be able to interrupt in process.
ENTRY: Any.
EXIT: Carry set if ATTN not hit. Carry clear, S14 (no cont) set if ATTN has been hit.
LEVELS: 0. USES: A(S), D1, Si4.

CLRFRC 0C6FC Clear fractional part of 15 form in A/B.
ENTRY: A/B=15 digit form.
EXIT: DECMODE, A/B=digit with fractional part cleared. Carry set if no FP, clear otherwise.
LEVELS: 2. USES: A(A), B, C(A), P.

CMPT 125B2 Return current time in 512ths second since Jan 1,0000 in hex.
ENTRY: Any.
EXIT: HEXMODE, P=0, Carry clear, C and R1 = current time, RO=timer value represents current time.
LEVELS: 1. USES: A, B, C, D, P, RO, R1, DO, D1, S0-S11.

COLLAP 091FB Collapse math stack.
ENTRY: Not important.
EXIT: D1=MTHSTK, C(A)=new (MTHSTK), Carry clear. LEVELS: 0. USES: C(A), D1.

CRLFND 0229E Send CR/LF to display ignoring current delaB setting.
ENTRY: P=0. EXIT: P=0. LEVELS: 5. USES: A, B, C, D, DO, D1.

CSLC15 1B427 C shift nibs left circular.
CSLC14 1B424 CSLC11 1BAi1B CSLC8 1B42C CSLC5 1B435
CSLC13 1B424 CSLC10 1B418 CSLC7 1BA2F CSLC4 1B438
CSLC12 1BALE CSLC9 1B415 CSLC6 1B432 CSLC3 1B43B

CSRC15 1B441 C shift nibs right circular.
CSRC14 1BA43E CSRC11 1B435 CSRC8 1B42C CSRC5 1B41iB
CSRC13 1B43B CSRC10 1B432 CSRC7 1B415 CSRC4 1BA1E
CSRC12 1B438 CSRC9 1B42F CSRC6 1BA418 CSRC3 1B421

D1C=R3 03047 Restore C(A),D1 from R3. This is the opposite of R3=D1C.
ENTRY: Any.
EXIT: C(A)=R3(A), A(A)=R3(5-9),D1=R3(5-9). Carry not affected.
LEVELS: 0. USES: A, C(A), D1.

EDA_'_YR2.YID 13407 Convert #days since Jan 1,0000 to Julian date (year and day of year).
N : Day#

EXIT: SETDEC, A(W)=year(BCD), B,C=day of year (BCD). LEVELS: 1. USES: A, B, C, D, P.

DAYYMD 13335 Convert day# to year,monthday.
ENTRY: C=day# (in hex).
EXIT: A=year (BCD decimal), B=month(BCD decimal), D=day (BCD decimal).
LEVELS: 1. USES: A, B, C, D, P.

154 HP-T1 System Entry Points

DCHX=C 1B2D0
DECHEX 1B2D2 Convert decimal integer to hex integer.
ENTRY for DCHX=C: C(W)= decimal integer.
ENTRY for DECHEX: A(W)= decimal integer.
EXIT: P=0, HEXMODE, A(A)=hex int. Carry set if good number, clear if overflow; XM= not carry.
LEVELS: 1. USES. A, B, C, P, XM.

DCHXF 1B223 Convert 12 digit floating point to 5 digit hex integer.
ENTRY: A(W)= floating point number.
EXIT: P=0, HEXMODE, A(A)=hex integer, Carry set if number is in range and positive. Carry clear if out
of range. If carry clear and XM=1 then number is out of range and FFFFF is returned. If carry clear and
XM=0 then number is negative and is returned in 2's compliment.
LEVELS: 1. USES: A, B, C, P, XM.

DCHXW OECDC Convert full word decimal to hex.
ENTRY: P=0, HEXMODE, C=number.
EXIT: A, B, C= hex number, carry clear. LEVELS: 0. USES: A, B, C, P.

DRANGE 1B076 Verify that a byte is in range ASCIl "0"—-"9".
RANGE 1B07C Verify that a byte is in specified range.
ENTRY for DRANGE: P=0, A(B)=Byte to check.
ENTRY for RANGE: P=0, A(B)=byte to check, C(B)=lower boundafi', C(3—2)=upper boundary.
EXIT: P=O0, Carry clear if the byte was in the range. LEVELS: 0. USES: A(B), C(A), P.

DSPBUF 09723 Send a buffer of characters to display. Versatile routine; send until terminator byte is
found or a specified number of chars. Can observe or ignore width.
ENTRY: DO points to buffer. P=0 to send until terminator byte (specified in A(B)) is found. P=2 to send
number of chars specified in A(A), Ignore width. P=4 As with P=0 but observe width. B(A) must be zero.
EXIT: P=0, Carry clear. LEVELS: 3. USES: A, B, C, D, DO, D1, RO, R1, R2, STMTRO.

ESCSEQ 023C1 Send escape (ASCIl 27 decimal) followed by one other character to display.
ENTRY: P=0, C(B)=character to follow the escape character.
EXIT: P=0.
LEVELS: 4. USES: A; B, C, D, DO, D1. If an interrupt occurs also uses SKRSTK / RSTK<R — be
aware that this uses some RAM.

EXPR OF23C Function return. Assumes DO and D1 are in order and stack is free of trash.
ENTRY: DO=pgm counter, Di=stack pointer.
EXIT: Back to BASIC. LEVELS: 4. USES: Everything.

FILEF 09FBO Find a file in MAIN file chain only.
FINDF 09F77 Find a file in specified chain.
FINDF+ 09F63 As with FINDF but checks for bad data.
ENTRY: File name in A(W).
For FINDF also D(S)=F for main & plug—ins or D(S)=0 for main only.
EXIT: P=0, If Carry clear then file was found and Di=file start, A(W),B(W)=file name, D(S)=device
type. (Current device types: 0=main RAM, 1=IRAM, 2=ROM, 3=EEPROM) D(B)= extender#/port#.
LEVELS: 2. USES: A, B, C, D, D1, S6, S8, R1, R2(if outside of main srch), R3(if single PORT search).

FLOAT 1B322 Convert dec integer to 12 digit float point.
ENTRY: A(W)=unsigned integer.
EXIT: DECMODEA(W)=floating point number, Carry set. LEVELS: 0. USES: A(W), P.

FNRTN1 OF216 FNRTN2 OF219
FNRTN3 O0F235 FNRTN4 OF238
Return to BASIC from a function. Push result of a function onto the math stack and go to expression
controller after evaluation. These are the easiest ways to exit a function which returns a number.
ENTRY for FNRTN1; A(A)=Pgm counter, Di=stack ptr, C(W)=number.
ENTRY for FNRTN2: A(A)=PC, Di=stack ptr,C(W)=number.
ENTRY for FNRTN3: A(A)=PC, D1 already adjusted for number, C(W)=number.
ENTRY for FNRTN4: D0=PC, D1 already adjusted for number, C(W)=number.

HP—T71 System Entry Points 155

HDFLT 1B31B Convert hex integer <=FFFFF to decimal float point.
ENTRY: A(A)=hex integer.
EXIT: DECMODE, P=0, A(W)=floating point number, Carry set.
LEVELS: 1. USES: A(W), B(W), C(W), P.

HEXASC 17148 Convert up to 7 hex digits to ASCIl. Returns the string reversed.
ENTRY: P=0A(W)=hex digits, C(S)=number of nibs to convert (<=T7).
EXIT: P=0, A(W),B(W)=converted string, C(S)=F, Carry set.
LEVELS: 0. USES: A(W), B(W), C(S).

HXDCW O0OECB4 Convert full word hex to decimal.
HEXDEC OECAF Convert A field hex to decimal.
ENTRY for HXDCW: C(W)=full hex word.
ENTRY for HEXDEC: A(A)= 5 hex digits.
EXIT: DECMODE, ABC=result in decimal, Carry clear. LEVELS: 0. USES: A(W), B(W), C(W).

HMSSEC 13274 Convert decimal hours,mins,sec to hex seconds since midnight.
ENTRY: A(W)=hours (BCD integer), B(W)=minutes (BCD), D(W)=seconds (BCD).
EXIT: P=0, HEXMODE, AB ,C=seconds since midnight in hex, Carry clear.
LEVELS: 1. USES: A B, C, D, P

INFR15 0C73D Integer/Fraction Split 15 digits. Returns position of decimal point in P. If the exponent is
14 (representing a 15 digit integer) then C(A)=0. If exponent is >14 (but a finite) then C(A)=50000.
ENTRY: —. EXIT: A/B=split number. LEVELS: 1. USES: A, B, C, P.

I/OAL4+ 1197B Allocate I/O buffer without leeway check.
I/OALL 1197D Allocate 1/O buffer with leeway check. If buf exists will adapt to size specified.
ENTRY: C(X)=bufter ID#. I/OALL needs P=0.
EXIT: If Carry set then buffer allocated and D1 points past buffer header, DO points 1 nib past buffer
header front (at buf ID), B(A)=Dbuf size or amount it was changed in size. C(6—0)=header info, C(0)=4#
addresses to update, C(1-3)=ID#,C(4—6)=buffer length. If buf already exists and was expanded then
A=D1, D(A)= point from which expanded (from bottom). If carry clear then no room, C(4)=err#, P=0.
LEVELS: 3. USES: A, B, C, D, Do, Di.

I/OCOL 11979 Collapse 1/O buffer to zero length. Leaves header. If buf doesn't exist then 6 nibs of RAM
will be used without checking leeway. Use |/ODAL to eliminate header.
ENTRY: C(X)=buffer ID#.
EXIT: If Carry clear then zero len buffer created. If set then D1= past header, P=0,D0=past hdr at ID#.
LEVELS: 2. USES: A, B, C, D, DO, D1.

I/ODAL 11A41 Deallocate an 1/O buffer.
ENTRY: C(X)= buffer ID#.
EXIT: Carry set if buffer deallocated. Carry clear if buffer wasn't found.
LEVELS: 2. USES: A, B, C, D, DO, D1.

I/OFND 118BA Find I/O buffer, set high bit on buf ID# so it will be deallocated at next config.
IOFNDO 118C1 Find an 1/O buffer.
ENTRY: C(X)=Buffer ID#.
EXIT: If Carry set then C(X)=buffer ID#,D1 points past buffer header, A(A)=buffer length field,
C(S)=number of addresses within buffer to update. If not carry then buf was not found.
LEVELS: 0. USES:. A, C(A), D1.

IDIVA OECGE Integer divide in hex or decimal mode. Zeros nibs 5—15 of A&C then goes to IDIV.
IDIV OEC7B Hex or decimal full word integer divide.
CAUTION: if denominator=0 then this routine will loop indefinitely.
ENTRY: hex or decimal mode, A=dividend, C=divisor.
EXIT: mode not changed, P=15, quotient in A, remainder in B and C, Carry clear.
LEVELS: 0. USES: A, B, C, P

IVAERR 02920 Report an ‘“Invalid Arg" Error. Doesn't return.

156 HP-T71 System Entry Points

KEY$ 1ACA8 The KEYS function. Pops the last key from key buffer.
ENTRY: P=0.
EXIT: Pops a key, places it on the stack, returns to BASIC. Does not return, be sure DO,D1 are accurate.
LEVELS: 3. USES: A, B, C, D(A), RO, R1, R2, S0-S2, DO, D1i.

KEYCOD 1FD22 Keycode map. Maps the keycode to the definition. Example: ENDLINE is #38 which
maps to 0D hex (ASCIl 13).
ENTRY: DON'T! THIS IS NOT AN ENTRY POINT!

MEMBER 1B098 Check if a byte is a member of a set of up to 8 bytes.
ENTRY: A(B)=byte to be compared. C(P—0)=set of bytes in the set starting at nib 0, extending to P.
EXIT: P=0, Carry set if byte was found and in set. LEVELS: 0. USES: C(WP), P.

MEMCKL 012A5 Check available mem with or w/o leeway. Useful before creating temp. buffer.
ENTRY: C(A)=amount of mem to check for. P=0 if leeway to be added to amount to be checked.
EXIT: P=0. If carry clear then enough memory, B(A)=amount to check, A(A)=AVMEMS,
D1=(AVMEMS), C(A)=available memory minus requested amount. If Carry set then not enough memory,
B(A)=amount to check for, C(A)=eMEI\%.
LEVELS: 0. USES. A(A), B(A), C(A), D1.

MPOP1IN 0BD8D Pop one number from stack, give Signaled Op message if necessary.
ENTRY: Di=stack pointer.
EXIT: DECMODE, A(W)=number. Carry set if number is complex, imaginary part in RO.
LEVELS: 3. USES: A, B, C, D, R3, S8-11.

MPY OECBB Multiply hex*hex or hex*dec.
ENTRY: If hex*hex then SETHEX, args in A,C. If hex*dec then SETDEC, hex arg in C, dec arg in A.
EXIT: P unchanged, Mode not changed, Carry clear. Result returned in A ,B,C. If hex*hex then result is
hex. If hex*dec then result is decimal.

- LEVELS: 0. USES: A, B, C.

POP1IN O0BDI1C Pop one real number from math stack. Will error out if non—numeric data. Note: does
not move D1 past the number on the stack.
ENTRY: Di=math stack pointer.
EXIT: P=0, DECMODE. If Carry clear then result is real and in A(W). If Carry set then number is
complex, real part in A(W), imaginary part in RO.
LEVELS: 0. USES: A ,B(0). If Carry then uses RO.

POPiIN+ 0BD91 Pop 1 number from stack, check for NaN. Signal if appropriate.
POP1R OESFD Pop 1 number from stack, check for NaN.
ENTRY: Di=top of mathstack.
EXIT: DECMODE, A=12 digit form of number, Carry clear. Doesn't return if bad data.
LEVELS: 1. USES: A, B(X), P.

POP1S 0BD38 Pop 1 string from math stack. Exits with D1 pointing past header at end of string (low
mem). Errors out if bad data.
ENTRY: SETHEX, D1 points at string header.
EXIT: P=0, A(A)=string length in nibs, D1 points at last char (low memory end) in string.
LEVELS: 0. USES: A(W), Di, P.

POPBUF 010EE Pop last key from key buf. Interrupts disabled during this routine.
ENTRY: Any.
EXIT: Carry set if buffer was empty. If Carry clear then key is in B(A).
LEVELS: 0. USES: B(A), C(W), Do.

POPMTH 1B3DB Skip past the first item on math stack. Useful for counting items or skipping stuff.
Works with strings and complex numbers.
ENTRY: P=0, Di=top of math stack.
EXIT: P—_, D1 moved past item. LEVELS: 0. USES: A, C, D1.

HP-T71 System Entry Points 157

PUTRES 18115 Put a number in the RES register.
ENTRY: D1 points to number.
EXIT: HEXMODE, P=0, D1 unchanged. Carry clear if real, set if complex number.
LEVELS: 1. USES: A(W), B(0), DO, RO (If number is complex).

R3=D10 03526 Save D0,D1 in R3.
ENTRY:
EXIT: R3(A)=D0, R3(%--5)=D1, A(A)=C(A), Carry unchanged.
LEVELS: 0. USES: A, C(A), R3.

RDTEXT 17489 Read line from Text file to output buffer. File must have FIB# (ASSIGN# in BASIC).
ENTRY: R4(15-14)=file FIB#, OUTBS= start of output buffer, AVMEMSD=(OUTBS).
EXIT: P=0, AVMEMS= alter last nib read. If Carry then C(3—0)=error code. If Carry clear then ST set if
lile positioned at EOF, C(A)=length of line including header, or zero if no EOF marker at end offile. Line
length header or EOF marker not copied to output buffer.
LEVELS: 541 on RSTKBF. USES: A, B, C, D, DO, D1, RO, R1, R2, R3, P, S11-S9, S7, S6, S4-S0.

REVS$ 1B38BE Reverse characters in a string on math stack.
ENTRY: HEXMODE, Di=points at string header.
EXIT: D1 unchanged, C(A),D(A)=D0. Error out if item on stack doesn’t begin with proper str hdr.
LEVELS: 1. USES: A, B, C, D, P.

REVPOP 0BD31 Does a REVS then POP1S. See POP1S for details.

RNDAHX 136CB Pop, test, round a decimal number from stack.
ENTRY: Di=top of math stack.
EXIT: HEXMODE, P=0, A(A)=hex integer, XM=0. If Carry set then it is non—negative (incl —0). If
Carry clear then negative. Will error out if array, complex, or NaN.
LEVELS: 3. USES: A B(S), B(A), C(A), D(A), P, SB, XM.

RPLLIN O013F7 Replace a line in a file in memory. Used to insert, delete or replace.
ENTRY: P=0, OUTBS=start of replacement line, end of line is at AVMEMS, A(A)=address of last nib+1
of file, R3(A)=length of old line in nibs (use zero to insert).
EXIT: P=0, R3(A)=offset to move (destination end minus source end). A(A)=end of replaced line in file
plus one, B(A)=length of replacement line in nibs, C(A)=(OUTBS). If Carry clear then output buffer is
collapsed. If Carry set then unsuccessful and C(3—0)=err+.
LEVELS: 3. USES: A, B, C, D, DO, D1, R1, R2, R3.

SECHMS 13252 Convert hex seconds time of day to decimal hours, minutes, seconds.
ENTRY: C(W)=time of day in hex.
EXIT: hex, P=15 A(W)=hours(BCD int), B(W),C(W)=minutes(BCD), D(W)=sec(BCD). Carry clear.
LEVELS: 1. USES. A, B, C, D, P.

SETALR 12917 Set alarm relative to current time. Details same as SETALM.
SETALM 1290D Set absolute alarm time.
ENTRY: A(11-0)=number of 512ths second since Jan 1,0000, C(0)=alarm number (0-5).
EXIT: P=0, Ri=current time in 512ths since year zero, RO=timer value of current time. Carry clear.
LEVELS: 2. USES:. A, B, C, D, P, DO, D1, S0-S11, RO, R1.

SFLAG? 1364C Test a system flag.
ENTRY: HEXMODE, P-0, C(B)=flag number in hex (FF= flag—1).
EXIT: HEXMODE, P=0, D(A)=D0. Carry clear if flag clear, set if flag set.
LEVELS: 1. USES: A(A), C, D(A).

SFLAGS 135FA Set a system flag and update annunciator. De:ails same as SFLAGC.
SFLAGT 13608 Toggle a system flag and update annunciator. Details same as SFLAGC.
SFLAGC 13601 Clear a system flag and update the annunciators.
ENTRY: HEXMODE, P=0, C(B)=flag number in hex (FF=flag —1).
EXIT: HEXMODE, P=0, D(A)=DO0, flag cleared, Carry clear.
LEVELS: 2. USES: A(A), B(A), C, D(A), P, plus RAM at ANNAD1-4, SYSFLG.

158 HP-T71 System Entry Points

SLEEP 006C2 Scan the keyboard, go to light sleep if key buffer empty. Wakes up when key pressed.
Leaves the key in the buffer. Since it debounces, it won't recognize a key that was down when it was entered
(won't repeat while a key remains held down).
ENTRY:
EXIT: P=0. Carry clear if keys in buffer. Carry set if no keys in buffer.
LEVELS: 1. USES: A, B, C, DO.

SPLITA 0C6BF Split 12—form in A into A/B. If carry then we have NaN or INF.
NaN= A(A)=00F01, B(XS)=F. Inf= A(A)=00F00, B(XS)=F.
ENTRY: A=number to split.
EXIT: A/B= split number. LEVELS: 0. USES: A, B.

STR$00 1815C Convert a number on stack into a string back on the stack using current disp FIX.
ENTRY: Di=top of math stack. SO set if return when done, else jumps to EXPR. S1 set if leading and
trailing blanks are to be added.
EXIT: P=0, D1 points to string on stack, returns if SO was set. Errors to MEMERR if memory overflows.
LEVELS: 2. USES: A, B, C, D(A), RO, R1, R2, D1, SO0, S1.

STRTST 1B1iC7 Test two strings for equality. Returns pos within strs where equality test failed.
ENTRY: DO and D1 at high memory end of the two strings. C(A)= number of nibs to compare.
EXIT: B(A)=(block comparison length —1)/16, P=(block comparison length) mod 16.
DO0,D1 set at first words not equal. If comparison length= zero then Carry clear, XM=1. If strings equal

- then Carry clear, XM=0. If strings not equal Carry set, XM=0.
LEVELS: 0. USES: A, B(A), C, P, DO, D1.

STUFF 1BOB2 Fill memory with 16—nibble pattern of "stuff".
WIPOUT 1BOAF Fill memory with "0".
ENTRY: HEXMODE, Di=start of area to be filled, C(A)=length in nibs of area to stuff. For STUFF
entry A(W)=pattern to stuff, WIPOUT presets A(W) to zero.
EXIT: P=0, Di=past last nib stuffed, Carry clear.
LEVELS: 0. USES: P, C, D1. WIPOUT also uses A.

TODT 13229 Convert time in hex seconds since Jan 1,0000 to time of day, day#.
ENTRY: HEXMODE, C(W)=hex seconds.
EXIT: HEXMODE, P=15, A=days since zero in hex, B,C=seconds since midnight. Carry set.
LEVELS: 0. USES: A, B, C, P.

WFTMDT 085DD Zero flags(including nib 2), write time date to file header.
WFTMD-— 085D6 As WFTMDT but does not zero nib 2 (nib 2 is copy code).
ENTRY: DO=start of file.
EXIT: P=0, Ri=file start, DO=time field header.
LEVELS: 3. USES: A, B, C, D, P, DO, D1, RO, R1, S0—-S7, plus 32 nibs at SCRTC.

YMDDAY 13304 Convert year, month, day to absolute day number.
ENTRY: A=year (BCD), B=month (BCD), D=day (BCD).
EXIT: HEXMODE, P=0, AB,C= number of days since Jan 1,0000 in hex.
LEVELS: 1. USES: A, B,C,D,P

YMDHMS 130DB Return current time and date. Exits through YMDHO1.
ENTRY: Doesn't matter.
EXIT: through YMDHO1.

YMDHO01 130E5 Convert a time to 0000YYMMDDHHMMSS.
ENTRY: C(W)=time in seconds since Jan 1,0000.
EXIT: HEXMODE, C_OOOOYYMMDDHHMMSS A(B)=HH, B(B)=MM, D(B)=SS, Carry clear.
LEVELS: 2. USES: A, B, C, D, P, DO, Di, R0 R1, SO-81

HP—T71 System Entry Points 159

2F6D9 —1 suppress warning messages. 2F6E0 —29 allocatable — test only!
—2 beeper is off. —30 allocatable — test only!
-3 continuous power on. —31 allocatable — test only!
—4 inexact result trap (INX). —32 allocatable — test only!

2F6DA -5 underflow trap (UNX). 2F6E1 —33 allocatable — test only!
—6 overflow trap (OVF). —34 allocatable — test only!
—7 divide by zero (DVZ). —35 allocatable — test only!
—8 invalid operation {IVL). —36 allocatable — test only!

2F6DB -9 USER mode set. 2F6E2 —37 allocatable — test only!
—10 option angle radians mode. —38 allocatable — test only!

Round oif setting -38 a::oca:ag:e - :es: on:y:
near 7ere pes ne =10 allocatable — lest only:

—11 inf 0 0 p1 1g 2F6E3 —41 allocatable — test only!
—12 neg 0 1 0 1 —A42 plug—in module was pulled.
Display format —43 HP-T1 is dormant.

play . —44 always return from MEMERR.
2F6DC std fix sci eng 2F6E4 —45 clock mode (1 second update)

I 0 ¢ —46 clock EXACT. peser
- 1 —47 command stack is active.
—15 lowercase mode (LC ON) —48 control key was hit.
—16 option base 1 2F6E5 —49 DSLEEP from power down.
Display digits —50 req set TRNOF in MAINLP.

0123456780910 11 —51 turnoff at MAINLP.
2F6DD —-17 0101010101 0 1 —32 VIEW key pressed.

-180011001100 1 1 2F6E6 —53 reserved for HP use.
-19 0000111100 0 0 —54 reserved for HP use.
-200000000011 1 1 —55 reserved for HP use.

—56 reserved for HP use.
2F6DE _gé auto loopdp(t;w}:;)down "Jf 2F6ET —57 "AC" annunciator lit

—22 use extende —IL addressing - -~23 HPIL ENTER terminate by EOT 755 kgrepeninanied (see flag =9).
—24 RESTOREIO not reassign devices —60 *((*))" annunciator lit

2F6DF _gg (I;eeg lo;nd BASIC e 2F6E8 —61 "BAT" annunciator lit.
57 a;:'e'r;:tww Pf°"'|l’t > —62 *PRGM" annunciator lit.
Z28 allocat :)'errort mtessa'gei anguage —63 *"SUSP" annunciator lit.

allocatable — test only: —64 "CALC" annunciatorlit.
Display Escape Codes
Esc ote Description
A 1 Cursor up one line. If at top of screen will stay; Link moves to bottom of screen.
B 1 Cursor down. Move cursor down one line. Link will wrap to top of screen.
C Move cursor one position right. Some devices wrap to next line if the cursor is at end of line.
D Move cursor one position left. Some devices will wrap to previous line if at beginning of line.
E Clear display. Reset display, send the cursor home (upper left) and turn it on.
H Cursor cursor to upper left corner of the display.
J Clear display from cursor.
L Insert line above cursor, move cursor far left.
M Delete line with cursor on it, move cursor far left.
N 2 Change to insert mode with text wrap to next line.
O 4 Delete character at cursor position. Will wrap text from next line if necessary.
P Delete character at cursor position without wrap.
Q 4 Change to insert cursor (underline or arrow). 71 will go to insert mode.
R 4 Change to overstrike cursor display. 71 goes into overstrike mode.
S 1,34 Roll screen up one line. Will roll a line from screen buffer if it exists. Does not alter what is

displayed on the built—in LCD display, just the device.
T 1,2,4 Roll screen down one line.
< Turn off the cursor. Does not change from insert to overstrike mode.
> Tura the cursor on.
% 34 Move cursor to display address. Specify col then row.

Notes 1 Not supported by HP-71. 3 Not supported by HP-82477A HP-IL Link prog.
2 Not supported by HP—-82163A. 4 Not supported by some terminals.

160 Display Escape Codes

Dec Hex Oct Bin CHR$ Dec Hex Oct Bin CHRS$
0 0 0 00000000 NUL 128 80 200 10000000

1 1 1 00000001 SOH 129 81 201 10000001

2 2 2 00000010 STX 130 82 202 10000010

3 3 3 00000011 ETX 131 83 203 10000011

4 4 4 00000100 EOT 132 84 204 10000100

5 5 5 00000101 ENQ 133 85 205 10000101
6 6 6 00000110 ACK 134 86 206 10000110
7 8 7 00000111 BEL 135 87 207 10000111

8 8 10 00001000 BS 136 88 210 10001000

9 9 11 00001001 HT 137 89 211 10001001

10 A 12 00001010 LF 138 8A 212 10001010
11 B 13 00001011 VT 139 8B 213 10001011
12 C 14 00001100 FF 140 8C 214 10001100

13 D 15 00001101 CR 141 8D 215 10001101

14 E 16 00001110 SO 142 S8E 216 10001110

15 F 17 00001111 SI 143 8F 217 10001111

16 10 20 00010000 DLE 144 90 220 10010000

17 11 21 00010001 DC1 145 91 221 10010001

18 12 22 00010010 DC2 146 92 222 10010010

19 13 23 00010011 DC3 147 93 223 10010011

20 14 24 00010100 DC4 148 94 224 10010100

21 15 25 00010101 NAK 149 95 225 10010101

22 16 26 00010110 SYN 150 96 226 10010110

23 17 27 00010111 ETB 151 97 227 10010111
24 18 30 00011000 CAN 152 98 230 10011000
25 19 31 00011001 EM 153 99 231 10011001
26 1A 32 00011010 SUB 154 9A 232 10011010
27 1B 33 00011011 ESC 155 9B 233 10011011

28 1C 34 00011100 FS 156 9Cc 234 10011100
29 1D 35 00011101 GS 157 9p 235 10011101
30 1E 36 Q0011110 RS 158 9 236 10011110

31 1F 37 00011111 US 159 9F 237 10011111

32 20 40 00100000 SPACE |160 A0 240 10100000

33 21 41 00100001 ! 161 Al 241 10100001

34 22 42 00100010 " 162 A2 242 10100010 -

35 23 43 00100011 # 163 A3 243 10100011 #

36 24 44 00100100 $ 164 A4 244 10100100 S

37 25 45 00100101 % 165 A5 245 10100101 ¢

38 26 46 00100110 & 166 A6 245 10100110 &

39 27 47 00100111 - 167 A7 247 10100111 '

40 28 50 00101000 (168 A8 250 10101000 (

41 29 51 00101001) 169 A9 251 10101001)

42 2A 52 00101010 ~* 170 AA 252 10101010 ~*

The BASIC HP-71 Decimal / Hex / Octal / ASCIl Conversion Table 161

Dec Hex Oct Bin CHR$ Dec Hex Oct Bin CHRS$
43 2B 53 00101011 + 171 AaAB 253 10101011 +

44 2C 54 00101100 , 172 AC 254 10101100 ’

45 2D 55 00101101 - 173 AaAD 255 10101101 -

46 2E 56 001011i¢C . 174 AE 256 10101110 .

47 2F 57 00101111 / 175 AF 257 10101111 /

48 30 60 001100060 0 176 B0 260 10110000 O

49 31 61 00110001 1 177 Bl 261 10110001 1

50 32 62 00110010 2 178 B2 262 10110010 2

51 33 63 00110011 3 179 B3 263 10110011 3

52 34 64 00110100 4 180 B4 264 10110100 4

53 35 é5 00110101 5 181 B5 265 10110101 5

54 36 66 00110110 6 182 B6 266 10110110 6
55 37 67 00110111 7 183 B7 267 10110111 7

56 38 70 00111000 8 184 B8 270 10111000 8

57 39 71 00111001 9 185 B9 271 10111001 9
58 3A 72 00111010 : 186 BA 272 10111010 s

59 3B 73 00111011 ; 187 BB 273 10111011 ;

60 3C 74 00111100 < 188 BC 274 10111100 <

61 3D 75 00111101 = 189 BD 275 10111101 =

62 3E 76 00111110 > 190 BE 276 10111110 >

63 3F 77 00111111 ? 191 BF 277 10111111 ?

64 40 100 01i000G00 ® 192 cO0 300 11000000 @

65 41 101 01000001 A 193 cl 301 11000001 A

66 42 102 01000010 B 194 c2 302 11000010 B

67 43 103 019000C11 cC 195 c3 303 11000011 c¢

68 44 104 01000100 D 196 CcC4 304 11000100 D

69 45 105 01000101 E 197 c5 305 11000101 E

70 46 106 01000110 F 198 cé6 306 11000110 F

71 47 107 01000111 G 199 c7 307 11000111 G

72 48 110 01001000 H 200 ¢c8 310 11001000 H
73 49 111 01001001 I 201 c9 311 11001001 I

74 4a 112 01001010 J 202 CA 312 11001010 J

75 4B 113 01001011 K 203 ¢B 313 11001011 K
76 4Cc 114 01001100 L 204 CC 314 11001100 L

77 4D 115 01001101 M 205 Ccb 315 11001101 M

78 4 116 01001110 N 206 CE 316 11001110 N

79 47 117 01001111 o 207 CF 317 11001111 o

80 50 120 ¢1G10000 P 208 DO 320 11010000 P

81 51 121 01010001 ¢ 209 D1 321 11010001 o

82 52 122 01010010 R 210 D2 322 11010010 R
83 53 123 01010011 s 211 D3 323 11010011 s

84 54 124 01010100 T 212 D4 324 11010100 T

85 55 125 01010101 U© 213 D5 325 11010101 U©

162 Decimal / Hex / Octal / ASCIl Conversion Table The BASIC HP-71

Dec Hex Oct Bin CHRS$ Dec Hex Oct Bin CHRS$

86 56 126 01010110 Vv 214 D6 326 11010110 Vv

87 57 127 01010111 w 215 D7 327 11010111 w

88 58 130 01011000 X 216 D8 330 11011000 X
89 59 131 01011001 Y 217 D9 331 11011001 Y

90 5o 132 01011010 2 218 DA 332 11011010 Z

91 5B 133 01011011 [219 DB 333 11011011 [
92 5¢ 134 01011100 \ 220 DC 334 11011100 \

93 5D 135 01011101] 221 DD 335 11011101]

94 5 136 01011110 *~ 222 DE 336 11011110 *
95 5F 137 01011111 _ 223 DF 337 11011111

96 60 140 01100000 ¢ 224 EO 340 11100000 7

97 61 141 01100001 a 225 E1 341 11100001 a

98 62 142 01100010 b 226 E2 342 11100010 b

99 63 143 01100011 c 227 E3 343 11100011 ¢

100 64 144 01100100 d 228 E4 344 11100100 d

101 65 145 01100101 e 229 E5 345 11100101 e

102 66 146 01100110 f£ 230 E6 346 11100110 f£

103 67 147 01100111 g 231 E7 347 11100111 g

104 68 150 01101000 h 232 E8 350 11101000 h

105 69 151 01101001 1 233 E9 351 11101001 i

106 6aA 152 01101010 234 EA 352 11101010 j
107 6B 153 01101011 k 235 EB 353 11101011 k

108 6C 154 01101100 1 236 EC 354 11101100 1

109 6D 155 01101101 m 237 ED 355 11101101 m
110 6E 156 01101110 n 238 EE 356 11101110 n

111 6F 157 01101111 o 239 EF 357 11101111 o
112 70 160 01110000 p 240 PFO 360 11110000 p
113 71 161 01110001 g 241 F1 361 11110001 g

114 72 162 01110010 r 242 F2 362 11110010 r

115 73 163 01110011 s 243 F3 363 11110011 s
116 74 164 01110100 t 244 F4 364 11110100 t

117 75 165 01110101 u 245 F5 365 11110101 u

118 76 166 01110110 v 246 F6 366 11110110 v

119 77 167 01110111 w 247 F7 367 11110111 w

120 78 170 01111000 x 248 F8 370 11111000 x

121 79 171 01111001 y 249 F9 371 11111001 vy

122 7Aa 172 01111010 =z 250 FA 372 11111010 =z

123 7B 173 01111011 251 FB 373 11111011

124 7¢c 174 01111100 f 252 FC 374 11111100 T

125 7D 175 01111101 } 253 FD 375 11111101 }

126 7E 176 01111110 ~ 254 FE 376 11111101 ~

127 7F 177 01111111 255 FF 377 11111111

The BASIC HP-T71

Decimal / Hex / Octal / ASCIl Conversion Table 163

g-

HP-71 Keyboard Map

#57 #58 #59 #60 #61 #62 #63 #64 #6£ #66 #67 #68 #69 #70

IF THEN| ELSE| FOR| TO NEXT| DEF| KEY| ADD| LR |PREDV|MEAN SDEV SQR
#1 #2 #3 "4 #5 86 #7 #8 #9 #10 #11 #12 #13 #14

QIW{E|R|[T|Y|{U|I|O|P |7 |8]|9]/
#113] #114 #115| #116] #117 #118 #119| #120| #12i #122 #123 #124 #1256 #126

qglwie|lrf{tlylujijolp]| | {]|} |~

#71 #72 [873 ¥74 #75 #76 #77 #78 #79 #80 #81 #82 #83 #84

CALL|GOSUBRETURNGOTQ INPUT|PRINT| DISP DIM BEEP FACT SIN COS TAN EXP

#15 #16 #17 #18 #19 #20 #21 #22 #238 #24 #26 #28 #27 #28

AlSIDIFIG|H|J|K|L|=|4|5]|6]F*%*
#127 #128 #129 #130| #131 #132 #133 #134 #135 #136 #137 #138 139 #140

a|s|d|flglh|j|k|l]|; |$|%]| &]|:

#85 #36 #87 #88 #89 #90 #91 I #92 #93 #94 #95 #96 #97 #98

EDIT| CAT [NAME[PURGEFETCH LIST DELETEAUTO|COPY| RES ASIN [ACOS |ATAN LOG
#29 #30 #31 #32 #33 #34 #35 #36 #37 #38 #39 #40 #41 #42

ZI| X|C|V|B|N|M| (]|)enoung 1 2 3 -
#141| #142 #143 #144 #145 #146 #147 #148 #149 #150 #151 #1562 #1563 #154

z| x|lc|vib|in|im|[]|] |mps| ! " # @

#99 £102 #103 'IOQJ #105 #106 #107 #109 #110 #111 #112

OFF SST |BACKI-CHAR I/R LC |-LINE USER VIEW CALC |CONT
#43 #46 #47 #48 #49 #50 #561 #563 #54 #56 #56

ON| - g~ [RUN| « » |sPc| 4 | 0o - v |+
#1565 #1568 #159 #160 #161 #162 #163 #165 #166 #167 #168

CTRL| k= 9 [errm| T & wser| < > ?

164 HP-T71 Keyboard Map

Index
Addr$ 57
Algebraic 22
Ansi 27
Array

Descriptors (Assembler)
113

Arrays 30
Math Rom 31
Re—Dimensioning 31
String 31

Ascii 27, 141
Codes 27

Assembler 6
Array Descriptors 113
Bin 58
Bugs 116, 117, 123
Decompiling 110
Entry 108, 111
Entry Points 113
Equ 108
ID 109
Instruction Set 150
Introduction 101
Key 109
Math Stack 111, 120
Minimum Requirements 152
MSG Table 108
Parameters 110
Parsing 109, 110
Poll 108
Return Stack 118
Scratch 120
Source Files 101
Token 109

Assign 10 11
Assign# 67, 69
Basic 55

File 55
Format 57
Functions 50
History 39
HP 41
Interpreted 50
Labels 41
Line Editor 47
Line Numbers 57
Programming 39, 47
Statements 50
Tokens 50
Translating 93

Battery
Cassette 134
Disc 17
Disc Drive 132, 133
HP71 3, 37, 82, 102, 131
Printers 135
Ram Disc 134

The BASIC HP—-71

Baud 144
Beep 21

Borland Turbo Basic 93, 146
Bugs 20, 44, 59, 76, 77, 81,

114, 116, 117, 123, 132
Calc Mode 33

Command Stack 35
Def Fn 36
Keyboard 34
Long Formulas 34
Precedence 33
Res 34
Variables 36

Call 7,9, 11
Cautions 10

Capricorn 5
Card Reader 7, 131

Finding 90
Cassette 3, 16, 134

Battery 134
Cat 11, 12,55
Cat All 11
Char (Assembler) 108
Charset 79
Chr$ 26
Clock Speed 5, 6
Cmdstk 86
Command Line 128
Command Stack 35

Setting Depth 86
Concatenation 23, 41

Date$ 81
Conflicts

Lex 59, 107
Cont 11
Control Codes 53, 76, 94, 135,

141, 160
Copy 12
CPU 5, 102

Clock Speed 5
P Pointer 104
Registers 5, 102

Carry 102
Control 103
Fields 103, 105
Scratch 103
Working 104

Saturn 5
Working Registers 102

Crashes 4, 117,119
Create 66
Data

File
Format 61

Files 57
Using 59

Data Files 59
Date

Date$ 20
Decompiling (Assembler) 110
Def Fn 82, 83

Calc Mode 36
File Sub—header 57

Def Key 12
Delay 15, 89
Delete# 61
Destroy 15
Dim 29, 45, 72, 73, 127
Disc 16, 132

Battery 133
Ram 134

Disp 8
Implied 21, 29

Display
Display Is 19
Finding 87
Format 89

Display Format 20
Display Is 19, 87
Edit 8, 15, 55, 66
EDLEX 61
End 16
End All 16
Eng 20
Entry Points 6, 113

Listing 153
Entry (Assembler) 108, 111
Environments 7

Suspended 9
Eprom 131
Equ (Assembler) 108
Error 16, 89
Escape 49, 53, 76, 94, 137, 138,

141, 145
Fetch 16
FiB 68
Fields (CPU) 105
File

Bin 58
Chain 57, 66
Closing 69
Creating 66
Data 57, 59
Fib 68
Finding 55
Forth 58
Header 55, 56
Key 64
Lex 58
Opening 67
Pointer 68

Index

Index
Recalling Data 69
Sdata 64
Text 61, 69
Types 55, 56
Workfile 15

Fileszr 62
Fix 20
Flags 88

Beeper 21
Global 7
Listing 45
Peek$ 88
System Flag Table 160

For 44
Step 44

Forth 58, 107
Functions 25, 50

Exiting (Assembler) 121
Global Environment 7
Gosub 42

Computed 43
Goto 40

Computed 43
lmplied 45
Label 79

Hex 5
Explained 5
Table 5

HPT1
Battery Life 3
Command Stack 35
CPU 5, 102
Crashes 4
Environments 7
Operating System 6
System RAM Table 148

HP-T75 3,5, 63, 73, 81, 98
HP-IB 137
HP-IL

Ascii Codes 27
Assign 10 11
Cassette 134
Cat 11
Copy 12
Data Files 66
Device List 135
Device Names 100
Disc 132
Display 135
Display Is 19
HP75 100
Initialize 16
Label 17
Mass Storage 3, 130, 132
Off 10 18
Plist 17
Printer Is 19

Index

Printers 135
Parge 15
Pwidth 20
Rename 18
Reset 18
Restore IO 18
Volume Label £6

Htd 5, 14, 84
IDS 58, 108, 109, 113
If 45
Inf 20
Initialize 16
Input 39
Insert# 62
Instruction Set (Asm) 150
Integer 29
Key Files 64

Format 64
List 17

Key (Assembler) 109
Keyboard

Alternate Character Set 80
Calc Mode 34
Cont 11
External 145
Put 36
Re—defining 12
Run 11
Waiting For a Key 82

Keydown 82
Keywait$ 13, 82
Keyword 11, 50, 58, 61
Labels 41

Goto 79
Mass Storage 17

Led 10, 15
Leeway 121
Len 53
Lex 58, 107

Array Descriptors 113
Conflicts 59, 107
Decompiling 110
Entry 111
Entry Points 113
Equ 108, 109
File Requirements 105
ID 107
MathStack 111, 120
Minimum Requirements 152
Parameters 110
Parsing 109, 110
Poll 108
Returin Stack 118
Scratch 120
Token 109
Using 58

Lexical Analyzer 110

LexID 109
Line Numbers 57
List 17
Loop 44

Step 44
Maintenance

Cassette 134
Disc Drive 133
Magnetic Cards 132

Mass Storage 132
Math

BASIC 22
Calc Mods 33
Calc Mode Precedence 33
Parentheses 25
Precedence 24, 35

Math Rom 31, 58, 112
Not 59
Variables 32

Math Stack 111
Numbers 120
Strings 120

Max 50
Mem 12, 18, 55
Memory 6

File Chain 66
File Size 89
How Much? 130
Main 7
Map (Simplified) 9
Map (Complete) 149
Modules 131
Ports 7,12

Menus 128
Microsoft 93, 138

QuickBasic 93, 94, 146
Modular Programs 126
Name 18
Next 44

Nibhex 110
Null 19
Num 26, 81
Nybble 5
Off 10 18
Operating System 6, 102
Option Base 30
P Pointer 104
Pack 17
Parameters

Assembler 110
Passing 9, 48

Parsing 22
Parsing (Assembler) 109, 110
Pause 10
Peek$ 84,93, 117

The BASIC HP-71

Index
Planning 125
Plist 17
Poke 84,93, 117, 140, 142
Poll (Assembler) 108
Pop 43

Assembler 103
Ports 5,7, 12
Pos 53
Precedence 24, 35

Calc Mode 33
Print# 68
Printer

Control Codes 53
Non-HP 142, 144
Plist 17
Printer Is 19
Pwidth 20

Printer Is 19
Printers 135
Private 55
Programs

Acyducy 47
Bior 70
Bublsort 126
Calcaid 36
Decide 51
Environ 10
Frog 46
Graphix 32
Incat 48
Mathquiz 38
Noblanks 146
Norems 146
Prflags 45
Reviex 105
Sample Lex 114
Sdtext 91

Purge 12, 15, 55, 66
Pwidth 20, 89
Ram 6

Disc 134
How Much? 130
Main 7
Modules 131
Ports 7,12
System 85
System RAM Table 148

Randomize
Read# 69
Registers 28

Carry (CPU) 102
Control (CPU) 103
CPU 5, 102
Fields Within (CPU) 103
P Pointer (CPU) 104
Res 25, 34, 88
Scratch(CPU) 103

The BASIC HP—-71

Sdata 64,90
Working (CPU) 102, 104

Remarks 41, 43, 71, 94, 99,
102, 106, 125, 126, 145

Rename 18
Replace# 62
Res 25, 34, 88

Complex 59
Reset HPIL 18
Restore 42, 68
Restore 10 18
Restore# 68
Return 42
Return Stack 118
Rom 6, 55
RS-232 3, 132, 135, 137

Cable 142
Run 7, 11
Saturn 5, 102
Sci 20
Scratch

Assembler 120
File 15
Lex ID 107, 109
Registers (CPU) 5, 102,

103, 104
Saving 127
Variables 73, 81

Sdata Files 64
Format 65, 92
Using 64

Search# 62
Secure 19
Setdate 19
Settime 19
Short 29
Startup 19
Statements 25, 50
Std 20
Sur$ 27
Strings

Arrays 31
Assembler 112
Centering 81
Dim 72
Filling With Spaces 81
Lowercase 81
Math Stack 120
Replacing Chars 81
Reversing 81, 105
Rotate Left 82
Rotating Right 82
Trimming Spaces 82
Variable Names 29

Sub—Programs 9, 48
Subroutines 42

Assembler 121

Syntax 21
Basic 47
Case 26
Concatenation 23, 41
Multi—-Statement Lines 23
Spaces 23

System Ram 85
Table 148

Tape 16
Terminal 3, 27, 87, 98, 135,

137, 139, 141, 143
Text File

Format 63
Text Files 61

Keywords 61
Reading 69
Using 61

TEXTUTIL 61
Then 45
Time 19

Time$ 20
Timers 77, 83, 88

Bug 77
Titan 5
Token (Assembler) 109
Tokens 50
Unsecure 19
Val 27
Variables

Arrays 30
Calc Mode 36
Calculator 28
Complex 32
Global 7
Lists 127
Math Rom 32
Memory Use 31
Names 32
Re—Dimensioning 31
Rules 32
Scratch 73, 81
Strings 52
Symbolic Names 29
Types 29

Volume Label 16
Width 20
WorkBook71 4, 114
Workfile 55

(el
Index

	Cover
	Contents
	Introduction

	How to Use This book
	Version 3
	Why Program?
	Limits
	Cautions

	2. The HP-71
	Central Processor (CPU)
	Clock Speed
	Hexadecimal Numbers

	Memory
	Environments
	Sub-Programs
	CALL Cautions

	3. Command Performance
	ASSIGN IO
	CALL, CONT, RUN
	CAT, CAT ALL
	COPY
	CLAIM PORT, FREE PORT, SHOW PORT
	DEF KEY
	DELAY
	DESTROY
	EDIT, PURGE
	END, END ALL
	FETCH
	INITIALIZE
	LIST, PLIST
	MEM
	NAME, RENAME
	OFF IO, RESTORE IO, RESET HPIL
	PRINTER IS, DISPLAY IS
	SECURE, UNSECURE
	SETDATE, SETTIME
	STARTUP
	STD, FIX, SCI, ENG
	TIME$, DATE$, SETTIME, SETDATE
	WIDTH, PWIDTH

	4. Getting Started
	It Just Beeps
	The Parser at Work
	Multi-Statement Lines

	BASIC Keyboard Math
	Mathematical Precedence
	Parentheses
	RES Register
	Other Operations

	Strings
	Calculator Variables
	Types of Variables
	Using Arrays
	ZEN and Variables

	5. CALC Mode
	CALCAID Program
	User Defined Functions
	Inside CALC Mode

	6. Basic BASIC
	GOTO
	HP BASIC
	Labels
	GOSUB, RETURN
	POP
	Computed GOGO, GOSUB
	FOR, NEXT
	IF, THEN
	ELSE

	7. HP-71 BASIC Programming
	Sub-Programs
	Interpreted BASIC
	Strings
	Control Codes

	8. HP-71 Files
	The File Chain
	BASIC Files
	BIN Files
	FORTH Files
	LEX Files
	DATA Files
	TEXT Files
	Special TEXT File Keywords
	KEY Files
	SDATA Files

	9. HP-71 Data Files
	The Data File
	Creating the Data File
	Opening the Data File
	The File Pointer
	Storing Data
	Recalling Data
	Closing the Data File

	10. BASIC Programming Hints
	Nesting Mathematical Expressions
	Testing Execution Speed
	OPTION BASE, DESTROY ALL, RESET
	Variable Names
	DIM Strings
	INTEGER, SHORT
	Constants
	Inverting a Flag
	Flag Variables
	Clearing an Array
	User Defined Functions
	END, END SUB
	IF, THEN, ELSE
	ON ERROR
	GOTO, GOSUB to a Label
	Enter Labels Without Quotes
	Optional Parameters
	Recalling a Displayed Line
	Passing Parameters
	Checking For a LEX File
	ON TIMER
	Input without INPUT
	Quoted Strings
	String Arrays
	The Alternate Character Set
	Filling a String With Spaces
	Centering a String
	DATE$
	Lowercasing a String
	NUM
	Replacing one Character with Another
	Reversing a String
	Rotating Left
	Rotating Right
	Trimming Leading Spaces
	Trimming Trailing Spaces
	Waiting For a Key

	11. PEEK$s & POKEs
	System RAM
	Strings in SDATA Files

	12. Convert From other BASICs
	Microsoft BASIC
	HP-75 BASIC

	13. Assembly Language
	Assembly Language Introduction
	Source Files
	The HP-71
	CPU Registers
	Return Stack (RSTK)
	Assembling the LEX File

	The LEX File
	Parsing Functions
	Types of Parameters
	Decompiling
	Entry Conditions

	The Math Stack
	System Entry Points
	The SAMPLE LEX File
	Crashes
	Instruction Set
	The RETURN Stack
	Strings From Math Stack
	Numbers From Math Stack

	Temporary Scratch
	Leeway
	Exiting the Function
	Subroutines
	Assembler Bugs

	14. Nonobfuscating Programs
	Modular Programming
	Variable Lists
	User Friendly Programming
	Menus and Command Lines

	15. Accessories
	Data Storage
	How Much RAM Can I Add?

	HP-IL Mass Storage
	Disc Media
	HP 82161A Cassette Drive
	Printers
	Display Devices
	Other HP-IL Devices

	16. Communicating with Other Computers
	A Computer as a Keyboard
	A Terminal as a Keyboard
	Exchanging Files
	Display Devices
	Communicating with RS-232C
	HP-IL to PC Interface Card

	Tables
	System RAM
	Memory Map
	Assembler Instruction Set
	Minimum LEX File Requirements
	Fields in Working Registers
	System Entry Points
	System Flags
	Display Escape Codes
	Dec/Hex/Oct/Bin/ASCII Table
	Keyboard Map

	Index

