gSION 2.1

The I
BASIC HP-71

Up and Running in
CALC Mode, BASIC and Assembly Language

by Richard E. Harvey

L)L

The BASIC HP-71

Up and Running in
CALC Mode, BASIC and Assembly Language

Version: 3.0

by: Richard E. Harvey

el LU

Contents
Introduction

How to Use This book
Why Program?
Limits
Cautions
2 The HP-71
Central Processor (CPU)
Clock Speed
Hexadecimal Numbers
Memory
Environments
Sub-Programs
CALL Cautions
3 Command Performance
4 Getting Started
The Parser at Work
BASIC Keyboard Math
Mathematical Precedence
Parentheses
Strings
Calculator Variables
ZEN and Variables
S CALC Mode
6 Basic BASIC
HP BASIC
7 HP-71 BASIC Programming
Sub-Programs
Interpreted BASIC
Strings
Control Codes
8 HP-71 Files
The File Chain
BASIC Files
BIN Files
FORTH Files
LEX Files
DATA Files
TEXT Files
KEY Files
SDATA Files
9 HP-71 Data Files
Creating the Data File
Opening the Data File
The File Pointer
Storing Data
Recalling Data
Closing the Data File
10 BASIC Programming Hints
11 PEEKS$s & POKEs

aocaumumuumnumnPuumunasa s WWLL o —
ag-h&-a\aoooooo\xu-Uleooo\l-":wwﬁmgﬁamggmswqo\mmmmaawwu

¥Nze283

System RAM
Strings in SDATA Files
12 Convert From other BASICs
HP-75 BASIC
13 Assembly Language
Source Files
The HP-71
CPU Registers
Return Stack (RSTK)
Assembling the LEX File
The LEX File
Parsing Functions
Types of Parameters
Decompiling
Entry Conditions
The Math Stack
System Entry Points
Crashes
Instruction Set
The RETURN Stack
Strings From Math Stack
Numbers From Math Stack
Temporary Scratch
Exiting the Function
Assembler Bugs
14 Non—obfuscating Programs
Modular Programming
User Friendly Programming
Menus and Command Lines
15 Accessories
Data Storage
How Much RAM Can I Add?
HP-IL Mass Storage
Printers
Display Devices
Other HP-IL Devices
16 Communicating
Communicating with RS-232C
HP-IL to PC Interface Card
Tables
System RAM
Memory Map
Assembler Instruction Set
Minimum LEX File Requirements
Fields in Working Registers
System Entry Points
System Flags
Display Escape Codes
Dec/Hex/Oct/Bin/ASCII Table
Keyboard Map

85
90
93
98
101
101
102

102
103

120
120
120
121
123

125
126
128
128

130
130
130
132
135
135
135

137
142
145

148
148
149
150
152
153
154
160
160
161
164

The BASIC HP-71

We can thank Hewlett-Packard for the HP-71, but also the user community, for demonstrating to
HP that there is a need for this powerful, compact tool, and for following though in the years since
its introduction. This book is dedicated to those users.

Introduction

In the early 1970’s we had 15 pound "portable" calculators like the HP-46. In 1972 we saw the
introduction of the HP-35, the worlds first handheld scientific calculator. 1974 brought us the
programmable portable HP-65 with 100 step memory and built-in card reader. At the close of the
70’s the HP-41, an engineering tour de force, became as much at home on a surveyor’s belt, a
student’s desk or floating in zero-G. Each of these machines, and others between them, share a
design philosophy and RPN (Reverse Polish Notation). Post-fix math has been a way of life for a
generation.

The mid-80’s saw Hewlett-Packard looking to expand their market and exploit the technological
advances of the computer boom. The 71 has retained the HP design philosophy, but traded in
RPN for greater speed, memory, and an open, expandable operating system, with an advanced
dialect of BASIC.

There are two camps of HP supporters: Those who think that RPN is the only way to run a
calculator, and those who think that HP BASIC is the only way to run a computer. Until the HP-
71, those two factions barely knew each other existed.

Well, calculator factions, meet HP BASIC! This is not the checkbook-balancing, Pong-playing,
beginner only language found on home computers, but an advanced mathematical tool with several
hundred highly optimized functions. And if you still want it, RPN is just a ROM away.

Personal computers were used for playing Star Wars long before word processors or spreadsheets
were even contemplated. It was a well kept secret for years that computers are fun. Let’s get some
work done, but, let’s make it an enjoyable experience. That’s the attitude we’ll share in this book.

This book is designed to introduce the novice or experienced user to the HP-71, CALC mode, and
HP BASIC, but not leave him there too long. We’ll discuss the 71, not as a mystical beast with
powers known only by an elite few, but as a learning and working tool. We'll also describe the
internal design of the 71 and Assembly Language programming, supporting these discussions with
several tables and charts. Much of the material covered in volumes one and two of the HP-71
Internal Design Specification is paraphrased, making the purchase of those books (at about $100)
unnecessary except for the most devoted Assembly language user.

Copyright © 1986, 1987, 1988
Richard E. Harvey

Box 5695

Glendale, Arizona 85312 USA

The BASIC HP-71 1

How to Use This book 1

Much of this book is reference style, it isn’t necessary to read it from start to finish. Most of the
charts and tables are at the back of the book. While this may cause some page shuffling at first
reading, it makes this important reference material easier to find later without having to wade
through several thousand words of flowery prose.

Most subjects are given a cursory introduction, followed by greater detail. We've tried to include
most material on a subject in the same section to minimize darting back and forth. For example,
TEXT files are discussed in an introductory manner, then using them in BASIC, then their
internal structure (down to the nibble level), in the same section. Each section begins with a main
heading, and most topics have a layout generally as follows:

Main Topic
What it does
Application
Fanatical Detail

The obvious disadvantage of this system is that, if you haven’t used HP BASIC or your 71 much
yet, then some place about the middle of the third part it’ll look like its drifting off into a foreign
language. The glossary in The HP-71 Reference Manual will aid in the translation to English, or you
could reserve reading those sections in this book until a later date.

Examples are indented from the left margin, and are explained in the immediately preceding text.
Since an example may be at the end of a discussion, text which follows will not necessarily have
anything to do with it. Numbers are printed in STD display format. Remarks in examples are
preceded by and exclamation mark, even when we’re illustrating Calc Mode; this is the standard
HP BASIC way to indicate remarks, so there’s no time like the beginning to become comfortable
with it. Boxes with a simulated flashing cursor (actually, a '"§" character) simulate the LCD display
on the 71, though they occasionally overflow quite a bit on the right. Nested boxes along the left
side of the page demonstrate a series of steps to follow. When relevant, a second box on the right
shows likely results of the experiment (usually without the flashing cursor).

Listings of Assembly Language follow the standard Assembly indentation format: Labels are left
flush and code is indented eight spaces. Programs supporting a topic are listed with the topic.
Other sample programs and subroutines are scattered throughout the book, and many are not
mentioned in the text at all; we’ll leave it to you to make these discoveries.

The 71 understands commands written in either upper or lowercase. In this book, we'll usually
show commands in UPPERCASE to help distinguish them from text. Either of the following is
acceptable.

beep BEEP
We'll also often say "Now, create a file called TEST" though it isn’t always necessary, and it really

doesn’t matter what you call the file. If you want to follow the example and you already have a file

2 How to Use This Book The BASIC HP-71

called TEST, feel free to use another file name. Computer technical journals, for example, often
call things FOOBAR; these are personal computers, after all.

While we’ll cover quite a bit of information quickly, there are no prizes for speed reading. Take
your time and explore your 71, you may be surprised about how much you'll find. If you are new to
your 71, Chapter 3, "Command Performance" should help you get started without having to wade
too deeply through the HP-71 Reference Manual.

Version 3?

There’s little you can’t do with a 71. To help prove that point, the first version of this book was
printed with one. Files were either written on the 71 connected to a terminal, or transferred to the
71 over RS-232 and stored on the 9114 Disc Drive (on a single disc). All file management, text
formatting, and printing tasks were handled by an HP-71B with 17.5K of RAM using programs
written by the author. Because of the long battery life of the HP82161A Cassette Drive, most
printing was done from Cassette based files. While there’s much to be said for the right tool for
the job, who can define what is the right tool in all cases? Most often, the job is made to fit
available tools. Our 71 is a more portable, personal, and versatile computer than the desk-bound;
what can it do? Whatever you want! While version 3.0 was edited with a desk-top computer, the 71
was always at its side, usually connected by HP-IL cable. Changes in this latest revision include
more consistent organization, clearer illustrations, and an index.

Handheld computing has changed considerably in the nearly two years since this book was first
printed. The HP-75 has been discontinued, leaving the 71, and the singular HP-94, alone in data
collection and system monitoring. New HP calculators, including the HP-19B business calculator
and HP-28S scientific calculator, share some of the technology, though not the expandability or
BASIC language of the 71. And the amazing 71 itself has undergone changes to provide more
immunity to static energy. Perhaps the most important development is the variety of new memory
modules, opening up the 71 to tasks previously requiring many pounds of hardware.

Why Program?

Plug in a ROM, fire it up, and there you have it: Instant solutions. Many people buy a 71 with that
single objective in mind. Then they think, "What else can I do with the data from the Finance
ROM" or "If only my 71 could..." With an understanding of BASIC comes not only the ability to
write programs, but also the skill to make better use of those we already have. This personal
computer becomes more personal when we learn to use it our way, not somebody else’s; we can
adapt the machine to our needs, not the other way around.

A principal use of personal programs is to solve little problems: To copy a list of files between
Discs, solve those math equations we always use, or set-up the printer for compressed type. And
once we're comfortable with these solutions, we can do just about anything, for a large program is
a group of smaller solutions. With this knowledge we can rewrite our favorite HP-41 or BASIC
programs from other machines to run on our 71. Or modify distributed programs to suit our own
needs.

Lest we forget, programming (along with its associated discoveries) is fun! Working through a
program provides as much pleasure as having it done. And, a program is never truly finished.

Chapter 1 How to Use This Book 3

Limits

The material presented herein is informational only and not warranted for any application. While
every effort has been made to assure the accuracy of the information, no liability is assumed.
Determination of suitability and implementation are the users responsibility. These materials are
the property of the author. By receipt of these materials the user agrees to abide by applicable
copyright laws.

Cautions

There are no wrong keystroke combinations. The 71 may beep, scold you with an error message, or
even display the ominous sounding "Memory Lost" and reset itself, but there is no way to damage
it by pressing keys. No operations described in this book will cause a crash (freeze the LCD, or
keyboard or display that message) if the directions are followed exactly. The operations least
forgiving of mishaps are POKEing, and testing Assembly Language routines. It is suggested that
you make backup copies of all important files before trying the more esoteric operations. Don’t
assume that files in a PORT are safe.

A controlled crash (INIT-3) is often used to purge unwanted files and restore the machine to start-
up conditions. INIT-1 will usually free the 71 from any "stuck" situation. The 71 was designed to
perform this operation, there is no damage. You can do an INIT-1 by pressing the ON key and /
key simultaneously, then pressing ENDLINE at the prompt. For INIT-3, press the 3 key before
pressing ENDLINE.

A very rare crash won’t respond to INIT-3. There are two courses of action: Pull out modules and
batteries (and un-plug the AC cord), and hold the down ON key for about 30 seconds. If that
method doesn’t revive the poor confused beast then leave the 71 sitting (without battery) overnight
until the circuits are completely discharged. HP has been known to suggest opening the card
reader compartment (remove the card reader if present), and shorting together the two taller pins
on either end of the row of pin connectors with a paper clip, for just a second. The one time the
author has seen the need for this drastic fix was on a day of 105 degrees and under 10% humidity.

WorkBook71

WorkBook71 is a software package for the HP-71 including Virtual Memory Spreadsheet, File
Manager, Data Format Converter, Full Screen Text Editor and Text Formatter. The ROM version
includes an RPN calculator and several other utilities. Please contact the author or dealer from
whom you purchased this book for information.

Lol

4 How to Use This Book The BASIC HP-T71

The HP-71 2

In many ways the HP-71 is a hybrid of calculator and computer, part way between the HP-41 and
HP-75. The 41 has a 1-bit CPU which evolved from the HP-35 in the early 70’s, and the newer
HP-19B and HP-28S calculators use a processor similar to the 71. The 75, on the other hand, is
an 8-bit portable computer which evolved from the desk-bound HP-85. Before introduction, HP
had considered calling the 71 the "HP-44" because of the great popularity of the HP-41, then
rationalized that, since it is a true computer, it should have a computer name. Hewlett-Packard
attaches internal names to products under development; the HP-75 was the Kangaroo, and the
HP82161A Cassette Drive was called Filbert (really!), and the 71 is Titan. In addition, the
microprocessor (CPU) which controls Titan is called Saturn, and the internal bus structure is
Capricorn.

Central Processor (CPU)

The 71 has a custom 4-bit CPU. Four bits means that four address lines carry data into and out of
the processor. Everything else being equal, this would make the 71 four times as fast as the HP-41,
and half as fast as most desktop machines. However, the 71 is a next generation machine, handling
full precision floating point math in its 8-byte CPU registers. Registers in the CPU in most
desktop computers, by comparison, can only hold two or four bytes, thus making floating point
math on the desktop machine somewhat slower than integer only. These large registers mean that
the 71 is optimized for "hard" math and will provide greater accuracy than, for instance,
interpreted BASIC running on an IBM PC.

Clock Speed

Another unique aspect of the 71 is the low power consumption. Partly responsible for this is the
relatively low clock speed. With the ease of doing high precision math, the HP engineers
rationalized that great processor speed would not be necessary. Most 71’s run at a little over 600kz,
though this speed varies with the number of devices attached (combined city and highway, your
mileage may differ). This is the speed at which the CPU runs, and does not affect the speed of the
real time clock or tone of the beeper. When doing speed comparisons with other computers, this
compromise will be immediately apparent. In purely mathematical tests the 71 will keep up with or
surpass the desktop machine, while other operations, primarily those dealing with a great deal of
memory accessing, the desktop machine will win.

Clock speed is re-computed each time the 71 is reconfigured, which happens when the 71 is turned
on or :PORT: are altered. You can see your 71’s current clock speed with the following:

! Find the current CPU speed.
Lp$=PEEx$("2F977~,5)ﬁ I ! Then display it.

DISP HTD(PS$[5]&P$[4,4]1&PS$S[3,31&P$([2,2]&PS$[1,1]) 16§

Hexadecimal Numbers
In the above example, "2F977" is a location in memory expressed in hexadecimal (base 16).
Numbers are generally handled in standard decimal (base 10) format, so the 71 keeps hexadecimal

Chapter 2 The HP-T1 §

(usually called just "hex") in strings. The keyword HTD converts the results of the expression to
standard decimal (base 10) format, and DTH$ converts decimal numbers to hex strings. The
hexadecimal number system is often used to simplify communications with the binary world of the
computer. Everything within the HP-71 is represented in the binary (base 2) numbering system
internally. Binary digits or "bits" (a contraction of parts of both words) can have a value of either
zero or one. This limited range is made usable by grouping units of four bits into a nibble or, as
we'll call it throughout this book, a nib (an alternate spelling is "nybble"). Various combinations of
zeros and ones in these four bits represent values from zero (all bits clear) through fifteen (all bits
set). So, hex is a convenient way to deal with binary numbers.

Decimal Hex Binary Decimal Hex Binary
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

In hex, "9" plus "1" is "A"; values between 10 and 15 are represented as a single digit of "A" through
"F". The 71 represents values larger than 15 (or "F" in hex) in groups of nibs called words. The
most common word size is two nibs, or one Fyte, though word size differs with other machines.

Memory

To keep things sorted out, the 71 assigns an individual number, called an address, to each nib of
RAM and ROM. Memory location "2F977", named CSPEED, is where the 71 stores the current
clock speed setting. Notice that we specified five hex digits for the location; since the HP-71 has a
4-bit CPU, all locations are nibs or 1/2 bytes. A five nib word size, therefore, addresses "FFFFF"
or 1048576 nibs (including nib "00000") of memory. This translates to 524,288 bytes, or simply
512K. So, the maximum amount of memory, RAM or ROM, is 512K bytes.

A 71 with ostensibly 17.5K bytes of RAM has only about 16K available, even when first turned on,
nothing in it. This is because the Operating System reserves part of RAM for pointers and other
necessary system information, like CSPEED. This seemingly inflated rating of memory is actually
less than most portable computers which often usurp 4K or more just to be able to power-up. And
desktop computers can squander as much as 80K or more before loading any programs.

The Operating System and BASIC live in four 16K ROMs in the first 64K bytes (from address
00000 through IFFFF) of the memory map. This is known as "hard addressed" or "hard
configured." That is, regardless of how memory moves around (and it does, whenever we add
memory or plug-in ROMs), the Operating System will always have the same home. In this world of
flux, that 64K block of ROM will remain constant. This stability is invaluable for the Assembly
L.anguage programmer who wishes to use subroutines from the Operating System. Hewlett-
Packard has guaranteed that the official entry points will remain constant, even if the 71's
Operating System is changed. An entry point is the address of the beginning of a machine language

6 The HP-T1 The BASIC HP-71

subroutine. While these addresses won’t change, the code following may; for this reason you
should only use documented entry points. Over 100 entry points are listed in the back of this book.

:PORTs

All of memory, indeed all devices attached to the 71, are addressed through a bus. That can almost
be taken literally: A piece of data can tell the bus where it is going, and the 71 delivers it to that
address. The 71’s engineers took advantage of this system to allow portions of RAM to be
partitioned from MAIN RAM. When a portion of RAM is designated as independent RAM, it is
removed from MAIN RAM, and its address is reconfigured to look much like a ROM. The files
are still accessible; you can edit and copy them like files in MAIN RAM. Files in PORT RAM will
usually not be lost in the event of a crash (though, nothing is truly secure). There are also
provisions for PORT Extenders to address beyond the standard 5 PORTs, though no PORT
Extender is currently available.

Port 0.04 Port 5
HPIL Card Reader

Main RAM
Ports: 0, 0.01, 0.02, 0.03

Port 1| |Port 2 Port 3| |Port 4

0 This is main RAM as well as the optional HP-IL ROM. Memory in MAIN
RAM can be partitioned in 4K blocks from .0 (or, simply 0) through .03, and is
followed by the HP-IL Module. If any RAM is added internally, it becomes an
extension to PORT 0, and the HPIL Module moves up one (for example: 0.05).

1-4 The front module PORTs.

5 The Card Reader port, though it’s just as likely to have a large RAM module
addressed there.

Environments

The HP-71 is unique in the world of personal computers. Its file structure, operating system and
advanced BASIC are brilliant. But environments are often played down or at least taken for
granted. An environment, in computer terms at least, consists of a set of programs and data. The
71’s proclivity for multiple environments is usually found only on very large computers, often using
the incredibly large and complicated UNIX operating system. Let’s spend a few minutes discussing
the interaction of files and environments in the 71, and what that has to do with us.

The global environment includes the file system (programs, key assignments and such) and all
flags, the option base setting, and calculator variables; actually, pretty much the whole computer.
When we RUN a program, the calculator variables are directly accessible to that program. For

Chapter 2 The HP-T1 7

example, let’s assign a value to a variable, then see how it is used in a program. First, give variable
X the value of 5:

!t Assign the value -5 to
=-5§ ! the variable X.

Now, a program to display the contents of that variable. We'll create a BASIC program file named
TEST, then place a single line in it (line 10) to display the contents of X.

! Create a BASIC program
I ! file.

LEDIT TESTH

10 DISP “"Variable X=";X§ ! Write a line to the file.

Since it’s the current edit file, we can run it by pressing the RUN key. When the program runs, it
displays the contents of X (the value -5). After the program is through (that is, almost
immediately, since it only runs for a fraction of a second), we can confirm that X still contains -5:

x§ -5

Now, instead of pressing RUN, let’s CALL the program.

CALL TESTH Variable X= 0

What happened to X? The value is zero because we CALLed TEST which, in effect, made it a sub-
program. When a sub-program is CALLed, a temporary program environment for its own
variables is created, and the calculator variables are ignored. So naturally, X had no value in that
temporary program environment. When the CALLed program ends, its environment is eliminated
and the calculator variables are again active. In fact, now that the CALLed program has ended, its
environment is gone and we can confirm that X still has the value -5 in the main environment.

x§ -5

The CALLed program can use the same variable names as the main (calculator) environment
without fear of altering them. Besides preserving the computer in the state we want it, CALLing a
program has the added advantage that all of the memory the program used while it was running is
reclaimed when the program ends. Now that we’re done, you can erase the file to reclaim memory:

| Delete the BASIC program
PURGE TESTH ! file from memory.

8 The HP-T1 The BASIC HP-71

The following is a simplified "Memory Map," that is, a chart of how memory is laid out in the 71. A
more detailed map can be found at the back of this book.

Memory Map What’s There
High Memory Plug-In ROMs & RAM.
Calculator Variables.
Unused Memory
Programs & other files.
Global Environment.
Low Memory Operating System.

As you can see, programs and variables are at opposite ends of memory, there is no direct
rclationship between a program and calculator variables. When we RUN a program (with some
exceptions we’ll discuss in a minute) it will use these same calculator variables. This is how
memory is arranged when a program is CALLed:

Memory Map When a program is CALLed

High Memory Plug-In ROM & RAM Modules.
Calculator Variables (on hold).
Active Temporary Program Environment.

Unused Memory
Programs & other files.
Global Environment.
Low Memory Operating System.

When the program is CALLed, the calculator variables are left where they are, and new variables,
in a separate environment, are created below them in memory. As far as the CALLed program is
concerned, this temporary environment is all that exists; it couldn’t find the calculator variables
with a Bloodhound. While it isn’t necessary to remember how memory is arranged (the 71 keeps
everything organized for us), it is important to understand environments and the differences
between RUN and CALL.

A suspended environment also contains other program information, such as the current

ON ERROR setting, FOR-NEXT and GOSUB stacks. So, for instance, neither an error in the
sub-program nor RETURN will return us to the calling environment; it requires END or END
SUB.

Sub-Programs

Many programs begins with a SUB statement to declare the entire program to be a sub-program.
Again, the intention is to make it easier to run the program and to preserve the calculator
environment. Unless a special purpose dictates otherwise, most commercially available programs
for the HP-71 are written as sub-programs.

A program which has been CALLed may, in turn, call another program (using the CALL
command which is programmable). It is conceivable that several environments may be stacked in
high memory. Each time a program CALLSs another, its own environment is saved and the

Chapter 2 The HP-T1 9

temporary environment is created. Again, when the CALLed program ends, the calling
environment is again active.

This unique multiple-environment scheme is even more useful than first impression leads. Up to
fifteen data items may be passed between programs, and a program may even CALL itself. The
following little program is an example of CALLing programs. The variable X is a counter which is
passed from program to program. However, the program CALLs itself, increments the counter,
and, if the counter is under five, will call itself again. Once the program has ended, recall the value
of X and you will see that it is now 5 because that is the value returned in the last SUB program
CALL. To get a feel for how it runs, press ATTN to suspend the program while it runs, then single-
step through it by repeatedly pressing the £-SST key to watch it loop.

10 X=0 ! A recursive program.

20 CALL ENVIRON(X) ! call the program.

30 DISP "DONE" @ BEEP

40 END ! end of main program.

50 SUB ENVIRON(X) ! the sub-program.

60 X=X+1 @ DISP X;

70 IF X<5 THEN CALL ENVIRON(X) ELSE DISP ! call, passing X.
80 DISP “END,"; @ BEEP 4000 @ END SUB ! done.

CALL Cautions

When a program is suspended by pressing ON, an error in the program, or the keyword PAUSE,
the program environment is still active. If you then CALL another program, or the same program,
this environment will again be active when that program ends. If you repeatedly CALL a program
and suspend it, in very short order you will be out of memory. The SUSP annunciator on the right
edge of the LCD display is lit whenever a program has been suspended. RUNning a program will
automatically end all programs which have been suspended.

A second problem with suspending programs is open data files. Suspend a program which has
opened a file or two, then CALL that program again, and those files will still be open. The 71, not
liking files opened more than once at a time (especially with the same file number), will cause an
error in the program. You could end up with a nasty mess when the program has an error trap that
keeps asking you for a different file name and keeps trying to give it the same channel number.

Ll

10 The HP-T1 The BASIC HP-71

Command Performance 3

These keywords handle most of the day to day, non-programming tasks we ask of our 71. It would
take a 400 page book to properly list all of the keywords available. In fact it did, all of the keywords
are listed alphabetically in the HP-71 Reference Manual. We'll introduce keywords used in pro-
grams later when we talk more about programming.

ASSIGN 10 Assign HP-IL Devices.

When the 71 powers-up, it assigns devices found on the loop. Though you may use ASSIGN IO to
assign device codes if you want, it isn't necessary. The problem is that the device code is associated
with the address on the loop, not the device, and you will have to use ASSIGN 10 again each time
you re-configure the loop. It’s much easier to address a device by its device name such as :TAPE
or :DISPLAY or the location on the loop. For these reasons, most 71 users don’t assign device
codes. The HP-IL Interface Manual notes syntax and usage of ASSIGN IO. If you've experi-
mented with device codes and wish to eliminate them enter:

ASSIGN IO * | Cancel HPIL device code assignments.

CALL,CONT, RUN Running Programs.

When you RUN a program (by pressing the RUN key or entering RUN filename), that program be-
comes the current edit file when the program ends. If you often use a single program, you might
RUN it once, then it will only be necessary to press RUN the next time you need the program
because it will become the current edit file. On the other hand, after a CALL the current edit file
does not change. You can use these two features together: CALL for the utilities and programs in
ROM, RUN for the workhorse program you often use. RUNning and CALLing programs is
covered in greater detail Chapter 2, "The HP-71."

RUN | (or the RUN key) Run the current program file.

CALL ! Call the current file as a sub-program.

RUN APROG ! Run the program file named "APROG".

CALL APROG(X,Q$> ! Call "APROG" and pass two parameters.

CONT | Continue running the current program where it stopped.
f-CONT ! Pressing this key continues running the current program.

CAT,CAT ALL View Catalog Listings.

CAT ALL displays file names, type (BASIC, TEXT, etc.), size in bytes, date and time of cre-
ation, and the :PORT (if applicable) UP, DN, g-UP and g~DN keys move us through all files in the
chain. In addition, two other keys take on a special meaning during CAT ALL: £-LINE moves to
the next :PORT, and £-EDIT makes that file the current edit file (if it is BASIC). The ON key
terminates CAT ALL. The catalog entry for individual files can be displayed with the CAT key-
word by specifying a file name, :PORT, or mass storage device name.

Chapter 3 Command Performance 11

CAT | Display the catalog entry of the current file.

CAT AFILE ! Catalog of file named "AFILE".

CAT :PORT(2) ! Catalog of all files in :PORT(2).

CAT AFILE:PORT(0) | Cat of the file "AFILE" in :PORT(0).
CAT ALL ! Catalog of all files in RAM and :PORTs.

CAT :TAPE ! Cat of the entire medium; similar to CAT ALL
CAT AFILE:TAPE ! Cat of file "AFILE" on Disc or Cassette.
CAT CARD | Catalog of a magnetic card track.

COPY File Utility.

The most useful file command. It copies files between RAM, Magnetic Card, :PORTs and Mass
storage. How it works depends on where you are copying the file to, and if a file by that name al-
ready exists at that destination. If you are copying to RAM from a mass storage device, you cannot
overwrite a file already in RAM by that name. However, copy a file from RAM to Disc and the
copy will be made, possibly overwriting a file already there with that name. The idea is to make it
easier to make a backup copy of a new versinn of a file without first purging the old one.

COPY AFILE TO BFILE | Copy "AFILE" to new file called "BFILE".
COPY AFILE:TAPE | Copy "AFILE" from Disc to RAM.

COPY AFILE TO :TAPE ! Copy a file from RAM to Disc.

COPY :CARD TO AFILE ! Copy a file from magnetic card to RAM.

CLAIM PORT, FREE PORT, SHOW PORT

The most readily apparent PORTs are those four along the front edge of the computer, and the
Card Reader. When we plug RAM modules into the 71, they become part of main RAM, and files
there are part of the main file chain. To organize things, we can partition memory into separate
PORT:. In addition to the front PORTs (numbered 1-4 from left to right), we can separate main
RAM into PORT:s of 4K each, called PORT(0) through 0.04. PORT(0) is the first 4K,
PORT(0.01) is the second, and so forth; the HPIL Module is the last part of PORT(0).
Commands to reserve and reclaim PORTed RAM are not programmable; if you are writing a pro-
gram requiring PORTed RAM, be sure the memory is set aside before the program begins.
BASIC keywords for moving files between PORTs are fairly straightforward, though the names
may be difficult to remember:

CAT :PORT(0) ! View headers of files in :PORT(0).

FREE PORT(0) ! Reserve a block of RAM as Independent.

MEM(0) ! Return the free memory in :PORT(O0).

CLAIM PORT(0) ! Purge :PORT(0) files, reclaim memory.

SHOW PORT | List :PORTs and sizes.

COPY AFILE TO :PORT(0) ! Copy a file from main RAM to :PORT(0).

COPY AFILE:PORT(0) TO :TAPE ! Copy file from:PORT(0) to mass storage.
PURGE AFILE:PORT(0) ! Purge “"AFILE" from :PORT(0).

DEF KEY Customize the Keyboard.
Press £-USER and the "USER" annunciator in the LCD lights (or turns off) and little else happens.
Unless you want to count letting you create your own custom 71. How about running a program by

12 Command Performance The BASIC HP-71

pressing a single key, a keyboard full of custom typing aids, or a completely redesigned DVORAK-
style keyboard?

The three types of key assignments (aside from those the 71 was born with) are typing aids,
immediate execution, and direct execution. The character following the key assignment string tells
the 71 which type of assignment:

; Semicolon for a typing aid.
Colon for direct execution. These commands are directly executed without
entering them in the display or onto the Command stack. These assignments do
their business without entering anything in the display.

" No punctuation (or a space). These are called Inmediate Execute key
assignments. Like a typing aid, but also automatically "presses" ENDLINE at the
end of the string. The command is entered onto the Command stack.

We won't even try to list a key map here; if you'd like to see one, you'll find one at the back of this
book. While you could use the keymap codes to define keys, why would anyone want to try to re-
member those codes? Instead, we usually leave the bottom row editing keys as they are, and assign
to the £- and g- shifted keys on the top three rows. Since the g- shifted keys are already assigned
for useful typing aids (such as the lowercase alphabet), the £ - shifted keys are the most convenient
to re-assign. For example, to assign the character " ~" (which is not normally on the keyboard) to
the £ - shifted Q key as a typing aid:

DEF KEY “fQ",CHR$(126); ! Assign ~ to the f- shifted Q key.

These examples show the "f" in lowercase for readability, though it’s not really necessary, Now,
restore the key to its original definition:

DEF KEY "fQ" ! Removes key assignment from f- Q key.

If you have the KEYWAITS (not WTKEY$) keyword, you can simplify key assignments a bit.
Instead of the assignment key, specify KEYWAIT$ and the 71 will wait for you to press any key
and assign the string to that key. You can tell if you have KEYWAITS by trying it: Type the com-
mand and press ENDLINE,; if the computer seems to "hang" until you press the next key, then
displays that key’s code, it’s there.

DEF KEY KEYWAIT$,CHR$(96); | Assign ‘ to the next key pressed.

Key definitions may be any number of characters which will fit on a single line. You can eliminate
the spaces between commands if your string is quite long. This next example is also a typing aid,
but it includes four escape codes to move the cursor left over the "1" in "+ @[1,4]". Since it’s a typ-
ing aid, we could have used CHR$(8), the backspace character, instead of CHR$(27)&"D",
because the 71 interprets them the same. These typing aids are often called "boilerplate text;" that
is, they contain standard information useful for things like entering data in a spreadsheet.

DEF KEY "“fS", w+@(1,4]1"&CHRS(27)&"D"&CHRS (27) &"D"&CHRS (27) &"D"&CHRS (27) &"D%;

+e[§,4)

Chapter 3 Command Performance 13

Direct Execute keys do exactly that; press the key and whatever is assigned to it is performed with-
out displaying anything, and without altering the contents of the Command Stack. Many programs
ignore Direct Execute key assignments, though others which use INPUT will accept them and the

automatic ENDLINE they "press." This key assighment calls a program called RPN:

DEF KEY "£3","CALL RPN"; ! Directly execute a program.

If you often use complex formulas which really aren’t complex enough to require programs, you
can assign them to keys instead of writing those programs. The trick is the keyword DISP$, which
reads whatever you've typed onto the command line. DISP$ returns a string, so if your formula re-
quires a number, you can use VAL to interpret the string as a mathematical expression and return
the number to the function. These examples do decimal to hex and hex to decimal conversions.
Simply type a number (or a mathematical expression), then press the key; the number you typed is
passed to the function via DISP$, and the answer is displayed. The stack is unchanged.

DEF KEY "fH","DTH$(VAL(DISP$))": ! Reads display as a number.
DEF KEY “fD","HTD(DISP$): ! Enter a hex value and press the key.

The third type of key assignment, Inmediate Execute, appends the string to whatever you've
already typed in the display, then surreptitiously presses the ENDLINE key for you. If you haven’t
typed anything, they operate like Direct Execute keys, except that the string is added to the
Command Stack. Less versatile and usetul than the other two types, they seem almost to be a
throwback from an earlier computer.

Once you are comfortable with them, you'll probably find yourself often using temporary key as-
signments instead of writing programs. A key assighment might even be a little program in itself,
one long line with FOR... NEXT loops and such. You can even assign regular keys to special tasks
and use £-USER as g-1USER as extended shift keys. Though watch for programs which set user
mode (like the HP Text Editor), because you're stuck in user mode, with whatever you've assigned
to the un-shifted keys in the way, while the programs run. g-1USER is an interesting key. If you are
in User mode, pressing it will cause the 71 to ignore the key assignment of next keystroke and will
instead return the regular key assignment. However, if you are not in User mode, pressing g-
1USER will return whatever is assigned to the next keystroke. It’s a clever key which can get you out
of situations like accidentally re-assigning the ENDLINE key.

So, how do you recall what’s assigned to a key without pressing it, and how do you preserve these
carefully hewn jems for posterity? If you want to look at a key assignment without changing it,
press £-VIEW followed by a key which has an assignment, and the definition will remain in the dis-
play for as long as you hold the key down. FETCH KEY brings the key back for editing, and
KEYDEEFS returns the definition as a string.

FETCH KEY "f1" | Recall the string for editing.
K$=KEYDEF$("f1") | Recall the key as a string to K$.

Key assignments are maintained in a file called "keys" of the file type called "KEY" (no confusion
therec?). When you create a key assignment, you are writing to this file. It’s a real file, so you can
treat it like one. You can have multiple key files, though only one at a time can be called "keys".

14 Command Performance The BASIC HP-T1

COPY keys TO MYKEYS ! Creates a spare copy of the keys.

COPY MYKEYS TO keys | Copy, not rename, a file to the key file.
MERGE MYKEYS | Add the keys to the current definitions.

PURGE KEYS ! Eliminates key assignments.

DELAY Display Delay Rate.

The 71 pauses between displaying a series of lines to make sure we have time to read them on the
L.CD. The amount of time for the delay, and the speed at which lines which are too long to fit in
the LCD will scroll, are set with the DELAY keyword. A setting of 8 (eight) or greater is inter-
preted as "INF" (infinity), the 71 will display the current line until you press a key. A delay of zero
causes the display to change whenever new data is available. A scroll rate of INF will inhibit long
lines from scrolling (the left and right arrow keys let you to view the whole line). Many programs
alter this setting without restoring it. The default (the way the 71 works when reset) setting is a
delay of .5 seconds and a scroll rate of .125. Many people prefer zero delay with INF scroll rate.

DELAY 0 | Line delay rate to zero.
DELAY .5,.125 ! Line delay 1/2 sec, scroll 1/8.
DELAY O0,INF ! Zero delay, don/t scroll.

DEST ROY Erase Unwanted Variables.

The 71 automatically creates calculator variables as they are used in a program or CALC mode.
They do not exist until they are first used. The memory these variables consume can be reclaimed
when they are no longer needed using the DESTROY keyword. This is not as lethal as it sounds,
no smoke will rise from the card reader port, all that will happen is the memory used by the vari-
able will be reclaimed. You can use DESTROY with a variable name, even if the variable doesn’t
exist, without causing an error. It isn’t necessary to include the parentheses when you specify an
array to be trashed.

DESTROY ALL ! Frees memory used by calculator vars.
DESTROY X,A$! Frees memory used by vars X and AS.

EDIT, PURGE File Utilities.

These two keywords create new files and eliminate files when they are no longer needed. PURGE
can be used on any file type in RAM or on mass storage, unless the file has been SECUREGJ (see
below). The file will be eliminated and any memory it consumed will again be available. There is no
undo; when you've PURGEA a file, it would be difficult to POKE it back into shape.

The EDIT keyword can only be used with BASIC file types. If the file specified does not exist, it
will be created; this is the only way to create new BASIC files. We can only edit BASIC files in
MAIN RAM or :PORTS:, not on mass storage.

The BASIC workfile is the current file whenever you enter EDIT without specifying a file name. If
you enter EDIT workfile, a regular file called WORKFILE will be created. The workfile catalog
entry is, like the active KEYS file, listed in lowercase. If this file is copied to, for instance, Disc
without specifying a difterent file name, the name becomes UPPERCASE in the destination file,
and is therefore a conventional file.

Chapter 3 Command Performance 15

The BASIC workfile is the scratch file used for experiments and quick solutions to small problems.
Since BASIC is always in "program mode", it’s suggested that this file be made the current file
most often to avoid the chance that an important BASIC program could accidentally be changed.

EDIT ! Edit the workfile.

EDIT AFILE ! Edit a BASIC file called "AFILE".

PURGE ! Purge the current file.

PURGE AFILE ! Purge the file called "AFILE".

PURGE AFILE:TAPE ! Purge the file "AFILE" on Disc.

PURGE ALL ! Careful with this one: it deletes everything not secured!

END,END ALL Ends Suspended Programs.

Many times we will suspend a program using the ON key. The END keyword can be executed from
the keyboard to properly terminate the program. The main reasons for doing this are to close any
possibly open data files and to regain the memory used by variables in these programs. If a SUB
program has been suspended, your calculator variables won’t be available until the program ends.
You can tell that you need to enter END ALL if you notice the "SUSP" annunciator lit and you
aren’t planning on continuing the program. Another use for END is to save a few keystrokes
closing data files opened from the keyboard (as opposed to in a program).

END ! End the current program and restore calculator variables.
END ALL ! End all suspended programs.
FETCH Finds a Line Number or Label.

Moving around the current BASIC file can be speeded by the non-programmable FETCH com-
mand. Specify a line number or label, and the computer will jump to that line, displaying it, ready
for editing. If the line number specified is not found, a blank line with that number will be pre-
sented to you with the cursor positioned after the line number. However, if a label specified is not
found you will be presented with an error (beep, "ERR:Stmt Not Found"). FETCH without a line
number or label will bring back the last you edited or, if you've just moved to the file, will bring up
the first line in the file.

FETCH 1200 ! Make line 1200 in the current BASIC file the edit line.
FETCH ZAP | Make the line containing label "ZAP" the edit line.

INITIALIZE Format a Disc.

If you've ever seen the "ERR:Invalid Medium" message, you know that Cassettes and Discs must
be formatted before you first use them. This means that the media must have a standard directory
and data format before the computer can record files on it. The INITIALIZE keyword formats the
media to the HP-71 format and erases all data previously stored on the media. Unlike files in
RAM, a Disc (or Cassette) must allow for a pre-defined number of files in its directory.

The standard record (also called sector) size is 256 bytes. A record is the fixed physical size set
aside for each item or group of items. Files are stored in multiples of records; for example if the
file is 512 bytes, it will occupy two records, however a 513 byte file will occupy three records. The
directory is allocated by records, 8 files per record, so the logical size to specify would be a

16 Command Performance The BASIC HP-71

multiple of 8. Determine the maximum number of records the media can contain and the average
file size you use before formatting the disc.

We can give each Disc an identifying volume label of up to six characters. When a Disc has a label,
you can reference is by name using a period instead of a colon such as ".VOL?2" instead of
"TAPE". This is somewhat slower than addressing the device name because the label is placed at
the beginning of the Disc, and must be read each time it’s referenced. The media volume label can
be ignored, and does not even need to be specified when you INITIALIZE a Disc. We’ll demon-
strate the :TAPE device specifier (representing an accessory ID of 16) which can be used for
either HP82161A Cassette or HP9114 Disc. Mass storage devices which do not respond to the
:TAPE device word (which are quite rare) can be referred to by :MASSMEM.

INITIALIZE :TAPE ! Formats mass storage with 128 entries.
INITIALIZE :TAPE,200 | Formats the media with 200 file entries.
INITIALIZE VOL2:TAPE,128 | Formats media and labels it "VOL2".

Now, let’s look at how the computer handles the mass storage media when we COPY files. When
the 71 stores a file is on mass storage, a contiguous block of Disc space is reserved. If the file is
copied to RAM and subsequently grows, it will no longer fit in the same place on the media. When
the 71 copies the file back to Disc, it looks for a new block of records large enough to hold the en-
tire file. If one is found, the entire file is placed there, and the original location is marked as avail-
able for use (in the same way PURGE works with mass storage). If there is no single block of
sectors available large enough for the entire file, an "End of Medium" error will be displayed and
the file will not be copied, though there may be more than enough sectors scattered throughout
the Disc. When the file is moved to its new home, the previous location of that file is now available.
The next file to be copied to the media which will fit will be placed within that block of records,
even if a considerable number of records within that block are left unused.

After this scenario is replayed several times, a considerable number of records may be wasted. The
PACK command reorganizes files, squeezing out the unused records between files, and crunching
the file allocation table. When it’s done, the unused records are at the end of the media, ready to
be used again. Since PACK causes considerable media wear and is subject to the vagaries of bat-
tery power, PACKing media should only be done as a last resort. Usually it’s better to copy the
files to a new Disc and start over. Earlier versions of the HP-9114A Disc Drive did not handle the
PACK command correctly, so avoid using it on those early machines. If you do decide to use
PACK, make sure you have spare copies of all important files on another Disc before starting.

LIST, PLIST List a File.

Prints or displays the contents of the specified BASIC file. If a printer is assigned and active,
PLIST will send the data to it, otherwise it acts like LIST and displays the data on the LCD and, if
there is one, the monitor. The LEX file in the Text Editor, HP-41 Emulator, FORTH/Assembler,
and WorkBook71 ROMSs add the ability to LIST and PLIST TEXT files. File types other than
BASIC, KEY, and TEXT cannot be LISTED or PLISTed.

Chapter 3 Command Performance 17

PLIST ! List current file to PRINTER IS device.

LIST AFILE ! List all lines in file named "AFILE".

LIST AFILE,10,100 ! List lines 10 through 100 in "AFILE".
PLIST AFILE ! List "AFILE" to PRINTER IS device.

LIST KEYS | List the key assignments.

MEM How Much Available Memory?

Available memory is always a concern when running programs, allocating variables, or writing data
files. The MEM keyword returns the amount of unused main RAM memory. Note that the syntax
for this command is unlike others dealing with PORTs; MEM(0) will display memory in
:PORT(0).

MEM ! Display amount of RAM currently available.
MEM(0) ! Display available RAM in :PORT(0).

NAME, RENAME File Utilities.

Since only one file of a given name may exist in RAM or on a storage device, some creative file
name juggling is in order; RENAME makes it a breeze. NAME is used only to change the name of
the "workfile", regardless of what file you are currently editing.

RENAME TO APROG ! Rename the current file to "APROG".
NAME APROG ! Name the workfile to "APROG".

RENAME APROG TO BPROG | Change name of "APROG" to "BPROG".
RENAME APROG TO BPROG:TAPE ! Change name of a Disc file.

File names must begin with a letter (A-Z) and may contain numbers (0-9) as long as the total
length is 8 characters or fewer. While the 71 poses no other restrictions on file names, several
names should be avoided because of possible conflicts and confusion. File type names (such as
TEXT and KEYS) and device specilicrs like TAPE, LOOP, and MASSMEM, as well as ALL,
CARD and MAIN should be avoided.

OFF 10, RESTORE 10, RESET HPIL

The HP-IL Modaule tries to assign a printer and display whenever the 71 is turned on; this can take
several seconds if the loop is broken (that’s HP’s way of saying nothing is plugged in). OFF IO dis-
ables HP-IL operations and speeds power-up significantly. RESTORE 10O is used to re-enable
the HP-IL module. However, if RESTORE 10 is used with a broken loop, the 71 will hang up for
few seconds then issue an error message. When used in this context it’s usually better to use
RESTORE 1O after connecting all devices. If flag -21 is clear, all devices capable of being turned
off remotely (such as the Cassette and ThinkJet printer) will be powered down when the 71 is
turned off.

OFF I0 ! Disables HP-IL operation.

RESTORE I0 ! Enables HP-IL.

RESET HPIL | Address loop, re-assign all devices.
SFLAG -21 ! Enable auto power-down of loop devices.

18 Command Performance The BASIC HP-T71

PRINTER IS, DISPLAY IS

Normally, the 71 automatically assigns HP printers and display devices as needed. Printer output
can be directed to the display to test a print routine without wasting paper, or to assign the printer
as a display for a kind of super-trace mode. Be cautious about assigning devices; there is no
protection against, for instance, assigning a Disc Drive as a Display device (from which no good
could possibly come). The easiest way to specify HP-IL devices is with device words such as
:DISPLAY and :PRINTER.

DISPLAY IS * | Disables external display device.

DISPLAY IS PRINTER | Establishes printer as the display.
PRINTER IS DISPLAY ! Establishes the display as the printer.
PRINTER IS PRINTER ! Restores the printer to its rightful job.
PRINTER IS NULL | Throw away all printer output.

SECURE,UNSECURE File Utilities.

To insure that a file is not accidentally PURGEd or otherwise altered, they may be designated as
temporarily SECUREGJ. This is especially useful with BASIC files; it’s easy to forget which file
you’re in and accidentally change the wrong one.

SECURE AFILE ! Secure "AFILE" against alterations.
UNSECURE AFILE ! Make "AFILE" no longer secure and therefore alterable.

SETDATE, SETTIME Set the Clock.

These commands set the system clock. When setting the time, remember that the 71 uses a 24
hour clock; be sure to add 12 for hours past noon. Usually we set time and date with strings;
numeric expressions are better handled within programs.

SETDATE "88/09/04" ! Set date with a string to September 4,1988.
SETDATE 1988366 | Set date to day number 366 of 1988 (a leap year).
SETTIME %20:30:00" ! Set the clock to 8:30 pm.

SETTIME 28800+(30*60) ! Set clock using seconds since midnight.

STARTUP

When we first turn the 71 on, it does some self-tests then returns to whatever mode was active at
power down. With the STARTUP keyword, you can make your 71 do any BASIC commands when
you turn it on. This is helpful to automatically run a program or execute a series of commands.
You might use it to set certain status like delay rate or display machine status. Halt the STARTUP
routine by pressing ENDLINE. Think of the STARTUP sequence as a direct execution key assign-
ment that the 71 presses whenever it turns on. The STARTUP sequence is ignored in CALC mode
or when a program turned off the computer, but will be performed in FORTH or HP41 modes,
though still with BASIC syntax.

STARTUP “CAT ALL" | Do a CAT ALL when it turns on.

STARTUP "IF TIME$>='13:00:00’THEN RUN LATE* ! A conditional.
STARTUP "FOR X=1 TO60QTIMES$QWAIT.S@NEXT X" | Display time for awhile.
STARTUP "" | Deactivate startup command.

Chapter 3 Command Performance 19

STD, FIX,SCI, ENG Number Format.

Much like a calculator, these statements set the number display format. The default is standard
BASIC (STD) which displays in floating point format, showing only as many decimal places as
necessary, and displaying in scientific notation when the number exceeds 12 digits. This sets the
display format rounding, but does not affect the numeric precision used in calculations. These
keywords set both the number of decimal places and the display mode; valid settings are zero
through eleven. The number display format setting is used in BASIC, CALC, and in most
programs, though some programs change this setting (and may not restore it when they are done).

STD | Restores standard BASIC display format.
FIX 4 ! Sets display format to 4 decimal places.
SCI 2 | Scientific Notation format 2 places.
ENG 3 ! Engineering Notation 3 decimal places.

TIMES, DATES, SETTIME, SETDATE

The internal clock runs all of the time, even when the 71 is shut off. TIME$ and DATES recall the
current time from the system clock. Current clock settings are also placed on the headers of all
files when they are created or copied to or from mass storage. Time is displayed in 24 hour format
and the date is displayed "YY:MM:DD". The statements SETTIME and SETDATE set the clock.

TIME$! Displays the current time.

DATE$! Displays todays date.

SETTIME "13:15:00" | Sets the clock to 1:15 pm.
SETDATE "86/07/04" | Sets the date to July 4,1986.

A simple program can be used to constantly display the time and date when other programs are
not being used. There is a short delay built into this program to reduce power consumption. This
routine could also be assigned to a key or used as the STARTUP string.

FOR X=1 TO INF @ DISP TIME$&" "&DATE$ @ WAIT.5 @ NEXT X | Display time.
WIDTH, PWIDTH Set Line Length.

We can set the maximum number of characters which the 71 will display or print on a single line
with the WIDTH and PWIDTH commands; both may be set to different values. If a displayed or
printed line is longer than the specified length, the 71 will automatically display the remainder on a
separate line. The default for both is 96 characters, maximum for both is 255. Normally, when
displaying lines longer than the WIDTH selting, pressing a key will show the remainder of the line;
however, if WIDTH is set to INF, the end of a long line will not be displayed (ever). Again, many
programs alter these settings.

WIDTH 22 ! Set max display line length to 22.
PWIDTH 80 ! Set max to be printed on one line to 80.

Farl

20 Command Performance The BASIC HP-T71

Getting Started 4

When you first turn on the 71, it’s in BASIC Mode; the LCD display is blank except for the BASIC
prompt character ">" and the flashing cursor. It’s not really a blank stare, but a blank slate with
which to work. The 71 accepts whatever you type, without question, until you press ENDLINE.
Pressing ENDLINE tells the computer that you've entered a complete line and now it’s time for it to
do whatever it is you have entered, and (possibly) display an answer. In fact, just about everything
we do with the 71 ends with ENDLINE. Since this is "a given," we'll often forgo even mentioning it.
ENDLINE is the same as RTN, RETURN, EOL, ENTER or bent arrow («—!) keys on other
computers, but it is not the same as ENTER ~ on RPN calculators.

We'll take advantage of an interesting feature of HP BASIC: If the result of an expression is not
explicitly assigned to a variable then it is implied that the 71 should only display the result of the
expression, and do nothing else with it. What this means is that when you enter a formula, the 71
will display the result; you could include the DISP keyword, but why bother. This trait of HP
BASIC will become self-evident in a few pages. If you would like to have the result of each
example printed, just precede each with the PRINT keyword.

It Just Beeps

More than likely, the first time you picked up your 71 and typed something, it displayed an error
message then beeped, it happens to everyone. These messages are an aid in learning and using the
computer; instead of curtly not doing what you've asked, it tells you why it can’t do it. The 71 isn’t
trying to harass, just be helpful. Unlike a calculator, the 71 can do several hundred things. A
keyboard with hundreds of keys is impractical, hence the command line and its series of messages.
By the way, if you're tired of hearing the beep, just set flag -2.

! set flag -2 to turn off beeper.

SFLAG -2§ |
— ! Clear flag -2 to let the
CFLAG -2§ ! beeper work.
! Set flag -25 to beep even louder.
SFLAG -25§ |
— ! Clear flag -25 to beep quietly.
CFLAG -25§
Syntax

We humans accept some ambiguity in syntax in speech and writing because we can infer the
meaning of a sentence from context, inflection, previous knowledge, body language, and such. A
computer, on the other hand, takes everything pretty much on face value; whatever we tell it, it
tries to do. If the 71 can’t understand the command (it won’t parse) then it will certainly let us
know. Other times, the computer will carry out the command but the results might not be what we
had expected. Understanding syntax and how the computer parses is as important while working in
CALC mode as when writing a program. Once you have a feel for how a new computer or
programming language expects commands to look, all that’s left to mastering the machine is
learning its commands.

Chapter 4 Getting Started 21

As time goes on, you'll find that your 71 beeps at you less and less. That’s because you're learning
the syntax rules for 71 commands. The 71 follows these rules of syntax when interpreting
commands we type. This is called parsing.

The Parser at Work

We usually type spaces between BASIC statements for clarity, and a space separates each state-
ment when you look at a BASIC program. As a convenience, these spaces can often be omitted
when we enter commands. The 71 will use its dictionary of commands and syntax and try to
evaluate the expression. Consider the following:

CALLIOPE XYZ
BEEPER MEMORY

In each of these examples the 71 will try to parse (interpret the meaning of) the expression based
on the context of the expression. Each example will result in a different type of error. In the first
case, the computer will look for the keyword CALLIOPE. It won’t find it, so it finds the next clos-
est word which is CALL, which calls sub-programs. So it looks for a sub-program named "IOPE",
and for our purposes we'll assume that "IOPE" is not the name of a program. This is a complete
operation and it just didn’t work, so the 71 beeps and displays the error message:

1 The 71 displays an error message
! without the flashing cursor. ERR:Sub Not Found

If you missed the message, press g (the blue shift key) then hold down ERRM (a shifted function of
the SPC key) to see it again. You can always view a message explaining the most recent error this
way.

The second example, BEEPER, is a different kind of problem, and the 71 "logics it out" with an-
other sct of rules. The closest keyword is BEEP, which works alone, or we could optionally specify
a frequency (tone) and number of seconds to beep. BEEPER will cause:

! Another error message when the
! 71 tries to interpret BEEPER. ERR:Excess Chars

After a short pause, the original line returns to the display, with the cursor pointing at the first
character in the line which the 71 didn’t recognize as part of a valid expression. The computer
placed the cursor after the third E because E is a valid variable name, and ER is not.

Let’s modify BEEPER so that the 71 can parse it correctly. If there are two parameters, BEEP,
like most commands, expects them to be separated by a comma. Any one of the following is
acceptable:

BEEP BEEP 500 BEEP 500,1 BEEP E,R

The third problem we foisted on the 71 was XYZ, which is not a complete expression, and does
not contain a complete keyword. Since there was no keyword found, the 71 assumes that we really
meant to see the value of variable X, and whatever followed was a slip of the keyboard. Following

22 Getting Started The BASIC HP-71

the usual beep and error message, the 71 returns the original line to the display. Again, the cursor
points to the first character the computer didn’t recognize as part of a valid expression.

In the fourth example, the 71 returns a value without an error (finally). But is it the result we
wanted? MEMORY is not a command in the 71’s repertoire, but it did find MEM, a function
which returns the amount of memory currently available. Then it looked for an operator that could
follow the function; it found OR which does a logical OR of two values. Since OR requires a sec-
ond operator for its comparison, the 71 looked for a mathematical expression. It found Y, which
referred to the variable Y. This is a complete expression, so the computer evaluates it and returns
a result. The answer is either the number one, if Y has no value, or zero if Y contains a non-zero
value. The computer interprets MEMORY as:

DISP MEM OR'Y

This is hardly a useful expression, but it did not cause an error because it evaluated to an expres-
sion which the 71 could successfully calculate. As you can see, the computer will be able to detect
and help us with syntactical errors, but is of little help with logical errors.

Multi-Statement Lines

We can evaluate several expressions in one session by separating them with the "@" (commercial
at sign). Often these will be system commands like DELAY 0or OFF IO, but just about any-
thing is fair game. This is the same format we use when writing programs, so we’re actually writing
a mini-program; add a line number and it’s a program.

2+3%4-5 @ (2+3)*4-58 |_9 I
15

The 71 evaluates and displays the two expressions, one at a time, for the duration of the DELAY
setting. If the DELAY is short you might miss the first number as it flashes by. A more useful
method is to evaluate and display the formulas at the same time. The semicolon (;) concatenates
(joins together) the two expressions so that they will display together on one line. A semicolon at
the end of the expression tclls the 71 that we are not finished displaying on that line, more will
follow.

2+3%4-5; (2+3)*4-5;2+3*(4-5)§ 9 15 -1

The 71 displays each number with either a leading space or a minus sign, and followed by a space
so that they don’t runintoeachother.

BASIC Keyboard Math

When doing business as a BASIC mode calculator the 71 works in True Algebraic fashion. Each
operation is performed using rules of mathematical precedence (which type of function the 71 will
perform first), and a solution is returned. CALC mode displays intermediate values as operations
are completed, but let’s consider BASIC mode calculations in this chapter. Let’s look at how
various types of calculators handle multiplication:

Chapter 4 Getting Started 23

Keystrokes Calculator

2X3= Algebraic Calculator.
2ENTER 3 * Hewlett-Packard RPN.
2 *3ENDLINE HP-71 BASIC Mode.

Each of these methods has one thing in common: A single keystroke tells the computer that you
want it to process the data and return an answer. The conventional dollar-ninety-eight Algebraic
calculator uses the = equals key, with the RPN calculator, it’s the * key. Algebraic logic places the
operator (+, -, etc.) between the arguments (numbers). The 71 is similar to the Algebraic
calculator in that the operator ("*" is computer-ese for multiplication, "X" is just that, an "X") is
placed between the operands. However, ENDLINE tells the computer that we are ready for it to
get to work.

Most computers (and calculators) have a stack: A place to store intermediate results in a
calculation or data passed between functions. Without a stack there would be no way to do any-
thing which involves comparing two numbers. In the above example, the Algebraic calculator
places the first number on the stack when we press +, then enters the second number on the stack
and performs the mathematical operation when we press =. The RPN calculator is friendlier to
use because we can more readily control the values on the stack and the order in which the opera-
tions are evaluated. An advanced True Algebraic calculator can evaluate an expression using
parentheses to designate which of a series of operations will be evaluated first. In this way, the
order of calculation determines intermediate results. We work with mathematical expressions
instead of entering operations from the "inside out" to preserve the order of precedence. The True
Algebraic calculator gives us complete control of operations, without concern for the stack.

Mathematical Precedence

To avoid voluminous parentheses in everything we do, it pays to be conversant in precedence.
Precedence, simply put, is the order in which mathematical expressions are evaluated. This order
of priority probably differs a bit from what you remember from Algebra 101, but it’s fairly
consistent between various versions of BASIC.

... Nested Parentheses.

- Exponentiation.

NOT unary+ wunary- One operand (X=-X).

SIN RND COS FACT Functions.

* / DIV 4

+ - & Operations on two operands (X=X-Y).
< = > # 7 <= >= <O Relational operators.

AND Logical operators.

OR EXOR

Enter them without parenthescs, and the 71 evaluates mathematical expressions in the sequence
above. Operations of the same level are interpreted from left to right.

24 Getting Started The BASIC HP-T71

2+3%4-5§ 9

Notice that we didn’t begin with DISP or PRINT; the 71 assumes that we wanted to display the
answer because we didn’t assign it to a variable (we’ll discuss variables in a few minutes). Here,
multiplication is performed first. Since addition and subtraction are on the same level of
precedence, the 71 interprets from left to right as they appear in the expression.

B | | 12 |
L2+12ﬁ I l_14 |

14-5§ 9

Parentheses

Enclosing parts of an expression within sets of parentheses tells the 71 which operations to per-
form first. If you’re not sure of how an expression will be evaluated, add extra parentheses for
clarity. As long as you include complete opening and closing pairs or parentheses, the 71 ignores
leftover sets.

L(2+3)*4-5m I L 15 |
L2+3*(4-5)$ | |_-1 I

(2+3)*(4-5)% -5

RES Register

The result of each mathematical expression is stored in the RESult register, regardless of if the
value is assigned to a variable or just displayed. This is quite helpful when you need to see an in-
termediate result, then use that value again in the following expression. The RES keyword, as-
signed to the £-ENDLINE key, recalls the contents of the register. Remember, RES changes with
each expression.

|_2+3*4-sm | L 9 I

RES*2§ 18

Other Operations

Not everything we do returns a value, and the flexible way the 71 does these sophisticated non-
calculator jobs is what sets it apart from a calculator. Operations returning an answer are called
functions, those which do not are statements. A statement is just that, a complete statement which
tells the computer to do something. For instance, BYE is a statement which turns off the 71. While
the act of turning itself off is a function (as sleeping is a function people perform), it does not re-
turn a value so it is deemed a statement. In fact, following English rules, it is a complete statement.

Chapter 4 Getting Started 25

Strings

Computers work with text as often as with numbers. A string is a group of characters (letters,
numbers, spaces...) enclosed in a pair of quotation marks. Either single (*) or double (") quotes
may be used, but both ends must match. A numeric variable with no value is zero by default, while
a string with no value is null, or ™. Yes, it’s possible for a string to exist without any value at all.
String "math" operators are the ampersand (&) to add two strings together, and Square brackets []
to tell the computer to extract just a portion of a string (called a substring). HP BASIC has rela-
tively few string functions (when compared to Microsoft) because the versatility of brackets makes
them unnecessary. You may designate one or two parameters within the brackets.

Substring returned

[1,4] Positions 1 through 4 only.
[3,7] Positions 3 through 7 only.
[5] From position 5 through the end of the string.

We'll use the example of VERS, which returns the version of the 71’s operating system, as well as
that of many plug-in accessories. As with all functions which return a string, the last character in
VERS is a dollar sign. 'I'ry using string expressions with numbers and experience a whole new
world of error messages.

"$" is usually pronounced as dollar or string. For example, TIMES$ is pronounced "time dollar" or
"time string." Dollar is probably the preferred pronunciation when describing a program over the
telephone.

Lvr-:ns& | an7 1:1BBBB |
LVER$[3,41& | [_71 |
VERS$[1,4]&* Computer*# HP71 Computer

Notice that, unlike number functions, the 71 adds no extra leading or trailing spaces to the results
of string functions. There is no equivalent "RES$" function to recall the last string result. Again,
we can use a semicolon to display more than one string, or even strings and numbers, on the same
line:

MEM;VERS$[1,4];2+3%4-5§ 16438 HP71 9

Numbers and strings are two quite different types of information. Therefore, it takes an extra step
or two to move information between the two. Let’s look at some string operations.

CHR3, NUM

The 71 expresses each character as either the character itself, or as a numeric value representing
the character. Characters are a single byte, and a byte can have a value of from zero to two-
hundred fifty-five. Therefore, there are 256 possible characters, not all of which are displayable.
NUM takes a string and returns the numeric value of the first character. CHRS is the opposite of
NUM, accepting a value of 0-255 and returning a single character. A table of

26 Getting Started The BASIC HP-T71

ASCII/HEX/DECIMAL/BINARY conversions is listed in the back of this book. Let’s use the
examples of "A" which is ASCII 65 and "%" which is ASCII 37:

NUM("A*)# l 65 |
CHRS$(65)§ A
NUM(“$*)#] 37 |
CHRS (37)§ $
VAL, STR$

An incredibly powerful function shared by the 71 and a few larger HP computers is VAL. In most
dialects of BASIC, it simply extracts a number from a string; the 71 carries this to the extreme, and
evaluates a string as a mathematical expression (parentheses, variable references, the whole nine
yards), and returns a numerical result. While not exactly the opposite of VAL (it can’t restore a
formula once it’s gone), STR$ turns a number into its string equivalent. STR$ follows the current
FIX setting, and truncates the fractional part or adds zeros as needed. These two functions are the
main methods for exchanging data between the otherwise incompatible world of strings and
numbers.

LVAL('2+3*4-5-)$ | L9

“Total="&STRS (9)§ Total=9

ASCII Codes

No computer is an island. Nor is a terminal, modem, or printer. ASCII is an acronym for
American Standard Code for Information Interchange, the common format used for text by most
computers. This standard, developed by the American National Standards Institute (ANSI),
standardized assures that ASCII 65 is an uppercase "A", regardless of the machine. The computer
drawing the television weather map, your bank’s all-night-teller machine, an HP 1000, and the 71
could, given a way to connect them, have a reasonable conversation. Though it’s hard to say what
they’d have in common to talk about.

The standard is 8 bits (one byte) representing each character, with the eighth bit (the high bit in
codes above 127) reserved for parily. A parity bit is a checksum of one kind or another which is
tagged onto the data to assure that, when the byte gets to where it’s going, it hasn’t been garbled by
a gremlin along the way. Add-up the bits when the byte gets to the destination and see if the
checksum has changed. Computerdom has become much more reliable in the last 20 years, so the
parity bit is rarely used today in data communications. Which left the engineers at each company
to decide how to use the bit; while one might display hieroglyphics, another might print italics.

As are most "standards", ASCII is only partially recognized as standard; codes 32 through 126 are
usually displayed or printed the same on any machine. While the 71 displays many of them as
special characters (Greek to me), ASCII Codes zero through 31 are often reserved for printer or

Chapter 4 Getting Started 27

display or file handling codes. For example, printing CHR$(15) sets many printers in condensed

type mode, and CHR$(7) usually rings a bell (probably a squeaky little beeper), and isn’t printed
or displayed at all when you send it to a printer or terminal. Most HP 70 and 80 series computers
display CHR$(7) as a pictograph of a bell; the IBM PC displays it as a left arrow character.

A byte is a byte, and since there are only 256 variations, the characters serve a second purpose be-
yond displaying ASCII codes. Programs and data are also represented with the same codes; you
can tell the purpose of a byte by context and data structure. Regardless of how complex things
seem, you can eventually reduce them down to one of those 256 numbers, and beyond that to the
8-bits (the one’s and zero’s) which make up the byte.

Calculator Variables

This book makes a distinction between calculator and program variables, though there really is
none. So, why this extra complication when we usually try to make things easier on ourselves?
Recall that the 71 can have multiple environments at the same time; often a running program will
use an entirely separate set of variables. That’s why we’ll define the calculator variables as those in
the main environment, used in CALC mode and BASIC mode, and in utility programs you write
for your own solutions. A polite program will either use the main environment only with your
permission, or not use it at all. This insures that your calculator variables are just that.

Most calculators use data registers for storage of calculator and program data. We’ll define a reg-
ister as a fixed size, pre-defined place to store data. The 71, as with other computers, uses vari-
ables. It’s not just a philosophical difference, variables, unlike registers, can be of various sizes and
types and possibly move about in memory as ROMs or more memory are added to the computer.
Unlike a register, a variable does not exist (and does not use any memory) until it is needed.

We've been calling RES a register because it technically is: It’s of a fixed size, type, and location,
and can neither be created nor destroyed.

In BASIC parlance and True Algebraic mathematics, a variable is a symbol which represents a
value. The symbolic label used for each variable represents actual individual location in memory
reserved for that (if you will...) pigeon hole. Let’s assign our, now tiring, example to variable X,
then read the variable to verify the answer. The keyword LET is optional (and rarely actually used)
but is included for clarity.

[! Assign the results to a variable.
LLET X=2+3%4-5§ | ! Then display the variable.

X 9

This statement says "Look up the value of X and display it." We can use a boolean (logical) opera-
tor to do a comparison and prove that X does contain the result of that formula. A boolean re-
turns a true (the number 1) or false (the number zero) result; any non-zero result is true. This
boolean comparison lists the value on the left to help the 71 interpret the statement; had the vari-
able name been given first, the 71 would have assigned it the value. Another alternative to insure
that a boolean comparison will be made is to preface the expression with DISP. This consideration
is only important when using = because there’s no chance for ambiguity with other boolean
operators.

28 Getting Started The BASIC HP-T71

L9=x§ L1

DISP X=9§ 1

The result of this argument is either one which means the argument is true, or zero is returned if
our argument proves false. (whew!).

We'll get back to boolean comparisons later, but you may want to try this little program now to see
how the 71 uses logical operators. Substitute the keyword PRINT for DISP if you'd like a printed
table.

10 DISP " X # = NOT AND OR EXOR" ! Boolean truth table.

20 FOR X=0 TO 1 ! Loop through zero and one comparison.

30 DISP X;X#1;X=1,% “,NOT X;" ";X AND 1;" “;X OR 1;" ";X EXOR 1
40 NEXT X ! The end of the loop.

Previously we’ve been displaying results using an implied DISP. This means that the results of an
expression is displayed unless the expression begins with a variable assignment, in which case the
result is assigned to that variable and nothing will be displayed. Remembering the optional
keyword LET will help.

Symbolic Variable Names

Variable names, as you know, are represented by the letters A through Z. Since programs often
need more than twenty six variables, HP has added the option of adding a single digit suffix to give
us A0 through A9, BO through B9 and so forth. Instead of 26 possible variable names we now have
286.

String variable names, like string functions, end with a $ dollar sign. As with numeric variables they
also offer the full 286 possible names. For example, X$, B$, A0$, Z9$. String variable names are
separate from numeric variables; we can use both X$ and X at the same time. Unless otherwise
specified (with DIM) a string variable can contain a maximum of 32 characters.

Types of Variables

The rich library ot 71 operations is further expanded by the ability to store strings and numbers in
several types of variables. These types specify the mathematical precision and usage of the vari-
able. REAL variables are full precision, with twelve significant digits (mantissa) plus three digit
exponent. SHORT variables have the same three digit exponent, but use only a five digit mantissa.
INTEGER have limited precision (only five digits); the 71 rounds the fractional part to the nearest
whole number when you store in an INTEGER. Each of these three variable types uses the same
amount of memory; there is no memory savings in using shorter precision as there is with some
other computers. This was done to standardize the way the 71 handles numbers internally, and
simplifies things considerably.

DIM, SHORT,INTEGER
These three keywords explicitly create (or declare) variables. The keyword REAL can also be used
to create REAL variables, though DIM works just as well.

Chapter 4 Getting Started 29

Remember, arrays are not necessarily initialized to zero if they already are in existence. Variables
of other types, if they already exist, are set to zero (or null if a string variable). The keyword
DESTROY is used to get rid of unwanted variables.

DIM A,B,C,X$[96] ,K$[1] ! Create REAL or string variable.

REAL X,Y,Z ! This creates a REAL variable, just like DIM.

DIM A(5),B$(9)[10] ! Create or re-dim a 1-dimension array.

DIM X1(3,4) ! Create or re-dim 2-dimension array.

SHORT V1,Y(23),Z(5,8) ! Create a SHORT variable or array.

INTEGER M,R(11),B(3,2) ! Create an INTEGER variable or array.

DIM S$(4)[10] ! 4 element string array, maxi 10 characters per element.

Arrays

An array consists of a group of elements of a single type, represented by a common symbolic label.
Numeric arrays may be one or two dimensions, string arrays are limited to a single dimension. A
two dimension array is also called a matrix. Unlike regular (scalar) variables, arrays consume less
memory per element than individual variables of the same precision. We can create variables in
any of the three precisions.

Two dimension arrays are referenced by row then column in the form X(row,col). This table rep-
resents an array of (3,4) created with OPTION BASE 0 for a total of twenty elements. If OPTION
BASE 1 had been in effect the zero elements would not exist, it would contain twelve elements.

Col O Col 1 Col 2 Col 3 Col 4
RwO - 0,0 - 01 - 0,2 - 03 -+ o0, -
Row1 - 1,0 - 1,1 - 1,2 -« 1,3 -+ 1,4 -
Row2 - 2,0 -+ 2,1 - 2,2 - 2,3 - 2,4 -

Row3 - 3,0 -+ 3,1 =+ 3,2 =+ 3,3 =« 3,4 -

OPTION BASE

The lower bound of the array is set at either zero or one, depending on the current OPTION
BASE. Changing the Base setting does not affect the lower bound of arrays previously created.
The OPTION BASE setting is a global declaration (same for programs and calculator variables).

OPTION BASE 0 ! Start arrays with element zero.
OPTION BASE 1 | The first element is one.

Using Arrays

Arrays can be implicitly created, though they will be created with elements zero (if OPTION
BASE 0) or one (if OPTION BASE 1) through 10. Store something in any element of a
nonexistent array and it will be created to the default size. If the variable name specified is already
being used for a non-array variable then the 71 will cause an error; when in doubt, use DESTROY
before creating the array. We’ll talk about more practical method for creating them in a moment.

30 Getting Started The BASIC HP-T71

The MATH ROM is invaluable if you often use arrays. The MATH ROM function TYPE returns
the type of the specified variable, and UBND and LBND return the bounds (number of elements
in one direction or the other). If you do not have a MATH ROM, the most practical way to deal
with arrays is to always explicitly DIM them, then keep track of their usage, and DESTROY them
immediately when they are no longer needed.

Since we usually use single character names for scalar variables, it’s often less confusing to use less
common names for arrays. Arrays are referenced by an element number following the array name.

A(5) ! Element 5 of the single dimension array A.

B6(2,3) ! Element 2,3 of the two dimension array B6.

X0$(3) ! Element 3 of the string array X0§$.

Y9$(5)[2,3] ! Characters [2,3] from element 5 of the array Y9$.

Indirect variables have long been a trick used by calculator programmers (STO IND X). Arrays
give BASIC this advanced capability and extend the number of possible variables far beyond 286
(to a maximum of 65535). Elements may be themselves specified by mathematical expressions.

! Read an element of the array.

X=A(2*R,3*C)#

As we said earlier, string arrays can only have a single dimension. Like regular string variables, the
71 creates string arrays to a maximum length of 32 characters per element unless otherwise
specified. An implicitly created string array will have 10 (or 11 if OPTION BASE 0) elements of a
maximum of 32 characters each. A single element may be null (empty) or filled to the maximum
number of characters for which it is DIMmed without affecting other elements in the array.

Re-Dimensioning an Array

Interestingly, if an already existent string or numeric array is re-dimensioned without changing the
element size (the number of characters which can be stored per element or the precision of
numerical elements) then elements are merely added or eliminated without resetting unchanged
elements to null.

Moreover, we can use re-dimensioning in a program, conserving memory by DIMing the array
small. Then, if conditions change during the program run, we can increase the number of elements
without losing information.

The 71 allows variable names be used for a single variable type at one time (again, strings and
numeric variables are a different case). If a variable name has been used for, for example, a REAL
number then it cannot also be used for an array.

Variable Memory Use

The following table lists the available variable types plus memory consumption. COMPLEX vari-
ables are included in this table, but are only available with the Math ROM. A complex number can
be either REAL or SHOR'T and has a real and imaginary part represented as (0,0i) where the two
parts are represented in parentheses separated by a comma and i represents the imaginary part.
Most mathematical expressions can be evaluated using both real and imaginary part of complex
numbers when the Math ROM is present.

Chapter 4 Getting Started 31

Type Precision Memory Usage

REAL 12 digit+exp 9.5 bytes

INTEGER 5 digit+exp 9.5 bytes

SHORT S digit 9.5 bytes

REAL ARRAY 12 digit+exp 8*(Dim1-Base+1)*(Dim2-Base+1)+9.5
INTEGER ARRAY 5 digit 3*(Diml-Base+1)*(Dim2-Base+1)+9.5
SHORT ARRAY 5 digit+exp 4.5*(Dim1-Base+1)*(Dim2-Base+1)+9.5
STRING Max length+11.5

STRING ARRAY (Dim - Base +1)*(Max length +2)+9.5

Additional Data Types with MATH ROM:

Type Precision Memory Usage
COMPLEX 12 digit +exp 25.5 Bytes
COMPLEX SHORT S5 digit+exp 18.5 Bytes
COMPLEX ARRAY 12 digit+exp 16*(Dim1-Base+1)*(Dim2-Base+1)+9.5
COMPLEX SHORT ARRAY
5 digit+exp 9*(Diml1-Base+1)*(Dim2-Base+1)+9.5
ZEN and Variables

Variable names, as we have discovered, are symbolic. Let’s recap some of the other disconcerting
realities of variables.

) A variable does not necessarily exist, even if it has been tested, until it has been
explicitly (DIM) or implicitly (by storing something in it) created.

° A variable which has been created as an array cannot be tested as a simple
(scalar) variable; nor can a simple variable be tested as an array.

° A complex variable can only have an imaginary part if it exists; if it does not
exist it cannot be tested for an imaginary part (BEEP, Error).

° Strings are always created to zero length, but arrays are merely redimensioned

without being zeroed.

o)

10 CALL GRAPHIX @ SUB GRAPHIX @ DIM C$[132] | GDISP demonstration
20 FOR L=1927 TO 2027 STEP 2 | let’s look at ROM chars., including cursors
30 C$=C$&CHRS (ATDC(REVS (PEEK$(DTHS$CL) ,2)3)) | accumulate the pattern
40 GDISP C$&GDISPS$ | display pattern plus what is already being displayed
60 NEXT L @ Cs="" @ GOTO 20 | will loop forever, don’t get hypnotized!

32 Getting Started The BASIC HP-71

CALC Mode S

Many people graduate to the 71 from Hewlett-Packard calculators such the HP-41 or HP-12 and
sometimes have an initial disappointment because the ease of use seems to be gone. After using
one for several years, it’s easy to forget the learning curve required to master RPN calculators:
Understanding how to evaluate an expression and translate it to the particular syntax required. It’s
a common situation: A friend borrows your HP calculator to figure, for instance, sales tax, and
stares at the keyboard for about three times as long as it would have taken to figure out the tax in
their head.

Hand the 71 to that friend and they will be able to at least compute sales tax without a ten-minute
philosophical discussion about post-fix notation. CALC can be a powerful, expandable computa-
tional tool, or we can use it for simple, spontaneous calculations; just punch in an expressiocn, and
watch the 71 earn its keep. We've already been discussing calculating with the HP-71, CALC mode
is an extension of BASIC mode calculating. Let’s spend just a few minutes reviewing some of the
basics of CALC mode.

Unlike BASIC mode calculations, in which the 71 waits to evaluate the entire expression until after
it gets an ENDLINE, then bang, an answer, CALC mode is always on guard. As soon as the 71 can
evaluate an intermediate resull, it replaces that portion of the expression in the display with the re-
sults. A closing parenthesis, comma or mathematical operator (such as / or +) signals the end of
an expression, so the 71 tries to evaluate the intermediate result. Pressing ENDLINE designates the
end of the formula. There are really two levels of CALC mode: The CALC editor, during which
the insert cursor is at the right edge of the display, and editing a line in the stack, during which the
BASIC editing keys are active. String operations, including HTD and DTHS are not allowed in
either CALC level.

Editing an expression with the command stack in CALC mode (press g-CMDS or one of the up or
down arrow keys) is much like BASIC mode calculations, intermediate results are not displayed.
You can recall previous expressions and modify them in two ways: By altering the entry as needed
then pressing ENDLINE, or by deleting the end of the line character (crooked arrow <—!) at the end
of the line then pressing RUN to again use the CALC editor with that expression. USER keyboard
assignments work while editing the stack, except immediate execute keys which don’t cause an
error, they are simply ignored.

Rules of Precedence

Like back in BASIC mode, rules of precedence dictate how the 71 evaluates intermediate results.
Our earlier example of 2+3*4-5 is evaluated exactly as it is in BASIC mode. Notice again, multi-
plication is evaluated before addition so the intermediate result is based first on the multiplication,
then the addition. The 2+ 3 hangs there while the 71 waits for us to enter the next expression to be
evaluated.

Chapter 5 CALC Mode 33

! With the next keystroke:

[2 < |

! The addition “hangs" there.

l_ 2+3%4 < l
! The multiplication is evaluated
L_ 14-5 < I 1 followed by the addition.
9 « ! Finally, press ENDLINE.

Again, we can use parentheses to insure that the expression will be evaluated as intended. The 71
will automatically enter a closing right parenthesis for each left parenthesis entered while in
CALC, though BASIC mode requires matcning sets. Entering a closing parenthesis, even though
one is already displayed, will move the cursor outside of that set. Just in BASIC mode, the
compuler ignores extra sets of parentheses; and they’re free, when in doubt use several.

! Evaluate the addition.

| (2+43) « |
! Now, the multiplication.
I_ S5v4 < |
20-5 «
! The answer when we press ENDLINE. 15 «
Long Formulas

CALC s, as are all types of input, limited to 96 characters per line. Enter a long, complicated
mathematical expression, or just add a column of numbers, and when the 96’th character is
reached the 71 beeps and sends you back to the beginning of the line. This leaves your formula in
mid-number and mind in mid-thought. Instead of entering the numbers until the error occurs, find
a mid-point and do an intermediate answer.

L_23.7+64.2+44.2+33.1+32.0+27.9+26.3+19.7+24.6+29.4+34.6+33.2+28.4§

()+23.2+31.0+35.1+38.6+46.7+51.5+63.1+74.8+61.3+59.2+52.6+43.1§

RES, ()

We split the list above into two portions, pressing ENDLINE at a comfortable point (somewhere be-
fore the 96th character). When we went to the second line we used () to recall the RESults of the
earlier calculation. Even more important than in BASIC mode, RES provides a continuity
between mathematical expressions. Note that RES changes only when you press ENDLINE, so that
intermediate results may again use () within the formula without changing RES. The RES
keyword, an empty pair of parentheses, or just ENDLINE without anything displayed, will return the
result of the previous calculation.

ENDLINE

Terminates the expression, closing necessary parentheses and completing any partially evaluated
expression. ENDLINE also places the result of the calculation in the RES register.

34 CALC Mode The BASIC HP-71

ENDLINE places the carriage return character on the end of the line. It’s possible to exit CALC
without pressing ENDLINE. In that case, if you edit the latest stack entry in BASIC mode, the last
character on the line is not displayed. This is because the BASIC editor assumes that the final
character on the line is probably a carriage return, which is not normally displayed.

ON

The cancel key. The formula is cleared from the display. The formula is not entered into the
command stack nor is any intermediate result placed in RES. The expression will be placed on the
stack if, for instance, a long line had been entered and returned "ERR:Line Too Long."

RUN

Terminates an expression much like pressing an operator key. Evaluates as much of the formula as
it can and displays intermediate results. This does not suspend the rules of precedence. Using our
above example, press RUN.

! Now press RUN

L 243 <]
! Intermediate result.
[x1
* 4 ERR:Precedence

Since the entire expression is maintained, regardless of intermediate results displayed, the 71 still
expects the expression to be evaluated in sequence.

The real value of the RUN key in CALC mode is to partially evaluate an expression with the
intention of possibly altering it before obtaining the final answer.

f-BACK
The "undo" key. Before pressing ENDLINE to terminate the expression. £ -BACK, used with RUN,
allows us to step backwards through an expression and alter it as needed.

Arrow Keys
The UP and DOWN , g-UP and g-DOWN keys move us through the command stack. In CALC mode,
the left and right arrow keys are ignored unless the command stack is enabled.

Command Stack

Many jobs which might otherwise require writing a program can be performed within CALC using
the entries on the stack. Nominally five, but up to the last sixteen calculations are available in the
stack. You can look through the previous entries to make sure that calculations were entered
correctly, revise an expression, or recall an entry to the CALC editor. If you delete the carriage
return character (+—!) then press RUN, the expression can again be used with the CALC editor;
adding and deleting characters to obtain intermediate results. If you’d like more than the standard
five entries, run the program CMDSTK, listed later.

Chapter 5 CALC Mode 35

Variables

As with BASIC mode calculations, values may be exchanged with the calculator environment just
by referencing them in an expression. Unlike BASIC mode, even if a value is destined to go to a
variable it is still displayed. The value is not assigned to the variable until the end of the expression,
so you may still evaluate intermediate results, changing formulas until you are satisfied, before
pressing ENDLINE.

X=TIME/3600 ! Assigns the result of the expression to variable X.
TIME/3600-X | Uses the value previously stored in X in an expression.

CALCAID Program

This little BASIC program is useful for continuous addition without worrying about getting over
96 characters. The program displays the current value of variable X, followed by a question mark
and the flashing cursor.

0.00 2 § ! CALCAID program display.

Enter a mathematical expression then press ENDLINE. The program saves results to variable L
(easy to remember--think of it as .astX) and the value is added to variable X (as with RPN
calculators). Any mathematical expressions which evaluate to a single numerical result (including
string functions which return a number) are allowed, and the command stack is active. The pro-
gram continues through this little loop, prompting for input and adding the result to X, until you
end it. Re-enter CAL.C mode by pressing ENDLINE without any data. The small "trick" in the pro-
gram is that it will branch to line 100 with any mathematical error (which no data at all certainly
qualifies as), and line 100 "presses" the CALC mode key and ends the program. Any errors in data
entry will also put us back in CALC. The program should always be RUN, never called, so that the
calculator variables will be common with those used within CALC mode. A variation of this pro-
gram can be done to enter data into a statistical array, or any series of variables (preferably using
MAT INPUT from the MATH ROM), then return to CALC mode to evaluate the data.

So, we're in CALC mode and want to run a column of numbers which will probably exceed 96
characters. We exit CALC (press £-CALC again), and press RUN with this as the current program.

10 ON ERROR GOTO 100 ! “CALCAID" program.

20 DISP X; @ INPUT L ! don’t forget the semi-colon (;).
30 X=X+L @ GOTO 20 ! loop until we get an error.

100 PUT "f," @ END ! go to calc mode.

User Defined functions

In addition to the power of adding new keywords using LEX files, we can write functions "on the
run" in BASIC to use in formulas and save time entering often used or complex formulas. In the
context of CALC mode, a user defined function can be thought of as a mini-program or "macro."

A user function is created with the BASIC statement DEF FN followed immediately by a name
which can be letters A-Z and optionally [ollowed by an number. A single line function evaluates an

36 CALC Mode The BASIC HP-71

expression and returns a numerical result. The function must be in the current BASIC file, not in a
SUB program.

200 DEF FNT=TIME ! A simple one line function.

A FN may consist of any number of nested parentheses incorporating the most convoluted logic
desired as long as it is a single expression which evaluates to a numerical result.

! Using a single line DEF FN in
FNT < ! calc mode.

While it may seem limiting that we may only use single line functions, remember that they may also
call other single line functions (or themselves!). Another advantage of using FNs is that they may
use string functions. Let’s define FNTZ2, which uses FNT twice, to see how long it takes to evaluate
a function. Exit CALC mode and type the following:

210 DEF FNT2=FNT-FNT ! Single line FN referring to another function

Go back to CALC mode and compare this to the time it would take to enter the expression
directly in CALC to see the actual time savings.

! Call the nested DEF FN.

|_ FNT2 < I
! Compare this result to the time
TIME-TIME < ! the FN takes to run.

The "hook" of allowing user defined functions to be recursive as well as calling other functions
brings us a new application of BASIC as a threaded language to be interpreted in CALC mode.
These I'Ns can be added to a single file, such as at the end of the CALCAID program, for a
custom function set.

Inside CALC Mode

When a BASIC program is running there is somewhat increased power consumption; the com-
puter is constantly working. Lest you think that the ever attentive state of CALC mode will end
with increased battery drain, the 71 performs these tasks quite fast, and actually has time for a cat-
nap (called "light sleep") between keystrokes. It wakes up every now and again (well, in computer
time) to flash the cursor, then nods off again. In fact, given ten minutes of waiting for us, the
computer will shut down completely (called "deep sleep"). The 71 is eminently patient with us slow
humans, though less so when we press the wrong keys.

As is the rest of the HP-71's Operating System, CALC mode is written in Assembly Language.
The three main modules include the editor, decompiler (which tries to interpret our keystrokes),
and a group of utilities. Surprisingly, much of CALC mode is contained within this 961 byte block
of ROM; not very much code space considering the complexity and versatility. Part of the reason
for this efficiency is the use of utilities from the BASIC interpreter which helps explain the
similarity to BASIC. As an example of this efficiency, when the Command stack is enabled, CALC
uses the very same editor as the BASIC keyword INPUT.

Chapter 5 CALC Mode 37

The environment is altered considerably while in CALC. Because of the complexity of CALC,
only single line FN’s can be used, and an active display device is ignored, though an active external
Keyboard is allowed. This is probably because the display device would have to be actively sup-
ported, thus slowing things down as the insert cursor was constantly being moved around. Try to
visualize how CALC mode would look on a monitor and you can see the problem; the engineers
dropped the issue all together. External keyboards, on the other hand, require no extra work from
CAL.C. They are interpreted using an interrupt which handles the key, then returns it to CALC, so
that CALC receives the key without knowing where it came from.

gl

6 CALL MATHQUIZ © SUB MATHQUIZ @ E£$=CHR$(27)&’H’&CHRS(27)&'J’
10 DISP E$&"Math Quiz" @ RANDOMIZE TIME
20 ON ERROR GOTO 20 @ T=0 @ INPUT "Largest number? ", "10";M

30 M=ABS(IP(M>) @ IF NOT M OR M>999 THEN 20 ! make sure it’s in range
40 DISP "function: + - * /" | prompt for type of function
60 F=POS("+-*/" KEY$> @ IF NOT F THEN 60 | wait for a proper key
60 FOR Q=1 TO 10 ! loop through 10 questions
70 X=INTCRND*M> @ Y=INTC(RND*M) @ IF X<=Y OR NOT Y THEN 70 | get numbers
80 IF F=4 AND NOT FP(X/Y> OR Y=1 THEN 70 | integer answer for division

90 C=0 @ DISP E$&"Question number";Q @ ON ERROR GOTO 100
100 IF F=1 THEN DISP X;"plus";Y; Q@ B=X+Y
110 IF F=3 THEN DISP X;"times";Y; @ B=Xx*Y
120 IF F=2 THEN DISP X;"minus";Y; @ B=X-Y
130 IF F=4 THEN DISP X;"divided by";Y; @ B=X/Y
140 INPUT A @ IF A=B AND NOT C THEN T=T+1 Q@ DISP "Very good!";B @ GOTO 180
150 IF A=B AND C=1 THEN DISP "Yes,";B @ GOTO 180
160 IF A#B AND NOT C THEN DISP "Sorry, not ";A @ C=1 @ GOTO 100
170 DISP "The answer is:";B
180 NEXT Q ! end of the loop
190 IF T=10 THEN DISP "GREAT! PERFECT SCORE" @ GOTO 220
200 IF T>7 THEN DISP "Goodi";
210 DISP T;"of 10 correct" | the lazy way to wait for a keystroke
220 WAIT 2 @ INPUT "quiz again? " ,"Y";E$ @ IF UPRCSCE$)="Y" THEN 10

38 CALC Mode The BASIC HP-71

Basic BASIC 6

This section introduces BASIC and simple programming. If you’re new to programming in BASIC,
or would like a refresher in the 71 dialect, read on.

BASIC is a child of the 60’s, created at Dartmouth College, and raised as a learning tool for com-
puter novices. It has easy to remember commands, simple syntax, and is probably the easiest com-
puter language with which to learn programming. The acronym, Beginner’s All-purpose Symbolic
Instruction Code, is an understatement; BASIC has grown into a powerful programming tool.

Unlike most personal computers, the 71 is a useful tool without programs. BASIC programming
expands the 71, helping us solve problems with speed and simplicity. Any complex pursuit, be it
programming, surgery or farming, requires patience and a willingness to get your hands dirty.
Back-up everything in RAM onto Disc, and let’s get started.

You've turned on your 71 and entered CALC mode to convert five centimeters to inches. In
algebraic logic (which is how BASIC works) you might enter:

S5v.39378 1.9865

Now, suppose you have a whole list of numbers (cms’s?) to convert. You could wander up and
down the command stack replacing one number with another until the job was done, or you could
write a program to help you.

A program is a series of keystrokes we’ve recorded to use time and again without having to re-
enter them. To differentiate between entering commands for immediate execution and writing
programs, programs are stored as a series of lines, each beginning with a line number of from one
to four digits. When we run the program, the computer reads each line and interprets the
instructions.

The 71 reads a program file a line at a time, and each line from left to right, a statement at a time.
Each mathematical expression is evaluated using the same rules of precedence we use in BASIC or
CALC mode. Contrary to popular myth, a computer does not wander up and down a program in a
relentless quest, looking for what’s most logical to do next. It does what we tell it to.

Let’s make a program of our metric problem. We have the math part (X*.3937), let’s add a
program structure to it and have the computer do the work. To begin with, we need to have the
compuler ask for the number, we do this with an INPUT statement. INPUT, in its various forms,
displays a prompt, waits for you to input something, then stores the information where the
program code tells it to. The 71 knows that we are entering a line in a BASIC file because we've
begun it with a line number; without the line number, the computer evaluates it in immediate
mode and displays the answer.

10 INPUT “cm:*;X§

Chapter 6 Basic BASIC 39

Line 10 tells the 71 to display the prompt ("cm:") then wait for the user to enter the number and
press ENDLINE. The number is then automatically assigned to variable X, though we could have
used any variable. Now that we have the number (safely stored in X), we need to do the math with
it:

20 Y=X*.3937§

Now the solution is in variable Y; let’s display the answer. INPUT gave us an input, the math
operations worked much as they do in CALC mode, it would figure to display the result we would
use something like DISP.

30 DISP Y§

Fine, a simple solution. Let’s embellish the answer to be more informative.

30 DISP Y;*"inches"§

The semicolon tells the 71 that more is to follow on the line, then we add the "inches". Note that
the quotation marks (either single or double, but both ends must be the same) are required.
Otherwise there would be no way for the 71 to distinguish the end of the string from the rest of the
universe.

GOTO

We're writing the program to save time converting a lot of numbers. Let’s modify our program so
that it will continue working until we press ATTN to stop it. We'll do this by adding a line to tell the
71 10 go back and start over when it’s done.

40 GOTO 10%

The answer stays in the display for as long as the delay setting (usually a half-second), then the
program will GOTO line 10 and start over. Ending the DISP with a semicolon tells the computer
that it is not done with displaying on the current line. We can modify line 30 so that the answer will
stay on the left of the display when the program goes back to line 10. DISP formats numbers with a
leading space if the number is positive, or a minus sign if it is negative. In either case it’s followed
by a space, so it’s not necessary to add extra spaces to separate the numbers from the words
displayed. With the final modifications, the program runs until you press ATTN to halt it.

10 INPUT "centimeters";X
20 Y=Xx*,3937

30 DISP X;"in.,";

40 GOTO 10

40 Basic BASIC The BASIC HP-71

The main difference between a four line program and a five-hundred line program is four-hundred
ninety-six lines. ‘T'his is not as casual a statement as it sounds. A large program can be thought of as
a group of problems which can be broken down into a series of small solutions. Small solutions like
the one above combine to solve big problems. A plan, whether in the form of a list of necessary
tasks, a flowchart, shopping list, or any other form which you find comfortable, makes the
difference between a programming nightmare and a problem brought down to size.

HP BASIC

Hewlett-Packard has taken the approach of a multitude of commands with an editor which checks
syntax when you enter a line of code. HP BASIC is an excellent programming environment be-
cause of its completeness and consistency of operation. And it’s a language to grow with because
of its speed and power. While you will probably need to refer often to the HP-71 Reference
Manual, and you’ll hear your share of beeps, the only damage likely to occur to the 71 is from
physical abuse to the keyboard.

Let’s take the idea from our centimeter to inch converter program and give it another function.
This will look a little less like generic BASIC, and more like HP’s. We'll begin with a prompt in the
form of a simple menu. When you run the program, all you will have to do is press the appropriate
key to select a function.

In order to save a little space we’ll enter more than one statement on a line. Each statement is
separated by "@", the commercial at sign; this is called concatenation. Lines beginning with an
exclamation mark are remarks which are ignored when the program runs. Line 50 gives us the
opportunity to exit the program by pressing E; this is usually better than suspending with ATTN.

1 ! inch/cm converter.
10 LC OFF @ DISP "metric converter" @ WAIT.5
20 ’MENU’: DISP "convert to: Cm/In" | the main menu prompt.
30 IF KEYDOWN("C") THEN 'CM’ | wait for a key.
40 IF KEYDOWN("E") THEN END | the escape hatch.
50 IF NOT KEYDOWN("I") THEN 30 ! if wrong key, go back for another.
100 *IN’: DISP "cm:"; @ GOSUB ’'INP’ ! inch--> cm
110 Y=X*.3937 @ GOTO ’'DSP’
200 'CM’: DISP "in:"; @ GOSUB ’INP’
210 Y=X*2.54
500 *INP’: INPUT X @ RETURN ! input subroutine.
600 °DSP’: DISP Y @ WAIT 1 ! display routine.
620 GOTO ’MENU’ ! we’re done, return to menu.

Labels

As the program name describes the program, labels identify the purpose of a subroutine.
'ERRTRAP’ handles errors, ’ASKYN’ might handle input, and '"MAINLOOP’ is probably just
that; a descriptive label makes the program easier to write and maintain. While long labels con-
sume a few extra bytes, a line which says GOSUB 'READFILE’ won’t need a remark to remind us
what it does, or hours in debugging if line numbers are changed. Since the label is independent of
the line number, we can insert, dclete, and re-number lines without affecting the logic or flow when

Chapter 6 Basic BASIC 41

the major modules are distinguish by program labels. Within 5 minutes of using labels, you'll won-
der how you ever got along without them.

There are few restrictions on labels; anything may follow on the line without an "@", and the al-
lowed names follow the same rules as program names. Some rules of thumb with labels are:

° Don’t use function names for label names (it’s confusing).

° Don’t use same label twice (only the first one will be found when the program
searches for it).

° Enter label references without quotes. When you enter the label or label refer-

ence without quotation marks, the 71 tokenizes the label with an implied quote,
thus saving a byte over entering literal quotes.

Labels are especially useful with DATA statements. Begin each line or series of DATA statements
with a label, then use RESTORE to place the pointer at the beginning of that sequence.

200 RESTORE ’NAMES’ @ READ X§ @ DISP "Salesperson: "“&X$

210 RESTORE ’DISTRICT’ @ READ X$ @ DISP "District: "&X$

220 RESTORE ’*SALES' @ READ X @ DISP "Total Sales:";X

500 ’NAMES’: DATA Bob,Mary,Vern,Carol

610 ’CITY’: DATA San Jose,Palo Alto,Livermore,Mountain View
520 'DISTRICT’: DATA Valley,Downtown,East Bay,South Bay
530 ’SALES’: DATA 5600,6700,3400,5100

GOSUB, RETURN

GOTO, as you know, tells the 71 to go-to a line or label in the program. This is unconditional
branching. Often we use a portion of a program several times to save memory, link modules, or to
keep from having to write similar code several times. In these situations we use a subroutine. To
get to the subroutine we use GOSURB, and to return the subroutine ends with RETURN. When
the 71 exccutes the GOSUB, the address (location in memory) of the GOSUB statement is stored
in a list. When the 71 encounters the next RETURN, it looks up where it came from, and the 71
continues from the statement after the GOSUB.

Subroutines may call other subroutines by again using GOSUB, adding new entries to the list. This
list is called, conveniently enough, the gosub stack, and it’s maintained automatically by the 71
while the program runs. As you can sec, for every GOSUB there’s a pending RETURN, though
there may be quite a bit of time and program between them.

° The gosub stack works as last in first out. Whenever a RETURN is encoun-
tered, the last entry is "popped" from the stack and program execution contin-
ues at the next statement following that last GOSUB. Every GOSUB adds one
to the stack, every RETURN pops one.

° If the gosub stack is empty and the program encounters a RETURN, an error
message is displayed because the 71 doesn’t have any place to return to.

42 Basic BASIC The BASIC HP-T71

° Statements following a GOSUB on the same line will not be executed if you
press ATTN to suspend the program, then £-CONT to continue. It’s good pro-
gramming practice to account for this by placing GOSUBs as the last statement
on the line.

An oversight even experienced programmers make is to follow a GOSUB with RETURN. When a
subroutine calls another, that routine will also end with a RETURN, giving the 71 two RETURNSs
to execute one after the other, plus the overhead of an extra entry on the gosub stack. It will save
some time and code it you place the call to the nested subroutine at the end of your routine and
use GOTO. Be sure to note in a remark that the GOTO is in lieu of nesting the subroutine.
Overuse of GOTOs in this or any manner results in "spaghetti code," which will be difficult to
unravel later.

2000 GOSUB 3900 @ RETURN ! Readable, but wastes code and time.
2000 GOTO 3900 ! Shorter and faster.

POP

If a RETURN statement following a GOSUB is never encountered, the pending RETURN re-
mains on the gosub stack. Sometimes this is because of an error in program design; often condi-
tions change and you may not want to return at all. The POP keyword cancels the RETURN from
the most recent GOSUB. When the 71 POPs, the newest entry on the gosub stack is deleted, and
execution continues from the POP statement. If you're using an all-purpose error trap, and the
number of pending RETURNSs will differ depending on how you got there, use the maximum
number of POPs you will possibly need. Unlike extra RETURNSs which cause an error, the 71
ignores extra POPs. 'The HELP subroutine, listed later, uses POP.

Computed GOTO, GOSUB

The 71 can help us write.compact, readable, and quick programs, with program structures like
ON...GOTO and ON...GOSUB. These are very advanced forms of conditional branching. The
computer evaluates the expression, then uses the result to decide which line number or label to
branch to. An answer of 1 sends the computer to the first line, 2 sends it to the second, and so
forth, for as many line numbers (or labels) you've included. While superficially looking like the
ON ERROR statement, syntax and use are quite different.

10 FOR L=1 TO 3

20 ON L GOSUB 100,200,300

30 NEXT L @ DISP "end of program" @ END
100 DISP "subroutine #1" @ RETURN
200 DISP "subroutine #2" @ RETURN
300 DISP “subroutine #3" @ RETURN

Line 20 says "IF X=1 THEN GOSUB 100 ELSE IF X=2 THEN GOSUB 200 ELSE IF X=3

THEN GOSUB 300." If the expression evaluates to a number outside of the number of program
lines (or labels), the 71 will cause an error; used carefully, this is a versatile program structure.

Chapter 6 Basic BASIC 43

There’s a bug in HP71:1BBBB which requires OPTION ROUND NEAR or OPTION ROUND
ZERO for computed gosub and computed goto to work correctly. Use only simple numerical
operators (+, -, *, /, DIV).

FOR, NEXT

While GOTO jumps between a series of lines, FOR and NEXT provide a more elegant and struc-
tured method for looping for a predetermined number of times. In the next example, line 10 does a
piece of business, the program falls through to line 100 for some more work, then the end of line
100 sends us back to line 10. The problem is that line 500 never gets executed.

10 DISP “HP-71"
100 BEEP RND*1000,.1 @ GOTO 10
500 DISP "end of loop"

Besides running around in circles, we can have it loop for, say, 10 times.

10 FOR L=1 TO 10 @ DISP “"HP-71"
100 BEEP FP(TIME)*1000, .1

200 NEXT L

500 DISP "end of loop"

Now the 71 will loop for only ten times, then fall through to line 500. FOR and NEXT are paired
like GOSUB and RETURN, except that you should not have multiple NEXTs for one FOR; any
amount of program may exist between the two and you can jump in and out of the loop at will. A
few BASICs (including this one) allow multiple NEXTs for a single FOR, but it is poor program-
ming practice because of the dilemma of following the programs logic.

When the computer comes upon the NEXT statement, it increments the counter by one, then
compares it to the TO value. If the resulting value is less than or equal to the TO value, the com-
puter goes back to the statement after the FOR. In the above example the value of L is eleven
after completing the loop, since it was incremented before comparing it to the TO value.

Each FOR-NEXT loop is associated with a numerical variable (like X1 or L), and the initial loop
value may be set in any way. Since the loop counter variable is a standard variable, you may use it
or change it within the loop. HP BASIC allows us to exit a loop and even start another loop using
the same variable without causing an error.

Loops are always incremented by one each time through, unless we specify the STEP value.
500 FOR L=10 TO 100 STEP 10

This will still loop ten times. However at the termination of the loop, L equals 110, because the
computer incremented it by 10 each time.

You can create an endless loop with FOR L=1 TO INF. Infinity is an unreachable goal for the 71;
when it gets above twelve significant digits, adding one to it doesn’t increment it at all. The same
effect can be seen with FOR L=0TO 0 STEP 0, but it takes more memory and isn’t as clean
looking.

44 Basic BASIC The BASIC HP-T71

We can use positive or negative STEPs. The advantage of a negative number is to decrement the
counter each time, instead of increment. A program called NOREMS, in the communications sec-
tion, uses a negative loop counter to read a TEXT [ile backwards from end to beginning. This next
little program shows the effect of negative and positive steps. This program prints a list of system
and user flags which are set. Unlike the HP-41 function which prints the status of all flags, this
program prints only tlags which are set. If a flag isn’t set, its status isn’t printed. If no flags are set,
nothing is printed.

10 CALL PRFLAGS @ SUB PRFLAGS ! print system flags, then user flags.
20 FOR L=-1 TO -64 STEP -1 ! a negative step value.

30 IF FLAG(L) THEN PRINT "system flag";L;"is set" ! print it if set.
40 NEXT L ! the end of the first loop.

50 FOR L=0 TO 63 ! the default step is +1.

60 IF FLAG(L) THEN PRINT “user flag";L;"is set"

70 NEXT L @ END SUB

IF, THEN
The IF statement begins a powerful and easy to use method to conditionally execute a passage of
program code.

] If the expression evaluates true (it’s not zero), then the statement after THEN
is performed, otherwise it’s ignored. That’s the same syntax as the previous
sentence.

° The expression can be a mathematical or string comparison which evaluates to
a non-zero (true) value boolean argument.

° Note that negative values are non-zero.

] The statement to be evaluated (after THEN) may be almost any BASIC state-
ment or series of statements. The exceptions are DIM, FOR, NEXT, DATA
and DEF FN.

A traditional use of IF...THEN is followed by GOTO or GOSUB, called conditional branching.
For this reason if a line number or label follows THEN, it’s interpreted as an implied GOTO. This
is saying to the 71 "if the next expressing returns a non-zero result then goto this line, if not then
forget that I ever brought up the subject, and continue with the next line."

10 IF X>Y THEN 2000 ! implied GOTO to line 2000.
500 IF TIME>64800 THEN GOSUB ’LATE’ @ GOTO 100
630 IF (A+B)*(X-Y)>Z THEN R=R-12.75

We can evaluate the expression as false (zero) with the keyword NOT. This is saying "If the expres-
sion is not true then..."

20 IF NOT (X-Y)*Z THEN 500
70 IF NOT M THEN X=Y
500 IF X OR NOT Y THEN BEEP @ GOTO 100

And we can do multiple comparisons with AND or OR:

Chapter 6 Basic BASIC 45

10 IF X AND Y OR MEM<2000 THEN BEEP @ DISP X$

ELSE

If the expression evaluates as false, then the program ignores the remainder of the line and contin-
ues on the next line. We can redirect the program to continue on the same line but after the state-
ments which would have been evaluated had the argument been true. A disadvantage to nested
Else’s is reduced readability.

1600 IF X=1 THEN 400 ELSE IF X THEN 500
150 IF P=46 THEN PRINT CHR$(12); @ P=0 ELSE P=P+1 @ GOTO 80

el

5 CALL FROG @ SUB FROG | leap frog game. Jump only 1 char at a time
10 A$="XXXX 0000’ @ FOR T=1 TO 99 ! 99 tries to reverse order of chars
40 DISP USING ’'ZZX" >>>%" QA ,"<<<"'.T, AS$ | display current board
60 Q$=KEY$ @ IF NOT POS("123456789",Q$> THEN 50 | get jump position
60 L=POS(CAS," ") @ S=VAL(Q$> @ IF S=L THEN BEEP @ GOTO 650 ELSE DISP S;

70 IF ABS(S-L>>2 THEN BEEP @ DISP ’Too far!’ @ GOTO 40 ELSE DISP "-->";L
80 B$=AS([S,S] @ AS[S,S1=ASIL,L]1 © ASIL,L1=B$ @ IF A$="0000 XXXX" THEN 100

90 NEXT T @ BEEP @ BEEP @ T=99 | end of the loop
100 DISP "You took";T;"moves" @ WAIT 1 @ DISP "go again Y/N"

110 Q$=UPRC$(KEYS$)> €@ IF NOT LENCQ$> THEN 110 | a good score is under 10
120 DISP @ IF Q$#'N’ THEN 10 ! replay?

46 Basic BASIC The BASIC HP-71

HP-71 BASIC Programming 7

The BASIC line editor does several jobs. If we give it a mathematical expression, it tries to evalu-
ate it and return an answer. Enter a command like CAT ALL and the 71 will do just that.
However, begin the expression with a line number and you've entered a line in a BASIC program.
Same syntax requirements, same beeps and error messages. Since BASIC uses English-like words
and algebraic logic, once we’re familiar with its workings, the logic of a program can usually be fig-
ured out by reading the listing. An advantage of BASIC over FORTH or Assembly language is
that we can edit and modify programs on-the-fly.

Let’s begin by sharing a little program called ACYDUCY. The program presents two cards and
asks if you think a third card will fall between the first two. You can pass either by betting zero or
by clearing the input. It uses an infinite deck and maintains the bank. The program ends if you go
broke, but that’s only fair.

9 ! ACYDUCY
10 STD @ B=100 @ Q=5 @ RANDOMIZE @ ON ERROR GOTO 30 ! initialize.
20 'START’: DISP "Bank:$";STR$(B) @ WAIT 1
30 ’BET’: C=IP(11xRND)>+2 @ IF C<2 OR C>11 THEN ’'BET’ ! get cards.
40 D=IP(14*RND>+2 @ IF D<5 OR D>14 THEN 40
50 IF C>=D-2 THEN ’BET’ ! an implied goto.
60 E=C @ GOSUB 'CARD’ @ E=D @ GOSUB ’CARD’
70 INPUT "bet:$",STR$(Q);Q @ IF Q<=0 THEN ’BET’ ! an implied GOTO.
80 IF Q>B THEN DISP "Bank:$";STR$(B); @ GOTO 70
90 F=IP(14*RND)+2 @ IF F<2 OR F>14 THEN 90
100 E=F @ GOSUB ’CARD’
110 IF F>C AND F<D THEN DISP "WIN!,"; @ B=B+Q @ GOTO “START"
120 DISP "Sorry..."; @ BEEP 500,.2 @ WAIT 1
130 IF Q<B THEN B=B-Q @ GOTO ’START’ ! any money left?
140 DISP “"You’re Broke!" @ END
150 *CARD’: IF E=10 THEN DISP “TEN"; ELSE IF E=11 THEN DISP “JACK";
160 IF E=12 THEN DISP "QUEEN"; ELSE IF E=13 THEN DISP "KING";
170 IF E=14 THEN DISP “ACE";
180 IF E<10 THEN DISP STR$(E);
190 DISP *,"; @ RETURN

Line 10 follows standard BASIC practice of initializing variables to a known value before starting.
ON ERROR traps bad input if the user, for instance, enters no bet at all. This is necessary be-
cause the program assigns the input to a numeric variable, and a null string is not a valid numeric
expression (beep, "Err:Numeric Input"). RANDOMIZE places a new seed in the random number
generator. We've specified no parameter for RANDOMIZE, the 71 automatically uses the current
clock setting for the new seed. For programs which need a very random sampling, specify at least a
12 digit number.

Line 20 (label 'START) is the greeting; many programs begin with a prompt to let the user know
that he has run the right program. Label 'BET’ finds the two cards and makes sure they are at least

Chapter 7 HP-71 BASIC Programming 47

two cards apart. Line 70 prompts the user for a bet. The default bet is the same as the previous bet
(variable Q). While only a string may be furnished as the default input, the result may be returned
to numeric variables. In fact, we can use anything which evaluates to a string as the default.

INPUT "numbers:","1,2,"&STR$C(IP(C));A,B,C

The subroutine '"CARD’ displays the string equivalent of the current card. It’s used three times
within the program, so we've made it a subroutine to save memory.

There are no string variables used within the program. Each number is displayed as a string (using
STRS$) to suppress displaying extra leading and trailing spaces. While ACYDUCY is relatively
compact for what it does, it does have several weaknesses. It uses calculator variables without rea-
son, uses more variables than absolutely necessary and it will run until the user either runs out of
money or presses ATTN.

Sub-Programs

As we've stressed, entire programs are often used as sub-programs in order to preserve the calcu-
lator environment. ACYDUCY is not a SUB, and uses the calculator variables, a problem if
you've created the calculator variables to other types. For example, if B is an array, and line 20
tries to use it as a scalar variable, the program will halt (ok, "crash") with an error message. An
equally important use of sub-programs is to make commonly used modules available to several
programs, thus saving memory, and simplifying programming.

o While a subroutine begins with a local label and we enter it with GOSUB, a
sub-program begins with a SUB statement, then we CALL it; separate pro-
gram, separate variables.

INCAT is a sub-program which has little value as a stand alone program, it has no user interface at
all, but is helpful in programs dealing with data files. INCAT returns a value representing the type
of a specified file. It requires two parameters: A string with the file name, and a numeric variable
in which to return the result. Possible answers returned in the numeric variable can be:

0 File is nonexistent 6 ItisKEY

1 Itis a TEXT file 7 Itis BASIC

2 Itis SDATA 8 Itis FORTH
3 Itis DATA

4 Itis BIN 20 Unknown type
5 ItisLEX 21 Invalid name

A BASIC file will return the value seven. If you have entered ACYDUCY, you can test INCAT.

! Call the program with a file name
lEALL INCAT("ACYDUCY',Q)“I ! and a variable for the results.

DISP off 7

48 HP-T71 BASIC Programming The BASIC HP-71

We could use ADDRS to find a file, then PEEKS$-out its file type from the data in the file header,
but that won’t help if the file resides on Disc or it doesn’t exist. Instead we keep in on a very high
level: First we display the CAT entry for the file, then read the file type from the display using
DISP$. The problem with this method is that DISPS$ is intended to recall information after an
INPUT; it usually will return a null string otherwise. This is because displayed data is not accumu-
lated into the input buffer unless the cursor is on. The escape sequence CHR$(27)&">" on line
9610 turns on the cursor, then is followed immediately by CAT. Since the HP-IL. Module adds two
extra spaces in the CAT entry, line 9620 looks for those spaces and trims them if found. Finally,
line 9630 compares the first two characters of most file types to this file. If you use APPT or ROM
files, change line 9630 to recognize them. A program called NEC, in the communications section,
uses INCAT.

9600 SUB INCAT(F$,T) @ ON ERROR GOTO 9660 ! trap filename error.
9610 DISP CHR$(27)&">"; @ CAT F$ @ T$=DISP$[1,32] | turn on cursor.
9620 IF NUM(T$[12])=32 THEN T$=T$[3] ! trim spaces if Disc file.
9630 T=POS("TESDDABILEKEBAFO",T$[12,13]1) ! look for the file name.
9640 IF NOT MOD(T,2) THEN T=20 ELSE T=(T+1) DIV 2 ! file type #.
9650 GOTO 9670 ! good data

9660 T=21 @ IF ERRN=57 OR ERRN=255022 THEN T=0 ! error trap.

9670 DISP CHR$(27)&"<" @ END SUB ! turn off cursor, exit.

The sub-program receives values, evaluates them, and returns the answer in the same variables.
When a sub is called, the parameter list points to the actual variable in the calling program’s envi-
ronment, though a different variable name may be used (more confusing for the 71, easier for us).
Thus saving some time and memory, because a copy of the variable does not have to be present in
both environments. If actual values are passed as with CALL MYPGM(1,2,"test"), nothing is re-
turned, because there were no variable names passed to return the data in. Of course a SUB can
be called without passing any data; the maximum number of parameters we can pass between
programs is 15.

° The number and type of parameters must match in both the SUB and CALL

statements.

. Variables which the sub creates are in its own environment and do not affect
the CALLing program.

° You can have any number of SUBs in a file.

° A sub-program can only be CALLed, never RUN; we can only RUN program
files.

o The first sub-program in a file usually has the same name as the file.

To share the advantages of a SUB program, files often begin with a line which CALLs the SUB
within the file; if it did not, the program would end when it ran into the SUB statement.

10 CALL MYPGM @ SUB MYPGM | a separate program environment
20 ! the program begins here...

Chapter 7 HP-171 BASIC Programming 49

Interpreted BASIC

BASIC on the HP-71 is an interpreted language. What that means is that the computer reads each
line, looks up the meaning of the current statement, then goes to the part of the operating system
which contains the machine language instructions for that operation. Consider this fragment:

10 BEEP 2000 @ DISP "I love my [(HP-71)1"

The computer skips past the beginning of the line until it finds the word BEEP (actually, a token
representing BEEP). It then looks up the location in memory of the machine language code which
makes the beep happen, calls that routine, which itself interprets the line to see if frequency and
duration had been specified, and, finally, the computer beeps.

With that done, the 71 returns to the next statement on the line. It finds an "@", which it interprets
as saying there is another statement following on the line, and so on. This may seem like a long and
involved process, but it’s streamlined and happens hundreds of times per second. An extra benefit
to us is that HP-71 BASIC will not allow us to do something really stupid, while Assembly code or
FORTH will blindly run the computer off a cliff if we tell it to.

Tokens

To both save memory and speed things up, each statement on the line is tokenized. This means
that when we enter the line, the computer substitutes a code of from one to four bytes for the
actual keyword. Because of this, DISP and PRINT take the same amount of memory, though they
have a different number of characters. Spaces separating items do not take any memory. This ex-
plains why we can’t insert extra spaces between statements for clarity, they are not part of the key-
word, so were never entered into the line.

When we edit a line in a BASIC program, the 71 looks up each token and displays the keywords
and parameters and such. When we press ENDLINE while editing the line, the whole process of
tokenization starts again.

Statements versus Functions

Tokens can be summarized in these two categories. In general, a statement is free standing and
does not necessarily require any parameters. An example of a statement requiring no parameters
is the keyword BYE. BEEP is a statement which may optionally have up to two parameters. The 71
lumps together statements and commands, which some BASICs treat separately. Operators (like
+ or DIV) are a special case.

Functions may require zero or more parameters, do something with the data, and return either a
numerical or string result. MAX, for example, is a function which requires two numeric parame-
ters and returns a number. One of the strengths of functions is that they may be used within ex-
pressions containing several other arguments, as long as the result is a single number or string.

10 X=MAX(FP(Y),ABS(FP(Z))) ! Nesting functions.

The distinction between statements and functions is often blurred, and the HP-71 has a penchant
for allowing liberal BASIC syntax. One blanket statement about functions and statements is that
functions may be preceded with the keyword LET and statements may not. In the strictest sense, a
function, its operators, and the variable assignment, form a complete statement, though we’ll let

50 HP-71 BASIC Programming The BASIC HP-T71

that pass. If you are in a crowd of sticklers and don’t wish to misrepresent a function as a state-
ment, you can usually call it a token or keyword without anyone ever catching on that you are not
sure what it is.

Spread among computcer languages are a number of names for commands, parameters and data
structures. Among them are (in alphabetical order) atoms, conditionals, definitions, directives,
functions, keywords, library routines, macros, operations, operators, predicates, procedures, rou-
tines, statements, utilitics, and words. In this chapter we'll usually say command or statement, and
you can nod with a knowing smile.

The DECIDE Program

DECIDE is a decision making aid. Enter a series of up to 9 items and up to 9 factors. Press
ENDLINE without any input when through entering and it will move to the next prompt. When the
final data is input, it displays the answers one by one; press any key to move to the next item.
DECIDE doesn’t do very much, and what it does, it does elaborately; much ado about nothing.
The purpose of the program is to demonstrate some HP BASIC principles.

10 CALL DECIDE @ SUB DECIDE | create separate environment.
20 L=FLAG(-16) ! recall current option base setting.
30 D=IP(HTD(PEEK$("2F949",1)&PEEK$("2F948%,1))/32) | find DELAY.
40 OPTION BASE 0 @ INTEGER K(9,9) ! two dimension int. array.
50 OPTION BASE 1 @ DIM E$([7],T$(9)[8],F$[72] | simple,array,long str.
60 L=FLAG(-16,L) ! restore option base.
70 E$=CHR$(27)&"H"&CHR$(27)&" J"&CHR$(27)&"<-" | display clear string.
999 ! input loops ===-==--------c-me-cecccceccececccocecscccnonaconoaao
1000 DISP E$&"Decide-" ! start of program display.
1010 Q¢="item" @ GOSUB 'PROMPT’ @ T=F | get items to evaluate.
1020 FOR L=1 TO 9 @ T$(L)=F$(L*8-7,L*8] @ NEXT L | move string to array
1030 F¢="" @ Q$="factor’ @ GOSUB 'PROMPT’ | get the factors.
1040 DISP "Repeat ratings Y/N";
1050 GOSUB ’'WKEY’ @ L=POS("NY",K$)> @ IF NOT L THEN 1040 | get a key.
1060 L=FLAG(O,L-1) ! clear flag 0 if repeating ratings.
1069 ! rate each item.
1070 DISP E$&"Rate:" @ FOR L=1 TO T @ ON ERROR GOTO 1080 @ FOR L2=1 TO F
1080 DISP FNTS$(T$(L))&"("&FNT$(F$[L2*8-7,L2%8]1);")="; | display item.
1090 GOSUB 'WKEY’ @ Ki=VAL(KS$)
1100 IF FLAGCO) THEN 1130 ! if flag O set then don’t check for repeats.
1109 ! see if rating has already been used.
1110 FOR L3=1 TO L-1
11i5 IF K(L3,L2)=K1 THEN BEEP @ DISP K1;"USED* @ GOTO 1080
1120 NEXT L3
1130 K(L,L2)=K1 @ NEXT L2 @ NEXT L
1999 | calculate results ----===-=--------cccoccmcnccc e e
2000 FOR L=1 TO T @ FOR L2=1 TO F ! calculate ratings.
2010 K(L,0>=K(L,0)+K(L,L2) @ K(0,L2)=K(0,L2)+K(L,L2) @ NEXT L2 @ NEXT L
2020 K1=0 @ FOR L=1 TO T @ IF Ki<K(L,0) THEN Ki=K(L,0) @ L3=L
2030 NEXT L

Chapter 7 HP-T71 BASIC Programming 51

3999 | display results ------------=-c-cccccccccccccccoccecoscscoccanaa-
4000 DISP E$4"Results-" @ DELAY INF ! set delay to wait for keystroke.
4010 DISP "Highest is "&T$(L3)

4020 FOR L=1 TO T @ DISP FNT$(T$(L))&’ rated’;K(L,0) @ NEXT L ! ratings.
4030 FOR L=1 TO F @ K1=0 @ FOR L2=1 TO T @ IF K(L2,L)>K1 THEN Ki=K(L2,L)
4040 Y=L2 @ NEXT L2

4050 DISP "Top "&FNT$(F$[L*8-7,L*81)&" is "&FNT$(T$(Y)) @ NEXT L | facts
4060 DELAY 0 @ DISP "New data, Results, End"; | done. Go again?.

4070 GOSUB 'WKEY' @ ON POS("RNE",K$)+1 GOTO 4060,4000,50,8300

7998 | subroutines -----==--------c-e-c-ceccccccccccncccccccncceccocnnaa
7999 ! wait for a key --> replace with KEYWAIT$ or WTKEY$ <--.

8000 'WKEY’: DISP CHR$(27)&’>’; | turn on cursor.

8010 K$=UPRC$(KEY$) @ IF NOT LEN(KS$) THEN 8010 ! wait for a key.

8020 DISP CHR$(27)&k"< “"4K$ @ RETURN ! turn off cursor, return.

8099 ! main input routine.

8100 'PROMPT’: Q$=FNT$(Q$) ! trim trailing spaces.

8110 FOR F=1 TO 9 ! loop through inputs

8120 DISP "What is “&Q$&“#";F; @ INPUT K$

8130 IF NOT LEN(KS$) AND F>2 THEN F=F-1 @ RETURN ! two items are enough.
8140 IF NOT LEN(CK$) THEN BEEP @ GOTO 8120 ! need at least two.

8150 F$[F+8-7,F+8]1=UPRC$(K$) @ NEXT F @ F=9 @ RETURN

8199 | user FN to trim trailing spaces from prompts.

8200 DEF FNT$(K$)=K$[1,POS(KS&" " ," ")-1] | FNT$ trims trailing spaces.
8300 DELAY D @ PUT "#43" @ END SUB ! restore DELAY, press ATIN, bye.

Strings

The four strings used by DECIDE are created differently. Unless dimensioned at the outset,
strings can hold up to 32 characters. K$ is not dimensioned, so it is implicitly DIMmed to 32 char-
acters. E$ is a constant containing an escape sequence and never changes. T$ is a string array with
9 elements (since OPTION BASE 1 is set), each element can contain up to eight characters. ['$ is
a traditional (for HP) string, DIMmed large and used the same as T$. Each item in F$ is eight
characlers, the same as an clement in the T$ array; F$ and T$ have similar uses. Let’s display ele-
ment 3 in F$ and array T$:

DISP F$[3*8-7,3*8] | An element from a simple string.
DISP T$(3) ! An element in a string array.

A single string is often used instead of an array for applications which would seem natural for an
array. One reason to avoid string arrays is for compatibility with versions of HP BASIC which do
not have them. The second is that an "¢lement" in a single string can overflow or be shifted easily.
A single long string surpasses arrays when we know that we will be doing comparisons. It’s easier
to search a single string than use a FOR-NEXT loop t~ check individual elements in an array. The
71 makes a temporary copy of the string.in free memory whenever it does string manipulation; be
sure that you have enough memory for the string and its clone.

52 HP-T1 BASIC Programming The BASIC HP-T1

POS(AS,"?") | Finds the first ? in AS.
POS(A$,"?",8) ! Finds the first ? in A$ from position 8.
LENCA$) ! Returns the length of the string.

By giving us fewer but versatile string functions, HP makes some incredibly complex string opera-
tions almost automatic. These extract sub-strings:

A$[2,71 ! Positions 2 through 7 of AS.
A$(2,71[2] ! 2-7 of A$; then pos 2 through end of resulting string.
A$[POS(A$,"?",3)+1] ! Return the substring following "?"

Control Codes

Control codes are ASCII characters 0-31, which form yet another language to grapple with the
built-in LCD, external displays, printers, and some other HP-IL devices. When we display or
print these codes, the device performs the task instead of displaying the character. If the device
can’t understand the code, it’s usually ignored. The ASCII table in the back of this book lists con-
trol codes. The 71’s built-in LCD only understands four control codes; others are displayed as
special characters.

CHR Purpose HP-71 response

8 Backspace. Move the cursor one character position to the left.

10 Linefeed Advance paper or display one line w/o homing cursor.
13 Carriage Return Returns the cursor to the beginning of the line.

27 Escape The beginning of a multi-character control sequence.

Escape codes are a special breed of control code, beginning with the escape character CHR$(27),
and followed by one or more other characters. Escape sequences multiply the number of available
control sequences and opportunities for confusion. If the device can’t understand the escape se-
quence, it’ll ignore the escape character plus one following character; the remainder of alien es-
cape codes longer than two characters will be displayed or printed. We used display escape codes
in INCAT to turn the cursor on then off, and in DECIDE to clear the display; let’s look at some
ThinkJet printer codes.

810 SUB NORMAL @ PRINT CHR$(27)&"&k0S"; | normal printer font.

820 SUB EXPAND @ PRINT CHR$(27)&"kkis"; ! expanded width printer font.
830 SUB BOLDON @ PRINT CHR$(14); ! print characters in bold type.

840 SUB BOLDOFF @ PRINT CHR$(15); ! turn off bold printing.

850 SUB LINES6 @ PRINT CHR$(27)&"&16D"; ! print 6 lines per inch.

860 SUB LINES8 @ PRINT CHR$(27)&"&18D"; ! print 8 lines per inch.

The SUB NORMAL prints a five-character sequence, while BOLLDON prints a single character.
Each ends with a semicolon; if they had not, the 71 would add it’s own control codes (carriage re-
turn and line feed), which would make the printer print a blank line (control codes are invisible).

AKkin to its workings with printers, the 71 speaks to display devices in a constant stream of escape
sequences; moving the cursor left, right, word-wrapping, and occasionally displaying something.
Whatever the computer displays on the LCD is echoed to the external display device. The HP-IL
command OUTPUT is useful when we want to send data to an external display without it also

Chapter 7 HP-71 BASIC Programming 53

showing up on the 71’s LCD. Line 10 in this program fragment clears the LCD and display device
then displays "Hewlett-Packard HP-71". Remember, as with printing or displaying anything, con-
trol codes apply from the current cursor position. Line 20 uses OUTPUT to move the cursor to
the column 20, row 12, then display a logo, without changing what’s on the LCD display.

10 DISP CHR$(27)&"H"&CHR$27)&"JHewlett-Packard HP-71"
20 OUTPUT :DISPLAY ; CHR$(27)&"%"&CHR$(19)&CHR$(11)&" [(hp)]"

g0

54 HP-71 BASIC Programming The BASIC HP-T71

HP-71 Files 8

The File Chain

Unlike many larger computers, the 71 can have many files in memory at the same time; they are
organized in what is called a file chain. As you know, there are many different types of files, and
understanding workings of these files is a key to getting a feel for the 71.

There is little discussion of memory limitations in the Owner’s manuals because there are practi-
cally none. The 71 can work with a maximum of 512K bytes of memory, of which relatively little is
spoken for by the operating system,; the rest is available for add-on RAM and ROM. Add to this a
Disc or Cassette Drive and there is almost limitless potential for losing things. The 71 uses a file
system (or "chain") to keep all of this possible memory organized. This system can be compared to
a filing cabinet and each file within it to a, well, a file.

A plug-in ROM can contain one or several files. For example, the Math ROM contains only one
large (LEX) file, while the Finance ROM contains six (sundry type) files. When RAM or plug-in
ROMs are added or removed (turn the computer off first please!) the 71 automatically keeps track
of where and how big they are. When we EDIT, CREATE, PRINT# or PURGE a file in RAM,
again the 71 keeps everything sorted out.

Finding Files

The keywords CAT and CAT ALL, discussed in Chapter 3, "Command Performance," let us view
what files are in the 71 without mucking about. Let’s use the catalog entry for the Math ROM. In
this example it’s in :PORT(2), though it could have been in :PORT(1) amongst others. If we did
CAT :PORT(2), the standard header would be displayed followed by the first (in this case only)
file entry. Were there other files in the ROM, the 71 would display their catalog information when
we pressed the DN ARROW ({) key. If we had entered only CAT MATHROM, only the informa-
tion about that file would be displayed. CAT ALL lists the catalog information for every file.
First the general catalog header is displayed then the information for the first file.

NAME S TYPE LEN DATE TIME PORT
MATHROM E LEX 32745 11/01/83 12:00 2

The first information is, of course, the file name, followed by a space, S, P, or E. A space means a
regular file, or "do with it what you will, don’t blame me if you ruin it." S means the file has been
secured so that it can’t be accidentally altered or purged. P means private, the file cannot be edited
or altered (even with POKE). E means execute only, and is a double whammy; you can neither
alter nor purge it. In the case of the Math ROM, merely making it PRIVATE would have been
sufficient; the only way you can PURGE a ROM file is to pull out the module; nevertheless it’s a
type E.

Next comes the file type fully spelled out (i.e.: "BASIC", not "B" or "BA" as with some other HP
Computers). File types are discussed about one page down.

Next we have the file size. This is the approximate number of bytes of RAM (or ROM) without
counting variables which the file occupies. The file size does not include the file header informa-
tion which takes another 18.5 bytes. Even if the file size is ostensibly zero, it still consumes at least

Chapter 8 HP-71 Files 55

those 18.5 bytes. Enter the following line (presuming there isn’t a file already called TEST). Notice
that memory has decreased by 19 bytes (or 18, MEM is often off by a nib).

MEM; @ CREATE TEXT TEST €@ MEM§ ! How much memory for a file header?

Sizes for files larger than 99,999 bytes (pretty unlikely) are listed in number of kilobytes (or "K",
which represents 1024 bytes); for instance 110K means a file of approximately 110*1024 bytes. The
date and time of creation come next. This information is updated whenever a file is saved to or
read from Disc.

The final part of the catalog entry is the number of the :PORT containing the file.

File Header Structure

The 71 maintains the file header in a much different format than it displays it. This is to save
memory, and speed up many operations. Since the native language of the 71 is not English, the file
header is stored in 71ese and is translated into English when we do a CAT. The file header is a
contiguous block of 37 nibs:

Size Description

16 nibs File Name.

4 nibs File type.

1 nib Flags.

1 nib Copy Code.

4 nibs Creation Time.

6 nibs Creation Date.

5 nibs File Chain Length.

The file name is always eight characters (16 nibs) and is filled with spaces if the name is shorter
than 8 characters. The next four nibs are the internal representation of file type (in hex).

BASIC E214 LEX E208
BIN E204 SDATA EODO
DATA EOF0 TEXT 0001

KEY E20C

The copy code nib is 0 for normal access, 4 for private (P), 8 for secure (S) and B for execute only
(E). Note that file types are encoded differently when stored on Disc; we'll only cover files in
RAM here. File creation time and date are stored in BCD (well, kind of). Both fields are stored
reversed so that 20:45 89/09/04 (8:45 p.m Sept 4,89) looks like:

54 02 40 90 98
min hour day month year

The final 5 nibs are a pointer to the next file in memory. This is the key to the file chain; one file
points to the next. The first file contains a pointer to the second, the second to the third, and so on.

56 HP—71 Files The BASIC HP-71

ADDR$

The ADDRS function returns the location of files in RAM or ROM in hex strings. This location is
the first nib in the file header; the file contents begin after the 37 nibs in the header and, if there is
one, any sub-header. Since ADDRS$ only works with normal, uppercase file names, the only way to
find a file with, for instance, a lowercase name (such as the key file or LEX files in some ROMs) is
by finding its position relative to the file preceding it in the file chain.

BASIC Files

The type of file created when you execute the EDIT statement. A BASIC file contains one or
more BASIC programs. This is the only type of file which can (normally) be edited (inspected and
altered) directly using the cursor keys.

BASIC File Format
In addition to the file header, a BASIC file has a 12-nibble Sub-header with the following format:

Size Description

5 nibs Sub-program Chain Header.

5 nibs Label/DEF FN Chain Header.
2 nibs End of line marker (FO hex).

These headers are pointers to the first sub, label, or DEF FN in the file. Additionally each of the
locations pointed to contain a pointer to the next sub, label or DEF FN in the file. In this way
these items can be found much more quickly than by sequentially reading the file. This means that
it is relatively unimportant where in a file these occur, it will only slow things down when there are
a great number of these tokens in the file. This system also makes it possible to place labels any-
where within a line. This method of linking one label, sub or DEF FN to the next is called chaining,
and is the same system used in the main file chain.

Each line in a BASIC file begins with a line number (2 bytes,BCD), values to 99 99 followed by a
byte representing statement length. It the'line has more than one item on it (multi-statement), an
"@" (4F hex) token precedes the length byte. Each statement in a multi-statement line is separated
by an "@" token and yet another statement length byte. Each line ends with an end of line byte
(F0). Since the sub-header ends with an end of line byte, each line number, even the first one in
the file, is preceded by an end of line byte. A line in a BASIC file has the following general format:

Line# StlLen Stmt 4F StLen Stmt OF

Line# The 4 digit BCD number.
StLen The length of the following statement. Adding this value to the current position
points to the next "@" token or the EOL byte (OF).

Stmt The actual tokenized statement. This is the internal representation of the
statement, not as it is presented to the user (HP engineers like to call us
"users").

OF The end of the line.

Chapter 8 HP-T1 Files 57

BIN Files

The least common file found. This is a program written entirely in HP-71 Assembly Language.
While they may be RUN and can become the current file, BIN files cannot be edited directly be-
cause they have no line numbers, and are coded differently than BASIC files. BIN files often run
faster than BASIC, and allow full access to the machine. The speed increase is not as great as
might be expected because they use most of the same utilities as BASIC; they just invoke them di-
rectly instead of through the BASIC interpreter.

The disadvantages of BIN files are that they cannot be easily and quickly changed, take much
(much!) longer to write than BASIC, and there is a good chance that even the simplest program
will "crash" the computer several times during testing. BIN files are created with the
FORTH/ASSEMBLER ROM and a thorough understanding of Vols 1-2 of the HP-71 Internal
Documentation (IDS).

BIN File Format
Following the file header, the BIN file has a 12 nib sub-header which is similar to the sub-header in
a BASIC file. There are no labels or uscr defined functions so that field is set to FFFFF.

Size Description
S nibs Sub-program Chain Header.
5 nibs Place holder FFFFF.
2 nibs Filler byte 20.
FORTH Files

Files written in the FORTH language with the FORTH/ASSEMBLY and HP-41 Translator
ROMs have their own file type(s). While files created with these ROMs share the same name, they
are incompatible with each other. These files contain the extensible user written dictionary entries
which make up a FORTH program. Programs written in FORTH often run up to twice as fast as
those in BASIC. It is a matter of personal taste whether BASIC or FORTH is easier and more
versatile to use. Commercial programs [or the 71 are rarely in FORTH because they would re-
quire the user to own one of the two ROMs. One custom 71 ROM written in FORTH includes a
FORTH interpreter.

LEX Files

Language Extension files add new BASIC keywords (such as KEYWAIT$) and new operations
like the ability to PLIST TEXT files. LEX files are used when an operation is too slow or difficult
to do in BASIC. The typical keyword runs from 15 to 50 times than the equivalent operation in
BASIC, and takes at least 15 to S0 times as long to write. LEX files are more versatile than BIN
files because instead of providing one-time solutions, they actually extend BASIC so that these
solutions may be incorporated time and again. From a programmers point of view, it’s preferable
to use a LEX with a BASIC file instead of « BIN file because of its greater versatility. Like BIN
files, they are usually written using the F'ORTH/ASSEMBILER ROM.

Using LEX Files

1LEX files are never the current edit file. When they are in the computer their operations are
automatically available. The use of LEX files is one of the ways HP BASIC is ahead of the pack.

58 HP-T11 Files The BASIC HP-T71

While special keywords should be used when available, keep in mind that if you are going to share
the program with another 71 user, the recipient will also have to have that ROM or LEX file.

Trying to run a BASIC program without a required LEX file in the computer will cause an error;
that’s usually the only damage. If a program is corrupted (trashed) by accidentally running it with-
out the LEX file, it’s probably better to restart the program once the LEX file has been loaded
than to CONT.

Many new capabilities offered by LEX files are introduced for one specific purpose, and may not
prove reliable in other usage. For instance, a complex number may be placed in RES when the
Math ROM is in the 71:

! Display complex number and
DISP (123,456)§ ! enter it into RES.

However the boolean operator NOT doesn’t expect a complex number, so it’s interpreted by the
Math ROM, which doesn’t have the appropriate operation either. So...

IF NOT RES THEN BEEP& ERR:XFN Not Found

This isn’t necessarily a bug in the Math ROM, just beyond its intended use. The point is that, while
the built-in BASIC keywords are meant for general purpose use, keywords in LEX files should be
used in context of their intended application. For example, one keyword was written by this author
to be used at one place in a single program; it was vital in that application, though virtually useless
elsewhere.

When significant events happen (like an error or even turning on the computer), the 71 polls LEX
tiles to see if they have anything special to do. Some LEX files use keyboard or clock-tick inter-
rupts to add a running clock display or add special keyboard features. This latter group, especially
if you have several of them, will clearly slow down the computer. If your computer seems to have
gotten sluggish lately responding to keystrokes, a LEX file may be the culprit.

DATA Files

These files may contain strings or numbers, and are the most versatile data file type, though prob-
ably the least memory efficient. They may be of fixed size or expandable. The file consists of fixed
length records of from one to 1,048,575 bytes.

Using DAT A Files

Numbers always take eight bytes (unless they are complex), but strings can be up to the size of one
record. When information to be saved is primarily numbers, an SDATA file is preferred. A TEXT
file is best for strings. When the task calls for a mix of text and numbers, or when multiple data
items are used for a single purpose (such as name, address, phone), DATA files are appropriate.

The DATA file can be created to a fixed number of records. If it’s RAM based, you can enlarge it
by writing data past the end. The primary reason for specifying file size at creation is to set the
individual record length. If not specified, the default record length is 256 bytes, which can be quite
difficult to use for random access.

Chapter 8 HP-T71 Files 59

Strings which overflow from onc record to the next will cause problems which will be hard to
straighten out. For example, let’s create a fixed length DATA file with only two records of twelve
bytes each, then assign it to channel #1:

! Create a fixed-length file.

LCREATE DATA TEST,2,12§ l

! Open the file.

ASSIGN #1 TO TESTH

As we said earlier, a number takes eight bytes, however strings take an extra two bytes plus their
length. Let’s place a number followed by a string (which will overflow into the next record), then
another number in the file. The pointer is still at the beginning of the file since we haven’t written
or read anything, so RESTORE# isn’t necessary:

PRINT # 1;123,"Synergetics*,456

Record #0 now has the number 123, the string header, and the first character of the string
"Synergetics". To prove this, let’s RESTORE to the beginning of the second record (which is
rec#1, remember that records always start at zero), then read what’s there:

! Move the pointer to rec#l
LRESTORE 41,18 |

] ! Read then display the record.

READ # 1;Q$,A$

DISP Q$;Ad ynergetics 456

Since record length is 12 bytes, record #1 can only hold "ynergetic". The final "s" (with yet another
string header) is in record #2, which the 71 automatically added when it ran out of room in record
#1.

Contents Record

123 S Record # 0.
ynergetic Record # 1.
s 456 Record # 2.

If a string or number overflows into a record containing data, that data is lost. The DATA file
structure is quite versatile, and therefore vague. The record size will be quite crucial when it
becomes time to recall data from the file because RESTORE places the data pointer at the begin-
ning of a record. If it begins with a string which had overflowed from the previous record, only part
of the string will be returned.

When creating a DATA file, keep in mind what use it is to have and set the record length to a
usable size.

Bytes Item Unit
22 Name 20 byte string(+hdr).

60 HP-T1 Files The BASIC HP-71

12 Phone# 10 byte string(+hdr).

8 Dues Real number.
42 Record size needed.
DATA File Format

Following the header is the data implementation field. As with many other locations within the 71,
the values stored here are byte reversed to make it quicker for the operating system to read them
(the CPU is a bit backwards that way, you know).

Size Description
4 nibs Number of Records in file.
4 nibs Record length.

TEXT Files

This file type is also known as the HP Logical Interface Format (LIF). TEXT files are designed for
sequential access (that is reading or writing one line at a time in sequence). The TEXT file can be
thought of as two types of files in one: Sequential and random. Since the record size is variable,
TEXT files are valuable for storing free form information such as used by a Text Editor. TEXT
files are also used to exchange files with other computers. The HP-71 was designed primarily as a
number machine, Text was a secondary consideration at the outset, so random file writing requires
an additional LEX file.

Using TEXT Files

PRINT# writes an end of file marker after it. If we had a ten line file and used RESTORE to
move 1o line five, then used PRINT#, line tive would become the end of the file; information
beyond that point would be lost.

The EDLEX and TEXTUTIL LEX files add new operations to make TEXT files a versatile file
type. Fortunately the HP-41 Translator, FORTH/Assembler, WorkBook71, and Text Editor
ROMs each contain one of these files.

The data pointer can be moved to the end of the file by using the RESTORE# keyword with a
number which is greater than the length of the file.

! Move to the end of the text file.

RESTORE # 1,9999%

Special TEXT File Keywords

As you can probably tell from the preceding, the author is fond of TEXT files, though not when
they are used with PRINT#. The following keywords are in EDLEX (and TEXTUTIL) and make
TEXT the most versatile files. These keywords work only on files in RAM, and only with TEXT
files. These keywords are documented here because they are rarely explained fully in owner’s
manuals. These operations can be slow on a large file or on a file with several files following in
memory because everything in RAM must be shifted when a record is inserted or deleted.

DELETE Delete Record.
DELETE# <channel>,<record>

Chapter 8 HP-T71 Files 61

Deletes a single record from an open TEXT file. Specify first the channel number, then the record
number. All records after the specilied record are left unchanged. Remember, the first record in
the file is record number zero; to delete line 10 from a file which is assigned to channel 3 we enter:

DELETE# 3,98

FILESZR Text File Size.

X=FILESZR("textfile")
A function returning the number of records in the specified TEXT file if the file exists, or a nega-
tive number representing the reason it didn’t. The number of records is returned, not the number
of the last record in the file. If FILESZR returned 10 then the last record is 9.

To differentiate the error message from a possible number of records, the function returns a nega-
tive number for the error number. Use the absolute value of the number to look-up the error
number; obviously a file cannot contain a negative number of records, so, in the case of a negative
result, you will know that the file is not a valid RAM-based Text file. For instance, if it returned -
57 ("ERR:File Not Found") the file didn’t exist, -58 ("ERR:Invalid Filespec") means a bad file
name, or -63 ("ERR:Invalid File Type") for an existent file which isn’t TEXT.

INSERT Insert Text File Line.

INSERT#<channel>,<record>, "new record data"
Adds a record to an open TEXT file. The new record is inserted in front of the specified record.
No information is lost, everything from the record specified to the end of the file is moved. It is
best to have the TEXT file as the last file in RAM if fast access is needed. We usually use this
statement instead of PRINT# because INSERT# does not write an end of file marker.

REPLACE Replace Text File Line.
REPLACE#<channel>,<record>,"data to replace old record"

Used instead of PRINT# to replace a current record with a new string. Does not alter the position

of the end of the file marker. The new string does not have to be the same length as the one

replaced.

SEARCH Text File String Search.

X=SEARCH("str",<column>,start record>,<end record>, <channel>)
A function which returns a numerical result of the search performed. As the names imply, use
SEARCH# and REPLACE# to for a quick and effective search & replace. Required parameters
are the search string, POS within the record to start the search, the starting place (record) and
final record to search, followed by the file’s channel number. The string is compared literally to the
file; upper and lowercase of the same character will be treated as different characters. Keep in
mind that the searches are usually made from the end of the line, so the longest occurrence of any
search string on each line will most likely be found.

If the file is empty or the string is not found, zero is returned. Otherwise it returns a very
calculator-like result. For most uses only the integer (IP) portion of the number is used.

RRR.CCCLLL

62 HP-T1 Files The BASIC HP-71

R Record number within the file.
C Position within the record (the column number) where the match was found.

L The length of the string.

The backslash character (\) is the switch to enable special functions. If you do not want the fol-
lowing options to be performed, do not begin the search string with the backslash. The control
options are:

\ (backslash) Start or stop a search feature.
(period) Wild card character.
@ (at) Multiple wild cards.

~ (up arrow) Search from the beginning of the line.
$ (dollar) Search from the end of the line.
SEARCH# period (.) option

The wild card. A period represents any single character. The example could find "quick" or "quack"
or any word with that four character sequence and an unknown character.

“qu.ck

SEARCH# at (@) option

The commercial at sign (@) represents any number of unknown characters on a single line. Since
any number of characters may be represented by the @, the string should be specified carefully.
The following could find "quack" or "quarterback".

\q@k

SEARCH# up arrow (™) option

The up arrow following a backslash specifies that the search will be conducted from the beginning
of the line. In the example we will look for the string "quack" beginning at the start of the line. The
word will only be found if it occurs at the beginning of a line.

\“quack

SEARCH# dollar ($) option

While up arrow (©) specifies a search starting at the beginning of the line, the dollar sign specifies
that the comparison is made from the end of the line. The dollar must appear at the end of the line
to designate this switch; a dollar sign anywhere else in the line is interpreted as the character itself.

\quack$

TEXT File Format

The file does not begin with an implementation field therefore to find a record within a file a utility
must read each record sequentially. The file consists of variable length lines (records) which do

not begin with a line number. If files are to be exchanged with an HP-75, each line must begin with
a four digit, sequentially numbered, line number.

Chapter 8 HP-71 Files 63

Each record begins with two bytes (NOT byte reversed) which state record length, followed by the
actual data. Each record has an even number of bytes; if a record is written with an uneven number
of bytes, an extra byte is padded to the end (which could be of any value since it is never used).
Unlike TEXT files written by some other computers, there is no carriage return (ASCII 13) at
the end of each record. If you are exchanging files with other computers, be sure to transfer the
TEXT file using their file format; this will happen automatically if you use a communications pro-
gram. Adding the current location to the record length points to the next record. The end of a file
is marked by a record length of FFFF (which would not be a valid record length).

KEY Files
Contain re-definitions for the keyboard. There may be more than one key file type in RAM at a
time. The key file is active only when USER mode is set and the file is named keys.

KEY File Format

There is no sub header. Each entry in the key file is formatted as follows:

Size Description

2 nibs Key code.

2 nibs Entry length.

1 nib Assignment type.
varies String assigned to key.

The key code is the actual key code represented in hex. The next byte designates the length of this
entry or the end of the file. The assignment type is repre.ented as a nib with one of the following
three values:

O0DEFKEY ___ Immediate execute.
IDEFKEY __; Typing aid.
2DEFKEY __: Direct execute.

The actual key definition string follows the assignment type nib.

SDATA Files

This type of data file has the same format as HP-41 "DA" files, and is used primarily for storing
numbers. This is a very efficient, flexible, and easy to use file for number storage, though some-
what less so for strings. It is the recommended file type for those times when you have a whopping
lot of REAL precision numbers to store and quickly recall. This is one case when you can ignore
BASIC'’s pedantic insistence on calling everything a variable, and call the records in SDATA files
"registers."

Using SDAT A Files

Each record holds one full precision number, or a six letter string. RESTORE#, PRINT#, and
READ# work very smoothly with SDATA files. Multiple variables or even arrays and complex
numbers can be stored to SDATA files. The same keywords are used for an array, it is not neces-
sary to designate it as an array. The standard 8-byte length makes indexing into the file efficient in
Assembly language, and a breeze in BASIC.

64 HP-T71 Files The BASIC HP-71

Lpnm-r $ 1;a8

READ # 1;A§

The following is how a 2x2 array with option base zero is stored in an SDATA file.

Record# 0 1 2 3 4 5 6 7
Element 00 o1 10 LI 1,2 20 21 22

There is no mainframe method for storing strings in SDATA files. The end of Chapter 10, "BASIC
Programming Hints" describes a method for (fairly) easy use of six byte (or shorter) strings in
RAM based SDATA files.

SDAT A File Format

This is physically the simplest file type. There is no sub-header, each record is eight bytes long and
holds a BCD number (though in a modified format at times). The first register begins at the 37th
nib after the ADDRS of the header.

£z

Chapter 8 HP-T71 Files 65

HP-71 Data Files 9

The Data File

Many programs create or alter data which often needs to be retained for later use after the pro-
gram ends. Obviously, calculator variables are not the place to store this data because any program
could change it, and it is difficult to save it to Disc. Information which doesn’t grow or change can
be kept within a program in DATA statements, but separate Data files are more flexible.

Data files (TEXT, DATA or SDATA) are a convenient place to store information in an organized
form. In this discussion we will use uppercase "DATA" to designate a file type, and lowercase
"data" to designate information to be stored in a file, regardless of the file type, and to designate a
the general class of files. Since, unlike BASIC programs, we cannot directly edit a data file, their
use may be dilficult to understand at [irst. Imagine a filing cabinet which you cannot inspect, and
which will only let you have something if you know what you’re looking for and exactly where it is.
Other than the over-dramatization, that’s the overall look of a data file. Pre-planning how we are
going to store information makes data files easier to understand. Remember that programs usually
write the data; once a program is written, the intrinsics of maintaining the data file are automatic.

Three types of data files (DATA, SDATA, TEXT) offer a variety of ways to maintain information.
To use this data we must be able to create the file, store something in it, and recall the informa-
tion. All three file types use the same general methods and the same keywords. Differences in how
these keywords work with each file type (which are extensive!) will be covered when we cover each

lype.

Creating the data File

Before storing or retrieving information, the file must created or loaded from mass storage. New
data [iles are all created in the same manner. CREATE, like the other keywords introduced in this
section, is a statement which does not return a value (you can’t use X=CREATE...), and will
cause an error if the file named already exists, there isn’t enough memory, or a funny sounding file
name was used (well, at least not a standard HP-71 file name).

CREATE <FlType> <name>§§ ! Create a data file.

A space, not a comma, separates the file type and name. Most keywords require a comma between
all parameters, so keep this in mind. If only the lile name is specified, a DATA file will be created
with that name. Because of possible ambiguity, files with the same names as file types should are
best avoided (imagine a DATA file named "SDATA"). This operation merely creates an empty file
of the designated name and type.

We can also create files to a a specific size. That is, a number of records (standard unit size), or
number of bytes of RAM may be reserved for the file. As you’ll see in a minute, it’s often neces-
sary to declare the file size up front.

CREATE FlType name,size$! Create a fixed-length file.

66 HP—71 Data Files The BASIC HP-T71

This method is required for data files on Mass Storage, because Disc (or Cassette) files cannot be
expanded once they are created unless you load them into RAM. You cannot increase a data file
on Disc because HP’s format for files on mass storage requires the entire file to be in one contigu-
ous block, and another file probably lives immediately after the one being used. Files loaded into
RAM then copied back to Disc do not have this restriction; if the file no longer fits in its old rest-
ing place when you copy it back to Disc, the 71 looks for a new place to put it where it will fit. Disc
based files may be created up to the maximum size of the medium (or whatever room is available
in a single block), then read directly without first loading them into RAM,; it wouldn’t even be a
challenge to use a, say, 100K file in a 17.5K computer. If a file is of reasonable size, it may at times
be used in RAM, and others directly from disc (unless the person who wrote the program didn’t
realize that, and made it so that it couldn’t).

The HP-IL. module uses a 256 byte buffer when accessing Disc based files. As you move through
the file, the module grabs 256 byte chunks into the buffer. You'll notice the slight delay every 256
bytes if you edit a Disc based file with, for example, a spreadsheet program. There is no simple way
to increase this buffer size short of writing new file 1/0 code, a task to be avoided by the faint of
heart.

Disc based files also have the consideration of the physical size of a record, which is 256 bytes (the
same size as the buffer). While this isn’t a fixed rule, we usually create file record sizes in either
multiples of this size, or easily divisible fractions, to minimize the number of file records which are
spread between two Disc records. This minimizes access time and medium wear because the drive
would otherwise have to read two physical records to read one file record worth of information.

To be simplistic, imagine a dresser with drawers holding six socks each (the physical record size).
Now, you've found an odd sock under the bed and placed it in the first drawer; everything shifts
down by one sock. Fine until the third day, when you have to open two drawers to match a pair of
socks (the logical file record size). Not a great analogy, but this chapter was beginning to get a bit
heavy.

Opening the data File
Before writing data to, or reading from a file, it must be assigned a number. This number is then
used in data file operations instead of the file name. This is called opening a file.

! Open the file.

ASSIGN # 1 TO HYFILEQ

There are a few things to remember when opening files:

Valid file channel numbers are 1-255.

A maximum of 64 files may be open at a time.

Each file can only be assigned one number at a time.

If the file specified with ASSIGN# does not exist, a DATA file of that name,
with 256 byte records, will be created.

Open files require an extra 34 bytes for the open channel.

Chapter 9 HP-T1 Data Files 67

° Disc based files need another 256 bytes for a buffer to store the current record
being accessed, so that the 71 doesn’t have to read the Disc constantly. The
record in this buffer is written to the file when you move to a different record
or when the file is closed.

° You should never remove a Disc from the drive when there are open Disc-
based files.

When a file is opened, an entry is added to an invisible system file called the File Information
Buffer, or FIB. The FIB is used by operations, such as PRINT#, to locate the file quickly without
having to look through the entire file chain. When a file is opened, the information about it is
added o this buffer, and when it’s closed, this information is deleted.

The File Pointer

When a file is open the FIB contains a pointer to the first item in the file. Each time we read from
or write to the file, the pointer automatically moves to the next item. This is sequential access,
working from the beginning to the end of a file, reading each item in sequence.

The RESTORE statement moves the pointer at a specific place in the file for random access. We
can move around the file, pointing to records, then reading them as desired.

! Move the file pointer to
RESTORE #1, 108 ! record#10 of file #1.

This says to the 71 "Restore the data pointer to record number ten, regardless of where the pointer
is right now." Record number ten is physically the eleventh record in the file because the first
record is always zero. Each file type handles the data pointer quite differently. Keep the pointer in
mind as you experiment with data files.

Storing Data
The PRINT# statement merely places the data specified at the current pointer position in the file.

! Write a record (the value of A)
PRINT % 2;A§ ! to file #1.

This statement enters the contents of variable A at the pointer position in the file associated with
channel #2. If there had been data at the pointer position, this would replace it. If we had been at
the end of the file, a new record would be added at the end with that value in it. This is sequential
writing. Strings can be placed in files in much the same way, though be aware of the way strings are
handled in each file type.

! Write string record to file #1.

PRINT # 2;AS

We can specify the record to which the pointer is placed when writing to a file:

! Move to record 10
PRINT 4 2,10;A§ ! then write to file.

68 HP—71 Data Files The BASIC HP-71

This is the same as:

! Move to record.
LRESTORE $2,108

1 Separate write.
PRINT #2;QS§

Be sure that your program maintains an accurate count of the number of records when randomly
writing a file. Moving the data pointer beyond the end of a DATA or SDATA file causes an error.

Print more than one item at a time to the file by separating them with commas:

! Write three values sequentially
PRINT #2;A,B,C#§ ! to file# 2.

Recalling Data

The pointer has the same importance when reading data as it does when writing to the file.

! Read a record from file# 2 to AS.

READ ¥ 2;AS{

This statement says "Read the next record in file number two and return its contents to the
variable A3$." Again, we can read multiple items:

1 Read records to variable A
READ # 2;A,AS§ ! then A$ in sequence.

Be sure that the record which is to be read is of the right type for both the data file, and the vari-
able to which it is being read. The following table demonstrates how various types of files handle
reads. Note that TEXT files with strings which are formatted to look like numbers (and even com-
plex formulas!) can be interpreted and read to numerical variables.

Record type Operation DATA SDATA TEXT
String READ#1,A$ OK OK OK
String READ#1LA ERROR ERROR OK
Number READ#1;A$ ERROR ERROR
Number READ#1;A OK OK

Closing the data File

When a program is done with a file, it should be closed to reclaim the memory used by the FIB
entry, and so that the file may be used by other programs. Remember, a file may only assigned to
one channel at a time. The ASSIGN # statement also closes files.

! Close file associated with #1.

ASSIGN # 1 To *§#

Chapter 9 HP-71 Data Files 69

You can also furnish a quoted string to ASSIGN#; if it’s null or contains an asterisk ("*") it will
close the file.

When a program we RUN ends, the files it opens are automatically closed. However, when exiting
a SUB or any program which was CALLed, the files are not automatically closed. If a CALLed
program tries to assign a file left open by another program, an error is generated. The statements
CLFLS and CILLOSEALL, available in some LEX files, will close all files. Files are automatically
closed when they’re purged, though not when the current edit file changes.

=yl

10 CALL BIOR © SUB BIOR ! biorythm printer. With TAB and PRINT USING
20 DIM E$([511,S8(5611,M$8(36] | date format: month#, day#, 4-digit year
30 DEGREES @ M$="JanFebMarAprMayJunJulAugSepOctNovDec"
500 LINPUT "What is your name? “;ES$
620 INPUT "Birthdate(m,dd,yyyy>: ":;M,D,Y @ IF Y<1880 THEN 6520
630 PRINT TAB(20);"Birthdate " ;M$[M*3-2,M*31;D;",";Y
540 GOSUB 9000 @ X1=J @ S$=DATES ! don’t concatenate DATES.
650 INPUT "Biodate(m,dd,yyyy):".S$(4,51&", "&S$(71&",19"&S$[1,2]1;M,D,Y
560 GOSUB 9000 @ X2=J @ R=X2-X{
570 INPUT "Plot number of days:","30";B @ DISP "print instructions Y/N"
680 Q=POS("YN" UPRC$C(KEY$)>>-1 @ IF Q<0 THEN 580 | wat for a good key
590 IF LENCES)> THEN PRINT "Biorythm plot for: “;ES$
600 PRINT TAB(20);"Age “;R;" Days"
610 PRINT TAB(20); "Blorythm for";B;" days from ";M$([M*3-2,M*3]1;D;" ";Y
620 PRINT TAB(20) ;"p=Physical s=Sensitivity c-Cogn1t1ve" Q PRINT
630 PRINT USING “14X '-100’,10X, 'Low’, 10X, ’0’ 9X,’High’,9X, *+100°"
640 S$=CHR$(124)&"----=---mmccmccccccc o omccccmcc e e e e “"&CHRS (124
650 PRINT TAB(17);S$
1000 FOR L=1 TO B @ E$=CHR$(124) Q@ E$[261=ES$ @ ES[26]=ES
1010 X=ABS(25+#SIN(360%R/23)+26) Q@ ES[X, X1="p"
1020 X=ABS(25*SIN(360%R/28)+26) O E$([X, X]1="s"
1030 X=ABS(25*SIN(360%R/33)+26) Q@ E$[X, X]1="c"
1050 X=J-1721119 @ Ni=X+2 @ Yi1=IP((N1-.2)>/365.25)
1060 N2=N1-IP(365.25*%Y1) @ M1=IP((N2-.6>/30.6) @ D=IP(N2-30.6*M1+.5)
1080 IF Mi<=9 THEN Y=Y{ @ M=M1+3 ELSE Y=Yi+1 @ M=M1-9
1090 PRINT USING "6X,3A,3D,4X,51A";M$[M*3-2,M*31,D,ES
1100 R=R+1 @ J=J+1 @ NEXT L @ PRINT TAB(17)>;S$ @ PRINT @ IF Q THEN END
2000 PRINT '"P" = The 23 day Physical cycle.’
2010 PRINT ’ Relates to Vitality, Endurance and Energy.’
2020 PRINT ’"s" = The 28 day Sensitivity cycle.’
2030 PRINT ®' Sensitivity, Intuition and Cheerfulness.’
2040 PRINT '"c" = The 33 day Cognitive cycle.’;
2050 PRINT * Mental Alertness and Judgment.’ @ PRINT TAB(41);°’-+-

2060 PRINT ° Greater than "0", high values, Energetic and Dynamic.’
2070 PRINT °* Less than "0", low values, Recuperative periods.’

2080 PRINT °’ 0" values, critical days, Accident prone days,’

2090 PRINT ° especially for the physical and sensitivity cycles.’
2100 END

9000 Yi=Y+(M-2.85)/12
9010 J=IPC(IPCIP(367*Y1)-IPC(Y1)-.756%xIP(Y1>+D>-1.56)+1721116 @ RETURN

70 HP-T1 Data Files The BASIC HP-71

BASIC Programming Hints 10

There are usually several ways to do the same task in BASIC. We can go from sloppy to concise to
sacrificing clarity to save a few bytes, and still reach the same goal. This chapter is about the point
between "wow, it works!" and "I wonder what’s on TV." The program is functional, but let’s con-
serve memory, make it a little more elegant looking, and try to make it run faster. The two aspects
of memory conservation are minimizing code used, and economical allocation of variables; we'll
cover both together.

Keep in mind that these techniques form the modules of efficient programs, and efficiency is the
real bottom line. There are a few disadvantages in using memory conservation methods:

] Remarks are invaluable for understanding program flow, but use up memory.
° Convoluted programs can be difficult to maintain.
° Since BASIC:s differ, even in the HP camp, many of these techniques will make

it difficult to adapt programs to (or from) other machines.

Nesting Mathematical Expressions

While BASIC is an algebraic language, the 71 is internally a stack oriented machine vaguely remi-
niscent of HP’s RPN calculators. When an expression is interpreted, the 71 passes parameters to
the functions, and places intermediate answers in a section of memory called the Math Stack
(although it is also used for strings). Let’s start with a simple set of expressions. We want the cur-
rent time in 12 hour (but decimal fraction) format; not the most useful value, but easy to explain.
TIME returns the number of seconds since midnight.

10 X=TIME @ IF X>43200 THEN X=X-43200
20 DISP X/60/60

Besides saving code, the next solution is considerably faster than this code. The speed increase is
from simplified code and from doing it in one expression which keeps the numbers "floating" on
the stack. Whenever a value is assigned to a variable, the expression is completed and the stack is
not used to the greatest efficiency.

10 DISP MOD(TIME, 43200)/3600

The way the HP-71 engineers designed the math stack is also responsible for versatile handling of
string subscripts. Since strings usually go on the stack, they can be trimmed as we like them; extra
parentheses may be added to designate a new string expression for which subscripts apply. This
fragment takes the substring [2,4] of element S of array A$ adds the entire length of B$ to it then
displays the results starting with the second character.

10 DISP (A$(5)([2,41&B$)[2]

Testing Execution Speed

Code which is to be repeated often should be optimized for speed over size. For example,
MIN(2,1) is faster than MIN(1,2); placing the largest likely argument first, with either MIN or
MAX, is most efficient. The only way to know this by testing.

Chapter 10 BASIC Programming Hints 71

A fair test of any procedure is 500 iterations; this typically runs under five seconds, and is small
enough that you can run it two or three times for each combination. Change the arguments or or-
der of variable assignment and run the test again. You might find that some code runs faster not
concatenated! If you want to use the results of the test again, don’t begin it with a SUB statement.

1 X=1 @ Y=2 | assign some values to test.
9 T9=TIME @ FOR L9=1 TO 500
100 Z=MIN(X,Y) | the code we’'re testing for speed.
9999 NEXT L9 @ DISP (TIME-T9)/(L9-1)-.01 ! iteration minus correction.

The core of the program uses normally unused line numbers so that we can copy lines directly
from the program we’re developing. We're using odd variable names (T9, L9) which are unlikely to
be found in the code you're testing. Line 9999 divides the time by the loop counter and subtracts a
fudge-factor (some overhead) to get a reasonably un-distorted time for a single iteration. Test the
loop with a simple variable assignment (X=1) and correct the fudge factor to zero-out the result

to make the differences in actual runs more flagrant. Watch for machine differences between runs;
the run file or a data file could move, distorting file access times. Don’t use remarks within the
loop; everything counts. And, if you work late, watch for time roll-over at midnight.

OPTION BASE, DESTROY ALL, RESET

Programs written for distribution should avoid selecting OPTION BASE 1, even at the expense of
wasting the possible zero element, because it is a global setting, and affects the operation of the
entire variable chain. BUBLSORT, in Chapter 14, "Non-obfuscating Programs," ignores zero ele-
ments (if they exist). DECIDE shows how to save the current OPTION BASE, change it as
needed, then restore it when done; if you must set OPTION BASE, this is the preferred method.

DESTROY ALL (which also destroys calculator variables) and RESET (which resets all user
flags-including I.C) should be avoided when possible for the same reason. Representative is
EDTEXT, in the FORTH/Assembler ROM, which sets uppercase mode; nice for Assembly
source files, but not for writing letters.

Variable Names
A numeral suffix in variable names costs 1 extra byte each time the variable is referenced. X1=1
uses one byte more than X=1.

DIM Strings

It requires 5-7 bytes to DIM a string. There is some memory savings by not DIMing a string which
will contain from 25-28 characters. An exception is ROM software, where it is worth spending 6
bytes of ROM to save 2 bytes of RAM.

INTEGER, SHORT

The 71 uses 9 1/2 bytes to store simple variables, regardless of their precision. Specifying
INTEGER or SHORT precision will not save memory; use INTEGER to round a number.

FOR-NEXT Loops and numeric comparisons are slower with integers.

72 BASIC Programming Hints The BASIC HP-71

Constants

PI (3.14 etc) is a constant, and is part of BASIC because it is used so often and never changes.
Programs often use other values time and again, many times it will save memory to assign the
number to a variable. Let’s take the memory required to create a single digit constant variable.

95 Variable
5.0 Statement
14.5 Total

A single-digit number in a program (for instance X=1) takes the 5 bytes, the same as recalling a
constant (X=C). When we go to a two-digit constant, the break even point for using the variable is
16 uses. Only when multi-digit numbers are used frequently does it become practical to use vars
for constants.

We can thank the HP engineers for entering numbers in the program line with only as much preci-
sion as needed. The HP-75, for instance, enters numbers in a program in full precision even if they
have a single digit. In fact, the most memory efficient way to enter the constant 1 on the HP-75 is
with X=SGN(EPS).

Inverting a Flag

Flags are often used 1o represent a state which may change as the program runs. The function
FLAG sets or clears the flag accordingly but also returns one if the flag was not inverted, or zero if
it was. Two common methods of inverting a flag are shown. The first method uses no variables, but
limits what may follow on the line. The second method is four bytes shorter but requires a scratch
var for the result of the FLAG function; use DISP to save a variable if you don’t mind displaying
an occasional spurious zero or one.

IF FLAG(1) THEN CFLAG 1 ELSE SFLAG 1 ! invert a flag.
X=FLAG(1,NOT FLAG(1)) ! invert a flag using a scratch var.

Flag Variables

In the same respect, we can invert a variable used as a flag quite simply. When a flag is to be in-
verted often, and it isn’t important that it be displayed (flags 0-4), it’s more efficient to use a
variable than a real flag.

X=NOT X ! invert a variable used as a flag.

Clearing an Array
Usually we zero out numeric or string arrays in a loop:

1000 FOR L=0 TO 20 @ X(L)=0 @ X$(L)="" @ NEXT L ! clear an array.

DESTROY followed by recreating the array(s) with DIM is much faster; the next program frag-
ment is 5 times as fast and 46 bytes shorter. This second method is more work for the computer
but, then, that’s its job.

100 DESTROY X,X$ @ DIM X(20),X$(20>[10] ! clear array quickly.

Chapter 10 BASIC Programming Hints 73

User Defined Functlions

User Functions (DEF FN’s) make it easy to pass variables to subroutines and use the answers
within a mathematical expression. Two disadvantages are that it is considerably slower than
GOSUB, and there is memory overhead for the environment besides the extra code required.
Instead of using:

1000 Z=FNX(Y) ! Calling a used defined function.

We would assign the values to scratch variables (in this case A) and use GOSUB:

1000 A=Y @ GOSUB 9200 @ Z=B ! in lieu of a DEF FN.

If we have a commonly used routine, need to pass several parameters, want the advantages of
nesting the FN, or just want elegant looking code, then by all means use user functions. If
execution speed and memory conservation are important then GOSUB is recommended.

END, END SUB

The END and END SUB statements are not required if the program flows to the last line in the
file or if the program is followed by another SUB in the same file. While a SUB may only have one
END SUB, END may be used within the SUB to terminate it without the necessity of branching to
the last line in the SUB.

10 SUB FRED
300 IF <expression> THEN 100 | the implied end of the program.
400 SUB BARNEY ... | new program. implied END SUB.
500 SUB WILMA ... ! another new program.
IF, THEN, ELSE

GOTO is implied following THEN and ELSE if followed by a label or line number so the keyword
GOTO is optional for a savings of 3 bytes. In this example the program will branch to line 800 if
X#0, otherwise it will GOTO the label ’start’.

610 IF X THEN 800 ELSE ’START’ ! implied goto.

An implied GOTO to a label may take any form which evaluates to a string. Note that this only
applies to labels, calculated line numbers won’t work (alas). The two fragments will branch to label
Al if X=1, to’BI’ if X=2 and so forth.

340 IF X THEN CHR$(X+64)&’1’ ! calculated goto to a label.
440 IF X THEN ’ABCDE’ [X,X1&’1’

This syntax may be used with GOSUB and GOTO outside of the context of a conditional to
provide highly flexible (and compact) branching.

90 GOSUB ’A1B1C1D1E1F1’ [X,6X+1]

Instead of using a subroutine which may only be referenced once, follow the conditional with the
actual code, presuming it will fit.

74 BASIC Programming Hints The BASIC HP-71

500 IF NOT X THEN DISP "No value" @ BEEP @ X=.0001 @ Y=NOT Y

A disadvantage of IF, THEN and ELSE is that they restrict what may follow on the same line and
therefore limit concatenation. One of the strengths of BASIC is that boolean arguments may be
nested within mathematical expressions. In the example we will replace I THEN with an argu-
ment which uses the same amount of memory but places no limits on what may follow on the line.

1000 IF X THEN Y=Y+100

If X=zero then we want to add nothing, and, since one hundred times nothing is nothing we can
use.

1000 Y=Y+(100*X#0)
Other comparisons including NOT, MAX, MIN and MOD are usable in the same form.

If a variable is to be toggled between two values based on a comparison then assign the number to
the second condition first and make only one comparison.

10 IF X THEN Y=1 ELSE Y=2
Replacing this with the following will save three bytes.

10 Y=2 @ IF X THEN Y=1

ON ERROR

One of the primary uses of ON ERROR is during an INPUT to trap bad data. Since any error
which occurs will cause the branch, we can purposefully allow errors to happen to eliminate a
series of IF THEN’s.

10 IF NOT X THEN 10 ! if X=0
110 ON X GOTO ’X1',°’X2’,°X3’

We could have used ON X +1 GOTO... but this wouldn’t have helped if X=37. The simplest
approach is to change the program to trap anything which may cause problems. The code at label
’ERRTRAP’ would contain code to interpret the error or provide the equivalent of an ELSE.

100 ON ERROR GOTO ’ERRTRAP’ ! set the error trap.
110 ON X GOTO ’A1’,'B1’,’C1’

We can also use ON ERROR to branch to an all purpose routine following an intentionally
caused error. This is an implied GOTO to a nonexistent label.

200 IF NOT X THEN ’’ ! implied goto to a null label to cause an error.
GOTO, GOSUB to a Label
Referencing labels of four characters requires the same memory as referencing line numbers. If a

line number is referenced several times then there is some memory savings in using three
character (or shorter labels).

Chapter 10 BASIC Programming Hints 75

Enter Labels Without Quotes

A token representing quote will be entered by the 71 instead of the actual quotes so that (single)
quotes will be displayed when you edit the line but a byte will be saved because there is no literal
quote. If you later edit the line and press ENDLINE then the actual quotes will be entered and the
savings will be lost so be sure to eliminate the quotes again.

Optional Parameters
Several statements may optionally be entered without parameters or in an abbreviated form.

CLEAR
HP-IL statement. Operates the same as CLEAR LOOP. Saves § bytes.

DEGREES, RADIANS
OPTION ANGLE is optional, DEGREES or RADIANS is sufficient. Saves 4 bytes.

RUN
Without parameters re-starts the same program.

Recalling a Displayed Line

Normally unrecoverable displayed data may be assigned to a variable by turning on the cursor be-
fore displaying the information. Display the escape character (chr$(27)) followed by ">" and
ended by a semicolon to suppress the CR/LF to turn on the cursor. The example assigns the CAT
to C$. Line 520 is optional and turns off the cursor to keep from having it (occasionally not even
flashing!) present at odd times. The INCAT sub-program listed earlier is a practical application of
this operation.

500 DISP CHR$(27)&">"; ! turn on the cursor.
510 CAT @ C$=DISP$! display the data.
520 DISP CHR$(27)&"<"; | turn the cursor off.

Passing Parameters

DISPS$ offers a unique way to pass parameters to programs. You can start the program in three
ways: First, CALL or RUN the program normally, it will pause and ask for the parameter. assign
the program to a key using DEF KEY "?","CALL PASS™", then enter the parameter on the edit
line and press the key assignment. The third method is to CALL it from another program which
displayed the parameter with the cursor on (which is how INCAT, in Chapter 7, "HP-71 BASIC
Programming," works).

10 CALL PASS @ SUB PASS
20 X$=DISP$! read the input line.
30 IF NOT LENCX$) THEN INPUT "parameter:";X$ | input if none passed.

Checking For a LEX File

Most larger LEX files answer to the version poll. Therefore you can see if they are in the computer
by looking for their name in the string returned by VERS$. Don’t look for an exact match unless it
is important to know which version of the LEX file is there (such as working around a bug).

Except for the beginning of the line ("HP71:"), each LEX file is separated by a space; the revision

76 BASIC Programming Hints The BASIC HP-71

number follows a colon. Include both the space and colon to insure that another LEX file name
doesn’t contain the one you want.

IF POS(VERS," HPIL:") THEN DISP "HPIL Module present"
IF NOT POSCVERS," MATH:") THEN DISP "No MATH ROM present"

ON TIMER

Timers are an under used feature; every ten minutes the program might save to disc, or twice a
minute it will update the time on the monitor, or every other minute it’ll take a reading from an
HP-IL device. ON TIMER GOSUB is more useful than the GOTO variety; we can have two or
more processes effectively running concurrently. Since the timer could interrupt at any time, be
sure to designate separate variables for use only within the timer subroutine. If your program uses
INPUT, KEYWAITS, or calls another program, the timer won’t "go off" until that procedure ends.
So, while the 71's clock is very accurate, the time the timer subroutine was entered may be off by
the amount of time it took for any of these unrelated tasks. Be sure to set timers for one second or
longer; a bug causes VER:BBBB 71’s to occasionally "hang" when timers are set for under about .7
seconds. Chapter 11, "PEEKS$s and POKEs," has a program fragment to check if a timer is active.

ON TIMER #1,5 GOSUB ’'INTERUPT’ ! set-up a 5-second timer interrupt
OFF TIMER #1 ! disable the timer

The three timers are global. Change them in a sub-program and you've
changed them in the main program.

Use variables in timer subroutines which are not used in the main program.
Avoid setting timers recursively.

Don’t forget to turn them off!

Set times longer than one second.

Timer interrupts will be delayed until after INPUT or sub-program calls.
Remember, they won't interrupt an INPUT or KEYWAITS.

END or STOP de-activates timers.

Displaying a Help Line Using a Timer

One HP-41 innovation is on-line help; press a key to see what it does without executing the
function. This routine is generally called from a menu driven sub-routine to display a line of help if
the user continues to hold down the key. Since your subroutine was entered when the user pressing
a key, this routine checks to see if a key is still down. If the user releases the key immediately it re-
turns without displaying anything. If the user holds down the key for more than one second, it dis-
plays "cancel" and never returns, but instead goes to the label ' MAINLOOP’. From your subrou-
tine, place a help message in X$, then GOSUB HELP. The second version does not use a timer
and can be used for duration shorter than one second.

Chapter 10 BASIC Programming Hints 77

6800 'HELP’: IF KEYDOWN THEN DISP X$ | display prompt if key down.
6810 ON TIMER #1,1 GOTO 6820 ! set the timer .

6820 GOSUB 6850 @ OFF TIMER #1 @ RETURN

6830 DISP "cancel" @ OFF TIMER #1 @ GOSUB 6850

6840 POP @ POP @ POP @ GOTO ’MAINLOOP’ ! timeout, don’t return.
6850 IF KEYDOWN THEN 6860 ELSE RETURN ! wait for no keys down.

8150 'HELP2’: T=TIME @ IF KEYDOWN THEN DISP X$! doesn’t use a timer.
8160 IF NOT KEYDOWN THEN RETURN ! exit if no key is down.

8170 IF TIME<1+T THEN 8160

8180 DISP "cancel" @ GOSUB 8190 @ POP @ POP @ GOTO 'MAINLOOP’

8190 IF KEYDOWN THEN 8190 ELSE RETURN ! wait for no keys down.

Input without INPUT

Many of the commands in high level languages like BASIC are complete utilities, almost sub-pro-
grams. INPUT and LINPUT are among the most powerful, automatic and complex statements,
with machine language subroutines nested fourteen levels or deeper (amazing on a machine with
an 8-level hardware return stack). There are a few cautions in using INPUT:

Limited to 96 characters.

ON TIMER will not interrupt.

Cursor keys enable the command stack.

Require a key file to trap special keys.

Will time-out and turn off the computer after 10 minutes.

Many programs work around INPUT by re-assigning the cursor keys to immediate execute keys,
and use DISPS$ to recall the input string. The following routine is primitive, slow, and limited it its
simulation of INPUT, but gives an idea of how complex INPUT really is. It displays a default
string, allows minimal editing, and returns a string. If flag -3 is set, the computer won’t time-out
while waiting for keys. It assumes delay is set to 0 and displays one character longer than fits in the
LCD so the arrow annunciator will light when the string exceeds 21 characters. The routine can be
enhanced to use overstrike mode and trap the arrow keys.

X Maximum number of characters allowed.

X$ Input string (dim it as large as necessary).

K$ Current keystroke (dim at least 4 characters).

ENDLINE Enter the line and return.

LEFT Backspace.

g-ERRM display the latest machine error.

4000 ’MEMO’: DISP CHR$(27)&"E"&X$[MAX(1,LEN(X$)-20)]1; ! cursor on.

4010 K$=KEY$ @ IF NOT LEN(K$) THEN 4010 ! wait for a key.
4020 DISP CHR$(27)&"<" | turn off the cursor.

4029 ! see if the user pressed g-ERRM

4030 IF K$="#161" THEN DISP ERRM$§ @ GOSUB KEYUP @ GOTO ’'MEMO’

78 BASIC Programming Hints The BASIC HP-71

4039 ! flush the key buffer. if ATTN then cancel and return.

4040 POKE "2F442","00" @ IF K$="#43" THEN RETURN

4049 ! if left-arrow then delete a char from X$, go back for more.
4050 IF K$="#47" THEN X$[LEN(X$)]="" @ GOTO ’'MEMO’

4060 IF K$="#38" THEN RETURN ! is the key ENDLINE? if so then exit.
4069 ! if K$ >1 char, we have an unwanted control key, ignore it.
4070 IF LEN(K$)>1 THEN GOTO ’MEMO’

4079 ! is the string under max # chars? then add this char.

4080 IF LEN(X$)<X THEN X$=X$4K$ @ GOTO ’MEMO’

4099 ! the char was valid but the string was too long.

4100 DISP @ DISP "<<<string too long>>>"

4110 BEEP 900, .2 @ BEEP 1200,.2 @ GOTO ’'MEMO’

4499 ! wait for no keys down. has no effect on any variable.

4500 KEYUP: IF KEYDOWN THEN 8060 ELSE POKE "2F442","00" @ RETURN

Quoted Strings

Enter GOTOs to labels and HP-IL device specifiers without quotation marks.
GOTO label CAT :tape
GOSUB label CALL pgmname

String Arrays

When first referenced, if they haven’t been DIMmed, string arrays are created to 11 elements (or
10 if OPTION BASE 1) of 32 characters each. They also use 3 bytes per element and 9.5 bytes for
the array. The next example is excerpted from a commercially available HP-71 program. We've
changed the line numbers to protect the innocent.

910 A$(1)="n "

920 A$(2)="i% " @ Y4=15
930 A$(3)="PV "

940 A$(4)="PMT "

950 A$(5)="FV "

These are the only values stored in A$(). Since OPTION BASE 0 was established earlier on, and
the array had not been DIMensioned, it has by default used 32*11 bytes for the strings, plus 31.5
bytes for the array; a total of 383.5 bytes to store 15 characters of information. If it had been
DIMmed to S elements of 4 bytes each it would have required about 39.5 bytes plus 7 bytes for the
DIM statement. As you can see, it is important to properly DIM string arrays before use. Now,
about those short lines...

The Alternate Character Set

Characters above ASCII 127 are displayed in inverse video on a monitor or using the alternate
character set on the built-in LCD. The function HGLS$ (or HI$), found in some LEX files, sets the
high bit on all characters in a string about 50 times as fast as can be done in BASIC. The following
method assumes that each character is below ASCII 128 to begin with; use it on a string with the
high-bits already set, and it will clear them.

Chapter 10 BASIC Programming Hints 79

FOR X=1 TO LEN(Q$) @ Q$[X,X1=CHR$(128+NUM(Q$[X1))> @ NEXT X

Creating the Character Set

The two options of the next routine are Underlined and Inverse (white on black). It uses the
KEYWAITS function. The program is 329 bytes long and builds the character set in blocks of 8
characters. Note line 110 which uses GDISP to display alternate characters starting at uppercase
"A". Since each character takes 6 bytes for the definition and "A" is CHR$(65), we begin displaying
al 65*6, or position 390 in the 768 byte string.

10 CALL CHARSET @ SUB CHARSET ! create alternate charset.

15 DIM C$(768]1,Y8[48] @ DISP "Underline/Inverse"

20 T=POS("UI",KEYWAITS) @ IF NOT T THEN 20 | wait for a keystroke.
25 DELAY 0 @ CHARSET "" @ FOR X=128 TO 255 STEP 8

30 FOR Y=0 TO 7 @ DISP CHR$(X+Y): @ NEXT Y @ Y$=GDISP$(1,48]

35 IF T=1 THEN 45

40 FOR Y=1 TO 48 @ Y$[Y,Y)=CHR$(255-NUMCY$[Y])) @ NEXT Y @ GOTO 55
45 FOR Y=1 TO 48 @ Z=NUM(Y$[Y]) @ IF Z<128 THEN Y$[Y,Y]I=CHR$(Z+128)
50 NEXT Y

55 C$=C8&4Y$ @ DISP @ NEXT X @ CHARSET C$

60 GDISP CHARSET$[390] @ BEEP ! Display the character set.

If you have HGLS$ or HIS$, this second version is faster. It is initially slower because it appends to
the character set as it goes, instead of maintaining it in a string variable. The speed gain is using
HIS$ on line 35 to set the high-bit on each character; since the high-bit is the bottom, this
underlines the character.

10 CALL CHARSET2 @ SUB CHARSET2 ! this version uses HIS$.

15 DIM Y$[48] @ DISP "Underline/Inverse"

20 T=POS("UI",WTKEY$)) @ IF NOT T THEN 20 ! WTKEY$ similar to KEYWAIT$
25 CHARSET "" @ DELAY 0 @ FOR X=128 TO 255 STEP 8

30 FOR Y=0 TO 7 @ DISP CHR$(X+Y); @ NEXT Y @ Y$=GDISP$[1,48]

35 IF 1=T THEN Y$=HI$(Y$) @ GOTO 55

40 FOR Y=1 TO 48 @ Y$[Y,YI=CHR$(265-NUM(Y$([Y])) @ NEXT Y

55 CHARSET CHARSET$4&Y$ @ DISP @ NEXT X

60 GDISP CHARSET$[390] @ BEEP

Alternate Character Set in Programs

Prompts for input, title lines, and warnings have more impact when displayed in inverse video.
Once the characters are in the program, they will be displayed in the alternate character set when-
ever one is assigned. The easiest way to enter these characters into a program is to assign them to
keys. The easiest way is with HI$ (or HGLS), but it can be done (with a few more keystrokes)
without that keyword. Don’t forget the ";" to designate it as a typing aid key assignment.

DEF KEY "?" ,HI$("?");
Or...
DEFKEY "?",CHR$(128+NUM("?"));

80 BASIC Programming Hints The BASIC HP-71

Filling a String With Spaces

A previously unused string (or one nulled by using X$="") can be filled with spaces to any length
needed by placing a single space on its extreme right or a null after the end. This does not work
with all other HP BASICs; on the HP-75, for example, it brings back the old string.

10 DIM X$[200] @ X$[200]=" "
10 DIM X$[200] @ X$[201]=""

Centering a String
Where QS is the string to center W is the width of the finished line and XS$ is scratch. Either fills
the left of the string with spaces.

10 X$="" @ X$[(W-LEN(Q$)>/21-" " @ Q$=X$4Q$
10 PRINT TAB(MAX((W-LEN(Q$>>/2,1));Q$

DATE$

There are several ways to extract the day or month number from DATES$. However, 71’s with
VERS "IBBBB" or earlier have a random and rare bug which may cause an unexpected error when
concatenating DATES$. The problem is time-related, and may not show up in hundreds of tests,
only to happen repeatedly other times. For this reason, you should assign the DATES$ to a string
variable before concatenation. Even if you have a later 71, in order to assure that your program
will run on earlier machines, it’s best not to concatenate DATES.

X$=DATE$[4,5] ! sure to cause an error occasionally.
X$=DATE$ Q@ X$=X$[4,5] ! correct.

Lowercasing a String

10 SUB LWRC(X$) @ FOR L=1 TO LEN(X$) @ X=NUM(X$[L])
20 IF X>64 AND X<90 THEN X$[L,L]1=CHR$(X+32) ! is it in the range?
30 NEXT L @ END SUB

NUM
Only the first character in a string or substring is significant to NUM. NUM(X$[5]) will suffice,
the second subscript (as with X$[5,6]) is unnecessary.

Replacing one Character with Another
10 X=P0S(Q$,S$) @ IF X THEN Q$[X,X+LEN(S$)-1]1=S$ @ GOTO 10

Reversing a String

This routine is listed as both a SUB and a DEF FN; a BASIC keyword called REVS is listed in the
Assembly language section. The operation is similar in all versions. These first examples use only
one string variable and are slower than the same operation using two strings. REV2 is similar, but
uses two string variables.

Chapter 10 BASIC Programming Hints 81

10 DEF FNR$(R$) @ FOR L=1 TO LEN(R$)/2 @ P=LEN(R$)+1-L
20 R=NUM(R$[L])> @ R$I[L,L1=R$(P,P]
30 R$[P,P1=CHR$(R) @ NEXT L @ FNR$=R$ @ END DEF

70 SUB REV(R$) @ FOR L=1 TO LEN(R$)/2 @ P=LEN(R$)+1-L
80 R=NUM(R$IL]1) @ R$IL,LI=R$[P,P]
90 R$[P,P1=CHR$(R) @ NEXT L @ END SUB

10 SUB REV2(R$) @ DIM AS[LEN(R®)]
20 FOR L=LEN(R$) TO 1 STEP -1 @ A$=ASLRS[L,L] @ NEXT L
30 R$=A$ @ END SUB

Rotating Left
This FN rotates the string left by the number of characters specified by X.

100 DEF FNL$(A$,X) | rotate left.
110 FOR L=1 TO X @ A$=A$[2]1&AS$[1,1] @ NEXT L
120 FNL$=A$ @ END DEF

Rotating Right

100 DEF FNR$(A$,X) ! rotate right.
110 FOR L=1 TO X @ A$=AS[LENCA$)1&AS[1,LENCA$)-1] @ NEXT L
120 FNR$=A$ @ END DEF

Trimming Leading Spaces

100 IF Q$(1,1]=" " THEN Q$=Q$[2] @ GOTO 100 ! trim leading spaces.
Trimming Trailing Spaces

100 IF Q$[LEN(Q$)1=" " THEN Q$[LEN(Q$)1=*" @ GOTO 100 ! trailing spcs.

Waiting For a Key

KEYDOWN and KEY$ give us the ability to wait for single keystrokes without using INPUT, then
use the key within the program. KEYDOWN returns one if the specified key is down or zero
otherwise. Used without a parameter, KEYDOWN checks to see if any key is being pressed. The
program is something like:

100 IF KEYDOWN("A") THEN 500
110 IF KEYDOWN("B") THEN 600
120 IF NOT KEYDOWN("C") THEN 100

In addition to the extra memory used, the 71 stays in the battery-slurping program running state
regardless of how long it waits for the proper keystroke. By the way, you can tell when your 71 is in
the low-power state by placing an AM radio near it and tuning it until the 71 causes interference.
When the 71’s waiting for a keystroke, you can hear a little blip of a heart beat when the cursor

82 BASIC Programming Hints The BASIC HP-71

flashes. And when it’s busy, such as in a continuous loop, the beat changes to a hummingbird-like
pace.

INPUT goes to low power between keystrokes but requires ENDLINE to terminate the input,
doesn’t automatically qualify input, and can’t be used within mathematical expressions since it is a
statement. KEYS$ is easier to use than KEYDOWN, but will return a null string for no key presses;
we still have to use it in a loop. Several LEX liles contain the keyword KEYWAITS which does go
to low power, waits for a keystroke and, unlike KEYS$, always returns a string. Many plug-in ROMs
have the function, you may already have it since it isn’t always documented. KEYWAITS returns a
string we can use with POS or NUM for fancy branching. This will work best with single character
key definitions.

20 DISP "Option :X/Y/?" @ GOSUB CHR$(POS("XY?",UPRC$(KEYWAITS))+65)

This routine branches to label ’A’ for the wrong keystroke, or labels 'B’, ’C’, or 'D’ for the correct
key; no error trap is needed. Since the program label need not be the same as the keystroke, any
key can be used.

Sometimes we may want to trap shifted or control keys; this is a little more complicated. Most
shifted keys return two character strings and control keys return three or four characters. This
example assumes there isan ON ERROR trap in case the user presses the wrong key.

500 'MAINLOOP’: K$=UPRC$(KEYWAIT$)

510 IF LEN(K$)=1 THEN GOSUB CHR$(POS(T$,K$)+65) @ GOTO ’'MAINLOOP’
520 IF LENCK$)=2 THEN GOSUB CHR$(POS(T2$,K$)+65)&"2"

530 GOTO ’MAINLOOP’

Another version of KEYWAITS is called WTKEYS$, which returns the ASCII character of the key
instead of the keymap value. It always returns a single character; for instance, ENDLINE returns
CHRS$(13) instead of "#38".

If one of these keywords isn’t available (or we don’t want to use any LEX files), we can define a
user function to simulate it. Remember that this does not place the 71 in low power mode, but it
does allow it to be used like KEYWAITS. A KEYWAIT$ LEX file is about 55 bytes (WTKEYS is
somewhat larger) while the DEF FN is 42; the main savings is in the convenience of not needing
the LEX file. The first example returns a null string if the user presses one of the shift keys. The
second example (FNKI1$) allows shifted keystrokes, but requires a string variable.

9000 DEF FNK$

9010 IF NOT KEYDOWN THEN 9010

9020 FNK$=KEY$ @ END DEF

9100 DEF FNK1$

9110 K$=KEY$ @ IF NOT LEN(K$) THEN 9110
9120 FNK1$=K$ @ END DEF

If you are using ON TIMER # interrupts, you’ll want to be sure not to use KEYWAITS or
WTKEYS$ because the timer won't interrupt the function. If the timer goes off during KEYWAITS$
(or even INPUT), it will be ignored until the function terminates.

ez

Chapter 10 BASIC Programming Hints 83

PEEKS$s & POKEs 11

PEEKS$s & POKEs

The 71 is a nibble oriented machine; many operations which take a full byte on other computers
can be done in a nib on the 71. Any location within the full memory address range of the 71 (which
isn’t in a private file) may be inspected using PEEKS. In addition, RAM locations may be altered
using POKE. Remember that PEEK$ and POKE work with nibs, which are a half-byte, or four
bits. A nib can have a (HEX) value of "0-F" which translates to 0-15 in decimal.

X$=PEEK$ ("2E3FE",1) ! Returns value of 1 nib from specified address.
POKE “2E3FE","A" | Sets the nib at that address to "A".

Many of the routines in this section use REVS. If you do not have this function available in your
71, it can be simulated with the REV sub-program in Chapter 10, "BASIC Programming Hints."
REVS$ is called REVRS$ or REVRSS in some LEX files.

Let’s look at System RAM. This is information the computer needs (such as the current
PWIDTH) and scratch space used by Assembly language routines. Since the CPU reverses data
when it reads and stores it, just about everything is stored nib-reversed or the whole location
reversed. Since most of the system functions work in HEX internally, most information is in FIEX.
A chart at the back of this book lists most of system RAM.

For these reasons DTH$ and HTD aren’t going to give an accurate conversion when the nibs are
reversed. DTHS fills with leading "0" so it will have to be trimmed to the proper size before
POKEing. REVS is almost a necessity when working with system RAM. Let’s use the example of
the location DWIDTH, two nibs which contain the current WIDTH setting. First set the WIDTH
to 96, then PEEK the two nibs at DWIDTH(2F94F).

! set the display width.
LWIDTH 6 | ! Then PEEK at it.

PEEKS (*2F94F*,2)§ 06

Converting 96 (decimal) to hex gives us "60". As you can see, DWIDTH is backwards, or nibble
reversed. REVS reverses the order of characters so that our "06" becomes "60". Now HTD (Hex
To Decimal) can convert it to a decimal value.

HTD(rev$ (PEEKS ("2F94F",2)))# 96

There is a problem going the other way (Decimal To HEX) because HTDS$ always returns a five
character, right justified, string.

DTHS$ (96)# 00060

We need two nibs. POKE always uses the full length of the string furnished to it. If we had just
POKE'd the above, then DWID'TH would have gotten the first two nibs ("00") and the next three

84 PEEKSs & POKEs The BASIC HP-71

nibs would have gone to the next higher addresses, corrupting (as they say) the data that lives
there. The following shows what would happens if we POKEd DTH$(96) to location x in RAM.

Action Returns
DTHS$(PEEKS$(x, 1)) "o"
DTHS$(PEEKS$(x+1,1)) "o"
DTHS$(PEEK$(x+2,1)) "o"
DTH$(PEEKS$(x+3,1)) "e"
DTHS$(PEEKS$(x+4,1)) "o"

POKE places the first nib at the address, the second at the next nib higher in memory, and so
forth, for the full length of the string. For a POKE-able 96 in HEX, we first trim leading zeros,
then reverse what’s left, something like:

rev$ (DTH$(96) [4]1)

System RAM

The first item on each line of the System RAM chart is its five-digit (hex) location in RAM. Each
location has a four to six character symbolic name. These names identify the locations in documen-
tation, and are used in equate tables for the Assembler. The third item is the number of nibs re-
served for that utility, and finally, a few remarks. ’

ROWDVR (2E350) These 16 nibs control the appearance of the LCD display. Slight modifica-
tions can give us bold characters which will stay in effect until we do an INIT-1, when the normal
display returns. Be careful changing some of the nibs or the display can become unintelligible, and
various display flags (like PRGM and the shift annunciators) may be lit at odd times. The follow-
ing are reasonable looking character sets. They enhance the horizontal lines, which is not as attrac-
tive as fatter vertical lines. Experiment with various combinations to give your 71 a free form look.

! Normal.

Lpoxa “2E357",%22"§ |
! Bold.

LPOKE “2E357*,%63"§ I

{ Bold Top.
Lpoxn “2E357*,%23"§ |
! Bold Bottom.

POKE *"2E357*,%“62"#

DCONTR (2E3FE) contains the current contrast setting as set by the CONTRAST keyword. The
value is in hex so the possible contrast range is from 0-15.

! Read the contrast setting.

HTD (PEEKS (*2E3FE",1))§

The first value in the example is "2F3FE", the memory location, the second is the number one, the
number of nibs we wish to see. Again, the function HTD is used to turn the hex number into deci-
mal. In the same manner we can set the contrast. This sets the contrast setting to 10 ("A" in hex).

Chapter 11 PEEKS$s & POKEs 85

! Set contrast to 10.

POKE "2E3FE*,"A"§

ATNDIS (2F441) Used to disable the ATTN key so that it will not stop a program. The normal
value for this location is "0". POKE an "F" here and ATTN will be treated like any other key by
KEYWAITS and KEYS$. Also, INPUT cannot be suspended. This is helpful when a program uses
the ATTN key to, for instance, enter a command level (such as EDTEXT, the HP Text Editor), or if
a program is doing a critical operation which could cause problems if interrupted. KEYWAIT$
returns "#43" and WTKEYS$ returns CHR$(14) when you press ATTN.

I ! Disable ATTN key.

LPOKE “2F441*,"F*§

! Enable ATTN key.
POKE "“2F441*,*0"§

The Key Buffer

The 71 stores up to the last 15 keystrokes in a location called the key buffer. This is why you can
type ahead before an INPUT occurs and press keys faster than they can be displayed. Remember
that the key buffer is emptied after each DISP unless the current DELAY is zero. The buffer is
filled from low memory to high memory, the oldest key down is at the beginning of the buffer.

KEYPTR (2F443) Tells us how many keys are in the key buffer. If your program has been busy for
awhile, the user might think it has died, and may start pressing keys. Later, the program stops for
an INPUT and those keystrokes come back to haunt. You can keep this from happening by
POKEing a zero at KEYPTR before the INPUT statement.

KEYBUF (2F444) is the beginning of the 30 nib (fifteen byte) key buffer. The first key is at
"2F444", each additional key is plus "2" hex. Enter the example exactly as written, without extra
spaces, to see how the key buffer fills.

POKE"2F443* ,“E*§ OKE"2F443",“E“§

The "P" is gone, but the other characters remain. If we had used "F" instead of "E", the CHR$(13)
entered when we pressed ENDLINE would have caused an "Excess Chars" error when the 71 tried to
interpret the "OKE" statement.

Setting CM D stack size

The command stack usually has five levels, though it can be altered between one and sixteen
entries. The 71 does not have a function for this operation, though it is in several LEX files. This
program limits it to fifteen entries because of peculiar things which can happen with the full
sixteen. CALL the program with, for instance, CALL CMDSTK(10) to set it to ten entries.

This program is similar to SETCMDST (in the HP-71 Utilities Solution Book), but is listed here
for those who do not have that book. Since the program alters system pointers, it cannot be inter-

86 PEEKSs & POKEs The BASIC HP-71

rupted during operation without a dreadful belly-up crash, so the ATTN key is disabled. Enter the
program exactly as written (without remarks) and double check it before running.

10 SUB CMDSTK(X) @ POKE "2F441","F" | disable ATTIN key.

19 ! make max cmds 0< X <16, find the command stack.

20 X=MIN(15,MAX(1,IP(X))) @ A=HTD(rev$(PEEK$("2F576",5)))

29 | create empty cmd entries

30 DIM S$[X*6] @ FOR Y=1 TO X @ S$=S$4£"000300" @ NEXT Y

40 E$=rev$(DTH$(A+X*6)) @ POKE "2F580" ,ES&EYE ! set stack pointer.

50 POKE DTH$(A),S$ @ POKE "2F976",DTH$(X-1)[5] ! blank commands in buf.
60 POKE "2F441","0" @ END SUB ! enable the ATTN key, bye.

Display Devices

If there is a display device active, a program may want to support it. The usual (and HP recom-
mended) method to find the device is by checking the loop for one. The disadvantages of this are
that, if there is no HP-1L. module, it will cause an error when the function is encountered, and if
the loop is broken, everything will get hung up waiting for the HP-IL ROM to realize it. Regard-
less, these operations are quite time consuming. This following fast and cannot cause an error.
Two locations are used by the 71 when dealing with display devices:

DSPCHX (2F674) Contains five nibs which relate to various aspects of the device. If the most sig-
nificant bit of the first nib is set (the PEEKS is "8" or greater) then a device is active. If a non-HP
display device is active the 71 will generally clear bit 2. This causes keeps the 71 from re-displaying
the line when inserting and deleting characters, a unkempt looking affair when the 71 is connected
to a terminal.

Bit Status

Bit 3 Set if Device is active.

Bit 2 Set if HP82163 Video Interface is active.
Bit 1 Set if output to printer (full lines only).
Bit 0 Set if display is on.

IS-DSP (2F78D) Used by the HP-IL ROM to describe the display device. This is much like IS-
PRT for the printer. The first two nibs are the address of the device; values of "10" (nib-reversed
hex for decimal 1) to "E1" (decimal thirty) mean a valid address. Outside of that range means not a
good device.

We can use this information to determine if a display is active, and where it is. In the example,
variable D will contain either the address of the display or zero if there is none, it isn’t active, there
is no HP-IL module, or the device is assigned with extended addressing. The information won’t be
accurate if nothing has been displayed since the loop has changed, though this is very unlikely.

10 D=HTD(rev$(PEEK$("2F78D",2))) @ IF D>30 THEN D=0
20 D=D*(HTD(PEEK$("2F7B1",1))>=8)

Chapter 11 PEEKSs & POKEs 87

Checking ON TIMER

You can sce if timer #1 is set by checking if the address at TMRAD1 (2F697) is non-zero, then
TMRINI1 (2F6A6) has the setting. Usually it’s enough to see if a timer is set; the examples return
non-zero values if a timer is sel.

*CKTIMER1’: X=HTD(PEEK$("2F697",5)) @ RETURN ! timer # 1.
'CKTIMER2’: X=HTD(PEEK$("2F69C",5)) @ RETURN ! Timer # 2.
*CKTIMER3’: X=HTD(PEEK$("2F6A1",5)) @ RETURN | Timer # 3.

PEEKing at Flags

User and system flags are stored in system RAM in a contiguous block. One of the nicest uses for
PEEKing and POKEing flags is to save current configuration, alter the machine as needed, then
restore the former conditions when through. While SFLLAG and CFLAG won’t work with some
system flags, there is no restriction when using PEEK$ and POKE. Be forewarned that altering
some system flags (as with POKEing anywhere) will lock up the computer beyond INIT 3.

SYSFLG (2F6D9) System flags.

FLGREG (2IF6E9) User flags. Flags are stored in order with four flags per nib. Therefore the
smallest unit we can alter is four flags (one nib). Clearing a block of user flags by POKEing is
much more flexible than using RESET and faster than individually altering several flags. It is more
memory efficient only when altering more than about 12 flags in a statement (assuming the flags
could be changed using SFLAG or CFLAG). This example will set flags 0-3:

! set flags 0-3.
LPOKE “2F6E9*, "F"§ l

! Clear flags 0-3.
POKE “2F6E9","0"§

Since we are dealing with locations in RAM, the next four flags (4-7) are located plus 1 nib at
2F6EA flags 8-11 are at 2F6EB and so forth. A chart in the back of this book lists the locations of
system flags and their uses.

LOCKWD (2F7B2) The security password set by the LOCK statement is stored in eight bytes, nib
reversed with the most significant byte in lower memory. Be sure not to POKE any characters
which cannot be entered from the keyboard (such as several CHR$(10)’s) into this location
because you will not be able to turn the 71 back on. To view the current password:

100 Q$=CHR$(126) @ FOR X=HTD("2F7B2") TO X+14 STEP 2
110 Q$=Q$&CHR$ (HTD(rev$ (PEEK$ (DTH$(X),2))))
120 NEXT X @ DISP Q$&CHR$(126)

RESREG (2F7Cl) The results register can contain a REAL number, stored backwards in BCD

(Binary Coded Decimal) in the first 16 nibs at RESREG. A complex number (if there is a Math
ROM) uses the full 34 nibs. The internal representation of a 16 nib BCD number is as follows:

88 PEEKSs & POKEs The BASIC HP-71

15 |14 |13 |12 |11 |10 9 8 7 6 5 4 3 2 1 0

] T T U U T 1 1 1 1 U 1 1 1 l 1

S M M M M M M M M M M M X E E E
From left to right, the "S" stands for the sign. Following this is the 12 digit mantissa (M), the sign
of the exponent(X), then the three digit exponent(E). The decimal place is implied to be after the
first digit (from the left) in the mantissa (though it doesn’t really exist). This standard is followed
with any REAL number. For more information on numerical fields, refer to the section on
Assembly programming.

Since the RES register changes whenever a number is displayed or assigned to a variable, this loca-
tion will constantly change. Try various values with this little program:

10 DISP rev$(PEEK$("2F7C2",16))

INF 0999999999999F00
EPS 0100000000000501

Pl 0314159265359000
-PI 9314159265359000

ERR (2F7E4) These four nibs are the hex (reversed) equivalent of the value ERRN returns.

ERRL (2F7EC) This is the same value as returned by the ERRL function. The line number is
stored reversed in four BCD (not hex!) nibs.

Display/Print settings

SCROLT (2F946) The 2 nib representation of the scroll setting. This is the second parameter of
the DELAY statement. The value is the number of 1/32nd’s of a second (.03125 sec. for decimal
fans) in nib reversed hex. INF is stored as "FF".

DELAYT (2F948) The first parameter in the DELAY. Stored in the same format as SCROLT.
DWIDTH (2F94F) Current WIDTH setting in two reversed hex nibs. INF is "00".
PWIDTH (2F958) The current PWIDTH setting in the same format as DWIDTH.

Determining Program Size

Since the 71 works with nibbles, an operation which may take full bytes on other machines can be
done in multiples of nibs. We can access how changes have affected program size by beginning the
program with:

1 DISP MEM @ END

This tells us available memory. But that may have changed because of other causes besides editing
the program. We could also use CAT, but that is often off by one nib. This routine returns the size
of the program to the nib.

Chapter 11 PEEKS$s & POKEs 89

1 DISP(HTD(rev$ (PEEK$ ("2F567",5)))-HTD(rev$ (PEEK$("2F562",5))))/2-49 @ END

What this line does is subtract the end of the file from the beginning, then divide it by two to turn
it into bytes, then it subtracts 49, the size of this line. This line can be changed into a remark when
not needed and, or course, should be removed when the program is finished.

Program Memory Use

Another routine can be used to determine the amount of memory used by variables (which are not
counted in the program size). Of course, we should already know what free memory was available
before the program was run.

1 DISP (HTD(rev$(PEEK$("2F599",5)))-HTD(rev$ (PEEK$("2F594",5))))/2-106.5
Finding the Card Reader

If there is no Card Reader then this PEEK returns "0", other values mean there is one. This is not
part of System RAM, but memory allocated for the Card Reader.

! Is there a Card Reader?
PEEKS$("2c014*,1)§

Strings in SDATA Files

We can read either numbers or strings from SDATA files, however, the 71 only allows writing
numbers to these files. Since a string can be read there is no reason we can’t write strings, hence
this section. The format used is, to say the least, unusual looking; physically seven characters can
be used, though READ# will only recognize six (for HP-41 compatibility); a byte is wasted. We'll
discuss the actual register (record) format in a moment.

The SDATA file has a 36 nib header followed by as many 8-byte registers as specified. The file can
be expanded by RESTOREIing to the end of the file then using PRINT#n;n. To store a string in
an SDATA file you must first place a number (pick a number, any number) in that register, then
POKE a string over top of that number. The reason for first entering a number is to make sure the
file is large enough for the string. Remember that registers begin with register# 0. The file doesn’t
have to be open (It isn’t necessary to use ASSIGN#) in order to replace a current register with a
new string. First let’s create an SDATA file and give it three registers:

! Create the file.
LCREA’I’E SDATA TESTH I

! Open it.
I_ASSIGN #1 To TEST§ |
! Write to it.

PRINT #1;0,0,08

Next turn "QUACK!" into the SDATA Text format:
| ! The string.

LQ$="QUACKI]

CALL SDTEXT(Q$)#

1 Call the program.

90 PEEKSs & POKEs The BASIC HP-71

Third, find out where the first register in the SDATA file is:

A=HTD (ADDRS (“TEST"*))+37§

Now put "QUACK!" in register 0, which begins at the first nib past the header, then read the file to
confirm that it’s there:

[.POKE DTHS$ (A),QS§ I ! Replace the old record.
[EESTORE #1 @ READ tl;xSﬁl ! Read then display the record.
DISP XxS$§ QUACK!

Let’s print "HP-71" to register #1, the second register, which is + 16 nibs from the beginning of the
file.

! Call the program.

LQ$=“HP-71“ @ CALL SDTEXT(Q$)§
LPOKE DTHS$ (A+16),QSH I
LRESTORE $1% I
LREAD $1;05,A8,08
DISP QS,AS, O QUACK! HP-71 0

! Write the string to SDATA file.

! Move pointer to start of file.

I ! Read the string and a number.

The SDATA file now has three records (OK, registers), the first two are strings and the third still
has the value of zero.

The SDTEXT SUB

The string passed to SDTEXT must be DIMmed at least 16. Only up to the first six characters will
be returned, in a sixteen character string suitable for POKEing into an SDATA file. Of course,
this can be used as a subroutine in a program to save time and memory. If this routine is added to a
program instead of being used as a SUB, be sure that X=0 before entering. SDTEXT always
returns a 16 byte string which is the correct length for POKEing into a single register. The
program uses REVS, as usual.

10 SUB SDTEXT(Q$) @ Q$=Q$(1,6]1 @ A$="0010000000000000"
20 X=2+X @ C=NUM(Q$) @ Q$=Q$[2] @ IF NOT C THEN 60

30 A$[16-X,17-X]1=rev$(DTH$(C) [4]) @ IF X<8 THEN 20

40 IF LENC(Q$> THEN A$([4,4]1=DTH$(NUM(Q$)>[5]1 @
A$(7,71=DTHE(NUMCQ$)) [4,4] @ Q$=Q$[2]

50 IF LEN(Q$) THEN A$[1,21=REV$(DTH$(NUM(Q$>)[4]1)

60 Q$=A$ @ END SUB

Chapter 11 PEEKSs & POKEs 91

SDAT A Register Format
Let’s use the register as it appears in memory (which is backwards, as usual). The HP-41 has 10
digit accuracy and a two digit exponent, while the HP-71 has 12 digit mantissa and three digit ex-
ponent, so some differences are found in the handling of SDATA files by both machines.
Physically, first come the last two digits of the exponent then the sign of the mantissa (which is also
the flag for a string: 0=positive, 9=negative, 1=string), then the first digit of the exponent (which
the HP-41 uses for sign of the exponent). The last byte of the mantissa (lower case m’s) is not rec-
ognized by the HP-41 so a string byte there would be ignored.

Strings are stored nib reversed, but also the two nibs of character number 5 in the string are sepa-
rated by a null byte. The first digit of the mantissa is zero and the sign is one for strings.

Number: | E | E| s | E|m|m|M]|M|M[{M]|M|M|M|M|[M]|M
SDATA: 15 |14 |13 |12 |11 |10 | 9 | 8 | 7| 6 | 5| a | 3| 2]1]0o
T T T 1
_ : . :
String: Byte6 || : Byte5 I Byted4 || Byte3 | Byte2 || Bytel || =
N RS N O A A A A
L] L) L Ld L
! c U
"QUACK!" 121B004341455150
PI 0000953562951413
PI(HP-41) 0000004562951413
9E27 7200000000000009
23456 9909000000065432
-10 1090000000000001
"HP-71" 001100373D205840

Lo

92 PEEKSs & POKEs

The BASIC HP-71

Converting From Other BASICs 12

As BASIC has grown, it has followed divergent paths. Microsoft (registered trademark of
Microsoft Corp.) is the dominant force because of shear number of units sold. Microsoft intro-
duced BASIC to small computers (recorded on paper‘tape). There are probably more computers
running Microsoft BASIC than any other implementation, or any other language. In this discus-
sion we'll lump BASIC together into two camps: HP, and everybody else. Apologies to Dartmouth
(where BASIC originated) for this generalization. A third category, modern BASIC compilers, re-
sembles Microsoft, but without line numbers. Most of this section applies to IBM PC, APPLE,
TRS-80, Atari and Commodore. Sinclair and other proprietary variations are intentionally
"included out." We will also cover the HP-75 to compare BASICs evolution within HP’s own walls.

HP has taken other paths to the point that most published BASIC programs won’t run on HP
computers without considerable changes. Northstar computers have the most HP-like BASIC.
BASIC, even MS BASIC, is not a standardized language. It can be said that Microsoft BASIC and
HP BASIC are two different languages with similar syntax.

Examples will not work in all cases. Don’t expect any PEEKS$ or POKE from any other computer
to work on the 71. Try to find out what the operation does then look for either an HP keyword, or
try to find an equivalent PEEK in the chart in the back of this book. Not all PEEKs will have an
HP-71 counterpart.

Microsoft BASIC

The differences between Hewlett Packard and Microsoft BASIC are as much philosophy as code.
Generally speaking, HP has more keywords than MS, because of a desire to make programming
easier. Where MS will require a POKE, HP will have a keyword, in fact, while HP usually does a
very complete version of BASIC, some HP’s don’t even have PEEK and POKE. HP BASIC is
easier to read because of the consistent program formatting, and because of the highly mnemonic
keyword names (some MS keywords are just plain goofy). Both languages use tokenized code, but
HP tokenizes and checks syntax as code is entered, thus, while there may be a short delay after
pressing ENDLINE, most typing errors are caught immediately, instead of while the program runs.
If you rave about MS BASIC then you aren’t familiar with HP BASIC. If we had a computer with
both BASICs running a similar program, the HP language version would operate considerably
faster. Thus, while the 71 actually runs fairly slow (for fuel efficiency), programs run relatively fast
because of the slick way they are coded.

Round-off errors are often extreme with MS, while the 71 uses quite accurate BCD routines. Be
sure that a program is not expecting the sloppiness of MS to limit number of loops or to intention-
ally induce an error. Programs compiled in Borland TurboBASIC (trademark Borland) and
Microsoft QuickBASIC version 3.0 (and later) may use full 80-bit precision for floating point.

Variable names often end with<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>