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In general
 

Congratulations with BAS CALCULUS!

The development of CALCULUS has served two aims:

e Give students and others a possibility to get

things calculated without remembering tricky

details

e Give students educational assistance in the way

that intermediate results shows up and indicate

the solving strategy.

The last point is important and implies that different strate-

gies for solving a problem can be chosen in a menu system.
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Hardware requirements

CALCULUSruns under the calculator HP 48SX/GX and

will need free RAM capacity of 10 KB. The program card may

be inserted into either of the two ports.

 

Starting up

The LIBRARY menu will show up CALC. Pushing the

CALC key will lead you into the CALCULUS main menu

and then you simply push the START key. You may also put

CALCULUS under the USR interface (see user manual for

the HP 48 SX/GX).

 

User routines

Independent of CALCULUS a set of routines may be acces-

sed from the main menu or the routines may be used in your

OwWn programs.

These include routines for sorting, simplifying, viewing text,

paging and substituting.

1. In general 8



e QSRT sorting, In: {2,4,1,6,3,8}, a list of

numbers. Out: sorted list {1,2,3,4,6,8}

e EXCO,simplifying, In: an algebraic, Out: the

simplified algebraic.

e VIEW,routine for showing text and GROBs.

In: text (" ") or GROBEsin a list, Out: a nice

view of indata.

e PAGER, routine for paging in connection with

VIEW, In: Text, Out: List ofstrings.

e WH, routine for substituting. Stacklevel 3:

'x 72" Stacklevel 2: x Stacklevel 1: 1.4. Out:
2

1.4%,

 

User interface

The CALCULUS menu system is easy to use. Using the ar-

row keys allows you to move the dark bar and select by pus-

hing ENTER.

In the following example you will enter the submenu for

FUNCTIONS and select Graphing.
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ALGEBRA

DIFFEQUATIONS

FUNC SEV VARIABLES

INTEGRATION

  

   
 

Sign of function

Zeroes

 

Extremumpomts

Function table

 

   
 D PRG
{HOME }
 

Graphing {f1(x) f2...}
between x =x1 x=x2

: Indp var: x

x1 x2: 02
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The Editor

You will now enter the editor for input data (input screen).

Here the input data can be modified and deleted and you can

move around by using the arrow keys.

The cursoris placed right behind :Indp var: and here you en-

ter the independentvariable, fx x. The arrow down key is used

to get right behind :x1 x2: . Here you enter the interval of x,

two x-values separated by a blank

If you want to use another symbol for the independent varia-

ble you can use the arrow keys to get right behind the x, de-

lete it and enter t.

Now you push the ENTER key to go further. If the syntax is

wrong, fx forgetting the > ’ in an algebraic, then you have to

correct it before going further.

 

RAD PRG
{HOME}
 

Input cont

1 £2.. ) CUY(x-1) 245
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y

The function to be drawn is now entered. Remember the

for algebraics.

The input screen will tell you the format of the input data and

if several expressions or values are going to be placed in the

same line, they must be separated by blanks.

Echoing from the stack

If an expression or a value laying on the stack is going to be

used, then the EDIT/-STK/ECHO/ENTER keys will load

data in to the input screen. Be sure to place the cursor cor-

rectly.

Calculation finished

When a calculation is finished CALCULUS will either show

up intermediate results by using the VIEW routine or return

directly to the menu. In the last case you will need to use the

—STK key to see the result laying on the stack.

Moving up and down in the menu

You can move downwards in the menu system by scrolling

the dark bar and pressing ENTER. If you need to move up-

wards the UPDIR key will help. At any time you can HALT

CALCULUSand use the calculator independent of CAL-

CULUS by pressing the -STK key. CONT will get you back

to the CALCULUS menu system.
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To move faster to the end or to the beginning of the menu

you may use the shift right (blue) key together with the

down/up arrow key.

Leaving CALCULUS

Pushing the EXIT key will leave CALCULUS.

Intermediate results

In the input screen you may choose PartAns Y/N. Choosing

N the result will be laying on the stack and you have to use

—STK to see the answer. Choosing Y, different pages of in-

termediate results will show up.

The degree of details in the partial answers is somewhat dif-

ferent, but some of the results covers "the whole answer". In

every case this will give the user a good help.

Different parts of the answer can be found on different pa-

ges and the page number can bee seen.

Since partial answers are text, the splitting of long lines is

not done taking algebraic considerations. This may simetimes

give odd results, like SIN(x) beeing split up like SI

N(x).
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This makes it necessary to write the answer down on a sheet

of paper to see the answer properly.

When PartAns Y(es) is chosen, all irrational numbers will

show up with two figures behind comma. If a more accurate

answeris necessary, you may use —-STK to look on the stack.

 

Rem.: PartAns N puts the answer only on

stack andyou must use -STK to look at the

answer.   
 

Mixed calculations

Sometimes it’s necessary to use more than one of the CAL-

CULUSroutinesto solve a problem. A typical example is the

calculation of a definite integral. First the indefinite integral

has to be calculated.

Example: Calculate [(x + 1)/(°%* +x-1)dx

2

First the indefinite integral is calculated by partial fractions.
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The answeris transfered into the routine for definite inte-

grals by using EDIT/ 1STK/ECHO/ENTER. Remember to

place the cursor correctly.

 

Time of computation

HP 48 SX/GX has a 4 bit special processor and the speed of

a 386 PC can be 200-300 times the speed of the calculator.

The time elapsed when handling complex symbolic expres-

sions may be long.

Strongly dependent of free RAM capacity

Ifyou want to optimize on computation time you should have

alot of free RAM capacity. Using a RAM card as MERGED

MEMORY full of data may slow down the calculation consi-

derably.

Pedagogical point

The solution strategies chosen i different cases, are the same

as the strategies being used in the mathematical curriculum

at university level. This is not necesserily the fastest and

smartest algorithms and this may slow CALCULUS down.

Checking expressions and rational numbers

CALCULUSuses general input, that is the expressions are

written in standard mathematical form. CALCULUS then
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has to check what kind of object you have put in (polynomial,

rational expression etc.) and this is time consuming.

A specialized input, for instance to write a polynomial as a

coefficient vector, could be used.. This will reduce the comp-

utation time, but the user interface is more complex.

When an expression has been simplified, CALCULUShas to

check for rational numbers in the expression. This can be a

rather time consuming process, if the object to be checked is

a complex symbolic expression.

For instance to transform (O.33x2-2ax)/(x +5)to

(1/3x2-2ax)/(x +5) will take some time. Not the transforma-

tion itself but the checking of the validity of the transforma-

tion.

 

Routines for calculation and formula

Many of the menu choices has an option for calculation and

one for viewing a formula/info. Choosing "Go" will start the

calculation and choosing "Formula" will let you see the for-

mula the calculation is based on. When the choice is "Info"

some furher information about the calculation is coming up.
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A full solution to a mathematical problem will include the

formula the calculation is based on.

Some of the kind of information mentioned above may so-

metimes be seen in the input screen.

 

Inexact arithmetic

CALCULUSis using inexact arithmetic generaly. This me-

ans that rational and irrational numbers are approximated by

decimal numbers to the internal precision of the calculator.

Within certain limitations rational numbers and multiples of

= will be transformed to an exact number.

These limitations lie in the intrinsic routine —Q. It opera-

tes with a precision n FIX (se user manual for HP48SX/GX).

 

Rem.: An irrational number will never be ap-

proximated by a rational number, but a ratio-

nal number may be approximated by a

decimal number.    
1. In general 17
 



 

Flag status and CST menu

The flag status and the CST menu you have before going into

CALCULUS will be recovered when you leave CALCULUS

(beep off inside).

 

Warning!

User objects with names like A,B,C.... will be deleted by

CALCULUSto avoid a conflict with global CALCULUS ob-

jects.
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Integration

The integration package will let you choose between diffe-

rent integration technics. An integralis being exactly calcu-

lated only for those integrands that are implemented in the

HP 48 integration routine.

The intention is of a pedagogical kind, it is important to be

aware of the method of integration in each case.

 

Direct integration

The routine for direct integration uses the intrinsic HP 48

routine, but is adapted for indefinite integrals and the con-

stant C is omitted.
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Interface:

 

RAD PRG
{HOME }
 

Direct integration

Indp var: t

Integrand: 'ATAN(t/2)’

  

 

 

The example calculates fAtan(t/Z)dt

The following functions and linear combinations of them are

implemented for exact integration:

e ax(bxx+¢c)™, no restrictions on a,b,c and m

e a*Sin(bxx+c¢), axAsin(b*x+¢)

e a*xCos(b*x +c¢), ax*Acos(b*x+c¢)

e axTan(b*x +c¢), a*Atan(b*x+ ¢)

e axExp(b*x +c¢), a*Ln(b*x+c¢)

e Derivated of these functions and some others

 

Rem.: Ifno exact answer is found the follo-

wing will appear: f(cx,f(x),x) (Indef. int.)   
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Integration table

The integrals are already calculated and by inserting parame-

ters the answeris given. The parameters are called a,b,c and

four types of functions may be integrated: algebraic, expo-

nential, logarithmic and trigonometric.

Algebraic.

Interface:

 

PRG

fl/@*x"2+b*x+c)dx

RAD
{HOME}
 

tabcec: 121

  

 

 

In this example the function f(x) = (x2 +2x + 1)1/2 is integra-

ted. We notice that the integrand equals the absolute value

of (x+ 1). For other types of integrands the input is quite ana-

logous, under logarithmic you may integrate 1n(2x2 + 3x-2) by

choosing a=2, b =3 and c=-2 in the first menu line.
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Definite integral

The calculation of a definite integral requires that the inde-

finite integral has been calculated already.

Interface:

 

RAD PRG
{HOME }
 

Limitsaand b

ab 12

Indp var: x

Indef. int.: ’1/2+x "2’

  

 

 

1

The example calculates [ 1/2+x?] = 1/2+2%-1/2+1%=3/2
0

 

Integration by partial fractions

The routine for partial fractions integrates all rational inte-

grands where the denominator is of 4th degree or lower. The

way the splitting up is done initialy will show up when Part-

Ans Y is selected.

2. Integration 22



Interface:

 

RAD PRG
{HOME}
 

| P(xy/Q(x)dx
Indp var: x

: PartAns Y/N: Y

: Numerator P; ’x772

 

 

 

RAD PRG
{HOME}
 

Input cont

: Denominator Q: ’x72-1

 

  
 

The example calculates x2/(x2-1)dx

PartAns Y is selected and three pages of information will tell

you the steps through the calculation. Thefirst page tells how

the splitting up is done, the second page the values of the co-

efficients and the third page the final answer.

2. Integration



The routine for partial fractions integrates all rational func-

tions with a denominator of 2nd, 3rd or 4th degree.

 
P(x)

a0+ a1x + axx® + azx- + aax”

One of the a2, a3 or a4 must be different from 0. If the den-

ominator is of 1st degree , direct integration may be used,

eventualy in connection with polynomial division.

The integrand can not include parameters (only numeric co-

efficients)

If the roots of the denominator Q(x) is irrational or the inte-

grand includesirrational coefficients, the answer will be gi-

ven with two decimals. The answeris also laying on the stack

and here the number of decimals can be altered by n FIX.

 

Rem.: The calculation of the coefficients can

give numeric instability (rounding errors). A

test will check if the answer is not good

enough   
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If the whole answer cannot be seen in text modus (PartAns

Y) you may use —STK to see the result on the stack.

 

Substitution

This integration routine solves integrals of the type

fk*f(g(X))*g '(x)dx

f((g(x)) is a function with kernel g(x) and k is a constant. The

substitution u = g(x) transforms the integral to the form

fk*f(u)du

Other types of substutions are not included.

Interface:

 

RAD PRG
{HOME}
 

[kef(g(x))*g (x)dx
Indp var: x

: PartAns Y/N: Y

Integrand: ’3*x*SIN(x " 2)’
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RAD PRG
{HOME}
 

Input cont

: Subst. u=g(x): x"~2’

 

   
The example solves 3x*Sin(x2)dx

In the formula k = 3/2 (3/2+2x =3x), g *(x) =2x, g(x) =x°, and
f(g(x)) = Sin(x>).

 

Rem.: Use ofu asindependent variableispro-

 hibited and will automaticly be converted to x 
 

The selection PartAns Y will give the new differential in

terms of the initial independent variable, the integrand in

terms of the new variable and finaly the answerin the initial

independent variable.
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Integration by parts

CALCULUScan use integration by parts repeatedly several

times and, if the integral cannot be calculated directly, give

an answer in terms of a new integral. The last situation will

require the use of the integration package if possible or the

integrand is simplified in connection with numeric integra-

 

 

tion.

Interface:

RAD PRG
{HOME}

fu(x)*v(x)dx

Indp var: x

- PartAns Y/N: Y

u: x°2

 

   
 

PRG

 

Input cont

:v:  SIN(®x)   
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The example calculates

fxzsin(x)dx

Integration by parts is being used two times here and this may

be seen when PartAns Y is selected.

 

Rem. : Repeted integration is limited to 3 ti-

mes   
 

The routine for integration by parts integrates functions of

the type

u*v

The integrand is composed of two factors u and v with separ-

te input.

If an exact answeris to be found, all intergrations have to be

solved directly (see direct integration). If not, two types ofer-

ror messages will appear.

If v(x)*dx is exact integrated to V(x), but the integral of

V(x)*du/dx*dx cannot be found, a partial integration in the

true meaning of the word is done. The answeris given, but
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itincludes a new integral eventualy to be solved by other met-

hods. If v(x)*dx cannot be integrated by direct integration,

only an error message is given (no answer).

Be aware that problems with integration by parts may be sol-

ved by changing the factors u and v.

Integrals of the type repeated integrands (the initial inte-

grand is coming up), are not implemented in CALCULUS.

 

Rem. Ifan integrand only consists ofonefac-

tor (fx. u), the otherfactor v may be set to 1.

Ln(x) =Ln(x)*1.   
 

 

Moment of inertia (Applications)

This routine calculates the moment of inertia of a plane re-

gion about the axis 'Y = (’ (x-axis) or an axis parallelto the y-

axis (X=A’).
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Interface:

 

 

RAD PRG
{HOME }

Region bounded by

f1, 2, x=x1,x=x2

. f1: X3

: f2: X

  

 

 

 

 

RAD PRG
{HOME}

Input cont

x1 x2: 01

Axes: 'X=-2

Indp var: x

  

 

 

 

 

RAD PRG
{HOME}

Input cont

: PartAns Y/N: Y

 

   
2. Integration



 
 

 

The example calculates the moment ofinertia of the hatched

region in the figure about the axis X =-2 (parallel to the y-

axis). The region is bounded by two curves and two x-values.

If the intersection between the curves is not known, it must

be calculated in advance (ALGEBRA Solve equation).

By selecting PartAns Y, you will see the integral that deter-

mines the moment of inertia, the calculated indefinite inte-

gral and the expression for the definite integral, and the final

answer.

 

Rem.: The antiderivative with limits:

(LR=[F). = F2)-FGel)
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If CALCULUScannot integrate the expression directly, a

numeric answer is given (the integrand may not include sym-

bolic paramters) and you are told eventualy to proceed with

another integration method. The integral to be calculated is

given.

The formulas for the moment of inertia are given under the

menu option Formula and a complete answer to a problem

includes the formula.

 

Center of mass (Applications)

The calculation of center of mass requires that the static mo-

ment and the area of the plane region or the arc length of the

curve, is calculated in advance.

Interface, plane region:

 

RAD PRG
{HOME }
 

Static moments

Mx and My, area A

Xt=My/A Yt=Mx/A
: Mx My A:’1/19” °3/26° ’4/31
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In the example the center of mass for a plane region is calcu-

lated. The static moment about the x-axis is 1/19, about the

y-axis 3/26 and the area of the region is 4/31. The answeris

given in the form {’Xt= ’"Yt= '}

The input for the center of mass of a curve is similar, the sta-

tic moments and the arc length must be calculated first.

 

Static moment (Applications)

The static moment (the moment) may be calculated about an

axis parallel to either the x-axis or the y-axis. The axis are gi-

venas 'X=A’or’Y=B".

The interface for the moment of a plane region is identical to

the interface for moment of inertia. The inputis the same and

the answer is coming up in the same manner.

Another option is the moment of a curve. The formula is gi-

ven under the menu option Formula, and the formula inclu-

des the arc differential ds given under the menu selection Arc

length.
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Interface:

In the example the moment of the arc of e* between x=0

 

RAD PRG
{HOME}
 

 

St. mom. f(x) x1 to x2

f:  "EXP(x)

x1 x2: 0 2

 

 

 

 

 

 

RAD PRG
{HOME}

Input cont

Axes: 'X=(

Indp var: x

- PartAns Y/N: Y

 

 

 

and x =2 is being calculated.

PartAns Y is selected and as you can see direct integration

didn’t work. The numeric value and the error bound is given.

In this case no antiderivative can be found and the numeric

value is the only possible answer.

2. Integration



 

Area (Applications)

The routine for Area calculates the area of a plane region bo-

unded by given curves and x-values.

 

 

Interface:

RAD PRG
{HOME}

Area bounded by f1(x),

f2(x), x=x1,x=x2

. f1: X3

. f2: X

 

  
 

 

 

RAD PRG
{HOME}

Input cont

x1 x2: 01

Indp var: x

: PartAns Y/N: N

 

 

 
 

The example calculates the area hatched on the figure under

Moment of inertia. The answer is put directly on the stack.
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Solid of revolution (Applications)

Selecting this menu option you may calculate the volume or

the surface of a solid of revolution.

The interface for the volume of the solid of revolution is the

same as the interface for moment of inertia. The example

then calculates the volume when the areais rotated about the

axis x =-2.

A surface of revolution is generated by an arc that is rotated

about an axis. The interface is similar to the interface of sta-

tic moment of curves. The example calculates the surface

when the arc of e* from x =0 to x =2 is rotated about the y-

axis.

 

Arc length (Applications)

The interface is similar to the interface of static moment of a

curve exept for the axis. A similar input gives the arc length

of the arc of " from x =0 to x=2. The integrand has no pri-

mitive and a numeric answeris given.
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Improper integral

An improper integral is a definite integral where the limits

are infinite or the integrand is discontinous in the interval of

integration.

Such integrals have to be calculated as a limit. Only integrals

where the limits are infinte are implemented in CALCU-

LUS. Both limits may be infinite (+ ).

The interface is similar to definite integrals, the indefinite in-

tegral has to calculated in advance.

 

 

Interface:

RAD PRG
{HOME}

Limitsaand b

ab 1 o

Indp var: x

Indef. int.: ’1/x’
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RAD PRG
{HOME }
 

Input cont

: PartAns YN: Y

  

 

 

The example calculates (-1/x2)dx = [1/;(]1 =

1

lIimx— o 1/x-1=-1.

 

Rem.: Ifthe limit does not exist an error mes-

sage is given and the integral is said to diverge   
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Algebra

Under ALGEBRA you may simplify expressions, factorize,

split up into partial fractions, solve equations and do polyno-

mial division.

The use of parameters (other symbols than the independent

variable) is limited, neither the routines for solving equations

of 3rd or 4th degree nor partial fractions will allow this.

 

Roots of a polynomial

This routine finds the roots of a polynomial of 2nd, 3rd or 4th

degree. For a polynomial of 2nd degree parameters may be

included (symbolic coefficients)

3. Algebra 39



Interface:

 

RAD PRG
{HOME }
 

P(x)=0

Indp var: x

P: ’2+x " 3-3#xx+ 2’

  

 

 

The example solves P3(x) = 20-3x +2=0

 

Partial fractions

Here a rational function is split up into partial fractions with

denominator of 1st degree or 2nd degree for complex roots.

For multiple roots the denominator may be og a higher de-

gree.

If the numeratoris of same or higher degree than the denom-

inator, polynomial division is executed first.

By selecting PartAns Y the initial splitting up i shown,the va-

lues of the coefficients and the final answer (method of un-

dermined coefficients).
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Interface:

 

 

        

 

    

RAD PRG
{HOME }

P(x)/Q(x) = A/(x-x1) +....

Indp var: x

: PartAns Y/N: Y

: Numerator P: ’2+x ™ 3-3*x + 2’

BN & ERRA
 

 

RAD PRG
{HOME }
 

Input cont

: Denominator Q: x 7 3-x’

  

 

 

The example will split up (2x3-3x + 2)/(x3-x).

 

Factoring

The routine for factoring will factorize polynomials of 2nd,

3rd or 4th degree. Factors with complex roots will be given

as completed squares, fx (x2 +2+x+2)=(x+ 1)2 + 1.
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Interface:

 

RAD PRG
{HOME }
 

P(x) = (x-x1)*(x-x2)....

: Indp var: X

P: x73-3x"2+x-3

  

 

 

The example is factoring P(x) = X°-3%° + x-3.

 

Polynomial division

For rational functions where the numerator is of same or hig-

her degree than the numerator, polynomial division will be

executed. If this is not the case or the function is not a ratio-

nal function an error message will be given.
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Interface:

 

RAD PRG
{HOME}

P(x)/Q(x) =f + R(x)/Q(x)....
 

P: 2:x~3-3sx+2’
Q  (x~2-1y

: Indp var: X

 

   
In the example above 2x>-3x +2 : x*-1 is executed.

 

Simplify

Interface:

 

RAD PRG
{HOME }
 

Simplifying expr.

: Indp var: X

Expr..’(x ™ 3-2)/(x-1/2) + 2/x’

 

   
The example simplifies (x3-2)/(x-1/2) + 2/x.
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This routine simplifies expressions by drawing together

and/or factoring. The same types of expressions as under

FUNCTIONS are handled, but the expression don’t need to

be rational, fx Sin(x)/x-2 = (Sin(x)-2x)/x.

 

Solve equation

The equation is written as RS = LS, where RS is the right side

of the equation and LS the left side. The equation is transfor-

med into RS-LS =0 and the routine for zeros under FUNC-

TIONS is used.

Interface:

 

RAD PRG
{HOME}
 

Equation LS=RS

Unknown: x

LS=RS: x/(x-1)=a+2’

 

   
In the example x/(x-1) =a + 2, constanta, is solved.
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Functions

Under FUNCTIONS you may examine functions in one va-

riable: sign of function, zeros, max/min- points, points of in-

flection, graphing, limitsetc.

The types of functions that can be handled are:

e Rational functions, f(x) = P(x)/Q(x),

fx (x2-3)/(x* +2+x-6), degree of Q(x) and P(x)
must be less than 3.

e Binomials of rational functions f1(x) + f2(x),

fx (C-24x+7)/x + (x-1)/(x* +3+x-1)

e All types of functions where the unknown has

a single occurrence, fx Sin(2+x)-0.5,

Ln(x)2-3, etc. Products and ratios of such

functions are included: (Sin(2*x)-0.5)/(Ln(x)2-3)
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Sign of function

Here the sign of a function in different intervals will be exa-

mined. The zeros of the denominator and the numerator in

rational functions and the zeros of the function in other ca-

ses, will be listed and labeled actual zeros.

Interface:

 

 

mgME \ PRG

Finding the sign

of f(x)

Indp var: x

f: *SIN(2%x)-1/2%¥2’

  

 

 

The example finds the sign of the function:

f(x) = Sin(2*x)-1/2)2

The zeros are put in a matrix on the stack. You may have to

adjust for the interval of definition.
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Zeros

This routine finds the zeros for f(x), i.e. solves the equation

f(x)=0.

Interface:

 

RAD PRG
{HOME}
 

Solving f(x) =0

Indp var: x

f: ’(axx"2-1)/(x-1)

  

 

 

The example solves the equation (ax2-1)/(x-1) =0.

 

Graphing

Draws the graph of a function. Graphing uses the intrinsic HP

48 graph routine, and to get a good picture you will someti-

mes have to use the ZOOM option for scaling. There is full

access to the FCN menu for numeric calculations.
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Interface:

 

RAD PRG
{HOME}
 

Graphing {f1(x) f2....}
between x=x1x=x2

Indp var: x

x1 x2: 02

 

  
 

 

RAD PRG
{HOME}
 

Input cont

{f1 £2....}:°1/(x-1) ~ 2+ 5+

  

 

 

The example draws the graph of f(x) = 1/(x-1)2+5x. When

the graph of only one function is going to be drawn you will

not need the {}.

The graph has an asymptote for x=1 and the first picture is

oflittle information. We will use the ZOOM option to scale

the axis, 10 in the y-direction and 4 in the x-direction.
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Extremum points

This routine decides where the function is decreasing and

where it is increasing and finds max/min points where the sign

of the derivative is changing.

Interface:

 

 

mgME} PRG

Increasing/decreasing

function f(x)

Indp var: x

£ ’1/(x-1) "2+ 5%

 

 

  
The example examines the function 1/(x-1)2 + 5x for max/min

points and decreasing/increasing function. The calculation in

this case is somewhat complicated and the time consumed is

relative long. The derivative of f(x) is indicated. The extre-

mum points are put on the stack in a matrix.
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Function table

The routine will give you a possibility to calculate a function

at given points (x-values). The answer on the stack is a two

column matrix and can be viewed in the matrix writer by pus-

hing the arrow key (down).

Interface:

 

RAD PRG
{HOME }
 

: Indp var: X

, f: 1/(x-1) 2+5+

{x1x2...}: {152 25 3}

 

 

  
The example calculates the function 1/(x-1)2 +5x at the

points x= 1.5, x=2, x=2.5 and x=3 and the answer is a ma-

trix with x-values in the left column and y-values in the right

column.
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Limits

Limits are calculated with the use of L’Hospitals rule where

the numerator and the denominator of a ratio is differentia-

ted separately. This CALCULUS routine includes some

complicated routines for simplifying expressions and the time

consumed might be long.

The calculation is terminated after two rounds of differentia-

tion and the message "Can’t find the limit" will show up. If the

limit does not exist, the message will be "Limit does not exist"

The following types of indeterminate forms are included:

e 0/0

® »/x

® © -

o 0

e (*oo

o 1”

0
@® o
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Interface:

 

RAD PRG
{HOME}
 

lim x—»a f(x)

Indpvar a: x 0

: PartAns Y/N: Y
f"A’

X X

 

   
The example calculates lim x-0 x*

The selection Y in PartAns Y/N shows that you first have to

take LN to the expression and then construct a ratio for L’Ho-

pitals rule. The answerfor the ratio is 0 and the final answer
.. 0
ise =1.

 

Rem.: Inthisversion ofCALCULUSyou can-

notfind the limit when the expression includes

  parameters (other symbols than the indp var)
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Differentiation

The routine for differentiation finds dy/dx for y = f(x) and for

F(x,y) =0 (implicit differentiation). You can choose if you

want to find the expression for the derivative or the value at

some point.

Forratios the fundamental differentiation rule is used expli-

cit. The use of the intrinsic HP routine will give "an ugly"

expression, not suitable for further calculations. The respon-

ding time is then longer.

Interface, explicit differentiation:

 

RAD PRG
{HOME}
 

y =f(x)
calculates f’(x0)

Indp var xo0: x x

: PartAns Y/N: Y   
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RAD PRG
{HOME }
 

Input cont

: £ 2+x/(x-1) "2

  

 

 

The example differentiates f(x) = 2x/(x-1)2 and intermediate

results are shown when PartAns Y is selected.

When the expression for f(x) is going to be found, x0 is set to

x, otherwise the number or symbol for x0.

Interface, implicit differentiation:

 

RAD PRG
{HOME}
 

F(xy)=0, dy/dx=

(—aF/ax)/aF/ay
Pointx0 y0: x y

F(xy): ’x-3xy ™24 3#x*y’    
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RAD PRG
{HOME }
 

Input cont

read in the variables

X Y: Xy

  

 

 

The example calculates dy/dx from F(x,y) = x-3y2 +3xy =0

When we want to calculate the expression for dy/dx, the in-

put for x0 y0 is x y, otherwise the numbers or symbols for x0

and yO0.

 

Point of inflection

Under this menu option the curvature is examined, for con-

cave and convex curvature. When the curvature is changing

there is a point of inflection.
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Interface:

 

 

RAD PRG
{HOME}

Points of inflection

f(x)

Indp var: x

f: 'x/(x-2) "2

 

   
The example calculates the points ofinflection for

f(x) =x/(x-2)2 and indicates where the curvature is concave

and convex. The double derivative and its zeros are also in-

dicated. Points of inflection are put in a matrix on the stack.

 

Curvature

The curvature indicates the "degree of sudden turns" in the

graph of f(x). A small value indicates a slack curve and the

sign determines whether the curve is convex or concave.

The routine for curvature requires that f’(x0) and f ’(x0) are

calculated in advance: First find the symbolic derivative,

DUPthe expression and find f ’(x) at the given point using
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WH. Then load f ’(x) (ECHO from stack) and find f ’(x) at

the given point using the differentiation routine once more.

 

 

Interface:

RAD PRG
{HOME}

Curvature of f(x)

at x=x0

f’(x0): 2

f7(x0): 3

 

   
The example calculates the curvature at a point on the curve

where £’ =2 and f " =3. The formula for curvature can be fo-

und under the menu option Formula.

As a curiosity exact values are implemented (exact arithme-

tic is generaly not implemented).

 

Rem.: The radius ofcurvature is the inverse of

curvature   
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Tangent line

The equation for the tangent line at a given pointis calcula-

ted. The formula can be seen in the input screen.

Interface:

 

RAD PRG
{HOME }
 

k=£f’(x0)

Y =k=*(x-x0) + f(x0)

Indp x0: x 3

f: x ™ 3-x’

 

   
The example calculates the tangent line to the function

x°-x at the point x = 3.

4. Functions 58



 

Linear equations

Two options are avaiable: solving a general system of equa-

tions and solving an ordered system with numeric coefficients

(numeric coefficient matrix). In an ordered system the coef-

ficient matrix is known:

2x+3y-z=5
x-3y+z=2
3x-3y-2z=1

The coefficient matrix (A) is here [[23 -1][1 -3 1][3 -3 -2]] and

the right side (B) is [S 2 1]. The system will be singularif the-

re is no solution or an infinte number of solutions and this

depends on the coefficient matrix A.

A general, nonordered system lookslike this:

2x+3y-z = 5-2x+y
x-3y+z = 2+x

3x-3y-2z = 1-y
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Ordered systems will be solved using the intrinsic HP 48 ro-

utine if the matrix A is pure numeric. For nonordered sys-

tems and systems with parameters, the routine for a general

system will be used.

 

General system

Here the equations may be given in arbitrary form including

symbolic parameters. A general elimination technic is used

and an error message is given for singular systems.

Singular systems include the case where no solution is possi-

ble (selfcontradictory system) or there are an infinte number

of solutions (indefinite system).

Interface:

 

RAD
{HOME}

PRG

 

 : {L1L2.}: {’xy=3"x+y=4"}

 

Equations {L1 L2.....}

Unknown {x y....}.

{xy..}: {xy}

RRRBE R
RN 5
BONNNS basok    
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The following system is solved:

x+y=4

This is in fact an ordered system but shows the input environ-

ment. Variants of the type x+y=a, x-2y=3y-x+5 etc. are

possible. Remember blanks between the equations in

{L1L2...}.

 

Ordered system

The coefficient matrix and the right side now has to be known

and only numeric elements are possible. This routine is much

faster than the general routine. If the system do not include

symbolic parameters an idea might be to order the system by

hand.

 

 

Interface:

RAD PRG
{HOME}

[[A]]*X =[B]
[B]: 3 4]
{X}: {x y}
[[All: [T -1][1 1]]
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The example solves the system given under general system.

If the system is singular an error message will be given.

As opposed to the use ofthe intrinsic matrix division routine

directly from the keyboard, CALCULUS will transform ra-

tional solutions to fractions and in addition label the solution.
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2D Curves

Curves are not necessarily the graph of a function. This ro-

utine handles this kind of curves and is given either as a pa-

rametric equation or in polar coordinates.

 

Parametric equation

Here two variables (say x and y) are given in terms ofa third

variable, a parameter (t). The direct connection between x

and y (parameter eliminated) is often not easy to find.

 

Area (Parametric equation)

The area bounded by the curve or the curve and the x-axis be-

tween two t-valuesis calculated.
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Interface:

 

PRG{HOME )
Area bounded by (X,Y),

between t1 and t2

» X(t): t7 3

: Y(t): "SIN(t)

 

  

 

 

 

 

e
Input cont

tl1 t2: 0 1

Indp var: t

: PartAns Y/N: Y

  

 

 

The example calculates the area between the curve X(t) = t3,

Y(t) =Sin(t) between t =0 and t =1 and the x-axis.
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t-x-y table (Parametric equation)

Mutual dependent values for x and y are calculated for given

values of the parameter (t). The table is placed on the stack

as a matrix with 3 columns (t-x-y).

Interface:

 

 

RAD PRG
{HOME}

X(t): 't

Y(t): COS(ty

: Indp var: t

{12} {1234)

 

  
 

The example calculates the table for X(t) = t2, Y(t) =Cos(t)

with parameter values t=1,2,34.

 

Geometry (Parametric equation)

Under this option you may calculate the curvature of a curve

and the tangentline at a given point.
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Curvature

Here X’(t0), Y’(t0), X”’(t0) and Y”’(t0) must be calculated in

advance under FUNCTIONS/Differentiation.

Interface:

 

RAD PRG
{HOME}
 

Curvature of

X(t) Y(t) att=t0
X’(t0): 2

X”(t0): 3

  

 

 

 

 

RAD PRG
{HOME}

Input cont

Y’(t0): 1

Y”(t0): 3

 

 

 
 

The example calculates the curvature of X(t), Y(t) at the

point t=t0 and where X’(t0)=2, X”(t0)=3, Y’(t0)=1,

Y”(t0) =3.
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Tangent line

Here the tangent line relative to a cartesian coordinate sys-

tem is calulated at a given point.

Interface:

 

RAD PRG
{HOME }
 

Tangent line

X(t) Y(t) att=t0
X(t): t°2

Y(t): COS(t)y

 

 

  
 

RAD PRG
{HOME}
 

Input cont

t0: 1

Parameter: t

SRRA o

 

  
 

The example calculates the tangent line to the curve X(t) = t2,

Y(t) =Cos(t) at t=1.
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Extremum points (Parametric equation)

The information is given that extremum points have to be cal-

culated under FUNCTIONS/Extremum points. Be aware of

the possibility of singular points (break in the curve).

 

Graphing (Parametric equation)

Here the HP 48 intrinsic parametric option is used to draw a

parametric curve, ’(X(t),Y(t))’. Be aware of the use of* ’.

Interface:

 

RAD PRG
{HOME}
 

Graphing ’ (X,Y)’

betweent=t1l and t =t2

(X,Y): (t 7 3,SIN(t))’

Parameter: t
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RAD PRG
{HOME }
 

Input cont

tl1 t2: 13

 

 

  
The example draws the curve X(t) = t3, Y(t) = Sin(t) for t-va-

lues fromtl=1to t2=3.

 

Polar coordinates

In polar coordinates the curve is given as r = f(©). © is the ang-

le between the polar axis and the radius vector r. Polar coor-

dinates may easily be transformed into a parametric equation

where X =r*Cos®, Y =r*Sine. 0 is the parameter.

 

Area (Polar coordinates)

Radius vector "sweeps out" an area as © varies. The area may

be calculated between two @-values.
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Interface:

 

 

RAD PRG
{HOME }

Area bounded by r(0),

between 01 and 62

:1(0): 072

 

   
 

 

RAD PRG
{HOME}

Input cont

el e2: 0.5 0.7

Indp var:

: PartAns Y/N: Y

 

   
Calculating the area of r(0) = 0’ from ©=0.5 to 0.7.
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e r(e) table (Polar coordinates)

Mutual dependent values of r and © for specific @-values (in

radians) are calculated.

Interface:

 

RAD PRG
{HOME }
 

r(e): ’COS(e)

Indp var: ©

{el1e2.}: {1234}

  

 

 

The example calculates the table for r(e)=Cos(®) for

0=1,2,34.

 

Extremum points (Polar coordinates)

Extremum values for f may be found under FUNCTIONS/

extremum points.
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Graphing (Polar coordinates)

The intrinsic HP 48 polar graphing routine is used to draw

the graph of the curve.

Interface:

 

RAD PRG
{HOME }
 

Graphing r(®)

between ® =01 and © =02

r(@): ‘"2

Indpvar (0): 6

  

 

 

 

RAD PRG

 

Input cont
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The example draws the curve (@)= o” between ©=1 and

0 =2 (RAD).

 

Rem.: The symbolfor the free variable need

notto be 6.   
 

 

Cartesian coordinates (Polar coordinates)

Information about the transformation from polar to cartesi-

an coordinates (i.e. parametric equations).
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Series

Here intervals of convergence, the terms of the series and

sums and ratios of geometric series are calculated. Linear

combinations of geometric series are also included to some

extent.

 

Maclaurin series

The Maclaurin series of a function may be terminated after

a number of terms and will then give a good approximation

to the function around x=0.

The routine for Maclaurin series determines a specific num-

ber of terms. Under the menu option Convergence/Ratio test

the interval of convergence will be calculated.
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Interface:

 

RAD PRG
{HOME}
 

Macl.series for f(x)

n’th power in x

Indpvar n: x3

f:1/(1-x)’

  

 

 

In the example four termsin the series for f(x) = 1/(1-x) are

calculated (to the third powerin x).

 

Rem.: f (n)(O) must exist (n-th derivative inc-

luded£(0))  
 

 

Taylor series

This is corresponding to the Maclaurin series but will give a

good approximation about some point x=a (a=0 will give

the Maclaurin series).
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Interface:

 

RAD PRG
{HOME }
 

Taylorseries for f(x)

about x =a n’th power

Indpvar an: x3 3

f:’1/(1-x)’

  

 

 

The example calculates the Taylor series for f(x)=1/(x-1)

about x =3 to the third powerin x.

 

Rem.: f ™(a) mustexist (n-th derivative inc-

ludedf(a))   
 

 

Binomial series

This routine calculates the Maclaurin series for a binomial.

A binomial is an addition of two terms. In this case the for-

mulas for the Maclaurin series may be simplified and the ge-

neral term does not include the derivate of the function. The
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binomial must be given as f(x) = (k1 + (k2xx)")™=(a+b)™

where k1 and k2 is independent of x, n is a positive integer.

Interface:

 

RAD PRG
{HOME}
 

Binomial (a+b) "~ m

n is num. of terms

: n: 3

:(a+b)"m: ’(2-x"2/2) ™ (1/2)

  

 

 

The example calculates the Maclaurin series for the binomial

f(x) = (2-x*/2)? (a=2, b=-x*2 and m = 1/2).

The reason for not using the general Maclaurin routine lies

in the fact that for binomials there is a simple formula for the

terms of the series not including the derivative of the bino-

mial.

 

Rem.: Remember to write square roots etc as

  apower with fractional exponent m.
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Geometric series

The sum and the ratio of the series are calculated. If the se-

ries is infinte the ratio has to be less than 1 in absolute value.

The series might be a sum of two series. If the series is not

geometric, an error message is given (" Not geometric") and

if the general term is too complex (fx the sum of three sepa-

rate geometric series) the error message "Can’t Find" will ap-

pear.

Sum n terms

The sum of a finite geometric seriesis calculated. The gene-

ral term ofthe series is given and by selecting PartAns Y both

the ratio and the sum will show up in the answer.

Interface:

 

PRGRAD
{HOME}

Series An, k=An+ 1/An

Sm = Aox*(k ™ m-1)/(k-1)

: Num.terms m: 3

An: ’3*(27n-3"n)’
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RAD PRG
{HOME}

Input cont

Sumindexn: n

: n start: 0

: PartAns Y/N: Y

  

 

 

The example calculates the sum ofthe series:

3

Y 342737
n=0

 

Rem.: nindicates the sumindex. Anothersym-

bolfi k could be used with 3+(2%-3%) as Ak,

the general term.   
 

Sum «

The sum of an infinite series is calculated. The ratio k must

be less than 1 in absolute value: k*< 1, otherwise the series

diverges.
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Interface:

 

RAD PRG
{HOME}
 

 

 

Series Z\n, k=An+ 1/An

So» =Ao0/(1-k),k"2<1

:An: (27n-3"n)/4"n’

  
 

 

mBME \ PRG

Input cont

Sumindexn: n

nstart: 0

: PartAns Y/N: Y

 

   
The example calculates the sum

Ifk’> 1, the error message "Divergent" will appear.

Z (2n_3n)/40

n=0
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Convergence

Ratio test

The ratio test is frequently used for examination of conver-

gence. A limit has to be calculated. See menu option Info.

Interface:

 

 

RAD PRG
{HOME}
Converg. YAn*X " (k*n)

An: ’'n/27n’

X~ (k*n): x7°n’

  

 

 

 

 

mgME \ PRG

Input cont

Sumindexn: n

Indp var: x

: PartAns Y/N: Y  
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The example examines convergence for the series

Z I]/zn*xn

n=0

 

Rem.: n is summation index, if k is used, Ak

  is given as k/2 k
 

Binomial series

Convergence of a binomial series may be evaluated genera-

ly using the ratio test and the result may be used to test for

convergence in specific cases. In the binomial (a+b)™, b/a

need to be less than one in absolute value.

Interface:

 

RAD PRG
{HOME}
 

Binomial (a+b) ™ m

Indp var: x

(a+b)"m’(2-x"2) " (1/2)
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The example evaluates convergence for the Maclaurin

series for f(x) = (2-x
2,1/2)

Geometric series

A geometric series converges when the ratio k is less than 1

in absolute value, kZ<1.

Interface:

 

RAD PRG

 

{HOME}

Convergence An

An: x"n2°n’

  

 

 

 

 

RAD PRG
{HOME }

Input cont

Indp var: x

: PartAns Y/N: Y
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The example evaluates convergence for the series
oo

Y x"2"
n=0

Leibnitz test

Leibnitz test may be used for alternating series, and is espe-

cialy useful at the endpoints of the convergence intervalfor

power series. The ratio test will not give any answer for the

 

 

endponts.

Interface:

RAD PRG
{HOME }

Conv. Y(-1)"n*An
lim n—» oAn= O

Sumindexn: n

An: 2/’

  

 

 

7. Series 84



The example evaluates the convergence for

Y (-1)™2/n
n=1

 

Integral test

Here we will look at Ap as a continous function in n:

f An+dn.

1

An is the genral term of the series. If this integral converges

than the series will converge and similary for divergence.

Interface:

 

RAD PRG
{HOME}
 

Convergence )An

: n: n

: Indef.int. fAn: 2/’

 

  
 

The example evaluates convergence for

D (-2/n%)
n=1

7. Series 85



 

Complex numbers
 

The routines for complex numbersare the intrinsic HP 48 ro-

utines, but they are put into a menu system and some impor-

tant formulas appear in the input screen.

 

Rem.: Onlynumeric complex numbers are im-

plemented  
 

 

The form a + i*b (Rectangular coordinates)
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Sum

Finding the sum of two complex numbers means to find the

sum of the real and the imaginary parts separately.

Interface:

 

RAD PRG
{HOME }
 

z=(a,b)=a+i*b

Sum z1 +z2

: z1 (a,b): (2,3)

: z2 (a,b): (3,1)

    
 

The example calculates (2+3i)+ (3 +i)=5+4i

Product

The product of two compelx numbers is found by multiplying

(al +i*b1)*(a2 +i*b2) as two ordinary binomials. This gives

(al*a2-b1+b2) +i*(b1*a2 + al=b2). The interface is similar to

the interface above.

Fraction

The ratio between two complex numbers is found by first ma-

king the denominator ofthe fraction real. The numerator will

then be a product of two complex numbers.
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Interface:

 

 

RAD PRG
{HOME}

z=(a,b)=a+i*b z1/22=

(al,b1l)*(a2,b2)/

(a2™2+b272)

. (al,bl) (a2b2) :  (3,1) (2,4)   

 

 

The example calculates (3 +1)/(2 +4i)

Absolute value

The absolute value of a complex number corresponds to the

length of radius vector.

 

 

Interface:

RAD PRG
{HOME }

z=(a,b)=a+i*b

ABS(z) =

@”~2+b"2)"(1/2)

: z (a,b) : 3,1)
       

The example calculates the absolute value of 3 +1.
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Euler form

This routine writes a complex number using the exponential

function. This gives a great advantage when finding products,

ratios and powers of complex numbers.

Interface:

 

RAD PRG
{HOME}
 

z=(a,b)=a+i*b

z=r+EXP(i0) =

r+*(COS(0) +i*SIN(0))

:z (ab): (3,1)

        
 

The example writes 3 +i in the form r+e'®.

Polar form

A complex number in rectangular form is written in polar

form. Polar form is much like the Euler form in that the ar-

gument(©) and the absolute value (r) is used explicitly in the

expression.

Polar form is widely used in the electronic sciences: the ab-

solute value indicates the value of the answer and the argu-

ment the phase shift (time shift).
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Interface:

 

 

{RHABME } PRG

z=(a,b)=a+i*b

z=(1,/0)

r=ABS(z) ©=ATAN(b/a)

:z (ab): (3,1)

   

 

  

 

 

The example transforms 3 +1 into polar form.

Powers

This routine calculates 2122, the exponent may be complex. If

z2 is arational number (fraction) square roots etc will be cal-

 

 

culated.

Interface:

RAD PRG
{HOME }

z=(a,b)=a+i*b

z=21"22

: z1 (a,b): (2,3)

: 22 (a,b): 3
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The example calculates (3 + i)3.

 

Polar form

Polar form uses the angle © between the polar axis and radi-

us vector r to determine a complex number written (r,/0).

v4
~14 /30

r 0

Y+

-1 |

 
Sum

The calculation of the sum by hand is rather complicated but

HP 48 makes it an easy task.

Interface:

 

RAD PRG
{HOME }

z=(r,/0®) Sum zl+2z2
 

z1 (1,409): (2, 3)

z2 (1, £D): (3, 1)
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The example calculates (2, £3) + (3, £1).

Product

The productis very easy to find using polar form: the absolu-

te values are multiplied and the arguments are added.

Interface:

 

RAD PRG
{HOME}

z=(r,£0) Prod zl1+z2=

(r1*r2 £(6e1+02))

z1 (r,£0): (2,L3)

72 (r,0): (3, L1)

 

  

 

 

The example calculates (2, £3)*(3, £1).

Fraction

Finding a fraction between two complex numbers in polar

form is simply done by dividing the absolute values and sub-

tracting the arguments.
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Interface:

 

RAD PRG
{HOME}

z=(r,,0) Frac z1/z22=

rl/r2 £ (01-02))

z1 (r,/9): (2,L3)

z2 (1,49): (3, £1)

 

  

 

 

The example calculates (2, £3)/(3, £1).

Absolute value

The absolute vaule of a complex number in polar form is the

length of the radius vector r, ABS(z) =r.

Euler form

Euler form writes a complex numer in polar form by the use

of the exponential function, z= re'®. z has to be a complex

number, otherwise an error message will be given.

a+ib form

A complex number in polar form is written i rectangular

form.
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Powers

Finding powers of complex numbers in polar form is simply

done by raising the absolute value and multiplying the argu-

ment, both with the exponent of the power.

Interface:

 

RAD PRG
{HOME }
 

z=(1,{0) z=z1"n=

rl “n/z(n*e1))

z1(r,¢20):  (2,L3)

: n: 3

  

 

 

The example calculates (2, 43)3.

 

Rem.: Ifn is not an integer only the principal

  value is found.
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Expression

Here expressions are calculated and the components of the

expression may be given in mixed polar and rectangular form.

Be aware the use of ’( ).

Interface:

 

RAD PRG
{HOME}
 

Read in expr. Ex.

'(23)+(1,2)/(3, £2y

:Expr.: '(2,2) " 2/(3,4)

  

 

 

The example calculates (2,3)2/(3,4).
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Functions of several variables

Here partial derivates are calculated and some applications

of partial derivates are included: total differentials and inc-

rement estimation (error estimation).

When the differential of a variable is replaced by the incre-

ment we will get an expression for the total change in the

function if the incrementis small. The expression will inclu-

de the increments ofall the free variables of the function.

This may be used for calculating absolute and relative errors

for an object described by a function when the function de-

pends on several variables.
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Partial differentiation

Partial derivatives may be calculated at some point (x0,y0....)

or generaly at the point (x,y...). In the last case the expression

for the partial derivative is calculated.

Interface:

 

RAD PRG
{HOME}
 

f(x,y...) calculates

af/ovar at {xo,yo...}

{xoyo..}: {xy}
f'x 7 2 +x*y’

 

 

 
 

 

 

 

RAD PRG
{HOME}

Input cont

: PartAns Y/N: Y

Var: x

{xy..}: {xy}
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The example calculates of/ax for f(x,y) =X + xy. Here the for-

mula for the partial derivate is calculated because {x,y} is

used for {xo,yo...}. Substituting figures fx {1,2} will give the

value of the derivate at the pointx=1,y=2.

 

Total differential

The inputis similar to the input under partial derivate and

PartAns Y may be selected. Then both the formula for the

differential and the value at some point will show up in the

answer.

 

Increment estimation

Here the differentials are replaced by the increment in each

variable and this will give a good approximation for the total

change of an experssion in several variables when the incre-

ments are small.
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Interface:

 

RAD PRG
{HOME}
 

Af = of/ax*Ax + of/ay*Ay

+ ... point {xo yo...}

{xo,yo..}: {1 2}

f'x ™2 +xxy’

  

 

 

 

RAD PRG
{HOME}
 

Input cont

: PartAns Y/N: Y

{xy...}: {xy}

{Ax Ay..}: 0.1 0.2

 

 

  
The example calculates the increment Af in f(x,y) = x> + Xy,

when the increment inx is Ax=0.1 and in y, Ay = 0.2 at the po-

nit x=1 and y=2. If the general expression for the increm-

net is wanted you will have to write {Ax,Ay} for {Ax,ay...}.
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Absolute error

By taking the absolute value in the formula for incrementes-

timation, the absloute error will be estimated. This is the ma-

ximum error we can get when the errors in x,y,... are known

(all errors are in the same direction).

Interface:

 

RAD PRG
{HOME}
 

Af = ABS(af/ox*AX) + ...

point {xo yo...}

{xoyo...}: {1 2}

fx ™2+ xxy’

  

 

 

 

RAD PRG
{HOME }
 

Input cont

: PartAns Y/N: Y

{xy...}: {xy}
{Ax Ay...}: 0.1 0.2
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The example calculates the maximum absolute error for

f(xy) = x*+ xy for error in x, Ax=0.1 and error in y, Ay =0.2.

 

Relative error

Maximum relative error is given by the absolute error divi-

ded by the value at the given point.

Interface:

 

RAD PRG
{HOME}

Af/f = ABS(af/ox*Ax)/f + ...

point {xo yo...}

{xo,yo...}: {1 2}

fx2+xxy’

 

  

 

 

 

RAD PRG
{HOME}
 

Input cont

: PartAns Y/N: Y

{xy..}: {xy}
{Ax Ay...}: 0.1 0.2
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The example calculates Af/f for f(x,y) =x2+xy at the point

x =1,y =2, and the absolute value of all contributions are ta-

ken.

 

Rate of change

The rate of change is the same as the total derivative at a gi-

ven point.

Interface:

 

RAD PRG
{HOME}
 

df/dt = af/ox*(dx/dt) + ...

at {xo...} and {Dxo...}

{xo,yo...}: {1 2}

fx 7 2+ x+y’

  

 

 

 

RAD PRG
{HOME }
 

Input cont

:PartAns YN: Y

{xy..}: {xy}
: {Dxo Dyo...}:{2 4} 
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The example calculates the total derivative (rate of change)

at the point (1,2) for f(x,y) = x> + xy where dx/dt at the point

is 2 and dy/dt at the pointis 4.

If we want to express the total derivative by dx/dt, dy/dt ...,

{Dx,Dy...} is written for {Dxo, Dyo...}.
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Diffequations

Underdiffequations 1st order separable, 1st orderlinear and

2nd order linear equations with constant coefficients are

treated. For 2nd order equations two methods are implemen-

ted: method ofundetermined coefficients and Lagrange met-

hod.

 

Linear 1st order

A linear equation of 1st order is of the form

y’ +P(x)*y = Q(x). A closed form solution is always possible,

but the an exact solution will require that the integration goes

well.

General solution

Here the general solution with an integration constantis fo-

und. The constant may take any value.
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Interface:

 

RAD PRG
{HOME}
 

y +P(x)xy=Q(x)

Indp var: x

 

   
The solution of y’ + 2y =x is found. CALCULUS could not

find the integral eXex directly and the integration package

will have to be used.

Initial value problem

The general solution and the initial value y(x0) have to be

 

 

known.

Interface:

RAD PRG
{HOME}

General solution Y(X)

Y(X0)=YO0

X0: 0

Y: ’C+Exp(2+X)’
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RAD PRG
{HOME }
 

Input cont

Y0: 2

Indp var: x

 

 

  
The example adapts y(x) = C+e** to the condition y(0) =2.p ptsy

 

  
Rem.: The constant must have the symbol C
 

 

Separable

This routine is solving 1st order separable equations. The

equation need not to be linear but it must be possible to put

in the form

f(y)+dy = g(x)*dx

Initialy the equation might be given in different forms but

you need to bring in the form F(x,y,y’) =0. The equation

y’/(2y2) =x is then written y ’/(2y2)-x =0.

10. Diffequations 106



 

Rem.: y’ is wnitten Dy
  
 

Interface:

 

RAD PRG

 

{HOME}

F(xyy’)=0
y’ must be written Dy

Xy

XA 3
2    

y:

F:  ’Dy/(2+y " 2)x’  
 

 

RAD PRG

 

Input cont

- PartAns Y/N: Y  

 

 

The example solves y’/(2y2)-x =().
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Rem.: Initial valueproblems are solved using

the menu option Ist order linear/intial value   
 

 

Linear 2nd order

Two methods are available. Lagrange method is the most ge-

neral, variable coefficients are allowed here, but an "ugly" in-

tegral may appear.

The other method is the method of undetermined coeffici-

ents. Here the coefficients must be constant and there are

certain conditions layed on the right side of the equation: only

polynomials, exponentials and trigonometrics are allowed.

Undetermined coefficients

Interface:

 

RAD PRG
{HOME}
 

arxy” +b*y’+cxy=r

Indp var: x

abcl 23

I X   
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RAD PRG
{HOME }
 

Input cont

- PartAns Y/N: Y

 

 

 
 

The example solves y”’ +2y’+3y=x. By selecting PartAns

Y the choice for the particular solution and the homogenous

solution will show up as well as the complete answer.

Initial value

Initial value problems requires that the general solution has

been found in advance, and further that the value of the func-

tion and its derivative are known at the starting point.

Interface:

 

RAD PRG
{HOME}
 

Gen. solution Y(X)

Y(X0)=Y0,y(X0)=DY0

Indp var: X

Y: ’A*Sin(x) + B+Cos(x)’
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RAD PRG
{HOME}

Input cont

x0: 0

YO DYO: 10

: PartAns Y/N: Y   

 

 

The example adapts A and B in ASin(x) + BCos(x) to the ini-

tial condition y(0) =1 and y’(0) =0.

 

Rem.: The constants must have the symbolsA

and B   
 

Lagrange method

The coefficients of the equation may be variables and the

right side an arbitrary function.

However, a complicated integralis likely to appear, and the

method of undertermined coefficients is better where it can

be used.
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Interface:

 

RAD PRG
{HOME }
 

arxy”’ +b*y’+crxy=r

Indp var: x

abcl 2-3

r. X   

 

 

 

RAD PRG
{HOME}
 

Input cont

: PartAns Y/N: Y   

 

 

The example solves the equation y” +2y’-3y =x. CALCU-

LUS could not integrate x/4+¢™ or -x/4+¢>* directly, and the
integration package has to be used (integration by parts).
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Applications

Here different mathematical models are considered, and we

restrict ourselves to 1st order problems. The notion "Rate of

change"is central. Applications of 2nd order equations are

not considered because it requires much more of knowledge

from other fields than mathematics.

Rate of change

Here the rate of change or the "speed of change"is calcula-

ted (the derivative with respect to time dY/dt). The depend-

ence on Y of time t may be implicit.

If fx the volumeofa sphere is changing with time t, the radi-

us R of the sphere may not be known as a function of time

and the answer will then include dR/dt.

 

Rem.: Ifthere is only one variable and the de-

pence oftis explicit, the routinefor derivation

under FUNCTIONS has to be used.   
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Interface:

 

RAD PRG
{HOME}

V=£(R(1))
dV/dt = df/dR+dR/dt
R =R0, dR/dt =Dt0

'V =f(R):’V =4+/3+R "3’
ke

 

  
 

 

RAD PRG
{HOME}
 

Input cont

: PartAns Y/N: Y

Var (R): R

RODt0: R Dt

      RN
 

The example calculates dV/dt in terms of dR/dt where

V=4wR3/3. If Dt0 is a number fx 4, we will get the rate of

change where dR/dt=4. If RO is a number, fx 2 you put

RO=2.
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Mathematical models (Applications)

Here some common models where 1st order diffequations

are used are calculated.

Linear modell

Mathematical model with constant rate of change gives

dY/dt=k and Y = Y0+ kt, where Y0 is Y(0).

Interface:

 

RAD PRG
{HOME }

dY/dt=k, Y(0) = Y0
 

Indp var (t): t

YO0: 3

 

   
Solves the equationy’=-5, y(0) =3.
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Exponential model

Here the relative rate of change is constant, 1/Y*dY/dt=k.

This gives Y = YO+! where Y0 = Y(0).

Avariant of the exponential model is a model where the rate

of change is proportional to "free capacity", that is whatis left

before reaching a max or a minvalue. This gives dY/dt = k*(p-

Y), where p is the max or min value, solution

Y =p+(Y0-p)eXt

Interface:

 

RAD PRG
{HOME}

dY/dt =k(p-Y), Y(0) = YO
 

Indp var (t): t

Y0: 3

  

 

 

The example solves the equationy’ = 2y-4

 

  
Rem. p =0 gives apure exponential model
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Logistic model

In this model the relative rate of change is proportional to

free capacity 1/N+=dN/dt = k(B-N), B is the max value (full ca-

pacity) eventualy (depends on NO) min value. The solution

will be y =B/(1+ Ce™*BY, where C=B/N0-1, N0 =N(0).

Interface:

 

RAD PRG
{HOME }

1/N*dN/dt = k(B-N), N(0) = N0
 

Indp var (t): t

NO: 3

 

 

 
 

The example solves the equation N’ =-4N + 2N? (not linear

but separable).

Allometric model

Here relative rate of change for two variables X and Y are

proportional, 1/Y=dY/dt = k+(1/X+*dX/dt). This gives:

dY/Y = k+dX/X, Y = YO/X05XK
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Interface:

 

RAD PRG
{HOME}

1/Y*dY/dt = kx1/X+dX/dt
Y(0) = Y0 X(0) = X0
X0 YO0: 32

 

XYk X Y 15

  

 

 

The example solves the diffequation Y /Y = 1.5+X /X,

X(0)=3,Y(0)=2.
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Numerical methods
 

Here some simple numerical methods are treated, Newton’s

method for finding roots of an equation and numercal inte-

gration using the trapezoidal rule, the rectangular rule or

Simpsons rule

 

Newton’s method

Newton’s method solves equations of the type f(x) = 0. A star-

ting point is required and the method has a fast convergence.

However, the convergence is somewhat sensitive to the choi-

ce of starting point. The method is said to diverge if a solu-

tion with a prescribed accuracy has not been found after 30

iterations. Then a new starting point may be used.

Selecting PartAns Y a table is put on the stack giving diffe-

rent xp values and f(xn) values with the format [xn f(xn)].

11. Numerical methods 118



Interface:

 

RAD PRG
{HOME}
 

f(x) =0, Start:x0

: Indp var: X

: x0: 1

f:  ’x-COS(x)’

  

 

 

 

RAD PRG
{HOME}
 

Input cont

n is number of accur.

figures behind comma

: n PartAns Y/N:3Y

 

 

 
 

The example solves the equation x-Cos(x) =0 with starting

point 1 and with 3 accurate decimals (correct rounded). We

will se that f(x3)=1E-10.
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Numeric integration

Trapezoidal rule

The interval of integration is divided into a certain number

of smaller intervals and a number of trapezes are construc-

ted. The sum of the areas for theese trapezes are calculated.

Formula (integration interval [a b]):

I=(b-a)/(2n)*(fo+2f1 + 22+ .......fn)

By selecting PartAns Y the numbers 0, 2f1... will show up on

the stack in tabular form.

Interface:

 

PRG

(a,b,f(x)) =h/2*

(fa+2+f1+2+f2 + .....fb)

RAD
{HOME }
 

Limitsab: 1 1.5

Function f:  ’x/SIN(x)’   
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RAD PRG
{HOME }
 

Input cont

: Num. intervals n: S

Indpvar:  x

: PartAns Y/N: Y

 

 

  
The example calculates the integral of Sin(x)/x from x=1 to

1.5 with 5 subintervals.

Rectangular rule

In rectangular rule the midpoint of each subintervalis used

as argument, f(xm).

Formula (integration intervall [a b]):

I= (b-a)/n*(fml +fm2+.....fmn)
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Interface:

 

RAD PRG
{HOME }

| (ab,f(x)) =he
(fm1+fm2 + fm2 +.....fmn)

 

Limitsab: 1 1.5

Function f: ’x/SIN(x)’
T St oo %     
 

 

 

 

\\\\ b C

RAD PRG
{HOME}

Input cont

: Num. intervals n: 5

Indp var: X

: PartAns Y/N: Y

 

 
 

The example calculates the integral of x/Sin(x) from x=1to

x = 1.5 with 5 subintervals.

Simpson’s rule

This is normaly the most accurate rule of the three mentio-

ned, but the number of subintervals must be even.
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Formula

Interface:

(integration interval [a b]):

[=(b-a)/(3n)*(fa +4f1+2f2+4f3+ .....fp)

 

RAD PRG

 

{HOME }

(a,b,f(x)) = h/3+
(fa+4+f1 42«2 +.....fb)

Limitsab: 1 1.5

Function f:  ’x/SIN(x)’ 

 

 

 

 

 

RAD PRG
{HOME }
 

Input cont

: Num. intervals n: 4

Indp var: X

: PartAns Y/N: Y

  

 

 

The example calculates the integral of x/Sin(x) from x=1to

x = 1.5 with 4 subintervals. An error message is given if the

number of subintervals is odd.
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Solved Eroblems

 

Graphing functions

When you are going to graph a function you may use the

Graphing option under the menu FUNCTIONS. We will spe-

cially look at using the intrinsic ZOOM/BOXZ option of the

HP 48. When youtry to graph a function the first picture may

be difficult to understand.

Example 12.1

Plot the graph of the function

f(x) = 3uxO-24%% + x-2

Initialy there is no interval for x, but Calculus will require

that. We need to experiment a bit to get a good picture.
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Calculus interface:

 

 

RAD PRG
{HOME }

Graphing {f1(x) f2....}

between x =x1 x=x2

Indp var: x

x1 x2: -22

 

 

 
 

 

RAD PRG
{HOME}
 

Input cont

{f1 £2...}: 739 N 5-20x N2+ x-2

  

 

 

The choice of an interval for x is [-2,2]. We se that the graph

has a "horizontal region" in interval [0,1] and we want to take

a further look at this region (it may hide extremum points).

We move the cursor to about (-0.12,-2.4) (use the (x,y) key),

the - key and the ZOOM/BOXZ keys. Fit a box to the desi-

red region by using arrow keys and use ZOOM.
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We will see that the region contains a maximum and a mini-

mum point. We may examine this numericaly by using the

FCN menu.

 
Fig.12.13*x "~ 5-2*x "~ 2 +x-2

Move the cursor near the maximum point and use EXTR.

The maximum point is (0.27, -1.87). In the same way we find

a minimum point (0.52,-1.91).

Example 12.2

Given

We choose the interval for x to be [-4,4] and then we include

the singularity at x =-2. In the first picture we only get one

branch of the graph. We may ZOOM out to get a wider ran-

ge for x and try ZOOM/ZFACT/H-FACT 3/
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V-FACT 1/ZOUT. We still don’t see the other branch and

the reason has to be too small y values and we ZOOM out in

the y-direction: ZOOM/ZFACT/V-FACT 10 /H-FACT

1/Z0UT.

 

 b
Fig.12.2 (2*x ™ 2-x+1)/(x+2)

The extremum points may be found numericaly by using the

FCN menu.

 

Analyzing functions numericaly

Analyzing a function meansto find:

e Roots (crossing of x-axis)

e Extremum points

e Points ofinflection

e Graphing
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Example 12.3

We will look at the function

. 1/3+x°-3
() = X+2

We will use the graph and the FCN menu. We first graph the

function and choose x in the interval [-2,2]. A first glance at

the picture indicates two real roots, one minimum point and

two points of inflection. The FCN menu gives the roots

=-1.44 and x = 1.44 and local minimum at (-1.06,-2.69).

To find the points of inflection we may analyze the deriva-

tive. By pushing F (NXT) we get both f(x) and f ’(x) in the

same picture. The extremum points of f ’ give the points of

inflection of f. They are (-0.74,1.50) and (0.56,0.50).

But there is another branch. We move the picture to the

right by moving the cursorto the left and ZOOM/CNTR. We

see that the other branch looks like a straight, almost verti-

cal line, and this suggests that an eventual max/min has a big

absolute value. We use ZOOM/ZFACT/H-FACT 1

/V-FACT 200/ZOUT. We see that the derivative has a zero

and f a maximum at (-2.38,-151.52).
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To find the maximum of f you have to use NXEQ to activate

the given function and then push the EXTR key. The cursor

has to be in the neighbourhood of the maximum point. To

look for a point ofinflection for x < -2 we may look for an ex-

tremum point for f’. Using NXEQ/EXTR gives an apparent

extremum for at x =-2.85. This is however a point of inflec-

tion for the derivative with a horisontal tangent line (f ” =0).

So there is no point of inflection forf for x <-2.

 

Fig.12.3 (1/3x " 6-3)/(x+2) (x>-2)

 

Analyzing functions symbolicaly

The degree of any polynomials must the not exeed 4 except

for cases like (x-1) ™ 5.
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Example 12.4

Given

(2x4-3)
f(x) = D)

We first find the roots by using FUNCTIONS/Zeroes.

Calculus interface:

 

 

RAD PRG
{HOME }

Solving f(x) =0

:Indp var: X

f : '(2x=x 7 4-3)/(x-1)’

 

   
The zeroes will be {1.11,-1.11, (0,1.11),(0,-1.11) }. These are

numerical values but calculated by using formulaes and not

numerical iteration.

We may use the option "Sign of function" to find out where

the function is positive and where it is negative.
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CALCULUS interface:

 

 

RAD PRG
{HOME}

Finding the sign

off(x)

: Indp var: X

£ (2™ 4-3)/(x-1)
     530232307030300555 5307055 JRCEAODNNXNO Rs eieecessce et Ao I 2030000,000,000 0 00, IR DN NN N RS
 

The answer includes the actual zeroes (zeroes of the function

and points of discontinuity/singularity). They are {-1.11, 1,

1.11}.

Sign Interval

- x<-1.11

+ -1.11<x<1.00

- 1.00<x<1.11

+ x>1.11

The values of the zeroes are laying on the stack in a matrix

We may now look for the extremum points by using FUNC-

TIONS/Extremum points. We see that there is no extremum

point and the function is increasing for all x.
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CALCULUS interface:

 

 

{RQBME \ PRG

Increasing/decreasing

function f(x)

:Indp var: X

f: ’(2*x"4-3)/(x-1)   

 

 

The answer includes the expression for the derivative and the

zeroes and singularities of the derivative.

Finding the sign of:

(3-8*x3 + 6x4)/(x-1)2 (the derivative)

Actual zeroes:

{1.00}

Inc/Dec Interval

Incr x<1.00

Incr x>1.00

Points of inflection and curvature may be found by using

FUNCTIONS/Points of inflection. Points of inflection are
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{-0.39,1.45} and the x and y values are put on the stack in a

matrix.

CALCULUS interface:

 

 

mgME } PRG

Points of inflection

f(x)

:Indp var: X

£ (20~ 4-3)/(x-1)’
      
 

The second derivative and the zeroes are calculated.

Finding the sign of:

(-6 +24x%-32x> + 12xM/(x-1)° (the second derivative)
Actual zeroes:

{-0.39 1.00 1.45}

Curv. Interval

Convex x<-0.39

Concave -0.39<x<1.00

Convex 1.00<x<1.45

Concave x> 145

12. Solved problems 133



At last we graph the function. We choose x between -3 and 3.

.To get a wider range for y we ZOOM y out by a factor 10

(ZOOM/ZFACT/V-FACT 10/H-FACT 1/Z0UT).

 

 
Fig.12.4 (2x "~ 4-3)/(x-1)

Example 12.5

Analyze

2
f(x) = T 4x1

X

We find zeros by using FUNCTION/zeros and rememberto

write (2/x) + (x-1). Solution is {(0.5, -1.32), (0.5,1.32) } which

meansthat there is no crossing of the x-axis (complex roots).

By using "Extremum points" we may find the maximum and

minimum and where the function is decreasing and increa-
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sing. The derivative is given as (x2-2)/x2, and we see that the

function is decreasing between x = -1.41 and 1.41 and increa-

sing elsewhere. There is a maximum at x=-1.41 and a mini-

mum at x = 1.41. The x and y values are put on the stack in a

matrix.

When investigating the curvature we find no points of inflec-

tion and the curve is concave all over.

We now wantto graph the function and choose x between say

-2 and 2. We cannot see the left branch so we try to get a

wider range fory, ZOOM/ZFACT/V-FACT =3/Z0OUT. The

curve is somewhat "horisontal" in some regions and then we

try ZOOM/ZFACT H-FACT =3/ZOUT to get a wider ran-

ge for x-values.

20

10

 

 

 

Fig.12.5 2/x +x-1
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Example 12.6

In this example we will look at a trancendental function. Ge-

nerally CALCULUScannot handle this kind of functions un-

less the independent variable has a single occurence.

However we will look at some tricks. Given the function

f(x) =2e™+ 1/2+e"*

We may substitute e*=u and then e™= 1/u. This will trans-

form the function into a rational function.

f(u)=2/u+u/2, u=e*

We observe that u is always positive (as a real variable). The

zeros may be found by using FUNCTIONS/Zeros and thisgi-

ves u=(0,2) and u=(0,-2). Since they are complex there is

no crossing of the x-axis.

To find the extremum points we use FUNCTIONS/Extre-

mum points. We get a maximum at u =-2 but since u is posi-

tive there is no maximum. The minimum is for u =2 and this

gives x =1n2 = 0.69. The matrix on the stack gives the value of

the function to be 2.

To graph the function we of course use the original expres-

sion f(x)=2e™+¢e%/2. We choose x between -2 and 2. We
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moove the picture downwards by mooving the cursor up-

wards and use CNTR.

Fig.12.6 2*Exp(-x) + 1/2*Exp(x)

Trancedental functions which cannot be transformed to ra-

tional functions has to be examined numericaly. An example

would be f(x) = (x)*+e™. Howeverifwe are going to find ex-

tremum points or points of inflection, the derivatives may be

rational and CALCULUS will work.

Example 12.7

Analyze

f(x) = 1+ x>/4-In(x)/2

The zeros must be found numericaly and we then first graph

the function and choose x between x1 =0 and x2 =3. We will

use a more narrow picture and ZOOM/ZFACT/
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H-FACT 2/V-FACT 1.It does not seem to be any zeros and

this will be confirmed when we look for extremum points:

there is only one minimum point near x = 1.

v-& a a 2e
'-ftrvfifvvvvv—r—

Fig.12.7 1 +x " 2/4-Ln(x)/2

We find the extremum points to be: minimum at x=1 with

the value f(1) = 1.25. There is no point of inflection as we can

see using the option FUNCTIONS/points of inflection (al-

ways concave).

Example 12.8

In the case f(x) =x%e™ we may help CALCULUSa little

bit The zero point is apparently x=0. To look for the extre-

mum points we first find the derivative by using FUNC-

TIONS/Derivatives.

12. Solved problems 138



CALCULUS interface:

 

RAD PRG
{HOME}

=f(x)
calculates f ’(x0)

Indp var xo: x x

 

PartAns Y/N: N   

 

 

 

RAD PRG
{HOME }
 

Input cont

f: 'x 7 (1/2)+Exp(-x)’   

 

 

We have to find the sign of the function

ex4+ 1720Fix12 = eXex2(1/(24%)-1)

The last paranthesisis a rational expression and may be hand-

led by CALCULUS. We will find the sign ofthis expression

in different intervals for x and we then use the option

FUNCTION;/Sign of function. The expression is changing
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from positive to negative for x=1/2 and this will then be a

maximum. In this case the value of the derivative (0) will be

put on the stack and the value for f has to be found by using

WH in the LIBRARY menu.

When dealing with more complicated rationalfunctions, you

might have to rewrite the experession a bit. The rational func-

tions have to be written in the form f(x)/g(x) + p(x)/h(x). This

means that the function f(x)= (xz-l)/(x—4) +x-5 has to be

written f(x) = (x2-1)/(x-4) + (x-5). The final paranthesis will

be important.

Example 12.9

f(x) = (x>1)/(x-4) + (x-5)

First we try to find the zeros. We will see that the zeros are

complex and so there is no crossing of the x-axis.

The extremum points are a maximum at x = 1.26 and a mini-

mum at 6.74 with function values given on the stack.

There is no point of inflection, but the curve is convex for

x <4 and concave for x > 4.

When graphing the function the above analyzing suggests

that the range for x-values must be 0 to 8. Thefirst picture is

meaningless, but since we saw that the minimum point had a
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y-value about 17 we try to ZOOM/ZFACT/

V-FACT10/ZOUT. Then we narrow the picture in the x-di-

rection to see the curve at the nearflat areas by

ZOOM/ZFACT/H-FACT2/ZOUT.

Fig.12.8 (x ™ 2-1)/(x-4) + x-5

Solving equations symbolicaly means not to solve them by nu-

merical iteration (FCN menu). Equations that can be solved

are rational equations (polynoms and fractions), and all ot-

her equations where the unknown has a single occurence.

In CALCULUS two possible options are available,

ALGRBRA/Solve equation and FUNCTIONS/Zeros.

Example 12.10

Ifyou are going to solve (x2-1)/(x-4)-x2 =x-2, the equation has

to be written (x2-1)/(x-4) =x% +x-2 if we are using the option

ALGEBRA/Solve equation. The the solutions are

{-1.85, 1, 4.85}.
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CALCULUS interface:

 

RAD PRG
{HOME}
 

Equation LS=RS

: Unknown: x

LS=R8x " 2-1)/(x-4) =x"2+x-2’

  

 

 

 

Simplifying expressions (ALGEBRA)

The option Simplify lets you simplify expressions so that frac-

tions are being put over a common denominator and the nu-

merator is factorized. The expression (x2-1)/(x-4)-x2-x +2 is

written

(x*-1)/(x-4)-(x* + x-2)

and simplified into -(x-1)(x + 1.85)(x-4.85)/(x-4).
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Integration of rational functions

Any rational function where the degree of a polynimial is less

than 5, may be integrated. If the degree of a numeratoris

equalto or greater than the degree of the denominator, poly-

nomial division will take place. Use the menu option

INTEGRATION/partial fractions.

Example 12.11

Integration of (2+x-1)~2/(x " 2-1) will then first execute a

polynomial division. If the option partial answer Y(es) is se-

lected the details ofsplitting up into partial fractions are gi-

ven.

CALCULUS interface:

 

RAD PRG
{HOME }
 

P(x)/Q(x)dx
: Indep var: x

: PartAns Y/N: Y

Numerator: ’(2+x-1) "2’
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RAD PRG
{HOME }
 

Input cont

:Denominator!(x-1) ~2’

 

   
Since PartAns Y is selected intermediate results will showup:

Polynomial division

and splitting up:

(2x-1)%/(x*-1) =
A/(x-1)+B/(x+1)+4 (Next page)

Coefficients:

A=1/2

B=-9/2 (Next page)

Solution:

-9/2+LN(x+ 1) + 1/2*LN(x-1) + 4*x

Example 12.12

If the denominatoris of degree 1, polyniomial division

together with direct integration will solve the problem. Let

us look at the integration of (2+x-1) ™ 2/(x-1). First use poly-

nomial divison under menu ALGEBRA. The result is

4+x + 1/(x-1). Then use direct integration on this expression
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(imported from stack). To import an expression from the

stack to the input screen, push EDIT and use

+STK/ECHO/ENTER. The answeris In(x-1) + 2x°.

Example 12.13

Integrate

1
f(x) = —Fx
) 2x3-x2-8x+4

The answeris 1/20+In(x + 2)-2/15«In(x + 1/2) + 1/12+In(x-2).

Example 12.14

Integrate

X

fx) = —3
x -1

 

The answeris -1/4«In(x> + 1) + 1/4*In(x-1) + 1/4+In(x + 1)

Example 12.15

Integrate

 

f(x) :X) =

x4+1
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The answer is -0.5+Atan(1+ 1.41x) + 0.5*Atan(-1 + 1.41x)

which differs from the "obvious" answer 1/2*Atan(x2) by a

constant. Generally irrational numbers will be approximated

by decimal numbers. If PartAns Y is choosen the number of

digits in the coefficients of partial fractions will be 2, but the

answeris laying on the stack where the number of digits may

be altered by n FIX.

Example 12.16

Integrate

(24-523 + 722-32-4)

@ = e

Polynomial division is necessary (select PartAns Y) and the

answeris

Polynomial division

and splitting up:

(2*-52° + 722-32-4)/((z-1)*(2-3)) =
Al(z-1)*+B/(z-1) + C/(z-3) +z

Coefficients:

A=2

B=1

C=-1

Solution:

-2/(z-1) + LN(z-1)-LN(z-3) + 1/2+2*
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Integration of algebraic and trancendental

functions

In this case you have to use substitution, partial integration,

the integration table or direct integration (intrinsic HP func-

tion).

Example 12.17

Integrate COS(x)/(2+SIN(x)-3). We see that the derivative of

the denominator is proportional to the numerator and we

may use substitution u = 2sin(x)-3.

CALCULUS interface:

 

 

RAD PRG
{HOME}

k+f(g(x))*g’(x)dx
Indp var: x

: PartAns Y/N: Y

oIntegrand: *COS(x)/(2*SIN(X)-3)
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RAD PRG
{HOME}
 

Input cont

:Subst. u=g(x): "2+SIN(x)-3’

 

  
 

The answer will be:

Substitution:

u =2x+SIN(x)-3

du =2+COS(x)dX

This gives:

1/2udu =

1/2+LN(u)

Solution:

1/2«L.N(2+SIN(x)-3)

Example 12.18

Integrate (x-ATAN(x))/(x2 +1). We have to separate the in-

tegrand into x/(x2 +1)-ATAN(x)/(x2 + 1) and make use of

two different substitutions. We then have to run the pro-

gram two times. First substitution u = x> + 1, second
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u=ATAN(x). The answer will be 1/2«LN(x2 +1)-

1/2+ATAN(x)*

Example 12.19

Integrate x>+¢>. This is of the form u*v, and we use integra-

tion by parts.

CALCULUS interface:

 

RAD PRG
{HOME}
 

u(x)*v(x)dx

Indp var : x

: PartAns Y/N: Y

u x°3

  

 

 

 

RAD PRG

 

Input cont

v: 'EXP(2#x)’
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If PartAns Y(es) is selected the answer will look like:

3 timesint. by parts

x ™ 3*EXP(2x)dx =

x 7 3%(1/2*EXP(2+x))-

1/2*EXP(2#x)*3*x ™ 2)dx =

x 7 3%(1/2*EXP(2#x))-3*x ™ 2+ 1/4+EXP(2*x) +

1/4*EXP(2*x)*6*xdx =

x 7 3+1/2+*EXP(2+x))-3#x © 2+1/4+EXP(2+x)) +

6+x*1/8*EXP(2+x)- 1/8*EXP(2*x)*6dx =

x ™ 3%1/2*EXP(2#x)-3+x > 2+ 1/4*EXP(2*x) +

6+x+1/8+EXP(2#x)-6*1/16*EXP(2*x)

We see that 3 times of integration by parts were necessary.

Example 12.20

Integrate LN(x)z. Here we use integration by parts with the

factorv=1and u=LN(x)2. The answer will be LN(x)z*x-

(2«LN(x)*x-x).

Example 12.21

Integrate (x2-3 *x +4)"“. Here we will use the integration

table, Algebraic. We choose the option

(a*x "~ 2+b*x+c¢) witha=1,b=-3 and c=4. The answer

will be -0.75#x/2*(x ~ 2-3*x + 4) + 0.88*LN(-3 + 2+x + 2+

(x ™ 2-3xx +4)).

1/2
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Example 12.22

Integrate[1/(x2-3x-1)1/2 = (x2-3x-1)'1/2 We again use the

integration table, Algebraic. We choose the option

1/ (a*x”™2+b*x+c)witha=1,b=-3 and c=-1. The

answer will be LN(x-1.5+ (x72-3*x-1)).

 

Applications of integration and differentiation

Example 12.23

Calculate the area bounded by the curve z = (4t + 1)1/2 , t-

axis and the vertical linest=0 and t=2.

We will use the menu option INTEGRATION/Applica-

tions/Area. The function f2 on the input screen will here be

f2 =0 (area between z and z =0, t-axis).

CALCULUS interface:

 

RAD PRG
{HOME}

Area bounded by f1(x),

f2(x), x =x1, x =x2

A£1:°(4+t + 1)~ (1/2)

A2: 0
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RAD PRG
{HOME}
 

Input cont

x1 x2:02

Indp var:t

: PartAns Y/N: Y

  

 

 

When PartAns Y is selected the formula that determins

the area is given, the integrated function and the final an-

swer is 13/3.

 
Fig.12.9 (4*t+1) ™ (1/2)

Example 12.24

Find the area bounded by the curves y1 =x" 3, y2=2x and

y3=x for x>0 and y>0.
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The area has to be calculated in two steps, the area be-

tween x and 2x from x =0 to x =1, and the area between 2x

and x> from x = 1 to x =22 Both answers are laying on the

stack and may be added by pushing the + key. The answer

is 3/4.

i 
Fig.12.10y=x"3,y=2*x, y=x

Example 12.25

Calculate the arc length along the curve y = 1/3*(x2 +2)

from x =0 to x=3. This may be calculated exactly by hand,

but then you have to transform (x2(x2 +2)+1)into

(x*+ 1)2. CALCULUSwill not be able to do this and a nu-
meric solution is given (= 12).

3/2
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Example 12.26

Calculate the area of the surface of revolution of the func-

tion y =2/3*x

x=3.

Interface:

3/2

 

 

RAD PRG
{HOME}

Surface of f(x),

x=x1,x=x2

f: 2/3xx~ (3/2)

:x1 x2:0 3

  

 

 

 

RAD PRG
{HOME}
 

Input cont

Axes: x=-2

Indp var: x

: PartAns Y/N: Y

  

 

 

, rotation of curve about x=-2 fromx=0to

The answeris not exact, 107.23. The integral may be calcu-

lated exactly by integration of parts.
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Fig.12.11 2/3x ™ (3/2)

Example 12.27

Calculate the area of surface of revolution of the function

y= x> about the y-axis from x =0 to x =2. The axis is now gi-

ven as X =0 and the answer will be 36.177 and may be cal-

culated exactly by the substitution u= 4% +1.

Example 12.28

Calculate the volume of the solid of revolution of the area

between the curve y = 2x° and the x-axis about the Y-axis

between x=0and x = 5.
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Interface:

 

 

 

RAD PRG
{HOME}

Region bounded by,

f1, 2, x=x1,x=x2

f1:72*x ™2

f2: 0

 

 

 

 

 

e
Input cont

x1 x2: 05

Axes: 'X=(

Indp var: x

  

 

 

 

RAD PRG

 

Input cont

: PartAns Y/N: Y
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The exact answer will be 625+, and the integral to be eva-

luated is given.

Example 12.29

Calculate the volume of the solid of revolution of the area

betweeny = 4-x* and y =0 (x-axis) about the line Y =6 be-

tweenx=0and x=2.

Fig.12.124-x "2

The answer is given as 147.45 although the integral is calcu-

lated exactly. This has to do with the conversion from deci-

mal numbers to fractions.

Example 12.30

Calculate the center of mass of the area given by y = 4-x2,

x=0and y=0 (betwen x=0 and x =2).

First, the static moments have to be calculated.
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Interface:

 

 

e
Region bounded by,

f1, 2, x=x1,x=x2

;o {1 4x"2

f2: 0

  

 

 

 

 

RAD PRG
{HOME }

Input cont

x1 x2: 02

: Axes: 'X=(0

Indp var: x

 

 

 
 

 

RAD PRG
{HOME}
 

Input cont

: PartAns Y/N: Y
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Here, the static moment about the y-axis, My is calculated

to be 4. In the same way Mx, the moment about the x-axis

is calculated to be 128/15.

Now the area of the region has to be calculated. We use

the option Area and get the answer 16/3. The center of

massis finaly calculated.

Interface:

 

RAD
{HOME}

PRG

 

 

 

Static moments

Mx and My, area A

Xt=My/A Yt=Mx/A

: Mx My A: ’128/15° 4 ’16/3’

  
The values of Mx, My and A are laying on the stack and

may be inserted by using EDIT/4STK/ECHO/ENTER.

The answer is Xc = 3/4, Yc=8/5.
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Parametric curves

Example 12.31

Given the parametic curve

12
x=2+4sint, y=3""-2cost, te[0,27 >

Find

e Crossing of x and y-axis

e Singular points

e Extremum values for x and y

e Tangent line at t =11x/6

e Area of the region bounded by the curve

e Graph the curve

First we solve x=0 and y=0. We use ALGEBRA/Solve

equation.
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Interface, x=0:

 

RAD PRG
{HOME }
 

Equation LS=RS

Unknown: x

LS=RS: ’2+4Sin(t) =0

 

  
 

The answeris t =7%/6 and 11%/6. In the same way y =0 gives

=7/6 and 11%/6.

To find singular points and extrema we use the option FUNC-

TION/Extremum points for x and y seperately. We see that x

has a maxmum point for t=«/2 (=6) and a minimum point

fort =3%/2 (=-2).y has amaximum for t = = (= 3.73) and mi-

nimum for t=0 (=-0.27). We see that dy/dt and dx/dt dont

have zeros at the same time and therefore no singular points.

To find the area we integrate from t =0 to t =2« using Area

under the menu 2D curves/parametric and the answer is

25.13.
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The tangent line is found by using the option Geometry/tang-

ent line under 2D curves/parametric. t0 = 11%/6=5.76 and the

answer is y = -0.29x.

Fig.12.13 x =2 +4*Sin(t),y =3 ~ (1/2)-2*Cos(t)

Example 12.32

Graph the curve and calculate the area between the two

loops of the curve of Pascal, r =4+Cos(t) +2, te[-w,m > (Po-

lar curve).

The option 2D curves/Polar coordinates will give the possi-

bility to solve the problems.

The maximum values of abs(r) will be for t =0 and t ==« (use

the option FUNCTION/Extremum) . To find the desired

area we have to calculate the area of the outer loop and sub-

tract the area of the inner. The range of t for the outer loop
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is from -2=/3 to 0 for the lower part and from 0 to 2+/3 for the

upper, totaly from -2x/3 to 2«/3. The range of t for the inner

loop is from -x to -2+/3 for the upper part and from 2%/3 to =«

for the lower.

 

Fig.12.14 r(t) =4*Cos(t) + 2

Interface (outer area):

 

RAD PRG
{HOME}
 

Area bounded by r(0),

between ©1 and 062

: 1(0): '4*Cos(t) +2’
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RAD PRG
{HOME }

Input cont

0102: ’-2+w/3’ 0

Indp var: t

: PartAns Y/N: Y

 

   
Here we have to multiply the answer by 2. In the same way

we calculate the inner area and then subtract. The answer is

33.35.

 

Series

oo

The series will be stated as Z Ansx® (powerseries) or as

© n=0

n=0

Example 12.33

Find the interval of convergence of the series where

Anx™ = 1/n+x", We use theratio rest under SERIES/

Convergence.
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Interface:

 

 

RAD PRG
{HOME}

Converg. 3An*X " (k*n)

An: ’ln

X7 (k*n): x™n’

  

 

 

 

 

e
Input cont

Sumindex n: n

Indp var: x

: PartAns Y/N: Y

  

 

 

The answer is given as:

Ratio test:

an+ 1/an=

INV(1+n)*Xn

limn-» an+ 1/an=

X
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Convergence:

[lim n— o

(an+1/an)] " 2<1

x"2-1<0 (Next page)

Case Interval

Diverg. x<-1

Conv. -1<x<1

Diverg. x>1

Example 12.34

The ratio test does not give any answer at the ends of the

interval. Test for convergence at the ends, x=1 and x=-1.

We then have the series An= 1/n and An = (-1)"/n (last

example). The first will be tested using the integraltest (po-

sitive series) and the second using Leibnitz test (alterna-

ting series).

In the integral test we need to know the indefinite integral

of An, Ln(n). We see that the series An= 1/n diverges and

the series An=(-1)"/n converges, the interval of convergen-

ce will thenbe -1<x< 1.

Example 12.35

Find the interval of convergence ofthe series Anx" =n/5"%"
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Case Interval

Diverg. x<-5

Conv. S<x<5

Diverg. x>5

Example 12.36

The integraltest at the end for x =35 gives convergence and

the same will Leibntiz test give for x =-5. The indefinite in-

tegral of An may be found by using integration of parts:

57 (x)*(0.62x-0.39), x/S™ is written x+5™. The interval of

convergence will then be -5<x<35.

Example 12.37

Find the interval of convergence for the series

(-1)"+(x-1)"/n>. Wefirsttestfor absolute convergence of

the series (x-l)“/n2 and get the interval <0,2> for x

Example 12.38

Leibnitz test gives convergence also for x =2 in the last

example. For x =0 we have the series

An=(-1)"(-1)"n% = 1/n% The integral test will then give

convergence (see chapter 7). Interval of convergence:[0,2].
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Example 12.39

Test for convergence the binomial series of

f(x)=(16 + x)'l/4 The interval of convergence will be <-

16,16 >.

 

Differential equations

Example 12.40

Solve the differential equation y*dy/dx + x = 0. This eqau-

tion is separable and need to be written in the form

F(x,y,y’) =0.y’ =dy/dx is written Dy. We then solve

y*Dy +x=0.

 

 

Interface:

RAD PRG
{HOME}

F(xyy)=0
y’ must be written Dy

Xy: XYy

F. ’y*Dy+x   
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RAD PRG
{HOME }
 

Input cont

: PartAns Y/N: Y

 

 

  
The solution includes the separation and integration since

PartAns Y is selected.

Separation gives:

Y’ *dY =-X*dX

Integration gives:

12*Y ~2=-1/2*x"2+C

Solution:

Y =s1*(-1/2*x "2+ C)/(1/2)

s1is here +1.

Example 12.41

Solve the differential equation du/dv = 4+v>+e™ . The equa-

tion is written Du-4*v ~ 3+e ™ (-u) =0 (separable) and the

solution is u= Ln(v4 +C).
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Example 12.42

Solvethe differential equation e“*+dz/dx-x = 0. This is sepa-
rable and the solution is e“= (c,x,e™*x,x) + C. The integral

has to be solved by integration by parts.

Example 12.43

Find the particular integral in example 12.41 with the initi-

al condition u(0) = 1. We use Linear 1.st order/Initial va-

lue. We get the solution u= Ln(v4 +2.72).

Example 12.44

Solve the first order, linear equation dy/dx + 2y = e,

We use the menu option 1st order linear and

here P(x) =2 and Q(x) =e>~. Thesolution is

eZC+ 1/5%e>"

Example 12.45

Solve the second order differential equation

y’-4y’ + 3y =2x + Cos(2x). We use the menu option

Linear 2nd order/undetermined coeff. with a=1, b =-4,

¢ =3 and r(x) =2x + Cos(2x). Selecting PartAns Y The so-

ution is:
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Characteristic eqn:

A2-4r+3=0

AM=3\2=1

Yh=A*EXP(3x) + B*EXP(x) (nest page)

Choosing Yp:

K +L*x + M*Sin(2x) + N*Cos(2x) (next page)

Yp =8/9 +2/3x-8/65Sin(2x)-1/65Cos(2x)
Y=Yp+Yh
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