

60

the se

NAVIGATION CALCULUS I CALCULUS II

VAR

PRINT TH

COS

UP HOME

ATION MATRIX

IN

PRG

EVAL

CALC II PROF. EXTENSION

MEMORY LIBRARY

128 K ROM © Odd Bringslid

SCIENTIFIC EXPANDABLE

MATHEMATIC Pac. 2. Professional **Extension**. **ENGLISH VERSION**

FOR HP 48 SX/GX

BAS Mathematics II

VER 2.0A

A mathematical program for calculators (HP 48 GX)

Odd Bringslid ISV Spenningsgate 11 3601 Kongsberg NORWAY

Copyright[©] 1994 Odd Bringslid

All rights reserved

The author should not be liable for any errors or consequential or incidential damages connecting with the furnishing performance or use of the application card

1st edition August 1992

2nd edition June 1994

IMPORTANT!

The basic use of the HP48 is not covered by this manual. You should consult the User's Guide for this purpose.

Information to the 48SX user:

The documentation is prepared for the version GX. The SX user has to be aware of the following:

The menu option EGVT in the MATR menu, needs an extra input: the eigenvalue at stack level 2 (matrix at level 1).

Contents

General 6

Hardware requirements	6
Starting up	7
User interface	7
The input editor	9
Echoing from the stack	10
Calculation finished	10
Moving in the menu	10
STAT og MATR meny	11
Leaving CALCULUS (BAS MAII)	11
Intermediate results	12
Flag status and CST menu	12

Linear algebra 13

rithm)	Linear equations (Gauss algo-	
Matrix calculations16Addition16Multiplication16Inverting16Determinant16Rank17Trace17Orthogonal matrix17Transposed matrix17Symmetric17	rithm)	13
Addition16Multiplication16Inverting16Determinant16Rank17Trace17Orthogonal matrix17Transposed matrix17Symmetric17	Matrix calculations	16
Multiplication16Inverting16Determinant16Rank17Trace17Orthogonal matrix17Transposed matrix17Symmetric17	Addition	16
Inverting	Multiplication	16
Determinant16Rank17Trace17Orthogonal matrix17Transposed matrix17Symmetric17	Inverting	16
Rank	Determinant	16
Trace17Orthogonal matrix17Transposed matrix17Symmetric17	Rank	17
Orthogonal matrix	Trace	17
Transposed matrix	Orthogonal matrix	17
Symmetric 17	Transposed matrix	17
	Symmetric	17

1

Linear transformations	18
2 D transformations (two dimen-	
sions)	18
Rotation Translation Scaling Concatinating	18 19 20 21
3 D transformations (3 dimen- sions)	23
Translation Scaling Rotation Concatinating	
Eigenvalue problems	25
Eigenvalues Eigenvectors Diagonalization Diffequations	
Vector spaces	30
Basis :	
Norm	31 01
Norming	
Orthogonalization	
Orthonormoring	
i ransformation matrix in new basis	

Laplace transforms

Laplace transform	37
Inverse Laplace transform	38
Inverse L Partial fractions	39
Diffequations	41

Probability 42

Without replacement	43
Combinations unordered	43
Combinations ordered	44
Hypergeometric distribution	44
Hypergeometric distr. function	44
With replacement	46
Combinations unordered	46
Combinations ordered	47
Binomial distribution	48
Binomial distr. function	49
Negative binomial distribution	49
Negative binomial distr. function	50
Pascal distribution	51
Pascal distr. function	52
Normal distribution	53
Poisson distribution	54
Poisson distribution	55
Info	55
Binomial coefficients	55

Statistics 57

Distributions	58
Normal distribution	58
Inverse normal distribution	58

Contents	3

Normale distribution Inverse normal distribution Chi- square distribution Inverse Chi-square Student t distribution Inverse student t distribution	58 59 60 60 61
Confidence Intervals	62
Mean, known σ Mean, unknown σ Variance unknown μ Sample mean, st.dev. median	62 63 64 65
Fitting6	36
Normal Distribution, "best fit" Hypothesis normal distribution Hypothesis binomial distribution Hypothesis Poisson distribution Class table Mean, st.dev Discrete table	66 67 68 69 69 70 70
Description of samples7	'1
Discrete table ΣDAT	71 71 72 72 72 73 74 74

Fourier series

Fourier series, symbolic form	76
Fourier series, numeric form	78
Half range expansions	79

Linear programming 81

Numerical methods

Solved problems

108

84

Generally

This is part II of BAS mathematics. As in part I a pedagogical interface is stressed. BAS mathematics is a pedagogical tool in addition to a package for getting things calculated.

Hardware requirements

BAS Math II runs under the calculator HP 48GX. The program card may be inserted into either of the two ports and Math I could be in the other port.

Starting up

1

The LIBRARY menu will show up MAII. Pushing the MAII key will lead you into the main menu and then you simply push the START key.

6

User interface

The MAII meny system is easy to use. Using the arrow keys allows you to move the dark bar and select by pushing EN-TER.

In the following example you will enter the submenu for LINEAR ALGEBRA and select Matrices/Multiply.

RAD {HOME }	PRG
LINEAR ALCE	BRA
FOURIER SEF	RIES
LINEAR PROC	GRAMMING

Under Matrices you will choose Multiply and you may multiply two symbolic matrices. The matrices are put into the SYMBOLIC MATRIX WRITER.

RAD {HOME }	PRG
Sum	
Multiply	
Powers	
Inverting	

In the Matrix Writer you may delete, add, and echo from the stack (see manual for 48GX).

The input Editor

If you select Linear equations under LINEAR ALGEBRA you will enter the editor for input (input screen).

Here the input data can be modified and deleted and you can move around by using the arrow keys.

The cursor is placed right behind :PartAns Y/N: and here you enter Y if you want intermediate results. The arrow keys are used to get right behind :B $\{B1...\}$: and here you enter the right side vector of the system.

If you have done a mistake you may alter your input by using the delete keys on the calculator keyboard. You will not be able to continue before the data are correctly put in.

In the input screen there is often information about the problem you are going to solve (formulaes etc). Remember the ' ' in algebraics and separation of several data on the same input line by using blanks (space).

Echoing from the stack

If an expression or a value laying on the stack is going to be used, then the EDIT/[↑]STK/ECHO/ENTER sequence will load data into the input screen. Be sure to place the cursor correctly

Calculation finished

When a calculation is finished CALCULUS will either show up intermediate results by using the VIEW routine (intrinsic MAII) or return directly to the menu. In the last case you will need to use the \rightarrow STK key to see the result laying on the stack.

Moving up and down in the menu

You can move downwards in the menu system by scrolling the dark bar and pressing ENTER. If you need to move upwards the UPDIR key will help. At any time you may HALT MAII and use the calculator independent of MAII by pressing the \rightarrow STK key. CONT will get you back to the menu system.

STAT and MATR menues

On the menu line at the bottom the choices STAT and MATR are possible. Here you will have access to some routines regardless of your current menu position.

STAT:

	• NORM	Normal distribution
	• INVN	Inverse normal distribution
	 UΣDAT 	Sample mean, st. dev., median
	• ΚΣDΑΤ	Class table
	 ΣDAT 	Discrete table, two columns
MATR:		
	• ADD	Add symbolic matrices

1. Generally 10

• BASE?	Check if a set of vectors are linear independent
• DET	Determinant
• DIAG	Diagonalize a matrix
• EGV	Eigenvalues of a matrix
• EGVT	Eigenvectors of a matrix
• INV	Invert
• MULT	Multiply
• ORTH	Orthogonalize a basis
• ORT?	Check if a matrix is orthogonal
• RANK	Rank of matrix
• SYM→	Converts matrix {{}} to [[]]
• TRN	Transpose

The input is a matrix (or two) on stack-level 1 (or 1 and 2). The matrix is stored for later use as MATR in your current VAR menu. The matrix is also echoed to the stack.

Leaving MAII

Pushing the EXIT key will leave MAII.

Intermediate results

In the input screen you may choose PartAns Y/N. Choosing

1. Generally 11

N the result will be laying on the stack and you have to use \rightarrow STK to see the answer. Choosing Y, different pages of intermediate results will show up or more than one result is laying on the stack.

The degree of details in the partial answers is somewhat different, but some of the results covers "the whole answer". In every case this will give the user a good help.

Different parts of an answer may be found on different pages and the page number can bee seen (use arrow up/down).

When PartAns Y(es) is chosen all numbers will show up with two figures behind comma. If a more accurate answer is necessary, you will have to look on the stack and perhaps use the N FIX option.

Flag status and CST menu

The flag status and CST menu you had before going into MAII will be restored when you leave by pushing EXIT.

2

Linear algebra

The subject linear algebra covers linear equations with solution also for singular systems, matrix manipulation (symbolic), eigenvalue problems included systems of linear differential equations, linear transformations in two and three dimensions and vector spaces.

Linear equations (Gauss method)

Linear equations with symbolic parameters are handled. The equations have to be ordered to recognize the coefficient matrix and the right side. The equations are given in the form:

$$\{\{A\}\} * \{\{X\}\} = \{\{B\}\}$$

A is the coefficient matrix, X a column vector for the unknowns and **B** the right side column vector. Symbolic coefficients are possible.

2. Linear algebra 13

If Det(A) = 0 (determinant) the system will be singular (self contradictory or indefinite). This is stated as "Self contradictory" or the solution will be given in terms of one ore more of the unknowns (indefinite). Example:

$${x,y,z} = {x,2*x-1,x-4}$$

The value of x is arbitrary so there is an infinite number of solutions.

If the system is underdetermined (too few equations), the solution will be given in the indefinite form. If the system is overdetermined (too many equations) the solution will be given in the indefinite form if the equations are lineary dependent or as "Self contradictory" if they are lineary independent.

The solution algorithm is the Gauss elimination. If PartAns Y(es) is selected, the different stages in the process will be given as matrices on the stack which may be viewed by using the MATW option (LIBRARY). The coefficient matrix and the right side vector are assembled in one matrix (**B** is the rightmost column).

Interface:

The symbolic matrix writer will now appear. The following matrix is put into it:

					8
2	-1	3	2	-1	
1	2	1	-1	1	
1	-4	-1	3	-1	

The example solves the system:

 $2x_{1}-x_{2} + 3x_{3} + 2x_{4}-x_{5} = 7$ $x_{1} + 2x_{2} + x_{3}-x_{4} + x_{5} = 6$ $x_{1} - 4x_{2} - x_{3} + 3x_{4}-x_{5} = 0$

The system is indefinite (too few equations)) and the solution is given in terms of x_5 and x_4 .

```
2. Linear algebra 15
```

The system is indefinite (too few eqautions)) and the solution is given in terms of x5 and x4.

Matrix calculations

Some operations on symbolic matrices are done (not covered by the HP48 intrinsic functions). The matrices are put into the SYMBOLIC MATRIX WRITER and the matrix is put on the stack by pushing ENTER.

Addition

Both matices are put into the matrix writer and added. An error message is given for wrong dimension.

Multiplication

Both matrices are put into the matrix writer and multiplied. An error message is given for wrong dimensions. The first matrix has to have the same number of columns as the second has rows. Be aware of the order of the matrices.

Inverting

The matix is put into the matrix writer and inverted. An error message is given if its not quadratic.

Determinant

The determinant of a symbolic matrix is calculated. The ma-

Rank of a matrix

The rank of a marix is calculated. This routine may be used for testing linear independency of rowvectors. The routine makes the matrix upper traingular and PartAns Y gives the different stages of the process.

Trace

The trace of a square matrix is calculated. An error message is given if the matrix is not quadratic.

Orthogonal matrix

This routine is testing whether the matrix is orthogonal i.e. the inverse is equal to the transpose. An error message is given for wrong dimension (must be quadratic). The answer is logic 0 or 1. May be used to investigate if rowvectors are orthogonal i.e. is an orthogonal basis of a vector space.

Transpose matrix

The transpose of a symbolic matrix is calculated.

Symmetric

Investigates whether a matrix is symmetric or not. Logic 0 or 1.

Linear transformations

Linear transformations include coordinate transformations in the plane and in the three dimensional space. The transformations are rotation, translation and scaling. The point to be transformed is given relative a rectangular coordinate system.

Mixed transformations (concatinating) is possible. The order of the transformations is important if rotation is one of them.

2 D transformations (two dimensions)

Rotation

The rotation angle must be given in degrees and the transformed point is given as components of a list (to allow symbols). The rotation is counterclockwise for positive angles about an arbitrary point.

2.1 Rotation of a triangle about origo

Interface:

RAD {HOME }	PRG
Rotati	on about (x0,y0)
: X Y: 2	5
: X0 Y0: 2	2
: • : 45	

The point (2,5) is rotated about (2,2) an angle 45°. To rotate a triangle all three points have to be transformed.

Translation

This is a pure translation of a point, the coordinates are given an addition.

2. Linear algebra 19

2.2 Translation of a triangle

Interface:

The example moves the point (2,5) to (2,5) + (3,6) = (5,11)

Scaling

The coordinates are multiplied by a factor. For a geometric figure where the points are scaled, this will give a smaller or bigger figure. If the X and Y coordinates are scaled differently this will alter the shape of the geometric figure.

2.3 Enlarging of a triangle

Interface:

RAD {HOME }			PRG	
2	$\mathbf{x} t = \mathbf{X} * \mathbf{S} \mathbf{x}$	Yt = Y	ζ∗Sy	
:X Y:	25			
:Sx Sy:	36			
ininininini errer	and descent			

The example multiplies 2 with 3 and 5 with 6 and the point (2,5) is moved.

Concatinating (mixed transformations)

Concatinating means a mixture of several transformations.

The order of the transformations is important, given in a list as $\{R \ S \ T\}$ (rotation, scaling and translation).

Interface:

In the example the point (2,5) is rotated clockwise 45° about the point (2,2) first, then a translation of 2 in the x-direction and 6 in the y-direction. There is no scaling, indicated by 1 1 for the scaling factors.

Rem. No translation gives Tx = Ty = 0 and no rotation gives $\Theta = 0$.

3 D transformations (three dimensions)

Translation

The interface is the same as 2D translation, with one extra coordinate and one extra translation.

Scaling

The interface is the same as 2D scaling, with one extra coordinate and one extra scaling.

Rotation

3D rotation is somewhat more complicated than in two dimensions. The rotation axes has to be specified, i.e angles relative the coordinate axes and a point.

Interface:

RAD {HOME }	PRG
: XYZ	2 5 4
:X0 Y0 Z	0: 221
: αβγ	45 45 60
: O	45:

2. Linear algebra 23

The example rotates the point (2,5,4) about an axes through the point (2,2,1) and with angles relative the x-, y-, and z-axes equal to 45° , 45° and 60° .

Concatinating (mixed)

The same interface as in the 2D case, but the rotation axes now has to be specified.

Interface:

RAD {HOME }	PRG
: X Y Z:	2 5 4
:X0 Y0 Z0:	221
:Sx Sy Sz:	346
:Tx Ty Tz:	252

In the example the point (2,5,4) is rotated about the given axes and then the specified translation and scaling is carried out.

Eigenvalueproblems

Here you may find the eigenvalues and the eigenvectors of a matrix, diagonalize a matrix and solve a system of linear differential equations.

Eigenvalues

The eigenvalues of a matrix are determined by the equation $A*X = \lambda *X$, where A is the matrix and X a column vector (eigenvector). λ is called the eigenvalue.

Interface:

RAD {HOME }	PRG
A	$X = \lambda X$
Det	$(\mathbf{A} \cdot \mathbf{\lambda} \cdot \mathbf{I}) = 0$
:PartAns Y/N:	Y

Now the matrix has to be specified, and you may put it into the symbolic matrix writer:

The example finds the eigenvalues of the matrix:

$$\begin{bmatrix}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -5 & -2
\end{bmatrix}$$

The matrix has an eigenvalue with multiplicity 2 ($\lambda = 2$).

Eigenvectors

A matrix has infinite many eigenvectors because the system of equations that determines the vectors is indefinite. The eigenvectors are given in terms of arbitrary parameters. A set of eigenvectors will normaly be linear independent even if the eigenvalues have multiplicity greater than 1. But this is not always the case.

Interface:

The matrix now has to be put into the matrix writer. We use the same matrix as in the determination of eigenvalues. By choosing PartAns Y the indefinite system of equations that determines the eigenvectors will be given. We see that only two of the eigenvectors are lineary independent (only one arbitrary parameter c).

Diagonalization

For a matrix A we can write:

$$\mathbf{D} = \mathbf{K}^{-1} * \mathbf{A} * \mathbf{K}$$

Here K is a matrix composed of the eigenvectors of A which have to be lineary independent. D is a diagonal matrix with the eigenvalues on the diagonal. If the eigenvectors are

```
2. Linear algebra 27
```

lineary dependent (as in the example of eigenvectors), then the matrix cannot be diagonalized (not diagonalizable).

Interface:

The matrix has to be put into the matrix writer:

The output is the matrices K and D. The matrix K^{-1} may be found by inverting K.

Rem. If intermediate results are wanted, you may look at the problems of finding eigenvalues and eigenvectors separately.

System of differential equations

Here a set of linear, homogenous differential equations with constant coefficients are solved by using the method of diagonalization.

Interface:

$$\begin{array}{ll} \mbox{RAD} & \mbox{PRG} \\ \mbox{HOME} \\ \mbox{ } \mbox{ } \\ \mbox{ } \mbox{ } \$$

The following system is solved:

dx/dt = -4x + 5y + 5zdy/dt = -5x + 6y + 5zdz/dt = -5x + 5y + 6z

The output contains the constants C1, C2 and C3 and the independent variable is t.

2. Linear algebra 29

Rem. If intermediate results are wanted, you may look at the problems of finding eigenvalues and eigenvectors separately.

Under Info some information about the solving strategy is given.

Vector spaces

A vector space is a collection of vectors relative a basis where certain operations on them are defined. A basis is a set of linear independent vectors from the space. In an orthogonal basis the vectors are mutually orthogonal (inner product equals zero).

Basis?

This routine examines whether a set of vectors in the space is linear independent. The vectors are put into the matrix writer as rows and the output is logic 0 or 1. Interface:

The example examines whether the vectors in \mathbf{R}_3 {466}, {1 32} and {-1-5-2} are lineary independent and then form a basis in \mathbf{R}_3 (three dimensional vector space).

Norm

Here the length or absolute value is calculated. The input vector is $\{v_1 v_2 v_3....\}$ and the output is a number or an expression if the vector is symbolic.

Norming

A vector is transformed into an unit vector $e = V/NORM(V).V = \{v_1 v_2....\}.$

Scalar product (inner product)

The scalar product of two vectors is calculated. Symbolic vectors are possible.

Orthogonalization

An orthogonal basis is calculated with an arbitrary basis as a starting point using the Gram-Schmidt process.

2. Linear algebra 31
The basis $b1 = [4 \ 6 \ 6]$, $b2 = [1 \ 3 \ 2]$ and $b3 = [-1 \ -5 \ -2]$ is given in **R**₃. The basis is not orthogonal, but the routine makes it orthogonal.

Rem. Symbolic vectors are not possible

Orthogonal?

The routine examines whether a matrix is orthogonal. If the row vectors building up the matrix form an orthogonal basis, then the matrix is orthogonal.

Orthonorming

The routine is norming an orthogonal basis.

Vector in new basis

Given a vector V_{B1} , i.e. relative a basis B1. A new vector relative a basis B2 is calculated.

The vector {1 4 2} relative the basis { [1 2 3], [3 1 2], [2 2 5]} is transformed to the new basis {[113],[4 1 2],[2 6 5]}.

2. Linear algebra 33

Transformation matrix in new basis

A matrix defines a linear transformation in a vector space relative the "natural" basis. This routine calculates a new transformation matrix relative a new basis. The "natural" basis is $\{[1 \ 0 \ 0], [0 \ 1 \ 0], [0 \ 0 \ 1]\}$ in **R**₃.

Interface:

The transformation matrix $\{\{1 \ 1 \ 0\} \{0 \ 1 \ 1\} \{1 \ 0 \ 1\}\}$ in natural basis defines the transformation:

$$L(x_{1},x_{2},x_{3}) = (x_{1} + x_{2},x_{2} + x_{3},x_{3} + x_{1})$$

The example calculates the new transformation matrix relative basis $\{[1 1 1], [0 1 1], [0 0 1]\}$. Symbolic elements are possible in the matrices.

Laplace transforms

3

Laplace transforms are used for solving differential equations and can, contrary to other methods, deal with functions f(t) which are discontinous in the equation

$$a*y'' + b*y' + c*y = f(t)$$

Discontinous f(t) may be composed by using the Unit Step function u(t-a) defined as:

u(t-a): IF t a < THEN 0 ELSE IF t a > then 1 END END

This function is not implemented in CALCULUS in other ways than as a symbol, and the user has to make a program to define it for evaluation.

Laplace transform

The Laplace transform of the following functions may be found:

- $f(t) = t^n, n > -1$
- f(t) = Sin(a * t), a arbitrary
- f(t) = Cos(a * t), a arbitrary
- $g(t) = f(t) * e^{at}$, a arbitrary
- $g(t) = f(t) * u(t-a), a \ge 0$
- $g(t) = f(t)*u(t-a)*e^{bt}$, $a \ge 0$ b arbitrary
- h(t) = g(t) * t
- Linear combinations of theese functions

Interface:

F(s) = L(f(t)):t s: t s :f(t): 't^2*u(t-1)'

The example calculates the Laplace transform of $f(t) = t^{2}u(t-1)$.

3. Laplace transforms 37

Rem. If CALCULUS cannot find the Laplace transform an error message is given (the transform does not exist or its not implemented)

Inverse Laplace transform:

The inverse transform is calculated. The types of functions which can be inverted are the transforms of the functions listed on page 37.

Interface:

RAD {HOME }	PRG
	f(t) = InvL(F(s))
:s t: :F(s):	s t '(1- $e^{-\pi s}$)/(s ² +1)'

The example calculates the inverse transform of $F(s) = (1-e^{-\pi s})/(s^2+1)$.

Inverse L Partial fractions

If the denominator of F(s) is of second degree and may be factorized in first degree factors or of a higher degree than 2, the denominator has to be split into partial fractions.

Intermediate results (Partial Answers) is possible to show the splitting into partial fractions.

Rem. If the transformation does not exist the error message "does not exist" is given. If the expression is too complicated the message "not rational" may appear. The expression may then be split up.

39

RAD {HOME }	PRG
F(s) = I	P(s)/Q(s)
InvL(F	(s)) = f(t)
: ts:ts	
:PartAns Y/N:Y	

In the example $F(s) = e^{-\pi s}/(s^2-1)$ is split into partial fractions and then transformed. The shift $e^{-\pi s}$ will be taken care of before the splitting into partial fractions.

Differential equations (initial value problem)

Laplace transforms are suitable for solving initial value problems, in particular when the "right hand side function" is discontinous.

The answer is given in the form Y(s) = P(s)/Q(s)/R(s) which has to be transformed into P(s)/((Q(s)*R(s))) before the routine for partial fractions is used to solve the problem.

Interface:

The equation y'' + 3y' + 2y = Sin(t) with initial conditions y(0) = 0 and y'(0) = 1 is transformed.

Probability

In this chapter of probability theory we will look at unlike discrete probability distributions in addition to the normal distribution which is continous. For the discrete distributions both the cummulative probability and the point probability may be calculated.

For the discrete distributions and in connection with pure combinatorial calculations, we have distinguished between with and without replacement.

Rem. Probabilities must be less then or equal to 1 and greater than or equal to 0.

4

Without replacement

Without replacemnet means that we dont put the drawn element back again.

Combinations, not ordered

This routine calculates the number of possibilities to draw k elements of total n without replacement and without regard to order.

Interface:

The example calculates the number of possibilities to draw 3 elements from total 15 elements without regard to order.

Combinations, ordered

If the order is important you will have to use this routine. The same elements in different orders will then be separate events.

Interface:

The example calculates the number of combinations when drawing 3 elements from 15 with regard to order.

Hypergeometric distribution

Here the probability of drawing exactly k X'es from a population of n when a elements are drawn at a time without replacement is calculated. The probability for the X to be drawn is p.

RAD {HOME }	PRG	
	k X'es of n	
	draw a $P(X) = p$	
:n a:	20 8	
:p k:	0.6 3	

The probability that 3 elements have the mark X when drawing 8 elements of total 20 is calculated. The probability of X to occur is 0.6. If k > a or p > 1 the probability is 0.

The example may be "drawing" individuals from a population of 20 where 12 is women (p = 12/20 = 0.6). The probability that of 8 "drawn" individuals 3 is women is calculated.

Hypergeometric distribution function

The cummulative probability is calculated, i.e. the probability that maximum k elements are drawn. This is the sum of the probabilities of k = 0, k = 1, k = 2 and k = 3.

RAD {HOME }	PRG
	max k X'es of n
	draw a $P(X) = p$
:n a:	20 8
:p k:	0.6 3

The example calculates the probability that 3 elements is drawn with the mark X (p = 0.6) from a total of 20 by drawing 4 at a time or 1 by 1 without replacement.

With replacement

Here the elements are replaced by drawing so that the probability is the same every time an element is drawn (unconditional drawing).

Combinations, unordered

This routine calculates the number of combinations of drawing k elements from n without replacement, without regard to order.

Here the probability of drawing 3 elements of total 15 is calculated. Order is indifferent.

Combinations, ordered

If the order is critical, this routine has to be used. The same elements in different orders are separate events.

Interface:

4. Probability 47

The example calculates the number of possibilities with the same figures as in the previous example, but now with regard to order.

Binomial distribution

The routine calculates the probability of drawing exactly k elements with the mark X of total n, where the probability of X itself is p. Independent trials (with replacement).

Interface:

RAD {HOME }		PRG
		k X'es of n
		P(X) = p
:n p:	10	0.6
: k:	3	

The probability of drawing 3 elements with the mark X when X has the probability of 0.6 is calculated. The number of independent trials is 10. p > 1 gives an error message.

The example may be the production of glasses where the probability of first assortment is 0.6. If 20 glasses are produ-

ced, the example calculates the probability that 3 glasses are first assortment.

Binomial distribution function

The cummulative probability is calculated, i.e. the sum of the probabilities for k = 0, k = 1, k = 2 and k = 3 if k = 3.

Interface:

The example calculates the probability that maximum 3 elements have the mark X (p = 0.6) in 10 independent trials.

Negative binomial distribution

This distribution gives the probability of k failures before the r'th success in a series of independent trials each of which the probability of success is p.

The probability of 15 failures before the 10th success when the probability of success is 0.25 is calculated.

The example may be the drawing of cards and the calculation of the probability of drawing 15 cards that are not clubs before the 10th club.

Negative binomial distribution function

This routine calculates probability of maximum k failures before the r'th success.

The probability of maximum 4 failures before the 5th success is calculated. Probability of success is 0.4.

The example may be the drawing of balls from a hat that contains 40% white balls. The probability of finding 5 not white balls before drawing maximum 4 white balls is calculated.

Pascal distribution

The probability of the r'th success in k'th trial in a series of independent trials is calculated.

RAD {HOME }		PRG	
		X rth time kth	
		trial $P(X) = p$	
:r p:	5	0.5	
: k:	8		

The probability of finding the mark X 5th time in the 8th trial is calculated.

Rem. The geometric distribution is a special case with r = 1.

Pascal distribution function

The probability of the r'th success in maximum k trials is calculated. The probability of success is p.

The example calculates the probability of finding the mark X the 5th time in maximum 8 trials (Tossing a fair coin we find the probability of finding the 5th head in maximum 8 trials).

Normal distribution

This is a continous distribution and only cummulative probabilities are calculated.

The probability that a random variable is less than or equal to 1 is calculated. The mean and the standard deviation is 0 and 1.

> Rem. $P(a \le x \le b) = P(x \le b) - P(x \le a)$ and $P(x > a) = 1 - P(x \le a)$

Poisson distribution

The Poisson distribution is used as a model when we are interested in events within intervals of time or other variables.

The example calculates the probability that a random variable X is exactly 5 when the mean is 4.

Poisson distribution function

Interface:

4. Probability 55

The probability that X is less than or equal to 5 is calculated, the mean is 4.

Info

Here information about probability and some distributions is given.

Binomial coefficients

Binomial coefficients Bnk = n!/((n-k)!*k!) are calculated from k = 0 to k = n and put in a list.

Interface:

RAD {HOME	PRG
	Binomial coeff.
	Bnk = n!/((n-k)!*k!)
	k = 0n
:n:	5

The example calculates {Bn0 Bn1 Bn2 Bn3 Bn4 Bn5}.

4. Probability 56

Statistics

We will focus on some statistical methods and description of samples. Within description of samples we will use discrete tables and class tables (discrete and class statistics). You can convert from class statistics to discrete statistics by using the mean value of the intervals as the discrete value.

Statistical methods are represented by confidence intervals and hypothesis testing for distributions. The "best" fit for the normal distribution uses the method of least squares.

The normal distribution, kji-square distribution and student-t distribution are included and its possible to find both the probability and the value of the random variable for given probability.

Distributions

Normal distribution

The normal distribution gives $p(X \le x)$ for given x-value. The mean μ and standard deviation σ have to be known.

Interface:

RAD {HOME	}				PRG	
		No	rmal d	listribu	tion	
par	am	.μ	and σ g	gives P($(X \leq x)$	
:μ σ:	0	1				
: x:	1					

 $P(X \le 1)$ for $\mu = 0$ and $\sigma = 1$ is calculated.

Inverse normal distribution

The routine finds the value of the random variable x with given probability p, μ and σ are known.

The value of x with $P(X \le x) = 0.6$, $\mu = 0$ and $\sigma = 1$ is calculated.

Kji-square distribution

The kji-square distribution is used to find confidence intervals and in connection with fitting a distribution to a sample.

Interface:

The example calculates $P(X \le 5.6)$ where X is kji-square distributed with 3 degrees of freedom.

Inverse kji-square

The value of x for given probability is calculated.

Interface:

RAD {HOME }	PRG
Kjisq	uare distr.
degrees of fr	eed. K $P(X \le x) = p$
:K p:3 0.85	

The example calculates the value of X so that $P(X \le x) = 0.85$ with 3 degrees of freedom.

Studen-t distribution

This distribution is used to find confidence intervals in BAS MAII.

 $P(X \le 7.5)$ with 3 degrees of freedom is calculated.

Inverse student-t

This routine calculates the value of the random variable x.

Interface:

The value of x is calculated so that $P(X \le x) = 0.85$ with 3 degrees of freedom.

Confidence intervals

Confidence intervals in connection with the normal distribution are calculated for the mean μ and variance σ^2 .

> Rem. Mean value and standard deviation for a sample may be calculated under this menu. These values may be used as point estimates for the parameters in the distribution function.

Confidence interval for the mean μ , given value of σ . For known σ we may use the normal distribution to find the value c so that $F(c) = P(x \le c) = 1/2(\gamma + 1)$ with confidence level γ . The interval is given in the form $[a \le \mu \le b]$.

The interval is calculated from a sample [[xi]] and the mean value has to calculated in advance by using the menu option: Mean value.

The example calculates the confidence interval for the mean in the normal distribution, based on a sample [[xn]] with mean 3 and confidence level 90%. The number of values in the sample is 20 and the normal distribution has the standard deviation 1.12.

Confidence interval for the mean μ , unknown σ

If σ is not known the estimate s for standard deviation from the sample is used. To find the value of c so that $F(c) = 1/2(\gamma + 1)$, the student-t distribution is used..

The interval is calculated from a sample [[xi]] with n values and the mean and the standard deviation of the sample has to be calculated in advance.

The confidence interval for the mean is calculated based on a sample with 20 values, standard deviation 1.2, mean 3 and with confidence level 90%.

Confidence interval for variance, μ is unknown

The standard deviation of the sample has to be calculated first (separate menu option). The calculation is based on the kji-square distribution.

The example calculates the confidence interval for σ^2 based on a sample with standard deviation 1.2, confidence level 90% and 20 values in the sample.

Sample \overline{x} , s, n and median

The mean value, standard deviation, number of values and the median are calculated. The table is stored as $U\Sigma DAT$.

Interface:

The mean value, standard deviation, number of values and the median for the sample [[2 8 7]] are calculated.

Fitting

By using a sample of values, the "best" fit for the normal distribution is calculated, i.e. estimates for the mean μ and standard deviation σ is calculated. Hypothesis testing for assumed distribution is done (kji-square goodness of Fit).

The sample has to be given as a class statistic with given frequences (se description of samples).

In order to calculate estimates for the distribution parameters a discrete statistic has to be stored as ΣDAT (see separate menu option).

Normal distribution

A "best" fit based on the least squares is calculated. The sample has to be stored as a class statistic ($K\Sigma DAT$) in advance.

When $K\Sigma DAT$ is stored by using a separate menu option, there is no more input data necessary. Estimates for μ and σ will be calculated.

Hypothesis normal distribution

The class table is stored by using the separate menu option. The separation in different classes is done with minimum 5 values in each class. Upper and lower limit has to be ∞ and $-\infty$ and you can achieve this by using big numbers as the lower and upper limit for the class intervals.

For the calculation of mean and standard deviation as estimates for the parameters the discrete statistic has to be stored with known frequencies (ΣDAT).

Interface:

RAD {HOME }	PRG
	Normald. n values
	Level α Num.est. r
:μσ:	360 26
:α n r:	0.05 100 2

The example is testing whether the sample K Σ DAT may be fitted to a normal distribution with significance level 5%. μ and σ are estimates and r, number of estimates, is 2. Number of values in the sample is 100.
The Kji-square distribution is used and the figure kij 0^2 is tested against the theoretical value c, $P(X \le c) = 1 - \alpha$, where α is the significance level. If kji $0^2 \le c$, the hypothesis is not rejected.

Hypothesis binomial distribution

The class statistic is stored and the parameter p is, if necessary, estimated as $p = \mu/n$.

Interface:

The example is testing whether the sample may be fitted to a binomial distribution with significance level 5%. p is estimated (0.5) and the value of r is 1. Number of values is 50.

Hypothesis Poisson distribution

The class statistic is stored and the parameter μ (mean) is, if necessary, estimated.

Interface:

RAD {HOME	PRG				
	Poissond. n values				
	Level α Num.est. r				
:μα:	56 0.05				
:n r:	100 1				

The example is testing whether the sample may be fitted to a Poisson distribution with significance level 5%. μ is estimated and r = 1. Number of values in the sample is 100.

Class tabel (class statistic)

A class table is a double list $\{\{Ik\}\{fk\}\}\$ where the first list contains the bounderies of the class intervals and the other list contains the number of values in the separate intervals.

Interface:

Interval limits are 3,4,6 og 7 and number of values in the intervals are 2,3 and 4.

Mean value and standard deviation based on frequency table

If the data is stored as a frequency table, we cannot use the ordinary sample routine to find the mean etc. The data is stored in Σ DAT. Use F for frequency table.

Storing discrete table

The sample is stored as Σ DAT. The data is put directly into the matrix writer where the first column contains the values and the second column the frequencies.

Description of samples

In this menu some calculations on discrete data and class tables from samples are done. This includes mean values, standard deviation, relative frequencies, histograms and frequency polygons.

Unsorted data

The values in a matrix are counted and sorted and a frequency table is stored as ΣDAT .

Discrete table **SDAT**

Here the values are stored in the first column and the frequencies in the second. In two variable statistics the second column will be the data for the second variable.

Classes K_ΣDAT

A class table is a double list $\{\{Ik\}fk\}\}$ where the first list is the limits of the intervals and the other the numbers in each interval.

Interface:

RAD {HOME }	PRG
	Class table
:{{Ik}{fk}}	$: \{ \{3467\} \{ 254\} \}$

The limits of the intervals are 3,4,6 and 7 and the number of values is 2,3 and 4. The table is stored as $K\Sigma DAT$ for further uses.

Cummulative table.

The routine is calculating a table from a discrete table (ΣDAT) . The new table will include relative frequencies, (column 4) cummulative frequencies (column 3) and cummulative relative frequencies (column 5).

K∑DAT→∑DAT

This routine transforms a class statistics into a discrete statistics by using the mean value of each interval as the representative value. The table is stored as Σ DAT. Input data is $K\Sigma$ DAT which is stored in advance.

Σ **DAT x og s**

The mean value and the standard deviation is calculated based on a frequency table (F) or a two variable statistic table (D).

Interface:

RAD {HOME }	PRG }					
F	is frequency tab.					
D is two var. stat.						
: F or D: I	,					

The sample has to be stored in Σ DAT and the choice D will give the mean and standard deviation for each variable in a two variable statistics.

Rem. Under menu confidence intervals and STAT menu the mean and standard deviation for simple samples are calculated (one dimensional tables).

Histogram K_ΣDAT

Creates a histogram based on the class table $K\Sigma DAT$ which has to be stored in advance.

Frequency polygon K_∑DAT

Creates a cummulative frequency polygon from $K\Sigma DAT$.

Linear regression and correlation

A straight line is fitted by the use of least squares from the table Σ DAT. The line will be given as Y = aX + b, where X is the data in the second column in Σ DAT.

The correlation coefficient is a measure of the goodness of the fit and a value between -0.7 and 0.7 is a good fit.

Rem. ΣDAT is now a two variable statistics table and not a simple statistics frequency table.

6

Fourier series

Under Fourier series in symbolic form one can find the Fourier series of polynomials up to 2nd degree and a couple of other possibilites. The numeric series for a given number of terms may also be found. The input function may be bifurcated with different expressions in two different intervals.

The Fourier series are generally given as:

$$f(x) = a0 + \sum_{n=1}^{\infty} an * Cos(2*\pi * x * n/T) + \sum_{n=1}^{\infty} b_n * Sin(2*\pi * x * n/T)$$

T is the period and the coefficients are given:

$$a0 = 1/T \int_{T/2}^{T/2} f(x) dx$$

an = 2/T $\int_{T/2}^{T/2} f(x) * \cos(2*\pi * x * n/T) dx$
 $-T/2 = T/2$
bn = 2/T $\int_{T/2}^{T/2} f(x) * \sin(2*\pi * x * n/T) dx$
 $-T/2$

6. Fourier series 75

BAS MAII is able to find the series of the following types of functions:

• f(x) = kx + b

•
$$f(x) = kx^2$$

- f(x) = kSin(ax)
- f(x) = kCos(ax)
- $f(x) = ke^{ax}$

Fourier series, symbolic form

The expressions for a0, an and bn are found for given f(x). The series itself must be set up by the user. The function f(x) may be given as two expressions in two intervals:

$$f(x) = \begin{cases} f1, a < x < b \\ f2, c < x < d \end{cases}$$

The functions are given as $\{f a b\}$ where a and b are defining the interval or bifurcated as $\{f1 a b f2 c d\}$.

Rem. If the function is split in more than two intervals, BAS MAII may be used on two and two (or two plus one) intervals. Interface:

RAD {HOME }	PRG				
Input cont					
:{f a b}:	{-1 '-π' 0 1 0 'π'}				
	i andre andre andre andre a				

The example calculates the Fourier coefficients of

$$f(t) = \begin{cases} -1 & -\pi < t < 0 \\ 0 < t < \pi & T = 2\pi \end{cases}$$

The answer is given with intermediate results (indefinite integrals are given).

Fourier series numeric results

A specified number of terms are calculated, but in terms of the independent variable. The input is the same as in symbolic form, but the number of terms has to be included and also the start and stop of the summation index. The integration is numeric and intermediate results are not given.

Interface:

$$\begin{array}{c} \text{PRG} \\ \text{HOME} \end{array} \\ f(t) = a0 + \Sigma(m,n)an*COS(\omega*t) + \\ \Sigma(m,n)bn*SIN(\omega*t) \quad \omega = 2*\pi*n/T \\ \vdots \quad t \ T: \ t \quad '2*\pi' \end{array}$$

$$\begin{array}{c} \text{RAD} & \text{PRG} \\ \hline \\ \text{HOME} \end{array} \\ \hline \\ \text{Input cont} \\ \vdots & \text{m n: } 0 \ 2 \\ \vdots \{ f \ a \ b \ ... \} \vdots \ \{ -1 \ ' - \pi' \ 0 \ 1 \ 0 \ ' \pi' \} \end{array}$$

6. Fourier series 78

The first three terms are calculated. The terms n = 0 and n = 2 are 0.

Rem. The accuracy of the integration is dependent of the choice for N FIX on the calculator

Half range expansions

In many situations there is a practical need to use Fourier series in connection with functions that are given merely on some definite interval. They may be done periodic by an extension with the period as the double interval. The extension may be even or odd by choice (E/O).

RAD {HOME }	PRG			
	Input cont			
:{fab}: {-	$\{1, '-\pi, '0\}$			
: O/E:	0			

Here f(t) = -1, $-\pi < t < 0$ is given. An odd extension is marked by O.

7

Linear programming

The maximum or minimum of a linear function in several varaibles are calculated. The constraints are given as inequalities ("less then"). The routine does not handle degeneracy or solutions constrained to be natural numbers.

> Rem. If such constraints are given and a decimal number is the answer, one cannot simply round off to nearest natural number. This will not always give the optimal solution.

The algorithm used is the simplex method and it finds only the minimum of an object function. Any problem can be written as a minimum problem. If a maximum value of f(x) is going to be found, one may simply change the sign and find the minimum of -f(x). The constraints are defining the constraint matrix A. They are assumed to be of the "less then" type, but if you have got them as "greater then" type you may simply multiply both sides with -1 and change the inequality sign.

If we are going to maximize f(x) = x1 + 2x2 and one of the constraints are x1-2x2 > 2, then minimize -x1-2x2 with the constraint -x1 + 2x2 < -2.

All independent variables are assumed to be positive or zero.

Rem. The independent variables have the symbol xi regardless of the symbols used in a given problem.

RAD PRG {HOME }				
m	$in f(X) = C*X A*X \le B$			
:B[]: [85]				
:C[]:	[-25-7-24]			

The example solves the problem of finding the maximum of

f(x1,x2,x3) = 25x1 + 7x2 + 24x3 under the constraints

 $3x1 + x2 + 5x3 \le 8$ $5x1 + x2 + 3x3 \le 5$ $0 \le x1, x2, x3$

C vector is the object function f, B vector is the right side of the constraints and A is the constraint matrix (left side). The solution is given as -39.5 which means that the maximum is 39.5.

83

Numerical methods

This chapter is emphasized on numerical methods which are common in the education of mathematics. They form a basis of topics usual in the numerical curriculum, but not all of them are used in pratical work. The version GX/G of HP 48 includes some routines for solving differential equations with a high degree of accuracy and may be used in practical applications.

Zeros

Equations of 1 unknown, 2 unknowns and 3 unknowns are solved numerically. Numerical solutions of equations are used where other methods are impossible. Different kinds of methods may be used and intermediate answers are given in the solution vector $[x_0 x_1.....x_n]$ where x_n is the final answer. The vector may be viewed in the matrix writer (arrow down). TOL

The input data requires the number TOL, tolerance. TOL has to do with the accuracy of the final solution. The calculation stops when the absolute value of the difference of two successive solutions divided with the solution is less than TOL.

STOP:
$$ABS(x_n-x_n+1)/ABS(x_n+1) < TOL$$

If this cannot be achieved the method is said to diverge with this tolerance and we may choose another tolerance or adjust the starting point x_0 . The programs stop after a specific number of iterations in all cases and the notion "diverge" has to be understood in this context.

Bisection method

We are going to solve the equation f(x) = 0, where f is a given function. The input is an interval which contains the solution (use f.x. a graphical plot to find the interval). By successive bisections of the interval in such a way that the solution lies in the interval chosen, we will always find a solution. The error will maximum be the width of the last interval. The advantage of the method is that it will always converge, but it is a slow method (many calculations). Interface:

RAD {HOME }	PRG				
I	Bisection $f(x) = 0$				
: f:	'x-COS(x)'				
: x x0:	X 0.5				
: x1 TOL:	1 1E-2				

Equation	: x-Cos(x) = 0
Starting interval	: [0.5 1]
Tolerance	: 0.01
The result is a vector	with 8 elements and 8 calcualtions
are necessary	
Final solution	: Last element of vector
	$x_9 = 0.74$

Fixed point iteration

Fixed point iteration is somewhat special because there is an infinite number of ways to write the equation, but only one is the best. The equation is written in the form g(x) = x. The equation x-Cos(x) = 0 may obviously be written Cos(x) = x, but this is necessarily not the best way (fewest iterations).

Interface:

	
· · · · · · · · · · · · · · · · · · ·	
0	
0 1	
91	
or	
01	
01	
	_
	_
T -1 00	
	11
Toloropoo · 00	1
Tolerance : 0.0	1
Tolerance · 0.0	1
Tolerance · 0.0	1
Tolerance : 0.0	1

Secant method

This method is faster than the two earlier methods. New x-values are calculated according to the formula:

$$X_{n+1} = X_n - \frac{X_{n-1}}{f(X_n) - f(X_{n-1})}$$

To assure that the solution lies in the interval $[X_{n+1},X_n]$ and in this way be able to control the error, we redefine $X_n = X_{n-1}$ if $f(X_{n+1})*f(X_n) > 0$. The method make use of the two latest x-values, but only one new calculation of the function value is necessary for each step.

Interface:

· · · · · · · · · · · · · · · · · · ·			~ / \ ·	
Haustion		• • •	AC(V)	
			-05(A) - 0	
Colution		·····	A /	
201111011		· · · · · · · · · · · · · · · · · · ·		
MOIGHTOIT				
~		· · · · · · · · · · · · · · · · · · ·		
Ntarting noi	nt •	VA === 1	1 7 V1 ===	
otat this por				
······································		· · · · · · · · · · · · · · · · · · ·		
		·····		
Lalaranaa		••••••		
IUICIAIICC				

Newton's method

This method usually needs the fewest iterations for a given tolerance, but compared to the secant method two calculations of function values are necessary for each step (f and f'). The method is however sensitive for the choice of starting point. Interface:

	 	T	
5 A 11 1 1 A A			
	 	• Francisco e e e Francisco e e e e e e e e e e e e e e e e e e e	
The second			
	 	 	

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}$$

Newton's method, 2 unknowns

Here 2 equations with 2 unknowns are solved. The method is an extension of the problem with one unknown and solves:

F(x,y) = 0, G(x,y) = 0, starting point $[x_0,y_0]$.

The iteration formula is

$$[X_{n+1}, Y_{n+1}] = [X_n, Y_n] - J^{-1} [F(X_n, Y_n), G(X_n, Y_n)]$$

J is the Jacobian matrix of the system.

Interface:

System of equations	$x^{2}+y^{2}=1$
Starting point	2x + y = 1 : $x_0 = 1$
Tolerance	y ₀ = 0 : 0.01

8. Numerical methods 90

Newton's method, 3 unknowns

Here 3 equations with 3 unknowns are given.

Interface:

 System of equations
 : $x^2 + y^2 + z^2 = 1$

 x + 3y + 2z = 5

 $x^3 + yz = -1$

 Starting point
 : $x_0 = 3 y_0 = 2 z_0 = 0$

 Tolerance
 : 0.01

Differential equations

Some of the methods chosen for the numerical solution of differential equations are of little practical importance (too inaccurate), but are however important in relation to the education of the stuff because they show some basic and important principals. This will be the case for specially Eulers method (RK1). Both first order and second order equations are handled. First and second order equations are written, respectively:

$$Y' = F(X,Y)$$
 and $Y'' = F(X,Y,Y')$

The answer is given as a matrix on the stack:

1st column	=	Х
2nd column	=	Y
3rd column	=	Y'

Approximations to Y-values are called U, U₁,U₂...,U_n. Starting point is (X_0, Y_0) , U₀ = Y₀ (1st order) and (X_0, Y_0, Y'_0) , U₀ = Y₀ (second order). U₁, U₂,... are calculated for X-values with the step length h, X₁ = X₀ + h, X₂ = X₁ + h.... X_N = X_{N-1} + h.

1st order equation, Euler's method

New U-values are calculated according to the formula:

$$U_{n+1} = U_n + h * F(X_n, U_n)$$

1st order RK2

RK generally means Runge-Kutta methods and RK2 is a development of Euler's method, the so called Heun's method. New U values are calculated according to the formula:

$$U_{n+1} = U_n + (k_1 + k_2)/2 * h$$

k_1 = F(X_n, U_n), k_2 = F(X_n + h, U_n + h * k_1)

	 · · · · · · · · · · · · · · · · · · ·	
	 and the second	
a lot internal local and internal internal local loc	 	
the state is a state with the state of the start and the state of the		

1st order RK4

This is a more accurate method than the two past methods and new U values are calculated according to the formula:

$$U_{n+1} = U_n + h^*(k_1 + 2^*k_2 + 2^*k_3 + k_4)/6 = U_n + h^*k$$

$$k_1 = F(X_n, U_n), k_2 = F(X_n + h/2, U_n + h/2^*k_1)$$

$$k_3 = F(X_n + h/2, U_n + h/2^*k_2),$$

$$k_4 = F(X_n + h, U_n + h^*k_3)$$

	100			000	2023																.00	000	200					2000			-	000	2003								20040			
÷	÷.,																									ंक		100 A		11 C	. /	1.00	÷. 7										800	
: L	- 1	-	1.1	1	1.	3	n																				×		-		4 m	1.11	v.							200	2000			
	24		u	а	61	υ.																								1.1			.											
33	33 s		33	70.	333	T . (533																202	1.00			20		200	100	200	0.77	1975											
				000	999	000			222																	200	880			200														
	10			100	999				ب							993								40	÷		- 22	-	<u>.</u>	- C			000	100									000	
		-	-	64	-		-	-								222		223							-			11	88	v	•	1.00		22				2023	2000					
1.0) L	d		11	H	Е.			38		100					202						200			48	. •		•			11			100									200	
17			T. (0	г					0.00			200		000							7 0			000			- TT-	v	000											2003	
200	88	800		888		300	- Te	888	999				992			200											896	888		889	900								2002					
														200		- 33			88							<u></u>	-					2023					 000							
8 I.		-	-		1	1.0	-		-	•																	÷.	-		200	000													
	<u> </u>	81		11	ıצ	688																		200		1	× :	-		800	888		882			200							888	
					10		-											88											800													6000		
																200																												
		82	888	÷.,		886	993		200		88				202			28.7		200				90		1		888	~	÷.,	200						888							
	. 4	6	-		-	-	C		100			000												•	2003			<u></u>	11	100	99.9		333		888	900	 2003			888	9999		600.	
) L	C	U		C	11	R	LI.	100					200					88						333				U	2.2													8888	
			г	80			0		<u>.</u>															5 i i			200			<u> </u>	000													

2nd order RK4

A 2nd order differential equation is solved by using a method similar to that of 1st order equations and is written Y'' = F(X,Y,Y'). Here both Y and Y' are approximated incrementally by U and DU:

$$U_{n+1} = U_n + h^*(DU_n + (k_1 + k_2 + k_3)/6)$$

$$DU_{n+1} = DU_n + (k_1 + 2k_2 + 2k_3 + k_4)/6$$

$$k_1 = h^*F(X_n, U_n, DU_n)$$

$$k_2 =$$

$$h^*F(X_n + h/2, U_n + h/2^*DU_n + h/8^*k_1, DU_n + k_1/2)$$

$$k_3 =$$

$$h^*F(X_n + h/2, U_n + h/2^*DU_n + h/8^*k_2, DU_n + k_2/2)$$

$$k_4 = h^*F(X_n + h, U_n + h^*DU_n + h/2^*k_3, DU_n + k_3)$$

Equation		: Y'' = Y'	² -X	
Starting poin	nt	: $X_0 = 0$,	$Y_0 = 1, DY_0 =$	= 1
Ending poin	ıt	: X = 1 (r	ı = 10)	
Step length		: n=0.1		

Plot

This routine plots data given in a matrix with X-values (column 1) and Y-values (column 2). A graph of the solution of a differential equation may be plotted.

Phase plot

Y 'values are plotted against Y-values as independent variable. Input data is a matrix where Y values are column 2 and Y 'values are column 3.

Interpolation

In this chapter subjects important in education are stressed. Subjects like divided differences and Newton polynomials are then important to deal with.

Interpolation means to estimate values between a set of given values. This means to find a function fitting the given points exactly, but giving approximated values at points between. This is an actual matter even if the expression determining the points is known, because in some situations (e.g integration) we need a more simple expression than the given function.

Divided differences

Divided differences are calculated on the basis of tabulated values for X and Y. If a known function is given, the Y-values may be found by using the menu option Function table.

X0	Y 0	
X1	Y 1	D ₂₂ D ₃₃
X2	Y ₂	D ₃₂ D ₄₄ D ₄₃
X3	Y ₃	D42

Interface:

The output data is a matrix with 0-elements in open places in the difference table. Divided differences are defined by the formula:

$$D_{nn} = (D_{nn-1}-D_{n-1n-1})/(X_{n-1}-X_0), D_{11} = Y_0, D_{21} = Y_1$$

Function table

The function table for a given function may be found.

RAD {HOME }	PRG
Fun	ction table
: f X: 'EXP(: [X0]: [1 2 3 4	X)'X 56789]

Values of e^x for x = 1,2,3....9 are calculated. The function values and the X-values are given in separate vectors to match the input form in other routines.

Newton's interpolation polynomial

The polynomials are defined by fitting a polynomial of degree n to a set of n + 1 points. The polynomial is well known as first degree polynomial (linear interpolation and trapezoidal rule in numerical integration) and as 2nd degree polynomial (Simpson's rule, numeric integration).

 $P_n(x) = Y_0 + (x - x_0) * D_{22} + (x - x_0) * (x - x_1) * D_{33} + \dots$

The routine calculates the polynomial for given points $[X_0]$ in the interval $[x_0 x_n]$.

RAD {HOME }	PRG
	Newton
: [X]: : [Y] [X0]:	[1 2 3 4] [1 3 7 4] [1.2 2.5]

Values for x = 1.2 and x = 2.5 by using a third degree polynomial through the given points [X,Y] are calculated.

Lagrange polynomial

Lagrange polynomials are polynomials of degree n through n + 1 given points $[x_0...x_n]$. The formula for the polynomials:

$$L_n(x) = \sum_{k=1}^n l_k(x)/l_k(x_k) * Y_k$$
$$l_k(x) = (x-x_0) * \dots (x-x_{k-1}) * (x-x_{k+1}) * \dots (x-x_n)$$

Interface:

RAD {HOME	}			PRG	
		Lagr	ange		
: : [Y]	[X]: [X0]:	[1 [1 3 7	2 3 4] 4] [1.2	2.5]	

Values for x = 1.2 and x = 2.5 by using a third degree polynomial through the given points [X,Y] are calculated.

Cubic spline

Newton and Lagrange polynomials have the disadvantage that we may get big amplitude oscillations between the given points. To get a better solution we may use third degree polynomials through two and two points (n different polynomials for n + 1 points). The polynomials have continuous derivative and second derivative at the given points to get a smooth curve. The polynomials are given as

$$S_{k}(x) = Y_{k} + a_{k}(x-x_{k}) + b_{k}*(x-x_{k})^{2} + c_{k}*(x-x_{k})^{3} [x_{k},x_{k+1}]$$

The constants a_k , b_k and c_k in the interval $[x_k, x_{k+1}]$ may be found by using the conditions:

$$Y_k = S_k(x_k) = S_{k-1}(x_k), S_{k-1}'(x_k) = S_k'(x_k)$$

$$S_{k-1}''(x_k) = S_k''(x_k), k = 1...n-1$$

Interface:

Values for x = 1.2 and x = 2.5 by using third degree polynomials through the given points [X,Y] are calculated. The polynomials for the intervals [1 2] and [2 3] are used respectively.
Richardson extrapolation

Richardson extrapolation is used to improve a given approximation. If we are looking at the problem of finding the derivative by using a 2nd degree Newton polynomial with two different steplengths, we find:

$$f'(x) \approx (f(x+h)-f(x-h))/2h = D(h,0)$$

 $f'(x) \approx (f(x+2h)-f(x-2h))/4h = D(2h,0)$

By combining the two formulas we find

f '(x) \approx (4D(h,0)-D(2h,0))/3. This formula will give a better approximaton to the derivative and the process may be repeated. The general formula and tabular description will be:

$$D(h,k) = \frac{4^{k}D(h,k-1)-D(2h,k-1)}{4^{k}-1}$$

D(h,0)			
	D(h/2,1)		
D(h/2,0)		D(h/4,2)	
	D(h/4,1)		D(h/8,3)
D(h/4,0)		D(h/8,2)	
	D(h/8,1)		
D(h/8,0)			

1st derivative

The basis of the extrapolation will be the formula indicated above. The extrapolation is repeated 3 times each time with the half steplength. We then need 9 points to start with.

Interface:

The output is given as three vectors which are the columns 2, 3, and 4 in the tabular description of D(h,k). The last value is the best approximation to f'(X₅) where Y₅=6.

2nd derivative

The basis of the extrapolation is

f "(x)
$$\approx$$
 D2(h,0) = (f(x+2h)-2f(x) + f(x-2h))/4h².

Interface:

The output is given as three vectors which are the columns 2, 3, and 4 in the tabular description of D(h,k). The last value is the best approximation to f "(X₅) where Y₅=6.

Romberg integration

We may use extrapolation on the trapezoidal rule in numeric integration as a basis, and this will give Romberg integration.

1st column	: Trapezoidale rule
2nd column	: Simpsons method
3rd column	: Bools rule
	(2nd order Romberg)
4th column	: 3rd order Romberg

Interface:

We integrate over the points $Y_1 = 1$ to $Y_9 = 4$ and the output is the different columns in the tabular description for D(h,k), first vector is the trapezoidal rule, second vector is Simpsons formula a.s.o. The last value is 3rd order Romberg and this is the most accurate answer. 9

Solved problems

Linear algebra

In our first problem we will look at finding the determinant, inverse, diagonalization, eigenvalues and eigenvectors of the same matrix without typing the matrix several times. We then have to use the submenu MATR (and not the main menu). The matrix will be

$$\mathbf{M} = \begin{bmatrix} 2 & 4 & 7 \\ 4 & 1 & 1 \\ 6 & 1 & 9 \end{bmatrix}$$

Example 9.1

Find the determinant of matrix **M**. We type the matrix on stack level 1 by going right ahead writing [[247][411][619]] or by using the MatrixWriter (symbolic or numeric). We use the submenu MATR/DET and the answer is -118. The matrix will automatically be stored as MATR and also duplica-

ted on the stack. If you loose stack level 1 (the matrix MATR) for some reason, you may simply type MATR and push EN-TER to put it back on the stack again.

Example 9.2

Find the inverse of the matrix **M** now laying on the stack. By pushing INV we find the inverse matrix M^{-1} . The form is symbolic $\{\{\}\}$ in spite of the matrix beeing numeric. To get a numeric matrix from a symbolic form, just push SYM \rightarrow .

Example 9.3

Diagonalize the matrix M. Push DIAG (NEXT). The diagonalized matrix D is given on stack level 2 and the matrix K on stack level 1. $D = K^{-1*}M^*K$.

Example 9.4

Find the eigenvalues of the matrix **M**. This problem has in fact been solved in the last example, but we will now use the menu option EGV. Pick up the matrix and push EGV. The answer will be $\{-2.65, 14.40, 3.25\}$.

Example 9.5

In the last example we will calculate the eigenvectors. We proceed in the same manner as in the last examples and the

answer will be the eignevalues and a matrix where the corresponding eigenvectors are given (one of indefinitely many sets of eigenvectors).

Rem: Intermediate answers are not possible in the submenu MATR.

Example 9.6

Symbolic matrices. In BAS MAII the SymbolicMatrix writer is implemented. Symbolic matrices may then be handled. We may calculate the same problems as in examples 9.1-9.5, exept the calulation of eigenvectors and diagonalization where the matrix has to be numeric. We will manipulate the matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{x} & \mathbf{0} & \mathbf{2} \\ \mathbf{3} & \mathbf{0} & \mathbf{x} \cdot \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$

A symbolic matrix is written $\{\{x \ 0 \ 2\} \{3 \ 0'x-1'\} \{1 \ 1 \ 0\}\}$ and is put on stack level 1. The use of the programs is as in the last examples. The determinant is given as $6-(-1+x)^*x$. This expression may be simplified by using SYMBOLIC/EXPA/ COLCT on the calculator. The answer is then given as $6-x^2+x$.

Example 9.7

The program Linear diffequations under the menu Eigenvalue problems is able to solve a set of linear, homogenous diffequations. If the eqautions are not homogenous, they may be made so by a proper substitution of new variables. Let us look at the system

$$dx/dt = 5x + 8y + 1$$
$$dy/dt = -6x - 9y + 2$$

First we solve the stationary state (constant in time) by using dx/dt = 0, dy/dt = 0. This gives a system of ordinary equations.

$$5x + 8y + 1 = 0$$

-6x-9y + 2 = 0

The equations must be written

$$5x + 8y = -1$$
$$-6x - 9y = -2$$

This may be solved by using the menu option Linear equations (UPDIR/UPDIR/SHIFT RIGHT \uparrow /ENTER). But in a simple case like this we will use the intrinsic HP 48 matrix calculations directly. When using \rightarrow STK in the submenu the calculator HALTs and may be used independently of BAS MAII. The right side [-1-2] is put on stack level 2 and the matrix [[58][-6-9]] is put on stack level 1. Then use division and x and y is found to be x(stationary) = 8.33, y(stationary) = -5.33. If we now use the new variables X = x-8.33 and Y = y + 5.33 we transform the inhomogenous system into

 $\frac{dX}{dt} = 5X + 8Y$ $\frac{dY}{dt} = -6X - 9Y$

This is a homogenous system solved directly by using MAII.

Interface:

The solution is {'C1e^{-t}-C2e^{-3t}, '-0.75C1e^{-t} + C2e^{-3t}, } which means that $X = C1e^{-t}-C2e^{-3t}$ and $Y = -0.75C1e^{-t} + C2e^{-3t}$. The full solution is now found by transforming back to the old variables which gives x = X + 8.33 and y = Y-5.33.

Example 9.8

In this example we will test whether a set of vectors in 3D are linearly independent, if they are orthogonal and if not, use the Gram-Schmidt process to make them so. The new vectors will then make an orthogonal basis in the vector space 3D. Vectors are linearly independent if none of them can be expressed as a linear combination of the others and orthogonal if they are linearly independent and mutualy orthogonal $(90^{\circ} \text{ angles in 3D})$. If they are linearly independent they may form a basis.

We will look at the set of vectors $\{[245] [132] [163]\}$. First we test for linear independency and we may then test the rank of the matrix

$$\begin{bmatrix} 2 & 4 & 5 \\ 1 & 3 & 2 \\ 1 & 6 & 3 \end{bmatrix}$$

We use the menu option MATR/RANK (or BASE?) putting the matrix

[[2 4 5][1 3 2][1 6 3]] on stack level 1. The rank is 3 which means that the vectors are linearly independent.

The matrix is now on stack level 1 and by pushing ORT? you will find whether it's orthogonal or not. 0 means not. It's not and then, since the set of vectors is linearly independent, they may be orthogonalized by the Gram-Schmidt process. The matrix is still on level 1 and you simply push ORTH. Finally you push ORTN to get a normed basis (lenght of vectors equal to 1). The result of the Gram-Schmidt process and norming will be $\{\{0.30\ 0.60\ 0.75\}\}\{-0.06\ 0.79\ -0.61\}\{-0.95\ 0.14\ 0.27\}\}$ which is transformed into an ordinary numeric matrix by pushing SYM \rightarrow .

Example 9.9

In this example we will look at the rotation of points in 3D.

If we first (1) rotate (in 3D) 90° about the y-axis, and then 90° about the z-axis this is not the same as (2) rotateing 90° about the z-axis and then 90° about the y-axis. The point is (X Y Z) = (0 0 1).

The y-axis is specified as $(x0 \ y0 \ z0) = (0 \ 0 \ 0)$ with angles $\alpha = 90^{\circ}$ (relative x-axis) $\beta = 0^{\circ}$ (relative y-axis) and $\gamma = 90^{\circ}$ (relative z-axis). For the z-axis the the angles are $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$ and $\gamma = 0^{\circ}$.

Interface rotation about y-axis:

RAD {HOME	:}				PRG	
: 2	X Y Z:	0	0	1		
:X0	Y0 Z0:	0	0	0		
:	αβγ:	90	0	90		
:	Θ:	90				

The point is now transformed into $(1\ 0\ 0)$ and the second rotation about the z-axis then gives $(0\ 1\ 0)$. The (2) rotations give first the same point $(0\ 0\ 1)$ and then $(1\ 0\ 0)$, a different result.

Laplace transformes

Example 9.10

Find the Laplace transform of f(t) = Sint*u(t-a), a is constant. We use the menu option LAPLACE TRANSFORM/Laplace transform.

Interface:

The result is put on the stack and by pushing STK \rightarrow the answer is given as

$$F(s) = (1/(s^2 + 1)*COS(a) + s/(s^2 + 1)*SIN(a))*e^{-as}$$

Example 9.11

Find the Laplace transform of $f(t) = a + bt + ct^2$. We proceed as in the last example and the answer will be

$$F(s) = 2c/s^3 + b/s^2 + a/s$$

Example 9.12

Find the Laplace transform of $f(t) = COS(\omega t + \Theta)$. Answer:

$$F(s) = COS(\Theta) * (s/(\omega^2 + s^2) - SIN(\Theta) * \omega/(\omega^2 + s^2))$$

Example 9.13 Find the Laplace transform of $f(t) = SIN(t) * e^{t} + t * COS(t)$.

$$F(s) = -1/(1+s^2) - 2s^2/(1+s^2)^2 + 1/(1+(s-1)^2)$$

Example 9.14

Find the Inverse Laplace transform of $F(s) = (2s + 1)/(s^2 + 4)$ Interface:

$$\begin{array}{c} \text{PRG} \\ \text{{HOME }} \\ \hline f(t) = \text{InvL}(F(s)) \\ \text{:s t: s t} \\ \text{:} F(s): \ \ '(2^*s+1)/(s^2+4)' \end{array}$$

We use the menu option Inverse L-transform. The answer will be

$$f(t) = 0.50 * SIN(2t) + 2 * COS(2t)$$

Example 9.15

Find the Inverse Laplace transform of $F(s) = 2s/(s^2 + 4)^2$. If we try Inverse L-transform we will be suggested to try partial fractions and we try.

Interface:

Since we have chosen PartAns Y we will get the splitting up of the function into partial fractions:

Splitting gives:

$$2s/(s^{2}+4)^{2} =$$

As/(s²+4)²+B/(s²+4)²+
Cs/(s²+4)+D/(s²+4) (Next page)

Coefficients:

$$A=2$$

$$B=0$$

$$C=0$$

$$D=0$$
 (Next page)

Solution:

1/2*SIN(2t)*t

Example 9.16 Solve the initial value problem y'' + 9y = 0 y(0) = 0, y'(0) = 2.

Interface:

In the first place we find $Y(s) = 2/(s^2 + 9)$. To transform this back to the time domain we use Inverse Laplace and import the function Y(s) from the stack by echoing (EDIT/ \uparrow STK/ECHO/ENTER) Be sure that the cursor is on the right place on the input screen. The answer will be

$$y(t) = 0.67 * SIN(3t)$$

Example 9.17

When solving more complicated initial value problems we cannot import Y(s) directly from the stack, we have to make the expression a litle bit "nicer".

Solve the problem y'' + 9y = u(t), y(0) = 0, y'(0) = 2. This gives $Y(s) = (1/s + 2)/(s^2 + 9)$ which has to be written $(1+2s)/((s^2+9)s)$ (broken fractions are not possible). You may then put numerator (1+2s) and denominator $(s(s^2+9))$ of this expression on the stack and import then as in the last example into the routine Inverse L p.fractions. The solution will be

$$y(t) = -1/9COS(3t) + 2/3SIN(3t) + 1/9$$

Statistics

Example 9.18

This example will show how to fit data (class table) to the normal distribution. From a population of 100 individuals the following data are available:

Height	Population
[150 160]	6
[160 165]	10
[165 170]	18
[170 175]	29
[175 180]	21
[180 185]	10
[185 190]	5
[190 195]	1

The data have to be stored as a class table using the menu option Class table (STATISTICS/Fitting) or the routine $K\Sigma DAT$ under the menu STAT.

The input looks like:

 $\{\{150\ 160\ 165\ 170\ 175\ 180\ 185\ 190\ 195\}\{6\ 10\ 18\ 29\ 21\ 10\ 5\ 2\}\}$

No more input is necessary and the parameters μ and σ are calculated (mean and standard deviation). $\mu = 172.9$ $\sigma = 8.13$.

Example 9.19

We may now find the probability that a member of the population in the last example has a height less then or equal to 180. Under the menu STAT you will find NORM. Interface:

The probability to find someone with height less than or equal to $180 ext{ is } 81\%$ (0.81).

Example 9.20

We will now look at a histogram and a cummulative frequency polygon of the data in the last examples. These menu options you can find under the description of samples. No further input data are necessary since the class table already is stored as $K\Sigma DAT$. Push the ATTN (ON) key to quit the graphics.

Example 9.21

Transforming a class table into a discrete frequency table. The representative value is the mean in each interval. You have to use the menu option $K\Sigma DAT \rightarrow \Sigma DAT$ under description of samples. Since a class table already is stored (last examples) no further input is necessary.

Example 9.22

From the discrete table calculated in the last example we may now calculate the mean and the standard deviation. These values then have to match the parameters of the fitted normal distribution properly. The answers are 172.8 and 8.20, which is about the same values as the parameters. Use F for frequency table.

Example 9.23

We will now calculate a cummulative table giving relative frequencies, cummulative frequencies and cummulative relative frequencies. The routine is based on the table ΣDAT stored from example 9.21. The actual values are the first column, the frequencies the second column, cummulative frequencies (3rd column), relative frequencies (4th column) and cummulative relative frequencies (5th column). Pushing ENTER will put the matrix on the stack.

Example 9.24

In practice we often meet the situation that we have a big amount of unsorted data. The menu Description of samples/ Unsorted data will give us the possibility to put in an unsorted amount of data and then get a frequency table Σ DAT. The routine counts the number of occurences of the several values.. Suppose we have the following amount of data, 100 values of the splitting tensile strength of concrete sylinders $(lb/in.^2)$.

320	380	340	410	380	340	360	350	320	370
350	340	350	360	370	350	380	370	300	420
370	390	390	440	330	390	330	360	400	370
320	350	360	340	340	350	350	390	380	340
400	360	350	390	400	350	360	340	370	420
420	400	350	370	330	320	390	380	400	370
390	330	360	380	350	330	360	300	360	360
360	390	350	370	370	350	390	370	370	340
370	400	360	350	380	380	360	340	330	370
340	360	390	400	370	410	360	400	340	360

If we measure in practice this is what we get. We now want to sort the data and count the occurence of the different values (frequency table). This is done by the menu option Description of samples/Unsorted data and the result is stored as ΣDAT . Interface:

The values are in column 1 and the absolute frequencies in column 2.

Example 9.25

We may now use MAII to calculate the mean and standard deviation. We use the menu Description of samples/ Σ DAT x and s. Use F for frequency table. The mean is 364.7 and the st.dev. 26.83.

Example 9.26

Goodness of fit. We will now use the kji-square distribution test to find out the goodness of fit to the normal distribution. First we have to construct a class table based on the frequency table which looks like (example 9.24):

300	2
320	4
330	6
340	11
350	14
360	16
370	15
380	8
390	10
400	8
410	2
420	3
440	1

We have to decide the limits of the classes and we have to use f.ex. -10000 as the lower limit and 10000 as the upper. We want minimum 5 values in each class and try a class width of 10.

[-10000 325]	6
[325 335]	6
[335 345]	11
[345 355]	14
[355 365]	16
[365 375]	15
[375 385]	8
[385 395]	10

[395 405]	8
[405 10000]	6

We now use the menu option class table to construct K Σ DAT. To test the hypothesis for the normal distribution we use the menu Fitting/Hypoth. normald. We use the estimated values for mean and st.dev. from example 9.25, 364.7 and 26.8.

Interface:

RAD {HOME]	PRG
	Normald. n values
	Level α Num.est. r
:μσ:	364.7 26.8
:α n r:	0.05 100 2

A significance level of 5% is selected and the hypothesis of a normal distribution is not rejected ("good margin", 2.83 < 14.07).

Example 9.27

We may now fit a normal distribution to the data for concrete sylinders by using Fitting/Normal distribution. The $K\Sigma DAT$ is stored and no other input is necessary. We find $\sigma = 26.1$ and $\mu = 364.8$, in good agreement with the estimated mean and standard deviation.

Example 9.28

We may find the probability that a cylinder has a strength between 350 and 360, P(360)-P(350). We calculate the two probabilities once at a time and get the answer 0.43-0.29 = 0.14 or 14%.

Example 9.29

Find a 95% confidence interval for the mean using the samle [[16 12 19 10 15]] when standard deviation is given as 2.5. We first find the mean value of the sample using the menu option Conf.int normald./Sample x,s and n.

Interface:

We find the mean value x = 14.40.

The value will be input in the routine for determing the confidence interval. The number of values in the sample is 5 and the st.dev. is given as 2.5.

Interface:

The interval is [12.21 16.59] which means that the probability of finding a value within this interval is 95%.

Example 9.30

Find a 95% confidence interval for the mean using the samle [[16 12 19 10 15]]. Here the st.dev. is unknown but we use the mean (14.4) and st.dev (3.51) calculated from the sample. Interface:

The interval is now [10.04 18.76], wider because of the greater standard deviation.

Probability

Example 9.31

Find all combinations of the numbers 1,2,3,4 taken all at a time. This will be ordered combinations without replacement, and we choose 4 elements at a time among 4. This is the same as the number of permutations of 4 elements (4!).

Interface:

The answer is 24.

Example 9.32

In how many ways can a committee of four be chosen from 16 persons? This will be non-ordered combinations without replacement. (A, B, C, D) is the same committee as (B,C,D,A) and one particular person cannot be chosen more than once (without replacement).

Interface:

The answer will be 1820.

Example 9.33

How many different license plates showing 2 letters and 3 digits are possible (alphabet 26 letters)? This will be the product of the possible combinations of 3 numbers out of 10 and 2 letters out of 26. Since the same letter or the same digit may be used several times and the order is important this will be ordered combinations with replacement.

Interface:

The answer will be $10^3 * 26^2 = 676000$.

Example 9.34

Determine the number of bridge hands (13 out of 52 cards). This will be without replacement and non-ordered.The answer will be 635,013,559,600.

Example 9.35

5 fair coins are tossed simultaneously and this may be looked at as independent trials one by one. What is the probability that none of them is a head? The binomial distribution may be used.

Interface:

The probability of head is 0.5 and the number of heads is 0. The answer will be 0.031 (3.1%).

Example 9.36

The probability of hitting a target is 25%, what is the probability of hitting the target at least once in 4 trials? The trials are independent and we use the binomial distribution. The

answer is 1-P(0), and we find the P(0) to be 0.316. 1-P(0) = 0.684 (68.4%).

Example 9.37

A variable X is normal with mean 10 and variance 4. Find P(X > 12), $P(9 \le X \le 13)$. The routine for normal distribution needs the st.dev. which is the square root of the variance. The st.dev. then is 2.

We find $P(X \le 12)$ and calculate P(X > 12) by 1- $P(X \le 12)$.

Interface:

 $P(X \le 12) = 0.841$. 1- $P(X \le 12) = P(X > 12) = 0.159$. We find $P(9 < X < 13) = P(X \le 13) - P(X \le 9) = 0.93 - 0.31 = 0.62$.

Example 9.38

A manufacturer produces airmail envelopes whose weight is normal with st.dev.0.05 and mean 1.95. The envelopes are sold in lots of 1000. How many envelopes in a lot will be heavier than 2.0? We calculate P(X > 2) by $1-P(X \le 2) = 0.159$. The number will then be 0.159*1000 = 159 (about 160).

Example 9.39

The breaking strength X of a certain type of plastic block is normaly distributed with mean 1000 and st.dev. 75. What is the maximum load such that we can expect no more than 5% of the blocks to break? We use the inverse normal distribution with p = 0.05. The inverse normal distribution may be found under STATISTICS or in the submenu STAT.

Interface:

The answer is 876.

Linear programming

Example 9.40

A factory produces 3 kinds gaskets, X1, X2 and X3 with net profits \$4,6,8 respectively. Maximize the totale daily profit $P(x_1,x_2,x_3) = 4x_1 + 6x_2 + 8x_3$ under the constraints

 $x_1 + 2x_2 + x_3 \le 100$ and $2x_1 + x_2 \le 40$

We minimize the function $-P(x_1, x_2, x_3)$.

Interface:

The answer is -280, $x_1 = 0$, $x_2 = 40$ and $x_3 = 5$. The maximum then is 280.

Numerical methods

Example 9.41

Solve the equation $x^3 + x - 1 = 0$ by fixed point iteration. We write the equation in the form $x = g(x) = 1/(1 + x^2)$. We have in mind that abs(g'(x)) < 1 in the neighbourhood of the solution. To find a proper starting point x0 you may graph the function. Use menu NUMERICAL METHODS/Zeros.

Interface:

Example 9.42

Calculate a divided difference table for the function $Cosh(x) = (e^{x} + e^{-x})/2$ for $x = [0.5 \ 0.6 \ 0.7 \ 0.8]$. Use the menu Interpolation/Divided diff.table. First you have to find the function values using function table in the same menu.

The function values are laying on the stack together with the x-values and both may be imported to the routine diff.table by echoing.

Interface:

The ouput is a matrix filled with blanks to "simulate" the typical triangular form of the table.
Example 9.43

Solve the initial value problem y' = x + y y(0) = 0 by RK4. This problem has the exact solution e^{x} -x-1 so the error is known. We choose step length h = 0.2.

Interface:

RAD {HOME }		PRG
Y'= Ui : : X	= F(X, n + 1 = F : Y: X	Y) $Y(X0) = Y0$ = Un + h/2*(k1 + k2) 'X + Y' Y

RAD {HOME }	PRG
	Input cont
: X0 Y0: : h XN:	0 0 0.2 1

The answer is given in a matrix where the first column are the x-values, the second column the y-values and the third column the values of y'.

			*
0	0	0	
0.2	0.02	0.22	
0.4	0.09	0.49	
0.6	0.22	0.82	
0.8	0.43	1.23	
1.0	0.72	1.72	

The matrix may be seen in the matrix writer by pushing arrow key down (VIEW-key).

Example 9.44

We want to make a plot and a phase plot. We duplicate the matrix on the stack (ENTER) and no further input is necessary.

HP 48 SX / GX SmartROMTM

User's Guide

Copyright 1993, SmartTechnology. All Rights Reserved.

Introduction	1
Foreword	1
The well tempered HP48	1
Overview	2
Chapter 1: SmartROM Commands Reference	2
Chapter 2: Omnibus user's guide	2
Appendix A: Warranty, Service and Support	2
Appendix B: Objects	2
Appendix C: The Saturn Microprocessor	2
Appendix E: Error Messages	2
Appendix H: Hidden Commands	2
List of SmartROM programmable commands	3
Stack Manipulation	3
Argument Checking	3
List Manipulation	3
String Manipulation	4
Meta Object Manipulation	4
Type Management	4
Symbolic Matrix Handling	4
String Manipulation	4
Meta Object Manipulation	4
Type Management	4
Symbolic Matrix Handling	4
Program Editing	5
I/O	5
Utility	5
ROM Revision	5
Program Editing	5
1/0	5
Utility	5
ROM Revision	5
List of applications	6
Typesetting conventions	6
Italics	6
Typographic conventions	7
Automatic installation of a ROM card	9
Automatic installation of a RAM based package	9

Verifying the installation	10
Commands reference	11
The ballade of the pirate	12
AAB	13
ADD	14
ADDCON	16
→B	18
BAA	20
BAB	21
BBA	22
BCAC	23
BCDA	24
C2M	25
CAB	28
CBA	29
CHL?	30
CHSET?	32
CHST?	34
→Char37	
CMPL	38
CONFORM?	40
CONSTMAT	43
COPY	45
CSTMENU	49
DELCOL	52
DELETE	53
DELROW	55
DETERM	57
DIMS	59
EQUAL?	60
EXT→	64
→EXT	66
FACTOR	68
FALSE	71
FIND	72
IDNT	74
KEYWAIT	75
JOINR	77
JOINUP	78
L2M	80

→LINES	82
LINES→	84
LOC	85
LOP1	88
LOPN	90
LVOP	91
MARK	93
MATWRT	94
MEMBER	96
META	98
METOP	99
MGET	101
MOVE	102
MPUT	105
MREV	106
MSBIT	107
MSYMB?	108
MULT	110
NDUPN	113
NIP	114
NULL	115
PARSE	117
PKMETA	121
$PRG \rightarrow$	127
→PRG	130
→R	131
RDOWN	133
RDROP	134
RDUP	136
REPLACE	138
REV	142
ROMV	144
ROWCOL	145
RPT	146
RUP	150
SHIFT	152
SPAN	154
SPLIT	156
SRDIFF	163
SRGT	166

	SRLT	168
	SRT	169
	SRTD	173
	SUBT	175
	SYMBMAT→	177
	→SYMBMAT	179
	→SYS	181
	→TorF	183
	TRNSP	184
	TRUE	185
	VER\$	186
	→Xlib	187
	XLVLS	189
Appendix B		191
Objects structure	e	191
	Real number	192
	Complex Number	193
	String	194
	Real array	195
	Complex array	196
	Аггау	197
	List	198
	Global name	199
	Local name	200
	Program	201
	Algebraic	202
	Binary integer	203
	Graphic object	204
	Tagged object	206
	Unit	207
	Xlib name	208
	Directory	209
	Library	210
	Backup	212
	System function	213
	System Command	214
	System binary	215
	Long real	216
	Long complex	217
	Linked array	218

Character	219
Code	220
Library data	221
Address	222
Appendix C	223
The Saturn microprocessor	
Microprocessor's registers	223
Saturn Assembly Language Mnemonics	228
Opcodes versus Mnemonics	229
Appendix E	243
Error Messages	
Appendix H	245
Hidden Commands	

INTRODUCTION

Foreword

Thank you for the purchase of the SmartROM. You bought a quality software that will greatily help in your work, hobby or study!

If you are new to the HP48's world, we suggest to read carefully the manual before diving into the deep waters of the SmartROM.

The well tempered HP48

The SmartROM is the most comprehensive library of commands available for the HP48. Its goal is to minimize programmer's endeavours by providing an extensive set of powerful utilities which significantly shorten program development.

For those who need an in-depth knowledge of the SmartROM, an Hidden Commands Reference manual is provided on the supplied disc.

The SmartROM has been conceived with the intent of setting some periods in the big ocean of software. This means that sometimes you could find somewhere a specific program doing the same things slightly faster or simply better. The power of the SmartROM lies in its high integration, consistency and support. The SmartROM is not just a collection of RPL commands. It is the ideal platform for any powerful program. Just think that the SmartROM contains about 180 hidden commands fully documented in an additional manual, called *Hidden Commands Reference*. You can find this manual on the supplied disc under the name \DOCS\TECHREF.TXT.

If you wish to be kept informed on future releases of the SmartROM, we suggest you either to fill the enclosed form and send it by mail to ForCALC or contact us directly via E-mail at the address given in Appendix A.

All the information contained herein, when a specific source is not specified, come from our own experiments on the calculator and are proprietary. Appendix C, containing Saturn Assembly Language description, is based on the description given in the HP-71 IDS Vol. I-II by Hewlett-Packard Company.

OVERVIEW

Chapter 1: SmartROM Commands Reference

The reference section of the manual covering the entire set of commands listed in alphabetical order. For each command a stack diagram is given and remarkable information as well. Examples are collected at the end of each paragraph.

Chapter 2: Omnibus user's guide

The chapter describing every aspect of the spreadsheet environment. It includes a tutorial section, programming guidelines, dozens of practical examples and pictures. If the package is not furnished with the spreadsheet library, this chapter is missing.

Appendix A: Warranty, Service and Support

Refer to this section if you encounter problems using the SmartROM.

Appendix B: Objects

HP-48 objects structure is explained in detail.

Appendix C: The Saturn Microprocessor

A description of the CPU and its machine language instruction set is given.

Appendix E: Error Messages

Contains the complete list of the errors generated by the SmartROM along with possible causes.

Appendix H: Hidden Commands

Contains the exhaustive list of SmartROM hidden commands of version 1:C, subdivided in logic categories.

LIST OF SMARTROM PROGRAMMABLE COMMANDS

This is the complete list of RPL commands subdivided in logic categories. Some commands appear in several categories being polymorphic functions.

Stack Manipulation

AAB	BAA
BAB	BBA
BCAC	BCDA
C2M	CAB
CBA	MARK
NIP	RDOWN
RDROP	RDUP
RUP	SHIFT
XLVLS	

Argument Checking

CHL?	CHSET?
CHST?	

List Manipulation

FIND	L2M
LOP1	LOPN
LVOP	NULL
REPLACE	REV
RPT	SPLIT
SRDIFF	SRGE
SRGT	SRLE
SRLT	

String Manipulation

→Char	FIND
LINES→	→LINES
LOC	MEMBER
NULL	PARSE
REPLACE	ROWCOL
REV	RPT
SPAN	SPLIT

Meta Object Manipulation

COPY	DELETE
LINES→	→LINES
META	METOP
MOVE	MREV
NDUPN	PKMETA
PRG→	→PRG
SRT	SRTD

Type Management

→B	→Char
EXT→	→EXT
FALSE	MSBIT
PRG→	→PRG
→R	→SYS
→TorF	→Xlib
TRUE	

Symbolic Matrix Handling

ADD	ADDCON
CMPL	CONFORM?
CONST	DELCOL
DELROW	DETERM
DIMS	EQUAL?
FACTOR	IDNT
MATWRT	MGET

MPUT	MSYMB?
MULT	SQUARE?
SUBT	SYMBMAT→
→SYMBMAT	TRNSP

Program Editing

FIND	PRG→
→PRG	REPLACE .

I/O

KEIWAIT

Utility

CSTMENU	RPT
---------	-----

ROM Revision

ROMV VER\$

LIST OF APPLICATIONS

Applications listed below are stored on the diskette along with their documentation.

CALENDAR	FFT	LWC
UPC	MATMENU	PRSYMB
PROBJ	PRTHREAD	L→TH
TH→L	SHRINK	UPTRIM
PIE	BARPLOT2	INVRT
→FONT	alfaORDER	POPDIR
CGINDIR	REPLP	CGXLIB
XREF		

ODD BRINGSLID:

SMARTROM

Typesetting conventions

DISPLAY

Used to represent text as it appear on the display or anything you must type.

Italics

Italics are used to introduce a new term or emphasize words or concepts.

[KEY]

Shift keys are represented by [Blue], [Gold] and [Alpha].

LABEL

This typeface represents a menu label.

© BB Marketing ANS - 1994

Typographic conventions

The special set of characters implemented in the 48 requires a special treatment in order to avoid misunderstandings.

#b	Binary integer (also called hex string) #12345h, #01101b, etc.
External	System Address
<h></h>	System Binary
n, d, i, j, k, l,	Real numbers
TRUE	System boolean (External)
FALSE	System boolean (External)
Complex	Complex number
'NAME'	A global name
'name'	A local name
obj	Any object
Symb	Symbolic Expressions, real and complex numbers, units, gloabal or local names
prg	RPL program
11	User RPL Program

str	String of characters
Char	Character object
[]	Array (Vector)
[[][]]	Array (Matrix).
{} or List	List.
{{Symb ₁₁ Symb _{1n} } {Symb _{m1} Symb _{mn} }}	Symbolic Matrix.
obj ₁ obj _n n	Any Meta-object.
^{str} 1 ^{strn} n	String Meta-object.
XLIB LID Num	External Library name.

AUTOMATIC INSTALLATION OF A ROM CARD

The installation of the SmartROM is straightforward. Turn the HP48 off and carefully follow the instructions written in chapter 34 of the HP48 Owner's manual volume II. If the HP48 shows INVALID CARD DATA, the card requires service.

AUTOMATIC INSTALLATION OF A RAM BASED PACKAGE

- 1. Installing a RAM based version of the SmartROM requires a few minutes.Be sure to have at least 32K bytes of free RAM.You need a PC and a transfer program running the Kermit protocol.
- 2. Start the Kermit program on the PC and change the current drive to A: or B: whichever applies to your case. Ensure you have the same baud rate (usually 9600) on both sides (PC and HP48).
- 3. Put the HP48 in server mode by pressing [blue][PRG].
- 4. On the PC type: TAKE INSTALL [Enter]. The transfer should begin.
- 5. Recall the contents of variables smart and spread to the stack and purge both variables, by pressing appropriate menu keys. You should see the following items on the first two levels of the stack:

- 6. Store the libraries in a port where you have enough free space (32K). To accomplish the store operation, verify that both libraries are on the first two levels of the stack and press twice [n] [STO], where n is 0,1 or 2 depending on the port where you want to put the libraries into.
- 7. Turn the HP48 off and on again.

Note that the configuration software automatically attaches the library (either Smart or Spread) to the library chain of the HOME directory. If you want to manually attach the library in a specified subdirectory, you must follow the procedure described in Chapter 34 of the HP48 Owner's Manual. However, in the case of a warm start, (i.e. pressing [ON] [C] the library will be attached to the HOME directory again.

8. The SmartROM is ready for use.

VERIFYING THE INSTALLATION

You can quickly verify the installation of the SmartROM by following the procedure described later on.

This procedure applies to version 1:C only.

1. Manually type the command ROMV SmartROM 's logo should appear in the display. If the logo is displayed on a black background or with sharper lines, don't worry about it, it is just a random drawing of the SmartROM logo

2. If the logo does not appear, the library has not been installed because you forgot to turn the HP48 off and on again, or you did not install the library in a port.

COMMANDS REFERENCE

This section explains in detail each command of the library, giving its stack representation, remarkable information, examples and names of applications containing the command. Topics, like CPU structure, hidden commands and other highly specific arguments have been collected in the Appendices.

All the commands of the library are accessible through SmartROM's custom menu, which can be installed executing the command CSTMENU.

All the commands contained in this section belong to Library 821 (Smart) except MATWRT which belongs to Library 822 (Symatw).

Named commands have their XLIB number in range 0-95. Remaining functions, called 'hidden functions', have no associated text. To learn more about hidden functions, please refer to the manual supplied on the disk under the name \DOCS\TECHREF.TXT. SmartROM hidden functions are fully supported and their entry/exit conditions are preserved across subsequent releases of the library.

Hidden commands contained in the Symbolic Matrix Writer library are not supported and therefore they cannot be used.

THE BALLADE OF THE PIRATE

The SmartROM represents a challenge for the HP handheld market. Thanks to its exclusive power-tools it saves you time and money but, given its low cost, its success relies entirely on the seriousness of any HP48 user.

By copying it, you are effectively contributing to the extinction of a rare species: the HP calculator software developer. If you deem that this risk is well worth running, just pick up a ROM copying software and go on. However, should you buy any other HP calculator, don't complain about

the lack of quality software. Perhaps you contributed actively to his death.

AAB

Category	Stack manipulation	
Affected by flag	none	
Input	2:	Obj _A
	1:	Ођ _В
Output	3:	Obj _A
	2:	Obj _A
	1:	Obj _B
Function	Duplic	ates the object on the second level of the stack.
See also	BAA,	BAB, BBA, BCAC, BCDA, CAB, CBA, NIP

Users Guide

ADD

Category	Symbolic matrix manipulation
Affected by flag	-3 (Numerical result)
Input	2: {{SymbA _{1,1} SymbA _{1,2} SymbA _{1,n} }
Output	 {SymbA _{m,1} SymbA _{m,2} SymbA _{m,n} }} 1: {{SymbB _{1,1} SymbB _{1,2} SymbB _{1,n} } {SymbB _{m,1} SymbB _{m,2} SymbB _{m,n} }} 1: {{SymbA _{1,1} +SymbB _{1,1} SymbA _{1,2} +SymbB _{1,2} SymbA _{1,n} +SymbB _{1,n} } {SymbA _{m,1} +SymbB _{m,1} SymbA _{m,2} +SymbB _{m,2} SymbA _{m,n} +SymbB _{m,n} }}
Function	Returns the sum of two arrays (either symbolic or numerical).
Notes	A one-dimensional array must be written as one-row or one-column two-dimensional array. To avoid run-time errors, flag -3 must be clear, alternatively each symbolic expression must evaluate to a numeric value.
	You can supply either numerical or symbolic arrays; the result will be numerical if, and only if, both arrays are numerical. The routine performs the sum on all the pairs

	of objects accepted by the standard operator + . To restrict object types to symbolics, use MSYMB? beforehand. ADD, FACTOR and SUBT are instances of a generalized function, designed to apply binary operators to ordered pairs of elements. For more information on this topic, please refer to the Commands Reference manual.
See also	ADDCON, DIMS, EQUAL?, MATWRT, MULT, MSYMB?, SUBT
Applications	MATMENU, PRSYMB
Examples	2: {{ 1 2 3 } { 'X' 'X+1' 'X-3' }} 1: {{-1 2 -3 } {'-X-1' 'X+1' '3-X' }}
	ADD [ENTER]
	1: {{ 0 4 0 } {-1 '2+2*X' 0 }}
	2: {{ [1 2 3] [4 5 6] }} 1: {{ [-1 -2 -3] [1 2 3] }}
	ADD [ENTER]
	1: {{[000][579]}}

ADDCON

Category	Symbolic matrix manipulation	
Affected by flag	-3 (Numerical result)	
Input	2:	{{ $Symb_{1,1} Symb_{1,2} \dots Symb_{1,n} $ }
		{ $Symb_{m,1}Symb_{m,2}Symb_{m,n}$ }
	1:	Symb
Output	2:	{{Symb+Symb $_{1,1}$ Symb+Symb $_{1,2}$ Symb+Symb $_{1,n}$ }
		$\{Symb+Symb_{m,1} Symb+Symb_{m,2} \\ Symb+Symb_{m,n}\}\}$
Function	Adds a o matrix.	constant value to all the elements of a list-
Notes	You can the resu array an value is	a supply either a numerical or symbolic array; It will be numerical if, and only if, the ad the value are numerical (no matter if the real or complex).
	ADDCC function element +'. For r the Hidd	ON and FACTOR are instances of a generalized b, designed to apply unary operators to each of the matrix. In this case the operator is 'const nore information on this topic, please refer to len Commands Reference manual
See also	ADD, F	ACTOR, MATWRT, MSYMB?

Applications	MAT	MENU, PRSYMB
Examples	2	{{ 1 2 3} {'X' 'X+1' 'X-3'}}
	1	'-X-1'
	ADD	CON [ENTER]
	1:	{{'-X' '1-X' '2-X'} { -1 0 -4 }}

→B

Category	Туре	Type conversion					
Affected by flag	-5 to Integ	-5 to -10 (Binary Wordsize) and -11 to -12 (Binary Integer Base)					
Input	1:	h	1:	Char	1:	< <h>>></h>	
Output	1:	#h					
Function	Conv	Converts a numeric value into a binary integer.					
Notes	→B a conve	\rightarrow B accepts binary integers as well; dummy conversions prevent errors at no expense.				my	
	Pay a a trun are n greate return conve the so	Pay attention to the current wordsize that may cause a truncation in the result. Extended precision numbers are not allowed. Although binary integers can be greater or smaller, in size, than 16 nibbles, \rightarrow B always returns an integer of 16 nibbles. Moreover the conversion is performed on a numerical basis, hence the source object must evaluate to a number.					
See also	EXT	→. → EX	T. →R. ·	→SYS			

Example	

5:	30
4 :	#20h
3:	<13h>>
2:	1.5
1:	4

$\{\rightarrow B\}$ METOP [ENTER]

5.	#1Eh
4 :	#20h
3:	#13h
2:	#2h
1:	4

BAA

Category	Stack manipulation	
Affected by flag	none	
Input	2:	Obj _A
	1:	Obj _B
Output	3:	Obj _B
	2:	Obj _A
	1:	Obj _A
Function	Swaps the objects and duplicates the first level.	
See also	AAB, BAB, BBA, BCAC, BCDA, CAB, CBA, NIP	

BAB

Category	Stack manipulation	
Affected by flag	none	
Input	2:	Ob _A
	1:	Obj _B
Output	3:	Obj _B
	2:	Obj _A
	1:	Obj _B
Function	Duplicates the object on the first level and inserts it above the second level.	
See also	AAB, B	AA, BBA, BCAC, BCDA, CAB, CBA, NIP

BBA

Category	Stack manipulation	
Affected by flag	none	
Input	2:	Obj _A
	1:	Obj _B
Output	3:	Obj _B
	2:	Obj _B
	1:	ObjA
Function	Duplicates the object on the first level and rotates the first three levels.	
See also	AAB, BAA, BAB, BCAC, BCDA, CBA, NIP	

BCAC

Category	Stack manipulation	
Affected by flag	none	
Input	3:	Ob _A
	2:	Obj _B
	1:	Obj _C
Output	4:	Obj _B
	3:	Obj _C
	2:	Obj _A
	1:	Obj _C
Function	Rotates level.	s the first three levels and duplicates the second
See also	AAB, BAA, BAB, BBA, BCDA, CAB, CBA, NIP	

BCDA

Category	Stack manipulation		
Affected by flag	none		
Input	4: Obj _A		
	3: Obj _B		
	2: Obj _C		
	1: Obj _D		
Output	4: Obj _B		
	3: Obj _C		
	2: Obj _D		
	1: Obj _A		
Function	Rotates the first four levels of the stack.		
See also	AAB, BAA, BAB, BBA, BCAC, CAB, CBA, NIP		

С2М

Category	Stack manipulation and meta-object manipulation	
Affected by flag	none	
Input	N+1	"MARK'
	N:	Obj ₁
	:	
	2:	Objn_1
	1:	Obj _n
Output	N+2:	"MARK'
	N+1:	Obj ₁
	:	
	2:	Obj _n
	1:	n
Function	Counts of thest after the	the elements between the marker and the top ack. The marker is not removed from the stack e evaluation.

Notes This function is the RPL counterpart of Postscript's counttomark. Its primary function is to provide a mean for separating groups of objects lying on the stack. We may call this kind of weird entities unbound s, because they can shrink or expand without painful counter updates. Unbound meta-object management is usually slower than using counted meta-objects, because all the operations (except popping or pushing) require the random search of the marker. Nevertheless, there are circumstances where unbound meta-objects are still more convenient to use. Morevoer, with the introduction of release 1:C of the library, C2M has been translated in machine language with a speed increment of 1000% over the former version. This is a summary of the situations where stack markers are preferred to counted meta-objects: * when you cannot predict how many objects will be pushed on the stack by the user; when you cannot predict how many objects will be returned by an operation; when updating the counter requires an expensive algorithm: when you need to delimit stack areas; When the marker is missing the error MISSING STACK MARKER is issued. This feature was introduced in the third release (1:C) of the SmartROM. In order to reproduce the behavior of the former version, that is returning DEPTH when the marker is missing, you should replace all the occurrences of C2M with the following contruct: **IFERR C2M THEN DEPTH END** 'MARK is a private symbol. Hidden functions make use of an alternate marker to avoid collision with userdefined programs. See also L2M, MARK, META

HP 48 SX SmartROM TM Examples	Users Guide		Page 27
	3:	"MARK'	
•	2:	10	
	1:	20	
	C2M [ENTER]		
	4:	"MARK'	
	3:	10	
	2:	20	
	1:	2	

CAB

Category	Stack manipulation		
Affected by flag	none		
Input	3:	Obj _A	
	2:	Obj _B	
	1:	Obj _C	
Output	3:	Obj _C	
	2:	Obj _A	
	1:	Obj _B	
Function	Rotates backwards the first three levels.		
See also	AAB, BAA, BAB, BBA, BCAC, BCDA, CBA, NIP		
CBA

Category	Stack manipulation		
Affected by flag	none		
Input	3:	Obj _A	
	2:	Obj _B	
	1:	Obj _C	
Output	3:	Obj _C	
	2:	Obj _B	
	1:	Obj _A	
Function	Revers	es the order of the first three levels.	
See also	AAB, BAA, BAB, BBA, BCAC, BCDA, CAB, NIP		

Users Guide

CHL?

Category	Argument checking			
Affected by flag	none			
Input	2:	{		
	1:	$\{t_1, t_2,, t_n\}$		
Output	3:	{ obj ₁ obj ₂ obj _n }		
3	2:	$\{ obj_1 obj_2 \dots obj_p \}$	2: { err _]	err ₂ err
,	1:	0	1:	1
Function	 the types specified. Each element of the list on the first level can be a real value (rounded to an integer) or a list of reals. Argument checking is strictly positional in CHL?. If you need non-positional argument checking, use CHSET?. Type numbers follow the classification given by the command TYPE. When a sublist of reals is specified, a multiple choice is 			
	allowed on that position of the input list.			
	The com when the list of m	amand return a boolean fla e flag is 0 and a fault when ismatching positions.	ig indicat	ing success is 1 plus a
	The und unifies t conventi IFTE inj	erlying meta-object structu he boolean convention wit on. The output is especial put.	re of the h the met ly suitable	result ta-object e for IFT or

See also	CHSET?, CHST?	
Applications	MATMENU	
Examples	2: { 1 2 "" } 1: { 0 0 2 }	
	CHL? [ENTER]	
	2: { 1 2 "" } 1: 0	
	2: { 1 2 "" } 1: { 0 0 { 0 1 } }	
	CHL? [ENTER]	
	3: { 1 2 "" } 2: { 3 }	

2: { 3 } 1: 1

Users Guide

CHSET?

Category	Argument checking		
Affected by flag	none		
Input	2:	$\{ \operatorname{obj}_1 \operatorname{obj}_2 \dots \operatorname{obj}_p \}$	
	1:	$\{t_1, t_2,, t_n\}$	
Output	3:	{ $obj_1 obj_2 \dots obj_p$ }	
}	2:	$\{ \operatorname{obj}_1 \operatorname{obj}_2 \dots \operatorname{obj}_p \}$	$2:\{ \text{ err}_1 \text{ err}_2 \dots \text{ err}_k$
	1:	0	1: 1
Function	Tests wilt the type element (rounded classific comman when the list of m The und unifies to conventi IFTE inp CHSETT	hether the objects containe e specified, regardless of of the list of types must d to an integer). Type ation given by the con d return a boolean flag e flag is 0 and a fault whe ismatching positions. derlying meta-object stru- the boolean convention on. The output is especial put.	d in the list are of their position. Each st be a real number numbers follow the nmand TYPE. The g, indicating success en the flag is 1 plus a acture of the result with the meta-object ly suitable for IFT or hether a list contains emory requirements.
See also	CHL?, C	CHST?	

Examples	2: 1:	{ 1 2 "" } { 0 2 }
	CHS	ET? [ENTER]
	2:	{ 1 2 "" }
	1:	0
	2:	{ 1 2 "" }
	1:	{0}
	CHS	ET? [ENTER]
	3:	{ 1 2 "" }
	2.	133

CHST?

Category	Argument checking				
Affected by flag	none				
Input	N+1:	obj ₁			
	:				
	2:		obj _n		
	1:		$\{t_1, t_2,, t_n\}$		
Output	N+2:	^{obj} 1			
	:			N+1:	^{obj} 1
	К:		obj _k	:	
	:			К:	^{obj} k
	3:		obj _n	:	
	2:		{ err _k }	2:	obj n
	1:		1	1:	0

Function	Tests whether the elements of the stack comply with the types specified in the list. Each element of the control liston the first level can be a real value (rounded to an integer) or a list of reals. Argument checking is strictly positional in CHST?. The first element of the control list specifies the type or the set of types allowed for the object lying on the correspondent level of the stack. In effect objects on the stack are mapped as if they were collected in a list, with the element on the top that comes last.
	Type numbers follow the classification given by the command TYPE.
	When a sublist of reals is specified, a multiple choice is allowed on the corresponding level of the stack. The command return a boolean flag indicating success when the flag is 0 and a fault when the flag is 1 plus a list of mismatching positions.
	The underlying meta-object structure of the result unifies the boolean convention with the meta-object convention. The output is especially suitable for IFT or IFTE input.
See also	CHL?, CHSET?
Applications	MATMENU

Users Guide

Page	36
1 ago	50

Examples	See also the example under SYS.				
	4:	1			
	3:	2			
	2: 1:	{002}			
	CHST? [ENTER]				
	4:	1			
	3:	2			
	2:	cc33			
	1:	0			
	4:	1			
	3:	2			
	2:	6633			
	1:	{00{01}}			
	CHS	T? [ENTER]			
	5:	1			

5:	1
4:	2
3:	****
2:	{3}
1:	1

→Char

Category	Type conversion					
Affected by flag	none					
Input	1:	n	1:	<ŋ>>	1:	#n
	or					
	1:	Str	1:	Charact	er	
Output	1:	Charact	er			
Function	Converts the input object into a character object.					
Notes	Character objects are used internally to minimize storage overhead (in spite of strings).					
	→CHARaccepts character objects as well;dummy conversions prevent errors at no expense.				well;dummy	
See also	\rightarrow B, EXT \rightarrow , \rightarrow EXT, \rightarrow R, \rightarrow SYS					

CMPL

Category	Symbolic matrix manipulation
Affected by flag	none
Input 2:	{{Symb _{1,1} Symb _{1,2} Symb _{1,n} } {Symb _{n,1} Symb _{n,2} Symb _{n,n} }} 1: { i j }
Output 1:	$ \{\{Symb_{1,1} \dots Symb_{1,i-1} Symb_{1,i+1} \dots Symb_{1,n} \} \\ \dots \\ \{Symb_{j-1,1} \dots Symb_{j-1,i-1} Symb_{j-1,i+1} \dots Symb_{n,n} \} \\ \{Symb_{j+1,1} \dots Symb_{j+1,i-1} Symb_{j+1,i+1} \dots Symb_{n,n} \} \\ \dots \\ \{Symb_{n,1} \dots Symb_{n,i-1} Symb_{n,i+1} \dots Symb_{n,n} \} \} $
Function	Returns the complement of a square list-matrix, given element's subscripts. The resulting list is of n-1th order, thus the input list can't be of first order or null.

Notes	To get the algebraic complement of an element, the following procedure can be used.				
	-3 CF		Enables symbolic results;		
	BAB		saves element subscripts,		
	CMPL I determi	DETERM nant of the	takes minor;		
	SWAP OBJ \rightarrow DRO		recalls the subscripts		
	+ -1 SW	/AP ^ *	adjusts the sign		
See also	ADD, ADDCON, CONSTMAT, DETERM, FACTOR, MATWRT, MULT, SQUARE?				
Applications	MATMENU				
Examples	2: 1:	{{100}} {'-X'' {11}	1-X' '2-X'} {-1 0 -4}}		
	CMPL [ENTER]				
	1:	{{ '1-X' '2-X'} {	0 -4}}		

CONFORM?

Category		Symbolic matrix manipulation					
Affected by	y flag	none	none				
Input	2:	{{SymbA1,1 SymbA1,n}	2:	{{SymbA1,1 SymbA1,n}}			
		 {SymbAm,1 SymbAm,n}}		 {SymbAm,1 SymbAm,n}}			
	1:	{{SymbB1,1 SymbB1,p}		{{SymbB1,1 SymbB1,q}			
		 {SymbBn,1 SymbBn,p}}		 {SymbBp,1 SymbBp,q}}			
Output	4:	{{SymbA1,1 SymbA1,n} {SymbAm,1 SymbAm,n}}					
	3:	{{SymbB1,1 SymbB1,p}	3:	{{SymbA1,1 SymbA1,n}			
		 {SymbBn,1 SymbBn,p}}		 {SymbAm,1 SymbAm,n}}			
	2:	{ m n n p }	2:	{{SymbB1,1 SymbB1,q}			
				{SymbBp,1 SymbBp,q}}			
	1:	1	1:	0			

Users Guide

Function	Tests whether dimensions of the two input lists are suitable for row-by-column product. The result of the test is a meta-object whose counter may be also interpreted like a flag (1=true, 0=false).
Notes	The condition is called conformability. This check is automatically performed by MULT which returns an error when the condition is not met. By using CONFORM? beforehand, you can take an appropriate action without resorting to trapping routines and CASE constructs.
	All the routines implementing symbolic matrix operations check list dimensions, but do not check list contents. This design strategy implies several interesting side effects:
•	faster execution with shorter code
•	easier implementation of future extensions
•	the possibility of performing a run-time check exploiting built-in dispatching capabilities of operators and functions.
	Whenever you need to verify list contents, use the command MSYMB? that explicitly checks each element.
See also	DIMS, MATWRT, MSYMB?, MULT, SQUARE?
Applications	MATMENU, PRSYMB

Examples

2: {{12} {'X' 'Y-2'}} 1: {{01'-Z'} {-2 'Y'3}}

CONFORM? [ENTER]

4 :	{ { 1 2 } { 'X'	'Y-2' } }
3:	{ { 0 1 '-Z'}	{ -2 'Y' 3 } }
2:	{ 2 2 2 3 }	
1:	1	
2:	{ { 1 2 3 4 }	{5678} {9101112}}
1:	{ { 'X' 0 } }	

CONFORM? [ENTER]

3:	{ { 1 2 3 4 }	<i>{</i> 5 6 7 8 <i>} {</i> 9 10 11 12 <i>} }</i>
2:	{ { 'X' 0 } }	
1:	0	

CONSTMAT

Category	Symbolic matrix manipulation			
Affected by flag	none			
Input	2: 1:	Any {mn}	2: 1:	Any n
Output	1: 1:	{{Any1,1 Any1,2 Any {{Any1,1 Any1,2 Any	y1,n} y1,n}	
		 {Anym,1 Anym,2 Ar {Anyn,1 Anyn,2 An	 1ym,n}} yn,n}}	
Function	Returns specifie	a constant symbolic matr d dimension.	rix of	
Notes	The con user wi making matrix a	nmand is suitable to build ho shall replace the e obsolete verbose messa and press [ENTER].	templates lements ges like	s for the with values, input a 3x5
	The usa case of the omn	ge of CONSTMAT descr inizialization which is the nand.	ibed above he primar	e is a special y purpose of
	Of cour provided Matrix example idea of treatment	se you can initialize a m d that you set proper fla Writer. placeholder '?' es, is especially suitable b something missing but de nt being a global name.	natrix wit ags before , often u ecause it g oes not re	h any object calling the used in the gives you the quire special
See also	DIMS,	CONFORM?, MATWRT	, MSYMB	} ?

Applications	MATMENU	, PRSYMB		
Examples	A few coding creating a r given:	g suggestions: natrix with the same dimensions as that		
	DIMS '?' SWAP CONSTMAT			
	creating a matrix with the same number of columns but n rows:			
	DIMS '?' SW	AP 1 n PUT CONSTMAT		
	creating a n given	natrix with transposed dimensions as that		
	DIMS REV '?' SWAP CONSTMAT			
	See also the	examples under MULT and EQUAL?.		
	2:	'X-1'		
	1:	{ 2 3 }		
	CONSTMAT	Γ [ENTER]		
	1:	{{ 'X-1' 'X-1' 'X-1' } { 'X-1' 'X-1' 'X-1' }}		
	2:	cc33		
	1:	3		
	CONSTMAT	Γ [ENTER]		
	1:	{{ ⁽⁽¹⁾ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		

COPY

Category	Meta-object manipulation		
Affected by flag	none		
Input	:	obj ₁	
	:		
	:	obj _{from}	
	:		
	:	obj _{to}	
	:		
	:	obj _{above}	
	:		
	5:	obj _n	
	4:	n	
	3:	from	
	2:	to	
	1:	above	

HP 48 SX SmartROM TM		Users Guide	Page 46
Output	:	obj ₁	
	:	- 	
	:	obj _{from}	
	:		
	:	obj _{to}	
	:		
	:	obj _{above-1}	
	:	obj _{from}	
	:		
	:	objto	
	:	obj _{above}	
	:		
	:	obj _n	
	1:	n+abs(f-t+1)	
Function	Copies from a accordi	the section of the meta-object d nd to above level above and up ingly.	elimited by dates the counter
Notes	The fir lement the firs	st element of the meta-object (th indexed with 1) lies on level r t element of a list.	nat is the 1+1, as if it were
	Input p order. the sec object.	parameters from and to can l If you specify for above a value tion will be appended to the t	be given in any e greater than n, tail of the meta-
	Note the for abo	nat you can copy a block within ve a value between from and to.	itself specifying
See also	DELET	IE, MOVE	

Examples

6:	"TOP
5:	"these lines"
4:	"get copied"
3:	"after the bottom"
2:	"BOTTOM"
1:	5

2 4 6 COPY [ENTER]

9:	"TOP
8 :	"these lines"
7:	"get copied"

- "get copied" "after the bottom" 6:
- "BOTTOM" 5:
- "these lines" 4:
- 3: "get copied"
- "after the bottom" 2:
- 1: 8
- 5: "HEAD"
- "SUBHEAD" 4:
- 3: "GO OVER THE TOP"
- 2: "ME TOO"
- 1: 4

2: 1:

5:

4: 3:

2: 1:

3 5 1 COPY [ENTER]

- 7: "GO OVER THE TOP"
- 6: "ME TOO"
- 5: "HEAD"

6

4

- "SUBHEAD" 4:
- 3: "GO OVER THE TOP"

"HEAD"

"BOTTOM"

"EXPAND MYSELF #1"

"EXPAND MYSELF #2"

- "ME TOO"

2 3 3 COPY [ENTER]

- 7: "HEAD"
- 6: "EXPAND MYSELF #1"
- 5: "EXPAND MYSELF #1"
- 4: "EXPAND MYSELF #2"
- 3: "EXPAND MYSELF #2"
- 2: "BOTTOM"
- 1: 6

CSTMENU

Category	Utility
Affected by flag	none
Input	
Output	
Function	Replaces System variable; Variables >CST contents with SmartROM's custom menu.
Notes	CSTMENU saves the contents of CST for recovery by LASTARG. This means that you can restore the previous contents of CST immediately after issuing CSTMENU but not later. This feature was introduced with the release 1:C of the library. SmartROM's custom menu subdivides the command set in six main areas for Commands; quicker access: STACK \$&L META SYMB TYPES MISC It also adds the following six features:
CHR	A keytrap for entering a character given its ASCII code. The trap waits indefinitely key presses and does not allow meaningless keystrokes. Character 0 cannot be entered nor can characters above 255. To disable the beeper set flag - 56. The message "Enter three digits" remains in the status area until you press

Input

the last key. The ON key is disabled along with other meaningless keys. When you enter [2] [5], the keyboard is mapped to respond only to keys 0 - 5. Alarms coming due while typing keys are automatically queued.

VISIT Enhanced Visit Function:

A 2: 1	bsolute position 0 (replace) or 1 (insert) : 'name'	3: { row col } 2: 0 (replace) or 1 (insert) 1: 'name'
3 2 1	: "string" : occurrence : 'name'	This function lets you edit the contents of a variable starting from a specified position within the text.
		The position can be specified in three different ways as shown in the stack diagram. When you specify a search string and supply a 0 as occurrence, the cursor will be placed on the last occurrence of the string. If the string is not contained in the text, the cursor will be placed at the end of the last line.
	SYSEVAL	Syseval typing aid

\$≪G	Toggles between a string object and a global name. Identifiers cannot exceed 255 characters. The length is truncated modulo 256, thus an identifier of length 257 is treated as if it were of length 1. Note that assigning to an identifier a name already used by an internal command, you can ovverride it. This feature can be useful to extend system commands (system functions are more difficult beasts). See on page <R[P#,tolocal]148> to learn how to get a local name.
20[47] 1: "X+1"	Interactive stack trap. This feature lets you access the interactive stack from anywhere. While you are in the editor, you can enter the stack environment, even if you are in the middle of a program, and copy stack items as text to the current cursor position.
8	The spreadsheet icon labels the Symbolic Matrix Writer (Omnibus) trap. By pressing the rightmost key, you enter an empty worksheet.
[Gold]	This keystroke lets you edit a list-matrix lying on the stack.

© BB Marketing ANS - 1994

DELCOL

Category	Symbolic matrix manipulation			
Affected by flag	none			
Input	2: {{Symb}_{1,1} Symb_{1,2} Symb_{1,n} }			
	{Symb _{m,1} Symb _{m,2} Symb _{m,n} }} 1: j			
Output	1: {{Symb} _{1,1} Symb _{1,j-1} Symb _{1,j+1} Symb _{1,n} }			
	 {Symb _{m,1} Symb _{m,j-1} Symb _{m,j+1} Symb _{m,n} }}			
Function	Deletes the specified column from the list.			
Notes	No restrictions on the shape of the list. If an invalid subscript is specified, the corresponding error is issued. The list-matrix can contain any object type. If you need to delete a column and a row, CMPL lets you do it in one shot.			
See also	CMPL, CONSTMAT, DELROW			
Examples	2: {{1 0 0 } {'-X' '1-X' '2-X'} {-1 0 -4}} 1: 1			
DELCOL [ENTER]	1: {{ 0 0 } { '1-X' '2-X'} { 0 -4}}			

DELETE

Category	Meta-object manipulation		
Affected by flag	none		
Input	:	obj ₁	
	:		
	:	obj _{from}	
	:		
	:	obj _{to}	
	:		
	4:	obj _n	
	3:	n	
	2:	from	
	1:	to	
Output	:	obj ₁	
	:		
	:	obj _{from-1}	
	:	obj _{to+1}	
	:		
	2:	obj _n	
	1:	n-ABS(from-to+1)	

Function

Deletes a block from the meta-object, updating the counter.

Notes	from and to can be given in any order. Values out of range will generate an error message. When you delete all the objects, on the stack remains only the counter 0.			
See also	DELETE, MOVE			
Examples	 6: "delete after this line" 5: "garbage" 4: "garbage" 3: "garbage" 2: "last" 1: 5 			
	2 4 DELETE [ENTER]			
	3: "delete after this line"2: "last"			

1: 2

DELROW

Category	Symbolic matrix manipulation				
Affected by flag	none				
Input	2: {{Symb}_{1,1} Symb}_{1,2} Symb_{1,n} }				
	$\{Symb_{m,1} Symb_{m,2} \dots Symb_{m,n} \}\}$ 1: i				
Output	1: {{Symb}_{1,1} Symb_{1,2} Symb_{1,n} }				
	$\{Symb_{i-1,1} Symb_{i-1,2} \dots Symb_{i-1,n}\} \\ \{Symb_{i+1,1} Symb_{i+1,2} \dots Symb_{i+1,n}\}$				
	$\{Symb_{m,1} Symb_{m,2} \dots Symb_{m,n}\}\}$				
Function	Deletes the specified row from the list.				
Notes	No restrictions on the shape of the list. If an invalid subscript is specified, the corresponding error is issued. The list-matrix can contain any object type. If you need to delete at the same time a column and a row, CMPL lets you do it in one shot.				

HP 48 SX SmartROM TM		Users Guide	Page 56		
See also	CMPL, CONSTMAT, DELCOL				
Examples	2: 1:	{{100} { '-X' '1-X' '2-X'} { -10-4}} 1			
	DELR	OW [ENTER]			
	1:	{{ '-X' '1-X' '2-X'} { -1 0 -4}}			

DETERM

Category	Symbolic matrix manipulation			
Affected by flag	-3 (Numerical result)			
Input	1: {{Symb}_{1,1} Symb}_{1,2} Symb_{1,n} }			
	$\{\operatorname{Symb}_{n,1}\operatorname{Symb}_{n,2} \dots \operatorname{Symb}_{n,n}\}\}$			
Output	1: Symbolic			
Function	Returns the determinant of a square matrix.			
Notes	The result is not simplified. You can use EXPAND and COLCT or the program EXCO described in Chapter 31 of the HP-48 User's Manual. The algorithm used is described in the Hidden manual>Commands Reference.			
	The algorithm is optimized for sparse matrices. The precision of a numeric result varies from case to case. Sometimes is more precise than DET, while in other cases is worse.			
See also	SQUARE?			
Applications	INVRT, MATMENU, PRSYMB			

Examples	1:	{{	'X'	4	-1	'(X-2)/Y'}
-		{	0	1	'-X'	'2*Y' }
		{	'Y/X'	'1/X'	-3	'X-Y' }
		{	0	1	Y	'Y-2*X'}}

DETERM [ENTER] EXCO [ENTER]

'-2-1/X*Y^2-8/X_{*}Y^3-2/X*Y+X*Y^2+4*X^2-X^3+12*X*Y-2*Y^2+X-Y'

DIMS

Category	Symbolic matrix manipulation		
Affected by flag	none		
Input	1:	{{Symb}_{1,1} Symb_{1,2} Symb_{1,n} }	
		$\{Symb_{m,1} Symb_{m,2} \dots Symb_{m,n} \}\}$	
Output	2:	{{Symb} _{1,1} Symb _{1,2} Symb _{1,n} }	
	1:	$\{Symb_{m,1} Symb_{m,2} \dots Symb_{m,n} \}\}$ { r c}	
Function	Returns matrix o an error	the dimensions of the list-matrix, checking consistency. If a dimensional error is detected, messagge is issued.	
Notes	No chec check ea	k is made on object types. If you want to ach element, use MSYMB?.	
	When a error "Ir	row contains an invalid number of objects, the avalid Sub-list" is issued.	
See also	CONFO	RM?, MATWRT, MSYMB?, SQUARE?	
Applications	INVRT,	MATMENU, PRSYMB	

EQUAL?

Catego	ry	Symbolic matrix manipulation				
Affecte	d by fla	none none				
Input	2:	{{SymbA1,1 SymbA1,n}	2:	{{SymbA1,1 symbA1,n}		
	1:	 {SymbAm,1 SymbAm,n}} {{SymbB1,1 SymbB1,n}	1:	{SymbAm,1 SymbAm,n}} {{SymbB1,1 SymbB1,q}		
		 {SymbBm,n SymbBm,n}}		 {SymbBp,1 SymbBp,q}}		
Output	;					
	4:	{{SymbA1,1 SymbA1,n}				
	3:	 {SymbAm,1 SymbAm,n}} {{SymbB1,1 SymbB1,n}	3:	{{SymbA1,1 SymbA1,n}		
	2:	 {SymbBm,1 SymbBm,n}} { m n }	2:	 {SymbAm,1 SymbAm,n}} {{SymbB1,1 SymbB1,q}		
	1:	1	1:	{SymbBp,1 SymbBp,q}} 0		
Functio	n	Checks if matric a dimension mis	tes have t smatch is	he same dimensions. If found, a 0 is returned.		
Notes		The underlying unifies the boo convention. The IFTE input.	The underlying meta-object structure of the result unifies the boolean convention with the meta-object convention. The output is especially suitable for IFT or IFTE input.			

See also	CONFORM?, DIMS, MSYMB?, SQUARE?					
Applications	MATM	ENU				
Example	Let's create a program taking two matrices, using the Matrix Writer, that performs a sum only if the two arrays have the same dimensions, otherwise asks the user to modify either of the twos. Then we will examine an alternate method which imposes more restrictive rules to the user.					
	«	\rightarrow mat \langle DO	mat	First of all, let's define a subprogram. Its function is		
		UNTIL	MATWRT	to iterate the request until the user satisfies it.		
	»	END »				
	'ASK' [STO]		Name it ASK.		
	«	33 CF		And now the program. Enables symbolic mode. See under MATWRT.		
		1 2 STA	IRT	Asks the user for two matrices.		
			{ { } } }	The request is repeated until both		
		NEXT	ASK	errays are entered		

WHILE		Tests whether the
	EQUAL? NOT	arrays are
REPEAT		compatible, if not
" Ca	an't do the sum !	redisplays each
ma	odify either of the	array for editing
tw	o arrays."	until the user returns
3 D	ISP	a valid pair
SW	AP ASK	of arrays.
SW	AP ASK	
END		

DROP ADD Returns the sum of the two arrays.

»

The program explained above lets you change freely matrix dimensions, thanks to the Matrix Writer autoredimensioning features. The keyword EQUAL? is responsible for accepting or not the input.

The following program instead forces the user to enter the second matrix with the same dimensions as the first one without a second pass (and without using EQUAL?).

«	33 CF	Turns on
	{{}} ASK	Symbolic mode.
	34 SF 35 SF	Locks matrix
		dimensions; see
		under
		MATWRT.

DIMS '?' SWAP CONSTMAT Creates a template for the second matrix;

ASK ADD 34 CF 35 CF

»

enters the second matrix, returns the sum and unlocks matrix dimensions.

$EXT \rightarrow$

Category	Type conversion	
Affected by flag	none	
Input	1: obj	
Output	1: addr	
Function	Returns the memory address where the object is stored. When the address is less than <70000h> the object is stored in ROM.	
Notes	EXT→is useful to decipher system RPL programs. External is the raw representation of a system address or External object. Externals are explained in Appendix B. System addresses are listed in a special library supplied with the ESA Assembler. Please refer to the program on page <\$R[P#,Xlib]160> for printing the list of the system addresses.	
See also	→EXT, SYS→, →SYS.	
Examples	1 EXT→ [ENTER]	
----------	----------------	------------------------
	1:	#2A2C9 SYSEVAL [ENTER]
	1:	1
	TRUE	[ENTER]
	1:	External
	EXT→	[ENTER]
	1:	<03A81h>

→EXT

Category	Type conversion			
Affected by flag	-5 to -10 (Binary Wordsize) and -11 to -12 (Binary Integer Base) only when the input number is a binary integer.			
Input	1: addr			
	or			
	1: #n			
Output	1: Obj			
Function	How to; get the object at address #hhhhh. Returns the address of an object.			
Notes	If the address specified represents the beginning of a machine language routine, the display will show External on the first level of the stack. Unfortunately the HP48 represents with 'External' meaningless address too, therefore pay attention before evaluating a socalled External.			
	Beware of binary wordsize and current base.			
	We need to point out that there is no real distinction between a system RPL program and a user RPL program from the execution's viewpoint.			
	The main difference is represented by a faster execution of the system RPL due to the higher specialization of the code and to the depletion of stack checks.			

	If a system RPL program has got an associated label (name) and number (Xlib number), we are referring to an RPL command (or function). Of course we may have a program retaining an associated number (Xlib number) but no associated name, in this case we had rather to speak of a hidden command. Appendix H contains a list of SmartROM hidden commands and the Hidden CommandsReference manual describes each entry.		
	see also appendix B for further details.		
See also	$EXT \rightarrow$, \rightarrow PRG.		
Applications	$L \rightarrow TH$, SHRINK, TH $\rightarrow L$.		
Examples	1: #30794h		
	→EXT [ENTER]		
	1: External		
	[EVAL]		
	1: "HPHP48-x" $x =$ revision letter (A,B,C,D,E or J)		
	1: #2B0F2h		
	→EXT [ENTER]		
	1: Long Real		

FACTOR

Category	Symt	Symbolic matrix manipulation		
Affected by flag	-3 (N	-3 (Numerical result)		
Input	2:	{{ $Symb_{1,1} Symb_{1,2} \dots Symb_{1,n}$ }		
	1:	 {Symb _{m,1} Symb _{m,2} Symb _{m,n} }} Symb		
Output	1:	{{Symb*Symb1,1 Symb*Symb1,2 Symb*Symb1,n } {Symb*Symbm,1 Symb*Symbm,2 Symb*Symbm,n }}		
Input	2:	$\{\{\text{Symb}_{A1,1} \text{ Symb}_{A1,2} \dots \text{ Symb}_{A1,n}\}$		
	1:	$\{ Symb_{Am,1} Symb_{Am,2} \dots Symb_{Am,n} \} \}$ $\{ \{ Symb_{B1,1} Symb_{B1,2} \dots Symb_{B1,n} \}$ \dots $\{ Symb_{Bm1} Symb_{Bm,2} \dots Symb_{Bm,n} \} \}$		

Output	1: {{ $Symb_{A1,1}}^*Symb_{B1,1}Symb_{A1,2}}^*Symb_{B1,2}$ $Symb_{A1,n}^*Symb_{B1,n}$ }
	 {Symb _{Am,1} *Symb _{Bm,1} Symb _{Am,2} *Symb _{Bm,2} Symb _{Am,n} *Symb _{Bm,n} }}
Function	Multiplies all the elements of the list by the Symbolic value Symb or returns the in-place product of two arrays.
Notes	A one-dimensional array must be written as one-row or one-column two-dimensional array. To avoid run- time errors, flag -3 must be clear, alternatively each symbolic expression must evaluate to a numeric value.
	In the case of two arrays, the result is a matrix where each element is the product of the correspondent pair of elements of the input matrices. Allowed pairs of objects are those accepted by the standard operator *. To restrict object types to symbolics, use MSYMB? beforehand, or, alternatively, force the user to enter the matrices within the Symbolic Matrix Writer environment; an example can be found under EQUAL?.
	FACTOR is an instance of a generalized function, designed to apply binary operators to all the pairs of elements. For more information on this topic, please refer to the Hidden Commands Reference manual.
See also	ADD, DETERM, MULT, SQUARE?, SUBT
Applications	MATMENU

HP 48 SX SmartROM TM		Users Guide	Page 70
Example	1:	{{ 2 'X' 4 } { -1 0 'X/2' } { 0 3 'X+1'}}	
	2 FAC	TOR [ENTER]	
	1:	{{ 4 'X*2' 8 } {-2 0 'X/2*2' } { 0 6 '(X+1)*2'}}	
	1:	[123]	
	'X' FA	CTOR [ENTER]	
	1:	{{ 'X' '2*X' '3*X' }}	
	2: 1:	[1 2 3] [-1 3 5]	
	FACT	OR [ENTER]	
	1:	[[1 4 9]]	

FALSE

Category	Type conversion			
Affected by flag	none			
Input				
Output	1: External (FALSE)			
Function	Returns the system boolean FALSE.			
Notes	System booleans are machine language routine addresses which merely return themselves when evaluated. The command \rightarrow TorF turns a system boolean into a real boolean.			
	FALSE resides at address #03AC0.			
See also	EXT \rightarrow , TRUE, \rightarrow TorF			
Examples	Create a program to convert a real valued boolean (0=FALSE 1=TRUE) into a system boolean:			
	« 0 > TRUE FALSE IFTE »			
	Store it as ' \rightarrow BOOL' for later use.			

Users Guide

FIND

Category		Strin	String, List and program editing function.						
Affected by	flag	none							
Input	2: 1:	str 1 str2	2: 1:	prg obj	2: 1:	list obj	2: 1:	hex1 hex2	
Output		2: 1:	2: input_object1: Found: occurences						
Function		Return or (l (hex)	Returns the total number of occurences of an object or (hex) substring within a composite object or (hex)string respectively.						
See also		REPI	REPLACE						
Examples		2: 1:	{	2 4 { 2 ""	`}}				
		FIND	FIND [ENTER]						
		2: 1:	{ "" Foun	2 4 { 2 "" d: 2	`}}				
		2: 1:	"AB "AB	CDABCE	DEFABC	1 33			

FIND [ENTER]

2: 1:	"ABCDABCDEFABC" Found: 3	
1:	<< n << n ROLL	DROP >>
	$\{ ROLL \} OBJ \rightarrow DROP$	FIND [ENTER]
2: 1:		DROP >>

See also under REPLACE for an interesting application involving hex strings.

IDNT

Category	Symbolic matrix manipulation		
Affected by flag	none		
Input	1:	n	
Output	1:	{{1 0 0} {0 1 0} {0 0 1}}	
Function	Retur	rns the identity matrix of order n.	
See also	CONSTMAT		
Applications	MATMENU		
Examples	1:	3	
	IDNT	[ENTER]	
	1:	{{ 100 } { 010 } { 001 }}	

KEYWAIT

Category	Input/Output			
Affected by flag	none			
Input				
Output	2:	< <keyh>></keyh>		
	1:	< <shifth>></shifth>		
Function	Waits in trapped	definitely for a key like any other key.	press. The [ON] key is	
Notes	The key left corn order. T and the shifted Jcannot encoded	board is numbered are down to the low the key associated last is <<2Fh>> keys so that [A be trapped singu	, starting from the upper ver right corner in row major to A is numbered <<1h>>> (49d). KEYWAIT detects LPHA], [Gold]and [Blue larly. The shift status is so	
			This encoding system	
	<1h>	no SHIFT	requires fewer processing	
	<2h>	[Gold]	than that required to	
	<3h>		dispatch a key trapped	
	<4h>	[alfa]	with 0 WAIT. Moreover	
	<5n>	[ana] [Gold]	the [UN] key is trapped	
	<6h>	[alta] [Blue]	like any other key.	

The KEYWAIT internal routine is the most simple application of what HP calls Parameterized Outer Loop, also known as ParOuterLoop. This routine is the core of any interactive built-in application thanks to its flexibility. The GRAPHics editor uses the same basic routine as KEYWAIT ! ParOuterLoop is well explained in the documentation provided by HP called HP48 development tools.

JOINR

Category	Graphics		
Affected by flag	none		
Input	2: $\operatorname{Grob}_{m \times h}$ 1: $\operatorname{Grob}_{p \times h}$		
Output	1: $\operatorname{Grob}_{(p+m) \times h}$		
Function	Appends the grob on the first level to the right side of the grob on the second level.		
Notes in	Grobs must have the same height. The result is placed a new grob.In the Appendix H, you will find a hidden function called gop performing logical operations between grobs. More details about it can be found in the Hidden Commands Reference manual.		
See also	JOINUP, RPT		
Applications	→FONT, PROBJ		
Example	See also on the next page.		

JOINUP

Category	Graphics		
Affected by flag	none		
Input	2: 1:	Grob _w Grob _w	x h x l
Output	1:	Grob _w	x (h+l)
Function	Puts the grob lyi	e grob on ing on th	the first level onto the top of the e second level.
Notes	Grobs n	nust have	e the same width.
See also	JOINR		
Example	Let's suppose you want to create a chessboard. By using JOINUP, JOINR and RPT, you can build in a few steps without loops. A technique alike used also for creating grids or shadings.		u want to create a chessboard. By JOINR and RPT, you can build a grob rithout loops. A technique alike can be ating grids or shadings.
	#8 #8 B	LANK	First of all let's create a square grob;
	DUP NI	EG	then duplicate it and invert pixel color;

- DUP2 JOINR make a copy of both objects and join them horizontally;
- 31 CF 4 RPT build the first line

CBA take apart the first line and invert the order of the grobs

JOINR 4 RPT JOINUP

join them horizontally and vertically

31 SF 4 RPT 31 CF

Ready !

L2M

Category	List and st	List and stack manipulation		
Affected by flag	none			
Input	N+1: "N N: : 2: 1:	MARK' obj1 objn-1 objn		
Output	1:	{obj1 obj2 objn}		
Function	Collects al the TOS. stack.	l the objects between the marker and The marker is always removed from the		
Notes	If no mark correspond	er is on the stack, L2M issues the ling error.		
	'MARK is use of an a defined pro	a private marker. Hidden commands make alternate marker to avoid collision with user ograms.		

Users Guide

See also	L2M, MARK, META	
Examples	 3: 'MARK 2: "Enter as many numbers as you 	want"
	1: $\{V\}$ << IFERR INPUT THEN KILL END OBJ \rightarrow L2M OBJ \rightarrow	
	1 - << MAX >> RPT "The greatest is " SWAP + 7 DISP 7 FREEZE >>	
	/ DISP / FREEZE	

→LINES

Category	String and Meta-object manipulation		
Affected by flag	none		
Input	1:	str	
Output	N+1:	str l	
	: 2:	 str	
	1:	n	
Function	Splits the string it at linefeeds.	into several lines breaking	
Notes	Linefeeds are used as newline characters in the editor. Moreover they are translated to the sequence CR LF during the transmission to a printer when the translation parameter in the global variable IOPAR has a value greater than $0. \rightarrow$ LINES removes the linefeeds, and pushes on the stack resulting strings. However the command ignores linefeeds embedded in double quotes. This feature leaves message strings intact and lets you replace linefeeds, which are rendered with a black box, with some more descriptive sequence of characters.		
See also	LINES→		
Example	See also the exan	nple under SPLIT.	
	Suppose you was printed output b the following seq	nt to enhance the readability of your y replacing embedded linefeeds with uence of characters: "< <lf>>"</lf>	

→LINES

{ 10 CHR "<LF>" REPLACE DROP } METOP

 $LINES \rightarrow$

$LINES \rightarrow$

Category	String and Meta-object manipulation		
Affected by flag	none		
Input	N :	str ₁	obj ₁
	:		•••
	2:	strn	obj _n
	1:	n	n
Output	1:	str	
Function	Joins	objects by me	ans of a linefeed.
Notes	It is tl	he inverse of -	→LINES.
See also	→LIN	VES, SPLIT	
Applications	PROE	BJ	
Example	See also the examples under SPLIT.		

LOC

Category	String	function		
Affected by flag	none			
Input	3:	str ₁	3:	hex1
	2:	str ₂	2:	hex ₂
	1:	pos	1:	pos
Output	1:	pos		
Function	Seeks str ₂ in str ₁ starting from position pos.			
	If no r locatio	natch is found in of the match.	returns 0	, otherwise the absolute
Notes	LOC is	s an extension of	FPOS.	
See also	MEME	BER, SPAN		
Examples	3: 2: 1:	"abcdabcdabc "abc" 2	d"	
	LOC [ENTER]		
	1:	5		
	Searching for a sequence of objects within a program or list:			
	Set he	k mode and word	1 size to	64 before starting.

Users Guide

Retrieve the program HSUB, and the program HSIZE,

{ { 5 8 9} 5 } }	2 arguments;
IF CHST? NOT	tests whether the object on the third level is a program or list and the first level contains a list.
THEN DUP2	Ok, proceed.
→Xlib	translates into hex format the search key
EVAL 6 OVER	
HSIZE	returns the length of the hex string
5 -	returns length-5
HSUB	gets the substring [6;length-5]
SWAP	prepares the main object
821 275 →Xlib	translates it into hex format
EVAL	
SWAP	reorders
1 LOC	seeks the sequence of objects starting from the beginning
1 0 IFTE	returns 1 if found, 0
ELSE DROP	ULICI WISC
"Stack parameter	rs: 2: Prog, List, Alg 1: List

HP 48 SX SmartROM TM	Users Guide		Page 87
		"	
	3 DISP	When parame diagram is she abort	eters mismatch, the stack own and the program ed
	3 FREEZE		
	END »		

Save the program. The example is stored on the disk in the directory EXAMPLES.1C under the name BFIND.

ELSE DROP

"Stack parameters:

2: Prog, List, Alg 1: List

LOP1

Category	List manipulation	
Affected by flag	none	
Input	2: $\{\operatorname{obj}_1 \operatorname{obj}_2 \dots \operatorname{obj}_n\}$	
	1: $\{\operatorname{cmd}_1 \operatorname{cmd}_2 \dots \operatorname{cmd}_k\}$	
Output	1: $\{obj_1 obj_2 \dots obj_n\}$	
Function	Given a list of objects in level 2 and a list of commands in level 1, applies the commands to each element of the operand-list and puts the result in a new list.	
Notes	The operator list must return one, and only one, result at any time. If the operator returns more than one object as result, use LOPN instead. This command has got common aspects with the induction postulate:	
	 1) define a procedure working on a single object 2) proof if it works on the first element. 3) apply to all elements. 	
See also	LOPN, LVOP, METOP	

Examples 1:	1:	2: $\{234\}$ $\{INV \rightarrow Q\}$
		LOP1 [ENTER]
	1: { '1/2' '1/3' '1/4' }	
		VARS [ENTER]
		1: { PROG1 PROG2 PROG3 }
		{ DUP BYTES NIP SWAP \rightarrow TAG } LOP1 [ENTER]
		1: { :PROG1:307 :PROG2:8604.5 :PROG3:1233 }

Users Guide

LOPN

Category	List n	List manipulation		
Affected by flag	none			
Input	2:	{obj ₁ obj ₂ obj _n }	Argument list	
	1:	$\{ \operatorname{cmd}_1 \operatorname{cmd}_2 \dots \operatorname{cmd}_k \}$	Command list	
Output	1:	{{obj _{1,1} obj _{1,p} }		
		 { obj _{n,1} obj _{n,q} }		
Function	Applie Each object	es a sequence of commands operation may return an s which are collected into a	to a list of objects. arbitrary number of list.	
Notes	Comn in the form c	nands (or functions) followi c commands list must acc of a list.	ng the first command ept the arguments in	
See also	LOPI	, LVOP, METOP		
Examples	VARS	G [ENTER]		
	1:	{ PROG1 PROC	32 PROG3 }	
	{ BYI	TES } LOPN [ENTER]		
	1:	{{ #1AE1 307 } {#11D1 8718 } {#113D 214.5}	}	

LVOP

Category	List manipulation	
Affected by flag	none	
Input	3: { $obj_1 obj_2 \dots obj_n$ }	
	2: $\{obj_1 obj_2 \dots obj_p\}$	
	1: { $\operatorname{cmd}_1 \operatorname{cmd}_2 \dots \operatorname{cmd}_k$ }	
Output	1: $\{obj_1 obj_2 \dots obj_{min(n,p)}\}$	
Function	Applies each operator to the pairs of elements taken from the operand-list in levels 2 and 3.	
Notes	When the operand-lists have different size, exceeding objects of the bigger list are discarded. If you need to perform a calculation based on the current value of the counter, use the identifier 'idx' as counter. It will be replaced by its current value.	
See also	LOP1, LOPN, METOP	

HP 48 SX SmartROM TM	Users Guide		Page 92
Examples	3: 2: 1:	{ 1 2 3 } { 10 20 } { + }	
	LVOP [ENTERJ	
	1:	{ 11 22 }	
	3: 2:	{ 3 5 } { 1 1 }	
	1:	{ SWAP / }	
	LVOP [ENTERJ	
	1:	{ 0.33333333	33333 0.2 }
	3: 2: 1:	{ 1 "" (2,0) 3 { 0 "" X 3 { SAME { id	0 5} 0 7} x } IFT }
	LVOP [ENTER]	
	1:	{ 2 4 }	

MARK

Category	Meta-object manipulation and stack manipulation	
Affected by flag	none	
Input		
Output	1: "MARK'	
Function	Puts the private marker on the stack.	
Notes	'MARK is an unresolved global name. Do not store any object using such name.	
	The marker delimits an unbound meta-object. See the section 'Notes' on page <\$R[P#,C2M]13> for further details.	
	Internal routines make use of an alternate marker to avoid collisions between user programs.	
See also	C2M, L2M	
Example	See the example under SPLIT.	

MATWRT

Category	Spreadsheet and MatrixWriter	
Affected by flag	-15 through -18 and -45 through -50, -5. User flags from 32 to 40	
Input	1:	$\{\{Symb_{1,1} \; Symb_{1,2} \; \; Symb_{1,n} \; \}$
		$\{\text{Symb}_{m,1} \text{Symb}_{m,2} \dots \text{Symb}_{m,n} \}\}$
Output	2:	{{ $Symb_{1,1} Symb_{1,2} \dots Symb_{1,q}$ }
		$\{Symb_{p,1} Symb_{p,2} \dots Symb_{p,q} \}\}$
	1:	1
	1:	0
Function	Allows if [ENT	interactive editing of a list-matrix and returns 1 [ER] was pressed or 0 if [ON] was pressed.
Notes	MATW	RT is a command of library 822 (Omnibus).
	See Ch Omnibu	apter 2 for further information or read the s programming guide.
See also	CSTMENU	
Applications	CALENDAR	

Examples

See the examples under EQUAL?, MULT and SQUARE?.

MEMBER

Category	String function	
Affected by flag	none	
Input	3: 2: 1:	str ₁ str ₂ pos
Output	1:	pos
Function	Returns Str ₁ con match is	the absolute position of the first character in $prised$ in Str_2 , starting from position pos. If no found, returns 0.
Notes	MEMBE of char delimite	ER is useful to skip text given a particular set acters, typically punctuation characters or rs.
	Frequent ROM to	tly used string-constants have been stored in save user memory:
	DIGIT\$ alfaLOW alfaUPPS	= "0123456789" /\$ = "ABCDEFGHXYZ" \$ = "abcdefghxyz"
	They are CST.	e accessible in the fifth page of menu \$&L in
	Try also 251 →X	821 250 \rightarrow Xlib [ENTER] [EVAL] and 821 lib [ENTER] [EVAL]

MEMBER and SPAN are useful to check the input from the user, for the presence or absence of certain characters. Typically they are used to implement parser routines in conjunction with SPLIT, SUB and other string manipulation functions. Appendix H lists hidden string functions.

See also SPAN, SPLIT

Examples	3:	"123456789A12DEF"
-	2:	"ABCDE"

1: 11

MEMBER [ENTER]

1: 13

© BB Marketing ANS - 1994

META

Category	Meta-object manipulation	
Affected by flag	none	
Input	1:	n
Output	N+1: 1	
	···· 3·	 n_1
	2. 2.	n-1 n
	1:	n
Function	Creates a number	red meta-object in increasing order.
Notes	META is useful to create index arrays in conjunction with \rightarrow ARRY or for numbering rows or columns in the Matrix Writer.	
See also	METOP, NDUP	N, SRT, STRD
Applications	CALENDAR	

METOP

Category	Meta-object manipulation		
Affected by flag	depend	ls on the	operators passed for evaluation
Input	N+1:	obj ₁	
	:	_	
	3:		obj _n
	2:		n
	1:		list
Output	N+1:	obj ₁	
	:	•	
	2:		obj _n
	1:		n
Function	Applie single result i	s a seque result to e s a meta-	nce of commands evaluating to a each object of the meta-object. The final object of the same size.
Notes	The list in level 1 must contain a sequence of commands whose result is a single object. This convention, in practice, does not restrict the usage of METOP. When you use up an object doing some operation, you can refill the empty with a boolean or a dummy object.		
See also	LOP1,	LOPN, L	VOP

Applications	L→TH, TH→L		
Examples	7:	#45h	
-	6:	37	
	5:	<22h>	
	4:	12	
	3:	#11h	

2:

5 1: $\{\rightarrow SYS\}$

METOP [ENTER]

6:	<45h>
5:	<25h>
4:	<22h>
3:	<ch></ch>
2:	<11h>
1:	5
MGET

Category	Symbo	Symbolic matrix manipulation		
Affected by flag	none			
Input	3:	$\{\{Symb_{1,1} \dots Symb_{1,k} \dots Symb_{1,n}\}$		
		$\{\operatorname{Symb}_{m,1} \dots \operatorname{Symb}_{i,k} \dots \operatorname{Symb}_{m,n}\}$		
		 {Symb _{m,1} Symb _{m,k} Symb _{m,n} }}		
	2:	i		
	1:	k		
Output	1:	Symb _{i,k}		
Function	Extra	cts an element from a list-matrix.		
Notes	No ch in the matrix dimen missir	No check is made on the type of the objects contained in the list, nor on the consistency of the structure of the matrix. This feature lets you extract elements from two- dimensional lists of arbitrary structure. If the pointee is missing an error is issued.		
See also	MPU	Г		
Applications	MAT	MENU, PRSYMB		

MOVE

Category	Meta-object manipulation				
Affected by flag	none				
Input	N+4:	obj ₁			
	:				
	:	obj _{from}			
	:				
	:	obj _{to}			
	:				
	:	obj _{above}			
	:				
	5:	obj _n			
	4:	n			
	3:	from			
	2:	to			
	1:	above			

HP 48 SX SmartROM TM	TM Users Guide		s Guide	Page 103	
Output	N+1:	obj ₁			
	:				
	:		obj _{from-1}		
	:		•••		
	:		obj _{to+1}		
	:				
	:		obj _{above-1}		
	:		obj _{from}		
	:				
	:		obj _{to}		
	:		obj _{above}		
	:				
	:		obj _n		
	1:		n		
Function	Shifts t above c	he block bject abc	of objects delimited we.	ited by from and to	
Notes	Top of he last elemen lies on	stack cor object of t of a lis level n+1	ntains the counte f the meta-objec t). The first eler l(after the execut	r while level 2 contains t (as if it were the last nent of the meta-object tion of the command).	
	Input p order. the sec Despite destina	paramete If you sp tion will e of COF tion betw	rs from and to ecify for above shift after the PY, MOVE does even from and to	can be given in any a value greater than n, tail of the meta-object. a not allow a value for	
See also	DELET	ГЕ, СОР	Y		

Examples

- 6: "I stay here"
- 5: "I get moved"
- 4: "me too"
- 3: "I'll go up"
- 2: "End"
- 1: 5

2 3 5 MOVE [ENTER]

- 6: "I stay here"
- 5: "I'll go up"
- 4: "I get moved"
- 3: "me too"
- 2: "End"
- 1: 5
- 6: "I'll stay here"
- 5: "I get moved"
- 4: "me too"
- 3: "I'll go up"
- 2: "End"
- 1: 5

2 3 6 MOVE [ENTER]

- 6: "I stay here"
- 5: "I'll go up"
- 4: "End"
- 3: "I get moved"
- 2: "me too"
- 1: 5

MPUT

Category	List m	List manipulation and symbolic matrix manipulation		
Affected by flag	none			
Input	4:	{{Symb}_{1,1} Symb}_{1,2} Symb}_{1,n} }		
		$\{Symb_{m,1} Symb_{m,2} \dots Symb_{m,n} \}\}$		
	3:	i		
	2:	k		
	1:	Any		
Output	1:	{{ $Symb_{1,1} Symb_{1,2} \dots Symb_{1,k} \dots Symb_{1,n}$ }		
		$\{\text{Symb}_{i,1} \text{Symb}_{i,2} \dots \text{Any} \dots \text{Symb}_{i,n}\}$		
		$\{\operatorname{Symb}_{m,1}\operatorname{Symb}_{m,2}\ldots\operatorname{Symb}_{m,k}\ldots\operatorname{Symb}_{m,n}\}\}$		
Function	Replac	ces the value contained at location (i,k) with Any		
Notes	Any n	Any means any object type.		
See also	MGE	Г, MSYMB?		
Applications	MAT	MATMENU, PRSYMB		

MREV

Category	Meta-	Meta-object manipulation		
Affected by flag	none			
Input	N+1: obj ₁			
	:			
	2:		obj _n	
	1:		n	
Output	N+1:	obj _n		
	:			
	2:		obj ₁	
	1:		n	
Function	Revers	ses the or	der of the objects in the meta-object.	
See also	SRTD			
Examples	1:	[123	456]	
	OBJ→	OBJ→ I	DROP MREV →ARRY [ENTER]	
	1:	[654	321]	

MSBIT

Category	Type conversion					
Affected by flag	-5 through -10 for binary integers only					
Input	1:	n	1:	<n></n>	1:	#n
Output	1:	msbit				
Function	Returns the position of the most significant bit in the mantissa of the input number.					
Notes	Real numbers are automatically rounded to integers before the operation.					
	MSBIT returns a value between 0 and 20. 0 means no bit set.					
	The value returned complies with the follow definition:				e following	
	MSBIT=INT(LOG2(n))+1 for n#0.					
	MSBIT=	=0			for n=0.	
Examples	1:		h			
	MSBIT [ENTER]					
	1:		3			

MSYMB

Category	Symb	olic matrix manipulation
Affected by flag	none	
Input	1:	{{Symb} _{1,1} Symb _{1,2} Symb _{1,n} }
Output 	2:	{ $Symb_{m,1}$ $Symb_{m,2}$ $Symb_{m,n}$ } {{ $Symb_{1,1}$ $Symb_{1,2}$ $Symb_{1,n}$ }
	1:	{Symb _{m,1} Symb _{m,2} Symb _{m,n} }} 1
	or	
	m*n+ m*n+	2: Symb _{1,1} 1: Symb _{1,2}
	:	
	:	Syntax: Obj
	:	
	3:	Symb _{m,n}
	2:	{13}
	1:	0

HP 48 SX SmartROM TM	Users Guide	Page 109				
Function	Checks the contents of the list-m whose type is not Real, Comp Global is tagged with the string	hecks the contents of the list-matrix. Any object hose type is not Real, Complex, Unit, Symbolic or lobal is tagged with the string "Syntax".				
Notes	SYMB?does not check dimensions. To check dimensions use DIMS.					
See also	CONFORM?, DIMS, EQUAL?,	SQUARE?				

Users Guide

MULT

Category	Symbolic matrix manipulation		
Affected by flag	-3 (Numerical result)		
Input	2: {{SymbA _{1,1} SymbA _{1,2} SymbA _{1,n} }		
	$\{SymbA_{m,1} SymbA_{m,2} \dots SymbA_{m,n}\}\}$ 1: $\{\{SymbB_{1,1} SymbB_{1,2} \dots SymbB_{1,p}\}\}$ $\{SymbB_{n,1} SymbB_{n,2} \dots SymbB_{n,p}\}\}$		
Output	1: {{Symb _{1,1} Symb _{1,2} Symb _{1,p} } {Symb _{m,p} Symb _{m,p} Symb _{m,p} }}		
Function	Returns the row by column product of two arrays (either symbolic or numerical).		
Notes	Arrays must have compatible dimensions, that is, if the first matrix is (m,n), the second must be (n,p). We called this special condition "conformability" When the aforementioned condition is violated, a special error is issued. When flag -3 is set (Numerical result), errors may happen if symbolic expressions cannot be resolved to a numeric value. In-place multiplication is performed by FACTOR. The last		

Examples

example below shows you the difference between rowby-column and in-place multiplication.

You can supply either a numerical or symbolic array; the result will be numerical if, and only if, the array and the value are numerical (no matter if the value is real or complex).

See also CONFORM?, FACTOR

Applications MATMENU, PRSYMB

2: {{ 1 2 }{ 'X' 'X-1' }} 1: {{ '-X' -1 }}

MULT [ENTER]

 1:
 {{ '-X-2' }

 { 'X*-X-(-1+X)' }}

 2:
 {{ 12 }{ 67 }}

 1:
 {{ 21 }{ 34 }}

 {{ 21 }{ 34 }}

MULT [ENTER] FACTOR [ENTER]

1: $\{\{89\} \{3334\}\} \{\{22\} \{1828\}\}$

Let's create a program asking the user for two arrays but forcing the user to enter the second array according with the dimensions of the first one. We will use the program ASK, explained under EQUAL? and the capabilities of MATWRT.

«		
	33 CF	
	{{}} ASK	Turns on Symbolic mode.
DIM	S REV '?' SWAP	
	2 1 PUT	
	CONSTMAT	
	34 SF 35 CF	Creates a template
		for the second matrix: locks
		matrix rows: see under
		MATWRT
		1741 X 1 17 1X 1
	ASK MULT	enters the second matrix,
	34 CF	returns the product
»		and unlocksmatrix rows.

The program explained above is stored under the name ASK&MULT in the directory EXAMPLES.1C.

NDUPN

Category	Meta-object manipulation		
Affected by flag	none		
Input	2: 1:		Obj n
Output	N+1: : 2: 1:	Ођ	 Obj n
Function object.	Creates	a meta-	object by duplicating n times a given
Notes	If n=0 t	hen NDU	PN creates a null meta-object.
See also	META		
Examples	1:	{ hello }	}
	4 NDUPN [ENTER]		
	5: 4: 3: 2: 1: 1: 0 NDUI	{ hello } { hello } { hello } { hello } 4 { hello } PN	} } }
	1:	0	

NIP

Category	Stack n	Stack manipulation		
Affected by flag	none			
Input	2: 1:	Obj _A Obj _B		
Output	1:	Obj _B		
Function	Removes the object on the second level from the stack.			
See also	AAB, BAA, BAB, BBA, BCAC, BCDA, CAB, CBA			

NULL

Category	Type conversion		
Affected by flag	user f	lag 31	
Input	1:	obj	
Output	1:	obj (null)	
Function	Replaces the input object with the null object of the same type respect to the addition operation.		
	Only object	the objects listed below have a correspondent null t.	

Type Null element

0	0
1	(0,0)
2	((3)
3	[00] or [[00][00]]
4	[(0,0)(0,0)] or $[[(0,0)(0,0)][(0,0)(0,0)]]$
5	8
6	0
7	0
9	0
10	#Oh
11	Blank 0x h if flag 31 is clear. Blank wx0 if flag 31 is set
12	inherits from the ancestor if defined.
13	0_unit
20	<0h>

Users Guide

Notes	A Tagged object inherits ancestor's type.			
	Polymorphism is a property of RPL language (at user level). It allows you to design object-independent algorithms. Of course some operations make sense only with certain objects, but setting the algorithm free from object slavery, you will save time later, when you need to recycle the routine for doing some other task.			
	The NULL command lets you design recursive algorithms or loop structures independently from the input object type. Typically such algorithms need some initialization code in order to start a chain calculation. The + (plus) Command is the most flexible operator built in the HP48. The NULL command lets you initialize every routine based on concatenation or addition without knowing in advance the object type.			
See also	RPT			
Examples	:tag:{ 1 2 3 } NULL [ENTER]			
	1: {}			
	1: [[015] [43-2]]			
	NULL [ENTER]			
	1: [[000] [000]]			

PARSE

Category	String function				
Affected by flag	-5 through -10 (wordsize), -15 and -16 (coordinate system), -17 and -18 (angle mode)				
Input	1:	str			
Output	3 2: 1:	<last> prg "characters" External (TRUI</last>	E)1:	4: s 2: External	str (FALSE)
Function	Perform error is code is Otherw the last syntax of FALSE	as the parsing of detected an ob returned along v ise the original character scann error are returned	the input st ject contai with the sys string, the ed and the l along with	tring. If n ning the stem bool absolute text cor h the syst	o syntax executable lean TRUE. position of ntaining the tem boolean
Notes	By extending the system parser, it is possible to handle unsupported object types like system binaries The example given below shows a possible technique you could enhance at your will. on-the-fly parser handling system binaries:			e to m binaries. e technique,	
	$\ll 0 \rightarrow c$	current initiali	zes replace	ment cou	nter
	« {} '\$	SUBST' STO	initialize area	s tempora	ary storage
	DO PA	RSE →TorF	parses in	put string	g

HP 48 SX SmartROM TM	Users Guide	Page 118	
	IF NOT THEN	if error then	
	NIP	take apart the string	
	SPLIT OVER DUP		
	'\$SUBST' STO+	and save it.	
	CAB + SWAP	take the rest of the string	
	"\$sub" 'current' INCR +	give a name to the substring	
	REPLACE DROP	replace all the occurences of the string with the identifier	
	+	reconstruct the string for parsing.	
	0	prepare to parse again	
	ELSE 1	exit parsing	
	END		
	UNTIL		
	END parse	loopback if error during	
	→PRG	make it a program	
	IF current THEN	if any replacement	
	\$SUBST		
	$OBJ \rightarrow DUP 2 +$	retrieve strings and prepare for loop	

ROLL 1 ROT	
FOR i	
"\$sub" i + OBJ→	build indentifier
ROT 1 SPLIT	parse unrecognized text
ROT DROP NIP "#"	
SWAP + EndOfString	SPLIT
DROP DUP	
IF"" SAME	
THEN DROP	
ELSE +	
END	
OBJ→ →SYS	
REPLACE DROP	convert into a sysbin and replace all the occurrences.
EXT→	
END » '\$SUBST'	
PURGE EVAL »	
'Parse' STO	Try it on this string
"« (0,0) 3 0 360 60 <11 »"	h> <2h> 821 247 →Xlib

1: « (0,0) 3 0 360 60 <1h> <2h> 821 247 →Xlib »

EVAL [GRAPH]

PKMETA

Category	Meta-obje	ct man	ipulation		
Affected by flag	-56 Beep				
Input	N+5:		obj ₁		
	:				
	6:		obj _n		
	5:		n		
	4:		begin		
	3:		current		
	2:		lines		
	1:		row		
Output	[ENTER]	l		[ON]	
	N+5:		obj _l		
	:	bi.		N+4:	
	6 ·	- J	obi		
	5. 5.		^{ooj} n	5.	
	J. 0	bj	n	5.	
	4:	п	begin	4:	n
	3:		current	3:	
	b	egin			
	2:		objcurrent+begin 2:	current	
	1:		1	1:	0

Function	Shows a catalog of a specified number of lines beginning on a specified display line. The selection of the object is interactive and retains the functionalities of the built-in catalog.
Notes	Command parameters are so defined:
	obj1
	obin
	n
	input meta-object;
	begin
	index of the first object on which beginning the page minus one (from 0 to n-lines);
current	current element within the page (from 1 to lines);
lines	height of the page in lines (from 1 to 8-row); row starting row of the display (from 1 to 7). When using a value less than 2, FREEZE is required.
	Values exceeding the limits are rejected with an error.
	Selecting an object means moving the pointer to the line containing the object and press [ENTER]. Once you press [ENTER] the catalog is exited and the selected object is duplicated as shown in the stack
	[ON]. In this case only the last pointer position is returned. Arrow keys perform pointer movements in the same way the built-in catalog allows.

Notes	Command parameters are so defined:
	obj1
	 objn
	n
	input meta-object;
	begin
	index of the first object on which beginning the page minus one (from 0 to n-lines);
current	current element within the page (from 1 to lines);
lines	height of the page in lines (from 1 to 8-row); row starting row of the display (from 1 to 7). When using a value less than 2, FREEZE is required.
	Values exceeding the limits are rejected with an error.
	Selecting an object means moving the pointer to the line containing the object and press [ENTER]. Once you press [ENTER] the catalog is exited and the selected object is duplicated as shown in the stack diagram. The selection may be aborted by pressing [ON]. In this case only the last pointer position is returned. Arrow keys perform pointer movements in the same way the built-in catalog allows.

PKMETA is very flexible because each action associated to a key may be redefined. Each defined key must be associated to a program stored in user memory. the following table summarizes the PKMETA auxiliary programs and data structures and the default keys along with their actions:

Global Name	Keyco	ode Action
KEYS	n/a	Keeps the list of defined keys. Each element of the list is a list containing two system binaries. The first number represents the absolute key number 0h to 2Dh, the second represents the shift plane 1h to 6h. This encoding system matches KEYWAIT format.
ACTIONS	n/a	Holds the list of the actions associated to the keys. The list must always have at least one element. The first element is a name of the program that must be called when an undefined key is pressed. By default this name is BADKEY. The second element corresponds to the first keycode stored in KEYS and so on. ACTIONS must always contain a number of actions equal to SIZE(KEYS)+1. Otherwise a special error code will be issued.
BADKEY	n/a	The action taken when an undefined key has been pressed.
ATTN	<2Dh> <1h>	The action associated to the pressing of [ON] . By default it aborts the selection.
DOWNARR	<11h> <1h>	The action associated to the pressing of $[\downarrow]$. It moves the pointer downwards, eventually scrolling up the page by one line at a time.

Users Guide

UPARR	<0Bh> The a <1h>	action associated to the pressing of [[↑]]. It moves the pointer upwards, eventually scrolling down the page by one line at a time.
ENTER	<19h> <1h>	The action associated to the pressing of [ENTER] . By default it selects the current item and exits the catalog.
PGUP	<0Bh> <2h>	The action associated to the pressing of [Gold][[↑]]. It displays the previous page.
PGDOWN	<11h> <2h>	The action associated with the pressing of [Gold] $[\downarrow]$. It displays the next page.
ТОР	<0Bh > <3h>	The action associated to the pressing of [Blue] [[↑]]. Moves the pointer to the top of catalog.
BOTTOM<11h>	<3h>	The action associated to the pressing of [Blue] $[\downarrow]$. Moves the pointer to the bottom of the catalog.
ENHANCE	n/a	The routine that highlights the current line.
NOR	n/a	The routine cancelling the highlight from the current line.

All the programs described above can be modified at your will. There are 5 parameters stored in temporary variables which contain the information needed to perform an action. They hold the current value of the input parameters passed on the stack upon entry. Please note that these values are stored as system binaries and not as real numbers.

HP 48 SX SmartROM TM		Users Guide Page 126		
n	counter	Retains the total num meta-object (the coun	ber of elements of the ter)	
0	begin page	This is the offset to the where the page begin	ne first line (element) s.	
с	current element	This is the current ele	ement within the page.	
r	row	This is the row of	the display whereon the	
page		is anchored.		
h	lines	Total number of lines	per page.	

These variables can be accessed by name or by their order in the temporary variables chain. If you know the entry points to recall and store temporary variables by creation order, you can use them freely. The variables have been created in the order shown in the table above, that is n is the fifth of the chain and h is the first. To recall h use entry point #613B6h. However the safest way is to recall and store them by name.

When you perform an action such adding or deleting objects from the stack, remember to update the values stored in the local variables. While PKMETA is running, the stack contains the body of the meta-object depleted of the counter.

You can add or modify or change name to actions, by simply modifying the ACTIONS list and updating, wherever necessary the KEYS list. All the customization of the command is up to you.

$PRG \rightarrow$

Category	Program and type conversion					
Affected by flag	none					
Input	1:	prg	1:	list	1:	Algebraic
Output	N+1:	obj ₁				
	:					
	2:		obj _n			
	1:		n			
Function	Splits a program in meta-object format.					
Notes	A program is a collection of object solution. A program is a collection of object solution. (threads) like a list or an algebraic expression. The main difference between programs and other composite object lies in its direct execution capability opposite to the indirect execution capabilities of lists and algebraics. Direct execution means that once the prolog of the program is executed, it starts executing objects within the program, while lists and algebraics merely push themselves on the stack. Once they are on the stack these objects can be executed via EVAL. Using PRG \rightarrow you will be able to modify in whatever manner you want a compiled program, deleting, moving, changing the objects it contains. The possibility to modify compiled programs directly on the stack makes much faster editing session of large programs, typically when you need to swap objects or make little changes in the					

source. Nevertheless PRG \rightarrow opens a wide range of applications dealing with program editing and in fact the SmartROM uses heavily this kind of commands. We suggest you try to edit a program via Interactive Stack.

May be you ramain quite surprised after expanding a User RPL program on the stack. In fact the built-in parser often adds hidden threads to perform safely dangerous operations like pushing an identifier on the stack. Pay attention not to delete these hidden threads ! Moreover, as you will see, programming structures collect the commands between delimiters in a program object. To expand this kind of program, you need to move the object on the first level of the stack and call PRG \rightarrow once more, then after editing it, you must recontruct the program with \rightarrow PRG and move the program back to the original position.

See also	EXT	$EXT \rightarrow, \rightarrow EXT, \rightarrow PRG$		
Applications	L \rightarrow TH, SHRINK, TH \rightarrow L, UPTRIM			
Examples	« IF 0 >> THEN DROP SWAP END » PRG→ [ENTER]			
		8:	IF	
	7:	0		
	6:	»		
	5:	THEN		
	4:	DROP SWAP		
	3:	END		
	2:	»		

1: 8

As you may see, when you split a program in the stack format, several interesting aspects come out.

The french arrows are stand-alone objects. What is their role? In brief we can summarize it as follows:

they are effectively used like delimiters by the parser to recognize user programs.

upon evaluation of the program they check the state of the **[ON]** key. If the user pressed this key, the process is immediately stopped and the execution is transferred to the calling programas if an error condition occurred. This means that the IFERR construct traps the **[ON**] key press too.

Therefore by depleting a program of the delimiters you can prevent the user from interrupting the program and contemporarily you make a program virtually uneditable (in the sense that you cannot reparse it due to the lack of delimiters). This is exactly what the application UPTRIM does.

The second aspect worth noting is represented by the sequence DROP SWAP.

Why aren't separated these two commands ? Because the parser collects them in a single object for the sake of efficiency.

→PRG

Category	Meta-object manipulation, program editing and type conversion		
Affected by flag	none		
Input	N+1:	ext ₁	
	:		
	2:	ext _n	
	1:	n	
Output	1:	prg	
Function	Builds up a program object from a meta-object.		
Notes	See under PRG→.		
See also	$EXT \rightarrow$, $\rightarrow EXT$, $PRG \rightarrow$		
Applications	\rightarrow TH, SHRINK, TH \rightarrow L, UPTRIM		

→R

Category	Type c	Type conversion				
Affected by flag	-5 thro	-5 through -10 when the input is a binary integer				
Input	1:	<<nh>></nh> 1:	#n	1:	Char	
Output	1:	n				
Function	Conver	Converts the input number into a real.				
Notes	→R ac sets yo should	\rightarrow R accepts also real numbers as input. This feature sets you free to use \rightarrow R also when the object type should not require any conversion.				
See also	→B,	\rightarrow B, \rightarrow Char, EXT \rightarrow , \rightarrow EXT, \rightarrow SYS				
Examples	Let's cr hex str routine wordsiz typing	Let's create a program that returns the length of an hex string as a real number. We will use an internal routine for doing the dirty job. Be sure to set the wordsize to 20 bit (or higher) and hex mode before typing the program.				
	«					
	DUP T	YPE	Binar	y string 1	required	
	IF 10 =		any n	nismatch	?	
	THEN	No,	proceed			

#05616h SYSEVAL	returns the length as system binary.
→R	translates into a real number
ELSE	Error
#202h DOERR	Bad Argument type
END	

»

done.

Save the program as HSIZE, we will use it later.

RDOWN

Category	Stack manip	Stack manipulation		
Affected by flag	none			
Input	N+2:	obj ₁		
	:			
	T+2 :	obj _t		
	:			
	3:	obj _n		
	2:	n		
	1:	t		
Output	N:	obj _t		
	:			
	N-T+1:	obj _n		
	N-T:	obj ₁		
	:			
	1:	obj _{t-1}		
Function	Rolls down	Rolls down n objects t times.		
Notes	The command is smart enough to choose the best roll direction (upwards or downwards). Rolling down 100 objects 99 times is a good exercise of aerobyc dance for your 48, but it is not that kind of exercise we really need to do. We had better to roll up 100 objects one time !			
See also	RUP,XLVL	S		

levels p

RDROP

Category

Category	Stack manipulation		
Affected by flag	none		
Input	: 11+2:	 liv	
		"'u	
	 ₽+2∙	 liv	
		"'p	
	3:	liv,	
	2:	p	
	1:	u	
Orstand			
Output	: U:	 liv _{n+1}	
	P-1:	liv _{p-1}	
	:	• 	
	1:	liv	
Function	Deletes the	commont of the stock delimited by	
runction	and u.		
Notes	p and u can be given in any order.		
See also	RDUP, SHIFT, XLVLS		

Examples

"first"

5:

- 4: "to get rid"
- 3: "to get rid"
- 2: "second-last"
- 1: "last"

4 3 RDROP [ENTER]

- 3: "first"
- 2: "second-last"
- 1: "last"

RDUP

Category	Stack manipulation					
Affected by flag	none					
Input	: P+3:	 liv _n				
	:	 				
	U+3:	liv,				
	:	u 				
	D+3:	livd				
	:	u				
	4:	liv ₁				
	3:	p				
	2:	u				
	1:	đ				
Output	:					
	:	livp				
	:					
	:	livu				
	:					
	:	liv _{d-1}				
	:	liv p				
	: D. 1.					
	D+1:	^{IIV} u				
	D :	livd				
	: 1:	 liv ₁				
Function	Copies above 1	Copies the segment of the stack delimited by p and u above level d.				
----------	-------------------	---	--	--	--	--
See also	RDRO	P, SHIFT, XLVLS				
Examples	5:	"first"				
•	4:	"get copied"				
	3:	"get copied"				
	2:	"second-last"				
	1:	"last"				
	431R	DUP [ENTER]				
	7:	"first"				
	6:	"get copied"				
	5:	"get copied"				
	4:	"second-last"				
	3:	"get copied"				
	-					

- "get copied" "last" 2:
- 1:

REPLACE

Categor	у		String function, list manipulation and program editing.							
Affected by flag			none							
Input	3:	str 1	3:	hex ₁	3:	Prg	3:	List		
	2:	str ₂	2:	hex ₂	2:	obj ₁	2:	obj 1		
	1:	str ₃	1:	hex ₃	1:	^{obj} 2	1:	^{obj} 2		
Output	2: 1:	str Replace	2: d:n	hex	2:	Prg	2:	List		
Functio	n		Substitu the obje number	tes all th ct or (he of replac	e occurer ex) string cements.	nces of th g given	ne search and retu	-key with rns the total		
Notes			The replacements are limited to objects stored in user memory. Because some internal routines are recursiv the search level is limited to threads stored in RAM. This preserves from endless loops. Internal routines the SmartROM are able to perform selected substitutions at arbitrary depth within threads. Refer the Hidden Commands Reference for more information on this topic.							
See also			FIND, L	OC, SPI	JT					

Examples	Let's create a program for replacing a sequence of objects within a program.						
	Set Hex Mode and Word size to 64 before starting.						
	Retrieve the program HSUB						
	«						
	{{5 8 9} {5 9} {5 9}}	3 argume	ents;				
	IF CHST? NOT	tests whether the object on the third level is a program or list and the fir two levels contain lists of algebraics.					
	THEN	(Ok, proceed.				
	→Xlib	Translates into hex format					
	EVAL 6 OVER						
	HSIZE	returns the length of the hex strin					
	5 -	returns length-5					
	HSUB	gets the substring [6;length-5]					
	SWAP	prepares	second object				
	821 275 →Xlib	translates	s into hex format				
	EVAL 6 OVER						

HP 48 SX SmartROM TM	Users Guide	Page 140					
HSIZE	returns the length of the	returns the length of the hex string					
5 -							
HSUB	gets the substring [6,lo	ength-5]					
ROT							
821 275 →Xlib	translates into hex for	mat					
EVAL CBA	reconstructs original of	order					
REPLACE	executes the replacem	ent					
SWAP							
→Xlib	translates back into R	PL object					
EVAL SWAP	Done.						
ELSE DROP							
"Stack parameters:	3: Prog, List, Alg 2: List, Alg 1: List, Alg"						

3 DISP diagram		When	parameters	mismatch,	the	stack				
<u></u>		is show	is shown and the program aborted							
3 FREEZE										
END »	Save th	ne progra	m.							
		You sh #3A6B program subdire MANU the nar	ould get a pro h and whose l m is stored cotory JAL of the fil ne BREPLAC	ogram whose ength is 357. on the d e EXAMPLI E.	check 5 byte isk i ES.1C	sum is es. The n the under				
	3:	« 4 RO	LL SWAP DR	OP						
	٥.		K 4 ROLL } »							
	2:	ROLL	`							
	1:	KOLLI	J							
	REPLA	ACE (EN	TER]							
	2:	« 4 RO	LLD SWAP D	DROP						
		{ OVE	R 4 ROLLD }	»						
	1:	REPLAC	CED: 2							
	3:	"ABC	ABC ABC"							
	2:	"ABC"	,							
	1:	"HELL	<i>.</i> O "							
	REPLA	ACE [EN	TER]							
	2.	"HELI	O HELLO HE	ELLO"						
	1.	REDI A	TED 3							
	1.		- 							

REV

Category		String function					
Affected by fla	g	-5 to -10) (binary	integers only)			
Input	1:	str	1:	{obj ₁ obj ₂ objn}	1:	#abcde	
Output	1:	str	1:	{objn obj _{n-1} obj ₁	} 1:	#edcba	
Function		Reverses the order of the characters for strings, the order of the objects for lists and the order of the digits for binary integers.					
Notes		Binary integers are reversed according with their actual size. User binary integers may be no longer than 16 nibbles (in hex mode). However the 48 can handle binary integers of arbitrary size. For example, when you apply BYTES to an object, the binary checksum you get is always 4 nibbles long, no matter the current wordsize is. Of course the display shows it according to the wordsize, but its size remains 4 nibbles.					
See also		MREV					

Examples	See als	o the examples under CONSTMAT.
	1:	"123456789A12DEF"
	REV [I	ENTERJ
	1:	"FED21A987654321"
	1:	{ A B C }
	REV (I	ENTERJ
	1:	{ C B A }
	Suppos	ing current wordsize of 64 bit.
	1:	#123456h
	REV [I	ENTERJ
	1:	#654321000000000h
Crestrin	ate a command to fing:	nd the last occurence of a substring in a given

« OVER SIZE → s l « REV s REV	takes the length of the string and stores it as lreverses the string and the substring and					
POS DUP	seeks it; saves the value on the stackif found thenconverts leftwards position into a					
IF 0 >> THEN 1 SWAP - 1 + END	rigthwards absolute position otherwise returns zero.					
»						
»						

ROMV

Category	ROM Version
Affected by flag	none
Input	none

Output

Function

Shows information about the SmartROM.

Notes

The routine uses random values to set the background color and the thickness of the outlines. Characters are defined by vectors stored in a systembinary array and are drawn by a special routine. This routine is quite generic and can be used to draw any shape. More information in the Hidden Commands Reference manual.

Example

ROMV [ENTER]

ROWCOL

Category	String function					
Affected by flag	none					
Input	2: str 1: pos					
Output	3: str 2: row 1: col					
Function	Computes the coordinate of the absolute position of a character in terms of rows and columns, by counting the linefeeds contained in the input string.					
Notes	The coordinates returned by ROWCOL can be used as parameters in the input list of command INPUT to place the cursor at a certain point within the editor. Typically this method is used to place the cursor on a particular occurence of a substring, previously found with LOC or POS.					
Examples TEXT"	"HELLO BOYS, THIS IS THE THIRD LINE (
	3: "HELLO BOYS, THIS I" 2: 3 1: 18					

RPT

Catego	ry		String function, list manipulation, utility, graphics						
Affecte	d by fla	ıg	User fla	ng 31					
Input	2:	str		2:	n				
	1:	n		1:	str				
	or								
	2:	{ Obj ₁ .	Objn}	2:	n				
	1:	n		1:	{ Obj ₁ .	Obj _n }			
	or								
	2:	#b	2:	n	2:	Grobw x h 2: n			
	1:	n	1:	#b	1:	n	1:	Grobw x h	
	or								
	2:	prg	2:	n	2:	Global	2:	n	
	1:	n	1:	prg	1:	n	1:	Global	

HP 48 SX SmartROM TM		Users Guide			Page 147		
Output	1:	strstr		1:	{ Obj ₁ Obj _n Obj ₁ Obj _n }		
	1:	#bbbbb		1:	Grob (w*n) x h if flag 31 is clear		
				1:	Grob wx(h*n) if flag 31 is set		
		or					
		N:	Obj				
		: 1:	 Obj				
Function		Chains given p	data obj procedure	ects n tin or identi	nes or executes n times a ifier.		
Notes		RPT is When horizor the gro explain	affected the fla ntally, oth bs vertic is in deta	by flag 3 g is cle herwise c ally. The il how it	1 when chaining grobs. ear, RPT chains the grobs hains example given under JOINUP works.		
		RPT is SmartR link str seen to repeate	s one of COM. Th ring and o date. d 100 tir	the mo nanks to list quic Try with nes (with	est flexible commands of the its fast loop generator, it can exter than any other command a string of ten characters at least 2K free).		
		RPT is iterated does no or droj DEMO indefin	s useful l operation ot preser p objects program itely, try	at most ons with ve stack (s from the m and y this:	when you need to perform out referencing counters. RPT contents, so that you can push he stack freely. If you have a you want to iterate it almost		
		'DEMC)' 100000	00 RPT.			

The loop normally cannot be interrupted. If you need to interrupt it press [ON] [C]. In the examples given below procedures are standard programs. Nevertheless you can push on the stack individual commands by doing so: $\{MAX\}OBJ \rightarrow DROP$ See also METOP Examples See also the example given under JOINUP. 2: **{ 1 2 3 }** 1: "ABC" 2 { 3 RPT } METOP [ENTER] 3: {123123123} 2: "ABCABCABC" 1: 2 « RAND 10 * IP » 10 RPT

10:	3
9:	7
8:	5
7:	2
6:	7
5:	0
4 :	8
3:	3
2:	6
1:	0

« MAX » 10 RPT [ENTER]

1: 8

Suppose you want to move a hundred variables from user memory to PORT 1 where you have a 128 K RAM:

1: {Name1 Name2 ... Name100}

 $OBJ \rightarrow \ll DUP RCL BAA PURGE 1 \rightarrow TAG STO \gg RPT [ENTER]$

RUP

Category	Stack manipulation			
Affected by flag	none			
Input	N+2: obj ₁			
	:			
	T+2: obj _t			
	:			
	3:	obj _n		
	2:	n		
	1:	t		
Output	N:	obj _{t+1}		
	:			
	T+1: obj _n			
	Τ:	obj ₁		
	:			
	1:	obj _t		
Function	Rolls up n objec	ts t times.		
Notes	The command is smart enough to choose the best roll direction (upwards or downwards). Rolling up 100 objects 99 times is silly. It is better roll down 1 time !			
See also	RDOWN, XLVI	LS		

Example

« 4 PICK SIZE → k t m n

« k SPLIT + m SPLIT 4 ROLLD<N>+ OBJ→

DUP 'm' STO

Write a command for rotating m objects of t places starting from object k; if t is greater than 0 the rotation takes place leftwards else rightwards:

```
t DUP ABS SWAP 0

IF >> THEN RUP

ELSE RDOWN

END

m \rightarrow + +
```

»

SHIFT

Category	Stack mani	pulation
Affected by flag	none	
Input	:	
	P+3 :	liv _p
	:	
	U+3:	livu
	:	
	D +3:	^{liv} d
	:	•••
	4:	liv ₁
	3:	р
	2:	u d
	1.	u
Output	:	
	P :	liv _{p-1}
	P-1:	liv _{u+1}
	:	•••
	:	liv _{d-1}
	;	liv _p
	:	
	D+1:	livu
	D :	livd

	:	
	1:	liv ₁
Function	Moves the level u abo	e segment of the stack between level p and ove level d.
Notes	Stack-orie than their other hand	ented commands require one parameter less r meta-object-oriented counterparts. On the l, meta-objects let you count objects.
See also	RDROP, I	RDUP, XLVLS
Examples	5:	"I stay here"
-	4:	"I get moved"
	3:	"me too"
	2:	"I'll go up"
	1:	"End"
	4 3 1 SHI	FT [ENTER]
	5:	"I stay here"
	4:	"I'll go up"
	3:	"I get moved"
	2:	"me too"
	1:	"End"

SPAN

Category	String function			
Affected by flag	none			
Input	3:	str ₁		
	2:	str ₂		
	1:	pos		
Output	1:	pos		
Function	Returns Str1 not If no ma	the absolute positi comprised in Statistich is found, retu	tion of the first character in r2, starting from position pos. rns 0.	
Notes	A typical usage of SPAN occurs when checking for the presence of extraneous characters, especially when the input string comes from the user. Suppose the user must enter a numeric value without decimal point and Exponent. To check the string you can do so:			
	3: "758	833"	This is the string given by the user;	
	2: "012	3456789"	this is the string containing allowed characters;	
	1: 1		beginning position.	

SPAN [ENTER]

1: 0

Another frequent usage is when you need to skip blanks between words. In this case the test string must contain only a blank : " ". the position returned (if any) is that of next non-blank character. You could also ignore periods or any other punctuation by appending them to the test string.

".,;" lets you skip blanks, periods, commas and semicolons.

Frequently used string-constants has been stored in the library to save memory:

DIGIT\$ = "0123456789" alfaLOW\$ = "ABCDEFGH...XYZ" alfaUPP\$ = "abcdefgh...xyz"

They are accessible in the fifth page of menu &L in CST.

Try also 821 250 ÄXlib [ENTER] [EVAL] and 821 251 ÄXlib [ENTER] [EVAL]

See also	MEMBER	R
Examples	3:	"123456789A12DEF"
•	2:	"1234567890"
	1:	3
	SPAN [E]	NTER]
	1:	10

SPLIT

Category	Strin	String function and list manipulation			
Affected by flag	none				
Input	2:	str	2:	{ $obj_1 obj_2 \dots obj_p \dots obj_n$ }	
	1:	р	1:	р	
	or				
	2:	р	2:	р	
	1:	str	1:	$\{ \operatorname{obj}_1 \operatorname{obj}_2 \dots \operatorname{obj}_p \dots \operatorname{obj}_n \}$	
	or				
	2:	str	2:	{ obj ₁ obj ₂ obj obj _n }	
	1:	strsub	1:	obj	
	or				
	2: 1:	hex hexsub			

HP 48 SX SmartROM TM		Users Guide				Page 157
Output	3: 2:	str ₁	3: 2·	hex ₁	3: 2·	{obj ₁ obj _{p-1} }
	1:	str ₃	1:	hex ₁	2: 1:	$\{obj_{p+1} \dots obj_{n}\}$
Function		Splits t	he string	g or the lis	t in tl	hree chunks.
Notes		Empty string or lists are valid input objects.			input objects.	
		If p is greater than the total size of the object, it is considered as SIZE(obj). If p is equal to 0 or the search key is missing an error is issued.				size of the object, it is s equal to 0 or the search- id.
		Please note that the original object can be recontructed with two consecutive + (addition) operations.				bject can be recontructed on) operations.
Examples	Let's create now a program to format a string so that each line won't exceed n characters, unless a word is longer than n. The program is stored in APP.1C under the name 'FORMAT\$'.					
		$\stackrel{\ll}{} \stackrel{n}{} \stackrel{\sim}{} \stackrel{\rightarrow}{} \stackrel{\sim}{} \stackrel{\rightarrow}{} \stackrel{\sim}{} \stackrel{\sim}} \stackrel{\sim}{} \stackrel{\sim}{} \stackrel{\sim}}{ \stackrel{\sim}} \stackrel{\sim}{} \stackrel{\sim}} $	LINES			
	{ MARK SWAP WHILE DUP SIZE n >					
	REPEAT n SPLIT CAB +					
		<n> "</n>	REV ;,:" 1 M	dup 1ember		
		Ι	F DUP SPLIT 10 CH CAB REV S	THEN ' + REV IR + SWAP +		

ELSE DROP REV 10 CHR + SWAP END END C2M 1 -{ + } OBJ→ DROP RPT SWAP DROP }<N>METOP LINES→

This stores maximum line length and splits the string in several lines. Defines the procedure that gets repeated on each line. While the length is greater than the maximum length splits at n and saves the rest on the stack, then checks if we are in the middle of a word and seeks the best break position. If found then:

- breaks the line.
- adds a linefeed
- ,reconstructs the string
- and prepares for next iteration
- otherwise if a line break cannot be found breaks at n

»

- and adds a linefeed
- then prepares for next iteration
- counts new lines
- and makes them a single one
- Deletes stack marker
- Applies the procedure to every line
- Reconstructs the string

Try now FORMAT\$ on a list of numbers with several values:

"{ 1 2 3 4 5 6 7 8 9 }"	
	5 FORMAT\$
"{ 1 2 4 5 6 7 8 9 }"	3
	7 FORMAT\$
2: 1:	"123456789A12DEF" 5
SPLIT	[ENTER]
3: 2: 1:	"1234" "5" "6789A12DEF"
2: 1:	"123456790" "456"
SPLIT	[ENTER]
3: 2: 1:	"123" "456" "790"
2.	{ 1 "abc" 'v/v'}

2: { 1 "abc" 'x/y'} 1: "abc"

SPLIT [ENTER]

- { 1 } "abc" 3:
- 2:
- 1: { 'x/y' }

SQUARE?

Category		Symbolic matrix	manipulation		
Affected by f	lag	none	none		
Input 1:		{{ Symb _{1,1} S	ymb _{1,n} }		
		 { Symb _{n,1} Sy	ymb _{n,n} }}		
Output	3:	{{ Symb _{1,1} S	ymb _{1,n} }		
	2:	 {Symb _{n,1} Sy {nn}	$\{\{\text{Symb}_{1,1}, \dots, \text{Symb}_{1,n}\}\}$		
			 { Symb _{m,1} Symb _{m,n} }}		
	1:	1	1: 0		
Function		Tests whether a is square. If y dimensions, oth interpreted as a	list-matrix ves it returns 1 along with matrix erwise returns 0. The result can be meta-object.		
See also		DETERM, EQU	AL?, CONFORM?		
Applications		INVRT, MATM	ENU, PRSYMB		

Examples	Let's create a program that ask the user to modify a matrix until it is square.		
	«	33 CF 34 CF 35 CF	
		{{ }}}	
		DO ASK UNTIL SQUARE? END DROP	
	»		
	1:	{{ X Y Z } { 1 3 -2 }}	
	SQUAF	RE? [ENTER]	
	2: 1:	{{ X Y Z } { 1 3 -2 }} 0	

SRDIFF

Category	List manipulation		
Affected by flag	none		
Input	2: 1:	List obj	
Output	1:	pos	
Function	Returns the position of the first object different than Obj. If all objects are the same as Obj returns 0.		
Notes	The implementat all elements of a	tion of a routine performing a test on list is straightforward in internal RPL.	
Pass 1	Create a test procedure taking two objects from the stack and returning a system boolean (See TRUE and FALSE).		
Pass 2	Store it in a variable for easier reference.		
Pass 3	Push on the stack the list and the object being tested		
Pass 4	Push on the stack the name of the variable or directly the test procedure.		
Pass 5	#64426 SYSEVAL [ENTER]		
See also	SRGE, SRGT, S	RLE, SRLT	

Examples	2: { 1 1 1 1 1 2 3 1: 1	}
	SRDIFF [ENTER]	
	1: 6	

SRGE

Category	List manipulation		
Affected by flag	none		
Input	2: 1:	n	$\{ n_1 n_2 \dots n_p \}$
Output	1:		pos
Function	Returns or equa	s the posit l than n,	tion of the first real number greater otherwise returns 0.
Notes	See under SRDIFF.		
See also	SRDIFF, SRGT, SRLE, SRLT		
Examples	2: 1:	{ 1 1 1 2	1136}
	SRGE [ENTER]		
	1:	6	

SRGT

Category	List manipulation		
Affected by flag	none		
Input	2:		$\{n_1 \ n_2 \ \ n_p\}$
	1:		n
Output	1:		pos
Function	Returns the position of the first real number greater or equal than n, otherwise returns 0.		
Notes	See under SRDIFF.		
See also	SRDIFF, SRGE, SRLE, SRLT		
Examples	2: 1:	{ 1 1 1 3	1136}
	SRGT [ENTER]		
	1:	7	

SRLE

Category	List manipulation		
Affected by flag	none		
Input	2:		{ n ₁ n ₂ n _p }
Output	1:		pos
Function	Returns the position of the first real number greater or equal than n, otherwise returns 0.		
Notes	See under SRDIFF.		
See also	SRDIFF, SRGE, SRGT, SRLT		
Examples	2: 1:	{ 3 3 4 2.9	2 5 3 6 }
	SRLE [ENTER]		
	1:	4	

SRLT

Category	List manipulation		
Affected by flag	none		
Input	2:		{ n ₁ n ₂ n _p }
	1:		n
Output	1:		pos
Function	Returns the position of the first real number greater or equal than n, otherwise returns 0.		
Notes	See under SRDIFF.		
See also	SRDIFF, SRGE, SRGT, SRLE		
Examples	2: 1:	{ 3 4 10 2	02136}
	SRLT [ENTER]		
	1:	5	

SRT

Category	Meta-object	Meta-object manipulation		
Affected by flag	none			
Input	N+1:	obj ₁		
	:			
	2:	obj _n		
	1:	n		
Output	N+1:	obj ₁		
	:			
	2:	obj _n		
	1:	n		
Function	Sorts the da	ta in ascending order.		
Notes	Objects mus (less than).	Objects must be compatible with the << operator (less than). To this category of objects belong:		
	Global numbersord integersStri in one of th and comple	Global nameshandled as stringsComplet numbersordered by real partReal numbersBinar integersStringsSystem BinariesTagged objects fallin in one of the classes listed above except global name and complex numbers		

If you want to sort local names you need first to translate into global names, then use SRT and convert them back to locals. To convert a local name into a global name back and forth, use the following procedure:

#2464F SYSEVAL Local to Global

#2465F SYSEVAL Global to Local

To apply the translation to all the identifiers you can do the following:

N+2: Local ...: ... 3 : Local 2: n 1: {#2464Fh SYSEVAL }

METOP [ENTER]

The inverse function needs only #2465Fh instead of #2464Fh.

Symbolic values are not allowed. The hidden code is able to sort any data for which a sort procedure has been defined. This means that you could sort any object given a proper sort criterion. Refer to the Hidden Commands Reference manual for further details.

See also	SRTD, MREV
----------	------------

Applications alfaORDER

HP 48 SX SmartROM TM		Users Guide	Page 171			
Examples	6:	"STAN"				
_	5:	"FRED"				
	4:	"paul"				
	3:	"LUISE"				
	2:	"HENRY"				
	1:	5				
	SRT []	ENTER]				
	6:	"FRED"				
	5:	"HENRY"				
	4:	"LUISE"				
	3:	"STAN"				
	2:	"paul"				
	1:	5				
Problem:	Sort a	directory by increasing s	ize of variables.			
Solution:	Recall to the of nam	all the variables, take the corresponding value, sor nes suitable for ORDER.	eir size, tag each name t them and rebuild a list			
	«					
	VARS					
	$OBJ \rightarrow \{ DUP BYTES NIP SWAP \rightarrow TAG \} METOP$					
	SRT					
	{ OBJ	$\{ OBJ \rightarrow NIP \# 05B15h SYSEVAL \} METOP$				
	→LIS	I ORDER				
	»					

Problem:	Sort objects by tag.			
Solution:	Call the sort independent hidden function and pass the appropriate procedure to it. The program \rightarrow BOOL has been described under the command FALSE. (* OBJ \rightarrow NIP SWAP OBJ \rightarrow NIP << \rightarrow BOOL »			
	'SRTFUNC' [STO]			
	4: 3: 2: 1:	B: C: A:	2 "HELLO" [0 1 2] 3	
	\rightarrow SYS 'SRTFU \rightarrow R		$INC' 821 110 \rightarrow Xlib EVAL$	
	4: 3: 2: 1:	A: B: C:	[0 1 2] 2 "HELLO" 3	
Sorts data in descending order.

SRTD

Function

Category	Meta-object ma	nipulation
Affected by flag	none	
Input	N+1:	obj ₁
	:	
	2:	obj _n
	1:	n
Output	N+1:	obj _n
	:	
	2:	obj ₁
	1:	n

© BB Marketing ANS - 1994

NotesObjects must be compatible with the >> operator
(greater than).To this category of objects belong:Global names
Real numbers
Binary integers
Strings
System Binaries
Tagged objects falling in one of the classes listed above
except Global
names and Complex numbers.See alsoSRT

SUBT

Category	Symbolic matrix manipulation			
Affected by flag	-3 (Numerical result)			
Input	2: {{SymbA} _{1,1} SymbA _{1,2} SymbA _{1,n} }			
	$\{SymbA_{m,1} SymbA_{m,2} \dots SymbA_{m,n}\}\}$ 1: $\{\{SymbB_{1,1} SymbB_{1,2} \dots SymbB_{1,n}\}\}$			
	$\{\text{SymbB}_{m,1} \text{ SymbB}_{m,2} \dots \text{ SymbB}_{m,n}\}\}$			
Output	1: $\{\{SymbA_{1,1}-SymbB_{1,1} SymbA_{1,2}-SymbB_{1,2} \\ \dots SymbA_{1,n}-SymbB_{1,n}\}$			
	 {SymbA _{m,1} -SymbB _{m,1} SymbA _{m,2} - SymbB _{m,2} SymbA _{m,n} -SymbB _{m,n} }}			
Function	Returns the difference of the two arrays (either symbolic or numerical). The arrays must have the same dimension.			
Notes	The routine performs the difference on all the pairs of objects accepted by the standard operator			

ADD, FACTOR and SUBT are instances of a generalized function, designed to apply binary operators to the pairs of elements. For more information on this topic, please refer to the Hidden Commands Reference manual.

See also ADD, ADDCON, DIMS, EQUAL?, MULT, MSYMB?

Applications MATMENU, PRSYMB

SYMBMAT→

Categor	у		Symbolic matrix manipulation					
Affected	l by fla	g	none					
Input	1:	{{Symb 1,1	Symb _{1,2} Sym	^b 1,n ³	}	1 :[[N	1,1 ^N 1,2 [.]	N _{1,n}]
		{Symb ml	Symb _{m2} Symb	b m,n	}} [N_m	,1 ^N m,2	N _{m,n}]]	
Output	N+1:		Symb ₁				N+1:	N _{1,1}
	:						:	
	2:		Symb m.n		:	2:	N m.n	
	1:		{m n}				1 :	{m n}
Functio	n		Splits the list	-mat	rix or the	e array	on the st	tack.
Notes			SYMBMAT \rightarrow is useful for converting numeric arrays into their symbolic counterpart. It handles numeric vectors as if they were arrays 1 x m.					
			Note that doin	ng:				
			EVAL *	2	you get a	meta-	object	
See also			DIMS, MSYI	MB?	, →SYM	вмат	, TRNS	Р
Applica	tions		MATMENU, PRSYMB					

HP 48 SX SmartROM TM		Users Guide	Page 178
Examples	1:	{{ 1 2 3 } { 'X' 'X-1' -1 }}	
	SYM	IBMAT→ [ENTER]	
	7:	1	
	6:	2	
	5:	3	
	4 :	'X'	
	3:	'X-1'	
	2:	-1	
	1:	{ 2 3 }	
	1:	[12345]	
	SYM	BMAT→ [ENTER]	
	6:	1	
	5:	2	
	4:	3	
	3:	4	
	2:	5	
	1:	{15}	

→*SYMBMAT*

Category	Symbolic matrix manipulation			
Affected by flag	none			
Input	N+1: S	ymb ₁		
	:			
	3:	Symb _{n-1}		
	2:	Symb		
	1:	{r c}		
Output	1:	{{Symb}_{1,1} Symb}_{1,2} Symb}_{1,c} }		
		{Symb _{r,1} Symb _{r,2} Symb _{r,c} }}		
Function	Collects th	ne data on the stack in a symbolic matrix.		
Notes	The command does not check the type of the objects, which can be checked with MSYMB?. This feature lets you build list-matrices for arbitrary purposes.			
	If too few arguments are there on the stack, the corresponding error is issued.			
	The invers	se function is SYMBMAT \rightarrow .		
See also	CONSTMAT, DIMS, MSYMB?, SYMBMAT→, TRNSP			

Applications	MATMENU, PRSYMB			
Examples	7: 6: 5: 4:	1 2 3 'X'		
	2: 1: →SY	-1 { 2 3 } MBMAT [ENTER]		
	1:	{{ 1 2 3 } { 'X' 'X-1' -1 }}		

→SYS

Category	Туре	Type conversion						
Affected by flag	-5 through -10 bynary integer wordsize (binary integers only)							
Input	1:	n	1:	#n	1:	Char		
Output	1:	1: < nh>						
Function	Conv	Convertsan input number into a system binary.						
Notes	\rightarrow SYS accepts system binaries as well; dummy conversions prevent errors at no expense.					expense.		
	The structure of the system binary object is expansion appendix C.							
See also	\rightarrow B, \rightarrow Char, \rightarrow EXT, \rightarrow R							
Examples	Let's create a program that extracts a hex substring from ' a hex string. We will use an internal routine for accomplishing most of the work. Be sure to have hex mode set and a wordsize of 20 bits (or higher) before typing the program.							

"	
•••	

{ 10 0 0 }	Binary, real, real
IF CHST?	any mismatch?
THEN	yes, error
#202h DOERR	Bad argument type
ELSE	Ok, proceed
→SYS SWAP	end position
→SYS SWAP	beginning position
#05815h SYSEVAL	takes the substring
END	
»	done.

Name it HSUB. This program is stored in the directory EXAMPLES.1C.

→TorF

Category	Type conversion				
Affected by flag	none				
Input	1:	External (TRUE))1:	External (FALSE)	
Output	1:	1	1:	0	
Function	Converts a system boolean value into a numeric boolean.				
	The input address must necessarily be #03A81(TRUE) or #03AC0 (FALSE) otherwise Argument Value" is issued.				
See also	FALSE, TRUE, EXT→, →EXT				

TRNSP

Category	Symbolic matrix manipulation<\$IArrays;symbolic>			
Affected by flag	none			
Input	1: {{Symb} _{1,1} Symb} _{1,2} Symb _{1,n} }			
	$\{\text{Symb}_{m,1} \text{ Symb}_{m,2} \dots \text{ Symb}_{m,n}\}\}$			
Output	1: {{Symb} _{1,1} Symb _{2,1} Symb _{1,m} }			
	$\{\operatorname{Symb}_{1,n}\operatorname{Symb}_{2,n}\dots\operatorname{Symb}_{n,m}\}\}$			
Function	Returns the transpose of the matrix.			
Notes	The matrix is not required to be square.			
See also	SQUARE?			
Applications	MATMENU, PRSYMB			
Examples	1: {{ 1 2 } { X -1 } { '-X' 5 }}			
	TRNSP [ENTER]			
	1: {{ 1 X '-X' } { 2 -1 5 }}			

TRUE

Category	Type conversion				
Affected by flag	none				
Input					
Output	1:	External	(TRUE)		
Function	Pushes on the stack the system boolean TRUE.				
Notes	System booleans are machine language routines, residing at a fixed address, which merely return themselves when evaluated. Appendix B explains the structure of such objects.				
	The address of TRUE is # 03A81h. FALSE is located at #03AC0.				
	The command \rightarrow TorF turns a system boolean into real boolean (see on page $<$ \$R[P#,FALSE]43> for further details).				
See also	EXT→,	→EXT, FALSE,	→TorF		

VER\$

Category	Rom version
Affected by flag	none
Input	
Output	1: "SMRT 1:C"
Function	Returns a string encoding the current version of the SmartROM.
Notes	VER\$ can be useful for creating programs running with different versions of the library.

$\rightarrow XLIB$

Category	Type conversion				
Affected by flag	none				
Input	2: 1:	LID Num			
Output	1:	XLIB LID Num o	r	1:	Cmd
Function	Pushes of specified	on the stack the eXt 1.	ernal L	IBrary ob	oject
Notes	When you push on the stack a named XLIB object the display will show it by name. If you push on the stack an hidden function, the display will merely show XLIB LID num, where LID is a real number returning the Library ID number and num is the number of the command. There are two ways to know if a XLIB object is referenced:				
	By evalu	ating it: V	ery da	ngerous!	
	By exec	uting the entry poin	t #07E9	99h with	SYSEVAL
	The latt address.	er method is safer ().	(unless	you type	in a wrong
	If the SYSEV the bool	XLIB name is a AL returns the poi ean TRUE, otherwis	ctually ntee (a se it me	a point n object) erely retu	er, #07E99 along with rns FALSE.
See also	→EXT,	EXT→			

Examples	2:
	1:

Xlib [ENTER]

2 81

- 1: SIN
- 2: 821 1: 45

 \rightarrow Xlib [ENTER]

- 1: MGET
- 2: 821
- 1: 246

→Xlib [ENTER]

1: XLIB 821 246

To print the complete list of the operating system 'frozen' entry points, that is those system addresses which are mantained in a fixed location in spite of revisions, the contents of the library 1656 provided with the ESA Assembler may be printed. The program below shows how to do it. Be sure to have the library stored in a port.

«	0 2157	
	FOR n	
		1656 n →Xlib
		DUP EVAL SWAP
		→STR →TAG
		PR1 DROP
	NEXT	

»

XLVLS

Category Stack man		ulation
Affected by flag	none	
Input	:	
	P+2: obj _p	
	:	
	U+2: obj _n	
	:	
	3:	obj ₁
	2:	р
	1:	u
Output		
output	н. Р:	obj _u
	:	
	U :	obj _p
		P
	1:	obj ₁
Function	Swaps levels	p and u.
See also	RDROP, RD	UP, SHIFT

Examples

"ABCDE" **4**: 1

5:

- 3: 2 2: 3
- "hello" 1:

4 5 XLVLS [ENTER]

- 5: 1
- 4: "ABCDE"
- 3: 2
- 2: 3
- "hello" 1:

APPENDIX B

OBJECTS STRUCTURE

The classification proposed herein follows the order estabilished by function TYPE. For each type of object the internal code used by the dispatching routines is given as well.

Each RPL object is formed by a Prolog, i.e. the header of the object which determines the behavior during evaluation, and a body containing the data. The chapter explains in detail the structure of each object and its features.

Each object is then subdivided in logical fields whose length is specified by a subscript value (in nibbles).

Please note that the HP48 arranges the data in memory in reverse order, so that the prolog is written with the least significant nibble that comes first.

REAL NUMBER

Туре	0
Internal Type	<1h>>
Prolog	<02933h>
Structure	$(Prolog_5)$ (Exponent ₀) (Mantissa ₁₂) (Sign ₁)
Dimensions	21
Data	(Exponent ₃)
	BCD Exponent in ten's complement (-500 to 500)
	(Mantissa ₁₂)
	BCD Mantissa
	(Sign ₁)
	Sign: $0 = $ positive, $9 = $ negative
Example	0 is equal to 33920000000000000000 pi is equal to 339200009535629514130 -1 is equal to 33290000000000000019 -11 is equal to 332901000000000000119 5 is equal to 332909990000000000059

COMPLEX NUMBER

Туре	1
Internal Type	<2h>
Prolog	<02977h>
Structure	$(Prolog_5)$ (Exponent ₃) (Mantissa ₁₂) (Sign ₁) (Exponent ₃) (Mantissa ₁₂) (Sign ₁)
Dimensions	37
Data	The Real part is composed by the first number while the imaginary part comes next. Number representation is the same as for reals.

STRING

Туре	2		
Internal Type	<3h>		
Prolog	<02A2Ch>		
Structure	$(Prolog_5)$ (offset ₅) characters.		
Dimensions	5 + offset		
Data	The total number of chara is generally an even number	acters is (offset-5)/2. (offset-5) ber.	
Notes	Characters are stored byte	e reversed.	
Example	"CIAO" is equal to: "" is equal to :	C2A20D000034E414F4 C2A2050000	

REAL ARRAY

Туре	3
Internal Type	<4h>
Prolog	<02E48h>
Structure	$\begin{array}{l} (\operatorname{Prolog}_5) \ (\operatorname{offset}_5) \ (\operatorname{Real} \ \operatorname{Prolog}_5) \ (n\text{-}\dim_5) \\ (\dim_1) \ \dots \ (\dim_n) \ (\operatorname{R}_{1\dots 1}) \ \dots \ (\operatorname{R}_{\dim 1} \\ \dim_2 \dots \dim_n) \end{array}$
Dimensions	5 + offset.
Data	Matrices are stored in row major order incrementing the rightmost counter faster.
Notes	It is possible to create n-dimensional order arrays. However there are no provisions in the system for handling individual elements when n is greater than 2. If you put on the stack a 3-dimensional array, you will get only "Array of reals".

COMPLEX ARRAY

Туре	4
Internal Type	<4h>
Prolog	<02E48h>
Structure	$(Prolog_5)$ (offset ₅) (Complex Prolog) (n-dim) (dim ₁) (dim _n) (Cdim ₁ 1 1) (Cdim ₁ dim ₂ dim _n)
Dimensions	5 + offset.
Data	Matrices are stored in row major order incrementing the rightmost counter faster.
Notes	It is possible to create n-dimensional order matrices. However there are no provisions in the system for handling individual elements when n is greater than 2. If you put on the stack a 3-dimensional array, you will get only "Array of complex>".

ARRAY

Type	4
Internal Type	<4h>
Prolog	<02E48h>
Structure	$(Prolog_5)$ (offset ₅) (Data Prolog) (n-dim) (dim ₁) (dim _n) (Data ₁) (Data _n)
Dimensions	5 + offset.
Notes	You can create non-numeric arrays for storing type-homogeneous data. Unfortunately there are no provisions to handle efficiently this kind of objects. Error Messages in HIDE area are stored in several one- dimensional string arrays. If you want to store some data preserving it from editing, non-numeric arrays are a good place because of their inaccessibility.

Users Guide

LIST

Туре	5
Internal Type	<5h>
Prolog	<02A74h>
Structure	$(\operatorname{Prolog}_5)\operatorname{Obj}_1\operatorname{Obj}_2\dots\operatorname{Obj}_n(\operatorname{End}_5)$
Dimensions 5 + Len	$gth(Obj_1) + Length(Obj_2) + + Length(Obj_n) + 5$
Data	A list is a composite object whose body is a sequence of objects or pointers to objects terminated by a special pointer <0312Bh>.
Notes	The list object is similar to program objects and symbolic expressions. If you want to translate a Symbolic expression into a List, change its prolog to $<02A74h>$. When you evaluate a List or a Symbolic Expression through EVAL, special code is called to change the prolog of the composite object into the prolog of a program object.
Example	<pre>{} is equal to 47A20B2130 { 1 "" } is equal to 47A209C2A2FD550B2130 or to 47A2033920000000000000010C2A2050000B2130</pre>

GLOBAL NAME

Туре	6	
Internal Type	<6h>, <ah></ah>	
Prolog	<02E48h>	
Structure	(Prolog ₅) (Length ₂) chara	icters.
Dimensions	7 + (Length) * 2	
Notes	Maximum lenght of an indentifier is 255 characters with no restrictions on the name. However there are restrictions due to the parser safety rules, which prevents you from creating names conflicting with reserved variables used by the system.	
Example	'MARK is equal to	84E205072D41425B4

LOCAL NAME

Туре	7
Internal Type	<7h>
Prolog	<02E6Dh>
Structure	$(Prolog_5)$ (Length ₂) characters.
Dimensions	7 + (Length) * 2
Notes	See on the previous page.
Example	matA is equal to D6E2040D6164714

PROGRAM

Туре	8
Internal Type	<8h>
Prolog	<02D9Dh>
Structure	$(\operatorname{Prolog}_5)\operatorname{Obj}_1\operatorname{Obj}_2 \dots \operatorname{Obj}_n(\operatorname{End}_5)$
Dimensions	5 + Length(Obj ₁) + Length(Obj ₂) + + Length(Obj _n) + 5
Notes	A program is a composite object whose body is a sequence of objects or pointers to objects terminated by a special pointer 8Bh. Main difference with List and Symbolic lies in its direct execution capability.
Example	Internal program performing Rot Dup2 without stack checking:
	D9D2059230CA130B2130

ALGEBRAIC

Туре	9
Internal Type	<9h>, <ah></ah>
Prolog	<02AB8h>
Structure	$(\operatorname{Prolog}_5)\operatorname{Obj}_1\operatorname{Obj}_2 \dots \operatorname{Obj}_n(\operatorname{End}_5)$
Dimensions 5+1	Length(Obj ₁) + Length(Obj ₂) + + Length(Obj _n) + 5
Notes	Symbolic objects are similar to program objects and symbolic expressions. If you want to translate a Symbolic expression into a List, change its prolog to A74h. When you evaluate a List or a Symbolic Expression through EVAL, special code is called to change the prolog of the composite object into the prolog of a program object.

BINARY INTEGER

Туре	10
Internal Type	<bh></bh>
Prolog	<02A4Eh>
Structure	$(Prolog_5)$ (offset ₅) nibbles
Dimensions	5 + offset
Data	Raw nibbles.
Notes	Binary integers may exceed 64 bit width. However internal arithmetic routines are tailored for handling 64 bit max integers. Other internal routines (like Append or Size) work well independently of integer length. A curious aspect of a Library structure is that the execution, decompile and text tables are stuffed in huge binary integers objects. User defined binary integers generally have a standard length of 16 nibbles independently of the actual wordsize.
Example	The shortest representation of #1234 is
	E4A20900004321

GRAPHIC OBJECT

Туре	11
Internal Type	<ch></ch>
Prolog	<02B1Eh>
Structure	$(Prolog_5)$ (Offset ₅) (Rows ₅) (Columns ₅) nibbles
Dimensions	5 + offset.
Data	Graphics objects are stored in row major order using a bit for each pixel on a byte-aligned scheme. Thus, each row of pixel must have an even number of nibbles eventually padding with garbage bits the last byte. The least significant bit of each nibble represents the leftmost pixel of 4 pixel block.

Example

Take the character A in the font ROM8x14:

E1B20B2000E000080000000183C66C6CEF6C6C6C 000000

1		00
2		00
3	*	01
4	***	83
5	**.**.	C6
6	.****	6C
7	.****	6C
8	.*****	EF
9	.****	6C
А	• * * • • • * *	6C
в	.****	6C
С		00
D		00
Е		00

TAGGED OBJECT

Туре	12
Internal Type	<dh></dh>
Prolog	<02AFC>
Structure	$(Prolog_5)$ (Length ₂) characters Obj
Dimensions	7 + (Length) * 2 + Length(Obj)
Notes	Tagged objects does not inherit the behavior of the ancestor type unless you make a recursive call to the routine being executed after deleting the tag.
Example	PIGREEK: 3.14159265359 is represented by : CFA2070059474255454B4339200009535629514130

UNIT

Туре	13
Internal Type	<eh></eh>
Prolog	<02ADAh>
Structure	$(Prolog_5)$ (value) (string) (string) (oper5) (oper5) (End ₅)
Dimensions	5 + 21 + Length(string)++ Length(string) + 5 * num(oper) + 5
Example	1.5129_m^2 is equal to: ADA203392000000000921510C2A20700006 ED2A227B0168B01B2130

XLIB NAME

Туре	14
Internal Type	<0Fh>
Prolog	<02E92h>
Structure	(Prolog ₅) (LID ₃) (Num ₃)
Dimensions	11
Data	External Library Names are uniquely identified by a Library Identification Number and a library-local command number. User commands have a double-face. They are referenced by a fixed address pointer which allows faster execution and compact storage. However, under special circumstances, the address is replaced with the Library IDentification code to prevent the routine from being phisically copied.
DIRECTORY

Туре	15
Internal Type	<2Fh>
Prolog	<02A96h>
Structure (offset	(Prolog ₅) (Attach 3) (offset1) (00000) Namen Obj_n
	n+1) Namen-1 Obj _n -1 (offsetn) Name1 Obj ₁ (offset2)
Dimensions	8 + offset1 + 5
Data	Object are stored in reverse order. (offset $_1$) points to the field (offset $_2$) at the bottom of the directory
	where lies the first object. A sequence of backward offsets lets you jump like a frog till the last object at the top of the directory. The last offset field (00000) marks the end of the chain. The Attach field retains the Library Identification number of one library. In the HOME directory this field counts the number of libraries currently attached, because you may have more than one library attached at the same time.

LIBRARY

Туре	16	
Internal Type	<8Fh>	
Prolog	<02B40h>	
Structure	(Prolog ₅) (offset5) (Leng (Offset	gth 2) Characters (LID ₃)
	TexTTbl 5) (Offset M (Offset Conf 5) Nibbles (sgTbl 5) (Offset LinkTbl 5) (Cksum 4)
Dimensions	5 + offset	
Data	(Length 2) Characters	Library Title.
	(LID ₃)	Library IDentification number.
	(Offset TextTbl ₅)	Offset to a binary integer containing
		command names text. The table begins with 16 field of 5 nibbles (80 nibbles total) each one of them pointing to the first command of a given length. The first field points to the first command (in alphabetical order) of length 1.
	(Offset MsgTbl ₅)	Offset to the table of messages.
		The table is contained in a string- array.
	(Offset LinkTbl ₅)	Offset to a binary integer
	-	containing all the executable code of commands.

(Offset Config ₅)	Offset to the configuration program of
-	the library.
Nibbles	Library contents.
(Cksum 4)	Checksum.

BACKUP

Туре	17
Internal Type	<9Fh>
Prolog	<02B62h>
Structure	(Prolog ₅) (offset 5) (Length 2) characters nibbles
Dimensions	5 + offset
Notes	Backup objects normally exist only in memory ports.

System Function

Туре	18
Internal Type	<8h>
Prolog	<02E92h>
Structure	(Prolog ₅) (LID ₃) (Num ₃)
Dimensions	11
Data	A rom-based program is recognized as function when a special code precedes its execution address. Formerly it is a normal program object but it receives special handling by the parser and decompile routines when you enter formulas in algebraic style. The process of recognizing algebraic functions is tricky and goes beyond the scope of this manual. There are several bits specifying analytic properties like differentiability and others specifing if the program is a command or a function and where to place the decompiled text (before, between or after).
Example	SIN (system function) is identified by XLIB 2 81. Its special header is CC0 and precedes the LID program in ROM. If you scan memory a little before location B4ACh, you will see the following sequence :
	CC0200150D9D20
	CC0 means integrable, invertible, differentiable, function.

Thanks to this encoding system, adding external function is very, very hard.

System Command

Туре	19
Internal Type	<8h>
Prolog	<02E92h>
Structure	$(Prolog_5)$ (LID ₃) (Num ₃)
Dimensions	11
Data	A rom-based program is recognized as built-in command when a special code precedes its execution address. Most commands have a single nibble header (added to the six specifying the Library ID and number) whose value is 8. It seems that the most significant bit of this nibble play a key-role in the game. If this bit is 0, the program is some kind of function. The study of program USAG, supplied with the Interface Kit, with the aid of a RPL decompiler, is helpful to decipher such hieroglyphs.
Example	STO (system command) is identified by XLIB 2 341.

System Binary

Туре	20
Internal Type	<1Fh>
Prolog	<02911h>
Structure	$(Prolog_5)$ (Nibble ₅)
Dimensions	10
Data	System binaries are the most used numeric entities throughout the Operating System. Providing a faster throughput than real numbers and smaller storage requirements, they are the optimum choice for the system programmer.
Example	FFFFFh is equal to 11920FFFFF
	12345h is equal to 1192054321

Users Guide

LONG REAL

Туре	21
Internal Type	<3Fh>
Prolog	<02955h>
Structure	$(Prolog_5)$ (Exponent ₅) (Mantissa ₁₅ >) (Sign ₁)
Dimensions	26
Data	(Exponent ₅)
	Exponent BCD in ten's complement (from -50000 to 50000)
	(Mantissa 15)
	BCD Mantissa
	(Sign ₁)
	Sign: $0 = $ positive, $9 = $ negative
Example	Extended precision PI is equal to
	5592000009798535629514130

LONG COMPLEX

Туре	22
Internal Type	<4Fh>
Prolog	<0299Dh>
Structure	$(Prolog_5)$ (Exponent ₅) (Mantissa ₁₅) (Sign ₁) (Exponent ₅) (Mantissa ₁₅) (Sign ₁)
Dimensions	47
Data	Real part comes first. The number encoding system is the same as for Extended Reals.

LINKED ARRAY

Туре	23
Internal Type	<5Fh>
Prolog	<02A0Ah>
Structure	$(\operatorname{Prolog}_5)$ (Offset ₅) (Data Prolog ₅) (n-dim) (dim ₁) (dim _n) (pointer _{1,,1}) (pointer _{dim 1} ,, dim n)
Dimensions	5 + Offset.
Data	This is one of the most exotic data structures built in the 48. In the 256K of the operating system, there is no evidence of its existence. It seems that this structure is suitable for sparse arrays because a missing element is merely represented by a 00000 pointer. Unfortunately nothing else is given to know up to date.

CHARACTER

Туре	24
Internal Type	<6Fh>
Prolog	<029BFh>
Structure	(Prolog ₅) (Byte ₂)
Dimensions	7
Data	Contains a single-byte (a character) byte reversed.
Example	Letter A is represented by FB92014

CODE

Туре	25
Internal Type	<7Fh>
Prolog	<02DCCh>
Structure	$(Prolog_5)$ (Offset ₅) Nibbles
Dimensions	5 + Offset
Data	The code starts at the first nibble of the body. execution is transferred to this location by the prolog of the object.
Notes	See the Appendix C for an explanation of the Saturn Assembly Language. The ESA Assembler greatly helps in writing assembly language programs.
Example	The routine DONOTHING:
	A=DAT0 A D0=D0+ 5 PC=(A)
	Reads the address of next object, updates the thread pointer and skips to the next thread (address):
	CCD20F0000142164808C

LIBRARY DATA

Туре	26
Internal Type	<afh></afh>
Prolog	<02B88h>
Structure	$(Prolog_5) (offset_5) (LID_3) (num_3) Obj_1$ Obj ₂ Obj _n (End ₅)
Dimensions	5 + Offset
Data	Data appear on the stack merely as 'Library Data'.
	Useful for storing non-editable objects.

ADDRESS

Туре	27
Internal Type	0h
Prolog	<hhhhh></hhhhh>
Structure	(Prolog ₅)
Dimensions	5
Data	Any object not mentioned before falls in this category. Adding new object types to the HP-48 RPL is not too difficult but may be dangerous because of the removability of ROM cards. Furthermore there are no hooks for displaying an external object in a readable format. Hence, under normal circumstances, this category represents only machine language calls (atomic threads) or meaningless pointers. The atomic thread represents the address where a machine language subroutine begins. Built-in machine language routines (callable as RPL routines) have the following form: Addr Addr+5
	Prolog Nibbles

Prolog is a 5 nibble address where Saturn codes effectively begins. RPL routines, written in machine language, usually have a prolog pointing to Addr+5, but some routines violate this convention to implement hyper-compact Dup'n go routines. In effect a machine language routine residing at a fixed address either implements an object structure or merely acts as a RPL subroutine.

APPENDIX C

THE SATURN MICROPROCESSOR

The microprocessor used in the HP-48 family of calculators is the evolution of that appeared in the HP-71 handheld computer and HP-28 pocket calculator. Saturn is a low power consumption CPU, optimized for BCD calculation. Memory Addressing limit is 1 M nibbles, that is 512 Kbytes. With the help of bank switching software techniques the 1Mb nibble barrier can be broken. Tripod Data Systems memory cards concentrate 512K bytes of RAM on a single card, made usable as four independent banks of 128K by custom software drivers.

The Saturn Assembly Language Instruction Set explained in the following pages complies with HP's specifications contained in the HP-71 Hardware IDS, except for a few mnemonics whose name have been modified since the introduction of the ESA Assembler, a ForCALC product. ESA runs under the SmartROM platform and is the first of a series of applications produced by ForCALC.

Microprocessor's registers

The CPU is organized in several registers with different characteristics and power. Main registers are subdivided in fields for easier manipulation.

The following picture shows how each working register is mapped:

Scratch Registers	There are five temporary registers (Scratch Registers) of 64 bit length called R0, R1, R2, R3 and R4. These registers serve as storage area during operations. It is possible to read and write specific fields ranging from 1 nibble up to the whole register.
Arthmetic Registers	Four arithmetic registers (A, B, C and D) of 64 bit of lentgh, denoted as working registers. Each register can be accessed through several fields. Registers A and C can read data from memory directly or indirectly. B and D are used for calculations or temporary storage.

Page 225

Field Name	Length in nibl	bles Length in bits	Meaning
W	16	64	Word
Α	5	20	Address
B Byt	2 e	8	
М	12	48	Mantissa
S Sig	1 n	4	
x	3	12	Exponent
XS Sign	1	4	Exponent
P Poi	l nter	4	
WP Through Poi	P+1 inter	(P+1)*4	Word

Register C is the most powerful of the four because it allows data exchange with any other register of the CPU.

Control registers	ST	Status Register. It is a 16 bit register, where the four most significant bits (from bit 12 to 15) are normally accessed only by the operating system. Can exchange data with C.
	PC	Program Counter, 20 bit register controlling the execution flow. It is accessible directly or indirectly through register A or C.
	RSTK	Return Stack. It is a (LIFO) stack with 8 levels of 20 bit where subroutine return addresses are automatically pushed. It can be accessed also through register C.
	Ρ	Pointer, 4 bit register specifying a nibble within arithmetic or scratch registers. Register P determines also the length of field WP. It can exchange data with C.
	D 0	Address register. 20 bit register used for addressing data in memory. It can exchange data with A or C.
	D1	Same as above.
	IN	Input Register. 16 bit read-only register used by the system to control the keyboard.
	OUT	Ouptut Register. 12 bit write-only register

used by the system to enable the keyboard and the beeper.

- SB Sticky Bit. 1 bit field of Hardware Status Register whose value is determined by right shift operations of arithmetic registers.
- SR Service Request Bit. 1 bit field of Hardware Status Register whose value is determined by external events.

MP Module Pulled Bit. 1 bit field of Hardware

Status Register whose value is determined by the pulling or pushing of hardware modules.

XM External Module Missing Bit. 1 bit field

of Hardware Status Register whose value is determined by software.

Saturn Assembly Language Mnemonics

The conventions explained herein are used in the following pages to represent parameters and values which may vary in a certain range.

Field Selection Table

Values of the column (a) determine the field of instructions like AaC, that is A2C stands for the instruction A=A-1 XS.<R> Column (b) applies to opcodes like 9b000.

	Field Leng	jth	Nibb	le value		
		(a)		(b)		(d)
Р		0		8		1
WP	1		9		(P)+1	
XS	2		Α		1	
x	3		В		3	
S		4		С		1
М	5		D		12	
В		6		Ε		2
W	7		F		16	

Table A.1

Opcodes versus Mnemonics

The legenda explains the meaning of symbolic values appearing in the list.

Legenda a field	a	a value between 0 and 7 representing as specified in table A.1
	b a field	a value between 8 and F representing as specified in table A.1
	d	n+1
	hh	a sequence of nibbles
o	oo comple	a two nibble offset in two's ement
	000 comple	a three nibble offset in two's ement
	0000 comple	a four nibble offset in two's ement
	aaaaa	a five nibble absolute address
	n	a value in the range 0-15
	fs	a field (P,WP,B,X,XS,M,W)

Users Guide

Hex	Mnemonic	Field
00	RTNSXM	
01	RTN	
02	RTNSC	
03	RTNCC	
04	SETHEX	
05	SETDEC	
06	RSTK=C	
07	C=RSTK	
08	CLRST	
09	C=ST	
0A	ST=C	
0B	CSTEX	
0C	P=P+1	
0D	P=P-1	
0EF0	A=A&B	Α
0EF1	B=B&C	Α
0EF2	C=C&A	Α
0EF3	D=D&C	Α
0EF4	B=B&A	Α
0EF5	C=C&B	Α
0EF6	A=A&C	Α
0EF7	C=C&D	Α
0EF8	A=A!B	Α
0EF9	B=B!C	Α
0EFA	C=C!A	Α
0EFB	D=D!C	Α
0EFC	B=B!A	Α
0EFD	C=C!B	Α
0EFE	A=A!C	Α
0EFF	C=C!D	Α
0Ea0	A=A&B	fs
0Ea1	B=B&C	fs
0Ea2	C=C&A	fs
0Ea3	D=D&C	fs
0Ea4	B=B&A	fs
0Ea5	C=C&B	fs
0Ea6	A=A&C	fs
0Ea7	C=C&D	fs

HP 48 SX SmartROM TM	Users Gui	de	Page 231
0E-9		fa	
UEa8 OEa0		15 fa	
		15 fc	
0EaA		15 £0	
UEaB		15	
UEaC	B=B!A	IS	
0EaD	C=C!B	fs	
OEaE	A=A!C	fs	
0EaF	C=C!D	fs	
0F	RTI		
100	R0=A		
101	R1=A		
102	R2=A		
103	R3=A		
104	R4=A		
108	R0=C		
109	R1=C		
10A	R2=C		
10B	R3=C		
10C	R4=C		
110	A=R0		
111	A=R1		
112	A=R2		
113	A=R3		
114	A=R4		
118	C=R0		
119	C=R1		
11A	C=R2		
11B	C=R3		
11C	C=R4		
120	AR0EX		
121	AR1EX		
122	AR2EX		
123	AR3EX		
124	AR4EX		
128	CR0EX		
129	CR1EX		
12A	CR2EX		
12B	CR3EX		
12C	CR4EX		
130	D0=A		

HP 48 SX SmartROM TM	Users Guide		Page 232
131	D1=A		
132	AD0EX		
133	AD1EX		
134	D0=C		
135	D1=C		
136	CD0EX		
137	CD1EX		
138	D0=AS		
139	D1=AS		
13A	AD0XS		
13B	AD1XS		
13C	D0=CS		
13D	D1=CS		
13E	CD0XS		
13F	CD1XS		
140	DAT0=A	Α	
141	DAT1=A	A	
142	A=DAT0	A	
143	A=DAT1	A	
144	DAT0=C	A	
145	DAT1=C	Α	
146	C=DAT0	Α	
147	C=DAT1	Α	
148	DAT0=A	В	
149	DAT1=A	В	
14A	A=DAT0	В	
14B	A=DAT1	В	
14C	DAT0=C	В	
14D	DAT1=C	В	
14E	C=DAT0	В	
14F	C=DAT1	В	
150a	DAT0=A	fs	
151a	DAT1=A	fs	
152a	A=DAT0	fs	
153a	A=DAT1	fs	
154a	DAT0=C	fs	
155a	DAT1=C	fs	
156a	C=DAT0	fs	
157a	C=DAT1	fs	
158n	DAT0=A	d	

HP 48 SX SmartRC	M TM	Users Guide		Page 233
	150n		d	
	15911 154n		u d	
	15Rn	A=DAT0	u d	
	150n		d d	
	150n	DAT0=C	d d	
	15En	$C = D \Lambda T 0$	u d	
	15En	C=DATI	u d	
	15Fn 16n	$D_0=D_0+$	u d	
	17n	$D_{0} = D_{0}$	d	
	19n	$D_1 = D_1$	d	
	10hh	$D_0 = D_0^{-1}$	u hhhhh	
	1 A hhhh	$D_{0}^{(2)}$	hhhhh	
	1Rhhhhh	$D_{0}=(5)$	hhhhh	
	1Cn	$D_{1}=D_{1}$	d	
	1Dhh	D1 = (2)	u hhhhh	
	1Ehhhh	D1 = (4)	hhhhh	
	1Fhhhhh	D1=(5)	hhhhh	
	2n	P=	n	
	3nhh	LC(d)	hhh	
	400	RTNC		
	420	NOP3		
	400	GOC		
	500	RTNNC		
	500	GONC		
	6300	NOP4		
	64000	NOP5		
	6000	GOTO		
	7000	GOSUB		
	800	OUT=CS		
	801	OUT=C		
	802	A=IN		
	803	C=IN		
	804	UNCFNG		
	805	CONFIG		
	806	C=ID		
	807	SHUTDN		
	8080	INTON		
	80810	RSI		
	8082nhhh	LAHEX	hhh	
	8083	BUSCB		

8084n	ABIT=0	n	
8085n	ABIT=1	n	
8086noo	?ABIT=0	n	
8087noo	?ABIT=1	n	
8088n	CBIT=0	n	
8089n	CBIT=1	n	
808Anoo	?CBIT=0	n	
808Bnoo	?CBIT=1	n	
808C	PC=(A)		
808D	BUSCD		
808E	PC=(C)		
808F	INTOFF		
809	C+P+1		
80A	RESET		
80B	BUSCC		
80Cn	C=P	n	
80Dn	P=C	n	
80E	SREQ?		
80Fn	CPEX	n	
810	ASLC		
811	BSLC		
812	CSLC		
813	DSLC		
814	ASRC		
815	BSRC		
816	CSRC		
817	DSRC		
818a0n	A=A	+d	fs
818a1n	B=B-	⊦d	fs
818a2n	C=C-	+d	fs
818a3n	D=D	+d	fs
818F0n	A=A·	+d	Α
818F1n	B=B-	⊦d	Α
818F2n	C=C-	+d	Α
818F3n	D=D	+d	Α
818a8n	A=A-	-d	fs
818a9n	B=B-	d	fs
818aAn	C=C-	·d	fs
818aBn	D=D-	-d	fs
818F8n	A=A-	-d	Α

HP 48 SX SmartROM TM	Users Guid	le	Pa	ge 235
818F9n	B=B	-d	Α	
818FAn	C=C	C-d	Α	
818FBn	D=D)-d	Α	
819a0	ASRB	fs		
819a1	BSRB	fs		
819a2	CSRB	fs		
819a3	DSRB	fs		
819F0	ASRB	Α		
819F1	BSRB	Α		
819F2	CSRB	Α		
819F3	DSRB	Α		
81Aa00	R0=	Α	fs	
81Aa01	R1=	Α	fs	
81Aa02	R2=	Α	fs	
81Aa03	R3=	Α	fs	
81Aa04	R4=	Α	fs	
81Aa08	R0=	С	fs	
81Aa09	R1=	С	fs	
81Aa0A	R2=	С	fs	
81Aa0B	R3=	С	fs	
81Aa0C	R4=	С	fs	
81AF00	R0=	Α	Α	
81AF01	R1=	Α	Α	
81AF02	R2=	Α	Α	
81AF03	R3=	Α	Α	
81AF04	R4=	Α	Α	
81AF08	R0=	С	Α	
81AF09	R1=	С	Α	
81AF0A	R2=	С	Α	
81AF0B	R3=	С	Α	
81AF0C	R4=	С	Α	
81Aa10	A=R	RO	fs	
81Aa11	A=R	81	fs	
81Aa12	A=R	2	fs	
81Aa1 3	A=R	13	fs	
81Aa14	A=R	R4	fs	
81Aa18	C=R	10	fs	
81Aa19	C=R	.1	fs	
81Aa1A	C=R	2	fs	
81Aa1B	C=R	3	fs	

HP 48 SX SmartROM TM	Users Guide	Page 23	6
81Aa1C	C=R4	fs	
81AF10	A=R0	Α	
81AF11	A=R1	Α	
81AF12	A=R2	Α	
81AF13	A=R3	Α	
81AF14	A=R4	Α	
81AF18	C=R0	Α	
81AF19	C=R1	A	
81AF1A	C=R2	A	
81AF1B	C=R3	A	
81AF1C	C=R4	A	
81Aa20	AROEX	fs	
81Aa21	AR1EX	fs	
81Aa22	AR2EX	fs	
81Aa23	AR3EX	fs	
81Aa24	AR4EX	fs	
81Aa28	CR0EX	fs	
81Aa29	CR1EX	fs	
81Aa2A	CR2EX	fs	
81Aa2B	CR3EX	fs	
81Aa2C	CR4EX	fs	
81AF20	AR0EX	Α	
81AF21	AR1EX	Α	
81AF22	AR2EX	Α	
81AF23	AR3EX	Α	
81AF24	AR4EX	Α	
81AF28	CR0EX	Α	
81AF29	CR1EX	Α	
81AF2A	CR2EX	Α	
81AF2B	CR3EX	Α	
81AF2C	CR4EX	Α	
81B2	PC=A		
81B3	PC=C		
81B4	A=PC		
81B5	C=PC		
81B6	APCEX		
81B7	CPCEX		
81C	ASRB		
81D	BSRB		
81E	CSRB		

HP 48 SX SmartROM TM	Users Guide	Page 237
91F	DSPB	
821	XM=0	
822	SB=0	
824	SB=0	
828	MP=0	
828 82F	CI PHST	
021 921va	· 2 X M=0	
831yy	r = 2SB=0	
832yy 824xz	2SD=0	
838v7	r = 2MP = 0	
84n	ST=0	
85n	ST=1	
86ma	31-1 1	
87	7 $151-0$ 1	
8/11yy	7 ?51-1 1 7 ?D # •	
8000	$\gamma \qquad 2\mathbf{P} = 1$	
8 4 0	$\gamma \qquad \gamma \qquad$	1 N
8AUy 8A1w	y ?B=C	л М
	$y \qquad 2C = A$	1
8 A 3 V	y + C - A = A	л Л
8 A 4v	v ?A#B	х Х
8 A 5v	\mathbf{v} 2 B # C	А
8A6v	v ?C#A	A
8A7v	v ?D#C	A
8A8v	v ?A=0	Ā
8A9v	v ?B=0	Ā
8AA3	v ?C=0	A
8ABy	v ?D=0	Ā
8ACy	√v ?A#0 ⊿	A
8ADy	∕y ?B#0 ₽	A
8AEy	y ?C#0	A
8AFy	y ?D#0 A	A
8B0y	y ?A>B	A
8B1y	y ?B>C	A
8B2y	y ?C>A A	A
8B3v	y ?D>C	A
8B4v	y ?A <b td="" ∕<=""><td>A</td>	A
8B5y	y ?B <c a<="" td=""><td>A</td></c>	A
8B6v	y ?C <a <="" td=""><td>A</td>	A
8B7y	y ?D <c a<="" td=""><td>A</td></c>	A

8B8yy	?A→B	Α
8B9yy	?B>=C	Α
8BAyy	?C>=A	Α
8BByy	?D>=C	Α
8BCyy	?A<=B	Α
8BDyy	?B<=C	Α
8BEvy	?C<=A	Α
8BFyy	?D<=C	Α
8C0000	GOLONG	
8Daaaaa	GOVLNG	
8E0000	GOSUBL	
8Faaaaa	GOSBVL	
9a0vv	?A=B	fs
9alvv	?B=C	fs
9a2vv	?C=A	fs
9a3vv	?D=C	fs
9a4vv	?A#B	fs
9a5yy	? В#С	fs
9a6yy	?C#A	fs
9a7yy	?D#C	fs
9a8yy	?A=0	fs
9a9yy	?B=0	fs
9aAyy	?C=0	fs
9aByy	?D=0	fs
9aCyy	?A#0	fs
9aDyy	? B #0	fs
9aEyy	?C#0	fs
9aFyy	? D #0	fs
9b0yy	?A>B	fs
9b1yy	?В>С	fs
9b2yy	?C>A	fs
9b3yy	?D>C	fs
9b4yy	?A <b< td=""><td>fs</td></b<>	fs
9b5yy	?В<С	fs
9b6yy	?C <a< td=""><td>fs</td></a<>	fs
9b7yy	?D <c< td=""><td>fs</td></c<>	fs
9b8yy	?A>=B	fs
9b9yy	?B>=C	fs
9bAyy	?C>=A	fs
9bByy	?D>=C	fs

HP 48 SX SmartROM TM	Users Gui	de	Page 239
	9 4 <-D	£-	
96Cyy	/A<=B	IS C	
96Dyy	/B<=C	IS C-	
96Eyy	/C<=A 2D<=C	IS fo	
96Fyy	/D<=C	IS fo	
Aau	A=A+B	IS f	
Aal	B=B+C	IS	
Aa2	C=C+A	IS	
Aa3	D=D+C	fs	
Aa4	A=A+A	fs	
Aa5	B=B+B	fs	
Aa6	C=C+C	fs	
Aa7	D=D+D	fs	
Aa8	B=B+A	fs	
Aa9	C=C+B	fs	
AaA	A=A+C	fs	
AaB	C=C+D	fs	
AaC	A=A-1	fs	
AaD	B=B-1	fs	
AaE	C=C-1	fs	
AaF	D=D-1	fs	
Ab0	A=0	fs	
Ab1	B=0	fs	
Ab2	C=0	fs	
Ab3	D=0	fs	
Ab4	A=B	fs	
Ab5	B=C	fs	
Ab6	C=A	fs	
Ab7	D=C	fs	
Ab8	B=A	fs	
Ab9	C=B	fs	
AbA	A=C	fs	
AbB	C=D	fs	
AbC	ABEX	fs	
AbD	BCEX	fs	
AbE	CAEX	fs	
AbF	DCEX	fs	
Ba0	A=A-B	fs	
Bal	B=B-C	fs	
Ba2	C=C-A	fs	
Ba3	D=D-C	fs	

HP 48 SX SmartROM TM	Users Gu	ide	Page 241
CC	A=A-1	Α	
CD	R=R-1	Δ	
CE	C=C-1	A	
CF	D=D-1	A	
D	A=0	A	
DI	B=0	A	
D1	C=0	Δ	
D3	D=0	A	
D4	A=R	A	
D5	R=C	A	
D6	C = A	Δ	
D7	D=C	A	
D8	B=A	A	
D9	C=B	A	
	A=C	A	
DB	C=D	A	
DC	ABEX	A	
	BCEX	A	
DE	CAEX	A	
	DCEX	A	
EO	A=A-B	A	
E1	B=B-C	Α	
E2	C=C-A	Α	
E3	D=D-C	Α	
E4	A=A+1	Α	
E5	B=B+1	Α	
E6	C=C+1	Α	
E7	D=D+1	Α	
E8	B=B-A	Α	
E9	C=C-B	Α	
EA	A=A-C	Α	
EB	C=C-D	Α	
EC	A=B-A	Α	
ED	B=C-B	Α	
EE	C=A-C	Α	
EF	D=C-D	Α	
FO	ASL	Α	
F1	BSL	Α	
F2	CSL	Α	
F3	DSL	Α	

HP 48 SX SmartROM TM	U	sers Guide	Page 242
F4	ASR	Α	
F5	BSR	A	
F6	CSR	Α	
F7	DSR	Α	
F8	A=-A	Α	
F9	B=-B	Α	
FA	C=-C	Α	
FB	D=-D	Α	
FC	A=-A-1	Α	
FD	B=-B-1	Α	
FE	C=-C-1	Α	
FF	D=-D-1	Α	

APPENDIX E

ERROR MESSAGES

The following error messages are unique to the SmartROM:

Error number	Error Message
33501	Conformability
33502	Type Mismatch
33503	Invalid Sub-List
33504	Argument Out Of Range
33505	KEYS/ACTIONS mismatch

Users Guide

Subscript Out Of Range	Issued when a subscript in a list-matrix overflows or underflows its valid range.
KEYS/ACTIONS mismatch	Issued when the length of the lists KEYS and ACTIONS are not compatible. Length(ACTIONS) := Length(KEYS)+1
Missing Var	Issued when the list KEYS or the list ACTIONS are missing. Issued by the application \rightarrow FONT when the global name FONT is missing or cannot be found in the search path or does not contain a valid data structure for the operation being performed.
Missing Stack Marker	C2M or L2M cannot find the stack marker. (since release 1:C).
Can't edit null array input.	Issued when you invoke MATWRT with either rows or columns locked and a null matrix as
Too many objects	Issued when you try to enter more object than the matrix can hold. Occurs only when both dimensions are locked.
APPENDIX H

HIDDEN COMMANDS

This appendix contains the complete list of SmartROM hidden commands arranged in logic categories for easier referencing. Each command along with its entry and exit conditions is discussed in detail in the SmartROM Hidden Commands Reference, you can find on the auxiliary disc under the name \DOCS\TECHREF.TXT.

	Original Name	XLIB number	
String Utilities	capit\$	269	
	center\$	244	
	div\$	278	
	find\$	156	
	lfpos	186	
	lines→	142	
	→lines	98	
	ltrim\$	225	
	lwc\$	224	
	mcentr\$	245	
	member\$	214	
	→msg\$	220	
	norm\$	222	
	null	125	
	pad\$	253	
	replace\$	119	
	revs	218	
	rowcol	115	
	rpt	114	
	rtrim\$	226	
	span\$	215	
	split\$	248	
	splith	105	
	trim\$	221	
	upc\$	223	

HP 48 SX SmartROM TM	Users Guide		Page 246
Hex string	addp	230	
Utilities	divb	279	
	hex→	276	
	→hex	275	
	expbuf	243	
	findb	281	
	null	125	
	DODD	231	
	revb	219	
	rpt	114	
	splitb	277	
System Binary	log2	141	
Utilities	ord	232	
	revsys	203	
	todd	117	
List Manipulation	bind	191	
Utilities	checkl	190	
	chl?	170	
	ckl2r	188	
	delcol	163	
	delrow	161	
	diff	240	
	findobj	153	
	getcol	200	
	idx?	146	
	inter	239	
	12m	144	
	lget	143	
	lopi	140	
	lopn	139	
	lput	138	
	Ivop	137	
	nget	200	
	npos	212	
	nput	207	
	11411	123	

HP 48 SX SmartROM TM	Users Guide		Page 247
	putobj	208	
	red	241	
	replace	120	
	rpt	114	
	splitl	104	
	splito	249	
	union	238	
General purpose	#k	194	
Utilities	ckr	197	
	ckrol	196	
	getaddr	210	
	keywait	145	
	ncount	211	
	rptcmd	113	
Program editing	findobj	153	
utilities	#k→\$	195	
	nget	206	
	npos	212	
	nput	207	
	putobj	208	
	replace	120	
	search	107	
	splitl	104	

HP 48 SX SmartROM TM	U	sers Guide	Page 248
Stack Manipulation	c2m	171	
Utilities	hdrop	150	
	hdup	149	
	hshift	148	
	mark	136	
	mds	185	
	mus	182	
	rd	181	
	rdown	123	
	ru	180	
	rup	112	
	xlev	96	
	xlvls	99	
Meta-object	bsearch	263	
Manipulation Utilities	esckobi	189	
	conv	164	
	delete	162	
	ma2	202	
	madd 1	264	
	metax	201	
	move	132	
	mrev	131	
	mtop	129	
	mtopn	128	
	ndupn	126	
	pkmeta	124	
	sort	254	
	sortany	110	
Symbolic Math	add	175	
Utilities	addcon	174	
	apply	205	
	best	108	
	cmpl	167	
	conform?	166	
	const	165	
	delcol	163	

HP 48 SX SmartROM TM	M	Users Guide	
	delrow	161	
	det2	154	
	det3	155	
	determ	160	
	dims	159	
	dot	116	
	equal?	158	
	factor	157	
	findrow	109	
	getcol	200	
	idn	147	
	mat→	135	
	→mat	97	
	msymb?	130	
	mult	127	
	reduc	118	
	square?	103	
	srccol	102	
	subt	101	
	trn	100	
	weight	106	
Type Conversion	arry→md	272	
Utilities	arry→	265	
	→arry	266	
	arryt	268	
	→ext	204	
	hex→	276	
	→hex	275	
	→prolog	216	
	→torf	252	
	xlib→	217	

HP 48 SX SmartROM TM	Users Guide		Page 250	
Granhics Utilities	box	236		
Gruphiles Clinicies	centra	250		
	fill	204		
	gaddr	152		
	gaddun	151		
	gon	235		
	greni	273		
	line	234		
	linetypes	237		
	natterns	229		
	polygon	247		
	ppardef	246		
	rect	233		
	rotate	286		
	rpt	114		
	scan	213		
	scanp	242		
	vfill	227		
Object Manipulation	apply	205		
Utilities	chl?	170		
	chset?	169		
	chst?	168		
	dot	116		
	eval	282		
	evalnx	283		
	findobj	153		
	g2ltg1?	206		
	nget	206		
	npos	212		
	nput	207		
	null	125		
	putobj	208		
	replace	120		
	rpt	114		
	tifc	209		

CAN OFFER YOU, PROBABLY THE BEST APPLICTION SOFTWARE ON THE MARKET FOR YOUR HP 48SX AND HP 48GX.

MATHEMATICS:

- * NEW MATHEMATIC Pac.1. High School and College Mathematics.
- * MATHEMATIC Pac.2. College and University Mathematics.
- * MATHEMATIC Pac.2. Professional Extension. With Extended Possibilities for the programmer.

GEOMETRY:

* GEOMETRY Pac.1. For Students and Surveyors.

NAVIGATION:

- * NAVIGARE. Navigation Pac. GPS-connection For students and practical navigators.
- * FLIGHT NAVIGATION SYSTEM. GPS-connection

BUSINESS:

* BUSINESS Pac. 1. More features than other financial calculators.

Distributor: BB MARKETING ANS. Ensjøveien 12b. 0655 Oslo Norway Phone: (+47) 22 67 11 57. Fax. (+47) 22 19 01 61