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IMPORTANT!

The basic use of the HP48 is not covered by this manual.
You should consult the User’s Guide for this purpose.

Information to the 48SX user:

The documentation is prepared for the version GX.
The SX user has to be aware of the following:

The menu option EGVT in the MATR menu, needs an extra input:
the eigenvalue at stack level 2 (matrix at level 1).
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Generallx

This is part II of BAS mathematics. As in part I a pedagogi-
cal interface is stressed. BAS mathematics is a pedagogical
tool in addition to a package for getting things calculated.

Hardware requirements

BAS Math II runs under the calculator HP 48GX. The pro-
gram card may be inserted into either of the two ports and
Math I could be in the other port.

Starting up
The LIBRARY menu will show up MAII. Pushing the MAII

key will lead you into the main menu and then you simply
push the START key.
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User interface

The MAII meny system is easy to use. Using the arrow keys
allows you to move the dark bar and select by pushing EN-
TER.

In the following example you will enter the submenu for
LINEAR ALGEBRA and select Matrices/Multiply.

PRG

LAPLACE TRANSF ORMS
FOURIER SERIES
LINEAR PROGRAMMING

RAD PRG
{HOME }

Linear equations

Transformatlons
Eigenvalueproblems
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Under Matrices you will choose Multiply and you may mul-
tiply two symbolic matrices. The matrices are put into the

SYMBOLIC MATRIX WRITER.

PRG

Powers
Inverting

In the Matrix Writer you may delete, add, and echo from the

stack (see manual for 48GX).

The input Editor

If you select Linear equations under LINEAR ALGEBRA
you will enter the editor for input (input screen).

RAD PRG
{HOME }

A*X=B
:PartAns Y/N: Y
:B{B1...}: {123}
X {xy..}: A{xyz}

1. Generally
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Here the input data can be modified and deleted and you can
move around by using the arrow keys.

The cursor is placed right behind :PartAns Y/N: and here you
enter Y if you want intermediate results. The arrow keys are
used to get right behind :B {B1...}: and here you enter the
right side vector of the system.

If you have done a mistake you may alter your input by using
the delete keys on the calculator keyboard. You will not be
able to continue before the data are correctly put in.

In the input screen there is often information about the pro-
blem you are going to solve (formulaes etc). Remember the
’ ’ in algebraics and separation of several data on the same
input line by using blanks (space).

Echoing from the stack

If an expression or a value laying on the stack is going to be
used, then the EDIT/{STK/ECHO/ENTER sequence will
load data into the input screen. Be sure to place the cursor
correctly

Calculation finished
When a calculation is finished CALCULUS will either show
up intermediate results by using the VIEW routine (intrinsic
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MAII) or return directly to the menu. In the last case you will
need to use the - STK key to see the result laying on the stack.

Moving up and down in the menu

You can move downwards in the menu system by scrolling
the dark bar and pressing ENTER. If you need to move up-
wards the UPDIR key will help. At any time you may HALT
MAII and use the calculator independent of MAII by pres-
sing the - STK key. CONT will get you back to the menu sys-
tem.

STAT and MATR menues

On the menu line at the bottom the choices STAT and MATR
are possible. Here you will have access to some routines re-
gardless of your current menu position.

STAT:

e NORM Normal distribution

e INVN Inverse normal distribution

e UsDAT Sample mean, st. dev., median

o KiDAT Class table

e 3DAT Discrete table, two columns
MATR:

e ADD Add symbolic matrices
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e BASE?

e DET

e DIAG
e EGV
e EGVT
o INV

e MULT
e ORTH
e ORT?
e RANK
e SYM-
e TRN

Check if a set of vectors are
linear independent

Determinant

Diagonalize a matrix
Eigenvalues of a matrix
Eigenvectors of a matrix
Invert

Multiply

Orthogonalize a basis

Check if a matrix is orthogonal
Rank of matrix

Converts matrix {{}} to [[]]

Transpose

The input is a matrix (or two) on stack-level 1 (or 1 and 2).
The matrix is stored for later use as MATR in your current
VAR menu. The matrix is also echoed to the stack.

Leaving MAII

Pushing the EXIT key will leave MAIL.

Intermediate results

In the input screen you may choose PartAns Y/N. Choosing
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N the result will be laying on the stack and you have to use
—STK to see the answer. Choosing Y, different pages of in-
termediate results will show up or more than one result is lay-
ing on the stack.

The degree of details in the partial answers is somewhat dif-
ferent, but some of the results covers "the whole answer". In
every case this will give the user a good help.

Different parts of an answer may be found on different pages
and the page number can bee seen (use arrow up/down).

When PartAns Y(es) is chosen all numbers will show up with
two figures behind comma. If a more accurate answer is ne-
cessary, you will have to look on the stack and perhaps use
the N FIX option.

Flag status and CST menu
The flag status and CST menu you had before going into
MAII will be restored when you leave by pushing EXIT.
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Linear algebra

The subject linear algebra covers linear equations with solu-
tion also for singular systems, matrix manipulation (symbo-
lic), eigenvalue problems included systems of linear
differential equations, linear transformations in two and
three dimensions and vector spaces.

Linear equations (Gauss method)

Linear equations with symbolic parameters are handled. The
equations have to be ordered to recognize the coefficient ma-
trix and the right side. The equations are given in the form:

{{A}}{{X}} ={{B}}

A is the coefficient matrix , X a column vector for the un-
knowns and B the right side column vector. Symbolic coeffi-
cients are possible.
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If Det(A) =0 (determinant) the system will be singular (self
contradictory or indefinite). This is stated as "Self contradic-
tory" or the solution will be given in terms of one ore more
of the unknowns (indefinite). Example:

{X,y,Z} = {X,Z*X-l,x-4}

The value of x is arbitrary so there is an infinite number of

solutions.

If the system is underdetermined (too few equations), the so-
lution will be given in the indefinite form. If the system is
overdetermined (too many equations) the solution will be gi-
venin the indefinite formif the equations are lineary depend-
ent or as "Self contradictory" if they are lineary independent.

The solution algorithm is the Gauss elimination. If PartAns
Y(es) is selected, the different stages in the process will be
given as matrices on the stack which may be viewed by using
the MATW option (LIBRARY). The coefficient matrix and
the right side vector are assembled in one matrix (B is the
rightmost column).
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Interface:

RAD PRG
{HOME }

A+*X=B
: PartAns Y/N: Y
B {B1...}: {7 6 0}
X {xy..}: {x1x2x3 x4 x5}

The symbolic matrix writer will now appear. The following
matrix is put into it:

The example solves the system:

2X1-X2 + 3x3 + 2x4-x5="7
X1+ 2x2+Xx3-X4+XxX5=6
X1 - 4x2 -x3+ 3x4-x5=0

The system is indefinite (too few equations)) and the solu-
tion is given in terms of x5 and x4.
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The system is indefinite (too few eqautions)) and the solu-
tion is given in terms of x5 and xa.

Matrix calculations

Some operations on symbolic matrices are done (not cove-
red by the HP48 intrinsic functions). The matrices are put
into the SYMBOLIC MATRIX WRITER and the matrix is
put on the stack by pushing ENTER.

Addition
Both matices are put into the matrix writer and added. An er-
ror message is given for wrong dimension.

Multiplication

Both matrices are put into the matrix writer and multiplied.
An error message is given for wrong dimensions. The first
matrix has to have the same number of columns as the sec-
ond has rows. Be aware of the order of the matrices.

Inverting
The matix is put into the matrix writer and inverted. An er-

ror message is given if its not quadratic.

Determinant
The determinant of a symbolic matrix is calculated. The ma-
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Rank of a matrix

The rank of a marix is calculated. This routine may be used
for testing linear independency of rowvectors. The routine
makes the matrix upper traingular and PartAns Y gives the
different stages of the process.

Trace
The trace of a square matrix is calculated. An error message

is given if the matrix is not quadratic.

Orthogonal matrix

This routine is testing whether the matrix is orthogonal i.e.
the inverse is equal to the transpose. An error message is gi-
ven for wrong dimension (must be quadratic). The answer is
logic 0 or 1. May be used to investigate if rowvectors are ort-
hogonal i.e. is an orthogonal basis of a vector space.

Transpose matrix
The transpose of a symbolic matrix is calculated.

Symmetric
Investigates whether a matrix is symmetric or not. Logic 0 or
1.
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Linear transformations

Linear transformations include coordinate transformations
in the plane and in the three dimensional space. The trans-
formations are rotation, translation and scaling. The point to
be transformed is given relative a rectangular coordinate sys-
tem.

Mixed transformations (concatinating) is possible. The order
of the transformations is important if rotation is one of them.

2 D transformations (two dimensions)

Rotation

The rotation angle must be given in degrees and the transfor-
med point is given as components of a list (to allow symbols).
The rotation is counterclockwise for positive angles about an
arbitrary point.
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0 20yo

2.1 Rotation of a triangle about origo

Interface:
RAD PRG
{HOME }
Rotation about (x0,y0)
XY 25

: X0 Y0: 2 2

The point (2,5) is rotated about (2,2) an angle 45°. To rotate
a triangle all three points have to be transformed.

Translation
This is a pure translation of a point, the coordinates are given
an addition.
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2.2 Translation of a triangle

Interface:

RAD PRG
{HOME }

Xt=X+Tx Yt=Y +Ty

XY: 25
Tx Ty: 36

The example moves the point (2,5) to (2,5) +(3,6) =(5,11)

Scaling

The coordinates are multiplied by a factor. For a geometric
figure where the points are scaled, this will give a smaller or
bigger figure. If the X and Y coordinates are scaled different-
ly this will alter the shape of the geometric figure.
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b 40 0 120
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2.3 Enlarging of a triangle

Interface:
RAD PRG
{HOME }
Xt=X*Sx Yt=Y=*Sy
XY: 25
:Sx Sy: 36

The example multiplies 2 with 3 and 5 with 6 and the point
(2,5) is moved.

Concatinating (mixed transformations)
Concatinating means a mixture of several transformations.
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The order of the transformations is important, given in a list
as {R S T} (rotation, scaling and translation).

Interface:
RAD PRG
{HOME }
XY:25
Sx Sy:1 1
TxTy:2 6

:0 X0YO{STR}: 4522 {RTS}

In the example the point (2,5) is rotated clockwise 45° about
the point (2,2) first, then a translation of 2 in the x-direction
and 6 in the y-direction. There is no scaling, indicated by 1 1
for the scaling factors.

Rem. No translation gives Tx =Ty =0 and no

rotation gives © = (.
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3 D transformations (three dimensions)

Translation
The interface is the same as 2D translation, with one extra
coordinate and one extra translation.

Scaling
The interface is the same as 2D scaling, with one extra coor-
dinate and one extra scaling.

Rotation

3D rotation is somewhat more complicated than in two di-
mensions. The rotation axes has to be specified, i.e angles re-
lative the coordinate axes and a point.

Interface:

RAD PRG
{HOME }
: XYZ: 254
:X0Y0ZO0: 221
aBy: 454560
e: 45:
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The example rotates the point (2,5,4) about an axes through
the point (2,2,1) and with angles relative the x-, y-, and z-axes
equal to 45°, 45° and 60°.

Concatinating (mixed)
The same interface as in the 2D case, but the rotation axes
now has to be specified.

Interface:
RAD PRG
{HOME }
: XYZ: 254
:X0 YO0 Z0: 221
:Sx Sy Sz: 346
Tx Ty Tz: 252
T N T N B
RAD PRG
{HOME }

. afy: 4545 60
:0 {STR}: 45{RTS}
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In the example the point (2,5,4) is rotated about the given
axes and then the specified translation and scaling is carried

out.

Eigenvalueproblems

Here you may find the eigenvalues and the eigenvectors of a
matrix, diagonalize a matrix and solve a system of linear dif-
ferential equations.

Eigenvalues

The eigenvalues of a matrix are determined by the equation
A=X=)+X| where A is the matrix and X a column vector (ei-
genvector). \ is called the eigenvalue.

Interface:

RAD PRG
{HOME }

AsX =\ X
Det(A-x+I) =0

:PartAns Y/N: Y
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Now the matrix has to be specified, and you may put it into
the symbolic matrix writer:

1 3 2
-1-5 -2

The example finds the eigenvalues of the matrix:

4 6 6
1 3 2
1-5 2

The matrix has an eigenvalue with multiplicity 2 (A =2).

Eigenvectors

A matrix has infinite many eigenvectors because the system
of equations that determines the vectors is indefinite. The ei-
genvectors are given in terms of arbitrary parameters. A set
of eigenvectors will normaly be linear independent even if
the eigenvalues have multiplicity greater than 1. But this is
not always the case.
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Interface:

mgME} PRG
AxX = )\*X
Finds X
: A2
:PartAns Y/N: Y

The matrix now has to be put into the matrix writer. We use
the same matrix as in the determination of eigenvalues. By
choosing PartAns Y the indefinite system of equations that
determines the eigenvectors will be given. We see that only
two of the eigenvectors are lineary independent (only one ar-
bitrary parameter c).

Diagonalization
For a matrix A we can write:

D= K'I*A*K

Here K is a matrix composed of the eigenvectors of A which
have to be lineary independent. D is a diagonal matrix with
the eigenvalues on the diagonal. If the eigenvectors are
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lineary dependent (as in the example of eigenvectors), then
the matrix cannot be diagonalized (not diagonalizable).

Interface:

The matrix has to be put into the matrix writer:

The output is the matrices K and D. The matrix K! may be
found by inverting K.

Rem. If intermediate results are wanted, you
may look at the problems of finding eigenva-

lues and eigenvectors separately.

System of differential equations
Here a set of linear, homogenous differential equations with
constant coefficients are solved by using the method of dia-

gonalization.
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Interface:

RAD PRG
{HOME }

dX/dt= A*X
X={xy..}: {XYZ}
: ttt

The following system is solved:

dx/dt =-4x + 5y + 5z
dy/dt =-5x + 6y + 5z
dz/dt=-5x + Sy + 6z

The output contains the constants C1, C2 and C3 and the in-
dependent variable is t.
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Rem. If intermediate results are wanted, you

may look at the problems of finding eigenva-

lues and eigenvectors separately.

Under Info some information about the solving strategy is gi-

VeIl

Vector spaces

A vector space is a collection of vectors relative a basis whe-
re certain operations on them are defined. A basis is a set of
linear independent vectors from the space. In an orthogonal
basis the vectors are mutually orthogonal (inner product
equals zero).

Basis?

This routine examines whether a set of vectors in the space
is linear independent. The vectors are put into the matrix wri-
ter as rows and the output is logic 0 or 1.
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Interface:

4 6 6
1 3 2
-1-5 -2

The example examines whether the vectors inR3 {46 6}, {1
32} and {-1-5 -2} are lineary independent and then form a
basis in R3 (three dimensional vector space).

Norm

Here the length or absolute value is calculated. The input
vector is {v1v2v3....} and the output is a number or an expres-
sion if the vector is symbolic.

Norming
A vector is transformed into an unit vector
e =V/NORM(V).V ={v1v2....}.

Scalar product (inner product)
The scalar product of two vectors is calculated. Symbolic vec-

tors are possible.

Orthogonalization
An orthogonal basis is calculated with an arbitrary basis as a
starting point using the Gram-Schmidt process.

2. Linear algebra 31




Interface:

The basis b1 =[4 6 6], b2=[1 3 2] and b3 =[-1 -5 -2] is given
in R3. The basis is not orthogonal, but the routine makes it
orthogonal.

Rem. Symbolic vectors are not possible

Orthogonal?

The routine examines whether a matrix is orthogonal. If the
row vectors building up the matrix form an orthogonal basis,
then the matrix is orthogonal.

Orthonorming
The routine is norming an orthogonal basis.

Vector in new basis
Given a vector VBj, i.e. relative a basis B1. A new vector

relative a basis B2 is calculated.
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Interface:

RAD PRG
{HOME }

Xb1-Xb2

X {xL.}: {142}

The vector {1 4 2} relative the basis
{[123],[312],[22 5]} is transformed to the new basis
{[113],[4 12],[2 6 5]}
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Transformation matrix in new basis

A matrix defines a linear transformation in a vector space re-
lative the "natural" basis. This routine calculates a new trans-
formation matrix relative a new basis. The "natural" basis is
{[100],[010],[00 1]} in R3.

Interface:

The transformation matrix {{110}{0 1 1}{10 1}} in natu-
ral basis defines the transformation:

L(x1,x2,x3) = (x1 + x2,x2 + X3,x3 + X1)
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The example calculates the new transformation matrix rela-
tive basis {[1 1 1],[0 1 1],[0 0 1]}. Symbolic elements are pos-
sible in the matrices.
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LaEIace transforms

Laplace transforms are used for solving differential equa-
tions and can, contrary to other methods, deal with functions
f(t) which are discontinous in the equation

a*y" +b*y’ +cry=1£(t)

Discontinous f(t) may be composed by using the Unit Step
function u(t-a) defined as:

u(t-a): [IFta < THEN O ELSEIF ta > then 1 END END

This function is not implemented in CALCULUS in other
ways than as a symbol, and the user has to make a program
to define it for evaluation.
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Laplace transform
The Laplace transform of the following functions may be fo-
und:

e f(t)=t"n,n>-1

o f(t) =Sin(axt), a arbitrary

o f(t) =Cos(a*t), a arbitrary

o g(t) =f(t)*e*, a arbitrary

e g(t) =f(t)*u(t-a), a=0

o g(t) =f(t)*u(t-a)*e, a=0 b arbitrary

o h(t) =g(t)*t

e Linear combinations of theese functions

Interface:

PRG

F(s) = L(f(t))

RAD
{HOME }

ts ts
A(t): 't~ 2+u(t-1)

The example calculates the Laplace transform of
f(t) =t~ 2+u(t-1).
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Rem. If CALCULUS cannot find the Lapla-
ce transform an error message is given (the
transform does not exist or its not implemen-
ted)

Inverse Laplace transform:
The inverse transform is calculated. The types of functions
which can be inverted are the transforms of the functions lis-

ted on page 37.
Interface:
RAD PRG
{HOME }
f(t) =InvL(F(s))
st:ost

:F(s):  ’(1-e™)/(s~2+1)

The example calculates the inverse transform of
F(s) = (1-e ™)/(s* + 1).
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Inverse L Partial fractions

If the denominator of F(s) is of second degree and may be
factorized in first degree factors or of a higher degree than 2,
the denominator has to be split into partial fractions.

Intermediate results (Partial Answers) is possible to show the
splitting into partial fractions.

Rem. If the transformation does not exist the
error message "does not exist" is given. If the
expression is too complicated the message "not
rational" may appear. The expression may

then be split up.
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Interface:

RAD PRG
{HOME }

F(s) =P(s)/Q(s)
InvL(F(s)) =1(t)
ts:t s
:PartAns Y/NY

RAD PRG
{HOME }

Input cont

:Numerator P: ’Exp(-w*s)’

:Denominator Q: ‘s 2-1

In the example F(s)= e"”s/(sz—l) is split into partial fractions

and then transformed. The shift e ™ will be taken care of be-
fore the splitting into partial fractions.
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Differential equations (initial value problem)

Laplace transforms are suitable for solving initial value pro-
blems, in particular when the "right hand side function" is
discontinous.

The answer is given in the form Y(s) =P(s)/Q(s)/R(s) which
has to be transformed into P(s)/((Q(s)*R(s))) before the ro-
utine for partial fractions is used to solve the problem.

Interface:

RAD PRG
{HOME }

ay"+ by’ +cy =£(t)
y(0)=y0y’ (0)=Dy0
:abcy0Dy0 : 13201
f(t) t: ’SIN(t) t

The equation y"+ 3y’ +2y=Sin(t) with initial conditions
y(0)=0andy’ (0) =1 is transformed.
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Probability

In this chapter of probability theory we will look at unlike di-
screte probability distributions in addition to the normal dis-
tribution which is continous. For the discrete distributions
both the cummulative probability and the point probability
may be calculated.

For the discrete distributions and in connection with pure
combinatorial calculations, we have distinguished between
with and without replacement.

Rem. Probabilities must be less then or equal

to 1 and greater than or equal to 0.
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Without replacement

Without replacemnet means that we dont put the drawn ele-

ment back again.

Combinations, not ordered
This routine calculates the number of possibilities to draw k
elements of total n without replacement and without regard

to order.

Interface:

RAD
{HOME }

PRG

:n k:

Draw k of n

N =n!/((n-k)!+k!)

153

The example calculates the number of possibilities to draw 3
elements from total 15 elements without regard to order.
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Combinations, ordered
If the order is important you will have to use this routine. The
same elements in different orders will then be separate

events.
Interface:
RAD PRG
{HOME }
Draw k of n
ordered N =n!/(n-k)!
n k: 15 3

The example calculates the number of combinations when
drawing 3 elements from 15 with regard to order.

Hypergeometric distribution

Here the probability of drawing exactly k X’es from a popu-
lation of n when a elements are drawn at a time without re-
placement is calculated. The probability for the X to be drawn

is p.
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Interface:

RAD PRG
{HOME }
k X’es of n
draw a P(X)=p
‘n a: 20 8
p k 0.6 3
A u , |

The probability that 3 elements have the mark X when dra-
wing 8 elements of total 20 is calculated. The probability of
X to occur is 0.6. If k> a or p > 1 the probability is 0.

The example may be "drawing" individuals from a population
of 20 where 12 is women (p = 12/20=0.6). The probability
that of 8 "drawn" individuals 3 is women is calculated.

Hypergeometric distribution function

The cummulative probability is calculated, i.e. the probability
that maximum k elements are drawn. This is the sum of the
probabilities of k =0,k =1,k=2 and k=3.
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Interface:

RAD PRG
{HOME }
max k X’es of n
draw a P(X) =p
:n a: 20 8
p k: 0.6 3

The example calculates the probability that 3 elements is
drawn with the mark X (p = 0.6) from a total of 20 by drawing
4 at a time or 1 by 1 without replacement.

With replacement

Here the elements are replaced by drawing so that the prob-
ability is the same every time an element is drawn (uncondi-
tional drawing).

Combinations, unordered

This routine calculates the number of combinations of dra-
wing k elements from n without replacement, without regard
to order.
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Interface:

RAD PRG
{HOME }

Draw k of n
N =(n+k-1)!/((n-1)!+k!)

n k: 15 3

inmmumn

Here the probability of drawing 3 elements of total 15 is cal-
culated. Order is indifferent.

Combinations, ordered
If the order is critical, this routine has to be used. The same
elements in different orders are separate events.

Interface:
RAD PRG
{HOME }
Draw k of n
ordered N=n"k
:n k: 15 3
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The example calculates the number of possibilities with the
same figures as in the previous example, but now with regard
to order.

Binomial distribution

The routine calculates the probability of drawing exactly k
elements with the mark X of total n, where the probability of
X itself is p. Independent trials (with replacement).

Interface:
— PRG
{HOME }
k X’es of n
P(X)=p

:np: 10 0.6

k: 3

daoobasbi b

The probability of drawing 3 elements with the mark X when
X has the probability of 0.6 is calculated. The number of in-
dependent trials is 10. p > 1 gives an error message.

The example may be the production of glasses where the
probability of first assortment is 0.6. If 20 glasses are produ-
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ced, the example calculates the probability that 3 glasses are
first assortment.

Binomial distribution function
The cummulative probability is calculated, i.e. the sum of the
probabilities fork=0,k=1, k=2 and k=3 if k=3.

Interface:
RAD PRG
{HOME }
max k X’es of n
P(X)=p
:np: 10 0.6
k: 3

The example calculates the probability that maximum 3 ele-
ments have the mark X (p =0.6) in 10 independent trials.

Negative binomial distribution

This distribution gives the probability of k failures before the
r’thsuccess in a series of independent trials each of which the
probability of success is p.
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Interface:

RAD PRG
{HOME }

k not X’es before
X rth time P(X) =p
:rp: 10 0.25
: ko 15

The probability of 15 failures before the 10th success when
the probability of success is 0.25 is calculated.

The example may be the drawing of cards and the calculation
of the probability of drawing 15 cards that are not clubs be-
fore the 10th club.

Negative binomial distribution function
This routine calculates probability of maximum k failures be-
fore the r’th success.
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Interface:

RAD PRG
{HOME }

max k not X’es before
X rth time P(X)=p
Tp: 5 04
k: 4

The probability of maximum 4 failures before the 5th success
is calculated. Probability of success is 0.4.

The example may be the drawing of balls from a hat that con-
tains 40% white balls. The probability of finding 5 not white
balls before drawing maximum 4 white balls is calculated.

Pascal distribution
The probability of the r’th success in k’th trial in a series of
independent trials is calculated.
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Interface:

RAD PRG
{HOME }

X rth time kth
trial P(X) =p
crp: S 05
k: 8

The probability of finding the mark X Sth time in the 8th tri-
al is calculated.

Rem. The geometric distribution is a special

case withr=1.

Pascal distribution function
The probability of the r’th success in maximum k trials is cal-
culated. The probability of success is p.
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Interface:

RAD PRG
{HOME }

X rth time max k
trials P(X) =p
rp: 5 05
k: 8

bbb 1 b

The example calculates the probability of finding the mark X
the 5th time in maximum 8 trials (Tossing a fair coin we find
the probability of finding the Sth head in maximum 8 trials).

Normal distribution

This is a continous distribution and only cummulative prob-
abilities are calculated.
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Interface:

RAD PRG
{HOME }

Normal distribution
param. p and o gives P(X <x)
wo: 01
ox: 1

[ R R R

The probability that a random variable is less than or equal
to 1 is calculated. The mean and the standard deviation is 0

and 1.

Rem. P(a<x<b)=P(x<b)-P(x<a) and
P(x>a)=1-P(x<a)

Poisson distribution

The Poisson distribution is used as a model when we are in-
terested in events within intervals of time or other variables.
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Interface:

RAD PRG
{HOME }

Poisson distr.
mean p, and P(X=k)

wk: 45

The example calculates the probability that a random varia-
ble X is exactly S when the mean is 4.

Poisson distribution function

Interface:
RAD PRG
{HOME }
Poisson distr.
mean p and P(X<k)
wki 45
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The probability that X is less than or equal to S is calculated,
the mean is 4.

Info

Here information about probability and some distributions
is given.

Binomial coefficients

Binomial coefficients Bnk=n!/((n-k)!*k!) are calculated
from k=0 to k=n and put in a list.

Interface:

RAD PRG
{HOME }

Binomial coeff.
Bnk =n!/((n-k)!*k!)
k=0..n

n: 5

The example calculates {Bn0 Bn1 Bn2 Bn3 Bn4 BnS}.
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Statistics

We will focus on some statistical methods and description of
samples. Within description of samples we will use discrete
tables and class tables (discrete and class statistics). You can
convert from class statistics to discrete statistics by using the
mean value of the intervals as the discrete value.

Statistical methods are represented by confidence intervals
and hypotbhesis testing for distributions. The "best" fit for the
normal distribution uses the method of least squares.

The normal distribution, kji-square distribution and
student-t distribution are included and its possible to find
both the probability and the value of the random variable for
given probability.
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Distributions

Normal distribution
The normal distribution gives p(X <x) for given x-value. The
mean p, and standard deviation ¢ have to be known.

Interface:

RAD PRG
{HOME }

Normal distribution
param. u and ¢ gives P(X <x)
‘wo 01
cx 1

P(X<1) for .=0and o =1 is calculated.

Inverse normal distribution
The routine finds the value of the random variable x with gi-
ven probability p, wand o are known.
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Interface:

RAD PRG
{HOME }

Normal distribution
p o gives x, P(X<x)=p
wo: 01
: p: 0.6

The value of x with P(X<x) =0.6, =0 and o =1 is calcula-

ted.

Kji-square distribution
The kji-square distribution is used to find confidence inter-
vals and in connection with fitting a distribution to a sample.

Interface:

RAD PRG
{HOME }

Kjisquare distr.
degrees of freed. K P(X <x)

:Kx:35.6
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The example calculates P(X <5.6) where X is kji-square
distributed with 3 degrees of freedom.

Inverse kji-square
The value of x for given probability is calculated.

Interface:

RAD PRG
{HOME }

Kjisquare distr.
degrees of freed. KP(X<x)=p

:K p:3 0.85

The example calculates the value of X so that P(X <x) =0.85
with 3 degrees of freedom.

Studen-t distribution
This distribution is used to find confidence intervals in BAS
MAIL
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Interface:

RAD PRG
{HOME }

Student-t distr.
degrees of freed. K P(X <x)

:Kx:375

P(X <7.5) with 3 degrees of freedom is calculated.

Inverse student-t
This routine calculates the value of the random variable x.

Interface:

RAD PRG
{HOME }

Student-t distr.
degrees of freed. K P(X<x)=p

:K p:3 0.85

The value of x is calculated so that P(X <x) =0.85 with 3 de-
grees of freedom.
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Confidence intervals

Confidence intervals in connection with the normal distribu-
tion are calculated for the mean . and variance o

Rem. Mean value and standard deviation for
a sample may be calculated under this menu.
These values may be used as point estimates

forthe parameters in the distribution function.

Confidence interval for the mean ., given value of o.

For known ¢ we may use the normal dsitribution to find the
value c so that F(c) =P(x<c) =1/2(y + 1) with confidence le-
vel y. The interval is given in the form [a<pu<Db].

The interval is calculated from a sample [[xi]] and the mean
value has to calculated in advance by using the menu option:

Mean value.
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Interface:

RAD PRG
{HOME }

CONF 4, given 0 Mean
X sample [[xn]] Level y

Loy 1.12 0.90
:xn:320

| e (S e I

The example calculates the confidence interval for the mean
in the normal distribution, based on a sample [[xn]] with
mean 3 and confidence level 90%. The number of values in
the sample is 20 and the normal distribution has the standard
deviation 1.12.

Confidence interval for the mean ., unknown ¢

If ois not known the estimate s for standard deviation from
the sample is used. To find the value of ¢ so that
F(c) =1/2(y+ 1), the student-t distribution is used..

The interval is calculated from a sample [[xi]] with n values
and the mean and the standard deviation of the sample has
to be calculated in advance.
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Interface:

RAD PRG
{HOME }

CONF ., Mean/St.dev.
X ,s samp. [[xn]] Level y

tys: 090 1.2
:xn:320
i-mm——m

The confidence interval for the mean is calculated based on
a sample with 20 values, standard deviation 1.2, mean 3 and
with confidence level 90%.

Confidence interval for variance, . is unknown

The standard deviation of the sample has to be calculated first
(separate menu option). The calculation is based on the kji-
square distribution.
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Interface:

RAD PRG
{HOME }
CONF o, St.dev. s
sample [[xn]] Level y
tys: 090 1.2
: n: 20

The example calculates the confidence interval for o based

on a sample with standard deviation 1.2, confidence level
90% and 20 values in the sample.

Sample X, s, n and median

The mean value, standard deviation, number of values and
the median are calculated. The table is stored as UsSDAT.

Interface:

RAD PRG
{HOME }

St.dev. s and mean x
[[x1x2 x...]]

[x1x2.0]: (123711

|_——_~~i
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The mean value, standard deviation, number of values and
the median for the sample [[2 8 7]] are calculated.

Fitting

By using a sample of values, the "best" fit for the normal dis-
tribution is calculated, i.e. estimates for the mean . and
standard deviation o is calculated. Hypothesis testing for as-
sumed distribution is done (kji-square goodness of Fit).

The sample has to be given as a class statistic with given fre-
quences (se description of samples).

In order to calculate estimates for the distribution parame-
ters a discrete statistic has to be stored as SDAT (see separa-
te menu option).

Normal distribution
A "best" fit based on the least squares is calculated. The sam-
ple has to be stored as a class statistic (KSDAT) in advance.

When K3DAT is stored by using a separate menu option, the-
re is no more input data necessary. Estimates for p. and o will
be calculated.
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Hypothesis normal distribution

The class table is stored by using the separate menu option.
The separation in different classes is done with minimum 5
values in each class. Upper and lower limit has to be « and
- and you can achieve this by using big numbers as the lo-
wer and upper limit for the class intervals.

For the calculation of mean and standard deviation as esti-
mates for the parameters the discrete statistic has to be sto-
red with known frequencies (XDAT).

Interface:
RAD PRG
{HOME }
Normald. n values
Level o« Num.est. r
D pot 360 26
N 0.05 1002
bbb bbb

The example is testing whether the sample K3DAT may be
fitted to a normal distribution with significance level 5%. p.
and ¢ are estimates and r, number of estimates, is 2. Number
of values in the sample is 100.
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The Kji-square distribution is used and the figure kijO2 is tes-
ted against the theoretical value ¢, P(X <c) = 1-a, where « is
the significance level. If kji02_<_ ¢, the hypothesis is not rejec-
ted.

Hypothesis binomial distribution
The class statistic is stored and the parameter p is, if neces-
sary, estimated as p = p/n.

Interface:
RAD PRG
{HOME }
Binomiald. n values
Level « Num.est. r
! pa 0.5 0.0
;nr: 501
obaod e i bk

The example is testing whether the sample may be fitted to a
binomial distribution with significance level 5%. p is estima-
ted (0.5) and the value of r is 1. Number of values is S0.
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Hypothesis Poisson distribution
The class statistic is stored and the parameter w (mean) is, if
necessary, estimated.

Interface:
RAD PRG
{HOME }
Poissond. n values
Level « Num.est. r
D pa 56 0.05
nr: 100 1

The example is testing whether the sample may be fitted to a
Poisson distribution with significance level 5%. u is estima-
ted and r = 1. Number of values in the sample is 100.

Class tabel (class statistic)

A class table is a double list {{Ik}{fk}} where the first list
contains the bounderies of the class intervals and the other
list contains the number of values in the separate intervals.
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Interface:

RAD PRG
{HOME }

Class table

{{Ik}{fk}}: {{3467}{254}}

Interval limits are 3,4,6 og 7 and number of values in the in-
tervals are 2,3 and 4.

Mean value and standard deviation based on frequency ta-
ble

If the data is stored as a frequency table, we cannot use the
ordinary sample routine to find the mean etc. The data is sto-
red in SDAT. Use F for frequency table.

Storing discrete table

The sample is stored as SDAT. The data is put directly into
the matrix writer where the first column contains the values
and the second column the frequencies.
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Description of samples

In this menu some calculations on discrete data and class ta-
bles from samples are done. This includes mean values,
standard deviation, relative frequencies, histograms and fre-

quency polygons.

Unsorted data
The values in a matrix are counted and sorted and a frequen-
cy table is stored as TDAT.

RAD PRG
{HOME }

Unsorted data

[x1x2..]): [[12232231]]

Discrete table >DAT

Here the values are stored in the first column and the fre-
quencies in the second. In two variable statistics the second
column will be the data for the second variable.
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Classes K3DAT

A class table is a double list {{Ik}fk}} where the first list is
the limits of the intervals and the other the numbers in each
interval.

Interface:

RAD PRG
{HOME }

Class table

{{Ik}{fk}}: {{3467}{254}}

The limits of the intervals are 3,4,6 and 7 and the number of
values is 2,3 and 4. The table is stored as K3DAT for further

uses.

Cummulative table.

The routine is calculating a table from a discrete table
(ZDAT). The new table will include relative frequencies, (co-
lumn 4) cummulative frequencies (column 3) and cummula-
tive relative frequencies (column 5).

K>DAT-3DAT
This routine transforms a class statistics into a discrete statis-
tics by using the mean value of each interval as the repre-
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sentative value. The table is stored as SDAT. Input data is
K3DAT which is stored in advance.

>DAT xog s
The mean value and the standard deviation is calculated ba-
sed on a frequency table (F) or a two variable statistic table

(D).

Interface:

RAD PRG
{HOME }

F is frequency tab.
D is two var. stat.

:ForD: D

The sample has to be stored in SDAT and the choice D will
give the mean and standard deviation for each variable in a
two variable statistics.

Rem. Under menu confidence intervals and
STAT menu the mean and standard deviation
forsimple samples are calculated (one dimen-
sional tables).
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Histogram KzDAT
Creates a histogram based on the class table KSsDAT which
has to be stored in advance.

Frequency polygon K3xDAT
Creates a cummulative frequency polygon from KZDAT.

Linear regression and correlation

A straight line is fitted by the use of least squares from the ta-
ble =DAT. The line will be given as Y =aX +b, where X is
the data in the second column in 3DAT.

The correlation coefficient is a measure of the goodness of
the fit and a value between -0.7 and 0.7 is a good fit.

Rem. 3.DATis now a two variable statistics ta-

ble and not a simple statistics frequency table.
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Fourier series

Under Fourier series in symbolic form one can find the Fou-
rier series of polynomials up to 2nd degree and a couple of
other possibilites. The numeric series for a given number of
terms may also be found. The input function may be bifurca-
ted with different expressions in two different intervals.

The Fourier series are generally given as:
f(x) =20+ ) an*Cos2+wrxn/T)+ Y busSin(2+m+x+n/T)
n=1 n=1

T is the period and the coefficients are given:

T/2
a0= 1/T|f(x)dx
T2 -T/2

an= 2/T ﬁ(x)*Cos(Z*w*x*n/T )dx
‘T2 12
bn= 2/T ff(x)*Sin(Z*w*x*n/I' )dx

-T/2
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BAS MAII is able to find the series of the following types of
functions:

o f(x)=kx+b

o f(x) =kx*

o f(x) =kSin(ax)
o f(x) =kCos(ax)
o f(x) =ke™®

Fourier series, symbolic form

The expressions for a0, an and bn are found for given f(x).
The series itself must be set up by the user. The function f(x)
may be given as two expressions in two intervals:

fl,a<x<b

) = 2, c<x<d

The functions are given as {f a b} where a and b are defining
the interval or bifurcated as {f1 ab f2 c d}.

Rem. If the function is split in more than two
intervals, BAS MAIIl may be used on two and

two (or two plus one) intervals.
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Interface:

PRG

RAD
{HOME }
f(t) = a0 + 5an*COS(w*t) +
sbn*SIN(w*t) o=2*m*n/T
t Tot 2+q
:PartAns Y/N: Y

RAD PRG
{HOME }

Input cont

{fab..}: {-1’-7010°%"}

The example calculates the Fourier coefficients of

1 w<t<0

£(t) =
® O<t<w T=2x

The answer is given with intermediate results (indefinite in-
tegrals are given).
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Fourier series numeric results

A specified number of terms are calculated, but in terms of
the independent variable. The input is the same as in symbo-
lic form, but the number of terms has to be included and also
the start and stop of the summation index. The integration is
numeric and intermediate results are not given.

Interface:

RAD PRG
{HOME }

f(t) =a0 + z(m,n)an*COS(w*t) +
%(m,n)bn*SIN(w*t) o=2*m*n/T

t T: t 2+

RAD PRG
{HOME }

Input cont

: mn: 02
{fab..}: {-1’-2°010°%"}
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The first three terms are calculated. The termsn=0andn=2
are 0.

Rem. The accuracy of the integration is de-
pendent of the choice for N FIX on the calcu-

lator

Half range expansions

In many situations there is a practical need to use Fourier se-
ries in connection with functions that are given merely on
some definite interval. They may be done periodic by an ex-
tension with the period as the double interval. The extension
may be even or odd by choice (E/O).

Interface:

mgME } PRG
f(t) =a0 + 2an*COS(w*t) +
an*SIN(m*t) o =2*7*n/T

ot Tt 2%

:PartAns Y/N: Y
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RAD PRG
{HOME }

Input cont

{fab..}: {-1’-+"0}
: O/E. 0)

Here f(t) =-1, -w <t <0is given. An odd extension is marked
by O.
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Linear Erogramming

The maximum or minimum of a linear function in several va-
raibles are calculated. The constraints are given as inequali-
ties ("less then"). The routine does not handle degeneracy or
solutions constrained to be natural numbers.

Rem. If such constraints are given and a deci-
mal number is the answer, one cannot simply

round off to nearest natural number. This will

not always give the optimal solution.

The algorithm used is the simplex method and it finds only
the minimum of an object function. Any problem can be writ-
ten as a minimum problem. If a maximum value of f(x) is
going to be found, one may simply change the sign and find
the minimum of -f(x).
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The constraints are defining the constraint matrix A. They are
assumed to be of the "less then" type, but if you have got them
as "greater then" type you may simply multiply both sides with
-1 and change the inequality sign.

If we are going to maximize f(x) =x1 + 2x2 and one of the con-
straints are x1-2x2 > 2, then minimize -x1-2x2 with the con-
straint -x1 + 2x2 <-2.

Allindependent variables are assumed to be positive or zero.

Rem. The independent variables have the
symbol xi regardless of the symbols used in a

given problem.

Interface:

RAD PRG
{HOME }

min f(X)=C*X A*X<B
A is the last input
B[ ]: [859]
C[] [ -25 -7 -24]
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The example solves the problem of finding the maximum of

f(x1,x2,x3) = 25x1 + 7x2 + 24x3 under the constraints

3x1+x2+5x3<8
Sx1+x2+3x3<5
0<x1,x2,x3

C vector is the object function £, B vector is the right side of
the constraints and A is the constraint matrix (left side). The
solution is given as -39.5 which means that the maximum is
39.5.
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Numerical methods

This chapter is emphasized on numerical methods which are
common in the education of mathematics. They form a basis
of topics usual in the numerical curriculum, but not all of
them are used in pratical work. The version GX /G of HP 48
includes some routines for solving differential equations with
a high degree of accuracy and may be used in practical appli-
cations.

Zeros

Equations of 1 unknown, 2 unknowns and 3 unknowns are
solved numerically. Numerical solutions of equations are
used where other methods are impossible. Different kinds of
methods may be used and intermediate answers are given in
the solution vector [xg X1.......xn] where xn is the final answer.
The vector may be viewed in the matrix writer (arrow down).
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TOL

The input data requires the number TOL, tolerance. TOL has
to do with the accuracy of the final solution. The calculation
stops when the absolute value of the difference of two suc-
cessive solutions divided with the solution is less than TOL.

STOP: ABS(xn-Xn+1)/ABS(xa+1) < TOL

If this cannot be achieved the method is said to diverge with
this tolerance and we may choose another tolerance or adjust
the starting point xo. The programs stop after a specific num-
ber of iterations in all cases and the notion "diverge" has to
be understood in this context.

Bisection method

We are going to solve the equation f(x) =0, where f is a given
function. The input is an interval which contains the solution
(use f.x. a graphical plot to find the interval). By successive
bisections of the interval in such a way that the solution lies
in the interval chosen, we will always find a solution. The er-
ror will maximum be the width of the last interval. The ad-
vantage of the method is that it will always converge, but it is
a slow method (many calculations).
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Interface:

mgME} PRG
Bisection f(x) =0
f: ’x-COS(x)’
o x x0: X 05
:x1 TOL: 1 1E-2

Fixed point iteration

Fixed point iteration is somewhat special because there is an
infinite number of ways to write the equation, but only one is
the best. The equation is written in the form g(x) =x. The
equation x-Cos(x) =0 may obviously be written Cos(x) =x,
but this is necessarily not the best way (fewest iterations).
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Interface:

RAD PRG
{HOME }

Fixed point
f(x) =x
f X: 'COS(X)y X
: X0 TOL: 1 1E-2

Secant method
This method is faster than the two earlier methods. New x-
values are calculated according to the formula:

Xn-Xn-1

X 4+1=Xp-—
e X ) -£(Xa1)

To assure that the solution lies in the interval [Xn+1,Xn] and
in this way be able to control the error, we redefine Xn =
Xn-1 if £(Xn + 1)*f(Xn) > 0. The method make use of the two
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latest x-values, but only one new calculation of the function
value is necessary for each step.

Interface:

RAD PRG
{HOME }

Secant method f(x) =0

f: ’x-COS(x)’
x x0: X 05
:x1 TOL: 1 1E-2

Newton’s method

This method usually needs the fewest iterations for a given
tolerance, but compared to the secant method two calcula-
tions of function values are necessary for each step (fand f’).
The method is however sensitive for the choice of starting

point.
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Interface:

RAD PRG
{HOME }

f(x) =0 Xstart=X0

f X:’COS(X)-X* X
: X0 TOL: 1 1E-2

f(Xn)

X =X -
n+1 n f’(Xn)

Newton’s method, 2 unknowns
Here 2 equations with 2 unknowns are solved. The method
is an extension of the problem with one unknown and solves:

F(x,y) =0, G(x,y) =0, starting point [x0,yo].
The iteration formula is

[Xn+1,Yn+1] = [Xn,Yn] - J [F(Xn,Yn),G(Xn,Yn)]
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J is the Jacobian matrix of the system.

Interface:

PRG

f(xy)=0 g(xy)=0
Xstart = X0 Ystart=YO0

RAD
{HOME }

:f: x"2+4y72-0
1 g 2 +y-l

RAD PRG
{HOME }

Input cont

: XY: xy
: X0 YOTOL: 10 1E-2
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Newton’s method, 3 unknowns
Here 3 equations with 3 unknowns are given.

Interface:

RAD PRG
{HOME }

f(x,y,z2) =0 g(x,y,z)=0
h(x,y,z) =0
fx724+y"2+4+272-6
s ght Ox4+3*xy+2+2-5 x 3 +yxz+ 1

RAD PRG
{HOME }

Input cont

: XYZ: xyz
: X0Y0Z0: 320

TOL: 1E-2
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Differential equations

Some of the methods chosen for the numerical solution of
differential equations are of little practical importance (too
inaccurate), but are however important in relation to the edu-
cation of the stuff because they show some basic and impor-
tant principals. This will be the case for specially Eulers
method (RK1). Both first order and second order equations
are handled. First and second order equations are written, re-
spectively:

Y’ =F(X,Y)andY” = F(X,Y,Y’)

The answer is given as a matrix on the stack:

1st column = X
2nd column = Y
3rd column = Y

Approximations to Y-values are called U, U,U2....Un. Star-
ting point is (Xo, Y0), Uo= Yo (1st order) and (Xo,Y0,Y ’0),
Uo=Yo (second order). Ui, Uy,.... are calculated for X-va-
lues with the step length h, Xi1=Xo+h, X2=Xi1+h....
XN=XN-1+h.
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1st order equation, Euler’s method
New U-values are calculated according to the formula:

Un +1= Un + h*F(Xn,Un)

Interface:

RAD PRG
{HOME }
Y’'=F(X,Y) Y(X0)=Y0
Un+ 1=Un+h*F(Xn,Yn)
. F: ’Y"2X
. XY:X Y

RAD PRG
{HOME }
Input cont
: X0 Y0: 0 1
: h XN: 011
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1st order RK2

RK generally means Runge-Kutta methods and RK2 is a

development of Euler’s method, the so called Heun’s met-
hod. New U values are calculated according to the formula:

Un+1=Un+ (k1 +k2)/2+*h
k1=F(Xq,Un), kz= F(Xn+h,Un+ h+ki)

Interface:

RAD
{HOME }

PRG

Y’'=F(X,Y) Y(X0)=Y0

F :
XY:

Un+1=Un+h+*k
’Y/\2_X’
XY

RAD
{HOME }

PRG

:X0Y0: 01
: h XN:

Input cont

0.11

8. Numerical methods

94




1st order RK4

This is a more accurate method than the two past methods
and new U values are calculated according to the formula:

Un+1=Un+h*(k1 +2+k2 +2+k3 + k4)/6 = Un + h=k
k1=F(Xn,Un), k2 =F(Xn + h/2,Un + h/2+k1)

k3 =F(Xn +h/2,Un + h/2+k2),

ka4 =F(Xn+h,Un + h+k3)

Interface:

RAD PRG
{HOME }

Y’=F(X)Y) Y(X0)=Y0
Un+ 1=Un +h/2+(k1 +k2)
F: ’Y?2-X
XY: XY
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RAD PRG
{HOME }

Input cont

: X0 Y0: 0 1
: h XN: 011
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2nd order RK4

A 2nd order differential equation is solved by using a method
similar to that of 1st order equations and is written
Y” =F(X,Y,Y’). Here both Y and Y’ are approximated inc-
rementally by U and DU:

Un+1=Un+h*(DUn + (k1 + k2 + k3)/6)

DUn +1=DUn + (k1 + 2k2 + 2k3 + ka)/6
k1="h*F(Xn,Un,DUn)

k2=

h*F(Xn + h/2,Un + h/2+DUp + h/8+k1,DUnp + k1/2)
k3=

h*F(Xn + h/2,Un + h/2«*DUj + h/8+k2 DUn + k2/2)
k4 =h*F(Xn +h,Up + h*DUp + h/2+k3,DUn + k3)

Interface:

mgMEl PRG
Y”’=F(X,Y,DY) Y(X0)=Y0
Y’(X0)=DY0 Xn= X0+ n+*h
: F: 'Y"2-X
XY DY: X Y DY
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RAD PRG
{HOME }

Input cont

:X0 YODY0:0 1 1
:hn 0110

Plot
This routine plots data given in a matrix with X-values (co-

lumn 1) and Y-values (column 2). A graph of the solution of
a differential equation may be plotted.

Phase plot
Y ’ values are plotted against Y-values as independent va-
riable . Input data is a matrix where Y values are column 2

and Y ’ values are column 3.
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Interpolation

In this chapter subjects important in education are stressed.
Subjects like divided differences and Newton polynomials
are then important to deal with.

Interpolation means to estimate values between a set of gi-
ven values. This means to find a function fitting the given
points exactly, but giving approximated values at points be-
tween. This is an actual matter even if the expression deter-
mining the points is known, because in some situations (e.g
integration) we need a more simple expression than the gi-
ven function.

Divided differences

Divided differences are calculated on the basis of tabulated
values for X and Y. If a known function is given, the Y-valu-
es may be found by using the menu option Function table.

X0 Yo
D22
X1 Y1 D33
D32 D44
X2 Y2 Da3
D42
X3 Y3
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Interface:

RAD PRG
{HOME }

Divided differences

:[X]: [123456789]
:[Y): [12689320-1]

The output data is a matrix with 0-elements in open places in
the difference table. Divided differences are defined by the
formula:

Dnn= (Dnn-l'Dn-ln-l)/ (Xn-l'XO), D11 = YO, D21=Y1

Function table
The function table for a given function may be found.

Interface:

RAD PRG
{HOME }

Function table

: £ X:’EXP(X) X
: [X0]:[123456789]
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Values of e*for x=1,2,3.....9 are calculated. The function va-
lues and the X-values are given in separate vectors to match
the input form in other routines.

Newton’s interpolation polynomial

The polynomials are defined by fitting a polynomial of de-
gree n to a set of n+ 1 points. The polynomial is well known
as first degree polynomial (linear interpolation and trapezoi-
dal rule in numerical integration) and as 2nd degree poly-
nomial (Simpson’s rule, numeric integration).

Pn(x) = Y0 + (x-x0)*D22 + (x-x0)*(x-x1)*D33 +....

The routine calculates the polynomial for given points [Xo]
in the interval [x0 Xn].

Interface:

RAD PRG
{HOME }

Newton

[X]: [1234]
: [Y] [XO]: [1374] [122.5]
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Values for x= 1.2 and x=2.5 by using a third degree polyno-
mial through the given points [X,Y] are calculated.

Lagrange polynomial
Lagrange polynomials are polynomials of degree n through
n+ 1 given points [x0...xn]. The formula for the polynomials:

La()= ) k(x)/lk(xk)* Yk
k=1
1k(x) = (x-X0)*...(X-Xk-1)*(X-Xk + 1)*...(X-Xn)

Interface:

RAD PRG
{HOME }

Lagrange

X:  [1234]
: [Y] [XO): [1374] [1.22.5]

Values for x=1.2 and x=2.5 by using a third degree polyno-
mial through the given points [X,Y] are calculated.

Cubic spline

Newton and Lagrange polynomials have the disadvantage
that we may get big amplitude oscillations between the given
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points. To get a better solution we may use third degree poly-
nomials through two and two points (n different polynomials
for n + 1 points). The polynomials have continuous derivati-
ve and second derivative at the given points to get a smooth
curve. The polynomials are given as

Sk(x) = Yk + ak(x-xk) + bk*(x-xk)2 + ck* (x-xk)3 [XK,Xk + 1]

The constants ak, bk and ck in the interval [xk, Xk + 1] may be
found by using the conditions:

Yk = Sk(xk) = Sk-1(xk), Sk-1’(xk) = Sk *(xk)
Sk-1 ’(xk) = Sk”’(xk), k= 1...n-1

Interface:

RAD PRG
{HOME }

Spline

X [1234]
£ [Y] [XO]: [1374] [1.22.5]

Values for x=1.2 and x=2.5 by using third degree polyno-
mials through the given points [X, Y] are calculated. The poly-
nomials for the intervals [1 2] and [2 3] are used respectively.
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Richardson extrapolation

Richardson extrapolation is used to improve a given appro-
ximation. If we are looking at the problem of finding the de-
rivative by using a 2nd degree Newton polynomial with two
different steplengths, we find:

£(x) ~ (f(x+h)-f(x-h))/2h = D(h,0)
£(x) = (f(x +2h)-f(x-2h))/4h = D(2h,0)

By combining the two formulas we find

f ’(x)=(4D(h,0)-D(2h,0))/3. This formula will give a better
approximaton to the derivative and the process may be re-
peated. The general formula and tabular description will be:

4*D(h,k-1)-D(2h,k-1)

D(hk) = 1
D(h,0)
D(h/2,1)
D(h/2,0) D(h/4,2)
D(b/4,1) D(h/8,3)
D(h/4,0) D(h/8,2)
D(h/8,1)
D(1/8,0)
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1st derivative
The basis of the extrapolation will be the formula indicated

above. The extrapolation is repeated 3 times each time with
the half steplength. We then need 9 points to start with.

Interface:

RAD PRG
{HOME }

Y[1...9] steglengde h
Derivative at X[5] = X1+4+h

:[Y]h: [137468954] 1

The output is given as three vectors which are the columns 2,
3, and 4 in the tabular description of D(h,k). The last value is
the best approximation to f’ (X5) where Y5=6.

2nd derivative
The basis of the extrapolation is

f ”(x)~D2(h,0) = (f(x + 2h)-2£(x) + f(x-2h))/4h>.
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Interface:

RAD PRG
{HOME }

Y[1...9] steplength h
Second derivative at
X[5]=X1+4+h

:[Y]h: [137468954] 1

The output is given as three vectors which are the columns 2,
3, and 4 in the tabular description of D(h,k). The last value is
the best approximation to f ” (X5) where Y5=6.

Romberg integration
We may use extrapolation on the trapezoidal rule in nume-
ric integration as a basis, and this will give Romberg integra-

tion.
1st column : Trapezoidale rule
2nd column : Simpsons method
3rd column : Bools rule

(2nd order Romberg)
4th column : 3rd order Romberg
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Interface:

RAD PRG
{HOME }

Y[1...9] steglengde h
f(X1,X9,Y,X)

:[Y]h: [137468954] 1

We integrate over the points Y1=1to Y9=4 and the output
is the different columns in the tabular description for D(h,k),
first vector is the trapezoidal rule, second vector is Simpsons
formula a.s.o. The last value is 3rd order Romberg and this
is the most accurate answer.
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Solved Eroblems

Linear algebra

In our first problem we will look at finding the determinant,
inverse, diagonalization, eigenvalues and eigenvectors of the
same matrix without typing the matrix several times. We then
have to use the submenu MATR (and not the main menu).
The matrix will be

2 4 7
M= 4 1 1
6 1 9

Example 9.1
Find the determinant of matrix M. We type the matrix on

stack level 1 by going right ahead writing [[24 7][4 1 1][6 1 9]]
or by using the MatrixWriter (symbolic or numeric). We use
the submenu MATR/DET and the answer is -118. The ma-
trix will automaticaly be stored as MATR and also duplica-
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ted on the stack. If you loose stack level 1 (the matrix MATR)
for some reason, you may simply type MATR and push EN-
TER to put it back on the stack again.

Example 9.2
Find the inverse of the matrix M now laying on the stack. By

pushing INV we find the inverse matrix ML The formis sym-
bolic {{}} in spite of the matrix beeing numeric. To get a nu-
meric matrix from a symbolic form, just push SYM-.

Example 9.3
Diagonalize the matrix M. Push DIAG (NEXT). The diago-

nalized matrix D is given on stack level 2 and the matrix K on
stack level 1. D =K 1*M*K.

Example 9.4
Find the eigenvalues of the matrix M. This problem has in

fact been solved in the last example, but we will now use the
menu option EGV. Pick up the matrix and push EGV. The
answer will be {-2.65,14.40, 3.25}.

Example 9.5
In the last example we will calculate the eigenvectors. We

proceed in the same manner as in the last examples and the
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answer will be the eignevalues and a matrix where the corre-
sponding eigenvectors are given (one of indefinitely many
sets of eigenvectors).

Rem: Intermediate answers are not possible in
the submenu MATR.

Example 9.6
Symbolic matrices. In BAS MAII the SymbolicMatrix writer

isimplemented. Symbolic matrices may then be handled. We
may calculate the same problems as in examples 9.1-9.5,
exept the calulation of eigenvectors and diagonalization

where the matrix has to be numeric. We will manipulate the

matrix

X 0 2
A= 3 0 x-1
1 1 0

A symbolic matrix is written {{x 02}{3 0°’x-1’}{1 1 0}} and
is put on stack level 1. The use of the programs is as in the
last examples. The determinant is given as 6-(-1 +x)*x. This
expression may be simplified by using SYMBOLIC/EXPA/
C()2LCI‘ on the calculator. The answer is then given as

6-x" +x.
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Example 9.7
The program Linear diffequations under the menu Eigenva-

lue problems is able to solve a set of linear, homogenous
diffequations. If the eqautions are not homogenous, they may
be made so by a proper substitution of new variables. Let us
look at the system

dx/dt=5x+8y+1
dy/dt =-6x-9y +2

First we solve the stationary state (constant in time) by using
dx/dt =0, dy/dt = 0. This gives a system of ordinary equations.

S5x+8y+1=0
-6x-9y +2=0

The equations must be written

Sx+8y=-1
-6x-9y =-2

This may be solved by using the menu option Linear equa-
tions (UPDIR/UPDIR/SHIFT RIGHT 4 /ENTER). But in
a simple case like this we will use the intrinsic HP 48 matrix
calculations directly.
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When using —-STK in the submenu the calculator HALTs and
may be used independently of BAS MAIL. The right side
[-1-2]is put on stack level 2 and the matrix [[5 8][-6 -9]] is put
on stack level 1. Then use division and x and y is found to be
x(stationary) = 8.33, y(stationary) =-5.33. If we now use the
new variables X =x-8.33 and Y =y +5.33 we transform the
inhomogenous system into

dX/dt=5X+8Y
dY/dt=-6X-9Y

This is a homogenous system solved directly by using MAIL

Interface:

RAD PRG
{HOME }

dX/dt= A=X

X={xy..}: xy {}
: t. t
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The solution is {’Cle™-C2¢™" *-0.75C1e™ + C2¢-"} which
means that X=Cle™-C2e™ and Y =-0.75C1e™ +C2e™,
The full solution is now found by transforming back to the old
variables which gives x=X +8.33 and y=Y-5.33.

Example 9.8
In this example we will test whether a set of vectors in 3D are

linearly independent, if they are orthogonal and if not, use
the Gram-Schmidt process to make them so. The new vec-
tors will then make an orthogonal basis in the vector space
3D. Vectors are linearly independent if none of them can be
expressed as a linear combination of the others and orthogo-
nal if they are linearly independent and mutualy orthogonal
(90° angles in 3D). If they are linearly independent they may
form a basis.

We will look at the set of vectors {[24 5] [1 3 2] [16 3]}. First
we test for linear independency and we may then test the rank
of the matrix

2 4 5
1 3 2
1 6 3

We use the menu option MATR/RANK (or BASE?) putting
the matrix
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[[24 5][132][16 3]] on stack level 1. The rank is 3 which me-
ans that the vectors are linearly independent.

The matrix is now on stack level 1 and by pushing ORT? you
will find whether it’s orthogonal or not. 0 means not. It’s not
and then, since the set of vectors is linearly independent, they
may be orthogonalized by the Gram-Schmidt process. The
matrix is still on level 1 and you simply push ORTH. Finally
you push ORTN to get a normed basis (lenght of vectors
equal to 1). The result of the Gram-Schmidt process and nor-
ming will be {{0.30 0.60 0.75}{-0.06 0.79 -0.61}{-0.95 0.14
0.27}} which is transformed into an ordinary numeric matrix
by pushing SYM-.

Example 9.9
In this example we will look at the rotation of points in 3D.

1 ®|  Start 2 Start

*/.\\'_"’Result R

Result
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If we first (1) rotate (in 3D) 90° about the y-axis, and then 90°
about the z-axis this is not the same as (2) rotateing 90° abo-
ut the z-axis and then 90° about the y-axis. The point is
(XYZ)=(001).

The y-axis is specified as (x0 y0 z0) = (0 0 0) with angles
a=90° (relative x-axis) g = 0° (relative y-axis) and y = 90° (re-
lative z-axis). For the z-axis the the angles are « =90°, g =90°
and y=0°

Interface rotation about y-axis:

RAD PRG
{HOME }

: XYZ: 001
:X0Y0Z0: 000
aBy 90090
e 90

The point is now transformed into (1 0 0) and the second ro-
tation about the z-axis then gives (0 1 0). The (2) rotations
give first the same point (0 0 1) and then (1 0 0), a different
result.
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Laplace transformes

Example 9.10
Find the Laplace transform of f(t) = Sint*u(t-a), a is constant.

We use the menu option LAPLACE TRANSFORM/Lapla-
ce transform.

Interface:

RAD PRG

{HOME }
F(s) =L(f(t))

ts: ts
:f(t): *SIN(t)*u(t-a)’

The result is put on the stack and by pushing STK— the
answer is given as

F(s) = (1/(s* + 1)*COS(a) + /(s> + 1)*SIN(a))*e ™
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Example 9.11
Find the Laplace tramsform of f(t)=a+bt + ct?. We proce-

ed as in the last example and the answer will be

F(s) =2c/s> + b/s* +a/s

Example 9.12
Find the Laplace transform of f(t) = COS(wt + ©). Answer:

F(s) = COS(0)*(s/(w* +52)-SIN(8)*w/(w? + %)

Example 9.13
Find the Laplace transform of f(t) = SIN(t)*et +t+*COS(t).

F(s) =-1/(1 +5%)-2s/(1 +52)% + 1/(1 + (s-1)%)

Example 9.14
Find the Inverse Laplace transform of F(s) = (2s + 1)/(s2 +4)

Interface:

RAD PRG

{HOME }
f(t) =InvL(F(s))

stost
:F(s): "2*s+1)/(s™2+4)
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We use the menu option Inverse L-transform. The answer
will be

£(t) =0.50+SIN(2t) + 2+COS(2t)

Example 9.15
Find the Inverse Laplace transform of F(s) = 25/(52+4)2. If

we try Inverse L-transform we will be suggested to try parti-
al fractions and we try.

Interface:

RAD PRG
{HOME }

F(s) =P(s)/Q(s)
InvL(F(s)) =£(t)
: ts:t s
:PartAns Y/NY

RAD PRG
{HOME }

Input cont

Numerator P; 2*s’

:Denominator Q:’(s ~2+4) "2’
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Since we have chosen PartAns Y we will get the splitting up
of the function into partial fractions:

Splitting gives:
2s/(s> +4)* =
As/(s°+4)2+B/(s+4)* +
Cs/(s2 +4)+ D/(s2 +4) (Next page)

Coefficients:

A=2

B=0

C=0

D=0 (Next page)
Solution:

1/2+SIN(2t)*t
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Example 9.16
Solve the initial value problem y” + 9y =0y(0) =0, y’(0) =2.

Interface:

RAD PRG
{HOME }

ay"+ by’ +cy =£(t)
y(0)=y0y’ (0) =Dy0
:abcy0Dy0 : 10902
ft) t: 0t

In the first place we find Y(s) = 2/(s2 +9). To transform this
back to the time domain we use Inverse Laplace and import
the function Y(s) from the stack by echoing
(EDIT/1+STK/ECHO/ENTER) Be sure that the cursor is on
the right place on the input screen. The answer will be

y(t) =0.67+SIN(3t)

Example 9.17
When solving more complicated initial value problems we

cannot import Y(s) directly from the stack, we have to make
the expression a litle bit "nicer".
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Solve the problem y”’ + 9y =u(t), y(0) =0, y’(0) = 2. This
gives Y(s)=(1/s+ 2)/(s2 +9) which has to be written
(142s)/((s>+9)s) (broken fractions are not possible). You
may then put numerator (1 +2s) and denominator (s(s2 +9))
of this expression on the stack and import then as in the last
example into the routine Inverse L p.fractions. The solution
will be

y(t) =-1/9COS(3t) + 2/3SIN(3t) + 1/9

Statistics

Example 9.18
This example will show how to fit data (class table) to the nor-

mal distribution. From a population of 100 individuals the
following data are available:

Height Population
[150 160] 6

[160 165] 10

[165 170] 18

[170 175] 29

[175 180] 21

[180 185] 10

[185 190] 5

[190 195] 1
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The data have to be stored as a class table using the menu
option Class table (STATISTICS/Fitting) or the routine

K>DAT under the menu STAT.
RAD PRG
{HOME }
Class table

{Ik}{fk}}:{150 160 165..}{6 10 ...}}

The input looks like:
{{150 160 165 170 175 180 185 190 195}{6 10 182921105

2}}

No more input is necessary and the parameters w and o are
calculated (mean and standard deviation). n=172.9
o=8.13.

Example 9.19
We may now find the probability that a member of the popu-

lation in the last example has a height less then or equal to
180. Under the menu STAT you will find NORM.
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Interface:

RAD PRG
{HOME }

Normal distribution
param. u and o gives P(X <x)
wo: 1729 8.13
: x: 180

The probability to find someone with height less than or
equal to 180 is 81% (0.81).

Example 9.20
We will now look at a histogram and a cummulative frequen-

cy polygon of the data in the last examples. These menu op-
tions you can find under the description of samples. No
further input data are necessary since the class table already
is stored as K3sDAT. Push the ATTN (ON) key to quit the

graphics.

Example 9.21
Transforming a class table into a discrete frequency table.

The representative value is the mean in each interval. You
have to use the menu option KSDAT-=DAT under descrip-

9. Solved problems 123




tion of samples. Since a class table already is stored (last
examples) no further input is necessary.

Example 9.22
From the discrete table calculated in the last example we may

now calculate the mean and the standard deviation. These va-
lues then have to match the parameters of the fitted normal
distribution properly. The answers are 172.8 and 8.20, which
is about the same values as the parameters. Use F for fre-
quency table.

Example 9.23
We will now calculate acummulative table giving relative fre-

quencies, cuammulative frequencies and cummulative relati-
ve frequencies. The routine is based on the table SDAT
stored from example 9.21. The actual values are the first co-
lumn, the frequencies the second column, cummulative fre-
quencies (3rd column), relative frequencies (4th column)
and cummulative relative frequencies (S5th column). Pushing
ENTER will put the matrix on the stack.

Example 9.24
In practice we often meet the situation that we have a big

amount of unsorted data. The menu Description of samples/
Unsorted data will give us the possibility to put in an unsor-
ted amount of data and then get a frequency table SDAT. The
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routine counts the number of occurences of the several
values.. Suppose we have the following amount of data, 100
values of the splitting tensile strength of concrete sylinders
(Ib/in.2).

320 380 340 410 380 340 360 350 320 370
350 340 350 360 370 350 380 300 420
370 390 390 440 330 390 330 400 370
320 350 360 340 340 350 350 380 340

370

360

390
400 360 350 390 400 350 360 340 370 420
420 400 350 370 330 320 390 380 400 370
390 330 360 380 350 330 360 300 360 360
360 390 350 370 370 350 390 370 370 340
370 400 360 350 380 380 360 340 330 370
340 360 390 400 370 410 360 400 340 360

If we measure in practice this is what we get. We now want
to sort the data and count the occurence of the different va-
lues (frequency table). This is done by the menu option
Description of samples/Unsorted data and the result is sto-
red as SDAT.
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Interface:

RAD PRG
{HOME }

Unsorted data

:[[x1 x2..]]: [[320 380 340 410.....]]

The values are in column 1 and the absolute frequencies in

column 2.

Example 9.25
We may now use MAII to calculate the mean and standard

deviation. We use the menu Description of samples/>DAT x
and s. Use F for frequency table. The mean is 364.7 and the
st.dev. 26.83.

Example 9.26
Goodness of fit. We will now use the kji-square distribution

test to find out the goodness of fit to the normal distribution.
First we have to construct a class table based on the frequ-
ency table which looks like (example 9.24):
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300 2

320 4
330 6
340 11
350 14
360 16
370 15
380 8
390 10
400 8
410 2
420 3
440 1

We have to decide the limits of the classes and we have to use
f.ex. -10000 as the lower limit and 10000 as the upper. We
want minimum S values in each class and try a class width of
10.

[-10000 325] 6
[325335] 6

[335345] 11
[345355] 14
[355365] 16
[365375] 15
[375385] 8

[385395] 10
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[395405] 8
[405 10000] 6

We now use the menu option class table to construct KsDAT.
To test the hypothesis for the normal distribution we use the
menu Fitting/Hypoth. normald. We use the estimated values
for mean and st.dev. from example 9.25, 364.7 and 26.8.

Interface:
mgME } PRG
Normald. n values
Level « Num.est. r
D pot 364.7 26.8
anr: 0.05 1002
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