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Generalx

This is part II of CALCULUS mathematics. Together with

part III this will represent a complete math pac for higher

technical education.

As in part I a pedagogical interface is stressed. CALCULUS

mathematics is a pedagogical tool in addition to a package for

getting things calculated.

 

Hardware requirements

CALCULUS Math II runs under the calculator HP 48SX.

The program card may be inserted into either of the two ports

and Math I could be inthe other port.
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Starting up

The LIBRARY menu will show up MAII. Pushing the MAII

key will lead you into the main menu and then you simply

push the START key.

 

User interface

The CALCULUS meny system is easy to use. Using the ar-

row keys allows you to move the dark bar and select by pus-

hing ENTER.

In the following example you will enter the submenu for

LINEAR ALGEBRA and select Matrices/Multiply.
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Linear equations

 

Transformations

Eigenvalueproblems
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%      
Under Matrices you will choose Multiply and you may mul-

tiply two symbolic matrices. The matrices are put into the

SYMBOLIC MATRIX WRITER.

 

 

 

 

Powers

Inverting

 

  
In the Matrix Writer you may delete, add, and echo from the

stack (see manual for 48SX).
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The input Editor

If you select Linear equations under LINEAR ALGEBRA

you will enter the editor for input (input screen).

 

RAD PRG
{HOME }
 

A*X =B

:PartAns Y/N:J

:B{Bl....}: {123}

 

   
Here the input data can be moditied and deleted and you can

move around by using the arrow keys.

The cursoris placed right behind :PartAns Y/N: and here you

enter Y if you want intermediate results. The arrow keys are

used to get right behind :B {B1...}: and here you enter the

right side vector of the system.

If you have done a mistake you may alter your input by using

the delete keys on the calculator keyboard. You will not be

able to continue before the data are correctly put in.
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In the input screen there is often information about the pro-

blem you are going to solve (formulaes etc). Remember the

in algebraics and separation of several data on the same

input line by using blanks (space).

Echoing from the stack

If an expression or a value laying on the stack is going to be

used, then the EDIT/tSTK/ECHO/ENTER sequence will

load data into the input screen. Be sure to place the cursor

correctly

Calculation finished

When a calculation is finished CALCULUS will either show

up intermediate results by using the VIEW routine (intrinsic

MAII) or return directly to the menu. In the last case you will

need to use the -STKkey to see the result laying on the stack.

Moving up and down in the menu

You can move downwards in the menu system by scrolling

the dark bar and pressing ENTER. If you need to move up-

wards the UPDIR key will help. At any time you may HALT

CALCULUS and use the calculator independent of CAL-

CULUS by pressing the —STK key. CONT will get you back

to the menu system.

1. Generaly 10



STAT and MATR menues

On the menu line at the bottom the choices STATand MATR

are possible. Here you will have access to some routines re-

gardless of your current menu position.

STAT:

e NORM Normal distribution

e INVN Inverse normal distribution

o USDAT Sample mean, st. dev., median

o KiDAT Class table

o SDAT Discrete table, two columns

MATR:

e ADD Add symbolic matrices

e MULT Multiply

o INV Invert

e TRN Transpose

e DET Determinant

Leaving CALCULUS

Pushing the EXIT key will leave CALCULUS.
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Intermediate results

In the input screen you may choose PartAns Y/N. Choosing

N the result will be laying on the stack and you have to use

—-STK to see the answer. Choosing Y, different pages of in-

termediate results will show up or more than one result is lay-

ing on the stack.

The degree of details in the partial answers is somewhat dit-

ferent, but some of the results covers "the whole answer". In

every case this will give the user a good help.

Different parts of an answer may be found on different pages

and the page number can bee seen (use arrow up/down).

When PartAns Y(es) is chosen all numbers will show up with

two figures behind comma. If a more accurate answer is ne-

cessary, you will have to look on the stack and perhaps use

the N FIX option.

Flag status and CST menu

The flag status and CST menu you have before going into

CALCULUS will be restored when you leave by pushing

EXIT. '
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Linear algebra

The subject linear algebra covers linear eqautions with solu-

tion also for singular systems, matrix manipulation (symbo-

lic), eigenvalue problems included systems of linear

differential equations, linear transformations in two and

three dimensions and vector spaces.

 

Linear equations (Gauss method)

Linear equations with symbolic parameters are handled. The

equations have to be ordered to reckognize the coetficient

matrix and the right side. The equations are given in the form:

{{A}11X} ={{B}}

A 1s the coefficient matrix , X a column vector for the un-

knowns and B the right side column vector. Symbolic coetfi-

cients are possible.
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If Det(A) =0 (determinant) the system will be singular (self

contradictory or indefinite). This is stated as "Self contradic-

tory" or the solution will given in terms of one ore more of

the unknowns (indefinite). Example:

{xy,z} = {x,2*x-1,x-4}

The value of x is arbitrary so there is an infinite number of

solutions.

If the system is underdetermined (too few equations), the so-

lution will be given in the idefinite form. If the system is over-

determined (too many equations) the solution will be given

in the indefinite form if the equations are lineary dependent

or as "Self contradictory" if they are lineary independent.

The solution algorithm is the Gauss elimination. If PartAns

Y(es) is selected, the different stages in the process will be

given as matrices on the stack which may be viewed by using

the MATW option (LIBRARY). The coefficient matrix and

the right side vector are assembled in one matrix (B is the

rightmost column).
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Interface:

 

RAD PRG
{HOME }
 

A*X=B

. PartAns Y/N: Y

. B{B1..}: {7 6 0}
XAxy...}: {x1x2x3x4x5}

 

   
The symbolic matrix writer will now appear. The following

matrix 1s put into it:

 

The example solves the system:

2X1-X2 + 3x3 + 2x4-x5 ="/

X1+ 2X2+X3-X4+x5=6

X1 - 4x2 -x3 + 3x4-x5 =0

The system is indefinite (too few eqgautions)) and the solu

tion is given in terms of x5 and x4.
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Matrix calculations

Some operations on symbolic matrices are done (not cove-

red by the 48SX intrinsic functions). The matrices are put into

the SYMBOLIC MATRIX WRITER and the matrix is put

on the stack by pushing ENTER.

Addition

Both matices are put into the matrix writer and added. An er-

ror message 1s given for wrong dimension.

Multiplication

Both matrices are put into the matrix writer and multiplied.

An error message is given for wrong dimensions. The first

matrix has to have the same number of columns as the sec-

ond has rows. Be aware of the order of the matrices.

Inverting

The matix is put into the matrix writer and inverted. An er-

ror message is given if its not quadratic.

Determinant

The determinant of a symbolic matrix is calculated. The ma-

trix is put into the matrix writer. An error message is given if

its not quadratic.
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Rank of a matrix

The rank of a marix is calculated. This routine maybe used

for testing linear independency of rowvectors. The routine

makes the matrix upper traingular and PartAns Y gives the

different stages of the process.

Trace

The trace of a square matrix is calculated. An error message

is given if the matrix is not quadratic.

Orthogonal matrix

This routine is testing whether the matrix is orthogonal 1.e.

the inverse is equal to the transpose. An error message is gi-

ven for wrong dimension (must be quadratic). The answer is

logic 0 or 1. May be used to investigate if rowvectors are ort-

hogonal i.e. is an orthogonal basis of a vector space.

Transpose matrix

The transpose of a symbolic matrix 1s calculated.

Symmetric

Investigates whether a matrix is symmetric or not. Logic 0 or

1.
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Linear transformations

Linear transformations include coordinate transformations

in the plane and in the three dimensional space. The trans-

formations are rotation, translation and scaling. The point to

be transformed is given relative a rectangular coordinate sys-

tem.

Mixed transformations (concatinating) is possible. The order

of the transformations is important if rotation is one of the

them.

 

2 D transformations (two dimensions)

Rotation

The rotation angle must be given in degrees and the transfor-

med point is given as components of a list (to allow symbols).

The rotation is counterclockwise for positive angles about an

arbitrary point.
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V Vv0 2040

2.1 Rotation of a triangle about origo

Interface:

 

RAD PRG
{HOME }

Rotation about (x0,y0)
 

: XY: 25

: X0 YO: 2 2

. O 45

g      
The point (2,5) is rotated about (2,2) an angle 45°. To rotate

a triangle all three points have to be transtormed.

Translation

This is a pure translation of a point, the coordinates are given

an addition.
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2.2 Translation of a triangle

Interface:

 

RAD PRG
{HOME}

Xt=X+Tx Yt=Y +Ty
 

  

 

 

The example moves the point (2,5) to (2,5) +(3,6) =(5,11)

Scaling

The coordinates are multiplied by a factor. For a geometric

figure where the points are scaled, this will give a smaller or

bigger figure. If the X and Y coordinates are scaled different-

ly this will alter the shape of the geometric figure.

2. Linear algebra 20
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2.3 Enlarging of a triangle

Interface:

 

RAD PRG

 

Xt=X*Sx Yt=Y*Sy

 

  
 

The example muitiplies 2 with 3 and 5 with 6 and the point

(2,5) 1s moved.

Concatinating (mixed transformations)

Concatinating means a mixture of several transformations.
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The order of the transformations is important, given in a list

as {R S T} (rotation, scaling and translation).

 

 

Interface:

RAD PRG
{HOME }

XY:25

Sx Sy:1 1

TxTy:2 6

:® XOYO{STR}: 4522{RTS}

 

   
In the example the point (2,5) is rotated clockwise 45° about
the point (2,2) first, then a translation of 2 in the x-direction

and 6 in the y-direction. There is no scaling, indicated by 1 1

for the scaling factors.

 

Rem. No translation gives Tx =Ty =0 and no

rotation gives 0 = 0.  
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3 D transformations (three dimensions)

Translation

The interface is the same as 2D translation, with one extra

coordinate and one extra translation.

Scaling

The interface is the same as 2D scaling, with one extra coor-

dinate and one extra scaling.

Rotation

3D rotation is somewhat more complicated than in two di-

mensions. The rotation axes has to be specified, i.e angles re-

lative the coordinate axes and a point.

Interface:

 

RAD PRG
{HOME }
 

. XY Z: 254

:X0 YO0 Z0: 221

a Py 45 45 60

0 45:

 

   
2. Linear algebra 23



The example rotates the point (2,5,4) about an axes through

the point (2,2,1) and with angles relative the x-, y-, and z-axes

equal to 45°, 45° and 60°.

Concatinating (mixed)

The same interface as in the 2D case, but the rotation axes

now has to be specified.

Interface:

 

 

RAD PRG
{HOME }

. XY Z: 2 54

:X0 YO0 Z0: 221

:Sx Sy Sz: 346

Ix Ty Tz:

    
 

 

RAD PRG

 

afy: 45 45 60

. R}: 45{RTS)
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In the example the point (2,5,4) is rotated about the given

axes and then the specified translation and scaling is carried

out.

 

Eigenvalueproblems

Here you may find the eigenvalues and the eigenvectors of a

matrix, diagonalize a matrix and solve a system oflinear dif-

ferential equations.

Eigenvalues

The eigenvalues of a matrix are determined by the equation

AxX =)*X, where A is the matrix and X a column vector (ei-

genvector). i is called the eigenvalue.

Interface:

 

RAD PRG
{HOME }
 

AxX =) \*X

Det(A-x+I)=0

:PartAns Y/N: Y
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Now the matrix has to be specified, and you may put it into

the symbolic matrix writer:

 

The example finds the eigenvalues of the matrix:

4 6 6
1 3 2
-1 -5 -2

The matrix has an eigenvalue with multiplicity 2 (A =2).

Eigenvectors

A matrix has infinite many eigenvectors because the system

of equations that determines the vectors are indefinite. The

eigenvectors are given in terms of arbitrary parameters. A set

of eigenvectors will normaly be linear independent even if

the eigenvalues have multiplicity greater than 1. But this is

not always the case.
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Interface:

 

 

RAD PRG
{HOME }

AxX =)X

Finds X

A 2

‘PartAns Y/N: Y

  

 

 

The matrix now has to be put into the matrix writer. We use

the same matrix as in the determination of eigenvalues. By

choosing PartAns Y the indefinite system of equations that

determines the eigenvectors will be given. We see that only

two of the eigenvectors are lineary independent (only one ar-

bitrary parameterc).

Diagonalization

For a matrix A we can write:

D=K1:AxK

Here K is a matrix composed of the eigenvectors ofA which

have to be lineary independent. D is a diagonal matrix with

the eigenvalues on the diagonal. If the eigenvectors are
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lineary dependent (as in the example of eigenvectors), then

the matrix cannot be diagonalized (not diagonalizable).

Interface:

The matrix has to be put into the matrix writer:

 

The output is the matrices K and D. The matrix K1 may be

found by inverting K.

 

Rem. If intermediate results are wanted, you

may look at the problems offinding eigenva-

lues and eigenvectors separately.   
 

System of differential equations

Here a set of linear, homogenous differential equations with

constant coefficients are solved by using the method of dia-

gonalization.
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Interface:

 

RAD PRG
{HOME }
 

dX/dt= Ax

   

 
The following system is solved:

dx/dt =-4x + Sy + 5z
dy/dt =-5x + 6y + 5z
dz/dt =-5x+ Sy + 6z

The output contains the constants C1, C2 and C3 and the in-

dependent variable ist.

. Linear algebra A
 



 

Rem. If intermediate results are wanted, you

may look at the problems offinding eigenva-

lues and eigenvectors separately.   

Under Info some information about the solving strategy is gi-

ven.

 

Vector spaces

A vector space is a collection of vectors relative a basis whe-

re certain operations on them are defined. A basisis a set of

linear independent vectors from the space. In an orthogonal

basis the vectors are mutualy orthogonal (inner product

equals zero).

Basis?

This routine examines whether a set of vectors in the space

is linear independent. The vectorsare put into the matrix wri-

ter as rows and the output is logic 0 or 1.
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Interface:

 

The example examines whether the vectorsinR3 {466}, {1

32} and {-1-5-2} are lineary independent and then form a

basis in R3 (three dimensional vector space).

Norm

Here the length or absolute value is calculated. The input

vector is {v1v2v3....} and the output is a number or an expres-

sion if the vector is symbolic.

Norming

A vector is transformed into an unit vector

e = V/NORM(V).V ={v1 v2....}.

Scalar product (inner product)

The scalar product of two vectors is calculated. Symbolic vec-

tors are possible.

Orthogonalization

An orthogonal basisis calculated with an arbitrary basis as a

starting point using the Gram-Schmidt process.
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Interface:

 

The basis bl =[4 6 6], b2=[13 2] and b3 =[-1 -5 -2] is given

in R3. The basis is not orthogonal, but the routine makesit

orthogonal.

 

  
Rem. Symbolic vectors are not possible
 

Orthogonal?

The routine examines whether a matrix is orthogonal. If the

row vectors building up the matrix form an orthogonal basis,

then the matrix is orthogonal.

Orthonorming

The routine is norming an orthogonal basis.

Vector in new basis

Given a vector VBi,i.e. relative a basis B1. A new vector re-

lative a basis B2 is calculated.
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Interface:

 

RAD PRG
{HOME }
 

Xb1-Xb2

X {x1..}: {142}

   

 

N
W
=

N
=
N

N
W

  

The vector {14 2} relative the basis

123],[312], [225]} is transformed to the new basis

[113],[4 12],[2 6 5]}.
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Transformation matrix in new basis

A matrix defines a linear transformation in a vector space re-

lative the "natural” basis. This routine calculates a new trans-

formation matrix relative a new basis. The "natural" basisis

{[100],[010],;00 1]} in Ra.

Interface:

 
The transformation matrix {{110}{011}{10 1}} in natu-

ral basis defines the transformation:

L(x1,x2,x3) = (X1 + x2,X2 + X3,X3 + X1)
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The example calculates the new transformation matrix rela-

tive basis {[1 1 1],[0 1 1],{0 0 1]}. Symbolic elements are pos-

sible in the matrices.
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LaEIace transforms

Laplace transforms are used for solving differential equa-

tions and can, contrary to other methods, deal with functions

f(t) that are discontinous in the equation

axy" +b*y’ + cxy =£(1)

Discontinous f(t) may be composed by using the Unit Step

function u(t-a) defined as:

u(t-a): [IFta < THEN O ELSEIF ta > then 1 END END

This function is not implemented in CALCULUS in other

ways than as a symbol, and the user has to make a program

to define it for evaluation.

3. Laplace transforms 36



Laplace transform

The Laplace transform ofthe following functions may be fo-

und:

o f(t)=t " n,n>-1

e f(t) =Sin(a*t), a arbitrary

e f(t) =Cos(a*t), a arbitrary

o g(t) =f(t)*®, a arbitrary

o g(t)=1(t)*u(t-a),a=0

o g(t)= f(t)*u(t-a)*ebt, a=( b arbitrary

e h(t) =g(t)*t

e Linear combinations of theese functions

Interface:

 

RAD PRG
{HOME }
 

F(s)=L(1(t))

ts: ts
£(t):t ™ 2+u(t-1)

X0ooooooooooooooo
020000000e00000000%0S00%%! ol 0'0‘0:0:01020:0:0:  oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

soetasisirassatiosetel  Fatetetetetelelatotetetetetetels Sotetotrteteteleteteleteteto0t   
The example calculates the Laplace transtform of

f(t) =t~ 2=u(t-1).
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Rem. If CALCULUS cannotfind the Lapla-

ce transform an error message is given (the

transform does not exist or its not implemen-

ted)    
Inverse Laplace transform:

The inverse transform is calculated. The types of functions

which can be inverted are the transtorms of the functions lis-

ted on page 37.

Interface:

 

RAD PRG
{HOME }

£(t) = InvL(F(s))
 

St st

F(s): (1-e™)/(s™2+1)

  

 

 

The example calculates the inverse transform of

F(s) = (1-™)/(s* + 1).
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Inverse L Partial fractions

If the denominator of F(s) is of second degree and may be

factorized in first degree factors, or of a higher degree than

2, the denominator has to be split into partial fractions.

Intermediate results (Partial Answers) is possible to show the

splitting into partial fractions.

 

Rem. If the transformation does not exist the

error message "does not exist" is given. If the

expression is too complicated the message "not

rational" may appear. The expression may

then be split up.  
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Interface:

 

RAD PRG
{HOME }
 

F(s) =P(s)/Q(s)

InvL(F(s)) =£(t)

t s: S

:PartAns Y/NY

 

   
 

 

RAD PRG
{HOME }

Input cont

:Numerator P: "Exp(-m*s)’

:Denominator Q: s 2-1

 

   
In the example F(s)=e™>/(s"-1)issplit into partial fractions

and then transformed. The shifte™> will be taken care of be-

fore the splitting into partial fractions.

3. Laplace transforms



 

Differential equations (initial value problem)

Laplace transforms are suitable for solving initial value pro-

blems, in particular when the "right hand side function” 1s

discontinous.

The answeris given in the form Y(s) =P(s)/Q(s)/R(s) which

has to be transformed into P(s)/((Q(s)*R(s))) before the ro-

utine for partial fractions is used to solve the problem.

Interface:

 

RAD PRG
{HOME }
 

ay" + by’ +cy =1(t)

y(0)=y0y’ (0) =Dy0
cabcyODy0 : 13201

f(t) t: *SIN(t) t

 

   
The equation y"+ 3y’ + 2y =Sin(t) with initial conditions

y(0)=0andy’ (0) =1 is transformed.
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Probabilitx

In this chapter of probability theory we will look at unlike di-

screte probability distributions in addition to the normal dis-

tribution which is continous. For the discrete distributions

both the cummulative probability and the point probability

may be calculated.

For the discrete distributions and in connection with pure

combinatorial calculations, we have distinquished between

with and without replacement.

 

Rem. Probabilities must be less then or equal

to 1 and greater than or equalto 0.    
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Without replacement

Without replacemnet means that we dont put the drawn ele-

ment back again.

Combinations, not ordered

This routine calculates the number of possibilities to draw k

elements of total n without replacement and without regard

to order.

Interface:

 

 

RAD PRG
{HOME }

Draw k of n

N =n!/((n-k)!+k!)

n k: 15 3

 

  
 

The example calculates the number og possibilities to draw

3 elements form total 15 elements without regard to order.
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Combinations, ordered

If the order is important you will have to use this routine. The

same elements in different orders will then be to separate

events.

Interface:

 

 

RAD PRG
{HOME }

Draw k of n

ordered N =n!/(n-k)!

n k: 15 3

 

   
The example calculates the number of combinations when

drawing 3 elements from 15 with regard to order.

Hypergeometric distribution

Here the probability of drawing exactly k X’es from a popu-

lation of n when a elements are drawn at a time without re-

placementis calculated. The probability for the X to be drawn

1S p.
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Interface:

 

 

RAD PRG
{HOME }

k X’es of n

draw a P(X)=p

:n a: 20 8

:p k: 0.6 3

  

 

 

The probability that 3 elements have the mark X when dra-

wing 8 elements of total 20 is calculated. The probability of

X to occur is 0.6. If k>a or p>1 the probability is 0.

The example may be "drawing" individuals from a population

of 20 where 12 is women (p = 12/20=0.6). The probability

that of 8 "drawn" individuals 3 1s women1s calculated.

Hypergeometric distribution function

The cummulative probability is calculated, i.e. the probability

that maximum k elements are drawn. This is the sum of the

probabilities of k =0,k =1,k =2 and k=3.
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Interface:

 

RAD PRG
{HOME }
 

max k X’es of n

draw a P(X)=p

:n a: 20 8

:p k: 0.6 3

 

   
The example calculates the probability that 3 elements 1is

drawn with the mark X (p =0.6) from a total of 20 by drawing

4 at a time or 1 by 1 without replacement.

 

With replacement

Here the elements are replaced by drawing so that the prob-

ability is the same every time an element is drawn (uncondi-

tional drawing).

Combinations, unordered

This routine calculates the number of combinations of dra-

wing k elements from n without replacement, without regard

to order.
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Interface:

 

RAD PRG
{HOME }
 

Draw k of n

N =(n+k-1)!/((n-1)!=k!

‘n k: 15 3

 

   
Here the probability of drawing 3 elements oftotal 15 1s cal-

culated. Orderis indifferent.

Combinations, ordered

If the order is critical, this routine has to be used. The same

elements in different orders are two separate events.

Interface:

 

RAD PRG
{HOME }
 

Draw k of n

ordered N=n"

‘n k: 15 3

   
 

 



The example calculates the number of possibilities with the

same figures as in the previous example, but now with regard

to order.

Binomial distribution

The routine calculates the probability of drawing exactly k

elements with the mark X of total n, where the probability of

X itself is p. Independenttrials (with replacement).

Interface:

 

 

RAD PRG
{HOME }

k X’es of n

P(X)=p
:n p: 10 0.6

k: 3

  

 

 

The probability of drawing 3 elements with the mark X when

X has the probability of 0.6 is calculated. The number of in-

dependenttrials is 10. p > 1 gives an error message.

The example may be the production of glasses where the

probability of first assortmentis 0.6. If 20 glasses are produ-
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ced, the example calculates the probability that 3 glasses are

first assortment. '

Binomial distribution function

The cummulative probability is calculated, i.e. the sum of the

probabilities fork=0, k=1, k=2 and k=3 if k=3.

 

 

Interface:

RAD PRG
{HOME }

max k X’es of n

P(X)=p
np: 10 0.6

 

   
The example calculates the probability that maximum 3 ele-

ments have the mark X (p=0.6) in 10 independenttrials.

Negative binomial distribution

This distribution gives the probability of k failures before the

rth success in a series of independent trials each of which the

probability of success is p.
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Interface:

 

RAD PRG
{HOME }
 

k not X’es before

X rth time P(X) =p

:r p: 10 0.25

. ki 15

    
 

The probability of 15 failures before the 10th success when

the probability of success is 0.25 is calculated.

The example may be the drawing of cards and the calculation

of the probability of drawing 15 cards that are not clubs be-

fore the 10th club.

Negative binomial distribution function

This routine calculates probability of maximum k failures be-

fore the rth success.
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Interface:

 

RAD PRG
{HOME }

max k not X’es before

X rth time P(X)=p

rp: S5 04
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The probability of maximum 4 failures before the Sth success

is calculated. Probability of success is 0.4.

The example may be the drawing of balls from a hat that con-

tains 40% white balls. The probability of finding 5 not white

balls before drawing maximum 4 white balls 1s calculated.

Pascal distribution

The probability of the rth success in kth trial in a series of in-

dependenttrials is calculated.
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Interface:

 

 

RAD PRG
{HOME }

X rth time kth

trial P(X) =p

rp: S 05

ki 8

 

   
The probability of finding the mark X 5th time in the 8th tri-

al 1s calculated.

 

Rem. The geometric distribution is a special

case with r=1.    

Pascal distribution function

The probability of the rth success in maximum k trials is cal-

culated. The probability of success is p.
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Interface:

 

RAD PRG
{HOME}
 

X rth time max k

trials P(X)=p

rp: S 05

  

 

 

The example calculates the probability of finding the mark X

the Sth time in maximum 8 trials (Tossing a fair coin we find

the probability of finding the Sth head in maximum 8§ trials).

 

Normal distribution

This is a continous distribution and only cummulative prob-

abilities are calculated.
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Interface:

 

RAD PRG
{HOME }
 

Normal distribution

param. p. and o gives P(X <x)

wo: 01

x: 1

  

 

 

The probability that a random variable is less than or equal

to 1 is calculated. The mean and the standard deviation is 0

and 1.

 

Rem. P(a<x<b)=P(x<b)-P(x<a) and

P(x>a)=1-P(x<a)    
 

Poisson distribution

The Poisson distribution is used as a model when we are in-

terested in events within intervals of time or other variables.
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Interface:

 

RAD PR
{HOME }
 

Poisson distr.

mean p. and P(X=k)

Zp,kl 45

 

  
 

The example calculates the probability that a random varia-

ble X is exactly 5 when the mean is 4.

 

Poisson distribution function

Interface:

 

RAD PRG
{HOME }
 

Poisson distr.

mean p. and P(X<k)

kal 45

 

  

   

i
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8  
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The probability that X is less then or equal to 5 1s calculated,

the mean is 4.

 

Info

Here information about probability and some distributions

1S given.

 

Binomial coefficients

Binomial coefficients Bnk=n!/((n-k)!«k!) are calculated

from k=0 to k=n and put in a list.

Interface:

 

RAD PRG
{HOME }
 

Binomial coeff.

Bnk = n!/((n-k)!«k!)

k=0...n

  

 

 

The example calculates { Bn0 Bn1 Bn2 Bn3 Bn4 Bn5}.
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Statistics
 

We will focus on some statistical methods and description of

samples. Within description of samples we will use discrete

tables and class tables (discrete and class statistics). You can

convert from class statistics to discrete statistics by using the

mean value of the intervals as the discrete value.

Statistical methods are represented by confidence intervals

and hypothesis testing for distributions. The "best" fit for the

normal distribution uses the method of least squares.

The normal distribution, kjisquare distribution and

student-t distribution are included and its possible to find

both the probability and the value of the random variable for

given probability.
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Distributions

Normal distribution

The normal distribution gives p(X <x) for given x-value. The

mean p. and standard deviation ¢ have to be known.

Interface:

 

RAD PRG
{HOME }
 

Normal distribution

param. p. and ¢ gives P(X <x)

‘L O 0 1

x: 1

 

 

  
P(X<1) for . =0and o =1 1s calculated.

Inverse normal distribution

The routine finds the value of the random variable x with gi-

ven probability p, w and ¢ are known.
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Interface:

 

 

 

RAD PRG
{HOME }

Normal distribution

w o gives X, P(X<x)=p

‘L O 0 1

 

  
The value of x with P(X <x)=0.6, =0 and ¢ =1 is calcula-

ted.

Kjisquare distribution

The kjisquare distribution is used to find confidence intervals

and in connection with fitting a distribution to a sample.

Interface:

 

RAD
{HOME}

PRG

 

 
degrees of freed. K P(X <x)

 

Kjisquare distr.

3 5.6
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The example calculates P(X <5.6) where X is kjisquaredistri-

buted with 3 degrees of freedom.

Inverse kjisquare

The value of x for given probability is calculated.

Interface:

 

 

RAD PRG
{HOME }

Kjisquare distr.

degrees of freed. K P(X<x)=p

:K p:3 0.85

 

   
The example calculates the value of X so that P(X <x) =0.85

with 3 degrees of freedom.

Studen-t distribution

This distribution is used to find confidence intervals in CAL-

CULUS.
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Interface:

 

RAD PRG
{HOME }
 

Student-t distr.

degrees of freed. K P(X <x)

K x:3 7.5

 

   
P(X <7.5) with 3 degrees of freedom is calculated.

nverse student-t

his routine calculates the value of the random variable x.

nterface:

 

RAD PRG
{HOME }
 

Student-t distr.

degrees of freed. K P(X<x)=p

: K p:3 0.85

 

   
he value of x 1s calculated so that P(X <x) =0.85 with 3 de-

rees of freedom.
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Confidence intervals

Confidence intervals in connection with the normal distribu-

tion are calculated for the mean . and variance o .

 

Rem. Mean value and standard deviation for

a sample may be calculated under this menu.

Theese values may be used as point estimates

 fortheparameters in the distributionfunction. 
 

Confidence interval for the mean ., given value of ¢.

For known o we may use the normal dsitribution to find the

value ¢ so that F(c) =P(x<c) =1/2(y + 1) with confidence le-

vel v. The interval is given in the form [a<w<b].

The interval is calculated from a sample [[xi]] and the mean

value has to calculated in advance by using the menu option:

Mean value.
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Interface:

 

RAD PRG
{HOME}

CONF g, given ¢ Mean

X sample [[xn]] Level v
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DO&      
The example calculates the confidence interval for the mean

in the normal distribution, based on a sample [[xn]] with

mean 3 and confidence level 90%. The number of values in

the sample is 20 and the normal distribution has the standard

deviation 1.12.

Confidence interval for the mean ., unknown ¢

If ois not known the estimate s for standard deviation from

the sample is used. To find the value of ¢ so that

F(c) =1/2(y+ 1), the student-t distribution is used..

The interval is calculated from a sample [[xi]] with n values

and the mean and the standard deviation of the sample has

to be calculated in advance.
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Interface:

 

RAD PRG
{HOME }

CONF ., Mean/St.dev.

X ,s samp. [[xn]] Level

 

o ® e o

. X n . 3 2Oe o

OneSeteteneetetetetetatetolel 000000000000%0202000l0000te0t ofedelele!    
 

The confidence interval for the mean is calculated based on

a sample with 20 values, standard deviation 1.2, mean 3 and

with confidence level 90%.

Confidence interval for variance, ;. is unknown

The standard deviation ofthe sample has to be calculated first

(separate menu option). The calculation is based on the kji-

square distribution.
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Interface:

 

RAD PRG
{HOME}
 

CONF ¢*, St.dev. s
sample [[xn]] Level v

 

  
 

The example calculates the confidence interval for o based

on a sample with standard deviation 1.2, confidence level

90% and 20 values in the sample.

SampleX, s, n and median

The mean value, standard deviation, number of values and

the median are calculated. The table is stored as USDAT.

Interface:

 

RAD PRG
{HOME}
 

St.dev. s and mean x

[[x1 x2 x...]]

[[x1x2...]]: [[237]]
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The mean value, standard deviation, number of values and

the median for the sample [[2 8 7]] are calculated.

 

Fitting

By using a sample of values, the "best"fit for the normal dis-

tribution is calculated, i.e. estimates for the mean p and

standard deviation ¢ is calculated. Hypothesis testing for as-

sumed distribution is done (kjisquare goodness of Fit).

The sample has to be given as a class statistic with given fre-

quences (se description of samples).

In order to calculate estimates for the the distribution para-

meters a discrete statistic has to be stored as SDAT (see se-

parate menu option).

Normal distribution

A "best" fit based on the least squaresis calculated. The sam-

ple has to be stored as a class statistic (K2DAT) in advance.

When K3XDAT is stored by using a separate menu option, the-

re is no more input data necessary. Estimates for p and o will

be calculated.
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Hypothesis normal distribution

Theclass table is stored by using the separate menu option.

The separation in different classes is done with minimum 5

values in each class. Upper and lower limit has to be « and

- and you can achieve this by using big numbers as the lo-

wer and upper limit for the class intervals.

For the calculation of mean and standard deviation as esti-

mates for the parameters the discrete statistic has to be sto-

red with known frequencies (ZDAT).

Interface:

 

RAD PRG
{HOME }
 

Normald. n values

Level « Num.est. r

. WO 360 26

‘a N T: 0.05 100 2

  

 

 

The example is testing whether the sample KEDAT may be

fitted to a normal distribution with significance level 5%.

and ¢ are estimates and r, number of estimates, 1s 2. Number

of values in the sample is 100.
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The Kjisquare distribution is used and the figure kijO2 is tes-

ted against the theoretical value ¢, P(X <¢) = 1-a, where « is

the significance level. If kjiOzs ¢, the hypothesis is not rejec-

ted. '

Hypothesis binomial distribution

The class statistic is stored and the parameter p is, if neces-

sary, estimated as p = p/n.

Interface:

 

RAD PRG
{HOME }
 

Binomiald. n values

Level « Num.est. r

C P 0.5 0.05

N r: 501

 

   
The example is testing whether the sample may be fitted to a

binomial distribution with significance level 5%. p is estima-

ted (0.5) and the value of r is 1. Number of valuesis 50.
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Hypothesis Poisson distribution

The class statistic is stored and the parameter .. (mean)is,if

necessary, estimated.

Interface:

 

RAD PRG
{HOME }
 

Poissond. n values

Level « Num.est. 1

- poal 56 0.05

nr: 100 1

  

 

 

The example is testing whether the sample may befitted to a

Poisson distribution with significance level 5%. . is estima-

ted and r = 1. Number of values in the sample is 100.

Class tabel (class statistic)

A class table is a double list {{Ik}{fk}} where the first list is

the limits of the class intervals and the other list is the num-

ber of values in the separate intervals.
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Interface:

 

RAD PRG
{HOME }
 

Class table

{{Ik}{fk}}: {{3467}{254}}

 

 

  
Interval limits are 3,4,6 og 7 and number of values in the in-

tervals are 2,3 and 4.

Mean value and standard deviation based on frequency ta-

ble

If the data is stored as a frequency table, we cannot use the

ordinary sample routine to find the mean etc. The data is sto-

red in 3DAT. Use F for frequency table.

Storing discrete table

The sample is stored as SDAT. The data is put directly into

the matrix writer where the first column contains the values

and the second column the frequencies.
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Description of samples

In this menu some calculations on discrete data and class ta-

bles from samples are done. This includes mean values,

standard deviation, relative frequencies, histograms and fre-

quency polygons.

Discrete table 3DAT

Here the values are stored in the first column and the fre-

quencies in the second. In two variable statistics the second

column will be the data for the second variable.

Classes KXDAT

A class table is a double list { {Ik}fk}} where the first list is

the limits of the intervals and the other the numbers in each

interval.

Interface:

 

RAD PRG
{HOME }
 

Class table

{{Ik}{fk}}: {{3467}{254}}
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The limits of the intervals are 3,4,6 and 7 and the number of

values is 2,3 and 4. The table is stored as KSDAT for further

uses.

Cummulative table.

The routine is calculating a table from a discrete table

(2DAT). The new table will include relative frequencies, (co-

lumn 4) cummulative frequencies (column 3) and cummula-

tive relative frequencies (column 35).

K>DAT-3DAT

This routine transforms a class statistics to a discrete statis-

tics by using the mean value of each interval as the repre-

sentative value. The table is stored as SDAT. Input data is

K3DAT which is stored in advance.

SDATXog s

The mean value and the standard deviation is calculated ba-

sed on a frequency table (F) or a two variable statistic table

(D).
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Interface:

 

RAD PRG
{HOME }
 

F is frequency tab.

D 1s two var. stat.

ForD: D

 

   
The sample has to be stored in 3DAT and the choice D will

give the mean and standard deviation for each variable in a

two variable statistics.

 

Rem. Under menu confidence intervals and

STATmenu the mean andstandard deviation

forsimple samples are calculated (one dimen-

 sional tables).  
Histogram KZDAT

Creates a histogram based on the class table KSDAT which

has to be stored in advance.
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Frequency polygon K>DAT

Creates a cummulative frequency polygon from K3DAT.

Linear regression and correlation

A straight line is fitted by the use of least squares from the ta-

ble ZDAT. The line will be given as Y =aX +b, where X is

the data in the second column in SDAT.

The correlation coefficient is a measure of the goodness of

the fit and a value between -0.7 and 0.7 is a good fit.

 

Rem. SDATis now a two variable statistics ta-

  ble and not a simple statisticsfrequency table.
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Fourier series
 

Under Fourier series in symbolic form one can find the Fou-

rier series of polynomials up to 2nd degree and a copule of

other possibilites. The numeric series for a given number of

terms may also be found. The input function may be bifurca-

ted with different expressions in two different intervals.

The Fourier series are generaly given as:

oo

£(x) = a0 + Zan*COS(Z*w*x*n/T) + ) barSin(2+mrxn/T)
n= n=1

T is the period and the coefficients are given:
T/2

a0 = 1/Tff(x)dx

-T/2
T/2

an= 2/T ff(x)*Cos(Z*w*x*an)dx

-T/2
T/2

bn= 2/T ff(x)*sm(z*w*x*nmdx
-T/2
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CALCULUS is able to find the series of the following types

of functions:

o f(x) =kx+b

o f(x)=kx*

o f(x) =kSin(ax)

o f(x) =kCos(ax)

o f(x) =ke™

 

Fourier series, symbolic form

The expressions for a0, an and bn are found for given f(x).

The series itself must be set up by the user. The function f(x)

may be given as two expressions in two intervals:

fl,a<x<b

tx) = f2, c<x<d

The functions are given as {f ab} where a and b are defining

the interval or bifurcated as {fl ab 2 ¢ d}.

 

Rem. If the function is split in more than two

ntervals, CALCULUS may be used on two

and two (or two plus one) intervals.   
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Interface:

 

RAD PR
{HOME }

f(t) =a0 + 2an*COS(w*t) +

>bn*SIN(w*t) ©=2*m*n/T

t T: t 2+7

 

‘PartAns Y/N: Y

 

   
 

RAD PRG

 

nput cont

{fab..}: {-1"'-2010°%"}

 

   
The example calculates the Fourier coefficients of

-1 cm<t<O
f(t) =
() 1 O<t<am T=2x

The answeris given with intermediate results (indefinite in-

tegrals are given).

6. Fourier series



 

Fourier series numeric results

A specified number of terms are calculated, but in terms of

the independent variable. The input is the same as in symbo-

lic form, but the number of terms has to be included and also

the start and stop of the summation index. The integration is

numeric and intermediate results are not given.

Interface:

 

RAD PRG
{HOME }

f(t) =a0+ =(m,n)an*COS(w*t) +

3(m,n)bn*SIN(w*t) w=2*x*n/T

 

 

   
 

RAD PRG

 

Input cont

' . mn: 0 2

{fab..}: {-1 -7 010’7
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The first three terms are calculated. Thetermsn=0andn=2

are 0. ’

 

Rem. The accuracy of the integration is de-

pendent ofthe choiceforNFIXon the calcu-

lator    
 

Half range expansions

In many situationsthere is a practical need to use Fourierse-

ries in connection with functions that are given merely on

some definite interval. They may be done periodic by an ex-

tension with the period as the double interval. The extension

may be even or odd by choice (E/O).

Interface:

 

RAD PRG
{HOME }

(1) = a0 + 3an*COS(w*t) +
>bn*SIN(w*t) o=2*m*n/T

t T: t 2+q

 

‘PartAns Y/N: Y
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RAD PR
{HOME}

Input con

A{fab..}: {-1 -+

 

  
Here f(t) =-1, -x <t <0

by O.

is given. An odd extension is marked

6. Fourier series
 



 

Linear Erogramming

The maximum or minimum ofa linear function in several va-

raibles are calculated. The constraints are given as inequali-

ties ("less then"). The routine does not handle degeneracy or

solutions constrained to be natural numbers.

 

Rem. Ifsuch constraints are given and a deci-

mal numberis the answer, one cannot simply

round offto nearest natural number. This will

  not always give the optimal solution.
 

The algorithm used is the simplex method and it finds only

the minimum of an object function. Any problem can be writ-

ten as a minimum problem. If a maximum value of f(x) is

going to be found, one may simply change the sign and find

the minimum of -f(x).
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The constraints are defining the constraint matrix A. They are

assumed to be of the "less then" type, but ifyou have got them

as "greater then" type you may simply multiply both sides with

-1 and change the inequality sign.

Ifwe are going to maximize f(x) =x1 +2x2 and one ofthe con-

straints are x1-2x2>2, then minimize -x1-2x2 with the con-

straint x1 + 2x2 < -2,

Allindependent variables are assumed to be positive or zero.

 

Rem. The independent variables have the

symbol xi regardless of the symbols used in a

given problem.    

Interface:

 

RAD PRG
{HOME }

min f(X)=C+X A*X<B

A 1is the last input

B[ ]: [ 8 3]

Cl ] [ -25 -7 -24]
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The example solves the problem of finding the maximum of

f(x1,x2,x3) =25x1 + 7x2 + 24x3 under the constraints

3x1+x2+5x3<8

S5x1+x2+3x3<5

0<x1,x2,x3

C vector is the object function f, B vectoris the right side of

the constraints and A is the constraint matrix (left side). The

solution is given as -39.5 which means that the maximum is

- 39.5.
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Numerical solution diffeguatibns

First order differential equations may be written

y’ = F(xy), y(x0)=y0

F(x,y) is a function in two variables x and y where y is depend-

ent ofx. The solution is y = f(x). The value of y at a given point

x0 has to be known.

The method used is the 4th order Runge-Kutta (RK4). This

will give a fair good solution for "non-stiff" problems.

Interface:

 

RAD PRG
{HOME }
 

y’ =F(x)y), y(x0) =0
xn =xn-1+Ah nmax=N
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RAD PRG

 

{HOME} —

Input cont

:x0y0: 0 0O

:Ah N: 025

 

   
In the example the solution of y’ =x +y, y(0) =0 is tabulated.
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