Sital Daryanani, P.E. Sital Daryanani, P.E.

BUILDING SYSTEMS DESIGN WITH PROGRAMMABLE CALCULATORS

Sital Daryanani P.E.

This is the book that unlocks the vast potential of programmable calculators in building design. Any designer who knows how to use a programmable calculator can now save countless hours solving the most commonly encountered problems while finding optimum solutions. And *Building Systems Design with Programmable Calculators* presents all this time- and money-saving information—programs that could take thousands of hours to develop independently—in concise and easy-to-follow form.

The 22 programs in this book provide solutions to problems in: lighting design, life cycle cost analysis, sizing and heat loss in liquid, air and gas systems, a multitude of conversion programs, building heating loads, solar shading, and solar radiation. None of these highly practical programs are available from manufacturers' program libraries or any other source.

In the office, Building Systems Design with Programmable Calculators frees the designer from the chore of computation and allows concentration on the process of design and synthesis. In the field, designers and engineers can solve problems they could never before undertake without a computer.

Wherever readers use Building Systems Design with Programmable Calculators, they will find complete descriptions of the methodology for each design problem. Mr. Darvanani has identified and referenced all the relevant equations. Program labels, subroutines and storage registers used are outlined with a brief discussion of the function of each. Every section also contains several examples—so that the reader can quickly learn to use the program to solve the problem at hand. Once a program has been debugged and tested by the user against the examples, use of the program eliminates all the errors inherent in the manual method. No other book provides such a surefire method to save time and effort in building systems engineering.

While it is saving time for architectural designers, HVAC engineers, lighting designers and other professionals, this book can produce important long-range benefits. The programs encourage the designer to investigate alternate approaches, so that users of this book can find optimum solutions with unprecedented ease—not only improving the quality of the design and saving project costs, but conserving operating energy as well.

The specific problems that can be solved by users of *Building Systems Design with Programmable Calculators* include:

Piping Design A general piping system design program, based on the Colebrook and

(continued on back flap)

BUILDING SYSTEMS DESIGN WITH PROGRAMMABLE CALCULATORS

ARCHITECTURAL RECORD BOOKS

CLARKE: Architectural Stained Glass

CLASS/KOEHLER: Current Techniques in Architectural Practice

DUNN: Architecture Observed

FOXHALL: Techniques of Successful Practice

GAINES: Interior Plantscaping

LEACH: Techniques of Interior Design Rendering and Presentation

MOORE/ALLEN: Dimensions

MUMFORD: Architecture As a Home for Man

ROSS: Beyond Metabolism: The New Japanese Architecture

SEELIG: The Architecture of Self-Help Communities

SHOSHKES: Space Planning

WATSON: Energy Conservation through Building Design

Sital Daryanani BUILDING SYSTEMS DESIGN WITH PROGRAMMABLE CALCULATORS

ARCHITECTURAL RECORD BOOKS

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Bogotá Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto Copyright © 1980 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Published by Architectural Record, A McGraw-Hill Publication, 1221 Avenue of the Americas, New York, NY 10020

Library of Congress Cataloging in Publication Data

Daryanani, Sital.
Building systems design with programmable calculators

Buildings—Mechanical equipment—Design and construction.
 Buildings—Environmental engineering.
 Programmable calculators.
 Title.
 TH6010.D37
 1980
 696'.028'54
 79-15760
 ISBN 0-07-015415-5

The editors for this book were Patricia Markert and Carol Frances. The production editor was Patricia Barnes Werner. The designer was Elliot Epstein. It was set in Helvetica, Baskerville, and Univers by J.M. Post Graphics, Corp. and Jemet, Inc. Printed and bound by Halliday Lithograph Corporation.

1234567890 HDHD 89876543210

The author has exercised care in developing these program materials, but the buyer must carefully evaluate them as to their accuracy and suitability for the buyer's applications.

Neither the publisher nor the author makes any warranty, either express or implied, including but not limited to the implied warranties or merchantability and fitness for a particular purpose, regarding these program materials, which are made available to the buyer solely on an "as is" basis with all faults.

In no event shall either the publisher or the author be liable to anyone for special, incidental or consequential damages in connection with or arising out of the purchase or use of these program materials and the sole and exclusive liability of the publisher and/or the author, regardless of the form of action, shall not exceed the purchase price of these program materials.

To better engineering for conservation of all resources: human, material, and energy

IMPORTANT Your investment in this timesaving tool will pay you dividends immediately if you first read, study, and understand the instructions given in the introduction. Needless to say, you must be familiar with the basic features and functions of your calculator as explained in the owner's manual furnished with the calculator.

CONTENTS

χi

xiii

PIF	ING DESIGN PROGRAMS	
PP-1	General Piping System Design Program (Advanced) This program is based on the Colebrook and Fanning equations and can be used for any fluids by providing the basic input of pressure, specific weight, viscosity, and pipe roughness coefficient.	1
	The program can perform the following functions:	
	1. Compute piping system friction and dynamic losses	
	Given the diameter, compute flow rates within the limits of desired maximum velocity and pressure loss	
PP-2	Water Piping System Design Program (Intermediate) This program is based on the Williams-Hazen formula and can perform the same functions as Program PP-I, except that it can be used for water piping systems only.	20
	It can also print out a table of diameters and flow rates.	
	Program PP-1 gives accurate results, but is a slower program. On the other hand, Program PP-2 is faster and gives reasonably accurate results for water temperatures of 50–180°F. It is possible to get equally acceptable results for other temperatures by adjusting the C value.	
PP-3	Piping System Volume and Expansion Tank Sizing Program (Elementary)	35
	The program computes the volume of a piping system in gallons. The program can also compute the size of open and closed expansion tanks.	
AIF	DUCT DESIGN PROGRAMS	
DP-1	Air Duct Sizing Program (<i>Intermediate</i>) This program sizes round and rectangular ductwork based on constant friction loss and maximum velocity.	45

Preface

Introduction

	DP-2	Air Duct Design Program, Static Regain Method (Inter-	58
		mediate) This program sizes round and rectangular ductwork based on the static regain method.	
	DP-3	Air Duct Friction Loss Program (Advanced) This program computes friction and dynamic losses for round, rectangular, and flat-oval ductwork.	74
	DP-4	Air Duct Heat Loss/Gain Program (Advanced) This program computes heat loss/gain of duct systems. It also computes the outside surface temperature and change in temperature in the air.	84
		This program can be used for round and rectangular ductwork with or without insulation.	
3	LIGH	ITING DESIGN PROGRAMS	
	LP-1	Lighting Power Budget Program (<i>Intermediate</i>) The program computes lighting power budget based on the IES Recommended Lighting Power Budget Determination Procedure EMS-1 and ASHRAE Standard 90-75R.	99
	LP-2	Lighting Design Program, Lumen Method (<i>Intermediate</i>) The program computes different cavity ratios, the number of luminaires for desired illumination resulting from a given number of luminaires, and power in kW and watts/sq ft. The program also prints out take-off for the luminaire, giving its type, number, and quantity.	122
4	SAN	ITARY ENGINEERING PROGRAMS	
	SEP-1	Storm Water System Pipe Sizing Program (<i>Elementary</i>) With input of rainfall/hr and roof area, the program computes pipe size for different types of piping arrangements.	141
	SEP-2	Soil and Waste Water System Pipe Sizing Program (<i>Elementary</i>) With input of fixture units, the program selects pipe size for different piping arrangements.	150
	SEP-3	Water System Pipe Sizing Program (Elementary) With input of fixture units, the program computes diversified peak flow in gallons per minute and sizes the piping system based on desired maximum velocity and heat loss. The program can be used for sizing cold and hot water distribution systems.	163
	SEP-4	Gas System Pipe Sizing Program (Intermediate) The program can compute gas pipe sizes for an apartment building, taking into account diversity in demand.	183
5		T TRANSMISSION FFICIENT PROGRAMS	
	ВНТР-	1 Heat Transmission Coefficient Program (Elementary) This program computes over-all heat transmission coefficients and over-all and average thermal transmittance of a wall.	193

	ВНТР-	2 Over-all Thermal Transmittance Value Program (Elementary)	202
		This program computes the over-all heat transfer of wall or roof surfaces based on ASHRAE Standard 90-75R, "Energy Conservation in New Buildings." The program can also compute the area of penetration for a given value of over-all heat transfer.	
6	SOL	AR ENERGY PROGRAMS	
	SOLP	-1 Solar Shading Program (Intermediate) This program can compute shading from external shading devices for any latitude in the Northern Hemisphere.	213
	SOLP	-2 Monthly and Annual Average Insolation on Tilted Surfaces (Advanced) This program computes the monthly solar insolation for a solar panel. The program can be used for optimizing the tilt angle of solar panels.	228
7		SINEERING ECONOMIC ALYSIS PROGRAM	
	EP-1	Life Cycle Cost Analysis Program, Part I (<i>Advanced</i>) This program computes the present value of alternate economic proposals. It can handle depreciation, interest, discounts, inflation, escalation in cost of energy, taxes on property, and income tax.	241
	EP-2	Life Cycle Cost Analysis Program, Part II (<i>Intermediate</i>) This program is complementary to Program EP-1, and computes the following information:	263
		 Annualized flow Profitability index Discounted pay-back years Internal rate of return 	
8	GEN	IERAL UTILITY PROGRAMS	
	UP-1	Preliminary Design Conditions Program (<i>Elementary</i>) This program computes mechanical space conditions and preliminary planning information for three types of buildings.	271
	UP-2	Space Planning Program (<i>Elementary</i>) With input of type of space and net area, computes area of circulation spaces, area for mechanical systems, gross area, cost related to these areas, net-to-gross ratio, and cost per square foot related to net, circulation, and total area.	282
	UP-3	Distribution Network Program (<i>Elementary</i>) This program is very useful for delineating any distribution system prior to design or analysis.	295

PREFACE

Of all unlikely places, the idea for this book originated in Tehran, Iran. When I was there in 1976, we had to design mechanical systems for twenty-six large apartment buildings. We needed urgently, right in Tehran, a computer-aided design system to complete the project profitably and on time. A project of this type, due to large repetitions in the design process, is ideal for a computer-aided design system.

Since we had no access to our computers in the USA, we resorted to small programmable calculators. We had one set in Tehran which we used for developing the programs and, in the meantime, we ordered four more sets from New York. Once we had all the calculators and programs, we reduced the design time from three days per building to three hours per building. This incident was a convincing demonstration of the enormous potential of programmable calculators in the building design profession.

From that time on I became interested in programming techniques for programmable calculators and found this subject more exciting than reading detective novels or solving crossword puzzles during my long and frequent travels. Without this type of interest it would have been boring to travel and spend, say, five nights in Jeddah and three nights in Kuwait. Now I am used to working on a program while waiting at the airport. The time passes quickly. I can identify programs by the cities where I developed them.

It is one thing to develop programs for use in one's own office and another thing to put them together in the form of a book. It is a quantum jump of many orders. Having a contract from the publisher, a contract deadline, and an aggressive editor provided all the necessary driving forces for this quantum jump.

Apart from the driving forces and time, a project of this type requires a supportive environment. The creative and innovative atmosphere at Syska & Hennessy provided the necessary encouragement. The engineers in the office quickly adapted the new programs and helped in testing and application on actual projects.

I hope that other engineers and engineering students will benefit from this book. While this book does not directly address the problem of energy conservation, an efficient learning and problem-solving device can be indispensable for conserving human energy, which is the most expensive and precious type of energy. If the engineers use this book or other similar design techniques for analyzing alternate solutions to optimize their designs, they will also succeed in developing the most energy-efficient and cost-effective systems.

Since major portions of this book were written during my travels, I had to work alone on it. I am responsible for any errors of omission and commission. However, I have received comments, criticisms, and suggestions from many colleagues and friends who are too numerous to list and thank individually.

Typing of the manuscript turned out to be a monumental task. Apart from the volume of typing work, there were additional complications due to mathematical symbols and typing on "User Instructions and Examples." I doubt if I could have met the publisher's deadline without the full cooperation of my secretary, Ms. Dorothy Vance. In addition to her regular work, of which she had plenty, she managed to find time to type the manuscript, and supervise and coordinate the work of the other typists who pitched in. She had to guard the originals from the engineers in the office who were anxious to use some of the programs as they came off the typewriter. Mr. Steve Briggs also helped with typing, utilizing all the time he could spare. Many thanks to both of them.

Finally, I thank my family for allowing me to isolate myself during the last phase of this project and for their moral support and most patient understanding.

Sital Daryanani

INTRODUCTION

The computer has already made an impressive impact on the building design profession. Several architects and engineers have their own computers, or have easy access to them, and have learned to develop their own programs. Many package programs, some of excellent quality, are available at reasonable cost. These programs are being utilized through computer services by remote-access terminals or through users' own computers. Hundreds of users are benefiting from such services and programs without learning about computer programs.

On the other hand, there are still many engineers and engineering students in this country, and especially in other countries, who have still not had their first encounter with the computer. The volume of their work cannot justify their having their own computers, and time-sharing services are either unavailable or expensive. Their work may not benefit from available package programs and they cannot make the financial commitment of developing their own programs. These engineers and engineering students may find the programmable calculator within their economic reach and also suitable for most of their work. The main purpose of this book is to provide assistance to engineers and students who want to take their first step toward the application of computers for problem solving and design by way of the programmable calculator.

Some of my friends in academic circles have also mentioned the college students' concern about mainframe computers. While in college, these students have easy and inexpensive access to large computer systems on the campus. However, in real-life working situations, many of these students will have no access to large computers. These students are anxious to

learn about the systems of the type they would be likely to encounter in the world outside the campus.

At present, the programmable calculator can in no way compete with the tremendous potential of the mainframe computer. However, programmable calculators do have their unique advantages which have attracted even those partial to the mainframe.

Why a Programmable Calculator?

When large, mainframe, electronic computers were first applied in the building design industry in the early 1960s, engineering jobs were presented to the mainframe computer in batches, and an engineer looking for the answers often had to wait days. Even today, the mainframe computer, costing thousands or millions of dollars, sits splendidly in glass-partitioned, air-conditioned rooms demanding, because of its expense, that it be kept working every possible second. Batch operation makes for the most efficient use of the mainframe computer.

This type of operation has made the computer remote from the engineer and the student, who cannot interact with a computer to ask brief questions and get immediate answers or to change the input data and see an immediate effect upon the results. "Timesharing" has been one solution, but has not been economical since it slows down the main computer, requires additional expensive hardware and software, and, in some cases, ties up expensive telephone lines.

Now engineers and students have many options, especially for small problems. One option is to have their own programmable calculators, costing only a few hundred dollars. The equipment is small enough

to fit inside an attache case and is generally powered by rechargeable batteries so that it can be used while traveling. The programming language is simple and engineer oriented.

In recent years, the price of programmable calculators has dropped and their capability has increased. However, they will not replace the large mainframe computers, at least not in the near future. Computerized solutions of most engineering problems, as compared to business and accounting programs, do not require a large data base or elaborate output reports. Everyday engineering problems, involving repetitive and complex calculations, can now be handled easily on small, programmable calculators.

Problem solving in engineering is similar to going from one point to another. For short distances, a car may be more economical, while for long distances, a jet plane is indispensable. With a programmable calculator, the engineers have all the convenience of their own car for short-distance travel. On the other hand, it is foolish to use a jet plane for shopping in the neighborhood!

It is possible, considering the following specific advantages of programmable calculators, that more and more engineers will be attracted by their potential and the benefits applicable to their own areas of work:

- The equipment cost is relatively low and most engineers and offices can afford to have their own equipment.
- The equipment is small and portable and can be easily moved around from office, to home, to client's office, or taken on a trip.
- The engineer can solve problems instantly instead of putting up with the delay in turn-around time generally encountered with the mainframe computer systems. The immediate feedback will encourage engineers to test many alternate approaches to optimize the designs.
- Users do not have to waste time to complete the input forms generally required for use of programs on large computers.
- The building design process is constantly evolving. Multiple runs on the large computer, necessitated by these constant changes, can be expensive and time consuming. With programmable calculators, these changes do not become traumatic either in cost or in time delays.
- Greater accuracy of results can help in achieving exact sizing of systems and the selection of optimum

- equipment—all of which can minimize initial project cost, energy consumption, or life-cycle cost, depending on the project objectives.
- Because of the technical limitations of programmable calculators, the programs are developed in small modules which can be easily understood and modified by the engineer, instead of accepting the "black-box" concept of large programs.
- Since the programs and procedures are fully documented and easily understood, most of the calculations, especially when repetition is involved, can be performed by junior engineers and draftspersons with minimum supervision by a senior engineer. This arrangement saves time and money in addition to providing an efficient training tool.

It is hoped that this book will satisfy the needs of engineers wanting to benefit from programmable calculators, while serving as an aid in the training of engineers in offices and colleges.

ABOUT THE BOOK

The programs presented in this book have been developed for the following two calculators:

Texas Instrument TI-59 with PC-100A Printer Hewlett-Packard HP-97

Other programmable calculators could have been included also. However, it was felt that the essential aspect was to present basic procedure and logic for solving problems on programmable calculators. The techniques are explained in detail in case users desire to apply them for any other models. It is hoped that basic procedures and logic will be equally valid for the future models.

If users desire, they can modify the programs so that they can obtain the answers with the calculator models not having a printer. It is recommended that users have a printer-type model, since a relatively small investment in the printer greatly amplifies the total return on the system. The printer provides the user with the following benefits:

- All intermediate answers are printed automatically, together with alphanumeric identification of the data. Without the printer, the program has to be modified to stop at each intermediate answer to enable the engineer to copy the figures. After copying the figures, the engineer can restart the program. This alternate procedure will take far more time and will increase the probability of error. Further, there would be no alphanumeric identification of data.
- The printer provides a record of both input and output.
- Even if the programs are tested and "debugged," the user could make input errors, which are difficult to detect without the written record.
- The printer is indispensable for revising and debugging programs.

Programming

Users will not have to learn Fortran or any other computer language to benefit from this book. If users do not wish to learn programming, they can still have all the advantages by copying the programs.

The main objective of this book is to encourage engineers and students to use programmable calculators for solving engineering problems without worrying about programming. If one were to make an analogy, this book is like a travel guide: it tells users what to see and do when they arrive at their location. It is not necessary to learn how to drive a car if one wants to travel, although, if one knows how to drive, one can have more freedom and fun while traveling. What driving a car is to traveling, programming is to engineering problem solving.

The programming techniques are quite simple and, in our office, we have been able to get the engineers started during the first session, which takes about two hours. Training in complete programming techniques takes three to four such sessions. From there on, the engineers must practice and apply the techniques to improve their programming skills. The following two books are excellent supplements to the manuals and handbooks which come with the calculators: *Programming Programmable Calculators*, by Harold S. Engelsohn; and *Programmable Calculators Business Application*, by Julius S. Aronofsky, Robert Frame, and Elber B. Grey, Jr.

As already mentioned, the programming techniques for the programmable calculator are simple, and engineers can improve their problem-solving abilities by learning to develop their own programs. On the other hand, it would waste a lot of engineering time and talent if all engineers developed their own programs. The objective of this book is to present basic programs for the building design profession so that engineers and students can avoid spending their time solving basic problems which have already been solved. However, they may find it very rewarding to modify these programs to meet their specific needs. Or, they could develop more complex design programs using basic programs in this book as building blocks. All the necessary information is given in the book to encourage users to make their own explorations.

The basic programs cannot satisfy the above objectives unless they are fully understood by engineers. Up to now, many engineers have been turned away from the computer program packages because they did not know, nor could they find out, the contents of the package. No attempt has been made to hide any information. On the contrary, users are encouraged to understand fully the contents and are at liberty to make all modifications required by them. They are given all the information about each program: description, theory involved, algorithm for solution, reference, program listing, user instructions, and trial examples.

Programming Arrangement

The main objective of programming has been to simplify its usage so that engineers could easily apply it for solving either a single problem or a series of similar problems. The secondary objective has been to "compress" the programs within the limitation of the equipment. Often, these objectives were contradictory, and the conflict was resolved in favor of simplification.

The programs have been limited to those which could be accommodated with a maximum of only two cards. Some engineering analyses require programs with more than two cards, and engineers with limited experience with programmable calculators may find such programs rather awkward and complex to use. Since the main objective has been to encourage application of programmable calculators to engineering problem solving, more advanced and complex programs could be the subject of a separate volume.

Since the programs have been developed over a period of two years, users will notice different techniques for solving similar problems. Once a program could fit within the limits of the programming steps, no attempt was made to eliminate the longer procedures. It was also felt that providing a variety of solutions would be beneficial to the learning experience.

It is possible to "compress" most of the programs further and reduce the programming steps. Actually, one can work on improving a program and never complete it! After all, better is the worst enemy of good. The users with expertise in programming can derive additional satisfaction by streamlining the programs further.

Most of the programs were originally developed for the TI-59 and were later converted for the HP-97. Some of the programs had to be changed completely to accommodate them within the limits of the programming steps for the HP-97. However, this was not a serious handicap and there has been no difference in the quality of the results. As a matter of fact, working with the HP-97 demonstrated that even long and complex engineering problems, if analyzed in small modules, can be handled by the HP-97, which has only 224 steps of programming.

One reviewer suggested that in order to encourage users to study the programs systematically, the programs should be graded by steps so that users do not get tangled up with a complex program at the very first attempt. The programs listed in the "Table of Contents" are identified as "Elementary," "Intermediate," and "Advanced," to indicate three levels of complexity. Users should try out the "Elementary" programs as the first step, the "Intermediate" programs

as the next step, and, lastly, the "Advanced" programs.

The programs have been developed based on the following additional criteria:

- All input data are printed at the time of input so that the data can be verified before initiation of program calculation.
- Not only the final answer is printed, but a sufficient number of intermediate answers and variables are also printed so that users are assured that the calculations are done properly and they can get the feel of the entire process.
- In all cases, the input data are printed either at the time of input or with the answer to confirm the correctness of input and for ease of reading the output.
- As far as possible, the engineering procedures are adapted from the standard industry technical manuals, and references are given for further explanation. The lengthy explanations available in the reference texts are avoided, since this is not an engineering textbook.

Arrangement of the Book

Each program has the following sections:

- General Description
- Equations
- Operating Features
- Reference Data

For TI-59

- User Instructions and Examples
- Explanation of Labels and Subroutines
- Explanation of Storage Registers
- Program Listing

For HP-97

- Special Notes for HP-97 Users
- User Instructions and Examples
- Explanation of Labels and Subroutines
- Explanation of Storage Registers
- Program Listing

This arrangement minimized repetition since the first four sections are somewhat common to both of the calculators.

The "User Instructions and Examples" section follows techniques similar to those utilized in the manufacturers' instruction manuals.

Adequate practical examples are given to enable users to check the operation of the programs, keyed in by them in accordance with the "User Instructions and Examples."

Program Usage

Each program listing shows complete keying sequence so that users can easily key in the programs. It is a good practice to record the keyed-in program immediately on the magnetic card, even if the users suspect that they might have made a few errors in copying the programs. They can perform checking and editing later, but at least they will have a record of their keyed-in program. They should make a final copy of their corrected program: two copies are better than one, and the magnetic cards are inexpensive.

Next, users should read carefully and thoroughly the user instructions and test the program on the illustrated examples. If identical results are not obtained, users should recheck their programs and the "User Instructions and Examples." The program listings are produced by calculators from tested programs.

These programs have been used in actual engineering production of several projects, and modifications were made in both the programs and the working procedures to achieve the results in a most efficient manner. The necessary explanations are given with the programs.

It is reasonable to expect that users will make further innovative modifications in the programs and the working procedures to suit their own requirements. All the information is given to encourage users to make such modifications to enable them to derive full benefit from the programs.

Since the user is in full charge of the situation, the author cannot take any responsibility for the results or the use of the results.

TI-59 GENERAL DESCRIPTION OF PROGRAMS AND GENERAL INSTRUCTIONS FOR USERS

- **1.** All programs have been developed in a modular manner, with generous use of subroutines. This slows down the program execution, but has the following advantages:
 - **a.** Each subroutine can be checked and corrected independently.
 - **b.** Subroutines can be combined to derive more results from a single program.
 - **c.** Subroutines make it easy to understand and modify the programs.
- **2.** Second-function (2nd) keys A', B', C', D', and E' are generally used for one-time input only. The lower keys are used for repeated input in the interest of saving time.
- **3.** Generous use has been made of alphanumeric characters for identification of data. In certain long programs, the alphanumeric identification has been minimized to fit the programs within the limits of programming steps.
 - The alphanumeric identification is limited to four characters, and, therefore, it is difficult to maintain complete consistency among the programs. However, the example for each program illustrates the function of the alphanumeric output.
- **4.** No programs use absolute addressing or GTOxxx. While this instruction increases the program speed, it complicates any future changes and modifications.
- **5.** Depending upon the extent of the data and length of the program, the data for computation are input in the following manner:
 - **a.** Directly through the Keyboard. While this arrangement reduces the number of programming steps, users cannot get a record of input unless they put the printer in the TRACE mode. This method has been used very rarely. (Direct input through the keyboard can be helpful for correcting errors in input. That is one reason for explaining the function of all storage registers.)
 - **b.** Through Program Keys. Most programs have been developed for input through programming keys. In this manner, the user gets an immediate print-out of the input, and any

- changes and corrections can be made immediately before proceeding to the next step. Corrections or changes can be performed easily in all cases, except when the result is totalized for the constant running total. In that instance, it is necessary to change the contents of the register, which totalizes the result. In some cases, this can be accomplished by using a negative entry.
- **c.** Through the R/S Key. Often, the data input exceeds the number of keys, in which case the data is entered through the R/S key.
- **d.** Prompting Mode through the R/S Key. This method has been adopted for programs requiring input of large amounts of data. Any corrections have to be made through the keyboard directly into the storage registers.
- **6.** All the two-card programs are self-partitioning. After loading the program, the first instruction partitions the program.
- **7.** The following instructions are suggested for "loading" the programs from magnetic cards to the calculator, and also for "recording" on new cards.

Instructions for Loading and Recording (Key Sequence)

To Load—1-Card Program
2nd CP CLR
INV 2nd Fix
CLR INV 2nd Write—(Insert side 1)
CLR INV 2nd Write—(Insert side 2)

To Load—2-Card Program (Self-partitioning)

2nd CP CLR

INV 2nd Fix

CLR INV 2nd Write—(Insert side 1)

CLR INV 2nd Write—(Insert side 2)

CLR INV 2nd Write—(Insert side 3)

CLR INV 2nd Write—(Insert side 4)

The program must be initialized to partition before any other function is performed.

To Load—2-Card Program (Requiring partitioning)
2nd CP CLR
INV 2nd Fix

xx 2nd OP 17 (xx partition number) CLR INV 2nd Write—(Insert side 1) CLR INV 2nd Write—(Insert side 2) CLR INV 2nd Write—(Insert side 3) CLR INV 2nd Write—(Insert side 4)

To Record—1-Card Program
INV 2nd Fix

CLR 1 2nd Write—(Insert side 1)

CLR 2 2nd Write—(Insert side 2)

To Record a 2-Card Program and make it self-partitioning:

Initialize

INV 2nd Fix CLR

6 2nd OP 17 CLR

INV 2nd Fix CLR

CLR 1 2nd Write—(Insert side 1)

CLR 2 2nd Write—(Insert side 2)

CLR 3 2nd Write—(Insert side 3)

CLR 4 2nd Write—(Insert side 4)

- **8.** In some programs, the first step is initialization, which changes the contents of the totalizing registers to zero and also partitions the programs as required. It is necessary to initialize when a new problem is started.
- **9.** Some inputs are in decimal format, which allows input of two variables at one time. The users should note carefully the number of decimal places required for correct input.
- **10.** All programs are based on a "Master Library" module, which is included with the calculator.
- **11.** All examples start with the assumption that the user has correctly loaded the program. The program requiring partitioning will not function or list unless it is initialized, which is what causes the program to partition.
- **12.** Some programs use the R/S key in the middle of the program for repeated analysis. If key RST is pressed by mistake, the following operations will take place:
 - **a.** The original sequence or position of the program is lost.
 - b. All flags are cleared or reset.
 - c. The program goes to the first step.

The error can be corrected in the following manner:

a. Set all the desired flags.

b. From program documentation, find out subroutines SBR n which initially started R/S operation. Press GTO n (n being the name of the subroutine). Input data and press R/S.

When the program stops, press R/S again, and, from there on, the program will come back to the desired sequence.

- **13.** Each program section has an "Explanation of Storage Registers," which can be of great value in problem solving as explained below:
 - **a.** In case of an incorrect input, the execution of the program can be corrected immediately by inputting correct data directly into the storage register so as to avoid repeating the entire program sequence.
 - **b.** The contents of any storage register can be checked if some problem is encountered.
 - c. Suppose a user is working on a program, similar to, say, PP-2 or LP-1, and desires to discontinue computation before completing the entire sequence of pipe runs or rooms and would like to continue the computation at a later time or date. The user could do this by listing the contents of all the storage registers by keying in sequence, INV 2nd Fix. Later, after loading the program, the user can restart from the original point by first inputting data directly into the storage registers.

HP-97 GENERAL DESCRIPTION OF PROGRAMS AND GENERAL INSTRUCTIONS FOR USERS

- **1.** All programs have been developed in a modular manner, with generous use of subroutines. This slows down the program, but has the following advantages:
 - **a.** Each subroutine can be checked and corrected independently.
 - **b.** Subroutines can be combined to derive more results from a single program.
 - **c.** Subroutines make it easy to understand and modify the programs.
- **2.** Second-function (2nd) keys a, b, c, d, and e are generally used for one-time input only. The lower keys are used for repeated input in the interest of saving time.
- **3.** The illustrated examples show identification of both input and output data. Users could make similar forms for permanent records of their executed problems.
- **4.** No programs use absolute addressing. While this instruction increases the program speed, it complicates the making of any future changes and modifications.
- **5.** Program data can be input in the following manner:
 - **a.** *Directly through the Keyboard.* While this arrangement reduces the number of programming steps, users cannot get records of input unless they put the printer in TRACE mode. This method has been used very rarely.
 - b. Through Program Keys. Most programs have been developed for input through programming keys. In this manner, the user gets an immediate print-out of the input, and any changes and corrections can be done immediately before proceeding to the next step. Corrections or changes can be performed easily in all cases, except when the result is summed to obtain the constant running total. In that instance, it is necessary to change the contents of the register which sums the result. In some cases, this can be accomplished by using a negative entry.
 - c. Through the R/S Key. Often, the data input

- exceeds the number of keys, in which case the data is entered through the R/S key.
- **6.** Users should study the "Owners Handbook and Programming Guide" for loading program and data cards.
- **7.** In some programs, the first step is initialization, which changes the contents of the totalizing registers to zero. It is necessary to initialize when a new problem is started.
- **8.** Some inputs are in decimal format, which allows input of all the variables at one time. Users should note carefully the number of decimal places required for correct input.
- **9.** All examples start with the assumption that the user has correctly loaded the program.
- **10.** Due to the limitations of the programming steps, it is not feasible to maintain complete consistency between TI-59 and HP-97 programs, especially in the arrangement of input and output. However, the differences are insignificant.
- **11.** Any modifications to the program description part are given separately before the "User Instructions and Examples" for HP-97.
- **12.** In order to minimize the programming steps, the display generally is not controlled from the program. Users can change the display from the keyboard.
- **13.** Each program section has an "Explanation of Storage Registers" which can be of great value in problem solving as explained below:
 - **a.** In case of an incorrect input, the execution of the program can be corrected immediately by inputting correct data directly into the storage register so as to avoid repeating the entire program sequence.
 - **b.** Contents of any storage register can be checked if some problem is encountered.
 - **c.** Suppose a user is working on a program similar to, say, PP-2 or LP-1, and desires to discontinue computation before completing the entire sequence of pipe runs or rooms and would like to continue the computation at a

later time or date. The user could do this by listing the contents of all the data registers or by recording data on a card. Later, after loading the program, the user can restart from the original point by first inputting data either through data cards or through the keyboard.

14. "Enter" instruction under 'Procedure' part of the "User Instructions and Examples" relates to data input and should not be confused with the 'Enter' key which when required is shown clearly under 'Press' column.

PIPING DESIGN PROGRAMS

PP-1 GENERAL PIPING SYSTEM DESIGN PROGRAM

GENERAL DESCRIPTION

This program can be used for any fluids, since the program computes the friction factor by first determining the Reynolds number for each input. While the results have a high degree of accuracy, the program is somewhat slow since the friction factor f number is determined by reiteration. Often it takes more than six reiterations to complete the calculation.

If the program is to be used for general water systems, the user also has the choice of a faster program, PP-2, which is based on the Williams-Hazen formula and gives reasonably accurate results for HVAC and Sanitary Engineering for water temperatures from 40 to 180°F. The user could also develop programs similar to PP-2 for fluids and piping systems commonly handled by them based on the f values, which can be determined from Program PP-1.

It is recommended that all the node points of the piping distribution system be numbered so that each section can be identified. Program UP-3 has been developed for adding flows from terminals as well as for delineating the piping circuits prior to sizing and determining friction loss. Examples No. 1 and 2 show application of Program UP-3.

EQUATIONS

Basic Fanning equation:

$$h_f = f \times L \times V^2/2 \times g \times D \tag{1.1}$$

where

 h_f = Loss of head in feet of fluid at average pressure and temperature in the pipe

L =Length of pipe in feet

V = Average velocity of fluid in pipe, fps

g = Gravitational constant 32.2 fps/sec

D = Internal diameter of pipe in feet

f = Friction factor

The program is based on the following modifications of the above formula:

L = 100 ft

D = Internal diameter in inches

 $h_f = \text{Loss of head in psi}$

The revised equation is, therefore:

$$h_f = f \times 100 \times V^2 \times DS/2 \times 32.2 \times D \times 12$$

= $f \times V^2 \times DS/D \times 7.73$ [1.2]

where

DS =Specific weight of fluid in lb/cu ft

$$R = V \times D/\gamma \times 12 \tag{1.3}$$

where

 γ = Kinematic viscosity in ft²/sec

Since kinematic viscosity values are usually tabulated in centipoises, the above equation can be rearranged by the following relationship:

$$\gamma = 0.00067 \times \mu/DS$$

where

 μ = Viscosity in centipoises

Substituting in equation 1.3,

$$R = V \times D \times DS/\mu \times .00067 \times 12$$

= $V \times D \times DS \times 124/\mu$ [1.4]

If R < 2100, f = 64/2100

The Colebrook equation for f is:

$$1/\sqrt{f} = -2\log_{10}e \times 12/3.7 \times D + 2.51/R \times \sqrt{f}$$
 [1.5]

where

e = Mean depth of surface roughness

If
$$Z = \frac{1}{\sqrt{f}}$$
, equation 1.5 can be rearranged

$$0 = Z + 2 \log_{10} [3.2 \times e/D + 2.51 \times Z/R]$$

The program solves the above equation by reiteration and finds the value of Z and f.

Dynamic losses for the fitting in psi

$$= FF \times DS \times V^2/(2 \times g \times 144)$$

= $FF \times DS \times V^2/9,274$ [1.6]

where

FF = Total of fitting K factors for particular run

$$V = Q \times 576/(\pi \times DS \times D^2)$$
 [1.7]

where

Q = Flow rate in lb/sec

For gases and vapors

$$DSX = DSI \times PAX/PAI$$
 [1.8]

where

DSX =Specific weight at new pressure PAX

DSI =Specific weight at initial pressure PAI

PAX/PAI =New absolute and initial pressure

OPERATING FEATURES

The program can be used for determining flow rate capacities of the piping system based on the specified maximum velocity and pressure drop per 100 ft. Input of the maximum velocity sets up the internal flag for this computation. This flag has to be reset by pressing key 2nd E'. After that, the program will be ready for computing velocity and pressure drop based on the flow rates, pipe size, and description of the fittings. It should be noted that maximum velocity criteria are used for pipe sizing only and do not enter into the calculations when the program computes the pressure loss.

When computing the pressure drop, the program prints out continuous total pressure loss so that the designer can monitor it to ensure that the total pressure loss will not exceed the desired limit. The program allows the user to change the pressure drop and the pipe size so as not to exceed the desired total pressure loss. Since the pressure losses are printed out for all the node points, this information can be utilized for sizing the branch piping so as to equalize pressure loss of all the circuits in order to minimize pipe sizes within the limits of maximum velocity.

Designers can input either nominal pipe diameter or actual internal diameter, depending on the accuracy desired.

TABLE 1

Input a	nd Output Format for Data	Conversion Factor
Flow:	lb/sec lb/min lb/hr	1 1/60 1/3600
	gal/sec gal/min gal/hr	8.33 8.33/60 8.33/3600
	cu ft/sec cu ft/min cu ft/hr	DS DS/60 DS/3600
	DS = Specific density	
	Velocity—fps fpm fph	1 60 3600
·	Pressure—psi Ft of water In. of water	$1 \\ 2.31 \\ 27.74$

As mentioned, the program can be used for all fluids. Generally, designers use different pressure and flow units for the liquids than for the gases. The basic program is based on the following units:

> Pressure—psi Velocity—fps Flow—lb/sec

However, any other units can be used by inputting conversion constants. Table 1 shows some of the suggested conversion constants, and users can develop additional constants required by them.

The initial input, which requires eight items of data, is arranged in prompting mode for the convenience of users. PA, absolute pressure, has to be input for gases so that the program can compute the changes in the specific density. The program skips this step for

liquids. This is achieved by inputting 0 for gases and 1 for liquids after prompt G/L.

The later input is not in the prompting mode since this arrangement expedites computation and saves paper.

REFERENCE DATA

Users should refer to the following manuals to obtain data for coefficients for fittings and pipe roughness factors:

ASHRAE Handbook of Fundamentals

Thermodynamic Properties of Water Including Vapor, Liquid and Solid Phases, by J. H. Keenan, F. G. Keyes, D. G. Hill, and J. G. Moore

Hydraulic Institute Pipe Friction Manual

EXAMPLE NO. 1

Determine pipe sizes and pressure loss for a steam system having the following data:

1. Absolute pressure at entrance	150 psi
2. Surface roughness of piping system	0.00017
3. Specific weight of steam	

0.3316 lb/cu ft at entrance 0.0158 **4.** Viscosity in centipoise

11,000 fpm 5. Maximum velocity

6. Maximum pressure loss 3.5 psi

Run No. 1.02* Flow Piping length K factor for fittings	10,000 lb/hr 250 ft 3.5	1.02 10000.00 10000.00 0.00 0.00 250 0.00 3.5	R.NO QB QM DIA L FF
Run No. 2.03* Flow Piping length K factor for fittings	71,000 lb/hr 150 ft 1.5	2.03 61000.00 71000.00 0.00 0.00150	R.NO QB QM DIA L FF

^{*}These outputs have been obtained from Program UP-3. See page

EXAMPLE NO. 2

Determine pipe sizes and pressure loss for hot water system having the following data:

1. Water temperature	350°F.
2. Surface roughness of piping system	.00013

3. Specific weight of water at design 55.29 lb/cu ft condition

Condition	
4. Viscosity in centipoise	0.16
5. Equipment pressure loss	3.27 ft

7.5 fps 6. Maximum velocity

4 ft/100 ft 7. Maximum pressure loss

Run No. 1.02* Flow Piping length K factor for fittings	2500 gpm 139 ft 2.9	1.02 2500.00 2500.00 0.00 0.00	R. NO QB QM DIA 139 L 2.9 FF
Run No. 2.03* Flow Piping length K factor for fittings	1800 gpm 120 ft. 3.7	2.03 -700.00 1800.00 0.00 0.00	R. NO QB QM DIA 120 L 3.7 FF

^{*}These outputs have been obtained from Program UP-3. See page

PP-1
GENERAL PIPING SYSTEM DESIGN PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step	Procedure	Enter		Press		Print Out	Explanation
	Example 1						
-	. Initialize	ı	I	2nd	Ę,	c c	
.2	. Enter conversion factor for pressure to convert to psi	-	I	I	R/S		What is conversion factor for pressure?
က်	. Enter conversion factor for velocity to convert to fpm	09	ı	1	R/S	.09 90°	What is conversion factor for velocity?
4;	. Enter conversion factor for flow rate to convert to lb/hr	3600	I	1/x	R/S	00 0002777778	What is conversion factor for flow rate?
ശ്	. Enter pipe surface roughness	0.00017	I	I	R/S	0.00017	What is pipe surface roughness?
9	. Enter specific density of steam at 150 psi absolute	.3316	I	1	R/S	0.3316	What is specific density of fluid?
7.	. Enter viscosity in centipoise at 150 psi absolute	.0158	I	l	R/S	0.0158	What is viscosity?
φ.	. Enter 0 for gas	0	0	0	R/S	67L 0.	ls it gas or liquid?
6	. Enter absolute pressure	150	1	I	R/S	PB 150.	What is absolute pressure?
	To calculate flow rate for different pipe sizes						
11.	Enter maximum allowable velocity Enter maximum allowable pressure drop	11000 3.5	1 1	2nd 2nd	ď Ý	11000.00 VM 3.50 PD/C	
12.	. Enter diameter	12	I	1	ω	12.00 DIA 171889.10 Q 11000.00 V 7.62 PD/C	Flow, lb/hr Velocity, fpm Pressure drop, psi/100 ft

			Without initialization, program will not compute pressure loss.	Velocity, fpm Pressure drop, psi/100 ft	Pressure drop Total pressure drop					
DIA 0 0 V		ц щ щ д э э	R. ND DIA Q	PD/C	HEHE M		8. DIA 0.80	PD/C	AF BB	
10.00 119367.43 11000.00	8.00 76395.16 11000.00	4154 10633.86 3.86	CP 1.02 10.00 10000.00	9215,24 1,42	250.00 3.50 6.51 6.51		2.03 8.00 71000.00	10686,62 2,39	150.00 1.50 5.21 11.72	
В	ш	æ	OBY É		ОШ		∢ ₪ ∪		О Ш	
l	l	I	2nd 		1 1		111		1-1	
I	I	I	1 111		1 1		111		1 1	
10	∞	9	1.02 10 100,000		250 3.5		2.03 10 7100		150 1.50	
Repeat step 12 as many times as desired.		The above information can be used for pipe sizing.	 13. Initialize and reset flag 0 14. Enter run no. 15. Enter pipe diameter 16. Enter flow rate 		17. Enter length 18. Enter total K factor for fittings	Repeat steps 14 through 18.				

PP-1 (Continued)
GENERAL PIPING SYSTEM DESIGN PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step	ep Procedure	Enter		Press		Print Out	Explanation
L	If users desire, they can find f value, new specific density, or the value of any other constants with the printer in TRACE mode.						
<u> </u>	19. To find f value	1	RCL	2	7		
						.0146800104 RCL	f value
~~~	20. To find specific density	ı	RCL	-	თ	. 2924418047	Specific density
	Example 2						
	<ol> <li>Initialize</li> <li>Enter conversion factor for pressure to convert to ft</li> </ol>	2.3	1 1	2nd _	E' R/S	CP 2, 3	What is conversion factor for pressure?
	3. Enter conversion factor for velocity to convert to fps	<del>-</del>	1	1	R/S	°.	What is conversion factor for velocity?
	4. Enter conversion factor for flow rate to convert to gpm	8.33÷60	I	I	R/S	. 1388333333	What is conversion factor for flow rate?
	5. Enter surface roughness	0.00013	ı	1	R/S	0.00013	What is surface roughness?
	6. Enter specific density	55.29	I	ı	R/S	90. 90. 80.	What is specific density of fluid?
	7. Enter viscosity in centipoise	0.16	I	ı	R/S	VS 0.16	What is viscosity?
	8. Enter 1 for liquid	-	1	I	R/S	67L 1.	Is it gas or liquid?

						<ul><li>Changed to 14-in. diameter.</li><li>Repeat steps 14 through 16.</li></ul>		
₩ ( > q	) 					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	R.N.D.DIA	TEGE TEGE
 	<del>.</del>	23 24.52 44.55 1.00	8 10 10 40,0 00,0 00,0	01 0.44 0.67.1	ш. Сэ	888 5 Hode 6 Ho		0000
Ϋ́	'n	ω	ω	ω	ù	∢ m ∪	<b>∢</b> ₪ ∪	Ош
2nd	Znd	I	I .	I	2nd	1 1 1	1 1 1	1 1
l	I	I	ı	ı	I	111	1 1 1	1 1
7.5	4	12	14	ω	I	1.02 12 2500	1.02 14 2500	139
To calculate flow rate for different pipe sizes repeat steps 10 through 12 from Example no. 1.					Initialize and reset flag 0 for calculating p.d. Repeat steps	14 through 18 from Example no. 1.		

PP-1 (Continued)
GENERAL PIPING SYSTEM DESIGN PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

	Explanation			
	Expla	N.N.DIAD	768 88 88 8834 88 8	27 27
	Print Out	2000 2000 2000 2000 2000 2000 2000 200	00 00.0.9.4. 0.0. 00.00.4. 0.0.0.0.4. 0.0.0.0.4. 0.0.0.0.0	0.0130824705
		∢ m ∪	ОШ	
2	Press	1 1 1	1 1	8
Name of Cards: 1 WO		1 1 1	1 1	RCL
- 1	Enter	2.03 12 1800	3.7 3.7	-
מבנו וויסן ווססן וסוגס טוגם בעטווו בבס	Procedure			₽
	Step Proce			To find f
L	٠,			

### **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
INV	Prints alphanumeric identification of data
LNX	Prints questioning, prompts, and partitions
E'	Resets flag 1, stores initial value of $f$ as .03, clears registers R16 and R29, prints prompt CP;
	with R/S, prints and stores display in R24 and prints CV;
	with R/S, prints and stores display in R23 and prints CQ;
	with R/S, prints and stores display in R22 and prints $e$ ;
	with R/S, prints and stores display in R18 and prints DS;
	with R/S, prints and stores display in R19 and prints VS;
	with R/S, prints and stores display in R20 and prints GL;
	with R/S, prints display if zero goes to SBR CLR, otherwise sets flag 0
CE	Prints CP, CV, and CQ
CLR	Sets and resets flag 0 for gas; prints PA;
	with R/S, prints and stores display in R25
A	Prints display and R No.
В	Calls SBR — and stores display in R11
C	Calls SBR SBR; converts flow to lb/hr using R22; computes and prints velocity; computes and prints pressure drop/100 ft
EE	Computes $f$
1/X	Reiterates for computing $f$
STO	Reiterates for computing $f$
$\sqrt{X}$	Stores 0.031 in R27 if flow is laminar
RCL	Computes pressure drop/100 ft; if flag 1 is set goes to SBR ), otherwise prints value
SUM	Prints PD/C
	Prints DIA
SBR	Prints Q
RST	Prints V
D	Stores display in R13 and prints display and L
E	Stores display in R14; prints display and FF;

	computes friction and dynamic loss; prints values; calls SBR Y ^x
Y ^x	Adds and totalizes pressure drop in R16; if flag 0 is set goes to R/S, otherwise adjusts specific weight for new pressure
R/S	Stops
A'	Prints and stores displays in R13; prints VM; converts R13 to velocity in FPS; sets flag 1; computes flow for 1-in. pipe and stores in R06
<b>B</b> ′	Prints and stores display
X⇔T	Computes flow for a given pipe; computes pressure loss using SBR EE and if higher than limit goes to SBR), otherwise corrects flow units and prints data
)	Reduces velocity and flow in proportion required and prints data
÷	Prints data

### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	DSZ for solving value of $f$
R01	Not used
R02	STO and RCL IND
R03	For solving value of f
R04	For solving value of $f$
R05	PD/C
R06	$QV_{\underline{I}} = \text{flow for 1-in. pipe}$
R07	$1/\sqrt{f}$
R08	$3.24 \times e/D$
R09	1EE-3
R10	Reynolds number
R11	Diameter
R12	Flow
R13	Length; also velocity VM
R14	Fitting factor
R15	For adding or deducting pressure
	drop
R16	For total pressure drop
R17	Velocity maximum
R18	e,roughness
R19	Density, lb/cu ft
R20	Viscosity
R21	Velocity
R22	Constant for input flow conversion
R23	Constant for velocity conversion
R24	Constant for PD conversion
R25	Absolute pressure
R26	Limiting PD/C
R27	f
R28	Not used
R29	Alphanumeric code

PP-1	GENERAL PIPING
SYSTE	M DESIGN PROGRAM

PP-1 GENERAL PIPING SYSTEM DESIGN PROGRA	AM	090 29 29 091 71 SBR	154 71 SBR 155 23 LNX
SUBROUTINES  001 22 INV 018 23 LNX 035 10 E' 133 24 CE 144 25 CLR 164 11 A 180 12 B 190 13 C 229 52 EE 279 35 1/X 286 42 STD 352 34 \(\frac{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{	029 69 0P 030 02 02 031 69 0P 032 05 05 033 92 RTN 034 76 LBL 035 10 E' 036 22 INV 037 86 STF 038 01 01 039 06 6 040 42 ST0 041 07 07 042 00 0 043 42 ST0 044 16 16 045 42 ST0 046 29 29 047 71 SBR 048 24 CE 050 42 ST0 051 24 24 052 99 PRT 053 98 ADV 055 42 ST0 056 29 29 057 71 SBR	092 23 LNX 093 91 R/S 094 42 STD 095 19 19 096 99 PRT 097 98 ADV 098 04 4 099 02 2 100 03 3 101 06 6 102 42 STD 103 29 29 104 71 SBR 105 23 LNX 106 91 R/S 107 42 STD 108 20 20 109 99 PRT 110 98 ADV 111 02 2 112 02 2 113 06 6 114 03 3 115 02 2 116 07 7 117 42 STD 118 29 29 119 71 SBR 120 23 LNX 121 29 CP 122 91 R/S	156 91 R/S 157 42 STD 158 25 25 159 99 PRT 160 98 ADV 161 98 ADV 162 92 RTN 163 76 LBL 164 11 A 165 32 X;T 166 03 3 167 05 5 168 04 4 169 00 0 170 03 3 171 01 1 172 03 3 171 01 1 172 03 3 171 01 1 172 03 BR 173 02 2 174 42 STD 175 29 29 176 71 SBR 177 22 INV 178 91 R/S 179 76 LBL 180 12 B 181 42 STD 182 11 11 183 71 SBR 181 42 STD 182 11 11 183 71 SBR 184 75 - 185 87 IFF 186 01 01
LISTING  000 76 LBL  001 22 INV  002 22 INV  003 58 FIX  004 25 CLR  005 69 DP  006 00 00 00  007 43 RCL  008 29 29  009 69 DP  010 04 04  011 32 X\$T  012 58 FIX  013 02 02  014 69 DP  015 06 06  016 92 RTN  017 76 LBL  018 23 LNX  019 22 INV  020 58 FIX  021 03 3  022 69 DP  023 17 17  024 25 CLR  025 69 DP	059 91 R/S 060 42 STO 061 23 23 062 99 PRT 063 98 ADV 064 01 1 065 42 STO 066 29 29 067 71 SBR 068 24 CE 069 91 R/S 070 42 STO 071 22 22 072 99 PRT 073 98 ADV 074 05 5 075 04 4 077 29 29 077 29 29 078 71 SBR 079 23 LNX 080 91 R/S 081 42 STO 082 18 18 083 99 PRT 084 98 ADV 085 01 1 086 06 6 087 03 3 088 06 6 089 42 STO	123 99 PRT 124 98 ADV 125 67 EQ 126 25 CLR 127 86 STF 128 00 00 129 98 ADV 130 98 ADV 131 91 R/S 132 76 LBL 133 24 CE 134 01 1 135 05 5 136 03 3 137 03 3 138 44 SUM 139 29 29 140 71 SBR 141 23 LNX 142 92 RTN 143 76 LBL 144 25 CLR 144 25 CLR 145 22 INV 146 86 STF 147 00 00 148 03 3 150 01 1 151 03 3 152 42 STD 153 29 29	187 32 X T 188 91 R / S 189 76 LBL 190 13 C 191 71 SBR 192 71 SBR 193 98 ADV 194 53 ( 195 24 CE 196 65 X 197 43 RCL 198 22 22 199 54 ) 200 42 STD 201 12 12 202 53 ( 203 53 C 204 43 RCL 205 12 12 206 65 X 207 05 5 208 07 7 209 06 6 210 55 ÷ 211 89 f 212 55 ÷ 213 43 RCL 214 19 19 215 55 ÷ 216 43 RCL 217 11 11

		PP-1 GENERAL PIPIN	IG SYSTEM DESIGN PROGR
218 33 X² 219 54 ) 220 42 STD 221 21 21 222 43 RCL 223 43 RCL 224 23 23 225 54 ) 226 71 SBR 227 81 RST 228 76 LBL 229 52 EE 230 02 0 1 2332 00 0 234 32 X↓T 235 53 (CL 237 21 21 238 65 X 249 11 11 246 02 2 247 04	282 02 02 283 42 STD 284 00 00 285 76 LBL 286 42 STD 287 69 DP 288 23 RCL 287 69 DP 288 24 SUM 291 44 SUM 292 07 07 293 53 RCL 290 09 09 291 44 SUM 292 07 07 293 53 RCL 295 07 07 296 85 + 297 53 RCL 297 53 RCL 297 53 RCL 298 43 RCL 297 53 RCL 297 53 RCL 298 43 RCL 299 43 RCL 299 43 RCL 291 44 RCL 291 45 RCL 291 45 RCL 291 47 RCL	346 44 SUM 347 077 SBR 348 35 1/XN 349 92 LBL 351 74 SBCLN 352 353 355 001 1 077 353 355 001 1 077 353 355 001 1 077 354 92 RTNL 355 001 42 ST07 357 42 RCLN 358 27 1/X0 369 27 1/X0 360 33 1/X0 361 2 ST07 362 364 43 RCLN 363 364 43 RCLN 364 43 RCLN 365 RCLN 367 358 42 X X X X X X X X X X X X X X X X X X	410 05 5 HV N L RT T 429 SBR V N L BBR T 3419 01 13 STD 98 SBR V N A118 421 422 422 422 422 422 422 422 422 422

485 00 0 55 486 85 + 55 487 43 RCL 55 488 14 14 45 489 65 × 55 490 43 RCL 55 491 19 19 55 492 65 × 55 493 43 RCL 55 494 24 24 55 495 65 × 56 496 43 RCL 56 497 21 21 56 498 33 X² 56 499 55 ÷ 56 498 33 X² 56 499 55 ÷ 56 500 07 7 56 501 02 2 56 502 07 7 56 503 04 4 56 504 54 ) 56 505 32 X↓T 57 506 03 3 57 507 03 3 57 508 01 1 57 509 06 6 57 510 42 ST□ 57 511 29 29 57 512 71 SBR 57 513 22 INV 57 514 71 SBR 57 515 45 Y× 58 516 91 R/S 58 517 76 LBL 58 518 45 Y× 58 519 44 SUM 58 521 43 RCL 58 522 16 16 58 523 32 X↓T 58 524 07 7 58 525 07 7 58 526 03 3 59 527 03 3	53 76 LBL 54 91 RTN 55 91 RTV 56 76 RT LB. 57 16 RTV 57 17 RT 57
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

353642237211236235743229233211526433365354422433229233211522643333653544224
343536422372112362357432292332115264333653354424537533421 52364054141427542340754224141427597555425405341641642542
00067890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012456789012456789012456789012456789012456789012456789012456789012456789012456789012456789012456789012456789012456789001245678900124567890012456789000000000000000000000000000000000000

66612345667890112344566666666666666666666666666666666666	54325425422423625537552655327742713135749976920000000000000000000000000000000000	(L12 L14 L2 02 C15 R S S RL R SSR SRR SSARLD X 1 7 3 3 1 6 T 29 RV R O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
----------------------------------------------------------	----------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------

#### **SPECIAL NOTES FOR HP-97 USERS**

- 1. As shown in the "User Instructions and Examples," some of the fixed data has to be input directly through the keyboard. This should be done with the printer in the TRACE mode so that proper record is kept of the data.
- **2.** The program has two flags:
  - Flag 0— Set flag 0 for liquid. Clear flag 0 for gases and vapor.
  - Flag 1— Set flag 1 for pipe sizing. Clear flag 1 for pressure loss calculations.

Flag 1 is set automatically, by input under "Labels." Both the flags have to be cleared manually.

3. The totalizing register R9 should be cleared manually prior to starting a new problem.

PP-1
GENERAL PIPING SYSTEM DESIGN PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation								Remove from TRACE mode after this step.				Flow, lb/hr Velocity, fpm Pressure loss, psi					
Print Out			156.08385 STO8 .01588 STO1 7588 8888 177		S708 8078 50888 84			.00017 STOE	11000.00000 *** 3.50000 ***		6.00000 ***	41615,67354 *** 10632,45328 *** 3,58888 ***	8.00000 ***	76539,80329 *** 11000,00000 *** 2.64320 ***	16.00000 ***	119593,4425 *** 11888,88888 *** 2,81963 ***	
		2	0 - <u>7</u>	<b>×</b>	< α	ပ	۵	ш о	∢ മ		œ		В		Ф		
Press		DSP	STO STO	I	STO	STO	STO	ST0 GT0	* *		1		1		I		
		ı	1 1 1	I	1	l I	ı	- <del>+</del>	1 1		ı		ı		ı		
Enter		I	150 .158 3600	3000	9	3 ←	.3316	.00017	11000 3.5		9		∞		10		
Procedure	Example 1	Put printer in TRACE mode		Enter conversion for flow	Entor conversion for volcoity			Enter roughness factor; clear flag 0 if set	Enter maximum velocity Enter pressure loss/100 ft	Try different pipe sizes.	Enter pipe internal diameter		Repeat step 10 as many times				
Step			- 6 %	λį	_	. rc	9	7.	ထ် တ်		10.						

Remove from TRACE mode after this step.		Velocity, fpm Pressure loss, lb/100 ft	Pressure loss for run Total pressure loss									
CF1	***	***	60 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	***	\$ \$ \tau \tau \tau \tau \tau \tau \tau \tau	\$ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			L1	6 STC1 6 ENT1 7 **	- 10 W W W W	
	1.02000 10.00000	188960,6888 9197,82871 1,41689	253,63668 3,56668 6,48314 6,48314	2,83388 8,8888	71808,86869 16283,84122 2,27783	156,86866 1,58866 4,36793	0		8,888638 8,88888	. 16888 8.33888 68.98888 8.38888	1,66666 2,36666 55,29666	
-	<b>∀</b> 8	O	Ω Ш	<b>∀</b> ₪	U	ΩШ			വ	<b>←</b>	A B O D II	0 -
181	1 1	1	1 1	1 1	1	1 1			DSP	ST0 _	ST0 ST0 ST0 ST0	LBL
4	1 1	1	1 1	1 1	1	1 1			CLX	Enter		٠ +
1	1.02	10000	250 3.5	2.3	71000	150 1.5			ı	.16 8.33 60	- 1 2.3 55.29	2
For calculating pressure loss with printer in TRACE mode	Enter run no. Enter pipe diameter	Enter flow, lb/hr	Enter length Enter fitting factor	Repeat steps 1 through 5 as many times as desired.			Example 2	Put printer in TRACE mode	Clear register; display 5	Enter viscosity Enter conversion for flow	Enter conversion for velocity Enter conversion for pressure Enter specific density	
	- 2	က်	5. 7.						<del>-</del>	9. %	4.6.5.	:

PP-1 (Continued)
GENERAL PIPING SYSTEM DESIGN PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

	Explanation				Flow, gpm Velocity, fps Pressure drop, ft							Switch off from TRACE mode after this step.
			* *	*	* * * * * * * * *		*	* * *	*	* * *		9.70 9.70 9.70
	Print Out		7.58888	12,33388	2345,87823 7,5006 1,00278		14.00060	3192.99664 7.50666 0.83464	9, ଓଡ଼ଜନ	1842,68899 7,58888 1,63825		9,9559
֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			<b>∀</b> 8		ω		а		ω.			o <del>-</del>
railine of cards. Office	Press		44		<u> </u>		1		ı			STO
			1 1		I		1		I			1 %
	Enter		7.5		12		14		80			0
	Procedure	For pipe sizing	Enter maximum velocity Enter pressure loss/100 ft	Try different pipe sizes.	Enter pipe internal diameter	Repeat step 1 as many times as desired.					For calculating pressure loss with printer in TRACE mode	Clear Register R9 Clear flag 1
	Step		ထံ တံ		10.							- 6
											_	

								·	
	Velocity, fpm Pressure loss, ft/100 ft	Pressure loss for run Total pressure loss							
1.82608 *** 14.88808 ***	2506.00000 *** 5.87224 *** 8.51539 ***	139,88888 *** 2,98868 *** 2,88762 *** 2,88762 ***	2.03005 ***	1800.00000 *** 5.83602 *** 0.60439 ***	123,00000 *** 3,70000 *** 2,42921 *** 4,51683 ***	3,27600 51+9 R0L9 7,78683 ***			
<b>∀</b> ⊠	O	ОШ	<b>∀</b> 8	U	ОШ	<b>ာ</b> ဝ			
1 1	1	1 1	1 1	I	1 1	+ RCL			
1 1	1	1 1	1 1	1	1 1	ST0 -			
1.02	2500	2.9	2.03	1800	3.7	3.27			
3. Enter run no. 4. Enter pipe diameter	5. Enter flow, gpm	6. Enter length 7. Enter fitting factor	Repeat steps 3 through 7 as many times as desired.			8. To add equipment pressure drop put printer in TRACE mode and	continue in this manner.		

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
a	Prints display (maximum velocity); divides by RB and stores in R4; sets flag 1
b	Prints display (pressure drop/100 ft); divides by RC; and stores in R3
A	Prints display (run no.)
В	Prints and stores display (diameter) in R2; if flag 1 is set goes to SBR 8
С	Prints display (flow rate); calculates and prints velocity and continues through LBL 5
5	Calculates Reynolds number; if < 2100 goes to SBR 0; continues through LBL 1
1	$\operatorname{Calculates} f$
3	Calculates and prints friction loss/100 ft
D	Prints and stores display (length) in R4
E	Prints display (fitting factor); calculates dynamic pressure loss and frictional pressure loss; prints total pressure loss; totalizes in R9 and prints running total; if flag 0 is set goes to SBR 4, otherwise calculates revised absolute pressure for gas
0	Calculates value of equation 1.5
4	Stops execution
8	Recalls R4; stores in R5; goes to SBR 5
6	If R3 is more than calculated pressure, goes to SBR 7, otherwise computes revised velocity
7	Goes to SBR 9 and prints R6
9	Calculates and prints flow and velocity

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
RO	Absolute pressure
<b>R</b> 1	Viscosity
R2	Diameter
<b>R</b> 3	Pressure drop/100 ft criteria
R4	Maximum velocity
R5	Velocity
R6	f; calculated PD/C
<b>R</b> 7	Reynolds number
<b>R</b> 8	Variable
<b>R</b> 9	Total pressure drop
RA	Constant for input flow conversion

RB	Constant for velocity conversion
RC	Constant for pressure drop conversion
RD	Density, lb/cu ft
RE	e—Roughness factor

# PP-1 (HP-97) GENERAL PIPING

SYS	TEM DE	SÍGN PROG	RAM		
LIST	ING		047	RCLD	36 14
001	*LBLa	21 16 11	048	×	-35
002	PRTX	-14	049	1	61
003	RCLB	36 12	050	2	02
004	÷	-24	<i>0</i> 51	4	64
	ST04	35 <b>0</b> 4	<b>05</b> 2	X	-35
005 005					36 01
006	SF1	16 21 01	053 054	RCL1	
007	R/S	51	<i>0</i> 54	÷	-24
008	*LBLb	21 16 12	<b>05</b> 5	STO7	35 07
009	PRTX	-14	<i>0</i> 56	2	02
010	RCLC	<i>36</i> 13	<i>0</i> 57	1	01
011	÷	-24	<b>05</b> 8	0	00
012	ST03	35 <i>0</i> 3	<i>0</i> 59	0	00
013	SPC	16-11	060	X>7?	16-34
014	SPC	16-11	061	GT00	22 00
015	R/S	51	062	*LBL1	21 01
016	*LBLA	21 11	063	GSB2	23 02
917	PRTX	-14	064	ST08	35 08
018	R/S	51	065		-62
019	*LBLB	21 12	056	1	01
020	PRTX	-14	967	ST-6	35-45 0 <i>6</i>
021	STO2	35 02	063	GSB2	23 02
022	SPC	16-11	<i>069</i>	ST-8	35-45 08
02Z 023	F1?	16 23 01	970 970	31 0	-62
	GTOS	16 23 <b>61</b> 22 <b>08</b>		1	01
024			971 972		
025	R/S	51	072	X	-35 36 00
026	*LBLC	21 13	073	RCL8	<i>36</i> <b>0</b> 8
027	PRTX	-14	074	÷	-24
028	RCLA	36 11	<i>0</i> 75	ST-6	35-45 <i>0€</i>
029	X	-35	076	RCL8	36 <b>0</b> 8
030	1	Ø1	<b>07</b> 7	ABS	16 31
031	8	<b>0</b> 8	078		-62
032	3	<b>0</b> 3	279	2	<b>0</b> 2
033	X	-35	080	X¥Y?	16-35
034	RCL2	<i>36 02</i>	081	GT01	22.01
035	Χz	53	082	RCL6	36 <b>0</b> 6
<i>036</i>	÷	-24	083	Χs	53
037	RCLD	36 14	<b>0</b> 84	178	52
038	÷	-24	085	*LBL3	21 03
039	ST05	<b>35</b> 05	086	RCLC	36 13
040	RCLB	36 12	087	X	-35
041	X	-35	<b>088</b>	RCLD	36 14
842	PRTX	-14	089	×	-35
043	*LBL5	21 05	690	RCL5	36 <b>0</b> 5
044	RCL5	36 <b>0</b> 5	091	X5	53
045	RCL2	36 <b>0</b> 2	<b>0</b> 92	X	-35
045 046	X	-35	093	^7	-35 07
040	*	-33	073	•	01

217

218

220

221

222

RCLA

RCL5

RCLB

X 223 PRTX 223 PRTX -14 224 RTN 24

÷

219 PRTX

**5**3

-24

01

∂8

63

2**0**8 X2

209

210

211

212

1

8

3

213 RCL5 36 05 214 × -35

215 RCLD 36 14 216 × -35

÷

36 11

-24

-14

36 05

36 12

-35

<i>0</i> 94		-62	151	ø	00
095	7	<b>0</b> 7	152	3	<b>0</b> 3
<b>096</b>	3	03	153	1	<b>6</b> 1
097	÷	-24	154	GSB3	23 03
098	RCL2	36 02	155	*LBL2	21 02
099	÷	-24	156	2	02
100	ST06	35 <b>0</b> 6			-62
			157	•	
101	F1?	16 23 81	158	5	Ø5
102	GT06	22 06	159	1	01
163	PRTX	-14	160	RCL6	36 <i>0</i> 6
104	SPC	16-11	161	Х	-35
105	RTN	24	162	RCL7	36 07
106	*LBLD	21 14	163	÷	-24
107	PRTX	-14	164	3	<b>0</b> 3
108	ST04	35 04	165		-62
109	R/S	5i	166	2	02
110	*LBLE	21 15	167	4	84
111	PRTX	-14	168	RCLE	36 15
112	RCLD	36 14	169	X	-35
113	X	-35	170	RCL2	36 02
114	RCLC	<i>36</i> 13	171	÷	-24
115	X	-35	172	+	-55
					16 32
116	RCL5	36 <b>0</b> 5	173	L06	
117	χ2	53	174	. 2	02
118	×	-35	175	X	-35
119	9	<b>8</b> 9	17€	RCL6	36 06
120	2	02	177	+	-55
121	7	07	178	RTN	24
122	4	04	179	*LBL4	21 04
123	÷	-24	180	SPC	16-11
124	RCL6	36 <b>0</b> 6	181	RTN	24
125	RCL4	36 04	182	*LBL8	21 08
126	X	-35	183	RCL4	36 04
127	1	<b>0</b> 1	184	ST05	35 65
128	8	00	185	GSB5	23 05
129	9	00	186	SPC	16-11
130	÷	-24	187	SPC	16-11
131	+	-55	188	RTH	24
132	PRTX	-14	189	*LBL6	21 06
133	ST+9	35-55 09	190	RCL3	36 03
134	RCL9	36 09	191	X>Y?	16-34
		-14	192		
135	PRTX			GT07	22 07 36 06
136	F0?	16 23 00	193	RCL6	36 06
137	GT04	22 04	194	÷	-24
138	RCL0	36 00	195	√X	54
139	-	-45	196	ST×5	35-35 05
140	CHS	-22	197	GSB9	23 09
141	RCL0	<i>36 00</i>	198	RCL3	36 63
142	÷	-24	199	PRTX	-14
143	RCLD	36 14	200	RTN	24
144	x	-35	201	*LBL7	21 07
145	STOD	35 14	2 <b>0</b> 2	GSB9	23 09
146	SPC	16-11	203	RCL6	<i>36 06</i>
147	SFC	16-11	204	PRTX	-14
148	R/S	51	205	RTN	24
149	*LBL0	21 00	206	*LBL9	21 09
150		-62	207	RCL2	36 02
100	•	-02	201	NULL	30 62

### PP-2

# WATER PIPING SYSTEM DESIGN PROGRAM

#### **GENERAL DESCRIPTION**

As explained under Program PP-1, Program PP-2 has the same features, but is based on the Williams-Hazen formula which makes it operate faster. This formula gives accurate values for water temperature at about 60°F. However, the results are reasonably valid for HVAC and Sanitary Engineering for water temperatures from 40 to 180°F. A comparison of the two programs, PP-1 and PP-2, is given under reference data. For further description, the user should read the description for Program PP-1.

#### **EQUATIONS**

$$h_f = 0.002083 \times L \times \left(\frac{100}{C}\right)^{1.85} \times \frac{Q^{1.85}}{d^{4.87}}$$
 [1.9]

where

 $h_f$  = Friction head loss in feet of water

d = Inside diameter of the pipe in inches

Q = Flow in gpm

L =Length of pipe in feet

C =Constant for inside pipe roughness

If d = 1 in., and L = 100 ft,

$$h_f = 0.002083 \times 100 \times (100)^{1.85} \times \left(\frac{Q_{f1}}{C}\right)^{1.85}$$
  
=  $1044 \left(\frac{Q_{f1}}{C}\right)^{1.85}$ 

or 
$$Q_{f1} = (h_f/1044)^{1/1.85} \times C$$
 [1.10]

where

 $Q_{f1}$  = Flow through 1-in. pipe for specified friction loss/100 ft

$$Q = V \times \frac{\pi}{4} \times \left(\frac{d}{12}\right)^2 \times 60 \times 7.48 = d^2 \times V/.41$$
 [1.11]

where

Q = Flow in gpm

V =Velocity in fps

d =Inside diameter of pipe in inches

60 = 60 sec/min

7.48 = 7.48 gal/cu ft

If d = 1 in.,

 $QV_1 = V/.41$ 

where

 $QV_1$  = Flow through 1-in. pipe for specified maximum velocity in fps

Also from equation 1.9

$$\frac{(Q_{R})^{1.85}}{d_2^{4.87}} = \frac{(Q_{R})^{1.85}}{d_1^{4.87}}$$
[1.12]

If d = 1 in.,

$$Q_{f2} = Q_{f1} \times d_2^{\frac{4.87}{1.85}}$$
$$= Q_{f1}d_2^{2.63}$$

where

 $Q_{f2}$  = Flow based on friction loss through pipe with inside diameter  $d_2$ 

From equation 1.11

$$\frac{Q_{v_2}}{Q_{v_1}} = \frac{d_2^2}{d_1^2} \tag{1.13}$$

If  $d_1 = 1$  in.,

$$Q_{v2} = Q_{v1} \times d_2^2$$

where

 $Q_{V2}$  = Flow based on velocity through pipe with inside diameter  $d_2$ 

Head loss through fittings = 
$$K \frac{V^2}{2g}$$
 [1.14]

where

K = Total fitting K factor or dynamic loss coefficient

V =Pipe velocity in fps

 $g = Gravitational constant 32.2 ft/sec^2$ 

#### **OPERATING FEATURES**

This program has the same operating features as program PP-1 and is based on one flag only.

- 1. No flag—program calculates friction head loss.
- **2.** Set flag—program can be used for pipe sizing in the following alternate modes:
  - **a.** Given the gallons per minute, friction head loss, maximum velocity, and length, the program calculates the pipe inside diameter in inches.
  - **b.** Given the pipe inside diameter, friction head loss, maximum velocity, and length, the program

calculates flow in gallons per minute or, if required, a table of pipe diameters and flows.

and PP-2, users could develop C values suitable for their applications.

#### **REFERENCE DATA**

The data for dynamic loss coefficients for fittings can be obtained from the Hydraulic Institute Pipe Friction Manual.

Suggested C values for different pipe materials are given below. For additional information, refer to ASH-RAE Handbook of Fundamentals.

After studying the comparison of Programs PP-1

#### **C VALUES FOR DESIGN PURPOSES**

Pipe Material	С
Plastic pipe	150
Cement asbestos	140
Copper, brass, tin, and lead	130
Steel closed circuit with water treatment	140
Steel open circuit without water treatment	100
Cast iron	100

#### COMPARISON OF FRICTION LOSS CALCULATIONS—FOR WATER SYSTEM

_	Pipe	Flow	Pipe	Fitting Factor	PP-2			PP-1	e = .00015 ft for steel pipe			
Run No.	Dia. (in.)	Rate (gpm)	Run (ft)		C = 130	C = 140	40 ⁰ F	60 ⁰ F	80 ⁰ F	100 ⁰ F	150 ⁰ F	200 ⁰ F
1.02	12.00	3,546	25	0.75	1.85	1.77	1.82	1.79	1.77	1.75	1.70	1.66
2.03	10.02	1,797	30	1.10	1.46	1.39	1.44	1.41	1.39	1.37	1.34	1.30
3.04	10.02	1,690	16	0.09	0.33	0.29	0.32	0.30	0.29	0.29	0.27	0.26
4.05	7.98	1,193	12	0.30	0.58	0.54	0.57	0.56	0.55	0.54	0.52	0.51
5.06	7.98	1,086	29	0.10	0.70	0.62	0.68	0.66	0.63	0.61	0.58	0.56
6.07	7.98	979	29	0.10	0.58	0.51	0.57	0.54	0.52	0.50	0.48	0.46
7.08	3.07	107	10	1.90	0.95	0.91	0.96	0.94	0.93	0.91	0.88	0.86
8.09	3.07	107	13	0.15	0.45	0.40	0.47	0.45	0.43	0.41	0.39	0.37
9.10	3.07	101	12	0.15	0.38	0.34	0.40	0.38	0.36	0.35	0.32	0.31
10.11	3.07	96	12	0.15	0.35	0.31	0.36	0.34	0.33	0.31	0.29	0.28
	Fr	iction loss =			7.64	7.09	7.59	7.37	7.20	7.05	6.79	6.58



PP-2
WATER PIPING SYSTEM DESIGN PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

uı			Flag 1 has to be reset if the program has been used for	e next example.	fps oss, of pipe	Friction loss of run Total friction loss			Equipment pressure drop	
Explanation			Flag 1 ha program	sizing. Se	Velocity, fps Friction loss,	Friction   Total fric			Equipme	
					A DIN DIN DEBE C C C C C C C C C C C C C C C C C C	HER PBHL MBHL	A DIN DEFEN OFFE OFFE OFFE OFFE OFFE OFFE OFFE	M 7F66	MM PD D	
Print Out			8	3 3 4	ეგე ეგე ეგე ეგე ეგე	75 1.00 2.00 2.20 2.21	99999999999999999999999999999999999999	4 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.00 21.98	
			<b>—</b> п	ú	<b>∀</b> ₪ ∪	О Э	<b>∢</b> ₪ ∪	Ω Э	ò	
Press			2nd St flg	2nd	1 1 1	1 1	1 1 1	1 1	2nd	
			_ 2nd	1	1 1 1	1 1	1 1 1	1 1	I	
Enter			0 <u>N</u>	130	1.02 2.0 55	75 1.5	2.03 2.5 95	49 .75	2	
Procedure	Example 1	For computing friction head loss of a distribution system	Initialize Reset flag 1	Enter C value	Enter run no. Enter inside pipe diameter, in. Enter flow, gpm	Enter pipe length, ft Enter total K fitting factor for all fittings in that line	Repeat steps 4 through 8 as many times as desired.		To add or deduct equipment friction loss	
Step			- 2	က်	4. ന. ര.	8.			ത്	

	Example 2							
	For computing individual pipe sizes							
4. 2. %	Initialize Set flag 1 Enter C value	0	2nd -	2nd St flg 2nd	С́ – ш́	0.00	Ü	Reset flag 1 when using program for computing friction loss.
4. rg.	Enter maximum velocity, fps Enter friction loss, ft/100 ft of pipe	4.5	1 1	2nd 2nd	B, A,	7,00 4.50	VMAX PD/C	Vmax, fps
9	Enter inside pipe diameter Repeat step 6 as many times as required.	ω	1	1	ω	1092.68 7.00 2.02	B P P P P P P P P P P P P P P P P P P P	
7.	Enter flow, gpm Repeat step 7 as many times as required.	1100	I	1	O	1100.00 8.03 1100.00 7.00	GPM BIA GPM FPS	
œ	To print pipe size table for 3 in. and below enter	ო	1	2nd	á	6,721 6,727 6,00 6,00 6,00 6,00	DIA GPM FPS PD/C	Note: Pipe sizes reduce in increments of 1 in. Ignore pipe sizes not applicable.
						က်မှာ့ နှ ကိုယ်နှန့် ဝေသလလ	9 9 9 9 9 9 9 9 9	
			,			1.00 7.11 2.91 4.50	DIA GPM FPS PD/C	

PP-2 (Continued)
WATER PIPING SYSTEM DESIGN PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out		Explanation
						აზ. აზ. აზ. ა. ა. ა. ა. ა. ა. ა. ა. ა. ა. ა. ა. ა.	0114 014 077 077 077	Note: Below 2.5 in., pipe sizes reduce in increments of .25 in Ignore pipe sizes not applicable.
						იდ. იდ.4.4 იდდი ისდი	DIA GPA FPS PD/C	
and the second s			a an an antigography and an	medikan semenjan semenjan semenjan pelameni	general territoria	ის 4.4 0 დ დ დ	HERE TOPH TOPH TOPH TOPH TOPH TOPH TOPH TOPH	Table, if not required for smaller sizes, can be stopped by pressing R/S.
					1.000 mg 1.0	044 044 		
······································			g g g g de Marie (Marie e e e g g g g g g g g g g g g g g g g			02 02 	DI PP PP PP PP PP PP PP PP PP PP PP PP PP	
					en gan di mananan kanangan yang menanan	∸.თ.დ.4. თ.r.აი ით იი		
Accessed the color of the property of the color of the co							1494 1494 1497 1400 1400 1400 1400 1400 1400 1400 140	

TEOO O		CEOO HOON				
lpl-	laka:	teebu				
トのすり いすのこ	© 10 00 © 10 ⊶ 00 10	0 - 0 0				
ರಿಯಿಯವೆ		00-14				
 	· · · · · · · · · · · · · · · · · · ·	-	,	 		
	and the second s			 	 	
						1
 			 	 	 · · · · · · · · · · · · · · · · · · ·	$\dashv$
			 _	 		

# **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
<u>E'</u>	Initializes
A	Prints R No.
В	Prints and stores DIA
С	Prints and stores GPM; calculates velocity and FPS; calculates friction loss/100 ft; prints PD/C
D	Prints and stores length L
E	Prints and stores fitting factor; calculates friction loss for L and fittings; sums friction loss and prints
A'	Prints and stores VMAX; calculates QV2
B'	Prints and stores PD/C; calculates Qf1
C'	Prints and stores C value
D'	Without flag, prints and adds equipment pressure drop; with flag 1, goes to SBR X⇌T
INV	Prints alphanumeric characters to identify answers
LNX	Given diameter, calculates flow in GPM
CE	Calculates absolute difference between two numbers
CLR	Given GPM, calculates diameter
X <b>≠</b> T	Prints table of pipe diameters for integer sizes
$\sqrt{X}$	Prints table of pipe diameter from 2.5 in. down, decreasing by .25 in.
STO	Sums or deducts pressure drop
RCL	Prints PD/C

#### **EXPLANATION OF STORAGE REGISTERS**

Function
Counter for DSZ for piping table
Pipe diameter
Flow in GPM
Velocity and QV1
Length
Fitting K factor

R06	Total pressure drop $\Sigma$ PD
R07	VMAX
R08	PD/C
R09	C value
R10	For storage of alphanumeric code
R11	Calculated value of PD/C

# PP-2 WATER PIPING SYSTEM DESIGN PROGRAM

LABELS & SUBROUTINES  001 10 E'  009 11 A  025 12 B  044 13 C  123 14 D  135 15 E  182 16 A'  207 17 B'  232 18 C'  245 19 D'  268 22 INV  285 23 LNX  330 24 CE  343 25 CLR  396 32 X;T  405 33 X ² 426 34 FX  442 42 STD  461 43 RCL	025 12 B 026 42 ST□ 027 01 01 028 32 X↓T 029 01 1 030 06 6 031 02 2 032 04 4 033 01 1 034 03 3 035 42 ST□ 036 10 10 037 71 SBR 038 22 INV 039 87 IFF 040 01 01 041 23 LNX 042 92 RTN 042 92 RTN 043 76 LBL 044 13 C 045 42 ST□ 046 02 02 047 32 X↓T 048 02 2
LISTING  000 76 LBL  001 10 E'  002 00 0  003 42 STD  004 06 06  005 99 PRT  006 98 ADV  007 91 R/S  008 76 LBL  009 11 A  010 32 X;T  011 03 3  012 05 5  013 04 4  014 00 0  015 03 3  016 01 1  017 03 3  018 02 2  019 42 STD  020 10 10  021 71 SBR  022 22 INV  023 91 R/S  024 76 LBL	045 42 STD 046 02 02 047 32 X\$T 048 02 2 049 02 2 050 03 3 051 03 3 052 03 3 053 00 0 054 42 STD 055 10 10 056 71 SBR 057 22 INV 058 87 IFF 059 01 01 060 25 CLR 061 53 ( 062 93 . 063 04 4 064 01 1 065 65 × 066 43 RCL 067 02 02 068 55 ÷ 069 43 RCL 070 01 01 071 33 X² 072 54 )

497222526041603506097254036405405405236635384245335145525261136182	22222222222222222222222222222222222222	73L RL V L9 D8VSL D9T D0RVVSL D5F1TL5T	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	05T 05T 052212100000000000000000000000000000000	78901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890		423 X 213336 GT0RV ( ( L2 ( L9 x L1) x 2 .63 ) ) X 1 .85 ) X 1 0 4 4 ) GT1RV GROWN CO + ( C9 x L1) x 2 .63 ) ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) x 2 .63 ) X 1 0 4 4 ) GT1R BRUNL GROWN CO + ( C9 x L1) X 2 .63 ) X 1 0 4 4 ) T 1 1 8 C T 1 0 4 4 ) T 1 1 8 C T 1 0 4 4 ) T 1 1 8 C T 1 0 4 4 ) T 1 1 8 C T 1 1 0 4 4 ) T 1 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4 4 ) T 1 1 C T 1 0 4	0775678901234567890123456789012345678901123456789012345678901233456789012334567890123345678901233456
202 95 = 266 267 267 268 267 270 42 8TD 267 268 269 206 76 LBL 270 268 271 208 71 8BR 272 209 43 RCL 273 210 55 ÷ 274 211 01 1 275 212 00 0 276 213 04 4 277 214 04 4 278 215 95 = 226 08 8 224 43 RCL 288 221 05 5 × 287 221 05 5 × 287 221 05 218 01 1 282 219 93 . 283 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 08 8 220 289 220 227 42 STD 228 08 08 229 220 227 42 STD 229 220 227 42 STD 229 220 220 220 220 220 220 220 220 220	202 95 = 203 42 STD 204 07 07 205 91 R/S 206 76 LBL 207 17 BP 208 71 SBR 209 43 RCL 210 01 0 1 212 00 04 4 215 95 = 216 22 INV 218 01 1 219 08 8 221 05 5 222 95 ADV 221 05 5 222 95 ADV 223 42 STD 224 STD 225 05 O5	202 95 87 87 87 87 87 87 87 87 87 87 87 87 87			22 1 0 0 0 1 1 × 1 0 0 + 1 0 0 + 1 0 0 × 2 1 0 0 0 0 1 1 × 1 0 0 0 0 0 0 0 0 0 0 0	138 32 X:T 139 02 2 140 01 1 141 02 2 142 01 1 143 42 STD 144 10 SBRV 147 148 63 RCL 148 63 RCL 151 00 0 0 151 00 0 0 152 01 0 153 01 0 0 155 03 X × CL 153 03 X × CL 154 00 0 0 155 05 64 0 167 03 3 X × CL 168 03 X × CL 168 04 07 X:T 173 06 6 8TD 170 03 3 171 03 SBRV 171 03 172 01 1 173 06 8TD 177 71 8BR 07 71 SBRV 178 179 42 STD 178 179 42 STD 178 179 180 02 X 181 03 3 1 182 184 07 X:T 188 03 3 X × CL 188 03 3 X × CL 188 04 4 1 187 02 X:T 188 03 X × CL 188 07 08 X × CL 188 07 08 X × CL 188 07 08 X × CL 188 08 09 01 1 199 01 13 4 4 1 199 199 199 199 199 199 199 199 199 1	138 32 X‡T 139 02 2 140 01 1 141 02 2 142 01 1 143 42 STD 144 10 145 71 SBRV 147 139 65 × 147 148 11 1 149 65 × 150 43 RCL 151 04 04 152 55 ÷ 153 01 1 154 00 0 155 85 RCL 151 05 05 06 6 157 03 X × 158 05 05 06 1 159 05 06 1 159 05 07 1 170 07 08 1 171 07 08 1 172 07 1 173 07 1 174 42 STD 175 10 SBRV 177 178 179 42 RTN 177 178 177 178 179 180 92 RTN 177 178 177 178 177 178 179 180 03 3 192 04 4 187 02 188 03 199 01 191 03 192 04 4 193 04 194 195 196 197 198 199 93 199 93 199 93 199 93 199 93 199 93 199 93 199 199	03

# CE 395 396 397 398 397 398 400 3997 398 400 3997 400 3998 400 401 402 401 402 403 402 403 404 405 405 405 405 405 405 405 405 405	330
	7340520145639533512703102023752252453252453512704262463627733162012 40736340712703100207525643252453512704262463627733162012

471 472 473 474 475 05 5 42 STO 10 10 92 RTN 76 LBL 43 RCL 32 X;T 03 3 03 3 01 1 06 6 06 6 71 SBR 22 INV 464 98 ADV 92 RTN 467 

PP-2
WATER PIPING SYSTEM DESIGN PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation			Flag 1 has to be cleared first	ri program nas been used for sizing.	Velocity, fps Friction loss, ft/100 ft of pipe	Friction loss of run Total friction loss			Equipment pressure drop Total pressure loss
Print Out			8.66 ***	138.68 ***	00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	75.66 *** 1.56 *** 6.21 ***	5.22 2.00 2.00 5.00 6.23 8.88 8.88 8.77 8.88 8.88 8.88 8.88 8.8	60.00 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70	12.68 ***
			ш	ပ	<b></b>	О ш	<b>∀</b> ₪ ∪	О Ш	Q
Press			<i>+</i>	<b>+</b>	1 1 1	1 1	111	1 1	t.
			l	ı	1 1 1	1 1	1 1 1	1 1	I
Enter			I	130	1.02 2 55	75	2.03 2.5 95	49	12
Procedure	Example 1	For computing friction head loss of distribution system	1. Initialize	Enter C value	Enter run no. Enter inside pipe diameter, in. Enter flow, gpm	Enter pipe length, ft Enter total K factor for fittings	Repeat steps 3 through 7 as many times as desired.		To add or deduct equipment friction loss
Step	- passing			2	က <del>4</del> က	6.			<b>ω</b>

PP-2 (Continued)
WATER PIPING SYSTEM DESIGN PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	p Procedure	Enter		Press		Print Out	Explanation
	Example 2						
	For computing individual pipe sizes, set flag 1						
	1. To set flag 1	I	ţ	LBL	-		
	2. Initialize	I	I	f	ш	**************************************	
	3. Enter C value	135	I	f	ပ	***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **	
	<ul><li>4. Enter maximum velocity, fps</li><li>5. Enter friction loss, ft/100 ft</li></ul>	7 4.5	1 1	+ +	8 A	7, 60 4, 50 4, 50	
	6. Enter inside pipe diameter	∞	ı	ı	В	<ul><li>・</li></ul>	Gal/min Velocity fos
	Repeat step 6 as many times as desired.					*** 00.7	Pressure loss, ft/100 ft
	7. Enter flow, gpm	1100	ı	I	O		Diameter وعارستان
	Repeat step 7 as many times as desired.					7.60.00.00.00.00.00.00.00.00.00.00.00.00.	Velocity, fps Pressure loss, ft/100 ft
	8. To print pipe size table for 3 in. and below, enter	ю	I	*	۵	5.06 *** 127.60 *** 5.02 *** 4.56 ***	Gal/min Velocity, fps Pressure loss, ft/100 ft
						\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Pipe sizes reduce in increments of 1 in. Ignore pipe sizes not applicable.

	Below 2.5 in., pipe sizes reduce in increments of .25 in. Ignore pipe sizes not applicable.		Press R/S, if table not required for smaller sizes.			
1.66 7.11 7.91 4.56 4.56 4.56	0.07 0.107 0.100.4 ****	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.00 *** 43.55 *** 4.51 *** 4.00 ***	1.75 30.07 444 10.00 444 00.4	1.58 *** 26.64 *** 3.76 *** 4.56 ***	1.25 *** 12.78 *** 3.35 *** 4.56 ***

PP-2 (Continued)
WATER PIPING SYSTEM DESIGN PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation	Expidination	-		÷	in the second													in in the second				teriinten					Access accesses and		
		***	東東東	***	+ -	**		***	***	***	***	† †	**	***	**	***		:	*	**	***	***							
		1.66		0	, ( , (	9 0 4	1	ر ا	10	2,43	÷.56	0	១ u	7.0	1.00	4.50		0	0.0	e. 15	1.22	4.00							
Pring																													
	-																												
-	1	 					 					 												 	 	 <del></del>			 
							 				.,	 												 				 	 
Pross	3																												
Proce																								-					
												 			_									 					
Futer	; 	 									-													 	 	 			
Procedure																													
Steo	- 1	 															**************						-4	 	 			 	

# **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
0	Given diameter, computes flow based on velocity and pressure loss; selects smaller of two; clears flag 1; goes to SBR C; sets flag 1
1	Given flow, computes diameter based on velocity and pressure loss; selects larger of two; clears flag 1; goes to SBR B, SBR C; sets flag 1
2	Totalizes pressure drop in R6
3	Recalls R5; stores in R1; reiterates to print table of pipe diameter, flow rates, and pressure loss using SBR B, LBL 5, and LBL 6
4	Computes absolute difference between R4 and R3
e	Clears register R6; prints zero
A	Prints display (run no.)
В	Prints and stores display (diameter) in R1; if flag 1 is set goes to SBR 0
С	Prints and stores display (GPM) in R2; if flag 1 is set goes to SBR 1; computes and prints velocity and pressure loss/100 ft
D	Prints and stores display (length) in R4
E	Prints and stores display (fitting factor) in R5; computes and prints dynamic and friction loss; goes to SBR 2
a	Prints display (velocity); computes flow through 1-in. pipe based on input velocity and stores in R7
b	Prints display (pressure drop/100 ft); computes flow through 1-in. pipe based on input pressure loss; stores in R8
c	Prints and stores display (C value) in R9
d	Stores in R5; if flag 1 is set goes to SBR 3, otherwise prints display and goes to SBR 2

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
RO	Pressure loss/100 ft
R1	Pipe diameter
R2	Flow in GPM
R3	Velocity

R4	Length
R5	Fitting factor per diameter or equipment pressure loss
R6	Total pressure drop
R7	QV1—flow through 1-in. pipe based on velocity
R8	QP1—flow through 1-in. pipe based on pressure loss criteria
<b>R</b> 9	C value

# PP-2 (HP-97) WATER PIPING SYSTEM DESIGN PROGRAM

LIST	ING		039	3	<b>0</b> 5
001	*LōLō	21 00	<b>040</b>	1/X	52
002	RCL1	36 01	041	γ×	31
003	XΣ	53	<b>04</b> 2	ST04	35 04
004	RCL7	36 87	<b>04</b> 3	RCL3	<b>36 0</b> 3
005	X	-35	044	+	-55
006	ST03	<b>35 0</b> 3	<b>Ø45</b>	GSB4	23 04
007	RCL1	36 01	<b>046</b>	+	-55
008	2	02	047	2	<b>0</b> 2
009		-62	<b>04</b> 8	÷	-24
616	6	Ø <i>5</i>	849	CF1	16 22 01
011	. 3	<b>0</b> 3	<i>0</i> 50	GSBB	23 12
012	γx	31	<i>0</i> 51	RCL2	36 02
013	RCL8	<b>36 0</b> 8	<b>05</b> 2	GSBC	23 13
014	X	-35	<b>053</b>	SF1	16 21 01
015	ST04	35 04	<i>0</i> 54	SPC	16-11
016	RCL3	<b>36</b> 03	<i>0</i> 55	RTN	24
017	÷	-55	<b>0</b> 56	*LBL2	21 <b>0</b> 2
018	GSB4	23 04	<b>05</b> 7	ST+6	35 <b>-55 06</b>
019	-	-45	<b>05</b> 8	RCL6	36 <i>06</i>
020	2	02	<b>05</b> 9	PRTX	-14
021	÷	-24	060	SPC	16-11
022	CF 1	16 22 01	061	RTN	24
023	€SBC	23 13	062	<b>∗LBL</b> 3	21 03
024	SF1	16 21 01	063	RCL5	<b>36 0</b> 5
<b>0</b> 25	SPC	15-11	064	STOI	35 4 <i>6</i>
<b>0</b> 26	RTN	24	<b>06</b> 5	1	61
027	*LBL1	21 01	<b>06</b> 6	ST+5	35 <b>-55 0</b> 5
028	RCL2	36 02	<b>06</b> 7	*LBL5	21 05
029	RCL7	36 07	968	1	<b>0</b> 1
030	÷	-24	<b>0</b> 69	ST-5	35 <b>-45 0</b> 5
031	<b>1</b> X	54	979	RCL5	<b>36 6</b> 5
032	ST03	<b>35 0</b> 3	071	6SBB	23 12
<b>03</b> 3	RCL2	<b>36 02</b>	<b>0</b> 72	DSZI	16 25 46
034	RCL8	36 <b>0</b> 8	<b>073</b>	<b>6T0</b> 5	22 <b>0</b> 5
035	÷	-24	874	1	01
036	2	<b>0</b> 2	075	0	00
037	•	-62	<b>0</b> 76	STOI	35 46
038	6	<i>06</i>	877	2	02

. -62 8 08 5 05 1/X 52 Y* 31 RCL9 36 09 X -35

35 08

16-11

**35 0**9

24

STO8 SPC

204 *LBLc 21 16 13

RTN

ST09

206

207

208

209

210

211

212

213

214

215

216

217

PRTX

SPC

RTN

ST05

GT03

RCL5

PRTX

GSB2 RTN

R/S

*LBLd 21 16 14

F1? 16 23 01

-14

16-11

35 05

36 05

23 02

-14

24

51

22 03

24

194

195

196

197

198

199

200

201

202

203

205

<b>0</b> 78		-62	136	RCL2	36 02
079	7	07	137	Х	-35
080	5	<b>0</b> 5	138	1	Ø1
081	ST05	35 05	139		-62
082	*LBL6	21 06	140	8	<b>0</b> 8
<b>0</b> 83		-62	141	5	<b>0</b> 5
<b>0</b> 84	2	02	142	γx	31
<b>0</b> 85	5	<b>0</b> 5			
086 086	ST-5	35-45 05	143	1	01 00
			144	0	00
<b>087</b>	RCL5	36 <b>0</b> 5	145	4	04
988	GSBB	23 12	146	4	<b>04</b>
089	DSZI	16 25 46	147	X	-35
090	6T06	22 06	148	STO0	35 00
<i>091</i>	RTN	24	149	PRTX	-14
<b>09</b> 2	<b>≭LBL4</b>	21 04	150	SPC	16-11
093	RCL4	36 04	151	RTN	24
894	RCL3	<b>36 0</b> 3	152	*LBLD	21 14
<i>0</i> 95	-	-45	153	ST04	35 04
<i>0</i> 96	ABS	16 31	154	PRTX	-14
097	RTN	24	155	RTN	24
098	*LBLe	21 16 15	156	*LBLE	21 15
099	0	00	157	ST05	35 <b>0</b> 5
100	ST06	35 Ø6	158	PRTX	-14
101	PRTX	-14	159	RCL3	36 03
102	SPC	16-11	160	X5	53
103	RTH	24	161	X	-35
104	*LBLA		162	[^] 6	<b>0</b> 6
			163	4	04
105	PRTX	-14	164	-	-62
106	RTN	24		4	
107	*LBLB	21 12	165	•	04
108	ST01	35 01	166	÷ DCLO	-24 77 99
109	PRTX	-14	167	RCL0	36 00 36 04
110	F1?	16 23 01	168	RCL4	36 <b>0</b> 4
111	GT00	22 00	169	X,	-35
112	RTH	24	170	1	Θi
113	*LBLC	21 13	171	Ø	<b>0</b> 0
114	STO2	<b>35 0</b> 2	172	Ũ	0 ū
115	PRTX	-14	173	÷	-24
116	F1?	16 23 01	174	+	-55
117	GT01	22 01	175	PRTX	-14
118		-62	176	GSB2	23 <b>0</b> 2
119	4	94	177	RTN	24
120	1	01	178	*LBLa	21 16 11
121	X	-35	179	PRTX	-14
122	RCL1	36 01	180		-62
123	χz	53	181	4	64
124	÷	-24	182	1	01
125	ST03	35 <b>0</b> 3	183	÷	-24
126	PRTX	-14	184	ST07	35 07
127	RCL1	36 01	185	RTH	24
128	2	02	186	*LBLb	21 16 12
129		-62	187	PRTX	-14
130	6	96	188	1	-14 01
131	3	<b>0</b> 3		9	
132	γx	31	189		<b>0</b> 6
	RCL9	36 <b>0</b> 9	190	4	84 84
133	X X		191	•	64 -24
134		-35 50	192	÷	-24
135	1/X	<b>5</b> 2	193	1	<b>0</b> 1

# PP-3 PIPING SYSTEM VOLUME AND EXPANSION TANK SIZING PROGRAM

#### **PROGRAM DESCRIPTION**

This program will calculate the volume of a piping system in gallons by determining the volume in each piping branch and adding it up. The volume of the heat exchangers, coils, and other equipment can also be added up.

Given the volume of a piping system, the program can determine the volume of open and closed expansion tanks for hot-water heating systems.

The formula for relative expansion of water has been developed by use of a curve fitting program.

#### **OPERATING FEATURES**

Input for expansion tank calculation can be in any units for volume and pressures. However, input for temperature must be in degrees F.

Input for system volume and operating temperature is combined in decimal format—xxxx.xxx.

Integers represent volume while fractions represent temperature. For example:

1000.099	represents	1,000 gal
		99°F
5400.375	represents	5,400 gal
		375°F

#### **EQUATIONS**

Pipe area in sq ft (A) = 
$$\frac{\pi \times d^2}{576}$$
 [1.15]

where

d = Inside diameter in inches

Pipe volume in cu ft 
$$(C) = A \times L$$
 [1.16]

where

L = Length in feet

Pipe volume in gallons = 
$$C \times 7.48$$
 [1.17]

Expansion tank open 
$$(V_{t0}) = V_s \times E$$
 [1.18]

where

 $V_s$  = Volume of water in system

E =Relative expansion at operating temperature

Expansion tank closed 
$$(V_c) = \frac{V_{t0}}{P_0 + P_1} - \frac{P_0 + P_1}{P_0 + P_3}$$
 [1.19]

where

 $P_0$  = Atmospheric pressure at site

 $P_1$  = Gauge pressure in expansion tank when water first enters the tank

 $P_2$  = Initial fill or minimum pressure gauge

 $P_3$  = Operating pressure gauge

Relative expansion of water E

= 
$$(.97 e^{(T_o - 18) \times .000446} - 1)$$
  
-  $[1 - \left(\frac{T_o - 250}{150}\right) abs \times .02]$  [1.20]

where

 $T_0$  = Operating temperature in degrees F

PP.3
PIPING SYSTEM VOLUME AND EXPANSION TANK SIZING PROGRAM USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out		Explanation
	Example							
	1. Initialize	ı	I	2nd	ш	ċ		
0 نان ا	Enter run no. Enter inside pipe diameter, in.	1.02	1 1	1 1	<b>∀</b> ⊠	4.0 0.00.00	8.95 8.47 8.47	Gal/ft of pipe
4.	Enter length of pipe, ft	594	ı	I	O	50 00 00 00 00 00 00 00 00 00 00 00 00 0	GALS ZGALS ZGAL	Gal Total gal
	Repeat steps 2, 3, & 4 as many times as desired.	2.03	1 1	1 1	⊗ ⊳	004 007	8 0 NHK 104H	
		954	Ī	ı	O	954.00 1401. 1789.	GALS MGALS MGAL	
<u>ب</u>	Enter equipment volume to add to system volume	700	I	I	ш	700 700 7489.0	11 80 80 80 80	Equipment gal Total gal
	Continue steps 2, 3, & 4 if desired.							
	Enter total system volume and operating temperature, ^o F	2500.375	I	2nd	ά	2000 3700 3700 3700	GALS TEMP GALS	Volume of open expansion
. 8	Enter atmospheric pressure at site Enter tank pressure while filling	15	1 1	2nd _	B' R/S	8. 88	P.0	נמוצי ממ

P2 P3 GALS Volume of closed expansion tank, gal		
2.00 150.00 397.		
R/S R/S		
1 1		
1 1		
2 150		
9. Enter minimum initial fill pressure 10. Enter operating pressure	Note:  1. P0, P1, P2, & P3 – all four should be in same units bould be in same units.  2. P0 – atmospheric pressure.  3. P1 – pressure in tank when water enters tank gauge pressure gauge pressure.  4. P2 – Minimum initial fill gauge pressure.  5. P3 – Operating gauge pressure.	

# **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Prints run no.
В	Prints and stores DIA; calculates and prints G/FT, gallons per ft of pipe
С	Prints L in ft; calculates and prints GAL and $\Sigma$ GAL, running subtotal of gallons
E	Prints equipment or error gallons; adds or deducts from the total volume and prints $\Sigma$ GAL
A'	Separates volume and temperature input; prints GAL and TEMP; calculates size of open expansion tank and prints GAL
B'	With three R/S, accepts and prints P0, P1, P2, and P3 and calculates volume of closed expansion tank
E'	Initialize program
INV	Prints alphanumeric characters to identify data
LNX	Prints GAL
CE	Adds or deducts equipment or error gallons, prints EGAL and $\Sigma \text{GAL}$
CLR	Prints P1, P2, and P3

#### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	Not used
R01	Not used
R02	Gallons per foot
R03	ΣGAL
R04	GAL
R05	Temperature
R06	Not used
R07	Not used
R08	P0
R09	P1
R10	P2
R11	P3
R12	Volume open expansion tank

R13	$\frac{P0 + P1}{P0 + P2} - \frac{P0 + P1}{P0 + P3}$
R14	For storage of alphanumeric code
R15	For storage of decimal places

# PP-3 PIPING SYSTEM VOLUME AND EXPANSION TANK SIZING PROGRAM

LABELS & SUBROUTINES  001 11 A  020 12 B  069 13 C  091 15 E  113 16 A'  216 17 B'  285 10 E'  293 22 INV  311 23 LNX  330 24 CE  354 25 CLR	033 034 035 036 037 039 041 042 043 044 045	71 SBR 22 INV 33 X ² 65 × 89
LISTING	047 048 049 050 051 055 055 057 058 061 062 063 064 067 077 077 077 077 077 077 077 077 077	95 = 42 STD 02 32 X:T 02 32 2 06 6 3 02 01 1 3 7 42 STD 14 02 STD 15 SBR V 91 R C STD 15 SBR V 65 R CL 20 15 15 R CL 20 1

084 71 SI 085 23 LI 085 71 SI 086 71 SI 087 24 CI 088 98 AI 089 91 R 090 76 LI 091 98 AI 091 99 AI 092 99 AI 093 094 01 SI 094 01 SI 095 02 SI 096 02 SI 097 02 SI 097 02 SI 098 03 SI 098 03 SI 098 03 SI 098 042 SI 109 110 91 R 111
NX 148 BR 149 E 150 DV 151 PS 152 BE 1534 F 1556 F 157 F 158 F 157 F 158 F 160 F 162 F 160 F 162 F 160 F 162 F 160
15 71 SBR 22 INV 53 RCL 53 RCL 53 RCL 55 F3 RCL 55 F3 RCL 56 F3 RCL 57 F3 RCL 57 F3 RCL 57 F3 RCL 58 RCL 59 RCL 59 RCL 50 RCLL 50 R
209 42 STD 210 12 12 211 71 SBR 212 23 LNX 213 98 ADV 214 91 R/S 215 76 LBL 216 17 B' 217 42 STD 218 08 08 219 03 3 220 01 1 218 28 CLR 219 03 3 221 00 0 1 222 41 41 CL 225 42 STD 226 08 SBR 227 71 SBR 228 25 CLR 229 91 R/S 230 42 STD 231 09 09 09 232 25 CLR 223 42 STD 231 09 09 09 232 25 CLR 233 43 RCL 235 08 SUM 237 09 09 238 91 R/S 239 42 STD 240 10 10 SBR 237 09 09 238 91 R/S 239 42 STD 240 10 10 SBR 237 09 09 238 91 R/S 239 42 STD 240 10 SBR 241 71 SBR 242 25 CLR 243 43 RCL 244 08 08 245 44 SUM 246 10 10 247 91 SBR 249 11 11 250 71 SBR 249 11 11 250 71 SBR 240 241 71 SBR 242 25 CLR 243 43 RCL 244 08 09 247 91 R/S 248 42 STD 240 10 10 241 71 SBR 242 25 CLR 243 43 RCL 245 44 SUM 256 10 10 247 91 R/S 257 43 RCL 248 42 STD 250 71 SBR 251 25 CLR 263 75 - (266
234567890123456789012345678901234567890112345678901234 777777778888888888999999999990000000001111111111
4131212 L3 RXVSL 003TVSLVVXR 00L4 4TXD5 6NLXT 2213 273 6T4 0T5RVNL M3L3 R1 + C13 RXVSL 073TVSLVVXR 00L4 4TXD5 6NLX 2213 273 6T4 0T5RVNL M3L3 R1 + C13 RXVSL 073TVSLVVXR 00L4 07XXD5 00NLXT 2213 273 6T4 0T5RVNL M3L3 R03 R1 + C13 RXVSL 07X1 R1 + C13

# 40 PIPING DESIGN PROGRAMS

335	32	XIT	353 76	LBL
336	07	7	354 25	CLR
337	07	7	355 32	XIT
338	02		356 02	2
339	02	2	357 42	STO
340	01	2 1 3	358 15	15
341	03	3	359 71	SBR
342	02	2	360 22	INV
343	07	7	361 01	1
344	42	STO	362 44	SUM
345	14	14	363 14	14
346	00	0	364 92	RTN
347	42	STO	365 00	0
348	15	15	366 00	0
349	71	SBR	367 00	0
350	22	INV	368 00	0
351	98	ADV	369 00	0
352	92	RTN	370 00	0

PP-3
PIPING SYSTEM VOLUME AND EXPANSION TANK SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

_
Š
=
$^{\circ}$
of Cards:
æ
O
_
4
0
Number
Ō
_
_
⊏
$\overline{}$
=
~
_
S AND EXAMPLES

Explanation			Gal/ft of pipe	Gal Total gal			Total gal	Volume of system Temp. Size of expansion tank		Size of closed expansion tank
Print Out		6.60 .00 .00 .00 .00 .00 .00 .00 .00 .00	2.02 4.00 8.65 8.88	504.00 307.74 *** 307.74 ***	2.00.5 6.00.6 6.00.4 7.4 7.4 7.4 7.4 7.4 7.4	9054. 88 1481. 13 1780. 84 1780. 87	788.88 2450.87 ***	2000 375,68 335,78 335,88	*** 00°.7	2,88 *** 158,88 *** 397,88 ***
		ш	<b>∀</b> ₪	ပ	<b>∀</b> B	ပ	ш	∢	B R/S	R/S R/S
Press		+	1 1	ı	1 1	l	1	+	+ -	1 1
		L.	1 1	I	1 1	I	ı	I	1 1	1 1
Enter		I	1.02	594	2.03 6	954	700	2500.375	15	2 150
Procedure	Example	Initialize	Enter run no. Enter inside pipe diameter, in.	Enter length of pipe, ft	Repeat steps 2, 3, & 4 as many times as desired.		Enter equipment volume to be added to system	Continue in this manner for the entire system.  To compute size of open expansion tank, enter volume and temp.  For closed expansion tank	Enter atmospheric pressure Enter tank pressure – fill gauge Enter minimum initial pressure	<ul> <li>gauge</li> <li>Enter operating pressure – gauge</li> </ul>
Step		<del>.</del>	9 K	4			D	ώ	7. 89. 0	9 .

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
0	Totalizes in R3; prints value of R3
A	Prints display (run no.)
В	Prints display (diameter); computes and prints gallons per foot
C	Prints display (length); computes and prints gallons for pipe run and total gallons
E	Prints display (equipment gallons); goes to SBR 0
a	Accepts input in decimal format; separates volume, stores in R4; temperature in R5; calculates and prints size of open expansion tank
b	With three R/S, accepts and prints input (P0, P1, P2, and P3) and calculates volume of closed expansion tank
e	Clears register R3 and prints 0

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R0	Not used
R1	Not used
R2	Gallons per foot
R3	Total gallons
R4	Gallons
R5	Temperature
R6	P0
R7	P1
R8	P2
<b>R</b> 9	Р3

# PP-3 (HP-97) PIPING SYSTEM VOLUME AND EXPANSION TANK SIZING PROGRAM

LIST	ING		007	*LBLA	21 11
001	*LBL@	21 08	<b>00</b> 8	PRTX	-14
002	ST+3	<b>3</b> 5- <b>55</b> 03	009	RTN	24
003	RCL3	<b>3</b> 6 <b>0</b> 3	010	*LBLB	21 12
004	PRTX	-14	011	PRTX	-14
005	SPC	16-11	012	Χ2	<b>5</b> 3
006	RTN	24	013	Pi	16-24

014	X	-35	071	RCL5	<i>36 0</i> 5
015	7	07	072	2	02
016		-62	073	5	<i>0</i> 5
017	4	<i>0</i> 4	074	0	<b>ย</b> ิยิ
018	8	<i>8</i> 9	<b>0</b> 75	-	-45
019	X	-35	076	ABS	16 31
020	5	<b>0</b> 5	<b>0</b> 77	1	ā1
021	7	97	078	5	<b>0</b> 5
022	6	<b>0</b> 6	079	Ū	00
023	÷	-24	080	÷	-24
024	ST02	35 02	081	1	Ø1
025	PRTX	-14	082	-	-45
026	SPC	16-11	083	CHS	-22
<b>0</b> 27	RTN	24	084		-62
<b>0</b> 28	*LBLC	21 13	<b>0</b> 85	Û	<b>0</b> 0
029	PRTX	-14	<b>0</b> 86	2	<b>0</b> 2
030	RCL2	36 02	<b>0</b> 87	Х	-35
031	X	-35	988	-	-45
<b>03</b> 2	PRTX	-14	089	RCL4	36 04
033	GSB0	23 <b>0</b> 0	090	X	-35
034	RTN	24	091	3T01	35 01
035	*LBLE	21 15	092	PRTX	-14
036	PRTX	-14	<b>09</b> 3	SPC	16-11
037	GSBØ	23 00	094	RTH	24
038	RTN	24	695	*LBL	21 16 12
039	*LBLa	21 16 11	<i>096</i>	3T06	35 06
040	ST05	<b>35</b> 05	097	PRTX	-14
041	INT	16 34	998	RTH	24
<i>0</i> 42	STO4	35 04	099	STC7	35 67
043	PRTX	-14	100	PRTX	-14
044	RCL5	<i>36 05</i>	101	RTN	24
Ø45	FRC	16 44	102	ST08	35 08
046	1	<b>6</b> 1	103	PRTX	-14
047	Ū	00	104	RTN	24

047 35 09 1**0**5 ST09 Ū 99 048 PRTX -14 106 049 0 00 36 0€ 107 RCL6 -35 050 -55 35 05 + **051** ST05 108 1/8 52 109 **05**2 PRTX -14 36 06 110 RCL6 61 **05**3 1 RCL7 36 07 111 054 8 **0**8 112 ÷ -55 -45 055 X -35 113 -62 *056* RCL7 36 67 Ø 00 114 057 115 RCL6 36 06 **05**8 Ø 00 116 ÷ -55 Ū 88 **0**59 RCL6 36 66 04 117 4 060

RCL8 36 68 64 118 061 4 -55 062 -6 86 119 ÷ -24 063 X -35 120 ÷ -45€X 33 064 121 СНЗ -22 065 -62 122 35 00 9 09 123 ST00 066 52 *0*7 124 17% 067 36 01 -35 125 RCL1 968 -35 **0**69 61 126 X -45 127 PRTX -14 070

128	SFC	16	-11	133	CLX	-51
129	RTE		24	134	PRTX	-14
130	*LBLe	21 16	15	135	SPC	16-11
131	Ð		00	136	RTN	24
132	ST03	35	<b>0</b> 3	137	R/S	51

# AIR DUCT DESIGN PROGRAMS

# DP-1 AIR DUCT SIZING PROGRAM

#### **GENERAL DESCRIPTION**

This program can be used for sizing supply, return, and exhaust air duct systems based on constant friction loss per foot of length for the entire system. Further, the designer has a choice of limiting the maximum velocity. In this manner, the design velocity will not exceed the maximum velocity limit while below the limiting velocity, the ductwork is sized on constant equal friction loss per foot of length, and the velocity is reduced automatically.

(It is suggested that the designer first use program UP-3, to add branch air flows and to define the distribution network.)

The program can automatically select round or rectangular ductwork.

The program is designed to calculate and print out external ductwork dimensions. In other words, thickness of lining is added to the internal dimension. The designer has the choice of specifying the roughness coefficient for the internal surface to compensate for the friction loss of different types of linings.

The calculated duct dimensions are increased by 0.9 in. and then rounded off to the nearest integer in inches.

In order to optimize the sheet metal, the program for the rectangular duct will first try to select the square duct to fit within the depth available. Should this not be possible, it will calculate the minimum width based on the available depth.

The program also calculates cfm for any given duct size to satisfy maximum velocity and equal friction loss criteria.

#### **EQUATIONS**

$$\Delta P = .03 \times f \times \frac{L}{\pi \times d^{1.22}} \times \left(\frac{V}{1000}\right)^{1.82}$$
 [2.1]

where

 $\Delta P$  = Friction loss, in. w.g.

f = Interior surface roughness coefficient

L =Length of duct in feet

d = Duct diameter in inches or equivalent diameter for rectangular or flat-oval ductwork

V =Velocity in fpm

$$Q = \frac{\pi \times d^2 \times V}{576} \qquad V = \left(\frac{Q \times 576}{\pi \times d^2}\right)$$
 [2.2]

where

Q = Flow in cfm

Substituting V in equation 2.1,

$$\Delta P = .03 \times f \times \left(\frac{L}{\pi \times d^{1.22}}\right) \times \left(\frac{Q \times 576}{d^2}\right)^{1.82} \times \left(\frac{1}{1000}\right)^{1.82}$$

If L = 100 ft,

$$\Delta P = 3 \times f \times \frac{Q^{1.82}}{d^{4.86}} \times \frac{1}{21.92} = \frac{f}{7.31} \times \frac{Q^{1.82}}{d^{4.86}}$$

If d = 1 in.,

$$Q_{P1} = \left(\frac{\Delta P}{.137f}\right)^{\frac{1}{1.82}}$$

where

 $Q_{P1}$  = cfm for 1-in. diameter duct based on pressure criteria

$$Q_{P2} = Q_{P1} \times d_2^{\frac{4.86}{1.82}} = Q_{P1} \times d_2^{2.67}$$

where

 $Q_{P2} = \text{cfm for duct } d_2 \text{ based on pressure criteria}$ From equation 2.2, where d = 1 in.,

$$Q_{V1} = \frac{V \times \pi}{576}$$

where

 $Q_{V1} = \text{cfm for 1-in. diameter duct based}$ on velocity criteria

$$Q_{V2} = Q_{V1} \times d_2^2$$

where

 $Q_{V2} = \text{cfm for duct } d_2 \text{ based on velocity criteria}$ 

The program calculates the diameter based on  $Q_{P1}$  and  $Q_{V1}$  and selects the larger of the two diameters.

Rectangular duct 
$$(De) = 1.3 \frac{(a \times b)^{.625}}{(a + b)^{.25}}$$
 [2.3]

For square duct a = b

$$De = 1.3 \frac{(a \times a)^{.625}}{(2a)^{.25}} = 1.09 a$$

or 
$$a = \frac{De}{1.09}$$

If value of b is small,

$$De \simeq 1.3 \times \frac{(a \times b)^{.625}}{a^{.25}} = 1.3 \times a^{.375} \times b^{.625}$$
 [2.4]

where

De = Diameter of equivalent round cut

a =Width of rectangular duct, in.

b = Depth of rectangular duct, in.

The program calculates b for rectangular ductwork by reiteration, which converges rapidly, since the assumed value of b is corrected by multiplying by

$$\left(\frac{De}{\text{calculated dia.}}\right)^2$$

till De equals the calculated diameter.

Area of circular duct in sq ft = 
$$\frac{\pi \times d^2}{576}$$
 [2.5]

where

d = Diameter in inches

Area in sq. ft. of rectangular duct = 
$$\frac{a \times b}{144}$$
 [2.6]

#### **OPERATING FEATURES**

The input under Label B is in decimal format; the decimal part is for depth available. For example, 6000.16 will mean 6000 cfm; depth available (DA) = 16 in. If no decimal input is provided, the program will automatically compute for round ductwork.

In the same manner, input for Label C is in decimal format; for example 40.16 will mean the duct is 40 in. wide by 16 in. deep. If decimal input is not provided, the program will automatically compute for round ductwork.

The output of duct dimensions for Label B is also in decimal format, similar to input for Label C.

Further, the program computes duct diameter and width in increments of one inch. If designers wish to have any other increment, alternate sizes can be investigated by them by inputting through Label C.

#### REFERENCE DATA

Suggested values for roughness coefficients for internal duct surfaces are given below:

Material	f
Aluminum or galvanized ductwork without lining	0.9
Lining of medium roughness	1.35
Very rough lining	1.90

Based on the interpolation of data in ASHRAE Handbook of Fundamentals.

Number of Cards: TWO DP-1
AIR DUCT SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES

Explanation		(Shows examples for sizing individual sections.)	Velocity for circ. duct Friction loss/100 ft	Equivalent diameter	Average velocity based on rectangular duct		The program will select square duct if it can fit within the depth available.	
		VMBX C0E7 L/TH	PPER PPER PPER PPER PPER PPER PPER PPER	9 4 5 6 3 4 0 0 4 0 0 0	PD/0	CH DIA PPAC CC		C C C C C C C C C C C C C C C C C C C
Print Out		0000	678. 864. 0.100	24.12 18.12 18.13.14.14.14.14.14.14.14.14.14.14.14.14.14.	0.100 1044.	15000. 39. 1800. 0.090	15000. 48. 36.36 1800. 0.090	15000. 20. 71.20 1800. 0.090
		ÓÚďУ́	U	ပ		a	Ф	ш
Press		2nd 2nd 2nd 2nd	l	ı		I	ı	l ·
		1111	I	1		1	. 1	I
Enter		1800 1. 0	12	24.12		15000	15000.48	15000.20
Procedure	Example 1	Enter maximum velocity, fpm Enter maximum friction loss/100 ft Enter lining roughness coeff. Enter lining thickness, in.	Enter duct diameter	or Enter duct dimensions	o	Enter cfm or	Enter cfm and depth available	or Enter cfm and depth available
Step		- 2 & 4	က်	ဖ်		7.	œ́	<u>ဝ</u> ်

DP-1 (Continued)
AIR DUCT SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES

	Explanation	Note: Computed cfm is slightly different for these two examples and one shown under step 7 due to rounding-	orr process.		
	Print Out	DIA CFM FPMC PD/C		VMAX CDE/C L/TH	х пог О заба С х х х х х х х х х х х х х х х х х х х
		39. 14932. 1800. 0.090	71.20 39. 15161. 1800. 0.089 1537.	1800. 0.150 0.900	10500. 10500. 38.24 180.0. 165112
	Press	υ	U	ÓÚMÝ	∢ m
: TWO		1	I	2nd 2nd 2nd 2nd	1 1
Number of Cards: TWO		I	ı	1111	1 1
	Enter	39	71.20	1800 1.15 0	10500.24
USER INSTRUCTIONS AND EXAMPLES	Procedure	or Enter diameter	Enter dimensions  Example 2  Example of sizing a duct system	Enter maximum velocity, fpm Enter maximum friction loss/100 ft Enter lining roughness coeff. Enter lining thickness, in.	Enter cfm and depth Enter cfm and depth Repeat steps 5 & 6 as many times as required.
USE	Step	10.	5	÷. 5, €,	က် တ်

# **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A'	Stores and prints VMAX; calculates and stores QV1; partitions program
B'	Stores and prints PD/C
C'	Stores surface roughness coefficient; calculates and stores QP1
D'	Stores and prints lining thickness; doubles and stores lining thickness
A	Prints R No.
В	Accepts CFM and DA (depth available) in decimal format; separates two; if DA is not zero, sets flag 0 for rectangular ductwork; goes to SBR LNX
INV	Prints alphanumeric characters for identification of data
LNX	Calculates diameters for round duct based on QV1 and QP1; selects larger of two; rounds out to nearest integer after adding 0.9 in.; adds lining thickness; prints DIA; calculates and prints PPMC; calculates and prints PD/C; if flag 0 is set, goes to SBR CE
CE	Calculates size of square duct; compares with DA; if square duct can fit goes to SBR X², otherwise calculates width, based on duct depth as DA; uses SBR √X for reiteration to accuracy of 0.01 in. (operating time can be reduced by accepting less accuracy); calculates W.D by rounding out to nearest integer after adding 0.9; adds lining thickness; prints W.D; calculates and prints FPMC; calculates and prints FPMC; calculates FPMA
CLR	Calculates and prints FPMC (velocity in feet per minute based on circular duct)
X <b>≓</b> T	Calculates and prints PD/C (friction loss/100 ft)
X ²	For square duct makes W.D equal; prints W.D; calculates and prints FPMC, PD/C, FPMA
1/X	Calculates equivalent diameter for given W and D
STO	Corrects interim value of calculated equivalent diameter for reiteration
RCL	Changes net size of W and D to external size by adding lining thickness; arranges and prints W.D

SUM	Calculates and prints FPMA (velocity in feet per minute for average rectangular duct)
Y ^x	Prints PD/C
EE	Prints W.D
(	Prints CFM
)	Prints DIA
÷	Calls SBR ); deducts lining thickness; uses SBR GTO
GTO	Calculates QV2; QP2; selects smaller of two; uses SBR CLR and SBR X≠T
C	Checks for decimal input; if zero, goes to SBR ÷, if not zero prints W.D; computes net W and D after deducting lining thickness; uses SBR 1/X, SBR ), and SBR GTO; adds lining thickness and uses SBR SUM

# **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	Not used
R01	Duct surface roughness coefficient
R02	VMAX
R03	QV1
R04	PD/C
R05	QP1
R06	Lining thickness L/TH
R07	CFM
R08	DA; also width
R09	DIA based on velocity; CFM based on velocity
R10	DIA based on PD/C; CFM based on PD/C
R11	Equivalent DIA from CFM
R12	Depth
R13	Calculated equivalent diameter
R14	W.D
R15	D
R16	Not used

R17 R18 R19	Not used Alphanumeric co	_	079 95 = 080 42 STD 081 05 05 082 91 R/S 083 76 LBL 084 19 D' 085 42 STD 086 06 06	143 42 STO 144 08 08 145 43 RCL 146 07 07 147 59 INT 148 71 SBR 149 53 ( 150 29 CP
DP-1	AIR DUCT SIZING	G PROGRAM	087 32 X¦T	150 29 CF 151 43 RCL 152 08 08
LABELS SUBRO	S & PUTINES	025 06 6 026 95 =	089 07 7	153 67 EQ 154 23 LNX
001 036 043 084 110 176 194 295 322 355 410 470 470 5564 598 615 632	16 A' 17 B' 18 C' 19 D' 11 A 12 B 22 INV 23 LNX 24 CE 34 √X 25 CLR 33 1/X 35 1/X 42 ST□ 43 RCL 44 SVM 45 Y× 52 EE 53	027 42 STD 028 03 03 029 22 INV 030 58 FIX 031 02 2 032 69 DP 033 17 17 034 91 R/S 035 76 LBL 036 17 B' 037 42 STD 038 04 04 039 71 SBR 040 45 Y× 041 91 R/S 042 76 LBL 043 18 C' 044 42 STD 045 01 01 046 32 X:T 047 01 1 048 05 5 049 03 3 050 02 2 051 01 1	090 06 6 091 03 3 092 03 3 093 07 7 094 02 2 095 03 3 096 42 STD 097 18 18 098 02 2 099 42 STD 100 19 19 101 71 SBR 102 22 INV 103 65 × 104 02 2 105 95 = 106 42 STD 107 06 06 108 91 R/S 109 76 LBL 110 11 A 111 98 ADV 112 32 X;T 113 03 3 114 05 5 115 06 6 116 03 3	155 86 STF 156 00 00 157 43 RCL 158 08 08 159 32 X‡T 160 01 1 161 06 6 162 01 1 163 03 3 164 42 STD 165 18 18 166 00 0 167 42 STD 168 19 19 169 71 SBR 170 22 INV 171 71 SBR 172 23 LNX 173 98 ADV 174 91 R/S 175 76 LBL 176 22 INV 177 22 INV 177 22 INV 177 22 INV 177 22 INV
LISTIN	G	052 07 7 053 02 2	117 03 3	180 69 ⊡P 181 00 00
001 002 003 004 005 006 007 008 010 011 012 013 014 015 016 017 018 019 020 021	76 LBL 16 A' 42 STD 02 02 32 X:T 04 4 02 2 03 3 00 0 1 1 03 3 04 4 42 STD 18 18 00 0 42 STD 19 19 71 SBR 22 INV 65 × 89 1 55 5 07	054 01 1 055 42 STD 056 18 18 057 03 3 058 42 STD 059 19 19 060 71 SBR 061 22 INV 062 65 × 063 93 . 064 01 1 065 03 3 066 07 7 067 95 = 068 35 1/X 069 65 × 070 43 RCL 071 04 04 072 95 = 073 22 INV 074 45 Y× 075 01 1 076 93 . 077 08 8 078 02 2	118	182 43 RCL 183 18 18 184 69 □P 185 04 04 186 32 X↓T 187 58 FIX 188 40 IND 189 19 19 190 69 □P 191 06 06 192 92 RTN 193 76 LBL 194 23 LNX 195 53 ( 196 43 RCL 197 07 07 198 55 ÷ 199 43 RCL 200 03 03 201 54 ) 202 34 √X 203 42 ST□ 204 09 09 205 53 (

		D	P-1 AIR DUCT SIZING PROGRAM
207 43 RCL 208 07 07 209 55 ÷ 210 43 RCL 211 05 05 212 54 ) 213 45 Y* 214 93 3 215 03 7 5 218 54 STD 219 42 STD 220 10 10 221 53 ((L0) 219 54 STD 220 53 (CL) 221 53 (CL) 222 53 53 RCL 222 53 FCL 223 53 RCL 223 53 RCL 224 43 RCL 225 75 ÷ 222 223 53 RCL 226 75 ÷ 227 228 54 STD 228 54 STD 228 55 ÷ 239 02 2 230 85 + 231 11 243 RCL 233 09 09 234 85 RCL 235 55 ÷ 237 06 06 247 53 RCL 248 43 RCL 249 11 11 243 RCL 244 00 CE 245 53 (CL) 247 53 RCL 248 43 RCL 249 11 11 250 85 + 251 252 95 STD 240 245 10 10 247 53 RCL 248 43 RCL 249 11 11 250 85 + 251 252 97 SBR 249 11 11 250 85 + 251 252 98 RDV 261 71 SBR 262 246 32 X‡T 265 98 RDV 266 76 LBL 267 76 LBL 268 43 RCL	271 22 INV 272 444 SUM 273 08 08 274 53 ( 275 43 RCL 276 11 11 277 55 ÷ 278 01 1 279 90 00 0 281 09 9 282 54 ) 283 42 STD 284 12 12 285 32 X;T 286 43 RCL 287 08 08 289 00 1 1 289 00 1 1 291 00 0 292 01 1 293 32 X;T 294 76 LBL 295 34 ΓX 296 71 SBR 297 35 1 SBR 297 35 1 SBR 297 36 STD 301 34 ΓX 298 42 STD 301 34 ΓX 298 42 STD 301 34 ΓX 302 53 ( 303 43 RCL 304 12 12 305 85 ÷ 306 99 9 308 59 INT 310 42 STD 311 12 12 312 71 SBR 313 43 RCL 305 85 ÷ 306 99 9 308 59 INT 310 42 STD 311 12 12 312 71 SBR 313 43 RCL 305 85 ÷ 306 99 9 308 59 INT 310 42 STD 311 12 12 312 71 SBR 313 43 RCL 305 85 ÷ 306 99 9 308 59 INT 310 42 STD 311 12 12 312 71 SBR 313 43 RCL 314 71 SBR 315 25 CLR 316 71 SBR 317 32 X;T 318 71 SBR 319 44 SUM 320 92 RTN 310 42 STD 311 12 12 312 71 SBR 313 43 RCL 314 71 SBR 315 25 CLR 316 71 SBR 317 32 X;T 318 71 SBR 319 44 SUM 320 92 RTN 310 42 STD 311 12 12 312 71 SBR 313 43 RCL 314 71 SBR 315 25 CLR 316 71 SBR 317 32 X;T 318 71 SBR 319 44 SUM 320 95 57 7 329 06 6 5 7 329 06 65 5 7 328 07 07 07 329 06 6 5 3 328 07 07 329 06 65 5 7 329 06 65 5 7 329 07 07 329 06 65 7 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 329 07 32	335 33 X² 336 54 ) 337 32 X;T 338 02 1 1 338 02 2 2 339 01 1 340 03 3 3 341 03 342 03 344 01 1 345 05 5 5 346 42 STD 353 354 76 LBL 355 32 X;T 356 06 6 357 358 01 1 11 372 45 Y X 373 04 4 375 08 8 367 02 2 336 367 02 2 336 367 02 2 337 1 11 11 372 45 Y X 373 04 4 377 55 ÷ 378 07 379 08 8 367 07 379 08 8 371 11 11 372 45 Y X 373 04 4 377 55 ÷ 378 07 7 379 08 8 370 03 1 387 08 8 367 368 367 05 1 1 11 372 45 Y X 373 04 4 377 55 ÷ 378 07 7 379 08 8 386 76 LBL 377 378 07 7 379 380 03 381 01 1 382 371 383 384 45 Y X 373 374 93 375 08 8 387 387 387 388 387 388 389 43 RCL 387 389 83 RCL 387 389 RCL 387	08

463
528901233456789012344567890123345678901233456789052333355555555555555555555555555555555
X:T 20103333013
12345678901234567890112345678901233456789012334566666666666666666666666666666666666
00 419 71 22 4 1 3 □ 8 RVNL
56789012345678901234567890123456789012345666666666666666666666666666666666666
4103 R 10 - ( (L0 + L0 + C0 + C0 + C0 + C0 + C0 + C0 +

719	08	08	734	12	12
720	22	INV	735	44	SUM
721	44	SUM	736	08	08
722	12	12	737	71	SBR
723	71	SBR	738	44	SUM
724	35	1 / X	739	98	ADV
725	43	RCL	740	22	INV
726	13	13	741	91	R/S
727	71	SBR	742	00	0
728	54	)	743	00	0
729	71	SBR	744	00	0
730	61	GTO	745	00	0
731	43	RCL	746	00	0
732	06	06	747	00	0
733	44	SUM	748	00	0

DP-1
AIR DUCT SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Example 1 In order to keep record, put printer in TRACE mode Clear register and print 0	Enter	ž	Press	ಸ್ತ		Explanation
	1800 .1. .9 .0 .76	111111	STO STO STO STO -	0 2 3 3 4 十	1863. 5.5650 *** 1863. 5.000 1653. 5.000 5.6669. 5.000 5.1415 5.1415 5.1415 5.1415 5.1415 5.1415 5.1415 5.1415 5.1415 5.1415 5.1415	
	- 1	1 1 1	STO f	4 Ш О	O)	Remove from TRACE mode after this step.
					679.6836.88 844.5831.5 844.5831.5	Cubic ft/min Velocity Friction loss/100 ft
	12	1 1	1 1	E R/S	24.0000 *** 12.0000 *** 10.2000 *** 2007.0000	Equivalent diameter Cubic ft/min
	1	l	ı	Ф	1145,0235 *** 6,1336 *** 1588,8836 *** 1888,8886 *** 6,8982 ***	Velocity Friction loss/100 ft Diameter Velocity Friction loss/100 ft

	ō						
Enter de	Enter depth available	48	I	I	ပ	48.0000 *** 36.0000 *** 36.0000 ***	Square duct 36 x 36
Enter de	or Enter depth available	20	I	I	O	20.0000 ***	
						***	Width
Example 2	2						
In order printer i	In order to keep record, put printer in TRACE mode						
Clear re	Clear registers and print 0	1	ಸ್ತ	PRINTx	۲		
Enter m Enter fr Enter li Enter tv Enter co	Enter maximum velocity Enter friction loss/100 ft Enter lining roughness coeff. Enter twice lining thickness Enter constant	1800 .15 .9 0 576	11111	STO STO STO STO -	0 1 2 3 Enter	1886.98888888888888888888888888888888888	
Comput	Compute and store constants	I	1	STO f	ı. 4 m	0)	Remove from TRACE mode after this step
Enter run no. Enter cfm	m no.	1.02	1 1	1 1	∢ ∞	1.0206 *** 10500.0006 *** 33.0000 *** 1800.0006 *** 6.1121 ***	Diameter Velocity, fpm Friction loss/100 ft
Enter de	Enter depth available	24	ı	ı	ပ	24,0808 444	
						38.8888 ****	Width

# **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
e	Calculates QV1 (CFM through 1-in. diameter duct) based on velocity; stores in RB; calculates QP1 (CFM through 1-in. diameter duct based on friction loss); stores in RA
A	Prints display (run no.)
В	Prints and stores display (CFM) in RI; calculates diameter R5 based on velocity and friction loss R6; if R5 > R6, goes to SBR 0
1	Calls SBR a; adds R3; calls SBR 2 and SBR 3
С	Prints display (depth available); deducts R3 and stores in R5; computes size of square duct R7; if R5 > R7 goes to SBR 4
5	Using SBR 6, computes width of rectangular ductwork; adds R3 and prints
D	Prints display (diameter); deducts R3 and stores in R6; calculates CFM based on velocity RD; calculates CFM based on friction loss RE; if RD is smaller than RE, goes to SBR 7
8	Goes to SBR a, prints results, stores in RI; stores RC in R6 and goes to SBR 2 and SBR 3
E	Prints display (duct width); deducts R3 and stores in R5; with R/S, prints display (duct depth), deducts R3, stores in R7, calls SBR 6, adds R3, and goes to SBR a
a	Adds 0.9 and finds nearest integer
0	Stores R5 in R6 and goes to SBR 1
2	Calculates velocity for round duct
3	Calculates friction loss/100 ft
4	Goes to SBR a; adds R3 and prints (size of square duct)
6	Calculates diameter of equivalent round duct
7	Stores RD in RE and goes to SBR 8

# **HP-97 EXPLANATION OF STORAGE REGISTERS**

Function
VMAX
Friction loss/100 ft
Duct surface roughness coefficient
Twice lining thickness
$576 \div \pi$
Diameter based on velocity
Diameter based on friction loss
Dimension of square duct; also calculated duct depth
Not used
Not used
QP1
QV1
Net diameter
CFM based on velocity
CFM based on friction loss
CFM

DP-1 (HP-97) AIR DUCT SIZING PROGRAM

LICT		ŕ	001	17Y	71
LIST			021	7×	31
00 i	*LBLe	21 16 15	022	STOA	35 11
002	SPC	16-11	023	RTN	24
003	SFC	16-11	024	∗LBLA	21 11
004	RCLE	36 00	025	PRTX	-14
005	RCL4	<i>36 04</i>	026	RTN	24
006	÷ .	24	027	*LBLB	21 12
007	STOB	35 12	<b>028</b>	PRTX	-14
008	RCL1	36 01	029	STOI	35 4 <i>6</i>
009		-62	030	RCLB	36 12
010	1	€1	031	÷	-24
011	3	83	032	<b>1</b> X	54
012	7	67	033	ST05	35 05
013	÷	-24	034	RCLI	36 4 <i>6</i>
014	RCL2	<b>36 0</b> 2	<b>03</b> 5	RCLA	36 11
015	÷	-24	936	÷	-24
016	1	01	037	•	-62
017		-62	038	3	<i>03</i>
018	8	<b>9</b> 8	<b>9</b> 39	7	€7
019	2	02	949	5	€5
020	1/X	52	041	Υ×	31

042	ST06	35 <i>06</i>	<b>09</b> 8	RCL3	<b>36</b> 03	154
043	RCL5	<i>36 05</i>	<b>0</b> 99	_	-45	155
044	<b>X&gt;</b> Y?	16-34	100	STOC	35 13	156
045	GT00	22 00	101	χ2	53	157
046	*LBL1	21 61	102	RCLB	36 12	158
047	RCL6	36 ØS	103	X	-35	159
048	GSBa	23 16 11	104	STOD	35 <i>14</i>	160
<b>04</b> 0	RCL3	23 16 11 36 03	105	RCLC	36 13	161
	KULS +	-55	105	2 E	36 13 02	162
<b>050</b>					-62	163
<b>0</b> 51	PRTX	-14	107	•		
052	GSB2	23 62	108	6	<i>06</i>	164
<b>053</b>	6SB3	23 03	109		<b>0</b> 7	165
<i>0</i> 54	SPC	16-11	110	γ×	31	166
<i>0</i> 55	RTN	24	111	RCLA	36 11	167
<b>0</b> 56	<b>≭LBL</b> C	21 13	112	X	-35	168
<b>05</b> 7	PRTX	-14	113	STOE	<b>35</b> 15	169
<b>0</b> 58	SPC	16-11	114	RCLD	36 14	170
<b>0</b> 59	RCL3	<b>36</b> 03	115	X≚Y?	1 <b>6-</b> 35	171
060	-	-45	116	GT07	22 <b>0</b> 7	172
061	ST05	<b>35 0</b> 5	117	*LBL8	21 08	173
062	RCL6	36 06	118	RCLE	<b>36</b> 15	174
063	1	61	119	<b>G</b> SBa	23 16 11	175
064		-62	120	PRTX	-14	176
065	Ū	98	121	SPC	16-11	177
066	9	<b>0</b> 9	122	STOI	35 46	178
067	÷	-24	123	RCLC	36 13	179
968	STO7	<b>35</b>	124	STO6	35 <i>06</i>	180
069	RCL5	36 - 05	125	GSB2	23 82	181
070	X>Y?	16-34	126	GSB3	23 03	182
071	GT04	22 64	127	SPC	16-11	183
072	*LBL5	21 05	128	RTH	24	184
073	GSB6	23 06	129	*LBLE	21 15	185
074	RCL6	36 Ø6	130	PRTX	-14	186
075	÷	-24	131	RCL3	36 03	187
976	1/X	- <b>24</b> 52	131	KUL3	-45	188
	X2	53	133	ST05	35 Ø5	189
077 070	STX7	35- <b>35</b> 07	133	RTN	33 63 24	103
<b>978</b>				PRTX		
079	RCLC	<b>36</b> 13	135		-14	
080	RCL6	36 06	136	RCL3	<b>36</b> 03	
081	450	-45	137	0707	-45 75 63	
082	ABS	16 31	138	STO7	<b>35 0</b> 7	
083	•	- <i>6</i> 2	139	€SB6	23 06	
084	Ø	00	140	RCL3	<b>36 0</b> 3	
<b>0</b> 85	1	01	141	+	-55	
086	X≼Y?	16-35	142	STOC	35 13	
687	GT05	22 05	143	GSBD	23 14	
988	RCL7	36 07	144	SPC	16-11	
089	GSBa	23 16 11	145	RTN	24	
<i>090</i>	RCL3	36 03	146	*LBLa	21 16 11	
091	+	-55	147	•	-62	
<b>092</b>	PRTX	-14	148	9	09	
093	SPC	16-11	149	+	-55	
094	RTN	24	150	IHT	16 34	
<b>0</b> 95	*LBLD	21 14	151	RTN	24	
<b>0</b> 96	PRTX	-14	152	*LBL0	21 00	
097	SPC	16-11	153	RCL5	36 05	

# DP-2 AIR DUCT DESIGN PROGRAM, STATIC REGAIN METHOD

### **PROGRAM DESCRIPTION**

The ductwork is sized so that the increase in static pressure due to reduction in velocity at each link just equals the frictional loss in the succeeding section of the duct. In this manner, each node or terminal is maintained at constant static pressure, and velocity pressure is used for overcoming the duct friction loss.

The ductwork designed on the basis of the static regain method is easier to balance and requires less energy to operate as compared to the constant friction loss method.

The program will handle both circular and rectangular ductwork. In the case of rectangular ductwork, the width can be computed to suit the available depth. The duct sizes are calculated to the nearest inch.

The users have two options for inputting data for dynamic losses for ductwork fittings:

Option 1. Use the data given in ASHRAE Handbook of Fundamentals, chapter on air duct design. This method will yield accurate results.

Option 2. Convert duct fittings data to the equivalent duct length based on information given in *Handbook* of Air Conditioning Systems Design, Carrier Air Conditioning Company, by McGraw-Hill Inc. This method is faster but less accurate.

The program will take into account the duct lining thickness and internal surface roughness coefficient. The duct sizes computed are external sizes with a specified lining thickness.

### **EQUATIONS**

In addition to the equations given under Program DP-1, this program is based on the following equations:



### **FIGURE 2A**

Static regain at node 2

$$= \left[ \left( \frac{V_1}{4005} \right)^2 - \left( \frac{V_2}{4005} \right)^2 \right] \times K1 \quad [2.7]$$

where

 $V_1$  = Velocity in fps preceeding the node

 $V_2$  = Velocity in fps after the node

 $K_1$  = Regain factor depending on construction (0.75 to 0.95)

Friction loss in duct run, see Figure 2A,

$$\Delta P = .03 \times f \times \left(\frac{L_2}{d_2^{1.22}}\right) \times \left(\frac{V_2}{1000}\right)^{1.82}$$
 [2.8]

also 
$$Q_2 = \frac{\pi}{516} \times V_2 \times d_2^2$$
  
or  $d_2 = \left(\frac{Q_2 \times 576}{V_2 \times \pi}\right)^{1/2}$  [2.9]

Substituting  $d_2$  in equation 2.8,

$$\Delta P = .03 \times f \times (L_2) \times \frac{V_2^{1.82}}{(V_2^{\frac{1}{2}})^{1.22}} \times \frac{1}{1000^{1.82}}$$

$$\times \frac{(\pi^{\frac{1}{2}})^{1.22}}{576} \times \frac{1}{(Q_2^{\frac{1}{2}})^{1.22}}$$

$$= 433 \times 10^{-11} \times f \times \frac{L_2 \times V_2^{2.43}}{Q_2^{.61}}$$

$$= \frac{K_2 \times L_2 \times V_2^{2.43}}{Q_2^{.61}}$$

$$K_2 = (433 \times 10^{-11} \times f) \tag{2.10}$$

Energy loss due to fittings = 
$$C \left( \frac{V_2}{4005} \right)^2$$
 [2.11]

where

C = Total velocity pressure loss coefficient for fittings

 $V_2$  = Velocity in fps

Total loss = 
$$\frac{K_2 \times L_2 \times V_2^{2.43}}{Q^{.61}} + C \left(\frac{V_2}{4005}\right)^2$$
 [2.12]

Since static regain should equal loss

$$[K_1 \times ((V_1/4005)^2 - (V_2/4005)^2)]$$
  
=  $(K_2 \times L_2 \times V_2^{2.43}/Q_2^{61}) + C \times (V_2/4005)^2$ 

or, rearranging,

$$(K_2 \times L_2 \times V_2^{2.43}/Q_2^{.61}) + C (V_2/4005)^2 - [K_1 \times ([V_1/4005]^2 - [V_2/4005]^2)] = 0 \quad [2.13]$$

Value of  $V_2$  is computed by reiteration of Newton's method for solving

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
 [2.14]

where

 $x_1$  = Initial value of variable

 $f(x_1)$  = Value of function with  $x_1$  as variable

 $f'(x_1)$  = Value of first differential of function with  $x_1$  as variable

 $x_2$  = Revised more accurate value of variable

$$\begin{split} f' \; (\mathbf{x_1}) &= [2.43 \times K_2 \times \frac{L_2}{Q_2^{\cdot 61}} \times V_2^{1.43}] \\ &+ [2 \times \frac{C}{4005^2} \times V_2] + [2 \times \frac{K_1}{4005^2} \times V_2] \\ &= [2.43 \times K_2 \times \frac{L_2}{Q_2^{\cdot 61}} \times V_2^{1.43}] \\ &+ [2 \times \frac{C + K_1}{4005^2} \times V_2] \end{split}$$

### **OPERATING FEATURES**

The following features have been incorporated, in order to fit the program within the limit of programming steps and minimize computing time:

- a. Alphanumeric output for identification has been reduced to one or two characters. The same subroutine is used for printing  $V_1$  and  $V_2$ ; PD, PN, and  $P\Sigma$ .
- **b.** Velocity  $V_2$  is calculated to accuracy of 10 fpm. If velocity reduction is 10%, it takes about 40 seconds to compute the diameter. The computing time will increase as the value of  $V_2$  decreases, since it will increase number of reiterations. If accuracy of less than 10 fpm is desired, it can be achieved at the cost of computing time. On the other hand, computing time can be reduced by accepting accuracy of, say, 50 fpm or 99 fpm; any of these changes can be made without increasing the number of programming steps (change steps 192 and 193).
- **c.** Duct length and fitting coefficient data are input in decimal format as explained later. As shown under "User Instructions and Examples," the first duct run is sized based on the velocity selected by the user. Any number of trial selections can be made by entering the initial velocity under Label B and repeating inputs under Labels A, B, and C.

Once the first duct run is sized, the program will automatically size ductwork based on static regain. The first output will be for round ductwork. If the user desires to change the calculated diameter, it can be done by entering the new diameter and pressing R/S. Change in this manner can be done only when computing the duct size based on static regain. Further change in diameter through R/S can be done as many times as desired.

While calculating the width for rectangular ductwork, the user can also make as many trials as required.

When sizing ductwork based on static regain, the program first computes  $V_2$ , the diameter based on  $V_2$ , and rounds it to an integer after adding 0.9. Since the result is a slightly larger duct size, the computation will generally show slightly smaller static regain; that is, the value of PN will be negative, if not zero. Due to this reason, actual velocity for the first duct run will be slightly lower than the specified input. If the computed value of the diameter is changed, the program will recalculate pressure losses.

While calculating the width for rectangular ductwork, the program, for sake of accuracy, uses the actual diamater based on V2, rather than the printed diameter. As in the case of the diameter, the calculated width is rounded off to an integer after adding 0.9.

For further accuracy, the program can recompute duct velocities and pressure losses. This can be achieved by resetting flag 1 (INV—2nd—st. flg 1).

However, this will also increase computing time. All of the above features are further explained by examples.

Length and fitting information has to be input in decimal format as shown in the following examples:

Length	Fitting Coefficient	Input Under Label C
50	.7	50.07
40	1.2	40.12
65	.05	65.005

Length has to be an integer.

DP-2
AIR DUCT DESIGN PROGRAM, STATIC REGAIN METHOD
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step Pr	Procedure	Enter		Press		Print Out	ut	Explanation
Example 1	e 1							
Illustra withou	Illustrates sizing of round duct without any trials							
1. Initialize	Ze	1	ı	2nd	ù	Ö		
Input Input Input rough	Input static regain factor Input initial velocity desired Input lining surface — surface roughness coeff.	0.85 3600 0.9	1 1 1	2nd 2nd 2nd	Ćάγ	0.00.0	250L	Static regain factor Initial velocity, fpm desired Surface coefficient Lining thickness
Input linin Input run Input cfm Input leng	Input lining thickness, in. Input run no. Input cfm Input length and fitting coeff.	1 1.02 10000 30.05	10000	2nd	OwbQ	.00 0 0.0 .00 0 0.0 .00 0.0 4.0 .00 0.0 0.0 4.0		Run no. Cubic ft/min Length Fitting coefficient Diameter Actual = initial velocity, fpm Friction loss, in. w.g.
Input	Input second run no. to be sized	2.03	I	ı	⋖	2.03	ω X	
on basis or Input cfm	on basis of static regain Input cfm	8000	1	ı	В			
Lengtl	11. Length and fitting factor	20.009	ı	ı	U	0.00-0 0.00-0 0.00-0 0.00-0 0.00-0 0.00-0	MYBONA AL	Diameter Velocity in run 2.03 Friction loss, in. w.g. Net gain or loss Total friction loss up to
Repeatimes	Repeat steps 8, 9, & 10 as many times as required.	3.04 6000 25.0025	1 1 1	1 1 1	<b>∢</b> m ∪	.0 0 0 .0 0 0 .0 0 0 .0 0 0 0 0 .0 0 0 0		run 2.03
						.0.00 0.060 0.478		Negative value of PN indicates slight gain since actual duct size is rounded off to an integer.

		Actual velocity based on round duct	Width	Data based on round duct	Width	
		SAN A FRANC	ŭ3 A	WAND CHARGE	d 3	KOJEHNAKM 43
	0.0000	0.9000 2800. 1.20 1.02 15000. 0.010 2686.	22. 40.	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ળવ ળુંબુ	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	'n	Cm P Ó Cm P	٥	<b>∢ m∪</b>	Δ	<b>∢</b> ₪ ∪
	2nd	2nd 2nd 2nd 1 1 1	1	1 1 1	ı	1 1 1
	1	111 111	l	1 1 1	1	1 1 1
	ı	.9 2800 1.2 1 1.02 15000 30.001	24	2.03 12500 25.0001	22	3.04 8500 45.0008
Example 2 Illustrates sizing of rectangular duct without any trials	Initialize	Input static regain factor Input initial velocity desired Input lining surface roughness coeff. Input lining thickness, in. Input run no. Input cfm Input length and fitting coeff.	Input duct depth desired	Input second run no. to be sized on basis of static regain Enter cfm Enter length and fitting coeff.	Input duct depth desired	Repeat steps 10, 11, 12, & 13 as many times as required.
	-:		6	10. 11.	13.	

DP-2 (Continued)
AIR DUCT DESIGN PROGRAM, STATIC REGAIN METHOD
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step	p Procedure	Enter		Press		Print Out	Explanation	
	Example 3							
	Illustrates various options							
	1. Initialize	I	I	2nd	ш	ö		
ς κ. <del>4</del> .	Input static regain factor Input initial velocity desired Input lining surface roughness	.8 2600 .9		2nd 2nd 2nd	Ć ấ Ý	0.8000 26000 0.90	840 100 100	
<u>ب</u>		0	ı	2nd	ó	ö		
. 6.	Input run no. 1.02 Input cfm Input length and fitting coeff.	1.02 15000 45.0008	1 1 1	1 1 1	۷mυ	10 10 10 10 10 10 10 10 10 10 10 10 10 1	RN  L  L  FF  DI  If this size is not acceptable,	able,
								5
6	Input duct depth desired	24	1	1	۵	ის 4დ	DP ⊌ Width	
	Repeat step 9 as many times as desired.						4.3 4.0	
						024	DP B	
12. 12.	Input second run no. to be sized on basis of static regain Enter cfm Enter length and fitting coeff.	2.03 12500 20.0005	T 1 1	1 1 1	<b>∢</b> ₪ ∪	10 00 20 0 00 20 0 00 20 0 00 20 0 00 20 00 00 20 00 00	NO JE INO NO N	
6	If you desire to try out a	30	ı	ı	R/S			
	different diameter						- T	

Repeat step 13 as many times as required.	58	I	ı	R/S	000 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Sara a s	Note: Smaller duct increases velocity and friction loss.
Either proceed with next duct run or compute for rect. duct.  Example 4  Shows how first duct run can be changed					0.00 0.00 0.1760 0.1760	NEZM >ezu	
Initialize	0	ı	2nd	ш	0.0000		
Input static regain factor Input initial velocity desired Input lining surface roughness coeff. Input run no. Input cfm Input length and fitting coeff. If larger duct diameter is desired	.9 3600 .9 0 1.02 10000 30.05	111 1111	2nd 2nd 2nd 1   1	CBY Q QQX	0.9000 36000 0.90 10000 0.500 3466 0.5441	Right Rolffied	
Try lower velocity Repeat steps 6, 7, & 8. Repeat as many times as desired before sizing ductwork based on static regain method.	3200	ı	2nd	<b>ૅ</b>	3200. 10000. 0.500. 3183. 0.4538	178 ₀ 14114	

# **EXPLANATION OF LABELS & SUBROUTINES**

EXPLA	NATION OF LABELS & SUBROUTINES	(	Uses SBR RCL, SBR CE, SBR $\sqrt{X}$ , prints
Label	Function		PD; uses SBR $\sqrt{X}$ and computes and prints pressure difference PN; stores PN;
E	Initializes; prints 0 and partitions		computes, prints, and stores total running pressure loss $P\Sigma$
A'	Stores and prints static pressure regain factor $(K_1)$ PR	EXPLAN	ATION OF STORAGE REGISTERS
B'	Stores and prints starting velocity V1; sets flag 0 and flag 1	Register	Function
$\mathbf{C}'$	Prints SC and multiplies by 433 E−11 and	R00	PN
	stores	R01	Net diameter of round duct
D'	Prints LT and stores double of lining thickness	R02	Static regain recovery factor PR
Α	Prints RN	R03	Initial velocity V1
В	Stores and prints CFM	R04	Duct internal surface roughness coefficient SC × 433 E-11
C	Stores and prints length L; stores and prints FF; if flag 0 is set goes to SBR CLR;	R05	Duct lining thickness LT
	computes V2 by using V1; uses SBR STO	R06	Air flow in CFM
	and SBR C; stores V2; with input of new diameter and R/S, recomputes	R07	Velocity pressure loss coefficient factors for fittings FF
X <b>≠</b> T	Reiterates for computing V2	R08	Length of ductwork
Y ^x	Reiterates for new diameter	R09	Calculated velocity for static regain V2
D	Prints depth; computes net depth; computes approximate width; computes	R10	Duct diameter with lining; duct depth
	width; if flag 1 is set goes to SBR X ²	R11	Duct width
)	Reiterates for computing width	R12	4005
E	In case of error or desired change, restores	R13	Interim value of width
	previous value of V1, and total pressure loss $P\Sigma$	R14	Total pressure drop $P\Sigma$
INV	Prints alphanumeric characters for	R15	Initial velocity V1
	identification of data	R16	Duct diameter without lining
LNX	Prints PR, PD, PN, and P $\Sigma$	R17	$= 2 \times (RCL 07 + RCL 02)$
CE	Prints V1, V2		÷ RCL 12 X ²
CLR	Computes initial duct size based on velocity;	R18	Alphanumeric code
	uses SBR STO, SBR RCL, SBR CE, SBR $\sqrt{X}$ ; resets flag 0 for subsequent sizing based on static regain	R19	Number of decimal places
$X^2$	Stops program	DP-2	AIR DUCT DESIGN PROGRAM,
$\sqrt{X}$	Computes duct friction loss		REGAIN METHOD
1/X	Computes velocity gain	LABELS	<b>&amp;</b> 272 45 YX
STO	Computes diameter	<b>SUBRO</b> L 015 1	JTINES 292 14 D 6 A' 323 54 )
RCL	Computes velocity	027 1	7 B' 419 15 E 8 C' 439 22 INV
SUM	Computes equivalent diameter for rectangular ductwork	074 1 095 1 110 1	9 D' 457 23 LNX 1 A 471 24 CE 2 B 485 25 CLR
EE	Prints diameter DI		.3 C 521 33 X² 32 X;T 525 34 √X

633 43 RCL 663 44 SUM 702 52 EE 717 53 (  LISTING 000 76 LBL 001 10 E' 002 98 ADV 003 00 0 004 42 STD 005 14 14 006 99 PRT 007 98 ADV 009 58 FIX 010 02 2 011 69 DP 012 17 17 013 91 R/S 014 76 LBL 015 16 A' 016 42 STD 017 02 02 018 32 X;T 019 03 3 020 05 5 021 42 STD 021 42 STD 022 18 18 023 71 SBR 024 23 LNX 025 91 R/S 026 76 LBL 027 17 B' 028 42 STD 029 03 03 030 32 X;T 031 01 1 032 42 STD 029 03 03 030 32 X;T 031 01 1 032 42 STD 029 03 03 030 32 X;T 031 01 1 032 42 STD 040 91 R/S 041 76 LBL 042 18 C' 043 42 STD 044 04 04 045 32 X;T 046 03 3 047 06 6 048 01 1 049 05 5 050 42 STD 051 18 18 052 02 2 053 42 STD 055 71 SBR	568 35 1/X 595 42 STD
057 058 059 061 062 063 0645 067 067 077 077 077 077 077 077 077 077	056 057
04 3 3 E 1 1 - D 4 0 0 0 5 D 2 S T D 8 N	22 INV 04 4
122	121 71 SBR 122 22 INV
187 12   12   188   33   189   54   54   51   190   17   1   193   194   195   195   196   197   198   197   198   199   200   75   71   198   200   75   71   198   200   75   71   199   200   75   71   199   200   75   71   199   200   75   71   199   200   75   71   199   200   201   202   203   204   205   53   8   8   8   8   8   8   8   8   8	186 43 RCL 187 12 12

2534567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678890012456789001245678900124567890012456789000000000000000000000000000000000000
09 09 ) I ×I GET X\$\tau RCL9 RCL9 RCL9 RCL9 RCL9 RCL9 RCL9 RCL9
31789012345678901233456789012344567890 317892123456789012334567890 3178921234567890 3178921234567890 3178921234567890 3178921234567890 3178921234567890 3178921234567890 3178921234567890
95 = 42 STD
1233456789012345678900123440678901234456789012344567890123445678901234454544444444444444444444444444444444
13 13 13 RCL 13 10 15 SE
67890123456789012345678901234567890123456789012345678901234567890 44444552345678901234567890123456789012345678901234567890 444444444444444444444444444444444444
18 04TXD9 06NLX 3 0 0 M8 0 D9RVNL 18 0 04TXD9 06NLX 3 0 0 M8 0 D9RVNL 18 0 04TXD9 0 0 RLBN3 3 0 0 M8 0 S1RLBC 4 2 0 1 M8 0 S1RRBC 3 0 0 S1 4 S1RLBC 4 2 0 1 M8 0 S1RRBC 3 0 0 S1R SC 8 X 1 S1 8 K S1 8

(

- 00

SBR

22 86 0 8 PR C 9 PR C	03 ÷ LL2 03 ÷ CL2 03 ÷ CL2 04 ÷ CL2 05 ÷ CL2 07 ÷ CL2 08 ÷ CL2 09 ÷
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

### **SPECIAL NOTES FOR HP-97 USERS**

- **1.** The program prints out integer values for round duct sizes, but the duct velocity and pressure loss calculations are based on the actual calculated duct diameter.
- 2. In the same manner, the rectangular ductwork calculations are based on the actual calculated duct diameter, rather than the printed value of the diameter, which is rounded off to the nearest integer.

The difference in results is rather insignificant.

**3.** The value of  $V_2$  is computed by reiteration instead of the procedure shown in the "Program Description."

Other differences are evident from the illustrated examples.

DP-2
AIR DUCT DESIGN PROGRAM, STATIC REGAIN METHOD
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	p Procedure	Enter		Press		Print Out	Explanation
	Example 1 For round ductwork						
	1. Initialize	ı	ı	f	ш	6.06 ***	
	Switch printer to TRACE mode						
7 6	2. Enter static regain factor	.85	ı	вто	<b>∀</b>	.85 STOA	
· 	coeff.	.a 433EEX	CHS	1	×		
		ı	1	STO	œ	3.897 <i>888888888</i> 5 3.000	
4 rc	<ul><li>4. Enter lining thickness</li><li>5. Enter velocity pressure constant</li></ul>	1 4005	1 1	STO STO	000	1.00 570C 4005.00 570D	Remove from TRACE mode after this step.
9	6. Enter initial velocity	3600	l	4	∢	3660.86 ***	
7. 8. 9.	. Enter run no Enter cfm . Enter duct length . Enter fitting factor	1.02 10000 30 .5	1111	1111	B S C B/S	1.82 *** 1888.69 *** 38.88 *** 6.58 ***	
	Steps 6 through 10 can be					25.00 *** 3459.36 ***	Diameter of round duct Velocity, fom
	repeated any number of times till desired size is obtained.					60,004 848 80,004 848	Static pressure loss Net total static pressure
<u> </u>	Enter run no. Enter cfm Enter duct length Enter fitting factor	2.03 8000 20 .09	1111	1111	B B R/S	2.63 2.63 2.63 2.63 8.63 8.63 8.63 8.63	
						24.08 *** 3824.79 ***	Diameter of round duct Velocity, fpm
						8.69 48.8 8.69 48.8	Static pressure loss Total loss without regain
						6.38 *** 8.53 ***	Net gain or loss for run Total static pressure loss

DP-2 (Continued)
AIR DUCT DESIGN PROGRAM, STATIC REGAIN METHOD
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

1 4 1	Procedure	Enter		Press		Print Out	Explanation
epek	Repeat steps 11 through 14 as many times as required.	3.04 6000 25 .03	1 1 1 1	1 1 1 1	A C C R/S	表 表 表 表 ま ま ま ま ま か い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い い	
						新年章 (20.10区) (24.00円) (24.00円)	
						*** (2) 1 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1	
						※ 香 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
ξaπ	Example 2						
סר ר	For rectangular ductwork						
읡	Follow steps 1 thorugh 10 as in	ı	ı	+	ш	· · · · · · · · · · · · · · · · · · ·	
xa⊓	Example no. 1.	.9 1.2	1 1		A Enter	HOLE 0005.	
		433EEX	CHS	=	×		
		_ 1 4005	1 1 1	STO STO STO	в D С	5768 1.0665 5700 4885,8865 5760	
		2800	ı	+	∢	*** 5555 3557	
		1.02 15000 30 .01	1 1 1 1	1 1 1 1	B B C C S/S	***	
						*** (1400 000) (1400 000)	

<del></del>									
	Width								
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			* * * * * * * * * * * * * * * * * * *	*** 00000 to		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		*** *** *** *** ***	. 0.000 . 0.000 . 0.000 . 0.000
යක හ යක ඇ	(	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		ा के च	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	31,0886 1849,0636	<u></u>	(2) (2) (2) (2)	
۵	R C B A			۵	B B A S				۵
I	1 1 1 1			ſ	1 1 1 1				I
l	1 1 1 1			l	1 1 1 1				I
24	2.03 12500 25 .001			22	3.04 8500 45 .008				18
To compute width of rect. duct,	Repeat steps 11 through 14.			To compute width of rect. duct, enter depth	Repeat steps 11 through 15 as many times as desired.				
10a.				15.					

### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
a	Prints and stores display (initial velocity) and sets flag 2
e	Clears register R9 and prints 0
A	Prints display (run no.)
В	Prints and stores display (CFM) in R2
C	Prints and stores display (length) in R4;
	with R/S, prints and stores display (fitting factor) in R3; if flag 2 is set goes to SBR 9, otherwise computes new velocity for static regain using LBL 6 for reiteration; using SBR 9, computes and prints total static loss based on new velocity; computes and prints static regain; computes and prints net static pressure loss or gain
D	Prints and stores display (duct depth) in R6; calculates size of square duct and stores in R7; if R6 > R7, goes to SBR 5, otherwise continues; computes width using LBL 3 for reiteration, goes to SBR 2, and prints value
0	Computes (V/4005) ²
1	Computes friction loss
2	Adds 0.9; calculates integer value; adds twice lining thickness
4	Computes diameter for equivalent round duct
5	Prints R7
7	Computes dynamic and friction loss and totalizes it in R6
8	Computes net static regain
9	Computes diameter for given velocity, adds twice the lining thickness, and prints; computes and prints velocity for round duct; computes and prints dynamic and friction losses; totalizes in R9, and prints total

### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register		Function	
R0	Not used		
R1	Diameter		
R2	CFM		

R3	Fitting factor for dynamic losses
R4	Length
R5	Velocity
R6	Dynamic and friction loss; also duct depth
<b>R</b> 7	Size of square duct
<b>R</b> 8	Velocity
<b>R</b> 9	Total static pressure drop
RA	Static regain recovery factor
RB	Duct internal surface roughness coefficient × 433 E-11
RC	Duct lining thickness
RD	4005
RE	Initial velocity
RI	Not used

# DP-2 (HP-97) AIR DUCT DESIGN PROGRAM, STATIC REGAIN METHOD

LIST	ING		031	ST05	<b>35 0</b> 5
001	*LBLa	21 16 11	032	ST08	35 <b>0</b> 8
002	STOE	35 15	033	*LBL6	21 06
003	SPC	16-11	034		-62
004	PRTX	-14	035	9	<b>0</b> 9
005	SF2	16 21 02	<b>0</b> 36	9	<b>0</b> 9
006	SPC	16-11	<b>03</b> 7	ST×5	35-35 05
007	RTN	24	<b>0</b> 38	GSB7	23 07
008	*LBLe	21 16 15	039	RCLE	36 15
009	Ø	ยิยิ	040	GSB8	23 <b>0</b> 8
010	ST09	<b>35 6</b> 9	041	-	-45
011	PRTX	-14	042	1	01
012	SPC	16-11	043	EEX	-23
013	RTN	24	044	6	96
014	*LBLA	21 11	045	CHS	-22
015	PRTX	-14	046	X≚Y?	16-35
016	RTN	24	047	GT06	22 06
017	*LBLB	21-12	<b>04</b> 8	RCL5	<b>3</b> 6 <b>0</b> 5
018	ST02	<b>35 0</b> 2	<b>04</b> 9	STOE	35 15
019	PRTX	-14	050	GSB9	23 09
020	RTH	24	051	RCL8	<b>3</b> 6 <b>0</b> 8
021	*LBLC	21 13	<b>0</b> 52	GSB7	23 07
022	STO4	35 04	<i>053</i>	ST-9	35-45 09
023	PRTX	-14	054	ST-6	35-45 <i>06</i>
024	RTN	24	<b>055</b>	RCL6	36 <i>0</i> 6
025	ST03	<i>35 03</i>	<b>056</b>	PRTX	-14
026	PRTX	-14	<b>0</b> 57	RCL9	<b>36 0</b> 9
027	SPC	16-11	<b>0</b> 58	PRTX	-14
028	F2?	16 23 <b>0</b> 2	<b>0</b> 59	SPC	16-11
<b>0</b> 29	GT09	22 09	060	SPC	16-11
030	RCLE	<i>36</i> 15	061	SPC	16-11

-55

-14

01

68

03

-35

53

-24

-14

16-11

35 15

35 05

23 07

36 09

-14

16-11

24

51

35-55 09

-14

36 01

36 02

8

3

23 00

36 03

36 05

23 01

35 06

21 08

23 00

36 05

-55

24

-35

GSB0

RCL3

X

RCL5

GSB1

+

ST06

RTN

*LBL8

GSB0

RCL5

165

166

167

168

169

170

171

172

173

174

175

*LBL1

2

3

YX

RCL4

X

RCLB

X

RCL2

108

109

110

111

112

113

114

115

116

117

118

21 01

62

-62

84

03

31

36 64

36 12

-35

36 **8**2

-35

# DP-3 AIR DUCT FRICTION LOSS PROGRAM

### **PROGRAM DESCRIPTION**

This program enables the designer to calculate frictional loss through supply, return, and exhaust air duct systems. The program also calculates velocity based on an equivalent round duct, velocity based on actual area, and velocity pressure.

The program adds up the frictional loss of each branch so that the total frictional loss of the longest run, or of any run, can be computed. Further, it is possible to add or deduct pressure drop due to equipment or any error.

The program can handle circular, flat-oval, and rectangular ductwork.

The user has two options for inputting data for dynamic losses for fittings:

Option 1: Use data given in ASHRAE Handbook of Fundamentals, chapter on air duct design. This method will yield accurate results.

Option 2: Convert duct fittings data to the equivalent duct length based on information given in *Handbook* of Air Conditioning Systems Design, by Carrier Air Conditioning Company, McGraw Hill Inc. This is a faster but less accurate method.

The program takes into account the duct lining thickness and internal surface roughness coefficient. The duct sizes input should be duct external dimensions.

### **EQUATIONS**

The program is based on the equations given under Programs DP-1 and DP-2.

#### **OPERATING FEATURES**

Duct length and fitting information has to be input in decimal format as shown in the following example:

Length	Fitting Coefficient	Input Under Label D
50	.7	50.07
40	1.2	40.12
65	.005	65.0005

Duct length has to be an integer.

### **REFERENCE DATA**

See Program DP-1.

DP-3
AIR DUCT FRICTION LOSS PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

2nd
,
Ω
<b>∢</b> m ∪
Δ
ш
2nd B'

EXPLAN	IATION OF LABELS & SUBROUTINES	R02		g roughness coefficient
Label	Function	R03	COEF	oos I /TU
E'	Initializes and prints 0	R04	Lining thickn CFM	less L/TH
A'	Selects and prints duct type	R05	W.D	
B'	Calculates velocity pressure VP	R06		r deducting lining
C'	Stores and prints internal surface	KUU	thickness	r deducting lining
D'	coefficient COEF  Stores and prints lining thickness L/TH	R07	D actual after thickness	deducting lining
INV	Prints alphanumeric characters for	R08	Area	
	identification of data	R09	Equivalent di	ameter DE
LNX	Prints duct type CIRC and sets flag 0	R10	PD/C	
CE	Prints duct type F/OV and sets flag 1	R11	$\Sigma PD$	
CLR	Prints DIA; changes to internal diameter by deducting lining thickness	R12	Not used	
Х≄Т	For flat-oval duct; calculates equivalent	R13	Length	
<b>Λ</b> ←1	diameter for round duct and area of round	R14	Length and I	FF
	duct	R15	Not used	
X ²	Prints W.D	R16	Not used	
$\sqrt{X}$	Converts W.D input to W and D and deducts lining thickness	R17	Duct type	
1/X	Calculates velocity in circular duct	R18	9 -	numeric code for printing
STO	Calculates and prints PD/C	R19	For storing d	ecimal places
RCL	Given area, calculates velocity			
SUM	Computes and prints $\Sigma PD$			
A	Prints run no. and R No.	DP-3	AIR DUCT FRI	CTION LOSS PROGRAM
В	Prints and stores CFM			LISTING
C	With input of duct dimension calculates equivalent diameter, velocity, and PD/C based on duct type	014 1		000 76 LBL 001 10 E' 002 00 0 003 42 STD
D	Accepts length and fitting coefficient in decimal format; stores and prints duct run length L; prints fitting coefficient; computes PD and ΣPD	090 1 111 1 132 2 150 2	.8 C' .9 D' 22 INV 23 LNX 24 CE	003 42 310 004 11 11 005 99 PRT 006 98 ADV 007 22 INV 008 58 FIX
E	Adds or deducts equipment pressure drop, prints EPD, and computes new $\Sigma PD$	192 2 227 3 327 3 344 3 378 3	25 CLR 32 X∤T 33 X² 34 FX 35 1/X	009 02 2 010 69 ⊡P 011 17 17 012 91 R/S 013 76 LBL
	NATION OF STORAGE REGISTERS	469 4 495 4	∤2 STO ∤3 RCL ∤4 SUM  1 A	014 16 A' 015 42 STO 016 17 17 017 22 INV
Register		536 1	2 B	018 86 STF
R00	Not used	626 1	13 C 14 D	019 00 00 020 22 INV
R01	Not used	703 1	15 E	021 86 STF

022 01 01 023 22 INV 024 86 STF 025 02 02 RCL 027 17 17 028 32 X; 029 00 07 EQ 031 03	086 22 INV 087 98 ADV 088 91 R/S 089 76 LBL 090 18 C* 091 42 STD 092 02 02 02 093 32 X;T 094 01 1 095 05 5 096 03 3 097 02 2 098 01 1 099 07 7 100 02 2 101 01 1 102 42 STD 103 18 18 104 03 3 105 42 STD 106 19 19 107 71 SBR 108 22 INV 109 91 R/S 110 76 LBL 111 19 D* 112 42 STD 113 03 03 114 32 X;T 115 02 2 116 07 7 117 06 6 118 03 3 119 03 7 121 02 2 122 03 3 123 42 STD 124 18 18 125 02 2 126 42 STD 127 19 ISR 129 22 INV 130 91 R/S 131 76 LBL 131 92 INV 132 22 INV 133 22 INV 134 58 FIX 135 25 CLR 136 69 DP 137 00 00 138 18 18 140 69 DP 141 04 04 142 32 X;T 143 58 FIX 134 40 IND 145 19 1P 146 69 DP 141 04 04 142 32 X;T 143 58 FIX 144 40 IND 145 19 1P 146 06 06 148 92 RTN 149 76 LBL	150 23 LNX 151 01 1 152 05 5 153 02 2 154 04 4 155 03 3 156 05 5 157 01 1 158 05 5 159 42 STD 160 18 18 161 00 0 162 42 STD 163 19 19 164 71 SBR 165 22 INV 166 86 STF 167 00 01 168 92 RTN 170 76 LBL 171 24 CE 172 02 2 173 01 1 174 06 6 175 03 3 176 03 3 177 02 2 178 04 4 179 02 2 173 01 1 174 06 6 175 03 3 177 02 2 178 04 9 181 18 18 182 00 0 183 42 STD 184 19 19 185 71 SBR 186 SFF 188 01 01 189 92 RTN 190 92 RTN 191 76 LBL 192 25 CLR 193 43 RCL 194 05 05 195 59 INT 196 32 X;T 197 01 1 198 06 6 199 02 4 201 01 1 198 06 6 199 02 4 201 01 1 198 06 6 199 02 4 201 01 1 198 06 6 199 02 4 201 01 1 198 06 6 199 02 4 201 01 1 198 06 6 199 02 4 201 01 1 198 06 6 199 02 7 208 71 SBR 209 22 INV 210 3 RCL 211 05 05 213 75	2 × CL3
---------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------

22222222222222222222222222222222222222
(L77-L66))×.25))□9(L77-40654075340740654073743640544054406540765407406540737436406540740654074065407406540740654074074066540740740665407474074200000000000000000000000000000
343434433443344334433443344333433333333
BL 76 LX ( ( CL5 NYT × 1 0 0 ) - 2 × CL3 78 S33 R ONT × 1 0 0 ) - 2 × CL3 79 S33 R ONT × 1 0 0 ) - 2 × CL3 79 S33 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 ) - 2 × CL3 70 CL5 R ONT × 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
400 400 400 401 411 411 411 411 411 411
18 00 0 19 RVN L0
444444444444444444444444444444655555555
15 76 16 11 17 98 18 32 19 03 20 05 21 06 22 03 24 01 25 03 22 42 25 33 27 42 28 18 29 02 31 19
RC4+C8

535. 76 1 2 5 5 5 5 5 5 5 5 5 6 1 2 5 5 5 5 5 6 6 7 3 3 3 1 5 5 6 6 7 3 5 5 6 6 7 3 5 6 6 7 5 6 6 7 6 5 6 6 7 6 6 6 7 6 6 6 6	R/S LB STO4T STO STO STO STO STO STO STO STO STO STO	599 6001 6002 6004 6005 6006 6007 6010 6112 6113 6115 6118 619 610	0545333366537453254407374742816424923272822912255600093221283229122
BL 599 54 B 600 55 B 601 53 O4 602 53 O4 602 53 O4 603 43 O5 604 06 STD 605 85 O5 606 43 O5 607 07 O5 608 945 O5 609 95 O5 611 00 611 O5 613 54 O5 613 54 O5 614 54 O5 615 02 O5 615 623 98 O5 616 09 O5 617 71 O5 618 619 71 O5 618 619 71 O5 624 91 O5 625 624 O5 625 624 O5 634 07 O5 638 02 O5 638 639 630 O5 638 639 630 O5 638 639 639 O5 648 639 O7 638 649 71 O6 648 00 O7 659 03 O8 649 05 O8 650 02 O8 651 02 O8 652 01 O8 653 02 O8 653 02 O8 653 02 O8 653 02 O8 654 03 O8 645 03 O8 646 65 O8 657 03 O8 658 03 O8 659 03 O8 650 0	599 533 436 660 660 660 660 660 660 660 660 660 6	555554084054900554407374749816424492322728229123560009322121832291212344295560009322121283291	

DP-3
AIR DUCT FRICTION LOSS PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

븻
ō
Cards:
ot
mber
Ž

Step	Procedure	Enter		Press		Print Out		Explanation
	Example							
	To display 3 decimal places	ı	ı	DSP	ო			
<del>.</del>	1. Initialize	ı	I	<i>+</i>	ш	8.666 th	***	
2. % 4.	Enter duct type 2 for rect. Enter surface roughness coeff. Enter lining thickness	2 1.3	1 1 1	* * *	4 U D	2.888 ¥1 1.386 ¥1 1.886 ¥1	* * * * * * * * * * * * * * * * * * * *	Enter 0 for round ductwork.
5.	Enter run no.	1.02	l	ı	∢	1.026 #1	***	
6.	Enter cfm Enter W x D (14 x 8)	1000	1 1	1 1	<b>в</b> О	1680.806 ** 14.886 ** 2154.606 ** 2008.000 **	****	Note decimal format Velocity, fpm, round duct Velocity, fpm, rect. duct Friction loss, in. w.g./100 ft
ထ်	Enter length and fitting factor	12.005	I	ı	۵	12.000 #1 6.050 #1 6.147 #1	* * * * * * * * * * * * * * * * * * * *	Note decimal format Frictional and dynamic loss Totalized total loss
	Repeat steps 5 through 8 as many	2.03	ı	I	∢	2.838 **	**	
		1800	1 1	1 1	m U	1886.868 *** 14.146 *** 1917.834 *** 1888.888 *** 8.552 ***	* * * * * * * * * * * * * * * * * * * *	

		Total pressure loss	Velocity pressure, in. w.g.	
	25.686 *** 8.676 *** 6.154 *** 6.381 ***	6.175 *** 6.476 ***	23 <b>68.688 ***</b> 8. <b>3</b> 38 ***	
	۵	ш	ω	
	ı	I	+	
	1	I	ı	
	25.007	.175	2300	
		To add or deduct equipment pressure	10. To calculate velocity pressure, enter velocity	
-1		တ်	10.	

# **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
0	Sets flag 0
1	Deducts twice lining thickness R3
2	Separates W.D from decimal format; stores in R7 and R6
3	Computes velocity based on round duct
4	Computes frictional loss
5	Computes and prints velocity based on rectangular duct
6	Totalizes pressure loss and prints total value
7	For round duct, calculates net size using SBR 1; calculates velocity using SBR 3 and frictional loss using SBR 4
e	Clears register R0 and prints 0
a	Prints and stores display (duct type) in RD; clears flag 0; if display equals zero, goes to SBR 0
b	Computes and prints velocity pressure
С	Prints and stores display (internal surface coefficient) in R2
d	Prints display (lining thickness), multiplies by 2, and stores in R3
A	Prints display (run no.)
В	Prints and stores display (CFM) in R4
С	Stores display (W.D or DIA) in R5; if flag 0 is set goes to SBR 7, otherwise calls SBR 2 and computes area and diameter of equivalent round duct R9; using SBR 3, computes and prints velocity based on rectangular duct; using SBR 4, computes and prints friction loss/100 ft
D	Accepts input in decimal format; prints and stores length in RC; prints and stores fitting factor in RE; computes and prints total losses
E	Adds or deducts equipment pressure loss

# **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R0	Total pressure loss
R1	Velocity

R2	Duct internal surface roughness coefficient
R3	Twice lining thickness
R4	CFM
<b>R</b> 5	Duct width or diameter
R6	Width
R7	Depth
R8	Area
<b>R</b> 9	Equivalent diameter of round duct
RA	Frictional loss/100 ft
RB	Not used
RC	Length
RD	Not used
RE	Fitting factor for dynamic losses
RI	Not used

# DP-3 (HP-97) AIR DUCT FRICTION LOSS PROGRAM

LIST	ING		<b>0</b> 29	6	Ø <i>5</i>
001	*LBL0	21 00	030	÷	-24
002	SFØ	16 21 00	031	1/X	52
003	SPC	16-11	032	RCL4	36 04
004	RTH	24	033	Х	-35
005	*LBL1	21 01	034	ST01	35 61
006	RCL3	<i>36 03</i>	035	RTN	24
007	-	-45	036	*LBL4	21 04
<b>00</b> 8	RTN	24	037	RCL1	36 01
009	*LBL2	21 02	938	1	01
010	FRC	16 44	039	0	00
011	1	01	040	0	99
012	€	90	041	Ø	99
013	Ø	00	042	÷	-24
014	X	-35	043	1	01
015	GSB1	23 01	044	•	-62
016	ST07	<b>35</b> 07	045	8	<b>0</b> 8
017	RCL5	36 Ø5	046	2	02
018	INT	16 34	847	γ×	31
019	GSB1	23 01	048	3	03
020	ST06	<b>35</b> 06	049	X	-35
<i>0</i> 21	RTH	24	<b>050</b>	RCL2	36 02
022	*LBL3	21 03	051	X	-35
023	RCL9	<b>36 0</b> 9	052	RCL9	36 09
024	Χz	53	<b>05</b> 3	1	01
025	Fi	16-24	054		-62
026	X	-35	<b>0</b> 55	2	82
<b>027</b>	5	<b>0</b> 5	<b>056</b>	2	02
028	7	07	<b>0</b> 57	γ×	31

01

00

00

-24

-55

-14

23 06

16-11

21 15

16-11

23 06

16-11

24

51

-14

24

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

1

0

0

÷

PRTX

GSB6

SPC

RTN

SPC

PRTX

GSB6

SPC

RTN

R/S

*LBLE

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

FRC

1

X

STOE

PRTX

RCL1

4

θ

0

5

÷

Χz

X

RCLA

RCLC

0

16 44

01

00

-35

-14

64

00

00

**0**5

-24

53

-35

-35

36 11

36 13

35 15

36 01

<b>0</b> 58	÷	-24	115	SPC	16-11
059	STCA	35 11	116	RTN	24
060	PRTX	-14	117	*LBLA	21 11
061	RTH	24	118	PRTX	-14
062	*LBL5	21 05	119	SPC	16-11
063	RCL4	36 <b>0</b> 4	120	RTN	24
	RCL8	36 08	121	*LBLB	21 12
064			122	STO4	35 Ø4
<b>065</b>	÷	-24	123	PRTX	-14
066	PRTX	-14			
067	RTK	24	124	RTN	24
968	*LBL6	21 86	125	*LBLC	21 13
069	ST+0	35-55 00	126	STO5	35 05
<i>070</i>	RCL0	36 00	127	F0?	16 23 00
071	PRTX	-14	128	GT07	22 07
072	RTN	24	129	PRTX	-14
<i>073</i>	*LBL7	21 07	130	GSB2	23 02
<i>0</i> 74	PRTX	-14	131	RCL6	36 <i>06</i>
<i>0</i> 75	GSB1	23 01	132	RCL7	36 07
076	ST09	<b>35</b>	133	X	-35
<b>077</b>	GSB3	23 03	134	1	61
<b>0</b> 78	PRTX	-14	135	4	64
079	GSB4	23 84	136	4	<b>0</b> 4
989	SPC	15-11	137	÷	-24
081	RTN	24	138	ST08	<b>35 08</b>
082	*LBLe	21 16 15	139	RCL6	36 86
083	0	88	140	RCL7	36 07
084	STOO	35 00	141	X	-35
085	PRTX	-14	142		-62
086	SPC	16-11	143	6	<i>06</i>
087	RTN	24	144	2	02
<b>688</b>	*LBLa	21 16 11	145	5	. ø5
089	STOD	35 14	146	γ×	31
090	PRTX	-14	147	RCL6	36 06
<b>09</b> 1	CF0	16 22 00	148	RCL7	36 07
092	X=0?	16-43	149	+	-55
093	GT00	22 00	150	_	-62
094	RTN	24	151	2	02
<b>0</b> 95	*LBLb	21 16 12	152	5	05
096	PRTX	-14	153	γ×	31
<b>0</b> 97	4	94	154	÷	-24
<i>09</i> 8	ø	00	155	1	01
099	Ø	98	156		-62
100	5	05	157	3	03
101	÷	-24	158	x	-35
102	χz	53	159	STO9	<b>35 0</b> 9
103	PRTX	-14	160	GSB3	23 03
104	SPC	16-11	161	PRTX	-14
105	RTN	24	162	GSB5	23 05
106	*LBLc	21 16 13	163	GSB4	23 04
107	STO2	35 <i>02</i>	164	SPC	16-11
108	PRTX	-14	165	RTN	24
100 109	RTN	-17 24	166	*LBLD	21 14
110	*LBLd	21 16 14	167	STOE	35 15
111	PRTX	-14	168	INT	35 13 16 34
112	EKIA 2	-14 02	169	STOC	35 13
113	X	-35	170	PRTX	-14
	ST03	-35 3 <b>5</b> 03	171	RCLE	36 15
114	3103	၁၁ ဗ၁	111	KULE	<b>30</b> 13

# DP-4 AIR DUCT HEAT LOSS/GAIN PROGRAM

#### **GENERAL DESCRIPTION**

Program computes heat loss from round and rectangular ducts with internal lining, with outside insulation, or without any lining and insulation. The program can be used for supply air and return air systems with air temperature either higher or lower than outside ambient temperature.

### **EQUATIONS**

 $De = 2 \times W \times D/(W+D)$  [2.15]

where

De =Equivalent hydraulic diameter

W = Width of duct

D = Depth of duct

$$h_i = 0.0144 \times C_p \times G^{0.8}/D_e^{0.2}$$
 [2.16]

where

 $h_i$  = Heat transfer coefficient at inner surface in Btu/hr —due to forced convection

 $C_p$  = specific heat at constant pressure of air—assumed value of .24Btu/lb

G = mass velocity, lb/hr = air density  $\times V \text{fph} = 0.075 \times V \text{fpm} \times 60$ = 4.5 V

Substituting values in equation 2.16

 $h_i = 0.0189 \, V^{0.8} / De^{0.2}$ 

where

V =velocity in fpm

$$h_c = 0.19 \times (T_o - T_s)^{1/3}$$
 [2.17]

where

 $h_c$  = Heat loss by convection from outside surface in Btu/hr °F

 $T_o = \text{Air temperature outside duct}$ 

 $T_s$  = Surface temperature outside duct

$$h_r = 0.173 \times e \times [([T_o + 460]/100)^4 - ([T_s + 460]/100)^4]/(T_o - T_s)$$
 [2.18]

where

 $h_r$  = Heat loss by radiation, Btu/hr e = Surface emissivity—generally 0.0 s

e =Surface emissivity—generally 0.9 for dirty surfaces

$$U_o = 1/[1/(h_c + h_r + 1/h_i + R_1 \times X_1 + R_2 \times X_2)]$$
 [2.19]

where

 $U_o = \text{Over-all } U \text{ factor}$ 

 $R_1$  = Resistance of duct lining; reciprocal of thermal conductance; ( $h_r$  ft² °F)/Btu

 $X_1$  = thickness of duct lining in inches

 $R_2$  = resistance of duct insulation; reciprocal of thermal conductance; ( $h_r$  ft² °F)/Btu

 $X_2$  = thickness of duct insulation, inches

$$[(T_s - T_o)/1/(h_i + R_1 x_1 + R_2 x_2)] = (T_o - T_e) \times U_o$$
 [2.20]

 $T_s$  is computed from the above equation.

Heat loss from duct  $H_l$ 

$$= A \times U_o \times (T_{av} - T_o)$$
  
=  $Q \times (T_e - T_l) \times 1.08$  [2.21]

where

A =area of duct in sq ft

 $T_{av} = (T_e + T_l) \div 2$ 

 $T_0$  = Temperature of air outside duct

 $T_{l} = [A \times U_{o} \times (T_{o} - T_{e}/2) + Q \times 1.08 \times T_{e}]/(1.08 \times Q + A \times U_{o}/2)$ 

 $T_e$  = Temperature of air entering duct

 $T_l$  = Temperature of air leaving duct

 $T_{av}$  = Average temperature of air in duct

### **OPERATING FEATURES**

Due to the limits of the programming steps, the program is based on heat flow through a flat plate rather than a pipe or tube. The reduction in accuracy is negligible.

The duct size is the *actual* sheet metal size; the program will compute the net dimension based on input of lining and insulation thickness. The rectangular duct should be input in decimal format. For example, 12.08 will mean the duct is 12 by 8. If the decimal part of input is zero, the program will recognize it as a round duct.

The program reiterates three times to find the value of  $T_s$  (surface temperature). Accuracy of results can be increased by increasing the number of reiterations at a cost of slowing down the program. This is not necessary, since the first time the program uses the average value of  $T_o$  and  $T_e$  to compute  $T_s$ . The next time around, it uses the previous value of  $T_s$  and continues to improve accuracy.

The program has the following flags which have to be set and reset (cleared) manually from the keyboard:

No flag	Prints all output
Set flag 1	Skips $U_{o}$ and $T_{s}$
Set flag 2	Skips $U_o$ but prints $T_s$
Set flag 3	Skips $H_l$ but prints $T_l$

Equation 2.21 is not valid for long ducts of very small cross section, say below 10 in. round or its equivalent. Accurate results can be obtained by inputting a small length under Label D and repeating the calculation as many times as required by using key E to compute for the entire length. When computing in this mode, the program will print out the end results only, rather than the intermediate answers.

DP-4
AIR DUCT HEAT LOSS/GAIN PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation					Surface temp. Over-all <i>U</i> factor	Temp. of air leaving Heat gain: negative for gain, positive for loss			
Expl		<u>ш</u> ш	## #X	ок эс стот ф	Series Se	二 二 日 日 日 日 日 日	F1 625		ov ov ov
Print Out		90.00 55.00	1.00	0. 4. 00 0. 900 0. 900	36.24 350.24 750.24 0.1377	10.0 55.03729 -302.	3. 0.111 55.14893 -904.	  	000
		A' R/S	B, R/S	C, R/S	<b>∢</b> ₪ ∪	۵	ш	άύγ	
Press		2nd _	2nd -	2nd  -	.1 1 1	I	I	2nd 2nd 2nd	
		1 1	1 1	1 1 1	1 1 1	1	ı	1 1 1	
Enter		90	4 <del>L</del>	4 <del>L</del> 0;	1.02 36.24 7500	10	က	0 0 80	
Procedure	Example	Enter temp. of air outside duct Enter temp. of air entering duct	Enter lining resistance Enter lining thickness	Enter insul. resistance Enter insul. thickness Enter outer surface emmissivity	Enter run no. Enter duct dimension Enter cfm	Enter length of duct Repeat steps 8, 9, 10, & 11 as many times as required.	To repeat 3 times Same duct could pass through space having different temp. and could have no insul. Only input changes.	Enter new temp. of air around duct Change lining resistance Change insul. resistance	Repeat steps 8, 9, 10, & 11.
Step		- 2	ю. <del>4</del> .	7.0	න <u>හ</u> රු	<u> </u>	12.	5.6.4.	

		2.03 32.24 7000	111	111	<b>∀</b> ₪ ∪		OAEO Z.WF .30	
	To delete TS and UO	1	2nd	St flg	-	i in '	25 - H	
		3.04 28.24 6000	1 1 1	1 1 1	<b>∀</b> ₪ ∪	) O O O M O O O N O		
-	To print TS again To delete UO To delete HL	> <u>2</u>	2nd 2nd 2nd	۲۲ باری ۲۲ باری ۱۹ باری	- 7 8	55.89200 -1685.	<del></del>	
		4.05 24.24 5000	111	1 1 1	<b>∢</b> ₪ ∪	62. 62. 62. 63. 63. 63. 63. 63. 63. 63. 63. 63. 63	0 A E W	
						10.0	77	
	For round ducts, input 0 after decimal under step 9.	5.06 20 4000	1 1 1	1 1 1	<b>∢</b> m ∪	5.06 20. 4000. 62.17408	A OHEN DARES	
			·			. 15.0 56.63454	그	

# **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A'	Stores and prints T0; with R/S, stores and prints TE
B'	Stores and prints R1; with R/S, prints X1 and stores twice X1
C'	Stores and prints R2; with R/S, prints X2 and stores twice X2
A	Prints R No.
В	Accepts duct size in decimal format; if round duct goes to SBR LNX, for rectangular ductwork prints W.D; computes net size and equivalent hydraulic diameter
С	Prints and stores CFM; computes velocity; calls SBR $X^2$ and SBR $\sqrt{X}$
$X^2$	Computes surface temperature using SBR CE
$\sqrt{X}$	Computes over-all $U$ factor and prints
D	Prints and stores length; computes heat loss per degrees F; calls SBR 1/X and STO
1/X	Computes TL
STO	Prints TL and computes and prints heat loss
E	Reiterates for long duct
RCL	For reiteration
INV	Alphanumeric identification of data
LNX	For circular duct
CE	Computes UO and TS
CLR	Reiterates for computing TS
X <b>≠</b> T	Stops when flags are set

# **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	Reiterates for finding value of surface temperature TS
R01	Reiterates for long duct
R02	TO—air temperature outside duct
R03	TE—temperature of air entering duct
R04	Rl—resistance of lining inside ductwork
R05	Xl—thickness of lining

R06	R2—resistance of insulation
R07	X2—thickness of insulation
R08	e—outside surface emissivity
R09	Duct dimension W or DIA or DE
R10	Duct dimension D
R11	CFM
R12	Velocity
R13	Not used
R14	Surface temperature
R15	(1/HI) + R1X1 + R2X2
R16	UO (over-all $U$ factor); last value of TL (leaving air temperature)
R17	Length; heat loss, °F
R18	Alphanumeric code
R19	For FIX IND for number of decimal places

# DP-4 AIR DUCT HEAT LOSS/GAIN PROGRAM

LABELS & SUBROUTINES  001 16 A' 050 17 B' 086 18 C' 135 11 A 154 12 B 222 13 C 260 33 X² 291 34 \( \text{X} \) 343 14 D 378 35 1/X 440 42 STD 488 15 E 513 43 RCL 539 22 INV 557 23 LNX 584 24 CE 630 25 CLR 736 32 XIT	011 32 X‡T 012 03 3 013 07 7 014 03 3 015 02 2 016 42 STD 017 18 18 018 02 2 019 42 STD 020 19 19 021 71 SBR 022 22 INV 023 91 R/S 024 42 STD 025 03 03 026 32 X‡T 027 03 3 028 07 7 029 01 1 030 07 7
LISTING  000 76 LBL  001 16 A'  002 42 STD  003 02 02  004 22 INV  005 58 FIX  006 02 2  007 69 DP  008 17 17  009 43 RCL  010 02 02	031 42 STD 032 18 18 033 02 2 034 42 STD 035 19 19 036 71 SBR 037 22 INV 038 98 ADV 039 85 + 040 43 RCL 041 02 02 042 95 = 043 55 ÷

044 02 2 045 95 = 046 42 STI 047 14 10 048 91 R/S 049 76 LB 050 051 052 042 STI 052 054 055 056 0057 058 12 060 057 058 12 10 061 12 10 10 10 10 10 10 10 10 10 10 10 10 10
4 112 1134 1145 1156 1167 1167 1178 1190 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11223 11233 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1
02 2 19 19 71 SBR 22 STD 71 SBR 65 2 = 0 65 2 STD 65 2 STD 67 R/S 68 X\$T 68 X\$T 69 STD 60 STD 61 STD 62 STD 63 STD 63 STD 64 STD 65 STD 65 STD 67 SBR 68 STD 69 SBR 60 STD 60 STD 61 STD 62 STD 63 STD 64 STD 65 STD 66 STD 67 SBR 68 STD 69 SBR 60 STD 60 STD 61 STD 62 STD 63 STD 64 STD 65 STD 66 STD 67 SBR 68 STD 69 SBR 60 STD 60 STD 61 STD 62 STD 63 STD 64 STD 65 STD 66 STD 67 SBR 68 STD 69 SBR 69 STD 60
174 04 4 175 03 3 176 04 4 177 00 0 178 01 1 179 06 6 180 42 STD 181 18 18 182 02 2 183 42 STD 184 19 19 185 71 SBR 186 22 INV 187 59 INT 188 53 ( 189 24 CE 190 75 - 191 43 RCL 192 05 05 193 54 ) 194 42 STD 195 09 09 196 43 RCL 197 05 05 198 22 INV 199 44 SUM 200 10 10 201 53 ( 202 02 2 203 65 × 204 43 RCL 205 09 09 196 43 RCL 207 43 RCL 208 10 10 201 53 ( 202 02 2 203 65 × 204 43 RCL 205 09 09 206 65 × 207 43 RCL 207 43 RCL 208 10 10 201 53 ( 201 43 RCL 202 02 2 203 65 × 204 43 RCL 205 09 09 206 65 × 207 43 RCL 207 05 5 210 53 ( 211 43 RCL 212 09 09 213 85 + 214 43 RCL 215 10 10 209 55 ÷ 210 53 ( 211 11 212 09 09 220 91 R/S 221 76 LBL 222 13 C 223 42 STD 219 09 09 220 91 R/S 221 76 LBL 222 13 C 223 42 STD 219 09 09 220 91 R/S 221 76 LBL 222 13 C 223 42 STD 231 00 0 232 42 STD 233 18 18 234 00 0 235 42 STD 236 19 19 237 71 SBR 238 22 INV
(E × 5 7 6 ÷ π ÷ L 9 240 65 7 6 ÷ π ÷ L 9 241 65 7 6 ÷ π ÷ L 9 242 243 07 6 ÷ π ÷ L 9 244 065 7 6 ÷ π ÷ L 9 244 065 89 π ÷ α 249 249 249 251 253 429 251 253 429 251 253 429 251 253 429 251 253 8

45567890011234556789012234567890123345678901234456789012334567890123456789012333333333333333333333333333333333333	429 STD 09801 X;TL 417 032 RCL 417 132 RCL	36701234567890123456789012333333333333333333333333333333333333	54277357429765333555554403504455333555554465533555554468535555554688688688688688688688868888888888		45678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890012345678900123456789001234567890012345678900123456789000000000000000000000000000000000000	43 8 13 0 3 0 N R LB LB T 3 5 3 3 3 7 0 8 1 1 2 2 7 0 8 0 8 1 1 2 2 7 0 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8		901234567890123456789012345678901233456789012345678901234567890123 9000000000111111112222222222333333333334444444445555555555	42 19 1 1
-------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------	----------------------------------------------------------------------------------------------------	--	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------	--	----------------------------------------------------------------------------------------------------------------------------------	-----------

01 1 630 2 54 631 5 5 631 5 5 632 4 8 633 0 0 0 634 8 635 5 5 636 4 9 635 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1÷(C1+(((C0-C1)xx.33)x.19+((((C0+460)÷100)x4)-(()	
---------------------------------------------------------------------------------------------------------------	---------------------------------------------------	--

# **SPECIAL NOTES FOR HP-97 USERS**

**1.** The program is based on the following arrangement of flags:

No flag Prints all output Set flag 0 Skips  $U_o$  and  $T_s$  Set flag 1 Skips  $U_o$  Skips  $H_t$ 

Flag 2 has to be set after every usage.

**2.** For ducts of small cross section and having low air velocities, repeat step 15 of the example with small increments of length to obtain accurate results.

Number of Cards: ONE DP-4
AIR DUCT HEAT LOSS/GAIN PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

Explanation						Surface temp. Over-all <i>U</i> factor	Leaving air temp. Heat gain: negative for gain, positive for loss
Print Out				4.0000 5104 4.0000 5108 4.0000 5100 1.0000 5100 5000 5100	96.8888 ST08 55.8888 ST09 145.8888 *** 2.8888 ÷** 72.5888 ***	1.0266 36.6866 *** 24.6866 *** 7566.6666 *** 87.6139 ***	46.6666 *** 55.1489 *** -1266.2516 ***
		4	ŞŞ	< 8 C C B A	O 0 + √	R _S B	۵
Press		DSP	PRINTx -	STO STO STO STO STO	STO STO - STO	1111	ı
		ı	را ا	1 1 1 1 1	11 1 1	1 1 1 1	I
Enter		I	1 1	4 - 4 - o	90 2 2	1.02 36 24 7500	40
Procedure	Example	To display 4 decimal places		Enter lining resistance Enter lining thickness Enter insul. resistance Enter insul. thickness Enter outer surface emissivity	Enter temp. of air outside duct Enter temp of air entering duct	Enter run no. Enter duct width Enter duct depth Enter cfm	Enter length Repeat steps 11 through 15 as many times as desired.
Step		<b>←</b> °	i რ	4. 7. 6. 7. 8.	9.	12. 13.	15.

DP-4 (Continued)
AIR DUCT HEAT LOSS/GAIN PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

After this step, remove printer from TRACE mode. Explanation \$10A \$10E \$10C \$10B * *** * * * *** *** * *** *** *** ** ** ** * * . * * * * * 3.6488 28.6488 24.6886 6886 6886 16.656 55.8917 -1684.8318 2.8388 32.9888 24.9888 7888.8888 51.9984 3.8329 20.0000 55.6316 -3650.5154 18.0000 56.1768 4,8586 24,8608 24,8688 5886,8686 62,6613 8.9666 86.0868 Print Out R/S C C R/S R/S C ODCBA 2 J O D ۵ Δ 0 \$T0 \$T0 \$T0 \$T0 \$T0 _ GTO LBL LBL Press LBL I + I + I١ 1 1 1 1 1 1 1 1 ١ I I I I I $I \quad I \quad I \quad I$ ١ ١  $I \quad I \quad I \quad I$ I + I + I1 4 4 4 2.03 32 24 7000 3.04 28 24 6000 4.05 24 24 5000 Enter 5 1 1 1 0 | | | 8 9 20 Switch printer to TRACE mode to eliminate lining. To eliminate heat loss, set flag 2 Repeat steps 11 through 15 as To eliminate leaving air temp. To change ambient temp. to To print surface temp. and eliminate over-all U factor many times as desired. and over-all U value Procedure Step

	Note: Flag 2 has to be set after every usage.			
* * * * * * * * * * * * * * * * * * * *	* * * * * * * *			
5.0600 20.0660 4000.0665	15,000 56,6537 -2060,3141			
<b>∀ ⊞ ∪</b>	۵			
1 1 1	I			·
_ 1.1.1	1			
5.06 20 4000	15			
For circular ductwork input one dimension only				

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Prints display (run no.)
В	Prints and stores display (duct dimension) in R1;
	with R/S, prints and stores display (duct dimension) in R2
C	Prints and stores display (CFM) in R3; stores 3 in RI; if R3 = 0 (circular duct) goes to SBR 0, otherwise computes net duct size; computes diameter of equivalent round duct and velocity based on round duct; using LBL 1, computes $(1/HI) + R1 \times X1 + R2 \times X2$ ; using LBL 2 computes and prints outside surface temperature R5 and computes over-all $U$ factor R7; if flag 0 is set goes to SBR 4, otherwise prints R7
D	Prints and stores display in R8; calculates leaving air temperature; if flag 2 is set goes to SBR 4; calculates and prints heat loss
0	Calculates net duct size for round duct; goes to SBR 1
3	Calculates [(T + 460)/100] ⁴
4	Stops execution

#### HP-97 EXPLANATION OF STORAGE REGISTERS

HP-97 EX	(PLANATION OF STORAGE REGISTERS	02Z 023	ST-2	35-45 <b>0</b> 2	979	GSB3	23 03
Register	Function	024	RCL1	36 01 70 00	071 072	RCL5 GSB3	36 05 23 03
R0	TO—air temperature outside duct	025 026	RCL2 ×	36 02 -35	073	-	-45
	•	027	2	02	074	RCLE	36 15
R1	Duct dimension; diameter of equivalent	028	X	-35	<i>0</i> 75	Х	-35
	round duct; over-all diameter	029	RCL1	36 01	<i>0</i> 76		-62
<b>R</b> 2	Duct dimension	030	RCL2	<b>36 0</b> 2	077	1	01
		031	+	-55	078	7	<b>0</b> 7
R3	CFM	032	÷	-24	079	3	03
R4	Velocity	<b>03</b> 3	ST01	35 0i	080	X	-35
	,	034	Χ2	53	081	RCL0	36 00
R5	Surface temperature	035	1/X	<b>5</b> 2	082	RCL5	<i>36 0</i> 5
<b>R</b> 6	$(1/HI) + R1 \times X1 + R2 \times X2$	036	RCL3	36 03	<b>0</b> 83	-	-45
	,	937	X	-35	084	÷	-24
R7	Over-all $U$ factor	038	i	61	085	LSTX	16-63
<b>R</b> 8	Length; area of duct; heat loss per	039	8	<b>0</b> 8	086	ABS	16 31
	degrees F	040	3	<b>0</b> 3	087	•	-62
	0	041	X	-35	988	3	<b>0</b> 3
<b>R</b> 9	TE—temperature of air entering duct	042	ST04	<i>35 0</i> 4	089	3	93
RA	R1—resistance of lining inside	043	*LBL1	21 01	090	Υ×	31
	ductwork	044	•	-62	091	•	-62
		<i>0</i> 45	8	<b>0</b> 8	092	1	Ø1
RB	X1—thickness of lining	046	γ×	31	093	9	09

# DP-4 (HP-97) AIR DUCT HEAT LOSS/GAIN PROGRAM

For reiteration

21 11

21 12

35 01

35 02

21 13

35 03

36 02

16-43

22 00

36 12

02

-35

-14

03 35 46

-14

51

-14

51

-:4

24

R2—resistance of insulation

X2—thickness of insulation

e—outside surface emissivity

047

**0**48

049

050

*0*51

052

053 054

055

*056* 

057

*0*58

059

060

061

062

963

064

065

966

067

860

069

1

8

9

2

γx

÷

1/8

RCLA

RCLB

RCLC

RCLD

X

ST06

RCL0

*LBL2

Х

RCL1

-62

00

01

08

09

-35

-62

02

31

52

-35

-55

-35

-55

-24

36 11

36 12

36 13

36 14

35 06

21 02

36 00

36 01

RC

RD

RE

RI

**LISTING** 

*LBLA

*LBLB

ST01

PRTX

R/S

ST02

PRTX

*LBLC

ST03

PRTX

STOI

RCL2

X=0?

**GTOB** 

**RCLB** 

Х

ST-1 35-45 01

R/S

PRTX

RTN

001

002

003

004

005

006

007

800

009

016

011

012

013

014

015

016

017

018

019

020

021

022

214

215

218

04 219 R/S

00 216 *LBL4 21 64

-55

01

-24

00 217

208

209

210

211

212

213

ĭ

Û

Ø

÷ 4 Y* 31 RTN 24

SPC 16-11

RTN 24

51

094	Х	-35	151	RCL9	36 <b>0</b> 9
095	+	-55	152	2	02
096	1/X	52	153	÷	-24
<b>0</b> 97	RCL6	36 06	154	RCLØ	36 <b>0</b> 0
<b>09</b> 8	+	-55	155	-	-45
099	1/X	52	156	CHS	-22
100	RCL6	<i>36 06</i>	157	RCL8	<i>36 08</i>
101	X	-35	158	X	-35
102	RCL0	36 00	159	RCL3	36 03
103	RCL9	<i>36 09</i>	160	i	01
184	-	-45	161		-62
105	X	-35	162	0	00
106	RCL9	36 09	163	8	08
107	+	-55	164	X	-35
108	ST05	35 <b>0</b> 5	165	STO7	35 07
109	DSZI	16 25 46	166	RCL9	<b>36 0</b> 9
110	GT02	22 02	167	X	-35
111	RCL9	<i>36 09</i>	168	+	-55
112	-	-45	169	RCL8	36 08
113	RCL6	<i>36 06</i>	170	2	92
114	÷	-24	171	÷	-24
115	RCL0	36 <b>00</b>	172	RCL7	36 07
116	RCL9	<b>36 0</b> 9	173	+	-55
117	-	-45	174	÷	-24
118	÷	-24	175	ST08	<b>35 08</b>
119	ST07	<b>35 0</b> 7	176	RCL9	<i>36 09</i>
120	RCL1	36 01	177	ST07	35 07
121	RCLB	36 12	178	RCL8	<i>36 0</i> 8
122	2	<b>0</b> 2	179	ST09	<b>35 0</b> 9
123	X	-35	180	PRTX	-14
124	+	<b>-5</b> 5	181	F2?	16 23 02
125	RCLD	36 14	182	GT04	22 64
126	+	-55	183	RCL7	<i>36 07</i>
127	ST01	35 01	184	RCL8	<i>36 08</i>
128	F0?	16 2 <b>3 0</b> 0	185	-	-45
129	GT04	22 <b>0</b> 4	186	RCL3	<b>3</b> 6 03
130	RCL5	<b>36 0</b> 5	187	X	-35
131	PRTX	-14	188	1	ē1
132	F1?	16 23 01	189		-62
133	GT04	22 04	190	Ũ	90
134	RCL7	<b>36 0</b> 7	191	8	<b>0</b> 8
135	PRTX	-14	192	X	-35
136	SPC	16-11	193	PRTX	-14
137	RTH	24	194	SPC	16-11
138	*LBLD	21 14	195	RTN	24
139	ST08	35 <b>0</b> 8	196	*LBL0	21 00
140	PRTX	-14	197	RCLB	36 12
141	RCL1	36 01	198	2	62
142	X	-35	199	X	-35
143	Pi	16-24	200	ST-1	35-45 01
144	X	-35	201	RCL1	36 <b>0</b> 1
145	RCL7	<b>36 0</b> 7	2 <b>0</b> 2	GSB1	23 01
146	X	-35	203	RTN	24
147	1	<b>0</b> 1	204	*LBL3	21 03
148	2	62	205	4	64
149	÷	-24	206	6	06
150	ST08	35 <b>0</b> 8	207	Ū	00

# 3 LIGHTING DESIGN PROGRAMS

# LP-1 LIGHTING POWER BUDGET PROGRAM

#### **GENERAL DESCRIPTION**

This program computes lighting power budget based on IES Recommended Lighting Power Budget Determination Procedure—EMS-1 and ASHRAE Standard 90-75R.

#### **EQUATIONS**

 $H_2 = H_i - HWP$ 

where

 $H_2$  = Height of luminaire from work plane

HWP = Height of work plane (2.5 ft unless changed)

 $H_i$  = Height of luminaire above floor—or ceiling height if luminaire is recessed in the ceiling

 $A = L \times W$ 

where

A =Area of room

L =Length of room

W = Width of room

 $RCR = 5 \times H_2 \times (L+W)/A$ 

where

RCR = Room cavity ratio

 $kW = \frac{A \times fc}{CU \times LE \times 700}$ 

Based on LLF = .07.

where

kW = Kilowatts

fc = Foot-candles

CU =Coefficient of utilization

LE = Lamp efficiency, lumens/watt

*Note:* CU has to be computed separately based on luminaire data.

fc average =  $\sum fc_1 \times A_1/\sum A_1$  [3.5]

$$kW = A \times fc/LE \times MBE \times .75 \times 700$$
 [3.6]

where

[3.1]

[3.2]

[3.3]

[3.4]

MBE = Minimum beam efficiency

#### **OPERATING FEATURES**

Program provides value of *LE* based on the following task types:

Tas	sk Type	LE
1.	Where moderate color rendition is appropriate	55
2.	Where good color rendition is appropriate	40
3.	Where high color rendition is appropriate	25

If a special value of LE is to be used, change the value of CU in the appropriate ratio and store the new value of CU under key B'.

The program also provides for the following options under WS.A:

- **1.** The task area can be specified by percent. In that case, input percent figure as negative—for example, 30 + /-.
- **2.** If the room has no specific task and is to be designed for one general level, input 0.
- **3.** If only the number of work stations is input, the program will assume 50 sq ft per work station—for example, 13.0 will mean 13 work stations, each 50 sq ft.
- **4.** The number of work stations and the area of each work station can be input in decimal format—for example, 9.35 will mean 9 work stations, each 35 sq ft.

If the total area of work stations exceeds 50% of the room area, the program will flash an error message and the computation has to be repeated from the beginning.

#### **EXAMPLE NO. 1**

Compute lighting power budget for rooms having the following data:

1. Room type	19
2. Number of similar rooms	2
3. Length, ft	108.7
<b>4.</b> Width, ft	29.3
<b>5.</b> Height of lumnaire over work surface, ft	9.7
<b>6.</b> Luminaire type	12
7. Number of work stations	23
<b>8.</b> Illumination for work surface	80 fc
<b>9.</b> Color rendition	Good

#### **EXAMPLE NO. 2**

Same data, but 20 work stations, each 50 sq ft.

#### **EXAMPLE NO. 3**

Same data, but 100 fc throughout the room; CU = 0.57; color rendition moderate.

#### **EXAMPLE NO. 4**

Same data, but task area 35%; 65 fc; color rendition high.

#### **EXAMPLE NO. 5**

Same data, but 35 work stations, 50 sq ft each; 80 fc; color rendition good.

LP-1
LIGHTING POWER BUDGET PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

S.	Procedure	2000		1			
	- 1	Ellie				Print Out	Explanation
	Example 1						
<del>-</del>	Initialize	0	I	2nd	Щ	0	
7. بن	To compute area and RCR Enter room type	1 61	1 1	1 1	A R/S	98T 19.	What is room type?
4.	Enter room length	108.7	I	I	R/S	L 108.7	What is room length?
က်	Enter room width	29.3	I	I	R/S	38. 30.	What is room width?
.6	Enter height	9.7	. 1	1	R/S	rσ	What is height of luminaire over work surface?
						ω 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	Room area
						1.56 RGR	Room cavity ratio
7.	Enter CU	.63	I	1	R/S	cu 0.63	What is coeff, of utilization?
ထဲ တဲ	To compute power budget Enter luminaire type	- 22	1 1	1 1	B R/S	۹LT 12.	What is luminaire type?
10.	Enter no. of work stations	23	I	I	R/S	ыз. А 23. 50.	How many work stations and area?

LP-1 (Continued)
LIGHTING POWER BUDGET PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step	Procedure	Enter		Press		Print Out	Explanation
11.	. Enter lighting level and type	80.2	l	ı	R/S	FC. T 80. 2.	How many foot-candles and what type?
						40. LE	Lamp efficiency
						1150. AT	Area of task
						S. N K⊌	Power for luminaire
12.	. To compute power budget for non-task areas	l	ı	I	υ	1150. 86	General area
						27. FC	Illumination level 1/3 of task or minimum 20 fc
		-				1.7 KW	Power for luminaires
						885. ANC	Area of non-critical space
						10. FC	Illumination level 1/3 of illumination for general area or minimum 10 fc
						0.5 KW	Power demand
						7. 5 XKW	Total power demand for room
						2.34 W/A	Watts/sq ft

Average foot-candles	How many rooms of this type?	Total power demand	Total power demand for the project	Total area of project	Watts/sq ft based on total project						See Example no. 1 for explanation	
41. FC	⊗ 	4. MXX	14.9 XKW	6370. ZA	2.34 W/A	HWP 3.	0.69 CU	M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			?LT 12.	WS.A 20. 50.
	R/S		۵			Ϋ́	ď	ò			B R/S	R/S
	I		ı			2nd	2nd	2nd			1 1	I
	I		I			1	I	I			1 1	l ·
	2		1			ю	69:	.85			_ 12	20.50
	Enter no of typical rooms					To change height of work plane	To change CU	To input MBE	Example 2	 Follow steps 1 through / as in Example no. 1.	To compute power budget Enter luminaire type	Enter no. of work stations and area of each station
 . ,	13.									 	<b>യ്</b> ത്	10.

LP-1 (Continued)
LIGHTING POWER BUDGET PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation					 				
Print Out	FC.7 70. 2.	40. 1000. HT	4.3 0.	1000. AG	. S	1185. ANC	10. FC	 6.0 ∑KW	1.87 W/A
	R/S								
Press	ı								
Enter	1								
-	70.2								
Step Procedure	 11. Enter lighting level and type	From here on, follow same procedure as for Example no. 1.							
Step	<del>.</del> .								

LP-1 (Continued)
LIGHTING POWER BUDGET PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Example 4  Follow steps 1 through 7 as in Example no. 1.  To compute power budget Enter lighting level and type From here on, follow same procedure as for Example no. 1.	Press Print Out Explanation	D 47.	12740. ZA	3.21 W/H			- B %12.	H/- R/S US. A	- R/S 65.	.25. LE	XW. 33	
	Enter											
9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	ı				Example 4	Follow steps 1 through 7 as in Example no. 1.		Enter 35%		From here on, follow same procedure as for Example no. 1.		

LP-1 (Continued)
LIGHTING POWER BUDGET PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation				
Print Out	c. T	ა. ლის არ	ე ⊢ 08 . s.	1750. 1750. 9.9999999999999
	B R/S	R/S		
Press	1 1	f		
	1 1	1		
Enter	1 61	35.50		
Procedure	Example 5 Follow steps 1 through 7 as in Example no. 1. To compute power budget Enter luminaire type	Enter no. of work stations and area of each	Enter lighting level and type	Note: Program prints out error message since the task area is greater than 50% of the room area. Go back to step 8 with proper area.
Step	ထ်တ်		10.	

EXPLANATION OF LABELS	<b>3 &amp;</b>	SUBROUTINES
-----------------------	----------------	-------------

Label	Function
E'	Clears all registers; prints zero; stores 2.5 in R04; partitions
A	Prints room type R/T;
	with R/S, prints room type no. and prints L;
	with R/S, prints and stores length, prints W;
	with R/S, prints and stores width, prints H;
	with R/S, prints room height, computes height of luminaire above the work phase, computes and prints RCR, prints CU;
	with R/S, stores and prints coefficient of utilization
A'	Stores and prints HWP
B'	Stores and prints CU
В	Prints F/T;
	with R/S, prints fixture type and WS. A;
	with R/S, stores input in R07; if WS. is negative (% of area), goes to SBR EE; if zero, goes to SBR (; separates and stores WS. and A; if A=0, goes to LNX; prints FC.T;
	with R/S, stores input in R07; separates and prints FC and T; if T=1, goes to SBR CE; if T = 2, goes to SBR CLR; if T=2, stores 25 in R12; if flag 1 is set, goes to ); computes total area of work stations, and if total area is greater than 50% goes to SBR $X^2$ ; calls SBR $\sqrt{X}$ for computing and printing KW
Y ^x	For continuing LBL B program
X <b>≠</b> T	For continuing LBL B program
С	Computes and prints general area as equal to area of task; computes 1/3 of task FC level, and if less than 20 goes to SBR 1/X, calls SBR LOG and SBR $\sqrt{X}$ ; computes and prints non-critical area; computes 1/3 of general FC level, and if less than 10, goes to SBR RCL, calls SBR LOG, and SBR $\sqrt{X}$ ; computes and prints $\Sigma$ KW; FC (average); prints $\Sigma$ X;
	with R/S, computes $\Sigma$ KW; multiplies area by number of typical rooms and totalizes area; clears registers R14, R15, and R16

STO	For continuing LBL C program
SUM	For continuing LBL C program
÷	For continuing LBL C program
INV	Prints alphanumeric identification of data
LNX	Stores 50 in R08, prints, and goes to SBR Y ^x
CE	Stores 55 in R12; if flag 1 is set, goes to SBR (, otherwise goes to SBR X≠T
CLR	Stores 40 in R12; if flag 1 is set, goes to SBR), otherwise goes to SBR X≠T
$X^2$	Prints total area of task (R14); clears R14; prints error message
$\sqrt{X}$	Computes FC1 × A1; computes KW; calls SBR –
1/X	Calls T register; stores in R10; goes to SBR STO
RCL	Calls T register; stores in R10; goes to SBR SUM
C′	Multiplies by 0.75; stores product in R06; prints MBE
EE	Recalls R07 and changes to negative sign; prints revised value of R07 and %; computes number of work stations based on 50 sq ft/work station and stores in R09; stores 50 in R08; goes to SBR Y ^x
(	Sets flag 1; goes to SBR Yx
)	Sets flag 1; RCL 05 stores in R13; calls SBR LOG, SBR $\sqrt{X}$ , and SBR $\div$
D	Prints $\Sigma KW$ ; prints $\Sigma A$ ; computes and prints $W/A$
GTO	Prints CU
X	Prints FC
SBR	Prints LE
LOG	Recalls R10; prints value; calls SBR X
RST	Prints ΣKW
+	Prints W/A
_	Prints KW

# **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	Not used
R01	L; also number of similar spaces

EXPLAN	ATION OF STORAG	E REGISTERS (continued)	007 008	47 CMS 25 CLR	072 43 RCL 073 01 01
Register		Function	009 010	99 PRT 02 2	074 95 = 075 42 STO
R02	W		011 012	93 . 05 5	076 05 05 077 58 FIX
R03	H- HWP		013	42 STO	078 00 00 079 99 PRT
R04	HWP (height of	work plane)	014 015	04 04 98 ADV	080 01 1
R05	Area		016 017	91 R/S 76 LBL	082 42 STO
R06	CU		018 019	11 A 06 6	083 19 19 084 71 SBR
R07	Interim		020	09 9	085 22 INV 086 98 ADV
R08	Area of work sta	tions	021 022	03 3 05 5	087 05 5 088 65 ×
R09	Number of work	stations	023 024	03 3 07 7	089 43 RCL
R10	Foot-candles		025 026	42 STO 19 19	090 03 03 091 65 ×
R11	Type of task		027	71 SBR	092 53 ( 093 43 RCL
R12	LE		028 029	22 INV 91 R/S	094 01 01
R13	Area of task		030 031	99 PRT 98 ADV	096 43 RCL
R14	Total area of task	032 033	02 2 07 7	097 02 02 098 54 )	
R15	$\Sigma FC1 \times A1$		034 035	42 STO 19 19	099 55 ÷ 100 43 RCL
R16	Total KW for roo	036	71 SBR	101 05 05	
R17	$\Sigma KW$	037 038	22 INV 91 R/S	103 58 FIX	
R18	$\Sigma A$		039 040	42 STO 01 01	104 02 02 105 99 PRT
R19	Alphanumeric co	ode	041 042 043 044 045 046	99 PRT 98 ADV 04 4 03 3 42 STO 19 19	106 03 3 107 05 5 108 01 1 109 05 5 110 03 3 111 05 5
	LIGHTING POWE T PROGRAM	R	047 048 049 050	71 SBR 22 INV 91 R/S 42 STO	112 42 STO 113 19 19 114 71 SBR 115 22 INV
018 1 128 1 145 1 154 1 214 4 266 3 314 1 355 4 355 4 437 2 490 2 501 2 513 2 525 3 537 3 566 3	& JTINES  0 E' 1 A' 6 A' 7 B' 2 B' 5 YX 1 C 2 STUM 5 ÷ 4 SUM 5 ÷ 5 LNX 4 CE 6 X2 4 FX 5 1/X 3 RCL	582 18 C' 603 52 EE 638 53 ( 645 54 ) 661 14 D 695 61 GTD 706 65 × 721 71 SBR 733 28 LDG 740 81 RST 757 85 + 774 75 -  LISTING  000 76 LBL 001 10 E' 002 22 INV 003 58 FIX 004 02 2 005 69 DP 006 17 17	051 052 053 054 055 056 059 060 061 063 064 065 067 069	02 02 99 PRT 98 ADV 02 2 03 3 42 STD 19 19 71 SBR 22 INV 91 R/S 99 PRT 98 ADV 75 - 43 RCL 04 04 95 = 42 STD 03 43 RCL 04 02 ×	116 98 ADV 117 98 ADV 118 71 SBR 119 61 GTD 120 91 R/S 121 42 STD 122 06 06 123 99 PRT 124 98 ADV 125 98 ADV 126 91 R/S 127 76 LBL 128 16 A' 129 42 STD 130 04 04 131 99 PRT 132 02 2 133 03 3 134 04 4 135 03 3

137 03 3 138 42 STD 139 19 19 140 71 SBR 141 22 INV 142 98 ADV 143 91 R/S 144 76 B' 145 145 145 146 147 148 99 PRT 148 99 PRT 149 71 SBR 150 61 GTD 151 98 ADV 152 91 R/S 153 76 LB 155 09 9 157 02 7 158 07 7 159 03 3 160 07 STD 161 42 STD 162 19 188 164 22 INV 165 99 PRT 167 98 ADV 158 07 7 159 03 3 160 04 4 161 162 19 188 162 197 19 19 163 21 INV 164 22 INV 165 07 17 176 42 STD 177 19 19 178 07 178 179 22 INV 180 27 GE 181 182 91 R/S 182 91 R/S 183 42 STD 176 42 STD 177 19 19 178 179 22 INV 180 27 GE 181 182 91 R/S 183 42 STD 177 19 19 178 179 22 INV 180 29 PRT 181 27 GE 182 91 R/S 183 42 STD 177 19 19 178 179 22 INV 180 29 PRT 181 27 GE 182 91 R/S 183 42 STD 177 19 19 180 29 PRT 181 22 INV 182 91 R/S 183 42 STD 184 07 O7 185 27 GE 188 43 RCL 189 07 O7 180 29 PRT 180 29 PRT 181 22 INV 180 29 PRT 181 22 INV 180 27 INV 180 29 PRT 181 22 INV 182 91 R/S 183 42 STD 184 07 O7 185 27 INV 186 43 RCL 187 07 O7 188 43 RCL 189 07 O7 189 29 INT 190 59 INT 191 42 STD 192 09 PRT 193 42 STD 194 67 G7 195 197 07 197 198 22 INV	202 00 0 0 203 00 0 204 95 = 205 42 STD 206 08 08 207 67 EQ 208 23 LNX 209 43 RCL 210 08 ADV 212 98 ADV 213 76 LBL 214 45 YX 215 02 216 01 1 217 01 1 218 05 5 219 04 4 220 00 0 0 221 03 3 222 07 7 223 42 STD 224 19 19 EX 227 91 RCL 227 91 RCL 227 91 RCL 233 99 PRT 231 42 STD 232 10 10 233 99 PRT 231 42 STD 232 10 10 233 99 PRT 231 42 STD 232 10 10 233 99 PRT 234 43 RCL 235 07 07 236 59 INT 231 42 STD 232 10 10 233 99 PRT 234 43 RCL 235 07 07 236 59 INT 231 42 STD 232 10 10 233 99 PRT 234 43 RCL 235 07 07 236 65 X TD 237 238 65 X TD 240 00 0 241 95 = 242 42 STD 243 11 11 244 99 PRT 245 98 ADV 246 01 1 247 32 X TT 248 43 RCL 249 11 11 244 99 PRT 245 98 ADV 246 01 1 212 251 246 02 2 2 253 32 X TT 248 43 RCL 255 11 11 256 67 EQ 257 258 02 2 2 259 052 57 256 42 STD 256 257 258 02 2 2 259 052 61 12 12 262 87 IFF 263 01 01	267 43 RCL 268 12 12 269 99 PRT 270 71 SBR 271 71 SBR 271 73 SBR 272 53 C 273 43 RCL 274 08 08 275 65 X 276 43 RCL 277 43 RCL 278 54 SID 279 42 STD 280 13 13 281 44 SUM 282 14 14 283 58 FIX 284 00 00 285 99 PRT 286 01 1 287 03 3 289 07 7 291 19 19 292 71 SBR 293 22 INV 294 98 ADV 295 53 ÷ 299 02 2 300 34 RCL 297 05 05 298 55 ÷ 299 02 2 301 32 X‡T 302 53 C 296 43 RCL 297 05 05 298 55 ÷ 299 02 2 301 32 X‡T 302 53 RCL 303 43 RCL 304 14 14 305 75 - 306 01 1 307 54 ) 308 77 GE 309 33 X² 301 32 X‡T 302 53 RCL 301 32 X‡T 302 53 RCL 303 43 RCL 304 14 14 305 75 - 306 01 1 307 54 ) 308 77 GE 309 33 X² 310 71 SBR 311 34 FX 312 91 RX 313 76 LBL 315 43 RCL 316 14 14 317 58 FIX 318 00 00 319 99 PRT 320 01 1 321 03 3 322 02 2 3234 42 STD 326 71 SBR 327 22 INV 328 98 ADV	332 13 13 333 53 ( 334 53 ( 335 43 RCL 337 55 ÷ 338 43 RCL 337 55 ÷ 338 43 RCL 339 14 14 340 54 ) 341 55 ÷ 342 03 3 343 54 ) 344 42 ST□ 345 10 10 346 02 2 347 00 0 INV 348 32 RCL 349 43 RCL 349 43 RCL 351 27 ISBR 351 27 ISBR 351 27 ISBR 352 71 SBR 353 71 SBR 353 75 - 354 72 ST□ 355 42 ST□ 357 28 L□G 357 28 L□G 357 28 L□G 357 28 L□G 358 71 SBR 359 34 ΓX 359 34 ΓX 360 53 RCL 361 43 RCL 362 05 05 05 363 75 - 364 02 2 365 65 × 366 43 RCL 367 14 14 368 54 ) 369 371 SBR 371 372 00 00 373 99 PRT 374 01 1 375 03 3 376 02 2 377 09 9 378 01 1 377 09 9 378 01 1 377 09 9 378 01 1 377 09 9 378 01 1 377 09 9 378 01 1 377 09 PRT 378 01 1 379 05 5 380 42 ST□ 379 05 5 380 42 ST□ 379 05 07 10 379 07 10 379 07 10 379 07 10
197 07 07	262 87 IFF	327 22 INV	392 43 RCL

7899012345678901123456789012345678901123456789012334567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789001234567890012345678900123456789000000000000000000000000000000000000	74472878	4645678901234567890123445678901234567890123456789012345678901234567777777777788888888890123456789901234567890123456789444444444444444444444444444444444444	054481004144154660976222560041990605722000408997125004187NLR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	529 53312334567890123345678901233456789012334567890123355555555555555555555555555555555555	004143399997643	5956978901234567890123456600447890660666666666666666666666666666666666	22 INV 98 ADV 98 ACL 98 ACC 98 ACC 98 ACC 98 ACC 97	9RV3L   7-T   09RVV   17   L5   -09   08R NL F1R NL VF1L503RGR R N
							• 92 RTI	Ν

661 14 D 662 43 RCL 663 17 SBR 664 71 SBR 665 81 RCL 666 18 FIX 666 18 FIX 667 18 FIX 667 19 PR 7 7 1 677 01 01 3 STD 677 01 1 SBR 678 98 RCL 677 22 ADV 677 1 00 0 ÷ CL 677 1 00 0 ÷ CL 678 98 RCL 688 18 18 H/S 688 18 18 H/S 689 17 SBR 689 17 SBR 689 01 1 SBR 689 01 1 SBR 691 19 SBR 692 10 19 SBR 693 19 FIX 694 61 10 SBR 695 658 FIX 697 02 1 1 5 6 5 FIX 707 713 05 STD 708 99 PRT 709 99 PRT 710 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	725 726 727 733 733 733 733 733 733 733 733 733	7
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------	---

# **SPECIAL NOTES FOR HP-97 USERS**

- 1. The program is in two parts: LP-1A for determining room area and cavity ratios; LP-1B for determining power budget.
- 2. Program LP-1A should be used first to determine areas and cavity ratios prior to determination of the power budget by program LP-1B.

LP-1A LIGHTING POWER BUDGET PROGRAM HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation					Room area		Room cavity ratio		
Print Out			2,58 ***	19.66	168.78 *** 29.36 *** 3184.91 ***	*** 82.6			
			ш	⋖	<b>в</b> О	۵			
Press			I	I	1 1	1			
			I	I	1 1	l			
Enter			2.5	19	198.7 29.3	9.7			
Procedure	Example	Use program LP-1A for computing areas and CU for all rooms.	Enter height of work plane	Enter room number	Enter room length Enter room width	Enter room height	Compute and tabulate areas and CU for all rooms before proceeding with program LP-1B.		
Step			<del>-</del>	2	ю. <del>4</del> .	<u>ب</u>			

# **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Prints display (room no.)
В	Prints and stores display (room length) in RB
С	Prints and stores display (room width) in RC; computes and prints area and stores in RD
D	Computes and prints coefficient of utilization CU
E	Prints and stores display (height of work plane) in RA

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
RA	Height of work plane
RB	Room length
RC	Room width
RD	Area

# LP-1A (HP-97) LIGHTING POWER BUDGET PROGRAM

LIST	ING		020	RCLA	36 11
001	*LBLA	21 11	021	-	-45
002	PRTX	-14	022	5	<b>6</b> 5
003	SPC	16-11	023	X	-35
004	R. S	51	024	RCLB	36 12
005	*LBLB	21 12	025	RCLC	36 13
006	STOB	35 12	<i>026</i>	<del>+</del>	-55
007	PRTX	-14	027	λ	- <i>3</i> 5
008	R∕S	51	<b>0</b> 28	RCLD	<b>36</b> 14
009	*LBLC	21 13	029	÷	-24
010	STOC	<b>35</b> 13	030	FRTX	-14
011	PRIN	-14	031	SPC	16-11
012	RCLE	36 12	<b>0</b> 32	SPC	16-11
013	Х	-35	033	R∕S	51
014	STOD	35 14	034	*LBLE	21 15
915	PRTX	-14	<i>035</i>	STŪA	35 11
016	SPC	16-11	036	PRTX	-14
017	R/S	51	<b>03</b> 7	SPC	16-11
018	*LBLD	21 14	038	SPC	16-11
019	PRTX	-14	039	R∕S	51

LP-1B
LIGHTING POWER BUDGET PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

Example 1  Initialize  Initial	Con		100					
Example 1  Initialize Initialize Enter room rype 3185		Procedure	Enter		rress		Frint Out	Explanation
Example 1  Initialize								
Enter room type  Enter room was a 199 f		Example 1						
Enter room type  19  -	<u>-</u>		1	ı	+	ш		
Enter room area 3185 R/S 3185.06 ***  6.63 R/S 6.57 ***  Enter foundaire type 12 B 8.0.2 ***  Enter foundaire type 23.50 R/S 6.2 ***  and area of each are	-2		19	ı	I	∢		
Enter CU  63 R/S  6.5.2 ***  Enter fuminaire type  12 B  6.0.6 ***  40.08 ***  40.08 ***  40.08 ***  15.0.6 ***  To compute power demand for C  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***  1150.06 ***	რ		3185	ı	ı	R/S		
Enter luminaire type	4.		.63	ı	ı	R/S		
Enter fc and LE 80.4 — R/S 50.00 ***  Enter number of work stations 23.50 — R/S 53.00 ***  and area of each			12	ı	I	В		
Enter number of work stations 23.50 — — R/S 23.06 *** and area of each  To compute power demand for — — — — — — — — — — — — — — — — — — —	9		80.4	I	I	R/S		Foot-candles
Enter number of work stations 23.50 — — R/S								E
and area of each  To compute power demand for — — — — — — — — — — — — — — — — — — —	7.		23.50	ı	I	R/S		
To compute power demand for — — — — — — — — — — — — — — — — — — —		and area of each						
To compute power demand for — — — — — — — — — — — — — — — — — — —								Total work area
To compute power demand for — — — — — — — — — — — — — — — — — — —								ΚW
Enter number of similar rooms  2	<u></u> ∞		ı	ı	1	ပ		General area
Enter number of similar rooms 2 D 2.89 ***  Enter number of similar rooms 2 D 2.80 ***  14.51 ***  6.376.80 ***  14.51 ***  6.376.80 ***  6.376.80 ***		remaining space						Foot-candles
Enter number of similar rooms  2								ΚW
Enter number of similar rooms 2 — D 2.80 ***  Enter number of similar rooms 2 — D 2.80 ***  14.51 ***  14.51 ***  5.34 ***  6.376.60 ***  6.376.60 ***								Circ. area
Enter number of similar rooms 2 — D								Foot-candles
Enter number of similar rooms 2 — D								ΚW
Enter number of similar rooms 2 — D								W4 12+2 F
Enter number of similar rooms 2 — — D								l otal KW Watts/sa ft
Enter number of similar rooms 2 — — D								Average fc
Enter number of similar rooms 2 — — D								
* * * * * * * * * * * * * * * * * * * *	———		2	I	ı	۵		Total kW
* * *								
* *								l otal KW tor project
<u> </u>								Watts/so ft
			-					

			Area of each work station Total work area kW						
	**** **** ****	* * * * * * * * * * * * * * * * * * * *	****	*** *** *** ***	***	* * * * * * * * * * * * * * * * * * *	36 *** 33 ***	* * * * * * * * * * * * * * * * * * *	38 *** 38 *** 39 ***
	6.63 15.66 6.63 6.63	4 7 1 4 6 6 6 6 6 6 6 6 6	28.88 58.88 1868.88	1868.86 23.33 1.32	      	0 1 0 0 0 0 0 0 0 0 0 0	2.86	11.56 5378 1.86 1.87	6.68 8.68 3155.68 6.57
	E R/S R/S	B R/S	R/S	Ü			۵		E A R/S R/S
	<b>4</b>	1 1	I	I			ſ		<b>4</b>
	1 1 1 1	1 1	I	I			I		1 1 1 1
	- 19 3185 .63	12 70.4	20	l			2		- 19 3185 .57
Example 2	Follow same steps as for Example no. 1 except for step 7. Input number of work stations only and program will select								Example 3  Follow same steps as in Example no. 1 except for step 7. Input 0 for uniform illumination of entire room.

LP-1B (Continued)
LIGHTING POWER BUDGET PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number

Number of Cards: ONE

	Explanation		Area illuminated kW						35% Area illuminated KW			
		* * * * * * * * * *	* * *	* *	* * * *		* * * *	***	***	* * *	* * *	
	Print Out	12.06 106.08 55.06	3185.88 14.51	2.66 29.63	29.63 6379.66 4.56		3185.88 6.58 6.58	0 0 0 0 0 0 0 0 0 0 0 0	35.00 1114.75 7.14	1114.75 21.67 2.38	955.56 18.86	
		B R/S	R/S	Ω			E A/S R/S	B R/S	R/S			
	Press	1 1	I	I			+	1 1	I			
		1 1	1	1			1111	, I I	CHS			
	Enter	12 100.55	0	7			- 19 3185 .58	12 65.25	35			
	Procedure					Example 4	Follow same steps as for Example no. 1 except for step 7. Input percent of total area.			=	Program automatically goes through step 8.	
3	otep											

	Area to be illuminated Stops execution; shows error message
6.66 *** 31.65.66 **** 51.65.66 **** 12.66 **** 46.66 ***	*****  *****  *****  *****  ****  ****  ****
В 8/8 8/8 8/8 8/9	R/S
	1
at 19 at 19 an 3185 .63 .63	32
Follow same steps as for Exam no. 1 except for step 7. See wh happens if work area is more th 50% of total area.	
	as for Example — — — — — — — — — — — — — — — — — — —

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function								
A	Prints display (room no.);								
	with R/S, prints and stores display (area) in RA;								
	with R/S, prints and stores display (CU) in RB								
В	Prints display (luminaire type);								
	with R/S, accepts input in decimal format; separates, prints, and stores FC in R1, LE in R3;								
	with R/S, stores in RC; if less than 0, goes to SBR 0, otherwise stores integral value (number of work stations) in RD; if equal to 0 goes to SBR 1; prints RD; stores fraction multiplied by 100 (area of work stations) in RE; if equal to 0 goes to SBR 2, otherwise computes and prints total work area; if more than 1/2 of total area, goes to SBR 6								
C	Prints total area of work stations; makes general area equal to work stations; computes 1/3 of FC in work area; if less than 20 goes to SBR 8; continues with SBR 9								
9	Calls SBR a, SBR 7; computes and prints area of circulation space; computes 1/3 of FC in general area; if less than 10, goes to SBR b								
c	Calls SBR a, SBR 7; computes and prints watts/sq ft; computes and prints average FC; continues through LBL d and stops execution;								
	with R/S, prints and stores display (number of similar spaces) in R2; calculates total wattage and prints and totalizes in R8; calculates and prints total area and totalizes in R9								
D	Prints total wattage, total area, and total watts/sq ft								
0	Changes sign of RC (% area), stores in RC, and prints; divides by 5,000; stores in RD (number of work stations); stores 50 in RE and goes to SBR 3 and SBR C								
1	Recalls RA; stores R4; goes to SBR 7 and SBR ${\bf d}$								
2	Stores 50 in RE; goes to SBR e								
6	Prints R5 and error message								
7	Computes FC × A and totalizes in R6; calculates and prints KW; totalizes KW in R7								

- 8 Stores display in R1; goes to SBR 9
- a Recalls and prints R1
- b Stores display in R1; goes to SBR c
- e Clears registers

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R0	Not used
R1	FC
R2	Variable; number of similar rooms
R3	LE
R4	Area
R5	Area of work stations
R6	Totalized FC $\times$ A
R7	KW
<b>R</b> 8	Total KW
<b>R</b> 9	Total area
RA	Area
RB	CU
RC	Variable
RD	Number of work stations
RE	Area of work stations
RI	Area ÷ 2

# LP-1B (HP-97) LIGHTING POWER BUDGET PROGRAM

LIST	ING		014	ST02	35 02
001	*LBLA	21 11	015	INT	16 34
002	PRTX	-14	016	STG1	35 01
003	R/S	51	017	PRTX	-14
664	STOA	35 11	018	RCL2	<b>3</b> 6 <b>0</b> 2
005	PRTX	-14	019	FRO	16 44
006	R∕S	51	020	1	61
007	STOB	35 1 <i>2</i>	021	0	88
008	PRTX	-14	022	ē.	Ø <i>0</i>
009	SFC	15-11	023	X	-35
010	R∕S	51	<b>024</b>	STO3	35 03
011	*LBLB	21 12	025	PRTX	-14
012	PRTX	-14	<b>0</b> 26	SFC	16-11
013	R∕S	51	027	R∕S	51

028	STOC	<i>35 13</i>	<b>9</b> 86	2	62
				2	62
<b>0</b> 29	X<0?	16-45	<b>0</b> 87	X	-35
030	GT00	22 <b>0</b> 0	988	_	-45
031	INT	16 34	089	ST04	35 <i>0</i> 4
<b>0</b> 32	STGD	35 14	090	PRTX	-14
033	X=0?	16-43	091	3	03
034	GT01	22 01	<b>092</b>	ST÷1	35-24 01
035	PRTX				
		-14	<b>0</b> 93	RCL1	<b>36 0</b> 1
036	RCLC	36 13	094	1	<b>0</b> 1
037	FRC	16 44	<b>0</b> 95	Ø	00
038	1	19	096	X>Y?	16-34
039	Ø	00	<b>0</b> 97	GTOL	22 16 12
040	0	00	<b>09</b> 8	*LBLc	21 16 13
041	Х	-35	099	6SBa	23 16 11
		35 15			
042	STOE		100	GSB7	23 07
<b>04</b> 3	X=0?	16-43	101	SPC	16-11
044	GT02	22 02	102	RCL7	<b>36 0</b> 7
045	PRTX	-14	103	PRTX	-14
046	*LBL3	21 03	104	1	01
047	RCLE	36 15	105	EEX	-23
048	RCLD	36 14	106	3	<i>8</i> 3
049	X	-35	107	Х	-35
<i>050</i>	STO4	<b>35</b> 04	108	RCLA	36 11
051	ST+5	35-55 05	109	÷	-24
052	PRTX	-14	110	PRTX	-14
<b>0</b> 53	RCLA	36 11	111	RCL6	<b>36</b> 06
054	2	02	112	RCLA	36 11
<b>0</b> 55	÷	-24	113	÷	-24
<i>0</i> 56	STOI	35 4 <i>E</i>	114	PRTX	-14
<b>0</b> 57	RCL5	<i>36 0</i> 5	115	*LBLd	21 16 14
<i>0</i> 58	1	ð1	116	SPC	16-11
059	_	-45	117	R/S	51
	DOL T				
060	RCLI	36 46	118	STO2	35 02
<i>061</i>	X <i>≚</i> Y?	16-35	119	PRTX	-14
062	GT06	22 <b>0</b> 6	120	RCL7	36 67
063	GSB7	23 07	121	X	-35
<i>064</i>	SPC	16-11	122	ST+8	35-55 08
<i>06</i> 5	RTN	24	123	RCLS	<b>36</b> 08
066	*LBLC	21 13	124	PRTX	-14
067	RCL5	36 05	125	SPC	16-11
<b>06</b> 8	PRTX	-14	126	RCL2	<b>36 0</b> 2
069	STO4	<i>35 04</i>	127	RCLA	36 11
070	RCL6	36 06	128	Х	-35
071	RCL5	36 85	129	ST+9	35- <b>55 0</b> 9
<b>0</b> 72	÷	-24	130	0	00
<i>073</i>	3	<b>8</b> 3	131	ST05	35 Ø5
074	÷	-24	132	ST06	35 <i>06</i>
<b>0</b> 75	ST01	35 Ø1			
			133	STO7	35 07
<i>0</i> 76	2	<b>0</b> 2	134	RTN	24
<b>0</b> 77	Ū	<i>06</i>	135	*LBLD	21 14
<b>0</b> 78	X>Y?	16-34	136	RCL8	36 08
	GT08	22 08			
079			137	PRIX	-14
080	<b>∗LBL</b> 9	21 69	138	RCL9	<b>36 0</b> 9
<b>0</b> 81	6SBa	23 16 11	139	PRTX	-14
082	GSB7	23 07	140	RCL8	36 <b>0</b> 8
<b>0</b> 83	SPC	16-11			
			141	1	61
<b>0</b> 84	RCLA	36 11	142	EEX	-23
<i>0</i> 85	RCL5	<b>36 0</b> 5	143	3	<b>0</b> 3
				-	~~

# LP-2

# LIGHTING DESIGN PROGRAM, LUMEN METHOD

#### **GENERAL DESCRIPTION**

This program designs lighting systems and computes electrical demand load. The program also keeps account of type and number of luminaires.  $kW = Number of luminaires \times L \times W/1000$  [3.10]

where

W =Watts per luminaire

fc average =  $\Sigma fc_1 \times A_1/\Sigma A_1$  [3.11]

#### **EQUATIONS**

 $A = L \times W \tag{3.7}$ 

where

A =Area of room L =Length of room

W = Width of room

 $CR = 5 \times H \times (L \times W)/A$  [3.8]

where

CR = Cavity ratio

H = Hrc for the room cavity ratio, RCR
 = Hcc for the ceiling cavity ratio, CCR
 = Hfc for the floor cavity ratio, FCR

---

Number of luminaires

=  $fc \times A/IL \times CU \times LLF \times L$  [3.9]

where

fc = Foot-candles

A = Area

IL = Lumens per lamp

 $CU^*$  = Coefficient of utilization

LLF* = Light loss factor

L = Number of lamps per luminaire



FIGURE 3A

*Note: Both CU and LLF have to be calculated separately based on cavity ratios and the procedure given in Illuminating Engineering Society Handbook.

#### **OPERATING FEATURES**

Program provides two options: fc level can be determined using number of luminaires as input or viceversa. Each room can be divided into any number of sub-areas which can have different lighting levels and different types of luminaires.

The program has the capacity for storing nine types of luminaires. If input exceeds more than nine different types, it will print out the list of luminaires and start recording nine more types.

#### **EXAMPLE NO. 1**

Design the lighting system and also compute the total kW demand for the rooms having the following data:

#### **Room Type 1**

••	
Number of similar rooms	2
Length	108 ft
Width	24.7 ft
Height of luminaire over work surface	6.7 ft
Height of work surface above floor	2.3 ft
Luminaire type	0.12 ft
Watts per luminaire	97
Lamps per luminaire	2
Initial lumens per lamp	2,860
Task area	50%
Approximate illumination for task area	200 fc
Approximate illumination for rest of area	70 fc

# Room Type 2

Number of similar rooms	3
Area, sq ft	4,500
Number of luminaires	100
Type of luminaire	0.13
Watts per luminaire	205
Number of lamps per luminaire	4
Initial lumens per lamp	2,450
Coefficient of utilization	0.58
Light loss factor	0.72

LP-2
LIGHTING DESIGN PROGRAM, LUMEN METHOD
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

To compute room area and cavity ratios Enter room type Enter length of room Enter width of room	1 108 24.7	1 1 1 1 1	2nd	E, R/S R/S R/S	787 2668. 108. 108. 1.67 6.7	Explanation  What is room type?  What is room length?  What is room width?  Area of room  What is height?  Enter height of luminaire to work surface.  Cavity ratio
Enter height Repeat step 7 as many times as desired. To compute fc or number of luminaires What is luminaire type Enter watts and number of lamps	2.3	I I I	1 1 1	R/S R/S R/S	CR C	Enter height of ceiling above luminaire.  Cavity ratio  What is luminaire type?  Note: Decimal format  How many watts/luminaire and number of lamps/luminaire?

How many lumens/lamp and what is coeff. of utilization?	What is light loss factor?	Should area be 2,668?	What should illumination level be?	Number of luminaires	Do you wish to try for different illumination level?		How many such spaces?	Area	Power demand	Watts/sq ft	Luminaire type and quantity
1L.CU 2860. 0.61	0.73 0.73	SZ ← 30 ← SZ SZ ← SZ SZ ← SZ SZ ← SZ	PC 200.	101 40.8 7	Ë	100. LMNS	191. FC •	   	6.9 7.	W. R. 3	0.12 L.T 100. LMNS
R/S	R/S	R/S	R/S			ω,	C R/S				
I	ı	1	ı			2nd	1 1				1
I	ı	I	I			I	1 1				,
2860.61	.73	1334	200			100	l <del></del>				
11. Enter initial lumens and coeff.	12. Enter light loss factor	13. Enter area if you do not wish to base on 2.668 sq ft	14. Enter illumination level desired		Input integer number of luminaires to complete calculation.	15. Input integer number of Iuminaires	<ul><li>16. To compute power demand</li><li>17. Enter number of spaces</li></ul>				

LP-2 (Continued)
LIGHTING DESIGN PROGRAM, LUMEN METHOD
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

	Explanation	What is area?	How many fc?	Number of luminaires						Repeat how many times?
	Print Out	1334.	FC 70.	۲- ښ ۵ ۵ - ۲- ۲- ۲- ۲- ۲- ۲- ۲- ۲- ۲- ۲- ۲- ۲- ۲-	FC LMNS	76. 2× C 1.	o e ≅ X	8/8.9	0.12 L.T 40.	oi X
		A' R/S	R/S		ù	υ				D R/S
OM -	Press	2nd _	I		2nd	ı				1 1
Number of Cards: I WO		1 1	I		I	1				1 1
	Enter	_ 1334	70		40	1				7 8
USEK INSTRUCTIONS AND EXAMPLES	Procedure	If luminaire-type CU and power is same Enter area	Enter illumination level		Enter integer number of luminaires similar to step 15.	Repeat step 16.				To repeat for similar rooms Enter 2
OSE	Step	19.	20.							21. 22.

Total for two rooms	Total area	Total kW		Average illumination level	Total luminaires for this space	What is luminaire type and number of luminaires?	100 luminaires of type 13	How many watts/luminaire and lamps/luminaire?	How many lumens/lamp and what is coeff. of utilization?	What is light loss factor?	Should area be 5,336?	What is illumination level?		Illumination level	
	5336. XA	27.2 XKW	5.1 W/A	134. FC	0.12 L.T 280. LMNS	 " 	0 0 0	3 0 0 0.4	11.00 2450 0.58	F.	9 9 9 9 9 9 9	<u>й</u> .	; - 2 - 2 - 3		
						м	R/S	R/S	R/S	R/S	R/S	R/S		•	
						ı	ı	l	I	ı	I	ı		*	
						ı	1	ı	ı	ı	1	I			
						ı	100.13	205.4	2450.58	0.72	4500	0			
						To compute for another space	Enter quantity and type	Enter watts and number of lamps	Enter initial lumens and coeff. of utilization	Enter light loss factor	Enter desired area	Since fc is not known, enter 0			
						23.	24.	25.	26.	27.	28.	29.			

LP-2 (Continued)
LIGHTING DESIGN PROGRAM, LUMEN METHOD
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Similar to steps 16 & 17								
T = C R/S 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Step	- 1	Enter		Press		Print Out	Explanation
4500.  4500.  A W W H G W S S S S S S S S S S S S S S S S S S		Similar to steps 16 & 17	I <b>-</b>	1 1	1.1	c R/S	×.	How many such spaces?
20.5 KW KW W/H W/H W/H W/H W/H W/H W/H W/H W/H W/							4500. A	
L.T. C. 13 (2.13)							20.5 KW	
L.T. L.T. 100. LMNS = = = B/S 3. 13500. 28 61.5 EKW W/A 6							4.6 8.7	
13500. 13500. 14.6 W.A. 6							L C S S S S S S S S S S S S S S S S S S	
		Similar to step 20	1 1	1 1	1 1	D B/S	e ×c	How many such rooms?
61.5 2KW 4.6 W/A 91. FC						<u> </u>	13500. ZA	
4.6 WAR PC							61.5 ∑KW	
P.C. 391							4.6 W/A	
							დე	

L.T. L.T. 18300. ZKW.7	L.T.1 MNS 0.12 MNS 0.13 MNS 0.000.	
ш		
l I		
e building		
30. To find total for the building		

#### **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
INV	Prints alphanumeric identification of data and partitions
E'	Clears all registers; stores 20 in R00
A	Prints ? RT;
	with R/S, prints room type and L;
	with R/S, prints and stores in R01 and prints W;
	with R/S, prints and stores in R02, computes and prints area A, and prints H;
	with R/S, computes and prints CR and prints H for recomputing CR
CE	For getting back to printing H
В	Prints LT;
	with R/S, prints number of luminaires and type in decimal format; separates number of luminaires and stores in R04; if
	luminaire type is similar to previous type, goes to SBR R/S; stores luminaire type in R20; if value of R00 exceeds 30, goes to SBR—; adds 1 to R03; prints WL;
	with R/S, separates, stores, and prints W and L and prints ILCU;
	with R/S, separates, stores, and prints IL and CU; recalls R10 (area) and prints A;
	with R/S, prints and stores in R10; prints FC (SBR X⇌T);
	with R/S, stores in R11; if equal to zero goes to SBR X ² , computes number of luminaires, and goes back to print FC
	For skipping a part of LBL B sequence
GTO	For getting back to print A from SBR LNX
RCL	For getting back to print FC from SBR $X \rightleftharpoons T$ .
В′	For getting back to SBR R/S; stores and prints LMNS (SBR STO); computes and prints FC level
С	Calls SBR SUM to print ?X;
	with R/S, prints and stores in R13; computes total area and totalizes and prints area; computes, prints, and stores KW; computes FC1 × A1; prints luminaire type computes and prints number of luminaires stores luminaire type and number

Calls SBR SUM to print ?X; D with R/S, prints and stores in R13; computes total area, totalizes, and prints; computes, totalizes, and prints KW; computes and prints W/A; computes and prints average FC; clears registers R14, R15, and R16; prints fixture type and number using SBR SBR E Prints total area, KW, W/A; prints fixture type using SBR RST For reiteration + LNX Prints A Prints FC X**≠**T  $X^2$ Recalls R04 and goes to LBL B'  $\sqrt{X}$ Computes luminaires/FC 1/X **Prints LMNS SUM** Prints ?X Yx Prints ΣA EE **Prints KW** Computes and prints W/A Prints ΣKW A' Goes to last part of LBL B by using SBR **GTO** Prints table of luminaire types and quantity; stores 20 in R00; goes to B R/S If luminaire type is same, deducts 1 from R00; goes to SBR. **STO Prints LT** 

#### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	For RCL IND 00 and STO IND 00 for table of luminaire types and number of luminaires
R01	Length
R02	Width
R03	For DSZ for storing and printing luminaire type and number of luminaires
R04	Number of luminaires

	Number of lamps p Lumens per lamp Coefficient of utiliza Light loss factor Area Foot-candle level Number of luminain Number of similar of A KW ΣFC1 × A1 ΣA ΣKW Alphanumeric code Luminaire type Number of luminain For storing combination type and number of	res paces res tion of luminaire luminaires	017 018 019 021 0223 0227 0229 0229 0233 0336 0336 0340 0445 0447 0447 0447 0447 0447 0551 0534	76 LBL 10 E • 8 10 E • 9 10 E	081 22 INV 082 91 R/S 083 99 PRT 084 98 ADV 085 65 × 086 05 5 087 65 × 088 53 ( 089 43 RCL 090 01 01 091 85 + 092 43 RCL 093 02 02 094 54 ) 095 55 ÷ 096 43 RCL 097 10 10 098 95 = 099 58 FIX 100 02 02 101 99 PRT 102 01 1 103 05 5 104 03 3 105 05 5 104 03 3 105 05 5 104 03 3 105 05 5 106 42 STD 107 19 19 108 71 SBR 109 22 INV 110 98 ADV 111 71 SBR 112 24 CE 113 76 LBL 114 12 B 115 98 ADV 116 71 SBR 117 42 STD 118 91 R/S
LABELS & SUBROUTIN 001 22 1 018 10 8 026 11 074 24 0 114 12 138 93 233 61 0 243 43 43 71 8 270 17 8 294 13 382 14 443 71 8 483 15 504 81 6 519 85 544 23 1 553 32 7 564 33 7 570 34 4 566 45 629 52 8	INV 686 E' 691 A 701 CE 708 B . LIST GTD 000 RCL 001 3' 002 C 003 D 004 6BR 005 E 006 RST 007 + 008 LNX 009 ('T 010 TX 012 I/X 013 GUM 014 ('X 015		055 056 057 058 060 061 062 064 066 067 071 072 073 074 077 077 078 079	71 SBR 22 INV 91 R/S 99 PRT 98 ADV 42 STD 02 65 X 43 RCL 95 = 42 STD 10 FIX 00 PRT 71 SBR 76 LBL 24 CE 98 ADV 02 3 42 STD 19 SBR	119 42 STD 120 01 01 121 99 PRT 122 59 INT 123 42 STD 124 04 04 125 43 RCL 126 01 01 127 22 INT 128 59 INT 129 32 X\$T 130 43 RCL 131 20 20 132 67 EQ 133 91 R/S 134 00 0 135 42 STD 136 12 12 137 76 LBL 138 93 . 139 32 X\$T 140 42 STD 141 20 20 142 03 3 143 00 0 144 32 X\$T

147 147 147 147 153 155 156 163 163 163 163 163 163 163 163 163 16
69 DP 20 43 RC00 67 FG 20 69 DP 20 69 DP 20 69 DP 20 69 DP 30 69 DP 30 60 DP 30
21123145678901233456789012334567890123345678901234 22122222222222222222222222222222222
99 PRT 98 AD2 97 27 27 20 1 1
5678901234567890123456789 7777789012345678990123456789 22222222222222222222222222223333333333
43 RCL 05 05 65 × 43 RCL 13 13 55 ÷ 61 1 00 0 00 0 00 0 54 ) 42 STD 01 01 44 SUM 15 15 58 FIX 01 01 99 PRT 71 SBR
01234567890123456789012345678901234567890123456789012345678901234 44444444456789012345666666777777777788888888889999999999999
9875333116400 M6LOTTRO L4 L3 M2TRXV L2 L0 *********************************

56678990123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789
**XL5**********************************
01234567890123456789012345678901234567890123444444444444444444444444444444444444
432 + LO ** 00 23 3 R S
55555555555555555555555555555555555555
99733 + VNNNSLX
$\begin{array}{c} 0012334567899011233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901234567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678900123456789001234567890012345678900123456789001234567866666666666666666666666666666666666$
71292643000000000000000000000000000000000000

#### 134 LIGHTING DESIGN PROGRAMS

66667 6667 6667 6677 6777 6777 6778 6883 6887 6889 6889 6889	22 INV 98 ADV 92 RTN 76 LBL 54 ) 58 FIX 01 99 7 07 7 02 6 04 4 03 3 42 STO 98 ADV 98 ADV 98 ATN 76 LBL 71 GTO 92 LBL	693 694 695 697 698 699 701 702 703 704 707 708 711 713 714 715 718	81 RST 02 2 00 0 42 STD 00 00 12 B 92 RTN 76 LBL 91 R/S 69 DP 30 30 71 SBR 92 RTN 42 STD 02 7 04 4 00 0 03 3 07 7 42 STD 19 19 71 SBR 22 INV
690 691	76 LBL 75 -	718 719	22 INV 92 RTN
692	71 SBR	113	76 KIN

LP-2 LIGHTING DESIGN PROGRAM, LUMEN METHOD HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out		Explanation
	Example							
<del>-</del>	. Initialize	I	1	+	ш	6.86	***	
<b>2</b> . ε. <del>4</del> .	Enter room type Enter room length Enter room width	1 108 24.7	1 1 1	1 1 1	A R/S R/S	1.66 108.69 24.76 2657.69	* * * * * * * * * * * * * * * * * * * *	Area of room
D	Enter height of luminaire over work plane	6.7	I	I	R/S	6.76 1.67	* * *	RCR
G	Enter height of work plane above floor	2.3	I	I	R/S	8.38 57.3	***	FCR
7.	Enter luminaire type Enter watts and number of lamps	.12		1 1	B R/S	6.12 57.88 2.88	* * * * * * * * * * * * * * * * * * * *	
6	Enter lumens/lamp and CU	2860.61	ı	I	R/S	2866.08 6.61	* *	
10. 11.	Enter LLF Enter area	.73 1334	1 1	1 1	R/S R/S	0.73 1334.00	* *	
12.	Enter fc	200	ı	I	R/S	200:00 104.75	***	Number of luminaires
13.	Enter number of luminaires	100	1	+	æ	139.68 158.94	* * * * * *	Foot-candles
14.	Enter number of similar spaces	-	I	1	U	1.36 1334.98 9.78 7.27	* * * * * * * * * * * * * * * * * * * *	Area kW Watts/sq ft

LP-2 (Continued)
LIGHTING DESIGN PROGRAM, LUMEN METHOD
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

			aires								ıaires			
	Explanation		Number of luminaires	Foot-candles		Total area Total kW Watts/sq ft	Average fc				Number of luminaires	Foot-candles		
		*	* * *	* * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	***	***	* *	***	* ** * *	**		
	Print Out	1334.00	70.00 36.66	46.26 76.38	1.00 1334.00 3.88 2.91	2.00 5336.00 27.16 5.09	133.66	8.13 265.66 4.68	2458, 66 8, 5 <b>6</b>	6.72 4506.63	86 80 80 80 80 80 80 80 80 80 80 80 80 80	100,00 90,94		
		<u> </u>		<u> </u>					ω	<b>ω</b> ω	ω		 	
		R/S	R/S	R/S	O .	Δ		B R/S	R/S	R/S R/S	R/S	Δ.		
	Press	ı	ı	I	l .	I		1 1	I	1 1	I	+		
		ı	I	I	I	1		1 1	1	1 1	I	. 1 :		
	Enter	1334	70	40	-	5		.13 205.4	2450.58	.72 4500	06	100		
1	Procedure	Enter area	Enter fc	Enter number of luminaires	Enter number of similar spaces	Enter number of similar rooms		Enter luminaire type Enter watts and number of lamps	Enter lumens/lamp and CU	Enter LLF Enter area	Enter fc	Enter number of luminaires		
0	desc	15.	16.	17.	.8	19.		20. 21.	22.	23. 24.	25.	26.		

27. Enter number of similar spaces 1 C					
Enter number of similar spaces 1 C 4561.66 2-69.56 4.56 Enter number of similar rooms 3 D 73562.66 61.66 2-69.54	Area . kW Watts/sq ft	Total area Total kW Watts/sq ft	Average fc	Total area of project Total kW load Watts/sq ft	
Enter number of similar spaces  1 — — — — — — — — — — — — — — — — — —					
Enter number of similar rooms 3 —  To find total load for project — —	O	۵		ш	
Enter number of similar spaces  1  Enter number of similar rooms  3  To find total load for project  ———————————————————————————————————	I	I		ı	
Enter number of similar spaces  Enter number of similar rooms  To find total load for project	ı	1		ı	
27. Enter number of similar spaces 28. Enter number of similar rooms 29. To find total load for project	-	ო		I	
73. 28. 23.	Enter number of similar spaces			To find total load for project	
	27.	28.		29.	

E

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

## Label **Function** Clears primary and secondary registers; $\mathbf{e}$ prints 0 Α Prints display (room number); with R/S, stores display (room dimension) in R4; with R/S, stores display (room dimension) in R2; calculates, prints, and stores area in RA and goes through LBL 0; with R/S, prints display (cavity), computes and prints CU; goes back to SBR 0 for further calculation of CU for other cavities В Prints display (luminaire type); with R/S, accepts input in decimal format and separates; with R/S, accepts input in decimal format; separates, prints, and stores (IL) in R6 and (CU) in RC; with R/S, prints and stores display (LLF) in R1 and goes through LBL 2; with R/S, prints and stores display (area) in RA; with R/S, prints and stores display (FC) in RD; computes and prints number of luminaires and stores in RE; goes to SBR 1 for recalculation if desired b Prints and stores display (number of luminaires); calculates and prints FC; stores in RD C Prints and stores display (number of similar spaces) in R2; calculates and prints area and totalizes in R8; calculates and prints KW and totalizes in R9; calculates and prints watts/sq ft; calculates for part of the room if remaining D Prints and stores display (number of similar rooms) in R2; calculates and prints total area, total KW, watts/sq ft, and average FC; totalizes in R8, R10, and R9 on R11

Prints total area, KW, and watts/sq ft

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R0	Not used
R1	Room dimension; also light loss factor
R2	Room dimension; also number of similar spaces
R3	Not used
R4	Number of lamps per luminaire
R5	Watts
R6	Lumens per lamp
R7	Totalized FC $\times$ A
<b>R</b> 8	Totalized area
<b>R</b> 9	Totalized KW
RA	Area
RB	Watts
RC	Coefficient of utilization
RD	Foot-candles
RE	Number of luminaires
RI	For indirect storage and recall
R10	Total area of project
R11	Total KW for project

LP-2 (HP-97) LIGHTING DESIGN PROGRAM, LUMEN METHOD

LIST	ING		016	ST <b>0</b> 2	35 02
001	RTH	24	017	FRTX	-14
662	*LBLe	21 16 15	018	RCL1	36 01
003	CLRG	16-53	019	X	-35
904	₽≢S	16-51	020	STOA	35 11
005	CLRG	16-53	021	PRTX	-14
006	CLX	-51	022	*LBL0	21 00
007	PRTX	-14	023	SPC	16-11
008	SPC	16-11	024	R∕S	51
009	R∕S	51	025	PRTX	-14
016	*LBLA	21 11	026	5	∂5
011	PRTX	-14	027	X	-35
012	R∠S	51	028	RCL1	36 01
013	ST01	35 01	029	RCL2	36 02
014	FRTX	-14	030	+	-55
015	R∕S	51	931	Х	-35

032	RCLA	36 11	<b>0</b> 87	R/S	51
033	÷	-24	<b>0</b> 88	¥LBLĿ	21 16 12
034	PRTX	-14	089	STOE	35 15
035	6SB0	23 00	<i>090</i>	PRTX	-14
036	R∠S	51	091	RCL4	36 04
037	*LBLB	21 12	<b>892</b>	X	-35
<i>038</i>	PRTX	-14	<b>0</b> 93	RCL6	36 06
039	R∕S	51	094	X	-35
040	ST04	35 <b>04</b>	095	RCLC	<b>36</b> 13
Ø41	INT	16 34	896	X	-35
<b>042</b>	ST05	35 <i>0</i> 5	<b>0</b> 97	RCL1	36 01
043	PRTX	-14	<b>09</b> 8	X	-35
<b>044</b>	RCL4	36 64	099	RCLA	36 11
<i>8</i> 45	FRC	16 44	100	÷	-24
<i>0</i> 46	1	01	101	STOD	<i>3</i> 5 14
047	0	00	102	PRTX	-14
048	X	-35	103	SPC	16-11
<b>04</b> 9	ST04	35 <i>0</i> 4	104	R/S	51
050	PRTX	-14	105	*LBLC	21 13
051	SPC	16-11	106	ST02	35 <b>0</b> 2
<i>052</i>	R∕S	51	107	PRTX	-14
<b>0</b> 53	STOC	35 13	108	RCLA	36 11
<i>0</i> 54	INT	16 34	109	X	<b>-3</b> 5
<b>055</b>	STO6	35 <i>06</i>	110	PRTX	-14
<i>056</i>	PRTX	-14	111	ST+8	35-55 <b>0</b> 8
<b>0</b> 57	RCLC	36 13	112	RCL2	36 02
<b>0</b> 58	FRC	16 44	113	RCLE	<i>36</i> 15
<b>0</b> 59	STOC	35 13	114	X	-35
060	PRTX	-14	115	RCL5	36 <b>0</b> 5
061	SPC	16-11	116	X	-35
062	R/S	51	117	STOB	<b>35</b> 12
063	ST01	35 <b>0</b> 1	118	1	01
064	PRTX	-14	119	0	ŨŨ
<i>06</i> 5	*LBL2	21 02	120	0	00
<i>066</i>	R∕S	51	121	0	96
<i>067</i>	PRTX	-14	122	÷	-24
<i>068</i>	STOA	<b>3</b> 5 11	123	PRTX	-14
<b>0</b> 69	*LBL1	21 01	124	ST+9	35 <b>-5</b> 5 <b>0</b> 9
070	SPC	16-11	125	RCLB	36 12
<i>071</i>	R/S	51	126	RCLA	36 11
<b>0</b> 72	PRTX	-14	127	÷	-24
<i>073</i>	STOD	35 14	128	PRTX	-14
<i>6</i> 74	RCLA	36 11	129	RCLA	36 11
<i>075</i>	X	-35	130	RCLD	36 14
<b>0</b> 76	RCL6	36 <b>0</b> 6	131	X	-35
<b>0</b> 77	÷	-24	132	ST+7	35-55 07
<i>0</i> 78	RCL4	<i>36 0</i> 4	133	SPC	16-11
<b>6</b> 79	÷	-24	134	GSB2	23 02
<i>0</i> 86	RCLC	36 13	135	R/S	51
081	÷	-24	136	*LBLD	21 14
<b>0</b> 82	RCL1	36 01	137	STO2	<b>35 0</b> 2
<b>0</b> 83	÷	-24	138	PRTX	-14
084	PRTX	-14	139	ST×8	35-3 <b>5 0</b> 8
085	STOE	35 15	140	RCL8	36 <b>0</b> 8
<b>0</b> 86	GSB1	23 01	141	FRTX	-14

142	RCL2	36 02	168	ST+:	35-55 45
143	STx9	35- <b>35 0</b> 9	169	0	90
144	RCL9	<b>36 0</b> 9	170	ST07	35 07
145	PRTX	-14	171	ST08	35 <b>0</b> 8
146	1	<b>0</b> 1	172	ST09	<b>35 0</b> 9
147	0	96	173	SPC	16-11
148	0	<b>6</b> 8	174	R/S	51
149	0	00	175	*LBLE	21 15
150	X	-35	176	1	81
151	RCL8	36 <b>0</b> 8	177	Ø	60
152	÷	-24	178	STOI	<b>35 46</b>
153	PRTX	-14	179	RCL:	36 45
154	SPC	16-11	180	PRTX	-14
155	RCL2	<b>36 0</b> 2	181	ISZI	16 26 46
156	ST×7	35 <b>-35</b> 07	182	RCL i	<i>36</i> 45
157	RCL7	<i>36 07</i>	183	PRTX	-14
158	RCL8	36 <b>0</b> 8	184	÷	-24
159	÷	-24	185	1/X	52
160	PRTX	-14	186	1	01
161	1	<b>0</b> 1	187	6	ØÐ
162	Ø	<b>0</b> 0	188	0	90
163	STOI	35 4 <i>6</i>	189	0	88
164	RCL8	<i>36 0</i> 8	190	X	-35
165	ST+i	35 <b>-55 4</b> 5	191	PRTX	-14
166	ISZI	16 26 46	192	SPC	16-11
167	RCL9	36 09	193	R∕S	51

# SANITARY ENGINEERING PROGRAMS

# SEP-1 STORM WATER SYSTEM PIPE SIZING PROGRAM

#### **PROGRAM DESCRIPTION**

With input of rainfall intensity and roof area, the program can select pipe sizes for horizontal pipes of different slopes and vertical stacks. The sizing procedure is based on the BOCA Basic Plumbing Code, which is similar to the National Standard Plumbing Code.

#### **EQUATIONS**

The tables are based on a 4-in. rainfall, and conversion for other rainfall intensities is done by the following formula:

Equivalent roof area = 
$$\frac{\text{Roof area} \times 4}{\text{Input rainfall rate}}$$
 [4.1]

#### **OPERATING FEATURES**

The sizing information is stored by combining pipe size and roof area in decimal format. For example, 29,200.1 will mean 29,200 sq ft; 10-in. pipe.

As shown under "User Instructions and Examples," the program can select pipe sizes for the following types of distribution systems:

Distribution System	Input Under Label B
Horizontal with 1% slope	1
Horizontal with 2% slope	2
Horizontal with 4% slope	4
Vertical leaders	5

#### **REFERENCE DATA**

BOCA Basic Plumbing Code or the National Standard Plumbing Code.

TABLE P803.1 SIZE OF HORIZONTAL BUILDING STORM DRAINS AND BUILDING STORM SEWERS¹

	Maximum projected area in square feet and gallons per minute flow for various slopes							
Diameter of drain	1/8 in. per ft. slope		1/4 in. pe ft. slope		1/2 in. p			
Inches	Square feet	gpm	Square feet	gpm	Square feet	gpm		
3	822	34	1160	48	1644	68		
4	1880	78	2650	110	3760	156		
5	3340	139	4720	196	6680	278		
6	5350	222	7550	314	10700	445		
8	11500	478	16300	677	23000	956		
10	20700	860	29200	1214	41400	1721		
12	33300	1384	47000	1953	66600	2768		
15	59500	2473	84000	3491	119000	4946		

**Note 1.** Table P-803.1 is based upon a maximum rate of rainfall of four (4) inches per hour for a five (5) minute duration and a ten (10) year return period. Where maximum rates are more or less than four (4) inches per hour, the figures for drainage area shall be adjusted by multiplying by four (4) and dividing by the local rate in inches per hour.

#### P-803.2 Size of vertical conductors and leaders:

Vertical leaders shall be sized on the maximum projected roof area, according to Table P-803.2, Size of Vertical Conductors and Leaders.

TABLE P803.2 SIZE OF VERTICAL CONDUCTORS AND LEADERS¹

Size of leader or conductor ²	Maximum projec	eted roof area
Inches	Square feet	gpm
2	544	23
$2\frac{1}{2}$	987	41
3	1,610	67
4	3,460	144
5	6,280	261
6	10,200	424
8	22,000	913

**Note 1.** Table P-803.2 is based upon a maximum rate of rainfall of four (4) inches per hour for a five (5) minute duration and ten (10) year period. Where maximum rates are more or less than four (4) inches per hour, the figures for drainage area shall be adjusted by multiplying by four (4) and dividing by the local rate in inches per hour.

**Note 2.** The area of rectangular leaders shall be equivalent to the circular leader or conductor required. The ratio of width to depth of rectangular leaders shall not exceed three-to-one (3:1).

SEP-1
STORM WATER SYSTEM PIPE SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Procedure	Enter		Press		Print Out	4	Explanation
Example 1							
1. Input rainfall rate, in./hr 2. Input 1 for 1% slope 3. Input roof area, sq ft	4 1 1500	1 1 1	1 1 1	CBA			
or Input 2 for 2% slope Input roof area, sq ft	2 3000	1 1	1 1	<b>ш</b> О	000 000 8	II — II N II — O I	
or Input 4 for 4% slope Input roof area, sq ft	4 4000	1 1	1 1	<b>ш</b> О	4 9 400	THE MUH MUH MUH MUH MUH MUH MUH MUH MUH MUH	
Example 2							
<ol> <li>Input rainfall rate, in./hr</li> <li>Input 5 for leaders</li> <li>Input roof area, sq ft</li> </ol>	5 5 5000	1 1 1	1 1 1	<b>∢</b> ₪ ∪	0000 0000 0000	0 0 4 1 0 4 4 4 4 4 1 8 1 4	

Label	Function
A	Stores and prints rainfall in inches per hour (RIPH)
В	Selects system type and prints
C	Prints roof area; converts roof area from tables to suit input rainfall intensity and finds diameter
STO	Reiterates for finding pipe size
INV	Prints alphanumeric characters for identification of data
LNX	Prints 1%H and calls SBR X≠T
CE	Prints 2%H and calls SBR X ²
CLR	Prints 4%H and calls SBR $\sqrt{X}$
X <b>≠</b> T	Stores table for 1/8 in./ft or 1% slope
$X^2$	Stores table for 1/4 in /ft or 2% slope
$\sqrt{X}$	Stores table for 1/2 in./ft or 4% slope
1/X	Stores table for vertical leaders

#### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	For RCL IND for pipe sizing
R01-R08	For storing tables of pipe size and roof area
R09-R19	Not used
R20	Alphanumeric code
R21	Not used
R22	Not used
R23	Rainfall intensity
R24	Not used
R25	Not used
R26	Not used
R27	Not used

# SEP-1 STORM WATER SYSTEM PIPE SIZING PROGRAM

LABE	LS &		063	42 STO
<b>SUBR</b>	OUTII	NES	101	22 INV
001	11	А	118	23 LNX
019	12	В	133	24 CE
044	13	С	148	25 CLR

163 240 318 397	32 X¦T 33 X² 34 ∫X 35 1/X	060 061 062 063 064	42 STO 00 00 76 LBL 42 STO 69 OP
LISTII 000 001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020 022 022 022 022 022 022 023 034 035 036 037 038 040 042 044 045 046 047 048 049 050 051 055 057 059 059	NG 71131	065 0667 0667 0670 0670 0772 0774 0775 0776 0776 0777 0777 0778 0777 0777 0777	20 RC* 00T X 4 ÷ L3 = V = V = T = T = T = T = T = T = T = T

134	270 05 5 271 00 0 272 93 . 273 00 0 274 06 6 275 42 STD 276 04 1 277 01 1 278 06 6 279 03 3 280 00 0 281 00 0 282 93 00 0 283 00 0 284 08 8 285 42 STD 286 05 02 287 02 2 288 09 9 2290 00 0 2391 00 0 2392 93 01 1 292 93 01 1 294 42 STD 296 04 4 297 07 7 298 00 0 301 93 . 302 01 1 303 02 2 304 42 STD 306 08 8 307 04 4 308 00 0 311 93 3 304 42 STD 308 00 0 311 93 3 312 01 1 313 02 STD 308 00 0 311 93 3 314 42 STD 315 08 8 307 04 4 308 00 0 311 93 . 311 93 3 312 01 1 313 02 STD 314 42 STD 315 08 8 316 93 .	337 06 6 6 6 338 06 6 6 6 338 06 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	06680.05T010700.06T023000.08T041400.1T0666600.12T01900
-----	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------	--------------------------------------------------------

390 93 . 391 01 1 392 05 5 393 42 STD 394 08 08 395 92 RTN 396 76 LBL 397 35 1/X 398 05 5 399 04 4 400 04 4 401 93 . 402 00 0 403 02 2 404 42 STD 406 09 9 407 08 8 408 07 7 409 93 . 410 00 0 411 02 2 412 05 5 413 42 STD 414 02 02 415 01 1 416 06 6 417 01 1 418 00 0 411 02 1 418 00 0 411 02 02 412 05 5 413 42 STD 414 02 02 415 01 1 416 06 6 417 01 1 418 00 0 421 03 3 422 42 STD 423 03 03 424 03 3 425 04 4 426 06 6	7890123456789012344567890123444444444444444444444444444444444444	00 93 00 42 40 62 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 93 00 00 00 00 00 00 00 00 00 00 00 00 00	0.0404 806280.0505 8022000.0807 807 807 807
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------

#### **SPECIAL NOTES FOR HP-97 USERS**

1. The program has two cards:

SEP-1—contains the basic program and tables for 1% and 2% slopes.

SEP-1A—contains tables for a 4% slope and vertical leaders.

- 2. When using program SEP-1A, first load Program SEP-1 and then merge Program SEP-1A using the following instructions:
  - a. Set the PRGM-RUN switch to RUN;
  - b. Use GTO · 049 operation from keyboard;
  - c. Press f MERGE;
  - d. Pass both sides of magnetic card.

SEP-1
STORM WATER SYSTEM PIPE SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation		Pipe diameter				
Print Out		20 20 20 20 20 20 20 20 20 20 20 20 20 2	***	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5000 5.00 5.00 5.00 5.00 5.00	
Press		< m ∪	ш U	<b>a</b> O		
Enter		4 1 1500	3000	4 4000	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Procedure	Example 1	Input rainfall rate, in./hr Input 1 for 1% slope Input roof area, sq ft	Input 2 for 2% s Input roof area,	or Input 4 for 4% slope Input roof area, sq ft Example 2	Input rainfall rate, in./hr Input 5 for leaders Input roof area, sq ft	
Step		–. v. w.	۷i ю	0, W	–; ഗ്. ผ <u>.</u>	

HP-97	EXPLANATION OF LABELS & SUBROUTINES	034 035	x RCLA	-35 36 11	<b>091</b> 092	<b>0</b> 7	ue 87
Label	Function	<b>0</b> 36	+	-24	093	é	00 00
	Duinte and stance displaying DA	<b>037</b>	RCLB	36 12	094	0	00
A	Prints and stores display in RA	<b>0</b> 38	X>Y?	16-34	095	•	-62
В	Prints display and selects system type	039	GTO0	22. 00 36 45	096	1 CTOC	91 75 04
C	Prints display (roof area); converts roof area	040 041	RCL: FRC	36 43 16 44	097 098	ST06 3	35 06 03
	from table to suit rainfall intensity and finds	842	1	01	099	3	93
	diameter using LBL 0 for reiteration	043	Ø	99	100	3	63
1	Stores table for 1% slope	044	Ø	00	101	0	90
2	Stores table for 2% slope	045 046	X PRTX	-35 -14	102 103	0	00 
	•	946 947	SPC	-14 16-11	103	1	−6; 0:
3	Stores table for 4% slope	<b>04</b> 8	RTH	24	105	2	Ð.
4	Stores table for vertical leaders	049	*LBL1	21 01	106	ST07	35 0
		<b>0</b> 50	8	<b>0</b> 8	107	5	Ø.
		<b>0</b> 51	2	02	108	9	0:
		<b>0</b> 52	2	<b>62</b>	109	5	0:
		053 054	ē	-62 00	110 111	0 0	00 00
		<b>0</b> 55	3	<b>0</b> 3	112		-6:
1P-97	EXPLANATION OF STORAGE REGISTERS	<b>056</b>	ST01	35 01	113	1	8.
		<b>0</b> 57	1	01	114	5	0.
Registe	r Function	<i>0</i> 58	8	98	115	ST08	35 0
RA	Rainfall intensity	<b>6</b> 59	8	<b>0</b> 8	116	RTN	24
RB	Roof area	060 061	0	00 -62	117	<b>∗</b> LBL2	21 02
		962		-62 60	118 119	1	0: 0:
RI	For reiteration	063	4	04	120	6	86
R1–R8	For storing tables of pipe size and roof	064	STO2	35 02	121	õ	91
	area	065	3	<i>03</i>	122		-62
R0 & 1	R9 Not used	066	3	<b>0</b> 3	123	0	0
KO & I	No Trot used	<b>0</b> 67	4	<b>04</b>	124	3	0.
		068 069	0	<b>0</b> 0 -62	125	ST01	35 Ø.
		979 979	0	-62 68	126 127	2 6	02 00
SED 1	& SEP-1A (HP-97) STORM	071	5	<b>0</b> 5	128	5	8:
	R SYSTEM PIPE SIZING PROGRAM	072	STO3	<b>35 0</b> 3	129	Õ	81
WAIL		<b>0</b> 73	5	<b>0</b> 5	130	•	-6:
	LISTING 017 6T03 22 03	<b>074</b>	3	<b>0</b> 3	131	Ø	8
	LBLA 21 11 018 CLX -51	<b>0</b> 75	5	<b>0</b> 5	132	4	Ø-
	STOA 35 11 019 5 05 PRTX -14 020 X=Y? 16-33	<b>0</b> 76	Ū	00 60	133	STO2	35 02
03 04	PRTX -14 020 X=Y? 16-33 RTN 24 021 GTO4 22 04	077 078		-62 00	134 135	4 7	0: 0:
	LBLB 21 12 022 CLX -51	<b>0</b> 79	6	96	136	2	6
06	PRTX -14 023 RTN 24	989	STO4	35 04	137	ē	06
97	1 01 024 *LBLC 21 13	081	1	01	138		-62
	X=Y? 16-33 025 STOB 35 12	<b>0</b> 82	1	01	139	0	96
<b>98</b>	GT01 22 01 <b>026</b> PRTX -14	083	5	<b>0</b> 5	140	5	0:
1 <b>0</b> 8 1 <b>0</b> 9			<i>n</i>	00	4.44	ST03	<i>35 0</i> .
108 109 110	CLX -51 <b>0</b> 27 0 00	984 995	0		141		
108 109 110 111	CLX -51 027 0 00 2 02 028 STOI 35 46	<b>9</b> 85	0	00	142	7	67
1 <b>0</b> 8 1 <b>0</b> 9 11 <b>0</b> 111	CLX -51 027 0 00 2 02 028 STOI 35 46 X=Y? 16-33 029 *LBL0 21 00	<b>0</b> 85 086	0	00 -62	142 143	7 5	0; 0;
08 10 11 12 13	CLX -51 027 0 00 2 02 028 STOI 35 46 X=Y? 16-33 029 *LBL0 21 00 GTO2 22 02 030 ISZI 16 26 46	<b>085</b> 086 087	0 6	00 -62 00	142 143 144	7 5 5	0; 0; 0;
908 909 910 911 912 913 914	CLX -51 027 0 00 2 02 028 STOI 35 46 X=Y? 16-33 029 *LBL0 21 00 GTO2 22 02 030 ISZI 16 26 46	<b>0</b> 85 086	0	00 -62	142 143	7 5	0) 0)

ŪŪ

4 35 04

2

-62

ØØ

2

ΘΘ

-62

6

ØŪ

0

-62

35 07

35 06

35 05

Ū

2

Ø

Ū

ST07

RTN

R/S

ST06

ST05

ST04

148									
148	6	<i>06</i>	167	4	04	<b>0</b> 69	ST08	<b>35 0</b> 8	100
149	STO4	35 04	168	7	<b>0</b> 7	979	RTN	24	101
150	1	Øi	169	Ø	<b>0</b> 0	<b>0</b> 71	<b>≭LBL4</b>	21 <b>04</b>	102
151	6	<b>0</b> 6	170	Ø	00	<b>0</b> 72	5	<b>0</b> 5	103
152	3	<i>0</i> 3	171	0	00	<b>0</b> 73	4	04	104
				_					
153	0	00	172	•	-62	074	4	64	105
154	Ø	00	173	1	Ø1	075		-62	106
155		-62	174	2	02	076	0	90	107
156	0	00	175	STO7	<b>35 0</b> 7	977	2	62	108
157	8	<b>0</b> 8	176	8	08	<b>0</b> 78	ST01	<b>35 0</b> 1	109
158	STO5	<i>35 05</i>	177	4	04	079	9	<b>89</b>	110
159	2	<b>0</b> 2	178	0	00	080	8	<b>8</b> 8	111
160	9	<b>0</b> 9	179	0	60	081	7	<b>0</b> 7	112
161	2	<i>02</i>	180	0	<b>0</b> 0	082		-62	113
162	Ø	<i>00</i>	181		-62	<b>0</b> 83	0	<b>88</b>	114
163	Ø	00	182	1	01	084	2	<b>0</b> 2	
	Ð								115
164		-62	183	5	<b>9</b> 5	<b>985</b>	5	<b>0</b> 5	116
165	1	Ø1	184	STO8	35 <b>0</b> 8	086	STO2	<b>35 8</b> 2	117
166	ST06	35 06	185	RTH	24	087	1	81	118
100	3100	33 00	105	KIN	27				
						<b>888</b>	6	<b>0</b> 6	119
						089	1	<i>6</i> 1	120
						090	8	00	121
CED	44   ICTIN	•				091	_	-62	
	1A LISTIN						:		122
001	<b>≭LBL</b> 3	21 03	035	2	<b>0</b> 2	<b>0</b> 92	0	<i>00</i>	123
002	1	01	<b>036</b>	3	03	993	3	Ø3	124
003	ē	06				994	ST03	<b>35 0</b> 3	125
			<b>0</b> 37	0	00			03 03	
004	4	04	<b>0</b> 38	0	00	095	3		126
005	4	04	<b>0</b> 39	Ø	<b>0</b> 0	096	4	64	127
006		-62	949	-	-62	097	6	<b>0</b> 6	128
				•		<i>0</i> 98	ē.	90	
007	0	<i>80</i>	041	0	<b>0</b> 0		Ø		129
998	3	<b>0</b> 3	842	8	<i>0</i> 8	<b>09</b> 9	•	-62	130
009	ST01	35 <i>0</i> 1	043	STO5	35 <b>0</b> 5				
010	3	03							
	3		844	4	84				
011	7								
012		97	<b>045</b>	1	01				
013	6	07 06		_					
0.0		06	046	4	<b>6</b> 4				
014	6	06 00	046 047	4	96 64				
614	Ø •	06 00 -62	046 047 048	4	00 00				
015	0 • 0	06 00 -62 00	046 047	4	96 64				
	Ø •	06 00 -62	046 047 048 049	4 0 0	04 00 00 -62				
015 016	0 6 4	06 00 -62 00 04	046 047 048 049 050	4 0 8	04 00 00 -62 01				
015 016 017	0 0 4 STO2	06 00 -62 00 04 35 <b>6</b> 2	046 047 048 049 050 051	4 0 0 1 ST06	04 00 00 -62 01 35 06				
015 016 017 018	0 0 4 STO2 6	06 -62 00 04 35 <b>0</b> 2 <b>06</b>	046 047 048 049 050 051 052	4 0 0 1 ST06 6	04 00 00 −62 01 35 0€ 06				
015 016 017 018 019	0 0 4 STO2 6 6	06 08 -62 00 04 35 <b>0</b> 2 <b>0</b> 6	046 047 048 049 050 051	4 0 0 1 ST06	04 00 00 -62 01 35 06				
015 016 017 018	0 0 4 STO2 6 6	06 -62 00 04 35 <b>0</b> 2 <b>06</b>	046 047 048 049 050 051 052 053	4 0 0 1 ST06 6	04 00 00 -62 01 35 06 06				
015 016 017 018 019 020	0 0 4 STO2 6 6	06 -62 -62 00 04 35 <b>0</b> 2 -06 06	046 047 048 049 050 051 052 053	4 0 0 1 ST06 6 6	04 00 00 -62 01 35 06 06 06				
015 016 017 018 019 020 021	0 4 STO2 6 6 8	06 -62 -00 -04 - 35 <b>0</b> 2 -06 -08 -03	046 047 048 049 050 051 052 053 054	4 0 0 1 ST06 6 6	04 00 00 -62 01 35 06 06 06 06				
015 016 017 018 019 020 021 022	0 4 STO2 6 6 8	06 -62 -62 04 35 <b>0</b> 2 06 06 08 03 -62	046 047 048 049 050 051 052 053 054 055	4 0 0 1 ST06 6 6	04 00 -62 01 35 06 06 06 06				
015 016 017 018 019 020 021 022 023	0 4 STO2 6 6 8 0	06 -62 -62 04 35 <b>0</b> 2 06 06 08 03 -62	046 047 048 049 050 051 052 053 054	4 0 0 1 ST06 6 6	04 00 00 -62 01 35 06 06 06 06				
015 016 017 018 019 020 021 022 023	0 4 STO2 6 6 8	06 -62 -62 04 35 <b>0</b> 2 06 06 08 03 -62	046 047 048 049 050 051 052 053 054 055 056	4 0 0 1 ST06 6 6 6 0	04 00 -62 01 35 06 06 06 06 00 -62				
015 016 017 018 019 020 021 022 023 024	0 4 STO2 6 6 8 0	06 -62 -62 04 35 06 06 08 03 -62 00	046 047 048 049 050 051 052 053 054 055 056 057	4 0 0 1 ST06 6 6 6 0	04 00 -62 01 35 06 06 06 06 00 -62				
015 016 017 018 019 020 021 022 023 024 025	0 4 ST02 6 8 0 9 ST03	96 -62 90 94 35 92 96 96 98 -62 99 95	046 047 048 049 050 051 052 053 054 055 056 057	4 0 0 1 ST06 6 6 6 0 0	04 00 -62 01 35 06 06 06 06 00 -62 01				
015 016 017 018 019 020 021 022 023 024 025 026	0 4 ST02 6 8 0 9 ST03 1	06 -62 -62 04 35 06 06 08 03 -62 00 05 35 03	046 047 048 049 050 051 052 053 054 055 056 057 058	4 0 0 1 ST06 6 6 6 0 0	04 00 -62 01 35 06 06 06 06 00 -62 01 02				
015 016 017 018 019 020 021 022 023 024 025 026 027	0 4 ST02 6 8 0 9 ST03 1	96 -62 90 94 35 92 96 96 98 -62 99 95	046 047 048 049 050 051 052 053 054 055 056 057 058	4 0 0 1 ST06 6 6 6 0 0	04 00 -62 01 35 06 06 06 06 00 -62 01				
015 016 017 018 019 020 021 022 023 024 025 026 027	0 4 ST02 6 8 0 9 ST03 1	06 -62 -62 -62 -64 -35 -66 -62 -62 -62 -63 -62 -62 -63 -61 -61	046 047 048 049 050 051 052 053 054 055 056 057 058 060 061	1 ST06 6 6 6 6 0 0 1 2 ST07 1	04 00 -62 01 35 06 06 06 00 -62 01 02 35 07				
015 016 017 018 019 020 021 022 023 024 025 026 027	0 4 5T02 6 8 0 9 5 5T03 1 0 7	06 -62 -62 -62 -64 -35 -66 -62 -62 -62 -62 -63 -62 -62 -62 -62 -62	046 047 048 049 050 051 052 053 054 055 056 057 058 069 061	1 ST06 6 6 6 0 0 1 2 ST07 1 9	04 00 -62 01 35 06 06 06 00 -62 01 02 35 07				
015 016 017 018 019 020 021 022 023 024 025 026 027 028	0 4 5T02 6 8 0 9 5 5T03 1 0 7	96 -62 -62 -62 -62 -62 -62 -62 -62 -62 -6	046 047 048 049 050 051 052 053 054 055 056 057 058 069 061 062	1 ST06 6 6 6 0 0 1 2 ST07 1 9	04 00 -62 01 35 06 06 06 00 -62 01 02 35 07 01				
015 016 017 018 019 020 021 022 023 024 025 026 027 028 029	0 4 5T02 6 8 0 9 5 5T03 1 0 7	96 -62 -62 -62 -62 -62 -62 -62 -62 -62 -6	046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063	1 ST06 6 6 6 0 0 1 2 ST07 1 9	04 00 -62 01 35 06 06 06 00 -62 01 02 35 07 01				
015 016 017 018 019 020 021 022 023 024 025 026 027 028	0 4 5T02 6 8 0 9 5 5T03 1 0 7	96 -62 -62 -62 -62 -62 -62 -62 -62 -62 -6	046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063	1 ST06 6 6 6 0 0 1 2 ST07 1 9	04 00 -62 01 35 06 06 06 00 -62 01 02 35 07 01				
015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 031	0 .0 4 STO2 6 6 8 0 .0 5 STO3 1 0 7	06 -62 -62 -62 -04 -35 -62 -62 -62 -62 -63 -62 -62	046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063	1 ST06 6 6 6 0 1 2 ST07 1 9 0	04 00 -62 01 35 06 06 06 06 -62 01 02 35 07 01 09 00				
015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 031 032	0 4 5T02 6 6 8 0 9 5 5T03 1 0 7	06 -62 -62 -62 -04 -35 -62 -62 -62 -63 -62 -62 -62 -62	046 047 048 049 050 051 052 053 054 055 056 057 058 061 062 063 064 065	1 ST06 6 6 6 0 0 1 2 ST07 1 9 0	04 00 -62 01 35 06 06 06 06 -62 01 02 35 07 01 09 00 -62				
015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 031 032 033	0 4 5T02 6 6 8 0 5 5 5T03 1 0 7	96 -62 -62 -62 -62 -62 -62 -62 -62 -62 -6	046 047 048 049 050 051 052 053 054 055 056 057 068 061 062 063 064 065 066	1 ST06 6 6 6 0 0 1 2 ST07 1 9 0	84 98 -62 91 35 96 96 96 -62 91 99 99 99 90 -62 91				
015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 031 032	0 4 5T02 6 6 8 0 9 5 5T03 1 0 7	06 -62 -62 -62 -04 -35 -62 -62 -62 -63 -62 -62 -62 -62	046 047 048 049 050 051 052 053 054 055 056 057 058 061 062 063 064 065	1 ST06 6 6 6 0 0 1 2 ST07 1 9 0	04 00 -62 01 35 06 06 06 06 -62 01 02 35 07 01 09 00 -62				

# SEP-2 SOIL AND WASTE WATER SYSTEM PIPE SIZING PROGRAM

#### **PROGRAM DESCRIPTION**

With input of fixture units, the program selects pipe size for horizontal pipes of different slopes and for vertical stacks.

The sizing procedure is based on the BOCA Basic Plumbing Code and the National Standard Plumbing Code. The designer can compute fixture units for different fixtures based on the information given in these codes. The relevant sections of the BOCA Code are included as reference data for the designer's convenience.

#### **EQUATIONS**

None.

#### **OPERATING FEATURES**

The sizing information is stored by combining pipe size and fixture units in decimal format. For example, 4,600.12 means that a 12-in. pipe will handle up to 4,600 fixture units.

As shown under "User Instructions and Examples," the program can select pipes for the following types of distribution systems:

Distribution System	Input Under Label A
Any horizontal branch interval	0
One stack of three branch intervals or less	1
Total for stack: for stacks with more than three branch intervals	2
Total at one branch interval: for stacks with more than three branch intervals	h 3
Building drains—slope of 1/16 in./ft or $0.5\%$	4
Building drains—slope of 1/8 in./ft or 1%	5
Building drains—slope of 1/4 in./ft or 2%	6

#### **REFERENCE DATA**

Please see the following extracts from the BOCA Basic Plumbing Code.

#### **ARTICLE 6 DRAINAGE SYSTEMS**

#### **Section P600.0 General**

*P-600.1 Scope:* The provisions of this article shall set forth the requirements for the design and installation of the drainage system. Storm drainage shall conform to Article 8.

# Section P-601.0 Determining Size of Drainage System

*P-601.1 Load on drainage piping:* The load on drainage piping shall be computed in terms of drainage fixture unit values in accordance with Tables P-601.1 and P-601.1.1.

**TABLE P-601.1** DRAINAGE FIXTURE UNIT VALUES FOR VARIOUS PLUMBING FIXTURES

Type of fixture or group of fixtures	Drainage fixture unit value (dfu)	Trap size
Automatic clothes washer (2" standpipe)	3	
Bathroom group consisting of a water closet,		
lavatory and bathtub or shower stall		
Flushometer valve closet	8	
Tank type closet	6	
Bathtub¹ (with or without overhead shower)	2	$1\frac{1}{2}$
Bidet	3	$1\frac{1}{2}$
Combination sink-and-tray with food disposal unit		11/2
Combination sink-and-tray with 1½" trap	$\frac{2}{2}$	$1\frac{1}{2}$
Combination sink-and-tray with separate 1½" traps	$\overline{3}$	$1\frac{1}{2}$
Dental unit or cuspidor	1	11/4
Dental lavatory	î	11/4
Drinking fountain	1/2	11/4
Dishwasher, commercial		2
Dishwasher, domestic	$rac{2}{2}$	$\frac{2}{1\frac{1}{2}}$
Food waste grinder	_	$1\frac{1}{2}$
Floor drains with 2" waste	9	2
Kitchen sink, domestic, with one 1½" waste	2 2 2	$\frac{1}{1}\frac{1}{2}$
Kitchen sink, domestic, with food waste grinder	9	$1\frac{1}{2}$
Lavatory with 1¼" waste	1	11/4
Lavatory (barber shop, beauty parlor)	$\overset{1}{2}$	$1\frac{1}{4}$
Laundry tray (1 or 2 compartments)	9	$1\frac{1}{2}$
Shower stall, domestic	2 2 2	2
Shower (group) per head ²	9	_
Sinks:	4	
Surgeon's	3	11/2
Flushing rim (with valve)	6	3
Service (trap standard)	3	3
Service (P trap)	2	
Pot, scullery, etc. ²	4	2 2 2
Commercial with food grinder unit	4	9
Urinal, pedestal, syphon jet blowout	6	4
Urinal, wall lip	$egin{array}{c} 6 \ 4 \end{array}$	11/2
Urinal, stall, washout	4	2
	2	4
Urinal trough ² (each 6 ft. section) Washing machine (commercial)	3	2
	3	4
Wash sink ² (circular or multiple) each set of faucets	9	114
	2 4	$1\frac{1}{2}$
Water closet, tank-operated	6	_
Water closet, valve-operated	O	_
Unlisted fixture drain or trap size:	1	
1¼" or less 1½"	l 9	
1/2 2"	2 3	
2 2½"	3 4	
3"	5	
3 4"	6	

Note 1. A shower head over a bathtub does not increase the fixture value.

Note 2. See Section P-601.1.1 for method of computing unit value of devices with continuous or semi-continuous flows.

TABLE P-601.1.1
DISCHARGE CAPACITY IN GALLONS PER MINUTE SEMI-CONTINUOUS FLOW

Up to 7½	Equals	1 Unit
8 to 15	Equals	2 Units
16 to 30	Equals	4 Units
31 to 50	Equals	6 Units

Note 1. Drainage fixture unit values for continuous and semicontinuous flow, over fifty (50) gallons shall be computed at one (1) fixture unit for each gallon per minute of flow. Note 2. To convert continuous condensate flow from air conditioning units, a condensate flow of three-hundredths (0.03) gpm/100 cfm across the cooling coil shall be used.

P-601.1.1 Values for continuous flow: Drainage fixture unit values for continuous or semi-continuous flow into a drainage system, such as from a pump, sump ejector, air conditioning equipment, or similar device shall be computed on the basis of Table P-601.1.1, Discharge Capacity in Gallons per Minute Semi-continuous Flow.

P-601.2 Selecting size of drainage piping: Pipe sizes shall be determined from Tables P-601.2a and P601.2a.1 on the basis of drainage load computed from Table P 601.1 and Section P-601.1.1.

**TABLE P-601.2a BUILDING DRAINS AND SEWERS** 

Maximum number of fixture units that may be connected to any portion of the building drain or the building sewer including branches of the building drain.

Diameter of pipe	Fall per foot				
Inches	1/16-Inch	1/8-Inch	1/4-Inch	1/2-Inch	
2			21	26	
$2\frac{1}{2}$			24	31	
3		36*	42*	50*	
4		180	216	250	
5		390	480	575	
6		700	840	1,000	
8	1,400	1,600	1,920	2,300	
10	2,500	2,900	3,500	4,200	
12	2,900	4,600	5,600	6,700	
15	7,000	8,300	10,000	12,000	

^{*}Not over two (2) water closets or two (2) bathroom groups.

**TABLE P-601.2a.1** HORIZONTAL FIXTURE BRANCHES AND STACKS¹

	Maximum	number of fixtur	e units that may b	e connected to:
	Any	One stack of three		nore than three intervals ³
Diameter of pipe inches	horizontal branch interval	branch intervals or less	Total for stack	Total at one branch interval
11/2	3	4	8	2
2	6	10	24	6
$2\frac{1}{2}$	12	20	42	9
3	$20^{2}$	$48^2$	$72^{2}$	$20^2$
4	160	240	500	90
5	360	<b>540</b>	1,100	200
6	620	960	1,900	350
8	1,400	2,200	3,600	600
10	2,500	3,800	5,600	1,000
12	3,900	6,000	8,400	1,500
15	7,000	*	*	*

^{*}Sizing load based on design criteria.

Note 1. Does not include branches of the building drain. Refer to Table P-601.2a. Note 2. Not more than two (2) water closets or bathroom groups within each branch interval nor more than six (6) water closets or bathroom groups on the stack. Note 3. Stacks shall be sized according to the total accumulated connected load at each story or branch interval and may be reduced in size as this load decreases to a minimum diameter of one-half (1/2) of the largest size required.

SEP-2
SOIL & WASTE WATER SYSTEM PIPE SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step Procedure Example	Enter		Press		Print Out		Explanation
1. Select distribution system 0 – 2. Input fixture units – 100 –	 1 1		1 1	Φ	0.00 100.0 4.0	HBI DIA	Any horiz. branch interval
Repeat steps 1 & 2 for different 1 — distribution systems and fixture 200 — units.	 1 1		1 1	∢m	200.0 4.0	SSEI SEI SEI SEI SEI	1 stack of 3 branch intervals
300	 1 1	<u></u>	1-1	∢m	300°. 90°. 9.	o H XDH	Total for stack
3 400	 1 1		1 1	<b>∢</b> ₪	3.0 400.0 8.0	V1BI FU DIA	Total at 1 branch for stack with 3 or more intervals
500	 1 1		1 1	ďω	00.00 8.00	5%B DEC DEC	Drain 5% slope
5 – 450 –	1 1		1 1	<b>∀</b> ₪	450.0 6.0	MXH DHU BHU	Drain 1% slope
6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1		1 1	<b>∀</b> ₪	499.0 6.0 6.0	2%HD FU DIA	Drain 2% slope

#### **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Selects type of distribution system and prints; partitions the program
В	Prints fixture units; selects and prints pipe sizes
)	Reiterates for selection of pipe size
INV	Prints alphanumeric characters for identification of data
LNX	Prints HBI and calls SBR 1/X
CE	Prints V3BI and calls SBR STO
CLR	Prints STK and calls SBR RCL
X <b>≓</b> T	Prints V1B1 and calls SBR SUM
$X^2$	Prints 0.5%D and calls SBR Yx
$\sqrt{X}$	Prints 1%HD and calls SBR EE
1/X	Stores table for any horizontal branch interval
STO	Stores table for one stack of three branch intervals or less
RCL	Stores table for stack with more than three branch intervals—total for stack
SUM	Same as above but total at one branch interval
Y ^x	Table for horizontal drain with 1/16 in./ft or 0.5% slope
EE	Table for horizontal drain with 1/8 in./ft or 1% slope
(	Table for horizontal drain with 1/4 in./ft or 2% slope

### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	For RCL IND for pipe sizing
R01	Distribution type—also for tables
R02-R11	Storing tables
R12	Alphanumeric code

## SEP-2 SOIL AND WASTE WATER SYSTEM PIPE SIZING PROGRAM

LABE SUBR 001 046 061 093 110 125 142 157 174 191 208 298 380 464 542 648	LS & COUTINES  11 A 12 B 54 ) 22 INV 23 LNX 24 CE 25 CLR 32 X‡T 33 X² 34 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	038 039 040 041 042 043 044 045 047 050 051 052 053 054 055 056	42 STO 12 12 71 SBR 22 INV 71 SBR 53 ( 91 R/S 76 LBL 12 B 32 X‡T 02 2 01 1 04 4 01 1 42 STO 12 12 71 SBR 22 INV 32 X‡T 00 0
LISTII 000 001 0002 0003 0004 0005 0006 0007 0010 0112 013 014 015 016 017 018 019 020 021 0223 024 025 026 027 023 033 033 036 037	NG 76 LBL 11 A 42 ST0 11 ST0 11 ST0 122 FIX 02 G 697 R C01 22 EQR 02 C C C C C C C C C C C C C C C C C C	058 059 060 061 062 063 066 066 067 072 073 074 075 077 078 081 083 084 089 091 093 094 096	42 STD 00 00 76 LBL 54 ) 69 DP 20 RC* 00 INT 69 INT 60 INT 60 INT 61 0 0 95 X:T 00 0 95 X:T 00 0 95 X:T 00 0 95 INT 01 1 02 INT 03 INT 04 1 05 INT 06 2 07 INT 08 INT 09 INT 00 0 95 INT 00 0 95 INT 00 0 95 INT 01 1 02 INT 03 INT 04 1 05 INT 06 2 07 INT 08 INT 09 INT 00 INT 00 INT 00 INT 00 INT 01 INT 02 INT 03 INT 04 INT 05 INT 06 INT 07 INT 08 INT 09 INT 09 INT 00

099990123456789011234567890123345678901234456789015155557890	69	1634456678901233456789012334567890123345678901223456789012234567890122345678901223456789012234567890122345678901223456789012232222222222222222222222222222222222	01 1 04 4 02 2 04 4 42 2 04 5 TD 12 12 71 SBR 22 SBR 22 SBR 44 SUM 92 RTN 92 RTN 92 RTN 92 RTN 93 4 4 000 0 06 6 01 1 06 6 01 1 06 8 TD 17 SBR 92 RTN 93 RTN 94 SBR 95 RTN 96 LBL 97 SBR 97 SBR 98 RTN	7899012345678901123445678901234567890123456789012345678901234567890 2222333333333444444444455555555566666666777777778888888888	05	22222222333333333333333333333333333333	15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 15011NL0 150
161	02 2	226	02 2	291	93 .	356	93 .

357 00 0 422 93 . 358 08 8 423 00 0 0 359 42 STD 424 05 5 360 08 08 425 42 STD 361 03 3 426 06 06 362 08 8 427 01 1 363 00 0 428 09 9 364 00 0 428 09 9 364 00 0 428 09 9 364 00 0 365 93 . 430 00 0 0 366 01 1 431 93 . 367 42 STD 432 00 0 6 6 369 06 6 434 42 STD 370 00 0 436 03 3 372 00 0 0 436 03 3 372 00 0 0 436 03 3 372 00 0 0 437 06 6 373 93 . 438 00 0 0 375 02 2 440 93 . 376 42 STD 441 00 0 0 377 10 10 442 08 8 378 92 RTN 443 42 STD 379 76 LBL 444 08 08 383 00 0 448 00 0 384 01 1 449 93 . 385 05 5 5 450 01 1 385 07 07 388 02 2 453 08 8 389 04 4 454 04 44 99 3 . 385 05 5 5 450 01 1 386 42 STD 448 00 0 388 02 2 453 08 8 389 04 4 454 04 4 459 09 3 . 3879 09 3 . 447 00 0 0 388 02 2 453 08 8 389 04 4 455 07 09 39 388 02 2 453 08 8 389 04 4 455 07 09 39 388 02 2 453 08 8 389 04 4 455 07 09 39 388 02 2 453 08 8 389 04 4 455 07 09 39 388 02 2 453 08 8 389 04 4 455 07 09 39 388 02 2 457 93 . 389 09 3 . 457 00 0 391 00 0 456 00 0 391 00 0 456 00 0 391 00 0 456 00 0 456 00 0 397 93 . 462 92 RTN 399 02 2 457 93 . 399 02 2 457 93 . 399 02 2 457 93 . 399 02 2 457 93 . 399 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2 459 02 2	487 93 . 552 02 : 488 00 0
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------

789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890125678900123456789000000000000000000000000000000000000	8252900312646000312278300031528263213022124302522423032321630 040000090400000900400000900409755009004000900040009004000900 9000900	8T05 8T02900.106 8T02900.15T088300.15T08NL 8T02900.15T08 8T02900.15T08 8T02900.15T08 8T02900.15T08 8T02900.15T08		6677890123456666666666667777777777777777777777777	04244000000000000000000000000000000000	4 04 8 0 . 0 5 05 8 4 0 . 0 6 06 09 20 . 0 8 07 3 5 00 . 1 2 09 1 0 0 00 . 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- **2.** Load Program SEP-2B when inputting 5 or 6 under A.
- **3.** After loading Program SEP-2, merge Program SEP-2A or SEP-2B using the following instructions:
  - a. Set the PRGM-RUN switch to RUN;
  - b. Use GTO · 050 operation from keyboard;
  - c. Press f MERGE;
  - d. Pass both sides of magnetic card.

### **SPECIAL NOTES FOR HP-97 USERS**

**1.** Load Program SEP-2A when inputting 2, 3, or 4 under A.

Number of Cards: THREE SEP-2, SEP-2A, SEP-2B
SOIL & WASTE WATER SYSTEM PIPE SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards:

	Explanation		Diameter								
	Print Out		*** 000 001	**** 000°		**** (20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20 ° . 20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$50.00 \$50.00 \$50.00 \$50.00 \$50.00	444 000 00 °C	* * * * * * * * * * * * * * * * * * *	
Number of Cards: I HREE	Press		B A	B	<b>∀</b> ₪	B B	<b>∢</b> ∞	4 m	<b>∀</b> m	m I	
ı	Enter		0 100	1 200	2 300	3 400	4 500	5 450	6 499	8000	
HF-97 USER INSTRUCTIONS AND EXAMPLES	Procedure	Example	Select distribution type Enter fixture units	Repeat steps 1 & 2 as many times as desired.	For next 3 examples, merge SEP.2A.			For next 3 examples, merge SEP-2B.			
) 	Step		- 2								

HP-97	EXPLANATION OF LABELS & SUBROUTINES	029	CHS	-22	087	5	05
Label	Function	939	STOI	35 46 21 <b>0</b> 7	<b>088</b> <b>0</b> 89	ST05 €	35 <b>0</b> 5 06
		<b>031</b>	*LBL7		003 090	2	02 02
A	Prints and stores display in RA; selects sizing	032	ISZI RCLO	16 26 46 36 99	09 <b>0</b> 091	0	0£
	table based on input	033		36 00 36 45	091 092	U	-62
В	Drints and stones display in DD, selects nine	034	RCL i	36 45		G	98
Ь	Prints and stores display in RB; selects pipe	<i>035</i>	INT	16 34 76 10	093	0	
	diameter using LBL 7 for reiteration	936	RCLB	36 12	094	6	96 75 97
0	Table for any horizontal branch interval	037	X>Y?	16-34	<b>095</b>	s70 <i>6</i>	35 06
		038	GT07	22 07	<b>096</b>	1	01
1	Table for one stack of three branch intervals	039	RCL i	36 45	<b>0</b> 97	4	Ø4
	or less	040	FRC	16 44	098	0	96
2	Table for stacks with more than three	041	1	01	<b>0</b> 99	0	66
_	branch intervals—SEP-2A	042	0	00	100	•	-62
		043	0	<b>6</b> 0	101	Ø	Ũ
3	Table for one branch interval for stacks with	844	X	-35	102	8	98
	more than three branch intervals—SEP-2A	045	PRTX	-14	103	ST07	35 <b>0</b> 7
4	Building drains with 0.5% slope—SEP-2A	046	SPC	16-11	104	2	02
•	Building drains with 0.5% slope—SEI-2A	047	SPC	16-11	105	5	05
5	Building drains with 1% slope—SEP-2B	948	SPC	16-11	106	Ũ	98
6	Puilding drains with 90% slane CED 9D	049	RTN	24	107	Ø	63
U	Building drains with 2% slope—SEP-2B	959	*LBL0	21 00	108		-62
		951	3	<b>0</b> 3	1 <b>0</b> 9	1	01
		<b>052</b>		-62	110	ST08	<b>35 0</b> 8
		953	Ũ	00	111	3	63
	EVEL AMAZION OF OTOP 1 OF DECISION	054	1	61	112	9	99
HP-9/	EXPLANATION OF STORAGE REGISTERS	<b>055</b>	5	<b>0</b> 5	113	0	Đ S
-		<b>056</b>	ST06	35 <i>00</i>	114	Ø	06
Regist	er Function	<i>0</i> 57	6	96	115		-62
RA	Distribution type	<b>058</b>		-62	116	1	<b>0</b> 1
	•	059	0	<b>0</b> 0	117	2	62
RB	Fixture units	969	2	<i>0</i> 2	118	ST09	<b>35 0</b> 9
RI	For reiteration	061	ST01	35 <i>0</i> i	119	RTN	24
		062	1	01	120	*LBL1	21 01
R0-R9		063	2	62	121	4	04
	diameters	064	_	-62	122		-62
		965	9	66	123	ø	00
		966	2	62	124	1	Θí
		<b>067</b>	5	<b>0</b> 5	125	5	Ø5
SEP_1	2, SEP-2A & SEP-2B (HP-97) SOIL	968	STO2	35 <b>0</b> 2	126	ST00	35 00
		069	2	62	127	1	ē i
AND	WASTE WATER SYSTÈM PIPÉ SIZING	070	ē	00	128	ē	06
PHOC	GRAM	071		-62	129	·	-62
SEP-2	LISTING	972		02 00	130	0	02 06
	*LBLA 21 11 015 GT03 22 03	973	3	03	131		
002	STOA 35 11 016 4 04	973 974		35 <b>0</b> 3	132	2 9761	<b>0</b> 2 75 63
00Z 003	PRTW -14 017 RCLA 36 11			33 <b>6</b> 3 61		ST01	35 <i>81</i>
003 004	X=0? 16-43 018 X=Y? 16-33	975 976			133	2	62 07
004 005	GT00 22 00 019 GT04 22 04	976 977	6	96 aa	134	Ø	96
003 006	1 01 020 5 05	977 979		<i>6</i> 0 _∠≎	135		-62 60
		978 979		-62 00	136	0	66
007 000		079		00 04	137	2	Ø2
008	GT01 22 01 022 GT05 22 05	080		04 75 84	138	5	05
009	2 02 023 GSB6 23 06	081		35 04	139	STO2	35 62
010	RCLA 36 11 024 RTN 24	082		Ø3	140	4	Ū
011	X=Y? 16-33 025 *LBLB 21 12	<b>0</b> 83		96	141	8	98
012	GT02 22 02 026 ST0B 35 12	084		00	142		-62
013	3 03 027 PRTX -14	085		-62	143	0	00
014	X=Y? 16-33 028 1 01	986	Û	00	144	3	<b>0</b> 3

145	STO3	<b>35 6</b> 3	169	Ũ	<b>0</b> 0	059	5	<b>0</b> 5	117	ST06	35 Ø <i>6</i>
146	2	02	170	Ø	θũ	060	ø	80	118	6	06
147	4	04	171		-62	061	8	00	119	e	66
				•			e				
148	Ø	66	172	Ø	ØÐ	062	•	-62	120	0	00
149		-62	173	8	රපි	063	ĺ	<b>0</b> 1	121	•	-62
150	Ũ	00	174	STO7	<b>35 0</b> 7	064	STO8	35 <b>0</b> 8	122	Ø	<b>0</b> 0
151	4	84	175	3	<b>6</b> 3	965	8	08	123	8	98
152	STG4	35 <b>0</b> 4	176	8	<b>0</b> 8	066	4	<b>64</b>	124	ST07	<b>35 0</b> 7
153	5	05	177	0	00	067	Ø	00	125	1	01
154	4	<i>0</i> 4	178	0	0ē	968	Ø	00	126	Û	<i>00</i>
155	Ø	00	179	•	-62	069		-62	127	Ø	00
156	_	-62	180	1	01	070	1	01	128	0	00
157	0	00	181	ST08	35 <b>0</b> 8	071	2	<b>0</b> 2	129	_	-62
	5	<b>0</b> 5	182	6	06					;	
158						<b>0</b> 72	STO9	<b>35 0</b> 9	130	1	01
159	ST05	<b>35</b>	183	Ø	ย์ย์	073	RTN	24	131	STO8	<i>35 08</i>
160	9	09	184	Ø	69	074	*LBL3	21 03	132	1	<b>8</b> 1
161	6	<b>0</b> 6	185	Ø	<b>0</b> 0	975	2	<b>0</b> 2	133	5	<b>05</b>
162	Ū	00	186		-62	076		-62	134	0	<b>8</b> 8
163	_	-62	187	1	Θĺ	077	Ø	00	135	0	06
164	a	0 <u>0</u>	188	2	02	<b>0</b> 78			136	•	-62
	Ø						1	01		;	
165	8	<b>0</b> 8	189	STO9	<b>35 0</b> 9	<b>0</b> 79	5	<b>0</b> 5	137	1	01
166	ST06	35 <i>0</i> 6	190	RTN	24	080	STOØ	35 00	138	2	<b>0</b> 2
167	2	62	191	R∕S	51	081	6	<i>06</i>	139	ST09	35 <b>0</b> 9
168	2	<b>0</b> 2				082		-62	146	RTN	24
	_					083	0	96	141	*LBL4	21 64
							2		142	1	01
						084		82		_	
						085	ST01	<i>35 01</i>	143	4	64
						986	9	09	144	0	<b>9</b> 0
SEP-	2A LISTING	G				087		-62	145	0	99
001	*LBL2	21 02	030		-62	988	0	00	146		-62
002	8	98	031	Ū	99	089	2	<b>0</b> 2	147	0	99
	U	-62		4	<b>0</b> 4	090	5	<b>0</b> 5	148	8	<b>6</b> 8
003	•		032						149	STO#	35 <b>0</b> 0
064	0	00	033	ST04	35 04	<b>0</b> 91	STO2	35 02			
005	1	01	034	1	01	<b>0</b> 92	2	<b>0</b> 2	150	2	02
<b>00</b> 6	5	<b>0</b> 5	035	1	<b>0</b> 1	093	ยิ	<b>0</b> 0	151	5	<b>0</b> 5
007	STO0	<b>3</b> 5 00	036	0	00	094	•	-62	152	0	<b>0</b> 0
008	2	02	037	0	00	095	0	66	153	0	<b>0</b> 0
009	4	04	<b>0</b> 38	Ū	-62	096	3				
	7		630	•				из	154		-62
010	•	_60		a				03 75 A7	154 155	•	-62 <b>A</b> 1
011		-62	039	Û	00	097	ST03	35 <b>0</b> 3	155	1	01
	Ð	<b>00</b>	039 040	5	00 05	097 <b>0</b> 98	ST03 9	<b>35 03</b> <b>0</b> 9	155 156	ST01	01 35 01
012	2	00 02	039 040 041	5 ST05	00 05 35 05	097 098 099	ST03 9 0	35 <b>03</b> 09 <b>0</b> 0	155 156 157	ST01 2	01 35 01 02
		<b>00</b>	039 040	5	00 05	097 098 099 100	ST03 9 0	35 03 09 00 -62	155 156 157 158	ST01 2 9	01 35 01 02 09
012 013	2 \$T01	00 02 35 01	039 040 041 042	5 \$T05 1	00 05 35 05 01	097 098 099	ST03 9 0	35 03 09 00 -62	155 156	ST01 2	01 35 01 02 09 00
012 013 014	2 5T01 4	00 02 35 01 04	039 040 041 042 043	5 ST05 1 9	00 05 35 05 01 05	097 098 099 100 101	ST03 9 0 •	35 03 09 00 -62 00	155 156 157 158 159	ST01 2 9 0	01 35 01 02 09 00
012 013 014 015	2 5T01 4 2	00 02 35 01 04 02	039 040 041 042 043 044	5 ST05 1 9 0	00 05 35 05 01 09 00	097 098 099 100 101 102	ST03 9 0 • 0 4	35 03 09 00 -62 00 04	155 156 157 158 159 160	ST01 2 9 0 0	01 35 01 02 09 00
012 013 014 015 016	5T01 4 2	00 02 35 01 04 02 -62	039 040 041 042 043 044 045	5 ST05 1 9 0 0	00 05 35 05 01 05 00	097 098 099 100 101 102 103	ST03 9 0 • 0 4 ST04	35 03 09 00 -62 00 04 35 04	155 156 157 158 159 160 161	ST01 2 9 0 0	91 35 91 92 99 90 90 -62
012 013 014 015 016 017	2 5701 4 2 •	00 02 35 01 04 02 -62	039 040 041 042 043 044 045	5 ST05 1 9 0 0	00 05 35 05 01 05 00 -62	097 098 099 100 101 102 103 104	ST03 9 0 • 0 4 ST04 2	35 03 09 00 -62 00 04 35 04	155 156 157 158 159 160 161 162	ST01 2 9 0 0	91 35 91 92 99 90 90 -62
012 013 014 015 016 017 018	2 5701 4 2 • 0 2	00 02 35 01 04 02 -62 00	039 040 041 042 043 044 045 046	5 ST05 1 9 0 0	00 05 35 05 01 05 00 00 -62	097 098 099 100 101 102 103 104 105	ST03 9 0 0 4 ST04 2	35 03 09 00 -62 00 04 35 04 02	155 156 157 158 159 160 161 162 163	ST01 2 9 0 0 1 2	91 35 91 92 99 90 90 -62 91
012 013 014 015 016 017 018 019	2 5701 4 2 • 0 2 5	00 02 35 01 04 02 -62 00 02	039 040 041 042 043 044 045 046 047	5 ST05 1 9 0 0	00 05 35 05 01 09 00 -62 00	097 098 099 100 101 102 103 104 105	ST03 9 0 0 4 ST04 2 0	35 03 09 00 -62 00 04 35 04 02 00	155 156 157 158 159 160 161 162 163 164	ST01 2 9 0 0 1 2 ST02	91 35 91 92 99 90 -62 91 92 35 92
012 013 014 015 016 017 018 019	2 5701 4 2 • 0 2	00 02 35 01 04 02 -62 00	039 040 041 042 043 044 045 046	5 ST05 1 9 0 0	00 05 35 05 01 05 00 00 -62	097 098 099 100 101 102 103 104 105 106	ST03 9 0 0 4 ST04 2 0	35 03 09 00 -62 00 04 35 04 02 00 -62	155 156 157 158 159 160 161 162 163 164 165	ST01 2 9 0 0 1 2 ST02 7	91 35 91 92 99 90 -62 91 92 35 92
012 013 014 015 016 017 018 019	2 5T01 4 2 0 2 5 ST02	00 02 35 01 04 02 -62 00 02 05 35 02	039 040 041 042 043 044 045 046 047 048	5 ST05 1 9 0 0 0 6 ST06	00 05 35 05 01 05 00 00 -62 00 35 06	097 098 099 100 101 102 103 104 105	ST03 9 0 0 4 ST04 2 0	35 03 09 00 -62 00 04 35 04 02 00	155 156 157 158 159 160 161 162 163 164	ST01 2 9 0 0 1 2 ST02	91 35 91 92 99 90 -62 91 92 35 92
012 013 014 015 016 017 018 019 020	2 5T01 4 2 0 2 5 ST02 7	00 02 35 01 04 02 -62 00 02 05 35 02	039 040 041 042 043 044 045 046 047 048 049	5 ST05 1 9 0 0 0 6 ST06 3	00 05 35 01 05 00 00 -62 00 06 35 06	097 098 099 100 101 102 103 104 105 106 107	ST03 9 0 0 4 ST04 2 0 0	35 03 09 00 -62 00 04 35 04 02 00 -62	155 156 157 158 159 160 161 162 163 164 165 166	ST01 2 9 0 0 1 2 ST02 7	35 01 02 09 00 -62 01 02 35 02 07
012 013 014 015 016 017 018 019 020 021	2 5701 4 2 0 2 5 5 5702	00 02 35 01 04 02 -62 00 02 05 35 02 07	039 040 041 042 043 044 045 046 047 048 049 050	5 ST05 1 9 0 0 0 6 ST06 3 6	00 05 35 01 05 00 00 -62 00 06 35 06	097 098 099 100 101 102 103 104 105 106 107 108	ST03 9 0 4 ST04 2 0 0	35 03 09 00 -62 00 04 35 04 02 00 -62 00	155 156 157 158 159 160 161 162 163 164 165 166	ST01 2 9 0 1 2 ST02 7 0	35 01 02 09 00 -62 01 02 35 02 07 00
012 013 014 015 016 017 018 019 020 021 022	2 5T01 4 2 0 2 5 ST02	00 02 35 01 04 02 -62 00 05 35 02 07 02 -62	039 040 041 042 043 044 045 046 047 048 050 051	5 ST05 1 9 0 0 6 ST06 3 6	00 05 35 01 05 00 -62 00 06 35 06 06	097 098 099 100 101 102 103 104 105 106 107 108 109	ST03 9 0 4 ST04 2 0 0 5 ST05	35 03 09 00 -62 00 04 35 04 02 00 -62 00 35 05	155 156 157 158 159 160 161 162 163 164 165 166 167	ST01 2 9 0 0 1 2 ST02 7	35 91 92 99 90 90 -62 91 92 35 92 97 98
012 013 014 015 016 017 018 019 020 021 022 023	2 5T01 4 2 0 2 5 ST02 7 2	00 02 35 01 04 02 -62 00 05 35 02 07 02 -62	039 040 041 042 043 044 045 046 047 049 050 051 052	5 ST05 1 9 0 0 0 6 ST06 3 6 0	00 05 35 01 05 00 -62 00 06 35 06 06 00	097 098 099 100 101 102 103 104 105 106 107 108 110 111	ST03 9 0 4 ST04 2 0 0 5 ST05 3	35 03 09 00 -62 00 04 35 04 02 00 -62 00 35 05	155 156 157 158 159 160 161 162 163 164 165 166 167 168	ST01 2 9 0 0 1 2 ST02 7 0	35 01 02 09 00 -62 01 02 35 02 07 00 08 06 -62
012 013 014 015 016 017 018 020 021 022 023 024 025	2 5T01 4 2 0 2 5 ST02 7 2	00 02 35 01 04 02 -62 00 05 35 02 07 02 -62 00	039 040 041 042 043 044 045 046 047 049 050 051 052 053	5 ST05 1 9 0 0 6 ST06 3 6 0	00 05 35 01 05 00 -62 00 35 06 35 06 00 -62	097 098 099 100 101 102 103 104 105 106 107 108 110 111 112	ST03 9 0 4 ST04 2 0 5 ST05 3	35 03 09 00 -62 04 35 04 35 02 00 -62 00 35 05 03	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	ST01 2 9 0 0 1 2 ST02 7 0 0	35 01 02 09 00 -62 01 02 35 02 07 00 08 06 -62
012 013 014 015 016 017 018 020 021 022 023 024 025	2 5T01 4 2 0 2 5 ST02 7 2 0 3 ST03	00 02 35 01 04 02 -62 00 05 35 02 -62 00 03 35 03	039 040 041 042 043 044 045 046 047 049 050 051 053 054	5 ST05 1 9 0 0 0 6 ST06 3 6 0	00 05 05 01 05 00 -62 00 35 06 00 -62 00	097 098 099 100 101 102 103 104 105 106 107 108 110 111 112 113	ST03 9 0 4 ST04 2 0 5 ST05 5	35 03 09 00 -62 04 35 04 35 02 00 -62 00 35 05 03 05	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	ST01 2 9 0 1 2 ST02 7 0 0	35 01 02 09 00 -62 01 02 35 02 07 00 08 06 -62 01
012 013 014 015 016 017 018 020 021 022 023 024 025	2 5T01 4 2 0 2 5 ST02 7 2	00 02 35 01 04 02 -62 00 05 35 02 07 02 -62 00	039 040 041 042 043 044 045 046 047 049 050 051 052 053	5 ST05 1 9 0 0 6 ST06 3 6 0	00 05 35 01 05 00 -62 00 35 06 35 06 00 -62	097 098 099 100 101 102 103 104 105 106 107 108 110 111 112	ST03 9 0 4 ST04 2 0 5 ST05 3	35 03 09 00 -62 04 35 04 35 02 00 -62 00 35 05 03	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	ST01 2 9 0 0 1 2 ST02 7 0 0 0	35 01 35 01 02 09 00 -62 01 02 35 02 07 00 -62 01 05 35 03
012 013 014 015 016 017 018 020 021 022 023 024 025 026	2 5T01 4 2 0 2 5 ST02 7 2 0 3 ST03 5	00 02 35 01 02 -62 00 05 35 02 -62 00 03 35 03	039 040 041 042 043 044 045 046 047 049 050 051 052 053 055	5 ST05 1 9 0 0 6 ST06 3 6 0 0	00 05 05 01 05 00 00 -62 00 00 -62 00 08	097 098 099 100 101 102 103 104 105 106 107 108 119 110 111 112 113	ST03 9 0 4 ST04 2 0 5 ST05 5	35 03 09 00 -62 04 35 04 35 02 00 -62 00 35 05 03 05	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	ST01 2 9 0 1 2 ST02 7 0 0	35 01 02 09 00 -62 01 02 35 02 07 00 08 06 -62 01
012 013 014 015 016 017 018 020 021 022 023 024 025	2 5T01 4 2 0 2 5 ST02 7 2 0 3 ST03	00 02 35 01 04 02 -62 00 05 35 02 -62 00 03 35 03	039 040 041 042 043 044 045 046 047 049 050 051 053 054	5 ST05 1 9 0 0 0 6 ST06 3 6 0	00 05 05 01 05 00 -62 00 35 06 00 -62 00	097 098 099 100 101 102 103 104 105 106 107 108 110 111 112 113	ST03 9 0 0 4 ST04 2 0 0 5 ST05 3	35 03 09 -62 00 -62 04 35 04 02 00 -62 05 35 05 05 05 -62	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	ST01 2 9 0 0 1 2 ST02 7 0 0 0	35 01 35 01 02 09 00 -62 01 02 35 02 07 00 00 -62 01 05 35 03

ØÛ

-62

**35 0**9 

ST07

Е

Ū

Ø

ST08

35 07

5

ØØ

-62

2

35 08

Ū

Ø

ST09

RTN R/S

SEP-	2B LISTING	3			
001	*LBL5	21 05	<b>0</b> 58	ST07	<b>35 0</b> 7
002	3	03	059	RTH	24
003	6	<u>06</u>	969	*LBL6	21 06
004		-62	061	2	02
005	0	02 00	062	1	01
			<b>0</b> 63		-62
006	3	03 75 80		•	
007	\$TO@	35 00 01	064 065	9	<i>00</i>
008	1	01	065	2	02
009	8	<b>0</b> 8	966	STO0	35 00
010	0	<b>0</b> 0	967	2	02
011	•	-62	<b>06</b> 8	4	04
012	6	ØŨ	069	•	-62
013	4	Ð4	979	Ø	00
014	ST01	35 Ø1	071	2	02
015	3	63	<b>0</b> 72	5	<i>0</i> 5
016	9	<b>0</b> 9	073	ST01	35 01
017	ø	00	074	4	04
018		-62	075	2	<b>0</b> 2
019	ē	88	076	•	-62
020	5	<b>0</b> 5	<b>0</b> 77	0	60
021	ST02	35 <b>0</b> 2	<b>0</b> 78	3	03
022	7	07 07	<b>0</b> 75	ST02	35 02
023	Ø	0 i	080	2	03 02
		00 00	081	1	02 01
024	Ū			6	<b>0</b> 6
025	•	-62	<b>082</b>		
026	0	<b>0</b> 0	<b>0</b> 83	•	-62
<b>0</b> 27	6	<b>0</b> 6	084	0	00
028	ST03	35 03	<b>0</b> 85	4	94
029	1	0 í	086	STO3	35 63
030	6	<b>0</b> 6	<b>0</b> 87	4	04
031	Ū	60	<b>0</b> 88	8	<b>0</b> 8
032	•	-62	<b>0</b> 89	0	00
033	Ø	00	090	•	-62
034	8	<b>0</b> 8	<b>0</b> 91	0	<i>0</i> 0
035	STO4	35 04	<b>0</b> 92	5	<b>6</b> 5
036	2	<b>0</b> 2	<b>09</b> 3	ST04	35 <i>0</i> 4
037	9	<b>0</b> 5	<b>0</b> 94	8	<b>9</b> 8
038	Ø	00	895	4	64
039	0	00	096	0	88
040	•	-62	097		-62
041	1	01	098	9	00
042	ST05	35 05	099	6	96
043	4	04	100	ST <b>05</b>	35 05
044	6	<i>0</i> 4	101	1	01
045	6	00 00	102	٥	<b>0</b> 9
045	0	<i>00</i>	103	9 2 <b>0</b>	02 02
047			104	2	00 00
	1	-62			
048	i.	<b>0</b> 1	105	•	-62
049	2	02 75 06	106	9	<b>9</b> 0
<i>050</i>	ST06	35 <b>8</b> 6	107	8	<b>68</b>
051	8	<b>0</b> 8	108	ST06	35 <i>06</i>
<b>052</b>	3	<b>0</b> 3	109	3	<b>0</b> 3
<i>053</i>	0	00	110	5	05
<b>0</b> 54	Ü	00	111	0	00
<b>0</b> 55	•	-62	112	0	80
<i>0</i> 56	1	<b>0</b> 1	113	•	-62
<b>0</b> 57	5	<i>ā</i> 5	114	1	01

## SEP-3 WATER SYSTEM PIPE SIZING PROGRAM

### **PROGRAM DESCRIPTION**

With input of fixture units, program computes diversified flow in gallons per minute based on the modified Hunter Curves. In addition to the diversified flow, the program will handle constant flow required for equipment, such as a laundry.

Four curves have been stored in the program:

- Two curves for buildings similar to hospitals, having relatively high water consumption.
- Two curves for buildings similar to office buildings, having relatively low water consumption.
- Each building type has two curves: one for a distribution system using "flush valves" and the other using "flush tanks."

After calculating the flow in gallons per minute, the program computes pipe sizes based on maximum velocity and friction loss using the Williams-Hazen formula, which requires input of C value, safety factor, total pressure drop, and length. With this information, the designer can select the pipe size based either on velocity or on friction loss.

The program can also be used to compute pipe diameter for required flow or compute flow for a selected pipe size.

### **EQUATIONS**

See Program PP-2 for equations based on the Williams-Hazen formula.

### **OPERATING FEATURES**

As shown under "User Instructions and Examples," different fixture curves can be selected in the following manner:

Fixture Curve	Input Under Label B	
Flush valves: for buildings with relatively low water consumption; FV/G	1	Table
Flush tanks: for buildings		3,
with relatively low water consumption; <i>FT/G</i>	2	4,
Flush valves: for buildings	~	5,
with relatively high water		6,
consumption; FV/H	3	8,
Flush tanks: for buildings with relatively high water		10,
consumption; FT/H	4	13,

It is essential to initialize the program before sizing any distribution system or starting a new distribution system. The fixture curves can be changed while sizing a distribution system. Pipe sizing can also be done (gallons per minute to diameter or diameter to gallons per minute) while designing a distribution system.

The program will also continuously add any constant flow required for the equipment to the diversified flow of the fixtures.

### REFERENCE DATA

In order to conserve programming steps, different fixture units per gallons per minute (FU/gpm) tables are developed by combining short tables. Composite tables are reproduced here for the designer's information and convenience. These tables are based on prevailing engineering judgment and the user is at liberty to modify them to suit his or her own judgment.

BUILDINGS WITH RELATIVELY HIGH WATER CONSUMPTION

FLUSH VAL	VES	FLUSH TAI	NKS
Fixture Units	gpm	Fixture Units	gpm
Table stored u SBR X≓	iluci	Table stored u SBR X	
0	25	0	2
55	52	10	15
120	73	40	26
400	127	100	44
		500	130

Olider Fabel B			000	100		
1	Table stored to SBR 1/		Table stored under SBR 1/X			
	3,000	286	3,000	286		
2	4,000	365	4,000	365		
2	5,000	430	5,000	430		
_	6,000	490	6,000	490		
3	8,000	600	8,000	600		
	10,000	720	10,000	720		
4	13,000	875	13,000	875		

## BUILDINGS WITH RELATIVELY LOW WATER CONSUMPTION

FLUSH VAL	VES	FLUSH TAN	NKS	
Fixture Units	gpm	Fixture Units	gpm	
Table stored u SBR X <b>⇄</b>		Table stored under SBR X ²		
0	25	0	2	
55	52	10	15	
120	73	40	26	
400	127	100	44	
		500	130	
Table stored u SBR √X		Table stored under SBR $\sqrt{X}$		
3,000	265	3,000	265	
4,000	320	4,000	320	
5,000	380	5,000	380	
6,000	435	6,000	435	
7,000	490	7,000	490	
8,000	540	8,000	540	

SEP-3
WATER SYSTEM PIPE SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation			C value Flush valves: general Fitting or safety factor Available pressure drop, ft System length, ft Pressure drop, ft/100 ft	Velocity, fps	Fixture units Total fixture units Gal/min	Total gpm Diameter based on friction loss Diameter based on velocity		Equipment, gpm	Flow related to FU	Total gpm including equipment gpm
			7V/C 7/6 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	ю а. о	00 E	MU OU OU OU OU OU OU OU OU OU OU OU OU OU	00 E		M0 FF9 MC0	MGPM DIAP
Print Out		00.00	130.00 1.00 25.00 285.00 7.00	2.00	25.00 25.00 27.27	0 5 5.7.4. 5.4.4	<b>6</b> 60 60 60 60 60 60	ი ა ა.ა.ტ. ა.ი.ტ. ა.ი.	50.00 110.00 69.77	94.77 2.48
		ù	A,C, B,C,S	∢			ω	œ́	ω	
Press		2nd	2nd 2nd 1	ı	1		I	2nd	1	
		ı	1111	ı	I		I	I	I	
Enter		0	130 1 1.25 25 285	7.00	25		35	25	20	
Procedure	Example 1	Initialize	Enter C value Select type of fixture curve Enter factor for ftgs. or safety Enter available pressure drop, ft Enter total system length, ft	Enter desired velocity, fpm	Enter fixture units		Repeat step 7 as many times as desired.	To add flow of equipment having constant load, enter gpm		
Step		÷	იც 4. ღ ౚ	7.	<b>ω</b>			6		

SEP-3 (Continued)
WATER SYSTEM PIPE SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation			Flush tanks: general						
			77.00 27.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- S	MA CALL	7 M G 7 M G	NGPM DIAP EGPM	M M M M M M M M M M M M M M M M M M M	ΜΑΒ 118 18 ΑΒ 18 ΑΒ
Print Out		00.00	135.00 2.00 1.20 30.00 250.00	6,50	150.00 150.00 54.75 1.84	250.00 400.00 108.50	108.50 2.39 75.00	275.00 675.00 139.45	214. 9.45 9.68
		ш́	% A V, % S S S S S S S S S S S S S S S S S S S	⋖	ω	Δ.	œ́	ω	
Press		2nd	2nd 2nd 2nd 1	1	I	I	2nd	I	
		ı	1111	I	1	I	ı	I	
Enter		0	135 2 1.2 30 250	6.5	150	250	75	275	
Procedure	Example 2	1. Initialize	Repeat steps 2 through 9 as many times as desired.						
Step		<del>-</del>							

ress 2 through 9 as 3	 Example 3	0	ı	2nd	ш	0,00		
- B 1000.000 - B 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43 - 7. 43	 Repeat steps 2 through 9 as many times as desired.	135 3 3 3 3 3	1 1 1	2nd 2nd 2nd	ζές	ിന്ന്⇔്റ	7 / H	Flush valve: high consumption
- B 100.000 - And B 66.54 - And B 7.00 - And B 66.54 - And B 7.00 - And B 7.00 - And B 7.00 - And B 8.00.00 -		78 200	1 1	1 1	8/S	idik	PD/C	
- B 100.000 - 2nd B' 200.000 - 2.53 - 2.53 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 - 3.00.000 -		7	I	I	æ		A S S	
- 2nd B' 500.000 - 2nd B' 500.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 - 800.000 -		100	ı	ı	Ф	100.00 100.00 66.00		
- B 200.000 300.000 107.71 - B 300.000 107.71 189.15 3.144 3.333						ഗൈകത യിയിക്	MGPM DIGPM DIAPM	
2.53 2.53 2.53 2.53 2.53 2.00 00.00 189.15 189.15 3.14 3.33		200	ı	I	œ	200.00 300.00 107.71	300 0 M 0 M	
B 600.000 139.15 189.15 3.145		20	ı	2nd	B.	rididi O D	MGPM D188 D188 EGPM	
ი ი ი ი ი ი ი ი ი		300	ı	ı	ω	300.00 600.00 139.15	300 0M	
						പെടുന്ന് നീന്ന് ന	ZGPM DIAP DIAV	

SEP-3 (Continued)
WATER SYSTEM PIPE SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step Procedure	Procedure	Enter		Press		Print Out		Explanation
Example 4	le 4							
1.   Initialize	Ze	0	ı	2nd	ù	0.00		
Repea many	Repeat steps 2 through 9 as many times as desired.	135 4 1.5 32 372	1111	2nd 2nd 2nd 1	C, D, R/S	135 4.00 72.00 72.00 7.00 7.00 7.00	77.4 7.4 8.7 1.0 1.0 1.0	Flush tanks: high consumption
		9	I	ı	∢	9.00	ш Ф О	
		300	ı	1	æ	888 489 888	335 335 335 335 335	
						8 7.9.9 00.44 00.44	E 4 > 4 E E 9 E E	
		400	1	1	m	7400.00 700.00 142.40		
		95	1	2nd	'n	41 62.5.9.9 60.00.00	EDDING PROPE BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDNING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDING BDDI	
						500.00 1200.00 173.40	#####################################	
						268 84.0 2.78 2.28	843 844 844 844	

## **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
E'	Initializes; prints out; partitions program
B'	Sums constant equipment flow and prints equipment GPM
C'	Stores and prints C value
A'	Selects type FU/GPM curve
D'	Stores and prints fitting factor;
	with R/S, stores and prints total PD;
	with R/S, prints length, computes and prints PD/C, calculates flow QP1 through 1-in. diameter pipe based on friction loss criteria
A	Stores and prints maximum velocity and computes flow QV1 through 1-in. diameter pipe based on velocity criteria
В	Stores and prints FU; sums and prints running total of fixture units; computes and prints GPM; sums equipment GPM and calls SBR C
C	Prints GPM; computes and prints diameter based on pressure loss DIAP and diameter based on velocity DIAV
D	Prints DIA; computes and prints GPM based on pressure loss GPMP and GPM based on velocity GPMV
INV	Prints alphanumeric characters for identification of data
LNX	Prints FV/G and calls SBR X $\rightleftharpoons$ T; SBR $\sqrt{X}$
CE	Prints FT/G and calls SBR $X^2$ ; SBR $\sqrt{X}$
CLR	Prints FV/H and calls SBR X⇌T; SBR 1/X
X <b>≓</b> T	See tables under "Reference Data"
$X^2$	See tables under "Reference Data"
$\sqrt{X}$	See tables under "Reference Data"
1/X	See tables under "Reference Data"

## **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	For RCL IND for finding GPM
R01	Not used
R02	Fitting or safety factor

R03	Total PD; pressure drop/100 ft; QPI
R04	C Value
R05	Constant flow from equipment
R06	Not used
R07	VMAX; QV1
R08	FU
R09	$\Sigma \mathrm{FU}$
R10	Interim values for numbers in tables
R11	Interim values for numbers in tables
R12	GPM from fixture units; diameter
R13	Not used
R14	Alphanumeric code
R15-R26	For storage of tables

## SEP-3 WATER SYSTEM PIPE SIZING PROGRAM

LABELS & SUBROUTINES  001 10 E' 016 17 B' 034 18 C' 046 16 A' 075 19 D' 162 11 A 185 12 B 219 42 STD 304 13 C	012 69 DP 013 17 17 014 91 R/S 015 76 LBL 016 17 B' 017 44 SUM 018 05 05 019 32 X;T 020 01 1 021 07 7	
304 13 C 372 14 D 432 22 INV 449 23 LNX 468 24 CE 487 25 CLR 507 32 X∤T 544 33 X² 587 34 FX 646 35 1/X	023 02 2 024 03 3 025 03 3 026 03 3 027 00 0 028 42 STE 029 14 14 030 71 SBR 031 22 INV 032 91 R/S 033 76 LBL 034 18 C*	
LISTING  000 76 LBL  001 10 E'  002 00 0  003 42 STD  004 05 05  005 42 STD  006 09 09  007 99 PRT  008 98 ADV  009 22 INV  010 58 FIX  011 03 3	033 76 LBL 034 18 C' 035 42 STC 036 04 04 037 32 X;T 038 01 1 039 05 5 040 42 STC 041 14 14 042 71 SBR 043 22 INV	

$\begin{smallmatrix} 0.4789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789000000000000000000000000000000000000$	#####################################	112 113 114 115 1167 1189 1212 1223 1224 1225 1227 1229 1331 1336 1339 1340 1341 1447 1449 1447 1449 1449 1541 1551 1551 1551	00 0 = XX 03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1778 1778 1779 1811 1811 1811 1811 1811	04 4 01 1 22 INV 49 PRD 07 07 98 ADV 91 R/S 76 LBL 12 B 98 ADV 42 STD 08 08 32 X\$T 02 2 01 1 04 4		22222222222222222222222222222222222222
01	112 00 0 0 177 04 4 242 113 00 0 0 178 01 1 243 114 95 = 179 22 INV 244 115 35 I/X 180 49 PRD 245 116 65 X 181 07 07 246 117 43 RCL 182 98 ADV 247 118 03 03 183 91 R/S 248 119 95 = 184 76 LBL 249 120 42 STD 185 12 B 250 121 03 03 186 98 ADV 251 122 32 XIT 187 42 STD 252 123 03 3 189 89 XIT 254 124 03 3 189 32 XIT 254 125 01 1 190 02 2 255 126 06 6 191 01 1 256 127 06 6 192 04 4 257 128 03 3 193 01 1 258 129 01 1 194 42 STD 259 130 05 5 195 14 14 260 131 42 STD 196 71 SBR 261 132 14 14 14 197 22 INV 262 133 71 SBR 198 44 SUM 263 134 22 INV 199 09 09 264 135 53 ( 200 43 RCL 265 136 43 RCL 200 43 RCL 265 137 04 04 04 202 32 XIT 267 138 65 X 203 07 7 268 139 53 ( 204 07 7 269 140 53 ( 204 47 7 269 140 53 ( 204 48 27 267 144 05 1 207 24 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	00	177 04 4 242 178 01 1 243 179 22 INV 244 180 49 PRD 245 181 07 07 246 182 98 ADV 247 183 91 R/S 248 184 76 LBL 249 185 12 B 250 186 98 ADV 251 187 42 STD 252 188 08 08 253 189 02 X∤T 254 191 01 1 256 192 04 4 257 193 01 1 258 194 42 STD 259 195 14 14 260 196 71 SBR 261 197 22 INV 262 198 44 SUM 263 199 09 09 266 202 32 X∤T 267 203 07 7 268 204 07 7 269 205 02 2 270 206 01 1 271 207 04 4 272 208 01 1 273 209 42 STD 274 210 14 14 275 211 71 SBR 276 212 22 INV 277 213 32 X∤T 278 214 01 1 273 209 42 STD 274 210 14 14 275 211 71 SBR 276 212 22 INV 277 213 32 X∤T 278 214 01 1 273 209 42 STD 284 210 14 14 275 211 71 SBR 276 212 22 INV 277 213 32 X∤T 278 214 01 1 273 217 02 04 07 7 268 222 73 RC* 283 219 42 STD 284 220 69 DP 285 221 20 20 20 286 222 73 RC* 287 223 00 00 282 224 73 RC* 287 223 00 00 294 230 42 STD 299 226 77 GE 291 227 72 CB STD 299 226 77 GE 291 227 72 CB STD 299 226 77 GE 291 227 72 CB STD 299 226 77 GE 291 227 72 CB STD 299 226 77 GE 291 227 72 CB STD 299 228 73 RC* 293 229 00 00 294 230 42 STD 297 233 30 30 298 234 73 RC* 293 235 69 DP 297 233 30 30 298 234 73 RC* 299 235 73 RC* 299 236 42 STD 301 237 11 11 302 238 53 ( 303 239 53 ( 304	177 04 4 242 178 01 1 243 179 22 INV 244 180 49 PRD 245 181 07 07 246 182 98 ADV 247 183 91 R/S 248 184 76 LBL 249 185 12 B 250 186 98 ADV 251 187 42 STD 252 191 01 1 256 191 01 1 256 192 04 4 257 193 01 1 258 194 42 STD 259 195 14 14 14 260 196 71 SBR 261 197 22 INV 262 198 44 SUM 263 199 09 09 266 197 22 INV 262 200 43 RCL 265 201 09 09 266 202 32 X;T 268 200 43 RCL 265 201 09 09 266 202 32 X;T 268 200 43 RCL 265 201 09 09 266 202 32 X;T 268 201 1 273 204 07 7 269 202 32 X;T 268 201 1 273 204 07 7 269 205 02 2 270 206 01 1 273 207 04 4 272 208 01 1 273 209 42 STD 274 210 14 14 275 211 71 SBR 276 212 22 INV 278 214 01 1 279 215 04 4 280 217 70 00 00 282 218 76 LBL 283 219 42 STD 284 220 69 DP 285 221 20 20 286 222 73 RC* 287 223 00 00 288 224 59 INT 289 225 77 GE 291 227 42 STD 292 228 73 RC* 287 229 00 00 288 224 59 INT 289 225 77 GE 291 227 42 STD 292 228 73 RC* 287 229 00 00 288 224 59 INT 289 225 77 GE 291 227 42 STD 292 228 73 RC* 293 229 00 00 294 230 42 STD 295 221 20 20 296 223 42 STD 297 223 30 30 30 298 234 73 RC* 299 235 42 STD 297 237 11 11 302 237 11 11 302 237 11 11 302 237 11 11 302 237 11 11 302 238 53 (	04 4 243 01 1 2445 01 1 2446 01 1 2447 245 047 248 01 1 2445 049 07 07 2446 07 08 ADV 2448 07 8 ADV 2253 08 ADV 2253 09 ADV 22	434456789012345678901234567890123456789012345678901234 22222222222222222222222222222222222	22222222222222222222222222222222222222	

306
436 69 □P 00 OCL 437 00 0CL 438 43 RCL 439 14 14 440 04 CT 438 58 FIX2 69 □P 60 OTN 441 04 CT 442 32 FIX2 69 □P 60 OTN 442 32 FIX2 60 0C RT 444 444 444 60 0C RT 60
\$17 SBRX

570       93       635       08       8         571       00       636       00       0         572       04       4       637       00       0         573       04       4       638       00       0         574       42       STD       639       93       .         575       18       18       640       05       5         576       05       5       641       04       4         577       00       0       642       42       ST         578       00       0       643       25       2         579       93       644       92       RT	0 698 93 4 699 07 700 02 701 42: 702 25 703 01 704 03 705 00 706 00 0 707 00	0 708 0 709 . 710 7 711 2 712 STD 713 25 714 1 715 3 716 0 717 0 718 0 719	93 . 08 8 07 7 05 5 42 STD 26 26 92 RTN 00 0 00 0 00 0	
580 01 1 645 76 LE 581 03 3 646 35 17 582 00 0 647 03 3		OTES FOR HP-97 USE	RS	
583       42       STD       648       00       0         584       19       19       649       00       0         585       92       RTN       650       00       0         586       76       LBL       651       93       .         587       34       JX       652       02       2         588       03       3       653       08       8		ion to the basic Progr quires four additional o		
590 00 0 655 42 ST	Data card f atively high with flush v	For buildings with rel- water consumption—	0.025 55.052 120.073 400.127 3000.286 4000.365 5000.430 6000.490 8000.600	0123456789
604 02 2 669 00 0 605 42 STD 670 00 0 606 21 21 671 93 . 607 05 5 672 04 4 608 00 0 673 03 3 609 00 0 674 42 ST 610 00 0 675 22 2 611 93 . 676 06 6 612 03 3 677 00 0 613 08 8 678 00 0 614 42 STD 679 00 0 615 22 22 680 93 . 616 06 6 681 04 4 617 00 0 682 09 9 618 00 0 683 42 ST	atively high with flush t	for buildings with rel- water consumption—	0.002 10.015 40.026 100.044 500.130 3000.286 4000.365 5000.430 6000.490	© 123456789
619 00 0 684 23 2 620 93 . 685 08 8 621 04 4 686 00 0 622 03 3 687 00 0 623 05 5 688 00 0 624 42 STD 689 93 . 625 23 23 690 06 6 626 07 7 691 42 ST 627 00 0 692 24 2 628 00 0 693 01 1 629 00 0 694 00 0 630 93 . 695 00 0	SEP-3C LI  Data card f  atively low  with flush v	for buildings with rel- water consumption—	0.025 55.052 120.073 400.127 3000.265 4000.320 5000.435 7000.490 8000.540	0 1 2 3 4 5 6 7 8 9

SEP-3D LISTING	0.002	Ø
Data Card for buildings	10.015	1
with relatively low water	40.026	2
consumption—with flush	100.044	3
tanks.	500.130	4
taliks.	<i>3000.265</i>	5
	4000.320	5
	5000.380	7
	6000.435	8
	7000.490	- 9

- 2. All the data is stored in the secondary registers. The data is printed by P≠S operation.
- **3.** The appropriate data card should be loaded together with the program.
- **4.** Users should compare the above data with the table given under the "Program Description" to see the limit of sizing.

Number of Cards: ONE for Program FOUR for Data SEP-3
WATER SYSTEM PIPE SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

	Explanation				Praceure drop #/100 ft	, , , , , , , , , , , , , , , , , , ,	Fixture units	Total fixture units Gal/min	Gal/min Diameter based on pressure Diameter based on velocity					
-	Exp					<u>-</u>		Tot Gal,	Gal, Diar Diar					
				**	****		***	* * *	* * *	***	***	* * * *	***	***
	Print Out			9.6E	138.66 1.25 25.68 285.66	7.06	25.66	25.63 37.27	7.2.7. 7.7.1. 7.4.0.	35,00	66.66 53.62	53.62 2.60 1.77	25.66	50.00
		and the enterior and equipment		ш	C D R/S R/S	∢	ω			Ф			80	В
	Press			+	**11	l	ı			ı			ţ	1
				l	1111	l	I			1			ı	ı
	Enter			l	130 1.25 25 285	7	25			32			25	20
	Procedure	Example 1	This example is based on data card SEP.3C.	Initialize	Enter C value Enter safety factor Enter available pressure, ft Enter system length, ft	Enter maximum velocity	Enter fixture units			Repeat step 7 as many times	מא תפאו פת.		To add flow of equipment	as in step 7
	Step			<del>-</del>	දා ස, ඈ ඈ	6	7.						œ	

SEP-3 (Continued)
WATER SYSTEM PIPE SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

Data
for
FOUR
Program
for
ONE f
Cards:
o.
Number

Step	Procedure	Enter		Press		Print Out		Explanation	
						110.00 *********************************	* * *	Gal/min based on fixture units	
						94.77 2.48 8.00 9.36	* * * *	Gal/min total including equipment	
ш	Example 2								
	Based on data card SEP.3D	ı	ı	+	ш	6.66 kt	*		
<u> </u>	Same steps as Example no. 1	135 1.2 30 250	1 1 1 1	+ +	C D R/S R/S	135 1.25 3.63 3.63 6.63 6.63 6.63 7.83 8.83 8.83 8.83 8.83 8.83 8.83 8.8	* * * * * * * * * * * * * * * * * * * *		
		6.5	ı	ı	∢	6,58	***		
		150	ı	I	В	158.88	***		
						156.66 * 54.75	**		
						0.40 1.40 1.40	***		
		250	ı	ı	æ	₹ 52.66 *	*		
						486.68 185.58	**		
						168.08 2.36 2.36 2.36	* * * * * * * * * * * * * * * * * * * *		

**** * * * * * * * * * * * * * * * * *	66.54 2.11 1.97 1.55.666 372.666 372.666	C C R/S	<u>~ ~~ 1   </u>		- 135 1.5 372	Example 4  Based on data card SEP.3B  Same steps as Example no. 1
* * * * * * * * * * * * * * * * * * * *	7.00 166.60 166.66	<b>∀</b> ⊠	l I	1 1	7 100	
	28.08 296.09 7.43	R/S 8/S	~ I I	1 1 1	28 290	
	99.69 80.00	ш	<i>+ '</i>	I	l (	- 1
						Example 3 Based on data card SEP.3A
	214.45 3.10 3.68					
***	675.00 139.45					
***	275.00	ω	ı	ı	275	
* * 9	55.08	В	ţ	ı	75	

SEP-3 (Continued)
WATER SYSTEM PIPE SIZING PROGRAM

7 USER II	HP-97 USER INSTRUCTIONS AND EXAMPLES		Number of	Cards: UN	Number of Cards: ONE for Program	FOUR	
Step Procedure		Enter		Press		Print Out	Explanation
		9	I	ı	4	*** 388.9	
		300	ı	ı	В	300° 000°	
						300,000 84* 800 1.8	
						2, 460 2, 460 2, 450 8 ***	
		400	I	I	В	466,638 ***	
						700,000 ***	
						142,486 *** 2,973 *** 3,126 ***	
		200	I	1	Ф	200.00 ***	
						366.60 *** 167.71 ***	
						2.53 *** 2.53 ***	
		20	I	ţ	В	50.86 ***	
		300	I	ı	В	300.000	
						568,68,68 139,53	
						等等等 10以"的 00m	

							Pressure drop, ft/100 ft		Diameter based on pressure Diameter based on velocity		
**	*	* * *	* * * * * * * * * * * * * * * * * * * *			*	* * * * * * * * * * * * * * * * * * * *	*	**	* * *	* * * * * * * *
95.863	506.066	1266.088 173.688	268.680 3.783 4.285			9 9	136.888 1.258 4.588 188.888	6,866	126,888 3,188 2,884	2	5.00 00.00 00.00 00.00 00.00 00.00
ω	ω					ш	C D R/S R/S	∢	U	υ	O ,
<b>*</b>	1					+	**	. 1	I	1	I
1	I,					ı	1 1 1 1	ı	1	l	ı
95	200					ı	130 1.25 4.5 100	9	120	15	м
				Example 5	Data card not required; sizing only	1. Initialize	Enter C value L Enter safety factor Enter available pressure, ft Enter system length, ft	i. Enter maximum velocity	. Enter gpm	or . Enter gpm	or 7. Enter gpm
				 		<del>-</del>	<u> </u>		7.	7.	7.

Number of Cards: ONE for Program FOUR for Data SEP-3 (Continued)
WATER SYSTEM PIPE SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

Separation   Present   P			ressure slocity			
Press Print Out  D - D - S. 2 - 5 + ***  D - D - S. 2 - 5 + ***  D - D - S. 2 - 5 + ***  D - D - S. 2 + ***  D - D - S. 2 + ***  D - S. 2 + ***  D - S. 2 + ***  D - D - S. 2 + ***  D - S. 2 + ***  D - S. 2 + ***  D - D - S. 2 + ***  D - S. 2 + ***  D - S. 2 + ***  D - D - D - S. 2 + ***  D - D - D - D - D - D - D - D - D		planation	II/min based on pi II/min based on ve			
Press Print Out   Print Out		Ä	Ga Ga			
	OUN IOI DATA	Print Out				
	riogiaiii		-			
	calds. O	Press	l	1	1	
			I	1	I	
8. Enter diameter or 8. Enter diameter or or	- 1	Enter	2.5	ഗ	.75	
		Procedure	Enter diameter			
. 🕶 .	-					

-62

08

*6*5

52

31

36 04

**35 0**3

16-11

-35

## **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Prints and stores display in R7; computes flow QV1 through 1-in. diameter pipe based on velocity
b	Prints and totalizes display (constant equipment flow) in R5
c	Prints and stores display in R4
d	Prints and stores display in R2;
	with R/S, prints and stores display in R3;
	with R/S, prints display (length), computes and prints pressure drop/100 ft, computes flow QP1 through 1-in. diameter pipe based on friction loss criteria
e	Clears registers R5 and R9
В	Prints and stores display (fixture units) in R8; totalizes in R9 and prints value of R9; using LBL 0, computes and prints GPM corresponding to R9; adds equipment GPM; goes to SBR C
С	Computes and prints pipe size based on maximum velocity and maximum friction loss criteria
D	Prints and stores display (diameter) in RC; computes flow based on maximum friction loss criteria

## **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R0	Not used
R1	Not used
R2	Safety factor or factor for fittings, etc.
R3	Total pressure drop; pressure drop/100 ft
R4	C value
R5	Totalized flow in GPM
R6	Not used
R7	VMAX; QV1
R8	Fixture units
R9	Fixture units totalized
RA	Interim value

RB	Interim value
RC	GPM calculated; also diameter
RD	Not used
RE	Not used
R10-R19	For storing table of fixture units and GPM

043 044

**845** 

**046** 

047

048

049

050

051

8

5

1/8

γ×

RCL4

Х

ST03

SPC

## SEP-3 (HP-97) WATER SYSTEM PIPE SIZING PROGRAM

21 11

-14

-62

Ū;

04

**35** 07

LISTING

002

003

004

005

006

007

**00**8

001 *LBLA

ST07

PRTX

4 1

ST÷7 35-24 07

SPC 16-11

990	3Fi	10-11	931	3FL	16-11
009	RTN	24	<b>05</b> 2	RTN	24
010	*LBLb	21 16 12	<b>0</b> 53	*LBLe	21 16 15
011	PRTX	-14	<b>054</b>	0	<b>0</b> 0
812	ST+5	35-55 05	<b>0</b> 55	ST05	<b>35 0</b> 5
013	SPC	16-11	<b>0</b> 56	ST09	<b>35 0</b> 9
014	RTH	24	<b>05</b> 7	CLX	-51
015	*LBLc	21 16 13	<b>0</b> 58	PRTX	-14
016	ST04	35 04	<b>0</b> 59	SPC	16-11
017	PRTX	-14	060	SPC	16-11
018	RTN	24	061	RTN	24
019	*LBLd	21 16 14	062	*LBLB	21 12
020	ST02	<b>35 0</b> 2	063	ST08	<b>35 0</b> 8
021	PRTX	-14	964	PRTX	-14
<b>0</b> 22	RTN	24	<b>065</b>	SPC	16-11
<b>023</b>	ST03	<b>35 0</b> 3	<i>066</i>	ST+9	<b>35-55 0</b> 9
024	PRTX	-14	867	RCL9	<b>36 0</b> 9
<i>0</i> 25	RTN	24	<del>86</del> 8	PRTX	-14
<b>0</b> 26	PRTX	-14	069	9	<b>0</b> 9
027	RCL2	<b>36 0</b> 2	070	STOI	35 4 <i>6</i>
<b>0</b> 28	X	-35	071	*LBL0	21 00
<b>0</b> 29	i	Ø1	<b>0</b> 72	ISZI	16 26 46
<b>030</b>	0	<b>0</b> 0	073	RCL:	36 45
031	6	00	074	STOA	35 11
<b>0</b> 32	÷	-24	<i>8</i> 75	INT	16 34
<b>0</b> 33	1/X	<b>5</b> 2	976	RCL9	<b>36 0</b> 9
<i>0</i> 34	ST×3	<b>35-35 0</b> 3	077	X>Y?	16-34
<b>0</b> 35	RCL3	<b>36 0</b> 3	<b>9</b> 78	6T0 <b>0</b>	22 00
<b>036</b>	PRTX	-14	079	DSZI	16 25 <b>4</b> 6
<b>0</b> 37	1	01	080	RCL i	<i>36</i> 45
<b>0</b> 38	0	00	081	STOB	35 12
039	4	04	<b>0</b> 82	FRC	16 44
040	4	04	<b>0</b> 83	RCLA	36 11
041	÷	-24	084	FRC	16 44
042	1	61	<b>9</b> 85	-	-45

<b>0</b> 86	CHS	-22	121	RCL3	36 03
<b>0</b> 87	RCL9	<b>36 0</b> 9	122	÷	-24
<b>088</b>	RCLB	36 12	123		-62
089	IHT	16 34	124	3	03
090	-	-45	125	8	<b>0</b> 8
091	X	-35	126	γx	31
092	RCLA	36 11	127	PRTX	-14
093	1NT	16 34	128	RCLC	36 13
094	RCLB	<b>36</b> 12	129	RCL7	36 07
095	INT	16 34	130	÷	-24
096	-	-45	131	1X	54
097	÷	-24	132	PRTX	-14
<i>0</i> 98	RCLB	<b>36</b> 12	133	SPC	16-11
<b>0</b> 99	FRC	16 44	134	SPC	16-11
100	+	-55	135	RTN	24
101	1	01	136	*LBLD	21 14
102	0	00	137	SPC	16-11
103	0	<b>0</b> 0	138	STOC	35 13
104	0	00	139	PRTX	-14
105	X	-35	140	2	62
106	STOC	35 13	141	•	-62
107	PRTX	-14	142	6	<b>0</b> 6
108	RCL5	<i>36 05</i>	143	3	<b>9</b> 3
109	RCLC	<b>36</b> 13	144	γx	31
110	÷	<b>-5</b> 5	145	RCL3	<b>36 0</b> 3
111	STOC	<i>3</i> 5	146	X	-35
112	<b>€</b> SBC	23 13	147	PRTX	-14
113	SPC	16-11	148	RCLC	36 13
114	SPC	16-11	149	Χz	53
115	RTN	24	150	RCL7	36 07
116	*LBLC	21 13	151	×	-35
117	SPC	16-11	152	PRTX	-14
118	STOC	<b>35</b> 13	153	SPC	16-11
119	PRTX	-14	154	RTH	24
120	RCLC	36 13	155	R/S	51

# SEP-4 GAS SYSTEM PIPE SIZING PROGRAM

### **GENERAL DESCRIPTION**

This program can size vertical and horizontal gas piping for apartment houses. The program is based on Polyflo formula for natural gas used for the development of Table 1-B2 of the National Fire Protection Association #54 Industrial Gas Code.

### **EQUATIONS**

$$Q_h = 2313 \, d^{2.623} \times (h/CL)^{.541} \tag{4.2}$$

where

 $Q_h = \text{Gas flow rate, cu ft/hr, at } 60^{\circ} \text{ F and } 30 \text{ inches } Hg$ 

d = Inside diameter, in.

h =Pressure drop, in. w.g.

C = Factor for viscosity, density, and temperature; 0.595 for 0.6 specific gravity for paraffin-based gas at 60°F

L =Length of pipe in feet

Apartment house gas usage = 65,000 Btu/hr/Apt [4.3]

Diversity factor in percent = 
$$\frac{95}{(\Sigma \text{Apt})^{-4}}$$
 [4.4]

Vertical pipe is sized for pressure gain of 0.1 in. w.g. for 15-ft vertical rise.

## **OPERATING FEATURES**

It is essential to initialize the program before sizing any distribution system or starting a new distribution system.

In addition to the gas consumed by the apartment, the program will also add continuously and constant gas required for the equipment to the diversified flow of the apartments.

The type of distribution system, either "vertical" or "horizontal," can be changed while designing a distribution system.

Individual pipe sizes for each apartment or for equipment can be computed by initializing each time, since otherwise the program works with the running total flow. While sizing pipe for the equipment, input the number of apartments as zero. The procedure is further explained under "User Instructions and Examples."

#### **REFERENCE DATA**

None.

SEP-4
GAS SYSTEM PIPE SIZING PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation			Vert. distribution	Total apartments Apartment gas, cfh Total gas, cfh Computed diameter Pipe size available			Horiz. distribution	Const. equipment load, Btu/hr Equipment cfh Total equipment cfh
			VERTICE AND CERTIFICATION OF THE PROPERTY OF T	MARPT MARPT MOCENT DIAC	MACENT DISCENT DISCENTE	APT MACFH MCFH DIAC	HORZ	MEGH MEGH MEGH
Print Out		0.00	0.30 1000.00 200.00 1.00		.6.00 .9.00 .1.00 .0.99	1.20 1.20 325.92 1.20 1.20	2, 00	90000. 90.00 90.00
		ú	ÓÚشÝ	۷	∢	∢	Ď,	ш
Press		2nd	2nd 2nd 2nd 2nd	ı	1	1	2nd	ſ
		ı	1111	I	1	1	I	ľ
Enter		0	0.3 1000 200 1	-	ဖ	တ	7	00006
Procedure	Example	Initialize	Input maximum p.d., in. w.g. Input gas calorific value Input total system length, ft Input 1 for vert. distribution or 2 for horiz. distribution	Input no. of apartments in distribution systems starting from beginning	Repeat step 6. Input number of apartments at next node.	Repeat step 6. Input number of apartments at next node.	If calculation is desired for horiz. distribution system	If distribution system has constant gas Ioad, enter Btu/hr
Step		<u>-</u>	9. t. 4. t.	oʻ			7.	<b>ω</b>

Adds 90 cfh to apartment load				Equipment connection	
E E E E E E E E E E E E E E E E E E E	E HE		EB TO MECH TO		
0.4 0.82.6 0.93.9 0.93.9 0.73.9 0.03.9	40 	00.00	150000,00 150,00 150,00	0000°°°	0.00
∢	4	ù	ш	∢	ш
l	ſ	2nd	I	I	2nd
I	ľ	I	I	I	I
0	10	I	15000	0	I
To size for combination of equipment and previous apartments, input 0 apartments	Continue sizing; input number of apartments	. To start new distribution, initialize	Input load, Btu/hr	Input number of apartments as 0	14. Initialize for next branch
တ်	10.	17.	12.	<u></u>	4.

## **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A'	Stores and prints maximum pressure drop, in. w.g.
B'	Stores and prints calorific value in BTU
C'	Stores and prints total system length
D'	If vertical, goes to SBR X⇌T; for horizontal calculates ratio of length/PD
X <b>≓</b> T	Use length/PD ratio 150 for vertical pipe
A	Prints APT and ΣAPT; calculates diversity factor; calculates and prints apartment gas ACFH: adds equipment gas; calculates and prints ΣCFH; calculates diameter and prints DIAC; finds and prints actual pipe diameter
CLR	Reiterates for finding actual pipe diameter
INV	Prints alphanumeric characters for identification of data
LNX	Computes pipe diameter
CE	Table for pipe sizes
E'	Initializes
E	Prints equipment gas load in BTU; converts into CFH and prints equipment gas load ECFH; calculates and prints total equipment gas load ΣCFH

## **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	For RCL IND
R01	Maximum PD for system, in. w.g.
R02	Gas calorific value, Btu/cu ft
R03	System length
R04	For selecting vertical or horizontal
R05	Ratio of length/PD
R06	Total number of apartments
R07	Gas, cu ft
R08	Alphanumeric code
R09	Total equipment CFH
R10-R18	Pipe sizes 0.5 thru 4 in.

## SEP-4 GAS SYSTEM PIPE SIZING PROGRAM

LABEL SUBRC 001 015 031 049 082 102 208 233 250 286 336	S & DUTINES 16 A' 17 B' 18 C' 19 D' 32 X T 11 A 25 CLR 22 INV 23 LNX 24 CE 10 E' 15 E	046 047 048 049 050 051 053 054 055 056 057 058 059	22 INV 91 R/S 76 LBL 19 D' 42 STO 04 04 32 X;T 01 1 67 EQ 32 X;T 43 RCL 03 03 55 ÷ 43 RCL 01 01
LISTIN 0001 0002 0002 0004 0005 0006 0006 0006 0006 0006 0006	G 76 LBL 16 A* 16 A* 17 01 01 32 X\$T 03 3 01 1 06 6 42 ST 08 08 71 SBR 71 B* 02 02 76 LBL 03 3 07 7 04 4 01 1 04 ST 08 08 71 SBR	061 062 063 064 065 067 077 077 077 077 077 077 077 077 077	9405 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 X:IT	109
237 69 0P 301 02 2 238 00 00 302 05 5 239 43 RCL 303 42 ST 240 08 08 304 13 11 241 69 0P 305 01 1 242 04 04 306 93 . 243 32 X;T 307 05 5 244 58 FIX 308 42 ST 245 02 02 309 14 1 246 69 0P 310 02 2 247 06 06 311 42 ST 248 92 RTN 313 02 2 249 76 LBL 313 02 2 250 23 LNX 314 93 . 251 53 ( 315 05 5 252 53 ( 316 42 ST 253 43 RCL 317 16 1 254 07 07 318 03 3 255 55 ÷ 319 42 ST 253 43 RCL 317 16 1 257 03 3 321 04 4 258 01 1 322 42 ST 259 03 3 321 04 4 258 01 1 322 42 ST 261 53 ( 325 76 LB 262 53 ( 326 10 E' 263 93 . 327 00 0 264 06 6 328 42 ST 261 53 ( 325 76 LB 262 53 ( 326 10 E' 263 93 . 327 00 0 264 06 6 328 42 ST 267 05 05 331 09 PR 269 45 YX 333 99 PR 270 93 . 334 91 R/ 271 05 5 335 76 LB 272 04 4 336 15 E 273 01 1 337 98 RD 270 93 . 334 91 R/ 271 05 5 335 76 LB 272 04 4 336 15 E 273 01 1 337 98 RD 274 54 ) 338 32 X; 275 54 ) 339 01 1 276 22 INV 340 07 7 277 45 YX 341 01 1 278 02 2 342 04 4 279 93 . 343 03 3 280 06 6 344 07 7 281 02 2 342 04 4 282 03 3 343 03 3 280 06 6 344 07 7 281 02 2 345 04 4 282 03 3 346 01 1 283 54 ) 347 42 ST 284 92 RTN 348 08 0 287 93 . 355 04 1 288 55 352 43 RC 287 93 . 355 04 1 288 55 352 43 RC 289 42 ST0 353 02 07 7 294 42 ST0 358 01 1 295 11 11 359 05 5 297 42 ST0 358 01 1 298 12 12 362 02 2	X:T 77 7 77 7 79 1 1 5 79 7 7 70 1 1 5 70 1 1 5 70 2 1 1 2 71 5 71 5 72 8 73 8 74 8 75 9 76 8 77 9 78 9 78 9 78 9 78 9 78 9 78 9 78
301 02 35 37 303 42 37 3304 305 63 307 82 37 308 92 37 308 92 37 308 92 37 308 92 37 32 32 32 32 32 32 32 32 32 32 32 32 32	237 69 OP 238 00 00 239 43 RCL 240 69 OP 241 69 OP 242 243 32 X:T 244 58 FIX 245 69 OP 247 02 08 08 247 09 OP 248 72 31 3 × ((.6 × L5) 249 09 OP 249 09 OP 240 09 OP 241 09 OP 241 09 OP 242 09 OP 243 32 X:T 244 58 FIX 245 69 OP 247 09 OP 248 72 31 3 × ((.6 × L5) 249 72 31 3 × ((.6 × L5) 252 253 43 PC 253 13 × ((.6 × L5) 254 53 PC 255 13 PC 256 13 PC 257 14 PC 257 15 PC 258 16 PC 268 16 PC 268 17 PC 268 18 PC 268 18 PC 268 18 PC 269 P
CO CO CO COPL COCO VOL V	301 02 2 3 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

## 188 SANITARY ENGINEERING PROGRAMS

364	42	STO		383	71	SBR
365	08	08		384	22	INV
366	71	SBR		385	98	ADV
367	22	INV		386	91	R/9
368	44	SUM		387	ÖÖ	
369	09	09		388	ŌŌ	ŏ
370	43			389	ŌŌ	ŏ
371	09	09		390	ÕÕ	ŏ
372	32	XIT		391	ÕÕ	ŏ
373	07	7		392	00	ŏ
374	07	7		393	00	Ŏ
				394	00	Ö
375 274	01	1		395	00	
376	07	7				Õ
377	02	2		396	00	0
378	02	2 2 2		397	00	0
379	02			398	00	0
380	03	3		399	00	0
381	42	STO		400	00	0
382	08	08		401	00	0

SEP-4
GAS SYSTEM PIPE SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out	Explanation
	Example						
<del>-</del>	1. Initialize	ı	ı	¥	ш	多年本 · 经银产品	
9. t. 4. t.	Input maximum p.d., in. w.g. Input gas calorific value Input total system length, ft Input 1 for vert. distribution	1000 200 1	1 1 1 1	***	< m U O	1006.30 1006.30 200.00 1.00	
ώ	Input number of apartments in distribution system starting from beginning of distribution	-	1	I	∢	0.000000000000000000000000000000000000	Total number of apartments Apartment gas cfh Total gas, cfh Calculated diameter Pipe size available
	Repeat step 6. Input number of apartments at next node.	ဖ	İ	ı	∢	6.00 *** 7.00 *** 130.47 *** 6.53 *** 1.00 ***	
	Repeat step 6. Input number of apartments at next node.	o	1	1	<	5.56 *** 325.92 *** 325.92 *** 1.26 *** 1.55 ***	
7.	7. If calculation is desired for horiz. system	2	I	+	Q	2,88	

SEP-4 (Continued)
GAS SYSTEM PIPE SIZING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

		±	nent load	
	Explanation	Btu/hr Cubic ft/hr equipment Total cfh equipment	Adds 90 cfh to apartment load	
	Print Out	9888.88 98.88 98.88	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	18.88 20.84 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14 20.14
E		I	∢	4
Cards: ON	Press	I	ı	I
Number of Cards: ONE		I	I	I
ES	Enter	0006	0	01
HP-97 USER INSTRUCTIONS AND EXAMPL	Procedure	. If distribution system has constant gas load, enter Btu/hr	To size for combination of equipment and previous apartments, input 0 for apartments	Continue repeating step 6.
HP-9	Step	 <b>ω</b>	တ်	

**054** RCL2 36 02

## **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
a	Prints and stores display (maximum PD) in R1; calls SBR 2
b	Prints and stores display (calorific value in Btu) in R2
С	Prints and stores display (total system length) in R3
d	Prints and stores display in R4; if input = 1, goes to SBR 0, otherwise calculates ratio of length /PD and stores in R5
0	Stores 150 in R5
A	Prints display (number of apartments), totalizes in R6, and prints value of R6; calculates diversity factor; calculates and prints gas required for apartments; calculates and prints total gas required; calculates and prints pipe diameter by SBR 1; using LBL 3 finds actual pipe diameter
1	Calculates pipe diameter
2	Actual pipe size table; stores in secondary registers
e	Clears registers R6 and R9; prints zero
E	Prints display (equipment BTU), divides by R2, and totalizes in R9

## **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
	ruilcuoii
<b>R</b> 0	Not used
R1	Maximum PD for system, in. w.g.
<b>R</b> 2	Gas calorific value, Btu/cu ft
R3	System length
R4	For selecting vertical or horizontal
<b>R</b> 5	Ratio of length/PD
R6	Total number of apartments
R7	Gas, cu ft
R8	Not used
<b>R</b> 9	Total equipment CFH
R10-R19	For pipe size table

## SEP-4 (HP-97) GAS SYSTEM PIPE SIZING PROGRAM

LISTING

				11.022	00 UL
001	*LBLa	21 16 11	055	÷	-24
002	STOI	35 <i>01</i>	056	PRTX	-14
003	PRTX	-14	<b>0</b> 57	RCL9	36 09
604	GSB2	23 62	058	+	-55
	RTH	23 82	059	ST07	35 <i>07</i>
<i>005</i>					
006	*LBLio	21 16 12	060	PRTX	-14
007	ST02	<b>3</b> 5 02	061	6SB1	23 01
008	PRTX	-14	<b>06</b> 2	PRTX	-14
009	RTH	24	063	ST00	3 <b>5 0</b> 0
010	*LBLc	21 16 13	964	Ĵ	<b>0</b> 9
011	ST03	<b>35 0</b> 3	065	STOI	<i>35 46</i>
012	PRTX	-14	066	*LBL3	21 03
015	RTN	24	067	CLX	-51
014	*LBLd	21 16 14	<b>0</b> 68	ISZI	16 26 46
015	ST04	35 04	069	RCL:	36 45
016	PRTX	-14	070	RCL0	36 00
		-17 61	<b>071</b>	X>Y?	16-34
017	1				22 03
018	X=Y?	16-33	972	6T03	
019	GT00	22 00	073	RCL i	36 45
020	RCL3	<i>36 03</i>	<b>0</b> 74	PRTX	-14
021	RCL1	36 Ø1	075	SPC	16-11
022	÷	-24	076	RTN	24
023	ST05	<i>35 0</i> 5	077	*LBL1	21 01
024	SPC	16-11	<b>0</b> 78	RCL5	36 <b>05</b>
025	RTH	24	079	•	-62
026	*LBL0	21 00	080	6	66
027	1	Ð1	081	X	-35
028	5	<b>6</b> 5	082		-62
029	0	00	083	5	<i>6</i> 5
030	ST05	<i>35 0</i> 5	<b>0</b> 84	4	Ø4
031	RTN	24	085	1	01
032	*LBLA	21 11	086	γ×	31
033	SPC	16-11	087	RCL7	36 07
034	PRTX	-14	<b>0</b> 88	X	-35
035	ST+6	35-55 <b>0</b> 6	089	2	62
036	RCL6	36 06	090	. 3	<b>0</b> 3
037	PRTX	-14	091	i	Ø.
038		-62	092	1 3	<b>0</b> 3
039	4	84	093	÷	-24
040	γx	31	094	2	<b>0</b> 2
041	1/8	52	095	_	-62
042		-62	<i>696</i>		Ø6
04Z	9	<b>0</b> 9	<b>0</b> 97		<b>0</b> 2
044	5	05 05	098	6 2 3	02 03
045	y X	-35	<b>0</b> 99	1/X	<b>5</b> 2
<b>04</b> 5	Î6	-35 Ø6	100	γx	32 31
<b>04</b> 0		95	101	RTN	31 24
047 048	5 0	<b>6</b> 0	102	*LBL2	21 <b>0</b> 2
	e 3				
949 956		00 es	103	•	-62 es
050 051	. 0	00 75	104	5 5.706	Ø5
<b>051</b>	X	-35	105	ST00	35 <b>0</b> 0
<b>052</b>	RCL6	36 <i>06</i>	106	• 7	-62
053	X	-35	107	- /	<b>0</b> 7

108	5	<b>0</b> 5	131	5	<i>0</i> 5
109	ST01	35 01	132	ST09	35 <i>09</i>
110	1	õi	133	₽₽S	16-51
	_				
111	STO2	<b>35 02</b>	134	RTN	24
112	1	ā1	135	∗LBLe	21 16 15
113		-62	136	6	00
114	2	62	137	ST06	35 <i>06</i>
115	5	<b>0</b> 5	138	ST09	<b>35 0</b> 9
	_				-51
116	ST03	35 63	139	CLX	
117	1	01	140	$PRT\lambda$	-14
118		-62	141	SPC	16-11
119	5	<i>0</i> 5	142	RTN	24
120	ST04	35 04	143	*LBLE	21 15
121	2	<b>8</b> 2	144	SPC	16-11
122	ST05	35 <i>0</i> 5	145	PRTX	-14
123	2	<b>0</b> 2	146	RCL2	36 02
124		-62	147	÷	-24
125	5	<b>2</b> 5	148	FRTX	-14
	_				
126	ST06	35 <i>06</i>	149	ST+9	<i>35-55 <b>6</b>9</i>
127	3	<b>0</b> 3	150	PRTX	-14
128	ST07	35 07	151	SPC	16-11
129	4	04	152	RTN	24
	-			R/S	51
130	ST08	35 <b>0</b> 8	153	K/3	Ji

# 5

# HEAT TRANSMISSION COEFFICIENT PROGRAMS

## BHTP-1 HEAT TRANSMISSION COEFFICIENT PROGRAM

#### **GENERAL DESCRIPTION**

While this program is intended for computing overall heat transmission coefficients, the data input can be any combination of resistances, conductivities, and thermal transmittances.

This program can also be used for computing the average thermal transmittance of the gross wall area or for computing the area of fenestration required to satisfy the average thermal transmittance.

#### **EQUATIONS**

$$R_0 = \frac{1}{h_i} + \frac{L_1}{K_1} + \frac{L_2}{K_2} + \frac{L_3}{K_3} + \frac{1}{h_0}$$
 [5.1]

$$R_0 = 1/U_{x1} + 1/U_{x2} - - - ag{5.2}$$

$$U_o = 1/R_o ag{5.3}$$

$$U_o = \Sigma U_x \times A_x / \Sigma A_x \tag{5.4}$$

$$A_0 = \sum A_x \tag{5.5}$$

where

 $R_o$  = Total thermal resistance of combination, the reciprocal of thermal conductance, hr ft² °F/Btu

 $h_i, h_o = \text{Film or surface conductance; Btu/hr ft}^2 \, ^{\circ}\text{F}$ 

 $L_1, L_2$  = Thickness of material, inches

 $K_1, K_2 = \text{conductivity of material, Btu/hr ft}^2 \, ^\circ\text{F/in}$ 

 $R = \text{Resistance per inch, hr ft}^2 \, ^{\circ}\text{F/Btu}$ 

 $U_x$  = Thermal transmittance of different materials Btu/hr ft² °F

 $U_o$  = Total or over-all or average thermal transmittance of combination, Btu/hr ft² °F

 $A_x$  = Area of different material

 $A_o = \text{Total area}$ 

#### **OPERATING FEATURES**

Since the program works on ratios only, it can be used with any other units so long as consistency of units is maintained.

#### **EXAMPLE NO. 1**

Compute  $R_o$  and  $U_o$  for the following combination:



FIGURE 5A

#### **HEAT TRANSFER COEFFICIENTS, BHTP-1**

	L, in.	K	R	
1. Outside surface (15 mph wind)	_	_	.17	
2. Concrete	7	12.0	_	
3. Insulation material	3		4	
4. Plaster	.8	5.6	_	
5. Inside surface (still air)	_	_	.68	

While the example shows only 5 materials, the program can handle any number of materials.

#### **EXAMPLE NO. 2**

A wall has thermal transmittance of 0.37 Btu/hr ft² °F. What will be its thermal transmittance with 1.5 in. of insulation having a resistance of 4.2 hr ft² °F/Btu?

#### **EXAMPLE NO. 3**

Find the average thermal transmittance of a wall having the following data:

$$U \text{ wall} = .2$$

U window = 1.13

 $U \operatorname{door} = .6$ 

A wall = 1,100 sq ft

A window = 120 sq ft

 $A ext{ door} = 40 ext{ sq ft}$ 

#### **EXAMPLE NO. 4**

Find window area and net wall area for a wall having the following data:

$$U \operatorname{door} = 0.6$$

U window = 1.13

U wall = 0.2

 $U_{o} = 0.3$ 

 $A ext{ door} = 40 ext{ sq ft}$ 

 $A_0 = 1,260 \text{ sq ft}$ 

BHTP-1
HEAT TRANSMISSION COEFFICIENT PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

		1						
Step	Procedure	Enter		Press		Print Out	#	Explanation
	Example 1							
<del>-</del>	1. Initialize	ı	I	2nd	ш	<u>.</u>		
6, E,	Enter resistance Enter thickness; if none, enter 1	.17	1 1	2nd _	A' R/S		2 æ	
4. rc.	Enter conductance Enter thickness	12	1 1	1 1	A R/S		Z II	
	Continue steps 2, 3, 4, & 5 as many times as required.	4 κ	1 1	2nd -	A' R/S	4.°.	& T	
		.8 8.	1 1	1 1	A/S	 	×I ×H	
		89	1 1	2nd -	A' R/S	ö.∺ 00	e II e H	
6.	To compute resistance and transmittance	I	1	1	R/S	13.58 0.07	======================================	Total resistance Total transmittance
	Example 2							
<del>-</del>	1. Initialize	I	ı	2nd	'n	Ö		
% is	Enter conductance Enter thickness; if none, enter 1	ε: ←	1 1	1 1	R/S	0.30	ΧĦ	
4. ए.	Enter resistance Enter thickness	4.2 1.5	1 1	2nd _	A' R/S	4.20 1.50	œΗ ×Ξ	
6.	To compute transmittance	I	I	I	R/S	9.63 0.10	C B C	Total resistance Total transmittance

BHTP-1 (Continued)
HEAT TRANSMISSION COEFFICIENT PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out		Explanation
	Example 3							
÷	1. Initialize	I	I	2nd	Щ	0.00		
2, 6,	Enter <i>U</i> of component Enter area of component	.2	1 1	1 1	B R/S	0.20	žž	
	Repeat steps 2 & 3 as many times times as required.	1.13	1 1	1 1	B R/S	1.13 120.00	××	
		.6 40	1 1	1 1	B R/S	0.60 40.00	ΧX	
4.	To complete computation	1	1	1	R/S	1260.0 0.30	89	Total area of all components Average U value
	Example 4							
<del>.</del>	1. Initialize	I	1	2nd	Щ.	00.00		
% iS	Enter <i>U</i> of components Enter area of components	.6 40	1 1	1 1	B R/S	0.60 40.00	××	
	Repeat steps 2 & 3 for all known components.							
4.	Enter $oldsymbol{\mathcal{U}}$ value of components with area unknown	1.13	1 1	1.1	c R/S	1.13 0.20	<u>~</u>	
7.65	Repeat step 4 Enter average U value Enter total area of all components to compute areas	0.3 1260	1 1 1	111	R/S R/S R/S	0.30 1260.0	98	
						1.13 118.3	××	Area of components having
						0.20	ΣX	Area of component having $U = .2$
		T						

#### **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Calls SBR STO; stores inverse of display in R01;
	with R/S, calls SBR 1/X;
	with R/S, calls SBR CE
A	Stores display in R01 and prints RX;
	with R/S, calls SBR 1/X;
	with R/S, calls SBR CE
В	Stores display in R01 and calls SBR LNX;
	with R/S, stores display in R02 and sums it into R03; prints AX; multiplies by UX and stores sum in R04;
	with R/S, computes and prints AO and UO
C	Stores display in R01 and calls SBR LNX;
	with R/S, stores display in R02 and calls SBR LNX;
	with R/S, stores display in R05 and calls SBR CLR;
	with R/S, stores display in R06 and call SBR X⇌T; computes and prints values of AX1 and AX2
INV	Prints alphanumeric identification of data
CE	Prints value of R0; computes and prints UO
LNX	Prints UX
CLR	Prints UO
X <b>≓</b> T	Prints AO
$X^2$	Prints AX
$\sqrt{X}$	Prints TH
1/X	Calls SBR $\sqrt{X}$ ; multiplies display by R01 and sums into R03
STO	Prints KX
E′	Clears all registers, clears display, and prints zero

#### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R01	Inverse of KX
R02	UX

R03	$\Sigma U_{\mathbf{X}}$
R04	$\Sigma UX \times AX$
R05	UO
R06	AO
R07	$AO - \Sigma AX$
R08	AX
R09-R17	Not used
R18	For number of decimal places
R19	Alphanumeric code

#### BHTP-1 HEAT TRANSMISSION COEFFICIENT PROGRAM

LABEI SUBR 001 015 038 085 168 210 225 240 255 270 285 297 312	LS & OUTINES 11 A 16 A' 12 B 13 C 22 INV 24 CE 23 LNX 25 CLR 32 X;T 33 X² 34 √X 35 1/X 42 ST□ 10 E'	024 025 026 027 028 039 031 032 033 034 035 036 039 040	19 19 02 2 42 STD 18 18 71 SBR 22 INV 91 R/S 71 SBR 35 1/X 91 R/S 71 SBR 24 CE 91 R/S 76 LBL 12 B 42 STD 01 01
LISTII 000 001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020 021 022 023	NG 76 LBL 11 AR 42 STD 35 1/X 42 STD 91 R/S 71 SBR 91	041 041 042 043 044 045 047 048 049 050 051 053 054 055 056 057 061 062 063	71 SBR 23 LNX 91 R/S 42 STD 02 02 44 SUM 03 03 32 X:T 03 3 04 4 42 STD 19 19 71 SBR 22 INV 65 X 43 RCL 95 = 44 SUM 04 98 ADV 98 ADV 94 R/S 43 RCL

0678900723456789000889000994567890009723456789000889000994456789000882344567890009910011011011111111111111111111111	03RTX L4 = RRRV 0304VSL 011RXS02RXVS05RTVL5 L6 - L4 - (L2 × (L6 - L3 ) R	131 132 133 134 135 137 138 139 140 141 144 144 145 147 147 147 147 147 147 147 147 147 147	### + (L1 - L2) = D8L1RXL8R VL2RXL8VM7L7R VSLVVXR OCL9 R O - T8 C1 R O - T8 C	196 197 198 199 2001 2003 206 207 208 2001 2006 2007 2006 2007 2006 2007 2006 2007 2007	21087123188 VXRRV 0038LXT 4 4 4 09 2 0 18 8 NVXRRV 0038LXT 4 4 109 2 18 18 NVXRRV 0038LXT 4 4 4 09 2 18 18 NVXRRV 0038LXT 4 4 4 09 2 18 18 NVXRV 0038LXT 1 3 2 0 18 18 NVXRV 1 3 2 0 18 18 NVXRV 1 3 2 0 18 18 NVXV 1 3 2 19 10 18 NVXV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2559012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789000000000000000000000000000000000000	344 □9 □8RVNL T 372 □9 □8RVNLXR V L1 = M3NL□T : 644 □9 □8RVNL SIRLECCAPAR O
127 128 129 130			03 3 02 2 42 STD 19 19	257			

BHTP-1 HEAT TRANSMISSION COEFFICIENT PROGRAM HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

- Control of the Cont							
Procedure		Enter		Press		Print Out	Explanation
Example 1							
1. Initialize		l	I	ţ	ш	***	
Enter resistance Enter thickness;	Enter resistance Enter thickness; if none, enter 1	.17	1 1	* I	A R/S	***	
Enter conductance Enter thickness	tance ess	12 7	1 1	1 1	A R/S	12.86 *** 7.85 ***	
Repeat steps 2 through many times as desired.	Repeat steps 2 through 5 as many times as desired.	4 κ	1 1	+ 1	A R/S	4.80 + **	
		5.6 .8	1 1	1 1	A R/S	5.00 6.00 8.00 8.00	
		.68	1 1	* I	A R/S	6.68 *** 1.88 ***	
To compute r transmittance	To compute resistance and transmittance	I	I	1	R/S	13,56 ***	Resistance Transmittance
Example 2							
1. Initialize		I	I	f	ш	*** 88.8	
Enter conductance Enter thickness; if ı	Enter conductance Enter thickness; if none, enter 1	ω <u>.</u> −	1 1	1 1 .	A R/S	6. 36 1. 66 ***	
Enter resistance Enter thickness	nce ess	4.2 1.5	1 1	*	A A	1.20 ***	
To compute	To compute transmittance	1	ı	1	R/S	9.63 *** 8.10 ***	Total resistance Total transmittance

BHTP-1 (Continued)
HEAT TRANSMISSION COEFFICIENT PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation						Total area of components Average <i>U</i> value						Area of component having	U = 1.13 Area of component having $U = .2$
		***	***	***	* * *	***		安安	* *	* * *	* *	* * *	* * *
Print Out		ତ୍ର <b>'</b> ର	8,28 1189,88	120.00	0.60 40.00	1268,86		99 9	24 0.0 (24 0.0 (25 0.0 (25)	1.13 .20 .20	6.55 1266,65	10 00 77 77 77 77 77 77 77 77 77 77 77 77	8.26 1181.72
		ш	B R/S	B R/S	B R/S	R/S		ш	B R/S	c R/S	R/S R/S		
Press		+	1 1	1 1	1 1	I		ţ	1 1	1 1	1 1		
		ı	1 1	1 1	1 1	1		1	1 1	1 1	1 1		
Enter		I	.2 1100	1.13	.6 40	I		I	.6 40	1.13	.3		
Procedure	Example 3	Initialize	Enter <i>U</i> of components Enter area of components	Repeat steps 2 & 3.		To complete computation	Example 4	1. Initialize	Enter <i>U</i> of components Enter area of components	Enter <i>U</i> with area unknown Repeat step 4.	Enter average <i>U</i> value Enter total area		
Step		<u>-</u>	9 i i			4.		<del>-</del>	3 .2	4.	6. 57		

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Prints display (KX) and stores inverse of display in R1;
	with R/S, goes to SBR 0;
	with R/S, goes to SBR 1
a	Prints display (RX) and stores display in R1;
	with R/S, goes to SBR 0;
	with R/S, goes to SBR 1
В	Prints and stores display (U) in R1;
	with R/S, prints and stores display (area) in R2 and totalizes in R3; multiplies R1 by R2 and totalizes product in R4;
	with R/S, computes and prints total area and over-all U factor
C	Prints and stores display (UX) in R1;
	with R/S, prints and stores display (AX) in
	R2; with R/S, prints and stores display (UO) in R5;
	with R/S, prints and stores display (AO) in R6;
	computes and prints UX and AX
0	Prints display, multiplies by R1, and totalizes product in R3
1	Prints R3 and inverse of R3 and clears register R3
e	Clears registers and prints 0

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R0	Not used
R1	Inverse of KX or RX
R2	UX
R3	ΣUΧ
R4	$\Sigma UX \times AX$
R5	UO
R6	AO
R7	$AO - \Sigma AX$
<b>R</b> 8	AX
R9	Not used

BHTP-1 (HP-97) HEAT TRANSMISSION COEFFICIENT PROGRAM

LISTI	ING		<b>0</b> 55	PRTX	-14
651	RTN	24	656	SPC	16-11
832	*LBLH	21 11	€57	RCL5	<i>36 0</i> 5
003	PRTX	-14	058	X	-35
604	1/8	52	<b>05</b> 5	RCL4	36 04
00. 085	ST01	<b>35</b> 01	060	_	-45
006 006	R/S	51	661	RCL6	36 <i>06</i>
687	GSB0	23 00	062	RCL3	36 03
006 006	R/S	5í	063	-	-45
005 005	6SB1	23 01	064	ST07	35 07
010	R/3	51	065	RCL2	36 <b>0</b> 2
010 011	*LBLa	21 16 11	066 066	X	-35
012	STO1	35 01	067	-	-45
	PRTX	-14	068	RCL1	36 01
013 014	R/S	51	069	RCL2	36 02
	6SB0	23 00	070 070	NOLL	-45
015		23 <b>6</b> 6 51	071	÷	-24
816 843	R/S		672	ST08	35 Ø8
617	GSB1	23 01 51	672 673	RCL1	36 01
818	R/S		073 074	PRTX	-14
<i>019</i>	*LBLB		074 075	RCL8	36 <b>0</b> 8
020	ST01	35 01		PRTX	-14
021	PRTX	-14	676 677		
622	R/S	51	077 070	SPC	16-11 36 02
023	STO2	35 02	078 676	RCL2	36 02 -14
624	ST+3	35 <b>-55</b> 03	075 000	PRTX	
<i>625</i>	PRTX	-14	080 064	RCL8	36 08
626	RCL1	36 01	081	ST-7	35-45 07 36 07
627	X	-35	082 007	RCL7	36 07
028	ST+4	35-55 04	<b>0</b> 83	PRTX	-14 16-11
029	SPC	16-11	684 665	SPC D/C	16-11 51
636	R/S	51 36 65	885 666	R∕S ∗LBL0	21 00
631	RCL3	36 63	086 087	PRTX	-14
032	PRTX	-14			16-11
033	1/X	52 75 07	<i>038</i>	SPC RCL1	36 01
034	RCL4	36 <u>04</u>	689 600	KULI X	-35
635	X	-35	696 696		
<i>636</i>	FRTX	-14	<i>0</i> 91	ST+3	35-55 03
9 <b>3</b> 7	SPC	16-11	<b>0</b> 92	RTN	24
<i>038</i>	0	00 75 97	<i>093</i>	*LBL1	21 01
039	ST03	35 03 35 04	<b>0</b> 94	RCL3	36 03
040	3 <b>T04</b>	35 <i>0</i> 4	095	PRTX	-14
041	SPC	16-11	696	1/X	52
042	R/S	51	<b>0</b> 97	PRTX	-14
<i>043</i>	*LBLC	21 13 35 at	<i>0</i> 98	SPC	16-11
044	ST01	35 <i>0</i> 1 -14	<i>0</i> 99	0	99
045	PRTX		100	ST03	35 03
046	R/S	51	101	RTN	24
047	STO2	35 02	102	*LBLe	21 16 15
<b>0</b> 48	FRTX	-14	103	CLRG	16-53 -51
04S	SPC PxC	16-11	104 105	CLX	-51 16-11
050 051	R/S	51 75 95	105	SPC	16-11 -14
651 050	ST05	35 <i>0</i> 5	106	PRTX	-14 16-11
052 053	PRTX	-14	107	SPC R∕S	76-11 51
053 057	R/S croc	51 75 06	108	K/3	Ji
<b>0</b> 54	ST0€	35 06			

#### BHTP-2

#### OVER-ALL THERMAL TRANSMITTANCE VALUE PROGRAM

#### **GENERAL DESCRIPTION**

This program is based on ASHRAE Standard 90-75R, "Energy Conservation in New Buildings."

The program can compute either OTTV or  $A_w$  and  $A_x$  for a specified value of OTTV.

Due to the large amount of data input required, this program is arranged in prompting mode.

#### **EQUATIONS**

$$OTTV = (U_w \times A_w \times TDEQ) + (A_x \times SF \times SC) + (U_x \times A_x \times \Delta T)/A_0$$
 [5.6]

where

OTTV = Over-all thermal transmittance value

 $U_w$  = The thermal transmittance of all elements of the opaque wall area, Btu/hr ft  2  F

 $A_w =$ Opaque wall area in sq ft

TEDQ = Equivalent temperature difference based on mass of the wall construction

 $A_x$  = Area of fenestration in sq ft

 $SF = Solar factor value in Btu/hr ft^2$ 

SC =Shading coefficient

 $U_x$  = The thermal transmittance of fenestration

 $\Delta T$  = Temperature difference between exterior and interior design conditions in  $\Upsilon$ 

 $A_o = \text{Total area}$ 

The above equation can also be used for a roof or ceiling in which case the symbols should be read as below:

 $U_w$  = The thermal transmittance of all elements of the opaque roof area, Btu/hr ft ² F

 $A_w$  = Opaque roof area in sq ft

TEDQ = Equivalent temperature difference based on mass of the roof construction

 $A_x$  = Skylight area

 $SF = Solar factor in Btu/hr ft^2$ 

-suggested value of 138 for skylights

SC = Shading coefficient for skylight

 $U_x$  = The thermal conductance of skylight in

Btu/hr ft²

OTTV = Suggested value for skylight, 8.5

#### **OPERATING FEATURES**

As already mentioned, the program can be used for both walls and roofs. It can also be used for computing the value of *U/TC* or *I/H*, required for finding *TDEQR* for roof.

#### **EXAMPLE NO. 1**

Compute OTTV for a wall having the following data:

 $U_{w} = 0.2$ 

 $A_w = 1100$ 

TDEQ = 30

 $A_x = 140$ 

SF = 128

SC = 0.55

 $U_x = 0.65$ 

 $\Delta T = 17$ 

#### **EXAMPLE NO. 2**

Compute  $A_x$  and  $A_w$  for a wall having the following data:

 $U_w = 0.2$ 

TDEQ = 30

SF = 128

SC = 0.55

 $U_x = 0.65$ 

 $\Delta T = 17$ 

 $A_o = 1240$ 

OTTV = 14.5

#### **EXAMPLE NO. 3**

Compute I/H or U/TC for a roof having the following data:

 $U_x = 0.15$  Btu/hr ft² °F

Sp. heat =  $0.2 \text{ Btu/lb } ^{\circ}\text{F}$ 

Density = 80 lb/cu ft

Thickness = .75 ft

BHTP-2
OVER-ALL THERMAL TRANSMITTANCE VALUE PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

	Explanation		Prompt by printer What is <i>U</i> value for wall?	What is area of wall?	What is equivalent temp.?	What is area of fenestration or skylight?	What is solar factor?	What is shading coeff.?	What is $U$ value of $x$ ?	What is temp. diff.?	Total area	Over-all thermal transmittance value	
	Print Out		N 30	30 30 0	T DE 0	98. 140.	о ш.с. о —	3C 0.55			1240.0 80	114.50	
			A/S	R/S	R/S	R/S	R/S	R/S	R/S	R/S			
OINE	Press		1 1	1	I	Ì	I	l	1	I			
Mailliber of Cards. Civil			1 1	I	I	I	1	I	I	I		-	
1	Enter		0.2	1100	30	140	128	0.55	0.65	17			
	Procedure	Example 1	To start computation Enter $oldsymbol{U}$ value for wall	Enter area of wall	Enter equivalent temp. diff.	Enter area of component having solar heat gain	Enter solar factor	Enter shading coeff.	Enter $oldsymbol{U}$ value of component having solar heat gain	Enter design temp. diff.			
	Step		2	က်	4.	က	.9	7.	∞	6			

BHTP-2 (Continued)
OVER-ALL THERMAL TRANSMITTANCE VALUE PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out	Explanation
	Example 2						
- 2	. To start computation Enter $oldsymbol{U}$ value for wall	l <b>c</b> i	1.1	1 1	A/S	UW 0.2	Prompt by printer What is <i>U</i> value of wall?
က်	Enter 0 for unknown area	0	ı	I	R/S	o BB O	What is area of wall? Since unknown, enter 0
4.	Enter temp. diff.	30	ı	ı	R/S	TDEQ 30.	What is equivalent temp. diff.?
ம்	Enter 0 for unknown area	0	I	I	R/S		What is area of fenestration or skylight? Since unknown, enter 0
9	Enter solar factor	128	I	1	R/S	∞ ⊞ ⊘ ⊣	What is solar factor?
7.	Enter shading coeff.	.55	I	1	R/S	0.0 0.0	What is shading coeff.?
<u></u>	Enter U value of component having solar transmittance	0.65	I	I	R/S	რ % 3.0	What is $U$ value of $x$ ?
<u>ი</u>	Enter design temp. diff.	17	ı	I	R/S		What is temp. diff.?
10.	Enter total area	1240	I	I	R/S	AO 1240.	What is total area?
17.	Enter over-all thermal transmittance value	14.5	ı	I	R/S	017V 14.0	What is over-all thermal transmittance?

						r o o x o x	Area of fenestration
						1100.3 AW	Area of wall
	Example 3						
1.	. Start computation . Enter $oldsymbol{U}$ roof	0.15		1 1	B R/S	UR 0.15	What is <i>U</i> value of roof?
က်	Enter specific heat of roof	0.2	1	I	R/S	SPHT 0.2	What is specific heat?
4.	Enter density of roof, lb/cu ft	08	I	I	R/S	DS 80.	What is density?
5.	. Enter thickness of roof, ft	0.75	I	I	R/S	TH 0.75	What is thickness?
						0.012 17H	Answer
				-			

#### **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Clears all registers; resets flag 1 if set; prints UW;
	with R/S, stores display in R01, prints value, and calls SBR 1/X;
	with R/S, stores display in R02, prints value, and prints TDEQ;
	with R/S, stores display in R03 and prints value, multiplies UW by TDEQ, and stores value in R11;
	with R/S, stores display in R04 and prints value; if equal to zero goes to SBR LNX and prints SF;
	with R/S, stores display in R05, prints value and prints SC;
	with R/S, stores display in R06, prints value and prints UX;
	with R/S, stores display in R07, prints value and prints $\Delta T$ ;
	with R/S, stores display in R08, prints value, computes $SF \times SC + UX \times \Delta T$ and stores value in R12; if flag 1 is set goes to SBR CLR, otherwise continues, computes, and prints value of OTTV by calling SBR $X^2$
INV	Prints alphanumeric identification of data
LNX	Sets flag 1 and goes to SBR CE
CE	Continues sequence for computing OTTV
CLR	Continues sequence when OTTV is known;
	with R/S, stores display in R10, prints value, and calls SBR $X^2$ ;
	with R/S, stores display in STO 09, prints value, computes and prints AX and AW
X <b>⇄</b> T	Prints AO
$X^2$	Prints OTTV
$\sqrt{X}$	Prints AX
1/X	Prints AW
В	Computes and prints I/H

#### **EXPLANATION OF STORAGE REGISTERS**

Register	Function	
R01	UW or UR	
R02	AW or SPHT	
R03	TDEQ or DS	
R04	AX	
R05	SF	
R06	SC	
R07	UX	
R08	$\Delta \mathrm{T}$	
R09	OTTV	
R10	AO	
R11	UW or TDEQ	
R12	$SF \times SC + UX \times \Delta T$	
R13	AX	
R14-R18	Not used	
R19	Alphanumeric code	

### BHTP-2 OVER-ALL THERMAL TRANSMITTANCE VALUE PROGRAM

LABELS & SUBROUTINES 001 11 A 063 24 CE 173 22 INV 187 23 LNX 194 25 CLR 255 32 X:T 266 33 X ² 281 34 \( \text{XX} \) 292 35 1/X 303 12 B	012 71 SBR 013 22 INV 014 91 R/S 015 42 STD 016 01 01 017 99 PRT 018 98 ADV 019 71 SBR 020 35 1/X 021 91 R/S 022 42 STD 023 02 02
LISTING  000 76 LBL  001 11 A  002 47 CMS  003 22 INV  004 86 STF  005 01 01  006 04 4  007 01 1  008 04 4  009 03 3  010 42 STD  011 19 19	025 98 ADV 026 03 3 027 07 7 028 01 1 029 06 6 030 01 1 031 07 7 032 03 3 032 04 4 034 42 STD 035 19 19 036 71 SBR 037 22 INV

038 91 R/S 039 42 303 040 03 97 PRV 042 98 ADV 044 01 04 65 RCL 044 04 05 8 BDV 050 051 98 ADV 051 98 ADV 052 71 SBR 053 054 05 99 PRT 055 056 057 056 057 059 060 061 23 LNX 060 061 23 LNX 060 062 76 LBL 063 064 03 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
101 102 103 104 107 108 109 111 1114 1117 1118 1123 1234 1234 1231 1231 1334 1340 1441 1447 1447 1447 1447 1447 1447 14
07 99 PRTV 07 99 PRTV 08 7 7 99 PRTV 09 97 75 3 7 99 PRTV 09 97 8 19 PRTV 91 R/S 99 PRTV 92 PRTV 93 RC 99 PRTV 942 PRTV 95 RC 95 PRTV 96 PRTV 97 PRTV 98 PRTV 99 PRTV 99 PRTV 99 PRTV 99 PRTV 99 PRTV 99 PRTV 90 PRTV 90 PRTV 91 PRTV 91 PRTV 92 PRTV 93 PRTV 943 PRTV 95 PRTV 96 PRTV 97 PRTV 98 PRTV
164 95 = X
7789012334567890123445678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678900123456789000000000000000000000000000000000000
12 - L11

29012393456789901233333333333333333333333333333333333	92 RTN 76 LBL 92 RTN 76 LBL 93 STD 94 43 STD 94 43 STD 95 STD 97 SBV 97	456789012345678901234567890123456789012345678901234 33333333333333333333333333333333333	03 99 ADV 99 ADV 99 ADV 99 ADV 199 STUP 199 STUP 1
	19 19 71 SBR 22 INV 91 R/S 42 STO	393 394 395 396	

BHTP-2
OVER-ALL THERMAL TRANSMITTANCE VALUE PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step Procedure	Enter		Press		Print Out		Explanation
Example 1							
1. Enter U value of wall .2 2. Enter area of wall .1100 3. Enter equivalent temp. diff. 30	 	1 1 1	1 1 1	A R/S R/S	8.28 *** 1188.88 *** 33.88 ***	***	
of component having 140		ı	I	R/S	148.00	***	
5. Enter solar gain 128 - 6. Enter shading coeff 55	 	1 1	1 1	R/S R/S	128,63 #n 6,55 #n	***	
7. Enter <i>U</i> value of component .65	 •	ı		R/S	8,65 **	***	
Enter design temp. diff. – 17 –	 1		I	R/S	17.66 wa	***	
					1240.68 *** 14.52 ***	* *	Total area Over-all thermal transmittance
Example 2							
Enter <i>U</i> value of wall .2 . Enter 0 if area is unknown 0 . Enter temp. diff	 · · · ·		1 1 1	A R/S R/S	6.28 *** 6.68 *** 36.68 ***	***	
Enter 0 if area is unknown 0 - Enter solar factor - Enter shading coeff 55	 	1 1 1	1 1 1	R/S R/S R/S	6.66 *** 128.66 *** 8.55 ***		
7. Enter U value of component .65 – having solar gain	 l		I I	R/S	** * * * * * * * * * * * * * * * * * *	<b>*</b> :	
			l		**************************************	÷	

BHTP-2 (Continued)
OVER-ALL THERMAL TRANSMITTANCE VALUE PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

	ation	
Explanation	Area of fenestration Area of wall	H/1
	** **	* # * * * · * * * * * * * * * *
Print Out	12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	'' ବିଧାର br>ବିଧାର ବିଧାର ବି
	R/S	8
Press	1.1	1 1 1 1
	1 1	1 1 1 1
Enter	1240	.15 .2 .75
Procedure	Enter total area Enter over-all thermal transmittance value	Example 3  Enter U value for roof  Enter specific heat of roof  Enter density of roof, lb/cu ft  Enter thickness of roof, ft
Step		– ମ ଜ୍ୟ ■ ଅଅ ଅଅ

22 82

36 82

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Clears all registers; clears flag 1; prints and stores display (UW) in R1;
	with R/S, prints and stores display (AW) in R2;
	with R/S, prints and stores display (TDEQ) in R3, calculates TDEQ $\times$ R1, and stores in RA;
	with R/S, prints and stores display (AX) in R4 and if equal to 0, goes to SBR 0;
	with R/S, prints and stores display (SF)
	in R5; with R/S, prints and stores display (SC) in R6;
	with R/S, prints and stores display (UX) in R7;
	with R/S, prints and stores display (temperature difference) in R8; if flag 1 is set goes to SBR 2; calculates and prints over-all area and over-all thermal transfer value
0	Sets flag 1; goes to SBR 1 (mid-part of LBL A)
2	Stops computations
	with R/S, prints and stores display in R9; computes and prints AX and AW
В	Prints and stores display (UR) in R1; prints and stores display (SPHT) in R2; prints and stores display (DS) in R3; prints display (TH) and computes I/H

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
RO	AO
R1	UW or UR
R2	AW or SPHT
R3	TDEQ or DS
R4	AX
R5	SF
R6	SC
R7	UX
R8	Temperature difference

<b>R</b> 9	OTTV
RA	$TDEQ \times UW$
RB	$SF \times SC + UX \times \Delta T$
RC	AX

LISTING

#### BHTP-2 (HP-97) OVER-ALL THERMAL TRANSMITTANCÉ VALUE PROGRAM

001 *LBLA 21 11 046 RCL2

045 GT02

002	CLRG	1 <b>6-5</b> 3	047	RCL4	36 04
003	CF1	16 22 01	048	+	-55
004	ST01	35 Ø1	049	ST0 <b>0</b>	35 00
005	PRTX	-14	050	PRTX	-14
<i>6</i> 06	R/S	51	051	RCLA	36 11
007	ST02	35 <b>0</b> 2	<b>052</b>	RCL2	36 02
008	PRTX	-14	053	X	-35
009	R/S	51	<i>0</i> 54	RCLB	36 12
010	ST03	<b>35</b>	<i>6</i> 55	RCL4	36 04
011	PRTX	-14	<i>056</i>	Х	-35
012	SPC	16-11	<b>6</b> 57	+	-55
013	RCL1	36 <b>0</b> 1	<i>0</i> 58	RCL0	36 00
014	X	-35	059	÷	-24
€15	STOA	<b>35</b> 11	060	PRTX	-14
616	R/S	51	061	SPC	16-11
017	ST04	<i>35 04</i>	062	SPC	16-11
<i>0</i> 18	PRTX	-14	<i>063</i>	R∕S	51
019	X=0?	16-43	064	*LBL0	21 00
020	6700	22 <b>0</b> 0	065	SF1	16 21 <b>6</b> 1
<i>021</i>	*LBL1	21 61	066	€SB1	23 61
<i>022</i>	R/S	51	067	RTN	24
<b>0</b> 23	ST05	35 <i>0</i> 5	<i>068</i>	<b>≭LBL</b> 2	21 02
<i>6</i> 24	PRTX	-14	<i>069</i>	R∕S	51
025	R/S	51	<i>070</i>	ST00	35 00
<i>026</i>	ST06	35 06	07,1	PRTX	-14
<i>0</i> 27	PRTX	-14	<i>072</i>	R∕S	51
<i>6</i> 28	SPC	16-11	073	ST09	<b>35 0</b> 9
029	R/S	51	674	PRTX	-14
630	ST07	<b>35 0</b> 7	075	SPC	16-11
031	PRTX	-14	076	SPC	16-11
032	R/S	51	<b>0</b> 77	RCL0	36 00
033	ST08	35 <b>6</b> 8	<b>0</b> 78	X	-35
034	PRTX	-14	079	RCL0	36 00
035	SPC	16-11	080	RCLA	36 11
<i>036</i>	SPC	16-11	081	Х	-35
037	RCL7	36 07	682	-	-45
<b>038</b>	X	-35 36.65	<b>0</b> 83	RCLB	36 12
039	RCL5	36 85 36 86	<b>0</b> 84	RCLA	36 11
040	RCL6	36 06 -75	085 336	-	-45
041	X +	-35 -55	<i>086</i>	÷ natv	-24 -14
042 047	STŪB	-55 35 12	087 000	PRTX Relo	-14 36 <b>0</b> 0
043 044	510B F1?	35 12 16 23 01	<b>0</b> 88 089	KELU -	36 00 -45
244	F1?	10 23 01	603	_	-45

090	CHS	-22	106	SPC	16-11
691	PRTX	-14	107	SPC	16-11
092	SPC	16-11	108	1/8	52
093	RTN	24	109	RCL1	36 61
094	*LBLB	21 12	110	X	-35
095	ST01	35 <b>0</b> 1	111	RCL3	<b>3</b> 6 <b>0</b> 3
096	PRTX	-14	112	÷	-24
<b>0</b> 57	R/S	51	113	RCL2	36 02
098	ST02	<b>35 0</b> 2	114	÷	-24
099	PRTX	-14	115	DSP3	-63 03
100	SPC	16-11	116	PRTX	-14
101	R/S	51	117	DSP2	-63 02
102	ST03	<b>35 0</b> 3	118	SPC	16-11
103	PRTX	-14	119	SPC	16-11
104	R/S	51	120	R/S	51
105	PRTX	-14			



#### SOLP-1 SOLAR SHADING PROGRAM

#### **PROGRAM DESCRIPTION**

This program will be of interest to both architects and engineers. It can be used for computing sun altitude angle, azimuth angle, and shading from exterior shading devices, such as overhangs and fins. The program is based on information given in the ASHRAE *Handbook Fundamentals Volume*.

The program can be used for designing exterior solar shading and also for calculating the shading effect for making heat load calculations. While Figures 1 and 2 show the shading devices at a right angle to

the wall, the program can be used for shading devices at any angle by measuring the perpendicular distance from the tip of the shading device to the wall.

#### **EQUATIONS**

$$\sin A = \cos D \times \sin H / \cos B \tag{6.1}$$

$$\sin B = \cos L \times \cos D \times \cos H + \sin L \times \sin D \tag{6.2}$$

where

A = Solar azimuth





FIGURE 6A FIGURE 6B

B = Solar altitude

L =Site latitude

D = Declination

H = Hour angle

$$D = 23.46 \times \sin[(30M + 275) \times 360/365]$$
 [6.3]

where

M = Month number, January being 1, and so on

$$H = [(\text{Hour}-12) \times 60 - C] \times .25$$
 [6.4]

where

C = Correction for equation of time from Table 1 of chapter 26, ASHRAE Handbook Fundamentals Volume

Shade by overhang = Overhang length

$$\times \frac{\tan B}{\cos (A - A_w)}$$
 [6.5]

where

 $A_w = Azimuth of wall$ 

Shade by fin = Fin length 
$$\times$$
 tan  $(A - A_w)$  [6.6]

#### **OPERATING FEATURES**

Wall azimuth. The wall azimuth is the normal to the wall measured from the south. Clock-wise rotation is measured as positive while counter-clockwise rotation is measured as negative. Refer to Table 1 for common wall azimuth angles. However, the program will accept any other angles.

Overhang length. The overhang length can be in any units: feet, inches, centimeters, etc. Since the program is arranged to print without any decimal numbers, better accuracy can be obtained if the overhang length is entered in either inches or centimeters. As shown in Figure 6A, the overhang is perpendicular to the wall. Actually, the overhang can be at any angle, but the length is the perpendicular distance to the wall and

the shadow calculated will be from the point where the perpendicular from the overhang meets the wall.

Right and left fin lengths. The above comments also apply to the fins. Please see Figure 6B for an explanation of fin length and geometry.

Starting and final months. The calculations are done for the twenty-first day of each month (±3 three days). The program will calculate for any number of months, commencing from the desired month and terminating with the final month. The months must be entered numerically, i.e., number 1 for January, number 2 for February, and so on.

Actually, it is not necessary to make calculations for all the 12 months. As shown in Table 2B, calculations for June through December (6 through 12) will give all the information required for 12 months.

Starting and final hours. As in the case of months, it is not necessary to make calculations for all hours. Table 2A shows how calculations for the 12th through the 18th hour are the same as that for the 6th through the 12th. Neglect negative shading values.

The program calculates the azimuth by calculating the sine of the angle. Since the sine of, say,  $85^{\circ}$  is the same as that of  $95^{\circ}$ , the program does not discriminate when the sun passes the east-west axis. This has been corrected for afternoon hours, but this correction is not feasible for the morning hours. As shown in the examples, during the afternoon hours, the azimuth does exceed  $90^{\circ}$ , but for morning hours it often remains below  $-90^{\circ}$ . This can be overcome by two means:

- 1. By inputting exposures in east zones as a mirror image of the west zone. For example, a wall with a -27° azimuth can be input as 27° azimuth and information for 13th hours will be the same as that for the 11th hours as shown in Tables 1, 2A, and 2B.
- **2.** Correction for morning hours can be made manually, as shown in the example.

TABLE 1

	N	NE	E	SE	S	sw	w	NW
Actual azimuth	180	-135	-90	-45	0	45	90	135
Input azimuth	180	135	90	45	0	45	90	135
Input hours	15/19	13/19	13/19	12/17	12/16	12/17	13/19	13/19
Information will correspond to	9/5	11/5	11/5	-	_	_	_	-

**TABLE 2A** SIMILAR HOURS

Solar Time		Solar Time
6	=	18
7	=	17
8	=	16
9	=	15
10	=	14
11	=	13
12	=	12

Hours 12 through 19 will give information for the entire day.

**TABLE 2B SIMILAR MONTHS** 

		Dec—12
Jan—1	=	Nov-11
Feb—2	=	Oct—10
Mar—3	=	Sept—9
Apr—4	=	Aug—8
May—5	=	July—7
June—6	=	

Months 6 through 12 will give information for the entire year.

SOLP-1
SOLAR SHADING PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation	Note: Negative sign for eastern half Note: 24-hour clock	Month		Negative for eastern half Shadow by overhang Shadow by right fin Neglect negative number				
Explan	EL 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Μ		ALT HZ Neg CHZ Sha Sha Neg CHZ Sha Sha Sha Neg CHZ Sha Sha Neg CHZ Sha	<u>a</u>	HRSSS24	<u> </u>	H H H H
Print Out	နယ် ရမ္မ ယိုင်းလွှင်လုံလုံလုံနှံ	ហំ	க்	4 / 4 / 4 / 4 / 6 / 7 / 7	្ន	υυ α	u 	ის 440-
	C, B, A, C,	<u> </u>						
Press	2nd 2nd 2nd 1 1 1							
	1 1 1 1 1 1 1	I						
Enter	43 10 10 10 10 9	ı						
Procedure	Example 1  Enter site latitude Enter wall azimuth Enter overhang length Enter right fin length Enter left fin length Enter starting month Enter starting hour Enter starting hour				Output will continue in this	only the changes and press B.		
Step	- 2.8.4.7.9.2.8.9	10.						

######################################	ထိ⊶်ထိယ်က် ဟုတ္⊶ ၊	(Will continue — computer operation stopped by pressing R/S)
0:: ::::	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
HNOOO LEELL CORI	orinoo	
T.	ത്	
E.	ú	
HNOOO LEELL LOOO	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
H H H H H H H H H H H H H H H H H H H	დადი¦თ ⊣ 44∺დდ 4	
Ï	o 	
A B B B B B B B B B B B B B B B B B B B	60 60 60 60 60 60 60 60 60 60 60 60 60 6	
H	ć.	

SOLP-1 (Continued)
SOLAR SHADING PROGRAM
USER INSTRUCTIONS AND EXAMPLES

Number of Cards: TWO

	Explanation			Should be 105	Should be -95	
		OLOL	E	T TTLL TATEL TATEL	T TETT E LYSSO	
	Print Out	က်ယော်တိတ်	ທ່	က် နက်လွတ် ကောင်း	0100 ⊶⊶ ৮ 4.0.৮⊶⊸	
		E, R/S A R/S B				
	Press	2nd 				
		1111				
	Enter	ا موسى				
	p Procedure	Example 2  . Enter starting month . Enter final month . Enter starting hour . Enter starting hour . To start computation		Comparison of results at hours 8 and 9 shows that AZ at hour 6 should be — 105, and at hour 7 should be — 95.		
L	Step	−. 0. w. 4. r.			·	

 				 	 	<del></del>	 
Ĩ		Ï	A B A L L L L L L L L L L L L L L L L L				
00	ני ביים יים	o.	4 ~ ~ . QQQV_V				
	(^) ( <u>()</u>		The form of				
-				 	 ······································		
 				·	 etalisense alla illinata da meta dilitaria da me		
	***************************************			 			

#### **EXPLANATION OF LABELS & SUBROUTINES**

EXPLAN	IATION OF LABELS & SUBROUTINES	RUZ-RU
Label	Function	R09
A'	Prints and stores latitude LAT; partitions	R10
	program	R11
B'	Prints and stores WAZ	R12
C'	Prints and stores overhang length OH	R13
D'	Prints and stores right fin length RF;	R14
	with R/S, prints and stores left fin length LF	R15 R16
E'	Prints and stores month start MS;	R17
	with R/S, prints and stores month start MS;	
	with R/S, prints and stores month finish MF	R18 R19 & R20
A	Prints and stores hour start HS;	R21
	with R/S, prints and stores hour finish HF	R22
INV	Prints alphanumeric identification of data	R23
CE	Calculates declination	R24
X <b>≠</b> T	Calculates hour angle	R25-R3
$X^2$	Prints ALT; prints AZ	
$\sqrt{X}$	Calculates shadow by overhang	R37
1/X	Calculates shadow by right fin	R38
STO	Calculates shadow by left fin	R39
В	Starts calculation	
LNX	Repeats monthly cycle	
CLR	Repeats hourly cycle	
RCL	Stores table for correcting equation of time	SOLP-1
SUM	For finding correction for equation of time	SUBROL 001 1
Y ^x	For reiterating month for correcting equation of time	022 1 038 1 052 1
EE	To adjust azimuth when it exceeds 90°	078 1 104 1
(	To store previous value of azimuth	145 2 162 2 197 3

#### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	DSZ for month
R01	DSZ for hour

#### SOLP-1 SOLAR SHADING PROGRAM

R02-R08 Not used

Alphanumeric code

Site latitude
Wall azimuth
Overhang length
Right fin length
Left fin length
Month start
Month finish
Hour start
Hour finish

Not used Declination

Altitude Not used

equation of time

Hour angle; also azimuth

For storing table for correcting

Equation of time correction

For converting azimuth to above 90°

For RLC IND for equation of time

LABELS 8	INES	609	52 EE
SUBROUT		622	53 (
022 17 038 18 052 19 078 10 104 11 145 22 162 24 197 32 280 33 307 34 341 35 368 42 395 12 399 23 441 25 476 43 573 44 584 45	B. C. D. E. A INV CE X:T X2 I/X STO B LNX CLR RCL SUM	LISTIN 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016	NG 76 LBL 16 A* 42 STO 10 10 32 X:T 02 2 07 7 01 1 03 3 07 7 42 STO 09 09 71 SBR 22 INV 58 FIX

017 04 4 018 69 0P 019 17 17 020 91 R/S 021 76 LBL 022 17 B' 023 42 ST0 024 11 11 025 32 X;T 026 04 4 027 03 3 028 01 1 029 03 3 030 04 42 ST0 031 06 6 032 42 ST0 033 09 09 R/S 034 71 SBRV 035 91 R/S 037 76 LBL 038 18 C' 038 18 C' 039 040 12 12 T 042 03 3 044 02 ST0 044 02 ST0 045 42 ST0 046 047 09 09 R/S 047 048 71 SBRV 050 91 R/S 051 76 LBL 047 09 09 R/S 051 76 LBL 053 42 ST0 048 02 2 049 071 SBRV 050 051 76 LBL 051 052 19 D' 052 19 D' 053 42 ST0 054 13 13 055 03 3 057 05 5 058 02 2 059 01 1 060 061 09 07 053 02 2 059 01 1 060 062 71 SBRV 066 14 14 14 067 028 ST0 068 02 2 059 07 7 068 02 2 071 01 1 072 42 ST0 073 09 09 09 09 09 09 09 09 09 09 09 09 09	082 03 3 00 00 083 00 0 084 03 3 085 06 6 086 42 STD 087 09 098 71 SBR V 099 91 R/S 099 100 92 16 17 103 76 LB 104 11 A 105 12 42 STD 113 09 114 71 SBR V 115 22 INV 116 91 R/S 117 120 02 2 121 03 3 110 03 3 111 06 6 112 42 STD 113 09 114 71 SBR V 115 22 INV 116 91 R/S 117 42 STD 118 119 32 X;T 120 02 2 121 03 3 110 03 3 111 06 112 42 STD 113 122 02 121 03 121 03 121 03 121 03 121 03 121 03 121 03 121 03 121 03 121 03 121 03 131 131 132 133 134 85 + 135 01 1 134 85 11 133 134 85 11 135 01 1 136 137 42 STD 138 00 1 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 139 01 1	147 58 FIX 148 25 CLR 149 69 OP 150 00 RCL 151 09 OP 151 09 OP 153 69 OP 154 04 X; TX 156 09 OP 157 69 OP 158 00 OP 158 00 OP 159 00 OP 150 00 OP 151 152 00 OP 151 152 00 OP 153 69 OP 154 00 OP 155 50 OP 156 00 OP 157 00 OP 158 00 OP 161 162 163 S3 RCL 163 164 165 166 OP 171 00 OP 171 172 00 OP 171 172 00 OP 171 172 07 173 07 174 07 175 07 177 07 178 00 OP 180 00 OP 181 00 OP 181 00 OP 182 00 OP 183 00 OP 184 00 OP 185 00 OP 186 00 OP 187 00 OP 187 00 OP 188 00	-L88
070 02 2	135 01 1	200 53 (	265 77 GE
071 01 1	136 54 )	201 53 (	266 53 (
072 42 STD	137 42 STO	202 43 RCL	267 00 0
073 09 09	138 00 00	203 24 24	268 67 EQ

20	#84 25 . 1 39 - 1 6
22222222233333333334444444455555555556666666666	O 1 2 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5

387 1
355264533929510004282623180053242226332227200000000000000000000000000000
590123456789012345678901234567890123456789 5991234567890123456789012345678901233456789 5995555556666666666666666666666666666
42 STD 32 9 007 7 007 5 7 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007 10 007
789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678901245678900124567890012456789000000000000000000000000000000000000

TABLE 3

Month	Input
1	1.112
2	2.139
3	3.075
4	4.011
5	5.033
6	6.014
7	7.062
8	8.024
9	9.075
10	10.154
11	11.138
12	12.016

#### **SPECIAL NOTES FOR HP-97 USERS**

- 1. A separate computation has to be done for each
- 2. Input correction for the equation of time from Table 3.

SOLP-1
SOLAR SHADING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out	Explanation
	Example						
- 2	Enter site latitude Enter wall azimuth	43 37	CHS	+ +	<b>∀</b> 8	43.66 ***	
დ 4. დ	Enter overhang length Enter right fin length Enter left fin length	10 10	1 1 1	+	C R/S R/S	*** 55. *** 55. *** 55.	
9	Enter starting and ending hours	9.14	I	+	۵	9,00 eee	
7.	Enter month and correction of time from Table 3; start computation	5.33	I	1	∢	66.6 60.00 10.00	
							Typical hourly output
	Note: Inputs under steps 6 & 7				A.,	9.66	Hour
	are in decimal rormat.			4.0		45.50 844 -73.90 444	Altitude Azimuth
						5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Shading by overhang Shading by right fin Shading by left fin <i>Note:</i> Ignore negative values.
						16.65 ***	Output continues
						*** (0)(0) (0)(0) (1)	
				A Section 1		64.4 600.10 10.00 10.00 10.00	

** ** **	* * * * * '0 %	* * * * * * * * * *	* * *		# ## ## 100	* * * * * * *	* * * * * * * * *	***	* * * * * * * *	* * * * * * * * * * * * * * * * * * * *	<del></del>
11.08	63,55 -35,18	29 9 9 13 13 13 13 13 13 13 13 13 13 13 13 13	12.88	28.54 7.98 7.96	13.80	39 ES	57,68 -25,55 25,55	14.85	10 10 10 10 10 10	-277.81 183.29 -183.29	
											1
	•										 

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

R7	Month			
R8 & R9	Not used			

002 STOA 35 11

005 *LBL% 21 16 12

STOB 35 12

STOC 35 13

0**0**3 PRTX

 $R \times S$ 

PRTX

SPC

R/S

PRTX

R∕S

010 *LBLc 21 16 13

004

*006* 

007

008

009

011

012

013

Label	Function
a	Prints and stores display in RA
b	Prints and stores display in RB
c	Prints and stores display in RC;
	with R/S, prints and stores display in RD;
	with R/S, prints and stores display in RE
d	Accepts input in decimal format; separates, prints, and stores starting hour in R2 and finishing hour in R3
A	Accepts input in decimal format; separates, prints, and stores month in R7 and correction of time in R1; computes and prints altitude, azimuth, shading by overhang, right fin, and left fin
0	Reiterates
1	Computes hour angle, altitude, and azimuth
2	Computes and prints shade by overhang
3	Computes and prints shade by right fin
4	Computes and prints shade by left fin
5	Recalls R4; stores in R6
6	Stores (180-R4) in R4
7	Computes declination

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function	
RA	Site latitude	
RB	Wall azimuth	
RC	Overhang length	
RD	Right fin length	
RE	Left fin length	
RI	For reiteration	
R0	Declination	
R1	Correction of time	
R2	Starting hour	
R3	Finishing hour	
R4	Hour angle, azimuth	
R5	Altitude	
R6	Azimuth	

			,				
LIST	ING				949	ST01	35 01
001	*LBLa	21	16	11	858	PRTX	-14

-14

-14

51

-14

51

16-11

51

051

**0**52

**053** 

*0*54

*0*55

*0*57

**0**58

059

060

*062* 

**0**56

GSB7

SPC

SPC

RCL3 RCL2

SPC

SPC

1 +

061 STOI 35 46

i

23 07

16-11

16-11

16-11

16-11

36 03

36 02

-45

01

-55

01

SOLP-1 (HP-97) SOLAR SHADING PROGRAM

013	R∕S	51	062	1	Иì
014	STOD	35 14	063	ST-2	35-45 02
015	PRTX	-14	864	*LBL0	21 00
016	R∕S	51	<i>065</i>	1	01
017	STOE	<b>35</b> 15	<b>0</b> 66	ST+2	35-55 <b>0</b> 2
018	PRTX	-14	067	RCL2	36 <b>0</b> 2
019	SPC	16-11	<b>0</b> 68	PRTX	-14
02 <b>0</b>	SPC	16-11	069	SFC	16-11
021	R/S	51	870	GSB1	23 01
022	*LBLd	21 16 14	971	RCL5	36 <b>05</b>
023	ST03	35 <b>0</b> 3	072	PRTX	-14
024	INT	16 34	973	RCL4	36 04
025	STO2	35 <b>0</b> 2	674	PRTX	-14
026	PRTX	-14	075	SPC	16-11
<b>0</b> 27	RCL3	36 03	<i>0</i> 76	GSB2	2 <b>3 0</b> 2
028	FRC	16 44	077	6SB3	23 03
029	i	Ø1	<b>0</b> 78	GSB4	23 04
030	Ø	00	<b>0</b> 79	SPC	16-11
031	0	99	080	SPC	16-11
032	X	-35	081	DSZI	16 25 46
033	STOJ	35 03	082	GTOØ	22 <b>00</b>
034	PRTX	-14	083	R/S	51
<i>03</i> 5	SPC	16-11	<b>0</b> 84	*LBL1	21 01
036	SPC	16-11	<i>0</i> 85	RCL2	36 <b>0</b> 2
<i>037</i>	R∕S	51	086	- 1	01
638	∗LBLA	21 11	<b>0</b> 87	2	<b>0</b> 2
039	ST01	35 <b>0</b> 1	088	-	-45
040	INT	16 34	<b>0</b> 89	6	<b>0</b> 6
041	ST07	<b>35 0</b> 7	090	0	00
042	PRTX	-14	091	Х	<b>-3</b> 5
943	RCL1	36 01	092	RCL1	36 01
044	FRC	16 44	<i>0</i> 93	-	-45
045	1	01	094	4	04
046	ē	00	095	÷	-24
047	Ø	<u>0</u> 0	096	STO4	35 04
048	X	-35	097	cos	42

098	RCL0	<i>36 00</i>	151	RCLD	36 14
099	cos	42	152	Х	-35
100	X	-35	153	PRTX	-14
101	RCLA	36 11	154	RTN	24
102	cos	42	155	*LBL4	21 04
103	X	-35	156	RCL4	36 04
104	RCLA	36 11	157	RCLB	36 12
105	SIN	41	158	-	-45
106	RCL0	36 <b>00</b>	159	TAN	43
107	SIN	41	160	RCLE	36 15
108	Х	-35	161	X	-35
109	+	-55	162	PRTX	-14
110	SIN-	16 41	163	RTK	24
111	ST05	35 <b>0</b> 5	164	*LBL5	21 05
112	cos	42	165	RCL4	36 64
113	1/8	52	166	ST06	35 <i>06</i>
114	RCL0	36 00	167	RTN	24
115	COS	42	168	<b>≭LBL</b> 6	21 <b>0</b> 6
116	X	-35	169	1	<b>0</b> 1
117	RCL4	36 <b>0</b> 4	170	8	<b>0</b> 8
118	SIN	41	171	Ø	99
119	X	-35	172	RCL4	36 04
120	SIN-	16 41	173	-	-45
121	ST04	35 84	174	STO4	35 <b>0</b> 4
122	X<0?	16-45	175	RTH	24
123	GT05	2 <b>2 05</b>	176	*LBL7	21 07
124	X=0?	16-43	177	RCL7	36 67
125	GT05	22 05	178	3	03
126	RCL6	36 06	179	Ū	00
127	X>Y?	16-34	180	Х	-35
128	<b>6</b> T06	22 06	181	2 7	02
129	RCL4	36 64	182	7	97
130	ST06	35 <b>0</b> 6	183	5	<i>0</i> 5
131	RTN	24	184	+	-55
132	*LBL2	21 02	185	3	03
133	RCL4	36 <b>04</b>	186	6	06
134	RCLB	36 12	187	5	<b>0</b> 5
135	450	-45	188	÷	-24
136	ABS	16 31	189	3	63
137	cos	<b>42</b> 52	190	6	06
138	1/X		191	Ū	0ē
139	RCL5	36 05 43	192	X	-35
140	TAN	-35	193	SIN	41
141	X DOLO	-33 36 13	194	2 3	02
142	RCLC	36 13 -35	195	3	<i>63</i>
143	X PRTX	-35 -14	196	•	-62
144	RTN	-14 24	197	4	<i>64</i>
145	*LBL3	21 <b>03</b>	198	. 5	<i>0</i> 5
146 147	#LBL3 RCLB	21 03 36 12	199	X	-35
148	RCL4	36 12 36 04	200	STO0	35 <b>0</b> 0
148	KUL4	-45	201	RTN	24
150	TAN	- <b>4</b> 3 43	202	R/S	51
170	i MIT	70			

#### SOLP-2

#### MONTHLY AND ANNUAL AVERAGE INSOLATION ON TILTED SURFACES

#### **GENERAL DESCRIPTION**

The program computes an estimate of total monthly and annual insolation on tilted surfaces. This program can be useful for preliminary optimization of tilt and azimuth angles for solar panels. The data from the program can also be used as input for further design of solar energy collecton systems.

The program is based on a paper by S.A. Klein, published in *Solar Energy*, vol. 19.

#### **EQUATIONS**

$$d = 23.45 \sin \left[360 \times (284 + n)/365\right]$$
 [6.7]

where

d = Declination

n = Day of year (D/Y)

$$\cos \omega = -(\tan \phi \times \tan d) \tag{6.8}$$

where

 $\phi$  = Latitude

 $\omega$  = Hour angle

$$H_o = (24 \times I_o/\pi) \times [1 + .033 \times \cos(360 \times n/365)]$$

$$\times [\cos \phi \times \cos d \times \sin \omega + (\omega \times 2\pi/360)$$

$$\times \sin \phi \times \sin d]$$
[6.9]

where

 $H_o$  = Extraterrestrial radiation on a horizontal surface on day n

 $I_0 = \text{Solar constant} = 429 \text{ Btu/sq ft/hr}$ 

$$\overline{H}_d/\overline{H} = 1.39 - 4.027 K_t + 5.53 \overline{K}_t^2 - 3.108 \overline{K}_t^3$$
 [6.10]

where

 $\overline{H}_d$  = Monthly average of daily total diffuse radiation

 $\overline{H}$  = Monthly average of daily total radiation on a horizontal surface

 $\overline{K}_t$  = Ratio of actual daily radiation to the daily extraterrestrial radiation

$$\begin{aligned} \overline{R}_b &= \{ [\cos s \times \sin d \times \sin \phi] \\ &\times [(\pi/180) \times (\omega_{ss} - \omega_{sr})] \\ &- [\sin d \times \cos \phi \times \sin s \times \cos \gamma] \\ &\times [(\pi/180) \times (\omega_{ss} - \omega_{sr})] \\ &+ [\cos \phi \times \cos d \times \cos s] \\ &\times [\sin \omega_{ss} - \sin \omega_{sr}] \\ &+ [\cos d \times \cos \gamma \times \sin \phi \times \sin s] \end{aligned}$$

$$\times [\sin \omega_{ss} - \sin \omega_{sr}]$$

$$- [\cos d \times \sin s \times \sin \gamma]$$

$$\times [\cos \omega_{ss} - \cos \omega_{sr}]$$

$$/ \{2[\cos \phi \times \cos d \times \sin \omega_{ss}$$

$$+ (\pi/180) \times \omega \times \sin \phi \times \sin d]$$
 [6.11]

where

 $\overline{R}_b$  = Ratio of the monthly average beam radiation on the tilted surface to that on a horizontal surface for each month.

 $\gamma$  = Azimuth angle

 $\omega_{sr}$  = Sunrise angle

 $\omega_{ss}$  = Sunset angle

s =tilt angle of collector

If 
$$\gamma < 0$$
,

$$\omega_{sr} = -\min \left[ \omega_{sr}, \arccos \left[ (A \times B + \sqrt{A^2 - B^2 + 1}) \right] / (A^2 + 1) \right]$$

$$\omega_{ss} = \min \left[ \omega_{ss}, \arccos \left[ (A \times B - \sqrt{A^2 - B^2 + 1}) \right] / (A^2 + 1) \right]$$

If 
$$\gamma > 0$$
,

$$\omega_{sr} = -\min \left[ \omega_{sr}, \arccos \right]$$

$$\left[ (A \times B - \sqrt{A^2 - B^2 + 1}) \right]$$

$$(A^2 + 1)$$

$$\omega_{ss} = \min \left[ \omega_{sr}, \arccos \right]$$

$$\left[ (A \times B + \sqrt{A^2 - B^2 + 1}) \right]$$

$$(A^2 + 1)$$

where

$$A = \cos \phi / [\sin \gamma \times \tan s] + \sin \phi / \tan \gamma$$
  

$$B = \tan d \times [(\cos \phi / \tan \gamma) - \sin \phi / (\sin \gamma \times \tan s)]$$

$$\overline{R} = (1 - \overline{H}_d/\overline{H}) \times \overline{R}_b + (\overline{H}_d/\overline{H}) \times (1 + \cos s)/2 + \rho \times (1 - \cos s)/2 \quad [6.12]$$

where

 $\overline{R}$  = Ratio of the monthly average daily radiation on a tilted surface to that on a horizontal surface for each month

 $\rho$  = Ground reflectivity—varies from 0.2 to 0.7 depending on snow cover

$$HD = \overline{R} \times \overline{K}_t \times H_o \tag{6.13}$$

where

HD = Average daily total radiation on a tilted surface

$$HM = HD \times (D/M) \tag{6.14}$$

#### where

HM = Monthly total radiation on a tilted surface

D/M =Days in month

#### **OPERATING FEATURES**

The program prints out the following data:

 $H_{o}$ 

 $R_b$ 

 $\overline{R}$ 

HD

HM

HY

Azimuth angle is measured from south, due west being positive and due east being negative. Due south would be zero but should be input as 0.1.

#### **REFERENCE DATA**

Value of  $\overline{K}_t$  and latitude can be obtained from LowTemperature Engineering Application of Solar Energy, published by the American Society of Heating, Refrigerating and Air Conditioning Engineers.

Table 1 shows values for D/Y and D/M for the different months of the year.

TABLE 1

	D/Y	D/M
January	17	31
February	47	28
March	<b>7</b> 5	31
April	105	30
May	135	31
June	162	30
July	198	31
August	228	31
September	258	30
October	288	31
November	318	30
December	344	31

SOLP-2
MONTHLY AND ANNUAL AVERAGE INSOLATION ON TILTED SURFACES PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step Procedure	Enter		Press		Print Out		Explanation
1. Initialize	1	1	1	ш	ö		
<ul><li>2. Enter site latitude</li><li>3. Enter solar panel azimuth angle</li><li>4. Enter ground reflectivity</li></ul>	 .2 -1	1 1 1	1 1 1	A R/S R/S	36.0 6.1 0.20	LAT GR	
5. Enter KT for month 6. Enter day of the year 7. Enter days/month	 .382 17 31	1 1 1	111	B R/S R/S	0.082 17.	X	
Enter tilt angle of solar panel	 45	I	1	U	45.0	TILT	
					1540.	呈	
					2,10436 1,52633	а 8 с	
					898. 27826.	95	
Repeat steps 5 through 8.	.435 47 28	1.1.1	1 1 1	B R/S R/S	0 4.477 0.1~00	7	

TILT HO	84 HH H		
45. 0 1986.	1.68480 1.35746 1173. 32853. 60659.		
U	۵		
I	I .		
I	1		
45	I		
	9. To compute annual insolation		
	თ	 	

EXPLANATION OF LABELS	& SUBBOUTINES
EXPERIMENTON OF EXPERS	& SODROUTINES

Label	Function
E	Clears register R1
INV	Prints alphanumeric identification of data; partitions program
A	Stores display in R14 and prints LAT;
	with R/S, stores display in R18 and prints AZ;
	with R/S, stores display in R19 and prints GR
В	Stores display in R16 and prints KT;
	with R/S, stores display in R15 and prints D/Y;
	with R/S, stores display in R13 and prints D/M
С	Stores display in R17 and prints tilt; computes declinations and $\omega$ ; computes and prints HO; computes HD/HO; continues using SBR CE and other subroutines
X ²	Recalls R10 and stores in R03; if R02 is greater than R10, goes to SBR $\sqrt{X}$ , otherwise goes to SBR $1/X$
$\sqrt{X}$	Recalls R10 and stores in R03; continues
1/X	If R18 is greater than 0, goes to SBR CLR, otherwise recalls R03; changes sign and stores in R04; recalls R04 and stores in R00; goes to SBR RCL
CLR	Recalls R02; changes sign and stores in R04; recalls R03 and stores in R00; goes to SBR RCL
CE	Computes arc cos $[(AB \pm \sqrt{A^2-B^2+1})$ / $(A^2+1)]$
RCL	Computes and prints $\overline{RB}$ , R, HD, and HM
D	Prints HY

#### **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	Variable; $\omega_{ss}$
R01	НУ
R02	arc cos $[(AB - \sqrt{A^2 - B^2 + 1})/(A^2 + 1)]$ ; also variable

R03	arc cos $[(AB + \sqrt{A^2 - B^2 + 1})/(A^2 + 1)];$ also variable
R04	$\omega_{rr}$
R05	Alphanumeric code
R06	For FIX IND
R07	A; also variable
R08	Variable; also B
R09	HD/HO
R10	ω
R11	Declination
R12	360/365; also HO
R13	Days in month
R14	Latitude
R15	Day of year
R16	KT
R17	Tilt angle
R18	Azimuth
R19	Ground reflectivity

#### SOLP-2 MONTHLY AND ANNUAL AVERAGE INSOLATION ON TILTED SURFACES

LABELS 8 SUBROUT 001 15 010 22 031 11 082 12 135 13 387 33 399 34 405 35 423 25 436 24 478 43 747 14	TINES  E INV A B C X² FX 1/X CLR CE	010 011 012 013 014 015 016 017 018 019 020 021 022 023	22 INV 22 INV 58 FIX 02 2 69 DP 17 17 25 CLR 69 DP 00 00 43 RCL 05 05 69 DP 04 04 32 X:T 58 FIX
LISTING 000 76 001 15 002 00 003 42 004 01 005 99 006 98 007 98 008 91 009 76	E 0 STO 01 PRT ADV ADV	025 026 027 028 029 030 031 032 033 034 035	40 IND 06 06 69 DP 06 06 92 RTN 76 LBL 11 A 42 STD 14 14 32 X:T

00338901234567890123456789000000000000000000000000000000000000	07 1 3 3 7 0 5 1 0 6 8 8 7 0 5 1 0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 32 X‡T 101 01 1 102 06 6 103 06 6 104 03 3 105 04 4 106 05 5 107 42 ST□ 108 05 05 109 00 0 110 42 ST□ 111 06 06 112 71 SBR 113 22 INV 114 91 R/S 115 42 ST□ 116 13 13 117 32 X‡T 118 01 1 119 06 6 121 03 3 122 03 8 124 42 ST□ 128 06 06 127 42 ST□ 128 06 06 127 42 ST□ 128 06 06 127 42 ST□ 128 06 07 7 128 07 07 07 129 03 3 130 98 ADV 131 98 ADV 131 98 ADV 132 98 ADV 133 91 R/B 134 76 LBL 135 13 C 127 42 ST□ 138 32 X‡T 139 03 7 140 07 7 141 02 2 142 04 4 2 144 07 7 143 02 7 144 07 7 145 03 7 146 07 7 147 42 ST□ 150 42 ST□ 151 06 06 0 151 06 06 0 152 71 SBR 153 07 06 0 153 07 06 0 154 98 ADV 155 98 ADV 156 03 3 157 06 6 158 00 0 0 159 55	164 42 STD 165 43 RCL 167 15 15 168 028 4 = XL2 170 044 5	228 65 X ((L15 X L2 ) S RCL 229 53 A
----------------------------------------------------------------	--------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------	--------------------------------------

22222222233333333333333333333333333333
93 1 0 8 × L6
678901234567890123456789012345678901234567890123456789 333333333333333333333333333333333333
42 STO 08 1 08 1 42 STO 71 SBR 42 STO 71 SBR 42 STO 71 SBR 42 STO 94 STO 95 STO 96 STO 97 SBR 97 SBR 98 STO 98 STO 9
0123456789012345678901234567890123456789012345678901234567890123 222222222223333333334444444444444444
71 36 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
45667890123445678901234456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901200000000000000000000000000000000000
# + 1 8 0 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5654037403554136413540641364057540374035555555555555555555555555555	533085348422533319537842753895348XCL0N		$\frac{23345}{666666666666666666666666666666666666$	195319533085340853555403000040525345315394453333795145395244 136413841640641355540300004052552650740558554138056405055
5 × (613 39 614 65 43 65 43 614 65 43 615 615 615 615 616 11 39 616 616 11 39 616 617 89 618 43 65 618 43 65 619 618 620 138 63 619 620 138 620 620 620 620 620 620 620 620 620 620	613 653 410 533 454 443 233 5145 31 353 353 354 531 453 395 245 615 615 617 89 10 88 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 410 855 4	39         613         614         13         615         616         617         89         618         619         6110         612         613         614         615         617         618         619         619         6110         6110         612         613         614         615         617         618         619         619         6110         6110         6111         612         613         614         615         615         617         618         619         619         611         612         613         614         615         617         618         619         619         611         612         613 <t< td=""><td>95319530853053484442323514255265074955853379514539524 641364138416406413555403000040072552650740558555413805640505</td><td></td></t<>	95319530853053484442323514255265074955853379514539524 641364138416406413555403000040072552650740558555413805640505	

#### **SPECIAL NOTES FOR HP-97 USERS**

- 1. All data has to be input through the keyboard. This can be done in TRACE mode to keep a record of data.
- 2. The program requires two cards, SOLP-2A and SOLP-2B.
- 3. The monthly solar radiation data has to be totaled to calculate solar radiation for a year or a number of months.

SOLP-2
MONTHLY AND ANNUAL AVERAGE INSOLATION ON TILTED SURFACES PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step	Procedure	Enter		Press		Print Out	Explanation
	Example Load SOLP-2A and switch printer to TRACE mode						
- 6.8.4.7.6	Enter number of days/month Enter site latitude Enter day of the year Enter KT for month Enter tilt of solar panel	31 36 17 .382 45	1 1111	STO STO STO STO	0 - 2 8 4 4		
2. 8.		<del>.</del> 7!	1 1	ST0	о Ф Ш	.26 5706	Switch off from TRACE mode after this step.
တ်	Load SOLP-2B and continue	I	I	ı	Ш	1539.58 ***	Но
						2.10436 ***	Rb
						1.50054 ***	امد
						*** 700	HD
	Load SOLP-2A and repeat input to be changed. Switch					27356. ***	ΣΗ
	printer to I KACE mode.	28 47 .435	1 1 1	STO STO STO	3 7 0	28.00 ST00 47.00 ST02 .435 ST03	Switch off from TRACE mode after this step.
	Load SOLP-2B and continue.	1	ı	I	ш	1985,78 ***	Ho
						1.68480 ***	Rb

IŒ	무	Σ I						
688 0.00000 T	1357. ***	32386. ***						
 				 	 ***	 	 	
			Continue in this manner. Add insolation for different months to find out total insolation.					

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
E	Computes declination D; computes and prints HO; computes HD/HO; continues using SBR 0 and other subroutines
1	Recalls R8 and stores in RD; if RE is greater than R8 goes to SBR 2, otherwise goes to SBR 3
2	Recalls R8 and stores in RE; goes to SBR 3
3	If R5 is greater than 0 goes to SBR 4, otherwise recalls RD, changes sign, and stores in RI
4	Recalls RE; changes sign; stores in RI; recalls RD; stores in RE
0	Calculates arc cos [ $(AB \pm \sqrt{A^2-B^2+1})$ / $(A^2+1)$ ]
E	SOLP-2B; computes and prints $\overline{R}B$ , R, HD, and HM

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R0	Days in month
R1	Latitude
R2	Day of year
R3	$\overline{K}T$
R4	Tilt angle
<b>R</b> 5	Azimuth
R6	Ground reflectivity
R7	Declination
R8	ω
<b>R</b> 9	НО
RA	HD/HO
RB	A; also variable
RC	B; also variable
RD	arc cos $[(AB + \sqrt{A^2 - B^2 + 1}) / (A^2 + 1)];$ variable
RE	360/365; arc cos [(AB + $\sqrt{A^2-B^2+1}$ ) /(A ² +1)]; $\omega_{ss}$
RI	Variable; $\omega_{rr}$

SOLP-2A & SOLP-2B (HP-97) MONTHLY AND ANNUAL AVERAGE INSOLATION ON TILTED SURFACES

36 02

02

04

**8**8

SOLP-2A LISTING 001 *LBLE 21 15

2

8

4

002 RCL2

603

004

005

052

Ø54

**055** 

*056* 

**057** 

053

+

RCL2

X

ces

-55

-35

42

-62

36 02

RCLE 36 15

660	7	67	931	•	02
006	<b>+</b>	-55	058	Ø	00
007	3	<b>0</b> 3	<i>059</i>	3	03
				3	03
308	6	06	060		
009	Ø	<b>0</b> 8	061	X	-35
010	ENT↑	-21	<i>062</i>	1	ē1
011	3	03	063	+	-55
012	6	<b>0</b> 6	<u>064</u>	X	-35
013	5	05	065	3	03
014	÷	-24	<i>066</i>	2 7	02
015	STOE	35 15	067	7	07
016	x	-35	068	7	<b>8</b> 7
017	SIN	41	069	x.	-35
018	2 3	<b>0</b> 2	970	ST09	<i>35 09</i>
019	3	03	071	PRTX	-14
020		-62	072	SPC	16-11
021	4	<b>0</b> 4	073	RCL3	36 63
022	5	<b>0</b> 5	074	Χs	53
023	X	-35	075	5	<b>0</b> 5
024	ST07	35 07	<i>676</i>	•	-62
025	TAN	43	977	5	<b>0</b> 5
<i>026</i>	RCL1	36 01	078	3	03
627	TAN	43	079	X	-35
<i>0</i> 28	×	-35		RCL3	36 03
		-33	989		
029	CHS	-22	081	3	03
030	COS-I	16 42	082	γ×	31
931	ST08	35 <i>0</i> 8	083	3	<b>0</b> 3
032	Pi	16-24	084		-62
033	х	-35	085	i	01
034	1	01	<b>0</b> 86	x	-35
				^	
<i>03</i> 5	8	08	<b>0</b> 87	_	-45
036	0	00	088	RCL3	<i>36 0</i> 3
037	÷	-24	089	4	94
038	RCL1	36 01	090	X	-35
039	SIN	41	091	_	-45
040	×	-35	092	1	01
				1	
041	RCL7	36 07	093	•	-62
042	SIN	41	094	4	84
043	X	-35	095	+	-5 <i>5</i>
044	RCL1	36 01	096	STOA	35 11
045	COS	42	097	RCL5	36 05
046	RCL8	36 <b>0</b> 8			41
			<i>098</i>	SIN	
047	SIN	41	099	RCL4	36 04
048	X	-35	100	TAN	43
049	RCL7	<i>36 0</i> 7	101	X	-35
050	COS	42	102	1/X	52
051	X	-35	103	STOC	35 13
				9.20	00.0

104	RCLI	<i>36 0</i> 1	150	X>Y?	16-34	012	COS	42	<b>06</b> 9	X	-35
105	cos	42	151	GT <b>02</b>	22 02	013	Х	-35	076	RCLE	36 15
	Х										
106		-35	152	68 <b>83</b>	23 03	014	RCL1	36 01	971	COS	42
107	RCL1	36 Ei	<b>15</b> 3	*LBL2	21 02	015	SIN	41	<b>0</b> 72	RCLI	<i>36 46</i>
108	SIH	41	154	RCL8	<b>36 0</b> 8	016	X	-35	073	cos	42
109	RCL5	<i>36</i> 05	155	STGE	35 15	017	RCLE	<i>36</i> 15	074	-	-45
110	TAN	47	156	GSB3	23 Ø3	018	RCLI	36 46	075	Х	-35
	IHN	43									
111	÷	-24	157	*LBL3	21 03	019	-	-45	076	-	-45
112	+	-55	158	RCL5	<i>36 0</i> 5	020	STOC	<b>3</b> 5 13	077	RCL1	36 01
113	STOB	<i>35 12</i>	159	X>0?	16-44	621	X	-35	<b>0</b> 78	cos	42
114	ROLO	36 13	160	GT04	22 04	022	RCLB	36 12	079	RCL7	36 07
						023	RCL1	36 01	080	cos	42
115	RCL1	36 01	161	RCLD	36 14						
116	SIN	41	162	CHS	-22	924	COS	42	081	X	-35
117	X	-35	163	STOI	35 4 <i>6</i>		X	-35	082	RCL8	36 <b>0</b> 8
118	CHS	-22		R/S	51	026	RCL4	36 04	083	SIN	41
149	RCL1	36 01		*LBL4	21 04	027	SIN	41	084	X	-35
							X	-35	<b>0</b> 85	RCL8	36 <b>0</b> 8
120	003	42	166	RCLE	36 <b>1</b> 5						
121	RCL5	36 <b>05</b>	167	CHS	-22	029		36 05	<b>0</b> 86	RCLB	36 12
122	TAN	43	168	STOI	35 <b>46</b>	030	cos	42	<b>08</b> 7	X	-35
123	÷	-24	169	RCLD	36 14	031	X	-35	<b>088</b>	RCL1	36 <b>0</b> 1
						032	RCLC	36 13	089	SIN	41
124	+	-55	170	STOE	35 <b>15</b>	<b>033</b>	X	- <b>3</b> 5		X	-35
125	RCL7	<i>36</i> 07	171	R∠S	51						
126	TAN	43	172	*LBL0	21 00	034	-	-45		+_	-55
127	X	-35	173	RCLB	36 12	035	RCL1	36 01		2	<b>0</b> 2
128	STOC	35 13	174	X,5	53	036	cos	42	<b>0</b> 93	X	-35
						037	RCL7	36 07	094	÷	-24
129	1	01	175	RCLC	36 13		COS	40	095	DSP5	-63 05
130	STOI	35 4 <i>6</i>	176		53			42 -35			
131	GSB0	23 <b>0</b> 0	177	-	-45		X		096	PRTX	-14
132	STOD	35 14		1	01	040	RCL4	36 04	<b>0</b> 97	SPC	15-11
133		00 11	179	+ ,	-55	041	COS	42	098	1	0 i
	1	01				042	x	-35	099	RCLA	36 11
134	CHS	-22	180	1X	54	043	RCLE	36 15	100	-	-45
135	STOI	35 4 <i>6</i>	181	RCLI	36 46						
136	GS <b>B0</b>	23 00	182	X	-35	044	SIN	41	101	X	-35
137	STOE	35 15	183	RCLE	36 12	045	RCLI	36 46	102	RCL4	36 <b>04</b>
						046	SIN	41	103	cos	42
138	RCLD	36 14	184	RCLC	36 13	047	_	-45	104	1	Ø1
139	RCL8	<b>36</b> 08	185	X		<b>04</b> 8	STOC	35 13	105	+	-55
140	X≰Y?	16-35	186	+	-55			75			
141	GT01	22 01	187	RCLB	36 12	049	X	-35	106	RCLA	
142	RCLE	36 15		Χz	53	050	+	<b>-5</b> 5	167	X	-35
						051	RCL7	36 07	108	2	<b>0</b> 2
143	X> Y?	16-34				<b>05</b> 2	COS	42	109	÷	-24
144	GT02	22 02	190	<b>±</b>	-55	<i>0</i> 53	RCL4	36 04	110	+	-55
145	GSE3	2 <b>3</b> 03	191	÷	-24		SIN	41	111	1	01
146	*LBL1	21 01	192	COSH	16 42	<b>054</b>					
147	RCL8	36 <b>0</b> 8	193	RTH	24	<i>0</i> 55	X	-35	112	RCL4	<i>36 04</i>
						<b>0</b> 56	STOD	35 14	113	cos	42
148	STOD	35 14	194	R∠S	51	<b>0</b> 57	RCL5	<i>36 05</i>	114	-	-45
149	RCLE	36 1 <b>5</b>				<b>0</b> 58	COS	42	115	RCL6	36 Ø6
							X	-35	116	Х	-35
						059					
						060	RCL1	36 <b>0</b> 1	117	2	02
						061	SIN	41	118	÷	-24
						062	X	-35	119	+	-55
SOI E	P-2B LIST	ING	006	1	<b>8</b> 1	063	RCLC	36 13	120	PRTX	-14
		21 15		8	<b>0</b> 8	<i>0</i> 64	X	-35	121	SPC	16-11
001	*LBLE		007								
002	RCL7	36 07	008	e	00	065	+	-55 35-44	122	RCL3	<i>36 03</i>
003	SIN	41	009	÷	-24	966	RCLD	36 14	123	X	-35
004	Ρi	16-24	610	STOB	35 12	867	RCL5	36 Ø5	124	RCL9	36 09
005	X	-35	011	RCL4	36 04	068	SIN	41	125	X	-35
555	••		011		<del>-</del> -			• •			

### 240 SOLAR ENERGY PROGRAMS

126	DSP0	-63 00	132	DSP2	-63 02
127	PRTX	-14	133	SPC	16-11
128	SPC	16-11	134	SPC	16-11
129	RCLO	36 <del>4</del> 0	135	SPC	16-11
130	x	- <b>3</b> 5	136	R∕S	5 <i>i</i>
131	PRTX	-14			

# 7

# ENGINEERING ECONOMIC ANALYSIS PROGRAM

# EP-1 LIFE CYCLE COST ANALYSIS PROGRAM, PART I

#### **GENERAL DESCRIPTION**

Life-cycle cost analysis of alternate economic proposals can be accomplished with this program, since it can compute present value as well as annual flow.

The program is based on information contained in "Solar Heating and Cooling in Buildings: Methods of Economic Evaluation," by Ms. Rosalie T. Ruegg, published by the U.S. Department of Commerce, National Bureau of Standards, Center for Building Technology. The user should study this booklet to get the full benefit of this program.

#### **EQUATIONS**

The equation given below is a very slight modification of the equation contained in the reference booklet. Further, the abbreviations used are the same as those given under "Explanation of Storage Registers." (See page 250.)

Total Present Value  $PV\Sigma = IC + RC$ 

$$\times \sum_{j=1}^{NR+1} [(1+INF)/(1+DS)^{N2}]^{j} - RC$$

$$\times (1+INF)^{NR \times N2} \times (N3/N2)$$

$$\times 1/(1+DS)^{N1} + (1-TXI) \times MLC$$

$$\times \sum_{j=1}^{N1} [(1+INF)/(1+DS)]^{j} + (1-TXI) \times MSC$$

$$\times \sum_{j=1}^{N1} 1/(1+DS)^{j} + (1+TXI) \times ENC$$

$$\times \sum_{j=1}^{M} [(1 + EES)/(1 + DS)]^{j} - (TXI)$$

$$\times \sum_{j=1}^{M} DEP/(1 + DS)^{j} + (1 - TXI)$$

$$\times \sum_{j=1}^{M} TXP \times IC/(1 + DS)^{j} - (TXI)$$

$$\times \sum_{j=1}^{M} INT \text{ on } MTG/(1 + DS)^{j} - (1 - TXI)$$

$$\times \sum_{j=1}^{M} INC/(1 + DS)^{j}$$
[7.1]

#### **NOTES:**

- **1.** *INF*, *DS*, *EES*, *TXI*, *TXP* and *INT* are input initially as percents, but the above formula is based on their fractional value, which is arrived at by dividing the percent by 100.
- **2.** Depreciation is based on the straight line method, and initial cost also includes the net present value of the total replacement cost.
  - **2.2** Interest on the mortgage is calculated based on the following equations:

Annual interest = 
$$IC\Sigma \times (N_1 + 1)/N_1 \times 2$$

 $IC\Sigma$  = total initial cost inclusive of net present worth of the total replacement cost

**2.3** Annualized cost = 
$$PV\Sigma \times INT \times [(1 + INT)^{N_1}/(1 + INT)^{N_1} - 1]$$

#### **OPERATING FEATURES**

As can be seen from the equations, inflation is not applicable to the miscellaneous cost. Any items subject to inflation should be grouped with maintenance cost.

The input of data has been arranged in such a way as to permit easy sensitivity analysis of the variables. This is well illustrated by the examples.

#### **EXAMPLE NO. 1**

Compute the present value of an energy conservation proposal having the following data:

\$1,000,000
20 years
11%
\$285,000
15 years
8%
\$35,000
\$15,000
\$100,000
9%
8.75%
3%
45%
\$30,000

#### **EXAMPLE NO. 2**

Also compute the effect of the following:

- **1.** If annual income = 0
- **2.** Also if income tax = 0
- **3.** If analysis neglects tax on the property and interest on the mortgage

#### **EXAMPLE NO. 3**

Find sensitivity of analysis under Example No. 1 if escalation in the energy cost varies from 9% to 6%.

#### **EXAMPLE NO. 4**

Compute annualized flow of the last estimate of the present worth. To solve this problem with HP-97, use program EP-2.

EP-1
LIFE CYCLE COST ANALYSIS PROGRAM, PART I
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Explanation						Since there is saving in the	energy cost, enter tnis as negative number.	The calculation will be based	on 8.75%, but the program will print out integers only.			Present value	Initial cost Number of replacements Total cost of replacements
			o œ	04 LL 22 22 1-4	00 10 EE	С Д	о Ш Ш	 	a. >< 	  ><2 		>-	R N C C N C C N C C N C
Print Out		1000000.	282000	11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	33 12000.		o".	ø.	oo*	un etr	0 0 8	.0	1000000. 1. 188954.
		A' R/S R/S	∢	R/S R/S	B' R/S	В	R/S	ú	R/S	ပ	R/S	Q	
Press		2nd 	ı	1 1	2nd _	ı	I	2nd	ı	ı	ı	I	
		1 1 1	1	1 1	1 1	-/+	1	I	l	1	1	1	
Enter		1000000 20 11	285000	15	35000 15000	100000	6	8.75	က	45	30000	I	
Procedure	Example 1	Enter total initial cost Enter period of analysis, yr Enter discount rate, %		Enter frequency of replacement years Enter inflation rate, %	Enter annual maintenance cost Enter annual miscellaneous cost	Enter annual energy cost savings	Enter escalation rate, %, in energy cost		Enter property tax rate % as related to initial cost		Enter total annual income resulting from improvement	To compute present value	
Step		. 2. %	4. r	. ი	7. 8.	6		Ξ.	<u> </u>	13.	14.	15.	

EP-1 (Continued)
LIFE CYCLE COST ANALYSIS PROGRAM, PART I
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Step	Procedure	Enter		Press		Prin	Print Out		Explanation
						·	10.	e Z	Years of useful life remaining
						74757.		<u>&gt;</u>	arter period of analysis Salvage value
						292365.	រ ហ	MLC	Maintenance: labor and
	-			,		65697.		MSC	material cost Miscellaneous cost
						-913827.	N-	ENC	Energy cost
						131395. 199636. 183416.		XXX XXX XXX XXX XXX	Tax on property net Tax benefit on depreciation Tax benefit on interest
						131395.	ຕ	INC	Income
						175381.		P < M	Total present value
	Example 2.1								
- 2	Enter total income tax rate, % Enter income	45 0	1 1	1 1	C R/S	7	njoj	       	Note: Since only one item is to be changed, there is no need to re-enter all the data.
က်	To compute present value	I	l	I	۵		Ö	÷	
						1000000. 188951.	· · · · · · · · · · · · · · · · · ·	ORN	
						747 747 757 757	o'r.	00 Ds- 22 00	

00 10 EE	<u>З</u>	ZAH ABB XXX LLL	<u> </u>	PVZ	TX I	P.V	R N N N N N N N N N N N N N N N N N N N	ლ > ლ >	MLC	ENC	TXPN TXBD TXBD	INC	PVZ
292365. 65697.	-91082	131395 199636 183416	.0	306776.	öö	ö	1000000. 1. 188954.	10. 74757.	531573. 119450.	-1661504.	238900. 0.	ő	342617.
			· · · · · · · · · · · · · · · · · · ·		c R/S								
					1 1								
					1 1								
					00								
				C columns	Same as steps 1, 2, & 3 of Example no. 2.1								
 				\$ 2 2 	Same Exam								

EP-1 (Continued)
LIFE CYCLE COST ANALYSIS PROGRAM, PART I
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Enter interest rate, % or	Step	p Procedure	Enter		Press		Print Out		Explanation
Enter interest rate, %		Example 2.3							
To compute present value	- 2		00	1 1	2nd _	C, R/S	66	H û Z X H H	
10000000, 10   10   10   10   10   10	რ		ı	ı	ı	۵	ċ	ф Э-	
Fample 3							1000000. 1. 188954.	E E E E E E E E E	
Signature   Figure   Figure							74757.	ω> Σω	
Example 3							0.4 0.4 0.0 0.0 0.0	00 10 EE	
Colored Figure 1							1661504.	EN	
Example 3         1003717.         PVZ           Enter annual energy cost saving enter revised escalation rate better revised escalation rate better revised escalation rate annual income tax rate, % as related 3 R/S 3.         100000 +/ B 4 - 100000.         ENC           Enter property tax % as related to initial cost         8.75 - 2nd C' 8.5         9. INT           Enter total income tax rate, % 50000 R/S         - C A5. TX I           Enter annual income         45 C R/S         30000.         INC							ففف	X Q II B B B X X X L L L	
Example 3         Enter annual energy cost saving Enter revised escalation rate         100000         +/-         -         B R/S         -100000         ENC EES           Enter revised escalation rate interest rate, % Enter property tax % as related to initial cost         8.75         -         2nd C' S' S' TXP         9. INT Enter total income tax rate, % 3. TXP           Enter total income tax rate, % Inter annual income         45         -         C C S' S' TX IX I         -         C C S' S' TX IX I							ċ	() 	
Example 3         Enter annual energy cost saving enter revised escalation rate         100000         +/-         -         B         -100000         ENC           Enter revised escalation rate         8         -         -         -         R/S         -         -         B         -         -         EES         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -							N. N. 00 00	ф Э-	
Enter annual energy cost saving         100000         +/-         -         B         -100000.         ENC           Enter revised escalation rate         8         -         -         R/S         -         -         B         -         -         -         EES           Enter interest rate, % to initial cost         8.75         -         2nd         C'         9. INT         INT           Enter property tax % as related to initial cost         3         -         -         C         45. TX         I           Enter total income tax rate, % to initial cost         45         -         -         C         45. TX         I           Enter annual income         30000.         -         -         R/S         30000.         INC		Example 3							
Enter interest rate, %       8.75       -       2nd       C'       9.       INT         Enter property tax % as related to initial cost       3       -       -       R/S       3.       TXP         Enter total income tax rate, %       45       -       C       45.       TX I         Enter annual income       30000       -       -       R/S       30000       INC	- 2		100000	-/+	1 1	B R/S	-100000. 8.	ER	
Enter total income tax rate, % 45 C 45.  Enter annual income 30000 R/S 30000.	ω4.		8.75	1 1	2nd _	C' R/S	ன் <u>ன்</u>	TXT	This data has to be re-input since it was zeroed previously
			45 30000	1 1	1 1	c R/S	45. 30000.	I SK I	

1000000. IC 1. NR 188954. RCZ	10. N3 74757. SV	292365. MLC 65697. MSC	-835329. ENC	131395. TXPN 199636. TXBD 183416. TXBI	131395. INC	253879. PVZ	-10000U. ENC 7. EES	0. PV	000. 1. NR 954. RCZ	10. N3 57. SV	55. MLC 97. MSC
1000000. 1. 188954.	10. 74757.	292365. 65697.	-835329.	131395. 199636. 183416.	131395.	3879.	000. 7.	ö	000. 954.	or.	ហ្គំ ក្រុំ លោក
						Ω Θ	-100		1000000. 1. 188954.	10. 74757.	292365. 65697.
							B R/S	۵			
							1.1	1			±
							-/ ₊	I			
							100000	I			
						For next run, change EES only.					
							For next run, change EES only.	3 only.	For next run, change EES only.  Enter annual energy cost Enter escalation rate, % 7 - in energy cost To compute present value	For next run, change EES only.  Enter annual energy cost Enter escalation rate, % in energy cost To compute present value  ———————————————————————————————————	For next run, change EES only.  Enter annual energy cost Enter escalation rate, % In energy cost To compute present value  ———————————————————————————————————

EP-1 (Continued)
LIFE CYCLE COST ANALYSIS PROGRAM, PART I
USER INSTRUCTIONS AND EXAMPLES Number of Cards: TWO

Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 9, 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8, 10 as different values of EE.  Continue steps 8	Step	Procedure	Enter		Press		Print Out	4	Explanation
100000							62091	ENC	
100000							1100 100 100 100 100 100 100 100 100 10	XXPN XXBD XBI	
100000	****						տ Ծ Ծ Ծ	О Ж Н	
100000 +/ B - 1000000. 6 D 0. 1000000. 1 188954. 1 131395. 1 131395. 1 131395.							60 44 71	PVZ	
1000000. 11 188954. 188954. 198954. 1913954. 191395. 191395. 131395. 131395.		Continue steps 8, 9, & 10 as many times as desired with different values of EES	100000		1 1	B R/S	-100000. 6.	E E S	
1000000. 188954. 10. 74757. 65697. 131395. 131395. 131395. 131395.		distance of the control of the contr	I	ı	ı	۵	ö	÷ •	
292365. 292365. 1323865. 1323865. 1323865. 1333865. 1333865. 1333865.							1000000. 1. 188954.	0 X O O X O X O X O X O X O X O X O X O	
29023 60023 60023 10013 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							74757.	00 S Z 00	
-702173. 131395. 183416. 131395.								M M 000	
10000000000000000000000000000000000000							6 10 10 10 10	BNC	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							100 100 100 100 100 100 100	MAXX MAXX MARI	
© 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000							100000	INC	
		Annualized flow for Example no. 4 is based on this figure.					387035.	9 N	

	Example 4						
	To compute annualized cost use Solid State Software, Module "Master Library," or Program EC-2.						Note: Use of "Master Library" program will change contents of some of the storage registers. It will be necessary
	Set calculator for printing	1	2nd	PGM	10		if the analysis has to continue with the same data.
	Select program Initialize	6	1 1	STO 2nd	00 E, 0	19.00 .0	
	Select routine for ordinary annuity	I	I	2nd	ò		
	Enter number of periods	50	1	I	∢	20. 20.	
	Enter interest rate, %	8.75	ı	ı	æ		
	Enter present value (PV)	387035	1	I	۵	387035.0000 387035.00	
	To compute annualized flow	0	ı	. 1	U	4 31 0,4 0,0 0,0 0,0	Annualized flow
		, , , , , , , , , , , , , , , , , , ,					
-							

#### **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
INV	For printing alphanumeric identification of data; partitions
A'	Stores display in R02 and prints
LNX	As part of SBR A', prints IC;
	with R/S, stores and prints display in R03; using SBR CE, prints N1
CE	As part of SBR A', prints display and N1 or N2;
	with R/S, stores and prints display in R04 and prints DS, calls SBR CLR, and stores result in R04
A	Prints display and stores in R05; prints RC
X <b>≓</b> T	As part of SBR A prints RC;
	with R/S, stores displays in R06; using SBR CE, prints display and N2;
	with R/S, stores display in R07, prints display and INF, calls SBR CLR, and stores result in R07
B'	Stores display in R08; prints display and MLC using SBR X ²
$X^2$	Prints MLC and MSC;
	with R/S, stores display in R09 and prints MSC
В	Stores display in R10 and uses SBR $\sqrt{X}$
$\sqrt{X}$	Prints ENC or EES;
	with R/S, stores display in R11 and prints display and EEC
C'	Stores display in R12 and using SBR 1/X prints display and INT; calls SBR RCL and stores result in R12;
	with R/S, stores display in R13 and using SBR STO prints display and TXP; calls SBR RCL and stores result in R13
1/X	Prints INT and INT $\Sigma$
RCL	Divides display by 100
STO	Prints TXBI and other variations
С	Stores display in R14 and using SBR STO prints display and TXI; calls SBR RCL and stores result in R14;
	with R/S, prints display in R15 and using SBR SUM prints display and INC
SUM	Prints INC
O M	Times inc

EE Computes  $\sum_{j=1}^{n} (1 + x)^n$ D Computes and prints PV; total initial cost—IC; total number of replacements-NR; total cost of replacement— $RC\Sigma$ ; years of remaining life—NS; salvage value—SV; maintenance cost: material and labor-MLC; miscellaneous cost—MSC; energy cost—ENC; tax on property, net—TXPN; tax benefit of depreciation—TXBD; tax benefit of interest on depreciation-TXBI; income—INC;

Prints PV and PV $\Sigma$ 

 $\mathbf{Y}^{\mathbf{x}}$ 

#### **EXPLANATION OF STORAGE REGISTERS**

total present worth— $PV\Sigma$ 

Register	Function
R00	Not used
R01	Not used
R02	IC—initial cost of improvement (total, material, labor, space, etc.)
R03	N1—years of analysis
R04	DS—discount rate, %
R05	RC—replacement cost
R06	N2—frequency of replacement in years
R07	INF—inflation rate, %
R08	MLC—annual maintenance cost (material and labor)
R09	MSC—annual miscellaneous cost (material and labor)
R10	ENC—annual energy cost
R11	EES—escalation rate in energy cost, %
R12	INT—interest rate on mortgage (MTG) %
R13	TXP—tax on property as percent of initial cost
R14	TXI-income tax, %
R15	INC—annual income if any
R16	For subroutine EE

EE E ) ode	054 04 04 055 32 X↓T 056 01 1 057 06 6 058 03 3 059 05 5 060 42 ST□ 061 29 29 062 71 SBR 063 22 INV 064 71 SBR 065 25 CLR 066 42 ST□ 067 04 04 068 98 ADV 069 91 R/S 070 76 LBL 071 25 CLR 072 53 ( 073 53 ( 074 24 CE 075 55 ÷ 076 01 1	119 03 3 120 01 1 121 02 2 122 01 1 123 42 STO 124 29 29 125 71 SBR 126 22 INV 127 71 SBR 128 25 CLR 129 42 STO 130 07 07 131 98 ADV 132 91 R/S 133 76 LBL 134 17 B' 135 42 STO 136 08 08 137 32 X‡T 138 00 0 139 42 STO 140 29 29 141 76 LBL
ART I	078 00 0	142 33 X ² 143 03 3 144 08 8
015 58 FIX 016 00 00 017 69 □P 018 06 06 019 92 RTN 020 76 LBL 021 16 A' 022 42 ST□ 023 02 02 024 76 LBL 025 23 LNX 026 32 X∤T 027 02 2 028 04 4 029 01 1 030 05 5 031 42 ST□ 031 42 ST□ 032 29 29 033 71 SBR 034 22 INV 035 92 RTN 036 42 ST□ 037 03 03	080 85 + 081 01 1 082 54 ) 083 92 RTN 084 76 LBL 085 11 A 086 42 ST□ 087 05 05 088 32 X;T 089 00 0 090 42 ST□ 091 29 29 092 76 LBL 093 32 X;T 094 03 3 095 05 5 096 01 1 097 05 5 097 05 5 098 00 0 100 44 SUM 101 29 29 102 71 SBR	144 08 8 145 02 2 146 07 7 147 01 1 148 05 5 149 44 SUM 150 29 29 151 71 SBR 152 22 INV 153 92 RTN 154 42 STD 155 09 09 156 32 X;T 157 09 9 158 00 0 159 00 0 159 00 0 160 42 STD 161 29 29 162 71 SBR 163 33 X² 164 98 ADV 165 91 R/S 166 76 LBL 167 12 B
038 32 X¦T 039 00 0 040 42 ST⊡ 041 29 29	104 92 RTN 105 42 STO 106 06 06	168 42 STO 169 10 10 170 32 X;T 171 00 0
043	108 01 1 109 42 STO 110 29 29 111 71 SBR	172 42 STO 173 29 29 174 76 LBL 175 34 FX 176 01 1
048 44 SUM 049 29 29 050 71 SBR 051 22 INV 052 92 RTN	113 91 R/S 114 42 STO 115 07 07 116 32 X;T 117 02 2	177 07 7 178 02 2 179 09 9 180 01 1 181 05 5 182 44 SUM 183 29 29
	Ode  ART    015	055 32 X;T 056 01 1 057 06 6 058 03 3 059 05 5 060 42 STD 061 29 29 062 71 SBR 063 22 INV 064 71 SBR 065 25 CLR 066 42 STD 067 04 04 068 98 ADV 069 91 R/S 070 76 LBL 070 76 LBL 070 76 LBL 070 76 LBL 077 05 5 ÷ 076 01 1 077 00 0 078 079 54 ) 079 54 ) 079 60 00 00 00 00 00 00 00 00 00 00 00 00

1856789012345678901234567890123456789012345678901234567890123456789012322222222222222222222222222222222222
71 SBR 22 RTN 92 RTN 92 RTN 92 RTN 93 11 T 01
249 249 251 253 253 253 253 253 253 253 253 253 253
00 0 0 44 SUM 29 SBRV PRE CE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3134567890123456789012334567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012346789012345678901234567890123456789012345678901234567890123456789000000000000000000000000000000000000
05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67890123456789012345678901234567890123456789012345678901234567890333333333333333333333333333333333333
4457255533360 + .99 ) N - 1 ) □ 6T 3 □ 9R (CL7 CL3 CE X CE

98 ADV 440 98 ADV 441 533 RCL6 442 43 444 16 1 1 × LL6 445 65 R O 2 × CL7 446 447 448 449 073 8E C CEXL5 450 429 14 CEXL5 451 23 RCC CEXL5 452 249 146 1 × CL6 453 R O 2 × CL7 453 R O 2 × CL7 453 R O 3 × CL7 454 455 A 455 A 455 A 455 A 456 A 466 A 466 A 467 A 478	504 25 25 555 43 RCL 506 25 556 42 STD 8 RDV 510 531 42 STD 511 43 RCL 512 A3 RCL 512 A3 RCL 513 47 17 SEE 8 RCS 514 17 17 SEE 8 RCS 515 514 17 STD 515 43 RCL 515 515 43 RCL 516 65 RCL 4 STD 517 42 STD 518 16 RCL 519 71 SEE 522 A3 RCL 519 521 65 S24 65 527 73 RCL 518 519 520 521 522 522 522 522 522 522 522 522 522	568 25 25 569 98 ADV 570 53 (L 571 43 RCL 571 43 RCL 573 55 ÷ 574 43 RCL 577 57 57 42 STD 577 57 52 EE 578 71 52 EE 579 53 RCL 579 53 RCL 579 53 RCL 579 53 RCL 581 582 63 RCL 583 40 10 10 888 584 10 10 888 585 65 83 84 10 10 888 586 43 RCL 587 20 29 888 588 54	14 14
496 04 4	560 09 9	624 03 03	688 43 RCL
497 02 2	561 00 0	625 22 INV	689 21 21
498 42 ST□	562 00 0	626 49 PRD	690 54 )

696	71	SBR	708	29	29
697	44	SUM	709	71	SBR
698	22	INV	710	45	YΧ
699	44	SUM	711	98	ADV
700	25	25	712	00	0
701	98	ADV	713	42	STO
702	43	RCL	714	25	25
703	25	25	715	91	R/S
704		XIT	716	00	0
705	07	7	717	00	0
706	07	7	718	00	0
707	42	STO	719	00	0

#### **SPECIAL NOTES FOR HP-97 USERS**

- **1.** As shown in "User Instructions and Examples," the output, as compared to the TI-59 output, has been rearranged to accommodate the program within the limits of registers and programming steps.
- 2. Inputs should be based on the following conventions:

Expenses—positive Income—negative

Number of Cards: ONE EP-1 LIFE CYCLE COST ANALYSIS PROGRAM, PART I HP-97 USER INSTRUCTIONS AND EXAMPLES Number of

Step	Procedure	Enter		Press		Print Out	Explanation
	Example 1						
<del>-</del>	1. Initialize	I	ı	ţ	ш	5.00 to	
9.2		285000 15	1 1	* I	A/S	20506.00 444 (5.60 444	
4. 12. 0.	yr Enter discount rate, % Enter inflation rate, % Enter interest rate, %	11 8 8.75	1 1 1	+	B R/S R/S	00.00 00.00 00.00	
7.	Enter tax rate on property Enter income tax rate	3 45	1 1	+ 1	C R/S	*** *** *** *** ***	
တ်	Enter initial cost Enter number of years of analysis	1000000	1 1	1 1	A R/S	162633.86 *** 26.66 ***	
						108554. 108. 108. 108. 108. 108. 108. 108. 108	Number of replacements PV of replacement
						16.63 *** 74755.74 ***	Years of useful life remaining Salvage value
			1 11.2			131354.51 ***	PV of tax on property
						-199636.20 ***	PV of tax benefit on depreciation
						-183415.75 ***	PV of tax benefit on interest
10.	Enter miscellaneous annual cost	15000	1	I	a	15006.06 *** 65697.45 ***	PV of miscellaneous cost
1.	Enter annual income	30000	CHS	ı	ω	-36666,63 *** -131394,91 ***	PV of income
12.	Enter annual maintenance cost: labor and materials	35000	I	1	υ	35080.80 *** 252365.11 ***	PV of maintenance cost

EP-1 (Continued)
LIFE CYCLE COST ANALYSIS PROGRAM, PART I
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out		Explanation
	Enter saving in energy cost Enter escalation rate in energy	100000	CHS	1 1	D R/S	* 99.6 * 99.99999!-	**	
	1800					-313826.55	*	PV of savings in energy cost
	To compute total PV	. 1	I	. 1	Ш	175381.11	***	Total PV
	Example 2.1 Initialize	0	I	+	ш	6.86.9	*	
	Follow steps 9 through 14 from Example no. 1.	1000000	1 1	1 1	A R/S	1 <b>000000.</b> 00 .	* * *	
						1.06 v 188554.18	* *	
						10.05 74756.74	* * * * * *	
						131394.51	**	
						-199636.26	**	
	Note: Income = 0					-183415,76	***	
		15000	1	l .	œ	15000.00 65697.46	* *	
		35000	I	1	O	35000.30 232365.11	* * *	
		100000	CHS -	1 1	D R/S	-188686.65 9.86	* * *	

- E 306776.02 *** Total PV	୍ତ •	- f C 3,86 *** R/S 8,80 ***	1000000.05 ***	1.68954	10.00 *** 40.05.74	238695.84 ***	# ## # # # # ## ## ## ## ## ## ## ## ##	*** 99 *9	- B 15688.88 *** 119449.92 ***	- C 35888.88 ### 531572.93 ###	IS - D -100006.66 *** - R/S 5.06 ***	-1661503.54 ***	- E 342616.55 *** Total PV	
l		1 1							I	I	CHS			
l		m О							15000	35000	100000		I	
	Example 2.2	After initialization, change tax rates.	Follow steps 9 through 14 from Example no. 1.											

EP-1 (Continued)
LIFE CYCLE COST ANALYSIS PROGRAM, PART I
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

ا آم ا	Procedure	Enter		Press		Print Out	Explanation	
Exam	Example 2.3	ı						
Make	Make changes after initialization.					6.66 ***	· neje	
Intere	Interest = 0	1 8 0	111	+	B R/S R/S	.11. 00.01. 00.02. 00.03. 00.03.	* * *	
		00	1 1	<b>4</b> 1	C R/S	*** *** *** ***	* *	
Follo Exan	Follow steps 9 through 14 from Example no. 1.					1808888.88 28.68.84	* *	
						188954.19 ***	**	
						10.00 *** 74756.74 ***	* *	
						23.3	'sé-	
		-					•÷	
						*** 99.9	<b></b>	
		15000	I	I	a	15999.88	<b>4</b> ; <b>4</b> ;	
		35000	I	I	ပ	35000.00 ***	* *	
		100000	CHS -	1 1	D R/S	*** *** *** *** *** *** *** *** ***	* *	
						-1661553.54 ***	·•	
							-	

Total PV								***************************************							
183716.75 ***	보호 보호 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 % (0.00 %)	***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **	21,65 mm 8,66 mm 8,75 mm	2,55 45,55 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45,65 45 45,65 45 45,65 45 45 45 45 45 45 45 45 45 45 45 45 45	*** 58.88.88.	198854, 188	18.55.74 *** 45.55.74	131394, 19, 195151	-195636.26 ***	-183415,76 ***	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- 3000000	35600.60 *** 292365.12 ***	
ш		ш	A/S	B R/S R/S	C R/S	A R/S						œ	ω	ပ	•
I		+	+ 1	+	+	1 1						I	I	I	•
1		1	1 1	1 1 1	1 1	1 1						ı	CHS	I	
I		ı	285000 15	11 8 8.75	3 45	100000						15000	30000	35000	
	Example 3	Follow same steps as for Example	step 14.												

EP-1 (Continued)
LIFE CYCLE COST ANALYSIS PROGRAM, PART I
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation			Total PV	Switch to TRACE mode to keep record.	Remove from TRACE mode.			Total PV				
Print Out	-100060.83 *** 8.86 ***	-635328, 95	\253879.17 ***	835328, 88 + 1 <b>8</b> 85288, 85 ***	8703	-199999, 80 *** 7, 63 ***	-765891.87 ***	324116,98 ***				
	D R/S		ш	+	6	D R/S		ш				
Press	1 1		l	I	вто	1 1		I				
Press	CHS		I	1	l	CHS –		I				
Enter	100000		I	835328.88	ı	100000		I				
Procedure				For next run, either repeat all the steps or change value of R9.					Continue in this manner for other energy escalation rates.	Example 4	For Example no. 4, use EP-2.	
Step												

#### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
0	Computes present value factor
1	Computes present value, prints result, and sums into register R9
2	Uses SBR 3 and adds 1
3	Prints display and divides by 100
a	Prints and stores display in R3
b	Calls SBR 2 and stores display in RA;
	with R/S, calls SBR 2 and stores display in RB;
	with R/S, calls SBR 3 and stores display in RC
c	Calls SBR 3 and stores display in RD;
	with R/S, calls SBR 3 and stores display in RE
e	Clears register R9 and prints 0
A	Prints and stores display in R0; sums into R9;
	with R/S, prints and stores display in R1; computes and prints number of replacements, PV of replacement, years of useful life, salvage value, PV of tax on property, tax benefit of depreciation, and tax benefit on interest on mortgage
В	Computes and prints PV of miscellaneous cost and income on property; also income

#### **HP-97 EXPLANATION OF STORAGE REGISTERS**

Computes total present value

labor and material

 $\mathbf{C}$ 

D

 $\mathbf{E}$ 

Register	Function	
RA	(Discount rate, %/100) + 1	
RB	(Inflation, $\%/100$ ) + 1	
RC	Interest, %/100	
RD	Tax on property, %/100	
RE	Income tax, %/100	
RI	1 - RE	

Computes and prints PV of maintenance:

Computes and prints PV of energy cost

R0	Variable
R1	Years of analysis
<b>R</b> 2	Frequency of replacement years
R3	Replacement cost
R4	Present value factor with inflation
<b>R</b> 5	PV of replacement + initial cost
R6	For SBR 0
R7	RB/RA
R8	For SBR 0
<b>R</b> 9	Total present value

EP-1 (HP-97) LIFE CYCLE COST ANALYSIS PROGRAM, PART I

LISTING

**834** 

Й

йй

LI2 I	ING		634	Ð		90
001	*LBL0	21 00	035	0		00
002	RCL6	<i>36 06</i>	<i>036</i>	÷		-24
003	RCL8	36 08	<b>0</b> 37	RTN		24
004	1	01	<b>9</b> 38	*LBLa	21	16 11
005	+	-55	039	PRTX		-14
006	γ×	31	040	ST03		35 <i>03</i>
007	RCL6	36 Ø6	641	R∕S		51
800	-	-45	042	PRTX		-14
009	RCL6	36 06	043	ST02		<b>35 0</b> 2
010	1	01	044	SPC		16-11
011	-	-45	045	R∕S		51
012	÷	-24	<b>046</b>	*LBLb	21	16 12
013	RTN	- 24	047	GSB2		23 02
014	*LBL1	21 01	048	STOA		35 11
015	RCL1	36 01	049	R/S		51
016	STO8	35 Ø8	<i>050</i>	GSB2		23 02
017	6SB0	23 00	051	STOB		<b>35</b> 12
018	RCL0	36 ØØ	<i>0</i> 52	R∕S		51
019	X	-35	<i>0</i> 53	GSB3		23 03
020	RCLI	36 46	<i>0</i> 54	STOC		35 13
021	X	-35	<i>0</i> 55	SPC		16-11
022	ST+9	35-5 <b>5 0</b> 9	<i>0</i> 56	R∕S		51
023	PRTX	-14	<i>0</i> 57	*LBLc	21	16 13
<i>0</i> 24	SPC	16-11	<b>0</b> 58	GSB3		23 03
<i>02</i> 5	RTN	24	<b>0</b> 59	STOD		35 14
026	*LBL2	21 02	060	R∕S		51
<b>0</b> 27	GSB3	2 <b>3 0</b> 3	061	6SB3		23 03
028	1	01	062	STOE		<i>35</i> 15
029	+	-55	063	SPC		16-11
030	RTN	24	064	R∕S		51
031	*LBL3	2 <b>1 0</b> 3	065	*LBLe	21	16 15
032	PRTX	-14	066	0		60
033	1	01	<b>0</b> 67	ST09		<b>35 0</b> 9

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

RCL4

X RCLI

X

PRTX

SPC

RTN

*LBLC

ST00

PRTX

RCL7

ST06

GSB1

*LBLD

ST00

PRTX

RTN

ST+9 35-55 **0**9

36 04

36 46

-35

-35

-14

24

16-11

21 13

35 00

36 07

35 06

23 01

21 14

35 00

-14

24

-14

200

201

202

203

204

205

206

207

2**0**8

209

210

211

212

213

214

215

216

R/5

GSB2

SPC

RCLA

ST06

GSB1

RTN

SPC

SPC

RCL9

PRTX

SPC

RTN

RTN

R/S

*LBLE

51 23 02

16-11 36 11

35 06

23 01

16-11

16-11

**36 0**9

16-11

-14

24

24

51

-24

24 21 15

068	SPC	16-11	125	÷	-24
069	PRTX	-14	126	PRTX	-14
070	SPC	16-11	127	ST-9	<b>35-45 0</b> 9
071	R/S	51	128	RCL9	<b>36 0</b> 9
072	*LBLA	21 11	129	ST05	<b>35 0</b> 5
073	STOO	35 00	130	SPC	16-11
074	PRTX	-14	131	RCLA	36 11
075	ST+9	35-55 09	132	1/X	52
<i>076</i>	R/S	51	133	STO6	35 <i>06</i>
	STO1	35 Ø1	134	RCL1	36 <b>0</b> 1
<i>077</i>					35 <b>8</b> 1
<b>078</b>	PRTX	-14	135	STO8	
<i>079</i>	SPC	16-11	136	GSB0	23 00
080	RCL2	36 02	137	ST04	35 04
081	÷	-24	138	RCL0	36 <u>00</u>
082	•	-62	139	Х	-35
083	9	05	140	RCLD	36 14
084	9	<b>0</b> 9	141	X	-35
<i>0</i> 85	+	-55	142	1	61
086	INT	16 34	143	RCLE	36 15
087	1	ē1	144	-	-45
088	-	-45	145	STOI	35 4 <i>6</i>
089	ST08	<b>35 0</b> 8	146	Х	-35
090	PRTX	-14	147	PRTX	-14
091	RCLB	36 12	148	ST+9	35-55 <b>0</b> 9
092	RCLA	36 11	149	SPC	16-11
093	÷	-24	150	RCL1	36 01
094	ST07	35 <b>0</b> 7	151	ST÷5	35-24 05
095	RCL2	36 <b>0</b> 2	152	RCL5	36 05
<i>096</i>	YX	31	153	RCLE	36 15
<b>0</b> 97	ST06	35 <b>0</b> 6			-35
098	GSB0	23 00	154	X	
099 099	RCL3	36 03	155	RCL4	36 04
	X		156	X 200	-35
100		-35	157	CHS	-22
101	PRTX	-14	158	ST+9	35-5 <b>5</b> 09
102	SPC	16-11	159	PRTX	-14
103	ST+9	35-55 <i>09</i>	160	SPC	16-11
104	RCL8	36 <b>0</b> 8	161	RCL1	<i>36 01</i>
105	1	Ø1	162	1	Ø1
106	+	-55	163	+	-55
107	RCL2	<b>36 0</b> 2	164	RCL5	<i>36</i>
108	X	-35	165	X	-35
109	RCL1	36 01	166	2	<b>0</b> 2
110	-	-45	167	÷	-24
111	PRTX	-14	168	RCLC	36 13
112	RCLB	36 12	169	X	-35
113	RCL8	36 <b>0</b> 8	170	RCLE	<i>36</i> 15
114	RCL2	36 02	171	X	-35
115	X	-35	172	RCL4	36 04
116	γ×	31	173	X	-35
117	X	-35	174	CHS	-22
118	RCL3	<b>36 0</b> 3	175	ST+9	35 <b>-5</b> 5 <b>0</b> 9
119	X	-35	176	PRTX	-14
120	RCL2	36 <b>0</b> 2	177	SPC	16-11
121	÷	-24	178	RTN	24
122	RCLA	36 11	179	*LBLB	21 12
123	RCL1	36 Ø1	180	STO0	35 <i>00</i>
124	γx	31	181	PRTX	-14
167	ı	31	101	CKIN	-14

## EP-2 LIFE CYCLE COST ANALYSIS PROGRAM, PART II

#### **GENERAL DESCRIPTION**

This program is complementary to Program EP-1 and computes the following information generally required for profitability analysis of a proposal:

- 1. Annualized flow
- 2. Profitability index
- 3. Discounted payback years
- 4. Internal rate of return

Full definitions of the factors involved in this program are given below:

Present Value—PV is the sum total of all net cash flows throughout the period of analysis discounted to present value.

The merit of the "present value" method is that it represents all future cash flows, which may be uneven, by one figure.

Annualized Flow—AF is the present value of uneven cash flows when converted into uniform annual cash flow.

Profitability Index—PI is the ratio of the present value of future net cash flows over the initial cash outlay; also called "profitability ratio."

Discounted Payback Years—PBYR: The number of years when the present value of discounted annualized flow will equal the initial outlay is called PBYR.

Internal Rate of Return—IRR: The rate that discounts the stream of future cash flows to equal the initial outlay.

Input for this program can be either from Program EP-1 or from any other analysis.

DR = Discount rate (fraction)n = Analysis period in years

To calculate payback years,

$$IC = AF \times a \times (1 - a^{nx}/1 - a)$$
 [7.3]

where

IC = Initial costnx = Payback years

To calculate internal rate of return,

$$IC = AF \times a \times (1 - ax^{n}/1 - ax)$$
 [7.4]

where

ax = 1/1 + Dx

Dx = Internal rate of return (fraction)

#### **EQUATIONS**

$$PV = AF/(1+DR) + AF/(1+DR)^{2}$$

$$---AF/(1+DR)^{n}$$
 [7.2]
If  $1/(1+DR) = a$ ,
$$PV = AF \times a \times (1+a+a^{2}---+a^{n-1})$$

$$= AF \times a \times (1-a^{n}/1-a)$$
where
$$PV = \text{Present value}$$

$$AF = \text{Annualized flow}$$

EP-2
LIFE CYCLE COST ANALYSIS PROGRAM, PART II
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation			These three outputs can be obtained simultaneously by pressing 2nd D'			
		H & C C C C C C C C C C C C C C C C C C	ш — С.	& 2- 80 4-	œ œ H	
Print Out		250 2000 0000 0000 19.900 00.800	24889.02	9.		
		<b>∢</b> ⊞∪□	Ϋ́	œ́	ú	
Press		1111	2nd	2nd	2nd	
		1111	1	ı	1	
Enter		150000 210000 9.87 19	ı	1	I	
Procedure	Example	Enter total initial cost Enter present value of savings Enter discount rate Enter number of years analysis is based on		To compute payback years	7. To compute internal rate of return	
Step		÷. 9. 6. 4.	5.	9.	7.	

# **EXPLANATION OF LABELS & SUBROUTINES**

Function
Stores display in R10; prints display and IC
Stores display in R11; prints display and PV
Prints display and DR; divides display by 100, adds 1, and stores result in R12
Stores display in R10; prints display and YR
Calls SBR CE; prints AC; computes and prints PI
Calls SBR CE, computes payback years using LBL CLR, LBL X ² , and SBR Y ^x
First part of reiteration process
Second part of reiteration process
Calls SBR CE; computes internal rate of return using LBL X≠T, LBL STO, and SBR Y ^x
Reduces R08 by 1 and prints PBYR
Computes percent internal rate of return
Calculates correction for reiteration process
Prints alphanumeric identification of data
Calculates annualized flow
Part of reiteration process—computes difference between initial cost and new present value based on new interest rate or number of years
Computes present value
Uses A', B', and C'

# **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	For DSZ 00 for reiteration
R01	Not used
R02	For STO IND and RCL IND
R03	For storing values during reiteration
R04	For storing values during reiteration
R05-R07	Not used

R08	Exponent in equation for computing present value
R09	1/1+DR used in equation for computing present value
R10	Initial cost IC
R11	Present worth PV
R12	Discount rate DR
R13	Number of years YR
R14	Annualized cost
R15	Small increment, used during reiteration
R16-R19	Not used
R20	Alphanumeric code

014 76 LBL

# EP-2 LIFE CYCLE COST ANALYSIS PROGRAM, PART II

LABELS &

SUBROUTINES	015	12 B
001 11 A 015 12 B 029 13 C 051 14 D 066 16 A' 098 17 B' 119 25 CLR 126 33 X² 150 18 C' 182 32 X;Τ 189 42 STD 213 34 ΓX 236 43 RCL 264 35 1/X 285 22 INV 302 24 CE 328 45 ΥX 344 23 LNX 365 19 D'	016 017 018 019 020 021 022 023 024 025 026 027 028 030 031 032	42 STO 11 11 32 X:T 03 3 04 4 02 2 42 STO 20 20 71 SBR 22 INV 91 R/S 76 LBL 13 C 32 X:T 01 1 06 6 03 3 05 5 42 STO
LISTING  000 76 LBL  001 11 A  002 42 STD  003 10 10  004 32 X;T  005 02 2  006 04 4  007 01 1  008 05 5  009 42 STD  010 20 20  011 71 SBR  012 22 INV  013 91 R/S	036 037 038 040 041 042 043 044 045 046 049 050	20 20 71 SBR 22 INV 55 ÷ 01 1 00 0 95 = 85 + 01 1 95 = 42 STD 12 12 91 R/S 76 LBL

05533456789000666789000777344567890008889000994567890012345667890012345678900099100123456789000991001234567890009910012345678900099100123456789000991001234567890009910012345678900099100123456789000999009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990009990000	14 BTD   13	1178901223456789012234567890112112121223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890122345678000000000000000000000000000000000000	532 X LBLR  X LBLR  X C 2 S T O O 42 S T O O 42 S T O O O O O O O O O O O O O O O O O O	12334567890123456789012345678901234567890123456789012345678901234544444444444444444444444444444444444	76 LBLT 200 042 STD 402 STD 403 STD 404 STD 405 STD 405 STD 407 STD 408 STD 408 STD 409 ST 4	6789012345678901234567890123456789012345678901234567890123456789 4444455555555566666666667777777778888888888	100\T243535000NVNLX\L15\\2+LL4\\CE-L3\\NNVXX\R000053200000000000000000000000000000000
111 112	55 ÷ 01 1 00 0	176 177	00 0 00 0	241 242	35 1/X 75 -	306 307	42 STI

311 312 313 314 315 316 317 319 319 319 319 319 319 319 319 319 319	85 + 01 1 1 54 2 8T0 08 08 53 1 23 LNX 65 8CL 11 54 2 8T0 14 8T0 14 92 RTN 76 Y CL 10 75 RCL 10 10 RCL 10 RC	344 345 3467 3553 3555 3557 3557 3557 3667 3667 36	233333495444084553153394496724538453954539749960000000000000000000000000000000000	LNX (CL9 CYRCS) ÷ (1 - L9 ) NLD ABCR 00000
341 342 343	50 1×1 92 RTN 76 LBL	374 375 376	00 00	U 0 0

EP-2
LIFE CYCLE COST ANALYSIS PROGRAM, PART II
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation		Annualized flow Profitability index	Discounted payback years	Internal rate of return, %	The above outputs can be obtained simultaneously by pressing $f$ D.
Print Out	150000.00 ***	9.87 *** 13.86 *** 2489.62 *** 1.46 ***	### 89.0 ***	*** NO 107	
92	м <b>У</b>	<b>∪</b>	ω	O	
Press				<u>+</u>	
Enter	150000 210000	9.87	ı	I	
Procedure	Example Enter total initial cost Enter present value of savings		To compute payback years	To compute internal rate of return	
Step	1.	. 4. r.	9.	7.	

€53

054

055

056

057

÷

1/X

RCL5

×

01

-24

-35

36 05

52

# **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

## Label **Function** A Prints and stores display in RA; stores 0.1% of display in R6 В Prints and stores display in RB $\mathbf{C}$ Prints display; divides by 100; adds 1; stores in RC $\mathbf{D}$ Prints and stores display Computes annualized flow using SBR 0; a prints annualized flow; computes and prints profitability index b Computes annualized flow; computes and prints discounted years by reiteration using SBR 2 for computing present value Computes annualized flow; computes and c prints internal rate of return using SBR 2 for computing present value d Uses SBR a, SBR b, and SBR c 0 Computes input factors for SBR 4 and using SBR 4 computes annualized flow 4 Computes present value factor 2 Computes difference between actual and calculated present initial costs

# **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
RA	Initial cost
RB	Present value
RC	(Discount rate/100)+1
RD	Number of years of analysis
RE	Annualized flow
R0-R4	Not used
R5	Difference between actual and calculated initial cost
R6	0.1% of initial cost
R7	EE-6
<b>R</b> 8	5, starting value of payback years
<b>R</b> 9	0.95, starting value of $1/(DR/100)+1$

# EP-2 (HP-97) LIFE CYCLE COST ANALYSIS PROGRAM, PART II

21 11

35 11

-14

-62

**LISTING** 

632

003

004

881 *LBLA

STUA

PRTX

884		-62	627	X	-35
665	1	ē1	<i>0</i> 58	ST+8	35-55 08
00E	7	55	059		-62
007	ST06	35 06	060	1	01
008	R/S	51	061		35-55 08
				ST+8	
009	*LBLB	21 12	<i>062</i>	RCL5	36 05
010	STOB	35 12	<i>063</i>	ABS	16 31
611	PRTX	-14	654	RCL6	36 <b>0</b> 6
012	SPC	16-11	0.65	X≚Y?	16-35
613	R/S	51	Ø66	GT01	22 01
614	*LBLC	21 13	067	RCL8	36 08
615	PRTX	-14	068	1	61
616	1	01	<b>06</b> 9		-45
				PRTX	-14
017	8	08	070 074		714
618	. 6	00	071	SPC	16-11
019	÷	-24	672	RTN	24
020	1	01	073	*LBLc	21 16 13
021	+	-55	074	6SB0	23 00
022	STOC	35 13	075	•	-62
023	R/S	51	676	9	89
024	*LBLD	21 14	077	5	<b>9</b> 5
025	PRTX	-14	678	3T09	35 09
026	STOD	35 14	679	1	Ø1
020 027	SPC		080	EEX	-23
		16-11			
028	R∕S	51	081	6	<b>8</b> 6
029	<b>≭LB</b> Le.	21 16 11	082	CHS	-22
030	6SB0	23 00	083	ST07	<b>35 0</b> 7
<i>031</i>	RCLE	<b>36</b> 15	<i>6</i> 84	*LBL3	<b>21 0</b> 3
<i>032</i>	PRTX	-14	685	GSB2	23 <b>0</b> 2
033	RCLB	36 12	086	ST05	35 <i>0</i> 5
034	RCLA	36 11	687	RCL7	36 07
035	÷	-24	088	ST-9	35-45 09
<i>036</i>	PRTX	-14	089	GSB2	23 62
637	SPC	16-11	<i>0</i> 96	RCL5	36 05
031 038	RTN	24	091	KCL3	-45
				001.7	
039	*LBLb	21 16 12	<b>0</b> 92	RCL7	36 07
040	GSB0	23 00	<b>0</b> 93	÷	-24
041	5	<b>0</b> 5	094	1/X	52
042	ST08	35 <b>0</b> 8	<i>0</i> 95	RCL5	<i>36 0</i> 5
043	*LBL1	21 01	096	X	-35
044	GSB2	23 <b>0</b> 2	097	ST+9	<b>35-55</b> <i>69</i>
645	ST05	35 <b>0</b> 5	098	RCL7	36 87
646		-62	099	ST+9	35 <b>-5</b> 5 <b>0</b> 9
047	1	01	100	RCL5	36 05
048	ST-8	35-45 <b>0</b> 8	101	ABS	16 31
040 049	GSB2	23 02	102	RCL6	36 06
	RCL5	36 Ø5	102	X∠Y?	36 06 16-35
050 051	RULU	-45			
051 056	-		104	GT03	22 <b>03</b>
052	•	-62	105	RCL9	<i>36 <b>0</b>9</i>

106	1/X	52	130	1/8	52
107	1	<u>0</u> 1	131	RCLB	36 12
		-45	132	X	-35
108	-,		133	STOE	35 <b>1</b> 5
109	1	<i>61</i>		RTH	24
110	Ø	66	134		
111	0	ÖÖ	135	*LBL4	21 04
112	X	-35	136	RCL9	<b>36 0</b> 9
113	PRTX	-14	137	RCL9	<b>36 0</b> 9
114	SPC	16-11	138	RCL8	<b>36 0</b> 8
115	RTN	24	139	үх	31
116	*LBLd	21 16 14	140	-	-45
117	6SBa	23 16 11	141	1	01
118	GSBb	23 16 12	142	RCL9	36 <b>0</b> 9
119	G3Bc	23 16 13	143	-	-45
120	RTH	24	144	÷	-24
121	*LBL0	21 00	145	RTN	24
122	RCLC	36 13	146	*LBL2	21 02
123	1/X	52	147	RCLE	36 15
124	ST09	<b>35 6</b> 9	148	GSB4	23 04
125	RCLD	36 14	149	X	-35
126	1	01	150	RCLA	36 11
127	+	<b>-5</b> 5	151	-	-45
128	ST08	35 08	152	RTN	24
129	GSB4	23 04	153	R/S	51

# GENERAL UTILITY PROGRAMS

# UP-1

 $C_1 = \text{cfm/sq ft for exterior zone}$ 

 $C_2 = \text{cfm/sq ft for interior zone}$ 

deep.)

(Based on the assumption that exterior zone is 15 ft

# PRELIMINARY DESIGN CONDITIONS PROGRAM

GENERAL DESCRIPTION	Volume of fan room in cu ft = $cfm/2.5$	[8.2]
With input of gross building area and perimeter, the	Tonnage = $A/C_4$	[8.3]
program computes preliminary design and planning information such as:	where	
1. Total air required for cooling air-conditioning	$C_4 = \operatorname{sq} \operatorname{ft/ton}$	
system	Fan room height in ft = $4 \times (tons)^{.16}$	[8.4]
2. Area of fan room	where	
<b>3.</b> Height of fan room	Minimum height = 10 ft, maximum height = 15 ft	
<b>4.</b> Area of duct shaft	Area of duct shaft in sq ft	
5. Cooling load in tons	= volume of fan room/200	[8.5]
<b>6.</b> Size of mechanical equipment room	(Based on low-velocity ductwork.)	
7. Water required for cooling tower make-up	Volume of mechanical equipment in cu ft	fo al
8. Electrical demand in kW	$=$ tons $\times$ 60 Mechanical equipment room height in ft	[8.6]
	$= 1.25 \times (tons)^{.36}$	[8.7]
EQUATIONS	$gpm_1 = tons/33$	[8.8]
$cfm = (A - P \times 15) \times C_2 + P \times C_1 $ [8.1]	where	
where	$gpm_1 = Make-up$ water for electrical refrigeration	
A = Total area in sq ft	$gpm_2 = gpm_1 \times 1.67$	[8.9]
P = Total perimeter of all zones	where	

where

 $gpm_3 = gpm_2 \times 1.28$ 

gpm₂ = Make-up water for steam refrigeration,

[8.10]

about 13,000 Btu/ton input

where

gpm₃ = Make-up water for steam refrigeration, about 20,000 Btu/ton input

[8.11]

$$kW = A \times C_5/1000$$

where

 $C_5 = \text{Watts/sq ft}$ 

# **OPERATING FEATURES**

The program illustrates a methodology for estimating preliminary space conditions for three types of buildings. Considering the variety of building systems and applications, it is expected that the results may have wide variation from the actual conditions. However, the users can input their own constants after reviewing the methodology.

# **REFERENCE DATA**

The program is based on the following types of spaces and constants:

Space Type 1—Building with exterior zone having an air/water system and relatively low internal heat gain.

 $C_1 = .5$ 

 $C_2 = .85$ 

 $C_4 = 375$ 

 $C_5 = 4$ 

Space Type 2—Building with exterior zone having allair variable air volume system and internal load similar to a commercial office building.

 $C_1 = 1.5$ 

 $C_2 = .85$ 

 $C_4 = 300$ 

 $C_5 = 6$ 

Space Type 3—Building with exterior zone having constant volume all-air system and heavy internal load.

 $C_1 = 2.5$ 

 $C_2 = 2.0$ 

 $C_4 = 200$ 

 $C_5 = 10$ 

Number of Cards: ONE UP-1
PRELIMINARY DESIGN CONDITIONS PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards

	מסביו וואסן ווססן וסואס עואם בעעואון בבס	1	Name of Cards: Office	ONE				
Step	p Procedure	Enter		Press		Print Out	ıt	Explanation
	Example							
÷ 6. €.	Enter space type Enter gross area, sq ft Enter total perimeter, ft	1 50000 2000	1 1 1	1 1 1	<b>∢</b> ₪ ∪	50000. 2000.	7.8 F A P	
						32000. 1280. 10. 64.	ARA ARA ABTA ABTA	Total air supply Area of fan rooms Height of fan room Area of duct shaft
						133 800 10	TONS MRHT MRHT	Tons of refrigeration Area of mech. equipment room Height of mech. equipment room
						4,40	000 000 000	Make-up water for cooling tower Electric refrigeration Steam turbine refrigeration Absorption system
						200.	3 Y	Electric power demand
	Repeat steps 1, 2, & 3 for other types of spaces.					200000. 10000.	⊢& ₽	
						267500. 8917. 12. 535.	AFRAM PRHT AD	
						667. 3077. 13.	HONS MRRA HTM	

UP-1 (Continued)
PRELIMINARY DESIGN CONDITIONS PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

# **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Prints S/T and stores constants related to type of space
В	Stores and prints area A
C	Prints perimeter P; calculates CFM; computes fan room volume, tonnage, and fan room height; if height is smaller than 10 or more than 15, goes to SBR 1/X; continues with SBR STO; computes and prints fan room area AFRM, fan room height FRHT, and area of shaft AD; prints tons; computes mechanical room height; if smaller than 10 or more than 25 goes to SBR RCL; continues with SBR SUM; computes and prints mechanical equipment room area AMRM and mechanical equipment height MRHT; computes and prints GPM1, GPM2, GPM3, and KW
INV	Prints alphanumeric identification of data
LNX	Prints 1 S/T and stores constants for space type 1
CE	Prints 2 S/T and stores constants for space type 2
$\sqrt{X}$	Prints S/T
1/X	Establishes value in R11 and goes to SBR STO
RCL	Establishes value in R11 and goes to SBR SUM

# **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	Not used
R01	CFM per sq ft for exterior zone
R02	CFM per sq ft for interior zone
R03	Not used
R04	Sq ft/ton
R05	Watts/sq ft
R06	Areas
R07	Area of perimeter; tons
R08	Not used
R09	Alphanumeric code

R10 Volume of fan room R11 Fan room height

# UP-1 PRELIMINARY DESIGN CONDITIONS PROGRAM

LABE SUBR 001 030 042 128 236 343 360 383 407 420 428	LS & OUTINES 11 A 12 B 13 C 42 STO 44 SUM 22 INV 23 LNX 24 CE 34 FX 35 1/X 43 RCL	039 040 041 042 043 044 045 047 049 050 051	22 INV 91 R/S 76 LBL 13 C 32 X:T 03 3 42 STD 09 09 71 SBR 22 INV 98 ADV 65 × 01 1
LISTIN  000 001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 034 0356 037 038	YG 76 LBL 110 A ↑ T 110 A	053 054 055 055 057 059 061 066 066 067 066 067 077 077 077 077 081 083 084 085 089 089 099	05 = 42 STO 07 75 RCL 06 95 + 7 65 RCL 07 65 RCL 07 65 RCL 07 65 RCL 09 85 RCL 06 85 RCL 06 85

09945678990123456789901123456789901234567899012344567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789901234567899012345678990123456789900000000000000000000000000000000000	43 R CL4 952 S TO7 95	158 159 160 161 163 164 167 167 167 167 167 167 167 167 167 167	03729 SBV (L0 + 200) T	3456789012345678901234456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567	RCL1VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL 11VEL	28991234567899012344567891223456789901233333333333333333333333333333333333	00 2 T 09 RV 1 . 67 = T 1 M9 RV 28 = X 1 M9 RV 28 S 1 X 1 . 67 = X 1 M9 RV 28 S 1 X 1 . 67 = X 1 M9 RV 28 S 1 X 1 . 67 = X 1 M9 RV 28 S 1 X 1 . 67 = X 1 M9 RV 28 S 1 X 1 . 28 S 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------	--------------------------------------------------------------------------------------------------------------	------------------------	------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

3534556789012345567890123456678901234566789012345667890123	35006062173433052107401330522074044445516421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542130905421309054213090542100005421000000000000000000000000000	X:TX 00 06 07 06 07 07 07 07 07 07 07 07 07 07 07 07 07	333333440123456789012334567890123345 40044007890123345678901234567890123345 4112344542422222234567833345	4223000446252643366633722973334111226324111421	S 0300 S 070 S 07
393	08	8	435	91	R/S
394	05	5	436	00	0

UP-1
PRELIMINARY DESIGN CONDITIONS PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out		Explanation	
	Example								
- 2 <del>.</del> %	Enter space type Enter gross area, sq ft Enter total perimeter, ft	1 50000 2000	111	1 1 1	<b>∢</b> ₪ ∪	1.62 5666.66 2668.66	200 *** *** ***		
						32666.68 1256.66 16.36 64.66	366.66 *** 16.66 *** 64.66 ***	Total air supply Area of fan rooms Height of fan room Area of duct shaft	upply n rooms fan room ict shaft
						133, 33 886, 68 18, 68	19 13 13 19 13 13 19 13 13	Tons Area of me Height of I	Tons Area of mech. equipment room Height of mech. equipment room
						<del>က်</del> ပ်လိ	4.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	Make-up w tower Electric re-Steam turk	Make-up water for cooling tower Electric refrigeration Steam turbine refrigeration Absorption refrigeration
			-			200.00	.∂∂ ***	Electric po	Electric power demand, kW
	Repeat steps 1, 2, & 3 as many times as desired.	2 200000 10000	1 1 1	1 1 1	<b>∢</b> ₪ ∪	2.66 286888.60 18688.80	*** *** 38		
						267533.66 8516.67 12.66 535.98			
						565, 67 3676, 52 13, 86	50.00 *** 80.00 ***		

	*** ***	***	*
			* * * * * * * * * * * * * * * * * * *
28.28 47.78 81.18 83.08	506005.00 16000.00 1120000.00 32000.00 14.00	2500.66 7142.86 21.86 75.76 126.52	5868. 86
	∢ m ∪		
	1 1 1		
	1 1 1		
	3 50000 16000		

# **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Prints and stores display in R0 (space type); selects constants based on space type
В	Prints and stores display in R6
C	Prints display; calculates CFM, fan room volume, tonnage, and fan room height; if height is less than 10 ft goes to SBR 3; if more than 15 ft goes to SBR 3
4	Computes and prints area of fan room, height of fan room, and area of duct shaft; prints tonnage; computes height of mechanical equipment room; if less than 10 goes to SBR 5; if more than 25 goes to SBR 5
6	Computes and prints area of mechanical equipment room; prints height of mechanical equipment room; computes and prints water make-up rates and demand KW
1	Stores constant for space type 1
2	Stores constant for space type 2
3	Stores value in R3 and goes to SBR 4
5	Stores value in R3 and goes to SBR 6

# **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
RO	Space type
R1	Constant
R2	Constant
R3	Fan room height; mechanical equipment room height
R4	Constant
R5	Constant
R6	Gross area
R7	Interim values
R8	Tonnage
<b>R</b> 9	Fan room volume

# UP-1 (HP-97) PRELIMINARY DESIGN CONDITIONS PROGRAM

21 11

35 **0**0

-14

01

051

052

053

**05**5

RCL6

RCL4

÷

054 ST08

36 06

36 04

35 08

-24

-62

LISTING

002

003

004

001 *LBLA

STOB

PRTX

1

004	1	61	೮೦೦	•	-62
005	X=Y?	16-33	<b>0</b> 56	1	Ð1
006	GT01	22 01	<i>0</i> 57	6	<b>0</b> 6
007	2	02	<b>05</b> 8	γx	31
008	RCL0	36 <b>0</b> 0	<b>0</b> 59	4	04
009	X=Y?	16-33	060	X	-35
010	GT02	22 02	061		-62
011	2	22 62 62	<i>062</i>	9	09
012		-62	063	+	-55
	• 5		054	INT	16 34
013		05 35 64		STO3	35 Ø3
014	S <b>T</b> 01	35 Ø1	065		
015	2	02	066	i	01
016	ST02	<b>35 0</b> 2	<i>0</i> 57	0	00
017	2	02	068	X>Y?	16-34
018	Ø	00	069	GT03	22 <b>0</b> 3
019	Ø	60	070	RCL3	<i>36 03</i>
020	ST <b>04</b>	<i>35 0</i> 4	671	1	Ō1
021	1	61	<i>072</i>	5	<b>0</b> 5
022	0	86	673	X <u>∠</u> Y?	16-35
023	ST05	35 Ø5	074	GT03	22 03
024	R/S	51	075	<b>≱LBL4</b>	21 04
025	*LBLB	21 12	676	RCL9	36 09
026	ST06	35 <i>06</i>	077	RCL3	36 03
027 027	PRTX	-14	<b>0</b> 78	÷	-24
021 028		-14 51	079	PRTX	-14
	R/5		080 080	RCL3	36 03
<i>029</i>	*LBLC	21 13	081	PRTX	-14
030	PRTX	-14		RCL9	36 <b>0</b> 9
031	SPC	16-11	<b>0</b> 82	2 Z	30 <b>0</b> 3 <b>0</b> 2
032	1	01	<i>033</i>		
033	5	<b>0</b> 5	084	0	<b>0</b> 0
634	X	-35	085	0	00
<i>03</i> 5	ST07	<b>35</b> 07	<b>0</b> 86	÷	-24
<i>036</i>	RCL6	36 06	<i>087</i>	PRTX	-14
<b>0</b> 37	-	-45	<b>6</b> 88	SPC	16-11
<b>03</b> 8	CHS	-22	689	RCL8	36 <b>68</b>
039	RCL2	36 82	090	PRTX	-14
040	X	-35	091		-62
041	RCL7	36 07	092	3	<b>0</b> 3
042	RCL1	36 Ø1	093	6	96
043	X	-35	094	γ×	31
044	+	-55	695	1	01
045	PRIX	-14	<b>0</b> 96	•	-62
646	2	-14 62	<b>0</b> 37	2	<b>0</b> 2
040 047		-62	098	5	<b>0</b> 5
047 048	•		099 099	x	-35
	. 5	<b>0</b> 5		^	-62
049 050	÷	-24 75.00	100	9	-62 89
050	ST09	<b>35 0</b> 9	161	9	07

102	+	-55	148	0	99
103	INT	16 34	149	0	00
104	ST03	<b>35 0</b> 3	150	÷	-24
105	1	01	151	PRTX	-14
106	0	<i>00</i>	152	SPC	16-11
107	X>Y?	16-34	153	RTN	24
108	6T05	22 05	154	*LBL1	21 61
105	RCL3	<i>36 03</i>	155		-62
110	2	<b>0</b> 2	156	5	<i>6</i> 5
111	5	<b>0</b> 5	157	ST01	35 01
112	X≟Y?	16-35	158		-62
113	GT05	22 05	159	8	88
114	*LBL6	21 06	160	5	05
115	RCL8	36 <b>6</b> 8	161	STO2	35 02
116	6	86	162	3	03
117	0	00	163	7	87
118	X	-35	164	5	05
119	RCL3	36 03	165	ST04	35 04
120	÷	-24	166	4	64
121	PRTX	-14	167	ST05	35 05
122	RCL3	36 03	168	RTN	24
123	PRTX	-14	169	*LBL2	21 82
124	SPC	16-11	170	1	01
125	RCL8	36 08	171	•	-62
126	3	<b>0</b> 3	172	5	<b>0</b> 5
127	3	<b>0</b> 3	173	ST01	35 01
128	÷	-24	174		-62
129	PRTX	-14	175	- 8	98
130	1	01	176	5	<b>0</b> 5
131		-62	177	ST02	<b>35 0</b> 2
132	6	96	178	3	63
133	7	<b>0</b> 7	179	Ø	00
134	X	-35	180	0	00
135	PRTX	-14	181	ST04	<i>35 04</i>
136	1	01	192	6	96
137		-62	183	ST05	<b>35 0</b> 5
138	2	<b>8</b> 2	184	RTN	24
139	8	<b>0</b> 8	185	*LBL3	21 <b>0</b> 3
140	X	-35	186	ST03	35 03
141	PRTX	-14	187	GSB4	23 04
142	SPC	16-11	188	RTN	24
143	RCL6	36 06	189	∗LBL5	21 05
144	RCL5	36 <b>0</b> 5	190	ST03	<b>35 0</b> 3
145	X	-35	191	GSB6	23 66
146	1	81	192	RTN	24
147	. 0	00	193	R∕S	51

# UP-2 SPACE PLANNING PROGRAM

<b>GENERAL DESCRIPTION</b> With input of type of space and net area,	Flag 1			Will also running					
can compute the following:		FI 0			areas				
Net area	AN	Flag 2			Will also running	print total cos	ts		
Area of circulation spaces	AC								
Area for mechanical systems	AM								
Gross area	AG	The data re					-		
Cost related to net area	CAN	mechanical only. The o	designer	s should	d input	their ow	n data		
Cost related to area for circulations	CAC	related to the							
Cost related to mechanical systems	CAM	data for five Registers 6							
Cost related to gross area	CAG	program can	n handle	: 16 typε	es of spac	es and th	ie user		
Total net area	$\Sigma AN$	can program	i the ad	annonar	spaces as	required			
Total circulation area	$\Sigma AC$	REFERENCE	DATA						
Total area for mechanical systems	$\Sigma AM$	Table 1 she		format	for inpu	utting da	ata for		
Total gross area	$\Sigma AG$	different typ	oes of sp	aces.					
Percent net to gross ratio	N/G%								
Total cost related to net area	ΣCNA	TABLE 1							
Total cost related to circulation area	ΣССА	Register		Actu	al Number	Stored			
Total cost of mechanical systems	$\Sigma CMS$	R01	20	20	65	15	20		
Total construction cost	$\Sigma CC$	R02	16	16	45	10	15		
		R03	12	13	30	08	21		
Cost per sq ft based on gross area	C/CG	R04	10	09	25	06	10		
Cost per sq ft of mechanical systems based on gross area	C/MS	R05	06 C-I	05 C-II	15 C-III	03 C-IV	06 C-V		
EQUATIONS		Column I			for mech				
None.		Column II			for circul	_			
							C.		
ODERATING FEATURES		Column III		Cost	for net a	rea per so	t for net area per sq ft cent of space for chanical and electrical		
OPERATING FEATURES Flags as below:		Column III Column IV		Perce mech	ent of spa nanical an	ce for d electric	al		
	Out			Perce mech system	ent of spa	ce for d electric ated to no	al		

UP-2
SPACE PLANNING PROGRAM
USER INSTRUCTIONS AND EXAMPLES

Number of Cards: ONE

Explanation			Space type no. Net area	Area of circ. spaces Area for M & E systems Gross area	Cost related to net area Cost related to circ. space Cost related to M & E systems Cost related to gross area				Total net area Total area of circ. space Total area of mech. spaces Total gross area	
			s N N N	9.E.S	00000 N0800		s NA	555	MMMM PORO PORO NO EO	0000 0000 0000
Print Out		ö	100.	20. 15. 135.	6500. 2000. 8900.		200.	30. 20. 20.		9000 3 480. 12680.
		ù	∢			_	∢			7
Press		2nd	1			St flg	ı			St flg
		1	I			2nd	I			2nd
Enter		I	100.01			I	200.02			1
Procedure	Example	1. Initialize	Enter net area and space type (Note decimal format. Space type 1 should be input as .01. type 2	as .02, type 11 as .11, and so on.)	Repeat step 2 as many times as	subtotal of areas				To print running subtotal of cost
Step		<del>-</del>	2.							

UP-2 (Continued)
SPACE PLANNING PROGRAM
USER INSTRUCTIONS AND EXAMPLES

Number of Cards: ONE

Step Pro	Procedure	Enter		Press		Print Out	Ħ	Explanation
		300.03	I	I	∢	60 60	ů. Na	
						და დ და დ და დ	UE G	
						00 00 00 44 00 00 46 00 46 00 br>46 00 br>46 00 00 46	NUNN WMMM	
						9000 8000 13400.	0000 #### #0##	
						24 445 008 0.869 0.869	M M M M M M M M M M M M M M M M M M M	Total cost related to net space Total cost related to circ. space Total cost related to M & E
						თ თ	MCC	systems Total construction cost
Continu 1 & 2, a	Continue with or without flags 1 & 2, as many times as desired.	400.04	I	I	∢	4 G G	°. 2¥	
						4 00 4 0 4 4	252	
						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
						10000 0000 00000 14000 0000	NON9 8888 0000	

	Net/gross ratio, %		Cost/gross area	Cost of mech. systems	_	
MMMM NAMM COOO MMMM COOO MMMM	<u> </u>	######################################	3 2	00 EI \ \		
6 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	••••• CO	0 -4 4000 0000 0000 0000	7 <u>†</u>			
ш						
ı						
1						
·						
Ze						
To summarize						
ю					-	

# **EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
A	Accepts input in decimal format; separates and prints R. No.; prints and stores AN; computes and prints AC, AM, AG, and CAN, CAC, CAM, and CAG; if flag 1 is set, computes and prints $\Sigma$ AN, $\Sigma$ AC, $\Sigma$ AM, and $\Sigma$ AG; if flag 2 is set, computes and prints $\Sigma$ CNA, $\Sigma$ CCA, $\Sigma$ CMS, and $\Sigma$ CC
1/X	Computes and prints CAN, CAC, CAM, and CAG
E'	Equalizes and partitions
E	Computes and prints N/G%; uses SBR STO; computes and prints C/CG and C/MS
INV	Prints alphanumeric identification of data
LNX	Prints AC, AM, and AG
CE	Prints AC, AM, and AG
CLR	Prints CCA, CCM, CCG, and CC
X <b>≠</b> T	Reads tables
$X^2$	Reads tables
$\sqrt{X}$	Uses SBR RCL and SBR 1/X
STO	Prints CNA, CCA, CMS, and CC
RCL	Prints $\Sigma$ AN, $\Sigma$ AC, $\Sigma$ AM, and $\Sigma$ AG
Y ^x	Prints CAC, CAN, CAM, and CAG
SUM	Stores table

# **EXPLANATION OF STORAGE REGISTERS**

Register	Function
R00	For type of space
R01-16	For table under SBR SUM
R17	AN
R18	AC
R19	ΣΑΝ
R20	ΣΑС
R21	ΣΑΜ
R22	$\Sigma$ AG
R23	ΣCNA

R24	ΣCCA
R25	ΣCMS
R26	CAG
R27	Interim value of table
R28	Interim value of table
R29	Alphanumeric code

# UP-2 SPACE PLANNING PROGRAM

LABE SUBR 001 088 152 167 242 259 270 283 298 325 356 418 466 479	### COUTINES  11 A 35 1/X 10 E' 15 E 22 INV 23 LNX 24 CE 25 CLR 32 X‡T 33 X² 34 √X 42 ST□ 43 RCL 45 YX 44 SUM	027 028 029 030 031 033 034 035 036 037 041 042 043	42 STD 17 17 44 SUM 19 19 32 X‡T 01 1 06 6 42 STD 29 29 71 SBR 23 LNX 98 ADV 73 RC* 00 00 42 STD 28 STD
000 001 002 003 004 005 006 007 008 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025	76 LBL 11 A 42 ST□ 17 17 22 INV 59 INT 65 × 01 1 00 0 95 = 42 ST□ 03 3 06 4 00 0 03 3 06 6 04 4 00 0 03 3 02 2 42 ST□ 29 29 71 SBR 22 INV 43 RCL	046 047 048 049 050 051 053 054 055 057 058 069 061 062 063 064 067 068	32 X‡T 42 STD 18 18 44 SUM 20 X‡T 00 STD 29 SBR 21 SBR 21 SBR 21 S\$‡T 44 SUM 21 X‡T 05 5 42 STD 29 29 71 SBR 29 SBR 21 SBR 21 SBR 22 STD 23 LNX

074	26	203 22 22 22 22 22 24 22 204 54 2 21 1 5 6 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2690123456789012345678901234567890123305678901123456789012333333333333333333333333333333333333	977200000154977200000000000000000000000000000000000
-----	----	----------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------	-----------------------------------------------------

# **SPECIAL NOTES FOR HP-97 USERS**

- 1. A data card has to be made for the data shown in Table 1 of "General Description" to obtain results similar to those given in the example. The users can also input their own data.
- 2. The data is stored in secondary registers R10 to R19.
- 3. The program uses flags 0 and 1, as explained under "User Instructions and Examples."

UP-2
SPACE PLANNING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

Number of Cards: ONE for Program ONE for Data

Step	Procedure	Enter		Press		Print Out	Explanation
	Example						
<del>-</del>	1. Initialize	I	I	+	ш	E. 58 ***	
.2	Enter net area and space type	100.01	I	I	∢	*** 80°.	Note decimal format of input
						200.000 200.000 200.000	Area of circ. spaces Area for M & E systems Gross area
	Repeat step 2 as many times as					6569.68 *** 488.88 *** 2868.88 ***	Cost related to net area Cost related to circ. space Cost related to M & E systems Cost related to gross area
	desired. To print running subtotal of areas also	I	ţ	LBL	0		
		200.02	I	I	∢	2.63 *** 266.66	Set flag 0
						20° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5	Running subtotal of area
						**** **** **** *** *** *** *** *** ***	Total net area Total area of circ. space Total area of M & E spaces Total gross area
						9888.88 458.88.88 3288.58.44 12688.88	
	To print running subtotal of cost	1	+	LBL	-		Set flag 1

				Total cost related to net space Total cost related to circ. space Total cost related to M & E	systems Total construction cost					_
3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	*** 00°. *** 00°. ***	666.68 *** 113.68 *** 53.68 ***	9999 999 999 999 999 999 999 999 999 9	24566.66 1699.68 ***	*** @@ "MOMOTO	**** **** **** ****	**** GG . TO	######################################	10000,000,000 0000,000 444,000,000 14360,000	34568.68 *** 2659.68 *** 12568.68 *** 45359.68 ***
۷						۷				•
I						I				,
I						1				
300.03						400.04				
						Repeat as required for other spaces.				

UP-2 (Continued)
SPACE PLANNING PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES

	Explanation	Total net area Total area of circ. spaces Total area of M & E spaces Total gross area	Net/gross ratio  Total cost related to net area Total cost related to circ. space Total cost related to M & E systems Total construction cost	Cost per sq ft gross area Cost of M & E systems per sq ft	
am ONE for Data	Print Out	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	345000 000 000 000 000 000 000 000 000 00	表 表 表	
Number of Cards: ONE for Program		ш			
Cards: ON	Press	ſ			
Number of		1			
	Enter	I			
HP-97 USER INSTRUCTIONS AND EXAMPLES	Procedure	To summarize			
HP-9,	Step				

### **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

# UP-2 (HP-97) SPACE PLANNING PROGRAM

Label	Function
A	Accepts input in decimal format; separates, prints, and stores space type in RE; stores net area in RA; computes and prints area and costs; if flag 0 is set, prints subtotal of areas; if flag 1 is set, prints subtotal of costs
2	Computes and prints costs using SBR 3
e	Clears registers
E	Computes and prints summary using SBR 5 and SBR 4
0	Calculates area of circulation space and area of M & E spaces
3	Calculates costs
1	Goes to SBR 5 and SBR 2
4	Computes and prints subtotal of costs
5	Computes and prints subtotal of areas

# **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
RA	Net area
RB	Circulation area
RC	Not used
RD	Interim values
RE	Space type; also interim values
RI	For indirect recall
R0	Total net area
R1	Total area of circulation spaces
R2	Total area of M & E spaces
R3	Total gross area
R4	Total cost related to net area
R5	Total cost related to circulation spaces
R6	Total cost related to M & E systems
R7	Total cost
R8 & R9	Not used

01	_ ('''	07) 01 7(02 1	L/ (1 4)	•	10011/11/1
LIS	TING		<b>05</b> 5	SPC	16-11
001	<b>*LBL</b> A	21 11	<b>056</b>	F1?	16 23 01
002	STOA	35 11	<b>0</b> 57	GSB4	23 04
003	FRC	16 44	<i>0</i> 58	SPC	16-11
004	1	01	<b>0</b> 59	RTH	24
005	9	06	060	*LBLe	21 16 15
006	Ø	0 E	061	CLRG	16-53
007	' X	-35	062	CLRG	16-53
008	STOE	<b>35</b> 15	063	CLX	-5 <i>i</i>
009	PRTX	-14	064	PRTX	-14
919	9	<b>0</b> 9	<i>065</i>	SPC	16-11
01 i	+	-55	066	SPC	16-11
012		<i>35 46</i>	<b>0</b> 67	RTN	24
013		36 11	<b>0</b> 68	*LBLE	21 15
014		16 34	069	GSB5	<i>23 <b>0</b>5</i>
015	STOA	35 11	070	SPC	16-11
016	PRTX	-14	071	RCL0	36 <b>0</b> 0
017	' SPC	16-11	<b>0</b> 72	1	Ø i
018	ST+0	35 <b>-5</b> 5 00	073	9	0 <i>0</i>
019	RCLi	<i>36</i> , 45	074	0	00
020	STOE	<i>3</i> 5	075	X	-35
021		23 00	<i>076</i>	RCL3	<i>36 <b>0</b>3</i>
022		<b>35</b> 12	977	÷	-24
023	ST+1	35-55 01	978	PRTX	-14
024	PRTX	-14	<b>0</b> 79	SPC	16-11
025		23 00	989	GSB4	23 04
<b>0</b> 26	ST+2	35- <b>5</b> 5 <b>0</b> 2	081	RCLA	36 11
027		-14	082	RCL3	36 <b>0</b> 3
<b>0</b> 28	RCLB	<i>36 12</i>	083	÷	-24
029	) +	-55	084	PRTX	-14

36 11 **0**85 SPC 16-11 030 RCLA -55 086 RCL6 *36 06* 031 + PRTX -14 087 RCL3 *36 03* 032 16-11 088 SPC ÷ -24 033 **0**89 F0? 16 23 00 034 PRTX -14 090 035 GT01 22 01 SPC 16-11 091 036 *LBL2 21 02 RTN 24 21 00 23 03 092 *LBL0 GSB3 037 36 15 ST+4 35-55 04 093 RCLE 038 1 01 35 07 039 ST07 094 Ø 00 040 PRTX -14 095 23 03 096 0 00 041 GSB3 36 12 097 ÷ -24 042 RCLB 35 14 -35 098 STOD 043 X 36 11 16 34 RCLA 099 INT 044 35 15 045 -24 100 STOE \$T+5 35-55 05 RCLD 101 046 36 14 ST+7 35-55 07 16 44 047 102 FRC PRTX -14 1**0**3 RCLA 36 11 048 23 03 -35 GSB3 104 X 649 ST+6 35-55 06 RTN 105 24 *050* ST+7 35-55 07 106 *LBL3 21 03 **051** 36 15 **05**2 PRTX -14 107 RCLE *053* RCL7 36 07 1 01 108 PRTX -14 109 0 ÜÜ 054

110	0	00	136	RCL4	36 04
111	÷	-24	137	RCL5	36 05
112	stod	35 14	138	+	-53
113	Int	16 34	139	RCL6	36 06
114	STOE	35 15	140	+	-55
115	RCLD	36 14	141	STOA	35 11
116	FRC	16 44	142	PRTX	-14
117	1	01	143	SFC	16-11
118 119 120	0 0 X	00 00 -35 36 11	144 145 146 147	RTN *LBL5 RCL0 PRTX	24 21 05 36 00 -14
121 122 123 124	RCLA × RTN ∗LBL1	30 11 -35 24 21 01	147 148 149 150	RCL1 PRTX RCL2	36 01 -14 36 02
125 126 127 128	GSB5 GSB2 SPC RTN	23 05 23 02 16-11 24	151 152 153 154	PRTX RCL0 RCL1	-14 36 00 36 01 -55
129	*LBL4	21 04	155	RCL2	36 02
130	RCL4	36 04	156	+	-55
131	PRTX	-14	157	STO3	35 03
132	RCL5	36 05	158	PRTX	-14
133	PRTX	-14	159	SPC	16-11
134	RCL6	36 <b>0</b> 6	160	RTN	24
135	PRTX	-14	161	R/S	51

# UP-3 DISTRIBUTION NETWORK PROGRAM

### **GENERAL DESCRIPTION**

This program can be very useful for delineating any distribution system having a large number of branches.

After the network is sketched, all the node points should be numbered to identify the piping runs. A node point is defined as a point where change in the quantity of flow takes place by the fluid, either entering a branch or returning from the branch.

The input of the branch flow rate and node numbers will print out flow rates in piping mains and identification of the piping section. Further, space is allowed on the output tape to mark the pipe diameter when sized, length of the piping section, and the dynamic loss coefficient for the fittings. This simple program reduces the production time, since the output when completed forms an organized input for the next steps. Further, this part of the program can be handled easily by a person less skilled than the engineer.

### **OPERATING FEATURES**

If space on the tape is not required for pipe diameter, length, and fitting coefficient, flag 1 should be set to delete this operation.

In case several branches in one sequence have the same flow rate, the input time can be reduced by automatically repeating the arrangement under Label C, as shown in the example.

UP-3

DISTRIBUTION NETWORK PROGRAM
USER INSTRUCTIONS AND EXAMPLES Number of Cards: ONE

Explanation			Flow in mains Diameter Length Fitting coeff.		Run no. will change consecutively			
Print Out		00	7. 000 000 000 000 019 019 11	% 0000 0000 000 000 000 000 000 000 000	000 000 000 000 000 000 000 000 000 00	200000 000000 000000000000000000000000		
Prin				ಸುಗುವವವ -	იიიიი იითიიი	4.0.11.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		0.00
		ш	<b>∀</b> ₪	<b>∢</b> ₪	ပ		-	'n
Press		2nd	1 1	1-1	ı		St flg	2nd
		I	1 1	1-1	ı		2nd	1
Enter		0	1.02 2.00	2.03	2		ı	0
Procedure	Example	1. Initialize	Enter run no. . Enter branch flow	Repeat steps 2 & 3 for different flow rates.	To repeat same branch flow twice		To delete diameter, length, and fitting coeff.	Repeat steps 1, 2, 3, & 4.
Step		<del>-</del>	જ છ		4.			

EXPLAN	IATION OF LABELS AN	D SUBROUTINES	015 09 09
Label	Fu	nction	017 22 INV 082 13 C - 018 92 RTN 083 42 STD
A	Prints and stores R	No.	019 76 LBL 084 00 00
В	Prints and stores QI and stores QM; if flotherwise prints DIA	ag 1 is set goes to CE,	020 12 B 085 43 RCL 021 42 STO 086 05 05 022 06 06 087 22 INV 023 32 X∤T 088 59 INT
C	Repeats A after increpeats B	easing R No. by 1;	024 03 3 089 65 × 025 04 4 090 01 1 091 00 0 0 027 04 4 092 00 0
LNX	For reiterating		028 42 STD 093 95 =
INV	Prints alphanumeric	identification of data	029 09 09 094 42 STD 030 71 SBR 095 04 04
CE	Stops if flag 1 is set		031 22 INV 096 43 RCL 032 44 SUM 097 05 05
E'	For clearing register		033 07 07 098 59 INT 034 43 RCL 099 42 ST□ 035 07 07 100 08 08 036 32 X∤T 101 76 LBL 037 03 3 102 23 LNX 038 04 4 103 53 ( 039 03 3 104 43 RCL
Register	Fu	nction	- 040 00 0       105 08 08 041 42 STD       106 85 +
R00	For repeating DSZ	)	- 042 09 09 107 01 1 043 71 SBR 108 85 +
R01	Not used		044 22 INV 109 53 ( 045 87 IFF 110 43 RCL
R02	Not used		046 01 01 111 04 04
R03	Not used		047 24 CE 112 85 + 048 00 0 113 01 1
R04	Decimal part of R N	lo.	049 00 0
R05	Run no.		051 01 1 116 01 1
R06	Branch flow QB		053 02 2 118 00 0
R07	Total flow in main (	QM	054 04 4 119 54 ) 055 01 1 120 11 A
R08	Integer part of R N	0.	056 03 3 121 43 RCL 057 42 STD 122 06 06
R09	Alphanumeric code	MODIK PROCRAM	058 09 09 123 12 B 059 71 SBR 124 97 DSZ 060 22 INV 125 00 00 061 00 0 126 23 LNX 062 00 0 127 91 R/S 063 32 X∤T 128 76 LBL 064 02 2 129 22 INV
	DISTRIBUTION NET		066 42 STD 131 58 FIX
020 : 082 : 102 : 129 : 146 : 149 : 149 : 145 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 : 149 :	UTINES     0(       11 A     0(       12 B     0(       13 C     0(       23 LNX     0(       22 INV     0(       24 CE     0(       10 E'     0(	03 42 ST□ 04 05 05 05 32 X↓T 06 03 3 07 05 5 08 04 4 09 00 0 0 03 3 0 01 1 2 03 3	067 09 09 132 25 CLR 068 71 SBR 133 69 DP 069 22 INV 134 00 00 070 00 0 135 43 RCL 071 32 X;T 136 09 09 072 02 2 137 69 DP 073 01 1 138 04 04 074 02 2 139 32 X;T 075 01 1 140 58 FIX 076 42 STD 141 02 02 077 09 09 142 69 DP 078 71 SBR 143 06 06 079 22 INV 144 92 RTN

145	76	LBL	153	99	PRT
146	24	CE	154	98	ADV
147	92	RTN	155	91	R/S
148	76	LBL	156	00	.0
149	10	Ε'	157	00	0
150	98	ADV	158	00	0
151	47	CMS	159	00	0
152	25	CLR	160	00	0

UP-3

DISTRIBUTION NETWORK PROGRAM
HP-97 USER INSTRUCTIONS AND EXAMPLES
Nur

Number of Cards: ONE

Step	Procedure	Enter		Press		Print Out	Explanation
	Example 1						
<del>-</del> -	1. Initialize	ı	I	+	ш	88.8	
9. %	Enter run no. Enter branch flow	1.02	1 1	1 1	∢ ₪	7.02 ***	
						2.66 ***	Flow in mains Space for diameter
						*** 99.9	Space for length Space for fitting factors
4.	To repeat 3 times	က	ı	ı	ပ	2.63 444	
				-		*** 90°'S	
						* * * * * * * * * * * * * * * * * * *	
						(大学者 (2000°C) (2000°C)	
						*** 99"9	
				-		4.00	
						*** 000.10	
						· · · · · · · · · · · · · · · · · · ·	

	0										
	Set flag 0										
 	· · · · · · · · · · · · · · · · · · ·						-		 	 	
		*	* * * *	* * * * * * * * * * * * * * * * * * * *	* * *	* * *	* * * * * * * * * * * * * * * * * * * *				
		99.9	 	ကျွမ္း လက်က် လက်က်	7 9 9 9 9 9 9 9 9	10 0 0 0 0 0 0 10 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				
		1.30	*4 (d (d	ed to no	נט ניז ניז	হীশ বিট্য কৰে। গৰা	li) () vr				
	0	ш	<b>∀</b> 8	<b>∀</b> ⊠	U						•
 									 		+
	LBL	•	 	1 1	!					 	
	+	I	1 1	1 1	1						
 -											
	I	I	1.02	2.03	ო						
	meter, rs	4									
	for dia g facto	rough									
	paces † fitting	os 1 th			3 times						
Example 2	To delete spaces for diameter, length, and fitting factors	at step			To repeat 3 times						
 Exar	To d lengt	1. Repeat steps 1 through 4			To				 	 	
		<u>-</u>	·					NA ARABANA AND AND AND AND AND AND AND AND AND			

# **HP-97 EXPLANATION OF LABELS & SUBROUTINES**

Label	Function
e	Clears registers
A	Prints and stores display in R5
В	Prints and stores display in R6; totalizes in R7; prints R7; if flag 0 is set goes to SBR 0, otherwise prints 0 three times
С	Stores in R1 and repeats A and B once, increasing value of R5 by .01 each time
1	For reiteration
0	Stops execution

# **HP-97 EXPLANATION OF STORAGE REGISTERS**

Register	Function
R5	Run no.
R6	Branch flow
R7	Total flow
RI	For reiteration
	Remaining registers not used

# UP-3 (HP-97) DISTRIBUTION NETWORK PROGRAM

LISTING			022	PRTX	-14
001	*LBLe	21 16 15	023	SPC	16-11
002	CLRG	1 <b>6-</b> 53	024	RTN	24
003	CLX	-51	025	*LBLC	21 13
004	PRTX	-14	026	STOI	<b>35</b> 46
005	SPC	16-11	027	*LBL1	21 61
006	RTN	24	028	1	01
997	*LBLA	21 11	029		-62
005	ST05	35 <i>0</i> 5	<b>0</b> 30	0	<b>0</b> 0
009	FRTX	-14	031	ĺ	<b>0</b> 1
010	RTN	24	<b>0</b> 32	ST+5	35-55 05
011	*LBLB	21 12	033	RCL5	36 05
012	ST06	35 <i>0</i> 6	034	PRTX	-14
013	FRTX	-14	<b>03</b> 5	RCL6	36 <b>0</b> 6
014	ST+7	<i>35-55 07</i>	036	<b>GSB</b> ₿	23 12
015	RCL7	36 67	037	DSZI	16 2 <b>5 4</b> 6
016	PRTX	-14	<b>0</b> 38	GT01	22 61
017	F0?	16 2 <b>3</b> 00	039	RTN	24
018	6T00	22 00	646	*LBL0	21 00
019	CLX	-51	041	SPC	16-11
020	PRTX	-14	842	RTN	24
021	PRTX	-14	043	R∕S	51

# **INDEX**

Advanced programs	program listing, 82-83	programming data for TI-59
air duct friction loss program, 74-83	storage registers, explanation of,	labels & subroutines, explanation
air duct heat loss/gain program,	82	of, 49
84-97	user instructions and examples,	program listing, 50–53
general piping system design	80-81	storage registers, explanation of,
program, 1–19	programming data for TI-59	49–50
life cycle cost analysis program, part I, 241-262	labels & subroutines, explanation of, 76	user instructions and examples, 47–48
monthly and annual average	program listing, 76–79	reference data, 47
insolation on tilted surfaces, 228–240	storage registers, explanation of, 76	ASHRAE Handbook of Fundamentals, 3, 21, 46, 214
Air duct design programs, 45-97	user instructions and examples, 75	Azimuth, 214, 228-229
(see also Air duct design program,	reference data, 46, 74	
static regain method; Air duct	Air duct heat loss/gain program	BHTP-1. See Heat transmission
friction loss program; Air duct	(DP-4), 84–97	coefficient program
heat loss/gain program; Air duct	equations, 84	BHTP-2. See Over-all thermal
sizing program)	general description, 84	transmittance value program
Air duct design program, static regain	operating features, 84–85	BOCA basic plumbing code, 141-142,
method (DP-2), 58-73	programming data for HP-97	150-153
equations, 58–59	labels & subroutines, explanation	
general description, 58	of, 96	Conductors, vertical, size of, 142
operating features, 59	program listing, 96–97	Cost analysis program. See Life cycle
programming data for HP-97	special notes for users, 92	cost analysis program, part I;
labels & subroutines, explanation of, 72	storage registers, explanation of, 96	Life cycle cost analysis program, part II
program listing, 72-73	user instructions and examples,	C values, 21
special notes for users, 68	93-95	
storage registers, explanation of,	programming data for TI-59	Design conditions program. See
72	labels & subroutines, explanation	Preliminary design conditions
user instructions and examples,	of, 88	program
69–71	program listing, 88–91	Distribution network program (UP-3),
programming data for TI-59	storage registers, explanation of,	295–302
labels & subroutines, explanation	88	general description, 295
of, 64	user instructions and examples, 86–87	operating features, 295
program listing, 64–67 storage registers, explanation of,	Air duct sizing program (DP-1), 45–57	programming data for HP-97
64	equations, 45–46	labels & subroutines, explanation
user instructions and examples,	general description, 45	of, 302
60–63	operating features, 46	program listing, 302
Air duct friction loss program (DP-3),	programming data for HP-97	storage registers, explanation of,
74–83	labels & subroutines, explanation	302
equations, 45-46, 58-59, 74	of, 56	user instructions and examples,
general description, 74	program listing, 56–57	300-301
operating features, 74	storage registers, explanation of,	programming data for TI-59
programming data for HP-97	56	labels & subroutines, explanation
labels & subroutines, explanation	user instructions and examples,	of, 298
of, 82	54-55	program listing, 298–299

storage registers, explanation of,	labels & subroutines, explanation	program; Over-all thermal
298	of, 191	transmittance value program)
user instructions and examples,	program listing, 191-192	Hydraulic Institute Pipe Friction Manual,
296-297	storage registers, explanation of,	3, 21
DP-1. See Air duct sizing program	191	Installed on Co. Manakha and annual
DP-2. See Air duct design program,	user instructions and examples,	Insolation. See Monthly and annual
static regain method	189–190	average insolation on tilted surfaces program
DP-3. See Air duct friction loss	programming data for TI-59	Intermediate programs
program	labels & subroutines, explanation	air duct design program, static
DP-4. See Air duct heat loss/gain	of, 186	regain method (DP-2), 58–73
program Drainage	program listing, 186–188	air duct sizing program (DP-1),
Orainage	storage registers, explanation of, 186	45–57
fixture unit values, 151		gas system pipe sizing program
systems, determining size of, 150 Drains.	user instructions and examples, 184–185	(SEP-4), 183–192
building, 153	General piping system design program	life cycle cost analysis program, part
horizontal, size of, 142	(PP-1), 1–19	II (EP-2), 263–270
,, <u>-</u>	equations, 1–2	lighting design program, lumen
Economic analysis programs. See	examples, 3	method (LP-2), 122-139
Engineering economic analysis	general description, 1	lighting power budget program
programs	operating features, 2–3	(LP-1), 99–121
Elementary programs	programming data for HP-97	solar shading program (SOLP-1),
distribution network program	labels & subroutines, explanation	213-227
(UP-3), 295–302	of, 18	water piping system design program
heat transmission coefficient	program listing, 18-19	(PP-2), 20–34
program (BHTP-1), 193–201	special notes for users, 13	
over-all thermal transmittance value	storage registers, explanation of,	Leaders, vertical, size of, 142
program (BHTP-2), 202-212	18	Life cycle cost analysis program, part I
piping system volume and expansion	user instructions and examples,	(EP-1), 241–262
tank sizing program (PP-3),	14–17	equations, 241
35–43	programming data for TI-59	examples, 242
preliminary design conditions	labels & subroutines, explanation	general description, 241
program (UP-1), 271–281	of, 9	notes, 241
soil and waste water system pipe	program listing, 10–12	operating features, 242
sizing program (SEP-2),	storage registers, explanation of, 9	programming data for HP-97
150–162	user instructions and examples,	labels & subroutines, explanation
space planning program (UP-2),	4-8	of, 261
282-294	reference data, 3 General utility programs, 271–302	program listing, 261–262
storm water system pipe sizing program (SEP-1), 141–149	(see also Distribution network	special notes for users, 254
water system pipe sizing program	program; Preliminary design	storage registers, explanation of,
(SEP-3), 163–182	conditions program; Space	261
Engineering economic analysis	planning program)	user instructions and examples, 255–260
programs, 241–270	paramag programs	programming data for TI-59
(see also Life cycle cost analysis	Heat loss/gain program. See Air duct	labels & subroutines, explanation
program, part I; Life cycle cost	heat loss/gain program	of, 250
analysis program, part II)	Heat transmission coefficient program	program listing, 251–254
EP-1. See Life cycle cost analysis	(BHTP-1), 193-201	storage registers, explanation of,
program, part I	equations, 193	250–251
EP-2. See Life cycle cost analysis	examples, 193-194	user instructions and examples,
program, part II	general description, 193	243-249
Expansion tank. See Piping system	operating features, 193	Life cycle cost analysis program, part
volume and expansion tank	programming data for HP-97	II (EP-2), 263-270
sizing program	labels & subroutines, explanation	equations, 263
	of, 201	general description, 263
Fitting coefficients, 59	program listing, 201	programming data for HP-97
Fixture units	storage registers, explanation of,	labels & subroutines, explanation
drainage values of, 151	201	of, 269
relation to drains and sewers, 153	user instructions and examples,	program listing, 269–270
Flush tanks, 163–164	199–200	storage registers, explanation of,
Flush valves, 163–164	programming data for TI-59	269
Friction loss calculations, 21 Friction loss program. See Air duct	labels & subroutines, explanation	user instructions and examples, 268
friction loss program. See Air duct	of, 197 program listing, 197–198	
medon ioss program	storage registers, explanation of,	programming data for TI-59 labels & subroutines, explanation
Gas system pipe sizing program	197	of, 265
(SEP-4), 183–192	user instructions and examples,	program listing, 265–267
equations, 183	195–196	storage registers, explanation of,
general description, 183	Heat transmission coefficient	265
operating features, 183	programs, 193–212	user instructions and examples,
programming data for HP-97	(see also Heat transmission coefficient	264

Lighting design program, lumen	general description, 228	programming data for TI-59
method (LP-2), 122-139	operating features, 229	labels & subroutines, explanation
equations, 122	programming data for HP-97	of, 38
examples, 122	labels & subroutines, explanation	program listing, 38-40
general description, 122	of, 238	storage registers, explanation of,
operating features, 122	program listing, 238–240	38
programming data for HP-97	special notes for users, 235	user instructions and examples,
labels & subroutines, explanation	storage registers, explanation of,	36–37
of, 138	238	Power budget program. See Lighting
program listing, 138–139	user instructions and examples,	power budget program
storage registers, explanation of,	236–237	PP-1. See General piping system design
138	programming data for TI-59	program
user instructions and examples, 135–137	labels & subroutines, explanation of, 232	PP-2. See Water piping system design
programming data for TI-59	program listing, 232–235	program PP-3. See Piping system volume and
labels & subroutines, explanation	storage registers, explanation of,	expansion tank sizing program
of, 130	232	Preliminary design conditions program
program listing, 131–134	user instructions and examples,	(UP-1), 271–281
storage registers, explanation of,	230–231	equations, 271–272
130–131	reference data, 229	general description, 271
user instructions and examples,	reference dutin, 440	operating features, 272
124–129	National standard plumbing code, 141	programming data for HP-97
Lighting design programs, 99-139	, and the second	labels & subroutines, explanation
(see also Lighting design program,	Over-all thermal transmittance value	of, 280
lumen method; Lighting power	program (BHTP-2), 202-212	program listing, 280–281
budget program)	equations, 202	storage registers, explanation of,
Lighting power budget program	examples, 202	280
(LP-1), 99–121	general description, 202	user instructions and examples,
equations, 99	operating features, 202	278-279
examples, 100	programming data for HP-97	programming data for TI-59
general description, 99	labels & subroutines, explanation	labels & subroutines, explanation
operating features, 99–100	of, 211	of, 275
programming data for HP-97	program listing, 211-212	program listing, 275-277
LP-1A	storage registers, explanation of,	storage registers, explanation of,
labels & subroutines,	211	275
explanation of, 115	user instructions and examples,	user instructions and examples,
program listing, 115	209-210	273-274
special notes for users, 113	programming data for TI-59	reference data, 272
storage registers, explanation of,	labels & subroutines, explanation	Programmable calculators, about, xiii-
115	of, 206	xiv
user instructions and examples,	program listing, 206–208	Programming, general information,
114	storage registers, explanation of,	xv–xvi 
LP-1B	206	Programs usage, xvii
labels & subroutines,	user instructions and examples,	description and instructions, general
explanation of, 120	203–205	HP-97, xx-xxi
program listing, 120–121	n:	TI-59, xviii-xix
storage registers, explanation of,	Pipe sizing programs. See Gas system	Daughman andfraights 46
120	pipe sizing program; Soil and	Roughness coefficients, 46
user instructions and examples, 116–119	waste water system pipe sizing program; Storm water system	Sanitary engineering problems,
programming data for TI-59	pipe sizing program; Water	141–192
labels & subroutines, explanation	system pipe sizing program	(see also Gas system pipe sizing
of, 109	Piping design programs, 1–43	program; Soil and waste water
program listing, 110–113	(see also General piping system	system pipe sizing program;
storage registers, explanation of,	design program; Piping system	Storm water system pipe sizing
109–110	volume and expansion tank	program; Water system pipe
user instructions and examples,	sizing program; Water piping	sizing program)
101–108	system design program)	SEP-1. See Storm water system pipe
Low Temperature Engineering Application	Piping system volume and expansion	sizing program
of Solar Energy, 229	tank sizing program (PP-3),	SEP-2. See Soil and waste water system
LP-1. See Lighting power budget	35–43	pipe sizing program
program	equations, 35	SEP-3. See Water system pipe sizing
LP-2. See Lighting design program,	general description, 35	program
lumen method	operating features, 35	SEP-4. See Gas system pipe sizing
Lumen method. See Lighting design	programming data for HP-97	program
program, lumen method	labels & subroutines, explanation	Sewers, 142, 153
	of, 42	Shading program. See Solar shading
Monthly and annual average insolation	program listing, 42–43	program
on tilted surfaces program	storage registers, explanation of,	Sizing programs. See Air duct sizing
(SOLP-2), 228–240	42	program; Gas system pipe sizing
equations, 228-229	user instructions and examples, 41	program; Piping system volume

and expansion tank sizing

program; Soil and waste water system pipe sizing program; Storm water system pipe sizing program; Water system pipe sizing program Soil and waste water system pipe sizing program (SEP-2), 150-162 general description, 150 operating features, 150 programming data for HP-97 labels & subroutines, explanation of. 160 program listing, 160-162 special notes for users, 158 storage registers, explanation of, user instructions and examples, programming data for TI-59 labels & subroutines, explanation of, 155 program listing, 155-158 storage registers, explanation of, 155 user instructions and examples, 154 reference data, 150-153 Solar energy programs, 213-240 (see also Monthly and annual average insolation on tilted surfaces program; Solar shading program) Solar shading program (SOLP-1), 213-227 equations, 213-214 general description, 213 operating features, 214-215 programming data for HP-97 labels & subroutines, explanation of. 226 program listing, 226-227 special notes for users, 223 storage registers, explanation of, 226 user instructions and examples, 224-225 programming data for TI-59 labels & subroutines, explanation program listing, 220-223 storage registers, explanation of, user instructions and examples, 216-219 SOLP-1. See Solar shading program SOLP-2. See Monthly and annual average insolation on tilted

surfaces program

282-294

Space planning program (UP-2),

general description, 282 operating features, 282 programming data for HP-97 labels & subroutines, explanation of. 293 program listing, 293-294 special notes for users, 289 storage registers, explanation of, 293 user instructions and examples, 290-292 programming data for TI-59 labels & subroutines, explanation of, 286 program listing, 286-288 storage registers, explanation of, 286 user instructions and examples, 283 - 285reference data, 282 Static regain method. See Air duct design program, static regain method Storm water system pipe sizing program (SEP-1), 141-149 equations, 141 general description, 141 operating features, 141-142 programming data for HP-97 labels & subroutines, explanation of, 148 program listing, 148-149 special notes for users, 146 storage registers, explanation of, 148 user instructions and examples, 147 programming data for TI-59 labels & subroutines, explanation of. 144 program listing, 144-146 storage registers, explanation of, 144 user instructions and examples, 143 reference data, 141-142

Task types relative to LE, 99
Thermal transmittance value program.

See Over-all thermal
transmittance value program
Thermodynamic Properties of Water
Including Vapor, Liquid and Solid
Phases, 3

UP-1. See Preliminary design conditions program UP-2. See Space planning program UP-3. See Distribution network program Utility programs. See General utility programs Volume and expansion tank sizing program. See Piping system volume and expansion tank sizing program Water consumption of buildings high, 163 low, 164 Water piping system design program (PP-2), 20-34equations, 20 examples, 21 general description, 20 operating features, 20-21 programming data for HP-97 labels & subroutines, explanation of, 33 program listing, 33-34 storage registers, explanation of, 33 user instructions and examples, 29 - 32programming data for TI-59 labels & subroutines, explanation of. 26 program listing, 26-28 storage registers, explanation of, 26 user instructions and examples, 22 - 25reference data, 21 Water system pipe sizing program (SEP-3), 163-182 equations, 20, 163 general description, 163 operating features, 163 programming data for HP-97 labels & subroutines, explanation of, 181 program listing, 181-182 special notes for users (SEP-3A, SEP-3B, SEP-3C, SEP-3D listings), 173-174 storage registers, explanation of, 181 user instructions and examples, 175 - 180programming data for TI-59 labels & subroutines, explanation of, 170 program listing, 170-173 storage registers, explanation of, user instructions and examples, 165-169

reference data, 163-164

(see also Soil and waste water pipe

sizing program; Storm water

system pipe sizing program)

(continued from front flap)

Fanning equations, can compute piping system friction, dynamic losses, and flow rates—and it can be used for any fluid.

**Air Duct Design** A program in this book brings the Static Regain Method within the range of all designers. This design method, which saves energy and balances effort, is seldom used by designers because manual solution is extremely time-consuming. But with the procedure outlined, the designer can use the Static Regain Method in a matter of minutes.

**Lighting Design** A program based on the Lumen Method can compute different cavity ratios, the number of luminaires for desired illumination, and power in kW and watts per square foot. The program also prints out take-off for the luminaire, giving its type, number, and quantity.

**Solar Energy** Programs allow the engineer to compute shading from external shading devices for any latitude in the Northern Hemisphere, and to optimize the tilt angle of solar panels.

**Engineering Economic Analysis** Problems related to life cycle cost are generally solved on large main-frame computers—the programs in this book can handle depreciation, interest, discounts, inflation, escalation in cost of energy, taxes on property, and income tax.

With these programs and the TI-59 or HP-97 calculator, the designer has a versatile means of handling day-to-day calculations with speed and ease. Building Systems Design with Programmable Calculators is more than an economical and practical set of programs: it is a valuable tool which can increase the quality of design—and make the process faster and cheaper at the same time.



**Sital Daryanani P.E.**, is senior vice president and chief of design at Syska and Hennessy. He has overseen the engineering design of such major projects as Madison Square Garden and Lincoln Center for the Performing Arts in New York, the John F. Kennedy Center for the Performing Arts in Washington, and the Philip Morris Inc. Manufacturing Facility in Richmond. He has lectured at the schools of architecture at Massachusetts Institute of Technology, Pratt Institute, and Columbia University, at the Harvard Graduate School of Design, and at the Institute of Electrical and Electronics Engineers.

Jacket design by Elliot Epstein



contains the following programs—all of them free the designer from the chore of computation and allow concentration on design and synthesis—

- PP-1 GENERAL PIPING SYSTEM DESIGN PROGRAM
- PP-2 WATER PIPING SYSTEM DESIGN PROGRAM
- PP-3 PIPING SYSTEM VOLUME AND EXPANSION TANK SIZING PROGRAM
- DP-1 AIR DUCT SIZING PROGRAM
- DP-2 AIR DUCT DESIGN PROGRAM, STATIC REGAIN METHOD
- DP-3 AIR DUCT FRICTION LOSS PROGRAM
- DP-4 AIR DUCT HEAT LOSS/GAIN PROGRAM
- LP-1 LIGHTING POWER BUDGET PROGRAM
- LP-2 LIGHTING DESIGN PROGRAM, LUMEN METHOD
- SEP-1 STORM WATER SYSTEM PIPE SIZING PROGRAM
- SEP-2 SOIL AND WASTE WATER SYSTEM PIPE SIZING PROGRAM
- SEP-3 WATER SYSTEM PIPE SIZING PROGRAM
- SEP-4 GAS SYSTEM PIPE SIZING PROGRAM
- BHTP-1 HEAT TRANSMISSION COEFFICIENT PROGRAM
- BHTP-2 OVER-ALL THERMAL TRANSMITTANCE VALUE PROGRAM
- SOLP-1 SOLAR SHADING PROGRAM
- SOLP-2 MONTHLY AND ANNUAL AVERAGE INSOLATION ON TILTED SURFACES
  - EP-1 LIFE CYCLE COST ANALYSIS PROGRAM, PART I
  - EP-2 LIFE CYCLE COST ANALYSIS PROGRAM, PART II
  - UP-1 PRELIMINARY DESIGN CONDITIONS PROGRAM
  - UP-2 SPACE PLANNING PROGRAM
  - UP-3 DISTRIBUTION NETWORK PROGRAM