

Calculator Programs for Chemical Engineers Volume II

Edited by

David J. Deutsch and the Staff of Chemical Engineering

Program Translations by

William Volk of Princeton, New Jersey

McGraw-Hill Publications Co., New York, N.Y.

Copyright © 1984 by Chemical Engineering McGraw-Hill Pub. Co. 1221 Avenue of the Americas, New York, New York 10020

All rights reserved. No parts of this work may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, microfilm and recording, or by any information storage and retrieval system without permission in writing from the publisher.

Printed in the United States of America.

Library of Congress Cataloging in Publication Data

(Revised for volume 2) Main entry under title:

Calculator programs for chemical engineers.

Chemical engineering—Computer programs.
 Programmable calculators. I. Cavaseno, Vincent.
 II. Chemical engineering.
 TP149.C277 660.2'028542 81-15492

ISBN 0-07-606710-6 (paper—Vol. 1) ISBN 0-07-010793-9 (case—Vol. 1) Vol. 2 ISBN 0-07-606887-0 (Chemical Engineering Magazine) 0-07-010849-8 (McGraw-Hill Book Co.)

CONTENTS

Preface		v
Section I	Introduction	
	Published calculator programs for chemical engineers	3
Section II	Engineering Mathematics	
	Calculate statistics from a histogram	17
	Nonlinear regression on a pocket calculator	19
	Polynomial regression on a pocket calculator	28
	Curve fitting via orthogonal polynomials	36
Section III	Physical Properties Correlation	
	Program predicts critical properties of organic compounds	47
	Predict thermal conductivities of gas mixtures and liquids	53
	Predict thermal conductivities of liquid mixtures	62
	Predict equation-of-state variables	68
	Predict gas-phase diffusion coefficients	78
	Predict liquid-phase diffusion coefficients	86
Section IV	Fluid Flow	
	Program sizes control valves for liquids	93
	Program sizes pipe and flare manifolds for compressible flow	100
	Calculating two-phase pressure drop	106
	Program predicts pressure drop for steam flow	112
	Estimate heat-tracing requirements for pipelines	117
	Estimate equivalent line lengths for pipe circuits	123
	Program predicts pressure drop for gas flow across an orifice meter	128
Section V	Heat Transfer	
	Calculator program for a steam condenser	139
	A new way to rate an existing heat exchanger	146

A new way to rate an existing neat exchanger	146
Calculating the corrected LMTD in shell-and-tube heat exchangers	153
Program solves airstream energy balances	159

0	Calculating heat loss or gain by an insulated pipe Program calculates flame temperature Calculator design of multistage evaporators Program for evaluation of shell-and-tube heat exchangers	165 171 177 182
Section VI	Mass Transfer	
	Shortcut program for multicomponent distillation Program aids cryogenic solubility calculations Program calculates hydrocyclone efficiency Program performs vapor-liquid equilibrium calculations Evaluating separation processes Optimizing reactor agitation in heat-transfer-limited situations	193 199 207 219 230 235
Section VII	Engineering Economics	
	Estimating cash flows for construction projects Discounted-cash-flow rates of return for varying cash flows Calculating net present value for varying cash flows	245 250 255

Preface

Chemical Engineering is proud to present this second volume of calculator programs for chemical engineers. As in the first volume, all of the programs in this book can be run on the Texas Instruments TI-59 and the Hewlett-Packard HP-67 and HP-97, and quite a few can be handled by the Texas Instruments TI-58. (As well, all the Hewlett-Packard programs can be run on the HP-41C machines.)

The programs included in the two volumes of *Calculator Programs for Chemical Engineers* have all been published in *Chemical Engineering*—but are offered here, and in the first volume, not only in the original calculator language as listed in the magazine article, but with a translation, so that both HP and TI versions are available.

The purpose of the two-book series is to present a library of programmable calculator programs specifically designed to solve chemical engineering problems. Most of the programs offered are design oriented—such as those for sizing control valves, rating heat exchangers, and designing multistage evaporators—while others are included for use in solving such everyday operation tasks as determining flame temperature or optimizing reactor agitation.

The thirty-four programs contained herein run the gamut of useful applications of chemical engineering principles, from engineering mathematics, physical-properties correlations, and engineering economics to fluid flow, and heat and mass transfer. And an introductory article presents a listing of published calculator programs (from all sources, not just from *Chemical Engineering*) of interest to chemical engineers.

Section I Introduction

Published calculator programs for chemical engineers

Published calculator programs for chemical engineers

Here is a bibliography of programmable-calculator programs of interest to ChEs, that are available in the literature. And, many of the Chemical Engineering programs that are listed here have been translated, so that both HP and TI versions are now available. These program listings appear in either this book or the first volume of *Calculator Programs for Chemical Engineers.* The footnotes following the "Calculator" listing below indicate this information.

John R. Garrett, Cost Associates International*

Programs for hand-held programmable calculators are an extremely valuable asset to an engineer who needs to produce a result or solution in a short period of time, or who has to solve the same basic problem many times.

However, the time required to develop and debug any program always requires more time than is needed for a manual solution, because results of any new program must be verified by checking against a manually derived result.

Engineers are already aware of the increased productivity that is made possible by the calculator; many subscribe to a users' library of programs, sponsored by a hardware vendor or a programming club. The following bibliographic listing does not replace these libraries, but is intended to serve as an additional source to help the engineer determine if someone has already produced a program that could be useful to him or her.

The following listing is divided into two main categories—one for advanced calculators such as the HP-67/97 and the TI-58/59, and the second for calculators having less capability or flexibility. Within these two main categories, I have attempted to classify programs according to general areas of interest. This is very diffi-*At the time of writing this article, the author was a Senior Cost Engineer for Diamond Shamrock Corp. cult to do in many cases, and the reader must be aware that some programs are applicable in more than one category.

In the listing, the title of the article is given first, and the author second (reversing the usual bibliographiccitation form). In some cases, the title has been expanded to include program subject matter, as a further guide to the user. The citation also lists the particular programmable calculator to which the program listing is applicable.

The engineer who is doing a literature search will find many titles that sound as though they contain program listings, but which actually contain an abstract or a computational method. Consequently, all of the following listings have been personally verified by me as containing actual calculator programs (except for a small number labeled "narrative").

I hope that by using this list, other engineers and technical personnel can eliminate a great deal of research time, and increase their personal knowledge and individual productivity.

As an aside, in addition to the principal use of this list, many main-frame and minicomputer programmers could easily translate the program algorithms into subroutines for a larger software package.

Programs for principal engineering calculators

Petroleum refining				
Title	Author	Calculator	Reference	
Solving Engineering Problems on Programmable Pocket Calculators: Stripping and Flashing, 1. Binary Distillation 2. Multicomponent Flash	Robert F. Benenati	HP-67/97°	<i>Chem. Eng.,</i> Vol. 84, Mar. 14, 1977, pp. 129–132. (See Piping for Part 1)	
Streamline Flash Computations with a Calculato r Program	Sohrab Mansouri	HP-67/97 ^a	<i>Chem. Eng.,</i> Vol. 86, Aug. 27, 1979, pp. 99-101	
Flash Vaporization Computations for Plant Operations Eased	R. Franklin Parker and I. Harvey Oliver	HP-67/97	<i>Oil & Gas J.,</i> Vol. 77, Dec. 17, 1979, pp. 76–79	
How Steam Alters V-L of Crude	T. A. Abdel-Halim	TI-58/59	<i>Hydrocarbon Process.,</i> Vol. 59, Jan. 1980, pp. 115- 119	
Hand Calculator Program Speeds Flash Calculations	I. Harvey Oliver	HP-67/97/ 41C	<i>Oil Gas J.,</i> Vol. 78, Mar. 31, 1980, pp. 130–132	

4 INTRODUCTION

Petroleum	refining	(continued)
-----------	----------	-------------

Title	Author	Calculator	Reference
Speed of Hand-calculator Programs can be Improved	Stephen T. Kostecke	HP-67/97	<i>Oil Gas J.,</i> Vol. 78, Aug. 11, 1980, pp. 107–110
Shortcut Distillation Program Aids Design	Henry Y. Mak	TI-58/59	Oil Gas J., Vol. 78, Oct. 20, 1980, pp. 138–141
Shortcut Program for Multicomponent Distillation	Mark Kesler	TI-58/59 ^b	<i>Chem. Eng.,</i> Vol. 88, May 4, 1981, pp. 85–88.
Calculator Eases Flash Calculations	Chandra P. Verma	TI-58/59	<i>Oil Gas J.,</i> Vol. 79, Apr. 27, 1981, pp. 148–150
Rapid Calculator Solutions: ASTM/TBP; Other Probability Plot Problems	Tom D. Denchfield	HP-67/97	<i>Oil Gas J.</i> , Vol. 79, Apr. 27, 1981, pp. 179–184
Crude Dehydration/Desalting Calculations	Van B. Tran	HP-41C	<i>Oil Gas J.,</i> Mar. 15, 1982, pp. 76–79
Calculator Program Finds Petroleum Fraction Viscosities Over Wide Temperature Range	Gidion M. Barnea	HP-67/97	<i>Oil Gas.</i> , Vol. 80, May 10, 1982, pp. 148-150

Pipeline design and use

Programmable Calculator Speeds Pipeline Span Computations	A. Marks	HP-67/97	<i>Oil Gas J.</i> , Vol. 76, Jan. 9, 1978, pp. 106–107
Hand-held Calculator Programs for Frequently Used Formulas Part 1: Williams-Hazen Pressure Drop	W. J. Turner	HP-67/97	Pet. Eng. Int., Vol. 51, May 1979, pp. 84-90
Programmable Calculators Speed Gas-line Calculations	R. F. Parker	HP-67/97	<i>Oil Gas J.,</i> Vol. 77, May 7, 1979, pp. 67–72
Estimating Products Line Commingling	A. Marks	HP-67/97	<i>Oil Gas J.,</i> Vol. 77, Nov. 19, 1979, pp. 109–110
Pipeline Liquid Flow Problems Solved by Calculator	R. R. Burnett	HP-67/97	<i>Oil Gas J.,</i> Vol. 77, Nov. 19, 1979, pp. 1 <u>3</u> 4–152
Equation Programmed to Prompt: Weymouth	Dennis Cook	TI-58/59	<i>Oil Gas J.,</i> Vol. 77, Dec. 10, 1979, pp. 103–108
Equations Speed Permafrost-area Line Analysis	G. G. King	TI-58/59	<i>Oil Gas J.,</i> Vol. 78, Dec. 15, 1980, pp. 80–84
Program Solves Line Flow Equation	Kurt P. McCaslin	TI-58/59	<i>Oil Gas J.,</i> Vol. 79, Jan. 19, 1981, pp. 83–84
Equation Predicts Buried Pipeline Temperatures	Graeme G. King	TI-58/59	<i>Oil Gas J.,</i> Vol. 79, Mar. 16, 1981, pp. 65–72
Programs Speed Line Hydraulics	Lawrence K. Thummel	HP-41C	<i>Oil Gas J.,</i> Vol. 79, Apr. 20, 1981, pp. 76–85
Calculator Can Ease Pipeline Surge Analysis—Part 1	Mike Hein	Narrative, see next item	<i>Oil Gas J.,</i> Vol. 79, Aug. 10, 1981, pp. 100–106
Analyzing Line Surge with Hand-held Calculator— Part 2	Mike Hein	HP-41C	<i>Oil Gas J.,</i> Vol. 79, Aug. 17, 1981, pp. 128–134
Gas Pipeline Program Computes Five Variables	Steven R. Moore and Robert D. Huff	TI-58/59	<i>Oil Gas J.,</i> Vol. 80, Mar. 8, 1982, pp. 195–198
Programmable Calculator Uses Equation to Figure Steady-state Gas-Pipeline Flow	E. Holmberg	TI-58/59	<i>Oil Gas J.</i> , Vol. 80, Apr. 26, 1982, pp. 126–128

Insulation

Calculator Program Analyzes Insulated Pipe	S. L. Barritt	HP-67/97	<i>Heat./Piping/Air Cond.,</i> Vol. 50, Mar. 1978, pp. 65– 70
Program Calculates Heat Transfer through Composite Walls	Calvin R. Brunner	TI-58/59 ^a	Chem. Eng., Vol. 87, June 16, 1980, pp. 119-122
Calculating Heat Loss or Gain by an Insulated Pipe	Frank S. Schroder	HP-67/97 ^b	<i>Chem. Eng.,</i> Vol. 89, Jan. 25, 1982, pp. 111–114
Heat Loss Through Insulated Steam Lines	J. G. Kloepfer and S. Dykstra	TI-58/59	Oil Gas J., Vol. 80, Feb. 22, 1982, pp. 146-154

Pumps				
New Program Speeds Up Selection of Pumping Unit	Mark Seaman	TI-58/59	<i>Oil Gas J.,</i> Vol. 77, Nov. 12, 1979, pp. 226-229 (see next item)	
New Program Unit—A Correction	Mark Seaman	TI-58/59	<i>Oil Gas J.,</i> Vol. 77, Dec. 10, 1979, pp. 102	
Rapid Calculation of Centrifugal-pump Hydraulics	W. Wayne Blackwell	TI-58/59 ^a	Chem. Eng., Vol. 87, Jan. 28, 1980, pp. 111–115	
Calculator Program Computes Centrifugal Pump Efficiency	A. Marks	HP-67/97	Oil Gas J., Vol. 78, Dec. 22, 1980, pp. 62-64	
Gas Calculations Aid Submersible Pump Selections	John Beavers, others	TI-58/59	Pet. Eng. Int., Vol. 53, July 1981, pp. 69-85	

Sanitation, environment, and safety/health

Sizing Force Mains for Economy	Louis Dancs	TI-58/59 & HP-67/97	<i>Water Sewage Works,</i> Vol. 124, Mar. 1977, pp. 84– 86
Hydraulic Computations for Small Programmable Calculators	Thomas E. Croley II	TI-58/59 & HP-67/97	<i>Water Sewage Works,</i> Vol. 124, Nov. 1977, pp. 64- 71
Computer Program for Open Channel Flow Calculation	Ralph Finch	TI-58/59	Water Sewage Works Ref. Issue, Vol. 125 Ref., 1978, pp. R:22–30

Sanitation, environment, and safety/health (continued)

Title	Author	Calculator	Reference
Predicting Sulfide in Force Mains	Karl E. Kienow and Kenneth K. Kienow	HP-67/97	Water Sewage Works, Vol. 125, Dec. 1978, pp. 48- 49
Relative Humidity from Psychrometric Data	Åke Sison Stenius	HP-67/97	<i>Таррі,</i> Vol. 62, Арг. 1979, pp. 87–88
Programmed Approach to Water/Mass Analysis	George R. Spencer, Jr.	TI-58/59	Pollut. Eng., Vol. 13, Feb. 1981, pp. 30-33
 The Hand-held Programmable Calculator and the Occupational Safety and Health Practitioner: TLV for Mixtures—Additive Effects. TLV for Mixtures—Additive Effects: Liquid Source. Time Weighted Average Exposure. Time Weighted Average Exposure with Excursion Test. Duct Sizing Calculations. Converting Octave Band Sound Levels to A, B, or C Weighted Sound Pressure Levels. Combining and Subtracting Sound Pressure Levels. Cumulative Summing. P Chart Computation. Cart Computation. Pareto Analysis. Work Injury Experience. Concentration of an Air Contaminant from Sampling or Laboratory Data. 	Leo Greenberg	TI-58/59	<i>Am. Ind. Hyg. Assoc. J.,</i> Vol. 42, Mar. 1981, pp. 165–177
Oxygen Transfer Parameter Estimation: 1. Complex Method. 2. Linearization Method	M. K. Stenstrom, others	TI-58/59	ASCE, J. of Environ. Eng. Div., Vol. 107 (2), Apr. 1981, pp. 379–397
Psychrometric Analysis with a Programmable Calculator	Bernard N. DeWitt	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 53, May 1981, pp. 59– 62
Solve Psychrometric Problems with a Programmable Calculator	Theodore Atwood	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 53, Dec. 1981, pp. 77– 80
"Industrial Wastewater Treatment Plant Model	Kenneth A. Chacey and William S. McAvoy	HP-41C	<i>Pollut. Eng.,</i> Vol. 14, June, 1982, pp. 25–28

Piping

Solving Engineering Problems on Programmable Pocket Calculators	Robert F. Benenati	HP-67/97°	<i>Chem. Eng.,</i> Vol. 84, Feb. 28, 1977, pp. 201–206 (see Refining for Part 2)
Versatile Calculator Program Eases Piping Design	Larry L. Simpson	HP-67/97 ^a	<i>Chem. Eng.,</i> Vol. 86, Jan. 29, 1979, pp. 105–109 (see next item)
Versatile Calculator Program Eases Piping Design— Comment/Reply	Earle C. Smith	Narrative	Chem. Eng., Vol. 86, Sept. 10, 1979, p. 5
Design Weld-neck Flanges Fast	John Stippick	TI-58/59	Hydrocarbon Process., Vol. 59, May 1979, pp. 201– 204
Steam Flow in Steel Pipes	T. S. Bryan and N. T. McLaury	HP-67/97	<i>Tappi,</i> Vol. 62, June 1979, pp. 91–92
Finding Economic Pipe Diameters Using Programmable Calculators	Neil Nebeker	TI-58/59	<i>Plant Eng.,</i> Vol. 33, June 14, 1979, pp. 150–153
Calculator Program Slashes Piping Analysis Time	M. Hassouneh and H. Bhaumik	HP-67/97	Oil Gas J., Vol. 77, Oct. 29, 1979, pp. 167-172
Pressure Loss Through Valves	Kishan Bagadia	HP-67/97 and TI-58/59	<i>Plant Eng.,</i> Vol. 33, Oct. 31, 1979, p. 81
Friction Head Loss in Pipe	Kishan Bagadia	HP-67/97 and TI-58/59	<i>Plant Eng.</i> , Vol. 33, Oct. 31, 1979, p. 82
Analyze Fire Water Network by Calculator	H. Bhaumik	HP-67/97	<i>Oil Gas J.,</i> Vol. 77, Dec. 31, 1979, pp. 182–189
Versatile Program for Pressure-drop Calculations	James M. Meyer	HP-67/97 ^a	Chem. Eng., Vol. 87, Mar. 10, 1980, pp. 139–142
Program Finds Pressure Drop Through Pipe and Fittings	Barry L. Roth	TI-58/59	Oil Gas J., Vol. 78, Mar. 24, 1980, pp. 168–170
Calculator Solves Pipe Flow Problems	Chandra P. Verma	TI-58/59	<i>Oil Gas J.,</i> Vol. 78, July 28, 1980, pp. 183–184
Pipe Friction Head Loss	Robert Bursey	TI-58/59	<i>Tappi,</i> Vol. 63, Nov. 1980, pp. 159–160
Program Calculates Two-phase Pressure Drop	W. Wayne Blackwell	TI-58/59	<i>Oil Gas J.,</i> Vol. 78, Nov. 24, 1980, pp. 116–124
Calculation of Drop Leg Performance	S. J. Dougherty	HP-67/97 ^a	<i>Tappi,</i> Vol. 63, Dec. 1980, pp. 115–116
Equations Speed Permafrost-area Line Analysis	G. G. King	TI-58/59	<i>Oil Gas J.,</i> Vol. 78, Dec. 15, 1980, pp. 80–84
Program Solves Line Flow Equation	Kurt P. McCaslin	TI-58/59	<i>Oil Gas J.,</i> Vol. 79, Jan. 19, 1981, pp. 83–84
Piping Flexibility Analysis with a Programmable Calculator	Alfred D'Ambra	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 53, May 1981, pp. 68– 75
Program Sizes Pipe and Flare Manifolds for Compressible Flow	Paul Kandell	TI-58/59 ^b	Chem. Eng., Vol. 88, June 29, 1981, pp. 89–93
Solve Fluid Flow Problems with a Programmable Calculator	Theodore Atwood	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 53, Sept. 1981, pp. 159–165
Calculating Two-phase Pressure Drop	W. Wayne Blackwell	TI-58/59Þ	Chem. Eng., Vol. 88, Sept. 7, 1981, pp. 121-125
Pipe Branch Reinforcement Calculations	Alfred D'Ambra	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 54, Feb. 1982, pp. 87– 90

Title	Author	Calculator	Reference	
Program Predicts Pressure Drop for Steam Flow	Calvin R. Brunner	TI-58/59 ^b	Chem. Eng., Vol. 89, Feb. 22, 1982, pp. 97-99	
Sizing Condensate-return Lines	W. Wayne Blackwell	TI-58/59	Chem. Eng., Vol. 89, July 12, 1982, pp. 105-108	

Energy				
Estimating Nuclear Fuel Cycle Cost Using a Hand-held Programmable Calculator	O. Wesley Taylor	TI-58/59	Power Eng., Vol. 84, Feb. 1980, pp. 58-61	
Using a Programmable Calculator for Energy Analysis	Gregory A. Specht	TI-58/59	<i>Plant. Eng.,</i> Vol. 34, Nov. 13, 1980, pp. 139–143	
Estimate Solar Collector Size with a Programmable Calculator	M. D. Syed, others	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 53, May 1981, pp. 81– 85	

Operations and maintenance

HP-67/97

TI-58/59

TI-58/59

Finding Volume in Partially Filled Tanks Program Calculates Volumes of Partly Filled Vessels A Better Way to Balance Turbomachinery

Erminio Santi				
W. Wayne Blackwell				
L. Fielding and R. E. Mondy				

Chem. Eng., Vol. 86, June 18, 1979, pp. 144-147 Oil Gas J., Vol. 78, June 2, 1980, pp. 131-134 Hydrocarbon Process., Vol. 60, Jan. 1981, pp. 97-104

Economic/financial

Fuel Savings in the Lime Kiln	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 61, June 1978, pp. 83–84
Performing Cost-effective Analysis for Alternative Interceptor Sewer Designs	Karl E. Kienow and Kenneth K. Kienow	HP-67/97	Water Sewage Works, Vol. 125, Oct. 1978, pp. 43- 48
Steam Savings in Multiple Effect Evaporator Systems	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 61, Nov. 1978, pp. 123–124
Economics of Boiler Feedwater Heating	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 62, Feb. 1979, pp. 89–90
Calculating Boiler Efficiency and Economics	Terry A. Stoa	TI-58/59 ^a	Chem. Eng., Vol. 86, July 16, 1979, pp. 77-81
Calculator Program Speeds Up Project Financial Analysis	David M. Kirkpatrick	TI-58/59 ^a	Chem. Eng., Vol. 86, Aug. 27, 1979, pp. 103-107
Hand-held Calculator Programs for Frequently Used Formulas: Discounted Cash Flow Projection with Price and Cost Escalation	W. J. Turner	HP-67/97	Pet. Eng. Int., Vol. 52, Apr. 1980, pp. 76-94
Converting From Mechanical to Electrical Drives: The Looped Pointer Programming Method	S. Jagannath	TI-58/59	<i>Tappi</i> , Vol. 63, Nov. 1980, pp. 143–144
Program Calculates Stock-Options Tax	Ed Oxner	HP-67/97	<i>EDN,</i> Vol. 26, Feb. 4, 1981, p. 87
Calculators Quickly Find Tier I Revenue, Volume, WPT	Frank W. Lewis and Dipak K. Sinha	TI-58/59	<i>Oil Gas J.,</i> Vol. 79, March 16, 1981, pp. 80-84
Calculator Program Finds Present Value and Rate of Return on Investment Opportunities	Rene Santos	TI-58/59	<i>Oil Gas J.,</i> Vol. 79, Dec. 21, 1981, pp. 62-68
Calculator Program Aids Well Cost Management	Carey J. Doyle	TI-58/59	<i>Oil Gas J.,</i> Vol. 80, Jan. 18, 1982, pp. 111-116

Instrumentation and process control

Program Calculates Orifice Sizes for Gas Flow				
TI-59 Program for Root Locus				
Orifice Gas Flow Calculated Without Tables				
Program Sizes Flange-top Orifice Plate				
Program Computes Orifice-meter Flow Rate				
Automatic Stability Calculations for Feedback Control Systems				

William H. Mink
G. Franklin
Randy Freeman
John E. Hogsett
Jed R. Martin
Mehmet T. Gökbudak

Chem. Eng., Vol. 87, Aug. 25, 1980, pp. 91-94 Electron. Eng., Vol. 53, Feb. 1981, pp. 25-27 Oil Gas J., Vol. 79, Mar. 9, 1981, pp. 156-161 Oil Gas J., Vol. 79, Mar. 23, 1981, pp. 132-136 Oil Gas J., Vol. 79, Oct. 12, 1981, pp. 130-131 Control Eng., Vol. 29, June, 1982, pp. 80-82

Equipment engineering

Calculator Program Solves Cyclone Efficiency Equations

Yatendra M. Shah and Richard T. Price S. Jagannath

TI-58/59ª TI-58/59

TI-58/59^a

TI-58/59 TI-58/59

TI-58/59

TI-58/59

HP-41C

Chem. Eng., Vol. 85, Aug. 28, 1978, pp. 99-102 Tappi, Vol. 62, Jan. 1979, pp. 87-88

Overall Efficiency of a Combustion Boiler

Equipment engineering (continued)

Title	Author	Calculator	Reference
Calculator Program for Sour-water Stripper Design	Norman H. Wild	HP-67/97 ^a	<i>Chem. Eng.,</i> Vol. 86, Feb. 12, 1979, pp. 103-113
Calculator Program Aids Quench-tower Design	William H. Mink	TI-58/59ª	Chem. Eng., Vol. 86, Dec. 3, 1979, pp. 95–98
Program Predicts Radiant Heat Flux in Direct Fired Heaters	Tayseer A. Abdel- Halim	TI-58/59ª	Chem. Eng., Vol. 86, Dec. 17, 1979, pp. 87-91
Quick Calculation of Heat Exchanger Weight	Mike Taylor	HP-67/97	<i>Process Eng.,</i> Vol. 61, Jan. 1980, pp. 56–59
Calculator Analyzes Compressor Performance	Jim Urick and Fred Odom	TI-58/59	<i>Oil Gas J.,</i> Vol. 78, Jan. 14, 1980, pp. 60-65
Calculator Gives Compression Ratio for Compressors	Chandra P. Verma	TI-58/59	<i>Oil Gas J.</i> , Vol. 78, Feb. 25, 1980, pp. 128-130 (see next item)
Calculator Gives Compressors—A Correction	Chandra P. Verma	TI-58/59	<i>Oil Gas J.,</i> Vol. 78, Mar. 31, 1980, p. 129
Kinetics of Fixed-bed Sorption Processes	Henry K. S. Tan	HP-67/97 ^{.a}	Chem. Eng., Vol. 87, Mar. 24, 1980, pp. 117–119
Calculator Program for Designing Packed Towers	Vaclav I. Pancuska	TI-58/59 ^a	<i>Chem. Eng.,</i> Vol. 87, May 5, 1980, pp. 113–114
Calculator Program Aids Design of Spouted Beds	Domingo Mele and Julian Martínez	HP-67/97 ^{'a}	Chem. Eng., Vol. 87, Oct. 20, 1980, pp. 137-139
Calculating Hole-area Distribution for Liquid Spargers	William H. Mink	TI-58/59 [°]	<i>Chem. Eng.,</i> Vol. 87, Nov. 17, 1980, pp. 277–281 (see next item)
Hole-area Distribution for Liquid Spargers—A Correction	William H. Mink	TI-58/59 ^ª	Chem. Eng., Vol. 88, Apr. 6, 1981, pp. 93-95
Expansion Tank Calculations	M. D. Syed and D. G. Strang	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 53, Jan. 1981, pp. 96– 99
Coating Dryer Calculations	R. C. Walker	HP-67/97	<i>Tappi,</i> Vol. 64, Feb. 1981, pp. 119–121
Calculator Program for a Steam Condenser	Larry J. Haydu	HP-67/97 ^b	Chem. Eng., Vol. 87, Feb. 9, 1981, pp. 99–102
Using a Programmable Calculator to Solve Fan Law Problems	Joseph J. Loeffler	HP-67/97	<i>Plant Eng.,</i> Vol. 35, Mar. 19, 1981, pp. 167–170
A New Way to Rate an Existing Heat Exchanger	Rogerio G. Herkenhoff	HP-67/97/ 41C ^b	Chem. Eng., Vol. 88, Mar. 23, 1981, pp. 213-215
Power Requirements of Pressurized Screens vs. Foil Frequency	R. M. Bach	TI-58/59	<i>Tappi,</i> Vol. 64, Aug. 1981, pp. 113–114
Calculating the Corrected LMTD in Shell & Tube Heat Exchangers	W. Wayne Blackwell	HP-67/97 & TI-58/59Þ	Chem. Eng., Vol. 88, Aug. 24, 1981, pp. 101-106
Program Calculates Hydrocyclone Efficiency	Frank H. Merrill	HP-41C ^b	Chem. Eng., Vol. 88, Nov. 2, 1981, pp. 71–78
Letters & Reply—Hydrocyclone Efficiency	R. L. Atwood	Narrative ^d	<i>Chem. Eng.,</i> Vol. 89, June 14, 1982, p. 5
Thermosyphon Reboiler Piping Designed by Computer	W. F. Abbott	TI-58/59	Hydrocarbon Process., Vol. 61, Mar. 1982, pp. 127– 129
Program Calculates Flame Temperature	Carl A. Vancini	HP-67/97 ^b	Chem. Eng., Vol. 89, Mar. 22, 1982, pp. 133–136
Solving Problems of Varying Heat-transfer Areas in Batch Processes	Maurizio Marzi	HP-41C	Chem. Eng., Vol. 89, May 17, 1982, pp. 101-107

Chemical/physical properties

Calculate Enthalpy with a Pocket Calculator	Raymond T. Schneider	HP-67/97	Chem. Eng., Vol. 84, May 23, 1977, pp. 145-152
Black Box for Pulp Streams	N. T. McLaury	HP-67/97	<i>Tappi,</i> Vol. 61, Sept. 1978, pp. 117–118
Calculating Roe Chlorine Number	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 61, Dec. 1978, p. 93
Multi- or Single-sheet Light Scattering and Absorption Coefficients	A. Sison Stenius	HP-67/97	<i>Tappi,</i> Vol. 62, Jan. 1979, pp. 89-91 (see next item)
Multi- or Single-sheet Coefficients—A Correction	Harold Peterson	HP-67/97	<i>Tappi,</i> Vol. 62, Mar. 1979, p. 109
Calculating Saturated Steam Temperature and Enthalpy of Vaporization	S. Jagannath	TI-58/59	<i>Таррі,</i> Vol. 62, Feb. 1979, pp. 89-90
Thermomechanical Pulp and Sheet Properties	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 62, Mar. 1979, pp. 109–110
Predicting Volumes of Pure Liquids	James H. Weber	TI-58/59ª	<i>Chem. Eng.,</i> Vol. 86, Mar. 26, 1979, pp. 173–177
Errata, correction to Predicting Liquids by James H. Weber, in the March 29, 1979, issue of <i>Chemical Engineering</i>	Staff	TI-58/59 ^c	<i>Chem. Eng.,</i> Vol. 86, June 18, 1979, p. 151
Specific Gravity of a Solid-Liquid Slurry	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 62, Apr. 1979, p. 89
Kappa Number Calculation	Felipe Ramírez C.	TI-58/59	<i>Tappi,</i> Vol. 62, May 1979, p. 93
Color Analysis of Newsprint in the Dominant Wavelength Range: 570–585 nm	P. J. Mangin and M. B. Lyne	TI-58/59	<i>Tappi,</i> Vol. 62, May 1979, pp. 94–96
Predicting Volumes of Saturated Liquid Mixtures	James H. Weber	TI-58/59 ^ª	<i>Chem. Eng.,</i> Vol. 86, May 7, 1979, pp. 95–99
Calculator Gives Compressibility Factors	R. R. Burnett	HP-67/97	<i>Oil Gas J.,</i> Vol. 77, June 11, 1979, pp. 70–74
Predict the Viscosities of Pure Gases	James H. Weber	TI-58/59 ^a	Chem. Eng., Vol. 86, June 18, 1979, pp. 111-117
Estimating Acid Dewpoints in Stack Gases	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 63, July 1979, pp. 97–98
Unknown Flow Streams in Screens	Y. M. Mehta	TI-58/59	<i>Tappi,</i> Vol. 62, July 1979, pp. 101–103
Predicting Viscosities of Liquids and Mixtures	James H. Weber	TI-58/59ª	<i>Chem. Eng.</i> , Vol. 86, July 30, 1979, pp. 79–84
Color Analysis of Newsprint: Hunter L-a-b: L*a*b* (CIELAB)	P. J. Mangin and M. B. Lyne	TI-58/59	<i>Tappi,</i> Vol. 62, Aug. 1979, pp. 129–130
Saveall Fiber/Water Balance	R. M. Bach	TI-58/59	<i>Tappi,</i> Vol. 62, Aug. 1979, pp. 133–134

8 INTRODUCTION

Chemical/physical properties (continued)

Title	Author	Calculator	Reference
Flash Calculations (Steam)	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 62, Aug. 1979, pp. 131–132
Lignin Composition by Freudenberg Formula	Felipe Ramírez C. and Ezéquiel Delgado	TI-58/59	<i>Tappi</i> , Vol. 62, Sept. 1979, pp. 117–118
Heat Recovery in Counterflow Heat Exchangers	Y. M. Mehta	TI-58/59	<i>Tappi,</i> Vol. 62, Oct. 1979, pp. 137–138
Percent Isokinetic Variation	Dayle C. Smith	TI-58/59	<i>Tappi,</i> Vol. 62, Oct. 1979, pp. 139–140
Tristimulus Values and Chromaticity Coordinates from Reflectance Values	Åke Sison Stenius	HP-67/97	<i>Tappi</i> , Vol. 62, Nov. 1979, pp. 123–124
Predict Vapor Pressure vs. Temperature for Pure Substances	James H. Weber	TI-58/59 ^a	Chem. Eng., Vol. 86, Nov. 5, 1979, pp. 111-117
Black Liquor Properties—Part 1	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol., 62, Dec. 1979, pp. 113–114
Evaluation of Cation Hydrolysis Schemes with a Pocket Calculator	Brian W. Clare	HP-67/97	J. Chem. Educ., Vol. 56, Dec. 1979, pp. 784-787
Newsprint Properties—Opacity Percent Saturation, Dominant Wavelength, and Scattering Coefficient	John W. Davidson	HP-67/97	<i>Tappi,</i> Vol. 62, Dec. 1979, pp. 115–116 (see next item)
Newsprint Properties A Correction	J. Malloch, others	HP-67/97	<i>Tappi,</i> Vol. 63, Nov. 1980, p. 144
Predict Latent Heat of Vaporization	James H. Weber	TI-58/59 ^a	<i>Chem. Eng.,</i> Vol. 87, Jan. 14, 1980, pp. 105–110
Calculator Program Solves Gas Equations	Phillip R. Rowley	TI-58/59ª	<i>Chem. Eng.,</i> Vol. 87, Feb. 11, 1980, pp. 97–100
Calculate Equation-of-state Variables	James H. Weber	TI-58/59ª	<i>Chem. Eng.,</i> Vol. 87, Feb. 25, 1980, pp. 93–100
The Periodic Chart at Your Fingertips Using the TI-59	Bruce D. Marquardt	TI-58/59	BYTE, Vol. 5, Mar. 1980, pp. 208-210
Black Liquor Properties—Part 2	S. Jagannath	TI-58/59	<i>Tappi,</i> Vol. 63, Mar. 1980, pp. 117–118
Calculated Freedom—How You Can Dispense with the Mainframe Computer	Brian Clare	HP-67/97	Chem. Br., Vol. 16, May 1980, pp. 249-256
Amount of Inorganic Material in the Kraft Liquor Cycle	J. Villa	TI-58/59	<i>Tappi,</i> Vol. 63, May 1980, pp. 143–145
Natural Gas Physical Properties from a Programmable Calculator	Fred M. Odom	TI-58/59	Oil Gas J., Vol. 78, May 12, 1980, pp. 106-108 (see next item)
Natural Gas Calculator—A Correction	Fred M. Odom	TI-58/59	<i>Oil Gas J.,</i> Vol. 78, June 2, 1980, p. 126
Predict Properties of Gas Mixtures	James H. Weber	TI-58/59 ^a	<i>Chem. Eng.,</i> Vol. 87, May 19, 1980, pp. 151–160
Screen Fiber Balance	R. M. Bach	TI-58/59	<i>Tappi,</i> Vol. 63, June 1980, pp. 123–124
Screen Fiber Balance: Some Fine Tuning	R. M. Bach	TI-58/59	<i>Tappi,</i> Vol. 63, Nov. 1980, pp. 161–162
Calculating Properties of Chemical Compounds	Erminio Santi	HP-67/97ª	<i>Chem. Eng.</i> , Vol. 87, June 2, 1980, pp. 75–77
Brownstock Washer Mass Balance	Reid Miner	TI-58/59	<i>Tappi,</i> Vol. 63, Aug. 1980, pp. 101–104
Predict Thermodynamic Properties of Pure Gases and Binary Mixtures	James H. Weber	TI-58/59 ^a	<i>Chem. Eng.</i> , Vol. 87, Sept. 22, 1980, pp. 155–158
Program Calculates Gas Physical properties	D. Cook and J. D. Hamaker	TI-58/59	<i>Hydrocarbon Process.,</i> Vol. 59, Nov. 1980, pp. 213– 215
Brookfield Viscosity	Robert C. Walker	HP-67/97	<i>Tappi,</i> Vol. 63, Dec. 1980, pp. 117–119
Pinpoint Carbon Deposition	J. W. Colton	HP-67/97	Hydrocarbon Process., Vol. 60, Jan. 1981, pp. 177– 184
Predict Thermal Conductivities of Pure Gases	James H. Weber	TI-58/59 ^a	<i>Chem. Eng.,</i> Vol. 88, Jan. 12, 1981, pp. 127–132
Program Predicts Critical Properties of Organic Compounds	Jacob Zabicky	TI-58/59 ^b	Chem. Eng., Vol. 88, Feb. 23, 1981, pp. 73-76
Packed Bed Flow Computed	V. I. Pancuska	TI-58/59	<i>Hydrocarbon Process.,</i> Vol. 60, Mar. 1981, pp. 103– 104
Ink Removal Efficiency	R. M. Bach	TI-58/59	<i>Tappi,</i> Vol. 64, Mar. 1981, pp. 177–178
Predict Thermal Conductivities of Gas Mixtures and Liquids	James H. Weber	TI-58/59 ^b	Chem. Eng., Vol. 88, Mar. 9, 1981, pp. 91–96
Programs Solve Underwood's Equation	J. M. Ladanois	HP-67/97 and HP-41C	Hydrocarbon Process., Vol. 60, Apr. 1981, pp. 231– 233
Shortcut Program for Multicomponent Distillation	Mark Kesler	TI-58/59 ^b	Chem. Eng., Vol. 88, May 4, 1981, pp. 85–88
Predict Thermal Conductivities of Liquid Mixtures	James H. Weber	TI-58/59 ^b	Chem. Eng., Vol. 88, June 1, 1981, pp. 67-71
Program Aids Cryogenic Solubility Calculations	Patrice Lebrun	HP-67/97 ^b	<i>Chem. Eng.,</i> Vol. 88, July 13, 1981, pp. 127–131 (see correction of 1/11/82, p. 5.)
A Gas Compression Calculator	Marcel J. P. Bogart	TI-58/59	Chem. Eng. Prog., Vol. 77, Aug. 1981, pp. 66-70
Viscosity Index by Computer	S. Stournas	TI-58/59	Hydrocarbon Process., Vol. 60, Aug. 1981, pp. 91-92
Water-based Coatings: Characteristics	Robert C. Walker	HP-67/97	<i>Tappi,</i> Vol. 64, Sept. 1981, pp. 181–185
Compute Volume Correction Factors on Your Calculator	T. E. Mullins	HP-41C	Hydrocarbon Process., Vol. 60, Nov. 1981, pp. 295-296
Program Solves Airstream Energy Balances	Calvin R. Brunner	TI-58/59 ^b	Chem. Eng., Vol. 88, Nov. 16, 1981, pp. 265–269
Hand-held Calculator Program Simplifies Calculation of Data for Gas Mixtures	Walter Karger	TI-58/59	Oil Gas J., Vol. 79, Jan. 11, 1982, pp. 88-91
Predict Equation-of-State Variables	James H. Weber	TI-58/59 ^b	Chem. Eng., Vol. 89, Jan. 11, 1982, pp. 111–117
Predict Gas-phase Diffusion Coefficients: 1. Programs for Calculating Diffusion Coefficients by Chapman-Cowling, Wilke-Lee, and Fuller-Schettler- Giddings Correlations and g and g kr by Tee-	James H. Weber	TI-58/59 ^b	Chem. Eng., Vol. 89, May 3, 1982, pp. 87–92

Chapman-Cowling, Wilke-Lee, and Fuller-Schettler-Giddings Correlations and σ and ε/κ by Tee-Gotoh-Stewart Correlations.
Programs for Calculating Diffusion Coefficients for Mixtures Containing Polar Substances via Brokaw Correlations, δ, σ, and ε/κ by Brokaw Method, and Boiling Points and Volumes by Spencer-Danner Method

Chemical/physical properties (continued)

Title	Author	Calculator	Reference
Saturated Vapor Pressure Tables For Refrigerants	Ted Atwood	TI-58/59	<i>Heat./Piping/Air Cond.,</i> Vol. 54, May 1982, pp. 91– 95
Program Performs Vapor-liquid Equilibrium Calculations	Victor L. Rice	HP-41C ^d	Chem. Eng., Vol. 89, June 28, 1982, pp. 77–86

	Corrosion	control	
Computer Predicts Pipe Corrosion	Kenneth K. Kienow and Karl E. Kienow	HP-67/97	<i>Water Sewage Works,</i> Vol. 125, Sept. 1978, pp. 78– 98
The Programmable Electronic Calculator in Underground Corrosion Related Activity (High Pressure Pipe Lines)	Richard L. Seifert	HP-67/97	Mater. Perform., Vol. 19, June 1980, pp. 34-38
The Programmable Electronic Calculator in Underground Corrosion Related Activity (Determination of Safe Operating Pressure for a Corroded High Pressure Gas Pipeline)	Richard L. Seifert	HP-67/97	Mater. Perform., Vol. 19, July 1980, pp. 26–33
The Programmable Electronic Calculator in Underground Corrosion Related Activity (Determines the Maximum Corrosion Dimensions Which Will Allow the Use of the Assigned MAOP in a Pipeline)	Richard L. Seifert	HP-67/97	Mater. Perform., Vol. 19, Aug. 1980, pp. 21–30
The Programmable Electronic Calculator in Underground Corrosion Related Activity. (Cathodic Protection Rectifier Interference Calculations)	Richard L. Seifert	HP-67/97	Mater. Perform., Vol. 19, Sept. 1980, pp. 33-44
The Programmable Electronic Calculator in Underground Corrosion Related Activity (Calculation and Storage of Interference Network Constants)	Richard L. Seifert	HP-67/97	Mater. Perform., Vol. 19, Oct. 1980, pp. 29-32
The Programmable Electronic Calculator in Underground Corrosion Related Activity (Comments on Programs and on HP-34C Programs)	M. M. Wright and R. L. Seifert	HP-34/67/97	<i>Mater. Perform.</i> , Vol. 20, Jan. 1981, pp. 50–52
How to Determine Pipe Concrete Coating Thickness	Frank E. Hangs		<i>Pipe Line Ind.,</i> Vol. 56, Mar. 1982, pp. 59–60

Valves				
Pressure Loss Through Valves	Kishan Bagadia	HP-67/97 and TI-58/59	<i>Plant Eng.,</i> Vol. 33, Oct. 31, 1979, p. 81	
Program Sizes Control Valves for Liquids	Jon F. Monsen	HP-67/97 ^b	Chem. Eng., Vol. 88, May 18, 1981, pp. 159–163	

Statistical applications

Predicting Queue Performance on a Programmable Handheld Calculator	Ronald Zussman	TI-58/59	<i>Comput. Des.,</i> Vol. 17, Aug. 1978, pp. 93-100 (see next item)
Predicting Queue —A Correction	J. Pustaver and R. Zussman	TI-58/59	Comput. Des., Vol. 18, Aug. 1979, p. 6
Calculator Programs to Correlate Data—Multfit, Part 1	William Volk	HP-67/97 ^a	Chem. Eng., Vol. 86, Apr. 23, 1979, pp. 128–132
Calculator Program to Fit a Family of Lines— Multslope, Part 2	William Volk	HP-67/97 ^a	Chem. Eng., Vol. 86, June 4, 1979, pp. 133-138
Correlating One Dependent Variable with Two Independent Variables—Mult-2, Part 3	William Volk	HP-67/97 ^a	Chem. Eng., Vol. 86, Sept. 10, 1979, pp. 131-135
Second-degree-polynomial Calculator Program—Part 4	William Volk	HP-67/97 ^a	Chem. Eng., Vol. 86, Nov. 19, 1979, pp. 149–153
Calculator Solution to a Three-variable Problem—Part 5	William Volk	HP-67/97 ^ª	Chem. Eng., Vol. 86, Dec. 17, 1979, pp. 93-98
Correlating the Hyperbolic Function— Part 6	Jean R. Brosens	HP-67/97 ^a	<i>Chem. Eng.,</i> Vol. 87, Apr. 7, 1980, pp. 97–99
Program Correlates Data	C. S. Payne	TI-58/59 ^ª	Chem. Eng., Vol. 87, July 28, 1980, pp. 75-77
Calculator Program for Normal and Log-normal Distributions	Jack F. Chapin	HP-67/97 ^a	Chem. Eng., Vol. 87, Dec. 15, 1980, pp. 75-78
Yates' Method Analysis of 2^n Factorial Design of Experiments Using the TI-59, For $n = 3, 4, 5, 6$	Angelo Tulumello and J. D. Tulumello	TI-58/59	Comput. Chem., Vol. 5, No. 1, 1981, pp. 55-66
HP-41C Generates a Pseudorandom Sequence	lan Patterson	HP-41C	<i>Electronics,</i> Vol. 54, May 19, 1981, p. 17
Calculate Statistics from a Histogram	Walter B. Thomas III	HP-67/97 ^b	Chem. Eng., Vol. 88, July 27, 1981, pp. 95–96
Average and Related Data	R. C. Walker	HP-67/97	<i>Tappi,</i> Vol. 64, Nov. 1981, pp. 119–121
Curve-fitting With the TI-59	P. M. Overfield	TI-58/59	Electron. Eng., Vol. 51, Dec. 1981, p. 21
Confidence Intervals For the Odds Ratio in Case-control Studies—A Calculator Program For Cornfield's Method	Harry A. Guess	HP-67/97	<i>Comput. Programs Biomed.,</i> Vol. 14, No. 1, Feb. 1982, pp. 73–76
HP-67 Calculates Maximum Nonlinearity Error	Kyong Park	HP-67/97	<i>Electronics,</i> Vol. 55, May 5, 1982, pp. 156-159

10 INTRODUCTION

Mathematics					
Title	Author	Calculator	Reference		
Calculator Routine for 3×3 Symmetrical Matrix	DeLos F. DeTar	HP-67/97	Comput. Chem., Vol. 2, No. 1., 1978, pp. 37–38		
TI-59 Program Convolves Functions in Time Domain	Fred Fish	TI-58/59	Electronics, Vol. 51, Dec. 21, 1978, pp. 120-121		
The Power of the HP-67 Programmable Calculator, Part 1	Robert C. Arp, Jr.	Narrative	<i>BYTE,</i> Vol. 4, Mar. 1979, pp. 196–204 (see next item)		
The Power of the HP-67 Programmable Calculator— Part 2: 9 Equations, 9 Unknowns and Check program	Robert C. Arp, Jr.	HP-67/97	<i>BYTE,</i> Vol. 4, Apr. 1979, pp. 176–188		
TI-59 Performs Fast Fourier Analysis	J. G. Willis	TI-58/59	Electronics, Vol. 52, Sept. 27, 1979, pp. 152-153		
Extended Multiplication with the TI-58	Michael E. Manwaring	TI-58/59	BYTE, Vol. 4, Nov. 1979, pp. 244–245		
Analysis of Polynomial Functions with the TI-59—Part	Pierre Chancé	TI-58/59	BYTE, Vol. 4, Dec. 1979, pp. 120–133		
Analysis of Polynomial Functions with the TI-59—Part 2	Pierre Chancé	TI-58/59	<i>BYTE,</i> Vol. 5, Jan. 1980, pp. 130–136		
TI-59 Solves Fifth-Order Differential Equations	Andrzej Natalski and Jan Guz	TI-58/59	<i>Electronics,</i> Vol. 53, Jan. 31, 1980, pp. 109–111		
Solving a Differential Equation	P. M. Overfield	TI-58/59	<i>Electron. Eng.,</i> Vol. 50, Mar. 1980, pp. 18–19		
Integer Base Conversion on Handheld Programmable Calculators	Cass R. Lewart and James Mockler	HP-67/97 and TI-58/59	Comput. Des., Vol. 19, May 1980, pp. 202-207		
Calculator Program Speeds Through 32 FFT Points	Robert E. Harrison	TI-58/59	Electron. Des., Vol. 28, May 10, 1980, pp. 233-23		
Calculator Plots Time Response of Inverse Laplace Transform	Hank Librach	HP-41C	Electronics, Vol. 54, July 14, 1981, p. 149		
TI-59 Inverts Laplace Transforms for Time-Domain Analysis	Kin-chu Woo	TI-58/59	Electronics, Vol. 53, Oct. 9, 1980, pp. 178-179		
Program Solves for Cubic, Quartic Roots	Donald W. Lloyd	TI-58/59	Oil Gas J., Vol. 78, Nov. 17, 1980, pp. 114–116		
TI-59's Reverse-Polish Routine Simplifies Complex Arithmetic	John Bunk	TI-58/59	Electronics, Vol. 54, Nov. 30, 1981, pp. 135-136		
Matrix-Diagonalization With a Programmable Calculator	Hans Bauer, others	HP-41C	<i>Comput. Chem.,</i> Vol. 6, No. 1, 1982, pp. 15–20		
MECONV, Metric-English Conversions	Frank A. Rayner	HP-41C	Ground Water, Vol. 20, Mar./Apr., 1982, pp. 214-216		
Factorization of a Polynomial With Complex Conjugate Pairs of Roots by Bairstow's Method	B. Priestley	TI-58/59	Electron. Eng., Vol. 51, April 1982, pp. 27–29		

Laboratory and clinical chemistry

Calculator Least Squares Evaluation of <i>k</i> for the First Order Rate Equation	DeLos F. DeTar	HP-67/97	Comput. Chem., Vol. 2, No. 1, 1978, pp. 39-41
Calculator Least Squares Evaluation of <i>k</i> for the Second Order Rate Equation	DeLos F. DeTar	HP-67/97	Comput. Chem., Vol. 2, No. 1, 1978, pp. 43-45
Calculator Least Squares Evaluation of k , Y_0 , and Y_{00} for the First Order Rate Equation	DeLos F. DeTar	HP-67/97	Comput. Chem., Vol. 2, No. 2, 1978, pp. 99-104
Least Squares Treatment of the Arrhenius Equation by a Programmable Calculator	DeLos F. DeTar	HP-67/97	Comput. Chem., Vol. 2, No. 3-4, 1978, pp. 143-147
Calculator Algorithms (AESHK) for Interconnecting Arrhenius A and E to Δ H [‡] and Δ S [‡] and for Calculating Interpolated Rate Constants	DeLos F. DeTar	HP-67/97	Comput. Chem., Vol. 2, No. 3-4, 1978, pp. 149-151
Program for Processing Amino Acid Data with a Programmable Pocket Calculator	Marcello Duranti	TI-58/59	J. Chromatog., Vol. 194, No. 1, 1980, pp. 69-75
Analyzing Electrolytic Conductivity Data with a Programmable Calculator	P. Rechberger and W. Linert	TI-58/59	Comput. Chem., Vol. 4, No. 2, 1980, pp. 61-68
Programmable Calculators: Evaluation of Molecular Cartesian Coordinates by a Programmable Calculator	W. A. Sokalski	TI-58/59	Comput. Chem., Vol. 4, No. 4, 1980, pp. 165–177
A Calculator Program for Determination of Phosphate Buffer Composition	A. Grant Mauk and Robert A. Scott	HP-67/97	Comput. Chem., Vol. 5, No. 1, 1981, pp. 67-69
Simple Computer Program for a Low-Cost Desk-Top Calculator Applied to the Evaluation of Gas-Liquid Chromatographic Analysis of 17-Ketosteroids and Pregnanes	Siegfried Schwarz and Waltraud Stecher	HP-67/97	J. Chromatog., Vol. 223, No. 2, 1981, pp. 253-265
Two Simple Programs for the Analysis of Data From Enzyme-Linked Immunosorbent (ELISA) Assays on a Programmable Desk-Top Calculator	D. G. Ritchie, others	TI-58/59	Anal. Biochem., Vol. 110, Feb. 1981, pp. 281-290
Economical Method of On-line Data Processing For an Isotope-ratio Mass Spectrometer	Stanislaw Halas and Zbigniew Skorzymski	TI-58/59	J. Phys. E. Vol. 14, Apr. 1981, pp. 509-512
An Algorithm For the Reich-Stivala Analysis of TGA Curves	J. E. House, Jr.	TI-58/59	Comput. Chem., Vol. 6, No. 1, 1982, pp. 27-31

Programs for other calculators

Sanitation, environment, and safety/health

Title	Author	Calculator	Reference		
Calculators Can Aid in Piping Analysis	William Wheeler	HP-25	Water Sewage Works, Vol. 124, Jan. 1977, pp. 28- 30		
Fast Programming on Small Calculators (Hazen- Williams Formula)	William Wheeler	HP-25 and SR-56	Civ. Eng. N.Y., Vol. 47, Apr. 1977, pp. 58-60		
Solve Equivalent Pipe Problems With a Small Calculator	William Wheeler	HP-25	<i>Water Sewage Works,</i> Vol. 124R, No. 4, Apr. 30, 1977, pp. R124–126		
Hardy Cross Distribution Analysis	William Wheeler	m Wheeler HP-25 Water Sewage Works (R), Vol. 124R pp. R130-133			
Why Not Program the Hazen-Williams Formula?	Thomas H. Hablett	Monroe 1765	Water Waste Eng., Vol. 14, June 1977, pp. 26–27		
Open Channel Hydraulic Calculation by Programmable Calculator: 1. Circular Pipe 2. Rectangular & Trapezoidal Channels 3. Manning Equation	Louis Dancs	HP-25	<i>Water Sewage Works,</i> Vol. 124, Dec. 1977, pp. 75– 77 (see next item)		
Correction: Open Channel Calculator: 1. Manning Formula For Rectangular and Trapezoidal Channels. 2. Scobey-Kutter Formula	Louis Dancs	HP-25	<i>Water Sewage Works,</i> Vol. 125, Jan. 1978, p. 84		
Program the Manning Equation	Edward C. Hart	SR-52	Water Waste Eng., Vol. 15, May 1978, pp. 72–76		
Data Processing Method Aids Sewer System Analysis	Hoang Dong	SR-52	<i>Water Sewage Works,</i> Vol. 125, May 1978, pp. 42– 44		
Solve the Francis Weir Formula	F. Caplan	SR-52	Water Waste Eng., Vol. 15, Sept. 1978, pp. 123-124		
Flow Profiles in Trapezoidal Channels	Aristides T. Marinos	HP-25	<i>ASCE J. Hydraul. Div.,</i> Vol. 105, Jan. 1979, pp. 96- 101		
Program Open Channel Flow Design	Herbert Miller	SR-52	Water Waste Eng., Vol. 16, May 1979, pp. 95–96		
The Manning Equation Revisited	Richard J. Nitto	HP-29C	<i>Water Waste Eng.,</i> Vol. 16, June 1979, p. 30		
Pocket Calculator Program for Traverse Point Location in Stack Sampling	Wayne Wesolowski and Benjamin Morris	HP-25	Pollut. Eng., Vol. 12, Apr. 1980, pp. 58-59		
Typical Pipe Flow Problems Programmed for Limited Capability Calculators	Aristides T. Marinos	HP-25	<i>Water Sewage Works,</i> Vol. 127R, June 30, 1980, pp. R86–87		
Programs for: 1. Sewer Pipe Design 2. Pipe Culvert Analysis 3. Pipe Culvert Design 4. Trapezoidal Open Channel Design 5. Triangular Open Channel Design 6. Pipe Network Analysis 7. Sewer Pipe Velocity and Flow	Jonathan Waldo	HP-19C	<i>Water Eng. Manage.,</i> Vol. 128R, Apr. 30, 1981, pp. R52–55		
Calculator Program Aids Lagoon Design	Roger E. Palmenberg	HP-33C	Water Eng. Manage., Vol. 128, Oct. 1981, pp. 49-52		
Erratum, ''Calculator Lagoon Design,'' by R. E. Palmenberg, in the Oct. 1981, issue	Alberto Acevedo	Narrative	Water Eng. Manage., Vol. 129, Feb. 1982, p. 66		
Programmable Hand Calculator Programs For Pumping Test Analyses by Least Squares Method Using Jacob's Modification of Theis' Equation	Shabbir A. S. Sayed	Casio FX-502P	<i>Ground Water</i> , Vol. 20, Mar./Apr. 1982, pp. 156– 161		

Statistical applications

The Buried Gold in the SR-52 (Standard Deviation and Memory Management)	Clif Penn	SR-52	BYTE, Vol. 1, No. 16, Dec. 1976, pp. 30-34
Standard Deviation Program Combines Recurring Data	Richard Nelson	HP-25	Electronics, Vol. 49, Dec. 9, 1976, p. 115
Determining the Significance of an Observed <i>F</i> Using a Pocket Calculator	William K. Kaemmerer	HP-25	<i>Behav. Res. Methods Instrum.,</i> Vol. 9, June 1977, pp. 557–558
Optimizing With a Personal Calculator	Michael E. Richerson	SR-52	Ind. Eng., Vol. 9, Oct. 1977, pp. 28-30
Computer Queuing Analysis on a Handheld Calculator	Ronald Zussman	SR-52	Comput. Des., Vol. 16, Nov. 1977, pp. 85–94
Analyzing Queuing Models	Michael E. Richerson	SR-52	<i>Ind. Eng.,</i> Vol. 9, Dec. 1977, p. 41
Distribution Analysis Program for SR-56 Calculator	T. Nicklin	SR-56	<i>Tappi,</i> Vol. 62, Mar. 1979, p. 111
Moving Averages and Ranges	Newell H. Claudy	HP-25	<i>Tappi,</i> Vol. 63, Feb. 1980, pp. 177–178
Pocket Calculator Program for Least-square Fitting of Data with Variable Precision	A. Picot	HP-25	Am. J. Phys., Vol. 48, Apr. 1980, pp. 302-303
Pocket Calculator Program: Welch's v Statistic	Warren W. Jederberg and Virginia Gildengorin	HP-19C/29	<i>Comput. Biol. Med.,</i> Vol. 11, Nc. 3, 1981, pp. 167– 169

12 **INTRODUCTION**

Life cycle

Title

Replacement Analysis in your Pocket

Author

Calculator Bertrand T. Sperling SR-52

Reference

Ind. Eng., Vol. 10, Oct. 1978, pp. 28-29

Mathematics					
Fourier Analysis and Synthesis With a Pocket Calculator	Stanley A. Schmidt	HP-25	Am. J. Phys., Vol. 45, Jan. 1977, pp. 79–82		
Programming the SR-52 for Engineering-format Display	Daniel Ozick	SR-52	Electronics, Vol. 50, Jan. 6, 1977, pp. 115–117		
Fast Algorithm Performs Decimal-to-binary Conversion	Allen G. Lloyd	All calculators	Electronics, Vol. 50, Mar. 5, 1977, pp. 115–117		
Programming a Calculator to Plot Mathematical Functions	Warren B. Offutt	SR-52	<i>Electronics,</i> Vol. 50, Mar. 17, 1977, pp. 92–95		
Program Finds Equation Roots	F. J. Pierce	HP-25	Mach. Des., Vol. 49, Apr. 7, 1977, pp. 87–88		
SR-52 Solves Network Equations by Finding Complex Determinant	Chris McIntyre	SR-52	Electronics, Vol. 50, May 12, 1977, pp. 121-122		
SR-52 Program Simplifies Universal Number Conversion	John Bryant	SR-52	Electronics, Vol. 50, June 9, 1977, pp. 152–153		
SR-52 Solves Second-order Differential Equations	H. E. Lee	SR-52	Electronics, Vol. 50, Sept. 29, 1977, pp. 111-113		
Adding Dimensions in English Units	Mark J. Zaremba	HP-25	Chem. Eng., Vol. 84, Nov. 21, 1977, p. 222		
SR-52 Scales Data for Accurate Drawing	Charles S. Gaylord	SR-52	<i>Electronics,</i> Vol. 51, Jan. 5, 1978, pp. 177–179		
A Short Program for Simpson's or Gazdar's Rule- Integration on Handheld Programmable Calculators	Abdus Sattar Gazdar	HP-25	<i>Two-year College Mathematics J.,</i> Vol. 9, June, 197 pp. 182–185		
Lagrange's Interpolation Formula Program for the SR-56	Blazimir Mise	SR-56	Electron. Eng., Vol. 50, July 1978, p. 25		
Tracking Down Equation Roots	Arthur Reubens	HP-55	Mach. Des., Vol. 50, Aug. 10, 1978, p. 120		
Recursive Evaluation of Fourier Series	William Squire	Narrative	Am. J. Phys., Vol. 47, Feb. 1979, p. 195		
SR-52 Program For the Solution of Two First Order Differential Equations	S. Andrew Yakush	SR-52	<i>Comput. Programs Biomed.,</i> Vol. 9, Mar. 1979, pp. 103–105		
Frequency Analysis With a Programmable Calculator	S. Andrew Yakush	SR-52	<i>Comput. Biol. Med.,</i> Vol. 10, No. 3, 1980, pp. 169 174		
Prime Numbers on the HP-19C	Wilfred Aslan	HP-19C	BYTE, Vol. 5, Oct. 1980, pp. 54–58		

Chemical/physical properties

Equilibrium-flash Calculations With a Pocket Calculator	Joseph F. Woicik	HP-65	<i>Chem. Eng.,</i> Vol. 83, Aug. 16, 1976, pp. 89–93 (see next item)
Letters: Equilibrium Calculator	Joseph F. Woicik	HP-65	Chem. Eng., Vol. 83, Oct. 11, 1976, p. 5
A Programme for Compressible Flow	M. A. Taylor	SR-52	Process. Eng., Vol. 57, Oct. 1976, pp. 83-84
Equilibrium-flash Calculations With a Pocket Calculator	Joseph F. Woicik	SR-52	Chem. Eng., Vol. 83, Nov. 22, 1976, pp. 184–186
Gas and Vapor Concentration Calculations by Means of a Programmable Calculator	Marvin Weingast	SR-52	<i>Am. Ind. Hyg. Assoc. J.,</i> Vol. 38, Mar. 1977, pp. 147–148
Determining Ideal Stages on a Pocket Calculator	H. Tan	HP-25	<i>Chem. Eng.,</i> Vol. 84, Mar. 14, 1977, p. 154
More on Vaporization and Condensation	Edward Withee	SR-56	Chem. Eng., Vol. 84, Sept. 26, 1977, pp. 121–122
Calculation of J Functions by a Pocket Calculator	H. Tan	HP-25	Chem. Eng., Vol. 84, Oct. 24, 1977, p. 158
H-Factor Integration Program for HP-65 Calculator	J. E. Tasman	HP-65	<i>Tappi,</i> Vol. 61, May 1978, pp. 114–115
Another Approach—Amount of Inorganic Material in the Kraft Liquor Cycle	R. M. Samuals	HP-34C	<i>Tappi,</i> Vol. 63, Nov. 1980, pp. 145–146

	Pu	mps	
Determine System Head Curves With a Programmable Calculator	Louis Dancs	HP-25	<i>Water Sewage Works,</i> Vol. 124, Aug. 1977, pp. 61– 63

Equipment engineering

Maximizing Economy in a Multiple Effect Evaporator Predicting Heat-exchanger Performance by Successive Summation John A. Beaujean HP-25 SR-52 ª Robert A. Spencer, Jr.

Tappi, Vol. 61, May 1978, pp. 113-114 Chem. Eng., Vol. 85, Dec. 4, 1978, pp. 121-124

Equipment engineering (continued)

			•
Title	Author	Calculator	Reference
Letters: Heat Exchange Program (Improves the program "Predicting Heat-exchanger Performance Summation," by Robert A. Spencer, Jr., in the Dec. 4, 1978, issue of <i>Chemical Engineering</i>)	William Volk	SR-52°	<i>Chem. Eng.,</i> Vol. 86, June 18, 1979, p. 151
More on Calculating H-factors for Batch Digesters	R. M. Samuels	HP-34C	<i>Таррі,</i> Vol. 64, Mar. 1981, pp. 179–180
Heat Recovery in Counterflow Heat Exchangers: An Adaptation	R. M. Samuels	HP-34C	<i>Таррі,</i> Vol. 64, Мау 1981, pp. 131–132

Laboratory and clinical chemistry

Molecular Calculations for Microanalysis on a Programmable Calculator: 1. Elemental Percentage Composition 2. Water Conversion	John M. Corliss	HP-65	<i>Microchem. J.,</i> Vol. 21, No. 4, Dec. 1976, pp. 458– 465
Simple Methods for Calculating Reaction Equilibria in Single Reaction or Single Moiety Networks: 1. One Reaction Equilibrium—Stage 1 2. One Reaction Equilibrium—Stage 2	David J. M. Park	HP-25	Comput. Programs Biomed., Vol. 6, Dec. 1976, pp. 263–268
Use of a Programmable Pocket Calculator in Processing Amino Acid Analysis Data	John H. Buchanan	HP-25	J. Chromatog., Vol. 137, No. 2, 1977, pp. 475-480
Rapid, Rigorous Computation of Modulation Transfer Function on a Pocket Calculator	Peter M. Ronai and Dennis L. Kirch	HP-65	<i>J. Nucl. Med.,</i> Vol. 18, No. 6, June 1977, pp. 579–583
 Crystallographic Computations on the Pocket Calculator: 1. Program to Calculate <i>d</i>-spacings for a Triclinic Unit Cell 2. <i>d_{hkl}</i> Spacings for a Monoclinic Cell 3. To Calculate Bond Distances for a Triclinic Unit Cell 4. To Calculate Torsion Angles 	A. L. MacKay	HP-25	<i>J. Cryst. Mol. Struct.</i> , Vol. 9, No. 4, Dec. 1979, pp. 223–231
The Use of Programmable Calculators For the Calculation of Mass Median Diameter	H. W. West and D. L. Cashman	RS-EC4000	<i>Mosquito News,</i> Vol. 40, Dec. 20, 1980, pp. 631– 632

Оре	rations and	maint	ena	anc	e					
it Mith a Brassammahla	Million L. Koufman	CD EC		1-1		V/~1	0	A	1077	

Optimum Inventory? Do it With a Programmable Calculator	William I. Kaufman	SR-56	Ind. Eng., Vol. 9, Apr. 1977, pp. 38-42
Fit Data to a Learning Curve Using a Programmable Calculator	Michael E. Richerson	SR-52	Ind. Eng., Vol. 10, Jan. 1978, p. 23
HP-25 Program Makes Fast Cost Estimates	Joe Barocio	HP-25	Electronics, Vol. 52, Aug. 2, 1979, p. 138

Manufacturing					
Washer Efficiency Control by Use of the Displacement Ratio	Celso Hartkopf Lopes	HP-25	<i>Tappi,</i> Vol. 62, Sept. 1979, pp. 115–116		
Programmable Calculators Simplify Balancing of Rotating Equipment	Stephen G. Scheneller	HP-33E	Power, Vol. 123, Dec. 1979, pp. 70-71		
Finding Pipe Intersections	Thomas E. Andrako	HP-19C	Mach. Des., Vol. 52, Feb. 7, 1980, p. 113		
Cutting Pipe Intersections	Edward B. Becker	HP-65	Mach. Des., Vol. 52, Apr. 10, 1980, pp. 133-134		

Piping					
Calculator Programs Solve Fluid Flow Problems	F. Caplan	SR-52	<i>Heat./Piping/Air Cond.,</i> Vol. 50, Oct. 1978, pp. 85– 87		
Using Programmable Engineering Calculators for Fluid- Flow Problems	S. L. Barritt	SR-56	Plant Eng., Vol. 32, Dec. 21, 1978, pp. 79-83		
Analyzing Flashing Flow With a Programmable Calculator	Eugenio M. Amorante	SR-56	<i>Plant Eng.,</i> Vol. 33, Apr. 19, 1979, pp. 269–273		

INTRODUCTION 14

Piping (continued)					
Title	Author	Calculator	Reference		
Using the TI-57 to Calculate the Friction Factor	Mamerto A. Irasga	TI-57 ^a	Chem. Eng., Vol. 87, Apr. 21, 1980, pp. 129–130		
Calc Program Finds Effective Flow Area	Uri Goldberg	HP-33E/C	Mach. Des., Vol. 52, Oct. 9, 1980, p. 216		
Calc Program Finds Gas Pressure Drop (Pressure Drop and Pipe Length)	Bruce M. Bailey	HP-29	Mach. Des., Vol. 53, Jan. 8, 1981, pp. 162–164		
Estimate of Economic Pipe Size	R. M. Samuels	HP-34C	<i>Tappi,</i> Vol. 64, June 1981, pp. 127–128		

Instrumentation and process control

Solve Valve Sizing and Noise Calculations on Site in Minutes: 1. Sizing Calculation—Gas (scfh) 2. Sound Level Calculations—Standard Valves $(P_1/P_2 \ge 2.8)$	Kevin Hynes	HP-65	Instrum. Control Syst., Vol. 49, Mar. 1976, pp. 43– 47
Use of a Programmable Calculator to Determine Thermocouple Temperatures	W. G. Delinger	HP-25	<i>Solar Energy,</i> Vol. 20, Apr. 1978, pp. 359-360
Solving Instrumentation Problems With a Programmable Calculator: 1. Control Valve Sizing (Gas) 2. Orifice Sizing	P. S. Buckley and P. L. Mariam	HP-65	<i>Instrum. Technol.,</i> Vol. 22, Feb. 1979, pp. 31–37

Economic/financial

Program For Discounted Cash-flow Return on	Norman H. Wild	HP-25	Chem. Eng., Vol. 84, May 9, 1977, pp. 137-142
Simple Model for Determining Economic Feasibility of Processing New Oilseeds	G. C. Mistakas and K. D. Carlson	SR-56	<i>J. AM. Oil Chem. Soc.,</i> Vol. 56, Jan. 1979, pp. 29– 32.

Insulation

TI-57

M. McChesney and

P. McChesney

Insulation Without Economics: Bare Pipe Resistance

2. Insulation Thickness

^a Both HP and TI versions of this program appear in the book, "Calculator Programs for Chemical Engineers."
 ^b Both HP and TI versions of this program appear in this book.
 ^c This information appears in the book, "Calculator Programs for Chemical Engineers."
 ^d This information appears in this book.

Acknowledgments

I wish to thank the Diamond Shamrock Corp. for permitting the publication of this material, as well as the following library facilities:

1. University of Houston-Central and Clear Lake City; 2. Rice University; 3. University of Texas at Arlington; 4. Dallas University; 5. Pasadena and Houston Public; 6. NASA; 7. Eastern Illinois University; and 8. Diamond Shamrock Corporate Library.

The author

Chem. Eng., Vol. 89, May 3, 1982, pp. 70-79

John R. Garrett, 10931 Sagemeadow Lane, Houston, TX 77089, is a consultant for Cost Associates International of Houston. Prior to this, he was a Senior Project Cost Engineer for Diamond Shamrock Corp., and has worked for other firms in the construction and project management He holds a B.S. in industrial management from the University of Wyoming, is a member of the American Assn. of Cost Engineers, and is also a retired U.S. Air Force officer.

Section II Engineering Mathematics

Calculate statistics from a histogram Nonlinear regression on a pocket calculator Polynomial regression on a pocket calculator Curve fitting via orthogonal polynomials

Calculate statistics from a histogram

Walter B. Thomas III*

Experimental and process data are often recorded as a frequency distribution or histogram. For example, a quality inspector may record the range into which a measurement falls instead of recording the measured value. This calculator program, written for the HP-67/97 (and 19/29) calculators, finds the mean, variance and standard deviation of a distribution directly from the histogram.

How the program works

The program uses the frequency of observations in a cell (f_i) and the cell-midpoint values (x_i) to calculate the statistical parameters[†]:

Mean $\overline{x} = \sum f_i x_i / \sum f_i$ Variance $s^2 = [\sum f_i x_i^2 - ((\sum f_i x_i)^2 / N)] / (N - 1)$ Standard deviation $s = \sqrt{s^2}$ Number of observations $N = \sum f_i$

Data (f_i, x_i) are entered, and accumulated in the memory registers. The program then calculates the statistical parameters, using two subroutines. There is also a subroutine that removes erroneous data pairs.

How to use the program

For the HP-67/97 calculators, enter the program as shown in Table I. Then follow the user instructions

*1501 Fishburn Rd., #5, Hershey, PA 17033.

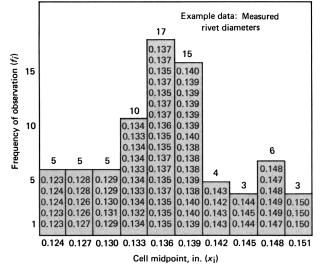
[†]W. J. Dixon and F. J. Massey, Jr., "Introduction to Statistical Analysis," 3rd ed., McGraw-Hill, New York, 1969.

User instructions for HP-67/97 and HP-19/29 calculators

Step	Key	Code	Step	Key	Code	
001	*LBLH	21 11	023	X۶	53	
002	STOP	33 00	024	RCL1	36 61	
003	X≠Y	-41	025	÷	-24	
004	ST+1	35-55 01	026	-	-45	
005	X≓Y	-41	027	RCL1	36 01	
006	x	-35	028	1	01	
007	ST+2	35-55 02	029	-	-45	
008	RCLO	36 80	030	÷	-24	
009	X	-35	031	R∕S	51	
010	ST+3	35-55 03	032	≭L6 LD	21 14	
011	1	00 00 00	033	ST00	35 00	
012	st+4	35-55 04	634	X≓Y	-41	
013	RCL4	36 64	035	ST-1	35-45 01	
014	R/S	51	036	XZY	-41	
015	*LBLB	21 12	037	х	-35	
015 016	RCL2	36 82	038	ST-2	35-45 02	
616 617	RCL1	36 01	039	RCLØ	36 00	
018	÷	-24	040	x	-35	
010 019	R/3	51	041	ST-3	35-45 03	
		21 13	042	1	Ū1	
620	*LBLC	21 13 36 03	043	ST-4	35-45 84	
021	RCL3		044	R∕S	51	
022	RCL2	36 BZ	0.1	N. •	••	

Table I

Program listing for HP-67/97 calculator


To use this program on an HP-29 calculator, make the following changes: In step 001, replace *LBL A with *LBL 1; replace *LBL B in step 015 with two steps GTO 1 and *LBL 2; replace *LBL D in step 032 with *LBL 4.

Step	Instructions	Input	HP 67/97 keys	Display	HP 19/29 key
1	Enter program				
2	Initialize registers		RTN f CL REG		g RTN f REG f STK
3	Input data: cell frequency cell midpoint	f _i ×i	ENTER A	f _i Cell	ENTER GTO 1 R/S
4	Repeat step 3 for each cell				¥7
5	Calculate the mean		В	x	GTO 2 R/S
6	Calculate the variance		С	s2	GTO 3 R/S
7	Calculate the standard deviation		√ ×	\$	fJx
8	To remove an erroneous entry: input cell frequency input cell midpoint	f _i xi	ENTER D	f _i '	ENTER GTO 4 R/S
9	To input a new distribution, go to step 2	·			

Table II

listed in Table II. (To run the program on the HP-19/29 calculators, make the changes noted in Tables I and II.)

Example: The figure shows the measured diameters of rivets leaving a machine shop—73 measurements overall, arranged in a histogram. Find the mean, variance and standard deviation of this distribution, using the HP-67/97 calculator program.

Solution: For each of the 10 cells, enter the frequency and cell midpoint as described in Table II. Press **B** to find \overline{x} . Press **C** to find s^2 , and take the square root to find s. The results are:

Mean	$\bar{x} = 0.1367$ in.
Variance	$s^2 = 0.0000476 \text{ in.}^2$
Standard deviation	s = 0.00690 in.

How does this compare with using the actual measured values to get the statistical parameters? If we had used all 73 data points, and calculated the parameters by conventional means, the results would have been: $\bar{x} = 0.1366$ in.; $s^2 = 0.0000479$ in.²; s = 0.00692 in.

For TI users

A listing of the program for TI-58/59 is shown in Table III. User instructions are listed in Table IV.

User instructions for TI program

Program listing fo	or TI versi	on
--------------------	-------------	----

Table III

Step	Code	Key	Step	Code	Key
Step 0000 0011 0022 0033 0044 0055 0067 0089 0101 012 0133 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 0301 0322 0334 0350 037 038 037 038 037	Code 711202415254253005431443416232054051633380532 71203406394064094004040971405409971540740	Key LBL STD SUM X SUM X SUM SUM SUM SUM SUM SUM SUM SUM	Step 041 042 043 044 045 046 047 048 049 051 052 053 055 055 055 055 055 055 055	Code 353145533145545514514542022441522524253052440124441 35405554070599714403244052524253024052440022449 9	Key X2 CL 01 CL CL CL CL CL CL CL CL CL CL

Table IV

Step	Instructions	Input	Key	Output
1	Load program	1	Feed side 1	1
2	Input data: cell frequency	fi	x≓t	
	cell midpoint	Xi	Α	
3	Repeat step 2 for each cell			
4	Calculate the mean		В	x
5	Calculate the variance		С	s ²
6	Calculate the standard deviation		$\sqrt{\mathbf{x}}$	s
7	To remove an erroneous entry:			
	cell frequency	f _i '	x≓t	
	cell midpoint	x i'	D	

Nonlinear regression on a pocket calculator

This program for the Hewlett-Packard HP41C fits data to a userdefined function of several parameters, using a Gauss-Newton nonlinear-regression analysis. At least one memory module is required.

Brian W. Clare, Murdoch University

We present here a review of curve-fitting procedures that reveals the value of nonlinear-regression techniques. A six-part program that makes use of the Gauss-Newton algorithm is described and the step-bystep running technique is detailed. An example is worked for the decomposition of available chlorine, and all relevant program printouts for this example are shown in tables.

Curve fitting

It is frequently desirable to represent data by an equation rather than a table. High-precision mathematical data are usually treated by interpolation formulas, which in effect fit exactly a polynomial of degree n to n + 1 points. This method produces completely unsatisfactory results when applied to data that may contain errors.

In this case, some form of regression analysis is better. This fits a formula, containing one or more parameters, to the data so that the sum of the squares of the residuals (the differences between the data values and the values predicted by the formula) is minimized.

If the form of the relationship between the dependent and independent variables is not known, polynomials of increasing degree may be used, until a satisfactory fit is obtained. Discontinuous or periodic data are better treated by a sum of trigonometric terms. Such approximations are linear in the parameters, which makes it particularly easy to fit them. However, these methods often require an excessive number of parameters, which makes them unsatisfactory.

Frequently, some relationship between the variables is known from theory or suspected from looking at the graphs. Such relationships may often be changed into a linear form. Eq. 1, for example, is transformed into Eq. 2 by taking logarithms of both sides:

$$y = a \mathrm{e}^{bx} \tag{1}$$

$$\ln y = \ln a + bx \tag{2}$$

(The dependent variable y is related to the independent variable x by the parameters a and b.) The latter equa-

tion may then be treated by the methods of linear regression.

But such reduction is often not possible, nor even desirable. The transformation affects the weights assignable to the points in a complex, nonlinear, often undeterminable manner, thus distorting the resulting fit in a subtle but significant way.

Nonlinear regression

For these reasons, a better solution, often the only solution, is to apply the methods of nonlinear regression. While this has long been possible on a large computer, it has only recently become so on a personal calculator. The program described here is a development on earlier ones by the author [1] for the Hewlett-Packard HP67/97 and will run on the HP41C, a machine that is finding favor among engineers.

The method used is the Gauss-Newton algorithm [2] which, in the two-parameter case, works as follows:

Let there be points x_i, y_i that obey a relationship $y_i = f(x_i; \alpha, \beta) + \epsilon_i$ where α and β are parameters to be determined and ϵ_i are random errors. Then, if α_0, β_0 are first approximations to these parameters, better ones are given by α_1, β_1 , where:

$$\alpha_1 = \alpha_0 - \delta \alpha$$
$$\beta_1 = \beta_0 - \delta \beta$$

 $\delta \alpha$ and $\delta \beta$ are solutions to the linear equations:

$$\sum_{i} f_{\alpha}^{2} \delta \alpha + \sum_{i} f_{\alpha} f_{\beta} \delta \beta = \sum_{i} f f_{\alpha}$$
$$\sum_{i} f_{\alpha} f_{\beta} \delta \alpha + \sum_{i} f_{\beta}^{2} \delta \beta = \sum_{i} f f_{\beta}$$

and f_{α} and f_{β} are the partial derivatives of f with respect to α and β . In this program, the partial derivatives are obtained numerically:

$$f_{\alpha} = \frac{f(1.01 \ \alpha, \beta; x) - f(\alpha, \beta; x)}{0.01 \ \alpha}$$

Routine INPUT allocates storage registers, handles data input, and can store data on cards

Table I

01+LBL "INPUT"		67 X=Y?		133 SF 01	Set flag if	199 STO 06
02 CLRG		68 DSE X		134 ISG 03	data card(s)	200 -
03 CF 01		69 RCL 89		135+LBL 09	recorded	201 +
04 CF 62		70 INT		136 RCL 05		202 1 E3
05 "PRINT OR HALT	2.	71 *		137 STO 00		203 /
06 AON		72 RCL 08		138 GTO 00		204 ST+ 00
67 PROMPT		73 +		139+LBL B		205+LBL 70
68 ASTO X		74 1 E3		148 "APPROX"	Input starting	206 **
09 "HALT"		75 /		141 XEQ 43	approximation	207 CF 29
10 AOFF		76 ST+ 00		142+LBL 11		208 FIX 0
11 ASTO Y		77 RCL 00		143 -P-		209 ARCL 06 xi
12 X=Y?		78 STO 05		144 FIX 0		210 "H<"
13 SF 82	Sat Elas 2 if as	79 1		145 ARCL 01		211 ARCL 11
14 FIX 0	Set Flag 2 if no printer attached	80 STO 03		146 "F = "		212 *F>= * <j></j>
15 "SIZE ?"	printer attached	81+LBL 60		147 PROMPT		213 PROMPT
		82 FIX 0	Innut and			214 XEQ "FMT"
16 PROMPT			Input and store variable	148 XEQ -FMT-		
17 • += •		83 *X*	in form x i $\langle j \rangle$	149 STO IND 02		215 ARCL X
18 ARCL X		84 CF 29	(input)	150 ARCL X		216 AVIEW Print or display
19 AVIEK		85 ARCL 01		151 AVIEW		217 STO IND 00 (corrected) X
20 1 E3		86 "H<" 07 0DCL 07		152 ISG 02		218 1 variable
21 /		87 ARCL 03		153+LBL 89		219 ST+ 06
22 STO 09		88 "H>= "		154 ISG 01		220 ISG 00
23 PARAMETERS ?"		89 PROMPT		155 GTO 11		221 GTC 70
24 PROMPT		90 XEQ •FNT•		156 ABV	_	222 RCL 10
25 •⊦= •		91 STO IND 00		157 *SOLVE*	Prompt for	223 STO 00
26 ARCL X		92 ARCL X	Display or	158 PROMPT	next program	224 ADV
27 AVIEW		93 SF 29	print data	159+LBL E	card	225 GTO 01
28 STO 07	Store number	94 AVIEW		160 "END"	Insert Flag E	226+LBL 42
29 •VARIABLES ?*	of parameters	95 ISG 00		161 AVIEW	to indicate	227 RCL 09
30 PROMPT		96+LBL 09		162 CLX	end of data	228 INT
31 += -		97 ISG 01		163 • E"		229 1 E3
32 ARCL X		98 GTO 00		164 ASTO IND 00)	230 /
33 AVIEW		99 XEQ 42		165 STOP		231 1
34 ST+ 09	Number of	190 ADV	Store Flag N	166 GTO 05		232 +
35 "CONSTRNTS ?"	variables and	101 "N"	indicating to	167+LBL A	Change point	233 STO 01
36 PROMPT	constants	102 ASTO IND 00	record next	168 RCL 00		234 RTN
37 •+= •	Calculate	103 ISG 00	card	169 STO 10		235+LBL 43
38 ARCL X	offset for	104+LBL 09		170 RDN		236 AVIER
39 RVIEW	SYMLIN	105 RCL 00		171 STO 11		237 11
40 ADV		106 INT		172 1		238 STO 02
41 RCL 07		107 RCL 09		173 -		239 1
42 ENTERT		108 INT		174 RCL 09		240 RCL 97
43 +		109 +		175 FRC		241 1 E3
44 +		110 RCL 09		176 1 E3		242 /
45 12		111 FRC		177 *		243 +
46 +		112 1 E3		178 RCL 02		244 STO 01
47 RCL 89		113 *		179 -		245 RTN
48 INT		114 X>Y?		180 2		246+LBL 41
49 +		115 GTO 07		181 -		247 RCL 07
50 STO 08	Offset for	116 GTO 05	Variable	182 RCL 09		248 RCL 07
51 XEQ 41	SYMLIN	117+LBL 07	storage area	182 NOL 05		249 1
	J _	118 DSE 60	full	184 /		250 +
52 STO 00						
53 STO 02		119+LBL 09		185 INT		251 * 252 2
54 XEQ 42		120 ISG 03 121+LBL 09		186 MOD		252 2 253 /
55 RCL 09 54 SPC		122 GTO 00		187 RCL 09 188 INT		253 / 254 RCL 07
56 FRC 57 1 57			Record data			
57 1 E3		123+LBL 05	Record data card	189 *		255 + 257 PCL 80
58 *		124 DSE 00		190 -CHANGE PO		256 RCL 08
59 RCL 08		125+LBL 01		191 AVIEW		257 +
60 - 64 BOL 00		126 "RECORD: R/S		192 STO 04		258 1
61 RCL 89		127 PROMPT		193 XEQ 41		259 +
62 INT		128 RCL 02		194 +		260 RTN
63 /		129 RCL 09		195 STO 00		261 .END.
64 ENTERT		130 FRC		196 RCL 09		
65 ENTER†		131 +		197 INT		
66 INT		132 WDTAX		198 1		

Table II

Routine SOLVE forms partial derivatives, sums squares and products, calls SYMLIN , and iterates

1+LBL "SOLVE"		66 1.01	Increase parameter	131 STO 02	
02 CF 00	Clear Flag 00 for	67 ST* IND 02	by 1%	132 0	
03+LBL 03	manual iteration	68 XEQ FUNC	Recalculate residual	133+LBL 96	
04 FS? 01		69 STO IND 03	value	134 RCL IND 03	
5 GTC 23		70 1.01		135 ST- IND 02	Update parameter
6+LBL 31		71 ST/ IND 82	Return parameter to	136 RCL IND 02	
7 XEQ 41		72 RCL 10	its original value	137 /	
8 STO 04		73 ST- IND 03		138 ABS	
9+LBL 24		74 RCL IND 02		139 +	
0 11		75 1 E2		140 ISG 82	
1 RCL 07		76 /		141+LBL 09	
2 +		77 ST/ IND 03	Calculate partial	142 ISG 03	
3 STO 05		78 ISG 03	derivative	143 GTO 06	
4 RCL 09		79+LBL 09		144 FIX 5	
5 INT		80 ISG 02		145 VIEW X	Display and print
6 +		81 GTO 02	Next partial derivative	146 1 E-5	
7 1		82 RCL 10	None partial activative	147 X>Y?	$\epsilon = \Sigma \left \frac{\delta P}{P} \right $
8 -		83 STO IND 03		148 GTO 05	Stop if $\epsilon < 10^{-5}$
9 1 E3		84 RCL 08		149 XEQ 41	
20 /		85 STO 06		150 2	
20 / 21 ST+ 05				151 -	
22+LBL 21		86 RCL 07 87 -			
	Conv next noint			152 1 E3	
23 RCL IND 04	Copy next point into working area	88 1 99 -		153 / 154 DCL 00	
A STO IND 05	nito workilly area	89 - 90 610 83		154 RCL 08	
25 ISG 04		90 STO 02		155 + 154 CTO A5	
CONTRACTOR		91 RCL 08		156 STO 05	
27 ENTERT		92 1		157 0	
28 "E"		93 -		158+LBL 25	e .
9 ASTO X		94 1 E3		159 STO IND 05	
30 X=Y?	End of data?	95 /		160 ISG 05	registers
31 GTO 20		96 ST+ 02		161 GTO 25	
32 CLX		97 RCL 02		162 TONE 9	Tone: iteration
13 •N•		98 STO 03		163 TONE 9	completed
A ASTO X		99+LBL 04		164 TONE 9	
5 X=Y?	Another data card?	100 RCL IND 02	Calculate squares and	165 TONE 9	
KG GTO 23		101 RCL IND 03	products of partial	166 FC? 00	
17 ISG 05		102 *	derivatives, and sum them ready for SYMLIN	167 STOP	Stop if manually
38 GTO 21		103 ST+ IND 06	anomi roady IUI SYMLIN	168 GTO 03	iterating
39 GT O 22		104 ISG 06		169+LBL 41	
0+LBL 23		105+LBL 09		170 RCL 07	
1 XEQ 41		106 ISG 03		171 RCL 07	
2 RCL 09		107 GTO 04		172 1	
I3 FRC		108 ISG 02		173 +	
4 +		109 GTO 07		174 *	
5 BEEP		110 GTO 24		175 2	
6 RDTAX	Read data card	111+LBL 07		176 /	
7 GTO 31		112 RCL 02		177 RCL 07	
8+LBL 22		113 STO 03		178 +	
9 RCL 07		114 GTO 04		179 RCL 08	
60 10		115+LBL 20		180 +	
51 +			Solve linear system	181 1	
52 1 E3		117 0	COINE HINGEL SAZIGIII		
12 I E3 13 /		117 0 118 STO 10		182 + 197 DTN	
is / i4 11				183 RTN 19441 DI 85	
		119 RCL 08		184+LBL 05	Einishadi nzamat far
5 + K CTO 82		120 ENTERT		185 -OUTPUT-	Finished; prompt for output program card
6 STO 02		121 ENTER†		186 PROMPT	output program caru
7 RCL 08		122 RCL 07		187 RTN	
18 RCL 07		123 +		188+LBL A	A . B. 45.5
i9 -		124 1		189 SF 00	Set Flag 00 for
60 1		125 -		190 GTO 03	automatic iteration
51 -		126 1 E3		191 .END.	
2 STO 03		127 /			
3 XEQ FUNC	Calculate residual value	128 +			
54 STO 10		129 STO 03			
5+LBL 02		130 11			

Routine SYMLIN, a program that solves symmetrical linear systems (up to 22x22 if used alone)

Table III

01+LBL *SYMLIN	-	43 -		85 XEQ 08	Multiply	127 RCL 06	
02 RCL 07	Transfer N	44 RCL 00		86 1	column	128 X=0?	
03 STO 00	and η	45 1		87 -	by x _i	129 GTO D	
04 RCL 08		46 -		88 RCL 05		130 1	
05 STO 01		47 X≠Y2		89 -		131 ST+ 05	Next column
06+LBL C	Gaussian	48 GTO 01		90 STO 03		132 GTO A	
87 RCL 01	elimination	49 RCL 00		91 RCL 04		133+LBL D	
88 STO 06		50 1		92 ST* IND 03		134 RCL 00	
99-1		51 +		93 DSE 02		135 STO 02	Shift solution
10 STO 02		52 ST+ 01		94 GTO 03		136 RCL 01	to first row
11+LBL 01		53 1		95 DSE 06		137 +	
12 RCL 06		54 ST- 00		96+LBL 89		138 1	
I3 STO 03	<i>i</i> = 1	55 RCL 00		97 RCL 06		139 -	
14 ISG 03		56 1		98 STO 02		140 STO 04	Address of XA
15+LBL 09	No operation	57 X≠Y?		99 XEQ 08		141+LBL 11	
16 RCL IND 03		58 GTO C	Start another	100 STO 03		142 XEQ 08	
17 RCL IND 01		59 RCL 08	row	101 1		143 1	
18 /		60 STO 01	Back	102 ST+ 02	Prepare to	144 -	
19 STO 85		61 RCL 97	substitution	103 XEQ 08	sum row	145 STO 03	
		62 STO 88	Jubullution	103 764 00	out i tott	145 STO 65 146 RCL IND-03	Transfor
20 XEQ 08		63 STO 02		104 2		146 RCL IND-03 147 STO IND 04	ransrer
21 STO 04		63 510 62					
22 1	a ₂₁	65 -		106 1 E3 107 /		148 DSE 04	
23 ST+ 02	$m_{ik} = \frac{a_{21}}{a_{11}}$					149+LBL 09	
24 XEQ 08		66 STO 86		108 ST+ 03		150 DSE 02	
25 1		67 1		109 RCL IND 03		151 GTO 11	
26 -		68 STO 05	Column <i>x, x_i</i>	119 STO 04		152 RTN	- · ·
27 1 E3		69 XE9 08		111 1		153+LBL 08	Calculate
28 /		70 1		112 ST+ 03		154 RCL 00	address of end of row
29 ST+ 04	Multiply top	71 -		113+LBL 05		155 1.5	
30+LBL 00	row by m _{ik}	72 STO 03	_	114 RCL IND 03		156 +	
SI RCL IND 03	and subtract from Row k.	73 RCL IND 03	3 b _n	115 ISG 03		157 RCL 02	
32 RCL 05	Trom Now K.	74 DSE 03		116 GTC 07	Sum a _{ij} x _j	158 2	
33 *		75 RCL IND 03	³ a _{N, N}	117 GTO 06		159 /	
34 ST- IND 04		76 /		118+LBL 07		160 -	
35 ISG 03		77 ISG 03		119 ST+ IND 03		161 RCL 02	
36+LBL 09		78+LBL 09		120 GTO 05		162 *	
37 ISG 04	Row finished?	79 STO IND 03	3	121+LBL 06		163 RCL 01	
38 GTO 00		80 STO 04	x _N in R 04	122 ST- IND 03	Subtract from	164 +	
39 1		81+LBL A	· •	123 RCL 04	from b _i	165 RTN	
40 ST+ 06		82 RCL 06		124 ST/ IND 03		166 .END.	
41 RCL 06		83 STO 02		125 RCL IND 03			
42 RCL 01		84+LBL 03		126 STO 04			

utine OUTPUT prints out the paramet	ers, the residuals a	nd the standard de	viation	Tab
01+LBL "OUTPUT"	18+LBL 09		35 11	
02 ADV	19 ISG 01		36 RCL 07	Prepare R 05 for indirect
03+LBL C	20 GTO 12	Next parameter	37 +	store of variables
04 "SOLUTION: "	21 1		38 STO 05	
05 XEQ 43	22 STO 06		39 RCL 09	
06+LBL 12	23 0		40 INT	
07 •P"	24 STO 10		41 +	
08 FIX 0	25+LBL -R-		42 1	
09 ARCL 01	26 ADV		43 -	
10 -+ = -	27 "RESIDUALS"		44 1 E3	
11 RCL IND 02	28 AVIEW		45 /	
12 XEQ FMT	29 FS? 01		46 ST+ 05	
13 ARCL X Print and display parameter	30 GTO 53	Read data card, if	47+LBL 51	
14 AVIEN	31+LBL 61	cards used	48 RCL IND 04	Copy variables into
15 FS? 02	32 XEQ 41		49 STO IND 05	
16 STOP Stop and display parameter	33 STO 04		50 ISG 04	-
17 ISG 02 if printer not attached	34+LBL 54		51+LBL 09	(Continued on next

		(Continued) Table
52 ENTERt	88 -R-	124+LBL 42
53 •É•	89 FIX 0	125 RCL 09
54 ASTO X	90 ARCL 06 Identification number	126 INT
55 X=Y? Last residual?	91 •⊢: • of residual	127 1 E3
56 GTO 50	92 XEQ "FUNC" Calculate and format	128 /
57 CLX	93 XEQ -FMT- residual	129 1
58 -N-	94 ARCL X	130 +
59 ASTO X	95 AVIEW Print or display residual	131 STO 01
60 X=Y? Another card?	96 FS? 02	132 RTN
61 GTO 53	97 STOP Stop if printer not	133+LBL 43
62 ISG 05	98 X+2 attached	134 AVIEW
63 GTO 51 Next variable	99 ST+ 10 Square and accumulate	135 11
64 GTO 52	100 1 residual	136 STO 02
65+LBL 53	101 ST+ 06 Count points	137 1
66 XEQ 41	102 GTO 54 Next residual	138 RCL 07
67 RCL 09	103+LBL 50	139 1 E3
68 FRC	104 RCL 10 Calculate standard	140 /
69 +	105 RCL 06 deviation	141 +
70 BEEP	106 RCL 09	142 STO 01
71 RDTAX Read next data card	107 INT	143 RTN
72 GTO 61	108 -	144+LBL 41
73+LBL 52	109 1	145 RCL 07 Prepare for indirect
74 RCL 07	110 -	146 RCL 07 recall of variables from
75 10	111 /	147 1 point storage
76 +	112 SQRT	148 +
77 1 E3	113 ADV	149 *
78 /	114 *SDEV = * Print standard deviation	150 2
79 11	115 XEQ =FMT"	151 /
80 +	116 ARCL X	152 RCL 07
81 STO 02	117 AVIEW	153 +
82 RCL 08	118 ADV	154 RCL 08
83 RCL 07	119 ADV	154 KCL 66
84 -	120 ADV	156 1
85 1	120 HDV 121 ADV	157 +
86 -	122 ADV	158 RTN
87 STO 03	123 STOP Finished	159 .END.

ter produ	hlorine deteriorates action		Table \
Length of time since produced, weeks X	Available chlorine, % Y	Average <i>Y</i> , %	Predicted Y , using the model \widehat{Y}
8	0.49, 0.49	0.490	0.490
10	0.48, 0.47, 0.48, 0.47	0.475	0.472
12	0.46, 0.46, 0.45, 0.43	0.450	0.457
14	0.45, 0.43, 0.43	0.437	0.445
16	0.44, 0.43, 0.43	0.433	0.435
18	0.46, 0.45	0.455	0.427
20	0.42, 0.42, 0.43	0.423	0.420
22	0.41, 0.41, 0.40	0.407	0.415
24	0.42, 0.40, 0.40	0.407	0.410
26	0.41, 0.40, 0.41	0.407	0.407
28	0.41, 0.40	0.405	0.404
30	0.40, 0.40, 0.38	0.393	0.401
32	0.41, 0.40	0.405	0.399
34	0.40	0.400	0.397
36	0.41, 0.38	0.395	0.396
38	0.40, 0.40	0.400	0.395
40	0.39	0.390	0.394
42	0.39	0.390	0.393

The program

The program is semi-interactive and consists of six parts:

1. Routine INPUT (Table I), which allocates registers for storage, and handles input of data into registers and, if necessary, storage of data on magnetic cards.

2. Routine SOLVE (Table II), which forms the partial derivatives and their sums of squares and sums of products, calling SYMLIN to solve the linear equation system, implementing the corrections to the parameters, and returning for further iteration.

3. Routine SYMLIN (Table III), a program that solves symmetrical linear systems (up to 22×22 if used alone).

4. Routine FUNC, the user-written program that evaluates the residuals whose sum of squares is to be minimized.

5. Routine FMT, a short program that determines the format of the output (see Table I).

6. Routine OUTPUT (Table IV), which prints out the parameters, the residuals and the standard deviation.

The necessary requisites are the HP41C and at least one memory module. The cardreader is also needed since running the program without it would be tedious (though possible). The program is designed to work with or without the printer. The size of the problem

24 ENGINEERING MATHEMATICS

that can be handled is determined by the number of memory modules used, by FUNC and FMT (which are written by the user), and by SOLVE and SYMLIN, which together occupy 585 bytes.

The INPUT program reserves space for intermediate calculations (R_{00} to R_{10} plus a set equal to one greater than the number of parameters), as well as for the parameters, variables and constants (which may be partitioned in any way desired), and for the matrix of coefficients of the linear equation system. The remainder is available for the data. With simple cases, more than enough space for 100 points is available. This may be expanded indefinitely by storing data on cards.

Running the program

Follow these steps, with the HP41C in the USER mode throughout:

1. Write and store the program FUNC, assuming that the parameters to be adjusted are in R11 to R(10+P), the variables in R(11+P) to R(10+P+V), and the constants in R(11+P+V) to R(10+P+V+C). P, V and C are, respectively, the number of parameters, variables and constants. The program should return the value of the residual to the X register.

2. Write and store the program FMT, which determines the format in which numbers are to be printed. Example: LBL "FMT," SCI5, END.

3. Execute (SIZE) as follows: Determine the number of bytes in programs FMT and FUNC; subtract these from the total number of bytes in the calculator configuration used; subtract also 585 (the number of bytes in SOLVE plus SYMLIN); divide by seven and take the integer part. This is the size.

4. Press [GTO].., retaining FUNC and FMT, then load program INPUT. Proceed as follows:

Key in	Press [XEQ]	Response
	(INPUT)	'PRINT OR HALT?'
(PRINT) if printer		
is to be used;		
(HALT) otherwise	[R /S]	'SIZE?'
Size (as determined)	[R / S]	'PARAMETERS?'
Number of parameters	[R/S]	'VARIABLES?'
Number of variables	[R/S]	'CONSTANTS?'
Number of constants	[R / S]	$x_1 < 1 > =$

For the purposes of the program, the variables x and y are labelled x1 and x2. The *i*th data point is labelled x1(i), x2(i). Input data as prompted—x1(1) = , x2(1) = , etc.—terminating each value by $[\mathbf{R}/\mathbf{S}]$.

Continue until all data are input or until input is interrupted by the display 'RECORD: R/S.' If this happens, it means that the memory is full and the data must be recorded on cards if there are any more points. If there are no more points, press [E]. The calculator responds 'END.' (Here, the top five keys are referred to by their ALPHA designations when in the USER mode.)

Erroneous points may then be corrected thus: Key in the point number and press [A]. The calculator then prompts for the x values for that point. Key them in, terminating each with [R/S]. When the data entry for the point is_ finished, the calculator responds

NC evaluates resi mats the output	Table V	
01+LBL "FUNC"	08 E†X	15 RCL 14
02 RCL 13	89 RCL 16	16 -
03 RCL 15	10 RCL 11	17 RTN
64 -	11 -	18+LBL "FMT"
05 RCL 12	12 *	19 FIX 4
0 6 *	13 RCL 11	20 END
87 CHS	14 +	

'RECORD : R/S.' If there are no more points, press [B]. If there are, press [R/S] and pass blank cards to record the data, and resume data entry as prompted.

On conclusion of data entry, press [E] and, if cards have been recorded, [R/S], [R/S], and pass the final data cards.

5. When data entry is complete, store the values of any constants (e.g., C1[STO]15, C2[STO]16, ...).

6. Press [B]. The calculator prompts for the starting approximation to the parameters. Enter each, followed by [R/S]. Display then reads 'SOLVE.'

7. Clear program INPUT and load SOLVE. Press [GTO]... Load SYMLIN.

8. [XEQ] SOLVE.

If data have been recorded on cards, [BEEP] will sound and 'CARD' will appear in the display. Read the data cards in the order in which they were recorded, on successive such prompts.

When all the data have been entered, and the first iteration is complete, four tones will sound and the machine will halt, displaying a number that is $\epsilon = \frac{1}{2}$

 $\sum \left| \frac{\delta x_i}{x_i} \right|$ and is a measure of the proximity of the solu-

tion. If this is less than approximately 1, another iteration may be initiated by pressing [R/S]; alternatively, pressing [A] will cause the machine to iterate automatically until $\epsilon < 10^{-5}$.

If ϵ is large, divergence may be occurring and the solution should be inspected ([RCL]11, [RCL]12, ...) to see whether it is reasonable. If necessary, 'unreasonable' parameters can be changed manually—e.g., NEW VALUE, STO 11, and so on.

When convergence has occurred, the display will read 'OUTPUT.'

9. Clear programs SOLVE and SYMLIN. Enter program OUTPUT. [XEQ] OUTPUT. If the machine was instructed to (PRINT), the output follows: P1 = (first parameter), P2 = (second parameter); then R1:, R2:, etc. (the values of the residuals); and finally SDEV = (the standard deviation). If the machine was instructed to (HALT) (e.g., if there were no printer attached), it is necessary to press [R/S] to obtain each output. (Correction: Program FUNC should end RCL14, -, CHS, END.)

Decomposition of available chlorine

An example of nonlinear regression in the chemical industry was given by H. Smith and S. D. Dubey [3]. A

			NONLINEAR REGRESSION 25
Executing INPUT (da	ata) and OUTPUT (sol	ution) Table VII	certain product was required to have a fraction 0.50 available chlorine at the time of manufacture. The
SIZE ?= 230. Parameters ?= 2. Variables ?= 2. Constants ?= 2.	X1<22>= 22.0000 X2<22>= 0.4100 X1<23>= 22.0000 X2<23>= 0.4100	END CHANGE POINT X1<40>= 36.0000 X2<40>= 0.3800	product reaches the market in eight weeks, during which time the available chlorine has fallen to 0.49. After this time, non-constant storage conditions lead to a dispersed decomposition rate. It is, however, desirable to have some means of predicting the available chlorine at future intervals in order to determine how long the
X1(1)= 3.0000 X2(1)= 0.4960 X1(2)= 8.0000 X2(2)= 0.4900	X1(24)= 22.0000 X2(24)= 0.4000 X1(25)= 24.0000 X2(25)= 0.4200	APPROX END Approx P1 = 0.2500	material should be kept before being discarded. A number of determinations of available chlorine at different times after manufacture are shown in Table V. It was known that the available chlorine fell to about

ations of available chlorine at ufacture are shown in Table V. vailable chlorine fell to about half its original value on prolonged storage. A nonlinear model, based on first-order kinetics, was postulated as follows:

$$Y = \alpha + (0.49 - \alpha)e^{-\beta(X-8)}$$
 ... 3

where Y is the fraction of available chlorine X weeks from manufacture.

The program FUNC, corresponding to Eq. 3, together with program FMT, is shown in Table VI. A value of 0.25 was chosen for α , and by trial with several points, a value of 0.1 for β . Registers were allocated:

α (P1)	in R11
β (P2)	in R12
$x_i(X1)$	in R13
$y_i(X2)$	in R14
8	in R15
0.49	in R16

(The constants could have as easily been written into program memory.)

The output from the program, run with the printer, is shown in Table VII. The solution is $\alpha = 0.3901, \beta = 0.1016$. The residuals are as shown in Table VII.

For TI-58/59 users

The TI program listing is contained in Table VIII, and user instructions are offered in Table IX. The printout of the example given in the text is shown in Table X.

Program listing for TI version

Table VIII

Step	Code	Key	Step	Code	Key
000	76	LBL	016	91	R/S
001	11	A	017	76	LBL
002	87	IFF	018	22	INV
003	01	01	019	69	ΠP
004	22	INV	020	20	20
005	86	STF	021	72	ST*
006	01	01	022	00	00
007	42	STO	023	69	ΠP
008	16	16	024	20	20
009	32	XIT	025	32	X:T
010	42	STD	026	72	ST÷
Oji	17	17	027	00	00
012	01	1	028	91	R/S
013	07	7	029	76	LBL.
014	42	STD	030	12	В
015	00	00	631	22	INV

	-		-	
	= 230. FERS ?= 2. .ES ?= 2.	X1(22)= X2(22)=	22.0000 0.4100	END Change point X1<40>= 36.0000
	ts ?= 2.	X1<23>= X2<23>=	22.0000 6.4100	X1(40)= 36.0000 X2(40)= 0.3800
	8.0000 0.4900	X1(24)= X2(24)=	22.0000 0.4000	APPROX END
V1/31-	0 0000	V1/0E\-	54 0000	APPROX
	8.0000 0.4900	X1<25>= X2<25>=		P1 = 0.2500
				P2 = 0.1000 0.36584
	16.0000		24.0000	0.00939
82537=	0,43 00	X2<26>=	0.4000	6.00023
X1(4)=	16.0000	X1(27)=	24.0000	6.00091
X2(4)=	0.4700	X2<27>=	9.4000	
¥1/5)=	10.0000	¥1/20\-	26.0000	SOLUTION: P1 = 0.3901
	9.4800	X2(28)=		P2 = 0.1016
	10.0000	X1<29>= X2<29>=	26.0000	RESIDUALS
A210/-	(,4700	AC\27/-	0.4000	R1: 0.0000 R2: 0.0000
X1(7)=	12.0000	X1<30>=	26.0000	R3: -2.0084
X2(7)=	8.4688	X2<30>=	0.4100	R4: 0.0016
¥1(8)=	12.0000	X1(31)=	28.0000	R5: -0.0084 R6: 0.0016
	0.4600	×2<31>=		R7: -0.0034
				R8: -0.0034
	12.0000 0.4500	X1(32)= X2(32)=	28.0000	R9: 0.0066 R10: 0.0266
AE\ 7/-	0.4300	A2\32/-	0.4000	R11: -0.0056
X1<10>=	= 12.0000	X1<33>=	36.0000	R12: 0.0144
X2(10)=	- 0.4300	X2<33>=	0.4000	R13: 0.0144
X1(11)=	= 14.0000	X1(74)=	30.0000	R14: -0.0056 R15: 0.0044
	= 0.4500	X2<34>=		R16: 0.0044
				R17: -0.0337
	= 14.0000 = 0.4300	X1<35>= X2<35>=		R18: -0.0237 R19: -0.0004
ACTE/-	0.4500	ne (00)	010000	R20: -0.0004
		X1<36>=		R21: -0.0104
X2<13>=	- 0.4300	X2(36)=	0.4100	R22: 0.0042 R23: 0.0042
X1{14}=	= 16.0000	X1<37>=	32.0000	R24: 0.0042
	= 0 .4400	X2(37)=		R25: -0.0102
V1/15\-	- 12 0000	V1/70\-	74 0000	R26 8.0098
		X1(38)= X2(38)=	34.0000 0.4000	R27: 0.0098 R28: -0.0038
				R29: 0.0062
			36.0000	R30: -0.0038
X2(16/=	0.4306	X2(39)=	6.4166	R31: -0.0068 R32: 0.0032
XX(17)=	- 18.0000	X1(40)=	230.0000	R33: 0.0008
X 2<17>=	0.4600	X2<40>=	0.3800	R34: 0.0008
V1/10\-	18,0000	X1(41)=	70 0000	R35: 0.0208 R36: -0.0111
		X2(41)=		R36: -0.0111 R37: -0.0011
		·		R38: -0.0027
			38.0000	R39: -0.0141
AC\17/=	· 0.4200	X2<42>=	0.4000	R40: 0.0159 R41: -0.0051
			40.0000	R42: -0.0051
X2<28>=	= 0.4200	X2{ 4 3}=	0.3900	R43: 0.0040
X1(21)=	20.0000	X1(44)=	42.0000	R44: 0.0033
		X2(4 4)=		SDEV = 0.0109

(Continued) Table VIII

Step	Code	Key	Step	Code	Key	Step	Code	Кеу	Step	Code	Key	Step	Code	Key
23456789012345567890123455678901234556789012300000000000000000000000000000000000	613025332134221620651590304252451301939015903042636246246 804041404040400040727162709403400900406371627094040246246	STILSDIL4D2 SUCCEPTER 0*0-D5TM5 .01D3 OR 0*0-D6L5VM6TM6L1 .01	56678990123456789012345678901234567890123456789012345678901234567890111111111111111111111111111111111111	529636535547363483123130194990159030429352492493253015299395355 9240406409404034040090040637162709404024034040690009240406409	= VD6L6 R C0= M7L6 R C02 M8L103 R C02 V0C01 R C1D4 R C2 R C1D9L5 R C1D4 R C1D9L5 R C1D9L5 R C1D9L5	89012345678901234567890123456789012345678901234567890 15966666667890123456789012345678901234567890 111111111111111111111111111111111111	03934139536542322435230729015623375325314533853253253145235 1403414064094140404134063626273540541741541554054174154154159416	10 RCL9 XU11L9 XC06 W12L2004L5TL000T SOCL5TL000T SOCL5TL000T SOCL5TL000T CL8 CC17 CC18	1234567890123456789014345678901234567890123456789012345678901234567890123456789012345678901234567890123 22222222222222222222222222222222222	845375532524315335233225245245245245353555354554554524224574222 0984095419414074194040741940415409585415409559413059071325	08- + + CO + + CO = + C12 R = T04L1 R = T04L2 R = T04L1 R = T04L2 R = T04L3 R = T04C3 R = T04C3	45667899012345678901234567890112345678901223456789012333333333333333333333333333333333333	282021242233221342216201556402627281620621590302462246363483523007390 4041414140404040004062710404040400040747162704032464634835230646462	STD STD STD STD STD STD STD STD STD STD

(Continued) Table VIII

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Кеу	Step	Code	Key
347 348 350 351 352 355 355 355 355 355 355 355 358	612 763 733 733 753 75 75	GTD STD LBL RCL C RCL 08 ÷ (RCL 00 -	360 362 363 364 365 366 367 368 367 369 370 371	05 54 52 54 52 44 02 22 98 43	5) 2) 5 5 0 6 1 NV EE ADV RCL	373 374 375 376 377 378 380 381 382 383 383 383	99 43 99 43 99 43 06 99 43 99 15 73 00	PRT RCL PRT ADV RCL PRT RCC PRT RCS LBL RC* 00	386 387 389 390 391 392 393 394 395 395 397	585534452353 709640992265	- 8 = x L 4 - R 0 / = WX + = NX L NX (399 400 401 402 403 404 405 406 406 406 408 409 410	049533403522 53340522	4 9 RCL 03) + RCL 03 = T RCL 03 = T RTN

User instructions for TI version

Table IX

The TI program requires the nonlinear function to be entered as subroutine E, starting at line 382. (The program listing in Table VIII has the text function—Eq. 3—in this location.) Because of size limitations, the nonlinear function may have only two variable parameters, α and β in the text. The calculated values of these parameters are stored in registers 03 and 04 by the program. The first estimates of the parameters are made by the engineer, and are placed in registers 03 and 04 before the start of the program. (The first estimates in the text example are 0.25 and 0.1.)

Also because of size limitation, only a maximum of 22 pairs of y-x values can be handled. The program uses 16 storage registers for the calculations, and the 22 pairs of x-y values must be stored, requiring a total of 60 storage areas.

Program operation is as follows:

1. The nonlinear function is entered in place of the material following line 385 in the program listed. Lines 386 to 479 are available for the function. (Be sure to end with a **RETURN** instruction.)

2. The preliminary estimate of the function parameters is entered in storage registers 03 and 04 (i.e., for the example, enter the initial value for α as 0.25 STO 03, and for β of 0.1 as 0.1 STO 04). Y-X data are entered as:

Y, key X↔T

X, key A

3. When all the data are entered, key B gives an estimate of the solution: ϵ in the text. This calculation may take a few minutes.

Additional estimates may be automatically made by using key R/S. If the estimate is satisfactory, key D will give the values of the parameters. If the ϵ value is less than 1E-5, the program automatically goes to key D and calculates the parameters.

Key D gives the values of two parameters in the nonlinear function, first the value of α in register 03, and then the value of β in 04. It then gives the goodness of fit, measured as the standard deviation—the square root of the mean of the sums of the squares of deviation. The printout of the example is shown in Table X.

xample for TI version		Table X
3841288375 0399996648 0010715053 0000234167	Estimates for ϵ	
3882936306 0935055038	α β	

Standard deviation

.0079845881

Acknowledgement

The author thanks the editors of *Industrial Quality Con*trol for permission to reproduce Table V and to quote the example.

References

- 1. Hewlett-Packard Co., Users' Library, program numbers 03590D, 03591D, 03588D, 03588D.
- Draper, N., and Smith, H., "Applied Regression Analysis," John Wiley and Sons, New York, 1966, Chapter 10.
- Smith, H., and Dubey, S. D., Industrial Quality Control, Vol. 21, No. 2, pp. 64– 70, 1964 (Amer. Soc. for Quality Control, Milwaukee, Wis.).

Brian W. Clare is a member of the Mineral Chemistry Research Unit, School of Mathematical and Physical Sciences, Murdoch University, Murdoch, Western Australia, 6150, where he has worked on the hydrometallurgy of copper, the purification of silver, and the recovery of precious metals from concentrates. He holds a B.Sc. and a Ph.D. from the University of Western Australia and is an Associate of the Royal Australian Chemical Institute.

Polynomial regression on a pocket calculator

This program for the HP-41C calculator fits a polynomial function to a table of data. The polynomial may then be used for interpolation or mathematical analysis.

Brian W. Clare, Murdoch University

□ Polynomial regression often yields a function that is a good representation of data over a limited range. This program, written for the HP-41C, yields a best-fit polynomial function of a degree specified by the user. At least one 64-register memory module is needed to fit polynomials of degree five or under. With four memory modules (or the 319-register HP-41CV), the program can fit a polynomial up to degree eighteen. A cardreader and printer are convenient to have but are not necessary.

Regression analysis

Finding an equation that represents a table of (x,y) data accurately is a common engineering problem. When the data are the result of an experiment, and contain errors, the best way to do this is by least-squares regression analysis.

Linear regression is the simplest form of regression analysis. Available on most scientific calculators, the technique fits a straight line (y = ax + b) to a set of data (x_i, y_i) such that the sum of the squared errors is a minimum. However, data cannot always be approximated by a straight line.

If the form of dependence of y on x is known, then nonlinear regression [1] is possible. But there is no way to guarantee convergence of this iterative regression procedure. If the form of dependence is unknown, then y often may be treated as some general function of x such as a sum of trigonometric terms (Fourier analysis) or a polynomial function. This last case is termed polynomial regression.

How polynomial regression works

Polynomial regression takes a set of N data points (x_i, y_i) and represents it as an *n*th-degree polynomial:

$$y = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$

where $a_0, a_1 \cdots a_n$ are constants chosen so that the sum of the squared errors (f) is a minimum:

$$f = \sum_{i} (a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n - y_i)^2$$

According to calculus, the function f is a minimum

with respect to the choice of coefficients when each of the partial derivatives is zero:

$$\frac{\delta f}{\delta a_0} = \frac{\delta f}{\delta a_1} = \frac{\delta f}{\delta a_2} = \dots = \frac{\delta f}{\delta a_n} = 0$$

Differentiating f with respect to each of these coefficients and setting the partial derivatives equal to zero gives rise to a system of (n + 1) linear equations in (n + 1) unknowns $(a_0, a_1 \cdots a_n)$:

$$na_{0} + a_{1}\Sigma x_{i} + a_{2}\Sigma x_{i}^{2} + \dots + a_{n}\Sigma x_{i}^{n} = \Sigma y_{i}$$

$$a_{0}\Sigma x_{i} + a_{1}\Sigma x_{i}^{2} + a_{2}\Sigma x_{i}^{3} + \dots + a_{n}\Sigma x_{i}^{n+1} = \Sigma x_{i}y_{i}$$

$$a_{0}\Sigma x_{i}^{2} + a_{1}\Sigma x_{i}^{3} + a_{2}\Sigma x_{i}^{4} + \dots + a_{n}\Sigma x_{i}^{n+2} = \Sigma x_{i}^{2}y_{i}$$

$$\vdots$$

$$a_{0}\Sigma x_{i}^{n} + a_{1}\Sigma x_{i}^{n+1} + a_{2}\Sigma x_{i}^{n+2} + \dots + a_{n}\Sigma x_{i}^{2n} = \Sigma x_{i}^{n}y_{i}$$

Since we can calculate the sums and products of the x_i and y_i terms, we can solve this symmetric matrix to find the $a_0, a_1 \cdots a_n$ values. These are the regression coefficients for our *n*th-degree polynomial.

How the calculator program works

The HP-41C implementation of the polynomialregression algorithm consists of three parts, which are listed in Table I:

1. Program "POLY."* This 378-byte program handles data input, calculation of sums in the matrix, output of regression coefficients, and calculation of the conditional mean \overline{y} for any given x once the coefficients are known.

2. Subroutine "SYMLIN." This 248-byte routine solves the matrix. It has been described previously [1], in greater detail. (See previous article.)

3. Subroutine "FMT." This 17-byte routine formats all numbers displayed and printed by the program. As listed in Table I, "FMT" limits numbers to 5 decimal places and specifies scientific notation for numbers less than or equal to 0.1. If desired, "FMT" can be changed

^{*}Throughout this article, names such as "POLY" that require ALPHA-mode keystrokes will be placed in parentheses. The parentheses are not part of the name. Regular keys will be boldfaced; e.g., R/S.

			registers in the HP-41C calc	ulator Tal
"POLY"	64 CHS		187 ISG 00	12 RCL 0
TOL 1	65 ST+ IND 02	125+LBL B	188 GTO 07	13 STO 0
01+LBL "PULY"		126 DELETE"	189 ADV	14 ISG 0
02 CLRG	66+LBL 00	127 AVIEW	190 ADV	
03 9	67 1	128 SF 00	191 ADV	15+LBL 09
04 STO 08	68 ST+ 03	129 GTO 05		
05 *DEGREE?		127 810 65	192 ADV	16 RCL IND
	69 XEQ 09	17041.01 .00	193 RTN	17 RCL IND
06 FIX 0	70 STO 04	130+LBL 09		18 /
07 CF 29	71 RCL 03	131 RCL 03	194+LBL E	19 STO 05
08 PROMPT	72 RCL 07	132 RCL 07	195 ADV	20 XEQ 00
09 ARCL X	73 2	133 -	196 "X= "	21 STO 04
10 AVIEK	74 *	134 2	197 PROMPT	22 1
11 1	75 X=ï?	135 +	198 XEQ "FMT"	23 ST+ 02
12 +	76 GTU W2	136 1	199 SF 29	24 XEQ 08
13 STO 07	77 RCL 00	137 X<=Y?	200 ARCL X	25 1
14 ADV	78 ST* 05	138 X<>Y	201 AVIEW	26 -
15 1	10 01. 00	139 RTN		
16 STO 06	7041.01 131	109 8.11	202 ENTERT	27 1 E3
10 310 00	79+LBL 01	140ALD: 00	203 ENTERT	28 /
17.10.00	80 RCL 03	140+LBL 08	204 ENTERT	29 ST+ 04
17+LBL 05	81 RCL 04	141 RCL 07	205 RCL 08	
18 " X"	82 2	142 2	206 RCL 07	30+LBL 00
19 FIX 0	83 *	143 *	207 +	31 RCL IND
20 CF 29	84 -	144 4	208 RCL 08	32 RCL 05
21 -1	85 3	145 +	209 1 E3	33 *
22 RCL 06	86 +	146 RCL 04	219 /	34 ST- IND
23 FS? 00	87 X(=0?	147 -	211 +	35 ISG 03
24 +	88 GTO 00	148 RCL 04	212 1	
25 ARCL X	89 XEQ 08	149 1	213 -	36+LBL 09
26 *+= *	98 +	150 -	214 STO 00	37 ISG 04
27 PROMPT	91 STO 02	151 *		
		152 2	215 CLX	38 GTO 00
28 XEQ "FMT"	92 RCL 05			39 1
29 SF 29	93 FS2 00	153 /	216+LBL 06	40 ST+ 06
30 ARCL X	94 CHS	154 RCL 08	217 RCL IND 00	41 RCL 06
31 AVIEW	95 ST+ IND 02	155 +	218 +	42 RCL 01
32 STO 00	96 1	156 1	219 *	43 -
33 - Y-	97 ST+ 04	157 -	220 DSE 00	44 RCL 00
34 FIX 0	98 GTO 01	158 RTN	221 GTO 06	45 1
35 CF 29			222 RCL IND 00	46 -
36 -1	99+LBL 02	159+LBL C	223 +	47 X≠Y?
37 RCL 06	100 2	160 XEQ "SYMLIN"	224 -YBAR= -	48 GTO 01
38 FS? 60	101 STO 04	161 ADY	225 XEQ "FMT"	
39 +	101 512 01	162 RCL 08		49 RCL 00
	10040 02		226 ARCL X	50 1
40 ARCL X	102+LBL 03	163 RCL 07	227 AVIEN	51 +
41 •+= •	103 XEQ 08	164 RCL 08	228 FC? 55	52 ST+ 01
42 PROMPT	104 STO 02	165 +	229 STOP	53 1
43 SF 29	105 RCL 01	166 1	230 GTO E	54 ST- 00
44 XEQ "FMT"	106 FS? 00	167 -	231 END	55 RCL 00
45 ARCL X	107 CHS	168 1 E3		56 1
46 AVIEW	108 ST+ IND 02	169 /		57 X#Y?
47 STO 01	109 1	170 +		58 GTO C
48 XEQ A	110 ST+ 04	171 STO 00		59 RCL 08
49 1	111 RCL 00			60 STO 01
50 FS? 00	112 ST* 01	172+LBL 07		
51 CHS	113 RCL 04	173 -A-	"SYMLIN"	61 RCL 07
52 S1+ 06			64 - L DL OVMI 1-1-	62 STO 00
	114 RCL 07	174 FIX 0	01+LBL "SYMLIN"	63 STO 02
53 CF 00	115 2	175 CF 29	02 RCL 07	64 1
54 ADV	116 +	176 ARCL 06	03 STG 00	65 -
55 GTO 05	117 X=Y?	177 "+= "	04 RCL 08	66 STO 06
	118 GTO 04	178 SF 29	05 STO 01	67 1
56+LBL A	119 GTO 03	179 RCL 1ND 00		68 STO 85
57 0		180 XEQ "FMT"	06+LBL C	69 XEQ 08
58 STC 03	120+LSL 04	181 ARCL X	07 RCL 01	70 1
59 RCL 08	121 RCL 98	182 RYIEW	08 STO 96	71 -
60 STO 02	122 STO 02	183 FC? 55	00 310 00 09 1	
61 1	123 RCL IND 02	184 STOP		72 STO 03
			10 STO 02	73 RCL IND
62 STO 05	124 RTN	185 1 186 ST+ 06		74 DSE 03
63 FS? 00			11+LBL 01	75 RCL IND

				(Continued) Table
76 /	100 STO 03	125 RCL IND 03	150 DSE 02	07 RTN
77 ISG 03	101 1	126 STO 04	151 GTO 11	OF KIN
// 156 05	102 ST+ 02	128 STU 04	152 RTN	08+LBL 00
78+LBL 09	102 314 02 103 XEQ 08	128 X=0?	IJZ KIN	00×LDL 00
STO IND 03	194 2	129 GTO D	153+LBL 08	10 X<>Y
80 STO 04	104 2	130 1	154 RCL 00	11 X>Y?
00 310 04	106 1 E3	131 ST+ 05	155 1.5	12 GTO 01
81+LBL A	100 1 23	132 GTO A	156 +	13 FIX 5
82 RCL 06	108 ST+ 03	132 GIO H	157 RCL 82	14 RTN
83 STO 02	109 RCL IND 03	133+LBL D	158 2	14 KIN
03 310 02	110 STO 04	134 RCL 00	159 /	15+LBL 01
84+LBL 03	111 1	135 STO 92	160 -	16 FIX 5
85 XEQ 08	112 ST+ 03	136 RCL 01	161 RCL 02	17 RTN
86 1	112 511 65	137 +	162 *	18 .END.
87 -	113+LBL 05	138 1	163 RCL 01	10 . 2.02.
88 RCL 05	114 RCL IND 03	139 -	164 +	Notes:
89 -	115 ISG 03	140 STO 04	165 RTN	"POLY" is 378 bytes.
90 STO 03	116 GTO 07	110 010 01	166 END	"SYMLIN" is 248 bytes.
91 RCL 04	117 GTO 06	141+LBL 11	100 2112	"FMT" is 17 bytes.
ST* IND 03	111 110 00	142 XEQ 08		"FMT" sets the output
93 DSE 02	118+LBL 07	143 1	"FMT"	and display format.
94 GTO 03	119 ST+ IND 03	144 -		The alternative "FMT"
95 DSE 06	120 GTO 05	145 STO 03	01+LBL "FMT"	listed below will display
70 DOL 00		146 RCL IND 03	02.1	all numbers in 5-decimal
96+LBL 09	121+LBL 06	147 STO IND 04	03 X(>Y	scientific notation:
97 RCL 06	122 ST- IND 03	148 DSE 04	04 X>Y?	01+LBL "FMT"
98 STO 02	123 RCL 04		05 GTO 00	92 SCI 5
99 XEQ 08	124 ST/ IND 03	149+LBL 09	06 SCI 5	03 .END.

to fit the needs of a particular problem. Changing it to the alternative form also listed in Table I will assure that any number can be displayed without loss of precision—though the display may be difficult to read because of the exponents.

The program allocates the storage as follows: Registers 00 and 01 hold the most recent x and y values; Registers 02, 07 and 08 are used; Registers from 09 onward hold the matrix. Since the matrix is symmetric, only half is stored.

Using the program

Table II lists user instructions for the program. Several points that should be noted are:

1. The program should be loaded and run in the USER mode. This enables one to press single keys during execution rather than giving XEQ commands (e.g., pressing the B key rather than XEQ "B").

2. One must allocate registers to data storage. The program requires a total of 95 registers. This means that an HP-41C calculator equipped with m 64-register memory modules has (64m - 32) registers available for allocation. The HP-41CV has 224 registers available. A polynomial of degree n needs $(0.5n^2 + 2.5n + 11)$ registers, at a minimum.

3. The program requires that one decide the degree (n) of polynomial. This should not be greater than (N - 1), where N is the number of data points, nor less

Step	Entries	Display/Prompting
1. Allocate storage	XEQ "SIZE" (No. of registers)	SIZE – – –
2. Set USER mode	USER	
3. Load or read program		
4. Enter degree (<i>n</i>) and (<i>x,y</i>) data	XEQ "POLY" (Degree) R/S (x ₁) R/S (y ₁) R/S (x ₂) R/S (etc. through y _N)	DEGREE? X1= Y1= X2= (after execution delay) Y2=
5. To delete a point*	B (x _j) R/S (y _j) R/S	DELETE X _j =(where y _j was last point entered) Y _j = X _j = (enter next or corrected point)
6. Calculate regression coefficients*	C R/S R/S (etc. through <i>a_n</i>)	A0= (\$ ₀) A1= (\$ ₁) A2= (\$ ₂)
7. Calculate conditional means*	E (x) R/S (x) R/S	X= YBAR = <i>ly</i> value for given <i>x)</i> YBAR = (etc.)

POLYNOMIAL	REGRESSION	31
------------	------------	----

т,°С	c _p	T,°C	c _p
0	1.00762	55	0.99919
5	1.00392	60	0.99967
10	1.00153	65	1.00024
15	1.00000	70	1.00091
20	0.99907	75	1.00167
25	0.99852	80	1.00253
30	0.99826	85	1.00351
35	0.99818	90	1.00461
40	0.99828	95	1.00586
45	0.99849	100	1.00721
50	0.99878		

than 1, which would be a linear regression. Note that one memory module allows n to be no greater than 5; n can be as high as 18 with four memory modules.

4. During data entry, the execution time after entry of each y value depends on the degree of the polynomial: about 20 s for degree 2; 50 s for degree 4; 80 s for degree 6; 120 s for degree 8; up to about 6 min for degree 18. This should be considered in choosing the degree. Note that execution time may depend on the particular calculator.

5. Subroutine "SYMLIN" destroys the matrix when it calculates the regression coefficients. Therefore, points cannot be added or deleted after C is executed.

6. If a printer is used (MAN mode), all the data and coefficients are printed out.

Example of sixth-d	Table I\		
Regression coefficients	Valu	es of y per regression e	quation
8= 1.00760	X= 0.00000E0	X= 35.00000	X= 70,00000
1= -8.79449E-4 2= 3.33998E-5	YBAR= 1.00760	YBAR= 0.99821	YBAR= 1.00091
3= -6.87661E-7	X= 5.09090	X= 40.00000	X= 75.00000
4= 8.31908E-9 5= -5.29596E-11	YBAR= 1.00396	YBAR= 0.99829	YB9R= 1.00168
6= 1.38922E-13	X= 18.80000	X= 45.00000	X= 80.00000
	YBAR= 1.00154	YBAR= 0.99849	YBAR= 1.00255
	X= 15.00000	X= 50.00000	X= 85.90000
	YBAR= 0.99999	YBAR= 0.99879	YBAR= 1.00352
	X= 20.00000	X= 55.09000	X= 90.00000
	YBAR= 0.99904	YBAR= 0.99917	YBAR= 1.00461
	X= 25.00000	X= 60.06000	X= 95.00000
	YBAR= 0.99851	YBAR= 0.99965	YBAR= 1.09583
	X= 30.00000	X= 65.00000	X= 100.00000
	YB9R= 0.99826	YBAR= 1.00023	YBAR= 1.00723

Example

McCracken and Dorn [2] list data for the specific heat of water at various temperatures, and show a third-degree polynomial approximation of that data. Their data are listed in Table III. Since their polynomial appeared not to fit well, let us try a sixth-degree polynomial approximation.

Table IV shows the actual output of the program. The regression coefficients a_0-a_6 are listed, and the regression equation is therefore:

$$y = 1.00760 - 8.79449 \times 10^{-4}x + 3.33998 \times 10^{-5}x^{2} - 6.87661 \times 10^{-7}x^{3} + 8.31908 \times 10^{-9}x^{4} - 5.29596 \times 10^{-11}x^{5} + 1.38922 \times 10^{-13}x^{6}$$

Table IV also lists the conditional means (YBAR) predicted by the regression equation for each temperature (X) in the original data. Comparing these calculated values of specific heat with the actual data, one can see that the fit is very good—a maximum deviation of 0.00004, or less than 0.005%. Of course, the y data in this example fell into a very narrow range (1.003 \pm 0.005).

Cautions

The system of linear equations generated by polynomial regression can be ill-conditioned—leading to smooth curves that fit poorly—if the degree of the polynomial is large and especially if the y values cover a wide range. This means inaccurate results, and can be avoided only by using orthogonal polynomials instead of powers of x as the regression functions.

The regression equation begins to reproduce the errors of measurement as well as the true trend when the degree of the polynomial approaches the number of data points. When n = (N - 1), the polynomial fits perfectly but is not a satisfactory representation of the data. The true best fit is given by the polynomial function where $\Sigma(\overline{y}_i - y_i)^2/(N - n - 1)$ shows no further significant decrease (\overline{y} is the y value for a given x predicted by the regression equation). To get this best fit, one must try several degrees of polynomial and calculate conditional means and squared error each time.

As a final caution, be aware that extrapolation with polynomials is always dangerous and becomes more so as the degree of the polynomial increases. It is best to use the regression equation only within the limits of the original data.

Conditionals, such as X = Y?, X = O?, etc., should be entered as commands; they should not be inserted as ALPHA strings (i.e., enclosed in quotation marks).

For TI users

The TI version for calculating the best-fit polynomial function for a given set of data closely follows the HP program. However, the TI version is limited to a maximum of a fourth-degree equation. Tables V and VI present the listings of the TI programs. User instructions are offered in Table VII.

32 ENGINEERING MATHEMATICS

Listing for TI version—program 1

Table V

Step Code Key	Step Code Key	Step Code Key	Step Code Key	Step Code Key
$\begin{array}{ccccccccccc} 000 & 76 & LBL \\ 001 & 11 & A \\ 002 & 87 & IFF \\ 003 & 01 & 01 \\ 004 & 22 & INV \\ 005 & 47 & CMS \\ 006 & 86 & STF \\ 007 & 01 & 01 \\ 008 & 42 & STD \\ 009 & 00 & 00 \\ 010 & 91 & R/S \\ 011 & 76 & LBL \\ 012 & 22 & INV \\ 013 & 42 & STD \\ 014 & 16 & 16 \\ 015 & 32 & X;T \\ 016 & 42 & STD \\ 017 & 15 & 15 \\ 018 & 99 & PRT \\ 019 & 44 & SUM \\ 020 & 02 & 02 \\ 021 & 33 & X^2 \\ 022 & 44 & SUM \\ 023 & 03 & 03 \\ 024 & 33 & X^2 \\ 025 & 44 & SUM \\ 026 & 05 & 05 \\ 027 & 33 & X^2 \\ 028 & 44 & SUM \\ 029 & 09 & 09 \\ 030 & 43 & RCL \\ 031 & 15 & 15 \\ 032 & 45 & Y^X \\ 033 & 03 & 3 \\ 034 & 95 & = \\ 035 & 44 & SUM \\ 036 & 04 & 04 \\ 037 & 65 & X \\ 038 & 43 & RCL \\ 039 & 16 & 16 \\ 040 & 99 & PRT \\ 041 & 95 & = \\ 042 & 44 & SUM \\ 036 & 045 & 15 & 15 \\ 046 & 45 & Y^X \\ 037 & 65 & X \\ 048 & 95 & = \\ 049 & 44 & SUM \\ 043 & 13 & 13 \\ 044 & 43 & RCL \\ 037 & 65 & X \\ 048 & 95 & = \\ 049 & 44 & SUM \\ 043 & 13 & 13 \\ 044 & 43 & RCL \\ 037 & 65 & X \\ 058 & 43 & RCL \\ 059 & 95 & = \\ 055 & 44 & SUM \\ 056 & 07 & 07 \\ 057 & 65 & X \\ 058 & 43 & RCL \\ 059 & 95 & = \\ 061 & 48 & SUM \\ 062 & 08 & 08 \\ \end{array}$	06343RCL064161606544SUM066101006765×06843RCL069151507095=07144SUM072111107365×07443RCL07595=07744SUM078121207965×08043RCL081151508233X208395=08444SUM085141408669DP087212108898ADV09976LBL09112B09242STD09432XIT09542STD096151509799PRT09822INV10133X210222INV10343RCL11022INV11144SUM120040412165×123161612499PR12595=	12622INV12744SUM128131312943RCL130151513145Y×13205513322INV13544SUM136060613765×13843RCL13915=14122INV14244SUM143070714465×14543RCL146151514795=14822INV154101015565×15743RCL15895=16022INV16144SUM162111616365×16443RCL165151516695=16722INV16844SUM169121217065×17143RCL172151517333X ² 17495=17522INV16643RCL17143RCL172151517333X ² 17495=17543RCL <tr< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></tr<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(Continued)	Table	۷
-------------	-------	---

Step	Code	Key	Step	Code	Key	Step	Code	Кеу	Step	Code	Key	Step	Code	Key
315	75	-	348	03	03	381	03	03	414	43	RCL	447	95	
316	43	RCL	349	95		382	55	÷	415	05	05	448	42	STO
317	05	05	350	42	STO	383	43	RCL	416	55	÷	449	06	06
318 319	- 55 43	÷ RCL	351 352	22 43	22 RCL	384 385	02 75	02	417 418	43 02	RCL 02	450 451	43 02	RCL 02
320	43 04	04	353	06	06	386	43	RCL	419	95	=	452	55	÷
321	95	=	354	55	÷	387	04	04	420	42	STO	453	43	RCL
322	42	STD	355	43	RCL	388	55	÷	421	16	16	454	01	01
323	13	13	356	02	02	389	43	RCL	422	43	RCL	455	75	
324	43	RCL	357	75	-	390	03	03 =	423 424	05 55	05 ÷	456 457	43 03	RCL 03
325 326	04 55	04 ÷	358 359	43 07	RCL 07	391 392	95 42	STO	424	43		407 458	us 55	U.S ÷
920 327	43	RCL	360	55	Ur ÷	393	12	12	426	01	01	459	43	RĊL
328	02	02	361	43	RĊL	394	43	RCL	427	75	_	460	02	02
329	75	-	362	03	03	395	03	03	428	43	RCL	461	95	
330	43	RCL	363	95		396	55	÷.	429	06	06	462	42	STO
331 332	05 55	05 ÷	364 365	42	STO 23	397 398	43 01	RCL 01	430 431	55 43	÷ RCL	463 464	11 43	11 RCL
333	43	RCL	366	23 43	RCL	399	75	- -	432	02	02	465	40 08	nul 08
334	03	03	367	11	11	400	43	RCL	433	95	=	466	55	÷
335	95	=	368	55	÷	401	04	04	434	42	STO	467	43	RCL
336	42	STD	369	43	RCL	402	55	÷	435	17	17	468	13	13
337	21	21	370	02	02	403	43	RCL	436 437	43 10	RCL 10	469	75	-
338 339	43 05	RCL 05	371 372	75 43	RCL	$404 \\ 405$	02 95	02	438	10 55	т U ÷	470 471	43 09	RCL 09
340	00 55	÷	373	+3 12	nul 12	406	42	STO	439	43	RCL	472	55	02 ÷
341	43	RCL	374	55		407	15	15	440	01	01	473	43	RCL
342	02	02	375	43	RCL	408	43	RCL	441	75		474	14	14
343	75	-	376	03	03	409	04	04	442	43	RÇĻ	475	95	=
344 545	43	RCL	377	95	= o T n	410	55	÷	443 443	11 55	11 ÷	476	42	STD
345 346	$\begin{array}{c} 06\\ 55\end{array}$	06 ÷	378 379	42 07	STU 07	411 412	43 01	RCL 01	444 445	43	. RCL	477 478	09 91	09 R/S
347	43	RCL	380		RCL	413	75	- L	446	02	02	TIU	21	157 0

Listing for TI version—program 2

Step Code Key

Step Code Key

Step Code Key Step Code Key 044 55 ÷ 066 55 ÷ 088 13 13

000	76 LBL	022 4	3 RCL	044	55 ÷	066	55 ÷	088	13 13
001	13 C		6 06	045	43 RCL	067	43 RCL	089	95 =
002	43 RCL		5 ÷	046	14 14	068	13 13	090	42 STD
003	07 07		3 RCL	047	95 =	069	75 -	091	18 18
003	55 ÷		1 11	048	42 STO	070	43 RCL	092	43 RCL
005	43 RCL		5 -	049	24 24	070	40 RUL 26 26	093	22 22
000	43 KOL 12 12		3 RCL	050	43 RCL	071	20 20 55 ÷	093	22 22 55 ÷
006		020 4		050	43 KCC 19 19				
			r or 5 ÷	052	$55 \div$	073	43 RCL	095	43 RCL
800						074	14 14	096	12 12
009	08 08		3 RCL	053	43 RCL	075	95 =	097	75 -
010	55 ÷		2 12	054	13 13	076	42 STO	098	43 RCL
011	43 RCL	033 9		055	75 -	077	26 26	099	19 19
012	13 13	·	2 STO	056	43 RCL	078	43 RCL	100	55 ÷
013	95 =	035 0		057	25 25	079	21 21	101	43 RCL
014	42 STO	036 4		058	55 ÷	080	55 ÷	102	13 13
015	08 08		8 18	059	43 RCL	081	43 RCL	103	95 =
016	43 RCL	038 5	5 ÷	060	14 14	082	12 12	104	42 STO .
017	00 00	039 4	3 RCL	061	95 =	083	75 -	105	19 19
018	32 XIT	040 1	3 13	062	42 STO	084	43 RCL	106	43 RCL
019	01 1	041 7	5 -	063	25 25	085	18 18	107	23 23
020	67 EQ	042 4	3 RCL	064	43 RCL	086	55 ÷	108	55 ÷
021	23 LNX	043 2	4 24	065	20 20	087	43 RCL	109	43 RCL

(Continued) Table VI

Step	Code	Key	Step	Code	Key	Step	Code	Key	Ste	ер	Code	Key	Step	Code	Key
1012345678901234567890123456789012345678901234567890123456789012345 1112111111111111111111111111111111111	1153353254252274385 425425420624385	1º LO LO LO RESERVENTE LO	176 177 182 182 185 186 189 192 193 195 199 199 199 199 199 199 199 199 199	S R R R R R R R R R R R R R R R R R R R	09L7÷L4÷L8÷L8=D8L0÷L8÷L6÷L4=D6L9÷L8×L5÷L4=D5L2÷L4+L0÷L8=D0L3÷L4+ 19L7÷L4÷L8÷L8=D8L0÷L8÷L6÷L4=D6L9÷L8×L5×L4=D5L2÷L4+L0÷L8=D0L3÷L4+	222454789012345678901234566789012345678901234567890123456789012345678900123456789001234567890012345678900123456789012333333333333333333333333333333333333	7653345307434530753852396	19 LS GRLS LS L9 L5 ED9LO LS L2 ED5XXL9 ED4TLRLS L4 L0 + L8 E3TL CR + CL9 + C2 = C9 + C2 + C2 + C2 + C2 = C2 + C4 + C2 = C4 + C4 + C2 + C4 + C2 + C4 + C4 + C4 +			19219305315325325 9439417436407436	ROTLS L3 L4 L2 L4 D2TLXL6 L2 L5 L3 L6 L4 L7 L1 D1TLO L1 L2 L2 L3 R5 R R R R R R R R R R R R R R R R R R	456789012345678901234567890123456789012345678903333333333333333333334444444444444444	35345345355531520982611652531530535353253355345335544653453 364074364095409439928097141643843841364385414056438541405643854440564399	15 Y× 4 >

User instructions for the TI version

Table	VII
I able	V II

Step	Input	Кеу	Output
1. Load program 1			
2. Enter degree (n)	(Degree) (1 to 4)	Α	
3. Input data:	Xi	x ⇒ t	
•	y i	Α	
	Repeat until all data are entered.		
	(To delete an erroneous pair of values:		
	Xi	x ≓ t	
	<i>Y</i> i	В	
4. When all data are entered		С	Starts calculation
5. When calculation stops, load program 2			
6. After loading program 2		С	Completes calculation
7. Calculate regression coefficients*			$a_n, a_{n-1}, a_{n-2}, \text{ etc.}$
8. Calculate conditional means	x	E	\overline{y} (YBAR, y value for a given x)

*Output is the regression coefficients, starting with the highest degree and ending with a_0 . For instance, for a third-degree calculation: $y = a_0 + a_1 x + a_2 x^2 + a_3 x^2 + a_4 x^2 + a_5 x^2 + a_5$ $a_3 x^3$, the output is a_3 , a_2 , a_1 , a_0 .

References

- 1. Clare, B. W., Nonlinear regression on a pocket calculator, Chem. Eng., Aug. 23, 1982, pp. 83-89.
- McCracken, D. D., and Dorn, W. S., "Numerical Methods with FORTRAN IV Case Studies," John Wiley & Sons, New York, 1972, Fig. 7.9 and Table 7.5. Used with permission.

The author

I he author Brian W. Clare is a member of the Mineral Chemistry Research Unit, School of Mathematical and Physical Sciences, Murdoch University, Murdoch, Western Australia, 6150, where he has worked on the hydrometallurgy of copper, the purification of silver, and the recovery of precious metals from concentrates. He holds a B.Sc. and a Ph.D. from the University of Western Australia and is an Associate of the Royal Australian Chemical Institute.

Curve fitting via orthogonal polynomials

In fitting a curve to experimental data, it may be desirable to use polynomials of increasing degree until the necessary fit is achieved. Employing orthogonal polynomials has several advantages.

	Brian	<i>W</i> .	Clare,	Murdoch	University	(Australia
--	-------	------------	--------	---------	------------	------------

The first thing to do in fitting a curve to experimental data is to choose a suitable type of function. Sometimes this is easy, the mathematical form of the function being known. Vapor-pressure/temperature data, for example, can be fitted to an equation of the form:

$P = A e^{-B/T}$

with a reasonable degree of accuracy, and this can be converted to a linear regression problem by taking logarithms of both sides.

In other cases, a nonlinear equation may be appropriate, and fitting this requires an iterative method [1].

If no functional relationship is known or, in some cases, if a nonlinear equation is known, it may be appropriate to use polynomials of increasing degree until the desired fit is achieved. Polynomials are very flexible, and can be fitted to most continuous functions. A procedure for fitting polynomials by solving the normal equations has already been described [2]. It was pointed out in that article, however, that poor results can be obtained when the degree of the polynomial is large, or when the dependent variable covers a wide range.

This is because the normal equations in this case become extremely ill-conditioned, meaning that a small error in the data (or, as in this case, in the intermediate results) makes a large difference in the final result.

If, instead of powers of x, a set of orthogonal polynomials are used, the solution of the normal equations can be avoided. Thus, instead of the relationship:

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \tag{1}$$

we fit the equation:

$$y = b_0 P_0(x) + b_1 P_1(x) + \dots + b_i P_i(x) + \dots + b_n P_n(x) \quad (2)$$

where $P_i(x)$ is an *i*th-degree polynomial in x, and $P_j(x)$ is a *j*th-degree polynomial in x.

These two polynomials are said to be orthogonal if the sum:

$$\sum_{0}^{n} P_{i}(x)P_{j}(x)$$

is zero when $i \neq j$, and is non-zero when i = j. The summation extends over all points.

The use of such polynomials has several advantages:

1. The solution of the normal equations is avoided, and the problem is not ill-conditioned. A high-degree polynomial can be fitted without any problems.

2. The amount of calculation involved is greatly reduced, so the method is much faster.

3. Normally, if a least-squares polynomial of degree n is fitted to data, a truncated version of degree $m(m \le n)$ will not be a least-squares fit. However, with this method, the program stores a sequence of orthogonal polynomials that remain least-square fits, even when truncated. Hence the user can select any degree (m) of polynomial, up to the value n, which provides a satisfactory fit. This may be done without reentry of data. The method of determining the quality of fit is discussed later.

However, the advantages are obtained at a price the values of the independent variable must be equally spaced.

The method of fitting these orthogonal polynomials is given in Ref. 3 and 4, and will not be reproduced here. However, for further reference, it may be useful to know that the term Gram polynomials refers to a particular set of polynomials that are orthogonal on discrete, equally-spaced points. These are sometimes called Chebychev polynomials, but this name is also used for other types of orthogonal polynomials.

Use of the HP41C program

The program is given in Table I. To use it, the program must be loaded into memory with a formatting subroutine under label FMT: (PGM) LBL 'FMT' FIX 4 RTN (PGM). This subroutine determines the format of all data and results, and can, if desired, be more complex than this simple, four-decimal-point output.

The program calls for the operator to select a degree, m, of polynomial that might fit the data sufficiently well, where $m \le n$. For each degree, m, that is tested, we obtain a set of coefficients, a, and a set of conditional means, y bar. If these conditional means are sufficiently close to the actual y values, the polynomial may be

Originally published April 18, 1983.

Program fits curves to a high degree of accuracy via orthogonal polynomials

Table I

I+LBL "POCA" 2 CLPG 3 THOW MANY POCATS" 4 THOM MANY POCATS"	50 000 V				286 +
3 6860 MAN: POINTS: 1 8- 9:		115 +	173 RCL 03	230 STO INE 07	287 /
1 *- 9	68 " "	117 /	174 ROL A1	231 190 07	285 CHS
	61 PROMPT	117 / 118 RCL 00	174 RCL 01 175 2	232 GTO 04	289 STC 06
, b oyé <u>s</u> i	42 YEO PEMIS	119 RCL 01	172 4	377 11	230+LBL 86
	47 DDP! X	128 -	177 1	270 11 270 0T0 20	
1 617 7 617 A	00 REGE A 24 OUTEU	120 -	173 1	624 019 54 675 56, 64	271 KVL 100 000 VL00
7 F12 0	64 AVIEW	121 /	178 + 179 /	200 KUL MA 074 -	292 XF0:
9 GF 29	65+LBL A	122 RCL 03 123 STC 02	179 / 180 RTN	235 t	293 STS 08
9 ARCI X	66 STO 06	123 510 62	180 R R	237 1	293 313 66 294 RCL 66
A "F POINTS"	67 ST+ 11	124 RBN	181+LBL 17	248 4	295 PC (M)
I OVIEK 2 : 3 - 4 STO 00 5 "MAXINUM DEGMEL "	68 RCL 10	125 STO 03	132 RCL 00	239 STO 07	296 *
	69 2	126 RCL 03 127 RCL 06	183	249 RCL 04	297 STC IND
5 -	70 CHS	127 RCL 06	184 +	241 +	298-2
I STO 09	71 *	128 *	185 RTH	242 1	299 ST+ 07
S "MAXINUM DEGREE "	72 RCL 80	129 ST+ IND 87	186+131 82	243 +	300 GTC 06
nLo x	73 /	132 (187 11	244 810 03	301+LBL 08
PPAMPT	74 1	131 87+ 07	188 STO 07	245 1	302 11
CTA AZ	75 STO 85	179 CTL G1	100 0.0 0.	245 1 246 STO IND 07	303 RCL 04
5 "⊢≏ " PROMPT 3 STO 04 5 ARCL X	(J 3:0 94 74 x	102 017 01 177 070 01	107 8 100 075 5:	240 010 180 0/ 977 168 67	707 1
MRUL A 2 Autru	(0 T 73 0T0 07	100 Bac 81 17441 Di 90	175 310 81	247 185 07 0704101 87	304 +
A AROL A 3 AVIEW 1 ADV 2 FINITIAL X? " 3 PROMPT	77 319 93	1347LDL 07 /75 4	191*LEL 12	2439101 0/ 040 0TO IND 07	305 1 305 1
HUV	78 KUL 06	130 1	192 XEQ 03	249 510 IND 67	306 X<>Y
' "INITIHL A?"	/9 *	136 51+ 10	193 Sta IND 07	250 RUL IND 02	367 FC? 8 0
PROMPT	89 514 12	137 GTO 00	194 1	251 STO IND 83	368 +
; XEQ *FM7*	81 13	1 38 +LBL 03	195 ST+ 01	252 1	303 210 87
S FROME S XEO "FMT" S STO 06 S ARCL X 7 AVJEW S "FINAL X2 "	82 SIC 07	139 RCL 00	196 ST4 07	253 ST+ 02	310 RCL 01
GRCL X	83 1	140 RCL 01	197 RCL 01	254 ST+ 03	311 2
7 AVJEW	84 STO 01	141 X=87	198 RCL 84	255 RCL IND 02	312 *
s •⊑lNAL X2 •	85+LBL 81	142 GTO 13	199-1	256 STO IND 03	313-1
9 PPOMPT 9 XEC "FK1" 1 APOL X 2 AVIEW 3 STO 69	86 RCL 01	143 +	200 +	257 1	314 +
XEN PERIM	87 RC! 84	144 9	201 X#Y2	258 970 81	315 RCL 00
APRI V	88 V=V2	145 +	202 CT6 12	258 STO 01 259 CF 80	316 *
) GVIEC	00 ATA 20	140 -	202 030 12 307 1	260+LBL 85	
2 611268 2 610 89	07 613 87 68 Det 88	140 010 02	200 1 004 67: 04	200¥101 0J 0/1 1	
) 310 67 (Dei 60	70 KUL 00 01 DC: 31	1911 1 140 070 37	204 317 04 20541 DL D	201 1 040 0T/ 00	318 1
RCL 09	91 RCL 01 92 +	148 STO 03	200*151 E	262 ST+ 02	319 +
•	92 -	149+LBL 10	206 ADV 207 "Degree? "	263 11	329 /
RCL 09	93 1	158 1	207 "DEGREE? "	264 RCL 04	321 RCL 00
7 RCL 08	94 +	151 97- 02	208 FIX 0	265 +	322 RCL 01
} -	95 RCL 01	150 1 151 97- 02 152 RCL 02	209 PROMPT	266 1	323 -
) /	Q2 &	157 CI2 DI	209 PROMPT 210 ARCL X 211 RVIEW	267 +	324 /
) X(> 09	97 RCL 02	154 RCL 02	211 AVIEN	268-1	325 970 06
RCL 98	98 *	155 RCL 90	212 STC 05	269 X(\Y	326+LBL 14
-	99 CHS	156 1	213 12	270 FS? 00	327 ISG 07
1 2	160 RCL 90	157 +	214 RCL 04	271 +	328+LBL 07
X X X X	101 RCL 10	158 X≠\?	215 +	272 STO 87	329 RCL 06
· · · · · ·	182 2	159 GTC 18	216 ENTERT	273 RCL 90	330 RCL IND
CHS	102 a 103 *	169 RCL 00	217 ENTER1	278 ROL 00 274 RCL 01	330 KCL 18D 331 X=07
5 UNC 88	164 -				331 X=67 332 GTO 23
		161 RC4 81	218 RC1 04	275 +	
3 ADV	105 RCL 01	152 -	219 2	276 1	333 *
) () 	106 2	163 STO 02	220 *	277 +	334 ISC 07
3+LBL 00	107 *	164+LBL 11	221 +	278 RCL 01	335+LBL 07
RCL 00	108 1	165 1	222 2	279 *	336 ST+ IND
2 1	109 +	166 ST+ 02	223 +	280 RCL 00	337 GTO 14
<u>}</u> +	110 ×	167 RCL 02	224 1 53	281 RCC 81	338+LE1 23
RCL 16	111 RCL 03	168 ST/ 03	225 /	282 -	339 1
5 X=Y?	112 *	169 RCL 02	226 +	283 /	340 ST+ 01
5 GTO 82	113 +	170 RCL 00	227 370 87	284 RCL 01	341 12
7 m¥*	114 RCL 01	171 X≠79	228 9	285 1	342 ENTER†

				(Co	ontinued) Table I
343-1	382 SF 00	421 *	460 STO 87	499 GTO 35	538 AVIEW
344 X(>Y	383 RTN	422 ST+ 06	461 1	500 ADV	539 FC2 55
345 FS? 08	384+LBL 25	423 RCL 09	462 STO 86	501 STOP	540 STOP
346 +	385 CF 00	424 ST* 10	463+LBL 40	502+LBL C	541 GTO C
347 RCL 04	386 RTN	425 ISG 03	464 RCL 86	503 ADV	542+LBL 31
348 +	387+LBL 45	426+LBL 07	465 ST* IND 07	504 "X= "	543 RCL 03
349 STO 67	388 RC1. 84	427 ISG 01	466 RCL 88	505 PROMPT	544 X=87
350 RCL 04	389 2	428 GTS 32	467 ST* 06	506 XEQ "FMT"	545 GTO 29
351 +	398 *	429 1	468 ISG 07	507 ARCL X	546 RCL 02
352 1	391 12	430 ST+ 02	469 GTO 40	508 AVIEK	547 X=8?
353 +	392 +	431 RCL 02	470 ADV	509 STC 01	548 GTO 29
354 STO 03	393 ENTERT	432 ST0 03	471 RCL 04	510 RCL 94	549 X=Y?
355 XEQ 24	394 ENTERT	433 RCL 06	472 12	511 12	550 GTO 29
356+LBL 26	395 RCL 05	434 STO IND 05	473 +	512 +	551 1
357 RCL IND 62	396 +	435 ISG 05	474 ENTER*	513 ENTER1	552 STO T
358 RCL IND 07	397 1 E3	436+LBL 07	475 ENTERT	514 ENTERT	553 PDN
359 *	398 /	437 ISS 97	476 RCL 05	515 RCL 05	554+LBL 30
368 ST+ IND 03	399 +	438 GTC 33	477 +	516 +	555 RCL X
361 2	400 STG 07	439 RCL 01	478 1 53	517 XKEY	556 ST/ T
362 51+ 03	401 STC 01	448 FRC	479 /	518 1 57	557 CLN
363 ST+ 87	402 RCL 94	441 1 E3	480 +	519 /	558 RCL Z
364 RCL 03	403 12	442 *	481 STO 07	528 +	559 ST* T
365 RCL 04	494 +	443 RCL 04	482 0	521 STO 07	560 RDN
366 2	405 STO 05	444 2	483 STO 02	522 RCL 01	561 DSE Y
367 *	406 8	445 *	484 * LBL 35	523 RCL IND 07	562 DSE X
368 -	407 STO 02	446 -	485 *A"	524 *	563 STO 30
369 RCL 01	409 STO 03	447 13	486 F1% 0	525 BSE 97	564 RCL Z
370 -	409+LBL 33	448 -	487 CF 29	526+LBL 37	565 RTN
371 15	410 1	449 STO 05	488 ARCL 02	527 RCL IND 07	566+LBL 29
372 X>Y?	411 STC 10	450 RCL 84	489 "H= "	528 -	567 1
373 GTO 26	412 0	451 12	498 RCL IND 07	529 RCL 00	368 RT4
374 RCL 01	413 STC 06	452 +	491 XEC "FFT"	530 ×	569 GFC 38
375 RCL 05	414 RCL 07	453 ENTERT	492 ARCL X	531 DSE 07	570 RTM
376 X=Y?	415 ST0 01	454 ENTERT	493 AVIEN	532 GTG 37	571+L6L 29
377 GTO 45	416+LBL 32	455 RCL 05	494 FC2 55	533 RCL IND 07	572 1
378 GT0 05	417 YEQ 31	456 4	495 STOF	534 +	573 RTN
		457 1 53			574 .END.
380 FSC 00					
381 GTC 25		453 ÷			
	418 RCL IND 01 419 * 420 RCL 10	458 /	496 1 497 ST+ 02 498 ISG 07	535 XE0 -FMT* 536 "YDAR= " 537 APC_ X	

truncated at this degree, m, and a satisfactory fit has been obtained.

Register usage

The program, plus the FMT subroutine used here, requires 126 registers of memory. To fit an *n*th-degree polynomial, 18 + 3n data registers are also required. This necessitates at least two memory modules, enabling a 15th-degree polynomial to be fitted. With one or two more modules, a 37th- or 58th-degree polynomial may be fitted.

No other accessory is required, although a printer is convenient (the program is printer-compatible). A cardreader or wand is desirable if the program is to be frequently loaded. The program is available from the author in magnetic card form if readers send four blank HP magnetic cards with a request to the author.

Example

Dorn and McCracken [5] give the example of the data of Table II. These values were obtained from:

$$y = x^6 + x^5 + 2x^4 + 3x^3 + 5x^2 + 10x + 40$$

Using the program of Ref. 2, and fitting a sixthdegree polynomial (we could try higher), the following values for the coefficients were obtained:

$a_0 =$	84.7357	(cf. 40)
$a_1 =$	-63.3921	(cf. 10)
$a_2 =$	44.2288	(cf. 5)
$a_{3} =$	-6.4036	(cf. 3)
$a_4 =$	3.1161	(cf. 2)
$a_{5} =$	0.9359	(cf. 1)
$a_6 =$	1.0014	(cf. 1)

These are very different from the values used to gen-

Key in N+1 (Number	Press XEQ 'POLY'	Output "HOW MANY POINTS?"	tional mean valu the regression po In USER mod	lynomial.	cular x, as projected by
of points)	R/S	"MAXIMUM DEGREE?"	Key in	Press	Output
$n(\leq N)$	R/S	"INITIAL X?"	•	С	"X ="
$x_0 x_n$	R/S R/S	"FINAL X?" "Y0 ="	x	R/S	"Y BAR ="
<i>v</i> ₀	R/S	"Y1 ="	Repeat as requ	uired.	
				olynomial of di	fferent degree:
$m_N \leq n$	R/S R/S	"DEGREE?" "A0 ="	Key in	Press	Output
$n(\leq n)$	R/S	"A0 = "		В	"DEGREE?"
	R/S	"A2 ="	m	R/S	"A0 ="
	•	•		R/S	"A1 ="
	•	:			•
To obtain v	R/S for any given λ	"Am =" , use the following proce-		R/S	"Am ="
		alled y bar (or \overline{y}), a condi-	Repeat as desired	d.	

Execution of the program:

erate the data. The conditional means for the first four entries in Table II are:

y bar (1) = 64.2227 (cf. 62) (2) = 227.5357 (cf. 232) (3) = 1,329.5882 (cf. 1,330) (4) = 5,986.9122 (cf. 5,984)

Clearly, even with a degree of as little as six, there has been a severe loss of accuracy.

When the problem was repeated, using the program of this article, the results obtained were:

 $a_{0} = 40.0155 \quad (cf. 40)$ $a_{1} = 9.9774 \quad (cf. 10)$ $a_{2} = 5.0125 \quad (cf. 5)$ $a_{3} = 2.9968 \quad (cf. 3)$ $a_{4} = 2.0004 \quad (cf. 2)$ $a_{5} = 1.0000 \quad (cf. 1)$ $a_{6} = 1.0000 \quad (cf. 1)$ and y bar (1) = 62.0026 \quad (cf. 62) $(2) = 232.0007 \quad (cf. 232)$ $(3) = 1,330.0017 \quad (cf. 1,330)$ $(4) = 5,984.0022 \quad (cf. 5,984)$

These are obviously very much closer to the values

	the two variable al example of Do		Cracken Tabl
<u>x</u>	<u> </u>	<u></u>	<u> </u>
1	62	8	305,080
2	232	9	606,334
3	1,330	10	1,123,640
4	5,984	11	1,966,642
5	20,590	12	3,282,352
6	57,952	13	5,262,830
7	140,642	14	8,153,584

that generated the data. It is also worth noting that the runtime of the program of this article with this example was 7 min; that of the program of Ref. 2 was 20 min.

The conclusion is that, wherever possible, when a polynomial least-squares treatment of data is to be used, the data should be obtained from equal spacing of the independent variable, and fitting should be done with orthogonal polynomials. Otherwise, if high-degree polynomials are used, the error of calculation may be greater than the error of measurement, and this should never be so.

For TI users

The TI program is not a direct translation of the HP program, inasmuch as the TI does not have the storage capacity used by the HP 41C program. However, the TI program carries out similar calculations.

The TI program is limited to 29 y values, and while it will determine the goodness of fit of any degree orthogonal polynomial up to 10, the program will calculate the regression coefficients for a maximum of a fifthdegree equation.

Data are entered and the program calculates the goodness of fit of successive-degree polynomials. When a satisfactory fit is obtained, the program calculates the regression coefficients, the a_n values, for the degree polynomial selected by the engineer:

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

For instance, the following values are the results of the equation:

$$y = 40 + x + x^2 + x^3 + x^4$$

x 1 2 3 4 5 6 7 8 y 44 70 160 380 820 1594 2840 4720

40 ENGINEERING MATHEMATICS

If these data are entered, the program gives the following (rounded off to 5 decimal places):

Degree	Variation removed	Total variation removed	Correlation coefficient
1	0.79937	0.79937	0.89408
2	0.18960	0.98898	0.99447
3	0.01093	0.99991	0.99995
4	0.00009	1.00000	1.00000

Calculation of regression coefficients for a fourth degree equation: (inputted as 4 key C) gives:

$a_{\rm o}$	40.0000081
a_1	0.99999878
a_2	1.00000001
a_3	0.99999991
a_4	1.00000000

Listing for TI version—program 1

Step	Code Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
000123456789000000000000000000000000000000000000	76 LBL 11 A 327 CM 41 A 327 CM 42 STD 42 STD 42 STD 42 STD 42 STD 42 STD 44 SUM 53 A 54 SUM 55 A 50 A 52 ST 50 A 52 ST 52 ST 53 A 54 SUM 53 A 54 SUM 53 A 54 SUM 55 S 50 A 50 SUM 53 A 54 SUM 53 A 54 SUM 55 S 50 A 55 SUM 55 SU	053 054 055 056 057 058 060 061 062 063 064 065 067 066 067 068 067 068 067 072 072 073 074 075 076 077 078 079 080 081	530052864144720029633021402404930236721362304936525120 94571045400457270304037045403456462747045453455120	÷ R O = 55L D 1 M7 D O D 9 L X * O T 1 M O T * O M 9 L O T L 6 Q D D X L L R X 1 M O T * O M 9 L O T L 6 Q D D X L D S S O S 5 L L R X 1 M O T * O M 9 L O T L 6 Q D D X L D S C O Y O S S C O Y C 6 X D S S C 5 X	1007899011123456789901233456789901123145678901111234567899012334567899011111111111111111111111111111111111	3300515533655336554552514030237773300537520355395203024123	X2 RO+1 = xL5÷(L6+L0) = D5 1 MOLOTL7E R5+C0) = T51 MOLOTL7E R5 = T00L5 × L9 * 0 L00 S51 S00C0TL7E R5 = T00L5 × L9 * 0 L00 S51 S00C0TL7E S00C5 × C5 = T00L5 × L9 * 0 L00 S51 S00C0 × C5 = S00C5 × C5 = S00C0 × C5 × C5 × C5 × C5 = S00C0 × C5 × C5 × C5 = S00C0 × C5	159 160 161 162 163 164 165 166 165 166 167 168 165 166 167 172 173 175 177 177 177 177 177 177 177 177 177	2062375305155337530453055305145334523240	STOULTL7 L2XR5 R0+1=x(L7+L0)+C0+(L0+1)xC3+C0+C0+1)xC3+C0+C0+C0+C0+C0+C0+C0+C0+C0+C0+C0+C0+C0+	2134567890122345678901233456789012322222222222222222222222222222222222	924030237722253751522212064375830553253053365530452140 0240345730645809450407345840964554055336553045542140	9 NVM00L07EL7ET 2×C17+1=02 S0L2 C0 ×C12 C0 ×C16 C0 ×C1

Table III

(Continued) Table III

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
265	32	X:T	308	43	RCL	351	44	SUM	394	42	STO	437	43	RCL
266	43	RCL	309	56	56	352	51	51	395	50	50	438	42	42
267	57	57	310	33	XΞ	353	43	RCL	396	43	RĈĹ	439	65	X
268	77	ĞΕ	311	75		354	53	53	397	40	40	440	53	<
269	34	ГΧ	312	43	RCL	355	55		398	75	-	441	43	RCL
270	03	3	313	00	00	356	43	RCL	399				50	so.
271	09	9		33	20 X2	357	58	se 58		43	RÇĻ	442		ye Xa
			314					.J.O =	400	41	41	443	33	
272	44	SUM	315	54)	358	95		401	65	×	444	75	
273	00	00	316	95	=	359	99	PRT	402	43	RCL	445	53	(
274	43	RCL	317	42	STD	360	43	RCL	403	50	50	446	43	RCL.
275	52	52	318	53	53	361	51	51	404	95	=	447	56	56
276	65	×	319	01	1	362	55	÷	405	42	STO	448	33	ΧZ
277	43	RCL	320	44	SUM	363	43	RCL	406	40	40	449	75	
278	54	54	321	00	00	364	58	58	407	01	1	450	01	1
279	95	===	322	43	RCL	365	95		408	22	IΝV	451	54)
280	72	ST*	323	ÓŌ	00	366	99	PRT	409	67	EQ	452	55	
281	00	00	324	32	XIT	367	34	ГΧ	410	43	RCL	453	01	1
282	43	RCL	325	43	RCL	368	99	PRT				454	62	ż
		rul 56			57	369	98	ADV	411	43	RCL		94 54	
283	56		326	57					412	40	40	455)
284	42	STO	327	77	GE	370	91	R/S	413	99	PRT	456	95	
285	53	53	328	35	17X	371	14	D	414	43	RCL	457	42	STO
286	01	1	329	03	3	372	76	LBL	415	41	41	458	40	40
287	42	STD	330	09	9	373	13	C	416	99	PRT	459	02	2
288	00	00	331	44	SUM	374	42	STO	417	98	ADV	460	22	INV
289	76	LBL	332	00	00	375	00	00	418	91	R/S	461	67	EQ
290	35	$1 \times X$	333	43	RCL	376	32	XIT	419	76	LBL	462	44	SUM
291	43	RCL	334	53	53	377	05	5	420	43	RCL	463	43	RCL
292	53	53	335	65	X	378	22	INV	421	43	RCL	464	40	40
293	65	X	336	73	RC*	379	77	GE	421			465	99	PRT
294	43	RCL	337 337		кс× 00	380	15	E	422	41	41		43	RCL
				00		381	43	RCL	423	75	-	466		
295	00	00	338	33	X٤		40 57		424	43	RCL	467	41	41
296	33	XΞ	339	55	÷	382		57	425	42	42	468	99	PRT
297	55	÷	340	53	(383	22	INV	426	65	\times	469	43	RCL
298	53	$\langle $	341	02	2	384	77	GE	427	02	2	470	42	42
299	43	RCL	342	65	×	385	15	E	428	65	×	471	99	PRT
300	57	57	343	43	RCL	386	43	RCL	429	43	RCL	472	98	ADV
301	85	÷	344	57	57	387	56	56	430	50	50	473	76	LBL
302	43	RCL	345	85	÷	388	85	÷	431	95	=	474	44	SUM
303	00	00	346	01	1	389	01	1	432	42	STO	475	91	R/S
304	54)	347	54	Ż	390	95		433	41		· · · ···		: . · ·
305	33	χź	348	95	=	391	55	÷			41			
306 306	ээ 65	Λ- Χ				392	02	2	434	43	RCL			
			349	42	STO			ے =	435	40	40			
307	53	(350	53	53	393	95		436	85	+			

Listing for TI version—program 2

Table IV

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
000	76	LBL	015	51	51	030	41	41	045	95	=	060	43	RCL
001	13	С	016	43	RCL	031	85	÷	046	42	STO	061	50	50
002	43	RCL	017	42	42	032	43	RCL	047	41	41	062	65	×
003	56	56	018	75		033	43	43	048	43	RCL	063	43	RCL
004	33	ХЗ	019	43	RCL	034	65	\times	049	40	40	064	51	51
005	65	×	020	43	43	035	53	\langle	050	75		065	54)
006	03	3	021	65	X	036	03	3	051	43	RCL	066	95	
007	75		022	03	3	037	65	×	052	43	43	067	42	STO
008	07	7	023	65	×	038	43	RCL	053	65	\times	068	40	40
009	95		024	43	RCL	039	50	50	054	53	$\langle \cdot \rangle$	069	03	3
010	55	÷	025	50	50	040	33	XΞ	055	43	RCL	070	22	INV
011	02	2	026	95		041	75		056	50	50	071	67	ΕQ
012	00	0	027	42	STO	042	43	RCL	057	45	Υ×	072	22	INV
013	95		028	42	42	043	51	51	058	03	3	073	43	RCL
014	42	STO	029	43	RCL	044	54	>	059	75		074	40	40

User instructions for the TI version

Table V

Step	Input	Кеу	Output
2. Input data	Xi	x≓t	
	У і	A (for first y value only)	
		R/S (for subsequent y values)	
3. When all data are entered		В	Starts calculation
4. Calculate output			 a. Fraction of the sum of squares of deviation accounted for by that degree b. Total fraction of the sum of squares of deviation accounted for by the equation to that degree c. Correlation coefficient for thee
			equation to that degree
5. Continue output calculations for next			
degree		R/S	Same as step 1
6. Calculate regression coefficients n [*]		C	a ₀ , a ₁ , a ₂ , etc. (to a _n)
7. Load program 2 [†]		С	Same as step 6

*When a satisfactory fitness is obtained (based upon the highest value of correlation coefficient, calculated previously), the user enters *n*, the degree of the equation to be calculated. This value cannot be higher than 5, or higher than the maximum goodness of fit calculated. If the number entered is higher than 5, or greater than the maximum goodness of fit, the calculator will show a flashing display. The flashing may be cleared by pressing the **CLR** key. Then enter the correct value of *n*, followed by pressing the **C** key.

[†]If a first- or second-degree equation is to be calculated, the results will be obtained directly (i.e., with only the first program loaded). If a higher degree is to be used, the calculator will display the number "2," indicating that the second program should be entered. Pressing the **C** key will complete the calculation.

Acknowledgment

The author is grateful to John Wiley & Sons for permission to use the example from Dorn and McCracken.

References

1. Clare, Brian W., "Nonlinear regression on a pocket calculator," Chem. Eng., Aug. 23, 1982, pp. 83-89.

2. Clare, Brian W., "Polynomial regression on a pocket calculator," Chem. Eng., Oct. 4, 1982, pp. 121-124.

3. Ralston, A., "A First Course in Numerical Analysis," McGraw-Hill, New York, 1965, pp. 235–246.

4. Schneid, F. "Numerical Analysis," Schaum's Outline Series, McGraw-Hill, New York, 1958, pp. 248–250.

5. Dorn, W. S., and McCracken, D. D., "Numerical Methods With Fortran IV Case Studies," John Wiley & Sons, New York, 1972, pp. 338-339.

The author

Brian W. Clare is a member of the Mineral Chemistry Research Unit, School of Mathematical and Physical Sciences, Murdoch University, Murdoch. Western Australia, 6150, where he has worked on the hydrometallurgy of copper, the purification of silver, and the recovery of precious metals from concentrates. He holds a B.Sc. and a Ph.D. from the University of Western Australia and is an Associate of the Royal Australian Chemical Institute.

Section III Physical Properties Correlation

Program predicts critical properties of organic compounds Predict thermal conductivities of gas mixtures and liquids Predict thermal conductivities of liquid mixtures Predict equation-of-state variables Predict gas-phase diffusion coefficients Predict liquid-phase diffusion coefficients

Program predicts critical properties of organic compounds

Written for the TI-59, this method determines critical temperature, pressure, volume and compressibility, using the Lydersen method.

Jacob Zabicky, Ben-Gurion University of the Negev

The deserved popularity of the Lydersen method [1-3] for estimating critical properties of organic compounds is based on its simplicity and overall reliability. The only data required are the normal boiling point, T_b , the molecular weight, M, and the structural formula of the compound.

Lydersen's equations

When the chosen units are Kelvin for temperature, atmospheres for pressure and $dm^3/mole$ for molar volume, the following formulas are used:

$$T_{c} = T_{b} / (0.567 + \Sigma \Delta_{T} - (\Sigma \Delta_{T})^{2})$$
(1)

$$p_c = M/(0.34 + \Sigma\Delta_p)^2$$
(2)
 $v = 0.04 + \Sigma\Delta/1.000$ (3)

$$v_c \equiv 0.04 + 2\Delta_v / 1,000$$
 (3)

where T_c is critical temperature, p_c is critical pressure and v_c is critical volume. The subscripts T, p and v are used to refer to critical temperature, pressure and volume, respectively.

The critical compressibility factor, z_c , is then estimated by:

$$z_c = \frac{p_c \, v_c}{RT_c} \tag{4}$$

where R is the ideal gas constant.

Group	Code	Printout ^a	Group	Code	Printout ^a
-CH ₃	0.08	СНЗ	-O- open-chain ether	0.25	-0-0
-CH ₂ - open-chain	0.08	CH2Q	-O- ring ether	0.26	-0-R
-CH ₂ - ring	0.09	CH2R)C=O open-chain ketone	0.27	KETQ
)CH- open-chain	0.1	CH Q)C=O ring ketone	0.28	KETR
)CH- ring	0.11	CH R	-CHO aldehyde	0.29	CH=O
)CH- angular	0.12 ^b	CHRP	-COOH	0.3	COOH
)C(open-chain	0.13) C (Q	-COOR ester	0.31	CODE
)C(ring	0.14) C (R	=O other types	0.32	=0 V
=CH ₂	0.15	=CH2	-NH2	0.33	-NH2
=CH- open-chain	0.15	=CHQ	-NH- open-chain	0.34	> NHQ
=C(open-chain	0.16	=C(Q	-NH- ring	0.35) NHR
=C= open-chain	0.16	=C=Q)N- open-chain	0.36) N - Q
=C ring, all types	0.17	=C R)N- ring	0.37	>N-R
≡CH	0.18	ΣCH	-C≡N	0.38	-CN
≡C- open-chain	0.18	ΣC-Q	- NO2	0.39	-NO2
≡C- ring	0.18	ΣC-R	-SH	0.4	-SH
-F	0.19	-F	-S- open-chain	0.4	-S-Q
-Cl	0.2	-CL	-S- ring	0.41	-S-R
-Br	0.21	-BR	=S	0.42	=S
-1	0.22	- I)Si(с	
-OH alcohol	0.23	-OHA)B-	d	
-OH phenol	0.24	-OHP			

^bProposed by Fishtine^[4] when the CH group is shared by two saturated rings.

^cNot included in the program; Δ_T =0.03, Δ_p =0.54.

^dNot included in the program; Δ_{T} =0.03.

48 PHYSICAL PROPERTIES CORRELATION

TI-59 program estimates critical properties of many organic compounds

Location Code Key	Location Code Key	Location Code Key	Location Code Key	Location Code Key	Location Code Key
00076LBL 001 19D' 002 44SUM 003 0303 004 61GTD 005 0000 006 1111 007 76LBL 008 17B' 009 42STD 010 0303 011 69DP 012 2121 013 43RCL 014 0101 015 65× 016 93. 017 000 018 011 019 95= 020 32X:T 021 43RCL 022 0303 023 76LBL 024 18C* 025 69DP 026 0404 027 32X:T 028 69DP 026 0404 031 76LBL 032 11A 033 99PRT 034 42STD 037 22INV 038 44SUM 039 0000 044 000 045 0202 051 59INT 052 22INV 053 44SUM 054 0202 055 29CP 056 22INV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12615E12798ADV12898ADV12925CLR13042STD131030313242STD133040413442STD135050513691R/S13776LBL13816A*13994 $+/-$ 14099PRT14194 $+/-$ 14271SBR144342424941450434144342214694PRD14801011500000151474715276LBL15310E*15425CLR15507715642STD15701115801115905516002216103316200016304416400016507B*17301117419D*17503318605518619D*18705518806618806618806 </td <td>$189$$01$$1$$190$$05$$5$$191$$05$$5$$193$$03$$3$$194$$04$$4$$195$$17$$B^*$$196$$01$$1$$197$$199$$09$$200$$09$$9$$201$$06$$6$$202$$07$$7$$203$$06$$6$$204$$08$$8$$205$$19$$D^*$$206$$69$$DP$$207$$31$$31$$208$$03$$3$$209$$01$$1$$210$$19$$D^*$$211$$03$$3$$212$$02$$22$$213$$00$$0$$214$$00$$0$$215$$19$$D^*$$216$$69$$DP$$217$$31$$31$$218$$00$$0$$219$$09$$9$$220$$00$$0$$221$$00$$0$$222$$19$$D^*$$233$$02$$22$$234$$03$$3$$235$$00$$0$$237$$17$$B^*$$238$$69$$DP$$246$$31$$31$$247$$01$$1$$248$$19$$D^*$$246$$31$$31$$247$$01$$1$$248$$19$$D^*$<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td>	189 01 1 190 05 5 191 05 5 193 03 3 194 04 4 195 17 B^* 196 01 1 197 199 09 200 09 9 201 06 6 202 07 7 203 06 6 204 08 8 205 19 D^* 206 69 DP 207 31 31 208 03 3 209 01 1 210 19 D^* 211 03 3 212 02 22 213 00 0 214 00 0 215 19 D^* 216 69 DP 217 31 31 218 00 0 219 09 9 220 00 0 221 00 0 222 19 D^* 233 02 22 234 03 3 235 00 0 237 17 B^* 238 69 DP 246 31 31 247 01 1 248 19 D^* 246 31 31 247 01 1 248 19 D^* <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

with high accuracy and uses	partitioning	5 Op 17
-----------------------------	--------------	---------

Table II

Location	Code	Key	Location	Code	e Key	Location	Cod	e Key	Location	Code	e Key	Location	Code	Key	Location	Code	Key
378	07	7	405	73	RC÷	432	18	с.	459	53	(486	53	$\langle $	513	05	05
379	19	D •	406	01	01	433	91	R∕S	460	43	RCL	487	93		514	55	÷
380	69	ŪΡ	407	69	DP	434	76	LBL	461	03	03	488	03	3	515	01	1
381	31	31	408	03	03	435	13	-C-	462	75	-	489	04	4	516	00	Ō
382	02	2	409	69	OP	436	42	STO	463	33	χ2	490	85	+	517	54	Š
383	06	6	410	21	21	437	06	06	464	85	+	491		RCL	518		XIT
384	06	6	411	73	RC*	438	32	XIT	465	93			04	04	519	04	4
385	94	+/-	412	01	01	439	25	CLR	466	05	5	493	54	>	520	02	2
386	19	D •	413	69	ΠP	440	03	3	467	06	6	494		ζ2	521	01	1
387	01	1	414	04	04	441	00	0	468	07	7	495	54	>	522	05	5
388	19	D '	415	69	OP	442	04	4	469	54)	496		< ! T	523	02	2
389	06	6	416	05	05	443	03	3	470	54)	497	03	3	524	00	0
390	04	4	417	97	DSZ	444	18	С'	471	32	X:T	498	03	3	525	02	2
391	03	3	418	00	00	445	91	R/S	472	03	3	499	01	1	526	07	7
392	06	6	419	04	04	446	76	LBL	473	07	7	500	05	5	527	18	С'
393	00	0	420	03	03	447	14	D	474	01	1	501	02	2	528	95	=
394	00	0	421	91	R/S	448	25	CLR	475	05	5	502	00	0	529	32	XIT
395	00	0	422	76	LBL	449	01	1	476	02	2	503	01	1	530	04	4
396	00	0	423	12	В	450	02	2	477	00	0	504	03	3	531	06	6
397	17	Β'	424	42	STO	451	93		478	02	2	505	18 (31	532	01	1
398	03	3	425	07	07	452	01	1	479	06	6	506	65	Х	533	05	5
399	42	STO	426	32	XIT	453	09	9	480	18	C'	507	53	(534	00	0
400	00	00	427	25	CLR	454	55	÷	481	65	Х	508	93		535	00	0
401	69	ΠP	428	03	3	455	53	(482	53	(509	00	0	536	00	0
402	00	00	429	07	7	456	43	RCL	483	43	RCL		04	4	537	00	0
403		OP	430	01	1	457	07	07	484	06	06		85	+	538		С'
404	21	21	431	04	4	458	55	÷	485	55	÷	512	43 I	RCL	539	91	R∕S
			Note: For	opera	tion without	printer, v	vrite	(⇔t (code 32)	in locatio	ns 47	9, 504, 526,	537, and F	R/S (co	de 91)			

in 480, 505, 527, 538. Pressing D, R/S, R/S, R/S will yield the values of T_c , p_c , v_c and z_c in succession.

Number	Content	Number	Content	Number	Content
00	Used	17	11.15436	34	31.13537
01	Used	18	5.15336	35	24.09027
02	Used	19	18.22418	36	14.17042
03	$\Sigma \Delta_T$	20	17.32049	37	7.13032
04	$\Sigma \Delta_{\rho}$	21	10.5007	38	60.3608
05	$\Sigma \Delta_{V}^{\mu}$	22	12.83095	39	55.42078
06	M	23	82.06018	40	15.27055
07	т _b	24	-31.02003	41	8.24045
08	20.22755	25	21.1602	42	3.24047
09	13.184445	26	14.12008	43	3464323317
10	12.21051	27	40.2906	44	3100152340
11	12.19246	28	33.2005	45	3564352431
12	64.19246	29	48.33073	46	2200000000
13	0.21041	30	85.4008	47	7764373524
14	-7.15431	31	47.4708	48	3327170014
15	18.19845	32	20.12011		
16	0.19836	33	31.09528		

Lydersen's method determines the critical properties by adding up atomic and structural-group contributions. Such additions are carried out over all structural groups in a compound. The Δ values in Eq. 1–3 represent those contributions. The values are taken from the references listed here, and will not be repeated in this article. The groups used in the program appear in Table I.

The summations are carried out over all the structural groups in the formula of the compound.

For the purposes of the program, the functional groups receive a numerical code, as shown in the table.

	e: Estimate critical properties of <i>cis</i> - ans- 1,2-dimethylcyclopentane	Group	Code	n	n.xª	Group	n	Code	n,xa
	∠CH 2 -CH-CH3	сн з-		.08	2.08				
	CH ₂	——————————————————————————————————————		.00	3.09	— ĊH ring	2	.11	2.11
	^С Н 2 —СН—СН ₃		5	.09	3.09	I			
	(both compounds)								
Step	Description		Enter	-	Press	Display		Printout	_
1.	Need a code listing?				E'		Lis	sting of coo	les
2. ^b	Initiate <i>cis</i> estimate				E	0.	Pa	per advanc	es
3.	Enter T _b of <i>cis</i> (K)		372.2		В	372.2		372.2	ТВ
4.	Enter <i>M</i> of <i>cis</i>		98.189		С	98.189	98	3.189	MW
5.	Enter groups of <i>cis</i>		2.09		А			2.09	
			3.09		A			3.09	
			2.11		А			2.11	
6.	(a) A wrong entry (2.09) was mad	de in Step 5	2.09		A'			-2.09	
	(b) Enter correct value		2.08		Α			2.08	
7. ^c	Estimate critical properties				D		564.46	302368	тс-к
							32.807	731064	PC-A
								3755	VC-L
2′.	Initiate trans actionate (.26604	\$24411	ZC
2. 3′.	Initiate <i>trans</i> estimate (unnecessar	yja	365.		В	365.		365.	тв
3. 4′.	Enter T _b of trans Enter M of trans (unnecessary) ^d		305.		Б	305.		000.	10
	Enter groups of <i>trans</i> (unnecessary) ²	Jd							
7′.°	Estimate critical properties	y /			D		550 S.	\$10705	тс-к
					U			731064	PC-A
	ups with the same X code may be combi	ned by adding the	eir <i>n</i> values.					0.3755	VC-L
	is not affect stored T_b or M values.				L			904016	ZC
	s not affect stored values. Literature val	• •		•	•		в њ. : д úш .	01010	£
	$_c$ = 564.8, 553.2 K; p_c = 34.0, 34.0 atm; functional groups and molecular weight				:/, U.2/.				

The three Δ values of a group with code X are stored in a condensed form in register 100X. For example, the contents of register 38, corresponding to the CN group (code .38) are:

$$R_{38} = 1,000 |\Delta_T| + |\Delta_p| + \frac{\Delta_v}{100,000}$$

When the value of a Δ is negative the register content is negative, too.

Accuracy

Hougen et al. [2] reported on the accuracy of the Lydersen method. For estimating T_c , the average deviation from experimental data is 1.0%, based upon 233 compounds. For p_c , the deviation is 3.3% (159 compounds); for v_c , the deviation is 2.4% (141 compounds). For z_c , estimated by Eq. (4), the deviation is 3.4% (121 compounds).

Using the program

The program, written for the TI-59, appears in Table II. Note that 5 Op 17 partitioning is used. After loading the program, data registers 08-48 must be punched in (see Table III).

In order to solve a problem, draw the structural formula of the compound, with as much detail as is required by Table I. Write down a list of numbers of the form n.X (where n is the number of times the group of code X appears in the formula) and proceed as illustrated by the two examples shown in Table IV.

A condensed printout of Table I can be obtained by pressing key E'. This printout contains listings for the code, and symbols for each group.

For HP-67/97 users

The HP version closely follows the TI program. Table V contains the listing of the HP program, and Table VI offers the user instructions. Use Table I to determine the codes for the different structural groups.

Program listing for HP version

Table V

Step	Key	Code	Step	Key	Code
001	∔LBL a	21 15 11	015	*LBL3	21 B3
002	SFØ	15 21 06	016	STOI	35-46
003	*LBLA	21 11	017	INT	16-34
604	F1 ?	16 23 01	018	STOE	35 15
005	GT03	22 63	019	RCLI	36-46
006	8	63	020	FRC	16 44
007	STOD	35 14	021	1	01
608	Ę↓	-31	022	Ø	96
009	SF 1	16 21 31	023	Ū	00
010	Ø	00	024	X	-35
011	STŨA	35-11	025	RCLD	35 14
012	STOB	35-12	026	-	
013	STOC	35 13	027	STGI	35-46
614	R∔	- 31	028	RCL i	36 45

CRITICAL PROPERTIES OF ORGANIC COMPOUNDS 51

(Continued)	Table V
-------------	---------

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
0 29	INT	16-34	057	RCLE	3E 15	085	GT01	22 01	113	178	52	141	8	08
030	1	61	058	х	-35	086	+	-55	114	STOD	35 14	142	2	62
031	EEX	-23	059	RCLB	36-12	0 87	GT02	22 02	115	R↓	-31	143	0	00
032	3	03	060	X≓Y	- 41	0 88	≭LBL1	21 01	116	RCLB	36 12	144	7	07
033	÷	-24	061	F0?	16 23 88	0 89	-	-45	117		-62	145	÷	-24
034	RCLE	36 15	062	GT01	22 01	090	∗LBL 2	21 02	118	3	03	146	PRTX	-14
035	Х	-35	063	+	-55	091	STOC	35 13	119	4	64	147	SPC	16-11
036	RCLA	36 11	064	GTO2	22 02	0 92	CFØ	<i>16 22 00</i>	120	+	-55	148	CF1	16 22 01
037	X₽Y	-41	065	*LBL1	21 01	093	R∕S	51	121	χ2	53	149	R∕S	51
038	F0?	<i>16 23 00</i>	066	-	-45	094	≭LB LB	21-12	122	÷	-24	150	≭LBLD	21-14
039	GT01	22 81	067	≭LB L2	21 02	0 95	2	0 2	123	PRTX	-14	151	RCLA	3E 11
040	+	-55	068	STOB	35 12	0 96	7	07	124	RCLD	36 14	152	RCLB	36 12
041	GTO2	22 62	069	RCL i	36 45	0 97	3	63	125	Х	-35	153	RCLC	36 13
042	*LBL1	21 01	070	FRC	16 44	098	•	-62	126	STOD	35 14	154	R∕S	51
043	-	-45	071	1	01	099	Í	61	127	RCLC	36 13	155	≭LBLE	21 15
044	*LBL2	21 02	072	EEX	-23	100	6	06	128	1	01	156	STOC	35-13
045	STOA	35 11	073	3	0 3	101	+	-55	129	EEX	-23	157	R↓	-31
046	RCL i	36 45	074	Х	-35	102	RCLA	36 1 1	130	3	03	158	STOB	35-12
047	FRC	16 44	075	FRC	16 44	103	RCLA	36 1Ĭ	131	÷	-24	159	R↓	-31
048	ĺ	Ø1	076	1	01	104	χ2	53	132		-62	160	STŨA	35 11
049	EEX	-23	077	0	00	105	-	-45	133	0	60	161	2	02
050	3	03	078	0	00	106	•	-62	134	4	04	162	8	08
051	Х	-35	<i>0</i> 79	Х	-35	107	5	05	135	+	-55	163	STOD	35 14
052	INT	16 34	080	RCLE	36 15	108	6	0 <i>6</i>	136	PRTX	-14	164	R∕S	51
053	1	01	081	λ	-35	109	7	67	137	RCLD	36 14			
054	EEX	-23	0 82	RCLC	36 13	110	+	-55	138	х	-35			
055	3	03	0 83	X≠Y	-41	111	÷	-24	139	•	-62			
056	÷	-24	0 84	F0?	16 23 00	112	PRTX	-14	140	θ	60			

User instructions for HP version

Table VI

Step

Procedure

 Store first 10 constants from Table III, numbers 08 to 17, in registers 0 to 9. Key P⇔S. Store next 10 constants, numbers 18 to 27, in secondary registers 0 to 9.

2. Store these data on a data card: Key WRITE DATA.

 Store next 10 constants, numbers 28 to 37, in registers 0 to 9. Key P⇒S. Store next 5 constants, numbers 38 to 42, in secondary registers 0 to 4.

4. Store these data on a second data card: Key WRITE DATA.

To run the program:

1a. Enter the program.

1b. Enter the first data card.

2. Enter the number and code for each structural group, following the nomenclature of Table I, with key A.

For example, for two –CH₃ groups, enter 2.08, key A for three –CH₂–groups, enter 3.09, key A

for two –CH rings, enter 2.11, key A

Critical compressibility factor

3a. If structural groups beyond code 0.27 are not required, go to step 7.

3b. If structural groups beyond code 0.27 are required, use key D.

4. If structural groups beyond code 0.27 are required, enter second data card after key **D** of step 3b.

5. Use key E after having entered second data card. (The second data card wipes out the first data, but key D saves the calculation in the stack, which is not affected by data changes, and key E puts the calculation back in the calculator.)

6. Enter the balance of the data for structural groups beyond code 0.27, the same as step 2.

 7. When all structural data are entered, enter molecular weight and boiling point, °C (*not* K) Molecular weight key Enter ↑
 Boiling point, °C key B
 8. Output will be: Critical temperature, K Critical pressure, atm Critical volume, L/g-mol

Notes: 1. If erroneous data are entered in steps 2 or 6, they may be deleted by reentering the same data with key a.

2. For cis- and trans- structures, with the same structural formulas, the molecular weights and different boiling points can be entered at step 7.

52 PHYSICAL PROPERTIES CORRELATION

References

- Lydersen, A. L., University of Wisconsin, College of Engineering, Engineering Experimental Station, Report 3, April 1955.
- 2. Hougen, O. A., et al., "Chemical Process Principles—Part I," 2nd ed., John Wiley & Sons, Inc., New York, 1954, p. 87.
- 3. Reid, R. C., et al., "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill Book Co., New York, 1977, p. 12.
- 4. Fishtine, S. H., Ind. Eng. Chem. Fundamentals, 2, p. 1949 (1963).

The author

Jacob Zabicky is a professor at the Applied Research Institute of the Ben-Gurion University of the Negev, P.O. Box 1025, Beer-Sheva, Israel. He teaches chemistry and chemical engineering, and is involved in several R&D projects on jojoba wax, pesticides, and aqueous organic reactions. He graduated from the University of Mexico, and holds a Ph.D. degree from Hebrew University of Jerusalem. He has edited books on the chemistry of organic functional groups and contributed to the "CRC Handbook of Chemistry and Physics."

Predict thermal conductivities of gas mixtures and liquids

TI-59 programs calculate the thermal conductivities of binary gaseous mixtures and liquids over a range of temperatures and from a minimum amount of data.

James H. Weber, University of Nebraska*

(4)

 \Box For determining the thermal conductivities of gaseous mixtures, Wassiljewa postulated the general correlation [1]:

$$\lambda_m = \sum_{i=1}^n \left(\frac{y_i \lambda_i}{\sum\limits_{j=1}^n y_1 A_{ij}} \right) \tag{1}$$

For a binary mixture:

$$\lambda_m = \frac{y_1 \lambda_1}{y_1 + A_{12} y_2} + \frac{y_2 \lambda_2}{y_2 + y_1 A_{21}}$$
(1a)

For the term A_{ii} , Lindsay and Bromley suggested [2]:

$$A_{12} = \frac{1}{4} \left\{ 1 + \left[\frac{\eta_1}{\eta_2} \left(\frac{M_2}{M_1} \right)^{3/4} \frac{T + S_1}{T + S_2} \right]^{1/2} \right\}^2 \frac{T + S_{12}}{T + S_1}$$
(2)

Here:

$$S_1 = 1.5T_{b_1}$$
 (3)

and:
$$S_{12} = S_{21} = C_s (S_1 S_2)^{1/2}$$

Eq. (1a) and (2) have been programmed assuming that M, η , T_b , S and λ are known for both components. The thermal conductivity of the mixture, λ_m , can be calculated by entering $t(^{\circ}C)$, pressing **A**, and then entering y_1 and pressing **R/S**. The value for λ_m , in cal/ (cm)(s)(K) and Btu/(ft)(h)(^{\circ}R), is calculated and printed. The temperature and mole fraction of Component 1 are also printed.

Viscosities and heat capacities computed

In many cases, all the data required for the foregoing calculation will not be readily available, so programs to

*For information about the author, see p. 77.

calculate these are also included. To calculate T_b and S, first enter $t_{b_1}(^{\circ}C)$ and press the **B** key, then enter $t_{b_2}(^{\circ}C)$ and press **R/S**. In both cases, the normal boiling point, $t(^{\circ}C)$, is printed, and T_b and S are calculated and stored.

If the viscosities are unknown, these can be calculated via the Yoon-Thodos correlation [3] by entering $t(^{\circ}C)$ and pressing C:

$$\eta \xi = 4.610 \ T_r^{0.618} - 2.04 \mathrm{e}^{-0.449 \ T_r} + 1.94 \mathrm{e}^{-4.058 \ T_r} + 0.1$$
 (5)

Values for η_1 and η_2 (in μ P) are calculated, stored in the proper locations and printed, with η_2 also displayed. If a printer is not used, either the **PRT** command (Step **290**) may be eliminated or an **R/S** command substituted, depending on the wishes of the user.

Because heat capacities are usually required in the calculation of thermal conductivities, a program to calculate them is also included. To use it, enter $t(^{\circ}C)$ and press E, and values of C_p will be calculated via the relationship:

$$C_p = a + bT + cT^2 + dT^3$$
(6)

Heat capacities are stored and printed. The value for C_{p_2} is displayed. The calculation may be stopped to display C_{p_1} , if an **R/S** command is substituted for the **PRT** command at Step 503.

Component thermal conductivity

The necessary information is now available to calculate the thermal conductivity values for the two pure components by the relationship of Stiel and Thodos [4]:

$$\lambda M/\eta = 1.15C_v + 4.04$$
 (7)

Originally published March 9, 1981.

Programs for calculating thermal conductivities of mixtures, S, viscosities, thermal conductivities of pure components, and heat capacities

Tab	le l
-----	------

mermal co	ondi	ICTIVI	ties of pu	re com	ipone	ints, anu	near	apacit	.163								Tat
	Code	•	Location	Code		Location		e Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
Calculate int		on	063	65	×	131	43	RCĹ	190	53	(241	99	PRT	309	24	24
coefficier	•		064	53	(132	15	15	191	43	RCL	242	42	STO	310	45	γx
Lindsay-Br			065	53	(133	54)	192	10	10	243	33	33	311	53	(
correlat	tion		066	43	RCL	134	95		193	65	Х	244	85	+	312	01	1
			067	06	06	135	42	STO	194	43	RCL	245	43	RCL	313	55	÷
	76	LBL	068	85	+	136	16	16	195	18	18	246	21	21	314	06	6
	16	A'	069	53	(137	92	RTN	196	54)	247	95		315	54)
	93	•	070	43	RCL				197	54)	248	55	÷	316	54)
	02	2	071	09	09		late ${oldsymbol \lambda}_m$		198	54)	249	43	RCL	317	55	÷
	05	5	072	65	×	Wassilje	va corre	elation	199	95	=	250	22	22	318	53	(
	65	Х	073	53	(200	99	PRT	251	95	=	319	53	(
	53	(074	43	RCL	Ent	er t(°C)		201	55	÷	252	42	STO	320	43	RCL
	01	1	075	07	07				202	43	RCL	253	32	32	321	01	01
	85	+	076	65	×	138	76	LBL	203	48	48	254	71	SBR	322	34	\sqrt{X}
	53	(077	43	RCL	139	11	Α	204	95		255	38	SIN	323	54)
)10 E	53	(078	08	08	140	99	PRT	205	99	PRT	256	55	÷	324	65	×
111 4	43	RCL	079	54)	141	85	+	206	91	R/S	257	53	(325	53	(
12 (02	02	080	34	√X	142 1/8	43	RCL				258	53	(326	43	RCL
113 5	55	÷	081	54)	143	21	21	C	alculate		259	43	RCL	327	25	25
14 4	43	RCL	082	54)	144	95	-	1	$T_{ m b}$ and S		260	22	22	328	45	γx
)15 (03	03	083	42	STO	145	42	STO				261	45	Υx	329	53	(
	54)	084	14	14	146	06	06	Ent	er t _b , (°C)		262	53	(330	02	2
17 4	42	STO	085	55	÷	147	91	R/S		-1		263	01	1	331	55	÷
	11	11	086	53	(207	76	LBL	264	55	÷	332	03	3
19 6	65	Х	087	43	RCL	E	nter y_1		208	12	В	265	06	6	333	54)
20 5	53	(088	06	06				209	99	PRT	266	54)	334	54)
21 5	53	(089	85	+	148	99	PRT	210	85	+	267	54)	335	54)
22 4	43	RCL	090	43	RCL	149	42	STO	211	43	RCL	268	55	÷	336	95	=
23 0	01	01	091	07	07	150	17	17	212	21	21	269	53	(337	42	STO
24 5	55	÷	092	54)	151	75		213	95		270	53	(338	03	03
25 4	43	RCL	093	54)	152	01	1	214	42	STO	271	43	RCL	339	99	PRT
126 0	00	00	094	95	=	153	95	=	215	04	04	272	00	00	340	91	R/S
27 5	54)	095	42	STO	154	94	+/-	216	65	×	273	34	\sqrt{X}			
28 4	45	γx	096	10	10	155	42	STO	217	01	1	274	54)	Sul	proutine	
29 5	53	(097	93	•	156	18	18	218	93	•	275	65	×			
30 0	03	3	098	02	2	157	16	A'	219	05	5	276	53	(341	76	LBL
31 5	55	÷	099	05	5	158	43	RCL	220	95	-	277	43	RCL	342	38	SIN
I32 C	04	4	100	65	×	159	18	18	221	42	STO	278	23	23	343	53	(
133 5	54)	101	53	(160	65	×	222	07	07	279	45	γx	344	53	í
	54	j ·	102	01	1	161	43	RCL	223	91	R/S	280	53	(345	43	RCL
	42	, STO	103	85	+	162	20	20		•••		281	02	2	346	26	26
	12	12	104	53	(163	55	÷	Ent	er t _{b2} (°C)	282	55	÷	347	65	×
	65	×	105	53	i	164	53	(ы. Б.	,	283	03	3	348	43	RCL
	53	(106	43	RCL	165	43	RCL	224	99	PRT	284	54)	349	32	32
	53	ì	107	11	11	166	18	18	225	85	+	285	54	Ś	350	45	γx
	43	RCL	108	35	1/X	167	85	+	226	43	RCL	286	54	ś	351	53	(
	06	06	109	54)	168	53	(220	21	21	287	95	=	352	43	RCL
	85	+	110	65	×	169	43	RCL	228	95	=	288	42	STO	353	27	27
	43	RCL	111	53	(170	16	16	229	42	STO	289	02	02	354	54)
	07	07	112	43	RCL	171	65	×	229	42	05	290	99	PRT	355	54))
	54)	113	12	12	172	43	RCL	230	65	×	291	43	RCL	356	75	_
	55	÷	114	35	1/X	172	17	17	231	01	î	292	33	33	357	53	(
	53	(115	54)	174	54)	232	93		293	85	+	358	43	RCL
	43	RCL	116	65	×	175	54)	233	05	•	294	43	RCL	359	30	30
	06	06	117	53	í	176	85	+	234	95	J 	295	21	21	360	65	×
	85	+	118	43	RCL	177	53		235	42	STO	296	95	=	361	53	1
	43	RCL	119	13	13	178	53	i	230	42 08	08	297	55	÷	362	53	ì
	08	08	120	35	1/X	179	43	RCL	237	91	R/S	298	43	RCL	363	43	RCL
	54)	121	54)	180	17	17	200	31	11/ 0	299	24	24	364	28	28
	42	, STO	122	54)	181	65	×	ſ	Calculate		300	95	=	365	65	×
	42 15	15	123	34	, √x	182	43	RCL		iscosities		301	42	_ STO	366	43	RCL
	54	1	123	54)	182	43 19	19		oon-Thod	ns	302	42 32	310	367	32	32
	54 42	, Sto	124	33	γ χ2	184	19 54)		oon-rnou prrelation	03	302	32 71	SZ SBR	368	52 54	32)
	42 13	13	125	55 65	×	184	54 55) ÷	C	meration		303 304	38		368	54 22) INV
		13	120	65 53	î	185	55 53	÷	r.	tor 4000				SIN	369 370	22	LNX
	54 34	/v	127	53 43	(RCL	186	53 43	l PCI	E	nter <i>t</i> (°C)		305	55 52	÷	370 371	23 54	
່ງຄຸດ ໃ	.14	\sqrt{X}						RCL	220	70		306	53	(371 372	54 54	1
		1	120	14													
)61 !	54 33) χ²	129 130	14 55	14 ÷	188 189	17 85	17 +	239 240	76 13	LBL C	307 308	53 43	RCL	372	85	, +

(Continued) Table I	(Contii	nued)	Table	L
---------------------	---	--------	-------	-------	---

Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
374	53	(398	53	(427	19	19	456	54)	481	85	+	510	65	×
375	43	RCL	399	43	RCL	428	99	PRT	457	95	=	482	53	(511	43	RCL
376	31	31	400	34	34	429	53	(458	42	STO	483	43	RCL	512	06	06
377	65	×	401	75	-	430	53	(459	20	20	484	06	06	513	54)
378	53	(402	43	RCL	431	43	RCL	460	99	PRT	485	33	χ2	514	85	+
379	53	(403	36	36	432	35	35	461	91	R/S	486	65	×	515	53	(
380	43	RCL	404	54)	433	75					487	43	RCL	516	43	RCL
381	29	29	405	65	×	434	43	RCL	Cal	culate C _n		488	42	42	517	06	06
382	65	×	406	43	RCL	435	36	36		ter <i>t</i> (°C)		489	54)	518	33	X2
383	43	RCL	407	37	37	436	54)				490	85	+	519	65	×
384	32	32	408	85	+	437	65	×	462	76	LBL	491	53	(520	43	RCL
385	54)	409	43	RCL	438	43	RCL	463	15	E	492	43	RCL	521	46	46
386	22	INV	410	38	38	439	37	37	464	99	PRT	493	06	06	522	54	·)
387	23	LNX	411	54)	440	85	+	465	85	+	494	45	γx	523	85	+
388	54)	412	65	×	441	43	RCL	466	43	RCL	495	03	3	524	53	(
389	54)	413	53	(442	38	38	467	21	21	496	65	×	525	43	RCL
390	85	+	414	53	(443	54)	468	95	=	497	43	RCL	526	06	06
391	93	•	415	43	RCL	444	65	×	469	42	STO	498	43	43	527	45	Υ×
392	01	1	416	39	39	445	53	(470	06	06	499	54)	528	03	3
393	54)	417	65	×	446	53	(471	43	RCL	500	95	=	529	65	×
394	92	RTN	418	43	RCL	447	43	RCL	472	40	40	501	42	STO	530	43	RCL
			419	02	02	448	39	39	473	85	+	502	34	34	531	47	47
Ca	alculate		420	54)	449	65	×	474	53	(503	99	PRT	532	54)
λby S	Stiel-Tho	dos	421	55	÷	450	43	RCL	475	43	RCL	504	43	RCL	533	95	
CO	rrelation		422	43	RCL	451	03	03	476	41	41	505	44	44	534	42	STO
			423	00	00	452	54)	477	65	+	506	85	+	535	35	35
395	76	LBL	424	54)	453	55	÷	478	43	RCL	507	53	(536	99	PRT
396	14	D	425	95	=	454	43	RCL	479	06	06	508	43	RCL	537	91	R/S
397	53	(426	42	STO	455	01	01	480	54)	509	45	45			

Nomenclature

- $\begin{array}{ccc} A & \text{Constant of Eq. (9)} \\ A_{ij} & \text{Interaction coefficient, defined by Eq. (2)} \\ a \\ b \\ c \\ d \end{array} \right\} \quad \text{Constants of Eq. (6)}$
- C_p Heat capacity at constant pressure, cal/(g-mol)(°C)
- C_v Heat capacity at constant volume, cal/(g-mol)(°C)
- C_s Constant of Eq. (4)
- M Molecular weight
- N' Number of atoms in molecule of a substance
- P Pressure, atm
- $\begin{array}{ll} R & \mbox{Gas law constant, 1.987 cal/(g-mol)(K) or 82.07} \\ & (\mbox{cm}^3)(\mbox{atm})(\mbox{g-mol})(\mbox{K}) \end{array}$
- S Constant, defined by Eq. (3), K
- T Temperature, K
- t Temperature, °C
- By pressing **D**, values for λ will be calculated, printed and stored in the proper locations, and λ_2 displayed. The calculation can be stopped in order to display λ_1 if an **R/S** command is substituted for **PRT** at Step 428.

The inclusion of programs for calculating S, η , C_p and λ of two pure components permits computation of thermal conductivities of mixtures from a minimum

- *y* Vapor-phase mole fraction
- Z Compressibility factor
- $\xi = T_c^{1/6}/M^{1/2}P_c^{2/3}$
- η Viscosity, μP
- $\label{eq:lambda} \begin{array}{lll} \lambda & \mbox{ Thermal conductivity, } cal/(cm)(s)(K) \mbox{ or } Btu/ \\ (ft)(h)(\,{}^{\circ}R) \end{array}$
- ρ Density, g-mol/cm³
- ω Pitzer's acentric factor

Superscripts

o Ideal gas state

Subscripts

- *b* Normal boiling point
- c Critical
- i,j Refers to components in mixtures
- L Liquid
- r Reduced
- s Saturated
- $0 \quad 0^{\circ}C$
- 1,2 Components 1 and 2 of a binary mixture

amount of data. If all, or part, of the fundamental data is available, this can be placed in the proper storage locations, with uncertainties correspondingly reduced.

The programs that have been discussed are given in Table I and the storage information in Table II. The programs and storage require both channels of two magnetic cards. The partitioning is 559.49.

56 PHYSICAL PROPERTIES CORRELATION

For comparison, thermal conductivities of a gaseous mixture of 39.4 mol% methane with *n*-butane have been calculated, and these are compared in Table III with experimental data reported by Carmichael, Jacobs and Sage [5]. It should be noted that the calculated values were determined from a minimum amount of fundamental data.

Thermal conductivities of liquids

There are a number of correlations for predicting the thermal conductivities of liquids. Two have been programmed. Both require the calculation of thermal conductivity at a relatively low temperature, after which values at higher temperatures are calculated by taking into account the effect of temperature.

The first correlation is that of Sato [6]:

$$\lambda_{Lb} = (2.64 \times 10^{-3})/M^{1/2} \tag{8}$$

Riedel suggested the relationship [7,8]:

$$\lambda_L = A[1 + (20/3)(1 - T_r)^{2/3}]$$
(9)

Eq. (8) and (9) yield:

$$\lambda_L = \left[\frac{2.64 \times 10^{-3}}{M^{1/2}}\right] \left[\frac{3 + 20(1 - T_r)^{2/3}}{3 + 20(1 - T_{rb})^{2/3}}\right] (10)$$

These permit the calculation of thermal conductivity values at temperatures other than the normal boiling point from a minimum amount of data.

To determine λ_L values via Eq. (8) and (10), enter

00	M ₁	25	P_{c_2}
01	M ₂	26	4.61
02	η_1^{\dagger}	20	0.618
03	η_2^{\dagger}	28	0.440
04	$T_{b_1}^{\dagger}$	29	-0.449 Constants of Eq. (5) -4.058
05	$T_{b_2}^{b_1}^{\dagger}$	30	2.04
06	T*	31	1.94
07	, S ₁ [†]	32	$T_{r_1}^{*}$ or $T_{r_2}^{*}$
08	S †	33	$t^{\circ}C$
09	$\mathcal{L}_{2}^{\dagger}$	34	$C_{p_1}^{\dagger}$
10	S_2^{\dagger} C_S^{\ddagger} A_{12}^{\bullet}	35	$C_{p_2}^{p_1+}$
11	η_1/η_2^*	36	R = 1.987 cal/(g-mol) (K)
12	$(M_2/M_1)^{3/4*}$	30	1.15)
13	$(T+S_1)/(T+S_2)$	₂)* 38	4.04 Constants of Eq. (7)
14	$(T+S_{12})^*$	- 38	0.000001
15	$(T + S_2)^*$	40	a)
16	A ₂₁ *	40	$\begin{bmatrix} a \\ b \end{bmatrix}$ Constants of C_p expression,
17	<i>Y</i> ₁	42	c Component 1
18	<i>V</i> ₂ *	43	d
19	λ_1^+	44	a)
20	λ_2^{\dagger}	45	b Constants of C_p expression,
21	273.16	46	c Component 2
22	T_{c_1}	43	<i>d</i>)
23	P_{c}	48	0.004134 Conversion factor
24	T_{c_2}		for λ values
* Calc	ulated and stored b	v program	
	er entered or calcula		

 $t_b(^{\circ}C)$ and press A, then enter $t(^{\circ}C)$ and press R/S, and λ_{Lb} will be calculated and printed.

The calculations are not stopped, and the thermal conductivity at temperature t is calculated, displayed and printed. The two temperatures are also printed. Values of λ , in cal/(cm)(s)(K) and Btu/(ft)(h)(°R), are printed. If a printer is not used, the value of λ_{Lb} , if it is desired, is stored at Location 11. Also, the program can be stopped by an **R/S** command, in place of **PRT**, in Step 13, and the λ_{Lb} value will then be displayed.

The programs for Eq. (8) and (10) are given in Table IV, and the storage information in Table V. Calculated results for *n*-butane are compared in Table VI to experimental values reported by Carmichael and Sage [14].

Second correlation for liquids

Missenard proposed the relationship [9, 10]:

$$\lambda_{Lo} = \frac{84 \times 10^{-6} (T_b \rho_o)^{1/2} C_{p_{Lo}}}{M^{1/2} N'^{1/4}}$$
(11)

In Eq. (11), λ_{Lo} is the thermal conductivity at 0°C. Combining Eq. (11) with Eq. (9) gives:

$$\lambda_L = \lambda_{Lo} \left\{ \frac{3 + 20(1 - T_r)^{2/3}}{3 + 20[1 - (273/T_c)]^{2/3}} \right\}$$
(12)

Eq. (11) and (12) have been programmed. To determine λ values via them, enter $t_b(^{\circ}C)$ and press **B**, and follow by entering $t(^{\circ}C)$ and pressing **R/S**. After λ_{Lo} is calculated and printed, λ_L is calculated, displayed and printed.

To stop the calculations so as to display λ_{Lo} , substitute **R/S** for **PRT** at Location 118. If the two temperatures are already in place, as would be the case if calculations using Eq. (8) and (10) had been made, the temperatures need not be reentered, but only **B** pressed, and the calculation proceeds as has already been outlined.

The programs for Eq. (11) and (12) are listed in Table IV, and the storage information in Table V.

Calculated results for *n*-butane are compared in Table VI to experimental values reported by Carmichael and Sage [14]. In these calculations, values for ρ_o , C_p^o and C_{p_o} are computed by methods that will be discussed.

To use Eq. (11) and (12), liquid density and heat capacity at 0°C must be known. If these values are available, they can be stored in locations 13 and 14. If

9.4% mixture of	f methane with <i>n-</i> but	ane Table
t, °C	$\lambda imes 10^{6}$,	cal/(cm)(s)(K)
(P=1 atm)	Ref. [5]	Eq. (1), (2)*
4.44	48.8	42.8
37.73	54.2	50.3
71.11	61.6	59.0
104.4	70.7	68.0
137.8	80.2	77.6
171.1	90.5	87.5

ocation.	Cod	a Kay	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	e Ke
	ate $\boldsymbol{\lambda}_L$ b	y	058	54)	119	05	05	184	10	10	241	35	1/X	305	27	27
	to and		059	55	÷	120	45	γx	185	92	RTN	242	54)	306	65	X
Riedel o	correlatio	ns	060	53	(121	53	(243	85	+	307	43	RC
-			061	03	3	122	01	1	Calculat			244	53	(308	00	00
	$t_b(^{\circ}C)$		062	85	+	123	55	÷	phase	C _p (C _p °)	245	43	RCL	309	54)
	(°C)		063	02	2 0	124 125	04 54	4	F			246	03	03	310 311	55 43	÷ RC
00	76	LBL	064 065	00 65	×	125	54	/	Ente	er <i>t</i> (°C)		247 248	65 53	× (312	43	01
01	11	A	065	53	î	127	54	,	186	76	LBL	248	43	RCL	313	54	1
02	71	SBR	067	01	1	128	42	, STO	187	18	C'	250	22	22	314	65	×
03	48	EXC	068	75	÷	129	11	11	188	99	PRT	251	85	+	315	53	(
04	53	(069	53	1	130	99	PRT	189	85	+	252	53	(316	43	RC
D5	43	RCL	070	43	RCL	131	55	÷	190	43	RCL	253	43	RCL	317	26	26
06	08	08	071	06	06	132	43	RCL	191	07	07	254	23	23	318	45	Υ×
07	65	×	072	55	÷	133	29	29	192	95		255	65	×	319	53	(
08	43	RCL	073	43	RCL	134	95	=	193	65	×	256	53	(320	01	1
09	09	09	074	00	00	135	99	PRT	194	43	RCL	257	01	1	321	85	+
10	54)	075	54)	136	43	RCL	195	17	17	258	75	-	322	53	(
11	55	÷	076	54)	137	06	06	196	85	+	259	43	RCL	323	01	1
12	43	RCL	077	45	γx	138	42	STO	197	43	RCL	260	10	10	324	75	_
13	02	02	078	53	(139	15	15	198	16	16	261	54)	325	43	R
14	34	\sqrt{X}	079	02	2	140	43	RCL	199	85	+	262	45	γx	326	10	10
15	95	=	080	55	÷	141	07	07	200	53	(263	53	(327	54)
16	42	STO	081	03	3	142	42	STO	201	43	RCL	264	01	1	328	45	Y*
17	11	11	082	54)	143	06	06	202	07	07	265	55	÷	329	53	(
18	99	PRT	083	54)	144	43	RCL	203	33	χ ²	266	03	3	330	02	2
19	55	÷	084	54)	145	11	11	204	65	X	267	54)	331	55	÷
20	43	RCL	085	92	RTN	146 147	71	SBR SIN	205	43	RCL 18	268	65	X	332	07 54	7
21 22	29 95	29 =	Calcul	ate λ_L	y	147	38 95	=	206 207	18 54		269 270	43	RCL	333 334	54 54)
22	99	PRT		enard an		148	99	PRT	207	85) +	270	10 35	10 1/X	334	54	,
24	43	RCL	Riedel o	correlati	ons	150	55	÷	209	53	(272	54)	336	95	'
2 4 25	11	11				151	43	RCL	210	43	RCL	273	85	, +	337	35	1/
26	71	SBR		er t _b (°C)		152	29	29	211	07	07	274	53	Ċ	338	42	ST
27	38	SIN		t°C		153	95	===	212	45	γx	275	43	RCL	339	13	13
28	95	=	086	76	LBL	154	99	PRT	213	03	3	276	24	24	340	99	PF
29	99	PRT	087	17	B'	155	42	STO	214	65	×	277	65	×	341	91	R
30	55	÷	088	71	SBR	156	28	28	215	43	RCL	278	53	(342	76	LE
31	43	RCL	089	48	EXC	157	43	RCL	216	19	19	279	01	1	343	19	D'
32	29	29	090	76	LBL	158	15	15	217	54)	280	75	-	344	71	SE
33	95		091	12	В	159	42	STO	218	95		281	43	RCL	345	58	FL
34	99	PRT	092	53	(160	06	06	219	99	PRT	282	10	10	346	14	D
35	91	R/S	093	53	(161	43	RCL	220	42	STO	283	54)			
			094	08	8	162	28	28	221	25	25	284	35	1/X	Sub	routine	
Sub	routine		095	04	4	163	91	R/S	222	91	R/S	285	54)			
	70		096	65	X							286	54)	347	76	LB
36 27	76		097	43	RCL	Sub	routine			late liqui		287	54 54)	348	58	FI)
37	38 65	SIN	098	12 65	12	16/	76	I DI			J	288 289	54 65	1	349 350	99 85	PF
38 39	65 53	×	099 100	65 53	×	164 165	76 48	LBL EXC	Ent	er <i>t</i> (°C)		289 290	65 43	× RCL	350 351	85 43	+ R(
39 40	53 53		100 101	53 43	(RCL	165	48 99	PRT	223	76	LBL	290 291	43 04	RUL 04	351 352	43 07	КI 07
40 41	03	3	101	43 06	06	167	85	+	223	13	С	292	85	04 +	353	95	=
42	85	+	102	65	×	168	43	RCL	224	71	SBR	292	43	RCL	354	55	÷
42 43	02	2	103	43	RCL	169	43 07	07	225	58	FIX	294	25	25	355	43	R
44	00	0	105	13	13	170	95	=	227	53	(295	95	=	356	00	00
45	65	×	106	54)	171	42	STO	228	43	RCL	296	99	PRT	357	95	=
46	53	(107	34	′√x	172	06	06	229	20	20	297	42	STO	358	42	S1
47	01	1	108	65	×	173	91	R/S	230	85	+	298	14	14	359	10	10
48	75	_	109	43	RCL	174	99	PRT	231	53	(299	91	R/S	360	92	R
49	43	RCL	110	14	14	175	85	+	232	43	RCL	(Calculate				
50	10	10	111	54)	176	43	RCL	233	21	21		uid densit	y			
51	54)	112	55	÷	177	07	07	234	65	×		nter <i>t</i> (°C)	-			
52	45	γx	113	53	(178	95		235	53	(
53	53	(114	43	RCL	179	55	÷	236	01	1	300	76	LBL			
54	02	2	115	02	02	180	43	RCL	237	75	-	301	14	D			
55	55	÷	116	34	\sqrt{X}	181	00	00	238	43	RCL	302	53	(
	03	3	117	65	×	182	95	=	239	10	10	303	53	(
56 57	54		118	43	RCL	183	42	STO	240	54		304	43	RCL			

00	<i>Т_с,</i> К	15	T_b^*
01	P_{c} , atm	16	a)
02	Ň	17	b
03	ω	18	Constants of Eq. (6)
04	<i>R</i> , 1.987	19	<i>d</i>)
05	N'	20	2.56
06	T_{h}^{*}	21	0.436
07	273.16 (0°C)	22	2.91 Constants of Eq. (12)
08	2.64 Constant of Eq. (8)	23	4.28
09	0.001	24	0.296
10	T_r^*)
11	λ_{Lb}^{\prime} *	25	$\mathcal{C}_{p}^{\circ \dagger}$
12	0.000001	26	Z_{RA}
13	ρ^{\dagger}	27	<i>R</i> , 82.07
14	$\mathcal{C}_{pL}^{\dagger}$	28	λ_L

t, °C		λ*, Btu∕(ft)(I						
	Sato and Riedel	Missenard and Riedel	Carmichael and Sage					
4.44	0.08237	0.07412	0.06340					
37.73	0.07247	0.06521	0.05531					
71.1	0.06152	0.05536	0.04819					
104.4	0.04892	0.04402	0.04261					
137.8	0.03248	0.02923	0.03609					

they are not, programs have been included to calculate them.

Calculate density and heat capacity

Density, ρ_o , can be calculated with the Rackett correlation as modified by Spencer and Danner [11]:

Listing for HP version—program A, part 1 (gas mixtures)

$$1/\rho_s = (RT_c/P_c) Z_{RA}^{[1+(1-T_r)^{2/7}]}$$
(13)

To use the program to calculate Eq. (13), enter $t(^{\circ}C)$ and press **D**, whereupon ρ_s , in g-mol/cm³, will be calculated, printed and stored in Location 13. If the temperature is already in place as a result of a previous calculation, press D and the calculation will proceed. (In reality, saturated density is calculated, but the effect of pressure is negligible.)

Liquid heat capacity at 0°C may be calculated by the Rowlinson relationship [12] as modified by Bondi [13]:

$$\begin{split} (C_{p_L} - C_p^o)/R &= 2.56 + 0.436(1 - T_r)^{-1} + \\ &\omega [2.91 + 4.28(1 - T_r)^{1/3}T_r^{-1} + \\ &0.296(1 - T_r)^{-1}] \end{split} \tag{14}$$

If the gaseous heat-capacity datum is available, it should be stored at Location 25. If the value must be calculated, the empirical constants required to use Eq. (6) must be stored, then $t(^{\circ}C)$ entered and C' pressed. The heat capacity in the ideal gas state is calculated, displayed, printed and stored at Location 25. The liquid heat capacity can then be calculated by means of Eq. (14). Enter $t(^{\circ}\mathbf{C})$ and $0^{\circ}\mathbf{C}$ and press \mathbf{C} , and $C_{p_{Lo}}$ will be stored at Location 14, displayed and printed.

The programs for calculating ρ , C_p^o and C_{p_L} are given in Table IV, and the storage information in Table V.

The programs for calculating liquid thermal conductivity, liquid density, and heat capacities takes both channels of a magnetic card, and the storage requires one channel of another card. Partitioning is normal.

For HP-67/97 users

The HP version closely follows the TI programs. Tables VII and VIII offer listings for program A (for gas mixtures), and user instructions are given in Table IX. The program listing for liquid mixtures (program B) is contained in Table X, and user instructions in Table XI.

Table VII

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLA	21 11	828	R≥ S	Ξi	0 39	G3 B 7	27 87	€53	21	-35	877	5	85
00 2	2	62	821	*LBL2	21,22	848	*LBL3	21 8 3	0 59	ST05	35 05	078	X	- 35
003	7	87	022	STOØ	35 BB	Ø41	R 13	51	860	P≓S	15-51	079	4	Ĵ.
804	3	03	323	RZS	51	042	ST65	35 65	061	F82	16 27 60	380		-62
005		-62	Ø24	3T01	30-81	0 4 3	R↓	-71	662	GT01	22-01	881	\tilde{e}	63
006	1	01	025	G703	22-23	844	ST04	35 e.4	853	SFØ	16 21 83	0 82	4	04
007	5	35	026	*LELE	21-15	045	P≠S	16-51	664	£∕S	51	383	+	-55
008	STOE	35 15	827	GSB3	57 6 9	646	F6?	13 23 88	865	GT02	22-32	884	RCL2	36 (2
009	+	-55	928	*LBL3	11 53	047	6701	22 Bi	066	*L817	21 07	ð 85		-35
010	STOA	35 11	929	$R^{-1}S$	51	648	SFØ	16 21 00	067	RCL1	1 75 31	8 86	RCLØ	56 30
811	R4	-71	630	ST02	75 32	643	F ≢8	16-51	068	1	ē1	887	÷	-24
012	ST03	35 09	031	GTCE	23 93	e50	R < 5	51	969		-62	988	ST03	35 63
013	CHS	-22	032	*LBLC	21 13	ð51	*LBLE	21-12	070	9	39	989	PT:	24
014	:	01	033	GS53	23-33	<i>052</i>	ST04	35 64	071	8	3.7	99 0	*LELS	21 8 9
615	+	-55	634	*LBL3	21 83	053	RCLE	38 1 5	$\ell72$	6	$\theta \epsilon$	091	Eg	.8-31
016	₽₽S	15-51	035	R×E	51	654	<u> </u>	-55	073	-	-45	892	STOI	35 4E
017	ST39	35 89	$\partial 3 \epsilon$	ST03	35 03	055	1	21	074	1	ē1	893	E_{ij}	-31
618	P≠S	16-51	937	GT03	22 07	05 c		-63	075		-62	0 <u>9</u> 4	RCLA	75-11
019	CFē	16 22 00	038	*LBLD	21-16	057	5	05	076	i	ō1	895	X	-75

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
696	. ±	-55	122	Ŷ×	31	148	6	Ċð	174	RCL5	3 6 05	200	+	- 5
697	SCLA	36 11	123	÷	-24	149	4	94	175	P≠S	16-51	201	÷	-3
$\delta 98$	X	-35	124	RCLA	36 11	150	1	-35	176	RCL5	36 05	202		- 7
099	+	- 55	125	RCLI	35 45	151	-	-45	177	Х	-35	203	78	5
100	RCLA	38 il	126	÷	-24	152	4	94	178	P≓S	16-51	284	1. X	5
101	.*	75	127	STOI	35 46	153	,	-62	179	12	54	205	3706	55-8
102	RCLI	38 48	128	,	-62	154	Ð		180	STOB	35 12	286	P≓S	16-5
193	+	-55	122	6	0E	155	Ę	85	181	RCL2	36 62	207	178	5.
104	ST01	75 31	130	1	C 1	156	8	63	192	₽≓S	16-51	269	1	-
105	RTN	24	131	8	00	157	RCLI	38 43	183	RCL2	38 92	269	÷	-5.
105	¥LBL9	36 il	132	ΥX	71	158	2	-35	184	÷	-24	210	ŞΞ	5
167	STOI	35 46	133	4	5.	159	CHS	-22	185	RCL3	35 00	211	4	5
108	F↓	- 71	134		-62	160	e×	33	186	P≇S	16-51	212	÷	-2
109	ź	82	135	5	8 6	161	1	ē1	187	RCL0	36 63	213	RCLA	3E 1
110	ENTS	-21	136	1	ēt	152		-62	188	÷	-24	214	PCLB	36 ()
111	3	83	137	X	-35	163	9	39 39	189		-52	215	÷	- 5
112	2	-24	138	RCLI	36 43	164	đ	Ĥú	190	7	<u>6</u> 7	216	, A ¹	-3
113	T^{X}	31	139		-62	165	s.	-35	191	5	35	217	RCLE	36 I.
114	FCLO	35 88	140	4	μĘ	166	+	-55	192	V X	71	218	RCL5	36 0
115	1%	54	141	4	04	167		-52	193	X	-35	219	+	-53
116	1	-35	142	9	99	168	, j	61	194	2014 -	36-11	220	÷	-2.
117	K CLI	36 46	143	A	-25	169	_ _	-55	195	RCL5	36 85	231	ST07	35 0
118	1	õl	144	CHS	- 32	170	X	-35	196	+	-55	222	R-S	5
119	ENT+	- 21	145	e×	73	171	ST02	35 80	157	RCLA	38 11			
i ZE	6	36	146	2	92	172	RTN	24	198	P≓S	16-51			
121	÷	- 34	147	-	-62	173	*LBL1	21 01	199	RCL5	36 05			

Listing for HP version—program A, part 2 (gas mixtures)

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
681	*LBLA	21 11	011	RCLB	76 12	021	P≠S	16-51	631	1	01	041	RCL9	36 09
002	P≠S	16-51	012	+	-55	022	GSB1	23 31	03 2	3	03	042	RCL7	36 07
00 3	RCL6	36 06	617	Х	-35	8 23	+	-55	033	4	84	043	P≠S	16-51
004	í	61	614	RCLA	36 11	024	PRTY	-14	034	÷	-24	044	RCL9	36 09
005	+	-55	015	RCL5	<i>36 05</i>	025	CF0	16 22 00	0 35	PRTX	-14	045	X	-35
006	X2	53	016	+	-55	026	PZS	18-51	036	RZS	51	046	÷	-55
00 7	4	04	617	÷	-24	027		-62	837	*LBL1	21 91	04 7	÷	-24
008	÷	-24	018	ST07	35 07	028	0	00	038	RCL9	36 09	043	RTH	24
889	RCL8	3E 08	619	P≠S	16-51	629	9	30	039	RCL3	3 6 03	049	R/S	51
010	RCLA	3ε 11	020	GSB1	23 01	030	4	64	840	Х	-35			

User instructions for HP version—program A (gas mixtures)

Part 1. Insert program card for Part 1.	
Enter mole fraction of first component Enter temperature, "C	ENTER ↑ Key A
For each component enter:	
1. Molecular weight	Key R/S
2. Heat capacity, cal/(g-mol)(°C), or Constants of Eq. 6.	Key R/S, or a ENTER ↑, b ENTER ↑, c ENTER ↑, d Key E
 Viscosity, μP, or Critical pressure, atm, and temperature, K, for calculation of Eq. 5. 	Key R/S, or P _c ENTER ↑, T _c Key C
 Thermal conductivity of gas, cal/(cm)(s)(K), or No input and press for calculation of Eq. 7. 	Key R/S , or Key D

Table IX

Table VIII

60 PHYSICAL PROPERTIES CORRELATION

5. Boiling temperature, [°]C, and *S* (from Eq. 3), or Boiling temperature, [°]C, for calculation of Eq. 3. ENTER ↑ Key R/S, or Key B

6. Return to step 1 with data for second component

(Note: If an incorrect input is made at any point, please start again from the beginning with mole fraction of first component, etc.)

Part 2. When program stops, insert program card for Part 2, and press key A.

Output will be thermal conductivity of the mixture, first in cal/(cm)(s)(K), and then in Btu/(ft)(h)(R).

_

Registers will have the following data (primary registers for first component and secondary registers for second component):

Molecular weight	Register 0
Heat capacity	Register 1
Viscosity	Register 2
Thermal conductivity	Register 3
Boiling point, °C	Register 4
S value (Eq. 3), K	Register 5

Listing for HP version—program B (liquid mixtures)

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Кеу	Code	Step	Key	Code
001	*LBLA	Z1 .11	044	÷	-24	087	RCL6	36 8 6	130	+	-55	173	6	86
062	GS80	27-25	045	-	-45	088	STOD	35-14	131	ST08	35 83	174	+	-55
003	2	82	046	2	ΘŹ	089	RCL7	$36 \ 07$	132	P≢S	16-51	175	P≓S	16-51
004		-62	047	ENTT	-21	090	ST06	35 06	133	PRTX	-14	176	RCL4	36 C4
005	6	35	048	3	63	091	RCL9	36 09	134	SFC	18-11	177	Х	-35
006	4	5÷	049	÷	-24	092	GSB1	23 81	135	R ∕S	51	178	P≓S	16-51
007	EEX	- 23	050	γx	31	<i>093</i>	PRTX	-14	136	≭LBL C	21 1 3	179	RCL8	36 08
008	CHS	- 22	051	2	52	094	RCLA	36 11	137	GSB2	23 82	180	+	-55
609	3	63	052	0	60	095	÷	-24	138	P‡S	16-51	181	PRTX	-14
010	RCL2	36 62	ð53	X	-35	096	PRTX	-14	139	i	31	182	STOC	35 13
011	ΨX	54	054	3	03	097	STOI	35 46	140	RCLB	36-12	183	SPC	16-11
012	÷	-24	055	т	-35	0 98	RCLD	36-14	141	-	-45	184	P≠S	16-51
013	ST09	35 <i>89</i>	<i>056</i>	÷	-24	099	ST06	35 06	142	1	61	185	R∕S	51
014	PRTX	-14	057	RTN	24	100	RCL I	36 46	143	ENT†	-21	186	≰LBLD	21 14
015	RCLA	36 11	058	*LBLB	21-12	101	R∕S	51	144	3	83	187	GSE2	23 82
016	÷	-24	059	GSBØ	23-88	102	*LBL0	21 00	145	÷	-24	188	P‡S	16-51
017	PRTX	-14	060	8	0S	103	RCL7	36 67	146	γ×	31	189	RCL9	36 09
018	SPC	16-11	061	4	24	104	+	-55	147	RCL6	36 06	190	1	01
619	RCL9	28 <i>3</i> 8	062	EEX	-27	105	ST06	35 06	148	Х	-35	191	RCLB	36 12
020	GSB1	- 23-81	063	6	0 <i>6</i>	106	R∕S	51	149	RCLB	36-12	192	-	-45
021	PRTX	-14	064	CHS	-22	107	≭LBL 2	21 02	150	178	52	193	2	02
022	RCLA	38 11	065	RCL6	36 06	108	RCL7	36 07	1,51	X	-35	194	ENTT	-21
023	÷	-24	Ø66	RCL8	36 ES	109	+	-55	152	RCL7	36 67	195	7	07
024	PRTX	-14	067	X	-35	110	RCLØ	36 0C	153	1	Ø1	196	÷	-24
025	€/S	51	068	1%	54	111	÷	-24	154	RCLE	36 12	197	Υ×	21
026	*LBL1	21 61	069	Х	-35	112	STOB	35-12	155	-	-45	198	1	01
027	1	13	070	RCLC	36 13	113	RTN	24	156	÷	-24	199	+	-55
028	RCLB	38 1Z	071	Χ	-35	114	∦LBL c	21 16 13	157	÷	-55	200	γ×	31
029	-	-45	872	RCL2	36 02	115	RCL7	36 87	158	RCL5	36 05	201	P∓S	16-51
030	2	32	073	4 X	54	116	+	-55	159	+	-55	202	RCLØ	36 00
031	ENT†	-21	074	÷	-24	117	STOI	35-4 <i>8</i>	160	P≓S	16-51	203	Х	-35
032	3	83	075	RCL5	<i>36 0</i> 5	118	P≢S	16-51	161	RCL3	36 03	204	RCL1	36 01
633	÷	- 24	076		-62	119	RCL3	36 03	162	X	-35	205	÷	-24
634	Υ×	31	077	2	82	120	Х	-35	163	P≓S	16-51	206	RCLE	36 15
035	2	82	078	5	Ø5	121	RCL2	35 62	164	RCL4	36 04	207	X	-35
036	Ð	00	079	$\gamma \mathbf{x}$	51	122	+	-55	165	1	01	208	178	52
037	Χ	- 35	080	÷	-24	123	RCLI	36 46	166	RCLB	36-12	209	ST08	35 0 8
038	3	83	081	ST09	35 09	124	X	-35	167	-	-45	210	PRTX	-14
639	+	-55	0 82	PRTX	-14	125	RCL1	36 Bi	168	÷	-24	211	SPC	16-11
040	Х	-35	083	RCLA	36 11	126	+	-55	169	+	-55	212	RTN	24
041	1	Ēĺ	984	÷	-24	127	RCLI	36 46	170	2	62	213	R∕S	51
042	RCLE	36 06	085	PRTX	-14	128	λ	-35	171		-62			
043	RCLØ	36-36	086	SFC	16-11	129	RCLØ	36 08	172	5	05			

Table X

User instructions for HP version—program B (liquid mixtures)

Та	bl	e	XI

tore the following data:		
Critical temperature, K, T_c	Register 0	
Molecular weight, M	Register 2	
Constant, 273.16	Register 7	
Constant, 0.004134	Register A	
nter boiling point, °C, t	Key A	
inter temperature, $^{\circ}C$, t	Key R/S	
Output is thermal conductivity:		
of liquid at boiling point, cal/(cm)(s)(K) and Btu/(ft)(h)(R)		
of liquid at temperature, cal/(cm)(s)(K) and Btu/(ft)(h)(R)		
or Missenard correlation:		
tore same data as above plus the following:		
Constant, 1.987	Register 4	
Number of atoms in molecule, N'	Register 5	
Density, g-mol/cm ³ , ρ	Register 8	
(If density is not available, store the following:	riegioter o	
Critical pressure, atm, P_c	Register 1	
Compressibility, Z_{BA}	Secondary register 9	
Constant, 82.07	Register E	
Enter temperature, °C	Key D)	
Liquid heat capacity, C_{pL} , cal/(g-mol)(°C)	Register C	
(If C_{pL} is not available, store the following:		
Ideal gas heat capacity, C_{ρ}°	Secondary register 8	
Constant, 0.436	Secondary register 4	
Constant, 2.91	Secondary register 5	
Constant, 4.28	Secondary register 6	
Constant, 0.296	Secondary register 7	
Acentric factor, ω	Register 3	
Enter temperature, °C	Key C)	
(If C_p° is not available, store constants from Eq. 6:	,,	
	Secondary register 0	
b	Secondary register 1	
c	Secondary register 2	
d	Secondary register 3	
Enter temperature, °C	Key c)	
Enter boiling point, $^{\circ}C$, t_{o}	Кеу В	
Enter temperature, C , t	Key R/S	

Output will be the same as for Sato-Riedel correlation.

If any of the parameters are calculated, their values will be printed at the end of the individual calculation.

References

- 1. Wassiljewa, A., Physik., Vol. 5, 1904, p. 737.
- 2. Lindsay, A. L., and Bromley, L. A., Ind. Eng. Chem., Vol. 42, 1950, p. 1508.
- 3. Yoon, P., and Thodos, G., AIChE J., Vol. 16, 1970, p. 300.
- 4. Stiel, L. I., and Thodos, G., AIChE J., Vol. 10, 1964, p. 26.
- 5. Carmichael, L. T., Jacobs, J., and Sage, B. H., J. of Chem. Eng. Data, Vol. 13, 1968, p. 489.
- Reid, R., Prausnitz, J. M., and Sherwood, T. K., "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill Inc., New York.
- 7. Riedel, L., Chem. Ing. Tech., Vol. 21, 1949, p. 321.
- 8. Riedel, L., Chem. Ing. Tech., Vol. 23, 1951, p. 59, 321 and 465.

- 9. Missenard, A., "Conductivité thermique des solides, liquides, gaz et de leurs melanges," Editions Eyrolles, Paris, 1965.
- 10. Missenard, A., Comptes Rendus, Vol. 260, No. 5, 1965, p. 5521.
- 11. Spencer, C. F., and Danner, R. P., J. of Chem. Eng. Data, Vol. 17, 1972, p. 236.
- 12. Rowlinson, J. S., "Liquids and Liquid Mixtures," 2nd ed., Butterworths, London, 1969.
- 13. Bondi, A., Ind. Eng. Chem. Fundamentals, Vol. 5, 1966, p. 442.
- 14. Carmichael, L. T., and Sage, B. H., J. of Chem. Eng. Data, Vol. 9, 1964, p. 511.

Predict thermal conductivities of liquid mixtures

Via programs for the TI-59, thermal conductivities of binary liquid mixtures can be calculated from the thermal conductivities of the pure components and the composition of the mixtures.

James H. Weber, University of Nebraska*

The thermal conductivities of binary liquid mixtures can be predicted with the Li correlation [1]:

 $\lambda_m = \Sigma\Sigma \phi_i \phi_i \lambda_{ij} \tag{1}$

Here:

$$\lambda_{ij} = 2(\lambda_i^{-1} + \lambda_j^{-1})^{-1} \tag{2}$$

And:
$$\phi_i = x_i V_i / \Sigma x_j V_j$$
 (3)

Only λ values and volumes for the pure components are needed to solve Eq. (1). Store these data, enter the mole fraction of Component 1, x_1 , then press the A key, and λ for the mixture is calculated, displayed and printed. The thermal conductivity is given in cal/(cm) (s)(K) and Btu/(ft)(h)(°R), with the latter displayed. The x_1 value is also printed.

The programs for Eq. (1), (2) and (3) are listed in Table I, and the storage information in Table II. Calculated λ_m values are compared to experimental results for the system of methanol and water at 0°C as reported by Rastorguev and Ganier [6] in Table III.

Rather than mole fraction, the weight fraction, x_w , of components is required for the Jordan correlation [2]:

$$\frac{\lambda_m}{\lambda_1 x_{w_1} \lambda_2 x_{w_2}} = \{ \exp[13.80 | \lambda_2 - \lambda_1 | - 0.5(13.50)(\lambda_2 + \lambda_1)] \}^{(x_{w_1} x_{w_2})}$$
(4)

Because mole fractions are usually more readily available than weight fractions, the program for Eq. (4) includes the conversion of x to x_w . To run this program, enter the mole fraction of Component 1, x_1 , and press **B'**. Values of the weight fractions are calculated and stored, then λ_m is calculated, displayed and printed.

If one has x_w values, they should be stored at Location 20 (x_{w_1}) and 21 (x_{w_2}) , and the **B** key pressed. As in the Li program, λ_m is calculated, displayed and printed in both metric and English units.

*For information about the author, see p. 77.

Originally published June 1, 1981.

The program for Eq. (4) is given in Table I, and the storage information in Table II. Calculated and experimental results for the methanol-water mixture are compared in Table III.

To predict λ_m , Vredeveld proposed [3]:

$$\lambda_m^r = x_{w_1} \lambda_1^r + x_{w_2} \lambda_2^r \tag{5}$$

Here, r = -2, if the difference between λ_1 and λ_2 is not greater than 2.

As does Eq. (4), Eq. (5) requires weight fractions rather than mole fractions. If one has the weight fractions, they should be stored in locations 20 and 21. If one can use the values determined in the previous calculation, they will already be stored in these locations. Pressing C calculates, displays and prints λ_m .

If the composition of the mixture is known on a mole basis, enter x_1 and press C'. Values for x_w and λ_m will be calculated, the latter in metric and English units.

The program for Eq. (5) is listed in Table I, the storage information in Table II, and the comparison between calculated and experimental results in Table III. For calculating λ_m , Filippov proposed [4,5]:

$$(\lambda_m - \lambda_1)/(\lambda_2 - \lambda_1) = C x_{w_2}^2 + x_{w_2} (1 - C)$$
 (6)

Here, C is usually set equal to 0.72, and λ_2 must be greater than λ_1 .

Again, if values for x_w have been previously calculated, press **D** and λ_m will be calculated, displayed and printed. If only mole fractions are known, enter x_1 and press **D'**. The program converts mole fractions into weight fractions, then calculates λ_m .

The program for Eq. (6) is given in Table I, the storage information in Table II, and the comparison of calculated and experimental results in Table III.

To add to the utility of the foregoing programs, the Sato [3] and Riedel [7,8] correlations for predicting λ

Programs for calculating thermal conductivities of liquid mixtures via correlations of Li, Jordan, Vredeveld and Filippov

Table I

cation	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
Lie	correlatio	'n	056	18	18	113	43	RCL	168	22	22	223	35	173
	o o nona ch		057	65	\times	114	22	22	169	65	\times	224	95	=
E	Enter x ₁		058	02	2	115	95 40	sto	170	43	RCL	225		PR.
200	76	LBL	059 060	95 85		$\frac{116}{117}$	42 22	22	171 172	23 54	23 >	226 227	55 43	÷ RCI
001	11	- E - E	061	53	$\langle \cdot \rangle$	118	75	-	173	65	×	228	33	3:
002	42	STO	062	43	RCL	119	01	1	174	53	(229	95	=
303 304	06 99	06 PRT	063 064	19 33	19 X2	120 121	95 94	= +/-	175 176	43 20	RCL 20	230 231		PR RZ
204 205	22 75	F IS 1 -	065	65	X	122	42	STO	177	45	γ×	ن <i>ب</i> . ن	1	17.7
006	01		066	43	RCL	123	23	23	178	43	RCL	F		
207 208	95 94	<u>مت</u> جاريخ	067 068	20 54	20 >	124	92	RTN	179 180	23 65	23 X	Filippo	v correla	ition
309 309	42	sta	069	85	÷	Jorda	n correla	ation	181	43	RCL	E	nter x ₁	
010	07	07	070	53	< RCL				182	21	21 γ×	232	76	LBI
)11)12	65 43	× RCL	071 072	43 18	KLL 18	E	nter x ₁		183 184	45 43	RCL	233		D .
)13	17	17	073	33	×2	125	76	LBL	185	22	22	234	71	SB
)14 =	95	=	074	65	X	126 127	17 71	B' SBR	186	54 of) =	235 236	48 14	ΕX D
)15)16	42 18	9TO 18	075 076	43 21	RCL 21	127 128	48 48	SBR EXC	187 188	95 99	= PRT	236 237		LB
17	85	+	077	54	5	129	12	E	189	55	÷	238	14	D
18	53	<	078	95	=	130	76	LEL	190	43	RCL	239	53) იი
)19)20	43 06	RCL 06	079 080	99 55	PRT ÷	$\frac{131}{132}$	12 53	B	191 192	33 95	33 =	240 241	43 22	RC 2
20	65	×	081	43	RCL	133	53	Č.	193	99	PRT	242	33	χΞ
)22		RCL	082	33	33	134	53	(=	194	91	R/S	243	65	×
)23)24	16 54	16 >	083 084	95 99	= PRT	135 136	43 21	RCL 21	Vredev	eld corre	lation	244 245	43 25	RC 2
25	95		085	91	R/S	137	75					246	85	+
)26)27	35 65	17X X	λ <i>"</i>	subrouti	ne	138 139	43 20	RCL 20		Enter x ₁		247 248	22	RCI 22
28		RCL			:	540	54) 	195	76	LBL	249	65	× (
)29)30	18 95	18 =	086 087	76 48	LBL EXC	$\begin{array}{c}141\\142\end{array}$	50 65	$\mathbb{I} \times \mathbb{I} \times \mathbb{I}$	196 197	18 71	C' Sbr	250 251	53 01	1
)31	42	STO	088	42	STO	143	43	RCL	198	43	EXC	252	75	
)32	18	18	089	06 99	06 PRT	144	24 54	24 >	199	13	C LBL	253 254	43 25	RCI 2
)33)34	75 01	-	090 091	77 75		$\begin{array}{c} 145 \\ 146 \end{array}$	22	INV	200 201	76 13	С	254 255	20 54)
)35	95	=	092	61	1	147	23	LNX	202	53	$\langle \cdot \rangle$	256	54	\rangle
)36		+/~ omn	093	95 94		148	75 53	2	203 204	43 20	RCL 20	257 258	65 53	×
)37)38	42 19	STO 19	094 095	94 42	STD	149 150	93 93	ч. в	204 205	20 33	Xs Xs	200		RĊ
39	65	\times	096	07	07	151	05	5	206	35	$1 \times X$	260	21	2
)40	53	< 	097	65 43	× RCL	152	65 40	X E-C-I	207	65	× RCL	261 262	75 43	RĈ
)41)42	02 65	2 ×	098 099	43 10	10	153 154	43 24	RCL 24	208 209	43 23	23	262 263	43 20	2
)43	53	\langle	100	85	÷	155	65	\geq	210	54	>	264	54	\rangle
)44)45	43 20	RCL 20	101	42 22	ST0 22	156	53 43	(501	211 212	85 53	+ <	265 266	95 85	= +
140)46	20 35	20 17X	102 103	44 53	22 (157 158	43 21	RCL 21	212 213	23 43	RĈL	266 267	60 43	RCI
)47	85	+	104	43	RCL	159	85	+	214	21	21	268	20	21
)48)49	43 21	RCL 21	$\begin{array}{c} 105 \\ 106 \end{array}$	$\begin{array}{c} 06 \\ 65 \end{array}$	06 ×	160 161	43 20	RCL 20	215 216	33 35	%≥ 17X	269 270	95 99	= PR
)49)50		21 17X	105	ьо 43	RCL	161 162	20 54	20	216 217	30 65	$1 \le N$ \times	270	77 55	г к. -
051	54	>	108	09	09	163	54	\geq	218	43	RCL	272	43	RCI
)52)53	35 54	1/X)	109 110	54 95) =	164 165	54 45) YX	219 220	22 54	22 >	273 274	33 95	33
)54)54	65	×		35	 1 / X	160	40 53		220 221	95	=	274	99 20	
)55		RCL	112	65	\times	167		RCL	222		ΓX	276		$R \geq$

									(Continu	led)	Table I
Location Code Key	Location	Code Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
Sato and Riedel correlations for pure components Enter <i>t</i> (°C)	325 326 327 328 329	38 SIN 42 STE 20 20 99 PRI 43 RCE] 383) 384 [385	09	÷ RCL 09 FX)	435 436 438 439	43 26 95 427	RCL 26 = STD 27	495 496 497 498 499	99 43 29 42 00	PRT RCL 29 STO 00
Enter t (°C) 277 76 LB 278 15 E 279 99 PR 280 85 + 281 43 RC 282 26 2 283 95 = 284 42 ST 285 27 2 286 55 43 RC 289 95 = 290 42 ST 291 15 1 292 43 RC 291 15 1 292 43 RC 293 27 2 294 55 ÷ 295 43 RC 295 43 RC	330 L 331 332 T 333 L 335 6 336 337 0 338 7 339 C 339 C 339 C 340 C 343 0 344 5 345 L 346 7 348 L 349	43 K 09 49 STE 29 Z 29 42 STE 42 S	387 388 389 390 391 392 393 394 395 396 397 398 399 398 399 398 399 400 401 402 403 404 405 406	653335505315335453253 8286507415450253	/ X ((3 + RD CLRD X (1 - L5 R 1) X (2 ÷ NN * 5 P 65	5012345678901234567890 5444444444445555555555555555555555555	-530525375335284926930 -540941425409427341940	4+ RCU STD5 RC2+ RC3 SC0= SC0= SC0= SC0= PRCU O RC0 SC0= PRCU O	500 501 502 503 504 505 506 507 508 509 510 512 512 513 514 515 516 517	43 42 43 42 43 42 43 42 43 42 43 42 43 42 51 7 6 9 53 3 53 43	RCL 30 STD RCL 31 STD C2 RCL STD 22 STD 22 RCL STD 22 STD 22 RCL STD 22 RCL STD 22 RCL RCL 22
297 95 = 298 42 ST 299 28 2 300 91 R/ Enter t _{b1} (°C)	8 353	42 STU 11 11 71 SBP 38 SIN 42 STU 21 21 99 PRT	L 409 R 410 H 411 J 412 L 413	5335205 08005	÷ < 3 + 2 0 ×	461 462 463 465 465 466 467	4293 424 4203 4303	STD 29 RCL 01 STD 30 RCL	518 519 520 521 522 523 523		08 RCL 00) ÷ RCL
301 99 PR 302 85 + 303 43 RC 304 26 2 305 95 = 306 55 ÷ 307 43 RC 308 00 0 309 95 = 310 42 ST 311 11 1 312 91 R/	T 358 359 6 361 362 1 364 0 365 0 365 0 366 0 367 1 368	43 RCL 29 29 5TE 42 STE 43 RCL 30 30 42 STE 43 RCL 31 31 42 STE 43 RCL 31 31 42 STE 11 11	415 416 417 418 419 419 420 420 421 5 422 423 424 425 425 425 425 427	53 01 7431 4532 5034 50 5034 55	(1 RCL 11) Y× (2 ÷ 3))	468 469 471 472 473 475 475 477 477 478 479 480	02213522332034 4343402034 04040	02 STD 31 RCL 15 STD 32 RCL 03 STD 00 RCL 04	525 526 527 529 530 531 532 533 534 535 536 537	$\begin{array}{c} 14533245315325\\ 5454045085501\\ 085501\\ \end{array}$	01 > C RCL 02 Y× (1 + (1
Enter t _{b2} (°C)	λs	ubroutine	428 429	54 54	2	481 482	42 01	01	538 539	75 43	RCL
313 99 PR 314 85 + 315 43 RC 316 26 2 317 95 = 318 55 + 318 55 + 319 43 RC 320 03 0 321 95 = 322 42 ST 323 12 1 324 71 SB	T 371 L 372 6 373 374 375 L 376 3 377 378 0 379 2 380	76 LBI 38 SII 53 (53 (53 (43 RCI 13 1: 65 × 43 RCI 14 1 54)	430 V Spenc cor liq 3 431 - 432	92 er and Da relation fo uid volum nter <i>t</i> (°C) 76 10	RTH nner or e LBL	+ 4845 4885 4886 4889 4890 491 493 499 493 493 493	435 422 422 422 422 415 19	RCL 05 STD 02 RCL 28 STD 15	540 541 542 544 544 545 546 546 547 546 547 549 551	$\begin{array}{c} 154532574445\\ 50505559\end{array}$	15 YX (2 + 7) 2 ETN

No	menclature		
C	Constant of Eq. (6), usuall	y 0.72	
М	Molecular weight		
Р	Pressure, atm		
R	Gas law constant, 82.07 (cr	m ³)(at	m)/(g-mol)(K)
Т	Temperature, K		
t	Temperature, °C		
V	Volume, cm ³ /g-mol		
x	Mole fraction of componer	nt in li	iquid mixture
x_w	Weight fraction of compor	nent ir	n liquid mixture
Z_{RA}	Modified critical compression	ibility	factor for Rack-
	ett relationship		
λ	Thermal conductivity, cal/	(cm)(s	s)(K) or Btu/(ft)
	(h)(°R)		
ϕ	Volume fraction, Eq. (3)		
Sub	scripts		
b	Normal boiling point	r	Reduced
С	Critical	S	Saturated

L Liquid

values for pure liquids have also been programmed:

$$\lambda_{Lb} = (2.64 \times 10^{-3})/M^{1/2} \tag{7}$$

$$\lambda_L = \left(\frac{2.64 \times 10^{-3}}{M^{1/2}}\right) \left[\frac{3 + 20(1 - T_r)^{2/3}}{3 + 20(1 - T_{rb})^{2/3}}\right] \quad (8)$$

	age information fo volume correlation		nal conductivity Table II
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	T_{c1} P_{c1} Z_{RA1} T_{c2} P_{c2} Z_{RA2} x x_{2}^{*} 82.07, R M_{1} M_{2} T_{rb1} T_{rb2}^{*} 2.64 Constants 0.001 of Eq. (7) T_{r1}^{*} V_{1}^{\dagger} V_{2}^{\dagger} ϕ_{2}^{*}	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	$ \begin{array}{c} \phi_{1}^{*} \\ \lambda_{1}^{\dagger} \\ \lambda_{2}^{\dagger} \\ x_{w2}^{*} \\ 13.8 Constant of Eq. (4) \\ 0.72 Constant of Eq. (6) \\ 273.16 K \\ \mathcal{T}^{*} \\ \end{array} \\ \begin{array}{c} For \ storing \ physical \ property \\ data \ of \ Component \ 1, \ when \\ \lambda \ and \ V \ values \ of \ Component \\ 2 \ are \ calculated \\ \end{array} \\ \begin{array}{c} 0.004134 \ Factor \ for \ converting \\ \lambda \ values \ from \ cal/(cm)(s)(K) \\ to \ Btu/(ft)(h)(^{\circ}R) \end{array} $
	culated and stored by prog y be calculated by program		ied by user

Comparison of calculated and experimental values for the methanol-water system at 0°C Table III

Mol fraction water, x1 Eq. (1) Eq. (4) Eq. (5) Eq. (6) 0.20 0.134 0.137 0.128 0.162 0.40 0.153 0.159 0.138 0.206 0.60 0.184 0.190 0.155 0.252 0.80 0.235 0.240 0.191 0.295		Γ	λ, Btu/(ft)(h)(°R)										
0.40 0.153 0.159 0.138 0.206 0.60 0.184 0.190 0.155 0.252 0.80 0.235 0.240 0.191 0.295 Physical properties used in calculations $\frac{Water}{0.327} \frac{Methanol}{0.121}$	lol fraction water, x_1	Eq. (1)	Eq. (4)	Eq. (5)	Eq. (6)	Ref. 6							
0.60 0.184 0.190 0.155 0.252 0.80 0.235 0.240 0.191 0.295 Physical properties used in calculations $\frac{Water}{0.327}$ 0.121 V, cm ³ /g-mol 18.0 37.8	.20	0.134	0.137	0.128	0.162	0.134							
0.80 0.235 0.240 0.191 0.295 Physical properties used in calculations <u>Water</u> <u>Methanol</u> A, Btu/(h)(ft)(° R) 0.327 0.121 V, cm ³ /g-mol 18.0 37.8	.40	0.153	0.159	0.138	0.206	0.154							
Physical properties used in calculations <u>Water</u> <u>Methanol</u> A, Btu/(h)(ft)(° R) 0.327 0.121 V, cm ³ /g·mol 18.0 37.8	.60	0.184	0.190	0.155	0.252	0.188							
Water Methanol Btu/(h)(ft)(° R) 0.327 0.121 V, cm ³ /g-mol 18.0 37.8	.80	0.235	0.240	0.191	0.295	0.239							
V, cm ³ /g·mol 18.0 37.8		Water	Methano	I									
				-									
Mol wt 18.015 32.042	, Btu/(h)(ft)(° R)	0.327	0.121										
		0 227	0 1 1 1										

To run the program, enter t (°C) and press **E**. Next, enter t_{b_1} and press **R/S**, then enter t_{b_2} and press **R/S**.

Both λ_1 and λ_2 are calculated, stored and printed. After λ_1 is calculated, the constants for Component 2 (mol wt, T_c and T_b) are moved to replace the constants of Component 1 (which, however, are saved). After λ_2 is calculated, the constants of Component 1 are restored to their original positions.

The program and the subroutine for it are presented in Table I.

Volumes of pure components for Eq. (1) can be calculated via the Spencer-Danner modification of the Rackett equation [9]:

$$V_s = (RT_c/P_c) Z_{RA}^{[1+(1-T_c)^{2/7}]}$$
(9)

Although Eq. (9) provides saturated volumes, pressure differences are not likely to alter volumes much.

Enter t (°C) and press **E'**, and the volumes for two components will be calculated, stored and printed. As in the previous case, the constants for the two components are shifted as necessary, and then restored to their original locations.

Programs for λ_{L_b} , λ_L and V_s are included in Table I, and the storage information in Table II. By these programs, thermal conductivities of two-component mixtures can be calculated from a minimum amount of pure-component data—i.e., T_c , P_c , T_b and mol. wt. Of course, if thermal conductivity data for the components are available, they should be used in preference to the calculated values, and stored as indicated in Table II.

The programs and storage require both channels of two magnetic cards. Partitioning is 539.39.

For HP-67/97 Users

The listing for the HP program is contained in Table IV, with user instructions in Table V. The printout for the example can be seen in Table VI.

Program listing for HP version

Та	b	e	IV

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LELk	21 15 12	645	RCL3	36 03	091	STOD	35-14	136	RCLS	36 08	181		_
002	STOS	75 8 7	847	RCL1	36 01	092	1	01	137	÷	- 55	182	e	
003	Ř∔	-31	048	X	-75	093	RCLI	36 46	139	2	62	183	e	
684	\$754	35 34	849	÷	-55	<i>09</i> 4	RCLD	36-14	139	÷	-24	184	2	
005	Ε∕S	51	050	STJD	35 14	395	÷	-24	140	-	-45	135	6	
896	STE 5	75 <i>0</i> 5	851	÷	-24	096	STGA	35 11	141	RCL5	36 85	186	4	
007	₹4	-31	052	ST06	35 CE	097	- •	-45	142	RCL5	38 06	187	RELI	3 6
005	ST06	35-36	053	1	01	398	STOP	35 12	143	~	-35	188	√X	
005 005	÷	-24	054	RCLS	36 85	<i>399</i>	2	51	144	γ×	31 31	189	• • •	
010	STOE	35 12	055	KCLS	-45	100	RCL8	25 Č2	145	λ	-35	190	RCLE	38
011	RCL2	36 83	056		5 35 05	101	1-%	53	1-6	GSB2	23 82	191	÷	-
	STOI			3705		102	RCL9	36 C3			20 82 36 85		- 1	
012			057 052	R ∕S	· 51				147	PCL5		192		-
013	RCL5	36 05	0 58	*LBLd	21 15 14	103	1/3	52	148	RCLB	36 38	193	RCLO	36
814	RCLE	76 0 6	059	ST05	35 Ø5	104	+	-55	149	82 8	53	194	GSE3	23
015	÷	-24	0 <i>6</i> 9	1	01	105	÷	-24	150	÷	-24	195	X	
016	ST00	35 13	0 61	RCL3	3 <i>6</i> 05	106	2	02	151	RCLE	36-26	196	STOE	35
517	GSB1	27 01	062	-	-45	187	Х	-35	152	RCL9	36 89	1 9 7	í	
0:8	STOP	35 33	863	ST06	35 06	1 0 8	RCLA	36 11	153	XΣ	53	198	RCLE	35 23
315	RCL4	38 04	864	RCL2	3E 02	185	X	-35	154	÷	-24	199	ESE3	23
220	RCL 3	35 63	065	÷	-24	110	RCLE	36 12	155	÷	-55	200	RCLE	36
221	÷	-24	866	ENTT	-21	111	у	- 75	156	18	34	201	X#7	
922	STOP	35 12	0 67	ENTT	-21	112	RCLA	76-11	157	1/8	52	262	÷	
223	RCL1	36 61	068	RCL5	<i>76</i> 05	115	<u></u> 2	53	158	GSEC	27 32	203	RTN	
324	STOI	35 46				1:4	RCL8	JE 83	159			204	*LBL3	21
			069 070	RCL1	36 01	115	χοτο χ	-35		RCL8 DCL8	36 08 76 08	204 205	#LDL3 -	<i></i>
625 892	RCL5	36 05	870	÷	-24				160	RCL9	36 83			
026	RCL3	38 63	071	+	-55	116	t DCLD	-55	161	Z <u>4</u> 7?	16-35	285	2	
027	÷	-24	07 2	STOD	35 14	117	RCLE	JE 12	162	R∕S	54	207	ENTT	-
028	STOC	35 13	0 73	÷	-24	113	χ2 5 χ2	53	163	7	-62	288	3	
029	GSB1	23 01	074	ST04	35 04	119	RCL9	36 83	164	7	0-	269	÷	-
030	ST08	35 6 3	075	1	81	120	Х	-75	165	2	02	210	ΥX	
031	PRTX	- 14	076	PCL4	36 94	121	+	-55	166	ECL5	36 05	211	2	
032	RCLS	J5 09	077	-	-45	122	GSB2	23 62	167	22	53	212	2	
833	PRIX	-14	878	ST03	35 33	123	RCLS	35 38	168	RCL5	3 <i>6 0</i> 5	213	÷.,	
834	SPC	15-11	079	R∕S	51	124	RCL5	36 05	169	-	-45	214	3	
935	R29	51	080	*LBLA	2: II	125	γx	Ξſ	170	Х	-35	215	+	-
836	*LBLc	21 16 13	6 81	STOO	35 00	126	RCL9	36 69	171	RCL5	33 05	216	R^{+}	
937	ST03	35 87	082	0,88 R∔	-31	127	PCL6	35 BE	172	+	-55	217	¥LBL2	21
038	1	61	083	ST07	35 0 7	128	Υ×	71	173	RCL8	3E 08	218	PRIX	
739 779	RCL3	<i>36 0</i> 3	084			129	À	-35	174	RCLS	36 89	219	RCLE	35
	-	-45		RCL3	36 03 75	130	RCL9	75 89	175	- KOLD		22ē	÷	
248 243	ST04		085 005	X	-35	171	RCL8	36 0 8			-45	221	PRTX	-
941		35 84 75 89	8 86	STOI	35 4E		- -		176	X DOLO	-75			
842	PCL2	36 62	0 87	RCL4	JE 04	132		-45	177	RCL9	38 09 55	222	SFC	15-
343	λ	-35	888	RCLƏ	36 00	133	HBS	16 31	178	+	-55	223	RTN	
044	ENT1	-31	0 89	X	-75	134	e ^v	33 70 00	179	GT02	22 62	224	R∕S	
945	ENTT	-21	090	+	-55	135	RCL9	36 69	180	*LBL1	21 9 1			
er in	structi	ons for HF	, vers	ion	Та	ble V					(Conti	nued) T	able \
							_				(55111		
er the	following	data:												

Constant, 0.004134	STO E
Molecular weight of first component	STO 1
Molecular weight of second component	STO 2
Thermal conductivity, Btu/(ft)(h)(°R)	
First component	STO 8
Second component	STO 9
(If thermal conductivities are not available, proceed a follows and program will calculate the values using Eq. (7) and (8)):	S
Boiling point, K, first component	ENTER ↑
Critical temp., K, first component	key b
Boiling point, K, second component Critical temp., K, second component Test temperature, K	ENTER ↑ ENTER ↑ key R/S

(Program will print the two calculated values.)
Mol fraction of first component	key c
(If mol fraction is not available, enter weight fra first component and key d .)	action of
Mol volume, cm ³ /g-mol, first component Mol volume, cm ³ /g-mol, second component	ENTER ↑ key A
Output will be the thermal conductivity of the mixt and then in cal/(cm)(s)(K), calculated by Eq. (1	

component is smaller than that of the second. The program will not give the result from Eq. (6) when this condition does not hold.

Example for HP version	Та	ble VI
$x_1 = 0.20$	2.133918	
	32.392349	***
	0.138341	***
	33.101 377	***
	0. 127938	/* *
	30.962365	***
$x_1 = 0.40$	0.153314	*: *
	37.086031	
	0.159220	* * *
	33 .4 18882	无有有
	0.138370	ā ₹ Ř
	33.471115	4 书书
$x_1 = 0.60$	ə . 193610	X : ż
	44.463070	
	0.190911	東京 連
	46.180742	₹ <i>4</i> **
	0.155545	¥.].#
	37.6 25 0 64	著憲法
$x_1 = 0.80$	0.234639	米 車市
	56.772763	***
	0.241843	***
	58.707183.	三方書書
	0.190705	* **
	46.130974	* **

THERMAL CONDUCTIVITIES OF LIQUID MIXTURES 67

References

- Li, C. C., AIChE J., Vol. 22, 1976, p. 927.
 Jordan, H. B., M.S. Thesis, Louisiana State University, Baton Rouge, La., 1961.
- 3. Reported in Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., "Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York, 1977.
- Filippov, L. P., Vest. Mosk. University Ser. Fiz. Mat. Estestv. Nauk (8), Vol. 10, No. 5, 1955, pp. 67-69.
- 5. Filippov, L. P., and Novoselove, N. S., op. cit. (3), Vol. 10, No. 2, 1955, pp. 37-40.
- 6. Rastorguev, Y. L., and Ganier, Y. A., Russ. J. Phys. Chem., Vol. 41, No. 6, 1967, p. 717.
- 7. Riedel, L., Chem. Ing. Tech., Vol. 21, 1949, p. 349.
- 8. Riedel, L., op. cit., Vol. 23, 1951, pp. 321 and 465.
- 9. Spencer, C. F., and Danner, R. P., J. Chem. Eng. Data, Vol. 17, 1972, p. 236.

Predict equation-of-state variables

Calculate pressure or temperature (having one or the other and volume) and resulting isothermal enthalpy change and fugacities for pure substances by means of TI-59 programs.

James H. Weber, University of Nebraska

Programs for the Peng-Robinson [1] and Benedict-Webb-Rubin [2] equations of state presented in Part 7 of this series (Feb. 25, 1980) permit the determination of volume and compressibility factor when pressure and temperature are known, then the calculation of fugacity, isothermal enthalpy change and second and third virial coefficients for pure substances.

Given in this article are programs for these two equations that solve for pressure when volume and temperature are known and for temperature when volume and pressure are known. With the results, other programs then calculate fugacity, fugacity/pressure ratio and isothermal enthalpy change.

Peng-Robinson correlation

The Peng-Robinson equation is:

$$P = \frac{RT}{V-b} - \frac{a(T)}{V(V+b) + b(V-b)}$$
(1)

The constants a and b are generalized as follows:

$$a(T) = a(T_c) \times \alpha(T_r \omega) \tag{2}$$

$$b(T) = b(T_c) \tag{3}$$

Here,

$$a(T_c) = 0.45724(R^2 T_c^2 / P_c)$$
(4)

$$b(T_c) = 0.07780(RT_c/P_c)$$
(5)

$$\begin{aligned} \alpha^{1/2} &= 1 + \kappa (1 - T_r^{1/2}) \end{aligned} (6) \\ \kappa &= 0.37464 + 1.54226\omega - 0.26992\omega^2 \end{aligned} (7)$$

 $\pi 1/2$

Thus, b is a function of T_c and P_c , and a(T) is a function of T_c , P_c , ω and temperature.

Determine pressure

Because the Peng-Robinson equation is explicit in P, Eq. (1) is solved directly. The constants a(T) and b need only be calculated by means of Eq. (2) through (7); then, with volume and temperature known, Eq. (1) is solved. All these equations have been programmed.

To calculate pressure, enter V(L/g-mol) and press the A key. Next, enter $t(^{\circ}C)$ and press R/S, and pressure (atm) is calculated, displayed and printed. The results are compared to data of Canjar and Manning for methane at 37.73°C and pressures up to 170.11 atm in Table V [3].

Determine temperature

This requires a trial-and-error procedure, and the Newton technique is used to converge on the correct value of temperature. The initial estimate of temperature is determined from the ideal gas law. This calculation is included in the program.

To run the program, enter V(L/g-mol) and press the **B** key. Then enter P(atm) and press **R/S**. These quantities are printed, as well as the temperature and the cal-

Originally published January 11, 1982.

Programs fo	r Peng-Robinson e	quation of s	tate					Table I
Location Code Key	Location Code K	y Location	Code Key	Location Code Key	Location	Code Key	Location	Code Key
Calculate P	053 53 054 43 R(: 116 L 117	65 × 43 RCL	Enter P (atm)	232 233	75 - 53 (295 296	00 00 54)
Enter ∨(L/g-mol)		2 118	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	171 99 PRT 172 42 STD	234 235	53 (43 RCL	297 298	95 = 85 +
000 76 LBL 001 11 A 002 99 PRT	057 53 058 01 3	120	53 (43 RCL 19 19	173 00 00 174 65 × 175 43 RCL	236 237 238	30 30 55 ÷ 43 RCL	299 300 301	43 RCL 01 01 95 =
003 42 STD 004 19 19		123	75 - 43 RCL	176 19 19 177 55 ÷	239 240	20 20 54)	302 303	42 STD 01 01
005 91 R/S		3 125	43 KCL 18 18 54)	178 43 RCL 179 06 06	240 241 242	65 X 53 (304 305	71 SBR 38 SIN
Enter t(°C)	064 54 2		54) 75 -	180 95 = 181 42 STD	243 244	43 RCL 12 12	306 307	61 GTO 30 TAN
006 99 PRT 007 85 +	065 54 2		70 - 53 (43 RCL	182 01 01 183 71 SBR	245 246	33 X2 55 ÷		
008 43 RCL	068 33 X	131	17 17	184 38 SIN	240 247 248	43 RCL 02 02		late f/p and f
009 34 34 010 95 =		4 133	55 ÷ 53 (186 30 TAN	249	75 -	308 309	76 LBL 13 C
011 42 STO 012 01 01	072 53	134 135	53 (43 RCL	187 42 STD 188 08 08	250 251	53 (310 311	71 SBR 49 PRD
013 71 SBR 014 38 SIN		14 137	19 19 65 ×	189 75 - 190 43 RCL	252 253	43 RCL 12 12	312 313	43 RCL 37 37
015 99 PRT 016 42 STD	075 65 > 076 43 R(L 139	53 (43 RCL	191 00 00 192 95 =	254 255 257	55 ÷ 53 (40 PC)	314 315	75 - 01 1
017 00 00 018 91 R/S	078 33 Xª		19 19 85 +	193 50 I×I 194 75 -	256 257	43 RCL 01 01	316 317	75 - 53 (
Subroutine	079 65 > 080 43 R(L 143	43 RCL 18 18	195 53 (196 43 RCL	258 259	34 FX 65 ×	318 319	53 (43 RCL
019 76 LBL	082 33 X2		54) 54)	197 00 00 198 65 ×	260 261 262	43 RCL 02 02 34 FX	320 321	37 37 75 -
020 38 SIN 021 55 ÷	083 54)		85 + 53 (199 93 . 200 00 0	263	34 FX 54) 54)	322 323	43 RCL 16 16
022 43 RCL 023 02 02		3 149	43 RCL 18 18	201 00 0 202 01 1	264 265	54)	324 325	54) 23 LNX
024 95 = 025 42 STD	087 54) 088 42 SI		65 × 53 (203 54) 204 95 = 205 77 05	266 267	75 - 53 (40 PCL	326 327	54). 75 -
026 13 13 027 53 (090 65 >		43 RCL 19 19	205 77 GE 206 39 CDS	268 269	43 RCL 12 12	328 329	53 (43 RCL
028 43 RCL 029 09 09		4 155	75 - 43 RCL	207 43 RCL 208 01 01	270 271	33 X2 55 ÷	330 331	15 15 55 ÷
030 85 + 031 53 (093 95 = 094 42 S1	0 157	18 18 54)	209 75 - 210 43 RCL	272 273	53 (43 RCL	332 333	53 (02 2
032 43 RCL 033 10 10	096 53	7 158 159	54) 54)	211 34 34 212 95 =	274 275	01 01 34 FX	334 335	65 × 02 2
034 65 × 035 43 RCL	098 43 R(42 STO 20 20	213 99 PRT 214 43 RCL	276 277	65 × 43 RCL	336 337	34 FX 65 ×
036 07 07 037 54)	100 65 >	,	54) 95 =	215 08 08 216 99 PRT	278 279	02 02 34 FX	338 339	43 RCL 16 16
038 75 - 039 53 (6	92 RTN	217 91 R/S 218 76 LBL	280 281	54) 54)	340 341	54) 65 ×
040 43 RCL 041 07 07	103 65 > 104 43 R(Ľ	Calculate $ au$	219 39 C⊡S 220 53 (282 283	54) 54)	342 343	53 (53 (
042 33 X² 043 65 ×	106 54)			221 43 RCL 222 06 06	284 285	95 = 42 STO	344 345	53 (43 RCL
044 43 RCL 045 11 11	107 55 - 108 43 RC	L En	ter V (L/g-mol)	223 55 ÷ 224 53 (286 287	29 29 94 +7-	346 347	37 37 85 +
046 54) 047 54)	110 54)		76 LBL	225 43 RCL 226 19 19	288 289	35 17X 65 ×	348 349	43 RCL 27 27
048 42 STD 049 12 12		8 167	12 B 99 PRT	227 75 - 228 43 RCL	290 291	53 (43 RCL	350 351	65 × 43 RCL
050 53 (051 01 1	113 53 114 43 RC		42 STO 19 19	229 18 18 230 54)	292 293	08 08 75 -	352 353	16 16 54)
052 85 +		6 170	91 R/S	231 54)	294	43 RCL	354	55 ÷

(Continued) Table I

Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
355	53	(385	43	RCL	418	15	15	448	65	×	481	13	13	514	43	RCL
356	43 R	RCL	386	19	19	419	53	<	449	53	(482	34	ΓX	515	37	37
357	37	37	387	54)	420	43	RCL	450	43	RCL	483	54	\rightarrow	516	85	+
358	75	-	388	55	÷	421	18	18	451	37	37	484	85	+	517	43	RCL
359		RCL	389	53	(422	65	×	452	75	-	485	53	(518	27	27
360	28	28	390		RCL	423	43	RCL	453	01	1	486	43	RCL	519	65	×
361	65	×	391	06	06	424	00	00	454	54)	487	12	12	520	43	RCL
362		RCL	392	65	×	425	54	\rightarrow	455	54	\rightarrow	488	33	Χ2	521	16	16
363	16	16	393		RCL	426	55	÷	456	85	+	489	65	×	522	54	>
364	54)	394	01	01	427	53	(457	53	(490	43	RCL	523	55	÷
365	54)	395	54	>	428	43	RCL	458	53	(491	30	30	524	53	(
366		-NX	396	95	=	429	06,	06	459	53	(492	65	×	525	43	RCL
367	54	2	397		STD	430	65	×	460	43	RCL	493	43	RCL	526	37	37
368	54	\rangle	398	37	37	431	43	RCL	461	12	12	494	13	13	527	75	-
369	95	=	399	53	<u> </u>	432	01	01	462	94	+/-	495	54)	528	43	RQL
370		INV	400		RCL	433	54	>	463	65	_ ×	496	54)	529	28	28
371		NX	401	17	17	434	95	=	464	43	RCL	497	75		530	65	_ ×
372		PRT	402	65	X	435	42	STO	465	30	30	498	43	RCL	531	43	RCL
373	65	X	403		RCL	436	16	16	466	65	_×.	499	17	17	532	16	16
374		RCL	404	00	00	437	92	RTN	467	43	RCL	500	54)	533	54))
375	00	00	405	54)				468	13	13	501	55	÷	534	54	
376	95 20 F	= 	406	55 50	÷	Calculat	te (<i>H</i> /	۲*) ₇	469	34	ťΧ	502	53	$\langle \cdot \rangle$	535	23	LŃX
377		PRT	407	53 43	RCL	400	-		470	54)	503	02	2	536	54	>
378	91 R	₹⁄\$	408 409	40 06	NCL 06	438	76	LBL	471	75	-	504	65	× 2	537	95	=
			409		ν2 Χ2	439	14	D	472	53 40	(DCI	505	02 34		538	65	X
Su	ubroutine		410	зэ 65	×	440 441	71 49	SBR PRD	473 474	43 12	RCL 12	506 507	34 65	× 1X	539 540	43 22	RCL 22
379	76 L	BL	412		RĈL	441 442	49	PRD (474 475	33	χ2 Χ2	507 508	60 43	RCL	540 541	- 95	=
380		RD	413	43 01	01	442 443		RCL	475 476	აა 65	~~ X	509	40 18	18	541 542	99	PRT
381	47 F 53	- KD (414		Χ2	443	40 06	06	476	43	RĈL	510	10 54)	543	97 91	R/S
382		RÒL	415	53 54		445	65	X	478	40 30	30	511	65	×	040	21	K7 0
383	- 40 r	00	416	95	É	446	60 43	RĈL	479	30 65	30 X	512	53	Â			
384	65	X	417		STO	446	01	01	480	60 43	RĈL	513	53	ì			
004	00	••	-1 1 1	, <u>c.</u>	0.0		01	51	400	40	NOL	010	00	•			

Locatio	n Data	Location	Data
00	P, atm†	19	V
01	<i>Τ</i> , К†	20	V(V+b)+b(V-b)*
02	<i>Т_с,</i> К	21	-
03	P _c , atm	22	24.2179, cal/(L)(atm)
04	0.45724, constant for Eq. (4)	23	-
05	0.0778, constant for Eq. (5)	24	-
06	0.08207, R , (L)(atm)/(g-mol)(K)	25	-
07	ω	26	-
08	P, atm (in Newton method)	27	2.414
09	0.37464	28	0.414
10	1.54226 Constants for Eq. (7)	29	(dP/dT)* (in Newton Method)
11	0.26992)	30	$\alpha(T_c)^*$
12	κ*	31	—
13	T_r^*	32	<u> </u>
14	α*	33	-
15	A*	34	273.16, (0°C)
16	B*	35	-
17	a*	38	-
18	b*	37	Ζ*

Programs for	Benedict-Webb-Rubin	equation of state
--------------	---------------------	-------------------

Table III

			-							
Location Code Key	Location	Code Key		ode Key	Location	Code Key	Location	Code Key	Location	Code Key
Calculate P	053 054	54) 55 ÷		54) 54)	171 172	95 = 76 LBL	234 235	54) 55 ÷	297 298	53 (43 RCL
Enter V (L/g-mol)	055	43 RCL	118	65 X	173	30 TAN	236	53 (299	12 12
000 76 LBL	056 057	13 13 33 X≥		53 (01 1	174 175	71 SBR. 38 SIN	237 238	43 RCL 02 02	300 301	55 ÷ 43 RCL
001 11 A	058	54)	121	85 +	176	42 STO	239	45 Y×	302	13 13
002 99 PRT 003 42 STO	059 060	85 + 53 (53 (43 RCL	177 178	00 00 75 -	240 241	03 3 54)	303 304	33 X2 54)
004 13 13	061	53 (124	12 12	179	43 RCL	242	54)	305	54)
005 91 R/S	062 063	53 (43 RCL		55 ÷ 43 RCL	180 181	03 0 3 95 =	243 244	54) 54)	306 307	65 × 53 (
Enter t(°C)	064	09 09	127	13 13	182	50 I×I	245	55 ÷	308	53 (
006 99 PRT	065 066	65 × 43 RCL		33 X2 54)	183 184	75 - 53 (246 247	43 RCL 13 13	309 310	43 RCL 12 12
007 85 +	067	04 04	130 !	54)	185	43 RCL	248	33 -X2	311	94 +/-
008 43 RCL 009 20 20	068 069	65 × 43 RCL		65 X 53 (186 187	03 03 65 ×	249 250	54) 85 +	312 313	55 ÷ 43 RCL
010 95 =	070	02 02	133 !	53 (188	93 .	251	53 (314	13 13
011 42 STD 012 02 02		54) 75 -		43 RCL 12 12	189 190	00 0 00 0	252 253	53 (43 RCL	315 316	33 X2 54)
013 65 ×	073	43 RCL	136	94 +/-	191		254	09 09	317	22 INV
014 43 RCL 015 04 04	074 075	08 08 54)		55 ÷ 43 RCL	192 193	54) 95 =	255 256	65 × 43 RCL	318 319	23 LNX 54)
016 55 ÷	076	55 ÷		13 13	194	77 GE	257	04 04	320	54) 95 =
017 43 RCL 018 13 13	- · ·	53 (43 RCL		33 X2 54)	195 196	39 COS 43 RCL	258 259	54) 55 ÷	321 322	95 = 42 STD
019 95 =	079	13 13		22 INV	197	02 02 75 -	260	53 (323	15 15
020 71 SBR 021 38 SIN		45 YX 03 3		23 LNX 54)	198 199	75 - 43 RCL	261 262	43 RCL 13 13	324 325	94 +/- 35 1/X
022 99 PRT 023 42 STD	082 083	54) 54)		95 = 92 RTN	200 201	20 20 95 =	263 264	45 Y× 03 3	326 327	65 × 53 (
024 03 03		85 +	146 '	72 KIN	202	99 PRT	265	54 >	328	43 RCL
025 91 R/S	085 086	53 (43 RCL	Calcul	ate T	203 204	43 RCL 00 00	266 267	54) 75 -	329 330	00 00 75 -
Subroutine	087	08 08	Enter V	(L/g-mol)	205	99 PRT	268	53 (331	43 RCL
026 76 LBL	088 089	65 × 43 RCL		76 LBL	206 207	91 R/S 76 LBL	269 270	53 (53 (332 333	03 03 54)
027 38 SIN 028 85 +		11 11 55 +		12 B 99 PRT	208 209	39 C∐S 53 (271 272	02 2 65 ×	334 335	95 = 85 +
028 83 4	091 092	53 (150	42 STO	210	43 RCL	273	60 A 43 RCL	335 336	43 RCL
030 53 (031 53 (093 094	43 RCL 13 13		13 13 91 R/S	211 212	04 04 55 ÷	274 275	10 10 54)	337 338	02 02 95 =
032 43 RCL	095	45 YX	102		213	43 RCL	276	55 ÷	339	42 STO
033 06 06 034 65 ×	096 097	06 6 54)	Enter	P (atm)	214 215	13 13 54 >	277 278	53 (53 (340 341	02 02 65 ×
035 43 RCL	098	54)		99 PRT	216	85 +	279	43 RCL	342	43 RCL
036 04 04 037 65 ×	099 100	85 + 53 (42 STO 03 03	217 218	53 (53 (280 281	02 02 45 YX	343 344	04 04 55 ÷
038 43 RCL	101	53 (156 (65 × 43 RCL	219	53 (282	03 3	345	43 RCL
039 02 02 040 54)	102 103	43 RCL 10 10		43 RCL 13 13	220 221	43 RCL 06 - 06	283 284	54) 65 ×	346 347	13 13 95 =
041 75 - 042 43 RCL	104	55 ÷ 53 (55 ÷ 43 RCL	222 223	65 × 43 RCL	285	53 (348 349	61 GTD 30 TAN
043 05 05		43 RCL	161	04 04	224	04 04	286 287	43 RCL 13 13	042	50 MM
044 75 - 045 53 (107 108	02 02 33 X2		95 = 42 STD	225 226	54 > 85 +	288 289	45 Y× 03 3	Calcu	late f/p and f
046 43 RCL	109	65 ×	164	02 02	227	53 (290	54)	350	76 LBL
047 07 07 048 55 ÷	110 111	53 (43 RCL		65 × 43 RCL	228 229	53 (53 (291 292	〔54) 54)	351 352	13 C 43 RCL
049 43 RCL	112	13 13	167 4	04 04 55 ÷	230	02 2 65 ×	293	65 X	353	04 04 65 ×
051 33 X²	$\begin{array}{c}113\\114\end{array}$	03 3	169 -	43 RCL	231 232	43 RCL	294 295	53 (01 1	354 355	43 RCL
052 54 >	115	54)	170	13 13	233	07 07	296	85 +	356	02 02

(Continued) Table III

Location Code Key 357 65 × 358 53 (359 53 (360 43 RCL 361 04 04 362 65 × 363 43 RCL 364 02 02 365 55 ÷ 366 43 RCL 367 13 13 368 54) 369 23 LNX 370 54) 371 85 + 372 02 2 373 65 × 374 53 (375 43 RCL 376 06 06 377 65 × 378 43 RCL 379 04 04 380 65 × 378 43 RCL 381 43 RCL 382 02 02 383 75 - 384 43 RCL 385 05 05 386 75 - 387 43 RCL 389 55 ÷ 390 43 RCL 389 55 ÷ 390 43 RCL 389 55 ÷ 391 02 02 393 54) 394 55 ÷ 395 43 RCL 395 43 RCL 395 43 RCL 395 43 RCL 395 43 RCL 395 5 ÷	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>486 53 (487 43 RCL 488 12 12 489 94 +/- 490 55 ÷ 491 43 RCL 492 13 13 493 33 X² 494 54) 495 22 INV 496 23 LNX 497 54) 498 95 = 499 55 ÷ 500 43 RCL 501 02 02 502 55 ÷ 503 43 RCL 501 02 02 502 55 ÷ 503 43 RCL 504 04 04 505 95 = 506 22 INV 507 23 LNX 508 42 STD 510 99 PRT 511 55 ÷ 512 43 RCL 513 03 03 514 95 = 515 99 PRT 516 91 R/S Calculate (H-H[*])₇ 517 76 LBL 518 14 D 519 53 (</pre>	Location Code Kay Location Code Kay 544 43 RCL 586 54) 628 13 13 545 13 13 587 85 + 629 33 X^2 546 85 + 588 53 (630 54) 548 02 2 590 10 10 632 75 - 549 65 × 591 55 + 633 53 (550 43 RCL 592 43 RCL 634 93 . 551 09 09 593 13 13 636 05 5 552 65 × 594 33 X2 636 75 - 554 04 04 596 43 RCL 638 12 12 555 65 S97
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	465 54) 466 55 ÷ 467 43 RCI 468 12 1; 469 65 × 470 43 RCI 471 13 1; 472 33 X ² 473 85 + 474 53 (475 93 . 476 05 5 477 85 + 478 43 RCI 479 12 1;	524 04 04 525 65 × 526 43 RCL 527 02 03 528 75 - 529 02 2 530 65 × 531 43 RCL 532 05 05 533 75 - 534 04 4 535 65 × 536 43 RCL 537 07 07 538 55 ÷ 539 43 RCL 539 43 RCL 539 43 RCL 540 02 02 541 33 X ²	culated pressure. The degree of accuracy (i.e., the absolute difference between the calculated and given pressures) can be set as desired. In the program (Table I), the difference has been set at 0.001 (given P) (Steps 200 through 202), but can be changed. Calculated results are again compared with data in Table V. Calculate fugacities and enthalpy change Using the results obtained, Program C in Table I calculates fugacity coefficient, f/p , and fugacity, f, and Program D determines the isothermal enthalpy change, $(H - H^*)_T$, with pressure. These programs are based on Eq. (11) and (12) in Part 7 (pp. 98 and 99), and, with minor changes, are the same as those listed in Table I of Part 7. After having run LBL A or LBL B of Table I, press the C key to have f/p and f (atm) calculated and

		Nomenclature
A]		P Pressure, atm
B	Constants of Eq. (1)	R Gas law constant, 0.0827 (L)(atm)/(g-mol)(K)
a	Constants of Eq. (1)	T Temperature, K
b)		t Temperature, °C
A _o		V Volume, L/g-mol
Bo		α Defined by Eq. (6)
C,		κ Defined by Eq. (7)
a	Constants of Eq. (8)	ω Pitzer's acentric factor
6	Constants of Eq. (0)	Subscripts
C		c Critical
α		r Reduced
γJ	-	Superscript
f H	Fugacity, atm Enthalpy (cal/g-mol)	* Refers to ideal gas state

Location	Data	Location	Data
00 /	^p , atm (in Newton method)	13	V, L/g-mol
01 -	-	14	-
02 7	<i>г</i> , к†	15	(<i>dP/dT</i>)* (in Newton method)
03 /	P,atm†	16	<u> </u>
04 (1.08207, <i>R,</i> (L)(atm)/(g-mol)(K)	17	f*, atm
05 /	4 <i>0</i>]	18	-
06 /	B _o	19	-
07 (C ₀	20	273.16 (0°C)
08 á	Constants of Eq. (8)	21	24.2179, cal/(L)(atm)
09 <i>L</i>			
10 a	;		
11 0	x		
12 1	y J		

mparis	on of calculat	ed and pub	lished equ	ation-of-	state val	ues for met	hane at 37	.73°C		Table
		P calculate	d† (atm)	t calcula	ted†† (°C)			(H—H *) ₇ (cal/g-m	ol)	
P, atm	V, L/g-mol [3]	Eq. (1)	Eq. (8)	Eq. (1)	Eq. (8)	Ref. 3	Eq. (1)†	Eq. (1)††	Eq. (8)†	Eq. (8)††
1	25.46	1.000	1.001	37.67	37.54	-1.799	-4.112	-4.113	-3.375	-3.37
13.609	1.836	13.536	13.610	39.29	37.71	-45.43	-55.69	-55.52	-46.29	-46.29
40.83	0.5891	40.179	40.734	41.89	38.31	-140.9	-164.8	-163.3	-140.6	-140.3
68.046	0.3410	66.532	67.806	42.86	38.41	-239.0	-270.1	-266.9	-236.0	-235.5
70.11	0.1279	165.08	169.19	42.94	38.64	-561.7	-594.1	-586.6	-555.2	-553.7
			PI	iys ical prope		nane used in calc ants of Benedict		quation		
		Mol	wt 16.0	43	Ao	1.85500	Ь	0.00338004		
		т _с ,			U	0.042600		2545		
		P _c ,				22570		0.000124359		
		ω	0.00		0	D.049400		0.006		

^TUsing V and T from Ref. 3 ⁺⁺Using V and P from Ref. 3 printed, and the D key to have $(H - H^*)_T$ (cal/g-mol) calculated and printed.

Calculated isothermal enthalpy changes are compared with published data in Table V. Two such values are reported—one based on the Peng-Robinson equation when volume and temperature are known and pressure is calculated; the other also on the same equation but when volume and pressure are known and temperature is calculated. The calculated enthalpy values differ when based on different given conditions.

All the programs based on the Peng-Robinson equation are listed in Table I and the storage information in Table II. The storage is compatible with that given in Part 7. The programs require both channels of two magnetic cards. The partitioning is 639.39.

Benedict-Webb-Rubin correlation

The Benedict-Webb-Rubin equation is:

$$P = RT/V + (B_o RT - A_o - C_o/T^2)V^2 + (bRT - a)/V^3 + a\alpha/V^6 + (c/V^3T^2)[(1 + \gamma/V^2) - \exp(-\gamma/V^2)]$$
(8)

Eq. (8) requires eight empirical constants, and is explicit for pressure but implicit for temperature. Hence, the general procedure for the Peng-Robinson equation applies to it as well.

To calculate pressure, enter V(L/g-mol) and press the A key, then enter t (°C) and press **R/S**. Values for V and t are printed, and the calculated pressure is displayed and printed. Calculated results are compared with data in Table V.

To calculate temperature, enter V and press **B**, then enter P (atm) and press **R/S**. Again, the Newton technique is used to converge on the correct temperature, the initial estimate having been calculated from the ideal gas law. As before, the degree of accuracy as a function of pressure can be set as desired. The difference has again been set at 0.001 (given P) in Steps 189-191 in Table III, but can easily be changed.

Calculated results are again compared with data in Table V.

Fugacities and enthalpy change

Using the results obtained from Program A or B (Table III) for the Benedict-Webb-Rubin equation, f/p and f can be calculated by means of program C, and $(H - H^*)_T$ via Program D (Table III). The latter two programs are based on Eq. (17) and (18) in Part 7 (p. 100), and are essentially the same as those in Table III of Part 7.

Having P, V and T, press C to calculate and print f/p and f(atm). Press D and $(H - H^*)_T(\text{cal/g-mol})$ will be calculated and printed. As with the Peng-Robinson equation, the calculated isothermal enthalpy changes will differ with different starting values for V and T or V and P. With the Benedict-Webb-Rubin equation, however, the differences will be smaller than with the Peng-Robinson equation.

All the programs for the Benedict-Webb-Rubin equation are listed in Table III, and the storage information (which is compatible with that in Part 7) in Table IV. The programs require both channels of two magnetic cards, and the partitioning is 719.29.

For HP-67/97 users

The HP version closely follows the TI program. For the Peng-Robinson equation correlation, Tables VI and VII offer program listings, and Table VIII supplies the user instructions. And, for the Benedict-Webb-Rubin equation correlation, Table X supplies the program listing, and Table XI the user instructions.

Listing for HP version—program A (Peng-Robinson equation), part 1

Table VI

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Кеу	Code	Step	Key	Code
60.	YLĒLH	- , , 	e z4	\$70 E	35 iE	847	GSB1	23 01	070	<u></u>	53	0 93	RCLD	36-14
ê02	5F 1	16 I. C	625	etec	12 17	048	ETOC	35 13	9 71	PCL1	36 E1	094	÷	-55
<i>002</i>	*LBLB	Ef 12	625	≭L BL4	21 64	e 49	RCLE	Z6 15	972	÷	-24	695	CHS	-22
<u></u> 964	3	32	027		-62	053	-	-45	873	RCL7	38 87	896	1-77	52
005	7	ē7	328	0	90	651	ABS	15 EI	074	RCL1	36 01	097	RELS	36 13
<i>666</i>	3	63	829	8	0E	e52	1	<i>01</i>	075	À	-35	098	RCLE	36 15
887		-62	638	2	62	853	EEX	-27	676	1	54	6 99	-	-45
0 98	1	÷.	631	9	90	854	CHS	-22	077	178	52	100	Х	-35
969	6	∂€	632	7	37	055	4	94	678	P#5	15-51	161	9T+7	25-55 67
010	<i>STC1</i>	35-46	033	STC6	35 86	e 56	RCLE	36 15	<i>0</i> 79	570 <i>0</i>	35.00	102	RCL7	36 07
511	ñ.v	-31	034	RTN	24	8 57	X	-35	98E	P#S	18 - 51	103	6T02	22 02
912	F1?	16 13 01	035	*LBLE	21 15	e 58	X>Y 7	16-34	8 31	RCLB	38-12	104	*∟EL1	21 J1
ē13	GTOE	22-15	<i>036</i>	570E	3 5 15	059	6T00	22 1 3	<i>082</i>	~	-35	105	RCL1	36 61
614	STC7	35 07	037	Ę↓	-71	069	RCLE	75 06	083	-	-45	196	÷	-24
015	E.	-31	9 38	9704	35 <i>84</i>	661	RCL÷	36 34	6 84	RCLE	36-12	107	STŨA	35-11
015	ST04	35 a4	039	6964	23-04	0 62	RELS	36 83	C35	χ2	53	108	RCL3	36 63
017	RCLI	35 46	8 48	RCLE	3 E 15	9 53	-	-45	0°E	₽ ‡ 3	16-5 1	109	1	61
01E	ECL7	36 07	ō41	ECL4	36 0÷	664	÷	-24	e 87	RELØ	36-63	110		-62
019	t	-55	Ø42	Χ	-35	865	ST05	35 (4	<i>089</i>	P≢S	16-51	111	5	85
02E	9707	35 C7	043	RCL6	36 05	065	RCLE	3 6 86	689	×	-35	112	4	64
021	G 3 5 4	23 64	044	÷	-24	067	RCL9	36 63	090	-	-45	113	2	32
022	RCL7	76 27	945	ST07	35 07	668	÷	24	<i>091</i>	7	-35	114	2	<i>0</i> :
023	63E1	23 Ø:	046	¥LBL2	21 0 2	0 69	RCLE	36 12	€92	CMS	-22	115	6	i∂€

(Continued)	Table	VI

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Көу	Code
116	n.	-75	135	1	ēí	154	2	B 2	173	FCL4	<i>36 04</i>	192	RCLE	36 8.
117 -	RCL3	36 03	136	RCLA	36-11	155	4	84	174	+	-55	153	-	4
118	χ2	53	137	- 12	54	156	X	-35	175	RCL4	38 34	194	÷	-24
119		-62	13E	-	-45	157	ST O Ø	35 00	176	Х	-25	195	+	-55
120	2	02	139	Х	-35	158	RCL9	76 63	177	RCL4	38 84	196	RTN	24
:Z1	9	8 9	140	1	81	159	X	-35	178	RCL8	36 0 8	197	≭LBL C	21 13
122	6	55	141	+	-55	150	ST05	75 05	179	-	-45	193	RCLE	36 15
123	6	95	142	X٤	53	161	RCLO	76 75	180	RCL8	36 08	199	PRIX	-14
124	2	02	143	ST09	35 89	162	RCL1	37 01	181	X	-35	200	RCL7	36 87
125	X	-35	144	RCL6	3E 06	163	X	-35	182	÷	-55	201	RCLI	35 46
126	-	-45	145	RCL1	35 01	164	RCL2	36 82	183	STES	75 35	282	-	-45
127		-52	146	Χ	-35	165	÷	-24	184	1/X	52	283	PETX	-1-
128	5	03	147	χz	53	166		-62	185	RCL5	36 85	204	SPC	16-11
129	7	67	148	RCL2	<i>36 02</i>	167	9	65	155	X	-35	205	CFÍ	16 22 91
130	2	64	149	÷	-24	168	7	67	187	CKS	-22	266	R ∕S	51
131	6	65	150		-62	169	7	ē7	189	FCLE	32 05			
132	4	84	151	÷	04	170	5	95	189	RCL7	36 07			
133	+	-55	152	5	05	171	X	-35	190	4	-35			
134	STOB	35 12	153	7	07	172	3 T0 8	35 08	151	RCL4	36 64			

Listing for HP version—program A (Peng-Robinson equation), part 2

Table VII

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLA	21-11	027	ST03	35 03	053	-	-45	079	STOD	35 14	105	2	63
002	RCLE	36-15	0 28	RCL 1	36 B1	654	÷	-24	080	RCLB	36-12	106	٧X	54
003	RCL4	36 04	029	1	01	055	LN	32	081	Χ2	53	107	÷	-24
004	Х	-35	030	-	-45	056	STEC	35 13	082	RCLØ	36 00	108	RCL8	36 08
005	RCL6	36 0 6	031	RCL1	35 0i	057	RCL2	36 62	083	х	-35	109	÷	-24
006	÷	-24	032	RCL3	36 03	e 58	2	82	084	RCLA	36 11	110	RCLC	36 13
007	RCL7	36 07	033	-	-45	059	÷	-24	085	х	-35	111	X	-35
008	÷	-24	034	LN	32	868	2	62	086	RCLB	36-12	112	RCLD	36-14
009	ST01	35 01	035	-	-45	061	18	54	087	RCLØ	36 00	113	÷	-55
010	RCL5	36 05	036	ST09	35 BS	062	÷	-24	088	Х	-35	114	2	02
011	RCLE	36-15	037	RCL1	36 01	063	RCL3	36 03	089	RCLA	36 11	115	4	64
012	X	-35	038	2	ēΞ	064	÷	-24	090	1 X	54	116		-62
013	RCL6	36 06	039		-62	<i>065</i>	RCLC	36-13	091	х	-35	117	2	<i>82</i>
014	X۶	57	040	4	04	<i>866</i>	Х	-35	092	-	-45	118	1	£1
015	÷	-24	041	1	ē1	067	CHS	-22	093	RCLB	36-12	119	7	0 7
016	RCL7	36 07	042	4	<i>E</i> 4	068	RCL9	36 09	094	χz	53	120	9	63
617	_3 ≥	53	043	RCL3	35 83	869	+	-55	095	RCLØ	36 00	121	Х	-35
018	÷	-24	044	X	-35	070	e×	33	096	Х	-35	122	RCL9	20 03
019	8702	35 ez	045	÷	-55	071	ST09	35 09	097	RCLA	35/11	123	FRTX	-14
020	RCLE	26 68	046	RCL1	36 61	072	RCL6	36 06	698	1 X	54	124	RCLE	36 15
021	RCLE	36-15	847		-62	073	RCL7	36 07	0 99	X	-35	125	Х	-35
022	Х	-35	048	4	ē4	074	Х	-35	100	-	-45	126	PRTX	÷14
023	RCL6	36 06	649	1	ē1	075	RCL1	36 01	101	RCL5	36 65	127	R4	-3i
024	÷	-24	050	4	.54	076	1	81	102	-	-45	128	PRTA	-14
025	RCL7	36 07	051	RCL3	36 03	077	-	-45	103	2	<i>02</i>	129	SPC	16-11
026	÷	-24	6 52	X	-35	8 78	х	-35	104	÷	-24	130	R∕S	5i

1. Enter program card for part 1	
2. Enter critical temperature, K, T _c	STO 1
3. Enter critical pressure, atm, Pc	STO 2
4. Enter acentric factor, ω	STO 3
5. Enter volume V, L/g-mol	ENTER ↑
6. Enter pressure <i>P</i> , atm	Key A
or	
Temperature t, °C	Key B
Output will be:	
Pressure P, atm	
Temperature t, °C	
7. Enter program card for part 2	Key A
Output will be:	
Fugacity coefficient, f/p	
Fugacity f, atm	
Enthalpy change $(H - H^*)_{\tau}$, cal/g-mol.	

Note: To do another calculation, start from beginning.

Listing for HP version—program B (Benedict-Webb-Rubin equation), part 1

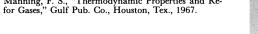
Table IX

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	8LĒLA	E1 11	045	RCLI	36 45	089	RCLE	36 08	133	÷	-24	177	÷	-24
002	SF1	18 II 81	046	-	-45	090	RCLA	36 11	134	LN	32	178	5	05
003	*LBLB	21 12	047	3	83	091	χa	53	135	RCL9	36 09	179	÷	-24
004	STÓĤ	35 il	648	Х	-35	092	÷	-24	136	X	-35	180	ő	ēć
005	R4	-31	649	ST+9	35-55 89	<i>093</i>	STOE	35 15	137	RCLØ	36 00	181	Х	-35
006	F17	16 23 81	050	RCL9	38 03	694	Ŧ	-55	138	X	-35	182	+	-55
807	GT04	22-84	851	GT05	22 85	095	RCLE	38 15	139	RCL2	<i>36 02</i>	183	STOD	35-14
008	STOB	35 12	05 2	*LBL3	21 63	696	CHS	-22	140	RCLØ	36 <i>0</i> 0	184	i	51
009	RCLA	36 11	653	RCL2	35 62	097	e×		141	X	-35	185	RELE	36 15
010	X	-35	054	RCLē	36 00	098	STOE	35 15	142	RCL9	36 03	186	-	-45
011	RCL0	36 BB	055	X	-35	099	Χ.	-35	143	Χ	-35	187	RCLS	36 83
012	÷	-34	056	ECL9	36 69	100	STOD	35 14	144	RCL1	38 01	188	RCLA	36 11
013	ST09	35 09	057	7.0 2 0	-35	101	R.4	-31	145	-	-45	189	χ2	53
614	GT05	22 05	058	RCL1	36 Ø1	102	RCLE	36 66	146	RCL3	56 03	190	÷	-24
015	*LBL4	21 04	059	-	-45	103	RCLH	36 80 36 11	147	RCL9	36 09	191	5. 5. TOC	35 13
016	P≢S	16-51	060	RCL3	56 83	103	3	50 7. 83	148	χz	53	192	0.00 ÷	-24
017	RCLO	36 00	061	RCL9	36 03	104	e YX	00 31	149	÷	-24	193	RCLC	36 13
018	P≓S	16-51	062	XCE5 X2	36 63 53	100	- ÷	-24	150	_	-45	193 194		-62
019	+	-55	062 063	÷	-24	106	RCL9	-24 36 09	151	2	02	195	5	-62 65
020	sto9	35 09	063 064	-	-45	107 108	KUL9 X2	06 63 53	152	×	-35	195 196	- J +	-55
020	*LBL5	21 05	065	RCLA				20 724	153	RCLA	- 36 ÎI	190		-35 36 15
622	RCLA	35 il	065 066	KULH Xe	36 11	109	÷		154	÷	-24		RCLE	-35 13 -35
022 023	÷	-24			53	110	RCLD	36 14	155	+	-55	198	X	-53
023 024	RCLB	-24 36 00	067 065	÷	-24	111	X	-35	156	RCL5	36 85	199	+ no: c	
			068	RCL5	36 65	112	+	-55	156	RCLO	36 68 36 68	200	RCL6	36 06
025 025	X	-35	069	RCLØ	36 00	113	RTH	24				201	RCL9	36 05
026 007	STOC	35 13 23 03	070	Χ.	-35	114	*LBL6	21 06	158 159	× RCL9	-35 36 69	202	χz	53
027 000	GSB3	20 80	671	RCL9	36 83	115	RCLC	36 13	160	KLLJ X	30 63 -35	203	÷	-24
028 005	F1?	16 23-01	672	Χ.	-35	116	+	-53		RCL4		204	RCLA	36 11
029	GTOE	22-06	073	RCL4	36 04	117	STOB	35 12	161	RUL4 -	36 04	205	X۶	53
030	RCLC	36 13	074	-	-45	118	*LBL7	<i>E1 67</i>	162		-45	206	÷	-24
031	+	-55	075	RCLA	36 11	119	RCLB	<i>36 12</i>	163	3	63	207	Х.	-35
032	STOI	35 46	<i>076</i>	3	33	120	PRTX	-14	164	χ	-35	208	RCLD	<i>36 14</i>
033	RCLB	36 12	077	Y۸	31	121	RCL9	36 09	165	2	02	209	+	-55
634	-	-45	078	÷	-24	122	P≓S	16-51	166	÷	-24	210	RCLЭ	36 09
035	ABS	16 <i>3</i> 1	079	+	-55	123	RCLØ	<i>36 0</i> 0	167	RCLA	36 11	211	÷	-24
036	1	61	080	RCL4	36 04	124	P‡S	18-51	168	χε.	53	212	RCLØ	36 00
037	EEX	-23	081	RCL7	3E 07	125	-	-45	169	÷	-24	213	÷	-24
038	CHS	-22	082	Ă	-35	126	PRTX	-14	170	+	-55	214	e'	33
039	3	03	083	RCLH	36 II	127	SPC	1 <i>6-11</i>	171	RCL4	36 Ø4	215	PRTX	-14
848	RCLB	36 12	084	6	ĒĒ	128	CF 1	16 22 01	172	RCL7	36 87	216	RCLB	36 12
041	Х	-35	085	$T^{\mathbf{X}}$	31	129	RCLØ	36 80	173	λ	-35	217	÷	-24
042	X>Y?	16-34	986	÷	1-24	130	RCL9	36 69	174	RCLA	36 11	218	PRTX	-14
043	GT07	22 87	087	÷	-55	131	Х	-35	175	5	05	219	SFC	16-11
944	RCLB	- 36 - 12	088	1	ēl	132	RCLA	3E 11	176	γ×	-31	220	R∕S	51

Listing for HP version—program B (Benedict-Webb-Rubin equation), part 2

Table X

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLA	21 11	018	RCLA	36 11	035	5	65	052	RCLE	36-15	069	÷	-24
002	RCL2	21 11 36 02	019	÷	-24	036	λ	-35	053	-	-45	070	RCL9	36 09
003	RCLØ	36 00	020	RCL5	36 05	037	+	-55	054	3	63	071	χ2	53
004	X	-35	021	2	02	038	RCLT	36 07	055	х	-35	8 72	÷	-24
605	RCL9	<i>36 0</i> 9	022	Х	-35	039	RCL4	36 04	056	RCLC	36 13	073	RCLI	36 46
006	Χ	-35	023	RCL0	3E 00	848	х	-35	057	÷	-24	074	+	-55
007	RCL1	36 Ø1	024	Х	-35	041	RCLA	36 11	058		-62	075	2	62
008	2	02	025	RCL9	35 09	042	5	05	059	5	05	076	4	64
009	Χ	-35	026	X	-35	043	γž	31	060	RCLC	36 13	077		-62
810	-	-45	027	RCL4	36 04	044	÷	-24	061	-	-45	078	2	02
ē11	RCL3	36 03	028	3	03	045	6	06	062	RCLE	36 15	079	1	01
012	4	04	029	Х	-35	046	X	-35	063	х	-35	086	7	07
013	Х	-35	030	-	-45	847	5	85	864	-	-45	081	9	09
014	RCL9	36 09	031	RCLA	36 11	048	÷	-24	065	RCLE	36 06	082	Х	-35
015	χ2	53	032	82	53	049	+	-55	066	x	-35	083	PRTX	-14
016	÷	-24	033	÷	-24	050	STOI	35 46	067	RCLA	36 11	084	SPC	16-11
017	-	-45	034		-62	051	1	01	068	χz	53	085	R/S	51


User instructions for HP version—program B (Benedict-Webb-Rubin equation)

Enter program card for part 1	
Enter gas constant, °R (0.08207)	STO 0
Enter equation constants:	-
	STO 1
Bo	STO 2
C ₀	STO 3
a	STO 4
b	STO 5
	STO 5
C	
α	STO 7
γ	STO 8
Switch storage registers	Key f P ⇒ S
Enter temperature constant, 273.16	STO 0 (secondary register)
	Key f P⇒2
Enter temperature t, °C	ENTER ↑
Volume V, L/g-mol.	Key A
or	
Enter pressure P, atm	ENTER ↑
Volume V, L/g-mol.	Key B
Output will be:	
Pressure, atm	
Temperature, °C	
Fugacity <i>f</i> , atm	
Fugacity coefficient f/p	
Enter program card for part 2 (side 1 only)	Кеу А
Output will be:	
Enthalpy change, $(H - H^*)$, cal/g-mol.	

Note: To do another calculation, start from beginning.

References

- 1. Peng, D. Y., and Robinson, D. R., Ind. Eng. Chem. Fund., Vol. 15, 1976, p. 59.
- 2. Benedict, M., Webb, G. B., and Rubin, L. C., J. Chem. Phys., Vol. 8, 1940,
- p. 334. 3. Canjar, L. N., and Manning, F. S., "Thermodynamic Properties and Re-duced Correlations for Gases," Gulf Pub. Co., Houston, Tex., 1967.

The author

James H. Weber is Regent's Professor of Chemical Engineering at the University of Nebraska-Lincoln (Lincoln, NE of Nebraska-Lincoln (Lincoln, NE 68588), where he has been for the past 30 years, having previously been chairman of the Dept. of Chemical Engineering for 13 years. He has also served as a consultant to Gas Processors Assn., C. F. Braun & Co., and Phillips Petroleum Co. Holder of B.S., M.S. and Ph.D. degrees in chemical engineering from the University of Pittsburgh, he is a member of AIChE and ACS, a registered engineer in the State of Nebraska, and author or coauthor of 60 articles published in

coauthor of 60 articles published in technical and scientific magazines.

Table XI

Predict gas-phase diffusion coefficients

Relationships are presented for determining diffusion coefficients for mixtures of nonpolar gases and mixtures containing polar gases. These are programmed for the TI-59 calculator.

James H. Weber, University of Nebraska*

Diffusion coefficients for non-polar gas systems may be found via correlations of Chapman and Cowling [3], Wilke and Lee [9], and Fuller, Schettler and Giddings [4]. Those for mixtures containing polar gases may be determined by means of the modifications to the Chapman-Cowling correlation proposed by Brokaw [1].

Note that gas-phase diffusion coefficients are independent of composition.

Chapman-Cowling relationship

Coefficients for mixtures of nonpolar gases may be calculated by means of the basic relationship of Chapman and Cowling:

$$D_{12} = (0.001858T^{3/2}) \left\{ \frac{[(M_1 + M_2)/(M_1M_2)]^{1/2}}{P\sigma_{12}^2\Omega_D} \right\} \quad (1)$$

According to Neufeld, Janzen and Aziz [5]:

$$\frac{T}{T^{*B}} + \frac{C}{\exp(DT^*)} + \frac{L}{\exp(FT^*)} + \frac{C}{\exp(HT^*)}$$
(2)
$$T^* = kT/\varepsilon_{12}$$
(3)

$$\mathbf{*} = kT/\varepsilon_{12} \tag{3}$$

C

$$\epsilon_{12} = (\epsilon_1 \epsilon_2)^{1/2} \tag{4}$$

$$\sigma_{12} = (\sigma_1 + \sigma_2)/2 \tag{5}$$

Eq. (1) through (5) have been programmed. The pure component properties M, ε and σ are stored. To calculate and display D_{12} , enter P (atm) and press **A**, then enter t (°C) and press **R/S**.

The program is listed in Table I and the storage information in Table II. For the ethane and *n*-hexane system at atmospheric pressure, calculated results are compared with experimental data of Carmichael, Sage and Lacey [2] in Table VI.

*For information about the author, see p. 77.

Originally published May 3, 1982.

Wilke-Lee modification

Wilke and Lee modified Eq. (1) by substituting for 0.001858 the term:

$$0.00217 - 0.00050[(M_1 + M_2)/(M_1M_2)]^{1/2}$$

To determine D_{12} using this modification, enter P (atm) and press **B**, then enter t (°C) and press **R/S**. The diffusion coefficient (cm²/s) is calculated, displayed and printed, and P and t also are printed. The program is listed in Table I and the storage information in Table II. Calculated and experimental results for the ethane and *n*-hexane system are compared in Table VI.

Fuller-Schettler-Giddings correlation

Diffusion coefficients may also be calculated by means of the Fuller-Schettler-Giddings relationship:

$$D_{12} = (0.001 T^{1.75}) \left\{ \frac{\left[(M_1 + M_2) / (M_1 M_2) \right]^{1/2}}{P[(\Sigma V)_1^{1/3} + (\Sigma V)_2^{1/3}]^2} \right\} (6)$$

The terms V_1 and V_2 are "atomic diffusion volumes." These may be estimated from data given in Table III.

To calculate D_{12} values via Eq. (6), estimate values for $(\Sigma V)_1$ and $(\Sigma V)_2$ and store them in Locations 35 and 36. To calculate, display and print D_{12} (cm²/s), enter *P* (atm) and press C, then enter *t* (°C) and press **R/S**.

The program is listed in Table I and the storage information in Table II. Results for the ethane and nhexane system are compared in Table VI.

Note that in the three relationships discussed, the diffusion coefficient is inversely proportional to the absolute pressure. This proportionality is valid for a number of systems at low or moderate pressure. At high pressure, more-complex methods must be used.

GAS-PHASE DIFFUSION COEFFICIENTS 79

	-uller-Schett												ble I	
ocation	Code Key	Location	Code Key	Location	-	Location		•	cation	Code	Key	Location	Code	ŀ
•	an-Cowling	049	31 31	109	55 ÷	166			12	85	+	271	75	-
corre	elation	050 051	54) 34 FX	110 111	53 (53 (167 168			13 14	43 34	RCL 34	272 273	53 43	(RC
Enter	P (atm)	052	54)	112	43 RCL	169			15	95	=	274	27	2
Linton	. (atin)	053	42 STD	113	22 22	170			16	45	γ×	275	65	×
	76 LBL	054	14 14	114	65 X	171			17	53	< C	276		RÇ
001	11 A	055	92 RTN	115	43 RCL 14 14	172	92 R			01	1	277 278	03 54	0
-	(0.0)	. .		$\begin{array}{c} 116\\ 117 \end{array}$	14 14 54)				19 20	93 07		278 279	54 54	Ś
Ente	er t(°C)	Subro	outine TAN	118	22 INV	Wilke-L	ee correlati			05	Ś	280	65	×
	71 SBR	056	76 LBL	119	23 LNX	Ente	r P (atm)		22	54	>	281	53	(
	48 EXC 65 ×	057 058	30 TAN 53 (120 121	54) 54)	. 70	7/ 1		23 24	65 93	×	282 283	43 00	RC C
	43 RCL	059	53 (121	54)	173 174				73 00	O	283 284	55	
	23 23	060	43 RCL	123	42 STD	1 1 1	1 '			00	õ	285		RC
	65 ×	061	15 15	124	12 12	En	ter <i>t</i> (°C)			01	1	286	01	, C
	71 SBR 38 SIN	062	55 ÷ 53 (125	92 RTN	175	74 0			65 74	X	287 200	54 45	γ>
	38 SIN 95 =	063 064	33 (43 RCL	Subr	outine EXC	175 176			29 30		SBR SIN	288 289	40 53	۲ <i>۲</i>
11	55 ÷	065	14 14	Subr		177	42 S	TD 23	31	95	=	290	01	1
	71 SBR	066	45 YX	126	76 LBL	178	13			55	÷	291	55	-
	47 CMS 95 =	067 068	43 RCL 16 16	127 128	48 EXC 99 PRT	179 180	53 53		33 34	53 43	(RCL	292 293	03 54	3
	99 PRT	069	54)	120 129	42 STO	180				43 08	RUL 08	293 294	04 54	,)
	91 R/S	070	54)	130	08 08	182			36	65	X	295	42	SI
		071	85 +	131	91 R/S	183	75	- 20	37	53	ζ.,	296	32	
Subro	utine SIN	072 072	53 (43 RCL	132	99 PRT	184	53 40 D			53 40		297 290		PF
17	76 LBL	073 074	43 RCL 17 17	133 134	85 ÷ 43 RCL	185 186			39 40	43 35	RCL 35	298 299	53 53	، ا
)18	38 SIN	075	55 ÷	135	34 34	180187			41	45	γX	300	43	RC
	53 (076	53 (136	95 =	188	71 S	BR 24	42	53	(301	26	2
	53 (43 RCL	077 078	53 (43 RCL	137 138	53 (42 STD	189				01 55	1	302 303	75 53	-
	43 KUL 02 02	078 079	43 RUL 18 18	138 139	42 STU 09 09	190 191				03 03	÷ 3	303 304		RC
)23	85 +	080	65 X	140	45 Y×	192	65	× 24	46	54	>	305	27	2
	43 RCL	081	43 RCL	141	53 (193				54) ,	306	65 40	
	06 06 54)	082 083	14 14 54)	142 143	01 1 93 .	194 195			48 49	85 53	+ (307 308	43 07	RC C
	55 ÷	083 084	22 INV	143	20 . 05 5	190 196		-			RCL	308	54	Š
28	53 (085	23 LNX	145	54 >	197	38 S	IN 25	51	36	36	310	54	Ś
	43 RCL	086	54) E4 \	146	54) 00 рти	198					Υ×	311	65 50	>
	02 02 65 ×	087 088	54) 85 +	147	92 RTN	199 200				53 01	< 1	312 313	53 43	RC
32	43 RCL	089	-53 (Subro	outine CMS	200				55	÷	314	04	(
33	06 06	090	43 RCL			202	95	= 25	56	03	З	315	55	÷
	54) 54)	091 092	19 19 55 ÷	148	76 LBL	203				54	Ì	316 217		RC
	54) 34 /X	092 093	55 ÷ 53 (149 150	47 CMS 53 (204	91 R			54 54	>	317 318	05 54	0
	92 RTN	094	53 (151	43 RCL	Euller Ch	attler C:44	04			χź	319	45	γŶ
		095	43 RCL	152	08 08		ettler-Gidd rrelation		61	54	>	320	53	5
Subrou	tine COS	096 097	20 20 65 ×	153 154	65 X 50 7					95 00	= DDT	321	01 55	1
38	76 LBL	098	63 × 43 RCL	154 155	53 (53 (Ent	er P (atm)				PRT R/S	322 323	55 03	+ ()
	39 CDS	099	14 14	156	43 RCL	205	76 L		04			324	54	\rightarrow
40	53 (100	54)	157	32 32	206	13	с,	Tee-Got	oh-Stev	wart	325	54	\sim
	43 RCL	101	22 INV 22 ENV	158	85 +	207		RT		lations		326		ST
	09 09 55 ÷	102 103	23 LNX 54)	159 160	43 RCL 33 33	208 209		TD 08 20	65	76	LBL	327 328	33 99	9 PR
	53 (104	54)	161	53 55 54)	210	91 R		66 66	14^{+0}	D	329	53	(
)45	43 RCL	105	85 +	162	55 ÷			20	67	53	<	330	53	(
	30 30 65 ×	106 107	53 (43 RCL	163 164	02 2	Ent	ter t(°C)			53 43	(RCL	331 332	43 28	RC 2
)47					54 >									

					-	-
Code	Key	Location	Code	Key	Location	Key
43	RCL	345	30	30	356	07 07
29	- 29	346	99	PRT	357	54 >
65	×	347	53	$\langle \rangle$	358	65 ×
43	RCL	348	53	(359	43 RCL
03	03	349	43	RCL	360	04 04
54)	350	28	28	361	54 >
65	×	351	85	÷	362	99 PRT
43	RCL	352	43	RCL	363	42 STO
00	00	353	.29	29	364	31 31
54	>	354	65	\times	365	91 R/S
42	STO	355	43	RCL		
	43 29 65 43 54 65 43 00 54	43 RCL 29 29 65 × 43 RCL 03 03 54) 65 × 43 RCL 00 00 54)	43 RCL 345 29 29 346 65 × 347 43 RCL 348 03 03 349 54 > 350 65 × 351 43 RCL 352 00 00 353 54 > 354	43 RCL 345 30 29 29 346 99 65 × 347 53 43 RCL 348 53 03 03 349 43 54 > 350 28 65 × 351 85 43 RCL 352 43 65 × 351 85 43 RCL 352 43 00 00 353 29 54 > 354 65	43 RCL 345 30 30 29 29 346 99 PRT 65 × 347 53 (43 RCL 348 53 (03 03 349 43 RCL 54) 350 28 28 65 × 351 85 + 43 RCL 352 43 RCL 00 00 353 29 29 54) 354 65 ×	43 RCL 345 30 30 356 29 29 346 99 PRT 357 65 × 347 53 (358 43 RCL 348 53 (359 03 03 349 43 RCL 360 54) 350 28 28 361 65 × 351 85 + 362 43 RCL 352 43 RCL 363 65 × 351 85 + 362 43 RCL 352 43 RCL 363 00 00 353 29 29 364 54) 354 65 × 365

Nomenclature t Temperature, °C A В VVolume, cm³/g-mol Cδ Polar parameter, defined D by Eq. (10) Constants of Eq. (2) Ε Energy parameter ε F Dipole moment, debyes μ_p GLength parameter, Å σ Ω_D Collision integral for Η diffusion D Diffusion coefficient, cm²/s М Molecular weight Р Pressure, atm **Subscripts** Т Temperature, K 1,2 Components 1 and 2 T^* Defined by Eq. (3) Normal boiling point b

ge informati	on for correlations for diffusion coeff	icients in non-	polar systems Tabl
00	<i>T</i> _{c1}	19	1.03587, E
01	P_{c_1}	20	1.52996, F Constants of Eq. (2)
02	<i>M</i> ₁	21	1.76474, G (cont'd)
03	ω_1	22	3.89411, H
04	T_{c_2}	23	0.001858 Constant of Eq. (1)
05	P_{c_2}	24	0.00217)
06	M ₂	25	0.0005 Constants for Wilke-Lee correlation
07	ω_2	26	2.3551
08	P	27	0.087 Constants of Eq. (7)
09	τ*	28	0.7915 Constants of Eq. (8)
10	Not used	29	0.7515 Constants of Eq. (8) 0.1693
11	Not used	30	$(\epsilon/k)_1^{\dagger\dagger}$
12	Ω_{D}^{*} Defined by Eq. (2)	31	$(\epsilon/k)_{2}^{\dagger\dagger}$
13	Not used	32	$\sigma_1^{\dagger\dagger}$
14	(7 *) †	33	$\sigma_2^{\dagger\dagger}$
15	1.06036, A	34	273.16 (0° C)
16	0.1561 <i>B</i>	35	ΣV_A
17	0.193, C Constants of Eq. (2)	36	ΣV_B
18	0.47635, D		2
		† Valu	ues calculated and stored per pressures
		tt Valu	ies calculated and stored by program, or supplied by user

	Atomic diffusion volumes for fuller-Schettler-Giddings correlation Table III									
	Atomic and structural diffusion volume increments, v									
C	16.5	cit.	19.5							
Ĥ	1.98	st	17.0							
0	5.48	Aromatic ring	-20.2							
N [†]	5.69	Heterocyclic ring	20.2							
	Diffusion volumes for simple molecules, Σu									
H ₂	7.07	CO	18.9							
D_2^-	6.70	CO2	26.9							
He	2.88	N ₂ 0	35.9							
N ₂	17.9	NH ₃	14.9							
0 ₂	16.6	H ₂ 0	12.7							
Air	20.1	CCI2F2 [†]	114.8							
Ar	16.1	SF6 [†]	69.7							
Kr	22.8	Cl2 [†]	37.7							
Xe [†]	37.9	Br2 [†]	67.2							
		\$0 ₂ †	41.1							
† Based on a f	ew data points.									

Values for σ and ε may be estimated by the relationships proposed by Tee, Gotoh and Stewart [8]:

$$\sigma(P_c/T_c)^{1/3} = 2.3551 - 0.087\omega \tag{7}$$

and

$$\epsilon/kT_c = 0.7915 + 0.1693\omega$$
 (8)

Assuming the fundamental data T_c , P_c and ω are stored in the proper locations, σ_1 , σ_2 , $(\epsilon/k)_1$ and $(\epsilon/k)_2$ may be calculated by means of Eq. (7) and (8) by pressing **D**. The values of the constants are calculated, stored in the proper locations, and printed. The calculation of D_{12} can then proceed as has been described.

The programs for Eq. (7) and (8) are listed in Table I, and the storage information in Table II. The programs and storage require both channels of two magnetic cards. Partitioning is normal.

Brokaw modification for polar gases

For mixtures containing polar gases, Brokaw suggested that diffusion coefficients be calculated by means

GAS-PHASE DIFFUSION COEFFICIENTS 81

	Programs for correlations,													Ta	ble IV
Location	Code Key	Location	Code Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
	late D ₁₂ for	056	65 ×	119	54	>	176	44	44	239	55	÷	302	42	STO
	es with polar stances via	057 058	53 (43 RCL	120 121	85 53	+ (177 178	65 43	× RCL	240 241	03 54	3 >	303 304	31 91	31 R/S
Brokaw	v correlations	059	09 09	122	43	RĈL	179	40	40	242	95	=		~ •	
Ent	er P (atm)	060	55 ÷	123	21	21	180	54	>	243	42	STO	Calculate		hailing
000	76 LBL	061	53 (40 PCL	124	55	÷	181	54) 075	244	32	32		K) and I	
001 002	11 A 99 PRT	062 063	43 RCL 30 30	125 126	53 53	((182 183	42 35	STO 35	245 246	99 53	PRT (vo Spencer-l	lumes vi Danner i	
002	42 STO	064	65 X	127	43	RĈL	184	99	PRT	247	53	è	•		
004	08 08	065	43 RCL	128	22	22	185	53	< (248	43	RCL		er t _{b1} (°	
005	91 R⁄S	066 067	31 31 54 >	129 130	65 43	× RCL	186 187	53 43	(RCL	249 250	11 65	11 ×	305 306	76 18	LBL C'
E	nter <i>t</i> (°C)	067	34 ГХ	130	43	кос 14	188	43 49	49	251	63 43	RĈL	306	10 99	PRT
006	99 PRT	069	54 >	132	54	5	189	65	×	252	45	45	308	85	+
007	85 +	070	42 STD	133	22	INV	190	43	RCL	253	54	>	309	43	RCL
008	43 RCL 34 34	071 072	14 14 53 (134 135	23	LNX	191	39 33	39 X2	254 255	55 53	÷ <	310	34 05	34 =
009 010	34 34 95 =	072	53 (135	54 54	\rightarrow	192 193	33 54		200 256	01	1	311 312	95 42	STO
011	53 (074	53 (137	54	Ś	194	55	÷	257	85	+	313	40	40
012	42 STO	075	43 RCL	138	42	STO	195	53	(258	43	RCL	314	91	R∕S
013 014	09 09 45 Y×	076 077	15 15 55 ÷	139	12	12	196	43 45	RCL	259	43 45	43			
014 015	45 Y× 53 (077	53 (140 141	85 53	+ (197 198	45 65	45 ×	260 261	65 43	X RCL	Ent	er t _{b2} (°	C)
016	01 1	079	43 RCL	142	53	- č	199	43	RCL	262	36	36	315	99	PRT
017	93 .	080	14 14	143	93	•	200	41	41	263	33	X2	316	85	+
018	05 5 54)	081 082	45 YX 43 RCL	144 145	01 09	1	201	54 54) N	264	54 42) STO	317	43	RCL
019 020	54)	083	16 16	145	65	9 ×	202 203	54 99) PRT	265 266	42 47	47	318 319	34 95	34 =
021	65 ×	084	54)	147	53	$\langle \rangle$	204	42	STO	267	54	>	320	42	STO
022	43 RCL	085	54)	148	43	RCL	205	36	36	268	45	Υ×	321	41	41
023 024	23 23 65 ×	086 087	85 + 53 (149 150	37 33	37 X2	206 207	65 43	X RCL	269 270	53 01	〈 1	322	91	R∕S
024	53 (001	43 RCL	150	54		208	45 35	35	271	55	÷	Ent	er t _{b1} (°	C)
026	53 (089	17 17	152	54	Ś	209	95	=	272	03	3	Line	011	0/
027	43 RCL	090	55 ÷	153	55	÷	210	34	ΓX	273	54	>	323	76	LBL
028 029	02 02 85 +	091 092	53 (53 (154 155	43 14	RCL 14	211 212	99 42	PRT STD	274 275	95 42	= STO	324 325	13 99	C PRT
030	43 RCL	093	43 RCL	156	54	5	213	37	37	276	33	33	326	85	+
031	06 06	094	18 18	157	54	\geq	214	53	(277	99	PRT	327	43	RCL
032 033	54) 55 ÷	095 096	65 × 43 RCL	158 159	54 95	> =	215	53		278 279	53 43	(RCL	328	34	34
033	53 (097	14 14	160	99 99	PRT	216 217	43 11	RCL 11	280	42	42	329 330	95 42	= STO
035	43 RCL	098	54 >	161		R/S	218	65	×	281	65	×	331	09	09
036	02 02	099	22 INV				219	43	RCL	282	43	RCL	332	42	STD
037 038	65 × 43 RCL	100 101	23 LN× 54 >		late δ for	[,] pure nixtures,	220 221	44 54	44 >	283 284	40 65	40 ×	333 334	40 71	40 SBR
039	06 06	102	54)	•	σ and ϵ/l	•	222	55	÷	285	43	RĈL	335 335	60	DEG
040	54)	103	85 +		omponer kaw meth		223	53	(286	46	46	336	42	STO
041	54 >	104	53 (224	01	1	287	54)	337	44	44
042 043	34 ГХ 95 =	105 106	43 RCL 19 19	162 163	76 12	LBL B	225 226	85 43	+ RCL	288 289	99 42	PRT STO	338 339	99 01	PRT R/S
044	55 ÷	107	55 ÷	164	53	(220	43	43	290	30	30	.5.57	71	K/O
045	53 (108	53 (165	53	<	228	65	×	291	53	<	Ent	er t _{b2} (°	C)
046 047	43 RCL	109	53 (42 PCL	166	43 49	RCL	229	43 25	RCL	292	43	RCL			
047 048	08 08 65 ×	110 111	43 RCL 20 20	167 168	49 65	49 ×	230 231	35 33	35 X2	293 294	42 65	42 ×	340 341	99 85	PRT +
049	53 (112	65 X	t69	43	RĈL	232	54		295	43	RĈL	342	43	RCL
050	43 RCL	113	43 RCL	170	38	38	233	42	STD	296	41	41	343	34	34
051	32 32 45 V	$\frac{114}{15}$	14 14 54)	171	33 54	χ2	234	46 54	46	297 298	65 42	X PCI	344 245	95 42	= STO
052 053	65 × 43 RCL	115 116	-54) 22 INV	172 173	54 55) ÷	235 236	54 45) YX	298 299	43 47	RCL 47	345 346	42 41	51U 41
054	33 33	117	23 LNX	174	53	(237	5 3	(300	54	>	347	42	STO
055	54)	118	54)	175	43	RCL	238	01	1	301		PRT	348	09	09

													(0	Continu	ued) Tabl	e IV	
Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
349 4	43 R	RCL	364	00	00	379	52	52	392	60	DEG	407	50	50	422	54	\rightarrow
	00	00	365	43	RCL	380	42	STD	393	53	<	408	45	ΥX	423	45	γ×
351 4	42 S	STO	366	05	05	381	00	00	394	53	(409	53	(424	53	<
352 5	52	52	367	42	STD	382	43	RCL	395	43	RCL	410	01	1	425	02	2
353 4	43 R	RCL	368	01	01	383	53	53	396	13	13	411	85	+	426	55	÷
354 (01	01	369	43	RCL	384	42	STO	397	65	×	412	53	<	427	07	7
355 4	42 8	ЗТΟ	370	51	51	385	01	01	398	43	RCL	413	01	1	428	54	>
356 5	53	53	371	42	STO	386	43	RCL	399	00	00	414	75	-	429	54	>
357 4	43 R	RCL	372	50	50	387	54	54	400	55	÷	415	53	(430	54	\rightarrow
358 5	50	50	373	71	SBR	388	42	STO	401	43	RCL	416	43	RCL	431	54	>
359 4	42 8	ЗΤО	374	60	DEG	389	50	50	402	01	01	417	09	09	432	92	RTN
360 5	54	54	:375	42	STD	390	91	R∕S	403	54	>	418	55	÷			
361 4	43 F	RCL -	376	45	45				404	65	×	419	43	RCL			
362 (04	04	:377	99	PRT	Subro	outine D	JEG	405	53	(420	00	00			
363 4	4218	STO	378	43	RCL	391	76	LBL	406	43	RCL	421	54	>			

00	<i>T</i> _{c1}	23	0.001858 Constant of	Eq. (1) 46	(1+1.3δ ²) ₁ †
01	Pc1	24		47	(1+1.3 δ ²) ₂ †
02	M ₁	25		48	Not used
03	Not used	26 No	ot used	49	1940 Constant of Eq. (10)
04	<i>T</i> _{c2}	27 [50	Z _{RA1}
05	P_{c_2}	28		51	Z _{RA2}
06	M ₂	29 /		52	
07	Not used	30	(<i>e k</i>)1 ^{††}		ed for storing T_{c_1} , P_{c_1} and M_1
08	Р	31	(<i>e</i> / <i>k</i>)2 ^{††}	54	
09	7 †	32	$\sigma_1^{\dagger\dagger}$		
10	Not used	33	$\sigma_2^{\dagger\dagger}$		
11	1.585 Constant of Eq. (12)	34	273.16 (0° C)		
12	Ω_{D}^{\dagger} Defined by Eq. (9)	35	$\delta_1^{\dagger\dagger}$		
13	82.07 (R)	36	δ ₂ ^{††}		
14	(7*) †	37	δ ₁₂ ††		
15	1.0636, A	38	μ_{p_1}		
16	0.1561, <i>B</i>	39	μ_{P2}		
17	0.193, C	40	<i>T_{b1}</i> ††		
18	0.47635, <i>D</i> Constants	41	<i>T</i> _{b2} ††		
19	1.03587, <i>E</i> of Eq. 2	42	1.18		
20	1.52996, <i>F</i>	43	1.3	† Calculated and stored	i by program
21	1.76474, G	44	V ₁ tt		by program, or supplied by user
22	3.89411, <i>H ノ</i>	45	V2TT		made compatible with that in Ta

of the basic relationship Eq. (1) with the following modifications:

$$\Omega_D = \Omega_D [\text{Eq. (2)}] + [0.19(\delta_{12})^2/T^*]$$
(9)

with

$$\delta = [(1940\mu_{\rm e}^2)/V_{\rm h}T_{\rm h}] \tag{10}$$

$$\epsilon/k = 1.18(1 + 1.3\delta^2)T_b$$
 (11)

$$\sigma = [1.585 V_b / (1 + 1.3\delta^2)]^{1/3}$$
(12)

$$\delta_{12} = (\delta_1 \delta_2)^{1/2} \tag{13}$$

$$\epsilon_{12}/k = [(\epsilon_1/k)(\epsilon_2/k)]^{1/2}$$
 (14)

$$\sigma_{12} = (\sigma_1 \sigma_2)^{1/2} \tag{15}$$

Eq. (1), with the modifications required by Eq. (9) through (15), has been programmed. Diffusion coefficients may be calculated by entering P(atm) and press-

ing A, then entering t (°C) and pressing R/S. Assuming that the necessary properties are known and stored in their proper locations, the diffusion coefficient will be calculated, displayed and printed.

The program is listed in Table IV and the storage information in Table V. For an ammonia and diethyl ether system, calculated results are compared in Table VI with experimental data of B. N. and I. B. Srivastava [7]. As for nonpolar substances, the diffusion coefficient is inversely proportional to the absolute pressure at low or moderate pressure.

Calculating required properties

With the exception of the dipole moment, μ_p , the values of the properties required to determine diffusion

Comparison of calculated and experimental values for diffusion coefficients Table VI

System: ethane and *n*-hexane* (*P* = 1 atm)

	D ₁₂ , cm ² /s										
t, °C	Chapman- Cowling	Wilke-Lee	Fuller-Schettler- Gidding	Carmichael Sage-Lacey							
21.1	0.0485	0.0539	0.0597	0.0391							
37.8	0.0541	0.0602	0.0658	0.0498							
54.4	0.0601	0.0667	0.0721	0.0597							
71.1	0.0663	0.0737	0.0786	0.0690							
87.8	0.0728	0.0809	0.0854	0.0781							
104.4	0.0795	0.0884	0.0924	0.0869							

Note: For this system, the diffusion coefficient at a specific temperature is inversely proportional to the absolute pressure, over a modest pressure range

*Values of σ and ϵ/k calculated via Eq. (7) and (8)

System: ammonia and diethyl ether[†] (P = 1 atm)

	Eq. (1), Brokaw	
_t,°C	modification	Srivastava
15.14	0.0881	0.0999
64.34	0.1214	0.137

[†]Values of σ , ϵ/k , and δ calculated by Eq. (10)-(12)

Physical properties used in calculations

	Ethane	<i>n</i> -Hexane	Ammonia	Diethyl ether
М	30.070	86.178	17.031	74.123
<i>Т_Ь</i> , (К)	184.5	341.9	239.1	307.7
<i>Т_с</i> , (К)	305.4	507.4	405.6	466.7
P _c , atm	48.2	29.3	111.3	35.9
$\mu_{ ho}$, debyes		-	1.5	1.3
Z _{RA}			0.24658	0.26444
ω	0.098	0.296	0.250	0.281
ΣV	44.88	126.72	_	_

Data sources: Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, Inc., New York, 1977, and Spencer, C. F., and Adler, S. B., *J. Chem. Eng. Data*,

Vol. 23, 1978. p. 82.

coefficients may be calculated from fundamental data, T_c , P_c , t_b and Z_{RA} . Programs have been included to calculate δ_1 , δ_2 , δ_{12} , $(\epsilon/k)_1$, $(\epsilon/k)_2$, σ_1 , σ_2 , V_{b_1} and V_{b_2} .

culate δ_1 , δ_2 , δ_{12} , $(\epsilon/k)_1$, $(\epsilon/k)_2$, σ_1 , σ_2 , V_{b_1} and V_{b_2} . First, a program calculates T_b values from t_b values. Enter t_{b_1} and press C', and T_{b_1} is calculated, stored and displayed. Next, enter t_{b_2} and press **R/S**, and T_{b_2} is calculated, stored and displayed.

Volumes can be calculated by the Spencer and Danner modification [6] of the Rackett correlation:

$$V_b = (RT_c/P_c) Z_{RA}^{[1+(1-T_r)^{2/7}]}$$
(16)

Enter t_{b_1} and press C, and V_{b_1} is calculated, stored, displayed and printed. Next, enter t_{b_2} and press R/S, and V_{b_2} is calculated, stored, displayed and printed.

The required data are now available to calculate values for δ , (ϵ/k) and σ . Press **B** to calculate, print and store (in the proper locations for the calculation of D_{12}) values for: δ_1 and δ_2 —via Eq. (10); δ_{12} —via Eq. (13); $(\epsilon/k)_1$ and $(\epsilon/k)_2$ —via Eq. (11); σ_1 and σ_2 —via Eq. (12). Programs for calculating these properties are included in Table IV, and the storage information in Table V. As far as possible, the storage information in Table V and II has been made compatible.

All the programs and storage for calculating coefficients for systems containing polar compounds can be placed on two magnetic cards. Partitioning is normal.

For HP-67/97 users

Because the HP program consists of two parts, it is not possible to calculate diffusion coefficients at different temperatures and pressures simply by entering a different temperature and pressure. After the diffusion coefficient of a gaseous mixture has been calculated at a certain temperature and pressure, program A must be entered again into the calculator to calculate the diffusion coefficient at another temperature and pressure.

The results produced by the HP programs will agree within 10% with those of the TI program. As with the TI program, the HP results tend to be higher than the experimental data of Carmichael, Sage and Lacey at lower temperatures, and tend to be lower than the experimental data at higher temperatures.

Tables VII and VIII contain HP program listings, and Table IX offers user instructions.

	Та	b	le	v	1	
--	----	---	----	---	---	--

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Көу	Code	Step	Кеу	Code
001	*LBLA	21-11	015	RCLI	36-46	029	P≢S	18-51	043	STOD	35-14	057	÷	-24
002	SF1	15 11 61	016	$\lambda = 1$	~35	03 0	GSB4	23 64	044	P≓S	16-51	058	γ×	31
003	*LBLB	21-12	017	√ X	54	031	GT06	22 66	045	GSB7	23 07	059	1	61
004	RCLA	36 11	018	STOI	35 46	032	¥LBL1	Z1 01	046	GT06	22-86	060	+	-55
005	÷	- 55	019	GSB3	23 03	033	GSB5	23 05	047	*LBL2	21 62	061	Υ×	31
006	STŨA	35 11	020	STOC	35 13	034	STOC	35 13	048	RCL5	36 05	062	RCLD	36-14
007	R∔	-31	021	₽≓S	16-5i	035	₽≠S	16-51	049	1	61	063	х	-35
008	STOB	35 12	022	GSB3	23 83	036	GSB5	23 05	050	RCL4	36 64	064	RCLØ	36 00
009	F1?	16 23 0i	023	RCLO	36 13	037	RCLC	36-13	051	RCLØ	36 00	065	x	-35
010	GT01	22-61	024	х	-35	038	+	-55	0 52	÷	-24	066	RCL1	36 01
011	GSB2	23-62	025	4X	54.	039	2	02	053	-	-45	067	÷	-24
012	STOI	35 46	026	STOC	35 13	040	÷	-24	054	2	02	068	ST07	35 07
013	P≠S	1 <i>6-</i> 51	027	GSB4	23 64	041	STOC	35 13	055	ENTT	-21	069	178	52
014	GSB2	27 62	028	STOD	35-14	042	GSB7	23-87	056	7	67	070	i	61

Listing for HP version—program A

(Continued) 1	able VII
---------------	----------

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
071	9	0 9	102	÷	-24	133	RCL8	36 0 8	164	RCLD	36 14	195	6	06
072	4	04	103	γx	31	134	X٤	53	165	Х	-35	196	3	03
073	0	00	104	RTN	24	135	Х	-35	166	٩X	54	197	5	65
074	х	-35	105	¥LBL5	21 05	136	1	61	167	STÓD	35-14	198	X	-35
075	RCL6	36 06	106	2	02	137	+	-55	168	RCLA	36-11	199	e×	33
076	X۶	53	107		-62	138	1	Ē 1	169	RCLD	36-14	200	÷	-24
077	Х	-35	108	3	03	139		-62	170	÷	-24	201	+	-55
0 78	RCL4	36 04	109	5	05	140	1	5 1	171	STOE	35-15	202	1	61
079	÷	-24	110	5	05	141	8	38	172	1	01	203	:	-62
080	ST08	35 08	111	1	Ø 1	142	X	-35	173		-62	204	Û	<i>66</i>
081	RTN	24	112	RCL3	36 03	143	RCL4	36 64	174	0	00	205	3	03
082	*LBL3	21 03	113		-62	144	Х	-35	175	6	0 6	206	5	05
083	1	01	114	Ũ	ŨŨ	145	RTN	24	176	0	00	207	8	05
084		-62	115	8	08	146	*LBL7	21 07	177	3	03	208	7	67
085	5	05	116	7	87	147	RCL3	36 03	178	6	06	209	RCLE	36 15
086	8	08	117	λ	-35	148		-62	179	RCLE	$36 \ 15$	210	1	01
087	5	05	118	-	-45	149	1	81	180	•	-62	211	:	-62
0 88	RCL7	36 07	119	RCL1	33 61	150	6	06	181	1	01	212	5	05
089	Х	-35	120	RCLØ	36 00	151	9	63	182	- 5	05	213	2	02
090	1	01	121	÷	-24	152	3	03	183	6	0 6	214	9	0 3
091		-62	122	1	ē 1	153	λ	-35	184	ĺ	01	215	9	63
0 92	3	63	123	ENT1	-21	154		-62	185	Υ×	31	216	6	66
093	RCL8	36 08	124	3	03	155	7	07	186	÷	-24	217	х	-35
094	X٤	53	125	÷	-24	156	9	0 <i>5</i>	187		-62	218	e×	33
095	х	-35	126	γx	31	157	1	01	188	1	01	219	÷	-24
096	1	61	127	÷	-24	158	5	05	189	9	09	220	+	-35
097	+	-55	128	RTN	24	159	÷	-55	190	3	03	221	CF1	16 22 61
098	÷	-24	129	*LBL4	21 04	160	RCLØ	36 00	191	RCLE	36 15	222	R∕S	51
099	i	61	130	1	01	161	Х	-35	192	2	-62			
100	ENTT	-21	131		-62	162	RTN	24	193	4	04			
101	3	83	132	3	63	163	∗LBL 6	21-06	194	7	37			

Listing for HP version—program B

Table VIII

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLA	21-11	027		-62	053	÷	-24	079	1	81	105	Х	-35
002	SF1	18 21 81	028	1	01	654	RCLA	3E 11	0 80	7	07	106	ST09	35 89
003	*LBLB	21-12	029	9	ē9	055	3	63	681	RCLD	36-14	107	RCL7	36 07
004	ĺ	ō1	030	X	-35	056	ENT†	-21	082		-62	108	1	61
005		-62	031	RCLE	38 15	0 57	2	62	083	0	66	109	ENTT	-21
666	- 7	ØT	032	÷	-24	058	÷	-24	084	Ũ	56	110	3	03
007	6	00	033	+	-55	0 59	γ×	31	085	Ø	0 <i>0</i>	111	÷	-24
008	4	24	034	*LBL7	21 Ø7	060	Х	-35	086	5	55	112	$\gamma \mathbf{x}$	31
009	7	07	035	RCLB	36-12	061	STOE	33 15	087	х	-35	113	RCL8	$36 \ 08$
610	4	54	036	Х	-35	062		-62	088	-	-45	114	1	61
011	RCLE	36 15	037	RCLC	36 13	063	Ø	00	089	RCLE	36 15	115	ENTT	-21
012	5	83	038	χ2	53	064	0	00	090	Х	-35	116	3	03
013		-52	039	Х	-35	065	1	61	091	PRTX	-14	117	÷	-24
014	8	68	040	STOC	35 13	066	8	0 3	092	R∕S	51	118	$\gamma \mathbf{x}$	31
015	9	03	041	RCL2	36 02	067	5	85	093	RCLD	36-14	119	+	-55
016	4	$\bar{e}4$	042	ENTT	-21	068	8	0E	094	RCLA	35 11	120	RCLB	3E 12
017	1	Ēi	043	P∓S	16-51	069		-33	095	1	ē1	121	Х	-35
018	1	61	044	RCL2	36 82	070	PRTX	-14	096		-62	122	χ2	53
019	2	-35	0 45	+	-55	071	F1?	16 23 01	0 97	7	07	123	RCL9	36 ØS
020	ex	33	046	X≓Y	1	072	GT01	22 01	098	5	05	124	X₽Y	-41
021	÷	-24	047	RCL2	36 02	073	R∕S	51	099	γ×	31	125	÷	-24
022	Ŧ	-55	048	Х	-35	074	*LBL1	21 BI	100	Σ.	-35	126	PRTX	-14
023	F1?	16 23 01	049	÷	-24	075		-62	101		-62	127	R∕S	51
024	GT07	22 87	05 0	₹X	54	076	Ū	00	102	0	98			
025	RCLI	36 46	051	STOD	35-14	077	Ū	00	103	Ũ	00			
0 26	Xε	53	052	RCLC	36 13	078	2	<i>82</i>	104	1	Øi			

User instructions for HP version Table IX

Steps	Keys
Enter program A	
Enter the following data:	
Temperature constant, 273.16	STO A
Gas constant, 82.07	STO D
First component of gas mixture:	
Critical temperature, T_c , K	STO 0
Critical pressure, Pc, atm	STO 1
Molecular weight	STO 2
Acentric factor, ω	STO 3
(For polar gases)	
Boiling point, T_b , K	STO 4
Compressibility factor, ZBA	STO 5
Dipole moment, μ_{p}	STO 6
Switch data into secondary registers	P ≓ S
Enter data for second component	
Run part 1 of program:	
Enter pressure, atm	ENTER ↑
Enter temperature, °C	·
For nonpolar gases	A
For polar gases	В
When the calculator stops, enter program B.	

Run program by pressing ${\bf A}$ for nonpolar gases or ${\bf B}$ for polar gases. Output will be diffusivity coefficient, cm²/s, first by Chapman-Cowling correlation, then by Wilke-Lee correlation.

To calculate the diffusivity coefficient via Fuller-Schettler-Giddings Intion

Constation.	
Enter ΣV_1	STO 7
Enter ΣV_2	STO 8
Press	R/S

References

- 1. Brokaw, R. S., Ind. Eng. Chem. Proc. Design & Dev., Vol. 8, No. 2, 1969, p. 240. 2. Carmichael, L. T., Sage, B. H., and Lacey, W. H., AIChE J., Vol. 1, 1955,
- p. 385.
- Chapman, S., and Cowling, T. G., "The Mathematical Theory of Non-uniform Gases," Cambridge Univ. Press, New York, 1961. 4. Fuller, E. N., Schettler, P. D., and Giddings, J. C., *Ind. Eng. Chem.*, Vol. 58, No. 5, 1966, p. 18.
- 5. Nuefeld, P. D., Janzen, A. R., and Aziz, R. A., J. Chem. Phys., Vol. 57, No. 3,
- 1972, p. 1100. 6. Spencer, C. F., and Danner, R. P., J. Chem. Eng. Data, Vol. 17, No. 2, 1972, p. 236.
- 7. Srivastava, B. N., and Srivastava, I. B., J. Chem. Phys., Vol. 38, 1963, p. 1183.
- Chem. Phys., Vol. 38, 1963, p. 1183.
 Tee, L. S., Gotoh, S., and Stewart, W. E., Ind. Eng. Chem. Fund., Vol. 5, 1966, pp. 356 and 363.
- 9. Wilke, C. R., and Lee, C. Y., Ind. Eng. Chem., Vol. 47, No. 6, 1955, p. 1253.

Predict liquid-phase diffusion coefficients

Programs for the TI-59 calculator determine diffusion coefficients in dilute two-component solutions.

James H. Weber, University of Nebraska*

Diffusion coefficients in liquid phases, unlike those in vapor phases, depend on concentration. The relationships presented are only valid for dilute solutions i.e., solute concentrations no greater than 10%. Indeed, the lower the solute concentration, the more accurate the calculated coefficient. Because of the concentration dependence, the solute and solvent must be specified. In this article, solute is called Component A, and solvent, Component B.

A number of correlations have been suggested for predicting diffusion coefficients in dilute liquid solutions. Of these, three are programmed here: the Wilke-Chang [1], Scheibel [2] and Reddy-Doraiswamy [3].

Wilke-Chang relationship

Wilke and Chang proposed:

$$D_{AB}^{o} = 7.4 \times 10^{-8} [(\phi M_B)^{1/2} T / \eta_B V_A^{0.6}]$$
(1)

The dimensionless quantity ϕ is the association factor of the solvent. Its value is 1—except for water, 2.6; methanol, 1.9; and ethanol, 1.5.

The program for Eq. (1) is listed in Table I. If values for the required variables have been stored in the locations designated in Table II, D_{AB}^{o} (in cm²/s) will be calculated, printed and displayed by entering t (°C) and pressing the A key. Calculated and experimental results for cyclohexane (solute) and benzene (solvent) are compared in Table III.

Scheibel relationship

Eq. (2) and (3) represent Scheibel's correlation:

$$D^o_{AB} = KT/\eta_B V_A^{1/3} \tag{2}$$

$$K = (8.2 \times 10^{-8})[1 + (3V_B/V_A)^{2/3}]$$
(3)

Eq. (3) applies generally; three exceptions are: $K = 25.2 \times 10^{-8}$, when water is the solvent, and $V_A < V_B$; $K = 19.8 \times 10^{-8}$, when benzene is the solvent, and $V_A < 2V_B$; and $K = 17.5 \times 10^{-8}$ for solvents other than water and benzene, when $V_A < 2.5 V_B$.

Pressing **B'** will calculate, display, print and store (at Location 09) $K \times 10^8$. (Note that the factor 10^{-8} is

*For information about the author, see p. 77.

Originally published March 7, 1983.

taken into account in subsequent calculations.) This value is used in the determination of D^o_{AB} , except in the three special cases just cited.

After $K \times 10^8$ has been computed and stored, D_{AB}° is calculated, displayed and printed by entering t (°C) and pressing **B**. Programs for Eq. (2) and (3) are listed in Table I, and the storage information in Table II. Calculated and experimental results are again compared in Table III.

Reddy-Doraiswamy relationship

Reddy and Doraiswamy proposed:

$$D_{AB}^{o} = K' M_{B}^{1/2} T / \eta_{B} (V_{A} V_{B})^{1/3}$$
(4)

Here, $K' = 10 \times 10^{-8}$ if $V_B/V_A < 1.5$; and 8.5×10^{-8} if $V_B/V_A > 1.5$.

The program for Eq. (4) includes the selection and storage of the proper value of K' (Table I and II). Therefore, to calculate, display and print D^o_{AB} (cm²/s), enter t (°C) and press C.

Calculated and experimental results are again compared in Table III.

Liquid volume and viscosity

In the preceding calculation, the liquid volume at the normal boiling point of both the solute and solvent may be required, and the liquid viscosity of the solvent at temperature t is required. To facilitate the computation of D_{AB}^{o} , programs for calculating these two properties are included in Table I.

Programmed for liquid volumes is the modification of the Rackett equation by Danner and Spencer [6]:

$$V_{s} = (RT_{c}/P_{c})Z_{RA}^{[1+(1-T_{r})^{2/7}]}$$
(5)

To calculate, display, print and store V_A (cm³/g-mol), enter t_{bA} (°C) and press **D**. To calculate, print and store V_B , enter t_{bB} (°C) and press **R/S**. To have V_B displayed, the command **RCL 03** must be inserted before **R/S** at Step 180.

If viscosity is not known, it can be estimated by Thomas's relationship [7]:

$$\log[8.569(\eta_L/\rho_L^{1/2})] = \theta[(1/T_r) - 1]$$
(6)

Listed in Table I is the program for Eq. (6) and the

LIQUID-PHASE DIFFUSION COEFFICIENTS 87

	calculating D^o_{AB} by the wamy correlations, and				Table I
Location Code Key	Location Code Key	Location Code Key	Location Code Key	Location Code Key	Location Code Key
Wilke-Chang correlation	058 01 01	Spencer-Danner	177 İ9 19	238 43 RCL	303 99 PRT
Enter <i>t</i> (°C)	059 65 × 060 43 RCL	correlation Enter <i>t_{bA}</i> (°C)	178 42 STO 179 13 13	239 21 21 240 65 ×	304 91 R/S
000 76 LBL 001 11 A	061 02 02 062 45 Y×	117 76 LBL	180 91 R/S	241 43 RCL 242 14 14	K via Eq. (3) 305 76 LBL
002 99 PRT	063 53 (118 14 D 119 99 PRT	Subroutine SIN 181 76 LBL	243 55 ÷	306 17 B° 307 53 (
003 85 + 004 43 RCL	064 01 1 065 55 ÷	120 85 + 121 43 RCL	182 38 SIN	244 43 RCL 245 15 15	308 53 (
005 08 08 006 95 =	066 03 3 067 54)	122 08 08	183 53 (184 53 ()	246 54) 247 65 ×	309 53 (310 03 3
007 42 STO	068 54)	123 95 = 124 42 STD	185 43 RCL 186 21 21	248 53 (311 65 × 312 43 RCL
008 05 05 009 65 ×	069 95 = 070 99 PRT	125 20 20 126 71 SBR	187 65 ×	249 43 RCL 250 16 16	313 03 03
010 53 (011 43 RCL	071 91 R/S	127 38 SIN 128 99 PRT	188 43 RCL 189 11 11	251 45 YX 252 53 (315 43 RCL
012 04 04		129 42 STO	190 55 ÷ 191 43 RCL	253 01 1	316 02 02 317 54)
013 65 × 014 43 RCL	Reddy-Doraiswamy correlation	130 02 02 131 91 R/S .	192 12 12	254 85 + 255 53 (318 45 Y× 319 53 (
015 00 00 016 54)	Enter <i>t</i> (°C)	Enter t _{bB} (°C)	193 54) 194 65 ×	256 01 1 257 75 -	320 02 2
017 34 FX	072 76 LBL	132 99 PRT	195 53 (196 43 RCL	258 43 RCL	321 55 ÷ 322 03 3
018 65 × 019 43 RCL	073 13 C 074 99 PRT	133 85 + 134 43 RCL	197 13 13 198 45 Y×	259 22 22 260 54)	323 54) 324 54)
020 07 C7 021 65 ×	075 85 + 076 43 RCL	135 08 08 136 95 =	199 53 (261 45 Y× 262 53 (325 85 +
022 43 RCL	077 08 08	137 42 STO	200 01 1 201 85 +	263 02 2	326 01 1 327 54)
023 06 06 024 95 =	078 95 = 079 42 STO	138 20 20 139 43 RCL	202 53 (203 01 1	264 55 ÷ 265 07 7	328 65 × 329 08 8
025 55 ÷ 026 53 (080 05 05 081 71 SBR	140 11 11 141 42 STO	204 75 -	266 54) 267 54)	330 93 .
027 43 RCL 028 01 01	082 30 TAN 083 43 RCL	142 17 17 143 43 RCL	205 53 (206 43 RCL	268 54) 269 54)	331 02 2 332 95 =
029 65 X	084 05 05	144 12 12	207 20 20 208 55 ÷	270 55 ÷	333 42 STD 334 09 09
030 43 RCL 031 02 02	085 65 × 086 43 RCL	145 42 STO 146 18 18	209 43 RCL	271 43 RCL 272 00 00	335 99 PRT 336 91 R/S
032 45 Y× 033 93 .	087 00 00 088 34 FX	147 43 RCL 148 13 13	210 11 11 211 54)	273 95 = 274 35 1/X	Subroutine TAN
034 06 6	089 65 ×	149 42 STD	212 54) 213 45 Y×	275 34 FX	337 76 LBL
035 54) 036 95 =	090 43 RCL 091 10 10	150 19 19 151 43 RCL	214 53 (215 02 2	276 42 STO 277 23 23	338 30 TAN 339 53 (
037 99 PRT 038 91 R/S	092 65 × 093 43 RCL	152 14 14 153 42 STD	216 55 ÷	278 53 (279 53 (340 43 RCL 341 03 03
	094 06 06	154 11 11 155 43 RCL	217 07 7 218 54)	280 43 RCL	342 55 ÷
Scheibel correlation Enter <i>t</i> (°C)	095 95 = 096 55 ÷	156 15 15	219 54) 220 54)	281 22 22 282 35 1/X	343 43 RCL 344 02 02
039 76 LBL	097 53 (098 43 RCL	157 42 STO 158 12 12	221 54)	283 75 - 284 01 1	345 54) 346 75 -
040 12 B 041 99 PRT	099 01 01 100 65 ×	159 43 RCL 160 16 16	222 92 RTN Thomas correlation	285 54) 286 65 ×	347 43 RCL 348 26 26
042 85 ÷	101 53 (161 42 STO	Enter t (°C)	287 43 RCL	349 95 =
043 43 RCL 044 08 08	102 43 RCL 103 02 02	162 13 13 163 71 SBR	223 76 LBL 224 15 E	288 24 24 289 54)	350 77 GE 351 39 C⊡S
045 95 = 046 42 STO	104 65 × 105 43 RCL	164 38 SIN 165 42 STO	225 99 PRT 226 85 +	290 22 INV 291 28 LOG	352 01 1 353 00 0
047 05 05	106 03 03	166 03 03 167 99 PRT	227 43 RCL 228 08 08	292 65 × 293 53 (354 42 STO
048 65 × 049 43 RCL	108 45 Y×	168 43 RCL	229 95 =	294 43 RCL	$355 10 10 \\ 356 00 0$
050 09 09 051 65 ×	109 53 (110 01 1	169 17 17 170 42 STO	230 55 ÷ 231 43 RCL	295 23 23 296 55 ÷	357 77 GE 358 31 LRN
052 43 RCL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171 11 11 172 43 RCL	232 14 14 233 95 =	297 43 RCL 298 25 25	359 08 8 360 93 .
054 95 =	113 54)	173 18 18	234 42 STO	299 54)	361 05 5
055 55 ÷ 056 53 (114 95 = 115 99 PRT	174 42 STO 175 12 12	235 22 22 236 53 (300 95 = 301 42 STO	362 42 STO 363 10 10
057 43 RCL	116 91 R/S	176 43 RCL	237 53 (302 01 01	364 92 RTN

ora	ge information for Ta	ble I programs	Table I
00	M _B	10 K'^* , Reddy-Doraiswamy constant 20 T_b^* , Boiling poi	int, K
01	μ_{B}^{\dagger}	11 T _{CA} 21 82.07 = R	
02	V _A †	12 P _{cA} 22 T _{rb} *	
03	V_B^{\dagger}	13 $(Z_{RA})_A$ 23 $\rho_L^{1/2*}$	
04	φ	14 T_{cB} 24 θ , Thomas cons	tant
05	τ*	15 <i>P_{cB}</i> 25 8.569, Eq. (6) c	constant
06	0.00000001	16 (<i>Z_{RA}</i>) _B 26 1.499 Ratio of	V_B/V_A – used in determination of K'
07	7.4, Eq. (1) constant	17) Used for static ground in solution	n of Eq. (4)
08	273.16 (0°C)	Used for storing properties of Component A 18 during calculations of V _R *Calculated and	l stored by program
09	\mathcal{K}^{\dagger} , Scheibel constant		l stored by program or supplied by user

Comparison of calculated and experimental coefficient values for cyclohexane-benzene system Table III

D°_{AB} values are in 10^{-5} cm ² /s										
<i>t,</i> ℃	Wilke-Chang	Scheibel	Reddy-Doraiswamy	Sanni, et al.						
25	1.84*	1.89*	1.93*	2.09						
	2.82†	2.90†	2.97†							
40	2.39*	2.46*	2.51*	2.65						
	3.41†	3.51†	3.59†							
60	3.13*	3.22*	3.29*	3.45						
	4.30†	4.43†	4.52†							

*Experimental values of viscosity for benzene, used in calculating coefficient †Viscosity values calculated via Eq. (6), used in calculating coefficient

Physical properties used in calculations

	Cyclohexane	Benzene
М	84.162	78.114
<i>Т_с,</i> К	553.4	562.1
P _c , atm	40.2	48.3
<i>Т_b</i> , К	353.9	353.3
Z _{RA}	0.27286	0.26967
θ		0.634
η, cP		0.609 (25°C)
		0.492 (40°C)
		0.400 (60°C)
of Gases and Liquids	," 3rd ed., McGraw-Hill . <i>Eng. Data</i> , Vol. 23, 19	d Sherwood, T. K., "Properties Inc., 1977; Spencer, C. F., and 78, p. 82; API Project 44,

Spencer-Danner correlation for calculating density. Also, θ , which must be stored in Location 24, can be determined from data given in Table IV. Viscosity can now be displayed, printed and stored by entering t (°C) and pressing E.

Partitioning is normal (459.59). The programs and storage information require both tracks of one card and one track of a second.

Note that, in all the correlations given, the diffusion coefficient is inversely proportional to the viscosity of the solution. Hence, any error in viscosity produces a

•	oup contribu of $θ$, Eq. (6)		Table IV
Carbon	-0.462	Sulfur	0.043
Hydrogen	0.249	Double bond	0.478
Oxygen	0.054	С ₆ Н ₅ —	0.385
Chlorine	0.340	CO (ketones, esters)	0.105
Bromine	0.326	CN (cyanides)	0.381
lodine	0.335		

Nomenclature

- D^o_{AB} Diffusion coefficient, cm²/s
- K Constant, Eq. (3)
- K' Constant, Eq. (4)
- M Molecular weight
- R Gas law constant, 82.07 $(atm)(cm^3)/(g-mol)(K)$
- T Absolute temperature, K
- V Molal volume at normal boiling point, cm³/g-mol
- Z_{RA} Rackett compressibility factor
- θ Thomas viscosity constant, Eq. (6) and Table IV
- η Viscosity, cP
- ρ Density, g/cm³
- ϕ Association factor, Eq. (1)

Superscripts

o Infinite dilution

Subscripts

- A Solute L Liquid
- B Solvent r Reduced
- c Critical

corresponding error in the diffusion coefficient. Because results from relationships such as Eq. (6) can be considerably in error, experimental data should be used if they are available.

For HP-67/97 users

The HP program listing is contained in Table V, and Table VI offers user instructions. For the cyclohexanebenzene system example given for the TI program, Table VII summarizes the HP version results.

Program listing for HP version

_	-	-	-	
т	-		-	\
	а	n	æ	v

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLA	21 11	036	GTO9	22 09	e71	~	-35	106	÷	-24	141	ENT†	-2.
002	GSB8	27 88	03 7	*LBLC	21 13	672	1	21	107	$\nabla \Sigma$	54	142	.7	83
003	RCLØ	<i>26</i> 83	0 38	GSB8	<i>23</i> 08	073	EEX	-23	168	÷	-24	143	÷	-2-
004	RCL4	3E 0 4	039	RCLØ	36 00	874	CHS	- 22	109	ST01	35 e:	144	Υx	3.
005	Χ	-35	040	ĮΧ	54	075	9	03	110	PRTX	-14	145	1	e.
006	JX	54	041	X	-35	076	×	-35	111	R∕S	51	146	+	-5
0 07		-35	042	RCL1	3E 01	077	6709	22 09	112	RCL7	36 07	147	RCLC	36 1.
008	RCL1	36 81	84 3	÷	-24	678	*LBLD	21 14	113	*LBLe	ZI 16 15	148	X∓Y	-4,
009	÷	-24	04 4	R CL2	36 02	079	STOE	35 (8	114	SFØ	16 21 00	149	γ×	- 3.
010	RCL2	36 0 2	645	RCL3	36 03	080	R∔	-31	115	*LBLE	21 15	150	RCL8	38 00
011		-62	046	Χ	- 35	081	ST07	35 07	116	STOE	35 86	151	2	-35
01 2	6	<i>36</i>	647	1	0 1	8 82	₽4	-31	117	ST05	ZE 12	152	F8?	18 23 8
013	үx	31	648	ENTT	-21	0 83	STCS	35 06	118	R↓	-31	153	GTOi	
014	÷	-24	049	3	63	084	R∔	-31	119	STOC	35 13	154	ST02	35 0
015	7	07	<i>050</i>	÷	-24	085	ST03	35 63	120	R↓	-31	155	R∕S	5
01E		-62	051	Υ×	31	E 36	RCL8	36 ØS	121	STOD	35 14	156	*LBL1	21 B
017	4	5 4	052	÷	-24	087	GSE8	23 0 9	122	F. 🗸	-31	157	CFO	16 22 0
018	EEX	-23	053	STOA	35 11	888	ST08	35 03	123	STOE	35-15	158	ST03	35 0
019	CHS	-22	054	RCL3	3E 83	0 89	*LBL a	21 16 14	124	8	38	159	R∕S.	5.
620	8	<u>98</u>	055	RCL2	36 0 2	690	RCL6	36 05	125	2	02	150	*LBLS	21 e .
021	x	-35	05 €	÷	-24	091	RCL8	36 08	126		-62	161	2	0.
022	GT09	22 89	057	i	01	0 92	÷	-24	127	Ø	ØE	162	7	61
023	*LBLB	21 12	0 58		-62	693	1	Ø.	128	7	67	163	3	0.
024	GSB8	23 36	059	5	05	894	-	-45	125	Х	-35	164		<i>6</i> :
025	RCL9	3E 09	860	X≟Y?	16-35	095	RCL7	36 07	130	RCLD	35-14	165	1	Ø.
626	x	-35	061	GT0a	22 16 11	096	X	-35	131	÷	-24	166	6	81
027	RCL1	36 81	062	1	01	097	18×	1E Z3	132	ST08	35 0 8	167	÷	-5
028	÷	-24	663	0	00	098	8	38	173	RCLB	76-12	168	RTN	2-
029	RCL2	36 32	864	GT07	22 07	899	_	-62	134	GSB8	23 0 8	169	*LBL9	21 0
030	1	61	065	*LBLa	21 16 11	190	5	05	135	RCLE	36 - 15	170	PRTX	- 1
<i>0</i> 31	ENT?	-21	066	8	09	101	6	ØE	136	÷	-24	171	SPC	-16-1.
932	3	03	867	-	-62	102	9	60	137	CHS	-22	172	R/S	51
033	÷	-24	068	5	05	103	÷	-24	138	1	81		-	
034	γx	31	069	#LBL7	21 07	104	RCLZ	36 07	139	÷	-55			
035	÷	-24	070	RCLA	36 11	105	RCLO	36 30	i 40	2	82			

User instructions for HP version Table VI

Clear flag 0	CLF0
For Wilke-Chang equation:	
$M_{\rm P}$, solvent molecular weight ϕ , association factor Viscosity of solvent, cP $V_{\rm A}$, solute molecular volume t, temperature, °C	STO 0 STO 4 STO 1 STO 2 Key A
Output will be diffusion coefficient, cm ² /s	
For Scheibel equation:	
Viscosity of solvent cP V_A , solute molecular volume K, constant of Eq., (3) t, temperature, °C	STO 1 STO 2 STO 9 Key B
Output will be diffusion coefficient, cm ² /s	
For Reddy-Doraiswamy equation:	
<i>M_B</i> , solvent molecular weight Viscosity of solvent, cP	STO 0 STO 1

(Continued) Table VI

V ₄ , solute molecular volume	STO 2
V _B , solvent molecular volume	STO 3
t, temperature, °C	Key C
Output will be diffusion coefficient, cm ² /s	
If viscosities are not known, they may be	obtained as follows:
$V_{\rm B}$, solvent molecular volume	ENTER ↑
T_{c_1} solvent critical temperature, K	ENTER 1
θ, Thomas constant (Eq. (6))	ENTER 1
t, temperature, °C	Key D
Output will be viscosity in cP.	
If molecular volumes are not known, the	y may be obtained as follows:
T_c , critical temperature, K	ENTER ↑
P_{c} , critical pressure, atm	
Z_{RA} compressibility factor	
t, boiling point, °C	Key E (for solute)
	Key e (for solvent)

Output will be molecular volume, cm3/g-mol.

Comparison of calculated and experimental coefficient values for cyclohexane-benzene system, **HP version**

Table VII

			Reddy-	
t, ℃	Wilke-Chang	Scheebel	Doraiswamy	Sanni et al.
25	1.47*	1.98*	1.93*	2.09
	2.33 [†]	3.15 [†]	3.07 [†]	
40	1.91*	2.58*	2.51*	2.65
	2.79 [†]	3.77 [†]	3.68 [†]	
60	2.49*	3.37*	3.2 9 *	3.45
	3.47†	4.70 [†]	4.58 [†]	

*Experimental values of viscosity of benzene used in calculating diffusion coefficient. [†]Viscosity values calculated via Eq. (6) used in calculating diffusion coefficient.

References

- WHRC, U. K., and Chang, P., AIChE J., Vol. 1, 1955, p. 264.
 Scheibel, E. G., Ind. Eng. Chem., Vol. 46, 1954, p. 2007.
 Reddy, K. A., and Doraiswamy, L. K., Ind. Eng. Chem. Fund., Vol. 6, 1971, p. 424.

5. Ibid., Vol. 18, 1973, p. 317.

- 6. Danner, C. F., and Spencer, R. P., J. Chem. Eng. Data, Vol. 17, 1972, p. 236.
- 7. Thomas, L. H., J. Chem. Soc., 1946, p. 573.

^{4.} Sanni, S. A., and Hutchinson, P., J. Chem. Eng. Data, Vol. 16, 1971, p. 424.

Section IV Fluid Flow

Program sizes control valves for liquids Program sizes pipe and flare manifolds for compressible flow Calculating two-phase pressure drop Program predicts pressure drop for steam flow Estimate heat-tracing requirements for pipelines Estimate equivalent line lengths of pipe circuits Program predicts pressure drop for gas flow across an orifice meter

Program sizes control valves for liquids

This HP-67/97 program calculates the sizing coefficient for control valves in liquid service, even in cases involving reducers, choked flow and laminar or transitional flow.

Jon F. Monsen, Jamesbury Corp.

A correctly-sized control valve achieves a high quality of control at a reasonable cost. Too small a valve will not pass the required flow. Too large a valve will cost more than a correctly-sized smaller valve, and will not control the flow as well, because it will not use its full control range.

The procedure for sizing a control valve is:

1. Calculate the required valve sizing coefficient (C_v) based on process data and manufacturers' valve data.

2. Consult valve manufacturers' tables of C_v vs. valve size. Then select the smallest valve with a C_v rating greater than or equal to the required C_v .

3. Check to see that the reducers required to install the valve will not change the valve selection. Choose a new valve with a greater C_v if necessary.

4. Check to see that the flow through the valve is not choked (avoid choked flow if possible).

When the liquid flow is turbulent, and the effects of

The program uses this	algorithm			Table
Step	Equations and logic	5.	Calculate C_v	r r2 -1/3
1. Calculate P _{1_{viv}}	$\begin{split} P_{1_{\text{vlv}}} &= P_1 - \Delta P_{\text{inlet reducer}} \\ \Delta P_{\text{inlet reducer}} &= \\ & \left[0.5 \left(1 - \frac{d^2}{D^2} \right)^2 + 1 - \frac{d^4}{D^4} \right] \frac{q^2 G_f}{K_E d^4} \\ (P_1 \neq 0 \text{ when choked-flow option included}) \\ (\Delta P_{\text{inlet reducer}} \neq 0 \text{ when reducer option included}) \\ \end{split}$		(laminar-flow option)	$F_{s} = \left[\frac{F_{d}^{2}}{F_{L}}\right]^{1/3}$ $C_{v_{\text{(taminar)}}} = \frac{1}{F_{s}} \left[\frac{q\mu}{K_{c}\Delta P}\right]^{2/3}$ $F_{R} = 0.64 + 0.17 \ln \frac{C_{v_{\text{(turbulent)}}}}{C_{v_{\text{(taminar)}}}}$
2. Calculate ΔP_{vlv}	$\Delta P_{\rm viv} = \Delta P_{\rm sizing} - \Delta P_{\rm reducers}$ $\Delta P_{\rm reducers} = \left[1.5\left(1 - \frac{d^2}{D^2}\right)^2\right] \frac{q^2 G_I}{K_E d^4}$ $(\Delta P_{\rm reducers} \neq 0 \text{ when reducer option included})$	6	If $\mu = 0$ Display C_{μ}	If $F_R < 0.54$, then $C_v = C_{v_{(\text{laminar})}}$ If $0.54 \le F_R < 1$, then $C_v = \frac{C_{v_{(\text{turbuler})}}}{F_R}$ If $F_R \ge 1$, then $C_v = C_{v_{(\text{turbulent})}}$ $C_v = C_{v_{(\text{turbulent})}}$ Stop here unless checking for choked
3. Calculate ΔP If $P_1 \neq 0$ (choked-flow option)	$\begin{split} \Delta \boldsymbol{P}_{T_{\text{viv}}} &= \\ \boldsymbol{F}_{L}^{2} \Big[\boldsymbol{P}_{1_{\text{viv}}} - \boldsymbol{P}_{\text{v}} \Big(0.96 - 0.28 \sqrt{\frac{\boldsymbol{P}_{v}}{\boldsymbol{P}_{c}}} \Big) \Big] \\ \text{If } \Delta \boldsymbol{P}_{\text{viv}} &> \Delta \boldsymbol{P}_{T_{\text{viv}}}, \text{ then } \Delta \boldsymbol{P} = \Delta \boldsymbol{P}_{T_{\text{viv}}} \\ \text{If } \Delta \boldsymbol{P}_{\text{viv}} &\leq \Delta \boldsymbol{P}_{T_{\text{viv}}}, \text{ then } \Delta \boldsymbol{P} = \Delta \boldsymbol{P}_{\text{viv}} \end{split}$		Check for choked flow If $P_1 = 0$ If $P_1 \neq 0$ (choked-flow option)	flow
If $P_1 = 0$ 4. Calculate $C_{v_{(turbulent)}}$	$\Delta P = \Delta P_{vlv}$ $C_{v_{(turbulent)}} = \frac{q}{K_D} \sqrt{\frac{G_f}{\Delta P}}$			If $\Delta P_{\text{sizing}} > \Delta P_{T}$ then flow is choked If $P_v > P_1 - \Delta P_{\text{sizing}}$, then display ''1.00'' (flashing) If $P_v \le P_1 - \Delta P_{\text{sizing}}$, then display ''2.00'' (cavitating)
		8 .	Display ΔP_T	End

94 FLUID FLOW

choked flow and reducers are ignored, the expression for C_v reduces to:

$$C_v = \frac{q}{K_D} \sqrt{\frac{G_f}{\Delta P_{\text{sizing}}}}$$

This expression is so simple that its solution does not require a programmable calculator. But most installations do require reducers, and many situations demand that the designer check for flashing or cavitation in the valve. When these factors are considered, the calculations get very complicated. In such cases, a calculator program can simplify the task considerably.

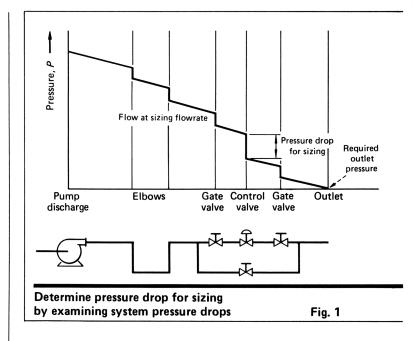
What the program can do

In the simplest case, the program uses the above equation to calculate C_v . But the user has the option to check and correct for reducers, choked flow, and laminar or transitional flow. These options may be included or omitted in any combination, so the user can solve a problem as quickly as possible.

Table I shows the algorithm and equations used by

Nomenclature

C_{v}	Valve sizing coefficient
C_v (laminar)	Valve sizing coefficient when flow is
	fully laminar
C_v (turbulent)	Valve sizing coefficient when flow is
	fully turbulent
d	Nominal valve size
D	Internal diameter of the piping
F_d	Valve-style modifier
F_L	Rated liquid pressure-recovery factor
	(Table V)
F_{R}	Reynolds number factor
F_{s}	Laminar-flow factor
G_{f}	Specific gravity at flowing temperature
K_C, K_D, K_E	Constants stored on data card
	(Table II)
P_1	Absolute static pressure upstream of
	inlet reducer
$P_{1 \text{ vlv}}$	Absolute static pressure at valve inlet


Table II

Program listing for HP-67/97 calculator

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
	Store data		036	RCL6	36 86	072	RCL7	36 67	106	2	02	Cal	culate $C_{V(la}$	aminar)
001	*LBLA	21 11	037	÷	-24	073	RCL6	36 06	107	8	08	137	RCLO	36 00
002	ST02	35 02	038	X2	53	074	÷	-24	108	х	-35	138	х	-35
903	£↓	-3i	639	-	-45	075	χ2	53	109	-	-45	139	RCLC	36 13
004	STDØ	35 03	040	χz	53	076	-	-45	110	RCL5	36 05	140	÷	-24
005	R∕S	51	041	2	02	077	χ2	53	111	х	-35	141	P∓S	16-51
006	*LBLa 21	15 1î	<i>842</i>	÷	-24	078	1	01	112	-	-45	142	RCL4	36 04
007	ST01	35 ði	043	1	61	079		-62	113	RCL8	36 08	143	P‡S	16-51
008	R∕S	51	044	+	-55	080	5	85	114	χ2	53	144	÷	-24
009	*LBLB	21-12	645	RCL7	36 07	081	Х	-35	115	х	-35	145	χ2	53
010	ST03	35 83	846	RCL6	38 06	082	х	-35	116	P‡S	16-51	146	3	03
Ø11	R∕S	51	047	÷	-24	083	P≠S	16-51	117	ST06	35 06	147	178	52
012		15-12	048	82	53	084	ST05	35 05		$\Delta P = \text{small}$	er of	148	γx	31
613	ST08	35 08	049	χ2	53	085	P≠S	16-51		$\Delta P_{\rm viv}$ and $\Delta P_{\rm viv}$	PTVIV	149	RCL9	36 03
014	R↓	-31	050	-	-45	086	CHS	-22	118	RCL2	36 02	150	χ2	53
015	ST05	35 05	051	RCL9	36 00	087	RCL2	36 02	119	X≟Y?	16-35	151	RCLS	36 ØS
016	R↓	-31	052	82	53	088	+	-55	120	GT03	22 03	152	÷	-24
017	ST04	35-84	053	RCL1	38 31	089	P‡S	16-51	121	RCL6	36 06	153	3	83
018	R∕S	51	054	Х	-35	090	ST02	35 02	122	*LBL3	21 03	154	178	52
019	*LBLC	21 13	055	RCLE	36 15	691	P≓S	16-51	123	ST04	35 04	155	γx	31
020	ST07	35 <i>e</i> 7	056	÷	-24	If P ₁	= 0, skip ch	oked-flow	Cal	culate C _{V (tu}		156	÷	-24
021	R∕S	51	057	RCL7	36 07		option						Calculate /	R
022		16 13	058	χ2	53	692	RCL3	36 03	124	1/X	52	157	÷	-24
023	ST06	Z5 06	059	Χ2	53	093	X=0?	16-43	125	P≢S	16-51	158	ENT†	-21
024	R∕S	51	060	÷	-24	094	GTO2	22 02	126	RCL1	36 01 75	159	LN	32
025	*LBLD	21 14	061	ENTT	-21		Calculate Δ	P _{viv}	127	X	-35	160		-62
026	ST08	35 08	0 62	R↓	-31	0 95	P≢S	16-51	128	√X DCLA	54 76 30	161	1	61
027	Æ∕S	51	063	x	-35	096	RCL3	36 03	129	RCLØ	36 00 75	162	7	07
028		16-14	064	CHS	-22	097	P≢S	16-51	130	X	-35	163	X	-35
629	STOA	33 11	065	RCL3	36 03	0 98	,	-62	131	RCLD	36 14	164		-62
630	F↓	-31	066	÷	-55	099	9	69	132	÷	-24	165	6	$\partial \mathcal{E}$
031	ST09	35 09	067	P≢S	18-51	100	6	06	133	STOB	35-12	166	4	04
032	R∕S	51	068	STO3	35 03	101	RCL5	36 03	lf μ	= 0, skip lam	inar-flow	167	+	-55
	Calculate P _{1 v}	lv	069	P≠S	16-51	102	RCL4	36 04		option		168		-62
033	*LBLE	21 15		Calculate ΔA	^D T vlv	103	÷	-24	134	RCLA	36-11		Calculate	C _V
034	1	61	070	RŤ	16-31	104	1 X	54	135	X=0?	16-43	169	5	95
835	RCL7	36 87	071	1	81	105		-62	136	GT08	22 05	170	4	04
						-								

P_{c}	Thermodynamic critical pressure of liq-
L.	uid
P_v	Absolute vapor pressure of liquid at
	inlet temperature
ΔP	Pressure drop used in sizing equations
$\Delta P_{ ext{inlet reducer}}$	Pressure drop due to inlet reducer
$\Delta P_{ m reducers}$	Combined pressure drop due to inlet
	and outlet reducers
$\Delta P_{\rm sizing}$	Pressure drop for sizing purposes across
	the valve-reducer combination
ΔP_T	Terminal or maximum pressure drop
	across the valve-reducer combination
	that allows nonchoked flow
$\Delta P_{T vlv}$	Terminal or maximum pressure drop
	across the valve that allows nonchoked
	flow
$\Delta P_{\mathbf{vlv}}$	Pressure drop across the valve
<i>q</i>	Volumetric flowrate
μ	Viscosity, cP

	(Contin	uec	1) T	at
	ep Key		Ca	ode
2	2 GT05		22	ø
7	3 RCL3		35	
ć	4 RCL2		36	
ĺ	5 -			-4
2	6 RCL5		36	6
3	7 X <u>4</u> Y?		16	
ļ.	8 GT06		22	
k.	9 1			ē
3	ð GTOe	22	16	1
	1 *LBL2		21	
9	2 P#S		16	
3	3 RCL2		36	
3	4 ST03		22	
ş	5 *LBL5		21	
7	6 0			0
3	7 GTOe	22	16	
ŕ	8 *LBL6		21	
	9 2		- 1	Ø
2	0 GTOe	22	16	-
aç	Display code			-
	1 *LBLe	21	-	
5	2 R/S			5
3	3 RCLI		36	
	4 R/S		•••	5
ł	Display Δ	P_		•
nt		" 7		
5				
5				
5				
ſ				
h				
١d				
1				
;				
2				
2				

Key principles

Pressure drop for sizing. The pressure drop used to size the control valve $(\Delta P_{\text{sizing}})$ should not be an arbitrary number. In operation, the automatic control equipment will adjust the control-valve opening until the desired *flowrate* is achieved. The pressure drop used for sizing should be the actual pressure drop across the valve at the sizing flowrate.

Fig. 1 shows how to calculate ΔP_{sizing} : Start with the system pressure drop. Subtract from it the pressure drop at the sizing flowrate of all pipe, fittings and equipment in the flow system. The *remainder* is the actual pressure drop across the control valve at the sizing flowrate—this remainder is ΔP_{sizing} .

Choked flow. As the liquid passes the point of greatest restriction inside the control valve, its velocity reaches a maximum and its pressure falls to a minimum. If the pressure falls below the liquid's vapor pressure, vapor bubbles form within the valve. Increasing the pressure drop across the valve beyond the point where vapor bubbles form has no effect on the flow. Thus the flow is said to be choked. The pressure drop at which choked flow begins is referred to as terminal pressure drop (ΔP_T) . When the actual pressure drop across the valve is greater than ΔP_T , ΔP_T should be used for the sizing calculation.

Flashing and cavitation. Choked flow produces either flashing or cavitation. If the pressure downstream of the valve is below the liquid's vapor pressure, the vapor bubbles persist in the liquid. This is flashing. Because the velocity of the flashing vapor-liquid stream is much higher than the inlet liquid velocity, the flashing stream often erodes valve internals or downstream piping. If, under choked-flow conditions, the downstream pressure is above the liquid's vapor pressure, the vapor bubbles will collapse as they leave the point of greatest restriction in the valve. This is cavitation. The shock waves and noise caused by the collapsing bubbles cause rapid and severe damage to the valve or piping. the program. Though based on the ISA Standard [1], these equations solve for C_v directly instead of through an iterative technique. This saves time, and the result is the same. The approximation for laminar and transitional flow are based on [1] and [2].

How to use the program

Load the program as listed in Table II, and record it on a magnetic card. Store the constants listed in Table III in the specified registers and record them on a separate card (one set per side). The given constants are for the most often-used English and metric units—the user can develop constants for any other set of units. The program is now ready to go, and is stored on cards for easy future access. Table IV lists the user instructions for the program.

For the simplest case, enter the volumetric flowrate (q), the pressure drop for sizing $(\Delta P_{\text{sizing}})$, and the specific gravity of the liquid at the inlet temperature (G_f) . Then solve for C_v .

When the flow is not known to be turbulent (as is required in the simplest case), enter additional data to include laminar- or transitional-flow effects: pressure recovery factor (F_L) (Table V) for the type of valve

Units and associated co for data card	onstants	Table I		
Variables	English units	Metric units		
q	gal/min	m³/h		
ΔP (all subscripts)	psi	kPa		
P (all subscripts)	psia	kPa abs		
d, D	in.	mm		
μ	cP	cP		
Associated constants and locations				
K _c (STO C)	52.3	1.72		
K _n (STO D)	1.0	0.0865		
K _E (STO E)	890	$1.6 imes 10^{-5}$		
(STO 6)	1.0	1.0		
(STO 7)	1.0	1.0		
All other				
registers clear				

being considered; valve style modifier (F_d) ; the viscosity of the liquid at the inlet temperature (μ) . Then solve for C_v .

To include the effect of reducers, enter additional

Step	Instructions	Input	Keys	Output
1	Load program (sides 1 and 2 of card)			
2	Load one side of data card (with desired units); this clears the registers			
3	Input data			
	Volumetric flowrate	q	↑	
	Pressure drop for sizing	$\Delta P_{\rm sizing}$	À	
	Specific gravity	G_t	fa	
	Choked-flow option only	1		
	Absolute pressure upstream of valve	P ₁	В	
	Thermodynamic critical pressure	P _c P _v	1	
	Vapor pressure of fluid	P,	↑	
	Pressure-recovery factor*	F_L	fb	
	Reducer option only	2		
	Nominal valve size	d	С	
	Inside diameter of pipe	D	fc	
	Laminar-flow option only			
	Pressure-recovery factor*	F_L	D	
	Valve-style modifier†	F_{d}	↑	
	Viscosity	μ	fd	
4	Solve for required C_v		E	C_v
5	Check for choked flow (only after solving for C_v and only if data for choked-flow option were entered)		R/S	0.00 if nonchoked 1.00 if flashing 2.00 if cavitating ERROR if no data
	Solve for terminal pressure drop		R/S	ΔP_T
6	To revise or add data, go back to Step 3			

to be the solution of the manufacture in the factor is a solution structure in the solution values. f = 0.7 for values with two parallel flowpaths, such as double-ported globe values and butterfly values. From [1].

Typical values for liquid pressure-recovery	
factor	Table V
Valve type	F_L
Single-seated globe, cage trim	0.86
Single-seated globe, contoured trim	0.86
Single-seated globe, cavitation-control cage trim	0.92
High-performance butterfly, 90° open	0.57
High-performance butterfly, 60° open	0.66
High-performance butterfly, 30° open	0.85
Ball, 90° open	0.45
Ball, 60° open	0.81
Ball, 30° open	0.95

data: nominal value size (d), and inside diameter of inlet and outlet pipe (D). If the valve diameter is not known in advance, then (1) calculate C_v and choose the valve (ignoring the effect of reducers), (2) use the valve size from (1) to calculate the new C_v with reducers, and (3) check to see that the chosen valve can satisfy the new C_v requirement.

If ΔP_{sizing} is a significant part of upstream pressure, or if liquid vapor pressure is high, check and correct for choked flow. This requires more data: absolute pressure upstream of the valve (P_1) ; critical pressure of the fluid (P_c) ; vapor pressure of the fluid at the inlet temperature (P_v) ; and pressure-recovery factor (F_L) . Solve for C_v , then press R/S to get a message that describes the flow through the valve: 0.00 for nonchoked; 1.00 for flashing; and 2.00 for cavitation. Press R/S again to get the terminal pressure drop (ΔP_{τ}) .

Note: Entering the data for any of the options automatically invokes those options. If the data are not entered, the program ignores those options. Checking for choked flow requires that the user hit the R/S key and that the correct data be entered. If the data are not entered, **R/S** will produce an error message instead of a coded message.

Examples

Case 1 (simplest case). Size a control valve for a liquid stream with: q = 500 gal/min; $\Delta P_{\text{sizing}} = 15$ psi; $G_t = 1.0$. Ignore reducers and the possibility of choked flow. Solution:

- 1. Load the program.
- 2. Load the side of the data card with English units.
- 3. Key in q, ΔP_{sizing} : 500 ↑ 15 A 1.0 f a
- 4. Key in G_f :
- E 129.10 5. Solve for C_n :
- 6. Choose a valve whose C_v is greater than or equal to 129.10.

Case 2 (possibility of choked flow; reducers). Size a globe-type control valve, given the following process data: q = 400 gal/min; $\Delta P_{\text{sizing}} = 20$ psi; $G_f = 0.98$;

 $P_1 = 50$ psia; $P_c = 3,206$ psia; $P_v = 2.9$ psia; D = 6 in. Manufacturers' literature (and Table V) shows $F_L = 0.86$ for a single-seated globe value. Solution (assuming the program is still loaded):

1. Reload the side of the data card with English units.

400 ↑ 20 A	
0.98 f a	
50 B	
3,206 ↑ 2.9 ↑ 0.86 f b	
Ε	88.54
	0.98 f a 50 B 3,206 ↑ 2.9 ↑ 0.86 f b

Before choosing a valve, check for choked flow:

7. Check for	
choked flow:	R/S 0.00
8. Solve for ΔP_T :	R/S 34.94

The 0.00 display indicates that the flow is not choked $(\Delta P_{\text{sizing}} \text{ is less than } \Delta P_T)$. Checking the valve manufacturers' literature, one can find that a 3-in. globe valve with a maximum C_{v} rating of 120 is the smallest available valve with adequate C_{v} . To verify that the reducers required to install a 3-in. valve in a 6-in. line will not change the valve selection, continue as follows:

9. Key in <i>d</i> :	3 C
10. Key in <i>D</i> :	6 f c
11. Solve for C_v :	E 92.91

Because the valve coefficient has changed, recheck

the possibility of choked flow:

12.	Check for choked flow:	R/S 0.00
13.	Solve for ΔP_{T} :	R/S 34.81

Since C_v is still less than the maximum C_v rating of the chosen valve (120), and the flow is not choked, the 3-in. globe valve is the right choice.

Case 3 (laminar flow). Size a globe-type control valve, given the following process data: $q = 3 \text{ m}^3/\text{h}$; $\Delta P_{\text{sizing}} = 35 \text{ kPa}; G_f = 0.99; \mu = 300 \text{ cP}.$ Manufacturers' literature (and Table V) shows $F_L = 0.86$ for a single-seated globe valve. The user instructions in Table IV show $F_d = 1.0$ for a single-ported globe valve. Solution (assuming the program is still loaded):

- 1. Load the side of the data card with metric units
- 2. Key in q, ΔP_{sizing} : $3 \uparrow 35 \mathbf{A}$
- 3. Key in G_f : 0.99 fa
- 4. Key in F'_L : 0.86 D
- 5. Key in F_d , μ : 1.0 ↑ 300 **f d**
- 6. Solve for C_v : E 9.09
- 7. Choose a value whose C_v is greater than or equal to 9.09.

For TI users

A listing of the program for the TI-58/59 is shown in Table VI. User instructions are listed in Table VII. The storage of constants follows as Table VIII.

As with the HP version, the calculation for C_{v} is obtained by pressing the E key. Then, pressing the R/S key solves for ΔP_T .

Program listing for TI version

Table VI

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Кеу
$\begin{array}{c} 000\\ 001\\ 002\\ 003\\ 004\\ 005\\ 006\\ 007\\ 008\\ 009\\ 010\\ 011\\ 012\\ 013\\ 014\\ 015\\ 016\\ 017\\ 018\\ 019\\ 022\\ 0223\\ 0227\\ 0223\\ 0227\\ 0223\\ 0226\\ 0227\\ 0223\\ 0226\\ 0226\\ 02$	097142022914599159975997599	A* STD1 REB STD4 STD3 REB STD5 STD5 REB STD5 STD5 REB STD5	064 065 066 067 077 077 077 077 077 077 077 077	34352251533753644544553330035315534547544426445335235235235235235405464343 353508075540540540555403640542540405425984094142650754054053405343 3640554259840941426507540540540534353 353508075540540545533 353508075540540540544553 353508075540540540544553 3535080755405405455 3535080755405405455 3535080755405405455 3535080755405405455 3535080755405405455 3535080755405405455 3535080755405405455 3535080755405405455 3535080755405405455 353508075540540545 3535080755405405405455 3535080755405405405455 35350807554054054055 35350807554054054054054055 35350807554054054055 353508075540554055 35350807554055 35350807554055 35350807554055 35350807554055 35350807554055 35350807554055 35350807554055 35350807554055 35350807554055 35350807554055 355080755 3550800000000000000000000000000000000	00 x x L1 + C2 + C7 x 4 x 20 + C3 = C3 x (1 - (L7 + L6 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2	8901234567890123456789012345678901234567890123456789012345678901 1233334567890111111111111111555567890123456789012345678901 11111111111111111111111111111111111	04444455 5640335263223673146 72647	08 X2 =	1934567899012345678900122222222222222222222222222222222222	502503455003 550540005 550540005	12LMD4 (X LO LO LO TLOQ (LO LO LO X (2+3)+((L9 + CO) X (1+3)) S 1 (X CO) X CO + C2 = T2 O TLOQ (C2 X CO + C2 + C0) X (2+3) + ((C0 + C2 + C0) X (1+3)) S 2 X R 2 X R 2 X CO + C2 + C0) X (2+3) + ((C0 + C2 + C0) X (1+3))	67890123456678901123456789012345678901222222222222222222222222222222222222	763331156431253375659911 263643125375659911 29739911	SIDE SIDE SIDE SIDE SIDE SIDE SIDE SIDE

(Continued) Table VI

Table VII

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
318		LBL	330	67	EQ	342	25	25	354	77	GE	366	02	2
319	24	CE	331	54)	343	77	GE	355	52	EE	367	76	LBL
320	43	RCL	332	43	RCL	344	45	Υ×	356	01	1	368	53	(
321	12	12	333	02	02	345	43	RCL	357	61	GTO	369	19	D'
322	61	GTO	334	32	X:T	346	05	05	358	53	(370	44	SUM
323	23	LNX	335	43	RCL	347	32	X;T	359	76	LBL	371	25	25
324	76	LBL	336	15	15	348	43	RCL	360	45	ΥX	372	99	PRT
325	43	RCL	337	85	+	349	03	03	361	00	0	373	91	R/S
326	00	0	338	43	RCL	350	75		362	61	GTO			
327	32	X:T	339	16	16	351	43	RCL	363	53	(
328	43	RCL	340	95	=	352	02	02	364	76	LBL			
329	03	03	341	42	STO	353	95	=	365		EE			

User instructions for TI program

Step	Procedure	Input	Key	Output
1.	Load program			
2.	Store constants (See Table VIII)			
3.	Input data:			
	a. Case 1	9	xæt	
		ΔP	Α	
		Gr	A '	
		—	E	C _v
	b. Case 2: Same as case 1 plus additional data (repeat steps 3a.)	P 1	xæt	
		Pc	В	
		Pv	xæt	
		FL	B'	
			E	C_{v}
			R/S	Choke?
				ΔP_T
	c. Case 2 with reducers: Same as case 2 plus (repeat steps 3a., 3b.)	d	С	
		D	<i>C</i> '	
			E	C _v
			R/S	Choke?
				ΔP_{T}
	d. Case 3: Same as case 1 plus (repeat step 3a.)	F_L	D	
		F _d	x≓t	
		μ	D'	

Storage of constants for TI program

Table VIII

Register	English Units	Metric Units
STO 06	1	1
STO 07	1	1
STO 22	52.3	1.72
STO 23	1	0.0865
STO 24	890	0.000016

References

1. "ANSI/ISA-S75.01 Standard Control Valve Sizing Equations," Instrument Soc. of America, Pittsburgh, 1978.

Driskell, L. R., Sizing Control Valves, Chapter 6 of "ISA Handbook of Control Valves," Instrument Soc. of America, Pittsburgh, 1976.

"Engineering Handbook for Jamesbury Stabilflo Control Valves," Bulletin 275, Jamesbury Corp., 1980.

The author

The author Jon F. Monsen is a district sales manager for Jamesbury Corp., 1317 5th St., Santa Monica, CA 90401. He provides assistance to customers in the sizing, selection and application of control valves. He has been a sales engineer for The Foxboro Co., and an engineering group leader supervising the specification of control valves for a nuclear power plant at Bechtel Power Corp. Mr. Monsen received his B.S. in engineering from California State University at Los Angeles. He is registered in California as a control systems engineer and as an electrical engineer.

Program sizes pipe and flare manifolds for compressible flow

Written for the TI-58 or TI-59, this program sizes pipe for isothermal flow. Conditions can be calculated at pipe inlets or outlets.

Paul Kandell, PEDCo, Inc.

☐ In sizing pipe for the flow of liquids, the Darcy, or Fanning, equation is usually used. Such methods may also be used for the flow of gases within certain restricted ranges (for details on these ranges, see Ref. [1]). However, in the design of process plants, compressible flow is usually encountered, with its characteristic rapid changes in density and velocity. Other equations are needed for compressible flow.

Lapple [2] lists these for isothermal and adiabatic flow. Others present simplified forms of these expressions that have restrictive assumptions. Some empirical equations designed for limited use, such as the Weymouth and Panhandle formulae, appear in Ref. [1].

Typical of the compressible-flow design problems in chemical process plants and refineries is sizing pressure-relief manifold systems. In such systems, it is necessary to calculate the backpressure (the pressure in the header) developed at relief valve outlets when these are relieving concurrently. If the backpressure gets too high, some of the closed valves may not open at their proper pressures. For example, ordinary relief valves tolerate variable backpressures to 10% of the valve set pressure. Balanced-bellows relief valves can be used for backpressures to 30—50% of the set pressure, above which their capacities decrease.

Conventional equations

Many methods based on isothermal flow have been proposed for sizing relief headers (and, of course, process piping). Most notable are those methods given in API RP-520, Part 1 [3], which has a kinetic-energy correction factor, and in API RP-521 [4] which is based on the Lapple chart. An inherent difficulty in these methods is that they are based on the header inlet or backpressure, which is unknown. Backpressure is unknown since, at any relief-valve outlet, it depends on the flows of other valves discharging simultaneously into the same relief manifold.

Therefore, all of these methods require a tedious

trial-and-error solution based on an assumed inlet pressure. In a refinery, for example, if cooling water or power fails, there may be a large number of relief valves, perhaps as many as ten, concurrently discharging into the same relief header. The problems posed by these manual trial-and-error solutions can be hopelessly complicated.

Calculations can be simplified by using graphic solutions [5,6,7]. These, however, are not convenient or flexible enough for general use, say in sizing gas-transmission pipelines, or in situations that have large pressure drops.

Here, we will present a streamlined calculation method that can solve a formidable array of compressible-flow problems.

The calculator program

The accompanying program, designed for the TI-58 and TI-59 calculators, does solve a broad range of pipe-sizing problems for compressible flow. The program assumes that flow is isothermal, and that either the upstream pressure or the downstream pressure is known. The Mach number can be found at the inlet and, more importantly, at the outlet—where sonic velocity may limit the flow.

The program has been deliberately economized to fit the storage capacity of the TI-58, since this model is widely used by young design engineers.

The program is listed in Table I and the user instructions are given in Table II.

The algorithm

Isothermal conditions, based on the inlet pressure, can be expressed as [2]:

$$fL/D = (1/M_1^2) \left[1 - (P_2/P_1)^2\right] - \ln(P_1/P_2)^2 \quad (1)$$

If we let r equal the ratio of P_1 to P_2 , then:

$$r^{2} = r^{2} M_{1}^{2} (fL/D + \ln r^{2}) + 1$$
(2)

Originally published June 29, 1981.

Program listing for	compr	essib	le flow	of flui	ds Table I
Location Code Key	Location	Code	Key	Location	Code Key
Enters P_2 ; sets flag	077	19	19	160	24 24
000 - 26 LBL 001 - 12 - B	078 079	55 43	RĈL	161 162	85 + 43 RCL
002 42 STU 003 12 12	$ 080 \\ 081 $	03 95	03 =	163 164	25 25 23 LNX
004 86 STF	082	42	STD	165	54 >
005 00 Q0 006 91 R/S	083 084	20 91	20 R/S	166 167	87 IFF 00 00
Enters P1; clears flag		Calc. f 43	RCL	168 169	17 B* 65 ×
008 13 C	086	06	06	170	43 RCL
009 42 STO 010 12 12	087 088	55 43	÷ RCL	$171 \\ 172$	25 25 76 LBL
011 22 INV	089	10	10	173	17 B'
012 86 STF 013 00 00	090 091	65 43	X RCL	174 175	85 + 01 1
014 91 R/S	092 093	14 35	14 1/X	$\frac{176}{177}$	95 = 52 EE
Enters <i>D</i> and initializes program	094	95	= '	178	58 F1X
015 76 LBL 016 11 A	095 096	42 21	ST0 21	$179 \\ 180$	02 02 32 X‡T
017 42 STO 018 14 14	097 098	43 11	RCL 11	181 182	43 RCL 25 25
Calc. A	099	55	÷	183	67 EQ
019 43 RCL 020 14 14	100 101	43 20	RCL 20	$184 \\ 185$	19 D' 32 X¦T
021 33 X²	102	95	=	186	42 STO
022 65 × 023 89 м	$\frac{103}{104}$	42 22	STD 22	187	25 25 Calc. <i>r</i>
024 55 ÷ 025 04 4	$105 \\ 106$	04 42	4 STO	188 189	61 GTD 16 A!
026 95 ≈	107	09	09	190	76 L.BL
027 42 STO 028 15 15	$108 \\ 109$	01 42	1 STO	191 192	19 D' 22 INV
Caic. <i>W/P</i> 029 43 RCL	$\begin{array}{c} 110\\111\end{array}$	23 76	23 LBL	193 194	52 EE 58 FIX
030 01 01	112	15	E	195	09 09
031 55 ÷ 032 43 RCL	$\frac{113}{114}$	53 43	(RCL	196 197	34 ГХ 42 STO
033 12 12 034 95 =	$\frac{115}{116}$	21 85	21 +	198	26 26 alc. P ₂
035 42 STD	117	43	RCL	199	87 IFF
036 16 16 Calculate [<i>ZT/Mw</i>] ^½	118 119	22 65	22 ×	200 201	00 00 18 C'
037 53 (038 43 RCL	120 121	43 23	RCL 23	202 203	43 RCL 12 12
039 07 07	122	34	tΧ	204	55 ÷
040 65 × 041 43 RCL	123 124	35 54	1/X >	205 206	43 RCL 26 - 26
042 02 02	125	28	LOG	207	95 =
043 55 ÷ 044 43 RCL	126 127	$\frac{65}{02}$	× 2	308 209	91 R/S 42 STO
045 05 05 046 54)	128 129	94 95	+/-=	310	13 13 Calc. P ₁
047 34 FX	130	35	$1 \times X$.211	71 SBR
048 42 STO 049 17 .17	131 132	33 42	χ₂ STD	212 213	14 D 76 LBL
Calc. M 050 43 RCL	133 134	42 23 97	23 DSZ	213 214 215 216	18 C' 43 RCL
051 08 08	135	09	09	216	12 12
052 65 × 053 43 RCL	$\frac{136}{137}$	15 91	E R⁄S	217 218	65 × 43 RCL
054 16 16 055 55 ÷	138	alc. <i>fL/D</i> 43	RCL	219	26 26 95 =
056 43 RCL	139	23	23	220 221	91 R/S
057 15 15 058 65 ×	$140 \\ 141$	65 43	× RCL	222 223	42 STO 10 13
058 65 × 059 43 RCL 060 17 17	142 143	04 55	04 ÷		alc. ΔΡ 71 SBR
061 95 ≃	144	43	RCL	225	14 D
062 42 STO 063 18 18	$145 \\ 146$	14 95	14 =	225 227 228	76 LBL 14 D
064 91 R/S Calc. N _{Re}	147 148	42 24	STD 24	229 229	43 RCL 13 13
065 43 RCL 066 01 01		Calc. /2 01	1	229 230 231	75 - 43 RCL
067 55 ÷	149 150	42	ST0 25	232	12 12
068 43 RCL 069 15 15	151 152	25 76	25 LBL	233 234	95 = 50 l×1
070 95 = 071 42 STD	152 153 154	16 43	A. RCL	234 235 Betrie	51 RZS ves P1 or P2
072 19 19	155	18	18	236	43 ROL
073 43 RCL 074 14 14	156 157	33 65	Х <mark>2</mark> Х.	237 238	13 13 91 R/S
075 65 × 076 43 RCL	158 159	53 43	(RCL	239	SI RST
010 70 KOL	107		10 Collection (1997)		

Nomenclature

- A Pipe internal cross-sectional area, ft²
- D Pipe ID, ft
- d Pipe ID, in.

 g_c

- Darcy friction factor f G
 - Mass velocity, lb/hr-sq ft
 - Gravitational constant, 32.17 lb-ft/lbr-s²
- Ratio of heat capacity at constant pressure to k capacity at constant volume L Equivalent length, ft M_1 Mach number at pipe inlet M_2 Mach number at pipe outlet M_w Molecular weight of gas
- MABP Maximum allowable backpressure, psia N_{Re} Reynolds number
- P_1 Pipe inlet pressure, psia

Also, if M_2 is the Mach number at the outlet, then, since $rM_1 = M_2$:

$$r^2 = M_2^2 (fL/D + \ln r^2) + 1 \tag{3}$$

In this program, the Mach number is calculated from the ratio of the actual velocity to the sonic velocity, which is in turn calculated from the equation [5,8]:

$$v_s = \left[\frac{g_c kRT}{M_w}\right]^{1/2} \tag{4}$$

This equation reduces to:

$$v_s = 223 \left[\frac{T}{M_w} \right]^{1/2} \tag{5}$$

The actual velocity can be expressed as:

$$v_a = \frac{W}{\rho A}$$

and, since for actual gases, from the gas law:

$$\rho = \frac{PM_w}{ZRT}$$

then,

$$v_a = \left[\frac{W}{A}\right] \left[\frac{ZRT}{PM_w}\right] \tag{6}$$

Combining Eq. (5) and (6), reducing to consistent units and simplifying, we have the Mach number:

$$M = 0.00001336 \left[\frac{W}{PA}\right] \left[\frac{ZT}{M_w}\right]^{1/2} \tag{7}$$

Since Eq. (2) and (3) are implicit in r, r^2 is calculated by assuming $r^2 = 1$ and looping the program until r^2_{actual} equals $r^2_{assumed}$.

Speeding convergence

It has been found, however, that in calculations where the ΔP was comparatively high, convergence was slow, especially in calculating P_2 . The calculation sometimes took twenty minutes to complete. However, using

P_2	Pipe outlet pressure, psia
p _{set}	Relief valve set pressure, psig
R	Gas law constant, 1,543 ft-lb _f /°R-lb mol
r	Ratio of P_2 to P_1
Т	Absolute temperature, °R
v_a	Actual velocity, ft/s
v _s	Sonic velocity, ft/s
Ŵ	Gas flowrate, lb/h
x	Mol fraction
Ζ	Gas compressibility factor
ε	Absolute roughness, ft (0.00015 for carbon
	steel pipe)
	$D \rightarrow 1 / 0.3$

ρ Density, lb/ft³

Viscosity in cP \times 2.42 = lb/ft-h μ

> the Newton-Raphson convergence to ± 0.001 gave sufficient accuracy, without unduly delaying the calculation; it took approximately two minutes for the most extreme and unusual case. Therefore, the development of a more rapidly converging algorithm, which adds steps to the program, was not justified.

> The Darcy friction factor, f, is calculated from the Colebrook equation [9] which is the origin of the Moody chart [10]. The equation can be expressed as:

$$\frac{1}{\sqrt{f}} = -2\log\left[\frac{\epsilon}{3.7D} + \frac{2.51}{N_{Re}\sqrt{f}}\right] \tag{8}$$

This equation is implicit in f. By assuming $\sqrt{f} = 1$ and solving by trial and error, using Newton-Raphson convergence to ± 0.00001 [11], the friction factor can be calculated in four iterations to sufficient precision.

In the execution of this program, either P_2 or P_1 is entered. A pipe size, D, is then assumed and entered. For example, if P_2 is known and P_1 is sought, P_2 is entered and a pipe size is assumed. The program will then calculate M_2 (the Mach number associated with the entered pressure), followed by the Reynolds number, the Darcy friction factor, P_1 , and finally the ΔP .

If the calculated M_2 is greater than 0.7, the outlet velocity is too close to sonic and the assumed pipe size is too small. Such a design will result in undue vibration and unacceptable noise generation. A larger pipe size is then assumed and the program run again until the Mach number at the pipe outlet is less than 0.7.

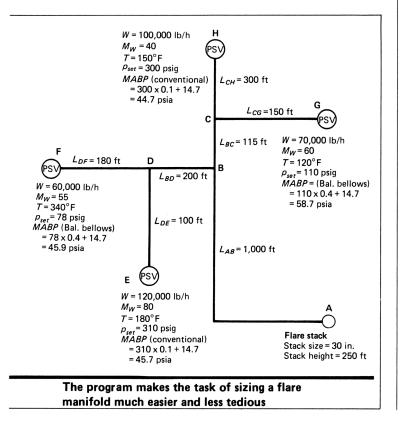
If P_1 is known and P_2 is sought, the procedure is similar except that the first calculated Mach number will be M_1 . Since the criterion for pipe sizing is M_2 , the program is continued until P_2 is displayed. Pressing the **R/S** button will display ΔP and pressing it again will retrieve P_2 into the display. This value may then be entered by pressing \mathbf{B} , and the pipe diameter, D, is reentered directly or by recalling register 14 (RCL 14). M_2 will then be displayed at the first R/S. This, again, should be less than 0.7, or a larger pipe size must be assumed and the procedure repeated. Some problems will illustrate the method.

User's instructions. Inlet and outlet conditions may be obtained easily

condit	tions may be obtained	easily			Tal	ble II
Step	Procedure	Ent	er	Pres	s	Display
1. 2. 3.	Clear program memory Enter learn mode Enter program			2nd (LRN	CP	000 00
4. 5.	Exit learn mode Enter stored data:			LRN		0
	W, lb/h T, °R μ , lb/ft-h L, ft M_W ϵ , ft	W T cF L M (0.0001	°×2.42 w	STO STO STO STO STO STO	02 03 04 05	W T L M _W 0.00015
	Z Factor in Mach number Constant in Colebrook	for CS <i>Z</i> 0.0000	oipe)	STO STO	07	<i>Z</i> 0.00001336
6.	equation Constant in Colebrook equation Enter P_1 or P_2 as inde-	3. 2.	7 51	sто sто		3.7 2.51
7.	pendent variable Enter <i>D</i> , ft, and initialize		[!] P ₂ ÷12	C B A		P ₁ or P ₂
	Read M_1 if P_1 entered M_2 if P_2 entered Read Reynolds number Read Darcy friction factor Read P_2 if P_1 entered $\sum_{P_1} P_2$ entered $\sum_{P_1} P_2$ Read ΔP	Depender		R/S R/S R/S R/S R/S		$\begin{cases} M_1 \\ \text{or } M_2 \\ N_{Re} \\ f \\ \begin{cases} P_2 \\ \text{or } P_1 \\ \triangle P \end{cases} \end{cases}$
8.	Retrieve dependent varia (P ₂ or P ₁)	ble		R/S		{
9.	Enter displayed depen- dent variable	P	2 P 1	B C		P2 or P1
10. 11.	Reenter D (RCL 14 or er directly) Read missing M at first F $(M_2 \text{ for } P_2 \text{ or } M_1 \text{ for } P_2$ entered in Step 9)	D R/S		A R/S		{ ^M 2 } or M ₁

*Reg 09 is reserved for f iteration.

Sample problems


Example 1: What is the pressure drop and the outlet Mach number in a 12-inch, Sch. 30 pipeline, 800 ft long, with carbon dioxide flowing under the following conditions:

W = 250,000 lb/h P_1 = 80 psiaŤ $= 600^{\circ} R$ $= 0.0167 \text{ cP} \times 2.42 = 0.040414 \text{ lb/ft-h}$ μ L = 800 ft $M_{w} = 44$ Ζ = 1D = 12.09 in. $\div 12 = 1.0075$ ft

Line	Stack	AB	BD	DF	DE	BC	СН	CG
Nominal								
size, in.	30	18	12	8	8	12	10	6
Schedule	10	20	40	40	40	40	40	40
D, ft	2.448	1.448	0.9965	0.6651	0.6651	0.9965	0.8350	0.5054
L, ft	250	1,000	200	180	100	115	300	150
<i>W,</i> lb/h	350,000	350,000	180,000	60,000	120,000	170,000	100,000	70,000
<i>T</i> ,°R	646.6	646.6	693.3	800	640	597.6	610	580
Mw	56	56	69.5	55	80	46.4	40	60
μ, lb/ft-h	0.0261	0.0261	0.0285	0.0315	0.0267	0.0240	0.0242	0.0237
MABP, psia				45.9	45.7		44.7	58.7
P ₂ , psia	atm.	15.1346	34.1452	37.8689	37.8689	34.1452	36.6166	36.6166
Calculated va	alues							
M ₂	0.2297	0.6375	0.2852	0.2324	0.3447	0.3061	0.2602	0.3958
N _{Re}	6,974,711	11,791,501	8,069,757	3,646,396	8,603,856	9,050,456	6,300,983	7,440,88
f	0.01132	0.01222	0.01314	0.01434	0.01419	0.01312	0.01362	0.01501
P ₁	15.1346	34.1452	36.8689	41.8276	42.8438	36.6166	42.5446	48.9897
	0.4346	19.0106	3.7234	3.9587	4.9749	2.4714	5.9280	12.3731

The program calculates the following results:

 $\begin{array}{l} M_1 \ = \ 0.1933863318 \\ N_{Re} \ = \ 7,817,596.221 \\ f \ \ = \ 0.0131145068 \\ P_2 \ \ = \ 61.53846154 \\ \Delta P \ \ = \ 18.46153846 \end{array}$

Then by retrieving P_2 , entering the displayed value of P_2 by pressing **B**, reentering the diameter, D (or **RCL** 14) and reinitializing with **A**, we obtain at the first **R/S**:

$$M_2 = 0.2514022314$$

which indicates subsonic flow, and that the solution is acceptable.

Example 2: What is the pressure drop and the outlet Mach number for natural gas flowing through 3/4-in., Sch. 160 pipe under the following conditions:

W = 8,380 lb/h $P_1 = 1,124.7 \text{ psia}$ $T = 560^{\circ}\text{R}$ $\mu = 0.01 \text{ cP} \times 2.42 = 0.0242 \text{ lb/ft-h}$ L = 23 ft $M_w = 18.7$ Z = 0.9 $D = 0.614 \text{ in.} \div 12 = 0.05117 \text{ ft}$

The program calculates the following:

$$\begin{array}{ll} M_1 &= 0.2512971315\\ N_{Re} &= 8,616,350.445\\ f &= 0.0260122702\\ P_2 &= 415.7010817\\ \Delta P &= 708.9989183 \end{array}$$

Then, by retrieving P_2 into the display by pressing **R/S**, entering the displayed value by pressing **B**, reentering the diameter directly (or by **RCL 14**) and reinitializing by pressing **A**, we obtain:

$M_2 = 0.6798969169$

which is less than 1.0, and therefore the flow is subsonic. This problem illustrates the time to calculate P_2

under conditions of high pressure drop. In this case,

with a ΔP of about 709 psi and a Mach number at the outlet of nearly 0.7, the calculation takes two minutes and twenty seconds on the TI-58, which is about the maximum calculation time encountered. Longer calculations should be manually terminated and rerun with a larger pipe size. This is accomplished by pressing **R/S** followed by **INV FIX.** Most problems encountered compute P_2 in less than ten seconds.

Sizing flare manifolds

Here are points to remember in sizing manifolds:

1. The design starts at the flare tip, where the outlet pressure is atmospheric. The calculation is worked backward toward the relief valves.

2. A size is assumed for each pipe section of the same diameter, and an equivalent length established.

3. The maximum allowed velocity at each section outlet is Mach 0.7.

4. Properties in the common headers may be estimated from the following mixture relationships (*i* indicates the *i*th component):

$$M_w = \Sigma W_i / \Sigma (W/M_w)_i \tag{9}$$

$$T = \Sigma W_i T_i / \Sigma W_i \tag{10}$$

$$\mu = \sum x_i \mu_i (M_w)_i^{0.5} / \sum x_i (M_w)_i^{0.5}$$
(11)

5. The inlet pressure is calculated for each section of the line.

6. At each line size change, the inlet pressure for the downstream line (P_1) is taken as the outlet pressure of the upstream line (P_2) and a new upstream pressure (P_1) calculated.

7. The operation is repeated, working backward toward the relief valve.

8. The calculated backpressure at the relief valve is then checked against the maximum allowable backpressure (MABP). The calculated backpressure should be less than, but close to, the MABP.

9. The MABP is taken as 40% of the set pressure for balanced-bellows relief valves, and 10% of the set pressure for conventional relief valves.

10. If there is a great difference between the calculated backpressure and the MABP, the longest header should be decreased in size until the calculated backpressure is close to the MABP.

Example 3: Size the flare manifold with relief loads and flow conditions shown in the figure. For simplicity, the knockout drum is not shown.

This is the same problem solved graphically by Mak [6], and is presented here to demonstrate the simplicity of the method.

Table III summarizes the calculations. Note that the backpressures are close to, but less than, the MABPs, showing that the line sizing is acceptable.

Although many combinations of sizes are possible, good judgment would dictate minimizing the capital cost. The main header AB, which is 1,000 ft long, should be as small in diameter as possible.

Validity of the method

Finally, let us examine the validity of the use of the isothermal flow equation as opposed to the adiabatic

flow equation. (Note that Mak [6] also deals with this problem.) Compared to adiabatic flow:

1. The isothermal equation yields a higher backpressure for both subsonic and sonic flow.

2. In subsonic flow, the maximum backpressure difference is less than 8%.

3. In sonic flow, the difference is less than 20% when fL/D is greater than 0.1.

4. Although the difference is greater than 20% for fL/D less than 0.1, this is academic, as such low values are rarely encountered.

5. The difference in backpressure is less than 4% when fL/D is greater than 10 for subsonic and sonic flows.

These deviations represent maximums of the calculated backpressure difference between the isothermal and the adiabatic equations. Actual flow in pipelines and relief systems normally takes place somewhere between adiabatic and isothermal conditions, and the deviation from the true value is greatly reduced.

Conclusion

This method provides a simple and rapid solution to an otherwise complex problem. Moreover, application of the program provides conservative values for backpressure, making it ideal for use in design of flare system manifolds and piping.

For HP-67/97 users

The HP version closely follows the TI program. Table IV contains the HP program listing, and user instructions all offered in Table V.

Table IV

Program listing for HP version

Step	Key	Code	Step	Key	Code
801	#LELA	-, , , , _ 1 11	628	RCL1	35 81
002	3734	27 CK	e29	λ	-35
093	E_{\pm}	-31	630	RCL8	36 33
OB4	\$703	35 63	ē31	÷	-24
665	E.	-31	032	RCL6	38 BE
00E	ST62	35 6 2	6 33	X 2	53
667	R∔	-31	074	P i	16-24
008	5761	JF 61	075	χ,	~75
0 35	R/3	51	036	4	64
010	STÜE	35 GE	037	÷	-24
311		-31	0T3	STOS	35 02
<i>012</i>	S707	35 67	P79	÷	-24
013	R4	-31	240	RCL7	36 07
<u>614</u>	ST05	35 85	041	RCL2	36 02
015	R < S	51	042	Х	-35
815	*LELB	ZI 12	043	RCL5	36 05
017	SFi	16 21 01	814	÷	-24
015	*LBLC	21 13	<i>3</i> 45	18	54
919	ST08	<i>35 98</i>	646	Х	-35
020	1	<i>e:</i>	847	PRTX	-14
621		-62	648	STOA	35 11
0 22		<i>93</i>	849	RCL1	36 01
<i>623</i>	2	03	050	RCL9	36 e 9
024	6	êC.	051	÷	-24
625	EEX	-23	052	RCL6	36 ØE
025	5	65	953	X	-35
<i>027</i>	CHS	-22	054	RCL3	36 07

Step	Key	Code	Step	Key	Code
655	÷	-24	89 9	÷	-24
056	PRTX	-14	100	RCLE	3 6 15
057	STOB	35 12	101	LN	32
0 58	4	04	102	÷	-55
6 59	STOI	35 46	103	RCLA	36 11
060	1	61	104	χ2	53
061	STOC	35 13	105	X	-35
06 2	*LBL5	21 Ø6	106	F1?	16 23 01
063	RCLC	36 13	107	GT03	22 BE
064	٧X	54	108	RCLE	35-15
0 6 5	178	52	109	х	-35
0 66	2	62	110	≭LB L8	21 68
067		-62	111	1	61
068	5	05	112	÷	-55
0 69	1	81	113	DSP2	-63 32
070	X	-35	114	RND	1ϵ 24
071	RCLB	38 13	115	STOG	35 89
072	÷	-24	116	RCLE	36 15
673	RCLD	36 14	117	X=7?	15-33
074	3	07	118	GT01	22 81
075	•	-62	119	RCL0	3E 00
076	7	97	120	STOE	35 15
077	÷	-24	121	GT07	22 07
078	RCLS	36 BE	122	*LBL1	21 Ci
875	÷	-24	123	DSP9	-67 09
080	+	-55	124	RCLE	36 15
081	LOG	16 JZ	125	₹X	54
0 82	2	Ø2	126	RCL8	. 36 0 8
0 83	X	-35	127	F1?	16 23 01
034	CHS	- 22	128	GTO2	22 B2
085	173	52	129	X # ?	-41
0 86	X2	53	130	÷	-24
8 87	STOC	35 13	131	GT03	22 03
08 8	DSZI	16 25 46	132	*LBL2	21 02
0 89	6706	22 06	133	<u>A</u>	-35
090	PRTX	-14	134	*LBL3	21 03
e 91	STOC	35 13	135	PRTX	- : 4
0 92	1	61	136	RCL8	Z5 08
093	STOE	35 15	137	-	-45
094	*LBL7	21 07	138	ASS	16 3!
C 95	RCLC	36 13	139	PRTX	-14
096	RCL4	35 04	140	CF1	16 22 01
097 000	X Bol c	-35	141	R∕S	51
098	RCL6	36 05			

(Continued) Table IV

User instructions for HP version

Table V

Step	Procedure	Кеу
1.	Clear flag 1.	F CLF 1
2.	Enter program manually, or from both sides of a magnetic card.	
3.	Store absolute roughness in register D; i.e., 0.00015 (for carbon steel pipe)	STO D
4.	Key in gas flowrate W, lb/h	ENTER ↑
5.	Key in temperature T , °R	ENTER 1
6.	Key in viscosity μ, lb/ft-h	ENTER ↑
7.	Key in length L, ft	Α
8.	Key in molecular wt., Mw	ENTER ↑
9.	Key in gas compressibility factor Z	ENTER ↑
10.	Key in pipe diameter D, ft	R/S
11.	Key in P_1 and press the C key, (or P_2 and press the B key)	C or B
12.	Read the printout in the following order: M_1 (or M_2) N_{Re} f P_2 (or P_1)	
13.	ΔP Key in P_2 and press the B key, (or P_1 and press the C key)	B or C
14.	Read the printout for M_2 (or M_1), etc. (see step 1	2).

References

- "Flow of Fluids Through Valves, Fittings, and Pipe," Technical Paper No. 410, Crane Co., Chicago, 1976.
- Lapple, C. E., Isothermal and Adiabatic Flow of Compressible Fluids, *Trans. AIChE*, 1943, Vol. 39, pp. 385-432.
 "Recommended Practice for the Design and Installation of Pressure-Relieving Systems in Refineries; Part I—Design," RP-520, Amer. Petro-leum Inst., 4th ed., Dec. 1976.
- 4. "Guide for Pressure Relief and Depressuring Systems," RP-521, American Petroleum Inst., 1969.
- 5. Bonilla, J. A., Estimate Safe Flare Headers Quickly, Chem. Eng., Apr. 10, 1978, p. 135.
- Mak, H. Y., New Method Speeds Pressure-Relief Manifold Design, Oil and Gas J., Nov. 20, 1978, pp. 166–172.
- Kern, R., How to Size Piping and Components as Gas Expands at Flow Conditions, *Chem. Eng.*, Oct. 13, 1975, p. 125.
 Hougen, O. A., et al., "Chemical Process Principles; Part II, Thermo-dynamics," John Wiley & Sons, New York, 1959.
- Colebrook, C. F., Turbulent Flow in Pipes with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws, J. Inst. of Civil Eng. (London), Vol. II, 1938-1939, pp. 133-156.
- 10. Moody, L. F., Friction Factors for Pipe Flow, Trans. of ASME, Vol. 66, Nov. 1944, pp. 671-684.
- Benenati, R. F., Solving Engineering Problems on Programmable Pocket Calculators—Part I, Chem. Eng., Feb. 28, 1977, p. 201.

The author

Paul Kandell is a project manager with PEDCo, Inc., 11499 Chester Road, Cincinnati, OH 45246. His career spans design and construction of chemical, design and construction of chemical, petrochemical and petroleum refining projects. He has been associated with such companies as Acres Davy McKee, Ltd., Du Pont of Canada, Ltd., and Procon, Inc. He was cited for his contribution to the Manhattan Project. Kandell holds a B.S. in chemical engineering from Naw, York University engineering from New York University. He is registered in New York, California and Ontario, and wears an honorary iron ring of the Canadian engineer. He is a member of AIChE and is a fellow of AAAS.

Calculating two-phase pressure drop

This program for the TI-59 calculator quickly determines pressure drop for two-phase fluids in horizontal lines.

W. Wayne Blackwell, Ford, Bacon & Davis Texas, Inc.

A program having several novel features has been developed to determine two-phase pressure drop in horizontal lines. The program uses the semiempirical method of Lockhart and Martinelli [3], and is written for the Texas Instruments TI-59 programmable calculator used with the PC-100C printer, but will run without the printer.

The program:

• Calculates single-phase pressure drop in pipe for either gas or liquid flow.

• Calculates pressure drop in horizontal pipe for two-phase flow.

■ Permits unusually rapid pressure-drop calculations—between 10 and 20 s for execution.

• Yields outputs adequate for permanent records.

• Permits easy change of operating data.

• Option-solves for ideal-gas density, using a selfprompting mode of operation.

• Can be used with a calculator without printer; pertinent calculated results are stored in data registers.

Considerable experimental and theoretical work has been carried out over the last 35 years on the prediction of two-phase frictional pressure drop in pipes.

Lockhart and Martinelli developed pressure-drop correlations in the late 1940s for water-air systems flowing in small pipes. These were later applied to other fluids in large lines.

The Lockhart-Martinelli correlations are most applicable to dispersed flow in which almost all the liquid is considered to be entrained as a spray in the gas phase. The correlations will yield slightly high results for stratified, wavy or slug flow. (These four regimes make up the bulk of two-phase flow configurations.) Annular flow is about the only flow regime for which the correlations may provide low results. (Annular flow is characterized by the liquid forming a film around the inside wall of the pipe, while the gas phase flows at high velocity as a central core.)

Thus, the Lockhart-Martinelli correlations will produce conservative results for the large majority of twophase flow regimes. Since the time the equations were developed, other investigators have developed better ones for particular two-phase systems but, to this day, a better *general* correlation has not been worked out.

The basis of the Lockhart-Martinelli correlation is that the two-phase pressure drop is equal to the singlephase pressure drop of either phase, multiplied by a factor that is derived from the single-phase pressure drops of the two phases. In this program, the total pressure drop is based on the gas-phase ΔP by [3]:

$$\Delta P_{t(100)} = \Delta P_{g(100)} Y_g$$
 (1)

The equations

The program solves the following equations*:

$$N_{Re} = 6.31 W_x / d\mu_x$$
(2)

$$f = 64 / N_{Re} \quad \text{(for laminar or viscous flow, where}$$

$$N_{Re} < 2,000) \quad (3)$$

$$f = (2 \log \left[(3.24\epsilon/d) + (7/N_{Re})^{0.9} \right])^{-2}$$
(4)

where $N_{Re} > 2,000$

$$\Delta P_{x(100)} = 0.000336(f)(W_x)^2/d^5\rho_x \tag{5}$$

$$X = [\Delta P_l / \Delta P_g]^{0.5} \tag{6}$$

$$Y_{g} = [\exp (A_{0} + A_{1} \ln X + A_{2} \ln X^{2} + A_{3} \ln X^{3})]^{2} \quad (7)$$

$$V = 0.0509(W_{g}/\rho_{g} + W_{l}/\rho_{l})/d^{2}$$

$$\rho_g = (M)(P)/10.73(T + 460)$$

Using the program

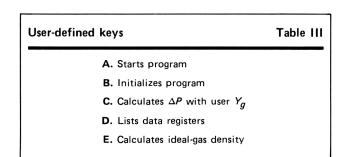
Table I presents the program operating instructions. The program is read in from a single magnetic card. To begin computations, the user must *first* press **B** to initialize the program, and *then* enter data for the gas and liquid phases in Registers R_1 to R_6 . The user then keys in the pipe I.D. and presses A to obtain a complete printout of all pertinent information.

Pressure drop for single-phase flow is readily calcu-

*Eq. (2) and (5) are from Ref. 4; (4) is from Ref. 2; and (6) is from Ref. 1.

Program	for finding	pressure drop	in hori	izontal li	nes hand	ing tw	vo-phase	flow					Table I
Location	Code Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
$\begin{array}{c} 000\\ 001\\ 002\\ 003\\ 006\\ 006\\ 0008\\ 0006\\ 0008\\ 0011\\ 0012\\ 0010\\ 0012\\ 0010\\ 0012\\ 0011\\ 0012\\ 0010\\ 0012\\ 0010\\ 0000\\$	761 415 000 0694 315 996 0 × CL1 + CL5 + P 20 * 00 = TU4 000 000 0694 315 996 0 × CL1 + CL5 + P 20 * 00 = TU4 000 000 0694 315 996 0 × CL1 + CL5 + P 20 * 00 = TU4 000 000 000 000 000 000 000 000 000 0	$\begin{array}{c} 062\\ 063\\ 066\\ 066\\ 066\\ 066\\ 066\\ 071\\ 072\\ 077\\ 077\\ 077\\ 077\\ 077\\ 077\\ 077$	04369661463753455399553385354558525352602121943696644753394533945354555253526021219443696644753394436943694365	16 OP LBL CE 7 3 3 OP 04	$\begin{array}{l} 456789012345678901224456789012345678901234566789012345678900123456789000000000000000000000000000000000000$	0902637254354224494329614652745229437965 00000000041605	R 0 × C 9 × D 3 D 3 C 2 ÷ C 1 5 × D 4 D 0 C C C 7 × D 4 D 0 C 2 ÷ C 1 5 × D 0 5 C C C 7 × D 4 D 0 C 2 ÷ C 1 5 × D 0 5 C C C 7 × D 0 C C 7 × D 1 0 0 C C 7 × D 1 0 0 C C 7 × D 1 0 0 C C 7 × D 1 0 0 C C 7 × D 0 C	187890123456789012345678901123456789012345678901233456789011234567 18890123456789001234567890112345678901222222333333567890123444444444444444444444444444444444444	$\begin{array}{c} 19\\ 02\\ 07\\ 02\\ 00\\ 00\\ 04\\ 39\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 0$	19 4 2 7 2 7 0 9 8 0 4 8 0 4 8 0 4 19	249012252455678900122345678901222222222222222222222222222222222222	$\begin{array}{c} 11 \\ 00 \\ 42 \\ 04 \\ 04 \\ 04 \\ 06 \\ 03 \\ 04 \\ 05 \\ 09 \\ 09 \\ 09 \\ 09 \\ 05 \\ 09 \\ 00 \\ 09 \\ 00 \\ 00$	3TD STD R 24 STD R 24 STD R 24 STD STD STD STD STD STD STD STD STD STD

												(Contin	ued)	Table
Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
310 311 312 314 315 316 321 321 322 3224 3226 3229 3224 3226 3223 3333 3334 335 3334 3356 3223 3226 33333 3334 3356 3333 3356 3456	42130489223348742442351640243044432 00004209009590422973042424241	4 STD 21 0 4 8 9 TD 2 3 4 8 7 - 4 5 2 1 4 8 7 - 4 5 2 3 4 8 7 - 4 5 2 3 4 8 7 - 4 5 2 1 5 2 3 4 8 7 - 7 - 4 5 2 7 - 4 8 7 - 7 - 4 5 2 1 5 2 3 - 4 8 7 - 7 - 4 5 2 7 - 4 8 7 - 7 - 4 8 7 - - 4 8 7 - - - - - - - - - - - - -	344 346 347 349 351 352 355 356 355 356 361 362 366 366 366 366 366 366 371 374 375 377 377 377	3531544323353254432335323532532544342 2642942442364294244236423532544342	LNX RC1 SU4 RC2 R12X RC2 SU4 RC2 SU4 RC2 R12X RC2 R12X RC2 SU4 L2X R12X R12X R12X R12X R12X R12X R12X R1	$\begin{array}{c} 378\\ 379\\ 381\\ 382\\ 384\\ 386\\ 388\\ 386\\ 389\\ 391\\ 392\\ 399\\ 391\\ 392\\ 399\\ 401\\ 402\\ 406\\ 406\\ 408\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400$	$\begin{array}{c} 14\\ 02\\ 91\\ 15\\ 90\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00$	LNX RLBL G1/XL D 0V LS7 LBD 0V LS7 LBD 07 1 P 3 07 1 P 3 007 1 P 3 007 1 P 3 007 1 P 3 007 1 P 3 0 0 7 1 P 3 0 1 P 3 0 1 0 1 0 1 0 1 0 1 1 P 3 0 1 1 P 3 0 1 1 P 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 412\\ 413\\ 4115\\ 67\\ 89\\ 012\\ 23\\ 422\\ 23\\ 422\\ 23\\ 422\\ 23\\ 422\\ 23\\ 423\\ 33\\ 45\\ 67\\ 89\\ 012\\ 23\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42$	42 26	00 330071P3P58D6T P0765210071P3P516 P09516	$\begin{array}{c} 44789012345678901234567890123456789\\ 4444455555555678901234567890123456777777777777777777777777777777777777$	0315219412795460551037355535536429609 0942980609551037355535536426429609	31521P4SD7T RS2T460=×10.73=××L5 R22=P6S R22=P6S


			Fig. 2	Printouts for sample cal	culations
Abbreviations used	l in printout	Two-phase flow		Single-phase flow	
FF Friction fact	or, dimensionless	11.936 18502848.53	ID RE	11.936 18502848.53	ID RE
ID Pipe internal	dia., in.	1.3073955-02	FF	1.3073955-02	FF
LFF Friction fact	or, laminar flow, dimensionless	1.1106016 00 1.5859584 06	"P RE	1.1106016 00 6.252277 01	∾P VEL
MW Molecular we	eight, dimensionless	1.3822176-02	FF "P		
ΔP Pressure drop	o, psi	5.1501435-02 2.1534288-01	×F X	Ideal density	
ΔPT Pressure dro	o for two-phase flow, psi	5.2373116 00 5.8165665 00	YG ∞PT	MW ? 18.	
RE Reynolds nu	nber, dimensionless	6.5722229 01	VEL	P ?	
T Temperature	,°F	0.	00	100. T'F ?	
VEL Fluid velocit	y, ft/s	3500 00.	01 02	300. .2207288959	*∕CF
X Lockhart-Ma	rtinelli 2-phase-flow modulus	0.01	03		
YG Y ordinate in	Fig. 1 for turbulent/viscous flow	300000. 0.1	04 05		
*/CF Density, Ib/f	¹ 3	33.5	06		

User inst	ructions	Table II			
Step	Procedure	Enter	Press	Display	
1.	Load program	Side 1		1	
		Side 2		2	
2.	Initialize		в	0	
3.	Enter required data*				
	Wg		STO 01	Data	
	μg		STO 02	Data	
	ρ_g		STO 03	Data	
Two-	(<i>W</i> ,		STO 04	Data	
phase	$\left\{ \begin{array}{c} \mu \\ \mu \end{array} \right\}$		STO 05	Data	
only	PI		STO 06	Data	
4.	Key in pipe I.D.			I.D.	
5.	Calculate ΔP		Α	Velocity	

Options-For alternative pipe sizes, key in new pipe I.D. and press A For alternative Y_g values, key in new Y_g and press C

For data printout, press D

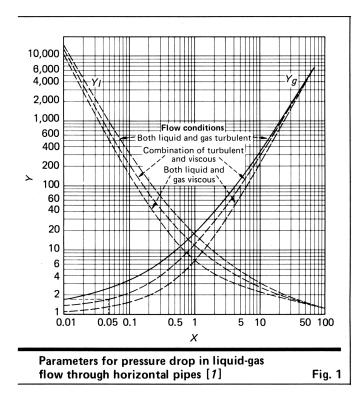
*For single-phase pressure drop, enter either vapor or liquid data in Registers R_1 through R_3 , and leave data Registers R_4 through R_6 as initialized (0 in R_4 and 1.0 in R_6).

described in the text Turbulent flash viscous flow ID 4.026 109711.8728 RĘ 1.994864-02 FF --Turbulent flow (vapor) 1.5525651-03 "Р RE 1.5673125 03 4.0834231-02 LFF -- Laminar (viscous) flow (liquid) "Р 3.8721307-06 4.9940179-02 Х X value used in Fig. 1 for finding YG 2.4195678 00 ΥG } "РТ 3.7565364-03 These values automatically 1.1084767 00 VEL calculated for turbulent/turbulent flow, but are ignored for this case. YG -1.8

.0027946171

1.108476738

YG ---- Y ordinate Fig. 1 for wPT turbulent/viscous flow VEL Pressure drop for two-phase mixture


Data r	egisters		Table IV
0.	Counter	14.	N _{Re}
1.	<i>W_g</i> or <i>W</i> /, lb/h	15.	<i>d</i> , in.
2.	μ _g or μ _/ , cP	16.	f
3.	$ ho_g$ or $ ho_I$, lb/ft ³	17.	Yg
4.	<i>W</i> / or 0, lb/h	18.	$\Delta P_{t(100)}$, psi/100 ft
5.	μ _/ , cP	19.	Velocity, ft/s
6.	ρ/ or 1.0, lb/ft ³	20.	A ₀
7.	0	21.	A ₁
8.	486 × 10 ⁻⁶	22.	A ₂
9.	336 × 10 ⁻⁶	23.	A ₃
10.	0.0509	24.	Sum register
11.	6.31	25.	М
12.	X	26.	P, psia
13.	$\Delta P_{g(100)}$, psi/100 ft	27.	<i>T,</i> °F
Rem	sters 1 to 6 contain data aining registers contain c llated and stored, by pro	lata sto	

lated by storing the liquid or vapor data in Registers R_1 to R_3 , keying in the pipe I.D., and pressing A. (When switching from two-phase flow to single-phase flow, the calculator must be reinitialized by pressing **B**.)

Two-phase flow

The program will calculate pressure drop for singlephase flow for either viscous or turbulent flow. However, for two-phase flow, it will calculate pressure drop only for turbulent flow.

Eq. (7) and constants A_0 through A_3 were obtained by a least-squares curve fit of the original data of Lockhart and Martinelli for the region in which both the liquid and gas flow are turbulent. This is the solid line in Fig. 1.

110 FLUID FLOW

The other two curves of Fig. 1 represent either a combination of turbulent/viscous flow or viscous/viscous flow. Calculation of pressure involving these last two curves is so seldom encountered that it is not worthwhile to derive equations for each. However, by using Fig. 1, the user can determine an appropriate Y_g value and a correct pressure drop if a problem involves these two regimes.

The user need not bother with Fig. 1 for turbulent/ turbulent flow, as the program will handle this automatically. For the other regimes, the user simply runs the program normally and then looks at the printed friction-factor value to see if laminar flow is encountered for either liquid or vapor. This is indicated by LFF in the program printout.

The X value calculated is located on Fig. 1, and a new Y_g (Y-axis) is read off for the type of flow encountered (turbulent/viscous, or viscous/viscous). This new value of Y_g is keyed into the machine, and the C key is pressed. The program calculates and prints a new value of $P_{t(100)}$ for these conditions (see Fig. 2).

The pipe roughness figure used in the program is 0.00015 ft (for steel pipe). Other values may be used by multiplying the roughness number by 3.24 and storing the result in Register 8. (Note that this must be done after the program is initialized by pressing Key **B**.)

To calculate ideal-gas density, the user must press E and answer the questions as they are presented. Press R/S after keying in each piece of data.

The user may press Key D at any time to obtain a printed listing of the data registers.

An example

What is the pressure drop per 100 ft of pipe in a 12-in., Schedule 40 line (I.D. = 11.936 in.), with the following flow data?

Vapor:
$$W_g = 350,000 \text{ lb/h}; \mu_g = 0.01 \text{ cP}; \rho_g$$

= 2.0 lb/ft³.
Liquid: $W_l = 300,000 \text{ lb/h}; \mu_l = 0.10 \text{ cP}; \rho_l$
= 33.5 lb/ft³.

Assuming that the calculator has been initialized by Key **B**, the data are entered as follows:

 $R_1 = 350,000$ (350,000, STO, 01); $R_2 = 0.01$; $R_3 = 2.0$; $R_4 = 300,000$; $R_5 = 0.10$; $R_6 = 33.5$. Then key in 11.936 (the pipe I.D.) and press Key A.

Turbulent/viscous flow example

What is the pressure drop per 100 ft of pipe having an I.D. of 4.026 in., with the following flow data?

 $\begin{array}{ll} \mbox{Vapor:} & W_g = \ 700 \ \mbox{lb/h}; \ \mu_g = \ 0.01 \ \mbox{cP}; \\ & \rho_g = \ 2.0 \ \mbox{lb/ft}^3. \\ \mbox{Liquid:} & W_l = \ 100 \ \mbox{lb/h}; \ \mu_l = \ 0.10 \ \mbox{cP}; \\ & \rho_l = \ 33.5 \ \ \mbox{lb/ft}^3. \end{array}$

Store data in R_1 to R_6 as in previous example. (Note: Press **B** first if this is the first run with program.) Key in 4.026 and press **A**.

After printout is complete, find Y_g from Fig. 1, using X calculated by program. Key in Y_g , and press Key C.

Nomenclature

A_0 to A_3	•
d	Pipe I.D., in.
f	Friction factor, dimensionless
M	Molecular weight, dimensionless
N_{Re}	Reynolds number, dimensionless
$\Delta P_{g(100)}$	Pressure drop of gas flowing alone in pipe,
	psi/100 ft
$\Delta P_{l(100)}$	Pressure drop of liquid flowing alone in pipe,
(200)	psi/100 ft
$\Delta P_{t(100)}$	Total pressure drop of 2-phase mixture, psi/
1(100)	100 ft
$\Delta P_{x(100)}$	Pressure drop of either liquid or gas as if flow-
2(100)	ing in pipe alone, psi/100 ft
T	Gas temperature, °F
V	Velocity of 2-phase mixture in pipe, ft/s
W_{g}	Gas flow, lb/h
W_{l}	Liquid flow, lb/h
W_x	Flow of gas or liquid, lb/h
X	Lockhart-Martinelli 2-phase-flow modulus
Y_{g}	Y ordinate in Fig. 1 (calculated by program
y	itself for turbulent flow-for other types of
	flow, use Fig. 1)
E	Pipe roughness, ft
μ_{q}	Gas viscosity, cP
μ_l	Liquid viscosity, cP
μ_x	Viscosity of liquid or gas, cP
ρ_g	Density of gas, lb/ft ³
ρ_l	Density of liquid, lb/ft ³
ρ_x	Density of liquid or gas, lb/ft ³
• #	, 1 0 , ,

For HP-67/97 users

The HP version closely follows the TI program. The HP program listing appears in Table V, and the user instructions in Table VI. The HP printout corresponds to the TI output, but the HP has no "printed key." Please consult the table titled "Printouts for sample calculations described in the text" to identify the printout items for the HP output.

Program listing for HP version

Table V

Step	Key	Code	Step	Key	Code
001	*LBL4	21 11	<i>e</i> 12	1	81
002	STÖF	35 11	013	X	-35
063	PRT	-14	614	RCLA	36 -11
884	*LB13	21 03	P 15	÷	-24
005	2	<i>32</i>	016	RCL2	36 02
006	ΕΕΥ	-27	017	÷	-24
007	3	07	818	PETX	- 14
008	RCL1	35 01	619	X>Y?	15-34
009	6	$\theta \epsilon$	820	GTC1	22 01
010		-62	821	6	66
011	3	<i>03</i>	022	4	04

(Continued)	Table V
-------------	----------------

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
8 23	% ≠ Y	-41	647	χz	53	071	PR TX	-14	8 95	x	-35	119	RCLA	35-13
024	÷	-24	048	χ	-35	072	RCLE	36-12	096	e×	33	120	X2	53
025	ET02	22 02	849	RCLA	36 11	073	÷	-24	097	PRTX	-14	121	÷	-24
026	*LBL1	21 81	850	5	85	074	1X	54	098	*LBLC	21 13	122	PRTX	-i•
027	178	52	Ø51	γ×	31	075	PRTX	-14	099	RCLB	36 12	123	R/S	5.
8 28	7	07	052	÷	-24	076	LN	72	100	×	-35	124	*LELE	21-13
029	Х	-35	053	RCL3	36 83	07 7	STOC	35 13	101	PRTX	-14	125	4	Ø,
030		-62	854	÷	-24	078	RCL4	35 04	162	RCL1	36 01	126	6	9
031	9	83	055	F1?	16 23 01	079	RCL5	36 05	103	RCL3	36 03	127	9	e
032	γx	31	9 56	GTO2	22 02	8 3 0	RCLC	36 13	104	÷	-24	128	+	-53
033	RCLS	36 Ø8	0 57	PETX	-14	0 81	х	-35	105	STCD	35 14	129	1	Ø.
034	RCLA	3E 11	658	STOP	35-12	08 2	+	-55	106	*LBL1	21 01	130	Э	Ø
035	÷	-24	0 59	RCLS	36 08	083	RCL6	36 06	107		-62	131		-6,
036	+	-55	060	RCL9	3E 03	084	RCLC	36-13	108	Ø	60	132	- 7	\mathcal{D}_{i}
037	LOG	16 32	061	₽ ‡ S	16-51	0 85	82	53	109	5	05	133	3	Ø,
038	2	02	862	ST09	35 39	0 86	X	-35	110	Ø	8 9	134	Х	-33
039	Х	-35	<i>063</i>	R↓	-31	687	+	-55	111	9	62	135	178	5.
04ŭ	X٤	57	864	ST08	35 0 8	8 88	RCL7	36 07	112	P ₽S	15-51	136	×	-3;
641	1/X	52	065	RCL1	36 01	8 89	RCLC	36 13	113	RCL 1	36 01	137	Х	-3
042	*LBL2	21 22	066	X=0?	16-43	890	3	03	114	RCL3	36 83	138	PRTX	-j.
043	PRTX	-14	0 67	GT01	22 01	091	Ŷ×	31	115	÷	-24	í 3 9	RTN	2
044	RCL9	3E 89	068	SF1	16 21 01	69 2	X	-35	116	RCLD	36-14	140	R∕S	5.
045	X	-35	069	GTC3	22 03	8 93	+	-55	117	+	-55			
846	RCL 1	3E 01	870	*LBL2	21 02	094	2	82	118	X	- 35			

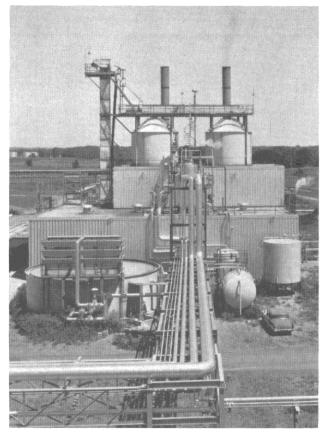
User instructions for HP version

Enter program, either manually or from magnetic card (two sides). 1. 2. Store the following data:

C	Primary Registers
Gas flow W_q , lb/h	STO 1
Gas viscosity, cP	STO 2
Gas density, lb/ft ³	STO 3
Constant, 0.000486	STO 8
Constant, 0.000336	STO 9
Press $\mathbf{P} \rightleftharpoons \mathbf{S}$	Secondary Registers
Liquid flow W _i , Ib/h	STO 1
Liquid viscosity, cP	STO 2
Liquid density, Ib/ft ³	STO 3
Constant, 1.4659	STO 4
Constant, 0.4914	STO 5
Constant, 0.0489	STO 6
Constant, -3.487E-4	STO 7
Press P ↔ S (Return to primary registers)	
Enter inside diameter, inches	Key A
Printout will be in same order as in original article.	
If other than turbulent flow, select value of Y_g from Fig. 1, enter and	
• • •	
• • •	Key E
Printout will be density, ID/IT ²	
	Gas viscosity, cP Gas density, lb/ft ³ Constant, 0.000486 Constant, 0.000336 Press $P \rightleftharpoons S$ Liquid flow <i>W</i> , lb/h Liquid viscosity, cP Liquid density, lb/ft ³ Constant, 1.4659 Constant, 0.4914 Constant, 0.0489 Constant, -3.487E-4 Press $P \leftrightarrow S$ (Return to primary registers) Enter inside diameter, inches Printout will be in same order as in original article.

References

- Perry, Robert H., others, eds., "Chemical Engineers' Handbook," 4th ed., McGraw-Hill, New York, 1963.
- 2. Churchill, S. W., AIChE J, Vol. 19, No. 2, p. 375 (1973).
- Lockhart, R. W., and Martinelli, R. C., *Chem Eng Prog.* pp. 39–48, Jan. 1949.
 Crane Co., "Flow of Fluids Through Valves, Fittings and Pipe," Technical Paper No. 410, Crane Co., 300 Park Ave., New York, N.Y., 1976.


The author

The author W. Wayne Blackwell is a senior process engineer with Ford, Bacon & Davis, Texas Inc., P.O. Box 38209, Dallas, TX 75238. He has had 22 years' experience in gas process design, holds a B.S. in chemical engineering from Texas Technological University, and is a registered professional engineer in Texas. He has published numerous technical articles and is presently working on a book, "Process Design With a Programmable Calculator," to be published by McGraw-Hill.

Table VI

Program predicts pressure drop for steam flow

This TI-59 calculator program provides a fast, accurate estimate of pressure drop for saturated steam. Inlet pressure is the only physical datum required, because the program includes a routine that calculates specific volume.

Calvin R. Brunner, Malcolm Pirnie, Inc.

☐ Figuring the expected pressure drop in a saturatedsteam line is a problem that comes up time and again in plant design and operations. When the length (or equivalent length) of the pipe is long, it is difficult to be accurate because the specific volume of the steam, and thus the velocity, changes along the way. This program, written for the TI-59 calculator with or without the PC-100C printer, eliminates the changing-density problem by dividing the pipe length into short increments over which the specific volume is assumed to be constant. The user controls the number of increments, and thus the run time and accuracy.

The calculation

The Unwin formula [1] expresses the pressure drop between two points as follows, assuming that there is no difference in height (gravity head):

$$P_1 - P_2 = 174.2 f w^2 \nu L/d^5 \tag{1}$$

where the friction factor f for turbulent flow of saturated steam is estimated by:

$$f = 0.0027(1 + 3.6/d) \tag{2}$$

The variables and units are defined in the nomenclature table. Combining Eq. 1 and 2, and converting

<i>N</i> = 10		<i>N</i> = 25		<i>N</i> = 100	
SATURATED STEA	M FLOW	SATURATED STEA	M FLOW	SATURATED STEAM	FLOW
3.826 7500. 2000. 450. 10.	DIA LB/H FEET P IN N	3.826 7500. 2000. 450. 25.	DIA LB/H FEET P IN N	3.826 7500. 2000. 450. 100.	DIF LB/H FEET P IN
439.8921051	POUT	439.8843572	POUT	439.8808275	POUT

Printouts for example calculation show how accuracy increases with the number of iterations

Originally published February 22, 1982.

	ific-volume correlation						
saturated steam		7					
	Specific vo	olume (v), ft ³ /lb					
Pressure (P), psia	Actual	Calculated*					
50	8.515	8.574					
200	2.288	2.360					
350	1.326	1.319					
400	1.161	1.160					
550	0.842	0.854					
Calculated as $v = 369.5$ ource of data: Ref. 2	5 p -0.962						

Nomenclature

- d Pipe inside dia., in.
- f Friction factor
- L Total pipe length (or equivalent length), ft
- N Number of points for N-1 increments
- P Absolute pressure, psia
- s Incremental length (=L/(N-1)), ft
- w Steam flowrate, lb/s
- W Steam flowrate, lb/h
- ν Specific volume of steam, ft³/lb

Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
$\begin{array}{c} 000\\ 001\\ 002\\ 003\\ 004\\ 005\\ 006\\ 007\\ 006\\ 007\\ 0012\\ 0112\\ 0112\\ 0112\\ 0112\\ 0112\\ 0112\\ 0122\\ 0223\\ 0224\\ 0225\\ 0226\\ 0229\\ 0226\\ 0229\\ 02334\\ 0356\\ 0336\\ 0346\\ 0445\\ 0445\\ 0445\\ 046\\ 046\\ 046\\ 046\\ 046\\ 046\\ 046\\ 046$	£12016222163231642516524515227305645533653360 7140971409714097140971407094040409960908540	LBATOSL SRL SRL SRL SC 1 = TO7LO - R Y + R Y + + + R Y + = +	$\begin{array}{c} 048\\ 049\\ 050\\ 0552\\ 0553\\ 0554\\ 0552\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0556\\ 0566\\ 05$	2755453552135243404040499009940522853285285352853528535285352853528535	27554535=TO1L5O6L6 .9627=x369 .5=TOXCOXCO2+ <cc+ R x coxcoxcoxco2+<cc+ R x coxcoxco2+<cc+< td=""><td>036 097 098 099 100 102 103 105 106 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 108 108 100 100 100 100 100 100 100</td><td>14446376770336836133741359113371716009N3637171330 0000000000000000000000000000000</td><td>1 - M6L7UZ703L6V R PD 06L13374135P11337171600P2 R AD3613374135P1 D 1337171600P2</td><td>144 1445 1445 1447 1447 1447 1447 1447 1</td><td>93212732439499914241394909427144020004040200000000000000000000000000</td><td>P 02 1273243P 4 5V</td><td>192 193 194 195 1967 2012 2003 2005 2007 2007 2007 2007 2007 2007 2007</td><td>7943396330004431943596319434968333041379436968888 06040600000000664060006040608000000000604060999</td><td>7 04 RCL3 09 06 3 00 2 4 3 1 09 4 3 1 09 4 05</td></cc+<></cc+ </cc+ 	036 097 098 099 100 102 103 105 106 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 107 108 108 108 100 100 100 100 100 100 100	14446376770336836133741359113371716009N3637171330 0000000000000000000000000000000	1 - M6L7UZ703L6V R PD 06L13374135P11337171600P2 R AD3613374135P1 D 1337171600P2	144 1445 1445 1447 1447 1447 1447 1447 1	932127324394999142413949094271440200 0 4040200000000000000000000000000	P 02 1273243P 4 5V	192 193 194 195 1967 2012 2003 2005 2007 2007 2007 2007 2007 2007 2007	7943396330004431943596319434968333041379436968888 06040600000000664060006040608000000000604060999	7 04 RCL3 09 06 3 00 2 4 3 1 09 4 3 1 09 4 05

lse	r instructions		Table II
	Step	Keystrokes	Display
1.	Partition	6 2nd Op 17	479.59
2.	Enter program or read cards		
3.	Enter data Diameter Flowrate Length Pressure in	d A W B L C P ₁ D	d W L P ₁ .
4.	Enter no. of points	NE	Program runs. P ₂ is final display. Results print out.
5.	To change data, go ba	ack to Step 3.	
6.	To change no. of poir back to Step 4.	nts only, go	

orage locations	Table IV
Register	Contents
00	Diameter (d)
01	Used
02	Flowrate (<i>W</i>)
03	Length (L)
04	No. of points (N)
05	Pressure in (P_1)
06	Pressure out (P_2)
07	Current increment
08	Specific volume (ν)
09	Pressure drop $(P_1 - P_2)$

flowrate to lb/h (W = 3,600 w), we obtain the general expression:

$$P_1 - P_2 = \frac{W^2 L \nu}{27,554,535} (d^{-5} + 3.6d^{-6})$$
(3)

The specific volume is a function of steam pressure, and varies with it as shown in Table I (for pressures to 550 psia):

$$\nu = 369.5 \ P^{-0.962} \tag{4}$$

If we now divide the pipe length (or equivalent length) L into N - 1 segments, each s = L/(N - 1) in length, we can generalize Eq. 3 for the pressure drop across any segment:

$$P_i - P_j = \frac{W^2 s \nu_i}{27,554,535} (d^{-5} + 3.6d^{-6})$$
(5)

If s is sufficiently small, the pressure difference between points i and j is small enough that the difference between ν_i and ν_j is negligible.

The program calculates a new v_i for each segment, and uses that value to calculate the pressure drop for the segment. This yields the pressure, and thus the v_i value, for the next segment. The program is finished when it has gone through all N - 1 segments, and calculated the final pressure at length L. The greater the number of segments, the greater the accuracy of the result obtained.

How to use the program

Table II lists the program steps, and Table III the user instructions. Note that the calculator is partitioned to 479.59 when first turned on. Therefore, it is prepared for program entry or card reading (one card) automatically. While the program is running, a number will flash in the display, beginning at N - 1 and successively decreasing to 2. The last display is the final pressure P_2 , and the results will print out as shown in the figure if the PC-100C printer is engaged.

The run time is about 2.5 s per iteration. For example, the calculation will take about 1 min if N = 25. To do a series of calculations, it is necessary to enter only the variable of interest and N. Entering N and pressing E starts the calculation procedure. If one wishes to retrieve any of the stored values without printing them out, the register locations are listed in Table IV.

Example: What is the pressure drop for 7,500 lb/h of 450-psia saturated steam flowing through 2,000 (equivalent) ft of 4-in. Sch. 40 pipe? (The inside diameter of such pipe is 3.826 in.) To solve the problem, enter the data as follows:

3.826	Α
7,500	B
2,000	С
450	D

Then enter the number of increments desired, in this case 100:

The program runs for about 4.5 min, then prints out as shown in the figure on p. 112 (where N = 100). Note that the value for the final pressure is more accurate when N is greater. Since the final pressure shown is 439.8808275 psia, the pressure drop is 10 psi. One can also retrieve pressure drop directly from Register 09.

For HP-67/97 users

The HP version closely follows the TI program. Table V provides the HP program listing, and Table VI gives user instructions. A printout of the example results are contained in Table VII.

Program listing for HP version

Table V

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Кеу	Code
001	*LBLA	21 II	020	3	63	039	RCL5	38 85	058	RCL1	36 01	077	PRTX	-14
002	STOO	35 83	021		-52	040	ST06	35 88	059	Х	-35	0 78	RCL2	38 02
003	R/3	51	022	6	- 33	641	*LBLa	21 16 11	060	RCL4	3E 04	079	DSP0	-63 00
004	*LBLB	21 II	02 3	Ä	-35	042	RCL6	36 06	061	÷	-24	080	PRTX	-14
005	STC2	35 32	024	RCLØ	36,86	043		-62	062	RCL2	36 62	081	RCL3	36 03
006	$R \times S$	51	025	5	65	044	9	69	063	χ2	53	082	PRTX	-14
007	*LBLC	21 13-	026	CHS	-22	045	6	ΘE	064	X	-35	083	RCL5	36 05
008	ST03	35 63	027	γ×	31	046	2	62	065	ST09	35 09	084	PRTX	-14
00 9	R∠S	51	628	÷	- 55	047	CHS	-22	066	CHS	-22	085	RCL4	36 04
010	≭LB LD	21-14	029	2	82	04 8	γ×	31	067	ST+6	35-55 06	086	PRTX	-14
011	ST05	35 65	030	7	67	049	3	63	068	RCLI	36 46	087	SPC	16-11
012	R/S	51	031	5	25	050	6	ŨĔ	069	PSE	16 51	088	RCL6	36 66
013	*LBLE	21 13	032	5	35	051	9	09	070	DSZI	16 25 46	089	DSP9	-63 09
014	ST04	35 04	033	4	04	052		- 52	071	GTUa	22 16 11	090	PRIX	-14
015	STOI	35 48	034	5		053	5	05	072	RCL6	36 06	091	SPC	16-11
016	RCLØ	36 00	035	3	83	054	Δ	-35	073	DSPØ	-63 00	092	SPC	16-11
017	6	0 6	036	5	55	055	ST08	35 88	074	SPC	16-11	093	SFC	16-11
018	CHS	- 22	037	÷	-14	056	RCL3	36 83	075	RCLO	36 80	<i>0</i> 94	RTN	24
019	Υx	31	038	ST01	35 61	057	*	-35	076	DSP3	-63 03	095	R/S	51

User instructions for HP version

Table VI

Step	Procedure		Кеу	Display
۱.	Key in prog	ram (or insert magnetic card, one side only)		
2.	Enter diam	eter <i>d</i> , in.	A	d
	Enter flow r	ate W, lb/h	В	w
	Enter lengt	h <i>L</i> , ft	С	L
	Enter inlet	pressure P ₁	D	P1
) .	Enter numb	per of calculation steps N	E	N
	(Note: Incre	asing the number of steps from 25 to 100 would only increase pressure drop		
	accuracy by	y about 0.03%; thus, there is no point in using more than 25 steps.)		
	(Once the o	data are entered, to rerun for a different number of calculation steps, go		
	directly to s	tep 3.)		
Dutpu	t is: The calcu	lation step number is intermittently displayed during the calculation. When N		
		een made, the calculator prints:		
	Diameter, in	•		
	Flow rate, I			
	Length, ft			
	Inlet pressu	re, psia		
	Number of			
	Outlet press	sure, psia		
Data a	re stored as	follows:		
	Register	Data		
	õ	Diameter		
	2	Flow rate		
	3	Length		
	4	Number of calculations		
	5	Inlet pressure		
		Inlet pressure Outlet pressure		
	5			

Note: Multiplying the value in Register 9 by the number of steps yields the total pressure drop, approximately.

FLUID FLOW 116

Printouts for example

calculation-HP version		Table VII
<i>N</i> = 10	3.6 26	·*米·*
	7500.	
	2000.	
	450.	
	1 <i>0</i> .	¥8.8
	439.890 8662	***
N = 25		ale de la
N = 25	3.825	
	750 3 .	
	2000. 450.	
		れなか 東京第
	23.	***
	439.8 841711	¥≈¥
<i>N</i> = 100	3.826	***
	7560.	
	2063.	
	450.	林水水
	100.	\$ # #
	439.880 8154	***

References

Baumeister, T., et al., eds., "Marks' Standard Handbook for Mechanical Engineers," 8th ed., McGraw-Hill Book Co., New York, 1978, p. 4-50.
 Keenan, J. H., and Keyes, F. G., "Thermodynamic Properties of Steam," John Wiley & Sons, New York, 1936.

The author

The author Calvin R. Brunner, P.E., is Chief Mechanical Engineer of Malcolm Pirnie, Inc., Consulting Environmental Engineers, Two Corporate Park Dr., White Plains, NY 10602. He is responsible for design, construction and operation of waste-incineration systems, as well as other combustion processes. Mr. Brunner holds a master's degree from Pennsylvania State University, and a bachelor's degree from City College of New York, both in mechanical engineering. He is licensed as a professional engineer in five states, and has written two texts on incineration, plus many technical articles.

Estimate heat-tracing requirements for pipelines

Because the equations for tracing contain two unknown quantities, this calculator program contains a rapid procedure for determining the film heat-transfer coefficient to air. The program then continues to establish the remaining design values for heat tracing.

W. Wayne Blackwell, Ford, Bacon & Davis, Texas Inc.*

Pipelines containing liquids are often heat-traced to prevent the liquids from freezing or becoming too viscous to flow. Pipelines handling gases are sometimes heat-traced to prevent components or water vapor in the gases from condensing.

The program to be described will allow us to rapidly calculate the heat loss and tracing requirements for any given pipeline, using hot oil or other fluid medium as the heat source for the tracer. The program was written for the Texas Instruments TI-59 programmable calculator, to be used with the PC-100C printer.

This line-tracing program:

- Calculates surface temperature of insulated pipe.
- Calculates heat transferred per 100 ft of pipe.
- Calculates total heat transferred.
- Determines flowrate for hot media.

• Estimates number of heat tracers required without heat-transfer cement.

• Estimates number of heat tracers required with heat-transfer cement.

The program can be used without the printer because most results are stored in the TI-59 registers.

Equations for heat, flow and temperature

The program solves the following equations[†]:

$$Q = 2\pi K_i (T_a - T_s) / \ln(d_o/d_i)$$
(1)

$$Q = h_a (\pi d_o / 12) (T_s - T_{air})$$
(2)

$$X = \ln(d_o/d_i)(h_a)(d_o/12)/2K_i$$
(3)

$$T_{a} = (T_{a} + XT_{air})/(X+1)$$
(4)

$$Q_t = QL_L \tag{5}$$

$$W = Q_t / C_p (T_{mi} - T_{mo}) \tag{6}$$

$$T_{max} = Q/a(T_{max} - T_{p}) \tag{7}$$

$$T_{wc} = Q/b(T_{med,ava} - T_p) \tag{8}$$

*To meet the author, see p. 111.

 $^{\dagger}\text{Eq.}$ (1) and (2) are from Ref. 1; Eq. (7) and (8), Ref. 2; and Eq. (9), Ref. 3.

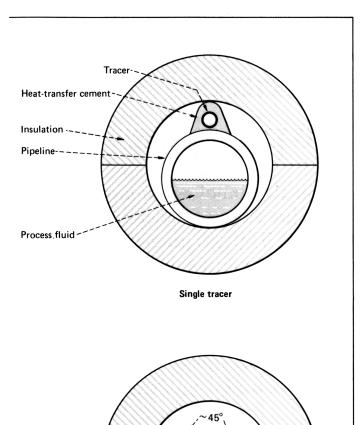
$$h_c + h_r = 564/(d_o)^{0.19} [273 - (T_s - T_{air})]$$
 (9)

$$W_F = A + B(T_s - T_{air}) + C(T_s - T_{air})^2 \quad (10)$$

$$h_a = (h_c + h_r)W_F \tag{11}$$

Kern [1] and others have demonstrated that the heat transferred through an insulated pipe encounters four resistances: (1) film resistance on inside wall of pipe, (2) heat resistance through pipe wall, (3) heat resistance through insulation, and (4) air film resistance on outside of insulation. The first two resistances are normally very small, and have been neglected in this program.

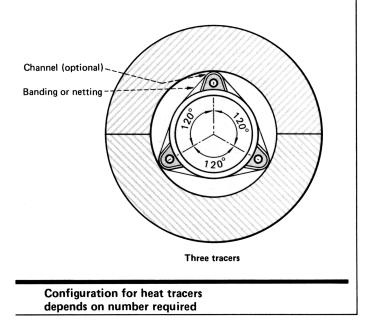
For this program, Eq. (1) and (2) were equated, and the terms rearranged to form Eq. (4). Since Eq. (3) and (4) involve two unknowns (h_a and T_s), an initial value of h_a is assumed and T_s calculated. The program then calculates a new value of h_a from Eq. (9), and Eq. (4) is resolved for a new T_s . This procedure is repeated until the film heat-transfer coefficient changes less than 0.01 from the previous calculation.


After T_s has been determined, the program continues to calculate Q, W, and the number of tracers, with and without transfer cement, required to maintain pipeline temperatures. Heat losses are based on a 20-mph wind speed, but may be adjusted for zero wind speed, as will shortly be explained.

Using the program

Table I lists the detailed program-operating instructions. After entry of the program (Steps 000 to 361) into program memory, and entry of the required constants in Storage Registers 18, 19, 20, 23, 24 and 25 (as outlined in Table III), the program and contents of the storage registers are down-loaded onto magnetic cards. Once this information has been thus stored, the program is ready for use.

The user need only read in the magnetic cards, store pertinent data in Storage Registers 0 through 10, and press A to begin the calculations (Table II). Usually a first guess of about 4 for h_a speeds up convergence and


Originally published September 6, 1982.

0

Two tracers

0

Program	Program for calculating total heat transferred, flowrate								
Step	Code Key	Step	Code Key	Step	Code Key				
Sta	rt program	059	11 11	120	54)				
000	76 LBL	060 061	55 ÷ 43 RCL	121	95 = 35 1∕X				
000	11 P	061 062	12 12	123	65 ×				
002	69 DP	063	95 =	124	05 5				
003 004	00 00 43 RCL	064 065	23 LNX 65 ×	125 126	06 6 04 4				
005	18 18	065	43 RCL	127	95 =				
006	69 DP	067	10 10	128	42 STO				
007 008	01 01 43 RCL	068 069	65 × 43 RCL	129 130	22 22 43 RCL				
009	19 19	070	11 11	131	14 14				
010 011	69 QP 02 - 02	071 072	$55 \div 01 1$	132 133	75 - 43 RCL				
Q12	43 RCL	072		133	04 04				
013	20 20	074	55 ÷	135	95 =				
014 015	69 DP 03 - 03	0 75 076	02 2 55 ÷ 02 2 55 ÷	136 137	42 STO 27 27				
016	69 D P	077	43 RCL	138	43 RCL				
017	05 05	078 272	08 08						
018 019	43 RCL 02 02	079 080	95 = 42 STD	Calcula	te wind factor				
020	85 +	081	16 16	139	23 23				
021 022	43 RCL 03 03	082 083	65 × 43 RCL	140 141	42 STO 26 - 26				
022	95 =	084	04 04	142	43 RCL				
024	55 ÷	085	85 +	143	27 27				
025 026	02 2 95 =	086 087	43 RCL 13 13	144 145	65 × 43 RCL				
027	42 STO	088	95 =	146	24 24				
028	21 21 85 +	089 090	55 ÷ 53 (147 148	95 = 44 SUM				
030	43 RCL	091	43 RCL	149	26 26				
031	01 01	092	16 16	150	43 RCL				
032	95 ≠ 55 ÷	093 094	85 + 01 1	151 152	27 27 33 X²				
034	02 2	095	54)	153	65 ×				
035 036	95 = 42 STD	0 9 6 097	95 = 42 STD	154 155	43 RCL 25 25				
036	13 13	098	14 14	155	95 =				
038	43 RCL	099		157	44 SUM				
039 040	05 05 85 +	100	13 C	158 159	26 26 43 RCL				
041	43 RCL	Calc	ulate $h_c + h_r$	160	26 26				
042	06 06 95 ≈	101	43 RCL	161 162	65 × 43 RCL				
043	42 STO	102	11 11	163	22 22				
045	12 12	103	45 YX	164	95 =				
046	85 + 53 (104 105	93 . 01 1	C.	lculate h _a				
048	43 RCL	106	09 9		u				
049	97 07 65 ×	107 10 8	95 ≃ 65 ×	i65 166	42 STD 28 - 28				
051	02 2	109	53 (167	93 .				
052	54) 0 5 -	110	02 2 07 7	168 169	$\begin{array}{ccc} 00 & 0 \\ 01 & 1 \end{array}$				
053	95 = 42 STD	111	07 7	169	32 XIT				
055	11 11	113	75 -	171	43 RCL				
056	76 LBL 12 B	114 115	53 〈 43 RCL	172 173	10 10 75 -				
	16 L'	116	14 14	174	43 RCL				
c	alculate T_s	117 118	75 - 43 RCL	175 176	28 28 95 =				
058	43 RCL	119	04 04	175	95 - 50 I×I				
			-						

of hea	of heat-transfer medium, and number of heat tracers Table I														
Step	Code Key	Step	Code Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
178	77 GE	208	75 -	242	06	06	276	95	=	306	69	DP	336	04	4
179	15 E	209	43 RCL	243	55	÷	277	42	STO	307	04	04	337	03	3
180	76 LBL	210	04 04	244	43	RCL	278	29	29	308	32	XIT	338	01	1
181	14 D	211	54)	245	09	09	279	65	×	309	69	DP	339	05	5
		212	95 =	246	55	÷							340	69	DP
		213	42 STO	247	53	(Pri	nt <i>T_{woc}</i>		341	04	04
Calcu	ılate variables	214	15 15	248	43	RCL	C	onstant a	9	310	06	06	342	32	XIT
		215	69 DP	249	02	02				311	43	RĈĹ	343	69	OP
:82	69 OP	216	00 00	250	75	-	280	93		312	- 29	29			
183	00 00	217	03 3	251	43	RCL	281	03	3	313	65	x	Pr	int T _{wc}	
184	03 3	218	04 4	252	03	03	282	09	9				344	06	06
185	07 7	219	69 OP	253	54	Š	283	03	3	Co	nstant b		345	98	ADV
186	03 3	220	04 04	254	95	=	284	95	=	314	04	4	346	91	R/S
187	06 6	221	43 RCL	255	42	STD	285	35	178	315	- 93		347	-76	LBL
188	69 DP	222	15 15	256	17	17	286	65	×	316	05	5	348	15	E
189	04 04	223	69 OP	257	02	2	287	43	RCL	317	08	8			
190	43 RCL	224	06 06	258	07	7	288	15	15	318	95	=	Re	adjust h	a
191	14 14	225	01 1	259	01	1	289	95	=	319	35	178	349	43	RCL
192	69 DP	226	04 4	260	04	4	290	85	+	320	65	×	350	28	28
193	06 06	227	03 3	261	06	6	291	93		321	43	RCL	351	42	sto
194	43 RCL	228	07 7	262	03	3	292	09	9	322	15	15	352	10	10
195	28 28	229	04 4	263	02	2	293	09	9	323	95	=	353	61	GTD
196	65 ×	230	01 1	264	03	3	294	09	9	324	85	+	354	12	В
197	89 n	231	02 2	265	69	ΠP	295	95	=	325	93		355	91	R/S
198	65 ×	232	03 3	266	04	04	296	59	INT	326	09	9	356	76	LBL
199	43 RCL	233	69 OP	267	43	RCL	297	32	XIT	327	09	9	357	10	E'
200	11 11	234	04 04	268	17	17	298	03	3	328	09	9			
201	55 ÷	235	43 RCL	269	69	DP	299	07	7	329	95	=	Print	data reg	isters
202	01 1	236	15 15	270	06	06	300	04	4	330	59	INT	358	00	0
203	02 2	237	65 ×	271	43	RCL	301	03	3	331	32	XIT	359	22	1ŇV -
204	65 ×	238	43 RCL	272	21	21	302	03	3	332	69	DP	360	90	LET
2ü5	53 (239	00 00	273	75	-	303	02	2	333	00	00	361	91	R/8
206	43 RCL	240	95 =	274	43	RCL	304	01	1	334	03	3			
207	14 14	241	69 DP	275	01	01	305	05	5	335	07	7	End	d progra	m
												-			

reduces run time. After a program run, intermediate results are maintained in unused Storage Registers 11 through 29. See Table III for all stored information.

In this program, the combined convection and radiation heat-transfer coefficients are corrected by a wind factor to calculate h_a . If designing for zero wind conditions, enter 1.0 in Storage Register 23, 0 in Storage Registers 24 and 25, and run the program as usual.

Thermal conductance values, a and b, used in this program are for $\frac{1}{2}$ -in. tracer lines. The user may substi-

Nomenclature

A,B,C	Constants for wind-factor equation	Q	Heat lost per ft of pipe, Btu/(h)(ft)
a	Thermal conductance, tracer to pipe, without	Q_t	Total heat lost from pipeline, Btu/h
	heat-transfer cement, Btu/(h)(°F)(ft of pipe)	T_a	Average temperature of pipe and tracer, °F
b	Thermal conductance, tracer to pipe, with	Tair	Air temperature, °F
	cement, Btu/(h)(°F)(ft of pipe)	$T_{med.avg.}$	Average temperature of hot medium, °F
C_p	Specific heat of hot medium, Btu/(lb)(°F)	T_{mi}	Inlet temperature of hot medium, °F
d_i	Inside diameter of insulation, in.	T_{mo}	Outlet temperature of hot medium, °F
d_o	Outside diameter of insulation, in.	T_p	Temperature in pipe, °F
h_a	Film heat-transfer coefficient to air (corrected	$\dot{T_s}$	Outside surface temperature of insulation, °F
	for wind), $Btu/(h)(°F)(ft^2)$	T_{wc}	Number of tracers required with heat-transfer
$h_c + h_r$	Combined convection and radiation heat-		cement
	transfer coefficient, $Btu/(h)(^{\circ}F)(ft^2)$	T_{woc}	Number of tracers required without heat-
K_i	Thermal conductivity of insulation, Btu/(h)		transfer cement
-	$(ft^2)(°F/ft)$	W	Flowrate of hot medium, lb/h
L_L	Total pipeline length, ft	W_{F}	Wind factor
L	11	r	

120 FLUID FLOW

ι	Jser instructions	-		Table II
Step	Procedure	Enter	Press	Display
1.	Read in both magnetic cards, Sides 1, 2 and 4		CLR	1, 2, 4
2.	Store data in registers R0 through R10	$R0 = L_L$ $R1 = T_p$ $R2 = T_{mi}$ $R3 = T_{mo}$ $R4 = T_{air}$ $R5 = Pipe 0.D.$ $R6 = Tracer$ $allowance$ $R7 = T_k$ $R8 = K_i$ $R9 = C_p$		Data
3.	Press A to begin computations	R10 = <i>h_a</i> (est.)	Α	T _{wc}
4.	Option: Press E' for printout of data registers		E'	0

	Contents of data registers		Table III
	Line length, ft		Q, Btu/(h)(ft)
	<i>Τ_ρ</i> , °F	16.	X
2.	<i>T_{mi}</i> , °F	17.	W, lb/h
3.	T _{mo} , °F	18.	2724311700*
4.	<i>T_{air}</i> , °F	19.	3735131517*
5.	Pipe O.D., in.	20.	3500332230*
6.	Tracer allowance, in.	21.	T _{med. avg.} , °F
7.	<i>T_k</i> , in.	22.	$h_{c} + h_{r}$, Btu/(h)(°F)(ft ²)
8.	K_i , Btu/(h)(ft ²)(°F/ft)	23.	2.814*
9.	C _p , Btu/(lb)(°F)	24.	-0.0003885714*
10.	<i>h_a</i> (trial calculation, Btu/(h)([°] F)(ft ²)	25.	-0.0000012857*
11.	<i>d</i> _o , in.	26 .	W _F
12.	<i>d</i> _i , in.	27.	$T_s - T_{air}$, °F
13.	T _{avg. inside} , °F	28.	h_a^\prime , Btu/(h)($^\circ$ F)(ft ²)
14.	<i>T_s</i> , °F	29.	<i>T_{med. avg.}</i> — <i>T_p</i> , [°] F
*Co	nstants that must be stored on magnetic card		

Constants that must be stored on magnetic card before program execution (first time only).

tute constants for other-sized tracers, as given in Table IV. Constant a occupies Program Steps 280 through 283, and b occupies Steps 314 through 317. Constants for other-sized tracer lines may be keyed into the same area of the program.

An example

Estimate the number of tracers required to maintain 100 ft of 6-in.-dia. process line at 500°F. Hot tracing medium is available at 625°F, and has a heat capacity of 0.53 Btu/(lb)(°F). The process line is covered with 2.5 in. of insulation whose thermal conductivity is 0.037 Btu/(h)(ft²)(°F/ft). Design this system for 0°F air tem-

Thermal conductance valu	Table IV		
Tube size,		stant,	
<u>in.</u>	<u>a</u>	<u></u>	
3/8	0.295	3.44	
1/2	0.393	4.58	
5/8	0.490	5.73	
See Eq. (7) and (8)			
User-defined keys			Table V
A – Starts program			
B – Calculates T_s (internal)			
C – Calculates $h_c + h_r$ (interr	nal)		
D – Calculates Q, Q_t, W , and	d number of tr	acers (interna	1)

- $\mathbf{E} \text{Readjusts} h_a$ for new trial (internal)
- E' Prints data registers

L

perature and 20-mph winds. The tracing medium is to be returned at 550°F. Use $\frac{1}{2}$ -in. tracers.

Enter the problem variables into the calculator:

Variable	Register	Variable	Register
$L_{L} = 100$	(R 0)	Tracer	
$T_{p} = 500$	(R1)	allowance* = 1.25	(R6)
$\dot{T}_{mi} = 625$	(R2)	$T_{k} = 2.5$	(R7)
$T_{mo} = 550$	(R3)	$K_i = 0.037$	(R8)
$T_{air} = 0$	(R4)	$C_{p} = 0.53$	(R9)
Pipe $O.D. = 6.065$	(R5)	h_a (trial) = 4.0	(R10)

Press Key A to run the program. The results print as:

INE TRACER PGM	
18.84804484	TS
234.8519058	- Q
23485.19058	BTUH
590. 8224045	LB/H
7.	TWOC
1.	TWC

The estimated number of tracers without the heattransfer cement for this example is seven, while using a heat-transfer cement reduces the required number to one. Circulation rate of the tracing medium is 590.8 lb/h, and heat lost from 100 ft of pipeline is 23,485 Btu/h.

Users not having a printer may recall most of the calculated results from the data registers (see Table III). The value displayed after program execution is T_{wc} .

For HP-67/97 users

The HP version closely follows the TI program. Table VI offers the HP program listing, and Table VII provides user instructions for the HP version. Table VIII lists the contents of the HP data registers.

^{*}Allow approximately 1¼ in. between the pipe and insulation to accommodate the ½-in. tracer line and heat-transfer cement. For three, or more, tracers, allow twice this value. Smaller tracers may require only $\frac{7}{16}$ to 1 in. of space. Tracers are normally spaced equidistant around the pipe (see illustration), and are run parallel to the pipe. A final run with the calculator program may be made after the total number of tracers and spacing has been established.

Program listing for HP version

Т	ab	le	VI	

Table VII

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLA	Zr 1:	040	2	<u>82</u>	079	STOE	35-15	118	Z	63	157	9	83
062	F≓S	18 - 71	641	÷	-24	080	RCL4	<i>3E 0</i> 4	119	÷	-24	158	5	53
003	RCL2	36 02	042	2	82	081	P≠S	16-51	120	RCL4	38-04	159	Ŧ	-55
884	RCL3	36 03	643	÷	-24	8 82	RCL4	36 04	121	₽‡5	15-51	160	INT	18 24
885	+	-55	044	P≢S	16-51	083	-	-45	122	RCL4	- 36 B4	161	DSPØ	-63 00
00E	Ž	<i>02</i>	045	RCL8	36 68	084	STOB	35-12	123	-	-45	162	PRTX	-1-
007	÷	-24	E 46	÷	-24	085	P≢S	16-51	124	Χ	-35	163	RCLB	36 12
008	P‡S	16-51	647	STOD	35 14	086	RCL7	36 07	125	₽‡S	16-51	164	4	- E4
009	S706	35 06	048	RCL4	36 Ø4	087	STOØ	35 00	126	ST05	JS 85	165	•	-63
010	P≠S	16-51	049	X	-35	088	RCLB	36-12	127	PRIX	-14	166	5	85
011	RČLI	36-81	050	₽‡3	16-51	089	RCL8	36 08	128	₽≢S	16-51	167	8	38
012	+	-55	051	RCL3	36 03	090	Х	-35	129	RCLØ	36 88	168	Х	-75
013	2	62	052	÷	-55	091	ST+0	35-55 00	130	х	-35	169	$1 \cdot X$	-52
614	÷	-24	053	RCLD	36 14	092	RCLE	36 12	131	PRTX	-14	170	RCL5	35 85
015	P≠S	18-51	054	1	21	093	X٤	53	132	RCL9	38 89	171	х	-35
016	ST03	35 03	055	+	-55	094	RCL9	36 89	133	÷	-24	172		-62
017	P≠S	16-51	056	÷	-24	695	Х	-35	134	RCL2	36 32	173	9	63
018	RCL5	36 85	057	5.T04	35 04	696	ST+Ø	35-55 00	135	RCL3	38 03	174	9	63
019	RCL6	36 86	058	*LBLC	21-13	097	RCLØ	36 98	136	-	-45	175	9	63
020	+	-55	8 59	RCL1	36 01	098	RCLE	38 15	137	÷	-24	176	+	-55
621	P≠S	16-51	060		-62	099	2	-35	138	PRTX	-14	177	INT	16-34
022	ST02	JS 03	961	1	01	100	STOC	- 35-13	139	STOI	35 4 <i>8</i>	178	PRTX	-14
023	P≓S	16-51	062	9	89	101	RCLA	36-11	140	P≢S	16-51	179	DSP2	-63 02
024	RCL7	36 07	063	Y٠	31	102	-	-43	141	RCL6	35 BE	186	R∕S	51
<i>0</i> 25	2	03	<i>66</i> 4	2	62	103	AB3	15 31	142	F≓S	16-51	181	*LBLE	21-15
026	X	-25	065	7	ð7	104		-62	143	RCL1	36-61	182	RCLC	36 13
627	÷	-55	06E	3	ē7	105	ē	ĒĒ	144	-	-45	183	STOA	35-11
0 28	P\$S	16-51	067	RCL4	35 <i>0</i> 4	106	1		145	STOB	35 12	184	GTOB	22-12
029	ST01	35 Øi	068	P#3	16-51	107	XZY?	16-35	146		-62	185	R∕S	51
030	*LBL5	21-12	069	RCL4	36 04	108	GTUE	23-15	147	3	67	186	*LBLe	21 16 15
031	RCL1	36 0i	070	-	-45	109	*LBLD	Z1 14	148	<u>0</u>	ð5	187	DSP9	-63 89
032	RCL2	36 02	071	-	-45	110	RCL4	38 84	149	3	83	188	PREG	16-13
033	÷	-24	072	2	- 35	111	PRTX	-14	150	Χ	-33	189	DSP2	-63 02
634	LN	32	073	$1/\lambda$	52	112	RCLC	36 17	151	1 < N	52	190	RTN	24
035	RCLA	36-11	074	5	05	113	P i	16-24	152	₽≠S	16-51	191	R∕S	51
036	Х	-75	075	6	00 06	114	X	-35	153	RCL5	36 85			
037	RCL1	36 êi	076	4	34	115	RCL1	36 81	154		-35			
038	Χ	-35	077	x	-35	116	λ	-35	155		-52			
039	1	81	078	₽≢S	16-51	117	i		156	9	09 09			

User instructions for HP version

Store the following data	:		
Pipeline length, ft		L	STO 0
Temperature in pipe, °F		T _P T _{mi}	STO 1
Inlet temperature, hot m	nedium, °F	T _{mi}	STO 2
Outlet temperature, hot	medium, °F	T _{mo}	STO 3
Air temperature, °F		Tair	STO 4
Pipe OD, in.			STO 5
Tracer allowance, in.			STO 6
Insulation thickness, in.		T_{κ}	STO 7
Thermal conductivity of	insulation,Btu/(h)(ft ²)(°F/ft)	K,	STO 8
Heat capacity of hot me		C _p	STO 9
Air film coefficient, estin	nate, Btu/(h)(°F)(ft ²)	ha	STO A
Exchange registers			P≓S
Store constants:	2.814		STO 7
(See note below)	-3.885712E-4		STO 8
. ,	-1.285E-6		STO 9

Run program with key A

Printed output is:		
Surface temperature of insulation, °F	T _s	
Heat loss per foot of pipe, Btu/h	Q	
Total heat loss, Btu/h	Qt	
Flow rate of hot medium, lb/h	W	
Number of tracers required:		
without transfer cement	T_{woc}	
with transfer cement	Twc	

Note: When designing for zero wind conditions, enter the following constants in the place of those given above, 1.0, 0 and 0 in secondary registers 7, 8 and 9.

Contents of data registers—HP version Table VIII

HP	П		HP	ті
0	26 N	N _F	D	16 <i>X</i>
1	11 0	<i>t</i> _o , in.	Е	22 $h_c + h_r$, Btu/(h)(°F)(ft ²)
2	12 0	<i>t</i> _i , in.	S0	0 line length, ft
3	13 7	<i>T_{avg inside},</i> °F	S1	1 <i>T_p</i> , °F
	14 7		S2	2 <i>Ť_{mi}</i> , °F
5	15 (2, Btu/(h)(ft)	S 3	3 <i>T_{mo}</i> , °F
6	21 7	T _{med, avg} , °F	S4	4 <i>T_{air}</i> , °F
7	23 2	2.814	S5	5 pipe O.D., in.
8	24 -	0.0003885714	S6	6 tracer allowance, in.
9	25 -	0.0000012857	S7	7 <i>T_k</i> , in.
A		n _a (trial calculation, Btu/ h)(°F)(ft ²))	S 8	8 K _i , Btu/(h)(ft ²)(°F/ft)
в	29 1	T _{med, avg} -T _p , °F	S9	9 <i>C_p</i> , Btu/(lb)(°F)
		n'a, Btu/(h)(°F)(ft ²)		

References

- 1. Kern, D. Q., "Process Heat Transfer," pp. 18-20, McGraw-Hill, New York, 1950.
- Kohli, I. P., Chem. Eng., Mar. 26, 1979, p. 163.
 Kuong, J. F., Chem. Eng., July 25, 1960, p. 146.

Estimate equivalent line lengths of piping circuits

Quickly determine the equivalent line lengths of loops containing fittings, valves, and pipes of various lengths. All that is needed is an isometric drawing of the piping system, and this program for the TI-59 calculator.

W. Wayne Blackwell, Ford, Bacon & Davis, Inc.*

The program calculates equivalent pipe lengths for eight types of valves, eight types of fittings, and entrance and exit losses. It then sums the equivalent pipe lengths and prints the total. Next, it adds pipe lengths in feet and inches (tedious ft/in. conversions are not necessary), and prints the total equivalent feet in decimal form. With this information, the total pressure drop through a circuit can be readily determined.

Each valve, fitting and loss is identified, and the number of each is listed, in the printout. The program prompts the user for part of the input.

Although written for the TI-59 calculator and the PC-100C printer, the program could be used without a printer, because all totals are stored in data registers.

Program development

The pressure drop through valves and fittings is related to velocity changes in the flowing fluid:

$$h = KV^2/2g$$

Here, h = pressure loss in head of fluid, ft; K = experimental coefficient (number of velocity heads); V = average velocity in pipe, ft/s; and g = 32.17 ft/s².

Pressure drops calculated via the foregoing equation (which is for turbulent flow) usually give accurate pressure losses for valves and fittings. However, velocity and K data are required to solve the equation.

The equivalent-length method, though less accurate, *For information about the author, see *Chem. Eng.*, July 12, p. 108.

Originally published November 1, 1982.

r cal	culating equivalent line le	ngths	Table I		
Step	Procedure	Enter	Press	Display	
1.	Partition calculator at 719.29	3	2nd OP 17	719.29	
2.	Read in both sides of two magnetic cards	CLR		1,2,3,4	
3.	Press A to begin computation		A	Print	
4.	When calculator stops, key in pipe I.D. and press R/S		R/S	0	
5.	Press subroutine label correspond to type of valve, fitting or loss	ing	LЫ, SBR*	Print	
6.	Key in number of valves or fitting and press R/S	S	R/S	0	
7.	Repeat Steps 5 and 6 until equiva lengths of all valves and fittings ha been calculated		Lbi, SBR*	Print	
8.	Press C' for sum of equivalent lenged of pipe	gth	C'	0	
9.	Press E' to activate sum of pipe-le program	ngth	E'	Print	
10.	Enter pipe length as feet; for exar 8 ft, 10½ in. as 8.105	nple		Length	
11.	Press R/S			in/ft	
12.	After calculation has stopped, rep Steps 10 and 11 until all pipe leng have been entered			0	
13.	Press C' for sum of pipe lengths		C'	0	

*To activate user labels A through E (or A' through E'), press only the appropriate key. To call other labels, press SBR, then the label; (for example, Label X^2 is called by SBR X^2 .

	User-d	efined	keys
A	Starts program	CLR	Ball check valves
B	Gate valves	x≒t	Butterfly valves
C	Long-radius 90-deg. elbows		Three-way straight-through valves
D	Straight-through tees 🚣	√X	Three-way flow-through branch valves -
Ε	Reduction/enlargement-D-		Short-radius 90-deg. elbows
A' .	Entrance loss 🛶	STO	Short-radius 45-deg. elbows
B'	Exit loss 🐳	RCL	90-deg. miter bends
C'	Sum of equivalent feet	SUM	45-deg. miter bends
INV	Globe valves	γ×	Flow-through branch tees 🕂
ln x	Plug valves	E	Activates sum-of-pipe-length program
CE	Swing check valves		

Sample problem yields equivalent length of 135 ft Table II

EQUIVALENT LINE LENGTH PROGRAM PIPE ID ? 4.026 LR90 ELBAWS ?	IN	LINE LNGTH 2.04 10.115 7. 5.0325
3, 20,17026 BF TEES ?	FΤ	SUM-EQL FT 25,5625
20.13 GATE VALVES ? 1.	FT	
4.4286 SWCK VALVES ? 1.	FT	
44.04444 Exit	FT	
20.56124573 SUM-EQL FT 109.3345457	FT	

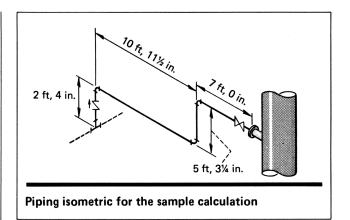
Program calculates equivalent line lengths for piping loops containing valves, fittings, and piping of various lengths

EQUIVALENT LINE LENGTHS OF PIPE CIRCUITS 125

Table III

Step Code Key	Step Code Key	Step Code Key	Step Code Key	Step Code Key	Step Code Key
351 05 05 352 92 RTN	$406 ext{ 00 ext{ 0}} 0 ext{ 01 ext{ 1}} 1$	467 99 PRT	525 69 DP 526 05 05	584 01 01 585 43 RCL	Sum of equivalent line lengths
352 92 RTN	408 00 0	Straight-through tees	527 91 R/S	586 09 09	643 76 LBL
Short-radius 90-deg. elbows	$409 00 0 \\ 410 03 3$	468 76 LBL 469 14 D	528 99 PRT 529 65 ×	587 69 OP 588 02 02	644 18 C ' 645 69 D P
353 76 LBL	411 00 0	470 69 DP	530 05 5	589 69 D P	646 00 00
354 35 1/X 355 03 3	412 02 2 413 04 4	471 00 00 472 03 3	531 61 GTO 532 99 PRT	590 05 05 591 02 2	647 03 3 648 06 6
356 06 6	414 69 OP	473 06 6	533 91 R/S	592 Ol i	649 04 4
357 03 3 358 05 5	415 01 01 416 43 RCL	474 03 3 475 07 7	Reduction/enlargement	593 03 3 594 07 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
359 01 1	417 25 25	476 00 0	534 76 LBL	595 69 OP	652 00 O
360 02 2 361 00 0	418 69 DP 419 02 02	477 00 0 478 03 3	535 15 E 536 69 DP	596 04 04 597 43 RCL	653 02 2 654 00 0
362 01 1	420 43 RCL	479 07 7	537 00 00	598 07 07	655 01 1
363 00 0 364 00 0	421 26 26 422 69 DP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	538 43 RCL 539 12 12	599 45 Y× 600 43 RCL	656 07 7 657 69 DP
365 69 DP	423 03 03	482 69 OP	540 69 DP	601 16 16	658 01 01
366 01 01 367 71 SBR	424 69 DP 425 05 05	483 01 01 484 43 RCL	541 01 01 542 43 RCL	602 65 × 603 43 RCL	659 03 3 660 04 3
368 65 $ imes$	426 91 R⁄S	485 27 27	543 13 13	604 17 17	661 02 2
369 91 R/S 370 99 PRT	427 99 PRT 428 65 ×	486 69 OP 487 02 02	544 69 OP 545 02 02	605 95 = 606 44 SUM	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
371 65 ×	429 04 4	488 43 RCL	546 69 D P	607 00 00	664 00 0
372 02 2 373 93 .	430 93 . 431 08 8	489 18 18 490 69 DP	547 05 05 548 02 2	608 69 D P 609 06 06	665 02 2 666 01 1
374 05 5	432 03 3	491 03 03	549 01 1	610 91 R/S	667 03 3
375 61 GTD 376 99 PRT	433 61 GTD 434 99 PRT	492 69 OP 493 05 05	550 03 3 551 07 7		668 07 7 669 69 D P
Short-radius	45-deg. miter bends	494 91 R/S 495 99 PRT	552 69 DP 553 04 04	Exit losses	670 02 02 671 69 DP
45-deg. elbows	435 76 LBL	496 65 X	554 91 R/S	611 76 LBL	672 05 05
377 76 LBL 378 42 STO	436 44 SUM 437 00 0	497 01 1 498 93 .	555 99 PRT 556 42 STD	612 17 B' 613 69 OP	673 43 RCL 674 00 00
379 03 3	438 05 5	499 06 6	557 19 19	614 00 00	675 99 PRT
380 C6 6 381 O3 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	500 07 7 501 61 GTD	558 43 RCL 559 07 07	615 43 RCL 616 10 10	676 00 0 677 42 STO
382 05 5	441 00 0	502 99 PRT	560 23 LNX	617 69 OP	678 00 00
383 00 0 384 05 5	442 00 0 443 03 3	Flow-through	561 65 × 562 43 RCL	618 01 01 619 69 OP	679 91 R/S
385 00 0 386 06 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	branch tees 503 76 LBL	563 14 14	620 05 05 621 02 2	Line length
387 00 0	445 02 2 446 04 4	504 45 YX	564 85 + 565 43 RCL	622 01 1	680 76 LBL 681 10 E'
388 00 0 389 59 DP	447 69 ⊡P 448 01 01	505 01 1 506 04 4	566 15 15	623 03 3	682 00 0 400 40 CTU
390 01 01	449 43 RCL	507 02 2	567 95 = 568 65 ×	624 07 7 625 69 DP	683 42 STO 684 00 00
391 71 SBR 392 65 ×	450 25 25 451 69 DP	508 01 1 509 00 0	569 43 RCL	626 04 04 627 43 RCL	685 69 DP 686 00 00
393 91 R/S	452 02 02	510 00 0	570 19 19 571 95 =	628 07 07	687 43 RCL
394 99 PRT 395 65 ×	453 43 RCL 454 26 26	511 03 3 512 07 7	572 44 SUM 573 00 00	629 45 YX 630 43 RCL	688 28 28 689 69 DP
396 01 1	455 69 OP	513 01 1	574 69 DP	631 16 16	690 01 01
397 93 . 398 33 3	456 03 03 457 69 DP	514 07 7 515 69 DP	575 C6 O6 576 91 R/S	632 65 × 633 43 RCL	691 43 RCL 692 29 29
399 03 3	458 05 05	516 01 01		634 17 17	693 69 D P
400 61 GTD 401 99 PRT	459 91 R/S 460 99 PRT	517 43 RCL 518 27 27	Entrance losses 577 76 LBL	635 65 × 636 02 2	694 02 02 695 69 DP
	461 65 ×	519 69 OP	578 16 A'	637 95 =	696 05 05
90-deg. miter bends 402 76 LBL	462 01 1 463 93 .	520 02 02 521 43 RCL	579 69 OP 580 00 00	638 44 SUM 639 00 00	697 - 91 R/S 698 - 99 PRT
403 43 RCL	464 02 2	522 18 18	581 43 RCL	640 69 DP	699 42 STO
404 01 1 405 02 2	465 05 5 466 61 GTD	523 69 DP 524 03 03	582 08 08 583 69 UP	641 06 06 642 91 R/S	700 19 19 (continued next page)

StepCodeKeyLine length (cont'd)Label addresses (cont'd)70159INT70244SUM70300LINE70300LINE70442	
701 59 INT EXIT B' 702 44 SUM SUM-EQL FT C' 703 00 00 LINE LNGTH E'	Line length (cont'd)
702 44 SUM SUM-EQL FT C' 703 00 00 LINE LNGTH E'	Eine lengtil (collt d)
703 00 00 LINE LNGTH E.	701 59 INT
703 00 00 LINE LNGTH E.	702 44 SUM
704 40 PCI	703 00 00
	704 43 RCL
705 19 19	
706 22 INV Data registers*	
101 DA TMI	
708 65 × Sum register 00 209 43 PCI 1734412442. 01	
711 95 = 27243117. 03 712 44 SUM 2717312237. 04	
712 44 50h 2100 3220 h 04 713 00 00 2300333532. 05	
714 61 GTD 2235133000. 06	
715 06 06 Pipe I.D. 07	
716 97 97 1731373513. 08	
717 91 R/S 3115170000. 09	
1744243700. 10	
8.33333333 11	
Label addresses 3517166317. 12	sesserbhe lede l
31273500/1. 13	
GATE VALVES B 2.99761 14	
GLBE VALVES INV -1.06205 15 PLUG VALVES LNX 1.23787 16	
PLUG VALVES LNX 1.23787 16 SWCK VALVES CE 1.83343 17	
BLCK VALVES CL 1,03343 17 BLCK VALVES CLR 0, 18	
BUTF VALVES XIT Pipe length 19	
3WST VALVES X ² 4213274217, 20	
SWDF VALVES FX 3600710000. 21	
SR90 ELBOUS 1/X 2137. 22	
LR90 ELBDWS C 1727143243. 23	LR90 ELBOWS
SR45 ELBNWS STD 3600710000. 24	
90 MITER BEND RCL 3717350014. 25	
45 MITER BEND SUM 1731160071, 26	
ST TEES D 1736007100. 27	
BF TEES YX 2724311700. 28	
RED/ENLR E 2731223723. 29	
ENTRANCE A •Numbers must be entered	ENTRHNUE


is very convenient and has gained wide acceptance by piping designers for most work. In it, the fitting or valve is taken to be equivalent to so many feet of pipe. By addin^a this calculated length to the line length, the pressure drop for an entire loop can be found at once.

Data from a table of representative equivalent lengths to pipe diameters for various valves and fittings [1] were rearranged and expanded by R. Kern [2]. Factors for this program were taken from the Kern article. When a single factor was not applicable, an equation was developed to represent the data.

Caution is urged in using the part of the program dealing with piping reduction/enlargement. In most cases, the correlations presented are only valid for $d_1/d_2 < 1.5$. (Negative values may be obtained for very small lines.) For values beyond 1.5, refer to Kern [2].

Using the program

Table I gives the program operating instructions and the user-defined keys. Table III provides the program

itself, which occupies both sides of two magnetic cards. The partitioning is 719.29. Label addresses and the data that must be stored are also listed in Table III.

After the pipe internal diameter has been keyed in and $\mathbf{R/S}$ pressed, the subroutine for each type of valve or fitting to be converted is called up. Enter the number of valves or fittings and press $\mathbf{R/S}$ to calculate the equivalent feet of pipe. After all the valves, fittings, and entrance and exit losses have been converted, the total equivalent length is recalled and printed by pressing C'.

To sum pipe lengths, inch dimensions need not be converted into actual equivalents in foot-decimal form. For example, a pipe 12 ft $2\frac{1}{4}$ in. long is entered as 12.0225, and one 2 ft 11 in. long as 2.11.

To begin the pipe-length summing section, first press E'. After each pipe length is keyed in as indicated, press R/S to convert and store the number. After all the lengths have been entered, press C' to obtain the total line length. This feature is also handy for the addition of any linear measurements in feet and inches, such as vessel, tank, tower and plot-plan dimensions.

If a printer is not available, all calculations can still be performed and the totals recalled from storage register 00. All sums for equivalent lengths of valves, fittings and entrance and exit losses, as well as of line lengths, are stored in this register.

Do not press C' to obtain a total without the printer, because register 00 is cleared by the calculator after the sum has been printed. This register is also automatically cleared when either E' or A is pressed.

Sample problem

A piping isometric (see figure) shows a 4-in. Schedule 40 line containing three 90-deg. long-radius elbows, one flowthrough branch-tee, one gate valve (fully open), one swing check-valve, and an exit loss. The piping section lengths are 2 ft 4 in., 10 ft $11\frac{1}{2}$ in., 7 ft 0 in., and 5 ft $3\frac{1}{4}$ in. What is the total equivalent length?

The calculator printouts are given in Table II. The total equivalent length of the valves, fittings and exit loss is 109 ft. The sum of the line lengths is 26 ft. This yields a total equivalent line length of 135 ft.

For HP-67/97 users

The HP version closely follows the TI program. Table IV contains the HP program listing, and Table V offers user instructions. The HP printout for the example is shown in Table VI.

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
601	∗LBL A	21 11	634	1	61	06 7	3	03	100	i,	-75	133	ух	31
90 2	STOA	35-11	035	•	-62	968		-62	101	ST+1	35-55 ei	134	1	<u>e:</u>
0 0 3	PRTX	-14	836	6	0E	069	6	06	102	FRTX	-14	135		-62
0 0 4	R∕S	51	8 3 7	7	97	070	GSB1	23 01	163	₹25	51	135	8	98
605	1	01	938	GSB1	23 Ø1	971	3	ē3	164	SSE2	27-52	137	3	0Z
836		-62	039	5	<i>2</i> 5	072		-62	105	ST+1	35-55 01	138	3	03
8 07	6	e 5	040	esb1	23 01	073	E	ве	196	FRTX	-14	139	ź	<u>9</u> 4
008	7	67	641	1	01	$\bar{e}74$	7	07	107	F > S	51	140	3	07
009	λ	-35	042		-62	075	GSB1	23 01	105	ese2	27 02	14:	Х	-35
e10	RCLA	36 ii	043	1	01	876	1	e i	169	Ž	6 <i>2</i>	142	Χ.,	- 35
011	X	-35	044	GSB1	23-01	077	1	Ūĺ	210	Υ.	-35	143	RTN	24
012	3T01	35 e 1	845	2	62	<i>97</i> 8		-62	111	97+1	25-55 81	144	*LBLE	21-15
013	PETX	-14	646	8	0 8	079	Æ	66	112	FRTX	-14	145	STOP	35 12
814	R∕S	51	04 7		-62	990	.7	67	113	RC11	36 01	14E	FRIX	-14
C15	2	82	048	3	03	081	GEE1	27 Bi	114	PFTX	-14	147	INT	18 34
015		-62	04 9	3	0 3	8 82	RCLA	<i>35 11</i>	115	R× 3	51	148	ST-2	35-55 02
017	5	05	050	GSB1	23 01	683	LN	32	116	+LBL1	21-61	149	FCLE	36-12
018	GSB1	27 6i	05 1	1	61	284		62	117	x	-35	150	FPC	16 44
0 19	1	E1	052	•	-62	0 8 5		-62	118	RCLH	36 11	151	1	61
020		- 62	053	5	05	636	ş	89	119	A	-33	152	2	02
021	3	03	054	ese1	23 0 1	-797	9	09	120	5T+1	Z5-53 01	153	÷	-24
022	3	03	055	1	61	083	7	E7	121	PRTX	-14	154	1	01
823	GSB1	23 01	056	0	00	<i>089</i>	6	66	122	R2 \$	51	155	ē	98
824	4	84	Ø57	•	-62	096	i	81 13	123	RTN	24	15E	0	09
025		-62	058	9	8 9	091	1	-35	124	*LBLI	II 02	157	λ	-35
026	8	8 8	059	4	34	<i>893</i>	1	01	125	RCLA	36 11	158	ST-2	25-55 02
027	3	33	060	GSB1	23 81	693		-62	12E	i	31	159	R ∕S	51
028	GSB:	23 E1	C61	1	01	694	Ē	6ē	127		-62	169	*LBLC	2: 13
629	1	61	962	2	82	<i></i> ?35	Ē	66	128	2	č2	161	RCL2	36 02
630		-62	063	•	-62	096	2	62	129	3	63	162	PRTX	-14
031	2	02	064	4	64	257	ē	61	130	- 7	07	163	₹78	51
632	5	62	0 65	6	05	0.16	5	-25	131	8	88	164	RTN	24
033	esb1	23 Ci	06 6	esb1	23 01	699	-	-45	: 3 2	7	07	165	R/S	51

User instructions for HP version

Table V

Example for HP version

4.0260

20.1703

0.0000

0.0363

0.8838

6.0600

0.3600

20.1300

4.4255

0.0600 0.0600

44.34-4

6.6606

9.0000

0.0000

0.0000

9.0036

0.9088

2.0400

7.0000

5.0325

25.5625

10.1150

20.5612

109.3345

**-

~*×

₹\$\$

4¥ ₹

°≈.**9**..#

**:

¥2 8

8**4**4

.s.≠

古菜芋

主家業

杀草子

₹**∴**#

无关表

Pipe diameter

Equivalent line lengths

Total equivalent length

Pipe lengths

Total pipe length

type of fittings

for each of the 18 different

```
Table VI
```

Step	Procedure	Key
1.	Enter pipe diameter, in., then press the	Á
	A key.	
(219.)	Enter the number of fittings in each of	
	the following 18 categories and press	
	the R/S key after each entry. Where no	
	fittings of a given category are used,	
	enter zero and press the R/S key.	
2.	Long radius 90° elbows	R/S
3.	Short radius 90° elbows	R/S
4.	Short radius 45° elbows	R/S
5.	90° miter bends	R/S
6.	45° miter bends	R/S
7.	Straight-through tees	R/S
8.	Flow-through branch tees	R/S
9.	Gate valves	R/S
10.	Globe valves	R/S
11.	Plug valves	R/S
12.	Swing check valves	R/S
13.	Ball check valves	R/S
14.	Butterfly valves	R/S
15.	3-way straight-through valves	R/S
16.	3-way flow-through branch valves	R/S
17.	Reduction/enlargement	R/S
18.	Entrance loss	R/S
19.	Exit loss	R/S
20.	Read the total equivalent lengths.	
21.	Enter each pipe length in ("feet-decimal	E
	point-inches"), and after each entry	
	press the E key.	
22.	Press the C key.	С
23.	Read the total pipe length (in decimal	
T h	feet).	

The printout is in the following order: pipe diameter; equivalent line lengths for each of 18 different types of fitting; total of the listed fitting equivalents; the value, in decimal feet, of each of a series of pipe lengths; and, finally, the total of the pipe lengths.

References

1. "Flow of Fluids," Technical paper No. 410, Crane Co., New York, 1957.

2. Kern, R., How To Compute Pipe Size, Chem. Eng., Jan. 6, 1975, pp. 115-120.

Program predicts pressure drop for gas flow across an orifice meter

Written for the HP-67 or HP-97, this program simplifies calibration of the meter. Also, guidelines are given for constructing and installing this device.

Frank A. Stephens, Amax Specialty Metals Corp.

Most engineers, at one time or another, need to measure the flowrate of a fluid in a pipe. A variety of devices are available to do this. These are often expensive, and frequently have delivery times of weeks or even months.

But long lead times for equipment are often unacceptable. As an alternative, the engineer should consider the use of an orifice meter. Such a meter is easily fabricated in any reasonably equipped machine shop, and can usually be in place in a couple of days.

The reader may remember a weekend spent in college when one's professor assigned the problem of designing an orifice meter to measure the flowrate of a gas stream. It took hours of trial-and-error calculations to determine each point on the curve of flowrate vs. pressure differential across the orifice. Now, however, with the convenience of the small programmable calculators—here, the Hewlett Packard HP-67 or HP-97—the entire flow curve can be generated in the field in less than an hour.

The equation

The calculator program in this article predicts the differential pressure created by an orifice meter at any selected flowrate of a gas (see Table I). In most cases, deviation of the predicted flowrate from the actual will be less than $\pm 3\%$.

Obviously, before the pressure differential can be predicted, certain parameters pertaining to the orifice meter and the gas stream must be known. These appear in the nomenclature (see box).

The equation used to predict the differential pressure across the orifice for a specific flowrate of gas is:

$$Q = 678 Y C d_o^2 \sqrt{\frac{\Delta P P_1}{T_1 S_g}} \tag{1}$$

This equation, when used in conjunction with the graphs presented here, predicts the maximum pressure drop that can be measured across an orifice. For this reason, vena-contracta taps should be used when apply-

Originally published November 29, 1982.

128

ing the method presented in this article. These taps measure the greatest pressure differential.

The value of the expansion factor, Y, in Eq. (1) is determined from the following equation (from Mink [4]):

$$Y = 1 - (0.41 - 0.35\beta^4) \frac{\Delta P}{kP_1}$$
(2)

If the value of $\frac{\Delta P}{kP_1}$ exceeds 0.35, the calculator will display "error." This is because the linear relationship between Y and $\frac{\Delta P}{kP_1}$, as described in Eq. (2), changes at approximately 0.35, and the calculated value of Y may not be accurate.

The value of the coefficient of discharge, C, is obtained from Fig. 1 (from Stearns, et al. [2]). Since the Reynolds number (and therefore the coefficient of discharge) changes with the flowrate of gas, a new coefficient of discharge must be used every time a pressure drop for a given orifice meter is to be determined for a new flowrate of gas.

User's instructions for the program appear in Table II. In Step 11, the calculator may continue to compute for several minutes. When it completes the calculation, it will display the pressure drop across the orifice for five seconds in psi, for the HP-67. Then it will convert the pressure drop to in. H_2O , and leave this number on the display indefinitely. On the HP-97, the answer is printed in psi and displayed in in. H_2O ; the psi value is not displayed.

Example

Consider air flowing through a 4-in. pipe at a rate of 175 scfm. Assume that the pipe is equipped with an orifice meter having an inside dia. of 2.4985 in., and that air is at 100°F and 15.486 psia. The following inputs would be made to predict the pressure differential across the orifice: (Text continues on p. 130)

PRESSURE DROP FOR GAS FLOW ACROSS AN ORIFICE METER 129

ssure	drop for	gas flows ac		emeters							Tab
Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
001	*LBLA	21 11		Inputs Q		103	ST03	35 0 8	158		-62
	1		8 53	R∕S	51	104	RCLØ	36 00	159	7	07
	Inputs	T 0	054	ST05	35 05	105	RCLA	36 11	160	0	00
a	, D, S _g , μ, k,	P_{1}, P_{1}				106	+	-55	161	ī	07
002	R/S	51	Ca	alc. <i>Re</i> num	ber	107	STOA	35 11	162	x	-35
003	STOC	35 13	055	ENTT	-21				163	GT06	22 06
004	RIS	51	056	2	02	Comp	ares Q for Z	ΔP_s and ΔP_l			
005	STOD	35 14	057	8	08	108	*LBL2	21 02			
006	R/S	51	058	v	-62	100	GSB1	23 01	9	Subroutine: c	alc O
007	ST03	35 03	8 53	9	09	110	ST09	35 09		babi batine. t	
008	R∕S	50 50	060	2	02		RCL8	36 08	164	*LBL1	21 01
000 009	ST02	35 02			-35	111			165	1	21 01 01
			<i>061</i>	X		112	RCL5	36 95		-	
010	P≢S	16-51	062	RCL3	36 03	113	-	-45	166	RCLA	36 11
011	R/S	51	063	X	-35	114	ABS	16 31	167	RCL4	36 84
012	ST01	35 01	064	RCLD	36 14	115	RCL9	36 09	168	х	-35
013	R∕S	51	065	÷	-24	116	RCL5	36 05	169	-	-45
014	4	Ē4	066	RCL2	36 02	117	-	-45	170	RCL7	36 07
015	5	05	067	÷	-24	118	ABS	16 31	171	Х	-35
016	9	8 9	068	DSP2	-63 02	119	X>Y?	16-34	172	RCLA	36-11
017		-62	069	SCI	-12	120	GT03	22 0 3	173	1 X	54
018	6	06				121	RCL9	36 09	174	X	-35
019	7	07		Inputs C		122	ST08	35 08	175	RTN	24
020	+	-55	070	R∕S	51	123	RCLØ	36 00			
021	STOB	35 12	071	FIX	-11	124	RCLA	36 11			
022	R/S	51	072	ST06	35 06	125	+	-55		New T ₁	
023	STOE	35 15	072	0,00	00 00	126	X (0?	16-45		11010 / 1	
023	PIS	35 15 16-51	Calc	<i>"K"</i> in Q = 1	KYVAP	126	GT03	16-45 22 Ø3	176	*LBLB	21 12
024	140	10 01	073	6	06		STOA				
	Inputs numb	er of	073 074	7		128		35 11	177	4	Ø4 05
	decimal poir				07 20	129	GTO2	22 8 2	178	5	Ø5
005			075 076	8	08 74 17	C L	anges the ir	cromor*	179	9	09
025 025	R/S	51	076 077	RCLC	36 13 57		•		180	•	-62
026	ST01	35 01	077	X2	53	130	*LBL3	21 03	181	6	06
027	*LBL5	21 05	078	X	-35	131	RCLØ	36 00	182	7	07
028	P≠S	16-51	079	RCL6	36 06	132	1	01	183	+	-55
	.		630	Х	-35	133	Ø	68	184	STOB	35-12
	Calc. β		681	RCLE	36 15	134	CHS	-22	185	GTO5	22 05
029	RCLC	36 13	082	RCLB	36 12	135	÷	-24			
030	RCLD	36-14	083	÷	-24	136	STOØ	35 00			
631	÷	-24	084	RCL3	36 03	137	RCL9	36 09		New d _o	
032	ST02	35 02	085	÷	-24	138	ST08	35 08			
033	ENTT	-21	086	JX	54	139		16 25 46	186	*LBLC	21 13
834	ENTT	-21	087	X	-35	140	GTO2	22 02	187	STOC	35 13
			088	ST07	35 07				188	GT05	22 05
			000	0.01	00 07		Δ Ρ		100	0100	LL 00
Cal	c. <i>"a"</i> in Y=	1 <i>−a∆P</i>		Formats disp	play:	Cł	necks $\frac{\Delta P}{kP_1}$	>0.35			
035	4	64		degree of a		141	RCLA	36 11			
036 	yx	31	089	RCL1	36 01	141	RCLE	36 11 36 15		New D	
	1								100		o
037	<u>'</u>	-62	<i>090</i>	STOI DCD:	35 46	143	÷	-24	189	*LBLD	21 14
038	3	03 05	091	DSP	-63 45	144	P≢S	16-51	190	STOD	35 14
039	5	05	092	3	03	145	RCL1	36 01	191	GTO5	22 0 5
040	Х	-35	693	÷	-55	146	÷	-24			
041	•	-62	0 94	STOI	35 46	147	P≠S	16-51			
042	4	04				148		-62		New P ₁	
043	1	01	Calc	. Q for ΔP_s	and ΔP_{I}	149	3	03			
044	+	-55		= smaller, / =		150	5	65	192	*LBLE	21 15
045	RCLE	$36 \ 15$		ram assumes		151	-	-45	193	STOE	35-15
046	÷	-24	smaller	ΔP_s until if	t converges)	152	X>0?	16-44	194	GT05	22 0 5
047	RCL1	36 01	095	1	01	153	GT04	22 84			
048	÷	-24	096	STOØ	35 00						
049	P≢S	16-51	<i>097</i>		-62					Display "Eri	ror"
050	ST04	35 84	098	0	00		Outputs 4	ΔP	195	*LBL4	21 04
000	0104	00 04	090 099	0	00 00	154	RCLA	36 11	195	ALDL4 Ø	21 04
	Displays	3			00 01		PRTX	-14	196	÷	-24
051	€lsplays, R↓	-31	100	1 9700		155					
			101	STOA CSP1	35 11 27 0 1	156	2 7	02 07	198	RTN RZS	24 51
052	*LBL6	21 ØE	102	GSB1	23 01	157	1	07	199	R∕S	J1

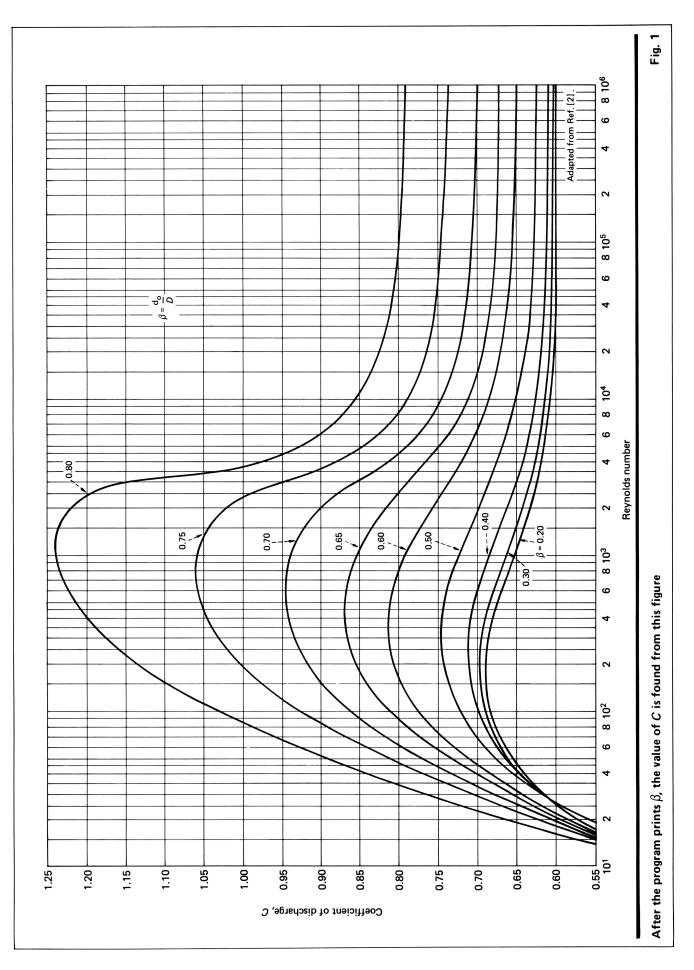
Nomenclature

do	Inside dia. of the orifice, in.
D	Inside dia. of pipe, in.
S_{g}	Specific gravity of gas relative to air, both at
	standard temperature and pressure
μ	Viscosity of gas at actual temperature and pressure, cP
k	Ratio of specific heats (C_p/C_v) at actual temperature and pressure. Typical values appear in Ref. [1].
T_1	Temperature of gas, R
P_1	Pressure of gas (upstream of orifice plate), psia
Ō	Flowrate of gas, scfm (at 60°F, 14.7 psia)

 \tilde{c} Coefficient of discharge

Other parameters, which are not required to be known directly but will be referred to:

Re no. Reynolds number


- Orifice-to-pipe-dia. ratio
- β Y Expansion factor
- Differential pressure across orifice, psi ΔP

Entry	Variable
press A	
2.4985	d_{o}
4.026	Ď
1.0	S_{g}
0.023	μ
1.40	k
100	T_1
15.486	P_1
3	No. of decimal points
	(Output: = 0.62)
175	Q
	(Output: Re no. $=$
	5.47×10^{4})
0.667	C from Fig. 1
$\Delta P = 0.141$ psi	Ũ
$\Delta P = 3.894$ in. H ₂ O	

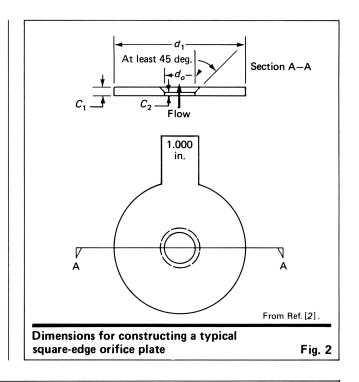
Fabrication/installation

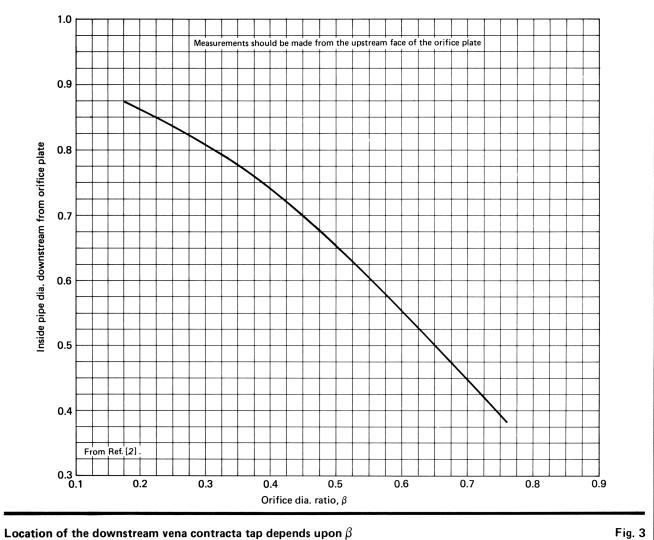
Because the orifice plate is relatively small and its material cost is low, stainless steel is generally the recommended material of construction. Different applica-

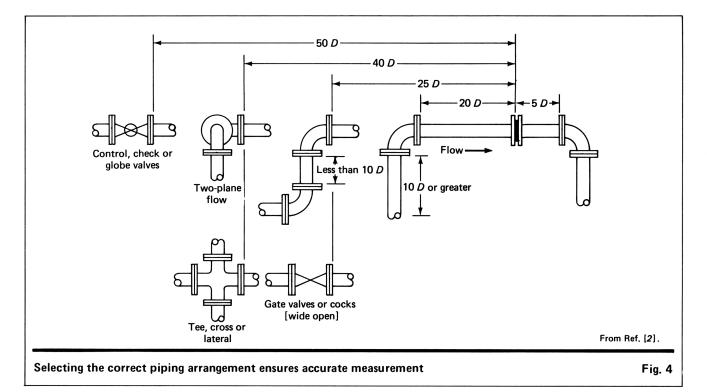
's instructi	ons for running the program			Tal
Step	Instructions	Input data/units	Keys	Output data
1.	Initiate program.		Α	
2.	Enter inside dia. of orifice plate, in.	<i>d_o ,</i> in.	R/S	do
3.	Enter inside dia. of pipe, in.	<i>D</i> , in.	R/S	D
4.	Enter specific gravity of gas relative to air.	S _g	R/S	s _g
5.	Enter viscosity of gas at flow conditions, cP.	μ, cP	R/S	μ
6.	Enter ratio of specific heats of gas at flow conditions.	k	R/S	k
7.	Enter temperature of gas in °F; calculator will display 7 ₁ in R.	<i>Τ</i> ₁ ,°F	R/S	7 ₁ , R
8.	Enter pressure of gas upstream of orifice plate, psia.	P ₁ , psia	R/S	P ₁
9.	Enter number of decimal places of accuracy desired (3 are recommended). At this point, the calculator will display β , the ratio of the inside dia. of the orifice to the inside dia. of the pipe. Record the value of β , since it will be needed later to determine the value of the discharge coefficient, <i>C</i> .	No. of decimal points	R/S	β
10.	Enter flowrate of gas at which pressure drop across orifice is to be calculated, scfm. Now the calculator will display the Reynolds number for the gasflow in the pipe. With this Reynolds number and the appropriate value for β , determine the coefficient of discharge from Fig. 1.	Q, scfm	R/S	Reynolds number
11.	Enter value of coefficient of discharge. If $\frac{\Delta P}{kP_1}$ exceeds 0.35, then "error" will be displayed. The value of ΔP for other flowrates may be obtained by proceeding from Step 10. New values of T_1 , d_0 , D and P_1 may be tried by entering the new value, pressing the appropriate	С	R/S	∆₽, psi ∆₽, in. H ₂ C

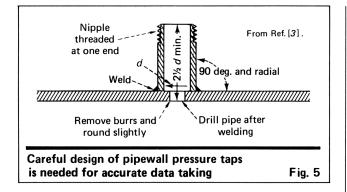
132 FLUID FLOW

tions may require more-exotic alloys, and the engineer must select the material, depending on each case.


The thickness of the plate depends on the size of the pipe and the differential pressure expected to be applied. The recommended minimum for plate thickness is:


Pipe size, in.	Minimum plate thickness, in.
up to 4	1/16
from 4 to 16	1/8
16 and greater	1/4


Fig. 2 illustrates a typical design for a square-edged orifice plate (from Stearns, et al. [2]). The following rules are suggested guidelines to be used with respect to Fig. 2:


1. The ratio of $\frac{C_2}{d_o}$ should not exceed 0.125 (C_2 is defined in the figure).

2. C_2 should not exceed $\frac{1}{30}$ of the inside pipe dia., D. 3. C_2 should not exceed $\frac{1}{4}$ of $(D - d_0)/2$. 4. β should fall between 0.15 and 0.75 for Reynolds numbers greater than 10,000, and between 0.20 and 0.50 for Reynolds numbers less than 10,000.

5. d_1 should be equal to the diameter of the bolt circle of the flange in which it is to be mounted, minus the diameter of one bolt-hole.

6. In all cases, the leading edge of the orifice plate should be square and sharp.

Locating the taps

Location of the pressure taps can have a dramatic effect on measurement. In order for the measured pressure differential to match the predicted pressure differential, vena-contracta pressure taps should be used, as already mentioned. This means that the center of the upstream tap should be located one inside-pipe-dia. from the upstream face of the orifice plate, and the downstream tap should be located at the point of minimum pressure. Fig. 3 shows the location of point of minimum pressure as a function of the orifice-to-pipe-dia. ratio, β (from Stearns, et al. [2]).

Fig. 5 illustrates a pressure tap used to measure the differential pressure generated by an orifice (from Spink [3]). The recommended diameter of the hole drilled through the wall of the pipe is $\frac{1}{4}$ in. for $2\frac{1}{2}$ -in. pipe or

smaller; $\frac{3}{8}$ in. for 3 and $\frac{3}{2}$ -in. pipe, and $\frac{1}{2}$ in. for 4-in. pipe and over.

The piping arrangement in which the orifice plate is mounted can also affect the differential pressure, particularly with respect to the upstream piping. Fig. 4 suggests the minimum length of straight pipe that should be installed before and after the orifice plate, depending on the piping arrangement (from Stearns, et al. [2]). All measurements are again made from the upstream face of the plate.

For TI-58/59 users

Table III presents the TI version of the program. User's instructions appear in Table IV, along with the example that was given for the HP version. (Note that, due to roundoff, the TI results differ slightly; the value for the pressure drop for the TI version is 0.140 psi, or 3.871 in. H₂O. Also, the values for the orifice/diameter ratio and the Reynolds number in Table IV have been rounded off; the program yields these values with many more significant figures.)

The decimal has been fixed at 3 places in step 115. The number of places may be changed by simply changing the number in this step.

Program listing for TI version

Table III

Step	Code	Key	Step	Code	Key	Step	Code	Key
000 001 002 003 004 005 006		LBL STD S2 S7 S7 S2 S7 S2 S7 S2 S7 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2	007 008 009 010 011 012 012	94034024 094024 094	R/S STD 03 R/S STD 02 R/S	014 015 017 017 018 019 020	2 4 4 9 5 4 5 9 0 0 9	STD 11 R/S + 4 5 9

(Continued) Table III

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
$\begin{array}{c} 1223456789012345678901234567890123\\ 000000000000000000000000000000000000$	2453315244 54315244 043552839 0939	= TO S OL R OS 2 8 .9	$\begin{array}{c} 074\\ 075\\ 076\\ 077\\ 078\\ 081\\ 0884\\ 0885\\ 0889\\ 0991\\ 0992\\ 0992\\ 0992\\ 0992\\ 0992\\ 0092\\ 0992\\ 0092\\ 0992\\ 1012\\ 103\\ 105\\ 108\\ 106\\ 108\\ 112\\ 112\\ 112\\ 112\\ 112\\ 112\\ 112\\ 11$	03 01 42 00 93 00 01 42 20 71	XCC3 RC4 RC2 RC2 RC2 RC2 RC2 RC2 RC2 RC2 RC2 RC2	7890123456789012344567890123456789012345678912333334444445678901234567890123445678901234456789012345666666666666666666666666666666666666	04004064132939535502395507473643928023053052732014 040427272404074095340740956473744040034084292734262	OCLOMOL RXE918 15 ITL9 15 IGME LML9E8 TLO 10 VE COU28EBNTOCO CO XCO 10 XICO 10 XE CO 10 VE CO 10 XE CO 10 VE CO 10 VE CO 10 XE CO 10 VE CO 10 VE CO 10 XE CO 10 VE CO 10 VE CO 10 XE CO 10 VE CO	1801 1812 1823 1824 1825 1825 1825 1827 1829 1992 1993 1995 1995 1995 1995 1995 1995 1995	6527 937 07991 07991 991	XRO+10=+COL908Z1 TLO L4 L1 .35=C E L LOT 707=R/BN PRLL	23356789041234456789012232222222222222222222222222222222222	96406423997180009009426271426322142642312465241	20 ROIXCL4 ROXC2XITEB+459.67IC1CVLC2CVLC3CVL RUB+459.67IC1CVLC2CVLC3CVLC3CVLC3CVLC3CVLC3CVLC3CVLC3

PRESSURE DROP FOR GAS FLOW ACROSS AN ORIFICE METER 135

User's instructions for the TI version

Table IV

Step	Instructions	Input data/units	Value	Keys	Output data
1.	Enter the program.				
2.	Enter inside diameter of orifice plate, in.	<i>d_o</i> , in.	2.4985	Α	d _o
3.	Enter inside diameter of pipe, in.	<i>D</i> , in.	4.026	R/S	D
4.	Enter specific gravity of gas relative to air.	Sa	1.0	R/S	S_{g}
5.	Enter viscosity of gas at flow conditions, cP.	μ, čΡ	0.023	R/S	μ
6.	Enter ratio of specific heats of gas at flow conditions.	k	1.40	R/S	k
7.	Enter temperature of gas in °F; calculator will display T1 in R.	<i>T</i> 1,°F	100	R/S	<i>T</i> ₁
8.	Enter pressure of gas upstream of orifice plate, psia.	P1,psia	15.486	R/S	P ₁
9.	Enter flowrate of gas at which pressure drop across orifice is to be calculated, scfm. Now the calculator will display β and the Reynolds number for the gasflow in the pipe. With this Reynolds number and the appropriate value for β , determine the coefficient of discharge	<i>Q</i> , scfm	175	R/S	0.6206 β 54,656 <i>Re</i>
10.	from Fig. 1. Enter value of coefficient of discharge. ΔP	С	0.667	R/S	0.140 Δ <i>P</i> , psi 3.871 Δ <i>P</i> , in. H₂C

If $\frac{\Delta r}{kP_1}$ exceeds 0.35, then "error" will be displayed.

The value of ΔP for other flowrates may be obtained by proceeding from step 2.

References

- Perry, R. H., and Chilton, C. H., "Chemical Engineers' Handbook," 5th ed., McGraw-Hill Book Co., New York, 1973, p. 3–134.
- 2. Stearns, R. F., et al., "Flow Measurement with Orifice Meters," D. Van Nostrand Co., New York, 1951.
- Spink, L. K., "Principles and Practice of Flow Meter Engineering," 8th ed., The Foxboro Co., Foxboro, Mass., 1958.
- 4. Mink, W. H., Program Calculates Orifice Sizes for Gas Flows, Chem. Eng., Aug. 25, 1980, Vol. 87, No. 17, p. 91.

The author

Frank A. Stephens is senior development engineer with Amax Specialty Metals Corp., Magnesium Div., 238 North 2200 West, Salt Lake City, UT 8-116. Tel: (801) 532-1522. He has also worked for the Mineral Sciences Div. of UOP, Inc., as manager of process operations, and for Witco Chemical Co., as a research chemist and project engineer. He holds a B.S. degree in chemical engineering from Clarkson College of Technology, and is a registered engineer in Arizona. Stephens is a member of the Fusion Energy Foundation. Foundation.

Section V Heat Transfer

Calculator program for a steam condenser A new way to rate an existing heat exchanger Calculating the corrected LMTD in shell-and-tube heat exchangers Program solves airstream energy balances Calculating heat loss or gain by an insulated pipe Program calculates flame temperature Calculator design of multistage evaporators Program for evaluation of shell-and-tube heat exchangers

Calculator program for a steam condenser

This program calculates the weighted mean-temperature-difference between the fluids inside and outside the tubes of a steam condenser and the saturation temperature of the steam-vapor mixture as well as the various heat loads.

Larry J. Haydu, Kennecott Engineering Systems Co.

There are three loads in a heat exchanger used for condensing steam out of a noncondensable vapor—gas cooling, condensing, and liquid subcooling.

In order to select the correct cooler/condenser for a particular job, it is necessary to determine the heat load distribution and the overall weighted mean-temperature-difference.

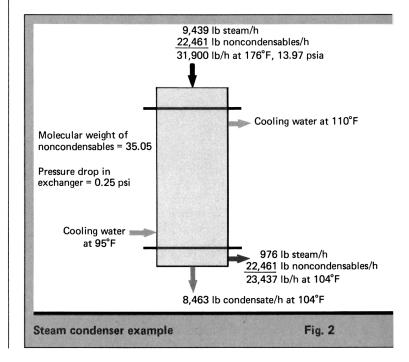
Wtd. MTD =
$$Q_t / [\Sigma(Q_i / \Delta T_i)]$$

where $Q_t = \text{total heat load}$

- Q_i = incremental heat load over a selected interval
- $\Delta T_i = \log \text{ MTD}$ for that interval

Process gas Process gas <u>t</u> <u>cooling water</u> <u>t</u> <u>Tube length</u> Heat release curve Fig. 1

The program


Written for the Hewlett-Packard HP-67/97, the program (Table I) has these main features:

1. The saturation (dewpoint) temperature of the steam-vapor mixture is calculated.

2. The amount of steam condensed in the exchanger is determined.

3. The gas-cooling, condensing, and liquid-subcooling heat loads are calculated, including any desuperheating that occurs above the saturation temperature.

4. An overall weighted MTD is determined, based on the heat-load distribution. Weighted MTDs for the unsaturated and saturated zones are also calculated.

Originally published February 9, 1981.

Calculator program for a steam condenser

	Calculato	i piogran			ondensei									
Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
	Part I		035	3	03	071	X≠Y	-41	107	÷	-24	141	2	62
	Side 1		036	8	08	072	-	-45	108	RCLA	3E 11	142	÷	-24
001	*LBLA	21 11	037	1	61	073	STOE	35 15	109	X≠Y	-41	143	RCLE	36 15
002	RCL9	36 09	0 38		-62	074	*LBLB	21 12	110	÷	-24	144	÷	-55
003	5	05	039	3	03	075	2	02	111	RCLA	36 11	145	4	Ē4
004	÷	-24	640	-	-45	076	STOI	35 46	112	-	-45	146	6	66
005	ST09	35 Ø <i>9</i>	041	STOE	35 15	077	*LBLC	21 13		Part	1	147	0	00
006	RCL1	36 01	642	PSE	16 51	078	RCL4	36 04		Side		148	+	-55
007	RCL2	36 02	043	RCL5	36 05	079	RCL9	36 09	113	1	31	149	1	01
008	÷	-24	844	X≦Y?	16-35	080	-	-45	114	8	03	150	1	01
009	STOA	35 11	045	GTOL	22 16 12	081	ST04	35 04	115	Х	-35	151	6	86
010	RCLØ	36 00	046	-	-45	082	RCLE	36 15	116	RCLØ	36 83	152	5	Ø5
011	STOB	35 12	047	CHS	-22	083	CHS	-22	117	X≠Y	-41	153		-62
012	1	01	048	STOD	35 14	084	3	03	118	STOP	35 83	154	1	61
013	8	68	049	GSBa	23 16 11	085	8	08	119	-	-45	155	X≠Y	-41
614	÷	-24	050	ST+1	35-55 01	086	1	01	120	STOC	35 13	156	-	-45
015	+	-55	051	P‡S	16-51	087		-62	121	2	<i>62</i>	157	4	B 4
016	LSTX	16-63	052	RCLE	36 15	088	3	03	122	÷	-24	158	9	85
017	X≠Y	-41	053	RCL6	36 06	089	-	-45	123	P≠S	16-51	159	3	03
018	÷	-24	054	-	-45	090	3	03	124	RCLØ	36 00	160	•	-62
019	RCL4	36 04	6 55	5	05	091	0	00	125	+	-55	161	1	e 1
020	х	-35	056	÷	-24	092	2	<i>0</i> 2	126	RCLD	36 14	162	÷	-24
021	LOG	16 32	057	STOD	35 14	093	7	07	127	Х	-35	163	•	-62
022	CHS	-22	0 58	RCLE	36 15	094	X≠Y	-41	128	ST+9	35-55 09	164	3	23
023	6	06	059	X≠Y	-41	<i>0</i> 95	÷	-24	129	ST+:	35-55 45	165	8	68
024	•	-62	060	-	-45	096	6	66	130	RCLC	36 13	166	Υ×	31
025	2	02	061	STOE	35 15	697	•	-62	131	ST+0	35-55 00	167	9	<i>39</i>
026	6	06	062	GTOB	22 12	098	2	62	132	P≠S	16-51	168	7	07
827	7	07	063	*LBLb	21 16 12	099	6	0E	133	2	02	169	0	62
0 28	+	-55	064	RCL5	36 05	100	7	3 7	134	÷	-24	170	:	-62
029	3	03	065	RCL6	36 06	101	+	-55	135	RCLØ	36-3e	171	3	03
030	0	00	066		-45	102	10×	16 33	136	+	-55	172	X	-35
031	2	02	067	- 5	65	103	RCL4	36 64	137	STOB	35 12	173	RCLC	36 13
832	7	07	0 68	÷	-24	104	X≢Y	-41	138	6SBa	23 16 11	174	X	-35
833	X≠Y	-41	069	STOD	35 14	105	-	- 45	139	ST+i	35-55 45	175	ST+8	35-55 08 35-55 (F
834	÷	-24	070	RCL5	36 05	106	RCL4	36 94	140	RCLD	36 14	176	ST+ i	35-55 45

Calculation of the weighted MTD depends on the shape of the heat-release curve [1,2]. This curve indicates the amount of heat transfer at a given temperature as the gas is cooled and steam condenses out. A greater percentage of steam condenses just below the dewpoint than at lower temperatures, so the heat load per unit temperature drop is higher, giving the figure its curved shape (Fig. 1).

For calculation purposes, the heat-release curve is broken into several zones, so that when straight lines are drawn between the different points they will approximate the curve. The weighted MTD is then obtained by computing the logarithmic mean-temperature-difference between the vapor and coolant temperatures over the intervals of the condensing range. The equations are shown in Table II. It is assumed for the sake of this article that the vapor and coolant always flow countercurrently.

The program is in two parts and stored on two cards. Part I calculates the heat load over the condensing temperature range in five successive steps. For each temperature interval, the gas-cooling, condensing, and liquid-subcooling heat duties are computed and accumulated in separate memory registers. If the steam is unsaturated at the inlet, a sixth temperature interval is

Nomenclature

Symbol	Item	Units
HS	Saturation humidity	lb steam/lb
		noncondensables
HV	Latent heat of vaporization	Btu/lb
M_a	Molecular weight of steam	eighteen
		lb/lb mole
M_{b}	Molecular weight of	lb/lb mole
	noncondensables	
MTD	Mean-temperature-difference	°F
P_a	Partial pressure of steam	psi
P_t	Total pressure	psia
Q _c	Heat of condensation	Btu/h
Qc Qg Qi	Heat of gas cooling	Btu/h
Qi	Incremental heat load	Btu/h
Q_{l}	Heat of liquid subcooling	Btu/h
Q_l Q_t T	Total heat load	Btu/h
Т	Temperature of vapor	°F
t	Temperature of coolant	°F
T_c	Critical temperature of water	1,165.1°R
ΔT_i	Log mean-temperature-	°F
	difference	
VP	Vapor pressure of steam	psi

													Ta	able I
Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
	Side	2	211	ST+7	35-55 07	032	RCL1	36 01	063	ISZI	16 26 46	104	LN	32
	(cont	d)	212	RTN	24	033	RCLE	36 15	069	RCL2	36 02	105	÷	-24
177	RCLE	36 15	213	R∕S	51	034	x	-35	070	ST01	35 01	106	F2?	16 23 02
178	RCLD	36 14		Part	11	035	P≢S	16-51	071	RCLD	36-14	107	STOC	35 13
179	-	-45		Side	1	036	RCL8	3E 08	072	-	-45	108	P‡S	16-51
180	STOE	35 15	001	*LBLA	21 11	037	X≠Y	-41	073	ST02	35 02	109	RCL i	36 45
181	P≠S	16-51	002	P≢S	16-51	838	-	-45	074	RCL4	36 04	110	X≠Y	-41
182	ISZI	16 26 46	003	RCL7	36 07	039	ST04	35 04	075	ST03	35 03	111	÷	-24
183	6	66	004	RCL8	36 08	040	GSBD	23-14	076	6	06	112	ST+0	35-55 00
184	RCLI	36 46	005	+	-55	841	SF2	16 21 02	077	RCLI	36 46		Part	11
185	X≟Y?	16-35	006	RCL9	36 09	042	RCLB	36-12	078	X≦Y?	16-35		Side	2
186	GTOC	22 13	007	+	-55	043	ST01	35 ei	079	GTOC	22 13	113	P≓S	16-51
187	RCLØ	36 00	008	STOA	35 11	044	2	02	080	P‡S	16-51	114	RTN	24
188	RCL1	35 01	009	P≢S	16-51	045	STOI	35 46	081	RCLA	36 11	115	*LBLE	21 15
189	÷	-55	010	RCL8	36 08	046	GTOC	22 13	082	RCLØ	36 00	116	RCLC	36 13
190	₽≠S	16-51	011	ST03	35 03	047	*LBLB	21 12	083	÷	-24	117	÷	-24
191	RCL7	36 07	012	RCL7	36 07	048	ST01	35 Øi	084	STOE	35 15	118	RCLØ	3E 00
192	RCL8	36 08	013	-	-45	049	2	02	085	STOD	35 14	119	X≠Y	-41
193	+	-55	014	X≠Y	-4i	050	STOI	35 46	086	RCL1	36 01	120	-	-45
194	RCL9	36 09	015	÷	-24	051	0	0 0	087	X>0?	16-44	121	RCLA	36 11
195	+	-55	016	STOE	35 15	052	STOC	35 13	088	GSBE	23 15	122	RCL1	36 01
196	P‡S	16-51	017	í	61	053	*LBLC	21 13	089	RCLE	36 15	123	-	-45
197	RTN	24	018	STOI	35 46	054	RCL1	36 01	090	RTN	24	124	X≠Y	-41
198	*LBLa	21 16 11	819	RCLD	36-14	055	RCLD	36 14	091	*LBLD	21 14	125	÷	-24
199	RCL1	3E 01	020	5	05	056	-	-45	092	RCL1	36.01	126	STOD	35 14
200	RCL3	36 03	021	Х	-35	057	ST02	35 02	093	RCL4	36 04	127	RTN	24
201	Х	-35	022	RCL6	$36 \ 06$	058	P≓S	16-51	094	-	-45	128	R∕S	51
202	RCLB	36 12	023	+	-55	059	RCL i	36 45	095	STOØ	35 00			
203		-62	024	STOB	35-12	060	RCLE	36 15	096	RCL2	36 02			
204	4	04	025	RCL5	36 05	061	х	-35	097	RCL3	36 03			
205	5	65	026	X≦Y?	16-35	062	P≓S	16-51	098	-	-45			
206	х	-35	827	GTOB	22 12	063	RCL3	36 03	099	ST09	35 ØJ			
207	+	-55	028	ST01	35 01	064	X≠Y	-41	100	-	-45			
208	RCLD	36 14	029	X≠Y	-41	065	-	-45	101	RCLØ	36 00			
209	Х	-35	030	ST02	35 02	066	STO4	35 04	102	RCL9	36 09			
210	P≠S	16-51	031	P≠S	16-51	067	GSBD	23 14	103	÷	-24			

uations used in the calculations		Tab
		Ref.
Antoine equation for vapor pressure of steam	$\log VP = C_1 / (T + C_2) + C_3$	(4)
	Constants $C_1 = -3,027$ $C_2 = 381.3$ $C_3 = 6.267$	
Watson equation for heat of vaporization	$HV_2 = HV_1[(T_c - T_2)/(T_c - T_1)]^{0.38}$	(3)
Saturation humidity	$HS = \frac{M_a P_a}{M_b (P_t - P_a)}$	(5)
Weighted mean-temperature-difference	Wtd MTD = $\frac{Q_t}{\Sigma Q_i / \Delta T_i}$	(1,2)
Log mean-temperature-difference	$\Delta T_{i} = \frac{(T_{1} - t_{2}) - (T_{2} - t_{1})}{\ln[(T_{1} - t_{2})/(T_{2} - t_{1})]}$	(1,2)
Total heat load	$Q_t = Q_g + Q_c + Q_1$	(1,2)
Specific heat of steam	0.45 Btu/lb °F	
Specific heat of water	1.0 Btu/Ib [°] F	

142 HEAT TRANSFER

r's instructions and sample calculations			Tabl
Step	Value	Example	Key
1. Clear primary and secondary registers			CL RE P≓S CL RE
2. Store input data in primary registers			
	Steam inlet rate, lb/h	9,439	STO 0
	Noncondensable rate, lb/h	22,461	STO 1
	Molecular weight noncond., lb/lb mole	35.05	STO 2
	Specific heat inerts, Btu/lb ° F	0.22	STO 3
	Operating pressure, absolute psia	13.97	STO 4
	Inlet gas temperature, ° F	1 76	STO 5
	Outlet gas temperature, °F	104	STO 6
	Coolant inlet temperature, °F	95	STO 7
	Coolant outlet temperature, ° F	110	STO 8
	Pressure drop of vapor, psi	0.25	STO 9
3. Load program Part I, sides 1 and 2			
4. Begin computations			Д
 Program pauses (briefly) to display saturation temperature, °F 		172.23	
6. Recall output from primary and secondary registers			
	Q (total), Btu/h	9,463,302.32	Displa
	Steam rate out, Ib/h	976.26	RCL 0
			P⇔S
	Steam condensed, Ib/h	8,462.74	RCL 0
	Q (gas cool) incl. desuperheat, Btu/h	483,665.53	RCL 7
	Q (condensed), Btu/h	8,584,213.88	RCL 8
	Q (liquid subcool), Btu/h	395,422.92	RCL9
	Q (desuperheat), Btu/h	34,659.50	RCL 1
7. Return to primary registers			P⇔S
8. Load program Part II, sides 1 and 2			
9. Begin computations			Д
10. Recall output			
	Overall weighted MTD, °F	37.60	Displa
	Wtd. MTD saturation zone, °F	37.55	RCLD
	Wtd. MTD unsaturated zone, $^{\circ}$ F	57.97	RCLC
	Saturation temperature, °F	172.23	RCL B

used to figure the heat of desuperheating the steamvapor mixture. The Watson analogy [3] is used to calculate the heat of vaporization for water (Table II). The Antoine equation [4] is used to predict the vapor pressure of steam.

Part II calculates the weighted MTD from the information in Part I. Individual MTDs are also figured for the desuperheated and saturated zones.

An example is illustrated in Fig. 2, and a step-by-step procedure for using the program is detailed in Table III.

For TI-58/59 users

The TI version of the program has two parts, program A and program B, (for listings, see Tables IV and V). Table VI contains user instructions and the same example that was given for the HP version.

Listing for TI version—program A

Table IV

Step	Code	Key	Step	Code	Key	Step	Code	Key
000	76	LBL	015	42	STO	030	43	RCL
001	11	A	016	20	20	031	0Ō	00
002	43	RCL	017	43	RCL	032	55	
003	09	09	018	00	00	033	01	1
004	55	÷	019	42	STD	034	08	8
005	05	5	0.36	21	21	035	85	÷
006	95		0.2 1	53	$\langle \cdot \rangle$	036	43	RCL.
007	42	STD	022	53	$\langle \cdot \rangle$	1037	20	20
008	09	09	023	43	RCL	038	54)
009	43	RCL	024	00	00	039	65	\times
010	01	01	025	55	÷.	040	43	RCL
011	55	÷	026	01	1	041	04	04
012	43	RCL	027	08	8	042	54)
013	02	02	028	55	÷	043	28	LOG
014	95		029	53	<	044	75	

PROGRAM FOR A STEAM CONDENSER 143

(Continued) Table IV

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key		
$\begin{array}{c} 0456789012345678901200000000000000000000000000000000000$	493523472253452 31339413453655552333244226	6.267)÷3027/=% + 1/381.3=T2RCO;C2GN;FC2=T28NC39M1L4 L6 s 200;C2GN;FC2=T28NC39M1L4 L6 s 200=+5=T22C2NM4 LV LINU28BN	89012345678901234567890123456789012345678901234567890123456789012322222222222333333344444444445555555555	24538133456326745288263 9058092005922435	R R R S L 15L L9VM4 - L4 R R S L S L R IS - L4 R IS - C2+381.3)+6.267, NGD6 L4	17234567890123456789012322222222222222222222222222222222222	0049400 004-004 004-004	-L6 X L0 L4 L0 S R R R S R S R 4 L0 L3 D8M9*5L2MOL2 4 C0 S R S R S R S R S R S R S S S S S R S R	23567890122345678901223456789012234567890122345678901222222222222222222222222222222222222	2113394530525345460545116531554933155338 55 32 5970 335274845332441 427243724250842800099800009095000909490 09642600 0909434172422422420	S S R 20242460=741165.1=4493.1=X.38=xC2X970.3=T3U1M2C2NM4 + 1165.1=4493.1=X.38=xC2X970.3=T3U1M2C2NM4 s s s s s s r is21	78901234567890123456789022234567890122345678901234567890123456789012345678901234567890123456789012223333333333333333333333333333333333	4315333153454553352947 059642943417	S R X 1 6 G C L 7 L 8 L 9 T L OT L OT L 7 T L 8 T L 9 T L OT L 0 T L 7 T L 8 T L 9 T L OT L 0 T L 7 T L 8 T L 9 T L 0 T L 0 T L 7 T L 8 T L 9 T L 0 T L 0 T L 7 T L 8 T L 9 T L 1 T S L X L 1 X C 0 + (C 2 X . 4 5) = X C 2 = T 3 U 1 T S L X L 1 X C 0 + (C 2 X . 4 5) = X C 2 = T 3 U 1 T S L X L 1 X C 0 + (C 2 X . 4 5) = X C 2 = T 3 U 1 T S L X L 1 X C 0 + (C 2 X . 4 5) = X C 2 = T 3 U 1 T S L X L 1 X C 0 + (C 2 X . 4 5) = X C 2 = T 3 U 1 T S L X L 1 X C 0 + (C 2 X . 4 5) = X C 2 = T 3 U 1 T S L X C 0 + (C 2 X . 4 5) = X C 2 =		

Listing for TI version—program B

Table V

Step	Code	Кеу	Step	Code	Кеу	Step	Code	Key	Step	Code	Key	Step	Code	Key
$\begin{array}{c} 000\\ 001\\ 0023\\ 0004\\ 0005\\ 0006\\ 0005\\ 0006\\ 0011\\ 0013\\ 0015\\ 0012\\ 0015\\ 0015\\ 0012\\ 0015\\ 0012\\ 0015\\ 0012\\ 0022\\ 0022\\ 0022\\ 0023\\ 0033\\ 0033\\ 0035\\ 0036\\ 0006\\ 0$	11 437 438 439 420 420 420 420 420 420 420 420	18 + CL9 S 20L803 CC8 CC7 CC0 R 0 CC0 R 0 C C0 CC0 CC0 R 0 C C0 CC0 CC0 CC0 CC0 CC0 CC0 CC0 CC0	$\begin{array}{c} 0567\\ 0589\\ 0661\\ 06634\\ 06667\\ 06667\\ 00772\\ 0775\\ 07789\\ 0882\\ 08867\\ 0890\\ 0992\\ 09934\\ 0996\\ 0992\\ 0996\\ 0996\\ 0996\\ 0996\\ 0996\\ 0996\\ 0996\\ 0096\\ 0996\\ 0006\\ 0006$	43445524136231221400042514623521100042004204272407333522 94072804240004262724040004204272407333522 0427240742942	11 R 24 S 08NTF2L101 S 02101 S 02101 S 0200 S 010 S 0102 S 010	11204567890123455678901234556789012345567890123455678901234556789012345567890123455678901234556789012345567890123455	20 55 43 95 42 24 23 00 32 43 11 67	25 R 27 S 08N1 M5L201L1 L3 D2L4D3L5T E L0 L0 D4D3 T R 20 R 20 R R R S R 20 C 01 C 2 T 0 C 0 T	16678990172345678990177234756789901777234777789188128845567899017772347777891881288455678990122222222222222222222222222222222222	33932931916331534520325335293305394533305394345 429429429972407409404074094054074055554054054394345	LBLT R24TL3TL2TL1TSLXL1 PRC27RL2TL1TSLXL1 RC4 RC4	1223456789012345678901423444444444445678901233456789012322222222222222222222222222222222222	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	INV IF2XL502VF2LX*5+L5+L0 IS0BXX*5+L5+L0 IS0BXX*5+L5+L0 IS1C2+C3+C10 IS1C2+C3+C10 IS1C2+C1+C20 IS1C2+C10 I

User instructions and example for TI version

Table VI

Step	Value	Example	Кеу
	Store input data:		
	Steam inlet rate, lb/h	9,439	STO 00
	Noncondensable rate, lb/h	22,461	STO 01
	Molecular wt., noncond., lb/lb mole	35.05	STO 02
	Specific heat, inerts, Btu/(Ib) (°F)	0.22	STO 03
	Operating pressure (abs.), psia	13.97	STO 04
	Inlet gas temperature, °F	176	STO 05
	Outlet gas temperature, °F	104	STO 06
	Coolant inlet temperature, °F	95	STO 07
	Coolant outlet temperature, °F	110	STO 08
	Pressure drop of vapor, psi	0.25	STO 09
2.	Enter program A, sides 1 and 2		
3.	Program performs calculations and prints out the results:		Press A
	Saturation temperature, °F	172.228141	
	Q (total), Btu/h	9463302.317	
	Steam rate out, lb/h	976.2570444	
	Steam condensed, lb/h	8462.742956	
	Q (gas cool) incl. desuperheat, Btu/h	483665.5259	
	Q (condensed), Btu/h	8584213.871	
	Q (liquid subcool.), Btu/h	395422.9201	
	Q (desuperheat), Btu/h	34659.49885	
i .	Clear program A and enter program B, sides 1 and 2.		2nd CP
5.	Program performs calculations and prints out the results:		Press A
	Overall weighted MTD, °F	37.59845717	
	Wtd. MTD saturation zone, °F	37.54995388	
	Wtd. MTD unsaturated zone, °F	57.96768663	
	Saturation temperature, °F	172.228141	

References

- 1. Gulley, D. L., How to Calculate Weighted MTD's, Hydrocarbon Process., Vol. 45, No. 6, 1966.
- 2. Kern, D. Q., "Process Heat Transfer," McGraw-Hill, New York, 1950.
- Kern, D. Q., "Process Heat Transfer," McGraw-Hill, New York, 1950.
 Weber, James H., Predict Latent Heat of Vaporization, *Chem. Eng.*, Vol. 87, No. 1, 1980.
 Pitzer, K. S., Lippmann, D. A., Curl, R. F., Huggins, C. M., and Peterson, D. E., *J. Am. Chem. Soc.*, Vol. 77, p. 3,433, 1955.
 McCabe, W. L., and Smith, J. C., "Unit Operations of Chemical Engineering," McGraw-Hill, New York, 1967.

The author

Line author Larry J. Haydu is a Senior Engineer with Carborundum Co., Graphite Products Div., now called Kennecott Engineering Systems Co. (KESCO), a part of Kennecott Corp. He graduated from Cleveland State University with a bachelor's degree in chemical engineering, then worked for the city of Cleveland, Div. of Air Pollution, as an air pollution control engineer. Mr. Haydu is a licensed professional engineer in the state of Ohio.

A new way to rate an existing heat exchanger

With this program, you can quickly determine what will be the unknown temperatures, log-mean temperaturedifference correction factor, and heat load for any job that an exchanger may be required to do.

Rogério G. Herkenhoff, Petróleo Brasileiro S.A.

Prediction of the thermal performance of an existing multipass exchanger is usually carried out by an iterative procedure in the following way:

- 2. Calculate the unknown temperatures.
- 3. If necessary, return to Step 1.

In the second step, one unknown temperature is calculated from a dimensionless group (P), and the other is usually computed via a thermal balance.

The value of P can be obtained graphically [1,2] if the number of shell passes does not exceed two, or by means of a trial-and-error solution involving the calculation of the log-mean temperature-difference (LMTD) correction factor. This time-consuming method can be avoided by using a noniterative general solution.

Developing a general solution

The assumptions are the same as those made for the derivation of the LMTD correction factor [3]. In addition, the number of tube passes must be a multiple of the number of shell passes.

For an exchanger having N shell passes, Bowman [4] developed a general solution for the correction factor:

$$F = \frac{\sqrt{R^2 + 1 \ln \left[(1 - X)/(1 - RX) \right]}}{(R - 1) \ln \frac{2 - X(R + 1 - \sqrt{R^2 + 1})}{2 - X(R + 1 + \sqrt{R^2 + 1})}}$$
(1)

where:

$$X = \frac{1 - \left(\frac{1 - RP}{1 - P}\right)^{1/N}}{R - \left(\frac{1 - RP}{1 - P}\right)^{1/N}}$$
(2)
$$R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{wc}{WC}$$
(3)

$$P = \frac{t_2 - t_1}{T_1 - t_1} \tag{4}$$

From the original definition:

$$F = \frac{(UA/wc)_{\rm ec}}{(UA/wc)} = \frac{\ln [(1-P)/(1-RP)]}{(R-1)(UA/wc)}$$

Substituting F in Eq. (1):

$$\frac{\ln\left[(1-P)/(1-RP)\right]}{(UA/wc)} = \frac{\sqrt{R^2+1}\ln\left[(1-X)/(1-RX)\right]}{\ln\frac{2-X(R+1-\sqrt{R^2+1})}{2-X(R+1+\sqrt{R^2+1})}}$$
(5)

From Eq. (2), it is possible to prove that:

$$\ln \left[(1 - P)/(1 - RP) \right] = N \ln \left[(1 - X)/(1 - RX) \right]$$

Substituting in Eq. (5), and rearranging:

$$X =$$

$$\frac{2E-2}{(R+1+\sqrt{R^2+1})E-(R+1-\sqrt{R^2+1})}$$
 (6)

where:

$$E = e^{(UA/wc)\sqrt{R^2 + 1}/N}$$

From Eq. (2):

$$P = \frac{1 - \left(\frac{1 - RX}{1 - X}\right)^N}{R - \left(\frac{1 - RX}{1 - X}\right)^N} \quad \text{when } (R \neq 1) \quad (7)$$

When R = 1, part of the equation becomes indeterminate, but Eq. (6) is still valid. However, Eq. (7) must be replaced by:

$$P = \frac{NX}{NX - X + 1} \quad \text{when } (R = 1) \quad (7a)$$

Originally published March 23, 1981.

146

	Program to rate an existing exchanger														Table			
Step	Key		Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLa	21	16 11	039	STOI	35 46	077	SPC	16-11	115	P#S	16-51	153	RCL8	36 08	191	STOA	35 11
002	STCB		35 12	046	GSB1	23 81	078	2	02	116	GSB9	25 89	154	х	-35	192	RCLE	36 15
003	X≢Y		-41	041	*LBL1	21 01	079	GSBØ	23 88	117	RCL i	36 45	155	RCLC	3E 13	193	*LBL2	21 02
004	STOD		35 14	042	GSB5	23 05	080	*LBL2	21 02	118	-	-45	156	÷	-24	194	-	-45
005	RTN		24	043	RCLE	36 15	081	1	61	119	x	-35	157	RCLB	36 12	195	RCLA	36 11
006	*LBLb	27	16 12	044	x	-35	082	P≠S	16-51	120	RCL	36 45	158	÷	-24	196	*LBL6	21 06
007	<i>P</i> ≓S	44	16-51	045	STOP	35 00	083	GSB4	23 64	121	+	-55	159	e×	33	197	1	01
	F≠3 GSBc	27	16-31	046	RCLI	36-45	084	P₽S	16-51	122	GSB9	23 39	160	STOO	35 00	198	-1	-45
008		20		047	X	-35.	085	GT01	22 01	123	STOI	35 45	161	RCL9	36 09	199	÷	-24
6 09	PZS		16-51	048	RCL I	36 45	085 086	*LBL7	22 01	123	GT07	22 67	162	X	-35	200	RTN	-24
010	RTN	• •	24		- KULI	-45				124	*LBL5	22 07 21 05	163	RCL7	36 07			
011	*LBLc	21	16 13	049			087	PRTA	-14					RULT -	-45	201	*LBL9	21 39
012	ST03		35 03	050	GSB9	23 65	088	*LBL1	21 01	126	GSB8	23 08	164			202	DSZI	16 25 46
013	R↓		-31	051	P≢S	16-51	089	RTN	24	127	STOC	35 13	165	2	02	203	RTN	24
014	ST04		35 04	052	RCL I	36 45	090	RCLA	36 11	128	P≓S	16-51	166	RCLØ	36 03	204	ISZI	16 26 46
015	R↓		-31	053	P≢S	16-51	091	17X	52	129	GSB8	23 OE	167	X	-35	205	ISZI	16 26 46
016	ST05		35 05	054	RCLA	36 11	092	esb3	23 63	130	P≓S	16-51	168	2	82	206	RTN	24
017	RTN		24	055	ST+0	35-55 00	0 93	178	52	131	÷	-24	169	-	-45	207	*LEL8	21 C3
018	*LBL d	21	16 14	056	Х	-35	094	LN	32	132	1	21	170	÷	-24	208	RCL 1	36 01
019	X≠Y		-41	057	+	-55	8 95	RCLE	36 15	133	ST07	35 07	171	GSB3	23 83	209	RCL2	36 02
620	P≠S		16-51	058	RCLØ	36 00	096	esbe	23 BE	134	ST09	35 09	172	RCLB	36 12	210	+	-55
021	GSBe	23	16 15	6 59	GSB6	23 06	097	RCLD	36 14	135	X₽Y	-41	173	γ×	21	211	2	82
022	P≠S		16-51	060	STO;	35 45	0 98	÷	-24	136	X≠Y?	16-32	174	GSB3	23 63	212	÷	-24
023	X≠Y		-41	061	P≓S	16-51	899	RCL8	36 <i>3</i> 8	137	GT01	22 61	175	178	52	213	RCL3	36 03
024	RTN		24	062	GT07	22 07	100	÷	-24	138	EEX	-23	176	STOA	35-11	214	x	-35
025	*LBLe	21	16 15	063	*LBLC	21 13	101	RCLC	36 13	139	5	85	177	RTN	24	215	RCL4	36 04
026	ST02		35 02	064	SPC	15-11	102	x	-35	140	снэ	-22	178	*LBL0	21 00	216	+	-55
027	X ≠ Y		-4i	065	GSB1	23 Bi	103	R∕S	51	141	+	-55	179	STOI	35 4E	217	ST06	35 06
028	STOI		35 01	066	GTG2	22 82	104	GSB8	23 68	142	*LBL1	21 61	180	GSB5	23 05	218	RCL5	36 05
020 029	RTN		35 81 24	067	*LBLD	21 14	105	RCL2	20 00 36 02	143	STOE	35 15	181	P≓S	16-51	219	X	-35
029 030	*LBLA		21 11	068	SPC	16-11	105	RCL1	36 02 36 01	144	ST+7	35-55 07	182	RCLI	36 45	220	RTH	-33
				069	570	10-11	105	RULI	-45	145	ST+9	35-55 05	183	P#S	16-51		R/S	51
031	ST08		35 08	063 070	P≓S	16-51			-45	145			183	r∓5 X	-35	221	K/ 5	5.
032	P≢S		16-51		GSB0	16-51 23 60	108	Х РТИ			X2	53		RCLI	-35 36 45			
033	ST08		35 08	071 072			109	RTN	24	147	+	-55	185					
034	F≓S		16-51	072	P≢S	16-51	110	*LBL4	21 64	148	1X	54	186	GSB2	23 82			
035	RTN		24	073	*LBL1	21 01	111	STOI	35 4E	149	ST-7	35-45 07	187	GSB3	23 09			
036	*LBLB		21 12	074	2	82	112	GSB5	23 05	150	ST+9	35-55 09	188	STO:	35 45			
037	SPC		16-11	075	GTO4	22 04	113	P≓S	16-51.	151	RCLD	36 14	189	GT07	22 07			
038	2		02	076	*LBLE	21 15	114	RCL i	36 45	152	Х	-35	190	*LBL3	21 03			

	User's instructions											
		Necess	rder):									
		1 – A'	t N			f [a]						
		2 – W	†β†α (hot flu	id)		f [b]					
		3 – w	tβta (a	old flu	uid)		f [c]					
		$4 - T_1$	↑ <i>T</i> 2				f [d]					
		$5 - t_1$	[†] t ₂				f [e]					
		6 – U					[A]					
		Outpu	t:									
		1 — То	print	T_1	[B]							
		2 — To	print	t ₂ and	T_2	[C]						
		3 — То	print	$\overline{T_1}$ and	t_2		[D]					
		4 — To	print	t ₁ and	$\overline{T_2}$		[E]					
		5 – Af	iter pre	essing E	3, C, D	or E:						
		(a)) To di	splay A	=		[R/S]					
		(Ы) To di	splay o	1		[R/S]					
Registe												
0 Used	$1^{t_{1}}$	$^{2}t_{2}$	³ α _c	⁴ β _c	5 W	6 c	7 Used	⁸ U	9 Used			
SO Used	^{S1} 7 ₂	^{S2} 7 ₁	53 αh	^{S4} βh	^{S5} W	^{S6} С	S7 Used	88 U	S9 Used			
A Usec	i B	N	C	or WC	D	A	E R	ľ	Used			
where: $c = \beta_c + \alpha_c t_m$												
		$+ \alpha h$										

When the cold fluid is isothermally vaporized $(R = \infty)$, or when in Eq. (4) only one temperature is known, the definitions of R and P [Eq. (3) and (4)] may be changed to:

$$R = \frac{t_2 - t_1}{T_1 - T_2} = \frac{WC}{wc}$$
(3a)

$$P = \frac{I_1 - I_2}{T_1 - t_1}$$
(4a)

In this case, in Eq. (6), E must be replaced by: $E = e^{(UA/WC)\sqrt{R^2 + 1}/N}$

Program description

The HP-97/67/41-C program calculates any combination of two terminal temperatures in an existing multipass exchanger, except if both refer to the same fluid.

The specific heats are calculated as a linear function of the arithmetic mean temperatures of the fluids, using the last temperatures stored. Thus, unless the desired temperatures had been preliminarily stored, or the specific heats had been considered to be constants ($\alpha = 0$), the temperatures will not be precisely calculated.

So, an iterative procedure must be used to yield a consistent result. The desired calculation is repeated (by

pressing B, C, D or E) until the calculated temperatures remain approximately constant. An initial estimate of the desired temperatures may be stored to avoid using the remaining values of any previous operation and to improve the convergence.

Also, the overall heat-transfer coefficient is often seriously affected by the variation of the physical properties of the fluids and cannot be precisely evaluated without knowledge of both inlet and outlet fluid temperatures. Therefore, the iterative procedure must usually include the replacement of the previous estimate of the overall coefficient with a new one, computed for the latest temperature conditions.

After the convergence, the program can calculate the LMTD correction factor and the heat load, based on the cold-fluid conditions.

Any system of units may be used, as long as UA/wc remains dimensionless.

The program can also accommodate a pure counterflow exchanger, assuming a number of shell passes sufficiently large to make the LMTD correction factor equal to 1.

When R = 1, the program assumes R = 1.00001 to permit the solution without using Eq. (7a).

The second unknown temperature is calculated from a second value of P, which is evaluated by using the first calculated temperature to compute the specific heat.

Rating an exchanger for heating crude oil

It is desired to heat 700,000 lb/h of a 36.4° API gravity crude (k = 11.5) at 433°F, using 400,000 lb/h of a 38° API gravity oil (k = 12.1) at 556°F. Available for this service is a 3:6 exchanger having a heat-transfer surface area of 15,000 ft². Assuming a total dirt factor of 0.005, and that the individual heat-transfer coefficients may be estimated by the following equations, what will the outlet temperatures be?

 $h_c = 25 + 0.35 t_m$ and $h_h = 160 + 0.30 T_m$

Nomenclature

- A Heat-transfer surface area
- c Cold-fluid specific heat
- C Hot-fluid specific heat
- E Dimensionless group
- F LMTD correction factor
- h Individual heat-transfer coefficient
- k Characterization factor

N	Total number of shell passes	Su	bscripts
Р	Dimensionless group	С	Cold fluid

l	-	Dimensionness group	v	Cold IIulu						
	9	Heat load	cc	Countercurrent						
	R	Dimensionless group	h	Hot fluid						
	R_d	Fouling factor	m	Arithmetic mean						
	t	Cold-fluid temperature	1	Inlet						
	Т	Hot-fluid temperature	2	Outlet						
	U	Overall heat-transfer coefficient								
	w	Cold-fluid mass flowrate								
	W	Hot-fluid mass flowrate								
	X	Dimensionless group								
	α	Angular coefficient for specific-heat calculation								

 β Linear coefficient for specific-heat calculation

Using the equation presented in Ref. 2, p. 149:

$$\beta_{c} = 0.4142 \\ \alpha_{c} = 0.0005474 \\ \beta_{h} = 0.4306 \\ \alpha_{h} = 0.0005682$$

In the first trial, let us assume that U = 50, $t_2 = t_1$, and $T_2 = T_1$.

Preliminary input:

1—15,000↑3	f [a]	
2-400,0001.43061.0005682	f [b]	
3-700,000 ⁺ .4142 ⁺ .0005474	f [c]	
4—556↑	f [d]	
5—433↑	f [e]	
1st trial:		
1—50	[A]	
2—(Compute t_2 and T_2)	[C]	$(t_2 = 496.01,$
		$T_2 = 459.29$)

2nd trial:

211u 111ai.	
1-Compute the overall	coefficient ($U = 73.89$)
2—73.89	
3—Compute t_2 and T_2	$[C]$ $(t_2 = 498.77,$
	$T_2 = 448.98$

3rd trial:

1-Compute the overall	coefficient ($U = 73.88$)
2—73.88	
3—Compute t_2 and T_2	$[C]$ $(t_2 = 498.53,$
	$T_2 = 448.83$)
4.1	

4th trial:

 1—Compute the overall coefficient (U = 73.87)

 2—73.87
 [A]

 3—Compute t_2 and T_2 [C] $(t_2 = 498.53, T_2 = 448.83)$

 4—Compute F
 [R/S] (F = 0.85792)

 5—Compute q
 [R/S] $(q = 3.06972 \times 10^7)$

For TI-58/59 users

The TI programs closely follow the HP version. However, program A (see Table III listing) supplies output 1 and 2 of Table II. (i.e., output 1 is inlet temperatures, and output 2 is outlet temperatures). Program B (listing in Table IV) offers output 3 and 4. Table V provides user instructions.

Listing for TI version—program A

Table III

Step	Code	Key	Step	Code	Key	Step	Code	Key
000	76	LBL	012	42	STO	024	65	×
Õ01	11	A	013	25	25	025	43	RCL
002	42	STO	014	71	SBR	026	24	24
003	08	08	015	22	INV	027	95	
004	42	STO	016	71	SBR	028	42	STO
005	18	18	017	23	LNX	029	00	00
006	01	1	018	76	LBL	030	65	\geq
007	32	XIT	019	22	ĨNV	031	73	RC*
008	91	R/S	020	71	SBR	032	25	25
009	76	LBL	021	24	СE	033	75	
010	12	B	022	43	RCL	034	73	RC*
011	02	2	023	20	20	035	25	25

RATING AN EXISTING HEAT EXCHANGER 149

(Continued)	Table	
-------------	-------	--

Step	Code Key	Step	Code Key	Step	Code Key	Step	Code Key	Step	Code	Key
03789011234557890123456678900120000000000000000000000000000000000	95 S 40 1 V M 5 L 2 D 5 L R L 2 M 0 R X * 5 L 2 + L 0 S 2 + L 0 S 2 + C 2 S 2 L C R 2 M 0 R X * 5 L C R 2 M 0 R X * 5 L C R 2 M 0 R X * 5 S 40 5 2 + C 4 = D 1 R X L 1 + (L 0 - 1) = * 5 L + (C 5 3 + C 5 3 + C 2 + C 4 + C 2 + C 4 + C + C + C + C + C + C + C + C +	$\begin{array}{c} 001234567890112345678901223456789012345678901234456789011234556789012234567890111111111111111111111111111111111111$	61 GTX GTX 346 LX2 CT500L S 2022512 GT00L S 202512 GT00L S 20251	4556789011234567890123456789012345678901123456789011234567 165678917723456789012384567890123845678901222222222222222222222222222222222222	$\begin{array}{c} 25 \\ 9 \\ 7 \\ 4 \\ 2 \\ 7 \\ 4 \\ 4 \\ 2 \\ 7 \\ 4 \\ 4 \\ 3 \\ 2 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	890012345678901423456789012345678901234567890123456789012322222222222222222222222222222222222	*1 = X VM77M9 51 5 4 2 1 S 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	229945678990123456789001123456789001234567890123456789001233333333333333333333333333333333333	76 200 49 61 79 200 49 61 79 200 49 79 200 49 79 200 49 200 49 79 200 49 700 49 700 49 700 49 700 49 700 200 200 200 200 200 200 200 200 200	R R LO XDONL LI L2 L3 L4 D6 L5 D4NLX D9LD*9T M9*9T*9 V R R R S RLL S L4 D6 L5 D4NLX D9LD*9T M9*9T*9 V I S RLL R R R R S R S RLL S LGR X S R XS I

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
356	44	SUM	376	32	X:T	396	75		416	43	RCL	436	42	STD
357	49	49	377	92	RTN	397	01		417	08	08	437	06	06
358	32	XIT	378	76	LBL	398	54)	418	95	:=	438	71	SBR
359	72	ST*	379	32	X:T	399	95		419	99	PRT	439	23	LNX
360	49	49	380	22	INV	400	35	1/X	420	53	$\langle \cdot \cdot \rangle$	440	43	RCL
361	01	1	381	86	STF	401	23	LHX	421	43	RCL	441	06	06
362	44	SUM	382	01	01	402	65	\times	422	01	01	442	65	\times
363	49	49	383	43	RCL	403	43	RCL	423	85	·ŀ	443	43	RCL
364	01	1	384	20	20	404	22	22	424	43	RCL	444	05	05
365	00	0	385	35	$1 \times X$	405	55	÷	425	02	02	445	65	\times
366	32	XIT	386	42	STD	406	53	$\langle \cdot \cdot \cdot \rangle$	426	54		446	53	(
367	43	RCL	387	20	20	407	43	RCL	427	55	·÷	447	43	RCL
368	49	49	388	75		408	24	24	428	02	2	448	02	02
369	67	ΕQ	389	43	RCL	409	75		429	65	X	449	75	
370	65	X	390	24	24	410	01	L	430	43	RCL	450	43	RCL
371	61	GTO	391	95		411	54		431	03	03	451	01	01
372	61	GTO	392	55	÷	412	55		432	85	÷	452	54	5
373	76	LBL	393	53	\langle	413		RCL	433	43	RCL	453	95	
374	65	×	394	43	RCL	414	23	23	434	04	04	454	99	PRT
375	01	1	395	20	20	415	55	·	435	95		455	91	R/S

Listing for VI version—program B

Table IV

Step	Code	Key	Step	Code	Key	Step	Code	Key	Ste	o Cod	e Ke	y Ste	ep Cod	e Key
000	76	LBL	036	42	STU	072	43	RCL	10:					
001	11	A	037	25	25	073	25	25	10					
002	42 08	STU	038	61	GTD	074	67	EQ	111			L 14 3 14		
003 004	u8 42	08 STD	039 040	42 76	STD LBL	075 076	43 02	RCL 2	11					
004	18	21U 18	041	(0 15	E	078	uz 42	STD	11:			5 14		、 1
006	01	1	042	02	2	078	25	25	11					
007	32	XĪT	043	42	STO	079	76	LBL	11!					
008	91	R/S	044	25	25	080	43	RCL	11	5 4!		15	2 05	5
009	76	LBL	045	71	SBR	081	53	<	11					
010	55	·	046	35	$1 \times X$	082	43	RCL	11:					
011	73	RCž	047	76	LBL	083	42	42	11					
012 013	25 99	25 PRT	048 049	34	FM SBR	084 085	75 73	- RC*	12) 12					(RCL
013	76	l BL	047 050	71 23	odk LNX	086	25	ĸu≭ 25	12:			4 15		кос 45
015	45	γ×.	051	01	1	000	54	>	12:					STO
016	87	IFF	052	42	STO	088	65	×	12.			2 16		24
017	01	01	053	25	25	089	43	RCL	12!					SUM
018	32	XIT	054		SBR	090	20	20	12					07
019	86	STF	055		STO	091	85	+	12					SUM
020 021	01 92	01 RTN	056 057		LBL STO	092 093	73 25	RC* 25	12; 12;					90 2%
022	76	LBL	058		SBR	093 094	20 95	20	131					^- +
023	14	D	059		CE	095	42	STD	13					1
024	01	1	060		SBR	096	43	43	13:	2 2:	2 2	2 16		
025	42	STD	061		LNX	097	01	1	13:					ΓX
026	25	25	062		RC*	098	22	INV	13					INV
027	71	SBR	063	25	25	099	44	SUM	13			4 17		SUM
028 029	23 71	LNX SBR	064 025		STO	100	25	25	13) 13					07 сни
027 030	35	iodr 1/X	065 066	42 71	42 SBR	101 102	43 25	RCL 25	13			u 17. 5 17.		SUM 09
031	71	SBR	067		odk LNX	102	20 67	EQ	13					X
632	23	LNX	068	01	1	104	44	SUM	141					RCL
033	76	LBL	069		INV	105	02	2	14			7 177		23
034	33	χz	070		SUM	106		STO	14:					Χ.
035	02	2	071	25	25	107	25	25	14:	3 01	* U	9 179	9 43	RCL

(Continued)	Table IV
-------------	----------

Step	Code	Key	Step	Code	Кеу	Step	Code	Key	Step	Code	Key	Step	Code	Key
$\begin{array}{c} 180\\ 181\\ 182\\ 183\\ 186\\ 186\\ 190\\ 192\\ 192\\ 195\\ 196\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 20$	25315232053953755325305245205345533051455345205) =	23345678901123445678901123445678901222222222222222222222222222222222222	2051455202651413305355271337535533051452812445 27059342973727242672944724477295533051452812445	÷(R2-1)=XDONLXR RXLO *5 D7RXL7 *5 1527.B16008NC2 ×72=548NL7 *5 10000022002000000000000000000000000000	6789012345678901234567890112345678901222222222222222222222222222222222222	438251562331532452533534526535524263029613921049 544726575540840550640840940640944972044767430044	SLRSGLERRRANCSLSENGTABLC4:1004C4 RSLRSGLERRRANCSLSSRLSSLLSSLSSR RSLLSSLLSSC4T2T+BECC0+C0+C0+C0+C0=T4NLX009L0*9T RSLSSLLSSC4T2T+BECC4:1004C4 RRSC0=T4TBNOT4BTC4:1004C4 RRSC0=T4TBNOT4BTC4:1004C4	334123456789012345678901234567890123456789012345678901 33442344567890355567890123456789012345678901 33555555789012345678901333333333333333333333333333333333333	976 22613052053	XS41 INU49T*9 S41 S41 S41 S41 S41 S41 S41 S41 S41 S41	$\begin{array}{c} 3934\\ 3996\\ 3996\\ 3996\\ 3996\\ 4003\\ 4002\\ 3990\\ 4002\\ 4006\\ 7899\\ 0012\\ 3990\\ 4002\\ 4006\\ 4006\\ 7899\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 4006\\ 789\\ 0012\\ 3990\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 4006\\ 123\\ 123\\ 4006\\ 123\\ 123\\ 4006\\ 123\\ 123\\ 123\\ 123\\ 123\\ 123\\ 123\\ 123$	36535533253 -45 9	RCL2 + (L4 +)+C3+C8 RCL1+L2 + 2×C0+C0=FC8 RCL1+L2 RCC+C0=FC8 RCC0+C0+C0+C0=FC8 RCC0+C0+C0+C0 RCC0+C0+C0+C0 RCC0+C0+C0+C0 RCC0+C0+C0 RCC0+C0+C0 RCC0+C0+C0 RC0+C0 RC0+C0+C0 RC0+C0 RC0+C0 RC0+C0+C0 RC0+C0 RC0+C0+C0 RC0+C0+C0 RC0+C0+C0+C0+C0+C0+C0+C0+C0+C0+C0+C0+C0+C

152 HEAT TRANSFER

User instructions for TI version

Two separate programs are given. They are run in similar manner.

For both programs data are entered as follows:

A, heat-transfer surface area	STO 23
N, number of passes	STO 21
Hot side	
W, mass flowrate	STO 15
α factor	STO 13
β factor	STO 14
T ₁ , temperature in	STO 12
T ₂ , temperature out	STO 11
Cold side	
w, mass flowrate	STO 05
α factor	STO 03
β factor	STO 04
t ₁ , temperature in	STO 01
t ₂ , temperature out	STO 02

Enter estimate of overall heat-transfer coefficient U, then press key A

With the program A:

Key **B** gives inlet temperatures, cold side (t_1) and hot side (T_1) Key **C** gives outlet temperatures, cold side (t_2) and hot side (T_2)

With program B:

Key **D** gives hot side inlet (T_1) and cold side outlet (t_2) temperatures Key **E** gives cold side inlet (t_1) and hot side outlet (T_2) temperatures

Calculation will take a few minutes. In all cases, programs also give LMTD correction factor F, and heat load q.

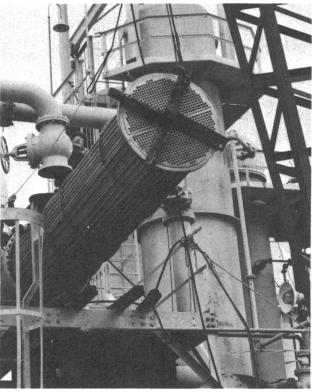
With further estimate of overall heat-transfer coefficient, key A, additional calculations of the same two temperatures are made until satisfactory convergence is obtained.

(Note: Any consistent set of units may be used as long as UA/wc remains dimensionless.)

All output are printed in the order indicated in the explanation (i.e., temperatures, LMTD correction factor F, and heat load q.).

References

- Ten Broeck, H., Multipass Exchanger Calculations, Ind. & Eng. Chem., Vol. 30, No. 9, pp. 1,041–1,042 (1938).
- "Standards of Tubular Exchanger Manufacturers' Assn.," pp. 138–139, New York (1968).
- 3. Kern, D. Q., "Process Heat Transfer," pp. 140, 176, McGraw-Hill, New York (1950).
- Bowman, R. A., "Mean Temperature Difference Correction in Multipass Exchangers," Ind. & Eng. Chem., Vol. 28, No. 5, pp. 541-544 (1936).



The author

Rogério Geaquinto Herkenhoff is a process engineer for Petróleo Brasileiro S.A. (Petrobrás), Pç. Mahatma Gandhi 14/804, Centro, CEP 20031, Rio de Janeiro, Brazil. He holds a B.S. degree in chemical engineering from Universidade Federal Rural do Rio de Janeiro. He lectures on heat-exchanger design in Petrobrás courses for process engineers.

Calculating the corrected LMTD in shell-and-tube heat exchangers

The programs described here, one for the Hewlett-Packard system and one for the Texas Instruments system, will allow the engineer to calculate the corrected logarithmic mean temperature-difference for shell-and-tube heat exchangers in series.

W. Wayne Blackwell, Ford, Bacon & Davis, Texas Inc., and Larry Haydu, Kennecott Corp.

Heat transfer is more efficient when there is countercurrent flow rather than cocurrent flow. When multipass shell-and-tube exchangers are used in series, the flow more closely approximates countercurrent when a lot of shells are used. But this means greater cost. So it is desirable to use the minimum number of shells that will achieve an acceptable level of efficiency.

The programs described here will determine that minimum number of shells, and will calculate a corrected mean temperature-difference for the system chosen. This eliminates the need for laborious calculations with charts and graphs that are normally used in such designs.

Heat-exchanger design

The thermal design of heat-exchange equipment often requires the calculation of the logarithmic mean temperature-difference (LMTD). This is defined by the following equation:

$$\text{LMTD} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}}$$

Where, for countercurrent flow:

 Δt_1 = the larger terminal difference, $T_1 - t_2$, and Δt_2 = the smaller terminal difference, $T_2 - t_1$.

For cocurrent flow, $\Delta t_{t} = T_{t} - t_{t}$ and

$$\Delta t_1 = I_1 - t_1$$
, and

 $\Delta t_2 = T_2 - t_2.$ Temperatures:

 $T_1 =$ hot-fluid inlet temperature, °F,

 $T_2 =$ hot-fluid exit temperature, °F,

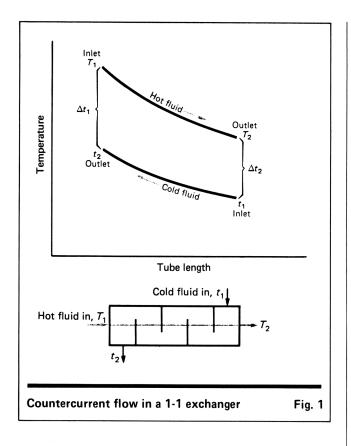
 $t_1 =$ cold-fluid inlet temperature, °F,

 $t_2 =$ cold-fluid exit temperature, °F.

Fig. 1 shows a typical temperature profile of two fluids in true countercurrent flow through a 1-1 exchanger (one shell pass, one tube pass).

The 1-1 exchanger is very simple but has its limitations. In the majority of industrial operations, higher velocities, shorter tubes, and a more economical exchanger can be found using multipass design. In a multipass exchanger such as shown in Fig. 2, the flow is part countercurrent and part cocurrent. As a result, the mean temperature difference lies somewhere between the countercurrent and cocurrent LMTDs.

In this situation, a correction factor, F, is defined so that, when it is multiplied by the LMTD, the product is the corrected mean temperature-difference (CMTD).

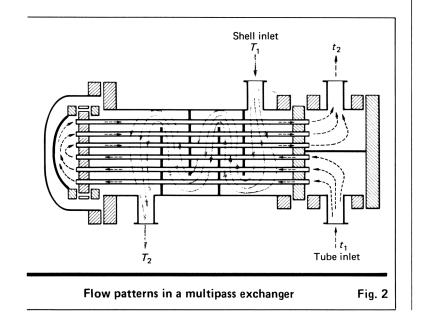

$CMTD = F \times LMTD$

Thus, for pure countercurrent flow, F = 1. As more cocurrent flow is introduced, F is reduced and the efficiency of the exchanger drops. The lower limit of prac-

	Hewlett-Packard program listing														Table I			
Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	
001	*LBLA	21 11	038	RCL1	36 01	075	÷	-24	112	X<0?	16-45	149	GT0B	22 12	186	XZY	-41	
002	1	01	039	RCL2	36 02	076	ST09	35 09	113	GTOC	22 13	150	#LBLD	21 14	187	X=Y?	16-33	
003	STOI	35 46	840	-	-45	877	2	02	114	1	01	151	RCLI	36 46	188	GTOC	22 13	
004	P≓S	16-51	041	RCL4	36 04	078	X≠Y	-41	115	XZY	-41	152	RCL5	36 65	189	LN	32	
005		-62	042	RCL3	3 6 0 3	079	÷	-24	116	X=Y?	16-33	153	х	-35	190	P≠S	16-51	
006	8	08	043	-	-45	080	1	01	117	GTOC	22 13	154	CHS	-22	191	ST01	35 01	
007	ST02	35 02	044	X=0?	16-43	081	-	-45	118	LN	32	155	RCL5	36 05	192	P≓S	16-51	
005	P ‡ S	16-51	045	GTOd	22 16 14	08 2	RCL6	36 0 6	119	RCL7	36 07	156	+	-55	193	RCL9	36 0 9	
009	RCL1	36 01	046	÷	-24	083	-	-45	120	x	-35	157	RCLI	36 46	194	RCL7	36 07	
010	RCL4	36 84	847	ST06	35 06	084	P≓S	16-51	121	RCL6	36 06	158	+	-55	195	x	-35	
011	-	-45	048	X2	53	085	ST00	35 00	122	1	01	159	RCL5	36 0 5	196	1	01	
012	ABS	16 31	049	1	81	8 86	P≠S	16-51	123	-	-45	160	X≠Y	-41	197	RCL9	36 09	
013	ST05	35 05	050	+	-55	087	RCL7	36 07	124	÷	-24	161	÷	-24	198	-	-45	
814	RCL2	36 02	Ø 51	₹X	54	88 8	+	-55	125	P‡S	16-51	162	ST09	35 0 9	199	÷	-24	
815	RCL3	36 03	05 2	ST07	35 07	8 89	P≠S	16-51	126	RCL1	36 01	163	2	02	200	P≓S	16-51	
016	-	-45	853	1	91	898	RCL0	36 00	127	÷	-24	164	X≓Y	-41	201	RCL1	36 01	
017	ABS	16 31	054	RCL6	36 86	091	P≠S	16-51	128	P≠S	16-51	165	÷	-24	202	÷	-24	
018	ST06	35 06	055	X=Y?	16-33	09 2	RCL7	36 07	129	*LBLE	21 15	166	1	01	203	P‡S	16-51	
019	-	-45	856	GTOD	22-14	093	-	-45	130	STOD	35 14	167	-	-45	204	GTOE	22 15	
020	X=0?	16-43	8 57	RCL5	36 05	894	X=0?	16-43	131	RCLØ	36 00	168	RCL6	36 06	205	*LBL6	21 16 12	
021	GTÜL	22 16 12	058	x	-35	09 5	GTOC	22 13	132	X=0?	16-43	169	-	-45	206	RCL5	36 05	
022	RCL5	36 05	859	1	01	8 96	÷	-24	133	GSBc	23 16 13	170	P₽S	16-51	207	STOB	35 12	
023	RCL6	36 06	8 60	-	-45	097	X<0?	16-45	134	X>Y?	16-34	171	ST00	35 00	208	GTUa	22 16 11	
024	÷	-24	061	RCL5	36 05	8 98	GTOC	22 13	135	GTOC	22 13	172	P≠S	16-51	209	*LBLd	21 16 14	
025	LN	32	062	1	01	0 99	LN	32	136	RCLI	36 46	173	RCL7	36 07	210	RCLB	36 12	
026	÷	-24	063	-	-45	100	P≠S	16-51	137	STOA	35-11	174	+	-55	211	STOC	35 13	
027	#LBLa	21 16 11	064	÷	-24	101	ST01	35 01	138	SPC	16-11	175	P≠S	16-51	212	1	01	
028	STOB	35 12	065	RCLI	36 46	102	P≠S	16-51	139	PRTX	-14	176	RCLØ	36 00	213	GTOE	22 15	
029	≢LBLB	21 12	06 6	1/8	52	103	1	01	140	RCLB	36 12	177	P≓S	16-51	214	*LBLc	21 16 13	
030	RCL4	36 04	067	۲×	31	104	RCL9	36 09	141	PRTX	-14	178	RCL7	36 0 7	215	R↓	-31	
031	RCL3	36 83	068	ST08	35 08	105	-	-45	142	RCLD	36 14	179	-	-45	216	P≠S	16-51	
032	-	-45	069	1	81	106	1	01	143	x	-35	180	X=0?	16-43	217	RCL2	36 02	
033	RCL1	36 01	070	XZY	-41	107	RCL9	36 0 9	1.44	STOC	35 13	181	GTOC	22 13	218	P≠S	16-51	
034	RCL3	36 0 3	071	-	-45	108	RCL6	36 06	145	PRTX	-14	182	÷	-24	219	RTN	24	
035	-	-45	072	RCL6	36 06	109	x	-35	146	RTN	24	183	X<0?	16-45	220	R∕S	51	
036	÷	-24	073	RCL8	36 08	110	-	-45	147	*LBLC	21 13	184	GTOC	22 13				
0 37	ST05	3 5 05	874	-	-45	111	÷	-24	148	ISZI	16 26 46	185	1	01				

Instru	iments progra	m listing							Та
Step	Code Key	Step	Code Key	Step	Code Key	Step	Code Key	Step	Code Key
000	76 LBL	022	43 RCL	044	43 RCL	066	42 STD	088	69 OP
001	11 A	023	25 25	045	20 20	067	02 02	089	02 02
002	<u>14</u> 4	024	69 UP	046	69 DP	068	43 RCL	090	69 OP
003	69 OP	025	03 03	047	02 02	069	20 20	091	05 05
(1(14	17 17	026	69 OP	048	69 OP	070	69 DP	092	43 RCL
005	25 CLR	027	05 05	049	05 05	071	02 02	093	24 24
006	69 OP	028	69 OP	050	91 R/S	072	69 OP	094	91 R/S
007'	00 00	029	00 00	051	42 STO	073	05 05	095	42 STO
008	43 RCL	030	43 RCL	052	01 01	074	91 R/S	096	04 04
009	16 16	031	18 18	053	99 PRT	075	42 STO	097	99 PRT
010	69 UP	032	69 DP	054	43 RCL	076	03 03	098	53 (
011	02 02	033	01 61	055	21 21	077	99 PRT	099	43 RCL
012	43 RCL	034	43 RCL	056	69 OP	078	76 LBL	100	00 00
013	17 17	035	19 19	057	01 01	079	12 B	101	75 -
014	69 UP	036	69 OP	058	43 RCL	080	69 OP	102	43 RCL
015	03 03	037	02 02	059	19 19	081	00 00	103	01 01
016	69. UP	038	69 OP	060	69 OP	082	43 RCL	104	54)
017	05 05	039	05 05	061	02 02	083	22 22	105	55 ÷
018	43 RCL	040	91 R/S	062	69 OP	084	69 OP	106	53 (
019	25 25	041	42 STD	063	05 05	085	01 01	107	43 RCL
020	69 OP	042	00 00	064	91 R/S	086	43 RCL	108	03 03
021	02 02	043	99 PRT	065	99 PRT	087	23 23	109	75 -

Texas Ins	struments p	rogram l	isting						Tabl	le II (co	ntinued)
Step 111123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890112345567890112345567890112345567890112345567890112345567890112345567890112345567890112345567890112345567890112345567890112345567890112345567890112345555556666666666666666666666666666666	Code Key 402 TD6 L2 402 TD6 C0 402 TD6 C0 402 TD6 C0 80 TD7 TD7 80 TD	Step 1767 17789 1882 1885 1889 1992 1997 1890 1202 2004 567 890 1123 4 567 890 1222 202 202 202 202 202 202 202 202 2	Code Key 02 2 + 2 02 5 br>02 5 0 02 5 02 5 0	Step 2344567890123456789012345678901224456789012345678900123456789001234567890012345678900123456789001234567890012345678900123456789000000000000000000000000000000000000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Step 89901123456789012334567890123345678901233456789012334567890123456789012333333333333333333333333333333333333	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Step 4567890123456789012345678900123456789001234567890012345678901234567890123456789	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Step 0112345678901123456789012345787890123457878901234578901234578901234578901234588888888888889012345888888888888888888888888888888888888	Code Key 31 31 69 02 32 03 043 29 05 043 05 043 05 043 05 043 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 05 07 05 07 05 07 05 07 05 07 05 07 05 07 06 03 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07



tical efficiency is F = 0.75 to 0.80 [1].

When designing shell-and-tube heat exchangers in series, the lowest F value is for one shell. This value is raised as the number of shells increases, and the flow more nearly resembles countercurrent flow. The object of design is to find the minimum number of shells that will raise the F value above the chosen minimum of 0.75 to 0.80.

Determining the F factor

An article in the May 1940 issue of The Transactions of the ASME greatly simplified the calculations required to

determine the mean temperature differences in shelland-tube exchangers [2]. The equations supplied by that article have been adapted for calculator use.

The general equation, valid for any number of passes, is [3, 4]:

$$\begin{split} F &= \left(\frac{\sqrt{R^2 + 1}}{R - 1}\right) \frac{\ln\left[(1 - P_x)/(1 - RP_x)\right]}{\ln\left[\frac{(2/P_x) - 1 - R + \sqrt{R^2 + 1}}{(2/P_x) - 1 - R - \sqrt{R^2 + 1}}\right]}\\ \text{where} \qquad P_x = \frac{1 - \left[\frac{RP - 1}{P - 1}\right]^{1/N}}{R - \left[\frac{RP - 1}{P - 1}\right]^{1/N}}\\ \text{and} \qquad P = (t_2 - t_1)/(T_1 - t_1) \end{split}$$

a

$$R = (T_1 - T_2)/(t_1 - t_1)$$
$$R = (T_1 - T_2)/(t_2 - t_1)$$

N is the total number of shell passes, i.e., the product of shell passes per shell and the number of units in series. Solving for N by repetitive trial and error with a minimum desired F, the minimum required number of shell passes can be determined.

If R = 1, the equation becomes indeterminate, and an alternate solution applies:

$$F = \frac{P_x \sqrt{R^2 + 1}/(1 - P_x)}{\ln\left[\frac{(2/P_x) - 1 - R + \sqrt{R^2 + 1}}{(2/P_x) - 1 - R - \sqrt{R^2 + 1}}\right]}$$

and: $P_x = P/(N - NP + P)$

The equations presented are based on certain assumptions: the overall heat-transfer coefficient, U, is constant throughout the heat exchanger; the flowrate of each fluid is constant; the specific heat of each fluid is constant; there is no condensation of vapor or boiling of liquid in any part of the exchanger; heat losses are negligible; the heat-transfer surface in each pass is equal; the temperature of the shell-side fluid in any shell-side pass is uniform over any cross section.

Hewlett-Packard program Larry Haydu

The program in Table I is written for the Hewlett-Packard HP-67/97 programmable calculators. It is simple and efficient.

The inlet and outlet temperatures of the hot and cold fluids are fed into computer memory at the start of the program. The program will select the proper number of shells in series so that the value of F is greater than or equal to 0.8. If a cutoff value for F other than 0.8 is desired, a value can be registered in the memory.

Input:
$$T_1$$
 STO 1
 T_2 STO 2
 t_1 STO 3
 t STO 4

 \tilde{F} [STO] 0 (if different than 0.8)

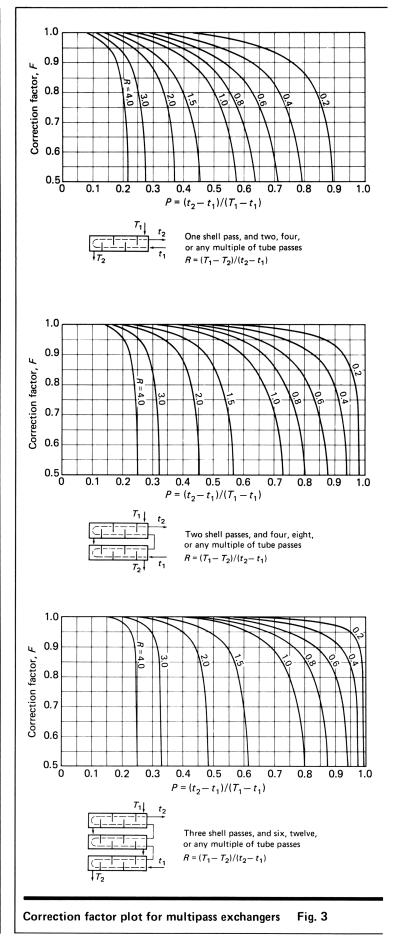
Begin computations—Press A

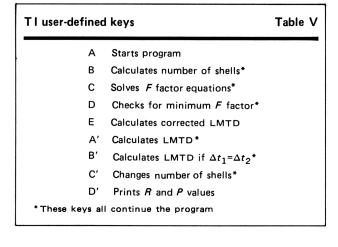
Output is stored on the HP-67 (printed on the HP-97) and can be recalled from storage registers.

Step	Procedure	Enter	Press	Display
1.	Read in both magnetic cards, sides 1,2,3 and 4		CLR	1,2,3,4
2.	Begin computations		Α	37002431
3.	Key-in hot inlet temp.	<i>T</i> 1	R/S	3700324137
4.	Key-in hot outlet temp.	T_2	R/S	37002431
5.	Key-in cold inlet temp.	t1	R/S	3700324137
6.	Key-in cold outlet temp.	t2	R/S	N
7.	Key-in number of shells (or use default value displayed)	N	R/S	Corr. LMTD
8.	Option: To calculate corrected LMTD for alternate number of shells, press B and continue with Step 7		В	N
9.	Option: Press D' to print <i>R</i> and <i>P</i>		D'	Ρ

Output: Number of shell passes in series	RCL A
Logarithmic mean temperature-	
difference (LMTD)	RCL B
Corrected mean temperature-	
difference (CMTD)	RCL C
Correction factor calculated	
(CMTD/LMTD)	RCL D
Example	

Example


Acetone at 250°F is to be sent to storage at 100°F. The heat will be received by 100% acetic acid coming from storage at 90°F, and will raise its temperature to 150°F. Calculate the number of shell passes required, the LMTD, and the CMTD.


Answer: 3 shell passes in series required

 $39.09^{\circ} \mathbf{F}$ LMTD 34.20°F c

	(F = 0.87)
CMTD	$(I_{1} = 0.07)$

ΓΙ data registers	Table IV
0. Hot inlet temp T_1	17. 1513271536
1. Hot outlet temp72	18. 23323700
2. Cold inlet temp t_1	19. 37002431
3. Cold outlet tempt ₂	20. 3700324137
4. Number of shellsN	21. 1532271600
5. <i>P'</i>	22. 3132400036
6. <i>R</i>	23. 2317272736
7. P	24. 1 (optional value)
8. <i>P''</i>	25. 5151515151
9. $\sqrt{R^{2}+1}$	26. 24311535
10. log term	27. 1713361716
11. <i>F</i>	28. 2100211315
12. Δt_1	29. 3732350000
13. ∆t ₂	30. 27303716
14. LMTD (uncorrected)	31. 2150552730
15. [(<i>PR</i> -1)/(<i>P</i> -1)] 1/ <i>N</i>	32. 3716560000
16. 2730371600	33. 0.75 (optional value)
registers before the pr magnetic cards. The p	t must be stored in data

Texas Instruments program W. Wayne Blackwell

The Texas Instruments program (Table II) is written for the TI-59 calculator, in conjunction with the PC-100C printer. It is completely self-prompting, calling for all necessary input data as required. This method reduces the possibility of error and confusion.

The program is largely explained by Table III (User instructions), Table IV (Data registers), and Table V (User-defined keys).

A minimum correction factor of 0.75 is used, but this may be changed at any time by keying a new value into register 33. Base $-10 \log s$ are used, as in Ref. 2.

The program is designed to start by testing one shell (N = 1). This minimum number of shells is known as the default number. It is possible to start with a different number by keying in any chosen value (say, N = 3). If this is not done, the program will start with the default number of 1. The program can be designed with a different default number (say N = 2) in register 24.

The program also allows the user to readily calculate the effect of a change in the number of exchanger shells on the corrected LMTD, without reentering exchanger temperatures. Just press B, key in the number of shells desired, and then press $\overline{\mathbb{R}/\mathbb{S}}$. The values of R and P will be printed if label D' is pressed.

The program may also be operated without a printer, (but, of course, in this case the self-prompting facility is lost). To do this, store exchanger temperatures (T_1, T_2, t_1) and t_2) in data registers 00 through 03, press B, enter the estimated number of exchanger shells (or use the default value) and press $\overline{R/S}$. After program execution, the results of all calculations are stored in registers 04 through 15 and can be recalled as desired. Note that the value displayed in the register at the end of a run is the corrected LMTD.

Using the previous example, start the program by pressing label A and answer the questions on exchanger stream temperatures as presented. The default number of shells is used as a starting point and |R/S| is pressed. The printout is shown in Table VI. The F value for N = 1 isn't a viable solution. It does not print out.

Both programs give the same result, of course.

l example printout	able VI
HOT T IN 250.	
HOT T OUT 100.	
COLD T IN 90.	
COLD T OUT 150.	
ND. SHELLS	
ND. SHELLS INCREASED 2.	
F FACTOR .6160321966 NO. SHELLS INCREASED	
3. F FACTOR	
.8748644663 LMTD	
39.08650337 F×(LMTD)	
34.19539291	

References

т

- Morton, D. S., Thermal Design of Heat Exchangers, Ind. and Eng. Chem.,
- Vol. 52, No. 6, 1960.
 Bowman, R. A., Mueller, A. C., and Nagle, W. M., Mean Temperature Difference in Design, *Trans. ASME*, Vol. 62, 1940, pp. 283-294.
- Taborek, J. J., Organizing Heat Exchanger Programs on Digital Computers, *Chem. Eng. Prog.*, Vol. 55, No. 10, 1959.
- 4. Gulley, D. L., Use Computers to Select Exchangers, Pet. Refiner, Vol. 39, No. 7, 1960

The authors

W. Wayne Blackwell is a Senior Process Engineer with Ford, Bacon & Davis, Texas Inc., P.O. Box 38209, Dallas, TX 75238, tel: 214-278-8121. He holds a B.S. in Ch.E. from Texas Technological University, and is a registered professional engineer in Texas. Mr. Blackwell has 22 years of experience in gas process design, and has published numerous technical articles. He is presently working on a book "Process Design With a Programmable Calculator," to be published by McGraw-Hill.

Larry J. Haydu is a Senior Engineer with Kennecott Corp., Process Equipment Division, 31935 Aurora Rd., Solon, OH 44139, tel: 216-248-7100. He graduated from Cleveland State University with a bachelor's degree in chemical engineering, then worked for the city of Cleveland, Div. of Air Pollution, as an air pollution control engineer. Mr. Haydu is a licensed professional engi-neer in the state of Ohio.

Program solves airstream energy balances

This TI-59 calculator program includes correlations for the enthalpy of air and water vapor. Thus it needs little input to solve mixing and heat-transfer energy balances and predict outlet temperatures.

Calvin R. Brunner, Malcolm Pirnie, Inc.

Predicting the final temperature of two airstreams that mix, or exchange heat without mixing, involves a trial-and-error procedure because both air and watervapor enthalpies must be considered simultaneously. This TI-59 program solves such problems quickly, using correlations for the enthalpies of air and water vapor over the range 500°F-2,500°F. Though it is most accurate over this high-temperature range, the program can be used at lower temperatures with only moderate error.

Trial-and-error

The figure illustrates the problems that this program solves:

■ Heat exchange. Given the initial temperature, air flow and water flow for two airstreams, and the final temperature for one of the streams, predict the final temperature for the other stream.

Mixing. Given the initial conditions as above, predict the temperature of the mixed stream.

To see how the program solves these problems, we need to look at the energy balances for each case. First, the enthalpy flow of an airstream $(H_i, Btu/h)$ is the sum of the dry-air and water-vapor enthalpy flows:

$$H_i = [M_a h_a + M_w h_w]_i \tag{1}$$

where M is mass flowrate (1b/h), h is enthalpy (Btu/lb), a refers to air, and w refers to water.

Enthalpies h_a and h_w can be represented as functions of temperature $(t, {}^{\circ}F)$, based on least-squares correlations of the data shown in Table I:

$$h_a = 0.0805 \ t^{1.1506} \tag{2}$$

$$h_w = 0.56 \ t + 937.8 \tag{3}$$

Substituting these equations into Eq. (1) yields the enthalpy flow for a stream of known temperature and mass flowrates.

In the case of heat exchange, both the inlet and outlet (Text continues on p. 162)

Stream 2 Stream 1 **Program handles both** heat exchange and mixing **Correlations correspond closely** to actual enthalpy values

	-	Temperature (<i>t</i>), °F										
	500	1,000	1,500	2,000	2,500							
Air enthalpy (<i>h_a</i>), Btu/lb												
Actual*	102	230	365	505	650							
$h_a = 0.0805 t^{1.1506}$	103	228	363	506	654							
Water-vapor enthalpy (hw), Btu	/ІЬ											
Actual†	1,239	1,486	1,756	2,047	2,358							
h _w = 0.56 t + 937.8	1,218	1,497	1,777	2,057	2,337							

*Keenan, J. H., and Kaye, J., "Gas Tables," John Wiley & Sons, New York, 1948. †Keenan, J. H., and Keyes, F. G., "Thermodynamic Properties of Steam," John Wiley & Sons, New York, 1936.

Originally published November 16, 1981.

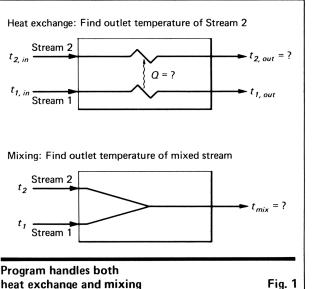


Table I

gram list	ting fo	or TI-59	calculato	r										Table	11
Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Кеу	
044 045	2409000069000099726900800090009971409714097140971409714097141971		103 104 105 107 108 110 111 112 1113 115 117 118 119	\$\$22169312331424331329531534530525321424321327531536530535 7141971903407240407241640840640940407240407240640840640740	STD 06 RCL2 SBR SBR STD XCL STD XCL CC1 RCL6 XCL CC4 RCC6 XCL 00 -	16456789012345678901 1111177777778901	9321420321324534534535305395263227535659385531453655308055305 041724141724416418418416418409414141690080009641984195900005419	11 +/- + RCL 16 = ÷ 0 8 0 5 ÷	228 229 231 232 233 233 235 235 236 237 238 239 240 241	9428747750627726381103823171392000000000000000000000000000000000000	1 3 0P 3 1 3 6 2 1 7 3 5 0P 04	44567890123456789012345678901223456789012345678901222222222222222222222222222222222222	0430962370329431963700243194329637324137943396 0000000066040600000000664060000000000	04 RCL 03 OP	

(Continued) Table II

LocationCodeKey 305 69 DP 306 04 04 307 43 RCL 308 09 DP 310 06 06 311 98 ADV 312 71 SBR 313 34 ΓX 314 01 1 315 03 3 316 02 2 317 04 4 318 03 3 319 05 5 320 69 DP 321 04 04 322 43 RCL 323 07 7 324 06 06 334 43 RCL 335 01 1 336 69 DP 341 00 0 344 03 3 345 01 1 346 69 DP 347 04 RCL 350 63 3 344 03 3 345 01 1 346 04 34 345 01 1 356 04 4 357 01 1 358 03 3 359 07 7 360 69 DP 361 04 RCL 356 04 4 357 01 1 358 03 3 </td <td>LocationCodeKey$366$98ADV$367$71SBR$368$351/X$369$98ADV$370$98ADV$371$98ADV$372$91R/S$374$33X2$375$033$376$066$377$033$378$077$379$69DP$380$0202$381$033$386$033$388$000$3990$000$3912$033$394$022$395$033$396$011$397$011$398$077$399$000$401$000$403$69DP$404$0404$405$69DP$406$0505$411$066$417$055$418$011$412$033$423$000$424$000$424$000$426$69DP</td> <td>LocationCodeKey$427$0303$428$033$429$077$430$044$431$033$432$022$433$000$436$000$436$000$437$000$438$69DP$439$0404$441$0505$442$92RTN*$443$76LBL$444$351/X$445$055$4447$022$4448$011$445$033$455$022$458$044$459$033$455$022$458$044$459$033$456$022$458$044$467$011$468$044$479$033$474$055$476$066$4771$033$477$033$478$0404$479$055$481$921$482$15E$484$931$486$32X$487$43RCL</td> <td>Location Code Key 488 02 02 489 71 SBR 490 24 CE 491 42 STD 492 406 06 493 43 RCL2 495 71 SBR 496 23 LNX 496 23 LNX 497 42 STD 498 07 X 498 07 X 499 65 RCL 501 01 01 01 502 85 RCL 503 43 RCL 503 43 RCL 504 06 85 RCL 505 643 RCL 506 43 RCL 507 95 STD 511 42 STD 512 371 SBR 71 SBR 72 SBR 75 SSR 75 SS</td> <td>LocationCodeKey$549$088$550$$54$)$551$$653$×$552$$53RCL554$01$555$85+$556$43RCL$557$1111$558$95=$560$93.$561$000$562$088$564$055$566$53<</td> 566 53<	LocationCodeKey 366 98ADV 367 71SBR 368 351/X 369 98ADV 370 98ADV 371 98ADV 372 91R/S 374 33X2 375 033 376 066 377 033 378 077 379 69DP 380 0202 381 033 386 033 388 000 3990 000 3912 033 394 022 395 033 396 011 397 011 398 077 399 000 401 000 403 69DP 404 0404 405 69DP 406 0505 411 066 417 055 418 011 412 033 423 000 424 000 424 000 426 69DP	LocationCodeKey 427 0303 428 033 429 077 430 044 431 033 432 022 433 000 436 000 436 000 437 000 438 69DP 439 0404 441 0505 442 92RTN* 443 76LBL 444 351/X 445 055 4447 022 4448 011 445 033 455 022 458 044 459 033 455 022 458 044 459 033 456 022 458 044 467 011 468 044 479 033 474 055 476 066 4771 033 477 033 478 0404 479 055 481 921 482 15E 484 931 486 32X 487 43RCL	Location Code Key 488 02 02 489 71 SBR 490 24 CE 491 42 STD 492 406 06 493 43 RCL2 495 71 SBR 496 23 LNX 496 23 LNX 497 42 STD 498 07 X 498 07 X 499 65 RCL 501 01 01 01 502 85 RCL 503 43 RCL 503 43 RCL 504 06 85 RCL 505 643 RCL 506 43 RCL 507 95 STD 511 42 STD 512 371 SBR 71 SBR 72 SBR 75 SSR 75 SS	LocationCodeKey 549 088 550 54) 551 653 × 552 53 RCL 554 01 555 85+ 556 43RCL 557 1111 558 95= 560 93. 561 000 562 088 564 055 566 53<

Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key	Location	Code	Key
610	02	2	648	03	3	686	03	3	724	04	4	762	00	00
611	04	4	649	02	2	687	05	5	725	69	ΠP	763	85	÷
612	03	3	650	04	4	688	69	DP .	726	02	02	764	43	RCL
613	01	1	651	03	3	689	04	04	727	03	3	765	10	10
614	0i	1 7	652 750	05 20	5 OP	690 691	43 10	RCL 10	728	01	1	766	95 20	= 0P
615 616	07 69	٥P	653 654	69 04	uг 04	692	10 69	DP	729 730	01 07	1 7	767 768	69 06	ur 06
617	02	02	655		RCL	693	06	06	731	01	1	7.65	02	2
618	01	1	656	00	00	694	02	2	732	06	Ē	770	03	3
619	06	6	657		DP	695	03	3	733	00	õ	771	07	7
620	00	0	658	06	06	696	07	7	734	00	0	772	ŌŌ	Ò
621	00	Ō	659	02	2	697	00	0	735	03	3	773	03	З
622	01	1	660	03	3	698	03	3	736	06	6	774	02	2
623	03	3	661	07	7	699	<u>02</u>	_2	737	69	DP	775	69	۵P
624	02	2	662	00	Õ	700	69	DP	738	03	03	776	04	04
625	04	4	663 664	03 02	3 2	701 702	04 43	04 RCL	739	03	3	777	43	RCL
626 627	03 05	35	665		OP	702 703	40 11	RCL 11	740 741	07 03	7 3	778 779	01 85	01 +
628	69	OP	666	04	04	704	ŝ9	OP	742	05	5	780	43	RCL
629	03	03	667		RCL	705	06	06	743	01	1	781	11	11
630	02	2	668	01	01	706	03	3	744	07	7	782	95	=
631	01	1	669	69	ΠP	707	07	7	745	01	1	783	69	ΠP
632	02	2	670	06	06	708	69	ΠP	746	03	3	784	06	06
633	07	7	671	03	3	709	04	04	747	03	3	785	03	3
634	03	3	672	07	-7	710	43	RCL	748	00	0	786	07	7
635 636	02 04	2 4	673 674	69 04	0P 04	711 712	12 69	12 OP	749 750	69 04	0P 04	787 788	69 04	0P 04
637	03	3	675		RCL	713	06	06	751	04 69	O4 OP	789	43	RCL
638	69 69	OP	676	02	02	714	98	ADV	752	05	05	790	17	17
639	04	04	677		DP	715	01	1	753	01	1	791	69	DP
640	69	0P	678	06	06	716	05	5	754	Ō3	ŝ	792	<u>0</u> 6	-06
641	05	05	679		ADV	717	03	3	755	02	2	793	98	ΑD\
642	69	ΠP	680		SBR	718	02	2	756	04	4	794	71	SBR
643	00	00	681		τX	719	03	3	757	03	3	795	35	$1/\rangle$
644	98	ADV	682	01	1	720	00	0	758	05	_5	796	98	AD
645	71	SBR	683 494	03	3	721	01	1	759	69 04	DP	797	98	AD
646 647	33 01	χ2 1	684 685	02 04	2 4	722 723	04 02	4 2	760 761	04 43	04 RCL	798 799	98 91	AD\ R/S

temperatures are known for Stream 1, so $H_{1,in}$ and $H_{1,out}$ are known. From these, we can find the heat transferred to Stream 2 (Q, Btu/h):

$$\begin{aligned} Q &= H_{1,in} - H_{1,out} \\ &= [M_a \ (h_{a,in} - h_{a,out}) + M_w \ (h_{w,in} - h_{w,out})]_1 \quad (4) \end{aligned}$$

Knowing Q, we can find the outlet enthalpy flow for Stream 2:

$$H_{2.out} = Q + H_{2.in} \tag{5}$$

The program calculates Q and $H_{2,in}$ from known conditions, using Eq. (1-4), then finds $H_{2,out}$ from Eq. (5). To find the outlet temperature of Stream 2, the

program uses Eq. (1-3) again and solves for t: Stream 2 outlet:

$$t^{1.1506} = \frac{H - (0.56 t + 937.8) \,\mathrm{M}_w}{0.0805 \,M_a} \tag{6}$$

To solve Eq. (6), the program uses a trial-and-error procedure, with 0.1° F as the tolerable error.

1. Assume a temperature value, t', and use this to calculate the right-hand side of Eq. (6).

2. Solve for t on the left-hand side of Eq. (6).

3. If |t - t'| < 0.1, t' is considered equal to t, and the calculation is completed.

4. If $|t - t'| \ge 0.1$, the calculated value t is substituted for t' and the program returns to Step 1.

User instructions for TI	-59 program	Table I		
Step	Key	Comment		
1. Partition	2 2nd OP 17	799.19		
2. Enter program from Table II or from cards				
3. Enter essential data				
M _a , Stream 1	Α			
M_{w} , Stream 1	В			
t, inlet, Stream 1	C			
M _a , Stream 2	2nd A'			
M_{w} , Stream 2	2nd B'			
t, inlet, Stream 2	2nd C'			
4. For mixing of two streams	E	Program runs, prints out		
		for COMBINED FLOW		
5. For heat transfer between streams	6			
t, outlet, Stream 1	D			
	2nd D'	Program runs, prints out for heat transfer		

Notes: While the program is running, the value |t - t'| will flash in the display, decreasing each time until it is less than 0.1. At that time, the program is complete and will print out. If the printer is not used, the needed values can be recalled from the memory registers as listed in Table V.

Printouts for and mixing e	heat-exchange xamples	•	Table IV
HEAT TR	ANSFER	COMBINED AIR	? FLOW
STREAM		STREAM	
200 0 0. 15 00.		20000.	
610.	T IN	1500. 610.	H2 0 T
2400.	TOUT	61Q.	1
		STREAM	тыв
-11400179.83	B∕HR	35000.	AIR
		2850.	HSD
STREAM	TWO	2450.	Т
35000.	AIR		
2850.	H2O	COMBINED S	STREAM
	T IN	55000.	AIR
1483.695621	TOUT	4350.	HSD
		1824.52377	Т
(FLOW IN	LB/HR>		
		(FLOW IN L	8/HR>

ntent of storage	f storage registers					
Register	Content					
00	<i>M</i> a, Stream 1, lb/h					
01	Mw, Stream 1, lb/h					
02	t, inlet, Stream 1, °F					
03	<i>t</i> , outlet, Stream 1, °F					
04	ha, outlet, Stream 1, Btu/lb					
05	H, outlet, Stream 1, Btu/h					
06	<i>h_a</i> , inlet, Stream 1, Btu/lb					
07	h _w , inlet, Stream 1, Btu/lb					
08	Used					
09	Q, Btu/h					
10	<i>M_a</i> , Stream 2, Ib/h					
11	<i>M</i> _w , Stream 2, lb/h					
12	t, inlet, Stream 2, ° F					
13	<i>h_a</i> , inlet, Stream 2, Btu/lb					
14	h _w , inlet, Stream 2, Btu/lb					
15	t', °F for mixed-flow case					
16	H, outlet, Stream 2, Btu/h					
17	t', °F for heat-transfer case					
18	<i>t,</i> °F, final result for either case					
19	h _w , outlet, Stream 1, Btu/lb					

In the case where two airstreams mix, the enthalpy and mass flowrates of the mixed stream are simply the sums of the individual enthalpy and mass flowrates of the two streams:

$$H_{mix} = H_1 + H_2 \tag{7}$$

$$M_{a,mix} = M_{a,1} + M_{a,2} \tag{8}$$

$$M_{w,mix} = M_{w,1} + M_{w,2} \tag{9}$$

The program calculates these values from the given inputs, substitutes the H, M_a and M_w values for the mixed stream into Eq. (6), and solves for the temperature of the mixture by trial-and-error as above.

How to use the program

Table II lists the steps, and Table III the user instructions for the program. Note that the TI-59 calculator must be partitioned to 799.19 before entering the program (or before reading cards). If the program is used with the PC-100 printer, it prints out the relevant inputs and outputs as shown in Table IV. If the program is used without the printer, the results must be recalled from the data registers—Table V is the key to these. Register 18 holds the final result t for either mixing or heat transfer.

Example

Suppose that two airstreams are to exchange heat in a heat exchanger. The first stream is 20,000 lb/h of dry air, plus 1,500 lb/h of moisture, entering at 610°F. The second stream is 35,000 lb/h dry air, plus 2,850 lb/h moisture, entering at 2,450°F. What is the exit temperature of Stream 2 if the exit temperature of Stream 1 is assumed to be 2,400°F?

To solve this problem, partition the calculator and enter the program according to Table III. Then enter the data as shown, and press 2nd D' to get the appropriate printout in about thirty seconds:

Airflow, Stream 1	20,000	Α
Moisture flow, Stream 1	1,500	В
Inlet temperature, Stream 1	610	С
Airflow, Stream 2	35,000	2nd A'
Moisture flow, Stream 2	2,850	2nd B'
Inlet temperature, Stream 2	2,450	2nd C'
Exit temperature, Stream 1	2,400	D
-		2nd D'

Table IV shows the resulting printout, under the heading HEAT TRANSFER. The outlet temperature of Stream 2 in this case is 1,484°F.

If the streams were to be mixed instead, the exittemperature entry would have been unnecessary. Pressing E (instead of 2nd D') would get the program to run, and the printout would be as shown under COMBINED AIR FLOW in Table IV. In this case, the temperature of the mixed stream would be $1,824^{\circ}$ F, as shown in Table IV.

For HP-67/97 users

The HP version closely follows the TI program. Table VI offers the HP program listing, and Table VII provides user instructions. Printouts for the examples are contained in Table VIII.

Program listing for HP version

Table VI

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Кеу	Code
901	¥L5LA	21 11	0 29	PCL3	36 02	057	PCL9	3E 03	085	-	-45	113	1	01
002	STOZ	.35.02	036	GSF2	23 02	0 58	+	-55	0 86	AB S	15 31	114		-62
003	F∔	-31	031	RC1 1	. 3E 61	359	STEE	23-15	087		-62	115	1	61
684	ST01	30 81	032		-35	060	*LBLE	21 25	<i>08</i> 8	1	31	116	5	65
005	F.	-31	033	ST+7	35-55 Ø7	061	RCLE	36 15	8 85	X>Y*	15-34	117	e	30
00E	3700	23 00	634	RCL3	JE 83	062	RCLD	35/14	090	6797	22 07	113	ε	36
607	R∕S	51	€35	GSB2	23-82	<i>0E3</i>	GSB2	23 22	e 91	RCLI	36 46	119	YX.	31
008	*LBLJ	21 16 14	036	RCLI	36 01	064	RCL 5	3 6 05	692	STOD	35-14	129		-62
08 9	SF1	16 ZI 01	037	Х	-35	065	Х	-35	. 093	GTOE	22 06	121	Ð	68
616	*LELD	21 1d	038	ST+8	35-5 5 08	066	-	-45	694	*LBL7	21 07	122	. 8	62
011	ST03	35 33	839	RCL7	36 07	067		-62	<i>69</i> 5	RCL I	. <i>38 46</i>	123	e	0e
012	STOD	75-14	848	RCLa	3 <i>8</i> 09	068	0	3 0	ē36	PRTX	-14	124	5	05
613	R∔	-71	641	-	-45	6 69	8	63	8 97	RCLA	36-11	125	22	-35
014	STC4	35 0⊰	042	STOA	35 11	370	Ø	90	0 93	PRTX	-14	126	RTH	24
015	R.,	-71	84 3	RCL4	36 04	071	5	85	699	CF1	18 22 01	127	*LBL2	<i>21 02</i>
016	ST05	35 95	044	GSB1	23 61	072	PCL6	36 06	100	SPC	15-11	128		-52
<i>0</i> 17	₹J	31	045	RCL5	36 05	673		-35	101	R∠S	51	129	5	65
618	ST06	35 85	046	Χ	-35	674	÷	-24	102	*L5L4	21 04	130	c .	66
019	SCL2	36 02	847	STC3	35 39	075	1	01	193	RCL1	3 5 01	131	λ^{*}	-35
020	ese1	23 01	ê48	RCL4	36 64	676		-62	164	ST+5	35-55 85	132	9	63
021	RCLØ	<i>36 9</i> 9	649	6862	23 02	077	í	21	105	RCLØ	36 80	133	3	33
022	×	-35	05E	RCL5	36 05	078	5	05	106	ST+6	35-55 08	134	7	27
023	STO7	35 07	051	X	-35	079	0	00	167	RCL7	35 €7	135		-62
024	RCL3	D6 03	052	ST+9	35-55 09	080	6	25	198	RCL9	36 82	136	8	<i>8</i> 8
Ø25	GSB1	23 e 1	8 53	F1?	18 23 01	081	1/X	52	109	+	-55	137	÷	-55
026	RCL9	3E 00	054	GTŪ4	22 64	052	y x		110	STOE	35 15	138	RTN	24
027	X	-75	055	*LBL3	21 63	033	STÓI	35 46	111	GTOS	22 05	139	R∕S	51
028	ST03	35 08	0 56	RCLA	36-11	0 84	RCLD	38-14	112	*LEL1	21 01			

User instructions for HP	version Table VII
Air flow, lb/h, stream 1	ENTER ↑
Moisture flow, lb/h, stream 1	ENTER 1
Inlet temperature, °F, stream 1	Key A
Air flow, lb/h, stream 2	ENTER 1
Moisture flow, lb/h, stream 2	
Inlet temperature, °F, stream 2	
Exit temperature, °F, stream 1	Key D for heat exchange case
-	Key d for mixture case

With key D, answer is stream 2 outlet temperature, $^{\circ}F$. With key d, answer is mixture outlet temperature, $^{\circ}F$.

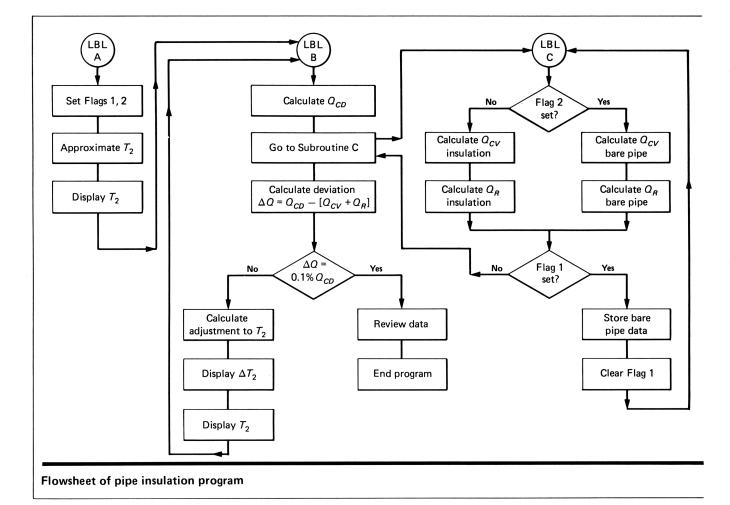
Second number in both cases is heat transfered, Btu/h.

Note: HP answers for text example differ slightly from the text TI answers. The TI program uses 1.15 for the exponent constant in Eq. (2), but the HP program uses 1.1506 as shown in the equation. Also, the TI program uses two different values for the constant 937.814 of Eq. (3), 937.814 in one case—lines 024 to 030—and 938—lines 160 to 162—in the other). The HP program uses 937.814 in both cases.

Printouts for heat-exchange and mixing Table VIII examples—HP version

Heat-exchange example	Mixing example
20000.03 ENT:	20000.00 ENTI
1500.30 ERT:	1530.C0 EYT1
<i>516.00</i> SBBA	618.80 ESBA
35002.00 ENT:	35000.00 Enti
2850.00 ENT*	2 850.0 0 ENT:
2450.00 EKTI	2 450. 03 ENT!
2 400 .20 CSSD	2 460.0 0 3854
1478.95 ***	1815.37 + *
-11400179.03 🧼	-11460179.23 ***

The author


Calvin R. Brunner, P.E., is Chief Mechanical Engineer of Malcolm Pirnie, Inc., Consulting Environmental Engineers, Two Corporate Park Dr., White Plains, NY 10602. He is responsible for design, construction and operation of waste-incineration systems, as well as other combustion processes. Mr. Brunner holds a master's degree from Pennsylvania State University, and a bachelor's degree from City College of New York, both in mechanical engineering. He is licensed as a professional engineer in five states, and has written two texts on incineration, plus many technical articles.

Calculating heat loss or gain by an insulated pipe

This program for the HP-97 can be used to quickly calculate the insulation surface temperature and heat loss or gain by a pipe, while all other factors are varied.

Frank S. Schroder, 3M Co.

Determining the most economical insulation system for hot or cold pipes has long been difficult to pin down without the aid of a computer because of the interdependence of the three modes of heat transfer. Charts and tables are available, but permit the evaluation of a limited range of only a few variables. The accompanying program (figure) is developed for use with the Hewlett-Packard HP-67 or HP-97 programmable calculator, and is intended as a tool to help the engineer evaluate the parameters of: fluid temperature; ambient air temperature; thermal conductivity of the insulating material; pipe diameter; insulation thick-

166 HEAT TRANSFER

Program listing

Table	L
-------	---

Step Key Code Step Key Code Step Key Code Step Key Code 166 16.2 12.1 12.4 </th <th></th> <th>iiog</th> <th></th>		iiog													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Step	p Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-			-			-						
$ \begin{array}{c} e21 \\ e22 \\ e32 \\ e33 \\ e34 \\ e35 $		and fla	igs				to	less than ($I_2 - I_3$					(<i>πD</i> ₂ /)	(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	681	*LBLA	21-11	·	ernmate pro	gram	101	RCL3	36 03				191	*LBLb	21 15 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	002	2 0	60	053	RCL7	36 07	102	-		150	GSBb		192	RCL5	36 05
$ \begin{array}{c} etc \\ etc $															
$\begin{array}{ccccc} ecc} ecc} ecc} & eccc} & eccc} & ecc} & ecc} & ecc} & ecc} & ecc} & $															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							108	F0?	16 23 00	156			198	X	
				060	1					157	ST08	35 08	199	RTN	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														Sub-routi	ne c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										e	-		inte		
Interstimute of T_2 Laboration sequence, reduce 159 Calculate adjustment correction exponent E 160 Calculate adjustment correction exponent E 160 CSL3 Calculate adjustment 111 Calculate adjustment 111 Calculate adjustment Calculate adjustment Calculate adjustment Calculate adjustment Calculate adjustment 111 Calculate adjustment Calculate a											by ruun				
First estimate of T_2 correction segment E 160 662.0 by uninulated pile, on first iteration 016 RCL3 36 03 by uninulated pile, on first iteration 016 RCL3 36 03 by uninulated pile, on first iteration 016 RCL3 36 114 RCL3 36 16 66 PCL1 36 15 Set (1) 16 17 16 16 16 17 16 16<	015	5 P≠S	16-51	066	GTOD	22-14		If overcorr	rection	158				• •	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. –						•					-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		First estimat	te of T_2	~	alaulata - 4	*man*	CO	rrection ex	ponent E				0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 6	RCII	36-00	Ca		sunent	114	RCLE	36-15				200		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					11172						RCLC				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				067	RCLA						х	-35			36 02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											gsb6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							118	STÜE	35 15		•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							5	Start recalc	ulation						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							119	GTOB	22-12			-35			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5 5	05	074	÷	-24				171				X≠Y	-41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-					Te								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								Review	data	173	\$109	35 0 9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							120	±l RI D	21 14						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										Тс	otal heat ex	kchanged			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												•			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.	216	RTN	24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	033	S ∗ LBLB	2í 12												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0												Sub-rout:	ne F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Count ite	rations										r		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	034	ISZI	16 26 46	000			• • •	TEPEV	F1 1 0					-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			Ca	alculate adjus	stment		Calculate	e heat		Return to	main		uninsulate	d pipe
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C			fa	ictor F to T_2	based	6	xchanged	at surface		prograr	n B			· · · -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		through in	sulation	0	n convergend	e rate		by conve	ection						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø35	5 RCL1	Z6 01	B OC	₽≠¢	16-51	128	F22	16 23 02	178	RTN	24			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	037	7 -	-45				130	RCL2	36 02	Sub	-routine a	to calculate	221	GTOC	22-13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											$\frac{T_x}{T_x}$ + 4	60 4	222	R∕S	51
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											100) /			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										179	*1 51 -	21 16 11			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				072	31 71 -	00-00 01									
044 RCL5 36 605 137 2 02 182 0 06 045 RCL4 36 0493 RCL1 36 01 138 \pm -24 183 $+$ -55 046 \pm -24 094 RCL0 36 00 139 \pm -24 184 1 01 046 \pm -24 094 RCL0 36 00 139 \pm -24 184 1 01 047 LN 32 095 \times -35 140 -62 185 0 00 048 \pm -24 096 FIS $16-51$ 141 2 02 186 00 049 $F0?$ 16 23 00 097 PSE 16 51 142 5 05 187 \pm -24 050 ABS 16 31 098 $ST+2$ $35-55$ </td <td></td> <td></td> <td></td> <td></td> <td>Calculate ne</td> <td>w 7₂</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>06</td> <td></td> <td></td> <td></td>					Calculate ne	w 7 ₂		1				06			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$36 \ 05$									00			
047 LN 32 095 × -35 14062 185 0 00 048 ÷ -24 096 P≠S 16-51 141 2 02 186 0 00 049 F0? 16 23 00 097 PSE 16 51 142 5 05 187 ÷ -24 050 ABS 16 31 098 ST+2 35-55 02 143 Y× 31 188 4 04 051 ST07 35 07 099 RCL2 36 02 144 F0? 16 23 00 189 Y× 31															
048 ÷ -24 096 P≠S 16-51 141 2 02 186 0 00 049 F0? 16 23 00 097 PSE 16 51 142 5 05 187 ÷ -24 050 ABS 16 31 098 ST+2 35-55 02 143 Y× 31 188 4 04 051 ST07 35 07 099 RCL2 36 02 144 F0? 16 23 00 189 Y× 31															
049 F0? 16 23 00 097 PSE 16 51 142 5 05 187 ÷ -24 050 ABS 16 31 098 ST+2 35-55 02 143 Y× 31 188 4 04 051 ST07 35 07 099 RCL2 36 02 144 F0? 16 23 00 189 Y× 31															
050 ABS 16-31 098 ST+2 35-55-02 143 Y× 31 188 4 04 051 ST07 35-07 099 RCL2 36-02 144 F0? 16-23-00 189 Y× 31															
051 ST07 35 07 099 RCL2 36 02 144 F0? 16 23 00 189 Y ^x 31					ST+2 🗧	35-55 02					4	04			
U52 656C 23-13 100 PSE 16-51 145 CHS -22 190 RTN 24			35 07		RCL2	36 0 2									
	052	esbc	23-13	100	PSE	16 51	i45	CHS	-22	190	RTN	24			

			Tempera	iture, °F-		
	0	100	200	300	400	500
Fiberglass	0.010	0.011	0.020	0.023	0.031	0.043
Fiberglass - 850 ¹	0.036	0.017	0.022	0.028	0.037	
Magnesia (85%)	-	0.039	0.041	0.043	0.046	0.049
Phenolic foam ^{2,3}	-		-	0.018	-	-
Mineral wool ³	-	-	-	0.034	-	-
Urethane foam		0.023	0.032	-	-	-
¹ CertainTeed						
² Accotherm						
³ Limits not specifi	od					

ness; and emissivity of the insulation's surface. In addition, the loss or gain of a bare, uninsulated pipe is calculated for use as a reference.

The program

This program (Table I) is based on the premise that the heat conducted through the insulation, Q_{cd} , must balance the heat exchanged at the outer surface of the insulation by convection, Q_{cv} , and radiation, Q_r . For simplicity, it is assumed that the temperature of the inside of the insulation is equal to the temperature of the material inside the pipe.

The external surface temperature of the insulation is the unknown dependent variable. An estimate of this temperature is made, and the heat transferred by each of the three modes is calculated. The magnitude of the

ypical values of emissivit	Table I			
Material	Temperature range, ° F	Emissivity (e)		
Black body	_	1.000		
Aluminum—highly polished	440-1,070	0.039-0.057		
-oxidized	390-1,110	0.110-0.190		
Copper—polished	242	0.023		
—heat-treated at 1,110 ° F	390-1,110	0.570		
Cast iron-heat-treated at 1,100 ° F	390-1,110	0.640-0.780		
Steel, oxidized at 1,100 ° F	390-1,110	0.790		
Nickel-polished	74	0.045		
Paints—black lacquer	76	0.875		
-white lacquer	100-200	0.800-0.950		
—oil paints (16 colors)	212	0.920-0.960		
—10%AI, 22% lacquer	212	0.520		
—26%AI, 27% lacquer	212	0.300		
Paper	66	0.924		

difference between Q_{cd} and $Q_{cv} + Q_r$ is determined, and is used to adjust the estimated surface temperature. This process is repeated until the figure for the heat transferred through the insulation by conduction agrees within 0.1% with the figure for the heat exchanged by convection and radiation outside the insulation.

This usually takes from three to five iterations for hot pipes, and a little more for cold ones. One of these iterations is used to calculate the heat flux of the bare, uninsulated pipe. Theoretically, requiring agreement to less than 0.1% is unwarranted, as the input data are seldom known with that degree of accuracy, and constants in the equations indicate a somewhat lower degree of precision. It is justified only in that it ensures that the calculator routine is not the limiting factor in the calculation.

tructions for pipe insulation program										
Step	Instruction	Input Data	Keys	Output Data						
1.	Clear program		f CL PRGM							
2.	Clear all storage registers		f CL REG							
3.	Enter program, either by key or by card									
4.	Store input data in primary registers:									
	Thermal conductivity, Btu/(h) (ft ²) ([°] F) (ft)	ĸ _m	STO 0							
	Temperature inside pipe, [°] F		STO 1							
	Temperature of air, °F	T ₁ T ₃ D ₁ D ₂	STO 3							
	Diameter of pipe, in.	ν ₃ Γ.	STO 4							
	Diameter of insulation, in.	D_1	STO 5							
	Emissivity of pipe (0.79 for steel)	<i>D</i> 2	STO B							
	Emissivity of insulation	e _p e _i	STO C							
5.	Run program	C _i	A							
6.	Intermediate displays–While program is running,		~							
	the following information will be displayed:									
	a) Estimated surface temp. of insulation, F			T_2						
	b) ΔQ , disagreement between Q_{cd} and Q_{cv} + Q_r , Btu/ft			Δq						
	c) Correction to surface temp., °F			ΔT_2						
	a, b, and c will be repeated with each iteration			Δr_2						
	until $\Delta Q \leq 0.1\% Q_{cd}$									
7.	At the conclusion of the program, all primary $\Delta C \approx 0.1\%$									
7.	storage registers are reviewed (or printed with									
	HP-97) to display all input and calculated data.									
8.										
8.	The calculator comes to rest with Q_{cd} , heat of conduction, in Btu/(h) (ft) in the display.									

Nomenclature

- K_m Mean thermal conductivity of insulation, Btu/(h) (ft²)(°F)(ft) (see Table II)
- T_1 Temperature of material inside pipe, °F
- T_2 Temperature of outside surface of insulation (to be calculated by program), °F
- T_3 Temperature of ambient air, °F
- D_1 Outside diameter of pipe, in.
- D_2 Outside diameter of insulation, in.
- e Emissivity (see Table III)
- e_p Emissivity of bare pipe
- e_i Emissivity of outside surface of insulation

+ Q _r) uninsulated
.+ <i>Q_r</i>) uninsulated
.+ Q _r) uninsulated
.+ Q _r) uninsulated
+ Q _r) uninsulated
+ <i>Q_r</i>) uninsulated
$+ Q_r$) uninsulated
sed
e
ulation sed
kponent)
l

At the conclusion of the program, all primary storage registers may be displayed or printed out, showing the input and calculated data.

This program has been used successfully to determine the effectiveness of various insulation systems under a variety of conditions, including both high and low temperatures. Results agree with published data.

If conditions are found for which the program does not readily converge, check successive intermediate displays of T_2 , ΔQ and ΔT_2 , to check the convergence. It is also possible to print out or display *n*, the number of iterations, to see if this is excessive.

The equations used in this program are:

$$Q_{cd} = \frac{2\pi K_m (T_1 - T_2)}{\ln(D_2/D_1)}$$

$$Q_{cv} = 0.27 \left(\frac{T_2 - T_3}{D_2/12}\right)^{0.25} \left(\frac{\pi D_2}{12}\right) (T_2 - T_3)$$

$$Q_r = 0.173 e(\pi D_2/12) \times \left[\left(\frac{T_2 + 460}{100}\right)^4 - \left(\frac{T_3 + 460}{100}\right)^4 \right]$$

The definitions of terms and units are shown above. Typical values for conductivity and emissivity are listed in Tables II and III.

- Q_{cd} Heat conducted through insulation, per hour, per foot of length, Btu/(h)(ft)
- Q_{cv} Heat exchanged at surface of insulation by convection, per hour, per foot of length, Btu/(h)(ft)
- Q_r Heat exchanged at surface of insulation by radiation, per hour, per foot of length, Btu/(h)(ft)
- E Exponent used in re-estimating T_2
- F Correction factor used in re-estimating T_2
- *n* Number of iterations (including one to calculate values for uninsulated pipe) required to balance Q_{cd} against $Q_{cv} + Q_r$, within 0.1%.

Steam line example

A 3-in. (3.500-in. O.D.) steel-pipe steam line carries 150 psig steam at 366°F, and is insulated with 1 in. of fiberglass insulation having a conductivity of 0.028 $Btu/(h)(ft^2)(°F)(ft)$, and a cloth cover, painted with flat paint, having an emissivity of 0.94. The steel pipe has an emissivity of 0.79. The temperature of the surrounding air is 80°F.

Following the procedures as outlined in Table IV, it is determined that the heat loss will be 97.63 Btu/(h)(ft), and the surface temperature will be 115.2°F .

If the surface is painted with 26% aluminum paint with an emissivity of 0.30, instead of the flat paint, the heat loss will be 91.55 Btu/(h)(ft) and the surface temperature will be 130.8 °F. Compare this to a heat loss of 872.4 Btu/(h)(ft) for the bare, uninsulated pipe. These calculations require four and five iterations respectively, and take less than 2 min each. Table V lists registers.

It is left for the user to determine the relative benefits of each pipe insulation system, which will depend on the prevailing economics in the local area.

For TI-58/59 users

The TI version of the program appears in Table VI. User instructions, along with data and results for the first example, are found in Table VII. Running the TI version is similar to running the HP version, but different registers are used.

In entering the data, be careful to use the diameter of the insulation (D_2) , not its thickness. In the first example, the insulation is 1 in. thick, and the pipe O.D. is 3.5 in. Therefore, D_2 is 3.5 + 1 + 1 = 5.5 in. Do not use 1 in. or 4.5 in.—these certainly are incorrect!

Program listing for TI version

Та	b	le	VI
----	---	----	----

_								
Step	Code	Key	Step	Code	Кеу	Step	Code	Key
000 001 002 003 004 005 006 007 008	76 11 00 42 25 01 86 02	LBL A STD 25 STF 01 STF 02 STF	009 010 011 012 013 014 015 016 017	43 055 89 51 02 95 42	RCL 05 11 2 2 STD	018 019 020 021 022 023 024 025 026	59 01 42 01 52 9 42 10	59 1 3TO 11 EE 9 STO 10

HEAT LOSS OR GAIN BY AN INSULATED PIPE 169

(Continued)	Table	VI
-------------	-------	----

										(
Step	Code	Key	'	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key		
028900334000000000000000000000000000000000	2436533533415334535545226	OTLAGE EVEL VEOLAVED LAVED LAV		99234567890123456789012345678901234567890123456789012345678901234 099399999990100000000000000000000000000	5427651337538520023753001507	EPLB2x(L1 L2)x TxCO+((L5+L4)X) = D7VFORID7LRR L7 L8 D0ITL7 . 001 = IET S ONFOLXT07LRR C7 L8 S ONFOLXT07LRR L7 L8 S ONFOLXT07 X R0+((L5+L4)X) = T7VFORID7LRR L7 S ONFOLXT07 X R0+((L5+L4)X) = T7VFORID7LR L7 S ONFOLXT07 X R0+((L5+L4)X) = T7VFORID7LR L7 S ONFOLXT07 X R0+((L5+L4)X) = T7VFORID7LR T7VFORID7LR T7VFORID7L7 S ONFOLXT07 X R0+((L5+L4)X) = T7VFORID7L7 S ONFOLXT07 S ONFOLXT07 S ONFO	15567890123456789012345678901234567890123456789012345678901234567890112345678	57342540653745344535536525302435205345 9734254065404425540645945414545415459459	R 0 = CO2 / H2X YR 2 = T5NF0 / D6L L0 L7 (L4 L4) + L5 L0 + S5T0 + L4 D6VF0 / D6L L0 + L7 (C0 × C2) + C0 × C5 = T5CL0 + L5 = M1 S5T1 + C5 = M1	2190 2222 2222 2222 2222 2222 2222 2222	530523423423932533522270542265023272726215335227033351522639312 6419454040940740945280394573034564717408409408044070940749902	11 × RCL 10 = STD 53 SUM 02	2845678901234567890012345678900112345678900122345678901222222222222222222222222222222222222	412622602283293791632724156432533527024625125355325027034635327 617328025940997128047474407409280597560054094900928059756900	O7 PR/SL IFO2MR SSYLBM CO2 NFO IFO2 NFO E+LEE 2 ÷		

(Continued) Table VI

Table VII

Step	Code	Key	Step	Code Key	Step	Code Ke	ey Step	Code	Key	Step	Code	Key
347	65	×	373	61 GTO	399	42 S	TO 42	5 04	4	451	43	RCL
348	43	RCL	374	42 STO	400	43	43 42	6 06	5 6	452	04	04
349	59	59	375	46 46	401		NV 42			453	48	EXC
350	65	×	376	43 RCL	402	87 II	FF 42			454	05	05
351	53	(377	03_03	403		00 42			455	42	STD
352	43	RCL	. 378	42 STO	404	15 I	E 43	0 01		456	04	04
353	02	02	379	47 47	405	50 I:	×I 43) ()	457	43	RCL
354	75	-	380	71 SBR	406		BL 43			458	21	21
355	43	RCL	381	61 GTO	407		E 43			459	48	EXC
356	03	03	382	94 +/-	408		+ 43		ς γ×	460	22	22
357	54)	383	85 +	409		CL 43			461	42	STD
358	95	=	384	43 RCL	410		38 43			462	21	21
359	22	INV	385	46 46	411		= 43		STD :	463	92	RTN
360	87	IFF	386	95 =	412		TO 43		5 45	464	76	LBL
361	00	00	387	65 ×	413		58 43			465	10	E '
362	71	SBR	388	43 RCL	414		FF 44			466	43	RCL
363	50	$I \times I$	389	22 22	415]1 44	1 45	; Y×	467	43	43
364	76	LBL	390	65 ×	416	10 E'	• 44	2 22		468	42	STO
365	71	SBR	391	43 RCL	417	92 R1	TN 44	3 86	STF	469	06	06
366	42	STD	392	59 59	418	76 LE	3L 44	4 02	2 02	470	71	SBR
367	08	08	393	65 ×	419	61 G7	FD 44	5 43	8 RCL	471	45	Υ×
368	43	RCL	394	93 .	420		(44	5 01		472	22	ΙNV
369	02	02	395	01 1	421	53 ((44	7 48	EXC	473	86	STF
370	42	STO	396	07 7	422	43 RC	CL 44	3 02	2 02	474	01	01
371	47	47	397	03 3	423	47 4	17 44	9 42	STD	475	61	GTD
372	71	SBR	398	95 =	424	85 +	- 45	0 01	01	476	13	С

User instructions and example for TI version

Step	Instru	ction	Input data	Example	Key	Output
1.	Enter program by key or card					
2.	Store input data:					
	Thermal conductivity, Btu/(h)(ft ²)(°F)(ft)		K _m	0.028	STO 00	
	Temperature inside pipe, °F		<i>T</i> ₁	366	STO 01	
	Temperature of air, °F		T_3	80	STO 03	
	Diameter of pipe, in.		D_1	3.5	STO 04	
	Diameter of insulation, in.		D_2	5.5	STO 05	
	Emissivity of pipe		θp	0.79	STO 21	
	Emissivity of insulation		e,	0.94	STO 22	
	Calculation factor			0.7	STO 24	
3.	Run program				A	
↓. 5.	Intermediate printed output is surfact Final printout is:	e-temperature estimates				T ₂
	Final surface temperature, °F		T ₂			115.2
	Heat loss, Btu/(h)(ft)		ā			97.63
The ou	utput tape for the above example is:	102.4387870 111.7797835 115.0807305 115.1713215				

References

Brown, G. G., et al., "Unit Operations," John Wiley & Sons, Inc., New York, 1950, pp. 427, 444, 459, 460 & 584.
 CertainTeed Corp. Bulletin, "850° Snap-on Fiberglass Pipe Insulation," Mar. 1978.

115.1712315 97.63171797

- 3. Armstrong Cork Co., "Accotherm Pipe Insulation," Bulletin 15P, Nov. 1977.

The author

Frank S. Schroder is an Engineering Specialist in the Central Research Engineering Department, 3M Center, PO Box 33221, St. Paul, MN 55133; tel: 612-733-1657. He received a B.S. degree in chemical engineering from Michigan Technological University, Houghton, Mich. and previously worked for Union Carbide, Silicones Div.

Program calculates flame temperature

Written for the HP-67 or HP-97, "FLAMTE" estimates the average temperature of a flame, and accounts for dissociation at higher temperatures.

Carl A. Vancini, Peabody Process Systems, Inc.

Calculating the flame temperature—for a boiler, furnace or other combustor—can be a tedious trialand-error procedure. The nature and composition of the combustion products change as the flame temperature changes. Hence, one must assume a temperature and a corresponding composition and determine whether the two match. The value finally arrived at is an average of the true temperatures that are distributed locally in a flame.

Here, a simple heat balance serves as the basis for calculating the flame temperature. The increase in enthalpy between the unburned and burned mixtures is set equal to the heat produced by the combustion.

Up to a flame temperature of about 2,500°F, the burned mixture generally includes such ordinary gases as CO_2 , N_2 , SO_2 , H_2O and residual O_2 (from excess air). At higher temperatures, CO_2 appreciably dissociates to CO and O_2 ; H_2O to O_2 and OH^- ; O_2 to O^{-2} ; H_2 to H^+ ; N_2 to N^{-3} ; and NO (produced by N_2 and O_2) to N^{-3} and O^{-2} . These dissociation reactions absorb an enormous amount of energy (heat), substantially lowering the flame temperature being calculated.

Heat balance

The heat balance is calculated as follows: At constant pressure, the heat, Q, required to bring the temperature of one pound of gas from temperature 0 to temperature t is:

$$Q = \int_0^t c_p \,\mathrm{d}t \tag{1}$$

The variation of c_p with temperature can be approximated by a polynomial, having the obvious advantage of being integrated easily. Using a third-degree polynomial, we can write c_p as:

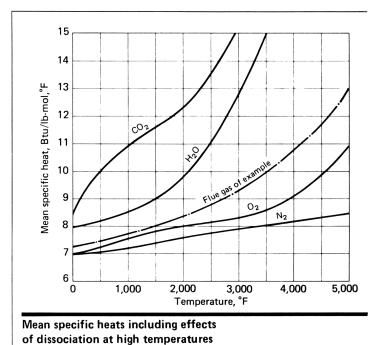
$$c_{p} = a + bt + ct^{2} + dt^{3} \tag{2}$$

where a, b, c and d are constants that depend on the nature of the gas. Eq. (1) thus becomes:

$$Q = \int_0^t (a + bt + ct^2 + dt^3) \,\mathrm{d}t \tag{3}$$

Integrating:

$$Q = \left(a + \frac{b}{2}t + \frac{c}{3}t^2 + \frac{d}{4}t^3\right)t$$
 (4)


It is customary to call the parenthetic term in Eq. (4) the mean specific heat:

$$c_{pm} = a + \frac{b}{2}t + \frac{c}{3}t^2 + \frac{d}{4}t^3$$
(5)

So Eq. 4 can be written as:

$$Q = c_{pm}t = at + \frac{b}{2}t^2 + \frac{c}{3}t^3 + \frac{d}{4}t^4$$
(6)

By taking mean specific heats instead of the true ones, we can dispense with integration of Eq. (1). Tabulations are available of c_p and c_{pm} for many gases (not considering dissociation) [1,2,3].

Originally published March 22, 1982.

172 HEAT TRANSFER

Dissociation

High-temperature dissociation of gases is a reaction that reaches equilibrium. Equilibrium depends on composition, total pressure and temperature. The degree of approach to equilibrium is also time-dependent. Tabulations of equilibrium constants for common dissociation reactions are available [4,5].

Hand calculation of the effect of dissociation on the flame temperature is extremely tedious, owing to the large number of reactions involved. For example, in the combustion of acetylene with air, one must solve a set of ten equations for ten unknown partial pressures. Here, polynomial expressions for equilibrium constants can be used [6], although with much difficulty.

Justi [7] gives values of the ratio nU/t (see nomenclature) for several dissociation reactions at various temperatures at 1 atm. Assuming a linear variation of the dissociation effects on temperature with the partial pressure of each dissociating gas, the ratio nU/t can be used to modify the mean specific heat of gases.

The figure illustrates the variation of c_{pm} with temperature, for several gases. This variation takes into account the above approach, which includes the effect of dissociation. The profiles of c_{pm} in this figure are somewhat different from those calculated by applying the modifiers of Justi. Those in the figure use more-recent thermal data and better values of calculated flame temperatures $[\beta]$.

Limiting the maximum temperature to $5,000^{\circ}$ F, a third-degree polynomial can be fitted to the curves of c_{pm} in the figure for CO₂, H₂O and O₂. For N₂, which dissociates appreciably only above $5,000^{\circ}$ F, a second-degree polynomial is satisfactory. The coefficients are shown in Table II.

For transferring heat at constant pressure:

$$Q = \left[a(t_2 - t_1) + \frac{b}{2}(t_2^2 - t_1^2) + \frac{c}{3}(t_2^3 - t_1^3) + \frac{d}{4}(t_2^4 - t_1^4) \right] M \quad (7)$$

where Q is the heat produced by the fuel, M the amount of flue gas produced per pound of fuel, and t_1 and t_2 the initial and final temperatures, respectively.

M is also equal to the weight of fuel plus comburent (the substance that supports combustion—e.g., air or oxygen). The initial temperature, t_1 , is that of the fuel and comburent mixture.

The use of Eq. (7) allows calculation of the flame temperature, t_2 , by iteration via a programmable calculator. The result is not, however, to be taken at face value, but rather for comparison. This is because the actual flame temperature is always lower than the calculated one (by any method), for several reasons:

1. There is radiation and conduction to the walls of the chamber in which combustion takes place. Highly turbulent flames usually suffer an appreciable heat loss.

2. Not all of the fuel is burned. Some part may remain with the ash (as is the case for solid fuels) or escape combustion in other ways.

3. The combustion space may be of such volume or geometry that there is not enough time for all reactions of combustion and dissociation to reach equilibrium.

Nomenclature

- c_p True specific heat—Btu/lb-mol, °F; or Btu/lb, °F
- c_{pm} Mean specific heat—Btu/lb-mol, °F; or Btu/lb, °F
- *n* Fraction of gas dissociated
- M Flue gas produced by one pound of fuel, lb/lb
- Q Heat evolved by fuel during combustion, Btu/lb t Temperature, °F
- t₁ Initial temperature of mixture fuel plus comburent, °F
- t_2 Temperature (average) of flame, °F
- U Heat absorbed by dissociation reaction, Btu/lbmol

In practice, the foregoing factors are usually compensated for by using an empirical coefficient. It is multiplied by the heat of combustion that is determined in the laboratory. Values of this coefficient are only estimates; this is why the flame temperature calculated with any method can only approximate actual values.

The program FLAMTE

A program called FLAMTE is written to solve Eq. (7) for t_2 (see Table I). This program is for use on the Hewlett-Packard 67 or 97. FLAMTE assumes that the flue gas contains four components: CO₂ and SO₂; O₂; H₂O; and N₂. These are determined by stoichiometry, or by an Orsat analysis for existing installations. Nitrogen is atmospheric nitrogen, and includes the argon of the air.

First, the molecular weight (wet) of the flue gas is calculated (steps 001 to 032). Then the coefficients of the mean specific heat—Eq. (5)—are calculated (coefficient *a* in steps 033 to 063; b/2, steps 064 to 091; c/3, steps 092 to 124; and d/4, steps 125 to 148). Coefficients are determined by multiplying the mole fraction by the coefficients in Table II.

The main calculation—Eq. (7)—is performed in steps 149 to 216, using the available higher combustion heat—higher heating value (HHV)—of the fuel. A simple method of iteration is used: For an initial arbitrary t_2 (the program first selects t_1 to be this), the calculator solves the right-hand side of Eq. (7) and finds the heat necessary to reach this t_2 . If this heat is not equal to Q(the heat released by the fuel), t_2 is corrected accordingly and a new calculation is performed. The program iterates in this way between steps 149 and 216 until the difference between left- and right-hand sides of Eq. (7) is small enough (10°F equivalent). At this point, the value t_2 (average flame temperature) is printed (steps 217 to 222).

Running and checking the program

Table III contains the user's instructions to run FLAMTE. After entering the data and initializing by entering the preheating temperature of fuel plus comburent, **Press A** to start the program. In one or two minutes, the (average) flame temperature will be printed.

To run with another preheating temperature, just initialize with this new temperature and **Press A.** When

Written for the HP-67 or HP-97,	FLAMTE	quickly calculates the flame temperature

Table I

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	
061	*LBLA	21 11	066	3	03	131	RCL3	36 03	196	-	-45	206	÷	-24	216	eto:	22 01	
002	ST08	35 08	967	x	-35		7	<i>07</i>	197	LSTX	16-63	207	÷	-24	217	*LBL2	21 Ø2	
003	ST05	35 05	068	ST09	35 09	133	8	0 8	198	STO9	35 09	208	STOI	35 46	218	RCL5	36 05	
004 005	RCL1 2	36 01 02	069 07 0	RCL2	36 02 01		X 0-10	-35 35-55 09	199 2 0 0	7	-62 07	209 210	ABS 1	16-31 01	219 220	DSP0 PRTX	95-53- 14	
006 006	8	02 08	070 071	1 7	81 87	135 136	ST+9 RCL4	36 84	201	3	07 03	211	ê	00	220	DSP3	-53 03	
007			072	9	09	137	6	00.04	202	γx	31	212	X>Y?	16-34	222	RTN	24	
008	1	01	073	х	-35		7	87	203	1	ēi	213	GTO2	22 82	223	R∕S	51	
009	6	06	074	ST+9	35-55 09	139	x	-35	204	3	03	214	RCLI	36 46				
010	X CTOR	-35 75 00	075 074	RCL3	36 03		ST+9	35-55 <i>09</i>	205	Э	69	215	<i>s</i> 7-5	35-45 05				
011 012	STOØ RCL2	35 00 36 02	076 077	EEX 2		141 142	EEX 1	-23 01										
013	4	00 02	078	x		143	4	04 04										
014	4	04	879	ST+9	35-55 ØS	:44	ST÷9	35-24 09										
015	•	-62	080	RCL4	36 04		RCL9	36 ØS		Empiri	cal cor	officio	nte use	d in Eq. (5)			
016	0	<i>00</i>	081 000	3	03		RCLØ	36 00		Values					57.		Table I	
017 018	x	01 -35	082 063	1 x	01 -35	147 148	÷ Stod	-24 35 14		Values	accou		413300					•
019	ST+0	35-55 00	084	ST-9	35-45 09	149	*LBL:	21 01			Gas	а		b/2		c/3	d/4	
020	RCL3	36 03	085	EEX	-23	150	RCL5	36 05		-								
021	3	03	086	7	0 7	151	RCL8	$36_{-}88_{-}$		Carbo	n dioxi	de 8.8		.79 X 10 ³	-2.	63 X 107	1.19 >	(10 ¹⁰
022	2	02	087	ST÷S	35-24 09	152		-45		Oxyge	en	7.0		.0 X 10 ³		33 X 10 ⁷	7.8 X	
023 024	x ST+0	-35 35-55 00	088 089	RCL9 RCL0	36 09 36 00	153 154	RCLA X	36 11 -35		Water	•	8.1		3.1 X 10 ⁴		X 107	6.7 X	1011
025	RCL4	36 04	898	+ ×	-24		ST09	-33 35 0 9		Nitrog	gen	6.8	19 3	.3 X 10 ⁴	-3.	0 X 109	_	
026	1	01	091	STOB	35 12		RCL5	36 05		Range	of valie	dity: O	to 5,00	0°F				
027	8	08	<i>092</i>	RCL1	36 01	157	X۶	53										
028	x	-35	093	:	-62		RCL8	36 08										
029 070	ST+0	35-55 00 -23	094 005	3	03 - 75		X2	53										
030 031	EEX 2	-23 02	095 096	CHS	-35 -22	160 161	- RCLB	-45 36 12		Lineria :		.				-		
032	st÷ø	35-24 00	097	ST09	35 09	162	X	-35		User's i	nstruc	tions		AMIE		1	able II	I
e33	RCL 1	36 01	098	RCL2	36 02		ST+9	35-55 69										
<i>234</i>	6	06	099	2	<i>2</i> 2		RCL5	36 05		Step	1	nstruct	ions					Кеу
035	8	03	100	6	06 (**		3	83										
036 037	9 x	09 -35	101 102	3	-62 03	166 167	Y× RCL8	31 36 08		Step 1	1 L			nd 2 of mag	netic c	ard and cl	ear all	
038	ST09	35 09	103	x		168	3	00 00			- · ·		ry regis		10/			
039	RCL2	36 02	104	ST-9	35-45 09	169	γ×	31		Step 2	2 5		omposit	ion of flue	gas (%	, voi.):		CTO 1
848	8	08	105	RCL3	36 03		-	-45				N ₂	02 60					STO 1 STO 2
041	8	98 97	106	4 3		171	RCLC	36 13				02	ind SO ₂	2				STO 2
042 043	x	03 -35	107 108	3	-62	172 173	x ST+9	-35 35-55 09				H ₂ 0						STO 4
044	ST+9	35-55 09	109	3	03		RCL5	36 05			(Total co	omponents	shall a	dd to 100	. If one	0104
045	RCL3	36 63	:10	х		175	4	84			•			absent, sto				
Ø46	7	07		ST-9	35-45 09	176	γ×	31		Step 3	3 S		ne other	-				
047	0 4	. 00 	112	RCL4	36 04 04		RCL8	36 08				Pound	ds of (w	et) flue gas	produ	ced by 1 I	b	
048 049	* X		113 114	4 3		178 179	4 YX	84 31				of fue	l (as bu	rned)				STO 6
045 050	sT+9	35-55 09	115	x		180	-	-45			•			at (%) lost	by rad	iation and	1	
051	RCL4	36 64		ST+9	35-55 09		RCLD	36 14					ounted					STO 7
052	8	08	117	EEX		182	х	-35			(figures of I	oss are	1–2% fo	r gas	
053 054	1	01	118	1		183	ST+9	35-55 09			-			6 for coal) ng value of	1 lh of	fuel las h	urned	
054 055	4 x	04 -35	119 120	0 ST÷9	00 35-24 09		RCL9 RCL6	36 09 36 05			•	Btu/l		'9 value of		1061 (85 D	unied)	STO E
055 056	ST+9	35-55 09	120	RCL9	35-24 65 36 69		X	35 03 -35		Step 4	1 I			the preheat	ing ten	operature	of	
057	EEX		122	RCLO	3E 88		EEX	-23			·			us fuel (° F)				
058	4	04	123	÷	-24	188	2	82		Step 5		Run the	e progra	m				Α
059 060	ST÷9	35-24 09	124	STOC	35 13	189	RCL7	36 87			A			alculation	•		e)	
060 061	RCL9 RCL0	36 09 36 00	125	RCL2	36 02 61		- PCLE	-45 76 15			-	•		of flame wi	•			
862 862	KLLU ÷		126	1 1		191 192	RCLE ×	36 15 -35		Step 6				onal inform	ation:			
063	STOA	35 11		ģ		192	EEX	-23		(optio	mal)		a of cp					RCL A
064	RCL1	36 01		x		194	2	62				Coeff.		, .	5) of fl	-		RCL B
065	3		130	ST09	35 09		÷	-24				Coeff.		(B1	tu/lb° f	-,		RCL C
												Coeff.		inhe (com)				RCL D
														ight (wet) o				RCL 0
										Step 7	, т			heat value different pro			ature	RCL 9
											· ·			new temper				
									1	1								

Calculated and	FLAMTE	flame temperatures agree well for several different mixtures

Fuel and	Higher heating value,	Flue gas,	Flue-gas composition, %, volume			Flame temperature	Flame temperature	Machine		
comburent	Btu/lb	lb/lb fuel	N ₂	CO ₂	H ₂ 0	(calculated), ° F	from FLAMTE, °F			
C (graphite)										
+ air	14,140	12.52	79.10	20.90	-	3,820 [9]	3,589	64		
H ₂ + air	61,100	35.60	65.43		34.57	3,960 [9], 3,887 [11], 3,825 [8]	3,822	49		
CO + air	4,368	3.47	65.43	34.57	-	3,960 [<i>9</i>], 3,850 [<i>11</i>]	3,711	84		
CO + ½O ₂	4,368	1.57	-	100.00	_	4,892 [8]	4,877	84		
$CH_4 + air$	23,879	18.31	71.62	9.46	18.92	3,640 [9], 3,540 [8], 3,484 [11]	3,543*	47		
$CH_4 + 2O_2$	23,879	5.00	-	33.33	66.67	5,150 [<i>11</i>], 4,959 [<i>8</i>]	4,982	47		
C ₂ H ₆ + air	22,320	17.16	72.60	10.96	16.44	3,710 [<i>9</i>], 3,540 [<i>11</i>]	3,595†	55		
C_2H_2 + air	21,344	14.31	75.93	16.05	8.02	4,250 [9], 4,082 [8]	4,108	64		
C ₂ H ₂ + 2½ O ₂	21,344	4.08	_	66.67	33.33	5,630 [<i>11</i>]	5,687	58		
C ₆ H ₆ (vapor) +										
air	18,447	14.31	75.93	16.05	8.02	3,840 <i>[9]</i> , 3,798 <i>[8</i>]	3,750	63		
*Observed, 3,41	16°F [10]; †01	oserved, 3,4	43°F [1(7].						

only the comburent is preheated to t_1 (and the fuel is at room temperature), and the specific heat of fuel and comburent are approximately the same on a poundby-pound basis, **initialize** with t_1 multiplied by the ratio of the weight of comburent to the sum of the weights of comburent and fuel.

To verify FLAMTE, only a limited amount of flame temperature values are available from the literature (experimental values are always lower than calculated, and thus give only a first approximation). From "Gas Engineers' Handbook" [9], we have taken hand-calculated flame temperatures (corrected for dissociation) of a few compounds burned with stoichiometric air at $60^{\circ}F$ (Table IV) and have compared them with those temperatures calculated by FLAMTE. The same has been done with flame data from Ref. [8] and Ref. [11]. Also, some observed temperatures are given for comparison. However, many old calculated values of flame temperature were based on thermal data now outdated, and are questionable.

Example

Natural gas is burned with 15% excess air. HHV = 20,614 Btu/lb; flue gas = 17.65 lb/lb of fuel; volume composition of flue gas: $N_2 = 72.24\%$, $CO_2 = 8.45\%$, $O_2 = 2.50\%$, $H_2O = 16.81\%$. Initial temperature = 70°F; unaccounted heat loss = 2%.

Following user's instructions (Table III), we introduce the following numbers:

72.24 in Reg. 1	17.65 in Reg. 6
8.45 in Reg. 2	2 in Reg. 7
2.50 in Reg. 3	20,614 in Reg. E
16.81 in Reg. 4	

We initialize 70 and Press A. After 57 seconds of machine time, we obtain the flame temperature 3,326°F.

We can retrieve additional information:

From Reg. A: 0.261 = coefficient a of Eq. (5)From Reg. B: $1.30 \times 10^{-5} = b/2$ From **Reg. C:** $1.33 \times 10^{-9} = c/3$

From **Reg. D:** $8.34 \times 10^{-13} = d/4$

From Reg. O: 27.887 = molecular weight (wet) of flue gas

From Reg. 9: 20,202 Btu/lb = useful HHV of fuel

Using these coefficients for c_{pm} , the variation of the mean specific heat (corrected for dissociation) versus temperature for the flue gas can be plotted (see the broken line on the figure).

For TI-58/59 users

The program listing for the TI appears in Table V. User's instructions are in Table VI—these instructions are similar as those for the HP. The example given in the HP version is repeated for the TI in Table VI.

The program will calculate and display the flame temperature. To obtain values of registers 10–13, first **Press EE.** After these values are displayed, **Press INV EE.** Otherwise, if registers 10–13 are not in the **EE** mode, the values displayed will be zero.

Program listing for TI version

Table V

Table IV

Step	Code	Кеу	Step	Code	Key	Step	Code	Key
000	76	LBL	017	43	RCL	034	44	SUM
001	11	A	018	02	02	035	00	00
002	42	STO	019	65	×	036	43	RCL
003	08	08	020	04	4	037	04	04
004	42	STO	021	04	4	038	65	\times
005	05	05	022	93		039	01	1
006	43	RCL	023	00	0	040	08	8
007	01	01	024	01	1	041	95	
008	65	\times	025	95		042	44	SUM
009	02	2	026	44	SUM	043	00	00
010	08	8	027	00	00	044	01	1
011	93		028	43	RCL	045	52	EΕ
012	01	1	029	03	03	046	02	2
013	06	6	030	65	\times	047	22	INV
014	95		031	03	3	048	49	PRD
015	42	STO	032	02	2	049	00	00
016	00	00	033	95	=	050	43	RCL

(Continued)	Table \	V
-------------	---------	---

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
$\begin{array}{c} 051\\ 052\\ 053\\ 056\\ 056\\ 056\\ 0662\\ 0662\\ 0666\\ 0666\\ 0712\\ 0773\\ 076\\ 0778\\ 0823\\ 0886\\ 0890\\ 0992\\ 0996\\ 0906\\ 0006\\ 0006\\ 0006\\ 0006\\ 0006\\ 0006\\ 0006\\ 0006\\ $	$\begin{array}{c} 09\\ 53\\ 09\\ 22\\ 09\\ 4\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	01 × 6 8 9 = T09L2 × 8 3 = M9L3 × 7 0 4 = M9L4 × 8 1 4 = M9 E 4 ND9L9 × 100 + L00 = T00L1 × 3 3 = T09L2 × 3 3 = T09L2 × 3 3 = T09L2 × 17 9 = M	$\begin{array}{c} 116\\ 117\\ 118\\ 120\\ 1223\\ 1225\\ 122$	03 65 04 93 93 95 22 44 20	19 RCL3 E2 SU19 RCL4 31 = VM9 E7 ND9L9 RC1 ÷ CO = CD11L1 RC1 ÷ CO = ST12 RC2 SU19L4 ST12 RC4 ST12 ST12 RC4 ST12 ST12 ST12 ST12 ST12 ST12 ST12 ST12	181 182 183 184 185 1867 1899 1991 1993 1994 1995 2004 2007 2007 2007 20112 2122 2122 2122 212	21 43 65 06 95 41 21 52 01 22	21 1 EE 1 4 PRD 21 PRD 21 ÷ CL 00 = 5TD 13 LBL NX (246 247 248 250 251 252 2557 2557 2557 2557 2557 2557 2	8453405223353538345315423355385340407404056419425335544538544533542310005 6419425403740356419425404074040564194254040740405641942500075	RCL 08 22 RCD 22 22 RCD	311 312 314 315 316 322 322 322 322 322 322 322 322 322 32	155100052333225365333453335373513045526100236602743624513642280359832 1500094254264074255542490050005941000341527241240627222550409509	RCL 16 INV SUM GTD LNX LBL CE INV

176 **HEAT TRANSFER**

User's instructions and example for TI version

Table VI

Step	Instructions	Key
1	Enter program manually or from both sides of a magnetic card and clear registers.	CMs
2	Key in composition of flue gas (%, vol):	
	N ₂	STO 01
	CO ₂ and SO ₂	STO 02
	O ₂	STO 03
	H ₂ O	STO 04
3	Store the other data:	
	Pounds of (wet) flue gas produced by 1 lb of fuel (as burned)	STO 06
	Portion of heat (%) lost by radiation and unaccounted loss	STO 07
	Higher heating value of 1 lb of fuel (as burned) (Btu/lb)	STO 15
4	Key in preheating temperature of the comburent plus fuel (°F)	
5	Press A to run the program. At the end of calculation time the (average) temperature of flame will be printed.	A
6	Retrieve additional information (optional):	
	Coeff. a of com	RCL 10
	Coeff. b/2 From Eq. (5), (Btu/lb °F)	EE RCL 11
	Coeff. d'3	RCL 12
	Coeff. d/4	RCL 13
	Molecular weight (wet) of flue gas	INV EE RCL 00
	Useful higher heat value of fuel (Btu/lb)	RCL 23
7	To rerun with a different preheating temperature, key in the new value and go to step 4.	A

Natural gas is burned with 15% excess air. HHV = 20,614 Btu/lb; flue gas = 17.65 lb/lb of fuel. Volume composition of flue gas: N2 = 72.24% CO2 = 8.45%; $O_2 = 2.50\%$; $H_2O = 16.81\%$. Initial temperature = 70°F; unaccounted heat loss = 2%. Following user's instructions:

01 0 11101 4010110.			
72.24	STO 01	17.65	STO 06
8.45	STO 02	2	STO 07
2.5	STO 03	20,614	STO 15
16.81	STO 04		

Initialize 70 and press A. After 72 s of machine time, the flame temperature is calculated to be 3,326 °F.

To retrieve additional information:

RCL 10: 0.261 = coefficient a of Eq. (5)**EE RCL 11**: $1.30 \times 10^{-5} = b/2$ **RCL 12**: $1.33 \times 10^{-9} = c/3$ **RCL 13**: $8.34 \times 10^{-13} = d/4$ INV EE RCL 00: 27.887 = molecular weight (wet) of flue gas RCL 23: 20,201.72 = useful HHV of fuel

References

- 1. Justi, E., and Lüder, H., Forschung auf dem Gebiete des Ingenieurwesens, Sept./Oct. 1935, pp. 210-211.
- Justi, E., "Spezifische Wärme, Enthalpie, Entropie und Dissoziation technischer Gase," J. Springer Pub., Berlin, 1938, pp. 143–151.
 "JANAF Thermochemical Tables," U.S. Dept. of Commerce, Nat. Bur. of Standards, NSRDS-NBS 27, 2nd ed., 1971.
- 4. Justi, E. op. cit. [2], pp. 130-134.
- 5. Gaydon, A. G., and Wolfhard, H. G., "Flames," Chapman and Hall Pub., London, 1979, p. 334.
- 6. Protero, A., Combustion and Flame, Vol. 13, 1967, p. 399.
- 7. Justi, E., op. cit. [1], p. 215.
- 8. Gaydon, and Wolfhard, op. cit., pp. 228 and 339.
- 9. "Gas Engineers' Handbook," McGraw-Hill Book Co., New York, 1934. Johnson, A. J., and Auth, G. H. (eds.), "Fuels and Combustion Handbook," McGraw-Hill Book Co., New York, 1950, p. 280.
- 11. Schnidman, L. (ed.), "Gaseous Fuel," American Gas Assn., New York, 1948.

The author

Carl A. Vancini is with Peabody Process Systems, Inc., 835 Hope St., Stamford, CT 06907. Tel: (203) 327-7000. He has been with the company since 1970, working mainly on acid-gas removal and sulfur recovery. Previously, he was with Italy's Montecatini in petrochemical, coal-gasification and ammonia-from-coal project design. He holds a Ph.D. degree in engineering science from the University of Bologna. He has written books on high-pressure synthesis and holds patents on gas purification.

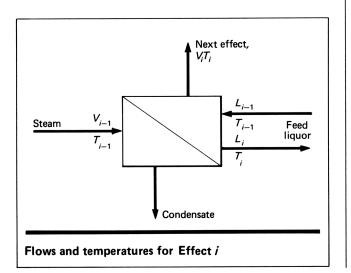
Calculator design of multistage evaporators

A simple mathematical model is developed by making four modest assumptions about how multistage evaporators work. The resulting Hewlett-Packard program can be used to calculate the heat-exchange area and the other significant variables.

S. Esplugas and J. Mata, University of Barcelona

To design multistage evaporators, we generally use iterative calculations. However, if we make the following assumptions, it is possible to achieve an analytical solution: the feed is at its boiling point; all heating surfaces are equal; sensible heats are negligible when compared with latent heats; boiling-point rise is negligible.

With these simplifications, we have developed a mathematical model and the program to solve it. The program (Table I) was run on a Hewlett-Packard 67, but it can be applied to any other HP calculator with the same type of magnetic card. The general applicability of the assumptions is discussed later on.


Mathematical model

Once the steady state is achieved, the mathematical model is composed of the following equations (see figure):

Material balance around Effect i:

$$L_{i-1} = L_i + V_i \tag{1}$$

$$L_{i-1}x_{i-1} = L_i x_i = L_0 x_0 = \text{constant}$$
 (2)

Heat balance around Effect *i*:

$$Q_i = V_{i-1}\lambda_{i-1} \tag{3}$$

$$Q_{i} = U_{i}A(T_{i-1} - T_{i})$$
(4)

$$Q_i = V_i \lambda_i - L_{i-1} C_{pi} (T_{i-1} - T_i) \simeq V_i \lambda_i \qquad (5)$$

Hence:

$$Q_i = V_i \lambda_i = V_{i-1} \lambda_{i-1} = V_0 \lambda_0 = Q = \text{constant} \quad (6)$$

and then:

$$\sum_{i=1}^{N} V_{i} = V_{0} \lambda_{0} \sum_{i=1}^{N} 1/U_{i} = L_{0} - L_{N}$$
(7)

which expresses the overall mass-balance condition. From Eq. (4) and (6):

$$Q/A = \frac{T_{i-1} - T_i}{1/U_i} = \frac{T_0 - T_N}{\sum_{i=1}^N 1/U_i}$$
(8)

Thus:

$$T_{i} = T_{i-1} - \left(\frac{T_{o} - T_{N}}{\sum_{i=1}^{N} 1/U_{i}}\right) \left(\frac{1}{U_{i}}\right)$$
(9)

Knowing the temperatures, it is possible to evaluate the latent heat of steam, λ_i .

Applying Regnault's formula:

$$\lambda_i = 606.5 - 0.695 \ T_i \tag{10}$$

where T_i is in °C, and λ_i is in kcal/kg.

Or:
$$\lambda_i = 1,114 - 0.695 T_i$$
 (10a)

if T_i is in °F and λ_i is in Btu/lb.

From the independent variables— T_0 , T_N , L_0 , x_0 , x_N and U_i —are calculated the dependent variables, which are displayed or printed by the calculator.

Originally published February 7, 1983.

Program can be used to calculate dependent variables for multistage evaporators

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
001	FIX	-11	0 38	GSB0	23 00	0 75	1/X	52	112	GSB6	23 06	149	ISZI	16 26 46	186	÷	-24
002	DSP2	-63 02	039	RCLI	36 45	076	ST+1	35-55 01	113	+	-55	150	GTUa	22 16 11	187	STO:	35 45
003	CLRG	16-53	040	P <i>‡</i> S	16-51	677	P≓S	16-51	114	RTN	24	151	*LBL6	21 16 12	188	PRTX	-14
004	P≠S	16-51	041	ST+0	35-55 00	078	RCL I	36 46	115	R/S	51	152	RCLC	36 13	189	ISZI	16 26 46
005	CLRG	16-53	042	P≠S	16-51	079	1	01	116	*LBLD	21 14	153	STOA	35 11	190	GTOJ	22 16 14
886	CFØ	16 22 00	643	GTOB	22 12	080	-	-45	117	RCLØ	36 00	154	1	01	191	R∕S	51
007	1	01	044	R∕S	51	0 81	STOI	35 46	118	х	-35	155	STOI	35 46	192	*LBL5	21 0 5
008	STOI	35 46	045	*LBL0	21 00	0 82	X≠0?	16-42	119	P≠S	16-51	156	≭LBL4	21 04	193	DSZI	16 25 46
009	R∕S	51	846	RCLA	36 11	083	GT02	22 0 2	120	RCLØ	36 0 0	157	RCLA	36 11	194	RCL i	36 45
010	P≓S	16-51	047	RCLO	36 00	084	RCL i	36 45	121	GSB3	23 03	158	RCL i	36 45	195	ISZI	16 26 46
011	ST02	35 02	048	-	-45	085	esb3	23 03	122	х	-35	159	X=0?	16-43	196	R∕S	51
012	P≠S	16-51	049	P≓S	16-51	086	P≓S	16-51	123	RCLØ	36 00	160	GT05	22 05	197	*LBLe	21 16 15
013	R↓	-31	050	RCLØ	36 00	087	RCL1	36 01	124	ENT†	-21	161	-	-45	198	SFØ	16 21 00
014	ST00	35 00	051	÷	-24	088	x	-35	125	RCLA	36 11	162	STOA	35 11	199	R∕S	51
015	R↓	-31	052	STOD	35 14	0 89	1/X	52	126	-	-45	163	STO:	35 45	200	≭LBL 6	21 06
016	STOC	35 13	053	P≓S	16-51	090	RCLC	36 13	127	÷	-24	164	PRTX	-14	201	CLX	-51
017	R∕S	51	054	0	00	091	ENTT	-21	128	R∕S	51	165	ISZI	16 26 46	202	1	01
018	X≠Y	-41	055	STOI	35 46	092	RCLB	36 12	129	* LBLE	21 15	166	GT04	22 04	203	1	01
019	STOA	35 11	856	RCL i	36 45	<i>093</i>	-	-45	130	X≠Y	-41	167	R/S	51	204	1	01
020	X≓Y	-41	857	≭LBL1	21 01	094	х	-35	131	RCLØ	36 00	168	*LBLc	21 16 13	205	4	Ø4
021	178	52	058	RCL i	36 45	<i>09</i> 5	ENTT	-21	132	GSB3	23 0 3	169	1	01	206	RTN	24
022	RCLC	36 13	059	ISZI	16 26 46	0 96	STOE	35 15	133	x	-35	170	STOI	35 46	207	R∕S	51
623	x	-35	060	RCL i	36 45	097	R∕S	51	134	STOD	35 14	171	RCLC	36 13			
024	P≓S	16-51	061	X=0?	16-43	098	*LBL3	21 03	135	1	01	172	RCLB	36 12			
025	RCL2	36 02	062	GT05	22 05	099	ENTŤ	-21	136	STOI	35 46	173	-	-45			
026	x	-35	063	RCLD	36 14	100		-62	137	RCLC	36 13	174	RCLE	36 15			
027	P≓S	16-51	064	x	-35	101	6	06	138	RCLD	36 14	175	÷	-24			
028	STOB	35 12	065	+	-55	102	9	8 9	139	R∕S	51	176	R∕S	51			
029	R∕S	51	066	STO:	35 45	103	5	05	140	*LBLa	21 16 11	177	*LBL d	21 16 14			
030	*LBLA	21 11	067	PRTX	-14	104	CHS	-22	141	RCLD	36 14	178	RCLC	36 13			
031	178	52	068	GT01	22 01	105	х	-35	142	RCL i	36 45	179	P≓S	16-51			
032	STO i	35 45	069	*LBLC	21 13	106	6	06	143	X=0?	16-43	180	RCL2	36 02			
033	ISZI	16 26 46	070	DSZI	16 25 46	167	0	00	144	GT05	22 0 5	181	х	-35			
034	R∕S	51	071	*LBL2	21 02	108	6	06	145	ESB3	23 03	182	P≠S	16-51			
035	≰LBLB	21 12	072	RCL i	36 45	109		-62	146	÷	-24	183	RCL i	36 45			
036	DSZI	16 25 46	073	esb3	23 03	110	5	05	147	STO i	35 45	184	X=0?	16-43			
037	X=0?	16-43	074	P≠S	16-51	111	F0?	16 23 00	148	PRTX	-14	185	GT05	22 05			

How to use the program									
With the calculator switch in RUN position, enter the magnetic card. Then follow the instructions given below, in the same order.	5. Calculate steam consumption (1st effect) Press C; in the display appears $\dots V_0$								
 Initialize the calculator Press GTO. 000 Press R/S; in the display appears 1.00 Enter general data 	 6. Calculate the heating surface Press D; in the display appears A 7. Calculate the heat load Press E; in the display appears Q 								
Key in L_0 , then press ENTER Key in T_0 , then press ENTER Key in x_0 Press R/S; in the display appears L_0 Key in T_N , then press ENTER	8. Calculate the steam flow in each effect Press f a; in the display appear (flashing) $V_1, V_2,, V_N$ (The steam flows are still in registers 1,2,,N)								
Display x_N Press R/S; in the display appears L_N 3. Enter heat-transfer coefficients	9. Calculate the liquid flows in each effect Press f b; in the display appear (flashing) $L_1, L_2,, L_N$ (The liquid flows are still in registers 1,2,,N)								
Key in U_1 , then press A; display $1/U_1$ Key in U_2 , then press A; display $1/U_2$ 	 10. Calculate the ratio r (steam produced/ steam consumed) Press f c; in the display appears r 								
4. Calculate effect temperatures Press B; in the display appear (flashing) $T_1, T_2,, T_N$ (The temperatures are still in registers 1, 2,, N, too)	 11. Calculate liquor concentrations Press f d; in the display appear (flashing) x₁,x₂,,x_N (Liquor concentrations are still in registers 1,2,,N, too)								

The program is initially devised for operating in metric units (see Nomenclature). If you wish to work in English units, then press f e; that converts the Regnault formula into these last units. This must be done at the beginning (i.e., before Key A is pressed).

Assumptions

The assumptions made for the mathematical analysis have the following limits:

The feed is at its boiling point—This is not really a limiting condition. It is only a general basis on which to compare results. If the feed is not at its boiling point (bp), the extra steam consumption to heat it to the boiling point can be estimated easily by hand calculations. Generally, in industrial situations, the condensed steam is used to preheat the feed in another heat exchanger, so the feed usually reaches its bp.

All the heating surfaces are equal—This is quite normal, especially in the design of industrial evaporators, due to economic considerations.

Sensible heats are negligible when compared with latent heats—This is true in the majority of the cases when the boiling-point rise (bpr) is negligible. The maximum possible error is about 20%-when the solutions are very concentrated and the bpr cannot be overlooked (see next point).

Boiling-point rise is negligible—This is the most limiting condition. It is true when the solution's molal concentration is not too high (according to Raoult's law), or when we deal with solutions of organic compounds of high molecular weights. On the other hand, when we deal with electrolytic compounds, and when the range of concentration is also very wide, the error of the estimated area can be as high as 25 to 35%.

This can be easily computed by adding the bpr of each stage (ΔT_e) and comparing this value with the thermic potential, ΔT , of the evaporator ($\Delta T = t_0 - t_N$). If $\Sigma(\Delta T_e)_i$ is 30 or 40% of ΔT , then we can expect a high level of error (35%). This error can be 40% when the number of stages is very high (7 or more).

Nevertheless, this is not a serious problem because this program is only designed to find the approximate value of the evaporation area, the most important parameter in design considerations. It is also possible to correct the area as follows:

$$A_{\text{corrected}} = A_{\text{computed}} \frac{\Delta T}{\Delta T \Sigma (\Delta T_e)_i}$$

Example

Find the value of the variables for a three-effect evaporator system.

Data:

 $L_0 = 1,000 \text{ kg/h}; T_0 = 100 \text{°C}; x_0 = 0.1;$ $T_N = 60 \text{°C}; x_N = 0.2$ $U_1 = 200 \text{ kcal/h} \text{ m}^2 \text{ °C}$ $U_2 = 400$ $\bar{U_3} = 800$

Results:

$$\begin{array}{l} L_N = 500 \ {\rm kg/h}; \\ T_1 = 77.1 \ ^{\circ}{\rm C}; \ T_2 = 65.7 \ ^{\circ}{\rm C}; \ T_3 = 60.0 \ ^{\circ}{\rm C}; \\ V_0 = 173.6 \ {\rm kg/h}; \end{array}$$

Nomenclature

- Heating surface, m² or ft² A
- L Feed flowrate, kg/h or lb/h
- Liquor flowrate (Effect i), kg/h or lb/h L_i
- L_N N Product flowrate, kg/h or lb/h Number of effects
- Q Heat load, kcal/h or Btu/h
- Ratio between steam produced and steam consumed (dimensionless)
- T_0 Steam temperature (first effect, condensation chamber), °C or °F
- Liquor temperature (Effect i), °C or °F
- $\begin{array}{c} T_i \\ T_N \\ U_i \end{array}$ Product temperature, °C or °F
- Overall heat-transfer coefficient (Effect i), kcal/h $m^2\ ^\circ C$ or $Btu/h\ ft^2\ ^\circ F$
- V_0 Steam flow (first effect, condensation chamber), kg/h or lb/h
- V_i Steam flow (Effect i), kg/h or lb/h
- Feed-liquor concentration (solids mass fraction), x_0 dimensionless
- Liquor concentration (Effect i), dimensionless x_i
- Product concentration, dimensionless x_N
- $A = 20.4 m^2$ Q = 93,243 kcal/h $\widetilde{V_1} = 168.6 \text{ kg/h}; V_2 = 166.3 \text{ kg/h}; V_3 = 165.1 \text{ kg/h}; L_1 = 831.3 \text{ kg/h}; L_2 = 665.1 \text{ kg/h}; L_3 = 500.0 \text{ kg/h};$

r = 2.88 $x_1 = 0.12; x_2 = 0.15; x_3 = 0.20$

For TI-58/59 users

The TI version of the program appears in Table II. User instructions are found in Table III, and the example is run in Table IV.

Program listing for TI version

Table II

Step	Code	Key	Step	Code	Key	Step	Code	Key
000 000 000 000 000 000 000 000 000 00	760 800 01 01 429 161 29 60 1429 1429 1429 1429 1429 1429 1429 1429	LBL E* STF 00 1 1 4 S5/SL S19 S01 S13 S01 S13 S13 S13 S13 S13 S13 S13 S13 S13 S1	023 024 025 026 027 028 030 031 032 033 035 036 035 036 036 037 038 036 037 038 036 037 038 0340 040 041 042 043 044	41122201622021402216320240231638	14 R/S STD 15 2 STD 0/S LB 1/X STD 0/S LB 1/X STD X T SUM 00 X T SUM C FIX	046 047 048 049 050 051 052 053 055 055 055 055 055 057 058 059 060 061 062 063 064 065 066 067	4304 4304 4304 4354 4354 4354 4354 4354	RCL STD STD STD STD RCL STD RCL STD RCL STD RCL STD RCL STD RCL STD STD RCL STD STD STD STD STD STD STD STD

Step	Code	Кеу	Step	Code	Кеу	Step	Code	Key	Step	Code	Key	Step	Code	Кеу
0690 07712 077234567890 07777777777777777777777777777777777	32 01 22 40 70 85 25 99 21 40 32 01 40 37 00 40 01 40 01 40	OD LBLV ROUTT SUCCOG CGTNUC CG	$\begin{array}{c} 133\\ 134\\ 135\\ 136\\ 137\\ 1389\\ 141\\ 1442\\ 1445\\ 1445\\ 1445\\ 1523\\ 155\\ 1567\\ 1567\\ 1566\\ 1667\\ 1667\\ 1772\\ 1778\\ 1778\\ 1823\\ 1845\\ 1889\\ 1901\\ 1923\\ 195\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196\\ 196$	3438222063395369553055421 073457900067095421	00 EQ 1/X GTD X2 LBL X2 LBL X2 F S 9 5 X	197 1999 2002 2009 2002 2009 2012 2012 2012	96432555339536459982053755339536955314553315540741599984265359695531459 96419365349536445998205375369579000640555540741599984265457900964059 901 202 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	× RCL 12 = 1/X × (RCL 19 - RCL 16) = PRT ADV STD 20 ×	26234566789701234756789701222222222222222222222222222222222222	1220382623153395369553045920014030731263839222203826432530520 2040453744255457900067059970040406464749414204045374422770970	S 2 TOOLSTLLDL1 (L9 .695×CO) = RT*O MOLOOLDDLLVL9D2 DOLSTLML2 *O = *OD R xLSR (C5 .695×CO) = RT*O MOLOOLDDLLVL9D2 DOLSTLML2 *O = *OD	326789012334567890312334567890312333333456789333333333333333333333333333333333333	42059982206239533530520914030731263892608 9990407541641570970904040656575502809 904040656575502809	16 , , RCL RCL RCL RCL RCL RCL RCL RCL

User instructions for TI version

Table III

Step		Көу	Output
1.	Clear registers	Press CMs	
2.	Enter data:		
	Feed flowrate, Lo	Press A	Lo
	Steam temperature, T_o	Press R/S	T_{ρ}
	Feed-liquor concentration, x_0	Press R/S	Xo
	Product temperature, T_N	Press R/S	T _N
	Product concentration, x _N	Press R/S	2
3.	Enter heat-transfer coefficients for each unit:		
	U ₁	Press B	1/U ₁
	U ₂	Press B	1/02
Outp	ut will be:		-
-	Product flowrate		L _N
	Liquor temperature for each effect		T_i (i = 1 to n)
	Steam flowrate		Vo
	Heating surface		A
	Heat load		Q
	Steam flowrate for each effect		V_i (i = 1 to n)
	Liquor flowrate to each effect		L_i $(i = 1 \text{ to } n)$
	Ratio of steam produced/consumed		r
	Liquor concentration for each effect		x_i ($i = 1$ to n)

Example for TI version

Table IV

The authors

Enter	Display	Output
Data: 1000 A 100 R/S 0.1 R/S 60 R/S 0.2 R/S 200 B 400 B 800 B	1000 100 0.1 60 2 (Note: : 0.005 0.0025 0.00125	2 is displayed, not 0.2)
Run program: C	L _N	500,00
	T₁ T₂ T₃	77.14 65.71 60.00
	Vo	173.64
	Α	20.40
	Q	9324J.46
	V1 V2 V3	168.65 165.26 165.09
	L ₁ L ₂ L ₃	831.35 665.09 500.00
	r	2.88
	X ₁ X ₂ X ₃	0,12 0,15 0,20

Santiago Esplugas Vidal is a professor of chemical engineering at the University of Barcelona. He holds B.S. and Ph.D. degrees in chemistry from the University of Barcelona. His research areas are simulation of chemical processes and photoreactor engineering.

Juan Mata Alvarez is a professor of chemical engineering at the University of Barcelona, Spain. He has B.S. and Ph.D. degrees from the University of Barcelona. His research focuses on simulation of chemical processes and biologic treatment of wastewater.

Program for evaluation of shell-and-tube heat exchangers

With this program, it is possible to vary the design values for all the mechanical specifications and find out quickly if the designed exchanger will do the job.

Roger Crane and Robert Gregg, University of South Florida

The program described here has been developed to perform the thermal and hydraulic design of standard shell-and-tube heat exchangers. Its applicability is limited to sensible heat exchange in units with normal segmented baffles [1]. Within these constraints, the program is quite general, accommodating a wide variety of shell and tube pass configurations.

The program (Table I) is written for the Hewlett-Packard HP-97 programmable calculator. It is designed to permit the rapid evaluation of a known heatexchanger configuration, or to permit the rapid iteration of the design so as to obtain the optimum configuration. The user may vary the pass arrangement, tube array configurations and mechanical design parameters, and determine the effect of each on the relative thermal resistance and hydraulic performance.

Development

A suitable heat exchanger for a specific service will provide a sufficient overall heat-exchange coefficient, U, and area, A, such that the process heat load, Q, is transferred. Thus:

$$UA \ \Delta T_{eff} \ge Q \tag{1}$$

where:
$$\Delta T_{eff} = F_T(LMTD)$$

Now
$$\frac{1}{U} = \frac{1}{h(D_i/D_o)} + R_{fi} + \frac{D_o \ln(D_o/D_i)}{2k_w} + R_{fo} + \frac{1}{h_o}$$

[from 2, p. 86]

A rearrangement of these terms leads to the equation:

$$\frac{Q}{F_T(\text{LMTD})} \frac{1}{A} \times \left[\frac{1}{h(D_i/D_o)} + R_{fi} + \frac{D_o \ln(D_o/D_i)}{2k_w} + R_{fo} + \frac{1}{h_o}\right] \le 1 \quad (2)$$

The five terms on the left side of the equation may be viewed as fractional thermal resistances, each one corre-

Originally published July 25, 1983.

sponding to one of the five resistances to heat transfer (Table II). In a well-sized unit, the sum of these fractional resistances approaches, but is less than, 1.

The heat-transfer correlations used in the program are taken from Kern [2, p. 103, 107]:

$$\frac{h_i D}{k} = 0.027 \left(\frac{4m}{\pi D \mu}\right)^{0.8} \left(\frac{c_p \mu}{k}\right)^{1/3} \phi^{0.14}$$
(3)

$$\frac{h_o D_e}{k} = 0.36 \left(\frac{M D_e}{\mu A}\right)^{0.55} \left(\frac{c_p \mu}{k}\right)^{1/3} \phi^{0.14}$$
(4)

Introducing Eq. 3 and 4 into Eq. 2, the individual fractional resistances may be obtained as shown in Table II. Here, the viscosity ratio, ϕ , is omitted from the tubeside and shellside convective terms. For more-viscous fluids, this term should be reintroduced prior to final sizing for greater accuracy.

Once the thermal design is optimized, the pressure drops on the shellside and tubeside are checked to ensure that they are not excessive. The equations used for calculating pressure drops are shown below [2, pp. 836, 839]. Both equations include frictional losses through the bundle. The tubeside term also includes typical turning losses [2, p. 148].

$$\Delta P_{s} = \frac{f_{s}G_{s}^{2}D_{s}\left(\frac{12L}{B}\right)N_{s}}{5.22 \times 10^{10}D_{e}S_{e}} \frac{1}{\phi^{0.14}}$$
(5)

$$\Delta P_t = \frac{f_t G_t^2 n L}{5.22 \times 10^{10} D_t S_i} \frac{1}{\phi^{0.14}} + \frac{2n V_i^2}{S_i g}$$
(6)

In the turbulent-flow region, the friction factors may be approximated (as in Ref. 2):

 $f_s = 0.0128 N_{Re}^{-0.1964}$

(straight-line portion of correlation p. 839); $f_t = 0.0014 + 0.125 N_{Re}^{-0.32}$ (p. 53).

These correlations are incorporated in the program.

Program

There are three parts to the program, which may be loaded onto three separate cards (Table I). Program 1 calculates the log mean temperature difference (LMTD) and the correction factor, F_T , for either a one-shell pass/two-tube pass (1–2), or a 2–4 pass arrangement. For other than a 1–2 or 2–4 pass heat exchanger, the product $F_T \times$ (LMTD) may be stored in the I register for use with Program 2.

If $F_{T,1-2} < 0.75$, or an error message is displayed, the temperature cross is too great and the 1–2 pass arrangement is not appropriate. (Temperature cross is the difference between the outlet temperature of the cold fluid and the outlet temperature of the hot fluid, when the first is higher than the second.)

Program 2 evaluates the fractional temperature drops in Table II. Each product may be printed out prior to summation. This feature is highly useful in indicating areas where design improvements can be made. Design modifications will be most beneficial in the areas where fractional resistances are relatively large.

Program 3 calculates pressure drops on the shellside and tubeside, using Eq. 5 and 6 with turbulent friction factors. The program pauses to permit incorporation of the viscosity ratio effect.

Example 1

Evaluate a 2–6 heat exchanger that uses water on the tubeside to cool 33.5° API oil. (From [2], Example 8.1.) Process conditions:

Oil inlet temp.	$= 358^{\circ}\mathrm{F}$
Oil outlet temp.	$= 100^{\circ}F$
Water inlet temp.	$= 90^{\circ}F$
Water outlet temp.	$= 120^{\circ}F$
Oil flowrate	= 49,600 lb/h
Water flowrate	= 233,000 lb/h
Combined fouling factor	= 0.004
Allowable ΔP	= 10 psi

Heat-exchanger parameters:

Shell I.D.	= 35 in.
Baffle spacing	= 7 in.
Shell passes	= 2
No. of tubes	= 454
Length of tubes	= 12 ft
Size of tubes	= 1 in. O.D., BWG, on
	1¼-in. square pitch
No. of tube passes	= 6

The combined fouling factor is referenced to the outside of the tube and therefore is calculated in the R_{fo} term. In this case, the inside fouling factor is equal to zero. The calculated value for $F_{T,2-4}$ may be used for $F_{T,2-6}$ with very little error.

Procedure

1. Load both sides of Card 1. Routine A calculates the LMTD. Routines B and C determine the LMTD correction factor, F_T , for 1–2 and 2–4 pass arrangements.

a. Store T_1 , T_2 , t_1 , t_2 in registers b, c, d and e.

b. Push A to calculate the LMTD (71.93°F).

c. Push B to find $F_{T,1-2}$; an error is displayed, indicating conditions will not permit the use of a 1–2 unit.

d. Push CLX, then push C to find $F_{T,2-4}$ (0.92). Push R/S to store F_T (LMTD) = 66.49°F in Register I. 2. Load both sides of Card 2.

a. Store the appropriate variables in Registers R_{s0} , R_{s1} , R_{s4} – R_{s9} , R_0 – R_9 , R_a (see Table III). In R_8 , store the value for N_{Pri} .

b. Review the stack for proper values. Ensure that $R_{\rm s3}$ is set to 0. Then set the primary registers to active status.

Nomenclature Area for heat transfer, ft² Α B Baffle spacing, in. С Tube clearance, in. Specific heat, Btu/(lb)(°F) c_p D Dia., in. Friction factor F_T Correction factor for LMTD, depending on type of flow in the heat exchanger, dimensionless Gravity acceleration, ft/s² g Weight flowrate per unit area, lb/(h)(ft²) G h Convective heat-transfer coefficient, $Btu/(h)(ft^2)(^{\circ}F)$ k Thermal conductivity, Btu/(h)(ft)(°F) L Length of tubes for heat transfer, ft LMTD Log mean temperature difference for counter flow, °F mWeight flowrate, cold fluid, lb/h М Weight flowrate, hot fluid, lb/h Number of tube passes n Prandtl number, dimensionless N_{Pr} Reynolds number, dimensionless N_{Re} Number of shell passes N_s N_t Number of tubes per pass Р Pressure drop, psi P_t Tube pitch, in. Quantity of heat transferred, Btu/h Q Fractional temperature drops, R_A, R_B, R_C, R_D, R_E dimensionless Fouling factor, (h)(ft²)(°F)/Btu R_f S Specific gravity, dimensionless t Cold-fluid temperature, °F THot-fluid temperature, °F T_{eff} Effective temperature difference, °F UOverall heat-exchanger conductance, $Btu/(h)(ft^2)(°F)$ VFluid velocity, ft/s Ratio of viscosity measured at bulk temφ perature to that at wall temperature Viscosity, cP μ Subscripts 1 Inlet conditions 2 **Outlet** conditions Inside the tube i Outside the tube 0 Shellside properties S Equivalent thermal or hydraulic e diameter Material properties of the tubewall w

Tubeside properties

t

	Vary th	e design	speci	fication	s and find	out q	uickly i	f the des	igned	exchan	ger will do	the jo	ob			Tab	e I
Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	Program 1 *LBLA	21 11	076 077	R∕S RCL9	51 36 89	152 153	1+	01 -55	047 048	8 GSB2	03 23 02	123 124	RCL9 X	36 09 -35	199 200	RCL8	36 08 -62
002 003	GSB1 ÷	23 81 -24	078 079	x Stoi	-35 35 46	154 155	RTN *LBL4	24 21 04	049 050	× P≠S	-35 16-51	125 126	RCL7 ÷	36 07 -24	201 202	6 7	06 07
004 005	STOI GSE1	35 46 23 01	080 081	RTN *LBLC	24 21 13	156 157	X2 1	53 01	051 052	RCL8 ÷	36 08 -24	127 128	RCLE ÷	36 15 -24	203 204	Y× RCLI	31 36 46
006 007	RCLI	-45 36 46	082 083	2 65B3	02 23 03	158 159	+ 1X	-55 54	053 054	P‡S GSB1	16-51 23 01	129 130	5	-62	205	÷	-24
008	LH	32	084	÷	-24	160	RTN	24	055	RCL2	36 02	131	5	05 105	206 207	RCLE RCLD	$36 15 \\ 36 14$
009 010	÷ sto9	-24 35 09	085 086	_1	01 -45	161 162	*LBL3 RCLE	21 03 36 15	056 057	RCL1 ÷	36 01 -24	132 133	yx x	31 -35	208 209	- x	- 4 5 -35
011 012	RTN *LBL1	24 21 01	087 088	GSB2	23 02 -45	163 164	RCLD -	36 14 -45	058 059	LH X	32 -35	134 135	GSB1 GSB3	23 01 23 03	21 0 211	RTN #LBL3	24 21 03
013 014	RCLB RCLE	36 12 36 15	089 090	STOI GSB5	35 46 23 05	165 166	RCLB RCLD	36 12 36 14	060 061	GSB3 RTN	23 Ø3 24	136 137	RTN *LBL9	24 21 0 9	212 213	PRTX P≠S	-14 16-51
015	RCLC	-45	091	esbe	23 06	167	- ÷	-45	062	*LBLD	21 14	138	3	03	214	RCL3	36 03
016 017	RCLD	$36 13 \\ 36 14 $	092 093	¥¥.	-35 54	168 169	RTN	-24 24	063 064	1	01 -62	139 1 40	4	-62 04	215 216	+ ST03	-55 35 03
018 019	- RTN	-45 24	094 095	2 x	02 -35	170 171	*LBL2 RCLB	21 02 36 12	065 066	5	05 08	141 142	4 RCL7	04 36 07	217 218	P‡S RTN	16-51 24
020 021	≭LBLB GSB2	21 12 23 02	096 097	GSB3 ÷	23 03 -24	172 173	RCLC	36 13 -45	067 068	GSB2 ×	23 02 -35	143 144	Х2 Х	53 -35	219	R∕S	51
022 023	GSB4 1	23 04 01	098 099	RCLI +	36 46 -55	174 175	RCLE RCLD	36 15 36 14	069 070	P≓S RCL9	16-51 36 09	145 146	Pi RCL2	16-24 36 02	001	Program 3 *LBLA	3 21 11
024	+	-55	100	ST01	35 01	176	-	-45	071	x	-35	147	X2	53	002	GSB2	23 02
025 026	6SB2 +	23 02 -55	101 102	GSB2 GSB4	23 02 23 04	177 178	÷ RTN	-24 24	072 073	P‡S RCL2	16-51 36 02	148 149	x -	-35 -45	003 004	STO8 GSB5	35 08 23 05
027 028	GSB3 X	23 03 -35	103 104	STO2 RCL1	35 02 36 01	179	R∕S	51	074 075	÷ GSB1	-24 23 01	150 151	Р і ÷	16-24 -24	005 006	RCL8 x	36 08 -35
029 030	CHS 2	-22 02	105 106	+ RCL1	-55 36 01	001	Program 2 *LBLA	2 21 11	076 077	ESB3 RTN	23 03 24	152 153	RCL2 ÷	36 02 -24	007 008	P‡S RCL5	16-51 36 05
031 032	+ stoi	-55 35 46	107 108	RCL2	36 02 -45	002 003	P≠S	16-51 36 00	078 079	*LBLE R∕S	21 15 51	154 155	RTN *LBL8	24 21 08	009	P≠S	16-51
033	GSB2	23 02	109	÷	-24	664	RCLƏ RCL4	36 04	080	X=0?	16-43	156	Pi	16-24	010 011	÷	-24 -62
034 035	GSB4 CHS	23 04 -22	110 111	LN 1/X	32 52	005 006	÷ P ‡S	-24 16-51	081 082	GTO7 GTO6	22 07 22 06	157 158	RCL2 X2	36 02 53	012 013	Ø 3	00 03
036 037	1 +	01 -55	112 113	STOI GSB6	35 46 23 06	007 008	2	-62 02	083 084	*LBL7 GSB9	21 07 23 09	159 160	x 4	-35 04	014 015	4 4	64 64
038 039	6SB2 +	23 8 2 -55	114 115	STO1 GSB5	35 01 23 05	009 010	YX 1	31 01	085 086	GTO5 *LBL6	22 05 21 06	161 162	÷ CHS	-24 -22	016 017	X	-35 -62
040 041	GSB3 X	23 03 -35	116 117	1/X RCL1	52 36 01	011 012		-62 01	087 088	GSB8 *LBL5	23 08 21 05	163 164	RCL7 X2	36 07	018	.1	01
04 2	CHS	-22	118	×	-35	013	2	02	089	•	-62	165	+	53 -55	019 020	9	09 06
043 044	2 +	02 -55	119 120	LN Stoi	32 35 01	014 015	GSB0	-35 23 00	090 091	4 5	04 05	166 167	4 x	04 -35	021 022	4 CHS	04 -22
045 046	RCLI ÷	36 46 -24	121 122	GSB2 GSB4	23 02 23 04	016 017	x GSB1	-35 23 01	092 093	Υ× •	31 -62	168 169	₽i ÷	16-24 -24	023 024	γ× •	31 -62
047 048	LN Stoi	32 35 46	123 124	RCL1 ×	36 01 -35	018 019	RCL1 RCL6	36 01 36 06	094 095	1 5	01 05	170 171	RCL2 ÷	36 02 -24	025 026	0	00 01
049 050	GSB2 1	23 Ø2 Ø1	125 126	2 ÷	02	020 021	x	-35	096 097	2 x	02 -35	172	RTN	24 21 02	027	2	62
051	-	-45	127	ST01	-24 35 01	022	8	-62 08	098	P≠S	16-51	174	¥LBL2 P‡S	16-51	028 029	8 ×	0 8 -35
052 053	RCL I ×	36 46 -35	128 129	GSB2 1	23 02 01	023 024	үх х	31 -35	099 100	RCL1 RCL5	36 01 36 05	175 176	RCLØ RCL4	36 00 36 04	030 031	6585 X2	23 05 53
054 055	1/X Stoi	52 35 46	130 131	- 1⁄X	- 45 52	025 026	GSB3 RTN	23 03 24	101 102	÷	-24 -62	177 178	÷ RCL6	-24 36 06	032 033	× RCL4	-35 36 04
056 057	GSB2 GSB4	23 02 23 04	132 133	RCL1 ×	36 01 -35	027 028	¥LBLB 1	21 12 01	103 104	4 5	04 05	179 180	× P‡S	-35 16-51	034 035	x RCLE	-35 36 15
058 059	RCLI	36 46 -35	134 135	RCL I ×	36 46	029 030	- 5	-62 05	105 106	y× x	31 -35	181 182	RCL8	36 0 8	036 037	x	-35
868	STOI	35 46	136	R∕S	-35 51	031	8	08	107	P≠S	16-51	183	RCLE	-35 36 15	038	RCL0 ÷	36 00 -24
061 062	GSB2 GSB3	23 02 23 03	137 138	RCL9 ×	36 09 -35	032 033	GSB2 ×	23 02 -35	108 109	RCL8	36 0 3 -62	184 185	RCLD -	36 14 -45	039 040	RCL3 x	36 03 -35
063 064	X CHS	-35 -22	139 140	STOI RTN	35 46 24	034 035	RCLA X	36 11 -35	110 111	6 7	0 6 07	186 187	x RCLI	-35 36 46	041 042	5	05 -62
065 066	1 +	01 -55	141 142	*LBL6 GSB3	21 06 23 03	036 037	RCL1 ÷	36 01 -24	112 113	Yx x	31 -35	188 189	÷ RTN	-24 24	043 044	2	02 02
867 868	1/X GSB3	52 23 03	143 144	CHS	-22 01	038 039	GSB1 GSB3	23 01 23 03	114 115	RCLB RCLC	36 12 36 13		*LBL1 RCL4	21 01 36 04	045 046	ЕЕХ 1	-23 01
069	CHS	-22	145	1 +	-55	040	RTN	24	116	-	-45	192	÷	-24	047	0	00
070 071	1 +	01 -55	146 147	RTN *LBL5	24 21 05	041 042	*LBLC	21 13 -62	117 118	X RCL I	-35 36 46	193 1 94	RCL5 ÷	36 05 -24	048 049	÷ RCL8	-24 36 08
072 073	x LN	-35 32	148 149	GSB2 GSB3	23 02 23 03	043 044	0 0	00 00	119 120	÷ RCL0	-24 36 00	195 196	RCL6 ÷	36 06 -24	050 051	1 2	01 02
074 075	RCLI	36 46 -35	150 151	× CHS	-35 -22	045 046	6	05 06	121 122	RCL3 ×	36 03 -35	197	RTN *LBLØ	24 21 00	052 053	÷	-24 -24
		50		0110	22	l	-	50			50				550	-	L 7

														(Cor	ntinue	d) Table	e I
Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
054.	P‡S	16-51	083	*LBL1	21 01	112	4	04	141	х	-35	170		-62	199	P≠S	16-51
055	RCL3	36 03	084	GSB9	23 09	113	RCL7	36 07	142	2	02	171	0	00	200	RCL2	36 02
856	P≠S	16-51	085	G to0	22 00	114	Χ2	53	143		-62	172	2	02	201	P≠S	16-51
057	÷	-24	086	*LBL4	21 04	115	x	-35	144	4	04	173	8	08	202	÷	-24
058	RTH	24	087	GSB8	23 08	116	Pi	16-24	145	2	02	174	2	62	203	4	04
8 59	≭LBL5	21 05	088	∗LBL0	21 00	117	RCL2	36 02	146	÷	-24	175	x	-35	204		-62
060	P≠S	16-51	089	RTN	24	118	χ2	53	147	1	81	176	RCL8	36 08	205	4	04
061	RCL1	36 01	090	*LBL8	21 08	119	х	-35	148	2	02	177	X2	53	206	5	05
062	P₽S	16-51	091	P i	16-24	120	-	-45	149	÷	-24	178	x	-35	207	EEX	-23
063	RCL7	36 07	092	RCL2	36 02	121	Pi	16-24	150	P≓S	16-51	179	RCL4	36 64	208	6	06
064	х	-35	093	X2	53	122	÷	-24	151	RCL4	36 04	180	x	-35	209	CHS	-22
065	RCLE	36 15	094	x	-35	123	RCL2	36 02	152	P≓S	16-51	181	RCL5	36 05	210	×	-35
066	х	-35	095	4	64	124	÷	-24	153	÷	-24	182	x	-35	211	X2	53
067	1	01	096	÷	-24	125	RTN	24	154		-62	183	5	05	212		-62
068	4	04	097	CHS	-22	126	*LBLC	21 13	155	3	03	184		-62	213	0	ØC
069	4	04	098	RCL7	36 07	127	P≠S	16-51	156	2	02	185	2	62	214	2	02
070	х	-35	699	χz	53	128	RCLØ	36 00	157	γ×	31	186	2	02	215	7	87
871	RCL3	36 03	100	+	-55	129	P≓S	16-51	158	178	52	187	EEX	-23	216	x	-35
072	÷	-24	101	4	84	130	1	<i>0</i> 1	159		-62	188	1	0 1	217	RCL5	36 05
073	RCL9	36 09	102	Х	-35	131	8	08	160	1	01	189	0	00	218	x	-35
074	÷	-24	103	P i	16-24	132	3	03	161	2	82	190	÷	-24	219	P≠S	16-51
075	RCLØ	36 00	104	÷	-24	133	х	-35	162	5	05	191	RCL1	36 01	220	RCL2	36 02
076	÷	-24	105	RCL2	36 02	134	RCL1	36 01	163	x	-35	192	1	01	221	P≠S	16-51
077	RTN	24	106	÷	-24	135	X2	53	164		-62	193	2	0 2	222	÷	-24
078	≭LBL 2	21 0 2	107	RTN	24	136	÷	-24	165	θ	0ō	194	÷	-24	223	+	-55
079	R∕S	51	108	*LBL9	21 09	137	RCL6	36 06	166	0	00	195	÷	-24	224	RTN	24
080	X=0?	16-43	109	3	03	138	÷	-24	167	1	Ø1	196	R∕S	51			
081	GT01	22 01	110		-62	139	ST08	3 5 08	168	4	04	197	÷	-24			
082	GT04	22 04	111	4	0 4	140	RCL1	36 01	169	+	-55	198	RCL8	36 08			
						•			-						-		

c. Push A, B, C and then D in order, allowing time for the calculation to complete for each routine. Each fractional ΔT shown in Table II is printed out if the calculator is in the NORM position. $R_A = 0.0853$, $R_B = 0$, $R_C = 0.0034$, $R_D = 0.2955$. The sum of these products is accumulated and displayed.

d. Store the number of shell passes (2) in R_e . Store $N_{Pr,o}$ in R_8 . Push E. Calculation will stop. Enter 0 for triangular tube array or 1 for square array. Push R/S. $R_E = 0.5393$ is printed out. The last number displayed is the sum of the products, $\Sigma R = 0.9235$.

This number may be used to calculate wall temperatures. The proportion of the temperature drop on the tubeside is 0.0853. The average tubeside temperature is $(90 + 120)/2 = 105^{\circ}$ F. The tubeside wall temperature will be higher than this by an amount (0.0853/0.9235) $F_T(\text{LMTD}) = 6^{\circ}$ F, i.e., $T_w = 111^{\circ}$ F. The tubeside viscosity ratio is, therefore $\phi_t = \mu_{i,105^{\circ}\text{F}}/\mu_{i,111^{\circ}\text{F}}$. This is approximately equal to 1.

The shellside viscosity ratio, to the fouling layer, is obtained from the average temperature of the oil— $(358 + 100)/2 = 229^{\circ}$ F—and the temperature drop across the convective layer—66.49(0.5393/0.9235) = 39° F. Hence $\phi_s = \mu_{o,(229)}/\mu_{o,(190)}$.

These values of ϕ are calculated, and R_A and R_E are each divided by the relevant ratio raised to the 0.14 power (Eq. 3,4).

The correction on the water side is negligible, but the

Resistance	Numerical factor	Driving potential	Materials properties	Mechanical design	Product
Inside tube, convective	3.169	<u></u> <i>F_T</i> (LMTD)	$\frac{\mu_i^{0.8}}{k_i m_i^{0.8} (N_{Pr, i})^{0.33}}$	$\frac{D_i^{0.8}}{N_t n L}$	R _A
Inside tube, fouling	12/π	<u></u> <i>F_T</i> (LMTD)	R _{f,i}	$\frac{1}{D_i L N_t n}$	R _B
Tubewall	1/2π	<u></u> <i>F_T</i> (lmtd)	1/kw	$\frac{\ln \left(D_o / D_i \right)}{L N_t n}$	R _C
Outside tube, fouling	12/π	<u></u> <i>F_T</i> (lmtd)	R _{f, o}	$\frac{1}{D_o L N_t n}$	R _D
Outside tube, convective	0.367	<u></u> <i>F_t</i> (lmtd)	$\frac{\mu_o^{0.55}}{k_o m_o^{0.55} (N_{Pr, o})^{0.33}}$	$\frac{D_e^{0.45}(BD_sC)^{0.55}}{D_o LN_t n (P_t N_s)^{0.55}}$	R _E

C	ontents	of registers for E	xample 1		Table III
Secondary storage register	Variable	Numerical value	Primary storage register	Variable	Numerical value
R _{sO}	mi	233,000 lb/h	Ro	В	7 in.
R _{s1}	mo	49,600 lb/h	R ₁	Di	0.76 in.
R _{s2}	Si	1.0	R ₂	Do	1.0 in.
R _{s3}	S _o	0.82	R ₃	D_s	35 in.
R _{s4}	μ_i	0.73 cP	R ₄	L	12 ft
R _{s5}	μ_o	1.12 cP	R ₅	n	6
R _{s6} R _{s7}	k _i k _o	0.37 Btu/(h)(ft)(°F) 0.076 Btu/(h)(ft)(°F)	R ₆	Nt	$\frac{454}{6} = 75.67$
R _{s8} R _{s9}	k _w R _{f, o}	25 Btu/(h)(ft)(°F) 0.004	R ₇	P _t	1.25 in. (square array)
			R ₈	N _{Pr, i} (N _{Pr, o})	4.78 (18.22)
			R ₉	С	0.25 in.
	Regi	ster Vari	able	Value	
	Ra	R	f, i	0	
	Rb	, 7	1	358°F	
	Rc	7	2	100° F	
	Rc	i t	1	90° F	
	Re	t ₂ ,	(N _s)	120°F, (2)	
	I	$F_t(LN)$	ито)	Calculated by program	

viscosity of 33.5° API oil is found to be 1.95 cP at 190°F. Therefore, $R_E = 0.5393/(1.12/1.95)^{0.14} = 0.5393/(0.9253 = 0.5828$. The revised sum of products is 0.967, which is still less than 1, and hence the thermal design is fine.

If Σ products ≤ 1.0 , continue to Step 3. Otherwise, the heat-exchanger design must be modified to obtain sufficient thermal performance.

3. Load both sides of Program 3.

a. Store S_i in R_{s2} , store S_o in R_{s3} . Return to primary registers.

b. Push A. When calculation stops, enter 0 for triangular array or 1 for square array. Push R/S to continue. $\Delta P_s = 6.21$ psi is displayed. $\Delta P_s < 10.0$ psi, which is acceptable. Divide by $\phi_s^{0.14}$. $\Delta P_s = 6.71$, still acceptable.

c. Push C. When the program stops, enter $\phi_t^{0.14}$ and push R/S. $\Delta P_t < 10.0$ psi, which is satisfactory.

Example 2

As a further example of the design procedure, again use the data of Example 1, but design for a fouling factor of $R_f = 0.003$ instead of 0.004. Any-size unit may be tried for the initial estimate. For convenience, start with the same unit used in Example 1.

1. The F_T and LMTD values remain unchanged; $F_{T,2-4} = 0.92$, LMTD = 71.93°F.

2. The uncorrected fractional temperature drops are: $R_A = 0.0853$, $R_B = 0$, $R_c = 0.0034$, $R_D = 0.2216$, $R_E = 0.5393$, $\Sigma R = 0.8496$.

a. The unit is oversized by about 15%. Size may be decreased by using a smaller-diameter shell or a shorter tube bundle. If the pressure drop permits, the smaller shell size will generally result in the lower-cost unit.

b. For the next iteration, try a 31-in. shell. Tubecount tables [2] suggest that up to 368 tubes may be included in this size of shell.

Adjust the registers so that $R_3 = 31$ in. and $R_6 = 368/6$ (61.33). Repeating the calculations on Card 2, we find the following unadjusted fractional temperature drops: $R_A = 0.0890$, $R_B = 0$, $R_C = 0.0042$, $R_D = 0.2734$, $R_E = 0.6224$ and $\Sigma R = 0.9890$. The shellside wall temperature may be calculated at 187°F, for a wall viscosity of 2 cP. The corrected $\Sigma R = 1.038$.

The unit is now thermally too small. The major resistance is still on the shellside. Decreasing the baffle spacing would improve heat transfer by increasing turbulence. The minimum baffle spacing permitted by TEMA is 20% of the small diameter, or 6.2 in.

c. Set $R_0 = 6.2$, then rerun. Now $R_A = 0.0890$, $R_B = 0$, $R_C = 0.0042$, $R_D = 0.2734$, $R_E = 0.5822$. After applying the correction factor on viscosity, $R_E = 0.6314$ and $\Sigma R = 0.9980$. The unit is of adequate size.

3. Check the pressure drop on the new unit. $\Delta P_s = 10.39$, $\Delta P_t = 9.55$ psi. The shellside is slightly high but probably within the acceptable range.

For TI-58/59 users

The TI version closely follows the HP program. There are 3 TI programs (see listings in Tables IV, V and VI, respectively); and user instruction are offered in Table VII. A printout of the first example can be seen in Table VIII.

Listing for TI version—program A Table IV

Step	Code	Key	Step	Code	Key	Step	Code Key
000	76	LBL	033	95	=	066	75 -
001	11	Ĥ	034	42	STD	067	43 RCL
002	43	RCL	035	29	29	068	23 23
003	21	21	036	99	PRT	069	54)
004	75		037	53	(070	95 =
005		RCL	038	43			42 STD 28 28
006 007	24 95	24 =	039 040	21 75	21	073	28 28 43 RCL
008	20 42	sтп	041	43		074	29 29
009	25	25	042		22	075	91 R/S
010	43	RCL	043	54)	076	76 LBL
011	22	22	044	55	÷	077	12 B
012	75		045	53		078	43 RCL
013	43	RCL	046	43		079	
014	23	23	047	24	24	080	33 X2
015	95		048	75		081	85 +
016	42	STO	049	43	RCL	082 083	01 1 95 =
017 018	26	26	050 051	23 54	23)	003 084	70 - 34 ГХ
010	43 25	RCL 25	052	95	.× ==	085	85 +
020	20 75	<u>ن</u> ے بین	053	42	STO	086	01 1
021	43	RCL	054	27	27	087	85 +
022	26	26	055	53	<	088	43 RCL
023	95	==	056	43	RCL	089	27 27
024	55	÷	057	24	24	090	95 =
025	53	<	058	75		091	65 ×
026	43	RCL	059		RCL	092	43 RCL
027	25	25	060	23	-23	093	28 28
028 029	55 43	÷ RCL	061 062	54 55) ÷	094 095	94 +/- 85 +
030	26	rul 26	063			090	oj T 02 2
031	20 54	20)	064		RCL	097	95 =
032	23	ĹŇX	065		21	098	42 STD
002	20	L. 11 Å	000	ل ل	<u>i.</u> 1	020	TE OID

(Continued) Table	IV
------------	---------	----

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
9012345678901234567890123456789012345678901234545444	037351544515375538452653020375155305520373 34238073780842964298095439243427096439343423	30L7 X + 1 = X + 1 + C2 = X C2 + 2 = + C3 = X C2 - 1 = X C3 = /X C2 - 1 = X C3 = /X C3	144567890123456789011234567890123456 1552345567890123456789011234567890123456 166234566789011234567890123456 18888856	51545305203753845155538845145353059153952091 80936439434264298093654298059264399964294399	+1=X×C3=T00L7 L8- F = X < C2+ F = X < C2+	18890123456789012345678901123456789012322222222222222222222222222222222222	63253851537520153753855315384545253853052937 71054270742943074264296507425936054284394542	LBC2+C2111C7 E0 R211C2 R311C2 C2 X (1 C2) X 2+C2+C3 E9 R22+C2 F311C2 X C2 X (1 C2) X 2+C3 E5C2 R35C2 R35C2	232 23345 223335 222333 2222 2222 2222 2	351542853955339553845352015385291537426429364595395	X ² + 1 = S 5 + C 9 = R 5 - C 2 = R 5 + C 9 = R 5 - C 8 - R 2 - R 5 - R 5 - R 2 - R 2 - R 5 - R 5 - R 5 - R 2 - R 2 - R 5 - R 5 - R 5 - R 2 - R 2 - R 5 - R 2 - R 2 - R 2 - R 2 - R 5 - R 2 - R 2 - R 5 - R 5 - R 5 - R 5 - R 2 - R 5 - R 2 - R 5 - R 5 - R 2 - R 5 - R 5 - R 5 - R 5 - R 2 - R 5 -	2757 2777 22778 22883 22883 22883 22887 22934 2997 2999 29901 2003 2004 2005 2009 2011 2012 2011 2012 2005 2009 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012	32937351545395252937515553953059153952091 24542380936455094542709364564399964294399	LNXD9L7 X + 1 = X × CL9 S 5C27 + 1 = X × CL9 R 5 × CL9 = CL9 R 5 × CL9 R 5 × CL9 = CL9

Listing for TI version—program B

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
000	76	LBL	014	93	=	028	65	\times	042	01	01	056	76	LBL
001	11	A	015	01	1	029	53	<	043	65	\times	057	22	INV
002	43	RCL	016	02	2	030	43	RCL	044	43	RCL	058	55	÷
003	10	10	017	65	×	031	24	24	045	06	06	059	43	RCL
004	55	÷	018	53	(032	75	-	046	54)	060	04	04
005	43	RCL	019	43	RCL	033	43	RCL	047	45	$\gamma \times$	061	55	÷
006	14	14	020	08	08	034	23	23	048	93	-	062	43	RCL
007	95	=	021	45	ΥX	035	54)	049	08	8	063	05	05
008	45	Υ×	022	93		036	71	SBR	050	54)	064	55	÷
009	93	-	023	06	6	037	22	INV	051	95		065	43	RCL
010	02	2	024	07	7	038	65	\times	052	99	PRT	066	06	06
011	95	=	025	55	÷	039	53	$\langle \cdot \rangle$	053	44	SUM	067	92	RTN
012	65	×	026	43	RCL	040	53	$\langle \cdot \rangle$	054	33	33	068	76	LBL
013	01	1	027	30	30	041	43	RCL	055	91	R/S	069	12	В

Table V

Step	Code	Кеу	Step	Code	Кеу	Step	Code	Кеу	Step	Code	Кеу	Step	Code	Key
$\begin{array}{c} 070\\ 0712\\ 0772\\ 0773\\ 0775\\ 0778\\ 0798\\ 0797\\ 0798\\ 0797\\ 0798\\ $	03585135301225943316330534653853053345334263 06726425407299433763305341641640543653427425971	1 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8	78901223456789012356678900123566623	300066851353812533325314345943164135851353953212 9000067254172655405405259943971090067264154072	.00668×8X+L8RV SL R 18RV ((L2+L1)X) TM3SL R SIX((C0+C0)X) = RU3SL SL R 1+C08N SL R 1+C08N SL R 1+C08N	456678901234567890123456789012345678901234567890 1666666777777777777788888888889999999999	59438339816520749532354545373554595325428433445 99439439997130628640350998403960585409637209006	= PSUSPUSE T Q = RUSVLSTVSL T Q C R X + R C = X + A + A + CO R X	123456789012345678901234567890142345678901234567 222222222222222222222222222222222222	3735795929455953256259405945594553153545945598596 4037586403595854097349006900654154154900643490	RC02 (1×C02)=+1+C0=B+×.45×.152×(C1+L5)×.45×C3×.6 R X R X)=+1+C0=B+×.45×.152×(C1+L5)×.45×C3×.6	258 259 260 262 263 2667 2667 2667 2667 277 277 277 277 277	7533153245305333053353554064054054354555455125943843981065406406405405435490059729943943943999	7 × (CL1 R2) + C2 R3× (CL0×L3×C0+L7+L7) R3× (CL0×L3×C0+L7+L7) SI = RV = TM3VL3TVS RDVS

Listing for TI version—program C

Table VI

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
000	76	LBL	009	02	02	018	33	χz	027	95		036	04	4
001	11	A	010	33	χz	019	95	=	028	42	STD	037	04	4
002	32	XIT	011	55	÷	020	65	×	029	36	36	038	65	×
003	00	0	012	04	4	021	04	4	030	61	GTO	039	43	RCL
004	67	ΕQ	013	95	=	022	55	÷	031	23	LNX	040	07	07
005	22	INV	014	94	+/-	023	89	ก้	032	76	LBL	041	33	X۶
006	89	П.	015	85	÷	024	55	÷	033	22	INV	042	75	-
007	65	×	016	43	RCL	025	43	RCL	034	03	3	043	53	(
008	43	RCL	017	07	07	026	02	02	035	93		044	89	П

(Contin	ued)	Table	VI

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Кеу	Step	Code	Key
Step 045 045 046 047 046 052 055 055 055 055 055 055 055	Code 53234559595325266331537514453353953052753653540943724164064360005405405409456435416	Key x RCU2 x CU2 x RCU2 x	Step 092 093 094 095 096 097 097 097 097 097 097 097 097	Code 93003444531096444530012853735340533555322221005364053735405435509000543600536	Key .0344=X.1964- Y.1964- +=X.0128×CC7 RC4 RC52×C04 RC5.22E10÷C6 RC52 RC52×C04 RC5.22E10÷C6 RC52 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC52×C04 RC54×C04	Step 1390 14423 44567 890 14423 44567 890 15567 890 16623 45667 890 123 4567 890 123 4567 890 123 456 11 11 11 12 17 7 89 1 18 18 18 18 18 18 18 18 18 18 18 18 1	Code 51253322598163305183536526526531523425125341553 600541259999714160005403546526531523425125341949	Key X 12+CL3V R 12+C	Step 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 207 208 209 210 211 212 213 214 215 206 207 208 209 210 211 212 214 215 206 207 208 209 210 211 212 208 209 210 201 202 203 204 205 207 208 209 210 211 212 208 209 210 211 212 208 209 210 211 212 213 214 215 208 209 210 211 212 208 209 210 211 212 218 209 210 211 212 213 214 215 216 207 208 210 211 212 213 214 215 216 217 218 219 210 211 212 213 214 215 216 217 218 219 220 211 222 223 224 225 226 227 228 229 220 221 222 223 224 225 226 227 228 229 220 220 220 220 220 220 220	Code 0325553125530001455302825363534453555322210053105125	Key 32=1/X 125+.0014=X.0282×L6 R52×C0×L5.22E10+C1 R0×12= R0×12=	Step 233 235 235 235 235 235 235 225 225 225	Code 2229215225330027535532253265322543452464345222981 2593953385900064054165455425434524545454545223981	Key INV EPX: X + : X R + : X + : X + : X = : 027 × CO + C12 × (C6 + C22 × 4 = 45E - 6) ×) = NETVS R + : X + : X = : X = : NETVS R + : X + : X = : NETVS

User instructions for TI version

Table VII

The TI version is in three parts, and must be run in order. However, all the data may be stored before any one of the parts is run, but not all the parts use all the data. The following tabulation shows the data storage areas and the data used by the separate programs.

(Note: The HP version calls for entering data between operation of the different parts of the program. This is because some of the HP storage areas are used for more than one value. The TI calculator has more storage capacity than the HP, so that all of the data may be entered before the start of program A, inasmuch as none of the storage areas are used for more than one value.)

Data	Register	Program Use			
		Α	В	С	
Baffle spacing, in.	00		•	•	
Tube I.D., in.	01		•	*	
Tube O.D., in.	02		•	*	

Shell diar	motor in	03		*	•
Tube leng		03		*	•
	De passes	05		*	•
	s per pass	05		*	•
Tube pitc		07		*	•
	umber, inside	08		*	
	umber, outside	38		*	
Tube clea	-	09		*	•
	owrate, cold fluid, lb/h	10		*	•
•	owrate, hot fluid, lb/h	10		*	•
-	gravity, cold fluid	12			•
	gravity, tot fluid	13			•
	, cold fluid, cP	13		*	•
•	, hot fluid, cP	14		*	
	conductivity, cold	15		*	
	conductivity, tot	17			
	conductivity, tube	18		*	
	actor, outside	19		*	
•	actor, inside	20		*	
Temperat		20			
•	id, inlet	21	*	*	
	id, outlet	22	*	*	
	uid, inlet	23	•	*	
	uid, outlet	23	•	*	
Number		37		*	•
	are run as follows:	57			
Part A:	Key A gives LMTD.				
i uit A.		hing, it indicates a temperature cro	nes and incre	able conditio	n ilea kov
	10 y w gives / 7,1-2 (ii result is rids	ining, it indicates a temperature cit			11. 030 KOY

Table VII

Key C gives FT,2-4. Key R/S gives corrected LMTD for F_T .

Part B: Keys A, B, C, D, E give fractional temperature drops indicated in Table II. After key **D**, program prints both the D fraction (R_D) and the sum. Before key E, enter "0" for triangular tube array or "1" or square tube array. After key E, programs prints both the E fraction and the sum. Part C: Enter "0" for triangular tube array or "1" for square tube array.

Press key A Output will be shell-side pressure drop, psi. Press key C When program stops, enter ϕ + 0.14 and key **R/S**. Output will be tube-side pressure drop, psi.

Printout for first example—TI Version

Program A

71.9314248 . 9585382826 0.924290356 66.48552224

Program B

	0.08534324
	0. 00342830 5 3
-	2954729306
•	3842444759

- . 5393019662
- .9235464421

Program C

6.205625639

3.386938169 6.403467672

References

1. Standards of Tubular Exchanger Manufacturers Assn. (TEMA), Sixth ed., New York, 1978.

CLR.)

- 2. Kern, D. Q., "Process Heat Transfer," McGraw-Hill Book Co., New York, 1950.
- 3. Gilmour, C. H., "Shortcut to heat exchanger design-I," Chem. Eng., Oct. 1952.

The authors

Roger A. Crane is associate professor in the Dept. of Chemical and Mechanical Engineering at the University of South Florida, Tampa, FL 33620, tel: 813-974-2581. He received B.S. and M.S. degrees at the University of Missouri at Rolla and a Ph.D. at Auburn University. He was a senior engineer with Babcock and Wilcox and is a licensed professional engineer in Florida.

Robert Gregg is an instructor in mechanical engineering and machine design at the University of South Florida. He received B.S. and M.S. degrees there and has gained industrial experience as project design engineer for the construction and operation of plants producing cement and phosphate fertilizers. Gregg is a registered professional engineer in Florida.

Section VI Mass Transfer

Shortcut program for multicomponent distillation Program aids cryogenic solubility calculations Program calculates hydrocyclone efficiency Program performs vapor-liquid equilibrium calculations Evaluating separation processes Optimizing reactor agitation in heat-transfer-limited situations

Shortcut program for multicomponent distillation

This TI-59 program calculates the minimum reflux, minimum number of stages, and number of theoretical stages for a multicomponent distillation column.

Mark Kesler, Kesler Engineering, Inc.

A rough distillation-column design speeds up scoping studies, preliminary cost estimates, and parametric evaluations of operating variables. When great accuracy is not needed, the shortcut method is preferred to rigorous design procedures because it saves time and money.

The most widely accepted shortcut method for multicomponent distillation columns uses the Underwood equations for minimum reflux, the Fenske equations for minimum stages, and the Gilliland correlations for the number of stages for a given reflux. With these results in hand, the engineer then determines tray hydraulics and efficiencies, and sizes the column.

Because even the shortcut is time-consuming when calculated by hand, it pays to use this TI-59 program. The program calculates the minimum reflux, minimum number of stages, and number of theoretical stages for any one-feed column distilling eight or fewer components. The required inputs are feed, overhead and bottoms compositions; feed condition; and relative volatilities for all components.

Key assumptions

The shortcut method and the calculator program are based on several assumptions:

• There is only one feed stream, with eight or fewer components.

- There is only one heavy key component.
- The feed enters the column at the optimal stage.
- The correlation assumes constant molar overflows.

Developing the inputs

Column design usually begins with the following information: feed composition, feed temperature, and desired separation. Before using the program, one must collect more data and perform a few calculations:

1. Calculate the material balance for the column. The feed, overhead and bottoms compositions (mole fractions) are inputs to the program.

2. Set the relative volatility (α) for the heavy key component equal to 1. Then determine the α values for

the other components relative to the heavy key. The α values can be based on the feed temperature, but average α values (for feed, overhead and bottoms temperatures) are more accurate:

$$\alpha_i = (\alpha_{overhead} \cdot \alpha_{feed} \cdot \alpha_{bottoms})_i^{1/3}$$

Note: The program will not work if α for the heavy key is not equal to 1.

3. Determine the liquid mole fraction (q) of the feed. A bubble-point feed has q = 1.0; a dewpoint feed has q = 0.

4. Rank the components in order of decreasing relative volatility (α). Thus, component 1 will be the most volatile component. List all of the inputs in a table.

Example: Table I shows the input data required to calculate R_{min} and N_{min} for a simplified debutanizer column. Note that $i \cdot C_5$ is the heavy key component (with $\alpha = 1$) and that all of the components are arranged in order of decreasing α .

How the program works

After all of the input data are stored in the memories, the program first finds the heavy key component. The program looks for $\alpha_i = 1$, then designates component *i* as the heavy key and component i - 1 as the light key.

Component	i 	Feed (<i>F_i</i>)	Overhead (<i>D_i</i>)	Bottoms (<i>B_j</i>)	Relative volatility (α_i)
C ₃	1	0.05	0.102	0.000	4.99
C ₃ <i>i</i> -C ₄ <i>n</i> -C ₄	2	0.15	0.301	0.004	2.62
$n-C_4$	3	0.25	0.473	0.033	2.02
<i>i</i> –C ₅	4	0.20	0.069	0.327	1.00
n-C5	5	0.35	0.055	0.636	0.86
		1.00	1.000	1.000	

Program listing for TI-59 calculator

Table II

Location Code Key Find heavy key	Location Code Key	Location Code Key 122 34 34	Location Code Key	Location Code Key 244 01 1	Location Code Key 303 39 CEIS
$\begin{array}{c} \text{Hubbely key}\\ 000 & 76 & \text{LBL}\\ 001 & 17 & \text{B}\\ 002 & 43 & \text{RCL}\\ 003 & 40 & 40\\ 004 & 42 & \text{STD}\\ 005 & 01 & 01\\ 006 & 42 & \text{STD}\\ 007 & 19 & 19\\ 008 & 42 & \text{STD}\\ 009 & 20 & 20\\ 010 & 76 & \text{LBL}\\ 011 & 52 & \text{EE}\\ 012 & 02 & 2\\ 013 & 00 & 0\\ 014 & 85 & +\\ 015 & 43 & \text{RCL}\\ 016 & 01 & 01\\ 017 & 95 & =\\ 018 & 42 & \text{STD}\\ 019 & 35 & 35\\ 020 & 01 & 1\\ 021 & 32 & \text{X}; \text{T}\\ 022 & 43 & \text{RCL}\\ 023 & 01 & 01\\ 024 & 75 & -\\ 025 & 01 & 1\\ 026 & 95 & =\\ 027 & 42 & \text{STD}\\ 028 & 01 & 01\\ 029 & 73 & \text{RC} \\ 030 & 35 & 35\\ 031 & 22 & \text{INV}\\ 032 & 77 & \text{GE}\\ 033 & 52 & \text{EE}\\ 034 & 43 & \text{RCL}\\ 035 & 01 & 01\\ 026 & 95 & =\\ 037 & 02 & 2\\ 038 & 00 & 0\\ 039 & 95 & =\\ 040 & 42 & \text{STD}\\ 041 & 35 & 35\\ 042 & 73 & \text{RC} \\ 037 & 02 & 2\\ 038 & 00 & 0\\ 039 & 95 & =\\ 040 & 42 & \text{STD}\\ 041 & 35 & 35\\ 044 & 42 & \text{STD}\\ 044 & 35 & 35\\ 044 & 42 & \text{STD}\\ 045 & 33 & 33\\ 046 & 00 & 0\\ 047 & 42 & \text{STD}\\ 044 & 35 & 35\\ 044 & 42 & \text{STD}\\ 045 & 33 & 33\\ 046 & 00 & 0\\ 047 & 42 & \text{STD}\\ 044 & 42 & \text{STD}\\ 045 & 33 & 33\\ 046 & 00 & 0\\ 047 & 42 & \text{STD}\\ 048 & 01 & 01\\ 051 & 26 & 26\\ \hline	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123 43 RCL 124 32 RTN 125 92 RTN 126 01 1 127 93 . 128 00 0 130 05 5 132 36 PGM 133 08 08 134 11 A 135 33 08 08 134 11 A 135 36 PGM 137 36 PGM 138 08 08 139 12 B 140 01 PGM 143 03 C 144 03 C 145 93 . 144 03 C 144 00 1 145 00 1 145 00 1 155 00 0 155 00 1 157 37 37 158	184 73 RC:* 185 36 75 - 187 43 RCL 187 43 RCL 187 43 RCL 189 54) 190 95 = 191 44 SUM 192 37 37 193 43 RCL 194 19 19 195 75 - 196 01 1 197 95 #19 198 42 STD 201 67 K2 203 43 RCL 204 37 37 205 75 - 207 942 STD 208 29 R/S 211 76 LBL 212 85 42 213 02 0 214 00 0 215 85 1 220 235 35	2445 95 # 2445 95 # 2447 31 RCL 248 43 RCL 248 43 RCL 250 85 + 251 04 4 252 00 0 253 95 # 254 42 STO 255 38 + 256 85 + 257 01 1 258 95 # 259 42 STO 260 39 39 264 73 RC* 265 73 RC* 266 55 RC* 267 73 RC* 271 38 # 276 33 RC* 277 28 LDG 277 28 LDG 277 28 LDG 277 28 LDG 287 42 STO 288	304 76 LBL 305 28 LDG 306 43 RCL 307 04 04 308 75 RCL 309 43 RCL 309 43 RCL 310 95 + (LBL 311 95 + (LL 312 55 (LBL 312 55 (LBL 313 43 RCL 314 43 RCL 315 54 P 316 75 1 317 95 STD 320 05 (LBL 318 95 STD 321 05 (LBL 322 05 (LBL 322 05 (LBL 322 05 05 (LBL 333 45 05 P 332 06 43 STD 333 54 P 333 54 P 333 54 P 333 54 P 333 54 P 333 76 C 333 76 C 334 05 P 335 87 C 335 80 C 335 80 C 335 80 C 335 80 C 355

			1	Fable	II (continued)
Location	Code	Key	Location	Code	Key
371 372 374 375 376 3778 3779 381 388 388 388 388 388 388 388 389 399 399	~5+883+536453+53645+653847+45+8653ND3+653ND3+45NL536668553 637N5408405557+405337-340N6N7N637N4074074085540805940430000343	I 1SL R R PODE RELIR I CSCGSLCR R R PODE S Y .5668=X. VQXRG(L1+L6)+(1+C0)=XBXC3VQ RRDNLRL2(L1+(L2+1)=T0X.5668=X.	7890123456789012345678901234567890123456789012345678901234 222333333333344444444444445555555555	ਲ਼ਖ਼ਲ਼ਲ਼ੑੑੑਖ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਖ਼ਲ਼ਖ਼ਖ਼ਲ਼ਖ਼ਲ਼ਲ਼ਖ਼ਲ਼ਖ਼੶ਲ਼ਖ਼੶ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਖ਼ਲ਼ਲ਼ਲ਼ਲ਼ਖ਼੶ਖ਼ਲ਼ ਲ਼ਖ਼ਲ਼ਲ਼ੑੑੑਲ਼ਖ਼ਲ਼ਖ਼ਲ਼ਫ਼ਲ਼ਖ਼ਲ਼ਲ਼ਫ਼ਖ਼ਲ਼ਲ਼ਲ਼ੑੑਖ਼ੑੑੑੑਲ਼ੑੑੑੑੑੑੑੑੑੑ	5 STD RTD RTD STD RTD STD RTD STD RTD STD RTD STD RTD STD RTD STD RTD STD STD RTD STD STD STD STD STD STD STD S

Nomenclature

- B_i Mole fraction of component *i* in bottoms
- D_i Mole fraction of component *i* in overhead
- F_i Mole fraction of component *i* in feed
- k Number of components in feed $(k \le 8)$
- N Number of theoretical stages
- N_{min} Minimum number of theoretical stages
- q Liquid mole fraction in feed (0.0 for dewpoint;1.0 for bubble point)
- RReflux ratio R_{min} Minimum reflux ratio
- $\begin{array}{ll} R_{min} & \text{Minimum reflux ratio} \\ \alpha_i & \text{Relative volatility of component } i, \text{ based on} \\ & \text{heavy key } (\alpha = 1 \text{ for heavy key component}) \end{array}$
- θ Variable in Underwood correlation

Again, it is essential that the components be arranged in order of decreasing α , and that the heavy key component have $\alpha = 1$.

The program then uses the Underwood correlation [1] to find the minimum reflux ratio (R_{min}) . The equation is:

$$R_{min} = \left(\sum_{1}^{k} \frac{\alpha_i D_i}{\alpha_i - \theta}\right) - 1$$

where k is the number of components, and θ is determined by trial and error, using the following equation:

$$1 - q = \sum_{1}^{k} \frac{\alpha_i F_i}{\alpha_i - \theta}$$

The Underwood correlation requires that the overhead composition be consistent with minimum reflux conditions. But this program uses actual overhead compositions: this is simpler, and nearly as accurate.

After finding \hat{R}_{min} , the program calculates the minimum number of stages (N_{min}) , using the Fenske equation [2]:

$$N_{min} = \log \left[\frac{D_{lk} B_{hk}}{D_{hk} B_{lk}} \right] \left(\frac{1}{\log \alpha_{lk}} \right)$$

where the subscripts hk and lk denote the heavy and light key components.

The user then determines the desired reflux ratio (R) based on R_{min} . With this additional input, the program will calculate the number of theoretical stages (N), using the Gilliland correlation [3] as expressed by Eduljee [4]:

$$\frac{N - N_{min}}{N+1} = 0.75 - 0.75 \left(\frac{R - R_{min}}{R+1}\right)^{0.5668}$$

Alternatively, the user can input the desired value of N, and the program can find R, using the equation above.

How to use the program

Prepare all of the required input data as shown in Table I. Load the program, listed in Table II, into the calculator. Then follow the user instructions in Table III. The Master Library Module must be in place for the program to work.

Step	Description	Enter	Press	Display
1	Input feed composition (up to eight components) in order of decreasing volatility	<i>F</i> ₁ , <i>F</i> ₂	STO 11, STO 12	F ₁ , F ₂
2	Input relative volatility (α must be 1.0 for heavy key)	$\alpha_1, \alpha_2 \cdots$	STO 21, STO 22	^α 1, ^α 2
3	Input bottoms composition	B ₁ , B ₂	STO 41, STO 42	B ₁ , B ₂
4	Input overhead composition	D ₁ , D ₂	STO 51, STO 52	D ₁ , D ₂
5	Input number of components ($k \leq 8$)	k	STO 40	k
6	Input feed condition (q=0 for dew point; q=1 for bubble point)	q	STO 50	q
7	Calculate minimum reflux ratio (run time 3-5 min)		2nd B'	R _{min}
8	Calculate minimum number of stages		2nd C'	N _{min}
9	Input desired reflux ratio (<i>R>R_{min})</i>	R	STO 2	R
10	Calculate number of stages		2nd D′	N

To calculate R_{min} and N_{min} for new conditions, change the inputs as needed and return to step 7.

Given any three of the four variables R_{min}, N_{min}, R and N in memory, pressing 2nd D' will calculate the fourth.

Data registers us	ed in program	Table IV			
00 Not used	20 Number of components (k)	40 Number of components (k)			
01 <i>R_{min}</i>	21 α_i values	41 B; values			
02 <i>R</i>	22 "	42 "			
03 N _{min}	23 "	43 "			
04 N	24 "	44 "			
05 Used	25 "	45 "			
06 "	26 "	46 "			
07 ″	27 "	47 "			
08 ″	28 "	48 "			
09 ″	29 R _{min}	49 N _{min}			
10 Θ	30 Used	50 Feed			
		condition (q)			
11 F; values	31 Loop counter	51 D; values			
12 ″	32 Used	52 ′″			
13 ″	33 D _{Ik}	53 "			
14 "	34 1-q	54 ′″			
15 "	35 Used	55 "			
16 "	36 Loop counter	56 "			
17 ″	37 Used	57 "			
18 ″	38 Loop counter	58 "			
19 Number of components (k)	39 "	59 Not used			

In the program listing in Table II, several of the listed keystrokes are not keystrokes at all, but instead are display conventions used by the TI-59 calculator.

To be able to key in the program, make the following changes:

Wherever RC* appears, substitute RCL 2nd Ind.
 Wherever RTN appears, substitute INV SBR.

RC* appears in steps 029, 042, 085, 088, 092, 177, 180, 184, 230, 261, 264, 267 and 270. **RTN** appears in steps 125, 344, and 436.

The displays **RC*** and **RTN** will appear again when the program is listed. The "Personal Programming" book explains these displays.

Note that the program includes a subroutine labeled D' that can calculate one of the values N, N_{min} , R or R_{min} , when the other three values are stored in the proper registers. Table IV shows the contents of the data registers used in the program.

Example: Find R_{min} and N_{min} for the data given in Table I. First, key in the data as shown in the user instructions. To find R_{min} , press **B'**, wait 3-5 min, and read the value of R_{min} when it appears in the display:

$$R_{min} = .9351686744$$

Then press C' to find N_{min} (instant):

$$N_{min} = 5.999795796$$

Enter the actual value of R desired. For instance, to specify a reflux ratio 25% greater than the minimum, multiply R_{min} by 1.25 to get R:

$$R = 1.168960843$$

Store R in register 2, and press D' to find N:

$$N = 14.14481751$$

Thus, the number of theoretical stages is about 14 for a reflux ratio 25% greater than the minimum, compared to six stages for minimum reflux ratio.

For HP-67/97 users

The HP version closely follows the TI program. Table V is a listing of the HP program, and user instructions are presented in Table VI.

(Continued) Table V

The calculation of Θ , the variable in the Underwood equation, takes about 4 minutes. This variable is not printed; it is only displayed. Also, values calculated by the HP will differ slightly from those calculated by the TI. This difference is probably because the TI calculates Θ to an error of 0.005 and the HP calculates it to an error of 0.0001. The difference in calculated values is not significant to two decimals. An example of such a difference is the calculation of R_{\min} . The TI value is 0.935168... and the HP value is 0.937266...

itep	Key	Code	Step	Key	Code
010	1	01	065	*LBL7	21 07
11	STOC	35 1 <i>3</i>	066	RCLA	36 11
12	*LBLa	21 16 11	067	1	01
13	1	E 1	068	RCLC	36 13
14	STÜI	- 35 - 46	069	+	-55
15	*LBL1	21 61	070	÷	-24
16	RCL i	36 45	071	STOA	35 11
17	P≠S	16-51	072	RCLC	36-13
18	RCL i	36 45	073	1	01
19	Х	-35	074	0	00
20	RCL i	36 45	075	÷	-24
21	RCLA	36-11	076	STOC	35 13
22	-	-45	077	GT09	22 09
23	÷	-24	0 78	*LBL6	21 06
24	ST+9	35-55 09	079	SF0	16 21 00
25	ISZI	16 26 46	080	RCL9	36 09
26	₽₽S	16-51	081	STOB	35-12
27	RCLØ	36 00	082	*LBL9	21 09
28	RCLI	36 46	083	RCLA	36 11
29	X>Y?	16-34	084	1	01
30	GT02	22 02	085	RCLC	36 13
31	GT01	22 01	086	+	-55
32	#LBL2	21 02	087	х	-35
33	P‡S	16-51	088	STOA	35 11
34	RCL9	36 09	089	0	00
35	1	01	090	STO9	35 09
36	RCLO	36 00	091	P≠S	16-51
37	-	-45	092	GTOa	
38	-	-45	093	*LBL2	21 02
39	ABS	16 31	8 94	F≓S	16-51
10		-62	095	R∕S	51
11	0	00	096	1	01
12	ø	00	0 97	STOI	35 46
13	0	00	098	*LBLb	21 16 12
14	1	01	099	RCLI	36 45
15	X>Y?	16-34	100	P≓S	16-51
46	GT02	22 02	101	RCLI	36 45
47	F0?	16 23 00	102	x	-35
48	GTO5	22 05	103	1	01
49	GT06	22 06	104	RCL	36 45
50	*LBL5	21 05	105	X≠Y?	16-32
51	+LDL0 0	00	106	GT02	22 02
52	RCL9	36 09	107	RCLI	36 46
53	X>Y?	16-34	108	STOB	35 12
54	GT05	22 05	109	R↓	-31
55	8,85 R↓	-31	110	*LBL2	21 02
56	RCLB	36 12	111	+R↓	-31
57	X>Y?	16-34	112	R∔	-31
58	GT07	22 07	112	RCLI	36 45
50 59	GT06	22 06	113	RCLA	36 11
59 60	*LBL5	22 08 21 05	114	KULH	-45
60 61	*LBLJ R↓	-31	115	÷	-24
62 62	K.↓ RCLB	-31 36 12	117	÷ P‡S	-24 16-51
	KULB X>Y?	36 12 16-34	117	5T+9	35-55 09
63					

120RCL0 36 66 172 Y^{X} 51 121RCL1 36 46 173 . -52 122XY? $16-34$ 174 7 67 123GTO2 22 02 175 5 65 124GTO2 22 02 175 5 65 125#LBL2 21 02 177 CHS -22 126101 178 . -62 127 $ST-9$ $35-45$ 09 179 7 67 128RCL8 36 12 180 5 65 129STOI 35 46 181 + -55 130RCLi 36 45 182 $STOO$ 35 133X2Y-41 185 $*LBLE$ 21 15 134 \div -24 186 $RCLD$ 36 14 135STOC 35 187 $RCLD$ 36 14 136R/S 51 188 + -55 137 $RCLi$ 36 45 199 $RCLD$ 36 141 \div -24 193 $PRTX$ -14 138ISZI 16 25 199 $RCLA$ 35 147 $RCLi$ 36 45 199 $RCLA$ 35 11 143 x -35 195 x -24 141 147 x -36 13 194 <	Step	Key	Code	Step	Key	Code
121 RCLI 36 46 173 . -62 122 X)Y? $16-34$ 174 7 67 123 GTO2 22 02 175 5 65 124 GTOL 22 02 177 CHS -35 125 #LBL2 21 02 177 CHS -22 126 1 01 178 . -62 127 ST-9 $35-45$ 09 179 7 67 128 RCLB 36 12 186 5 05 129 STOI 35 46 181 + -55 130 RCLi 36 45 184 STOC 35 13 133 X2Y -41 185 $RCLC$ 36 13 133 X2Y -41 185 $RCLC$ 36 14 136 $R/2$ 511 87 724 926 724 </td <td>120</td> <td>RCLØ</td> <td>36 00</td> <td>172</td> <td>γ×</td> <td>31</td>	120	RCLØ	36 00	172	γ×	31
122 $X > Y?$ 16-34 174 7 67 123 6T02 22 02 175 5 65 124 6T0b 22 16 177 CHS -22 125 #LBL2 21 02 177 CHS -22 126 1 01 178 . -62 127 ST-9 35-45 09 179 7 07 128 RCLB 36 12 180 5 05 12 130 RCLi 36 45 182 STOD 35 14 131 DSZI 16 25 46 183 RCLE 36 12 133 X2Y -41 186 KLLC 36 13 135 STOC 35 13 187 RCLD 36 14 136 R/SZ 51 188 + -55 13 187 RCLD 36 14 137 RCLi 36 45 191 -	121	RCLI	36 46	173		-52
124 6TOb 22 16 12 176 \times -35 125 #LBL2 21 82 177 CHS -22 126 1 01 178 . -62 127 ST-9 35-45 09 179 7 07 128 RCLB 36 12 180 5 05 129 STOI 35 46 181 + -55 130 RCLI 36 45 184 STOD 35 14 131 DSZI 16 25 46 183 RCLB 36 12 133 X2Y -41 185 *LBLE 21 15 134 \div -24 186 RCLD 36 14 135 STOC 35 188 + -55 137 RCL 36 45 191 - -45 137 RCLI 36 45 191 - -45 14 139 RCLI 36		X>Y?	16-34	174	7	67
124 6TOb 22 16 12 176 \times -35 125 #LBL2 21 82 177 CHS -22 126 1 01 178 . -62 127 ST-9 35-45 09 179 7 07 128 RCLB 36 12 180 5 05 129 STOI 35 46 181 + -55 130 RCLI 36 45 184 STOD 35 14 131 DSZI 16 25 46 183 RCLB 36 12 133 X2Y -41 185 *LBLE 21 15 134 \div -24 186 RCLD 36 14 135 STOC 35 188 + -55 137 RCL 36 45 191 - -45 137 RCLI 36 45 191 - -45 14 139 RCLI 36	123	GT02	22 0 2	175	5	65
125 *LBL2 21 02 177 CHS +22 126 1 01 178 . -62 127 ST-9 35-45 09 179 7 07 128 RCLB 36 12 180 5 05 129 STOI 35 46 181 + -55 130 RCLI 36 45 182 STOD 35 14 131 DSZI 16 25 46 183 RCLE 36 12 132 RCLI 36 45 184 STOC 35 13 133 X2Y -41 185 *LBLE 21 15 134 + -24 188 * -55 137 RCLI 36 45 191 - -45 140 X2Y -41 192 \pm -24 141 \pm -24 193 PRTX -14 142 RCLC 36 1					Х	
126 1 01 178 . -62 127 ST-9 35-45 09 179 7 07 128 RCLB 36 12 180 5 05 129 STOI 35 46 181 + -55 130 RCLi 36 45 182 STOO 35 14 131 DSZI 16 25 46 183 RCLE 36 12 132 RCLi 36 45 184 STOC 35 13 133 X2Y -41 185 *LBLE 21 15 134 \div -24 186 HCLC 36 14 136 R/S 51 188 + -55 137 RCLi 36 45 191 - -45 140 X2Y -41 192 \div -24 141 141 14 -24 193 PRTX -14 142 RCLC 36 13					CHS	
127 ST-9 35-45 09 179 7 07 128 RCLB 36 12 180 5 05 129 STOI 35 46 181 + -55 130 RCLi 36 45 182 STOD 35 14 131 DSZI 16 25 46 183 RCLE 36 12 132 RCLi 36 45 184 STOC 35 13 133 X2Y -41 185 *LBLE 21 15 134 \div -24 186 RCLC 36 14 135 STOC 35 188 + -55 137 RCLi 36 45 191 - -45 136 R/SY -41 192 \div -24 194 R/S 51 137 RCLi 36 45 191 - -45 144 142 RCLC 36 14 139 RCLi 36 14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
128 RCLB 36 12 180 5 05 129 STOI 35 46 181 + -55 130 RCLi 36 45 182 STOD 35 14 131 DSZI 16 25 46 183 RCLE 36 12 132 RCLi 36 45 184 STOC 35 13 133 X2Y -41 185 *LBLE 21 15 134 \div -24 186 RCLC 36 13 135 STOC 35 13 187 RCLD 36 14 136 R/S 51 189 1 01 138 ISZI 16 26 46 190 RCLD 36 14 139 R/CLi 36 45 191 - -45 140 X2Y -41 192 \div -24 141 \div -24 193 PRIX -14 141 14 14						
129ST0I3546181+ -55 130RCLi3645182ST0D3514131DSZI162546183RCLE3612132RCLi3645184ST0C3513133X2Y-41185*LBLE2115134 \div -24186RCLC3614135ST0C3513187RCLD3614136R/S51188+-55513614136R/S51187RCLD3614138ISZI162646190RCLD3614139RCLi364519145140X2Y-41192 \div -24141 \div -24193PRTX-14142RCLC3613194R/S51143x-35195*LBLd211614143x-35197RCLB3612144LN32296510A3511145PZS16-51197RCLB3611145PZS16-51197RCLB3611146DSZI16254619845147RCLi3645199RCLA3611 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
130RCL i3645182STOD3514131DSZI162546183RCLB3612132RCL i3645184STOC3513133X2Y-41185*LBLE2115134 \div -24186RCLD3614136R/S51188+-55137RCL i3645190RCLD36138ISZI162646190RCLD36149X2Y-41192 \div -24140X2Y-41192 \div -24141 \div -24193PRTX-14142RCLC3613194R/S51143x-35195*LBLd2116143x-35197RCLB3611145P2S16-51197RCLB3611145P2S16-51197RCLB3611146DSZI16254619845147RCLI3645199RCLA3611148LN32200101149149 \div -24201+-55150STOB3512202 \div -24151P2S16-5120362					+	
131 DSZI 16 25 46 183 RCLE 36 12 132 RCL: 36 45 184 STOC 35 13 133 X2Y -41 185 *LBLE 21 15 134 \div -24 186 RCLC 36 13 135 STOC 35 13 187 RCLD 36 14 136 R/S 51 188 + -55 137 RCLi 36 45 191 - -45 140 X2Y -41 192 \div -24 141 \div -24 193 PRIX -14 142 RCLC 36 13 194 R/S 51 143 x -35 195 #LBd 21 16 14 144 LN 32 196 STOA 35 11 145 P2S 16-51 197 RCLB 36 11 144 LN					STOD	
132 RCL: 36 45 184 STOC 35 13 133 X^2Y -41 185 *LBLE 21 15 134 \div -24 186 RCLC 36 13 135 STOC 35 13 187 RCLD 36 14 136 R/S 51 188 + -55 137 RCLi 36 45 190 RCLD 36 14 138 ISZI 16 26 46 190 RCLD 36 14 139 RCLi 36 45 191 - -45 140 X2Y -41 192 \div -24 141 \div -24 193 PRTX -14 142 RCLC 36 13 194 R/S 51 143 \times -35 195 *LBLd 21 16 14 144 LN 32 196 STOA 35 11 145 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
133 XtY -41 185 $*LBLE$ 21 15 134 \div -24 186 $RCLC$ 36 13 135 STUC 35 13 187 $RCLD$ 36 14 136 R/S 51 188 $+$ -55 137 $RCLi$ 36 45 199 1 01 138 ISZI 16 26 46 190 $RCLD$ 36 14 139 $RCLi$ 36 45 191 - -45 140 XtY -41 192 \div -24 141 \div -24 193 $PRTX$ -14 142 $RCLC$ 36 13 194 R/S 51 143 x -35 195 $*LBLd$ 21 16 14 142 $RCLC$ 36 13 194 R/S 51 14 14 14 14 14 16 14 14 16 16 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
134 \div -24 186 RCLC 36 13 135 STOC 35 13 187 RCLD 36 14 136 R/S 51 188 + -55 137 RCLi 35 45 189 1 01 138 ISZI 16 26 46 190 RCLD 36 14 139 RCLi 36 45 191 - -45 140 X2Y -41 192 \div -24 141 \div -24 193 PRTX -14 142 RCLC 36 13 194 R/S 51 143 x -35 195 *LBLd 21 16 14 144 LN 32 196 STOA 35 11 145 PZS 16-51 197 RCLB 36 12 144 LN 32 200 1 01 14 145 PZS 16-51 203 24 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
135 STOC 35 13 187 RCLD 36 14 136 R/S 51 188 + -55 137 RCLi 35 45 189 1 01 138 ISZI 16 26 46 190 RCLD 36 14 139 RCLi 36 45 191 - -45 140 $X2Y$ -41 192 \div -24 141 \div -24 193 PRTX -14 142 RCLC 36 13 194 R/S 51 143 x -35 195 *LBLd 21 16 143 x -35 197 RCLB 36 12 144 LN 32 196 STOA 35 11 145 P25 16-51 197 RCLB 36 12 146 DSZI 16 25 46 198 - -45 147 RCLi <						
136 R/S 51188+-55137 $RCLi$ 3645189101138 $ISZI$ 162646190 $RCLD$ 3614139 $RCLi$ 364519145140 XZY -41192 \div -24141 \div -24193 $PRTX$ -14142 $RCLC$ 3613194 R/S 51143 \times -35195 $*LBLd$ 2116143 \times -35195 $*LBLd$ 2116144LN32196STOA3511145 PZS 16-51197 $RCLB$ 3611145 PZS 16-51197 $RCLB$ 3611148LN3220010101149 \div -24201+-55150STOB3512202 \div -24151 PZS 16-5120362152 $RCL9$ 3609204767153 $PRTX$ -1420762154 $RCLB$ 361220645155 $PRTX$ -1420762156 $CF0$ 162202208707157 SPC 16-11209505158 R/S 5210						
137RCLi3645189101138ISZI162646190RCLD3614139RCLi364519145140X2Y-41192 \div -24141 \div -24193PRTX-14142RCLC3613194R/S51143x-35195*LBLd2116144LN32196STOA3511145P2S16-51197RCLB3636146DSZI16254619845147RCLi3645199RCLA3611148LN3220010101149 \div -24201+-55150STOB3512202 \div -24151P2S16-5120362152RCL93609204767153PRTX-1420762154RCLB361220645155PRIX-14207-62156CF0162203208707157SPC16-11209505158R/S5210CHS-22159*LBLD2114211 \div						
138ISZI162646190RCLD3614139RCLi364519145140X#Y-41192 \div -24141 \div -24193PRIX-14142RCLC3613194R/S51143x-35195*LBLd2116144LN32196STOA3511145P#S16-51197RCLB3612146DSZI16254619845147RCLi3645199RCLA3611148LN3220010101149 \div -24201+-55150STOB3512202 \div -24151P#S16-5120362152RCL93669204707153PRTX-1420762154RCLB361220645155PRTX-1420762156CF0162232208707157SPC16-11209505158R/S5210CHS-22159*LBLD2114211 \div -62160STOA3511212. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
139 RCLi 36 45 191 - -45 140 X±Y -41 192 \div -24 141 \div -24 193 PRTX -14 142 RCLC 36 13 194 R/S 51 143 x -35 195 *LBLd 21 16 14 144 LN 32 196 STOA 35 11 145 P‡S 16-51 197 RCLB 36 12 146 DSZI 16 25 46 198 - -45 147 RCLi 36 45 199 RCLA 36 11 148 LN 32 200 1 01 14 -55 150 STOB 35 12 202 \div -24 151 P‡S 16-51 203 . -62 152 RCL9 36 09 204 7 07 153 PTX -14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
140X2Y-41192 \div -24141 \div -24193PRTX-14142RCLC3613194R/S51143x-35195*LBLd211614144LN32196STOA3511145P2S16-51197RCLB3612146DSZI16254619845147RCLi3645199RCLA3611148LN3220010101149 \div -24201+-55150STOB3512202 \div -24151P2S16-5120362152RCL93609204707153PRTX-14205505154RCLB361220645155PRTX-1420762156CF0162203208707157SPC16-11209505158R/S5.210CHS-22159*LBLD2114211 \div -62166STOA351121262167RCL93609213505168RCL93609213505<					-	
141 \div -24 193PRTX -14 142RCLC3613194R/S51143x -35 195*LBLd211614144LN32196STOA3511145PZS16-51197RCLB3612146DSZI16254619845147RCLi3645199RCLA3611148LN32200101149 \div -24201+-55150STOB3512202 \div -24151PZS16-5120362152RCL93609204767153PRTX-14205505154RCLB361220645155PRTX-1420762156CF0162203208707157SPC16-11209505158R/S5.210CHS-22159*LBLD2114211 \div -62160STOA351121262163RCLA3611215666164101216808165+-552171/X52166 <t< td=""><td></td><td></td><td></td><td></td><td>÷</td><td></td></t<>					÷	
142RCLC3613194R/S51143 \times -35195*LBLd211614144LN32196STOA3511145P2S16-51197RCLB3612146DSZI16254619845147RCLi3645199RCLA3611148LN32200101149 \div -24201+-55150STOB3512202 \div -24151P2S16-5120362152RCL93609204707153PRTX-14205505154RCLB361220645155PRTX-1420762156CF0162200208707157SPC16-11209505158R/S5.210CHS-22159*LBLD2114211 \div -62160STOA351121262161RCL9360921350516245214606163RCLA3611215666164101216808165<						
143 x -35 195 *LBLd 21 16 14 144 LN 32 196 STOA 35 11 145 P\$S 16-51 197 RCLB 36 12 146 DSZI 16 25 46 198 - -45 147 RCLi 36 45 199 RCLA 36 11 148 LN 32 200 1 01 149 - -45 149 \div -24 201 + -55 150 STOB 35 12 202 \div -24 150 STOB 35 12 202 \div -24 151 150 STOB 35 12 202 \div -24 151 151 P\$ S 16-51 203 . -62 152 152 RCL9 36 69 204 7 07 153 P\$ 14 207 . -62 155						
144LN32196STOA3511145 P *S16-51197 $RCLB$ 3612146 $DSZI$ 16254619845147 $RCLi$ 3645199 $RCLA$ 3611148LN32200101149 \div -24201+-55150STOB3512202 \div -24151 P *S16-5120362152 $RCL9$ 3609204707153 $PRTX$ -14205505154 $RCLB$ 361220645155 $FRTX$ -1420762156 $CF0$ 162203208707157SPC16-11209505158 R/S 5.210 CHS -22159 $*LBLD$ 2114211 \div -62160STOA351121262161 $RCL9$ 360921350516245214606163 $RCLA$ 3611215666164101216808165+-55217 $1/X$ 52166 \div -24218 Y^* 31167 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
145 $P_{x}^{c}S$ 16-51197 $RCLB$ 3612146 $DSZI$ 16254619845147 $RCLi$ 3645199 $RCLA$ 3611148LN32200101149 \div -24201+-55150STOB3512202 \div -24151 $P_{x}^{c}S$ 16-5120362152 $RCL9$ 3609204707153 $PRTX$ -14205505154 $RCLB$ 361220645155 $PRTX$ -1420762156 $CF0$ 162200208707157SPC16-11209505158 R/S 5210 CHS -22159 *LBLD 2114211 \div -62161 $RCL9$ 360921350516245214606163 $RCLA$ 3611215666164101216808165+-55217 $1/X$ 52166 \div -24218 Y^{c} 3116762219STOD3514168505220 $RCL9$ 3609 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
146DSZI16254619845147RCLi3645199RCLA3611148LN32200161149 \div -24201+-55150STOB3512202 \div -24151PZS16-5120362152RCL93609204707153PRTX-14205505154RCLB361220645155PRTX-1420762156CF0162200208707157SPC16-11209505158R/S5.210CHS-22159*LBLD2114211 \div -62161RCL9360921350516245214606163RCLA3611215666164101216808165+-552171/X52166 \div -24218Y*3116762219STOD3514168505220RCL93609169606221STOC3513170606222GTOE <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
147RCLi3645199RCLA3611148LN32200101149 \div -24201+-55150ST0B3512202 \div -24151PZS16-5120362152RCL93609204767153PRTX-14205505154RCLB361220645155PRTX-1420762156CF0162200208707157SPC16-11209505158R/S5.210CHS-22159*LBLD2114211 \div -62161RCL9360921350516245214606163RCLA3611215666164101216808165+-552171/X52166 \div -24218Y3116762219ST0D3514168505220RCL93609169606221ST0C3513170606222GT0E2215					KULD	
148LN32200101149 \div -24201 $+$ -55150STOB3512202 \div -24151P\$\$16-5120362152RCL93609204707153PRTX-14205505154RCLB361220645155PRTX-1420762156CF0162203208707157SPC16-11209505158R×S5210CHS-22159 *LBLD 2114211 \div -62160STOA351121262161RCL9360921350516245214606163RCLA3611215666164101216808165+-552171/X52166 \div -24218Y3116762219STOD3514168505220RCL93609169606221STOC3513170606222GTOE2215					Dria	
149 \div -24 201 $+$ -55 150 $STOB$ 35 12 202 \div -24 151 P *S $16-51$ 203 . -62 152 $RCL9$ 36 69 204 7 67 153 RTX -14 205 5 85 154 $RCLB$ 36 12 206 $ -45$ 155 $PRTX$ -14 207 . -62 156 $CF0$ 16 22 03 208 7 07 157 SPC $16-11$ 209 5 05 158 $R \times S$ $5.$ 210 CHS -22 159 $*LBLD$ 21 14 211 \div -62 160 $STOA$ 35 11 212 . -62 161 $RCL9$ 36 09 213 5 05 162 $ -45$ 214 6 06 163 $RCLA$ 36 11 215 6 66 164 1 01 216 8 88 165 $+$ -55 217 $1 \times X$ 52 166 \div -24 218 $Y \times$ 31 167 -62 219 $STOD$ 35 14 168 5 05 220 $RCL9$ 36 09 169 6 06 221 $STOC$ 35 13 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
150STOB3512202 \div -24151P \ddagger S16-5120362152RCL93609204707153PRTX-14205505154RCLB361220645155PRTX-1420762156CF0162200208707157SPC16-11209505158R/S5.210CHS-22159*LBLD2114211 \div -62161RCL9360921350516245214666163RCLA3611215666164101216808165+-552171/X52166 \div -24218Y3116762219STOD35168505220RCL93609169606221STOC3513170606222GTOE2215						
151 P *S16-51203. -62 152 $RCL9$ 36 09 204 7 07 153 $PRTX$ -14 205 5 05 154 $RCLB$ 36 12 206 $ -45$ 155 $PRTX$ -14 207 . -62 156 $CF0$ 16 22 008 7 07 157 SPC $16-11$ 209 5 05 158 R/S 5 210 CHS -22 159 $*LBLD$ 21 14 211 \div -24 160 $STOA$ 35 11 212 . -62 161 $RCL9$ 36 09 213 5 05 162 $ -45$ 214 6 06 163 $RCLA$ 36 11 215 6 66 164 1 01 216 8 08 165 $+$ -55 217 $1/X$ 52 166 \div -24 218 Y^{\times} 31 167 -62 219 $STOD$ 35 14 168 5 05 220 $RCL9$ 36 09 169 6 06 221 $STOC$ 35 13 170 6 06 222 $GTOE$ 22 15						
152RCL936 09 204 7 67 153PRTX -14 205 5 05 154RCLB 36 12 206 $ -45$ 155PRTX -14 207 . -62 156CF0 16 22 00 208 7 07 157SPC $16-11$ 209 5 05 158R/S5. 210 CHS -22 159 *LBLD 21 14 211 \div -62 160STOA 35 11 212 . -62 161RCL9 36 09 213 5 05 162- -45 214 6 06 163RCLA 36 11 215 6 06 1641 01 216 8 08 165+ -55 217 $1/X$ 52 166 \div -24 218 Y 31 167. -62 219 $STOD$ 35 1685 05 220 $RCL9$ 36 1696 06 221 $STOC$ 35 1706 06 222 $GTOE$ 22					Ŧ	
153PRTX -14 205505154RCLB3612206 $ -45$ 155PRTX -14 207. -62 156CF0162203208707157SPC16-11209505158R/S5.210CHS -22 159*LBLD2114211 \div -24 160ST0A3511212. -62 161RCL93609213505162- -45 214606163RCLA3611215666164101216808165+ -55 217 $1/X$ 52166 \div -24 218Y×31167. -62 219ST003514168505220RCL93609169606221ST0C3513170606222GT0E2215						
154RCLB 36 12 206 $ -45$ 155PRTX -14 207 . -62 156CF0 16 22 03 208 7 07 157SPC $16-11$ 209 5 05 158 $R \cdot S$ 5. 210 CHS -22 159 *LBLD 21 14 211 \div -24 160STOA 35 11 212 . -62 161RCL9 36 09 213 5 05 162- -45 214 6 06 163RCLA 36 11 215 6 66 1641 01 216 8 08 165+ -55 217 $1 \times X$ 52 166 \div -24 218 Y^{\times} 31 167. -62 219 $STOD$ 35 14 1685 05 220 $RCL9$ 36 09 169 6 06 221 $STOC$ 35 13 170 6 06 222 $GTOE$ 22 15						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					÷	
158 R/S 5. 210 CHS -22 159 $*LBLD$ 21 14 211 \div -24 160 STOA 35 11 212 . -62 161 RCL9 36 09 213 5 05 162 - -45 214 6 06 163 RCLA 36 11 215 6 66 164 1 01 216 8 08 165 + -55 217 1/X 52 166 \div -24 218 Y* 31 167 . -62 219 STOD 35 14 168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
160 STOA 35 11 212 . -62 161 RCL9 36 09 213 5 05 162 - -45 214 6 06 163 RCLA 36 11 215 6 06 164 1 01 216 8 08 165 + -55 217 1/X 52 166 ÷ -24 218 Y× 31 167 . -62 219 STOD 35 14 168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15						
161 RCL9 36 09 213 5 05 162 - -45 214 6 06 163 RCLA 36 11 215 6 06 164 1 01 216 8 08 165 + -55 217 $1/X$ 52 166 \div - 24 218 Y^{\times} 31 167 . - 62 219 $STOD$ 35 14 168 5 05 220 $RCL9$ 36 09 169 6 06 221 $STOC$ 35 13 170 6 06 222 $GTOE$ 22 15					÷	
162 - -45 214 6 06 163 RCLA 36 11 215 6 66 164 1 01 216 8 08 165 + -55 217 1/X 52 166 ÷ -24 218 Y× 31 167 . -62 219 STOD 35 14 168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15						
163 RCLA 36 11 215 6 66 164 1 01 216 8 08 165 + -55 217 1/X 52 166 ÷ -24 218 Y× 31 167 . -62 219 STOD 35 14 168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15		RULY				
164 1 01 216 8 08 165 + -55 217 1/X 52 166 ÷ -24 218 Y× 31 167 . -62 219 STOD 35 14 168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15		PCLA				
165 + -55 217 1/X 52 166 ÷ -24 218 Y× 31 167 . -62 219 STOD 35 14 168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15						
166 ÷ −24 218 Y [×] 31 167 . −62 219 STOD 35 14 168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15						
16762 219 STOD 35-14 168 5 05 220 RCL9 36-09 169 6 06 221 STOC 35-13 170 6 0ê 222 GTOE 22-15						
168 5 05 220 RCL9 36 09 169 6 06 221 STOC 35 13 170 6 0ê 222 GTOE 22 15		÷				
169 6 06 221 STOC 35 13 170 6 06 222 GTOE 22 15						
170 6 06 222 GTOE 22-15		J 2				
		2				
111 0 00 223 K/S JI		0 0				
	 111	ø	00	223	R/ 0	51

User instructions for HP version

Table VI

Store the following data:

Number of components, k (maximum 8)	STO 0
Fraction of component in feed, F _i	STO 1 to k
Switch storage areas	key P ≓ S
Fraction liquid in feed, q	STO 0
Relative volatilities, α_i	STO 1 to k
Switch storage areas	key P ≓ S

(Continued) Table Vi

Key A

Program then calculates Θ , variable in Underwood correlation. Calculation may take a few minutes.

Then, store overhead data, D _i	STO 1 to k
Key R/S	
Then, store bottoms data, B_i	STO 1 to k
Key R/S	
Output will be: Minimum reflux, <i>R</i> _{min} Minimum theoretical stages, <i>N</i> _{min}	
Input actual reflux <i>R</i> Output will be actual number of stages, <i>N</i>	key D
Input actual number of stages <i>N</i> , Output will be actual reflux ratio, <i>R</i>	key d

Note: Data cannot all be stored before the program is started, as in the TI version, because the HP-67/97 has limited storage capacity.

References

- Underwood, A. J. V., Chem. Eng. Prog., Vol. 44, p. 603 (1948).
 Fenske, M. R., Ind. Eng. Chem., Vol. 24, p. 482 (1932).
 Gilliland, E. R., Ind. Eng. Chem., Vol. 32, p. 1101 (1940).
 Eduljee, H. E., Hydro. Proc., September 1975, pp. 120-122.
 Frank, O., Chem. Eng., March 14, 1977, pp. 110-128.

The author

Ine author Mark Kesler is a process design consultant with Kesler Engineering, Inc., 26 University Rd., East Brunswick, NJ 08816. A B.S.Ch.E. graduate of Columbia University, he also holds a Master of Business Administration degree from Columbia University's Graduate School of Business. Before he joined Kesler Engineering, he worked as a process-design engineer for C-E Lummus and Chem Systems Inc. Mr. Kesler currently specializes in process design for the petroleum industry.

Program aids cryogenic solubility calculations

Here is a program that will quickly estimate and correlate the solubility of a solid in a solvent at cryogenic temperatures.

Patrice Lebrun, Chemical Engineer

In the design of cryogenic processes, it is frequently necessary to check the solubility of solids in liquids at low temperatures. The interest in predicting such behavior is justified because precipitation of solids such as carbon dioxide and hydrocarbons creates solid coatings on heat exchangers and fouling in process equipment.

This blocking effect can be prevented by appropriate design and a good knowledge of solubility. Unfortunately, two factors limit our precise information on solubility:

1. Solubility exhibits a very broad range of variation; for example, from 10^{-2} to 10^{-3} for light alkanes in nitrogen, to 10^{-10} for ammonia in nitrogen at 77 K.

2. In experimental investigations, there are sometimes great discrepancies between the findings of different authors (for example, as much as a factor of 60 for the system propylene-nitrogen).

Reliable experimental studies of solubility are not plentiful, and therefore it is desirable to have correlations that are sufficiently accurate for most design purposes. One of the best known of these correlations is that of Preston and Prausnitz [1], and that is the one used here.

The program presented in this article is intended to provide a quick estimate of solubility. It is written for the Hewlett-Packard HP 67/97 and features a rapidly converging iterative procedure. The program circumvents the use of tedious charts and laborious hand-calculations.

The Preston/Prausnitz method

These authors worked out a method of calculating the molar solubility, X_2 , of a solid in cryogenic liquids, based on the Scatchard-Hildebrand concept for regular solutions [2].

In the solid-liquid equilibrium, where the solid phase is pure solute and the liquid phase is a saturated solution of the solute in the solvent, the equation of equilibrium is:

$$f_2^S = \gamma_2 X_2 f_2^L \tag{1}$$

$$\ln \gamma_2 X_2 = \Delta S_{F2} / R(1 - T_{M2} / T)$$
 (2)

Some substances undergo solid-phase transitions from one crystal structure to another at a specific temperature, T_{TR} . If the solute of interest undergoes such a transition, and if T is less than T_{TR} , another term must be added to Eq. (2):

$$\ln \gamma_2 X_2 = (\Delta S_{F2}/R)(1 - T_{M2}/T) + (\Delta S_{TR}/R)(1 - T_{TR}/T) \quad (3)$$

The activity coefficient for conditions not near the critical temperature of the solvent is calculated by the relationship:

$$\ln \gamma_2 = (V_2 \phi_1^2 / RT) [(\delta_1 - \delta_2)^2 + 2\ell_{1,2} \delta_1 \delta_2] \quad (4)$$

where

$$\phi_1 = X_1 V_1 / (X_1 V_1 + X_2 V_2) \tag{5}$$

The solubility X_2 of solute 2 in solvent 1 is determined by combining Eq. (2) or (3) with Eq. (4) and (5). Since X_2 and ϕ_1 are unknown, the calculation is done by trial and error.

An essential step in calculating solid solubility is finding the solubility parameter, δ , and the subcooled liquid volume, V, for solute and solvent. These properties are functions of the reduced properties T_r , P_r and of the acentric factor ω [1]. The relationships were determined via data-correlating programs, and the results are shown in Table I.

 $l_{1,2}$ is a constant characteristic of the solute-solvent pair and it cannot be estimated from pure component data (see Table II). Hence:

1. When possible, $l_{1,2}$ should be determined empirically from some experimental equilibrium (see Example 3).

2. If no solid-phase information is available, we can turn to gas-phase data. It is known that for mixtures in the gas phase, the binary parameter, $k_{1,2}$, characterizes (Text continues on p. 202)

Curve fitting of Ref. [1] Table I For $T_r < 0.7$ $\delta/P_C^{\frac{1}{2}} = \left\{ \omega[3.339\omega - 2.04] - 0.6312 \right\} T_r^2$ $+ 1.2165 + \omega [1.82 - 1.345\omega]$ $V/V_C = \left\{ 0.1452 + \omega[0.196 - 0.169\omega] \right\} T_r^2$ $+ 0.339 - 0.15\omega$

Substance		PC	τ _C	VC	ω	T _F	$\Delta S_F/R$	T _{TR}	$\Delta S_{TR}/I$
Nitrogen	N_2	33.5	126.2	90	0.040	63.2	1.37	35.5	0.78
Methane	CĤ₄	45.8	191.1	99	0.013	90.7	1.25	20.4	0.45
Ethane	C_2H_6	48.3	305.6	148	0.105	89.9	3.82		
Propane	C ₃ H ₈	42.0	370.0	200	0.152	85.5	4.96		
Butane	C_4H_{10}	37.5	425.2	255	0.201	134.8	4.16	107.6	2.31
Isobutane	$C_{4}H_{10}$	36.0	408.1	263	0.192	113.7	4.80		
2-Methylbutane									
(Isopentane)	C_5H_{12}	32.9	461.0	308	0.206	113.2	5.47		
Pentane	C_5H_{12}	33.3	469.8	311	0.252	143.4	7.04		
2.2-Dimethylpro-	- 5 12			••••	0.202	1.0.1	7.04		
pane (Neopentane)	$C_{5}H_{12}$	31.6	433.8	303	0.195	456.6	1.53		
Hexane	$C_{6}H_{14}$	29.9	507.9	368	0.290	177.8	8.81		
Heptane	C7H16	27.0	540.3	426	0.352	182.5	9.24		
Octane	C_5H_{18}	24.6	568.6	486	0.408	216.4	11.53		
Nonane	C_9H_{20}	22.6	596.2	543	0.441	219.6	8.47	217.2	3.48
Decane	$C_{10}H_{22}$	20.8	617.6	602	0.486	243.5	14.18	217.2	0.40
Ethylene	C_2H_4	50.5	283.1	124	0.087	104.0	3.88		
Propene	2 -				0.007	101.0	0.00		
(Propylene)	C ₃ H ₆	45.4	365.1	181	0.143	87.9	4.11		
Butene-1	0 0					0,10			
(Butylene)	C₄H ₈	38.7	419.5	241	0.203	87.8	5.27		
2-Methylpropane	-4.18	00.7	110.0	241	0.205	07.0	5.27		
(Isobutene)	C ₄ H ₈	39.5	417.8	240	0.201	132.8	5.36		
Pentene-1	C_5H_{10}	40.4	475.5	309	0.238	102.0	5.50		
Pentene-2 (cis)	C_5H_{10}	34.4	473.1	300	0.280	94.1	9.09		
Hexene-1	C_6H_{12}	31.1	504.0	356	0.283	133.3	8.43		
Heptene-1	C ₇ H ₁₄	27.4	537.2	418	0.326	154.1			
Acetylene	C_2H_2	27.4 61.7	308.7	113	0.326	194.1	9.87		
Benzene	С <u>2</u> Н2 С ₆ Н ₆	48.6	562.6	260	0.186	278.7	2.55 4.25		
Toluene		40.0	594.0	320	0.215	178.2	4.25 4.47		
<i>p</i> -Xylene	C ₈ H ₁₀	33.9	618.8	320	0.233	286.4	4.47 7.19		
Cyclohexane	$C_{6}H_{12}$	40.0	553.2	378	0.293	200.4	1.15	186.1	4.36
Methylcyclohexane								180.1	4.30
Hydrogen sulfide	С ₇ Н ₁₄ Н ₂ S	34.3 88.9	572.1	344	0.237	146.6	5.54	465 -	
a gan gan gan de	123	00.9	373.6	97.7	0.100	187.6	1.52	103.5	1.79
Sulfur dioxide	SO ₂	77.7	430.7	100	0.040	407 7	4 50	126.2	0.48
Ammonia				122	0.246	197.7	4.50		
Argon	NH3 A	111.5 48.0	405.6	72.5	0.250	195.4	3.48		
Methanol		48.0 78.5	150.7	75.2	-0.002	83.8	1.69		
methallo	сн _з он	78.5	513.2	118.0	0.556	175.4	2.17		

Nomenclature

		1 (Office	iciatuit		
f	Fugacity of pure component	atm.	γ	Activity coefficient	
$k_{1,2}$	Binary parameter in gas phase		ω	Pitzer's acentric factor	
$l_{1,2}$	Solute/solvent interaction		Super	rscripts	
	parameter		-	Liquid state	
Ρ	Pressure	atm.		Solid state	
P_r	Reduced pressure		n	Iteration number	
R	Gas constant	1.987 cal/mole K			
ΔS	Molar entropy change	cal/mole K	Subsc	•	
t	Temperature	°C		Solvent	
Т	Temperature	K		Solute	
$\overline{T_r}$	Reduced temperature		F	Fusion	
V	Liquid molar volume	cm ³ /mole	M	Normal melting	
x	•			point	
	Mole fraction in liquid phase	<u> </u>	TR	Transition point	
δ	Solubility parameter	$(cal/cm^3)^{1/2}$		Critical	
$\boldsymbol{\phi}$	Volume fraction		C .	Unital	

	Program	n listing ar	nd com	ments									Table I	11
Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
	Routine A	٨:	034	+	-55	089	+	-55	132	3	03	187	6	66
H	landles data i		035	STOD	35 14	090	χ2	53	133		-62	138	9	69
	for the solve	ent	036	P≠S	16-5i	0 91	RCL8	36 08	134	3	03	189	x	-35
			037	CLX	-51	692	х	-35	135	3	Ø3	190	CHS	-22
101	*LBLA	21 11	038		16 23 01	093	17X	52	136	9	05	191	•	-62
102	STC4	35 84 T	0 39	GSB3	23 03	094 005	P≢S	16-51	137	×	-35	192	1	81
103	¥. ⊂≂o≖o	-31	640 641	1 RCL3	01 36 03	095 096	RCLA X	38 11 -35	138 139	2	02 -62	193	9 6	09 86
104 105	STO2 R↓	35 82 -31	041	RCLD	36 83 36 14	026 097	CĤS	-22	135	0	-62 00	194 195	+	-55
105 106	STOØ	35 00	042	÷	-24	098	RCLB	36 12	141	4	04	195	RCL4	36 04
107	8188 R↓	-31	044	_	-45	099	+	-55	142	-	-45	197	X	-35
08	STOI	35 61	045	RCL5	36 05	100	e×	33	143	RCL4	36 04	198		-62
109	R∕S	5	046	X	-35	101	STOI	35 46	144	x	-35	199	1	01
10	ST05	35 25	047	+	-55	102	RCLE	36 15	145	•	-62	268	4	64
111	R↓	-31	048	STOB	35-12	103	÷	-24	146	6	06	281	5	03
912	STO3	35 83	049		23 16 12	104	1	01	147	3	93	202	ź	62
913	RTM	24	650		23 16 15	105	-	-45	148	1	01	203	RCLD	$3\vec{\epsilon}$ 14
			651	P≢S	16-51	106	ABS	16 31	149	2	02 1	204	RCLØ	36 00
			052 057		23 16 12	107	;	-62	150	-	-45	205	÷	-24
	Routine E		053 054	GSBe P ‡S	23 16 15 16-51	108	ė	00 01	151	RCLD	36 14 36 00	206 207	χz	53
	Handles data for the solu	•	034 055	RCL7	16-J1 36 87	109 110	1 X>Y?	ы 16-34	152 153	RCLØ ÷	-24	207 202	X	-35
	for the solu	ute	035 056	RCL7	36 07 36 07	111	GT02	16-34 22 82	153	÷ X2	-24	208 209	• 3	-62 03
314	*LBLB	21 12	057	P≠S	16-51	112	RCLI	22 02 36 46	155	x	-35	209	3	E:
915	<i>₽</i> ₽₽S	16-51	058	RCL7	36 07	113	GT01	22 01	156	ĩ	E1	211	9	63
16	GSBA	27 11	059	x	-35		0.01		157		-62	212	+	-53
17	P≠S	16-51	060	RCLC	36 13				158	8	88	213	RCL4	36 84
918	RTN	24	061	х	-35		0.1		159	2	02	214		-62
			062	2	02		Subroutin Takes accou		160	RCL4	36 04	215	1	01
			063	х	-35		he transition		161	1	e i	216	5	65
	Routine (064	XZY	-41		if <i>T</i> < 7		162	:	-62	217	X	-35
	Stores L _{1,}	2	<i>865</i>	CHS RCL7	-22 36 07				163	3	03	218	-	-45
119	*LBLC	21 13	066 067	RULI +	36 07 -55	114	*LBL3	2: 83	164 165	4 5	04 05	219 220	RCL2 X	36 01 -35
)20	*EBEC STOC	21 13 35 13	068	χ2	53	115	*LDL3 1	21 83 01	165	x	-35	220	ST08	35 0
121	RTN	24	069	+	-55	116	RCL6	36 06	167	-	-45	222	RTN	24
		- /	070	RCLD	36 14	117	RCLD	35 14	168	RCL4	36 04	223	R∕S	5.
	Routine	D	071	÷	-24	118	÷	-24	169	x	-35			
			072	2	<i>02</i>	119	-	-45	170	+	-55			
	Flag is se		073	÷	-24	120	Ũ	66	171	1	Ci.			
122	*LBLD	21 14	074	STOA	35 11	121	X≟Y?	16-35	172	:	-62			
23	P≢S	16-51	075	•	-62	122	RTN	24 -41	173	2	02			
024 025	STO9 R↓	35 89 -31	076	1	61	123 124	X≢Y RCL9	-41 36 09	174 175	1 6	01 06			
925 926	st06	-31 35 86				124	X	-35	175	5	00 05			
920 927		33 88 16 21 91		Routine	1.	125	RTN	24	177	- J +	-55			
,2, 328	0/1 1 P≠3	16-51		Establishe		120		-	178	RCL1	35 81			
329	RTN	24		iterative lo					179	₹ X	54			
				Routine	Ē		Routine	2:	180	Х	-35			
						D	isplays solul	bility X_2	181	ST07	35 07			
	Routine E		077	*LBL1	21 01				182	RTN	24			
	he main calcı		078	STOE	35 15	127	*LBL2	21 02						
	derives the so	•	879 600	RCLE	36 15 50	128	RCLI	36 46						
•	an iterative i calls on sub		680 681	17X 1	52 01	129	RTN	24		Subroutin				
	nd e for calc		081 082	_1	0. -45		Curk and			ovides the ca of V for solve				
	of δ and λ		002 083	RCL8	-40 35 08	Cor	Subroutin npletes the o			n v tor solve solute	ant anu			
			084	X	-35	601	of δ for so			301018				
030	*LBLE	21-15	085	1/8	52		and solu		183	*LBLe i	21 16 15			
93i	2	62	086	P≓S	16-51				184	RCL4	36-84			
832	7	07	087	RCL8	36 08	130	*LBL& RCL4	21 16 12 36 04	185		-62			
833	3	63	088	17X	52	131			186	1	0i			

(Continued from p. 199)

the deviation from the assumed geometric mean of the critical temperature, such that:

$$T_{C1,2} = (T_{C1} \cdot T_{C2})^{1/2} (1 - k_{1,2}) \tag{6}$$

The two binary parameters $k_{1,2}$ and $l_{1,2}$ do not reflect the same kind of interactions, but for molecules of simi-lar size we can use $l_{1,2} = k_{1,2}$ as an approximation. 3. If no specific information is available at all, take $l_{1,2} = 0.05$ and increase this value with differences in

molecular size and chemical structure. Likewise, decrease it if there are specific interactions (such as hydrogen bonds) between molecules of solute and solvent (see Examples 1 and 2).

The program

...

The program listing shown in Table III should be keyed into the calculator and stored on a magnetic card.

orage re	Table V		
Storage register	Value	Storage register	Value
P0	τ_{C1}	SO	T _{C2}
P1	P _{C1}	S1	PC2
P2	V _{C1}	S2	V _{C2}
P3	T_{F1}	S3	T _{F2}
P4	ω1	S4	ω2
P5	$\Delta S_{F2}/R$	S5	$\Delta S_{F2}/R$
P6	Not used	S6	T _{TR}
P7	δ1	\$7	δ2
P8	<i>v</i> ₁	S8	V_2
P9	Not used	S9	∆S _{TR} /R
Α	Intermediate value	D	Τ
В	Intermediate value	E	x2 ⁿ
С	⁰ 1,2	I	x2 ⁿ x2 ⁿ⁺¹

Step	Value	Unit	Key
Store data for solvent	Critical pressure	atm	<i>P</i> C1 [†]
	Critical temperature	к	T_{C1} †
	Critical volume	cm ³ /mole	V _{C1} ↑
	Acentric factor	_	ω1 Α
	Melting point	к	<i>T</i> _{F1} ↑
	Molar entropy of fusion	-	△S _{F1} /R R/S
Store data for source	Critical pressure	atm	<i>P</i> _{C2} ↑
	Critical temperature	к	T_{C2} t
	Critical volume	cm ³ /mole	V _{C2} ↑
	Acentric factor	-	ω2 Β
	Melting point	К	<i>T</i> _{F2} ↑
	Molar entropy of fusion	-	△SF2/R R/S
Store 21,2	Interaction parameter	_	^Q 1,2 ^C
Solid-phase transition	Transition temperature	К	7,- 7 _{TR} ↑
	Molar entropy of transition	-	∆S _{TR} /R D
Begin computation	Temperature	°c	$E \rightarrow X_2$ Display

	Solvent:				So	lute				
	Nitrogen	Methane	Ethane	Propane	Isobutane	Ethylene	Propylene	Butene	Acetylene	
Рс	33.5 ↑	45.8 ↑	48.3 †	42.0 †	36.0 ↑	50.5 †	45.4 †	38.7 1	61.7 ↑	
Гс	126.2 1	191.1 1	305.6 1	370.0 ↑	408.1 1	283.1 †	365.1 ↑	419.5 †	308.7 †	
/c	90 ↑	99 †	148 ↑	200 1	263 †	124 ↑	181 ↑	241 ↑	113 †	
ມ	0. 04 A	0.013 B	0.105 B	0.152 B	0.192 B	0.087 B	0.143 B	0.203 B	0.186 B	
F	63.2 t	90.7 †	89.9 t	85.5 ↑	113.7 1	104.0 †	87.9 †	87.8 1	192.4 †	
SF	1.37 R/S	1.25 R/S	3.82 R/S	4.96 R/S	4.80 R/S	3.88 R/S	4.11 R/S	5.27 R/S	2.55 R/S	
1,2		0.05 C	0.05 C	0.05 C	0.05 C	0.05 C	0.05 C	0.05 C	0.05 C	
		-196 E	-196 E	–196 E	–196 E	–196 E	–196 E	-196 E	-196 E	
(2 (D	isplay)	0.627	2.34 × 10 ⁻³	6.09 × 10 ⁴	4.95 × 10 ⁻⁵	⁵ 2.79 × 10 ⁻³	4.98 × 10 ⁻⁴	1.08 × 10 ⁴	¹ 3.83 × 10	
(E:	xperimental)*	0.63	7.76 × 10 ^{–3}	1.0 × 10 ⁻³	1.0 × 10 ⁴	2.02 × 10 ⁻³	7.73 × 10 ⁴	1.0 × 10 ⁻⁴	4.6 × 10 ⁻	

	Step 1 Solvent: CH ₄	Step 2 Source: H ₂ O		tep 3 eraction		Step 4 Insition	Step 5 Computation
PC	45.8 ↑	88.9 ↑	² 1.2	0.06 C	TTR	126.2 ↑	t = -154°C E
τ_c	191.1 ↑	373.6 [†]	.,_		$\Delta S_{TR}/$	R 0.48 D	
/c	9 9 †	97.7 ↑					X_2 (Display) = 0.00128
ω	0.013 A	0.100 B					X_2 (Exp.) = 0.0012*
T _F	90.7 1	187.6 ↑					-
∆S _F /R	1.25 R/S	1.52 R/S	(Clear Flag 1 I	byh CF 1	after each s	olute example)	*Source: Ref. 5.

	Step 1 Solvent : Propane	Step 2 Solute: Benzene	Step 3 Try $P_{1,2}$ to fit experimental data at –75.3°C
PC	42 ↑	48.6 ↑	$Q_{1,2} = 0.05$ C t = -75.3°C E $\rightarrow X_2 = 0.00139$ Low
Р _С Т _С	370 †	562.6 [†]	$\ell_{1,2} = 0.01$ C t = -75.3°C E $\rightarrow X_2 = 0.05798$ High
VC	200 ↑	260 †	$\ell_{1,2} = 0.02$ C t = -75.3°C E $\rightarrow X_2 = 0.04074$ O.K
ω	0.152 A	0.215 B	1,2 2
Τ _F	85.5 1	278.15 ↑	Step 4
$\Delta S_F/R$	4.96 R/S	4.25 R/S	Compute X ₂
			$t = -142.5^{\circ}C E \rightarrow X_2$ (Display) = 0.00111
			X_2 (Exper.)* = 0.00113

Key \square is used for storage of physical data for the pure solvent. Key \square is used the same way for the pure solute. Key \square is used for the solute-solvent interaction factor (if available) or 0.05 as standard. Key \square may be used for a solid-phase transition in the solute structure.

After the temperature has been entered, Key **E** will produce molar solubility as output.

Table IV summarizes the user's instructions. Table V shows the registers after running the program.

Examples

1. Estimating solubility (without transition of phase)—Let us determine the orders of magnitude of the solubilities of solidified methane, ethane, propane, isobutane, ethylene, propylene, butene and acetylene in liquid nitrogen at 77 K (-196° C).

Before running the program, it is necessary to select from Table II the values P_C , T_C , V_C , ω , T_F , $\Delta S_{F/R}$ for solute and solvent.

The results are shown in Table VI and, in the absence of specific data, a value of 0.05 is used for $l_{1,2}$.

2. Estimating solubility with transition of phase— Estimate the solubility of solid hydrogen sulfide in liquid methane at -154 °C.

From Table II, it appears that H_2S undergoes a solid-phase transition at t = -147 °C.

Due to the chemical difference in solvent and solute, we can assume a higher value for $l_{1,2}$, for example, $l_{1,2} = 0.06$.

Results are shown in Table VII.

3. Correlating data with one known point—What is the solubility of solid benzene in propane at -142.5 °C if the solubility is $X_2 = 0.0398$ at -75.3 °C? First, we determine by trial and error the $l_{1,2}$ that gives the best fit with the experimental point. This iterative procedure is easily done, using the program. We find that $l_{1,2} = 0.02$.

Results are shown in Table VIII.

Comment*

Sir: The article, "Program aids cryogenic solubility calculations," in your July 13, 1981 issue (pp. 127–131), has a step "+" (Code -55) missing between Steps 202 and 203. This invalidates the coding for V/Vc (Table I, p. 127) and changes the answers for all except the text example, "...X₂ = 0.0398 at -75.3°C?", on p. 131. While the examples give approximate answers, the published program does not reflect the published formulation.

ELMER B. CLAUSEN Buffalo, N.Y.

Author replies

There is a discrepancy between the formulation and the listing. For optimal computation, the final expression selected for V/Vc (Table I) was

$$V/V_c = 0.1452T_r^2 + 0.339 - 0.15\omega$$

Accordingly, Lines 184 to 197 in Label e may be deleted (in fact, they are not used when LBL e is executed).

The text and the examples are unchanged.

PATRICE LABRUN Paris, France

*Letter originally published January 11, 1982.

204 MASS TRANSFER

For TI-58/59 users

The TI-58/59 version of the program appears in Table IX. Storage registers for the TI version are found in Table X, and user instructions are in Table XI. The program is run in a similar manner to the HP-67/97 version, but with some variation in the use of the keys.

The same order of entering data is followed for the TI-58/59 version as for the HP-67/97 program. There-

Program listing for TI version

fore, the examples will not be repeated. However, to show the outputs for the TI-58/59 version, Table XII shows some of the results (the TI-58/59 yields many more significant figures than are shown in Tables VI-VII). Outputs are given for methane and ethane in Example 1 (in Table VI), and for Example 2 (in Table VII) and Example 3 (Table VIII).

Table	IX
-------	----

Step	Code K	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Key
$\begin{array}{c} 0.001234567890112345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890100000000000000000000000000000000000$	9 R9 R9 R9 R9 R9 R9 R9 R1 9 R9 R9 R9 R9 R1 9 R1 9 R9 12012212412312516221112012212412312516522316426129	A TO1SDOSD2SD4SD3SD5SL 01800000000000000000000000000000000000	0556789006234566789012345678901234567890123456789000000000000000000000000000000000000	15527352457146453153335344445355222141334484243080203 942280274850754154255641942737341404141404141 1	R/SLE + 273 = D4RF1 CLS + (1 - (CL3 + CL4)) × CL5 = D2R R L4C4 D4L0C0000L1C1 CLS + (CL3 + CL4)) × CL5 = D2R R L4C4 D4L0C0000L1C1 CL1C1	1089011234567890123456789012345678901234567890123456789012345678901232222222223333333333333444234567890123455555555661 111111111111111111111111111	142430802031812132822237872738	STD R 12C2 S 12L7 C 20 S 20 S 20 S 20 S 20 S 20 S 20 S 20 S	16345678901123456789012345678901220222222222222222222222222222222222	237514538555 5640938	STD CL7 RC17 RC23 CL7 RC17 RC17 X CL7 RC17 X CL7 RC17 X CL7 RC17 X CL7 RC17 X CL7 RC17 X CL7 RC17 RC17 X CL7 RC17 R	67789012345678901234567890123456789012345678901234567890123456789 2122222222222222222222222222222222222	24 01 753 46 55 42 45 20 32 00	18X 1/X RC18 1/X RC17 RC27 1 RC27 1 RC27 RC27 1 RC27 RC2

(Continued)	Table IX
-------------	----------

												-		
Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Кеу	Step	Code	Key
22222222222222222222222222222222222222	425395146236261981643333334 436419647442280999735555540	SUM X:X R 19 GULSC26VF1TVSL SR 15 ORD/SL SR 15 ORD/SL C(() CL4	297 298 300 302 303 304 305 306 308 309 310 312 314 315 314 315 314 315 312 314 315 312 312 312 312 312 312 312 312 312 312	63339523044534536312453345 007090044536312453345	×3.339+2.04>×C0+.6342>× <cl4 R0+.6342>×<cl4< td=""><td>45678901234567890123456789014234567890142345678901423456789014234567890</td><td>4004355313825344513345545344451 9007406090005640580</td><td>RCO)2=+(1.82-L4 RCOX1.345)×L4 RCOX1.345)+1</td><td>351 352 353 355 355 355 355 355 355 355 355</td><td>932165453145272633333145224533 0054539409735590055533 0054533</td><td>.2165)×CL1 ROX=E7NL S RLX((.1452)×(C</td><td>379012345678860123 3888889992345678990 388889992345678990 389990123 3990123 44023</td><td>55</td><td>2+LC R 2+.339+L4 R 2+.339+L4 R 2+.339+L4 R 2+.339+L4 R 2+.15 R 2+.10 R /td></cl4<></cl4 	45678901234567890123456789014234567890142345678901423456789014234567890	4004355313825344513345545344451 9007406090005640580	RCO)2=+(1.82-L4 RCOX1.345)×L4 RCOX1.345)+1	351 352 353 355 355 355 355 355 355 355 355	932165453145272633333145224533 0054539409735590055533 0054533	.2165)×CL1 ROX=E7NL S RLX((.1452)×(C	379012345678860123 3888889992345678990 388889992345678990 389990123 3990123 44023	55	2+LC R 2+.339+L4 R 2+.339+L4 R 2+.339+L4 R 2+.339+L4 R 2+.15 R 2+.10 R
				Data ste	orage loca	tions:	:	Solvent		Solute				
				Critical t Critical A Acentric Fusion t Molal er Interacti Transitio	e factor temperature ntropy chan	e Ige		01 00 02 04 03 05	23 16 19	11 10 12 14 13 15	_			

User instructions for the TI version

Table X

Step	Value	Unit	Key
Enter program			
Store data for solvent	Critical pressure	atm	Α
	Critical temperature	к	R/S
	Critical volume	cm ³ /mole	R/S
	Acentric factor	_	R/S
	Melting point	к	R/S
	Molar entropy change		R/S
Store data for solute	Critical pressure	atm	В
	Critical temperature	к	R/S
	Critical volume	cm ³ /mole	R/S
	Acentric factor		R/S
	Melting point	к	R/S
	Molar entropy change	_	R/S
Store /12	Interaction parameter	_	С
Solid-phase transition	If so, store:		
-	Transition temperature	к	D
	Molar entropy of transition		R/S
Begin computation	Temperature	°C	E

Note: Data for solvent and solute are retained by the program, and solubilities at other temperatures or interactions may be made by entering only the data that need to be changed.

Storage registers for TI version

Storage Register	Value	Storage Register	Value
01	<i>T</i> _{C1}	11	<i>T</i> _{C2}
00	<i>P</i> _{C1}	10	P _{C2} V _{C2}
02	V _{C1}	12	V _{C2}
03	T _{F1}	13	T _{F2}
04	ω	14	ω2
05	$\Delta S_{F1}/R$	15	$\Delta S_{F2}/R$
23	112	16	TTR
19	$\Delta S_{TR}/R$	24	t

Examples for TI ver	Table XII	
Example 1 Solute	X2	
	^2	
Methane	.6265615084	
Ethane	.0023427487	
Example 2		
X ₂ =	.0012806334	
Example 3		
112	X 2	
0.05	.0139246261	
0.01	.0579814921	
0.02	.0407416724	
t = −142.5°C, x ₂ =	0.001105652	

References

Table XI

- 1. Preston, G. T., and Prausnitz, J. M., Ind. Eng. Chem., Process. Des. Develop., Vol. 9, No. 2, 1970.
- Hildebrand, J. H., and Scott, R. L., "Solubility of Nonelectrolytes," Dover, New York, 1964.
- 3. Chueh, P. L., Prausnitz, J. M., Ind. Eng. Chem. Fund., Vol. 6, No. 492, 1967. GHUGH, F. L., FFAUSHIZ, J. M., *Int. Eng. Chem.* Fund., Vol. 6, No. 492, 1967.
 Szczepaniec, C. E., Dabrowska, B., Lagan, J. M., Wojtaszek, Z., *Cryogenics*, Oct. 1978, p. 592, Nov. 1977, p. 627, Nov. 1979, p. 651, Jan. 1980, p. 50.
 Cheung, H., Zander, E. H., AIChE, Symposium Series No. 88, Vol. 64, p. 37.
 Neumann, A., Mann, R., Szalghary, W. D., *Kaltetechnik-Klimatisierung*, 24, 1972, pp. 145–149.

The author

Patrice Lebrun was formerly a process engineer with L'Air Liquide. His work involved the application of cryogenics to gas purification, liquefaction of natural gas, and refrigerated absorbers. Previously, he was a process engineer with Litwin (France), where he was involved in bulk polymerization of polystyrene. He received a B.S. degree in organic chemistry from the University of Lyon and an M.S. in chemical engineering from Toulouse University.

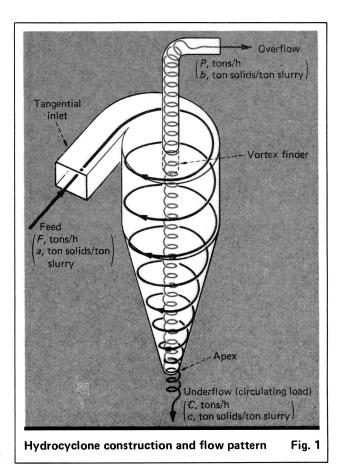
Program calculates hydrocyclone efficiency

This HP-41C program determines the circulating load, efficiency of separation for defined size fractions, and the sharpness of separation.

Frank H. Merrill, Aguirre Engineers, Inc.

The hydrocyclone, a widely used classification device for performing size separations on mineral and chemical slurries, operates on a centrifugal principal. The slurry is fed under pressure through a tangential inlet in the cylindrical section (see Fig. 1), setting up a rotational motion, and forming a primary vortex along the inside surface wall that is aimed at the apex of the conical section. Inside this primary vortex, an upward-moving secondary vortex forms in line with the vortex finder. This secondary vortex carries most of the liquid out the overflow.

As the slurry is fed to the hydrocyclone, the induced rotation sets up a centrifugal force that causes the coarse particles to settle against the wall and be carried toward the apex for discharge in the underflow. The less-coarse particles pass into the secondary vortex near the apex. In the secondary vortex, higher circumferential velocities cause a substantial increase in the centrifugal force to which the solids are subjected. This results in another settling out of particles, which pass back into the primary vortex for discharge. The residual fine material moves up the secondary vortex and passes out of the hydrocyclone through the overflow outlet [1].


One of the great advantages of the hydrocyclone is that the composition of the two products, the overflow and the underflow, can be varied with relative ease. Depending on the requirements of the system, a hydrocyclone can be operated to produce either a coarse/fine separation or a solid/liquid separation [3].

Mineral processing applications

The most common use of the hydrocyclone in mineral processing is to control the size of the final product from a grinding circuit. All mineral separations require liberation of the valuable mineral from the gangue, or worthless material in the ore. Depending on the specific ore, complete liberation may be accomplished at 35 mesh ($425 \ \mu m$), or it may require grinding to as fine as 400 mesh ($37 \ \mu m$).

For all but the very coarsest of grinds, the usual method is to use ball or rod mills. The most common configuration is a single mill closed by a hydrocyclone system (see Fig. 2). In this system, the coarse ore is fed to the mill, and the mill discharge is pumped through the hydrocyclone. The hydrocyclone is set to operate so that material fine enough to be completely liberated passes out through the overflow and on to further processing. The oversize material exits through the underflow and is returned to the mill for further grinding.

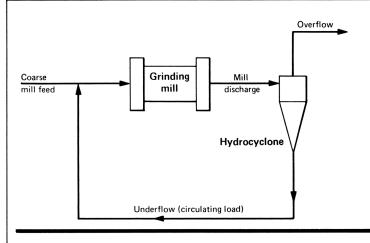
Another frequently encountered configuration is an open rod mill followed by a closed ball mill system (see Fig. 3). In this system, coarse ore is fed to the rod mill for a first stage of grinding, the discharge from which is then pumped to the hydrocyclone for sizing. The overflow from the hydrocyclone passes on to further processing, while the underflow is sent to the ball mill for fur-

Originally published November 2, 1981.

Nomenclature

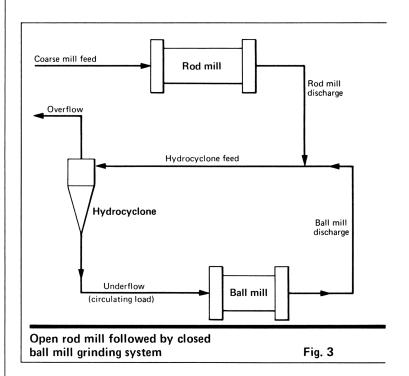
- a Solids content of hydrocyclone feed, tons solids/ton slurry
- b Solids content of hydrocyclone overflow, tons solids/ton slurry
- C Hydrocyclone underflow (circulating load), tons solids/h
- c Solids content in hydrocyclone underflow, tons solids/ton slurry
- d Particle size, microns
- $d_{\rm s}$ Screen aperture size, microns.
- d_T Particle size for which Tromp values are calculated, microns.
- d_{25} Particle size for which hydrocyclone efficiency equals 25%, microns.
- d_{50} Particle size for which hydrocyclone efficiency equals 50%, microns.
- d_{75} Particle size for which hydrocyclone efficiency equals 75%, microns.
- *E* Hydrocyclone efficiency for a given particle size, percent
- F Hydrocyclone feed, tons solids/h
- *I* Imperfection (sharpness of cut).
- P Hydrocyclone overflow, tons solids/h
- R_b Weight fraction of overflow solids retained by any given screen, from screen analysis of hydrocyclone overflow, grams retained/gram composite screen sample
- R_c Weight fraction of underflow solids retained by any given screen, from screen analysis of hydrocyclone underflow, grams retained/gram composite screen sample
- T Differential mass recovery for a given size fraction (Tromp value)
- W Weight of solids retained by any given screen, grams
- γ Specific gravity of solid material
- θ Overall mass recovery

Subscripts


i Component i

ther grinding. The ball mill discharge then joins the rod mill discharge and is pumped to the hydrocyclone.

A less frequently encountered use of hydrocyclones in the mineral processing industry is the actual concentration of the valuable mineral. This application is seen most frequently in the nonmetallic minerals industry and is especially prevalent in the preparation of kaolin and other clay materials [1].


In the closed-circuit grinding of ores, a universally encountered operating parameter is the *circulating load*. The circulating load, defined as the material returned to the grinding mill from the classifier, is expressed as a percentage of the coarse ore feed [2]. In general, mill operators try to keep the circulating load in the range of 150%-300%, though exceptions are common [4].

Increasing the circulating load has the effects of lowering the sharpness of the classifier separation, and producing a coarser grind in the mill [4]. As the circulating

Simple closed mill system

Fig. 2

load continues to increase, the mill finally overloads. When this occurs, coarse feed to the mill must be cut off until the mill can grind through the overload. Conversely, if the circulating load decreases, a finer grind and sharper classifier separation will result, but the coarse feedrate will be lowered. Thus the regulation of the circulating load becomes a matter of balancing the requirements for mill throughput, fineness of grind, and sharpness of separation.

Hydrocyclone efficiency

Hydrocyclone efficiency is almost universally defined in terms of the underflow for each size fraction. Thus a hydrocyclone will have a series of efficiency values ranging from close to 1.0 at coarse sizes to approaching 0.0 at very fine sizes.

The *split point* (d_{50}) for a hydrocyclone is the particle size at which 50% of the material is overflow, and 50% is

underflow. This point depends on hydrocyclone dimensions, solids content of the feed slurry, and feed pressure [1,6]. The hydrocyclone efficiency at the split point is by definition 50%. Two other sizes, d_{75} and d_{25} , are the particle sizes at which 75% and 25%, respectively, report to the underflow.

Any consideration of hydrocyclone operation must begin with a mass balance. If a simple closed-circuit system is considered, with the solids contents of the three streams and the coarse ore feedrate known, it is possible to determine the hydrocyclone feedrate and the circulating load. This is done by evaluating the solids mass balance and the overall mass balance.

It must first be remembered that the grinding millhydrocyclone system will be operating in a steady-state condition. Thus, if the coarse ore feedrate is known, the hydrocyclone overflow is also known.

The solids mass balance relates the tons of solids/h in the three streams:

$$F = P + C \tag{1}$$

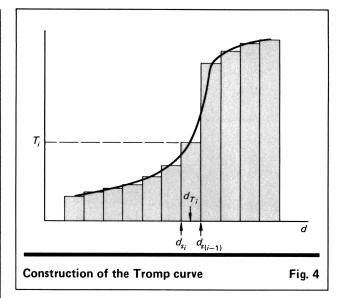
Note that the underflow is the circulating load for this system.

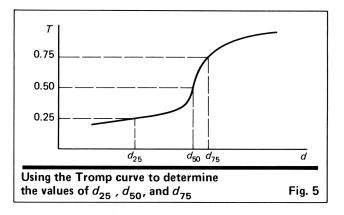
The overall mass balance relates the tons of slurry/h:

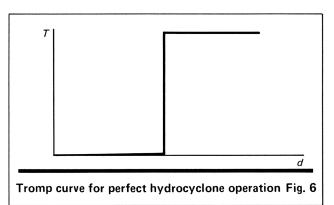
$$\frac{F}{a} = \frac{P}{b} + \frac{C}{c} \tag{2}$$

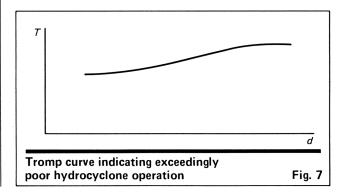
By solving Eq. (1) and (2) simultaneously, the two unknown solids flowrates can be determined.

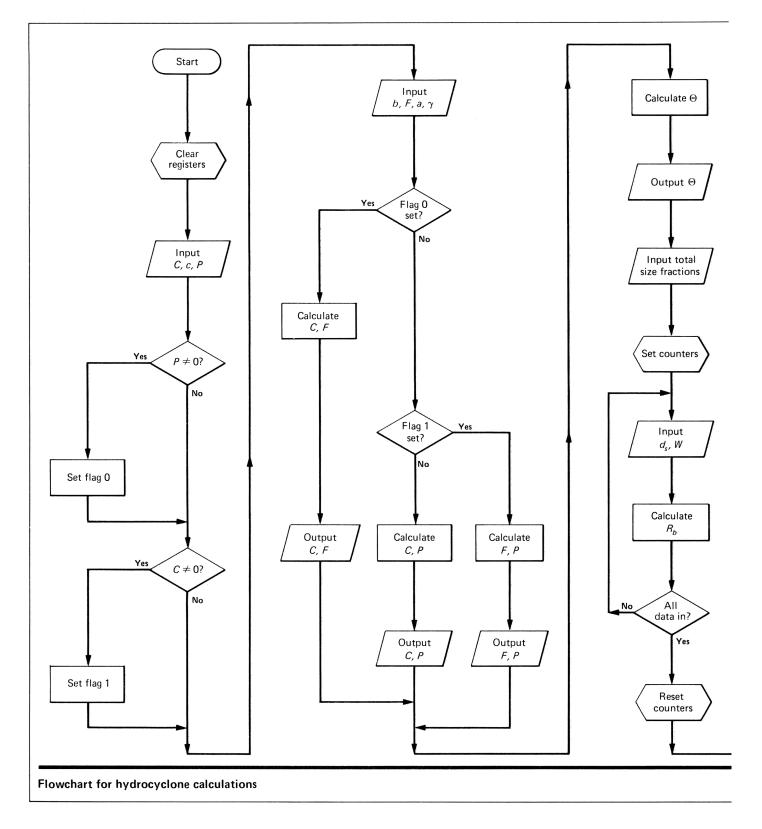
Determining the efficiencies is a multistep process. The first step is to determine the overall mass recovery for the hydrocyclone. The mass recovery can be determined from the solids contents of the three streams, and the specific gravity of the solids [1]:

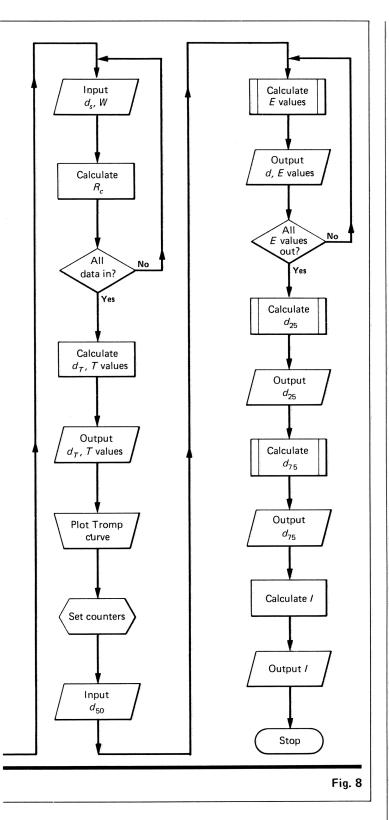

$$\theta = \left(\frac{a-b}{c-b}\right) \cdot \left(\frac{\gamma-c}{\gamma-a}\right) \tag{3}$$


This gives the fraction of the total solids in the feed that report to the underflow. Once the overall mass recovery has been determined, if screen analyses of the overflow and underflow solids are available, it is possible to calculate the differential mass recovery or *Tromp value*. The Tromp value is the mass recovery for a given size fraction of the solid material in the feed, and is calculated thus [1]:


$$T_{i} = \frac{\theta R_{c_{i}}}{\left[\theta R_{c_{i}}\right] + \left[\left(1 - \theta\right) \cdot R_{b_{i}}\right]} \tag{4}$$


The *Tromp curve* is a semilogarithmic plot of the Tromp values (T_i) versus the median particle size for each size fraction (see Fig. 4). From the Tromp curve, the split point (d_{50}) can be determined by locating the particle size for which $T_i = 0.50$. If the screen data are satisfactory, it is also possible to determine d_{25} and d_{75} from the curve (see Fig. 5).

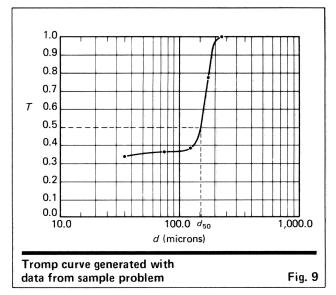

The Tromp curve presents a visual indication of how effectively the hydrocyclone is doing its job. Ideally, the curve would show a vertical drop at the desired separation size, as shown in Fig. 6. A curve showing a nearly horizontal line would indicate that the hydrocyclone is doing almost nothing in the way of size classification (see Fig. 7) [2]. If only general results or trends are re-



quired, the Tromp curve can serve as a fully satisfactory indicator of hydrocyclone efficiency.

The equation put forth by G. I. Bennett, shown below, provides excellent results for the conditions of operation likely to be encountered in a mineral processing operation [6,7]:

$$E = 100[1.0 - \exp(-[(d/d_{50} - 0.115]^3)]$$
 (5)


One immediate advantage of Bennett's equation over the Tromp curve is that only one piece of information from the Tromp curve is required: the value of d_{50} . This advantage is multiplied when it is remembered that the d_{50} value comes from the steepest, and most accurate, section of the Tromp curve. With Bennett's equation, once d_{50} is known, the hydrocyclone efficiency at any other size can be found with no difficulty. Additionally,

in situations where an accurate value of d_{25} or d_{75} is required, the equation can readily be solved for particle size, d:

$$d = (\sqrt[3]{-\ln\left[1 - (E/100)\right]} + 0.115)d_{50}$$
(6)

A final indicator of hydrocyclone performance is the sharpness of separation or the *imperfection*, *I*. The imperfection is a measure of how accurately sized the hydro-

cyclone products will be. The imperfection depends on d_{75} , d_{50} , and d_{25} [1]:

$$I = \frac{d_{75} - d_{25}}{2d_{50}} \tag{7}$$

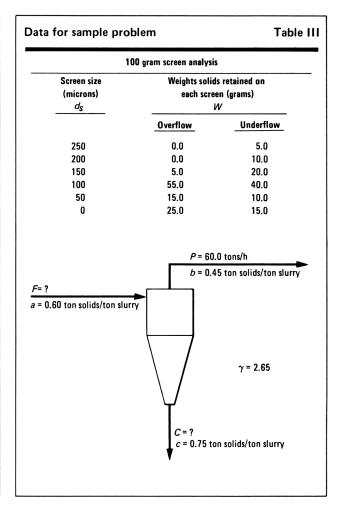
From Eq. (7) and Fig. (6), it can be seen that if a hydrocyclone were to operate under ideal conditions, the value of I would be zero. In general, the steeper the Tromp curve, the lower the value of I. And the lower the imperfection, the more accurately sized the overflow and underflow solids will be.

The calculator program

The program is designed to run on the HP-41C or the HP-41CV calculator. If the HP-41C is used, either two HP-82106A Memory Modules or one HP-82170A Quad Memory are necessary. The HP-82104A Magnetic Card Reader, while not essential to program execution, will greatly speed up the process of entering the program.

Information required by the program includes the specific gravity of the solid material; the solids contents of the feed, overflow and underflow; the tons/h for one of the three streams; the number of size fractions; and the screen analyses for overflow and underflow. These analyses must include the size of the screens (in microns), and the weight in grams of each size fraction.

Using the data on solids flow and specific gravity, the program first calculates the tons/h for the other two streams, using Eq. (1) and (2). The overall mass recovery is then calculated via Eq. (3). The information from the screen analysis is entered at this point. The next step is the calculation of the Tromp values for each size fraction, using Eq. (4).


The calculator then outputs the mean size for each size fraction, followed by the Tromp value for that size fraction. This information should be copied down as it is presented. Upon completion of this series of outputs, the calculator will signal PLOT CURVE. At this point, it is necessary to plot the Tromp Curve and determine the (Text continues on p. 214) Calculator program for hydrocyclone circulating load, efficiencies, and sharpness of separation

	<u>/0</u>	175 /	000 070 47
01+LBL "CYCLONE"	68 - 29 PCL 01	135 / 176 PCL 86	202 STO 47
02+LBL Ĥ	69 RCL 01 70 1/X	136 RCL 06	203+LBL 10
03 CLRG 04 FIX 1	70 1/X 71 RCL 00 72 1/X 73 - 74 / 75 RCL 05 76 * 77 STO 04 78 RCL 05 79 - 80 STO 03 81 CLA 82 °C=" 83 ARCL 03 84 AVIEW 85 PSE 86 PSE 87 PSE 88 CLA 89 °F=" 90 ARCL 04 91 AVIEW 92 PSE 93 PSE 94 PSE 95 GTO 63 96+LBL 02 97 RCL 00	137 RCL 00 138 -	204 ISG 45 205 GTO 11
05 "ENTER C, c, P"	72 1/Y	139 RCL 06	
06 PROMPT	77 -	140 RCL 01	206 GTO 12 207+LBL 11
07 STO 05	74 /	141 -	208 RCL IND 47
08 X≠0?	25 RCL 05	142 /	000 DCL 44
09 SF 00	76 *	147 *	207 000 11
10 RDN	77 STO 64	142 / 143 * 144 STO 07 145 FIX 4 146 CLA 147 THETA= " 148 ARCL 07 149 OVIEN	211 STO IND 46
11 STO 00	78 RCL 05	145 FIX 4	212 1
12 RDN	79 -	146 CLB	213 ST+ 46
13 STO 83	80 STO 03	147 "THETA= "	214 ST+ 47
14 X≠0?	81 CLA	148 ARCL 07	215 GTO 10
15 SF 01	82 - C="	149 AVIEW	216+LBL 12
16 "ENTER by Fy a"	83 ARCL 03	150 PSE	217 FC? 02
17 PROMPT	84 AVIEW	151 PSE	218 GTO 13
18 STO 01	85 PSE	152 PSE	219 RCL 48
19 RDN	86 PSE	153 SF 02	220 STO 45
20 STO 04	87 PSE	154+LBL 04	221 "ENTER UNDERFLOW"
21 RDN	88 CLA	155 CLA	222 AVIEN
22 STO 02	89 * F=*	156 "HOW MANY SIZE F"	223 PSE
23 "ENTER GAMMA"	90 ARCL 04	157 "FRACTIONS?"	224 CF 02
24 PROMPT	91 AVIEW	158 PROMPT	225 0
25 STO 06	92 PSE	159 1000	226 STO 44
26 FS?C 00	93 PSE	160 / 161 STO 48	227 8
27 GTO 01	94 PSE	161 STO 48	228 STO 46
28 FS?C 01	95 GTO 03	162 STO 45	229 20
29 GTO 02	96+LBL 02	163 8	230 STO 47
30 RCL 01			231 GTO 05
31 1/2	98 1/X	165 20	232+LBL 13
32 RCL 00	99 RCL 01	166 STO 47	233 RCL 48
33 1/X	100 1/X	167 "ENTER OVERFLOW"	234 .001
34 - 35 RCL 02	101 - 100 PCL 01	168 AVIEW	235 -
36 1/X	102 RCL 01 103 1/X	169 PSE	236 STO 45
37 RCL 00	103 17A 104 RCL 02	170 PSE 1714 PL 95	237 21
38 1/X	105 1/8	171+LBL 05 172 ISG 45	238 STO 47
39 -	106 -	173 GTO 06	239 33 240 sto 46
40 /	107 /	174 GTO 07	241 8
41 RCL 04	108 RCL 03	175+LBL 06	242 STO 52
42 *	109 *	176 CLR	243+LBL 14
43 STO 05	110 STO 05	177 "ENTER dS, W"	244 ISG 45
44 CHS	111 RCL 03	178 PROMPT	245 GTO 15
45 RCL 04	112 +	179 ST+ 44	246 GTO 16
46 +	113 STO 04	180 STO IND 47	247+LBL 15
47 STO 03	114 CLA	181 RDN	248 RCL 07
48 CLA	115 * F="	182 STO IND 46	249 RCL IND 47
49 °C="	116 ARCL 04	183 1	250 *
50 APCL 03	117 AVIEW	184 ST+ 46	251 1
51 AVIEW 52 PSE	118 PSE	185 ST+ 47	252 RCL 07
53 PSE	119 PSE 120 PSE	186 GTO 05	253 -
54 PSE	120 PSE	.187+LBL 07	254 RCL IND 46
55 CLA	122 "P="	188 RCL 48	255 * 257 BCL 87
56 "P="	123 ARCL 05	189 STO 45 190 FS? 02	256 RCL 07
57 ARCL 05	124 AVIEW	191 GTO 88	257 RCL IND 47 258 *
58 AVIEW	125 PSE	192 GTO 69	259 +
59 PSE	126 PSE	193+LBL 08	269 /
60 PSE	127 PSE	194 20	261 STO 51
61 PSE	128+LBL 03	195 STO 47	262 RCL IND 52
62 GTO 03	129 RCL 01	196 32	263 STO 53
63+LBL 01	130 RCL 02	197 STO 46	264 1
64 RCL 02	131 -	198 GTO 10	265 ST+ 52
65 1/X	132 RCL 00	199+LBL 09	266 RCL IND 52
66 RCL 00	133 RCL 02	200 20	267 RCL 53
67 1/X	134 -	201 STO 46	268 +

HYDROCYCLONE EFFICIENCY 213

		Table I
269 2	77/ DCE	
270 /	336 PSE 337 RTN	
271 STO IND 47	338+LBI. 17	
272 STO 53	339 ISG 45	
273 •dT= •	340 GTO 18	
274 ARCL 53	341 GTO 19	
275 AVIEW	342+LBL 18	
276 PSE	343 RCL IND 47	
277 PSE	344 STO 51	
278 PSE	345 XEQ E	
279 •T=• 288 0PC1 51	346 RCL IND 46	
280 ARCL 51 281 AVIEW	347 STO 51 348 XEQ E	
282 PSE	349 1	
283 PSE	350 ST+ 46	
284 PSE	351 ST+ 47	
285 1	352 GTO 17	
286 ST+ 46	353+LBL 19	
287 ST+ 47	354 25	
288 GTO 14	355 STO 51	
289+LBL 16	356 XE0 F	
290 PLOT CURVE	357 STO 54	
291 PROMPT	358 d25= "	
292 CLA	359 ARCL 54	
293 "ENTER d50"	360 AVIEW	
294 PROMPT 295 STO 49	361 PSE 362 PSE	
296 9	363 PSE	
297 STC 46	364 75	
298 21	365 STO 51	
299 STO 47	366 XEQ F	
300 RCL 48	367 STO 51	
301.001	368 °d75= °	
302 -	369 ARCL 51	
303 STO 45	370 AVIEW	
304 RCL 08	371 PSE	
305 STO 51	372 PSE	
306 XEQ E 307 GTO 17	373 PSE	
308+LBL E	374 RCL 51	
309 RCL 49	375 RCL 54 376 -	
310 /	377 2	
311 .115	378 RCL 49	
312 -	379 *	
313 3	380 /	
314 Y†X	381 STO 53	
315 CHS	382 "I= "	
316 E†X	383 ARCL 53	
317 CHS	384 PROMPT	
318 1	385+LBL F	
319 +	386 RCL 51	
320 100	387 100	
321 * 322 STO 53	388 /	
322 STO 33	389 CHS	
324 •d=•	390 1 391 +	
325 ARCL 51	392 LN	
326 AVIEW	393 CHS	
327 PSE	394 .3333	
328 PSE	395 Y+X	
329 PSE	396.115	
330 CLA	397 +	
331 •E=*	398 RCL 49	
332 ARCL 53	399 *	
333 AVIEW	400 RTN	
334 PSE	401 .END.	
335 PSE		

HP-41C memory m hydrocyclone prog	-
Register	Contents
00	c
01	а
02	b
03	с
04	F
05	P
06	Ŷ
07	Θ
08 - 19	$d_{i}, i = 1 - 12$
20 – 31	(1) W_i , i = 1 – 12
	(2) R_{a_i} , $i = 1 - 12$ (3) d_{T_i} , $i = 1 - 12$
32 – 43	$R_{c_i}, i = 1 - 12$
44	W
45	ISG index
46	Indirect address #1
47	Indirect address #2
48	Total number of size fractions/1000
49	d ₅₀
50	τ_i
51	Used
52	Indirect address #3
53	(1) <i>E</i>
	(2) /
54	^d 25

Entering the data for sample problem

1. Clear memory.

2. Execute the calculator SIZE function for 55 registers.

3. Load the program into the calculator.

To begin execution, set the calculator to USER mode, and press the "A" button. Execution will proceed as follows. (Note: Underlined items indicate calculator output, and non-numerical operations are indicated in parentheses.)

Enter C , c , P	Enter ds, W	Enter d 50
0 (Enter) 0.75	250 (Enter) 5.0 (R/S)	<u>152.0 (R/S)</u>
(Enter) 60 (R/S)	Enter ds, W	<u>d =250.0</u>
[Note: For C, F, and P,	200 (Enter) 10.0 (R/S)	<u>E =97.2117</u>
enter the value for the one	Enter ds, W	d =225.0
known. O is entered for the	150 (Enter) 20.0 (R/S)	<i>E</i> =92.1509
two unknown values.]	Enter ds, W	<u>d =200.0</u>
	100 (Enter) 40.0 (R/S)	<u>E =82.2966</u>
Enter b, F, a	Enter ds, W	<u>d =175.0</u>
0.45 (Enter) 0	50 (Enter) 10.0 (R/S)	<u>E =67.1412</u>
(Enter) 0.60 (R/S)		<u>d=150.0</u>
Enter γ	Enter <i>ds, W</i> 0 (Enter) 15.0 (R/S)	<u>E =48.4540</u>
2.65 (R/S)		<u>d =125.0</u>
<i>C</i> =100.0	<u>dT=225.0</u>	<u>E =29.8087</u>
$\frac{C = 160.0}{F = 160.0}$	<u>7=1.0</u>	$\frac{d=100.0}{5}$
$\Theta = 0.4634$	<u>d7=175.0</u>	E = 14.7865
	<u>7=0.7755</u>	$\frac{d=75.0}{5}$
How many size fractions?	<u>dT=125.0</u>	E = 5.2749
6 (R/S)	<i>T</i> =0.3858	$\frac{d=50.0}{5=0.0745}$
Enter overflow	<u>d7=75.0</u>	E = 0.9745
Enter ds, W	<i>T</i> =0.3654	$\frac{d=25.0}{5=0.0121}$
250 (Enter) 0.0 (R/S)	dT=25.0	$\frac{E = 0.0121}{d = 0.0}$
Enter ds, W	7=0.3413	
200 (Enter) 0.0 (R/S)	Plot curve	E = -0.1522 d 25=117.8258
Enter <i>ds, W</i>	Note: At this time it is	d 75=186.9622
150 (Enter) 5.0 (R/S)	necessary to plot the	/=0.2274
Enter ds, W	Tromp curve and determine	
100 (Enter) 55.0 (R/S)	d_{50} (see Fig. 9). When this	[Note: This is the final
Enter <i>ds, W</i>	is done, proceed with the	output in the execution
50 (Enter) 15.0 (R/S)	remainder of the program.	of the program.]
Enter ds, W	For this example, d_{50}	
0 (Enter) 25.0 (R/S)	was determined to be	
Enter underflow	approximately 152 microns.]	
	· · ·	

 d_{50} value. When this is accomplished, restart the program, and enter the d_{50} value. The calculator will now output the efficiencies for each screen size, as well as the mean size for each size fraction, using Eq. (5). Next, it will output d_{25} and d_{75} values, using Eq. (6), and then with these values will determine the imperfection number by means of Eq. (7). This number is output, and program execution ends. The flowchart for this program is shown in Fig. 8. The program listing is in Table I, and the memory map is shown in Table II, on p. 77.

Sample problem

Table III defines a situation that might be encountered in a mineral processing operation. The tonnage in the hydrocyclone overflow is known, along with the solids contents of the three slurries and the specific gravity of the solid material. The operator wishes to determine how efficiently the system is operating over the range of particle sizes involved. To do this, screen tests have been run on 100-gram samples of the solid material in the overflow and underflow, with the results shown below the diagram. The use of the program is demonstrated in Table IV.

Limitations of the program

Table IV

From the example problem, it will be noticed that, although six sets of size fraction data were entered, only five Tromp values were generated. The Tromp value for the +250-micron material cannot be generated with this program unless a set of "dummy" data is entered first. Such a data set for the example just given would require a particle size greater than 250 microns, and a very small, yet finite weight. This dummy set would be treated as the first size fraction to be entered, and the total number of size fractions would be increased from six to seven. In the example above, if the dummy set were used, the calculator would be told that there are seven size fractions to be entered, and the dummy data would be the first data set entered for both the overflow and the underflow. In this example, a data set of $d_s =$ 300.0, W = 0.001 would result in the Tromp value for the +250-micron size fraction being generated and displayed. At the same time, the dummy data will have no effect on the accuracies of the numbers calculated for the true data subsequently entered.

Another limitation concerns the total number of size fractions the program can handle. As written, the program is limited to twelve sets of size fraction data for each of the overflow and the underflow. Should it be desired to work with more data sets, the program can be reworked to accommodate additional sets within the limits of available calculator memory. The modification involves increasing the number of registers allocated to memory in the calculator, repositioning the information contained in registers contained in each of the three sets of registers 8 - 19, 20 - 31, and 32 - 43. The program can also be modified to print out all results on the HP-82143A printer.

Comments*

Sir: There are a couple of points in your article "Program calculates hydrocyclone efficiency" that require some comment. The overall mass recovery by the cyclone has been computed by the use of percent solids in the cyclone feed. I submit that while this would be acceptable, it is an almost impossible number to obtain directly. A sample taken upstream of the pump feeding the cyclone does not account for water maintaining the sump level or gland water. Personal experience has shown that reliable samples are impossible to get from the feed line. Therefore, one is forced to rely on screen data to compute the Tromp value. The equation is:

$$T_{i} = \left(\frac{P_{i}}{F_{i}}\right) \left(\frac{F_{i} - C_{i}}{P_{i} - C_{i}}\right), \text{ or } T_{i} = \left(\frac{F_{i}}{P_{i}}\right) \theta$$

where θ is some averaged value for the mass recovery and the other symbols are as defined in the article.

Now note that as the d_{50} size is approached, P_i and C_i are going to become approximately equal. The reliability of the data is very shaky because the equation requires division by the difference between two large (relative) numbers.

If the θ value is used, the data are smeared through-

*Letter originally published June 14, 1982.

out the rest of the curve and distort the two knees, which are the most valuable area of the curves. It is better to plot the data and then interpolate to the d_{50} value.

One further point: for the Tromp curves shown, the fines tail does not approach the lower axis as one would expect. This is because a fraction of the ore is not classified in the cyclone but passes from the inlet directly out the apex (underflow). This fraction is equal to the fraction of water that exits the underflow. If it is important to remove these fines from the underflow, there are corrective actions that can be taken.

> R. L. ATWOOD Chief Metallurgist Foote Mineral Co.

Author replies

Dr. Atwood is quite correct when he states that the percent solids in the cyclone feed is almost an impossible number to obtain directly. Early in my work with cyclones, I found that the best method to obtain a good estimate of this value was to calculate it from the volumetric feed rate to the cyclone and the solids contents of the overflow and underflow streams.

The procedure for doing this is to use a Doppler-type flowmeter to take flowrates from the cyclone feed line. Samples of both the overflow and underflow are taken and weighed in a Marcy pulp scale. This provides the

Program listing for TI version

solids contents and the specific gravities of the overflow and underflow. From this information, along with the solids feed rate to the system (weight solids in the overflow), the percent solids in the cyclone feed stream can be calculated.

Should a flowmeter not be available for determining the feed flowrate, Dr. Atwood's procedure, however, is the only available method for calculating T_i without the necessity of going to great lengths.

I appreciate Dr. Atwood's bringing this matter to my attention. This problem was not addressed in the paper, and definitely should have been.

FRANK H. MERRILL Aguirre Engineers, Inc. Englewood, Colo.

For TI-58/59 users

The version of the program for TI users appears in Table V. For the Texas Instruments calculators, the memory of the device alone is large enough to accommodate the program, data storage and calculations. User instructions appear in Table VI. The data input and the output tape for the sample problem are presented in Table VII, to ensure that the user instructions are clear to the reader. The same problem that was used for the HP version is run—see Table III.

Table V

(Continued) Table V

Step	Code	Key	Step	Code	Key	Step	Code	Key	Step	Code	Кеу	Step	Code	Key
171234567890123456789012345678901123456789011232222222222222222222222222222222222	3228148382395359573++2	58 X:T RCL 59 X 3 + 9 = EQ X RCL 59 X 2 X EQ X RCL 59 X 2 X 10 X 10 X 10 X 10 X 10 X 10 X 10	567890123456789012345678901234567890123456789 222222222222222222222222222222222222	5382348385255259.4838538745.452.483858775272587555 3753045758395099045756540980593045756409453845936	RCL 07 570 577 X:T +	01288345678901234567890123456789011234567890122345678901234 22222222222222222222222222222222222	5835525525+2382 550974453	= TVL8TL9 RDC5::C9 XR 2 VM8DXL SD7 D8LL*8RD*8T M8*8 T SSR XR 2 SSR XR SSR XR 2 SSR XR SSR XR	56789011234456789011234567890123456789011234567890123456789 333334444444444555555555555666666666677777777	85 01 65 00 95 99 98 98 98 76	5+9=0 EETCBETOTOLLOT 115E TT L7 YXP R 115=X3=/NX/+1=X100=RDTBX PARLY.	01234567890123456789011234567890123456789012345678901234567890123454567890123444444444444444444444444444444444444	5 9 9 9 8	25T56R(D5,75T58(-L5+2+C7=TVSL(T+1=X)+.115=XC7=TVN R PARL P+1=N/X(1+3)+.115=XC7=TVN R PARL

HYDROCYCLONE EFFICIENCY 217

User instructions for TI version

Table VI

Step		Value	Key or output
1.	Enter one of three flowrates in tons solids/h:		
	Hydrocyclone feed	F	Press A
	or hydrocyclone underflow	С	Press B
	or hydrocyclone overflow	P	Press C
2.	Enter all of the following solids contents in tons solids/ton slurry:		
	Solids content of feed	а	Press D
	Solids content of underflow	С	Press R/S
	Solids content of overflow	Ь	Press R/S
3.	Program will calculate and print:		
	Feed, tons solids/h		F
	Underflow, tons solids/h		С
	Overflow, tons solids/h		P
4.	Enter specific gravity of solids	γ	Press R/S
5.	Program will calculate and print:		
	Overall mass recovery		θ
6.	Enter screening data:		
	Number of screens, n	п	Press R/S
	For each screen:		
	Screen size, μm	d _s	Press R/S
	Overflow, wt.% retained on screen	Wover	Press R/S
	Underflow, wt.% retained on screen	Wunder	Press R/S
	(Program will display "27" after each of the above entries.)		
7.	When all screen data are entered, program calculates data for Tromp curve:		
	Midpoint between screen sizes, µm		dT
	Tromp value		т
3 .	Plot these data; T vs. size, and locate the d_{50} value, the size for $T = 0.50$		
	Enter the size for $T = 0.50$, μm	d ₅₀	Press R/S
	Machine will calculate and print:		
	Particle size, µm		d
	Hydrocyclone efficiency for that size		E
	This will be done for each screen and for the midpoint between screen sizes.		
	The zero size with negative efficiency will not be included in this output.		
	The 25% and 75% efficiency sizes		0.25
	·····, ····		d ₂₅
			0.75
			d ₇₅
	Imperfection value		1

Example for the TI version

Step		Value	Key or output	
1. I	Enter hydrocyclone underflow	60	Press A	
2. 1	Enter solids contents:			
	Feed	0.60	Press D	
	Underflow	0.75	Press R/S	
	Overflow	0.45	Press R/S	
3. I	Program calculates and prints:			
	Feed			160.
	Underflow			100.
	Overflow			60.
4. I	Enter specific gravity of solids	2.64	Press R/S	
5. I	Program calculates and prints:			
	Overall mass recovery		.4632352941	

Table VII

218 MASS TRANSFER

(Continued) Table VII

6.	Enter screening data: Number of screens	6	Press R/S
	Screen size, overflow, underflow for each screen:	ŭ	250 R/S 0 R/S 5 R/S 200 R/S 0 R/S 10 R/S 150 R/S 5 R/S 20 R/S 100 R/S 55 R/S 40 R/S 50 R/S 15 R/S 10 R/S 0 R/S 25 R/S 15 R/S
7.	Program calculates and prints: Midpoint between screen sizes Tromp value		225 . 1.
8.	Plot data. The size is 152. Enter it:	152	Press R/S
9.	Program calculates and prints: Particle size Hydrocyclone efficiency for that size		175. .7753846154
	Particle size Hydrocyclone efficiency for that size		125. .3856159143
	Particle size Hydrocyclone efficiency for that size		75. .3652173913
	Particle size Hydrocyclone efficiency for that size		25. .3411552347
	Particle size Hydrocyclone efficiency for that size		250. 97.21167531
	Particle size Hydrocyclone efficiency for that size		225. 92.15091621
	Particle size Hydrocyclone efficiency for that size		200. 82.29658754
	Particle size Hydrocyclone efficiency for that size		175. 67.14123878
	Particle size Hydrocyclone efficiency for that size		150. 48.45395661
	Particle size Hydrocyclone efficiency for that size		125. 29.80871273
	Particle size Hydrocyclone efficiency for that size		100. 14.78646599
	Particle size Hydrocyclone efficiency for that size		75. 5.274868246
	Particle size Hydrocyclone efficiency for that size		50. .9745318435
	Particle size Hydrocyclone efficiency for that size		25. .0121086707
	The 25 and 75% efficiency sizes		0.25 117.8216383 0.75
	Imperfection value		0.75 186.9640136 .2274420242

References

- Trawinski, H., Theory, Applications, and Practical Operation of Hydrocy-clones, Eng. and Min. J., Vol. 177, No. 9, September 1976, pp. 115-127.
 Wills, A. B., "Mineral Processing Technology," Pergamon Press, Oxford, England, 1979.
- 3. Carson, H. B., "Slurry Density Influence on Grinding Circuit Performance," Krebs Engineers.
- Hukki, R. T., Fundamentals of the Closed Grinding Circuit, Eng. and Min. J., Vol. 180, No. 4, April 1979, pp. 102–109.
 Davis, E. W., "Ball Mill Crushing in Closed Circuit With Screens," Minne-
- sota School of Mines Experimental Station, Bulletin 10, 1925.
- Zanker, A., Hydrocyclones: Dimensions and Performance, Chem. Eng., Vol. 83, No. 10, May 9, 1977, pp. 122-125.
- 7. Bennett, G. I., J. Inst. Fuels, Vol. 10, No. 22, 1936.

The author

Frank H. Merrill is an assistant laboratory manager for Aguirre Engineers, Inc., Englewood, CO. Tel: 303-771-4446. Mr. Merrill holds a B.S. in metallurgical engineering from Colorado School of Mines. He is a member of The Society of Mining Engineers of AIME, and The Society of American Military Engineers.

Program performs vapor-liquid equilibrium calculations

The dewpoint, bubble point and equilibrium flash are easily obtainable with this program, written for the HP-41CV, or 41C with a quad memory module.

Victor L. Rice, Oklahoma State University

Here we will present a program for the Hewlett-Packard HP-41CV or 41C calculators that solves basic vapor-liquid equilibrium problems—calculation of the dewpoint, bubble point, and equilibrium flash. The algorithm employed uses a method for predicting ideal-solution K-values developed by Edmister [1]. To better understand this method, a brief review of some vapor-liquid equilibrium fundamentals is presented. Following this, a description of the calculator program and an example will be given.

Vapor-liquid equilibrium

To perform the three vapor-liquid equilibrium calculations one must determine the K-value for each component. The accuracy in estimating this quantity will establish the accuracy of the final result. The K-value can be defined as follows:

$$K_{i} \equiv \frac{y_{i}}{x_{i}} = \left(\frac{\phi_{i}^{L}}{\phi_{i}^{V}}\right) \left(\frac{\gamma_{i}^{L}}{\gamma_{i}^{V}}\right) \tag{1}$$

The vapor-phase functions (ϕ_i^V, γ_i^V) can be obtained from any applicable equation of state via the following:

$$\ln \phi_i^V = \frac{1}{RT} \int_0^P \left(\underline{V}_i^V - \frac{RT}{P} \right) \mathrm{d}P \tag{2}$$

$$\ln \gamma_i^V = \frac{1}{RT} \int_0^P \left(\overline{V}_i^V - \underline{V}_i^V \right) \mathrm{d}P \tag{3}$$

Eq. (2) and (3) are general and could also apply to the liquid phase. But for this to be true, the equation of state for the vapor phase should also be able to predict liquid volumetric properties.

Although equations of state generally will not adequately predict liquid properties, a few (e.g., those of Soave-Redlich-Kwong, and Peng-Robinson) allow fairly accurate prediction. Unfortunately, their applicability is restricted to systems of "normal fluids," such as the rare gases, nitrogen, oxygen, carbon monoxide and hydrocarbons [2]. Also included are carbon dioxide, hydrogen, hydrogen sulfide, and, with certain limitations, some slightly polar substances. For more-complex systems, the liquid activity-coefficient model approach must be used. This method requires experimental equilibrium data.

Developing K_i

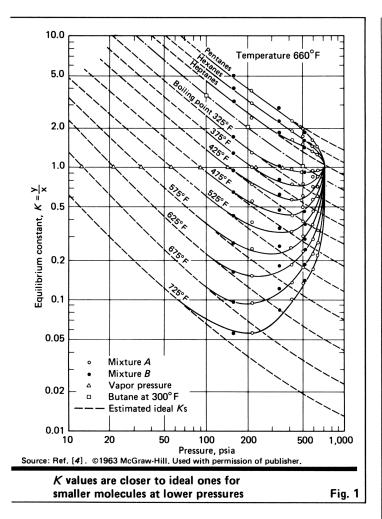
Eq. (2) can be manipulated so as to allow the prediction of ϕ_i^L from existing equations of state. When integrating Eq. (2) (for the liquid phase) one must account for the phase change from vapor to liquid. Due to the discontinuity of the molal volume at the phase transition, the integration has to be done in three steps (all at constant temperature):

Step 1: $0 \rightarrow p_i^0$ Vapor Step 2: At p_i^0 Vapor to liquid Step 3: $p_i^0 \rightarrow P$ Liquid

Since Step 1 is for the vapor phase, Eq. (2) can be used with an equation of state to predict the volume term. The upper integration limit would be p_i^0 . The change in ϕ_i^L for Step 2 is zero. The change in ϕ_i^L for Step 3 is:

$$\ln \phi_{i}^{L} = \frac{1}{RT} \int_{p_{i}^{0}}^{P} \left(\underbrace{\underline{V}_{i}^{L} - \frac{RT}{P}}_{p} \right) \mathrm{d}P = \frac{1}{RT} \int_{p_{i}^{0}}^{P} \underbrace{\underline{V}_{i}^{L}}_{i} \mathrm{d}P + \ln \left(\frac{p_{i}^{0}}{P}\right) \quad (4)$$

Thus, the sum of the three steps yields:


$$\ln \phi_i^L = \frac{1}{RT} \int_0^{p_i^0} \left(\frac{V_i^V - \frac{RT}{P}}{P} \right) \mathrm{d}P + \frac{1}{RT} \int_{p_i^0}^{P} \frac{V_i^L}{i} \, \mathrm{d}P + \ln\left(\frac{p_i^0}{P}\right)$$
(5)

Eq. (1) becomes:

$$K_{i} = \left(\frac{p_{i}^{0}}{P}\right) \left(\frac{\gamma_{i}^{L}}{\gamma_{i}^{V}}\right) \exp\left[\frac{1}{RT} \int_{p_{i}^{0}}^{P} V_{i}^{L} \, \mathrm{d}P\right] \times \exp\left[\frac{1}{RT} \int_{P}^{p_{i}^{0}} \left(\frac{V_{i}^{V}}{P} - \frac{RT}{P}\right) \mathrm{d}P\right] \quad (6)$$

The last term in Eq. (6) results from the combination of the first term in Eq. (5) with Eq. (2) for ϕ_i^{V} . Eq. (6) is

Originally published June 28, 1982.

Co	onstants used in Ec	q. (7) through (14)	Tabl
	Fo	r <i>K_R <</i> 1.0	
Constant	<i>P_r</i> < 1.0	1.0 < <i>P_r</i> < 10.0	<i>P_r</i> > 10.0
<i>a</i> 0	+0.72354688	+0.71613974	+0.93322546
a	-0.11955262	-0.11010362	-0.29838149
a2	-0.019175521	-0.009820518	+0.036108945
ag	-0.00079043357	+0.00085139636	-0.0018123488
a4	-0.092938874	-0.031743583	-1.4698873
a ₅	-0.089253134	-0.077912651	+1.5375645
a ₆	-0.02120992	-0.012739586	-0.71906421
a7	-0.0011023254	-0.035998746	+0.089098628
ag	+0.83485814	+3.4719935	-0.33924284
ag	-1.7510463	-2.4128931	+1.3802654
a ₁₀	-1.7882516	+0.74548583	-0.64746142
a ₁₁	-0.20255145	-0.13713069	+0.074000484
	Fo	r K _R > 1.0	
a ₁₂	+0.55823912	+0.56319800	+0.3986012
a ₁₃	-0.22417339	-0.20762898	-0.1933524
a ₁₄	-0.026665354	-0.001581164	+0.02388513
a ₁₅	-0.0046116207	-0.0001901561	+0.17430118
^a 16	+0.035372461	+0.023954299	-0.082957315
a ₁₇	+0.0067313403	-0.00380481	+0.010571085
a ₁₈	-0.00060208161	-0.0017300384	-0.032969708
a ₁₉	-0.002218345	-0.0022414988	+0.021278044
a ₂₀	-0.0004783554	+0.0013698449	-0.0032276668

rigorous and is based on the First Law and Second Law. The first term in Eq. (6), $\frac{p_i^0}{P}$, is known as Raoult's Law K-value (K_R) , which is valid only for completely ideal systems. Thus, K_i as given in Eq. (6) can be viewed as Raoult's Law K-value with four corrections:

1. Effect of molecular interactions in the liquid phase, γ_i^L .

2. Effect of molecular interactions in the vapor phase, γ_i^V .

3. Pure-component nonideality in the liquid phase, the third term.

4. Pure-component nonideality in the vapor phase, the fourth term.

Several assumptions can be made regarding Eq. (6) that simplify, to varying degrees, the calculation of K_i . Of course, these assumptions limit the applicability of the equation. Fair and Bolles [5] list such assumptions and show how they limit applicability.

In developing his correlation for ideal-solution K-values, Edmister assumed ideal liquid and vapor solutions, and that the liquid is incompressible. The ideal-solution model is a very good approximation for close-boiling homologs, but is not for other systems [3]. The applicability of assuming an ideal solution depends upon the degree of accuracy desired, as well as the molecular structure of the components.

Fig. 1 illustrates the deviation from reality of the ideal-solution model. The actual components shown in Fig. 1 are not as important as is their behavior in regard to K_i . As molecules become more complex, the deviation of the ideal-solution K-values from the experimental ones becomes significant at lower pressures.

Fig. 1 is for hydrocarbon mixtures, as well as for pure hydrocarbons. The lower lines in the figure are for boiling-point fractions. Mixtures A and B are hydrocarbon mixtures. The higher-boiling-point mixtures are made up of a large range of molecular-weight materials. Such a range is a factor in K's deviation from ideality.

This figure illustrates the need for judgment in applying this model. Assuming that the liquid is incompressible is generally true at normal pressures. Thus, this assumption does not introduce any significant error.

Edmister's book should be consulted for how he developed his correlation. His K-values are the ones used in the program. The end-result is:

For $K_{R} < 1.0$:

$$Y = A_0 X + A_1 [(1 + A_2 X)e^{X/2} - 1]$$
(7)

$$A_0 = a_0 + a_1 Z + a_2 Z^2 + a_3 Z^3 \tag{8}$$

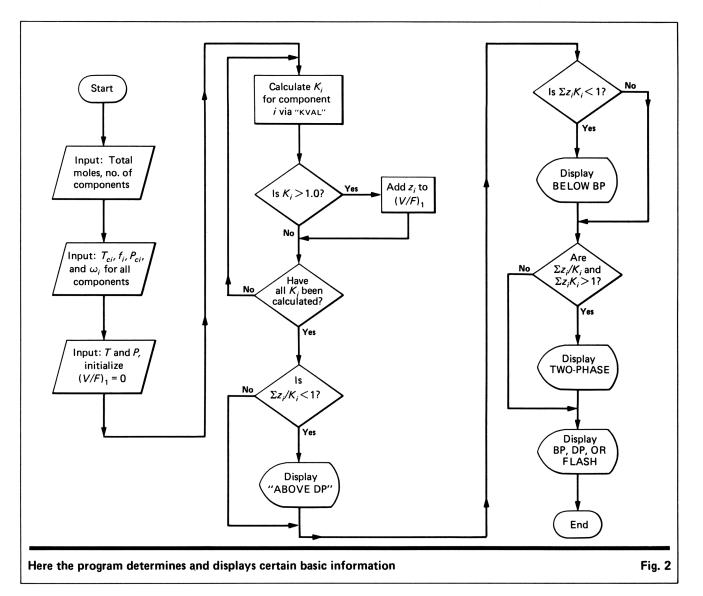
$$A_1 = a_4 + a_5 Z + a_6 Z^2 + a_7 Z^3 \tag{9}$$

$$A_2 = a_8 + a_9 Z + a_{10} Z^2 + a_{11} Z^3 \tag{10}$$

For $K_{R} > 1.0$:

where

$$Y = A_3 X + A_4 X^2 + A_5 X^3 \tag{11}$$


$$A_3 = a_{12} + a_{13}Z + a_{14}Z^2 \tag{12}$$

$$A_4 = a_{15} + a_{16}Z + a_{17}Z^2 \tag{13}$$

$$A_5 = a_{18} + a_{19}Z + a_{20}Z^2 \tag{14}$$

$$Y = \ln K_{I} \tag{15}$$

(Text continues on p. 224)

Nomenclature

- A see Eq. (7) to (14)
- see Eq. (7) to (14) a F
- feedrate, lb-mol/h
- ffeedrate of component i, lb-mol/h K
- equilibrium distribution coefficient
- K_I ideal-solution K-value, Eq. (15)
- K_{R} Raoult's Law K-value
- rate of component *i* in liquid product, lb-mol/h l
- Ν number of components in feed
- **p**⁰ pure-component vapor pressure, psia
- P pressure, psia
- R gas constant
- S convergence function
- Т temperature, °F (or R)
- rate of component i in vapor product, lb-mol/h v
- V total vapor rate, lb-mol/h
- \overline{V} partial molal volume, ft³/lb-mol
- <u>V</u> molal volume, ft³/lb-mol
- \overline{X} as defined in Eq. (16)
- x liquid mole fraction
- Y as defined in Eq. (15)

- vapor mole fraction y
- Ζ as defined in Eq. (17)
- z feed mole fraction

Greek letters

- γ activity coefficient
- φ fugacity coefficient
- acentric factor ω

Subscripts

- с critical property
- i component *i* property or quantity
- k counter of trial-and-error loop in flash calculation
- reduced property r
- bp bubble point
- dp dewpoint

Superscripts

Letters: V

L

- Numbers: 0
- vapor property liquid property
- for a pure component

Program performs vapor-liquid equilibrium calculations for the HP-41C calculator

01+LBL -YLE-	52 -PC-	97 SF 29	147 XEQ 15	190 CHS
•	53 ARCL 83	98 ARCL X		191 RCL 77
Component data input	54 •H=?•	99 AVIEW	Calculates	192 STO 76
	55 PROMPT	100 RCL 81	Σz _i K _i or Σz _i /K _i	193 +
02 ADV	56 RND	101 110		194 RCL 80
03 -VAPOR-LIQUID EQ-	57 "OMEGA"	102 +	148+LBL d	195 RCL 79
04 -HUILIBRIUM-	58 ARCL 83	103 X<>Y	149 XEQ 16	196 -
05 FS? 21	59 * +=?*	104 STO IND Y	150 FRC	197 /
06 PRA	60 PROMPT	105 1	151 XEQ 14	198 RCL 80
07 ADY	61 +	106 X>Y?	152 ES? 05	199 *
08 TOT MOLES=?"	62 RCL 81	107 GTO 05	153 /	200 CHS
09 PROMPT	63: 100	108 XEQ 16	154 FS? 06	201 RCL 77
10 STO 78	64 +	109 FRC	155 *	202 +
11 -N=?-	65 X<>Y	110 ST+ 77	156 ST+ 82	203 STO 77
12 PROMPT	66 STO IND Y		157 ISG 81	204 RCL 80
13 STO 00	67 CLA	Determines	158 GTO d	205 STO 79
14 TC UNITS=?"	68 FIX 3	system	159 CF 05	206 GTO 03
15 AON	69 ISG 81	phase	160 CF 06	
16 PROMPT	70 GTO 06	111+LBL 05	161 RTN	Summerizes
17 ASTO Y		112 ISG 81		Summarizes output
18 ROFF	Input	113 GTO 00	First flash	
19 -F-	T and P	114 0	trial	207+LBL 02
20 ASTO X	71+LBL E	115 STO 76	162+LBL C	208 -CONVERGED SOLUT-
21 X=Y?	72 ADY	116 STO 82	163 XEQ 15	209 "FION"
22 SF 07	73 ****	117 SF 05	164 CLX	210 AVIEW
23 CLA	74 FS? 21	118 CF 06	165 XEQ 13	211 ADY
24 XEQ 15	75 PRA	119 XEQ 02	166 STO 79	212 *¥/F= *
25+LBL 06	76 0	120 RCL 82	167 X(0?	213 ARCL 77
26 RCL 81	77 STO 77	121 STO 90	168 SF 02	214 AVIEW
27, FIX 0	78 "T=?, DEG F"	122 ***ABOVE DP***	169 RCL 77	215 RCL 77
28 CF 29	79 PROMPT	123 1	170 STO 76	216 RCL 78
29 ARCL X	80 459.67	124 X>Y?	171 .05	217 *
30 ASTO 83	81 +	125 AVIEW	172 FS?C 02	218 STO 80
31 459.67	82 STO 84	126 X>Y?	173 CHS	219 •V=•
32 SF 29	83 •P=?•	127 SF 10	174 ST+ 77	220 ARCL X
33 -TC-	84 PROMPT	128 0	In the second	221 AVIEW
34 ARCL 83	85 STO 85	129 STO 82	Checks for	222 RCL 78
35 *+=?*	86 XEQ 15	130 SF 06	convergence	223 X<>Y
36 PROMPT	00 AE& 13	131 CF 05		224 -
37 FS? 07	Calculate and	132 XEQ 02	175+LBL 03	225 STO 79
38 +	display K _j .	133 RCL 82	176 XEQ 15	226 "L="
39 RND	If <i>K_i</i> > 1.0,	134 STO 88	177 CLX	227 ARCL X
40 °F*	add z; to	135 ***BELOW BP***	178 XEQ 13	228 AVIEW
41 ARCL 83	(<i>V/F</i>) ₁	136 1	179 STO 80	229 RCL 80
42 *+=?*	87+LBL 00	137 X>Y?	180 "S="	230 RCL 79
43 PROMPT	88 XEQ "KYAL"	138 AVIEW	181 ARCL X	230 KCL 79
44 RCL 78	89 RCL 81	139 X>Y?	182 AVIEW	232 STO 79
45 /	90 FIX 0	140 SF 10	183 PSE	233 •¥/L=•
46 +	91 CF 29	141 PSE	184 CLD	234 ARCL X
47 RCL 81	92 - K-	142 **THO PHASE**	185 ABS	
48 90	93 ARCL X	143 FC?C 10	186 1 E-05	235 AVIEW
49.+	94 "H="	144 AVIEW	187 X>Y?	236 ADV 277 - DETOILS 2. D/S-
50 X()Y	95 RDN	145 STOP		237 "DETAILS ?,R/S" 270 DECMPT
51 STO IND Y	96 FIX 4	146+LBL 02	188 GTO 02	238 PROMPT
v. viv ind i	20 CIA 4	TTOVEDE DE	189 RCL 76	239 XEQ 15

					Table II
240 SCI 4	291 XEQ 08	340 *	390 -3	444 X<=Y?	488 YtX
241 • •	292 *	341 +	391 YtX	445 SF 04	489 ISG 82
242 ASTO 83	293 ARCL 86	342 ISG 81	392 *	446 GTO 10	498 RCL IND 8
243 • •	294 ARCL X	343 GTO 13	393 -	447+LBL 09	491 *
244 ASTO 86	295 ARCL 86	344 RTN	394 .1824	448 SF 02	492 +
245 ARCL 83	296 -	345+LBL c	395 RCL 79		493 ISG 82
246 TH FLOWS	297 CF 07	346 STO 83	396 -4	Selects	494 STO IND 8
247 PRA	298 XEQ 08	347 1	397 YtX	appropriate	495 ISG 82
248 CLA	299 RCL 80	348 -	398 *	set of	496 GTO 21
249 XEQ 18	300 *	349 RCL 77	399 +	constants	497 RCL 76
250 XEQ 15	301 SF 08	350 *	400 XEQ J		498 *
D. I.	302 XEQ 08	351 1	401 *	449+LBL 10	499 1
Details output	303 /	352 +	402 GTO 02	450 FS? 01	500 +
output	304 ARCL X	353 /	403+LBL 01	451 GTO 11	501 RCL 76
251+LBL 04	305 PRA	354 RTN	404 5.179	452 FS?C 02	502 2
252 SF 07	306 ISG 81		405 ENTERT	453 1.014	503 /
253 SF 08	307 GTO 20	K-value	406 5.133	454 FS?C 03	504 ETX
254 XEQ 16	308 RTN	prediction	407 RCL 79	455 15.028	505 *
255 FRC	309+LBL 08	subroutine	408 17X	456 FS?C 04	506 1
256 RCL 78	310 FS? 08	355+LBL -KVAL-	489 *	457 29.042	507 -
257 *	311 XEQ 14	356 RCL 84	410 -	458 GTO 12	508 RCL 82
258 STO 80	312 FC? 07	357 XEQ 16	411 .04566	459+LBL 11	509 6
259 XEQ 08	313 1/X	358 /	412 RCL 79	460 FS?C 02	510 -
260 /	314 RCL 79	359 STO 79	413 -2	461 43.053	511 RCL IND X
261 • •	315 FC? 07	360 1	414 YTX	462 FS?C 03	512 X<>Y
262 ARCL X	316 1/X	361 X<=Y?	415 +	463 54.064	513 RDN
263 ARCL 86	317 FS? 08	362 SF 00	416 -	464 FS?C 04	514 *
264 CF 07	318 *	363 RCL 85	417 XEQ J	465 65.075	515 RCL 76
265 RCL 80	319 1	364 RCL 81	418 +	466+LBL 12	516 RCL 82
266 XEQ 08	320 +	365 100	419+LBL 02	467 STO 82	517 11
267 /	321 RTN	366 +	420 1	468 RCL 80	518 -
268 ARCL X	322+LBL 18	367 RCL IND X	421 RCL 79	469 LN	519 RCL IND X
269 PRA	323 ARCL 86		422 1/X	470 STO 80	520 X(>Y
270 ISG 81	324 "HLIQUID"	368 X<>Y	423 -	470 510 80 471 FS?C 01	521 RDN
	325 ARCL 83	369 RDN 770 INT			522 *
271 GTO 04		370 INT	424 5.366	472 GTO 07	523 +
272 ADY	326 "HVAPOR"	371 /	425 *	O-louister #	
273 XEQ 15	327 PRA	372 STO 80	426 +	Calculates <i>K</i> / for <i>K_R <</i> 1.0	524 EtX 525 RTN
274 CLA 275 ODCL 97	328 RTN	373 FS?C 00	427 EtX		JEJ KIM
275 ARCL 83		374 GTO 01	428 RCL 80	477ALDI 21	
276 **	Calculates	375 2.415	429 /	473+LBL 21	Calculates K ₁
277 "HHOL FRAC"	convergence	376 ENTERT	430 1	474 RCL IND 82	for <i>K_R</i> > 1.0
278 PRA	function	377 .7116	431 X(=Y?	475 ISG 82	FO(+1 D) - 07
279 CLA	70041.01 47	378 RCL 79	432 SF 01	476 RCL IND 82	526+LBL 07
280 XEQ 18	329+LBL 13	379 1/X	433 RDN	477 RCL 80	527 RCL IND 8
281 FIX 5	330 XEQ 16	380 *	434 LN	478 *	528 ISG 82
282+LBL 20	331 FRC	381 -	435 STO 76	479 +	529 RCL IND 8
283 CLA	332 XEQ 14	382 1.179	436 RCL 80	480 RCL 80	530 RCL 80
284 XEQ 16	333 Rt	383 RCL 79	437 1	481 X†2	531 *
285 FRC	334 CLX	384 -2	438 X>Y?	482 ISG 82	532 +
286 STO 80	335 RDN	385 YTX	439 GTO 09	483 RCL IND 82	533 RCL 80
287 SF 07	336 XEQ c	386 *	440 RDN	484 *	534 Xt2
288 XEQ 08	337 1	387 -	441 10	485 +	535 ISG 82
289 /	338 RCL 83	388 .7072	442 X>Y?	486 RCL 80	
290 CF 08	339 -	389 RCL 79	443 SF 03	487 3	(Continues next p

223

	ms vapor-liquid equili the HP-41C calculato	
57/ 001 THE 00	507 FDC	(20. DCI 00
536 RCL IND 82	583 FRC	628 RCL 89
537 *	584 RTN	629 LN 630 RCL 87
538 + 539 ISG 82	Sets flag for	631 X()Y
540 STO IND 82	BP calculation	632 -
540 510 1MB 82	585+L8L B	633 RCL 87
542 GTO 07	586 SF 06	634 X()Y
543 RCL 76	587 CF 05	635 /
544 3	588 GTO e	636 RCL 84
545 YtX		637 1/X
546 *	Sets flag for DP	638 RCL 83
547 RCL 76	calculation	639 1/X
548 X†2	589+L8L D	640 -
549 RCL 82	590 CF 06	641 *
550 5	591 SF 85	642 RCL 83
551 -	592+LBL e	643 1/X
552 RCL IND X	593 0	644 +
553 X<>Y	594 STO 89	645 1/X
554 RDN	595 FS? 05	646 459.67
555 +	596 RCL 90	647 -
556 +	597 FS? 06	648 FS?C 05
557 RCL 76	598 RCL 88	649 "DP="
558 RCL 82	599 1	650 FS?C 06
559 9	600 X>Y?	651 "BP="
560 -	601 SF 03	652 ARCL X
561 RCL IND X	602 RCL 84	653 • F•
562 X<>Y	603 STO 83	654 RCL 83
563 RDN	604 100	655 STO 84
564 *	605 FS?C 03	656 TONE 5
565 +	606 CHS	657 AVIEW
566 EtX	607 FS? 05	658 RTN
567 RTN	608 + 609 FS? 06	Subroutine
Subroutine	610 -	retrieves z _i
resets	611 STO 84	659+LBL 16
counter	612 RCL Z	660 RCL 81
568+LBL 15	613 LN	661 90
569 RCL 00	614 STO 87	662 +
570 1000	615 XEQ 15	663 RCL IND X
571 /		664 X<>Y
572 1	BP or DP interpolation	665 RDN
573 +		666 RTN
574 STO 81	616+LBL 19	Subrouting
575 RTN	617 XEQ -KVAL-	Subroutine retrieves <i>K</i> ;
	618 XEQ 16	
Retrieves ω	619 FRC	667+LBL 14
	620 X<>Y	668 RCL 81
576+LBL J	621 FS? 05	669 110
577 RCL 81	622 /	670 +
578 100	623 FS? 06	671 RCL IND X
579 +	624 *	672 X<>Y
580 RCL IND X	625 ST+ 89	673 RDN
581 X<>Y	626 ISG 81	674 RTH
582 RDN	627 GTO 19	675 .END.

(Continued from p. 220)

$$X = \ln K_R = \ln \left(\frac{p_{ri}^0}{P_r}\right) \tag{16}$$

$$Z = \ln P_r \tag{17}$$

The values of the 21 regression coefficients (a_0-a_{20}) are given in Table I for three ranges of reduced pressure.

To evaluate K_R , a correlation of the reduced vapor pressure developed by Pitzer et al. [6] was used. This vapor pressure relationship is:

$$\ln p_r^0 = (\ln p_r^0)^0 + \omega \left(\frac{\partial \ln p_r^0}{\partial \omega}\right)_T \tag{18}$$

where
$$(\ln p_r^0)^0 = 5.366(1 - T_r^{-1})$$
 (19)

For $T_r < 1.0$:

$$\frac{\left(\frac{\partial \ln p_r^0}{\partial \omega}\right)_T = 2.415 - 0.7116(T_r^{-1}) - 1.179(T_r^{-2}) - 0.7072(T_r^{-3}) + 0.1824(T_r^{-4})$$
(20)

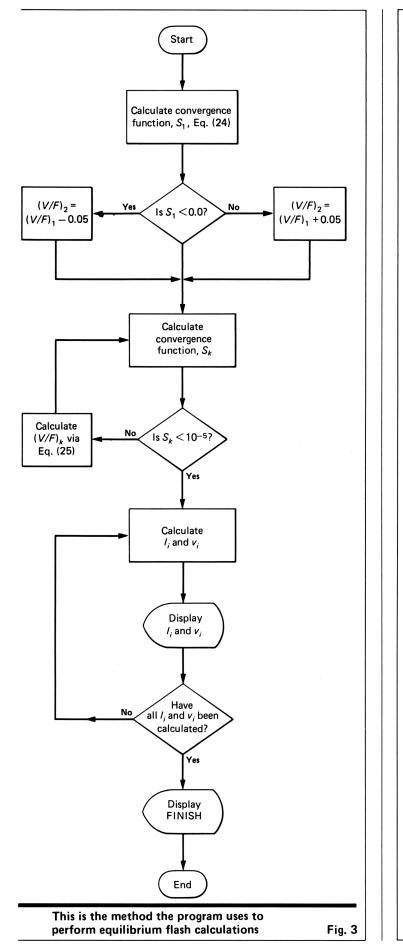
For $T_r > 1.0$:

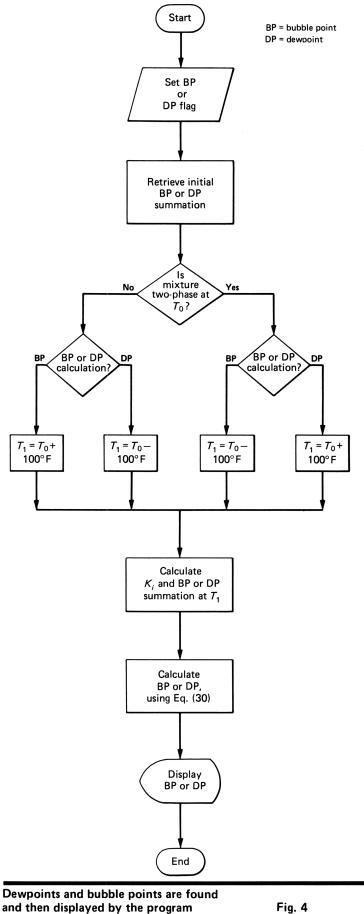
$$\left(\frac{\partial \ln p_r^0}{\partial \omega}\right)_T = 5.179 - 5.133(T_r^{-1}) - 0.04566(T_r^{-2}) \quad (21)$$

Calculator program

The program was written using the algorithms described in Fig. 2, 3 and 4. If run on an HP-41C, a quad memory module is needed. The program listing is presented in Table II. The initial phase of the program is described in Fig. 2. After the total moles and number of components are entered, a loop is begun that inserts the component properties needed by "KVAL" (the subroutine that predicts the K-values) and also computes z_i (the component mole fraction in the feed).

After the pure-component properties are entered, the system temperature and pressure are punched in. These and all previous inputs are called up in the display, using the calculator's alphanumeric capacity. This prevents losing track of input status during interruptions. Next, the K_i s are calculated via KVAL. As each K_i is calculated, it is displayed, and the corresponding z_i is added to the $(V/F)_1$ register if the K_i is greater than 1.0. This will provide the initial guess for the flash calculation. Following the K-value predictions, a check is made on the phase of the system. The following equations are used for this purpose:


$$\Sigma z_i/K_i < 1.0$$
 (the system is all vapor) (22)


 $\Sigma z_i K_i < 1.0$ (the system is all liquid) (23)

These checks result in a display indicating the phase of the system. This will prevent a flash calculation from being performed on a one-phase system. A computation of this type would not converge, or would converge to a meaningless result.

Fig. 3 describes the equilibrium flash algorithm used. This is a trial-and-error calculation on (V/F). A Newtonian convergence technique is used on the following function [7]:

$$S_k = \Sigma \frac{z_i(1 - K_i)}{(V/F)_k(K_i - 1) + 1}$$
(24)

	User's instructions for	r running the pr	rogram Table III	Storage register setup, use of fla assignments of the calculator's	
0.	• • • • • • •	Among Francis		Data registe	
Step	Instructions	Input Function	on DISPLAY	00 No. of components 01	111
1.	Load program				Ki
2.	Set size and load data	XEQ SIZE	121	Regression coefficients	1 120
3.	Set user mode			75 76 (<i>V/F</i>) _k , in P _r	
4.	Start	XEQ VL	E TOTAL MOLES = ?	77 (<i>V/F</i>) _{k+1} , K _R 78 Total moles	
5.	Enter moles	R/S	N = ?	79 S_k , T_r 80 S_{k+1} , P_r 81 Constant	
6.	Enter no. of components	R/S	T _C UNITS = ?	81 Counter 82 Counter 83 <i>K</i> ;	
7.	Enter units to be used for T_c	°ForR R/S	T _{C1} = ?	84 T 85 P	
8.	Enter component properties as asked for:		: T = ?, DEG F	86 87 In(Σ*) ₁ 88 Σ(z _i K _i)	* either: z _i K; or z _i /K;
9.	Enter system temperature	°F R/S	P = ?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
10.	Enter system pressure Component K-values displayed	psia R/S	$K_1 =$ $K_n =$	91 <i>T_{ci}z_i</i> 100	
	System phase displayed		ABOVE DP BELOW BP TWO-PHASE	$\begin{vmatrix} 100 \\ 101 \\ P_{ci}\omega_i \end{vmatrix}$	
11.	At this point, one of four options exists: 1. Bubble point	В	BP =	110	
	1. Dewpoint	D	DP =	Flags	Assignments
	III. Flash-for detailed product information, press R/S. This will yield component flows and mole fractions for V and L.	C	S _k = : CONVERGED V/F = V = L = V/L = DETAILS ? R/S	Init # S/C Set indicates 00 C $T_r > 1.0$ 01 C $K_R > 1.0$ 02 C $P_r > 1.0$ 03 C $1.0 < P_r < 10.0$ 04 C $P_r > 10.0$ 05 C DP calculation	Function Key VLE A BP B Flash C DP D Change E VLE = vapor-liquid equilibrium
	IV. Change T and P	E		06 C BP calculation 10 C one-phase system	S = set C = clear

ister configuration fo				Та
R00= 0.00000000	R16= -0.110103620	R32= 0.036108945	R48= 0.035372461	R64= 0.001369845
R01= 0.723546880	R17= -0.009820518	R33= 1.00000000	R49= 0.006731340	R65= 0.398601200
R02= -0.119552620	R18= 0.000851396	R34= -1.469887300	R50= -0.046076005	R66= -0.193352400
R03= -0.019175521	R19= 1.00000000	R35= 1.537564500	R51= -0.000602082	R67= 0.023885130
R04= -0.000790434	R20= -0.031743583	R36= -0.719064210	R52= -0.002218345	R68= 1.00000000
R05= 0.936718767	R21= -0.077912651	R37= 0.089098628	R53= -0.000478355	R69= 0.174301880
R06= -0.092938874	R22= -0.012739586	R38= 1.000000000	R54= 0.563198000	R70= -0.082957315
R07= -0.089253134	R23= -0.035998746	R39= -0.339242840	R55= -0.207628980	R71= 0.010571085
R08= -0.021210992	R24= 1.808988899	R40= 1.380265400	R56= -0.001581164	R72= 1.000000000
R09= -0.001102325	R25= 3.471993500	R41= -0.647461420	R57= 1.000000000	R73= -0.032969708
R10= 0.010910644	R26= -2.412893100	R42= 0.074000484	R58= -0.000190156	R74= 0.021278044
R11= 0,834858140	R27= 0.745485830	R43= 0.558239120	R59= 0.023954299	R75= -0.003227667
R12= -1.751046300	R28= -0.137130690	R44= -0.224173390	R60= -0.003804810	R76= 0.000000000
R13= -1.788251600	R29= 0.933225460	R45= -0.026665354	R61= 1.000000000	
R14= -0.202551450	R30= -0.298381490	R46= 1.015808088	R62= -0.001730038	
R15= 0.716139740	R31= 0.036108945	R47= -0.004611621	R63= -0.002241499	

With this function, convergence to 10^{-5} is usually attained in four to five trials. New guesses for $(V/F)_k$ are calculated by:

$$(V/F)_{k+1} = (V/F)_k - \left[\frac{(V/F)_k - (V/F)_{k-1}}{S_k - S_{k-1}}\right]S_k \quad (25)$$

As described earlier, $(V/F)_1$ was obtained assuming that all components with $K_i > 1.0$ were totally vapor. Fig. 3 describes how $(V/F)_2$ is determined. S_k is displayed after each trial, which allows for monitoring of the convergence. After convergence is attained, the l_i and v_i values are calculated and will be displayed. Fig. 4 describes the bubble-point and dewpoint calculations. The algorithm used for the calculation is a simplified technique that eliminates the usual trial-

and-error procedure. The conventional calculation would use the following equations in order to determine

the dewpoint and bubble point:

$$f(T) = \sum z_i / K_i - 1.0 = 0.0 \text{ (dewpoint)}$$
(26)

$$f(T) = \sum z_i K_i - 1.0 = 0.0$$
 (bubble point) (27)

A temperature would be guessed, and K-values deter-

tput of the p	rinter for ti	ne example							Table VI	
					Input*					
	VAPOR-LI	QUID EQUIC	IBR!um	PC2=?	598.04	RUN	TC5=?	1,112.8	RUN	
	TOT MOLE	°C=7		ONEGA2=?	370.07	NOW	F5=?	1)112.0	NUT	
	ion noch	21,350.	KUN		.2518	RUN	10-1	2,000.	KUN	
	N=?	20.020		TC3=?			PC5=?			
		6.	Play		1,138.	RUN		499.96	RUN	
	TC UNITS	=?		F3=?			OMEGA5=?			
	F		RUN		3,200.	RUN		, 306 8	RUN	
	TC1=?			PC3=?		1 	TC6=?			
		1,012.7	KUN		529,94	RUN		1,136.07	RUN	
	F1=?	500	Di u	OMEGA3=2	0000	6	F6=?		611-1	
	na/	4,500.	RUN	76/-0	.2979	RUM	0.37 - 0	650.	RUN	
	PC1=?	314 00	1.11.L.I	TC4=?	1,114.6	RUN	P()6=?	465.4	RUN	
	OMEGA1=?	714.22	RUN	F4=?	1/114/0	KO:	OMEGA6=?	400.4	PQU	
	UMEGHI-:	.215	RUN	F :	1,900.	RUN	Uncump-r	.335	RUN	
	TC2=?	.210	e Cit	P(4=?	177971			.000	KU!	
	104-1	1,069.2	RUN		509.95	RUN				
	F2=?			OMEGA4=2	•••••			t "echo" will if printed in r		
		9/100.	RUN		.3164	RUN	mode.	n printea in i	nanuai	
					Output					
k #		V/F:	- 0.3205			MOL	FRAC			XEQ
F=?: DEG F		۷=6	,842,932	0	LI	QUID	VAPOR			
	50.000		4.507.06	80		14546	0.34923	**		
P=?		V/L:	=0,4717			41770	0.44430	T=?. D		
		KUN				18232	0.98111		280.00000	RU
		PUN DET	AILS ?,R			10565	0.05368	P=?	40.00000	
(1=2.4908			r	RUN		11055	0.05790	K1-7 4	18.00000	RU
(2=1.0637		1		LOWS Vapor	Ø.	03831	0.01377	K1=3.4		
(3=0.4449			LIQUID .1103E3	2.3897E3	00-24	1.22502	XEQ 8	K2=1.6 K3=0.6		
(4=0.5081 (5=0.5238			. 0597E3	2.3697E3 3.0403E3	07-24	1.62302	.r Xeq d	K4=0.7		
(6=8,3596			.6449E3	5.5505E2	NP=26	6.27314		K5=0.8		
TWO PHASE*			.5327E3	3.6733E2	D1 ~0.0		•	K6=0.5		
	XE		.603SE3	3.9622E2					E DP**	
5=0.1253			5574E2	9.4256E1						
6=0.0060										
3=-0.0001									that this new ca he dewpoint.	se is
6=2.7678E-7									uotoponiti	
CONVERGED SI	DLUTION									

mined at each temperature until the above functions equaled 0, within a given tolerance. A Newtonian convergence technique could be used to accelerate the convergence. However, a faster method is used here by making modifications to Eq. (26) or (27) to yield a more nearly linear function on which to apply the convergence technique. Since K_i is related to vapor pressure (see Eq. (6)), one improvement would be:

$$g(T) = \ln \Sigma z_i / K_i (\text{or } z_i K_i) = 0.0$$
 (28)

Since the vapor pressure is related to T^{-1} , a further improvement would be:

$$g(T^{-1}) = \ln \Sigma z_i / K_i (\text{or } z_i K_i) = 0.0$$
 (29)

In most cases encountered with the program, Eq. (29) results in a plot that is very nearly a straight line. Thus, the bubble point or dewpoint can be obtained from a linear interpolation of Eq. (29) between T_0 and T_1 . Here, T_0 is the program's first guess for T, and T_1 is its second guess.

$$\frac{1}{T_{bp}} \left(\text{or} \, \frac{1}{T_{dp}} \right) = \frac{1}{T_0} + \left(\frac{1}{T_1} - \frac{1}{T_0} \right) \frac{g(1/T_0)}{g(1/T_0) - g(1/T_1)} \quad (30)$$

Fig. 4 describes how T_1 is obtained.

Table III lists the instructions for using the program. Table IV describes the storage register setup, use of flags, and assignment of the calculator's keys.

To produce the data cards required for this program, the register contents should be set up as shown in Table V. Then, the WDTA function can be used to produce the data cards.

Example

The feed to the benzene tower of an aromatics extraction unit is as follows:

	lb-mol/h
Benzene	4,500
Toluene	9,100
o-xylene	3,200
<i>m</i> -xylene	1,900
<i>p</i> -xylene	2,000
<i>i</i> -propylbenzene	650
	21,350

The feed is at 18 psia and 250°F. Determine the vaporliquid split and the equilibrium compositions. Also, determine the bubble point and dewpoint to help set the feed-preheater operating limits.

The ideal-vapor-solution assumption should be valid (i.e., P < 20 atm). Also, the ideal-liquid-solution assumption should be valid, since it applies to a system of reasonably-close-boiling homologs at pressures below 10 atm. This system could be considered a borderline case for the ideal-liquid-solution assumption, and should give some indication of the accuracy of this program near the limit of its applicability.

First, the input data must be obtained. The best data

to use with this program are the pure-component properties contained in Edmister's book [1]. Since these data were used in developing the K-value correlation, they will yield the most accurate results. For components not included in Edmister's compilation, any other available source can be used. An excellent one is Reid, et al. [β].

Results

Following the input procedure outlined in Fig. 2, these results were obtained, and are compared with those determined by using the Soave-Redlich-Kwong (SRK) method on a process simulator:

	Liqu	ıid	Vapor		
	HP-41C	SRK	HP-41C	SRK	
Benzene	2,110	2,151	2,390	2,349	
Toluene	6,060	6,079	3,040	3,021	
<i>o</i> -xylene	2,645	2,673	555	527	
<i>m</i> -xylene	1,533	1,547	367	353	
<i>p</i> -xylene	1,604	1,620	396	380	
<i>i</i> -propylbenzene	556	560	94	91	
	14,508	14.630	6.842	6.721	

SRK: $T_{bp} = 241^{\circ}$ F, $T_{dp} = 266^{\circ}$ F HP-41C: $T_{bp} = 240^{\circ}$ F, $T_{dp} = 265^{\circ}$ F

With no modifications, this program can be used with the HP-41C printer. The results generated are shown in Table VI. This printout includes verification of the inputs, plus the values generated by the program.

The SRK equation-of-state provided predictions of the liquid volumetric properties needed to calculate ϕ_i^L and γ_i^L . Thus, the SRK computer simulation assumed neither ideal-vapor nor ideal-liquid solutions. As can be seen, the difference between these two methods is negligible for the dew-point and bubble-point calculations, and small for the flash calculation.

Program comments

1. The register configuration as shown in Table V is correct. Some confusion has arisen from the fact that although registers 1–75 are given values, only 63 constants are listed in Table I. This discrepancy is due to the fact that interspersed among these 75 registers are 12 "scratch" registers (5, 10, 19, 24, 33, 38, 46, 50, 57, 61, 68, 72). The content of these registers will not affect the program results.

2. A common mistake involving program lines 39 and 56 should be mentioned. These lines execute the "round" function designated by **RND**, not the more often used "roll down" function designated by **RDN**.

3. Due to storage limitations of the TI calculators, there is no TI version of this program.

References

- Edmister, W. C., "Applied Hydrocarbon Thermodynamics," Vol. II, Gulf Publishing Co., Houston, 1961, pp. 101-115.
- Oellrich, L., et al., Equation-of-State Methods for Computing Phase Equilibria and Enthalpies, *Chemie-Ingenieur-Technik*, No. 12, 1977, p. 49.

3. Smith, B. D., "Design of Equilibrium Stage Processes," McGraw-Hill, New York, 1963, p. 14.

4. Ibid., p. 15.

- Fair, J. R., and Bolles, W. L., Distillation in Practice, AIChE Today Series, AIChE, New York, 1978, p. A20.
- Pitzer, K. S., et al., Appendix 1, Lewis and Randall, "Thermodynamics," 2nd ed., McGraw-Hill, New York, 1961.
 King, C. J., "Separation Processes," McGraw-Hill, New York, 1971, p. 513.
 Reid, R. C., et al., "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York, 1977.

The author

Victor L. Rice is a graduate student at Oklahoma State University, 423 Engineering North, Stillwater, OK 74074. He previously worked for Aramco in Ras Tanura, Saudi Arabia, evaluating process-computer installations. He has also worked for Amoco Oil Co. in both process-engineering and operations-support engineering and operations-support groups. He received B.S. and M.Ch.E. degrees in chemical engineering from Oklahoma State, and is a member of AIChE and ACS. He is a registered engineer in Texas.

Evaluating separation processes

This calculator program uses stream-composition data to determine the best-fit mass balance for a working separator.

Raymond M. Ingels, California Air Resources Board

☐ Mass balances for separation processes are easily calculated from measurements of flowrate and stream composition. But such balances usually do not close—i.e., do not account for 100% of each component—because of errors in flow measurement and chemical analysis.

This program, written for the HP-97 programmable calculator, closes the overall mass balance perfectly. It also determines the best-fit (i.e., least-squared-error) mass balance for each component, up to a maximum of eight.

The method of the program applies to any separation process, but the program itself applies specifically to separation units that split one feedstream into two streams—e.g., distillation columns, absorbers, scrubbers, adsorption units. The program uses only composition data, which tend to be more accurate than flow data.

The key result is an accurate estimate of the fraction of each component leaving in each of the two streams. This can be a measure of separation efficiency. The results may also be used to check the consistency of flowrate and chemical-composition measurements.

The one-component case

Anderson [1] showed how to use chemical composition data to calculate the split of a single component between two discharge streams. For a generalized separator, as in the figure, the overall and component mass balances are:

$$F = E + R \tag{1}$$

$$Fx_f = Ex_e + Rx_r \tag{2}$$

where F, E and R are the mass flowrates of the feed and product streams, and x_f , x_e and x_r are the mass fractions of the component in those streams. Solving the two equations simultaneously yields Z_e , the fraction of the component that leaves in Stream E (extract or overhead):

$$Z_e = Ex_e / Fx_f = x_e (x_f - x_r) / (x_e - x_r) x_f$$
(3)

Eq. 3 closes both the overall mass balance (Eq. 1) and the component one (Eq. 2) perfectly, despite experimental error, because it uses only one set of compositions.

How the program works

Because of experimental error in the chemical analyses, it is impossible to get the overall and component mass balances to close perfectly when there are several

Originally published May 30, 1983.

components. That is, Eq. 1 and Eq. 2 will yield a different estimate of the split (E/F and R/F) for each set of component data.

Finding the best estimate of the split requires a leastsquared-error analysis. In the program, the analysis is an extension of that in [2]. The sum of the squared errors in the component mass balances is minimized, subject to the constraint that the overall mass balance closes perfectly:

The overall mass balance is:

$$W_e + W_r = E/F + R/F = 1$$
 (4)

where W_e and W_r are the mass fractions of the feedstream leaving in Streams E and R, respectively. The mass balance for each of the *n* components is:

$$Z_{ei} + Z_{ri} = 1 \tag{5}$$

where:

$$Z_{ei} = (x_{ei}/x_{fi})W_e$$

= Fraction of component *i* leaving in Stream E

 $Z_{ri} = (x_{ri}/x_{fi})W_r$ = Fraction of component *i* leaving in Stream R

If we let $a_i = (x_{ei} x_{fi})$, and $b_i = (x_{ri} x_{fi})$, then the component mass balance for component *i* may be rewritten as:

$$a_i W_e + b_i W_r = 1 \tag{6}$$

Since a_i and b_i are based on chemical analyses, the Eq. 6 balances will not close perfectly. In other words, there will be a residual, v_i , for each mass balance:

$$v_i = a_i \, W_e + b_i \, W_r - 1 \tag{7}$$

Now, the objective is to minimize the sum of the squared residuals for the *n* components. Formally: Minimize $f = (v_1^2 + v_2^2 + \dots + v_n^2)$, subject to the constraint that $\Psi = W_e + W_r - 1 = 0$.

The Lagrangian multiplier procedure for minimizing a function subject to an equality constraint [3] requires simultaneous solution of the following equations:

$$\frac{\delta f}{\delta W_e} + \lambda \frac{\delta \Psi}{\delta W_e} = 0 \tag{8}$$

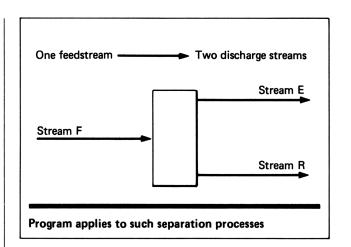
$$\frac{\delta f}{\delta W_r} + \lambda \frac{\delta \Psi}{\delta W_r} = 0 \tag{9}$$

$$W_e + W_r - 1 = 0 (10)$$

230

m listing f	or HP-9	7 calculator (can b	e modified for	r HP-67)					Table
Step	Key	Code	Step	Key	Code	Step	Key	Code	
001	*LBLA	21 11	030	X¥Y?	16-35	059	RCL2	36 02	
002	CLRG	16-53	Ø31	GTO3	22 63	060	-	-45	
003	F₽S	16-51	032	1	61	061	÷	-24	
004	CLRG	16-53	033	÷	-55	062	STOØ	35 00	
005	P≠S	16-51	034	STOI	35 46	063	CHS	-22	
006	2	02	035	RCL i	36 45	064	ENTT	-21	
007	4	Ø4	036	82	53	065	1	0 1	
008	STOI	35 46	037	ST+4	35-55 04	066	+	-55	
009	i	01	038	RCL i	36 45	067	PRTX	-14	
010	RTN	24	<i>039</i>	DSZI	16 25 46	068	ST01	35 01	
611	*LBLB	21 12	04 0	RCL i	36 45	069	RCLØ	36 00	
012	R↓	-31	041	Х	-35	070	PRTX	-14	
013	X≠Y	-41	<i>042</i>	ST+3	35-55 03	071	SPC	16-11	
014	÷	-24	<i>8</i> 43	DSZI	16 25 46	072	SPC	16-11	
015	STO:	35 45	044	RTN	24	073	SPC	16-11	
016	ST+6	35-55 06	045	*LBLC	21 13	074	2	02	
017	DSZI	16 25 46	046	RCL3	36 03	075	4	04	
018	LSTX	16-63	047	RCL4	36 04	676	STOI	35 46	
019	Rt	16-31	048	-	-45	077	*LBL1	2i 0 1	
020	X₽Y	-41	049	RCL5	36 05	078	CLX	-51	
021	÷	-24	050	-	-45	079	ENT†	-21	
022	sto i	35 45	051	RCL6	36 06	080	RCL i	36 45	
<i>623</i>	ST+5	35-55 05	05 2	+	-55	081	X=Y?	16-33	
024	X2	53	053	2	02	082	GT02	22 0 2	
025	ST+2	35-55 02	854	ENTT	-21	083	RCL1	36 01	
026	RCLI	36 46	055	RCL3	36 03	084	x	-35	
027	ENT†	-21	056	х	-35	085	PRTX	-14	
628	7	07	057	RCL4	36 04	086	DSZI	16 25 46	
02 9	X≠Y	-41	058	-	-45	087	RCL i	36 45	

Step/description	Enter	Press	Display	Printout
1. Initialize registers		[A]	1.0000	
2. Enter Component 1 dat	a x _{f1} x _{e1} x _{r1}	[B]		
3. Repeat Step 2 for Components 2– <i>n</i>	x _{fi} t x _{ei} t x _{ri}	[B]		
4. Calculate results		[C]		E/F
Component 1 results				R/F Z _{e1} Z _{r1} (Z _{e1} + Z _{r1})
Components 2— <i>n</i> resu	lts			Z_{e2} , etc.


where λ is a multiplier whose numerical value is of no particular interest.

Performing the differentiations, and collecting terms, we obtain the three equations that the program has to solve simultaneously:

$$2 W_e \Sigma a_i^2 + 2 W_r \Sigma a_i b_i - 2\Sigma a_i + \lambda = 0 \qquad (11)$$

$$2 W_{e} \Sigma a_{i} b_{i} + 2 W_{r} \Sigma b_{i}^{2} - 2 \Sigma b_{i} + \lambda = 0$$
 (12)

$$W_e + W_r - 1 = 0 (13)$$

The program solves these equations, yielding values of W_e and W_r (*E/F* and *R/F*), and calculates Z_{ei} and Z_n for each component. The *Z* values describe the performance of the separation unit; the *E/F* and *R/F* values can be compared with those calculated from flowmeter data to show whether the flow data are consistent with the chemical analyses. The program also sums the Z_{ei} and Z_n values, indicating the degree of closure for each component—a sum of 1 is perfect, but the typical sum will be higher or lower than 1.

		(Co	ntinued) Table I
Step	Key	Code	
088	RCLØ	36 0 0	
089	х	-35	
090	PRTX	-14	
<i>0</i> 91	+	-55	
092	PRTX	-14	
093	SPC	16-11	
094	DSZI	16 25 46	
895	GT01	22 01	
096	*LBL2	21 02	
097	R/S	51	
098	*LBL3	21 03	
099	CLX	-51	
100	1/X	52	
101	R/S	51	

Note: To modify the program for the HP-67 calculator: Substitute "R/S" for "PRTX" at locations 067, 070, 085, 090 and 092; and delete "SPC" at locations 071, 072, 073 and 093.

How to use the program

Table I is the program listing for the HP-97 calculator. To use the program on an HP-67, make the modifications listed in the notes. Table II lists instructions for using the program.

The program applies only to processes that take one feedstream and split it into two streams, and it has a limit of eight components. If more are entered, an error message will result.

Example

Table III lists chemical-analysis data for four components in each of the three streams in a separation unit. If we calculated E/F or R/F based on these data, we would have four different estimates.

Using the program, we first initialize the registers, then enter the data in order— x_f, x_e, x_r —for each component. Once all the data are entered, the program calculates E/F and R/F, plus Z_e , Z_r and $(Z_e + Z_r)$ for each of the four decimal places by the calculator, for the example. Note that *E*/*F* (0.3112) and *R*/*F* (0.6888) add up to 1, so the overall mass balance closes.

Interpreting the results

The program's primary results are the recoveries of the components; that is, the fraction of each component

	e data and re						Table
ata:		Mass fraction	in stre	am			
	Component	F		E		R	
	1	0.2125	0.2	043	0.	2154	
	2	0.2926	0.1	243	0.4	4047	
	3	0.1124	0.2	452	0.0	0517	
	4	0.1724	0.2	903	0.	1456	
esults	:						
	E/F (overall frac			0.31		***	
	<i>R/F</i> (overall frac	tion in Strear	n R)	0.68	388	***	
	Z _{e1} (fraction in S			0.29		***	
	Z_{r1} (fraction in 3			0.69		***	
	$(Z_{e1} + Z_{r1}) (= 1)$	if perfect clo	osure)	0.99	974	***	
	Z _{e2}			0.13		***	
	Z_{r2}			0.95		***	
	$(Z_{e2} + Z_{r2})$			1.08	49	***	
	Z _{e3}			0.67	'88	***	
	Z _{r3}			6.3)	68	***	
	$(Z_{e3} + Z_{r3})$			0.99	957	***	
	Z _{e4}			0.52	240	***	
	Z _{r4}			0.58	318	***	
	$(Z_{e4} + Z_{r4})$			1.10	157	***	

leaving in each stream. These may be used to calculate the separation efficiency.

A byproduct result is the closure data. By sampling, analyzing and calculating closure a number of times, it is possible to determine whether the closure errors are random (i.e., the measurements are consistent) and whether there are calibration errors in the instruments that analyze composition. (The statistics are beyond the scope of this article.) Likewise, comparing the program's E/F and R/F result with that calculated from flowmeter data can identify inconsistencies in the flowmeters.

For TI users

The program for TI users is found in Table IV. User instructions are in Table V, and the example with a printout of the results is in Table VI. The TI version is run the same way as the HP version, and yields the results in the same order.

Program listing for TI version

Table IV

Step	Code	Key	Step	Code	Key	Step	Code	Key
000 001 002 003 004 005 006 007	611724201 04201 91	LBL A CMS 2 4 STD R/S	011234 01234 01456 01478 01478	0 0 0 0 1 0 10 0 0 0 1 0	59 R/S STD S7 S7 S7 RCL	022 023 024 025 026 028 028 028 028	95204612 04012	59 5 = + 5 = 0 5 =
008 009 010	76 12 42	LBL B STD	019 020 021	58 55 43	58 ÷ RCL	030 031 032	44 00 43	SUM OO RCL

EVALUATING SEPARATION PROCESSES 233

(Continued)	Table IV	
-------------	----------	--

												(00		
Step	Code	Key	Step	Code	Кеу	Step	Code	Кеу	Step	Code	Кеу	Step	Code	Key
033	57	57	061	00	00	089	43	RCL	117	95	=	145	54	54
034	55	÷	062	33	χa	090	04	04	118	99	PRT	146	22	INV
035	43	RCL	063	44	SUM	091	75		119	42	STO	147	01	1
036	59	59	064	04	04	092	43	RCL	120	55	55	148	22	INV
037	95		065	73	RC*	093	05	05	121	43	RCL	149	44	SUM
038	72	ST÷	066	00	00	094	85	÷	123	56	56	150	00	00
039	00	00	067	32	X:T	095	43	RCL	123	99	PRT	151	73	RC*
040	44	SUM	068	01	1	096	06	06	124	9,8	ADV	152	00	00
041	05	05	069	22	INV	097	95		125	98	AD∨	153	65	\times
042	33	XΞ	070	44	SUM	098	55	÷	126	98	ADV	154	43	RCL
043	44	SUM	071	00	00	099	53	$\langle \cdot \rangle$	127	02	2	155	56	56
044	02	02	072	73	RC*	100	02	2	128	04	4	156	95	
045	08	8	073	00	00	101	65	X	129	42	STD	157	99	PRT
046	32	XIT	074	65	×	102	43	RCL	130	00	00	158	85	÷
047	43	RCL	075	32	XIT	103	03	03	131	76	L.BL	159	43	RCL
048	00	00	076	95	=	104	75		132	23	LNX	160	54	54
049	77	GE	077	44	SUM	105	43	RCL	133	00	0	161	95	
050	22	INV	078	03	03	106	04	04	134	32	XIT	162	99	PRT
051	55	÷	079	01	1	107	75		135	73	RC*	163	98	ADV
052	00	0	080	22	INV	108	43	RCL	136	00	00	164	01	1
053	95		081	44	SUM	109	02	02	137	67	EQ	165	22	INV
054	91	R/S	082	00	00	110	54)	138	24	CE ×	166	44	SUM
055	76	LBL	083		R/S	111	95		139 140	65 43	RCL	167	00	00
056	22	INV	084		LBL	112	42	STO	$140 \\ 141$	+ <i>5</i>	ss	168	61	GTD
057	01	1	085	13	C.	113	56	56	142	95	ଧ୍ୟ =	169	23	LNX
058	44	SUM	086	43	RCL	114	94 oe	+ /	143	99 99	PRT	170	76	LBL
059	00	00	087	03	03	115	85	+	144	42	STO	171	24	CE
360	73	RC*	088	75		116	01	L	1 7 7		·	172	91	R/S

User instructions for TI version

Table V

Step/description	Enter	Press	Display	Print
I. Load program				
2. Clear registers and set counter for data		A	24.	
3. Enter data for each component	X _{f1}	В	X _{f1}	
·	X _{e1}	R/S	X _{e1}	
	Xr1	R/S	1.	
4. Repeat step 3 for the remaining components, up to eight co	omponents			
5. Start calculations	·	С		
6. Program will calculate and print:				
			E/F	
			R/F	
			Z _{e1} Z _{r1}	
			$(Z_{e1} + Z_{r1})$	
			Z_{e2} , etc.	

Example for TI version

Table VI

Load program and Press A to clear registers and set the counter for data.

Data:						
Component	F	Ma	ass fractio E	n in si	tream R	
1 2 3 4	0.2125 0.2926 0.1124 0.1724	-	0.2043 0.1243 0.2452 0.2903	R/S	0.2154 0.4047 0.0517 0.1456	R/S R/S R/S R/S
Press C:						
Results:						
E/F (overall fraction in R/F (overall fraction in					1685 38314	
Z_{e1} (fraction in stream Z_{r1} (fraction in stream Z_{r1} (fraction in stream $Z_{e1} + Z_{r1}$) (= 1 if perfection	R)	B)		698	/1610 32320 23930	029
Z _{e2} Z _{r2} (Z _{e2} + Z _{r2})				952	32188 27344 28492	485
Z _{e3} Z ₃ (Z _{e3} + Z ₃)			-	316	88124 88379 56504	669
Z_{o4} Z_{r4} $(Z_{o4} + Z_{r4})$			-	58)	89688 17509 10571	476

References

- 1. Anderson, Mark C., Recovery calculation for a separation process, Chem. Eng., Dec. 19, 1977.
- Ingels, R. M., How to solve non-compatible simultaneous equations, *Chem. Eng.*, Oct. 26, 1964.
- Sokolnikoff, I. S., and Redheffer, R. M., "Mathematics of Physics and Mod-ern Engineering," McGraw-Hill, New York, 1958, pp. 249–257.

The author

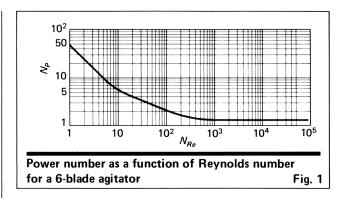
The author Raymond M. Ingels is manager of data analysis at the Haagen-Smit Laboratory of the California Air Resources Board, 9528 Telstar Ave., El Monte, CA 91731. He is responsible for data processing, and works in applying statistics and operations re-search to air-pollution control. Mr. Ingels has a B.S. from the University of Colorado, and an M.S. from the University of Colorado, and an M.S. from the University of South-ern California, both in chemical engineer-ing. He is licensed in California, teaches a review course for those pursuing a license, and belongs to AIChE, the American Sta-tistical Assn., Tau Beta Pi and Phi Lambda Upsilon. Upsilon.

Optimizing reactor agitation in heat-transfer-limited situations

The optimum agitator design for a reactor can be determined from heat-transfer considerations. This program for the TI-59 performs the tedious calculations involved in evaluating heat-transfer and agitator-power-consumption relationships.

Michael E. Bowsher and David F. Hooley, Mobay Chemical Corp.

□ The chemical engineer is often faced with trying to increase the productivity of existing or proposed reactor systems in which heat transfer is limiting in at least one of the processing steps. Reactor agitator design can have a significant effect on reactor productivity, but many times is not thoroughly investigated. The engineer can usually determine an agitator configuration that would yield a reasonably high level of productivity via improved heat transfer. However, constantly changing viscosities, multi-product reactor situations, and heating and/or cooling requirements must be taken into account, and all of these can grossly affect the configuration of the "best" agitator design. Because of time constraints, the engineer is seldom able to determine a truly optimum design for all variations.


It is not uncommon to find that the agitator designs of recently installed reactor systems miss the optimum design point by as much as 30% or more. Considering the multimillion-dollar cost per unit for new sophisticated reactor installations, the resulting loss in productivity can have a major adverse effect on both production costs and total project capital costs.

[For a more complete treatment of mixing in vessels, including a section on heat transfer, see the report entitled "Fluid mixing technology and practice," that appeared in *CE*'s June 13 issue, beginning on p. 82. For additional information specifically on evaluating heat transfer in agitated vessels, see "Heat transfer in agitated vessels," beginning on p. 62 of the April 4, 1983, issue.—*Ed.*]

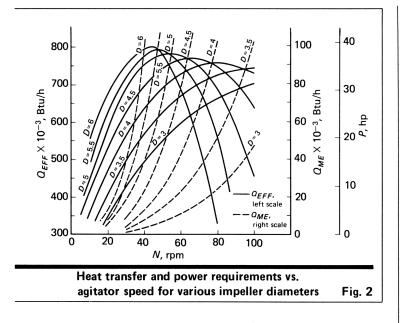
The agitator optimization study

The authors' need to expand production capabilities prompted an agitator optimization study to identify a way of reducing total capital costs by reducing the number of new reactor units to be installed. Agitator optimization to reduce cycle times was one of several alternatives evaluated.

The agitation study attempted to: (1) optimize agitator configuration to maximize heat transfer; (2) design a

system capable of handling materials over a viscosity range of 1 to 50,000 cP; (3) utilize the lowest rotational speed possible to extend agitator seal life; and (4) minimize the required agitator motor size, and attempt to use a single-speed motor.

Large-diameter so-called "modified axial paddle" agitator blades were judged, based on the reference by Uhl and Gray, to be the best type of blade to efficiently handle materials in the viscosity range under consideration. General equations, which are included under "Calculated Terms" in the Nomenclature box, were developed for this type of blade to describe turbine power consumption (as shown in Fig. 1) and heat transfer.


The TI-59 calculator program presented in Table I was developed based on those equations. The results can be used to evaluate which configuration would be the optimum for the situation at hand. Once this has been determined, it is easy to generate additional data to evaluate the effects of:

• Changes in the density of the liquid on agitator horsepower requirements.

• Changes in the specific heat of the liquid on heat transfer.

• Cooling media temperature on the effective heat-transfer rate.

■ Thermal conductivity on heat transfer.

Using the program

The program listed in Table I, and the data, can be stored on four sides of magnetic cards. All ten data-input keys are used to place variable information into the data memory. Once a new set of input data is placed into memory, it may be retained for future calculations by rerecording card side 4, if that should be desired.

To perform the calculations, follow the input steps as outlined in Table II, "User instructions." The initial data—impeller diameter, impeller speed, density, viscosity (bulk and wall), heat capacity, thermal conductivity, etc.—are entered. The program calculates the effective heat-transfer rate, Q_{EFF} , the agitator power consumption, P, and the total heat transferred, Q_{HE} , at the chosen agitator speed. To calculate Q_{EFF} at various values of N, repeat Steps 3a-3i as required to modify the input data, and Step 4 to initiate the calculation. The results of such a set of single runs, for the example to be discussed later, are plotted as one of the solid lines in Fig. 2.

For a chain calculation, enter the initial and final agitator speeds, N_1 and N_2 , and the number of trials, *n*. A new set of Q_{EFF} vs. *N* values is generated, which can be plotted. This continues until a family of curves at a given viscosity has been plotted, as shown by the series of solid lines in Fig. 2. This can be repeated for as many viscosities as needed.

Different agitation systems

The program results have been compared only with data on baffled agitation systems that employ pitchedblade turbines with D/T ratios of between 0.3 and 0.8, and with turbine spacings equal to or greater than D. Reynolds numbers were in the range of about 10 to 30,000.

However, this program may also be used to analyze quite different agitation systems, without major revisions to the program, by doing the following:

1. Run the program, and compare the calculated horsepower with that actually determined from motor amperage measurements. Remember that motor inefficiencies and gear-box and seal frictional losses have to

Nomenclature

- A Heat-transfer area, ft^2
- C_p Specific heat, Btu/(lb)(°F)
- D Agitator impeller dia., ft
- h_o Outside film coefficient, Btu/(h)(ft²)(°F)
- h_{do} Outside fouling factor, Btu/(h)(ft²)(°F)
- h_{di} Inside fouling factor, Btu/(h)(ft²)(°F)
- N Agitator speed, rpm; N_1 = initial value for N to be used in chain calculation; N_2 = final value for N to be used in chain calculation
- *n* Number of agitator speed trials to be used in chain calculation
- *k* Thermal conductivity, Btu/(h)(ft)(°F)
- T Vessel dia., ft
- Δt Log mean temperature difference, °F
- β Number of turbines
- ρ Liquid density, lb/ft³
- μ Bulk-liquid viscosity, cP
- μ_w Wall viscosity, cP

Calculated terms:

 h_i Inside film coefficient, Btu/(h)(ft²)(°F);

$$h_i = 0.44 (k/T) N_{Re}^{0.007} N_{Pr}^{0.035} (\mu/\mu_w)^{0.2}$$

 H_o Coefficient for heat transfer (except for the inside film coefficient's contribution), Btu/(h)(ft²)(°F); $H_o = 1/(1/h_o + 1/h_{ef} + 1/h_{ef})$

$$N_P$$
 Power number (for a 4-bladed impeller):
 $N_P = 0.97605$ for $N_P > 600$

$$= 0.723 \exp(1.6907 - 0.21788 \ln N_{Re}) \text{ for}$$

$$= 0.723 \exp(0.7927 - 0.21788 \ln N_{Re}) \text{ for}$$

$$100 < N_{Re} < 600$$

$$= 0.723 \exp(0.7272 - 0.4424 \ln N_{Re}) \text{ for}$$

- $= 0.723 \exp(2.7373 0.4424 \ln N_{Re}) \text{ for}$ $10 < N_{Re} < 100$
- N_{Pr} Prandtl number; $N_{Pr} = 2.4C_p \mu/k$
- N_{Re} Reynolds number; $N_{Re} = 24.8D^2 N \rho / \mu$

- $P = Q_{ME}/2,550$ Q_{EFF} Effective heat removal, Btu/h; $Q_{EFF} = Q_{HE} - Q_{ME}$
- Q_{HE} Heat transferred, Btu/h; $Q_{HE} = UA\Delta t$
- Q_{ME} Mechanical heat of agitation, Btu/h;

$$Q_{ME} = 6.67 \times 10^{-7} \beta N_P D^5 N^3 \rho$$

U Overall heat-transfer coefficient, Btu/(h)(ft²)(°F); $U = 1/(1/h_i + 1/H_o)$

be deducted so that only actual turbine-related horsepower quantities are compared.

2. If a significant difference is found, adjust β by:

$\beta' = \beta[P_{(determined)}/P_{(calculated)}]$

3. Rerun the program, substituting β' for β . Within reasonable limits, the power number and, hence, the calculated horsepower, should be corrected for the agitation system under consideration, and it should be possible to vary the other power-related parameters as well.

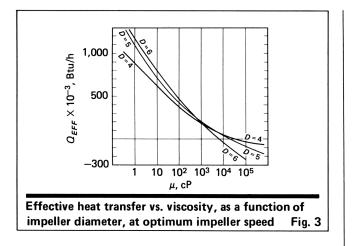
Realizing that dissimilar agitation systems can have markedly different heat-transfer characteristics, an involved programming modification may be avoidable by using the following approach.

4. First, adjust β , as outlined above. Run the program to calculate Q_{EFF} . Compare this value with a value for

Step	Key Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
Step (1) 0001 0002 0002 0002 0004 0005 0007 0009 0112 012 012 012 012 012 012 01	76 LBI 11 A 42 STI 03 0: 99 PR 91 R/: 76 LBI 12 B 22 IN' 86 STI 01 0 42 STI	062 063 0667 0667 0667 0667 0667 0667 0677 07777 0777 0777 0777 0777 0777 0777 0777 07777 0777 0777	K ● 100020311120916722916823916924916022598863282216224133009435353535353535353535353535353535353535	1 O DOLLISTOTSE DETENTION DATES PRIME DETENTION DE CONTRACTION DE CONTRACTOR DE CONTRA	Step 4567890123455678901234567890123456789012345567890012345567890123455678901234556789000000000000000000000000000000000000	K•y 330000943496516173136943796524385422436159438965263996310035179 0000060406060000006040606009050000000000	Code 33000P4L4P6 R0P0X16173136P4L7P6 R0P0X24.8+42243615P4L8P6 R0P031003517P	Step 1867 1889 1991 1992 1993 1995 1996 1997 1996 1997 2004 2007	K • 436963640233794309653852345372317353091132700015329231164115379	04L6 R10 036402337P4L0P6xL8 R0x2.4÷3723173530P11327001532P02116411537	Step 249012345678901234567890112345678901234567890123456789012345678900123456789 (7) (7)	¥ 32442243745949531955333533953845324453667531537000943296285 0000000000060604199553339533953845324453667531537000943296285	03 24 42 24 37 45 00 R 11 P 2 33 X (CL9 +X CL6 Y 2 4 +X CL6 Y CL1 +37 00 P 0 CL1 P Y .33 X (CL9 +X CL9 Y .2 4 +X CL1 +37 00 P 0 CL1 F X .33 X (CL9 Y .2 4 +X CL1 - X - X CL1 - X - X - X - X - X - X - X - X - X -	Step 311234567890112345678900112345666666666666666666666666666666666666	K •y 3445212300243194319655902300949501943096555214410000094319651335 900940000000006040603860000060600006040803934000000060406060005	.44=5023002431P4L16X 0023002431P02300P4 0000000000000000000000000000000000

Program for TI-59 evaluates heat-transfer and power requirements for numerous reactor-agitator configurations

Step	Key Code	Step	Key Code	Step	Key Code	Step	Key Code	Step	Key Code	Step	Key Code
37333377678901233456789901233456789333333333333333333333333333333333333	O1 1 07 7 01 3 09 DP 04 04 43 RCL 13 69 06 43 RCL 13 69 06 43 RCL 13 69 06 43 RCL 06 27 3 0 1 6 3 7 00 1 6 3 7 DP 04 RCL 03 0 0 01 6 3 7 DP 04 RCL 03 0 0 01 6 3 7 DP 04 RCL 03 0 0 01 6 3 7 DP 04 RCL 05 STD 06 23 1 7 09 0C 03 3 3 2 4 3 1 7 05 DP 04 3 RCL 09 00 0 01 7 7 00 0 01 7 7 00 0 00 0 01 7 7 00 0 00 0	3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	0350009071 CUL 03500090341673100 TLL6EGGX 02200002341673100 TLL6EGGX 00002341673100024447+2.7373TDRLL0X.21788++1.6907TDRL 000243673000024467326934424++2.7373TDRLL0X.21788++1.6907TDRL 0002436720000244672269373373TDRLLX.21788++1.6907TDRL 00024367226934424++2.7373TDRLL0X.21788++1.6907TDRL 00024367226934424++2.7373TDRLL0X.21788++1.6907TDRL 000243672269373373TDRLLX.21788++1.6907TDRL 000243672269373373TDRLLX.21788++1.6907TDRL 0002436722693737373TDRLLX.21788++1.6907TDRL 0002436722693737373TDRLLX.21788++1.6907TDRL 000244474474444444444444444444444444444	49978901234567890112345678901234567890123456789012345678901234567890123456789012345678901234555555555555555555555555555555555555	23 LNX 23 LNX 99 7 6 00 5 5 0 00 5 5 0 0	5590123456789012345678901234567890123456789012345666666666666666666666666666666666666	No. 2010 3 1 1 7 3 6 9 3 9 5 L 0 3 1 1 7 3 6 9 3 9 5 L 1 7 3 8 7 5 × L 4 0 4 5 3 5 × L 4 0 5 5 × L 4 0 0 3 0 1 7 P 0 4 L 6 - 6 - 6 - 6 - 6 - 7 E 7 - E 10 6 V 0 0 0 3 0 1 7 P 0 4 L 6 - 6 - 6 - 6 - 6 - 7 E 7 - E 10 6 V 0 0 0 3 0 1 7 P 0 4 L 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	01123456789011234567890112345678901123456789011234567890112345678901233333333334544444444555555555555555555	4 04 04 RCL 04 RCL 05 05 05 05 06 00 07 01 08 00 09 00 09 00 01 7 02 01 01 7 02 01 01 7 02 01 01 7 02 01 02 1 02 01 03 7 04 2 04 2 05 05 05 07 05 07 05 07 05 07 05 07 06 09 07 00 08 07 09 07 00 07 00 07 00 07 00 07 <t< td=""><td>6834 6834 6836 6889 699123 66997 6999 6999 66997 7003 7007 7007 7007 7007 7007 7007 7</td><td>03 03 2 3 1 03 2 3 1 7 1 3 3 03 2 3 1 7 1 3 3 7 0 0 1 1 3 3 7 0 0 0 1</td></t<>	6834 6834 6836 6889 699123 66997 6999 6999 66997 7003 7007 7007 7007 7007 7007 7007 7	03 03 2 3 1 03 2 3 1 7 1 3 3 03 2 3 1 7 1 3 3 7 0 0 1 1 3 3 7 0 0 0 1


Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
744 745 746 747	19 95 42 18	19 = sto 18	748 749 750 751	85	LBL + RCL 18	752 753 754 755	04	SUM 04 RCL 15	756 757 758 759	53 76	GTO (LBL R/S	760 761 762 763	19	1 STD 19 CLR	764 765 766	69 00 91	

Notes: See Table II, "User instructions," for further explanations. (1) Enter impeller diameter, D. (2) Enter agitator speed, N, or initial agitator speed to be used in chain calculation, N_1 . (3) Enter final agitator speed to be used in chain calculation, N_2 . (4) Enter number of agitator speeds to be used in chain calculation, n. (5) Enter density, ρ . (6) Enter bulk-liquid viscosity, μ (7) Enter wall viscosity, μ_{W^*} (8) Enter specific heat, C_{ρ} . (9) Enter thermal conductivity, k. (10) Enter heat-transfer coefficient, H_o . (11) Enter vessel diameter, T. (12) Enter heat-transfer area, A. (13) Enter number of turbines, β (14) Enter log mean temperature difference, Δt . (15) Recall and print Δt , D,

N, μ_i and μ_{w_i} , then calculate and print N_{Re} . (16) Recall and print C_p and *k*, then calculate and print N_{Pr} . (17) Calculate $(\mu/\mu_w)^{0.24}$, $N_{Re}^{0.667}$, and *k/T*, then calculate and print h_i . (18) Calculate $1/h_i$ and $1/H_o$, then calculate and print *U*. (19) Calculate and print Q_{HE} . (20) Calculate and print N_P . (21) Calculate and print Q_{ME} , then convert it to *P*, in units of horsepower, and print *P*. (22) Calculate and print Q_{EFF} . (23) In a chain calculate in the next speed to be used and repeat Steps 100-719 for the new speed; continue for a total of *n* iterations; stop program when appropriate.

Step	Procedure	Press	Display	Step	Procedure	Press	Display		
1	Partition memory-storage area into 20 data	CLR 2 2nd OP 17	799.19	3h	Enter heat-transfer area, A	C'	A is displayed and printed		
	registers and 800 program locations			3i	Enter no. of turbines, eta	D'	eta is displayed and printed		
2	Enter program as listed in Table I, or read program from cards if previously recorded			4	Enter log mean temperature difference, △t, (+) if cooling, (–) if heating	E,	[△] t is displayed and printed		
3	Enter data, in any order, if different from what is stored in memory:						Calculations proceed Data and results are printed in		
3a	Enter impeller dia., <i>D</i>	A	Value entered for <i>D</i> is displayed and printed				the following order: 1. <i>D</i>		
3b ₁	Enter agitator speed, <i>N</i> , or initial agitator speed to be used in chain calculation, <i>N</i> 1	В	N or N ₁ is displayed and printed				2. Ν 3. ρ 4. μ		
3b ₂ *	Enter final agitator speed to be used in chain calculation, <i>N</i> 2	R/S	N ₂ is displayed and printed				5. μ _w 6. Ν _{Re} 7. k 8. T		
3b ₃ *	Enter no. of agitator speeds to be used in chain calculation, <i>n</i>	R/S	<i>n</i> is displayed and printed				9. <i>h</i> ; 10. <i>U</i> 11. <i>A</i>		
3c	Enter density, $ ho$	C	ho is displayed and printed				12. <i>△t</i> 13. <i>Q_{HE}</i>		
3d ₁	Enter bulk-liquid viscosity, μ	D	μ is displayed and printed				14. <i>Νρ</i> 15. β		
3d2‡	Enter wall viscosity, $\mu_{\!W\!v}$, if different from μ	R/S	$\mu_{\!w}$ is displayed and printed				16. <i>Q_{ME}</i> 17. <i>P</i>		
3e	Enter specific heat, $C_{ ho}$	E	C _p is displayed and printed	5	If new data input is	CLR 4	18. <i>Q_{EFF}</i> 4		
3f ₁	Enter thermal conductivity, k	Α'	k is displayed and printed		desired to be maintained in memory, record on card side 4	2nd WRITE			
3f2‡	Enter heat-transfer coefficient, <i>H_o,</i> if not 100 Btu/(h)(ft ²)(^o F)	R/S	<i>H_o</i> is displayed and printed	 * These steps are required only for chain calculations. [†] If wall viscosity is not entered, the value for the bulk-liquid viscosity is automatically used. 					
3g	Enter vessel dia., $ au$	B'	7 is displayed and printed	ŧ I	f no value for H_o is entered, it is as not in reset to that value each time				

(continued) Table I

 Q_{EFF} determined from actual measurements. If a significant difference is found, correct the area, A, as follows:

$$A' = A[Q_{EFF(determined)}/Q_{EFF(calculated)}]$$

5. Rerun the program, using A' for A. Within reasonable limits, the heat-transfer calculation should now be more accurate, as the parameters have been varied

If the above approaches do not yield acceptable accuracies in a given application, regrettably it's back to the basics. (See the reference given below.)

Example: optimizing agitator design

Suppose we want to determine the agitator design for a 7,500-gal reactor that will optimally cool a wide range of viscous materials. The system properties are: T = 8.5ft; A = 420 ft²; $\beta = 4$; $\Delta t = +45^{\circ}$ F; $\rho = 75.2488$ lb/ft³; C_p = 0.4095 Btu/(lb)(°F); and k = 0.099 Btu/(h)(ft²)(°F). The following viscosities are expected to be encountered:

Bulk viscosity, cP	Wall viscosity, cP
1	1.3
10	15
150	300
3,000	5,000
50,000	75,000

The program was run for impeller diameters of 3, 3.5, 4, 4.5, 5, 5.5, and 6 ft, and for viscosities of 1, 10, 150, 3,000, and 50,000 cP. Families of curves, one for each viscosity level, showing Q_{EFF} vs. N for various agitator impeller diameters (the solid lines in Fig. 2, for $\mu = 10$ cP), were plotted. Inspection of the plots reveals that a 5-ft impeller operating at 40 rpm represents an operating point within about 5% of optimum for all viscosities from 1 to 3,000 cP.

In Fig. 2, Q_{EFF} is represented by the solid lines and is read from the scale on the left side of the plot. The bending of each curve through a maximum is caused by the mechanical energy input from agitation. For comparison, Q_{ME} is shown by the dashed lines, and its value is found on the right-hand scale. In addition, Q_{ME} is translated into power consumption, in horsepower, by using the scale to the right of the Q_{ME} scale.

After the optimum speed has been selected, Q_{EFF} vs. μ can be plotted for different diameters, as was done in Fig. 3. This figure indicates that viscosities of up to about

20,000 cP could be processed with a 5-ft-dia. agitator configuration while at least the total mechanical heat of agitation could still be removed.

If one were to choose the 6-ft impeller, only a marginal improvement in heat transfer at low viscosities would result (perhaps 5%), while a 20% heat-transfer penalty would result at 3,000 cP. In addition, the upper viscosity limit would be reduced to only about 7,000 cP.

On the other hand, if the 4-ft impeller were chosen, higher-viscosity materials could be processed (up to about 40,000 cP) at a heat-transfer penalty of 10-30% in the low-viscosity region.

Final comments

This mathematical treatment of agitation power consumption rather closely predicts the actual measured agitator-power requirements after appropriate adjustments are made for motor efficiencies and gear-box and agitator-seal frictional losses. Generally, a $\pm 15\%$ agreement is found, except for cases where gas or vapor bubbles exist.

The reactor sizes evaluated include 2,000, 3,000, 5,000 and 20,000 gal. The viscosities encountered during the data-gathering trials ranged from 10 to 40,000 cP. However, because the reference for the relationships on which this program is based covered viscosities up to 100,000 cP, this program, too, should be valid to 100,000 cP.

There have been fewer opportunities to evaluate the heat-transfer portion of the program. In one case, however, a 20,000-gal reactor was investigated, and the calculated agitator power and amount of heat transferred both agreed to within 5% of the measured values.

For HP users

A listing for the HP version of the program is shown in Table III. User instructions are listed in Table IV. Operation is similar to the TI version.

Program listing for HP version

Table III

Step	Key	Code	Step	Key		Code)
00 I	*LBLA	21-11	023	K∠S			51
802	DSF1	-83 64	024	*LEL x	21	15	11
003	ST03	35 33	025	STOC		35	13
804	R∕S	51	826	1			31
635	*LBLE	21 12	627	0			ē ē
906	ST04	35 31	<i>828</i>	8			60
627	STOA	75 ii	029	S700		35	εē
968	RCL4	75 B'	030	RCLC		3ϵ	13
009	$R \times S$	51	931	R/S			51
010	STOA	35 11	032	STOØ		75	61
011	R /S	- 51	035	R/S			51
€12	*LBLC	21 13	834	*LBLk	21	16	12
613	ST07	35 17	035	STOD		35	14
314	R≥S	51	036	R∕S			51
e 15	*LBLD	21-14	937	*LBLc	21	16	13
016	ST05	35 68	038	STOE		35	15
017	ST05	J5 ES	039	£∕S			51
613	R∕S	51	846	*LBLa	21	16	1
019	ST05	3 5 69	041	STOI		35	01
020	R/S	51	642	R∕S			51
021	*LBLE	21 15	043	*LELe	21	15.	15
622	STOB	37 12	644	ST02		35 1	02

(Continued) Table III

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
C45	*LPL1	21-21	081	4	84	117	PRTX	-14	153	GT05	22-85	189	RCL3	36 03
046	RCL3	36 93	ê82	Х	-35	118	X	-35	154	*LBL3	21 63	190	5	65
0 47	PRTX	-i4	B 83	RCLB	36-12	119	PRTX	-14	155	2	22	191	Υx	- 31
348	χe	53	084	RCLS	36 0 8	128	ST06	35 06	156		-63	192	X	-35
049	RCL4	36 Ø1	8 85	Х	-35	121	6	3 6	157	7	67	193	RCL4	35 C 4
850	PRTN	-14	08 6	2	63	122	ð	P 9	158	3	63	194	3	03
0 51	X	-35	087		-52	123	0	C ē	159	7	87	195	$Y^{\mathbf{X}}$	31
8 52	RCL7	36 07	08 8	4	Đ-	124	RCL5	30 85	168	3	03	196	Х	-35
053	PRTX	-14	6 89	×	-35	125	X > Y ?	16-34	161	ENTT	-21	197	RCL7	36 07
654	λ	-35	890	RCLC	36 13	126	GTJ2	22-82	162		-62	198	Х	-35
655	RCL8	35 68	691	÷	-24	127	ź	C1	:63	4	64	199	E	35
056	PRTX	- 14	092	2	-62	128	Ø	80	164	4	0 4	260		-62
657	÷	-[4	09 3	3	03	129	Ø	36	155	2	82	201	ε	65
Ø 5 8	2	02	e94	3	63	136	X2 Y?	16-34	165	4	64	202	7	07
059	4	ð4	095	3	03	131	GTJ3	22 03	167	*LBL4	21 €4	203	EEX	-23
060		-62	096	γ×	31	132	1	91	168	RCL5	35 05	204	CHS	-22
851	3	e2	897	x	-35	133		-62	169	LN	32	285	7	67
052	X	-33	098	RCL8	37 08	134	€	C5	176	1	- 35	305	, i	-35
063	S705	35 85	299	RCL9	36 09	135	9	29	171	CHS	- 22	267	FRTX	-11
064	RCL9	35 0 9	:00	÷	-24	136	ō	55	172	+	-35	203	ENTT	-21
065	PRTX	-14	101		-52	137	7	27	173	e×	33	203	ENT1	-21
065	RCL5	36 85	162	2	02	138	ENTT	-21	174		-52	210	- 2	62
867	PRTX	-14	103	4	34	139		-62	175	2	62	211	5	95
<i>063</i>		-62	194	y x	51	149	2	82	:76	7	27	212	5	85
069	5	85	105		-35	141	1	61	177	3	33	213	0	68
070	5	26	106	PRTX	-14	142	7	67	178	¥	-35		÷	-24
071	7	27	107	17.	52	143	8	98	179	∗LBL5	21 85	215	PRTX	-14
872	çıx	31	168	RCLØ	35 82	144	ε	68	180	STOÁ	33-11	31E	F.	-31
073	RCLC	38 13	109	1/8	52	145	GT04	22 64	181	PRTX	-14	217	СНЗ	- 22
074	PRTX	1	110	+	-55	146	*LBL2	21 82	182	RCL1	76 01	215	RCLE	36 86
075	Σ	-35	111	178	52	147		-52	183	1	61	219	+	-55
075	RCLD	36 14	112	PRTS	-14	148	9	69	194	÷	-55		PRTA	-14
077	PETX	-14	113	RCLE	36 15	149	7	ē7	185	PRTX	- 14		SPC	16-11
078	÷	-24	114	PRTX	-12	150	6	<i>06</i>	186	1	01	222	R/S	51
€79		- 62	115	X	-35	151	ē	63	187	-	-45			
680	4	04	116	RCL2	75 82	152	5	65	188	27	-35			

User instructions for the HP version

Table IV

	Key
Enter impeller diameter <i>D</i> , ft	A
Enter agitator N, rpm	В
Enter liquid density ρ, lb/ft ³	С
Enter viscosity µ, cP	D
Enter specific heat $C_{\rm p}$, Btu/(lb)(°F)	E
Enter thermal conductivity K, Btu/(h)(ft)(°F)	a
Enter vessel diameter T, ft	b
Enter heat transfer area A, ft ²	C
Enter number of turbines B	d
Enter log mean temperature Δt , °F	8

Printed output will be as follows (this is in the same order as the TI output):

1. D, Impeller diameter, ft
2. N, Impeller speed, rpm
3. ρ, Liquid density, lb/ft ³
4. μ, Liquid viscosity, cP
5. μ _w , Wall viscosity, cP
6. N _{Re} , Reynolds number
k, Thermal conductivity, Btu/(h)(ft)(°F)
8. T, Vessel diameter, ft
 h_i, Inside film coefficient, Btu/(h)(ft²)(°F)
10. U, Overall heat transfer coefficient, Btu/(h)(ft ²)(°F)
11. A, Heat transfer area, ft ²
 Δ_t, Log mean temperature difference, °F
13. Q _{HE} , Heat transferred, Btu/h
14. N _p , Power number
15. β, Number of turbines
16. Q _{ME} , Mechanical heat of agitation, Btu/h
17 D Asitetes serves consumption by

17. P, Agitator power consumption, hp

18. QEFF, Effective heat removal, Btu/h

Reference

Uhl, V. W. and Gray, J. B., "Mixing—Theory and Practice," Vol. 1, Academic Press, New York, 1966, Chapters 3 and 5.

The authors

David F. Hooley is a Process Engineer for Mobay Chemical Corp. at the New Martinsville, W. Va., plant. He previously worked for the Fabrics and Finishes Dept. of Du Pont at its Old Hickory, Tenn., plant. He graduated from Northeastern University with a B.S. in chemical engineering in 1965.

Michael E. Bowsher is Production Manager for the Inorganic Chemicals Div. of Mobay Chemical Corp. at the firm's New Martinsville, W. Va., plant. Over the past 22 years, he has held prime production and participation and

Over the past 22 years, he has held various production, engineering and staff positions for Mobay in New Martinsville, and in Pittsburgh, and at the parent company, Bayer AG, in West Germany. He received his B.S. degree in chemical engineering from Ohio University.

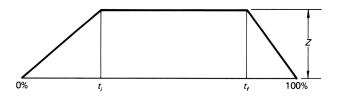
Section VII Engineering Economics

Estimating cash flows for construction projects Discounted-cash-flow rates of return for varying cash flow Calculating net present value for varying cash flows

Estimating cash flows for construction projects

Estimates of monthly cash-flow requirements for a construction project can be valuable to both client and contractor. These can be calculated rapidly by means of this TI-59 program.

George F. Poland, Aberthaw Construction Co.


During the course of a construction project, it is important for the owner and contractor to be able to predict cash demands. The owner wishes to know when the money has to be spent, and the contractor needs to know how much cash has to be invested in the project.

A program for the TI-59 calculator and printer is presented that will project on a monthly basis the total cost to date of a job, the payments from the owner, the contractor's investment (which depends on the time lapse between billings and payments), and the interest costs for the contractor's investment.

S-curve basis for the program

The program is based on the S-curve approach to project planning. The work of most projects can be divided into three major periods: the first, increasing manpower requirements; the second, constant requirements; the third, declining requirements. Plots of work-completion-percentage vs. time-lapse-percentage come out as the familiar S-curve. The shape of the manpower curve is a trapezoid.

A mathematical explanation of the S-curve by Gates and Scarpa* can be summarized by the diagram:

Here, Z = maximum rate of manpower; t_i = end of accelerating manpower period, %; and t_f = beginning of declining manpower period, %. Because the trapezoid area equals 100%, $Z = 200/[100 + (t_f - t_i)]$.

*Gates, M., and Scarpa, A., Conceptual RMC/Time Synthesis, J. of the Construction Div., American Soc. of Construction Engineers, Vol. 102, No. CO2, Proc. Paper 12181, June 1976, pp. 307–323. Values of 50% for t_i and 75% for t_f "seem to fit" most construction projects. Therefore, Z = 1.6, which means that the maximum crew size is equal to 1.6 times the average crew size.

These values plotted in the S-curve will show that only 40% of the work will be completed after a 50% time lapse, but that 80% will be finished at the 75% time mark. Thereafter, the rate of work completion decelerates to arrive at 100% completion at 100% of the scheduled construction period.

How the program works

As an example, assume that a \$1-million project is to be completed within 10 months, and that 95% of the incurred costs will be paid to the contractor, with a two-month delay between billings and payments. The short-term borrowing cost for the contractor is 21% interest. The contractor expects that the size of the working crew will increase until the 50% point in time, then begin to decline at the 75% mark.

With the program listed in Table I in the calculator, enter 75 (t_i) and press the A key. Enter 50 (t_i) and press **R/S.** Enter 10 (number of scheduled construction months) and press **R/S** again. Enter 1,000,000 (the cost of the project) and press **B.** Enter 95 (% paid) and press **R/S.** Enter 2 (number of months delay in payments) and press **R/S** again. Enter 21 (% interest) and press **C.** Finally, press **D** (start) and **E** (clear).

The program will list the input data and print out on a month-to-month basis the following:

Month number, MO.

The estimated percentage of work completed, %C. Costs to date at the end of the month, COT.

The total paid to the contractor, TP.

The total investment of the contractor, INV.

The interest cost per month for the contractor's investment, *INT*.

The total of all interest costs to date, ΣINT .

The printout for this example is listed per month in Table II.

Other possibilities can be simulated

Variations in the project can be readily examined by means of the program. For example, if the time delay between billings and payments were shortened by one month, the amount the contractor would need to invest would fall from \$340,000 to \$188,000, and interest costs would decline from \$39,375 to \$21,875. If 10% of the On monthly basis, program calculates project costs, total paid to contractor, contractor's investment, and interest cost of investment

Step Code Key Step Code Key Step Code Key Step Code Key Step	Code Key	Step Code Key
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	95 STO 942 027 343 0227 343 0227 3737 374 30 02 00 00 00 00 00 00 00 00 00 00 00 00 0	31539CUS31539CDS31653(31743RCL318000031985+32001132109932254)32342STD324131332553(32643RCL327000032875-32943RCL330101033185+33201133309933454)33542STD336141433743RCL3380606341070734255 \div 34301134400034500034695=34772ST*348131335105535203335507735669 <dp< td="">363433640936567368141436965×363433640936567368141436965×374000375000376</dp<>

								Table	I
Step Code Key	Step	Code Key	Step Cod	e Key S	Step Code	Key Step	Code Key	Step Cod	e Key
378 08 08 379 32 X;T 380 03 3 381 07 7 382 03 3 383 03 3 384 69 □P 385 04 04 386 32 X;T 387 69 □P 388 06 06 389 53 (390 73 RC* 391 13 13 392 75 - 393 43 RCL 394 08 08	395 396 397 400 401 402 403 404 405 406 407 408 409 410 411	54) 42 STD 08 08 32 X;T 02 2 04 4 03 3 01 1 04 4 02 2 69 DP 04 04 32 X;T 69 DP 06 06 00 0 32 X;T	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 12 4 FQ 4 S LOG 4 S RCL 4 S RCL 4 S RCL 4 S RCL 4 S RCL 4 S + 4 S RCL 4 S + 4 S H	129 02 130 04 131 03 132 01 133 03 134 07 135 69 136 04 137 32 138 69 137 32 138 06 141 11 142 07 144 07 145 02	2 44 4 44 3 44 3 45 7 45 04 45 04 45 04 45 X;T 45 06 45 RCL 45 11 45 X;T 45 7 46 7 46 2 46	7 03 3 9 01 1 9 03 3 0 07 7 1 69 0P 2 04 04 3 32 X:T 4 69 0P 5 06 06 5 76 LBL 7 28 L0G 3 98 ADV 9 69 0P 0 20 20 1 61 GT0	470 09 471 61 472 45	5 LBL 1 LST 1 0 2 STD 3 09 4 GTD 5 Y× 5 LBL 5 E 7 CMS 5 CLR
Output for exa	ample case	gives monthly I	oreakdown	of costs				Table I	
75. 50. 10. 1000000. 95. 2. 21. a.	2 NM PC X DLY INT	1. 1.6 16000. 0. 16000. 280. 280. b.	ΜΟ %C COT TP INV INT ΣINT	2. 6.4 64000. 0. 64000. 1120. 1400.	ΜΟ 20 00 70 10 10 10 210 210 210	3 14. 144000 15200 128800 2254 3654 d.	4 %C . COT . TP . INV . INT	4. 25.6 256000. 60800. 195200. 3416. 7070.	ΜΟ %C COT TP INV INT ΣINT
5. 40. 400000. 136800. 263200. 4606. f.	ΜΟ %C COT TP INV INT ΣINT	6. 56. 243200. 316800. 5544. 17220. 9.	ΜΟ %C COT TP INV INT ΣINT	7. 72. 720000. 380000. 340000. 5950. 23170.	ΜΟ 201 τρ INV INT ΣΙΝΤ	8 87. 872000 532000 340000 5950 29120	2 %C . COT . TP . INV . INT	9. 96.8 968000. 684000. 284000. 4970. 34090.	ΜΟ %C COT TP INV INT ΣINT
10. 100. 1000000. 828400. 171600. 3003. 8.	MD %C CDT TP INV INT ∑INT	11. 100. 919600. 80400. 1407. 38500.	MD %C CDT TP INV INT ΣINT	12. 100. 1000000. 950000. 50000. 875. m.	ΜΟ 20T TP INV INT ΣΙΝΤ	13 100 1000000 1000000 0 0 39375 n.	. %C . COT . TP . INV . INT	14. 100. 1000000. 1000000. 0. 0. 39375.	Μ0 201 τρ INV INT ΣINT

cost of the project (\$100,000) represents the contractor's profit, the shortening of the payment-lapse time to one month would increase the contractor's return on investment to 53% from 27%.

will be a signal that decisive action needs to be taken to really control costs.

For HP-67/97 users

Another useful simulation would be to determine how much of the work ought to be completed at the end of each month. If the S curve for the actual work completed and the S curve for the work that should have been accomplished do not agree reasonably well, this

The HP version closely follows the TI program. Table III offers the HP program listing, and Table IV contains user instructions and the example for the HP version.

248 ENGINEERING ECONOMICS

Program listing for HP version

Table III

```
(Continued) Table III
```

		-								
Step	Key	Code	Step	Key	Code	Step	Кеу	Code	Step Ke	y Code
301	*LBLA	21 11	069	*LBL5	21 05	136	ST09	35 09	18 0 P	≠S 16-5:
02	CLRG	16-53	070	RCL 0	36 00	137	GTO5	22 0 5	181 RC.	L8 36-05
03	P≢S	16-51	071	PRTX	-14	138	*LBL4	21 04		4
04	CLRG	16-53	072	RCL6	36 06	139	5	05	183 ST	
05	ST07	35 07	073	PRTX	-14	140	RCLA	36 11	184 PR	
06	R↓	-31	074 075	GTO4	22 04	141	-	-45	185 RC.	
07	ST03	35 Ø3	075 076	*LBL1	21 01	142	1	01	186 X=	
08	R↓ ctop	-31 35 02	076 077	RCL4 RCL5	36 04 74 05	143	.0	00	187 GT	
109 11 A	STO2 R∔	-31	078	XCLJ X2	36 05 53	144	•+ стот	-55 75 40	188 RC.	
10 11	ST01	-31 35 01	079	2	02	145 146	STOI P ≠ S	35 46 16-51	189 RC. 190	LC 36-13 × -33
012	R/S	51	080	÷	-24	146	RCL1	36 01	196 191 RC	
113	STOC	35 13	081	RCL2	36 02	148	STOO	35 00		÷ -2.
14	R↓	-31	082	÷	724	140	RCL2	36 02	193 PR	
15	STOA	35 11	083	X	-35	150	STOI	35 01	194 RC	
916	R↓	-31	084	ST06	35 06	151	RCL3	36 03		+ -5
917	ST09	35 09	085	GT05	22 05	152	ST02	35 02	196 ST	
918	RCL1	36 01		*LBL2	21 02	153	RCL4	36 04	197 PR	
919	PRTX	-14	087	RCL4	36 04	154	ST03	35 03		PC 16-1.
920	RCL2	36 02	088	RCL5	36 05	155	RCL5	36 05	199 RC.	
921	PRTX	-14	0 89	RCL2	36 0 2	156	ST04	35 04	200 X=	0? 16-4
322	RCL3	36 03	090	2	02	157	P≠S	16-51		/S 5.
923	PRTX	-14	091	÷	-24	158	RCL6	36 06	202 *LB	L8 21 0
324	RCL7	36 07	0 92	-	-45	159	RCL7	36 07	2 0 3	1 0.
925	PRTX	-14	093	Х	-35	160	Х	-35	204 ST	
926	RCL9	36 09	094	ST06	35 06	161	RCLE	36-15	205 GT	
927	PRTX	-14	095	GTO5	22 05	162	÷	-24	206 PR	
928	RCLA	36 11		*LBL3	21 03	163	P≢S	16-51	207 RC	
329	PRTX	-14	097	RCL3	36 03	164	PRTX	-14		+ -5:
330	RCLC	36 13	098	RCLØ	36 00	165	ST05	35 05	209 ST	
931	PRTX	-14	099	X=Y?	16-33	166	P≠S	16-51	210 PR	
932	SPC	16-11	100	GTO6	22 06 15 74	167	RCL9	36 03	211 RC	
833	1	Ø1	101	X>Y?	16-34 22. ec	168	1	01	212 RC	
034 075	0	00 00	102	GTO6	22 06 74 15	169	X=Y?	16-33		× -3;
035 036	0 Stoe	35 15	103 104	RCLE RCL5	36 15 36 05	170 171	GTOS BCL:	22 08 TC 45	214	1 0. 0 01
030 037	RCL1	36 01	104	KULJ -	-45	172	RCL i RCL9	36 45 36 09	215 216	0 01 0 01
038 038	+	-55	105	χz	53	173	X	-35	218 217 X=	
039	RCL2	36 02	107	RCLE	36 15	174	RCLE	36 15		/S 5.
040	-	-45	108	RCL1	36 01	175	÷	-24	219 ¥LB	
041	178	52	109	-	-45	176	ST08	35 03	220	1 0.
042	2	02	110	÷	-24	177	PRTX	-14	221 ST	
043	0	00	111	RCL4	36 04	178	P≠S	16-51	222 GT	
044	Û	00	112	2	02	179	RCL5	36 05		/S 5.
045	Х	-35	113	÷	-24					
046	ST04	35 04	114	X	-35					
047	RCLC	36 13	115	CHS	-22					
048	1	01	116	RCLE	36 15					
049	2	02	117	+	-55					
050	÷	-24	118	STO6	35 06					
951	STOC	35 13	119	GT05	22 0 5					
052	1	01 75 00		*LBL6	21 06		r inetro	ictions and a	rample for	
053	STO0	35 00	121	RCLE	36 15 75 96			ictions and ex		Table N/
054	#LBL9	21 09 76 00	122	ST06	35 <i>06</i> 76 87	HP	version	I		Table IV
055 05/	RCLO	36 00 76 07	123	RCL3	36 03 76 11	-				
056 057	RCL3	36 03 -24	124	RCLA	36 11 -55	Instr	uction			Key
057 058	÷ RCLE	-24 36 15	125 126	+1	-55 01			ning of "declining r	manpower" period	
058 059	X	-35	126	+	-55	Ente	r t _i -End o	f "accelerating mar	npower" period	ENTER 🛉
055 060	stô5	-35 35 05	127	RCLO	-JJ 36 00			of scheduled const	ruction months	ENTER ↑
061	RCL2	36 02	128	X=Y?	36 00 16-33	Ente	r construct	tion cost, \$		A
062	X>Y?	16-34	130	GT07	16-33 22 07	- .				
063	GT01	22 01	130		16-34		r% paid	f months of the		
064	RCL5	36 05	132	GT07	22 07			of months delay in	payment	ENTER ↑
065	RCL1	36 01	132	GT05	22 05	Ente	r interest r	ale, %		R/S
066	X>Y?	16-34		*LBL7	21 07	Outo	ut is the e	ame as indicated in	n the original article.	
000						υαφ		and as mulcaled i	n ale original alloie.	
067 067	GT02	22 02	135	RCLE	36 15	Prog	ram stops	when contractor h	as been paid in total.	

CASH FLOWS FOR CONSTRUCTION PROJECTS 249

(Continued) Table IV

and the second	
L.	
	-
13 VA	

The author

The author George F. Poland is a project manager for Aberthaw Construction Co., 60 State St., Boston, MA 02109. Half of his career (15 years) has been spent in industrial construction, and the other half in designing industrial buildings. A graduate of Case Institute of Technology with a B.S. in civil engineering and of Rensselaer Polytechnic Institute with a Master's in Management, he is a member of American Soc. of Construction Engineers, American Soc. of Cost Engineers, American Soc. of Professional Estimators, and a registered engineer in six states.

75.00 50.22 10.22 95.02 2.20 21.00 75.00 10.02 1000200.00 95.30 2.00 21.30	ENT1 GSBA ENT1 ENT1 F.S *** *** *** ***
1.85 1.69 16088.08 0.88 15008.89 280.83 288.83	米 · 注 潮水水 減水水 減水水
2.00 5.40 64003.00 0.00 64000.00 1120.00 1400.00	(111年) (111) (111年) (111) (11)
3.66 14.40 14409C.81 15200.06 12880C.83 2254.00 3654.00	*** *** ***
4.02 25.60 256000.00 60600.00 195200.00 3416.00 7070.00	*** *** *** ***
5.00 40.00 40000.00 136890.00 263200.00 4606.00 11676.00	*** *** *** *** *** ***
6.00 56.00	***

Nomenclature follows that of the original article.

Discounted-cash-flow rates of return for varying cash flows

Basing an economic analysis on a wide range of eventualities will enhance its reliability. Calculator programs make such a comprehensive analysis possible.

Gordon W. Neal, Pacific Energy Consultants, Inc.*

Uncertainty in economic evaluations can be reduced by examining alternative projects under many likely conditions. This was discussed in the article "Evaluating uncertainty in capital cost projections," *Chem. Eng.*, Sept. 6, 1982, p. 131.

There are two generally accepted bases for judging the economic attractiveness of projects: How much money will be generated, and how efficiently will the committed capital be used? A measure of the first is net present value (NPV), and of the second is discountedcash-flow rate of return (DCFRR).

A TI-59 program for determining the NPV of an initial investment that is followed by a series of increasing or decreasing annual cash flows was presented in a Nov. 1, 1982 article. In the present article, two programs for the TI-59 are provided that calculate DCFRR for an initial investment that also is followed by a series of annual cash flows consisting of several components, each increasing or decreasing at a constant annual rate.

One program is designed for discrete compounding (Table I), the other for continuous compounding (Table II). Both include an option for after-tax or before-tax (e.g., government funded) modes. The after-tax modes are based on sum-of-years-digits (SOYD) depreciation.

The programs arrive at solutions via trial-and-error iteration, with successive calculations of NPV made with converging values of discount rate until the resulting value of NPV is nearly zero. When this point is reached, the corresponding discount rate—the DCFRR—is printed and displayed.

Program formulas

The general formula used in the programs is:

$$NPV = (C_1D_1 + C_2D_2 + \dots + C_ND_N) + (1)$$
$$IR_TD - C_0$$

Here, NPV = net present value, in any monetary unit; $C_1, C_2 \ldots C_N =$ first-year cash flow components, in (positive) or out (negative); $D_1, D_2 \ldots D_N =$ discount factor corresponding to cash-flow component having same subscript; I = total initial investment; $R_T =$ in-

*To meet the author, see p. 258.

Originally published December 27, 1982.

come tax rate; D = depreciation discount factor; and $C_0 =$ net initial investment.

Cash-flow-component discount factors for continuous and discrete compounding are, respectively:

$$D_c = (1 - e^{-rn})/r \tag{2}$$

$$D_D = [1 - (1 + r)^{-n}]/r$$
(3)

Here, n = economic life, yr, and r = effective discount rate.

Expressions for effective discount rates with continuous and discrete compounding are, respectively:

$$r_C = R - i \tag{4}$$

$$r_D = (R - i)/(1 + i)$$
 (5)

Here, R = selected discount rate, and i = annual rate at which cash flow component increases (positive) or decreases (negative).

The depreciation discount factor (based on continuous compounding and SOYD depreciation) is:

$$D = 2 (RT' + e^{-RT'} - 1)/(RT')^2$$
(6)

Here, $T' = T + \frac{1}{2}$, and T = depreciable life, yr.

Preparing and entering data

User instructions are given in Table III. The differences between the input data printed and the values displayed arise because common values in the display are combined to eliminate the need for repetitive calculations in the iterations. Note that the sequence for entering data is altered by the tax mode selected.

In the after-tax mode, the initial investment, C_0 , should be adjusted to reflect such items as investment tax credit and energy tax credit. In the before-tax mode, the full initial investment is used.

In the after-tax mode, first-year cash flow components, C_1 , C_2 , etc., are multiplied by $(1 - R_T)$ to arrive at input values. No adjustments are made with the before-tax mode. Components of cash flow into the project (sales, reduced costs, etc.) have positive signs, and those flowing out (expenses, higher costs, etc.) have negative signs.

Depreciation is applied to only the after-tax mode. The expression IR_T consists of the full initial investment (without credits) multiplied by the tax rate.

Program features

In each program, Flag 1 is set by the user when the before-tax mode is desired. When no flags are set, the program follows the after-tax mode.

DISCOUNTED-CASH-FLOW RATES OF RETURN 251

Program calcu	lates discounted-cash-	flow rate of return wi	h discrete compounding Ta	ble I
Step Key Code 000 76 LBL 001 11 A 002 58 FIX 003 09 09 004 47 CMS 005 42 STD 006 59 59 007 99 PRT 008 91 R/S 010 58 58 010 58 58 011 99 PRT 012 91 R/S 013 99 PRT 014 65 × 015 02 2 016 95 = 017 98 ADV	Step Key Code 063 57 57 064 42 STD 065 53 53 066 76 LBL 067 33 X² 068 75 - 069 01 1 070 95 = 071 42 STD 072 52 32 073 43 RCL 074 55 55 075 75 - 076 73 RC* 077 53 53 078 95 = 079 55 + 080 53	Step Key Code 126 76 LBL 127 24 CE 128 87 IFF 129 01 01 130 45 Y× 131 43 RCL 132 55 55 133 65 × 134 43 RCL 135 46 46 136 95 = 137 42 STD 138 45 45 139 33 X2 140 35 1/X 141 65 × 142 53 (143 43 RCL	Step Key Code Step Key Code Step Key Code 139 54) 205 43 RCL 221 61 GTE 190 55 + 206 56 56 222 30 TAH 191 02 2 207 85 + 223 76 LBL 192 95 = 208 43 RCL 224 39 CDS 193 48 EXC 209 55 55 225 43 RCL 194 55 55 210 54) 226 55 55 195 42 STD 211 55 + 227 65 × 196 56 56 212 02 2 228 01 1 197 00 0 213 95 = 229 00 0	1 7 1 7 7 7 7 7
018 42 STD 019 57 57 020 42 STD	081 01 1 082 85 + 083 73 RC*	144 45 45 144 45 45 145 85 + 146 24 CE	DCFRR program with continuous compounding Tab	ble II
021 00 02 021 00 02 023 01 01 024 38 SIN 025 91 R/S 026 99 PRT 027 65 × 028 02 2 029 95 = 030 42 STU 031 47 47 032 91 R/S 033 99 PRT 034 85 + 035 93 - 036 05 5 037 95 = 038 42 STU 034 85 + 035 93 - 036 05 5 037 95 = 038 42 STU 043 91 R/S 044 99 PRT 045 72 ST* 046 00 00 047 <t< td=""><td>084 53 53 085 54) 086 95 = 087 42 STH 088 51 51 089 53 (090 01 1 091 75 - 092 53 (093 01 1 094 85 + 095 43 RCL 096 51 51 097 54) 098 45 YX 099 43 RCL 097 54) 098 45 YX 099 43 RCL 100 58 58 101 94 +/- 102 54) 103 55 + 104 43 RCL 105 51 51 106 65 X 107 73 RC* 108 52 52 109 95 = 110 44 SUM 111 50 50 122 01 1 113 32 X;T 114 43 RCL 115 52 52 109 95 = 110 44 SUM 111 50 50 122 1NV 120 43 RCL 113 53 53 124 61 GTH 125 33 X²</td><td>1467 94 +/- 148 22 INV 149 23 LNX 150 75 - 151 01 1 152 54) 153 65 × 154 43 RCL 155 47 47 156 95 = 157 44 SUM 158 50 50 159 76 LBL 160 45 Y× 161 93 . 162 01 1 163 32 X?T 164 43 RCL 165 50 50 166 75 - 167 43 RCL 168 59 59 170 42 STU 171 49 49 172 22 INV 173 39 CDS 174 77 GE 175</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>ode 5 - C5) × C5 = T5/× (1 - C1 - VX) × C5 = U51 + C5EE2 NU3C5 5 - VM3L3</td></t<>	084 53 53 085 54) 086 95 = 087 42 STH 088 51 51 089 53 (090 01 1 091 75 - 092 53 (093 01 1 094 85 + 095 43 RCL 096 51 51 097 54) 098 45 YX 099 43 RCL 097 54) 098 45 YX 099 43 RCL 100 58 58 101 94 +/- 102 54) 103 55 + 104 43 RCL 105 51 51 106 65 X 107 73 RC* 108 52 52 109 95 = 110 44 SUM 111 50 50 122 01 1 113 32 X;T 114 43 RCL 115 52 52 109 95 = 110 44 SUM 111 50 50 122 1NV 120 43 RCL 113 53 53 124 61 GTH 125 33 X ²	1467 94 +/- 148 22 INV 149 23 LNX 150 75 - 151 01 1 152 54) 153 65 × 154 43 RCL 155 47 47 156 95 = 157 44 SUM 158 50 50 159 76 LBL 160 45 Y× 161 93 . 162 01 1 163 32 X?T 164 43 RCL 165 50 50 166 75 - 167 43 RCL 168 59 59 170 42 STU 171 49 49 172 22 INV 173 39 CDS 174 77 GE 175	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ode 5 - C5) × C5 = T5/× (1 - C1 - VX) × C5 = U51 + C5EE2 NU3C5 5 - VM3L3

						(Contin	ued) ⁻	Table II
Step	Key	Code	Step	Key	Code	Step	Key	Code
$\begin{array}{c} 121\\ 1223\\ 1223\\ 1226\\ 1223\\ 1226\\ $	1364715355365253553355442355445357540653 637280445644944336553355442352445344945749		$\begin{array}{c} 1590\\ 1623456789\\ 01123456789\\ 01123456789\\ 01123456789\\ 0123458889\\ 012345\\ 188886789\\ 012345\\ 199256\\ 1992$	123053352902290239922393559445258526020 03452459445228034442223453455594545245	1 TLD R 5 E 0911 VES TL9 VES TL9 VES TL9 VES TL9 VES 1 S 1 NVES TL9 VES 1 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	196 197 200 200 200 200 200 200 200 200 200 20	40633365334525852402010693554000581981 4372545845550945450456373456000980999	GTAN LBNX (L6 R 5+ L5) + 2 = C504 S 5000NLSC5 × 100 = X1TVS F 000S F 00S F

			Disp	olay	
Step	Enter	Press	C*	D*	Print
1	C_0 , Net initial investment	A	$\overline{C_0}$	Co	$\overline{C_0}$
2	n, Economic life	R/S	C_0/n	n	n
3	N, No. cash-flow components†	R/S	2Ň	2N	N
4	IR_{T} , Investment $ imes$ tax rate**	R/S	2 <i>IR</i> ⊤∕n	2 <i>IR_T</i>	IR _T
5	T, Depreciable life	R/S	T+0.5	T+0.5	Т
6	i1, First cost-escalation rate+	R/S	<i>i</i> 1	<i>i</i> 1	<i>i</i> 1
7	C_1 , First cash-flow component	R/S	Ċ,	Ċ,	Ċ,
8	<i>i</i> ₂ , Second cost-escalation rate‡	R/S	i_2	i_2	i ₂ .
9	\tilde{C}_2 , Second cash-flow		-	-	-
	component	R/S	C_2	C ₂	C2
2//+4	i _N , Final cost-escalation rate‡	R/S	iN	iN	iN
2//+5	C _N , Final cash-flow				
	component	R/S	-	-	C _N
2//+6	Calculates DCFRR in percent	-	DCFRR	DCFRR	DCFRR
otes:					
C: Co	ntinuous program; D: Discrete pro	ogram			

The number of pairs of cash flow components and corresponding escalation rates is limited to 22 by the availability of storage registers. However, this quantity should be ample for almost any analysis.

The first trial in the program uses a 25% discount rate. The program is limited to DCFRR values between 0% and 50%. If the calculation seems to be taking too long (i.e., 3 or 4 min), the DCFRR may be beyond these limits. This can be checked by stopping the program and exchanging the display with the contents of Register 55 (which contains the current discount rate). If the value is high (above 0.499) or low (below 0.001), the limits may have been exceeded. This can be further checked by again exchanging the display and Register 55, then the display and Register 49. An absolute value in Register 49 substantially above 0.1 gives stronger evidence that the DCFRR limits have been exceeded.

To extend the DCFRR limits of the continuous program, apply the following instructions (corresponding instructions for the discrete program appear in parentheses), after the direction of extension (higher or lower) has been indicated by the checking procedure.

To raise the DCFRR limit, enter the program at Location 061 (056), and replace the value of 0.5 that is stored in Register 54 with the desired higher limit (0.7, for example). Although it is unlikely that a negative DCFRR would be acceptable, the zero limit can also be extended by entering the program at Location 061 (056) and inserting the desired negative limit (-0.2, for example), then the instruction "Store 56." After extending the limits, rerun the entire program.

Note that the comparison basis for testing whether the DCFRR has been reached (NPV close to zero) is the value of 0.1 in locations 157 and 158 (161 and 162). This has been found sufficiently precise for the one decimal place (0.1%) to which DCFRR is carried out in the program. If this precision is greater than needed, the 0.1 test limit can be raised to shorten calculation time.

Continuous compounding is used for the depreciation discount factor in both the continuous and discrete programs. Discrete compounding for depreciation would require a loop that would add about 40 program steps and lengthen calculation time 15 s/iteration. This could add as much as 4 min to the discrete program, which already takes more time than the continuous one. The NPV difference between continuous and discrete compounding for depreciation is about $1\frac{1}{2}\%$ of initial investment, which is ordinarily more precise than warranted by input data.

Although both programs are based on SOYD depreciation, they can be used without appreciable error for twice-straight-line depreciation. The NPV difference is usually less than 1% of the initial investment.

The programs do not include a provision for salvage value. It should be recalled that a cash flow from salvage does not occur until the property is disposed of at the end of its economic life, when the discount factor is usually quite low.

For HP-67/97 users

The HP version of the program has two parts, program A and program B; for listings, see Tables IV and V. Tables VI and VII contain user instructions for these programs.

Listing for HP version—program A for discrete compounding

Table IV

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	≭LB LA	21-11	034	≢LB L∂	21 08	656	+	55	695	RCL 8	3 6 08	130	2	93
692	CLRG	16-53	035	+	-55	667	RCLF	36 11	699	CHE	-22	171	÷	-24
003	P≠S	16-51	036	STO:	35 45	968	сня	-23	100	€×	33	132	976 <i>9</i>	35 89
884	CLRG	16-53	037	DSZI	16 25 46	669	$\sum_{i=1}^{n} X_i$		101	RELS	36 63	133	Ø	66
685	DSF2	-63 02	038	GT01	22 01	07 0	CHS	20	. 32	+	-57	174	STOE	Z5 15
906	STOI	35 46	Ø39	RCLO	35 00	ē71	1	61	107	1	31	:35	P≓E	16-51
9 07	ST00	35 0 0	848	STOI	35 46	072	4	-55	104	-	-45	136	RCLØ	30 87
005	R∔	-31	04i	*LBL2	21 02	073	RCL8	36 63	105	~	-75	137	ETOI	35-46
909	STŨA	35 11	842	1	01	374	÷	-34	105	RCLD	27 I.I	136	GT02	22 C.C
010	₽ŧ	-31	843	RCL i	36 45	675	P≠S	. € -5!	:67	7	-35	: 39	≱LBL 5	- 21 05
011	STOB	3 5 12	044	FRC	16 44	876	ROLI	35 43	198	RCLE	36 15	:40	R019	35 <i>3</i> 9
012	P≓S	16-51	645	X>0?	16-44	077	IST	16 34	169	÷	-53	141	\$107	<i>35 07</i>
813		-62	046	GT09	22 09	P78	X>02	15-44	110	.T.E	ZE 15	142	RCL6	36 0f
014	2	Ø2	047	1	81	679	G709	22 09	111	∢1BL3	21 03	143	т	-55
015	5	<i>0</i> 5	848	+	-55	086	1	ei	1.2		-62	144	2	62
016	ST09	3 5 09	049	*LBL9	21 09	ØE1	-	-45	113	-	ē.	145	÷	-24
017		-52	050	+	-55	682	*LBL9	21 69	114	RCLE	35 15	146	ST09	75 09
e 18	5	05	051	RCL i	36 45	082	x	-35	115	RCLP	ZE 12	147	Ũ	ē3
619	ST07	35 07	052	FRC	16 44	0E4	RC1E	3E 15	115	-	-45	148	S76E	35-15
620	P#S	16-51	05 3	X>0?	16-44	785	+	-55	117	HBS	16 B1	143	₽‡3	16-51
021	R∕S	51	054	GT09	22 09	98E	STOE	33 15	1 í 8	∴≓Y	- 4	150	RCL 9	36 00
022	F1?	16 23 01	055	1	61	087	DSZI	16 25 46	115	20 YO	18-04	151	8701	-35 4e
0 23	GTOS	22,63	056	+	-55	888	etez	22 83	120	ete i	20 04	152	6702	22 02
024		-62	857	*LBL9	21 89	$e^{\circ}\beta$	₽₽S	16-51	121	ROLE	39 15	153	∙LBL4	21 04
025	5	05	058	CHS	-22	<u>090</u>	F1?	16 23 01	122	RCLP	33-12	154	RILS	36185
026	+	-55	8 59	P≠S	16-51	091	9703	22-33	123	-	-45	175	1	9 <i>1</i>
€27	STOC	35 13	868	RCL9	36 09	252	RELS	75 85	124	2 (0 ?	15-45	156	ð	98
028	RĮ	-31	061	+	-55	6 93	RCLC	36 13	125	GT05	22-05	157	0	30
829	2	62	862	÷	-24	394	X	-35	126	PCLE	36 39	158	X	-35
639	Х	-35	0 63	1/8	52	395	ST38	35 08	127	STOE	23 GE	: 59	FRIX	-14
031	STO D	35 14	064	ST08	35 08	C9E	<u>у</u> г	52	128	RCLT	36 CT	156	SPC	15-11
032	≭LB L1	21 01	065	1	01	$\ell 97$	172	52	129	+	-53	161	CFI	16 12 0.
033	R∕S	51										162	$R \in \mathcal{E}$	51

Listing for HP version—program B for continuous compounding

Table V

Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code
001	*LBLA	21 11	872	STOI	35 46	063	~	-35	094	X	-35	125	STOI	35 46
0 02	CLRG	16-53	633	₽≠q	16-51	364	P#3	18-51	095	RCLD	ZE 14	126	GTO2	22 02
883	₽₽S	16-51	634		-62	665	SCL :	36 45	696	x	-35	127	*LBL5	21 05
004	CLRG	<i>16-</i> 53	635		ēΞ	866	₽ ‡ 5	16-51	097	RCLE	36-15	128	RCL9	36 09
005	DSP2	-63 82	87E	5	65	967	INT	16 34	09 8	+	-55	129	ST08	35 Ø8
00 6	STOØ	35 00	837	STO9	35 0 <i>3</i>	068	11.00	16-44	<i>099</i>	STOE	35 15	130	RCL6	36 86
0 07	STOI	35 46	036		-62	069	ST05	22 69	100	#LBL 3	21 03	131	+	-55
00 8	R↓	-31	639	5	85	070	1	0:	101	RCLE	36-15	132	2	62
609	STOA	35-11	040	ST08	35 ØS	871	-	-45	102	RCLB	36-12	133	÷	-24
010	÷	-24	641	*1812	21 0E	672	∦LB L9	21 0 9	103	-	-45	134	ST09	3 5 09
011	STOB	35 12	<u>942</u>	RCL9	<i>36 09</i>	073	X	-35	104	ST07	35 0 7	135	8	69
012	F1?	16 23 01	843	F#S	16-5i	ê74	RCLE	3E 15	105	ABS	16 31	136	STOE	35 15
013	GT01	22 0 1	<u>34</u> 4	RCL i	36 45	075	÷	-55	106		-62	137	P≠S	16-51
814	R∕S	51	945	F‡?	16-51	976	STOE	35-15	107	1	01	138	RCLO	36 00
015		-62	Ø4E	FRC	16 44	977	DSZI	16 25 46	108	X>Y?	16-34	139	STOI	35-4 <i>6</i>
016	5	65	647	X>9?	18-44	078	ST02	22 02	109	GT04	22 04	140	P≢S	16-51
01 7	+	-55	e48	GTCƏ	22 89	8 7 5	F1?	15 23 81	110	RCL7	36 07	141	GT02	.22 8 2
018	STOC	35-13	949	1	31	880	GT03	22 03	111	X<0?	16-45	142	#LBL4	21 04
019	R∔	-31	630	+	-55	981	RCL 9	3 6 09	112	GT05	22 05	143	RCL9	36 09
020	2	62	85i	¥LBL9	21 0 3	682	RCLC	ZE 13	113	RCL9	36 0 9	144	1	01
021	X	-35	€53	-	-45	0 83	Ä	-35		ST06	35 06	145	8	0 0
022	RCLA	36-11	953	PCLA	76 11	€84	ST07	35 07		RCL8	36 08	146	0	0e
023	÷	-24	054	X	-35	£95	χ2	53		+	-55	147	×	-35
024	STOD	35-14	9 55	\$707	35 67	03E	172	52		2	0 2	148	PRTX	-14
6 25	*LBL 1	21 81	056	178	52	097	RCL7	35 07		÷	-24	149	CF1	15 22 01
026	R∕S	51	657	RCL7	36 07	688	CHS	-22		ST09	35 0 9	150	SPC	16-11
0 27	+	-55	658	CHS	-23	085	e×	33		0	60	151	R∕S	51
028	STO i	35 45	6 59	e×	33	090	RCL7	36 07		STOE	35-15			
629	DSZI	16 25 46	260	SHS	-22	0 91	+	-55		P‡S	16-51			
830	GT01	22 01	0E 1	-	<u>91</u>	392	1		123	RCLØ	36 00			
031	RCLØ	36 00	0 63	+	-55	893	-	-45	124	P≠S	16-51			_

254 ENGINEERING ECONOMICS

User instructions for HP version—program A for discrete compounding

	Кеу
For before-tax mode, set flag 1 (STF 1) before entering any data. For after-tax mode, run without any flags.	
Enter C_0 , net initial investment Enter <i>n</i> , economic life, yr Enter <i>N</i> , number of cash flow components (maximum, 16)	ENTER ↑ ENTER ↑ køy A
For after-tax mode (no flags set), enter the following data (for before-tax mode (flag 1 set), omit these data):	
Enter IR, Investment \times tax rate Enter T, depreciable life, yr	ENTER ↑ key R/S
For both tax modes:	
Enter cash flow components: Cost escalation rate <i>i</i> , decimal Cost <i>C</i> , only dollars (no cents) (Enter <i>N</i> pairs of these items)	ENTER ↑ key R/S

When all data have been entered, program will automatically start calculating and output will be the discounted cash flow rate of return (DCFRR), in percent.

User instructions for HP version—program B for continuous compounding

Table VII

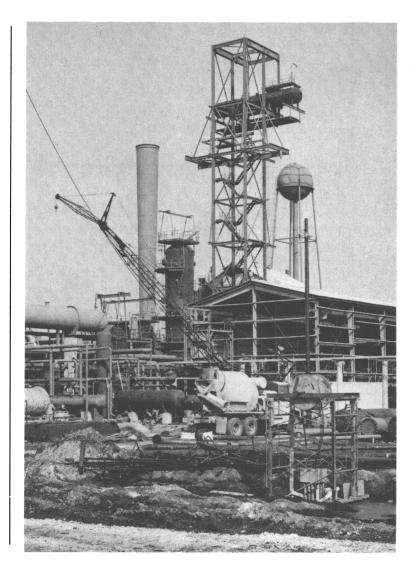
	Кеу
For before-tax mode, set flag 1 (STF 1) before entering any data. For after-tax mode, run without any flags.	
Enter C_0 , net initial investment Enter n , economic life, yr	ENTER ↑ ENTER ↑
Enter N, number of cash flow components (maximum, 16)	key A
For after-tax mode (no flags set), enter the following data (for before-tax mode (flag 1 set), omit these data):	
Enter IR _T , Investment × tax rate Enter T, depreciable life, yr	ENTER ↑ key R/S
For both tax modes:	
Enter cash flow components: Cost escalation rate <i>i</i> , decimal Cost <i>C</i> , only dollars (no cents) (Enter <i>N</i> pairs of these items)	ENTER ↑ key R/S

When all data have been entered, program will automatically start calculating and output will be the discounted cash flow rate of return (DCFRR), in percent.

Calculating net present value for varying cash flows

Knowing how project economics may change with varying underlying conditions can improve investment decisions. This program provides a tool for making

analyses covering a range of possibilities.


Gordon W. Neal, Pacific Energy Consultants, Inc.

Uncertainty in economic evaluations can be reduced by examining alternative projects under many likely conditions. This was shown in the article "Evaluating uncertainty in capital cost projections," *Chem. Eng.*, Sept. 6, 1982, p. 131.

Such comprehensive analyses are possible because of the availability of the programmable calculator and the computer. With the calculator, for instance, many scenarios can be investigated, rather than having an evaluation limited to only one set of conditions.

As was also discussed in the earlier article, there are two generally accepted bases for judging the economic attractiveness of projects: How much money will be generated, and how efficiently will the committed capital be used? A measure of the first is net present value (NPV), and of the second is discounted-cash-flow rate of return (DCFRR).

The program of Table I (for the TI-59 calculator) determines the NPV of an initial investment that is followed by a series of annual cash flows consisting of several components, each increasing or decreasing at a constant annual rate. It includes options for continuous or discrete compounding, and for after-tax or before-tax (e.g., government-funded) modes. The after-tax mode is based on sum-of-years-digits (SOYD) depreciation.

	Program calculates investment	NPV for inc	reasing	or decreasing	cash flows					Tabl
	Step Code Key 000 76 LBL 001 11 A 002 58 FIX 003 09 09 004 47 CMS 005 99 PRT 006 94 +/- 007 42 STD 008 59 59 009 91 R/S 010 99 PRT 011 42 STD 012 58 58 013 91 R/S 014 99 PRT 015 65 × 016 02 2 017 95 = 018 42 STD 020 42 STD 021 00 00 022 91 R/S 023 99 PRT 024 42 STD 025 <th>Step 035 036 037 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 055 057 058 057 058 057 058 056 060 061 062 064 065 066 066 069</th> <th>9533524868192070886337515237243365 99739739970939734570152372433657</th> <th>Key PRT + 5 STD STD STD STD STD STD STD STD</th> <th>Step 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 086 087 099 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105</th> <th>Cole 7453852255315324234533538564491233742</th> <th>58 = LBL 59 1 X:T RCL 53 E0 CE 2</th> <th>Step 133 134 135 137 138 137 138 144 142 144 144 144 144 144 144</th> <th>Code 5442351453554965398159164365375531537</th> <th>Key + E - VX R 5 = M9L L9X1 TSLML6 *7 R 5 = C1 + C5 R 5 = C1 + C5</th>	Step 035 036 037 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 055 057 058 057 058 057 058 056 060 061 062 064 065 066 066 069	9533524868192070886337515237243365 99739739970939734570152372433657	Key PRT + 5 STD STD STD STD STD STD STD STD	Step 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 086 087 099 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105	Cole 7453852255315324234533538564491233742	58 = LBL 59 1 X:T RCL 53 E0 CE 2	Step 133 134 135 137 138 137 138 144 142 144 144 144 144 144 144	Code 5442351453554965398159164365375531537	Key + E - VX R 5 = M9L L9X1 TSLML6 *7 R 5 = C1 + C5 R 5 = C1 + C5
r desire Flag 1 Flag 2 ep 1 2 3 4 5 5 6 7 7 8 9 9 0 1 +5	Jser instructions for NPV prog d flags: - Before-tax mode - Discrete compounding <u>Enter</u> C ₀ , net initial investment n, Economic life N, Number of cash-flow components* R, Discount ratet IR ₇ , Investment × tax rate‡ T, Depreciable life‡ i ₁ , First cost-escalation ratet C ₁ , First cash-flow component i ₂ , Second cash-flow component i ₂ , Second cash-flow component i _N , Final cost-escalation ratet C ₂ , Second cash-flow component i _N , Final cost-escalation ratet	Press D A R/S R/S R/S R/S R/S R/S R/S R/S R/S R/S	Display $-C_0$ n 2N R IR_T T+0.5 i_1 C_1 i_2 C_2 i_N	Print C_0 N R IR_T T_1 i_2 C_2 i_N	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128	24713647153653452133552 247280445653452133552	SUM 57 GTO X2 LBL CE IFF 01 YX RCL 56 X RCL 56 X RCL 54 51 X2	170 171 172 173 174 175 176 177 178 180 181 182 183 184 185 186 187 188 189 190	4522553153153245384453 5945365075084554459547) = 570 1/X (1 + C1 + PC12 YC1 + S2 YC12 YC12 +) XC2 +) XC2 + S2 X X S2 X X X X X X X X X X X X X X X
nter <i>R</i>	C _N , Final cash-flow component Calculates NP∨ m N = 25 and <i>i</i> values as decimals (using zeros as ap ps 5 and 6 with Flag 1 set (before-tax mod	plicable).	NPV	<i>С_№</i> NPV	128 129 130 131 132	65 63 43 51	× <	191 192 193 194 195	53 95 61	53 = GTO ſX

.....

	Calculated NPV val 50% tax rate and c	Table III				
		Output				
Input	Example 1 –	Example 2 –	Example 3 –			
	continuous compounding,	discrete compounding,	continuous compounding,			
	after-tax mode	after-tax mode	before-tax mode			
	(no flags)	(Flag 2)	(Flag 1)			
C ₀	522.	522.	652.			
n	20.	20.	20.			
N	4.	4.	4.			
R	0.1	0.1	0.1			
IR _T	326.	326.				
T	11.	11.				
i ₁	0.09	0.09	0.09			
C ₁	122,	122.	244.			
i ₂	0.09	0.09	0.09			
C ₂	-45,	-45.	-90.			
i ₃	0.12	0.12	0.12			
C ₃	-13,	-13.	-26.			
i ₄	0.05	0.05	0.05			
C ₄	-19,	-19.	-38.			
NPV	543.9	551.7	1019.8			

Program formulas

The general formula used in the program is:

NPV = $(C_1D_1 + C_2D_2 + \ldots + C_ND_N) + IR_TD - C_0$ (1) Here, NPV = net present value, in any monetary unit; C_1 , $C_2 \ldots C_N$ = first-year cash-flow components; D_1 , D_2 $\ldots D_N$ = discount factor corresponding to cash-flow component with the same subscript; I = total investment; R_T = income tax rate; D = depreciation discount factor; and C_0 = net initial investment.

Equations for cash-flow-component discount factors are:

$$D_c = (1 - e^{-rn})/r$$
 (2)

$$D_d = [1 - (1 + r)^{-n}]r$$
(3)

Here, D_c , D_d = discount factors for, respectively, continuous and discrete compounding; r = effective discount rate; and n = project's economic life, yr.

Expressions for, respectively, continuous and discrete effective discount rates are:

$$r_c = R - i \tag{4}$$

$$r_d = (R - i)/(1 + i)$$
(5)

Here, R = selected discount rate, and i = annual rate at which cash-flow component increases (use negative sign for decreasing rate).

The equation for the depreciation discount factor, based on continuous compounding and SOYD depreciation is:

$$D = 2 (RT' + e^{-RT'} - 1)/(RT')^2$$
(6)

Here, $T' = T + \frac{1}{2}$, and T = depreciable life, yr.

Preparing and entering data

User instructions are in Table II. Note that the dataentering sequence is altered by the tax mode selected.

In the after-tax mode, the initial investment (C_0) should be adjusted to reflect any such items as investment and energy tax credits. Also, first-year cash-flow components, C_1 , C_2 , etc., are multiplied by $(1 - R_T)$ to arrive at the input values. In the before-tax mode, the full initial investment is used, and the first-year cash-flow components are not adjusted.

Depreciation is used only in the after-tax mode. The term $(I R_T)$ represents the full initial investment without credits multiplied by the tax rate.

Components of cash flow into the project (receipts, reduced costs) have positive signs, and those flowing out (expenses, increased costs) have negative signs.

Program features

Flags are set by the user to determine the compounding method and tax mode. When no flags are set, the program uses continuous compounding and the after-tax mode. Setting Flag 1 places the program in the before-tax mode. Setting Flag 2 prepares the program for discrete compounding. With both flags set, the program operates in the after-tax mode with discrete compounding.

The number of pairs of cash-flow components and corresponding escalation rates is limited to 25 by the availability of storage registers. This should be ample for almost any case.

Continuous compounding is used for the depreciation discount factor under both the continuous and discrete options. Although program steps could be added to accomplish discrete compounding for depreciation, this would require another loop of about 70 additional steps. The NPV difference between continuous and discrete compounding is normally about $1^{1}/2^{\infty}$ of the initial investment. Greater precision is usually not warranted by the input data.

Although the program is based on SOYD depreciation, it can be used for twice-straight-line depreciation without appreciable error. The NPV difference between the two methods is ordinarily something less than 1% of the initial investment.

Also, the program does not provide for salvage value. This can be accounted for by adding to NPV the product of the salvage value and the discount factor for the last year of economic life.

Calculation time varies with the number of cash-flow components. It runs about two seconds plus three seconds per cash-flow component (i.e., 11 s for three components, 14 s for four). Changes in compounding method or tax mode do not appreciably affect calculation time.

Examples of printouts are shown in Table III. Note that all of the examples are based on the same data, with an income tax rate of 50% and a combined investment and energy tax credit of 20%.

For HP-67/97 users

A listing of the HP version is shown in Table IV. User instructions are listed in Table V.

Program listing for HP version

Table IV

Step	Көу	Code	Step	Кеу	Code	Step	Көу	Code	Step	Key	Code	Step	Key	Code
691	*LELA	21 11	030	*LBL2	21 02	859	GT09	22 09	088	RCLE	36 15	117	+	-55
002	STOR	35-11	031	F0?	15 23 00	06 0	1	01	089	X	-35	118	λ	-35
063	R∛	-31	032	GT04	22 04	e 51	-	-45	09 0	RCLC	36 13	119	P≠S	16-51
004	STOI	35 46	833	rcla	36-11	062	*LBL9	21 69	691	+	-55	120	ST09	35 ØS
005	ST00	35 00	834	RCLI	36 45	0 63	Х	-35	092	STOC	35 10	121	178	52
065	₹↓	-31	<i>03</i> 5	FRC	15 44	064	*LBLB	21 12	693	PRTX	-14	122	RCL9	36 09
907	STOB	35 12	035	X>0?	1€-44	065	RCLC	36-13	894	CFØ	16 22 00	123	1	01
608	R∔	-71	€37	GT09	22 .3	666	+	-55	895	R∕S	51	124	P≠S	16-51
60 5	CHS	-22	ð 38	1	C1	067	STOC	35-13	096	≭LBL 3	21 03	125	• •	-55
010	STOC	35 13	03 5	Ŧ	-55	06 8	DSZI	16 25 46	@ 97	RCLC	36 13	126	RCLB	36 12
011	F!?	16 27 01	040	*LEL9	21 09	869	GTO2	22 0 2	098	PRTX	-14	127	CHS	-22
612	GT01	22 O:	041	-	-45	070	F1?	16 23 01	899	CFi	16 22 01	128	ŶХ	51
ð 13	R∕S	51	942	RCLP	36 i2	071	eto3	22 03	100	₽∕S	51	129	CHS	-22
ð14	STOD	35-14	043	Х	-35	072	RCLA	36-11	10:	*LEL4	21 0 4	136	1	e1
315	R↓	-31	644	P≓S	1 E- 51	073	RCLD	3E 14	102	RCLi	36 45	131	4	-55
916	STOE	35 15	045	ST03	35 09	074	X	-35	103	FRC	15 44	132	Х	-35
ð17	RCLD	38 IK	846	17X	52	675	STOI	35 4E	104	X>0?	16-44	133	RCL i	36 45
018	•	-52	0 4 7	1	. E1	07E	χz	53	105	GT09	22 09	134	INT	16 34
619	5	<i>05</i>	048	RCLS	36 89	€77	17%	52	186	1	01	135	X>0?	16 -4 4
020	+	-55	049	CHS	-22	078	2	62	197	+	-55	136	GT09	22 69
021	STOD	35 14	850	e×	33	879	х	-35	108	∦LBL 5	21 09	137	i	01
822	*LBL1	21 81	Ø51	-	-45	680	RCLI	36 46	109	ENT†	-21	138	-	-45
923	R∕S	51	652	x	-35	0 8i	CHS	-22	110	ENT†	-21	139	*LBL9	21.05
024	+	-55	95 3	RCLB	36 12	082	e×	33	111	i	01	140	У	-35
025	STO:	35 45	054	Х	-35	8 83	RCLI	36 46	112	+	-55	141	©T0B	22-12
926	DSZI	16 25 46	055	P‡S	16-51	084	+	-55	113	178	52	142	-	-45
027	GT01	22 C:	856	RCL i	36 45	085	í	ē 1	114	XZY	-41	143	R∕S	51
<i>e28</i>	RCLO	<i>36 0</i> 0	e 57	INT	16 34	0 86	-	-45	115	CHS	-22			
829	STOI	35 46	658	X>0?	16-44	087	×	-35	115	RCLA	35 11			

User instructions for HP version	Table V
Case 1. For continuous compounding, after-tax mode. No flags.	
Case 2. For discrete compounding, after-tax mode. Set Flag 0	STF 0
Case 3. For condinuous compounding, before-tax mode. Set Flag 1	STF 1
All cases:	
Enter C_0 , net initial investment	ENTER ↑
Enter n, economic life, yr	ENTER 1
Enter N, number of cash flow components (maximum, 18)	ENTER 1
Enter R, discount rate, in decimal form	key A
For cases 1 and 2 (Omit this input with case 3):	
Enter IR_{T_1} investment \times tax rate	ENTER ↑
Enter T, depreciable life, yr	key R/S
For all cases:	
Enter cash flow components:	
Cost escalation rate i, decimal	ENTER ↑
Cost C, dollars only (no cents)	key R/S
(Enter N pairs of these items.)	

When all data have been entered, program will automatically start calculating and output will be the net present value (NPV).

The author

Gordon W. Neal founded Pacific Energy Consultants, Inc. (1000 Quail St., Suite 290, Newport Beach, CA 92660; telephone 714-955-0493), which deals with all stages of project development, with emphasis on energy conservation. The projects cover technical and economic feasibility analyses, design and

construction coordination in the fields of cogeneration, heating, air conditioning, ventilation and refrigeration. A registered engineer in 11 states and a member of numerous professional associations, he holds a B.Sc. in mechanical engineering from the University of Nebraska.

0-07-010849-8