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THE CALCULATOR AFLOAT
A Mariner’s Guide to the Electronic Calculator

By Captain Henry H. Shufeldt, USNR (Re-
tired) and Kenneth E. Newcomer

In the electronic calculator, the mariner has a

marvelous new tool, one that is capable of rap-

idly solving even highly complex navigational

problems more accurately than is possible with

a slide rule orset oftables. This guide to solving

many kinds of quantitative problemsof interest

to mariners is suitable for users of all makes

of scientific calculators, from the simplest to

the most advanced programmable types.

The authors aim primarily at presenting and

explaining formulae designed to solve various

navigational and other shipboard problems,

regardless of how the calculator concerned op-

erates or of its manner of key-stroking. For the

most part, keying procedures are left to the

reader, on the assumption that he will be fa-

miliar with his own calculator. All the formulae

included in these pages can be solved with a

calculator that has basic trigonometric func-

tions.

Every effort has been made to make the

book understandable to the mariner whois not

broadly experienced in mathematics. Thus it

will prove to be of value to those who use their

calculators simply as more sophisticated ver-

sions of the slide rule, as well as to those who

write their own programs for programmable

calculators.

Navigational techniques are explained and

illustrated with a wealth of interesting historical

background. Particularly useful to the person

considering buying a calculatoris a section de-

voted to a detailed description of virtually

every mathematical function to be found on a

calculator. The authors stress the use of ele-

mentary statistical techniques for getting greater

accuracy in various measurements and celestial

observations, and procedures to enable their

use even with a relatively unsophisticated cal-

culator are clearly set forth.

Among the many special features of the book

are the basic formulae covering ship stability

and trim and new long-term almanacsthat vield

a greater degree of accuracy for the reduction
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Foreword

This book, in effect,is a second edition ofSlide Rulefor the Mariner,

published in 1972, which contained formulae for the rapid solution of

many problems in navigation and other areas of concern to the mariner.

Since then, a new and very powerful tool, the scientific calculator,

capable of solving trigonometric problems involving sines, cosines,

tangents, cotangents, and logs, has become available at a price compar-

able to that of a good slide rule. The calculator can solve the same

problems, and more, with greater rapidity, and with far greater accu-

racy.

The Calculator Afloat contains the same formulae, in some cases

restated for use with the calculator, plus many others. It is intended for

users of all types of scientific calculators, from the simplest to the most

advanced programmable types.

Since calculators vary considerably in their manner of opei.iion,

some using the algebraic and some the Reverse Polish Notation. with

very considerable differences in the methods of keying in entries, we

have confined ourselves for the most part to stating the formulae

designed to solve the various problems and left the keying procedure to

the readers, on the assumption that they are familiar with the operation

of their own calculators. In some cases, however, it has appeared

desirable to tabulate keying instructions, rather than formulae. All the

formulae included may be solved by a calculator having trigonometric

functions. Some solutions may be facilitated if the calculator is equipped

ix



X Foreword

to convert between polar and rectangular coordinates, while others

may be speeded up if the calculator has a summation capability. Ex-

amples of the use of these features are included. We have made every

effort to make these instructions, as well as the entire text, as under-

standable as possible to the mariner who has not majored in mathe-

matics.
Among the new material in this text is a section including the basic

formulae covering ship stability and trim, as well as new long-term

almanacs which yield an improved degree of accuracy for the reduction

of observations of the Sun and ofthe selected stars for the remainder of

the twentieth century. A method of regaining longitude by lunar dis-

tance measurements with the sextant is included, that requires only a
few minutes for‘clearing,’ ratherthanthe very time-consuming solution

by use of log tables required in earlier times. Also presented is material

that illustrates how modern methods and tools have simplified the

practice of celestial navigation.

In the scientific calculator, the mariner has a new tool, capable of

rendering a speedy solution of even highly complex problems, and with

a degree of accuracy not attainable by the use of most tables. In celes-

tial navigation, for example, the calculator permits the navigator to

reduce a round of sights from a dead reckoning or estimated position,

rather than having to employ a series of assumed positions, thus not

only saving time in plotting, but also doing away with the errors arising

from long intercepts sometimes caused by the use of assumed posi-

tions.

We trust this volume will help the mariner put his calculator to the

best use; however, we urge that he under no circumstances go to sea

without almanac, reduction tables, and so on, and the knowledge ofhow
to use them.

In closing, we wish to express our thanks to Alan S. Begley for the

elegant and extremely short sight reduction algorithm, and to Frederick

P. Blau for the use of the ‘‘best fit’’ method. Also we thank Mortimer
Rogoff for pointing out the importance ofa statistical approach in navi-

gation, and Bruce C. Nehrling for contributing the section on ship

stability. John S. Letcher, Jr. kindly permitted us to use his formulae
for clearing the lunar distance, and Constance M. MacDonald assisted
greatly in editing the text. Finally, Susan W. Wheatly not only did a

superb job of typing, but was most helpful in arranging the material.
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Review of Procedures

Introduction

What Is a Scientific Calculator?

Many navigators have used the slide rule to assist them in naviga-

tional calculations. They are familiar with its many different scales for

doing various mathematical jobs: performing multiplication and divi-

sion, providing trigonometric functions and their inverses, computing

logarithms, and so on. Until the early 1970s, the only functions that

could be handled by inexpensive electronic calculators were the four

basic arithmetic operations +, —, X, and +. With the advent of scien-

tific calculators a whole new world of computing power was opened up.

Virtually all of the slide rule’s jobs could be done with the greatest of

ease, in an instant, and with unprecedented accuracy.

Today, calculators having all the functions of a slide rule are avail-

able for only a few tens of dollars; these are the scientific calculators.

Not only do they perform elementary arithmetic with nary an error, but

also they compute trigonometric, logarithmic, and many other useful
functions. Some are even able to remember a sequence of keystrokes,

repeating it on command without a mistake. Having a programmable

scientific calculator is like having a slide rule that moves its own cursor.

The scientific calculator not only has made possible a degree of

accuracy not attainable with the conventional table of logarithms, but

also has speeded problem solution. We are reminded of the words of

1



2 Review of Procedures

Edward Wright, in the second edition ofhis Certaine Errors in Naviga-

tion (1610): *“. . . in our time the whole Art of Navigation is growne to

much greater perfection, then . . . ever it had in any former ages.”

What Features Are Most Important?

One of the most important requirements of a scientific calculator

purchased to perform navigational computationsis the ability to handle

trigonometric functions. Sine, cosine, tangent, and their inverses are

essential to all but the simplest problems in navigation. Furthermore,

the calculator intended for marine use should be able to evaluate

trigonometric functions for all angles, not just those in the range of 0° to

90°. Preferably it should have the powerful feature of polar to rectangu-

lar coordinate conversion by which a sine and a cosine can be com-

puted simultaneously or an arc tangent resolved into its proper quad-

rant without having to resort to applying a rule.

A second useful feature is memory, a place to save several interme-

diate results for later use, without having to reenter them.

Another desirable feature on a scientific calculator to be used for
navigation is an ability to cope with elementary statistics: accumulating

sums and computing mean and standard deviation. With such a feature

it becomes easier to minimize errors in observational data.

A most desirable feature to seek in a scientific calculator is pro-

grammability: the ability to retain and reproduce a series of keystrokes

to solve a particular type of problem. Although it is possible to carry

out most, if not all, of the procedures in this book on virtually any

scientific calculator, it is impractical to carry out some advanced pro-

cedures on any but a programmable calculator. The benefit of pro-

grammability can hardly be overemphasized. Having your keystrokes

stored in a calculator’s program memory means that they can be re-
peated the same way time after time.

Some calculators even have a ‘‘nonvolatile’’ memory which draws

so little current that a program is retained even when the calculator is
switched off.

Many programmable calculators have decision-making ability; for

example, they can make a comparison between the contents of the

x-register and that of the y-register. If x is greater than y, they follow a

predetermined routine; alternatively, if y is the greater, they follow a
different routine. Similarly,if the contents of the x-register has a posi-
tive value,they follow one routine to arrive at an answer; if x is nega-
tive, they follow a different routine.

The scientific calculator replaces tables of values. The program-
mable calculator looks up those values and then does meaningful calcula-
tions with them. Thus, the job of evaluating mathematical expressions



3 Review of Procedures

is replaced with the more important one of evaluating the results of the
calculations.

Keystroke Notation

Whereas scientific calculators are very similar in regard to the types

of calculations they can perform, they often differ in the actual key-

strokes used to effect those calculations. Throughout this book we shall

deal with two idealized calculators, an algebraic model and the Reverse

Polish Notation model. Keystrokes will be indicated by placing the

name of the function in a box representing a key even though the actual

keystrokes for that function on a given calculator may involve one or

more other keys as well. For example, if we were to calculate the angle

whose sine is 0.5, we would want to calculate sin™! (0.5), which would

be shown as

Keystrokes

0.5 SIN!

 

   

whereas on various calculators it could involve more than just one key:
   

0.5] h SIN-! 0.5 SIN! 0.5 INV SIN
             

Numbers entered through the keyboard will be shown simply as
 

numbers. It may be necessary to press| CHS |or|+/— |to change
     

the sign of a number being entered. For example, the evaluation

of the expression

= cos(—30°)

would be indicated as
 

-30°| COS
   

even though the actual keystrokes might be
 

 

30| CHS f COS or 30[{+/-|| COS
           

 

Relevant displays will be shown in a separate column:

Keystrokes Display

-30| SIN -0.5
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Calculator Operation

Scientific calculators are available with two different methods of

operation. On an algebraic calculator the expression

y=2+3-4

is evaluated using these keystrokes:

Keystrokes Display

2+ |3[- 14] = 1
 

       

On an RPN calculator, the same expression is evaluated as follows:

Keystrokes Display

2| ENTER? (3 + |4]| — 1

 

       

the difference being that the algebraic calculator waits until the entire
expression has been keyed in to evaluate it, whereas the RPN

calculator evaluates small portions of the expression as each operation

is performed. For more complicated expressions, the difference is

more subtle. Suppose, for example, that we wished to evaluate the
expression

x = 4 sin 30° + 8 tan 45°

We shall place the keystrokes side by side to show their surprising
similarity:

  

      

  

     
 

  

    

  

      

  

      

  

RPN Keystrokes Algebraic Keystrokes

4 4

ENTER? X

30 30

SIN SIN

X +

8

ENTER? X

45 45

TAN TAN

x =
    

 
+   
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Notice that for any but the arithmetical! operations, the keys are
pressed in the same order in both calculation systems. In the RPN

system, all operations are performed after the appropriate numbers

have been keyed in. In the algebraic system, arithmetic operations

are used between numerical inputs, and other operations are per-
formed after the appropriate inputs.

 

  
In the example given above, the| ENTER? [function was used in

 

the RPN keystrokes to tell the calculator that a first number was

complete and that a second was to be keyed in. RPN calculators

have a readily accessible stack or list of recently input values. This

stack is manipulated by the| ENTER? |, ROLL? |,| ROLL| |,

and X=Yy keys. Algebraic calculators retain a stack of pending oper-

 

       
 

   
ations as well as a stack of values. However, this stack is not to be

manipulated. (Note: For RPN calculators not having the ‘‘roll up’’ key,

the same result may be achieved by substituting three strokes on the

*‘roll down’ key.)

Many of the examples in this book are sufficiently complicated that

intermediate results have been shown in the equations. Usually these

intermediate results are shown rounded to four places past the decimal

point. The answers, however, are shown as they would be computed

from carrying all intermediate results to their full precision.

Example: Evaluate the expression

X = zx

fora =2.b=3,andc = 6.

x=2%xs

X = 0.6667 X 6

X = 4.0000

The answer shown is 4.0000 even though starting with the intermediate

expression would yield 4.0002.

Use of Scientific Functions

The functions on a scientific calculator can be somewhat intimi-

dating at first. Perhaps an explanation of what the mnemonics mean

will take away some of the mystery of the keyboard of the scientific

calculator.
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The keys are loosely grouped for reasons that seemed logical to

the manufacturer. The numbers are located in the lower four- or

five-row ‘‘numeric pad.”” The numeric pad also contains the decimal

point key, a key for changing a number’s algebraic sign, a key for

entering powers of 10, the four arithmetic operators, and either an
 

 

 
ENTER? or an =| key. The remainder of the keys are for

     

manipulation of numbers and for the other mathematical operations.

Sometimes these functions are accessed by pressing a shift key and

then another key. For the sake of this discussion, however, we shall

mention the functions as if the calculator had a huge keyboard.

Elementary Statistics in Navigation

Navigators measure many things, often trying to attain great accu-

racy, but few employ measurement-improving statistical techniques.

This neglect may be due, in part, to lack of knowledge ofthe benefits of

these techniques, but probably it is due, mostly, to the apparent diffi-

culty of the statistical formulae.

Statistical formulae should prove no barrier to the navigator armed

with a little knowledge and a scientific calculator. Advanced scientific

calculators have built-in statistical functions, and even the simplest

calculators can be employed to reduce data by the methods discussed
below.

All measurements are subject to error. Errors arise from many

sources, but are primarily due to instrumentation accuracy, observer

skill, and variations in the subject being measured. Various assump-

tions may be made regarding the distribution of errors, but it is suffi-

cient for our purposes to assume that a given measurement will be the

sum of some true value and a small random value that changes from
measurement to measurement.

Suppose a horizontal sextant angle is to be measured between two

stationary objects, say, a lighthouse and a prominent landmark. The

true value of this angle might be 35°, but because it is difficult to
superimpose the image of the lighthouse exactly on that of the land-
mark, various values, such as those tabulated below, might be ob-
tained:

34°25’
35°18
34°15’
34°42’
35°02’

In this example, some values measured are as close as 2’ to the true



1 Review of Procedures

value, and others are as much as 45’ away. Our best guess, in this case,
is the average of the five measurements, 34°44.4’. An average, or

‘““mean’’ as it is sometimes called, is obtained by adding up the items

and dividing the resulting sum by the number of items. Since it is

impossible to know how many items there will be, we use this compact

notation, involving the Greek 3, (sigma), equivalent to an English S for
0 ’,
sum :

 

The i is called an index; it is a counter enabling us to differentiate

among the x’s. The symbol for ‘‘mean,”’ x, is pronounced ‘‘x-bar.”

In the above example, n = 5, so we would write

5

> x
i=1 _ Xt Xx +X; + x4 + Xs

s 5

A measure of how good our mean x is can be obtained by computing

two statistical parameters: the best estimate of the standard deviation,

usually denoted by s, and the standard deviation of the mean, usually

denoted by o,,. The value of s is given by the formula

_ [Z(x — x)?
$= ni

which can be rearranged to a form that is sometimes more convenient

for calculation:

x=

 = 2 _ ¥2Ss 1 (x2 —x?)

and o, is given by the formula

s
Om = —#—

n
in which

N
E

x N

 

x2 = =

n

is the mean squared value or the average of the values squared, and

O
F

Xi

j
o=1

n

 

=

is the mean value, or the average of the values.
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The statistical significance ofx and o, is that any single measure-

ment has a 68% chance of being within +s of the true mean, and any

mean of n measurements has a 68% chance of being within +o, of the

true mean. Thus, for our set of five measured angles, we can compute

x = 34°44'24"

s = 26"

on = 11"

We can say that although any one of our measurements is probably

(P = 68%) within 26" of the true mean value, the mean of the five

measurements we took is probably (P = 68%) no more than 11” away

from the true mean. Incidentally, there is a 95% chance of being within

+25" of the true mean.

Since, by taking only one measurement, we have no way of estimat-

ing the standard deviation, we can say very little about our measure-

ment beyond reporting the single value. However, by taking as few as

five measurements, not only do we have an idea of the size ofthe errors

that may be perturbing our measurements, but also we obtain a reduc-

tion in the effect of those errors by a factor V5 = 2.2. We can even

determine how many more measurements must be made to reduce the
error to some even smaller value, say, o,, = 5".

Since
26"

Ss _

Va Va

(26° _(26°} _
n= (5) -(%) =27

Therefore, 27 readings are needed to reduce o,, to 5".

Most scientific calculators have a statistical function called 3,+. This
function accumulates the sums and the sums of the squares of values
input in addition to maintaining a count of the inputs. That is, Sx, 3x2,
and n are saved in the calculator’s memory. The mean is then obtained

by pressing a key marked x, mean, or m, and the standard deviation is

obtained by pressing one marked s, o, or DEV. Some calculators allow

the input of two sets of values simultaneously. These calculators save
not only 2x, 2x%, andn, but also Jy, Sy? and a *‘cross-product’’ term 3.xy.
The utility of having these sums will be discussed later.

Should your calculator lack a 3+ key, you need not despair. The
following shows how countless means and standard deviations have been
computed in other ways, the temporary answers being stored by that
time-honored memory device, pencil and paper.

Tn =

we see that
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Example: You have measured the level of fuel in a tank using a dipstick.
Because your vessel is moving, there is some variation in the level, and
you would like to obtain an improvement in your measurement. The
levels obtained were 13.5 in., 15 in., 14.25 in., and 14 in.

First, we compute the mean:

 

4

X
= '_ 135+ 15+ 14.25 + 14

X= a 2 = 14.1875 = 14.2

Then, we fill out this table column by column:

i Xi XxX; — Xx (x; - x)?

1. 13.5 -0.7 0.49

2. 15 0.8 0.64

3. 14.25 0.05 0.0025

4, 14 0.2 0.04

and we can then compute s and o,,:

4

> (x; — x)?
s= 4/5

4-1

= .6252

Ss .6252
op = — = — = .3126
" Vn Va

So, you can be 68% sure that the level of fuel in your tank is between

13.9 in. and 14.5 in. You can be 95% sure that it is between 13.6 in. and

14.8 in.

Linear Regression

Introduction

Many measurements made by the navigator are of nonstationary

objects; often these measurementsare related to the time at which they

are made. For example, the altitude of a celestial object is changing

even as we measure it. Over the short period that we observe several

altitudes, they will generally change in a linear fashion with respect to

time. That is, when carefully plotted on graph paper, all the points

should line up. That they neverline up precisely is due to the multitude

of perturbations mentioned in the section on averaging: instrument in-

accuracy, operator skill, and such things as varying wave-height at the
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horizon, or rapidly changing atmospheric refraction. It would be nice to

be able to reduce the combined effect ofthese errors by using averaging

techniques. Let’s give it a try.
Suppose we had observed the Sun and had obtained the following

times and altitudes:

t Ho

10 00 00 24°32'44"

10 01 00 24°47'59"

10 01 45 24°55'45"

10 02 30 25°04'42"

10 03 20 25°15'36"

We could simply average each of these sets of numbers to obtain

Ff = 10:01:43 and Ho = 24°52'44", and, indeed, such a technique will

yield a more accurate sight than if we had taken only one measurement.

However, we can’t make a very good statistical statement about such

an average, since the standard deviation we get is exceedingly large

(21’) because Ho is increasing while we measure it. We should subtract

out the effect of the known increase of altitude. The Sun is rising at a

nearly constant rate over this short time; so what we actually need to

determine is the amount by which each of our sights differs from those

that lie on a straight line. The line to choose is usually taken to be the

line that minimizes the sum of the squares of the deviations of the

observations from the line. (See Figure 1-1.)

Mathematical Background

The job of determining the slope m and y-intercept b of a line from a

set of points is called linear regression. Given a set ofn points {xi ¥9)s

i=1,2,... ,n}, the constantsm and b ofthe liney = mx + b thatfits
the points best (in a least-squares sense) are given by

2x:yi — 2H2

m=————————
Sx? - (Sx)

n

and

b=y— mx

Now with a scientific calculator having two-variable statistics, these
two equations are easily evaluated; but, even so, you must consult your
owner’s manual to determine how to read values such as the sum of the
products of x; and y; Sx.y;).
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-25°10"

- 25°

-—24°50" —e—e-True values

® True values + random noise
up to 120” (RMS error = 61.3")

A Fast best fit (RMS error=27.7")

61.3
——— = 2.21 improvement factor
27.7

- 24°40"
Note: 5’ = 2.24 is predicted

improvement factor

e

|—24°30" l I I
10:00 10:01 10:02 10:03

Figure 1-1. Plot of five Sun sights showing how an averaging technique can
reduce error

Fast “Best Fit’ Method

A look at yet anotherstatistical parameter will resolve ourdifficulty.

Having calculated the m and b that describe the best-fitting line to a set

of points, many people like to compute a ‘‘goodness-of-fit’” parameter,

r? (r? is chosen becauseit is never negative as r might be). The value of

r? is close to 1 if the line fits the points well.
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This parameter is given by

2
XY; — 1 2X; Sy]

r= n ]

[zee — 4 or | [29 - £ con
which, although messy-looking, contains many pieces we have already

encountered. In fact, except for a factor or two of n/(n — 1), which

recede more and more as n increases, we can write

 

m?s22 —rc =
5,2

where m is the slope of the best-fitting line, s,. is the best estimate of the

standard deviation of the x values, and s, is the best estimate of the

standard deviation of the y values.
This equation can be rearranged to give

eo PSE
SZ

which would be a very simple expression for m if only we had a value

for r, or maybe an estimate, say, r = 1.
Since most of our celestial sights will be reasonably well aligned, the

assumption r = 1 is not a bad one, and now the scientific calculator

having one-variable or two-variable statistics can really come in handy.

The only things necessary to compute a nearly-least-squaresfit for a

set of points are the means and standard deviations of the two variables

x and y (or t and Ho in the example above). We merely follow the

protocol required by the calculator we are using to get those four val-

ues, and then we calculate m and b by

Im] = 32
Sr

b=y— mx

assigning the correct sign to m, depending upon the usually readily

observed slope of the line.

Using an RPN calculator having two-variable statistics, the FBF*

(fast best fit) requires very few keystrokes:

* TheFBF method was first brought to our attention by Frederick P. Blau of General
Atomic Co., San Diego. He invented and used the FBF technique on his HP-45 while
associated with the School of Engineering ofthe University of California at Los Angeles.
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1(a). Input a y-value; press ENTER?

 
 

(b). Input an x-value; press =+
  

2. Repeat step (1) until all points have been input.
 

Then press STD DEV (or ¢ or whatever it is called),        

    
and + [to get the slope m (| CHS may be necessary).
  
  

4. Next press MEAN (or X |)
     
 

LAST X
  

 

X
 
 

— |to get the y-intercept b.   
To put the entire FBF into a neat shorthand notation:

’ yl 1 |x| 2+ oll +|(| CHS |) > m

Using the FBF method to fit a line to the Sun altitude data presented

earlier, we get

  

         

         

Ho = 12.6089 ¢ — 101.5271°

or

Ho = 12.61 degrees , — 101°31'38"
our

A full-blown least-squaresfit gives

Ho = 12.5850 ¢t — 101.2879°

or

Ho = 12.60¢t — 101°17'16"

with a *‘goodness-of-fit’’ of

rz = 0.9962

See Figure 1-1. oo

Now that we have an equation for the line, what can we do with it?

We can evaluate a probable value for an observed altitude at any time
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b

Figure 1-2.

during our period of observation instead of only at the average time.

The FBF technique for line-fitting and error reduction will be very

useful when we need improved accuracy as, for example, when trying

to determine Greenwich Mean Time and longitude by the lunar distance

method.

Plane Trigonometry

Trigonometry is the mathematics of angles. Certain properties of
angles have been discovered to be very useful in all sorts of measure-

ment situations. The basic figure used in trigonometry is the triangle—a

plane figure having three sides and three angles. Nearly all measure-

ment problems facing the navigator can be reduced, if necessary, to

problems involving the plane right triangle, which contains a 90° angle.

The sum ofthe three angles of any triangle is 180°; so the remaining two

angles of a right triangle must add up to 90°. An especially interesting

characteristic of right triangles is the relationship between the lengths

ofthe sides and the length of the hypotenuse (the side opposite the right

angle): a? + b% = c? where a and b are sides and c is the hypotenuse

(Figure 1-2). The common drafting triangles are the 30°-60°-90° triangle

and the 45° triangle. The hypotenuse of the 30°-60°-90° triangle is al-

ways twice the length of the side opposite the 30° angle (Figure 1-3).

The two sides ofthe 45° triangle are equal. No matter how large or how

small these triangles are drawn, these relationships between their sides

remain the same.

 

B B

5 60° 507
GC xa2 oY az2

30°A | A .
b 3.4641 Cc b2

Figure 1-3.
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Names have been given to the various possible ratios of pairs of

sides of triangles. These are the trigonometric functions: sine, cosine,

tangent, secant, cosecant, and cotangent. Each trigonometric function

has a three-letter abbreviation to simplify its writing in mathematical

expressions. The function definitions and their abbreviations follow.

Plane and Spherical Trigonometric Formulae

Functions of Right Plane Triangles (see Figure 1-2)

 

 

_ Side opposite _ a _ 1
Sine (sin)A = Hypotenuse c CscA

_ Side adjacent _ b _ 1
Cosine (cos)A Hypotenuse sec A

Tangent (tan)A = Side adjacent “b cota

b

 

Cotangent (cot)A =Se===

_ Hypotenuse _ ¢ _Secant (sec)A = Side adjacent b cosA
 

Cosecant (csc)A = Side opposite “a sind

Solutions of Right Triangles

csinA =btanAa

b=ccosA=acotA

_ b

sin A COS A
  c=acscA=bsecA =

Inverse Trigonometric Functions

sin'Z =A

cos2=a
c

tan™= A

cot!2 A
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Quadrant IV
sin 6 <0 x>0
cos 6>0 y<0

tan 6 <0
360°

Quadrant |
x>0 sin a >0

0° y>0 cos a>0
tan a >0

 

 
 

-Y _gpe 90° —

Ww 270° -270°

GED GE; GER GER GER Gan an ofPR

—180° 180°

_xY
S

Quadrant Ili Quadrant ||
sin vy <0 x<0 x<0 sin 8 >0

cos y<0 y<0 y>0 cos <0
tan y>0 tan 8 <0

Figure 1-4. Trigonometric functions in all four quadrants
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c
sec’l—=A4

b

c
cscl=—=A4

a

Before the use ofcalculators, people who wished to use trigonomet-

ric functions were obliged to seek the values from a table (orslide rule)

and assign them the appropriate algebraic sign. Few navigators did this

assignment, however, for most navigational formulae were written so

that if all trigonometric functions were given positive values, the cor-

rect result could be obtained by applying one or more rules. With a

scientific calculator in hand, there is no need to be burdened by a set of

rules for various situations. Simply evaluate the expressions using the

algebraic sign as given by the calculator, and no problems will arise.

There can be some problems with inverse trigonometric functions,

however. Notice in Figure 1-4 that the sines of the angles a and 8 have

a positive algebraic sign. If we were to take the inverse sine of that

value, we would always get an angle in the first quadrant. Similarly, the

inverse sine of a negative number will always be in the fourth quadrant,

even though third-quadrant angles have negative sines, too. This effect

is the result of the calculator’s returning the ‘principal value’’ of an

inverse trigonometric function. Since the calculator can’t tell in which

quadrant the original angle lay, it does the best it can by returning

values between —90° and 90° for sin! and tan™! and between 0° and

180° for cos™!. In these cases, the calculator user must add 180° to the

answer if he feels the answeris in the wrong quadrant.

Solutions of Oblique Plane Triangles (see Figure 1-5)

A=180°-@B +O)

 

 

L £ si a _ b _ cc
aw of sines sin A sin B sin C

Law of cosines a2 =b%® +c? —- 2bccosA

A = b2 + ¢% — a?
and cos be

B

c a

c
A b

Figure 1-5.
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1. Given two sides, b and c¢, and the included angle A,

b2 +c — 2c cos A

and sinB = 2 sin A

Note: Since B and 180° — B have the same sine, the formula immedi-

ately above gives two possible solutions for the angle B, B, and B;

(Figure 1-6). If the correct value ofB is in doubt, it may be found by the

law of cosines

a +c -b
cos B= 2ac

2. Given three sides, a, b, and c,

_bP+c-at
COs A= The

and sinC = = sin A

Proceed as outlined in the note above.

3. Given two angles, A and B, and the side b,

C=180°- (A+B

— bsin A

sin B

 

 

.
b, 

Figure 1-6.
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and = bsinCsin c
sin B

4. Given two sides, a and b, and an adjacent angle, A, it is assumed
that A is less than 90°. If¢ sin A is less thang, and a is less than c, two
solutions are possible:

sin C; = CsinA
a

B,=180°- (A + C)

a sin B
b, = —l1

sin A

and

C, = 180° — C,

B, =180°—- (A + Cy)

_asinB,
b, = sin A

See Figure 1-6.

Some of the formulae for solving oblique plane triangles are given in

Table 1-1. By reassigning letters to sides and angles, they can be used to

solve for the unknown parts of such triangles.

Functions of Multiple Angles

sin (A = B) = sinA cos B = cos A sinB

cos (A = B) = cos A cosB F sinA sinB

sin2A = 2 sin A cos A

cos 2A = cos? A — sin’ A

=1-2sin?A

=2cos2A—-1

Area of Triangles

The area of a triangle equals one-halfits base multiplied by its per-

pendicular height.

Right Spherical Triangles (see Figure 1-7)

According to ‘‘Napier’s Rules,’ the sine of the middle part equals

the product of the tangents of the adjacent parts, or the cosines of the
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Table 1-1

Known To find Formula Comments

2 2 _ 2

a,b,c A COSA = c+b-a Cosine law
2bc

a,b,A B sinB = bsinA Sine law. Two solutions

a ith >a
C C =180°- (A+ B) A+ B+ C= 180

a sinC }
c c= —]——— Sine law

sin A

a sinC
a,b,C A tan A = bh — acosC

B B=180°-(A +O) A+B+ C= 180

a sinC .
c c= —— Sine law

sin A

0,A,B b b= 2B Sine law
sin A

C C =180°- (A + B) A+B+ C= 180®

asinC ]
c c = — Sine law

sin A

 

U. S. Naval Oceanographic Office, H.O. Pub. No. 9 (Bowditch).

Figure 1-7.
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opposite parts. Thus,

sina = tan b cot B = sinc sin A

sin b = tana cot A = sin c¢ sin B

cosc=cotAcotB=cosacosbh

cos A = tan b cot ¢ cos a sin B

cos B = tan a cot ¢ = cos b sin A

In the above equations, the following rules apply:

1. An oblique angle and the side opposite are in the same quadrant.

2. The hypotenuse, c, is less than 90° when a and b are in the same

quadrant, and greater than 90° when a and b are in different quad-

rants.

Oblique Spherical Triangles

An oblique spherical triangle can be solved by dropping a perpen-

dicular from an apex to the opposite side, extending the latter, if neces-

sary, to form two right spherical triangles. By reassigning letters as

necessary, it can also be solved by the formulae given in Table 1-2.

The Navigational Triangle

The navigational triangle (Figure 1-8) is formed by arcs of great

circles. The arc PZ is the arc of a meridian, passing through the ele-

vated pole, P, and the observer's position at Z; its length equals the

observer's colatitude, or 90° minushis latitude. The arcPM is the arc of

 

Figure 1-8. Navigational triangle
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Table 1-2

Known To find Formula Comments

cosa — cosb cosc

a,b,c 4 cos A = sin b sinc
ABC cosa = cosA + cosBcosC

2 a a= sin B sin C

a,b,C c cosc = cosa cosb

+ sina sinb cos C

sinD tan C
tan A = —m48— tanD = tana cos C

A a sin(b — D)

B sin B = sin C sin b

sin ¢

¢,A,B C cos C = sin A sin B cos ¢

— cos A cosB

tanc sin E
tang = ——mm—— tan E = tan A cos c

a ana sin(B + E)

tanc sin F
tanh = ——mm8— tan F = tan B cos ¢

b sin(A + F)

] cosa sinG cotG = cos A tanb

a.bA ¢ sin(c + G) = cos b Two solutions

B sinB = sindsind Two solutions
sina

C sin(C + H) tan H = tan A cos b

= sin H tan b cota Two solutions

. cos A sink cot K = tan B cosa
,A,B C C -K)="——"-—+- .
aA sin ) cos B Two solutions

b sinb = sin Two solutions
sin A

c sin(c — M) tan M = cos B tan a

= cot A tanB sin M Two solutions
 

an hour circle, passing through the elevated pole and the geographic

position of the body at M; its length equals the codeclination of the
body. The arc MZ is the arc of a vertical circle, passing through the

celestial body;its length represents the coaltitude of the body.

The angle at P is the body’s local hour angle, figured from North
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toward the West from 0° to 360°; it may also be termed meridian angle,

in which case it is figured to the East or West to 180°. The angle at Z

represents the body’s azimuth. It is measured from the elevated pole,

East or West, to 180°; when measured from North clockwise to the

body, to 360°, it is termed true azimuth, Zn. The angle at the geographic

position of the body, M,is called the parallactic angle.

Any of the formulae given above for oblique sphericaltriangles may

be used to solve the navigational triangle; however, it must be borne in

mind that the three sides ofthis triangle represent the colatitude, the

codeclination, and the coaltitude, respectively. However, the formulae

used in the usual practice of celestial navigation and great-circle sailing

will be found in the main body of the text.

Symbols Used in Navigation

Delta; difference; unit of change

Lambda; longitude

Theta; latitude

Plus or minus according to appropriate rule

Absolute difference,i.e., subtract smaller from larger

Therefore
Because

Infinity

Degrees
Minutes of arc

Seconds of arc

Angle
Right angle

Greater than

Less than

Sun
Upper limb Sun

Lower limb Sun

Moon
Upper limb Moon

Lower limb Moon

Venus

Mars

Jupiter

Saturn

Aries

Star

l
>

B
*
¥
3
T
R
s
0
P
A
A
A
P
P
O
A
V
I
D
N

=
7
°
8
0
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Selected Abbreviations Used in Navigation

Note: In the following text, abbreviations are identified as they are

used. The following are listed because of the frequency of their use or

because of their confusing similarity.

a
C

Cn

D
d

DR

EP

GHA

GP

H

HA

ha

Hc

HE

Ho

ZD

Zn

Intercept
Centigrade, or Celsius, temperature; chronometer time;

compass; correction; course; course angle
Course, referred to true North

Distance
Declination

Dead reckoning; dead-reckoning position

Estimated position
Greenwich hour angle

Geographic position of celestial body

Altitude; horizon angle

Hour angle

Apparent altitude

Computed altitude

Height of eye

Fully corrected observed altitude

Sextant altitude

Tabulated altitude

Knots; nautical miles per hour

Local apparent noon

Local hour angle

The navigational triangle

Speed, usually expressed in knots

Meridian angle

Azimuth angle; zenith; time zone meridian

Zenith distance

Time zone description

True azimuth, reckoned clockwise from North to 360°

The Greek Alphabet

In navigationalliterature, Greek letters are often chosen to represent

angular or other quantities, English letters having been used up for

other values. Table 1-3 will help you to learn the Greek alphabet and its
uses.



Table 1-3
 

 

English

Letter Name equivalent Typical use

a alpha a Angle; designation of brightest

star in a constellation.

B beta b Angle; designation of second

brightest star in a constellation.

y gamma g Angle.

AS delta d A difference; A followed by a

variable denotes ‘‘change in.”’

d represents angle; declination;

small quantity.

€ epsilon é € represents a very small quantity.

[4 zeta z { represents zenith angle

(90° — H).

nm eta €

0 theta th Angle; formerly used for latitude.

L iota i

K kappa k

A lambda 1 Angle; longitude.

Hn mu m pu (as a prefix) represents

“micro” (1 x 107%).

v nu n (Q: ““What’s new?” A: ““The 13th

letter of the Greek alphabet.’’)

v is used for ‘‘true anomaly.”’

¢ xi X

0 omicron 0

II, = pi p wm = 3.14159 . . . ; longitude of

perihelion; IT denotes product.

p rho r Ratio.

3,0 sigma s > denotes ‘‘summation.’’

T tau t 7 represents an astronomical

epoch.

v upsilon u

¢ phi ph Angle.

X chi ch

P psi ps Angle.

Q,w omega 0 Q represents ‘‘ohms’’ (the unit of

electrical resistance). w repre-

sents angle; angular rate.
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Inshore Navigation

Speed, Time, and Distance

Among the problems most frequently encountered at sea are those

involving speed, time, and distance. After having traveled a certain

distance in a certain time, what was the speed? Given a certain speed,

how long will it take to travel a certain distance? After having spent a

certain amount of time traveling at a given speed, what distance was

covered? The answers to these questions can be supplied rapidly and

accurately by use of the scientific calculator.

In formulae (1), (2), and (3) below, it is assumed that the time in-

volved is short enough to be conveniently reckoned in minutes. When

such is not the case, the factor ‘60°’ is dropped, and the time is ob-

tained in hours and decimals of hours: to convert the decimals to min-
utes, multiply them by 60. When seconds are involved, they should be
converted to decimals of a minute; that is to say, they should be divided

by 60. In most instances, it is acceptable to work to the nearest tenth of

a minute. Thus, 47 seconds, which is 0.783 minute, would ordinarily be
written 0.8 minute.

Also, in formulae (1), (2), and (3), distance is stated in miles and

decimals of miles.

To determine speed, when distance and time are known, the formula

is:

_ distance X 60

Speed = time, in minutes MD

30
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To determine time, when distance and speed are known, the formulais:

distance X 60
Time, in minutes =

speed (2)

To determine distance, when speed and time are known, the formulais:

.
x : . .

Distance = speed hae In_minutes 3
 

From timeto time,it is necessary to determine speed over the mea-

sured mile. In this instance, the time is taken in seconds, and the
formula is:

3600
Speed = ———
P time, in seconds “4

The following examples illustrate the use of these formulae.

Example 1: We have covered 9.6 miles in 32 minutes and 24 seconds,

which equals 32.4 minutes, and want to determine our speed. Formula

(1) becomes:
_ 9.6 miles xX 60 _

Speed = 32.4 minutes 1/8

Our speed, therefore, is 17.78 knots.

Example 2: Our speed is 12.25 knots, and we want to know how many

minutes and seconds will be required to travel 11.4 miles. Formula (2)

becomes:

. _ 11.4 miles X 60 _
Time = “12.05knots 55.8367

The time required will, therefore, be 55.8367 minutes, or 55 minutes

and 50 seconds.

Example 3: We are steaming at 12 knots, and wish to know how far we

traveled in 43 minutes. Formula (3) becomes:
x )

Distance = 12 knots 5 minutes _ 3.6

We have, therefore, steamed 8.6 nautical miles in 43 minutes.

 

Example 4: We steamed the measured mile in 4 minutes and 5 seconds,

which equals 245 seconds, and wish to determine our speed in knots.

Formula (4) becomes:

3600

245 seconds = 14.7
Speed =

Our speed, therefore, is 14.7 knots.
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Example 5: The next leg of our voyage is 89.5 miles, we are steaming 

15.6 knots, and we wish to know how long it will take to traverse the 

next leg. Here we will use formula (2), omitting the factor 60, as the 

time obviously will run into hours: 

Time, in hours = 
89.5

15.6
  = 5.7372 

The time required, therefore, will be 5.7372 hours, which equals 5 

hours, 44 minutes, and 14 seconds.  Since time is ordinarily stated to 

the nearest minute, the answer would be written 5 hours and 44 minutes. 

Distance to the Horizon 

Because of the Earth’s curvature, the distance to the sea horizon 

increases as the height of the observer’s eye increases.  Also, for a given 

height of eye, the distance increases because of terrestrial refraction, or 

the bending of the light rays caused by the atmosphere. 

Knowing the distance to the horizon for your height of eye can be 

very helpful in estimating distances at sea.  For example, when you sight 

an approaching steamer hull down, that knowledge allows you to 

determine the range with fair accuracy when the bow wave appears. 

The formula for determining the distance to the horizon for a given 

height of eye include a correction for terrestrial refraction calculated for 

normal atmospheric conditions. 

For the distance in nautical miles, the formula is: 

D1 = 1.144 √HE 

and for statute miles it is 

D2 = 1.317 √HE 

where D is the distance and HE is the height, in feet, of the observer's 

eye above the surface. 

When the height of eye is stated in meters, the distance to the horizon 

in nautical miles may be found by the formula 

D3 = 2.072 √HE meters 

Example 1: Your height of eye is 17 feet.  What is the distance, in 

nautical miles, to the horizon? 

D1 = 1.144 √17, or 4.72 

The distance to the horizon is therefore 4.72 nautical miles. 

Example 2: The height of eye is 15.25 meters; we require the distance 

to the horizon in nautical miles.  Formula (3) becomes: 

D3 = 2.072 √15.25 meters, or 8.0914 
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We would, therefore, consider the distance to the horizon to be 8.1
nautical miles.

Distance by Sextant Angle

Distance by Horizon Angle

The distance to an object located between the horizon and the

viewer may be determined by use of the angle subtended between the

horizon and the object's waterline, as measured by sextant. To this

angle, corrected for sextant index error, is applied the correction for

the dip of the horizon for the observer’s height of eye with the sign

reversed; that is, the dip correction is added to the sextant angle. The

sextant angle, thus corrected, is termed the horizon angle, H.

The distance, D, may now be found by the formula

HE

tan H
(1)

where HE is the height of the observer’s eye above water. Both D and

HE are measured in feet.
If the distance is to be given in yards, the formula becomes

1 HE

3 tan H
 D, in yards = 2)

The greater the height of eye, the greater the accuracy obtained at

shorter ranges, and the greater the ranges that can be obtained.

Example I: The angle subtended between the horizon and the waterline

of a buoy is 1°05.2’, the sextant’s index error is —2.5’, and the ob-

server's height of eye is 20 feet. What is the distance, in feet, between

the buoy and the observer?
The first step is to determine the horizon angle, H, and the formula

for doing so is:

Sextant angle 1°05.2’

Index correction +2.5'

Dip for 20 feet, sign reversed, +4.3'

+6.8' + 6.8

H 1°12.0’

If a dip table is not available, the dip may be calculated by the formula

for finding the dip of the horizon, given on page 95.
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Formula (1) becomes:
20

tan 1°12.0'

954.79

The distance to the buoyis, therefore, 955 feet.

D =

Example 2: The height of eye is 95 feet, and the angle between the

waterline of a boat and the horizon behind it, as measured by sextant,

is 0°11.3'. The sextant is without index error. We need the range, in
yards, to the boat.
We first determine H, as follows:

Sextant angle 0°11.3’

Index correction 0’

Dip for 95 feet, sign reversed +9.5'

Net correction + 9.5

H 0°20.8'

Since the range is to be given in yards, we use formula (2), and it

becomes:
95

~ tan 20.8’

__9% 1
= 700605 3

The range to the boat, therefore, is 5,234 yards.

D X 1
3

= 5,234

Distance Short of Horizon

The sextant may be used as an accurate range finder when the height

of an object is known, and when its base at the water, or waterline,

does not lie beyond the observer's horizon. When the angle between

top and base, measured by sextant, is less than about 10°, as it is in the

majority of cases, we may assume for practical purposes that the dis-

tance to the top of the object and thatto its waterline are the same. The

index correction must, of course, always be applied to the sextant
angle.

When the height of an object, such as the top of a lighthouse above

the waterline, or the truck of a mast above the boot top or waterline, is

known in feet, the distance, D, in feet, may be found by the formula

. A
D, in feet = SoH (1)

where A is the height of the object in feet, and H is the corrected

sextant angle. In this formula, if the height of the object, A,is stated in
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meters, the distance, D, will be found in meters. If the distance is
desired in yards,it is necessary only to divide the answer by three.

Example I: The top of the light on a lighthouse is 224 feet above the

water. The corrected angle between the water and the top ofthe light is

found by sextant to be 29.5’. We require the distance, in yards, to the
light.

Formula (1) becomes:

_ 224 feet _ 224 _
D=Gn25 x3~ oss x3 ~ 8701

The distance, therefore, is 8,701 yards.

The factor for converting feet to nautical miles is 0.0001646. There-

fore, if the distance is to be determined in nautical miles, the formula

becomes:

 

A, in feet X 0.0001646 @)

sin H

Should the distance be required in statute miles, the factor would be

0.0001892.

Example 2: An object is known to be 183 feet above the water. The

corrected sextant angle between its top and the waterline is 1°13.5’.

Whatis the distance in nautical miles?

Formula (2) becomes:

 D, in nautical miles =

183 feet xX 0.0001646
sin 1°13.5’

The distance, therefore, is 1.41 nautical miles.

Example 3: An object is known to be 247 feet high. The height, as

measured by sextant, is 1°50.8’. What is the distance in statute miles?

Formula (2) becomes:

D, nautical miles = = 1.41

D, in statute miles = 0.0001892 _ ,
sin 1°50.8

The distance, therefore, is 1.45 statute miles.

Distance in nautical miles may also be determined by sextant angle if

the height of eye, in feet, of the observed object is divided by the

sextant altitude, in minutes, and the result is multiplied by 0.566.

The formula, therefore, is:

height of object, in feet X 0.566

sextant angle, in minutes
3D, in nautical miles =

Example 4: Using the same data as in Example 2, a height of 183 feet,
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and a corrected sextant angle of 1°13.5’, formula (3) becomes:

D, in nautical miles = 1321S 449

The distance, therefore, is 1.41 nautical miles.

Some years ago, a defender in the America’s Cup races used this

method to keep a regular check on the range between himself and his

challenger, whose mast height he knew. He had, of course, to allow for

the challenger’s angle of heel, so that the actual height of the mast

above the water could be used. Since his boat and the challenger were

about equally stiff, he assumed that the challenger’s angle of heel was

the same as his own.
He then determined the current height of his challenger’s mast truck

above the water by multiplying vertical mast height by the cosine of the

angle of the heel, and used this height, in conjunction with formula (1),

above, to determine the range.

Distance Beyond the Horizon

In clear weather, a mountain top can often be seen when it is well

beyond the horizon. If the mountain’s altitude is known, its approxi-

mate distance can be determined by sextant angle. However, it must be

borne in mind that a distance thus found is only an approximation, as it

can be considerably affected by the vagaries of terrestrial refraction.

The formula for finding the distance is:

D = V(gnkatan hagonna) + Alt — HE _ tan ha 1

0.000246 0.74736 0.000246 (1)
where D is the distance to the object in nautical miles, Alt is the height

of the distant object in feet, HE is the observer's height of eye in feet,

and ha is the sextant altitude, corrected for instrumental error, index
error, and dip.

 

Example: The sextant altitude of the highest point of a mountainous

island, situated beyond the horizon, is 1°25.5’. The sextant is free of

instrumental and index error; the height of eye is 45 feet. From the

chart, we note that the mountain top has an altitude of 7,000 feet and

that it is situated 22.7 miles inland from the seaward edge of a large
offlying shoal. We require our approximate distance from the shoal.

We first correct the altitude, as read from the sextant:

hs 1°25.5'
IE 0
IC 0
Dip —6.5

ha 1°19.0
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We can now write formula (1):

Db NE [1.0): , 7000 — 45 _ tan 1°19.0/
0.000246 0.74736 0.000246

_ J 0.0230 )’ 6955 0.0230
0.000246) ©0.74736 ~0.000246

VB8729.5 + 9306.1 — 93.4
134.3 — 93.4 = 40.9

Ourdistance off the mountain peak is therefore about 40.9 miles, and as

the reef lies 22.7 miles to seaward of the peak, our approximate dis-
tance from the reef is 18.2 miles.

 

 

 

 

Distance of Visibility of Objects

When the height of an object is known, it is simple to determine the

distance at which, under normal atmospheric conditions, it should be-

come visible for a given height of eye. All that is required is to solve the

distance to the horizon for the observer's height of eye, and the dis-

tance to the horizon for the height of the object, and add the results.

The formulae used are those given for calculating distance to the

horizon, where D represents distance and HE represents height of eye,

in feet:
D,, in nautical miles = 1.144 VHE (1

D,, in statute miles = 1.317 VHE (2)

Example 1: Your height of eye is 63 feet, and the height of a brilliant

light is 178 feet. At what distance, in nautical miles, should the light

become visible?

Formula (1) becomes:

D,=1.144V63 = 9.08
+

D, = 1.144 VI78 = 15.26
24.34

Under normal atmospheric conditions, therefore, you would expect

to pick up the light at a distance of 24.3 nautical miles.

Example 2: Your height of eye is 6 feet, and the height of the brilliant

light is 97 feet. At what distance, in statute miles, should the light

become visible?

Formula (2) becomes:

D, = 1317V6 = 3.23
+

D, = 1317 V97 = _12.97

16.20
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Under normal atmospheric conditions, therefore, you would expect to

see the light at a distance of 16.2 statute miles.

When the height of eye is stated in meters, the distance to the hori-

zon, in nautical miles, may be found by the formula

D, = 2.072 VV HE, meters (3)

With the height of eye stated in meters and the distance to the

horizon desired in kilometers, the formula is:

D; = 3.8373 VV HE, meters 4

Distance by Bearings

Distance Off Abeam by One Bearing and Run to Beam

The distance off when abeam of a fixed object can be determined by

taking a bearing on the bow, and noting the distance run from the time

of that bearing to the time the object is abeam. Solution is by the law of

sines:

_ R X sin A

Db COS A

where D is the distance off when abeam, R is the run, andA is the angle

on the bow.

Example: We pick up a light bearing 319° relative, and after we have run

6.0 miles, it is abeam. We wish to know the distance off when the light

was abeam.

Since 319° relative is 41° on the bow, the formula becomes:

_ 6.0 xX sin 41° _
b cos 41° 5.22

We were, therefore, 5.2 miles off the light when it was abeam.

Distance Off at Second Bearing by Two Bearings on Bow and Run
Between

The distance from a fixed object can readily be determined by two

bearings on the bow, if the ship’s run between the bearings is known.
Best results are obtained when the change in bearing is considerable.

Solution is by the law of sines:

_ R x sinA
D=gna~n

where D is the distance off at the time of the second bearing, A is the
first bearing on the bow, B is the second bearing on the bow, and R is
the run between bearings.
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Example 1: A landmark bears 20° on the bow. After we steam 5.0 miles,
the mark bears 70° on the bow. We require the distance off at the time
of the second bearing.

The formula becomes:

5.0 X sin 20° _ 5.0 X sin 20°
sin (20° ~ 70°) © sin 50°

At the time of the second bearing, therefore, our distance from the
mark was 2.23 miles.

D = = 2.23

Example 2: We are on course 323° True, and obtain a bearing of 347°

True on a light. After we steam 8.0 miles, the light bears 016° True. We

require the distance off the light at the time of the second bearing.

The first bearing is 24° (347° — 323°) on the bow, and the second is

53° (376° — 323°). The formula becomes:

_ 8.0 X sin 24° _

- sin 29° = 6.7

The light was, therefore, 6.7 miles distant at the time of the second

bearing.

Distance Off When Abeam by Two Bearings on the Bow and Run

Between

The distance off a fixed object when abeam can be determined from

two bearings on the bow, and the run between them. Here, again,

solution is by the law of sines.
In this case, the first step is to determine the distance between the

ship and the object, at the time of the first bearing. This can be done

when the second bearing is obtained by determining the angle at the

object formed by the two bearing lines, and considering this angle to be

the apex of a triangle. For example, if the first bearing were 30° on the

bow, and the second were 50°, the angle at the object would be 20°

[180° — (130° + 30°)]. This distance off the object at the time of the

first bearing is then found by the formula

_ R xX sinB,
sin CD, (1)

where D, is the distance off at the first bearing, R is the run between

the first and second bearing, B, is the second bearing on the bow, and

C is the angle between the two bearing lines at the object.

Having solved that equation, we find the distance off the object

when it is abeam by the formula

D, X sinA
= —H—_— 2

D, sin 90° 2
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or

D, = D, x sin A, sin 90° being equal to 1

whereA is the first angle on the bow, D,is the distance off the object at

the time ofthe first bearing, and D,is the distance off when the object is

abeam.

Example: We sight a light bearing 28° on the bow. After we steam 6.5

miles,it bears 52° on the bow. We wish to know the distance off the

light when it is abeam.
First, we determine the angle at the light, C in formula (1) above, and

to do so, we subtract the first bearing, 28°, from the second, 52°; and we

get 24°, Formula (1) becomes:

6.5 X sin 52° _

D,= =n  — 126

Formula (2) then becomes:

D, = 12.6 X sin 28° = 5.92

The light will, therefore, be distant 5.9 miles when it is abeam.

Run to a Given Bearing and Distance Off When on That Bearing

It is at times necessary to determine the distance to steam to bring a

fixed object to a given bearing, and the distance off the object whenit is

on that bearing. The problem is illustrated in Figure 2-1.

Two bearings on the bow are obtained, and the run between them is

noted. The distance off at the time the first bearing was obtained can

then be determined by the formula

_ R, XsinB
~  sinC 0)

D, being the distance off at the first bearing, R, the run between the first

and second bearing, B the second bearing on the bow, and C the angle
between the two bearing lines at the object.

After we have found the distance off the object at the time ofthe first

bearing, the distance to steam to bring the object to the given or second

bearing is calculated by the formula

_ D, XsinE

~  sinF @

R, being the run from the first bearing to the given bearing, D, the
distance off the object at the first bearing, E the angle at the object
formed by the first bearing line and the bearing of the object when on

D,

R,
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Fixed Mark

 

 

 

 
Figure 2-1.

the given bearing, and F the bearing on the bow of the object when on
the given bearing.

The distance off the object at the time of the given bearing, D,, is
found by the formula

_ D, X sinA

D, sin F (3)

A being the first bearing on the bow.

Example: We are steaming on course 273°, speed 12.0 knots, when a

navigational light on shore comes into sight. Courseis to be altered to

305° when the light bears 333° per gyro compass. At 2207 the light bears

293° per gyro; at 2257 it bears 308°. At what time will the course be

changed, and how far will we be off the light at that time?

As we are on course 273°, the first bearing is 20° on the bow, and the

second is 35°; at 12.0 knots we have steamed exactly 10 miles in 50

minutes. The angle at the light formed by our two bearing lines is 15°.

Formula (1) becomes:

10.0 X sin 35°

sin 15°

At the time of the first bearing, 2207, we were, therefore, 22.16 miles

from the light.
The course change is to take effect when the light bears 333° per

gyro. The bearing on the bow will then be 60°; the angle at the light

between this bearing line and the first bearing line is therefore 40°

(60° — 20°). Formula (2) becomes:

R. = 22.16 X sin 40°
2 sin 60°

D, = = 22.16

= 16.448
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So the run from the first bearing to the turning bearing is 16.4 miles.

The time of the first bearing was 2207; at 12.0 knots it will take us 82

minutes to steam 16.4 miles. We can, therefore, expect to change

course at 2329. Formula (3) becomes:

p= 22:16 x sin 20°
La sin 60°

We will, therefore, be 8.7 miles off the light when course is changed.

= 8.75

Distance Off Two Landmarks or Seamarks

When the distance between two fixed marks and the bearing of one

from the other are known, a vessel's distance from each mark can be

determined, without plotting, by true bearings taken on each mark. The

problem is illustrated in Figure 2-2.

Solution is by the law of sines:

s ._ a ._b
sin 2S sin ZA ° sin ZB

In this ratio, ZA represents the angular difference between the true

bearing ofA from the ship and the bearing ofB from A; 2B represents

the angular difference between its bearing from A and its true bearing

from the ship. The ship is located at S. 2S represents the angular

difference between the true bearings ofA and B. The known distance

from A to B is represented by s. The distance of the ship from A is

represented by b, while the distance of the ship from B is represented

by a.

 

Example: Cuttyhunk Light bears 074° True from Buzzards Light, and is

distant 3.96 miles. We obtain a bearing of 015° True on Buzzards, which

we will call A, and of 050° on Cuttyhunk, which we will call B. We wish

to determine our distance from both lights.

In this case, the angle S is 35° (050° — 015°), while the side s is 3.96

miles. For the angle A, we will use 59° (074° — 015°), and for the angleB

24° (074° — 050°). Our distance off Buzzards Light is represented by b,

and our distance off Cuttyhunk Light by a. The ratio becomes:

396 _ _a _ _b
sin 35° sin 59° sin 24°
 

or

3.96 5.92 2.81
sin 35° ~ sin 59° ~ sin 24°

The distance off Buzzards Light, therefore, is 2.81 miles, and off

Cuttyhunk Light it is 5.92 miles.
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N

Bearing of Bto A

 
Figure 2-2.

Heading to Bring a Light to a Specified Bearing and Distance, and

the Run Thereto

At night, under conditions of good visibility and normal refraction,it

is possible to approximate quite closely the course correction required

to bring a light to a specified bearing and distance, and to estimate the

time at which the ship will arrive at that point. Alternatively, a similar

situation may arise when radar is used to obtain range and bearing.

Once the lightis sighted, the first step is to determine any correction

to the ship’s present heading that may be required to bring her to the

specified distance off the light when on the specified bearing. This

correction may be found by the formula

a X sinC a)

tan 4 ~b— (a X cos C)

where A is the bearing on the bow relative to the present heading to
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which the light must be brought so thatit will be at the specified dis-

tance, a is the specified distance, b is the range of visibility of the light

for the observer's height of eye, and C is the angle at the light formed

by the difference between the initial true bearing and the bearing when

the ship has reached the specified point.

The correction to the present heading is then made by bringing the

light to the bearing found by means of formula (1).

The run to the point where the light is on the required bearing and at

the specified distance is computed by the formula

_axsinC
sin A

(2)

where D is the run, A is the angle found by formula (1), a is the

specified distance off the light, and C is the angle at the light formed by

the initial bearing and the bearing when the ship has reached the

specified point.
To determine the time of arrival at the specified point, the distance,

D, is divided by the ship’s speed to give the time in hours and decimals

required to reach the turning point.

Example: We are on course 140°, speed 13.0 knots. Our course is to be

changed when LightX bears 205° True, distant 9.0 miles. For our height

of eye, Light X will become visible at a range of 18.6 miles. At 2217
Light X is sighted bearing 160° T, or 20° on the bow.

We wish to determine any change that must be made to our present

heading to bring us to the required distance off the light when it bears

205° and to find the time at which we shall arrive at that point.

Ourfirst step is to find what the relative bearing of the light should be

when the ship is headed for the specified point; this we determine by

formula (1), in which the angle C is 45° (160° ~ 205°).

9 X sin 45° _ 6.3640
18.6 — (9 Xx cos 45°) 12.2360

A = 27.48%

tan A = = 0.5201

The relative bearing of the light should therefore be 027.5°; we ac-
cordingly come left 7.5°to a heading of 132.5°.
We can now find the distance of the run to the turning point, using

formula (2) which becomes:

_ 9 X sin 45°

sin 27.50 13.7823

The distance from where the light first came into view to the point
where the course is to be changed is therefore 13.8 miles. At 13.0 knots
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it will take us 63.6 minutesto get there, so we can expect to come to the
new course at 2321.

An alternate solution to this type of problem is available for use
with calculators having the polar to rectangular conversion feature.

The keying procedures for both the algebraic and RPN-type calcu-

lators are given below. The symbols shown are typical of those used

on most calculators:

rectangular coordinates,”
 

 

 

   

 

  
1 means ‘‘enter,”’ =R means ‘‘convert to

 
 

 
—P means ‘‘convert to polar coordi-

  
 

 
nates,”’ Rt means ‘‘roll up,” and R| means ‘roll down.”
    

To solve the example given above by this method, the keystrokes
for a RPN calculator

  

160°( 1 118.6 —»R
 

are:

  
First vector.

 
 

   205°| + 9 CHS
  
—R

Second vector. Sign

must be changed, as 
 
 

vector must be sub-

tracted.
 

xy Rl +     
R]

  

Read 13.79, the dis-

tance.     
 

 

  X=y 
Read 132.52°, the

bearing.

For calculators using the algebraic notation, the keystrokes, typi-

cally, would be:
 

  
18.6 STO 00 160°
 

 

 
2nd P/R

      

   
STO |02 |RCL [00

  
STO 01

     
9(+/-1|| STO

      
00 205°
 

 
SUM [02] RCL |00
 

 

  
2nd P/R

   
 

SUM |01
   

 

  RCL |01| STO 00
  

RCL 02
  
 

2nd INV
    
P/R

 
 

  RCL 00
  

Read 132.53°.

Read 13.79 miles.

The problem in this exampleis represented graphically in Figure 2-3.

AB represents the course to which the ship must come to reach point B,
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Figure 2-3.

A is the ship’s position when LightX is sighted, AX is the initial bearing

and range of LightX, B is the specified turning point, andAC represents

ship’s heading when the light is sighted. Angle A is the angle on the

bow, relative to the original heading, to which the light must be

brought, and angle C is the angle at the light between the original true

bearing and the bearing of point B from the light. D represents the

distance to steam from the point where the light was sighted to pointB.

Tides

The Moon’s gravitational pull is the primary cause of tides; while the

Sun also affects the tides, its gravitational pull is materially less than

that of the Moon, owing to the much greater distance separating the

Sun from the Earth.

These gravitational attractions set up oscillations in the oceans, the
periods ofthese oscillations depending upon the dimensions of the body
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ofwater. No ocean appearsto be a single oscillating body; rather, each
one is made up of a number of oscillating basins. As such basins are
acted upon by the tide-producing forces, some respond more readily to
diurnal or daily forces, others to semi-diurnal forces, and still others
respond about equally to both. Hence, tides at a given place are
classified as diurnal, semi-dirunal, or mixed, according to the charac-
teristics of the tidal pattern occurring at that place.

With diurnal tides, only a single high and a single low water occur

each tidal day; such tides are encountered along the northern shores of
the Gulf of Mexico.

Semi-diurnal tides produce two high and two low waters during each

tidal day, with relatively small inequality in the high and low water
heights. Tides along the Atlantic coast of the United States are rep-
resentative of the semi-diurnal type.

In mixed tides, both the diurnal and semi-diurnal oscillations are
important factors, and the tide is characterized by a large inequality in

the high water heights, the low water heights, or both. Usually there
are two high and two low waters each tidal day, but occasionally the

tide may become diurnal. Such tides are found along the Pacific coast

of the United States.
In some localities the normal height of the tide can be greatly af-

fected by strong winds blowing for a considerable period of time.
Barometric pressure also affects the height of tide; a difference of one

inch of barometric pressure causes a difference of about one foot in the

water level.
A cautionary note should be introduced at this point—the expression

‘“‘height of tide’> must not be confused with ‘‘depth of water.”” The

former refers to the vertical distance from the water surface to an

arbitrarily chosen ‘‘reference plane’’ or ‘‘datum plane,”’ such planes
being based on a selected low water average, whereas the latter refers

to a vertical distance from the surface of the water to the bottom.

‘“‘Charted depth” is the vertical distance from the reference plane to the

ocean bottom.

Early Tidal Predictions

The tides and currents about Britain and the western coast of Europe

have presented a serious problem to mariners since time immemorial.

Many ports dry out completely at low water, and the currents run

strong in the English Channel.

Apparently, the relationship between the Moon and the tides was

realized by the ancients. Voyaging in the first part of this millenium was

generally quite restricted; the wine carrier usually sailed from his home
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port in Britain to either one or two ports in France. He therefore did not

require tidal information of a general nature.

As commerce increased, so did the requirement for more general

information. The methods used in the sixteenth and seventeenth cen-

turies to cope with this problem, outlined below, may be of interest

before we go on to discuss modern solutions for these problems.

The Tide Tables, as we know them, are a fairly modern invention.

Tidal predictions were originally based on the time of the full Moon,

called ‘‘Full,”’ or of the new Moon, usually called ‘‘Change.”’

The earliest known tidal predictions covering ports over a fairly

large area appeared on a chart prepared by Thomas Hood, an En-

glishman, in 1596, covering the southern portion of Ireland, southern

England, the English Channel, and the Bay of Biscay. Against the

various ports, a capital letter appeared.

The eastern half of a compass rose also appeared on the chart;

against every point—11.25°—on the rose appeared a capital letter, A

through R, J being omitted. A was located at North, representing mid-

night, and R at South, representing noon. Each letter therefore rep-

resented 45 minutes of time; thus, the letter E, appearing at NE, or at

45°, represented 3 A.M. and 3 p.M. This lettering system of giving tidal

information had originally been suggested by William Bourne, in his

Regiment of the Sea, published in 1574.

The letter E, appearing against the name of a port on the chart,

therefore indicates that on the days of Full or Change high water oc-

curred at that port at 3 A.M. and 3 p.M. To find the time of high water on

other days, the Moon’s age was taken into account, the time of high

water being moved back 45 minutes of time for each day. Thus, for a

port labeled E (3 hours) when the Moon is 4 days old, high water would

occur at noon and midnight (3 hours — 4 X 45 minutes).

This lettering system was subsequently replaced by roman numer-

als, to which quarter hours in arabic numerals were sometimes ap-

pended,to give greater precision. This system yielded acceptably accu-

rate results, and in many areas its use continued well into the present

century. The information thus presented was variously called ‘‘The

Vulgar (Common) Establishment,” ‘‘The Establishment of the Port,”

“High Water, Full and Change,” and ‘‘Mean Highwater Unitidal
Interval.”

This system of using roman numerals to indicate the time of high

water was subsequently expanded to give tidal current information in
the English Channel. About 1702 Edmond Halley, a noted English
scientist, and subsequently Astronomer Royal, completed a study of
tidal currents and magnetic variation in the channel; the results were
presented on a chart.
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Halley’s roman numerals, with arabic quarters appended where nec-
essary, appeared in many areas of the chart. They indicated the hours
of high water on the days of new and full Moon, these hourscoinciding
with the end of the easterly set. Arrows indicating the direction of the
easterly set were also shown. The flow of the current at intermediate
days and times could then be determined in a manner similar to that for
finding the time of high water.

Finding the Height of the Tide at a Specified Time

The Tide Tables tabulate the local standard times of high and low

water; the navigator must frequently calculate the height of water at a

specified time, or determine the time at which the water will be at a
desired height.

If the vessel's clocks are set to daylight saving time, allowance must

be made for the difference between ship’s time and standard time.

The formula for finding the height of tide, H, at a specified time is:

Hh + HI 1% (LL )]
——— — 5 x cosH= d 242 x 180

Th ~ Tl

in which Hh is the height of high water, HI is the height of low water,

R is the range of the tide (the difference in feet between high water and

low water), Td is the specified time, 71 is the time of low water, and Th

is the time of high water.

In regard to the range of the tide, if Hh is 7.0 feet, and Hl is —3.0

feet, R = 10 feet.

Example 1: On 3 June, at Humboldt Bay, California, low water comes

at 0713, PST, the height being —2.0 feet, and high water is at 1353,

height 5.4 feet. Our clocks are set to Pacific daylight saving time; we

require the height of tide at 1200 ship’s time.

1200 PDT equals 1100 PST, for which time we will find the height of

tide, using formula (1), which we write:

_5.4+(=2.00 [74 (0713 A]
H=———- > x cos 353 < 73 © 180

_ 34 3.7833 ’)]
== - [37 X COS (323 x 180

1.7 — [3.7 X cos 102.15°]
1.7 — [-0.7787] = 2.4787 feet

We would, therefore, expect the height ofthe tide to be about 2.5 feet

at 1200 ship’s time.

Example 2: We require the height of the tide in meters at Port Orford,

Oregon, at 2200 PST on 17 June. We find that Port Orford’s tides are

(1)
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based on those of Humboldt Bay, California, and that high water

comes 24 minutes earlier and low water 21 minutes earlier than at

Humboldt Bay; high water is 0.9 foot higher at Port Orford, and low

water is 0.1 foot higher. We shall first find the height oftide in feet at

the required time and then convert it to meters, using the conversion

factor 0.30480.

 

 

Humboldt Bay, 17 June Low water 18:18 2.8 feet

Differences - 21 + 0.1 foot

Port Orford Low water 17:57 2.9 feet

Humboldt Bay, 17 June High water 23:59 6.3 feet

Differences —- 24 + 0.9 foot

Port Orford High water 23:35 7.2 feet

Formula (1) is now written:

_72+29 [43 4.0500 o
H =— > X COS [2 X 180 )]

= 5.050 — [2.150 X cos 129.4083°] = 5.050 — [—1.3649]

equals 6.4149, the height of tide in feet at 2200 PST; multiplying this

figure by 0.3048, we get 1.9553 meters. We would therefore expect the

height of tide to be 1.96 meters at 2200 PST.

It is, at times, necessary to determine the time at which the tide will

reach a certain height. This problem may be solved by means of the

following formula, in which T represents the desired time:

renee[22EE]180° 2

in which 71 is the time of low water, Th is the time of high water, Hd is

the desired height of tide, HI is the height of water at low tide, and Hh
is the height of high tide.

Example 3: On the morning of 16 June, we require the time when the

rising tide will reach a height of 3.5 feet at Humboldt Bay, California.
From the Tide Table for Humboldt Bay, we extract data as follows:

16 June At 0607 Height is —0.8 foot

At 1254 Height is 4.6 feet
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We can now write formula (2):

cos! [1 -2==I.

T = 6.1167 + (12.90 — 6.1167) 6 — (0.8)
180°

4.3-1 _ a.)cos [1 2 (53)}]

 

180°
cos{1 — L361|

180°
= 6.1167 + 6.7833 | Zar)

= 6.1167 + 6.7833[0.7019] = 10.8779 = 10h 52m 40s
We would, therefore, say the tide would reach a height of 3.5 feet at

1053.

Example 4: We are anchored in the harbor at Cape May, New Jersey,

on the evening of 11 July and intend to leave the following morning to

proceed North in Delaware Bay, departing via the Cape May Canal.

We note that a fixed highway bridge, with a clearance of 55 feet above
mean high water, crosses the canal. Our mast head stands 57.1 feet

above the waterline.

From the Tide Tables we note that low tide will occur at Cape May

Harbor on the morning of 12 July at 0320, the height being —1.0 foot;
high water will occur at 0937, with a height of 5.0 feet. We are in need of

a good night’s sleep, and therefore wish to determine the last possible

time on the following morning when we can pass under the highway

bridge.
Thefirst step is to determine the height of tide at which the clearance

under the bridge will be 57.1 feet. To find this tidal height, we use the

formula

= 6.1167 + 6.7833 |

= 6.1167 + 6.7833

Tidal height = MIL + “8 + C - H

where MTL is the mean tide level, MR is the mean range of tide, C is

the clearance above mean high water, and H is the height of the mast

head above the water.

Only when chart datum is mean low water may this formula be

abbreviated to

Tidal height = MR + C — H

From the Tide Tables we note that the mean tide level at Cape May

Harbor is 2.2 feet and that the mean range is 4.4 feet; we know the

bridge clearanceis 55 feet and that we require a minimum clearance of
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57.1 feet. To find the maximum tidal height on the morning of 12 July

that will give a clearance of 57+ feet, the full formula becomes:

Tidal height = 2.2 feet + $475 + 55feet— 57.1 feet
= 59.4 feet — 57.1 feet = 2.3 feet

To permit usto pass under the bridge,the tidal height therefore must

not exceed 2.3 feet.
The next step is to determine the time on the morning of 12 July

when the rising tide will reach a level of 2.3 feet:

cos{1-2 (3329)
Time = 0320 + (0937 — 0320) x 180° :

3 cos™! l -2 (32)}
= 3.3 + 6.2833 X :

180°
= 3.3 + 6.2833 x 0.5319 = 6.6754 = 06h 40m 31s

We, therefore, know that we will have to be at the bridge well before
0640 in order to pass underneath it safely.

Tidal Currents

Offshore, tidal currents are generally rotary in nature; during a com-

plete tidal cycle, the set moves through 360°, although not in equal

hourly increments. The drift, also, tends to vary considerably from

hour to hour.

In harbor entrances, straits, narrows, and so on, the drift can be

predicted for normal weather conditions with great accuracy; it can,

however, be considerably affected by strong winds, and to a lesser

degree by large changes in barometric pressure. However, the cal-

culator can be used to advantage in conjunction with the Current Tables

in determining (1) the drift under normal conditions at the majority of

locations for any date and time, and for finding (2) the time when the

drift will be of a specified strength. A third formula permits the calcula-

tion of the duration of the period of comparatively slack water.
These three formulae are for use with all reference and substations

tabulated in the U. S. Tidal Current Tables, with the exception of the
following:

Cape Cod Canal, Massachusetts

Hell Gate, New York

Chesapeake and Delaware Canal, Delaware and Maryland
Deception Pass, Washington
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Seymour Narrows, British Columbia

Sergius Narrows, Alaska

Isanotski Strait, Alaska

and all stations referred to them. Forthese stations, the actual drift may
exceed the drift as calculated by as much as 20%.

The same caveat applies to the formula for calculating the period of
comparatively slack water.

It must be borne in mind that all times given in both the Current
Tables and Tide Tables are standard times. If daylight time is in use on
board ship, allowance must be made for the difference.

Predicting Current Drift at a Specified Time

To find the drift at a given time, the formula is:

_ o (Td ~Ts o
D = Dm cos {90 el X or) }] (1)

where D is the drift at the specified time, Dm is the maximum tabulated

drift, 7d is the specified time, Ts is the time of slack water, and Tm is

the time of maximum drift. In using this and formula (2), minutes are

stated as decimals of an hour.

Example: Our ETA off Naruto, Japan, is 1440 local time on 16 May.

We wish to determine the set and drift for that time and date.

From the Current Tables for 16 May, we note:

Slack water time Maximum current time Velocity

1559 1258 5.2 K, Flood

Set northward

To determine the drift of the flood current at 1440, we write for-

mula (1):

) o 15.9833 — 14.6667 .
Drift = 5.2 [cos {90 - (Erp12.9667 Xx 90 )}]

o _ (1.3166 o
= 5.2 [cos {90 (12166 900) } |

= 5.2[cos{90° — 39.2806°}]
= 5.2[cos 50.7194°] = 3.2922

The current at 1440 will, therefore, be flooding at about 3.3 knots.

 

Predicting the Time When the Drift Will Be of a Specified Speed

The second formula is for use in determining the time at which the

drift will be at a specified velocity.
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_, Dd
90° — cos™! Dm

Time = Ts +

—

or X (Tm — Ts) (2)

in which Ts is the time of slack water, Dd is the velocity of the desired

drift, Dm is the velocity of the maximum drift, Tm is the time of maxi-

mum drift, and Ts is the time of slack water.

The sign following Ts is + when the required time will be after the

time of slack water, and — when it will occur before the time of slack

water.

Example 2: Having, in Example 1, established the set and drift of the

current for the time of our ETA, 1440 on 16 May, off Naruto, using for-

mula (1), we decide that the drift is too strong for safe maneuvering,

and decide to wait until the drift of the flood current is 2.0 knots. Using

the same current data as given in Example 1, at what time can we ex-

pect the drift to be 2.0 knots?

We write formula (2) as follows, using a — sign because, in this in-

stance, the required time will occur before the time of slack water.

90° — cos™ 22

Time = 15.9833 — op X (15.9833 — 12.9667)

= 15.9833 — [(0.2513) Xx (3.0166)]
= 15.9833 — 0.7582 = 15.2251 hours

We would, therefore, expect that the drift would be 2.0 knots at
about 1514.

Duration of Slack Water

The predicted time of slack water, tabulated in the Current Tables,is

only momentary. There is, however, a period on each side of the time
of slack water when the drift is weak.

The formula given below permits the calculation of the total period,

in minutes, during which weak currents, with a drift not exceeding 0.5

knot, may be expected. This formula applies to all stations listed in

the Current Tables, with the exception of those listed at the beginning of

the section on tidal currents. For these latter stations, the times calcu-

lated by the formula may be shorter by 25 to 45%.

11
T= od X 2 X Ds 1D

in which T is the total duration in minutes during which the drift should
not exceed the specified velocity, Dm is the maximum drift, and Ds is
the specified drift.
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Example: We wish to determine the total period during which the drift
will not exceed 0.25 knot, when the maximum drift is 5.5 knots.

Formula (1) becomes:

_ 1s _T= 55 X 2 x 0.25 = 10.45

We would assume, therefore, that there would be a period ofat least

10 minutes during which the set would not exceed 0.25 knot.

Wind Currents at Sea

Surface currents are generated at sea by wind. As a general rule,it is

held that a wind must blow for a minimum of 12 hours before generating

appreciable surface motion. Well offshore a steady wind will cause a
surface drift of up to 2% of the wind speed.

The set of a wind current will be deflected to the right in the North-

ern Hemisphere by the Coriolis force, and to the left in the Southern

Hemisphere; the Coriolis force increases with latitude. In general, the

difference between the wind direction and the wind-current direction
varies from about 15% in shallow coastal areas to a maximum of45% in

the deep oceans.

Prolonged strong winds can materially affect the surface set and drift

of the great ocean currents, such as the Gulf Stream. A prolonged

nor’east gale off the Florida coast will materially slow the Gulf Stream,

and cause extremely steep, breaking seas.

Current Sailing

Finding Correction Angle and Speed of Advance

When a current of known set and drift is flowing, the course a ship

must steer in order to offset it, as well as the speed of advance (i.e., the

speed made good over the bottom) may be readily calculated. Using

the law of sines, both the correction angle (i.e., the angle between the

desired track and the heading to be used to make good that track) and

the speed of advance may be readily determined.
Figure 2-4a represents a situation in which the currentis fair, while

Figure 2-4b represents a foul current situation. In both parts of the

figure, the direction of the vector c represents the desired track; its

length represents the speed of advance. The vector b represents the set

and drift of the current, while a represents the ship’s heading and speed

through the water. Angle B is the correction angle.

The first step is to determine the value of the correction angle, B,

using formula (1):
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Figure 2-4.

. X sisin B = pr (1)

The next step is to calculate the speed of advance, c, for which we

use the formula

_ aX sin [180° — (A + B)] Q)
sin A

Example 1: The current is setting 248°, and the drift is 1.5 knots. We

wish to make good a track of 289°, and are sailing at 11.0 knots. What

should be our heading, and what will be our speed of advance?

Formula (1) is written:

1.5 X sin (289° — 248°)
sin B = 11.0 = (0.0895

B = 5.1327°

The correction angle is, therefore, 5.1327°; for practical purposes,

we shall call it 5°. The current being on our starboard quarter, we shall

steer 5° to the right of the desired track, or 294°.

The next step is to determine the speed of advance, ¢, using formula
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(2), which becomes:

_ 11.0 X sin [180° — (41° + 59] _
¢ sin 41° = 12.0610

Our speed of advance, therefore, will be 12.0 knots.

Example 2: We wish to make good a track of 160°, and are steaming at
12.0 knots. The currentis setting 015°, with a drift of 2.0 knots. What

course should we steer, and what will be our speed of advance?
We write formula (1):

2.0 X sin (160° — 15°

12.0
 sin B = = 0.0956

B = 5.4856°

The current being on the starboard bow, we would, therefore, steer
165.5°.
To find the speed of advance, formula (2) is written:

12.0 X sin [180° — (145° + 5.5%]
c= on 145° = 10.3022 

Our speed of advance, therefore, will be 10.3 knots.

Current Sailing When Track and Speed of Advance Are Specified

A somewhat different problem arises when both the track and speed

of advanceare specified. In such a case, returning to Figure 2-4a,b, we

know the angle A, which represents the difference between the track

and the current’s set, we know the length of the vector b, the drift of the

current, and we know the vector c, the specified speed of advance.

As previously, we must compute the correction angle, B, but in this

instance we must also compute the length of the vector a, which repre-

sents the speed at which we must steam.

The value of the correction angle, B, is found by means of the for-

mula

b X sin A

a—b XcosA
tan B = 3)

Having computed the value of the angle B, we applyit to the direc-

tion of the track, in order to obtain the course to be steered.

The next step is to calculate the speed at which we must steam,

represented by the length of the vector a, in order to maintain the

specified speed of advance. This we find by means of the formula

_ b X sin A (4)
a .

sin B
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Example 3: We are to make good a track of 230°, at a speed of advance

of 15.0 knots. The currentis setting in the direction 350°, and the drift is

2.0 knots. We require the heading and the steaming speed to comply

with orders.

Formula (3) becomes:

2.0 xX sin 120° _ 1.7321
15.0 — 2.0 X cos 120° 16.0

B, therefore, is 6.1784°.
Because the current is on our port bow, we would, therefore, come

6° to the left of the track and steer 224°.
The next step is to determine the speed to steam. We write formula

(4):

 tan B = = 0.1083

2.0 x sin 120° _ 1.7321
sin 6.1784° 0.1076

We should, therefore, make turns for 16.1 knots to maintain a speed

of advance of 15.0 knots.

Note that in solving the first formula, we could have stored the

dividend, 1.7321, and subsequently would have recalled it as for use as

the dividend in the second formula.

 Steaming speed = = 16.0935

Set and Drift from Track Between Fixes

Sometimes a vessel unexpectedly passes into an area where the

current drift is strong, and finds that she is being badly set. The prob-

lem here is to determine the set and drift of the current, in order that

corrective action may be taken.

In determining the set and drift, departure must be taken from a fixed
or known position, and a second fix must be obtained. When the second

fix is plotted on a chart, the current vector is represented by a line

drawn from the DR position for the time of the second fix, to that fix.

Alternatively, unless the distance traveled between fixes is great, it

may be found by a plane sailing solution, using the calculator. If the

distance is great, the current vector should be found by mid-latitude

sailing. It must be borne in mind that when a considerable amount of

time has elapsed between obtaining fixes, the current may not have

been flowing during the whole period. In this case, the current is
stronger than is indicated in the solution.

Example: We are on course 340°, speed 10.6 knots, headed for the sea

buoy at the entrance to the main ship channel at Key West. At 2200, we

get a good radarfix which puts us in L 24°13.1’ N, A 81°42.2’ W. At 2300
we obtain another radar fix which puts us in LL 24°24.1' N, A 81°43.0' W.
We wish to determine the set and drift of the current.



59 Inshore Navigation

We first determine what our 2300 position would have been, if no
current had existed. Using 20° for course (360° — 340°), by plane sailing
formula the difference of latitude is 9.96 miles North, which we call
10.0 miles, and the departure is 3.625 miles West, which converts to
3.98’ of longitude and which we call 4.0’. At 2300, therefore, our DR
latitude is 24°23.1'’ N (24°13.1’ + 10.0’) and our DR longitude is
81°46.2' W (81°42.2' + 4.0").

We now compare our 2300 fix with our 2300 DR:

 

Fix L 24°24.1' N 81°43.0' W

DR L 24°23.1' N 81°46.2' W

Difference 1.00 N 3.2’ E

To convert 3.2’ of longitude in L 24°24’ N to departure, p, we use

the formula

p = DLo in minutes X cos L

which makesp 2.9142, which we shall call 2.91 miles. Consequently, in

one hour, the current has set us 1.0 mile to the North and 2.91 miles to

the East of our DR position; the set is, therefore, North and East.

To determine the direction of the set, we use the formula:

cot direction, N& E = z

The cotangent of the direction is therefore 2.9142, which makes the

set N 71.0605° E, or, for our purposes, 071°.

To find the drift, as the period between fixes was exactly 1 hour, we

can use the formula ;

cos set

which makes the drift 3.077; we shall call it 3.1 knots.

Drift = 

Current Sailing Problems with Calculators Having

Polar-Rectangular Conversion Capability

The use of the polar-rectangular interconversion feature can also be

very helpful in the solution of current sailing problems. Without this

feature, an inverse tangent of some ratio, say y/x,is required. With the

rectangular to polar conversion capacity, instead of our performing the

division, and having to accept a principal value, the R — P function

can be executed, and the angle in its correct quadrant is obtained.

Example: We are on course 180° at 10 knots. The currentis setting 270°,

with a drift of 3 knots. We wish to determine our course over the

bottom, using the rectangular to polar conversion feature.



60 Inshore Navigation

As our course is southerly, and the set of the current is westerly,

both the drift and ship’s speed will be entered as minus quantities.

In essence, what we are doing is finding the angle whose tangent is

-3/-10.
For calculators using the Reverse Polish Notation, the keying se-

quence is:

Keystrokes Display
 

 

3| CHS ||ENTER? |10 |CHS
        

  

  
—P XSy ~ 163.30

    
 

  
360 + 196.70
 

which is our course made good, or track.

With calculators using the algebraic notation, the keying sequenceis:

Keystrokes Display
 

10 |+/—| STO 00
     
 

314+/-||—P — 163.30
    
  

   
+ 1360 = 196.70

 
  

which is our track.

Current Sailing Using Vector Addition

The vector addition capability, combined with the capability to in-

terconvert polar and rectangular coordinates, available on many scien-

tific calculators, is illustrated by the following current sailing problem.

We are to make good a track of 230°, with a speed of advance of 15

knots. The currentis setting 350°, with a drift of 2.0 knots. We require

course to steer, and the speed at which to steam.

To obtain the steaming speed and the course, using both the vector

addition and coordinate conversion capabilities of our calculator, we
proceed as follows:

 Remarks
Clear all registers.

  
 

 

Key in track, 230°, ENTER?
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Key in speed of advance, 15 K 

   

  

 

  

 

      
 

    

  
 

   

 

P—R Ignore read-out.

z+

Key in set, 350°

ENTER?

Key in drift, 2 K

P—R Ignore read-out.

>—

Recall

|

+ Ignore read-out.

R—P Read 16.09, speed to steam.

X=y Read —136.18.

Key in 360° (as desired track is greater
than 180°)

+ Read 223.82°, course to steer.   

Direction and Speed of True Wind

Given the course and speed of the ship, and the direction and speed

of the apparent wind, the direction and speed of the true wind may be

found by solving a vector triangle. The form this triangle takes depends

upon whether the apparent wind is from forward of the beam (see

Figure 2-5) or from abaft the beam (see Figure 2-6).

In both these triangles, side a represents the speed of the true wind

and its direction relative to the ship’s heading; side b represents the

speed of the apparent wind and the direction in which it is moving

relative to the ship; side ¢ represents the speed and course of the ship.

In Figure 2-5, the ship’s travel vectoris in the direction AB, and in

Figure 2-6 it is in the direction BA.
The direction of the true wind is found by means of the formula

b xX sinA

an B =cosA (D

in which A is the angle of the apparent wind relative to the ship’s

heading, and B is the angle to be applied to the ship’s heading to obtain
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Figure 2-5. Apparent wind for- Figure 2-6. Apparent wind abaft
ward of beam beam

the direction of the true wind. The ship’s vector is ¢, the apparent wind

vector is b, and the true wind is a.

The speed of the true wind is found by means of the formula

_bXxsinA
= "snB Cc)

Example 1: We are on course 090°, speed 12 knots, and the apparent
wind is blowing from 120° True, speed 25.0 knots. For our heading, 120°
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True is 030° relative. We require the direction and speed of the true
wind.

We write formula (1):

25 X sin 30°

tan B= sx cos 30° ~ 12993
This converts to —52.3300°, so the angle B in the vector triangle is
127.6700°, and the true wind direction is from 052.3300° relative, or
142.3300° True. We would therefore write the wind as being from 142°,
or as SE.

To find its speed, we write formula (2):

— 25 X sin 30°

sin 52.33°

The true wind speed is, therefore, 15.7919 knots, which we would

note as 16 knots.

Example 2: Our course is 305°, speed 15.0 knots, and the apparent wind

is from 230° relative, or 175° True at 8 knots. Whatis the direction and

speed of the true wind?

In this case, the angleA equals 130° as the wind’s relative vector,it

lies in the direction 230° — 050°, it intersects the ship’s vector at

50° + 130°, and the latter is the angle required in the vector triangle.

We now write formula (1):

8 X sin 130°

15 — 8 X cos 130°

B, therefore, equals 16.9225°, or 17°, and the true wind is from 197°

(180° + 17°) relative to our ship’s heading. This makes it from 142°

True (305° + 197° — 360°).
To find the true wind speed, we write formula (2):

8 X sin 130°
4 = Sin 16.9225°

The true wind is, therefore, blowing from 142° True at 21 knots.

tan B = = 0.3043

= 21.0540

Wind Triangle Solution by Calculators Having the
Polar-Rectangular Conversion Capability

The wind triangle may be solved rapidly with calculators having the

polar-rectangular conversion feature. The keying sequences for both

RPN and algebraic calculators are tabulated below. The first stepis to

determine the direction toward which the apparent wind is blowing.

Thus,if the apparent wind is from 110° True,it is blowing toward 290°;

this vector we will call TWT.
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RPN Keystrokes

(TWT) ENTER? (Apparent windspeed) P—R

(Course) ENTER? |(Ship speed) P-R

X=y R] + R} + R? * R—P

x=y| 180 +
      

Algebraic Keystrokes

The order of entry for these calculators is slightly different from the

above. TWT is here used as with the RPN calculators.

(Apparent wind speed)

 

STO
   
 

STO
  

01
 
RCL

 

 

00 STO 02
   

(Ship speed)

 
 

 
STO

Algebraic Keystrokes

00 (TWT)
 

 
P—R

  

 

 
00 (Course)

 
P—R
 

 

SUM 01
 
RCL

 

 
 

02{ SUM |00    
RCL    

R—P +   

 

 

180
   

 

 
RCL

  

 

Comments

Read true

wind speed

Read direction

from which

true wind is

blowing.

Comments

Read direction

from which the

true wind is

blowing.

Read true

wind speed.

To illustrate, we shall use the data given in Example 1 above.

* For calculators not equipped with a “Roll Up” key, substitute three ‘Roll Down’’
 

entries (
 
R|

  
R|

   
R| |.
 



65 Inshore Navigation

Ourcourse is 090°, speed 12 knots, and the apparent wind is blowing
from 120°, speed 25 knots. We require the direction and speed of the
true wind.

For the RPN calculation, the steps are as follows:

 

90° |1 |12 |P—>R
     
 

       
 

             

  

      

120°] 1 |25| CHS |[|P-R Note CHS.

x=y|[l Rl + Rl + RT ||R—P]| Read 15.79, true wind
speed.

Xx=y 180° + Read 142.33°, true wind

direction.

For the algebraic notation calculators, the keystrokes, typically,

would be as follows:

 

12 STO 00
   
 

90° P—R|[ STO {01 EXC 00 STO |02
        

 

   

 

—25| STO |00 Note that apparent

wind speed is preceded

by a — sign.

120° PR    
 
 

SUM |01| RCL (02
    

  

  
SUM [00] RCL {01

  
 

      
    

R—-P|| + 180] = Read 142.33°, true wind

direction.

RCL |00 Read 15.79, true wind

speed.

In Example 2 above, we are on course 305°, speed 15 knots; the

apparent wind is from 230° relative, at 8.0 knots. We require the direc-

tion and speed of the true wind.
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In this case, the RPN keystrokes are as follows:

 

 

 

  
 

    
 

 

            
 

 

   
 

   

 

 

305°( 1

|

15 |P—R The relative wind is

from 230°, which

175°| 1 |8| CHS ||P—R makes it from 175°

True.

xsy|l Ry [+] RI + RT? ||R—=>P| Read 21.05 true wind

speed.

Xx=y 180° + Read 141.92° true
wind direction.

Beaufort Wind Scale

World

Beaufort meteorological

number Knots organization

0 Under 1 Calm

1 1-3 Light air

2 4-6 Light breeze

3 7-10 Gentle breeze

4 11-16 Moderate breeze

5 17-21 Fresh breeze

6 22-27 Strong breeze

7 28-33 Near gale

8 34-40 Gale

9 41-47 Strong gale

10 48-55 Storm

11 56-63 Violent storm

12 64-72 Hurricane

13 72-81 Hurricane

14 81-89 Hurricane

15 90-99 Hurricane

16 100-108 Hurricane

17 109-118 Hurricane
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For algebraic calculators, the keystrokes are as follows:
 
 

  
15 |STO [00 305° [P-R|| STO |01

    
 

   

EXC (00 |STO |02 —8 |STO {00        
 

175° |P—»R|| SUM |01| RCL |02 [|SUM |00
         
   

        

 

   

RCL 01 |R—>P|| + |180°| = Read true wind

direction 141.92°,

EXC [00 Read 21.05 true

wind speed.

Great-Circle Direction Converted to Mercator Direction, and Vice
Versa

On board ship, it is frequently necessary to convert a great-circle

bearing, or direction, to a rhumb line, which is its equivalent Mercator

value, so that it can be plotted on a Mercator chart. This problem most
frequently involves radio-direction-finder bearings, which, of course,

are great-circle bearings, and it can be solved by determining the con-

version angle. Conversely, given a Mercator bearing, the conversion

angle permits determination of the equivalent great-circle bearing.

Where the difference of longitude between the two points involved,

DLo, is less than 5°, the conversion angle may be found by means ofthe

formula

; . DLo
tan conversion angle = sin Lm X tan —

in which Lm is the mid-latitude.

In determining the sign of the conversion angle, it must be remem-

bered that the greatcircle lies toward the elevated pole from the rhumb

line. Alternatively, the sign may be taken from Table 2-1.

Where the difference of longitude exceeds 5°, one of the formulae

given in the section on great-circle sailing should be used to determine

the great-circle direction.

Example 1: Our DR position is L 35°51.0’ N, A 84°25.0' W when we

receive a radio bearing of 128.0° from a beacon located at L 32°47.0’ N,

A 79°55.0' W. In orderto plot a line of position on a Mercator chart, we

need the conversion angle and its sign.

We tabulate the data:
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Table 2-1

Radio bearings Great-circle sailing

Latitude Cor- Latitude Cor-

of Radio beacon rection of Destination rection

receiver lies to sign departure lies to sign

N Eastward + N Eastward -

N Westward - N Westward +

S Eastward — S Eastward +

S Westward + S Westward -

L A

Ship 35°51.0' N 84°25.0' W

Beacon 32°47.0' N 79°55.0' W

Difference 3°04.0’ 4°30.0' Half difference = 2°15.0'

Lm 34°19.0' N

With the above data, the formula above becomes:

tan conversion angle = sin 34°19.0’ x tan 2°15.0’ = 0.0222

The conversion angle, therefore, is 1°16.0’, or 1.3°, and the sign is

+. Thus, the Mercator bearing is 129.3° (128.0° + 1.3°).

Example 2: We are in L 47°19.0' N, A 49°23.6’ W, and wish to

determine the great-circle bearing of Point A, located in L 51°47.5' N,

A 53°31.7" W. From a Mercator chart, Point A bears 329.0°.
We tabulate the data, as in Example 1:

L IN

Ship 47°19.0' N 49°23.6' W

Point A S1°47.5' N S3°31.7 W

Difference 4°28.5' 4°08.1' Half difference = 2°04.0'
Lm 49°33.3' N

and write the formula

tan conversion angle = sin 49°33.3' Xx tan 2°04.0’ = 0.0275



69 Inshore Navigation

The conversion angle, therefore, equals 1°34.5’, or, for our purpose,

1.6°. In this case we are converting a rhumb-line bearing to a great-

circle bearing, we are in North latitude, and Point A lies to the west-

ward. Therefore, the sign of the conversion angle is +, and the great-

circle bearing is 330.6° (329.0° + 1.6°).
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Offshore Navigation

The Sailings

A sailing, as traditionally defined, is a method of solving the various

problems involving course, distance, difference of latitude, difference

of longitude, and departure. Departure, in turn, is defined as the dis-

tance between any two meridians at any given parallel of latitude,

expressed in linear units, such as nautical miles.
Plane Sailing. For centuries, the only sailing employed by the

mariner was plane sailing, which is based on the assumption that the

Earth is a flat surface. Plane sailing still yields satisfactory results over
comparatively small areas when plotted on a Mercator chart.

Traverse Sailing. Traverse sailing derives its name from the travas, a
circular board with lines radiating in 32 directions, one for each point of

the compass. Holes were drilled at equal distances along each line; a

peg could be inserted in one of these holes to denote the length of time
as determined by an hour or half-hour sand glass; sometimes a peg was
used to denote the estimated distance sailed on a given course. This

device enabled the mate of the watch to keep track ofthe ship’s courses

for a considerable period of time, even when forced to tack frequently,
without the almost impossible alternative of resorting to pen and ink,

the prerogative of the master.
However, the unenviable task of reducing a number of traverses

mathematically to an updated position remained. This need led to the

70
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invention ofthe traverse table, such as Table 3 of Bowditch. The first
such table apparently was prepared by Andrea Biancho in 1436.

Parallel Sailing. Because of the early navigator’s inability to deter-
mine longitude, parallel sailing came into use. Knowing the latitude of
his destination, as he neared land he came to this latitude, and then ran
either due East or West.

Middle-Latitude Sailing. The inaccuracies inherent in plane sailing
over considerable distances led to the development of middle-latitude
sailing (usually abbreviated mid-latitude sailing), supposedly by Ralph
Handsen, about 1640. This sailing is based on the assumption that the
use of a parallel midway between those of the point of departure and of

the destination will eliminate the errors in plane sailing caused by the

convergence of the meridians. This assumption is reasonably accurate,
and yields acceptable results for distances up to about 1,200 miles.
However, when accuracy is a prime consideration, Mercator or
rhumb-line sailing should be used.

Mercator Sailing. In 1569 Gerardus Mercator, a Flemish cartog-
rapher, published a chart of the world, constructed on a system that

since then has borne his name. However, he failed to publish any data
on the mathematics he had employed. In 1599, an Englishman, Edward
Wright, explained the Mercator projection, and published a table of
meridional parts. This table not only made possible the construction of
other charts on the Mercator projection, but also led to the develop-

ment of Mercator sailing, which provides a mathematical solution of

the plot, as made on a Mercator chart, by using meridional difference
and difference of longitude.

Rhumb-line Sailing. Rhumb-line sailing considers the Earth to be a

perfect sphere, rather than a spheroid or a plane surface; it can, how-
ever, be modified to allow for the asphericity of the Earth. A rhumb

line, or loxodrome, is a line on the surface of the Earth making the

same oblique angle with all meridians. This sailing is a comparatively

recent concept.
Great-Circle Sailing. That a great circle is the shortest distance be-

tween two points on a sphere has long been known. In 1498, Sebastian
Cabot argued in favor of the concept, and in 1524,the Italian Giovanni

da Verrazano attempted to sail a great-circle track to North America.

The first printed description of great-circle sailing appeared in Pedro

Nunes’s Tratado de Sphera, published in 1537.

It was, however, difficult for square-rigged sailing vessels to take

much advantage of this sailing, except on some routes in the Pacific;

with the advent of steam, on the other hand, great-circle sailing came

into general use on long passages.

In great-circle sailing, the Earth is considered to be a perfect sphere;
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the problems involved in this sailing are solved by spherical

trigonometry.

Composite Sailing. Composite sailing is a modified form of great-

circle sailing; it is used when it is desired to limit the highestlatitude to

be reached on a passage.

In connection with great-circle sailing, it may not be amiss to men-

tion the Lambert projection charts, published by the National Ocean

Survey primarily for air use. These charts can be extremely useful in

planning long ocean voyages, in that a straight line on such a chart very

closely approximates a great-circle track, so that distances can readily

be measured with only small error. In addition, whereas land masses

represented on great-circle charts prepared on the gnomonic projection

tend to appear distorted in shape, on Lambert projection charts they

appear very much as we are used to seeing them on Mercator charts.

The coordinates of points at which a great-circle track is to be bro-

ken into rhumb lines can readily be taken off a Lambert projection

chart.

The first four of the above sailings all offer one great advantage, in

that they permit the calculation of a single course, which may be fol-

lowed from the point of departure to the destination. Great-circle sail-

ing, on the other hand, permits the calculation of the shortest track.

However, to follow such a track, the course would have to be changed

constantly. Thus, when great-circle sailing is employed, it is customary

to break the track into a series of rhumblines of convenient lengths.

Plane Sailing

In plane sailing the figure formed by the meridian passing through

the point of departure, the parallel of latitude passing through the desti-

nation, and the course line, is considered to be a plane right-angled

triangle (see Figure 3-1). As in any right triangle,if a second angle and

the length of any side are known, the remaining angle and the length of

either other side can readily be found by means of the formulae given
below.

In Figure 3-1, P, represents the point of departure andP, the destina-

tion. Side p of the triangle, called the ‘‘departure,’’ is the distance, in

nautical miles, East or West, made good in proceeding to the destina-

tion. Side / is the portion of a meridian drawn from the point of depar-

ture to the parallel of latitude of the destination; it represents the differ-
ence of latitude and is measured in nautical miles, which are equal to
minutes of arc along a meridian. SideD represents the distance sailed in
nautical miles, and angle C represents the course angle.

Note: In plane sailing, the course is reckoned as course angle from
North or South to 90° East or West. Thus, Cn 162° would be written as
S 18 E, and Cn 341° as N 19°W.
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] 2

| D

c

Py

Figure 3-1.

Plane sailing formulae are:

Given C and D, to find I:

l=cosC xD (D

Given C and D, to find p:

p =sinC XD (2)

Given! and p, to find C:

tan C = E 3)

In connection with formula (3), it must be remembered that if / is

greater than p, C will be less than 45°; if it is less, C will be greater than

45°,

Given C and /, to find D:

 

 

l

D = cos C 4)

Given C and p, to find D:

__Pp

D = sin C 3)

Knowing p, it is often necessary to convert it to difference of lon-

gitude, DLo. Strictly speaking, this problem does not belong under the
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heading ofplane sailing;it is included here as a matter of convenience.

The formula is:

_ _DDLo = SosL ©) 

where L represents latitude.
Alternatively, ifDLo is known, p may be found:

p =DLo X cosL 7)

Examples illustrating the use of these formulae are given below.

Example 1: We have steamed 90 miles on Cn 320° and need to find the

difference oflatitude, I. The first step is to convert 320° to N 40° W.

Formula (1) then becomes:

l = cos 40° x 90 = 68.94

The difference of latitude, therefore, is 68.9’ or 1°08.9’ North.

Example 2: Given the same data as in Example 1, find p. Formula (2)

becomes:

p = sin 40° xX 90 = 57.85

The departure, therefore, is 57.9 miles West.

Example 3a: Given an! of 69.0’ South and ap of 57.9 miles West, we
wish to find C. Formula (3) becomes:

_ 579 _tan C = <= = 0.839

The course angle, therefore, is S 40° W, or Cn 220°.

Example 3b: Given an! of 57.9' North and ap of 69 miles East, find C.
Formula (3) becomes:

= 6 _tan C = 579 1.19

The course angle is, therefore, N 50° E, or Cn 050°.

Example 4: Given Cn 273.5%, or N 86.5° W and an! of 5 miles, find D.
Formula (4) becomes:

__5 _
D = cos 86.5° 81.9

The distance, therefore, is 81.9 miles.
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Example 5: Given Cn 030°, or N 30° E, andp 41.5 miles,findD. Formula
(5) becomes:

41.5

sin 30°

The distance, therefore, is 83.0 miles.

Example 6: Given L 46° N andp 57.9 miles West,find theDLo. Formula
(6) becomes:

 = 83.0

57.9

cos 46°

The difference of longitude, therefore, is 83.4" West.

Example 7: Given L 43° N and DLo 41.0’ W,find p. Formula (7) be-
comes:

 DLo = = 83.4

p = cos 43° x 41 = 30.0

The departure, therefore, is 30.0 miles West.

Mid-latitude Sailing

Mid-latitude sailing is based on approximations that simplify solu-

tions and yield results sufficiently accurate for ordinary navigation over

medium distances, say, to 1,200 miles. When the distance is greater, or

in high latitudes, or when a rigorous solution is required, Mercator or

great-circle sailing should be used.

When course and distance steamed are given, mid-latitude sailing

permits determination ofthe difference oflatitude, /, and the departure,

p, expressed as a difference of longitude, DLo, in minutes of arc. Alter-

natively, when the coordinates of two points are given, it permits de-

termination of the rhumb-line course and the distance between the

points, D.
In mid-latitude sailing, departure and difference of longitude may be

interconverted, using the mean, or mid-, latitude, Lm. The formulae

are:

 

p = DLo, in minutes X cos Lm 1)

Co. Dp
DLo, in minutes = ——=— (2

tan C = &- 3)

where / is in minutes of arc and C is the course angle, expressed

from North or South toward East or West to 90°.
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_ 1

“cos C
C)) 

Example 1: By mid-latitude sailing, what is the course and what is

the distance from Brenton Reef Light (off Newport, Rhode Island),

L 41°26’ N, \ 71°23’ W, to St. David’s Light, Bermuda, L 32°22’ N,

A 64°39’ W?
We set up the problem:

L, 41°26 N A TIW

Ly, 3222'N As 64°39 W
I 9°04’ S = 544’ S DLo 644 E = 404’ E

Bl 4°32’ S
L, 41°26N
Lm 36°54’ N

Having obtained Lm, we proceed to find p, using formula (1):

p = 404 X cos 36.9° = 323.1 miles

Having found p, 323.1, we find the course, using formula (3):

323.1 _ _ \tan C = “27 = 0.594 = S 30.7 E

The true course, therefore, will be 149.3° (180° — 30.7°).

The final step is to determine the distance, using formula (4):

544 .
D = 307° 632.7 miles

Thus, the course to reach St. David's Light is 149.3°, and the

distance is 632.7 miles. This calculation compares quite well with a

rigorous great-circle solution, which makes the distance 632.2 miles

and the initial heading 147.79°.

Example 2: We steam 960 miles on course 230° from L 33°16’ N,

A 29°43" W, and need to find the latitude and longitude of our posi-
tion. By transposing formula (4), we can find /:

= 960 Xx cos 230° = —617.0761’

Knowing that I equals 617.1’ S, or 10°17.1' S, and consequently

that L, is 22°58.9' N (L 33°16’ N — 10°17.1’ S), we can find p, by
transposing formula (3):

p = tan 230° xX 617.1" = 1.1918 Xx 617.1 = 735.4 miles

To find the DLo, we mustfirst determine Lm:
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I = 10°17" S and %I = 5°08.5' S

L, 33°16.0' N

151 5°08.5' S

Lm 28°07.5' N

Then formula (2) becomes:

_ 735.4 _ ,
DLo = cos 28.1250° _ 533-8613

Converting 833.8613’ to degrees and minutes, we get 13°53.9’ W.

Finally, we can obtain the latitude and longitude of our destination
as follows:

L, 33°16.0'N A 29°43.0' W
~ +

10°17.1' S DLo 13°53.9 W

L, 22°58.9'N As 43°36.9' W

Solution of Plane-Sailing Problems with Calculators Having
the Polar—Rectangular Interconversion Feature, and of

Vector Addition Problems

Under the heading ‘Current Sailing,”’ we saw how useful the rec-

tangular to polar conversion feature could be. The polar to rectangular

conversion can be equally useful in solving plane-sailing problems.

Given course and speed, it can convert them into North-South and

East-West components; equally, it can convert course and distance

into change of latitude and departure, and can compute the sine and

cosine of an angle simultaneously.

Example 1: We have sailed 53 miles on course 137°, and wish to deter-

mine our change in latitude, /, and departure,p.

For calculators using the Reverse Polish Notation, the keystrokes

are:
  

137 ENTER? |53 PR Display —38.76, which indicates that /
is South (minus) 38.76’.

x=y| Display 36.15, which is p 36.15 miles,

named East as it is positive.

Example 2: At 0634 our position is L 33°23.2' N, A 74°40.6' W. We

estimate that we made good a course of 043° T until 1150, and covered

36.9 miles. At 1150, we tacked, came to course 316° T, and sailed 41.3

miles. At 1729, we tacked again, coming to C 040°, and by 1932 we had

logged 12.7 miles on this leg.
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During the entire day, we estimate that the current was setting 020°

T, with a drift of 1.2 knots.

We derive our 1932 position, using the polar to rectangular conver-

sion capability of our calculator.
We tabulate the data for each leg as shown on the left below, course

and distance constituting polar coordinates. These data, converted to

rectangular coordinates, are tabulated on the right for each leg, [ being

minutes of latitude, and p minutes of departure.

1 C 043° T, 36.9 miles 126.99 N,p 25.17 E
2 316° 41.3 miles 29.71" N —-28.69'W
3 040° 12.7 miles 9.73 N 8.16' E

Total for boat __ 166.43 N p 4.64 E

Current:

Set 020°; drift 1.2 knots for

12h 58m = 15.56 miles 114.62’ N p 5.32'E

181.05 N p 9.96" E

Our change in latitude for the entire run, and allowing for the cur-

rent, is 1°21.0’ N. We are 9.96 miles farther east than we were in the

morning.

We convert this departure, p, of 9.96 miles E to a difference of

longitude, by dividing it by the cosine of the mid-latitude of the run,

which we shall call 34.0°:

9.96 miles

cos 34°

Our 1932 position was therefore L 34°44.2' N (33°23.2' + 1°21.0")
and A 74°28.6' W (74°40.6' — 12.0").

= DLo 12.01' E

Mercator Sailing

Materials here, of every kind

May soon be found, were Youth inclin’d,

To practice the Ingenious Art
Ofsailing by Mercanter’s Chart.

Ebenezer Cooke, circa 1778

Maryland Patriot and poet (?)

At the equator, a degree of longitude is approximately equal in
length to a degree oflatitude. As distance from the equator increases,
the degrees oflatitude remain about the same length (varying slightly
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because of the Earth’s oblateness); at the same time, degrees of lon-

gitude become progressively shorter. Since, on a Mercator chart, the

degrees of longitude appear everywhere to be of the same length,it is

necessary to increase the length of the degrees oflatitude in order that

the expansion remain the same in all directions.

The length of a degree of latitude, as thus increased between the

equator and any specified parallel, expressed in minutes of arc as mea-

sured at the equator, constitutes the number of meridional parts, M,

corresponding to that latitude.

Meridional parts not only make possible the construction of Mer-

cator projection charts, but also the solution of problems in Mercator

sailing. This sailing yields a constant course to be steered from the

point of departure to the destination; in addition, the distance as ob-

tained by Mercator sailing will be more accurate than that obtained by
a mid-latitude sailing solution.

To compute the course C, in Mercator sailing, the formula is:

_ DLo’
tan C = = (1

in which DLo' is the difference in longitude between the point of depar-

ture and the destination, expressed in minutes of arc, and m is the

difference in meridional parts between M;, the value of the meridional

parts for the latitude of the point of departure, and M,, that for the

latitude of the destination. When L, and L, are of contrary name, the

sum of M; and M, is used for m.

Distance, D, is computed by the formula

l

cos C
 (2)

where [ is the difference in latitude between the point of departure and

that of the destination, expressed in minutes of arc.

A third formula is used to determine the difference of latitude, /,

when a ship has sailed a known distance on one course:

=D x cosC (3)

Other formulae used in Mercator sailing are:

DLo = m X tan C “4

and

_ I xDLo ©)
m

in which p is the departure, expressed in nautical miles.
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In using Mercator sailing, the course should be calculated to four

decimal places, since, if it lies near 090° or 270°, a large error may

otherwise be introduced in calculating the distance.
The value of the meridional parts, M, for any given latitude may be

calculated by the formula

M = 7915.7045 X log tan (4s + L) — 23.2689 sin L 6)

M should be calculated to the nearest decimal place, which is sufficient

for all ordinary navigation.

Example I: Our position is L 32°14.7’ N, \ 66°28.9’ W, and we wish to

determine the course and distance to a point near Chesapeake Light, in

L 36°58.7' N, A 75°42.2' W, by Mercator sailing.

We first determine the difference between L, and L, in minutes of

arc, and note it:

L, 32°147 N
L, 36°58.7 N

l 284.0' N

The next step is to calculate the value of the meridional parts,

M, and M,, for each latitude, using formula 6, and then go on to find

the difference, m, between the values of M, and M,.

To find the value ofM for our presentlatitude, we write formula (6):

32.2450
M, = 7915.7045 x log tan (4s + 5

= 2045.7409 — 12.4149 = 2033.3

) — 23.2689 X sin 32.2450°

We next compute M, for L,, 36°58.7' N, which we find to be 2377.0.
We now have:

L, 32°147 N M, 2033.3
~ ~

L, 36°58.7 N M, 2377.0

l 284.0' N m 343.7

The next step is to find the difference in longitude, expressed in
minutes of arc:

A 66°28.9' W
~

Ae 75°42.2' W

DLo 553.3’ W
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We can now write formula (1):

_ 553.3tan C = 32° = 1.6098

The course is therefore N 58.1522° W; the course to steer will be
Cn 301.8°.

To find the distance D, we write formula (2):

_ 284.0
cos 58.1522°

The distance is, therefore, 538.2 miles.

= 538.2206

Example 2: We are situated in Baffin Bay, in L 75°31.7' N,

A 79°08.7' W. If we steam 263.5 miles on Cn 155.0°, what will be

the coordinates of the point of arrival?

We first determine the change of latitude by restating formula (2):

I = 263.5 x cos 155.0° = —238.8’

The change of latitude is therefore S 238.8’, or S 3°58.8’, making

the latitude of the point of arrival 71°32.9’ N (75°31.7’ — 3°58.8’).

Using formula (6), we compute the values of M, and M,, and then

proceed to determine the value of m:

L, 7531.7 N M, 7072.4
~

L, 71°329'N M, 6226.1

m 846.3

To find the longitude of the point of arrival, we write formula (4):

DLo = 846.3 x tan 155.0° = —394.6362’

which equals —6°34.6'. Subtracting this from the longitude of the point

of our departure, 79°08.7" W, we find the present longitude to be

72°34.1' W.
Our new position therefore will be L 71°32.9' N, A 72°34.1' W.

Rhumb-line Sailing

In the introduction to the sailings, we stated that the basic rhumb-

line sailing formulae are designed for a perfectly spherical Earth, but

that they could be modified for use with a spheroid. While Mercator

sailing, as we know it in the United States, is designed for use with

Clarke’s spheroid of 1866, the basic rhumb-line formulae may be

adapted for use with any spheroid, such as Clarke’s spheroid of 1880,

the International spheroid, or Bessel’s spheroid, among others.
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We shall first consider the two basic formulae used in rhumb-line

sailing. The formula for finding the course, C, is:

an C= 180°[n tan (45° + %L;) ~ In tan (45° + ¥5L,)]

Note that this formula employs natural logs (base e) rather than com-

mon logs (base 10); for these natural logs, we shall use the abbreviation

In.
The distance, D, is computed by formula (2), except when the course

is 090° or 270°:

L,—L,_ Le
D = 60 cos C

2

When the course is 090° or 270°, the distance is found by the formula

D =60(\; ~\;) XcosL 3)

Example 1: We wish to determine the course and distance from Brenton

Reef Light, Rhode Island, LL 41°26’ N, A 71°23’ W, to St. David’s Light,

Bermuda, L 32°22’ N, A 64°39’ W, using rhumb-line sailing formulae.

(This example uses the same data as used in Example 1 of mid-latitude
sailing.)

To calculate the course, C, we write formula (1):

m X 6.7333°
180[ln tan 61.1833° — In tan 65.7167°]

_ 21.1534
~ 180[In 1.8177 — In 2.2165]
_ 21.1534 21.1534
~ 180[0.5976 — 0.7959] = —35.6987
= —0.5926

tanC =

The course, therefore, is S 30.6490° E, or Cn 149.4°.

To find the distance, formula (2) is written:

32.3667° ~ 41.4333° _ 60 9.0667
D = 60 ==530.6490° 0.8603

The distance, therefore, is 60 x 10.5389°, or 632.3 miles.

Example 2: We are in L 10°17.5' N, X 120°33.6' W, and wish to
determine the course and distance to L 12°43.0' S, A 137°23.8' W by
rhumb-line sailing. We write formula (1):



83 Offshore Navigation

tanC = (120.5600° — 137.3967°) |

180° [in tan 45° — 12767) — In tan 15+ 02917)
2 2

_ (16.8369)
180°[— 0.2238 — 0.1806]

_ —52.8939
= “72.7902 = 0.7267

C = 36.0045°

The course, therefore, is S 36.0045° W, or Cn 216.0045°.
To find the distance, we write formula (2):

— 60 (=12.7167° — 10.2917°) _ 60 —23.0083°

cos 216.0045° - —0.8090
= 60 x 28.4414 = 1706.4868 miles

The course, therefore, would be Cn 216.0° and the distance 1706.5

miles. It may be of interest to note that, in this particular example,

where we cross the equator from one low latitude to a second low

latitude, the rhumb-line sailing yields almost exactly the same solution

as great-circle sailing, which makes the course 216.4° and the distance

1706.5 miles.

When we wish to modify rhumb-line sailing to allow for the

eccentricity of the Earth, the formula to compute the course is:

D

 tan C = Shh = @
tan & + Ls) tan (45 + L)

180 In 2) — InI
( 1 + e sin £2)™ ( 1 + e sin La)

1 —esinL, 1 —-esinL,

where e is the value of the eccentricity factor of the ellipsoid to be

used. The values of e found for various modifications include:

Clarke of 1866 e = 0.082 271 854 22

Clarke 1880 e = 0.082 483 399 04

International e = 0.081 991 889 97

Caltech Seismological Lab. e = 0.081 839 952 6

Airy e = 0.081 673 374

Australian National-South American e = 0.081 820 2

of 1969
Bessel e = 0.081 696 83

Everest e = 0.081 472 98

Fischer—1960 (Mercury) e = 0.081 813 334

Fischer—South Asia e = 0.081 813 334
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Fischer of 1968 e = 0.081 813 33

Hough e = 0.081 991 89

International Astronomical e = 0.081 820 2

Krassovsky e = 0.081 813 33

World Geodetic System e = 0.081 818 8

The formula for distance remains unchanged:

L,~L,

D = 60 cos C

Example: We wish to determine the course and distance from

L 36°52.7' N, A 75°42.2' W, to L 45°39.1' N, A 1°29.8' W, using the

value for e given for Clarke’s ellipsoid of 1866, e = 0.082 271 854 22.

Substituting into formula (4), we obtain the following:

tan C = 233.1271189

180 [1n (28380856) _ (200010600
1.004857646 1.004081494/ |

233.1271189
180(0.201627819)

tan C = 6.433472022

C = 81.15127722°

Thus the course is N 81.151 277 22°.

To find the distance, we write formula (2):

_ 8.690° _
D = 60 os 81. 15127722 — 3389-340868

Our course, therefore, is 081.2°, and the distance is 3389.5 miles.

 

 

tan C =

Great-Circle Sailing

The shortest distance between any two points on the Earth lies along

the great circle that passes through them. Great-circle sailing is used

when the distance between the points of departure and arrival, mea-

sured along a great circle, is materially shorter than along the rhumb

line drawn between them. It is impossible for a ship to steam along a

great circle on the same course, unless she is moving due North, due
South, or along the equator. It is customary, therefore, to select a

number of points along the great-circle track, usually 5° of longitude

apart, and steam rhumb-line courses between them; the distance thus
steamed closely approximates that of the great-circle track.

Alternatively, the great-circle track may be broken up into equal
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segments of arc, each of which in the following example is 6°, or 360
nautical miles, in length.

A great-circle voyage should not, of course, be undertaken if the

great circle crosses land or dangerous waters, or if such a voyage would
take the ship into too high a latitude. Another factor that must be taken

into account is the location of the vertex, or point of greatest latitude,
through which the circle passes. The vertex might lie beyond the

destination, behind the point of departure, or between the two.

The calculator permits easy solution of great-circle problems by

means of various spherical trigonometric formulae. The Lambert pro-

jection charts, intended primarily for aviators, which show land masses

in very much the same shape we are used to seeing them on Mercator
projection charts, are often very helpful, as a straight line very closely

approximates a great-circle track, and distances may be measured eas-
ily, with very considerable accuracy.

In order to obtain a complete solution of a great-circle problem,it is

necessary first to establish the distance along the great-circle track to

the destination, and the initial heading; usually the latitude and lon-

gitude of the vertex are also required. Even when the vertex lies be-
yond the destination, or behind the point of departure, its position may

be calculated. If it is located between the point of departure and the

destination, its position is useful in determining whether the track will

take the vessel into an undesirably high latitude, and if the track is to be

broken down into segments of equal length in distance, its position is

required in order to obtain the coordinates of the intermediate points at

which rhumb-line course changes are to be made.

In working the following great-circle formulae with a calculator,

South latitude and East longitude should be entered as negative values.

Distance and Initial Heading

The formula for finding the distance, D, is:

cosD =sinL, xX sinL, + cos L, X cos L, X cos DLo (1

where L,is the latitude of the point of departure, L, is the latitude of the

destination, and DLo is the difference of longitude between the two

places.

To find the initial heading C, two formulae are available:

 

_ sin Ly — cos D X sin L, ?

cos C= sin D X cos L, &)

and
tan C = sin DLo 3)
 

cosL, X tanL, — sin L; X cos DLo
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In both formulae,L,is the latitude of the point of departure, and L, the

latitude of the destination. D is the distance expressed in arc, and DLo

is the difference in longitude between the point of departure and the

destination. If the latitude is South,it should be prefixed with a — sign

when entered into the calculator. When the cosine C formula (formula

2) is used, the initial heading will always be computed from North,

toward either the East or the West, according to the change in lon-

gitude. Formula (3) computes C from the elevated pole, toward either

the East or the West.

Computing the Coordinates of the Vertex

The nearer vertex of the great circle may lie between the point of

departure and the destination, behind the point of departure, or beyond

the destination. Its latitude may be found by the formula

cosL, = cosL, X sinC 4

The longitude of the vertex may be obtained by calculating the dif-

ference of longitude between the point of departure and the vertex,

using the formula

cos C
sin DLo, = —

*  sinL, (5)

The angular distance between the point of departure and the ver-

tex D, may now be calculated by means of the formula

sin D, = cos L, xX sin DLo,, (6)

Alternatively, the longitude of the vertex may be calculated directly,
using the formula

tan L, X cos A; — tan L; X cos A,
tan A, = -

v tan L;, X sin A; — tan L, X sin A, @

Computing Coordinates of Intermediate Points Along the
Great-Circle Track

The great-circle track may be broken up into segments of equal
angular length, mid-latitude, Mercator, or rhumb-line sailing then being
used to determine the course for each leg. When the great-circle track
is so segmented, the next step is to determine the latitude, L, of each
point (X;, X,, etc.) along the great-circle track where the course is to be
changed. The formula for this purpose is:

sinL, =sinL, X cos D,_, 8)

D,_, being the angular distance to the vertex,less the angular distance
along the great circle at which the course is to be changed.
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Finally, the longitude of each of these change pointsis obtained by
the formula

sinD,_,

cos L, ©)

DLo,_, being the difference between the meridian of DLo, found in

formula (5) and that between each course change point, X;, X,, etc.

The DLo, andD,, of the nearer vertex are never greater than 90°, and

the nearer vertex is usually employed in making the above calculations.

However, when the latitude of the point of departure and that of the

destination are of contrary name, it may be more convenient to use the
far vertex, if it is nearer to the midpoint of the track.

sin DLo,_, =

Example: We are bound from San Francisco, L 37°47.5’ N, A 122°27.8'

W, to Sydney, Australia, L 33°51.7" S, A 151°12.7' E, and wish to

obtain the distance along the great circle, the initial heading, the

latitude and longitude of the vertex, and the latitude and longitude of

the first point where we shall make a course change; the course change

points are to be 6° or 360 miles apart along the great circle.

Ourfirst step is to obtain the DLo; it is 86°19.5' [360° — (A; W + A,

E)]. We can now write formula (1):

cos D = sin(37°47.5") x sin(—33°51.7') + cos(37°47.5')

X c0s(—33°51.7") X cos(86°19.5')

This gives us

cos D = —0.34144 + 0.04206 = —0.2994

The distance therefore is 107.4204°, which, multiplied by 60, is

6445.2243 miles.
We next compute the initial great-circle heading C. Formula (2)

becomes:

 

_ sin(=33.8617°) — cos(107.4204) x sin(37.7917°)
- sin(107.4204°) x cos(37.7917°)
0.5572 — (=0.1835) _ —0.3737 _ _
= 0.7540 = 0.7540 ~ ~0-4957

The initial heading therefore is N 119.7137° W (Cn 240.2863°).

We can now calculate the latitude of the vertex, using formula (4),

which we write:

cos L, = c0s(37.7917°) x sin(119.7137°) = 0.6863

The latitude of the vertex is therefore 46.6591° (46°39.5’); we shall

be able to name it N or S after we calculate its longitude.

To obtain the longitude of the vertex, we first determine the

cos C
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difference of longitude between San Francisco and the vertex, DLo,,

and then convert this difference to the actual longitude of the vertex.

Formula (5) becomes:

cos(119.7137°) _

sin(46.6591°)

The DLo, is therefore —42.9634°, or —42°57.8’, which, when applied

to the longitude of our point of departure, 122°27.8' W, makes the

longitude of the vertex 79°30.0’ W. The longitude ofthe southern vertex

would therefore be 100°30.0’ E; since this vertex is farther away from

the midpoint of the great-circle track, we shall use the northern vertex

in computing the coordinates of the intermediate positions.

The next step is to compute the distance from the vertex to the point

of departure, D,, using formula (6), which becomes:

sin D, = ¢0s(37.7917°) x sin(42.9634°) = 0.5386

which makes the distance 32.5867° (1955.2049 miles).

We next need the latitude of the first point, X,, where we shall

change course; this we obtain by formula (8), which becomes:

sin L,, = sin(46.6591°) x cos(38.5867°) = 0.5685

L,, therefore is 34.6451° N, or 34°38.7' N. We go on to find the lon-
gitude of the point X; by means of formula (9):

sinD,_,, — sin 38.5867°

cos L,, cos 34.6451°

which makes DLo,_,, 49.2989°. This, when added to the longitude of
the vertex, 79.50°, found above, gives us the longitude of our first
turning point, 128.7989° or 128°47.9’ W.

We would then proceed to calculate the coordinates of the other

turning points (X,, X;, etc.) in a similar manner, those for X,, for

example, being L,, 31.1957° (L 31°11.7" N), and A, 134.6501° (A
134°39.0" W).

All that remains is to determine the rhumb-line course and distance
from San Francisco to Point X,; as the great-circle distance is only 360
miles, solution by mid-latitude sailing should be entirely satisfactory.
By this sailing, Cn is 238.4°, and the distance is 360.1 miles.

sin DLo, = —-0.6815

sin DLo,_,, = = (0.7581

To Find the Latitude at Which a Great-Circle Track Crosses A
Selected Meridian

The navigator may at times wish to determine the latitude in which a
great circle crosses a selected meridian. Some navigators use this
method of breaking up a great-circle track into a series of segments,or
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legs. Under such circumstances,a latitude, L,, may be found by means
of the formula

tan Ly = tan L, X sin(A; — \,) — tan L; X sin(Aq — Ap) (10)

in which L, is the latitude of the point of departure, L, that of the

destination, A, the selected longitude, A, longitude of the point ofdepar-
ture, and A, longitude of the destination.

It should be noted that in this formula absolute differences are not

used; rather, negative values are employed. Thus, in this formula,

should we encounter 40° — 60°, we use —20°.

Example: We desire to determine the latitude in which a great-circle

track between L 40° N, A 80° W and L 50° N, A 10° W passes through A

31°04.3’ W; we write formula (10):

tan L, sin(A; — \;) — tan L, sin(A; — Ay)
 

 

 

 

tan Ly = sinh; — Ay)
or tan 50° sin(31.0717° — 80°) — tan 40° sin(31.0717° — 10°)

a= sin(10° — 80°)

arf — L1918 sin(—48.9283°) — 0.8391 sin 21.0717°
an Ly = sin(=70°)

0.8984 — 0.3017 _ —1.2001 _
tanls=—""0937 —00397 1°77?

La = 51.9304°
The required latitude is therefore 51.9394° N, or 51°56.4’ N.

Composite Sailing

When a great-circle track would carry a vessel to an undesirably high

latitude, a modification of great-circle sailing, called composite sailing,

may be used to advantage; it can be used only when the vertex lies

between the point of departure and the destination. The composite

track consists of a great circle from the point of departure and tangent

to the limiting parallel, a course line along the parallel, and a great

circle tangent to the limiting parallel and through the destination.

The formula for finding the difference of longitude, DLo, between

that of the point of departure and that of the point where the limiting

latitude is reached,is:

cosDLo =tanL, X cotL, (1n

where L, is the latitude of the point of departure, and L,is the limiting

latitude.
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After finding the longitude at which the limiting latitude is reached

by applying the difference of longitude to the longitude ofthe point of

departure, the next step is to find the longitude at which to depart the

limiting latitude for the destination. To compute this longitude, the

same formula is used, but L,, the latitude of the destination, is substi-

tuted for L,.

Example: A ship bound from Baltimore for Bordeaux takes her depar-

ture from L 36°57.7' N, A 75°42.2' W, near the Chesapeake Light, for L

45°39.1' N, A 1°29.8' W, near the entrance to the Grande Passe de

’Ouest. The limiting latitude is to be 47° N. We write formula (1):

cos DLo = tan(36°57.7’) xX cot(47°) = 0.7525 x 0.9325 = 0.7017

DLo = 45.4346°

The difference of longitude between the point of departure, and the

point where L 47° N is to be reached is therefore 45°26.1’; so the ship

will reach L 47° N in A 30°16.1' W (75°42.2' W — 45°26.1).
To find the longitude in which the ship will depart the 47th parallel,

formula (1) is written:

cos DLo = tan(45°39.1') X cot(47°) = 1.0230 x 0.9325 = 0.9540

DLo = 17.4513

The ship will therefore leave the 47th parallel in A 18°56.9' W (DLo
17°27.1" + A; 1°29.8').

To find the distance the ship will steam along the 47th parallel, we

first find the difference in longitude between that where she arrives at

the 47th parallel, A 30°16.1' W, and the one where she leaves, at A

18°56.9" W. This difference is 11°19.2' or 679.2’; multiplying this differ-
ence in longitude by the cosine of latitude 47°, we get the distance
steamed along the 47th parallel, 463.2133 miles.

Time Conversion

Time to Arc

Time may readily be converted into arc by a series of steps on the
calculator. The conversion may be facilitated if the following values are
kept in mind:

1 hour = 15° 4 minutes = 1° or 60’ 4 seconds = 1’
1 minute = 0.25° or 15’ 1 second = 0.25’

1. Multiply the number of hours by 15, and note the resulting number
as degrees.
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2. Divide by 4 the number of minutes, and note the resulting whole
number as degrees.

3. Multiply by 15 the number of minutes remaining, and notethe result-
ing number as minutes of arc.

4. Multiply by 0.25 the number of seconds, and note the resulting
number as minutes of arc.

5. Add together the number of degrees and minutes of arc obtained in
the above four steps.

Example: We wish to convert 13 hours, 46 minutes, 58 seconds, to arc.

D M

1. 13 hours XxX 15 = 195

2. % minutes = 11, with 2 left over = 11

3. 2 minutes X 15 = 30

4. 58 seconds x 0.25 = 14.5

s. = 206 44.5

13 hours 46 minutes 58 seconds converted to arc is, therefore,

206°44.5'.

Arc to Time

Arc may readily be converted into time by a series of steps on the

calculator. The conversion may be facilitated if the following values are

kept in mind:

15° = 1 hour 15’ = 1 minute 1’ = 4 seconds

1° or 60’ = 4 minutes 0.25’ = 1 second

1. Divide the number of degrees by 15, and note the resulting whole

number as hours.
2. Multiply by 4 the remaining number of degrees, and note the result

as minutes.
3. If the number of minutes of arc is greater than 15, divide it by 15,

and note the whole numberin the dividend as minutes of time. If it is

less than 15, treat as in Step 4.
4. Multiply by 4 the remaining number of minutes of arc and the deci-

mal of a minute, and note the answer to the nearest second.

5. Add together the number of hours, minutes, and seconds found in

the above four steps.
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Example: We wish to convert 329°59.6’ to time.

H M §

1. 27 = 21 hours + 14° = 21

2. 14 x 4 = 56

3. 28 = 3 minutes + 14.6’ = 3

4. 14.6’ x 4 = 58.4 seconds = 58

5 =21 59 58

329°59.6’ converted to time is, therefore, 21 hours 59 minutes 58 sec-

onds.

Local Mean Time to Zone Time

The times of some celestial phenomena are first determined as local

mean time, LMT; that is, time based on the mean or average sun, and

applying to one particular meridian. However, our clocks on board ship

are almost never set to LMT; they are usually set to zone time, ZT.

Zone timeis the local mean time of a zone or reference meridian, and is

kept throughout a designated zone. Our clocks, therefore, read LMT

only when we are exactly on the reference meridian of our zone. If the

LMT ofsunrise, for example, is to be useful, it must be converted to

the time kept by our clocks.

In zone time, the nearest meridian exactly divisible by 15° is usually

used as the time zone meridian. Thus, within a time zone extending 7.5°

on each side of the zone meridian, the clock time is the same, and the

time in adjacent zones will differ from ours by exactly one hour. Our

ZT, therefore, can differ from our LMT by as much as one-half hour.

To convert LMT to ZT, we must find the difference in longitude

between our own meridian, and our time zone meridian. This difference

is then converted into time, one degree being equal to 4 minutes of

time, and one minute of arc being equal to 4 seconds of time. Thus 3°43’

of longitude would equal 14 minutes 52 seconds (4 xX 3 = 12
minutes + 43 X 4 seconds).

If our ship’s longitude is West of our zone meridian, our LMT will be

earlier than our ZT, and to convert the LMT to ZT, the difference in

longitude between our meridian and the zone meridian, converted to

time, must be added to our LMT. Conversely, if we are East of our

zone meridian, our LMT will be later than our ZT, and the difference in

longitude, stated as time, must be subtracted from our LMT.
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Example 1: We are in A 69°42.3' W, and our clocks are set to zone + 5
time (zone meridian 75° W). The LMT is 17 53 42. We require zone
time.

 

Our longitude 69°42.3' W

Zone meridian 75°00.0' W

Difference in longitude 5°17.7' E

H M §
5° = 20

17.7 = 1 11

Difference of longitude in time =- "21 11E

LMT = 17 53 42

Zone time = 17 32 31

The sign is negative because we are East of our zone meridian.

Example 2: We are in A 117°22.6' E, and our clocks are set to zone

— 8 time (zone meridian 120° E). The LMT is 05 12 32. We require

the zone time.

 

Our longitude 117°22.6' E

Zone meridian 120°00.0" E

Difference in longitude 2°37.4' W

H M §

2° = 8

37.4 = 2 30

Difference of longitude in time = + 10 30W

LMT = 05 12 32

Zone time = 05 23 02

The sign is positive because we are West of our zone meridian.

Interconversion of Minutes and Seconds of Arc or Time and

Decimals of Degrees or Hours

Position at sea and in the heavens is usually stated in degrees, min-

utes, and seconds (or minutes and tenths) of arc; similarly, time is

usually stated in hours, minutes, and seconds. The calculator, how-

ever, is geared to work only with decimals; it is, therefore, often neces-

sary to convert input data to decimals in order to enter them into the

calculator, and usually it is desirable to reconvert the decimal portion
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of the answer, as read from the calculator, to minutes and seconds, or

minutes and tenths.

Many models of scientific calculators can make these conversions at

the touch of one or two keys. For the others, the conversion must be

made arithmetically, as discussed below.

When arc is stated in minutes and tenths, we divide the minutes and

tenths by 60 to convert to decimals. Thus, if we wish to convert

29°37.6' to decimals, we divide 37.6’ by 60 and obtain 0.6267; thus

29°37.6' becomes 29.6267°.

When arc or time is stated in minutes and seconds, wefirst divide the

minutes by 60 and then divide the seconds by 3600; the sum of the two

dividends gives us the answer in decimals. For example, suppose we

wish to convert 53m 37s to decimals of an hour:

53m/60 = 0.883 33

37s/3600 = 0.010 28

The answer, therefore, is 0.893 61 hour.

When arc is stated in minutes and seconds, and precision is not of

primary importance, we can round off the seconds to the nearest one-

tenth of a minute, and proceed as above. If, however, precision is

required, we divide the seconds by 3600, and then divide the minutes

by 60; the sum of the dividends gives us the conversion. Thus, to

convert 57'49", we divide 49” by 3600 and get 0.01361; we next divide

57’ by 60 and get 0.9500. Adding the two dividends, we obtain the sum,

0.96361°.
The conversion from decimals of degrees to minutes and seconds is

equally simple: the first two digits in the decimal are multiplied by 60 to

obtain minutes and decimals of a minute. The number ofwhole minutes
is noted, and the decimals of a minute are multiplied by 60 to convert

them to seconds. The remaining digits in the decimal are then multi-

plied by 3600 to convert them to seconds, and then added to the number
of seconds found in the first step.

Example: We wish to convert 0.81971° to minutes and seconds:

0.81° xX 60 = 48.6’ = 48'36"
+

0.00971° x 3600 = 34.96"

49'10.96"

Ordinarily, when dealing with arc, we work to the nearest one-tenth
of a minute; we would, therefore, call this value 49.2’. When working
with time, we ordinarily work to the nearest second, and this quantity
would then be written 49m 11s.
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Celestial Observations

Sextant Altitude Correction

Dip of the Horizon

The dip ofthe horizon, caused by the fact that the Earth is a sphere,

is the angle by which the visible horizon differs from the true horizontal

at the observer’s eye.Its value increases as the height ofthe observer’s

eye increases; it is also affected by terrestrial refraction, the bending of

the light rays as we look at the horizon, which increases the distance to

the horizon. Furthermore, it can be very considerably affected by

anomalous atmospheric conditions, such as a difference between the

temperature of the water surface and that of the air aboveit.

The following formula for determining dip allows for terrestrial re-

fraction in ‘‘normal’’ atmospheric conditions:

D =097 Vh

D being the dip in minutes of arc, and /# being the observer’s height of

eye above sea level, in feet.
The value of the dip is subtracted from the sextant altitude for all

celestial observations.

Example: Your height of eye is 63 feet. What is the correction for dip?

The above formula becomes:

D =0.97 v63 = 7.7

The correction for dip, therefore, is —7.7'.

95
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Dip Short of the Horizon

A celestial observation may be necessary when land or some other

obstruction located directly below the body makes the sea horizon

invisible. In such a case, provided the distance to the obstruction is

known, the waterline of the obstruction may be used as the horizontal

reference.

Under such conditions, the dip short of the horizon may be closely

approximated by use of the formula

D, = 0.416+ 0.566

where D,is the dip short of the sea horizon, in minutes of arc; d is the

distance to the waterline of the obstruction, expressed in nautical

miles; and #4 is the observer’s height of eye above sea level, in feet.

This formula is a simplified version of the one given in Bowditch; in

the great majority of cases it gives the value of the dip correct to the

nearest tenth of a minute. Only when the height of eye is great, and the

range to the obstruction is very short does some error arise; for exam-

ple, if the height of eye were 100 feet, and the range 0.1 mile, the above

formula would give a dip of 566.0’, whereas the correct dip would be

565.8’.
The value of the dip is subtracted from the sextant altitude for all

celestial observations.

Example: The height of eye is 24 feet, and the distance to the obstruc-

tion is 0.75 nautical mile. We require the value of the dip short of the
horizon. The formula becomes:

D; = (0.416 x 0.75) + 0.566 or = 0.312 + (0.566 x 32)

= 0.312 + 18.112 = 18.424

The correction for dip, as here calculated, is, therefore, —18.4’,

which is correct to the nearest tenth of a minute.

Mean Refraction

Mean refraction is based on a temperature of 50°F (+10°C) and a

barometric pressure of 29.83 inches (1010 millibars), conditions that are
considered standard. Corrections for ‘‘nonstandard” temperature and
for “‘nonstandard’’ barometric pressure are given in the following sec-
tions. It is particularly important to correct the mean refraction when
observations are made at low altitudes, and it should always be done
when the utmost accuracy is desired.

The index and instrumental errors, as well as the correction for dip,
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should always be applied to the altitude as read from the sextant before
the refraction is determined; the sextant altitude, so corrected, is
termed the apparent altitude, ka.

The mean refraction, Rm, stated in minutes of arc, may be deter-
mined with sufficient accuracy for all ordinary navigation by means of
the following formula:

Rm = 0.97" [tan{ha — tan™! 12(ha + 3°)}] (D

in which ha is the apparent altitude, expressed in degrees and decimals.

Example 1: We observed Aldebaran to have an ha of 17°13.6’ and wish

to determine the mean refraction correction.

We write formula (1):

Rm = 0.97’ [tan {17.2267° — tan! 12(17.2667° + 3°)}]
= 0.97’ [tan {17.2267° — tan! 242.7204°}]

0.97’ [tan {17.2267° — 89.7639°}]
= 0.97’ [tan {-72.5372°}]
= 0.97" x —3.1788' = —3.0834'

Rm, therefore, is —3.1’ for practical purposes.

The mean refraction may be corrected for nonstandard atmospheric

temperature and pressure, as discussed below.

Mean Refraction Correction for a Nonstandard Temperature

The value of the correction for mean refraction, Rm, is based on a

standard temperature of 50°F. The correction to be applied to Rm for a

nonstandard temperature may be found by the following formula, taken

from Bowditch. 510

Correction = Rm (1 260 + 7) 2)

Temperatures above 0°F are added to 460 in the divisor; those below

0°F are subtracted. Rm is entered in the formula without a negative

sign. The correction for temperature as found will be applied to Rm

according to its sign; the corrected refraction thus found will then have

the minus sign restored.

Example 2: We observed the Sun to have an ha of 5° when the tempera-

ture was 10°F. The computed Rm proved to be —9.8985'; we wish to

correct it for the temperature.

Formula (2) is written:

Correction 9.8985’ ( 1 )© 460 + 10
9.8985’ X —0.0851

= —(.8424’
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The correction to Rm —9.9' is, therefore, —0.8', making the corrected

refraction correction —10.7'.

Mean Refraction Correction for Nonstandard Barometric Pressure

The value of the mean refraction, Rm, is based on a standard atmos-

pheric pressure of 29.83 inches, or 1010 millibars. When the existing

pressure varies considerably from the standard,it may be desirable to

correctfor it, particularly if the body was observed at a low altitude.

The correction to be applied to Rm for nonstandard barometric

pressure may be found by the following formula, taken from Bowditch:

inn = P (1-2Correction = Rm (1 sir) or Rm = (1 1010 x) 3)

in which Rm is entered without sign, and P is the existing pressure in

inches of mercury, or millibars, as appropriate.

Example 3: We observed the Sun to have an ha of 5° when the baromet-

ric pressure was 31.2 inches. The computedRm proved to be —9.8985’.

We wish to correct the Rm for the existing pressure.

We write formula (3):

. , _ 31.27) _ ,
Correction = 9.8985 (1 ILL] 0.4546

The correction for barometric pressure is, therefore, —0.5’, making the

net correction for refraction —10.4'.

Combining Corrections to Rm for Nonstandard Temperature and
Pressure

When Rm is to be corrected for nonstandard conditions of both
temperature and pressure, the two corrections are added algebraically,

and then applied to Rm to obtain the net correction for refraction to be
applied to ha in order to obtain Ho.

Thus, if Rm is —7.4’, and the correction for temperature is —0.6',

while the correction for pressure is +0.2’, the net correction for refrac-
tion is —7.8'.

A Single Formula for Finding the Refraction Correction under
Nonstandard Conditions of Temperature and Pressure

The Almanac for Computers gives a single formula that permits cal-
culating the net correction for refraction under any condition of tem-
perature and pressure, to be applied to altitudes observed on board
ship. It is quite lengthy and therefore lends itself best for use with
programmable calculators.
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P :R = 353.430 289 {z — sin~'(0.998 604 7 x sin[0.996 761 4z])}
— 0.011 159 29z]

in whichR is the refraction corrected for temperature and pressure, and
expressed in minutes of arc, P is the atmospheric pressure in millibars,

T is the temperature in degrees Celsius, and z is the zenith distance, 90°
— ha.

Sea-Air Temperature Difference

The preceding formula for calculating the dip of the horizon is based,

as are the values for dip given in the Nautical Almanac, on the fact that

as altitude increases, standard or ‘‘normal’’ temperature and pressure

in the atmosphere decrease. When there is a difference between the

temperature of the seawater and the temperature of the air in contact
with it, the normal decrease in air temperature is upset, and the normal

value of the dip is affected.

Considerable study, with varying results, has been devoted to de-

termining the exact effect of such a temperature difference on the value

of the dip, with varying results. However, it has been determined that

where the water is warmer than the air, the horizon is depressed, result-

ing in sextant altitudes that are too great; the converse is true if the

water is the cooler substance.

The Japanese Hydrographic Office, after much empirical testing,

found that the value of the dip would be affected by 0.11 minute of arc

for each degree Fahrenheit of difference between sea and air tempera-

tures.

As a formula this is stated:

Sea-air temperature correction = 0.11’ Xx difference in temperature in

degrees Fahrenheit between sea and

air

The correction is subtractive if the air is colder than the water, and

additive if it is warmer.
In practice, the dry-bulb temperature is taken in the shade at the

observer’s height of eye, and the water temperature is taken either

from a sample obtained in a dip bucket, or from the intake water

temperature obtained from the engine room.

If temperatures are stated in degrees Celsius, the formula becomes:

S-A correction = 0.198’ x difference in temperature in degrees Cel-

sius between sea and air

As before, the correction is stated in minutes of arc.
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Example: The air temperature is 32°F, and the water temperature is

48°F. We require the sea—air temperature correction.

We write the formula:

S-A correction = 0.11" xX 16 = 1.76’

The correction to the sextant altitude for the sea-air temperature

difference is, therefore, —1.8’, the correction being subtractive because

the water is warmer than the air.

Coriolis Effect

Observations of celestial bodies made with sextants fitted with artifi-
cial horizons, such as the bubble, and so on, are affected by the Earth’s

rotation, which tends to move objects to the right in the Northern

Hemisphere, and to the left in the Southern. This Coriolis effect or

acceleration varies with the observer's speed, his latitude, and his track

angle, and manifests itself as a deflection of the apparent vertical. The

amount of this deflection, Def, in minutes of arc, may be found by

means of the following formula:

Def =2.62V xX sinL + 0.146 V2 x sinT X tanL — 5.25V xT’ (1)

where V is the speed over the ground in hundreds of knots, L is the

latitude, T is the true track, and 7” is the rate of change of track angle in

degrees per minute of time.

Under ordinary conditions, sufficient accuracy may be obtained by

abbreviating the formula to

Def = 2.62V X sinL (1A)

The deflection of the apparent vertical having been determined by

means of formula (1) or (1A), the correction for Coriolis effect to be

applied to the body’s altitude, as read from an artificial horizon sextant,
may be computed by use of the formula

Ah = Def xX sin (Zn — T) 2)

in which Ah is the altitude correction in minutes of arc, Def is the

deflection of the vertical found by formula (1) or (1A), Zn is the body’s
true azimuth, and 7 is the track angle.

In the Northern Hemisphere, the altitude correction, Ah, is additive

for bodies observed to the right of the vehicle, and subtractive for those

observed to the left. In the Southern Hemisphere, the correction is

subtractive for bodies observed to the right, and additive for those
observed to the left.
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Review of Corrections to be Applied to Celestial Observations

Sun, Stars, and Planets

1. To all sights, apply:

a. The instrument correction,if any, obtained from the sextant cer-
tificate, which may be + or —.

b. The index correction, obtained by observation, which may be +
or —.

c. The correction for height of eye, or dip, which is always —.

d. The correction for the difference between sea temperature and air
temperature, which may be + or —.

The above corrections, applied to the sextant altitude, give the ap-
parent altitude, ha.

2. To the apparent altitude of all bodies, apply:

a. The correction for mean refraction, which is always —.

b. If required, the correction for nonstandard air temperature,
which may be + or —.

c. The correction for nonstandard barometric pressure, which may

be + or —.

That completes the corrections for observations of the stars and

planets.
For observations of the Sun, in addition to the above, apply:

a. The correction for semidiameter for the date, found in the Long-

Term Sun Almanac. This is + for the lower limb sights, and — for

upper limb sights.

b. The correction for parallax, +0.1’, for observations at all al-

titudes below 65°.

For observations of the Moon, in addition to the above, apply the

corrections as found on the inside back cover of the Nautical Almanac.

Sight Reduction

Brief History

Sight reduction is defined as the process of deriving from a sight the

information needed for establishing a line of position. This entails com-

puting the body’s altitude or azimuth, using either the estimated or an

assumed position.

As we know it, sight reduction is a comparatively recent develop-

ment, whether the computations are made by log tables or sight reduc-
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tion tables; the concept of the position line dates back only about 140

years.
For centuries, the only sights the navigator could use were those of

bodies transiting his meridian; from these he could obtain his latitude.

Otherwise, with the exception of Polaris, which served to indicate

latitude and direction in the Northern Hemisphere, without an accurate

time source, the celestial bodies were of little use except as steering

references.
The need for developing a method of determining longitude became

ever more urgent as longer voyages of commerce and exploration were
undertaken. During the fifteenth through the eighteenth centuries, the

best mathematical and scientific minds in Europe worked on this prob-

lem. It was known that the apparent motion of the heavenly bodies was

extremely regular, and that the Moon changed its position relative to

the Sun and the stars at a constant rate.

It was apparent, therefore, that there were two possible solutions:
either the Moon must be made to furnish time, and therefore longitude,

or an accurate time piece must be designed and built. The latter choice

was long unattainable; the great majority, therefore, turned their atten-

tion to the Moon.

The Moon’s rate of motion, as it crosses the sky, differs by roughly

30’ per hour, about the Moon’s diameter—or 12° per day—from the

motions of the Sun and stars. If the exact angular difference between

the center of the Moon and the center of some other celestial body

could be measured, the time of the observation, and therefore the

longitude, could be determined.

The first determination of longitude by lunar distance is variously

attributed to Regiomontanus in 1472, Amerigo Vespucci in 1497, and

John Werner in 1514; however, for centuries it was very little used,

because of lack of accurate ephemeral data on the Moon, poor instru-

ments, and the complexity of the necessary computations.

In 1675 the Royal Observatory was established at Greenwich, En-

gland, and accurate ephemeral data on the Moon were slowly accumu-

lated there, as well as at various observatories on the Continent. In
1767 the English Nautical Almanac appeared, combining much as-

tronomical data in a single source. Incidentally, this publication even-

tually led to the universal adoption of the meridian of Greenwich as the
prime meridian for establishing longitude.

The advent of the Nautical Almanac facilitated the working of lunar
distance observations, and the invention of the sextant in 1730 made
it possible to obtain such observations with considerable accuracy.
On his first voyage to the Pacific, 1768-1771, Captain James Cook
did not carry a chronometer, and determined his longitude by lunar
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distances. In 1769-1770 he charted New Zealand with remarkable
accuracy. Observations were all made afloat by Cook, himself, and
Charles Green, an astronomer, using Hadley sextants.
By our standards, these instruments were quite primitive; however,

the latitudes obtained were all very accurate. The longitudes were
somewhat more uncertain. The South Island he placed about 25’, or 18
miles, too far to the East; one of the greatest errors was 40’.

However, the lengthy mathematical calculations involved deterred

many navigators from making use of lunar distance observations, and

the habit of coming to the latitude of the vessel's destination, and then

sailing down the easting or westing to the port, remained in wide use.
The simplification of the lunar method by Nathaniel Bowditch in 1802

considerably widened the use of the lunar distance observation.
Even with a chronometer on board, lunar distance observations con-

tinued to be used in isolated areas as a check on chronometers until the

invention of radio. The lengthy tables of ‘‘ Maritime Positions,’ listed in

Bowditch through the 1962 edition, were included primarily to permit

checking the accuracy of the chronometer by means of celestial obser-

vations.

John Harrison developed a prototype chronometer in 1720, and

submitted a perfected instrument to the Royal Navy for sea trials in

1735. Improved models were produced by him over the next 40 years;

they ran well, but were extremely expensive, and their use was long

highly restricted. Only in this century did the chronometer come into

wide use, greatly facilitating the determination of longitude. The inven-

tion of radio permitted a regular and easy check on its accuracy.
With the invention of the chronometer, when the latitude was

known, it became possible to compute the longitude, using the time

sight method; this method of navigation remained popular into this

century, as a position could be determined without plotting. The dis-

covery of the line of position by Captain Thomas H. Sumner in 1837

heralded a new era in navigation. The Sumner line of position was

originally obtained by reducing the same sight twice; the estimated

latitude was used for the first reduction. A slightly different latitude,

say, 10’ or 20’ from the first, was then selected to reduce the sight a

second time; a line of position was then drawn through the two posi-

tions on the chart. With the invention of azimuth tables in the latter part

of the nineteenth century, it became possible to work only one time

sight, and then draw a line through the resulting position, perpendicular

to the body’s azimuth.

The era of the ‘‘new navigation’’ came with the introduction of the

altitude-difference method of determining a line of position by Com-

mander Adolphe-Laurent-Anatole Marcq de Blonde de Saint-Hilaire,
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of the French Navy, in 1875. This method remains the basis of almost

all celestial navigation used at sea today.

The Marcq Saint-Hilaire method, asit is generally called, remained

in common use on board U. S. naval ships through thefirst decades of

this century. Computed altitude and azimuth angle were calculated by

means of the log sine, cosine, and haversine, and natural haversine

tables included in Bowditch.

Subsequently sight reduction wasgreatly simplified by the coming of

the various so-called short-method tables—such as the WeemsLine of

Position Book, Dreisonstok’s H.O. 208, and Ageton’s H.O. 2I1. Even

greater simplification was achieved when the inspection tables, H.O.

214, H.O. 249, and H.O. 229, were published.

Thefinal step is use of the electronic calculator. However, the wise

navigator will always have familiar back-up methods to rely upon if

necessary; he may even need to find his longitude by a lunar distance

observation on occasion.

Computing Altitude

To plot the line of position, LOP, resulting from the observation of a

celestial body, two computations are required: both the body’s al-

titude, Hc, and its azimuth angle, Z, must be calculated. Alternatively,

the body’s true azimuth, Zn, or azimuth reckoned clockwise from true

North through 360°, may be determined by a somewhat longer formula.

In all the formulae for computing altitude and azimuth, L represents

the latitude, d the declination, and LHA the local hour angle, reckoned

from the observer’s meridian westward through 360°. It is sometimes

convenient to measure the arc in either an easterly or a westerly direc-

tion from the local meridian, through 180°, when it is called meridian

angle (¢) and labeled E or W to indicate the direction of measurement.

Hc is the body’s computed altitude, and Ho is the fully corrected

sextant altitude. Where H is used, it implies that either Ho or Hc may
be employed.

Having obtained Hc, we compare it with Ho to obtain the intercept,
a. The LOP may then be plotted, toward the body,in the direction Zn
by the length ofthe intercept ifHo is greater than Hc, and away in the
direction Zn — 180° if Hc is greater.

While some formulae for computing altitude require that Z must first
be determined, they are but rarely used, and it seems desirable to start
with the determination of altitude.

In Slide Rule for the Mariner, three formulae for obtaining Hc were
included—the classic sine formula,

sin Hc = sin L sind = cos L cosd cost (1
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the cosine Hc formula,

cos L sind + sinL cosd cost
 cos Hc = cos 7 2)

and the tangent Hc formula,

sn + sind cos M
tan He = —mM8M8M8M8M8M8— 3)

cos d

in which M is the parallactic angle at the geographic position of the

body in the navigation triangle PZM. To find the value ofM, it was first

necessary to compute the value of Z. The value ofM was then com-
puted by the formula

sin Z

aay = cosH tan L = sin H cos Z 4)
 

In each of these formulae, # is the meridian angle stated to 180° East

or West, from the observer's meridian, L is the ship’s estimated or DR
latitude, and H is the observed body's altitude.

Formulae (2) and (3) were included because of the compression of
the sine scale on the slide rule, as the angle increased. With a 10-inch

rule, accuracy within about 2’ of arc may be obtained to about 30°.

With a 20-inch rule, the same accuracy can be obtained to about 50°.

The calculator is plagued by no such limitation. The slide rule does

not lend itself well to handling negative values, as with South latitude or

declination, or when angles are greater than 90°. Consequently, rules

were required as to when the sign was to be positive and when nega-

tive; these rules are not required with the calculator.
For use with the calculator, formula (1) is slightly changed:

sin Hc = sinL X sind + cos L X cosd X cos LHA 5)

Here, the sign is always positive, and local hour angle, LHA, mea-

sured to the West to 360° from the observer's meridian, is substituted

for meridian angle, ¢t. Latitude and declination, if named South, are

prefixed with a minus sign in entering them into the calculator. This

permits us always to add the two terms in the equation and does away

with the rules previously required.
In the reduction of celestial observations, the sine Hc formula, when

used with the calculator, offers a considerable advantage over the vari-

ous sight reduction tables,in that a round ofsights can be plotted from

the same DR or estimated position, thus doing away with the long

intercept frequently encountered when plotting from an assumed posi-

tion.
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Example 1: Our DR latitude was 37°16.3' N when we observed the Sun

to have a corrected altitude of 58°26.3'; its declination was N 20°42.3’

and its GHA such that when we applied our longitude, the LHA was

329°02.7'. We require the Hc.

Formula (5) becomes:

sin Hc = sin 37.2717° x sin 20.7050° + cos 37.2717°
X cos 20.7050° X cos 329.0450°

0.2141 + 0.6384 = 0.8525

so that:

Hc 58°28.9’

Ho 5826.3

a A 2.6’

Hc being greater than Ho, the intercept, a, is away 2.6 miles.

Example 2: Our estimated latitude was 31°17.8’ S when we observed the

planet Mars to have an Ho of 34°49.7'. At the time of the observation

the planet’s declination was N 15°06.4', and its LHA was 31°20.6'. We

require Hc and a.

In this instance, formula (1) becomes:

sin He = —0.1354 + 0.7064 = 0.5692

so that:

Hc 34°41.6'
Ho 34°49.7'

a 8.1’ Toward

Cosine-Haversine Formula

Another sight reduction formula, which was widely used in the first
part of this century, before the advent of the ‘‘short-method’’ tables,

such as those prepared by Ogura, Weems, Ageton, and so on, and then

the inspection tables, H.O. 214, 218, 229, and 249, was the cosine-
haversine formula:

havz = hav (L ~d) + cos L cosd havt

in which z is zenith distance, L either an assumed or the DR latitude, d
the declination, and ¢ the meridian angle. The haversine of an angle,
incidentally, is half the versine of an angle, or (1 — cosine)/2.

This formula simplified matters somewhat for the navigator, as the
sign is always positive—there are no cases, as in the sine-cosine for-
mula, in which meridian angle rather than local hour angle is used;
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haversines are always positive, and increase in value continuously
from 0° to 180°.

In using this formula, the natural haversine of (L ~ d) was first
found; then the log cosine of L and d and the log haversine of ¢ were
added, and this sum was converted to a natural haversine

(log + natural values of haversines were listed side by side). The two

natural haversines were then added to obtain z, which was subtracted
from 90° to obtain Hc.

Azimuth angle was found by means of the formula sin Z = cos d

X sint X sec H. Here, again, logs were used to substitute addition
for multiplication.

Computing Azimuth Angle and Azimuth

In sight reduction we must determine azimuth as well as altitude in

order to plot a line of position. Azimuth angle, Z, may be computed

from either North or South, toward either the East or the West. Some

formulae computeit only to 90°; others compute it to 180°. However, to

plot a line of position, we must convert azimuth angle to azimuth, Zn,

figured from true North, clockwise to 360°. Various formulae for de-

termining either azimuth or azimuth angle with the calculator are avail-

able; the latter tend to be somewhat longer than the former.

The following formulae may be helpful in converting azimuth angle

to true azimuth:

Z North X degrees East Z=2n

Z South X degrees East 180° — Z =Z2n

Z NorthX degrees West 360° — Z = Zn

Z South X degrees West 180° + Z =2Zn

Computing Azimuth Angle

The simplest formula for computing azimuth angle is

cos d sin LHA
sinZ =

cos H

This formula yields a rapid solution for Z; however, it gives no

indication as to the quadrant in which the body lies. It is essential,

therefore, when this formula is used, that the quadrant (NE, SW,etc.)

be noted,in order that proper conversion may be made. When LHA is

greater than 180°, Z will be preceded by a —, indicating thatit is toward

the East.

At times, the body may be located near the prime vertical (PV),the

azimuth being close to 090° or 270°, leaving doubt as to whether Z is

stated from the North or South. In such a case the doubt may be
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resolved by determining whether the body has crossed the PV. This

may easily be determined; the altitude on the PV is found by the for-

mula

If the observed altitude is greater than that on the PV, the body lies

away from the elevated pole; that is, in North latitude the body lies to

the South of the PV, and Z will bear the prefix *‘S.”

Example: In latitude 40°00.0' N, we observed the Sun to have an al-

titude of 28°21.4’ at a time when its declination was North 21°00.0’, and

its LHA was 290°. We wish to computeZ using the sinZ formula, and to

convert Z to Zn.

Formula (1) becomes:

0.9336 x —0.9397 _ —0.8773
0.8800 0.8800

Z, therefore, is —85.4862°, that is, to the East.

We are not sure whether the Sun was located in the NE or SE

quadrant at the time of the observation. To resolve this question, we
find its altitude on the PV using the sin H = sind/sin L formula.

The altitude on the PV thus proves to be 33°53.1’, which is greater

than the observed altitude. The Sun’s Z at the time of the observation
for plotting purposes was N 85.5E°, making Zn 085.5°.

 sin Z =

Cosine Z Formula

The second formula for computing Z is the cosine azimuth formula:

_ sind —sinL X sin H
cos Z = cos L X cos H ©
 

This formula has the advantage of always computing Z from true

North, provided that South latitude is entered as a minus quantity;

declination, when South, should, of course, also be entered as a minus
quantity.

Unlike the sin Z formula, this formula does not indicate whether the

bodylies toward the East or the West; the value of the LHA is used to
make this determination.

The rules for obtaining Zn from Z when using the cosine Z formula
are:

1. In both North and South latitudes, when LHA is less than 180°,
Zn = 360° — Z.

2. In both North and South latitudes, when LHA is greater than 180°,
Zn = Z.
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Example 1: Ourlatitude was 30°00.0’ N when we observed the Sun to
have an Ho of 32°42.9’; its d was N 20°, and theLHA was 297°. We wish
to find Zn using the cosine Z formula.
We write formula (2):

0.3420 — 0.50 x 0.5405
 

COS Z = ==(.8660 x 0.8414
_ 0.0718 _= 07386 = 0-098

Z = 84.3458

Z, therefore,is 84.3°, and the LHA being greater than 180°, Zn is 084.3°.

Example 2: We were in L 45° N, when we observed Jupiter to have a

corrected altitude 19°25.1'. Its d at the time was S 15° and the LHA was

41°. We require Zn, using the cosine Z formula. Formula (2) becomes:

—0.2588 — 0.2351 _ —0.4939 _

cos Z = 0.6669 = 0.6669 _ 0.7406
Z =137.%8°

Z is, therefore, 137.8°, and as the LHA is less than 180°, we subtract

Z from 360° to obtain Zn, 222.2°.

 

Example 3: In latitude 37° S we observed the Sun to have an Ho of

33°11.9’; its declination at the time was N 10°00.0’, and the LHA was

34°. We require Z and Zn.

Formula (2) becomes:

0.5032
0.6683

Z=412

LHA in this case being less than 180°, we subtractZ from 360° to obtain

Zn 318.8".

cos Z = = (0.7529

Computing Altitude and True Azimuth in Single Operation

Most formulae for computing azimuth produce a quantity termed

azimuth angle, Z, the smallest angle measured from the nearest pole,

or, in the case of the cosine Z formula, azimuth angle to 180°

figured East or West from true North. In either case, the azimuth

angle must then be converted to true azimuth, Zn. Below, we discuss

algorithms that will supply both Zn and computed altitude in a single

operation.

Normally when we wish to compute azimuth, we know the local
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hour angle, LHA, latitude, L, and declination, d. By preserving the

algebraic signs of these values (negative for southerly latitudes and

declinations), we can use the Dozier formula on our handheld scientific

calculator to obtain true azimuth without the necessity of having to

figure out which quadrant contains the angle.

The Dozier formula is normally seen as

sin LHA

cos LHA sinL — cos L sind

However,it is not really enough to evaluate the right-hand side of the

equation and then simply push [TAN™!]. Instead, because valuable

information is retained by the algebraic signs of the numerator and

denominator of the expression,it is best to use the rectangular-to-polar

function to return Zn directly. It turns out that the result is always 180°

off, so the formula is better written

 tanZn =

sin LHA

cos LHA sinL — cos L tand

which, using an invented notation, can be rewritten as

Zn = 180 + R — P (sinLHA cosd, cosLHA cosd sinL — cosL sind)

tan (Zn — 180) =

This formula for Zn can be evaluated in the usual way, paying atten-

tion to the quadrant in which Zn lies by computing numerator and

denominator. Since there is an expression for Hc that contains similar-

looking terms, one is generally wise to compute both Zn and Hc to-

gether by a method such as one of the following:

for RPN calculator Jor AOS calculator
(HP-67, -97, -41C) (SR-52, TI-58, -59)

input Junction input Junction
LHA ENTER? LHA STO 01
: ¢ L STO 02

¢ d STO 03
1 P>R @ 1 STO 00

Soy RCL 03
= P>R

P>R ©) EXC 01 ©
RA P>R @
STO 01 EXC 02 :
X=Y STO 03
P>R 3 P>R  (Q)
X<>01 EXC 01
RA EXC 02
P>R @® EXC 03 (0)
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for RPN calculator

(HP-67, -97, 4iC)
input Junction

X<>01 )
+

X<>01 }§ ®

R>P
RDN
180
+

RCL 01
ASIN  J

Celestial Observations

Zn

Hc

for AOS calculator

(SR-52, TI-58, -59)
input Junction

P>R

SUM 03 ]

RCL 01

RCL 00

STO 00
RCL 02
R>P
+

180

RCL 03

©

Zn SIN-1 | Hc
For RPN calculators not having the roll up (Rf) and register

exchange features, such as the HP 25, 19-C, 33, and 65, the routine is:

Junctioninput

LHA

L

d

1

function
ENTER?
ENTER?
ENTER?
P>R RCL 02

+

STO 02

R|
RCL 01

R>P

R|
1

8

0
+ (Zn)

RCL 02

SIN—-1 Read Hc | 
(Press X<Y to read Zn)
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Introducing the notation

R > P[b, a] = (a? + b?)'? £ atan (4)

and

P>R[r,0]=b:rcosf a:rsiné

and remembering that in RPN calculators

b andr are in the x-register (the display)

a and 0 are in the y-register

and in AOS calculators

b and r are in R00
a and 0 are in the display

we can write the above equation as

Zn = R > Pl[cos d sin L cos LHA — cos L sind, sin LHA cos d]

Hc = asin(sind sinL + cosd cos LHA cos L)

We see that we can compute some of the five terms in the above

equations simultaneously:

1. First we compute cos d and sin d, and we save the latter.

2. Then we compute cos d cos LHA and cosd sinLHA, and again save

the latter.

3. Then we compute cosd cosLHA cosL and cosd cosLHA sinL, and

yet again save the latter.

. We now recover sind and L, and compute sind cos L and sind sin L.

. All five terms are now computed, and we can combine them appro-
priately to get Zn and Hc.

w
n
A

The routines given above may also be used to solve star identifica-
tion and great-circle sailing problems.

To identify a star, first enter its true azimuth, Zn, then the best

estimate of the ship’s latitude, and finally the observed altitude, Ho;all

values must be expressed in degrees and decimals.

The above routines will then provide the star’s declination, in lieu of

the computed altitude, and the star’s LHA in lieu of the Zn. Frequently

the star may be identified by its declination alone. The star’s SHA may

be found by first applying the vessel's estimated longitude to the LHA

in order to obtain the star's GHA, and then by applying the GHA of
Aries to the star’s GHA in order to obtain its SHA.

To compute the great-circle distance between two points, and the

initial heading, first enter the difference of longitude between the



113 Celestial Observations

point of departure and the destination, then the latitude of the point
of departure, and finally the latitude of the destination. The read-out
is then multiplied by 60 to give the great-circle distance; the initial

 

heading may then be found by pressing |x<vy |.
   

Finding the Longitude by the Time Sight Formula

Given an accurate latitude, as obtained by an observation of Polaris,

or the Sun, or some other body attransit, and then carried forward until

another observation is obtained of a body well to the East or West, the

longitude can be computed.

This method of determining position was in wide use in the merchant

fleets of the world at the time of World WarII, and is probably still in

use. Many ship owners did not buy reduction tables, charts, almanacs,

and so forth, for their ships, and it was therefore desirable to have a

method of fixing position that did not involve wear and tear on expen-

sive charts or plotting sheets purchased by the captain or navigator.

The latitude was carried forward by plane sailing, with allowance for

current, if deemed necessary, to the time of the second observation.

This second observation should, for the sake of accuracy, be made with

the body as near the prime vertical, that is, bearing as nearly due East

or due West, as possible.

The formula is

sin Ho — sinL X sind

cosL X cosd
 Cost =

The meridian angle, ¢, will be named East or West according to the

body’s azimuth. Having found the meridian angle, we apply it to the

GHA of the body at the time of the observation to find the longitude.

Example: Approximately 5S hours after LAN, in DRL 9°15.2' N,

A 151°17.8' W, the Sun bearing about 265°T was observed to have an

Ho of 13°56.4'. At the time of the observation, the Sun’s GHA was

226°36.1’, and its declination was South 3°02.0’. We require the

longitude.
The formula given above becomes:

.24091 + .00851
cost = 08560 25306

= 75.34148° = 75°20.5'

The Sun’s meridian angle at the time of the observation was there-

fore 75°20.5' W.
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In this case we subtract the meridian angle West from the Sun’s

GHA to obtain the longitude; if there is doubt as to how to apply

t to the GHA, it can be resolved easily by sketching a time diagram.

GHA  226°36.1'

t — 75°20.5' W

A 151°15.6’ W, which is the longitude

The longitude may be determined with considerable accuracy if a

body is observed on or near the prime vertical. For determining the
altitude of a body whenit is on the prime vertical, or its meridian angle

at that instant, see the section titled ‘‘Time and Altitude on the Prime
Vertical’’ under the heading ‘‘Miscellaneous Celestial Computations.’’

Horizon Sights

A horizon sight is an observation of a celestial body obtained when
the body is in contact with the sea horizon. The Sun is the body usually

used for such observations, for which no sextant is required. The sine

H formula, which has already been discussed in connection with com-

puting altitude, lends itself well to the reduction of horizon sights by

calculator. All that is needed is to obtain Greenwich mean time at the

moment the Sun’s limb is in contact with the horizon and to correct

most carefully for dip, refraction, and semidiameter, the resulting al-

titude of 0°.

It must be borne in mind that the resulting corrected altitude, Ho,

will be negative in value, and that, unless the DR position is greatly in

error, the computed altitude, Hc, also will be negative. For negative

altitudes, if Ho is greater than Hc, the intercept will be away, and will

be plotted in the direction of the supplement of the azimuths.

Usually, the best way to find the azimuth is to convert it from an

amplitude. Alternatively, it may be calculated by means of one of the

azimuth formulae discussed in this text.

Low-altitude sights have been considered unreliable, mainly be-

cause of the presumed vagaries of refraction at altitudes below 5°.

However, the refraction tables available today almost invariably give

good results. In a number of horizon observations of the Sun, the

average error was found to be 1.95 miles. This average would undoubt-
edly have been smaller, had the altitudes been computed to the nearest

tenth of a minute, rather than to the nearest minute.
From positions at sea that could be accurately established, the writer

made 378 observations of the Sun at altitudes ranging downward from
5° to the horizon. Of these sights, 336 yieldeda line-of-position plotting
within one mile of the actual position, 38 fell between 1.1 and 2.0 miles
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of the position, and the remaining 4 fell between 2.0 and 2.2 miles ofthe
position.

Horizon sights can be expected to yield good results in the great

majority of cases, and they will yield useful information on position, in

the event that no sextant is available. On a clear day in the tropics,it is

easy to determine the instant the Sun’s upper limb touches the horizon

by observing a quite bright greenish-blue flash, known as the ‘‘green

flash.’” This flash is caused by the greater refraction of the blue-violet

end of the light spectrum, and consequently it remains visible slightly

longer than does the red-yellow light.

Example: At sunset, when our DR position was L 35°02.1' N, A 69°14.7’

W, we observed the Sun’s upper limb to have an altitude of 0°. Green-

wich hour angle and declination were 168°05.7' and N 13°58.1', respec-
tively, and the semidiameter was 15.8’.

The observer’s height of eye was 12 feet, the barometric pressure

was 30.27 inches, the sea temperature was 82°F, and the air tempera-

ture was 71°F.
We wish to find the computed altitude, Hc, using the sine-cosine

formula, and to plot a line of position.

We first correct the altitude, in this instance using the tables in the

Nautical Almanac and the sea-air temperature formula:

hy, © 0°00.0’
Dip, 12’ -3.4
R -34.5'

Additional R,
Nautical Almanac, p. A4 +2.3’

SD © -15.8'
Sea-Air Temp. Corr. -1.2

-54.9' + 2.3’ Net. Corr. -52.6'

Ho -0°52.6’

where h, © represents altitude of the Sun’s upper limb, R represents

refraction, SD © represents semidiameter of the Sun, and Ho repre-

sents corrected altitude.
We next obtain the LHA:

Greenwich hour angle 168°05.7
A 69°14.W

LHA 9851.0
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We write the sine—cosine formula:

sin Hc = sin 35°02.1’ x sin 13°58.1' + cos 35°02.1’

x cos 13°58.1' x cos 98°51.0'

= 0.1386 — 0.1222 = 0.0163

Hc = (°56.1'

The computed altitude, therefore, is —0°56.1'.

We now find the Sun’s azimuth angle, Z, using the sine formula

cos 13°58.1’ x sin 98°51.0’

cos 0°56.1'

_ 0.9704 x 0.9881

- 0.9999

Z = 73.54

The azimuth angle, therefore, is N 73.5° W, Zn is 286.5° (360° —

73.5%), and, since the negative value of Ho is less than the negative

value of Hc, the intercept, a, is:

 sinZ =

Ho —0°52.6'

Hc — (°56.1'

3.5’ Toward

Noon Sights

For centuries the day afloat was reckoned to start as the Sun crossed

the ship’s meridian. The ship’s clocks were set to 1200, and the

navigator started the day by logging a latitude obtained by observing the

Sun at transit. Our Navy continues this tradition at least in part; the

officer of the deck sends his messenger to the captain with a request for

permission to strike eight bells on time; the eight bells are now struck at

1200 zone time, however, rather than at local apparent noon.

The noon sight remains important; it is always desirable to know

one’s latitude, and this sight is usually the most accurate that can be

obtained, as the Sun is stationary in altitude, and the horizon is sharply
defined.

Latitude may be obtained from this observation by the regular for-

mula used for sight reduction. The altitude is computed, and Zn is

assumed to be 000° or 180°, as the case may be, without computation.

The computed altitude, Hc, is compared with the observed altitude,

Ho, and the difference establishes the value of the intercept, a. If the

Ho is the greater, the intercept will be labeled ‘‘Toward’’ and the

latitude used in reducing the sight will be moved in the direction of
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the Sun by the amount ofthe intercept; if Hc is the greater, the con-
verse holds true.

However, the latitude at local apparent noon, LAN, may be accu-
rately determined, without calculating an altitude, by one of three for-
mulae which hinge on the relationship between the Sun’s declination, d,
and the latitude, L.

The first formula, for use when the latitude and declination are of the

same name but the latitude is greater than the declination, is:

L=90+d- Ho (1

in which Ho represents the completely corrected sextant altitude.
When the declination and latitude are of opposite names, the formula

is:

L =90° — (d + Ho) Q)

When latitude and declination are of the same name, but the declina-

tion is greater than the latitude, the formula is:

L =d+ Ho — 90° 3)

A fourth formula, which lends itself particularly well to use with

the calculator, as a substitute for the above formulae,is:

sin L = cos (Ho = d) 4)

in which the sign is — ifL and d are of the same name, and + if they are

of contrary name. The exception to this rule occurs whenL andd are of

the same name but d is greater than L; in this case, the sign is +, and a

— sign, which should be ignored, will appearto the left of the latitude.

Example 1: Our DR latitude is 37°45.0' N, and the Sun’s declination at

LAN is N 21°36.4'; the Ho was 73°50.2’. To find ourlatitude, we write

formula (1) as:

L = 90° + 21°36.4' — 73°50.2" = 37°46.2’

Our latitude at LAN, therefore, is 37°46.2" N.

Example 2: At LAN we were in DR L 18°12.8' S, the declination was

N 14°51.2’, and the Ho was 56°55.6’. Latitude and declination being of

opposite name, we here use formula (2), which becomes:

L = 90° — (14°51.2" + 56°55.6')
90° — 71°46.8’
18°13.2

Our latitude, therefore, was 18°13.2' S.

[
|
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Example 3: Our DRlatitude at LAN was 12°14.5" N, at which time the

Sun’s declination was N 21°29.7'; the Ho was 80°46.5’. As latitude and

declination are of the same name, we select formula (3), and write:

L = 21°29.7' + 80°46.5' — 90° = 12°16.2'

At LAN ourlatitude, therefore, was 12°16.2' N.

Example 4: In southern latitude we observed the Sun at transit to have

anHo of 63°51.7’; its declination at the time was S 14°12.6’. We desire

to determine ourlatitude, using formula (4), which we write, using the

— sign as L and d are of the same name:

sin L = cos (63°51.7" — 14°12.6’) = 0.6474

Ourlatitude, therefore, is 40°20.9’ S.

Example 5: Our DR latitude is 12°15.0’ N, when we observed the Sun’s

Ho at LAN to be 80°30.5'; the declination was N 19°42.7’. We require

ourlatitude, using formula (4). As the declination in this case is of the

same name but greater than the latitude, we write formula (4) using a +

sign, as L and d are of the same name, but d is greater than L:

sin L = cos(80°30.5" + 19°42.7') = —0.1774

which converts to —10.2200°. Converting the decimals to minutes, and

ignoring the —sign, we find we are in 10°13.2’ North latitude.

Hang of Sun at Local Apparent Noon

To determine the length of time the Sun will be within a given angle,

say 1’, of its altitude at LAN, the formula is:

sin(Ho LAN — 1.0’) xX sin L x sind
cost =

cosL X cosd

where ¢ is the meridian angle; ¢ is then multiplied by 4 to convert to

minutes of time, and then by 2 to get the sum of the time periods before
and after noon.

Time of Local Apparent Noon

A vessel under way can quite accurately determine the time of local
apparent noon, LAN, by means of a calculator, provided that the DR
longitude is known reasonably closely and that a Nautical Almanac or
an Air Almanac is available. The Long-Term Sun Almanac, included in
this text, may also be used. However, forthis purpose, anAirAlmanac,
which gives ephemeristic data for every 10 minutes of time, rather than
for every hour,is slightly more convenient than a Nautical Almanac,
and both are much more convenient than the Long-Term Sun Almanac.
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In the forenoon, while the Sun is still well to the East, enter the
Nautical Almanac, and extract the tabulated Greenwich hour angle,
GHA, of the Sun which is nearest to, but East of, your DR longitude,
together with the Greenwich mean time, GMT, of this entry. Next,
from the DR plot on the chart, determine the longitude for this GMT.
Having obtained this longitude, find the difference between it and the
Sun’s GHA, as taken from the Almanac. This difference is meridian
angle East, tE, which for this purpose is expressed in minutes of arc.

Next, in orderto establish the time of LAN,it is necessary to deter-

mine the instant of time when the Sun’s hourcircle will coincide with

the ship’s longitude. This is done by combining the rate of change of

longitude of the ship with that of the Sun. The former can be deter-

mined from the chart, or by working it as a mid-latitude sailing prob-

lem. The latteris an almost uniform 15°, or 900 minutes of arc per hour,
toward the West.

If the ship is moving toward the East, the hourly rate of change of

longitude is added to that of the Sun;if sheis sailing toward the West,it

is subtracted from that of the Sun. The result of this combination is

then divided into tE, expressed in minutes of arc, as shown in the

following formula:

Interval to LAN = tE in minutes of arc

900’ = ship’s change of longitude per hour
 

The answer to this equation will be in decimals of an hour, and

should be determined to three significant places. If the answer is multi-

plied by 60, minutes and decimals of minutes are obtained; the deci-

mals of minutes, multiplied by 60, will in turn yield seconds. The an-

swer, which will be mathematically correct to within about 4 seconds,

added to the hour of GMT obtained from the Nautical Almanac, will

give the GMT of LAN at the ship. The ship’s time zone description
may be applied to the GMT to give the ship’s time of LAN.

Example: On 23 March, we are steaming on course 064°, speed 20.0

knots, and we desire to observe the Sun at LAN. At 1140, zone + 4

time, we note that our 1200 DR position will be L 43°15.5" N, A 66°27.6

W. Our zone description being plus 4, the GMT of our 1200 position will

be 1600.

Turning to the Nautical Almanac for 23 March, we find that the Sun’s

GHA at 1600 GMT will be 58°20.1'. Subtracting this from our DR

longitude for that time, we obtain a difference of 8°07.5', or 487.5’; this

is the Sun’s meridian angle East at 1200.

We elect to find our rate of change of longitude per hour by mid-

latitude sailing. Using our 1200 DR position, course 064°, and speed

20.0 knots, we find that the mid-latitude at 1230 will be L 43°19.9" N,
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and that the departure is 17.98 miles per hour. This gives us a rate of

change of longitude of 24.7’ per hour to the eastward. The formula,

therefore, becomes:

487.5’
Interval to LAN = 900=24.7) 0.557 hour

0.557 hour multiplied by 60 equals 33.4 minutes; 0.4 minute multi-

plied by 60 equals 24 seconds. This, added to 1200, gives us the time of

LAN.
The ship’s time of LAN will, therefore, be 12 33 25 (+4).

Bear in mind that for a vessel moving on a near northerly or south-

erly course, the time of LAN must be computed because the Sun’s

maximum altitude, when reduced, will then yield a false latitude. This

is particularly true if the vessel is moving at speed.

Obtaining Latitude at LAN by Plotting

When the latitude and the Sun’s declination nearly coincide, it is

often difficult to get a satisfactory observation at LAN because the Sun

is almost directly overhead, its change ofaltitude is very rapid, and the

hang is very brief. Under such conditions, the morning sights have

yielded an excellent idea of longitude, but have not helped in determin-

ing latitude.

Under such conditions, the best way to find the latitude often is by

plotting. The first step is to draw a line on the chart in a latitude to

coincide with the Sun’s declination; the Sun’s GHA, converted to time,

can be marked along this line as is convenient. When the Sun is about

12 minutes or 3 degrees to your East, start a series of timed observa-

tions, continuing until the Sun has passed about an equal distance to the

West.

Each sextant altitude is corrected in the usual manner to obtain Ho,

which is then subtracted from 90°. Using the resulting angle as a radius,

strike in an arc centered at the appropriate time or longitude on this line

to correspond to the Sun’s GHA atthe time of the observation. Repeat

this process for each sight;if your vessel is moving at high speed, each

arc may be advanced in the usual manner for the run. The intersection

of the arcs will establish both latitude and longitude at the time ofLAN.

Fixes in Conjunction with Noon Sight

Excellent running fixes may be obtained in conjunction with the
noon sight when the Sun’s declination is within about 30° of the ship’s
latitude.

If we desire a change of azimuth of about 45° between sights for a
running fix obtained before and after noon, the time to make the obser-
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vations can be approximated. All that is necessary is to find the numer-
ical difference between the latitude and the declination; this will ap-
proximate the meridian angle when the sun will be 45° in azimuth angle
from the meridian. The meridian angle thus found, multiplied by 4, will
give the time in minutes relative to the time of LAN at which the
observation is to be made.

Example 1: Our expected latitude at LAN will be 33°16’ N, and the
Sun’s declination, d, at that time will be N 20°37.0’.

Now 33°16’ — 20°37’ = 12°39’, or 12.65%, and 12.65 xX 4 = 50.6.

The Sun, therefore, will bear about 135°, 51 minutes before LAN,
and about 225°, 51 minutes after LAN.

Example 2: L 10°07’ S,d N 11°12’. Here, since L and d are of opposite

name, we add them to find the numerical difference.

10°07" + 11°12" = 21°19’; for our purpose, we will call it 21.3°, and
21.3 X 4 = 85.2 minutes.

The Sun, therefore, will bear 45° from our meridian 85 minutes be-
fore and after LAN.

Example 3: L 8°53’ N, d N 21°16’. The difference 21°16’ — 8°53’ =

12°23’; call it 12.4°. 12.4 xX 4 = 49.6.

The Sun, therefore, will bear about 045° some 50 minutes before

LAN, and about 315°, 50 minutes after.

Longitude at Local Apparent Noon by Equal Altitudes

If the day is clear, and an almanac and the correct time are available,

the ship’s longitude at local apparent noon, LAN, can be approximated

by what is generally called the ‘‘equal morning and afternoon altitude

method.” This, as we shall see, is a misnomer, because the afternoon

altitude, which we will call the PM-H,is equal to the morning altitude,

AM-H, only when a vessel is proceeding due East or due West, and the

Sun’s declination does not change between the AM-H and PM-H. The

latitude at LAN can, of course, also be determined, thus yielding a

close approximation of the true position at that time.

The best results are obtained when the AM-H is obtained while the

Sun is still changing altitude fairly rapidly; that is, when its azimuth is

not more than 140° True. In summer, in lower and mid-latitudes, the

change in azimuth is very rapid, and the AM-H may be obtained only a

short time before LAN. However, when the latitude and declination

are, for example, 50° apart, the AM-H may have to be obtained more

than 2 hours before LAN.

The technique in the equal-altitude method was to obtain an AM-H,

noting the sextant angle and the time of observation. After the Sun was

observed at LAN, the sextant was reset to the AM-H, and the time was
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taken when the Sun again reached the same altitude. However,for the

new equivalent-altitude method, which yields far better results than the

old, itis best to graph both the AM and PM altitudes, plotting altitudes

against Greenwich mean time, GMT; a line of ‘bestfit” is then drawn

through, or as close as possible to, the plotted altitudes. An altitude

from the AM graphis selected, and its GMT is noted.

As stated above, the PM-H will differ from the AM-H if the ship is
changing latitude,or if the Sun is changing in declination between these

two observations. Allowance can be made for each of these two fac-
tors.

The approximate effect of the ship’s change of latitude on the PM-H

can be determined by use of a correction factor, the cosine of the

azimuth angle, Z, at the time the AM-H was obtained. Since it is

usually difficult to obtain good azimuths at sea at altitudes higher than a

few degrees, this may be approximated by means of the formula

. cosd X sint

Sin Z = 0s Ho (1)

in which is the Sun’s declination, ¢ the Sun’s meridian angle found by

using the best estimate of the longitude at the time of AM-H, and Ho

the corrected sextant angle.

Having thus found the value ofZ, at LAN we find the difference in
latitude since our best estimate of our latitude at the time of AM-H,

double it, and multiply it by the cosine ofZ. The result, in minutes of

arc, is applied to AM-H, the sign being + if the change in latitude has

brought us nearer the Sun, and — if away from the Sun.

The effect of the change in declination may similarly be determined
by means of the cosine ofM, the angle at the Sun’s geographic position

in the navigational triangle PZM, in whichP is the elevated pole, andZ
the ship’s position. The angle M is found by the formula

cosL X sint

cos Ho @

in which t and Ho are determined as in formula (1), andL is the latitude
obtained at LAN.

Having found the value ofM, we determine its cosine. Incidentally,
in H.O. 214, the factor “Ad,” used for correcting the tabulated altitude
for minutes of declination over the tabulated declination, is the cosine
ofM stated to two decimal places.
We estimate the time of LAN,that is, the mid-time of the period

during which the maximum altitudes were obtained, and find the differ-
ence between this time and the time of AM-H. This difference is dou-
bled, and then multiplied by cosine M;the result in minutes is applied

sinM =
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to AM-H,the sign being + if the change in declination is bringing the
Sun nearer the ship, and — if away from the ship.
When both corrections have been applied to AM-H, we have the

value of PM-H. Forthis sight, we commence observing the Sun whenit
is somewhat higher than the value of PM-H, and again makea string of
observations, the final one being when the altitude is below PM-H.
These sights are again plotted against time, and a line of ‘‘best fit’’ is
drawn in. The altitude of PM-H is next found on this line, and the
corresponding GMT is noted.

We now proceed to determine the GMT of LAN, that is, when the
Sun was on our meridian, which establishes our longitude at LAN. We
find this time by finding the difference in time between that of AM-H

and PM-H, and halving it. This value is then added to the GMT of
AM-H to find the GMT of LAN.

The Sun’s Greenwich hour angle, GHA, is then determined for the

time of LAN; in West longitude, this coincides with the vessel's lon-
gitude at LAN; in East longitude,it is subtracted from 360° to give the
longitude.

It may be noted here that a given error in determining the correct
GMT of PM-H is halved in finding the longitude at LAN. Thus, if the

error in the time of PM-H were exactly one minute, the error in the
longitude at LAN would be 30 seconds, or 7.5’.

The following extreme case was prepared to illustrate the marked
effect that changes in the latitude and declination can have on the
PM-H. It may be of interest to note that in this example the error in the

longitude determined for the time of LAN did not exceed 0.5’; in other

words, the difference between the AM-H and PM-H meridian angles
was less than 1.0’. Ideally, they should have been equal.

Example: On 23 September we are in the Eastern Atlantic, bound for

Galway, Ireland. We are on course 045°T, at speed 21.24 knots. All

times are GMT.
We propose to determine our position at LAN using equivalent AM

and PM altitudes, and the Sun’s altitude at LAN. We commence ob-

serving the Sun’s altitude about 1045, and plot the sights. We decide to

use an altitude of 33°03.4’ for AM-H, obtained at 10:50:00, at which

time our DR position was L 50°05.8' N, A 16°20.1’ W, the Sun’s azimuth

was about 141° True, its GHA was 344°21.6’, and the declination was N

0°05.8'.
We note from the Nautical Almanac that the Sun’s declination is

declining at the rate of 1.0’ per hour, and realize therefore that the

altitude of the PM sight will have to be adjusted for this change, as well

as for our change oflatitude, which is considerable on this course and
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speed. However, we will not calculate these corrections until we have

obtained our latitude at LAN.

To determine the correction to be applied to AM-H for the change in

latitude, we must determine Z as accurately as possible for the time of

AM-H.
By applying our 1050 longitude to the Sun’s GHA at that time, we

find that the value of ¢ is 31°58.5’ E, and we can write formula (1):

. cos 0°05.8' x sin 31°58.5' _
sinZ = cos 33°03.4' = (0.6318 

Z, therefore, is 39.1845°, and its cosine is 0.775; we note this for
use later.

At 1250 we begin Sun observations for LAN. During the 2-minute

period from 1254 to 1256 we obtain the highest altitudes, which,

when reduced, give a latitude of 50°37.1' N.

We note that, in somewhat over 2 hours, our latitude has increased
by some 31.3’, and we can proceed to determine the corrections to

be applied to the AM-H to get the equivalent PM-H.

To correct for the change of latitude, we assume that our latitude

at the time of PM-H will have increased by twice the amount of the

increase to LAN. This would make it 62.6’, and multiplying this by

0.775, the cosine ofZ for the AM sight, we get 48.5’ as the correction

for latitude. The sign will be — because we shall be farther from

the Sun.

From the Almanac, we note that the declination decreases by

3.9" in the 4 hours from GMT 1100 to 1500. To correct for this change,
we write formula (2):

cos 50°37.1' x sin 31°58.5’

sin Mf = cos 33°03.4' = 0.4009 or 0.401

M, therefore, is 23.6332°, and its cosine is 0.9161.

We multiply the estimated decrease in declination, 3.9’, by 0.916,

and obtain the correction, 3.6’, for the change in declination. Here,

also, the sign will be —, because the Sun is moving away from us.

We can now apply the two corrections to obtain the equivalent
PM-H:

AM-H H 33°03.4’

Corr. for AL —48.5’

Corr. for Ad -3.6'

Net corr. -52.1

PM-H 32°11.3'
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At about 1454 we begin observing the Sun, continuing to take
sights until its altitude is below 32°. These sights are plotted against
time, and from the line of ‘‘best fit’’ we find that the Sun’s PM-H
was 32°11.3' at GMT 14:59:53.
We can now proceed to find the time the Sun was on our meridian

at LAN as follows:

Time of PM-H GMT 14:59:53

Time of AM-H GMT 10:50:00

Difference 4:09:53

One-half difference 2:04:56
+

Time of AM-H GMT 10:50:00

Time of LAN GMT 12:54:56

GHA Sun at GMT 12:54:56 = 15°36.0'

Our longitude at LAN, at GMT 12:54:56 was therefore 15°36.0' W;

this, with the latitude we obtained at that time, 50°37.1' N, gives us a

good approximation of our GMT 1255 position.

Reduction to the Meridian

The nineteenth-century navigator was extremely anxious to obtain

his latitude at LAN; he used it as a numerical value, and not as a line of

position—charts were much too expensive to permit the drawing and

erasing of lines. He carried his latitude forward by dead reckoning until

the Sun was well to the westward, when he would calculate his lon-

gitude by means of a time sight.

His forefathers in the first part of the eighteenth century, before the

chronometer became available, were limited in their celestial naviga-

tion to obtaining latitude; they expected to reach their destination by

arriving at its latitude, or slightly to weather ofit, and then running

down their easting or westing.
Clouds, therefore, could, on occasion, make for an unhappy

navigator; to assist him when the cloud cover was not solid and the Sun

broke through occasionally, shortly before or after transit, two tables

were designed that enabled him to obtain a latitude from his observa-

tion (these tables are included in the current Bowditch). However, for

him to use these tables, the observation had to be made within a com-

paratively short period of LAN; under favorable conditions, the maxi-

mum period was 28 minutes.

Such an observation was called an ex-meridian altitude; the process

of computing latitude by such a sight was called reduction to the meri-
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dian. Included at the end of this section are formulae that approximate

the data obtained by use ofthese tables. Also included are formulae for

a second method of obtaining latitude, which was widely used; how-

ever, it suffers from the same general restrictions.

We shall, however,first discuss a method of obtaining the latitude

without any arbitrary time limit, provided the longitude is known. In

using this method, two factors must be borne in mind: first, the less the

difference is between the observer’s latitude and the body’s declina-

tion, the greater will be the error in the computed latitude caused by a

given error in the observed altitude, and second, the farther the body is
located from the observer’s meridian at the time of observation, the

greater will be the effect on the computed latitude caused by an error in

the observation. Under most conditions, this error is not too serious;

even if the latitude and declination are separated by only 10°, a one-

minute error in the observed altitude, obtained 40 minutes before or
after transit, should not cause the computed latitude to be more than

1.5’ in error.
Two formulae are required to find latitude by this method, the first

being

tan dp=-2ana_
tan cos LHA

whereP is an auxiliary angle, d the declination, andLHA the local hour

angle.

The second formula is

sin P X sin Ho

cos 0 = sind (2

where Q is a second auxiliary angle, andHo the fully corrected sextant
altitude.

P is then applied to Q to obtain the latitude, the sign being ~ ifL and

d are of contrary name,orif they are of the same name and d is greater

than L; in all other cases, P and Q are added to obtain the latitude.

Example 1: In North latitude, we observed the Sun’s corrected altitude
to be 74°05.5’, at a time when its declination was N 18°43.7’, and the
LHA was 9°15.0'. We write formulae (1) and (2):

tan P = tan 18°43.7’ Xx 1/cos 9°15.0’ = (0.3435 = P 18.9576°
cos Q = sin 18.9576° x sin 74°05.5' +

X 1/sin 18°43.7' N = 0.9730 = 0 13.3335°

P+ 032291P°
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As L and d are of the same name, and L is greater than d, P and Q
are here additive, making our latitude 32°17.5’ N.

Example 2: The Sun’s corrected altitude was 63°45.0’ at a time when
its declination was N 16°26.6' and its LHA was 11°26.3' W. We know
that we are in South latitude. Then:

tan P = tan N 16°26.6' x 1/cos 11°26.3’ = 0.3011 = P 16.7580°
cos Q = sin 16.7580° x sin 63°45.0’ ~

X 1/sin N 16°26.6’ = 0.9135 = Q 23.9994°

P~Q-= 7.2414°

As the declination and latitude in this example are of contrary name,

we take the absolute difference between P and Q, which makes our
latitude 7°14.5' S.

The Bowditch Method

The two formulae that approximate the Bowditch method are in-

cluded primarily as a matter of historical interest. They should not be

used when the body’s altitude exceeds 86°, or when the time interval

from transit exceeds 28 minutes of time. Both require that an assumed

or estimated latitude be used, which,if in considerable error, can seri-

ously affect the accuracy; and both suffer from the same time lim-

itations.
In the Bowditch method of reduction to the meridian, the change of

altitude in one minute from meridian transit, a, is first calculated, using

the formula:

_ 1.9635" X cos L X cos d
- sin (L ~ d)

L being the latitude by estimate.

The second formula computes the correction, ¢, stated in minutes of

arc, which is to be applied to Ho, before solving for L:

(3)

 

2

= @
where a is the value found in formula (3), and ¢ is the time in minutes

and decimals before or after LAN.

The latitude thus found is the latitude at the time of the observation.

The Third Method

The third method also requires two formulae, the first being:

A = 30.56 x tan L + 30.56 x tand &))
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whereA is a value to be used in the second formula andL is the latitude

by estimate. The sign is + if L and d are of contrary name, and ~ if

they are of the same name.

The second formula is:
c =tYA (6)

where c is the correction, in minutes ofarc, to be added to the observed

altitude in calculating L, ¢ is the meridian angle in minutes of time and

decimals before or after transit, andA is the value found in formula (5).

Example: In latitude 23°33.0' N by estimate, we observed the Sun 11

minutes and 15 seconds after the computed time of transit to have an

Ho of 80°15.5’. The Sun’s declination at the instant of observation was

N 14°12.0’. We require our latitude at the time of observation.

Using the Bowditch method, we write formula (3):

1.9635” X cos 23°33.0' X cos 14°12.0'

sin (23°33.0' — 14°12.0')

1.7450 _TTeys = 10.7406

Formula (4) then becomes:

_ 10.7406 X 126.5625 _ 1359.3572
60 60

Therefore, c is 22.6560’, which we note as +22.7’, making the altitude

80°38.2'.

In this case, our latitude equals 90° + declination — altitude, or

23°33.8' N.

Using the same data to illustrate the second method, formula (5)

becomes:

 

 

 

A = 30.56 Xx tan 23°33.0" ~ 30.56 x tan 14°12.0’

A, therefore, equals 13.3196 — 7.7329, or 5.5867.

We can now write formula (6):

_ 126.5625 _
C = S386] - 22.6543

We therefore note that the correction, c, is + 22.7’, the same as that
obtained by the Bowditch method, yielding the same latitude, 23°33.8’
N.

Note: For the stated declination, meridian angle, and observed al-
titude, our latitude actually was 23°34.3’ N, which is what we would
have obtained if we had used the same data and the first method, given
above.
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Miscellaneous Celestial
Computations

Latitude Approximated by Altitude of Polaris

Approximate latitude may be determined by applying two correc-

tions to the corrected sextant altitude of Polaris.

The first, and major, correction hinges on the local hour angle of

Aries, LHA °Y; this correction is given in Table 5-1 for every 10° ofLHA

¥ for the year 1971. Stated next to each correction is its annual change,

together with the sign of the change. Although the change in the value

of the correction is not linear, an approximation of the correction for

nontabulated values ofLHA YY may be obtained by interpolating either

by eye or by calculator.

The second correction is an arbitrary one of + 1.0’; it combines the

mean values of the a, and a, corrections for latitudes between 10° and

50° North, and the month of the observation given in the Nautical

Almanac.

Example: On 1 December 1980 we observed Polaris to have a

corrected sextant altitude, of Ho, of 43°43.7'. Applying our estimated

longitude to the GHA Aries taken from the Almanac, we find the

LHA ¥ to be 320°. We wish to determine our approximate latitude.

We set the problem up as follows:

For 1971, LHA ¥ 320°, the main correction is —17.6’. Annual

A +0.3'. From 1 January 1971 to December 1980 is 9 years and 11

months; for our purposes we shall call it 10 years. Multiplying the

annual A of 0.3’ by 10 years, we get +3.0’.
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We can now write:

Correction forLHA ¥ 320.0°, 1971.1 -17.6'

Adjustment for 1980, 10 x 0.3’ +3.0’

Second correction +1.0'

Net correction —-13.6'

Ho 43°43.7'

Latitude 43°30.1' N

In this instance, the error in latitude is only +0.1’.

Times of Sunrise, Sunset, and Civil Twilight

Sunrise and sunset occur when the Sun’s upper limb touches the

horizon; under standard conditions of atmosphere and refraction, the

apparent times of sunrise and sunset occur at sea level when the Sun’s
center is 50 minutes of arc, or 0.8333°, below the visible horizon; in

other words, whenits altitude, H, is —0.8333°. In determining the times

of these phenomena with the aid of the formula given below, allowance

can be made for the height of eye by numerically adding the correction
for the dip of the horizon to the altitude, —0.8333°. Thus, if the time of

sunrise or sunset were required for a height of 100 feet, for which

height of eye the correction for dip is —9.7’, or —0.1617°, the value

used forH would be —0°59.7’, or —0.9950°.

The times of these phenomena are usually computed to the nearest

minute oftime. Temperature inversions and other vagaries of refraction

at altitudes near 0° can cause a considerable error in the times of these

phenomena. A British freighter, off the East Coast of Africa, some

years ago, reported that the Sun set at the calculated time and then

suddenly reappeared, well above the horizon, and proceeded to set

again.
For a vessel at sea, on a more or less easterly or westerly course,

once the time of sunrise or sunset is established,its time for the follow-

ing day can be closely approximated by applying the change in lon-

gitude, converted to time, to the time of the preceding phenomenon.

Otherwise, thefirst step is to determine the coordinates of the posi-

tion for which the time is required, after which we determine the Sun’s

meridian angle, ¢, at the time of the phenomenon. For this, we use the

formula

_ sinH — (sinL X sind)

cost = cos L X cosd MD
 

in whichH is usually assumed to be —0.8333°, L is the latitude, and d is

the declination at about the time ofthe desired phenomenon. The decli-
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nation may be computed by means of the long-term Sun almanac in-

cluded in this volume.

The Sun’s GHA should be computed at the same time, and, for

convenience, both should be calculated for the integral hour of GMT

preceding the time of the phenomenon.

Having obtained the value of the meridian angle, named East for

sunrise and West for sunset, we apply our longitude to it, subtracting if

in West longitude, and adding if to the East. The value thus obtained

gives the Sun’s angular distance East of Greenwich at the time of the

phenomenon at our position, which is subtracted from 360° to find the

Sun’s GHA for that time.
From this value, we subtract the GHA ofthe Sun at the selected hour

of GMT;the difference is then divided by 15 to obtain the GMT of the

phenomenon in decimals of an hour. This value is then converted to

minutes and seconds, and the answeris added to the integral hour of

GMTused in calculating the Sun’s GHA and declination. To this time

the zone time to which the ship’s clocks are set is applied, with sign

reversed, to obtain the ship’s time of the phenomenon.

When it is desired to determine the time of the commencement or

termination ofcivil twilight, the twilight of interest to the navigator, the

procedure is exactly the same, but the altitude —6° is used in computing

the value of ¢.

Example 1: We wish to determine the time of sunrise on 13 July for L

35° N, A 60° W. Our clocks are set to zone +4 time. We know that the

Sun will rise at some time after 0400 ship’s time. We, therefore, calcu-

late the GHA and declination of the Sun for GMT 0800 on 13 July,
finding them to be 298.3606°, and N 21.8983°, respectively.

We write formula (1):

sin (—0.8333°) — sin 35° X sin 21.8983°
 

cost = cos 35° X cos 21.8983°
_ —0.2285 _= Seon = —0.3006
t= 107.4932 E

We next apply our longitude, 60° W, to the value of #, subtracting
because we are in West longitude:  107.4932° — A 60° W = 47.4932°,

which is the angular distance the Sun will be East of the meridian of
Greenwich at the time of our sunrise.

To obtain the Sun’s GHA at this time, we subtract 47.4932° from

360°, which makes the GHA 312.5068°. We next subtract the Sun’s
GHA for GMT 0800, 298.3606°, from this, and obtain the difference,
14.1462°. Dividing this quantity by 15, we obtain 0.9431 hour, or 56m
35s. Adding this value to GMT 0800, we find that the GMT of our
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sunrise will be 0857, to the nearest minute. All that remains to obtain
the ship’s time of sunriseis to apply our zone description, +4, with sign
reversed, to this GMT. The ship’s time of sunrise is, therefore, 0457.

Example 2: We require the ship’s time of the commencement of civil
twilight and of sunrise for L 29°48.7’ S, A 148°36.7' E on 4 December.
Our clocks are set to zone —10 time. We know thatcivil twilight will
commence at some time after 0400 ship’s time.

The value 0400 —10 4 December makes the GMT 1800 (0400 +

24 — 10) 3 December, the previous day. We calculate the Sun’s GHA

and declination for this time and date, and find them to be 92.5667°, and
South 22.0883°, respectively.

To find ¢ for the commencement of civil twilight, we use —6° for H.

Formula (1) becomes:

-0.2915 _
0.8040

which makes the value of t+ 111.2562° East. Adding our longitude,

148.6117° E, to this quantity, we get 259.8679°. Next, subtracting this

value from 360°, we get 100.1321°, the GHA of the Sun at the com-

mencement of our civil twilight. From this GHA we subtract the Sun’s

GHA 92.5667° for the GMT 1800 on 3 December, found above; the

difference is 7.5654°, which, when divided by 15,gives us 0.5044 hour, or

30m 16s. This we add to the GMT, 1800, for 3 December (used to obtain

the GHA), to obtain the GMT ofthe start ofcivil twilight; the answeris

1830, to the nearest minute. All that remains is to apply our zone

description, — 10, with sign reversed, making the ship’s time 2830 on

the 3rd, or 0430 4 December.
To obtain the time of sunrise, we do not need to complete the entire

sunrise calculation; we need only compute the Sun’s meridian angle for

our sunrise, and compare this value with the ¢ for the start of civil

twilight. The difference between these two angles, converted to time,

gives us the time of sunrise.
To obtain ¢ for the time of sunrise, we use formula 1, entering H as

—0.8333°. Then:

cost = —0.3625

—0.2015 _
cost = 0.8040 —-0.2506

Therefore, t is 104.5139° E.

We subtract the value of this ¢ from the ¢ found above for the com-

mencement of civil twilight. We then have t 111.2562° E — t 104.513%°

E = 6.7423°. This value we divide by 15 to convert it to time; the result

is 0.4495 hour, or 26m 58s, which we shall call 27m. Adding 27m to the

ship’s time ofthe start ofcivil twilight, 0430, found above, wefind the

ship’s sunrise to be 0457.
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Amplitudes

True amplitude is angular distance, North or South, measured from

the observer's prime vertical (true East or true West) to a body cen-

tered on the celestial horizon. Amplitude observations made at sunrise

and sunset, are extremely useful for checking the compass, as the

body’s bearing can be obtained with maximum accuracy when on the

horizon, and the formula for calculating the amplitude is extremely

simple. As a general rule, amplitudes should be avoided in high

latitudes.
An amplitude, being a direction measured from the prime vertical,is

given the prefix E for East,if the body is rising, and W for West,if it is

setting. It is also given a suffix, N for North or S for South, to agree

with the name of the body’s declination. Amplitudes are expressed to

the nearest tenth of a degree.

The body most frequently observed for the purpose of obtaining an

amplitude is the Sun, although planets and stars may also be used.

When the Sun’s lower limb is some two-thirds of a diameter, or about

21 minutes, above the visible horizon, its center is on the celestial

horizon. A planet or star is on the celestial horizon when it is about 32

minutes, or the diameter of the Sun, above the visible horizon. The

Moon does not lend itself well to amplitude observations because it is

on the celestial horizon when its upper limb is on the visible horizon.

It has been the practice to convert the bearing or azimuth as ob-

served by compass to an observed amplitude, and then to compare it

with the calculated amplitude. However, many people find it simpler to

obtain the deviation, or gyro error, if both amplitudes are converted to

azimuths reckoned from the North, Zn, and this is the method we shall

use: for example, E 10.5° S becomes Zn 100.5° (90 + 10.5°), and W

10.5° S becomes Zn 259.5° (270.°-10.5°).

The true amplitude, with the body centered on the celestial horizon,

is found by the formula

sin declination

sin amplitude = cos latitude

Example 1: We are in DR latitude 26°14.0’ N, and observe the setting
Sun whenits lower limb is about 21 minutes above the visible horizon;

the declination, d, is S 8°46.4'. The Sun’s azimuth by magnetic compass

is 273.0°, and the variation is 13.6° W. We need the deviation on the
current heading.

First, we determine the true amplitude, and convert it to azimuth.
Then, we apply the variation to the azimuth obtained by compass, and
compare the result to the true azimuth:
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sin d(8°46.4')
cos L(26°14.0")

= 0.1700 = W 9.8° S = Zn 260.2° True

sin amplitude =

True Zn 260.2°

Variation 13.6° W

Magnetic Zn 273.8°

Azimuth by compass Zn 273.0°

Deviation 0.8°E

We, therefore, call the deviation 1° E.

If the observation is made when the body is centered on the visible

horizon, a correction is required in order to refer it to the celestial

horizon. A close approximation of this correction in latitudes between

0° and 50° and for declinations between 0° and 24° N or S,is given in

Table 5-2. In no instance will the error in the correction obtained from

this table be greater than 0.2°; in the great majority of cases, it will not

exceed 0.1°. If greater accuracy is required, Table 28 in Bowditch

should be used.

The correction is applied to the azimuth obtained by compass in the

direction away from the elevated pole; that is, for an observer in North
latitude, the correction is toward the South, and vice versa.

Example 2: Our DR latitude is 33°42.1’ S, and the Sun’s declination,

d, is S 18°23.6’ when you observe it at sunrise, centered on the

visible horizon. The Sun’s azimuth by gyro is 113.5°. We need the

gyro error.
As in Example 1, the first step is to determine the true amplitude

and convert it to azimuth. We then take the correction from the

Table 5-2. Correction of Amplitudes for Bodies Observed Centered on

the Visible Horizon for Declinations 0° to 24°
 

 

Latitude Correction Latitude Correction

0° 0° 38° 0. 6°

10° 0.1° 42° 0.7°
15° 0.2° 46° 0.8°
20° 0.3° 48° 0.9°
30° 0.4° 50° 1.0°
34° 0.5°
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table, apply it to the azimuth obtained by gyro, and compare the

result to the true azimuth to obtain the gyro error.

sin d(18°23.6") _

c
o
s

LOFa.1) 2228927 = itude E 22.3° S
cos L(33°42.1") 22.2892 true ampli ude

=Zn 112.3°

sin amplitude =

Bearing by gyro Zn 113.5°

Correction forL from table —-Zn  0.5° N

Zn 113.0° observed Zn 113.0°

gyro error 0.77 W

Time and Altitude on the Prime Vertical

Sometimes, as when working a time sight or when it is necessary to

know the longitude,it is desirable to obtain an observation on the prime

vertical.
It must be borne in mind that a body with a declination having a

name opposite to that of the latitude of the observer, will not cross the

latter’s prime vertical above the horizon: its nearest approaches while

visible will be at times of rising and setting. A body having a declination

of the same name as the latitude of the observer, but numerically

greater, will not cross the prime vertical. However, a body having a

declination of the same name as the observer’s latitude, but smaller

numerically, will cross his prime vertical above the horizon. At each

crossing, the meridian angles and altitudes are equal; the meridian

angles are always less than 90°.

The meridian angle, ¢, of a body on the prime vertical may be found

by means of the formula

cost =tand X cotL (1)

where d is the declination, and L the latitude. When working with the

slide rule,ifL is less than 45°, it may be simpler to write the formula as

cost = —- 2)

The altitude of a body, H, whenit is on the prime vertical, may be

found by means of the formula

sin H = snl 3)

With these formulae,it is possible to determine the approximate
time when a body will be on the prime vertical, and its altitude at that
moment.
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Where a body’s declination is of the same name as, but numerically
greater than, the observer’s latitude, its meridian angle at the moment
of nearest approach to the prime vertical may be found by the formula

1

 

cost= ———
St tand cot L 4)

or, if more convenient,

tan L
cost = T— (5)

Its altitude at this moment is found by the formula

. sin L
sinH = sind (6)

Its approximate azimuth angle, Z, at this moment may be found by
the formula

. _ cosd sint
Sin Z = =—— (7)

Example 1: We are in L 51°25.0’ N, \ 47°41.0’ W, and the Sun bears

slightly North of East; its declination is N 21°49.8'. We wish to observe

the Sun on the prime vertical, and to know the approximate time when

it will be on the prime vertical and its approximate altitude at that

moment.

Wefirst solve for ¢, by writing formula (1):

cost = tan 21°49.8' x cot 51°25.0' = 0.3196

The meridian angle, therefore, is 71°21.7" E.

We then apply our longitude to find the Sun’s angular position rela-

tive to the meridian of Greenwich when its ¢ is 71°21.7" E.

tE 71°21.7'

AW 4741.0
23°40.7'

The Sun’s angular distance East of Greenwich when it is on our

prime vertical is, therefore, 23°40.7’, which converts to 1 hour 34 mi-

nutes, 43 seconds.
If we are willing to assume that the Sun transits Greenwich at noon

GMT, the GMT of our prime vertical sight would be about 1025

(12:00 — 1:35). A closer approximation may be found by determining the

Greenwich hour angle, GHA, of the Sun, 336°19’ (360°-23°41’), then

noting from the Nautical Almanac the GMT of this GHA. If the ship’s
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time is required,it is necessary only to apply, with sign reversed, the

zone description to which the ship’s clocks are set to the GMT.

To find the altitude of the Sun when it is on our prime vertical, we

use formula (3), which, if the Sun’s declination has not changed, be-

comes:

sin 21°49.8’'

Simsr2s 04757sin H =

When the Sun is on our prime vertical, its altitude will, therefore, be

28°24'3",

Example 2: We are in L 10°09.6’ N, and the Sun’s declination is N

19°30.1’. We wish to determine the meridian angle, altitude, and

azimuth of the Sun at its nearest morning approach to our prime verti-

cal.
We first find the meridian angle by formula (5), which here will be:

__ tan 10°09.6' _
cost = tan 1930.1 0.5060

The meridian angle, therefore, is 59°36.1' and is named East.

We next find the altitude, using formula (6), which we write:

. _ sin 10°09.6' _
sin H = Sin19°30.1 0.5284

The altitude at this momentis, therefore, 31°53.8'.
The approximate azimuth we find by using formula (7):

cos 19°30.1' X sin 59°36.1’

cos 31°53.8’

The azimuth angle is, therefore, N 73.2669° E, which makes the
azimuth 073.3° for practical purposes.

sin Z = = 0.9577

Rate of Change of Altitude

It is at times desirable to determine a body’s rate of change of

altitude. If a sequence of sights of the same body has been taken, the

rate of change provides a check on the consistency of the observations.

Also, if a star finder has been used to predict altitudes and azimuths,

and visibility has caused a considerable delay in obtaining sights, cor-

rection of the sextant setting will compensate for the delay.

The formula for calculating the rate of change of altitude, AH, in
minutes of time is:

AH = At X cosL X sin Z (1)
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where Atis 15.0 for the Sun and planets, 15.04 for stars, and 14.3 for the
Moon.

To obtain AH in seconds of time, the formula is:

X si
AH = cos L > sin Z I)

Example: We are in L 30°, and the predicted azimuth of the Sun is 100°.

We wantto find the rate of change of altitude in minutes of time.

Since the body’s predicted azimuth is 100°, Z is 80° (180°-100°) and
formula (1) becomes:

AH = 15 X cos 30° x sin 80° = 12.8’ per minute of time

The rate of change of altitude, as found above, applies to a stationary

observer. However, it yields acceptable results on board vessels steam-
ing at normal speeds.

Rate of Change of Azimuth

A stationary observer may find the rate of change of azimuth of a

heavenly body by use of two formulae: the first determines the paral-

lactic angle, M; the second provides the actual rate of change of

azimuth. In the celestial triangle, PZM, the parallactic angle, M, is the

one that lies at the body.

To find the angle, we use the formula

cosL XsinZ

sin M = cosd
ey

in which L is the latitude, Z the azimuth angle, and d the declination.

Having found the angle, M, we proceed to find the rate of change of

azimuth per minute of time. For this we use the formula

d
cos H

AZ" = (2)

in which AZ’ is the rate of change of azimuth in minutes of arc per

minute of time, andH is the computed altitude or the corrected sextant

altitude.
Although formula (2) gives the rate of change of azimuth in relation

to a stationary observer, the results it provides in relation to ships

traveling at normal speeds are, in most cases, acceptably accurate.

Example: Our latitude is 40° N, and the declination is N 27°30". The

azimuth, Zn, is 163.9°, which we shall write as azimuth angle, 16°06’

(180°-163°54"); and the corrected altitude, Ho, is 77°04.2'. We wish to
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determine the rate of change of azimuth in minutes of arc in one minute

of time.

We write formula (1):

cos 40° X sin 16°06’
sin M = 27°30 = (0.2395

M = 13.8568°

We next write formula (2):

, _ 15 X cos 27°30" X cos 13.8568° _ ,
AZ" = cos 77°04.2' = 57.1311

The azimuth, therefore, is changing at a rate of about 57.7’ per

minute of time.

 

Star and Planet Identification

At times, particularly when there is a broken cloud cover, an un-

known star is observed. H.O. Publications No. 214 and 229 include

tables that facilitate identification of stars and planets; however, such

bodies may also be identified by computation. Given the body’s altitude

and true azimuth, obtained by observation, one may compute its decli-

nation, d, and meridian angle, ¢t. As true azimuth must be obtained by

observation, best results are achieved with bodies situated at fairly low

altitudes. However, no difficulty should be encountered in identifying a

major navigational star or planet even if its computed declination and

meridian angle are in error by a degree or more.

Two methods of making these calculations are in general use, and

both are included. The first was suggested by Rear Admiral Arthur A.

Ageton, U.S.N., when a lieutenant, in H.O. Pub. No. 211, Dead Reck-

oning Altitude and Azimuth Table, first published in 1931. The Ageton

formulae are here modified for use with a calculator by substituting

natural sines and cosines for log secants and cosecants.

In these formulae, R and K are auxiliary angles introduced to facili-

tate solution; Ho is the corrected sextant altitude; Z is the true azimuth

reckoned East or West from the elevated pole; L is the latitude; d is the

declination; and ¢ is the meridian angle.

sinR = sinZ xX cos Ho (1)

. _ sinHo
sin K = cosR 2)

sind = cosR X cos (K ~ L) 3)

Sint = cosd 4)
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The following rules apply:

. K takes the same name as the latitude.

. When Z is greater than 90°, K is greater than 90°.

. d is same name as L, except when Z and (K ~ L) are both greater
than 90°.

4. (K ~ L) represents the algebraic difference between K and L; that
is, the smaller is subtracted from the larger.

5. t is less than 90° when KX is greater than L; conversely,it is greater

than 90° when L is greater than KX.

W
N
=

In most instances, it will not be necessary to solve for ¢, since a

bright star can usually be identified by its declination.

Given the value of #, the local hour angle of Aries, LHA ¥, must be

determined for the time of the observation; this is done by extracting
the Greenwich hour angle, GHA Aries, from the almanac, and then

applying the ship’s longitude. If the star is to the eastward, its tz is

converted to LHA and compared with the LHA Aries to obtain its

sidereal hour angle, SHA, as shown in the example.

Example 1: At Greenwich mean time, GMT, 23h 59m 56s, 2 May, in L

45°02.0' N, A 60°28.5' W, a bright star is observed to have a corrected

altitude of 10°05.5’, and a true azimuth of 044°. We wish to identify the

star. Formula (1) becomes:

sin R = sin 44° X cos 10.0917°

= 0.6839

R, therefore, equals 43.150°.

Formula (2) then becomes:

. sin 10.0917° _
sin K = B3.150° 0.2402

K, therefore, equals 13.8969°, which we name North.

Having computed the value of K, 13.8969°, we obtain K ~ L, by

subtracting it from the latitude, 45.0333°; K ~ L therefore equals

31.1364°. We now write formula (3):

sind = cos 43.150° x cos 31.1364°

= 0.6245

Therefore, d equals N 38.6428°, or N 38°38.6', involving Rule 3 above

to determine the name of the declination.

This calculation should usually be sufficient to allow us to consult the

Almanac and identify the star as Vega. However, to make sure of the

identification, we shall proceed to compute the value of ¢.
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We solve for ¢ by writing formula (4):

po sin 43.150°
SINIE = TOs 38.6428°

t, therefore,is 118.8810° E or 118°52.9' E. See Rule 3 above: is greater

than 90°.
Having computed the star’s meridian angle, we turn to the Almanac

to find its SHA.

= 0.8756

GHA Aries, GMT 2300, 2 May 205°26.3’

Increment, 59m 56s 15 01.5

GHA Aries, at time of sight 220°27.8'

Longitude West — 60 28.5

LHA Aries 159°59.3’

Star’st 118°52.9' E = LHA ~ 241 07.1

SHA = 81°07.8’

We have now obtained a declination of N 38°38.6’, and an SHA of

81°07.8'. By referring to the list of primary navigational stars given in

the daily pages of the Nautical Almanac, we find that Vega has a decli-

nation of N 38°46.0’ and an SHA of 80°57.5'; our star must, therefore,

be Vega.

We might, of course, have observed one of the additional naviga-

tional stars, in which case identification could be made by use of the

star data tabulated on pp. 268-73 of the Nautical Almanac.

In the second method, declination and meridian angle are also com-

puted in order to identify an unknown star or planet.

The declination may be found by the formula:

sind =sinL X sin Ho + cosL X cos Ho X cosZ 5)

In this formula, it is convenient to consider L as always being posi-

tive, regardless of its name; the sign is always additive. The body’s

observed true Zn is converted to azimuth angle, Z, which will always

be less than 90°, and will be reckoned East or West from either pole.

Thus Zn 130° becomesZ S 50° W, and Zn 315° becomes Z N 45° W. Z is

always considered to be a positive value, even when reckoned from

South. If the sin d has a positive value, it will be of the same name as

the latitude; if sind is negative, the declination will be of contrary name
to the latitude.

Frequently, the declination thus found will be sufficient to identify
the body. However, the meridian angle, #, may be computed by the
formula

sin Ho = sinL X sind

cost = cos L X cosd (6)
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In this formula, again, L and d are entered as positive values, regard-
less of name. The sign in the dividend is + if L and d are of contrary
name, and — if they are of the same name.

Having computed the value of #, and knowing the value of the GHA

Aries for the time of the observation, the star’s SHA may be deter-

mined, as in the above example, to assist in its identification.

Example 2: In latitude 36°18.0’ S, we observed an unknown star to have

an Ho of 37°14.0'; its Zn was 240.0°, orZ S 60° W. We wish to identify
it, using formulae (5) and (6).

Formula (5) becomes:

sind = 0.3582 + 0.3208 = 0.6790

d = 42.7684°

Asthis value is positive, the declination will carry the same name as the

latitude; it, therefore, is S 42°46.1'.

We remain in doubt as to the star’s identity, so we proceed to com-

pute the star’s meridian angle, using formula (6), which becomes:

0.6051 — 0.5920 X 0.6790 _ 0.2031
0.8059 x 0.7341 0.5916

= 0.3432

t, therefore, is 69.9265° W, which makes theLHA 69°55.6’. After apply-

ing the LHA Aries for the time of the observation, we find the star’s

SHA to be 95°50.7'.
We run down the star data tabulated on the daily pages in the Al-

manac with SHA 95°50.7' and d approaching these values; we, there-

fore, turn to the complete tabulation of navigationalstars, in the back of

the Almanac, with these values, and find that the star is @ Scorpii, SHA

96°04.4',d S 42°58.9'.

 cost =

Times of Moonrise and Moonset

In the Navy, the times of moonrise and moonset are of particular

interest. Unlike the Sun’s altitude, which is always considered to be

—50’ at rise or set, the Moon’s altitude at rise or set varies with both its

semidiameter and the horizontal parallax (a situation discussed further

at the end of this section).

Both the Nautical Almanac and the Air Almanac tabulate the local

mean times, LMT, of moonrise and set for selected latitudes, and the

meridian of Greenwich, 0° \, for every day, and the Nautical Almanac

includes tables to facilitate correction for both latitude and longitude.

However, these interpolations can be made both more rapidly and

more accurately with the calculator.



144 Miscellaneous Celestial Computations

Thefirst step in calculating the time of moonrise or set is to find the

time correction for latitude, TCL; for this we use the formula

ATT
= — 1TCL ATL X AL 1

in which ATT is the difference in the tabulated values of time, ATL

is the difference in the tabulated values of latitude, and AL is the

difference in value between the desired latitude and the lower tabulated

latitude.

Thus, for example,ifwe desire the time of moonrise on 14 August,in

L 43°24.5' N, and the Almanac tabulates moonrise for the 14th as:

L 45° N 2303
L 40° N 2324

we note that the difference for L 5° is —21 minutes, and formula (1)

becomes:

—21m
5°

For L 43°24.5' N and 0° A, therefore, moonrise will occur at 23-
09.6850 (23h 24m — 14.3150m) on the 14th.

The next step is to interpolate for the desired longitude. If the ship is

in West longitude, we repeat the same process to find the time of the

phenomenon for the following day; for East longitude, we find its time

for the preceding day.

For 14 August, and L 43°24.5’ N, let us assume that our longitude is

63°27.5' W. Being in West longitude, we turn to the Almanac for the

following day, the 15th, and note that moonrise is tabulated as:

L 45° N 2357
L 40° N 2419

2419, of course, means that on that night the Moon rises at 0019 on

the following day, the 16th. The difference for 5° of latitude in this case
is —22 minutes.

We therefore write formula (1):

—22m
5°

For L 43°24.5' N, and 0° A, for the following night, the 15th, moon-
rise occurs at 24-04.0035, which makes it 00-04.0035 on the 16th.

The difference in the time of moonrise at our latitude and 0° A in 24
hours, or 360°, is therefore +54.3185 minutes (24-04.0035 — 23-
09.6850).

ICL = x 3.4083° = —14.3150m

ICL = X 3.4083° = —14.9965m
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Next, we find the correction in time, TC, for the phenomenon be-
tween the 2 days for our longitude, 63°27.5' W, using the formula

=r
360°

in which A is our longitude, and AT is the difference in time of the

phenomenon for the 2 days. Formula (2) is, therefore, written:

TC = SB « 454.3185m = +9.5749m

Moonrise at our location will therefore occur on 14 August at LMT

23-19.2599 (23 + 09.6850m + 09.5749m). Note that this is local mean

time; we need to convert it to the ship’s time.

Let us assume that for daylight saving purposes, our clocks are set to

zone +3 time. The central meridian for this zone is 45° W. Our lon-
gitude, 63.4583° W, is 18.4583° West of this meridian, and 18.4583°

converted to time is 1.2306 hours, or 1h 13m 50s. As we are West of our

time zone meridian, we add this value to the LMT, 23h 19m 15s, and

obtain 24h 33m 05s. The ship’s time of moonrise, rounded off to the

nearest minute, will therefore be 0033.

For a ship under way, it is usually necessary to calculate a second

estimate of the time of moonrise or moonset; sometimes a third esti-

mate is required. The first estimate may be based on a rough mental

solution, made after inspecting the tables; the ship’s position at this

time is used to calculate the second estimate. From this, if it appears

necessary, a third estimate is developed.

Should it seem desirable to check the final estimate, this may be

done by means of the time sight formula:

TC X AT ©)

sin H—sinL X sind

cosL X cosd
 cost =

in which the altitude, H, is found by means of the formula

H = HP — (SD + 34’)

in which HP is the horizontal parallax, and SD the semidiameter, both

taken from the Nautical Almanac. The meridian angle, ¢, as thus com-

puted, may then be compared with the Moon’s meridian angle at the

time of the final estimate.

Error Caused by Timing Error

An error in the timing of a celestial observation will obviously cause

an error in the location of the line of position, LOP, developed from
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that observation. Let us first consider a single LOP, which will give a

most probable position, MPP; the MPP is determined by the point at

which a perpendicular, dropped from our estimated or DR position,

intersects the LOP. For a given error in time of the observation, the

distance of the MPP from the estimated position, EP, may be found by

means of the formula

= : X cosL XsinZ

where D is the distance in nautical miles caused by the error, E is the

error in seconds of time, L is the latitude, and Z is the azimuth angle.

For a given error of one second in time, the maximum error, ex-

pressed as distance, will occur on the equator, with the body bearing

due East or due West, in which case it will be 0.25 mile.

It must be borne in mind that, in this case, the error referred to

involves an MPP derived from a single observation. Where a fix, ob-

tained from two or more LOPs, is involved, the position ofthe fix itself

is in error; the error in placement of the component LOPs need not be

considered. In such a case the fix will be in error only in longitude, the
error being 15 minutes of arc for 1 minute of time, or 0.25 minute of arc

per second of time.

If the watch used for timing was fast, the error in position will be to

the West, and MPP must be moved to the East; conversely, if it was

slow, the error will be to the East.

Example: A single observation of the Sun has been reduced, our DR

being L 27°43.5’ N. It was subsequently found that the stopwatch used

for timing the observation had been started on chronometer time, which

was 23 seconds slow. What adjustment should we make to the MPP, if

the azimuth was 263.2°?

HereZ will be S 83°12" W (263.2°—180°), and the above formula will
be:

D= 8 X cos 27°43.5' X sin 83°12" = 5.05 miles

The MPP, therefore, should be moved 5.05 miles to the West.

Alternatively, the sight could be replotted. The watch error was 23

seconds; this, converted to longitude, equals 5.75’. The assumed or DR

position from which the sight was originally plotted would, therefore,

be moved 5.75’ to the West, the watch being slow on GMT.

Interpolating in H.O. Publications Nos. 214 and 229

Altitudes tabulated in H.O. Publications Nos. 214 and 229 must be
corrected for the difference between the actual declination and the



147 Miscellaneous Celestial Computations

declination assumed when entering the tables. In H.O. 214 a correction
factor, called Ad, is provided for this purpose, and at the back of each
volume there is a two-part multiplication table thatfacilitates determi-
nation of the value of the correction. When the actual declination dif-
fers from the assumed declination by both whole minutes and tenths of

minutes, it is necessary to enter the portion ofthe table thatis devoted

to whole minutes, and then the portion that covers tenths of minutes.

The two products must then be added together to obtain the correction
that must be applied to the tabulated altitude.

This correction may be obtained more expeditiously, and in some

instances more accurately, by use of the calculator: multiply the differ-
ence between the actual number of minutes and the number used in

entering the tables by the Ad factor, then read off the correction factor
to the nearest tenth of a minute.

Example 1: We have entered H.O. 214 with L 36° N, declination N 10°,

and the meridian angle 19° E; the actual declination is N 10°14.4’. We

find the tabulated altitude to be 58°48.2’, and the Ad factor to be .86.

We multiply 14.4’ (the difference between the true and assumed

declination) by 0.86 by calculator, and obtain a correction of 12.4’ (to

the nearest tenth) to apply to the tabulated altitude.
Now let us obtain the correction by means of the multiplication

tables in the back of H.O. 214.

We find that 14 x .86 = 12.0’
and that 0.4' x .86 = 0.3

giving a total correction of 12.3’

In this instance, the correction obtained by tables not only took

longer to solve, but it was not as accurate as that obtained by cal-

culator.
When H.O. 214 is to be used for reducing a sight from a DR, rather

than an assumed, position, it is necessary to correct the tabulated al-

titude for the increment of meridian angle over the tabulated value, At,

and for the increment of the DR latitude over the whole degree used for

entering the tables, in addition to the usual Ad correction.

The Ar correction factor is tabulated, and the correction for the

increment of meridian angle may easily and accurately be determined

with the calculator in the same manner that the Ad correction is found.

However, H.O. 214 does not tabulate a correction for an increment

of latitude over the tabulated degree. This correction, which we will

call AL, is usually found by determining the difference in the tabulated

altitude for the latitude used in entering the table, and the tabulated
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altitude for the next greater degree oflatitude, using the same values of

declination and meridian angle, and then interpolating.

Example 2: Our DR position is L 24°27.8’ N, A 57°16.3' W. We obtained

an afternoon observation of the Sun, which had a corrected altitude of

48°02.6'. Its declination was S 12°17.8’ at the time of the observation.

We wish to reduce the sight from our DR position, using H.O. 214.

Having applied our DR A to the Greenwich hour angle, GHA, of the

Sun, we obtain a meridian angle, t, of 20°46.8' W.
We enter H.O. 214 with L 24°, declination, d, 12° of contrary name,

and ¢ 20°, extract the tabulated altitude, 4#, Ad, and At corrections as

noted below, and determine the values of the corrections by the cal-

culator:

 

ht 49°02.2'

Ad 0.88 x —17.8' = -15.7

At 0.48 Xx —46.8' = -22.5'

Net. corr. for Ad and At —38.2’

ht for L 24°, corrected —38.2'

computed altitude, Hc = 48°24.0’

We now find the difference in At for our DR latitude:

L 24° N,d S 12°,¢ 20° ht 49°02.2’
L 25° N,d S 12°,¢ 20° ht 48°10.4'

Difference -51.8'

The increment oflatitude of our DR position over the base latitude
of 24° is 27.8’. Then

51.8’ , ,
~ “60 xX 27.8 = =24.0

Therefore, our Hc of 48°24.0' for L 24°, corrected for Ad and
At, is decreased by this amount:

 

He 48°24.0’
Correction forL —24.0'

Hc 48°00.0’
Ho 48°02.6'

Intercept, a 2.6’ Toward

Having found the intercept, we interpolate by eye to determine the
azimuth.

For L 24° N, d (about) S 12°15’, and ¢ (about) 20°45’, we see the
azimuth will be 148.5°. The tabulated azimuth for L 24° N,d S 12°, and ¢
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20° is 149.3°, and for L 25°, with the same values ofd and ¢,it is 149.9°.
Since for 1° of latitude the azimuth increases 1.6°, for 27.6’ it will
increase 0.3°.

The azimuth therefore is N 148.8° W (148.5° + 0.3°), making the Zn
211.2° (360° — 148.8).

Obtaining a Fix by Two Celestial Observations Without Plotting

The latitude and longitude of a fix, obtained from observations of

two celestial bodies, may be computed, thus obviating the need for

plotting. Each sight is reduced in the conventional manner, using the

best estimate of the vessel’s position, in order to obtain the intercepts,
a, and a,, and the two true azimuths, Zn, and Zn,. Intercepts are

treated as decimals of a degree; where an intercept is away it is treated
as a negative value.

The latitude of the fix is then computed using the formula

a, X sin Zn, — a, X sin Zn,

L=Le+ sin (Zn, — Zn,) Dn

where Le is the estimated latitude used in reducing the sights, a, and a,

are the first and second intercepts, and Zn, and Zn, are the first and
second computed true azimuths.

Longitude is computed by means of the formula

a, X cosZny —a; X cosZn,

sin (Zn, — Zn,)
 A= + 2)

where Ae is the estimated longitude used in reducing the sights.

For a vessel under way the same procedureis used, and each sightis

reduced for the time at which it was obtained. In solving formula (1) for

latitude, the best practice calls for using the ship’s estimated latitude,

Le, determined for the time of the second observation; similarly, Ae in

formula (2) should be the ship’s estimated longitude at the time of the

second observation. The result is equivalent to advancing the first LOP

on the chart to the time the second LOP was obtained.

Example: We are on course 290°, speed 20 knots. At GMT 19h 20m 15s

we observe Altair to have a corrected altitude of 57°40.0’; Hc proves to

be 57°43.0' and Zn is 185°. At GMT 19h 44m 15s we observe Alpheratz

to have an Ho of 24°53.0'; its Hc is 24°49.0', and its Zn is 281°. The

ship’s EP at GMT 19h 44m 15s is L 41°01.6’ N, 60°05.9' W. We require

the ship’s position at GMT 19h 44m 15s. Comparing the observed with

the computed altitudes, we note the first intercept, a,, is Away 3.0" or

—0.050° and a, is Toward 4.0’, or +0.0667°.
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Formula (1) becomes:

0.0667 Xx sin 185° — (—0.050 X sin 281°)
sin(185° — 281°)

= 41.0819°

L = 41.0267° +

—0.0549
—0.9945

Our latitude at the time of the second observation, therefore, is

41°04.9' N.
To obtain the longitude, we write formula (2):

0.0667 x cos 185° — (—0.050 xX cos 281°)

sin(185° — 281°)
o —0.0760 _ o

= 60.0983° + —=-—=0.9945 — 60.1747

which makes our longitude at GMT 19h 44m 15s 60°10.5" W.

Above, we gave formulae for determining the latitude and longitude

of a position by computation in lieu of plotting. For calculators using

the Reverse Polish Notation, and programmed to make polar to rectan-

gular conversions, and vice versa, the computation of the coordinates

is extremely rapid.

The keying procedure to obtain the correction to the estimated lon-

gitude, AN, and the correction to the estimated latitude, AL, is as fol-

lows:

= 41.0267° +

A = 60.0983° + 

(Zn,)[11(a;)[P — R]
(Zny)[11(a)[P — R]
[x = yl[RII[-1RI[-][CHS][R}][R — P]
(Zn)[11(Zny)[-1lsin][+] [P— R] — Read AA

[x = yl] — Read AL

The round brackets indicate data that are to be entered into the

calculator; the square brackets indicate keystrokes (or functions).

Line-Of-Position Bisectors

A constant, but unknown, error may affect all celestial observations.

When such an error, which may be caused by abnormal refraction,

exists and the observed bodies are not well distributed in azimuth, the
fix may not lie at the center of the polygon formed by the plotted lines
of position, as one would ordinarily assume; it may be an exteriorfix,
that is, a fix lying outside the polygon.

When three or more bodies are observed lying within 180° of azimuth
of each other,it is wise to use bisectors to determine the fix. The angle
formed by each pair of lines of position is bisected by a line drawn in
the direction of the mean of the azimuths of the two bodies.
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For example,let us assume that because ofpartial cloud cover, we
were able to observe only three stars at twilight. The azimuth of star #1
was 030°, that of star #2 was 060°, and of #3 it was 090°. Figure 5-1
shows the resulting lines of position as solid lines, and the bisectors for
each pair oflines of position as dashed lines.

Note that the resulting fix at the intersection of the three bisectors
lies well outside the triangle formed by the three position lines.

Lunar Distance

Regaining GMT and Longitude

In celestial navigation, if we do not know the Greenwich mean time,

we cannot determine our longitude. True, our latitude can be obtained

by observing the altitude of the Sun, or of some other body, as it

transits our meridian, or by plotting the lines of position derived from

observations of two or more stars, and reduced by means of an as-

sumed GMT. Knowing only our latitude, we are reduced to bringing the

ship to the latitude of our destination, orjust to weather of it, and then
running down the easting or westing until we reach port. This was the

standard operational procedure for centuries, but it does, as a rule,

cause unnecessarily long passages.

Time and longitude can, however, be regained by measuring the

lunar distance—the distance between the Moon and a star or the

Sun—and then comparing this carefully ‘‘cleared’’ or corrected lunar

distance with a lunar distance computed from data in the almanac. This

technique is made possible by the difference between the Moon’s ap-

parent speed of travel across the heavens and that of the other celestial

bodies—adifference on the average of about 12 degrees a day, or about

the Moon’s diameter in an hour. Thus, at any instant, given an accurate

measurement of the distance between the Moon and another celestial

body, the GMT, and hence the longitude, may be determined.

This method served to check chronometer error before the day of the

radio time tick, and an expert observer, such as the great explorer

Captain Cook, could achieve excellent results, due both to the accu-

racy of his sextant observations and to the meticulous care used in the

very lengthy mathematics of clearing the measured lunar distance. To-

day, the time required for the mathematics is reduced to a very few

minutes by means of the calculator.

A lunar distance measurement is most easily made with the sextant

when the angular distance between the Moon and the other body is not

great. This usually implies a nighttime measurement between the Moon

and one of the 57 selected starslisted in the daily pages of the Nautical

Almanac. Incidentally, the Nautical Almanac rather than the Air Al-
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Figure 5-1. Line-of-position bisectors to determine the position of the fix

manac should always be used in working lunar distances. Jupiter or

Saturn may also be used if either is advantageously located; Venus and

Mars should not be used because of the problems introduced by the
parallax and phase corrections. In daytime, the Sun may be used as the

second body. For best results, the body selected should lie near the
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path traced by the Moon across the sky, as this yields a more rapid

change oflunar distance; the body maylie either ahead of or behind the
Moon.

In addition to the lunar distance, the altitudes of the Moon and of the

second body are also required; however, these measurements are not

as critical as that of the lunar distance, as they are required only for the

purpose of determining the corrections for refraction. Probably the

most satisfactory procedure isfirst to measure the altitude of the Moon

and of the second body, noting the time of each by pocket watch. A

series of lunar distances are then measured against watch time. Finally,

the two altitudes are again measured against time. If possible, the lunar

distance measurements should be graphed against time, and a line of

bestfit should be drawn in, in order that an accurate lunar distance may

be selected from the graph. The altitudes of the Moon and of the other

body at the time of the selected lunar distance measurement may then

be obtained by linear interpolation between the two sets of altitude

measurements.
It will also be necessary to compute the true lunar distance for the

whole hour of GMT before the distance is measured with the sextant,

and again for the whole hour after, using data taken from the Nautical

Almanac; this we shall discuss later.
Before going on to clearing the measured lunar distance, let us con-

sider the correction for semidiameter. If a star is observed with the

Moon, only the Moon’s semidiameter need be allowed for; the correc-

tion for semidiameter, which is found in the daily pages of the Nautical
Almanac, may be either additive or subtractive, depending upon the

position of the star relative to the Moon. When the Sun is used as the

second body, its semidiameter must also be allowed for. (See Figure

5-2.)

Clearing the Lunar Distance

The following formulae for clearing the lunar distance were devel-

oped by John S. Letcher, Jr., and published in his book Self-Contained

oT
!
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Moon Star

Sun Moon
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Figure 5-2.
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Celestial Navigation; we are indebted to him for his permission to use

them. They represent a great simplification of the systems used by our

forefathers; this simplification may, on occasion, cause a loss of 0.3

minute of arc in accuracy. However, this is a maximum figure, and in

the great majority of cases the answer will either be correct, or subject

only to a very small error.
Apropos of accuracy, it must be borne in mind that to obtain satis-

factory results with this or any other lunar distance method, far more

care must be devoted both to the sextant measurements and to the

necessary mathematics than is usually given to a routine altitude ob-

servation.

The altitude observations are corrected in the regular manner, in-

strumental error, index error, semidiameter, dip, and refraction being

allowed for. The next step is to correct the lunar distance sight for

refraction. For this, two formulae are required, the first being:

x = 0.5 (sin Ho {/sin Ho*) + 0.5 (sin Ho*/sin Ho Q) 6)

where x is an auxiliary value, Ho C is the fully corrected altitude of the

Moon, and Ho* is the fully corrected altitude of the other body. The

next formula is used to obtain the refraction correction to apply to the

lunar distance, as measured with the sextant:

R' = 1.90’ (x — cos D)/sinD 2)

in whichR’ is the correction for refraction; it is expressed in minutes of

arc, and is always additive. The quantity x is the auxiliary value found

by means of formula (1), and D is the measured lunar distance cor-

rected for semidiameter. R’ is next added to D to obtain Do, the mea-

sured lunar distance corrected for refraction.

The next step is to correct for the Moon’s parallax. For this step two

formulae are required. The first is:

_ (cos Do X sin Ho €) — sin Ho* 3
sin Do A)

in which y is an auxiliary value, Do the measured lunar distance, cor-
rected by means of formula (2), and Ho C and Ho* are, respectively,
the corrected altitudes of the Moon and of the second body.

The final formula will determine the value of the parallax correction,
P’, which may be either additive or subtractive.

P' = HP {y + .000145 x HP x cot DD X [(cos Ho Q) — y?]} (4)

Herey is the value found by means of formula (3), HP is the Moon’s
horizontal parallax expressed in minutes of arc, and found for every
hour in the daily pages of the Nautical Almanac, Do is the lunar dis-

y
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tance obtained by sextant and fully corrected, andHo C is the Moon’s
corrected altitude.
The refraction correction, R’, found by formula (2), is next added to

Do, and,finally, P' is applied according to its sign to obtain the fully
cleared lunar distance:

Cleared LD = Do + R' + P’ o®

Having cleared the observed lunar distance, we must determine the

GMT at which the observation was made. For this purpose we first

compute the true LD for the integral hour of GMT before and the

integral hour after we completed our observations, using data taken
from the Nautical Almanac, and the formula

cos LD = sind, X sind, + cosd; X cosd, Xx cos AGHA (6)

where d, is the declination of the Moon, d, is the declination of the

other celestial body, and AGHA is the difference between the GHAs of

the two bodies.

Having obtained the two computed lunar distances, we find the dif-

ference between them, and then divide this difference by 60 to obtain

the rate of change per minute of time. We then find the angular differ-

ence between the computedLD for the first hour, and the observedLD;

dividing this difference by the rate of change per minute of time yields

the number of minutes after the first integral hour ofGMT at which the

LD measurement was obtained.

It must be borne in mind that an error ofone-tenth ofa minute of arc,

made in measuring the lunar distance, is greatly increased in the pro-

cess of clearing the observation and can result in an error in the neigh-

borhood of 12 seconds of time. Great care is therefore necessary in

obtaining the measurement, as 0.1’ is the smallest quantity that can be

read on the verniers of most modern sextants.

If the manufacturer’s certificate, furnished with the sextant,

specifies fixed instrumental errors at various altitudes, the appropriate

correction should be applied to the lunar distance, as read off the in-

strument. The index error existing at the time of the observation should

also be allowed for.
The values of the corrections, R’ and P’, should be computed to

several decimal places, in order that the algebraic sum ofR’ and P’ may

be correct to the nearest tenth of a minute of arc. In fact,this is true of

all the computations involved—an ‘‘overkill”’ in accuracy is required in

order to obtain satisfactory results.

In actual practice, a good observer should feel well satisfied if his

cleared lunar distance is within 0.3’ of the actual value, as many fine
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sextants are certified only to an accuracy of 10 seconds of arc, which

amounts to almost two-tenths of a minute.

When the Sun is used as the second body, its altitude should be

corrected by means of the star refraction tables in the Almanac, its

semidiameter, as found in the daily pages should be applied, and 0.1’

should be added as the correction for parallax for all altitudes below

65°.

Example: On 27 May, near L 40.0° N, A 135.0° W, at morning twilight,

we decide to obtain a chronometer check by means of a lunar distance

measurement, using the star Enif. We know that the chronometer error

is less than one minute.
We graph the lunar distances and altitudes, and as of 13h 20m 05s we

obtain the altitudes, fully corrected, and the lunar distance, D,, cor-

rected for the Moon’s semidiameter, instrumental error, and index er-

ror, as listed below.

Ho C 34°29.7', Ho Enif 59°19.7', D, 35°22.4'

The pertinent data from the Nautical Almanac are as follows:

GMT 1300 GHA « 79°56.5' Enif SHA 34°16.5’

GHA { 79°32.3’ SD 15.8 HP 58.1

GMT 1400 GHA V 94°58.9' Enif dec N 9°45.1'

GHA ( 94°03.5' SD 15.8 HP 58.1’

Our first step is to correct the observed lunar distance, 35°22.4',

for refraction. We write formula (1):

x = 0.5 (sin 34°29.6'/sin 59°19.7') + 0.5 (sin 59°19.7'/sin 34°29.6')
= 0.32922 + 0.75936

1.08859

We can now write formula (2):

R' = 1.90'(1.08859 — cos 35°22.4')/sin 35°22.4’

Therefore the correction for refraction, R’, is +0.89662’.
We must next determine the correction for parallax, P’, and write

formula (3):

(cos 35°22.4' x sin 34°29.7') — sin 59°19.7’
y= sin 35°22.4'
0.46179 — 0.86010
= 0.57890

SX

= —0.68806
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Having obtained the auxiliary value, y, we write formula (4):

P' = 58.1" {-0.68806 + .000145 x 58.1’ x cot 35°22.4’
X [(cos 34°29.7')? — (0.68806)]}

= 58.1' {-0.68806 + 0.01187 x [0.20584]} = 39.83433"

The parallax correction, P’, is, therefore, —39.83433’, and formula
(5) becomescleared.

LD = 35°22.4' + 0.89662’ + —39.83433')
= 35°22.4' — 38.9" = 34°43.5'

The cleared lunar distance is, therefore, 34°43.5'.

We can now proceed to determine the GMT of the lunar distance

observation. We start by computing the lunar distance at GMT 1300

and 1400, the integral hours before and after we made the measure-

ment, using the data from the Nautical Almanac, and formula (6). First,

however, we must determine the GHA of Enif for 1300 and 1400; the

Moon’s GHA we can take directly from the Almanac.

GMT 1300 Y GHA 79°56.5'
Enif SHA +34°16.5' dec N 9°45.1'

1300 Enif GHA 114°13.0’ Moon GHA 79°32.3',d N 5°50.3'

The difference in GHA, therefore, is 114°13.0' — 79°32.3' or 34°40.7'.

We can now write formula (6):

cos Comp LD 1300 = sin 5°50.3’ Xx sin 9°45.1' + cos 5°50.3'

X cos 9°45.1' x cos 34°40.7'

The computed lunar distance at GMT 1300 is, therefore, 34.56304°.

For GMT 1400, we obtain the following data from the Almanac:

GMT 1400 Y GHA 94°58.9'
Enif SHA 34°16.5'

1400 Enif GHA 129°15.4'd N 9°45.1
Moon GHA 94°03.5',d N 6°04.1'

To obtain AGHA we subtract the Moon’s GHA, 94°03.5', from

129°15.4', and obtain 35°11.9’, so that formula (6) becomes:

cos Comp LD 1400 = sin 6°04.1' x sin 9°45.1’ + cos 6°04.1
X cos 9°45.1' xX cos 35°11.9'

which makes the GMT 1400 computed lunar distance 35.04039°.

Comparing the 1300 with the 1400 lunar distance, we find it has

increased by 0.47735° in the hour, which divided by 60 makes the

increase per minute 0.00796°. We next obtain the difference between
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the cleared lunar distance 34°43.5’, or 34.7250°, and the lunar distance

computed for GMT 1300, 34.56304°. The former is the greater by

0.16196°; the time of the distance observation was, therefore, after

1300. Dividing 0.16196° by the rate of change of computed hour angle

per minute, 0.00796°, we get 20.34673 minutes, or 20m 20.482s. We

would,therefore, call the true Greenwich time of our lunar observation

13h 20m 20s, thus indicating that the chronometer is 15 seconds slow

(13h 20m 0Ss vs. 13h 20m 20s).
The following is a summary of the computations of this example:

 

 

27 May

Posit L 36 54.0 N, A 135 06.0 W, GMT 13h 20m 20s

C
GMT 1400 GHA 94 03.5 dN 6 04.1

1300 GHA 179 32.3 d 5503

AGHA 1 hr 14.520° d A 1 hr +0.230°

A GHA 1 min. 0.2420° A 1 min. 0.00383°

A 20m 20s 4.92067° A 20m 20s 0.07794°

13h 20m 20s GHA 84.4590° dec. N 5.91628

True A W 135.1000

LHA 309.3590

Hc 34.49464°

Ho 34°29.7'

> Enif

1400 Y¥ GHA 94 58.9

1300 GHA 79 56.5

AGHA 1 hr 15.040°

A 1 min. 0.25067°

A 20m 20s 5.09689

GHA %Y 13h 20m 20s 85.03856

Enif SHA 34.2750 d N 9°45.1'

Enif GHA 119.31356

AW 135.10

EnifLHA 344.21356

EnifHe 59.32802°

EnifHo 59°19.7’'

GMT 13h 20m 20s

For C use Ho 34.4950° (34°29.7")

For Enif Ho = 59.32833° (59°19.7")
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Corr. sext. LD 35°22.4’ Computed LD at GMT 1300 27 May

  

GHA ¥ 1300 7956.5 «d 1300 N 5.83833°
EnifSHA 34 16.5 d N 9.75167°

EnifGHA 114.216°
1300GHA ©  79°32.3'

A 34.67833° GMT 1300 Comp LD 34.56304° = 34°33.8'

Computed LD at GMT 1400
GHA YY 1400 94 58.9
EnifSHA 3416.5 Enifd N 9.75167
EnifGHA 129.25667°
C GHA 94°03.5' «dN 6°04.1'

A 35.19833 GMT 1400 Comp LD 35.04039° = 35°02.4

Comp. LD at GMT 13h 20m 20s

Comp LD 1400 35.04039°
Comp LD 1300 34.56304

A1lhbr 0.47735/60 = 0.00796/min.

.00796 x 20m 20s = 0.16177°
Comp LD GMT 1300 34.56304

GMT 13h 20m 20s Comp LD 34.72481° = 34°43.5'

27 May GMT 13h 20m 20s True posit L 36°54.0' N

135°06.0' W Computed LD 34°43.5'

Ho ©  34°29.7 Ho Enif 59°19.7
LD obsd. by sextant = 35°22.4’

R’ +0.89662'

P’' -39.83418

Net Corr.: —38.9' —-38.9’

Cleared LD 34°43.5' GMT 13h 20m 20s

Cleared LD = 34.7250°

Comp LD GMT 140000 = 35.0404
Comp LD GMT 130000 = 34.5630

A 0.4774°/60 = 0.00796°/min.

34.7250°
34.5630

A .1620°.00796 = 20m 21.3s

Cleared LD

1300 Comp LD
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Working to tenths of minutes, we get:

Cleared LD 34°43.5’ A GHA 1 hr = 28.6'/60

1300 Comp LD 34 33.8 = 0.4767'/min.

A 9.7

9.7/0.4767 = 20.3482 min., or 20m 21s.

Second Method of Recovering Longitude

An alternative method of recovering the longitude by observation of

the Moon and a second body was suggested almost four hundred years

ago, long before instrumentation or ephemeristic data sufficiently accu-

rate to implement it were available. The method has been indepen-

dently “‘rediscovered,”’ with minor improvements, at least twice since

then. It was never widely used because any given error in angle, as read

from the sextant, causes a greater error in the final answer than does a

similar error in the use of the lunar distance method.
It is, however, of historic interest. It offers the advantage that a lunar

distance need not be measured; and that is a measurement most ob-

servers find difficult to make without a good deal of practice.
In using this method, it is assumed that, while Greenwich time is not

available, a good timepiece is on hand, showing time to within 30

minutes, or so, of GMT.

1. The first step is to determine the latitude, either by a transit

observation or by obtaining a round of star sights. In making all obser-

vations, the greatest care should be used in correcting all sextant al-

titudes; all corrections, including that for sea-air temperature, should

be applied to the sextant readings.

2. Next, a second body, a star, a planet, or the Sun,is selected, and

a series of altitude observations, timed by watch, of the second body
(which we shall call a star) and of the Moon, are obtained. By extrapo-

lation, simultaneous altitudes of the two bodies are obtained, and the

watch time of these altitudes, which we shall call Zo for future refer-
ence, is noted.

3. The GHA of the Moon and the star for the integral hours of GMT

before and after the watch time of the simultaneous altitudes are ex-
tracted from the Nautical Almanac, and the difference in hour angle is
divided by 60 to obtain the rate of change per minute of time.

4. The separation in hour angle between the star and the Moon for
the watch time of the simultaneous altitudes is calculated and noted.

5. The nextstep is to compute the meridian angles, ¢, of the star and
the Moon, using the formula:

sin Ho — sin L X sind

cost = cos L X cosd (0
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In calculating the Moon’s meridian angle, the watch time of the
observation is used in obtaining its declination. The difference between
the values of the two meridian angles is noted.

This difference in meridian angles is compared with the separation in

hour angle at the second integral hour of GMT found in Step 3. If the

star is East of the Moon, and the difference in meridian angle is less

than the separation in hour angle at the second integral hour of GMT,

the indication is that the simultaneous observations were obtained after

the second integral hour of GMT. In this case, the separation in hour

angle for a third integral hour of GMT must be determined, as must the

rate of change in hour angle from the second to third integral hours,

since the second has become the controlling hour.

6. The difference in meridian angle is next compared with the sep-

aration in hour angle found in Step 5, and the difference between the

two is obtained. The difference in hour angle between the controlling

hour of GMT and the previous integral hour is divided by 60, to obtain

the rate of change per minute, R.

7. The difference between the separation in hour angle and the dif-

ference in meridian angle found in Step 6 is divided by R, found in Step

6. The time in minutes and decimals thus found is added to the control-

ling hour of GMT to give T,. The Moon’s declination for time, T,, is

next extracted from the Almanac.
8. The Moon’s meridian angle is next computed, using the updated

declination.
9. The Moon’s revised meridian angle is now compared with the

star’s meridian angle, found in Step 5, to obtain the difference. This

difference is next compared with the separation in hour angle, found in

Step 3, and the difference is divided by R, found in Step 6, which gives

us a correction in minutes and decimals to apply to the controlling

integral hour of GMT. The time thus found constitutes T,.

10. The GMT of the simultaneous observations may now be ob-

tained by the formula:

To X T, - T,2

To + T, — 2T, ©
GMT =

To we obtained in Step 2, T, in Step 7, and Tin Step 9.

11. Having obtained the GMT of the simultaneous sights, we reduce

the observation of the body located nearer the prime vertical, either

due East or West.

12. The departure, p, is now computed, using the formula:

a
= 3

p sin Zn 3)
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in which a is the intercept, andZn is the true azimuth. The departure is

then divided by the cosine of the latitude, found in Step 1, to obtain the

difference in longitude. This is applied to the estimated longitude,in the

direction East or West, as appropriate, to obtain the ship’s actual lon-

gitude.

Example:
1. At morning twilight on 22 October, we are in L 45°10.0' N, A

60°30.0’ W by estimate. Our chronometer has run down, and the radio

has failed. Fortunately, the visibility is excellent, and a good watch is

available, which is known to be running within 30 minutes of GMT.

We proceed to observe a round of stars to establish our latitude,

which we find to be 45°03.7' N, or 45.016667° N.

2. We select Aldebaran as the star we shall observe with the Moon,

and make multiple observations of each body. By extrapolation, we

obtain simultaneous altitudes of both, at 09h 45m 30s by watch; this

time, less 9 hours, or 00h 45m 30s, we call To, and note for future

reference.

The simultaneous altitudes are:

Aldebaran Ho 37°56.9’ or 37.948333°
Moon Ho 26°39.2' or 26.653333°

3. Turning to the Nautical Almanac, we extract the GHA of Aries

and of the Moon for GMT 0900. Adding the SHA of Aldebaran to the
GHA of Aries, we obtain

GMT 0900 GHA Aldebaran  96°32.1' or 96.535000°
~

GMT 0900 GHA Moon 115°11.2" or 115.186666°

GMT 0900 AHA 18.651666°

We repeat this process for GMT 1000:

GMT 1000 GHA Aldebaran  111°34.5' or  111.575000°
~

GMT 1000 GHA Moon 129°41.7" or 129.695000°

GMT 1000 AHA 18.120000°

We next proceed to find the change in the difference in hour angle
for the hour from GMT 0900 to 1000:

GMT 0900 AHA  18.651666°
~

GMT 1000 AHA  18.120000°

A 0.531666°
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We now divide this hourly difference in hour angle by 60 to obtain
the rate of change per minute of time, which we call R; R proves
to be 0.008861° and is decreasing with time.

4. The next step is to find the separation in HA between Aldebaran
and the Moon at the watch time of the simultaneous observations:

Aldebaran GMT 0900 GHA 96.535000°
+

AHA per minute, 0.25068447° x 45m 30s 11.406143

GMT 09h 45m 30s GHA 107.941143°

We repeat this process for the Moon:

Moon GMT 0900 GHA 115.186667°

1000 GHA 129.695000

GMT 0900-1000 AGHA 14.508333°

This GHA, divided by 60, gives the Moon’s rate of change ofHA

per minute, 0.241806°. Multiplying this quantity by 45m 30s, we get

11.002153°.

Moon GMT 0900 GHA  115.186667°
+

00h 45m 30s 11.002153

09h 45m 30s 126.188819°

We now have:

Aldebaran GMT 09h 45m 30s GHA 107.941143°

Moon GMT 09h 45m 30s GHA 126.188819

Aldebaran-Moon GMT 09h 45m 30s AGHA 18.247676°

5. The next step is to compute the meridian angle, ¢, for both the

star and the Moon. From the Almanac, we find that Aldebaran’s

declination, on the date of the observation, is N 16°27.7', or

N 16.461667°; its Ho was 37.948333°. We write formula (1):

sin 37.948333° — sin 45.061667° X sin 16.461667°
 

£051 = cos 45.061667° X cos 16.461667°
0.414360 _= Ge7735; = 0611698

Aldebaran’s meridian angle, therefore, was 52.287589°.

Turning to the Moon, by interpolation we find that at GMT 09h 45m

30s its declination was N 18.397458°; its Ho was 26.653333°. There-
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fore, for the Moon:

sin 26.653333° — sin 45.061667° x sin 18.379458°
 

cost = cos 45.061667° x cos 18.379458°
0.225394 _= Gerona = 0-336252

The Moon’s meridian angle, therefore, was 70.351317°.

We next find the difference between the two meridian angles:

Aldebaran t 52.287589°
~

Moon t 70.351316

t A 18.063727°

6. We now compare this difference in meridian angle with the
separation in hour angle, obtained above:

HA A 18.247676°

tA 18.063727

HAt A 0.183949°

We note that the difference in meridian angle is less than the
difference in hour angle for GMT 1000, found above. As Aldebaran

is closing the Moon, this indicates that the time of the simultaneous

observations was after GMT 1000.

We, therefore, turn to the Nautical Almanac, to obtain the GHA

of Aldebaran and of the Moon for GMT 1100. Adding the SHA of

Aldebaran to the GHA of Aries for GMT 1100, and then extracting
the Moon’s GHA for that time, we obtain:

Aldebaran GMT 1100 GHA  126.616667°
~

Moon GMT 1100 GHA  144.201667

GMT 1100 A 17.585000°

To this quantity, we apply the difference in HA for GMT 1000,
found above:

GMT 1000 AHA  18.120000°
~

GMT 1100 AHA 17.585000

Change in HA GMT 1000to 1100 A 0.535000°

Dividing this value by 60, to obtain the rate of change in HA per

minute of time, R,, we get 0.008917° for the hour 1000-1100.
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Above, using the Almanac, we found that the separation in HA
between the two bodies at GMT 1000 was 18.120000°. To this quantity
we apply the separation in meridian angle, At, 18.063727°:

GMT 1000 AHA  18.120000°
~

At 18.063727

A 0.056273°

7. We divide this difference, 0.056273°, by the value ofR, obtained
above:

A 0.056273°/R 0.008917° = 6.310755 minutes

which is added to GMT 1000 to give us T,, 10h 06.310755m.

We next obtain the Moon’s declination for this GMT by interpolation

in the Almanac; we find it to be N 18.408951°.

8. The next step is to recompute the Moon’s meridian angle,

using this new declination:

sin 26.653333° — sin 45.061667° x sin 18.408951°
 cost = cos 45.061667° x cos 18.408951°
0.225051 _= 0570199 = 0-335794

9. The Moon’s meridian angle, using the revised declination, is,

therefore, 70.379199°; we compare this value with that of the meridian

angle of Aldebaran, previously computed:

Aldebaran t 52.287589°
~

Moon newt 70.379199

Ar 18.091610°

The next step is to find the difference between this and the

separation in HA for GMT 1000, obtained in Step 6:

Ar 18.091610°
~

GMT 1000 AHA  18.120000

A 0.028390°

We now divide this difference by the value of R, 0.008917°:

0.028390°/0.008917° = 3.183806 minutes

To obtain T,, we add 60 minutes to this value, as we are now

dealing with GMT 1000, one hour later than the original time base,

GMT 0900. T,, therefore, is 63.183806 minutes.
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We now have To 45.500000m (Step 2), T; 66.310755m (Step 7),

and T, 63.183806m.

10. We can now write formula (2):

_ 45.50m x 63.183806m — 4397.116229
GMT = 550m + 63.183806m — 132.621510

—1522.253046
= T/23.937704 = 63.592275m = 63m 35.3s

Adding 63m 35s to our base hour, GMT 0900, makes the
GMT of the simultaneous altitudes 10h 03m 35s.

11. We now proceed to reduce the Aldebaran sight, using this

GMT, L 45°03.7' N or 45.061667°, d N 16°27.7' or N 16.461667°, and
LHA 51.975538°. The last value we obtained by adding the SHA of

Aldebaran to the GHA of Aries for GMT 10h 03m 35s, and subtracting
our estimated longitude, 60°30.0' W. We find:

Hc  38.160249° and Zn 253.902820°
~

Ho  37.948333

a 0.211916° Away

12. We now compute the departure, p, which is — or East, using

formula (3):

0.211916
P = Sin 253.002820° ~~0-220564

The departure, p, in turn, is divided by the cosine of our latitude,

45.061667° N, to give the difference in longitude, — or East 0.312261°,

which is 18.7" E. Subtracting this from our estimated longitude,

60°30.0" W, our longitude at the time of the simultaneous sights was
60°11.3' W.

Note: The actual time of the observations was GMT 10h 03m 45s;

the difference of 10s between this and the ‘‘recovered’’ GMT of 10h

03m 35s is due to the fact that the sextant can be read only to the

nearest 0.1’ (0.001667°). The error in longitude is, therefore, 2.5’.

Fix by Observations of a Single Body

Willis Method

Another method of obtaining a fix by observation of a single body

was suggested by Edward J. Willis. This method hinges on the rate of
change of altitude of a body and its actual altitude at a point midway in
time between the first and third observations. For best results, the time

span for the three observations should be about 4 seconds (1 minute of
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meridian angle), and the altitudes should be obtained to an accuracy of
better than a thousandth of a minute of arc. However, fair results can
be obtained if the interval of time between the first and third observa-
tions is 8 minutes, or 120 minutes of arc, and the altitudes are obtained
to the nearest tenth of a minute of arc.

The Willis method does not lend itself well to solution by slide rule;

however,it is a good method for solution by calculator.
The first step in this method is to find the rate of change ofaltitude of

the body, AH. The quantity AH divided by the difference in time be-
tween the first and third observations, expressed in minutes of arc, At,

gives the sine of an auxiliary angle, N, as shown in the following for-
mula:

. AH
sin N = IN; (1

Having found the angle N, we proceed to find our latitude by means
of the formula:

 

— . ne]
sinL cos N X cos [Ho = sin ond 2)

In this formula, Ho is the corrected sextant altitude of the body,

obtained exactly halfway between the first and third observations; sin™!

indicates that sin d divided by cos N represents the sine of an angle;

and d is the declination of the body. The sign following Ho is — whenL

is of the same name and greater than the declination. When d is of the

same name, and considerably greater than L, the angle represented by

sin! (sin d/cos N) may be greater than 90°.

Having found ourlatitude, we can proceed to find the body’s merid-

ian angle, ¢, by the formula:

sin N X cos Ho 3)
sint =

cosd X cosL

The meridian angle is then converted to local hour angle, LHA, and

the longitude is found by subtracting the LHA from the Greenwich hour

angle, GHA, of the body at the instant of the second sight, Ho.

This method should not be used when the body is near the observer’s

meridian, and it must be borne in mind that the second observation,

termed Ho above, must be a separate observation, and not half the sum

of the first and third altitude observations.

Example: To illustrate this method, three altitudes, H,, Ho, and Hj,

have been extracted from Volume III of H.O. Pub. No. 214 for L 26°

and ad of 16°, d having the same name as L, which we will assumeis
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North. These altitudes are for three successive degrees of meridian

angle, 14°, 13°, and 12°; in other words, we assume that we have ob-

tained them exactly 4 minutes apart, and that they were morning Sun

sights. In actual practice, all three sextant altitudes would have been

corrected.

H, 73°33.9'
H; 75°00.0'

AH 1°26.1' = 86.1

We can now find the value of the angle N by writing formula (1):

Ho 74°17.6’

. _ 86.1" _
sinN =0 0.71750

N = 45.84846°

Having obtained the value ofN, we can proceed to find the latitude,

using formula (2), which becomes:

sin L = cos 45.84846° x cos [74.2037 — sin"! (lw16 )]
cos 45.84846°

= 0.69656 x cos [74.29333° — 23.31046°]

= 0.69656 x 0.62955 = 0.43852

L = 26.00957°

Ourlatitude is, therefore, 26°00.6' N, and we can proceed to find the

meridian angle, using formula (3):

sin 45.84846° x cos 74.29333°

Sint = cos 16° X cos 26.00957° 0.22483

t 12.99317°

The meridian angleis therefore 12°59.6’ E, which we would convert

to LHA, and then apply to the Sun’s GHA to obtain our longitude.

The error in meridian angle in this example is 0.4’, and the error in

latitude is 0.6’; the primary cause for both errors is the rounding off of
the altitude to the nearest 0.1’.

Aquino Method

When and if there is available instrumentation that will permit
azimuth to be obtained to the same degree of accuracy with which
altitude can be measured by means of the sextant, we shall be able to
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calculate both our latitude and longitude by means of simultaneous
altitude and azimuth observations of a celestial body.

A simple method of obtaining a fix in this manner was suggested in

the 1930s by Radler de Aquino, a Brazilian naval officer and mathema-

tician. Solution is by three simple formulae, given below. Meridian

angle is found first, and converted tc longitude; then latitude is found
by two additional formulae.

The first formula is:

cos Ho X sinZ
sint =

cosd (nD

where ¢ is the meridian angle, Ho is the corrected sextant altitude, Z is

the observed azimuth angle, and d is the declination. The meridian

angle is then converted to local hour angle, LHA, and the longitude will

equal the body’s Greenwich hour angle, GHA, less the LHA.

The first formula for the latitude solution is:

tan Ho

cotA = cos Z
2

In this and the following formula, A andB represent auxiliary angles. In

connection with formula (3), remember that the cotangent of an angle

equals the tangent of the complement of that angle.

The second latitude formula is:

tan d
= — 3

tan B cost A)

If latitude and declination are of the same name, A and B are added

together; if they are of opposite name, the smaller is subtracted from

the larger.

Example: In DR latitude 50° N we obtain a simultaneous altitude and

azimuth of the star Deneb, Ho being 83°07.4', and Zn being 133°49.9'.

Deneb’s GHA was 39°27.3', and the declination N 45°10.3'. We require

our position.

The body’s azimuth angle, Z, is 46°10.1’ (180° — 133°49.9'), so for-

mula (1) becomes:

_ cos 83°07.4' X sin 46°10.1
sint = cos 45°10.3' = 0.1225 

The meridian angle is, therefore, 7.0374° E, which makes the LHA

352.9626°.
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D M

GHA 39 27.3
+

360 00.0

399 27.3

LHA 352 57.8

A 46 29.5 W

To find the latitude, we write formula (2) with formula (3) below it:

tan 83°07.4’'
Cot A = 46°10.1 = 11.9731 =A 4°46.5

tan 45°10.3 _ _ B 4523.2
tan B =ema = 10136 = 755509.77

Ourlatitude, therefore,is 50°09.7’ N and our longitude is 46°29.3' W.

In this case, B was added to A, since latitude and declination were of

the same name.

Almanacs

Background

For the navigator practicing celestial navigation, an almanac in some

form is essential, as observations cannot be reduced without the

ephemeristic data contained in an almanac.

The word ‘‘almanac’’ is derived from the Arabic al-manakh, a list of

geographic or climatic data. It gradually acquired its present meaning

as a compendium of celestial data and came into general use in Europe.

The early almanacs were handwritten on parchment; those intended for

marine use included only data on the Sun’s declination. Abraham

Zacuto published the printed Almanach Perpetuum in 1474, which pre-

sented the Sun’s declination in a convenient format for the mariner. At

about the same time, Regiomontanus, at Nuremberg, published the first

of a series of more inclusive almanacs, which established a new stan-
dard of accuracy. The Tabulae Prutenicae, computed on Copernican

principles, were published by Erasmus Reinhold in 1551, and clarified

for the reader the motion of the celestial bodies. However, these data

were primarily of interest only to the astronomer; the navigator relied
chiefly on the Sun. The Rudolphine Tables, published in 1627, included

the advancesin astronomy made by Tycho Brahe and Johannes Kepler.

In 1696, the French National Observatory published the first official

almanac, the Connaissance des Temps. This was followed in 1767 by the
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British Nautical Almanac, primarily designed, asits nameindicates, for
use afloat. The British Almanac was used on board American vessels
until 1855, when our Navy published the first American Nautical Al-
manac. By today’s standards, using these almanacs entailed a great
deal of work;the astronomical day began at noon ofthe civil day of the

same date. Greenwhich hour angle was not used; instead, angular dis-

tance was expressed as right ascension, that is, angle East of the First

Point of Aries stated in hours, minutes, and seconds.

P. V. H. Weems, then a lieutenant commander, U.S.N., designed an

Air Almanac in 1933, in which Greenwich hour angle was used for all

bodies; the manifest advantages ofthis system were so obvious that the

same presentation was adopted for the Nautical Almanac in the follow-

ing year. This latter publication was further improved in 1950; since

1958 the production of the Nautical Almanac has been a joint British

and United States venture.

The latest publication in this field is the Almanac for Computers,

published annually by the U.S. Naval Observatory. The American

Ephemeris and Nautical Almanac, also published annually by the U. S.

Naval Observatory, gives data to a high degree of precision, on a large

number of celestial objects. It is intended primarily for the use of as-

tronomers, and is arranged to suit their convenience.

Interpolation in the Nautical Almanac

When the utmost accuracy is desired in extracting the Greenwich

hour angle of the Moon or planets from the Nautical Almanac, incre-

ments of GHA for minutes and seconds of time should be computed,

rather than extracted from the ‘‘Increments and Corrections’’ pages, as

the latter practice can lead to errors of about 0.2’. Errors of such

magnitude can seriously affect results in some computations, as when

time or longitude is to be recovered by means of a lunar distance

observation.
For example, for 19 December the Nautical Almanac tabulated GHA

for the Moon as follows:

GMT 1500 GHA 291°32.7 v 13.7
GMT 1600 GHA 306°05.4'

We require the Moon’s GHA for GMT 15h 30m 04s, and we shall first

use the ‘‘Increments and Corrections’’ pages:

GMT 1500 GHA 291°32.7'
30-04 7 10.5

v 13.7 7.0

GMT 15h 30m 04s GHA 298°50.2' or 298.83667°
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To compute the Moon’s GHA for GMT 15h 30m 04s we proceed

as follows:

GMT 1500 GHA 291°32.7 =  291.54500°

GMT 1600 GHA 306°05.4' =  306.09000

A 14.54500°

This value, divided by 60, gives us an increase in GHA per

minute of 0.24242°. We require the increase for 30m 04s, or 30.06

minutes. Multiplying 0.24242° by 30.06, we get the increase in GHA

for 30m 04s, which, when added to the GHA for GMT 1500, gives us

the required GHA.

GMT 1500 GHA 291.54500°
Increment for 30.06 7.28866

Computed GHA for GMT 15h 30m 04s 298.83366°

N.A. GHA for GMT 15h 30m 04s 208.83667

Difference 0.00301°

This difference of 0.00301° equals 10.8", or almost 0.2’, a difference

that could adversely affect some calculations.

Long-Term Sun Almanac

The Sun’s Greenwich hour angle and declination for any instant in

time for the years 1979 to 1999 may be calculated by means of the four

formulae given below. The error in GHA and declination should, in no

case, exceed 0.3’; in most cases, the error may be expected to be

considerably smaller.

To understand what we are doing, it will be necessary to consider the

situation from the astronomer’s point of view.

The Earth orbits the Sun in an elliptical path, making a complete

circuit of the ellipse from perihelion to perihelion in 365.2596 days. (See

Figure 5-3). Perihelion is the point of the Earth’s nearest approach to

the Sun; it occurs 10 to 12 days after the winter solstice, when the Sun
reaches its maximum southerly declination.

A fictitious Sun, traveling (Figure 5-4) at a constant angular velocity,

would move 360°/365.2596, or 0.9856° per day. The angular position of

the fictitious Sun, measured from the point of perihelion, is called the
Sun’s mean anomaly, M; M may be calculated by means of the formula:
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M = 0.9856 x (por + SM) + Mo a1)

in which GMT is the Greenwich mean time, Mo is the mean anomaly on
day 0 of the required year, found in Table 5-3, andDOYis the numerical
value of the day ofthe year; a table for the ready determination of this

value is given below as Table 5-4. Because the Earth does not complete

its circuit of the Sun in a year of precisely 365 days, the value ofMo
changes from year to year.

After we compute the value ofM, the next step is to determine the

Sun’s longitude, A, using formula (2); astronomers call this formula

‘‘the equation of the center.” The Sun’s longitude is measured west-

ward to 360° from the First Point of Aries, °V, rather than from the point

of perihelion. The longitude is found by using the formula:

A=M + (1.9160° x sin M) + (0.02° x sin 2M) — IIg 2)

in which Ilis the longitude of perihelion; its value for each year is also

given in Table 5-3.

Next, the Greenwich hour angle of the Sun is determined by the

formula:

GHA =
M + (15 x GMT) — tan! (0.9175 x tan A) — (II + 180°) (3)

When this latter formula is used, tan™! (0.9175 X tan A) must be

placed in the same quadrant as A; this may be achieved by adding 180°

if the result is in the wrong quadrant.

Finally, the Sun’s declination, d, may be found by the formula:

sind = 0.3978 X sin A 4)

Example: We require the Sun’s GHA and declination for GMT 12h 47m

23s on 27 November 1980.
We turn to Table 5-4 and find that 27 Novemberin a leap yearis the

332nd day ofthe year; from Table 5-3 we note that the value ofMo for

1980 is —3.7737. Formula (1), therefore, becomes:

M = 0.9856 x (332 + 127) + (=3.7737%)
= 327.7444° — 3.7737° = 323.9707°

 

which is the value of M.
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Y

Figure 5-3. The orbit of the Earth about the Sun
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Figure 5-4. The orbit of the Sun about the Earth
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Table 5-3

Mo Ig

(Mean anomaly on day 0) (Earth’s longitude at perihelion)

1979 -3.5070 77.4120

80 -3.7737 77.4006

81 —3.0452 77.3835

82 -3.3020 77.3663

83 —3.5583 77.3491

84 -3.8140 77.3320

85 —3.0836 77.3148

86 —3.3383 77.2976

87 —3.5927 77.2805

88 —3.8470 77.2633

89 -3.1157 77.2461

90 —3.3702 77.2289

91 -3.6251 77.2118

92 —3.8804 77.1946

93 —3.1507 77.1774

94 —3.4071 77.1603

95 —3.6640 77.1431

96 -3.9212 77.1260

97 -3.1930 77.1087

98 —3.4505 77.0916

99 —-3.7078 77.0744
 

We now extract the value of Il; from Table 5-3, and write formula

2):

= 323.9707° + (—1.1270°) + (—0.0190°) — 77.4006° = 245.4241°

which is the Sun’s longitude.

The next step is to calculate the Sun’s Greenwich hour angle. For-

mula (3) becomes:

GHA = 323.9707° + 191.8458° — 63.5061° — 257.4006° = 194.9098°

From this value we subtract 180°, to bring the GHA into the proper

quadrant, making it 14.9098°. The Sun’s GHA is, therefore, 14°54.6,

which is correct, according to the Nautical Almanac.

To find the Sun’s declination, formula (4) is written:

sind = 0.3978 x —0.9094 = —0.3618
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Table 5-4. Annual Number of the Last Day of Each Month
 

 

Non-Leap Year Leap Year

January 31 January 31

February 59 February 60

March 90 March 91

April 120 April 121

May 151 May 152

June 181 June 182

July 212 July 213

August 243 August 244

September 273 September 274

October 304 October 305

November 334 November 335

December 365 December 366
 

To find the numerical value of any day of a non-leap year, or of a leap
year, enter the correct section of the table above, and extract the value
of the last day of the preceding month. To this is added the current
day of the month, using the Greenwich date. Thus, 17 September in a
leap year would be the 261st day of the year (244 + 17).

Table 5-5. Sun’s Semidiameter
 

 

Date SD

1 January-2 February 16.3’

3 February-4 March 16.2’

5 March-28 March 16.1

29 March-18 April 16.0’

19 April-15 May 15.9

16 May-25 August 15.8’

26 August-18 September 15.9

19 September-12 October 16.0’

13 October-2 November 16.1

3 November-2 December 16.2

3 December-31 December 16.3’
 

The correction for parallax in Sun observations is
+0.1' to altitude 65°.

The Sun’s declination is, therefore, —21.2086°, or South 21°12.5’,
which is also correct if careful interpolation is used in the Nautical
Almanac.
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Table 5-5 shows values for the Sun’s semidiameter that must be used
when reducing your sight.

Long-Term Aries and Star Ephemeris

To obtain the Greenwich hour angle and the declination of a star, for

a given time and date, we require the GHA of Aries, ¥, the star’s

sidereal hour angle, SHA, and the declination, d. After computation of

both GHA °Y and SHA, the latter is added to GHA ¥, and 360° is
subtracted if necessary; the vessel's longitude is then applied to the

star’s GHA to obtain the star’s local hour angle, LHA, which, with the
star’s declination, d, is used to reduce the sight.

We shall first discuss computing GHA ¥ for any time and date.

Long-Term Aries Ephemeris

The GHA ¥ for any instant to the year 2000 may be computed by

means of the formula:

GHA Y = C + [0.985647°(D)] + 15T (1

in which C is a constant for the specified year, found in Table 5-6, T is

the specified GMT, and D is the numerical value of the specified day
within the year, plus T divided by 24. Table 5-4, introduced in the

preceding section, is designed to assist in determining the numerical

value of the day. Use of these tables is illustrated in the following

example.
Where a number of observations are made in series,it is necessary to

compute GHA °Y only for the first observation; subsequent values may

be obtained if the time difference in minutes and decimals is multiplied

by 0.250684°. The error in GHA 7 obtained by this formula should not

exceed 0.2’.

Example: We require the GHA ¥V for GMT 22h 17m 42s on 19 August

1989, and for 22h 33m 17s on the same day.

We extract the constant, C 99.6382°, for 1989 from Table 5-6. From

Table 5-4 we note that in a non-leap year the last day of July is the 212th

day of the year; 19 August will, therefore, be the 231st day of 1989. To

this we add the first GMT, 22h 17m 42s, expressed as decimal hours,

22.2950.
We can now write formula (1):

GHA V =
99.6382° + [0.985647° x (231 + 22.2950°/24)] + (15 x 22.2950°)
= 99.6382° + [228.60008°] + 334.4250°
= 662.6633°

From 662.6633° we subtract 360°, and convert the answer to degrees

and minutes, 302°39.8’, the GHA ¥ for GMT 22h 17m 42s.
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Table 5-6. The Value of the

Correction Factor C for the

Years 1980 to 1999 (see text)
 

1980 98.8256

1981 99.5713
1982 99.3317
1983 99.0926

1984 98.8540
1985 99.6017

1986 99.3641
1987 99.1268

1988 98.8897
1989 99.6382
1990 99.4008

1991 99.1631

1992 98.9250

1993 99.6719

1994 99.4326

1995 99.1929
1996 98.9529

1997 99.6982

1998 99.4579

1999 99.2177
 

To obtain the GHA ¥ for 22h 33m 17s on the same day, we find the

difference in minutes and decimals between this time, and the base

GMT, 22h 17m 42s; this difference is 15.5833 minutes. Multiplying this

difference by 0.250684°, the change in the GHA °V per minute of time,

we get 3.9065°. Adding this to 302.6633°, the GHA ¥ for the base GMT,

we get 306.5698°, which converts to 306°34.2', the GHA °V for GMT 22h

33m 17s.

Long-Term Star Ephemeris

The sidereal hour angle of 57 major navigationalstars, thatis, their

angular distance West ofthe First Point of Aries, and their declinations,

may be determined for any time and date within this century with an
accuracy in the great majority of cases of better than 0.5’, by the use of
Tables 5-7 and 5-8.

Table 5-7 lists the SHA and d of each star for the epoch 1980.0,
together with the annual corrections for each. Table 5-8 gives the deci-
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Table 5-7. Long-Term Star Ephemeris, Epoch 1980.0

 

SHA Annual Declina- Annual

(de- change tion change

Star grees) in SHA (degrees) in dec.

Acamar 315.6232 —0.00942 —40.3847 0.004

Achernar 335.7575  —0.00917 —57.3374 0.005
Acrux 173.6225  —0.0138 —62.9899 —0.0055

Adhara 255.5374  —0.00983 —28.9463 —0.0014
Aldebaran 291.3032  -0.01425 16.4688 0.002

Alioth 166.7119  —0.0108 56.0672 —0.0053

Alkaid 153.3111 -0.0097 49.4103 —0.005

Al Na’ir 28.2531 -0.0156 —47.0563 0.0048
Alnilam 276.1968  —0.0126 -1.2157 0.0006

Alphard 218.3453 —0.0122 —8.5739 —0.004
Alphecca 126.5376 —0.0105 26.7818 —0.0033
Alpheratz 358.1578  —0.0128 28.9814 0.0055

Altair 62.5546  —0.01217 8.8171 0.00267
Ankaa 353.6739  —0.0123 —42.4132 0.0053

Antares 112.9507 -0.0153 —26.3876 —0.00217

Arcturus 146.3103 -0.0113 19.2857 -0.00517
Atria 108.3565 -0.026 —68.9915 —0.00175
Avior 234.4704  —0.0051 —59.4471 -0.0032

Bellatrix 278.9822 -0.0133 6.3307 0.0008
Betelgeuse 271.4740  —0.0134 7.4026 0.0002

Canopus 264.1210  —0.0056 —52.6869 -0.0006
Capella 281.1924  -0.0183 45.9774 0.0009

Deneb 49.8092 —-0.0084 45.2110 0.0036

Denebola 182.9871 -0.0127 14.6819 —-0.0055
Diphda 349.3257 -0.0125 —18.0951 0.0054

Dubhe 194.3736  —0.0153 61.8572 —0.0054

Elnath 278.7392  —0.0157 28.5900 0.0008

Eltanin 90.9631 —0.0058 51.4931 —0.0001

Enif 34.1954 —0.0122 9.7850 0.0045

Fomalhaut 15.8601 —0.0138 —29.7264 0.0053

Gacrux 172.4811 -0.0138 —57.0025 —0.0055

Gienah 176.3022  —0.0128 —17.4326 —0.0055

Hadar 149.3918 —0.0176 -60.2775 —0.0048

Hamal 328.4849 —0.014 23.3688 0.0047
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Table 5-7. (Continued)

 

SHA Annual Declina- Annual

(de- change tion change

Star grees) in SHA (degrees) in dec.

Kaus Australis 84.2844  —0.0164 -34.3935 -0.0006

Kochab 137.3182 0.0007 74.2374 -0.0041

Markab 14.0554 —-0.0124 15.0996 0.0053

Menkar 314.6885 -0.013 4.0117 0.0039
Menkent 148.6199  —0.0146 -36.2728 —0.0048

Miaplacidus 221.7482 —0.0028 -69.6374 —0.0041

Mirfak 309.2719 -0.0178 49.7907 0.0035

Nunki 76.4899  —0.0154 -26.3201 0.0013

Peacock 53.9778 -0.0196 -56.7979 0.0033

Polaris Polaris precesses too rapidly for such a simple

technique as this one.

Pollux 243.9731 -0.0152 28.0732 -0.0024

Procyon 245.4326 -0.013 5.2746 -0.0026

Rasalhague 96.4954 -0.0115 12.5754 -0.0007

Regulus 208.1699 -0.0133 12.0632 —-0.00492

Rigel 281.6028 -0.012 —8.2256 0.0011

Rigil Kentaurus 140.4333 -0.017 -60.7521 -0.004

Sabik 102.6886  —0.0143 —15.6999 -0.0012

Schedar 350.1526 -0.0142 56.4293 0.0054

Shaula 96.9326 -0.0169 -37.0886 —0.0008

Sirius 258.9308 -0.0109 —16.6907 —-0.0014

Spica 158.9617 —0.0131 -11.0578 —0.0051

Suhail 223.1813 —0.009 —43.3539 -0.004

Vega 80.9324 —-0.0084 38.7667 0.001

Zubenelgenubi 137.5535 —-0.0138 —15.9592 —-0.0041

 

mal part of a year represented by any month and day;this permits easy

updating of the annual corrections to the tabulated SHA and d. The use
of these tables is illustrated in the example.

To reduce an observation of one of the tabulated stars,it is recom-

mended that the GHA ¥ for the time of the observation be first com-

puted, and that the star’s SHA and d be then determined by means of
Tables 5-7 and 5-8. The star’s SHA is then added to GHA °Y to obtain
the star’s GHA.
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Deci-

mal 0.0 0.1 0.2 0.3 0.4 0.5

Day 1 Jan. 19 Jan.

|

24 Feb.

|

2 Apr.

|

8 May

|

14 June
of to to to to to to

year 18 Jan. 23 Feb. 1 Apr. 7 May 13 June 19 July

Deci-

mal 0.6 0.7 0.8 0.9 1.0

Day 20 July 26 Aug. 1 Oct. 7 Nov. 13 Dec.

of to to to to to

year 25 Aug. 30 Sept. 6 Nov. 12 Dec. 31 Dec.        
Example: We require the GHA and d of the star Acamar for GMT 22h

17m 42s on 19 August 1989. (Note: The GHA °Y for that time and date is
302°39.8’; see the above example for finding the GHA ¥.)

We extract the SHA and d for epoch 1980.0 from Table 5-7, together

with their annual corrections, and enter them as shown below. Using

Table 5-8, we find that 19 August constitutes 0.6 year; 19 August 1989

will, therefore, be 9.6 years after epoch 1980.0.

Acamar

SHA 1980.0 315.6232 d 1980.0 —40.3847°

Annual Corr. Annual Corr.

—0.00942° x 9.6  —0.0904° 0.004° x 9.6 0.0384°

SHA 315.5328° d —40.3463°

GHA ¥ 302.6633°

618.1961°

— 360°

Acamar GHA 258.1961° (258°11.8’) d —40.3463° (40°20.8’ S)

We would then apply our longitude to Acamar’s GHA in the usual

manner to obtain its LHA, and proceed to reduce the sight.
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Storm Avoidance

We are at sea when we receive a WWYV report of a small low-

pressure area, accompanied by strong winds and high seas. The distur-

banceis reported to be moving in the direction 035° at 22 knots. Allow-

ing for the time that has elapsed since the storm’s position was first

reported, we plot its present position, and find thatit bears 195°, distant

395 miles. From the plot,it is obvious that our avoidance course will lie

somewhere toward the northwest.

We therefore bring the vessel to a heading of 315°, and find that we

can make good a speed of 7 knots on this heading.

To determine the optimum avoidance course, given our speed of 7
knots, and the storm’s present direction and speed of travel, we must

next determine its speed and direction of advance relative to our ves-

sel’s eventual course and speed of 7 knots. To help in visualizing the
problem, we start a rough sketch, which need not be to scale. We draw

the line AB (see Figure 6-1) in the direction 035°; its length represents

the storm’s speed of travel, 22 knots. This sketch will end up as a
triangle, the length of the sideAC representing our speed of7 knots, but

as yet we do not know its exact direction.

If we were solving the problem by plotting, we would strike an arc,

centered at A, with a radius of 7 units, in a northwesterly direction, and
then drop a tangentto thisline; by definition, a line tangentto a circle is
perpendicular to a radius drawn to the point of tangency.

182
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BC is the relative speed &
motion vector, 20° 86 K   
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Figure 6-1.

We can now complete our triangle, knowing that C is a right angle,

and the length of the sides AB andAC. What we need is the value of the

angle A, which will enable us to compute the optimum course.

To find A, we first compute the value ofB by the law of sines:

sin 90° — sin B

22 7

B therefore equals 18.55°, and subtracting this value from 90°, we

find that A equals 71.45°. We can now find the avoidance course by

subtracting 71.45° from the direction of the storm’s advance, 035°. Our

course will, therefore, be 323.55° (035° + 360° — 71.45°); we shall call

it 324°.
We need to find one additional vector in this triangle—the length of

the line BC, which represents the storm’s speed of advance relative to

our ship. Again, by the law of sines:

BC 22

sin 71.45° _ sin 90°

BC, therefore, represents 20.86 knots, the storm’s relative speed of

advance. After bringing the ship to the avoidance course, 324°, we can

go below, have a cup of coffee, and, at our leisure, calculate what our

distance will be from the storm center at the closest point of approach,
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and the time required forthe storm to reach that point, provided it does

not changeits direction of travel and/or its speed of advance. To visu-

alize the problem, we put a penciled dot on a piece ofpaper, and labelit

A;this represents our present position. From A we draw a line in the

direction 195°; the other end of this line, labeled B, represents the

storm’s present position, distant 395 miles. This drawing need not be

accurate; it is merely intended as an aid in visualizing the problem.

We next draw a second line from A in the direction 144°, the recip-

rocal of our course line; this forms the second leg of our triangle. For

the third leg, we drop a perpendicular from B to the reciprocal of our

course line. In this triangle, we know that the angle A equals 51°

(195° — 144°), and that C is a right angle; B therefore equals 39°

(90° — 51°).
We can now proceed to find the storm’s distance at the CPA (point C

in our triangle) by the law of sines:

395 _ CPA

sin 90° sin 39°

The distance at the CPA is, therefore, 248.58 miles.

To find the time the storm will reach the CPA, we calculate the length

of the side BC, which represents the relative distance the storm will
travel to the CPA:

 

395 BC

sin 90° sin 51°

The relative distance is, therefore, 307 miles. From the first triangle

we found the storm’s relative speed of advance to be 20.86 knots,

which we will call 21 knots. Dividing the relative distance, 307 miles,

by the relative speed, 21 knots, we find the storm, if it maintains its

present advance, will reach the CPA in about 14 hours 40 minutes.
Atthis point,it is appropriate to add a cautionary note.

Storms frequently change both the direction and the speed of their

advance. Every opportunity of updating all available weather data

should be seized, and a new avoidance course should be calculated if
necessary.

Finally,it goes without saying that the avoidance course should not
take the ship into shoal water, or, save under exceptional circum-
stances,into the dangerous semicircle of a circular tropical storm, such
as a hurricane.

Temperature Conversion

Three methods of expressing temperature are in general use
today—Fahrenheit, Celsius (Centigrade), and Kelvin. They may
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readily be interconverted by the formulae given below, in which F
stands for degrees Fahrenheit, C for degrees Celsius, and K for degrees
Kelvin.

To convert degrees F to degrees C, the formula is:

C = 0.556 (F — 32°) (1)

The formula for converting degrees Celsius to degrees Fahrenheitis:

F=(18xC)+ 32 2

To convert degrees Celsius to degrees Kelvin the formula is:

K = C + 273.16 3)

For converting degrees K to degrees C we use the formula:

C = K —- 273.16° “4

Example 1: We wish to convert 63°F to degrees C. We write formula (1):

C = 0.556 x (63° — 32°) = 0.556 x 31° = 17.2°C

Example 2: We wish to convert —23.8°C to degrees F. We write formula

(2):

F = (1.8 Xx —23.8°) + 32° = —42.8° + 32° = —10.8°F

Example 3: We wish to convert 26°F to degrees C. Formula (1) be-

comes:

C = 0.556 x (26° — 32°) = 0.556 x —6° = —3.3°C

Example 4: We wish to convert 60°C to degrees K. We write formula

3):

K = 60° + 273.16° = 333.16 K

Example 5: We wish to convert 320 K to degrees C. Formula (4) be-

comes:

C = 320° — 273.16° = 46.84°C

Barometric-Pressure Conversion

Inches of mercury, millimeters of mercury, and millibars may be

interconverted with sufficient accuracy for all ordinary purposes by

means of the calculator and the following formulae.
To find the atmospheric pressure in inches of mercury, when it is

stated in millibars, the formula is:

IM = 0.02953 xX Mbs 1)
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where IM is pressure in inches of mercury, and Mbs represents the

number of millibars.

To convert inches of mercury to millibars, the formula is:

_ IM
~ 0.02953 2

When atmospheric pressureis stated in millimeters of mercury, the

equivalent value in millibars may be found by the formula:

Mm
Mbs = 0.75 A

in whichMm represents the atmospheric pressure stated in millimeters.

Mbs

Example 1: The atmospheric pressure is given as 998 millibars; we wish

to convert this value to inches of mercury. Formula (1) becomes:

IM = 0.02953 x 998 = 29.47

The atmospheric pressure is, therefore, 29.47 inches.

Example 2: The barometer reads 30.56 inches; we wish to state it in
millibars. We use formula (2), which we write:

_ 30.56
Mbs = 5.02053

Therefore, 1035 millibars are the equivalent of 30.56 inches of mercury.

= 1035

Example 3: The atmospheric pressure is given as 764 millimeters of

mercury, which we wish to convert to millibars. We write formula (3):

764
Mbs = 0.75 = 1019

The pressure expressed in millibars is, therefore, 1019.

Finding the Diameter of the Turning Circle

To find the diameter ofthe turning circle by the method given below,

it is necessary that a clear horizon be available. The rudderis set to the

required angle, and after the ship has turned through more than 180°,
the angle between the horizon and the center of the wake abeam of the
vessel is measured with the sextant. To this angle, the sextant’s index

correction and the correction for dip, with sign reversed, are applied to
give the angle Ho.

The diameter of the turning circle, D, may then be found by means of
the formula

HE

= tan H (D

where HE is the observer’s height of eye in feet.
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To find the diameterofthe turning circle in yards,it is only necessary

to divide the answer thus found by 3. IfHE is entered in meters, the
diameter of the turning circle will be in meters.

For merchantmen, the diameter of the turning circle, without back-

ing one engine on a twin screw ship, will usually lie between six and

nine times the vessel's length. However, for any given ship, the diame-

ter will usually vary with any change in trim.

Example: We wish to determine the diameter of our turning circle, in

yards, using standard rudder. Our height of eye is 66 feet; when the

ship has turned through more than 180°, we measure the angle between
the center of the wake abeam and the horizon beyond it and find the

angle to be 0°57.5’. The index error is —2.0’; the corrected angleis,

therefore, 0°59.5'.

We write formula (1):

D= 66 _ _66
tan 0°59.5' Xx 3 0.0519

The diameter of our turning circle is, therefore, 1271 yards.

= 1270.97

Area and Volume

In these formulae, D, represents diameter, H represents height, L

represents length, r represents radius, S represents the length of a side,

and W represents width.

Surface area of a triangle = H/2 X L 1

Surface area of a square = L X L 2)

Surface area of a rectangle = H X L 2)

Surface area of a parallelogram = H X L 2)

Surface area of a cube = 6 xX H? 3)

Surface area of a rectangular solid
=QRXLXxXH)+QRXLxW+QRxHxW) 4

Surface of a circle = 7 X r? 4)

Surface area of a sphere = 7 X r? X 4 (6)

Surface area of a cylinder = 7 XD XL + 2 X 7 X r? ©)

Surface area of a cone = 7 X r2 + w X r X length of side (8)

Volume of acube =H X L XxX W 9)

Volume of a rectangular solid = H Xx L X W (10)

Volume of a sphere = 7 X D%6 (11)

wm X H Xr?
Volume of a cone =

—

3 (12)
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Fuel Consumption

For large ships steaming at economical speeds, thatis, well below

hull speed, fuel consumption varies as the cube of the speedfor a given

time, and as the square of the speed for a given distance.

For time, the formula is:

3

$5 XFi=F, (1)

where S, is the speed for which the fuel consumption in known, Sis

the speed for which the fuel consumption is desired, F, is the fuel in

units consumed per hour or per day at S,, and F, is fuel consumed at the

new speed.
Fordistance, the formula is:

S 2

se X Fy, =F, 2)

using the same notation as in formula (1).

Example 1: At 14 knots we burn 40 tons of fuel a day. What will be our

fuel consumption per day at 12 knots?

The cube of 14 is 2744, and the cube of 12 is 1728, so we write

formula (1):

_ 1728 _
F, = 2744 X 40 = 25.1895

Fuel consumption at 12 knots will, therefore, be 25.1895 tons per
day.

Example 2: At 13 knots we burn 2.65 tons offuel per hour, and we wish

to determine our hourly fuel consumption at 15 knots.

The cube of 13 is 2197, and the cube of 15 is 3375. We, therefore,
write formula (1):

_ 3375 _Fy = 5755 X 2.65 = 4.0709

At 15 knots our hourly fuel consumption will, therefore, be 4.1 tons.

Example 3: At 13 knots we require 323 tons offuel to steam 2,085 miles.
How much fuel will we require to steam the same distance at 15 knots?

In this case, we use formula (2), which we write:

_25 _F, = 169 X 323 = 430.0296

We shall, therefore, require 430 tons offuel to cover 2,085 miles at 15
knots.
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By rearranging or transposing factors as required, formulae (1) and
(2), above, can be used to solve variations of these fuel-consumption
problems.

Example 4: We know that we require 323 tons of fuel to make a run of

2,085 miles at 13 knots. What speed must we use to make the same run
using only 260 tons of fuel?

In this case, §; is not known, but F, is, so we transpose formula (2) to
read:

F, Xx S22 — X94"PB F.

which becomes:

260 X 169
2 21S;2 = 323 136.0372

The square of the speed we must use to cover the required distance on

260 tons of fuel is 136.

Therefore, the required speed is the square root of 136, or 11.66

knots.

Example 5: We know that our ship burns 232 tons offuel to travel 2,085

miles at 13 knots. We wish to determine how much fuel we would

require to travel 1,850 miles at 16 knots.

We first determine how much fuel she would consume steaming the

first distance, 2,085 miles, at 16 knots. Formula (2) becomes:

F, = ol x 323 = 489.2781

which we shall call 490 tons. For 2,085 miles at 16 knots, we would

require 490 tons of fuel.
We can now find the amount of fuel required to steam 1,850 miles at

16 knots:

D 1,850
Fy= 5 XF: = 375s

We would, therefore, require 435 tons to steam 1,850 miles at 16 knots.

Some fuel problemsare best solved by ratios. The following example

is a case in point.

Example 6: We know that our ship requires 323 tons of fuel to travel

2,085 miles at 13 knots. At what speed must we steam to travel 3,450

miles on 400 tons of fuel?

We first determine how many miles we would cover at 13 knots on

400 tons of fuel. For this purpose, we use the ratio

F,:Fy::D,:D,

xX 490 = 434.7722 
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in which D, is the known distance and D; is the distance to be found,

and we write:

323:400::2,085:2,582

At 13 knots, therefore, we would cover 2,582 miles on 400 tons. Next,

using the ratio

Dy:Dg::Fy: Fg

we find how many tons of fuel would be required to steam 3,450 miles

at 13 knots:

2,582:3,450::400: 534

We would, therefore, require 534 tons of fuel for 3,450 miles at 13

knots. Now, using a third ratio,

F3.F, 18 ,2:85,2

we can determine the speed required to traverse 3,450 miles on 400 tons

of fuel:

534:400::169:126.5

The square of the required speed is, therefore, 126.5, and its square

root is 11.25.

Therefore, we must steam at 11.25 knots to cover 3,450 miles on 400

tons of fuel.

Propeller Slip

Apparent propeller slip is the difference between the pitch of a pro-

peller multiplied by the number of revolutions it makes and the vessel’s

advance. Slip is expressed as a percentage. Thus, a steamer turning a

propeller having a 20-foot pitch at 152 revolutions per minute (rpm)

would move 3,040 feet in one minute, or would be steaming at almost
exactly 30.0 knots (actually, 30.02):

3,040 feet X 60 minutes

6,076 feet

If she made 27.0 knots, the slip would be 10% (27:30::90: 100).

For most use, the length of the nautical mile is generally considered
to be 6,080 feet; in fact, its length is 6,076.11548556 feet.

Slip varies tremendously with vessel type. Under fine weather condi-

tions,the slip for a large freighter driven at an economical speed by a
slow-turning propeller may approach a highly favorable 5%. On the

other hand, for a heavy auxiliary sailboat turning a small propeller at a

high numberofrevolutions, it may approach 50% in smooth water, and
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on a windless day. Head winds and head seas, of course, greatly in-
crease the slip, and high speeds have the same effect on many vessels.

For small craft of various types, average slip is approximately as
listed below:

Fast open motor boats 20%

Light cruisers 25%

Heavy cruisers 28%

Auxiliary sailboats 33% to 50%

A graph or table showing the number of engine or propeller turns per

minute required to achieve any given speed in still water is most help-

ful. For large cargo carriers, graphs or tables for various loadings are

required. The diameter and pitch of propellers for small craft are
stamped on the wheel, and are usually given in inches.

To find the speed in knots a propeller would give a boat if there were

no slip, we could use the formula:

propeller rpm X pitch in inches X 60 minutes

6,080 feet X 12 inches

However, this formula can be more simply written:

 Speed in knots =

Speed in knots = propeller rpm X pitch in inches xX 0.000822 (1)

because 60/(6,080 x 12) = 0.000822.

To find speed in miles per hour, we would substitute 0.000947 as the

constant, since 60/(5,280 x 12) = 0.000947.

Example I: Our propeller has a pitch of 22 inches. If there were no slip,

what would be our speed in knots,if the propeller were turning at 1,800

rpm?
Here, we use formula (1) and the constant 0.000822, and write:

Speed in knots = 1,800 x 22 x 0.000822 = 32.55

In the absence of slip, we would, therefore, make 32.55 knots.

Now let us assume that when our propeller is turning at 1,800 rpm,

we are actually making 22.5 knots, and we wish to determine the slip.

We use the ratio

22.5

32.55

The slip, therefore, is 30.9% (100 — 69.1). Rememberthat the slip

percentage is based on the propeller pitch and its rpm and not on the

speed made good.

For ships, propeller pitch is stated in feet and inches or feet and

decimals of feet. If it is stated in feet and inches, the inches should be

= 0.6912 x 100
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converted to decimals. Thus, for a pitch of 18 feet 3 inches, we would

use 18.25 feet. To find the ship’s speed if there were no slip, the formula

would be:

X pitch in feet X 60 minutesSpeed in knots = Propeller rpm pitchin ee mi

However, this also can be simplified:

Speed in knots = propeller rpm x pitch in feet x 0.00987 (2)

because 60 divided by 6076 gives the constant 0.00987.

Example 2: Our propellerpitch is 11 feet 6 inches, and we wish to know

what speed we would obtain at 170 rpm if there were no slip. We write

formula (2):

Speed in knots = 170 x 11.5 x 0.00987 = 19.2959

Our speed, therefore, would be 19.3 knots.

Suppose that we wanted to allow for 11% slip, and still obtain a

speed of 19.3 knots. How many shaft rpm should we call for?

We arrive at the required number of rpm by using the ratio

170 rpm

89% 100%

To make 19.3 knots we should, therefore, call for 191 rpm.

The engine rooms of large vessels have revolution counters, which

record the number of turns the shaft has made in a given period. If the

value of the slip is known, such counters are most useful in determining

the distance run over a given period: all that is required is to calculate

how far the ship would have advanced for the given pitch and number

of turns, and apply the slip to the result of that calculation.

  

Example 3: Our propeller pitch is 11 feet 6 inches, and the shaft coun-

ters show that we have made 28,300 propeller revolutions in a given

period. We wish to determine how far we have steamed, allowing for an
11% slip.

Theslip being 11%, we multiply the advance by 0.89 (1 — 0.11). We
then have:

Miles steamed
_ pitch 11.5 feet x 28,300 shaft revolutions x 0.89 slip factor

6,080 feet
47.6399

Allowing for an 11% slip, we have, therefore, steamed 47.6 miles.
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Review of Alterations in Ship Stability and Trim

This brief section on stability and trim is intended as an aide-

mémoire for the mariner who, at some time in the past, has studied that

portion of naval architecture dealing with ship stability, and is suddenly

faced with a stability problem, without access to the usual textbooks
dealing with this subject.

Table 6-1 presents hydrostatic and intact stability nomenclature.

Figure 6-2 shows a ship with positive stability at an angle of heel ¢,

which in this case is less than or equal to 7°.

Figure 6-3 illustrates trim, showing a ship attempting to return to

waterline WL.
The following sections on ship hydrostatics and intact stability con-

tain several sample problems. For consistency, these examples will

Table 6-1. Hydrostatic and Intact Stability Nomenclature
 

 

Symbol Definition Units

L Length of waterline ft

BEAM Max. beam of waterline ft

T Mean draft to waterline ft

A Displacement at T Long tons

Vv Volumetric displacement at T ft3

Cs Block coefficient at T —

Cup Waterplane coefficient at T —_

KG Height of the vertical center of gravity above ft

the keel

KM Height of the transverse metacenter above ft

the keel

GM Transverse metacentric height ft
KB Height of the vertical center of buoyancy ft

above the keel

BM Transverse metacentric radius ft

mT” Moment to alter trim one inch ft-tons/in.

Aup Area of the waterplane at T ft?

KM, Longitudinal metacentric height above the ft

keel

BM, Longitudinal metacentric radius ft
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—
D

 

Waterline
 

 
  

Intersection of baseline (8) and centerline ()
Center of gravity
Center of bouyancy
Metacenter (G must be below M for positive stability)
Angle of heel, deg

GZ Righting arm,ft

GZx A Righting moment, ft - tons

Figure 6-2. A ship with positive stability will attempt to return to the upright.
As drawn (for ¢ = 7°) this ship has positive stability.

S
T
O
O

X

refer to a single ship having the following characteristics:

L = 150 feet

BEAM = 25 feet

T = 10 feet

TRIM = 0 feet

Cup = 0.75

Cg = 0.65
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ML

dé

 

\ G W1L4

A wL
-NBf Bq |
    K

ML Longitudinal metacenter
M0 Amidships
F Point about which the ship trims

Figure 6-3. As drawn, this ship is attempting to return to waterline WL.

I. To find displacement (A) in long tons (1 long ton = 2240 pounds):
N

AA=D Wi=W, + W, + We +--+ Wy
i=1

where W; = weight of the ith item in long tons, N = total

number of weight items.

B. A= (Cs Xx L x BEAM x T)/k,

where k, = 35 ft3/ton for salt water and k; = 36 ft®/ton for

fresh water. (See Table 6-2 for Cz values.)

Example 1: Estimate the example ship’s displacement when she is

floating in salt water.

Equation:

A = (Cg Xx L x BEAM x T)/k,

Table 6-2. Representative Values for Cy
 

 

Ship type Approximate range of Cp

Barge 0.85-0.98

Tanker 0.75-0.88 gE

Fast cargo ship 0.60-0.75 g S
Trawler 0.50-0.65 Es F

Powercruiser 0.50-0.60 <=

Yacht 0.45-0.65
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Table 6-3. Representative Values for C

 

Ship type Approximate value of Cp

Barge 1.0

Tanker 0.90

Fast cargo ship 0.80

Trawler 0.75

Power cruiser 0.72

Yacht 0.70
 

Assume: k, = 35 ft®/ton

Since: Cs = 0.65

L = 150 feet

BEAM = 25 feet

T = 10 feet

Then: A = 700 long tons.

II. To find the vertical center of gravity (KG) in feet:

A. Inclining experiment

KG = KM - GM

1. KM = KB + BM
KB=T — 0.33[(0.5 Xx T) + (V/A.))]

V =A XxX k, (See 1.B.)

Ay Cup X L Xx BEAM (See Table 6-3 for C,, values.)

BM = BEAM?/(k,T)

where k, varies from about 10 for a fuller waterplane form to

about 15 for a finer waterplane form.

2. GM = (w xX d)/(A X tan ¢)

where w = amount of onboard weight that is shifted (long

tons), d = distance w is moved across the ship (feet), and

¢ = the angle of heel that results from this weight shift.
The induced heeling moment (w X d) should be selected to

produce an angle of heel of less than 5°.

Example 2: If a 1-long-ton weight is moved 13 feet off the centerline,

the example ship heels 0.75°. Estimate the ship’s KG.

Equations:

KG = KM - GM
KM = KB + BM
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KB=T — 0.33[(0.5 X T) + (V/Auwp)]
V=AXk

Aup = Cup X L Xx BEAM

Since: Cup = 0.75
L = 150 feet

BEAM = 25 feet

A = 700 tons (using Example 1)

T = 10 feet

Then: A,, = 2,812.5 ft?

_V = 24,500. ft?
KB = 5.48 feet

BM= BEAM?/(k, x T)

Assume:k; = 13 for this ship

Then:BM = 4.81] feet

And: KM = 10.29 feet

GM = (w x d)/(A x tan ¢)

Since: w = 1 long ton

d = 13 feet

é =0.75°

Then: GM 1.42 feet
Therefore: KG = 10.29 — 1.42 = 8.87 feet.

B. Using the ship’s period of roll

KG = KM — GM

1. KM (See ILA.1)
2. GM = (k; x BEAM/PERIOD)?

where PERIOD = period of roll for one complete oscillation

(seconds), and k; varies between 0.4 and 0.5 for surface

ships. A value of 0.44 is a good approximation.

Example 3: The example ship’s complete period of roll (port to star-

board andback to port) is measured to be 9 seconds. Estimate the

vessel's KG.

Equations:
KG = KM — GM

GM = (k; x BEAM/PERIOD)?

Since: KM = 10.29 feet (using Example 2)
BEAM = 25 feet

PERIOD = 9 seconds
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Assume: k; = 0.44
Then: GM = 1.49 feet
Therefore: KG = 10.29 — 1.49 = 8.80 feet.

III. To find the influence of weight changes ondisplacement (A),

draft (T), and the vertical center of gravity (KG):

A. Anew = Aga + > Ww;
i=1
N

B. Toew = Toa + (= w,/TPI) /12
i=1

C. KGpew = { ®G.@a0 + > (WHET)/(0s + > Ww)

where W,; = the ith weight (long tons), + if added and — if

removed; N = the total number of items added or removed;
TPI = tons per inch immersion (tons/in.); TPI = A,,/(12 X k;)

(see I.B. and I1.A.1); KG; = the location of the vertical center

of gravity of the ith weight above the keel (feet).

Example 4: The example ship is subjected to the following weight

changes: (1) 30 long tons are added 16 feet above the baseline, and

(2) 21 long tons are removed from a position 7 feet above the baseline.

Calculate the ship’s new A, T, and KG.

Equation:

N
Anew = Aga + > W,

i=1

Since: A,q = 700 tons (using Example 1)

N = 2 with W; = +30 tons, W, = —21 tons

N

Then: DY, W; = +9 tons
i=

And: A. = 700 + 9 = 709 long tons.

N

Tew = dod + (2 W,/TPI)/12 with TPI = Ayp/(12 X k,)

i=1

Since: Tq = 10 feet
Ap = 2812.5 ft? (using Example 2)

k, = 35 ft¥ton (salt water)
Then: TPI = 6.70 tons/in.

And: T,., = 10.11 feet.

KGpew = { (KGoa)(Aoia) + 3. (W)(KG))|/(80 + > w)
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Since: KG,q = 8.87 feet (using Example 2)

Then: 3 (WaT) = (+30)(16) + (=21)(7)

N

(80a +> w) = 700 + 30 + (—21)
1i=

And: KG,e,, = 9.23 feet.

IV. To find the influence of an onboard weight shift on the position

of the ship’s vertical center of gravity (KG):
A. KGyew = KG,4 * GG’

GG' = (wx d)/A

where GG' = the distance the center of gravity shifts as a

result of weight (w) moving a distance (d). The ship’s center

of gravity will shift in the same direction that the weight

moves (feet). (For w and d, see I1.A.2.)

 

Example 5: A 50-long-ton weight is shifted_downward a distance

of 11.5 feet. What is the example ship’s new KG?

Equations:

 

Since: w = 50 long tons

d = 11.5 feet downward
_A= 700 long tons (using Example 1)

Then: GG’ = 0.82 foot

Note: Since the onboard weight was moved downward, the ship’s

KG will decrease.
Since: KG,4 = 8.87 feet (using Example 2)

Then: KG,.., = 8.87 — 0.82 = 8.05 feet.
Note: A new longitudinal center of gravity (LCG,.y) Or a new

transverse center of gravity (TCG,.w) may be found by using equa-

tions similar to (III.C) and (IV.A). To do this, a reference axis for

moments and a sign convention must first be established.

V. To find changes in the vertical center of gravity (KG) or the

transverse metacentricheight (GM) because of a free surface:
A. KGpew = KG,4 + GG,

B. GM, = GM,)q — GG,
C. GG, = y'ky Ib3/yV

where GG, = virtual change in the position of G due to the

existence of a free surface (feet), vy’ = specific gravity of the

liquid in the tank, y = specific gravity of the water in which
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Table 6-4. Some Specific Gravities

 

Substance Approximate specific gravity

Fresh water 1.0

Salt water 0.98

Lube oil 0.90

Oil 0.85

Gasoline 0.75
 

the ship is floating, [ = length of the free surface (feet),

b = width of the free surface (feet), and k, = 0.083 is an

acceptable value for a rectangular free surface. (See Table 6-4

for some specific gravities.)

Example 6: The example ship has a partially full fuel tank with a

length of 20 feet and a width of 6 feet. The fuel oil has a specific

gravity of 0.88. Compute the virtual change in G because of this

free surface.

Equations:

GG, = y'ks Ib3/yV
Vv = A X k,

Since: A = 700 long tons (using Example 1)

k, = 35 ft3/ton (salt water)
v = 0.98 (salt water)
v' = 0.88

| = 20 feet

b = 6 feet

Assume: k, = 0.083

Then: V = 24,500 ft3

And: GG, = 0.013 foot.
VI. To predict changes in trim:

A. When shifting an onboard weight

otrim = (w X a)/MT1" (inches)

MT1" = (A x GM,)/(12 x L)
GM, = KM, - KG

KM, = KB + BM,
BM, = (3 X Ay? Xx L)/(40 Xx BEAM Xx V)
or:

MT1" = (ks X Cy? x L* x BEAM)/(144 X k,?)
where ks = function (Cp) (see Table 6-5).



201 Miscellaneous Computations

Table 6-5. Cp vs. ks

Cp ks

0.50 32.6

0.60 31.8
0.70 31.0
0.80 30.2

w = amount of onboard weight that is shifted (long tons)

a = distance w is moved along the ship and parallel to the
keel (feet)

Example 7: A 14-long-ton weight is moved 39 feet aft on the example
ship. Estimate the change in trim (§trim).

 

Equations:

trim = (w X a)/MT1"

MT1" = (A Xx GM,)/(12 x L)

GM, = KM, ~ KG
KM, = KB + BM,

BM; = (3 Xx Ay? x L)/(40 Xx BEAM x V)

Since: L = 150 feet

BEAM = 25 feet

V = 24,500 ft® (using Example 2)

Ayp = 2,812.5 ft? (using Example 2)

Then: BM, = 145.3 feet
Since: KB = 5.48 feet (using Example 2)

KG = 8.87 feet (using Example 2)

Then: GM, = 141.91 feet

And: MT1" = 55.19 ft-tons/in.

Therefore: dtrim = 9.89 inches.

Note: Since the weight was moved aft, the ship will trim by the stern

(draft aft will increase).
B. When adding or removing a weight

1. First, determine how this weight change will affect dis-

placement (A), draft (T), and the vertical center of gravity

(KG) (see III).
2. Second, using the results from the above step, compute

the change in trim (see VL.A).

C. Probable direction of trim (refer to Table 6-6)
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Table 6-6. Probable Direction of Trim

If the weight

causing the

trim ends

up: Aft ofAmidships Forward ofAmidships

 

And if the

weight is: Onboard Added Removed Onboard Added Removed

Then the

draft at

the bow will: Decrease Decrease Increase Increase Increase Decrease

 

Note: This table is only an approximation, since the ship, in general, will not trim

about amidships.

Rigging Loads

The load on masts, booms, derricks, and shear legs, as well as on

their rigging, can be determined by means of the calculator consid-

erably more rapidly and accurately than by construction. Essentially,

the process involves solving the triangles in a parallelogram of forces

by trigonometry rather than by construction and careful linear mea-

surement.
Let us assume that a naval architect has specified that the headstay

to the bowsprit on a sailboat must have a tensile strength of 12,000 1b,

which allows for a factor of safety of 4 to 1. We wish to determine what

the tensile strength of the bobstay should be, allowing for the same

safety factor, and what the compression load would be on the bowsprit
at the stays’ tensile limit.

We first determine that the angles made by the headstay and the

bobstay with the bowsprit are 70° and 24°, respectively; see Figure

6-4a. The resulting parallelogram of forces is shown in Figure 6-4b, but

we do not need to draw it. To help visualize the solution, which we

obtain by the law of sines, we can sketch the triangle forming the upper

half of the parallelogram; see Figure 6-4c. In this triangle, the side AB

represents the headstay; its length represents the tensile strength of the

wire, 12,000 Ib. The length of the side AC will then represent the re-

quired tensile strength ofthe bobstay, and the length ofBC the compres-

sion load on the bowsprit, when the headstay is loaded to 12,000 Ib.
Now:

12,000 1b _ BC

sin 24° sin 86°

BC = 29,4311b

 



<
a

Bowsprit

 
Figure 6-4.
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and:

12,000 1b _ AC

sin 24° sin 70°

AC = 27,724 1b

Therefore, if the headstay were loaded to 12,000 Ib, the tension on

the bobstay, AC, would be 27,724 1b, and the compression load on the

bowsprit, BC, would be 29,431 1b.
Other and more complex problems can be similarly solved. In some

instances, drawing a rough diagram may assist in visualizing the prob-

lem.
Let us consider such a problem. A cargo boom is attached to a mast

at deck level; the topping lift for the boom is attached to the mast 60

feet above the deck. The boom is 40 feet in length, and is topped up so

that the falls hang 30 feet from the mast; see Figure 6-5. A 10-ton load is

suspended from the boom. We wish to determine the tension on the

topping lift and the compression load on the boom.

To help in visualizing the problem,it would be wise to make a sketch

similar to Figure 6-6; it does not have to be carefully drawn.

Thefirst step is to determine the angle the falls make with the boom;

this is the angle ABD in Figure 6-6. The boom is 40 feet long, and the

falls, which hang vertically, are centered 30 feet from the mast. By the
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law of sines, we therefore find the required angle, ABD:

sin 90° — sin ZABD

40 feet 30 feet

sin ZABD =0.7500

LABD = 48.5904°

The falls, therefore, hang at an angle of 48.59° relative to the boom.

We also know that the boom makes an angle, CAB, of 48.59° with the

mast, because the latter and the falls are parallel; and we know that the

boom makes an angle, BAD, of 41.41° with the deck (90° — 48.59).

On the sketch, we draw a horizontal line, BX, from the top of the
boom to the mast; this line will be the same length, 30 feet, as the

distance from the mast to the point plumbed by the falls, AD. We now

determine the height of the boom relative to the mast, AX, again by the

law of sines, using the right triangle, AXB. Since the boom is 40 feet

long, we write:
AX 40 feet

sin 41.41° ~ sin 90°

AX, therefore, equals 26.4577 feet, which we shall call 26.5 feet.

 

  
 

c
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Y °
3
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w

A D

Figure 6-6.
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The horizontal line, BX, from the top of the boom therefore meets

the mast 26.5 feet above the deck, and as the head ofthe mast is 60 feet

above the deck, the head, C, is 33.5 feet above X (60' — 26.5’).

Next we find the angle made by the topping lift with the mast, in the

triangle XCB. As horizontalXB is 30 feet in length, and the head is 33.5

feet above where this line reaches the mast, the tangent of the angle

BCX formed by the lift and the mast is 30 ft/33.5 ft, or 0.8955, which

makes the angle 41.8452°.
By drawing a line, YZ, from the boom to the falls parallel to the

topping lift CB, we have the triangle BZY, which enables us to deter-

mine the compression load on the boom, and the tension on the topping

lift. If the length of the line BZ represents the 10-ton load, by the law of

sines, the length BY represents the compression load on the boom, and

the length YZ the tension on the lift. Since we have found the angle

made by the mast and boom, CAB, to be 48.5904°, and as the falls and

mast are parallel, the angle YBZ also is 48.5904°. Furthermore, the

angle YBZ must equal the angleACB formed by the mast and lift, which

is 41.8452°. In the triangle BYZ, B is 48.5904°, and Z is 41.8452°; the

angle, Y, therefore, must equal 89.5644° (180° — 48.5904° — 41.8452°).

Using the law of sines, we now write:

BY _ 10 tons

sin 41.8452° («Z) sin 89.5644°

BY = 6.6714 tons

The compression load on the boom, BY, is, therefore, 6.6714 tons.

To find the tension on the topping lift, YZ, we write:

 

YZ _ _10 tons

sin 48.5904° sin 89.5644°

YZ = 7.50 tons

The tension on the topping lift, YZ, is, therefore, 7.50 tons.
By the same process, we could calculate the compression load on the

mast, and the strain on a shroud or stay supporting the masthead, and
opposite the topping lift. The solution would be as in the first example,
in which, having been given the tension of a headstay, we calculated
the compression load on the bowsprit and the tension on the bobstay.

In this latter example, the mast is 60 feet in length, and the topping
lift forms an angle of 41.8452° with the mast. If a shroud or stay leads
from the deck 30 feet from the mast to the masthead, and is directly
opposite the lift, the compression load on the mast is 15.59 tons, and the
tensile load on the shroud is 11.19 tons.
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20 tons
   

   
Figure 6-7.

Span Loads

If the two parts of a span form equal angles with the vertical, each

leg will carry an equal load. In many cases, however, the angles will not
be equal, and the loads on the legs will differ.

The load on each leg of a span can be readily calculated by means of

the calculator. The angle each part of the span forms with the vertical

can usually be determined by eye with sufficient accuracy for practical

purposes; in critical cases it should be determined by solution of right

triangles.

Let us suppose that a weight of 20 tons is suspended from a span,

one part of which forms an angle of 33° with the vertical, while the

other part forms an angle of 51° (see Figure 6-7), and we wish to

determine the tension on each part of the span.

To assist in visualizing the problem you can sketch a triangle; see

Figure 6-8. Side c is vertical, and its length represents the load of 20

tons. Side a represents the more nearly horizontal leg of the span; angle

B is 51°. Side b represents the other leg of the span, and angle A is 33°.

Angle C, therefore, must equal 96° [180° — (51° + 33°)]. Solution is by

the law of sines, using 84° (180° — 96°) for angle C:

a — 20 tons(c)

sin 33°(£A) sin 96°(«C)

a = 10.9528 tons
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Figure 6-8.

Bear in mind that the more nearly horizontal the legs of a span are,

the greater will be the tension on each leg. Thus, in the span we consid-
ered, if the angle each leg formed with the vertical were increased by

10°, so that the angles were 61° and 43°, the solution to the ratio would

be that the tensile loads on the legs would increase to 18.03 tons and

14.06 tons, respectively.

Wind-Generated Pressure on a Ship

Much study has been devoted to determining the force that winds

exert on a vessel. Some findings have been contradictory, probably

because of the great fluctuations in wind speed over a very brief period

of time. However,it is believed that, under most conditions, the follow-

ing formula will give acceptable results:

P = 0.004 x v2
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where P is the pressure in pounds per square foot offrontal area, and v
is the wind velocity in knots.

For a vessel at anchor, P will be increased owing to surge and yaw.
With fresh winds, this factor may be considered to have a value of
about 33%; under highly adverse conditions it may be much greater,if
the vessel is yawing considerably. Excessive yawing may,ofcourse, be
reduced if two anchors, with considerable spread between them, are
laid out.

Example: A vessel has a total frontal area of 2,500 square feet. What

would be the approximate wind pressure on her if she were lying to a

single anchor in a protected anchorage with a 30-knot wind blowing?
We would write the formula:

P = 0.004 x 2,500 x 900 = 9,000

If she were lying true to the wind, the pressure generated by the

wind would, therefore, be in the neighborhood of 9,000 1b. If she were

yawing somewhat, the pressure might approach 12,000 Ib.

Draft of a Steamer When Heeled

Ships that have more or less rectangular midships sections increase

their draft when heeled. That increase may be approximated by the

formula:

ship’s beam

2

Example: Our steamer has a beam of 64 feet 6 inches, and is drawing 24
feet 9 inches. We wish to determine her approximate draft when she is

inclined 9°. The formula becomes:

Increase in draft = sine angle of heel x

3 5S fi
Increase in draft = sin 9° x moe = 5.05

The increase in draft, therefore, is 5.05 feet, or 5 feet 0.6 inch.

When the ship is heeled 9°, her approximate draft to the nearest

inch will, therefore, be 29 feet 10 inches (24'9" + 51").

Sailing to Weather

It is axiomatic that success in the majority ofsailing races hinges on

the boat’s performance to weather. With the mark dead to weather, if

the boat can harden her wind slightly, the distance to the mark is

somewhat reduced. Conversely, if she must bearoff, as in a steep head

sea, in order to maintain speed, the distance to the mark is considerably

increased.
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Thecalculator can be used to advantage to determine the increase or

decrease in the distance to be sailed as the heading relative to the wind

is changed. If the boat has a good speed log, the optimum heading on

the wind can readily be determined. All that is required is to weigh

changes in speed, considered as percentages, against changes in dis-

tance, also considered as percentages.

Leeway enters into the problem, but it is imponderable; it varies

with hull form, wind speed, and sea state. Allowance for leeway must

therefore be made by the skipper, based on his own experience. The

only safe generality here is that for any given wind and sea condition, a

sailboat tends to make less leeway when moving rapidly than when

moving slowly.

The distance a boat mustsail to reach a mark dead to weatheris best

expressed as a percentage of the actual distance to the mark. This

percentage may be found by the formula:

_ 200 ”

sine angle between boards
 sine attack angle

where D is the percentage of the distance to the mark, the angle be-

tween boards is the angle through which the boat tacks when on the

wind, and the attack angle is the angle off the wind when sailing; that is,

one half the angle between boards.

Example: We wish to determine the distance to be sailed to a mark 6.5

miles dead to weatherif the boat tacks (1) through 84°, (2) through 90°,
and (3) through 96°.

(1) In this case, the formula is written:

200

sin 84°
X sin 42° = 134.6%

and

6.5 xX 134.6% = 8.75

When tacking through 84°, therefore, we must sail 8.75 miles.
(2) Here, the formula is written:

200
D = sin90° X sin 45° = 141.4%

and

6.5 X 141.4% = 9.19

When tacking through 90°, therefore, we must sail 9.19 miles.
(3) In this instance, the formula is written:

200
D = Sin96° X sin 48° = 149.5%
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and

6.5 X 149.5% = 9.71

When tacking through 96°, therefore, we must sail 9.71 miles.

It is obvious from the above solutions that a considerable increase in

speed is necessary to justify bearing off from the normal attack angle.

We can see that if we ordinarily tack through 90°, but then change, and

tack through 96°, we must increase our speed by about 6% tojustify the

100
additional distance we must sail: ( 3.19 X 9.71 = 105.7%).

Tacking Down Wind

When Lee Mark is Dead to Leeward

In light going, a sailboat running can ordinarily increase her speed if

she hardens her wind. The problem then is to determine whether the

increase in speed will more than offset the additional distance it will be

necessary to sail to the mark after hardening up.

In considering this problem, vagaries of the weather must be ruled

out, and, it must be assumed that the wind will remain steady in both

direction and speed. When there is a shift in either wind force or direc-

tion, a new problem is created, and a new solution will be required. We

shall start by considering the problem when the next mark is dead to

leeward.
Thefirst step is to determine the increased speed for a given angle of

divergence from the base course: usually this angle is 10°. This process

is repeated as often as seems desirable, again ordinarily using incre-

ments of 10°, and noting the speed on each divergence angle.

In the interests of simplicity, we shall assume that we shall make

only two legs in running to the mark. In practice, this might not be a

desirable procedure, as it might take us too far from the rhumb line. For

any given angle of divergence from the rhumb line, the distance sailed

will remain the same, regardless of the number oflegs.

The total distance sailed for a given angle of divergence from the

base line can be determined from the following formula, which is based

on the law of sines:

2 X base distance X sine divergence angle
Total distance sailed = sine (divergence angle x 2)

Knowing the speed for each divergence angle, and also the total

distance to be sailed if that divergence is used, the divergence angle

that will permit arrival at the lee mark in the least time can be readily

determined.
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Example: The lee mark is distant exactly 10 miles, and when we sail

directly forit, our speedometer shows 5.0 knots. When we harden up

10°, our speed increases to 5.25 knots; hardened 20°, it is 5.65 knots,

and at 30° it is 6.0 knots. What is the optimum divergence angle?

First we list the divergence angles, as shown in Table 6-7, and note

the speed for each divergence angle. Next, we use the formula above to

calculate the total distance sailed for each divergence angle, and note

the results. Last, we determine how long it will take us to reach the

mark for each divergence angle. The table shows that we shall get to

the mark in the least time if we harden our wind 20°.

When Lee Mark is Not Dead to Leeward

Determining the best course to select for tacking down wind, when

the lee mark is not dead to leeward, presents a slightly different prob-

lem, as the two legs will not be of equal length. As a general rule,it

would be wisest to sail directly for the mark unless the divergence

between the course and the true wind is fairly small, say in the neigh-

borhood of 10°.
Let us assume that such a divergence exists and that the wind will

remain steady. To determine the gain to be derived from hardening up,

we proceed as in the previous example to obtain our increase in speed,

but in smaller increments, say, 5° each.

We next calculate the distance to be sailed to the mark for each

relative heading, bearing in mind that the headings relative to the wind

must,in this case, be converted to headings relative to the base line to

the lee mark, and that each heading relative to the wind must be solved

for two headingsrelative to the base line. Thus,if the mark bears 000°,

the wind is from 185° (or blowing in the direction 005°), and we propose

to harden the wind 20°, the heading for the long leg would be 345°
(005° — 20°), and that for the short leg would be 025° (005° + 20°). We
have then, a triangle two of whose angles are 15° (360° — 345°) and

 

 

Table 6-7

Divergence angle Speed Distance to sail Time required
in degrees in knots or mph in miles in hours

0 5.0 10.0 2.0
10 5.25 10.15 1.935
20 5.65 10.64 1.88
30 6.00 11.54 1.923
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025°, and whose third angle must, consequently, be 140° [180° —
(15° + 259).
The distances on the two headings can be determined by the law of

sines:
sin LA:a::sin ZB:b::sin £C:c

Setthe sine ofthe angle between the two headings to the direct distance

to the mark, and under the sine ofthe larger angle read the distance on

the long leg, and under the sine of the smaller angle, read the distance
on the short leg.

Enter these two distances, together with their sum, opposite the

appropriate wind divergence angle on a form, as shown in the example

below. The length of each leg, rather than only the sum of the two,

should be entered, as it may be necessary to determine the time to gybe

on the basis of the length of the first leg, or the time spent on the leg.

Also enter the speed obtained on that divergence angle and the compass
headings for the two legs.

Next, calculate the lengths of the legs when the wind is hardened an

additional 5°, and enter them, together with their sum, the speed ob-

tained on this divergence angle, and the compass headings for the two

legs on the form. This process is repeated in 5° increments. The number

of increments required will depend on the sailing characteristics of the

boat, and can be determined only by experience.

The final step is to determine the time required to sail the two legs

for each divergence angle at the speed obtained on that angle. This is

done by means of the ratio

Speed : 1 hour, or 60 minutes : : Sum of distance on the two

legs : total time required (D

and these total times are entered in the form.

An inspection will then determine the wind divergence angle that will

enable the boat to reach the lee mark in minimum time.

Example: The distance to the lee mark is 10.0 miles, and the direction is
090°. The true wind is from 260°; its divergence from the direction of

the mark is therefore 10°. When sailing directly for the mark, our speed

is 4.6 knots.

After hardening up 5°, heading 095°, our speed is 4.9 knots.

After hardening up 10°, heading 100°, our speed is 5.25 knots.

After hardening up 15°, heading 105°, our speed is 5.45 knots.

We require the optimum heading, to reach the mark in the least time.

As in the previous example, the first step is to determine the total

distance we shall have to sail each time we harden the wind, as well as
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the distance on each leg. In each instance, one long and one short leg

will be involved; however,ifthe distance is considerable,it will be wise

to sail two or more long and two or more short legs, in order not to

depart too far from the base line. In any case, the total distance to be

sailed, as well as distance or distances to be sailed on the long and short

legs may be obtained from a single solution for one long leg and one

short leg.

We next determine what the compass headings will be for each di-

vergence angle from the wind. In this example they will be 095°

(080° + 15°) and 065° (080° — 15°), 100° and 060°, and 105° and 55°.
We enter these data in a form, as follows:

 

Distance Distance

 

Divergence Speed on on Total Total

from wind in long leg short leg distance time

Headings in degrees knots in miles in miles in miles in minutes

090° 10 4.6 10

095° and 065° 15 4.9

100° and 060° 20 5.25

105° and 055° 25 5.45

 

We next calculate the lengths of the long and short legs for each

divergence angle from the wind. Thus, when the wind divergence angle

is 15°, our headings will be 095° and 065°; as the mark bears 090°, we

shall first be 5° and then 25° away from its present bearing. We thus have

two angles whose sines will supply the lengths of the two legs, when

used in conjunction with the direct distance to the mark, and the angle

between the first leg, 095°, and the second leg, 065°.

Using the law of sines and the ratio

sin 30°: 10.00 miles: : sin 25°: long leg, and sin 5°: short leg (2)

we find the long leg will be 8.45 miles, and the short leg will be 1.74
miles, making the total distance to be sailed 10.19 miles when we
harden the wind 15°.
We repeat the process for the next wind divergence angle, 20°. In this

instance the headings sailed will be 100° and 060°, so we shall first sail
10° and then 30° away from the bearing of the mark. The difference
between the two headings, 100° and 060°, is 40°. Using this, and the
direct distance to the mark 10.00, by means of the law ofsines, we find
that the long leg will be 7.78 miles, and the short leg 2.70 miles, giving a
total distance to sail of 10.48 miles.
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The processis repeated a third time for a wind divergence angle of
25°. Here the headings sailed are 105° and 055°, and by the law of sines,
we find the long leg to be 7.49 miles, and the short to be 3.38 miles, for a
total distance sailed of 10.87 miles.

These data can now be entered in the appropriate columns in the

form, and all that remainsis to find the time required to reach the mark

for the various wind divergence angles, using the ratio (1) above:

Speed : 60 minutes: : distance : required time

Thus, for the wind divergence angle 15°, we have:

4.9 knots : 60 minutes : : 10.19 miles : 124.75 minutes

For the wind divergence angle 20°, we have:

5.25 knots : 60 minutes : : 10.48 miles : 119.7 minutes

and, coincidentally, the wind divergence angle of 25° also yields a time

of 119.7 minutes.

These data are now entered in the form, as shown below, and we

note that a wind divergence angle of 20° is the most desirable, as it

combines the best obtainable elapsed time with the most direct route to

the mark.

 

Distance Distance

 

Divergence Speed on on Total Total

from wind in long leg short leg distance time

Headings in degrees knots in miles in miles in miles in minutes

090° 10 4.6 — — 10.00 130.4

095° and 065° 15 4.9 8.45 1.74 10.19 124.75

100° and 060° 20 5.25 7.78 2.70 10.48 119.7

105° and 055° 25 5.45 7.49 3.38 10.87 119.7

 

The fact that the last two times are the same shows that we need not

try additional headings, because the increased distances will offset any

expected gains in speed.
Further, if no change in wind speed or direction could be foreseen,

with two divergence angles that would permit us to reach the mark at

the same time, we would, as a matter of sound racing tactics, select the

one that would keep us nearer to the base line to the mark.

This solution seems rather lengthy; however, with some practice,

solutions to this type of problem may be obtained very rapidly.
A somewhat similar problem arises occasionally on a reach in light
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going, when the wind is a little too far forward to permit carrying a

spinnaker. Under such conditions, it may pay to harden your wind

somewhat and close reach above the direct course to the mark carrying

a #1 Genoa, then bear off for the mark under a spinnaker when it will

draw. If such a maneuver is adopted, the additional distance to be

covered is determined as in the above problem.

Draft Variation of a Sailboat When Heeled

A deep-draft sailboat, when heeled, draws less than when she is

upright. The exact reduction in draft depends on the shape of the cross
section of the keel at its deepest point. However, the reduction can be

closely approximated by the formula:

Inclined draft = cosine angle of inclination xX draft when upright

Example: Let us assume that, when upright, our sloop draws 6 feet, and

we wish to determine her approximate draft when she is heeled 30°. We

write the formula:

Inclined draft = cos 30° xX 6 feet = 5.2

When our sloop is heeled 30°, her approximate draftis, therefore, 5.2

feet, or S feet 2.4 inches.

If the boat has a keel of rectangular cross section and of known

thickness, further refinement in determining draft when heeled may be

obtained. The depth to be added to the inclined draft, as previously

determined, may be found by the ratio:

keel thick . Ce
a:: sin angle ofinclination : additional depthsin 90°:

Thus, if our sloop had such a keel 6 inches thick, for the above

example we would write:

sin 90°: 3 inches: : sin 30°: 1.5 inches

The increase in draft due to the keel thickness, therefore, is 1.5
inches, and the total draft at an angle of inclination of 30° would be 5
feet 3.9 inches.

Small angles ofinclination achieve verylittle reduction in draft. Our
boat, which normally draws 6 feet, would draw only slightly less than §
feet 11 inches if heeled 10°, and if heeled 20°, her draft would be about S
feet 734 inches. If we have the misfortune of putting her aground, and if
the point of greatest draft is pretty well aft, it would be best first to try
getting her off by putting the crew all the way forward in the eyes.
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Conversion Tables

The following conversion tables for length, mass, speed, and volume

have been adapted from the Corrected Reprint, 1962, of U.S. Naval
Oceanographic Office, H.O. Pub. No. 9 (Bowditch).

Length

1 inch

1 inch

1 foot
1 yard

1 fathom

1 fathom

1 cable (U. S.)

1 cable (British)

1 cable (British)

1 statute mile

1 statute mile

1 statute mile

1 nautical mile

1 nautical mile

1 nautical mile

1 nautical mile

1 meter

1 meter

1 meter

1 meter

1 kilometer

1 kilometer

1 kilometer

1 kilometer

Mass

1 ounce

1 ounce

1 ounce

1 pound

1 pound

1 short ton

1 short ton

1 short ton

1 short ton

* Exact relationship.

Il

Equivalent Values to

Five Decimal Places

25.4 millimeters*

2.54 centimeters*

0.3048 meter*

0.9144 meter*

6 feet*

1.8288 meters*

720 feet*

0.1 nautical mile*

607.6 feet

5,280 feet*

1,609.344 meters*

0.86898 nautical mile

6,076.11549 feet

2,025.37183 yards

1,852.0 meters*

1.15078 statute miles

39.37008 inches

3.28084 feet

1.09361 yards

0.54681 fathom

3,280.83990 feet

1,093.61330 yards
0.62137 statute mile

0.53996 nautical mile

437.5 grains*

28.34952 grams

0.0625 pound*

7,000 grains*

0.45359 kilogram

2,000 pounds*

907.18474 kilograms*

0.90718 metric ton

0.89286 iong ton



218 Miscellaneous Computations

Mass (cont.)

1 displacement ton

1 long ton
1 long ton

1 long ton

1 long ton

1 kilogram

1 kilogram

1 kilogram

1 metric ton

1 metric ton

1 metric ton

1 metric ton

Speed

1 yard per minute

1 yard per minute

1 yard per minute
1 statute mile per hour

1 statute mile per hour

1 statute mile per hour

1 statute mile per hour

1 statute mile per hour

1 statute mile per hour

1 knot

1 knot

1 knot

1 knot

1 knot

1 knot

1 kilometer per hour

1 kilometer per hour

1 meter per second

1 meter per second

1 meter per second

1 meter per second

1 meter per second

1 meter per second

Volume

1 cubic foot

1 cubic foot

* Exact relationship.

n
w

W
n

Equivalent Values to

Five Decimal Places

2,240 pounds*

2,240 pounds*

1.12 short tons*

1,016.04691 kilograms

1.01605 metric tons
2.20462 pounds

0.00110 short ton

0.00098 long ton

1,000 kilograms*

2,204.62262 pounds

1.10231 short tons

0.98421 long ton

0.03409 statute mile per hour

0.02962 knot

0.01524 meter per second*

88 feet per minute*

29.33333 yards per minute

1.60934 kilometers per hour

1.46667 feet per second

0.86898 knot
0.44704 meter per second*

1.68781 feet per second

101.26859 feet per minute

33.75620 yards per minute

1.852 kilometers per hour*

1.15078 statute miles per hour

0.51444 meter per second

0.62137 statute mile per hour

0.53996 knot

196.85039 feet per minute

65.61680 yards per minute

3.6 kilometers per hour*

3.28084 feet per second

2.23694 statute miles per hour

1.94384 knots

1,728 cubic inches*

7.48052 U. S. gallons
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Volume (cont.)

1 cubic foot

1 cubic foot

1 cubic foot

1 cubic yard

1 cubic yard

1 cubic yard

1 cubic yard

1 cubic yard

1 cubic meter (stere)

1 cubic meter (stere)

1 cubic meter (stere)

1 cubic meter (stere)

1 U. S. gallon

1 U. S. gallon

U. S. gallon

U. S. gallon

U. S. gallon

British imperial gallon

1 liter
1 liter

1 liter

1 register ton

1 register ton

1 measurement ton

1 measurement ton

1 freight ton

1 freight ton

1
1
1
1

Speed of Sound

Sound in dry air at

60°F and standard

sea-level pressure

Sound in 3.485% salt

water at 60°F

* Exact relationship.
+ A better conversion is:

I
i
n

w
w
m
o
w
n

Equivalent Values to

Five Decimal Places

6.22884 British imperial gallons

0.02832 cubic meter
28.31606 liters

46,656 cubic inches*

201.97401 U. S. gallons

168.17859 British imperial gallons

0.76455 cubic meter

764.53368 liters
264.17203 U. S. gallons

219.96924 British imperial gallons

35.31467 cubic feet

1.30795 cubic yards

3,785.39848 cubic centimeterst
231 cubic inches*

0.13368 cubic foot

3.78531 literst

0.83267 British imperial gallon

1.20095 U. S. gallons

1,000.028 cubic centimeters

1.05672 U. S. quarts

0.26418 U. S. gallon

100 cubic feet*

2.83168 cubic meters*

40 cubic feet*

1 freight ton*
40 cubic feet*

1 measurement ton*

1,116.99 feet per second
761.59 statute miles per hour

661.80 knots
340.46 meters per second

4,945.37 feet per second

1,648.46 yards per second

1 U. S. gallon = 3,785.411784 cubic centimeters*
= 3.78541liters
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Speed of Sound (cont.)

Volume-Mass

1 cubic foot of seawater

1 cubic foot of fresh water

1 cubic foot of ice

1 displacement ton

Equivalent Values to

Five Decimal Places

3,371.85 statute miles per hour

2,930.05 knots

1,507.35 meters per second

64 pounds

62.428 pounds at temperature of

maximum density

4°C = 39.2°F)
56 pounds

35 cubic feet of seawater
1 long ton
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Abbreviations, 28

Algebraic Operating System, 5
Almanac: history, 170-71; Sun, 172-76;

Aries, 177-78; star, 178-81

Altitude: corrections for sextant, 95-101;
computing, 104-5; computing with
azimuth, 109-13; ex-meridian, 125-26;
on prime vertical, 136; rate of change,
138-39

Amplitude, 134
Angle conversion, 94
Angles: functions of multiple, 23
Aquino, Radler de, 169
Aquino method, 168-70
Area and volume, 187
Aries almanac, 177-78

Average, 11
Azimuth: need for, 104; formuiae for,

106-10; rate of change of, 139-40

Azimuth angle: formula for, 107-8

Beaufort scale, 66

Biancho, Andrea, 71
Bourne, William, 48
Bowditch, Nathaniel, 103
Bowditch method, 127

Brahe, Tycho, 170

Cabot, Sebastian, 71
Calculator operation, 4-5
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Center of gravity, 196-99
Chronometer, 102-3

Composite sailing, 72, 89-90
Conversion angle, 67
Conversions: table of, 217-20
Cook, Captain James, 102, 151
Cooke, Ebenezer, 78
Coriolis effect: on wind current, 55; on

bubble sextant, 100
Course: correction for current, 55-61; by

plane sailing, 73; by mid-latitude sail-
ing, 75; by Mercator sailing, 79;
rhumb-line, 82

Current sailing, 55

da Verrazano, Giovanni. See Verrazano,
Giovanni da

de Aquino, Radler. See Aquino,
Radler de

Departure, 70
Depth of water, 47
Diameter of turning circle, 186-87

Dip: of horizon, 95; short of horizon, 96;
correction of for sea-air temperature
difference, 99-100

Displacement, 195
Distance: to horizon, 32; by sextant

angle, 33; short of horizon, 34; beyond
the horizon, 36; of visibility, 37;
abeam, 38; by bearings, 38
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Dozier formula, 110
Draft: of a steamer when heeled, 209; of

a sailboat when heeled, 216

Earth: curvature of, 32
Eccentricity: values for, 83-84
Ellipsoid: eccentricity values for, 83-84
Ephemeris. See Almanac
Equation of the center (of sun), 173

Error: reduction of, using statistics, 10;
caused by timing error, 145-46

Fast Best Fit, 15-18
Fix: with noon sight, 120-21; without

plotting, 149-50; exterior, 150-51
Free surface, 200
Fuel consumption, 188-90

Goodnessoffit, 16
Great-circle: direction converted to Mer-

cator, 67; sailing, 71, 84-89; formulae,
85; vertex of, 86; intermediate points,
86-88; computation by Dozier for-
mula, 112-13

Greek alphabet, 29
Green, Charles, 103
Green flash, 115

Hc, 104-5
Halley, Edmond, 48, 49
Handsen, Ralph, 71
Harrison, John, 103

Heading: formulae for initial great-circle,
85

Height of eye, 32

Height of tide: defined, 47; finding, 49
Hood, Thomas, 48

Horizon: distance to, 32; dip of, 95
Horizon angle, 33
Horizon sight, 114-16

Interpolation: in H.O. 214 and 229, 146—
49; in Nautical Almanac, 171

Kepler, Johannes, 170

Keying procedure: for vector subtraction
problem, 45; for current sailing prob-

lem, 60; for wind triangle, 63-64; for
Dozier formula, 110-11

LAN, 118-20
Lambert projection, 72
Latitude: of great-circle meridian cros-

sing, 88-89; approximated by Polaris,
129

Letcher, John S., Jr., 153-54
Linear regression, 14

Line of position (LOP): Sumner, 103;
bisectors, 150-52

Loads: on rigging, 202-6; on a span,

207-8
Long-term almanac. See Almanacs
Longitude: finding by time sight, 113-14;
by equal altitudes, 121-25; regaining,
151, 160-66; of perihelion, 175

Loxodrome, 71. See also Rhumbline
Lunar distance, 151-60

Mathematical functions, 6-9

Mean: defined, 11; statistical significance
of, 12

Mean anomaly: table of, 175
Mean refraction. See Refraction
Measurements: improvement using

statistics, 10
Mercator, Gerardus, 71

Mercator: bearing, conversion of, 67;
chart, 70, 71, 79; sailing, 71, 78-81

Meridional parts, 79-80
Mid-latitude sailing, 71, 75-77
Mnemonics for calculator functions, 6-9
Moon: effect on tides, 46; motion in sky,

102
Multiple angle formulae, 23

Napier’s rules, 23-25

Noon sight, 116-18

Numeric pad, 10

P-R. See Polar to rectangular

Parallax: correction for, in lunar dis-
tance, 154

Parallel sailing, 71

Pencil and paper: use of, 12
Perihelion, 172

Plane sailing, 70, 72-75

Planet identification, 140-43
Polar to rectangular, use of: in vector

problem, 45; for plane sailing, 72; for
sight reduction, 110-13

Pressure conversion, 185-86

Prime vertical: observations on, 136-38
Programmability, 2

Propeller slip, 190-92

r2: defined, 16

R-P. See Polar to rectangular

RPN calculation system, §
Rectangular to polar. See Polar to rec-

tangular

Reduction to the meridian, 125-27

Refraction: effect on distance to horizon,

32; effect on distance beyond horizon,
36; effect on horizon, 95; mean refrac-
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tion, 96-99; effect on time of sunrise
and sunset, 131; effect on lunar dis-
tance, 154

Regiomontanus, 102, 170
Reinhold, Erasmus, 170

Rhumb line: direction of, conversion to
or from great-circle direction, 67; sail-
ing, 71, 81-84

Rigging loads, 202-6

Sailings, The: plane, 70; traverse, 70;
great-circle, 71; Mercator, 71; mid-

latitude, 71; parallel, 71; rhumb-line,
71; composite, 72

Saint-Hilaire, Marcq, 103-4
Scientific calculator: defined, 1; most

important features of, 2; use of, 5-10
Sea-air temperature difference: effect of,
on dip, 99

Sextant: as range finder, 34; Coriolis ef-
fect on, 100; altitude corrections for,
95-101

Sight reduction: history of, 101-4;
formulae for, 104-12: use of formulae

for other problems, 112
Slack water: duration of, 54
Slip, 190-92
Speed: time and distance, 30-32; and

fuel consumption, 188
Spheroid(s): and Mercator sailing, 81;

eccentricity of various, 83

Stability, 193-202
Standard deviation: defined, 11; statisti-

cal significance of, 12
Star ephemeris, 178-81
Star identification, 112, 140-43
Statistics: use of, for measurement im-

provement, 10
Storm avoidance, 182-84
Sumner, Captain Thomas H., 103

Sumner line of position, 103
Sun: effect of, on tides, 46; almanac,

172-76
Sunrise: time of, 131-33

Sunset: time of, 131-33
Symbols, 27

Temperature conversion, 184-85
Tidal currents, 52-55
Tides: cause of, 46; classification of, 47;

effect of wind on, 47; prediction of,
47-48

Time: conversion to arc, 90-91; local

mean to zone, 92; conversion of min-
utes and seconds to decimals, 93-94;
need for accurate, 102; of sunrise, sun-
set, and twilight, 131-33; on the prime
vertical, 136-38; of moonrise and
moonset, 143-45

Time-sight formula, 113-14
Timing error, 145-46
Travas, 70
Traverse sailing, 70
Triangle: properties of, 18; area of, 23;

navigational, 25-27
Trigonometry: defined, 18; functions of,

19
Trim, 193-202
True wind toward (TWT), 63
Twilight: time of, 131-33

Vector capability: and current sailing, 60.
See also Polar to rectangular

Verrazano, Giovanni da, 71
Vertex: coordinates of, 86
Vespucci, Amerigo, 102
Volume, 187

Weems, P. V. H., 171
Willis, Edward J., 166
Willis method, 166-68
Wind: currents, 55; true direction, 61;

apparent direction, 61; true speed, 62;
triangle, 63-65; Beaufort scale of, 66;
pressure, 208-9; sailing into, 209-10;
tacking down, 211-16

Zacuto, Abraham, 170
Zn, 104. See also Azimuth
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of observations of the sun and ofselected stars
for the remainder of the twentieth century. By
using the perpetual almanac and other equa-
tions provided, any navigator can fix his posi-

tion at least as rapidly and probably more ac-

curately than he could with classical table-and-

chart techniques.
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