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PREFACE

How TH1s Book DIFFERS

This book is about the calculus. What distinguishes it, however, from

other books is that it uses the pocket calculator to illustrate the

theory. A computation that requires hours of labor when done by

hand with tables is quite inappropriate as an example or exercise in

a beginning calculus course. But that same computation can become a

delicate illustration of the theory when the student does it in

seconds on his calculator. t* Furthermore, the student's own personal

involvement and easy accomplishment give him reassurance and en-

couragement.

The machine is like a microscope, and its magnification is a hundred

millionfold. We shall be interested in limits, and no stage of

numerical approximation proves anything about the limit. However,

the derivative of f(x) = 67.89x, for instance, acquires real meaning

when a student first appreciates its values as numbers, as limits of

+ A quick example is 1.1'°, 1.01'°%, 1.001'000, .

Another example is ¢ = 0.1, 0.01, ... in the function (v3t+9-3)/¢.

ix



difference quotients of numbers, rather than as values of a function

that is itself the result of abstract manipulation.

Similarly, the fun and excitement a student has in calculating for

him?elf some approximations to a few definite integrals, such as

.A; V1-zZ dz, will give reality to their definition as limits of

Riemann sums. When our usual algebraic manipulation of the sums for

the integrands 1, z, x%, and perhaps 23 is augmented by such calcula-

tions, the Fundamental Theorem of the Calculus is seen in a new light.

Instead of being misunderstood to be part of the definition of the

integral, it becomes a genuine theorem that usefully relates two dis-

parate mathematical objects.

This is not a manual of machine usage, but the student who works

through this book will gain calculational competence and a skill at

coaxing the most from his machine. Although it is not a workbook of

numerical analysis, this book will introduce that subject--there are

discussions and examples of errors, numerical quadrature, finding

zeros, evaluating functions, and solving differential equations

numerically.

The student learns respect here for calculation in problems where

theoretical methods fail and only numerical solutions exist. However,

in other problems, after he labors to form a few partial sums for a

series like 1 - 1/3 + 1/5 - ... , he will appreciate the ease and

power with which the theory gives the limiting value. Perhaps now

the calculator's buttons and twinkling lights can seduce the student

to a balanced understanding of the theory and practice of the

calculus.

There has been no attempt to be complete in the exposition of theory

in this book, but the most important theorems are cited explicitly

and illustrated numerically. The student may use these citations as

signals for review in his conventional calculus text. The chapters

are short; each one stands as independently as the underlying theory

will allow. Discussions and detailed solutions for several Examples

are included in each chapter. In addition there are both Exercises

and Problems. The Exercises are easy and to the point. Some Exer-

cises include applications drawn from the biological, social, and

physical sciences. The Problems are more difficult or longer, often



they explore less central topics, and some ask for proofs. Answers

to starred Exercises and Problems are given at the end of each

chapter.

CLAassrooM Use IN A FIrsT CALcuLus COURSE

When this book is used as a workbook or problem manual for an intro-

ductory course that also has a conventional text, the instructor may

concentrate on the demonstrative Examples and Exercises. Much of

the explanatory material in this book may be left for the student to

read as he studies. Roughly half of all assigned exercises might be

chosen from this book and half from the conventional text. The

author usually devotes one of his three weekly lectures plus one of

the two weekly problem sessions to material involving the calcu-

lator.

The first two chapters in this book include topics outside the usual

preliminary material for the calculus. The algorithms for square

roots and for successive substitutions serve to introduce functions

and graphs. They also accustom students to their machines and

start them thinking about limiting processes. But Chapter 1 may be

omitted entirely, and Chapter 2 may be omitted if the method of suc-

cessive substitutions is briefly explained when it is needed in

Exercises in Chapters 6 and 8.

CLAassrooM Use FOR OTHER COURSES

This book can serve as the text for an advanced undergraduate course.

For such a course it will be appropriate to consider many of the more

difficult Problems. It can also be used for a one-semester or one-

quarter course having first-year calculus as prerequisite or co-

requisite. At this lower level, most students will find enough

challenge in the Exercises, with few Problems attempted.

The author feels it is important to plan the schedule of such a

course so that the material on series, in Chapters 11, 12, and 13,

is sure to be covered. If necessary, Chapters 9 or 10 or both, on

volumes and on curves and polar coordinates, may be omitted with no

loss of continuity. Chapter 14 may also be omitted in a lower-level

course, particularly if students have had no previous preparation

in differential equations.
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NOTE TO THE STUDENT

WHIcH MACHINE?

There is an enormous variety of pocket calculators available with

features and functions in many different combinations. Many of

these calculators are suitable for learning the calculus with this

book. The recommended machine for our work is one which has buttons

to calculate trig and log functions, displays at least eight digits,

and has an adapter-recharger. Of course, methods for approximating

logarithmic and trigonometric functions are given in this book.

Nevertheless, it is our experience that a student who attempts to

do the work with a four- or seven-function machine will become

distracted by the copious arithmetic and eventually will de-

spair.

Most calculators that satisfy our minimal requirements also have

square root and reciprocal functions, a memory, and the internal

constant m. Most will also accept arguments for trig functions in

radians as well as degrees. In addition, some such calculators

have the ability to convert a result into '"scientific notation,"

xiii



with a mantissa and an exponent. These machines also offer superior

logical systems called either '"Parenthetical' or ''Reverse-Polish."

These systems are very useful; they enable the machine to accept more

complex formulas without the user having to rewrite equations or write

down intermediate results. If you can afford it, we recommend that

you use a machine having scientific notation and such a system of

logic.

There are even more elaborate calculators. Some have multiple

memories, and some may be programmed to perform repetitive computa-

tions automatically. Such features could be useful in our work, but

they will not be necessary.

How To GET STARTED

Before beginning your study of this book, you must become familiar

with the machine you will be using. You can do this by reading the

explanations in the owner's manual and working out the simple examples

given there. This may take a few hours if it is your first calcula-

tor. You should also test your understanding by trying to do simple

arithmetic on the machine, using numbers like 2, 3, and 4 and working

out problems for which you already know the answer.

Some suggestions on '"Invisible Registers' and simple arithmetic, as

well as the evaluation of more complicated expressions, are offered

in the Appendix of this book.

WHAT To Do WHEN You ARE BAFFLED

You want to learn to use the calculus. You cannot do that by osmosis,

by watching someone else do it, any more than you could learn to play

chess, football, or the violin by close observation. Do the Exercises.

They are not repetitive drills. You can expect some of the joy of

discovery and creation with each solution you construct.

When you have trouble understanding a topic, reexamine the worked-

out Examples and then do some Exercises. Do the easiest ones first.

With experience you will come to know which you can do in your head

and which are difficult for you. Calculate and write out solutions

for the harder ones. You will find that you, too, can learn the

calculus and enjoy doing it.
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SQUARES, SQUARE ROOTS, AND THE QUADRATIC FORMULA

INTRODUCTION

Since people began using numbers for measuring lengths, they have

wanted to find the square roots of those numbers. There are many

situations in which a square root is needed. For instance, knowing

the square root is useful if you want to find the length of the side

of a square field of a given area or the length of its diagonal when

the side is known. The ancient Babylonian mathematicians were even

solving quadratic equations in the time of Hammurabi, a Babylonian

king of the eighteenth century B.C. Their method for approximating

square roots was a first step in the more accurate repetitive process

discovered by Hero of Alexandria about the time of Christ. This pro-

cess, now known as Newton's method, is universally used today.

The repetitive method that you will learn about in this chapter

is brand new, although it too is based on the work of the Babylonians.

Our process differs, however, since it has been developed especially

for pocket calculators.



Our first experience with this new sort of calculation will be

exciting. It will be an easy example of what is called an algorithm.

This beginning study will provide practice in the elementary opera-

tions on a calculator. This first chapter will also include some

review and some new understanding of graphs and functions. Exercises

will display the properties and limitations of our algorithm and ap-

ply it in the quadratic formula. In the Problems you can explore

this algorithm and also Newton's method more deeply and compare

their speeds of convergence.

THE DEFINITION

It is easy to square a given number x. And every squared number

x? = x X x is positive except for 02. The problem of reversing this

squaring operation is the problem of finding square roots, and it 1is

not quite so simple. That is, the square root vx of a given positive

number x is by definition the unique positive number y for which

y? = x. If we find vx, then -vxis the other number whose square is

x.

Though your calculator finds vx at the touch of a button, ignore

that button for this chapter and learn about the iterative methods

by which the machine itself does such computations.

EXAMPLE: v67.89

Suppose we want to compute v67.89. We can first make a rough guess

at the answer of 8, since 82 = 64, which is fairly close to 67.89.

Now we use an arithmetic trick to improve our guess. We let y stand

for the number we want to find, so that y? = 67.89. Then we write

 

y? = 67.89

y2 + 8y = 67.89 - 64 + 8y + 64

y(y+8) = 3.89 + 8(y+8)

_ 3.89
y = y+8 + 8.

This equation will be satisfied by y and by no other number. Since

we wish to improve our guess for v67.89, we will experiment by



regarding the two appearances of the number y in this equation as

two different numbers that are related by the equation. That is, we

relabel our guess g as g = yo and calculate

3.89
+

yors OYyi1 =

To do this on your own machine, first key in y, = 8, next add 8 to

get 1lbs, then find the reciprocal 1/16 = O.0625. Multiply this

reciprocal by 3.89 to see 00243125, and finally add 8 to obtain

Y1 = B:243125. Now the square of our guess g = y, was 64; the square

of this number y; is E7?+848110. Hence y; is not the square root of

67.89, but it certainly is a better approximation of it than is

Yo = 8.

Encouraged by this fact, we again use our equation. This time

we calculate a new estimate

_3.89
Y1+8
 

Y2

This procedure is easy. Since y; 1s still showing in the machine, we

merely add 8, reciprocate, multiply by 3.89, and again add 8. The

displayed result is y, = 842394859. This is an even better estimate,

since y,? = L7.889128.

We now repeat this process methodically, calculating y; from y,

and, more generally, calculating Yie1 from Yi for successive integers

2 =2, 3, 4, and 5 by the rule

_3.89 , ¢
Yi+1 yi+8 ’
 

The results are shown in Table 1.1. We suggest that you duplicate

our calculations and check your work against this table.



TABLE 1.1

Yo = O

y1 = 812431250
Yo = B:2394859
ys = 8239539
Yy = By2395388
ys = B.2395388

Notice that y, = ys exactly. Doesn't this mean that ys = ye, Ye = Y7,

and so forth? Thus our method cannot improve the guess any further.

But it has done its job already. We calculate that yu? = L7089

exactly.

Our machine rounds off to the nearest 8-digit answer; your

calculator may display b7.889999 here. In fact, there is no 8-digit

number whose square is 67.89, as you may verify by experiment. That

is, the next number in the machine that is larger than y, is

8¢2395389 and its square is b7.,89000L. This means that, to the

1limit of our machine's 8-digit accuracy, y, is the correct square

root of 67.89. In this book, we use the equality symbol to express

this, so we write v/67.89 = 8.2395388.

Notice that the final result v67.89 was calculated without

having to jot down any intermediate result for later reentry into

the machine, even on a machine without a memory button. We do, of

course, repeatedly reenter the numbers 8 and 3.89, having written

them down at the start. If your machine has a memory, you may find

it useful to store 3.89 there and recall it as needed.

To display the process of convergence, the process of the

numbers Y; becoming ever more accurate approximations to v67.89, we

tabulate yiz in Table 1.2. This table shows the progressive increase

in the accuracy of the estimates. We emphasize, however, that the

2 need not be calculated. Instead, we may proceed throughnumbers Yys

the iterative process of guessing g = y, and calculating in succes-

sion Yy, Y2, Y3, Yu, and ys. We observe that ys = y, so that y, is



TABLE 1.2

2

 

Yi Yi

Yo B B4

Y, 82431250 L7,949109
Y, 8+2394859 L7.889128

Y, 8.23953% L?.890012

Yy B+2395388 L?.89
Yo 8.2395388 L7.89

the answer y that we sought. It is wise, as a check, to square only

the result y,.

THE ALGORITHM

The method we have used to find v67.89 may be generalized to get a

technique called an algorithm, an iterative procedure for finding vx.

As before, we seek a positive number y such that y? = x. We make a

guess g for y and write

2y° =x

y> + gy =z - g® + gy + g*

y(y+g) =z - g° + g(y+9)

y Eg,
T ytg

As in the example, we regard the two appearances of y in the last

equation as two different numbers Y41 and Yz to get an algorithm*:

2
= %9

t .. ]
This method is a new one as far as we know.



This is the recipe for calculating vx: we let y, = g and calculate

Yy = (x—gz)/(y0+g) + g. Continuing, we calculate y, from y,, y; from

Y2, and so on, until we get to a stage where Yps1 = Yy Then we stop.

The answer is vx = Yy

EXAMPLE: V100

In order to exhibit our algorithm in action, we make the foolish

guess of g = 11 for v100. The algorithm in this case 1is

-21
Yie1 yi+11 + 1.

Results are listed in Table 1.3. This time we have omitted some

TABLE 1.3

Yo = 1l

y1 = 10.045455

y»2 = 10.002160

Ys =

Yu =

ys = 10

Ye = 10

intermediate results. You should work out these steps for yourself

and fill in the missing numbers to complete the table.

EXERCISES

1. In each case, find the square root of x by means of the algorithm

of this chapter, starting with the given guess g. For which n is Y,

first equal to yn+1?

*

a. x =26and g =5 e. x =50.12and g =7

*b. x = 35 and g =>5 f. x=63and g =7

*c. x =1.11 and g =1 g. x = 4.567 and g = 2

*d. x = 150 and g = 12 h. x =650 and g = 25

*

Answers to starred examples and problems can be found at the end of

this chapter.



2. Calculate v67.89 using a poor guess, say g = 6, to start, so

Yo = 6 and & - g? = 31.89. How many iterations are required in this

case to arrive at the correct result y; = 8.23953647

We tested one 8-digit machine that ended this iteration by

cycling back and forth between 8.2395358 and &.2395390. This cycling

was due to loss of information after finding the reciprocal
1

8.2395390 + 6 °
was recorded as 0.,0702269 by an 8-digit machine, of course. It is

This number is approximately 0.0702269926, but it

fairly easy to achieve greater accuracy on such a machine: simply

divide by 31.89 before reciprocating instead of multiplying by 31.89

after reciprocating. The numerical principle involved is that the

least information is lost in reciprocation for numbers nearest to 1.

*3. Calculate V35by guessing g = 6, so yp = 6 and x - g% = -1,

Notice that x - 92 is negative this time. This is okay; you must

simply remember to ''change its sign'" to negative every time you key

it into your machine. What is v35? How many iterations did it take

to find it?

Suppose that to find V36you guess g = 6, so that the guess is

exact this time. What happens in the algorithm for this case?

*4. The quadratic formula

-bixg2-4ac
r= 2a

gives the roots, if any, of the quadratic equation ax? + bx + ¢ = 0.

If the diseriminant A = b® - 4ac is zero, then there is one "double"

root; If A < 0, then there are no real roots; if A > 0, then there

are two roots corresponding to the choice of signs * before the

radical. Find the roots of > - x - 1 = 0. Then check your answers

r, and r, by calculating r? - r, - 1 and r,? - r, - 1.



5. Use the results of Exercise 4 to graph the function f(x) = x%-x-1.

Consider values of x from -2 to +3 and use increments of 0.2, so you

will compute f(-2.0), f(-1.8), f(-1.6), ..., up to f(3). Calculate

the values f(x) to 2 decimal places and interpolate to graph them on

standard graph paper. Use a whole sheet and place your origin a

little below the center of the page. Label all calculated points,

the roots, and the y-intercept f(0).

6. Using the methods of Exercise 4, find the roots of 3x2+22-7 = 0.

Check your answers by evaluation.

7. Graph the function f(x) = 3x2+2x-7 by the methods of Exercise 5.

Use the roots found in Exercise 6.

*8.2 Use the quadratic formula (Exercise 4) to solve

T Z—”; - 1.729 = 0 (7 = 3.1415927). Check your answers. Sketch
a graph displaying this function of x with its x- and y- intercepts

(those are the places where the graph crosses the x- and y- axes).

9. Make a graph of the square root function f(x) = vx as follows:

V.

Vo if

To plot some points, then, let y = 0.0, 0.1, 0.2,

the points (x,y) that we wish to plot are those for which y

But if both x and y are positive (0 = Y0, remember), then y

and only if x = y?2.

0.3, ..., and so on, up to y = 2.0 in increments of 0.1. Square

these values of y to find the x coordinate for which yx = y. Plot

these points and sketch a curved line through them. Then use your

graph to estimate to 2 decimal places v.35, v0.9, V1.2, V2.

10. The circle of radius 4 that is centered at (2,3) has as its

equation

(x-2)% + (y-3)% = 42,

Find the coordinates of the points of intersection of this circle

with the coordinate axes and also the points of intersection of the

circle with the straight line y = 4x+3.



11. When the number x is between 0 and 1, it may be confusing to

guess at its square root, that is, to find a good g to begin the

calculation. One trick is to multiply x by 100, make a guess G for

/100x, then use G/10 = g as a guess for vx. Do this to make guesses

for V0.5 and /0.05 and then find these two square roots. What could

you do to guess v0.005 and v/0.0005 ?

*12. Solve the ancient problem of ''squaring the circle'". In other

words, find v/m. Here m means 3:1415927, and the number y = v

which you find is the length y of the side of a square whose area y?

is m, the area of a circle of radius 1.

(0f course, both 7 and v are irrational numbers, though a

calculator can only deal with decimal fractions that approximate

these numbers.)

*13. Suppose two animals are similarly

shaped, and r is the ratio of their linear ¢/‘ZE:i§EZ\§&

dimensions. For example, if one is twice dw\\\Q\)

as high as the other and twice as long, ~‘ ,/V”_‘h» flp
: , %"

then r» = 2. Their surface areas will then | I

bear the ratio r? and their volumes the 7==\ \\\\
/;;/g-\\;f%\\\\@\\\‘\%\%\ )

ratio r3. Since weights are proportional ,;f?qg§:9;§Q¢¢$;«~
““:‘ 2, ,‘?,7,

to volumes, their weights also have the

 

ratio r?3.  Suppose that a lab has been

using 110-gram mice in a study. If the experiment now calls for

mice with a surface area 25% greater than before, what weight mice

are needed? (Hint: the ratio of surface areas is r? = 1.25. Use

the algorithm. Round off your answer to the nearest gram.)

*14. Suppose a savings institution offers a deposit certificate that

costs $1000 and pays back $1200 at the end of its two-year term.

This is 20% simple interest over the two years. But the local bank

usually pays yearly interest, which it adds to the accounts at the

end of each year. This is called annual compounding of the interest.

What rate »r% of annually compounded interest would yield the same 20%

return after two years? (Hint: (1 + r/100)2 = 1200/1000. Use the

algorithm. Round off your answer to the nearest 1/4 percentage point.)



PROBLEMS
3.89

Yy +8
by making a graph showing that both the functions Y = X and

 P1. Show graphically how the formula Yie1 = + 8 works. Begin

Y = 3.89/(X+8) + 8 in a very large scale, using values of X from

0 to 16. Do you see why the intersection of the two graphs gives

v67.89 ? Now, make another graph of these two functions that magni-

fies the region near their intersections. Use values of X from 7.9

to 8.3 in increments of 0.005. On this graph plot the points (8,0),

8,y1)s Wisy1)s W1,y2)s (Y2,y2) and connect these points with a

dotted line from each one to the subsequent one. Do you now under-

stand how this dotted line depicts the convergence of our process to

its limiting value?

P2. '"Prove'" that it is not necessary to check your result when you

have obtained a square root by the method of our example. That is,

give a reasoned argument using arithmetic to show that when you cal-

culate Yy and find it is equal to Y, then Yy, must be the correct

2
1

answer, that is, Y, must be equal to x. (However, it is prudent,

reassuring, and fun to check answers. You may have made an error

in calculating the number x - gz, for instance, that you used repeat-

edly to obtain Y, Your answer would then be wrong even though

y, =Y +)n

P3. Study the operation of our algorithm more carefully in two ways,

using v67.89 as an example.

n+l

First, suppose that in your calculation of y, from y; you mis-

takenly key in 3.59 instead of 3.89. Pretend not to notice your

error, which will of course result in an incorrect value for y,.

Then continue without making any further mistakes to follow the

algorithm, calculating y3; from your erroneous value y,, y, from

Y3, and so on, tabulating these results as you go. Finally, compare

your table with Table 1.1. Do you see that our algorithm is "self-

correcting'"?

Second, follow the algorithm to derive y; from yo = g = 8.

Then regard y; as a new and better guess g; and calculate

10



g, = (67.89-g12)/2g1 + g1.

Derive g3 from g, in a similar fashion. Continue this new iterative

algorithm until a stage where g. = g Does this yield v67.89 *?
1+1

How many iterations were required? (This new algorithm is called

Newton's method; by our count it requires the same number of steps,

but more keystrokes, to key in data on a machine without memory.)

*P4, Follow Isaac Newton's reasoning to see that if you have an

2approximate root r; for the equation y“ - & = 0 and there is a small

error Gi in that approximation, (ri+6i)2 = x, then

r.2 + 26.r. + 8.2 = .
i o Z

But if 6i is a small number, much less than r., then 6i2 is consid-

erably less than the other two numbers riz and Zéiri in this sum.

Thus we may use the symbol = for approximate equality to say

 

r.2 + 28.r. =
7 17

286p. 2 2 - p.2
117 7

x—riz
§. =
7 2r.

7

r. +§. =
1 17 2r

x + Pi

r. +§. =
1 1 2r.,

1

Now this last formula is only approximate for r,+ 8, = vx. However,

we may take (x+Pi2)/2Pi as an improvement over r., a better guess,

which we will in turn call »r. .:
1+1

11



x+r o

1
r. =
1+1 2r.

7

Use this procedure to compute v67.89, with ry, = 8. At which itera-

tion did r..
1+1

use on your machine as the method of our example? Did you have to

first become equal to Pi? Is this method as easy to

reenter intermediate results?

PS. If for some reason we choose in finding vx to guess g = 0 (per-

haps x is small, say x = %), then we are presented with the iterative

recipe

y z_
7+1 Y;

No matter what estimate we choose for y,, we get Yy, = yo, Y1 = Y3,

and so forth, with no convergence. But it is true that if y02 <x,

x

T
(y02 + x)/2yo = y; may be a better estimate than y,. This is, of

then y,2 > = (prove this!). Hence the average %(yo, +

course, Newton's formula, as we saw in Problem P4, but we have derived

it in a different way. Draw a careful graph to illustrate the con-

vergence of this method when x = %. Choose y, = 3/4 and make your

graph magnify the region near the root of y? - % = 0. Then calcu-

late v%. How many iterations were required? Show also that the

method of the example works if the guess is g = 3/4.

The ancient Babylonians used one iteration of this recipe, in

the disguise of: "If gy is a guess for vx, then let 2 = go> + z and

get a better guess g; = go + 8/2g0." The Alexandrian Hero, or Heron,

used this formula iteratively, just as Newton did 1700 years later,

in a very early instance of our algorithmic methods.

P6. Discuss the ''speed of convergence'" of the algorithm in the

Examples of this chapter. Begin your discussion by defining the nth

error € by Y, = €, + vx. Show by an arithmetic argument that as »n

gets larger and €, gets closer and closer to O €41 gets close to

-vx . ; )
€ . This means that each successive error € is smaller than

gtvx n n+l

12



€, by a ratio that measures the error of g as a guess for vx. The

better guess g we start with, the faster the convergence. (Compare

Problem P3 in this light.)

Calculate the ratio (g-vx)/(g+v/x) for the example of v/67.89, and

then make a table of the ratios € /en for each value of n = 0, 1,+

2, ..., 5 to illustrate this theo?eiical argument.

P7. Describe at least one plausible situation in a field of your

own current interest, perhaps biology or business or chemistry,

where the techniques developed in this chapter for finding square

roots may be applied to obtain a numerical solution that is useful.

Discover such a real-life situation by surveying a current issue of

an appropriate journal in your field. (See the Bibliography for some

suggested journal titles.)

Answers to Starred Exercises and Problems

Exercises la. Yy, = ys = 5.0990195

1b. y7 = ys = 59160798

lc. yy = ys = 1.0535654

1d. yu = ys = 12247448

3. Y3 = yy = 54160748

4. r; = 1,6180340 and r, = -0.6180340

8. r; = 1.5818b42 and r, -1,3919328

12. /1 = L.772453

13. 154g

14. 9%%

Problems P4. r3 = r, = B.2395388
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MORE FUNCTIONS AND GRAPHS

INTRODUCTION

We have seen that solutions for quadratic equations were known in

ancient times. But just 500 years ago the cubic equation was still

an enigma. Its final solution, developed at the University of

Bologna and published by Gerolamo Cardano in 1545, involves some

complicated algebra and the extraction of both square roots and cube

roots. The solution of the quartic equation is similar. As you will

see in this chapter, it is now possible to solve such equations on

the pocket calculator by simple and rapid methods.

As you study this chapter, your understanding of the concepts

of function and graphs will continue to grow. Working through the

various examples, exercises, and problems provided will help you to

improve your skills manipulating and evaluating functions and creat-

ing graphs. At the same time, as your competence with your calcu-

lator increases, you will be more and more able to concentrate on

the mathematics underlying your computations.

14



Chapter 2 provides a study of several iterative methods of

solving equations of the form f(x) = 0, to find the zeros of f(x).

The most useful of these schemes is called the method of successive

substitutions. We will apply this method to several cubic poly-

nominals and to other functions. The roots that are calculated for

f(x) = 0 will be displayed by graphs; they offer a new technique

that aids graphing. In fact, the iterative methods themselves will

be graphed to give a clear display of convergence. Synthetic division

will be described and used in examples to factor out zeros.

In the Exercises we will illustrate the method of successive

substitutions and compare it to several alternative algorithms. And

in the Problems we will explore these methods theoretically, adding

Newton's method for nth roots to the list.

DEFINITION: LIMITS OF SEQUENCES

We now define more clearly what is meant by convergence. If xq, x;,

X2, ... is an infinite sequence of numbers, we say that it approaches

a number L or has L as a limit or converges to L if: no matter what

degree of accuracy we require, there always exists a member x, of

the sequence so that x, and also the subsequent members x, for

2 =1,2,3,... all approximate L to within the given degree of ac-

curacy. The sequences yo = g, Y1, Y2, ... of approximations for

square roots that we calculated in Chapter 1 were convergent sequences

in this sense.

EXAMPLE: «° - 3x - 1=0

Let us sketch a rough graph of the cubic polynomial function f(x) =

x® - 3x - 1 (see Figure 2.1). When x is large, say x > 2, f(x) is

positive; and when x is large-negative, say x < -2, f(x) is negative.

Since f(-2) = -3 is negative and f(-1) = 1 is positive, the continuous

graph of f(x) must cross the x-axis some- —

where. Thus there must be a zero z; for f Figure 2.1 é

between -2 and -1. Similarly, f(0) = -1 < 0, '

f(1) = -3 <0, and f(2) = 1, so there are two

Y
=l

z

more zeros 2, and 23 with -1 < 2z, < 0 and

1 < 23 < 2. Since f(x) is of degree  
15



3, it has no more than 3 zeros, so these are all of them. We use a

numerical trick to find z,. Thus we may rewrite the equation as

 

x® - 3x =1

z(x2-3) = 1

1
x:

x2-3

The last expression is true for every root x (we know that *v3 can-

not be a solution to f(x) = 0 by the next-to-last equation above).

Just as in the previous chapter, we now regard the two appearances

of x in this last equation as two different numbers that are related

by the equation.

We shall make a guess x, at the number z,, say xo = -0.5, and

calculate x; = 1/(x¢% - 3), and in general Tepq = 1/(m7;2 - 3), so

that we obtain the results listed in Table 2.1. (Incidentally, the

easiest method of evaluating the polynomial x® - 3x - 1 is as

(x2-3)x - 1.) Table 2.1 illustrates the same kind of convergence

that we saw in Chapter 1 for the square root algorithm. The numbers

T get closer and closer together, and the values f(xi) get closer

and closer to 0. We have, for all practical purposes, found our

 

ZeT0 Zs: TABLE 2.1

z ()
0 045 0,37
%1 -0, 3636304 00428249

2 -0,3487032 0.0037093

X3

XLy

X's

6 -0, 3472964 0, 0000002
. 04347394 ot

+Notice that x¢ = x7, although f(xs) # f(x;). This is because our
calculator is a 10-digit machine and these results are displayed as
rounded off to 8 digits. Be sure to duplicate these computations on
your own machine before continuing with the text.

16



This way of obtaining an algorithm is called the method of succes-

sive substitutions. You can understand how it works by considering

the two functions 1/(x2-3) and x, which are graphed in Figure 2.2.

The values of x for which these

two functions are equal are

exactly the zeros of f(x). (Be

sure you understand this fact.

If you do not, think about the

equations displayed above.)

Figure 2.3 magnifies the region

 of Figure 2.2 near the intersec-

tion of the two graphs at z,.

Our iterative process corre-

sponds graphically to follow-

_
—
—
_
—
—
—
—
g
—
—
—
—
—
—
—
—
—

ing the horizontal and vertical  

 

dotted lines toward the inter- Figure 2.2

section.

 

Figure 2.3

FINDING 23 WITH ANOTHER ALGORITHM

We now attempt to use the same technique to find z3, the zero be-

tween 1 and 2 for the function x3-3x-1. For our first guess, we

take £y = 2 and calculate as before (see Table 2.2).

17



TABLE 2.2

 
x I(x)

Lo ce 1

L1 L. =3

X2 =045

Clearly something is amiss, and this process is not going to con-

verge to Z3.+ We go back to the equation x(x?-3) = 1 and write

x2-3 = 1/x

x? 1/x + 3

+/1/x +3.X

Again we use the guess x, = 2 and calculate with our new algorithm

 

xi+1 = +V1/xi + 3 to obtain the results shown in Table 2.3.

TABLE 2.3

x f(x)

X C L.

X 1.47082487 -0,0645857

X2 1.,8800326 0.0049197

X3 1.847933L5 -0.,0003703

XLy

Xs

XLe

X7

X 1.4793852 O,

.f.

A full explanation of this non-convergence requires the techniques

of Chapter 13 (see Problem P6, Ch. 13). However, the ''trial and

error" method adopted here does obtain results and will suffice for

our present treatment of functions and graphs.

18



FINDING 23 WITH SYNTHETIC DIVISION

Since z, = -043472964 is a zero of f(x) = x® - 3z - 1, the polynomial

f(xz) is evenly divisible by (x-z,). That is, if we find a quotient

polynomial g(x) so that f(x) = (x-22)q(x) + r, then the remainder

r = 0 (to see why this is so, substitute 2, for x in the last equa-

tion). The algorithmic scheme for finding q(x) is called synthetic

division.

In general, we let f(x) = foxn + f;xn_l + ...+ fh. The coef-

ficients of the quotient polynomial g(x) = qoxn‘l + qlxn + ...+

q,_1> such that f(x) = (x-z)q{x) + r for some number z, are given by

qo0 = fo

q1 = qo3 + f)

Q41 = 92 * f2+1

n-1 =928 ° ffi—l.

and =
r qn-lz * ffi

These coefficients appear as intermediate steps in an evalua-

tion of f(x) at a number z. That is, the coefficients go, g1, ...,

q,_q are the contents of the successive pairs of parentheses in the

expression f(2) = (...(((fo)z + f1)z + f2)3 + ... + n-l)z + ffi, and

the whole expression f(z) is 9,1 % * ffi = r.

In the case at hand, f(x) = 23 - 32z - 1 =((((1)z-0)x-0)x-3)x - 1,

and z is the number z, that is the zero for f(x) that we have found:

f(22) = 0. Hence qo =1, q1 = 2, and g, = 2,2 - 3, while » = 0. Thus

synthetic division shows that 2% - 3z - 1 = (2-2,) (®® + 2% + 2,2 - 3),

with zero for remainder.

19



The quadratic formula may now be used to solve the equation

gq(x) = 0 to find that

 
X =

—32£/322-4(322-3) _ -z,4/12-33,2 ,> =
2

that is, & = 18793852 or x =-1.5320889. The first of these values

is the zero z3 for f(x) that we have already found above. (Do you

see why a zero of q(x) must be a zero of f(x) as well?) The other

value for x above is the third zero for f(x): z; = -1.53208a49.

Hence synthetic division offers an alternative method of finding

the remaining zeros of a cubic polynomial once one zero is known.

EXAMPLE: 4x® + 322 - 2z -1 = 0

We rewrite this equation as

43 + 3x? - 22 =1

xz(4x2 + 3x - 2) 1

x = 1/(4x? + 3z - 2).

This defines the algorithm

= 2 - —1T (4xi + Sxi 2) ,

which we begin blindly with a guess of xo = 0. The results are

displayed in Table 2.4: x5 = x¢ = -0,3903882. This number must

2 . 2x - 1.be a zero of 4x% + 3x

20



TABLE 2.4

X0 O

X1 =045

x2 -0.4

x3 -0, 3906250

Xy

Xs -0, 39038482

Xe -0, 3A03842

Next we perform synthetic division to find that

4% + 322 - 2x - 1 = (x - x5) (qox? + q1x + g2) + r where

qo = 4

qi1 = 4xs + 3 = 14384472

g2 = q1xs - 2 = -2+.5615528

r =qgxs -1 =0

The discriminant of the quadratic polynomial g,x? + qix + q2 is A =

q} - 490q2, which is positive. Accordingly, the quadratic formula

can be used to find two real numbers that are zeros for this quadratic

polynomial, and these numbers must be zeros for the above cubic poly-

nomial as well. (See the Appendix for additional description of

polynomial evaluation and synthetic division together with another

detailed example.)

EXERCISES

1. In each of the cases below solve the given equation iteratively

for a zero. Use the algorithm that is offered and begin with the

indicated value of xg.

* 3
a. 4x°-7x-1 =I o 8 I 2 . -vl - 1/(4xi -7) with 9 = 0

*

b. x3-5x2-2 5+2/x2 with 29 = 5
0; xi+1
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* 4 - Q. _ 3 . _c. X '-9x-3 = 0; Lo= 3/(x*-9) with x¢= 0

d. x°-6x2+1 = 0; Tl " 1/v/6-2% with 2o = 1

2. Use synthetic division to divide f(x) = x®-3x-1 by the linear

factor x-z3, where z3; is the number determined in Table 2.3. That

is, find a quotient polynomial g(x) and a remainder » so that

f(x) = (x-23)q(x)+r. Here r is a number, a polynomial of degree

zero, and q(x) is quadratic. Follow the example of synthetic divi-

sion to find the coefficients of ¢ and to show that r = 0.

Finally, use the quadratic formula (see Exercise 4, Ch. 1) to

calculate the zeros of q(x). Show by computation that these numbers

are zeros of f(x) as well.

3. Recalculate Table 2.3 and perform the missing steps to obtain

33. In view of the failure of our earlier attempt to compute 33

(in the discussion of the example), how can you be logically sure

that your final result is really the number z;, the largest zero of

f(x), accurate to the seventh decimal place?

4. Show that the method that begins with x; = 1/(x02-3) will not

converge to z;. Then find z; using the method that begins with

x, = -/1/xy+3. Do this by constructing a table just as was done

above in the example.

S. Use the values given in the Examples for z;, 2,, 23 to

sketch a large and accurate graph of f(x) = x3-32-1. Compute values

of f(x) in increments of 0.2 for x = -2.2, -2.0, -1.8, ..., 1.8, 2.0,

2.2. Label the special points 2;, 22, 23 and f(0).

6. Find z3 by the method of interval-halving. To begin, observe

that f(1) < 0 and f(2) > 0 so that 1 < z3 < 2. Let x; = 1.5 and cal-

culate f(x;) = -24125 < 0. Hence 1.5 < z3 < 2; let 2, = 1.75 and con-

tinue this process 10 more steps, making a table as above. Compare

this algorithm to that of Table 2.3 in the Example and Exercise 3,

and discuss the differences.

7. Attempt to improve on the method of Exercise 6 above by estimat-

ing each number L1 yourself after inspection of f(xp), f(x1), ...,
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f(xi). Did this speed the convergence very much? (This algorithm

is called bracketing.)

*8. Let f(x) = 4x3+3x2-1. Show that f(x) = 0 if and only if
=L

x = V/1/(@x+3) = 1/VAx+3 = (4x+3) *. Since f(0) < 0 and f(1) > 0, there

is a zero z for f(x) between 0 and 1. Use the iterative recipe
1-2 1

Leq = (4xi+3) , starting with x9 = %, to find z. Next, use
1+

synethetic division to obtain a quadratic polynomial g(x) such that

f(x) = g(x) (x-2). Then use the quadratic formula to calculate the

other two zeros (if they exist) of f(x). Check your answers.

9. Follow the scheme outlined in Exercise 8 to obtain a zero for
-4

f(x) = mx®+2mx2-1 between 0 and 1, using x, = 0.2 and Tl " [fl(xi+2)] 2.

Next use the quadratic formula to find any other roots of f(x) = 0

that exist. Finally, sketch a graph of f displaying your results.

*10. Attack the same problem as in Exercise 9, that of finding the

zeros of f(x) = mx®+2mx?-1, in a different fashion. Notice that

when f(x) = 0, then mx2(x+2) = 1, or x = 1/mx?® - 2. The facts that

f(-2) = -1 and f(-1) = 7 - 1 > 0, plus the appearance of the factor

x + 2 above suggest that there is a zero for f(x) near -2. Try

Xy = -2 and X,
1+1

a zero z, divide f(x) by x-2 just as in the two previous exercises

= (1Tac7:2)‘1 - 2. When this process converges to

and search for further zeros in the quadratic factor of f. Finally,

sketch a graph of f displaying your results.

11. A certain drug is found to raise human body temperature accord-

ing to the formula T(D) = 1.81 D2 - D%/3. Here D is the dosage in

grams in the range 0 < D < 3.5, and T(D) is the change in body

temperature in degrees Fahrenheit due to that dosage (when there

is no trace of the drug in the body to begin). Find the dosage (to

the nearest milligram) required to raise body temperature by 5°.

12. A button manufacturer finds that the plastic raw material for

a certain item in her line costs $7.42 per thousand finished buttons.

The machine that makes these buttons costs $30 to set up for a run

and then 100 ¥z dollars labor cost to run x thousand buttons. Office

work to handle one order costs $20. If the selling price is $10 per

thousand, how large must an order be for the manufacturer to realize
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20% of her billing as profit? (Hint: the equation for x is

7.28x + 30 + 100z + 20 = 8c. Define a new variable y = Vx,

rewrite the equation in terms of y, and solve for y.)

PROBLEMS

*P1. Test the usefulness of the formula Trp1 = (xis—l)/S for finding

the three zeros of f(x) = x3-3x-1. Then test the opposite formula,

o1 = ygigrf, for its convergence near each zero of f(x). Sketch

graphs illustrating the convergence of each of these algorithms

and also illustrate their non-convergence at the zeros where that

non-convergence occurs. (Compare Figures 2.2 and 2.3.)

P2. Find necessary and sufficient conditions on the linear function

g(x) = me + b, where m is the slope of the line and b is its

y-intercept, in order that the algorithm o1 = mxi+b will work to

find the intersection of the graph of y = gzi) with the graph of

y = x. The hint for this problem is the graphic display by dotted

lines of the convergence. You need only ask yourself what the dot-

ted lines mean and where they begin and end. You should then be

able to find the algebraic requirement that will insure convergence.

*PS. Let x be an approximation to the nth root of the number y, so

. n
that there is some small error § for which x + ¢ = 7§'or (x + 8) =

. n
y. Following Isaac Newton's reasoning, expand (x + §) by the

binomial theorem to get

(x+8)" = xn+nxn_16+fiiglll-xn_262+...+6n.

Notice here that all the summands after the first two terms on the

right hand side are multiples of §2. But § was agreed to be very

near to zero, so 82 is very small indeed, so small that you will

make an insignificant error if you neglect all the terms that are

multiples of 82 and write (with # meaning approximate equality)
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y = (x+8)" 2eg

nxn_ld s y-xn

§ = (y-xn)/nxn_l

o468 2 g:gf_+x _ y-xn+nxn - y+(n-l)mn
n-1 n-1 n-1

In the last form the approximate value for & + § should be a better

estimate for Gg-than is x, the estimate you started with. Accord-

ingly, use

together with a reasonable starting guess x,, to find 767.89, ¥67.89,

/67.89. Do you think it was easier to go through one iterative pro-

cess on your machine to find ¥67.89, or would it be better to find

W/67.89 or ¥W67.89 ?

*P4, Show that the method of successive substitutions may be applied

to the equation x2-67.89 = (x?-64)-3.89 = 0 to obtain the algorithm

described in Chapter 1.

Follow the same line of reasoning to solve x?-3x+1 = 0 by first

making a guess g = 1/3, then factoring x2-3z+1 = (x-g) (x-h)+r.

Finally, use the last expression to define an algorithm for succes-

sive substitutions. Pursue your algorithm to a solution for x2-3z+l =

0 and check your work. How does this method compare with a use of the

quadratic formula?

P5. Picture two ladders of lengths 4m and 5m, each leaning directly

across an alley of width 3m. If the ladders are propped against

opposite walls of the alley so that they cross side by side, how

high is the crossing point?

*P6. Solve x3-4x2+2x-7 = 0 by the method of successive substitutions.
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Answers to Starred Exercises and Problems

Exercises

Problems

la.

1b.

lc.

8.

10.

P1.

P3.

P4.

P6.

Xs = Xeg = -041445843

Xy = Xg5 = S.0775742

x, = x5 = —0,3319837

z = 044554100 is the only zero.

x7 = xg = -1.91302148

The first recipe finds =z, only; the second finds

21 and 23 but not z,.

(67.89)1/3 = z.0794530
67.89) /6 = a,ma7mse
(67.89)Y7 = 1,8007812
z = 0,3818660

z = 3489430114 is the only zero.
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LIMITS AND CONTINUITY

INTRODUCTION

We have been assuming up to now that the functions we were working

with were "continuous.'" That is, we have assumed that if f(») = 0

and xy, £, X2, ... were numbers that got closer and closer to r,

then the numbers f(xq), f(x1), f(x2), ... would get closer and closer

to f(r) = 0. More generally, a function f is continuous if for each

point y and each sequence xo, X1, X2, ... = {xi} that has y as limit,

x>y, we have f(xi)+f(y). We may also express this by writing

1.
oy F@) = F@)

Although the use of limiting methods stretches back to Archimedes

(287?-212 B.C.), rigorous definitions were only offered beginning with

Bolzano and Cauchy in the nineteenth century A.D. We shall now ex-

amine this operation of 'taking limits" more thoroughly. Our study
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will illustrate theorems about limits of sums, products, and quotients

of functions by means of detailed numerical Examples. This numerical

work will display tabulations of converging sequences. The Examples

will illustrate the convergence of a sequence of values for a func-

tion by tabulating the successive members of the sequence. Exercises

continue these displays and evaluate some limits that are not at all

obvious. In the section of Problems you will be able to study some

restrictions on numerical limit taking, examine limits for some

exponential functions, and define the limit as the variable tends

toward infinity.

EXAMPLE: f(z) = 3z + 4

Let us calculate the values of f(x) = 3x+4 for values of x near 2.

Say @o = 2+1, @1 = 2+0.1, ..., x = 2+410°%:  f(xs) = 3(2+107%)+4 =

3X2+4+3(0.00001) = f(2)+0.00003, and so forth. We say iig 3x+4 = 10.

Now let

gx) = ng + 21 = 

N
3 (3x+4).

What is 1lim g(x)? This function g(x) is m/2 f(x), so
x>2

Tf@) = 3 £(2) = s

Just for fun, we check the values of g(x) (using m = 3414158927, so

g(2) = 15.707/963). Table 3.1 presents the values of x greater than

2, and Table 3.2 lists values of x less than 2.
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TABLE 3.17

 

x _g(x)
3 20420352

2l 164179202

201

2001 154712676

20001

2+0000L

2+00000L 15. 707464

c+000000L 15,707\k4

 

TABLE 3.2

x g(x)

1,999 15703251

149999

1,4+999949

1,4999999 15, 707959

19999999 15.707963

This computation illustrates the following THEOREM: <f lim f(x) = k
X>y

and ¢ is a number then 1lim cf(x) = ck. It's easy to see that
X>y

lim(f(x) + ?>= k + ¢, too.
x>y

+Remember to read with your machine ON so that you can duplicate

these results for yourself as well as fill in the blanks in the

tables.
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These rules together imply that for our function f(x) = 3x+4,

Iim f(x)-10 = 0, and thus that for each positive integer =,
x>2

lim n! (f(x)-10) = OT. We tabulate two sequences of results, one
x>2

for n = 4 and one for n = 8 in Table 3.3.

 

TABLE 3.3

x 4! (f(x)-10) 8! (f(x)-10)

2l 72 12096,

2001 0.072 120.596

200001

2+000000L 0.0000072 0.012096

e O O

149999999 -0.000007e -0.01.209

* 14994999 -0.00072 =1..2096

If we interpret this table using the same standards we have used

previously, it is not clear that there is convergence to 0. The

function A(x) = 8!(f(x)-10) has values that never get as close as

1/100 to 0, whereas we have been obtaining convergence in at least

7 digits. The fact that Z(2) = 0 exactly is reassuring, but that

sort of fact will not be available on an 8-digit machine when the

limiting value for x is not an 8-digit rational number (see Exer-

cise 2, for instance, when y = V2 is irrational).

This is a numerical puzzle, and there is no simple answer to it.

An 8-digit machine is a kind of microscope with which to examine the

behavior of a function at a given point, and its magnification 1is

100 million-fold. But even with this enormous magnification, there

are some things that are still fuzzy, and other details that remain

entirely invisible. Thoughtful experience with numerical examples

is the best guide.

+n!, read '"m-factorial," is the product of the positive integers up

ton: 1!=1, 2!=2, 3!=6, 4!=24, ..., and n!=nX(n-1)! By convention,

0!=1.
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EXAMPLES: THEOREMS FOR SuMs AND PRODUCTS

lim (f(2)+g (@)= lim f(z) + lim g(x),
Yy Y XYy

1f the latter two limits exist (see Exercise 3).

Similarly

lim (f(x)g(x)) = (1im f(x) lim g(x)].
XY x>y x>y

If we use the function g(x) = 3mx/2 + 2m from above and let f(x) =

(x-1), then

  F@)g) = (3”2”” + Zw) (x-1) = 372”“2 + oo - 2m

5m. We calculate this inClearly lim f(x) = 1, so lim f(x)g(x)

 

x>2 x>2
in Table 3.4

TABLE 3.4

x fx) g(x)
3, 40.840705

2l 17,7971

2«01 15.,912638

20012345

20001947

20000164

20000015

20000001 15, 707965

ce 15.707963

1.,9999999 15, 707961

1.,89999997

1.,89999 15.70°7754
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This table should be compared with Tables 3.1 and 3.2. Convergence

of f(x)g(x) in Table 3.4 is slightly slower but quite similar to that

of g(x) itself in the earlier tables.

EXAMPLES: LIMITS OF QUOTIENTS

For limits of quotients f(x)/g(x) you would expect the same sort of

rule to be obeyed as for products

lim

lin f(x) _ =y F=)
>y g(x) ii;‘ g(z)

Indeed, this is a THEOREM, provided that the limits exist for

both f(x) and g(x) when x approaches y and also provided

lim lim
vy g@) # 0. In the latter case, when .y g(x) =0,

the above rule makes no sense.

 

TABLE 3.5

x (z-1) / (Yx-1)

ce 244142136

1.1 204480489

1.01

1.00%

1,0001

1,00001

1.,000001 ce

0.999999 Ce

0.99999

0.9999

0999

0.99 1.899494874
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since division by 0 is not possible. Nevertheless, f(x)/g(x) may
lim x-1 =1

> xrl x-1

lim -1
x>l vx-1

still have a limit when g(x) has limit 0. For instance

lim (z-1)% _ 1lim
o1 2ol sl -1 = 0. A more interesting example is

It is clear from Table 3.5 that this limit is 2. Here our calculator

was of genuine help.

EXERCISES
1. Evaluate the following limits:

* 1im *C limm_ 3)/
a. oWl- 1)/ 40 (Y )y

* lim ] a. UM 7Eag - 7))/tb. [(®-5)/ (/5%

-

5) £

2. Calculate ;135-4!(x2-2), and ;1$5 8! (x2-2), compiling values of

the functions as in Table 3.3. How much confidence would you place

in your 1limit values? Why?

3. Find the limits as x>2 of the two functions f(x) = x%+3x+2 and

g(x) = 3x/(1-x) and then iiQCf(x)+g(x)+6), Do this by constructing

a column of values for each function corresponding to a column of

argument values x as in Tables 3.1 and 3.2.

4. Compile data like that of Table 3.4 for the quotient function

gx)/f(x) to find.;im 3mx/2 + 2m. Compare your table with Tables 3.4
x-1

and 3.1 and 3.2 as to the speed of convergence.

lim Vx - /3
x*3 x-3 ’

: 2
*6. Make a table of values to find iiT zf_:fié%i%léiig'

5. Make a table of values to find

*7. The function /4j;;-is not defined for values of x greater than 1;

nevertheless we may be interested in its limit as x nears 1. We

denote by ;iT l{j;;-by the 1limit of this function as x approaches 1

by taking on only values less than 1. Similarly, ;iT /gztz-means

the one-sided 1limit as x approaches 1 from above. These types of
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limits correspond to Tables 3.2 and 3.1, respectively. Make a simi-
lim 1-x

ol fr
8. Make a table to establish the following limit:

lar table to investigate

lim x*-x3-24 .

T>-2 x2+x-2

9. If a bank deposit of $100 earns 6% interest for a year, then it

returns $§106 at the end of the year. But if 3% interest is added

after 6 months, and then the new balance of $103 earns 3% interest

over the last half year, then at year's end there is a return of

103 X 1.03 = 106.09 dollars. The extra 9 cents is the interest paid

during the last half year on the §3 interest that was paid on the

$100 principal during the first half year.

In the first case above, simple interest was paid. In the

second case, interest was compounded semiannually at the annual rate

of 6%, to yield 6.09% per year. Calculate the yearly yield if 6%

interest is compounded quarterly (every 3 months)? Compounded daily?

Do you think the yield could be made arbitrarily large this way, or

is there a limit to this numerical process? That is, is there a

yearly rate corresponding to ''continuous' compounding of 6% interest?

(This topic is treated fully by Example, Exercises, and Problems in

Chapter 8.)

PROBLEMS

P1. We have used powers of 10 heavily in our computations of limits;

that is, in each table of this chapter the values of the argument

that we used differ from the limiting value by powers of 10 that

diminish toward 0. But could an unscrupulous function, knowing of

this habit of ours, deceive us by having special values just as

these points we have chosen?

Discuss this question by describing such a function (sketch its

graph, perhaps with a second graph showing magnification by change

of scale near the limit point). Would you recognize such a function

from its recipe? What could go wrong with our calculation of its
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1imit? Could the limit be a different number than the one we calcu-

late? Could we avoid this kind of problem by using powers of 2 in

place of powers of 107

Make a table of values for f(x) = 987654y°-32y-1 at x, = 1/32

and e = 1/(987654xi2-32). Can you find the zero(s) for f(x)?

P2. We know what ¢ means for an integer n and a positive number a

and that a-n = l/an. We also know about al/n S 95} and we can com-

bine these operations to find am/n = Géfi-= Va)™. This expression

represents the positive number that when raised to the nth power

gives ad". Hence "a*" makes sense when z is a positive rational

number; we now assume that we have extended this function to be

defined for all positive real xT. Investigate the behavior of this

function near 0 by computing a table of values &*% for a = 67.89 and

and xo = 1, T, = xi_l/Z. Thisl%s, of course, done by repeatedly

taking square roots. What is xig (67.89)x?

lim
Make another similar table for 240 (0.0000123)x.

Can you draw a general conclusion from your results?

P3. The limit of f(z) as x tends toward infinity, 1IM f(z), is
2>

limdefined to be the number 240 f(1/x) if that limit exists (see Exer-

cise 7). For example, if f(x) = 1/x, then lim 1 _ lim x = 0.
x¥0

Similarly

lim 2x%+3z+4 _ 1lim 2/x2+3/x+4
Q>0

22-5x-6 Y0 1/x%-5/x-6

lim 2+3x+4x2

z¥0 1-5x-6x2

2
1

= 2.

+This extension really is not necessary for our purposes since our

calculating machines deal only with rational numbers.
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Verify by substituting increasing values 1, 10, 100, 1000, 10000 for
: : . 2x%+3x+4 .

x directly into the expression ———— and tabulating the results
x?-5x-6

that this limit is indeed approached by the values of this function

as the argument x gets large without limit.

Next investigate the limit of xe/Zx as x tends toward infinity

by tabulating its values at x = 1, 10, 20, 30, 40, 50, 60, 70, 80

(calculate %%%-= 2%; 8

P4, Calculate the number e = ;iz (1+1/x)x by tabulating values for

, etc., to avoid machine overflow).

x =1, 10, 100, 1000, ..., taking enough values of x to see the

values of the function repeat themselves.

Next, calculate in the same fashion ;iz (1+2/x)x and show that

your limit is e?. Make a theoretical proof of this fact, given that

the first limit was e.

*P5. Make a table to establish the limit (note Problem 2)

lim 67.89%-1
x>0 X

If your machine has a memory, calculations will be shortened

. T
if you store 67.89%% while computing §Z;§25____l » then let Trp1 =

. ; 7
x./2 and find 67.89xfi+1 = /%7,89x$. Computational error enters
7

this calculation more rapidly than convergence occurs (can you see

why?), so expect only 2- or 3-figure accuracy.

P6. Give a reasoned argument that the result of Exercise la implies

that /2 + 1 is a good approximation for v1+x when x is small

enough. Then illustrate your theorem by calculating this approxima-

tion and its error for x4 = 0.123, x; = 0.00234, and x, = 0.0000567.

Answers to Starred Exercises and Problems

Exercises la. % 7. 0 Problems P5. 4.21788487
1b. 2

lc. 1/6

6. -1
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DIFFERENTIATION, DERIVATIVES, AND DIFFERENTIALS

INTRODUCTION

We shall now meet one of the subtlest and most beautiful concepts

the human mind has yet created, the derivative. Since Sir Isaac

Newton (1642-1727) and Baron Gottfried Wilhelm von Leibniz (1646-

1716) first taught this idea, it has given us immeasurably valuable

insight into change and the way our universe unfolds in time. It

has been used to predict the future configurations of stars and

planets, moving rocks and rockets, the stock market and housing

costs, bacterial growth and radioactive decay.

Our study will use Examples to gain numerical and geometric

insight. At first we shall need to work out some simple arithmetic

rules to ease calculations. Then applications will be explored in

the Exercises and in some Problems. One Problem studies the theory

further, showing how the error in the differential approximation

goes to zero faster than Ax. Another Problem defines second deriv-

atives, and a third constructs Newton's method for finding zeros

for functions.
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EXAMPLE: f(x) = 2°

The derivative of a function f at a point a is defined to be

if that limit exists. If we calculate that limit for f(x) = x? and

a=1.2, withz, = 1.2 + 10"%, we get the results shown in Table 4.1.

These results are illustrated in Figure 4.1.

 

Table 4.1

f(x) - £(1.2)
x x - 1.2

1.3 25

1.1 24l

1.20L

12001

1,,20001 ci4

119999 24

118999

1,199 ce 3499

f(x)

r@a.2)

 

 

 
Figure 4.1
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There is another, equivalent way of expressing the derivative as a

limit:

£'(a) =:}lt—1:(])l fla +h% - fla) .

The equivalence of these two limits may be seen by setting x = a + &

or x - a = h, so that A represents a small change or Z<ncrement in

the values of x from & = g. It is then the same to consider the

limit as x approaches a or the limit as A approaches 0.

At each stage in this limiting process, the difference quotient

f®) - f(a@) or fla + h) - f(a)
hX - a

may be visualized as the ratio of lengths of two intervals. The

denominator is the (signed) length of a small interval Ea,x] or

Ez,a + h] of arguments, while the numerator is the (signed) length

of the small interval [f(a), f(x)] of values of the function f.

That is, the difference quotient is the ratio by which f ''stretches"

or "magnifies" the interval [a,xz]. The limiting value f'(a) is,

then, the ratio of stretching or magnifying that f effects right

at the point a. The derivative at a may also be thought of as the

rate of change at a in the values of the function.

You will recall that the slope of a line is its rate of climb

to the right or the amount by which it rises (a fall is counted as

a negative rise) as you go one horizontal unit to the right.

EXAMPLE: f(@) = 1/x

For instance, let f(x) = 1/x and a = 1.2 as in Figure 4.2. If we go

horizontally from 1.2 to x, a change or increment of 2 = x-1.2 units,

the chord '"'rises'" from 1/1.2 to 1/x for a total rise of 1/x-1/1.2.

The slope of this line is thus 1/x-1/1.2. If we magnify a portion

x-1.2
of this graph (see Figure 4.3), we can see the limiting process:

the derivative f'(1.2) is the 1limit of the slopes of these chords

as x>a. We calculate this slope in Table 4.2.
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1/1.2 4

 

  
 

1/x

1'.2 x

Figure 4.2 Figure 4.3

TABLE 4.2

1/z-1/a _-1
x x-a ax

1.21 -0.6887052

1.,2001

1, 200001

1,2000001 -0:6844444

1,1999999 -0.6844445

14199999

1418999 -0.68945023

The limiting result 1is -(1.2)_2, which is negative since f(x) = 1l/x

is decreasing in its values as x increases past 1.2.

RuLES FOR DIFFERENTIATION

The simple theorems we saw in the last chapter about sums, products,

and quotients of limits readily yield THEOREMS ABOUT DERIVATIVES:

If f and g are functions that have derivatives at a, and b is a real

number, then

(f+9)'(@) = f'(a) + g'(a)

(&) ' (a) = bf' (a)

(fg)' (@) = f'(a)g(a) + f(a)g'(a)

F/' (@) = g@f' (@) - fla)g'(a)
 

g(a)?
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where the last rule, for quotients, only makes sense when g(a) # 0.

Also, we see from the definition of derivative that if f(x) = b is

a constant function, then f'(a) = 0 for every number q. Similarly
lim x - a
xrax - a
 if g(x) = x, then g'(a) = = 1 for every a.

DERIVATIVES FOR POLYNOMIALS

It is easy to show from these rules that (x2)' = 2z, (x3)' = 3x2,

and (by induction) (xn)' =n xn-l. Hence the derivative of any

polynomial

() = a 2+ a4 +a X +a
p 0 ! Tt n-1 n

at any point a = x may be written down immediately. The derivative

of the sum is the sum of the derivatives of the summands, so

n-2
p'(x) =n aoxn'l + (n-1arx * oo ta

at every point x. This defines a new function p'(x) by giving its

values for each x. Thus the derivative of a polynomial function of

degree n is always a polynomial function of degree nt.

This line of reasoning has relieved us of calculating limits in

order to find the derivatives for polynomials or even quotients of

polynomials (a quotient of polynomials is called a rational function).

ExXAMPLE: THE DERIVATIVE OF V=

The product rule for differentiation may be used to find the deriva-

tive of f(x) = vx. Let g(x) = x for every number x; then f(x)f(x)

[f(x)]1? = g(x). By the product rule g'(x) = f'(@)f(x) + f@)f' (x)

2f(x)f'(x). The derivative of g(x) was found above to be g'(x) = 1.

Hence 2f(x)f'(x) = 1 and f'(x) = 1/2f(x). That is, the derivative

function of the square root function f(x) is 1/2vx. A frequently

used notation for this fact is éL—/x = —1—-.
dx

2vx

DIFFERENTIALS

There is a way of thinking that uses these limiting values backwards
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so that we can estimate the value of the difference quotient

fx) - fla)
x - a

close to a. This enables us to estimate the change f(x) - f(a) in

as being nearly equal to its limit f'(a) whenever x is

values of the function f when we change its argument by a small

amount x-a near a:

flz) - fl@) = (z-a)f'(a).

Here the dot above the equals sign indicates approximate equality.

That is, = means that the two numbers are nearly equal, though they

do not necessarily agree to seven decimal places. We continue to

use equality to mean agreement in at least seven decimal places;

that is, agreement on an 8-digit machine.

The above approximation is so useful that it has a special name:

the differential df of a function f at a point & = a is df = f'(a)dx.

Here dx represents a change or increment in the value of x (see Fig-

ure 4.4). The above approximation then says that the differential
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8 I Q Figure 4.4

is nearly equal to the change in value for f:

df = f'(@)dz = f(z) - f(a)
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Hence we may estimate the new value f(x) of f as

flx) = fla) + f'(a) dx .

EXAMPLE: V103

Let us use the above reasoning to estimate v103 as follows. Let

f(x) = Yx and a = 100, so that dx = 3. Then f'(a) = 1/2/100 = 1/20

and we estimate

v103 = 10 + 3/20 = 10.15 .

In fact, V103 = 10,148892, so this estimate is off by about 1/1000.

EXAMPLE: v142.3

Here f(x) = vx again, and we take a = 144, so va = 12, and f'(a) =

1/2v/144 = 1/24. The increment dx = 142.3 - 144 = -1.7 is negative,

SO

v142.3 = 12 - 1.7/24 = 11.,9291L7 .

This time the error in the estimate is 0.0002.

ExamMPLE: PAINTING A CUBE

Suppose we wish to estimate the volume of a paint film 0.012 inches

thick on a metal cube with edges of length 3.456 inches. The cube

has volume V(x) = 23 = (3.456)3. The differential dV = 3z2%dx, the

derivative 3x? = 3X(3.456)% = 35,831808, and the increment dx =

0.024 (the edge measurement changes by twice the film thickness).

We calculate that dV = 0s8599634. In this example it is easy to

check the exact value as (3.456 + 0.024)°% - 3.456% = 0,8L59492. The

error is less than 1%, which is accurate enough for many purposes.

If the film had been an electroplated layer of gold 3 millionths of

an inch thick, dx = 0.000006, we could use our already computed

value V'(3.456) = 35,631808 to calculate dV = 0.,0002150. Again we

check our result: the correct volume of gold is 3.4560063 - 3.4563 =

0,0002150; thus this use of the differential gives excellent accuracy.
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Incidentally, if you calculate the paint thickness the easy

way, you calculate the area of a cube face as x? and count 6 faces,

each having x? times film thickness in added volume (see Figure 4.5).

 

   

s7 This is exactly the method of differentials.
e— — = — !

| L It is in error because it ignores the part
| |

: ! i of the film at the edges and corners that is
' ' .
SY not straight out from any face. It is sur-

rising, isn't it, that there is nearly 1%P g
Figure 4.5 error when this simple method is applied to

the paint film? (In fact, a paint film would not be sharp at the

edges, so the error is not quite that large.)

The differential for f at a may be pictured as approximating

a change Af in the values of f by the corresponding change along

the line tangent to the graph of f at the point a, as in Figure 4.6.

f@) + df|
f(a+dx)4

f(a)   \
R
e
e

—

  
Figure 4.6

COMPOSITES AND INVERSES

If f(x) and g(x) are functions, the composite function or composition

f o g(x) is the function whose values are f o g(x) = f[g(x)]. For

instance, if f(x) = v - 3 and g(x) = 2x + 1, then f o g(x) =

V2¢+1 - 3. The chain rule for differentiating composite functions
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says that <f f(x) and g(x) have derivatives f'(x) and g'(x) then

(feg)'(®) = f'lg®)] X g'(x).

This is easy to visualize (see Figure 4.7) as a stretching or mag-

nification. The combined stretch caused by the composite function

f o g at x is the stretching g'(x) that g effects in going from x

to g(x) multiplied

by the effect

— — f'(g(x)) of f in
going from g(x) to

f[g(x)]. A special

case of this rule

e el is the square root

§"\\ ) function g(x) = vx,

\\\ which composes with

the squaring func-   tion f(x) = x? to

Figure 4.7 give fog(x) = x
when x > 0. Thus

2 =1 = (fog)'(m) = 29(x)g' (x) = 2/&g' (x), giving g'(x) = 1/2/x,
as we proved above by the product rule.

The squaring function and the square-root function are said to

be inverse functions for each other where both are defined on the

non-negative numbers. The chain rule gives us a method of finding

the derivative of a function when we know the derivative of its

inverse function. Thus the nth root function g(x) = 7§'= xl/n is

inverse to the nth power function f(x) = xn, and 1 = ng(x)n—lg'(x) =
n-1
—

nx " g'(x). Hence

/n
is the derivative of Yz= xl



EXERCISES

1. Find the value of the differential dy in each case below:

**

a. f(x) =3, a=23,dc=0.1 d. f(x) = 5x%, a=1%, de = 0.1

*

b. f(x) = Vx/3, a =2, dc=0.2 e. f(x) = x3/2, a=1/3, dec = 0.01

* 2c. flx) =x®-7x, a=1,de=1 f. f(x) =3/Vx, a=2, dc=0.23

2. Argue another derivation for the derivative of f(x) = 1/x by

observing that f is its own inverse function, f[f(x)] = IEE-= x.

Then use its differential to estimate 1/x when x = 1.1, 1.001,

1.00001, 0.9, 0.999, 0.99999. Also use the differential to estimate

1/x if x = 499, 500.01, 500.0001. For each estimate, calculate the

correct value and the error in your estimate.

3. Use the differential of vx to estimate v67.89, V35, v/35.99,

v36.00001, V50, v4899. For each estimate, calculate the correct

value and the error in your estimate.

4. A rocket is fired straight upward so that, until burnout at ¢ =

300 seconds, its height A(Z£) in meters above the earth at ¢ seconds

after launch is given by

h(t) = 0.03t% + 67.89t2 - 1.23t.

The rate of change of position is usually called speed or velocity.

Find the speed of the rocket at time ¢ = 123 seconds after launch

and also the height of the rocket at that time. Now use the differen-

tial to estimate the height at 123.1 seconds, 124 seconds, and 130

seconds. Calculate the correct values for the height at those times

and exhibit them in a table with the error calculated for each esti-

mate. Sketch a graph of A(%).

*5. The speed s(t) of a race car for the first 30 seconds after the

start of the race is given in miles per hour after t seconds by

s(t) = 29.61v%¢- 0.173t. Use a differential to estimate the distance

(not the speed) traveled during the 10th second, the 20th second,
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the 30th second (give your answers in feet; one mile is 5280 feet).

Sketch a graph of s(¢).

 

6. A certain sort of bacteria is known to multiply under lab con-

ditions so that the area of its colony at ¢ days after %nocu%atiog

is given in square centimeters by A(t) =1 + ¢ + %T-+ %T-+ %T'+ éfin

Sketch a graph of the growth during the first week after an inocula-

tion of one cm? with a population density of 10,000 individuals per

cm?. Use differentials to approximate the number of individuals born

during the first hour of the fifth day, during the first minute of

the fifth day, during the first hour of the seventh day, and during

the first minute of the seventh day (remember to convert all time

intervals to decimal days). Calculate the exact population growth

during the first hour and the first minute of the seventh day and

compute the error in these two approximations by diffefential. (It

speeds computations to notice that after cglculating gTy for example,

you only need to multiply by é—to obtain-gr.)

*7. Graph on the same sheet of paper the functions z%, x3 + 1, (x+1)3,

xz® + x. Show graphically how to find, for each of these functions,

the value of the inverse function for the argument x = 4. Estimate

these values of inverse functions from your graph to 2 decimal places.

Now formulate a method to calculate the value of each of these inverse

functions at 4 and do so on your machine. Is there a conceptual dif-

ference in the four methods? A practical difference?
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8. A farmer paces off one edge

of a square field to measure it K;frm1=:mu

roughly. If he measures 116 dx
 

yards and believes he is accu-

rate within 2%, what size error

is possible in his calculation

of the area of the field (use a    
differential)? What percent

) ) Figure 4.8
error is that in the area? g

*9, A tuna can is to be made of steel .007 inches thick. It is to

be 3 inches in diameter and 3 inches high.

Calculate the number of cubic centimeters (cc)

— of steel that will be required (1 in = 2.54 cm).

 
 

——————

S S?E:D (Ignore the rims of the can.) Do this by use

Micken A of a differential; then calculate the weight

LIGHT T of steel required if that metal has a specific  

gravity of 7.78 (that is, the steel weighs

7.78 g per cc). Finally, find the weight of the steel in ounces

(1 oz = 264349523 g).

10. Let f(x) = x* + 3 and g(x) = vx - 1/x; calculate the difference

quotients of f(x)g(x) at & = 2 for increments of x of 0.1, 0.01,

0.001, 0.0001, ..., to find their 1limit, which is the derivative

(fg)'(2). Then evaluate f(2)g'(2) + f'(2)g(2) as a check.

11. Follow the instructions of Exercise 10 to evaluate the limit of

the difference quotients of the quotient function i-(x).

12. The concept of the derivative as a rate of change is used in

business economics under the names marginal

cost and marginal profit. As an example,

suppose a small distilling unit in an oil

refinery has fuel costs associated with its

operation as follows: $20 to start it up

plus $0.0027 per gallon distilled. Also,

experience has shown that labor costs to run

 
x gallons through the still are roughly
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Yx/10 dollars. The raw material to make one gallon of thinner costs

$0.13. Thus the overall cost in dollars of filling an order for x

gallons of paint thinner are

C(x) = 20 + 0.1327x + Vx/10.

An order for 20,000 gallons would cost $2688.14. The added cost

of producing one more gallon of thinner at the same time is the

marginal cost per gallon for 20,000 gallon orders. This is

C'(20,000) = 0.1327 + 1/20/20000 = O.1342811.

Use a differential to estimate the added cost of adding 125 gallons

to a still run of 20,000 gallons. Then compute the added cost as

C(20125) - C(20000) and compare the two figures. What error arose

from the use of the marginal cost in a differential to estimate the

added cost?

Next, estimate the added cost of distilling an added 125 gallons

with a 1100 gallon order and compare your estimate with the computed

cost as before.

13. A certain drug is found to raise human body temperature accord-

ing to the formula T(D) = 1.81 D? - D3/3. Here D is the dosage in

grams in the range 0 < D < 3.5, and T(D) is the Fahrenheit change in

body temperature due to that dosage (when there is no trace of the

drug in the body to begin).

Find the dosage at which the body has maximal sensitivity to

this drug. That is, find the dosage at which the greatest change

in temperature results from a small change, say 10 mg, in the dose.

PROBLEMS

. lim dy - Ay _ _ .
Pl. Give a proof that A0 = 0, where Ay = f(x+dx) - f(x) is

the real increment in values of a function f and dy is the differen-

tial estimate of that increment, for a change dx in the argument.

This theorem says that, in the limit as dx -+ 0, the error in the esti-

mate dy of Ay goes to 0 faster than dx does. Illustrate your theorem
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for the function f(x) = x% + 2x + 3 at the point 4 by calculating the

values of £Z’Zi—-:—éfi-at successively smaller values 0.1, 0.01, 0.001,
dx

0.0001, ..., for dx.

. . . . . 22
*P2, What is the error in taking the ancient approximation T = 7—-?

Now suppose you calculate 73 using this approximation: wuse differen-

tials to estimate the error caused by use of %z-for m. Then do a

similar job on the function w3 - 3w%. To how many decimal places

must T be known to compute T3 - 312 accurately to the fifth decimal

place (let this mean an error < 10_5/2 = 5X10-%)? To how many

decimal places must m be known to computein accurately to the fifth

place?

*P3. A ball is thrown upward at 37.68 ft/sec from a 42.1 ft rooftop

so that its height in feet above ground level after ¢ seconds is

h(t) = 42.1 + 37.68t - 16t2.

Find the time ¢ when the ball reaches its maximal height (that's

when it stops for an instant, so its speed is 0). What is that

height? When does the ball arrive back at roof height, and how fast

is it going then? How far does it fall in the 0.1 second after it

passes roof height? When does it reach the ground? How fast is it

going then? How high was it 0.1 second earlier? Illustrate all this

by a sketched graph.

P4. Sketch a graph of the function f(x) = vx+l - 1 for positive

arguments x. Imagine now that a line from the point (0, 1.27) on the

y-axis just touches the graph of f at a single point. Find that

point.

*P5. The second derivative f'"(a) of a function f at a point a is the

derivative at a of the derivative function f' of f. It is defined

by a limit

M) = ;::g il (a+h)h' f'(a)
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The numbers f'(a+h) and f'(a) are defined as limits, too:

 £ (a+h) = i—lrr(l)l f(a"'h"'k)k' f(a+h)

f'(a) = }{i’g M)_](___flg_)_

Since both # ~ 0 and k¥ - 0 in these limits, we may attempt to calcu-

late f'"(a) by setting 4 = k to get

friay = Lim flar2) - 2:2(a+h) + f(a)
 

2 + 2x - 3 for which we knowTest this recipe on the function f(x) = x

f"(a) = 2, regardless of the value of a. Try values of a =0, 1, 7,

and let % successively take on values 10'i.

Next, attempt to compute the second derivative of the function

flx) = 67.89% (see Problem P5, Ch. 3) at a = 0 by means of the double

limit above (use » = 1/2, 1/4, 1/8, ...).

P6. The Leaf of Descartes is the set of points (x,y) in the plane

for which 2% + y® - 3axy = 0, where a is a scaling parameter, which

we shall take to be a = 1.

Suppose we wish to understand this

curve at a point corresponding to, say,

x = 3/4. We substitute 3/4 for x in the

equation of the curve and solve the result-

ing cubic equation for y using algorithms
 

from Chapter 2. It is clear from the

graph that there will be three solutions

¥y1(3/4), y2(3/4), and y3(3/4) to this

cubic equation. Let us choose the middle 
 

one yz2, 0 <y, < 3/4. The problem we now

set is to find the slope of the tangentFigure 4.9
line to the graph at this point

[3/4, y2(3/4)].
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Find this slope by calculating the values of the function y: (x)

at other points near to [3/4, y2(3/4)] on the graph, points

[3/4+h, y2(3/4+h)] for values of h = 1073, 107, 10", Then compute

the difference quotients. Can you think of another method of finding

this slope?

*P7. Problem P5 in Chapter 3 asked for an evaluation of the 1imit

lim 67.89% - 1
x>0 X

which we now know to be the derivative at O.of the function 67.89%.

A hint suggested that X be taken to be 1/2$, and convergence was

obtained only in the first 2 or 3 digits. With our new geometric

picture of derivatives we can suppose that the chord from (-x,67.89_x)

to (x, 67.89x) would have slope more nearly equal to the tangent at

67.89° than either of the shorter chords from the center. Make a

table to evaluate this limit by evaluating

lim 67.89% - 67.89°%
=0 2%

Did you get greater accuracy? Make a sketch to display this tech-

nique. Give an arithmetic agrument that the two limits are equal.

P8. Newton's method for finding a zero of f(x) uses the differential

approximation df at f(xi) to find Loiq

the slope of the tangent line y = (x—xi)f'(xi) + f(xi), which is an

approximation to the graph of f at (xi)pri). The tangent line inter-

sects the x-axis when x = X, - f(xi)/f'Cxi); we take this value of

the derivative f'(xi) is

x as the next estimate L1 for the zero of f. A starting guess x,

must always be made.

Discuss this new method for finding zeros in case the function

f(x) = 22 - a for some positive number a. Be sure to compare it to

the techniques of Chapter 1. Next, use Newton's method to solve the
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3equation x° - 3x - 1 = 0, which we

examined in Chapter 2. Make a table of

your results corresponding to Table 2.1 £z,

and another like Table 2.3 (find only 2z,

and z3). Is this method better in the

sense that it requires fewer iterations? Ry

Does it require fewer arithmetic opera-
 

tions, so that it is a faster technique |

 

for you on your machine?  
Figure 4,10

Over what interval of starting values x, would Newton's method

converge to 2;? Try starting with xo very near one end of this

interval; discuss the speed of convergence in this case.

P9. Describe at least one plausible situation in a field of your

own current interest where differentials and the notion of derivative

may be applied to get a useful numerical solution. Read about such

real-life situations by surveying a current issue of an appropriate

journal in your field. (See the Bibliography for some suggested

journal titles.)

Answers to Starred Exercises and Problems

Exercises la. 0Ol

1b. 0O.0235702

lc. -5

1d. 0O.0312500

5. 135 ft during 10th second

189 ft during 20th second

230 ft during 30th second

7. The value at x = 4 for the inverse of

x® is 14SB7401L, of z3+1 is 14442245,

of (x+1)° is Ds5874011, and of z3+x is

1.3787967.

9. 1.34 oz
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Problems P2.

P3.

P5.

P7.

6-place accuracy for m assures 5-place

accuracy for w3 - 3m2.

3-place accuracy for m assures 5-place

accuracy foridm

maximal height is %#(1.1775) = b2.2841 ft

17790585

4:21,78687 = 1In 67.89
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MAXIMA, MINIMA, AND THE MEAN VALUE THEOREM

INTRODUCTION

Many everyday problems in the biological, social, and physical

sciences require that we find the exact situation in which some quan-

tity is maximal or minimal. For instance, a stamping machine should

make coins rapidly; but when it runs too fast, the rate at which

inspectors reject faulty stampings increases and profits are dimin-

ished. Thus there is an optimal operating speed at which profit is

maximal.

Another example is a chemical reaction, which proceeds ever

more rapidly as temperature is raised, saving on equipment time and

labor. However, unwanted by-products may increase with higher tempera-

tures, and this may downgrade the value of the product. Again, there

will be an optimal temperature for most efficient operation.

We now study some simple Examples in which the calculus can

show us where the maximal and minimal values lie. We shall also

examine the use of the Mean Value Theorem to find maximal and minimal

limits on the amount of change in the values of a function. Many
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Exercises demonstrate applications of these ideas. The first Problem

is another application but a more difficult one. Another Problem

discusses the limitations of the use of differentials. Also, the

convergence of iterative functions in algorithmic methods is estab-

lished by means of the Mean Value Theorem in a Problem.

ExampLe: A MinIMAL FENCE
Suppose a rancher wants to fence off a small rectangular field of,

say, 2% acres along the inside of a long fence that already exists.

Two and a half acres is 2.5X5280%/640 = 108,900 square feet, or

12,100 square yards. The rancher's first thought is to use three

equal sides of fencing, each of V12,100 = 110 yd length, making a

square fenced region (Figure 5.1).

This seems to him better than to fence

off a long narrow rectangle in either of

the two possible extreme ways illustrated

in Figure 5.2, since it will clearly require

less new fencing to make the new area square.

True enough, but is the square the best he

 

can do? To determine this, let x stand for

Figure 5.1 the length of the side of the rectangle that

touches the existing fence, so that the total length of fencing the

rancher will require is

flz) = 2z + 12100

X,

Obviously the values of f become

<

g™
 yards.

enormous as x - 0 or as x itself

gets enormous (x must be a posi-

tive number).

 

Thus there is some minimal

value f(xo) where the amount of Figure 5.2

fencing required is least (see Figure 5.3). This value x, of the

argument gives the correct configuration of the rectangle. But how

are we to find xy? Well, it is clear from the graph of this function

that the slope of the tangent line at f(x) is negative if x < xo and

is positive if x > x,. If we solve the equation f'(x) = 2 - 12100/x2 =

0 or
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222 - 12100 = 0

22 - 6050 = 0

x? = 6050

x = v6050 = 774781745,

we see that only at x, = 77.79 or about 77 yd 28 in is the tangent

line horizontal (for positive x). This value of x, is then the

 

f(xo)
  

Figure 5.3

unique length for the side touching the existing fence to minimize

the total length f(xy) = 31112698 yd, about 311 yd 5 in. This is,

of course, a considerable improvement on the 330 yd requirement for

the square region; the rancher can save 6% of his fencing cost this

way.

The THEOREM goes as follows: <f f is a continuous function on

a closed interval [a,b], then f actually attains a maximum value at

some point X, in this interval (xo, may not be unique). This point

Xo may be one of the endpoints, a or b, or it may be a point where

f s not differentiable; otherwise, f'(xy) = 0. The same holds for

minimum values of f: there always is at least one point x; such

that f(ax;) is minimal on [a,b] and

(i) x; is an end point of the interval, or

(ii) f is not differentiable at x;, or

(ii1) f'(z,) = 0.

Hence, to find all the points where f is maximal or minimal, consider

these three classes of points. Of course, f does not necessarily

take on extreme values at all of these points; you must evaluate the
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function at all the points of

these three classes to find its

extremes. Figure 5.4 depicts

points of each type.

 

Figure 6.4

THE MeaN VALUE THEOREM

In Chapter 4 we saw that the use of differentials in the estimation

of errors offers a method for simple yet surprisingly accurate ap-

proximations of the changes in values of a function that correspond

to small errors in its argument. There are occasions, though, where

this method is not satisfactory. For example, we may be unwilling

to accept the approximation by a differential because we are unsure

it is, in the particular case at hand, very accurate at all. Or we

may be more interested in knowing with certainty an upper bound, some

maximal size limit on the error.

In these cases, a related method works. The MEAN VALUE THEOREM

asserts that 7f a function f is differentiable at each point of a

closed interval [a,b], then there is some point c, a < ¢ < b, with

f(b) - f(a)

b - a

where the slope of the tangent line to the graph of f is equal to the

= f'(c). That is, there is a point ¢ inside the interval

slope of the chord of the graph over the whole interval (see Figure

5.5).

 

Figure 5.5

ExampLE: CAR SPEED

A physical example will illustrate this. If f(x) is the distance

traveled by time x, then the difference quotient is the average speed
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from time a to time b and f'(c) is the instantaneous speed. The

theorem then asserts that if during a race a Lotus car averaged 243

kilometers per hour, then at some moment of the race the Lotus was

traveling at exactly 243 kilometers per hour - not very surprising,

is it?

If we rewrite the conclusion of the Mean Value Theorem (the MVT)

f®) - fl@ = (b-a)f'(e),

it says that the exact change in value of f is given by the value of

the differential at some point ¢ between a and b. In our use of dif-

ferentials we merely used the differential at one of the endpoints,

a or b, to approximate this change in functional values. In a sense,

the MVT is little help, since it does not tell us how to find ec.

ExaMPLE: PAINTING A CUBE

Let us reexamine our Example of Chapter 4. There we wished to know

the volume of a paint film 0.012 inches thick on a metal cube with

edges of length 3.456 inches. The function we work with is V(x) = x3,

the volume of a cube of edge length x. The volume of the paint film

is (3.456+0.024)3 - 3.456%; the MVT says this difference in values

of V is 0.024V'(c) for some ¢ with 3.456 < ¢ < 3.456 + 0.024 and

V'(e) = 3¢%. Hence we may take the minimum V' (3.456) = 35,831808 and

the maximum V'(3.456+0.024) = Jk+3312 of V' on this interval to see

that 35.831808 < V'(e) £ Jbe33LZ. Hence 0,8599634 < 0.024V'(e) <

0,8719488 cubic inches, and we now have more than an estimate for the

volume of paint film: we have an interval of values within which the

correct answer must lie. We now not only have the estimate, but also

we know how close it is. (The correct answer is O«8E59492.)

EXERCISES

1. Find the maximum and minimum values for each function:

"a. x® - 5z on [-2,2] "c. 2% + 322 - 6z - 7 on [-2,1]

"b. 2% + % + 1 on [-2,1] "d. z% - 1222 + 42z on [1,6]

2. Consider a maximal problem associated with the rancher's fence.
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Let the rancher have exactly 311l.1298 yards of fencing (left over,

perhaps, from another project) with which he wishes to enclose the

largest possible rectangular region, using the long existing fence

as one edge. If x represents the length of each of the two edges

that touch the existing fence, what is the area A(x) of the rectangle

as a function of x? Clearly we must have 0 <z < J11.12698/2. What

is the value of A(x) at the extreme possible values of x (endpoints)?

Is A(x) differentiable everywhere? For which x does A(x) take on

extreme values? Which of these values are maxima?

Compare your results with the conclusions of our example and

discuss the similarities.

*3, Suppose a fisherman is in a boat 320 meters out from the river's

edge, and his house is 1100 meters down the river from the closest

point on the shore to the boat. If he observes that his house is

afire and wishes to get home as fast as he can, what path should he

follow? Assume that he can row his boat at a rate of 1.1 meters per

Figure 5.6

 

second and run along the river bank at 5.3 meters per second. We

have sketched the situation depicting his landfall x meters down the

river toward his house. Find the distances r and w as functions of

x; then express the time taken for each leg of his trip and then

total trip time T(x). Now find the minimal value of total time by
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considering all the possible values of x for which your function T

might have extreme values.

*4, A cylindrical catfood can is to be designed to use the minimal

amount of sheet metal for its volume, which is to be 300 cc. Express

the top and bottom areas as a function of the radius of the cylinder,

then express the height also as a

° function of the radius, remember-

'17 ing that the volume is fixed. Now

find the area A(r) as a function

—l of the radius »r and minimize.

What is the appropriate radius and

the minimal area?

Figure 5.7

5. Suppose you wish to make a 300 cc cyclindrical metal open-top cup

of minimal area (see Exercise 4). What shape should it be?

*6. Suppose, in Exercise 4, the catfood can is to be of maximal

volume for a fixed area of 248.08207 cm?. Find the appropriate

radius for maximal volume, and calculate that volume.

7. Find the area of the largest rectangle that can be inscribed in

the ellipse xz? + 2y2 = 3. (You may assume that the sides of the

rectangle are parallel to the coordinate axes.)

*8, Calculate by means of the MVT the maximal error in f(x) =

2% - 9x - 2 if we use 22/7 to calculate f(m). That is, find the

maximal value of f' on the interval [m,22/7] and use this with the

MVT to calculate an upper bound for f(22/7) - f(m). Then express

this error as a percentage of f(m). Next, calculate the precise

error; again report this error as a number and also as a percentage

of the correct value f(m). What is the error and percent error in

the approximation 22/7 for m? (Compare Problem 2, Ch. 4.)

9. Use the MVT to calculate upper and lower limits on the volume of

metal required to make a cylindrical can of radius 2.87 inches and

height 6.53 inches if the sheet metal used is 0.00814 inches thick.
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PROBLEMS

*P1. Find the point on the parabola y = x? that is nearest to the

point (3,2).

  
Figure 5.8

P2. Use the MVT to give upper and lower bounds on an error in the

calculated volume of a cube of metal that is due to an erroneous

 

recording of the measurement of

  an edge as 2.3 cm when the correct
 

 
measurement is 2.0 cm. Also give

 

the error in the calculated volume

 

of the cube predicted by use of

differentials for an error of 0.3

in a measurement of 2.0. What is 
the real error? Discuss the fail-   — ure of the differential to predict  the error even approximately in

 

=  
Figure 6.9 this case.

P3. Let an algorithm be given by T1

¢(y) = y. Define the nth error €, for the successive approximations

X9, X1, ... Xn, ... for y to be €, =Y -, Suppose a < y < b and

that M < 1 is a bound for |¢'(x)| on [a,b], so that for every x be-

tween a and b we have 1 > M > |¢'(x)|. Use the MVT to show that En =

Men—l
tions x4y, £, ... does indeed converge to y.

= ¢(xn), and assume that

and then from that fact prove that the sequence of approxima-
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Answers to Starred Exercises and Problems

Exercises la. *4,30331448

1b. #3

lc. -8.0901699 and 2.0901699

1d. 31 and 45.L5L854

3. x=6E7%88m

4. r = 36276317 cm

6. r = 36276317 cm

8. The error for f(x) is no greater than

0.0260898 or 3.6%.

Problems Pl. x = 1.5674684
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TRIGONOMETRIC FUNCTIONS

INTRODUCTION

More than 4000 years ago the Egyptians used ropes knotted in lengths

with the ratios 3 to 4 to 5 to form the sides of a triangle in order

to determine a right angle. Buildings, and probably the pyramids,

were thus erected with the use of elementary, practical trigonometry.

Carpenters use this same trick today.

By the time of Christ, the uses of trig had expanded from build-

ing and surveying to astronomy. Hipparchus of Rhodes made up trig

tables then and did spherical trigonometry. Today tide tables, moon

shots, and television sets depend on our knowledge of trig.

In this chapter we will review angles and the definitions of

the trig functions, together with their uses in similar triangles.

We will also determine and study the derivatives of the trig functions.

These derivatives are next applied via the chain rule to establish

the derivatives of the inverse trig functions. Examples and Exercises

numerically evaluate these derivatives at particular values of their

arguments. There are also iterative root-finding algorithms involving
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trig functions. These allow us to see the limit processes in opera-

tion with these functions, which are indeed our old friends among

transcendental functions.

We will explore these topics further in the Problems, as well as

spherical trig, continued fractions, and some modifications of dif-

ference quotients that offer numerical advantages on our calculators.

ANGLES

An angle is a geometric sort of thing, but the measure of an angle

is a number. If X stands for the geometric angleQ) P 0 @ in

Figure 6.1, then the measure x

of X expresses the ratio that i

X bears to a whole circle, the )

proportion that the slice © P 0 @ 4

is of a whole pie. If the 0 . T

measure of the whole circle is Figure 6.1

taken to be 360, then a third of a circle, for instance, has measure

120 and a quarter circle or right angle has measure 90. This method

of measuring angles is called degree measure.

A protractor can be used to measure angles. A half disc of

metal has its circular edge divided into 180 equal pieces so each

piece is 1/360 of the circumference of the whole circle (see Figure

6.2). This is compared to an angle g P 0 ¢, and the degree measure

=)

150

170 0 101 »
— r —

Figure 6.2

is read off. If the protractor's radius OP is used as a unit of

measurement of length (so r = 1), then the length of the semicircular

arc is m units, and each division on it has length w/180 = O.0174533.

Another scale for measuring angles is given when the arc of the

protractor is marked off directly in lengths, using the units

for measurement of length in which » = 1. An angle is then
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measured in the same way as before by the protractor (see Figure 6.3).

The resulting number is called the radian measure of the angle. The

angle whose radian measure is 1 has degree measure 180/m = 57.295780.

This fact is often expressed by saying ''one radian equals 57.295780

degrees.'" We shall use only

radian measure in this book

unless we specify otherwise in

a particular case. p

Figure 6.3

TR1G FUNCTIONS

The trigonometric functions are functions of numbers, and they have

numbers as values. Their definitions, though, are geometric in flavor.

The number sin x is defined as the length QR of the segment of @R on a

protractor whose radius is 1, if the arc from P to @ is of length x,

PQ = z (see Figure 6.4). This

sf last statement, §§ = a2, is the

£ same as the requirement that

k——l———*kwosrdR : <IP 0 @ have radian measure x.

) The cosine function is defined

Figure 6.4 by setting cos x = OR, the

length of the segment OR . The other trig functions are then defined

algebraically from the sin and cos functions:

If the protractor had

been made to be a complete

disc, instead of just half

of one, then sin x could

be defined for any number

 

x between 0 and 27 by

going counterclockwise Figure 6.5

around the
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protractor from P a distance x to locate § (see Figure 6.5). The num-

ber sin x is still the distance @R, but it is to have a negative

signature+ whenever ¢ lies below R instead of above (that is, whenever

mT<x < 2m). Similarly, cos x is to be the distance OR, but it is to

have a negative signature whenever R is to the left of 0 (that is,

whenever m/2 < x < 3m/2). Pythagoras' Theorem says that (0Q)2 =

(OR)? + (RQ)?. Since 09 = 1 on our protractor, this yields

sin? x + cos? x = 1.

TRIANGLES

Two triangles are similar if they have all their angles the same; the

fundamental rule about similar triangles is a/d = b/e = e/f, where
A

 

f e

/Y /)
a d

B a c

Figure 6.6 Figure 6.7

each of these letters from Figure 6.6 stands for the length of the

side it is near. This is used as follows: suppose the (radian) meas-

ure of the angle at B in Figure 6.7 is x, and we let the angle at C

be a right angle. The angle at A must then have (radian) measure

m/2 - x. Therefore the triangle in Figure 6.7 is similar to the tri-

angle in Figure 6.4, which has its hypotenuse of length 1. It follows

that the sides of ABC are related by b/e = sin x, a/c = cos x and

b/a = tan x. If Figure 6.7 represented a tree, for example, then a

could be measured and b calculated as b = a tan x.

T . .. . .
The signature of a number is its sign, plus or minus. We use

"signature'" here since ''sign'" sounds like "'sin."
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Figure 6.8

In Figure 6.8 the height of the tree is L9,902259 = 67.89 tan (0.8)

meters.

ExaMPLE: THE DERIVATIVE FOR sin x

The derivative of the function sin x at x = 0 is

lim sin & - sin 0 _ 1lim sin x
x>0 x x>0 x

It is intuitively clear from the definition (see Figure 6.4) that this

limit is 1. That is, in the limit, as @ gets close to P, the length

of the arc x and the length of the perpendicular @R become equal.

This is readily verified on a machine that computes the sin function.

 

 

We list the results in Table 6.1 (remember sin (-x) = -sin g, so

sin(-x) _ sin x
- x

TABLE 6.1

sin g

x sin g X

Os1 0.0998334 0.9983342

O0.01 0.,0099998 0,9999433

0.00L

0.0001 0. 000L 1,

The derivative of the function sin gz is

sin £ = coSs x.
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This may be easily shown by direct evaluation of the limit, using trig

identities and the limit that is calculated above. We content our-

selves with a direct calculation of the derivative of sin & at & =

0.2345 radians; this means we must evaluate the limit of the differ-

ence quotient

 

1lim sin (A + 0.2345) - sin (0.2345)
0 h

The results appear in Table 6.2.

 

TABLE 6.2

h Difference Quotient

O 0.9594022

0.01 0,9714526

0. 001

0.0001

0.00001 0.9725

0. 000001 O0.972

-0.,000L 0.97265

-0.001

The correct result is cos (0.2345) = 0,9726306, which we have to 4

decimal places for # = -10-*. The anomalous result for % = 10° is

due to digits that our machine dropped in calculation, so this method

will not yield more than 4-place accuracy on a 10-digit machine. On

an 8-digit machine there is 3 place accuracy for % = 10—3. See Exer-

cise 12 and Problem 6 for better numerical methods.

DERIVATIVES FOR TRIG FuNcTIONS

The derivative of the function cos & is
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d
T cos £ = -sin x.

We relegate to the Exercises the calculation of this derivative at

certain points. The other trig functions are algebraically defined

from the functions sin « and cos x. Hence their derivatives may be

taken by means of rules for differentiation:

d
7 tan x = sec?zx,

d
Jx cot x = -CSCZ.'XI,

d _T sec & = sec x tan x,

é— CSC & = -CcSCc x cot x
dx ’

EXAMPLE: f(x) = x sinz - 1

Consider the function f(x) = x sin & - 1. Since sin (-x) = -sin x,

f(-x) = f(x). Also we know that f(0) = f(m) = -1, and sin (m/2) =1

so f(m/2) = mw/2 - 1 > 0. Thus there is a zero of f between 0 and /2

and another zero between m/2 and m (see Fig. 6.9). We solve for a

zero by observing

/4;2

N

 

Figure 6.9

f(x) = x singx -1 =0

i —X sin x

1/sin zx.8 I
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Thus we try the algorithm Trp = 1/sin L starting with x, = 1.

Since this process converges slowly, we dispense with our usual table

of functional values. Instead we rapidly and repeatedly compute from

x. to sinx. tox. = 1/sin x.: our limit is x,9 = 141141571, and
7 7 1+1 7

f(x29) = -0.,0000001.

INVERSE TR1G FUNCTIONS

The function arcesin x is an inverse function for the sin x function.

That is, for each number x between -1 and 1, the number y = arcsin x

is a solution y of the problem sin y = x. There are, of course, many

other solutions, but the custom is to choose

y between -m/2 and m/2 (see Figure 6.10).

The other values of y may be found from the

identities sin (-y) = -sin y, sin (my) =

-sin y, and of course sin (2m+y) = sin y.

 

For instance, sin (m-y) = sin y. Hence the

Figure 6.10 function f(x) = m - arcsin x is a different

function than arcsin x, but it is another

inverse function for sin x, so sin (arcsin z) = x and also

sin [f(x)] = «.

The values for the function arctan x are again usually taken to

be in [-m/2, m/2], whereas the function arccos & usually has range

[0,7]. Other values for these inverse functions can be understood

by inspection of the graphs of tan y and cos y, respectively, or by

use of the identities cos (m+y) = -cos y, cos (-y) = cos y, and

tan (m+y) = tan y, tan (-y) = -tan y.

The derivatives of the inverse trig functions are easily taken

by the chain rule. As an example, sin (arcsin x) = x so

gL—sin (arcsin ) = 1 = cos (arcsin gx) gL—arcsin x.
dux dex

But

 

cos (arcsin x) = Vé-sinz(arcsin x) = /{-xz;

this means
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d .
=— arcsin x =
dx

 

 

 

l1-x

The other derivatives are:

%E arccos x = -1

1-22

d 1
I arctan x =

1+x2

d_arccot x = -1
dx 1+x2

d 1

= arcsec x = [777

£Z——-arccsc x = -l
dzx 2xvx -1

EXAMPLE: f(x) = 2 arcsin x-3x

Suppose we wish to find a minimal value for f(x) = 2 arcsin x-3x.

This function is zero at & = 0, and f(1) m - 3 is positive. The
1

derivative f'(x) = 2(1-z2) 2-3 and f'(0)

x = 0. Hence f has a minimal value between 0 and 1. To find that

-1, so f is decreasing at

minimum, set f'(x) equal to 0 and solve:

N ~ —
I 8
N
—

|

|=3

1-z% = 4/9

x% = 5/9

x = /5/9 = 0.7453560.

The minimal value for the function at this point is f£(/5/9) =
-0+553930k. For fun you may wish to find the zero of f that is near
x = 1.
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EXERCISES

1. Consider the right triangle with sides of length 3, 4, and 5, ana

let a denote its smallest angle, which is opposite the smallest side,

so a = 0s643501L. For each trig function indicated below, first give

its value at a. Next, estimate the value of the derivative of the

given function at o by computing its difference quotient at » = 10°.

Finally, compare your estimated value for the derivative at o with

the correct 7-place value that you calculate for the theoretical

derivative function by inspection of the triangle.

*a, sin *c. tan *e, secC

b. cos d. cot f. csc

2. Evaluate the derivative of cos x at 0: find ;ig Sgé%fil:l by

making a table of values at # = *0.1, *0.01,

3. FEvaluate the derivative of cos x at 0.54321. Make a table of

values of the difference quotient

 

cos (h + 0.54321) - cos (0.54321)
h

at h» = *0.1, *0.01, ... . Discuss the numerical problem of the con-

vergence to -sin(0.54321) = -0.516886E.

4. Show that if the sin function were defined just as in Figure 6.4

except that its argument is agreed to be the degree measure of the

angle, instead of radian measure, then 213 §3%—E-= T%B-. Do this

first by direct evaluation of the limit, making a table of values of
sin A

h
as it should be.

 for diminishing values of A. Then give a proof that this is

lim sin 3h
h>0 sin 2h °

proof that your limit is as it should be.

*5. Make a table of values to evaluate Then give a

*6. Find the zero of f(x) = x sin x - 1 between m/2 and m. First,
. _ 1 . . .

test the algorithm o1 = EIHTE; , trying various values like 2.5,

2.6, 2.7, 2.8, 2.9, 3.0 for xy, to see that it will not converge to

this zero. Then try its inverse algorithm Tepq = arcsin (l/xi); this
1

gives absurd values. Now draw a graph of the arcsin function and
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notice that the value we seek is not the one in [—W/Z, fl/2]

but rather the angle in [W/Z, 3fl/2]. Hence your algorithm should

be g =T - arcsin l/xi, starting with x¢y = m/2. Make a table of

your results and check your answer.

7. Draw a graph of the function f(x) = x sin & - 1 from our example,

using the zero you have computed in Exercise 6 and the results of

our Example. Evaluate the function from 0 to m in increments of 0.2

and label the x- and y-intercepts. In order to clarify the theory,

lightly sketch in (perhaps in colors) the graphs of g(x) = sinx - 1

and A(x) = x - 1, as well as the line y = -1. Can you figure out

the shape of f(x) from the other graphs?

*8. The law of cosines says that for any triangle with sides of

lengths a, b, and ¢, and C the (measure of the) angle opposite side

Cs

e? =a%2 + b%2 - 2 ab cos C .

123.45, and C = 1.234, find e. Next,

follow the diagram to

Given that a = 67.89, b
A

compute & = b sin C and

sin B = x/¢, so B =

. b sin C
arcsin ——— ; then

 

 

A=m-B-C. (The

Figure 6.11 law of sines says

a - b _ e )

sin 4 sin B sin C °
 

Now use a differential to estimate how much error would result

in ¢ if the measurement of C had been off by 0.001.

*9. If all three sides of a triangle have known lengths, (the measure

of) one angle may be computed from the law of cosines:

a? + b2 - e?
C = arccos > b
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The other angles may then be found by use of the law of sines (Exer-

cise 8). Do this for side lengths 1.23, 2.34, 3.45. Next, use a

differential to estimate the error in B caused by an error of 0.0009

in transcribing C.

*10. An airplane is flying parallel to the coastline, 47.6 miles

offshore and 521 miles per hour. There is an airport on shore at a

bearing of B = 34°56'. How rapidly, in degrees per minute, 1is the

bearing B changing? (Hints: B must be converted to radian measure

 
 

“‘1;‘%*%5?
B\~

7

7
7

7 - 1_ 47.6 mi

I
s

s
s

s

.7 shoreline

%irport

Figure 6.12

before differentiation, as in Exercise 4. Then B and x are functions

of time ¢, and %%-= -521 mph.)

*11. Sketch a graph of the function f(x) = cos x - 3x: calculate and

indicate on the graph the maximal and minimal values of f as well as

its zero(s) on the interval [0,1].

12. Show that f'(x) = lim flfi%l:ilfil.= 1in‘133251132£Q= Therefore
h~0

the limit as A>0 of the average %[%(x+2)—f(x) + f(x)if(x'hl.]=

fx+h) -f(x-h)
2h

calculation of the derivative of sin x at x = 0.2345, which is given

must also be f'(x) (can you say why?). Repeat the

in Table 6.2, but this time use the estimate 51n(x+h%251n(x-h) instead 

sin(x+h)-sin(x)
of the difference quotient Notice the greater ac-

curacy. Sketch a graph that shows this new quotient as the slope of

an appropriate chord of the graph of sin x. On the same graph sketch

the chords corresponding to increments of % and -% in the difference
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quotient. Do you see why the averaged quotient described above gives

a better approximation for a given value of %~ than the difference

quotient?

13. Many models for the study of population growth are formulated

in terms of ordinary differential equations. In particular, the

removal of members from a population at a constant rate can be

modeled by such an equation containing the harvest rate as a para-

meter. Brauer and Sanchez (Theoretical Population Biology, in press)

have solved a modification of the "logistic"

equation of Lotka. Their study shows that

for harvest rates E greater than a critical

rate Ec, populations tend to zero in finite

time. The extinction time 7 in years for

a population is shown to be

 

2T = 4(4aE->\2)_1 arctan [K(4aE-A2)_%]

Here the equilibrium population in the unharvested case is A/a, and

the critical rate of harvesting is Ec = A%/4a.

Observations suggest that with no harvesting the equilibrium

population for sandhill cranes (grus canadensis) is about 194,600

and that the critical harvest is Ec = 4,800. Calculate the extinc-

tion times T for harvest rates E of 6000 and 12,770 per year.

Next, use a differential to estimate the change in extinction

times due to an additional harvesting of 100, 200, 500, or 1000 more

than 12,770 per year.

14. A distributor observes that his refrigerator sales rate cycles

during the year to grow according to the formula

T, . ilS(t) = 1.012 (Sln[-l—z (t + 1.7)]+6.2)

Here ¢ is measured in months and S(¢) is sales in hundreds of units

per month. Use a differential to estimate total sales during the

first week of July. (Be sure you use the derivative of the ap-

propriate function. Consider the week to be 7/31 of the month.)
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PROBLEMS

*P]1. Find the maximum of f(x) =  sin & - 1 on the interval [0,T].

Do this by setting the derivative f'(x) = 0 and solving iteratively.

This is difficult; the algorithm T,
1

so one must use the inverse algorithm T,

= -tan ) does not converge,

1= arctan (—xi). To have

this succeed, you will need to sketch a graph of the algorithm and

observe that the usual value of the arctan function is not the correct

one. Add your results to the graph made in Exercise 7.

2
P2. Graph the function f(x) = x“ - sin a2 on the interval [0,1].

Display the maxima, the minima, and the zeros that you calculate for

f.

*P3. A spherical triangle on the earth's surface is given by its

three vertices: the sides are measured by the angles they subtend

at the center of the earth, and the angles at the vertices are

measured between appropriate planes. The triangle itself may be

thought of as the three arcs of great circles connecting the vertices.

The surface distance from B to C along such an arc is 60 nautical

A
Figure 6.13

miles for each degree of the angle a. The law of cosines has two

forms here:

cos a cos b cos ¢ + sin b sin ¢ cos 4,

cos 4 - cos B cos C + sin B sin C cos a,

and the law of sines becomes:

sin g _ sin b _ sin ¢
sin 4  sin B ~ sin C °



Suppose two airplanes start at right angles to each other and fly

until one has gone 300 nautical miles, the other 400. If the earth

were flat, they would then be 500 nautical miles apart. How far

apart are they on the earth? If the first plane has landed and the

second is continuing at 400 nautical miles per hour, how fast does

the radio bearing of the second plane seem to change to an observer

in the first plane (in degrees per minute)?

*P4, Suppose water pipe is to be carried (horizontally) down a hall

3.15 m wide and then into a hall 2.41 m wide that meets the first

2
.
4
1
m

 

Figure 6.14

hall at right angles. What is the greatest length of pipe that can

make the turn?

P5. A continued fraction is a set of directions for an algorithm.

For example,

 

 

 

means the sequence of numbers 1/2, 1/(2 + 3/4), 1/[2 + 3/(4 + 5/6)],

It may also be written as

N
=

+ S
N

+ | +

These algorithms are, of course, nothing more than simple recipes

using sums and products, quotients and differences. As such, they

can express rational functions well. For instance, there is a con-

tinued fraction expansion of the function arctan gx:

78



2 4.2 qm2 2 2_x x° 4x° 9x° 16x“ 25x
arctan x = 1+ 37 5+ 7+9+11+ " °

which is valid for every number x. It is also written

x
arctan x =

1 + x?

3 + 42

5 + 9x?

7 + 16x?

9 + 25¢2

11 + .
 

This expression refers to a sequence of functions:

fl(x) =X,

fa(x) = /(1 + x%/3) = 3x/(3 + x22),

Fa(x) = (15 + 42°)/(15 + 9x?),

Evaluate these functions f;, f2, ..., fs at the points x =1

and x = 1//3. Tabulate your results and compare them with the limit-

ing correct values arctan (1) = m/4 and arctan (1/V/3) = m/6. (Hint:

You can find the values of the functions by directly evaluating the

continued fraction. You do not need to derive the expressions for

the functions as quotients of polynomials.)

P6. The quotient @, = ilfifi%iilflfil-was shown in Exercise 12 to be

a better way to estimate f'(x) than is the difference quotient

Q1 = ilf:fi%:ilfl-itself. While @, was viewed in Exercise 12 as the

slope of a chord from f(x-A) to f(x+h) on the graph of f, this new

quotient may also be shown to be the derivative at x of the quadratic

polynomial that fits the graph of f at the points f(x-%), f(x), and

f(x+h) .

It is possible to fit a quartic polynomial to the graph of f

at the five points &x, x#i and x*2h. The derivative of this quartic
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polynomial can be shown to be

@5 = T3 [F@-2h)-8F(2-h) +8F(wh) -F(w4 21) 1.

Construct a table similar to Table 6.2 using &3 in place of @; to

estimate the derivative of sin x at 0.2345. Compare your results

with cos 0.2345. [For further discussion of this subject see the

article by David A. Smith, Numerical differentiation for calculus

students, The American Mathematical Monthly, 82 (1975), 284-87. (This

is a standard form of reference to pages 284 through 287 of volume 82.

These pages are in the March 1975 issue.)]

Answers to Starred Exercises and Problems

Exercises la. sin a = 0.6, difference quotient =

0.79994800, cos o = 0.8 = 4/5

lc. tan a = 0.75, difference quotient =

145624800, sec?a = 145625 = (5/4)2

le. sec a = 1.25, difference quotient =

048375 = sec a tan o = 5/4 X 3/4

3/2

2 7726047

¢ = 118.62310, B = 1.3423143

C = 245937661

10. 7.0248650 deg/min

11. max at f(0), zero at f(0,3167508),

min at f(1).

©
0

O
v

Problems P1. 0.8197057

P3. 489,59310 nautical miles apart

P4, 749333450 m
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DEFINITE INTEGRALS

INTRODUCTION

We now begin a study of the second principal concept of the calculus:

integration. Its origins go back to Archimedes, who thought of areas

(and volumes) as being made up of tiny pieces, each of which was a

triangle or square or other regular figure. This is just the way you

would think about the area of a tiled patio with a curved boundary.

Since you know the area of each square tile, you need only count the

tiles in order to obtain an approximate area for the whole patio.

Archimedes then thought of the leftover regions of irregular shape at

the edges as being filled in with smaller tiles, which gave a better

fit. His method was to improve these approximations by a limiting

process.

However, it was only 300 years ago that Newton and Leibni:z

brought system to this way of thinking and related integration to

differentiation via the Fundamental Theorem, which we shall study in

this chapter. In the Examples and Exercises, we will see Riemann

sums and trapezoidal sums along with an application to average values.
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Problems will define a modified trapezoidal sum, midpoint evaluation,

and Simpson's rule. To begin, however, we will examine a most ele-

mentary and familiar example, the circle.

EXAMPLE: ™ AND THE AREA oF A Disc

How is the number m calculated? That is, how do we arrive at such a

statement as '"'m = 341415927"? Remember, m is defined in the first

place as the ratio of the circumference of a circle to its diameter.

We could just measure along the rim of a real disc of metal that had

been carefully manufactured to have a diameter of one inch. However,

any error in manufacture (perfectly flat disc? perfectly circular

rim?) would affect accuracy, so we might be quite doubtful about even

3-digit accuracy in the disc itself. Also, physical measurement of

the length of a curved line does not admit of much accuracy; even

2-digit precision would be surprising here.

The ancient Babylonians thought that m = 3,

and they had tape measures. Evidence of

this belief can also be seen in the Bible

(I Kings 7:23 and II Chronicles 4:2).

It would be equally fruitless to mea-

 

sure the area of that metal disc, which

should, of course, be mr? = m/4, since the

only way to measure physical area is by making linear measurements

and conceptually fitting rectangular grids on the region. However,

there is a conceptual way to measure area. For arithmetic simplic-

ity, let us take a disc of radius 1 (so its diameter is 2) and theo-

retical area m. Let it be the disc in the plane whose circular rim

is the graph of x? + y? = 1 (Figure 7.1). If a slice of this disc

has central angle m/2, then its

area should be one-fourth the ‘h

total area, or m/4, because of

the "circular" symmetry of the ‘v

figure. Accordingly, we seek to

compute theoretically the area Figure 7.1

of the region under the graph of
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flx) = /{t;;-in the first quadrant (Figure

7.2). Suppose we first divide the interval

[0,1] into four pieces [0, 1/4], [1/4, 1/2],

[1/2, 3/4], and [3/4, 1]. Above each piece

we construct the largest rectangle that has

 

that piece for a base and lies inside the (1,0

region we are measuring. Each rectangle has Figure 7.2

width 1/4 and height f(x) for x at the right hand edge (Figure 7.3).

The area of these pieces is, respectively,

 

vy1 - 1/16 , vy1 - 1/4 , V1 - 9/16 ,
4 4 4
 

and 0, and the sum of these areas is

2+¢4957091/4. This is a very poor

approximation to m/4.

 
 

    
Figure 7.3

Next, we construct over the same pieces of the interval [0,1]

the smallest rectangles on those pieces as bases that together con-

tain the region in question (Figure 7.4). Their areas are,

respectively,
  

 

1, V1 -1/16, v1 - 1/4, V1 - 9/16,
4 4 4 4
 

  and the sum of these areas is

J.4957091/4, which is the earlier Figure 7.4

  
sum plus %u The average of these two

sums is 249957091/4 ; we may thus say with mathematical certainty

that 2.495709L < 7 < 3.495709L and take the average as our first ap-

proximation for m. That average is about 3, and it is hardly a

sharp estimate for m. Nevertheless, our scheme of calculation 1is

open to refinement. We next subdivide the base interval [O,l] into
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ten equal pieces and calculate as before, first the lower sum L), of

Figure 7.5

areas of rectangles lying inside the region (Figure 7.5). This sum

Lyo =

  

/fi - (1/10)2 . vfi - (2/10)2 . .\ A - (9/10)2 . /i - (10/10)2
10 10 e 10 10 :
  

Another way of writing such a sum uses the sigma notation

10

10
Lyg = :E : 1 - (2/10)%

In this form some arithmetic manipulation is possible, and we can

simplify the actual details of calculation as follows:

V1 - (£/10)2

™
~

o

1l

'
—

M 10
=1

10
_ 1 /. . 2
—'1—0' Z 1 - (?//10)

1=1

10
1 100 - ¢2
- 10 100

=1

10
_1 /100 - 22
T 10 10

1=1
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10

=1 /100 - 2.
100

1=1

We compute L;o = O¢7261295. Next our upper sum:

10 100
=0 =0

Clearly this sum differs from L;, in the first summand of U;, and the

last summand of L,, (Figure 7.6):

Figure 7.6

 

Uyo = Lyo + 1/100 (V100 - 0 - v100 - 100) = Lo + 1/10 = O.6261295.

Accordingly, we can say 2.9045183 < 7 < 3,3045183 with assurance, and

our average or mean 3,1045183 is now not a poor estimate.

RIEMANN SuMS AND THE INTEGRAL

Our work above suggests a general method for calculating the area A

under the graph of a continuous positive function and over an inter-

val of the x-axis. We consider an arbitrary partition p = {a =

g <x; <x2 < ... <x < x, = b} of the interval into subintervals
-1

(Figure 7.7). Let Zi the minimum value of f(x) on the Zth intervaln

[pi—l’ xé], which has length (xi - xi—l)’ and form a lower sum (Fig-

ure 7.8):

Just as before, we clearly have Lp < A. Similarly, if ui is the

maximum value of f(x) on the Zth interval of the given partition,
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then we define the upper sum to be (Figure 7.9):

n

= - .5 < .Up E (xi xi_l)ut, A< U?

=1

 

   

 

 
o Q @
_

Q
e   c'z .'Z:l X2 .'Z,'n_l

Figure 7.7 Figure 7.8 Figure 7.9

For our purposes, in calculations we will choose partitions r, of

[a,b] into n subintervals of equal length ZZég-and form the sums Ln

and Un' We may expect that by increasing the number n of subinter-

vals sufficiently, we may reduce the maximum error Un - Ln in the

estimation of A to achieve any desired degree of accuracy. In prin-

cipal, we imagine a limiting value 4 to which both Un and Ln tend

as n goes toward infinity; this limiting value is defined to be the

area. There 1s a special notation for this:

A =£bfcx) da,

which is called the definite integral of f(x) on [a,b].

If our function f were negative instead of positive (Figure

7.10), the sums would all be negative and in the limit they would

equal the negative of the area under the (positive) curve -f(x)

and over the given interval. Accordingly, if a function f is both

positive and negative on an interval [a,b] (Figure 7.11), this pro-

cess will yield a number

b

[ r@ da,
a
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Figure 7.10 Figure 7.11 

which is the sum of the areas above the x-axis minus those below the

axis. This process of integration is also called quadrature.

The sums themselves are called Riemann sums. The mean Mh =

L +U

2
 corresponds to the area of the trapezoids in Figure 7.12, which

 AN 

 Figure 7.12

approximates the area under curve y = f(x) by the area under

the chords. (When Zi and Uss the extremes of f(x) on the Zth sub-

interval, are not at the two ends of the interval, the picture is not

exactly like Figure 7.12.) When f is steadily decreasing on the

entire interval [a,b] (as was our example f(x) = v1-x* on [0,1], the

computations are simplified: the minimum on the <th interval is the

maximum on the (71+1)St interval when f decreases. Hegce
-a_ b-a -Ufi = Ln + (ul—Zn) —fi—-and the mean Mfi = Ln + (u1-1) ———-1s in error
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by no more than |(u1—Zn) %%24. Similar comments hold, of course,

for functions that are increasing over the interval.

EXAMPLE: THE AREA UNDER f(x) = « sin x

As another example, we evaluate

b

U/fl x sin x dx,
0

where b = 2.0287578 is the point on [0,m] at which f(x) = & sin «

has a maximum (this fact is established in Problem P1, Ch. 6), and

 

 

Figure 7.13

f is increasing everywhere on [0,b]. The upper sum, then, is

(Figure 7.13):

where b/n is the width of each subinterval and <b/n is the right end-

point of the Zth interval. For n = 10 we calculate this sum to be

1.9785026 and ¥ = U + (Z:-u ) b U - 0s1845871L = 1,7939155; the
n n n’ 2n n

- - b -:.

maximum error is |(Zl—un) 5%4 2 0.2.
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AVERAGE VALUES

In the process above, we added up the values of the function f com-

puted at 10 evenly spaced points along the interval [0,b] and then

multiplied by %69; if we had merely divided the sum by 10, we would

have computed the average of those values. That is, Ufi/b, or even

better Mh/b, is an average of the values of x sin x on the interval

[0,b]: M%/b = 0s8842433. 1In general, we define the average value

of a continuous function f on an interval [a,b] to be

b

fifa fla) de.

FUNDAMENTAL THEOREMS

The first form of the FUNDAMENTAL THEOREM OF THE CALCULUS says that

1f we define a new function by the definite integral of f, say F(t) =

j;t f(x) dx, then F'(t) = f(t). Here is the sketch of a proof

phrased in terms of areas. If we think of F(¢) as the area under

the graph of f and over the x-axis from a out to ¢, then the rate at

which the region adds to its area as ¢t moves to the right is just the

height f(¢t) of the graph at & = ¢ (Figure 7.14).

 

 

 
t + At

Figure 7.14

The second form of this THEOREM is useful for evaluating def-

inite integrals. It states that Zf G'(t) = f(t) then J;b f(t) dt =

G(b) - G(a). Any function G(t) for which G'(¢t) = f(t) is called an
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antiderivative of f, so the process of integration may be reduced to

a process of finding and evaluating antiderivatives. For instance,

in our example above we calculated

b
f x sin x dx = 1,7939155.

0

b
But if G(¢t) = sin t-t cos ¢, then G'(t) = t sin ¢, so J. x sin x dx =

G(b) - G(0) = sin b - b cos b = L.793A112. ’

It is remarkable that our calculation was correct through the

fifth decimal place! This is much more accuracy than the theory

guaranteed. You can understand why M;, is a good approximation by

noticing that the graph of f bulges upward above the chords about

as much as it sags downward below those chords, thus averaging

errors. But even more remarkable is the ease with which the Fun-

damental Theorem gives us a theoretically exact answer. The theorem

has reduced the problem of evaluating the integral to the problem of

calculating the values of the sin and cos functions.

TRAPEZOIDAL SuMms

Our upper and lower sums have been simple to calculate because we

have dealt with functions that were increasing (or decreasing) over

the entire interval of integration. However, in the general case it

would be an insurmountable task to locate the maximal point or the

minimal point on each subinterval before evaluating an estimating

sum. For practical computations, then, we shall modify our defini-

tion of the mean sum over an interval |x. to take the averageX .
-1’ 71

of the values at the two ends of that interval times its width,

f(xi'l) + f(xz)

2 @y =% 1)

(Figure 7.15). This is again the area of a trapezoid, and if f is

increasing (or decreasing) throughout Exi—l’ .], this trapezoidal
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0.
/    

area 1s just one of the summands of the mean sum M% (Figure 7.16).

 
 

=
1

o

v

. x. x. X .

Figure 7.16

The trapezoidal sum Tn for l;b f(x) dr is thus defined to be

n n 2p, - elss fee,O(T

Here each value f(xi) shows up twice, divided by two, except for

f(zo) and f(&), so

n-1
|o) + filx)

p - ba __.2___7?__4.2]0(:%)
n n

=1

Each mean sum Mh that we have calculated is an example of this

trapezoidal sum. This is simple to calculate for any function f,
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yet L <T <U, so Lim T =A. In fact, if f has a continuous
n="mn=n nso “n

second derivative that is bounded by X (so If"(x)l < K for every

x in [a,b]), then the error in Tn as an estimate for j;b f(x) dx is

no more than

K(b-a)?

12n2

This is called the truncation error for Tn; thus the truncation er-

ror goes to zero like 1/n?. (For a proof of this fact see the book

by Courant and John or by James or by Loomis in the Bibliography.)

We emphasize that in each of our examples Mh and Tn are the

same (in Exercises 5, 6, and 9 they are different). Throughout

this book, our principal method of numerical quadrature will be the

calculation of trapezoidal sums Tn (but see Problems P1, P2, and P3

for an easily calculated improvement on Tn)'

ExaMPLE: THE SINE INTEGRAL

1The function f(x) = ™" sin x has no elementary antiderivative.

Hence the Sine Integral, the function S7(x) = J'xt'l sin t dt where
0

sin 0/0 is taken to mean 1, must be evaluated by numerical methods.

This function is useful in the mathematical analysis of wave prop-

agation. Let us calculate S7(1) by forming the trapezoidal sums

Ts and T30. First we express Ts:

l.(l_i_fifl_l.+ § sin + + 2 sin 2, 2sin 3+ 2sin ifl
5 2 5 2 5 3 5 4 5

0.894507448.

Ts

Next, to express T;, we need only add the terms of that sum that are

not already in Ts. This gives us

Ti10 =

—1-(5T + 10 sin Ly lg-sin 3 lQ-Sin > l-Q-sin A lg-sin —29
10 S 10 3 10 5 10 7 10 9 10

= 0.89458321.
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The correct value is S7(1) = 0s9460831; hence our sums are incorrect

in the third decimal place. The sum T3, is about five times as ac-

curate as Ts.

EXERCISES

1. Calculate the sums L, and U, and their mean M, for each of the

definite integrals here; then use the Fundamental Theorem to evaluate

the integral and compare your results.

* 2 0 m/2

a. /1- 3 dx c. fl (x-22)dx e. j; sin x dx

* 1 3 * 7 m/6 cos 2x
b. “A; x°dr d. ./g vxdx f. ./g -—7?———-dx

*2. Show that in the computation of the area j;l V1-z? dx of the

quarter circle all the trapezoidal sums Tn = Mh must be less than

m/4. How many equal intervals must be used to be sure of the first

five decimal places of your answer 4Tn = m?

3. Find Log, Tog = Moy, Usyg, and then 4T, o = m, for Ll Vl-xz dx.

*4., Find the area of the region between the graphs of the functions

f(x) = x2 and g(@) = x - 1 which lies above the interval [1,2]. This

area may be approximated by the rectangles above intervals of a sub-

division of [1,2], where the bottom of the rectangle above a point

x will be nearly at x - 1 and the top will be nearly x?. Hence,

     P
t

N
F
e
m
m
=
=

=
=

 
Figure 7.17

this problem is the same as the problem of finding the area under the

graph of f(x) - g(x) = x? - = + 1 above [1,2], which is j;z (x?-x+1)dzx.

Evaluate this by finding Ls, Ts, and Us, then Lig, T19, Uio and
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compare your results with the correct area F(2) - F(1l), where

F'(x) = f(x) - g(x).

5. Suppose the average daily temperature in a certain town is

found to be f(t) = 62 + 37 cos (E% + 3.1) degrees Fahrenheit at a

time ¢ months after 31 December. Sketch a graph of this function.

What is the average yearly temperature? Calculate the trapezoidal

approximation Ts for the average temperature during the summer (June,

July, and August) and compare your results to the correct value,

which you can find by use of an antiderivative. This is the first

instance where the mean Ms is not quite the same as the trapezoidal

sum Ts. Do you see why from your sketched graph? Also, do you see

graphically why Ts < A?

6. Let v(£) = 100 sin (mt2) be the speed in kilometers per hour of

a freight train at a time ¢ hours after leaving Alphaville on its

way to Betatown. If the train makes this trip in one hour, find the

distance from Alphaville to Betatown.
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(Hints: leave multiplication by 100 until last. Do sums Ts and

T10, find Ty by averaging Ts with the sum corresponding to the in-

between values 0.1, 0.3, 0.5, 0.7, 0.9 of x that were not used to

form Ts.) Can you find an antiderivative for v (¢)?

7. Since the derivative of the function arctan x is 1/(1+x2), the

integral

dx
 

is equal to arctan 1 - arctan 0 = m/4 - 0 = /4. Calculate T by

evaluating this integral using a tenfold subdivision of [0,1] and

a trapezoidal sum. Also, give the percentage of truncation error.
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8. Evaluate the trapezoidal sum T,, for the integral

/2
JGW sin x dx = 1.

*9. The function (1 - cos t)/t has no elementary antiderivative.

-1
x

Hence the function Cin(x) = t (1 - cos t) dt must be evaluated
0

by numerical means. Here (1 - cos 0)/0 means 0. (This integral is

related to the Cosine integral Ci(x) = y + In x - Cin(x). It is use-

ful in the study of wave form propagation.)

Estimate Cin(0.7) by evaluating the trapezoidal sums Ts and T

for this integral. Compare your results to the correct value, which

is 0O.1200260.

10. The function f(6) = cos (a sin 6) has no elementary antideriv-

ative. Hence the Bessel function

1 m
Jo(x) = ;T—f cos(x sin 6) d6,

0

which is useful in physical applications of math, must be evaluated

by numerical methods. Use the trapezoidal sums T;, for tenfold sub-

divisions of the interval [0,7] to evaluate J((0.3) = 0.,9772L2 and

Jo(2.8) = -0,1850360.

11. The growth rate for a certain species of fish is known to be

1/V17.6t when it is t years old. Express the growth of this fish

during its third year of life as an inte-

gral. Then estimate that integral by the

trapezoidal sum T's. Also, use the

Fundamental Theorem of the Calculus,

together with an antiderivative for the

growth rate, to evaluate this integral

 

and compare this value with your estimate.
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12. A distributor observes that his refrigerator sales rate cycles

during the year to grow according to the formula

t, . )
S(t) = 1.0127(sin [Ii{t+1.7i]+ 6.2) .

Here t is measured in months and S(t) is sales in hundred of units

per month. Estimate his total sales during August and September by

means of the trapezoidal sum Ts.

PROBLEMS

P1. There is a correction term for trapezoidal sums, so that the

modified sum for 'é b f(x) dx is

¢ =p L@-F1®) (b__>
n 1n 2 n

Here Z—)7:19--15 the length of a single subinterval, the new term

involves the values of the derivatives of the integrand at the two

endpoints only. It can be shown that if the fourth derivative f(*)

exists and is bounded by X on [a,b], then the truncation error in

Cn is at most K(b-a)®/720n"*.(See the book by Loomis in the Biblio-

graphy. The correction term added to Tn is easily seen to be an

estimate of the truncation error for Tn')

To appreciate the truly remarkable improvement this correction

term provides, redo Exercise 4 to find Cs and C;, for 112 (x2-2+1)dx

and compare your results with the correct area. Then calculate Cs

in Exercise 5, Cs and C;, in Exercise 6, C;, in Exercise 7, 9, and

10, and C,(y in Exercise 8. 1In each case, observe the number of cor-

rect decimal places in your answer and compare to the accuracy of

your earlier estimates. Clearly, Cn provides an effective and sim-

ple method of highly accurate numerical quadrature.

P2. Apply the refined estimates Cn described in Problem Pl to the

Example in the text: that of finding the area of a disc of radius

1. This cannot be done for the integral J&: V1-2% dx as it stands,
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since the derivative of the integral

does not exist at x = 1: the tangent

to the circle is vertical at x = 1.
V

%fi> Nevertheless, try an altered strategy

 

  

 
vZ based on the symmetry of the figure.
2

First find the sum C;, for the

integral

Figure 7.18
7 vV2/2

V1-22 dx.

This will provide an estimate of the shaded area in Figure 7.18.

But the area of the quarter disc that is omitted by this integral

is the same, by symmetry, as the area of the shaded region above the

square. Hence, calculate m = 4(2 Cy¢ - 1/2) = 8 Cyo - 2.

P3. In working Problem Pl you may have been struck by the exact

answer that both Cs and C;, provided for Jéé (x%-z+1) dx. Give a

proof that, in fact, Cn will be an exact estimate for 0 f(x) dx

whenever f(x) is a polynomial of degree no greater than three. Your

proof will show that this is true no matter what the numbers =, a,

and b are.

Do your proof in three stages. In stage one show that Cn is

exact for'éb ldxandébxdxandébxzdxand’ébx3 de. In

stage two demonstrate that if Cn is exact for.l;ZJfo) dx and r is

any real number, then the modified sum is also exact for

Jg.b r f(x) de. In the third stage show that if the modified trap-

ezoidal sums are exact for a given integer »n and for both

.L‘ b f(x) dx and for ‘L‘b g(x) dx, then Cn is exact for

Jé.b [f(x)+g(xi]dx. Then you may argue that, since you have shown

each of these three statements to be true, Cn must be exact for

every integrand of the form rox3 + P22 + rox + Ps (where each ri

is a real number).

97



Your proof means that Cn can be regarded as the sum correspond-

ing to a cubic polynomial approximation to the integrand (at least

it is if n < 4).

P4. The Riemann sum corresponding to midpoint evaluation for

“Z:Z)fo) dx is

b- x.+x._1 .e Fre
1=1

Calculate this sum when n = 5 for the integrals of Exercises 4, 5,

and 6 and compare your results with those you obtained for trap-

ezoidal sums Ts. (The accuracy of midpoint evaluation is of the

same order as that for trapezoidal sums; see Loomis in the Biblio-

graphy for details.)

P5. Simpson's rule for approximating.lfl7ij) dx works only with

an even number n of subintervals. The sum is

é'%%‘[f(xo) + 4f(@) + 2f(x2) + 4f(xs) + ... + 4f(x) + f(xni],

This sum may be viewed as 2/3 Tn plus 1/3 of the midpoint evaluation

corresponding to the n/2 intervals partitioned by

{xg <2y <2y < ... < xn}. The unexpected coefficients in this

sum arise as the correct ones with which to estimate the area under

the graph of f by the area under quadratic approximating curves.

Such an approximation uses one parabolic curve for each pair of

subintervals. A proof of this fact is straightforward.

Approximate the integra1~1;1 1/ (1+x2) dx of Exercise 7 by use

of Simpson's rule when n = 10. Compare your answer to T;o, Ci0, and

also to the midpoint evaluation corresponding to n = 5, by choosing

the most accurate of these estimates for m/4 and expressing the er-

ror of each estimate as a multiple of the smallest error. (The

truncation error for Simpson's rule is of the same order as that
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for the modified trapezoidal sums. See Courant and John, James, or

Loomis in the Bibliography for details. Simpson's rule provides an

accurate alternative to the modified trapezoidal sum Cn whenever

the derivatives f'(a) and f'(b) are not easily calculated for use

in Cn')

P6. Describe at least one plausible situation in a field of your

own current interest, perhaps biology or business or chemistry,

where the definite integral may be applied to obtain a useful numer-

ical solution. Discover such a real-life situation by surveying a

current issue of an appropriate journal in your field. (See the

Bibliography for some suggested journal titles.)

Answers to Starred Exercises

M4=U4=j1‘23dr=3uExercises la. L,

1b. Ly = 041406350
M, = Os2L56350
U, = O0,3906250
£edde = 045

1d. L, = 9.L702816
M, = 100439993
U, = 11209704

J57/E'dx = 10.461321

2. n = 10°

4. Ls = lab4 Ts = 1484 Us = 2404 Ly1o = 14735

Tio = 14835 U;o = 14935 4 = 1.,4333333

9. Ts = 0s1199286 T,, = 0,1200017
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LOGARITHMS AND EXPONENTIALS

INTRODUCTION

Nicolas Chuquet first noticed in 1484 that to multiply any two

3members of the geometric series 1, »r, »?, »r3, r*, ..., we only need
+

raXrb = p4 b.

that division among terms corresponds to subtraction of exponents:
rairb _ ra—b

to add their exponents, Similarly, Chuquet found

More than 100 years later John Napier made this idea

useful by calculating ''logarithms'" for all 8-digit decimal fractions.

It is difficult to overestimate the value of Napier's log tables.

They have been used billions of times each year to do accurate

multiplications of every conceivable sort in navigation, engineering,

science, and business.

We begin this chapter with a definition of the (natural) loga-

rithm function as an integral and illustrate it with the calculation

of In 2. Then we will define the inverse function, the exponential,

and construct graphs of 1n x and ¢®. We will also define the number

e in a natural way and calculate it as a limit.

Next we apply our math to the economic concept of compound
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interest and to the biophysical operation of carbon dating. These

applications are explored further in the Exercises, along with the

probability integral, Newton's law of cooling, and Huxley's differen-

tial growth ratio for the huge claw of fiddler crabs. In the Pro-

blems we will discuss the computation of monthly payments on home

loans and evaluate continued fraction expressions for the functions
x

In x and e

THE DEFINITION OF LOGARITHM

We shall use the insights that we have gained thus far in our study

of the calculus to guide us in a new approach to logarithms. These

insights were not available to Chuquet and Napier. This approach

may seem strange to you at first, but it has great mathematical

power. Our method will be to show first that any function (like the

logarithm) that turns multiplication into addition must have a cer-

tain kind of derivative. We then appeal to the Fundamental Theorem

to define the logarithm as the integral of its own derivative.

Let us seek a function f that has the property that f(xy) =

f@) + f(y). Clearly f(1) must be zero since f(y) = f(ly) =

£Q) *+ fy). Then 0 = f(1) = f(z X ) = f@&) + f(1/z) so f(1/x) =
-f(x). If we differentiate f at a point a we get

' (@) ;’8 f(a+h)h‘ f(a)

_ lim fla+h) + f(1/a)
h

 

>0 (Qifia

_lim f* a
T 0 h

lim f(1 + h/a)
>0 2 :

If a # 0, then ak tends to zero just as h does, and we may rewrite

the last 1limit as
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lim f(1 + ah/a)

 

ah>0 ah

1 lim f(1+h)
Ta |0k

_ 1 4
= a‘f (1).

We have just shown that if f carries products to sums, then the

derivative of f at a point a is completely determined by the deriv-

ative f'(1) of f at the single point 1: f'(a) = f'(1)/a. Now

suppose that our function f has a nonzero derivative f'(1) at 1,

and we define a new function F(x) = ?W%Tj-f(x). We still have

F(xy) = ?T%Tj-f(xy) = fw%fj-[f(x)+f(y)] = F(x) + F(y). Likewise,

 

1

F(1) = 0. 1In addition, F'(1) = L-t8) = 1, and in general F'(z) = 1/z.

By the Fundamental Theorem of the Calculus, the integral

X

fi i—t - F(z) - F(1) = F(x).

But now we are no longer supposing; we have the function F(x). It

is the integral. The functions f and F cannot be defined for the

argument 0, since if they were, then F(0) = F(0X2) = F(0) + F(2),

which says that F(2) = 0. The integral 12 1/t dt is clearly

positive, though, since it is the area under 1/¢ and over [1,2]

(Figure 8.1). Thus we cannot define this integral for 2 < 0. How-

ever, for positive x we do have a function F(x) defined by this

Figure 8.1
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&L 1
integral (remember, if 0 < x < 1, then.}{ 1/t dt = :A: 1/t dt).

It is important enough to merit a special name, the natural

logarithm function, and special notation:

In x =-}('x éz; x > 0.
t

1

EXAMPLE: 1n 2

We calculate 1n 2 by estimating this integral. The lower sum

Lyo = 1/10 (1/1.1 + 1/1.2 + ... + 1/2.0) = D«6LA??L4, the upper sum

Uio = 1/10 (1 + 1/1.1 + ... + 1/1.9) = O0,7187714, and the trapezoidal

= 0WeH377L4. The correct value is 1ln (2) =

O0.6931472, so Ty is accurate to (nearly) three decimal places; its

error is 0.0006.

THE GRAPH OF 1n «

We can graph the natural logarithm function: 1n(l1) = 0, and its

derivative 1/x is always positive, so 1n x is always increasing

(Figure 8.2). Since 1/x gets smaller

as x increases, the slope of the graph

 

w becomes less and less for increasing

x. Since 1ln 1/x = -1n x, its values

’ // Z-axis become large-negative for x < 1 and

decrease toward - » as x decreases

Figure 8.2 toward O.

EXPONENTIALS

The logarithm of 2 is greater than one-half. Hence 1ln 4 = 1n(22%) =

2 1In 2 is greater than one: 1n 4 > 1. From this fact you can see

that the values of the function 1ln eventually grow larger than any

integer N, no matter how big N is. This is true because 1n(4N) =

N is an integer whose logarithm is bigger thanN 1In 4 > N, so that 4

N. Since 1n(4—N) = -ln(4N) < -N, this function takes on values less

than -N as well. Since 1ln x is an increasing and continuous
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function (why is this true?), it takes on every real number as its

value precisely once. That is, for each real number y there exists

exactly one number x with y = 1n x.

Consequently, the function ln x possesses an inverse function,

which we temporarily denote by exp(y): 1n(exp y) = y and exp(ln x) =

x, soy = 1In x if and only if x = exp y. This function exp

is defined for every real number y. Its values are the positive

real numbers x that are admissible arguments for 1ln x. Since 1n (1) =

0, we have exp(0) = 1. It is also apparent that exp(x+y) =

exp(x)exp(y). The slope of the graph of exp at y = 0 is the recip-

rocal of the slope for 1n(x) at x = 1, which is 1n'(1l) = 1, so

exp'(0) = 1. In general, the graph of exp(x) may be constructed

from the graph of In(x) by reflection in the line y = x (Figure 8.3).

 

 

Figure 8.3

The chain rule says that

%y_y = gy-ln exp(y) = [1/exp ylexp' (y)

so exp'(y) = exp (y), which is a surprise!

If ¢ is a positive number and x = p/q is rational, then 1n(ax) =

xz In a and so 4~ = exp(1n ax) = exp(x 1n a); we take this as a

definition of &* when x is not rational as well. It is easy to ver-

ify that &Y = axay, (ax)y = axy, a¥ = l/a")c and o= (ab)x (Laws

of exponents). Notice that if 1ln a = 1, then a = exp(x 1In a) =

exp(x): there is a special number e such that Ine =1 or e = exp(l).
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Since 1In 2 <1< 1n 3, 2 < e < 3. We can evaluate the integrals by

use of trapezoidal sums T;, to find that In(2.7) < 1 < 1n(2.8);

the number e is between 2.7 and 2.8. By definition, &L = exp(x 1n e)

= exp(x); we may henceforth use the notation ¢® as well as exp (x)

for the exponential function.

ExAMPLE: A CALCULATION OF e

We know that the derivative of In x at x = 1 is 1/x = 1; hence

_ lim 1In(1+A) - 1n(1) _ lim 1n(1+h)
1= 150 7 =0H If we evaluate the expo-

nential function at both sides of this equation we get

ol = lim exp 1In(1+h)
=€ = 0 7

= iig (1+h)1/h.

This 1limit expresses the number e without mentioning the logarithmic

or exponential functions; it may be restated by substituting 1/n

for h:

lime = 1+ 1/m)".
N—roo

It is fun to evaluate this limit (see Table 8.1).

 

TABLE 8.1

n 1+ 1/n)"

10 245937425

102 2. 7048138
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10°

10° 2+ 7182818
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ExaMPLE: CoMPOUND INTEREST AND GROWTH

Suppose a bank pays interest on deposits at the rate of 10% per year

so that $100 deposited will become $110 at the end of a year. But

suppose another bank also offers 10% interest, and it agrees to

compound this interest every six months; that is, this bank will pay

5% interest at the end of six months and

another 5% interest at the end of the year.

After six months in this second bank, the

$100 deposit becomes $105, and during the
 

second six months the added $5 earns inter-

est along with the original dollars, yield-

ing (1.05)($105) = $110.25. The extra 25

cents is the interest on the $5 interest

 

 

that was added to the account at midyear.

If interest had been compounded quarterly (that is, every 3 months),

then successive quarters' balances would be $(1.025)100, (1.025)2100,

(1.025)3%100, and finally (1.025)%100 = $110,38129. If interest had

been compounded monthly, at the end of the year there would be a

balance of (1 + 0.1/12)'2X$100 = $110.4713L. We record our results

in Table 8.2.

 

TABLE 8.2

Compounding Year-end Balance

annually $11.0.,00

semiannually 11025

quarterly 11.0.38229

monthly 110447131

daily

hourly llD.Sl?45+

.‘.

Round off error has resulted in our hourly-compounding rate being

larger than ¢! = 1,1051709; the correct value is 1,105,703, which

is less than e?-!.
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lim (1 + gilaéltimes the $100The limiting number is of course [n+w

initial deposit. Since 10n = m goes toward infinity as n > », we

have

lim m/10
71—>00

N1/m)
;_i:: [(1 , l/m)m]().l

_ 0,1
[llm (1 + l/m)nfl

m->oo

1+ 0.1/m)"

e 1 = 1,1051709.

That is, if 10% interest were compounded continuously, it would pay

10,51709% yearly (Figure 8.4). Be sure you understand the differ-

ence between a nominal rate of 10% per year and an effective rate of

10,51709 % after a year's time.

~
=

 r,,semiannually

 

annually

 

| Figure 8.4

ExaMPLE: CARBON DATING AND DEcCAY

A radioactive element like carbon 14 decays at a rate proportional

to the amount present. That is, the decomposition of an individual

atom of C!* is a random event, but in any amount of observable size

(that is, an amount containing many millions of atoms), half of the

atoms present today will have decomposed in 5,568 years. Now there

is a certain stable amount of C!* in the carbon dioxide we breathe;

it is continuously replenished by the irradiation of the upper

atmosphere. Trees use some of this carbon dioxide to make their

wood. When a tree dies, however, it can no longer consume carbon
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dioxide, and the C!* that the tree accumulated while alive will be

half gone in 5,568 years. This fact has given scientists a means

of dating archaelogical objects. As a sample problem, suppose that

an axe handle has 1/5 the proportion of C!* that new wood has today.

How old is it?

We know that the rate of change of the quantity y(¢) of C!* at

times ¢t is y'(t) = k y(t) for some constant k of proportionality.

But we can guess at a function y(Z) that behaves this way: if y(¢) =
kt
e, then y'(t) = k ekt = k y(t). Furthermore, the same is true if

we add any other constant ¢ to the exponent to get y(t) = ekt+e -

ecekt. Thus if the amount of C!* in an equal weight of new wood is

e’ (corresponding to time ¢ = 0), then 5,568 years later it will be

ec/Z = eceSS6Bk, and we have

oS568% _ |

5568k = 1n 1/2

k = (In 1/2)/5568

k = -0.,0001245.

Now the axe handle is observed to have only 1/5 of its C!* remain-

ing, so its age is determined by (see Figure 8.4):
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kt
e = 1/5

kt = 1n 1/5

£ = (ln 1/5)/k

t = 129284495 years.

EXERCISES

1. In each case estimate the natural logarithm by calculating the

trapezoidal sum Ts for the integral that defines the logarithm:

*a.ln 3 *b.1n 9 *c.1ln 4 d.1n 4.5 *e.1ln 1.01 f.1ln 16

2. Estimate 1n 2.7 and 1n 2.8 by calculating the sums T3, for each

integral; thus show that 2.7 < e < 2.8.

*3, The derivative %E-ax = %5-9x Ina In ¢ &° In a = (1n a)ax;

accordingly, the derivative of 2 at x = 0 is 1n 2:

In 2 = lim 2h-1
BVY

By taking repeated square roots, evaluate the stages in this limit

for h =1, 1/2, 1/4, 1/8, 1/16, 1/32, and record your results in a

table. The correct limit is 1ln 2 =

0.6931472; improve the accuracy of

this method by calculating the slopes

of chords whose center is at

x = 0, instead of chords with one

end at x = 0:

 

 

_fi h . h -h 
Figure 8.5

Tabulate these slopes for the same values of % as above. Next,

find ous what power of % will suffice for A4 in order to achieve an

accuracy of 6 decimal places. Does this provide a reasonably
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accurate method for computing logarithms on a calculator with a

square-root button but no In function?

*4. Use the method of Exercise 3, taking # = 1/32 to estimate ln 2.7

and 1n 2.8. Then interpolate to estimate the number e for which

In e = 1; that is, find the number a so that

a(ln 2.8 - 1In 2.7) + 1In 2.7 =1,

then estimate e = 2.7 + (2.8-2.7)a. This process is a numerical

inversion of the function In to find & at z = 1; your result is

surprisingly close, isn't it?

5. Find the rate of continuously compounded interest that will

yield 10% per year: thus, find x so that ext = 1.1 when ¢t = 1;

o = 1n 1.1. Compute x using the method developed in Exercise 3.

*6. The present value PV and future value FV of a sum of money are

related by the interest rate I on an annual basis, the time N in

years, and the frequency ¢, which is the number of intervals per

year with which the interest is to be compounded. The formula is

FV = PV(1 + I/¢)¢N. Calculate the value of $1000 after 10 years

with interest at an annual rate of 0.1075 (which is 10-3/4%) com-

pounded annually, quarterly, and monthly. Then invent a formula

relating present and future values when interest is compounded con-

tinuously. Give a limiting argument that your formula is correct

and apply your formula to the case above with an annual rate of

0.1075.

*7. Continue the investigation of Exercise 6 by deriving a formula

for computing the interest rate I when you know the present and

future values, the term of time N years, and the frequency ¢ per

year of compounding. Then compute the interest rate required to

double your money in 5 years if interest is compounded annually,

quarterly, and monthly. Next, invent a formula to find the appro-

priate rate when interest is continuously compounded. Give a limit-

ing argument that your formula is correct and apply it to find the

continuous rate that doubles the value in 5 years.
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*8. The error function or probability integral

- ( )

2
must be evaluated by numerical quadrature since e ¢ has no elemen-

tary antiderivative. Find erf(1.23) by use of the trapezoidal sums

Ty and Tsp.

 

 
Figure 8.6

*9. The half-life of radium, the length of time during which % of

a given mass of radium will decompose, is about 1622 years. If a

hospital has some radium in a pellet, how long may the pellet be

used with the assurance that its radiation level has changed by no

more than 2%°?

 

10. The population of a bacterial culture is observed to increase

by 9% in an hour and 10 minutes. What is the population increase

over 24 hours (assume that the growth is exponential)?

11. Newton's Law of Cooling says that the rate of cooling of a

heated object will be proportional to the difference of its tempera-

ture and the temperature of its environment. If a thermometer in

a pottery kiln registers 1400° C when the heat is turned off and
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and then reads 1300° C in 23 minutes, how

 many hours will be required for the kiln to

cool down to 50° C (assume an outside tem-

perature of 20° C)?

 

12. Suppose $100 was invested at an annual interest rate I without

compounding; find the time Y = Y(I) in years required to double the

original sum. Next, find the total sum after Y years at the annual

rate I = 0.12 if interest were compounded every Y/n years for values

of n = 2, 10, 100, 1000, 10000. Finally, guess at the limiting

value of the investment as n - « and prove your guess is correct.

13. The male fiddler crab (Uca minax) in its immediately post-

larval stage has two claws (chelae) of equal size. Each claw

weights roughly 1.2 mg, which is about 2% of the weight (60 mg) of

the rest of the body. However, a

mature specimen is grotesque: one of

its claws is disproportionately large.

In one case this huge claw weighed

7.25 g, which amounted to 72% of the

rest-of-body weight of 10.06 g!

Sir Julian Huxley reasoned as follows

 

about these facts. Let y stand for

the size of the organ (chela) and

x that of the rest of the body and

assume that both x and y satisfy growth equations of the form

x(t) = aeaGt y(t) = beBGt.

Here a and a or b and B are specific constants for the rest-of-body

or for the organ-in-question and G measures general conditions of

growth as affected by age and environment.
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Show that these assumptions imply that there are constants ¢

and k for which

cxX -«

n

Huxley called k the differential growth ratio; he emphasized that

k is a constant independent of age and environmental factors.

Next, use the data given above to establish the constants ¢

and k for the case in question. Then find the total weight of a

fiddler crab at the stage where his larger claw has grown to one-

half the weight of the rest of his body.

14. The atmospheric pressure at a height A4 above a planet's sur-

face is given by an exponential function:

p(h) = ce‘kh.

Suppose on a given day the sea level pressure is 765 mm of mercury,

 and at the top of a 152 meter hill the

pressure is 747 mm on your barometer.

What is the pressure at the top of Mt.

Everest (8848 m)? What is the altitude

at which the pressure is ’ that at sea

level? 1/4 of that at sea level?

1/8 of that at sea level?  

 

PROBLEMS
2

*P1. Use the modified trapezoidal sum Cs = Ts + f:ifil%é:iél.(é;fi)

(see Problem P1, Ch. 7) to estimate 1n 4 in Exercise 1lc. Then com-

pute Ci10 and Cz¢ for the integral of Exercise 8. In each case,

discuss the improvement in your estimate over the trapezoidal sum

by calculating the error of Cn and comparing it to the error of the

corresponding Tn(ln 4 = 143862944 and erf(1.23) = 0,9180501) .
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P2. Express the appropriate monthly payment PMT due on a loan of

PV dollars for »n months (or N years) if interest at a monthly rate

2 (or an annual rate I) is applied each month to the unpaid balance

(n = 12NV and 7 = I/12). To do this, imagine that the monthly pay-

ments are paid into a separate account that earns interest monthly

on its balance. Then the separate account will have P1l4"_7’(1+11)n_1 in

it for the payment made at the end of the first month together with

its compound interest for n-1 months. There will also be added

Pllfl"'_7’(1+1l)n-2 for the second payment, and so on, to total

PMT[}1+i)n_l s) e ;].

This geometric series has the sum

1-(1+2)" _ - (1+i1”-1 _
1Ty

(Remember that if 2 # 1, then 1 + x + x? + ... + xn_l = (l-xn)(l-x)).

This amount in the special account must equal the future value

PV(l+i)n of the amount borrowed; this gives PMT = PVi/[i-(l+i)—nJ.

Compute the payments due on a home loan of $31,300 for 25 years at

9-1/8% annual rate. If you could only pay $300 per month, how much

money could you borrow? If you paid $300 per month for a 25-year

loan of $31,300, what would the interest rate be (solve iteratively)?

Next, take a limit to derive the recipe PMT = PV §.(1-e_IN) for

the same situation except that interest is compounded continuously

and the payments are to be made continuously. Compute with this

recipe the payments due on $31,300 for 25 years at 9-1/8% annual

rate. How good is this continuous model as an approximation to the

exact payment calculated above?

P3. Leonhard Euler (1707-1783) offered the following continued

fraction expansion (see Problem P5, Ch. 6):

p
—

— 1
4+ 18+ °°°

 e-1 _——=

=
]
b

+ Q
|

=
=

+ — 0+ —
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Another is

T~ 1I- 1+ 2- 3+ 2- 5+ 2-

Find the number of terms of each expansion necessary to compute e

correctly to 5 decimal places.

The second of these expansions may be generalized to compute

values of the exponential function:

and

x  x?/(4X3) x?/(4X15) =x*/(4X35) ... z®/[4X(4n*-1)] ..
1-x/2+ 1+ 1+ 1+ 1+

X
e = 1+ 

Use the first 6 terms of each of these expressions to compute

el*23; compare your results to the correct figure el-2% = 3,4712095.

(It is clear that the last expression offers a highly efficient

computational method.)

Next, calculate 1n 3+4212295 using the continued fraction

expansion

P4. Write out the first five terms of the binomial expansion of

n
é_+ g:) . Now take the 1limit of each of these terms as n goes to
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infinity. This results in a polynomial of degree four in .

Evaluate this polynomial for x = 0.12345 and compare the result

to ¢¥. Is this an efficient way to compute values of ¢® on a ma-

chine without a button for that function?

P5. Describe at least one plausible situation in a field of your

own current interest, perhaps biology or business or chemistry,

where the logarithmic and exponential functions may be applied to

obtain a useful numerical solution. Discover such a real-life

situation by surveying a current issue of an appropriate journal in

your field , (See the Bibliography for some suggested journal titles.)

Answers to Starred Exercises and Problems

Exercises la. 1,1102675 lc. 144134836

1b. 2.3773042 le. 0.0099503

3. for k= 1/32, (2"-1)/h = 0.7007086 and
(Zh-z_h)/Zh = 0.6932014; for

h =1/512, (Zh—Z_h)/Zh = 0.6931474

4. 1n 2.7 = 0.,9934113 In 2.8 = 1.0297971

e = 2.71481080

6. annual compounding yields $2776.1143;

continuous compounding yields FV = PVeIN

where I is the rate per year over N years

1

7. I = ¢ (%%)pn - 1] ; the annual rate is 0+1486984;

the continuous rate is 0,1386294

8. Ty = 049172793, T, = 0.9178574;

erf(1.23) = 0.,9180501

9. 47275373 years

Problems Pl. (s = 1.3853572;

CIO = Doql?qEEA

Czo = D.qléflafie
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VOLUMES

INTRODUCTION

In his Mathematical Thought from Ancient to Modern Times (see

Bibliography) Morris Kline describes the four major types of prob-

lems that led to the creation of the calculus. These are the prob-

lems of calculating:

(1)

(ii)

(iii)

Motion: The distance traveled by an object, its velocity,

its acceleration, and the relationships between these

quantities.

Tangents: The tangents to curves and to solids. These

were needed in geometry, and they were also useful in optics

and in the study of motion.

Extremes: Maxima and minima for various functions. No-

tably, Galileo (1564-1642) found the correct angle (m/4)

to fire a cannon for maximal range.
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(iv) Lengths, areas, and volumes: The distance traveled by a

planet around the sun, areas bounded by curves, volumes

bounded by curved surfaces, centers of gravity, and total

gravitational attraction of a body.

In the present chapter we shall study some methods that the calculus

defines for expressing volumes as integrals of functions of real

numbers.

The first significant progress in the development of these

methods was made in the third century B.C. by Archimedes. In order

to calculate the total volume he used ''methods of exhaustion'" for

conceptually packing small regular shapes into a larger space having

a curved surface. His techniques were special, though, for each

problem, and he was able to obtain answers for only a few special

shapes.

The next important additions to these methods came in the seven-

teenth century A.D. when Johannes Kepler offered to help wine dealers

find the volumes of their kegs. Kepler found the volume of a ball by

considering it to be made up of many cones of various sizes, all hav-

ing their vertices at the ball's center. Then he established the

volume of a cone by imagining it sliced into many very thin wafers,

just as we shall do below. Thus he found the cone to have a volume

equal to one-third its height times its base area. Since the ball

was made up of many cones, all with their bases in its spherical sur-

face, the volume of the ball was found to be one-third the radius

times the surface area. (Do you suppose wine was stored in balls

and cones?)

The calculus has since given us several techniques that may be

applied with minimal ingenuity to a wide variety of solid figures.

We shall first give an Example of Kepler's trick, the '"slab method,"

for finding the volume of a cone. Another Example of this method

establishes the volume of a ball directly. A final Example uses an

alternative, the 'shell method,'" to develop the volume of the cone.

In each of these Examples a numerical approximation is found to il-

lustrate the method.
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These methods are then applied in the Exercises and Problems to

find the volumes of many different solids. In each case a numerical

sum is calculated to realize a finite approximation, and this sum is

compared with a theoretical result obtained by means of the Funda-

mental Theorem. A final Problem considers the pressure exerted on

an underwater viewing porthole at Marineland.

ExaMPLE: THE SLAB METHOD FOR A CONE

Let us find the volume of a cone, a right circular cone of radius

r = 1.2 and height # = 3.4 (Figure 9.1). We first rearrange the

problem to consider the cone as lying in a

space with coordinates x, y, and z; we have

the vertex at the origin, and the axis of

the cone lies along the x-axis. The line

& in the (x,z)-plane that goes through the

origin and is » 1.2 units above the x-axis
Figure 9.1

at a distance # = 3.4 units out along the

x-axis is a generator of the cone (Figure 9.2). This line has slope

r/h = 1.2/3.4, so its equation is z = %—x = 0,3529412 * (and y = 0).

We now imagine that the region in the (x,y)-plane below the graph of

 

 

A)z \.
(5‘&, Y

/w
’

Figure 9.2 Figure 9.3

this line and above the interval [0,%] of the x-axis is revolved

around the x-axis to sweep out the volume of the cone. To find that

volume we subdivide the interval [0, 3.4] of the x-axis into »n = 10

equal pieces and imagine slicing the cone into 10 slabs with all the

faces of the slabs parallel to the (y,z)-plane (Figure 9.3). That

is, each slice is perpendicular to the x-axis.
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A single slice corresponding to the <th subinterval has thick-

ness h/n = 0.34. The radius of its larger face is %-xi = [0,3529412 Ly

and the radius of its smaller face 1is %'xi-l (Figure 9.4). Hence

2
the area of the larger face is T Zz'xiz = 043913403 xiz and that of

h

Figure 9.4

2
the smaller is w iz-x;_l. The volume of this slab will lie between

 

and

mr2x?
7

n

The total volume of all the slabs lies between

z 2.2
§ :'nr xi-l

1=1 hn

and

n

E :mflzx.z
_r

=1 hn
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These two sums, however, are simply the lower and upper sums Ln and

ho 2 23
Yn for the integral.}(. T +24x. Since ™%Xis an antiderivative

0 2 2h 3h
: : e mrh .

for the integrand, this definite integral has value-—fg— , which 1is

the volume of the cone. We estimate this volume for our cone, with

radius 1.2 and height 3.4, by calculating for ten slabs the sums L,;,,

. ml.22
Uip, and Ty9. Since TIX10. - 0+,1330557?, we have

0,1330557 (Os + 06342 + O0ubA%2 + ... + 3406%) = 44383L527;t - o )

Uro = L1 - Os + 0412330557(344) 2 = 5.92177L5;

o3 o 1= %(LIO + UIO) = 5,152714k.

These results compare with the theoretical volume 541270792 =

m(1.2)2(3.4) . Doesn't the theoretical method have ease and power?
3

ExaMPLE: THE SLAB METHOD FOR A BALL

We now apply the same sort of reasoning to a ball of radius »r. By

symmetry we may estimate the volume of a half-ball and multiply that

by 2. Again we place the half-ball in (x,y,2)-space, with the cut

face lying in the (y,z)-plane. We subdivide the interval [0,r] into

y

FKN@

////

v
_JAJ

 

   

 

    
Figure 9.5 Figure 9.6 Figure 9.7
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n equal pieces and again slice this solid at each of the points X

that partition [0,r] (Figure 9.5). The volume of the half-ball is

swept out as the region in the (x,z2)-plane under the graph of /gzt;?

and above [0,r] is revolved about the x-axis (Figure 9.6). One slab

of this total volume is swept out by the region under the graph of

vr?-2? and above [r.i-1° Pi] (Figure 9.7). This slab has area on the

back face of m(»? - xé 1) and area on the front of m(r? - xiz). Its

thickness is r/n, so its volume is surely between %fl-(rz - xé_l) and

rm 2 2
r- - Xx. .

n ( 1 )

As in the case of the cone, we may add up similar estimates for

each of the n slabs to get a total volume for the half-ball between

7n-1

= - a2
=0

and

n

E;Z—“(rz—xz)
=1

And, again, these estimating sums are, respectively, the upper and
r

lower sums Uand L for an integral, namely J m(r?-x?)dz. An

antiderivative in this case is mw(r%x - x3/3), so

 

r
3

./Z T(r?-z3)dx = w(r® - r¥/3) = 2gr

(The whole ball has twice this volume or 4mr3/3.)
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If we estimate this integral for a ball of radius r = 2.3 by

using n = 10 subintervals to cut the ball into ten slabs, we find:

Lig = EHISD?ELL;

Uiy = Lo + ——7° = 27:329987;

Ty = (LIO + Ulo)/z = 25,4148794.

The exact answer is 25.482505.

ExamPLE: THE SHELL METHOD FOR A CONE

Instead of cutting our cone into slabs, we might have elected to cut

it into cylindrical pieces. This means that we imagine the solid

cone to be built up of concentric shells or tubes that telescope

together to make up the whole cone (Figure 9.8). Then we estimate

the volume of each shell and add them up.

Figure 9.8

To do this for our cone of radius » = 1.2 and height A& = 3.4,

we first rearrange it to have its base in the (x,y) plane and its

axis along the z-axis. Then we subdivide the radius into 10 sub-

intervals and consider the shells with inner radius (Z-1)»/10 and

outer radius Zr/10, ¢ =1, 2, ..., 10. The height of the cone

above the point x on the x-axis is 3.4 - %ig-x, so the shell lying

between radii 1.2(Z-1)/10 and 1.2 £/10 has a height between

 

Figure 9.9 Figure 9.10
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3.4(1 - (2z-1)/10) and 3.4(1-2/10) (Figure 9.9). If we cut this

shell and lay it out flat, we see that its volume is approximately

its height times its thickness times its circumference (Figure 9.10).

Thus [3.4(11-2)/10][1.2/10]1[27(1.2)(£2-1)/10] is the approximation we

get from its inner height and circumference; [3.4(10-7)/10][0.12]

[0.24772] is the outer estimate. (Notice that, in this special case

of a cone, these inner and outer estimates tend to be near each other,

since the height diminishes as the circumference increases.)

Let us calculate the sum S;, of these outer volumes for the

ten shells:

10

S10 = (3.4)(0.13)(0.24)fl :;;;i(lo_i)

10

0.0307625 E 7 (10-2)

=1

5.0758084.

The volumes corresponding to the inner measurements also add up to

0,0307625 (2-1) (11-2) = S;p.

1=1

The integral corresponding to this shell method is

1.2 1.2

/ 3.4(1 - 2/1.2)2mx dx = 6.8'rr/ (x - x2/1.2) dzx.
0 0

Its trapezoidal sum T;, is exactly the sum S;, that we have computed.

EXERCISES

1. Use the slab method to estimate volume in each of the following

cases. Divide the interval [0,5] of the x-axis into 5 subintervals,

each of length 1. For the Zth slab, ¢ =1, 2, 3, 4, or 5, find the
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area of the slice through the solid at x = ©¢. Since each slab has

unit thickness, the sum of these five areas is your volume estimate.

In each case, compare your estimate with the theoretical volume (com-

puted from the appropriate definite integral or otherwise).

*

a. The cylinder: 0 <ax <5 and y? + 2% < 1.

*

b. The bar: 0 <x <5and 0 <y <land 0< 2 < 2.

S-x.“c. The pyramid: 0 < x 5 and |y| < 5-x and |z]

A A

d. The thing: 0 <x <5 and y? + 2% <5+ (x-2.5)2.

2. A ball may also be thought of as made up of cylindrical shells.

Estimate the volume of the same ball that we used in our Example of

the slab method, with radius » = 2.3. Cut it into n = 10 shells and

follow the Example of the shell method for the cone. The volume of

each of its shells is approximately its height times its thickness

times its circumference. The inner measurements for the tenth or

outside shell give

2 /2.3% - 2.07%2[0.23][4.147],

for example. Find the approximate

volumes of the other nine shells

and add them up to get the sum S;,

for the ball.

 

Figure 9.11

For what integral is S;, equal to the trapezoidal sum T;4?

*3., Use the slab method to find the volume of a solid whose base in

the (x,y)-plane is the region between the graph of y = sin x and the

interval [0, m/2] of the x-axis,

and for which each cross section >

or slice parallel to the (y,z)- A’ ~s

plane is a quarter circle. w/2

First find the estimates of this

volume corresponding to lowerP & Figure 9.12

125



and upper estimates for n = 10 slabs; then find an integral for

which these are just L;y and U;o. Use an antiderivative to evaluate

the integral and compare the theoretical volume with your trapezoidal

sum.

4. Calculate the volume of the solid swept out by rotating about

the x-axis the region below the graph of y = x? and above the inter-

val [.12, .34]. Do this first by use of n = 10 slabs and then by

use of n = 10 shells. In each case, find the integral corresponding

to your sum and evaluate it theoretically as well.

 

Figure 9.13

5. Revolve the region of Exercise 4 about the y-axis (instead of

the x-axis) to sweep out a solid. Calculate its volume by the use

of 10 slabs and also by use of 10 shells. In each case, find the

corresponding integral and evaluate it theoretically as well.

*6. Find the volume of the gold ring made by cutting a cylindrical

hole 11 mm in radius out of a sphere of radius 14 mm. Do this by

imagining that the region bet-

ween the graphs of y = /142-x? P .
/

and y = 11 is revolved about the / \

x-axis. Use 10 slabs first,

then find an integral corres- \ /

ponding to this sum and evaluate

it.

Figure 9.14

*7. Use 10 shells to find the volume of the solid swept out as the

triangle with vertices at (0,0), (1,0), (2,1) is revolved about the

x-axis. Check your answer by calculating it as the difference in

volume of two cones.
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*8. In our Example of the shell method the volume of a shell was

estimated as height X thickness X circumference, and the trapezoidal

sum averaged such volumes for inner and outer measurements. An

alternative volume estimate is %#4, where % is the average height and

A 1is the exact cross-sectional area 4 = W(P; - rin), for outer and
ut

inner radii ro and rin' Recalculate the volume of the solid de-
ut

scribed in Exercise 7 using this new volume recipe for each shell.

Which method is more accurate?

PROBLEMS

Pl. Let a solid be generated by rotating about the y-axis the

region bounded by x = 0, y = 0, y = 1, and the graph of y = 1In(1l/x).

Find its volume using 10 slabs and then 10 shells.

P2. Estimate the volume of the ball of radius 2.3 as follows. Cut

the half-ball described in our Example into 10 slabs. Then estimate

the volume of each slab as the

volume of a right circular cone

//”\ cut off .23 units above its
\

/// . base. Then add up these

estimates.

Figure 9.15

P3. Compute the modified trapezoidal sum C;, for the cone of our

Example for the slab method, where r = 1.2 and A = 3.4, and compare

your result with the theory. Attempt to do the same for the half-

ball of radius 2.3.

2

=,
Figure 9.16 Figure 9.17
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Next, reestimate the volume of the half-ball by making a pre-

liminary slice at o = 2.3/V/2. Hence you have two pieces obtained

by revolving about the x-axis the regions below the graph of

y = v2.3%-x% and above the intervals [0, 2.3/¥2] and [2.3/V2, 2.3].

Estimate the volume of the first piece by means of the modified

trapezoidal sum C;5. Next estimate the volume of the second piece,

the "spherical cap,' by the slab method applied to the cap with its

cut face in the (x,y)-plane. Use 10 slabs and the modified trape-

zoidal sum C;,. Finally, add up your results and multiply by two

to approximate the volume of the whole ball. How accurate is your

answer?

P4. The pressure that a liquid exerts on a surface submerged in it

is proportional to the area of the surface and to the depth of the

liquid. Above one square centimeter of bottom area there lies 1 cc

of liquid per centimeter of depth. Since sea water weighs 1.025 g/cc,

5m
deep

4
7
\—
N/
N—__—

Figure 9.18 Figure 9.19

the pressure at a depth of 4 cm is 1.025h g/cm2 in the ocean. This

pressure is exerted in all directions, so that a round viewing port

at Marineland that is below water has an outward pressure on it cor-

responding to its depth. However, the surface of the port does not

all lie at any given depth.

To be specific, suppose that a port of radius r = 0.27 m has

its center 5 m below the surface. We approximate

the pressure on this port by subdividing the

vertical area into n = 10 narrow horizontal

strips, each of width 5.4 cm. The depth of the

bottom strip is 527 cm at its lower edge and

(527-5.4) cm along its upper edge. Its width
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varies from 0 at the bottom to 2/27%7-21.62 for its top edge. (We

shall now suppress mention of the units of length or of weight for

this problem; every measurement will be converted into centimeters

or grams.) Accordingly, the pressure on this bottom strip may be

estimated either as 0 or as 2v27% - 21.62X5.4X521.6X1.025. More

generally, the Zth strip from the bottom of the port will have a
 

pressure on it estimated at its top edge as 2/272% - (27 - 5.47)2X

5.4X(527 - 5.47)X1.025.

Add up these estimates for the ten strips to get the sum S;

estimating total pressure on the port. For what integral is this

the trapezoidal sum T;,? How accurate is T;, as an estimate?

Answers to Starred Exercises

Exercises la. 15,707963, which is exact

1b. 10, which is exact

lc. 120 (166 2/3 is exact)

5. /4 f7? sin? @ dz = (1/4)% = D.L1GA503

2'n,6 V75 (75-22)de = 27206991 mm® = 2,7206991 cc

7. Uyo = Lig = 14036725k (/3 is exact; error is 1%)

8. Tyo 1.s0524335 (m/3 is exact, error is %%)
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CURVES AND POLAR COORDINATES

INTRODUCTION

As we mentioned in the Introduction to Chapter 9, the calculation of

lengths of curved lines was one of the principal problems that led to

the creation of the calculus. It was an old and intractable problem.

Archimedes had used polygons inscribed in a circle to calculate m,

but nothing further was discovered about curve lengths until the

seventeenth century. In fact, even such a powerful mathematician as

Descartes (1596-1650) had asserted that the length of no curve but

the circle would ever be calculated. He was proven wrong, however,

first by Torricelli in his work on the logarithmic spiral and then by

the English architect, Christopher Wren, who established the length

of the cycloid.

These and other particular results provided some of the setting

in which Sir Isaac Newton (1642-1727) and Baron Gottfried Wilhelm von

Leibniz (1646-1716) worked. In fact, Newton said that if he saw

further than other men, it was only because he stood on the shoulders

of giants. We shall see Examples of what he saw, first for the two
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functions f(x) = 2Vx and g(x) = x2/4. Then the exponential spiral

provides our Example of parametric equations for a curve while

Archimedes' spiral illustrates the calculation of curve lengths in

polar coordinates.

In the Exercises we will explore further calculations of length

for these same curves as well as for the parabola and the cycloid.

In the Problems we will examine how the cardioid and the ellipse are

measured for length.

EXAMPLE: f(z) = 2Vx

How long is the curved line that is the graph of the function f(x) =

2/x, say between (0,0) and (1,2)? That is, these two points are on

that graph (see Figure 10.1), and the distance between (0,0) and

(1,2) is V/(1-0)2+(2-0)2 = /5. Thus /5 is the length of the dotted
line in Figure 10.2; the curved line is certainly longer, but how

long is it? If Figure 10.2 represented a map of a curved road bet-

ween two towns, the dotted line would represent the distance between

the towns ''as the crow flies." The problem is to find the distance

along the road.

(1,2)

  
Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4

There was a similar question at the beginning of Chapter 7,

where we asked ourselves how to measure 7, the distance along the

curve of a semicircle. We avoided this question then in favor of a

theoretical argument that led us to compute the area of a disc in

order to measure m. However, we now address the question squarely:

how do we find the length of a curve?

Suppose we choose a point midway, say @ = % and y = 2/% = /2,

and calculate the lengths of the two dotted straight lines of
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Figure 10.3: A2e/22 4 /%2+(2-/§)2 = 242701596. This is, of course,

a larger number than V5 = 2423k0LA0, which is the length of the sin-

gle straight line from (0,0) to (1,2). But the curve is longer than

the sum of the lengths of the two dotted lines in Figure 10.3, as

well. If we divide the interval [0,1] of the x-axis into five sub-

intervals of equal length, we can define the broken dotted line of

Figure 10.4 that approximates the curve with five short chords. In

order to calculate the distance along this dotted route, we organize

our computations with the sigma notation. The total length is:

5 5
Z [xz - @y)t (2- 2'%-1)2]
=1

ve. - 2vx. 2 |’z
1 -1

S 2
=§:1+.—______

i T T
1=1

We calculate this number and record it in Table 10.1 with our pre-

vious results for a single chord (as in Figure 10.2) and two chords

(as in Figure 10.3). We list also the similar calculation for ten

chords, which is fairly hard work.

 

TABLE 10.1

Total

Number Length
of of

Chords Chords

1 223606480

2 22701596

5 c 2881026

10 22927511

In order to understand the limit process underlying our calcula-

tions, let us inspect the sum for the lengths of the chords over n

equal subintervals:
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2| (fep) - eY 2
2{; Nz (@, - =1)
7= 7 1-1

The mean value theorem says that there is a number Ei between e1

- = - 1 .and X such that f(xi) f(xi-l) (xi xi-l)f (Ei), consequently,

our sum may be restated as

n 5
Z [1 + f! (&i)z] (@, - @,).
'L:

In this form, this sum is seen to be a Riemann sum for the integral
1 1

3
‘/g.[l + f'(x){] dx. Therefore the limit as »n tends to infinity of

the sum of the lengths of the approximating chords is this integral.
1L

The integral may be rewritten as (1+41/x)? dx. If the sub-
0

stitution x = tan? 0 is made, the resulting expression./g 2sec36de

may be integrated by parts. This theoretical length, the limit of

the lengths of chordal approximations to f(xz) = 2/x over [0,1], is

V2 + 1In(V/2 + 1) = 2.2955871.

We remark that it is typical of curve length problems that the

antiderivative of [1+f'(.9c)]1/2 is difficult to find, even for an ele-

mentary function f. Numerical methods thus often offer our only hope.

With this in mind, we have calculated the sum, as in Table 10.1 but

for 20 chords, to be 2.2945372; for 100 subintervals it is 2.2954877.

Do not attempt these calculations yourself (unless your machine is

programmable); we cite them to show that a hundred-chord approxima-

tion has only 0.004% error in this case.

EXAMPLE: g(z) = z*/4

Suppose we interchange the roles of x and y in our curve to get the

function g(x) = x?/4 on the interval [0,2]. The graph of g is

merely the graph of f reflected in the diagonal line y = x (see

Figure 10.5). Thus the length of this segment of the graph of g 1is
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exactly the length we have been investigating (g is the inverse

function for f). And, of course, the distance in Figure 10.6 from

end to end of this segment of the graph of g is V5, just as before.

 

  

(2,1) (2,1)

| I |

Figure 10.6 Figure 10.6 Figure 10.7

But the distance along the chords in Figure 10.7 is

 

A2+ 32 + A2 4 (1-%)2 = 2,2807764;

this is not the same estimate as the case n = 2 for f. This differ-

ence tells us that our subdivisions of the curve are not of equal

length along the curve or along the chords. The equal intervals are

along one or the other axis. Exercise 2 asks for the estimates for

g in case n = 5 or 10; clearly the limiting value for the length of

g over [0,2] will be exactly the limiting value for f over [0,1].

Nevertheless, along the way, the finite stages for f and for g will

differ.

ExAMPLE: PARAMETRIC EQUATIONS AND THE EXPONENTIAL SPIRAL

Suppose we describe the movement of a particle in the plane by giving

its x and y coordinates at various times ¢, say x(¢t) = et cos t and

y(t) = et sin t. Then the path of the particle is not the graph of

the function x(t), nor of the function y(¢), but rather a simultaneous

graph for both equations. You can picture this curve by remembering

that the point with coordinates (cos £, sin t) lies on the circle of

radius 1 centered at the origin. Thus (cos ¢, sin t) corresponds to

the point ¢ radians counterclockwise from the x-axis. Hence

(et cos t, et sin t) lies on the same line from the origin but at a

distance et along that line. Since 0 < ¢ means 1 < et, as t increases
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from 0 the particle spirals outward from (1,0), going counterclock-

wise around the origin as it goes away from the origin. Figure 10.8

shows this curve, called the exponential spiral, for 0 < ¢ < 1n 2.

The distance along a chord from end to end of this curve segment is

L
[(2 cos In 2 - 1)%2 + (2 sin 1n 2 - 0)2]7 = 1.,38L73A8.

To make a better estimate of the distance the particle travels

along the curve between time 0 and time ¢ = 1ln 2, we choose the mid-

point in time, t = 1n(2)/2 = 1In/2, and find a point (1.33, 0.48)

along the curve with which to make the dotted line approximation of

(1.54, 1.27)

 

 
 

(1,0) 
Figure 10.8 Figure 10.9

Figure 10.9. The sum of the lengths of these two dotted chords is

[(V2 cos Inv2 - 1)% + (V2sin lm/PZ-')z]l/2

+ [(2 cos In 2 - V2 cos 1Inv2)? + (2 sin 1n 2 - V2 sin 1n;/§_)‘°']1/2

= 1.4071887.

For more subintervals we utilize the sigma notation to condense

unwieldy expressions. If the time interval [0, 1In 2] is divided into

n equal pieces, the sum of the lengths of chords is

n 1

2 2\'z3 ([x(ti) etepy] o [uep -v ) |
=1
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We can compute this sum for n = 5. The results are presented in

Table 10.2 along with our previous sums.

 

TABLE 10.2

Total

Number Length
of of

Chords Chords

1 13867388

2 1.+4071.887

5 1+ 41,30825

We note that the sum for n = 5 was a challenge to do properly; our

first two attempts failed (absurd answers resulted from some incor-

rect keying operation). In order to evaluate the 1limit of these sums

as n > o, we both multiply and divide by the increment in ¢ to dis-

play the sum as

n L
z(t.) - x(t. )\? y(t.) - yt. N |?

1 -1 1 -1

Z[( £, -t ) +< t, -t >](ti'ti-1)'
7:___1 17 ’L.-']. -1

Notice here that

x(ti) - x(ti-l)

t. - t.
7 -1

is a difference quotient that approaches x'(ti), the derivative of

the function x(¢t) at ¢ = ti’ as ti— > ti' Similarly, the summand
1

y(t’l,) - y(ti-l)

to - t-
t_1 1

has limit y'(ti); it can be shown that the sum has for its limit as

n -+ « the integral
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In 2

A [x' ()2 + y' ()17 dt.

PoLAR COORDINATES

Let (x,y) be the ordinary Cartesian or rectangular coordinates of a

point in the plane: the polar coordinates of that same point are a

number pair (r,0) such that x = r cos 6 and y = r sin 6. There are

other polar coordinates for that same point; (-r, 6+m) 1is another

pair that works as well as (r,0), and (r, 6+2m) is still another.

If f is a real valued function of real numbers, the polar graph of

f is the graph whose parametric equations are 6 = ¢ and r = f(¢),

where (r,0) are the polar coordinates of the point at '"time'" ¢. We

could simplify this statement by suggesting that "6 be taken as

parameter'" to graph (f(6), 6) in polar coordinates.

For instance, if f(x) = ex, then the polar graph of f is the set

of points having polar coordinates (et,t). The rectangular coordi-

nates for this graph are x = et cos t and y = et sin t! (Be sure

you understand this.) This is the parametric curve of our previous

example (see Figure 10.8). Another example is the polar graph of the

function f(x) = x: parameterized by 6 this is a graph of the equa-

tion r = 6. This is called the spiral of Archimedes; it is shown

in Figure 10.10. To view this curve

from a different perspective, we

translate its parametric equation

//f~ into parametric equations for the
 

corresponding rectangular coordinates.

Since the general rule is x = » cos 0

and ¥y = r sin 6, the parametric 
curve is (x,y) = (¢t cos t, t sin t);

Figure 10.10 here we have replaced the symbol ©

by the symbol ¢.

Conversely, if we translate the rectangular graph of the identity

function f(x) = x into polar coordinates, we use the general rule
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r = /x2+y2 and 6 = arctan(y_) . This gives r(¢) = V2 ¢ and 6(¢) =
x

arctan 1 = g—. Here we have replaced the parameter x by the para-

meter ¢; the graph in polar coordinates is the straight line through

the origin with slope 1. It is the same graph as it was when it was

described in rectangular coordinates, and it is not the spiral of

Archimedes.

Now suppose we would like to find the length of a segment of the

polar graph of a function. One solution is to translate the polar

equation into two rectangular ones. Sometimes that's the easiest way

to solve this problem. However, it may well be easier to attack the

polar coordinate problem directly as in Figure 10.11. Here we wish

to measure the distance along

a chord from the point with

polar coordinates (ry,0,) to

(r1,01). The length of the arc

from (ry,00) to (r¢,0;:) is

ro(01-09), and for small enough

increments 6; - 6y in the para-

 

Figure 10.11 ) )
meter this number is a good

estimate (see Exercise 4) for the length of the straight line from

(r9,00) to (r¢p,01). The distance from (ry,6;) to (r;,0;) is of

course r; - rg. The arc from (r(,00) to (ry,0:1) meets the radius

0 = 0, at right angles. Hence the Pythagorean theorem says that the
L

length of the chord is approximately [roz(el-eo)z + (rl-ro)fl 2.

ExamMmPLE: THE SPIRAL OF ARCHIMEDES

Let us apply this recipe to calculate the length of the spiral of

Archimedes between m/2 and m. The two ends of this curve segment

have rectangular coordinates (0, m/2) and (m,0) so the distance bet-

ween them is [(7T/2)2+1T2]1/2 = 345124074 (Figure 10.12). The recipe

gives 2489249734; this is a very rough approximation to the length of

the chord itself. Nevertheless, as the points get closer together

(as in Figure 10.13), the recipe should give a better approximation.
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Figure 10.12 Figure 10.13

We wish to calculate the lengths of chordal approximations given by

our recipe, which for »n chords is

n

Z [ri-lzcei -8,)" (- I’i_l)z]l/z.
=1

In the case of the spiral, r = 6 and the subintervals are of

length Gi - ei_ = (m - m/2)1/n = m/2n. Hence
1

_ (m-)mT . T
=7 (¢-1) n 2n

r.
r1-1

and

Pi - ri-l = m/2n.

Our recipe thus becomes (here we have adjusted the range of the

summation index downward by 1, for clarity):

S)()]

_ T &1 (n+2)m\? 2
T 2n :ZE: Lr\S=—
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We have tabulated our results in Table 10.3.

TABLE 10.3

 

n Total Length

1 282459734

2 347208072

5 38062480

10 39182658

20 39744423

In order to compute a theoretical result, we divide each summand of

the first recipe above by ei - ei_l to get

n r. - p. \2] 7%
z:r,z,,_t__z-_l_ b - o
| 71T\ 8-0 A
1=1

Again the MVT tells us that there is a number Ei in the Zth sub-

interval such that

r6.) - r(6. )
7 1-1 ,

—5.-5,- r'(E).
7 -1

Therefore this sum is a Riemann sum for the integral

b 1

‘}/. [r(68)2 + r'(8)2]7 46.
a

T L
In our case, where r»(0) = 06 and »'(6) = 1, we have./” (62+1)2 d6.

m/2

Exercise 5 asks that you show that this gives a theoretical length

of 4.0307311.

Compare this theoretical, precise length with our calculated

estimate for n = 20: the estimate is about 1%% low. Since it is
1

not difficult to find an antiderivative for (62+1)6, the ease with
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which the theory provides precise answers is impressive. On the

other hand, the recipe will provide us with good estimates, even

when no antiderivative is in sight.

EXERCISES

1. For each function f(x), estimate the length of the graph over

[0,1] by approximations with 1, 2, and 5 chords. Then find the exact

length by use of the integral formula.

-1In cos xz "o f)
3/ 2

x d. f(=x) )

*2. Find the lengths of the chordal approximations for the function

"a. f@)

Xx -

Le"+eb, f)

g(x) = xz%/4 (of our Example above) over [0,2] when 5 and then 10

o . 2 1 2 h

chords are used. Finally, integrate 15 Yl+g' (x) dr and evaluate the

limiting length of this curve segment.

3. Duplicate the calculation of our Example of the length of the

parametric curve x(t) = et cos t, y(t) = et sin t¢. That is, find the

lengths of the approximations by 1, 2, and 5 chords. Then use an

antiderivative to evaluate the appropriate integral on [0, 1n 2] and

compare this theoretical result to your calculated estimates.

4. Show that in Figure 10.11 the distance from (r(,0,) to (ro,0:) is

01-60
2
 exactly 2 ry sin ( ). Then prove that as 6; - 0,, this exact

length approaches our estimate ry(0;-06,). Do this by showing that

lim 2 sin(®/2) _

>0 '
1.

5. Verify the calculations of the Example to approximate the length

of Archimedes' spiral between m/2 and m. Then find an antiderivative

for v/62+1 and so calculate the theoretical length to be 4.0307311.

*6. Compute the length of the approximation by five chords to the

spiral of Archimedes between 27 and 5m/2. Then compare your esti-

mate to the limiting length given by the integral.
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7. If a ball is thrown horizontally from the top of a tall building,

Newton's laws of motion will describe its travel. If we choose a

coordinate system with origin at the building's top, then its hori-

zontal coordinate will change at a constant rate, which is the

velocity imparted by the throw. Its vertical coordinate at time ¢

willbe negative as the ball falls, and its size will be proportional

to t2. Suppose a given throw results in the ball

' taking the path described parametrically in feet

at time t by x(¢) = 64t and y(t) = -16t2. Find

the time at which the ball hits ground if the

0
—
—
—
—

—

  

   

  
   

building is 100 feet high. Estimate the total

:&fl length of its path by use of approximations by n=1, 2,5, and 10 chords. Then find an anti-

Zee= < derivative for the appropriate integral and so

get an exact answer. Compare this answer to your estimates.

*8. The path a nail in a tire travels as the tire rolls is called a

cycloid. We imagine that the center of the tire (the center of the

axle) is moving at a constant speed in order to parameterize this

curve. Since the tire doesn't

slip on the road, when the ,

bottom of the tire is at a point z

t on the x-axis, the angle tOP  

is equal to ¢t. Show that the

x-coordinate of P 1is

Figure 10.14

x(t) =t - sin t

and that the y-coordinate of P is y(¢f) = 1 - cos ¢t.

Now estimate how far the nail travels when the car goes 1 mile.

That is, assume the tire has radius 1 foot,

find the length L of one arch of the cy-

cloid and then compute L/2m = the ratio of

the length of the arch of the cycloid to

 

the base length. Do this by estimating L/2 over the interval [0,m]

with n = 1, 2, and 5 chords. Then find an antiderivative for the
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appropriate integrand and so compute the exact value of L/2m.

PROBLEMS

*P1. Consider f(x) = 1 + cos x: the 'rectangular" graph of f is the

wavy line shown in Figure 10.15. The polar graph of f is called a

cardioid. The complete graph, shown in Figure 10.16, is tracked out

by (f(6), 06) as 6 goes from O to 2m. Find the length of the segment

of the cardioid in Figure 10.16 that lies in the first quadrant.

 

Figures 10.16 and 10.16

That is, find the length of the polar graph (1 + cos 6, 6) for

0< 0 < m/2. Do this by subdividing the domain [0, m/2] of the para-

meter 6 into n = 2, then 5, then 10 equal parts and estimating curve

length to be

n

Z {(1 + cos[(4-1)¢1)%0? + [cos i® - cos(i-1)¢]%}*
=1

where ¢ stands for m/2n. Then find the limiting theoretical value

for this curve length by integration and compare your estimates with

it.

*P2. The parametric equations for an ellipse are x = a cos t and

y =bsint for 0 <b <aand 0 < ¢ < 2m. Show that the total length

of an ellipse 1is
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m/2 1

da / (1 - e? cos? £)72 dt

0

where e is the eccentricity of the ellipse, e = /ézjgz/a < 1. This is

called an elliptic integral (of the second kind); it has no elemen-

tary antiderivative. Estimate the integral in order to estimate the

length of the parametric ellipse for 0 < ¢ < m/2 when a = 1 and

e = %; use the trapezoidal sums T, and Ts.

Observe the small error of your results in relation to the cor-

rect answer, which is 5.8698488. Can you explain this by referring

to the modified sums Cn that are discussed in Problem P1l, Chapter 77

Answers to Starred Exercises and Problems

Exercises la. All lengths are v2 = 1.414213k6.

1b. 14414213k for n = 1, 14296198 for n = 2,

144372275 for n = 5; 1.4397099 for the

integral

lc. 14174306 for » = 1, 1.2133813 for n = 2,

12241467 for n = 5; 1l.226191L2 for the

integral

2. 224932281 for n = 5, 2.2849978 for »n = 10;

2¢2955871 for the integral

6. 10.,97007L for n = 5; 11.214313 for the

integral

8. 141854471 for n = 1, 1.2445528 for »n

1.2681480 for n = 5; 4/m = L.2732395 for

the integral

] N
-

Problems Pl. 341136L43 for »n = 2, 29550987 for n = 5,

28939200 for n = 10; 28284271 for the

integral

P2. T, = G.86°8367, Ts = 5.86984488
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SEQUENCES AND SERIES

INTRODUCTION

Sequences and series have fascinated people for thousands of years.

They are arrows pointing at the unreachable infinite. Aristotle

described the paradoxes due to Zeno, of Achilles racing the tortoise

and of "dichotomy,' both of which are answerable today as questions

about infinite series. And Archimedes understood that the geometric

series 1 + l-+ 1;—+ l;—+ ... was the number 4/3. But there was very

little more thai thai known, in theory or practice, to guide Isaac

Newton when he went to work on the calculus. He used series in

wholely new ways, applying his techniques of integration and differ-

entiation to them term by term.

Newton was the first to derive the series expansions for many

elementary functions. In fact, series were often the only way he

could deal with these functions theoretically. For some time, series

also offered the best computational methods for the values of the log

and trig functions.
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Series are a very powerful method for use with a calculator.

They are lots of fun to sum, too, so they are a pleasant way to learn

much about the calculus. We shall begin with the definition used

today, although modern notions of series convergence were not avail-

able to the men who discovered these facts we shall study. This

definition is immediately applied to study the harmonic and p-series.

Next we shall see Examples of geometric series and of alternat-

ing series. Further Examples illustrate the estimation of remainders

and the acceleration of convergence using several different tech-

niques. The Exercises give practice in forming partial sums and

estimating remainders. One Exercise investigates the ratios of suc-

cessive terms of the Fibonacci sequence.

In the Problems we will develop some theory for the study of

convergence. We will also investigate a Fourier sin series,

Stirling's formula, the Euler number, and continued fractions.

Finally two Problems provide a closed formula and a generating func-

tion for the Fibonacci sequence.

THE DEFINITIONS

A series or "infinite sum'" of numbers a; + ax + az + ... + an + ... =

00

a. is, by definition, merely a sequence: namely, the sequence
1=

ai, a1 + az, a; + az + Az, ..., A1 *t az + ... +an, ... . Each

partial sum Sn =a1 *+az + ... +a may be expressed in sigma nota-
n

tion as S_ = }E: a.. It is the sum of the first »n terms of the
n 1

7:=1 o

series. We will usually denote the series E . lai simply by E a;.
1= 1

It converges to S or has the sum S if the associated sequence of

partial sums has limit S; otherwise the series is said to diverge.

EXAMPLE: THE HARMONIC SERIES

Of course, we have already seen that our calculator cannot tell us

whether a sequence converges or not. An example of a divergent se-

quence that doesn't look that way to our machine is the familiar
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harmonic series,

N
|
=

+

W
[
=

+

=

-1.—=1+
z:lt

We have calculated S;o, to be 2+9289663,yet S190 1s only S.1774272.

Since the next hundred terms have a sum less than 1, the third hun-

dred a sum less than %, the fourth hundred a sum less than 1/3, and

so on (do you understand why?), we see that S;i1090 < S190 + S10 =

6+¢1063955. You might think that if the first 1100 terms add up to

less than 9 and each subsequent term is less than 1/1100, surely

there would be a limit. Nevertheless, we can easily prove that these

partial sums Sn’ for large enough index »n, become larger than 1000,

larger than 1,000,000; and eventually larger than any preassigned

number. This 1is true because the second through tenth terms are all

at least as large as their last one, 1/10. Hence S;o > 1 + 9/10.

The 90 terms between 11 and 100 add up to at least 90/100 = 9/10,

20(1)21 a. > 900/1000 = 9/10, and so on, to give Slon > 1+ (9/10)n.

Obviously the sequence 1 + (9/10)n diverges, &32 1/7 diverges.
1

EXAMPLE: Pp-SERIES

It is a THEOREM that the p-series

where the exponent p is a fixed number, converges if and only if

> 1. Hence 1/2% converges; in fact Leonhard Euler showed inP 1 g

1734 that its sum is w?/6. Nevertheless, the twentieth partial sum

here is only S,o = 15961632, yet m2/6 = 1:b449341. This is an error

of 3%; it is clear that Euler did not guess this sum by adding up a

few terms. (Actually he derived it from a product expansion for

sin x, plus years of thought on the matter.) A more satisfying
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p-series for calculating m was also given by Euler:

:E:: 1/2% = m*/90.
1

We list some partial sums in Table 11.1.

 

TABLE 11.1

S
n n

5 1.,0803519

10 10820366

15 1.0822339

20 1,0822846

m™/90 = 1.,0823232

GEOMETRIC SERIES

It is alfebraically simple to find an exact sum for the geometric
. 7 .

series ar  for any numbers a and r (here we introduce the nota-
0

tionz :ari for E a;p/L) .

0 72=0

Remember that

n+1
1 -r = (1-2)(L + 2 + 22 + ... + 279

. . . . n
(or just multiply it out to check it), so 1 + r + r®> + ... + 1 =

n+l

liljz;——-whenever r # 1. (We have seen this sum once before in

Problem P2, Chapter 8 in which we calculated the monthly payments

due on a loan.) Hence the partial sum Sn for the geometric series
n+l

a - ar
is S, = =1 - A moment's reflection shows that if |»| > 1, the

sequence of partial sums had no limit; the series converges to a/(1l-r)

if and only if |»r| < 1.
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ExXAMPLE: AN ALTERNATING SERIES

It is often easy to decide about convergence for alternating series,

which are series whose terms alternate in sign. They converge if

the absolute values of the terms themselves form a decreasing se-

quence with limit 0. In that case, the error lSn—SI between the nth

partial sum and the limit is less than the absolute value of the next

term .

An example is

7+1 27-1
E (-1) — .

1 22+1

Clearly

lim 2n-1 _ lim 2/n - 1/n?
nro , oy 1+ 1/m

né+n

=0’

so the series is convergent. If we examine a few partial sums (see

Table 11.2), we form a suspicion that the limit is 1. Encouraged by

 

TABLE 11.2

n Sn

5 1+16EEEETY

10 0.9090909

15 1.,0625000

20 0.9523a10

this to think a little, we theoretically investigate the nth term,
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(_1)n+1 2n+1 _ (_1)n+1[:31 . 1 ]

 

n?n I n2+n

_ nell 2 1 1
= (-1 o+l on n+1] 

 "

r
~ 1 P

—
’

S + —

|

S
| +

S +
=

—

—

But then any one of its partial sums may be rewritten with two terms

for each index to give

S,= (1L +1/2) - (1/2 + 1/3) + (1/3 + 1/4) - ... +

O™am s ey = 1+ D 11)

Clearly Sn - 1.

ExaMPLE: ESTIMATION OF REMAINDERS BY INTEGRALS

The difference S - Sn = Rn between a series and its nth partial sum

is called a remainder or truncation error. Since S = 5, * R R

itself is an infinite series, whose exact determination is concep-

tually as difficult as the evaluation of S itself. Nevertheless, a

crude estimate for Rn can result in a sharper estimate than S for S.

To see this, reconsider the slowly convergent p-series for p = 2,

E 1/2%2 = m%2/6. Our calculations above showed that S,, was in error

by 3%.
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We may estimate Rn by comparison with an integral. For reasons

similar to those that establish the integral test for convergence,

o

the improper integr314{fl 1/xz? dx is greater than Rn (Figure 11.1),

and als?)(. 1/2* dw < R (Figure 11.2).
n+l

= 1/;32

  
 

        n n+l n+2 n+3

1 1 1 * dx
Rectilinear Area = + + + ... =R <.[ =

(n+1)?  (n+2)?  (n+3)?

 

Figure 11.1

s 1/.2-2

 
 

 

       n+tl n+2  p+3 n+d -

o

Rectilinear Area = —» - - + ... =R >/ &
(n+1)2 (n+2)2 (n+3)?2 " Jnel z?
 

Figure 11.2
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Now

o N

2 _ lim > _limf1 1)\_1
[ 1/x dx—N_m/n 1/x dx_N—»oo(n i -

evaluates this integral. Hence we have 1/ (n+l) < Rn < 1/n as upper

and lower bounds for Rn' Suppose that we estimate Rn to be the

average,

 

1 1 1 2n+1 .

N1 T w)T T,2n%+2n

The error of this estimate could be no larger than half the differ-

ence,

1_(_1____1_>=_1_
2\n n+l 2m2+2n

We have now pursued our answer somewhat beyond the question.

We asked for an estimate of the remainder Rn’ which is the error in

our finite sum Sn' But we have found a correction term for the

partial sum. That is, for the p-series:z: 1/2%, if we add
1

(2n+1)/ (2n2+2n) to Sn to get a new estimate Tn for S, the error

|S-Tn| < 1/(2n*+2n). 1In particular, if » = 20, we have T =

1.6449727, compared to the limit S = 1:b6449341. The error was

guaranteed to be less than 1/840 = 0,0011905; it is in fact

0.,0000386, which is about 0.002%, a startling improvement.

Our technique thus worked once we had found upper and lower

bounds Jn < Rn < Kn for the remainder of this series of positive

terms. We then made a new estimate Tn = Sn + %(Jn+Kn), which we

knew would be in error by no more than %(Kfi-Jn).
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ExXAMPLE: ESTIMATION OF REMAINDERS FOR ALTERNATING SERIES

If we substitute -r for r in the geometric series, we see that

1/(14r) =1 -2 + 2% - ...+ D0 )WYQ) if p # -1

(the last term is the remainder). Integrating both sides of this

equality from 0 to some number x > 0 we find that

2 3 n_ oz x” n-1x
In (1+x) =« g e ¥ (-1) e Eh

where

 

. 7
is the nth remainder term for a new series (—1)7’-1 x_ .

z
1

Since x > r > 0 inside the interval of integration we can estimate
_ _ n|Rn|-( 1)"'R_ by

.’X,'n X

r n
1+xdr<(—l)}?n<[)rndr 

or

xn+1 " xn+1

(1+x) (n+1) <R < T

Clearly iiz Rn = 0 if and only if = < 1, and this is exactly the

condition for the convergence of the series to In(l+x). (Since the

series is alternating, it converges because its terms decrease in

size and have limit zero. Then IRnl is automatically less than the

next term xn+l/(n+l).)

It is important to be aware that this series is like the geo-

metric series in that the terms of the series are themselves functions
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that depend on a variable x. Each term here is of the general form

aixt, where a; is a number depending only on 7; a series of such

terms is called a power series.

But we may again use our estimates for Rn to sharpen our par-

tial sum estimates for S itself. This time the series is alternat-

ing, and Rn alternates in sign. Since our Zower bound

n+1
—x<
(1+x) (n+1)

bound with signature opposite to that of the nth summand, the result

|Rn|’ if we add a new term to Sn which is this lower

n+l
n x

Ty = 5, + (1) (1+x) (n+1)

will lie between S, and S. Thus the sequence {Tn} alternates about

S just as does {Sn}’ and its error is

xn+2 1 xn+2
- < - =—L

|S Tnl = |Tn Tn+l| (1+x) (n+1)(n+2) 2 l+x °

xn+1
The corresponding error bound for S is |S - S .| = =——, so this

n n n+l n+l

is a good theoretical improvement for each number x between 0 and 1.

We report some calculations for the case x = % in Table 11.3, end-

ing our list with the correct value for 1n(1+%).

TABLE 11.3

Sum Error

Ss = 04072917 0.002

Se = 04404875 0.0008

Ts = O¢4055556 0.00009

S19 = Oe4054346 0.00003

S11 = 0.4054790 0. 0000L

T1o = O.4054642 0.0000009

1In 3/2 = O.4054651
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Clearly the practical results of this method are even greater

than the theory predicts, and T;, is an acceptable method for cal-

culating logarithms.

To recapitulate our method of refining the partial sums of an

alternating series: we find a lower bound Jn for the absolute value

of the remainder, 0 < Jfi < anl, and define T, = Sn + (-l)n I

This implies that Tn lies between Sn and S and that the error in Tn

is no greater than lTn - Tn+1|'

ExaMPLE: REMAINDERS COMPARED TO GEOMETRIC SERIES

Consider the serieszz: %3 of positive terms: the remainder
]t

R 1 1
- = T£1T77-+ ffiiijT-+ . To calculate each term an+l of this

Hence after series, one may multiply the preceding term a, by 1

the first term 1/(n+l1)! each term of Rn is no larger than the pre-

 ceding one multiplied by Thus we may estimate F_ by the meth-
n+2 n

. . . . . . 1
od of comparison with a geometric series with ratios a7

 

R < 1 1 ¥} _ 1 1 _ 1 n+2

n = (n+l)! § : n+2 (n+1)! 1- 1 (n+l)! n+l °
0

Thus Rn is nearly as small as

1
nel © (D) ! °a

this means that our series converges nearly as rapidly as an alter-

nating series.

Practically, this estimate for Rn implies that if we calculate

(on an 8-digit machine) partial sums up to the point n where (n+l)!

is an 8-digit number, then Sn will be correct except possibly in its

last digit.
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You may instinctively respond, "Of course, if I add in all the

terms that are large enough for my machine to call them non-zero,

then I will surely get an answer that is accurate to the digital

limits of my machine.'" But remember the harmonic series:E: %—: the
1

nth term 1/n vanishes on an 8-digit calculator when n becomes larger

than 10,000,000. The partial sum Sio0,0005000 < S100 + 6510 < 23 (by

a kind of reasoning discussed earlier in this chapter), yet we know

that this series diverges so that there are partial sums as large as

you please. Therefore, we do not, in general, have any guarantee

that if the nth and subsequent terms vanish in the sight of our ma-

chine, Sn will be accurate to its digital capacity.

But for the series:z: lw we do have exactly that. Here are
12

our calculations (remember, to find a s divide a1 by »n):

11! = 3991kA0O0 and Ry = 0,0000003 so S;o will be accurate for us

(see Table 11.4).

 

TABLE 11.4

n Sn

5 1+ P1EEREY

9 147142815

10 17142814

It is easy to guess that our series has limit S = e - 1 and that S;,

is indeed our best estimate.

RouND-OFF

In addition to the truncation error Rn’ there is another source of

of error in the estimates of the value of any series E 195 by the
7

calculation of a partial sum Sn' Each time a term as is calculated,

its last digit may be in error, say by 1, due to round-off. This is

the error caused by the machine's inability to display more than 8

(or 10 or whatever) digits, when a, may be an infinite decimal.

This round-off error may be increased by machine errors arising in
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the internal algorithms for irrational functions such as vx and also

by your use of an 8-digit, erroneous value for a; in your computa-

tion of a.. When n is 20, or even as small as 10, you could be

SO unluck; ;s to have all these errors in the same direction. They

could then cause a total error affecting both of the last two digits

of your answer, even though the remainder IRn' is much less than

that. In our work, however, round-off will usually affect only the

last digit.

EXERCISES

1. For each series indicated below, calculate its partial sum Ss

and state whether it converges or diverges.

"a. ¥, /2 d. ¥,1/5° g X, (DR

*b. Zl 1/7:2 c. ZO ’i/(27:-1) *h. EO e—i

*c. Zl 1/ (2+1) . Zo (z+1) /2! i. Zl sin(1/7)/%

*2. Euler showed thatZl 1/42 =§_‘,1 3(2-1)'%/(2Z)! That is, both

series have the same sum m2/6. Calculate the partial sums Sq for

each series.

3. For each of the sequences 2t/i!, 3£/i!, and 4$/i!, find the

index 7 for the first term of the sequence that is less than 10°.

Then give a proof that all of these sequences have limit O.

*4., In Problem P2, Chapter 3 the limit of the sequence 67.89, v67.89,

/T 1/2n
Y67.89, ..., 67.89 / » ... was seen to be 1. More generally,

;12 xl/n = 1 for every & > 0. To see that this is true, recall that

xl/n = eln x/n by definition. But iig In x/n = 0, ° = 1, and

¢Y is a continuous function of y. Illustrate this fact by calculat-

1/n
ing and tabulating values for x when x = 0.25. How large must =

1/n
be in order to have |0.25 - 1] < o0.01?
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5. Follow the thread of Exercise 4, calculating a table to show

that iiz nl/n = 1. How large must n be in order that Inl/n - 1] <

0.01? Can you offer a proof that 1 is indeed the limit?

*6. Use the series 1In(1+1) =1 - 1/2 + 1/3 - ... =:z: (-1)7'+l 1/7
1

to calculate 1n 2. Display in your table the partial sums S5, Sg,

S10, and S;; for this series, as well as the special sums T's and T3,

that were discussed in our example of a remainder term for an alter-

nating series. What is the error of each of your sums when compared

to 1n 27

7. John Wallis (1616-1703) showed that the infinite product

%;%é%;%ég;iié- had as its limit w/2 = 1.,5707963. Calculate each

. . 2X...X14 2X...X14
partial product for this sequence out to T?fff?ig'and X,.X1§° and

then average these last two numbers for an estimate of m/2.

Next, take logarithms of the appropriate finite stages of this

product to prove that it does indeed converge.

*8. The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, ... is

formed by the rule F. = F
n n-1

+ Fn—2’ with F; = F» = 1. The members

of this sequence occur very frequently in phyllotaxis, or the study

of the arrangement of leaves, scales of a pine cone, florets of a

composite flower, and similar structures. That is, when k leaves

are arranged in a staggered spiral that winds around a stalk =

times, then k and n are quite likely to be Fibonacci numbers.

This sequence clearly diverges; we shall see that it does so

in an orderly way. Show by calculation that the ratio r, =

 

 

F

Z+l of successive terms approaches a limit: r > 1.6180340. Then
n

use an arithmetic argument to show that r, = 1 + 7 Finally,
n-1

give reasons why, if r, approaches any limit, the limit must be the

one given above. This number is called the Golden Ratio. A rectan-

gle whose sides have this ratio is pleasing to the eye. The
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  -7#./-—:'.?)"’/1/44. -

Parthenon and many modern billboards are examples of man-made struc-

tures based on this ratio.

9. Estimate the remainder term R;, for the p-series E 1/Z% = 7*/90
1

by comparison with an integral. Then use the upper and lower bounds

for R,, that you have found to form a new corrected sum 7;,. Com-

pute T, and compare the real error |T;, - m*/90| with the error

bound given in our worked-out example above for:E:ll/iz. Also com-

pare the real error of T;, with the real error of Sjy.

10. Use the method of comparison with integrals to find upper and
o0

lower bounds for the remainder term Rn for the serieszz:i=2 1/7Z(1n i)z

of positive terms. Then use these upper and lower bounds to define

a corrected sum Tn and to estimate the error for Sn and Tn' What

must »n be in order that Sn’ and then Tn’ is accurate to five decimal

places (that is, a truncation error less than 5X10©)?

11. Compare the remainder term R, of the series:Z: 1/(i2$) =
1

06932472 (= 1In 2) with a geometric series in order to show that it

satisfies

12g, <L
11X13x21° 11X2%°0

Use these bounds on R;, to form a corrected sum 7;, and find the

real error for T;,, as well as the computed error bound. Then com-

pare the real error for T;, with that for S;s.
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*12. Use a comparison with a geometric series to estimate R;o for

the seriesjz:li/si, finding both upper and lower bounds for the re-

mainder. Then calculate a corrected sum 7;, and estimate its error.

It is easy to guess at the correct sum. Can you show why this is

the sum of this series?

PROBLEMS

P1. Let the function f(x) be defined by : f(x) =:E:l(-l)$sin(ix)/i

(this is called a Fourier sin series for f). From the definition we

see that f(x) = f(ax+2m) = f(x+4m) = ... = f(x+2kmw) for each integer

k. Such a function is called periodic with period 2m; trigonometric

functions are also periodic. In the present case, f(m) = 0 also.

Sketch graphs for the partial sums S;, S,, S3, S,. Then sum

enough terms of the series to convince yourself of its values at the

six points m/4, w/2, 3w/4, 5n/4, 3m/2, and 7m/4; use these values to

sketch a graph for f(x). (To read more about Fourier series, con-

sult the text of Courant and John, which is cited in the Biblio-

graphy.)

P2, Illustrate the following theorems about the convergence of

sequence by calculating the values when x has the indicated value

and » = 5 or 10? Can you prove convergence in each case?

a. x' +0if |x| < 1. Let z = 0.99.
b. xn/n! -+ 0 for all x. Let x = 4.

c. 1/n®>0if 2> 0. Letx = 0.1.

d. 1n n/n > 0.
x, n

e. n /e - 0 for all x. Let x = 5.

P3. Show that the sequence ay, aqo/ln ay, a;/1ln a;, ..., a.=

an/ln a, ... converges for every starting value ao > 1. As an aid

to your thinking, experiment with the first five or six terms of

this sequence for two different numbers a, of your own choosing.

Then apply the graphic methods of Chapter 2 to the equations y = x

x
l1n = °
 and y =
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P4. Calculate the values for n = 5, 10, 15, 20 in the sequence

L . e e . .
n!en/nn+2 to illustrate that its limit is v2w. Then turn this ex-

pression around to regard it as a way of approximating »n! by a

recipe involving ¢ and n". This is called Stirling's formula.

What is the error of your recipe for n! when n = 5, 10, 15, or 20?

(Hint: 1if your machine does not have scientific notation available,

you must exercise some care in evaluating this sequence, lest the

large intermediate numbers overflow the machine's capacity. There

should be no problem if, for instance, the value fOELn + 1 1s cal-

culated by multiplying the value for = by¢2<;£%r>7¢ 2. Consult the

text of Courant and John or of James cited in the Bibliography for

further information about Stirling's formula.)

2

  

*P5. Replace r in the geometric series by -r“ to get

1 2 4 n-1 2n-2 n p2"=1-r>+r* - .0+ (-1) P44 (LD

1+ 1+r?

Then integrate both sides of this equality between 0 and x to get

X
2n

o233 4+ 25/5 - ...+ (-1) Jom-1 + (-] Tar
0 1+r? 0 1+r?

n-1 2n-1
x 

On the left-hand side we have the function arctan x. Show that if

 

xPanp

|x| < 1, then the remainder term R =~/fl has limit 0 as » tends
- 0 1+r?

to infinity. Thus the function arctan x may be approximated by the

finite polynomials Sn or Tn' I1lustrate this fact for & = 1 by cal-

culating Sy and T, for arctan 1 = m/4. Is this an efficient way

to calculate m/4? What error bounds can be stated for Ss¢? For Ts5¢?

*P6. We have seen that the harmonic series diverges. However, some-

thing may be said about the way in which it does so: the partial

sums Sn grow about as fast as 1ln n grows! Specifically, Euler showed
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that there is a number y = 045772157 (now called the Euler number)

lim
such that Jsco (Sn - In n) = y. Calculate the values of the sequence

Sfi - In n for » = 10 and n = 50. Though this convergence is quite

slow, you may wish to pursue it to n = 100 on your machine. In each

case, compute the error.

*P7. In the geometric series, replace r by -r® and integrate both

sides of the resulting equality from O to 1 to obtain

1
1

/ (1/1+0%)dr = » - 2%/4 + 27/7 - ... + (1)12500 & ]
0 0

Show that the remainder after summing » terms is

1
R =/ -1)" [p3”/(1+r3)]dr

0

and that

lim

n>o n

Then integrate the function 1/(1+r>) from 0 to 1 (by partial frac-

tions or otherwise) to obtain

O0.8356488 =1 - 1/4 + 1/7 - 1/10 + .

Finally, establish bounds on Rn to define a correction term for Sn

and calculate S;y and T;,. Display your results together with their

estimated and actual errors.

P8. Develop a power series for 1In(l-x) when 0O <ax < 1. Do this by

following our Example, which expressed In(l+x) as an alternating

power series, down to the stage where the assumption was used that

x > 0. Make new remainder estimates for your case, prove that your
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series converges for each number x between 0 and 1, and define a

corrected partial sum. (Caution: your series will have all its

terms negative — treat this series just as you would a series of

positive terms.)

Use your corrected sum T;, to estimate 1n(1-1/3) and 1In(1-9/10).

Finally, show that your series, for 0 < « < 1 and In(l-x), may be

placed alongside the series of the Example, for 0 < x < 1 and

In(l+x), to show that the series of the Example in fact converges

for -1 < x. < 1.

P9. Suppose we seek a continued fraction expression for a real num-

ber x, so

1 1
or x = a, + —_—...

a1t asx+

 The numbers a; in this expression are to

be integers; such a continued fraction is often called simple. (See

also Problems P5, Ch. 6 and P3, Ch. 8.) Let us denote by [x] the

greatest integer in x; that is, [x] is & minus its fractional or

decimal part. Then we may take a, to be [x]; if we define y; =

1 1
i 7 T4 %

7+2

  , then x = yy and also x = ay + 1/y;. Hence

y1 = 1/(yo-ao); we choose a; = [y;]. In general, y; =a; * 1/yi+1,

so we may choose a, = [yi] and compute Yiel = 1/(yi—ai). This is a

very rapid process on a calculator. For instance, we calculate the

continued fraction for x = 17/11 = 1.5454545:
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x = yo = 15454545

ag = 1.

Yo - ap = 045454545

y1 = L.8333333

ay = 1.

y1 - a; = 0.8333333

Y2 = Ial

a, = 1.

Y2 - az = 0«2

Yys = 5

as = 5.

1 1 1 A .
Hence 17/11 = 1 + II’T:’E'(CheCk this!). It is easy to see that a

finite, terminating continued fraction is a rational number. The

converse is true as well: every rational number has a finite con-

tinued fraction expansion. Do you see why this process must ter-

minate if x is rational?

Calculate the continued fractions for 2 = v2 and x = v63.

Show that 3 + l—-1—-15 a good approximation to m = 3J+1415927

 

7+ 16

by using the above process. The successive, rationals ag, ag + o

1 1 .
ay + Ty are called the convergents of the continued frac-

1 2

tion, so the above problem may be restated as: Show that 3, 22/7,

333/106, 355/111 are the first four convergents for T.

Next, find the continued fraction expansion and the convergents

for e = D.7182818, for the Golden Ratio (1+V/5)/2 (see Exercise 8),

and also for the Euler number Yy = 045772157 (y is described in Prob-

lem P6). Calculate the error for your convergent at each stage and

halt the process when round-off error has accumulated to cause the

calculated convergents to cease converging toward e or y. Label

your best convergent in each case; is it a good rational approxima-

tion?

To read more about continued fractions, look in a book about

""number theory."
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P10. The Fibonacei sequence is the sequence of integers 1, 1, 2, 3,

5, ..., where F; = F, = 1 and Fn = Fn—l + Fn-2 (see Exercise 8).

Show that there are numbers r and s such that

Fn+1 -r Fn = s(Fn -r Ffi—l)’

Foa1 85, = r(Fn -8,)

Fn+1 - 8 Fn =8,

F -r F = rn.
n+l n

Next, subtract to get the formula

1+/5 1-/5\"
Fp = 1/‘/5_[< 2 (”2"") ]

which expresses Fn in "closed form,'" so that it may be calculated

 

directly, without the intermediate computation of F,, Fz, F3, ...,

FE Use this formula to prove that the limit of Exercise 8,

1im /F , does indeed exist.
nr* n+l'n

Finally, prove that if we adopt the notation that < x > is the

nearest integer to x (rounding upward from halves), then

n
F =<_1.<1+/S—>

n Y3 2

The function < x > may be obtained on calculators that can fix the

 

number of decimal places. If your machine will fix its display at

zero decimal places with rounding-up, then that is Fn' If your

machine will display its result with no digits after the decimal,
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without rounding-up, then first add %, to display

n

. [L(fl) ) _1_]
n /5 2 2

without its decimal part. To read more about Fibonacci sequences,

consult texts about ''number theory."

. . 7 .
P11. 1If ag, a1, ... is a sequence, the function f(x) = E:Oaix is

called the generating function for the sequence. Show that

1/ (1-z-22) is the generating function for the Fibonacci sequence

(see Exercise 8 and Problem P10). Then calculate S;, for

z:oFilO_z and compare this partial sum to the infinite sum computed

with the generating function.

Answers to Starred Exercises and Problems

Exercises la. 1:141EBL7?, diverges

1b. 144636111, converges

lc. 08333333, converges

1f. 54435, converges

lg. -0.8274571L, converges

lh. 1.5780554, converges

2. 145397677 and 1.6449339, respectively

4. n = 28

6. Ss = 0s7833333, error is O.09

S10 = 0b45E34H, error is O0.05

Ts = 047, error is 0,007

Tyo = O.6920895, error is 0O.002

r > (1+/5)/2 = ¢; ¢ - 1/¢ =1o
o

12. 11/2X3'% < Ry, < 121/7X31!

S1o = 047499026, T1, = 074899980

and S = 3/4
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Problems P5. Ss¢ = 0.,7803987 with 0.6% error

P6. The error is 0.05 for n = 10, 0.01

for n = 50, 0.005 for n 100.

P7. The integral is (w/v3 + 1n 2)/3.
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POWER SERIES

INTRODUCTION

This chapter continues our study of series. We shall now extend the

usefulness of series methods enormously by exploiting the notion ba-

sic to the power series, which we have already seen. This 1is the

idea of a series of functions, a series each term of which is a mul-

tiple of a power of x. This chapter begins with three theorems that

methodically describe the convergence and manipulation of such series.

We apply these theorems to the exponential function and continue our

study by attempting to approximate ¢® with polynomials. This leads

to Taylor's theorem and its remainder term, which are again realized

for the Example .

The first few Exercises develop numerical and calculational

skills with power series. Then series for sin x, cos x, sinh x,

cosh x, and 10x are presented in further Exercises; and their values

are calculated. In the final Exercise we will consider the biologi-

cal question of averaging exponential growth rates. In the Problems
. . . X cCos X -

section Taylor expansions are obtained for (x+l)e , e , V1+sin x,
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(1+x)a, arcsin x, x/(ex-l), tan x, and a rational function. In one

Problem we present a tricky trig identity for a new, easy, and ac-

curate calculation of m. Series calculations of the Bernoulli and

Euler numbers are also Problems as is a Padé approximation.

THE THEOREMS

We saw in the last chapter some examples of power series: the geo-

metric series L. 1 +x+x2+ ... and In(l+x) = = - £i_+ Ei——
1-x 2 3

3 5
in our worked-up Examples (and also arctan x = x - %—-+ %—-— . in

Problem P5, Ch. 11). In the first case the function I%E-is defined

for every x # 1, yetzz:om} converges only for -1 < x < 1, where the

series does converge to the value I%E-of the function. The function

In(l+x) is defined for all x > -1, yet the series converges only for

-1 <x < 1. These two examples will illustrate some general remarks,

which we record as THEOREMS.
. i .

1. A power series E a.X’ may converge for every x, or it
0

may converge only for x = 0. Otherwise there is a definite positive

number r, the radius of convergence, such that the series diverges

when |x| > r and converges whenever |x| < r. If the limit ii: 955

exists, them it equals 1/r. The series may or may not converge at

either endpoint -r or r of its interval of convergence.

2. If we write S(x) =}E: aixl, with radius of convergence r,
0

then for every x inside the interval of convergence, |x| < r, the

series }E: iaixl_1 of derivatives of the terms of S(x) converges to
0 .

the derivative S'(x). Also the series }E:Oaixl+l/(i+l) of integrals

X
of the terms converges tov/” S(x)dx. Hence, inside its interval of

0

convergence S(x) is continuous and in fact has derivatives of all

orders, If the series converges at an endpoint of the interval of

convergence, then S(x) is continuous at that point (in the one-sided

sense).
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3. If there exists an r > 0 such that two series converge and

i i . _
:z:Gaix = :E:Obix for every x with |x| < r, then a; = bi for every

index i =1, 2, 3, ..., so the two series are identical.

ExampLE: e

As an example of the use of these facts, we consider the series

E(x) = E xi/i!. Since ;12 xn/n! = 0 for every x, the alternating
0

series E(-x) converges for every positive x. Hence F(x) converges

for all x, by the first theorem above. (Be sure you understand this!)

Incidentally, that theorem may now be reread in this case to give

. . A . lim . .
the interesting information that niw 1/n! = 0. The derivative E'(x)

is, by the second theorem, E'(x) =}:b iafiyl/i! =}:ba97i! = E(x) for

E(x)

E(x)

all x, and f(0) = 0. And we know that there is a unique solution to

 all x. Thus the function f(x) = 1n E(x) has derivative = 1 for

the problem of finding an antiderivative f for f', given that f'(x) =

1 and f(0) = 0. Namely, f(x) = x, or x = 1n E(x), and thus & = E(x).

. x? x3 x .
Therefore the series E(x) =1 + x + Tt zT t ... =€ ds the

unique series representing the exponential function, by the third

theorem above, and this representation is valid for every real number

x. We pause to use this series to calculate

-1 1
e =1/e=1—1+§!-§+...,

which is an alternating series with remainder |R| less thanT

the size of the first omitted term after Sn' When n = 9, we have

|Re| < 1/10! = 0ODODOO3 and Se = O43L78792; the correct sum is 1l/e =

0.3678794. (If your machine does not have a button for <!, notice

that each term is easy to calculate from the preceding one, a, =

2a,
T 1-1°

tricks useful in evaluations.)

after beginning with a; = 1/2. See the Appendix for other
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TAYLOR POLYNOMIALS

The statement that e~ =:z: xt/i! may be viewed as a fact about the

0
approximation of the function ¢® by various polynomial functions Sn'

The function &© is approximately equal to 2%/2 + x + 1, for instance,

with a better approximation given by &* = x3/6 + x2/2 + x + 1, or

even by & £ Syo(x) = x'°/10! + 2%/9! + ... +x + 1. And clearly,

polynomials are desirable functions with which to approximate ex,

since we can easily calculate the value of a polynomial using only

addition, subtraction, multiplication, and division. But, in what

sense are these good approximations?

In approximating a number, the error is a number, and the bet-

ter the approximation, the smaller the error. But in approximating

& by any polynomial P(x) whatsoever, it is easy to see that as x

gets larger, the error |ex - P(x)l becomes larger without limit.

(Can you say why?) In what way, then, may we regard x2/2 + x + 1

as the best quadratic approximation to ¢®? We have something that

we know already to go on: the best linear approximation at a given

point, say x = 0, is given by the derivative. That is, the best lin-

ear approximation to ¢ at x = 0 is the straight line with slope m

equal to the derivative of ¢® at 0 and that goes through the point

(0,e%). Since m = ¢ = 1, this tangent line has the equation y =

x + 1. It is the best we can do to fit the graph of L atax=0

with a line (Figure 12.1). We could describe x + 1 as the unique

polynomial of degree one that has the same value at x = 0 as the

function ex and also has the same first derivative.

 

 Figure 12.1

Now we go back to inspect z%/2 + x + 1: it is the unique

quadratic polynomial that agrees with ¢C at x = 0 in its value, its
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first derivative, and also its second derivative. This means that

the graph of 2%/2 + x + 1 not only touches the graph of & atx =0

and is tangent to ¢® there; it also has the same curvature there as

¢®. This is shown in Figure 12.2. And this is the sense in which we
. . . x

regard it as the best quadratic approximation to e .

Figure 12.2  
The choice of x = 0 is arbitrary; we might have discussed the

approximation of & at x = 4, for instance, instead of x = 0, and we

will do so in the next chapter. The essential concept is the agree-

ment of two functions at a point, in value of functions, of first

derivatives, of second derivatives, and so on. The English mathema-

tician Brook Taylor saw this possibility in 1712 and used it to devel-

op a powerful method of approximating functions and of expressing

functions as power series.

Suppose the polynomial San) =qp tax + ... + anxn agrees

with a function f(x) at the point x = 0; then a, = f(0). (Notice

here that there is a term corresponding to ¢ = 0, so that Sn(x) =

7 ' _ 2 n-1 .
E:baix D If Sn (x) = ay + 2ax + 3azx” + ... + na,x agrees with

f'(x) at x = 0, then a; = f'(0). Another such step shows that a, =

f"(0)/2 and that in general Sn(i)(O) = i!ai = f(i)(O) for 2 = 0, 1,

., n. Hence the proper coefficients for the Taylor polynomial are

a, = £ 0)/11 and

5, (@) = £(0) + f'(0)x + f"(0)x?/2! + fr11(0)xd/3 + ... o+ f("{O)x”/n:.

THE REMAINDER FUNCTION

Furthermore, we know a lot about the remainder or error function
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= - : = ! = " = = (7’1) =Rn(x) f(x) San). Rn(O) Rn (0) Rn (0) ce Rn (0) 0,

and all derivatives of Rn(x) of order greater than »n agree with the

derivative of same order of f. This description of Rh(x) can be used

to obtain an integral representation of the remainder when f(n+1)(t)

is continuous on the interval [0,x]:

X

R(x) = -;—.—[0 @-)" £4y ge.

The statement that f(x) differs from its Taylor polynomial by this

remainder term, f(x) = Sn(x) + Rn(x), for each integer n for which

f(n+1)(x) 1s continuous is called TAYLOR'S THEOREM. However, it is

usually not useful in this form because this integral is seldom easy

to evaluate.

We can estimate the integral, though, using upper and lower

bounds L < f(n+1)(x) < M for the continuous function f(n+1) on the

interval [0,x]:

3
=
S
~

§ <
+

—
t

S

Q
,

fi
‘ N R (x) < M-'-/x(x-t)n dt

="n =n!
0

  

n+l n+l
L x M x

n! n+l : Rn(x) s n! n+l

L n+1 M n+l

wnr e 2RE) ST

Since the continuity of the function f(n+1)(x) implies that it takes

on every value between L and M, there is a number & between 0 and x

such that

(n+1)@)
B@) =o&
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This is called Lagrange's form of the remainder. It is this expres-

sion and the equivalent inequality that precedes it that will give

us useful estimates of Rn(x). For instance, for the function f(x) =

ex, which we were examining, Sn(x) =1 +x+x2/2+ ... xn/n!; the

. e n+l .
remainder R,(x) = TZITTT'x . Of course, if we knew the values of

eg, we wouldn't need to approximate this function; however we can

gestimate that e’ < SX, where X is the smallest integer at least as

large as x. We emphasize that accuracy is not essential in this

estimation. We can be assured of the maximal size of the error if we

are in the ballpark in our estimate of f(n+l)(5).

ExaMPLE: THE CALCULATION OF &
. . 1. .

Thus if we wish to calculate e 7 correct to 5 decimal places, we

2
take X = 2 50 R (1.7) < ——— (1.7Y"*!. Next we find the first in-

n (n+1)!

teger n for which Rn(1'7) < 0.,000005: we see that n = 12 since

32

(13)!

S12(1.7) = 544739472; the last term we added was x*?/12! = 0000012,

which is just about the size of R;,(1.7). The correct value

1.7

e

R12(1.7) < (1.7)'® = 0.,0000014. Thus we are to calculate

= §44739474, so that our result was in fact accurate in the

sixth decimal place. One more term would make S;3(1.7) correct in

all 8 digits. Incidentally, if your machine does not have a buttton

to calculate n!, you can calculate each term from the preceding one

Ti v o & i-1,, . :
as before, a.x /it = 7 (a;_y*” 7)/(2-1)!, summing as you go.

EXAMPLE: ALTERNATIVE METHODS FOR &”

The error term Rn(x) = egxn+1/(n+1)! depends on x, of course, and it
1.7/2)2 _ e1'7

so we could calculate e0'85 using fewer terms than for e1'7, then

square the result. Rn(0.85) < 3(0.85)n+1/(n+1)!, so n = 8 1s large

is clearly a lot smaller for x/2 than for x. But (e 3

enough to guarantee five decimal places of accuracy.

Encouraged by this, let us repeat the process twice more,

dividing 1.7 by 8 to examine the calculation of e0'2125. The error
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L
term is now Rn(0’2125) < 34(0.2125)n+1/(n+1)!, and this latter quan-

tity is less than 0.000005 when n = 4. So to calculate el'7, compute

S4(1.7/8) and take the eighth power of the result. This gives

e ' = 544738149, which is incorrect in its fourth decimal place.

What has gone wrong? Well, we didn't allow for the error resulting

from the final operation, raising to the eighth power. If g(x) = x8,

e0'2125 = 5/4, dg = 35dx. Thus we shall

need at least 6-place accuracy for e0'2125 to insure 5 correct dec-

then dg = 8x’dx; since x =

imal places in its eighth power 91'7. It will suffice to add one

L.2367660O. Its eighth power is

e'7 : 5,4739427, which is correct through its fifth decimal place.
more term, to calculate S5(0.2125)

We summarize the computational experience above: our series

expansion for ¢* about the point x = 0 provides a given degree of

accuracy with fewer terms of the series when x is closer to 0. Thus

we need fewer terms to calculate S(x/2) than to calculate S(x), cor-

rect to five places, say. But there is an increase in error when we

square S(x/2) to get S(x). On balance, ease of computation favors

several halvings of x before calculating S(x/4), S(x/8), etc. But

for accuracy nearing the limit of the machine, we must do more addi-

tions, computing S(x) directly or from S(x/2).

EXERCISES

1. For each series indicated here, evaluate the partial sum of the

first four terms when x = 0.56789. (Consult the Appendix, if neces-

sary, to develop techniques for summing power series efficiently

on your machine.)

*

*a. 1 - 22%/2' + x*/4! - ... c. x - x3/3" + x°%/5!

* *

b. x - x2%/3 + x2%/5 - ... d. = - x2%/4 + x7/7 -

*2. Use the series X = 1 + x + x2/2' + x3/3' + ... to calculate

e -1 correct to five decimal places. Do this by summing terms for

your alternating series until the last term to be summed is smaller

than 5X107°.

3. Proceed as in Exercise 2 to calculate 8—0.2'
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. . -0.4
*4. Proceed as in Exercise 2 to calculate e . Compare your answer

h .
to the correct value and to the 4t power of your answer to Exercise

2.

. . -0.
5. Proceed as in Exercise 2 to calculate e 8. Compare your answer

to the Sth power of your answer to Exercise 2.

*6, The sequence of derivatives f(x), f'(x), (), ... for f(x) =

sin x is sin x, cos ¥, -sin x, -cos x, sinx, ... . The coefficients

of the Taylor polynomials for sin x are these functions evaluated at

x=0: 0,1, 0, -1, 0, ... . Thus

sinx = x - 23/3! + £%/5! - x7/7' + ...,

sin®™1) 5y 41
(n+1)! x

n+l
also |cos x| < 1 for all x, we have |Rfi(x)| <z /(m+1)!. Find the

with remainder term R(x) = Since |sin x| < 1 and

appropriate integer »n for which Sn(O.l) will have five-place accuracy

and calculate Sn' Notice that n is odd, so S = S and the real
n+l n

error is less than IRn+1(0'1)|' Calculate that better error bound

and compare it to the error for your answer. (Remember that radian

measure is meant for x.)

7. Proceed as in Exercise 6 to calculate sin 1 accurate to five

places. Then calculate sin 1° (degree measure !) to five-place ac-

curacy.

*8. Proceed as in Exercise 6 to calculate sin 3 correct to five

decimal places. Then use the trig identity sin x = sin (m-z) and

the same method to get a five-place answer. Compare the number of

terms in the two partial sums.

9. Proceed as in Exercise 6 to show that

cos x =1 - 22/2! + x*/4' - x6/6! +

Now compute sin 3/2 by using the identity sin x = cos (x-m/2), find

the least integer n and the value Sn(x—fl/Z) for five-place accuracy.
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What is the appropriate value for n to compute sin 3/2 to five

places? Can you offer a new proof now that the derivative of sin x

is cos x?

. .. . . AR
*10. The hyperbolic sine is the function sinh x = (e -e ). The

. c . x -x
hyperbolic cosine is cosh x = L(e"+e ). Show that each of these

functions is the derivative of the other, and then use this fact to

establish the following coefficients for their Taylor polynomials:

sinh @ =& + £3/3!' + 2°/5' + ... ,

cosh z =1 + x2/2' + x*/4' + ...

Evaluate the appropriate partial sum for each of these expressions to

find sinh 1/2 and cosh 1/4 correct to 5 decimal places.

11. The antilog function 10 may be evaluated by appeal to its

definition, 10% = &~ 1n 10, followed by evaluation of the appropriate

Taylor polynomial for the exponential function. Prove that the ex-

pansion of the function 10 into its own Taylor polynomial offers no

improvement on this; in fact it yields the same method. Then use the

series for & to calculate 100’3. In doing so you will need to know

In 10. To compute this most easily, first calculate 1ln 5/4 using the

expression

In(l+x) = = - 22/2 + x3/3 -

and then use our previously determined value 1ln 2 = 0O.E931L472 to ob-

tain 1n(23X5/4). (Why not directly calculate 1n(1+9)?) Be sure

when you are deciding how many terms of the series for ¢* to use that

you consider the ultimate error in 10x, not just the error of L.

12. Suppose that the larger part of the claw of a crab grows expo-

nentially at the rate of 97 per month in weight, while the smaller

part grows at the rate of 7% per month (compare Exercise 13, Ch. 8).

Assume that at time ¢ = 0 months the smaller part is one-half the

weight of the larger. Does the whole claw grow exponentially?

First answer this question by calculating the rate r that would
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0.09
satisfy = 2/3¢ " 0.07

1
tze (at

the end of £ = 1 month). Then check

whether the appropriate equality holds

at the end of 2 months.

Finally, use the quadratic

Taylor polynomials for the respective

 

functions to show that such a (non-

trivial) proportional sum of exponen-

tial functions is never an exponential

function.

PROBLEMS

*P1. Find the sequence of Taylor polynomials for the function f(x) =

(x+1)ex. Choose the one of these of least degree to estimate f(1)

correct to five decimal places and calculate that estimate. Then

show that your sequence converges for every number x to f(x).

P2. Compute the coefficients for the Taylor polynomial Sg(x) of

degree 6 for f(x) = 203 x; then calculate Sg(0.1) and S¢(m/4). For

each of these approximations, make an estimate of the maximal error.

*P3. Compute the coefficients for the Taylor polynomial Sg(x) of

degree 6 for f(x) = v1 + sin x; then calculate S¢(0.1) and Sg(m/4).

For each of these approximations, make an estimate of the maximal

error.

P4. Prove that, for each real number o:

(1+2)% = 1 + ax + a(o-1)x2/2! + a(a-1) (a-2)x3/3! + ...

whenever |z| < 1. Do this by first establishing the interval of con-

vergence of this series by use of the ratio test (or comparison with

a geometric series). Next, show that in the interval of convergence

where S(x) is the sum of the series, S'(x) = aS(x)/(1l+x) and also

S(0) = 1. This means that the function 1ln S(x) = T(x) has the pro-

perties T'(x) = a/(l+x) and T(0) = 0. Argue finally that there could

be at most one function having these properties of T(x) and that
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T(x) = aln(l+x) is such a function.

Now use your series to calculate §1.2. Analyze the error to

decide how many terms are necessary for a partial sum to be accurate

to five decimal places and compute that partial sum.

P5. Use trig identities to prove that if tan 6 = 1/5, then

tan(46-m/4) = 1/239. The formulas for tangents of sums and differ-

ences of angles will express tan 26, tan 40, and then tan(46-m/4).

Finally, show that

m = 16 arctan 1/5 - 4 arctan 1/239.

Calculate m correct in at least six decimal places by means of this

recipe and the series we have derived for arctan x, you will need to

make your total error term less than 5X10°7. In doing this job,

first establish that the remainder after only one term for arctan

1/239 will be acceptable. Next multiply this remainder by 4 and sub-

tract the result from 5X10—7 to establish the allowable error in

16 arctan 1/5. Then calculate the appropriate partial sum for arctan

1/5. (If your machine displays ten digits, you may do this approxima-

tion to eight-digit accuracy. The above method has been used on a

computer to achieve 100,000 digit accuracy!)

P6. Use the result of Problem P4, the series for (1+x)a, to prove

that

 

X

: _ dt _ 1Xx®  1X3XxeS 1X3X5Xx?
arcsin & / .,Tt T axaxs o aawexy Y

0

Then calculate the appropriate partial sum for arcsin (0.3), accurate

to five places.

P7. Leonhard Euler proved in 1731 that

Z 1/42 = (1n 2)2 + 2 Z 1/422°.
1 1
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We saw in Chapter 11 that E 1/2% converges very slowly indeed to

1

m2/6; fifty terms do not suffice for two-place accuracy. We did

achieve four-place accuracy in our earlier discussion with the cor-

rected sum T5,.

Calculate the partial sum S, for E 1/i22$. Next make an
1

error estimate and attempt to improve your sum S,, Wwith a correction

term that you develop from your study of the remainder.

2
P8. Write as a power series; do so by first expressing this

b ba’ -x

rational function in terms of partial fractions and then finding a

 series for each fraction (for the series of see Problem PS5,

1+r?

Ch. 11).

P9. Expand the function & cot & into its Taylor series, deriving

the first eight terms. These terms are often expressed as x cot x =

 
 1 - 2;?2 z% + 2:?“ .+ (D" Z%ggfi%_xzn + ..., where the num-

bers B,, By, ... are called the Bernoulli numbers. Thus, show that

B, = 1/6, By, = -1/30, Bg = 1/42, Bg = -1/30,

Also, By = -1/2 and B3 = Bs = B = ... = 0, but this series does

not make at least the first of these odd Bernoulli numbers explicit.

Show that the series for m/(ex-l) begins as

1 - /2 + Box?/2! + Byx®/3! + ...

Finally, use the trig identity tan x = cot x - 2 cot 2x to show

that tan x = x + x3/3 + 2¢%/15 + 1727/315 + ... and express each sum-

mand of this series in terms of the Bernoulli numbers.

*P10. The Bernoulli numbers (which are defined in Problem P9) may be

computed from series. For n =1, 2, ...,

_ (D"Laam: z:___l__
(2m) " A

Bon
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Use this expression to calculate B;y and B;».

*P11. The Euler numbers E;, E;, ... are defined as the coefficients

n+l x/2
2e E Efi xn/ng

ex+1 1

Show from this definition that the odd Euler numbers Fi, E3, ... are

all zero, and that Fy =1, E, = -1, Ey, = 5.

in the series

Next, use the series expression for the Euler numbers,

g o D"20anyE
2n 2n+1 0

to calculate Fg and F;,. (It is true that En is always an integer.)

(2$+1)

P12. Calculate the limit

lim tan % - sin h

>0 7 3 ’

Then use the series expressions for sin and tan (see Problem P9 for

tan) to prove that your calculated limit is correct.

P13. Suppose we attempt to find a rational function

A + Bx + Cx?

D + Ex
R(x) =

that approximates ¢ near x = 0. To have R(x) defined at all at x =

0 we must choose D # 0; we ''mormalize'" the problem by taking D = 1.

2 2 3
w__to equal ex =1 + x +."'£_+ x_+ v ..

1 + Ex
Now we wish > g

or
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A + Bx + Cx?
2 3

(1+Ex)<1 + X +‘721—+‘2—+ )

A+ Bx + Cx? + 0x® =1 + (1+E)x+<%+fl>x2+<%+§—>x3 +

N
&=

If we take l-+ =0 or E = -1/3, then the coefficient of x® on the
6

right-hand side will be 0. This, in turn, implies that 4 = 1, B =

2/3, and ¢ = 1/6, and

1 + 2x/3 + 2%2/6 _ 6 + 4x + x?
R(z) = 1-2/3 = T6 -
 

Calculate the error in R(x) for = 0.01, 0.1, and 1.

A Padé approximation of degree (m,n) to a function f(x) at x = 0

is a rational function, a quotient Pfi(x)/Qn(x) of two polynomials of

degrees m and n respectively. This approximation Pfi(x)/Qn(x) is to

agree with f(x) and its first m + n derivatives at & = 0. Let

Qn(x) = qoxn + qln—l + ...+ 9, since Qn(O) cannot be 0, we normal-

ize by taking q, = 1. If Pm(x) = poxm * oo * D then we have

available m + n + 1 independent choices of the coefficients py, ...,

pm, dos o> C[n_l.

These choices may be made so that if f(x) = E aixt, then
0

E%(x) and Qn(x) E Oaixz have the same coefficients for all terms of

degree < m + n. Find the Padé approximations of degrees (3,2) and

(4,3) for f(x) = sin x, and determine the errors for each approxima-

tion when x = 0.01, 0.1, and 1.

Answers to Starred Exercises and Problems

Exercises la. 0.,8430375 l1c. 0.5378544

1b. 05159339 1d. 045442609
2. S, = 0,9048375; ¢1 = ;.a048374
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10.

Problems P1l.

P3.

P10.

P11.

Se = Oub703204; ¢0% = o.L7o3200;

553(0.1) 0.1-(0.1)3/3! = O.,0998333;

sin 0.1 0,0998334; R, < 5X10©

S15(3) = 0:1412187; sin 3 = 041411200

S3(m-3) = 0414111895

$5(0.5) = 0.5210938; sinh 0.5 = O0.,5210953;

5, (0.25) = 1,0314128; cosh 0.25 = 1,0314131

(x+1)e® = 1 + 2x + 322/2! + 4x%/3! + ...

VI+sinx =1 + 2/2 - 22/2%2X2! - x3/23x3!

+ x*/2%X4r + x£3/25X5! -

BlO = DOD?S?S?E, B12 = -0,2531136

E¢ = -BL, E,, = 2702765
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TAYLOR SERIES

INTRODUCTION

After the Fundamental Theorem of the Calculus, Taylor's theorem and

the Taylor series form the most important theoretical and practical

tool of the calculus. They certainly comprise the central concept

of numerical analysis. In the last chapter we developed many famil-

iar functions in series and acquired some facility in their use. We

shall now study some applications of this theory. A first Example

develops a series that approximates the logarithm function at x = 2,

even though the function is not defined at all at x = 0. Next we

describe Newton's method and give Examples of its use and misuse for

the functions e* - 2x - 1 and (z-1)/x?. Then series integration is

explored with the Sine and Fresnel integrals as Examples. In the

Example of 1/(1-x?) we discuss and then analyze the error in series

integration.

The Exercises provide practice in applying these ideas, includ-

ing studies of the Cosine and Exponential integrals and the error

function. Practice on more difficult applications is given in the
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Problem section. In one Problem we consider a new algorithm for

finding the zero of a function; it successively finds the zeros of

parabolas that just fit the graph of the function. Another Problem

describes the theory of convergence for the general iteration func-

tion, and another considers the relativistic energy of a moving

particle.

TAYLOR'S THEOREM
. . x

The remainder term for the series e~ =1 + x + x22/2! + x3/3! + ...

is Rn(x) = egxn+l/(n+1)! where £ is between 0 and x. Since

ge” <e + e

ent of n, ii: Rn(x) = 0 for every number x. This means that the

a1+ (do you see why?), which is a number independ-

infinite series

E xi/i!
=0’L:

converges to e® for every x. It is called the Taylor series or expan-

sion of & at 0. Every Taylor series (and indeed, every power se-

ries) has a constant term f(0) corresponding to the index ¢ = 0. We

have defined the symbolE:Obi to be

E. bi=bo+b1+...

01=

The Taylor series of a function is thus f(x) ==:£:‘f(t)(0)x$/i!: here

we mean that f(i)(x) is the 7th derivative of f(x), f(o)(x) = f(x)

and that 0! = 1. It exists for a number x when f has derivatives of

all orders on the interval [0,x] and the series converges there.

This series amounts to the '"'polynomial approximation of infinite

degree'" for f, or, rather, it is the sequence of best polynomial ap-

proximations for f. And if the Taylor series for f converges for all

x, as it does for ex, then the sum of the series is f(x) for each x.

Nevertheless, in practice we must deal with partial sums Sn(x), and
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these polynomials of finite degree n are not equal to f(x) unless

f(x) is itself a polynomial function. Furthermore, as we can see

very clearly in Figures 13.1 and 13.2 for ¢® and cos x and we have

discovered repeatedly in our calculations, Sn(x) is in general a

much better approximation of f(x) when x is near O than it is for

large x. It is thus desirable in both theory and practice to be

able to expand a given function about a point a # 0 as well as at O.

TAYLOR'S THEOREM states more generally that the Taylor series (or

expansion) for f about a is

flx) = fla) + f'(a) (x-a) + "'(a) (x-a)?/2! + ...

D D@eat
0

with remainder term Rn(x) = f(n+l)(£)(x—a)n+1/(n+l)! for some & in

[a,x]. Our earlier statement was the special case of this one when

a = 0; this statement may also be proved from Taylor's theorem at

a 0 by applying it to the function g(x) = f(x+a). A Taylor expan-

sion at a = 0 is sometimes given the special name of a Maclaurin

series. (Although Maclaurin did publish this series, he gave Taylor

credit for priority. Actually, Gregory and Leibniz knew of Taylor's

theorem before Taylor did, and Johann Bernoulli even published some-

thing similar in 1694, long before Taylor's announcement in 1712).
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EXAMPLE: 1n =z

Consider, for example, the function 1ln x: it is not defined at all

for x = 0, so any Taylor expansion for 1ln & will have to be at some

point a > 0. We choose a = 1: remember that 1ln x has as its se-

quence of derivatives 1/x, - 1/x%, 2'/x%, - 3'/z*, ..., with

) = (0¥et/e and W= 1)-1t since
(z-1)'/2! = 1/7, the expansion is

In x (x-1) - (x-1)2/2 + (x-1)3/3 -

Z 1D-4,

Figure 13.3 depicts the partial sums approximating this series. This

In x

is just the series we have already seen for the logarithm function:

 

 

 

Figure 13.38

if we let x - 1 =y or 1l + y =x, we may rewrite the above as the

familiar series 1n(l+y) = 2: (-l)i-lyi/i. Now imagine that we have

used it to calculate In 2; we may expand 1ln x about the point aq = 2

as

Inx = 1n 2 + (1/2)(2-2) - (1/2)2(x-2)2%/2 + ...

= 1n 2 + Z(—l)i—l(x—Z)i/iZi.
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The remainder term for this series is R(x) = -1z-2)"L) (ne1)£

for some number £ between 2 and x. To calculate 1n 2.1 using this

alternating series, we need merely add up terms until the last one

added is of the magnitude of an acceptable error. If we will accept

four decimal-place accuracy, or an error of 0.00005, the third term

0.1%/3%x2® = 0.,0000417 is an acceptable error. Thus S, + In 2 =

O0.7418972 is surely correct to the fourth place (1n 2.1 = 0O.74149373

is correct). However, as long as we have calculated the third term,

we may as well add it in to get S3 + 1ln 2 = [0s7?419388. In fact, if

we add in yet another term, we find that S, + 1In 2 is correct to

seven decimal places.

Newton’s METHOD

Suppose we seek a zero r for a function f. If we have a guess x

that is not far from »r, we may expand f in its Taylor series about

x to express f(r) = 0 as

= f@) + (@) -z) + )R)

where the number £ in the remainder term is somewhere between x and

r. If we then use this Taylor polynomial S;(x) = f(x) + f'(x) (r-x)

to solve backwards for an approximation of », we get S;(x) = 0 or

 r = ?f?;) Why not use this recipe to improve our guess x for

r? Its results will not generally be exactly r, but we may iterate

this process to guess x,, find x; = 2 ?ng), then x, =

X1 ?S?;)), and so on. (This method appeared in Problems P3, P4,

P5 in Ch. 1; P3 in Ch. 2; and P8 in Ch. 4.) How rapidly does this

sequence xgy, £1, £2, ... converge to r? The series expression dis-

played above has its error term built in:

 r - _ f®) _e(-2
' (x) ' (x)2! :
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Hence, if the inequality

[5G = v

is satisfied for every £ between r and x, we see that our estimate

 z - L& i in error by less than & (r-z)?. This estimate doesn't
' (x) 2

tell us much if x is a poor guess for » or if M is very large. But

suppose that in the case of a given function f we have ¥ = 2 for a

guess xo that is correct in its first decimal place, so we take

(r-xo) = 0.05. Then our next guess x; has error less than (0.05)? =

0.0025. Thus x; is correct in the second decimal place; x, will have

an error less than (0.0025)2 = 0.,0000063 to be correct in at least

four places, and x3 will be correct to ten places. As a rule of

thumb for Newton's method, then, we may expect the number of correct

decimal places to be doubled for each iteration (provided f'(r) # O

and f''(r) is not enormous).

EXAMPLE: 2z + 1 = &”

To illustrate this, we solve the equation 2x + 1 = &® (see Figure

13.4). We apply Newton's method to f(x) = ¥ - 2z - 1 with f'(x) =

¢ - 2 and Mx) = . Our recipe 1is

 

e - in—l

x =x. -
1+1 7 . ’

L - 2

~ and after an inspection of

%/ Figure 13.4 we cleverly guess

xo = 1% to calculate

(0,1) X1 = 12564797 and

2 = Le2564312. This second

¥ iteration 1s correct, as we

(1,0) Figure 13.4
can see by finding x3 = x2.
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Thus our starting guess was correct in the first two decimal places,

x; in four places, and x, in seven (in fact, eight).

As a comparison, we attempt a solution by the method of succes-

sive substitutions. The algorithm is Lepq = 1n (2xi+1). Using the
1

same starting guess xo = 1% we find that it requires ten iterations,

10 = 1+2564081, to achieve four-place accuracy! As a check on its

startling efficiency, we calculate the error bound for Newton's

 

 

 

! fn
method. As an estimate for fL£§l| e shall merel mput (r)l,e i T (z) we s rely compute 7 ir)

since these derivatives are continuous at r:

€2 - Dusansk3?,

so M = % will do, M/2 = % and the error behaves like this:

lz;,1 - | <% |z, - »|®. An algorithm that converges in this fash-
+1

ion, so that each error is a fixed multiple of the square of the

preceding error, is said to be second-order or quadratic. Thus

Newton's method is second-order if M < o (it is first order if

f'(r) = 0 so that » is a multiple zero).

To depict the convergence of this method graphically, we magnify

the circled region of Figure 13.5 to show in Figure 13.6 the first

application of the algorithm to the guess x, = 1%, which yields
—T

yd ™~

/@y, FOx1)N

{/x° *2 \
| /’ X1 |

(-’Co, f(xo))§ //

~

Figure 13.5 Figure 13.6

 

e - 2x -1

x; = L.2564797. The line tangent to the graph of f(x) at xo is

y@) = f(xo) + (x-20)f'(x0). If we let x; be the point where this

line crosses the x-axis, then y(x;) = 0 = f(xo) + (x1-%0)f" (o).
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Solving this last equation for x; gives the formula for Newton's

method, x; = x¢ - %;%%ly . The dotted tangent line depicts this
0

process in the next iteration. Can you imagine from these pictures

why this method converges only very slowly when r is a multiple root,

so f'(r) = 0 as well as f(r) = 07

(x-1)/x?EXAMPLE: £ (=)

The function f(x) (x-1)/x? is defined for every argument x except

2 = 0. Its only zero is at x = 1. The derivative f'(x) = (2-x)/x?

is zero at x = 2 where the tangent line is horizontal. Examine

Figure 13.7 to understand this. To apply Newton's method we calcul-

ate the algorithm (or "iteration function') to be ¢ (x) =

z - f@)/f'(x) = (-2x+3)x/(2-z).

 

 

Figure 13.7

A first observation is that ¢(2) is not defined at all. This

corresponds to the fact that the tangent line to the graph of f(x)

at x = 2 does not cross the x-axis at any point. Of course, Newton's

method will work if we start with x, close enough to the zero for

fatax=1. If xzo = 1.1, then

xy = 08777778

X2 = [0,9990338

x3 = 0.9999981

Xy = i

A second odd fact about the algorithm ¢(x) is that if x, = 1.5,

then x; = ¢(x9) = 0 and x, = ¢(0) = 0. Here Newton's method has led

us to a seeming zero at 0, x; = x2 = 0, but the function f is not

defined for x = 0. In Figure 13.7 you may examine the tangent line
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to the graph of f(x) at *x = 1.5 to understand this. Algebraically,

¢ has two zeros, at x = 1.5 and 0.

A third disconcerting fact about the algorithm ¢ (x) is that if

we start with xy = 3, we get

x1=q.

xo = 1H.285714

x3 = J9.6487131L.

Again Figure 13.7 can explain this: the tangent line to the graph

of f(x) at x = 3 slopes downward away from the zero at x = 1. Thus

there will be no convergence if x, is chosen to be greater than 2.

This example illustrates the need for some care in applying Newton's

method. However, in this case there is convergence to x = 1 if xg

is chosen between 0 and 1.5; you can see this from the graph of f(x).

EXAMPLE: INTEGRATING THE SINE INTEGRAL WITH SERIES
. . . . -1 .

When we studied integration, we saw that the function f(x) = x sin x

has no elementary antiderivative (see Example, Ch. 7; f(0) is

defined to be 1, so that f is continuous at 0). Hence the Sine
X

Integral Si(x) = f(t)dt, which is useful in the mathematical ana-
I 0

lysis of wave propogation, had to be evaluated by numerical methods.

However, our work with series gives us another handle on that prob-

lem. Remember that sin x = x - x3/3' + x°/5! - ... . Therefore

x ! sinx =1 - x2/3! + x%/5!' - ... , and the integral is

x

/s—.ll—zdt=/‘l(l-fi+§—:- ...)dt.
0 t 0 3! 5!

But each term in the series-integrand is quite readily integrated:

L om 2n+1 x 2n+1
t™/(2n+l)! dt = ¢ /(2n+1)(2n+1)!]O = /(2n+1) (2n+1)!.

0
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Since the series for © = sin converges for all x, the series that

term-by-term is the integral of the series for x_l sin & must con-

verge to the value of the definite integral for all x. For all x,

then, Si(x) = x - x3/3X3' + 2°/5X5! - ...; we have evaluated the

integral and, in a sense, found an antiderivative for x_l sin x. Of

course, in another sense we have merely exchanged one kind of approx-

imation problem for another. Instead of finding trapezoidal sums

for the integral to evaluate Si(1), for instance, we may find par-

tial sums for this series expansion of SZ(x) at x = 1. Much of the

work we do in mathematics looks like that, though; let's investigate

the practical value of this new idea. Since this is an alternating

series, we may simply calculate terms and sum them until we come to

a term whose magnitude is acceptable as an error. In this case,

1/9X9!' = 0.,0000003, and the sum of the first five terms

1 - 1/3X3! + 1/5X5! - 1/7X7! + 1/9X9! = 0s94E0831 is correct in

all seven decimal places. We found in Chapter 7 that the trapezoidal

sum T;, for this integra.lf1 t! sin ¢ dt was correct in only three
0

places and was harder to calculate to boot. It is clear that we

have made a large stride forward in our computational technique, and

also we have acquired a new theoretical tool.

ExaMPLE: THE FRESNEL INTEGRAL

Another non-elementary integration problem is the Fresnel integral:

x 2
C(x) =/ cos (E;—) dt.

0

It is useful in the analysis of diffraction in optics. Since

 

cos x =1 - 22/2' + x*/4' - ... ,

X 2,4 4,8

C(x)=/(1-1—’3——+"t - .. )dt
0 22x2'  2%x4!

m2q5 T
=X - + - e 

5X22X2!  9x2'X4!
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To calculate C(0.3), for instance, we need only evaluate this alter-

nating series out to the third term

T (0.3)°

9X2"“x4!
= 0,000000&

and sum to find C(0.3) = O0.2994010, which is correct in all seven

places. This is a powerful method indeed!

THE ERROR IN SERIES INTEGRATION

Suppose we wish to integrate f(x) = E aixz on the interval

0
a. . .

0,81: f® F@yde = ) L (6871 - 0™y (assume 0 < a < ).
0

Now, if in evaluating this definite integral we only use terms of

index © < n in the integrated series, what is the error? Well,

Taylor's theorem says that

Flx) = ap + ayx + ...+anxn o £eyLGy

where 0 < £ < x. Accordingly, if we replace f(n+1)(£) by an upper

bound M, M > If(n+1)(£)| for every £ in [0,B], then

B B "

/ fx)dx - (aotayx+...+aa2 )dx| <

a o

/ M—————dx - M (Bn+2 _ ocn+2).

 

n+1) ! m+2)"

EXAMPLE: 1/(1-z?%)

We apply this calculation to an example: f(x) =

 

1 + 2% + x* + ...; this expansion is immediate by substitution of 2
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in the geometric series. The remainder term is

2n+2
_x

Ron =
 

1-x2

We could compute f(2n+1)(£) from Ry;, but it is unnecessary. An

upper bound is

xzn+2

1-B?2

 Roy

on the interval [0,B], so the error in the approximation

B B

/ . é/ (L+c?+. . +xP)de = B + B%/3 + B/5 + ...
0

 

is less than

 

B 2n+2 2n+3
/ T g
0 1-82 (2n+3) (1-8%)

A . . . . . -1
Since we have an antiderivative in this case, f(l-xz) de =

+ o% 1n ‘%:%1, we have an approximation when |B| < 1:

 1n<it§> : 2B(1 + B2/3 + BY/5 + ...)

with error less than 2B2"*3%(2n+3) (1-82).

It is simple to check that if y > 0 and B = (y-1)/(y+1), then

|B| <1 and y = (1+R)/(1-B). The above approximation thus gives a

rapid method for the calculation of 1In y for every y > 0.
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EXERCISES

1. In each of these exercises use Newton's method to solve the

indicated equation, beginning with xo = 1. What is the first value

i x .7 Check your answers.of n for which xn 1

*

a. 2x> + 4x - 5 0 c. cosx =0.1 (so x = arccos 0.1)

b. & =4 (so x
* x

1n 4) d. e =cosax +1

n ~2. Apply Taylor's theorem to find the series for In x at a

Then use your result to calculate 1n 7.1 and 1n 6.1 if 1n 7

1+9459101. In each case, choose the appropriate partial sum to

achieve five correct decimal places in your final result and give

your reasons for that choice.

3. Expand sin x about a = m/4, and graph the resulting partial sums

S1, Sz and S3 next to the graph of sin x itself on [0, w/2]. Com-

pute values at six evenly spaced points. Then on the same graph

over the same interval but in another color plot the similar partial

sums for the expansion of sin x about a = 0. (Hint: Re-examine

Figures 13.1, 13.2, and 13.3.)

4, Find the series for the function log;,x about the point a = 1.

This function, the common logarithm or logarithm to the base 10, is
y 1In 10

the inverse function to 10Y = e Hence if y = log;.x then

gy 1n 10 xory ln 10 = Inx and ¥y = 1n x/1n 10. Given that

In 10 = 243025851, decide how many terms of your series will be re-

quired in a partial sum that is correct in five decimal places when

x = 1.11 and when & = .5, and compute these sums. Finally, use

these sums to calculate log;, 1110 and log;, 0.0000005; for each

result decide how many decimal places are correct. Does this exer-

cise help to justify the use of the strange number e as a base for

natural logarithms?

5. Establish a series representation for the function vx by using

a Taylor expansion about a = 64. Then use this series to calculate

v67.89 correct to five places, basing the number of summands you use

on an analysis of your remainder term.
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6. In our example we found that the partial sum S,(2.1) of the

expansion of 1In x about a = 2 was correct to seven decimal places,

and S, was correct to four places. How many terms of the expansion

of In x about a = 1 would be required to calculate 1ln 2.1 correct

to four places? Seven places?

*7. Solve x°> + 2x® + 1 = 0 by Newton's method.

8. Solve (e5-1)3% = 3% _ 3,20 4 3% _ 1 = ¢ by Newton's method

starting with xo = %. Then test a modification of Newton's method

for p-fold zeros: if p is the smallest integer for which f(p)(p) #

fx,)7
0, let T:pg =%; P ?WTEzT . This modified algorithm may not often

be of much use in practice since one does not generally know p.

Nevertheless, in a case of slow convergence it may be worth testing

the algorithm for p = 2 and p = 3 for improved convergence. Do you

understand the appearance of the factor p in the algorithm in this

instance?

*9, Show that the algorithm for Newton's method of finding Vais
- n(n l)xi +q

il =ol and use this method to find #7 and V19. How many
nx..

7
iterations were required for each case if xo = 27

*10. The Cosine Integral Ci(x) is used in the analysis of wave prop-

agation; it is defined to be

x
Ci(x) =Yy + Inx +./{ t-l(cos t - 1)dt,

0

where v = 0.5772157 is the Euler number. The negative of the

integral itself is called Cin (x) = jbx t_l(l - cos t)dt; the value

of the integrand at ¢ = 0 is taken to be 0 so that it is continuous

there. There is no elementary antiderivative for (1 - cos t)/t;

hence this integral must be evaluated by numerical methods. Show

2 xk

that Cin x = 5;7? ~ AXAT + ... and compute Cin (0.7) correct to six
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places. (Give the reason you believe that your answer is correct

to six places. Compare your results to the four-place accuracy of

the trapezoidal sums in Exercise 9, Ch. 7.)

*11. The Exponential Integral Ein (x) =.fbx t_l(l - e-t)dt (sometimes

Ey(x) = Ein(x) - In & - y 1is called the '"exponential integral') is

another function that is used in applied mathematics and that is not

expressible in terms of elementary functions. Show that Ein x =

2 .’L'3
g T&

2X2! 3X3!
. and evaluate Ein(x) correct to six decimal

places. (Give the reason you believe your answer is correct to six

places.)

*12. The error function or probability integral (see also Exercise

8, Ch. 8)

2 [T _g2
erfx = H(x) = T e dt

i}
0

is not expressible in terms of elementary functions. Show that

erf x = ;%,(x - x3/3 + x£%/5X2! - x7/7X3! + ...) and calculate

erf(0.2) correct to six decimal places. Give your reasons for be-

lieving that your answer is correct in its sixth place.

*13. Calculate 1n 2 using the approximation 1n <%;%> =

28(1 + B%/3 + B*/5 + ...) from our Example. Decide from the error

term 282n+3/(2n+3)(1-82) how many summands are necessary to insure

six-place accuracy and use that sum.

14. Use Newton's method to construct a general algorithmic scheme

for solving quadratic equations of the form x2 - 2Bx + y = 0, where

B% > y. Then use your algorithm to find solutions for the following

equations, starting with xo = B - 1 and xy9 = B + 1:

0

0.

22 - 5 + 6

x% + 2Mx - e
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Finally, discuss the equation x® - 2Bz + y = 0 in case B2 = vy

or B% < . What happens to your algorithm in these cases?

PROBLEMS

P1l. Use Taylor's theorem to derive a higher-order approximation

method, similar to Newton's method, for finding the zeros of a func-

tion f(x). Show that if one uses the Taylor expansion of f(»r) at

an approximation x of a root r of f(x) = 0 and neglects terms of

order greater than two, that

ey-@t - Ae
vl % &)
 

is a better approximation than z; - (The choice of the negative sign

in the numerator is made to minimize the numerator.) This formula

fits a parabola tangent to the graph of f at X and solves for one

of its zeros. It is called Cauchy's method.

Compare the rate of convergence of this method with that of

Newton's method and the method of successive substitutions for our

Example function f(x) = P - 2x - 1. Discuss the advantages and

disadvantages of this higher-order method.
x

e -1
x
 P2. Integrate J.l dx by means of a Maclaurin series expansion

0
of the integrand. Analyze the error and decide how many terms will

be necessary to have the series approximation to this integral ac-

curate to six places. Then compute that sum.

P3. Find f /4 }—_—E;_LE dx accurately to six places. Do this by
0 X

series integration. Give your reason for believing that your answer

is indeed correct to six decimal places.

: 1 x° :
P4, Find J. & dr accurately to six places by means of series

. . 0 x> () X, s .
integration. (Remember, & means e , not (¢7)>.) Give an argu-

ment based on the error term for your particular choice of a partial

Sm‘
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P5. Derive the Taylor series for sin x expanded about the point

a = /4 as in Exercise 3. Then use this series to derive a series

for j.fl/s sin x? dx. Analyze the error term for this series to

m/4

decide how many terms are necessary for a partial sum to be correct

to six decimal places and form that sum.

P6. In Newton's method, and also in the method of successive sub-

stitutions, a solution is found to an equation f(x) = 0. The solu-

tion s is the limit of a sequence xy, x;, 2, ... defined by an

iteration function ¢, so that Leq = ¢(xi) for each integer %7, once
1

the initial estimate xo is chosen. Suppose the iteration function

¢ has derivatives of all orders at s and consider its Taylor expan-

sion at s (compare Problem P3, Ch. 5): ¢(xi) =

e(s) + (x;-8)¥'(s) + (“’»;'3)2‘P"(S)/2! +

Let the nth error be defined as en = xn - 8: show that

lim
100 €n+1/€n = ¢'(s). Next assume that |¢'(s)| < 1 and prove that

the sequence of iterants does indeed converge to s. Conversely,

argue that if |¢'(s)| > 1, then the sequence x,, x;, ... cannot con-

verge to s.

Given the problem of finding a root s for f(x) = 0, suppose

that the iteration function ¢, which you construct for successive

substitutions, has a derivative and |#'(s)| > 1, so that it does not

converge. Describe another substitution algorithm for the same prob-

lem that is guaranteed to converge.

Show that ¢'(s) = 0 whenever ¥ is an iteration function given

by Newton's method and f'(s) # 0. Explain why the speed of conver-

gence is called '"'quadratic'" in this case.

P7. The relativistic energy of a moving particle is given by F =

m/V/1 - B? where m is the mass and B is the particle speed expressed

as a fraction of the speed of 1light. When B = 0, the particle has

"rest mass'" m. Expand E(B) in a Taylor series. Then argue that if
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B is small, say the speed is less than 300 km/sec (which is one one-

thousandth that of light), then E is well-approximated by the sum of

the rest mass and the classical kinetic energy m B%/2.

Answers to Starred Exercises

O0.470a247

0,6013468

Exercises la. x3 = x4

1d. x4, = x5

-0, 73315649

9. x3 = 149229312 = V7

z, = 18019831 = V19

10. Cin(0.7) = O.1200260

11. Ein(1/m) = 02946699

12. erf(0.2) = O.2227026

13. S, = DJB53L47L
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DIFFERENTIAL EQUATIONS

INTRODUCTION

Applications of the calculus depend on interpretations of the deriva-

tive, such as the slope of a graph, a velocity or an acceleration,

marginal profit or cost or revenue, a rate of growth or of decay.

For example, acceleration is the derivative of speed for a moving

vehicle. Thus if the acceleration of an object is known to be con-

stantly 7, then its speed s(t) as a function of time satisfies the

equation s'(t) = 7. This is called a differential equation: it is

an equation involving the derivative of a function. The solution to

this equation is not a number; it is the function s(t) = 7t + C,

where 7 is the constant acceleration and C is the number s(0), the

value of the speed at the time coordinate 0. In general, in differ-

ential equations the unknowns do not stand for numbers but for func-

tions, and the solutions are functions.

In real-life applications where we wish to know a function, we

frequently are able to understand the relationship(s) that the deriv-

ative(s) of a function must satisfy. Hence differential equations
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constitute the most important way in which the calculus is used to

solve practical problems.

This chapter begins with the Example of exponential growth and

some definitions. We then discuss the case of separable variables

and illustrate it with the Example of the spread of rumors. Next,

two series methods of solving differential equations are described,

and Examples are given. Then an Example of a stepwise process shows

that, with a constant amount of arithmetic, accuracy may suffer when

we subdivide the interval over which solutions are calculated. Exer-

cises offer practice in solving first order differential equations

by series and by separation of variables. (This chapter may be re-

garded as being primarily concerned with series.)

In the Problems we define and discuss simultaneous sets of dif-

ferential equations, second order equations, Euler's method, and the

Heun method. Series solutions that are expanded about some point

x # 0 provide another Problem as does a second order equation whose

leading coefficient vanishes at the initial point.

EXAMPLE: ¥' = ky AND EXPONENTIAL GROWTH

In Chapter 8 we discussed the problem of radiocarbon dating. We knew

that the radioactive atoms of C!* in an ancient axe handle had been

decomposing at a rate proportional to the amount of C!* present.

That is, if y(¢) is the amount of C!* present in the axe handle at

time t years after the wood ceased to grow, then there is a constant

k of proportionality such that y'(¢t) = k y(¢). We solved this prob-

lem by guesswork then. Here is a more systematic method of attack:

the equation may be written as y'(£)/y(t) = k. We know that

y' (B)/y(t) = %E-Iln y(t)| is a derivative. By the Fundamental

Theorem of the Calculus,

£ y'(x) vIn|y(¢)| =/ @) dx =/ k dc = kt.

0 0

kt

 

Thus |y(t)| = e
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Since our choice above of 0 for the lower limit of integration

was arbitrary, we may add any constant ¢ to kt to find another func-

tion kt + c¢ that also satisfies the requirement on 1n|y(t)|. This

eky+c = ecekt. Now &° maydefines a family of functions |y(t)| =

be any positive number, and -y(¢t) is a solution to our problem when-

ever y(t) solves it. Thus we may describe the family of solutions

as y(t) = Cekt for various constants (. Here C may be either posi-

tive or negative; the constant function y(¢f) = 0 is also a solution.

Figure 14.1 graphs this family of functions; there is exactly one

¥=0 

I N 
Figure 14.1

graph of such a function going through a given point (x,y) of the

plane. Hence we could single out a specific solution y,(Zf) by spec-

ifying that its graph go through (0,3), for instance, which makes

Ce® = 3 or ¢ = 3. Thus yo(t) = 3eK?

SoME DEFINITIONS

The above equation, y'(t) = k y(t), is a differential equation. In

Chapter 8 we saw similar differential equations, which described the

growth of money with compound interest and the cooling of a hot body.

In general, a differential equation, which we often call a DF for

short, is an equation involving a function y(t), the variable ¢, and

the derivative function y'(¢). Sometimes a DE will involve the sec-

ond or subsequent derivatives y"(t), y'''(¢), ...; these are called
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second order DEs, third order DEs, ... . We shall not consider

higher order differential equations here (see Problems P2 and P8).

An equation that involves the first derivative y'(¢), plus y(f) and

x perhaps, is called a first order DE (they are sometimes called

ordinary DEs to distinguish them from equations involving partial

derivatives).

Every integration problem may be considered to be a first order

differential equation: to find an indefinite integral.[ f(x) dx is

b
to find a solution to y'(x) = f(x). Similarly, to find JL f(x) dax

is to find a particular solution to y'(x) = f(x) for which y(a) = O,

and then the definite integral is y(b) (can you see why?). This fact

can give us humility: we know now that we cannot solve every DE of

the form y'(x) = f(x), let alone those DEs that involve y(x) as well.

Examples we have seen of integration problems for which no elemen-

tary solution exists include the definitions of Bessel functions;

elliptic integrals; the error function; the Sine, Cosine, and Expo-

nential functions; and others. But there are many DEs that may be

solved. Unfortunately there are many methods for solving them, and,

just as for finding antiderivatives, no one of these methods is sure

to work on a given problem.

SEPARABLE VARIABLES

One method that works on many simple DEs that arise in applications

is the method of separation of variables. Our axe handle problem

above is an example for this method. The DE is y'(t) = k y(¢),

which we shall write more simply as y' = k y. To solve it, rewrite

it with all the symbols that involve y appearing in a factor multi-

plying y' on the left-hand side, so that the right-hand side of the

equation is a function of x only, with no appearance of the symbol y.

Rewritten, the equation is l-y' = k. The resulting equation is now

in principle the equality o% two derivatives, each with respect to wx.

The antiderivatives (In |y| and kx) of each side may now be found.

The Fundamental Theorem says that two functions with the same deriv-

ative must differ by a constant. For each choice C of a constant,
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then, 1n |y| = kx + C is a solution to this DE.

In general, the trick is to arrange the DE in the form F(y)y' =

G(x). This is not always possible; when it is, the DE is said to

have separable variables. Then the solution is of the form

/F(y) y' de =/G(x) dz.

(Here the indefinite integraI./(b(x) dxr stands for the family of

antiderivatives, of functions whose derivative is G(x).)

ExampLE: THE Rumor DE

For a simple model of the spread of a rumor, suppose that each per-

son who has heard it will meet 7 people per day and tell them all.

Some of them will have already heard it. If we let H(t) be the num-

ber of people who have heard the rumor at time ¢, out of a total

 

population P, then each day each of them will inform 7(1 - H(%)/P)

persons who have not yet heard it. This gives the DE

H' = H(P-H).

N
~

The variables are separable. The rewritten equation is

P
——— ! -H(P-1) H 7.
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The solution will be

p ' = —
/H_(—fi-_H-)—H dt—/7dt—7t+0.

To integrate the left-hand side, notice that

P 1
H(P-A) H ' DH

and

P H H'
/H(P_H')" H! dt =/§-— dt +‘/mdt = ]n |HI - 1n lP_HI + C.

(If this is at all confusing, replace H' dt by dH in these integra-

tion problems.) Since 0 < H < P, the absolute value symbols may be

deleted. This yields

In # - In(P-H) = 7t + C

H
1n<1—3—:-g) =7t + C

Ho _ 1+ C 2 o7, k> 0.

Solving for H as a function of ¢ gives

H =k "t (P-H)

H(l+ke?) = k P 7t

kpelt _ _kpP
H(t) =

1+ke ™t ket
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Here P is the total population, ¢ is the time in days, and k is a

constant determined by the initial value of H(t) at ¢ = 0.

ExamPLE: SERIES SoruTioN BY CoMPUTED COEFFICIENTS FOR

y' = 2xy

Perhaps the most widely applicable methods of solving DEs are the

two methods of finding the Taylor series of a solution. These

methods will often provide a theoretical solution, even in closed

form, and also they yield numerical solutions for given initial

values.

As an example, we solve y'(x) = 2xy(x), this DE would usually

be written simply as y' = 2xy. We wish to find the set of all func-

tions y(x) that satisfy this DE. In fact, this DE has separable

variables. Hence the method described above will work. We see that

2t = y'Jy = %E-In ly|, so 1In |y| =')[;xdx = 22 + ¢, and thus y =

2

ce® . That is, the set of solutions for y' = 2xy includes all func-
2

tions of the form y(x) = ce® for some real number C (see Figure 14.2).

 

\\\\\\\_

=
/‘ 

Figure 14.2

We put this knowledge aside, however, and use the method of

computed coefficients to find a Taylor expansion for y(x) about the

point a = 0. The value of y at & = 0 is arbitrary (that is, it may

be any real number); we denote it by y(0) = C and compute the succes-

sive derivatives of y(x), first the functions and then their values

at x = 0. All this can be done from the information we are given,
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namely, y' = 2xy and £ = 0 and y(0) = C. The computation is compiled

in Table 14.1.

 

TABLE 14.1

Value at x Value at x = 0

y = yx) C

y' = 2xy 0

y" = 2xy' + 2y 2C

ynv = zxyn + 4y| 0

y(4) = zxyll' + 6yl| 120

) 2 2y () 4 g 0

y (6) = 20y (5 4 10y 120C

g = 2yD 4 (20-2)yD (20-205D (0)

The Taylor series for the solution function is thus

y(e) = C(1 + x? + z%/2 + x8/6 + ...).

In this case, the series is readily recognized as that for exz. To

check this, we try y(x) = C‘e")c2 in the DE and see that it is satisfied.

If, however, we did not recognize the series to be that of some

familiar function, in closed form, we nevertheless would have a se-

ries representation of a family of solutions. Furthermore, suppose

that we are given a specific number for the initial value C = y(0)

as part of the problem we are to solve. Then we can calculate the

value of a specific solution function y at some other point x by

means of this series. The remainder term for the partial sum Sn of

this series was shown in Chapter 13 to be less than Cexzxn+1/(n+l)!.

2 2
Here we may roughly estimate ¢ as less than 3° . If x = 1, for

example, and C is given as %, then six-place accuracy may be achieved
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with Sg. Suppose though that we wish to calculate y(2): to have

six decimal places correct requires that we evaluate S;o, which is

a lot of summing.

ExaMPLE: SERIES SoLuTION BY UNDETERMINED COEFFICIENTS

FOR ¥y' = x - ¥y

Instead of calculating the coefficients of the Taylor series for

y(x) directly from the initial value x = 0 and y(0) = C, we may pro-

ceed algebraically via the method of undetermined coefficients. We

illustrate this alternative scheme with a new DE for an example:

y' = x - y.

To begin, suppose that y does have a Taylor series expansion

within some positive radius of a = 0: y(x) = ag + a1x + ax?/2' +....

Then y'(x) = a; + axx + azx®/2! + ..., and x - y =

-ag + (l-a1)x - ax?/2' - qsx®/3' + ... . Since y' = x - y, the co-

efficients of like powers of x must be equal, since a power series

expansion for a function is unique (see Chapter 12). Thus the con-

stant terms a; for y' and -a, for x - y must be equal: a; = -a,.

Similarly a, =1 - a; =1 + ay, and then a3 = -a,, ay = -as, and

a. = - a. for © > 3. Thus when ay is determined, then every coef-
1 -1

a.x’/i! for y(x) is completelyficient of the Taylor series :E:O ;

specified:

y(x) = ag - apx + (1+ag)x?/2! - (l+ay)x®/3! + (l+ag)x"/4! -

This series is almost recognizable; aside from the first two

terms it is the series (1+a0)<§ (—x)l/i!) =

1 +ay - (l+tag)x + (l+ay)x?/2! - (l+ay)x3/3! + ..., which is the

Taylor series for the function (1+ao)e-x. Therefore we may simply

adjust the first two terms of this latter series to agree with that

for y, which is seen to be y(x) = (1+a0)e_x -1+ a2. This consti-

tutes a set of solutions for the DE y' = x - y where there is a
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different solution for each differing initial value y(0) = ao. This

fact corresponds in Figure 14.3 to the fact that exactly one curve

%/
7

Figure 14.3

\
L
y

 \
2

<
&

W

goes through each point (x, y(x)) of the plane. The solution y =

ce™ - 1 + x is in closed form; however, the series solution y(x) =

ao - apx + (l+ay) (®%/2! - x3/3! + ...) is a satisfactory theoretical

solution to our differential problem. As an example, assume that

y(0) =1 (so the solution function is y(x) = 227% _ 1+ x); we shall

calculate y(0.5) from the series. The error for this alternating

series will be less than the first term omitted from a partial sum,

so for five-place accuracy we sum Sg = 0s713d0642. The first omitted

term is -2(0.5)7/7! = -0,0000031, and the theoretical value is

0.7130613.

(This method, of undetermined coefficients, gives us insight

into DE's in general. Since in principle it must always work, it

shows us intuitively that if the coefficients of a DE are functions

that themselves have power series expansions, then a series solution

for that DE always exists. It also may be easy to see a regularity

in the determination of these coefficients and thus to guess the gen-

eral term of the series for y. Nevertheless, the applications of

this method often lead into complicated arithmetic. The first method

we saw, of computed coefficients, may, then, be the simpler one to

use.)
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ExaMPLE: A STEPWISE PROCESS

Could we improve our accuracy in the last calculation above by break-

ing up the interval [0, 0.5] into, say, two pieces [0, 0.25] and

[0.25, 0.5] and using our solution above at 0, y(0) = 1 to establish

a new solution at 0.25? That is, suppose that we use the partial

sum S3(0.25) = 0.80729L7 to approximate y(0.25), then use this value

of y together with a series expressing y(0.5) as an expansion at a =

0.25 to calculate a new partial sum for y(0.5). Would this two-step

procedure yield more accuracy in our estimate for y(0.5)? Such in-

creased accuracy might be expected; using smaller steps in integra-

tion processes certainly improves the accuracy, for instance. At

x = 0.25 we have

x = 025

y = 0.8072492°7

y' = x -y = -0.5572917

y" =1 - y' = 1.,55724917

y"' = - y"' = -1,55729L7

and the series is

y(e+h) = y(x) + h y'(x) + h2y"(x)/2! + K3y (x)/3! + .

where both x and 4 are equal to 0.25. This sum is y(0.5) = O.7125787,

which is only correct to two places. Our hopes are thus dashed. By

summing the first four terms of each of two series, and also calculat-

ing the coefficients in a second series, we got a much worse result

than we originally had with the sum of seven terms of one series (see

Figure 14.4). Of course, if we had summed seven terms of the series

for each of our two steps, we would have achieved increased accuracy

(see Problem P5).

We may understand this fact to suggest that the way a DE guides

us to numerical answers is basically divergent. That is, a small
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error in an earlier step is amplified each time it is used in a lat-

er calculation. This contrasts with Newton's method for finding

zeros, for instance, where an error in an intermediate step will be

corrected in later stages.

In practice, DE's may themselves be defined numerically so that,

for example, one is posed the problem y' = f(x,y) where the function

f is not known in closed form. (In applications, the value of f may

be read on a meter.) Then it is numerically unsound to calculate

y", y"' and so forth as limits of difference quotients. In such

cases, the breaking down of the interval into steps may be the only

practical method available (see Problem P3 and P4). We have included

the above example, though, as a warning that the stepwise procedures

that are universally used with large computers may often be inappro-

piate for hand-held calculators.

EXERCISES

1. Treat each of the following easy integration problems as a DE and

solve it twice: (1) by the method of computed coefficients and (2)

by the method of undetermined coefficients. Find families of solu-

tions that are series expansions about the point O.

a. y' -3x+4=0 c. y' - xe® = 0

1 (e
}b. y' + & =0 d. y' +ky
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*2. Calculate Sg9(1) and S;9(2) for the series y(x) =

L(1 + x% + x2%/2' + 2%/3!' + ...) of our example of the method of com-

puted coefficients.

3. Use the method of undetermined coefficients to solve the DE

y' = 2xy, which was solved in the Example of the method of computed

coefficients.

4. Use the method of computed coefficients to solve the DE y' =

x - y, which was solved in the Example of the method of undetermined

coefficients.

*5. Solve xy' = 2y by series. Give the solution y,(x) for which

Yo(l) = 2 and also describe a family of solutions, one solution for

each starting value C = y(1). (Check your answer.)

*6. Solve y' = x + 2xy by series. Give a family of solutions, one

for each starting value a, = y(0). Then compute the value y,(0.7)

correct to six places for the solution y,(x) for which y,(0) = 0.

Finally, identify the series solution you have found with an elemen-

tary function in closed form and compute y,(0.7). (Check your an-

wers.)

7. Solve y' = y? + x by series (use computed coefficients) when the

initial value of the solution is y(0) = 0. Then estimate y(0.5) cor-

rect to six decimal places and offer a plausible argument that you

have considered enough terms in your partial sum to achieve that ac-

curacy.

*8. Solve y' = x? + y by series. Find a family of solutions, one for

each initial value y(0) = C. Then evaluate the solution y,(1) cor-

rect in six decimal places if y,(0) = 0. Give your reason for be-

lieving that your sum is indeed correct to six places.

9. Solve y' = (x*-y)/(1-x) by series in case y(0) = 0. Then calcu-

late y(0.1) correct to six places and give your reason for believing

that you have summed enough terms to be correct in the sixth place.

10. Suppose a bacterial culture has a tendency to exponential growth;

that is, a tendency to satisfy y' = ky. Suppose also that the food
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supply is limited and will only support a total population A. The

growth rate itself must then decrease as the population increases.

Assume that the growth rate y'/y decreases exponentially according

to the rule

y' =k eBt y, B> 0.

This equation has its variables separable. Integrate it to get

Gompertz's growth curve.

Let t be measured in hours and suppose an initial growth rate

of 9% per hour for an initial population count of 100 per cc. Let

the food supply put a limiting upper bound A on the population of

10* per cc. Find the population counts at the end of 2 days and 10

days. (Hint: The upper bound 4 is the limit of the values of your

function y(¢) as t goes toward infinity.)

11. Make a mathematical model for the spread of an epidemic. Let

I(t) be the number of people infected at time ¢ in days out of a to-

tal S of suspectible people. Suppose that the number who catch the

   

     
             

 
 
  

   ——     

disease each day is a constant multiple of the number who have it

times the number who are suspectible but not yet infected. Write

down the appropriate DE, separate the variables, and integrate it.

Then calculate the values of I after two weeks, two months, and a

year for the following case. Three people are infected among a sus-

ceptible population of 1000 at time ¢ = 0, and the Public Health

Service counts 96 persons infected on the seventh day.
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12. Make a graph of the solution function for the rumor DE H(t) =

k P/ (k + e‘7t). Assume that P = 10° and that one person begins the

rumor when ¢ = 0.

13. Suppose that brine containing 3.5 kilograms of salt per 100

liters is flowing into a 10,370 liter tank. Let the tank start out

full of fresh water and be stirred so as to be perfectly mixed at

all times. If the brine flows in at the

rate of 57 liters per minute and the tank

overflows at the same rate, how many kg of

salt are in the tank after 5 minutes, 5

hours, 5 days, 5 weeks? (Hint: Write a

DE for the amount S(¢t) of salt in the tank

 

at time ¢ and separate the variables.)

PROBLEMS

P1. Simultaneous sets of DEs may be solved by series methods in

quite similar fashion to the examples we have seen. Suppose there

are two functions x(¢) and y(¢) and it is known that x(0) = 1 and

y(0) = 1 and that the derivatives satisfy x' = 2¢x + y and y' = y - x.

Assume there is a series x(t) = :E: aixt and also a series y(t) =
0

:E: bixt and solve these DEs simultaneously to determine the coeffi-
0

cients ay, by, a1, b1, ... . Then discuss the remainder terms for

these two series and give x2(0.3) and y(0.3) correct to six decimal

places.

P2. The DE y'" = 2y + 3x is an example of a second order differential

equation. The method of undetermined coefficients will work on it

as well as it does for first order DEs. Find the Taylor series for

a family of solutions y(x). The functions in your family should

depend on two unspecified constants so that there will be a solution

determined whenever initial values are given to both y(x) and y'(x).

Give the solution in case y(0) = y'(0) = 1 and compute y (1) accurate-

ly to six places.
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P3. Euler's method for the numerical solution of DEs may be illus-

trated in our example y' = 2xy: to compute y(1) when y(0) is known

to be 1/2, we divide the interval [0,1] into »n subintervals, which

y1 = y(0),in this problem will have equal length 2 = 1/n. Let y,

Ya = Y1 + 2y1/n2, and in general define X, = 1/n and Y;

Yy;1 t in_lyi_l/n. Then Yy is the approximation we seek for y(1).

Calculate Yy, for n = 5 and 10 for the above problem. Then draw a

graph that depicts your calculation for the case n = 5. Observe the

poor accuracy of this method; it can be shown that the error is

roughly proportional to #. Assuming that, how large must »n be in

this problem for six-place accuracy?

P4. The modified Euler method or Heun method is -an example of a

predictor-corrector method. In Problem P3 above, the estimate Ys;

in the Euler method is predicted by the tangent, with slope

2x to the solution curve at (x. In the Heun methodi-19¢-1° i-1°%5-1)
the ''predicted" Ys is used to construct a ''corrected'" linear approx-

imation with slope the average of y' computed at two points, rather

than the slope of the tangent line at Y:.1° To solve the same DE,

y' = 2xy with y(0) = %, we begin by predicting y; = y(0) + y'(0)r = L.

The slope at (x;,y1) is 2x1y; = 1/n. Define y; = y(0) + %— (0 + 1/n)=

1 ; . - byL + —— ; continue with y, = y; + 2141k and
2n? .

y2 = y1 + 2x1(z%}i-2—>h.

In general, y. =y, * in_lgé_lh and
1-1

- Y;1%Y;
Y =¥t 2xi-1< 2 h

Calculate Qh for n = 5 and 10. Compare your results to those of

Problem P3.

*P5, Calculate the value y(0.5) for the solution y(x) to the DE y' =

x - y for which y(0) = 1. Do this calculation by first summing
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S6(0.25) for the Taylor series given in the example: y(x) =

1 -2+ 2(x2/2! - 2%/3! + ...). Then use S¢(0.25) as an approximation

of y(0.25) to calculate the coefficients for the Taylor series for

this same function y(x) expanded about a = 0.25. Finally evaluate

the partial sum Sg(0.25) of this new series to estimate y(0.5). Com-

pare your answer with the single-step result and also with the two-

step result from our example. How many terms of the series expansion

about a = 0 would be required to achieve the same accuracy in a sin-

gle step?

. . . 1 . .
*P6. Since some functions, like 1n x or =’ have no Maclaurin series

(at a = 0), we cannot hope to be able every time to solve a given DE

by seeking coefficients for a Maclaurin series. But the methods we

have developed may prove effective in finding an expansion of the

solution about some other point, say ¢ = 1. Show that the DE y' =

(x+y)/x is an example of these remarks: its solution cannot be rep-

resented as a power series in x. Then solve it by determining the

coefficients of a solution expressed as a power series in x - 1.

Then calculate y(1.5) for the solution y(x) for which y(1) = 2; do

this by summing enough of your series to guarantee six-place accuracy.

Finally, identify your series in closed form as an elementary func-

tion and check it.

*P7. Solve y' =y - 2 cos x when y(0) = 1. Then evaluate y(2) cor-

rect to six places, using the remainder term to decide how many terms

to sum. Finally identify your solution in closed form and check it

in the DE. Can you now describe the family of solutions, one solu-

tion for each real initial value?

P8. Suppose we must solve the second order DE 2xy'" + y' + y with the

initial value y,(0) = 0. Use the method of undetermined coefficients

to find a family of solutions to this DE, yet show that your family

contains no nontrivial solution yo(x). This is related to the fact

that the coefficient of y'" vanishes at x = 0. Try again for solu-

tions using undetermined coefficients for the series y(x) =

Z :aixa+$, where o is a real number. Show that there is a value
0
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ag # 0 for which this series gives a nontrivial solution for y,(x).

Finally calculate the value y,(0.2) correct to six places.

P9. Describe at least one plausible situation in a field of your own

current interest, perhaps biology or business or chemistry, where

differential equations may be applied to obtain a useful numerical

solution. Discover such a real-life situation by surveying a current

issue of an appropriate journal in your field. (See the Bibliography

for some suggested journal titles.)

Answers to Starred Fxercises and Problems

Exercises 2. Sg(1) = 13591408, Si19 (2) = 272949075

5. yolx) = 222, y(x) = Cx?
6. y(x) = ae + (ap *+ %) (x? + x*/2! + 28/3' + ...) =

2

- %+ (ag + W)

Yo = - L(x? + x*/2 + 25/30 + ...)

2

Sy = -Ou81E61581 = - 4 (07

8. y(x) =C + Cx + Cx?/2 + (C/6 + 1/3)x> +

.+ (C+2)xn/n! + ...

yo(1) = S11(1) = Os43LERT?

Problems P5. y(0.5) = 0.7130614

P6. y(x) x(C + 1n x)

P7. y(x) =1 -x - 2%/2 + 2%/3! + 2%/4! - z3/5! -

1

= coS £ - sin x

In general y(x) = cos x - sin x + ce”.
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APPENDIX: SOME CALCULATION TECHNIQUES AND MACHINE TRICKS

INTRODUCTION

This appendix offers some suggestions that will make your work with

your calculator faster and more efficient. These suggestions cover

"invisible registers'" and program records, the rewriting of formulas

and planning of a calculation, constant arithmetic, factoring inte-

gers and finding integer parts, synthetic division and the evaluation

of polynomials or series, and "artificial' scientific notation. Also

a method is given for converting decimal yards or hours to yards-feet-

inches or hours-minutes-seconds.

Next there is a discussion of roundoff, overflow, and underflow;

followed by a method for handling large exponents. The appendix

closes with a few facts about the machines themselves and how to

avoid damaging them, plus some references for those who wish to read

further about then.

INVISIBLE REGISTERS

Registers are the electronic subcomplexes of a calculator that are
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designed to '"hold," ''contain,'" or remember a single number, like

3414158927 or -19 or 10000. The content of one register is displayed

3.1415927 on the front of your machine: this register 1is

called the '"X-register.' However, every calcula-

tor has other, invisible registers, and so every

calculator has "memory'" in this sense. For

example, let's say you are multiplying 3 by 4.

 

If you key the 3 into the machine first, 3 will

be the first number visibly displayed. However,

when you then key in 4, 4 will replace 3. Thus 4 becomes the con-

tent of the X-register. However, we know that the 3 is still some-

where in the machine, because when multiplication has been performed,

12 is displayed. Thus the machine has shown that it remembered the

3 by multiplying it by the number in X. The invisible register where

3 was held, while 4 was displayed, is called the Y-register. Every

calculator has two registers, X and Y, where the numbers are held

just before the binary operations and E] are performed. Often

these same registers are used for and [-] also, but on some

machines a third register Z holds numbers z destined to be the addend

in 2 + x or 2 - x. Still other models have provision for '"constant"

multiplication, etc., and then they remember that constant, possibly

in Y or in Z.

The last mentioned machines are examples of those having '"alge-

braic logic." Many scientific machines have 'reverse Polish logic';

on these there is a '"stack'" of three or four registers that are used

in arithmetic: these are called X, Y, Z, and T if there is a fourth

one. Some algebraic machines have parenthesis buttons m , and

possibly [] [I] as well, which correspond to still further invisible

registers. And, of course, any of the above types of machines may

provide a memory register M, or even several memories, in addition

to the registers logically assigned to arithmetic.

The above discussion will be quite confusing to you until you

understand the logic design of your own machine. But there are too

many styles of calculator architecture for this discussion to cover

them all in detail. Use your Owner's Manual; study it carefully and
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work out the examples there just as they are given. After each key-

stroke, try to understand which number is in which register (some

manufacturers' literature is quite obscure on this point).

PRoOGRAM RECORDS

Here is a system that will aid you in understanding the logical flow

of your machine's work. It will also help you to plan a '"program"

for any given calculation. We illustrate the idea with some simple

examples in algebraic logic. The format records the content of each

register after keying in DATA or keying a function (='"FN").

Calculate 3.4X5.6:

    

 

  

  
    

   

 

PROGRAM RECORD  <
&

g &
Comment

No entry for the Y

   

  

Je4 register on a given

  

   

   

5.6 line means that its

content is not

relevant.
19.04

  

Calculate (3.4X5.6) + 7.8:

 

      

   
    
  

   
    

   

    
  

PROGRAM RECORDg
S /&
   

 

o
<

O
g
~
~N

X Comment

Jv4

Ju4

=115

159.04

78

cbiB4
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If your machine has a memory register M into which you may add

the content of X by keyingor|M+ , then you can do two computa-
 

tions simultaneously. One sum can be formed in M while another com-

putation is carried out in the usual way in the arithmetic registers

X, Y, and Z. We illustrate this with one example, though the idea

may be applied to many different computations.

Calculate (3-42+5.6%)/(3.4+5.6):

  

  

PROGRAM RECORD   

   

  

    

      

    

<
&~

I &,

Comment

evious content o

is lost

tion uses ]
n machine with hi-
rarc

ith, into M_only;
ffect on X,Y,

  
  

   

 

   etween

Z; M not disturbed

 

  

  

ontent of M is

ecalled

 

  
10

 

  

 

  
  

11  4

There are two blank '"Program Record" sheets included at the end

of this volume. You may remove one and photocopy it. This will pro-

vide you with blanks on which to study and record programs for your

own machine.

REWRITING FORMULAS

Suppose you wish to calculate (3.4X5.6)+(7.8X9.1): simple algebraic

logic will not handle this problem as it is stated. On machines with

a separate memory register M, 3.4X5.6 = 19.04 may be computed and

stored in M. Then 7.8X9.1 = 70.98 is calculated, 19.04 recalled
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from M and added to 70.98. And, of course, if your machine has no

memory register, you may write down the intermediate result 19.04

and later key it in again after finding 7.8X9.1. There is another

alternative: rewrite the expression as [(3.4X5.6)+9.1+7.8]X9.1.

This revised expression requires four binary operations, and it also

requires that 9.1 be keyed in twice. But it does avoid your having

to write down any intermediate results.

We list below some algebraic identities that may be useful in

rewriting sums to fit the logical architecture of your machine.

(aXb) +(eXd) = (axXb/d+ec)Xd (Sum of Products)

(Note that you may choose the simplest of the four numbers above to

be d, the number that must be re-entered.)

 + %.= <a2d + c)/d (Sum of Quotients)

oY
Q

-1
(-11)- + %) = d/(% + 1) (Reciprocal of Sum of Reciprocals)

A sum of squares is

 

/é2+b2 = /(a/b)2 + 1 Xb (Sum of Squares)

Each of these identities may be extended to an expression involving

more than two summands.

CONSTANT ARITHMETIC

Many calculators having algebraic logic provide for '"constant arith-

metic,'" where repeated use is made of one fixed number in operations

on various other numbers. There is a way to realize this mode of

operation with some calculators having Polish logic as well. With

the desired constant a in the X-register, key three times

to '""fill the stack." If another number b is placed in the X-regis-

ter now and the operation performed repeatedly, the numbers
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calculated and displayed will be, successively, b, ab, a?b, a°b,

This is a geometric progression: for an arithmetic progression, key

repeatedly instead of , to see b, a+b, 2a+b, 3a+b, ... . Un-

fortunately, not all machines with Polish logic will endlessly dup-

licate a at the top of the stack; thus this method will not work

with some.

Constant arithmetic is sometimes useful in forming Riemann sums

or partial sums for series. For example, filling the stack with the

number 100 (or using 100 as a constant addend) speeds the calcula-

tion of 2:10 Y100-%2 .
=0

FACTORING INTEGERS

A calculator will quickly and reliably find the prime factorization

of an integer. Suppose that an integer n is not itself a prime, so

it has factors n = kl,k # 1 # 7. Not both k and 7 can be larger

than v7; hence there is some prime factor of #n that is less than Vn.

Accordingly, one may factor any non-prime integer n < 10000 by test-

ing it for divisibility by all the primes p < 100. The list of such

primes is

2, 3,5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97.

As an example, we factor 13083, Since it is odd, it is not divisible

by 2; we first try 13083+3 = 43kl. Hence 3 is a factor. Next,

4361+3 = 1453.6EE?, so 3 is not a repeated factor. Try in succes-

sion 4361+5 = 872.2 and 43617 = bL23d. Hence 7 is the next factor;

we test 62337 = 849, which is a prime. The factorization is complete:

13038 = 3X72X89.

INTEGER PARTS AND CONVERSION OF DECIMALS

To display the integer part of a number in an 8-digit machine, first

add 107 and then subtract 107. In a 10-digit machine use 10°; if

the machine rounds numbers upward at the end of its computations,

first subtract %3 then add 10°, then subtract 10°.
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To convert decimal yards into yards and feet (and, later,

inches), subtract off the integer part of the yards figure and

multiply by 3. As an example, 3.456 yards is 3 yards plus 0.456X3 =

1.368 feet. Furthermore, 0.368 feet is 0.368X12 = 4.416 inches, so

3.456 yards = 3 yards, 1 foot, 4.416 inches. For a backwards exam-

ple, convert 7 yards, 2 feet, 5 inches to 7 yards plus 2 and

5/12 feet = 7 yards, 2+416EEL? feet, which is 7 + 2441BEEE?+3 =

708055556 yards.

The conversions of decimal hours to hours-minutes-seconds and

of decimal degrees to degrees-minutes-seconds are handled similarly,

PoLYNOMIAL EVALUATION AND SYNTHETIC DIVISION
n-1

Let p(x) = aoxn + a1x * .o ta qxta be a polynomial; the most
n-1

efficient computation of its value p(z2) at a number z is

p(g) = {[(aOXz+a1)Xz+a2]X... Xz + a, .

A fringe benefit of this method of evaluating polynomials is that it

performs a synthetic division simultaneously. At certain stages of

the computation the coefficients ago, aoXz+a;, (aoXz+ai)Xz + a,,

n-2
n-1, bix + ... + Db

n_

of a polynomial g(x) = box are displayed,
1

where g(x) is the quotient of p(x) divided by (x-z). That is,

p(x) = (x-2)q(x) + p(z).

Here p(z), the evaluation of p(x) at x = z, is the remainder after

division of p(x) by (x-2). As an example, let

3 4+ 322 + 42 + 5p(x) = 2x

and 2 = 6: first fill the stack and then compute as in Program

Record A. This program is written for Polish logic with a four-

register stack; easy modifications will adapt it to other machines

(with algebraic logic it is easiest to use M to store the number z

when it has 8 digits).
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PROGRAM RECORD A

223 + 3x? + 4x + 5 = (x-6) (202+152+94) + 569
The evaluation is as ([(2)6+3]6+4)6+5

   

 

      
     
   

-
~

g /g
  

 

  

 

o
g

O
g
'~
f\l

 

       
  

X Y Z T Comment

B z 1s entered into X  

 

  

 

   
    

b

B

    

   

  

    

  

stac

with 2

S  

   

 

   

B

ay = by is entered
into X

  

ce

content of T is

duplicated into Z

b1 is content of X

2 1s content of X

   
 

p(2) is content
of X

 

TAYLOR SERIES EVALUATION

A partial sum of a Taylor series is a polynomial, of course. Thus

the method offered above may be most efficient on your machine for

evaluating the partial sum Ss(x) = x - 2%/3! + x%/5! at x = 0.1234

in order to approximate

sin 0.1234 = (-é,— 0.12342 - é—,)xo.12342 - 1]x0.1234.
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For a machine without a button for or for , there is a

modification of this method that may reduce the total number of

arithmetic operations:

sin 0.1234 = [(0.12342/5/4 - 1>x0.12342/3/2 + 1]xo.1234.

This method may also reduce '"round-off" error (see below).

Here is a step-by-step illustration for setting up such expres-

sions:

Ss(x) ax - x3/3' + x°/5!

x(1 - 22/3' + 2*/5")

x(l . x2/3![-1 + x2/5/4:|>

[<x2/5/4 - 1>x2/3/2 + l]x.

ARTIFICIAL ScIENTIFIC NOTATION

Some machines will display and calculate with numbers in scientific

notation; for instance, they display 12345.k78 as 1..2345678 04

which means 1.2345678X10%. Here the number 1.2345678 will be called

the mantissa, and 4 is the exponent. If your machine does not have

scientific notation, there are two circumstances in which you may

wish to imitate it by hand. One such case is when you wish to cal-

culate with very large or very small numbers, such as 6.02X10%3 or

6.4384696X10” ", which cannot be entered into the machine at all.

Another such circumstance is where your computation results in a

very small number. For example, 1.23210%4567891.2 is given as

2.6973059-07 (which means the number 2.6973059X10-7) on a machine

with scientific notation, but the answer on other machines is

0.0000002. To avoid such loss of information or to calculate with

very large or small numbers, merely use the machine to do the

"'mantissa arithmetic'" while you keep track of the exponents yourself

on a sheet of paper. This is easy: add exponents for multiplication
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and subtract exponents to divide. If an intermediate result with

mantissas is a number not near 1, divide or multiply it by an ap-

propriate power of 10 and add or subtract the appropriate integer

from your exponent.

Be careful during addition or subtraction of mantissas to re-

write the numbers so that the two rewritten mantissas belong to the

same exponent. Some examples are:

(6.02X1023)X(6.4384696X10” ') = 3/, 75A5A7X101°6 = 3.4759587X1017

21(6.4384696X107)3 = PhG.AF9L1X107 = 246LASGL1X10710

(1.234X103) + (5.678X10%) = (0.001234X10'6) + (5.678X10'°)

= Gub7A234X101®

RounD-0FF, OVERFLOW AND UNDERFLOW

In the preceding section we discussed the loss of information in a

machine without scientific notation when results are very small num-

bers. This is one example of round-off, which is a type of compu-

tational error arising from a machine's inability to represent or

display numbers with more than 8 (or 10) significant digits (that is,

digits of accurate information in the mantissa). This sort of round-

off is dealt with effectively by means of artificial scientific nota-

tion.

A frequent source of round-off lies in the subtraction of two

nearly equal numbers. This occurs inevitably in numerical differen-

tiation, for instance. Various tricks may be used to avoid or miti-

gate this kind of round-off. One method we have used with differen-

tiation is to evaluate iig Ilgifiliiéfgglfil-instead of using the

usual difference quotient. Another useful technique will help with

the problem encountered in Problem P5, Chapter 2, of evaluating

lim 67.89% - 1
x>0 x '
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Here we rewrite the fraction, multiplying numerator and denominator

by the same number 67.89% + 1 to get in succession:

67.89" - 1 _ 67.89%" - 1 _ 67.89*% - 1
x (67.89%+1)a  (67.892%+1) (67.89%+1)x
  

This modification results in an additional one or two correct digits

in the 1limit, which is 1ln 67.89. (See Problem P6, Chapter 6 for

another derivative approximation.)

Overflow and underflow result when computations produce numbers

that are too large or too small for the machine to express. An exam-

ple is 67.897°, which no pocket calculator can handle. One way to

work this problem is with artificial scientific notation:

(67.89)7° = 6.7897°X107° = (244290454 L2)X107° = 2.4290454X10137,

But that will not help when the problem is to calculate 6.789!75,

For this example, compute

6.789175 = (6.7892%)7 = (L.2394343 20)7 (6.23943437)x101"°

(36814297 O5)X101 40

3.6814297X101%5

(Here the operations inside the parentheses are carried out by the

machine.) Underflow may be handled by similar methods.

HANDLING LARGE EXPONENTS

Here is a more systematic method than those mentioned above for T

when x is large. Write L = aXlOb, where b = [x/1n 10], the "integer

part" of x/1n 10. Consequently, a = 10° where ¢ is the "fractional
x _ 10cxm[x/ln 10] _ 10x/ln 10,

which you may check by taking logarithms of ¢® and 10x/1n 10.

part" of x/1n 10. Thus we have e

For example, compute e!23*% by first calculating 1234/1n 10 =

535.,891939. Hence [1234/1n 10] = 535 and ¢ = 0.91939, so 10° =

B8+¢3059632. Since the last three digits of 10° may be in error (do

you see why?), we report that e!23* = 8,3059X10°35,
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MAacHINE DAMAGE AND ERROR

Your calculator has a reliability curve rather like that for a bath-

tub. That is, like a bathtub, if it is not defective when it is

delivered new, then it is not likely to break down soon. Its buttons,

for example, are designed to last for something like a million clo-

sures. The weak points of most pocket calculators tend to be the

batteries, switches, and display lights, rather than the incredibly

complex, integrated transistor circuitry that does the arithmetic.

However, this circuitry can be damaged or can make errors in arith-

metic and memory if it is given an electrostatic shock. This can

occur if you touch the machine just

after walking across a thick rug. It

is also easy to avoid: always ground

yourself first before touching the

  
  

oT calculator. For similar reasons, the

‘ 7@%{J&a§ it calculator should be OFF when the
    adapter 1is plugged into an outlet or

  

  

 

  

—

{mmfi:m? - ¢§“fi?hflwu, into the machine.
: it ¥(W \ u

'”@Nwfiml‘“élLHHHQA;mfi\lW‘ Some battery chargers are not

& |i ({\}'c“///' H‘:Q’utt(/uu;umt‘z/mm(l\“/'“‘”
-

4 ‘I; ;.&L“;i‘“ {v"llll\, (t (‘tlxl;((tll(l(lltl l'l‘(///((‘l/” (lit adapters , and the bat‘terles can then

! et I
o GO v SOe e e I

be ruined by overcharging; check your

instruction book. In other machines, the batteries will completely

discharge, and may be damaged, if the switch is left ON while the

adapter is connected to the calculator yet not plugged into the

power outlet.

Of course, your calculator will last longer if you do not bang

it or drop it. Also, avoid storing it in such hot places as a car's

glove compartment in summertime.

If you are interested further in the physical and electronic

design of your machine, you will enjoy reading Electronic Calculators

by H. Edward Roberts (Indianapolis: Howard W. Sams, 1974).

For a thorough description and pictures of Large Scale Inte-

grated ("LSI") circuits, see the article '"Metal-Oxide Semiconductor

Technology' by William Hittinger in Scientific American, August, 1973,

pp. 48-57.
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REFERENCE DATA AND FORMULAS

GREEK ALPHABET

A o Alpha I 1 Iota P P Rho

B B Beta K x Kappa z Sigma

r Y Gamma A A Lambda T T Tau

A S Delta M u Mu Y v Upsilon

E € Epsilon N V Nu ® 2 Phi

Z g Zeta E 3 Xi X X Chi

H n Eta 0 0 Omicron Y P Psi

0 6 Theta T m Pi Q w Omega

MATHEMATICAL CONSTANTS

m = 3.1415 92653 58979 32384 62643

1 = 0.3183 09886 18379 06715 37768

e = 2.7182 81828 45904 52353 60287

el - 0.3678 79441 17144 23215 95524

Yy = 0.5772 15664 90153 28606 06512

ConversioN oF UNits: U.S. - EncLISH To S.I. - METRIC

1 inch = 0.0254° meter = 2.54% centimeters

1 foot = 0.3048° meter = 30.48° centimeters

1 yard = 0.9144% meter

1 statute mile = 1609.344° meters = 1.609344° kilo-
meters

1.8528 kilometers

4046.8564 square
meters

29.574358 cc

18528 meters

0.4046856 hectares

1 nautical mile

n I1 acre

0.0295735 liters1 fluid ounce

e . c s . .
A superscript e indicates that the conversion factor is exact.
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1 U. S. gallon = 3,7854118 liters

1 Imp. gallon = 4.545960 liters

1 ounce (avdp.) = 0.0283495 kilogram = 28.349523 grams

1 pound (avdp.) = 0.4535924 kilogram = 453.59237° grams

1 pound (apoth. or troy) = 0.3732417 kilograms = 373.24172 grams

1 pound force = 4.4482216 newtons

1 slug = 14,5939 kilograms

1 poundal = 0.138255 newtons

1 foot-pound = 1.35582 joules

1 B.T.U. = 1055 joules

temperature: (F° - 32)5/9 = c°®

9C°/5 + 32 = F°

To convert square or cubic units use the square or cube of the ap-

propriate conversion factor. For example, 1 cubic inch = 2.543% cc =

16.387064 cc. To convert metric to English use reciprocal factor.

 

  

ALGEBRA

Sum of the Integers: 1+2+3+ ... +n-= %—n(n+1)

(Arithmetic Progression)

2 2 2 2 1
Sum of the Squares: 1+ 29+ 3+ ., +n° = 6-n(n+1)(2n+1)

Sum of the Cubes: 13 + 23 + 3% + .. +nd = %—nz(nfl)2

n-1 1-r"°
Sum of the Powers: l+r+2r2+p3+ ... +0p = 5 if r £ 1

(Geometric Progression)

Difference of Powers: a& -y’ = (x—y)(xn_l + xn—zy + xn_syz + ...

n-2 n-1
+ oy ry )

Quadratic Formula for 5Tdae
Zeros of ax? + bx + ¢: x = :éi_zalfifli

! - - -

Binomial Coefficients: [) = e cnn-l) (r-2). . . (nor+l)
r r!(n-r)! r!
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Binomial Theorem: (x+y)" = (3) <" +(’I) xn-ly + ... +(;l)T e L

GEOMETRY

Triangle Area = bh/2

Parallelogram Area = bh

Trapezoid Area = (a+b)h/2

Circle Area = mr?. Circumference = 2mr

Sphere Area = 4mr?, Volume = 4mr®/3

Ellipsoid Volume = 4mabec/3

Prism Volume = Bk, where B is base area

Right Circular Cylinder Volume = Bk = mr?h

Pyramid Volume = BAh/3

Right Circular Cone Volume = mr?h/3

Point-Slope Line: y - y; = m(x-21)

Slope-Intercept Line: y = mx + b

Two-Point Line: y - yi1 = (x-x1) (Y2-y1)/(x2-x1)

General Line: ax + by + ¢ =0

Angle between two lines: arctan(%zlzu-)
1+mom,

Parallel lines: m; = my

Perpendicular lines: mmy; = -1

Distance (x,y) to line: Zfiéfli%___
(a®+b?)?

Translation of origin to (A,k): &' x-h,y =y -k

Rotation of axes: &' =x cos a + y sina, y' = -x sin o + y cos a

ELLipse; CENTER AT ORIGIN

z?/a® + y?/b®> = 1; x =a cos B, y = b sin 6
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Line tangent at (x1,y1): xi1x/a® + y1y/b? =1

If a >b: e? =a?% - b?; e e/a; foci (%e,0)

If b >a: ¢? =b%-a%;, e = ¢/b; foci (0,%c)

Area: A = Tab

HypErRBOLA; CENTER AT ORIGIN

x%/a® - y?/b® = 1; x = a sec 6, y = b tan O

—Line tangent at (x;,y1): xix/a® - y1y/b? =

Asymptotes: y = tbx/a

e = ¢/a, foci = (*e,0), where ¢ = va?+b?

Conjugate, center at origin: y?/b? - z2/a® 1; y = b sec O,

x = q tan 6

I —Line tangent at (x1,y:1): y1y/b? - xzix/a?

Asymptotes: y = *bx/a

e = ¢/b, foci = (0,%c), where ¢ = Ja?+b?

Center at (a,b), with asymptotes x = a, y b: (x-a)(y-b) = k

PARABOLA, VERTEX AT ORIGIN, OPENING IN DIRECTION OF

POSITIVE ¥

y = x*/4p, x = 2pt, y = pt>

Line tangent at (x1,y1): 2p(y+y1) = x1x

Focus = (0,p). Directrix: y = -p

CONIC: ECCENTRICITY e, FOCUS AT THE ORIGIN, AND

CORRESPONDING DIRECTRIX * = -k

ek
1l - e cos 0
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TRIGONOMETRIC FUNCTIONS

sin m/6

tan /6

sin m/4

sin x =

Cos X =

tan x

2
sin‘x +

tanzx +

1

1

1

cos T/3

ctn /3

cos T/4

/csc x

/sec x

/ctn x

2
cos'x =1

1 = sec’x

1 + ctn?x = cscx

cos(-x)

cos (m-x)

cos (T+x)

sin(-x)

sin(m-x)

sin(m+x)

sin(x+y)

sin(x-y)

cos (x+y)

cos (x-y)

tan(x+y) =

tan(x-y)

sin 2x

cos 2x

Cos X

= =COoSs x

-COS X

-sin x

sin x

-sin x

sin x

sin x

COos x

COos &

- tan x - tan Y

1 + tan x tan y

1/2

v3/3

v2/2

cos y +

cos y -

cos y -

cos y +

tan &£ + tan Y

1 - tan x tan y

2 sin x cos x

cos?x - sin’zx

2 cos?xz -1

1 - 2 sin’zx

sin m/3 = cos m/6

tan 1/3 = ctn 7/6

tan m/4 = ctn /4

cos x sin y

cos x sin y

sin x sin y

sin x sin y

(cos x cos y # 0)

(cos x cos y # 0)
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n
tan Zx = _2_}1__&._

1 - tanzx

|sin %1 = /——:—%2542 | cos %1 = /1+ gos x

 x 1l - cos x sin x
tan = = : =

2 sin x 1l + cos x

; ) . X+ x-
sin x + sin y = 2 sin —iz-cos ry

sin x - sin y = 2 cos 555-51n E%fl

COsS X + cos y = 2 cos E%y cos Q%E-

CoS £ - COS y = -2 sin LYsin E%l

sin £ cos y =5 [sin(x+y) + sin(x-y)]

> [cos (z+y) + cos(z-y)]COS X cOS Y

sin x sin y =—%~[cos(x+y) - cos(x-y)]

Law of sines: a = b = c
* sin 4 sin B sin C
 

2Law of cosines: a? = b? + ¢2 - 2be cos A

b%2 = ¢? + a® - 2ca cos B

e? = qg? + b? - 2ab cos C

. -1 ) -1 2
cos (sin x) = sin (cos x) = V1-x

sec (tan_1 x) = Vx2+1
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xd oz n+l 2271
51nx=x-3—,.—+i-...+(—l) W*‘...

2 4 2n-2
_ x x -l x

COS$—1-—2!+—4! ...+(1) '(—z—n—:z)—!"'...

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

a =1 logaxy = logax + logay

a" = l/an & = eu(ln a)

1/n "
a = va logaxlogba = logbx

A"t = M loga(ax) =X

@’ = d™ logga = 1/(log b)
a

m m,m r
(ab) = a'b log, 5 = logr - logs

m _Ina
logax -m logax logba “Inb

(1 + l/n)n <e < (1+ l/n)n+l

13
L = ni: (1 + x/n)n

2 3 n-1x _ x° x” x
e =lrzrortgrt e Yot

2 3 Y n
_ X x X n-1x_

In(l+x) = x StyT + ...+ (1) P

DIFFERENTIATION

ec' =0 (cu)' = cu'

(u+v)' = u' + v' (uv)"' = uv' + u'v

' _ ' -(u/v)' = VU Zv (un), - nJQl u'

v
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Chain Rule: (u ov)' = (u'ov)v' or (u[v(x)])' = u'[v(x) v’ (x)

 

 

Inverse Function: (u—l)' — 3
u'ou

(cos x)' = -sin x (sin x)' = cos x

(cot x)' = -cscx (tan x)' = sec’x

(csc x)' = -csc & cot x (sec x)' = sec x tan &

(log,2)' = 7z & (In |2)' = 2

@) ="

(arcsin z)' = 1/v/1-z?2

(arccos x)' = -1//1-x2

1/ (1+z?)(arctan x)'

Differential: dy = f'(x) de if y = f(x)

INTEGRATION FORMULAS

[cu(x) dx = cf u(x) de

[[u(x) + V()] de = [u(x) dx +/v(x) dx
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Integration by Substitution: fu[v(x)] v'(x) de = Ulv(x)] if U' = u

Integration by Parts: fi(m) v'(x) de = wx)v(x) - -/z-)(x) u'(x) de

u' (x)
u(x)
 Logarithmic Integration: de = 1n |u(x)]

INDEFINITE INTEGRALS (CONSTANTS OF INTEGRATION ARE

OMITTED)

 

 

 

 

 

 

 

dx . X
= arc sin >

Ya?-x2

dx [2, 2
= 1n |x+ x“ta |

f/xztaz

/aZ_xz dz %("” a*-xz* + aq? arcsin %)

[e(st o e+)
/xmdx = - _13. (az_x2)3/2

/xmdx = - %_ (x-"-iaz)3/2

 

a’-x?
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f_fl_ = /xzj-_az

sztaz

/‘ dx

xv’azifxz

/‘ dux

w/x?-a®

/2, 2
/—C—z—;—‘?—=dx=v’a2ix2—aln

[2__2

S
fsin x dx

/;inzx dax

/;innx dx

fios x dx

-/;:oszx dux

'/‘cosnx de = 1
n

ftan x dx

/tanzx dax

ftannx dux

fi:ot x dx

fcotzx dx

fcotnx dux

fsecxdx

=

In
  Q

|
+

1
—arccosg,x>a>0
a x

2, 2
a + Ya“tx

  

= /xz-a?‘ - @ arccos % if0<a<ax

-COs X

1 .
> (x - sin x cos x)

 1 . n-1 n-1 . n=-2
- —sin "X cos x + sin “x dx
n n

sin x

1 .
—Z-(x + sin x cos x)

 

n-1 ; n-1 -
= cos x sin x + — fcosnzxdx

1n |sec xl

tanx - &

fi—}f tan”1z -ftann-zx de if n > 1

In |sin x|

-cot x - x

- —i— cot™ 1y - /cotn_zx de if n> 1

In |sec x + tan x|
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tan xJ(;eczx dx

-2 n-2
./rsecnx dx fi%i-secn Z tan x + —— secn-zx de ifn > 1

J{csc x dx

fcsczx dr = -cot x

In |csc x - cot x

S

fcscnx de - fi—}—l— cscn_zx cot x + —:—f fisc n'zx de if n > 1

S

sec x tan £ dx = sec X

x cot x dec = csc X

ae sin bx do = Sin(a-b)x _ sin(a+b)x . 2 2

2(a-b) 2(a+h) fa #Db
 wn . =S—

=
=

 o | =

cos(a-b)x cos(a+b)x .
- 2(a-b) =~ 2(a+b) if a® # b

ax cos bx dx

_ sin(a-b)x sin(a+b)x . 2 2ax cos bx dx = ACH)) + ACT)) if a* # b0O o wn  

dzx
sin x cos x~

=

In |tan z|

Z arcsin x + Y1+x?

X arccos & - V1-22

x arctan x - 1nv/1+x?

arcsin x dx~

arccos x dx

I—
=

arctan x dx

ez n

Q
|
+

®

 

x
d/lfl%h: g > ifa>0,ag#1

In

U/ln xde =x Inax - 2

f(ln 2)"de = z(ln )" - nf(ln )"

_ 1
.}(logax dx = Tn 4 (x In z - x) 
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  xnlnxdx=xn+l[1nx- 1 , n# -1
/ n+l (n+1)2

n-1

/;n(ln )"de = £ (1n )" - T /x”(ln )"L  
n+l n+l

ax
fiew@ _ (ax-1)e

a2

n_ax xneax n n-1 ax
xe dr = =— -a—/m e dx

eax eax a eax

/Td“‘—Tl*fl pp & ifn > 1
x (n-1)x x

 

 

/eaxsin bz di = eax(a sin bx - b cos bx)

a’+b?

 

./;axcos b de = e(@a cos bz + b sin bx)
a2+b2
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BIBLIOGRAPHY

ELEMENTARY CALCULATOR MANIPULATION

There are available several introductory guides that teach the use of

calculators in grocery shopping and other elementary applications.

One of these books also augments owners' manuals. It is

Slide Rule, Electronic Hand-Held Calculators, and Metrification

in Problem Solving by Beakley and Leach (New York: Macmillan,

1975).

Two elementary books, which motivate computational skills and numer-

ical understanding by means of elementary arithmetic and number-

theoretic patterns, are

Puzzles for a Hand Calculator by Wallace Judd (Menlo

Park, CA: Dymax, 1974)

The Calculating Book by James Rogers (New York: Random House,

1975).

ADVANCED CALCULATOR MANIPULATION

There exists a compilation of numerical techniques adapted for cal-

culators, complete with many detailed button sequences and discus-

sions of easy ways to calculate things. This book offers no theoreti-

cal understanding, and its treatments of errors are inadequate.

Nevertheless, those who use their machines heavily in scientific

computation may profit from

Scientific Analysis on the Pocket Calculator by Jon Smith (New

York: John Wiley and Sons, 1975).

One manufacturer of calculators publishes handbooks that definitely

extend and supplement its owner's manuals. Each of these books is
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designed to be used with a specific machine model. Nevertheless,

there is much of general interest in one of these:

HP-45 Applications Book (Hewlett-Packard, 1974).

This book contains some repetitious trivia and no theoretical discus-

sions. Yet it also gives recipes for calculations involving complex

numbers and complex functions of a complex variable, linear algebra,

curve fitting and statistics, number theory, financial calculations,

and numerical methods. These recipes frequently exploit the exist-

ence of multiple memories in the HP-45, but they may be transcribed

to fit other models.

NumericaL CALcuLus

Most calculus texts contain discussions of the theory underlying the

numerical methods we have used. However, we cite three such texts

for their particularly thorough and lucid treatments of real numbers

and of numerical integration:

Introduction to Caleculus and Analysie, vol. 1, by Courant and

John (New York: Interscience, 1965)

University Mathematics by Robert C. James (Belmont, CA: Wads-

worth, 1963)

Calculus by Lynn Loomis (Reading, MA: Addison-Wesley, 1974).

A beautiful treatment of both theoretical and numerical aspects of

series is given in

Theory and Application of Infinite Series by Konrad Knopp (New

York: Hafner, 1947).

There are treatments of the calculus that introduce the use of com-

puters in numerical examples. Their discussions are parallel to ours,
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although there are surprising differences of emphasis. Two such books

are.:

Computer Applications for Calculus by Dorn, Hector, and Bitter

(Boston: Prindle, Weber & Schmidt, 1972)

Calculus with Computer Applications by Lynch, Ostberg, and Kuller

(Lexington, MA: Xerox, 1973).

NUMERICAL ANALYSIS

George Forsythe has written a very readable essay introducing the

numerical aspects of '"'Solving a Quadratic Equation on a Computer.'

You can find this essay in

The Mathematical Sciences, COSRIMS (Cambridge: MIT Press, 1969),

pp. 138-152.

Advanced students may find the answers to many of their questions in

textbooks of '"numerical analysis.' Some suitable references are:

Introduction to Numerical Analysis, 2nd ed., by F. B. Hildebrand

(New York: McGraw-Hill, 1974)

Numerical Methods by Robert Hornbeck (New York: Quantum, 1975)

A Survey of Numerical Mathematics, vol. 1, by Young and Gregory

(Reading, MA: Addison-Wesley, 1972).

Some references for more specialized topics are:

Methods in Numerical Integration by Davis and Rabinowitz (New

York: Academic Press, 1975)

Computer Evaluation of Mathematical Functions by C. T. Fike

(Englewood Cliffs, N.J.: Prentice-Hall, 1968)
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Iterative Methods for the Solution of Equations by Joseph Traub

(Englewood Cliffs, N.J.: Prentice-Hall, 1964).

HANDBOOKS

There are two popular handbooks of tables. Each contains much assort-

ed reference information in addition to tabulations of values for many

functions. The first of these is broader and at a lower level. The

second contains formulas, graphs, and tables of values for many func-

tions, plus a great deal of condensed information and guidance on

numerical analysis.

Standard Mathematical Tables, 22nd ed., edited by Samuel Selby

(Cleveland: CRC Press, 1974)

Handbook of Mathematical Functions, edited by Abramowitz and

Stegun (Washington, D.C.: National Bureau of Standards, 1972).

Also published in paperback (New York: Dover, 1972)

ApPLICATIONS TO OTHER FIELDS

Most calculus texts discuss applications of this theory outside of

mathematics. Here are several books that devote more than usual at-

tention to these applications:

Mathematice for Life Scientists by Edward Batschelet (New York:

Springer, 1973)

Elementary Quantitative Biology by C. S. Hammen (New York: John

Wiley and Sons: 1972)

Mathematical Methods for Social and Management Scientists by

T. Marll McDonald (Boston: Houghton Mifflin, 1974)

Calculus and Analytic Geometry by Sherman Stein (New York:

McGraw-Hill, 1973)
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A Primer of Population Biology by Wilson and Bossert (Stamford:

in Conn. Sinaur Associates, 1971).

JOURNAL SUGGESTIONS FOR STUDENTS

General

Biology

Chemistry

Economics

Mathematics

Physics

Psychology

Nature

Science

Setentific American

Journal of Experimental Biology

Journal of Chemical Education

Econometrica

American Mathematical Monthly

Mathematics Magaazine

American Journal of Physics

Physics Today

American Physicist

Journal of Mathematical Psychology

(Handbook of Mathematical Psychology, vol. 1,

2, 3 and 4)

FURTHER READINGS IN MATHEMATICS

Selected Papers on Calculus edited by Apostal et al. (Belmont,

CA: Dickenson, 1968)

The History of the Calculus and its Conceptual Development by

Carl Boyer (New York: Dover, 1959)

Number, The Language of Science by Tobias Dantzig (Garden City,

NY: Doubleday Anchor, 1954)
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Mathematical Thought from Ancient to Modern Times by Morris

Kline (New York: Oxford, 1972)

The World of Mathematics by James R. Newman (New York: Simon

and Schuster, 1956)
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INDEX

Algorithm 5
Quadratic or second-order 190,

200
Alternating series 149
Angle 65-66
Antiderivative 89-90
Antilog function, 10° 177
Approximate equality, = 42
Approximation, to a function 171

Padé 182
Rational 181

Archimedes (287?-212 B.C.) 27,

81, 118, 145
Arcsin function 71

Series for 179

Arctan function, continued

fraction for 79
Area 86

Average value of a function 89

Bernoulli,

186
Bernoulli numbers, 180
Bessel Function J,(x? 95
Bolzano, Bernard (1781 1848) 27
Bracketing, method of 23

Johann (1667-1748)

251

Carbon dating 107, 203
Cardano, Giralamo (1501-1576) 14
Cardioid 143
Cauchy, Augustin Louis (1789-1857)

27
Cauchy's method 199
Chain rule 44
Chuquet, Nicolas (1445-1500) 100
Composite function, composition

44
Compound interest 9, 34

Continuous 106-107, 112,

Computed coefficients 208
Continued fraction 78, 114,

Continuous function 27
Convergence, interval of 169

Radius of 169
Of a sequence, x .y 15
Of a series 146
Speed of 12, 200

Convergent, of a continued fraction
164

Cooling, Newton's law of 111-112
Cos function 66

Series for 170
Cosh function 177

114

163-164



Galilei, Galileo (1564-1642) 117
Generating function, for a se-

Cosine integral, Ci(x) 95, 197
Cosines, law of 74

Spherical 77 quence 166
Cubic equation, algorithm for Geometric series 148

14-21 Golden Ratio 158
Cycloid 142 Gompertz's growth curve 215

Greatest integer function, ([x] 163
Gregory, James (1638-1675) 186

Degree measure 65 Growth curve, Gompertz's 215
Derivative, f' 38-45 Growth, exponential 177-178, 214-

Second, f'" 50 215
Descartes, Rene (1596-1650) 130 Growth ratio, differential 113
Difference quotient, Ay/Ax 39, 75,

79 Half-life 107, 110
Differential, df 42-44 Harmonic series 146-147, 161-162
Differential equation, DE 204 Hero (or Heron) of Alexandria

Second order 205, 216, 218 (c. 75 A.D.) 1, 12
Divergence, of a series 146 Heun method 217

Huxley, Sir Julian S. (1887-1975)
112-113

Hyperbolic functions 177

Definite integral 86

Eccentricity, of an ellipse 144
Elliptic integral 144
Energy, kinetic 201

Relativistic 200
Error function, erf x 111, 198

Error, roundoff 157-158

Truncation 92, 150

Euler, Leonhard (1707-1783) 114,

147, 157, 162, 179
Euler number, Y 161-162, 197,

198
Euler numbers, E 181

Euler's method 217
Evaluation of polynomials 226
Exercise (and Problem) x

Exponent 228-230 ° z Leibniz, Baron Gottfried Wilhelm
Exponential function, e~ or a 103- (1646-1716) 37, 81, 130, 186

105 .. . 1im lim
Computation method for 115-116 Limit, one-sided, or 33-34

Increment 8, 39

Interest, compound 9, 34
Interval-halving, method of 22
Interval of convergence 169
Inverse function 45

Trig 71
Iteration function 191, 200

Kepler, Johannes (1571-1630) 118

Lagrange's form of remainder 174
Leaf of Descartes 51

xta xYa
Continued fraction for 115 Of a sequence 15
Series for 170

Exponential integral, Ein(x) 198

Exponential spiral 134-136

Logarithm function, common, log x=
logjiox 196

Natural, In x 103

Computation method for 109-
110, 196

Continued fraction for 115

Series for 155, 177, 187-

188, 195
Lower sum, L;, 84-86

Exponents, laws of 104

Factorial, n! 30, 161

Fibonacci sequence 158, 165-166
Fourier sin series 160

Fresnel integral C(x) 193-194
Function, iteration 191, 200

Periodic 160 Maclaurin, Colin (1698-1746) 186

Fundamental Theorem of the Maclaurin series 186

Calculus 89-90 Mantissa 226

Future value, of an investment 110 Marginal cost and profit 48
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Mean Value Theorem, MVT 57
Method, of bracketing 22-23

Method, Cauchy's 199
Method of computed coefficients

208
Method, Euler's 217

Method, Heun 217

Method of interval-halving 22
Method, Newton's (See Newton's

method)
Method, predictor-corrector 215
Method of separation of variables

203-204
Method, shell 123-124

Method, slab 119-124

Method of successive substi-
tutions 17

Method of undetermined coeffi-

cients 210
Midpoint evaluation 98
Modified trapezoidal sum 96
Motion, Newton's laws of 142

Napier, John (1550-1617) 101

Newton, Sir Isaac (1642-1727) 37,

81, 130, 145
Newton's law of cooling 111-112
Newton's laws of motion 142
Newton's method 52-53, 188-192

Convergence of 200
For nth roots 24-25, 197

For quadratic equations 198
For square roots 1, 11-12

Overflow 230

Padé approximation 182
Parametric equations, of a curve

134
Partial sum, of a series 146

Partition of an interval 85
Periodic function 160
Pi, m, calculation of 179

Polar coordinates 137-138
Polar graph, of a function 137
Polynomial, Taylor 171-172
Power series 154

Predictor-corrector method 217
Present value, of an investment 110

Pressure, liquid 128

Quadratic algorithm 190
Quadratic equations, Newton's

method for 198
Quadratic formula 7
Quadrature 87

Numerical 92, 96

Radian measure 66
Radius of convergence 169
Rational function 42
Register 220
Remainder, after polynomial divi-

sion 226
For series 150

Lagrange's form 173-174, 186
Riemann sums 87
Root, 75_; algorithm for 24-25,

197
Root, square, vx 2-13

Round-off 156-157

Scientific notation 228
Second-order algorithm 190
Separation of variables 205-206
Sequence, xg, £1, ... or {x.} 15

7
Convergence of x.»y 15
Fibonacci 158, 164-166

Series 145-146
Alternating 149
Geometric 148
Harmonic 146-147, 160-162

Maclaurin 186
p 147
Power 154

Remainder for 150
Taylor 185-186
Truncation error for 150

Shell method, for finding volumes
123-124

Sigma notation, X 84
Signature, of a number 67
Significant digits 229
Similar triangles 67
Simpson's rule, 98
Sine integral, S7(x)
Sines, law of 74

Spherical 77
Sin function 66

Series for 176
Sinh function 177

92, 192-193

Probability integral H(x) 111, 198 Slab method, for finding volumes
Problem (and Exercise) X

Product, infinite 158
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119-123
Slope 39



speed 45, 198
spherical triangle 77
spiral, of Archimedes 137-141

Exponential 134-136
Square root, vx2-13

Algorithm for 5-13
Stirling's formula 161
Successive substitutions, method

of 17
Convergence 200

Sum, of a series 146

Synthetic division 19-21

Tan function, series for 180

Taylor, Brook (1685-1731) 172,

186
Taylor polynomial 171-172
Taylor's theorem 173, 185-186
Term, of a series 146

Torricelli, Evangelista (1608-
1647) 130

Trapezoidal sum 91
Trig functions 66
Truncation error 92, 150

Underflow 230

Undetermined coefficients 210

Upper sum, Un 84-86

Velocity 46

Wallis, John (1616-1703) 158

Wren, Sir Christopher (1632-1723)
130

Zeno of Elea (c. 450 B.C.) 145

Zero, of a function 17, 188, 199

Multiple 190
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