TMOM Tintriociif I
20.8
\odot
\circ
$\%$

How to use hand-held catculators to simplify all aréas of navigation, emphasizing piloting, allowing forcurrent, celestial navigati
converting Loran to latitude
and longitude and optimizing yacht performance in racing and cruising.

Calculator Navigation Mortimer Rogoff

The most dramatic development in navigation is the elimination of the time-consuming, error-inviting interpolations, complicated reference tables, and columns of arithmetic in favor of small, hand-held calculators of modest price, great speed, simplicity, and perfect accuracy.

With a hand-held calculator and the step-by-step instructions in this book, even the beginner will find it easy to master celestial navigation, coastwise piloting, bearing averaging, course planning, calculation of current effect, and the use of calculators in competitive yachting.

For those who want to know the how and the why, it is all carefully explained in Mr. Rogoff's book. For those who want to know only what to do, there are simple step-by-step instructions applicable to programmable hand-held calculators.

This is the major and most up-to-date book on the subject of calculator navigation. Its routines and programs are designed to be compatible with even the most modern calculators, like the HP-4IC.

The author is both a yachtsman and a computer and calculator expert. He is a
(Continued on back flap)

Rogoff Calculator Navigation

Addenda
p. 210. Table number should be 3.8.
p. 274. Insert the following at the end of step 5, routine 5.2:

If the displayed latitude and longitude are obviously incorrect, press h, SF, and 0 (for the HP-67) or f, STF, and 0 (for the HP-97), and repeat steps 4 and 5 ; if subsequent calculations of position, made before the calculator has been turned off, are incorrect, press h, CF , and 0 (for the HP-67) or $f, C L F$, and 0 (for the HP-97), and repeat the steps. For the HP-41C, if the displayed results are incorrect, press the gold key and then SF and 0 , and repeat steps 4 and 5; if subsequent calculations of position are incorrect, whether or not the calculator has been turned off, press the gold key and then CF and 0 , and repeat the steps.

Calculator Navigation

Mortimer Rogoff

Calculator Navigation

W• W• Norton \& Company
New York London

Copyright (c) 1979 by Mortimer Rogoff

Published simultaneously in Canada by George J. McLeod Limited, Toronto. Printed in the United States of America.

All Rights Reserved

First Edition

Library of Congress Cataloging in Publication Data

Rogoff, Mortimer.
Calculator navigation.
Includes index.
1. Navigation. 2. Calculating-machines. I. Title.
$\begin{array}{llll}\text { VK587.R63 } & 1979 & 623.89 & 79-12385\end{array}$
ISBN 0-393-03192-6

Dedicated to the memory
of Harold H. Buttner

Contents

Acknowledgments xiii
1 Calculators and Navigation
The Objectives of This Volume 3
The Intended User 5
Arrangement of the Material 6
The Selection of Navigation Applications 7
Calculators Chosen for Navigation Applications 10
Using the Calculator in a Marine Environment 14
2 Coastwise Navigation
Abbreviations 16
Introduction 17
General Considerations 18
Coastwise Navigation Using Distances and Bearings 28
Coastwise Navigation Using Latitude and Longitude Co-ordinates 87
3 Sailing
Abbreviations 152
Introduction 153
The Combination of Wind and Current 153
Calculating Modified True Wind 154
Beating to Windward-Cruising 158
Optimum Speed to Windward-Racing 173
Downwind Sailing 197
4 Celestial Navigation
Abbreviations 226
Introduction 227
Regression for Accuracy Improvement 228
Prerecorded Almanac Data Cards 230
Sight Reduction 236
Observations at Local Apparent Noon 243
Planning Star Observations 256
5 Loran
Abbreviations 264
Introduction 265
Accuracy of the Loran A and Loran C Systems 266
Preparation of Loran Calibrations 268
Use of Loran Sky-Wave Signals 273
Position Location 273
Navigation with Loran Position Fixes 279
Conversion of Loran A to Loran C Time Differences 290
Prediction of Loran Time-Difference Readings 292
Appendix
Recording Procedures 295
Customized Programs 296
Setting Decimals and Trigonometric Mode on the HP-67 and HP-97 308
Nonprint Operation of the HP-97 308
Interrupting the Display Interval on the HP-67 308
Using the HP-41C 309
Program Listings 313
Index 413

Routines and Programs

For each title listed, page numbers are specified first for the routine and then for the corresponding program.
2.1 Fixing, Planning, Estimated Position, Set and Drift (Dis- tance and Bearing), HP-67/97 29, 313
2.1A Planning to a Separate Destination (Distance and Bear- ing), HP-67/97 41, 314
2.2 Fixing (Distance and Bearing), SR-52 48, 315
2.3 Planning (Distance and Bearing), SR-52 51, 317
2.4 Estimated Position (Distance and Bearing), SR-52 54, 319
2.5 Estimated Position-Tracking (Distance and Bearing), HP-67/97 57, 321
2.6 Bearing Regression and Regression Fix on Two Objects, HP-67/97 65, 322
2.7 Bearing Regression, SR-52 68, 324
2.8 Regression Running Fix, HP-67/97 73, 326
2.9 Regression Running Fix, SR-52 74, 328
2.10 Course Made Good from Three Bearings, HP-67/97 77, 330
2.11 Course Made Good from Three, Six, or Nine Bearings, SR-52 79, 330
2.12 Course Made Good and Speed Made Good from Two Fixes, Set and Drift (Distance and Bearing), HP-67/97 81, 332
2.13 Course Made Good and Speed Made Good from Two Fixes (Distance and Bearing), SR-52 83, 334
2.14 Course Made Good and Speed Made Good, Set and Drift, SR-52 85, 336
2.15 Latitude and Longitude Data Card, HP-67/97 92
2.16 Latitude and Longitude Data Card, SR-52 94
2.17 Planning (Chart Factor), HP-67/97 98, 337
2.18 Planning (Mid-latitude), HP-67/97 100, 338
2.19 Planning (Mid-latitude), SR-52 102, 340
2.20 Tracking and Estimated Position (Chart Factor), HP-67/97 105, 342
2.21 Tracking and Estimated Position (Mid-latitude), HP-67/97 108, 343
2.22 Estimated Position (Mid-latitude), HP-67/97 118, 345
2.23 Estimated Position (Mid-latitude), SR-52 121, 347
2.24 Fixing, Set and Drift (Chart Factor), HP-67/97 123, 348
2.25 Fixing, Set and Drift (Mid-latitude), HP-67/97 128, 350
2.26 Fixing (Chart Factor), SR-52 139, 352
2.27 Fixing (Mid-latitude), SR-52 144, 354
2.28 Course Made Good and Speed' Made Good from Two Positions (Latitude and Longitude), SR-52 149, 356
3.1 Cruise Sailing, HP-67/97 162, 359
3.2 Modified Wind, SR-52 168, 360
3.3 Speed Made Good, Course Made Good, Time to Lay Line, SR-52 169, 362
3.4 Distance and Bearing to Mark or Way Point, SR-52 171, 364
3.5 Polar Performance Curves, HP-67/97 177, 365
3.6 Polar Performance Curves, SR-52 178, 366
3.7 Curve Fitting, HP-67/97 181, 367
3.8 Power Curve Fit, SR-52 185, 369
3.9 Beating to Windward-Optimum Course and Speed, HP-67/97 189, 371
3.10 Speed Made Good, Course Made Good, Position Rela- tive to Mark, HP-67/97 193, 372
3.11 Optimum Tacking-to Windward and Downwind, SR-52 196, 374
3.12 Exponential Curve Fit (Downwind Tacking Sector- $\Delta W / 2$), SR-52 202, 376
3.13 Logarithmic Curve Fit (Ratio $\Delta S / S d$), SR-52 203, 378
3.14 Fourier Series, HP-67/97 207, 380
3.15 Fourier Series, SR-52 208, 381
3.16 Direct-Downwind Sailing I, HP-67/97 213, 383
3.17 Direct-Downwind Sailing II, HP-67/97 214, 385
3.18 Tacking Downwind, HP-67/97 218, 386
3.19 Direct-Downwind Sailing, SR-52 224, 388
4.1 Celestial Linear Regression, HP-67/97 229, 391
4.2 Celestial Data Cards, HP-67/97 232, 391
4.3 Monthly Star Data Card, HP-67/97 235, 392
4.4 Sight Reduction-Sun, Stars, and Planets, HP-67/97 237, 393
4.5 Sight Reduction-Moon, HP-67/97 239, 394
4.6 Fix from Celestial Lines of Position, HP-67/97 240, 396
4.7 Parabolic Regression, HP-67/97 251, 397
4.8 Noon Fix, HP-67/97 253, 398
4.9 Time of Local Apparent Noon, HP-67/97 255, 400
4.10 Star Planning Data Card, HP-67/97 257
4.11 Star Sight Planner, HP-67/97 258, 401
5.1 Loran Calibrator, HP-67/97 269, 405
5.2 Loran Locator, HP-67/97 274, 406
5.3 Loran Current Calculator (Latitude and Longitude), HP-67/97 280, 408
5.4 Loran Distance and Bearing Navigation, HP-67/97 282, 409
5.5 Loran Predictor, HP-67/97 291, 411

Acknowledgments

When a volume draws on a lifetime of experience and takes five years to write, inevitably the author ends up owing a large debt of appreciation to many people; that is certainly the case in this instance.

The direct inspiration for organizing these materials on navigation came from sailing with John Ackley on his huge trimaran Oha Oha, especially when dense fogs on Long Island Sound brought home what finding your way is really all about. When the HP-65 calculator appeared early in 1974, I realized that it was possible to join the speed and precision of the calculator to the navigator's art, and I determined to make the attempt. My hope was that I would develop a tool that could be used by anyone, on any boat, small or large.

Once the book was started, many people made direct contributions. Dr. Peter M. Winkler provided much of the programming for the chapters on loran and celestial navigation; he created the mathematical approaches to the loran problem, and devised the means for utilizing on the HP-67 the data in the new Almanac for Computers. Keith Cohon also contributed to the programming, by working on the procedures for the SR-52.

I must not overlook the assistance provided by David Julyan and his brother Mark in the early discussions that led to the work on the "Sailing" chapter. Many of the ideas in that chapter were brought to life during my sails with the Julyans on the Chesapeake. As the work continued and the programs and routines progressed from concept to reality, Dr. Bernard Nathanson generously provided opportunities to try them on board his vessel. Along the way, Richard McCurdy of Kenyon Marine was graciously helpful with ideas and support, especially in the portion of the work involving polar performance curves.
I have tried to use each program and routine in as many as possible of the circumstances that may be encountered on board various types of vessels on various kinds of seas. A number of individuals have helped me in this effort. Robert Benson had me navigate in a drenching rainstorm off Oyster Bay, in Long Island Sound; and Sue Barrie, on her yacht Sunbird, provided the opportunity to navigate in heavy seas off St. Thomas. Both times the results were good. I was able to demonstrate conclusively the increases in accuracy that result from using regression methods-in coastwise and in celestial navi-
gation-when the deck is hardly a stable platform. Special thanks are due Captains Peterson, McGovern, Canvin, and O'Donnell of the New York and New Jersey Sandy Hook Pilots' Association, who spent hours with me as we made loran surveys of New York Harbor. With their assistance, I was able to use the loran programs and routines to test, and demonstrate, the accuracy and stability of Loran C, in waters for which loran charts have never been published by the government. Murray Buttner provided additional opportunities to test Loran C, and the bottom of his yacht has a few new scratches, where we found rocks for calibration points!

The United States Coast Guard has been extremely helpful during the development of the loran section of this book. In particular, Commander William Walker has been of great assistance, first by arranging for a test voyage on the cutter Firebush and then by making data available and reviewing the results obtained during the development of the approach to loran co-ordinate conversion.

One of the great rewards of this undertaking has been that a large number of people have become my friends through the professional association and collaboration that resulted from common interests. Kenneth Newcomer, the author of the Hewlett-Packard Navigation Pac, is such a friend. We have been sharing ideas on writing better navigation programs ever since this project began, and I have certainly benefited from his thoughts. Eric Swenson, vice chairman and executive editor of W. W. Norton \& Company, has been a constant and patient supporter over the years that the book was in progress. Bill Reyman, who created the illustrations, has been especially understanding and supportive.

Actually, producing the book has been a family affair. Each of my daughters has played a role: Alice organized the early sailing days on the Chesapeake; Louisa did much of the early editing and organizing of the text; Julie typed most of the manuscript, including the intricate routines and the legends for the drawings. The ability of Louisa and Julie to make sense of a rough navigation manuscript was essential for the realization of the book. Judy Gies-not in the family-also helped considerably in this connection.

The understanding of my family and friends during the long period from the start of the book to its ultimate completion is most gratefully acknowledged. My wife, Sheila, has been patient, long-suffering, and still encouraging in spite of the fact that this work has been unrelenting in its demand for time and attention. Friends have had to put up with this weekend guest who comes burdened with papers, calculators, charts, and research material, and then appears only for meals. Ralph and France-Hélène Weindling have had more than their share of such strange behavior.

Finally, I would like to acknowledge Esther Jacobson's contributions to the order, accuracy, consistency, and simplicity that this volume may possess. As copy editor, she insisted that it come out right, and she deserves the credit for these qualities in the book.

New York City, February 1979

1

Calculators

and Navigation

1.1 The Objectives of This Volume

This book was begun in 1974, when it became apparent that there were hand-held scientific calculators available, at reasonable prices, which could be used to solve virtually every problem that might arise in navigating at sea. Particularly suitable was the Hewlett-Packard 65, the first calculator which was not only programmable but permitted the permanent storage of any number of programs, on small magnetic cards.

The advent of the external memory in the form of magnetic cards made possible a breadth of application not obtainable with programmable calculators lacking the external memory. The latter can be programmed to do many things, but when the next application comes along and fills the program memory, the first program is lost. To be used again, the first program must be re-entered, keystroke by keystroke. By contrast, on a calculator with external memory, a program-once stored on a magnetic card-can be used over and over. When needed, it is simply read into the memory, in a process which takes one or two steps, and it is as easily replaced when the next program is to be used.

The capacity of the HP-65's program and data memories was large enough so that the calculator could cope with all of the problems in coastwise navigation, and could provide a useful approach to celestial navigation. The calculator was powerful enough to make unnecessary the use of the sight-reduction tables (such as H.O. 214, 229, and 249), thereby removing much of the pain associated with the conversion of sextant angles to fixes. In particular, it eliminated the need to interpolate between the values provided by the tables in order to obtain those required by the observations. To enable the navigator to take advantage of this new convenience is one of the fundamental purposes of this book.

Today, external memories take two forms: magnetic cards and solid-state transistor arrays. The form of external memory introduced in the HP-65, incorporating a miniature magnetic-card reader/writer, was later utilized in the Texas Instruments SR-52 and in the next-generation HP-67 and HP-97. It is provided also in the TI-59, in which, in addition, Texas Instruments has introduced solid-state memory modules (small, plastic-enclosed units, less than 1 inch square by $1 / 8$ of an inch thick, which contain the equivalent of approximately twenty magnetic cards of the Hewlett-Packard type). The disadvantage of these solid-state memory modules is that they cannot be reprogrammed. If new programs are written, they must be designed into the
arrays, at considerable expense. These modules are consequently not suited to the custom programmer; they must be made and sold in large volume if their price is to be competitive with that of magnetic cards. Therefore, future calculators, while doubtless possessing interchangeable solid-state memories even more compact, and with larger capacities, than those now available, will also most probably continue to include some form of magnetic memory, such as cards or cassettes.

When the HP-67 calculator was introduced, along with its integral-printer counterpart, the HP-97, the increase in its memory capacity over that of the HP-65-and its ability to store data and programs separately, each on their own magnetic cards-made possible two important new developments in methods of calculator navigation: loran navigation, and celestial navigation without the need for any form of nautical almanac.
The convenience of calculator navigation thus arises from the extensive memory capacity of the models now available, and from the possibility of using unlimited numbers of external memory cards or modules. For example, once the locations of objects to be observed have been prerecorded on the magnetic cards, it is only necessary, when taking bearings on a light or buoy, to load the appropriate data card into the calculator and select the object by keying in a few identifying digits, instead of entering its whole latitude and longitude. In effect, a magnetic-card "light list" is employed which turns the whole process into a button-pushing exercise. Similarly, in celestial navigation, once the requisite data cards have been prerecorded, the user need only enter the date, Greenwich time, dead-reckoning position, sextant altitude, and height of eye for a particular observation to obtain the altitude intercept and azimuth of a celestial line of position. Indeed, if two observations are handled in this manner, manual plotting becomes unnecessary, since the calculator displays the actual latitude and longitude of the fix.

The fact that chart plotting can be eliminated-or at least kept to a mini-mum-is especially helpful on small yachts, where folding and unfolding charts on the knees of the navigator can be particularly awkward. In coastwise navigation, this convenience is available even when prerecorded data is not used. The calculator accepts the appropriate input concerning the bearings to observed objects, time, current, and vessel course and speed, and then displays the vessel's position with respect to one of the objects. The calculated position can then be spotted on the chart, without the need to lay out lines of position that radiate from charted objects or positions.
Another significant convenience in coastwise navigation results from the fact that the calculator programs embody the rules for taking into account the variation and deviation of the compass. This is important where the magnetic compass is the principal steering and bearing measuring reference. All the user need know is the amount and direction of variation and deviation. When these are entered, the calculator corrects or uncorrects the compass readings as necessary. One no longer has to remember that "True Virgins Make Dull

Companions Add Whiskey"* in order to use the compass correctly.
A second objective of this volume is to present methods which result in improved accuracy. Whenever input data contains random fluctuationsas in visual bearings taken from a hand-bearing compass or sextant readings made on board a vessel in rough seas-statistical methods can substantially increase the accuracy of the results. These methods use as the basis for an answer a series of observations, each consisting of a bearing or a sextant altitude and the time at which it was taken. Regression, which is more powerful and useful than simple averaging, requires numerous, involved manipulations of the values of each of these angle-time pairs-just the sort of mathematical operations that most navigators shun. The hand-held calculator performs them with ease, usually upon entry of a reading; the navigator is unaware of the process, which is accomplished in far less time than is required to take the next reading. These operations make possible the identification of the smooth, underlying trend of the data, from which can be obtained results much more accurate than those based on any single observation made under difficult conditions. The trend provides, first of all, a best estimate of the actual bearing or sextant angle being observed, minimizing the effects of an unsteady hand or rough seas. Second, the trend reflects the vessel's motion; a value of bearing or sextant altitude calculated for any time within the interval covered will incorporate the effect of this motion.

The convenience and accuracy obtainable with the hand-held calculator are also exemplified by the procedures involving loran. The programs and routines for the HP-67 and HP-97 enable one to use loran to obtain positions even in the absence of charts showing the loran lines of position. This material should be especially helpful during these years of transition from Loran A to Loran C, when new Loran \mathbf{C} transmitter chains are put into operation even before the appropriate loran charts are available. High accuracy is served by the programs' ability to utilize local calibrating data, obtained by the user himself.

Convenience and accuracy, then, are the advantages of calculator navigation. The calculators already developed provide these in good measure; future generations of these electronic tools will surely offer even more.

1.2 The Intended User

This volume will be of service to several different types of readers, among them the yachtsman-navigator, the commercial mariner, the navigation officer on a large vessel, and the naval officer.

The yachtsman who is often his own navigator will welcome the convenience of methods that permit position fixing and planning of courses free of

[^0]cumbersome chart constrictions. The tracking routines, which yield a "plot" of position, will be especially helpful.

All small-boat navigators, who work on an extremely unstable platform -the heaving deck-will find that use of the regression routines results in a substantial increase in accuracy.

The racing sailor should discover that the sailing routines make it easier to select tack courses and to make tactical decisions. If he is willing to invest the time required to determine the polar performance curves of his boat, the calculator can show him when he is sailing the optimum course under any given conditions.

The commercial boat operator-for example, the fisherman-will find that the routines make possible better use of his loran: he will be able to convert his "hang" co-ordinates and fishing locations from Loran A to Loran C readings; he will be able to steer accurate courses to reach his fishing grounds; he will have the advantages of loran navigation even in waters for which loran charts don't yet exist.

The navigator of a large vessel will make good use of the celestial routines while sailing the oceans; the improved accuracy obtainable from regression methods, including the elimination of steaming errors, will enable him to add a fix based on observations of the noonday sun to the daily routine at sea. When the vessel reaches a shoreline or enters a harbor, the precision of presurveyed loran will add to the ease of safely completing a journey.

The naval officer, exposed to a large variety of conditions and locations, can benefit from all of the foregoing; prerecorded cards of objects likely to be used for position fixing will yield extremely rapid calculations of his vessel's track. Regression methods used during heavy seas will improve accuracy. Planning of new courses while maneuvering will be facilitated. The programmed calculator will take its place as a useful tool in the hands of a navy navigator.

Indeed, in view of the advantages of calculator navigation, many individuals who enjoy programming will doubtless use the material in this volume as a point of departure for applications of their own.

1.3 Arrangement of the Material

Two types of material are needed for the use of the calculator-programs and routines. A program consists of the instructions which cause the calculator to carry out a particular sequence of operations. The programs for the procedures covered in this volume are presented in the Appendix. The content of these is fixed, so the user can record on magnetic cards those that will be employed repeatedly.

A routine consists of the step-by-step instructions for entering data and obtaining answers to a particular navigation problem once the appropriate program has been loaded into the calculator. The routines for various types of applications are presented in the several chapters of the book. The accompanying text explains the principles that are involved in each routine and pro-
gram. An illustrative example is normally provided. Performing the routine with the data in the example as input can serve two important purposes. First, it provides a test of the accuracy with which the program has been copied onto its magnetic card. It is virtually impossible to obtain correct answers with a program that has even a single error; therefore, if the answers displayed are those given in the example, the chances are that the program is correct.

Second, running through the routine in this manner is a way of gaining familiarity with the sequence in which the data is entered and the resulting answers are displayed. The program card prepared by the user is labeled to identify the function of each of the lettered keys. This labeling on the card serves as a built-in set of abbreviated instructions, which can guide the user in entering the required data. With practice, he will find it less and less necessary to refer to a routine while entering data; a glance at the label may be sufficient. The examples in the text can be employed to speed up this process of familiarization.

1.4 The Selection of Navigation Applications

Applications have been selected for this volume first of all on the basis of their general usefulness in navigation. A special effort has been made to include those not available-or readily available-elsewhere. Indeed, a number of completely innovative applications of the calculator to navigation problems are presented.

For example, in the "Coastwise Navigation" chapter are to be found routines utilizing the statistical method of linear regression to obtain fixes from bearings on one or two objects. As was pointed out earlier, under conditions where any single reading is likely to be unreliable, perhaps because of an unsteady deck in rough seas, accuracy can be substantially increased by utilization of this method. Thus the calculator makes it possible to improve the over-all result in a way heretofore unavailable to the practising navigator.

A second innovative application of the calculator in coastwise navigation is exemplified by the tracking routines. The programmable calculator can make repeated calculations of position, displaying the result at the end of each sequence. Since time is required for each calculation (twenty-four seconds in the HP-67, thirteen seconds in the HP-97), the program is arranged so that the calculator determines the advance in the vessel's position during the calculation interval, and displays the updated position at the end of each cycle. The result is a continuing display of updated position in real time-as if a plot were being made of the vessel's movement.

Another group of routines in the chapter on coastwise navigation takes advantage of the extensive data memory of the calculator by utilizing prerecorded object co-ordinates. For these routines, the latitude and longitude of each object likely to be used for visual bearings is recorded on a magnetic card. This need be done only once, unless the position in question subsequently changes (as it may, for example, in the case of a buoy), Thereafter, the position
can be recalled by a simple one- or two-digit keyboard entry. When using these cards, one can obtain a fix on two objects by entering little more than two bearings and the identifying digits of the two objects.

The routines in the "Sailing" chapter incorporate a number of procedures that should make them useful in solving the special problems of the cruising or racing sailor. For example, it is possible to take into account the combined effects of wind and current on a sailing vessel, in order to calculate the course to steer on each tack to reach a predetermined mark.

The chapter also describes a method of calculating optimum courses to steer, to reach a mark in the minimum time. Use of this method requires prior determination of the individual vessel's sailing characteristics: a plotting of the polar performance curves that define the vessel's speed through the water in various relative directions at various wind speeds. Specific instructions are included for constructing these curves, using data concerning wind and vessel speed as measured by the vessel's own instruments. When one of the routines for optimum course is used, the calculator displays the wind speed, wind direction, and vessel speed that should be observed on the vessel's instruments to indicate that it is optimally trimmed and steering the course for best performance.

The polar performance curves are also used in programming routines which enable one to determine and compare the speed made good that a vessel would achieve by sailing directly toward a downwind mark and by tacking toward that mark, under the same conditions. An explicit calculation of elapsed time to the mark is made for each method of sailing. The anticipated current is taken into account, and is shown to be of major significance in selecting the correct tactic.

The "Celestial Navigation" chapter contains routines utilizing the material in the Almanac for Computers, published yearly by the Nautical Almanac Office of the U.S. Naval Observatory. At this writing, there is no other published set of calculator programs and routines that utilizes this material. Its great advantage is that all of the celestial bodies, including the moon and the planets, are covered. The typical calculator procedures, as in the HewlettPackard Navigation Pac 1, and the self-contained, preprogrammed Tamaya NC-77 calculator, include algorithms for calculating the Greenwich hour angle and declination of the sun, and the Greenwich hour angle of Aries. Data on the sidereal hour angles of stars is also stored, so sight reduction of sun and star data is possible. But if observations of the moon or planets have been made, the nautical almanac must be used to obtain the Greenwich hour angle and declination of these bodies. By contrast, the method presented in this volume makes any reference to the nautical almanac completely unnecessary. The data covering all bodies for one year, as provided by the Almanac for Computers, is recorded on a set of magnetic data cards. Using the moon is then no different than using the sun; the extra corrections for moon position required in manual methods are eliminated. To calculate a line of position from an observation on the moon-or any other body-little data input beyond sextant altitude, time, and height of eye is required. The moon is the only body
other than the sun that is visible to the naked eye during the day, at a time when the sea horizon can be seen; there are days when the sun and moon can be observed for a two-body fix. It is to be hoped, therefore, that the ease of this method will encourage more use of the moon in celestial navigation.

A useful dividend in the sight-reduction routines is provided by the particular method that is employed to calculate the azimuth and altitude of the celestial object. The initial data entries include date, time, and dead-reckoning or estimated position. The azimuth of the body as it would be observed at that time and place is then displayed. This result can be used to check the errors of the magnetic compass (the combined effects of variation and deviation) or gyro error. For example, if a hand-bearing compass is employed, the first step in this checking process will be to obtain with the compass a reading for the sun's azimuth, taken from the exact spot on deck from which bearings are normally taken. The sun's azimuth is shown by the place on the compass card where the shadow of the lubber line falls. The time is then noted, and the result is compared with the azimuth obtained for this time, date, and position in the sight-reduction routine. For this purpose, the time entered need be accurate only to the nearest minute or two, and the dead-reckoning position to within a few minutes of latitude and longitude.

As in coastwise navigation, regression techniques can increase accuracy, and they are emphasized in the chapter on celestial navigation. I have tried them on both small craft and stable platforms; they clearly work, yielding much more accurate angles than could be obtained from individual readings under conditions where there are severe fluctuations.

As the sun approaches and crosses the local meridian, the successive readings of its altitude take the form of a parabolic curve. The chapter presents methods-equivalent to the linear-regression procedures used for coastwise navigation and for celestial observations at times other than meridian passage -for calculating the smooth trend underlying fluctuating observations of these altitudes. In addition, there is a detailed discussion of the effect on these observations of the vessel's own motion, which distorts the perception of when the meridian passage actually occurs. A routine incorporating a correction factor to compensate for vessel motion in determining the time of local apparent noon is one of the innovative features of this chapter. The results can then be used for the calculation of latitude and-under certain specified conditions -longitude as well.
The "Loran" chapter presents completely new material, specifically developed for this volume. The great value of loran, especially the new Loran C system, lies in its potential accuracy, stability, and range. The ability to use a hand-held calculator to determine position in terms of latitude and longitude, or distance and bearing, with all of the precision inherent in the transmitted signals, should extend the popularity of this method of electronic navigation.

The chapter includes instructions for making local calibrations, which are needed for the methods of high-accuracy position fixing which are described. Using these methods (in surveys in New York Harbor made jointly with the New York and New Jersey Sandy Hook Pilots' Association), I have obtained
repeatable results with an average accuracy of 30 yards. Even better accuracy can be expected from the 9960 Loran C chain.

The loran calculations can be made in two ways: given time differences, the corresponding position will be displayed; given latitude and longitude, the time differences observed at that location will be displayed. The latter procedure allows the user to predict the loran co-ordinates of a destination or rendezvous. Also, performed in sequence, these two operations can be used to convert Loran A time differences to the Loran \mathbf{C} values for the same location. The routine embodying this process will be useful during the present transition from the old to the new system.
Most important is the fact that the calculator makes it possible to employ loran without being limited to loran charts, which are at present available only in relatively small-scale (large-area) versions. Instead, one can use charts of larger scale (such as 1 to 40,000 or 1 to 20,000), which are particularly desirable for navigating in confined areas. The loran time differences are utilized in the calculator routine, and the resulting position-which can be displayed in terms of the vessel's distance and bearing to a fixed point or in terms of latitude and longitude-can then be plotted on any chart of the area.

Also included in the chapter are routines in which successive loran fixes provide the basis for calculating the "current" (i.e., the actual current along with such factors as unrecognized leeway and compass or steering errors) which may be deflecting the vessel. This result is then taken into account in the subsequent calculation of the course to be steered to reach a destination or way point.

A number of important topics have not been discussed in this volume. Among them are the use of the calculator in radar maneuvering problems, calculations of distance to the horizon, and great-circle calculations. These subjects have been omitted because they are covered in the navigation program packages published by Hewlett-Packard and Texas Instruments, which provide the necessary programs for the HP-67 and HP-97 and the SR-52, respectively. Since most navigators will have access to these programs, repeating them appeared unnecessary.

1.5 Calculators Chosen for Navigation Applications

This volume presents programs and routines for the Hewlett-Packard models 67 and 97 and the Texas Instruments SR-52.

The HP-67 (figure 1.1) and HP-97 (figure 1.2) are identical except in two respects. One of the differences, important to the small-boat navigator, is that for the model 67, Hewlett-Packard offers a 12 -volt recharging power supply that permits long-term operation on board. (However, it is also possible to acquire a small solid-state inverter that will convert the vessel's 12 -volt DC power into 115 -volt AC that can drive the model 97 , so actually both can be

1.1. The HP-67 Calculator
1.2. The HP-97 Calculator

1.1. The HP-67 Calculator
1.2. The HP-97 Calculator

not the latest model; that honor belongs to the TI-59. The latter appeared on the scene too late to be included in this volume. However, there is available from Texas Instruments a solid-state program module for the TI-59 which includes virtually all of the navigation programs previously written for the SR-52. As explained elsewhere, the equations for the coastwise and sailing programs that appear in the SR-52 navigation package were written by me, and the resulting programs are included in this volume. Hence, the owner of a TI-59 who obtains the solid-state navigation module can in fact use many of the SR-52 programs discussed in the chapters on coastwise navigation and sailing.

The same cannot be said, however, for the chapters on loran and celestial navigation. These present material only for the HP-67 and HP-97. The memory capacity of the SR-52 is too limited for the operations required.

Hewlett-Packard has announced its newest calculator, the model 41C. All of the programs for the HP-67 and HP-97 that appear in this volume should function on the model 41C, provided the following conditions are fulfilled:

- Programs and data should be recorded on magnetic cards by means of the HP-67 or HP-97.
- The model 41C should be equipped with a card reader (an accessory unit that attaches to the calculator); this can properly read and use the cards recorded on the HP-67 and HP-97.
- The model 41C should be equipped with a minimum of one accessory plug-in (random access) memory module.
- The model 41C data-memory allocation should be set to twenty-six registers. Instructions for doing this are included in the manual for this calculator.
- Where program cards are customized (as in the chapter on sailing), or data cards are recorded (as for the positions of buoys, lighthouses, and the like in the chapter on coastwise navigation), certain special procedures, explained in the Appendix, are necessary.
If these requirement are met, all of the HP-67 or HP-97 program and data cards should function properly on a model 41C. It is probably a wise precaution to test any program to be used in this manner, preferably by comparing answers obtained on the model 41C to those obtained on the HP-67 or HP-97, or to those specified in the illustrative examples of this volume.

Notice that the program listings in the Appendix can not be used directly as programming steps for the model 41C, because its programming rules and structure differ in certain respects from those of the HP-67 and HP-97. However, when the preceding conditions have been fulfilled, cards made for the HP-67 or HP-97 can be used in the model 41C with the card reader.

Recognizing that many readers will want the convenience of prerecorded and prelabeled program and data cards, I have arranged for the preparation of such cards by a reputable retailer and mail-order supplier of calculators and their accessories. Details on price and delivery can be obtained from BarcoNavigation, 62 West 45th Street, New York, N.Y. 10036; for calls originating
within the continental United States, the toll-free telephone number is 800 -221-2466. The prerecorded program and data cards that are available apply to routines for coastwise, sailing, celestial, and loran navigation on the HP41C, HP-67, and HP-97. In addition, programs and data cards for loran navigation using the TI-59 calculator (based upon programs not included in this volume) are available from Barco-Navigation.

1.6 Using the Calculator in a Marine Environment

As a useful navigational tool, the calculator should be treated with the same care given to any other valued tool or instrument. The damp, salty marine environment can be especially harsh on electronic equipment. Keeping the calculator dry-difficult though that may sometimes be-is really the only way to insure its continued functioning. It may still work after having been dunked and dried, but one can't be certain; in particular, the motorized cardpuller in the calculator is likely to be damaged by a severe wetting.

Belowdecks, keeping a calculator dry should not be much of a problem. But using it up on deck may sometimes be necessary-as when it is employed to record a series of bearing-time pairs for one of the regression routines. In these circumstances, especially in small craft, it may be wetted by seas breaking over the rail and spraying about. One way to keep the calculator dry in such a situation is to enclose it in a transparent plastic bag after the necessary magnetic cards have been loaded. The keys can be manipulated through the flexible sides of the bag, and the keys and display can be seen through the transparent plastic. Sandwich bags and those that seal with a zipperlike arrangement are available in appropriate sizes.

The calculator must also be protected from damage due to dropping. Therefore, when not in actual use it should be put out of harm's way, in a sturdy, shock-absorbing case if possible. Some cases can be worn on the belt, keeping the calculator protected and yet immediately available.

Another hazard is the loss of the magnetic program cards and data cards, which are so small that they may easily slip into unreachable crannies. This problem can be minimized by use of the small carrying cases supplied by Hewlett-Packard and Texas Instruments. In addition, cards should be made in duplicate, just to avoid the problem of loss. And spare blank magnetic cards should be carried on board, so that programs and data can be re-recorded if necessary.

Coastwise Navigation

ABBREVIATIONS Used in the Routines of Chapter 2

Bc compass bearing from vessel to object
Bc1 first compass bearing from vessel to object, or compass bearing from vessel to first object
Bc 2 second compass bearing from vessel to object, or compass bearing from vessel to second object
Bc3 third compass bearing from vessel to object
Bc101 first compass bearing from vessel to first object
Bc102 first compass bearing from vessel to second object
Bc201 second compass bearing from vessel to first object
Bc2o2 second compass bearing from vessel to second object
Bcom1 bearing from vessel to first object corresponding to common time
Bcom2 bearing from vessel to second object corresponding to common time
Bmid1 bearing corresponding to midtime of first bearing sequence
Bmid2 bearing corresponding to midtime of second bearing sequence
Bt true bearing from vessel to destination
Bt 1 true bearing from vessel to first object
Bt2 true bearing from vessel to second object
Btdest true bearing from start to destination, or from object to destination
BtEP true bearing from start to estimated position
Bto2 true bearing from second object to vessel
Btobj true bearing between objects
Btp true bearing from vessel to object at time selected
C course
Cc compass course
Cm magnetic course
CMG true course made good
Ct true course
D distance from vessel to destination
D1 distance off first object
D2 distance off second object
DD.d, DDD.d degrees and tenths of a degree
Ddest distance from start to destination, or from object to destination
DD.MMSS degrees, minutes, and seconds
De deviation
DMG distance made good
Dn distance of nearest approach
D101 distance off first object at time of first set of bearings
D102 distance off second object at time of first set of bearings
D201 distance off first object at time of second set of bearings
D202 distance off second object at time of second set of bearings
Dobj distance between objects

Dp distance off object at time selected
Dr drift of current
E east
EP estimated position
H.hh hours and tenths of an hour
H.MS hour(s), minute(s), and second(s)

L latitude
Ldest latitude of destination
Lend latitude at end of run or leg
LEP latitude of estimated position
Lfix latitude of fix
Im chart factor
Lo longitude
Lobj latitude of object
Lodest longitude of destination
Loend longitude at end of run or leg
LOEP longitude of estimated position
Lofix longitude of fix
Lo-obj longitude of object
Lostart longitude of start
Lstart latitude of start
N north
naut. mi. nautical miles
O1 first object
O2 second object
S vessel speed; south
SMG speed made good
St set of current
ΔT time required to reach destination
T1 time of first bearing
T2 time of second bearing
T3 time of third bearing
Tcom common time
Tend time of end of run or leg
Tmid1 mid-time of first bearing sequence
Tmid2 mid-time of second bearing sequence
Tn time of nearest approach
$\Delta T n$ interval between time selected and time of nearest approach
Tp time selected-time for which a fix is required
Tstart time of start of run or leg
Tstop time at which calculator is stopped
Var variation
W west
\rightarrow following a data-entry item indicates that its entry initiates (without further keyboard activity) the calculation and display of one or more results.

+ indicates that the item (e.g., east variation or north latitude) is entered simply by pressing the appropriate numerical keys, on both the HP-67/97 and the SR-52.
- indicates that the item is entered on the HP-67/97 by pressing the appropriate numerical keys followed by CHS, and on the SR-52 by pressing the appropriate numerical keys followed by $+1-$.

2.1 Introduction

Coastwise navigation is navigation within sight of land—usually in restricted waters, where the possibility of going aground or of colliding with another vessel is ever-present. For the safety of the vessel and its occupants, knowledge of its position-actual and anticipated-is essential. In the past, the precise computation of position has been unattractively laborious, but now, with the calculator, it is readily performed. This chapter discusses the input data required and the methods used, and gives the specific calculator routines.

Certain assumptions, methods of measurement, potential sources of error, and the like are common to virtually all navigation work. These matters are examined in section 2.2, and some of the ways in which their handling is facilitated by use of the calculator are indicated.

The largest part of the chapter-sections 2.3 and 2.4 -is devoted to step-bystep instructions for using representative calculators in various navigation applications. These sections by no means cover all the ways in which calculators can be used for navigation. However, the routines specified do cover most typical problems, and they are sufficiently representative to indicate the capability of the method. The following applications are included:
Planning Determining the course to steer and the speed made good between two points when the bearing and the distance between them are known, in the presence of current.

Determining the course to steer and the speed made good between two points of known latitude and longitude, in the presence of current.
Position Fixing Finding the distance off two objects or off one of the two objects when the bearing and the distance between them are known.

Making a fix on two objects whose latitude and longitude are known.
Finding the distance off one object.
Running fixes on one or two objects whose positions are known, in the presence of current.
Determining Estimated Position Obtaining estimated position from knowledge of starting position, vessel course and speed, current set and drift, and elapsed time.
Current Determination Determining the set and drift of current by comparing a position fix to a dead-reckoning position.

Position Tracking Displaying continuously an updated estimated position, in terms of distance and bearing to a selected object.
2.1.1 Latituae and Longitude Versus Distance and Bearing The methods of coastwise navigation by calculation fall into two principal classes: those which involve latitude and longitude co-ordinates, and those which are based upon the bearing and distance between objects. Any scientific calculator with trigonometric functions can handle latitude and longitude, but the use of this data becomes truly convenient only with a programmable calculator having external storage, such as the HP-67, HP-97, and SR-52.

With a simple, nonprogrammable calculator, a separate keystroke is required for each digit of the latitude and longitude of the objects observed, for each digit of the figures for bearing, deviation, set and drift of current, and other input data, and for each step in the calculations. For example, in a case involving the latitude and longitude of two buoys, the compass variation and deviation, and a chart factor, forty-three keystrokes for input data are necessary. With programmable calculators having external storage, this data can be prerecorded on the magnetic cards, as can many of the instructions. Position fixes can then be calculated in a few seconds, with only seven or eight keystrokes.

Computation involving latitude and longitude is discussed in section 2.4; computation in terms of distance and bearing is discussed in section 2.3.

2.2 General Considerations

Before the actual procedures for employing calculators in navigation are considered systematically, a number of elements common to most of the applications will be examined. These include the plane-earth assumption, the role of smoothed or averaged bearings as input data, the methods of accounting for the effects of current and of compass variation and deviation, and two especially tricky matters-the methods of correcting for leeway, and of obtaining accuracy in "simultaneous" bearings taken from a moving vessel.
2.2.1 The Plane-Earth Assumption Consider a course or bearing extended over 10 nautical miles. In this situation, the bearing error-the difference between the angle calculated when the earth's surface is regarded as a plane and the one obtained when the earth is assumed to be a spherewill be approximately 0.02 of a degree; the corresponding error in a calculation of the distance involved will amount to 0.02 of a nautical mile. Clearly, these are negligible errors, which can be tolerated. In coastwise navigation, where position is defined through sightings of visible objects, distances rarely exceed 10 miles, and most often are limited to a mile or less. Accordingly, in all the calculator routines in this book not involving latitude or longitude, the earth is assumed to be flat; when distances are this short, the errors resulting from this assumption are slight, and can be ignored.

As the distances in question increase, the possibility of error increases as well. For example, at 120 nautical miles, the difference between the results of plane-earth and of spherical-earth calculations increases to 0.5 of a degree and 18
0.7 of a nautical mile. While the course error is still relatively small, the distance error is approaching a level that might cause difficulty in achieving a safe passage. Plane-earth calculations should therefore be employed only when the distances are relatively short.

In the routines in this book involving latitude and longitude, the earth is assumed to be a sphere. There are many different methods available for making calculations of course and distance on a spherical earth; among them are great-circle sailing, Mercator sailing, and mid-latitude sailing. In the first method, spherical trigonometry is employed. In the other two, a conversion is made from a sphere to a plane surface, with certain distortions in appearance accepted for the sake of accuracy and relative ease of calculation. For example, the familiar Mercator projection widens areas near the poles, but is nevertheless extremely useful, since a straight line on its surface-a rhumb lineis a line of constant course.

The mid-latitude approximation of a sphere on a plane surface is important because it is simple, permits introduction of latitude and longitude co-ordinates into the calculation process, and is quite accurate over extended distances. Representative errors in mid-latitude calculations-which can be compared with those resulting from the plane-earth assumption, cited previously -are 0.08 of a degree and 0.003 of a nautical mile for a distance of 10 nautical miles, and 0.5 of a degree and 0.006 of a nautical mile for a distance of 120 nautical miles. Even at 120 miles, the error in distance is negligible, while the course error (compared to the initial great-circle course) remains reasonably small.
In computing the actual mid-latitude, half the difference between the start and the destination latitudes is employed. A variation of the mid-latitude method is to be found in many of the routines in this volume. Instead of the cosine of the mid-latitude, which often plays a role in mid-latitude calculations, a similar factor obtained from a nautical chart for the region in question is used. This "chart factor" (lm) is the ratio of the length (in nautical miles) of a stated interval of longitude-say 5 minutes-to the length of the same interval of latitude. At a latitude of 40°, these are 3.78 nautical miles and 5.0 nautical miles, respectively, yielding a ratio of 0.756 . The cosine of the midlatitude in this case would be 0.766 ; the difference between the two arises because the earth is not a perfect sphere, and the chart is distorted by this amount in order to correct for the earth's lack of sphericity. If the course in question has a large north-south component, the measurement of the mapping or chart factor directly from the chart should be limited to rather short distances (say, up to 10 nautical miles). For greater distances, normal midlatitude calculations should be made.
2.2.2 Bearing Averaging and Regression A major cause of inaccuracy in navigation is error in the initial observations. Particularly aboard small craft, unless the seas are calm, the unsteady platform of the vessel causes the bearings read from any type of magnetic compass to be fluctuating rather than constant.

In these circumstances, position finding is significantly more accurate when it is based on the averaging of a series of bearings rather than on a single observation. The calculator is particularly well suited to handling the sequence of figures, especially when the statistical method employed is linear regression, which not only smooths the data, but takes into account the actual change in the position of the vessel as well.

2.1. Bearing Regression

Linear regression produces a smoothed trend line from a group of fluctuating bearing observations. In general, the greater the number of observations, the more reliable and precise will be the trend that is established. Bearings taken from swinging compass references tend to have a high probability of error: each reading is made when the card has reached the end of its swing, which is generally when it is farthest from the true value. Because the card swings on both sides of the true value, errors will be reduced if a number of observations are made, so that values both above and below the correct one are accumulated. The linear-regression method results in a single, straight line which makes the best possible fit to all points in the data, lying above some of the points and below others, as illustrated in figure 2.1. Here, two series of observations are shown on the same graph. On the left is the set of bearings
taken earlier-on a nearby object, as evidenced by the sizable variation of bearing with time. The solid line is the calculated regression line which makes the best fit (on a least-squared-error basis) to the observed data. On the right is the regression line calculated from the second set of observations, taken a little later. These bearings exhibit a smaller average change with respect to time because the second object is farther away from the vessel. The geographical situation that gives rise to these bearing variations is shown in figure 2.2.

2.2. Bearings on Two Objects

The regression lines that are constructed from the observed data include the effects of the movement of the vessel during the time period in which the bearings were taken. As long as some precautions (to be specified shortly) are maintained with respect to vessel speed, nearness of the objects, and timing of the observations, the regression method eliminates the need to make a runningfix calculation when the bearings on two different objects are observed at different times. Two series of bearings are taken, the first on one object, and the second on the other; the trend line for each series is calculated, and the lines are then extended to a common time. This extrapolation process is illustrated in figure 2.1, where the first line has been extended forward in time and the second line backward. The bearings on the extensions at the common time become the input for the calculation for a fix on two objects.

Another attribute of the regression technique is that the observations need not be made at equal time intervals, clearly an advantage under the difficult conditions that prevail at sea.

A caveat: linear regression rests on the assumption that the motion is indeed linear-in other words, that bearing changes, if accurately plotted, would fall on a straight line. This assumption is valid if the vessel is not too close to the
object being observed, if it is not moving too fast, and if the total elapsed time, and the intervals between successive readings, are not too long.
In practical terms, these conditions will be satisfied in a boat going not faster than 8 knots, with the closest object not less than one-quarter mile away, and with about six to eight observations taken at intervals of approximately 30 seconds. Under these circumstances, the error in a position fix obtained by the linear-regression method will be under 50 yards. If the vessel speed is 18 to 20 knots, the minimum distance to the object should be increased to one-half mile. Conversely, for a vessel making 3 to 6 knots, the minimum distance to the object can be reduced to one-tenth mile, the number of observations increased, and the intervals between them lengthened.

There are two ways in which regression techniques can be used for position finding in coastwise navigation. The first of these, illustrated in figures 2.1 and 2.2, has already been discussed. A succession of bearing-time pairs is treated as numerical data, with the calculator analyzing the sequence for its underlying trend. This analysis gives rise to the regression line-always straightwhich can be evaluated to yield a value of bearing for any time within the period in question.

2.3. Regression Running Fix

In the second method, the values for bearing at successive times are just part of the data input, and the problem takes the form of making a running fix on one object. Figure 2.3 illustrates this case, in which bearings on a single object are taken from a moving vessel. In this instance, the calculation takes into account the actual geometry of the situation, and the regression equation which results involves not only the bearing-time pairs but also values for course and speed made good. For this method, unlike the first one, no assumption is required that the bearing-time relationship be expressible as a straight line. The calculated regression equation will produce exact values for position regardless of how close the vessel is to the object, and regardless of what speed it is making. These results are obtainable because values can be assumed for course and speed made good, based on the available figures for the vessel's speed and course, and for the set and drift of any currents that may be affecting its motion over the bottom. Consequently, obtaining accurate results with this regression technique-or indeed with any method of making a running fix -requires correct input data for vessel course and speed and the set and drift of the current.
In addition, there is a restriction attached to the use of the regression running fix which derives from the way it behaves in the presence of fluctuating data. One of the reasons for using the regression method is that it can smooth data, thereby improving the accuracy of position fixing when fluctuating bearings are utilized. If a regression running fix is to be made, data should be taken only when the object under observation lies within the interval of 45 to 135 degrees or of 225 to 315 degrees of relative bearing. Unless this precaution is taken, the answers obtained are likely to have a high level of error. This deterioration results because the regression equation includes a term involving the cotangent of the relative bearing to the object; a small change in this angle when the object observed is close to the bow or stern of the vessel is therefore magnified, and the answer is distorted accordingly. As long as this precaution is taken, the method will perform well.

A special difficulty in utilizing a calculator for regression problems may arise when the bearings in question range a few degrees to either side of 360 , so that a sequence of data may contain something like the following: 353, 359, 004, $002,357, \ldots$ However, the programs provided in this chapter are written in such a manner that these values are properly interpreted.

Specific calculator routines that incorporate regression methods are presented in sections 2.3.5-2.3.7.
2.2.3 The Effects of Current The motion of vessels in coastal waters is almost invariably affected by current; consequently, virtually every example given in this chapter either takes into account the set and drift of a known current, or involves calculation of the set and drift of an unknown, or imperfectly known, current.

In both cases, a vector problem is solved: the known values of vessel speed and direction are combined with those of the set and drift of the current, to yield the vessel's net motion; or they are combined with the known values of speed and course made good, to yield the set and drift of the current. This vector manipulation actually constitutes a subproblem in many navigation calculations. For example, problems involving a running fix require calculation of the motion of the vessel during the run, which in turn is affected by the current.

The routines that follow include the solution of the appropriate current subproblems wherever necessary.

2.2.4 Compass Variation and Deviation For the sake of the small-boat

 navigator, who in most cases has no directional reference except a magnetic compass, virtually all of the routines presented in this chapter use as input compass bearings and compass-course readings-taken at the vessel's permanently mounted or hand-bearing compass, or found by combining relative bearings with compass course. Corrections to account for variation and deviation must be made before this data can be utilized in the calculations.*Fortunately, with the calculator it is unnecessary to remember the rules for applying variation and deviation, since the programs for the routines incorporate the corrections. In using models like the HP-67, HP-97, and SR-52, the data for courses or bearings can be entered directly as read from the compass, and once the values for variation and deviation have been introduced, the necessary adjustments are made automatically. On the HP-67 and HP-97, when latitude and longitude are prerecorded, it is possible to prerecord variation as well, thus further reducing the number of steps needed for entering data in the routines.
2.2.5 Leeway The motion of a sailing vessel to leeward of its heading is the result of a balancing of the forces on the hull (particularly the keel) and the forces on the sails; this motion, called leeway, is expressed as the angular difference between the heading of the vessel and the direction it actually travels through the water. The amount of leeway varies with the force of the wind, the heading of the vessel relative to the wind, the type of vessel, and other factors.

A concept useful in dealing with leeway is that of "wake course"-the course actually made good, as evidenced by the line of wake that is visible in relatively calm water. \dagger Figure 2.4 shows the downwind drift of a vessel, its net motion seen in the line of its wake, while its bow points in an offset direction. It is evident that a statement of navigation information given in terms of a

[^1]

2.4. Wake Course, with Leeway

compass course or a relative bearing as measured from the direction of the bow, must be adjusted to compensate for the effect of the leeway angle (A).

The navigational aspects of leeway can be summarized as follows:

1. The speed of the vessel through the water can be measured accurately, even though many degrees of leeway may be present, because speed meters are relatively insensitive to "crab angle" (sideways movement).
2. The actual track made through the water-the wake course-differs from the vessel's heading by the amount of the leeway angle. Though it is difficult to measure, the leeway angle can be estimated with fair accuracy.

Since the leeway angle is likely to be as large as 4 to 6 degrees, it should be taken into account when a highly accurate position fix must be obtained, and when one is steering a planned course. The leeway angles actually encountered on a particular vessel can be determined by taking many observations for a variety of wind velocities and relative directions. Once obtained, this information should be organized into a table of leeway angles for the vessel, to be used in a manner similar to that of a compass-deviation table.

The concept of correcting or uncorrecting for leeway effects has been borrowed from the handling of magnetic-compass deviation and variation. Converting a ship's heading to a wake course is defined as correction; converting a wake course to a course to be steered is defined as uncorrection. Table 2.1 lists the principal types of routine employed in coastwise navigation, indicates those in which the leeway angle should be taken into account, and specifies whether the course should be corrected or uncorrected.

Table 2.1 Application of Leeway

Type of Routine	Action Required
Planning	Uncorrect
Fix on two objects	None
Running fix	Correct
Estimated position	Correct
Set and drift	Correct
Course and speed	made good

Table 2.2 Correction and Uncorrection for Leeway

Wind on:	Correct (From Heading to Wake Course)	Uncorrect (From Wake Course to Heading)
Port	ADD	SUBTRACT
Starboard	SUBTRACT	ADD

Table 2.2 indicates the wind conditions which determine whether the leeway value should be added or subtracted in making these conversions. This table assumes that all bearings and courses are measured clockwise through 360 degrees, with 000 degrees at the bow. Figure 2.5 illustrates this relationship between vessel heading, wake course, and wind direction.

2.5. Course Shifts Due to Leeway

Since deviation tables are constructed to yield corrections based on the reading of the compass card, leeway changes should be made only after a ship's course has been corrected for deviation. Premature addition or subtraction of the leeway angle may result in an erroneous deviation value.
None of the calculator routines in this volume has labeled keys or numbered steps that call for the leeway angle as an input quantity. If leeway must be
taken into account, this fact is indicated in the routine by an asterisk (*) where correction is required, or a double asterisk (**) where uncorrection is required. The recommended practice is to add or subtract the leeway angle (mentally or manually) just after the amount of deviation has been determined; a combined value-"deviation \pm leeway"-can be used. It is also possible to wait until the routine has been completed, and then make the necessary change in the answer that has been calculated.
2.2.6 Bearings from a Moving Vessel Fixing a vessel's position by taking a single bearing on each of two objects is a basic procedure in coastwise navigation. However, even if the bearings themselves are correct, the results may be inaccurate if the vessel is in motion while the observations are being made, since the position is then no longer defined simply by the intersection of the two bearing lines. This problem is illustrated in the two parts of figure 2.6. In part A, the vessel is stationary, and the intersection of the two lines of position determines an accurate fix. However, if-as shown in part Bthe vessel is in motion, along the line $F-F^{\prime}$, and successive bearings are taken at times $T 1$ and $T 2$, the intersection of the two bearing lines will locate the fix improperly. The error in distance is the length of the line segment e in the figure.

2.6. Problem of the Fix on Two Objects

Typical values of this error can amount to as much as 520 yards-for a 10 -knot vessel when the two bearings are taken a minute apart, the first object is abeam, and the bearing difference between the two objects is 40 degrees. On the other hand, if the first object is dead ahead, the vessel motion between bearings results in no error at all.

Accordingly, there are several methods of minimizing the error. The navigator must exercise judgment in choosing the most suitable one. If the vessel is moving slowly, the discrepancy is likely to be so slight that it can safely be ignored. If the vessel is moving fast, the resulting error can be eliminated or reduced to reasonable proportions by the adoption of a course directly toward
or away from one of the objects. Another way to reduce the error is to keep the relative bearing of the first object observed as small as possible; this can usually be accomplished by viewing the objects in the proper order.
If none of these solutions is practical, the calculation should be changed to a running fix on two objects. In the running fix, the fact that the vessel is moving and the second bearing is taken from a different place than the first is accounted for in the calculation. Even assuming some uncertainty about the precise amount of motion-due, say, to an imperfect knowledge of the currents that are acting on the vessel-the result is usually substantially more accurate than it would be if the motion were ignored.

For example, at 15 knots, a vessel will move 500 yards in one minute; if errors in speed or course made good amount to 10 percent of this distance, the expected error in the final position of the running fix will be 50 yards. On the other hand, if the motion of this vessel between bearings is ignored, with the first bearing abeam and a bearing difference between objects of 40 degrees, an error of 765 yards will result.

2.3 Coastwise Navigation Using Distances and Bearings

The calculator instructions in the following sections have been arranged as a series of specific cases; each case includes the appropriate routines for the several calculators and an illustration of an application which can be worked out on any one of the calculators. The HP-67 and HP-97 are suitable for all of the cases, while the SR-52, has slightly more limited capabilities.*

In the routines which follow in this section, the only co-ordinates are distances and bearings; latitude and longitude are not introduced, and the calculations are based upon the plane-earth assumption. Therefore, as indicated earlier, these routines should be utilized only when the distances involved are relatively short; if they are under 50 nautical miles, the errors arising from the plane-earth assumption will probably not cause difficulty in ordinary navigation.
2.3.1 Fixing, Planning, and Estimated Position on the HP-67 and HP-97 It has been possible to write for the HP-67 and HP-97 a single routine -routine 2.1 -which makes these calculators simple to utilize in solving virtually all of the problems in coastwise navigation. Figures 2.7-2.16 illustrate the use of this routine.

[^2]Routine 2.1 (HP-67/97)

Btobj Dobj	De Var	PLAN C SMG ΔT	Clear Initialize	EP Bt R/S Dr
Cc S St Dr	Tstart Tend	Bc1	Bc2	D2

FIXING, PLANNING, ESTIMATED POSITION, SET AND DRIFT (DISTANCE AND BEARING)

Step	Procedure	Input Data/Units	Keys	Output Data/Units
Load program-both sides				
Fixing-Fix on Two Objects				
2	After completion of step 1, clear		f d	
3	Initialize		f d	
4	Enter true bearing between objects, in either direction	DDD.d	f a	
5	Enter distance between objects	naut. mi.	fa	
6	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f b$	
7	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f \mathrm{~b}$	
8	Enter compass bearing to first object	DDD.d	C	
9	Enter compass bearing to second object	DDD.d	D	
10	Calculate and display distance off second object		E	naut. mi.
Fixing-Running Fix on One Object				
11	After completion of step 1, clear		f d	
12	Initialize		$f d$	
13	Enter deviation at time of first bearing $(+E,-W)$, even if 0	DD.d	$f \mathrm{~b}$	
14	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f \mathrm{~b}$	
15	Enter compass course during run or leg*	DDD.d	A	
16	Enter vessel speed during run or leg	knots	A	
17	Enter set of current, even if 0	DDD.d	A	
18	Enter drift of current, even if 0	knots	A	
19	Enter time of start of run or leg	H.MS	B	
20	Enter time of end of run or leg	H.MS	B	
21	Enter compass bearing to object at start of run	DDD.d	C	
*Cor	rect for leeway; see table 2.2 .			(continued)

For multiple courses or speeds, or changes in set or drift between bearings, repeat as necessary steps 13-14 and 15-18; deviation and variation are handled as a pair-if even one of them changes, both must be re-entered; similarly, if course, speed, set, or drift changes, all four must be re-entered. Steps 19-20 are then repeated for each new leg.

22 Enter compass bearing to object at end of run, or end of last leg

DDD.d D
23 Calculate and display distance off object
Fixing—Running Fix on Two Objects
24 After completion of step 1, clear fd
25 Initialize fd
26 Enter true bearing from first object to second object

DDD.d fa
27 Enter distance between objects
naut. mi. fa
28 Enter deviation at time of first bearing $(+E,-W)$, even if 0

DD.d fb
29 Enter variation $(+E,-W)$, even if $0 \quad$ DD.d $\mathbf{0}$
30 Enter compass course during run or leg*
DDD.d A

31 Enter vessel speed during run or leg
knots A

32 Enter set of current, even if 0
33 Enter drift of current, even if 0
34 Enter time of start of run or leg
35 Enter time of end of run or leg

DDD.d	A
knots	A
H.MS	B
H.MS	B

36 Enter compass bearing to first object at start of run

DDD.d C
For multiple courses or speeds, or changes in set or drift between bearings, repeat as necessary steps $28-29$ and $30-33$; deviation and variation are handled as a pair-if even one of them changes, both must be re-entered; similarly, if course, speed, set, or drift changes, all four must be re-entered. Steps 34-35 are then repeated for each leg.
37 Enter compass bearing to second object at end of run, or end of last leg

DDD.d D
38 Calculate and display distance off second object

Planning
39 After completion of step 1, enter true bearing from start to destination

DDD.d fa
40 Enter distance between start and destination
naut. mi. fa
The preceding two steps can be omitted if a fix to the destination has just previously been calculated (as at step 10, 23, or 38).
*Correct for leeway; see table 2.2.

Step	Procedure	Input Data/Units	Keys	Output DatalUnits
41	Enter deviation as 01	0	$f b$	
42	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f \mathrm{~b}$	
43	Enter any value of compass course	DDD.d	A	
44	Enter expected vessel speed	knots	A	
45	Enter expected set of current, even if 0	DDD.d	A	
46	Enter expected drift of current, even if 0	knots	A	
47	Calculate and display magnetic course to steer (ignore display of SMG and elapsed time)		f c	DDD.d
48	Enter deviation for course displayed, even if 0 , and repeat step 42	DD.d	$f b$	
49	Calculate and display compass course to steer,**		$f \mathrm{c}$	DDD.d
	Speed made good,			knots
	Time required to reach destination			H.MS
	Estimated Position			
50	After completion of step 1, clear		$f \mathrm{~d}$	
51	Enter true bearing from start to destination	DDD.d	fa	
52	Enter distance from start to destination	naut. mi.	fa	

The preceding two steps can be omitted if the position is to be obtained relative to an object for which a fix has just previously been calculated (as at step 10, 23, or 38). For an estimated position relative to the starting position, enter bearing and distance as 0 in the preceding two steps.

53	Enter deviation $(+\mathrm{E},-\mathrm{W})$, even if 0	DD.d	f b
54	Enter variation $(+\mathrm{E},-\mathrm{W})$, even if 0	DD.d	fb
55	Enter compass course*	DDD.d	A
56 Enter vessel speed	knots	A	
57	Enter set of current, even if 0	DDD.d	A
58	Enter drift of current, even if 0	knots	A

59 Enter time of start of run
60 Enter time at end of leg, or at which estimated position is required
61 Calculate and display distance to destination,

- True bearing to destination
H.MS B
H.MS B
fen naut. mi.
DDD.d

[^3]Step \begin{tabular}{cccc}
Input

Procedure \& \begin{tabular}{c}
Output

Data/Units

 \& Keys \&

DatalUnits
\end{tabular}

\hline
\end{tabular}

For multiple courses or speeds, or changes in set or drift, repeat as necessary steps 53-54 and 55-58; deviation and variation are handled as a pair-if even one of them changes, both must be re-entered; similarly, if course, speed, set, or drift changes, all four must be re-entered (a method of recalling course, speed, set, and drift from the calculator's memory, to be used if any of these are to be re-entered, is presented on p. 43). Steps 59-61 are then repeated for each leg.

Set and Drift

62 After completion of step 1, clear fd
63 Enter true course made good (available from routine 2.12) DDD.d fa
64 Enter distance made good (available from routine 2.12) naut. m
fa
65 Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0 DD.d ib
66 Enter variation ($+E,-W$), even if 0 DD.d ib
67 Enter compass course during run* DDD.d A
68 Enter vessel speed during run Anots A
69 Enter time of start of run B.MS B
70 Enter time of end of run B.MS B
71 Calculate estimated position, disregard
display of first result (distance),

- Display set of current

DDD.d
72 Display drift of current
R/S
knots
*Correct for leeway; see table 2.2.

The instructions of routine 2.1 fall into three main categories: fixing, planning, and finding estimated position. A brief additional segment, for calculating current, permits use of the estimated-position procedures for this purpose. A single magnetic card (identical for the HP-67 and the HP-97) stores the program for all of these operations. However, an additional magnetic card is required for routine 2.1 A , which is useful under many circumstances for combining fixing and planning.

The fixing parts of the routine cover a fix on two objects, a running fix on one object, and a running fix on two objects. Figure 2.7 shows the case in which the bearing observations on two objects are assumed to be simultaneoushaving been made from a stationary vessel, for example. Under these circumstances, all of the input values that relate to the motion of the vessel can be either unentered or set at zero. These values are vessel compass course (Cc),

2.7. Fix on Two Objects (Distance and Bearing)

vessel speed (S), set of current ($S t$), drift of current ($D r$), and time of start (Tstart) and time of end (Tend) of the run. The true bearing between two objects (Btobj) can be entered in either sense-from the first object to the second, or from the second to the first. The input bearings (Bc1 and Bc2) can be obtained from single observations taken simultaneously, or nearly so, or they can be calculated from routine 2.6, providing data from regression analysis. The answer is given as distance off the object on which the second observation was made (D2).

Figure 2.8 illustrates the running fix on one object. Here, the input data includes values for course, speed, current, and elapsed time, describing the motion of the vessel during the run between observations. As before, the routine accepts compass bearings and converts them to true bearings, since

2.8. Running Fix on One Object (Distance and Bearing)
deviation and variation have been entered into the calculator memory. No data entry is made for the bearing or distance between objects, because only one object is involved.

Since the over-all accuracy of the result depends upon correct values for the course and speed made good during the run between bearings, it is important to know the set and drift of the current acting on the vessel during the run. The values for set and drift are entered at the appropriate steps even if they are equal to zero.

The vessel speed used in calculating the running fix should be the average speed during the run between bearings. This can be ascertained by subtracting a log reading noted at the time of the first bearing from a reading noted at the time of the second bearing (to obtain the distance traveled) and dividing this
figure by the time interval between the readings. Even if many bearings are taken-for use in a regression, for example-only two log readings, one early in the run, and another at the end, are necessary for determining average speed. Also, in this situation the time interval over which the speed is derived need not be precisely the same as the interval over which the bearings are measured. These intervals need only be approximately the same, provided the speed is relatively uniform throughout.

The accuracy of the calculated result will also depend upon the crossing angle of the two lines of position. If possible, the run should be long enough so that the difference between the two bearings is close to 90 degrees.

Figure 2.9 illustrates the case of a vessel that makes a change in its motion

Data

	During Port Tack	During Starboard Tack
De	$+2^{\circ}(\mathrm{E})$	$-3^{\circ}(\mathrm{W})$
Var	$-12^{\circ}(\mathrm{W})$	$-12^{\circ}(\mathrm{W})$
Cc	$\left.90^{\circ} \mathrm{5}\right)$	5°
S	5.0 kts	5.0 kts
St	0	20°
Dr	1.0 kt	0.7 kt
Tstart	0800	0830
Tend	0830	0900
Bc1	355°	
Bc 2		270°

Calculated Result
D2
3.04 nm
2.9. Running Fix on One Object, Multiple Legs (Distance and Bearing)

D2 $\quad 0.4 \mathrm{~nm}$ 2.10. Running Fix on Two Objects (Distance and Bearing)
during the period between the first bearing observation and the second. Changes of this sort are accounted for in the calculations as long as the data is properly entered.

A course change may result in alterations in deviation, variation, course, speed, set, drift, time of start, and time of end. In this situation, data is first entered for the initial leg, and the first bearing is included as part of that sequence. Successive legs are treated in turn, with entries being made for all of the changes appropriate for the portion of the run in question. When there is a change in any one of the values entered at A -course, speed, set, and drift-all four must be re-entered. Similarly, if there is a change in either variation or deviation, both must be re-entered. For each of the intermediate legs, the last items to be entered are the time of start and time of end of the leg. However, the first bearing to the object is entered when the first value of deviation is still present in the calculator; the second bearing to the object is entered when the last value of deviation is in the calculator. If this sequence
is maintained, the fixing information-distance off the object at the time of the second observation-is displayed after the second bearing is entered and E is pressed.

Figure 2.10 illustrates the running fix on two objects. This problem is encountered when, for example, there is a significant difference between the time of the bearing on the first object and the time of the bearing on the second. The run made between the two bearings is accounted for in the calculation, to preserve the accuracy of the fix.

The bearing between the two objects (Btobj) must be entered in the proper sense: it is measured from the first object observed to the second object. This is the only case where this order is significant.

The distance between the objects, deviation, variation, course, speed, set, drift, time of start and end of run, and bearings from the vessel to the objects are entered as before. If the vessel's motion changes during the run between bearings, appropriate data entries are made for each new leg. The procedures previously described for entering data changes during a running fix on one object are applicable here as well.

Figure 2.11 illustrates planning. In this instance, the input values are the bearing and distance between the start and destination of a planned run, the expected speed of the vessel, and the expected set and drift of the current during the run or leg of the journey.

In the planning part of the routine, even though the compass course is to be obtained as an answer, an entry for this item is necessary to make possible the acceptance of the values for speed, set, and drift that follow. An arbitrary value for course may be used, or the entry may be made by simply pressing A , without first entering a particular value.
Deviation and variation should be entered at some point in the sequence before f are pressed, since they are required as part of the calculation for a compass course to steer. But though variation is independent of the calculated course, deviation is not, since it depends on the compass heading of the vessel. Therefore, the preferred method is to make the calculation first with deviation set at zero; this provides the magnetic course to steer as the answer. Then, any required correction for deviation at this magnetic heading can be obtained from the deviation card, and the planning calculation can be performed a second time-with the appropriate deviation for that magnetic course-to provide the compass course to steer.

A less time-consuming approach is to examine the planned course, estimate the effect of current on the final result, and assume a value for deviation. If -according to the deviation card-the resulting calculated compass course would require a deviation correction of the amount initially assumed, then no further calculation of the compass course to steer is necessary. If the result is a compass course whose accompanying deviation is different by a degree or more from that used to obtain the answer, then the calculation should be repeated, with the proper value for deviation.

The answer obtained from the planning part of the routine should be further modified by the adjustment for leeway (if appropriate, as in the case of a sailing vessel). Reference to table 2.1 shows that for planning, an uncorrection will be required. This means that if the wind is on the starboard side of the vessel, the leeway figure is added to the course to obtain the correct vessel heading.

The length of the run used in planning should be limited to the interval over which the expected values for the effects of current are reasonably accurate. When tidal currents with continuously changing set and drift are involved, the values used in this calculation are, at best, approximate. Similarly, if the vessel's passage through a current will itself cause changes in the current, then any single set of values for set and drift will be approximate. The remedy is to break down the planned journey into short sections over which the current can be assumed to be constant. The length of the interval will depend, of course, upon the rate of change of the current as experienced by the moving vessel. The more rapid this rate, the shorter the chosen interval. As before, when new values for set and drift are entered, the other items associated with A -course (entered as an arbitrary value or simply by pressing A) and speed-must be re-entered as well, before f c are pressed to obtain the course to steer.

In addition to compass course, the planning part of the routine supplies speed made good and time required to reach the destination. The latter, given
Destination

Btobj	40°		
Dobj	3.0 nm		
Btdest			80°
Ddest			1.6 nm
De	0	0	0
Var	$-15^{\circ}(\mathrm{W})$	$-15^{\circ}(\mathrm{W})$	
Cc	75°		
S	6.0kts	10.0kts	6.0kts
St	330°	$300{ }^{\circ}$	000
Dr	1.0kt	1.5kts	1.0kt
Tstart	1000		
Tend	1010		
Bc1	$272{ }^{\circ}$		
Bc2	345°		
Calcu	lated Re	SUlts	
D2	1.42 nm		
Cm		$349 .{ }^{\circ}$	$49.8{ }^{\circ}$
Cc		349.3°	$49.8{ }^{\circ}$
SMG		11.27kts	6.85kts
$\triangle T$		7 min 32 sec	15 min 13 sec
CMG			30°
DMG			1.74 nm

2.12. Running Fix on Two Objects, with Plan to Second Object and Plan to Separate Destination (Distance and Bearing)
in hours, minutes, and seconds, should be added to the time of start to obtain the time at the end of the planning interval.
Figure 2.12 shows the use of the routine to both fix position and plan. After a run that begins at 1000 , the position fix is completed at 1010, and the distance off the second object, which bears $345^{\circ} \mathrm{C}$, turns out to be 1.42 nautical miles. Next, use of the planning portion of the routine yields the course to steer, speed made good, and the time required to reach 02 . In this case, the answer obtained from the fix calculation-distance off $\mathrm{O2}$ - and the bearing $B c 2$, are retained in the calculator's memory as the distance and course to the planned destination, and serve as the basis for obtaining the course to steer. No separate entry of these data items is required.

Figure 2.12 also illustrates a method of combining fixing with planning when the destination is not identical with any of the objects used in obtaining a fix, but rather is a completely different place. In this particular example, the destination bears $80^{\circ} \mathrm{T}$ from the second object, at a distance of 1.6 nautical miles. New values for current are assumed, with set now equal to 000° and drift to 1.0 knot. Variation ($15^{\circ} \mathrm{W}$), deviation (0), and vessel speed (6.0 knots) remain the same as during the run between bearing observations.

This planning problem is solved by means of routine 2.1 A , which is employed after the fix has been provided by the appropriate portion of routine 2.1. The vessel's position need not be re-entered, since the calculator retains in its memory the bearing and distance to the second object (in this instance $345^{\circ} \mathrm{C}$ and 1.42 nautical miles); also, variation need not be re-entered if it is unchanged. Entries are required for bearing and distance from the object to the selected destination, and for the expected values of vessel speed, current, and deviation. The calculator then displays the compass course to the destination (49.8°), along with the time required (15 minutes, 13 seconds) and the course made good ($30^{\circ} \mathrm{T}$), distance made good (1.74 nautical miles), and speed made good (6.85 knots) to be obtained by following the plan.

Use of the "Clear" keys (f d) permits solving additional planning problems, for other destinations, starting from the same fix; the calculator retains the values for distance and bearing to the object even after these keys have been pressed.

Routine 2.1A (HP-67/97)

PLANNING TO A SEPARATE DESTINATION (DISTANCE AND BEARING)

Step \begin{tabular}{llll}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

1 After obtaining a fix by means of routine 2.1, steps 2-10, 11-23, or 24-38, load program-both sides
2 Enter true bearing from second object (if two objects were used for the fix) or from object to new destination

DDD.d
A
3 Enter distance from object to new destination
naut. mi. $\quad A$
4 Enter variation $(+E,-W)$ if it is to be different than for the fix just obtained

DD.d B
5 Enter expected vessel speed knots C
6 Enter expected set of current, even if 0 DDD.d C
7 Enter expected drift of current, even if 0 , knots C

- Calculate and display magnetic course to steer to new destination

DDD.d
8 Enter deviation for course displayed, even if 0 ,

DD.d
D

- Calculate and display compass course to steer to new destination**

DDD.d
9 Calculate and display time required to reach new destination

E H.MS
10 Calculate and display true course made good from fix to new destination,
fe DDD.d

- Distance from fix to new destination, naut. mi.
- Speed made good between fix and new destination
knots
11 Clear before calculating a plan to reach a different destination, starting from the fix obtained by routine 2.1
**Uncorrect for leeway; see table 2.2.

Figures 2.13 and 2.14 illustrate the use of routine 2.1 for calculating estimated position. By definition, an estimated position is one which is found by combining data on the vessel's motion through the water with data on the motion of the water itself, to determine the geographic position of the vessel at the end of a specified time interval. Thus, the problem is one of summing two vectors-the vessel's motion (course and speed) and the water's motion (set and drift)-to obtain the vessel's net motion (course and speed made good). Once the speed made good has been calculated, it is multiplied by the elapsed time to obtain the distance traveled.
In the case shown in figure 2.13, the answers are given as distance and bearing to a designated starting point. As in previous calculations, it is impor-

tant to choose a time interval over which speed through the water and set and drift of current are reasonably constant, and this may require breaking a projected journey into a series of shorter legs.
"Clear" (f d) must be pressed at the start of a series of estimatedposition calculations. However, these keys should not be pressed after a series of estimated-position calculations has been begun, since doing so would erase the stored figures for distances traveled on earlier legs of the journey.

Whenever a change is necessary in any one of the four values associated with A-course, speed, set, and drift-all four must be re-entered. It is possible to recall these from the calculator's memory. This should be done in the sequence given on the label for A-Cc, S, St, Dr-so that the data as it appears in the display can be re-entered by pressing A. When course has to be recalled from the memory, it should be done as follows:

The previous compass course will then be displayed. (If the result is negative, or greater than 360°, one simply adds or subtracts 360° to place it in the proper range.) Now, if A is pressed, this quantity is properly converted into a true course. This procedure is necessary because course is stored as "true," and if recalled and re-entered by the method used for the other items, it would be "corrected" twice, and hence be incorrectly stored. The method of recalling speed, set, and drift from memory is as follows:

Item	Press				To Enter, Press
Speed	f $\mathrm{p}_{\text {¢ }}$	RCL	5	f) p ¢	A
Set	f p↔s	RCL	6	f p_{6}	A
Drift	f p ¢s $^{\text {d }}$	RCL	7	f p ¢ s	A

If any one of these has changed since its previous entry, the recall sequence is not used when it is to be re-entered; instead, the new value is inserted by means of the number keys, and then A is pressed.

Figure 2.14 illustrates the use of the estimated-position part of the routine when the distance and bearing calculations are made with respect to a selected destination. The data-entry sequence starts at f a, with entry of bearing and distance to the object. Answers are displayed as bearing and distance to the selected destination at the time specified.
Once the data has been entered, and the first answers have been calculated and displayed, positions at successive times can be obtained by simply keying in, at B], the start and end times of the succeeding legs of the journey. If no changes in vessel speed, course, or current are anticipated during these succeeding legs, no other data need be re-entered.

2.14. Estimated Position (Distance and Bearing)

Figure 2.15 illustrates the use of routine 2.1 in all three of its modes. In this case, a running fix is made on one object; the run starts at 0900, when the object bears $341^{\circ} \mathrm{C}$; at 1020 , the object bears $267^{\circ} \mathrm{C}$. The fix is calculated, placing the

vessel at 9.71 nautical miles off the object. At that time, it is desired to change course in order to reach the object. Since a current is running, the planning part of the routine is used to obtain a compass course to steer; this calculation yields an answer of 251.64° for an assumed speed of 8 knots on this leg. Speed made good and elapsed time to reach the object are also displayed.
The estimated-position part of the routine is then used to show the anticipated progress along the planned route. The "Clear" keys (f d) are pressed once, and the first interval of time (1020 to 1100) is then entered. The display, obtained by pressing f e, provides the distance and true bearing to the object at 1100 . Entering the interval 1100 to 1130 at B and pressing f ed yields the distance and true bearing to the object at 1130 .

2.16. Set and Drift (Distance and Bearing)

Figure 2.16 illustrates an additional use of routine 2.1. A vector-subtraction operation built into the estimated-position portion of the routine can be employed to calculate the set and drift of a current that has been acting on a vessel.

If the calculator has been in use and has not since been turned off, the "Clear" keys should first be pressed.

For this calculation, the course and the distance made good for one leg of a journey, obtainable from two successive fixes on two objects, are entered as Btobj and Dobj, at f a ; compass course steered and average speed made good during the run are entered at A; but no entry is made for set or drift of current.

Next, the times of start and end of the run are entered at B, and f (e) are pressed. The first quantity displayed is ignored; the second is the set of the current. By then pressing R / S, the drift of the current is obtained.
2.3.2 Fixing and Planning on the SR-52 Routine 2.2 provides the keystroke instructions for fixing on the SR-52, and like the preceding routine, includes instructions for all three of the fixing applications. An illustration of the use of this routine to obtain a running fix on two objects when vessel course and speed change between bearings is provided in figure 2.17.

2.17. Running Fix on Two Objects, Multiple Legs (Distance and Bearing)

Routine 2.2 (SR-52)

Var De	St Dr	Cc S		Initialize
Time	Bc1 Bc2	Btobj Dobj	Bto2	D2

FIXING (DISTANCE AND BEARING)

Step \begin{tabular}{lllll}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

Before beginning, make sure D/R switch is set to D.
1 Load program—both sides
2 Initialize 2nd E'
Fix on Two Objects
3 After completion of steps 1-2, enter variation $(+E,-W)$, even if 0

DD.d
2nd A^{\prime}
4 Enter deviation $(+E,-W)$, even if 0
DD.d
2nd A^{\prime}
5 Enter true bearing between objects, in either direction

DDD.d
C
6 Enter distance between objects
naut. mi.
C
7 Enter compass bearing to first object DDD.d B
8 Enter compass bearing to second object DDD.d B
9 Calculate and display true bearing from second object to vessel

D DDD.d
10 Calculate and display distance off second object
E
naut. mi.
Running Fix on One Object
11 After completion of steps 1-2, enter variation $(+E,-W)$, even if 0

DD.d
2nd A^{\prime}
12 Enter deviation $(+E,-W)$, even if 0
DD.d
2nd A^{\prime}
13 Enter set of current, even if 0
DDD.d 2nd B'
14 Enter drift of current, even if 0 2nots B^{\prime}
15 Enter compass course during run or leg*
DDD.d 2nd C'
16 Enter vessel speed during run or leg
knots \quad 2nd C^{\prime}
17 Enter compass bearing to object at start of run

DDD.d
B
18 Enter time of first bearing
H.MS

A
*Correct for leeway; see table 2.2.

Step	Procedure	Input DatalUnits	Keys	Output Data/Units
	For multiple courses or speeds, or changes in set or drift between bearings, proceed as follows (steps 19-20):			
19	Enter time of end of preceding leg-i.e., time of change(s)	H.MS	A	
20	Clear display, then repeat steps 11-12, even if variation and deviation are unchanged, and repeat as necessary steps 13-14 and 15-16; set and drift, and course and speed, are to be handled as pairs-if even one member of the pair changes, both must be re-entered		CLR	
21	Enter time of end of run	H.MS	A	
22	Enter compass bearing to object at end of run	DDD.d	B	
23	Enter 0 for bearing between objects	0	C	
24	Enter 0 for distance between objects	0	C	
25	Calculate and display true bearing from object to vessel		D	DDD.d
26	Calculate and display distance off object		E	naut. mi.
	Running Fix on Two Objects			
27	After completion of steps 1-2, enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	2nd A^{\prime}	
28	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	2nd A^{\prime}	
29	Enter set of current, even if 0	DDD.d	2nd B^{\prime}	
30	Enter drift of current, even if 0	knots	2nd B'	
31	Enter compass course during run or leg*	DDD.d	2nd C^{\prime}	
32	Enter vessel speed during run or leg	knots	2nd C^{\prime}	
33	Enter compass bearing to first object at start of run	DDD.d	B	
34	Enter time of first bearing	H.MS	A	

For multiple courses or speeds, or changes in set or drift between bearings, proceed as follows (steps 35-36):
35 Enter time of end of preceding leg-i.e., time of change(s)
H.MS A
$\begin{array}{llll}36 & \text { Clear display, then repeat steps 27-28 } \\ \text { even if variation and deviation are } \\ \text { unchanged, and repeat as necessary } \\ \text { steps } 29-30 \text { and } 31-32 ; \text { set and drift, } \\ \text { and course and speed, are handled as } \\ \text { pairs-if even one member of the pair } \\ \text { changes, both must be re-entered }\end{array} \quad$ H.MS \quad CLR
*Correct for leeway; see table 2.2.
(continued)

Stop	Procedure	Input Data/Units	Keys	Output Data/Units
39	Enter true bearing from first object to second object	DDD.d	C	
40	Enter distance between objects	naut. mi.	C	
41	Calculate and display true bearing from second object to vessel		D	DDD.d
42	Calculate and display distance off second object		E	naut. mi.

Although separate routines for fixing and planning are required with the SR-52, some integration between the two is possible. When a position fix has been calculated by means of routine 2.2 , the calculated distance off the object and the bearing from the object to the vessel are left in the calculator's memory, so this data can be used in routine 2.3 -the Planning routinewithout being re-entered. Additional inputs for this part of routine 2.3 include distance and bearing from the object to the destination. The result is given as a course to steer and elapsed time for the run. If the fix has been obtained from two objects, the calculator stores the distance and bearing from the second object, and the additional data input required in planning is the distance and bearing from the second object to the destination.

Routine 2.3 (SR-52)

CMG	DMG	Cm	$\mathrm{De} \rightarrow \mathrm{Cc}$	ΔT
Var	St Dr	Btdest Ddest		s

PLANNING (DISTANCE AND BEARING)

Step \begin{tabular}{cccc}
Input

Procedure \& DatalUnits \& Keys | Output |
| :---: |
| DatalUnits |

\hline
\end{tabular}

Before beginning, make sure D/R switch is set to D.
1 Load program—both sides
2 Enter variation $(+E,-W)$, even if 0 DD.d A
3 Enter expected set of current, even if 0 DDD.d B
4 Enter expected drift of current, even if 0 knots B
5 Enter true bearing from start to destination

DDD.d
C
6 Enter distance between start and destination
7 Enter expected vessel speed
naut. mi. \quad C

8 Calculate and display true course made good
knots
E

9 Calculate and display distance made good

2nd A^{\prime} DDD.d

10 Calculate and display magnetic course to steer
11 Enter compass deviation ($+\mathrm{E},-\mathrm{W}$), even if 0 ,

DD.d
2nd B' naut. mi.
2nd C^{\prime} DDD.d

- Calculate and display compass course to steer**
12 Calculate and display time required to reach destination

Planning Integrated with Fixing
13 After completion of routine 2.2, which leaves true bearing and distance from object to vessel in calculator memory, load planning program-both sides
14 Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0
**Uncorrect for leeway; see table 2.2.

DDD.d
2nd E' H.MS

DD.d
A

Step \quad Procedure \quad\begin{tabular}{c}
Input

Data/Units

\quad Keys

Output

DatalUnits
\end{tabular}

If expected current is not exactly as last entered in routine 2.2, proceed as follows (steps 15-16):
15 Enter expected set of current, even if 0 DDD.d B
16 Enter expected drift of current, even if 0 knots B
17 Enter true bearing from object (if fix was on one object) or from second object (if fix was on two objects) to destination - DDD.d C
18 Enter distance from object to destination naut. mi. C
19 Enter expected vessel speed knots E
20 Calculate and display true course made 2nd A' DDD.d
good
21 Calculate and display distance made good
22 Calculate and display magnetic course to steer

2nd B^{\prime} naut. mi.

23 Enter compass deviation $(+E,-W)$, even if 0 ,

DD.d
2nd D^{\prime}

- Calculate and display compass course to steer**

DDD.d
24 Calculate and display time required to reach destination

2nd E' H.MS
25 Clear, to start a new problem, or

2nd
CMs
0 STO 9
8 STO
99

To make certain all registers are cleared, turn off the calculator.
**Uncorrect for leeway; see table 2.2.

The combined use of the two routines on the SR-52 is shown in figure 2.18, which illustrates the commonly encountered situation in which a running fix has been made on one object, and a course to steer to a destination other than that object is required. Routine 2.2 is used for the fix, and routine 2.3 (steps $13-24$) is used for the plan. The bearing and the distance from the object to the vessel are stored in the calculator at the end of routine 2.2 , and need not be re-entered.

The use of routine 2.3 for planning a journey from start to destination without a position fix is shown in steps 1-12.

2.18. Running Fix on One Object and Plan to Destination (Distance and Bearing)
2.3.3 Estimated Position on the SR-52 Routine 2.4 is used for calculating estimated position on the SR-52. This routine yields the same results as the estimated-position portion of routine 2.1 for the HP-67 and HP-97.

Routine 2.4 (SR-52)

Tstart	Tend	Btdest Ddest	D	Bt
Var	De	St Dr	Cc	S

ESTIMATED POSITION (DISTANCE AND BEARING)

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

Before beginning, make sure D/R switch is set to D.
1 Load program—both sides
2 Enter variation ($+E,-W$), even if 0 DD.d A
3 Enter deviation $(+E,-W)$, even if 0 DD.d B
4 Enter set of current, even if 0 DDD.d C
5 Enter drift of current, even if 0 knots C
6 Enter compass course* DDD.d D
7 Enter vessel speed
8 Enter time of start of run or leg
9 Enter time of end of run or leg
10 Enter true bearing from start to destination

11 Enter distance from start to destination

knots	E
H.MS	2nd A^{\prime}
H.MS	2nd B^{\prime}
DDD.d	2nd C'
naut. mi.	2nd C^{\prime}

For estimated position relative to the starting position, enter bearing and distance as 0 in the preceding two steps.
12 Calculate and display distance to destination at end of leg or run 2nd D^{\prime} naut. mi.
13 Calculate and display true bearing to destination at end of leg or run

2nd E' DDD.d
For multiple courses or speeds, or changes in set or drift, repeat as necessary steps 2-7; set and drift (steps 4-5) are handled as a pair-if even one member of the pair changes, both must be re-entered. Steps 8-9 and 12-13 are then repeated for each new leg.
*Correct for leeway; see table 2.2.

Figure 2.19 provides an example of the calculation of estimated positions. In all cases of this sort, an estimate of current is included in the input data, and variation and deviation are automatically taken into account.

2.19. Estimated Position, Multiple Legs (Distance and Bearing)

This routine is able to accommodate multiple changes in such items as course, speed, and set and drift. A series of estimated positions can be calculated, showing the movement of the vessel relative to the initial destination. Thus, the bearing and distance to the destination displayed for the successive legs of the journey constitute a "plot" of the progress of the vessel toward, or in the vicinity of, the selected point.

If the estimated position is to be found relative to the starting point, the bearing and distance to the destination are set equal to zero. The destination then coincides with the starting point, and the results are calculated with reference to that point.
2.3.4 Estimated Position-Tracking The HP-67 and HP-97 can be programmed to repeat a calculation endlessly, and can therefore be used not just to calculate estimated position at selected times, but to display a vessel's position continuously. As soon as an estimated position has been calculated and displayed, the calculation is repeated, with an automatic change in input equivalent to the vessel's motion during the time required to complete the calculation. The calculating cycle pauses periodically for the few seconds it takes to read from the display the bearing and distance to a preselected destination. The HP-67 and HP-97 also display the time of each calculated position, making possible a simple check on the accuracy of the calculator's internal timing.

The HP-97, with its integral printer, produces a written version of the continuing readout. In many respects, it is the equivalent of the dead-reckoning tracers that are used to plot a line on a Mercator plotting chart, portraying the vessel's position as it moves.

The routine for tracking estimated position on the HP-67 and HP-97 has been prepared in two versions: one-described just below-uses distance and bearing as input data; the other-presented in a later section of this chapter -is based upon latitude and longitude.

The program includes a provision for stopping the tracking action to permit a change in any of the quantities that determine the displayed positionvessel course and speed, variation and deviation of the compass, and set and drift of current. Since the HP-67 and HP-97 can be stopped and restarted without losing tracking accuracy or falling behind the actual position, changes in these input quantities can be made at leisure.

Routine 2.5 (HP-67/97)

St Dr	Btdest Ddest	Tstart	Tstop	Clear
Cc Var De	S	Start	Stop	Position

ESTIMATED POSITION—TRACKING (DISTANCE AND BEARING)

Step \quad Procedure \begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
2 Enter compass course* DDD.d A
3 Enter variation ($+E,-W$), even if 0 DD.d A
4 Enter deviation $(+E,-W)$, even if 0 DD.d A
5 Enter set of current, even if 0 DDD.d fa
6 Enter drift of current, even if 0 knots fa

8 Enter distance from start to destination naut. mi. fb
For estimated position relative to the starting position, enter bearing and distance as 0 in the preceding two steps.
9 Enter vessel speed knots B
10 Enter time of start (at least 30 seconds H.MS f c
later than present time)
11 When selected time is reached, start
calculation, and repeatedly display

- Distance to destination,
naut. mi.
- True bearing to destination,

DDD.d

- Time of displayed position
H.MS

To eliminate timing errors, proceed as follows (steps 12-16):
12 Allow tracking to proceed for 3-5 minutes; then, if time displayed is in error by more than a few seconds, stop calculator, during a pause for display of time on the HP-67, or while time is being printed on the HP-97

13 Enter watch time at which calculator was stopped; this entry automatically corrects timing error
H.MS
f d

Step	Procedure	Input Data/Units	Keys	Output Data/Units
14	If required, calculate and display distance to destination,		E	naut. mi.
	True bearing to destination,			DDD.d
	Time of stop			H.MS
15	Select time of restart (at least 30 seconds later)	H.MS	$f \mathrm{c}$	
16	When selected time is reached, restart calculation		C	
	For multiple courses or speeds, or change described in steps 12-13. To enter chang restart calculation, as described in steps 1	s in set or dritt ss, repeat ste 5-16.	top cal -6 and	ator, as Then
17	Clear, either to eliminate errors in data entry (and to restart the procedure) or to start a new problem		f e	

ρ Dost

DatA		
	First Leg	Second Leg
Cc	76°	0
Var	$-15^{\circ}(\mathrm{W})$	$-15^{\circ}(\mathrm{W})$
De	$+2^{\circ}(\mathrm{E})$	0
St	180°	210°
Dr	1.1 kts	0.8 kt
Btdest	350°	
Ddest	8.5 nm	
S	8.0 kts	8.0 kts
Tstart	080000	Any con-
		lenient time

C145

Routine 2.5 has been prepared for the HP-67 and HP-97, and figure 2.20 illustrates it. The instructions in steps 12-16 of this routine list the procedures necessary to obtain timing accuracy and then resume tracking. The timing of the programming "loop" is adjusted (by the program) to conform to the actual time intervals of the repeating display, once the necessary information has been supplied. This is accomplished by setting and starting the calculator at a particular watch time. After about five minutes have elapsed, the watch time is noted and compared with the displayed time. In the HP-67, the latter is shown just before the display blanks out. If there is a discrepancy of more than a few seconds, the calculator is stopped during a subsequent display of time. The actual watch time is then entered, and the calculator measures its own timing error, resets its timing, and corrects any component of error in its calculated position due to the timing error. Next, a starting time at least thirty or more seconds in the future is keyed into the calculator (a procedure which resets the estimated position to that of the new starting time), and the "Start" key (C) is pressed when the designated time has been reached. Thus, the stopping and starting can be done at leisure, without fear of losing track of position during the halt in calculation.

It is also possible to make a permanent change in the recorded value of loop time. This procedure is desirable because the exact value of calculation time varies with the particular calculator (even within a single model). Once the user has determined the loop time for his own calculator, by means of steps 12-13, he can insert the appropriate constants into his program for this routine, as described in the discussion of customized programs in the Appendix. Making this change assures that the loop time will henceforth be very nearly correct. Nevertheless, it should be checked each time the routine is used, since it is affected somewhat by variations in temperature, battery voltage, and even the data itself.

In the example of figure 2.20, the calculator has been stopped once, at approximately 080500 , to be reset for accurate timing. At 0829 34, when the course is changed, the calculator is stopped, the time of stopping is entered, and then the new values for compass course, variation, deviation, set, and drift are entered. Next, a new starting time is keyed in, and the calculator is restarted when that time has been reached. For any subsequent changes in data, the procedure can be repeated as necessary.

The calculator will display bearing and distance from the starting point if bearing and distance to the destination are set equal to zero.
2.3.5 Bearing Regression In section 2.2.2, we discussed the method of linear regression in terms of the increased accuracy it offers in the calculation of position fixes. In this section, and the sections that follow, a number of examples of the use of regression are presented.
Two different forms of regression analysis are useful in coastwise navigation. The first, illustrated by figures 2.21 and 2.22 , establishes a smooth regression line among the bearing numbers. This form of regression can be used for fixes on two objects, running fixes on one object, and course made good from three bearings. Examples of all three are given. The second form, which can be used only for a running fix on one object, is discussed in a later section.

2.21. Observations on Two Objects from a Moving Vessel

In figure 2.21, a vessel is shown on a course made good of 55°, with a speed made good of 6.0 knots. Observations are made successively on two objects, the first with a true bearing of approximately 100°, and the second with a true bearing of approximately 320°. The bearings are taken in succession; in this case, seven observations are made on each of the objects. Figure 2.21 illustrates the effect of fluctuating bearings; the bearing lines of position are shown as radiating from the vessel's successive actual positions. Because of the swinging compass, not a single one of the observed bearing lines passes through the first object. The data is tabulated in figure 2.22; in some instances the bearing error (the difference between the observed value and the actual bearing at the time specified) is quite large, reaching as much as 8 degrees.

The first step in establishing a fix with the aid of regression methods is to utilize a specially prepared regression routine, with the sequence of bearingtime pairs for each of the objects as the input data. No concern is given to variation or deviation at this point, since the regression process is used only to smooth the data, and to obtain the single values for bearing and time which will serve as input quantities in a fixing routine. Variation and deviation are accommodated when the actual fixing is performed.

In figure 2.22, the observed bearings entered in the regression routine are shown graphically; each is represented by a solid black dot. The actual bearings for the time intervals in question fall on the slightly curved lines; the calculated regressions are represented by the straight lines, on the left for the series of bearings observed at successive times on the first object and on the right for the series of bearing observations on the second object. In each case the fluctuations are smoothed so that the regression line makes a "best fit" approximation to the observed data. Any value of bearing and time picked off the regression line is valid for the observed set of data.

At this point, a choice can be made between two possible approaches: the first is to ascertain for each sequence the bearing value for a time close to the center of the interval, and to use the two bearings as input for a running fix on two objects; the second is to extend the trend lines respectively forward and backward to a common time and use as inputs the indicated values of the bearings to the two objects at that single time. This data can then be used for a fix on two objects.

The latter method is probably more convenient, since it does not require values for vessel speed, course, and set and drift of current, all necessary in a running fix. Moreover, when the regression lines are extended to a common time, they include the effects of the vessel's motion, and the bearings take on very nearly the values that would have been obtained if they had indeed been simultaneously observed. To be sure, as the gaps between the regression lines and the curves of the actual bearings indicate, the presence of substantial fluctuations in the bearings will shift the regression lines; therefore, the values read on their extensions to a common time will not exactly coincide with those obtained through accurate simultaneous observation of the two objects. However, when the data is fluctuating, the results yielded by the method of smoothing and extrapolation are much better than those obtained from a single set of observations on each object. The additional convenience of not having to calculate a running fix makes the method even more attractive.

It should also be noted that the accuracy of this application of linear regression is limited by the fact that it results in a straight-line approximation of a bearing-time relationship more precisely represented as a curve (exemplified in the curve of the actual bearings to the first object in the left-hand section of figure 2.22). The departure from the straight line is greatest for observations of an object close at hand; however, this tendency is offset by the fact that when the object is nearby, the inaccuracy in position fixing due to bearing errors is actually reduced. A bearing error of 2 degrees to one of two objects which are
0.35 of a nautical mile away and 0.5 of a mile apart can result in a position error of 0.012 of a mile. If the objects are 1.4 miles away and 2.0 miles apart, a 2-degree bearing error to one of them will result in a position error of 0.05 of a mile-four times as much. Thus, the nearer the objects being observed, the less damaging are the bearing errors.

When values obtained by extending regression lines to a common time are to be used, the time interval between the last observation on the first object and the first observation on the second should be kept to a minimum. As examination of the left-hand section of figure 2.22 makes evident, if the calculated regression line is extended much beyond the common time used here, it will diverge considerably from the curve of the actual bearings. If the common time in this example were to be placed another minute beyond the time of the last observation in the sequence, the error in calculated bearing to the first object would be as great as 3 degrees.

Routine 2.6 provides the keystroke instructions for the Bearing Regression routine on the HP-67 and HP-97. Two sequences of bearing and time can be accommodated. After the first has been entered, pressing $\quad \mathbf{C}$ results in display of the time of the middle of the bearing sequence, and then of the value of bearing corresponding to that time. These results are useful as smoothed input for any fixing routine, and for the routine for course made good from three bearings (to be discussed shortly).

After the second sequence has been entered, pressing D results in display of the mid-time and mid-bearing of the second set of bearing-time pairs. Pressing E] then extends the two lines of regression to a common time; this common time is displayed first, followed by the bearing to the first object at the common time, and then by the bearing to the second object at that time. Utilizing this data, a fix on two objects can be calculated, as shown in the final steps of the routine.

When the mid-bearings for the data shown in figure 2.22 are calculated by means of this routine, Bmid1 turns out to be 99.88° at 010153 , and Bmid2 is 310.72° at 010545 . At the common time of 010349 , the bearings are 107.54° and 328.30°.

A fix has been calculated using the latter two values, and the resulting position- 0.56 nautical miles off the second object, on a bearing of 328.30° -is approximately 50 yards in error, as shown in figure 2.21 , primarily because of the fluctuations in the original bearing observations.

Routine 2.6 (HP-67/97)

Clear	Var De	Btobj Dobj	D1 Bt1	D2 Bt2
Bearings	Times	Tmid1 Bmid1	Tmid2 Bmid2	Tcom Bcom1 Bcom2

BEARING REGRESSION AND REGRESSION FIX ON TWO OBJECTS

Step	Procedure	Input Data/Units	K
1 Load program-both sides			
2 Enter sequence of bearing-time pairs			
obtained with respect to first object; for each pair, enter bearing, followed by	DDD.d	A	
3	Time of bearing	H.MS	B

If an error is noted in the entry of bearing or time data before the corresponding letter key (A or B) is pressed, eliminate the incorrect data by pressing CLX]; if the error is noted after the letter key has been pressed, clear the calculator by pressing \ddagger, and re-enter all data, starting at step 2.
4 Calculate and display mid-time of first bearing sequence,

- Bearing corresponding to this mid-time
C H.MS
DDD.d

5 Enter sequence of bearing-time pairs obtained with respect to second object; for each pair, enter bearing, followed by
6 Time of bearing
DDD.d
A

7 Calculate and display mid-time of second bearing sequence,

D H.MS

- Bearing corresponding to this mid-time
H.MS

B

8 Calculate and display the common time (mid-point of time interval between end of first sequence and start of second sequence),

- Bearing to first object corresponding to the common time,

DDD.d

- Bearing to second object corresponding to the common time

DDD.d
9 Unless a regression fix on two objects is to be calculated, clear, to start a new problem fa

Stop	Procedure	Input Data/Units	Keys	Output Data/Units
Regression Fix on Two Objects				
10	After completion of step 8 , enter variation $(+E,-W)$, even if 0	DD.d	$f b$	
11	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f b$	
12	Enter true bearing between objects, in either direction	DDD.d	$f \mathrm{c}$	
13	Enter distance between objects	naut. mi.	$f \mathrm{c}$	
14	Calculate and display distance off first object at the common time,		f d	naut. mi.
	True bearing from vessel to first object at the common time			DDD.d
15	Calculate and display distance off second object at the common time,		$f e$	naut. mi.
	True bearing from vessel to second object at the common time			DDD.d

If only one object can be viewed, a running fix on that object can be calculated from the sequences of bearing-time pairs. This process is illustrated in figure 2.23. When the first set of bearings, taken between 010410 and 01 0720 , is used in a regression calculation, a mid-bearing of 125.52° at 010545 results. The second set, beginning at 011100 and ending at 011425 , yields a mid-bearing of 179.09°. These two bearings can then be used as input for the running-fix portion of routine 2.1 , which establishes the vessel's position at 01 1243 as 0.82 nautical miles from the object, on a bearing of 179.09°. This answer is in error by 0.10 miles, or 200 yards, with respect to the vessel's actual position at that time.

The value of the regression method is apparent if we compare with this result a position calculated from one pair of the originally observed bearings. \mathbf{A} particularly bad pair yields a position that is 0.32 miles in error, as shown in figure 2.23. Other pairs will yield other positions and errors, and it is evident that if just two bearings are taken for a running fix, the probable error will be greater than it is when, for the regression method, many observations are taken.

Routine 2.7 (SR-52)

BEARING REGRESSION

Step Procedure \begin{tabular}{cccc}
Input

DatalUnits \& Keys \& | Output |
| :---: |
| DatalUnits |

\hline
\end{tabular}

Before beginning, make sure D / R switch is set to D.
1 Load program-first side
2 Load program-second side
3 Enter time of first bearing of sequence H.MS A
4 Enter first bearing of sequence DDD.d B
5 For each subsequent time-bearing pair, enter time, followed by
H.MS A

6 Corresponding bearing
DDD.d
C
If an error is noted in the entry of bearing or time data before the corresponding letter key (A, B, or C) is pressed, eliminate the incorrect data by pressing CLR; if the error is noted after the letter key has been pressed, clear the calculator by pressing 2nd CMs CLR , and re-enter all data, starting at step 3.

7 Enter time for which regression bearing is required
H.MS

D
8 Calculate and display bearing corresponding to time entered in preceding step

E DDD.d
9 If bearing displayed is greater than 360°, but less than 720°, reduce answer
-360
$=$ DDD.d
10 If bearing displayed is 720° or greater, reduce answer
-720
$=$ DDD.d
11 If required, calculate Tmean

12 Enter Tmean
RCL 07
\div RCL
$06=$
INV 2nd
D.MS

2nd fix 4 H.MS
13 Calculate and display bearing corresponding to Tmean

D

E
DDD.d

Routine 2.7 is the Bearing Regression routine for the SR-52. Because of the memory and program limitations in this calculator, the routine can handle only one sequence of bearing-time pairs, rather than the two included in the routine for the HP-67 and HP-97.

When the SR-52 is employed for a fix on two objects, a common time lying in the interval between the two sets of observations is selected, and the regression routine is carried out twice-once to calculate the regression bearing for the first set of observations at the common time, and a second time to obtain the second bearing. In the example shown in figure 2.22, the time is 010349.

If a running fix on one object is to be obtained, the first sequence of bearing -time pairs is entered, and then a quantity Tmean is calculated manually, as shown in step 11 of routine 2.7. Tmean, which is not to be confused with the common time, is the average of the times of the successive bearing observations. It is essentially equivalent to the mid-time calculated on the HP-67 and HP-97. The two may not be exactly equal, but both represent values of time approximately centered within the overall interval, for use in calculating the bearing required in a running fix. With Tmean still in the display, pressing D followed by E results in calculation and display of the regression bearing corresponding to Tmean. For the sequence in figure 2.23 starting at 010410 and ending at 0107 20, a regression bearing of 126.02° for a Tmean of 010548 is obtained. Since the Tmean calculated on the SR-52 differs somewhat from the mid-time of 010545 calculated on the HP-67 and HP-97, there is a shift (of 0.5 of a degree) in the regression bearing, corresponding to the vessel's motion during the interval between the two times specified. Both values are valid, since both are obtained from the same regression equation; they just represent bearings at slightly differing times.

The process of obtaining a regression bearing-time pair is repeated for the second sequence of observed bearings, and the running fix is calculated in the usual way.

Answers obtained with the SR-52 may exceed 360 degrees, so instructions for manually reducing them are included in routine 2.7 .
2.3.6 Regression Running Fix The second method of regression calculation can be used only for a running fix on one object. Its particular virtue is that no limitations need to be observed concerning closeness to the object, the time between bearings, or the speed of the vessel. In the method previously described, regression was used to determine the trend of bearing variation -the manner in which a sequence of bearings changed-with time. In the present method, the regression calculation establishes the trend of the vessel's position as it passes an object. It supplies not only bearing (as did the method previously described), but also distance to the object.

Since this regression method is used for a running fix, it is necessary to know the vessel's course and speed, and the set and drift of any currents. In the routine for the HP-67 and HP-97, these values are included in the input data. The corresponding routine for the SR-52 calls for inputs of course and speed

made good, to be found by a routine requiring the values for the motion of the vessel and the current. Any inaccuracy in these values results in an error in the calculation for the vessel's track, which is in addition to the error resulting from fluctuations in the bearings being observed.

The calculated regression track is always parallel to the vessel's course made good. Therefore, when error in the data concerning the vessel's path over the bottom causes a shift in the course made good, the calculated track shifts in the same direction by an equal amount. If the calculated speed made good is less than the actual speed made good, the calculated regression track will be closer to the object than it otherwise would have been; a faster speed made good will shift the calculated track away from the object.

An example of a regression running fix is shown in figure 2.24. The bearing -time pairs used here are the same as those in the preceding figure, for the running fix using bearing regression. The scattering of the bearing lines of position, few of which pass through the object, indicates the extent of the fluctuation in the individual observations. Yet the final result is a track that is displaced by only 148 yards, demonstrating the value of the method.

The plots of bearing against time that correspond to the input observations (black dots), the actual bearings, and the calculated values for this example are shown in figure 2.25. Here, in contrast to figure 2.22, the calculated regression line is a curve, rather than a straight line. This difference arises because the regression running fix provides an exact statement of the vessel's position (if the data for bearing and course and speed made good is correct), while the bearing regression gives a close, straight-line approximation.

The data tabulated in figure 2.24 can be used by the reader who wishes to try out routine 2.8 or 2.9 , checking his calculations against the results shown.

Routine 2.8 (HP-67/97)

Clear	De Var		Tn Dn	Tp
Cc S	St Dr	Bc	Time	Dp Btp

REGRESSION RUNNING FIX

Step \begin{tabular}{ccc}
Input

Procedure \& Data/Units \& Keys | Output |
| :---: |
| DatalUnits |

\hline
\end{tabular}

This routine cannot be used when the vessel is proceeding directly toward or away from the object being observed. Also, it should not be used when the relative bearing to the object is much less than ± 45 degrees off the bow or stern, especially when there are bearing fluctuations of 2 degrees or more.
1 Load program—both sides
2 Enter deviation $(+E,-W)$, even if 0 DD.d f b
3 Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0
4 Enter compass course*
5 Enter vessel speed
6 Enter set of current, even if 0
7 Enter drift of current, even if 0
DD.d fb
DDD.d A

8 Enter bearing-time pairs; for each pair, enter compass bearing, followed by

DDD.d C
9 Time of bearing
H.MS D

If an error is noted in the entry of bearing or time data before the corresponding letter key (C or D) is pressed, eliminate the incorrect data by pressing $C L X$; if the error is noted after the letter key has been pressed, clear the calculator by pressing \ddagger, and re-enter all data, starting at step 2.
10 Enter watch time for which running fix is required
H.MS
$f e$
11 Calculate and display distance off object at time selected,
naut. mi.

- True bearing to object at time selected

DDD.d
The preceding step is an absolute prerequisite to the calculation of time and distance of nearest approach in steps 12-13, following.

Display of ERROR after execution of the preceding step indicates that the routine will not function because the vessel is on a constant course made good to or from the object.
12 Calculate and display watch time of nearest approach to object
fd H.MS
13 Calculate and display distance off object at time of nearest approach
f d naut. mi.
14 Clear, to start a new problem f a
*Correct for leeway; see table 2.2.

Routine 2.9 (SR-52)

REGRESSION RUNNING FIX

Step \begin{tabular}{cccc}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

This routine cannot be used when the vessel is proceeding directly toward or away from the object being observed. Also, it should not be used when the relative bearing to the object is much less than ± 45 degrees off the bow or stern, especially when there are bearing fluctuations of 2 degrees or more.
Before beginning, make sure D/R switch is set to D.
1 Load program-first side
2 Load program-second side

3 Initialize
4 Enter variation ($+E,-W$), even if 0
5 Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0
6 Enter true course made good
7 Enter speed made good
8 Enter bearing-time pairs; for each pair, enter compass bearing, followed by
9 Time of bearing

	2nd E'
DD.d	A
DD.d	A
DDD.d	B
knots	B

If an error is noted in the entry of bearing or time data before the corresponding letter key (C or D) is pressed, eliminate the incorrect data by pressing CLR; if the error is noted after the letter key has been pressed, clear the calculator by pressing 2nd CMs CLR, and re-enter all data, starting at step 4.
10 Enter watch time for which running fix is required,
H.MS 2nd A^{\prime}

- Calculate and display distance off object at time selected naut. mi.

The preceding step is an absolute prerequisite to the calculation of time and distance of nearest approach in steps 12-13, following.
11 Calculate and display true bearing to object at time selected

2nd B' DDD.d
12 Calculate and display time of nearest approach to object
2nd C' H.MS

| Step | Procedure | Onput
 Data/Units | Keys |
| :--- | :--- | :--- | :--- | | Output
 Data/Units |
| :---: |
| 13Calculate and display distance of nearest
 approach to obiect (the time of nearest
 apprach obtained in step 12 is left in the
 display) |
| 14Calculate and display time interval
 between time selected in step 10 and
 time of nearest approach |
| 15Initialize, either to restart the procedure
 or to start a new problem |

In these procedures, variation and deviation need to be entered, since the input quantities include compass course (in routine 2.8) and compass bearings (in both routines), while the results are given in terms of distance and true bearing to the object.

Two reservations accompany the instructions. The first specifies that these routines cannot be used when the vessel is proceeding directly toward or away from the object being observed. The reason is that there is no way to calculate distance toward or away from the object when the bearings are aligned with the vessel's track. Headings resulting in a course made good that is within less than a degree of the bearings to the object are not acceptable. Since currents may cause a net motion in line with an object even though the vessel is not headed directly toward or away from it, the vessel's course made good rather than its heading is relevant here.

The second reservation involves the fact that these routines tend to exaggerate the effect of bearing fluctuations when the relative bearing to the object is much less than 45 degrees off the bow or stern on either side of the vessel. Consequently, bearings within these ranges should not be used as input data at times when bearing fluctuations are substantial-swings of 2 degrees or more.

Since the regression running fix establishes the vessel's track, it can be employed to calculate the time and distance of the nearest approach to the object. In routine 2.8, this is done after the data has been entered in steps $1-9$, and steps $10-11$ have been executed at least once. Pressing f d once for time of nearest approach and once for distance of nearest approach will provide the desired results.

In routine 2.9, for the SR-52, the time of nearest approach is calculated by pressing 2nd C^{\prime} after the sequence of bearing-time pairs has been entered (steps 8-9) and the bearing and distance for a selected time have been calculated (steps $10-11$). The distance of nearest approach is then obtained by pressing 2nd A^{\prime}.

On the HP-67 and HP-97, pressing f enables one to clear and initialize the calculator for a new problem, or to restart the calculation. The same result is obtained on the SR-52 by pressing 2nd E^{\prime}.
2.3.7 Course Made Good from Three Bearings Another example of the use of regression in coastwise navigation is its role in the preparation of data for routines 2.10 and 2.11 , for finding course made good from three bearings. This procedure is valuable because the determination of course made good can be made without any knowledge of current. However, it must be used properly: unless widely spaced bearings are selected, very large errors may result, as figure 2.26 shows. In this case, the vessel is proceeding due west, and a number of observations are made on a single object. When the successive bearing observations supplying the basis for catculating the course made good are spaced at intervals of only 10 degrees, an error in the first and third bearings of 1 degree (too low) causes an error of almost 30 degrees in the calculated course. However, when the intervals between the observations are 40 degrees and 25 degrees, 1 -degree errors in the first and third bearings result in an error in the calculated course of just over 3 degrees. (In each of these cases, the calculated answer is actually the reciprocal of the CMG, because of a $180-$ degree ambiguity.)

WITHOUT BEARING ERROR

	True Bearing	Time
Narrowly	160°	010629
Spaced	150	010903
Bearings	140	011211
CMG $^{\prime}$	89.42°	$+180^{\circ}$, or $269.42^{\circ} \mathrm{T}$
Widely	190°	010000
Spaced	150	010903
Bearings	125	011915

WITH BEARING ERROR

True Bearing	Time
159°	010629
150	010903
139	011211

$150 \quad 010903$
$124 \quad 011915$
CMG ${ }^{1} 86.83^{\circ}+180^{\circ}$, or $266.83^{\circ} \mathrm{T}$
'Since the calculated result is the reciprocal of the actual value, 180° is added.
2.26. Course Made Good from Three Bearings (Sensitivity to Error)

Routine 2.10 (HP-67/97)

COURSE MADE GOOD FROM THREE BEARINGS

Step	Procedure	Input Data/Units	Keys	Output Data/Units
1	Load program			
2	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f e$	
3	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f e$	
4	Enter first compass bearing to object	DDD.d	A	
5	Enter time of first bearing	H.MS	f a	
6	Enter second compass bearing to object	DDD.d	B	
7	Enter time of second bearing	H.MS	$f \mathrm{~b}$	
8	Enter third compass bearing to object	DDD.d	C	
9	Enter time of third bearing	H.MS	$f \mathrm{c}$	
10	Calculate and display true course made good (the result contains a 180 -degree ambiguity that must be resolved by the user)		D	DDD.d

Errors in the calculated result can also be minimized by the use of bearing regression. Three different sequences of bearing observations are taken, separated by enough time to allow substantial movement of the vessel between sequences. Next, a regression value of bearing is obtained for the mid-time of each sequence (from routine 2.6, for the HP-67 and HP-97) or the Tmean of each sequence (from routine 2.7, for the SR-52). These routines are discussed in section 2.3.5. When routine 2.6 is used, step 8 can be omitted, since no bearing extension to a common time is needed. The resulting values of time and bearing for each of the three groups of observations then serve as input for routines 2.10 and 2.11 .

Routine 2.10 has been prepared for the HP-67 and HP-97. The calculated result contains a 180 -degree ambiguity, inherent in the equations used to solve the problem, but the navigator should be able to resolve this without any difficulty. The data presented in figure 2.27 , which shows both the original
observations and the answers obtained from the HP-67 and HP-97, can be used to test the program.

As this data indicates, when regression methods are used and widely spaced bearings are chosen, even fluctuating observations can yield quite acceptable results. In this instance, though some of the original bearings are many degrees away from the correct values, they yield a course made good which is in error by only 0.7 of a degree. Since, in addition, course made good is determined without any knowledge of current, the effort of employing the regression method is probably well worth while.

2.27. Course Made Good from Three Bearings Using Bearing Regression

Routine 2.11 (SR-52)

COURSE MADE GOOD FROM THREE, SIX, OR NINE BEARINGS

| Step | Input | | |
| :---: | :---: | :---: | :---: | :---: |
| Procedure | Data/Units | Keys | Output
 DatalUnits |

Before beginning, make sure D/R switch is set to D.
1 Load program-first side
2 Load program-second side
3 Enter number of bearings
4 Enter variation ($+E,-W$), even if 0
3, 6, or $9 \quad$ A

5 Enter deviation (+ E, - W), even if 0 DD.d B
6 Enter bearing-time pairs; for each pair, enter compass bearing, followed by

DDD.d C
7 Time of bearing
H.MS

D
8 Calculate and display true course made good (the result contains a 180 -degree ambiguity that must be resolved by the user)

E DDD.d

A similar procedure—routine 2.11 -has been prepared for the SR-52. This routine can accept as input three, six, or nine bearings. When regression is used as a preliminary step, three bearing-time pairs are obtained, so the entry of the number of bearings, in step 3, should be made accordingly.

Figure 2.28 presents a set of data and the calculated answers obtained through routine 2.11 without any preliminary calculation of Tmean. The routine was used three times-once with three bearings (widely spaced, for best results), once with three pairs of bearings, and once with all nine bearings. The most accurate answer is the last: the error of 0.83 of a degree compares quite favorably with the result, shown in figure 2.27 , obtained from the same data when bearing regression is used.

3 bearings

	Calculated CMG	Actual C
3 Bearings	$52.37^{\circ} \mathrm{T}$	$55.0^{\circ} \mathrm{T}$
6 Bearings	$51.64^{\circ} \mathrm{T}$	$55.0^{\circ} \mathrm{T}$
9 Bearings	$54.17^{\circ} \mathrm{T}$	$55.0^{\circ} \mathrm{T}$

2.28. Course Made Good from Three, Six, or Nine Bearings

2.3.8 Course and Speed Made Good from Two Fixes A set of routines has been prepared which will be useful in coastal and tidal waters, where currents may set a vessel to one side or the other, or ahead of or behind an expected track. These are based on the fact that if two successive fixes can be obtained, the course and speed made good over the bottom during the time interval between the two fixes can be determined. Since the course being steered and the vessel's speed during the interval are known, a further calculation will yield the set and drift of the current acting on the vessel during this time.

The position fixes in this instance should be calculated from successive bearings on two charted objects, since pairs of observations made in this manner will accommodate the vessel's motion without requiring a knowledge of the current. Running fixes, which do require knowledge of the current, are not acceptable. When-on either the first or the second round of bearings -considerable time intervenes between the observation of the first and of the second object, the technique of bearing regression (employing a common time) should be used.

If, as is often the case, at the time of either the first or the second set of observations the vessel is at a known location (such as a buoy, pier, or mooring) which serves as one of the objects, the calculator routines will still provide correct answers; the calculated distance off this object will be zero, and course and speed made good will be properly shown.

Routine 2.12 (HP-67/97)

Var De	Cc S	D101 D102 T1	D201 D2o2 T2	Clear
Btobj Dobj	Bc101 Bc102 T1	Bc201 Bc2o2 T2	SMG CMG	Dr St

COURSE MADE GOOD AND SPEED MADE GOOD FROM TWO FIXES, SET AND DRIFT (DISTANCE AND BEARING)

Step	Procedure	Input Data/Units	Keys	Output DatalUnits
1	Load program—both sides			
2	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	$f \mathrm{a}$	
3	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	f a	
4	Enter true bearing between objects, in either direction	DDD.d	A	
5	Enter distance between objects	naut. mi.	A	
6	Enter first compass bearing to first object	DDD.d	B	
7	Enter first compass bearing to second object	DDD.d	B	
8	Enter time of first set of bearings	H.MS	B	
9	Enter second compass bearing to first object	DDD.d	C	
10	Enter second compass bearing to second object	DDD.d	C	
11	Enter time of second set of bearings	H.MS	C	
	If the vessel is alongside either object at time of first or second set of bearings, enter an arbitrary bearing ($n o t 0$) at the appropriate step ($6,7,9$, or 10). The result will be a display of 0 for distance off that object (in step 12 or 13), and all other distances will be correct.			
12	Calculate and display distance off first object at time of first set of bearings,		$f \mathrm{c}$	naut. mi.
-	Distance off second object at time of first set of bearings,			naut. mi.
-	Display time of first set of bearings			H.MS
13	Calculate and display distance off first object at time of second set of bearings,		f d	naut. mi.
-	Distance off second object at time of second set of bearings,			naut. mi.
	Display time of second set of bearings			H.MS

Step	Procedure	Input Data/Units	Keys	Output Data/Units
	Calculate and display speed made good between two sets of bearings,		D	knots
	True course made good between two sets of bearings			DDD.d
15	Enter compass course of vessel between two sets of bearings*	DDD.d	fb	
16	Enter speed of vessel between two sets of bearings	knots	$f b$	
17	Calculate and display drift of current,		E	knots
	Set of current			DDD.d
18	Clear, either to eliminate errors in data entry (and to restart the procedure) or to start a new problem		$f e$	
*Cor	ect for leeway; see table 2.2.			

Routine 2.13 (SR-52)

Bc201 Bc202	T2	D201 D2o2	CMG	SMG
Var De	Btobj Dobj	Bc101 Bc102	T1	D101 D102

COURSE MADE GOOD AND SPEED MADE GOOD FROM TWO FIXES (DISTANCE
AND BEARING)

Step	Procedure	Input Data/Units	Keys
Before beginning, make sure D / R switch is set to D .			
1	Load program-first side		
2	Load program-second side		
3	Initialize		2nd CMs 2nd rset CLR
4	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	A
5	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	A
6	Enter true bearing between objects, in either direction	DDD.d	B
7	Enter distance between objects	naut. mi.	B
8	Enter first compass bearing to first object	DDD.d	C
9	Enter first compass bearing to second object	DDD.d	C

Output DatalUnits

Before beginning, make sure D / R switch is set to D.
1 Load program-first side
2 Load program-second side
3 Initialize
CMs
2nd rset
CLR

4 Enter variation $(+E,-W)$, even if 0
5 Enter deviation $(+E,-W)$, even if 0
6 Enter true bearing between objects, in either direction
naut. mi.

DDD.d

C
If the vessel is alongside either object at time of first set of bearings, enter an arbitrary bearing (not 0) at the appropriate step (8 or 9). The result will be a display of 0 for distance off that object in step 11 or 12, and the other distance will be correct.
10 Enter time of first set of bearings
H.MS

D
11 Calculate and display distance off first object at time of first set of bearings

E naut. mi.
12 Calculate and display distance off second object at time of first set of bearings

E naut. mi.
13 Enter second compass bearing to first object

DDD.d 2nd A'
14 Enter second compass bearing to second object

DDD.d
2nd A^{\prime}

If the vessel is alongside either object at time of second set of bearings, enter an arbitrary bearing (not 0) at the appropriate step (13 or 14). The result will be a display of 0 for distance off that object in step 16 or 17, and the other distance will be correct.
15 Enter time of second set of bearings
H.MS

2nd B'
16 Calculate and display distance off first object at time of second set of bearings

2nd C^{\prime} naut. mi.
17 Calculate and display distance off second object at time of second set of bearings

2nd C^{\prime} naut. mi.
18 Calculate and display true course made good between two sets of bearings

2nd D' DDD.d
19 Calculate and display speed made good between two sets of bearings

2nd E' knots
20 Clear, either to eliminate errors in data
entry (and to restart the procedure) or to
start a new problem
CMs
2nd
rset ${ }^{1}$
CLR
${ }^{1}$ This step is essential in order to clear flags set by the running program.

Routine 2.14 (SR-52)

COURSE MADE GOOD AND SPEED MADE GOOD, SET AND DRIFT

Step	Procedure	Input DatalUnits	Keys	Output DatalUnits

Before beginning, make sure D/R switch is set to D.
1 Load program
2 Enter variation ($+E,-W$), even if 0 DD.d A
3 Enter deviation ($+E,-W$), even if 0 DD.d A
4 Enter compass course*
5 Enter vessel speed
DDD.d
B

Course Made Good and Speed Made Good
6 After completion of steps 1-5, enter set of current, even if 0
7 Enter drift of current, even if 0
DDD.d
C
knots 2nd C^{\prime}
8 Calculate and display true course made
good
9 Calculate and display speed made good

Set and Drift

10 After completion of steps 1-5, enter true course made good (available from routine 2.13 or routine 2.28)

DDD.d
C
11 Enter speed made good (available from routine 2.13 or routine 2.28)
knots
2nd C'
12 Calculate and display set of current
13 Calculate and display drift of current

E
2nd E^{\prime} knots
*Correct for leeway; see table 2.2.

On the HP-67 and HP-97 a single routine-routine 2.12-can be used both for finding course and speed and for calculating set and drift of current. On the SR-52, two separate routines are required for these operations. These are presented as routines 2.13 and 2.14 .
Figure 2.29 illustrates the situation in which these calculator routines are employed. The accompanying data can be used to verify the accuracy of the procedures described.

2.29. Course Made Good and Speed Made Good from Two Fixes (Distance and Bearing)

2.4 Coastwise Navigation Using Latitude and Longitude Co-ordinates

In the calculator routines discussed so far, positions have been defined in terms of distances and bearings to and from vessels and objects. The remainder of this chapter covers the cases in which objects, obstacles, and vessel positions are located in terms of latitude and longitude.

As was pointed out in section 2.2.1, the use of latitude and longitude is accompanied by the assumption of a non-planar earth; this must be taken into account in the calculations, and either the Mercator chart-factor method of calculation or the mid-latitude method may therefore be employed. The chart factor $(l m)$ is the ratio of the actual length in nautical miles of a given interval of longitude (in minutes and seconds) to the same interval of latitude, at the latitude in question, and reflects the actual shape of the aspheric earth. The mid-latitude method, which assumes a perfectly spherical earth, involves computing the average latitude (the mid-latitude) of the area in question, and determining the equivalent of the chart factor by taking the cosine of the mid-latitude.

In most cases, the difference in position as calculated by the two methods is small enough to be ignored. However, in some situations, especially those in which position is calculated from a running fix on two objects, errors can reach as much as a quarter of a nautical mile, depending on the orientation of objects and course made good during the run. Hence, in the fixing routines, the chart-factor method is preferable when maximum accuracy is required. This method is particularly suitable for position fixing because the distances involved are relatively short, especially if bearings are being taken on visual objects. Hence, a single chart factor applies to the whole area involved. This can be obtained by taking from the chart the length of the interval of longitude and dividing it by the length of the corresponding interval of latitude, or the task of making the measurements may be avoided by using table 2.3 , which provides the same information in convenient form. The distances are specified for the nearest degree of latitude, which is probably quite adequate for computational purposes. Fixing routines based on mid-latitude calculations are also provided, for those cases where they are more convenient, or where the chart factor is not readily available.

For planning, estimating position, and tracking, it is often easier and equally accurate to use the mid-latitude method. This is true for a journey in excess of 10 nautical miles, especially if considerable north-south movement is involved, since it is difficult to define chart factor accurately for a wide latitude interval.

Operations involving latitude and longitude are facilitated in the HP-67, HP-97, and SR-52, by the external magnetic memories, which make possible the prerecording of the latitude and longitude of places and objects. Each location, defined by a co-ordinate system of many numerical units (say, a

Table 2.3 Length of a Degree of Latitude and Longitude ${ }^{1}$
${ }^{1}$ Table 6 in American Practical Navigator, vol. 2 (Defense Mapping Agency Hydrographic Center, 1975), pp. 124-25.

latitude of $41^{\circ} 17^{\prime} 23^{\prime \prime} \mathrm{N}$ and a longitude of $68^{\circ} 14^{\prime} 32^{\prime \prime} \mathrm{W}$) is assigned an identification number in the HP-67 and HP-97, and an identification letter in the SR-52.

In addition, in the HP-67 and HP-97, the magnetic compass variation and the Mercator chart factor for the section of the chart being used can be stored on the card, and are then automatically extracted by the routine that uses the prerecorded data. In the SR-52, the chart factor can be stored, but the variation must be keyed in manually, where needed. Once prerecording has been completed, utilization of the data as part of the input for a routine requires just keying in the identification number or letter, and then (in the HP-67 and HP-97) pressing the appropriate keys to load the data. These simple procedures may replace as many as seventeen individual keystrokes. The co-ordinates are entered quickly and accurately.

Simplicity in performing calculations is gained in another way as well. In the preceding routines for coastwise fixing and planning, when the distance and bearing between charted objects were required as input data, the information had to be obtained by measurement on the chart. However, if the latitude and longitude have been prerecorded, once the numbers or letters designating the two positions have been keyed in, the calculator will automatically determine the values of distance and bearing between the objects, for use in the remainder of the calculation.

The answers yielded by calculations made with latitude and longitude are convenient and flexible. The planning routines provide course to steer, time of arrival (on the HP-67 and HP-97 or elapsed time (on the SR-52), and course and distance made good. The position fix is displayed in the form of latitude and longitude, but on the HP-67 and HP-97, the distance off one of the objects observed is also provided; the user can choose the terms most convenient for his purposes.
2.4.1 Prerecorded Lists of Objects All of the routines developed for latitude and longitude can accept prerecorded data from one or more cards, and also data inserted manually, at the keyboard, so they can be used even when there has been no opportunity to prerecord the co-ordinates of a particular place. However, it is most convenient to employ prerecorded data.

The best sources of co-ordinates for prerecording are nautical charts with a scale of 1 to 20,000 or 1 to 40,000 ; these can be read with sufficient accuracy to provide degrees, minutes, and seconds of latitude and longitude. Taking data from light lists, such as those published by the U.S. Coast Guard, appears to be somewhat risky, since positions shown in those publications are occasionally different-and less accurate-than the ones on a nautical chart.

A further caution should also be observed. The position of floating aids to navigation, such as buoys, is constantly subject to change as a result of heavy weather, collisions, and the like. The U.S. government publishes notices to
mariners describing shifts, removals, and new locations of buoys and other floating aids. Hence, the data on the prerecorded cards must be updated from time to time in exactly the same manner as the data on nautical charts.

In the prerecording of latitude and longitude, it is customary to employ degrees, minutes, and seconds (DD.MMSS), rather than degrees, minutes, and tenths of minutes, since conversion to decimal degrees can be accomplished by the calculator automatically. (Tenths of minutes are employed for celestial navigation, because sextant scales are normally calibrated in tenths of minutes of arc.)

Once the co-ordinates have been recorded and checked for accuracy, care should be taken to protect the data cards from inadvertent erasure in the calculator. On the HP-67 and HP-97, this is done by clipping the corners of the cards; on the SR-52, the cards are protected against inadvertent erasure by the fact that they cannot be re-used unless small, black adhesive tabs are properly attached. When any positions need to be changed completely, new cards should be prepared; attempting to alter the old ones is likely to result in the accidental deletion of data that is supposed to be retained. Also, since the small data cards-and program cards-can easily become lost or wedged into inaccessible places, duplicates should be made. Otherwise, the labor of remeasuring positions may become necessary.

Data cards should be prepared, as convenient, for all the areas the navigator expects to enter. In this way, a library of positions can be accumulated.
2.4.2 Prerecorded Magnetic Cards for the HP-67 and HP-97 Routine 2.15 is the set of instructions for preparing a prerecorded latitude and longitude data card for the HP-67 and HP-97. A single card can store latitude and longitude for eleven different objects, along with the magnetic compass variation and the Mercator chart factor ($l m$) for the section of the chart being used. When constructing this card, it is important to note step 11 of the routine, in which storage is shifted from the primary to the secondary register. If this is not done, beginning with the sixth object, the recording of additional coordinates will result in the successive erasure of the positions of the first five objects.

Routine 2.15 (HP-67/97)

Latitude and Longitude Data Card, No. N

LATITUDE AND LONGIFUDE DATA CARD

Step	Procedure	Input Data/Units	Keys
1	Enter 1st latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	STO 0
2	Enter 1st longitude ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	STO 1
In entering latitude and longitude, signs should be employed through indicated in steps 1 and 2.			
3	Enter 2nd latitude	DD.MMSS	STO 2
4	Enter 2nd longitude	DD.MMSS	STO 3
5	Enter 3rd latitude	DD.MMSS	STO 4
6	Enter 3rd longitude	DD.MMSS	STO 5
7	Enter 4th latitude	DD.MMSS	STO 6
8	Enter 4th longitude	DD.MMSS	STO 7
9	Enter 5th latitude	DD.MMSS	STO 8
10	Enter 5th longitude	DD.MMSS	STO 9
11	Shift to secondary storage		f p ¢ s
12	Enter 6th latitude	DD.MMSS	STO 0
13	Enter 6th longitude	DD.MMSS	STO 1
14	Enter 7th latitude	DD.MMSS	STO 2
15	Enter 7th longitude	DD.MMSS	STO 3
16	Enter 8th latitude	DD.MMSS	STO 4
17	Enter 8th longitude	DD.MMSS	STO 5
18	Enter 9th latitude	DD.MMSS	STO 6
19	Enter 9th longitude	DD.MMSS	STO 7
20	Enter 10th latitude	DD.MMSS	STO 8
21	Enter 10th longitude	DD.MMSS	STO 9
22	Enter 11th latitude	DD.MMSS	STO A
23	Enter 11th longitude	DD.MMSS	STO B
24	Enter chart factor ${ }^{1}$	$0 . n n n n$	STO D

${ }^{1}$ Chart factor is calculated by dividing the length in nautical miles of an interval of longitude (say five minutes) at the location in question by the length in nautical miles of an equal interval of latitude at that location. The quotient-the chart factor-should be brought to four decimal places. The necessary figures can be obtained either from direct measurement on a chart or from table 2.3.

Step	Procedure	Input Data/Units	Keys	Output Data/Units
25	Enter variation of compass $(+\mathrm{E},-\mathrm{W})$,			
even if 0	DD.d	STO E		
26	Prepare to record data card		f W/DATA	CRD
27	Record data card-both sides			CRD

When the co-ordinates of two objects are used in a problem, it is not necessary that the data for both objects be contained on one card. However, if two cards are required, it should be remembered that the calculator will retain the values for variation and chart factor supplied by the second card inserted. If this presents a problem, the user can override these manually, at the keyboard, and substitute any desired values.
2.4.3 Prerecorded Magnetic Cards for the SR-52 Routine 2.16 is the set of instructions for preparing a prerecorded data card for the SR-52. When both sides of the card are used, a chart factor and nine latitude and longitude pairs can be stored; because of space limitations, variation is not included, and must be entered manually, as needed. The program memory is employed for recording the co-ordinates, so steps to transfer information from the program memory to the data memory are built into the routine.

Where a routine includes an instruction to "Clear" or "Initialize," this should be carried out with the calculation program in place, and before any prerecorded data is entered, since co-ordinates which have been loaded previously will be erased by this operation. After initialization, the data can be entered, and the program is then reinserted for completion of the routine.
2.4.4 The Application of Leeway In all of the planning routines, care should be taken to correct for leeway whenever necessary (most often, that is, in the case of sailing vessels). The specific instructions concerning leeway are in section 2.2.5.

Routine 2.16 (SR-52)

LATITUDE AND LONGITUDE DATA CARD

Step	Procedure	Input DatalUnits	Keys	Output DatalUnits

1 Latitudes, longitudes, and chart factor are recorded in the program memory. Hence, entries are made by shifting the calculator into LRN mode.

2nd rse LRN	00000
2nd LBL	
2nd E^{\prime}	
2nd	
D.MS	
2nd	
EXC 0	
5 2nd	
EXC	
$062 n d$	
EXC 0	
7 2nd	
EXC 0	
8 . n	
$n \cap n^{1}$	
STO 1	
1 2nd	
rtn	02500

Nine latitude and longitude pairs can be entered on the two sides of one card. They should be close enough to each other to require the same chart factor, as entered in step 2. Recording of co-ordinates starts at program step 25. Each pair of co-ordinates is separated by a lettered label-A-E and (2nd) $A^{\prime}-D^{\prime}$. The symbols $D D . M M S S$ represent the individual digits of degrees, minutes, and seconds, and the decimal-point key is pressed to separate degrees from minutes. The sample entry steps shown are for co-ordinates of up to $99^{\circ} 59^{\prime} 59^{\prime \prime}$, but the memory can accommodate nine sets of co-ordinates all 100° or larger.
${ }^{1}$ Each n stands for one digit of the chart factor. For the method of calculating this four-place decimal, see footnote 1 to routine 2.15 .

Step	Procedure	Input Data/Units	Keys	Output Data/Units
3	Enter 1st latitude ($+\mathrm{N},--\mathrm{S}$)		2nd LBL A D D. $M M S$ S 2nd E'	
4	Enter 1st longitude ($+\mathrm{W},-\mathrm{E}$)		```D D. MMS S 2nd E' HLT```	
5	Enter 2nd latitude ($+\mathrm{N},-\mathrm{S}$)		2nd LBL $B D D$. MMS S 2nd E^{\prime}	
6	Enter 2nd longitude (+ W, -E)		```D D. MMS S 2nd E' HLT```	
19	Enter 9th latitude ($+\mathrm{N},-\mathrm{S}$)		2nd LBL 2nd D' D D 。 MMS S 2nd E^{\prime}	
20	Enter 9th longitude (+ W, -E)		$D D$. $M M S$ S 2nd E^{\prime} HLT	
21	Record data card-first side		LRN CLR INV 2nd read	
22	Record data card-second side		INV 2nd read	

2.30. Planning (Chart Factor)

2.4.5 Planning on the HP-67 and HP-97 The Planning routines for the HP-67 and HP-97-routine 2.17, using chart factor, and routine 2.18, using mid-latitude calculations-are part of an integrated set which also includes calculating and tracking estimated position (routines 2.20 and 2.21) and fixing (routines 2.24 and 2.25). Once the co-ordinates have been entered for the first and second object (in fixing) or the necessary data has been obtained (in planning), the information can be used as well for the later calculation or tracking of estimated position. Re-entry of this data is then unnecessary. This design was adopted in part because of certain memory limitations in the calculator, but is also convenient because it is often necessary to move from planning to tracking. The fact that the Planning routines also provide datainput steps for the routines involving estimated position is another reason for their being given in both chart-factor and mid-latitude versions; the latter routines exist in both forms.

Figure 2.30 (for chart factor) and figure 2.31 (for mid-latitude) illustrate the use of routine 2.17 and routine 2.18 , respectively, in planning. In this instance, the starting position is object 8 on data card 3 . Pressing 8 f results in entry of the object's co-ordinates (latitude of $41^{\circ} 03^{\prime} 04^{\prime \prime} \mathrm{N}$ and longitude of $72^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{W}$) and also, automatically, of the variation (13.5 degrees W) and the chart factor (0.7567). If the necessary data has not been stored on a magnetic card, it is entered manually, as specified in steps $8-23$ (for chart factor) or steps 8-22 (for mid-latitude).

Since a vessel's deviation depends on the heading, it cannot be determined until the planned course has been calculated. Therefore, it is added when the magnetic course to steer has been displayed and the vessel's expected heading is known (i.e., after step 29 of routine 2.17 or step 28 of routine 2.18). Even if the value for deviation at this heading is zero, it should be keyed into the calculator. The resulting display is the compass course to steer.

The complete answer to this problem includes the course to steer, the expected time of arrival, the distance made good, and the course made good (this may be different from the course steered if current data has been inserted).

2.4.6 Planning (Mid-latitude) on the SR-52 Routine 2.19 is the Planning

 routine for the SR-52, employing the mid-latitude method of calculation. Any combination of prerecorded and manually entered data may be used. As in the routines previously described, deviation is added after a magnetic course has been displayed (i.e., after step 35); the result is conversion of any negative magnetic course to a compass course within the range of $0-360^{\circ}$ degrees.The data supplied in figure 2.31 can be used to test the method on the SR-52.

Routine 2.17 (HP-67/97)

Select Start	Select Dest	Load		Var Im
S St Dr	Tstart	$\mathrm{Cm} \mathrm{De} \rightarrow \mathrm{Cc}$	Tend	DMG CMG

PLANNING (CHART FACTOR)

Step Procedure \begin{tabular}{c}
Input

DatalUnits

 Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
If both start and destination co-ordinates are on data cards, proceed as follows (steps 2-7):
2 Load data card containing start co-ordinates

3 Enter identification number corresponding to start co-ordinates (an even number from 0 to 20) 0-20 fa

If destination co-ordinates are on same data card,
4 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20), and continue at step 7 0-20 fb

If destination co-ordinates are on a different data card,
5 Load second data card
6 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20) $0-20$ fb
7 Load start and destination co-ordinates into memory, and continue at step 23
f c
If only start co-ordinates are on a data card, proceed as follows (steps 8-12):
8 Load data card
9 Enter identification number corresponding to start co-ordinates (an even number from 0 to 20) 0-20 fa
10 Enter destination latitude ($+\mathrm{N},-\mathrm{S}$)
DD.MMSS
ENTER
11 Enter destination longitude ($+\mathrm{W},-\mathrm{E}$), but do not press ENTER DD.MMSS
12 Load start and destination co-ordinates into memory, and continue at step 23

Routine 2.18 (HP-67/97)

Select Start	Select Dest	Load		Var
SSt Dr	Tstart	$\mathrm{Cm} \mathrm{De} \rightarrow \mathrm{Cc}$	Tend	DMG CMG

PLANNING (MID-LATITUDE)

Step \quad Procedure \begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
If both start and destination co-ordinates are on data cards, proceed as follows (steps 2-7):
2 Load data card containing start co-ordinates

3 Enter identification number corresponding to start co-ordinates (an even number from 0 to 20) $0-20$ f a

If destination co-ordinates are on same data card,
4 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20), and continue at step 7 0-20 $f b$

If destination co-ordinates are on a different data card,
5 Load second data card
6 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20) $0-20$ fb
7 Load start and destination co-ordinates into memory, and continue at step 23 fc

If only start co-ordinates are on a data card, proceed as follows (steps 8-12):
8 Load data card
9 Enter identification number corresponding to start co-ordinates (an even number from 0 to 20) 0-20 fa
10 Enter destination latitude $(+\mathrm{N},-\mathrm{S})$ DD.MMSS ENTER
11 Enter destination longitude ($+\mathrm{W},-\mathrm{E}$), but do not press ENTER DD.MMSS
12 Load start and destination co-ordinates into memory, and continue at step 23
f C

If only destination co-ordinates are on a data card, proceed as follows (steps 1317):

13 Enter start latitude ($+\mathrm{N},-\mathrm{S}$)
14 Enter start longitude ($+\mathrm{W},-\mathrm{E}$)
15 Load data card
16 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20) 0-20 fb
17 Load start and destination co-ordinates into memory, and continue at step 23

DD.MMSS ENTER
DD.MMSS ENTER

If neither start nor destination co-ordinates are on data cards, proceed as follows (steps 18-32):
18 Enter start latitude ($+\mathrm{N},-\mathrm{S}$)
DD.MMSS ENTER
19 Enter start longitude ($+\mathrm{W},-\mathrm{E}$)
20 Enter destination latitude $(+\mathrm{N},-\mathrm{S})$
DD.MMSS ENTER
DD.MMSS ENTER
21 Enter destination longitude ($+\mathrm{W},-\mathrm{E}$), but
do not press ENTER DDMSS
22 Load start and destination co-ordinates into memory
f c
23 Enter variation $(+E,-W)$, even if 0 , if no data card has been used, or if variation is to be different from value on last data card used
DD.d fe

24 Enter expected vessel speed knots A
25 Enter expected set of current, even if 0
DDD.d
A
26 Enter expected drift of current, even if 0 knots A
27 Enter time of start of run H.MS B
28 Calculate and display magnetic course to steer
29 Enter deviation for planned magnetic course ($+E,-W$), even if 0 ,

DD.d

- Calculate and display compass course to steer**
30 Calculate and display time destination will be reached

D H.MS
31 Calculate and display distance made good

E naut. mi.
32 Calculate and display true course made good

E DDD.d

[^4]Routine 2.19 (SR-52)

Ct	Var $\rightarrow \mathrm{Cm} \mathrm{De} \rightarrow \mathrm{Cc}$	ΔT	CMG	DMG
St Dr	S	Lstart Lostart	Ldest Lodest	

PLANNING (MID-LATITUDE)

Step \begin{tabular}{ccc}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

Before beginning, make sure D / R switch is set to D.
If both start and destination co-ordinates are on data cards, proceed as follows (steps 1-9):
1 Load data card containing start co-ordinates
2 Enter identification letter corresponding to start co-ordinates A-2nd D^{\prime}

If destination co-ordinates are on same data card,
3 Enter identification letter corresponding to destination co-ordinates, and continue at step 6 A-2nd D^{\prime}

If destination co-ordinates are on a different data card,
4 Load second data card
5 Enter identification letter corresponding to destination co-ordinates

A-2nd D^{\prime}
6 Load program—both sides
7 Enter expected set of current, even if 0 DDD.d A
8 Enter expected drift of current, even if 0 knots A
9 Enter expected vessel speed, and continue at step 34 knots B

If only start co-ordinates are on a data card, proceed as follows (steps 10-17):
10 Load data card
11 Enter identification letter corresponding to start co-ordinates

A-2nd D^{\prime}
12 Load program—both sides
13 Enter expected set of current, even if 0 DDD.d A

Step	Procedure	Input Data/Units	Keys	Output Data/Units
14	Enter expected drift of current, even if 0	knots	A	
15	Enter expected vessel speed	knots	B	
16	Enter destination latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	D	
17	Enter destination longitude $(+\mathrm{W},-\mathrm{E})$, and continue at step 34	DD.MMSS	D	
	If only destination co-ordinates are on a data card, proceed as follows (steps 1826):			
18	Load program—both sides			
19	Enter expected set of current, even if 0	DDD.d	A	
20	Enter expected drift of current, even if 0	knots	A	
21	Enter expected vessel speed	knots	B	
22	Enter start latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	C	
23	Enter start longitude ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	C	
24	Load data card			
25	Enter identification letter corresponding to destination co-ordinates		A-2nd D^{\prime}	
26	Load program—both sides—and continue at step 34			
	If neither start nor destination co-ordinates are on data cards, proceed as follows (steps 27-39):			
27	Enter expected set of current, even if 0	DDD.d	A	
28	Enter expected drift of current, even if 0	knots	A	
29	Enter expected vessel speed	knots	B	
30	Enter start latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	C	
31	Enter start longitude ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	C	
32	Enter destination latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	D	
33	Enter destination longitude ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	D	
34	Calculate and display true course to steer		2nd A^{\prime}	DDD.d
35	Enter variation $(+E,-W)$, even if 0 , Display magnetic course to steer	DD.d	2nd B^{\prime}	DDD.d
36	Enter deviation $(+E,-W)$, even if 0 , Display compass course to steer**	DD.d	2nd B^{\prime}	DDD.d
37	Calculate and display time required to reach destination		2nd C^{\prime}	H.MS
38	Calculate and display true course made good		2nd D'	DDD.d
39	Calculate and display distance made good		2nd E'	naut. mi.

2.4.7 Estimated Position and Tracking Routine 2.20 (for chart factor) and routine 2.21 (for mid-latitude) can be used to calculate a single estimated position for a preselected time, and also to provide continuous real-time tracking of estimated position. On the HP-67, an updated display of position, in the form of distance and bearing to the destination, appears at intervals of about twenty-four seconds. On the HP-97, a printout at approximately thirteensecond intervals provides the same information. This real-time position display is not available in the SR-52; however, a series of estimated positions can be calculated by means of routine 2.23 .

2.4.8. Calculating a Single Estimated Position on the HP-67 and

HP-97 When routine 2.20 is to be used, the necessary data may be retained after the completion of routine 2.17 , or the co-ordinates may be entered by means of the Fixing routine (2.24), with the "first object" serving as the equivalent of the starting position and the "second object" as the equivalent of the destination. If the co-ordinates are entered manually, variation and chart factor must also be entered, as shown in this routine. When routine 2.21 (mid-latitude) is to be used for calculating an estimated position, the necessary data may be retained after the completion of routine 2.18 , or the co-ordinates may be entered by means of routine 2.25 . Destination co-ordinates are required because the estimated position may be expressed not only in terms of the latitude and longitude which will be reached at the time selected, but also in terms of the distance and bearing to the destination at that time. The more conventional way of describing the result of an estimated-position calculation is in the form of latitude and longitude, but in some instances, the result in the form of distance and bearing may be more convenient, so both are provided. It is also possible to calculate estimated distance and bearing to the starting position. To obtain this result, one need only re-enter the start coordinates in the steps calling for the destination co-ordinates.

The "EP" key (B in these routines) disables the continuous real-time tracking mechanism when a single estimated position is desired. Thus, step 7 in routine 2.20 or routine 2.21 is performed when no tracking is needed, and steps $8-12$ then provide the desired result.

Routine 2.20 (HP-67/97)

TRACKING AND ESTIMATED POSITION (CHART FACTOR)

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

If this routine is to be used directly following completion of routine 2.17 , steps $1-$ 31 or 1-33, load program (step 2, below) and continue at step 7 or step 13. If data has not been retained from routine 2.17, proceed as follows:
1 Enter co-ordinates, deviation, variation, and chart factor by means of routine 2.24, steps $1-25$; for calculation of distance and bearing to starting position (first object), re-enter co-ordinates of start in the steps calling for co-ordinates of destination (second object)
2 Load program—both sides
3 Enter compass course*
4 Enter vessel speed
5 Enter set of current, even if 0
6 Enter drift of current, even if 0
Estimated Position
7 After completion of steps 1-6, as appropriate, set EP

DDD.d	A
knots	A
DDD.d	A
knots	A

Enter time of start of run
9 Enter time of end of run
10 Calculate and display distance to destination at end of run,

- True bearing to destination at end of run

11 If required, calculate and display latitude at end of run

E \pm DD.MMSS
12 Calculate and display longitude at end of run

Tracking
13 After completion of steps 1-6, as appropriate, enter time of start (at least 30 seconds later than present time)
f c

Step \begin{tabular}{ccc}

Procedure \& | Input |
| :---: |
| DatalUnits | \& Keys

Output

DatalUnits
\end{tabular}

14 When selected time is reached, start calculation, and repeatedly display distance to destination,
naut. mi.

- True bearing to destination,

DDD.d

- Time of displayed position
H.MS

To eliminate timing errors, proceed as follows (steps 15-18):
15 Allow tracking to continue for 3-5 minutes; then, if time displayed is in error by more than a few seconds, stop calculator, during a pause for display of time on the HP-67, or while time is being printed on the HP-97

D
16 Enter watch time at which calculator was stopped; this entry automatically corrects timing error
H.MS fd

17 Select time of restart (at least 30 seconds later)
H.MS
f c
18 When selected time is reached, restart calculation

C

For multiple courses or speeds, or changes in set or drift, stop calculator, as described in steps 15-16, and proceed as follows (steps 19-26):
19 If variation has changed, enter variation ($+\mathrm{E},-\mathrm{W}$)

DD.d
STO E
20 If deviation has changed, enter deviation ($+\mathrm{E},-\mathrm{W}$)

DD.d
STO C
21 Enter compass course*
DDD.d
A
22 Enter speed
knots
A
23 Enter set of current, even if 0
DDD.d
A
24 Enter drift of current, even if 0 knots

A

When any one of the values listed in the preceding four steps has changed, all four must be re-entered.
25 Select time of restart (at least 30 seconds later) H.MS fc
26 When selected time is reached, restart calculation

C
For use of the tracking program in the calculation of set and drift, see routine 2.24, steps 64-81.

If destination is to be changed, stop calculator, as described in steps 15-16, and proceed as follows (steps 27-31):
*Correct for leeway; see table 2.2.

$\begin{array}{llll}\text { Step }\end{array}$| Procedure | $\begin{array}{c}\text { Input } \\ \text { Data/Units }\end{array}$ | Keys |
| :---: | :---: | :---: | \(\left.\begin{array}{c}\begin{array}{c}Output

Data/Units\end{array}

\hline 27\end{array} $$
\begin{array}{l}\text { Calculate and display distance to original } \\
\text { destination, }\end{array}
$$\right)\)

Routine 2.21 (HP-67/97)

TRACKING AND ESTIMATED POSITION (MID-LATITUDE)
input
Output

Step \begin{tabular}{cccc}

Procedure \& \begin{tabular}{c}
Input

Data/Units

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

If this routine is to be used directly following completion of routine 2.18 , steps 1 30 or 1-32, load program (step 2, below) and continue at step 7 or step 13. If data has not been retained from routine 2.18, proceed as follows:
1 Enter co-ordinates, deviation, and variation by means of routine 2.25, steps 1-24; for calculation of distance and bearing to starting position (first object), re-enter co-ordinates of start in the steps calling for destination (second object)
2 Load program—both sides
3 Enter compass course* DDD.d A
4 Enter vessel speed
5 Enter set of current, even if 0
6 Enter drift of current, even if 0

knots	A
DDD.d	A
knots	A

Estimated Position
7 After completion of steps 1-6, as appropriate, set EP

B
8 Enter time of start of run
9 Enter time of end of run
H.MS
f c
H.MS fd

10 Calculate and display distance to destination at end of run,

- True bearing to destination at end of run

E naut. mi.
DDD.d
11 If required, calculate and display latitude at end of run

E \pm DD.MMSS
12 Calculate and display longitude at end of run

Tracking
13 After completion of steps 1-6, as appropriate, enter time of start (at least 30 seconds later than present time)
H.MS fc
*Correct for leeway; see table 2.2.

14 When selected time is reached, start calculation, and repeatedly display distance to destination,

- True bearing to destination,

C naut. mi.

- Time of displayed position

To eliminate timing errors, proceed as follows (steps 15-18):
15 Allow tracking to continue for 3-5 minutes; then, if time displayed is in error by more than a few seconds, stop calculator, during a pause for display of time on the HP-67, or while time is being printed on the HP-97

D
16 Enter watch time at which calculator was stopped; this entry automatically corrects timing error
H.MS
f d
17 Select time of restart (at least 30 seconds later)
H.MS
f c
18 When selected time is reached, restart calculation

C
For multiple courses or speeds, or changes in set or drift, stop calculator, as described in steps 15-16, and proceed as follows (steps 19-26):
19 If variation has changed, enter variation ($+\mathrm{E},-\mathrm{W}$)
DD.d STO E

20 If deviation has changed, enter deviation ($+\mathrm{E},-\mathrm{W}$)

DD.d STO C
21 Enter compass course*
22 Enter speed
23 Enter set of current, even if 0
24 Enter drift of current, even if 0
DDD.d
A
knots A
DDD.d A
knots A
When any one of the values listed in the preceding four steps has changed, all four must be re-entered.
25 Select time of restart (at least 30 seconds later)
H.MS foc

26 When selected time is reached, restart calculation

C
For the use of the tracking program in the calculation of set and drift, see routine 2.25, steps 62-81.

If destination is to be changed, stop calculator, as described in steps 15-16, and proceed as follows (steps 27-31):
27 Calculate and display distance to original destination,

E naut. mi.

- True bearing to original destination

DDD.d

Step	Procedure	Input Data/Units	Keys	Output Data/Units
28	Calculate and display latitude of present position		E	\pm DD.MMSS
29	Calculate and display longitude of present position		E	\pm DD.MMSS
	These co-ordinates are automatically stored for use in planning.			
30	Load planning program, as used in routine 2.18, and perform steps 1-30, as necessary, to enter new destination and complete new plan			
31	Reload tracking program, and resume tracking at step 13			

EPQ 083101

2.32. Estimated Position (Latitude and Longitude)

Figure 2.32 illustrates the use of the HP-67 and HP-97 for the calculation of estimated position. This example should be worked out by the reader to test whether he has properly recorded the program for this operation.

A routine for the convenient calculation of a series of estimated positions on a longer journey with several legs is discussed in section 2.4.13.
2.4.9 Calculating Current on the HP-67 and HP-97 When the starting position of a run is known, and a position fix is obtained at some time after the start, it is possible to calculate current by comparing the actual course made good and speed made good with the vessel's heading and speed through the water. The necessary vector subtraction is done by the calculator, and the answer is displayed as set and drift.

The procedure followed is another example of the integration among programs that is possible with the HP-67 and HP-97. For chart-factor calculations, the sequence begins with the use of routine 2.24 to obtain a fix on two objects. The resulting position is left in the calculator, and after the entry of start co-ordinates, the tracking and estimated-position program of routine 2.20 is loaded, and steps 72-77 of routine 2.24 are performed, with set and drift automatically set to zero, and with Tstart and Tstop representing the start of the run and the time of the fix. Completion of steps 78-80 then results in display of the set and drift of the current acting on the vessel during the run. The illustration of current calculation given in figure 2.38 (in connection with routine 2.24) can be used for testing these operations.

An almost identical procedure is possible when the mid-latitude method of calculation is employed. The fix on two objects is obtained by means of routine 2.25, and after the entry of start co-ordinates, the program of routine 2.21 is loaded. The procedure does differ in one respect from the chart-factor version previously described. Set and drift are not automatically set to zero when vessel speed is entered; instead, this is done in steps 72-73 of routine 2.25. Steps $74-77$ are then performed, and completion of steps 78-80 once again results in display of the set and drift of the current.

2.4.10 Tracking (Chart Factor) on the HP-67 and HP-97 Routine 2.20

 can be used to calculate and display estimated position repeatedly, taking into account the influence of any known current, and thereby tracking the position of the vessel as it moves through the water.Each time the calculation of estimated position is performed, the result is displayed or printed, and the calculation is then repeated from the updated position. The time interval required to complete one cycle of calculation is approximately twenty-four seconds in the HP-67, and thirteen seconds in the HP-97.

Clearly, correct timing is needed for position tracking. Unfortunately, however, timing precision of a high order is not a prerequisite for accurate performance in a calculator, so adjustments may be required when tracking is begun.

The method for making these adjustments, shown in routine 2.20, is the equivalent of the method previously described in routine 2.5 . At step 13, the time of start-perhaps thirty seconds ahead of the present time-is entered, and f © are pressed. Once the display has stopped fluctuating, Tstart is visible. When watch time is the same as Tstart, C is pressed (step 14), and the tracking calculation begins. After about eight to twelve cycles of calculation, the displayed time is compared to watch time. If-as is likely-these are
substantially different, calculation is stopped by pressing D while time is being displayed; next, the watch time at which that key was pressed is entered, as Tstop, and f d are pressed.

With completion of this sequence, the timing of the calculator is changed, so that it will be more nearly correct when the routine is resumed, and the position error due to incorrect timing is eliminated.

Restarting the tracking routine essentially requires repetition of steps 13 and 14, with a time in the near future entered, and C pressed when that time has been reached to restart calculation. After a few cycles, displayed time and watch time should be compared; they should now correspond closely. It should be understood that if the calculator's timing is still not absolutely precise, the position displayed will be correct for the time displayed, rather than for the actual time at that moment.

Data	
Start	$\begin{aligned} & 41^{\circ} 04^{\prime} 00^{\prime \prime} \mathrm{N} \\ & 72^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{W} \end{aligned}$
Dest	$\begin{aligned} & 41^{\circ} 05^{\prime} 00^{\prime \prime} \mathrm{N} \\ & 72^{\circ} 14^{\prime} 45^{\prime \prime} \mathrm{W} \end{aligned}$
De	0
Var	-13.5 ${ }^{\circ}(\mathrm{W})$
Im	0.7567
Cc	$326.2{ }^{\circ}$
S	5.0kts
St	97°
Dr	1.9kts
Tstart	081200

Display
$\left.\begin{array}{lll}\hline \text { Distance } & \begin{array}{l}\text { True } \\ \text { Bearing }\end{array} & \text { Time } \\ \hline 1.1 \mathrm{~nm} & \begin{array}{l}330.4^{\circ} \\ 1.1\end{array} & \begin{array}{l}081316 \\ 1.0\end{array} \\ 033.4 & 081328\end{array}\right\}$ 12 seconds

083216
2.33. Tracking (Latitude and Longitude)

The accuracy of the displayed position also depends, of course, on the correctness of the input data concerning course, speed, and set and drift of current. What is calculated is the best estimate of position, based upon the navigator's knowledge of these factors.

As in routine 2.5, a permanent change in the recorded value of loop time can be made, by the method shown in the section on customized programs in the Appendix. Even when this has been done, however, the correctness of the loop time should be checked whenever the routine is used.

Figure 2.33 illustrates the operation of the tracking routine. After the calculator had run for several minutes, it was stopped and reset for proper timing, and the assumed length of the interval between successive displays changed from twelve seconds to thirteen seconds. The latter figure was nearly correct for that particular calculator; after it had run for the next fifteen minutes, the apparent timing error was only six seconds.

In this illustration, the value for distance appears to remain constant for several successive displays; this is the result of setting the decimal point to only one place, for tenth-of-a-mile increments. Since at the speed made good involved in the example (less than 4 knots), it takes approximately one minute and thirty seconds to move one-tenth of a mile, the display necessarily shows no change during some of the shorter intervals listed. This effect could be eliminated by programming the display to show distance to two decimal places.

The bearing shows virtually no change because the course being steered (326.2°) has been correctly chosen for reaching the destination in the existing current. A small error in heading becomes apparent when the destination has nearly been reached; there the bearing begins to shift. When the track is continued beyond the destination, the bearings in the display shift by 180 degrees, and the distance begins to increase, as shown in the final row of data in figure 2.33.

Routine 2.20 includes the means to change the values for any of the factors that affect estimated position. It is only necessary that tracking be stopped (by pressing D) while time is being displayed, and that the watch time at that moment be inserted at once as Tstop-that is, the time is entered, and ff d are pressed. New values for variation and deviation, and for vessel course, vessel speed, and set and drift of current can then be entered as necessary. (If any one of these last four is changed, all of them must be re-entered.) The calculator is then restarted exactly as previously described, and the display incorporates the effects of the new motion.

If the destination is to be changed, the calculator is stopped, as previously described, and after the entry of Tstop, E is pressed three times. Pressing this key the first time results in display of the distance and bearing to the original destination; pressing it a second time displays the latitude of the present position; and pressing it a third time, the longitude. This operation also positions these co-ordinates in the calculator's storage, for use in calculating a plan to reach the new destination. Next, the planning program card is inserted, and

PLANNING

Data	
Start	Card 3, Object 0
First Dest	$41^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$
	$72^{\circ} 11^{\circ} 30^{\prime \prime} \mathrm{W}$
Var	$-13.5^{\circ}(\mathrm{W})$
Im	0.7567
S	5.0 kts
St	80°
Dr	1.0 kt
Tstart	080000
Cm	$56.7^{\circ}[$ calculated
De	0

Calculated Results
Cc 56.7°
Tend 082555
DMG 2.52 nm
CMG $49.09^{\circ} \mathrm{T}$

TRACKING AND ESTIMATED POSITION

Distance	True Bearing	Time	Latitude	Longitude
2.3 nm	49.1°	080202		
1.3	49.1	081239		
0.3	49.1	082226		
0.2	49.0	082340	$41^{\circ} 04^{\prime} 51^{\prime \prime} \mathrm{N}$	$72^{\circ} 11^{\prime} 43^{\prime \prime} \mathrm{W}$

PLANNING

Data		Calculated Results	
Second Dest	Card 3, Object 2	Cc	197.3
S	5.0 kts	Tend 084918	
St	100°	DMG	2.22 nm
Dr	1.0 kt	CMG	$172.8^{\circ} \mathrm{T}$
Tstart	082340		
Cm	197.3°		
De	0		

[^5]in accordance with steps $1-31$ (as necessary) of routine 2.17 , the new destination co-ordinates and other required data are entered, and a plan for reaching the new destination is obtained. Then the tracking program card is inserted once again, and tracking is resumed, as specified in the instructions of routine 2.20 .

The combination of planning and tracking is illustrated in Figure 2.34. In this case, the vessel's starting point is at a latitude of $41^{\circ} 03^{\prime} 21^{\prime \prime} \mathrm{N}$ and a longitude of $72^{\circ} 14^{\prime} 01^{\prime \prime} \mathrm{W}$; these co-ordinates have been prerecorded as object 0 on card 3. Once the planning program card and data card 3 have been inserted, simply pressing 0 enters the starting co-ordinates. The destination co-ordinates and other necessary data are entered manually, according to the instructions in routine 2.17. Next, with the planning program still in place, entry of vessel speed, set and drift of current, and starting time (080000) results in the display of a compass course of 56.7° and a time of arrival of 08 2555.

Now the tracking program is entered; the values for compass course, speed, and set and drift are retained from the preceding operations, and need not be re-entered. The starting time is entered at f [c), and when that time is reached, \mathbf{C} is pressed, and tracking commences. A few representative values of distance, bearing, and time are shown in the figure, typical of the displays on the calculator during the tracking of estimated position.

When 082340 is reached, the tracking is stopped, and by means of steps $27-29$, the vessel's location at that time ($41^{\circ} 04^{\prime} 51^{\prime \prime} \mathrm{N}, 72^{\circ} 11^{\prime} 43^{\prime \prime} \mathrm{W}$) is displayed and positioned in the calculator for use in the planning for the new destination $\left(41^{\circ} 02^{\prime} 39^{\prime \prime} \mathrm{N}, 72^{\circ} 11^{\prime} 21^{\prime \prime} \mathrm{W}\right.$, which in this instance is object 2 on card 3). The new compass course turns out to be 197.3°, and the expected time of arrival is 084918 .

Some time will of course be lost during the calculation of the new plan and the maneuvering onto the new course, and this lost time can be taken into account in routine 2.20. For this purpose, the estimated-position portion of the routine (steps 7-12) is used to determine the position of the vessel on the old heading at a time a few minutes in the future. The plan is then calculated from that future position.
If the example in figure 2.34 is altered by assuming that because of the time required to calculate the new plan, the actual change to the new course will occur at 082500 , the estimated position at that time turns out to be $41^{\circ} 04^{\prime}$ $56^{\prime \prime} \mathrm{N}, 72^{\circ} 11^{\prime} 35^{\prime \prime} \mathrm{W}$. This is obtained by pressing B (step 7) and setting Tstart at 082340 and Tstop at 082500 . Then, pressing E three times results in calculation of the anticipated position and placement of its latitude and longitude in the calculator's memory, for use in planning, in routine 2.17. The new course to steer, starting from the vessel's position at 082500 , turns out to be 200.1°, and the predicted arrival time is 085145.
2.4.11 Tracking (Mid-latitude) on the HP-67 and HP-97 Routine 2.21, for mid-latitude tracking and estimated position, has been written for use on long-distance journeys, when chart-factor calculations are not appropriate. The starting and destination co-ordinates may be obtained from the midlatitude Fixing routine (2.25), or all of the initial data, including course, speed, set, and drift, may be retained from steps 1-30 of the Planning routine (2.18).
The instructions for using this routine for tracking are virtually identical with those for routine 2.20 . The method of making a permanent change in the recorded loop time is shown in the Appendix.
Use of the mid-latitude routines with the data supplied in figure 2.33 will yield answers slightly different from those listed in the figure. However, these discrepancies have no practical significance.
2.4.12 Nonprint Tracking on the HP-97 To conserve paper and extend battery life on a long journey, the programs for chart-factor and mid-latitude tracking on the HP-97 can be modified to eliminate the printing of every calculated distance, bearing, and time. This is accomplished, once the programs have been loaded, by replacing the "Print" instructions with "Pause" instructions, and changing the "Stop" key, as shown in the section on nonprint operation in the Appendix.

2.4.13 Estimated Position (Mid-latitude) on the HP-67 and HP-97 An

 additional estimated-position program for the HP-67 and HP-97 permits easy and rapid calculation of successive estimated positions for a run or journey that has a number of changes in course, speed, set, or drift. Values for course made good and speed made good, which are required in the Sight Reduction routines in chapter 4, can also be displayed. Routine 2.22 (for mid-latitude calculations only) provides the instructions for this program, and figure 2.35 illustrates its use.If the distances and bearings obtained as answers in this routine are to be displayed relative to the starting position of the vessel, the latitude and longitude of the destination should be set equal to those of the start.
2.35. Estimated Position, Multiple Legs (Latitude and Longitude)

START OF LEG

Latitude	Longitude	De	Var	Cc	S	St	Dr	T
$\begin{gathered} 41^{\circ} 05^{\prime} \\ 00^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{gathered} 71^{\circ} 52^{\prime} \\ 00^{\prime \prime} \mathrm{W} \end{gathered}$	$+2^{\circ}(\mathrm{E})$	-13.75° (W)	61°	6.0kts	$250{ }^{\circ}$	1.0kt	081
$\begin{gathered} \left(41^{\circ} 06^{\prime}\right. \\ 29^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 71^{\circ} 50^{\prime} \\ & \left.00^{\prime \prime} \mathrm{W}\right)^{1} \end{aligned}$	$-3^{\circ}(\mathrm{W})$	$-13.75{ }^{\circ}(\mathrm{W})$	26°	6.0	$250{ }^{\circ}$	1.1	08
$\begin{gathered} \left(41^{\circ} 07^{\prime}\right. \\ 58^{\prime \prime} \mathrm{N} \end{gathered}$	$\begin{aligned} & 71^{\circ} 50 \\ & \left.02^{\prime \prime} \mathrm{W}\right)^{1} \end{aligned}$	$-2^{\circ}(W)$	$-13.75^{\circ}(\mathrm{W})$	$285{ }^{\circ}$	6.0	(250 ${ }^{\circ}$	1.1) ${ }^{1}$	084
${ }^{1}$ Because they are unchanged, these values need not be re-entered.								

Routine 2.22 provides no continuous tracking and display of estimated position.
2.4.14 Estimated Position on the SR-52 Routine 2.23 is used for the calculation of estimated position on the SR-52. The calculated true bearing and distance from the starting position to the estimated position of the vessel are also displayed.

A prerecorded data card, prepared in accordance with the instructions of routine 2.16 , may supply the starting latitude and longitude. And in this routine, as in those for the HP-67 and HP-97, the calculated estimated position at the end of one leg can serve without re-entry as the starting point of the next.

The example given in figure 2.35 can be used to test the program; calculated answers should fall within one second of arc of latitude and longitude.

END OF LEG

T2	Latitude	Longitude	Bt (EP to Start)	D (to EP)	Bt (Start to EP)
0825	$41^{\circ} 06^{\prime}$	$71^{\circ} 50^{\prime}$	225.25°	2.12 nm	45.25°
0841	$29^{\prime \prime} \mathrm{N}$	$00^{\prime \prime} \mathrm{W}$			
	$41^{\circ} 07^{\prime}$	$71^{\circ} 50^{\prime}$	206.56°	3.32	26.56°
0901	$58^{\prime \prime} \mathrm{N}$	$02^{\prime \prime} \mathrm{W}$			
	$41^{\circ} \mathrm{N} 7^{\prime}$	$71^{\circ} 53^{\prime}$	163.01°	2.95	343.01°
	$49^{\prime \prime} \mathrm{N}$	$08^{\prime \prime} \mathrm{W}$			

Routine 2.22 (HP-67/97)

Select Start	Select Dest	LaAd	LEP LOEP	DNG CMG SMG
De Var	Ce S	St Dr.	Tstart	Tend

ESTIMATED POSITION (MID-LATITUDE)

inout
5790
Procodure
Data/Units
Outaut

1 Load program-both sides
For calculation of distance and bearing to starting position, re-enter start co-ordinates in the steps calling for destination co-ordinates.

If both start and destination co-ordinates are on data cards, proceed as follows (steps 2-7):
2 Load data card containing start co-ordinates
3 Enter identification number corresponding to start co-ordinates (an even number from 0 to 20) $0-20$ ita If destination co-ordinates are on same data card.
4 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20), and continue at step $7 \quad 0-20$ if

If destination co-ordinates are on a different data card.
5 Load second data card
6 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20) $\quad 0-20$ fb
7 Load start and destination co-ordinates into memory, and continue at step 23
fo
If only start co-ordinates are on a data card. proceed as follows (steps 8-12):
8 Load data card
9 Enter identification number corresponding to start co-ordinates (an even number from 0 to 20) $0-20$ it
10 Enter dostination latitude ($-\mathrm{N},-\mathrm{S}$) DO.MMSS ENTER
11 Enter destination longitude (-W. - E), Du: do not press ENTER DD.MMSS

Step	Procedure	Input Data/Units	Keys	Output Data/Units
12	Load start and destination co-ordinates into memory, and continue at step 23		$f \mathrm{c}$	
	If only destination co-ordinates are on a data card, proceed as follows (steps 1317):			
13	Enter start latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	ENTER	
14	Enter start longitude ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	ENTER	
15	Load data card			
16	Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20)	0-20	fb	
17	Load start and destination co-ordinates into memory, and continue at step 23		$f \mathrm{c}$	
	If neither start nor destination co-ordinates are on data cards, proceed as follows (steps 18-34):			
18	Enter start latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	ENTER	
19	Enter start longitude ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	ENTER	
20	Enter destination latitude ($+\mathrm{N},-\mathrm{S}$)	DDMMSS	ENTER	
21	Enter destination longitude $(+W,-E)$, but do not press ENTER	DD.MMSS		
22	Load start and destination co-ordinates into memory		$f \mathrm{c}$	
23	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	A	
24	Enter variation $(+E,-W)$, even if 0 , if no data card has been used, or if variation is to be different from value on last data card used	DD.d	A	
25	Enter compass course during run or leg*	DDD.d	B	
26	Enter vessel speed during run or leg	knots	B	
27	Enter set of current during run or leg, even if 0	DDD.d	C	
28	Enter drift of current during run or leg, even if 0	knots	C	
29	Enter time of start of run or leg	H.MS	D	
30	Enter time of end of run or leg	H.MS	E	
31	Calculate and display latitude of estimated position at end of run or leg		f d	\pm DD.MMSS
32	Calculate and display longitude of estimated position at end of run or leg		f d	\pm DD.MMSS
33	Calculate and display distance to destination at end of run or leg		$f e$	naut. mi.
34	Calculate and display true bearing to destination at end of run or leg		f e	DDD.d
*Cor	rect for leeway; see table 2.2.			

35 Calculate and display distance made		
good at end of run or leg,	fe naut. mi.	
- Course made good at end of run or leg,		DDD.d
- Speed made good at end of run or leg	knots	

For multiple courses or speeds, or changes in set or drift between estimated positions, steps 23-24, 25-26, and 27-28 are repeated as necessary; deviation and variation, course and speed, and set and drift are handled as pairs-if even one member of the pair changes, both must be re-entered. Steps 29-34 are then repeated for each leg.

Routine 2.23 (SR-52)

BtEP	Distance	LEP	LoEP	Initialize
Time	Var De	St Dr	Cc S	Lstart Lostart

ESTIMATED POSITION (MID-LATITUDE)

Step \begin{tabular}{cccc}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

Before beginning, make sure D/R switch is set to D.
If start co-ordinates are on a data card, proceed as follows (steps 1-2):
1 Load data card
2 Enter identification letter corresponding to start co-ordinates, and continue at step 3 , omitting steps 11-12

A-2nd D^{\prime}
If start co-ordinates are not on a data card, begin at step 3.
3 Load program—both sides
4 Enter time of start of run or leg H.MS A
5 Enter variation ($+E,-W$), even if 0 DD.d B
6 Enter deviation $(+E,-W)$, even if $0 \quad$ DD.d B
7 Enter set of current, even if 0
8 Enter drift of current, even if 0
9 Enter compass course*
10 Enter vessel speed during run or leg
DDD.d
C
knots C
DDD.d D
knots D
11 Enter latitude of start $(+\mathrm{N},-\mathrm{S})$, if not on a data card

DD.MMSS E
12 Enter longitude of start ($+\mathrm{W},-\mathrm{E}$), if not on a data card

DD.MMSS E
13 Enter time of end of run or leg
H.MS

A
14 Calculate and display true bearing from start to estimated position

2nd A' DDD.d
15 Calculate and display distance from start to estimated position

2nd B^{\prime} naut. mi.
16 Calculate and display latitude of estimated position

2nd C' \pm DD.MMSS

17 Calculate and display longitude of estimated position

2nd $D^{\prime} \pm$ DD.MMSS

For multiple courses or speeds, or changes in set or drift between estimated positions, do not initialize between successive legs. Steps 1-4 and 11-12 need not be repeated; the time of end of the preceding leg, already entered at step 13, automatically becomes the time of start of the new leg. Steps 5-6, 7-8, and 9-10 are repeated as necessary; variation and deviation, set and drift, and course and speed are handied as pairs-if even one member of the pair changes, both must be re-entered. Steps 13-17 are then repeated for each leg.
2.4.15 Fixing on the HP-67 and HP-97 Routine 2.24 (for chart factor) provides instructions for obtaining three different forms of position fix with the HP-67 and HP-97: the fix on two objects, the running fix on one object, and the running fix on two objects. Routine 2.25 provides an almost identical set of instructions for calculating positions fixes by the mid-latitude method.

Where possible, prerecorded data cards should be used for entering the positions of the observed objects. The elimination of the need to enter all the digits of latitude and longitude for two positions reduces the chances for inaccuracy and increases convenience. Instructions for preparation of the cards are given in routine 2.15 .

As was noted earlier, the Fixing routine for the HP-67 and HP-97 is integrated with both the Planning and the Tracking routines (2.17 and 2.20 for chart factor, 2.18 and 2.21 for mid-latitude). Positions calculated by means of the Fixing routine may become input data for the other two, with re-entry of calculated results kept to a minimum. Thus, a calculated fix can be the starting point for a new plan-obtained by means of routine 2.17 or 2.18 , as appropri-ate-either to complete a journey, or to determine the course to a changed destination. Or the fix can be the basis for calculating the current (or current plus leeway) acting on the vessel, by means of the program for the tracking routine.

Routine 2.24 (HP-67/97)

Select O1	Select O2	Load O1 \& O2	Select Start	De Var Im
Cc S St Dr	Tstart Tend	Bc1	Bc2	Lfix Lofix D2

FIXING, SET AND DRIFT (CHART FACTOR)

Step \begin{tabular}{ccccc}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

1 Load program—both sides
Fix on Two Objects
After completion of step 1, enter co-ordinates-
If co-ordinates of both objects are on data cards, proceed as follows (steps 2-7):
2 Load data card containing co-ordinates of first object

3 Enter identification number corresponding
to co-ordinates of first object (an even
number from 0 to 20) 0-20 fa
If co-ordinates of second object are on same data card,
4 Enter identification number corresponding to co-ordinates of second object (an even number from 0 to 20), and continue at step $7 \quad 0-20 \quad$ fb

If co-ordinates of second object are on a different card,
5 Load second data card
6 Enter identification number corresponding to co-ordinates of second object (an even number from 0 to 20) 0-20
f b
7 Load co-ordinates of first and second objects into memory, and continue at step 23
f C
If only co-ordinates of first object are on a data card, proceed as follows (steps 8-12):
8 Load data card
9 Enter identification number corresponding to co-ordinates of first object (an even number from 0 to 20) 0-20
f a
Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS
ENTER

11 Enter longitude of second obiect (+ W, $-E)$, but do not press ENTER
12 Load co-ordinates of first and second objects into memory, and continue at step 23

DD.MMSS

If only co-ordinates of second object are on a data card, proceed as follows (steps 13-17):
13 Enter latitude of first object ($+\mathrm{N},-\mathrm{S}$)
DD.MMSS
ENTER
14 Enter longitude of first object ($+\mathrm{W},-\mathrm{E}$) DD.MMSS ENTER
15 Load data card
16 Enter identification number corresponding to second object (an even number from 0 to 20)

0-20
f b
17 Load co-ordinates of first and second objects into memory, and continue at step 23 f c

If co-ordinates of neither first nor second object are on data cards, proceed as follows (steps 18-30):
18 Enter latitude of first object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS ENTER
19 Enter longitude of first object ($+\mathrm{W},-E$) DD.MMSS
ENTER
20 Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS ENTER
21 Enter longitude of second object (+ W, $-E)$, but do not press ENTER

DD.MMSS
22 Load co-ordinates of first and second objects into memory
f c
23 Enter deviation $(+E,-W)$, even if 0 DD.d e
24 Enter variation $(+E,-W)$, even if 0 , if no data card has been used, if variation is to be different from value on last data card used, or if chart factor is to be entered in the following step

DD.d
fe
25 Enter chart factor if no data card has been used or if chart factor is to be different from value on last data card used
26 Enter compass bearing to first object
O.nnnn fe

27 Enter compass bearing to second object DDD.d D
28 Calculate and display latitude of fix
29 Calculate and display longitude of fix
E \pm DD.MMSS
30 Unless fix is to be used in calculation of current in steps 64-80, or in planning (routine 2.17), calculate and display distance from fix to second object
naut. mi.

Step	Procedure	Input Data/Units	Keys
Running Fix on One Object			
After completion of step 1, enter co-ordinates-			
	If co-ordinates of object are on a data card, proceed as follows (steps		
31 Load data card			
32	Enter identification number corresponding to object (an even number from 0 to 20)	0-20	f a
33	Re-enter identification number corresponding to object, and continue at step 38	0-20	f b
If co-ordinates of object are not on a data card, proceed as follows (steps			
34	Enter latitude of object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	ENTER
35	Enter longitude of object ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	ENTER
36	Re-enter latitude of object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	ENTER
37	Re-enter longitude of obiect ($+\mathrm{W},-\mathrm{E}$), but do not press ENTER	DD.MMSS	
38	Load co-ordinates of object into memory		$f \mathrm{c}$
39	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	f e
40	Enter variation $(+E,-W)$, even if 0 , if no data card has been used, if variation is to be different from value on data card, or if chart factor is to be entered in the following step	DD.d	$\mathrm{f}^{\boldsymbol{e}}$
41	Enter chart factor if no data card has been used or if chart factor is to be different from value on data card	O.nnnn	fe
42	Enter compass course during run or leg*	DDD.d	A
43	Enter vessel speed during run or leg	knots	A
44	Enter set of current, even if 0	DDD.d	A
45	Enter drift of current, even if 0	knots	A
46	Enter time of start of run or leg	H.MS	B
47	Enter time of end of run or leg	H.MS	B
48	Enter compass bearing to object at start of run	DDD.d	C

Running Fix on One Object

After completion of step 1, enter co-ordinates-
If co-ordinates of object are on a data card, proceed as follows (steps 31-33):
31 Load data card
32 Enter identification number corresponding to object (an even number from 0 to 20) 0-20 fa

If co-ordinates of object are not on a data card, proceed as follows (steps 34-52):

34 Enter latitude of object ($+\mathrm{N},-\mathrm{S}$)
35 Enter longitude of object ($+\mathrm{W},-\mathrm{E}$)
Re-enter latitude of object ($+\mathrm{N},-\mathrm{S}$)
$37 \mathrm{Re}-\mathrm{enter}$ longitude of obiect ($+\mathrm{W},-\mathrm{E}$), but do not press ENTER

DD.d

42 Enter compass course during run or leg*
43 Enter vessel speed during run or leg
44 Enter set of current, even if 0
45 Enter drift of current, even if 0
46 Enter time of start of run or leg
47 Enter time of end of run or leg
DDD.d

For multiple courses or speeds, or changes in set or drift between bearings, repeat steps 39-47.
49 Enter compass bearing to object at time of end of run, or at end of last leg

DDD.d
D
50 Calculate and display latitude of fix E \pm DD.MMSS
*Correct for leeway; see table 2.2.

71 Load tracking program (as used in
routine 2.20)
72 Enter compass course during run* DDD.d73 Enter vessel speed during run (this stepresults in set and drift being automaticallyset to zero)
knots A
74 Set EPB
75 Enter time of start of run76 Enter time of fix
H.MS fo
77 Calculate and display drift distance,H.MSf d
E naut. mi.
DDD.d
78 Display drift distance
79 Display time interval
80 Calculate and display driftRCL 7 naut. mi.
81 If desired, relocate present position in thememory, for use in the Planning routine(2.17)RCL 2RCL 3
*Correct for leeway; see table 2.2.

Routine 2.25 (HP-67/97)

Select O1	Select O2	Load O1 \& O2	Select Start	De Var
Cc S St Dr	T start Tend	Bc1	Bc2	Lfix Lofix D2

FIXING, SET AND DRIFT (MID-LATITUDE)

Step \begin{tabular}{cccc}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
Fix on Two Objects
After completion of step 1, enter co-ordinates-
If co-ordinates of both objects are on data cards, proceed as follows (steps 2-7):
2 Load data card containing co-ordinates of first object
3 Enter identification number corresponding to co-ordinates of first object (an even number from 0 to 20) 0-20 fa

If co-ordinates of second object are on same data card,
4 Enter identification number corresponding to co-ordinates of second object (an even number from 0 to 20), and continue at step $7 \quad 0-20 \quad$ f b

If co-ordinates of second object are on a different card,
5 Load second data card
6 Enter identification number corresponding to co-ordinates of second object (an even number from 0 to 20) $0-20$ fb
7 Load co-ordinates of first and second objects into memory, and continue at step 23 f c

If only co-ordinates of first object are on a data card, proceed as follows (steps 8 -12):
8 Load data card
9 Enter identification number corresponding to co-ordinates of first object (an even number from 0 to 20) 0-20 fa
10 Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS ENTER

Step	Procedure	Input Data/Units	Keys	Output Data/Units
31	Enter identification number corresponding to object (an even number from 0 to 20)	0-20	f a	
32	Re-enter identification number corresponding to object, and continue at step 37	0-20	$f \mathrm{~b}$	
	If co-ordinates of object are not on a data	card, proceed as follows (steps 33-50):		
33	Enter latitude of object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	ENTER	
34	Enter longitude of object ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	ENTER	
35	Re-enter latitude of object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	ENTER	
36	Re-enter longitude of object $(+\mathrm{W},-\mathrm{E})$, but do not press ENTER	DD.MMSS		
37	Load co-ordinates of object into memory	$f \mathrm{c}$		
38	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.dDD.d	$f e$	
39	Enter variation $(+E,-W)$, even if 0 , if no data card has been been used, or if variation is to be different from value on data card		$f e$	
40	Enter compass course during run or leg*	DDD.d	A	
41	Enter vessel speed during run or leg	knots	A	
42	Enter set of current, even if 0	DDD.d	A	
43	Enter drift of current, even if 0	knots	A	
44	Enter time of start of run or leg	H.MS	B	
45	Enter time of end of run or leg	H.MS	B	
46	Enter compass bearing to object at start of run	DDD.d	C	
	For multiple courses or speeds, or changes in set or drift between bearings, repeat steps 38-45.			
47	Enter compass bearing to object at time of end of run, or at end of last leg	DDD.d	D	
48	Calculate and display latitude of fix		E	\pm DD.MMSS
49	Calculate and display longitude of fix		E	\pm DD.MMSS
50	Calculate and display distance from fix to object		E	naut. mi.
	Running Fix on Two Objects			
51	After completion of steps 1-24, as appropriate, enter compass course during run or leg*	DDD.d	A	

Stop	Procedure	Input DatalUnits	Keys	Output DatalUnits
52	Enter vessel speed during run or leg	knots	A	
53	Enter set of current, even if 0	DDD.d	A	
54	Enter drift of current, even if 0	knots	A	
55	Enter time of start of run or leg	H.MS	B	
56	Enter time of end of run or leg	H.MS	B	
57	Enter compass bearing to first object at start of run	DDD.d	C	
	For multiple courses or speeds, or change in set or drift between bearings, repeat steps 23-24 and 51-56.			
58	Enter compass bearing to second object at end of run, or at end of last leg	DDD.d	D	
59	Calculate and display latitude of fix			\pm DD.MMSS
60	Calculate and display longitude of fix			\pm DD.MMSS
61	Calculate and display distance from fix to second object		E	naut. mi.
Set and Drift				
	This procedure can be used only after completion of a fix on two objects, by means of steps 1-28.			
	If start co-ordinates are on a data card, proceed as follows (steps 62-64):			
62	Load data card			
63	Enter identification number corresponding to start co-ordinates (an even number from 0 to 20)	0-20	f d	
64	Load start co-ordinates into memory, and continue at step 69		$f \mathrm{c}$	
	If start co-ordinates are not on a data card, proceed as follows (steps 65-81):			
65	Enter latitude of start ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	ENTER	
66	Enter longitude of start ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	$R \downarrow R \downarrow$	
67	Load start co-ordinates into memory		$f \mathrm{c}$	
68	Initialize		$\begin{aligned} & 0 f \\ & \mathrm{p} \leftrightarrow \mathrm{~s} \\ & \text { STO } \\ & 9 \dagger \\ & \mathrm{p} \leftrightarrow \mathrm{~s} \end{aligned}$	
69	Load tracking program (as used in routine 2.21)			
70	Enter compass course during run*	DDD.d	A	

Stop	Procedure	Input DatalUnits	Keys	Output DatalUnits
71	Enter vessel speed during run	knots	A	
72	Enter set of current as 0	0	A	
73	Enter drift of current as 0	0	A	
74	Set EP		B	
75	Enter time of start of run	H.MS	$f \mathrm{c}$	
76	Enter time of fix	H.MS	f d	
77	Calculate and display drift distance, Set of current		E	naut. mi. DDD.d
78	Display drift distance		RCL 7	naut. mi.
79	Display time interval		RCL I	H.hh
80	Calculate and display drift		\div	knots
81	If desired, relocate present position in the memory, for use in the Planning routine (2.18)		$\begin{aligned} & \text { RCL } 2 \\ & \text { RCL } 3 \end{aligned}$	

Figure 2.36 shows the use of the Fixing routine when two objects can be observed simultaneously, or nearly so. If desired, the simultaneous values for two observed bearings can be obtained by means of routine 2.6 , for the bearing regression.

In the situation illustrated in the figure, the bearings on two objects of known position are taken at 0812, and the vessel's position is determined by the calculator routine to be $41^{\circ} 04^{\prime} 00^{\prime \prime} \mathrm{N}, 72^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{W}$.

Once a fix has been obtained, the result can be used in planning the course to a new destination.

The co-ordinates of the fix remain in the calculator while the planning program (for routine 2.17 or 2.18) is loaded-but only if one has not pressed E for a third time (step 30 of routine 2.24, or step 29 of routine 2.25) to obtain distance off the second object at the fix. Doing so would remove the fix co-ordinates from the memory, making subsequent integration with the Planning routine impossible.

Under the conditions specified, the co-ordinates of the fix become the start co-ordinates for the Planning routine. The destination co-ordinates are then entered either by use of a prerecorded data card or manually, as in steps $16-17$ or $20-22$ of routines 2.17 and 2.18. Variation, if not changed, does not have to be re-entered. Vessel speed and set and drift are entered, along with the time of the fix (now serving as Tstart). The remaining steps of the Planning routine are then followed.

2.37. Fix on Two Objects and Plan to New Destination (Latitude and Longitude)

Figure 2.37 illustrates the combined use of the Fixing and Planning routines. The fix on two objects is as shown in the preceding figure. The fix point becomes the new starting position when it is reached by the vessel at 0812. The new destination is object 2 on data card 3, a buoy at latitude $41^{\circ} 02^{\prime} 39^{\prime \prime} \mathrm{N}$, longitude $72^{\circ} 11^{\prime} 21^{\prime \prime} \mathrm{W}$.

The employment of the Fixing routines in conjunction with other routines for the calculation of current (also discussed in section 2.4.9) is illustrated by figure 2.38. Since the vessel started northward at 0800 from a known position -object 8 on data card $3\left(41^{\circ} 03^{\prime} 04^{\prime \prime} \mathrm{N}, 72^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{W}\right)$-and its 0812 position is now known, course and speed made good can be calculated, and therefore the current that must have been acting on the vessel between 0800 and 0812 can be ascertained.

The instructions for routines 2.24 and 2.25 include the steps to be followed in this calculation of current. For chart-factor calculations, the vessel's starting

Data

Fix	$41^{\circ} 04^{\prime} 00^{\prime \prime} \mathrm{N}$
	$72^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{W}$
Start	Card 3,
	\quad Object 8
Cc	2.4°
S	5.0 kts
Tstart	0800
Tfix	0812

Calculated Results

Dr Dist	0.4 nm
St	97°
Dr	1.9 kts

2.38. Set and Drift (Latitude and Longitude)
position is entered by means of steps 64-70 (as appropriate) of routine 2.24; the calculator's memory already contains the co-ordinates of the fix. Next, as described in section 2.4.9, the tracking program of routine 2.20 is loaded (step 71), and steps $72-80$ of routine 2.24 are performed, yielding the values of set and drift. For mid-latitude calculations, the corresponding operations in routine 2.25 are listed in steps 62-80.

Once the set and drift of current have been calculated, they can be used as input to the Planning routine (2.17 or 2.18 , as appropriate) if a revised course to the destination is to be calculated, perhaps because it is evident that the current has shifted the vessel off the desired track. Among the items of input required are the vessel's present position and its destination. The present position is still in the calculator's memory, but not exactly in the right location for the Planning routine. This can be corrected by pressing $\mathrm{RCL}, 2$ and RCL 3. Then the planning program is re-inserted and the destination is entered, either from a prerecorded data card or manually, as indicated in steps $15-17$ and 20-22 of routine 2.17 or 2.18. Speed, set, and drift must be entered at A (steps 25-27 of routine 2.17 or steps $24-26$ of routine 2.18); set and drift are not in the memory following the current calculations described above.

If it is inconvenient to integrate these programs, the Planning routine can be used by itself, but it will then be necessary to re-enter the co-ordinates of the vessel's position fix as the start of the new leg.

2.39. Running Fix on One Object (Latitude and Longitude)

Figure 2.39 illustrates the running fix on one object. In this instance, only one object is observed, and the vessel is in motion between two successive bearings.

Since there is just one object, its co-ordinates are entered twice, either manually, as shown in the instructions of steps 34-37 of routine 2.24, or from a prerecorded data card, as shown in the instructions of steps 31-33 (that is, f a will be pressed for the first entry and $f b$ for the second). For routine 2.25 , the corresponding steps are $33-36$ and $30-32$. If no data card is employed, the variation and chart factor must be entered manually, at step 40 and step 41 of routine 2.24; variation must be entered at step 39 of routine 2.25 .

Because the vessel is not stationary this time, the input data includes not only deviation and variation (both entered at $f(e)$), but also course and speed, the set and drift of the current, if any (all entered at A]), and the time of start and time of end of the leg or run (entered at [B]). All of these can be re-entered whenever necessary. As always, if any one of the values entered at A is changed, the other three must be re-entered as well, along with the time of start and time of end for the particular leg of the run.

Figure 2.40 illustrates the situation in which bearings on two different objects are obtained, with the vessel having moved during the time between the two observations. As was shown in section 2.2.6, when this time interval
is substantial-say, a few minutes-an error in the calculated fix can result unless the vessel's movement is taken into account.

The co-ordinates for the sighted objects may be entered manually, or taken from prerecorded data cards, or both. Manual entry of variation and chart factor are required if prerecorded cards are not used. As in the running fix on one object, changes in course, speed, set and drift of current, and deviation and variation, can be accommodated, and the same cautions with respect to the re-entry of altered values apply: if any one of the values entered at A changes, the other three must also be re-entered, along with the time of start and time of end for the particular leg of the run.

If the regression method of routine 2.6 is employed, two bearing-time pairs are obtained from two separate regression calculations. The bearing angles, with their associated times (which serve as Tstart and Tend), are entered at steps $57-60$ of routine 2.24 or steps $55-58$ of routine 2.25 .

2.4.16 Fixing on the SR-52 Routine 2.26 (for chart factor) and routine 2.27 (for mid-latitude) provide instructions for using the SR-52 to obtain position fixes by taking bearings on one or two objects whose latitude and longitude co-ordinates are known. Prerecorded data, stored on magnetic cards in accordance with the instructions of routine 2.16, can be employed. Since the cards for the SR-52, unlike those for the HP-67 and HP-97, do not store compass variation, this value must in every case be added manually.

The routines can accommodate changes in variation, deviation, course, speed, and set and drift.

If smoothed values for the bearing angles are obtained by means of routine 2.7, for the bearing regression, they can be entered, along with the corresponding values of time, at steps 46-47 and 50-51 or 75-76 and 79-80 in routine 2.26, or at the equivalent steps in routine 2.27.

For the calculation of current, the most recent position is obtained from a simultaneous fix on two objects, by means of routine 2.26 or 2.27 . This information is then used as input in routine 2.28 for the calculation of the course made good and speed made good between the two fixes, and these answers are then used in routine 2.14 for the calculation of set and drift.

The reader can test the correctness of his recording of the programs involved by employing the routines to solve the problems shown in figures 2.36 and 2.38-2.40 and comparing his answers with those supplied in the figures.

Routine 2.26 (SR-52)

FIXING (CHART FACTOR)

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

Before beginning, make sure D/R switch is set to D .
Fix on Two Objects
If co-ordinates of both objects are on data cards, proceed as follows (steps 113):

1 Clear memories
2nd
CMs
CLR
2 Load data card containing co-ordinates of first object
3 Enter identification letter corresponding to first object

A-2nd D^{\prime}
If co-ordinates of second object are on same data card,
4 Enter identification letter corresponding to second object, and continue at step 7

A-2nd D^{\prime}
If co-ordinates of second object are on a different data card,
5 Load second data card
6 Enter identification letter corresponding to second object

A-2nd D^{\prime}
7 Load program—both sides
8 Enter variation $(+E,-W)$, even if $0 \quad$ DD.d 2nd A^{\prime}
9 Enter deviation $(+E,-W)$, even if 0
DD.d
2nd A^{\prime}
10 Enter compass bearing to first object
DDD.d
B
11 Enter compass bearing to second object
DDD.d
B
12 Calculate and display latitude of fix
13 Calculate and display longitude of fix

D \pm DD.MMSS
E \pm DD.MMSS

If only co-ordinates of first object are on a data card, proceed as follows (steps 14-18):

14 Perform steps 1-3 and 7-11
15 Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
16 Enter longitude of second object (+W ,
-E)
DD.MMSS
C
17 Calculate and display latitude of fix
D \pm DD.MMSS
18 Calculate and display longitude of fix

E \pm DD.MMSS If only co-ordinates of second object are on a data card, proceed as follows (steps 19-26):
19 Perform steps 1 and 7-11
20 Enter latitude of first object $(+N,-S) \quad$ DD.MMSS $\quad C$
21 Enter longitude of first object (+W,-E) DD.MMSS C
22 Load data card containing co-ordinates of second object
23 Enter identification letter corresponding to second object

A-2nd D'
24 Reload program—both sides
25 Calculate and display latitude of fix D \pm DD.MMSS
26 Calculate and display longitude of fix
E \pm DD.MMSS If co-ordinates of neither first nor second object are on data cards, proceed as follows (steps 27-34):
27 Perform steps 1 and 7-11
28 Enter chart factor 0.nnnn 2nd E'
29 Enter latitude of first object $(+N,-S) \quad$ DD.MMSS \quad C
30 Enter longitude of first object ($+\mathrm{W},-\mathrm{E}$) DD.MMSS C
31 Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
32 Enter longitude of second object (+W , -E)

DD.MMSS C
33 Calculate and display latitude of fix
D \pm DD.MMSS
34 Calculate and display longitude of fix
E \pm DD.MMSS
Running Fix on One Object
If co-ordinates of object are on a data card, proceed as follows (steps 35-53):

35 Clear memories
2nd
CMs
CLR
36 Load data card

Step	Procedure	Input Data/Units	Keys
37	Enter identification letter corresponding to object		A-2nd D^{\prime}
38	Re-enter identification letter corresponding to object		A-2nd D^{\prime}
39	Load program-both sides		
40	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	2nd A^{\prime}
41	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	2nd A^{\prime}
42	Enter set of current, even if 0	DDD.d	2nd B^{\prime}
43	Enter drift of current, even if 0	knots	2nd B^{\prime}
44	Enter compass course during run or leg^{*}	DDD.d	2nd C^{\prime}
45	Enter vessel speed during run or leg	knots	2nd C^{\prime}
46	Enter compass bearing to object at start of run	DDD.d	B
47	Enter time of first bearing	H.MS	A

For multiple courses or speeds, or changes in set or drift between bearings, proceed as follows (steps 48-49):
$48 \begin{aligned} & \text { Enter time of end of preceding leg-i.e., H.MS A } \\ & \text { time of change(s) }\end{aligned}$
49 Clear display, then repeat steps 40-41 even if variation and deviation are unchanged, and repeat as necessary steps 42-43 and 44-45; set and drift, and course and speed, are handled as pairs-if even one member of the pair changes, both must be re-entered CLR
50 Enter time of end of run
H.MS A

51 Enter compass bearing to object at end of run

DDD.d B
52 Calculate and display latitude of fix
D \pm DD.MMSS
53 Calculate and display longitude of fix
E \pm DD.MMSS
If co-ordinates of object are not on a data card, proceed as follows (steps 54-61):
54 Perform steps 35 and 39-51
55 Enter chart factor
56 Enter latitude of object ($+\mathrm{N},-\mathrm{S}$)
0.nnnn 2nd E'

57 Enter longitude of object ($+\mathrm{W},-\mathrm{E}$)
DD.MMSS C

58 Re-enter latitude of object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
59 Re-enter longitude of object ($+\mathrm{W},-E$) DD.MMSS C
60 Calculate and display latitude of fix D \pm DD.MMSS
61 Calculate and display longitude of fix E E \pm DD.MMSS

[^6]
Running Fix on Two Objects

If co-ordinates of both objects are on data cards, proceed as follows (steps 6282):

62	Clear memories		2nd CMs CLR
63	Load data card containing co-ordinates of first object		
64	Enter identification letter corresponding to first object		A-2nd D^{\prime}
	If co-ordinates of second object are on same data card,		
65	Enter identification letter corresponding to second object, and continue at step 68		A-2nd D^{\prime}
	If co-ordinates of second object are on a different data card,		
66	Load second data card		
67	Enter identification letter corresponding to second object		A-2nd D^{\prime}
68	Load program—both sides		
69	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	2nd A^{\prime}
70	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	2nd A^{\prime}
71	Enter set of current, even if 0	DDD.d	2nd B^{\prime}
72	Enter drift of current, even if 0	knots	2nd B'
73	Enter compass course during run or leg*	DDD.d	2nd C^{\prime}
74	Enter vessel speed during run or leg	knots	2nd C^{\prime}
75	Enter compass bearing to first object at start of run	DDD.d	B
76	Enter time of first bearing	H.MS	A

For multiple courses or speeds, or changes in set or drift between bearings, proceed as follows (steps 77-78):
77 Enter time of end of preceding leg-i.e., H.MS A
78 Clear display, then repeat steps 69-70 even if variation and deviation are unchanged, and repeat as necessary steps 71-72 and 73-74; set and drift, and course and speed, are handled as pairs-if even one member of the pair changes, both must be re-entered

CLR

*Correct for leeway; see table 2.2.

Step	Procedure	Input Data/Units	Keys	Output Data/Units
79	Enter time of end of run	H.MS	A	
80	Enter compass bearing to second object at end of run	DDD.d		B
81	Calculate and display latitude of fix		D	\pm DD.MMSS
82	Calculate and display longitude of fix		E	\pm DD.MMSS
	If only co-ordinates of first object are on a data card, proceed as follows (steps 83-87):			
83	Perform steps 62-64 and 68-80			
84	Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	C	
85	Enter longitude of second object (+W , -E)	DD.MMSS	C	
86	Calculate and display latitude of fix		D	\pm DD.MMSS
87	Calculate and display longitude of fix		E	\pm DD.MMSS
	If only co-ordinates of second object are on a data card, proceed as follows (steps 88-94):			
88	Perform steps 62 and 68			
89	Enter latitude of first object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	C	
90	Enter longitude of first object ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	C	
91	Load data card containing co-ordinates of second object			
92	Enter identification letter corresponding to second object		A-2nd D^{\prime}	
93	Reload program—both sides			
94	Perform steps 69-82			
	If co-ordinates of neither first nor second object are on data cards, proceed as follows (steps 95-102):			
95	Perform steps 62 and 68-80			
96	Enter chart factor	0.nnnn	2nd E'	
97	Enter latitude of first object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	C	
98	Enter longitude of first object ($+\mathrm{W},-\mathrm{E}$)	DD.MMSS	C	
99	Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	C	
100	Enter longitude of second object (+ W, -E)	DD.MMSS	C	
101	Calculate and display latitude of fix		D	\pm DD.MMSS
102	Calculate and display longitude of fix			\pm DD.MMSS

Routine 2.27 (SR-52)

FIXING (MID-LATITUDE)

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

Before beginning, make sure D / R switch is set to D.
Fix on Two Objects
If co-ordinates of both objects are on data cards, proceed as follows (steps 113):

1 Clear memories
2nd
CMs
CLR
2 Load data card containing co-ordinates of first object
3 Enter identification letter corresponding to first object

If co-ordinates of second object are on same data card,
4 Enter identification letter corresponding to second object, and continue at step 7

A-2nd D'
If co-ordinates of second object are on a different data card,
5 Load second data card
6 Enter identification letter corresponding to second object

A-2nd D'
7 Load program—both sides
8 Enter variation ($+E,-W$), even if 0
DD.d
9 Enter deviation $(+E,-W)$, even if 0
DD.d
2nd A^{\prime}

10 Enter compass bearing to first object
DDD.d
2nd A^{\prime}

11 Enter compass bearing to second object DDD.d
B
12 Calculate and display latitude of fix
13 Calculate and display longitude of fix
D \pm DD.MMSS
E \pm DD.MMSS

If only co-ordinates of first object are on a data card, proceed as follows (steps 14-18):
14 Perform steps 1-3 and 7-11
15 Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
16 Enter longitude of second object (+W , -E)

DD.MMSS
C
17 Calculate and display latitude of fix
D \pm DD.MMSS
18 Calculate and display longitude of fix
E \pm DD.MMSS
If only co-ordinates of second object are on a data card, proceed as follows (steps 19-26):
19 Perform steps 1 and 7-11
20 Enter latitude of first object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
21 Enter longitude of first object ($+\mathrm{W},-\mathrm{E}$) DD.MMSS C
22 Load data card containing co-ordinates of second object
23 Enter identification letter corresponding to second object

A-2nd D^{\prime}
24 Reload program—both sides
25 Calculate and display latitude of fix D \pm DD.MMSS
26 Calculate and display longitude of fix
E \pm DD.MMSS
If co-ordinates of neither first nor second object are on data cards, proceed as follows (steps 27-34):
27 Perform steps 1 and 7-11
28 Enter latitude of first object $(+\mathrm{N},-\mathrm{S}) \quad$ DD.MMSS C
29 Enter longitude of first object ($+\mathrm{W},-\mathrm{E}$) DD.MMSS C
30 Enter latitude of second object $(+\mathrm{N},-\mathrm{S})$ DD.MMSS C
31 Enter longitude of second object (+ W, -E)

DD.MMSS C
32 Calculate and display latitude of fix
D \pm DD.MMSS
33 Calculate and display longitude of fix
E \pm DD.MMSS
Running Fix on One Object
If co-ordinates of object are on a data card, proceed as follows (steps 34-52):
34 Clear memories

> 2nd

CMs
CLR
35 Load data card
36 Enter identification letter corresponding to object

A-2nd D^{\prime}
37 Re-enter identification letter corresponding to object

A-2nd D^{\prime}

38 Load program—both sides

39	Enter variation $(+E,-W)$, even if 0	$D D . d$	2nd A^{\prime}
40	Enter deviation $(+E,-W)$, even if 0	DD.d	2nd A^{\prime}
41 Enter set of current, even if 0	DDD.d	2nd B^{\prime}	
42 Enter drift of current, even if 0	knots	2nd B^{\prime}	
43 Enter compass course during run or leg**	DDD.d	2nd C C^{\prime}	
44 Enter vessel speed during run or leg	knots	2nd C'	
45 Enter compass bearing to object at start			
of run	DDD.d	B	
46 Enter time of first bearing	H.MS	A	

For multiple courses or speeds, or changes in set or drift between bearings, proceed as follows (steps 47-48):
47 Enter time of end of preceding leg-i.e., time of change(s)
H.MS

A
48 Clear display, then repeat steps 39-40 even if variation and deviation are unchanged, and repeat as necessary steps 41-42 and 43-44; set and drift, and course and speed, are handled as pairs-if even one member of the pair changes, both must be re-entered

CLR

49 Enter time of end of run
H.MS

A
50 Enter compass bearing to object at end of run

DDD.d B
51 Calculate and display latitude of fix
D \pm DD.MMSS
52 Calculate and display longitude of fix
E \pm DD.MMSS
If co-ordinates of object are not on a data card, proceed as follows (steps 53-59):
53 Perform steps 34 and 38-50
54 Enter latitude of object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
55 Enter longitude of object ($+\mathrm{W},-\mathrm{E}$) DD.MMSS C
56 Re-enter latitude of object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
57 Re-enter longitude of object ($+\mathrm{W},-\mathrm{E}$) DD.MMSS C
58 Calculate and display latitude of fix D \pm DD.MMSS
59 Calculate and display longitude of fix E \pm DD.MMSS
Running Fix on Two Objects
If co-ordinates of both objects are on data cards, proceed as follows (steps 6080):

60 Clear memories

2nd
CMs
CLR
*Correct for leeway; see table 2.2.

61 Load data card containing co-ordinates of first object
62 Enter identification letter corresponding to first object

A-2nd D'
If co-ordinates of second object are on same data card,
63 Enter identification letter corresponding to second object, and continue at step 66

A-2nd D'
If co-ordinates of second object are on a different data card,
64 Load second data card
65 Enter identification letter corresponding to second object

A-2nd D^{\prime}
66 Load program-both sides
67 Enter variation $(+E,-W)$, even if 0

DD.d	2nd A^{\prime}
DD.d	2nd A^{\prime}
DDD.d	2nd B^{\prime}
knots	2nd B^{\prime}
DDD.d	2nd C^{\prime}
knots	2nd C^{\prime}

73 Enter compass bearing to first object at start of run

DDD.d
B
74 Enter time of first bearing
H.MS

A
For multiple courses or speeds, or changes in set or drift between bearings, proceed as follows (steps 75-76):
75 Enter time of end of preceding leg-i.e., time of change(s)
H.MS

A
76 Clear display, then repeat steps 67-68 even if variation and deviation are unchanged, and repeat as necessary steps 69-70 and 71-72; set and drift, and course and speed, are handled as pairs-if even one member of the pair changes, both must be re-entered

CLR
77 Enter time of end of run H.MS A
78 Enter compass bearing to second object at end of run

DDD.d
B
79 Calculate and display latitude of fix
D \pm DD.MMSS
*Correct for leeway; see table 2.2.

80 Calculate and display longitude of fix E \pm DD.MMSS
If only co-ordinates of first object are on a data card, proceed as follows (steps 81-85):

81 Perform steps 60-62 and 66-78
82 Enter latitude of second object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
83 Enter longitude of second object (+W,
-E) DD.MMSS C
84 Calculate and display latitude of fix
D \pm DD.MMSS
85 Calculate and display longitude of fix
E \pm DD.MMSS
If only co-ordinates of second object are on a data card, proceed as follows (steps 86-92):
86 Perform steps 60 and 66
87 Enter latitude of first object ($+\mathrm{N},-\mathrm{S}$) DD.MMSS C
88 Enter longitude of first object ($+\mathrm{W},-\mathrm{E}$) DD.MMSS C
89 Load data card containing co-ordinates of second object
90 Enter identification letter corresponding to second object

A-2nd D^{\prime}
91 Reload program—both sides
92 Perform steps 67-80
If co-ordinates of neither first not second object are on data cards, proceed as follows (steps 93-99):
93 Perform steps 60 and 66-78

94	Enter latitude of first object $(+\mathrm{N},-\mathrm{S})$	DD.MMSS	C	
95	Enter longitude of first object $(+\mathrm{W},-\mathrm{E})$	DD.MMSS	C	
96	Enter latitude of second object $(+\mathrm{N},-\mathrm{S})$	DD.MMSS	C	
97	Enter longitude of second object	DD.MMSS	C	
98	Calculate and display latitude of fix		D	\pm DD.MMSS
99	Calculate and display longitude of fix		E	\pm DD.MMSS

Routine 2.28 (SR-52)

DMG	SMG			
Lstart Lostart	Lend Loend	Tstart	Tend	CMG

COURSE MADE GOOD AND SPEED MADE GOOD FROM TWO POSITIONS (LATITUDE AND LONGITUDE)

Step	Procedure	Input Data/Units	Keys	Output DatalUnits

Before beginning, make sure D/R switch is set to D.
If both start and end co-ordinates are on data cards, proceed as follows (steps 16):

1 Load data card containing start co-ordinates
2 Enter identification letter corresponding to start co-ordinates

A-2nd D^{\prime}
If end co-ordinates are on same data card,
3 Enter identification letter corresponding to end co-ordinates, and continue at step 6

A-2nd D^{\prime}
If end co-ordinates are on a different data card,
4 Load second data card
5 Enter identification letter corresponding to end co-ordinates

A-2nd D'
6 Load program, and continue at step 18
If only start co-ordinates are on a data card, proceed as follows (steps 7-11):
7 Load data card
8 Enter identification letter corresponding to start co-ordinates

A-2nd D'
9 Load program
10 Enter end latitude ($+\mathrm{N},-\mathrm{S}$)
DD.MMSS B
11 Enter end longitude ($+\mathrm{W},-\mathrm{E}$), and continue at step 18

DD.MMSS
B
If only end co-ordinates are on a data card, proceed as follows (steps 12-22):

Step	Procedure	Input Data/Units	Keys	Output Data/Units
12 Load program				
13	Enter start latitude ($+\mathrm{N},-\mathrm{S}$)	DD.MMSS	A	
14	Enter start longitude (+ W, -E)	DD.MMSS	A	
15 Load data card conta co-ordinates				
16	Enter identification letter corresponding to end co-ordinates		A-2nd D^{\prime}	
17	Reload program			
18	Enter time of start	H.MS	C	
19	Enter time of end	H.MS	D	
20	Calculate and display true course made good		E	DDD.d
21	Calculate and display distance made good		2nd A^{\prime}	naut. mi.
22	Calculate and display speed made good		2nd B^{\prime}	knots

3

ABBREVIATIONS Used in the Routines of Chapter 3

AW speed of apparent wind
AWo optimum speed of apparent wind
Btm true bearing from start to mark or way point
Btmark true bearing from vessel to mark or way point
Cc compass course
Cco optimum compass course
CMG true course made good
Cmo optimum magnetic course
Ct true course
D1 distance from start of tack to lay line
D2 distance from start of next tack to mark or way point
DD.d, DDD.d degrees and tenths of a degree
De deviation
Dm distance from start to mark or way point
Dmark distance from vessel to mark or way point
Dr drift of current
E east
H angle of heel
H.MS hour(s), minute(s), and second(s)

MW speed of modified true wind
MWnom nominal value of modified true wind
naut. mi. nautical miles
S vessel speed
ΔS difference between $S d o$ and $S d$
Sc corrected vessel speed
Sd due-downwind speed
Sdo optimum downwind speed
Set Port set for port calculations
Set Stbd set for starboard calculations
SMG speed made good
So optimum speed to windward
St set of current
ΔT time already elapsed on present tack
$\Delta T 1$ time required from start of tack to reach lay line
$\Delta T 2$ time required from start of next tack to reach mark or way point
Δ Tmark total time required to reach mark or way point
Var variation
W west
$\Delta W / 2$ angular shift required to go from Sd to Sdo
Wa angle of apparent wind
Wao optimum angle of apparent wind
Wm direction of modified true wind
Wt tacking angle
Wto optimum tacking angle
\dagger following a data-entry item indicates that it is entered by pressing ENTER instead of a letter key.
\rightarrow following a data-entry item indicates that its entry initiates (without further keyboard activity) the calculation and display of one or more results.
preceding an item indicates that RUN is used instead of a letter key.

+ indicates that the item (e.g., east variation on the HP-67/97) is entered simply by pressing the appropriate numerical keys, on both the HP-67/97 and the SR-52.
- indicates that the item is entered on the HP-67/97 by pressing the appropriate numerical keys followed by CHS, and on the SR-52 by pressing the appropriate numerical keys followed by $+1-$

3.1 Introduction

When it comes to sailing-whether cruising or racing-the calculator has uses beyond planning and position finding. To reach a mark or destination that lies to windward, tacking is necessary. When the situation is complicated by the presence of currents, the calculator can sort out the variables involved, and display the courses to steer to reach the destination in the shortest time. Similarly, the calculator can quickly solve the question of whether to tack downwind, again taking into account any currents. This chapter shows in detail how the calculator can be used to provide the information needed to optimize sailing performance.

To employ a calculator in this manner, one must know the direction and speed of the apparent (relative) wind, and the vessel speed through the water -information available from wind vanes, anemometers, and knotmeters. The instructions which follow assume the presence on board of such instruments.

3.2 The Combination of Wind and Current

The effect of current on apparent wind can be easily understood if one visualizes a boat without sails or power, on a windless day, moving only to the motion of a current. An anemometer mounted on deck will show a wind speed equal to that of the current, and a wind vane will indicate a wind direction opposite to that of the current. This current wind-created by the motion of the vessel through the air-in combination with any natural true wind, constitutes the actual, or modified true wind, for this particular craft. Thus, if the vessel is drifting in a 2 -knot current, a $10-\mathrm{knot}$ wind will become an 8 -knot modified true wind when blowing in the same direction as the current, and a $12-\mathrm{knot}$ modified true wind when blowing in the opposite direction.

If the wind is coming from true north $\left(000^{\circ}\right)$, and the current is flowing toward true west $\left(270^{\circ}\right)$, the speed of the resulting modified true wind will be 10.2 knots and the direction it comes from will be 348.7°. These values are obtained by vector addition, as shown in figure 3.1. Here, the true-wind vector (TW) of magnitude 10 knots is seen coming from the north and therefore pointing due south; the current, with a drift west of 2 knots, creates a 2-knot current wind moving the opposite way, and the direction of the current-wind vector ($-\mathbf{D r}$) is therefore 90°. The addition of $-\mathbf{D r}$ to $\mathbf{T W}$ produces the resultant, which represents the direction ($W m$) and speed ($M W$) of the modified true wind.

In the routines that follow, values for the modified true wind are employed; calculations based on vessel speed and apparent-wind speed and direction yield the necessary information about this wind. The vessel is affected by no other; it moves under the influence of the modified true wind, not of the true wind isolated from the current.

3.1. Combination of Wind and Current

3.2. Calculation of Modified True Wind

3.3 Calculating Modified True Wind

If a vessel is equipped with a compass, and with instruments measuring vessel speed through the water (S) and the speed ($A W$) and direction ($W a$) of the apparent wind, the speed (MW) and direction (Wm) of the modified true wind can be calculated by standard trigonometrical methods.

The basis for this calculation is shown in figure 3.2. The situation illustrated is a beat to windward, on the port tack. The vector \mathbf{S}, which represents the vessel's motion through the water, has the direction $C t$, measured with respect to true north. The tacking angle ($W t$), between the wind vector and the vessel's motion vector, is a relative angle, measured with respect to the fore-and-aft axis of the vessel. The direction of the modified true wind (Wm) is equal to $C t-W t$, and is therefore related to a geographic reference-the true course of the vessel. Correspondingly, on the starboard tack, Wm is equal to $C t+W t$.

MWt : tangential component of modified true wind
MWa : axial component of modified true wind

3.3. Effect of Heel Angle on Anemometer

One complication that arises when calculating $M W$ from data measured on board is the fact that any heeling of the vessel can affect the accuracy of wind speed measured by the anemometer. The reason for this is made evident in figure 3.3, showing the effect of a wind blowing from the starboard side, with no heel present (upper portion of the figure), and with heel present (lower portion). In the latter case, the effectiveness of the wind in turning the anemometer cups is reduced. The modified wind ($M W$) blowing from the starboard side causes the vessel to heel to port; that portion of the wind that blows across the anemometer cups causes them to rotate, but the portion of the wind that blows up between the cups has no turning effect. When the angle of heel (H) is equal to zero, the wind is tangential to the open cup. But with heel present, some of the wind in effect comes from an axial direction (from up or
down the mast), and its ability to spin the cups is reduced accordingly. The vector diagram resolves these wind components. Only MWt (the tangential portion) turns the cups.

The calculator routines that follow all take this effect into consideration. Heel angle is entered as input, and appropriate corrections are made in the calculated values. Similarly, when apparent-wind speeds are displayed, they have been modified by the calculator to give the results as they would be seen on the vessel's wind-speed meter.

The relationships that underlie the calculator routines in this chapter hold for all points of sailing; no changes in equations or calculator programs are needed as the wind shifts from forward of the beam to aft of the beam. The difference in the method of obtaining Wm on the port and on the starboard tack is easily accommodated in the instructions.

The values for $M W$ and $W m$ are not calculated for their own sake. Rather, obtaining these values is part of the procedure for the complete solution of tactical and navigation problems, as in routines 3.1 and 3.3-3.4.

The effect of leeway, explained in section 2.2.5, must be taken into account in calculations involving the wind. As figure 3.4 indicates, this effect is different on the port and on the starboard tack, although the underlying cause is the same. On the port tack, when the vessel moves along \mathbf{S}, its heading is a few degrees upwind of \mathbf{S}. The amount of leeway-the difference between the vessel's heading and its course over the bottom, in the absence of current -is shown as angle A. The direction exhibited by the vessel's compass will be in error accordingly; on the port tack the course shown by the compass will be less than the vessel's course ($C t$) by the amount of angle A. On the starboard tack (illustrated in the second part of the figure) the course shown by the compass will be correspondingly greater than Ct. Hence, as was indicated in table 2.2, the leeway correction involves addition to the compass reading on the port tack, and subtraction from it on the starboard tack. For uncorrection, the opposite is true.

The presence of leeway must also be taken into account when the direction of the apparent wind ($W a$) is measured. As was shown in figure 3.2, Wa represents the angle between the vector for the apparent wind (AW) and the vector for the vessel's motion through the water (\mathbf{S}). This angle is measured in relation to the direction in which the bow is pointing (the fore-and-aft axis of the boat), not the direction of the vessel's track, and since leeway causes some crabbing, so that the bow points a few degrees closer to the wind than the actual course through the water, a correction must be made. In this instance, however, since the angle in question is not a compass direction, but is relative to the vessel, the correction-addition of the amount of angle A - will be the same on both tacks. By the same token, when uncorrection of the value for apparent-wind direction is necessary, the amount of the leeway angle is subtracted on both tacks.

A typical vessel beating to windward might encounter the values of leeway* shown in table 3.1.

Table 3.1 Values of Leeway

Level of Wind	Angle of Apparent Wind, in Degrees			
	20	27	35	
	Leeway Angle, in Degrees			
Moderate Heavy	4	3	2	

[^7]In summary, if correction is required, the amount of the leeway angle is always added to the value for the apparent wind read on board the vessel, but is either added or subtracted to the magnetic compass course (the course after correction for deviation), depending on whether the vessel is on the port or the starboard tack, as shown in table 2.2 .

3.4 Beating to Windward-Cruising

The foregoing principles find practical application in the calculation of successive courses to steer and courses and speeds made good while cruising on a beat to windward between two points, as shown in figure 3.5. In this case, the modified-true-wind vector ($\mathbf{M W}$) is the reference direction from which portand starboard-tack vectors (\mathbf{S}) are drawn. However, the actual direction of the course made good over the bottom is shown not by these tack vectors, but by

SMGs and SMGp, which incorporate the effects of the current. These are asymmetric with respect to MW.
A vessel that departs on the starboard tack, with tacking angle $W t$, first progresses, crabbing as a result of the current, along the speed-made-good vector SMGs, its direction being CMGs. When the vessel reaches the lay line, it changes its course made good by g degrees. In coming about to the port tack, it swings its bow through $2 \times W t$ degrees (not equal to g), thereby attaining a tacking angle with respect to the modified true wind that is equal to the tacking angle on the previous leg. At the same time, as has been shown, the angle of the course made good with respect to the wind changes, because of the differing effect of the current.

3.6. Alternate Tack Courses

This route is not the only one that could have been adopted for the journey in question. Figure 3.6 indicates the options available. The grid in the area between the start and the end of the journey consists of a set of courses made good, parallel to those the vessel was shown following in the preceding figure. Under the given conditions of wind and current, the course made good over the bottom must be confined to tracks in the same directions as these if the angle to the wind ($W t$ in figure 3.5) is to be kept uniform on both tacks. The vessel will move more slowly over the bottom on the starboard tack than on the port tack, and the respective courses made good over the bottom will not identically reflect the influence of the wind, because of the deflecting influence of the current. On any set of tacks paralleling the lines of this grid, the duration of the journey will be the same (except for the time lost in going from one tack to another).

Two sample routes are presented in figure 3.6. Route 1 shows a way of gaining the destination with only two tacks; the vessel sails on the port tack until the lay line is reached, and then maintains the starboard tack for the rest of the journey. Route 2 , consisting of a series of tacks, will require the same amount of sailing time as Route 1.

The calculator can perform many functions during a windward passage like the one shown here. To begin with, given the necessary data on vessel speed and apparent wind, it can determine the speed and direction of the modified true wind. With this information, the tacking angle ($W t$), can be calculated from the wind and speed triangle of figure 3.2. If the wind speed and direction are assumed to be holding steady, the calculator can then supply the course to steer to obtain the same tacking angle, and the same sailing performance, on the next tack.

The calculator also displays course and speed made good over the bottom, taking into account the presence of current, so that progress toward the destination can be ascertained. Thus, for a selected tacking angle (to the wind) tactical problems (e.g., determining course to steer) and navigation problems (e.g., identifying course over the bottom) are solved by the same sequence of operations. If there are changes in wind or current, a new course to steer can be calculated, to maintain constant sailing performance.

In addition, the calculator displays the distance to the lay line on the present tack, and the time required to reach the lay line (information which makes it much easier to avoid overstanding); and it displays the distance and course to the mark at any selected time. Facts of this sort are especially useful when sailing in fog, or in other conditions of reduced visibility; they are always available to provide a navigational backup, as various tactics are employed to reach the destination.

The instructions for performing the necessary calculator operations are given in routines 3.1-3.4. They have been developed only for the HP-67, HP-97, and SR-52, for two reasons. First, since a great deal of data must be handled, the calculator employed must be one of those which can properly manage and process large amounts of information. These calculators have sufficient capacity, and the presence on each magnetic card of blanks to be used for specialized labeling of the uppermost row of keys greatly simplifies the entry of the proper data in the proper sequence.

Second, even under cruising conditions, there is no time for manually sequencing through endless steps of calculation; and certainly during a race, a harassed skipper is not likely to wait patiently while his navigator struggles through several hundred keystrokes, all the while wondering if he has reached the lay line! Making this sort of tactical decision is the territory of the programmable calculator with an external memory.
3.4.1 Cruising Navigation on the HP-67 and HP-97 For the HP-67 and HP-97, only a single program card and a single routine-routine 3.1-
are needed to provide all of the required navigational answers.* This single card is used on both port and starboard tacks; steps $6-8$ are executed on the former, and steps $9-11$ on the latter. Since compass deviation may be different on the port and starboard tacks, provision has been made in the routine to enter it twice-for the present tack at step 8 or step 11, and for the anticipated next tack at step 14. This second entry, made during a pause, while the display of true course is visible, allows the calculator to resume its computation and display the compass course to steer on the next tack. If deviation is not entered at this point, the calculator will just continue to display true course.

The distance to be traveled to reach the lay line is displayed at step 17; this is followed by the time needed to arrive at the lay line and the time needed to reach the mark from the lay line. The bearing and distance from the vessel to the mark are obtained after entry at step 18 of the time that has elapsed since the previous position calculation was made. In the calculations for the first leg of a journey, the bearing and distance to the mark are entered at steps 15 and 16; for subsequent legs, no such entry is required, since the initial values for bearing and distance have been automatically replaced by those calculated and displayed in step 19, at the end of the sequence.

When a vessel comes about to the next tack, on the course previously calculated and displayed at step 14, the values for vessel speed, apparent-wind direction and speed, and angle of heel should be the same as before, if the wind has not changed. However, they must be re-entered in the calculations for the new leg even though they have not altered.

When the wind does change-so that, say, the vessel is lifted, and can sail in a direction closer to the mark-the helmsman will alter course to take advantage of the new conditions; once the situation has steadied, a new round of instrument readings should be taken, and all the steps of routine 3.1 should be repeated to supply updated values for speed and course made good, course to steer on the next tack, and the time and distance to the new lay line.

[^8]Routine 3.1 (HP-67/97)

		Btm Dm	ΔT	Dmark Btmark
AW S Wa $\mathrm{H} \rightarrow \mathrm{MW}, \mathrm{Wt}$	PORT Cc Var De $\longrightarrow \mathrm{Wm}$	STBD Cc Var De	Wm	St Dr \rightarrow SMG,CMG,Ct

CRUISE SAILING

- Calculate and display speed made good on this tack,
knots
- True course made good on this tack,

DDD.d

- True course to steer on next tack

DDD.d
14 After displaying Ct (in step 13), display will alternately flash and pause. During a pause, enter compass deviation (+E, - W) for that course,

- Calculate and display compass course to steer on next tack,**

DDD.d

- Speed made good on next tack,
- True course made good on next tack

15 Enter true bearing from start to mark or way point (only at beginning of journey, or if changed)

DDD.d fc
16 Enter distance from start to mark or way point (only at beginning of journey, or if changed)
naut. mi. f c
17 Calculate and display distance (D1) from start of this tack to lay line,

- Time ($\Delta T 1$) required from start of this tack to reach lay line,
- Time ($\Delta T 2$) required from start of next tack to reach mark or way point (on a course parallel to or along lay line)
H.MS

18 Enter time (ΔT) that has already elapsed on present tack, or that will have elapsed at a future time for which a prediction of position is desired (e.g., the time at which the vessel is expected to steer a new course, or come about to a new tack, following the completion of calculations) H.MS fd
19 Calculate and display distance to mark or way point at end of interval specified,

- True bearing to mark or way point at end of interval specified

For changes in course, speed, set, or drift, repeat steps 2-14 and 17-19. The interval used in step 18 should begin with the time of the change. If mark or way point is changed, a new problem begins, with bearing and distance to mark (steps 15-16) measured from present position to new destination.

[^9]The application of these procedures is illustrated in figure 3.7. In this instance, the vessel is on a beat to windward, starting at 0800 and lasting until 1021. During that period a number of wind shifts occur, and-as a result of the boat's changing position, and of time passing-considerable alterations in current as well.
Since a great deal of information is processed and kept in view, it is recommended that a form patterned after table 3.2 be designed and utilized. This table consists of a succession of "Enter" and "Display" columns, which enable the user to organize the data obtained from the vessel's instruments and from the calculator displays, and to see clearly what step in the calculations is next. It can also serve as a \log of previous events. Its usefulness will be apparent as the beat to windward is followed step by step. Many of the figures in the table are given to two decimal places; this is done simply to prevent round-off error from creating misleading numerical results. In practice, most values are recorded to the nearest degree for bearing or course, and to the nearest tenth of a knot or mile for speed or distance.

The movements of the vessel are shown in figure 3.7. When it starts on the port tack at 0800, the values for wind, vessel speed, and angle of heel are read from the instruments, recorded on the 0800 line of the first "Enter" column in the table, and entered at A , in steps 2-5 of routine 3.1. The calculator then displays a modified-true-wind speed of 12.0 knots, and a tacking angle to the wind of 46.0 degrees. The compass course being sailed, and variation and deviation, are entered at B because the vessel is on the port tack (C would have been used on the starboard tack). These steps result in the display of the direction of the modified true wind as 20.0°.

Next, the set and drift of the current are entered, and the calculator displays speed and course made good on the present tack, and the true course to steer on the next tack-assuming that the vessel is to be sailed at the same angle to the modified true wind, and that wind conditions will not change.

Table 3.2

		ENTER				DISPLAY		ENTER					
		$\begin{aligned} & 8 \\ & \Phi \\ & \text { D } \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 8 \end{aligned}$		0 9 4 0 5 5 8 8	$\begin{aligned} & \Phi \\ & \stackrel{\circ}{5} \\ & \vdots \\ & \frac{0}{6} \\ & \text { ¢ } \end{aligned}$	0 $\$$ 0 0 0 0 5		$\begin{aligned} & 000 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { §o } \\ & 0 \\ & 0 \\ & \text { E } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Pे } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & E \\ & 0 \end{aligned}$			
Tack	Time	AW	S	Wa	H	MW	Wt	Cc	Var	Dev	Wm	St	Dr
PORT	0800	15.62	4.8	33.31	12.0	12.0	46.0	77.0	11 W	0	20.0	160	2.0
PORT	0830	17.90	5.2	33.25	14.0	14.0	45.0	56.0	11 W	0	000.0	175	1.5
STBD	0910	15.53	4.7	33.51	12.0	12.0	46.0	315.0	11 W	0	350.0	180	0.5
PORT	0955	15.53	4.7	33.51	12.0	12.0	46.0	47.0	11 W	0	350.0	250	0.3
STBD	1000	13.13	4.2	34.31	10.0	10.0	48.0	328.0	11 W	0	5.0	250	0.3
PORT	1009	13.13		34.31	10.0	10.0	48.0	64.0	11 W	0	5.0	250	0.3
	1021	ARRIVE AT MARK											

3.7. Cruising-Beat to Windward

The value of deviation for the next tack is then entered (even if it is equal to zero), and the compass course to steer on that tack, is displayed, along with the resulting speed and course to be made good.

The next step is the entry of the bearing and distance to the mark from the initial position. This is done only once, unless the destination is changed, or -after arrival at the original destination-a new one is selected. In the present Cruising-Beat to Windward

DISPLAY			ENT.	DISPLAY			ENTER		DISPLAY			ENT.	DISPLAY	
									$\begin{aligned} & 0 \\ & \text { Sy } \\ & \text { त } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 E के 0 0 0 E		$\begin{aligned} & \text { Time on } \\ & \text { Preceding Tack } \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { Wo } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
SMG1	CMG1	Ct2	Dev	Cc2	SMG2	CMG2	Btm	Dm	D1	$\Delta \mathrm{T} 1$	$\Delta T 2$	ΔT	Dmark	Btma
5.07	89.18	334.0	0	345.0	2.82	329.8	30.0	5.0	4.98	h. m. s. 05858	$\begin{aligned} & \text { h. m. s. } \\ & 14455 \end{aligned}$	m.		
4.39	60.18	315.0	0	326.0	4.16	301.6			4.14	05638	11124	30	4.29	359
4.44	298.64	36.0	0	47.0	4.31	39.92			3.87	05218	01752	40	3.83	317
4.45	33.84	304.0	0	315.0	4.88	301.2			1.25	01646	0457	45	1.29	15
4.33	313.34	53.0	0	64.0	3.91	51.7			0.65	092	0123	5	0.95	8
3.91	51.72								0.79	0123	0	9	0.79	51

instance, the mark lies on a true bearing of 30.0° from the starting point, and is 5.0 nautical miles distant. When these values have been entered, the calculator displays the distance to the lay line (here, 4.98 nm), the time needed to reach the lay line (here, 58 minutes, 58 seconds), and the time needed to reach the mark along the lay line (here, 1 hour, 44 minutes, 55 seconds). This situation is illustrated in figure 3.7, where the lay line is shown to be at the end of a run along a course made good of 89.18°. If the vessel were to pursue this path, it would reach the lay line and come about at 0859, and move out on the starboard tack on a compass heading of 345°, making good 329.8° over the bottom, to reach the mark at 1044. This maneuver would result in a tacking angle of 46.0 degrees on each tack.

But the wind does not remain constant, and the helmsman must respond to changes. A shift at 0830 lifts the vessel and allows it to turn to port. When this has been done, the calculations must be updated at once. The procedure begins, at step 18, with entry of the amount of time that has passed since the start of the leg (here, 30 minutes); the calculator can then provide the new distance $(4.29 \mathrm{~nm})$ and true bearing (359.5°) to the mark. These values for elapsed time, distance, and bearing are the first to be recorded on the second line (marked 0830) of table 3.2. Once the vessel has steadied on its new heading -here, $56^{\circ} \mathrm{C}$-the sequence of calculations is repeated, beginning with step 2. Measurements for wind, vessel speed, and angle of heel are obtained, and recorded in the 0830 line of the table, and fed to the calculator, which, in this instance, then shows that the modified true wind has picked up to 14.0 knots and the helmsman has steadied down to a tacking angle of 45.0 degrees relative to this wind. Compass course, variation, and deviation are next entered at B , once again, since the vessel is still on a port tack, and the calculator shows that the modified true wind is now at 000°, having shifted 20 degrees from its direction at 0800.

As before, values are entered in the table as they are obtained from the instruments and the calculator. The entries for the changed set and drift of current result in the display of the speed and course made good on the present tack, and the true course to steer on the next tack. Then, after the entry of the deviation on the next tack, the calculator provides the compass course to steer on that tack and the resulting speed and course made good. Steps 15 and 16 are omitted, since the values for distance and course to the mark found at 0830 remain in the calculator's memory. Next, pressing E yields the distance to the new lay line (4.14 nm), the time needed to reach it (56 minutes, 38 seconds), and the time needed to reach the mark along the new lay line (1 hour, 1 minute, 24 seconds).

At 0910, another wind shift occurs, and this time the helmsman elects to come onto the starboard tack. The lay line would have been reached at 0927; by turning onto the new tack he avoids the risk of overstanding, and begins to move closer to the mark. As the turn to starboard is being made, the time run on the present leg (from 0830 to 0910 , or 40 minutes) is entered, and the vessel's position relative to the mark is calculated; the result being a distance of 3.83 nm and a true bearing of 317.8°. The calculation, display, and recording
of data then proceeds as before, except that since the vessel is now on the starboard tack, compass course, variation, and deviation are entered at C. Subsequently, the same procedures are repeated whenever the vessel's motion changes significantly-in response to shifts in wind or current, for example, or in order to avoid a hazard.

On the final leg of the journey, there is obviously no longer any need to obtain answers concerning the next tack. However, except-of coursefor steps 15 and 16 , all the steps of the routine must be executed, since they are necessary for calculation of the time of arrival. On the 1009 line of table 3.2, the distance to the "lay line"-in this case, the mark itself-is listed as 0.79 nm , and the time required to reach this point is 12 minutes, 3 seconds. Thus, the time of arrival will be 1021. The time needed to reach the mark along the lay line is displayed as zero because the mark is reached on the present tack.

An important feature of the HP-67 and HP-97 is the ability to record for future use the data stored in the memory. The procedure is simple. After step 19 of routine 3.1 has been performed, f W/DATA are pressed, and both sides of a magnetic data card are passed through the card handler. The calculator can then be turned off, with a consequent saving in power, until needed for the next sequence. Upon restarting, both this data card and the program card are inserted, and calculations can then be performed as if the unit had been running continuously. Of course, if the 12 -volt power supply for the HP-67 (only) is in use, this procedure is unnecessary, since the calculator can then be left running without fear of discharging its batteries.
3.4.2 Cruising Navigation on the SR-52 Since the SR-52 has less sophisticated program and data capabilities than the HP-67 and HP-97, it requires three program cards and three routines (3.2, 3.3, and 3.4) to accomplish all that is done by routine 3.1, with one program card.* The procedures for the respective calculators differ in general arrangement, in the order in which data is entered, and in certain sign conventions (thus, in the sailing routines for the SR-52, variation and deviation are entered as positive if west, negative if east). However, the data required and the answers available-as recorded in table 3.2 -are essentially the same, regardless of which calculator is employed. The user of the SR-52 may wish to change the order of the columns in his version of the table, so that they correspond to the sequence in which he enters data and obtains results. He may also wish to add columns for recording the distance from the start of the next tack to the mark, and the total time required to reach the mark from the start of the present tack, as displayed in steps 13 and 14 of routine 3.3.

The SR-52 is not equipped to record its stored data on a magnetic card. Therefore, it must be left running continuously.

[^10]Routine 3.2 (SR-52)

Var	Dr St		$\mathrm{Cc} ; \mathrm{De} \rightarrow \mathrm{Wm}$	Dm Btm
Set Port	S	AW;H	$\mathrm{Wa} \rightarrow \mathrm{Wt} ; \mathrm{MW}$	Set Stbd

MODIFIED WIND

Step	Procedure	Input DatalUnits	Keys	Output DatalUnits

Before beginning, make sure D / R switch is set to D.
1 Load program—both sides
2 If on port tack, set for port calculations, and continue at step 4

A
3 If on starboard tack, set for starboard calculations

E
4 Enter variation ($+\mathrm{W},-\mathrm{E}$), ${ }^{1}$ even if 0
DD.d
2nd A^{\prime}
5 Enter drift of current, even if 0
6 Enter set of current, even if 0 knots 2nd B'

7 Enter distance from start to mark or way point (only at beginning of journey, or if changed)
naut. mi. $\quad 2 n d E^{\prime}$
8 Enter true bearing from start to mark or way point (only at beginning of journey, or if changed)

DDD.d 2nd E'
9 Enter vessel speed
knots
B
10 Enter speed of apparent wind
knots
C
11 Enter angle of heel (port or starboard)
DD.d
RUN
12 Enter angle of apparent wind (between 0 and 180 degrees, measured from bow on either side), \dagger

DDD.d
D

- Calculate and display tacking angle (Wt) relative to modified true wind

DDD.d 2nd B'

13 Calculate and display speed of modified true wind (MW)
14 Enter compass course*
DDD.d
RUN
DDD.d

DD.d
2nd D^{\prime}
15 Enter deviation ($+\mathrm{W},-\mathrm{E}$), even if 0 ,
RUN

- Calculate and display direction of modified true wind (Wm)

DDD.d
For subsequent legs (following entry of present position in step 5 or 9 of routine 3.4), omit steps 7-8.
"The convention of using "plus" for westerly variation and deviation, and "minus" for easterly variation and deviation, conforms to the usage in the SR-52 and TI-59 navigation-program packages. †To take leeway into account, enter sum of apparent-wind and leeway angles.
*Correct for leeway; see table 2.2.

Routine 3.3 (SR-52)

	PORT $\Delta \mathrm{T} 1$ or 2 ;D1 or 2	Δ Tmark	STBD $\Delta T 2$ or 1 ;D2 or 1	
$\mathrm{Ct} ; \mathrm{De} \rightarrow \mathrm{Cc}{ }^{\mathrm{PORT}}$			STBD	
	SMG;CMG		SMG;CMG	$\mathrm{Ct} ; \mathrm{De} \rightarrow \mathrm{Cc}$

SPEED MADE GOOD, COURSE MADE GOOD, TIME TO LAY LINE

Step \begin{tabular}{ccc}

Procedure \& | Input |
| :---: |
| DatalUnits | \& Keys

Output

DatalUnits
\end{tabular}

1 After completion of routine 3.2 or 3.11 , load program-both sides-and continue at step 2 or step 15, as appropriate

- If on port tack,

2 Calculate and display true course to steer on present tack

A
 DDD.d

3 Enter deviation ($+\mathrm{W},-\mathrm{E}$), ${ }^{1}$ even if 0 ,
DD.d
RUN

- Calculate and display compass course to steer on present tack**

4 Calculate and display speed made good on present tack

B knots
5 Calculate and display true course made good on present tack

RUN DDD.d
6 Calculate and display true course to steer on next (starboard) tack

E DDD.d
7 Enter deviation ($+\mathrm{W},-\mathrm{E}$), even if 0 ,
DD.d
RUN

- Calculate and display compass course to steer on next (starboard) tack**

DDD.d
8 Calculate and display speed made good on next tack

D knots
9 Calculate and display true course made good on next tack

RUN DDD.d
10 Calculate and display time ($\Delta T 1$) required from start of this tack to reach lay line

2nd B' H.MS
11 Calculate and display distance (D1) from start of this tack to lay line

RUN naut. mi.
12 Calculate and display time ($\Delta T 2$) required from start of next tack to reach mark or way point (on a course paraliel to or along lay line)

2nd D' H.MS

[^11]| Step | Procedure | Input Data/Units | Keys | Output Data/Units |
| :---: | :---: | :---: | :---: | :---: |
| 13 | Calculate and display distance (D2) from start of next tack to mark or way point | | RUN | naut. mi. |
| 14 | Calculate and display total time (Δ Tmark) required from start of present tack to reach mark or way point | | 2nd C' | H.MS |
| \checkmark | If on starboard tack, | | | |
| 15 | Calculate and display true course to steer on present tack | | E | DDD.d |
| 16 | Enter deviation ($+\mathrm{W},-\mathrm{E}$), even if $\mathbf{0}$, | DD.d | RUN | |
| | Calculate and display compass course to steer on present tack** | | | DDD.d |
| 17 | Calculate and display speed made good on present tack | | D | knots |
| 18 | Calculate and display true course made good on present tack | | RUN | DDD.d |
| 19 | Calculate and display true course to steer on next (port) tack | | A | DDD.d |
| 20 | Enter deviation ($+\mathrm{W},-\mathrm{E}$), even if 0 , | DD.d | RUN | |
| | Calculate and display compass course to steer on next (port) tack** | | | DDD.d |
| 21 | Calculate and display speed made good on next (port) tack | | B | knots |
| 22 | Calculate and display true course made good on next (port) tack | | RUN | DDD.d |
| 23 | Calculate and display time ($\Delta T 1$) required from start of this tack to reach lay line | | 2nd ${ }^{\prime}$ | H.MS |
| 24 | Calculate and display distance (D1) from start of this tack to lay line | | RUN | naut. mi. |
| 25 | Calculate and display time ($\Delta T 2$) required from start of next tack to reach mark or way point (on a course parallel to or along lay line) | | 2nd B' | H.MS |
| 26 | Calculate and display distance (D2) from start of next tack to mark or way point | | RUN | naut. mi. |
| 27 | Calculate and display total time (Δ Tmark) required from start of present tack to reach mark or way point | | 2nd C^{\prime} | H.MS |

[^12]Routine 3.4 (SR-52)

	PORT Dmark;Btmark	Update	sTBD Dmark;Btmark	
	PORT		STBD	
	ΔT			

DISTANCE AND BEARING TO MARK OR WAY POINT

Step \quad Procedure \quad\begin{tabular}{c}
Input

Data/Units

\quad Keys

Output

DatalUnits
\end{tabular}

1 After completion of routine 3.3 or 3.18 , load program-both sides-and continue at step 2 or step 6, as appropriate

- If on port tack,

2 Enter time (ΔT) that has already elapsed on present tack, or that will have elapsed at a future time for which a prediction of position is desired (e.g., the time at which the vessel is expected to steer a new course or come about to a new tack following the completion of calculations) H.MS B

3 Calculate and display distance to mark or way point at end of interval specified in step 2

2nd B^{\prime} naut. mi.
4 Calculate and display true bearing to mark or way point at end of interval specified in step 2

RUN DDD.d
5 Update the caiculator's memory of present position 2nd C'

- If on starboard tack,

6 Enter time (ΔT) that has already elapsed on present tack, or that will have elapsed at a future time for which a prediction of position is desired (e.g., the time at which the vessel is expected to steer a new course or come about to a new tack following the completion of calculations) H.MS

D
7 Calculate and display distance to mark or way point at end of interval specified in step 6

2nd D^{\prime} naut. mi.
8 Calculate and display true bearing to mark or way point at end of interval specified in step 6

RUN DDD.d
9 Update the calculator's memory of
present position

Figure 3.8

3.5 Optimum Speed to Windward—Racing

The calculator is especially useful in racing because in addition to performing the navigation functions described in the preceding sections, it can-if given the necessary data concerning wind speed and direction (taken from the vessel's instruments) -select the tacking angle that will maximize a vessel's speed made good to windward, and then display the values for the speed and direction of the apparent wind that should be achieved by the helmsman sailing with this tacking angle.

The calculator can perform this function because of its ability to store data concerning the speed through the water of a vessel sailing (with optimum trim and sheeting) at various angles to the wind and encountering various wind speeds. This data is obtained from a set of polar performance curves for the vessel, of the sort shown in figures 3.8 and 3.9.

In figure 3.8, the vessel's speed vector (S) -represented in each instance as a length marked off on a radius drawn from the center-is plotted for different tacking angles ($W t$) to the modified true wind. The axis of the modified true wind is shown running from 000° to 180°, with the wind coming from 000°.

A vessel cannot sail directly into the wind-that is, in the sector extending about 30 degrees to either side of the wind, as indicated by the dotted lines in the figure; it then pinches for perhaps another 10 degrees, until it reaches a tacking angle of approximately 35 to 40 degrees. Tacking becomes unnecessary if the mark lies more than 45 to 50 degrees off the wind, since it can be reached by sailing directly. However, tacking downwind (discussed in detail in sections 3.6 and 3.6.4-3.6.6) may be desirable under certain circumstances when the mark lies within about 10-30 degrees of dead downwind.

When beating to windward-sailing to a mark that lies within the beating sector, up to 40 or 50 degrees to port or starboard of the modified true wind -a series of tacks will be used to reach the mark. On the chart, the speed made good to windward is shown as the projection on the wind axis of the tacking vessel's speed vector (S). In this example, a vessel on either tack at 45 degrees off the wind has a speed through the water of 4.8 knots, and is moving toward the wind at a speed of 3.4 knots. From the curve, it is evident that sailing at this angle to the wind results in a vector of maximum length for speed made good to windward. A vessel sailing closer to the wind would move more slowly. Sailing farther from the wind it would have increased speed through the water, but its speed in the direction of the wind would be reduced. Hence, in this instance 45 degrees is the optimum tacking angle, at which the vessel is moving as fast as it can toward the wind, and therefore toward any mark that lies within the beating sector.

The curve shown in figure 3.8 defines the vessel's speed performance for a single value of modified true wind-in this case, a speed of 10.0 knots. Figure 3.9 shows a family of curves for a particular vessel, for wind speeds of 4.0, 10.0, 16.0 , and 22.0 knots. A line has been drawn from curve to curve joining the points of optimum speed to windward, which fall at tacking angles of 49

Figure 3.9
degrees, 45 degrees, 43 degrees, and 42.5 degrees. These points have values of $2.8,4.6,5.8$, and 6.7 knots, respectively. Information of this sort provides the basis for two new curves (figure 3.10), showing optimum speed to windward (So) and optimum tacking angle (Wto), each plotted with respect to the speed of the modified true wind. These curves can be stored in a programmable calculator, and then utilized in the calculation of the optimum vessel speed and tacking angle for a particular wind.

Figure 3.10. .

Obtainin ${ }_{\checkmark}$ he information required for this purpose involves firsthand observation aboard the vessel itself. The first step is to record-simultaneously, or nearly so-the speed and direction of the apparent wind, and the corresponding speed and angle of heel of the vessel, under a variety of circumstances. Data should be collected for winds that come from different directions and that have various speeds-ranging from those as light as 3 or 4 knots to those as heavy as are likely to be encountered when sailing under normal conditions. The readings should be taken when the vessel has been trimmed to make the fastest possible speed through the water for the heading in question, and is steady on course, so that the data obtained will represent optimum sailing conditions.

Ideally, during a time of constant wind, the vessel should be pointed and trimmed on a series of headings at intervals of approximately 5 degrees. But if the wind changes, readings can of course be taken for the new conditions, since observations under many different circumstances are required. If several combinations of sails are likely to be used (e.g., a variety of jibs, with and without spinnaker), separate data will have to be collected, and a separate set of polar curves prepared, for each suit of sails. In recording the data obtained on board the vessel, organized as shown in table 3.3, care should be taken to separate port-tack and starboard-tack values, since the calculations for $M W$ and $W t$ cannot distinguish between the two tacks. Values of $W t$ calculated from data observed on the port tack will be entered in the last column of table 3.3 as calculated; values of $W t$ based on data observed on the starboard tack will have to be increased by 180 degrees before being listed in the table.

Table 3.3 Wind Speed and Tacking Angle

Tack	Data Collected on Board				Calculated Values	
	Apparent Wind		Vessel Speed S	Angle of Heel H	Speed of Modified True Wind MW	Tacking Angle Wt
	Speed AW	Angle Wa (with A added)				
Port						Port
Starboard						Starboard

Any needed correction for leeway should be made just prior to entering the data in table 3.3. As figure 3.4 makes evident, the measurement of apparent wind will read low by the amount of leeway angle present at the time of the reading. This is true for both port and starboard tacks. Therefore, before a value for apparent-wind angle (Wa) is entered in the table, the correction for leeway (A) should be added to it.

Routine 3.5 (HP-67/97)

POLAR PERFORMANCE CURVES

Step	Procedure	Input Data/Units	Keys	Output Data/Units
1 Load program-both sides				
	For each line of data recorded in table 3.3, perform steps 2-5; then continue according to instructions preceding step 6.			
2	Enter speed of apparent wind	knots	A	
3	Enter vessel speed	knots	B	
4	Enter angle of apparent wind (between 0 and 180 degrees, measured from bow on either side) \dagger	DDD.d	C	
5	Enter angle of heel (port or starboard), Calculate and display speed of modified true wind (MW), Tacking angle ($W t$) relative to modified true wind, and record both as indicated in table 3.3	DD.d	D	
-				knots
				DDD.d
	After rearranging calculated data as shown in table 3.4, and after choosing the nominal value of modified true wind for each of the polar curves to be constructed, proceed as follows (steps 6-8) for each value of speed in the table:			
6	Enter value of vessel speed	knots	B	
7	Enter value of modified-true-wind speed (MW) adjacent (in table 3.4) to value of S entered in step 6	knots	f a	
8	Enter nominal value of MW that labels the column in table 3.4 in which the values entered in steps 6 and 7 are located, Calculate and display corrected value of vessel speed (Sc), and record as indicated in table 3.4, for use in plotting polar curve for nominal MW	knots	E	
				knots
	take leeway into account, enter sum of app	parent-wind an	way an	

Routine 3.6 (SR-52)

POLAR PERFORMANCE CURVES

	POLAR PERFORMANCE CURVES			
Input				
Step	Procedure	DatalUnits	Keys	Output DatalUnits

Before beginning, make sure D / R switch is set to D.
1 Load program—both sides
For each line of data recorded in table 3.3, perform steps 2-5; then continue according to instructions preceding step 6.
2 Enter vessel speed
knots
A
3 Enter speed of apparent wind
knots
B
4 Enter angle of heel (port or starboard)
DD.d
C
5 Enter angle of apparent wind (between 0 and 180 degrees, measured from bow on either side), \dagger

DDD.d D

- Calculate and display tacking angle (Wt) relative to modified true wind

DDD.d
6 Calculate and display speed of modified true wind (MW), and record both as indicated in table 3.3

E knots
After rearranging calculated data as shown in table 3.4, and after choosing the nominal value of modified true wind for each of the polar curves to be constructed, proceed as follows (steps 7-9) for each value of vessel speed in the table:

7 Enter value of vessel speed
8 Enter value of modified-true-wind speed (MW) adjacent (in table 3.4) to value of S entered in step 7
9 Enter nominal value of $M W$ that labels the column in table 3.4 in which the values entered in steps 7 and 8 are located,

- Calculate and display corrected value of vessel speed (Sc), and record as indicated in table 3.4, for use in plotting polar curve for nominal MW
knots
A
knots
2nd A^{\prime}
knots
2nd B'
tTo take leeway into account, enter sum of apparent-wind and leeway angles.

Construction of the polar performance curves is aided by use of routine 3.5 for the HP-67 and HP-97, or routine 3.6 for the SR-52. In steps 1-5 of routine 3.5 , and steps $1-6$ of routine 3.6, the data assembled in table 3.3 is entered, and corresponding values for speed of the modified true wind ($M W$) and tacking angle ($W t$) are obtained; these are recorded in the table. Next, the answers are rearranged as shown in table 3.4. Here, 2, 4, 8, 12, 16, and 22 knots have been chosen as the nominal, or label, values for a series of polar curves to be constructed in the style of figure 3.9. Three pieces of data from each line in table 3.3 are used-vessel speed (S), speed of the modified true wind ($M W$), and tacking angle ($W t$). The value of S is paired with the value of $M W$ calculated for a particular Wt. Each value of $M W$ selected for a column lies within the range specified at the head of that column, and the values of S and $M W$ are arranged in ascending order of $W t$. The corrected vessel speed (Sc) is then obtained by using routine 3.5 (steps 6-8) for the HP-67 and HP-97, or routine 3.6 (steps 7-9) for the SR-52. The input for this procedure consists of vessel speed, the actual speed of the modified true wind, and the nominal, or label, speed of the modified true wind, as shown in the top row of table 3.4. The corresponding corrected vessel speed ($S c$) displayed by the calculator should in each instance be entered in the appropriate column, next to the values of S and $M W$ from which it was calculated.

Table 3.4 Polar Performance Curves

If there are appreciable gaps in the table, the data is incomplete. For example, there should be good coverage of tacking angles in the beating sectors, from 35 to 50 degrees and from 310 to 325 degrees, as well as in the downwind tacking sector, from about 140 to 220 degrees. However, it is not necessary to obtain a value of $M W$ for every nominal wind speed at every tacking angle.

When the table is complete, the figures obtained for $W t$ and $S c$ can be used in the preparation of a series of polar curves, one for each of the nominal values of $M W$. The curves should be plotted on a single sheet of polar graph paper.

For each value of $W t$ a radius is drawn from the center of the graph, the angle being measured clockwise through 360 degrees. Points at length $S c$ from the center are placed, as appropriate, on each radius, and all the points for one nominal value of $M W$ are joined to make a smooth polar curve.

Table 3.5 Optimum Sailing to Windward

Nominal Speed of the Modified True Wind $M W(x)$	Optimum Speed to Windward So (y)	Optimum Tacking Angle Wto (y)

The next step is to locate and join the points of optimum speed to windward on the several curves, as shown in figure 3.9, and to tabulate the values of these points (table 3.5). This information serves as the basis for two curves, like those in figure 3.10 , plotting So with respect to $M W$, and plotting W to with respect to $M W$. The curves (which need not actually be drawn) are each stored in the form of the equation $y=a x^{b}$. The "Power" segment of routine 3.7 for the HP-67 and HP-97, and routine 3.8 for the SR-52, are used to obtain the necessary curve-fitting coefficients (a) and exponents (b) for the calculation of So and Wto.*

[^13]Routine 3.7 (HP-67/97)

P?	LIN?	EXP?	LOG?	PWR?
$x_{i} \uparrow y_{i}(+)$	$x_{i} \uparrow y_{i}(-)$	$\rightarrow r^{2}, a, b$	$y \rightarrow \hat{x}$	$x \rightarrow \hat{y}$

CURVE FITTING

Step	Input		
Procedure	DatalUnits	Keys	Output DatalUnits

1 Load program—both sides
2 For HP-97, select printing mode
Optimum Speed to Windward (So)
3 After completion of steps 1-2, select type of curve fitting-use "Power"
fe
For each value of modified-true-wind speed (MW) in table 3.5, starting with the lowest, perform steps 4-5; then continue at step 6.
4 Enter $M W$ that labels one of the polar performance curves
knots
ENTER
5 Enter corresponding vessel speed at point of maximum speed to windward (So) knots

A
6 Set four decimal places
DSP 4
7 Calculate and display coefficient of correlation (should be between 0.8 and 1.0),

C n.nnnn

- Coefficient (a) of curve-fitting equation
$S o=a M W^{b}$,
\pm n.nnnn
- Exponent (b) of curve-fitting equation

So $=a M W^{b}$
The values obtained for a and b are incorporated into the program for routine 3.9, in accordance with the instructions in the Appendix.

Optimum Tacking Angle While Beating to Windward (Wto)
8 After completion of steps 1-2, select type of curve fitting-use "Power" ie

For each value of modified-true-wind speed (MW) in table 3.5, starting with the lowest, perform steps 9-10; then continue at step 11.
9 Enter MW that labels one of the polar performance curves
knots
ENTER

10 Enter corresponding tacking angle at point of maximum speed to windward (Wto)
11 Set four decimal places
DDD.d A

12 Calculate and display coefficient of correlation (should be between 0.8 and 1.0),

C n.nnnn

- Coefficient (a) of curve-fitting equation $W t o=a M W^{b}$,
$\pm n . n n n n$
- Exponent (b) of curve-fitting equation $W t o=a M W^{b}$
\pm n.nnnn
The values obtained for a and b are incorporated into the program for routine 3.9, in accordance with the instructions in the Appendix.

Due-Downwind Speed (Sd)
13 After completion of steps 1-2, select type of curve fitting-use "Power"
fe
For each value of modified-true-wind speed (MW), starting with the lowest, perform steps 14-15; then continue at step 16.
14 Enter MW that labels one of the polar performance curves
knots
ENTER
15 Enter corresponding vessel speed due downwind, at a tacking angle of 180 degrees (Sd) knots A
16 Set four decimal places
DSP 4
17 Calculate and display coefficient of correlation (should be between 0.8 and 1.0),

C n.nnnn

- Coefficient (a) of curve-fitting equation $S d=a M W^{b}$, $\quad \pm$ n.nnnn
- Exponent (b) of curve-fitting equation $S d=a M W^{b} \quad \pm$ n.nnnn

The values obtained for a and b are incorporated into the program for routine 3.16 , in accordance with the instructions in the Appendix.

To calculate values of $S d$ for use in obtaining the ratio $\Delta S / S d$, proceed as follows (step 18) for each of four values of $M W$ in the range of 4-10 knots, starting with the lowest:
18 Enter MW,
knots
D

- Calculate and display corresponding $S d$
knots
Optimum Downwind Tacking Speed (Sdo)
19 After completion of steps 1-2, select type of curve fitting-use "Power" $f e$

For each value of modified-true-wind speed (MW), starting with the lowest, perform steps 20-21; then continue at step 22.
20 Enter MW that labels one of the polar performance curves
knots
ENTER
21 Enter corresponding vessel speed at
optimum downwind tacking angle (Sdo) knots
22 Set four decimal places
A

23 Calculate and display coefficient of correlation (should be between 0.8 and 1.0),

- Coefficient (a) of curve-fitting equation $S d o=a M W^{b}$,
- Exponent (b) of curve-fitting equation $S d o=a M W^{b}$

DSP 4

C n.nnnn

The values obtained for a and b are incorporated into the program for routine 3.18, in accordance with the instructions in the Appendix.

To calculate values of $S d o$ for use in obtaining the ratio $\Delta S / S d$, proceed as follows (step 24) for each of four values of $M W$ in the range of $4-10$ knots, starting with the lowest:

24 Enter MW,

- Calculate and display corresponding Sdo

Downwind Tacking Sector ($\Delta W / 2$)
25 After completion of steps 1-2, select type of curve fitting-use "Exponential"
knots

D
knots

For each value of modified-true-wind speed (MW), starting with the lowest and continuing to a maximum of 16 knots, perform steps 26-27; then continue at step 28.

26 Enter MW that labels one of the polar performance curves
knots
ENTER
27 Enter corresponding value for $\Delta W / 2-$ the angular interval between due downwind and the heading that produces
optimum speed downwind A
28 Set four decimal places
29 Calculate and display coefficient of correlation (should be between 0.8 and 1.0),

- Coefficient (a) of curve-fitting equation $\Delta W / 2=a e^{b M W}$, $\quad \pm$ n.nnnn
- Exponent (b) of curve-fitting equation $\Delta W / 2=a e^{b} M W$

DSP 4

C n.nnnn $\pm n . n n n n$

The values obtained for a and b are incorporated into the programs for routines 3.16 and 3.18 , in accordance with the instructions in the Appendix.

Stop	Procedure	Input Data/Units	Keys	Output Data/Unit
Ratio $\Delta S / S d$				
Data for this sequence consists of values for $\Delta S / S d$ for four values of $M W$ in th range of $4-10$ knots. As explained in the text, the method of obtaining this data as follows: First, select four values of modified-true-wind speed (MW) in the rang of 4-10 knots. Next, for each of the selected wind speeds calculate the corresponding due-downwind vessel speed (Sd) and optimum downwind tacking speed (Sdo), means of steps 13-18 and steps 19-24 of this routine. Then, for each of the select wind speeds subtract $S d$ from $S d o$ to obtain ΔS. And finally, for each of the selected wind speeds divide ΔS by $S d$ to obtain $\Delta S / S d$.				
30	After preparation of the data and completion of steps 1-2, select type of curve fitting-use "Logarithmic"		$f d$	
	For each value of MW, starting with the lowest, perform steps 31-32; then continue at step 33.			
31	Enter MW	knots	ENTER	
32	Enter corresponding value for $\Delta S / S d$	n.nnnn	A	
33	Set four decimal places		DSP 4	
34	Calculate and display coefficient of correlation (should be between 0.8 and 1.0),		C	n.nnnn
- Constant term (a) of curve-fitting equation $\Delta S / S d=a+b \ln M W$,				\pm n.nnnn
Coefficient of natural logarithm term (b) of curve-fitting equation $\Delta S / S d=a+b \mathrm{~B} M W$				$\pm \mathrm{n} . \mathrm{nnnn}$
	The values obtained for a and b are incor 3.16, in accordance with the instructions in	porated into the Appendix	ogram	routine

Routine 3.8 (SR-52)

Delete	$y \rightarrow x^{\prime}$	$x \rightarrow y^{\prime}$	b	
Initialize	x_{i}	$y i$	$\rightarrow a$	$\rightarrow r^{2}$

POWER CURVE FIT
Input
Step
Procedure
Data/Units
Output
Keys Data/Units
Before beginning, make sure D/R switch is set to D.
1 Load program—both sides

2 Initialize
3 Set four decimal places

A
2nd fix 4

Optimum Speed to Windward (So)
Complete steps 1-3; then, for each value of modified-true-wind speed (MW) in table 3.5, starting with the lowest, perform steps 4-5. Then continue at step 6.
4 Enter $M W$ that labels one of the polar performance curves
knots
B
5 Enter corresponding vessel speed at point of maximum speed to windward (So) knots C
6 Calculate and display coefficient (a) of curve-fitting equation $S O=a M W^{b}$

D \pm n.nnnn
7 Calculate and display exponent (b) of curve-fitting equation $S o=a M W^{b} \quad$ 2nd $D^{\prime} \quad \pm n . n n n n$
8 Calculate and display coefficient of correlation (should be between 0.8 and 1.0)

E n.nnnn
The values obtained for a and b are incorporated into the program for routine 3.11, in accordance with the instructions in the Appendix.

Optimum Tacking Angle While Beating to Windward (Wto)

Complete steps $1-3$; then, for each value of modified-true-wind speed (MW) in table 3.5, starting with the lowest, perform steps 9-10. Then continue at step 11.
9 Enter $M W$ that labels one of the polar performance curves
knots
B
10 Enter corresponding tacking angle at point of maximum speed to windward (Wto)

DDD.d
C
(continued)

11 Calculate and display coefficient (a) of curve-fitting equation $W t o=a M W^{b}$

D $\quad \pm$ n.nnnn
12 Calculate and display exponent (b) of curve-fitting equation W to $=a M W^{b}$

2nd D' \pm n.nnnn
13 Calculate and display coefficient of correlation (should be between 0.8 and 1.0)

The values obtained for a and b are incorporated into the program for routine 3.11, in accordance with the instructions in the Appendix.

Due-Downwind Speed (Sd)
Complete steps 1-3; then, for each value of modified-true-wind speed (MW), starting with the lowest, perform steps 14-15. Then continue at step 16.
14 Enter MW that labels one of the polar performance curves
knots
B
15 Enter corresponding vessel speed due downwind, at a tacking angle of 180 degrees ($S d$)
knots
C
16 Calculate and display coefficient (a) of curve-fitting equation $S d=a M W^{b}$

D \pm n.nnnn
17 Calculate and display exponent (b) of curve-fitting equation $S d=a M W^{b}$

2nd $D^{\prime} \quad \pm n . n n n n$
18 Calculate and display coefficient of correlation (should be between 0.8 and 1.0)

E n.nnnn

The values obtained for a and b are incorporated into the program for routine 3.11, in accordance with the instructions in the Appendix.

To calculate values of $S d$ for use in obtaining the ratio $\Delta S / S d$, proceed as follows (step 19) for each of four values of $M W$ in the range of 4-10 knots, starting with the lowest:

19 Enter MW,
knots 2nd C'

- Calculate and display corresponding $S d$
knots
Optimum Downwind Tacking Speed (Sdo)
Complete steps 1-3; then, for each value of modified-true-wind speed (MW), starting with the lowest, perform steps 20-21. Then continue at step 22.
20 Enter $M W$ that labels one of the polar performance curves
knots B
21 Enter corresponding vessel speed at optimum downwind tacking angle (Sdo)
knots \quad C
22 Calculate and display coefficient (a) of curve-fitting equation $S d o=a M W^{b}$

D \pm n.nnnn
23 Calculate and display exponent (b) of curve-fitting equation $S d o=a M W^{b}$

2nd $D^{\prime} \quad \pm$ n.nnnn

Stop	Procedure	Input Data/Units	Keys	Output Data/Units
24	Calculate and display coefficient of correlation (should be between 0.8 and 1.0)		E	n.nnnn
	The values obtained for a and b are incorporated into the program for routine 3.11, in accordance with the instructions in the Appendix.			
	To calculate values of $S d o$ for use in obtaining the ratio $\Delta S / S d$, proceed as follows (step 25) for each of four values of MW in the range of 4-10 knots, starting with the lowest:			
25	Enter MW,	knots	2nd C^{\prime}	
	Calculate and display corresponding Sdo			knots

When the curve-fitting coefficients have been calculated, they are incorporated into the programs used in routine 3.9 for the HP-67 and HP-97, and routine 3.11 for the SR-52, as shown by the instructions for these programs in the Appendix. It is then possible to determine, for a particular suit of sails, the optimum course-resulting in minimum sailing time at the wind speed in question.

For the curves shown in figure 3.10, the equations are as follows:

$$
\begin{aligned}
& \text { So }=1.3836 M W^{0.5147} \\
& \text { Wto }=55.0842 M W^{-0.0865}
\end{aligned}
$$

These figures may be used in a test program, as explained in the text accompanying the listings in the Appendix. But since the coefficients and exponents are different for each vessel, these should be used only for practice.
3.5.1 Optimum Sailing on the HP-67 and HP-97 A beat to windward during a race is described in this section. The initial data provided by the vessel's instruments serves as the basis for calculating the speed and direction of the modified true wind, in steps 1-8 (port tack) or steps 1-5 and 9-11 (starboard tack) of routine 3.9. The vessel need not be sailing with optimum trim when this data is obtained. The values for the modified true wind are stored by the calculator and used as input for the calculation of the optimum vessel speed, and the optimum speed and direction of the apparent wind, displayed in steps $12-14$. For a vessel on the port tack, steps 15-16 then provide the compass course to steer to attain the optimum tacking angle; for a vessel on the starboard tack, steps $17-18$ provide the same information. When a vessel is on that heading and is properly trimmed, the speed of the vessel and the speed and direction of the apparent wind, as shown on the helmsman's instruments, should be the same as the optimum values just calculated.

Routine 3.9 (HP-67/97)

Wao	$\begin{gathered} \text { PORT } \\ \mathrm{Cmo} \xrightarrow[\mathrm{De}]{ } \rightarrow \mathrm{Cco} \end{gathered}$	$\underset{\mathrm{Cmo} \mathrm{De}}{\substack{\text { Stbd }\\}}$		
AW S Wa $H \rightarrow M W, W t$	$\underset{\mathrm{PORT}}{\mathrm{Cc} \operatorname{Var~De} \longrightarrow \mathrm{Wm}}$	$\underset{\mathrm{Cc} \operatorname{Var} \mathrm{De} \longrightarrow \mathrm{Wm}}{\mathrm{StBd}}$	So	AWo

BEATING TO WINDWARD-OPTIMUM COURSE AND SPEED

Input
Data/Units

Output Data/Units

1 Load program—both sides
2 Enter speed of apparent wind
3 Enter vessel speed
knots
A

4 Enter angle of apparent wind (between 0 and 180 degrees, measured from bow on either side) \dagger

DDD.d
A
5 Enter angle of heel (port or starboard),
DD.d
A

- Calculate and display speed of modified true wind (MW), knots
- Tacking angle (W) relative to modified true wind, and continue at step 6 or 9 , as appropriate DDD.d
- If on port tack,

6 Enter compass course*
7 Enter variation ($+E,-W$), even if 0
DDD.d B

8 Enter deviation $(+E,-W)$, even if 0 ,
DD.d
B

- Calculate and display direction of modified true wind (Wm), and continue at step 12

DDD.d

- If on starboard tack,

9 Enter compass course*
10 Enter variation $(+E,-W)$, even if 0
DDD.d
C
DD.d
C
11 Enter deviation ($+E,-W$), even if 0 ,
DD.d
C

- Calculate and display direction of modified true wind (Wm)

DD.d
B

12 Calculate and display optimum vessel speed to windward (So)

D knots
13 Calculate and display optimum speed of apparent wind (AWo)

E knots
†To take leeway into account, enter sum of apparent-wind and leeway angles.
*Correct for leeway; see table 2.2.

Step \quad Procedure \quad\begin{tabular}{c}
Input

Data/Units

\quad Keys

Output

DatalUnits
\end{tabular}

14 Calculate and display optimum angle of apparent wind (WaO), \ddagger and continue at step 15 or 17, as appropriate
fa DDD.d

- If on port tack,

15 Calculate and display optimum magnetic course to steer
f b DDD.d
16 Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0 , DD.d
fb

- Calculate and display optimum compass course to steer**

DDD.d

- If on starboard tack,

17 Calculate and display optimum magnetic course to steer
18 Enter deviation $(+E,-W)$, even if 0 , DD.

- Calculate and display optimum compass course to steer**

DDD.d
\ddagger To take leeway into account, subtract the leeway angle.
**Uncorrect for leeway; see table 2.2.

If the wind changes, the altered data provided by the vessel's instruments must be used for recalculation of the speed and direction of the modified true wind. The subsequent sequence of calculations should be repeated as well, since the optimum values for vessel speed and for speed and direction of the apparent wind will also have changed.

Table 3

		ENTER				DISPLAY		ENTER			DISPLAY						ENT.	DIS.
				0 5 5 0 5 5 8 8	$\begin{aligned} & \mathbb{8} \\ & \frac{0}{3} \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ S \\ 0 \\ 0 \\ \text { N } \\ 0 \\ 0 \\ \text { O} \end{array}$	0 0 0 0 0 5 0 0 N	0 0 0 0 0 0 0 N 0					$\text { peods ıssseへ } 7 d O$	8 0 0 0 0 0 0 0 0 0 0 0 0	Opt. App. Wind Angle		$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ E \\ 0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Tack	Time	AW	S	Wa	H	MW	Wt	Cc	Var	De		Wm	So	AWo	Wao	Cmo	Dev	Cc
PORT	0800	14.38	4.6	31.97	9.0	10.81	45.0	87.0	14W	0		8.0	4.71	14.4	31.62	86.84	0	86.
STBD	0806	13.24	4.5	32.65	8.0	9.79	47.0	12.0	14 W	0		45.0	4.48	13.30	31.43	13.78	0	13.
PORT	0848	15.36	4.7	31.78	10.0	11.69	44.0	80.0	$14 W$	0		22.0	4.91	15.51	31.77	80.53	0	80
PORT	0855	11.39	3.8	31.38	7.0	8.41	45.0	68.0	14W			9.0	4.14	11.65	31.09	68.82	0	68
STBD	0905	11.84	3.9	31.56	8.0	8.79	45.0	336.6	14 W	0		7.6	4.23	12.10	31.19	335.95	0	335
PORT	$\begin{aligned} & 0935 \\ & 0940 \end{aligned}$	$\begin{gathered} 11.84 \\ \text { ARRI } \end{gathered}$	$\begin{aligned} & 3.9 \\ & \text { IIVE A } \end{aligned}$	$\begin{gathered} 31.56 \\ \text { AT MA } \end{gathered}$	88.0	8.79	45.0	66.6	14W	0		7.6	4.23	12.10	31.19	67.25	0	67

Table 3.6, like table 3.2, for cruising, enables one to organize input data and to place calculated results in their proper order. The "Enter" columns are used for listing data obtained from the vessel's instruments and charts; the "Display" columns are used for the calculated results. Once again, many of the values are given to two decimal places-although these would probably not be used in practice-in order to eliminate misleading numerical results arising from round-off errors.

Deviation must be entered where called for, even if it is zero. The presence of leeway must of course be taken into account where necessary, as discussed in section 3.3.

The vessel movements, winds, and currents during this hypothetical leg of a race are illustrated in figure 3.11. The vessel starts the windward leg on the port tack at 0800 . The entry of values for wind, vessel speed, and angle of heel taken at or just before this time results in the display of a modified-true-wind speed of 10.81 knots and a tacking angle of 45.0 degrees. Compass course, variation, and deviation are then entered, and the calculator displays not only the direction of the modified true wind $\left(28.0^{\circ}\right)$ but also the optimum values for the speed of the vessel (4.71 knots), the speed and direction of the apparent wind (14.48 knots and 31.62 degrees), and the magnetic course to steer (86.84°). Re-entry of deviation, still zero, yields the optimum compass course (86.84 ${ }^{\circ}$).

These results show that the vessel is sailing on virtually its optimum heading; the initial speed through the water of 4.6 knots can be increased to 4.71 for a heading shift of less than a half degree (assuming that wind conditions remain stable). If the vessel had been sailing farther away from this optimum

heading, or if it had not been trimmed for maximum speed, there would have been a greater difference between the actual values for vessel speed and speed and direction of the apparent wind and the optimum values calculated and displayed in steps $12-14$.

Routine 3.10 (HP-67/97)

	Btm Dm			
Set Stbd	St Dr SMG,CMG,Ct	D1 $\Delta T 1 \Delta T 2$	ΔT	Dmark Btmark

SPEED MADE GOOD, COURSE MADE GOOD, POSITION RELATIVE TO MARK

Step \begin{tabular}{cccc}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

1 After completion of step 16 or 18 of routine 3.9 , or step 16 or 18 of routine 3.18, load program-both sides

2 If on starboard tack, set for starboard calculations

A
3 Enter set of current, even if 0
4 Enter drift of current, even if 0 ,

- Calculate and display speed made good on this tack,

DDD.d
B
knots
B

- True course made good on this tack,
- True course to steer on next tack

5 After displaying Ct (in step 4), display will alternately flash and pause. During a pause, enter compass deviation ($+E$, $-W$) for that course,

- Calculate and display compass course to steer on next tack,**

DD.d

Speed made good on next tack,

- True course made good on next tack

6 Enter true bearing from start to mark or way point

DDD.d $\quad \mathbf{f}$
7 Enter distance from start to mark or way point
naut. mi.
f b
8 Calculate and display distance (D1) from start of this tack to lay line,

- Time ($\Delta T 1$) required from start of this tack to reach lay line,
- Time ($\Delta T 2$) required from start of next tack to reach mark or way point (on a course parallel to or along lay line)
**Uncorrect for leeway; see table 2.2.
C naut. mi. H.MS DDD.d knots

DDD.d
knots
DDD.d
DDD.d

Step	Procedure	Input Data/Units	Keys	Output Data/Unit
9	Enter time (ΔT) that has already elapsed on present tack, or that will have elapsed at a future time for which a prediction of position is desired (e.g., the time at which the vessel is expected to steer a new course, or come about to a new tack, following the completion of calculations)	H.MS	D	
10	Calculate and display distance to mark or way point at end of interval specified, True bearing to mark or way point at end of interval specified		E	naut. mi. DDD.d

For changes in course, speed, set, or drift, repeat routine 3.9 and steps 1-5 and $8-10$ of routine 3.10. The interval used in step 9 of routine 3.10 should begin with the time of the change. If mark or way point is changed, a new problem begins, with bearing and distance to mark (steps 6-7) measured from present position to new destination.

The results thus far concern the attainment of maximum speed to windward. After step 16 of routine 3.9 has been completed, routine 3.10 is begun. The entry of values for set and drift of current (which must be included even if equal to zero) results in calculation of the vessel's speed (5.51 knots) and course made good over the bottom (93.56°) for the present-i.e., port-tack, and of the true course $\left(343.17^{\circ}\right)$ for the next tack, which will be to starboard. Then, with the entry of deviation-in this instance equal to zero-the compass course (357.17°), speed made good (2.80 knots), and course made good (352.53) for the next tack are displayed. Thus, the calculated results define the grid, similar to the one shown in figure 3.6, of headings and courses made good enabling the vessel to sail at maximum speed to windward while tacking to the mark.

Next, values for the bearing and distance to the mark are entered. These steps are performed only once, since at the time of each course change, the vessel's new position relative to the mark will be calculated and stored, for use in the next round of calculations. After these entries have been made, the distance to the lay line that defines the end of the present tack, the time required to reach the lay line, and the time required to reach the mark from the lay line, are displayed by pressing $\quad \mathbf{C}$.

In the example in question, the selected course is maintained until-at 0806 -the wind shifts, heading the vessel so that it must come about to the starboard tack. As this is done, the navigator enters, at step 9, the amount of time spent on the tack just completed (six minutes) and then obtains the values for distance to the mark (4.78 nautical miles) and true bearing to the mark (24.08°) from the present position. These are stored in the calculator's memory, and 194
become input for the next such calculation. Thus, accumulation of the vessel's successive positions accounts for movement along each new course.

Once the vessel has settled down on its new heading, the sequence begins again. Wind and speed data are obtained from the instruments, and the navigator is able to give the helmsman the optimum course to steer and the values for speed and direction of the wind that his instruments will display when the vessel is indeed on this course. Since the wind has shifted, the compass heading required $\left(13.78^{\circ}\right)$ is different from the one originally predicted for the starboard tack (357.17°); the 16.61 -degree change reflects the extent of the change in the direction of the modified true wind (from 28.0° to 45.0°, or 17 degrees). (The 0.39 -degree discrepancy results from the revision at 0806 in the estimate of set and drift of current.)

The entry of data and the calculation and display of results proceeds until the distance and time to the new lay line have been determined, showing the limit not to be exceeded (assuming no further wind shifts) on the starboard tack.

The vessel is headed again at 0848, and comes about to the port tack. Calculation of the position relative to the mark after the 42 -minute run just completed results in the display of a distance to the mark of 2.38 nm on a true bearing of 26.79°. At 0855 the vessel is lifted, the appropriate heading change is made, the vessel position at that time is calculated, and new optimum values for course and apparent wind are given to the helmsman, as before.

The sequences continue, following each tack. On the next-to-the-last tack, the time calculated for the run to reach the mark after turning onto the lay line is 4 minutes, 38 seconds. On the last tack, this same figure is specified as the time required to reach the lay line. These figures are identical because on this last tack, the vessel is finally sailing along the lay line-carrying out the starboard tack along the lay line which was calculated at 0905. Hence, the time needed to reach the "lay line" is in this instance actually the time needed to reach the mark. The fact that the time along the lay line to the mark calculated at 0935 turns out to be 29 seconds rather than zero, as would be expected, results from an accumulation of round-off errors.
3.5.2 Optimum Sailing on the SR-52 All of the procedures described in this chapter can also be carried out by means of the SR-52. Differences in capacity and organization between the SR-52 and the HP-67 and HP-97 result in differences in the sequence and content of the respective programs and routines, but the problems solved are the same.

On the SR-52, performance of the calculations required for optimum sailing involves the employment of a series of routines. Three of these-routines 3.2, 3.3, and 3.4-have already been mentioned in connection with cruising, in section 3.4.2. The fourth-routine 3.11 -is used for determining optimum values for both beating and downwind sailing. Its program (in the Appendix), like that of routine 3.9 for the HP-67 and HP-97, incorporates the equations

Routine 3.11 (SR-52)

OPTIMUM TACKING-TO WINDWARD AND DOWNWIND

Step Procedure \begin{tabular}{c}
Input

DatalUnits

Output

DatalUnits
\end{tabular}

1 After completion of routine 3.2, load program-both sides-and continue at step 2 or step 6, as appropriate

- If tacking while beating to windward,

2 Calculate and display optimum tacking angle (Wto)

A DDD.d
3 Calculate and display optimum vessel speed (So)

B knots
4 Calculate and display optimum speed of apparent wind (AWO)

C knots
5 Calculate and display optimum angle of apparent wind (WaO) \ddagger

RUN DDD.d

- If tacking while sailing downwind,

6 Calculate and display optimum tacking angle (Wto)

E DDD.d
7 Calculate and display optimum downwind tacking speed (Sdo)

D knots
8 Calculate and display optimum speed of apparent wind (AWo)

C knots
9 Calculate and display optimum angle of apparent wind (WaO)

RUN DDD.d
\ddagger To take leeway into account, subtract the leeway angle.
representing optimum vessel speed (So) and tacking angle (Wto) which are drawn from polar performance curves. As noted in section 3.5, the necessary coefficients and exponents for these equations are obtained for the SR-52 by means of routine 3.8 .

The sequence of routines used on the SR-52 in the calculations for optimum sailing is best seen in diagrammatic form.

START

Enter apparent wind, vessel speed, current, and destination data.
Routine 3.2

Calculate optimum tack course, vessel speed, and apparent-wind speed and angle.

Routine 3.11
Calculate speeds and courses made good, and time on tacks. Routine 3.3

> Calculate distance and bearing to the mark.
> Routine 3.4

Figure 3.11, along with the data in table 3.6, can be used to test the programs and routines for the SR-52. The order in which the data is entered in these routines is slightly different from the order in routine 3.9 for the HP-67 and HP-97, and the sign convention used for entering variation and deviation is just the reverse, but the answers provided by the two calculators are identical. The individual who is planning to use the SR- 52 will of course find it convenient to make changes in his version of table 3.6 , so that it corresponds to the presentation of the data in the routines for his calculator.

3.6 Downwind Sailing

A sailing vessel will usually make better time on a broad reach than on a dead run, especially in light airs. If the additional speed more than makes up for the additional distance sailed, tacking downwind is desirable. The calculator can be used to determine whether tacking downwind is faster than direct sailing in any particular instance, taking into account wind speed and direcion, set and drift of current, course to the mark, and the vessel's downwind sailing performance. Also, it can indicate the tack courses which will result in maximum speed to the mark.

This is another of the situations in which the data embodied in a yacht's polar performance curves is used to obtain quantitative answers. For example, the yacht whose performance is shown in the curves of figure 3.9 has a speed directly downwind (ie., at a tacking angle of 180 degrees) of 2.0 knots when the modified-true-wind speed is 4.0 knots; at a tacking angle of 138 (or 222) degrees the vessel's speed is 2.85 knots, or 1.43 times as great. The distance
traveled is 1.35 times as long on either of these tacks as on the direct course. Accordingly, the time required for the journey will be 1.35/1.43 of the time required for the direct course, for a saving of 6 percent. This is a slender difference, and an adverse current can more than offset it, making direct sailing faster.

3.12. Sailing Directly Downwind

Furthermore, as shown in figure 3.9, the advantage gained by tacking downwind disappears at higher wind velocities. At a wind speed of 10.0 knots, the vessel's downwind speed when tacking is only slightly greater than its speed when sailing directly downwind; at 16.0 and 22.0 knots, the speed gained by tacking rather than sailing directly downwind is negligible.
3.6.1 Sailing Directly Downwind Figure 3.12 illustrates the situation of a vessel sailing downwind in the presence of current, when the mark is somewhat off the wind. The navigation problem is to determine the course to be steered to make good the bearing of the mark, and the tactical problem is to forecast the elapsed time to the mark.

The matter is complicated by the fact that vessel speed varies with tacking angle in a complex fashion; figure 3.12 contains a section of a typical polar curve, like those of figures 3.8 and 3.9 , showing the relationship between boat speed and tacking angle in the downwind tacking sector when a modified true wind of a particular speed is present. The navigation problem is solved by finding which vessel speed (S) and tacking angle (Wt) yield a vector that combines with the current vector in such a way that the resultant lies on the track from the vessel's starting position to the mark.

Before the calculator can be used to obtain this answer, some way must be found to store in its memory the polar curves in the downwind region, so that a curve can be reproduced for the value of modified true wind found to be present at the time in question. The curve that is needed is the one shown in figure 3.12-the smooth line that joins the end points of all of the possible speed vectors in the downwind sector; if this curve can be reproduced, it will be possible to test for the tacking angle that yields the correct result.

Figure 3.13 provides another view of this curve, this time labeled to show the quantities that must be measured and stored as a preliminary step toward reproducing it. These include the vessel speed going due downwind ($S d$), the vessel speed on the port and starboard tacks at the point of maximum speed projected in the downwind direction (Sdo), and the angular shift from due downwind to the heading that produces this maximum speed ($\Delta W / 2$). Also employed is $\Delta S / S d$, a ratio showing the relationship to the due-downwind speed of the difference (ΔS) between vessel speed at the optimum tacking angle and vessel speed on a course due downwind; this ratio is obtained because its alterations as wind speed varies are more readily stored in the calculator's memory than are the changes in ΔS alone.

The curve and the quantities $S d, S d o, \Delta W / 2$, and ΔS-defined as features of it—are shown for only a single value of modified true wind. Figure 3.9, which shows a number of curves, each for a different modified true wind, is a reminder that many such curves exist; it would be highly coincidental if the actual modified true wind encountered during a particular downwind sail were one for which a single polar curve had been constructed and stored.

Therefore, the next step is to determine the manner in which $S d, S d o$, $\Delta W / 2$, and $\Delta S / S d$ vary with the modified true wind. Figure 3.9 shows the

3.13. Downwind-Speed Curve
point at which a vessel attains maximum downwind speed at each $M W$, so the values of $S d, S d o$, and $\Delta W / 2$ for each curve can be found at their appropriate locations. To store these curves in the calculator memory, a process similar to the one used in optimized sailing to windward is employed, the curves being represented by the coefficients, exponents, and constants of four different equations. Three of the curves-for $S d, S d o$, and $\Delta W / 2$-are based on the data in figure 3.9. The first table accompanying figure 3.14 shows this data for four different speeds of modified true wind.

With values like these as input, the equations for $S d$ and $S d o$ are obtained by means of the "Power" segment of routine 3.7 for the HP-67 and HP-97, or by means of routine 3.8 for the SR-52; similarly, the values for $\Delta W / 2$ taken from the polar curves are utilized in the "Exponential" segment of routine 3.7 or in routine 3.12 for the SR-52. The resulting equations are representative of curves like those shown for $S d, S d o$, and $\Delta W / 2$ in figure 3.14.

INPUT DATA, OBTAINED FROM POLAR PERFORMANCE CURVES

MW	Sdo	Sd	$\Delta \mathbf{W} / 2$
4 kts	2.85 kts	2.0 kts	42°
10	4.9	4.0	32
16	6.4	6.0	22
22	7.7	7.4	15

Curve-Fitting Equations Based on the Input Data,
Obtained by Routine 3.7 or Routines 3.8 and 3.12

1. $\mathrm{Sd}=0.6804 \mathrm{MWW}^{0.7761}$ (Power Curve Fit)
2. $S d o=1.2735$ MW $^{0.5323}$ (Power Curve Fit)
3. $\Delta W / 2=53.0025 \boldsymbol{e}^{-.0539} \mathrm{MW}$ (Exponential Curve Fit, 4-16 kts)

VALUES PROVIDED BY EQUATIONS 1 AND 2

MW	Sdo	Sd	$\Delta \mathbf{S}$	$\Delta \mathbf{S} / \mathbf{S d}$
4 kts	2.8567	1.9951	0.8616	0.4319
6	3.6181	2.7329	0.8852	0.3239
8	4.2786	3.465	0.8621	0.2523
10	4.8728	4.0624	0.8104	0.1995

Curve-Fitting Equation Based on Calculated Values of $\Delta \mathbf{S} / \mathbf{S d}$,
Obtained by Routine 3.7 or 3.13
$\Delta S / S d=0.7819-0.2541 \ln M W$ (Logarithmic Curve Fit)
3.14. Downwind Performance Factors

Routine 3.12 (SR-52)

Delete	$y \rightarrow x^{\prime}$	$x \rightarrow y^{\prime}$	$\rightarrow b$	
Initialize	x_{i}	y_{i}	$\rightarrow a$	$\rightarrow r^{2}$

EXPONENTIAL CURVE FIT (DOWNWIND TACKING SECTOR- $\Delta W / 2$)

Step \begin{tabular}{lllll}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

Before beginning, make sure D/R switch is set to D.
1 Load program—both sides
2 Initialize
A
For each value of modified-true-wind speed (MW), starting with the lowest and continuing to a maximum of 16 knots, perform steps 3-4; then continue at step 5.

3 Enter MW that labels one of the polar performance curves
knots
B
4 Enter corresponding value for $\Delta W / 2$ the angular interval between due downwind and the heading that produces optimum speed downwind

DDD.d
C
5 Calculate and display coefficient (a) of curve-fitting equation $\triangle W / 2=a e^{\text {bMW }}$

D \pm n.nnnn
6 Calculate and display exponent (b) of curve-fitting equation $\triangle W / 2=a e^{b M W}$
7 Calculate and display coefficient of correlation (should be between 0.8 and 1.0)

2nd $D^{\prime} \quad \pm n . n n n n$

The values obtained for a and b are incorporated into the program for routine 3.11, in accordance with the instructions in the Appendix.

The next step is to determine ΔS (the difference between $S d o$ and $S d$) for wind speeds of $4.0,6.0,8.0$, and 10.0 knots. Though used in the earlier calculations, values for wind speeds above 10 knots are unnecessary here, since for most sailboats the change in vessel speed resulting from a shift in tacking angle becomes insignificant once the wind reaches $10-14$ knots. The necessary values of $S d o$ and $S d$ can be calculated by means of the coefficients and exponents obtained in routine 3.7 or routine 3.8 . Next, $S d$ at each of the four 202

Routine 3.13 (SR-52)

LOGARITHMIC CURVE FIT (RATIO $\Delta S / S D$)

Step \begin{tabular}{cccc}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\end{tabular}

Data for this sequence consists of values for $\Delta S / S d$ for four values of $M W$ in the range of 4-10 knots. As explained in the text, the method of obtaining this data is as follows: First, select four values of modified-true-wind speed (MW) in the range of 4-10 knots. Next, for each of the selected wind speeds calculate the corresponding due-downwind vessel speed ($S d^{\prime}$) and optimum downwind tacking speed (Sdo), by means of steps 14-19 and steps 20-25 of routine 3.8. Then, for each of the selected wind speeds subtract $S d$ from Sdo to obtain ΔS. And finally, for each of the selected wind speeds divide ΔS by $S d$ to obtain $\Delta S / S d$.

Before beginning, make sure D/R switch is set to D.
1 After preparation of the data, load program-both sides
2 Initialize
A
For each value of MW, starting with the lowest, perform (steps 3-4); then continue at step 5.
3 Enter MW
knots
B
4 Enter corresponding value for $\Delta S / S d$
n.nnnn

C
5 Calculate and display constant term (a) of curve-fitting equation
$\Delta S / S d=a+b i n M W$
D \pm n.nnnn

6 Calculate and display coefficient of the natural logarithm term (b) of curve-fitting equation $\Delta S / S d=a+b n M W$

2nd $D^{\prime} \quad \pm$ n.nnnn
7 Calculate and display coefficient of correlation (should be between 0.8 and 1.0)

E n.nnnn
The values obtained for a and b are incorporated into the program for routine 3.11, in accordance with the instructions in the Appendix.

215 Dant Conand V/anaion Tantaina Amala
$-\begin{array}{ll}\circ & \circ \\ \infty & \stackrel{\sim}{\sim} \\ \infty & \circ\end{array}$

$\stackrel{\circ}{\circ}$
wind speeds specified is divided into ΔS, and the values for $\Delta S / S d$ are recorded, as shown in the right-hand column of the second table accompanying figure 3.14. These serve as input to the "Logarithmic" segment of routine 3.7 for the HP-67 and HP-97, or to routine 3.13 for the SR-52, both of which supply the necessary constant (0.7819 , in this instance) and coefficient (-0.2541 , in this instance). The corresponding curve is shown in figure 3.14.

The constants, coefficients, and exponents provided by these routines are incorporated as needed into the programs for routines 3.16 (Direct-Downwind Sailing) and 3.18 (Downwind Tacking) on the HP-67 and HP-97, and for routine 3.11 (Optimum Tacking) on the SR-52. Instructions for inserting the values into the respective programs are given in the Appendix.

When all this information has been stored, the calculator has available, for utilization in the downwind routines, all the necessary data for a particular vessel concerning the variation of the sailing parameters with changes in wind speed. What remains to be supplied is the actual shape of the downwind polar performance curve; this is accomplished by calculating and storing the Fourier series coefficients for one such curve.

A curve of the type required is shown in figure 3.15. This is the downwind sector of the polar performance curve in figure 3.9 for a wind speed of 4.0 knots. Actually, only half of the curve is constructed-from a tacking angle of 180 degrees (dead downwind) to the optimum downwind tacking angle (in this instance 138 degrees); the other half is simply a mirror image of this one. The curve is then marked at a series of points equidistant along the tackingangle axis, the minimum number of points being six for the SR- 52 and seven for the HP-67 and HP-97; since the total number of points (for both halves of the curve) is double this amount, there will be at least twelve or fourteen

Table 3.7 Samples for Calculation of Fourier Coefficients

	Sample Number	Boat Speed (S)	Sample Value (S-Sd)
Samples taken from	1	2.06	.06
figure 3.15	2	2.13	.13
	3	2.23	.23
	4	2.35	.35
	5	2.50	.50
	6	2.68	.88
	7	2.85	.68
Repeat of samples	8	2.68	.50
6 through 1	9	2.50	.35
	10	2.35	.23
Sample at start (and end)	11	2.23	.13
of interval of curve	12	2.13	.06

samples altogether, and the total will be-as it must for these calculations -an even number. It is perfectly acceptable for the interval between the tacking angles sampled to be nonintegral. For instance, if $S d$ and $S d o$ are separated by 53 degrees, and if seven samples are to be taken from the half curve, the interval will be 7.6 degrees. In the curve in figure 3.15 , the angular interval of the downwind tacking sector ($\Delta W / 2$) is 42 degrees; dividing that interval into seven parts of 6 degrees each provides fourteen samples across the whole curve. For each of the tacking angles chosen, the boat speed is recorded, along with the difference between that speed and the speed ($S d$) at the central tacking angle (180 degrees)-in this instance 2.0 knots. The results are arranged as shown in table 3.7.

The calculation of the Fourier-series coefficients is done by routine 3.14 for the HP-67 and HP-97 or routine 3.15 for the SR-52.* For the HP-67 and HP-97, seven coefficients are obtained, while for the SR-52, with its more limited memory capacity, six coefficients are found. These coefficients are then incorporated into the programs for the direct-downwind routines (3.17 and 3.19). The program listed in the Appendix for routine 3.17 contains the following Fourier coefficients, which apply to the downwind section of the 4.0 -knot polar curve in figure 3.9:

$a_{0} / 2$	0.3393 (from $a_{0}-0.6786$-as supplied by the routine)
a_{1}	-0.3546
a_{2}	0.0639
a_{3}	-0.0442
a_{4}	0.0155
a_{5}	-0.0183
a_{6}	0.0063

The program listed for routine 3.19 contains the coefficients for $a_{1}-a_{5}$ and $a_{0} / 2$, as specified just above. These values can be used in testing the programs and routines-for example, in solving the problems, described in section 3.6.6, involving the comparison of direct sailing with downwind tacking.

[^14]Routine 3.14 (HP-67/97)

FOURIER SERIES

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
2 Initialize fa
3 Enter total number of samples (an even number greater than 12)
nn
ENTER
4 Enter number of output coefficients required (7)
n A
5 Enter order of first coefficient 0

B
6 Enter value of first sample
n.nn

C
7 Repeat this operation for each of the other samples, and continue with step 8 or steps 9-10, as appropriate

C
8 On the HP-97, calculate and display
Fourier coefficients (normally $a_{0}-a_{6}$)
D $\pm n . n n n n$
9 On the HP-67, calculate and display the first Fourier coefficient (normally a_{0})

D \pm n.nnnn
10 Calculate and display the remaining Fourier coefficients (normally $a_{1}-a_{6}$); this step must be repeated for each coefficient

The values obtained for $a_{0}-a_{6}$ are utilized in the program for routine 3.16, and are incorporated into the program for routine 3.17, in accordance with the instructions in the Appendix. The values for $a_{1}-a_{6}$ are used as calculated; a_{0} must be converted into $a_{0} / 2$.

Routine 3.15 (SR-52)

$c_{j ;} ; c_{j+1}$	$c_{j+2} ; c_{j+3}$	$c_{j+4 ; c_{j+5}}$	$c_{j+6 ; c_{j+7}}$	$a_{0} / 2$
N, J	r_{k}	Sin Coef	1 Coef	Initialize

FOURIER SERIES

Step	Input Procedure DatalUnits	Keys	Output Data/Units
1	Load program—both sides		
2	Set D/R switch to R; if this is not done, the display will flash when step 3 is performed		
3	Initialize	E	
4	Enter total number of samples (an even number greater than 10)	A	
5	Enter order of first coefficient 1	A	
6	Enter value of first sample	B	
7	Repeat this operation for each of the other samples	B	
8	Calculate and display Fourier coefficient a_{1}	2nd A^{\prime}	$\pm \mathrm{n} . \mathrm{nnnn}$
9	Calculate and display Fourier coefficient a_{2}	RUN	\pm n.nnnn
10	Calculate and display Fourier coefficient a_{3}	2nd B'	$\pm \mathrm{n}$.nnnn
11	Calculate and display Fourier coefficient a_{4}	RUN	$\pm \mathrm{n} . \mathrm{nnnn}$
12	Calculate and display Fourier coefficient a_{5}	2nd C^{\prime}	$\pm \mathrm{n} . \mathrm{nnnn}$
13	Calculate and display Fourier coefficient $a_{0} / 2$	2nd E^{\prime}	$\pm \mathrm{n} . \mathrm{nnnn}$

The values obtained for $a_{1}-a_{5}$ and $a_{0} / 2$ are utilized in the program for routine 3.11, and are incorporated into the program for routine 3.19, in accordance with the instructions in the Appendix.

3.16. Determining Course to Steer Downwind

The Fourier coefficients are used by the programs to reproduce the downwind polar diagram for one particular wind speed-4.0 knots in the instance just discussed. If the actual wind speed, as calculated during the preliminary steps of the downwind routine, is different, compensating adjustments in the overall downwind curve are made automatically. The calculator is then able to compute the vessel speed at any heading within the downwind tacking sector, for the particular wind speed being experienced.

The method of calculation that yields a course to steer to reach the mark in the presence of current is illustrated in figure 3.16. Once the necessary programs and data have been entered, the operations required are performed automatically. The process starts, arbitrarily, at the tacking angle corresponding to $S d o$ on the starboard tack. The speed vector at this angle (S1) is combined with the current vector to produce a resultant, shown by the dotted line, whose difference in direction from the track to the downwind mark is labeled Error 1. A second trial is automatically made, for a new heading, with the speed vector $\mathbf{S 2}$, producing a resultant with a smaller error in direction (Error 2). The trial-and-error process continues until the error has been reduced to less than 0.5 of a degree on the HP-67 and HP-97, or less than 1.0 degree on the SR-52-i.e, until there has been located the speed vector (S3 in the example shown) which combines with the current vector to produce the required course made good. The course to steer is then displayed, along with the time required to reach the mark and the speed made good.

3.6.2 Direct-Downwind Sailing on the HP-67 and HP-97 Even when no current is present, as in the case illustrated in figure 3.17, the Fourier-series representation of the downwind polar curve is used in the calculations to determine the course to steer and the speed made good in the direction of the mark. The data for this problem, and the calculated results, are shown in the second line of table 3.8.

Routines 3.16 and 3.17 are used to obtain the solution on the HP-67 and HP-97.

The initial conditions are set, and the preliminary calculations are performed, by means of routine 3.16. The entry of values for wind, vessel speed, and angle of heel, obtained from measurements made on board, results in the display of a value for the speed of the modified true wind (here, 4.0 knots) and a tacking angle (here, 180 degrees). Next, the vessel's compass course, and variation and deviation, are entered, at either $\quad \mathrm{B}$ or C , and the direction of the modified true wind $\left(5.0^{\circ}\right)$ is displayed. The entry of values for set and drift of current, and for true bearing and distance to the mark, followed by the pressing of E, completes routine 3.16 .
wind Sailing

ER	DISPLAY			ENT.	DISPLAY			ENTER	DISPLAY ${ }^{1}$			
E 0 0 0 0 0 0									$$	0 5 3 0 0 0 0 0		
Dr	SMG1	CMG1	Ct2	Dev	Cc2	SMG2	CMG2	Btm Dm	D1	$\Delta \mathrm{T} 1$	$\Delta \mathrm{T} 2$	Total T
0	2.86	142.28	227.72	0	239.72	2.86	227.72	$\begin{array}{ll} 187.0 & 3.0 \\ 187.0 & 3.0 \end{array}$	1.96	h. m. s. 04114	h. m. s. 04429	$\left[\begin{array}{c} \text { h. m. s. } \\ {\left[\begin{array}{lll} 1 & 25 & 43 \end{array}\right]} \\ 1 \end{array} 2932\right.$
$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.97 \\ & 1.71 \end{aligned}$	153.38	227.72	0	239.72	3.30	244.49	$\begin{array}{ll} 187.0 & 3.0 \\ 187.0 & 3.0 \end{array}$	2.53	1178	03011	$\left.\left\lvert\, \begin{array}{rrr} {[1} & 47 & 19 \end{array}\right.\right]$

${ }^{1}$ The values in brackets, obtained by adding $\Delta T 1$ and $\Delta T 2$, are not displayed.

3.17. Direct-Downwind Sailing-No Current

Routine 3.16 (HP-67/97)

St Dr				
AW S Wa $\mathrm{H} \rightarrow \mathrm{MW}, \mathrm{Wt}$	Cc Var De -Wm	Cc Var De $\rightarrow \mathrm{Wm}$	Btm Dm	Calculate

DIRECT-DOWNWIND SAILING I

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
2 Enter speed of apparent wind
3 Enter vessel speed
4 Enter angle of apparent wind (between 0 and 180 degrees, measured from bow on either side)

DDD.d
A
5 Enter angle of heel (port or starboard), DD.d
A

- Calculate and display speed of modified true wind (MW),
- Tacking angle (Wt) relative to modified true wind, and continue at step 6 or 9 , as appropriate
knots
A
knots A

If on port tack,
6 Enter compass course DDD.d B
7 Enter variation ($+E,-W$), even if 0 DD.d B
8 Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0 , DD.d B

- Calculate and display direction of modified true wind (Wm), and continue at step 12
- If on starboard tack,

9 Enter compass course
10 Enter variation $(+E,-W)$, even if 0
DDD.d
C

11 Enter deviation $(+E,-W)$, even if 0 ,
DD.d
C
DD.d C

- Calculate and display direction of modified true wind (Wm)
12 Enter set of current, even if 0
13 Enter drift of current, even if 0
DDD.d
fa

14 Enter true bearing from start of downwind leg to downwind mark

D
knots fa

DDD.d

DDD.d

Step \begin{tabular}{ccccc}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

15 Enter true distance from start of downwind leg to downwind mark naut. mi. D

16 Start calculation E

Continue calculations by means of routine 3.17.

Routine 3.17 (HP-67/97)

DIRECT-DOWNWIND SAILING II

Step	Procedure	Input Data/Units	Keys	Output Data/Units
1	After completion of routine 3.16, load program-both sides			
2	Calculate and display total time required to reach mark by direct-downwind sailing. The display will periodically pause; the number displayed is the angular error between trial course made good and required course made good. When this is reduced to less than 0.5 of a degree, the total time required for the downwind leg will be continuously displayed		A	H.MS
3	Calculate and display compass course to steer		B	DDD.d
4	Calculate and display speed made good to downwind mark		C	knots

The program for routine 3.17 is then loaded, and when A has been pressed, the iterative calculation of vessel speed along various headings is automatically performed, until the heading is found that results in a course lying within 0.5 of a degree of the bearing to the mark (here, within 0.5 of a degree of 187°). At this point, the calculator displays the time required to reach the mark (1 hour, 29 minutes, 32 seconds). The display of compass course to steer $\left(199.32^{\circ}\right)$ is then obtained by pressing B, and that of speed made good (2.01 knots) by pressing C . In the table, the listings for these last two items are to be found toward the center of the row.

The process of repeated calculation is fairly lengthy. In this particular case, the time required to obtain an answer at step 2 of routine 3.16 is 2 minutes, 14 seconds, on the HP-97 and 2 minutes, 9 seconds, on the HP-67.

The same procedures are followed when current is present, as shown in figure 3.18 and in the fourth line of table 3.8. In this instance, the set $\left(300^{\circ}\right)$ and drift (1.0 knots) of current are entered at steps 12 and 13 of routine 3.16. The time required to reach the downwind mark turns out to be 1 hour, 45 minutes, 8 seconds; the course to steer is 175.44°; and the speed made good is 1.71 knots.
3.6.3 Direct-Downwind Sailing on the SR-52 Routine 3.19 is used for the calculation of course to steer and time and speed to the mark in directdownwind sailing. It is part of a sequence also involving other routines, which is described in section 3.6.7.
3.6.4 Downwind Tacking Tacking downwind is the counterpart of tacking on optimum courses while beating to windward. Figure 3.19 shows a vessel reaching the mark by taking first a starboard and then a port tack, each on the heading that provides maximum projected speed in the downwind direction. The current vector is added to the speed vector on each tack, and the resultant track over the bottom is shown-along the speed-made-good vector on the starboard tack, and along the lay line on the port tack. As in beating to windward, instead of the two long tacks, many shorter ones could be made; the time to the mark would be the same (not counting the time required to come about to the new tack) provided all of the tacks were parallel to one or the other of those shown here.
3.6.5 Downwind Tacking on the HP-67 and HP-97 The process of calculating the course to steer on each tack, and the corresponding course and speed made good, is identical in downwind tacking with that used in beating to windward. In fact, routine 3.10, the second of the two routines by means of which these calculations are performed for the beat to windward, is employed here as well. The preliminary calculations are carried out by means of routine 3.18, the counterpart of routine 3.9.

3.18. Direct-Downwind Sailing-Current Present

3.19. Tacking Downwind, with Current

Routine 3.18 (HP-67/97)

Wao	$\stackrel{\text { PORT }}{\mathrm{Cmo}} \mathrm{Cco}$	$\xrightarrow[\mathrm{Cmo}]{\mathrm{StBD}} \mathrm{Cco}$		
AW S Wa $H \rightarrow M W, W t$	$\underset{\mathrm{Cc}}{\mathrm{PORT}} \mathrm{Ve} \longrightarrow \mathrm{Wm}$	$\underset{\substack{\text { stвd } \\ \mathrm{Cc} \\ \operatorname{Var} \mathrm{De} \longrightarrow \mathrm{Wm}}}{\text { and }}$	Sdo	AWo

TACKING DOWNWIND

Step	Procedure	Input Data/Units	Keys	Output Data/Units
1	Load program—both sides			
2	Enter speed of apparent wind	knots	A	
3	Enter vessel speed	knots	A	
4	Enter angle of apparent wind (between 0 and 180 degrees, measured from bow on either side)	DDD.d	A	
5	Enter angle of heel (port or starboard),	DD.d	A	
	Calculate and display speed of modified true wind (MW),			knots
	Tacking angle (Wt) relative to modified true wind, and continue at step 6 or 9 , as appropriate			DDD.d
-	If on port tack,			
6	Enter compass course	DDD.d	B	
7	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	B	
8	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0 ,	DD.d	B	
	Calculate and display direction of modified true wind ($W m$), and continue at step 12			DDD.d
-	If on starboard tack,			
9	Enter compass course	DDD.d	C	
10	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	C	
11	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0 ,	DD.d	C	
	Calculate and display direction of modified true wind (Wm)			DDD.d
12	Calculate and display optimum vessel speed downwind (Sdo)		D	knots
13	Calculate and display optimum speed of apparent wind (AWO)		E	knots
14	Calculate and display optimum angle of apparent wind (Wao) and continue at step 15 or 17, as appropriate		f a	DDD.d

| Step | Procedure | Input
 Data/Units | Keys |
| :--- | :--- | :--- | :--- | | Output |
| :---: |
| Data/Units |

Two different problems involving downwind tacking have been solved. In the first case, shown in figure 3.20, no current is present. The data for this case is given on the first line of table 3.8. Routine 3.18 is used to provide the optimum vessel speed and the speed and angle of the apparent wind (steps 1214) and the compass course to steer to attain these values (step 16). Routine 3.10 then provides the rest of the information needed. After set and drift of current (zero in this case) have been entered, speeds and course made good on the present tack and true course on the next tack are shown. Then entry of deviation (also zero) results in the display of the compass course and course and speed made good on the next tack; and entry of the initial bearing and distance to the mark is followed by the display of distance to the lay line and of time to the lay line and along the lay line to the mark, which, added together, give the time to the mark from the starting position-in this instance, 1 hour, 25 minutes, 43 seconds. When necessary, distance and bearing to the mark (not listed in table 3.8) can be obtained by means of the last step in the routine.

In the second case, shown in figure 3.21, current is present. The procedures for entering and calculating the information (recorded on the third line of table 3.8) are much the same. In this instance, of course, values of 300° and 1.0 knot are entered for current in steps 3 and 4 of routine 3.10. The total sailing time turns out to be 1 hour, 47 minutes, 19 seconds.

3.6.6 Comparison of Direct Sailing with Downwind Tacking The downwind routines make it possible to determine whether under particular conditions tacking or sailing directly to the mark will be faster. A comparison of the first two lines in table 3.8 indicates that in this case, in which no current is present, tacking is faster. The speed made good of 2.86 knots on each downwind tack results in a shorter total time to the mark than does the speed made good of 2.01 knots for direct sailing, even though on the tack courses the total distance is greater, as shown in figure 3.20.

The next case, illustrated in figure 3.21, introduces current into the situation, and direct sailing becomes quicker, as indicated by the third and fourth lines of table 3.8. In this example, the vessel must steer a course that heads into the current. A compass course of 175.44° (i.e., a true course of 163.44°) is necessary to offset the effect of the current and enable the vessel to reach a mark that bears 187° true. In other words, because of the current, the vessel must sail away from the mark, onto a faster heading, 22 degrees off dead downwind (185°), in order to make good a course directly to the mark. The vessel's speed (as measured from the polar performance curve) increases from 2.01 to 2.31 knots in consequence; the speed made good (reflecting the adverse current) is 1.71 knots.

The speed increase resulting from the faster heading is enough to make the sailing time on the direct course less than it would be on the two tacks at the optimum speed for downwind progress. Tacking requires the longer journey, and in this case, the longer time to reach the mark. Direct sailing takes 1 hour, 45 minutes, 8 seconds; tacking-as we have seen-takes 1 hour, 47 minutes, 19 seconds.

3.6.7 Downwind Tacking and Direct Sailing on the SR-52 The sequence

 of routines used on the SR-52 in the calculations for downwind sailinglike the sequence for optimum sailing to windward-is best shown diagrammatically.Four of the routines listed here have been discussed in earlier sections: routines 3.2, 3.3, and 3.4 are used also for both cruising and optimum sailing to windward, and routine 3.11 is used to provide optimum tack courses and speeds for beating as well as for downwind sailing. The data incorporated into the single program for routine 3.11 (all derived from the polar performance curves for a particular vessel, as explained in section 3.5) is the same as that used in the separate programs for several routines on the HP-67 and HP-97. As throughout, the specific instructions for using the program for the routine are to be found in the Appendix.

Routine 3.19, since it is concerned with sailing directly downwind, requires a program that can reconstruct the polar curve of the vessel in the downwind sector. As was shown in section 3.6.1, the Fourier-series coefficients required for this purpose-four-decimal-place numbers-are obtained by means of

Enter apparent wind, vessel speed, current, and destination data. Routine 3.2

Calculate optimum tack course, vessel speed, and apparent wind-speed and angle.

Routine 3.11

routine 3.15 ; the instructions for incorporating them into the program for routine 3.19 are given in the Appendix.

Once the programs for routines 3.11 and 3.19 embody the data for the vessel in question, the sequence of five routines is ready for use in attaining optimum sailing both to windward and downwind.

The data recorded in table 3.8, for the downwind examples shown in figures 3.20 and 3.21 , can be employed to test the reader's own programs for this sequence of routines. For routines 3.11 and 3.19 , test program cards incorporating the constants derived from the curves of figure 3.9 will of course be necessary. As in the beating routines, there are minor differences in the order in which data is entered for the respective calculators. Also, the signs employed for variation and deviation are reversed. Essentially, however, the entry and use of data is the same in the SR-52 as in the HP-67 and HP-97.

Routine 3.19 (SR-52)

DIRECT-DOWNWIND SAILING

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

 Keys

Output

DatalUnits
\end{tabular}

1 After completion of routine 3.3, load program-both sides
2 Calculate and display speed made good to downwind mark (this may take up to two minutes of calculation time)

C knots
3 Calculate and display total time required to reach mark by direct-downwind sailing

RUN H.MS
4 Calculate and display true course to steer
5 Enter deviation ($+W,-E$), ${ }^{1}$ even if 0 , DD.d
D DDD.d

- Calculate and display compass course to steer

DDD.d

[^15]There are also some minor differences between the results obtained on the SR-52 and those obtained on the HP-67 and HP-97. The elapsed time for sailing directly downwind shown on the SR-52 is 1 hour, 45 minutes, 11 seconds-three seconds more than the time shown on the Hewlett-Packard models-when current is present. This difference results from the fact that the greater memory capacity of the HP-67 and HP-97 permits the use of a seventh term (a_{6}) in the Fourier series, which the SR-52 cannot accommodate. Also, as has been mentioned, the HP-67 and HP-97 calculate a course to steer that is less than 0.5 of a degree off the mark; the SR-52 calculates this course to the nearest degree.

ABBREVIATIONS Used in the Routines of Chapter 4

2ndMo second month
N north
naut. mi. nautical miles
S vessel speed; south
SD semidiameter
SHA sidereal hour angle
T time
Thmax time of maximum sextant altitude
Ts time of sextant observation
Var variation
W west
Y year
\dagger following a data-entry item indicates that it is entered by pressing ENTER instead of a letter key.
\rightarrow following a data-entry item indicates that its entry initiates (without further keyboard activity) the calculation and display of one or more results.

+ indicates that the item (e.g., north declination) is entered simply by pressing the appropriate numerical keys.
- indicates that the item is entered by pressing the appropriate numerical keys followed by CHS.

4.1 Introduction

The programmable scientific calculator is extraordinarily useful as a means of solving celestial-navigation problems. It enables one to convert sextant and time readings directly to the latitude and longitude of one's position-entirely without employing almanacs, sight-reduction tables, or plotting sheets. The calculator can also be used to smooth and make more accurate the observations taken on rough seas, thereby increasing the accuracy of the final position determinations.

Elimination of the almanac is possible because, given the necessary data, the calculator itself computes the positions of the celestial bodies involved. The method is applicable regardless of which bodies are used. Fixes may be derived with the aid of the calculator from observations on the sun or stars, the planets, or the moon. A new publication issued by the U.S. Naval Observatory, Almanac for Computers,* provides data that can be stored on the magnetic cards of the HP-67 or HP-97; when this data is used in the routines presented in the following sections, the position of the celestial object in question is freshly computed as part of the sight reduction. After the loading of the appropriate data card or cards, calculation of celestial lines of position requires only the entry of a few easily observed data items. When two lines of position have been calculated, the latitude and longitude of the fix are obtained by means of a short additional routine.

If readings are being made in rough seas, the employment of regression techniques to smooth sextant-altitude observations is desirable. The linear form of regression is used for observations on an object not at or near meridian passage; the parabolic form is used for observations on the sun at local noon. In both types of regression, readings taken over an interval of many minutes are fitted by the calculator to a smooth curve. An altitude selected from this smoothed data then becomes input to the appropriate routine for sight reduction or, in the case of the noon sun, the immediate calculation of a fix.

Since the reader is assumed to possess a working knowledge of celestial navigation, the basic principles and definitions will not be repeated here. The subject is covered in many books, written at many levels. The most authoritative and comprehensive treatment of celestial navigation is found in the latest

[^16]edition of "Bowditch"-American Practical Navigator, vol. 1 (Defense Mapping Agency Hydrographic Center, 1977), pp. 341-640.
The routines in this chapter are designed for the HP-67 and HP-97 only.

4.2 Regression for Accuracy Improvement

The application of regression methods to sextant-altitude measurements makes possible significant improvement in the over-all accuracy of celestial navigation. The principal reason for using these techniques is, of course, to reduce the effect of random, fluctuating disturbances in a sequence of sextant observations. Whatever the cause of these disturbances-the rising or falling of the height of eye of an observer on the bridge of a rolling ship, or the physical battering that bounces the sextant up and down while the "horizon" skips from nearby to distant wave tops-regression methods can smooth the results, revealing the underlying trend in the data.

The use of these methods involves the repeated observation of a celestial body, with the values for successive altitude-time pairs noted and entered into the calculator. If a number of observations are made-say five, six, or seven -over a two- or three-minute interval, the calculator routine will provide the best estimate of the altitudes that would have been observed under ideal circumstances, with the sequence of changes over time corresponding to a smooth curve (straight line or parabola). The employment of linear regression to smooth visual bearings made on charted objects was explained in section 2.2.2, and illustrated in figure 2.1. The same technique enables one to smooth most observations on celestial objects. Indeed, the celestial application of the method is even simpler than the coastwise in that no provision need be made in the program for a sequence which includes both the highest numerical values (near 360°) and the lowest (near 000°); sextant angles are never higher than 140° (values in excess of 90° can be encountered when taking backsights).
Linear regression can be used for a series of sextant altitudes observed relatively close to the time of meridian transit-provided the interval over which the observations are made is not too long. If five to seven observations are completed within three to five minutes, the result obtained with linear regression will be quite accurate for a sequence of observations as close as seven to ten minutes from the time of meridian transit. However, if observations are made both before and after meridian transit, the variation in sextant altitude with the passage of time is best represented by a parabola. The method of parabolic regression-not applicable in coastwise navigation-fits such a curve to the observed data. Once the parabola has been computed, its point of maximum altitude can be given by the calculator, for use in calculating the vessel's position. The employment of parabolic regression at meridian passage of the sun, with particular attention to the problem of obtaining the most accurate value possible for longitude, is discussed in sections 4.6-4.9.

Routine 4.1 (HP-67/97)

CELESTIAL LINEAR REGRESSION

Step \begin{tabular}{ccc}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
2 Clear; this step must be performed
E
3 Enter sequence of altitude-time pairs; for each pair, enter observed sextant altitude (corrected for index error), followed by

4 GMT of observation of altitude H.MS B
If an error is noted in the entry of altitude or time data before the corresponding letter key (A or B) is pressed, eliminate the incorrect data by pressing $C L X$; if the error is noted after the letter key has been pressed, clear the calculator by pressing E] and re-enter all data, starting at step 3.
5 Calculate regression coefficients
C
6 Enter GMT for which sextant altitude is required,
H.MS

D

- Calculate and display sextant altitude corresponding to time entered in preceding step, in degrees, minutes, and seconds

DD.MMSS
7 Clear, to start a new problem

E

The function of routine 4.1 is to provide smoothed values for celestial observations by means of the linear-regression method. The altitude-time pairs are entered at A and B, and calculation of the regression coefficients follows when C is pressed. Next, the time for which a sextant altitude is required is entered at D. Display of the calculated altitude follows automatically. An illustration of the use of linear regression for observations on the sun will be found in the top segment of table 4.2. This can be used to test the program; entry of the values listed for observed sextant altitude and time should yield the values for calculated altitude shown in the right-hand column.

4.3 Prerecorded Almanac Data Cards

All sight-reduction methods require knowledge of the positions of celestial objects at the moment of the sextant observations. Traditionally, this information was obtained from almanacs. Not long ago, techniques were developed which made it possible to generate these positions in the calculator itselfafter the loading of the necessary preliminary data-by entering the date and Greenwich Mean Time (GMT) of each observation. However, these methods were applicable only to sun and star observations; for observations of the moon or the planets, reference to the almanac was still required.

By contrast, the programs developed for this volume can accept observations on all bodies; the traditional almanac is completely replaced by a series of magnetic data cards incorporating information supplied by the Almanac for Computers. Thus, the moon, which is often visible during daylight hours, can be used as conveniently as the sun for daytime celestial fixes. During dusk or dawn observations, the four bright and conspicuous planets-Saturn, Venus, Jupiter, and Mars-can be given treatment uniform with that accorded the stars and the moon.

Table 4.1 Data Cards for One Year of Celestial Navigation

Bodies	Time Interval Covered on One Card (Two Sides)	Number of Cards per Year
Sun	2 months	6
Planets	2 months (per planet)	6 (per planet)
Moon	6 days	61
Stars (GHA Aries)	4 months	3
Stars (SHA and Dec) Apparent Places Mean Places 2 1 year (16 stars)	1 month (16 stars)	4 (to cover 64 stars)

${ }^{1}$ For accuracy to ± 1.3 minutes of arc.
${ }^{2}$ For accuracy to ± 0.5 minutes of arc.
The data cards should be prerecorded and kept ready for use. The number of cards required for a whole year of celestial navigation is shown in table 4.1. For the sun and each of the planets, one side of a magnetic card can accommodate the data for a month, so the year is covered by six cards, to be changed once every two months (a total of thirty cards for the sun and four planets). The moon requires a larger number of cards, which must therefore be changed more frequently. Each moon data card covers six days, so altogether sixty-one cards are needed for an entire year. This number can be reduced by recording moon cards only for periods when they will actually be required.

Data for the Greenwich hour angle (GHA) of Aries for two months is contained on one side of a card; hence, the year is covered by three cards, which need to be changed only once every four months. Stars also require a
set of cards recording data concerning sidereal hour angle (SHA) and declination (Dec). If values with an accuracy of ± 1.3 minutes of arc are acceptable, only the tabulated apparent place for the entire year need be used for each star. Since eight such entries (with the stars assigned identification numbers 18) can be contained on one side of one card, probably no more than three or four star data cards (covering forty-eight or sixty-four stars) will suffice for most navigational purposes. However, if somewhat greater accuracy is required (to ± 0.5 minutes of arc), a separate data card is made for each month, with each side once again holding the data for eight stars. These cards must, of course, be changed each month, and for sixty-four stars, four cards per month-for a total of forty-eight per year-will be required.

The stars most commonly used for celestial navigation are included in a group of fifty-seven. They are identified in the 1978 edition of the Almanac for Computers; in section F, "Stellar Tables," which gives the names and numbers of stars, along with their almanac parameters, the navigation stars are those that are numbered in the "NAV" column.

Routine 4.2 (HP-67/97)

CELESTIAL DATA CARDS

Step \begin{tabular}{ccccc}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

1 Load program
2 Clear; this step must be performed
A $\quad 1$
Star Data Card (Eight Apparent Yearly Places per Side)

After completion of steps 1-2, proceed as follows (steps 3-4) for each of eight stars:
3 Enter apparent SHA, from the stellar tables in the A/manac for Computers (section F in 1978 edition) DDD.dddd ENTER
4 Enter apparent declination ($+\mathrm{N},-\mathrm{S}$), from the A/manac (section F in 1978 edition)

DD.dddd
R/S
2-9
5 Finalize
E CRD

6 Record star data card, first side, and label with star names and corresponding numbers (1-8)

CRD
7 Clear CLx

For eight additional entries, repeat steps 3-5 and record star data card, second side.

Sun or Planet Data Card (One Month per Side)

8 After completion of steps 1-2, enter month number

1-12
B
0
9 Enter coefficients 0-5 for GHA, from the appropriate sun or planet columns in the Almanac (pp. C1-C6 in 1978 edition), pressing R/S following entry of each coefficient

10 Enter coefficients 0-5 for Dec, from the appropriate sun or planet columns in the A/manac (pp. C1-C6 in 1978 edition),
pressing $R /$ following entry of each coefficient
11 For sun only, enter coefficients 0 and 1
for $S D$, from the $A /$ manac (pp. C1-C6 in
1978 edition), pressing R/S following
 entry of each coefficient $\quad d_{0}-d_{1} \quad R / S \quad 1,2$
12 Finalize
$b_{0}-b_{5} \quad R / S \quad 1,2,3,4,5,0$

13 Record sun/planet data card, one side,
and label with appropriate name and date
13 Record sun/planet data card, one side,
and label with appropriate name and date interval.

E CRD

CRD
14 Clear
CLx
For an additional month of sun or planet data, repeat steps 8-13 and record sun/planet data card, second side.

> GHA Aries Data Card (Two One-Month
> Intervals per Side)

15	After completion of steps 1-2, enter month number for first monthly interval	1-12	B
16	Enter month number for second monthly interval	1-12	B

17 Enter coefficients 0-5 for GHA Aries for first monthly interval, from the appropriate columns in the Almanac (pp. C1-C6 in 1978 edition), pressing R/S following entry of each coefficient R/S $\quad a_{0}-a_{5}, 2,3,4,5,0$

18 Enter coefficients 0-5 for GHA Aries for second monthly interval, from the appropriate columns in the A/manac (pp. C1-C6 in 1978 edition), pressing R/S

 following entry of each coefficient$a_{1}-a_{5}$
R/S 1,2,3,4,5,0
19 Finalize
E
CRD
20 Record GHA Aries card, first side, and label with the two time intervals covered

CRD
21 Clear
CLx
For entries covering an additional two months of GHA Aries, repeat steps 15-19, and record GHA Aries card, second side.
Moon Data Card (Six Days per Card,
Requiring Both Sides)

25 Enter coefficients 0-5 for moon GHA for the six-day time interval, from the A/manac (pp. C7-C27 in 1978 edition),

| Step | Input
 Procedure | Output
 Data/Units | Keys |
| :--- | :--- | :--- | :--- | :--- |
| Data/Units | | | |

Routine 4.2 provides the instructions for recording all of the data cards employed in sight reduction except for the monthly star data cards used when accuracy better than ± 1.3 minutes of arc is required. These are prepared as shown in routine 4.3.

The reader who wishes to check the accuracy of his program listings by working out the examples discussed in the following sections will find the necessary data from the 1978 Almanac for Computers in table 4.9, at the end of this chapter.

Routine 4.3 (HP-67/97)

MONTHLY STAR DATA CARD

Step \begin{tabular}{ccccc}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program
2 Enter month number
1-12
A
For each of eight stars, proceed as follows (steps 3-12), obtaining all input data from the stellar tables in the A/manac for Computers (section F in 1978 edition):
3 Enter mean SHA
DDD.dddd
B
For SHA, proceed as follows (steps 4-7):

4 Enter H
5 Enter R
6 Enter S
7 Enter C
8 Enter mean declination ($+\mathrm{N},-\mathrm{S}$)
± 0.dddd
ENTER
± 0.dddd
ENTER
± 0.dddd
ENTER
± 0.dddd
C
DD.dddd
B

For Dec, proceed as follows (steps 9-12):

9 Enter H
10 Enter R
11 Enter S
12 Enter C
13 Finalize
14 Record monthly star data card, first side, and label with month and with star names and corresponding numbers (1-8)
15 Clear

± 0.dddd	ENTER
± 0.dddd	ENTER
± 0. dddd	ENTER
± 0. dddd	C
	E

For eight additional entries, repeat entire routine and record monthly star data card, second side.

4.4 Sight Reduction

Routine 4.4 (for the sun, stars, and planets) and routine 4.5 (for the moon only) provide the azimuth and intercept of a line of position. Either routine can be used ahead of the other. Information concerning the position co-ordinates of the celestial object is loaded from the appropriate data cards, and entries are made specifying the date and time, the latitude and longitude of the vessel's dead-reckoning or estimated position, height of eye, and the observed altitude of the object above the horizon. In the calculation of the second line of position required for a fix, the course made good and speed made good of the vessel (maintained-or averaged-between observations) are entered in place of latitude and longitude. These values can be calculated by means of routine 2.22. Where the two observations are simultaneous, course and speed are entered as zero in these steps.
If routine 4.4 or routine 4.5 must be repeated-as might be the case if some of the data originally entered turns out to be erroneous-it is essential to reload the necessary data card or cards (for star, Aries, sun, moon, or planet). Failure to do so will result in the display of incorrect results for the azimuth and intercept of the line of position.

Routine 4.4 (HP-67/97)

SIGHT REDUCTION-SUN, STARS, AND PLANETS

Step Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

Data/Units
\end{tabular}

1 Load program—both sides
Reducing Star Observations
2 After completion of step 1, load star data card-one side

| 3 Clear | | CLx |
| :--- | :--- | :--- | :--- |
| 4 Enter star number | $1-8$ | A |

5 Load Aries data card-one side
6 Clear CLx
7 Enter day of month, corresponding to GMT to be entered in step 8 or 9

ENTER
8 If data is in first month on Aries card, enter time of day (GMT)
H.MS A

9 If data is on second month on Aries card, enter time of day (GMT)
H.MS

B
For first line of position, proceed as follows (steps 10-11):
10 Enter vessel's DR or EP latitude (+N , -S)

DD.MMSS
ENTER
11 Enter vessel's DR or EP longitude (+W, -E),

DD.MMSS D

- Calculate and display azimuth of line of position, and continue at step 14

DDD.dd
For second line of position, repeat steps 2-9, and continue at step 12. If vessel is stationary between observations, or fix is to be calculated from a single DR or estimated position, enter course and speed as 0 in steps 12-13.
12 Enter true course made good between observations

DDD.d ENTER
13 Enter speed made good between observations,
knots E

- Calculate and display azimuth of line of position

Routine 4.5 (HP-67/97)

SIGHT REDUCTION-MOON

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides
2 Load moon data card-first side
3 Clear
4 Enter day of month, corresponding to

GMT to be entered in step 5

1-31
H.MS

5 Enter time of day (GMT)
6 Load moon data card-second side
7 Calculate and display declination
For first line of position, proceed as follows (steps 8-9):
8 Enter vessel's DR or EP latitude (+N , -S)

DD.MMSS
ENTER
9 Enter vessel's DR or EP longitude (+ W, $-E)$,

- Calculate and display azimuth of line of position, and continue at step 12

DD.MMSS D

CLX
ENTER
A

For second line of position, repeat steps 2-7, and continue at step 10. If vessel is stationary between observations, or fix is to be calculated from a single DR or estimated position, enter course and speed as 0 in steps 10-11.

10 Enter true course made good between observations

DDD.d
ENTER
11 Enter speed made good between observations,
knots
E

- Calculate and display azimuth of line of position

CLx B \pm DD.dddd

16 Enter observed sextant altitude (corrected for index error), in degrees, minutes, and seconds,

- Calculate and display intercept of line of position (+away, -toward)

DD.MMSS R/S

Routine 4.6 (HP-67/97)

FIX FROM CELESTIAL LINES OF POSITION

Step	Procedure	Input DatalUnits	Keys	Output DatalUnits

This routine is used following the calculation of two lines of position, by means of routine 4.4 and/or routine 4.5; since this data is retained by the calculator, no further input is necessary.
1 Load program
2 Calculate and display latitude of fix from two lines of position (for time of second observation),

- Longitude of fix
A \pm DD.MMSS

3 To obtain fix for time of first observation, calculate and display latitude of fix,

R/S \pm DD.MMSS
Longitude of fix
\pm DD.MMSS

The results supplied by the Sight Reduction routines are retained by the calculator. When two lines of position have been obtained-whether the observations were simultaneous, separated by a few minutes, or separated by hours -routine 4.6 can be used without additional keyboard entries to calculate the latitude and longitude of the fix.
As explained in section 4.2, the values for sextant altitude to be entered in the Sight Reduction routines may be obtained by regression methods, with linear regression used when the body observed is not at or near meridian transit, and parabolic regression used when the sun is observed both before and after meridian transit.

Table 4.2 Sun Line of Position, with Linear Regression
Linear Regression (Routine 4.1)

Observed Sextant Altitude	GMT	Calculated Sextant Altitude
$52^{\circ} 02.5^{\prime}$	170828	$52^{\circ} 02^{\prime} 43^{\prime \prime}$
$51^{\circ} 55.9^{\prime}$	171017	$51^{\circ} 55^{\prime \prime} 18^{\prime \prime}$
$51^{\circ} 48.6^{\prime}$	171137	$51^{\circ} 49^{\prime} 51^{\prime \prime}$
$51^{\circ} 46.0^{\prime}$	171256	$51^{\circ} 44^{\prime} 29^{\prime \prime}$
$51^{\circ} 37.5^{\prime}$	171429	$51^{\circ} 38^{\prime} 09^{\prime \prime}$

Sight Reduction (Routine 4.4)

DATA	
Date	January 27, 1978
GMT	171137
Latitude	$18^{\circ} 1^{\prime} 49^{\prime \prime} \mathrm{N}$
Longitude	$64^{\circ} 5^{\prime} 05^{\prime \prime} \mathrm{W}$
Limb	lower
Height of Eye	6 feet
Sextant Altitude	$51^{\circ} 49^{\prime} 51^{\prime \prime}$ (from regression, above)
CALCULATED RESULTS	
Azimuth of Line of	195.20°
Position	52.05°
Altitude of Sun	-0.14 nm
Intercept of Line of	
Position	

Table 4.2 illustrates the employment of routines 4.1 and 4.4 to obtain an accurate line of position even though the sextant observations, on the sun, have been made under very difficult conditions. The data in table 4.2 was obtained from sightings taken by an individual sitting on the deck of a twenty-six-foot sailboat pounded by five-foot seas. The values of latitude and longitude, for entry in steps $10-11$ of the Sight Reduction routine, were obtained by taking a series of vessel bearings on a buoy and lighthouse in the vicinity, and therefore represent the vessel's actual position. The displayed value of altitude
intercept, -0.14 nautical miles, indicates that the line of position calculated in this routine passes that distance away from the true position. If the sextant altitude actually observed at 171137 had been used, instead of the value calculated by regression methods, the altitude intercept displayed in the Sight Reduction routine would have been 0.91 nautical miles. This is an example of how the use of regression rather than a single observation can result in a considerable reduction in error.

Table 4.3 Fix on Two Celestial Objects
Sight Reduction

	First Observation (Routine 4.4)	Second Observation (Routine 4.5)
Body	Kochab	moon
Date	January 27, 1978	January 27, 1978
GMT	105700 (morning)	110100
DR Latitude	$18^{\circ} 20^{\prime} 08^{\prime \prime} \mathrm{N}$	
DR Longitude	$64^{\circ} 47^{\prime} 50^{\prime \prime} \mathrm{W}$	
CMG		50°
SMG		6.0 knots
Limb		lower
Height of Eye	10 feet	10 feet
Sextant Altitude	$34^{\circ} 08^{\prime} 33^{\prime \prime}$	25 ${ }^{\circ} 23^{\prime} 39^{\prime \prime}$
Fix (Routine 4.6)		
CALCULATED RESULTS		
Latitude	18920'21"N	
Longitude	$64^{\circ} 47^{\prime} 35^{\prime \prime} \mathrm{W}$	

Table 4.4 Running Fix, with Sun Lines of Position
Sight Reduction (Routine 4.4)

DATA		
	First Observation	Second Observation
Date	January 15,1978	January 15,1978
GMT	133500	171500
DR Latitude	$42^{\circ} 35^{\prime} 000^{\prime \prime} \mathrm{N}$	
DR Longitude	$64^{\circ} 50^{\prime} 00^{\prime \prime} \mathrm{W}$	78°
CMG		6.0 knots
SMG	lower	lower
Limb	10 feet	10 feet
Height of Eye	$14^{\circ} 36^{\prime} 27^{\prime \prime}$	$25^{\circ} 06^{\prime} 05^{\prime \prime}$
Sextant Altitude	Fix (Routine 4.6)	
CALCULATED RESULTS	$42^{\circ} 39^{\prime} 38^{\prime \prime N}$	
Latitude	$64^{\circ} 20^{\prime} 44^{\prime \prime} \mathrm{W}$	

Table 4.3 shows the type of information required (in addition to the data entered by loading the appropriate magnetic cards) for a typical two-body fix, with the star Kochab as the first body and the moon as the second. No further data entries are needed for the actual fix calculation. When routine 4.4 and 4.5 have been completed, and the program for routine 4.6 has been loaded, one need only press A to obtain the latitude and longitude of the two-body fix.

If three or more bodies are observed, the data is utilized for a series of two-body fixes. A cluster of fixes will be obtained; when the navigator has plotted these points on a chart, he will normally be able to estimate the most probable position. (Fixes resulting from poor or questionable observations can usually be eliminated at this time.)

Table 4.4 exemplifies the data required to calculate a running fix from two successive sun lines of position by means of routines 4.4 and 4.6. As always, regression methods can be used to obtain the sextant altitudes. Since there is no transit of the meridian, routine 4.1 would be appropriate here. There is a large time interval—approximately four hours-between the observations, so that the two lines of position will cross at a fairly wide angle, yielding a reasonably "strong" fix; the azimuth of the morning sun line is 138.45° and that of the afternoon line is 192.42°, for a difference of 54 degrees. As in all running fixes, the accuracy of the result is heavily dependent upon exact knowledge of the vessel's course and speed made good between the two observationsthat is, knowledge not only of the true course being steered and the speed being maintained, but of the set and drift of any currents that may be interfering with the vessel's movement. When the time interval between observations is long, as it usually is when sun lines are to be crossed, uncertainties concerning vessel course and speed, and the set and drift of current, can give rise to significant errors in the final result.

The uncertainties in a running fix with a long time interval between observations can be largely avoided by the substitution of a multibody fix, with the celestial readings taken simultaneously or nearly so.

4.5 Observations at Local Apparent Noon

Many navigators use observations of the sun as it crosses the meridian as an important part of their daily navigation routine. A line of position drawn for the sun at local apparent noon ($L A N$) is a line of latitude. The time of meridian crossing can be converted directly into longitude east or west of Greenwich by simple arithmetic.

However, there may be problems in obtaining accurate values for the line of position and the time of meridian crossing. One source of error, as in coastwise navigation, is fluctuation in the observed bearings, such as that caused by the movements of a small vessel in rough seas. In particular, observations at $L A N$ may result in erroneous values for longitude because the position of the sun in longitude relative to an observer changes rapidly; it
moves steadily east to west at 15 degrees per hour. (By contrast, since the sun literally hangs in the sky at $L A N$, its altitude, and hence the observer's latitude can be easily measured.) The sun's motion makes identification of the moment of maximum altitude difficult, especially when there are fluctuations in the observed data; and if this moment is not correctly determined, the corresponding value for longitude will be incorrect. Another source of error is the northward or southward movement of a vessel during the time of meridian passage. This movement, which of course is most significant when the vessel speed is relatively high, results in a small change in latitude and therefore affects the observed sextant altitude of the sun.

4.1. Sun Altitude at Meridian Passage-Effect of Fluctuations on Calculated Latitude and Longitude

The procedures described in the following sections and embodied in routines 4.7 and 4.8 , while they cannot eliminate all of these problems-especially as regards the determination of longitude-do minimize them, to facilitate achievement of the maximum accuracy possible.

4.5.1 Parabolic Regression to Reduce the Effects of Fluctuations

 during the Noon Sight The advantage of regression methods lies, as we know, in their ability to reduce the effects of fluctuations in the observed sextant angles. A representative situation is illustrated in figure 4.1, which shows the curves calculated by regression methods for the four sets of observations of the noon sun presented in table 4.5. One of the curves is based on observations with no fluctuations; for the other three, the standard deviations> Table 4.5 Effect of Fluctuations in Measurements of Sun Altitude at Meridian Passage

DATA

Date	June 21, 1978
Limb	lower
Height of Eye	10 feet
Bearing to Sun	south

GMT	Sextant Altitude			
	No Fluctuations	Standard Deviation 0.3'	Standard Deviation 1.2'	Standard Deviation 2.4
161210	$71^{\circ} 02.0^{\prime}$	$71^{\circ} 02.4{ }^{\prime}$	$71^{\circ} 02.1^{\prime}$	$71^{\circ} 03.8{ }^{\prime}$
161400	7105.1	7105.1	7103.1	7104.3
161555	7107.9	7108.0	7106.8	7104.9
161812	7110.5	7110.5	7111.6	7109.4
162105	7112.7	7113.0	7113.9	7116.5
162312	7113.7	7114.2	7113.1	7113.0
162515	7114.0	7114.1	7114.0	7109.4
162706	7113.7	7114.0	7114.5	7115.0
162848	7113.1	7113.0	7112.9	7111.4
163100	7111.6	7111.5	7109.1	7114.8
163406	7108.5	7108.0	7110.6	7109.6
163554	7106.0	7105.8	7108.7	7109.6
163706	7104.3	7104.5	7104.0	7105.2

CALCULATED RESULTS

	No Fluctuations	Standard Deviation 0.3'	Standard Deviation 1.2'	Standard Deviation 2.4
GMT of Maximum Alt.	162515	$\begin{aligned} & 162509 \\ & \text { [16 sec early] } \end{aligned}$	$\begin{aligned} & 162543 \\ & {[34 \mathrm{sec} \text { late] }} \end{aligned}$	$\begin{aligned} & 162613 \\ & {[58 \mathrm{sec} \text { late }]} \end{aligned}$
Maximum Alt.	$71^{\circ} 14^{\prime} 00^{\prime \prime}$	$71^{\circ} 14^{\prime} 04^{\prime \prime}$	$71^{\circ} 14^{\prime} 00^{\prime \prime}$	$71^{\circ} 13^{\prime} 33^{\prime \prime}$
Latitude [Error]	$42^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$	$\begin{gathered} 41^{\circ} 59^{\prime} 53^{\prime \prime} \mathrm{N} \\ {\left[00^{\circ} 00^{\prime} 07^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 41^{\circ} 59^{\prime} 57^{\prime \prime} \mathrm{N} \\ {\left[00^{\circ} 00^{\prime} 03^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 42^{\circ} 00^{\prime} 24^{\prime \prime} \mathrm{N} \\ {\left[00^{\circ} 00^{\prime} 24^{\prime \prime}\right]} \end{gathered}$
Longitude [Error]	6553'53"W	$\begin{gathered} 65^{\circ} 52^{\prime} 233^{\prime \prime} \mathrm{W} \\ {\left[00^{\circ} 01^{\prime} 30^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 66^{\circ} 00^{\prime} 51^{\prime \prime} \mathrm{W} \\ {\left[00^{\circ} 06^{\prime} 58^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 66^{\circ} 08^{\prime} 25^{\prime \prime} \mathrm{W} \\ {\left[00^{\circ} 14^{\prime} 32^{\prime \prime}\right]} \end{gathered}$

are, respectively, $0.3,1.2$, and 2.4 minutes of sextant altitude. The first of these three represents the situation on a calm day on a small vessel; the other two typify the results that may be obtained under conditions when nearby wave tops may be mistaken for the horizon, or when the heaving of the deck upsets the observer's ability to read. The values shown represent instances in which the navigator still expects to obtain fairly accurate results. The situation could, of course, get much worse; fluctuations of many minutes of arc at the sextant are possible.

Two principal conclusions can be drawn from figure 4.1. First of all, even when there are fairly severe fluctuations, the method of parabolic regression can extract the sun's maximum altitude with reasonable accuracy. This is evident from the fact that for the parabolas showing standard deviations of 0 , 0.3 , and 1.2 minutes, the values for maximum altitude (Hmax) cluster within a narrow range. Even the curve for the greatest level of fluctuation (with the standard deviation of 2.4 minutes) results in a calculated latitude only 24 seconds from the true value. By contrast, if latitude at $L A N$ were to be calculated on the basis of observations made just at the peak of sun altitude, and if the fluctuations at the sextant were severe enough to yield a standard deviation of 2.4 minutes, the resulting latitude error would have a high probability of being equal to or exceeding 2 minutes, or 2 nautical miles. That is, it would be five times as great as the error accompanying the use of parabolic regression. Hence, the general conclusion should be drawn that regression methods enable one to calculate maximum sun altitude, and therefore latitude, with sustained accuracy even in the face of fairly severe fluctuations in observed sextant altitudes.

At the same time, however, as indicated by the calculated results shown in table 4.5, these fluctuations severely degrade the calculations of longitude. As the fluctuations increase, the shift in the calculated time of maximum altitude also tends to increase; the error in this case may be as large as a minute (58 seconds for the standard deviation of 2.4 minutes). Longitude calculated from this data would be in error by 14 minutes, 32 seconds.

In general, if the observed sextant altitudes are such that the standard deviation of the data is 0.5 minutes or less, longitude errors will probably be less than 3 to 4 minutes of arc; if the standard deviation is approximately twice that amount, longitude errors of up to 10 minutes or more can be expected -translating to position errors of 5 to 7 nautical miles in the middle latitudes, and up to 10 miles at the equator.

The parabolic regression technique, with its property of smoothing and making a mathematical best fit to the observed data, is about as useful as any method of curve fitting in the face of uncertainty. Any other technique, such as the one that requires values for equal sun altitudes observed before and after noon, will not provide better results. Hence, when fluctuations become very severe-with sextant altitudes that can vary from reading to reading by more than 3 or 4 minutes of arc-it is probably useless to try to calculate longitude from a noon sight.
4.5.2 Shift in Time of Local Apparent Noon Due to Vessel Motion If a vessel is not stationary, the effect of any northward or southward component in its motion at the time of meridian passage must be considered when longitude is computed from the time of $L A N$. For example, in the Northern Hemisphere, it will be found that if a vessel is moving south, the time of maximum altitude of the sun will be later than it would otherwise have been; if the vessel is moving north, the time of maximum altitude will be earlier. In both cases, the observed altitude at $L A N$ will be greater than it would be if measured from a stationary vessel in the same position at that time. The vessel's motion thus

4.2. Longitude Error Resulting from Movement Toward or Away from the Sun at Local Apparent Noon
results in a shift both in the value of the sun's maximum altitude and in the time at which the maximum occurs. The former-as we know-affects the calculated latitude, and the latter the longitude.

Figure 4.2 illustrates these effects. Three parabolic curves have been constructed, based on the calculated behavior of the sun as it would have been observed at an approximate latitude of 42 degrees north on June 21, 1978, under three conditions: from a stationary vessel at latitude $42^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$ and longitude $65^{\circ} 53^{\prime} 53^{\prime \prime} \mathrm{W}$ (solid line); from a vessel moving due north at 6.0 knots and passing through latitude $42^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$ at the $L A N$ for this longitude (broken line); and from a vessel moving due south at 6.0 knots and passing through latitude $42^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$ at the $L A N$ for this longitude (alternating short and long dashes). From all three vessels the noon sun would be observed on the same meridian at the same latitude at the same time, so the latitudes and longitudes calculated for all three should be the same.

As the figure indicates, the curve of observed sun altitude with respect to time for the northward-moving vessel actually reaches its maximum 44 seconds in advance of meridian passage. A regression parabola employed to obtain the time of meridian passage would reflect this error, and the longitude would be calculated as $65^{\circ} 42^{\prime} 53^{\prime \prime} \mathrm{W}$, for a position incorrect by 11 minutes east. At a northward speed of 6.0 knots, this would result in a position error of 8.2 nautical miles.

Correspondingly, on the southward-moving vessel the observed time of maximum altitude is 43 seconds later than meridian passage (the difference of one second between the two cases is due to rounding errors in the calculation). The resulting longitude of $66^{\circ} 04^{\prime} 38^{\prime \prime} \mathrm{W}$ is in error by 10 minutes, 45 seconds west, for a position error of 8.0 nautical miles.

On the other hand, the calculations of latitude are only minimally affected by the movement of the vessels. In the 43- or 44-second interval, errors of only 2 or 3 seconds of arc result from the movement of the vessels and the change in declination of the sun between the time of maximum altitude of the parabola and the time of $L A N$. The error might be slightly larger at certain times of the year-for example, the vernal and autumnal equinoxes, when the sun's declination changes most rapidly. Also, if a vessel is moving north or south at higher speed, the latitude shift at the time of maximum sun altitude will be proportionately greater.
Even so, the error in calculated latitude will be substantially smaller than that in calculated longitude under the same conditions. The latter error is significant even at the moderate vessel speed of 6.0 knots, and of course will be proportionately larger for vessels going north or south at higher speeds. If in addition there are significant fluctuations in the observations of sun altitudes, introducing further uncertainty about the time the maximum altitude is reached, the error in the calculated longitude will be even greater.

However, although the calculation of longitude from a noon sight should be understood to be much less precise than the calculation of latitude, the errors in both latitude and longitude due to vessel motion can be virtually eliminated by introduction of the necessary correction factors. These factors 248

Table 4.6 Effect of Vessel Motion during Measurement of Sun Altitude at Meridian Passage
DATA

	Away from Sun	Toward Sun
Deviation	0	0
Variation	$-20^{\circ}(\mathrm{W})$	$-20^{\circ}(\mathrm{W})$
Compass Course	$020^{\circ}\left(000^{\circ} \mathrm{T}\right)$	$200^{\circ}\left(180^{\circ} \mathrm{T}\right)$
Speed	6.0 knots	6.0 knots
Date	June 21, 1978	June 21, 1978
Limb	lower	lower
Height of Eye	10 feet	10 feet
Bearing to Sun	south	south

	Sextant Altitude			
GMT	Stationary	Ct 000°	Ct 180°	
161210	$71^{\circ} 02.0^{\prime}$	$71^{\circ} 03.6^{\prime}$	$71^{\circ} 00.7^{\prime}$	
161400	7105.1	7106.2	7104.0	
161555	7107.9	7108.8	7106.9	
161812	7110.5	7111.2	7109.8	
162105	7112.7	7113.2	7112.3	
162312	7113.7	7113.9	7113.5	
162515	7114.0	7114.0	7114.0	
162706	7113.7	7113.5	7113.9	
162848	7113.1	7112.7	7113.4	
163100	7111.6	7111.1	7112.2	
163406	7108.5	7107.6	7109.4	
163554	7106.0	7105.0	7107.1	
163706	7104.3	7103.0	7105.3	

CALCULATED RESULTS

	Stationary	Away from Sun		Toward Sun	
		Not Corrected	Corrected	Not Corrected	Corrected
GMT of Maximum Alt.	162515	162431 [44 sec early]	$\begin{gathered} 162514 \\ {[1 \mathrm{sec} \text { early] }} \end{gathered}$	$\begin{aligned} & 162558 \\ & {[43 \mathrm{sec} \text { late] }} \end{aligned}$	$\begin{array}{\|c} 162515 \\ \text { [correct] } \end{array}$
Maximum Alt.	$71^{\circ} 14^{\prime \prime} 00^{\prime \prime}$	71913'59"	$71^{\circ} 13^{\prime} 57^{\prime \prime}$	$71^{\circ} 14^{\prime} 00^{\prime \prime}$	$71^{\circ} 13^{\prime} 58^{\prime \prime}$
Latitude [Error]	$42^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$	$\begin{gathered} 41^{\circ} 59^{\prime} 58^{\prime \prime} \mathrm{N} \\ {\left[00^{\circ} 00^{\prime} 02^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 42^{\circ} 00^{\prime} 00 " \mathrm{~N} \\ \text { [none] } \end{gathered}$	$\begin{gathered} 41^{\circ} 59^{\prime} 57^{\prime \prime} \mathrm{N} \\ {\left[00^{\circ} 00^{\prime} 03^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 41^{\circ} 59^{\prime} 59^{\prime \prime} \mathrm{N} \\ {\left[00^{\circ} 00^{\prime} 01^{\prime \prime}\right]} \end{gathered}$
Longitude [Error]	$65^{\circ} 53^{\prime} 53^{\prime \prime} \mathrm{W}$	$\begin{gathered} 65^{\circ} 42^{\prime} 53^{\prime \prime} \mathrm{W} \\ {\left[00^{\circ} 11^{\prime} 00^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 65^{\circ} 53^{\prime} 36^{\prime \prime} \mathrm{W} \\ {\left[00^{\circ} 00^{\prime} 17^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 66^{\circ} 04^{\prime} 38^{\prime \prime} \mathrm{W} \\ {\left[00^{\circ} 10^{\prime} 45^{\prime \prime}\right]} \end{gathered}$	$\begin{gathered} 65^{\circ} 53^{\prime} 50^{\prime \prime} \mathrm{W} \\ {\left[00^{\circ} 00^{\prime} 03^{\prime \prime}\right]} \end{gathered}$

have been incorporated into the program for routine 4.7.* Their effectiveness is evident from table 4.6, which presents the data from which the three parabolas shown in figure 4.2 were constructed, with comparisons of the positions obtained from parabolic regression without corrections and from parabolic regression with corrections (by means of routine 4.7, used in conjunction with routine 4.8).

4.5.3 Routines for the Noon Fix The use of the calculator routine for

 parabolic regression is a substitute for the method of plotting altitudes of the sun on graph paper in order to establish its maximum altitude and the time when it reaches that maximum. Drawing a smooth parabolic curve by eye is replaced by the automatic curve fitting of the regression technique. If data concerning course and speed of the vessel is entered, corrections are made automatically for any inherent error in calculated longitude due to motion of the vessel.The calculator computes the elements of a parabola that makes the best fit to the observed data; it then displays the maximum sextant altitude and the time (GMT) at which this maximum occurs. These results can be utilized in routine 4.8 for the calculation of the vessel's position. All of the remarks in the preceding sections concerning fluctuation in observed sextant angles, and its effect on the accuracy, should of course be given consideration-especially the fact that the latitude calculated by these methods is probably more precise than the longitude. Nevertheless, routines 4.7 and 4.8 are useful; there is no need for almanacs, since a data card prepared by means of routine 4.2 is employed, and the user need not remember any of the complicated rules about combining corrected sextant altitude with declination, since the procedures for converting sun altitude to latitude and time into longitude are built into the program.
When routine 4.7 is begun, care should be taken to press f a to make sure that the calculator's memory registers are empty. If the vessel is moving, entry

[^17]From these equations, it is evident that the correction to the time of $L A N$ can be either positive or negative, to compensate for the shift in time of maximum altitude resulting from a vessel's movement away from or toward the sun. The correction to sun altitude itself is always negative, because the effect of motion in either direction is to increase the observed altitude at $L A N$ as compared to that seen from a stationary vessel at the same latitude and longitude at the same time.

Routine 4.7 (HP-67/97)

Clear	De Var	Toward Sun	Away from Sun	S
Hs	Ts	LAN Hmax	Day	

PARABOLIC REGRESSION

Step

Input
Data/Units

Output Keys Data/Units

1 Load program—both sides
2 Clear; this step must be performed ia
If vessel is stationary, continue at step 7.
3 Enter deviation $(+E,-W)$, even if 0 DD.d ib
4 Enter variation ($+\mathrm{E},-\boldsymbol{W}$), even if $0 \quad$ DD.d $\mathbf{~} \mathbf{b}$
5 If vessel is moving toward the sun (on any true course from 270° through 90° when the sun is north of the vessel, or from 90° through 270° when the sun is south of the vessel), enter compass course*

DDD.d
f c
6 If vessel is moving away from the sun (on any true course from 90° through 270° when the sun is north of the vessel, or from 270° through 90° when the sun is south of the vessel), enter compass course*
7 Enter vessel speed; if vessel is stationary, enter speed as 0

DDD. $\mathrm{d} \quad \mathrm{f} \mathbf{d}$

8 Enter sequence of altitude-time pairs; for each pair, enter observed sextant altitude (corrected for index error), followed by DDMM.m A
9 GMT of observation of altitude H.MS B
If an error is noted in the entry of altitude or time data before the corresponding letter key (A or B) is pressed, eliminate the incorrect data by pressing $C L x$; if the error is noted after the letter key has been pressed, clear the calculator by pressing \ddagger, and re-enter all data, starting at step 3.
10 Calculate and display GMT of local apparent noon (corrected for vessel's motion),

C H.MS
*Correct for leeway; see table 2.2.

| Step | Procedure | Input
 Data/Units | Keys |
| :--- | :--- | :--- | :--- | | Output |
| :---: |
| Data/Units |

of deviation and variation follows, and then the compass course is entered either at step 5 (with keys $f[c$) or at step 6 (with keys $f(d)$), depending on whether the course is toward or away from the sun. Steps 3-6 are omitted for a stationary vessel, but step 7-entry of vessel speed-is always performed, with speed being set equal to zero if the vessel is not in motion.

Input of the altitude-time pairs is next, with sextant altitude in the form of degrees, minutes, and tenths of minutes, as read on the instrument, and the time of each observation in hours, minutes, and seconds. Pressing \mathbf{C} then results in calculation and display of the time of $L A N$ and the corresponding sextant altitude. The last step is entry of the day of the month. This is necessary for the use of the sun data card in routine 4.8, for the noon fix.

Once the program for routine 4.8, and the sun data card, have been loaded, and the calculator has been cleared, pressing A results in utilization of the almanac in the calculation of the Greenwich hour angle and declination of the sun at $L A N$ at the time and date specified in steps $10-11$ of routine 4.7.

Two questions next arise: has the upper or lower limb of the sun been observed, and is the sun north or south of the vessel? The first is answered by pressing B (for upper limb) or C (for lower limb) when height of eye is entered; the second, by pressing (if the sun is to the south) or E (if the sun is to the north) to display the calculated latitude.
Routine 4.8 can also be used independently of routine 4.7, when the navigator relies upon traditional methods to obtain the sun's altitude at LAN. All that is necessary is to enter sextant altitude, date, and GMT of the observation, as shown in steps $2-5$, before loading the sun data card. The remainder of the routine can then be performed.

After the latitude has been displayed, the calculated longitude can be obtained by pressing fee. However, as noted in section 4.5.1, unless the exact time of meridian passage can be determined (to a precision of a few seconds), the resulting longitude will not be accurate enough to be of use. By contrast, for the calculation of latitude alone any value within a few minutes of the actual time of meridian passage is acceptable; the sun's declination will change by only a few seconds of arc in that period, and the effect on the accuracy of the computed latitude will therefore be negligible.

The data in tables 4.6 and 4.9 can be employed to check the accuracy of the user's program.
252

Routine 4.8 (HP-67/97)

Hs Day Ts				Longitude
GHA Dec	Upper Limb	Lower Limb	B to Sun, S	B to Sun, N

NOON FIX

Step | Input | Output | |
| :---: | :---: | :---: |
| Procedure | DatalUnits | Keys |

1 Load program—both sides
If routine 4.7 has just been completed, continue at step 5 . If routine 4.7 has not just been completed, proceed as follows (steps 2-13):
2 Enter observed sextant altitude
(corrected for index error) at time of meridian passage, in degrees, minutes, and seconds

DD.MMSS fa
3 Enter day of month, corresponding to GMT to be entered in step 4

1-31 fa
4 Enter GMT of observation of altitude
entered in step 2
5 Load sun data card-one side CRD

6 Clear
CLx
7 Calculate GHA and declination of sun (these values are not displayed)

A
8 If upper-limb observation has been made, enter height of eye feet

B
9 If lower-limb observation has been made, enter height of eye feet C

If bearing to sun has been south during observations, proceed as follows (steps 10-11):
10 Calculate and display vessel's latitude
D \pm DD.MMSS
11 Calculate and display vessel's longitude
fe \pm DD.MMSS
If bearing to sun has been north during observations, proceed as follows (steps 12-13):
12 Calculate and display vessel's latitude
E \pm DD.MMSS
13 Calculate and display vessel's longitude
fe \pm DD.MMSS
4.5.4 Predicting the Time of Local Apparent Noon It is important to be able to predict the time of meridian passage, especially when using regression methods, since observation of the sun must begin five or ten minutes before it actually crosses the meridian. The normal way to make this prediction is to consult the nautical almanac, and by interpolation, find the time at which the Greenwich hour angle of the sun is equal to the DR longitude of the observer's meridian. However, if the vessel is moving, and the observer's meridian is constantly changing, additional calculation becomes necessary. This whole procedure, including any use of the almanac, can be avoided by employing routine 4.9.

A sun data card for the appropriate interval is necessary. In most respects the procedure in this routine is straightforward. It should be emphasized, however, that as part of the input, a dead-reckoning longitude for a time earlier than local apparent noon is required. If the time (as entered in step 5) is later than $L A N$, the result displayed in step 11 will represent the approximate time of $L A N$ on the following day at the dead-reckoning longitude which has just been entered.
The data for the example given in tables 4.7 and 4.9 can be employed to test the user's program.

Table 4.7 Time of Local Apparent Noon

DATA	
Date	June 21, 1978
GMT	150000
Compass Course	45°
Variation	$-10^{\circ}(\mathrm{W})$
Deviation	$+2^{\circ}(\mathrm{E})$
Speed	8.0 knots
DR Longitude	$60^{\circ} 30^{\prime} \mathrm{W}$
CALCULATED RESULT	
Time of LAN	160318

Routine 4.9 (HP-67/97)

TIME OF LOCAL APPARENT NOON

Step	Procedure	Input Data/Units	Keys	Output Data/Units
1	Load program—both sides			
2	Load sun data card-one side			CRD
3	Clear		CLx	
4	Enter day of month, corresponding to $G M T$ to be entered in step 5	1-31	A	
5	Enter time of day (GMT) for which DR position is available; this must be earlier than local apparent noon	H.MS	A	
6	Calculate GHA of sun (this value is not displayed)		B	
7	Enter compass course*	DDD.d	C	
8	Enter variation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	C	
9	Enter deviation ($+\mathrm{E},-\mathrm{W}$), even if 0	DD.d	C	
10	Enter vessel speed	knots	D	
11	Enter vessel's DR longitude at time entered in step $5(+\mathrm{W},-\mathrm{E})$,	DD.MMSS	E	
Calculate and display GMT of local apparent noon (if the value displayed is earlier than the value entered in step 5, it refers to the local apparent noon of the following day)				H.MS
*Cor	rect for leeway; see table 2.2 .			

4.6 Planning Star Observations

Routine 4.11 provides the reader with a convenient method of planning star observations at dusk or dawn, at any place on the earth, without having to resort to the almanac for any data relating to Aries or to the sidereal hour angle of forty-two stars. The prerecording of a data card, as shown in routine 4.10, is required.* This must be done only once, since in this instance annual updating of the data is not necessary. In routine 4.11, once the data card has been loaded, and the necessary particulars concerning the vessel's approximate position and the date and time have been entered, a list is supplied showing which of the forty-two are above the user's horizon at the place and time specified, and including for each of these the number of the star (for identification), its altitude in degrees and minutes (although this figure can be assumed to be accurate only to the nearest degree), and its azimuth to the nearest tenth of a degree.

[^18]Routine 4.10 (HP-67/97)

Star Planning Data Card

STAR PLANNING DATA CARD

Step	Input Procedure Data/Units	Keys D	Output Data/Units
1	Set decimal point of display	DSP 9	
	Enter the following numbers (steps 2-12):		
2	0.339372100	STO 1	
3	18941.60088	STO 2	
4	81717.37302	STO 3	
5	72264.47856	STO 4	
6	22270.41177	STO 5	
7	54476.24512	STO 6	
8	46256.79618	STO 7	
9	59588.47426	STO 8	
10	34622.74119	STO 9	
11	82118.25485	STO A	
12	44888.67166	STO B	
13	Shift to secondary storage	$f \mathrm{p} \leftrightarrows s$	
	Enter the following numbers (steps 14-23):		
14	89094.55238	STO 0	
15	43536.15781	STO 1	
16	41856.59664	STO 2	
17	85192.19148	STO 3	
18	56337.23035	STO 4	
19	39743.84219	STO 5	
20	9228.353662	STO 6	
21	64772.70977	STO 7	
22	43175.28825	STO 8	
23	64907.45486	STO 9	
24	Prepare to record data card	f W/DATA	A CRD
25	Record data card-both sides		CRD

Routine 4.11 (HP-67/97)

STAR SIGHT PLANNER

Step \begin{tabular}{llll}

Procedure \& \begin{tabular}{c}
Input

DatalUnits

 \& Keys \&

Output

DatalUnits
\end{tabular}

\hline
\end{tabular}

1 Load program—both sides
2 Load star planning data card-both sides
3 For HP-97, instruct calculator to print (repeat step if necessary until " 1 " is diplayed)
far
4 Enter DR or approximate latitude at time observations are to be made ($+\mathrm{N},-\mathrm{S}$)

DD.MMSS
ENTER
5 Enter DR or approximate longitude at time observations are to be made (+W,
-E)
6 Enter year
7 Enter month

DD.MMSS A
19nn
1-12

ENTER
ENTER

For a list of stars visible at a specified time, proceed as follows (steps 8-9):
8 Enter day of month, corresponding to GMT to be entered in step 9

1-31
B
9 Enter time of day (GMT) for which list is to be displayed or printed,
H.MS

C

- For each star above horizon at place and time specified, calculate and display star number,
- Altitude, DD.MM
- Azimuth

For a list of stars visible at dawn, proceed as follows (step 10):
10 Enter day of month, corresponding to GMT of dawn,

1-31
D

- Calculate and display GMT of middle of nautical dawn,
- For each star above horizon at dawn at place specified, calculate and display star number,
- Altitude,
- Azimuth

For a list of stars visible at dusk, proceed as follows (step 11):
11 Enter day of month, corresponding to GMT of dusk,

1-31
E

- Calculate and display GMT of middle of nautical dusk,
H.M
- For each star above horizon at dusk at place specified, calculate and display star number,

0-56

- Altitude, DD.MM
- Azimuth DDD.d

The routine can be used in several ways. If a list of stars for a particular time of day is desired, the day of the month is entered at B in step 8 , and the GMT is entered at C in step 9; the calculator then lists the stars above the horizon at that time. If a list of stars visible at dawn is required, the day of the month is ented at D in step 10, and the list of stars for the middle of nautical dawn is provided without further keyboard activity. For the list of stars visible at dusk, the day of the month is entered at [E], in step 11.

Table 4.8 Star Sight Planning

DATA Latitude Longitude Year Month Day	$40^{\circ} 00^{\prime} 0$ $75^{\circ} 00^{\prime} 0$ 1978 August 28		
CALCULATED RESULTS Middle of Nautical Dawn 0958			
Star Number Altitude Azimuth	$\begin{array}{r} 54 . \\ 6.58 \\ 277.2 \end{array}$	$\begin{array}{r} 18 . \\ 18.51 \\ 133.6 \end{array}$	$\begin{array}{r} 7 . \\ 9.20 \\ 188.7 \end{array}$
	$\begin{array}{r} 53 . \\ 18.10 \\ 314.1 \end{array}$	$\begin{array}{r} 16 \\ 45.52 \\ 129.5 \end{array}$	$\begin{array}{r} 6 . \\ 63.23 \\ 237.6 \end{array}$
	$\begin{array}{r} 40 . \\ 24.18 \\ 3.7 \end{array}$	$\begin{array}{r} 12 . \\ 71.42 \\ 63.0 \end{array}$	$\begin{array}{r} 4 . \\ 18.51 \\ 224.5 \end{array}$
	$\begin{array}{r} 32 . \\ 12.28 \\ 22.6 \end{array}$	$\begin{array}{r} 11 . \\ 37.36 \\ 151.1 \end{array}$	$\begin{array}{r} 3 . \\ 56.33 \\ 313.9 \end{array}$
	$\begin{array}{r} 27 . \\ 26.07 \\ 29.3 \end{array}$	$\begin{array}{r} 10 . \\ 63.11 \\ 149.6 \end{array}$	$\begin{array}{r} 1 . \\ 45.26 \\ 272.9 \end{array}$
	$\begin{array}{r} 21 . \\ 39.13 \\ 83.9 \end{array}$	$\begin{array}{r} 9 . \\ 79.33 \\ 344.7 \end{array}$	$\begin{array}{r} 0 \\ 40.00 \\ 360.0 \end{array}$
	$\begin{array}{r} 20 . \\ 26.08 \\ 106.6 \end{array}$	$\begin{array}{r} 8 . \\ 52.49 \\ 197.1 \end{array}$	

Table 4.8, illustrating the procedure for obtaining a list of stars visible at dawn, can be employed to test the user's program and data card.
Table 4.9 Almanac Data for $1978{ }^{1}$

[^19]

Loran

ABBREVIATIONS Used in the Routines of Chapter 5

Bt true bearing from vessel to destination
Btdest true bearing from reference point to destination
Btstart true bearing from reference point to vessel at first fix
Btv true bearing from calibration or reference point to vessel
Cc compass course
Cm magnetic course
CMG true course made good
D distance from vessel to destination
DD.d, DDD.d degrees and tenths of a degree
Ddest distance from reference point to destination
DD.MMSS degrees, minutes, and seconds
De deviation
DMG distance made good
Dr drift of current
Dstart distance from reference point to vessel at first fix
Dv distance from calibration or reference point to vessel
E east
EP estimated position
H.MS hour(s), minute(s), and second(s)

L latitude
La latitude of A slave
Lb latitude of B slave
Lcp latitude of calibration point
Lfix latitude of fix
Lm latitude of master
Lo longitude
Loa longitude of A slave
Lob longitude of B slave
Locp longitude of calibration point
Lofix longitude of fix
Lom longitude of master
Loref longitude of reference point

Lostart longitude of vessel at previous fix
Lref latitude of reference point
Lstart latitude of vessel at previous fix
mmmm microseconds
mmmmm.m microseconds and tenths of microseconds
N north
naut. mi. nautical miles
S vessel speed; south
SMG speed made good
St set of current
ΔT time required to reach destination
T1 time of previous fix
T2 time of present fix
TDa A-slave time difference
TDacp A-slave time difference at calibration point
TDb B-slave time difference
TDbcp B-slave time difference at calibration point
Var variation
W west
\dagger following a data-entry item indicates that it is entered by pressing ENTER instead of a letter key.
\rightarrow following a data-entry item indicates that its entry initiates (without further keyboard activity) the calculation and display of one or more results.

+ indicates that the item (e.g., east variation or north latitude) is entered simply by pressing the appropriate numerical keys.
- indicates that the item is entered by pressing the appropriate numerical keys followed by CHS.

5.1 Introduction

This chapter describes the use of the HP-67 and HP-97 in converting received loran signals into position co-ordinates. The method is equally effective in handling Loran A and Loran C signals; also, time-difference readings based on Loran A signals may be converted into the equivalent readings that would be obtained from a Loran C receiver, and vice versa. In addition, it is possible to predict the loran time differences that would be recorded at a location of known latitude and longitude, such as a vessel's dead-reckoning or estimated position. This procedure helps to identify the signals when they are received, and is particularly useful where high levels of radio interference are present.

The chapter is not intended to serve as a primary reference on the principles governing the operation of loran systems. A basic knowledge of these principles is assumed, and the discussion focuses on the utilization of the calculator in loran navigation. For a fuller explanation of loran, the reader is encouraged to consult such standard texts as Dutton's Navigation and Piloting (Annapolis, Naval Institute Press, 1969), chapter 32, and "Bowditch"-American Practical Navigator, vol. 1 (Defense Mapping Agency Hydrographic Center, 1977), pp. 991-1002.

The calculator is especially useful in dealing with loran because it enables one to combine position fixing with planning and the determination of estimated position. To make accurate estimates of position, one must take into account currents, leeway, and other factors (including possible errors in the speed and compass readings that have been obtained) which can interfere with achieving the desired or expected track made good over the bottom. These factors will be reflected in the values for set and drift of "current" obtained on the basis of successive loran fixes. And since repeated loran fixes can be made, updated information on this current is continuously available, to serve as input for the calculation of courses to steer and estimated position. This chapter discusses a set of integrated programs and routines by means of which repeated readouts of vessel position, based upon loran data, may be obtained.

At present, both Loran A and Loran C systems are being actively maintained, with considerable overlap in their coverage. Loran A, however, will be phased out during the next few years. Many mariners and navigators rely upon previously determined position locations known only in terms of their Loran A co-ordinates, and conversion to the new Loran C time-difference values will be necessary if this information is to continue to be of use after Loran A transmissions cease. A method for making the conversion is described in this
chapter. Routine 5.5 first converts Loran A time differences into the latitude and longitude of the location in question, and then, without further keyboard input, displays the predicted Loran C time differences for the same location.

Instructions in this chapter have been supplied only for the HP-67 and HP-97, because at this writing no other hand-held models have program and data memories large enough to require only one or two program cards for the completion of a sequence. This situation will most assuredly change in the future, and programs and routines will be written for new calculators as they become available.

5.2 Accuracy of the Loran A and Loran C Systems

Generally speaking, when used within the accepted limits of coverage, Loran A fixes range in accuracy from a few tenths of a mile to three to five miles, depending on the location of the vessel within the coverage area. One reason Loran \mathbf{C} is replacing Loran \mathbf{A} is that the Loran \mathbf{C} system is inherently more accurate; it can provide fixes correct to within tenths of a mile throughout the ground-wave coverage area. This system is superior in part because it is instrumented to make possible time-difference readings of a precision of tenths of microseconds (compared to microseconds in Loran A). Also, it operates at a lower radio frequency (100 kilohertz, as opposed to 2,000 kilohertz in Loran A), and therefore permits exploitation of the more stable propagation of lowfrequency waves. Since the method depends entirely on measurement of the time of arrival of shaped pulses of radio energy, this stability is essential. Loran C can utilize ground-wave signals transmitted over longer distances-up to 1,000 or 1,500 miles. Reflecting objects have not more than one-twentieth as much effect on the longer, lower-frequency waves of Loran C. Furthermore, because of the stability of transmission, and the receiver's ability to measure differential timing between signals with high accuracy, the repeatability of Loran C is high; that is to say, the time differences at a particular location will remain uniform over a long period of time.

The calculator methods described in the following sections will work equally well for either system. However, the results will reflect the inherent accuracy of the time-difference readings upon which they are based, and since more precise readings are available from Loran C , the positions determined by Loran C will be more exact.

The routines presented in this chapter utilize a method of local calibration which compensates for anomalies or distortions in the time of arrival of the pulses received. The input for this calibration includes the latitude and longitude of a place and the time-difference readings obtained at that place from two pairs of loran stations.

In many cases, the useful coverage area of a Loran A calibration will be smaller than that of a Loran C calibration made in the same vicinity, because at the higher frequencies of Loran A , propagation anomalies and distortions
change more rapidly with respect to distance. Since, to preserve accuracy, the area relying on a single calibration point will be smaller with Loran A than with Loran C, more calibration points may be necessary.
It is difficult to lay down a hard and fast rule covering the location of calibration points, but it is safe to say that the number of these points can be reduced as the distance from shore lines and harbors is increased. In coastal waters, calculations involving a calibration point will yield precise results if the vessel is in the vicinity of the calibrated location. Calibrations made out at sea, far from coastlines and buildings, can cover much larger areas. For example, with Loran C a calibration made at sea might easily provide accuracy of \pm 0.25 of a nautical mile throughout the area covered by a radius extending up to two hundred miles from the calibration point. Table 5.1 provides rough guidelines, applicable within the ground-wave coverage area of two or more Loran C pairs.

Table 5.1 Loran Calibration Coverage

Required Accuracy in Position Location	Radius of Coverage of a Single Calibration ${ }^{1}$
± 80 yards	1 mile
± 200 yards	5 miles
± 500 yards	50 miles

${ }^{1}$ The radius of usefulness of a single calibration should be checked by actual test observations, since different localities will possess different characteristics.

The crossing angle of Loran C lines of position will also affect position accuracy, and should not be much less than 60 degrees. Also, automatictracking Loran C receivers will provide performance superior to that of manu-al-setting receivers, especially in high-interference or low-signal-strength areas.

Since the effective coverage of a single calibration point does vary from one place to another, the user should make his own survey to determine the accuracy obtainable in the area in question, and hence the frequency with which one calibration point should be exchanged for the next. In some cases, accuracy of ± 80 yards can be obtained from a single calibration over many miles; in others, it will be apparent that for this degree of accuracy the more stringent limits of a 1 -mile radius of coverage, as specified in the table, should be observed.

Once made, a calibration will be useful over long periods of time. Surveys of the stability of Loran C transmissions over many weeks indicate that shifts in the designation of positions due to transmitter mistiming or short-term weather effects are almost always less than 30 yards. There may be observable shifts from one season of the year to the next, but these will probably have only a small effect on the level of performance as predicted in table 5.1. With Loran A, the propagation anomalies change somewhat more rapidly, over time. In every case, the navigator should make his own assessment of the need to recalculate calibration, and act accordingly.

5.3 Preparation of Loran Calibrations

Calibrations for both the Loran A and the Loran C systems are made by means of routine 5.1, the Loran Calibrator routine. The resulting data cards are subsequently used in routine 5.2 , the Loran Locator routine. The initial input data for routine 5.1 consists of the latitude and longitude co-ordinates for three loran transmitter stations-two slaves (arbitrarily designated A and B) and their master. Further input data, in later steps, consists of the latitude and longitude for the selected calibration point, and of the time-difference readings obtained at that point from the signals of the two slave stations. These readings are designated time-difference A (TDa) and time-difference B (TDb).

Routine 5.1 (HP-67/97)

LORAN CALIBRATOR

Step	Procedure	Input Data/Units	Keys	Output Data/Units

1 Load program—both sides
2 Enter latitude of A slave $(+\mathrm{N},-\mathrm{S})$
DD.MMSS
ENTER
3 Enter longitude of A slave ($+\mathrm{W},-\mathrm{E}$)
DD.MMSS
A
4 Enter latitude of B slave ($+\mathrm{N},-\mathrm{S}$)
DD.MMSS
ENTER
5 Enter longitude of B slave ($+\mathrm{W},-\mathrm{E}$)
DD.MMSS
B
6 Enter latitude of master ($+\mathrm{N},-\mathrm{S}$)
DD.MMSS
ENTER
7 Enter longitude of master ($+\mathrm{W},-\mathrm{E}$)
DD.MMSS
C
8 Record data card, both sides, and label with names of A slave, B slave, and master
9 Enter latitude of calibration point (+N , -S)

DD.MMSS ENTER
10 Enter longitude of calibration point (+W, -E)
11 Enter A-slave time difference at calibration point

DD.MMSS ENTER

Enter B-slave time difference at calibration point
mmmmm.m

E CRD
Where Loran A time differences are involved, care should be taken in steps 1112 to enter negative values when necessary, as explained in the text, p. 271.
13 Record calibration data card, both sides, and label with names of A slave, B slave, master, and calibration point

To make a card for a different calibration point, using the same A slave, B slave, and master, load data card recorded in step 8, and repeat steps 9-13 for the new calibration point.

When the calibration is being done for a Loran C system, the master will be the station officially functioning as the master of the chain from which the stations are selected. For example, for the 9930 chain, the master station, whose co-ordinates would be entered at steps 6 and 7 of the routine, is at Carolina Beach, North Carolina. There are four slaves in this chain-the W, at Jupiter, Florida; the X, at Cape Race, Newfoundland; the Y, at Nantucket, Massachusetts; and the Z, at Dana, Indiana. However, only two would be used in this routine; the X station could be designated A , and the Z station designated B, with their time differences labeled respectively $T D a$ and $T D b$.

When the calibration is being done for a Loran A system, the situation is more complicated, since the stations are normally grouped as pairs, each consisting of one master and one slave, rather than as chains. To obtain the necessary configuration, similar to that found in Loran C, two of these pairs are chosen which have one station in common. The common station is regarded as the master of that group, whether or not it is the official master (shown in capital letters in the list that follows) in either of the pairs. Almost all of the Loran A station pairs can be used in this fashion. For example, the following station pairs in the North Atlantic area are suitable:
Station Pairs Rates
Battle Harbour, Labrador; FREDERICKSDAL, Greenland 1L 2
Battle Harbour, Labrador; BONAVISTA, Newfoundland 1L 3
DEMING, Nova Scotia; Port-aux-Basques, Newfoundland 1H 1
DEMING, Nova Scotia; Baccaro, Nova Scotia 1H 2
Baccaro, Nova Scotia; DEMING, Nova Scotia 1H 2
Baccaro, Nova Scotia; SIASCONSET, Nantucket I., Mass. 1H 3
SIASCONSET, Nantucket I., Mass.; Baccaro, Nova Scotia 1H 3
SIASCONSET, Nantucket I., Mass.; Marshall Point, Maine 1H 7
SIASCONSET, Nantucket I., Mass.; Baccaro, Nova Scotia 1H 3
Siasconset, Nantucket I., Mass.; SANDY HOOK, N.J. 3H 5
SIASCONSET, Nantucket I., Mass.; Baccaro, Nova Scotia 1H 3
SIASCONSET, Nantucket I., Mass.; Cape Hatteras, N.C. 3H 4
SIASCONSET, Nantucket I., Mass.; Cape Hatteras, N.C. 3H 4
Siasconset, Nantucket I., Mass.; SANDY HOOK, N.J. 3H 5
SIASCONSET, Nantucket I., Mass.; Marshall Point, Maine 1H 7
SIASCONSET, Nantucket I., Mass.; Cape Hatteras, N.C. 3H 4
SIASCONSET, Nantucket I., Mass.; Marshall Point, Maine 1H 7
Siasconset, Nantucket I., Mass.; SANDY HOOK, N.J. 3H 5
Cape Hatteras, N.C.; SIASCONSET, Nantucket I., Mass. 3H 4
Cape Hatteras, N.C., FOLLY I., S.C. 3H 6
FOLLY I., S.C.; Cape Hatteras, N.C., 3H 6
FOLLY I., S.C.; Jupiter, Fla. 3L 1
Jupiter, Fla.; FOLLY I., S.C. 3L 1
Jupiter, Fla.; SAN SALVADOR, B.W.I. 3L 5
CAPE SAN BLAS, Fla., Venice, Fla. 3H 0
CAPE SAN BLAS, Fla., Grande Isla, La. 3H 1
Grande Isle, La.; CAPE SAN BLAS, Fla. 3H 1
Grande Isle, La.; GALVESTON, Texas 3H 2
South Caicos, B.W.I.; CAPE SAN JUAN, P.R. 3L 2
South Caicos, B.W.I.; SAN SALVADOR, B.W.I. 3L 3
SAN SALVADOR, B.W.I.; South Caicos, B.W.I. 3L 3
SAN SALVADOR, B.W.I.; Jupiter, Fla. 3L 5
Orssuiagssuag, Greenland; SANDUR, Iceland 1L 4
Orssuiagssuag, Greenland; KUTDLEK, Greenland 1L 5
Porto Santo, Madeira I.; SAGRES PT., Portugal 1S 5
Porto Santo, Madeira I.; SANTA MARIA, Azores 1S 6
SANTA MARIA, Azores; Porto Santo, Madeira I. 1S 6
SANTA MARIA, Azores; Flores, Azores 1S 7

In the case of Loran C, signals from the slave station are always transmitted later than those from the master, and the values for all time differences are therefore regarded as positive. However, in the case of Loran A, the situation varies, depending on whether or not the master of the group of three is also the official master in the two pairs involved. For example, for rates 1H 3 and 1H 7, the common station, Siasconset, is also the one designated master in the official list, and all time-difference readings are therefore regarded as positive. But for rates 1 H 3 and 3 H 5 , the common station-again Siasconset-is master in one pair and slave in the other. Hence, the time-difference readings from 1H 3 will be positive, and those from 3H 5 will be negative. For rates 3L 2 and 3L 3, where the common station (South Caicos, B.W.I.) is officially the slave in both pairs, both time-difference readings will be negative.

After the latitude and longitude co-ordinates of the three stations have been entered, in steps 2-7 of routine 5.1, they are recorded on a data card, in step 8. This card can be preserved permanently, for use whenever the particular set of three stations is to be employed in a calibration procedure. That the same three stations will be used for several different calibrations is very likely, since they may provide coverage for thousands of square miles, while a calibration is valid for a much smaller area. (Note that in preparing the data card, after a latitude is entered, just the "Enter" key is pressed. The letter key- A for the first location, B for the second, and C for the third-is pressed in each
instance only after the entry of the longitude in question.) The actual calibration is made by entering, in steps $9-12$, the latitude and longitude of the particular point that has been chosen, and the time-difference readings (TDa and $T D b$) obtained there. Care must, of course, be taken to label the master and slave stations correctly, and to make the time-difference readings negative where necessary. When E has been pressed in step 12, and processing is complete, "CRD" appears in the display. A data card is then passed through the calculator (step 13), and it records all of the input information-the locations of the three stations, the location of the calibration point, and the time-difference readings at that point. The corners of this card, and of the card prepared in step 8, should be clipped to prevent accidental erasure or overwriting. This second card provides the initial data for the Loran Locator routine (routine 5.2). It can be used repeatedly-whenever the vessel is in the vicinity of the calibration point.

Wherever possible, time-difference data for a calibration point should be obtained by direct measurements at the place in question. These measurements are of course most desirable for calibrations in areas where the greatest accuracy is needed-in harbors and pilot waters, for example. If, at the same time that loran readings are taken, accurate position fixing can be accomplished by means of a round of compass bearings on visible, fixed, charted objects, or by means of horizontal sextant angles obtained for these objects, then exact calibrations can be made. For restricted waters, where the highest precision in fixing is needed, a number of calibration data cards should be prepared.

One advantage of this calculator method is that fixes can be obtained where there is no loran chart coverage. At this writing, loran lines of position do not appear on charts of larger scale than 1 to 80,000 , so they are not present on the large-scale (small-area) charts most useful for inner harbors. But as will be evident in section 5.5, once a calibration for a point in a harbor has been calculated, a fix can be completed without these lines, and the latitude and longitude co-ordinates obtained can be plotted directly on a large-scale harbor chart.

Out at sea, where the best method of position fixing other than loran may be celestial navigation-customarily resulting in position uncertainties greater than some tenths of a mile-it is probably sufficient to utilize calibration data taken from loran charts instead of from direct readings. A calibration point is selected, say, in the middle of the chart, and the corresponding time differences at that place are read from the chart. Since the accuracy of the calibration will depend on the accuracy of the chart, and on the accuracy with which time differences and latitudes and longitudes are read from the chart, an effort should be made to employ the largest-scale chart available (that is, the one covering the smallest area) that contains the necessary loran lines of position. Latitude, longitude, and time differences can then be read with the greatest possible precision. On a chart of the scale of 1 to 80,000 , it should be possible to measure latitude and longitude to a tenth of a minute of arc and time
differences to a tenth of a microsecond. With calibration from such a chart, a fixing accuracy of close to ± 0.25 of a nautical mile is probably available. This may not suffice in a harbor, but it is adequate in the open sea.

5.4 Use of Loran Sky-Wave Signals

Sky-wave signals are used frequently in Loran A, less often in Loran C. They tend to reduce accuracy, since the resulting time differences are less stable and predictable than those obtained with ground waves. However, under some circumstances, it may be necessary to use sky waves, and it is possible to produce calibrations for cases where, for example, ground-wave signals are received from the master and sky-wave signals from one or both of the slaves. When a calibration of this sort is used for position fixing, the receiving conditions must duplicate those under which the calibration was producedso that, in this instance, the time-difference readings would once again involve ground-wave signals from the master and sky-wave signals from the slave or slaves, as was the case when the calibration was made. Even the master can be a sky-wave signal if the calibration was made that way.

5.5 Position Location

Routine 5.2 is employed to convert time-difference readings into position fixes. It offers two modes-direct and relative. For the direct mode, the input data is provided by the calibration data card and by time-difference readings obtained at the vessel's present position. The fix is supplied in terms of latitude and longitude, and may also be obtained in terms of distance and bearing to the vessel from the calibration point or from a reference point of specified latitude and longitude. For the relative mode, a data card is prepared (in steps 17-21) which provides not only the location data and time-difference readings for a nearby calibration point, but also the time-difference readings for a selected reference point. The relative position fix is calculated in terms of distance and bearing from this point.

Routine 5.2 (HP-67/97)

LORAN LOCATOR

Step \quad Procedure \quad\begin{tabular}{c}
Input

DatalUnits

\quad Keys

Output

DatalUnits
\end{tabular}

1 Load program—both sides

Direct Mode

2 After completion of step 1, if calibration and reference-point data have been recorded on a card during a preceding operation of this routine (step 13), load this card, and continue with steps 4-7 and/or 14-16, as desired
3 Load calibration data card for A slave, B slave, master, and calibration point in question, as recorded in step 13 of routine 5.1
4 Enter A-slave time difference observed at vessel's position mmmmm.m A
5 Enter B-slave time difference observed at vessel's position, mmmmm.m B

- Calculate and display latitude of fix,
\pm DD.MMSS
- Longitude of fix
\pm DD.MMSS
6 To review latitude
$\mathrm{x} \leftrightarrows \mathrm{y} \pm$ DD.MMSS
7 To review longitude
$\mathrm{x} \leftrightarrow \mathrm{y} \pm$ DD.MMSS
To measure distance and bearing from calibration point, proceed as follows (steps 8-10):
8 Calculate and display distance from calibration point to vessel,

E naut. mi.

- True bearing from calibration point to vessel

DDD.d
9 To review distance
10 To review bearing
$x \mapsto y \quad$ naut. mi.
$\mathrm{x} \leftrightarrows \mathrm{y} \quad$ DDD.d

To measure distance and bearing from a reference point, proceed as follows (steps 11-16):

11 Enter latitude of reference point ($+N$, -S)

DD.MMSS
ENTER
12 Enter longitude of reference point (+W, -E)

DD.MMSS
C
13 If repeated fixes are to be made with respect to this reference point, record the calibration and reference-point data on a data card, both sides
f W/DATA
14 Calculate and display distance from reference point to vessel,

E naut. mi.

- True bearing from reference point to vessel

DDD.d
15 To review distance
16 To review bearing
$\mathrm{x}_{\hookleftarrow} \mathrm{y}$ naut. mi.

Relative Mode-Preparation of
Calibration Card
17 After completion of step 1, load calibration data card for A slave, B slave, master, and calibration point in question, as recorded in step 13 of routine 5.1
18 Enter A-slave time difference at reference point for which calibration is to be made \quad mmmmm.m A
19 Enter B-slave time difference at reference point for which calibration is to be made,
mmmmm.m B

- Calculate and display latitude of reference point,
- Longitude of the reference point

The values displayed in this step are to be ignored.
20 Set calculator to record relative-mode
calibration data card
D CRD
21 Record relative-mode calibration data card, both sides, and label card with names of A slave, B slave, master, calibration point, and reference point

Relative Mode-Fixing
22 After completion of step 1, load relative-mode calibration data card recorded in step 21
23 Enter A-slave time difference observed at vessel's position

| Step | Procedure | Input
 Data/Units | Keys |
| :--- | :--- | :--- | :--- | | Output |
| :---: |
| Data/Units |

In using routine 5.2, care should be taken to enter time-difference readings in a manner consistent with the calibration procedure completed in routine 5.1; for instance, if a particular station was designated as A during calibration, the time difference ($T D a$) now measured between this station and the master should be entered at A.

Examples of the various uses of routine 5.2 are given in figure 5.1 and figure 5.2.

Figure 5.1 illustrates the direct mode. The calibration information used in this illustration is taken from a chart containing Loran C lines of position. After the loading of the Loran Locator program, and of a calibration data card (prepared by routine 5.1 , for a calibration point at latitude $40^{\circ} 25^{\prime} \mathrm{N}$ and longitude $73^{\circ} 45^{\prime} \mathrm{W}$), time-difference readings observed at the vessel's position are entered at A and B. Calculation begins when B is pressed, and the vessel's latitude and longitude ($40^{\circ} 21^{\prime} 36^{\prime \prime} \mathrm{N}$ and $73^{\circ} 42^{\prime} 57^{\prime \prime} \mathrm{W}$) are sequentially displayed. Also, the distance from the calibration point is seen to be 3.74 nm , and the true bearing is 155.38°. This situation is illustrated in figure 5.1 at the fix for 081957.

The latitude and longitude of a reference, or way, point can also be inserted, as shown in steps 11 and 12 in routine 5.2, and the calculated position will then be expressed in terms of distance and bearing from this reference point. In figure 5.1, the vessel's destination serves also as the reference point. The distance and true bearing from this point turn out to be 4.0775 nm and 213.496°. This calculation is purely geometric; it does not involve further use of loran time differences.

Data (for Routine 5.3)

5.1. Loran Position Location, Direct Mode, and Loran Current Calculation

5.2. Loran Position Location, Relative Mode

Figure 5.2 illustrates the relative mode. This method requires a data card prepared according to the instructions in routine 5.2. It differs from the card used in the direct mode in that time-difference readings obtained at the reference point are entered, instead of its latitude and longitude. Hence, the relative mode is useful for navigating to or from locations whose latitude and longitude are not known.

Once the reference-point data card has been prepared, it can be used repeatedly. In figure 5.2, the results of three successive calculations are shown, giving the vessel's distance and true bearing from Ambrose Light at 080000 (8.52 $\mathrm{nm}, 152.9^{\circ}$), 081957 ($7.99 \mathrm{~nm}, 138.7^{\circ}$), and 085900 ($7.97 \mathrm{~nm}, 109.0^{\circ}$).

The accuracy achieved in position finding by the methods described depends on the vessel's distance from the calibration point when the direct mode is used, and from the reference point when the relative mode is used. In most cases, a high degree of accuracy can be attained.

5.6 Navigation with Loran Position Fixes

While knowledge of a vessel's present position is often important in itself, it is also important as an aid in planning a safe passage to the next destination. Whenever a vessel is subjected to unknown or imperfectly known currents, when there may be compass errors, speed uncertainties, or unanticipated leeway, the journey from a known position to a way point or destination may be hazardous. To avoid danger, it is not sufficient to know the present position; the courses steered must take into proper account even those quantities that are imperfectly known.

If a navigation aid such as loran or radar is available, the accurate information which it provides concerning previous positions can be used for the measurement of all the forces affecting the movement of the vessel over the bottom. Knowledge of the vessel's speed and heading on top of the water, as indicated by its instruments, in combination with the knowledge of course and speed made good over the bottom that can be obtained with the aid of loran, makes possible calculation of the unknowns that affect the motion of the vessel. The results of computing the set and drift of a "current"-obtained by determining the difference between the vector for the vessel's motion on top of the water and the vector for motion over the bottom between the fixes-will also reflect the effects of inaccurate knowledge of vessel speed, heading, or leeway, and will therefore provide a basis for correcting the vessel's course. (Where this current is changeable, as in tidal waters, the process may have to be repeated several times during a journey.) Thus, the advantages of loran position finding can be utilized in planning and course prediction, to aid in effecting a safe passage to the destination.

Two routines have been developed to accomplish this purpose, the first employing latitude and longitude co-ordinates, the second operating in terms of distance and bearing.

Routine 5.3 (HP-67/97)

Var	De	T2	Select Dest	Load
CcS	Lstart Lostart	T1	SMG CMG Dr St	Clear

LORAN CURRENT CALCULATOR (LATITUDE AND LONGITUDE)

Step \begin{tabular}{cccc}
Input

Procedure \& DatalUnits \& Keys \& | Output |
| :---: |
| DatalUnits |

\hline
\end{tabular}

This procedure can be used only when a position fix in terms of latitude and longitude remains in the calculator, as a result of completion of step 5 of routine 5.2.

1 Load program—both sides
2 Enter variation ($+E,-W$), even if 0 DD.d f a
3 Enter deviation (+E,-W), even if 0 DD.d fb
4 Enter compass course of vessel between fixes*

5 Enter vessel speed between fixes
DDD.d A

6 Enter latitude of vessel at previous fix ($+\mathrm{N},-\mathrm{S}$)
knots
A

7 Enter longitude of vessel at previous fix ($+\mathrm{W},-\mathrm{E}$)
8 Enter time of previous fix (T1)
9 Enter time of present fix (T2)
DD.MMSS B

10 Calculate and display speed made good between fixes,

D knots
True course made good between fixes,
DD.MMSS B
H.MS C
H.MS fc

- Drift of current between fixes,

DDD.d
knots

- Set of current between fixes

To obtain a course to steer, taking into account the current just calculated, proceed as follows:

If destination co-ordinates are on a data card,
11 Load data card
12 Enter identification number corresponding to destination co-ordinates (an even number from 0 to 20), and continue at step 15 0-20 fd
*Correct for leeway; see table 2.2.

Step Procedure \begin{tabular}{c}
Input

DatalUnits

Output

DatalUnits
\end{tabular}

If destination co-ordinates are not on a data card,
13 Enter destination latitude ($+\mathrm{N},-\mathrm{S}$)
DD.MMSS
ENTER
14 Enter destination longitude $(+W,-E)$, but do not press ENTER DD.MMSS
15 Load destination co-ordinates into memory
fe
16 Load program for the Planning routineeither routine 2.17 (chart factor) or routine 2.18 (mid-latitude)

If destination co-ordinates are not on a data card and the chart-factor routine is being used, care must be taken to enter the chart factor (step 24 of routine 2.17). Calculation then continues at step 28 of routine 2.17 or step 27 of routine 2.18.

Routine 5.3, the Loran Current Calculator, was designed to be integrated with routines 2.17 and 2.18 (the chart-factor and mid-latitude Planning routines). The current calculated from successive loran fixes is held in the calculator's memory, for use in calculating a plan to reach the destination.

An example of this use is shown in figure 5.1. In this case, the starting position is determined by loran (steps $1-5$ of routine 5.2), and the initial plan for reaching the destination is developed-by means of routine 2.18 rather than 2.17 , since no chart factor is specified-under the assumption that no current is acting on the vessel.

Once a vessel is on the planned compass course (in this instance, 47.99°), its estimated position at a future time (081957) is calculated by means of routine 2.20 or 2.21 , as appropriate. When that time is reached, routine 5.2 is used for a second loran fix. The resulting latitude and longitude co-ordinates, designating the vessel's present position, are retained by the calculator, and need not be re-entered for use in routine 5.3 and for subsequent use in the Planning routine.

Similarly, the set and drift which are calculated in routine 5.3 (in this instance, 96.92° and 0.65 knots) are automatically retained, and need not be re-entered for the next use of the Planning routine. Compass variation is also retained, and vessel speed must be re-entered only if it will change on the new run. The last steps in routine 5.3 involve entry of the destination co-ordinates. Hence, only the time of start of the new run remains to be entered when the Planning routine is begun once again, and after loading the program for routine 2.17 or 2.18 and entering the chart factor if necessary (step 24 of routine 2.17), one can proceed directly to step 28 of routine 2.17 or step 27 of routine 2.18 .

Routine 5.4 (HP-67/97)

Load Present Fix	T1 T2	Set Next Start	Btstart Dstart	Cm Cc SMG ΔT
Cc Var De	S	Btdest Ddest	DMG CMG Dr St	DPB

LORAN DISTANCE AND BEARING NAVIGATION

Step \begin{tabular}{cccc}
Input

Procedure \& DatalUnits \& Keys \& | Output |
| :---: |
| DatalUnits |

\hline
\end{tabular}

1 Load program—both sides
If present position is in the calculator display, as it is after use of routine 5.2 in the relative mode, continue at step 4. If present position is not in the calculator display,
2 Enter distance from reference point to vessel
naut. mi.
ENTER
3 Enter true bearing from reference point to vessel

DDD.d
4 Load present fix
fa
Steps 5-8, following, can be omitted after the first round of calculations provided the values are unchanged.
5 Enter compass course of vessel between fixes*
DDD.d A

6 Enter variation $(+E,-W)$, even if 0 DD.d A
7 Enter deviation $(+E,-W)$, even if $0 \quad$ DD.d A
8 Enter speed of vessel between fixes knots B
9 Enter time of previous fix (T1) H.MS fb
10 Enter time of present fix (T2) H.MS fb
Steps 11-14, following, can be omitted after the first round of calculations.
11 Enter true bearing from reference point to destination DDD.d C

12 Enter distance from reference point to destination
naut. mi. $\quad \mathrm{C}$
If reference point and destination are identical, enter 0 in steps 11 and 12.
13 Enter true bearing from reference point to vessel at first fix

DDD.d
f d
14 Enter distance from reference point to vessel at first fix
naut. mi. fid
*Correct for leeway; see table 2.2

To change destination, proceed as follows (steps 15-16):
15 Enter true bearing from reference point to new destination DDD.d

C
16 Enter distance from reference point to new destination
naut. mi.
C
17 Calculate and display distance made good between fixes,

- True course made good between fixes,

D naut. mi.
DDD.d

- Drift of current between fixes,
- Set of current between fixes
knots
DDD.d
To calculate estimated position, proceed as follows (steps 18-22):
18 Enter time of present fix (as in step 10) H.MS fb
19 For estimated position at a future time, enter time for which position is required, and continue at step 21 H.MS $f b$
20 For estimated position at the present time, re-enter time of present fix (as in step 18)
H.MS
fb
21 For the time selected in step 19 or step 20 , calculate and display distance from vessel to destination,

E naut. mi.
DDD.d

- True bearing from vessel to destination
f c
22 Set next starting position
As a result of the preceding step, the values displayed in step 21 are transferred to serve as the previous fix in the next calculation of distance and course made good and drift and set.

If deviation is 0 on all headings, continue at step 30 . If deviation is not 0 at all headings,

23	Enter vessel compass course as 0	0	A	
24	Enter variation $(+\mathrm{E},-\mathrm{W})$, even if 0	DD.d	A	
25	Enter deviation as 0	0	A	
26	Calculate and display magnetic course to steer,	fe	DDD.d	
- Speed made good,		knots		
- Time required to reach destination		H.MS		

If deviation is 0 on the magnetic course displayed in step 26, continue at step 30. If deviation is not 0 on this magnetic course,

27	Enter vessel compass course as 0	0	A
28	Enter variation $(+E,-W)$, even if 0	DD.d	A
29 Enter deviation $(+E,-W)$	DD.d	A	

Step	Procedure	Input Data/Units	Koys	Output DatalUnits
30	To change vessel speed during run being planned, enter new vessel speed	knots	B	
	To change estimate of current during run being planned, proceed as follows (steps 31-32):			
31	Enter new set of current	DDD.d	STO A	
32	Enter new drift of current	knots	STO B	
33	Calculate and display compass course to steer,**		$f e$	DDD.d
	Speed made good,			knots
	Time required to reach destination			H.MS
	To calculate estimated position at a future time, proceed as follows (steps 34-36)			
34	Enter time of start of leg or run	H.MS	$f \mathrm{~b}$	
35	Enter time for which position is required	H.MS	$f b$	
36	For the time selected in step 35, calculate and display distance from vessel to destination,		E	naut. mi.
	True bearing from vessel to destination			DDD.d
	For the next estimated position, the time of start (step 34) is the time previously used in step 35, and the time for which the new estimated position is required is entered in step 35.			
37	If a loran fix is to be obtained, by means of routine 5.2, record contents of data memory on both sides of an unclipped card		f W/DATA	
38	After obtaining new position fix (with distance and bearing still in the calculator's display and memory), load program for routine 5.4			
39	Load data card produced in step 37, and continue at step 4			
	If the reference point is to be changed, the calculations must be handled as a completely new operation, starting at step 1.			
	correct for leeway; see table 2.2.			

In routine 5.4, a single program is employed to provide values for current, estimated position, course to steer, time required to reach the destination, and speed made good, based on successive loran position fixes. Because the fixing data is expressed in terms of distance and bearing from a known position (the reference point), this routine can be adapted for use with positions obtained by means of radar.

To provide the necessary data in relation to the reference point, the Loran Locator routine (5.2) must be used in conjunction with routine 5.4, in the relative mode; therefore, the calibration data card, prepared in advance, must include the time differences observed at the reference point (or taken from a loran chart, if somewhat degraded accuracies can be tolerated).

The instructions for routine 5.4 have been written in great detail to cover a number of possibilities-among them a change in destination, and alterations in speed, course, or set or drift of current.

5.3. Positions and Relations Involved in Loran Navigation

The various positions and relations involved in these calculations are shown in figure 5.3. The positions are the reference point (as used in the relative mode of the Loran Locator routine), the vessel's previous position (defined by the fix obtained just before the present fix), the vessel's present position, and the destination or way point. If, as sometimes occurs, the vessel's destination is the reference point itself, the bearing and distance from the reference point to the destination will be set equal to zero.

Once steps 1-17 have been completed, the estimated position of the vessel en route to its destination can be calculated for any future time, by means of steps 34-36. Provided the data as originally entered remains unchanged, steps $1-17$ need not be repeated. The estimated-position sequence is followed by a procedure (step 37) for preserving necessary information when routine 5.4 must be interrupted for operation of the Loran Locator routine. Pressing f W/DATA and passing an unclipped magnetic card through the card handler results in storage of the contents of the calculator's memory for use when routine 5.4 is resumed.

The routine also provides for the repeated calculation of current from a pair of successive fixes. The information produced by this method concerns the current affecting the vessel in the recent past (that is, up to the moment of the second of the fixes). Where currents are constant over long periods of time, one such calculation will have considerable predictive value. But since currents tend to vary with time and location-being affected, for example, by tidal action, in coastal waters-extrapolation is likely to be misleading. Instead, frequent recalculations must be made to keep track of the changes in the current and the consequent changes required in the vessel's course.

This situation is illustrated in figure 5.4 , which shows the passage of a vessel from Long Island Sound into Block Island Sound, through the Race, at a time when tidal currents are swift, and are changing in both set and drift within fairly short distances.

Table 5.2 contains all of the data attendant on this passage. The example can be used to test the programs and rehearse the procedures required for use of routines 5.1, 5.2, and 5.4. The data presented in figure 5.4 includes the time differences at a reference point in the Race. Since these time-difference values, as well as those used to represent the readings taken on the vessel, were drawn from a Loran C chart of the area, they may be less accurate than readings obtained by on-the-spot measurements.

The journey begins at 0800, and the vessel's initial position in relation to the reference point is calculated by means of routine 5.2. At 0820, as the vessel approaches the Race, a second fix is taken. The program for routine 5.4 is then loaded (step 1), and data concerning the vessel's position, course, and speed is entered (steps $2-8$), making possible calculation of the current present during this first leg (steps 9-17). The current turns out to have had a drift of 1.81 knots and a set of 236.73°. On the basis of this information, and present vessel speed, a plan will be calculated for reaching the reference point at the Race, which thus serves also as the destination.

An important feature of routine 5.4 is its ability to accommodate the time that is required to make the loran measurements, alter the destination, if necessary, calculate the current and the new course to steer, and change the vessel's heading and settle it down on the new course. As shown, in steps 1821 , immediately after each loran position fix and current calculation, a sequence is included to determine the estimated position which the vessel will

reach if it continues on its previous course, affected by the current just calculated, for a specified time (in this instance five minutes) following the loran fix. This estimated position then becomes the position fix for the start of the new leg, planned in steps 23-33, and is also retained (step 22) to serve eventually as the starting reference-the previous fix, at $T 1$-for the next calculation of distance and course made good, and of the accompanying current.
In the example just described, the second loran fix is made at 0820, and since the first subsequent estimated position is for 0825 , this is the position that will be used as the starting reference in the next calculation of current. In the interim, by means of steps $34-36$ successive estimated positions are calculated at 0830,0840 , and 0850 . The contents of the data memory is next recorded for later use (step 37), and at 0850 another fix is made. It is then apparent that the current has turned out to be not as predicted, for the position of the vessel at 0850 is considerably to the north of the estimated position for the same time. Accordingly, the current is recalculated, with the 0825 position serving as the previous fix: After the loading of the program for routine 5.4 and the data card prepared in step 37, the 0850 position is loaded (step 4); and steps 9-10 and 17 are then performed. There is no need to repeat steps $5-8$ and 11-14. This

calculation indicates that the current has speeded up (to 2.55 knots) and has shifted northward (from 236.73° to 339.47°); it is probably about to shift even farther in the same direction, following the contours of the passage through the Race.

When the current has been calculated, an estimated position is obtained once again for a time five minutes in the future (i.e., 0855), by means of steps $18-22$, and a new course is planned (steps $23-33$). This course is modified at 0910, the calculation of an estimated position at 0905 being followed once again by the preparation of a data card, the use of routine 5.2 to calculate a fix, the recalculation of the current, and the corresponding alteration of the planned course and speed. Successive estimated positions are then obtained.

Once the vessel has passed through the Race, a new destination is chosen, 1.5 nm away from the initial destination (and reference point) in the Race, on a bearing 121° away from this point. The change in destination is entered by means of steps $15-16$. These are performed after a fix is made (by means of routine 5.2), routine 5.4 is begun again, and the times of the previous fix and the present fix-in this instance, 0910 and 0935-are entered. The destination is changed just before the recalculation of the current.

The sequence then proceeds as before. The new current is calculated, the estimated position at a time five minutes in the future (i.e., 0940) with respect to the new destination is determined, successive estimated positions are found, a final fix is made at 0955, followed by a last calculation of current, and one more estimated position is then calculated. Because at this point the position at 0955 (rather than five minutes later) is desired, the time of the present fix is entered twice, as shown in step 20.

One option open to the navigator is not exercised in the example just discussed. When set and drift are calculated, he can accept the values shown, or he can substitute other values, which he has reason to believe will be more accurate. The calculated values for current always reflect conditions in the immediate past. But if shoreline or bottom configurations indicate that the current will change as a new area is entered, or if the current is changing rapidly with time, values for set and drift based on previous vessel motion are not very useful. In these circumstances, the navigator, exercising his judgment, can enter his best estimate of what the current will be. The operation is performed during the planning segment of routine 5.4 , as shown in steps 31-32. It is also possible at this point to change the value for vessel speed (step 30).

One entry that is not easily changed is the reference point. If this must be shifted for some reason, calculation must be started anew, at step 1.

5.7 Conversion of Loran A to Loran C Time Differences

At this writing, Loran A is gradually being phased out; it will have been entirely discontinued within a few years. Many mariners have accumulated Loran A time-difference co-ordinates for a large number of points, but do not have precise knowledge of their geographic locations. If this information is to continue to be of use, the Loran A time differences will have to be converted into their equivalents in the Loran \mathbf{C} system.

Routine 5.5 has been prepared to accomplish this conversion. Its use requires two calibration data cards, prepared as shown in routine 5.1, one for Loran A transmitter stations and a calibration point in the vicinity of the location in question, the second for Loran C stations, and a similarly located calibration point. Data cards on which reference-point time differences have been recorded can not be used for this purpose.

The conversion procedure is simple. The program and the Loran A calibration data card are loaded, the Loran A time differences ($T D a$ and $T D b$) are entered, and the Loran C calibration card is loaded. When E is pressed, the corresponding Loran C time differences are displayed.
For maximum accuracy, precautions concerning the distance from the calibration points and the use of sky waves, as discussed sections 5.2 and 5.4 of this chapter, should be observed.

Routine 5.5 (HP-67/97)

LORAN PREDICTOR

Input Data/Units Output Keys DatalUnits

1 Load program—both sides

> Predicting Loran Readings

2 After completion of step 1, load calibration data card for area of interest, as recorded in step 13 of routine 5.1. A card recording any reference-point data is not acceptable.
3 Enter latitude of location for which time differences are required $(+N,-S)$

DD.MMSS ENTER
4 Enter longitude of location for which time differences are required $(+W,-E)$,

DD.MMSS E

- Calculate and display time difference predicted for A-slave station listed on card loaded in step 2,
- Time difference predicted for B-slave station listed on card loaded in step 2

Converting from Loran A to Loran C
5 After completion of step 1, load Loran A calibration data card for area of interest, as recorded in step 13 of routine 5.1. A card recording any reference-point data is not acceptable.
6 Enter A-slave Loran A time difference at location for which conversion is required mmmm A
7 Enter B-slave Loran A time difference at location for which conversion is required, $\mathrm{mmmm} \quad B$

- Calculate and display latitude of location,
- Longitude of location

The values displayed in this step are to be ignored.

Step \quad Procedure \quad\begin{tabular}{c}
Input

Data/Units

\quad Keys

Output

DatalUnits
\end{tabular}

8 Load Loran C calibration data card for area of interest, as recorded in step 13 of routine 5.1. A card recording any reference-point data is not acceptable.
9 Calculate and display A-slave Loran C time difference at location in question, E mmmmm.m
B-slave Loran C time difference at location in question
mmmmm.m

Converting from Loran C to Loran A
To convert from Loran C to Loran A, perform the operations shown in steps 5-9, but reverse the roles of Loran A and Loran C: load the Loran C card in step 5, and enter Loran C time differences in steps 6 and 7; then load the Loran A card in step 8, and calculate and display Loran A time differences in step 9.

5.8 Prediction of Loran Time-Difference Readings

Routine 5.5 can also be used to predict the loran time-difference readings that would be obtained at a given location of known latitude and longitude. The Loran Predictor program is loaded, along with a suitable calibration data card (without any reference-point data); then the latitude and longitude of the place in question are entered, at ENTER and $[E$; and the time differences are displayed. This routine can be used for either Loran A or Loran C, as long as the appropriate calibration data card is employed. It is of value when there may be a problem in distinguishing the signals received. For example, when a manual loran receiver is in use, reception may be hampered by excessive noise or interference. If the vessel's dead-reckoning or estimated position is known -and consequently its approximate latitude and longitude-the expected loran time differences can be obtained through the routine. This information will help in recognizing the signals despite the noise or interference. It can also be used for resolving 1 -microsecond ambiguities in Loran C, distinguishing between ground waves and sky waves, and properly setting the .10 -microsecond, cycle-match differences in Loran C. The latter are especially useful if a manual, nontracking loran receiver is in use.

Appendix

Programs

The Appendix contains all of the programs required for the routines presented in the text. Using his own calculator, the reader can record on magnetic cards the programs which he will be needing. Each program has the same number as the routine for which it is required. The Appendix also includes a discussion of some special topics that relate to the recording or use of program cards; these include recording procedures, customized programs, setting decimals and trigonometric mode on the HP-67 and HP-97, and nonprint displays.

Recording Procedures

Complete instructions for recording and preserving programs on magnetic cards on the HP-67, HP-97, and SR-52 are provided in the manufacturers' manuals for the calculators. These should be studied carefully and relied upon completely. This appendix does not repeat the standard information that must be understood when programs are to be recorded, such as the meaning of ERROR or CRD in the display of the HP-67 or HP-97, or of flashing zeros in the display of the SR-52.

The listings for the HP-67 and HP-97 programs were printed on an HP-97 calculator. For each step, they show the step number, the label of each key depressed in the performance of the step, and the corresponding numerical key code. (This code applies only to the HP-97. Because the HP-67 has a keyboard arrangement different from that of the HP-97, its key codes are different; however, the HP-97 equivalents can be found in the translation table in the HP-67 manual. Also, where the instructions specify the key PRINTx on the HP-97, the user of an HP-67 substitutes f -X- .)

In the listings for the SR-52 programs, the key label is shown at right and the corresponding key code at left. The step number for every tenth step has been inserted at the far left. In their inclusion of key labels these listings are different from those obtainable with the standard PC-100A printer, which provides just step numbers and key codes; a table in the SR-52 manual shows how to translate the key codes into key labels.

A number of different methods are available for checking the correctness of a program that has been copied. If the HP-97 or the PC-100A printer for the SR-52 is being used, one can simply load the program and compare the printout with the listing in the Appendix. If the SR-52 is being used without the printer, one can single-step through the program and compare each displayed key code with the key code printed in the listing. On the HP-67 too, one can single-step through the program. As has been noted, the displayed key codes will be different from those shown in the listing in the Appendix, but
with practice, the process of translation into the HP-97 equivalents becomes almost automatic, and the comparison between the newly recorded version and the master copy can be made easily and quickly. Another way to test a program-previously mentioned in chapter 1-is to run through the corresponding routine, using as input the data supplied in the illustrative example in the text. Correct answers will provide further evidence of the accuracy of the program copy.
If mistakes are found in the entry of some steps in a program, the needed revision can be done by means of the editing functions of the calculator, used in accordance with the manufacturer's instructions. These enable one to make changes, deletions, or additions to the program.
When the cards have been completely recorded and tested, they should be protected against inadvertent erasure in accordance with the manufacturer's instructions. For example, the corner of a Hewlett-Packard card should be clipped.

The labeling of the front of the magnetic card is best done with a fine-line pen, with ink formulated for writing on plastic. A lead pencil, with the lead made for lettering on plastic drafting film, can also be used, but the results are less clear and less permanent than those obtained with ink.

Customized Programs

Because not all calculators, and not all vessels, are identical, certain programs require numerical data which is different for each user. The insertion of this data in place of the illustrative values used in the program listings in this appendix results in customized programs. Instructions for replacing data within a program are provided in the manufacturers' manuals for the various calculators. In the HP-67 and HP-97, a change of this sort is made most easily by displaying the last digit of the sequence that is to be changed, then making a number of deletions equal to the number of digits to be replaced, and then entering the digits that are to be used, in their normal order. In all calculators, if the full program (224 steps) has been used, care must be taken not to introduce any extra digits when the program is customized, since doing so will result in obliteration of the last steps of the program. If a new value is longer than the one it replaces, the least significant digit (farthest to the right of the decimal point) should be eliminated.

Customizing is desirable in the programs for the Tracking routines of chapter 2. Routines 2.5, 2.20, and 2.21 incorporate a continuous-running feature, with the display of position repeated at the end of each cycle of computation. The time required for this cycle is different on the HP-67 and HP-97 and also varies from calculator to calculator. Therefore, the timing constants shown in the programs for these routines should be replaced by constants determined in the user's own calculator.

Each of the three routines provides for a self-timing adjustment that establishes the proper value of the loop time to be used in the program. This is done by means of the routine steps specified in the accompanying table.

Program			
and			
Routine	Routine Steps Used for Timing Adjustment	Program Steps Where Original Timing Constants Are Located	Register Where Timing Constants Are Located
2.5	$12-13$		
2.20	$15-16$	$28-33$	6
2.21	$15-16$	$214-218$	S2
		$213-217$	S2

After completion of the timing adjustment, the loop time is recalled from the calculator memory: pressing RCL 6 will display it for routine 2.5 , and pressing $f[p \leftrightarrows s, R C L[2][p \leftrightarrows s$ will display it for routine 2.20 or 2.21. This data should be copied to the number of decimal places used in the program. Next, the original contents of the program memory, at the program steps shown in the table, should be displayed. These are the values to be deleted and replaced by those just calculated. Once this substitution has been made, a new program card should be recorded, with the proper loop time.

Customizing is also necessary for a number of the programs for chapter 3, which require numerical data-coefficients, constants, and exponentsdefining the characteristic performance of a particular vessel; the use of this data is a way of customizing the programs, which then provide results applicable only to that specific vessel.

At the points where this numerical data is required, the program listings now contain the values needed to work out the illustrative examples discussed in the chapter. Once this has been done, the user should replace the illustrative data, with the corresponding values for his own vessel, obtained by the methods described in chapter 3. The accompanying table indicates the places where the customizing data is to be inserted.

1025
1031
$104 \quad 4$
1057
$107 \quad 1$
108 .

1093
1108
1113
1126

120
1210

1228
1236
1245
125 CHS

1275
1285
129
1300
131
132
133
CHS

8

4

Exponent (b) of the curve-fitting equation

$$
\text { So }=a M W^{b}
$$

(displayed in step 7 of routine 3.7)

Coefficient (a) of the curve-fitting equation

$$
\text { So }=a M W^{b}
$$

(displayed in step 7 of routine 3.7)

Program and Routine	Program Stop	Prosent Content	Name or Use of Data
3.11	6	5	
	7	5	Coefficient (a) of the curve-fitting equation
	8	-	$W t o=a M W^{b}$
	9	0	(displayed in step 11 of routine 3.8)
	10	8	
	11	4	
	12	2	
	18	-	
	19	0	Exponent (b) of the curve-fitting equation
	20	8	W to $=a M W^{\text {b }}$
	21	6	(displayed in step 12 of routine 3.8)
	22	5	
	23	+/-	
	31	1	
	32	-	Coefficient (a) of the curve-fitting equation
	33	3	$S o=a M W^{b}$
	34	8	(displayed in step 6 of routine 3.8)
	35	3	
	36	6	
	42	-	
	43	5	Exponent (b) of the curve-fitting equation
	44	1	$S o=a M W^{b}$
	45	4	(displayed in step 7 of routine 3.8)
	46	7	

102	6	Coefficient (a) of the curve-fitting equation
103	8	$S d=a M W^{b}$
104	0	(displayed in step 16 of routine 3.8)
105	4	
111	-	
112	7	Exponent (b) of the curve-fitting equation
113	7	$S d=a M W^{\text {b }}$
114	6	(displayed in step 17 of routine 3.8)
115	1	
122	-	
123	7	Constant term (a) of the curve-fitting equation
124	8	$\frac{\Delta S}{S d}=a+b \ln M W$
125	1	(displayed in step 5 of routine 3.13)
126	9	
133	-	
134	2	Coefficient (b) of the curve-fitting equation
135	5	$\frac{\Delta S}{S d}=a+b \ln M W$
136	4	(displayed in step 6 of routine 3.13)
137	1	
138	+/-	

141 . Difference between speed in the direction of optimum downwind tacking and the direct-downwind speed, obtained, for
1428 this purpose only, from evaluation of Fourier-series coefficients: the sum of the absolute values of all the Fourier

1433
144
145
2 coefficients, as provided by routine 3.15 , minus the sum of the algebraic values of the same coefficients. (The absolute value is the numerical value-considered as positive even if preceded by a minus sign.)

$$
\left|\frac{a_{0}}{2}\right|+\sum_{1}^{5}\left|a_{n}\right|-\frac{a_{0}}{2}+\sum_{1}^{5} a_{n}
$$

Exponent (b) of the curve-fitting equation
$\frac{\Delta W}{2}=a e^{b M W}$
(displayed in step 6 of routine 3.12) Coefficient (a) of the curve-fitting equation

$$
\frac{\Delta W}{2}=a e^{b M W}
$$

(displayed in step 5 of routine 3.12)

Coefficient (a) of the curve-fitting equation

$$
S d o=a M W^{b}
$$

(displayed in step 22 of routine 3.8)

156
1570

1585
1593
$160 \quad 9$
161 CHS

1635
1643
165
1660
1670
$168 \quad 2$
1695

192 . Difference between speed in the direction of optimum downwind tacking and the direct-downwind speed, obtained, for
1938
1943

1954 this purpose only, from evaluation of Fourier-series coefficients: the sum of the absolute values of all the Fourier coefficients, as provided by routine 3.14, minus the sum of the algebraic values of the same coefficients. (The absolute value is the numerical value-considered as positive even if preceded by a minus sign.)

$$
\left|\frac{a_{0}}{2}\right|+\sum_{1}^{6}\left|a_{n}\right|-\frac{a_{0}}{2}+\sum_{1}^{6} a_{n}
$$

Exponent (b) of the curve-fitting equation

$$
\frac{\Delta W}{2}=a e^{b M W}
$$

(displayed in step 29 of routine 3.7)

Coefficient (a) of the curve-fitting equation
$\frac{\Delta W}{2}=a e^{b M W}$
(displayed in step 29 of routine 3.7)

53 One-half of a_{0}, the Oth-order coefficient (DC term) of the Fourier series (displayed in step 8 or 9 of routine 3.14).

63
$7 \quad 9$
$8 \quad 3$
3

3.174

Program and Routine	Program Step	Present Content
77	.	Name or Use of Data

1200
1215
122
123
124
CHS

1275
1283
129
$130 \quad 0$
1310
132
133

Coefficient (a) of the curve-fitting equation
$\frac{\Delta W}{2}=a e^{b M W}$
(displayed in step 29 of routine 3.7)
$3.19 \quad 143$
1443 First-order term $\left(a_{1}\right)$ of the Fourier series (displayed in step 8 of routine 3.15)
145
1464
1476
148 +/-

150
1513 Oth-order coefficient (DC term) of the Fourier series, divided by 2 ($a_{0} / 2$, displayed in step 13 of routine 3.15)
152
153
9
154
3
5

6

3

1570 Second-order term $\left(a_{2}\right)$ of the Fourier series (displayed in step 9 of routine 3.15)
$1660 \quad 0 \quad$ Third-order term $\left(a_{3}\right)$ of the Fourier series (displayed in step 10 of routine 3.15)
167
4

1684
$169 \quad 2$
170 +/-

174
$1750 \quad$ Fourth-order term $\left(a_{4}\right)$ of the Fourier series (displayed in step 11 of routine 3.15)
176
1
1775
1785
179
0

183
18400 Fifth-order term (a_{5}) of the Fourier series (displayed in step 12 of routine 3.15)
185
1

1868
187 3
188 +/-

Setting Decimals and Trigonometric Mode on the HP-67 and HP-97
The results displayed by the HP-67 and HP-97 reflect the state of flags and the decimal setting as they were at the time that a program was recorded on a magnetic card. Thus, if answers are to be shown to four decimal places, the keys DSP 4 should be pressed just before the program is recorded. For the programs presented in this volume, the display should always be set to this fixed-four state (that is, DSP 4 should be pressed) before recording begins.

The HP-67 and HP-97 also offer alternative trigonometric modes-degree, radian, or grad notation. For every program in this volume except one, the degree mode is employed. The exception is the program for the Fourier Series routine (3.14), for which the keys f RAD should be pressed.

None of the programs presented in this volume requires the presetting of any flags.

Nonprint Operation of the HP-97

When the three-way print switch of the HP-97 is set at NORM(al), every keyboard input and the result of every computation is shown in the printout. If the calculator is used for tracking (routines 2.5, 2.20, and 2.21), the output printing may be undesirable because of extensive paper use and battery drain. The programs can be modified to eliminate the printing of every calculated bearing, distance, and time, leaving just the visual display. The procedure is shown in the accompanying table.

Program and Routine	Program Step	Present Content	Change to
2.5	$\begin{aligned} & 122 \\ & 130^{*} \\ & 143^{*} \\ & 145^{*} \end{aligned}$	$\begin{aligned} & \text { PRTx }-14 \\ & \text { PRTx }-14 \\ & \text { PRTx }-14 \\ & \text { SPC } 16-11 \end{aligned}$	f DEL f DEL f DEL f DEL
2.20	$\begin{aligned} & \hline 103 \\ & 104 \\ & 179^{*} \\ & 188^{*} \\ & 196^{*} \end{aligned}$	PRTx - 14 SPC 16-11 PRTx - 14 PRTx - 14 RTN 24	f PSE 1651 f DEL f PSE 1651 f PSE 1651 R/S 51
2.21	$\begin{aligned} & 093 \\ & 178 \\ & 187 \\ & 195 \end{aligned}$	$\begin{aligned} & \text { PRTx - } 14 \\ & \text { PRTx }-14 \\ & \text { PRTx }-14 \\ & \text { RTN } 24 \end{aligned}$	f PSE 1651 f PSE 1651 f PSE 1651 R/S 51

*Original step number, before any deletion has been made.

Interrupting the Display Interval on the HP-67
The only significant difference between the actual programs for the HP-97 and those for the HP-67 is that where PRINTx is used on the HP-97, f -X— is used on the HP-67. The latter causes the display to be retained for 308
five seconds, showing a flashing decimal point to signify the halt. In most cases this five-second interval provides enough time to read the answer. However, if desired, the display on the HP-67 can be made to halt altogether, by substitution of R/S for PRINTx in the program. In that case, where the HP-97 would yield a sequence of printed output data, the HP-67 will stop upon display of the first result, and R / S will have to be pressed to obtain each subsequent display of a result in the sequence. For example, if the programming for step 33 of routine 5.4 has been handled in this manner, the method of performing the step will be as follows:

Step	Procedure	Input Data/Units	Keys	Output Data/Units
33	Calculate and display compass course to steer,		f e	DDD.d
-	Speed made good, Time required to reach destination Enter time of start of leg or run	H.MS	f b	knots
34		R/S	H.MS	

Two cautions are necessary. First, care must be taken not to press R/S too many times, for then the program may begin to run without appropriate input data in place, and will yield incorrect answers. Thus, in the preceding example R / S must not be pressed after the time has been displayed. At this point the user proceeds with the data entry specified in step 34. Second, this adjustment must not be made in the programs for routines $2.5,2.20$, and 2.21 . When one of these routines is employed for tracking, the calculator runs continuously, providing repeated displays of distance, bearing, and time. If the display is stopped, as it is by use of the R / S key, the timing of the operation is thrown off, and subsequent displays of distance, bearing, and time will be meaningless.

Using the HP-41C

The compatibility features incorporated into the card-reader accessory of the HP-41C make it possible to use on this calculator data and program cards that have been prepared on the HP-67 or HP-97. The conditions that must be fulfilled when the HP-41C is to be employed in this manner are listed on page 13. In addition, certain specific procedures must be followed with respect to a few particular programs and routines. These are discussed here, chapter by chapter.

COASTWISE NAVIGATION

Page 43 (Routine 2.1)

The method of recalling speed, set, and drift on the HP-41C is as follows:

These changes are necessary because in the HP-41C there is no distinction between primary and secondary storage, and hence no $\mathrm{p} \leftrightarrow \mathrm{s}$ key. All registers on the HP-41C are addressed with two digits; for those corresponding to secondary registers on the HP-67 and HP-97, the first digit is 1 , as in the preceding table.
Page 92 (Routine 2.15)
The following changes are necessary:

- All storage registers are adressed with two digits; for example, in step 1 , STO 0 becomes STO 00 .
- Step 11 is eliminated, since there is no $\mathrm{p} \leftrightarrows \mathrm{s}$ key on the HP-41C. Registers corresponding to secondary registers on the HP-67 and HP-97 are now addressed with a two-digit number beginning with 1 ; for example, in step 12, STO 0 becomes STO 10 .
- In steps 22-25, the lettered registers are replaced by numbered registers, as follows:

Original
Register

STO	A
STO	B
STO	D
STO	E

- In step 26, the instruction f W/DATA is replaced by XEQ ALPHA W D T A ALPHA.
Pages 105, 108 (Routines 2.20 and 2.21)
No changes in the HP-67 and HP-97 programs are required unless an accessory printer is connected to the HP-41C. If a printer is used, the changes shown in the following table should be made in the program as it appears on the HP-41C printout. When a step is inserted, subsequent steps are renumbered automatically.

Program and Routine	Original Program Step	Original Content	Insert	New Program Step	New Content
2.20	$\begin{aligned} & 112 \\ & 113 \end{aligned}$	7. PRTx ADV	PSE	$\begin{aligned} & 112 \\ & 113 \\ & 114 \end{aligned}$	7 PRTx PSE ADV
	$\begin{aligned} & 187 \\ & 188 \end{aligned}$	$\begin{aligned} & 7 \text { PRTx } \\ & \mathrm{x} \leftrightarrows y \end{aligned}$	PSE	$\begin{aligned} & 188 \\ & 189 \\ & 190 \end{aligned}$	7 PRTx PSE $x_{\leftrightarrow} \leftrightarrow y$
	$\begin{aligned} & 194 \\ & 195 \end{aligned}$	$\begin{aligned} & 7 \text { PRTX } \\ & \text { RTN } \end{aligned}$	PSE	$\begin{aligned} & 196 \\ & 197 \\ & 198 \end{aligned}$	7 PRTX PSE RTN
2.21	$\begin{aligned} & \hline 102 \\ & 103 \end{aligned}$	$\begin{aligned} & 7 \text { PRTx } \\ & \text { GTO } 12 \end{aligned}$	PSE	$\begin{aligned} & 102 \\ & 103 \\ & 104 \end{aligned}$	7 PRTx PSE GTO 12
	$\begin{aligned} & 184 \\ & 185 \end{aligned}$	$\begin{aligned} & 7 \text { PRTx } \\ & x_{\hookleftarrow} \leftrightarrows y \end{aligned}$	PSE	$\begin{aligned} & 185 \\ & 186 \\ & 187 \end{aligned}$	$\begin{aligned} & 7 \text { PRTx } \\ & \text { PSE } \\ & x \leftrightarrow y \end{aligned}$
	$\begin{aligned} & 191 \\ & 192 \end{aligned}$	$\begin{aligned} & 7 \text { PRTX } \\ & \text { RTN } \end{aligned}$	PSE	$\begin{aligned} & 193 \\ & 194 \\ & 195 \end{aligned}$	7 PRTX PSE RTN

These changes make it possible to stop the tracking during the display of time.
After these changes have been made, the loop-time constant in the program for routine 2.20 is found at step 226, and the loop-time constant in the program for routine 2.21 is found at step 223.

SAILING

Page 167
Instead of f W/DATA, the keys XEQ ALPHA W D T A ALPHA are pressed on the HP-41C.
Pages 188 and 205-6
Customizing programs is accomplished on the HP-41C in the same manner as on the HP-67 and HP-97. However, the step numbers for the program segments involved are different. For the HP-67 and HP-97, the program step numbers of the coefficients and exponents to be changed are given in the tables on pages 298 and 302-6. For the HP-41C, the equivalent step numbers can be found by printing the program on the HP-41C and locating the illustrative coefficients and exponents in the printout. These can then be replaced with the proper customizing values by means of the normal deletion and insertion methods used for HP-41C programs.

CELESTIAL NAVIGATION

Pages 232, 235 (Routines 4.2 and 4.3)
Celestial and monthly star data cards prepared on the HP-67 or HP-97 by means of routine 4.2 or 4.3 can be used for celestial sight reduction on the HP-41C. However, these routines should not be used on the HP-41C for the
preparation of almanac data cards. If cards prepared in this manner are employed for sight reduction, the results displayed will be incorrect.
Page 257 (Routine 4.10)
As in routine 2.15, the following changes are necessary:

- All storage registers are addressed with two digits.
- The shift to secondary storage (step 13) is eliminated.
- The lettered registers (STO A and STO B) are replaced by numbered registers (STO 2 , 0 and STO 2,1).
- In step 24, the instruction f W/DATA is replaced by XEQ ALPHA W D T A ALPHA.

LORAN
The instruction f W/DATA is replaced by XEQ ALPHA W D T A ALPHA in the following routines: 5.1 (step 8), 5.2 (step 13), 5.4 (step 37).

PRERECORDED CARDS FOR THE HP-41C
Prerecorded data and program cards for the HP-41C are available for all of the Hewlett-Packard routines presented in this volume. These cards are ready to use; the changes and restrictions described in the preceding paragraphs do not apply to them, and the instructions in the routines in this volume -the keystroke sequences for data entry and the display of results-are followed without modification. As a further convenience, each answer is labeled with the appropriate unit, such as knots, degrees, or nautical miles.

The HP-41C data and program cards can be obtained from Barco-Navigation, 62 West 45th Street, New York, N.Y, 10036.

Program Listings—pages 313 to 412.

061	- 1 LBLa	211611	646	ST+9	35-55 09	091	RCLB	3612
082	STOA	3511	647	RTN	24	092	$\rightarrow R$	44
853	RTN	24	848	+LBLB	2112	093	ST-3	35-45 03
084	- LBLa	211611	049	HMS \rightarrow	1636	694	$X \pm Y$	-41
065	STOB	3512	650	P +5	16-51	095	ST-4	35-45 84
086	RTN	24	051	ST08	3508	096	RCL4	3684
807	*LBL6	211612	052	$\mathrm{P}+5$	16-51	097	RCL3	3683
068	STOC	3513	053	RTN	24	898	$\rightarrow \mathrm{P}$	34
069	RTN	24	854	+LBLB	2112	099	STO5	3585
010	* 2 BL6	211612	055	HMS \rightarrow	1636	100	X+Y	-4i
811	STOE	3515	856	$P \div 5$	16-51	101	ST06	3506
812	RTN	24	657	ST09	3509	182	P*S	16-5i
013	- LBLA	2111	058	RCL8	3608	103	RCL2	3602
814	6SB6	2300	859	-	-45	104	-	-45
015	P +5	16-51	068	ST01	3581	105	SIN	41
016	ST04	3564	061	$P \ddagger 5$	16-51	106	RCL2	3602
617	P +5	16-51	062	RCL8	3608	187	RCL3	3683
018	RTN	24	063		-4i	168	-	-45
019	¢LBLA	2111	064	x	-35	109	SIN	$4:$
026	$P \ddagger 5$	16-51	865	ST+3	35-55 03	110	\doteqdot	-24
021	ST05	3505	866	LSTX	16-63	111	P+S	16-5i
022	$P \pm 5$	16-5i	067	RCL9	3689	112	RCL5	3605
023	$\rightarrow R$	44	068	X	-35	113	x	-35
024	ST08	3508	069	ST+4	35-55 04	114	ABS	1631
625	$X \rightarrow Y$	-41	078	RTN	24	115	STOB	3512
826	ST09	3589	071	+LBLC	2113	116	$\mathrm{P} \div \mathrm{S}$	16-51
027	P +5	16-51	872	6SB6	2300	117	RCL 3	3603
028	0	00	073	$\mathrm{P}+5$	16-51	118	$\mathrm{P} \ddagger 5$	16-51
029	ST06	3566	874	ST02	3502	119	STOA	3511
036	ST07	3500^{7}	075	$\mathrm{P} \ddagger 5$	16-51	126	RCLB	3612
031	RCL5	3685	076	RTN	24	121	PRTX	-14
632	$P+S$	16-51	077	+LBLD	2114	122	SPC	16-11
033	RTN	24	078	6580	2300	123	RTN	24
634	+ LBLA	2111	079	$P \div 5$	16-51	124	*	211613
035	P +5	16-5i	888	ST03	3503	125	RCLA	3611
036	ST06	3566	681	P\%S	16-51	126		16-51
637	P\%S	16-51	882	RTN	24	127	RCL6	3606
038	RTN	24	083	* LBL0	2100	128	-	-45
039	- LBLA	2111	684	RCLE	3615	129	SIN	41
840	$\mathrm{P} \rightarrow 5$	16-51	085	+	-55	130	RCL7	3607
641	ST07	3507	086	RCLC	3613	131	x	-35
042	$\mathrm{P}+5$	16-51	887	+	-55	132	RCL5	3605
043	$\rightarrow R$	44	088	RTN	24	133	\div	-24
044	ST+8	35-55 88	089	* $2 B L E$	2115	134	SIN ${ }^{-1}$	1641
045		-4i	898	RCLA	3611	135	P+S	16-51

Proaram 2.1A

136	RCLA	3611	181	RTN	24	001	*LBLA	$21:$
137	+	-55	182	+LBLd	211614	882	DSP2	-63
138	PがS	16-51	183	DSP2	-63 02	083	STOO	35
139	ST04	3584	184	0	80	084	RTN	2
140	$P \pm S$	16-51	185	$5 T 03$	3503	085	*LBLA	211
141	RCLC	3613	186	ST04	3584	006	ST01	350
142	-	-45	187	RTN	24	067	$\rightarrow R$	4
143	RCLE	3615	188	+LBLd	211614	888	ST02	35
144	-	-45	189	STOA	3511	089	$X \underset{+}{ } \mathbf{Y}$	-4
145	X<0?	16-45	199	STOB	35. 12	016	ST03	358
146	6SB1	2301	191	RTN	24	811	RCLA	361.
147	PRTX	-14	192	+LBLe	211615	012	RCLB	361
148	$P \ddagger 5$	16-51	193	RCLA	3611	013	$\rightarrow R$	4
149	RCL4	3604	194	RCLB	3612	814	$5 T+2$	35-55
150	RCL5	3685	195	$\rightarrow R$	44	015	$X+Y$	-4.
151	$\mathrm{P} \ddagger \mathrm{S}$	16-51	196	$X+Y$	-41	016	ST+3	35-550.
152	\pm R	44	197	RCL4	3604	017	RCL3	360
153	ST08	3508	198	RCL3	3603	018	RCL2	36 B:
154	$X+Y$	-41	199	Rt	-31	619	$\rightarrow P$	3.
155	ST09	3509	206	-	-45	020	ST04	358
156	$\mathrm{P}+5$	16-51	201	CHS	-22	021	$X \rightarrow Y$	-4.
157	RCL 6	3686	202	R \downarrow	-31	022	ST05	358
158	RCL 7	3607	203	$X \div Y$	-41	823	RTN	2
159	$P \div 5$	16-51	284	-	-45	824	*LBLB	21 1:
160	$\rightarrow \mathrm{R}$	44	285	CHS	-22	025	STOE	3511
161	$\mathrm{ST}+8$	35-55 08	206	$R \uparrow$	16-31	026	RTN	2
162	X $\mathrm{X}+\mathrm{Y}$	-75-55	207	$X \pm Y$	-41	827	+LBLC	21 1:
163	ST+9	35-55 89	268	$\rightarrow P$	34	028	$P \neq S$	16-5.
164	RCL9	3609	209	PRTX	-14	029	STOO	3581
165	RCL 8 $\rightarrow \mathrm{P}$	3688 34	218	$X+Y$	-41	030	P +5	16-5.
166	+P	34 -14	211	1	01	031	RTN	2
167 168	PRTX	-14 36	212	8	08	032	- LBLC	21 1:
168 169	RCLB	3612	213	${ }_{+}^{8}$	80 -55	633	P\%S	16-5.
169 179	$X F Y$ \vdots	-41 -24	214	$\stackrel{+}{\text { PRTY }}$	-55	034	ST06	3581
170 171	- $\begin{gathered}\text { HMS }\end{gathered}$	-24 1635	215	PRTX SPC	-14 $16-11$	835	P +5	16-5.
172	-HSP	1635 -6304	216 217	SPC R / S	16-11	636	RTN	2
173	PRTX	-14	218	$X+Y$	-41	037	* \quad BLC	21 1:
174	SPC	16-11	219	$\mathrm{P} \ddagger 5$	16-5i	038	P+S	16-5.
175	RTN	24	220	RCL1	3601	039	ST07	350
176	- LBLI	2101	221	$\mathrm{P}+5$	16-51	848 041	$P \ddagger S$ $R C L 5$	16-5.
177	3	03	222	\vdots	-24	841	RCL5	36
178	6	06	223	PRTX	-14	042	P+S	16-5.
179	0	00	224	RTN	24	043	RCL6	36
188	+	-55				844 845	SIN	-4 4

Program 2.2

(continued) 315

].	I	$7=$	7		E	6
	O.]	5	E		22^{2}	1 H
	9 F	$=$	$44^{4}=$	Sul		44.	SU1
	42.	GT]	i.	1	130	O.	T
	1.	1	E.	E		O_{1}	-
	2.	$\underline{2}$	90 \%	HLT		43	EC
	E,	\%	48	LEL		1.	1
50	4 S	PC	$\underline{2}=$	E		E	E
	1.	1	E5,	$+$		7	-
	5.	5	49	EL		49	FC
	9.	$=$	G.	E		I=	1
	15	E	9.	9		$7=$	7
	43	FL	g5.	$=$		9 F	$=$
	1.	1	4	E9\%	140	2.	Iht
	4.	4].	T		3.	Pr
	8 E	$+$	100 :	1		7 ¢	-
	43	EL	48	EQU		$4{ }^{4}$	Cl
60	8	E	P.	-		T,	T
	9,	9	4	4		$4=$	4
	95	$=$	SE,	$=$		g.	$=$
	39	PR	¢:	HeT		\%	51
	$44=$	Stm	$4{ }^{\text {a }}$	LEL		EF	X
	i.	1	1 O	C		F	E
	$\overline{7}=$	7	4.	EQ	150	5 F	\div
	43	PL	\%	1		5 \%	\%
	1.	1	110	7		$4{ }^{3}$	PC
	\%	\%	¢	ES		I,	-
70	65	x	T.]		4.	4
	43	QCL	E.	\%		7	-
	1.	1	E:	HT		4%	FC
	2.	2	46	LEL		I,	0
	95	$=$	$4=$	I		i=	1
	1 F	E	43	ECL		54.	;
	44	Em	O,	T	160	Q:	E1
	i.	1	F	7		85	$=$
	E.	6	120 E	E		4.	P
	4 s	PG	48.	ECL].	T
80		1	i.	I		15	E
	E,	5	E.	\%		4 \%	PT
	59.	Pr	99.	$P \mathrm{P}$],	-
	$44=$	U1	4 B	ESt		1.	,
	:	1	1:	1		7 F	-

4	4	3.	3	θ	8
$2 z^{2}$	H\%	2	2	17048	BCL
9\%	F.F	Et.	4	E.	E
E日.	$\mathrm{HF}+$	130 \%	3	9.	9
\%.	\square	B	E	48	Est
90.	9	0.	0	0	0
5	5	75	-	0.]
85	$\stackrel{+}{+}$	$4{ }^{4}$	PL	42	STI
3.	3	1.	I	0.	0
6	6	1.	1	$\bar{F}=$	7
0.	0	55	$=$	43	FCL
5	$=$	$42=$	GT0	180 is	1
E1.	$\mathrm{H}_{-} \mathrm{T}$	i.	1	T,	0
$4{ }^{6}$	LEL	140 \%	0	E,	$+$
1 B	$\mathrm{E}^{\text {: }}$	E1.	Hit	48	FCL
10043	FUL	$4{ }_{5}$	LBL	i,	T
O.	-	19	$]^{\prime}$	1.	1
].	I	$42=$	9T0	8 E	\div
75	-	0	0	4%	FCL
43	PLL	z^{2}	2	I.	0
1.	1	2 z	Ifl	2	2
$日_{\text {g }}$	θ	44.	514	190 E,	
95	$=$	1:	1	\%\%	F.R
\%	5 H	150 I:	0	44.	Eum
6	x	4%	FCL	0.	0
11043	FCL	i.	1	θ	B
1.	1	0.	T	48	FH
9.	9	Ei,	H_T	i,	0
5 F	\div	46	LDL	$\overline{7}=$	7
48	PG	10.	$E^{\text {E }}$	44.	Sult
6	5	43	FGL].	I
9.	9	i.	1	200 0.	1
95.	$=$	9.	9	4 i	FH
E.	He	$16048=$	Esc	I,	0
3 C	EH	I,	O	E.	8
120 E5	$+$	0.	0	2 z	IH
43	BL	4.	FCL	3 E	F\%
I.	I	1.	i	40^{2}	FCL
0.	0	B.	θ	0.	0
95	$=$	39.	$\mathrm{F} \cdot \mathrm{F}$	9.	5
80.	HF	42	ET0	5.	\div
i.	1	I.]	210 \%	$\mathrm{E}^{\text {B }}$

Program 2.4

95.	$=$	46.	LEL	46	LEL
2	TH4	11.	H	$1 \theta_{0}$	\square^{\prime}
3%	Dits	$42=$	STD	37	THE
5%	Fris	1.	1	42	5 T
4.	4	0.	0	0.	0
Ei.	Het	E1.	HLT	θ	E
		46	LEL	E.	HLT
		12	E	5046	LEL
		42	STI	17:	$E^{\text {E }}$
		10 O	0	\%	W19
		1.	1	42.	GT]
		Ei,	HLT	0.	-
		46	LEL	$7=$	7
		13	C	Ei.	HLT
		48	E,	46	LEL
		0.	0	18.	E
		z.	2	40^{2}	ESE
		48	ES:	60 0.	0
		0.	-	9	9
		203.	3	48^{4}	ENE
		Bi.	HLT	0.	\square
		46	LEL	8	E
		14:	II	49	FCL
		S5	\div	0.	-1
		$4{ }^{4}$	ELL	9.	9
		1.	1	42	ETD
		I.	I	I.	0
		8 E	$+$	70 I.	0
		48	EUL	4 B	ELL
		30 O	0	0.	I
			1	8.	9
		9 F	$=$	99.	F.E
		42	ST]	42.	STD
		0°	II	1.	1
		4	4	3	3
		E:	Het	43	FCL
		4 E	L.EL	0.	0
		15	E	80 .]
		42.	ET]	42.	GT]
		40 O.	0	1.	1
		5.	5	4.	$\stackrel{4}{4}$
		日i.	H. ${ }^{\text {T }}$	Gi.	HLT

46	LEL	7.	7	42	ST0
19.	I^{\prime}	75	-	170 1.	1
43	FiL	43	FLL	7.	7
0.	\square	130 -	\square	43.	Fic
5.	5	E.	6	I.	\square
9042	STL	95.	$=$	\square.	\square
I.	0	49.	FFII	42	STD
0.	1	1.	1	1.	
43.	FLL	1.	1	81.	HLT
I.	I	49	FEII	8.	+
4.	4	1.	1	3.	3
39	F.F:	2.	2	180 E.	θ
42.	GT0	43	FOL	0.	\square
1.	1	140 1.	1	95.	=
1.	1	1.	1	42.	ETD
10043	ECL	22	IHY	1.	1
0.	0	44.	Sut	7.	7
0.	0	1.	1	48	FLC
42.	GT0	3	3	0.	\square
1.	1	43.	FL	D.	\square
2	2	1.	1	42	STL
4.	ECL	2	2	190 1.	1
0.	\square	22	IH?	$\underline{8}$	
2.	z	15044.	Elim	E1.	HLT
4.	ETL	1.	1	46	LEL
$110{ }^{0}$	-	4	4	10.	E^{\prime}
万.	0	43	FCL	$4{ }_{4}$	FicL
4.	FLL	1.	1	1.	1
0.	\square	4.	4	$\overline{7}$	7
3.	3	42	STD	E1:	HLT
39.	$\mathrm{F} F$	0.	\square		
44.	SUM	\square.	0		
1.	1	43.	FTL		
1.	1	160 1.	1		
43	FCL	3.	3		
120 -	\square	2 E	IH?		
0.	\square	\%.	$\mathrm{F} \% \mathrm{~F}$		
44.	SUM	2 E	IH4		
1.	1	80.	IF+		
$\underline{2}$	2	1.	1		
43.	FiL	7.	7		
0.	\square	\bar{i}	7		

Entries for steps 28-33 should be replaced when the loop time for the particular calculator has been determined, as shown in the discussion of customized programs earlier in this appendix			046	$5 T 04$	3584	086	ST+5	35-55 85
			041	ST08	3588	887	6581	2301
			842	RCL5	3605	088	$\mathrm{P} \ddagger 5$	16-51
			643	P +5	16-51	689	RCL5	3605
			044	$\mathrm{X}=0$?	16-43	098	RCL4	3604
			845	RTN	24	091	P-S	16-51
			846	$65 B 6$	2300	092	-	-45
081	* 2 BLA	2111	647	RCL 8	3608	893	RCL7	3607
082	STOE	$35 \quad 15$	648	P+5	16-51	094	\div	-24
003	RTN	24	049	RCL4	3604	095	5706	3506
804	- LBLA	2111	850	RCL5	3605	696	P $\ddagger 5$	16-51
085	STOD	3514	651	P*S	16-51	897	RCL8	3688
006	RTN	24	452	-	-45	098	RCL6	3606
067	- L BLA	2111	053	x	-35	699	+	-55
088	STOI	3546	854	ST+4	35-55 64	100	5708	3508
009	RTN	24	055	LSTX	16-63	181	\rightarrow HMS	1635
010	+LBLB	$21 \quad 12$	056	RCL9	36	182	DSP4	-63 04
011	STOC	3513	657	x	-35	183	$\mathrm{P}+5$	16-51
012	RTN	24	058	$S T+5$	35-55 05	104	RTN	24
013	* LBLa	211611	659	6SB1	2301	165	*LBLC	2113
014	STOA	3511	060	0	08	106	6580	2380
815	RTN	24	661	ST07	3507	107	1	81
016	+LBLa	211611	062	$\mathrm{P}+\mathrm{S}$	16-51	168	ST+7	35-55 97
017	STOB	3512	063	RCL4	3684	109	RCL6	3686
018	FTN	24	064	+HMS	1635	110	RCL 8	3688
019	*LBLb	211612	865	DSP4	-63 64	111	x	-35
020	RTN	24	866	$F+5$	16-5i	112	ST+4	35-55 84
021	+LBL6	211612	067	RTN	24	113	RCL6	3606
022	\rightarrow R	44	068	* LBLd	211614	114	FCL 9	3609
023	CHS	-22	069	HMS \rightarrow	1636	115	x	-35
024	$5 T 04$	3594	076	$P \div 5$	16-51	116	ST+5	35-55 85
025	$X \rightarrow Y$	-41	071	ST05	3565	117	RCL5	3605
826	CHS	-22	072	RCL8	3608	118	RCL4	3604
027	ST05	3505	673	-	-45	119	$\rightarrow \mathrm{F}$	34
028		-62	074	ST06	3586	120	ST03	3563
029	8	09	075	$\mathrm{P} \ddagger 5$	16-51	121	PSE	1651
036	0	06	076	6SB6	2306	122	PRTX	-14
031	3	03	077	RCL8	3608	123	XF	-4i
032	1	01	078	$\mathrm{P}+5$	16-51	124	1	01
633	9	09	079	RCL6	3686	125	8	86
034	5706	3566	088	χ	-35	126	6	60
035	CLX	-5i	081	$\mathrm{P}+5$	16-51	127	+	-55
036	RTN	24	082	ST+4	35-55 04	128	STO2	3502
037	- LBLC	211613	083	LSTX	16-63	129	PSE	1651
038	HMS ${ }^{\text {P }}$	1636	084	RCL9	3609	139	PRTX	-14
639	$P+S$	16-51	885	x	-35	131	$\mathrm{P}+5$	16-51

Program 2.6

132	RCL4	3684	177	+	-55	001	* LBLA	21
133	$\mathrm{P} \ddagger \mathrm{S}$	16-51	178	RCLI	3646	602	F2?	1623
134	RCL7	3607	179	+	-55	883	$6 T 01$	22
135	RCL6	3606	180	RCLC	$36: 3$	084	RCLA	36
136	x	-35	181	\rightarrow R	44	005	-	-
137	$+$	-55	182	ST08	3508	086	* 2 BLO	21
138	F\% ${ }^{\text {S }}$	16-51	183	$X \underset{\sim}{+Y}$	-41	407	RCLE	36
139	ST08	3508	184	STO9	3509	008	\doteqdot	-
140	$\mathrm{P}+\mathrm{S}$	16-51	185	RCLA	3611	009	8	
141	-HMS	1635	186	RCLB	3612	810	$+$	-
142	DSF4	-6304	187	\rightarrow R	44	811	FRC	16.
143	PRTX	-14	188	ST+8	35-55 08	812	KCLE	36
144	PSE	1651	189	$\mathrm{X}=\mathrm{Y}$	-41	013	X	\cdots
145	SFC	16-11	196	ST+9	35-55 09	014	RTN	
146	DSF2	-6302	191	RTN	24	815	*LELI	21
147	GTOC	2213	192	*LBLI	2101	816	$\mathrm{P} \ddagger 5$	16-!
148	*LBLD	2114	193	RCL5	3685	817	CLRG	16-!
149	R/S	51	194	RCL 4	3604	818	$P \pm S$	16-!
158	RTN	24	195	\rightarrow P	34	819	3	
151	* ${ }^{\text {cke }}$	211615	196	ST03	3533	828	6	
152		-62	197	$X \pm Y$	-41	021	8	
153	6	80	198	1	01	022	STOE	351
154	0	80	199	8	08	623	2	,
155	3	03	208	0	80	824	\div	-i
156	1	01	201	+	-55	025	+	-
157	9	89	202	STO2	3502	826	STOA	351
158	ST06	3506	283	RTN	24	027	LSTX	16-t
159	8	06	284	*LBLE	2115	628	SF2	16216
160	STOT	3507	285	RCL3	3663	629	RTN	16
161	$\mathrm{P}+5$	16-51	206	PRTX	-14	638	* LBLE	21
162	ST05	3505	207	RCL2	3682	831	HMS ${ }^{\text {c }}$	16
163	$\mathrm{P}+5$	16-51	208	DSP1	-63 01	632	F2?	16238
164	RCL2	3602	289	PRTX	-14	033	STOC	351
165	RCL3	3663	216	$P \ddagger 5$	16-51	634	STOB	35
166	\rightarrow R	44	211	DSP4	-6304	635	$\Sigma+$	
167	CHS	-22	212	RCL8	3688	036	RTN	
168	5704	3504	213	\rightarrow HMS	1635	837	*LBLC	21
169	$X \underset{Y}{ }$	-41	214	PRTX	-14	038	* \quad BLD	211
176	CHS	-22	215	SFC	16-11	039	RCL4	368
171	ST05	3505	216	DSP2	-63 02	048	STO7	358
172	CLX	-51	217	$\mathrm{P} \ddagger \mathrm{S}$	16-51	841	RCL5	368
173	RTN	24	218	RTN	24	042	5 S08	358
174	*LBL8	2180	219	R / S	51	843	RCL6	368
175	RCLE	3615				044	STO9	358
176	RCLD	3614				045	RCLB	361

046	RCLC	3613	891	\bigcirc	-24	136	$P \rightarrow 5$	16-51
647	+	-55	092	STOO	3500	137	RTN	24
848	2	82	093	\rightarrow HMS	1635	138	*LBLC	211613
849	\div	-24	094	PRTX	-14	139	STOI	3546
658	5706	3586	095	RCLE	3600	146	RTN	24
051	\rightarrow HMS	1635	096	RCL 7	3607	141	*LBLC	211613
052	PRTX	-14	697	\times	-35	142	STO3	3503
853	P\% 5	16-51	098	RCL8	3608	143	RTN	24
654	RCL8	3608	899	+	-55	144	*LBL6	2186
855	RCL4	3604	108	65B9	2300	145	P: 5	16-51
856	RCLE	3606	101	ST01	3501	146	RCL 8	3600
857	x	-35	102	PRTX	-14	147	+	-55
658	RCL9	3609	103	RCLE	3600	148	RCLI	3601
859	\div	-24	164	RCL4	3604	149	+	-55
066	-	-45	185	\times	-35	150	P+5	16-5i
661	RCL5	3605	166	RCL5	3605	151	RTN	24
662	RCL4	3604	167	+	-55	152	*LBLd	211614
863	X^{2}	53	108	6SEG	2300	153	RCL1	3681
664	RCL9	3609	169	ST02	3502	154	6586	2306
865	\div	-24	116	PRTX	-14	155	5701	3501
660	-	-45	111	SPC	16-11	156	RCL2	3602
667	\div	-24	112	RCL2	3602	157	6586	2366
668		16-51	113	RCLI	3681	158	STO2	3502
669	5704	35.4	114	-	-45	159	RCLI	3646
678	$\overline{\bar{x}}$	1653	115	SIN	41	166	RCL2	3602
671	RCL4	3604	116	P $\ddagger 5$	16-51	161	-	-45
072	\times	-35	117	5702	3502	162	SIN	41
673	-	-45	118	$\mathrm{P} \ddagger 5$	16-51	163	$P \pm 5$	16-5:
074	RCLA	3611	119	RCL2	3682	164	RCL2	3602
675	+	-55	128	RTN	24	165	$\mathrm{F}+5$	16-51
676	5705	3505	121	*LBLa	$21161:$	166	\div	-24
077	RCL6	3606	122	CLRG	16-53	167	kCL3	3683
078	RCL 4	3684	123	$P \ddagger 5$	16-51	168	$\stackrel{\square}{8}$	-35
679	x	-35	124	CLRG	16-53	169	AES	1631
880	+	-55	125	CLX	-51	176	STOD	3514
681	6580	2300	126	SF2	162182	171	PRTX	-14
082	SF2	162102	127	RTN	24	172	RCLI	3601
083	PRTX	-14	128	*LBLb	211612	173	PRTX	-14
084	SPC	16-21	129	$P \pm$ S	16-51	174	SPC	16-11
685	RTN	24	130	STOE	3500	175	RTN	24
686	*LBLE	2115	131	$\mathrm{P} \ddagger \mathrm{S}$	16-51	176	*LBLE	211615
687	RCL6	3686	132	RTN	24	177	RCLI	3646
688	RCL9	3609	133	*LBLb	211612	178	RCL1	3601
089	+	-55	134	$\mathrm{P} \ddagger \mathrm{S}$	16-51	179	-	-45
096	2	82	135	STO1	3501	186	SIN	41

Program 2.7

181	P+5	16-51	46.	LEL	42	ST0
182	RCL2	3602	11.	H	0.	\square
183	$P \rightarrow 5$	16-51	37.	TMS	9.	9
184	\div	-24	42.	STL	1.	1
185	RCL3	3603	1.	\square	42.	ETD
186	\times	-35	3.	3	0.	0
187	ABS	1631	44.	Sum	E	6
188	$P \ddagger 5$	16-51	\square	II	50 E1.	HLT
189	ST03	3503	7.	7	46	LEL
190	P $\begin{array}{r}\text { P } \\ \text { PRTX }\end{array}$	$16-5 i$ -14	1040.	\%	1%	E
191	PRTX	-14 3602	4.4.	Sud	42	ETD
192 193	PRTX	-14	I.	\square	U.	\square
194	SPC	16-11	$日$	8	2	2
195	RTN	24	E1.	HLT	$7{ }^{7}$	-
			46	LEL	4%	FOL
			12.	E	I.	\square
			85	$+$	1.	1
			1.	1	6095.	=
			E.	E	22.	IH4
			20 0.	0	80.	IF+
			Gs.	=	11.	E^{\prime}
			42.	570	42	GTD
			O.	\square	1.	1
			1.	1	\square.	\square
			1.	1	22.	IHY
			8.	θ	ED.	IF+
			1.	I	19.	I1'
			44.	gum	7042.	ETD
			0.	0	1.	1
			304.	4	0.	1
			40.	Ye	44.	Sll
			44.	Sul	0.	0
			\square.	I]	4	4
			5	5	410.	Y:
			1.	1	44.	Sum
			E.	θ	O.	\square
			0.	\square	5.	5
			6.	x	8043	FEL
			43	FCL	1.	1
			40 I.	\square	\square.	1
			3.	3	6.	
			95	$=$	43.	EL

0.	\square	15.	E	E.	6
3.	3	43	FOL	170 20.	1\%
95.	$=$	0.	\square	6.	\%
44.	5114	1309	9	53.	C
0.	I	$7{ }^{5}$	-	43.	FLL
309	9	5 S	©	0.	\square
1.	1	43.	FIC	4.	4
44.	SUH	D.	0	75	-
0.	I	$7:$	7	43.	FEL
E.	6	6.	\%	1.	1
43.	FEL	43.	FEL	2	z
0.	\square	I.	\square	1806.	\%
$\underline{2}$	2	4.	4	43	FiCL
Bi.	HLT	1405.	\div	\square.	\square
46	LEL	$43=$	ECL	7.	7
30 10.	E^{\prime}	0.	\square	54.	,
5%	¢	$\theta=$	6	54.	
43	FiL	54.)	42.	ET0
I.	0	54.)	1.	1
2	2	5	\div	3	3
$7{ }^{7}$	2	59	C	43	FCL
4%	FEL	$43=$	FUL	190 1.	1
O.	\square	0.	\square	2.	2
i.	1	150 E	8	6.5	\%
Ef.	$+$	$7{ }_{5}$	-	43.	FLL
103	3	5.	\square	1.	1
θ	θ	43.	ELL	1.	1
I.	0	\square.	9	85.	+
54.	\bar{y}	7.	7	43.	FEL
41.	GTO	40	8	1.	1
I.	\square	55_{1}	\div	3	3
E.	θ	43	FLL	200 Es.	
3.	3	0.	\square	43.	FIL
81.	HLT	160 E.	6	0.	0
46.	LEL	54.	\%	1.	1
2014.	II	54.	'	95.	
37	Incs	54.	\%	E1.	HLT
42.	ST0	42.	STD	46.	LEL
i.	1	1.	1	19	$1{ }^{\prime \prime}$
1.	1	2		5.	C
81.	HLT	43.	$F E L$	43.	FCL
$4 E$.	LEL	\square.	\square	210 1.	1

Program 2.8

3	RCLA	3611	139	FRC	1644	185	ABS	1631
4	\div	-24	146	3	03	186	PRTX	-14
5	CHS	-22	141	6	66	187	SFC	16-11
16	STOI	3546	142	0	00	186	RTN	24
17	RCLA	3611	143	\times	-35			
8	RCLC	3613	144	DSF1	-6301			
9	x	-35	145	PRTX'	-14			
10	RCLB	36.12	146	SPC	16-1:			
11	+	-55	147	RTN	24			
12	1\%	52	148	*LEL3	2102			
13	TAN ${ }^{-1}$	1643	149	$\mathrm{P}+\mathrm{S}$	16-51			
14	$\mathrm{P} \ddagger \mathrm{S}$	16-51	158	FCLI	3681			
15	STO1	$350:$	151	1	01			
16	Pas	16-51	152	8	88			
17	RCLC	3612	153	0	09			
18	RCLI	3646	154	+	-55			
19	$X \leq Y$?	16-35	155	STO1	3501			
9	6563	2303	156		16-51			
1	$\mathrm{P}+5$	16-5:	157	RTN	24			
2	RCL1	3681	158	*LBL4	2184			
3	$P \pm S$	15-51	159	3	03			
4	cos	42	168	6	06			
5	RCLC	3613	161	0	06			
6	RCLI	3646	162	+	-55			
$\overline{7}$	-	-45	163	RTN	24			
8	RCL5	3605	164	*LBLE	2160			
9	x	-35	165	RCLD	3614			
E	$X \pm Y$	-4i	166	+	-55			
1	\div	-24	167	RCLE	3615			
c	ABS	1631	168	+	-55			
3	$\mathrm{P}+\mathrm{S}$	16-5i	169	RTN	24			
'4	ST06	3500	176	*LBLd	211614			
5	USF2	-6302	171	RCLI	3646			
6	PRTX	-14	172	-HMS	1635			
7	FCL1	3601	173	DSP 4	-63 04			
8	$\mathrm{P} \ddagger 5$	16-51	174	PRTX	-14			
9	RCL4	3604	175	SFC	16-11			
8	+	-55	176	DSF2	-63 02			
	x<0?	16-45	177	RTN	24			
2	GSB4	2304	178	*LBLd	211614			
3	3	03	179	$F \pm S$	16-51			
4	6	06	186	RCLO	3600			
5	0	60	181	RCL1	3601			
6	\div	-24	182	$\mathrm{P} \ddagger \mathrm{S}$	16-51			
7	8	88	183	SIN	41			
8	+	-55	184	x	-35			

Progŕam 2.9

46.	LEL	E.	θ	95	=
13.	\square	4%	FCL	42	E
8.	+	0.	\square	1.	\square
43.	FL:	8.	8	9	9
0.	\square	81.	HLT	6.	¢
1.	1	46	LEL	9043	F
$7{ }_{7}$	-	16.	$\mathrm{H}^{\text {a }}$	0.	0
43	FIL	50 \%	ITH	4.	4
9.	9	42	STD	94.	$+$
10 E.	8	\square.	0	85	+
95	$=$	7.	7	43	Fl
34.	THH	43.	FOL	0.	0
20.	1\%	I.	0	3.	\%
44.	Eld	\underline{E}	θ	95	$=$
0.	0	75	-	5	\div
3.	3	43.	FL	10043	Fl
42	STD	-	\square	-1.	0
1.	1	60 3.	3	8.	O
8	B	6	\%	95	-
$20 \mathrm{E}=$	HLT	43.	FCL	42	$\underline{1}$
46	LEL	\square.	0	1.	i
14.	\square	4.	4	1.	0
37:	Ihte	5.	\div	5	-
44.	gum	43.	FCL	4%	Fit
0.	0	0.	0	0.	0
4.	4	\underline{E}	θ	110 9.	9
49	FET	95	$=$	95:	-
1.	1	705.	\div	$42=$	ST
8	\%	5%	©	1.	1
3040	8	43.	FLL	1.	1
44.	S1m	0.	\square	85^{6}	+
0	0	5.	5	43.	Fit
5	5	75	-	-1.	0
43.	FUL	49	FiCL	\bar{i}	$\frac{7}{7}$
1.	1	I.	-1	95.	r
\%	θ	4.	4	120 E.	X
44.	Sun	40	S	$4{ }^{4}$	FC
0.	\square	805	\div	9	9
E	E	49	ELL	9	9
40 i.	1	0.	0	55.	\div
44.	gum	8.	\%	5 F	¢
0	0	54.	\%	43	EL

$\underline{\square}$	\square	81.	HLT	19	$]^{-1}$
9.	9	17046.	LEL	43.	FCL
65.	x	17.	E^{\prime}	1.	1
3043 .	FOL	19.	I'	1.	1
0.	\square	80.	IF+	Es.	$+$
$\overline{7}$	7	87.	1 '	43.	FLL
8 E	+	1.	1	\square.	0
48	FEL	E.	8	7.	7
1.	1	0.	\square	95.	$=$
0.	0	85.	+	2204.	4
54.	\%	46.	LEL	22.	IH4
20.	1%	180 B7	1:	37:	mids
2 E	IHY	43.	Fi:L	56.	
40 34.	THH	1.	1		
42	ETD	2	2		
1.	1	85.	+		
2	2	4%	FCL		
3.	L0\%	9			
95	$=$	B.	9		
40.	SE	75	-		
30.	Γ	46.	LEL		
E1.	HLT	190 BE	z^{i}		
46	LEL	3	3		
50 10.	$E^{\text {: }}$	E.	θ		
57	FIX	\square.	\square		
4.	4	E5.	$+$		
25	ELE	22	IHY		
47 .	Enc	E0.	IF+		
46.	LEL	Es.	$2:$		
11.	H	\square.	\square		
44.	Sum	95	$=$		
I.	\square	20081.	HLT		
1.	1	46.	LEL		
6081.	HLT	18.	E:		
46	LEL	43.	FiCL		
12		1.	1		
4 B	ESC	1.	1		
9.	9	94.	$+\cdots$		
9.	9	2 c	IHV		
49	ESE	37	IIHE		
9	9	E1.	HLT		
8.	θ	21046	LEL		

E	E	2.	2	13042.	ET0
42.	STD	43.	FOL	6.	
0.	0	6.	$\underline{6}$	8.	E
0.	0	$90 \quad 7$.	7	65.	\%
E	6	75.	-	43.	FCL
2.	2	43.	FCL	6.	
5042.	ETD	6.	ϵ	4.	4
6.	6	6.	6	32.	Sin
1.	1	95.	=	75.	
1.	1	55.	\div	43.	FCL
44.	sum	5.	¢	140 E.	
1.	1	43.	ECL	2	
9.		6.	6	3.	SIH
43.	RCL	1006 .	6	95.	$=$
1.	1	75.	-	55.	\div
9.	9	43.	FCL	5.	C
6042.	ST0	6.	6	43.	FCL
9.	9	5.	5	6.	6
8.	E	54.	,	E.	8
36.	IHI	95.	$=$	65.	x
43.	FCL	65.	\times	15043.	ECL
9.	9	53.	¢	G:	
8.	8	43.	ECL	4.	
36.	INII	110 G.	6	3.	cos
42.	ETD	2.	2	75.	
6.	θ	75.		4 s .	FCL
70 1.	1	43.	FCL	6.	E
1.	1	6.		2.	
44.	gum	3.	3	S.	608
6.	6	54.		54.	
1.	1	S2.	SIN	160 95.	
43.	FCL	55.	\div	22.	Int
9.	9	53.	\bigcirc	34.	TAH
9.	9	12043.	FOL	E0.	IF+
55.	\div	6.	6	1.	1
3.	3	3.	3	7.	7
8095.	$=$	75.	-	1.	1
44.	8014	43.	ELL	85.	+
9.	9	6.	6	1.	1
8.	E	4.	4	8.	E
58.	152	54.	2	170.	\square
0.	0	32.	SIH	95.	$=$
6.	6	95.	$=$	44.	Sula

Program 2.12

$\overline{7}$	-	-45	693	$\mathrm{X}+\mathrm{Y}$	-4i	139	RCL6	3646
8	SIN	41	894	\div	-24	146	+P	34
9	RCL1	3601	695	ABS	1631	141	RCLE	3612
1	x	-35	696	$\mathrm{P}+\mathrm{S}$	16-51	142	RCLA	3611
i1	$\mathrm{XH}+\mathrm{Y}$	-41	897	$5 \mathrm{TO1}$	3501	143	-	-45
i2	\div	-24	098	PRTX	-14	144	\div	-24
i3	ABS	1631	899	RCL 7	3687	145	stai	3546
i4	$F \div S$	16-51	180	$f \div 5$	16-51	146	FRTX	-14
i5	STOG	3509	181	RCL8	3600	147	$X \pm Y$	-41
16	PRTX	-14	182	RCL 4	3604	148	$x<8$?	16-45
if	RCL6	3686	183	-	-45	149	6SE1	2301
i8	$P \pm 5$	16-51	104	SIN	41	150	stac	3513
i9	RCLE	3600	185	RCLI	3601	151	PRTX	-14
16	RCL2	3602	106	-	-35	152	SPC	16-11
1	-	-45	167	$\mathrm{X}+\mathrm{Y}$	-41	153	RTN	24
i2	SIN	41	186	\div	-24	154	*LEL6	2100
is	RCL1	3601	169	AES	1631	155	RCLD	3614
i	x	-35	110	$\mathrm{F}+\mathrm{S}$	16-51	156	${ }_{+}$	-55
i5	$\mathrm{X} \boldsymbol{\mathrm { F }} \mathrm{Y}$	-41	111	ST09	3509	157	RCLE	3615
0	\div	-24	112	$F+5$	16-51	158	+	-55
17	ABS	1631	113	PRTX	-14	159	RTN	24
\%	F+5	16-51	114	RCLE	3612	166	* LELI	2101
9	5708	3508	115	\rightarrow HMS	1635	161		03
'0	F*S	16-51	116	DSP4	-63 04	$16 \overline{3}$	-	16
'1	PRTX	-14	117	PRTX	-14	163	0	64
'2	RCLA	3611	118	SPC	16-11	164	+	-55
'3	\rightarrow HHS	1635	119	DSP2	-6302	165	RTN	24
'4	DSF4	-63 04	128	RTN	24	166	*LBL. 6	211612
'5	PRTX	-14	121	*LBLD	2114	167	6580	2304
'6	DSP2	-63 12	122	RCL2	3602	168		16-5:
7	SFC	16-1i	123	$\mathrm{F}+5$	16-51	169	5102	3502
'8	RTN	24	124	RCL8	3600	176	$\mathrm{P} \div \mathrm{S}$	16-51
'9	*LBLd	211614	125	$\mathrm{P}+\mathrm{S}$	16-51	171	RTN	24
0	RCL5	3685	126	\rightarrow R	44	172	*LBLb	211612
1	RCL4	3604	127	ST06	3586	173		16-51
2	-	-45	128	$\mathrm{X} \pm \mathrm{Y}$	-41	174	ST03	3503
3	SIN	41	125	STOT	3507	175	$\mathrm{P}+5$	16-51
	$P \ddagger 5$	16-5i	136	RCL4	3604	176	RTN	24
5	ST07	3507	131	F $\ddagger 5$	16-51	177	*LBLE	2115
,	$P \pm 5$	16-51	132	RCL1	3601	178	RCLC	3613
7	RCLE	3600	133		16-51	179	RCLI	3646
8	RCL5	3685	134	$\rightarrow \mathrm{R}$	44	188	$\rightarrow R$	44
9	-	-45	135	ST-6	35-45 96	181	ST08	3508
0	SIN	41	136	XFF	-41	182	Kı ${ }^{\text {H }}$	-41
1	RCL1	3601	137	ST-7	35-45 81	183	STOG	3509
2	x	-35	138	RCL 7	3687	184	$\mathrm{P} \ddagger \mathrm{S}$	16-51

Program 2.13

185	RCL2	3602	46	LEL	3.	3
186	RCL3	3603	11.	H	$7{ }^{5}$	-
187	$P \ddagger+5$	16-51	44.	Sum	43	RI
186	+R	44	1.	1	-1.	0
189	ST-8	35-45 98	5.	5	$\underline{2}$	z
196	$\mathrm{X} \boldsymbol{+} \mathrm{Y}$	35-45 ${ }^{-41}$	81:	HLT	54.)
191	ST-9	35-45 09	46.	LEL	50 \%.	S
192	RCL9	3609	12.	Ei	50 E.	If
193	RCL8	3608	12,	Ei	E1.	${ }_{1}^{1+}$
194	$\underset{+P}{+\rightarrow}$	34 $16-51$	104 E	OTI	8日.	2
195	$\mathrm{P}+\mathrm{S}$	16-51	1042	10	6	
196	ST04	3504	1.	1	E-	\%
197	P\% ${ }^{\text {P }}$	16-51	4.	4	5.	¢
198	PRTX	-14	1.	1	4%	Fi
199	$\mathrm{X}=\mathrm{Y}$	-41	44.	Sum	0.	0
208	$x<8$?	16-45	1.	1	0.	II
201	6SE1	2301	4.	4	7.	-
282	PRTX	-14	81.	HLT	6043	Fil
263	SPC	16-11	46	LEL	\square.	0
284	RTN	$21.16{ }^{24}$	1%	E	3:	3
285	*LBLE	211615	20 \%	$+$	54.	\%
206	CLRG P $\ddagger 5$	$16-53$ $16-51$	48	ECL	32	.
208	CLRG	16-53	i.	1	$9{ }^{5}$	$=$
289	CLX	-51	5	5	40.	\%
216	RTN	24	95	$=$	31.	Γ
			41.	GTD	51.	51
			12	E	1.	1
			46	LEL	70 \%1:	HL
			14.	I]	46	LE
			37	ITIS	E日,	2
			$3094=$	$+\cdots-$	6.	\times
			42	ET0	5.	¢
			1.	1	43	Ft
			9	9	0.	0
			81.	$\mathrm{HL}_{-} \mathrm{T}$	0.	0
			$4{ }_{4}$	LEL	$7{ }^{\text {P }}$	-
			15	E	43	FO
			43	FCL	80 O	0
			0.	\square	2	2
			1.	1	54.	
			405.	\div	E,	E
			5%	\%	95	
			43.	FCL	40.	Y
			0.	0	31.	Γ

42.	STD	130.	'	48	E\%
1.	1	3.	SIH	0.	\square
θ	8	95	$=$	I.	\square
9081.	HLT	40.	\%	48.	ESL
46	LEL	80.	Γ	I.	\square
16.	$\mathrm{B}^{\text {' }}$	50.	STF	3.	3
41.	GTO	2	2	39.	$\mathrm{F} \cdot \mathrm{F}$
13.	$\underline{\square}$	E1.	HLT	180 F5	-
46.	LEL	46.	LEL	43.	FOL
17:	$\mathrm{E}^{\text {: }}$	89	3^{\prime}	1.	1
37:	Inde	1406.5	\%	θ	8
44.	Eli	5 5.	¢	95.	-
1.	1	43	FEL	49°	ESE:
00%	9	0.	0	0.	0
81.	HLT	0.	0	0.	\square
46.	LEL	75		75.	-
1θ.	E	43	FiL	43.	ECL
43	FCL	0.	\square	190 I.	0
0.	\square	4.	4	3:	3
1.	1	54.	;	95.	
5.5	\div	150% \%	SIH	4%.	ENE:
5.	¢	95	$=$	0.	
43.	ECL	40.	\cdots	日.	0
10 万.	\square	30.	Γ	22	IHY
5	5	42.	STD	34.	F F
7.	-	1.	1	E0.	IF+
43.	FCL	7	$\stackrel{7}{7}$	2	2
0.	0	E1.	HLT	200 O.	\square
4.	4	46.	LEL	E.	θ
54.	;	19.	II:	85.	$+$
3.	GIH	16043	FIGL	3	3
60.	IFL	1.	1	6	6
2	z	7.	7	0.	0
2089	3	42	ST0	95	$=$
Es.	\because	1.	\square	81.	HLT
5.	C	I.	\square	46	LEL
43.	ECL	43.	FEL	10.	$E^{\text {: }}$
0.	\square	\square.	\square	21043	ELL
0.	I	5.	5	\square.	0
$7{ }_{5}$	-	39	F E	0.	0
$4{ }^{4}$	FCL	17048.	E,	5.	\div
0.	\square	1.	1	43.	FEL
5.	5	8.	8	1.	1

	9	9	46.	LEL	1.	1
	95.	$=$	19.	II'	7 \%	7
	81.	HLT	48.	ENC	81.	HL
	46.	LEL	0.	\square	46.	LE
220	41.	FTV	0.	\square	14.	II
22	BE.	FST	42	STD	43.	FL
	47.	CHS	9.	9	50 1.	1
	25.	ELE	9.	9	5.	5
	E1.	HLT	5 E.	FTH	8.	+
			1046	LEL	43.	FL
			11.	H	1.	1
			8.	+	7.	7
			81.	HLT	95.	$=$
			46.	LEL	19.	II'
			12.	E	43.	EL
			95.	$=$	1.	1
			19.	II'	604.	4
			81.	HLT	B5.	+
			46.	LEL	43.	FL
			20 17:	$\mathrm{E}^{\text {: }}$	1.	1
			19.	I'	E.	6
			39	$\mathrm{F} \cdot \mathrm{F}$	95.	=
			42.	ST0	2.	IF
			1.	1	39.	F'
			4.	4	42	51
			19.	11	9.	9
			42	STD	70 \%	8
			1.	1	2.	If
			5	5	80.	IF
			30 E \%	HLT	97.	I^{\prime}
			46.	LEL	Q1.	HL
			13	I-	46.	LE
			19.	II ${ }^{\text {a }}$	15.	E
			81.	HLT	43.	Fi
			46	LEL	1.	1
			18.	E:	7.	7
			19.	I'	80 F.	-
			39.	$\mathrm{F} \cdot \mathrm{F}$	4%	Fl
			42.	STD	1.	1
			401.	1	5.	5
			E.	E	95.	$=$
			19.	I'	19.	II
			42.	ST0	43.	Fi

Program 2.17

Program 2.18

647	RTN	24	893	RCLD	3614	139	$\rightarrow R$	44
048	* LELA á	2111	694	\times	-35	140	5708	3503
049	Fas	16-51	695	CHS	-22	141	$\mathrm{X} \boldsymbol{Y} \mathrm{Y}$	-41
850	ST06	3506	096	RCL 2	3602	142	STOS	3599
851	F*S	16-5!	697	HMS ${ }^{\text {+ }}$	1636	143	F*S	16-51
852	RTN	24	098	$\mathrm{P} \ddagger+5$	16-51	144	RCL 6	3686
053	* 2 BLA	2111	899	RCLE	3600	145	RCL 7	3607
654		16-51	108	HMS ${ }^{\text {+ }}$	1636	146	F*	16-51
655	$5 T 07$	3507	181	$\mathrm{P} \rightarrow 5$	16-51	147	\rightarrow R	44
856	$\mathrm{P} \ddagger 5$	16-51	162	-	-45	148	ST+8	35-55 88
657	RTN	24	163	*F	34	149	$\mathrm{X}^{\prime}+\mathrm{Y}$	-41
658	*LBLB	2112	164	-	06	156	$5 T+9$	35-55 09
659	HMS ${ }^{\text {ch }}$	1636	165	\square	60	151	RCLI 9	3609
069	$\mathrm{P}+5$	16-51	106	x	-35	152	RCL8	3688
861	ST08	3588	187	STOI	3546	153	$\rightarrow \mathrm{P}$	34
662	$\mathrm{P} \pm 5$	16-51	186	X $\mathrm{X} \boldsymbol{Y} \mathrm{Y}$	-41	154	RCLI	3646
063	RTN	24	169	ST07	350	155	$\mathrm{X}+\mathrm{Y}$	-41
664	*LELC	2113	116	P +5	16-51	156	\doteqdot	-24
865	$\mathrm{P} \ddagger 5$	16-51	111	RCLE	36.86	157	\rightarrow HMS	1635
066	RCLI	3601	112	NCL	-45	158	$P \ddagger 5$	16-51
067	RCLO	3600	113	SIN	41	159	RCL8	3668
068	P $\ddagger 5$	16-51	114	RCLi 7	3607	166	\rightarrow HMS	1635
669	5709	3569	115		-35	161	HMS+	16-55
676	R \downarrow	-31	116	RCL5	3605	162	DSP4	-6304
671	STO1	3501	117	\div	-24	163	0	00
072	RCL2	3602	118	SIN-1	$164 i$	164	ST09	3569
073	HMS ${ }^{\text {d }}$	1636	119	F*S	16-5:	165	F*S	16-51
074		16-51	128	RCL 7	3607	166	Sr04	3594
875	RCLE	3608	121	+	-55	167	sT05	3505
876	HMS ${ }^{\text {a }}$	1636	122	$\mathrm{F}+\mathrm{S}$	16-5i	168	X2F	-41
077	-	-45	123	$5 T 04$	3504	169	PRTX	-14
878	2	02	124	F*S	16-51	176	RTN	24
679	\div	-24	125	RCLE	3615	171	* LELG	2100
888	RCLE	3600	126	-	-45	172	0	06
081	HMS ${ }^{\text {a }}$	1636	127	RTN	24	173	$X \leq Y$?	16-35
082	$F \pm 5$	16-51	128	*LBLC	2113	174	6701	2261
683	+	-55	129	STOC	3513	175	3	83
884	\cos	42	136	ST0	-45	176	6	06
685	STOD	3514	131	6586	2300	177	0	00
886	RCL3	3608	132	PRTX	-14	178	P¢ 5	16-5:
887	HMS ${ }^{\text {a }}$	1636	133	RTN	24	179	RCL 4	3684
088	$P \pm S$	16-51	134	*LBLD	2114	186	$P \rightarrow S$	16-51
089	RCLI	3601	135	F*5	16-51	181	RCLE	3615
896		16-51	136	RCL4	3604	182	-	-45
091	HMS ${ }^{\text {+ }}$	1636	137	RCL5	3605	183	RCLL	3613
092	-	-45	138	P\% 5	16-51	184	-	-45

Programm2.19

185	+	-55	$4 E$.	LEL	0.	\square
186	DSF2	-6302	11.	H	8.	E
187	RTN	24	4 E	E\%	51.	SEF:
188	*LBL1	2101	1.	1	日7:	1^{\prime}
189	Fas	16-5. ${ }^{\text {c }}$	9.	9	4%	FCL
198	RCL 4	3684	48.	E\%	0.	\square
191	F*S	16-51	1.	1	50 \%	θ
192	RCLE	3615	8.	8	75.	-
193	-	-45	E1.	HLT	48.	Fic
194	RCLC	36.13	1046	LEL	O.	0
195	OSF2	-63 ${ }^{-45}$	12	E	E	E
197	RTN	-63 24	42	STD	9.	$=$
198	*LBLE	2115	1.	1	65.	x
199	RCLI	3646	7.	7	θ.	θ
206	DSP2	-6302	Q1.	HLT	0.	\square
201	FRTX	-14	46	LEL	95.	=
202	RTN	24	13	\underline{C}	6042.	ETD
203	*LBLE	2115	46.	LEL	0.	\square
264	RCL 7	3607	14.	II	0.	0
285	X<6?	16-45	20 37:	THS	43	FOCL
206	6T09	2209	40,	EEL	I.	0
207	PRTX	-14	G7:	$1:$	θ.	8
268	SFC	16-11	40°	ESE	8 E	+
269	RTN *LBLG	24 2180	-	E,	4%	FCL
211	*LBLG	2103	5.	5	0.	0
212	6	46	4 E	ESE	E,	θ
215	0	00	0.	0	7095	$=$
214	+	-55	θ	6	5.	\div
215	PRTX	-14	40^{4}	ERC	2.	z
216	SFC	16-1:	30 I,	\square	95.	$=$
217	RTN	24	7 :	7	3.	E05
			48.	ENC	$6{ }^{5}$	\times
			0.	\square	5 C	C
			B.	E	43.	FCL
			$5 \cdot$	FTH	0.	\square
			46.	LEL	5	5
			16.	$\mathrm{H}^{\prime \prime}$	8075	-
			43.	FEL	4%	FCL
			1.	-	\square.	\square
			40 E.	E	$\overline{7}$	7
			51.	EEF:	54.)
			87:	1:	95.	$=$
			43.	FEL	6.	x

6	6	130 3.	3	8.	8
0.	[1]	E.	6	54.	\%
95	$=$	0.	0	32.	EIH
902 z	IHY	95.	$=$	95.	$=$
39	$\mathrm{F} \cdot \mathrm{F}$	56	FETH	40.	Ye
42	STL	46.	LEL	30.	Γ
1.	1	17.	E^{\prime}	20.	1%
4.	4	94.	$+{ }^{-}$	1806.	*
$7{ }^{5}$	-	$8{ }^{\text {c }}$	$+$	43.	FE L
43	FGL	43	FLL	\square.	0
1.	1	140 1.	1	\square.	\square
θ.	8	0.	\square	9.	$=$
95	$=$	95.	$=$	22.	IHY
100 \%	SH	42	ETV	37	Ind ${ }^{\text {a }}$
6.	\%	1.	1	81.	HLT
43	FEL	0.	0	46.	LEL
1.	1	15.	E	19.	II'
9	9	E1:	HLT	19043	FCL
5.	\div	46.	LEL	1.	1
44^{3}	FTL	1S.	E:	4.	4
i.	1	150 5.	FIS	15.	E
7.	7	4.	4	E1.	HLT
9 g	$=$	43	ECL	46.	LEL
1102	IH?	1.	1	10.	$E^{\text {E }}$
E2	51 H	ε.	8	43.	FGL
$8{ }_{6}$	$+$	75.		\square.	-1
4 B	FCL	4.	FCL	0.	
1.	1	\square.	0	$20081=$	HLT
4.	4	9.	9		
95.	$=$	95.	$=$		
42.	GT0	$160 \mathrm{~S}^{2}$	SIH		
1.	1	6.	x		
万.	\square	43	FCL		
12042	ETD	1.	1		
0.	0	7:	7		
9.	9	5	\div		
46.	LEL	5.	¢		
15.	E	43	FOL		
E0.	IF+	1.	1		
i.	1	4	4		
3	3	170 F	-		
3	3	43	FEL		
8.	+	1.	1		

Program 2.20

Entries for steps 214-18 should be replaced when the loop time for the particular calculator has been determined, as shown in the discussion of customized programs earlier in this appendix			048	F\#S	16-51	687	$P \ddagger S$	16-51
			041	$x=0$?	16-43	688	RCL2	3692
			842	GT05	2205	089	$P \div S$	16-51
			043	$\mathrm{P}+5$	16-5i	098	STOI	3546
			044	RCL8	3688	091	GSE1	2301
			045	RCL9	3669	092	6SE3	2303
			046	$P \div S$	16-5i	89.3	$F+S$	16-5. 1
			047	-	-45	094	RCL 8	3608
001	* LELh	21 1i	048	STOI	3546	095	RCL2	3602
082	RCLE	3615	849	GSB0	2300	096	$F \div 5$	16-51
805	+	-55	858	GSE1	2301	897	RCL 6	3606
084	RCLC	3613	051	$P \div 5$	16-5i	098	\times	-35
665	+	-55	052	RCL 8	3690	499	+	-55
506	$\mathrm{F}+5$	16-5:	053	$P \div 5$	16-5:	108	STOA	3511
807	5704	3584	654	-HMS	1635	101	\rightarrow HMS	1635
668	F+S	16-51	055	RTN	24	102	LSF4	-63 94
665	RTN	24	856	+ CBL d	211614	163	FRTX	-14
E16	* LBLA	2111	057	HMS ${ }^{\text {+ }}$	1636	164	SFC	16-11
611	$F+5$	16-51	658	$F \div S$	16-51	165	GTAC	2213
612	5705	3505	059	ST09	3584	106	+LBLC	2160
015	4	06	066	$\mathrm{P}+\mathrm{S}$	16-51	107		16-51
0114	5 SOT	356	061	RCLA	$361:$	168	RCL 4	3684
615	F+5	16-51	062	-	-45	109	RCL 5	3685
016	RTN	24	863	STOI	3540	116	$P \ddagger 5$	16.51
017	- LBLA	21 1:	864	GSB6	2300	111	$\rightarrow R$	44
018	$\mathrm{F}+\mathrm{S}$	16-51	865	6SE1	2361	112	STOE	3508
815	Stot	3506	066	F2?	162302	113	$\mathrm{X}+\mathrm{Y}$	-41
020	F+5	16-51	867	GT0G	2266	114	CHS	-22
021	RTN	24	808	$F+5$	16-5i	115	ST09	3509
022	* LBLA	2111	069	RCL9	3669	116	F\% 5	$16-51$
023	$P+5$	16-51	876	RCL 8	3668	117	RCL 6	3606
024	STOT	3507	071	RCL	-45	118	RCL 7	3607
625	F+S	16-51	672	P+S	16-5:	119	$\mathrm{F}+5$	$16-51$
426	RTN	24	673	RCL6	36 86	126	$\rightarrow \mathrm{F}$	44
627	*LBLE	2112	874	$\stackrel{\square}{\div}$	-24	121	ST+8	35-55 98
628	SFE	162102	075	$\mathrm{P}+5$	10-5i	122	$\mathrm{X}+\mathrm{Y}$	-41
629	RTN	216^{24}	876	ST02	3582	123	CHS	-22
036	+ LELC	211613	077	RCL 9	3609	124	ST+9	35-55 09
831	HMS ${ }^{\text {a }}$	1636	078	$\mathrm{P} \div \mathrm{S}$	16-51	125	RTN	24
032	P+S	16-51	079	STOA	3511	126	+ $\mathrm{CBL1}$	2181
633	STO8	3598	086	*LBL 6	2165	127	RCL 8	3600
534	F+S	16-5i	081	\rightarrow HMS	1635	128	FCLI	3646
035	STOA	3511	082	RTN	24	129	\pm	-35
036	0	60	083	- LBLC	2113	130	$5 \mathrm{~T}+4$	35-55 64
637	5 T 06	3566	684	1	01	131	LSTX	16-6.3
838	F+S	16-51	685	$5 T+6$	35-55 06	132	RCL9	3689
639	RCL. 9	3669	686	GSEO	2300	133	X	-35

134	RCLD	3614	181	1	01	Entries for steps 213-17 should		
135	\div	-24	182	8	08			
136	ST+5	35-55 05	183	6	80			
137	FCLL 5	3605	184	+	-55		particula	calculator has
138	6SE4	2384	185	P\% 5	16-51		termine	as shown in
139	+HMS	1635	186	$5 T 03$	3503		ussion	ustomized this appendix.
140	RCLI	3601	187	P\% 5	16-5:			
141	HMS +	16-55	188	PRTX	-14			
142		16-51	189	RTN	24	601	*LBLA	21.15
143	STO1	3501	196	+LBL4	2184	002	RCLE	3615
144	$P \div 5$	16-51	191	- 6	2186	0805	$\stackrel{+}{+}$	-55
145	RCL 4	3684	192	0	80	004	FCLC	$36 \quad 13$
146	ESE4	2364	193	\doteqdot	-24	805	$+$	-55
147	\rightarrow HMS	1635	194	RTN	-24	666	$F+5$	16-51
148	RCLE	3680	195	*LBLD	2114	पष7	STU4	3504
149	HMS ${ }^{\text {d }}$	16-55	196	RTN	2114	6168	RTN	24
154	$\mathrm{F}+5$	16-51	197	- LBLE	21.45	069	+LBLA	2111
151	5700	3560	198	GSE3	2303	616	sT05	3585
152	F\%S	16-51	195	RTN	24	611	0	06
153	RTN	24	$20 \overline{0}$	- LBLE	2115	012	ST07	356
154	+LBL3	2185	201	P\%S	16-51	013	RTN	24
155	P\%S	$16-51$	$2 \overline{87}$	RCLE	3600	614	WLELA	$21: 11$
156	RCLE	3600	203		16-51	015	ST06	3586
157	HMS ${ }^{\text {P }}$	1636	264	[ISP4	-6304	816	RTN	24
158	F+5	16-5i	265	FRTX	-63 -14	817	+ ${ }^{\text {L BLA }}$	2111
159	RCL2	3682	266	RTN	- 24	618	STO7	3567
166	HMS ${ }^{\text {a }}$	1636	207	+LBLE	2115	815	P\% 5	16-51
161	-	-45	208	P $\ddagger 5$	16-51	026	RTN	24
162	$F \% 5$	16-51	209	RCL1	3601	621	* LELE	2112
163	RCL1	36.61	216	$F+5$	16-51	622	SF2	162102
164	HMS ${ }^{\text {+ }}$	1636	211	PRTX	-14	623	RTN	24
165	$F \pm 5$	10^{-5}	212	RTN	24	024	* LBLE	211613
160	ECL3	3683	213	*LBL5	2105	625	HMS*	1636
167	HMS ${ }^{\text {+ }}$	1676	214		-6.2	026	F\%S	16-51
168	RCL	-45	215	0	00	627	ST08	35 96
169	RCLI	3614	216	0	08	028	$\mathrm{P}+5$	16-51
178	x	-35	217	3	63	629	STOA	3511
171	CHS	-22	218		65	036	0	80
172	$\mathrm{X}^{\prime}+\mathrm{F}$	-41	219	$\mathrm{P}+5$	16-5i	631	$5 T 06$	3566
173	$\pm{ }^{\prime}$	34	220	ST02	$16-52$ 3502	632	F*5	16-51
174	6	06	221	RCL 8	3608	035	RCL 9	3609
175	0	06	222	$\begin{array}{r}\text { RCL } \\ \\ \hline\end{array}$	16-5:	034	F\#S	16-51
176	x	-35	222 223		$16-54$ 1635	635	$X=8$?	16-43
177	STOT	350	223	RTN		636	GT05	2295
178	DSF1	-63 81	224	RTN	24	037	F\%S	16-51
179	PRTX	-14				638	FCL8	36 aE
188	$X+Y$	-4:				039	RCL 9	3689

148	$F \div S$	16-5i	887	RCL 6	3606	134	\div	-2
041	--	-45	688	\star	-35	135	ST+5	35-55
842	STOI	3546	089	+	-55	136	RCL5	$360!$
643	6586	2300	896	STOA	3511	137	6S64	238
044	6SE1	2301	091	+HMS	1635	138	+HMS	163
645	RTN	24	892	DSP4	-6304	139	RCLI	360
046	* LBLd	$21 \quad 1614$	093	PRTX	-14	148	HMS+	16-5!
64i	HMS ${ }^{\text {P }}$	1636	094	6TOC	2213	141	Pas	16-5:
648	P\%S	16-51	095	- 1 LBL 9	2180	142	STG1	350
849	5709	3589	896	$P \pm S$	16-51	143	Pas	16-5
656	P\%S	16-51	097	RCLL 4	3604	144	RCL4	36
051	RCLA	3611	898	RCL5	3605	145	6SB4	230
052	-	-45	099	$P \pm 5$	16.51	146	+HMS	16
653	STOI	3545	160	$\rightarrow R$	44	147	RCL 0	36
054	6SE0	2360	101	ST08	3508	148	HMS +	16-5.
655	6561	2301	162	$\mathrm{X}+\mathrm{Y}$	-4i	149	P*5	$16-51$
456	F2?	162302	103	CHS	-23	158	ST00	3500
057	6706	2286	104	STOS	3589	151		16-51
058	F\%S	16-51	105	$\mathrm{P}+5$	16-51	152	RTN	24
059	RCL. 9	3689	186	RCL. 6	3606	153	+LBL3	2183
868	RCL 8	3608	107	RCLi ${ }^{\text {P }}$	3607	154	$\mathrm{F}+5$	16-51
861	-	-45	168	$\mathrm{P}+\mathrm{S}$	16-51	155	RCL6	3600
062	$P \pm S$	16-51	189	+R	44	156	HMS ${ }^{\text {P }}$	1636
863	RCL6	3606	110	$S T+8$	35-55 88	157	$P \rightarrow$ S	16-51
864	\div	-24	111		-4i	158	RCL2	3602
065	$F+5$	16-51	112	CHS	-2.	159	HMS*	163
066	ST02	3502	113	ST+9	35-55 09	166	H	-4
067	RCL 9	3609	114	RTN	24	161		16-51
868	F+5	16-51	115	+LBL1	2101	162	RCLI 1	36.81
869	STOA	3511	116	RCL8	3689	163	HMS ${ }^{\text {a }}$	1636
076	+LBL6	2106	117	RCLI	3646	164		16-5i
071	\rightarrow HHS	1635	118	x	-35	165	RCL 3	3683
072	RTN	- 24	119	ST+4	35-55 64	166	HMS ${ }^{\text {\% }}$	1636
073	- LBLC	2113	120	RCL4	3604	167	THS	-45
874	ST+6	-75-55 01	121	1	01	168	RCLI	3614
075	ST+6	35-55 86	122	2	02	169	$\underset{\text { x }}{ }$	-35
076	6SB6	2300	123	6	09	176	C.HS	-22
077	$\mathrm{P}+\mathrm{S}$	16-51	124	\div	-24	171	$\mathrm{Ht}+\mathrm{Y}$	-41
678	RCL2	3602	125	RCLE	3600	172	$\rightarrow \mathrm{P}$	34
679	F*S	16-51	126	HMS ${ }^{\text {P }}$	1636	173	6	06
688	STOI	3546	127	$+$	-55	174	0	00
881	6SE1	2301	128	cas	42	175	x	-35
882	6SE3	2303	129	STOD	3514	176	STO7	3507
083	P\% 5	$16-51$	136	RCLI	3646	177	[ISFI	-63 61
084	RCL8	3608	131	RCL9	3609	178	PRTX	-14
885	RCLE	3602	132	${ }_{x}$	-35	179	$X+Y$	-41
086	F\%	$16 \cdots 51$	133	$\mathrm{X}+\mathrm{Y}$	-4i	186	-	61

Program 2.22

181	8	89	001	* LBLa	2116 i1	847	$\mathrm{P}+5$	16-51
182	0	88	002	STOI	3546	048	ST05	3505
183	+	-55	083	RCL;	3645	649	$\mathrm{P} \ddagger 5$	16-51
184	P +S	16-51	004	IS2I	162646	059	RTN	24
185	ST03	3563	865	RCL;	3645	051	*LBLC	2113
186	P\%S	16-51	886	RTN	24	852	$P \div 5$	16-51
187	PRTX	-14	007	* LEL6	211612	053	ST06	3506
188	RTN	24	068	STOI	3546	654	$P \not+5$	16-51
189	* LBL4	2184	069	R \downarrow	-31	055	RTN	24
198	6	05	010	RCL;	3645	856	*LBLC	2113
191	0	06	011	ISZI	162646	057	$P+5$	16-51
192	\div	-24	812	RCL:	3645	858	ST07	3507
193	RTN	24	013	RTN	24	059	$\mathrm{P}+5$	16-51
194	*LBLD	2114	014	- LBLC	211613	060	RTN	24
195	RTN	24	015	R \uparrow	16-31	661	*LBLD	2114
196	*LBLE	2115	616	5700	3500	062	DSP4	-63 04
197	6SB3	2383	017	R1	16-31	063	HHS ${ }^{\text {+ }}$	1636
198	RTN	24	018	STO1	3501	064	F+5	16-51
199	+LBLE	2115	019	Rt	16-31	065	ST08	3508
290	$P \div$ -	16-51	020	STO2	3502	066		16-51
201	RCL 0	3680	021	R4	16-31	667	+HMS	1635
282	$P \stackrel{+}{5}$	16-51	622	ST03	3503	668	RTN	24
203	DSP4	-6.3 04	023	6	00	669	* \quad LBLE	2115
204	PRTX	-14	624	$5 T 04$	3504	070	HMS ${ }^{\text {P }}$	1636
265	FTN	2	625	ST05	3505	071	$P \div 5$	16-51
286	*LBLE	2115	626	STOC	3513	072	ST09	3509
297	$f \div S$	$16-51$	027	STOD	3514	673	RCL 4	3604
208	RCLI	3681	628	ST08	3508	074	RCL5	3605
209	$\mathrm{P}+5$	16-5i	529	ST09	3509	675	P +5	16-51
210	PRTX	-14	030	RTN	24	076	$\pm R$	44
211	RTN	24	031	+ LBLA	2111	677	ST08	3588
212	-LBL5	2185	032	STOC	3513	078	$\underline{X+Y}$	-41
213		-E	033	RTN	24	679	ST09	3589
214	0	516	034	+ 1 BLA	2111	080	P +5	16-51
215	0	68	035	STOE	3515	081	RCL6	3686
216	3	03	836	RTN	24	082	RCL 7	3607
217	5	85	037	+ 1 LBLB	2112	083	$P \ddagger S$	16-51
218	P-5	16-51	638	RCLE	3615	084	\rightarrow R	44
219	STOE	3582	639	+	-55	085	$S T+8$	35-55 68
226	RCL8	3688	046	RCLC	3613	886	X $\mathrm{F}^{+} \mathrm{Y}$	-41
221	$P \div 5$	16-51	041	\pm	-55	087	ST+9	35-55 89
222	+HMS	1635	642		16-51	888	$\mathrm{P}+5$	16-51
223	RTN	24	043	ST04	3504	089	RCL9	3689
224	R 5	51	044	$P \div 5$	16-51	096	RCL 8	36 08
			845	RTN	24	091	-	-45
			046	- LBLB	2112	092	$F+5$	16-51

093	STOI	3546	139	SPC	16-11	185	PRTX	-1
894	RCL8	36	148	RTN	24	186	SPC	16-1.
095	x	-35	141	*LBLe	211615	187	RTN	2
696	ST+4	35-55 84	142	RCL6	3606	188	*LBLe	211611
097	RCLI	3646	143	RCL2	3602	189	RCL5	$360!$
896	RCL9	3609	144	CHS	-22	198	RCL4	36
699	x	-35	145	HMS +	16-55	191	$\rightarrow \mathrm{P}$	3
168	ST+5	35-55 05	146	HMS ${ }^{\text {a }}$	1636	192	STOB	$351:$
101	RTN	24	147	$\mathrm{F}+5$	16-51	193	DSP2	-63 8.
102	* LBLd	211614	148	ST00	3588	194	PRTX	-1
103	RCL4	3604	149	P $\ddagger 5$	16-51	195	* 2 BLe	211611
184	6	06	150	2	02	196	$\mathrm{X} \boldsymbol{+} \mathrm{Y}$	-4.
165	8	06	151	\div	-24	197	3	0 :
186	\div	-24	152	RCL2	3602	198	6	01
167	2	62	153	HMS ${ }^{+}$	1636	199	0	01
168	\div	-24	154	+	-55	268	\rightarrow R	4
189	+HMS	1635	155	COS	42	201	$\rightarrow \mathrm{P}$	3
116	RCLE	3680	156	STOA	3511	282	$X \pm Y$	-4.
111	HMS+	16-55	157	$P \pm S$	16-51	263	< $\times 0$?	16-4!
112	HMS ${ }^{\text {+ }}$	1636	158	RCLE	3600	284	+	-5!
113	COS	42	159	P $\ddagger 5$	16-51	285	PRTX	-1.
114	STOD	3514	168	RCL7	3607	206	$P \pm 5$	16-5.
115	RCL4	3684	161	RCL3	3603	207	RCL9	360 :
116	6	06	162	CHS	-22	288	RCL8	36
117	0	00	163	HMS +	16-55	209	-	-4!
118	\div	-24	164	HMS ${ }^{\text {a }}$	1636	218	$\mathrm{P} \ddagger \mathrm{S}$	16-5.
119	*HMS	1635	165	RCLA	3611	211	RCLB	361
120	RCLO	3600	166	\boldsymbol{x}	-35	212	$\mathrm{X}+\mathrm{Y}$	-4.
121	HMS+	16-55	167	CHS	-22	213	\doteqdot	-2
122	DSP4	-63 04	168	$X+Y$	-41	214	PRTX	-1.
123	STO6	3506	169	$\rightarrow P$	34	215	SPC	16-1.
124	PRTX	-14	178	6	86	216	RTN	2
125	RTN	24	171	0	00			
126	*LBLd	211614	172	x	-35			
127	RCL5	3605	173	F $\ddagger 5$	16-51			
128	6	06	174	STOI	3501			
129	0	80	175	P $\ddagger 5$	16-5i			
130	\div	-24	176	PRTX	-14			
131	RCLD	3614	177	$X \pm Y$	-41			
132	\doteqdot	-24	178	1	81			
133	CHS	-22	179	8	08			
134	+HMS	1635	186	8	96			
135	RCL1	3681	181	+	-55			
136	HMS+	16-55	182	Pt5	16-51			
137	ST07	3507	183	ST02	3502			
138	PRTX	-14	184	$\mathrm{P}+\mathrm{S}$	16-51			

46:	LEL	48.	E\%	1.	1
11.	H	I.	0	θ.	8
37.	THE	0.	\square	39	F
75.	-	44.	SUM	9044.	Sum
4 B	ESE	0.	\square	1.	1
1.	1	3.	3	2.	2
3.	3	5044.	SUM	6.	x
90.	IFO	0.	\square	43	FCL
1.	1	θ.	E	6.	E
10 1.	1	5.	\div	θ	9
9.	9	2	2	95.	$=$
95.	$=$	95.	=	94.	$+\cdots-$
5.5	\div	85.	$+$	44.	Suli
E	6	43.	FEL	100 I.	\square
0.	0	I.	0	5	5
95	$=$	E	6	49.	ESC:
42 .	ST0	60 95.	$=$	0.	\square
1.		3\%	CDS	0.	I
5.	5	20.	1%	44.	gun
20 \%	\%	42	ETD	O.	0
4.	FCL	$E \cdot$	6	E	E
i.	1	E.	8	44.	Sum
$\stackrel{\rightharpoonup}{F}$	$\overline{7}$	6.	\bigcirc	I.	0
95.	$=$	43.	FCL	110 \%	3
48.	EVE	$\underline{\square}$	\square	81:	HLT
O.	0	0.	\square	46	LEL
I.	0	70.	$=$	12	
43	FEL	94.	$+\cdots$	4 E	Esi:
i.	1	44.	Sul	0.	0
30 E.	θ	I.	\square	2	
E日	\div	5	5	48	E\%:
43	FTL	48.	FLC	\square.	\square
0.	\square	1.	1	1.	1
1.	1	5,	5	120 95.	$=$
$8{ }^{5}$	$+$	E E.	\bigcirc	81.	HLT
43	FLL	4%	FOL	46	LEL
O.	0	80 1.	1	13 F	$\bar{\square}$
2	2	9.	9	45.	ENC
¢5	$=$	95	$=$	$\underline{1}$	$\frac{1}{9}$
409	F F	48.	ES	48	${ }^{9} \mathrm{E}$
44.	EUH	$\underline{\square}$	-1	46.	ENC
-	1	I.	\square	1.	1
2	2	43.	FCL	θ	8

Program 2.24

647	P*S	16-51	093	RTN	24	139	RCL2	3682
048	+ R	44	094	*LBLE	2100	140	HMS ${ }^{\text {a }}$	1636
049	ST08	3508	095	RCLE	3615	141	+	-55
054	$\mathrm{X}=\mathrm{Y}$	-4:	096	+	-55	142	P +5	16-51
651	ST09	3593	697	RCLC.	3613	143	ST00	3500
852	RTN	24	098	+	-55	144	P*S	16-51
053	* LbLA	2111	099	RTN	24	145	\rightarrow HMS	1635
054	Pas	16-51	108	* L 8 LE	2115	146	PRTX	-14
055	5706	3580	101	rcla	3600	147	RTN	24
4.56	RTN	24	102	hact	1636	148	*LBLE	2115
657	*LBLA	2111	183	RCL 2	3602	149	XFY	-41
658	STOT	3507	164	HMS ${ }^{\text {- }}$	1636	154	RCLD	3614
655	P*S	16-51	105	-.-	-45	151	\div	-24
866	$\rightarrow \mathrm{R}$	44	186	ST+4	35-55 04	152	RCL3	3603
661	ST+8	35-55 68	197	RCL 3	3603	153	HMS ${ }^{\text {+ }}$	1636
062	Xti	-41	168	HMS ${ }^{\text {d }}$	1636	154	+	-55
063	ST+9	35-55 09	109	RCL 1	360.	155	$f \pm S$	16-51
064	RTN	24	110	HMS*	1636	156	STO1	3501
605	*LBLE	2112	111		-45	157	F*S	10-51
866	HMS*	1636	112	RCLD	3614	158	+HMS	1635
867	RTN	24	113	x	-35	159	PRTX	-14
068	*LBLE	2112	114	ST+5	35-55 65	166	SFC	16-11
069	HMS ${ }^{\text {c }}$	1636	115	RCL5	3605	161	RTN	24
676	$X \pm Y$	-41	116	RCL 4	3604	162	*L.BLE	2115
071	-	-45	117	\rightarrow F	34	163	RCL 3	3603
672	6	$6 E$	118	5706	3506	164	HMS ${ }^{\text {F }}$	1636
673	$\overline{6}$	00	119	$\underline{X}+{ }^{+}$	-41	165	Fas	16-51
674	\div	-24	120	STOH	3511	166	RCLI	3601
075	STx8	35-35 68	121	$\mathrm{P} \pm 5$	16-5i	167	$\mathrm{P}+5$	16-51
876	STx9	35-35 09	122	RCL2	3602	168	\cdots	-45
877	RCL 8	3688	123	-	-45	169	RCLD	3614
678	ST+4	35-55 04	124	SIN	41	176	\times	-35
679	RCL. 9	3689	125	RCL2	3602	171	RCLE	3602
888	ST+5	35-55 95	126	RCLS	3603	172	HAS ${ }^{\text {a }}$	1636
681	RTN	24	127	-	-45	173	$\mathrm{P}+5$	16-51
682	*LBLC	2113	128	SIN	41	174	RCLE	3600
883	65B6	2300	129	\div	-24	175		16-5:
684	P*S	16-51	$13 \overline{1}$	$\mathrm{F} \div \mathrm{S}$	16-51	176	-	-45
685	STaz	3502	131	RCL 6	3606	177	$\rightarrow \mathrm{F}$	34
086	Pat	16-51	132	-	-35	176	6	06
087	RTN	24	133	$\mathrm{P} \ddagger 5$	16-51	179	0	60
086	*LBLD	2114	134	RCL3	3602	184	x	-35
689	6SE0	2304	135	$\mathrm{P} \ddagger 5$	16-51	181	DSF1	-63 01
696	Fas	16-51	136	$\mathrm{CH}+\mathrm{Y}$	-41	182	PRTX	-14
691	STO3	3503	137	$\rightarrow \mathrm{R}$	44	183	SPC	16-11
692	$\mathrm{P} \ddagger \mathrm{S}$	16-51	138	CHS	-22	184	RTN	24

Program 2.25

093	+	-55	139	P*S	16-51	185	6	60
094	RCLC	3612	146	RCL 3	3603	186	x	-35
695	+	-55	141	P +5	16-51	187	DSF1	-63 01
096	RTN	24	142	$X+Y$	-4!	188	FRTX	-14
097	*LBLE	2115	143	+ ${ }^{\text {c }}$	44	189	SFC	16-1i
698	RCLE	3600	144	CHS	-22	196	RTN	24
099	HMS ${ }^{\text {P }}$	1636	145	RCL2	3602	191	*LBLd	211614
106	RCL2	3602	146	HMS ${ }^{\text {a }}$	1636	192	R \downarrow	--31
181	HMS ${ }^{\text {- }}$	1636	147	+	-55	193	STOB	3512
182	-	-45	148	P*5	16-51	194		-4i
163	STOB	3512	149	5100	3500	195	StOA	3511
184	2	02	156	P+5	16-51	196	R4	16-31
105	\doteqdot	-24	151	+HMS	1635	197	STOI	3545
166	RCL 6	3608	152	PRTX	-14	198	$P \pm S$	16-51
107	HMS ${ }^{\text {a }}$	1636	153	RTN	24	199	0	00
108	+	-55	154	*LBLE	2115	206	ST09	3509
109	cos	42	155		-41	261	$\mathrm{P}+\mathrm{S}$	16-51
116	STOD	$35: 4$	156	RCLD	3614	202	RCL;	3645
111	RCLE	3612	157	\vdots	-24	203	ISZI	162646
112	ST+4	35-55 04	158	RCL 3	3683	284	RCL	3645
113	RCL3	3683	159	HMS ${ }^{\text {+ }}$	1636	205	RCLA	36 :1
114	HMS ${ }^{\text {a }}$	1636	168	+	-55	266	PRTX	-14
115	RCL1	3681	161	F*5	16-51	$2 \overline{6}$	RCLE	3612
116	Has ${ }^{\text {a }}$	1636	162	ST01	3561	208	FRTX	-14
117	-	-45	163	Pas	16-51	209	SFC	16-11
118	RCLE	3614	164	+HMS	16.5	216	RTN	24
119	\times	-35	165	PRTX	\cdots	211	k/S	51
120	ST+5	35-55 05	166	${ }^{\text {PPC }}$	16-11			
121	RCL5	3605	167	RTN	24			
122	RCL 4	3684	168	*LBLE	2115			
123	+ ${ }^{\text {F }}$	34	169	RCLS	3603			
124	5706	3506	176	HMS ${ }^{-}$	1636			
125	$\mathrm{X}+\mathrm{Y}$	-41	171		16-51			
126	Stor	3511	172	RCLI	3601			
127	PatS	16-5i	173	P\% 5	16-51			
128	RCLL	3682	174	-	-45			
129	-	-45	175	RCLD	3614			
130	SIN	41	176	x	-35			
131	kCL2	3602	177	RCL2	3602			
$13 \overline{2}$	RCLI 3	3603	178	HMS*	1636			
133	--	-45	179	$\mathrm{F}+\mathrm{S}$	16-51			
134	SIN	41	186	RCLE	3600			
135	\%	-24	181	$P \rightarrow 5$	16-51			
136	F* 5	16-51	182	-	-45			
137	RCL6	3686	183	+P	34			
138	x	-35	184	6	06			

13014.	II	95.	$=$	$2{ }^{\text {2 }}$	IHU
57	FIS	32	SIH	37:	Ind
4.	4	6.	χ	日1.	HLT
43.	FEL	19.	II'		
1.	1	5.	\div		
θ	θ	53.	©		
8 E	$+$	43	FEL		
43	FCL	180 -	\square		
0.	\square	4.	4		
θ	θ	75.	-		
140 \%	-	43	FCL		
43	ECL	0.	\square		
0.	0	1.	1		
θ	θ	54.)		
44.	Sum	3.	SIH		
I.	\square	95.	$=$		
θ.	θ	40.	Ye		
$9{ }^{\text {g }}$	$=$	1900^{0}	Γ		
19.	I'	94:	$+\cdots$		
4	Ficl	19	$]^{\prime}$		
150 i.	1	43.	FCL		
i=	1	I.	0		
6	x	1.	1		
5.	©	89.	F.Fe		
4%	FUL	55	\div		
0.	I	43	FUL		
5	5	1.	1		
\bigcirc	-	200 1:	1		
43	FEL	94.	$+\%-$		
I.	-1	E5:	\div		
160 F:	7	43	FCL		
54.	\%	0	\square		
85	$+$	E	6		
4%	FCL	44.	Guti		
1.	1	0.	\square		
7 \%	7	I.	1		
95	$=$	43	FCL		
2	IHU	210 -	\square		
99.	F F	5	5		
75	-	95	$=$		
170 4,	FEL	46.	LEL		
-1.	0	15	E		
4.	4	19.	II		

$30{ }^{5}$	$+$	4.	4	19.	I ${ }^{\text {: }}$
43	FLL	95.	=	2 F	IHy
0.	0	3 C	GIH	3\%	Inte
8.	E	6.		81.	HLT
$7{ }_{7}$	-	19.	II ${ }^{\text {a }}$	22046	LEL
43.	FCL	55.	\div	10.	E:
1.	0	5 B	¢	47 \%	Elt
E	θ	18043.	FCL	25	ELE
44:	GU1	0.	0	81.	HLT
0.	\square	4.	4		
408	8	75	-		
95	$=$	43	FCL		
19.	I'	O.	I		
4.	FL	1.	1		
I.	0	54.)		
E,	8	32	SIH		
5	\div	95.	$=$		
2	2	19040	S		
95	$=$	30.	Γ		
\%.	C0¢	94.	$+\cdots-$		
$5042=$	ETD	19.	I'		
1.	1	43.	FCL		
i.	1	0.	\square		
6.	x	1.	1		
5.	¢	39.	$\mathrm{F} \cdot \mathrm{F}$		
43.	FCL	55	\div		
0.	0	$4{ }^{4}$	FEL		
5	5	200 1.	1		
75	-	1.	1		
43.	FCL	94.	$+7$		
60 \%.	\square	Ef.	+		
F:	7	43.	FCL		
54.	;	I.	0		
E5:	$+$	E.			
43	FCL	44.	Sum		
1.	1	0.	\square		
7.	7	0.	0		
95.	$=$	21043	FLL		
22.	IHU	0.	\square		
39	$\mathrm{F} \cdot \mathrm{F}$	5.	5		
7075	-	95.	$=$		
$43=$	Fic	46.	LEL		
0.	\square	15:	E		

46.	LEL	8.	8	1.	1
11.	H	51.	EEF	0.	\square
46.	LEL	87.	1 '	E1.	HL
12.	E	48.	FiL	9046	LE
37.	InHS	\square.	\square	8 E	2^{\prime}
46.	LEL	B.	8	St.	+
87.	$1{ }^{\prime \prime}$	5075.	-	3.	3
48.	EXE:	4%	FCL	\underline{E}	θ
\square.	\square	0.	\square	0.	0
10 5.	5	θ.	θ	95.	=
48	EXG:	95.	$=$	42.	51
\square	\square	42.	STD	1.	1
θ.	θ	1.	\square	0.	II
48.	E\%	0.	\square	100 E1.	HL
1.	\square	43.	FLL	46	LE
7.	7	\square.	\square	16.	H^{\prime}
48.	EYE:	60 E	8	4%	Fic
I.	\square	85.	+	0.	\square
8.	8	43	FIL	0.	\square
205.	ETH	\square	\square	6.	x
4 G ¢	LEL	θ E.	θ	6.	θ
13.	E	95.	$=$	0.	0
37.	Ints	5.	\div	95	=
42.	STD	2.	2	11042 .	51
0.	\square	95.	$=$	1.	1
9.	9	3 S	L08	1.	1
81.	HLT	70.5	\%	81.	HL
46.	LEL	5 \%	¢	46.	LE
14.	II	43	FCL	17.	E
30 \%	IMS	I.	\square	43.	Fi
42.	STD	5	5	0.	\square
I.	\square	$7{ }_{7}$	-	1.	1
1.	1	43.	FOL	$7{ }_{7}$	-
81.	HLT	$\underline{\square}$	0	12043	Fi
46	LEL	$7:$	7	0.	0
15	E	54.	+	9.	9
43	FCL	$80{ }^{9}$	$=$	95.	$=$
-1.	\square	2 z	IH4	42	$\underline{\square}$
E.	8	39	$\mathrm{F} F \mathrm{~F}$	1.	1
405.	GEF:	22	IH?	2	2
E\%	$1{ }^{1}$	80.	IF+	43.	Fil
4.	FCL	8 E	2^{1}	1.	1
\square.	\square	42.	STD	1.	1

rogram 3.1

061	* 2 ELA	21.1	846	RCL 8	3688	491	+	-55
062	$5 T 07$	3587	847	\div	-24	092	6SE9	2368
063	F\%	5.1	648	RCL5	3695	093	STOA	3511
804	- LELA	21 11	849	\doteqdot	-24	894	RCL 6	3686
885	ST08	3:89	856	C05 ${ }^{-1}$	1642	095	RTN	24
006	F\%S	i1	651	5706	3506	896	+LEL8	2186
$60{ }^{\circ}$	*LELA	E1 11	052	FRTX	-14	897	$\rightarrow \mathrm{F}$	44
608	STOS	3509	853	RTN	24	098	K \downarrow	-3:
869	R/S	51	854	* LBLE	2112	895	F \downarrow	-3i
810	*LBLA	2111	855	* LELC	2113	196	$\rightarrow \mathrm{F}$	44
611	COS	42	056	$5 T 02$	3562	181	$\mathrm{X}+\mathrm{Y}$	-4i
812	χ^{2}	53	857	F. 5	51	102	R」	-3i
613	Stioi	3511	058	* 2 ELE	2112	183	+	-55
014	RCLg	3629	659	+ L ELC	2113	184	F \dagger	-31
E15	1	81	860	ST01	3561	105	+	-55
816	+	44	661	R/S	51	160	R4	16-3i
617	$\chi \overline{2 c}$	53	662	* \angle BLE	2112	167	$\pm F$	34
618	$\mathrm{X}+\mathrm{Y}$	-41	663	SF1	162161	168	RTN	24
619	ys	53	664	ESEA	2364	109	* 1 BLD	2114
820	RCLA	3611	66.5	-	-45	116	ST04	3564
021	x	-35	666	6589	2369	111	R 5	51
622	+	-55	967	ST03	3563	112	* ${ }_{\text {L }}$ SLID	2114
823	FX	54	668	R S	51	113	STOI	3546
024	RCLT	360	669	* 1 ELC	2113	114	RCLA	3611
825	$X+Y$	-41	078	CF1	162201	115	FCLC	3608
026	\doteqdot	-24	671	65E0	2360	116	6568	2368
827	STOF	3567	672	+	-55	117	PRTX'	-14
628	RCL9	3689	673	6SE9	2369	118	STOB	$35 \quad 12$
629	$\mathrm{X}+\mathrm{Y}$	-41	074	$5 T 03$	3563	119	$X+Y$	-41
630	+ F	44	675	FFTE	-14	126	6SE9	2309
631	FCLE	36.68	6176	RTN	24	121	FRTX	-14
432	CL	-45	677	+LELS	2169	122	STOC	3513
033	+F	34	078	3	63	123	FCL 3	3603
0.34	ST05	3585	879	6	86	124	RCL 6	3686
635	PRTX	-14	880	6	64	125	F1?	162301
036	FCL7	3607	681	+ R	44	126	CHS	-22
037	$\delta 2$	53	682	$\pm F$	34	127	+	-55
636	FCLE	36.88	483	$x+7$	-41	128	6SE9	2369
635	χ^{2}	53	484	$x<6$?	16-45	129	STAE	3515
040	-	-45	085	+	-55	130	PRTX	-14
041	FCL5	3605	086	RTN	24	131	CF3	162203
842	λ^{\prime}	53	887	* LELE	2180	132	* LBL 7	$210{ }^{7}$
843	-	-45	088	ST00	3580	133	FSE	1651
044	2	62	889	+	-55	134	F3?	162363
645	\doteqdot	-24	498	RCLE	3602	135	GT00	2280

Program 3.2

136	6707	2207	181	PRTX	-14	E1:	HLT
137	* LBLO	2100	182	RCLB	3612	E.	ES
138	RCLE	3615	183	$\stackrel{ }{-}$	-24	48	LEL
139	$\mathrm{X}+\mathrm{Y}$	-41	184	5703	3503	45	\%
140	5100	3580	185	-HMS	1635	75	--
141	-	-45	186	PRTX	-14	日.	1 H
142	RCL1	3601	187	RCL6	3688	34.	T1
143	-	-45	188	RCLC	3613].	T
144	6 689	2385	189	-	-45	5	4
145	FRTX	-14	196	SIN	41	10 \%	LEl
146	RCLE	3615	191	RCL 9	3609	10×8	Gel
147	RCL8	3688	192	x	-35	24	\%
148	FCL4	3664	193	ABS	1631	\%	
149	RCLI	3646	194	RCLD	3614	P.	\%
154	6568	2368	195	$\stackrel{\square}{+}$	-24	.	\%
151	PRTX	-14	196	STO2	3502	5	$=$
152	STOD	3514	197	+HMS	1635	2 L	H1
153		-41	198	PRTX	-14	\%.	F
154	6569	2309	199	RTN	24	45	\%
155	STOE	3515	206	*LBLE	211615	Fi.	CT
156	FRTX	-14	201	RCL1	3601	20.6	EL
157	RTN	24	282	RCLC	3613	1\%	F
156	*LELC	211613	263	1	01	-	
159		16-51	264	8	88	54.	
160	5708	3560	265	6	08	4	
161	R/S	51	206	+	-55	- $=$	
162	*LBLe	211613	287	RCLE	3612	E.	
163	STO1	3501	208	RCL3	3603	=	
164	F\% ${ }^{\text {F }}$	16-51	289	x	-35	\%	FH.
165	RTN	24	216	RCLE	3600	1.	
166	*LBLE	2115	211	R \downarrow	-3i	5 E	FTH
167	P +5	16-51	212	6SE8	2308	3045	H-
168	FCLI	3601	213	STO1	3501	15	E
169	RCLC	3613	214	PRTX	-14	:	
170	RCLE	3615	215	$\mathrm{X}+\mathrm{Y}$	-41	$4 \mathrm{E}=$	TT
171	-	-45	216	6589	2309	I.	
172	SIN	41	217	STOQ	3500	5	5
173	\because	-24	218	PRTX	-14	5%	P!
174	5709	3569	219	P \ddagger S	16-5:	\%.	
175	RCLE	3615	220	RTN	216	5	+TH
176	RCLE	3688	221	*LBLd	211614	\%	El
177	-	-45	222	HMS ${ }^{\text {ST }}$	1636	40 E.	El
178	SIN	41	223	5 O 03	3502	40 E	
179	x	-35	224	RTN	24	4	\%
180	ABS	1631				E.	B

5.	ET	4	T	130].]
4	Hel	4 P	!T		2.	H1
47	\%	P.]		\%	P
48	Fre	90 :]		5	SER
\%.	-		1		Fim	\%
7	7	¢.	ES		42	5 L
50 4	E8	1.]		\%	
T.	\%].	T		θ	\%
E.	b	9\%.	\%		9	\%
58	PTH	fs,			घ,	Pe\%
$4=$	Q	43	F¢	140	$5{ }^{\text {E }}$	PT
1\%,	E	\%	\%		4.	QL
4.	E\%	9.	\%		\%.]
L=	1	100 \%	サ¢		T.	
-	-	5 S	$=$		2.	5T1
48	E\%	E,	He		\%.	i
60 :	1	9%	P\%		4.	\%
I=	1	4.	5 T		¢\%	PeT
5 F	PTH	P.	-		E.	Pet
$4=$	¢].]		$4{ }^{\text {a }}$	\%
12,	E	$\because 8$	ए.	150	\%]:
42	ST	\%.	-		4 z]!
T_{2}	-	2	2		i,	1
i:	i	110 \%	E'		\cdots	
5 F	ETH	I.	T		5 E	PT
4 E	E,	\%,	-		84.	\%-
70 \%	T	\%	P\%		\%5.	+
3 B	5]	ए5	\because		4%	PT.
I.	T	4 \%	Pu		1.	1
$2=$	E	\because	,		7	7
E5,	CE	5	3	160	75	-
42.	TT	\%.	एप		43	Q1
I.	1	95	$=$		i.	1
9	\%	12048	E.		E.	$\dot{8}$
$4{ }^{4}$	ए¢	U.]		Ef	$+$
\%	-	D.]		4	F\|
80 .	2	75	..-		\%.	1
56	PTH	43	FL		\%	F
42.	TT	T.	T		¢.	\%
1.	I	L	1		4 \%	¢
9	\%	95.	$=$	170],]
F.	PTH	48	E\%		\%.	\%
46	EL	T.	D		45	$=$

Program 3.3

Program 3.5

4	\%	$130{ }_{5}$	\%	881	- LBLA	2111
$\cdots=$	G	4 F	E\%	082	ST07	3507
I.	1	i.	1	003	RTN	24
$90 \quad \because$	\because	\%	4	004	*LBLB	2112
4	¢:	F.	FTH	065	ST08	3506
T.	,	4%	E.	066	RTN	24
O	-	H.	$E:$	087	- LBLC	2113
E	3 T	\%	E9	888	ST09	3509
1	-	!	\cdots	069	RTN	24
\cdots	-	"		810	* 2 BLD	2114
\%	\%	140 \%	-:	611	P\%S	16-51
\%	?	$140-$	\%\%	012	ST04	3504
- $=$	\cdots	- $=$	\pm	013	$P \div 5$	16-51
100	\cdots	-	\pm	014	cos	42
100	?	F:	PT	015	x^{2}	53
$\underline{1}=$	-	48	!	016	STOA	3511
$\cdots=$	$\%$	\%	\%	017	RCL9	3609
\%,	\%	\%	!	018	1	01
9	\%	1.	1	019	$\pm R$	44
E,	\%	\cdots	7	020	X^{2}	53
\%	\%.	8	\%	021	$\mathrm{X}+\mathrm{Y}^{\prime}$	-41
\%	\%	150 =	I	022	X^{2}	53
\%	\because	\%	1	023	RCLA	3611
:	\%	4	Fi	024	\times	-35
110	U	1.	\square	025	\pm	-55
110	!	\%	\%	026	5X	- 54
	\%	\%	-	027	FCL 7	3687
-	\cdots	42	-	628	$X+Y$	-41
\%	\vdots	\cdots	1	829	\div	-24
\%	:	\cdots	\square	630	$5 T 07$	3507
-	4	\%	1	631	RCL9	3609
-	:	F\%	¢T	032	$\mathrm{x}+\mathrm{Y}$	-41
\%	U			033	+R	44
-	T			034	RCL 8	3688
46	E\%			035	-	-45
120 =	!			036	+ ${ }^{\text {F }}$	34
F	\because			037	ST05	3505
4	E\%			038	PRTX	-14
i.	1			639	RCL 7	3687
=	$\underline{\square}$			048	χ^{2}	53
\%	¢			841	RCL 8	3608
4 E	\%			042	χ^{2}	53
4	2!			043	-	-45
1	-\%			044	RCL5	3605
\%	CR			045	$\chi^{\prime 2}$	53

Program 3.6

Program 3.7

\%	\%	130]	601	* LBLo	211611
I,	!	I,	1	802	0	21.60
i,	-	$E \%$	<	083	F2?	162382
90 .	\%	48	¢	0104	RTN	24
\%	\%	i,	-	885	1	01
$\cdots=$	\cdots	$=$	\because	886	SF2	162102
\%:	\%	$=$	\cdots	087	RTN	24
4	\%	\%	\cdots	688	*LEL 6	211612
\because	ST	\%	Q	089	CF0	162206
.	1,	\%	"	016	CF1	162261
\%	-	\%]	011	$F+5$	16-51
\%	\%	140 \%	$=$	012	CLRG	16-53
\%	P?	4 \%	9 T	613	$P \div 5$	16-51
F\%	PT	\%]	014	1	61
100 \%	\square	Fin	Fir	815	RTN	24
1.	-	9	PT	016	* LBLC	211613
\%	\%	\%	PF	617	65B6	231612
\%.)	E\%	Him	818	SF1	162101
0)	4	E	019	RTN	24
4	\%!	\%	\%	826	* LELd	211614
	\%	\%	¢	621	6SB6	231612
\%	\%	150	\cdots	822	SF0	162104
\%	\%	150 -	-	623	RTN	24
\%,	+	-	\%	824	* LBLE	211615
\%	H...	T=	-	025	6S6d	231614
110	M,	-	!	026	SF1	162181
\% =	\square^{*}	-	1	027	RTN	24
\%	\because	\%]	028	+ ${ }_{\text {LBLA }}$	2111
\%	U	F,	$=$	829	CF3	162283
!	!	i-	*	030	- LBL8	2168
S	H-	5	\because	831	F2\%	162302
\%	-	\%	¢	632	6589	2369
	+ ${ }^{\circ}$	160]	633	STOLI	3514
\%		!	-	034	F1?	162301
?	\because	F	\cdots	835	LN	32
120	\%T	4	\%	036	$\mathrm{X}+\mathrm{Y}$	-41
120 -	-	\%,	-	637	STOC:	3513
$=$	\cdots	\%	$=$	038	F8?	162360
-	\%	\cdots	\cdots	839	LN	32
\square^{5}	\cdots	\%	P:	846	F3?	162303
i.	1	9	P	041	GTOA	2280
\%)	-	!	842	I+	56
5	$=$			843	* LBL 7	2107
\%,	\square			044	ENT \dagger	-21
\%	\%H			645	1	01
4%	T!			646	+	-55

047	RCLC	3613	693	\div	-24	139	$\gamma^{\chi x}$	
048	$X \overrightarrow{+F}$	-4i	094	CHS	-22	148	x	-3.
049	RCLD	3614	895	RCL 7	3607	141	F2?	16230
058	$X \pm Y$	-41	896	+	-55	142	6709	220.
051	RTN	24	097	\div	-24	143	RTN	2
052	*LBL8	2100	898	PRTX	-14	144	*LBL3	210
053	Σ	1656	099	RCL6	3606	145	SPC	16-1.
854	6507	2207	160	RCL4	3684	146	1	0.
855	*LBL9	2109	101	RCLB	3612	147	CHS	-2:
856	SPC	16-11	102	x	-35	148	PRTX	-1.
857	$X \pm Y$	-41	103	-	-45	149	SF2	16210
858	PRTX	-14	184	RCL9	3689	156	R \downarrow	-3:
059	$X \pm Y$	-41	165	-	-24	151	RTN	2
068	PRTX	-14	106	F1?	162301	152	*LBLD	211
861	SF2	162102	107	$\mathrm{e}^{\text {x }}$	33	153	stoe	$351!$
062	RTN	24	188	stob	3511	154	RCLB	361%
863	*LBLB	2112	189	PRTX	-14	155	1/8	5
864	SF3	162103	110	RCLB	3612	156	RCLA	3611
865	F2?	162302	111	PRTX	-14	157	RCLE	3611
866	6SE3	2303	112	$\mathrm{P} \ddagger \mathrm{S}$	16-5:	158	$X \underset{H}{ }$	-41
067	6708	2208	113	RTN	24	159	F1?	162381
068	*LELC	2113	114	* LBLE	2115	168	$6 T 01$	22 a
069	P $\ddagger 5$	16-51	115	STOE	3515	161	-	-4:
670	SFC	16-11	116	RCLA	3611	162	x	-3t
871	RCL8	3608	117	RCLE	3612	163	F0?	162306
072	RCL4	3604	118	RCLE	3615	164	$\mathrm{e}^{\boldsymbol{x}}$	32
673	RCL6	3686	119	F1?	1623 0:	165	F2?	16230
874	x	-35	126	6701	2201	166	$6 T 09$	22 ac
075	RCL9	3669	121	F0?	162300	167	RTN	24
076	\div	-24	122	LN	32	168	*LBL1	2101
077	-	-45	123		-35	169	\cdots	-24
876	ENT ${ }^{\text {a }}$	-21	124	+	-55	170	F0?	162306
679	ENTt	-21	125	F2?	162302	171	6701	2201
680	FCL4	3684	126	6709	2289	172	LN	32
081	XL^{2}	53	127	RTN	24	173	x	-3E
882	RCLS	3689	128	*LBL1	2101	174	F2?	162302
083	$\stackrel{\square}{\square}$	-24	129	F8?	$16 \quad 2380$	175	6 6T09	228
084	RCL5	3605	136	6702	2202	176	RTN	24
085	$\mathrm{X}+\mathrm{Y}$	-41	131	x	-35	177	*LBL1	2101
686	-	-45	132	e^{x}	33	178	$\mathrm{X}=\mathrm{Y}$	-41
687	\div	-24	133	x	-35	179	Y^{*}	31
088	STOB	3512	134	F2?	162302	186	F2?	16238
089	x	-35	135	6709	2289	181	6 609	22 0¢
898	RCL6	3606	136	RTN	24	182	RTN	24
091	X^{2}	53	137	*LBL2	2102	183	R/S	51
692	RCL9	3699	138	$X \pm Y$	-4i			

13055	\div	O_{1}	0	$4{ }^{3}$	ET
43	ECL	\%	?	1.	1
T.]	9.	:	1.	1
.]	E_{0}	$\times \square$	$4{ }^{4}$	P-
54	,	4 \%	RCL	220 \%	$=$
42	\%T	\%.	U	4 S	0
1.	1	B	B	i.	1
i.	1	18095	$=$	2.	e
95	$=$	5 F	RTH	E.	T
42	GT	48	LEL		
140 .	I	B_{1}	$\mathrm{C}^{\text {a }}$		
\%.	\%	45	F\%		
94.	$+\cdots$	$4{ }^{4}$	PCL		
65.	\cdots	T.	T		
4%	Bu.	E	\%		
0.]	5	\%		
1.	1	49	FL		
E5.	$+$	190 \%	T		
49	EC	9	5		
.	-	95.	$=$		
150 \%	3	5 E	QTH		
\%	$=$	$4{ }^{4}$	LBL		
5.	\div	15	E		
4 a	P¢	43	P¢		
.]	i.	1		
T.	-	O.]		
95	$=$	5	\%		
E.	U1	2005	¢		
2.	H\%	43	E¢		
E.	ET]	\%.	T		
160 .	1	F	5		
\%.	\%	75	\cdots		
5.	PTM	43	HL		
4	HE].]		
19.	${ }^{*}$	4	\%		
4.	Bu.	4.	B		
\%.]	प5.	\because		
E.	\%	2104%	EL		
5.	,].]		
4.	1P	U.]		
170	\%	54.			
\%	\cdots	区.	18		
4.	F!	65.	\because		

Entries for steps 101-5, 107-12, 120-25, and 127-33 are to be replaced as shown in the discussion of customized programs earlier in this appendix.			641	RCL8	3608	087	X $66 ?$	16-45
			642	X^{2}	53	088	+	-55
			843	-	-45	089	RTN	24
			044	RCL5	3685	096	+LBL6	2160
			045	$\chi^{\prime} \mathrm{E}$	53	091	5706	3566
			046		-45	092	+	-55
001	*LBLA	21 11	647	2	02	093	RCL2	3602
$66 \bar{c}$	STOT	3587	048	\div	-24	094	+	-55
663	K/S	51	049	FCL8	36.98	895	6SE9	2305
884	+LBLA	2111	056	\doteqdot	-24	096	STOA	3511
085	ST08	3508	851	RCL5	36.65	097	RCLE	3686
886	R/5	51	652	\doteqdot	-24	098	RTN	24
087	+ LBLA $^{\text {a }}$	2111	653	COS ${ }^{-1}$	1642	099	* 2 BLD	2114
888	ST09	3569	054	ST06	3506	104	RCL5	3685
865	R/S	51	655	FRTX	-14	181		-62
018	+ + BLA	2111	856	RTN	24	102	5	05
011	P +5	16-51	057	-LBLE	2112	163	1	01
012	5 T 04	3504	058	+LBLC	2113	164	4	04
813	$\mathrm{P}+5$	16-5:	059	ST02	3512	165	$\overline{7}$	07
614	C05	42	866	R/S	51	166	f^{18}	31
015	χ^{2}	53	061	* ${ }_{\text {L }}$ BLE	2112	167	1	01
016	STCiA	3511	862	* LELC	2113	168	-	-62
817	RCL9	3609	063	ST01	3501	169	3	03
818	1	01	664	R/S	51	116	8	08
019	- F	44	065	* LBLE	2112	111	3	EJ
826	Xz	53	866	SFI	162101	112	6	06
821	$\dot{x}+\bar{i}$	-41	667	6SE6	2300	113	x	-35
022	X ${ }^{2}$	53	068	-	-45	114	DSF2	-63 02
023	FCLA	3611	669	6SE9	2309	115	PRTX	-14
654	x	-35	876	ST03	3503	116	5 S06	3508
025	+	-55	071	R/S	51	117	RTN	24
026	JX	54	072	- LBLC	2113	118	*LBLE	2115
027	RCL $\overline{7}$	3687	673	CF1	162201	119	RCL5	3605
028	$\mathrm{X} \rightarrow \mathrm{Y}$	-41	674	6580	2380	120		-62
429	\doteqdot	-24	075	+	-55	121	0	00
636	ST07	3507	676	6589	2369	122	8	69
031	RCLS	3609	077	ST03	3503	125	6	86
035	$X+Y$	-41	678	FRTX	-14	124	5	05
033	$\rightarrow R$	44	079	RTN	24	125	CHS	-22
034	RCLE	3608	686	* LBL9	2109	126	$Y^{\prime \prime}$	31
035	-	-45	081	3	03	127	5	05
036	+P	34	082	6	66	128	5	05
837	ST05	3505	883	0	66	129	-	-6.2
638	FRTX	-14	084	$\rightarrow R$	44	136	0	06
639	RCL 7	3687	685	$+\mathrm{F}$	34	131	8	88
846	S^{2}	53	686	$X+Y$	-41	132	4	04

Program 3.10

133	2	02	178	* ${ }^{\text {BLa }}$	211611	001	*LELA	21 11
134	x	-35	179	RCL9	3609	062	CF1	162201
135	ST06	3506	186	PRTX	-14	683	RTN	24
136	RCL6	36 a6	181	RTN	24	484	* LBL9	2189
137	RCL5	3605	182	* 2 BLb	211612	885	3	03
138	+ ${ }^{\text {R}}$	44	183	RCL3	3603	006	6	06
139	RCL8	3689	184	RCL6	3606	667	8	00
148	+	-55	185	+	-55	008	$\rightarrow R$	44
141	$\rightarrow F$	34	186	6 689	2309	609	$\rightarrow \mathrm{F}$	34
142	STOT	3507	187	STOA	3511	016		-41
143	RCL5	3605	188	6SB6	2306	811	$x<0$?	16-45
144	χ^{2}	53	189	6SB9	2309	612	$+$	-55
145	RCL 7	3607	196	R/S	51	013	RTN	24
146	χ^{2}	53	191	*LBL6	211612	014	*LBL6	2180
147	-	-45	192	-	-45	815	ST08	3588
148	RCL8	3698	193	6589	2309	816	+	-55
149	χ^{2}	53	194	PRTX	-14	817	RCLZ	3602
156	-	-45	195	RTN	24	018	RCL2	-55
151	RCL 7	3607	196	* 2 BLC	211617	819	6SE9	2389
152	\div	-24	197	RCL3	3603	026	STOA	3511
153	RCL8	3688	198	RCL6	3664	421	RCLE	3606
154	\div	-24	199	-	-45	822	RTN	24
155	2	$0 \cdot$	206	6589	2309	823	* LBL8	218
156	\div	-24	201	STOA	3511	824	$\xrightarrow{+R}$	44
157	CH5	-22	202	6SB6	2366	825	R \downarrow	-31
158	CaS^{-1}	1642	203	6SB9	2309	826	R \downarrow	-31
159	ST09	3509	264	R/5	51	827	$\rightarrow R$	44
166	RCL 7	3609	205	*LBLC	211613	028	Xt+	-41
161	RCL9	3609	206	-	-45	829	Rt	-31
162	cos	42	207	6569	2309	630	$+$	-55
163	X^{2}	53	208	PRTX	-14	031	R \downarrow	-31
164	RCL9	3609	209	RTN	24	632	R	-55
165	SIN	41	216	*LBL6	2106	833	R4	16-31
166	X^{2}	53	211	RCL1	3601	634	\rightarrow +	34
167	$\mathrm{P} \ddagger 5$	16-51	212	-	-45	635	RTN	24
168	RCL4	3684	213	RTN	24	836	*LBLB	2112
169	P $\ddagger 5$	16-51	214	R $/ 5$	51	637	ST04	3504
178	\cos	42				638	R/S	51
171	x2 \times	- 53				839	*LBLE	$21: 12$
172	x + +	-35				046	5 SOI	3546
173 174	$\stackrel{+}{4}$	-55				041	RCLA	$361:$
174	${ }_{x}{ }^{\text {d }}$	-54				642	RCL 8	3688
176	PRTX	-14				043	6SB8	2308
177	RTN	24				045	STOB	35 12

046	$X \vec{H}$	-41	691	P\%S	16-51	136	RCLE	3612
047	6SB9	2309	092	RTN	24	137	RCL3	3683
048	PRTX	-14	893	*LBLC	2113	138	x	-35
049	STOC	3513	894	$P \pm 5$	16-51	139	RCLA	3680
656	kCL3	3603	895	RCL1	3601	148	R \downarrow	-3i
851	RCL6	3606	096	RCLC	3613	141	6S88	2308
852	F1?	162381	897	RCLE	3615	142	ST01	3501
853	CHS	-22	098	-	-45	143	PRTX	-14
854	+	-55	099	SIN	41	144	$X+Y$	-41
055	6589	2309	108	\div	-24	145	GSB9	2309
856	STOE	3515	101	ST09	3509	146	STOO	3500
657	PRTX	-14	182	RCLE	3615	147	PRTX	-14
658	CF3	162283	163	RCLE	3600	148	F*S	16-51
859	*LBL7	2107	164	-	-45	149	RTN	24
060	PSE	1651	185	SIN	41	150	* LBLD	2114
061	F3?	162303	166	+	-35	151	$P \pm S$	16-51
662	$6 T 00$	2200	187	ABS	1631	152	HMS ${ }^{\text {P }}$	1636
063	$6 T 07$	2261	188	PRTX	-14	153	ST03	3503
064	*LBL6	2188	109	RCLB	3612	154	$\mathrm{P} \ddagger \mathrm{S}$	16-51
065	RCLE	3615	118	-	-24	155	RTN	24
066	$X+\mathrm{Y}$	-4i	111	5703	3503	156	k/s	51
067	STOO	3500	112	+HMS	1635			
068	-	-45	113	PRTX	-14			
069	RCLI	3601	114	RCLE	3600			
078	-	-45	115	RCLC	3613			
071	6589	2309	116	-	-45			
072	PRTX	-14	117	SIN	41			
073	RCLE	3615	118	RCLI 9	3689			
074	RCL 8	3608	119	-	-35			
075	RCL4	3684	120	ABS	1631			
676	RCLI	3646	121	RCLD	3614			
677	6SB8	2308	122	\div	-24			
078	PRTX	-14	123	STO2	3502			
679	STOD	3514	124	+HMS	1635			
880	$X \neq Y$	-4i	125	PRTX	-14			
081	6569	2309	126	$\mathrm{P} \ddagger{ }^{\text {P }}$	16-51			
082	STOE	3515	127	RTN	24			
083	PRTX	-14	128	*LBLE	2115			
084	RTN	24	129	$P \pm 5$	16-51			
885	*LBL6	211612	130	RCL1	3601			
886	P\% 5	16-51	131	RCLC	3613			
087	STOO	3500	132	1	01			
888	R/S	51	133	8	88			
089	*LBLb	211612	134	0	00			
098	ST01	3501	135	+	-55			

		\%	\%	I:	1
Entries for steps 6-12, 18-23, 31-36, 42-46, 101-5, 111-15, 122-26, 133-38, 141-45, 154-59, 164-70, 198-203, and 209-13 are to be replaced as shown in the discussion of customized programs earlier in this appendix.		E	$\stackrel{\square}{5}$	\%	\%
		5	x	80 \%	F.
		3 ,	GL	\%	\cdots
		U.	\%	43	¢
		40 \%	\bigcirc	i=	[
		4	\%	\%	\%
		8	$=$	\%	0
		F	F	5	$=$
$81=$	H.	-	i	-	1
F=	P]	\%	4	\%	P:
$4+=$	¢	$7=$	7	\%	\%
11:	P	\%	$=$	90	1
$\underline{5}$	CP	4	OT	00 -	-
5	5	i,	-	\%	P
=	5	50 i=	1	5	FB
7 \%	-	Fix	PT	4	C
-	1	\%	H	$\stackrel{1}{1}$	1
10 =	\%	\%	-	\%	E
$\stackrel{4}{\square}=$	4	-	¢	\%	FP
$\underline{=}$	$\underline{\square}$	-	\%	\% =	8
5	\therefore	:	4	\%	5
4	EL	\%	GT	100	E
T,	-	E	-	100	-
4	\%	0	1	-	
45	\%	60 \%	Pi	\%	
\%	$=$	00	-	T,	I
-]	E	\%	=	-
20 \%	\%	3 F	F	\square	\because
E	E	\% $=$	-	-	\bigcirc
5	5	-		\because	¢
9	\cdots	-	$=$	I:	1
\%	\because	-	10	\because	4
\%=	\cdots	E=	\div	110 \%	\%
$4=$	$\square T$	8	EL	\%	
-	-1],]	\cdots	\cdots
=	\%	70 I	-	\because	\cdots
F\%	P	70 \%	$\stackrel{-}{-}$	\cdots	-
$4{ }_{\text {F }}$	\%	\%	F	-	5
30%	E	\%	E,	9:	1
I.	!	0	I	Z	5
$5=$,	\square	H!	\%	-
\%	\%	F,	P	\%	-
\%	\%	\%	$\because \mathrm{T}$	120	-

5 F	¢	F	\%	4.	4
93,	",	\%	\%	45.	\%
7	\because	9.		93	
.	\%	I.]	210 5	5
$1=$	1	.]	E.	e
9	9	2	2	2.	\geq
E.	$+$	170	5	.	\%
4.	एTL	95.	$=$	5.	$=$
,]	$42=$	$5 T 0$	$4{ }^{\text {a }}$	TTI
130 =	4	O_{1}	0	0.]
2.	H/E	$2=$	2	1.	1
55.	x	$7{ }^{5}$		$5{ }^{\text {E }}$	ETH
9\%	-	1:	1	$4{ }^{\text {a }}$	LEL
2	\%	8	\%	220 ie	O
5	5	T.]	220	\%
$4=$	4	95	$=$	i.	i
i.	1	180 \% ${ }^{\text {\% }}$	$+\cdots$	9.	5
94.	$+\cdots$	4	\%T0	5 F	PTH
54	,	\%:]		
1405	\div	G.	\%		
\%		$5{ }^{\text {g }}$	ETH		
\%	E	$4{ }^{4}$	LEL		
\%	\%	14.	1		
$4=$	4	i=	1		
$2=$	2	E.	\%		
95	$=$	T.	O		
4 O	ST]	1905	\div		
9	7	4.	ए¢		
9	5	\%	O		
150 -	Pt	2	2		
T.	T	5.	$=$		
$4=$	4	48	ETT		
85	\%	O.]		
98	*	\%	3		
T.]	1:	1		
E	5	93	:		
3.	\%	$2002=$	2		
9.	9		7		
94,	\cdots	\%	3		
160 \%	$=$	5	5		
2 E	He	5	\%		
2.	以近	48	EL		
EF	\%	0]		

$4 t_{r}$	15	48	P1	E	=
4	E^{-}	i,]	\%	C
$4{ }^{4}$	EL	7	\square	-	I
\%	1	4.	E1H	90	\cdots
\%	10	\%	I	2	1
5	FTH	4	4	44	-
4	15	50 .	3	i.]
1%	H	4 F	\ldots	4	4
4%	-6	\%	:	$\stackrel{\square}{\square}$	1
105	CH	4	U1	\%	$+$
F	FTH	!,	1	4.	S
4	E	0	\%	\%	$\square^{\prime \prime}$
2	E	4	E	4	E
8	GT	$\%_{6}$	CT	100	7
\%	T	4	Et	$43=$	Fl
E,	F	F=	1*	O]
5	FT	60 \%	He	=	-
4	E	4	OT	$7=$	-
\%	\square	\%	-	4%	E
20%	Le	$7=$	7	-]
\%	■T	E:	Hif	\%	1
\%	-	44	U!	\%,	B
7	7	0	\%	F-	\cdots
$44=$	S1!	\#	\%	110 \%	$E:$
\%	T	$4=$	E	\%	$=$
3	\%	2	Him	i,	1.
4	E	704	-1!	4	I
$4 \square^{4}$	914	His	T	1.	I
0	T	5	5	\%)
30	5	4	CL	5	人
4	PL	O,	T	$=$	\%
T.	1	E	\dot{C}	\%	El
F_{0}	$\%$	2	Hif	T,	T
4	¢!	$44=$	G!	120	4
\%]	i,]	$\because 5$	--
1.	1	1.	1	\%	P
4%	PET	80	FPT	H,	H
-	I	I,	T	i=	1
\cdots	7	$7=$	\cdots	E_{5}	\because
$40 \div$	\%	4	E	\square	P
44	W11	$\underline{\square}$	TH:	!	1
\%	0	4	-1!	\%	\%
$\underline{\square}$	\because	I.	0	55_{0}	\div

130 I.	$E^{\text {E }}$	+3,	T	4 O	
5	GT	\%,]	95	$=$
\%	!	-	,	42	5
i.		-	-	!	\pm
9 m	$=$	46	E-	$220=$	
22	$9]$	ig.	C^{\square}	5.	
O.	-	1805	\%		
E.	\%	43	PL		
94,	$+\cdots$	I.]		
140 E	<	\%.	\%		
\%	PC	5 F	$=$		
-	-	Q:	IH		
1.	i	2 z	LH:		
EE,	$\stackrel{+}{4}$	65°	<		
4.	Fi	49	RL		
].	-	T.]		
3	3	190	?		
9.	$=$	55	$=$		
55	\div	E.	FTH		
150	E^{*}	4 c	LEL		
F5.	$=$	15	E		
Q	H1	48	PL		
Q.	CH\%	i.	1		
4 a	$9]$	I.]		
].	-	5	\%		
9	\%	5%	.		
E.	ETH	20043	ET.		
\%.	¢,	I.	1		
19	\#	5	5		
160 \%	¢,	75	-		
].	-	49.	ET		
e.]	I.]		
5.	T11	\%	\%		
48	4	40.	\%		
P\%	\%	55	\div		
F.	\cdots	1 O	$E^{\text {i }}$		
4 4.	ए-	21054			
?	!	U.	$\%$		
9	.	5			
170 5	\because	4.	P!		
Q	!!e	$\mathrm{i}_{\text {. }}$	1		
\%	\cdots	*:	1		

Program 3.13

$4{ }^{4}$	LFL	!:	1	$2=$	$1{ }^{1}$
15	F	4 t	\square	4	4
\%	-1\%	\%:	$1 \pm$	T,	\%
5	LE	4%	¢	90 \%	4
F_{8}	FT1	-	T	$1=$	1
$4{ }^{6}$	LE	0]	9.	$+$
\underline{E}	E	50 -	Pi	+i	GT
8	ET	!	-1	\square	${ }^{1}$
-	1	T,	-	F	E
10 F	E	5	PT	\square	,
5	ST	4	B	$4=$	Q
4%	E	H:	H^{2}	-	-
1%	\%	\because	\square	=	Z
$4=$	9 T	:]	100	\cdots
\%]	7	\because	\%	E
$\overline{7}$	7	2	H\%	i,]
44	E11	$6044=$	E!	$1=$	1
\%	T	0	-	\%	\%
\%	\%	F	3	Fim	\div
20 \%	E	\%,	E	\%	Cl
4	U1	2	H?	\%	-
\%	-	4	W	T,	1-1
5	5	0]	\%;	$=$
\%	Fil	5	$\%$	110	1
T,]	49	P!	$\square=$	GT
E.	\%	T,	\%	:	1
E,	H,	70	θ	I,]
4	U1!	\underline{Z}	M	Fim	\%
E,	-	$2=$	H:	F,	\bigcirc
30	I	4	E1	4	-
4	PFT	T:	T	H.	IT
\%	T	$\underline{1}$	$\stackrel{1}{1}$	¢	4
\cdots	7	49	PRT	$F{ }_{\square}$	\cdots
4	\%	\square	T	120 \%	e
4	U11	$7=$	7	120	0
\%]	4	E	I=	-
-	2	802	Hib	F_{0}	区
B	FiL	4	Sil	48	Cl
I.	T	$\underline{\square}$	1	T	i
40 :	7	2	$\underline{\square}$	$\overline{3}$	\%
44	\%1!	4%	PL	5	\div
I,	\%	\%	T	4%	Fl
4	4	\because	7	130	-1

F,]	F	5	E.	\%
54.	,	$7{ }^{5}$	-	5	7
42	STL	43	BCL	4 m	PC
i $=$	1	O.	I	220 .]
i.	1	3	3	.	9
95.	$=$	$4{ }^{4}$	Yz	5.	$=$
$42=$	ET1	1805	\because	5 F	PT1
O.]	43	ECL		
E	\%	O.	O		
140 \%	$+\cdots$.	I		
$E E_{0}$	\times	54	?		
49	PGL.	Q,	1%		
0.	U	5			
i=	\%	$4{ }^{3}$	PL		
E5.	\div	i=	1		
49	P¢	1.	1		
O]	190	S		
3.	3	5.	$=$		
55,	$=$	4	¢		
1505	\div	i=	1		
43	PL	2.	\dot{z}		
T,]	56	FTH		
I,	-	46	LEL		
95,	$=$	17:	$\square^{\text { }}$		
$4{ }^{2}$	ET	7	..-		
O.	i	4	PCL		
5.	¢	200 .]		
Es,	PTH	5	9		
46	E.	95.	$=$		
160 \%	1^{\prime}	5.	\because		
49	Fe.	4.	ए!		
O.	T].]		
\%	\%	E.	\%		
5 E	RTH	5.	\cdots		
$4{ }^{\text {c }}$	15	-	IHe		
15		E.	H1\%		
4 \%	T!	210 \%.	ETH		
-.	1	48	E.		
-	-	\%.	\square^{*}		
170 E.	\because	\%.	He		
5%	\therefore	E.			
43	FT	4%	FL		
].	i,	.]		

Program 3.14

Program 3.15

35	${ }^{\text {x }}$	-35	5 F	ETH	I.]
36	RCL 0	3600	$4{ }^{4}$	LEL	55	\cdots
37	\times	-35	¢,	ח¢	42	¢T
38	RCLE	3615	1.	1	i:	
39	\cdots	-24	4	Om	1.	;
40	1	01	1.		\%:	4
141	F2?	162302	-	\%	50	\%
142	6SB6	2300	-	P\%	50 \%	U¢
143	\rightarrow R	44	4	TL	$44=$	U1
144	RCL;	3645	\ldots	-	T.	!
145	χ	-35	10 E.	z	1.	1
146	$X=Y$	-41	$\mathrm{EF}^{\text {a }}$	\times	¢,	H1
147	DSEI	162546	4%	PL].	1
148	RCL	3645	1.	1	日.	1 1
149	x	-35	G.	U	\%:	\%\%
158	+	-55	5	<	3\%	U¢
151	RCLE	3615	4.	CL	44.	\%11
52	\div	-24	1.	1	60 \%]
53	2	62	\%	3	2.	2
54	\times	-35	95	$=$	5.	SER
55	+	-55	20 ¢.	IFL	3.	एo
156	DSZI	162546	i.		44.	Qul
57	6706	2286	$4{ }^{\text {a }}$	¢T].	
158	6SB5	2305	\%.	-\%	\%	\%
159	F6?	162300	\%	-4	$=$	\%
168	SFC	16-11	4	¢ B	\%	GE
161	RTN	24	$4{ }^{2}$	4	4 F	■-
62	*LBLO	2180	4%	\square	44.	Gt
163	CLX	-51	\%	WH	70 .]
64		-62	46	¢	4.	4
65	5	05	48	HEL	$5:$	Ser
66	RTN	24	30 E	x	¢]	US
67	*LBL5	2105	48	QL	$44=$	¢!
68	F0?	162309	1.	+	\%.]
69	PRTX	-14	1.	I	5	F
78	F0?	162300	95.	$=$	\%:	SER
71	RTN	24	5 E .	RTH	\%	M\%
72	R / S	51	$4{ }^{\text {a }}$	LEL	44	U1m
73	RTN	24	2:		80 .]
			44.	¢m	B.	
			i.	1	51.	बह\%
			$404=$	4	33.	एबS
			6	\%	44^{4}	S1
			4.	ECL	!,	-
			O.	!	$7=$	\cdots

Fi.	¢	!	1].	U
\%	\cdots	\%	\%	\because	\cdots
\%	\%	\%;	\%	ध	P
90	\cdots	\cdots	.--	$\square+$	\%
90	?	\%	\cdots	$4=$	+
\%	\%	\%	=:	\%:	\%:
4%	\%	\pm	\%	\%	B
:	\%	1:	!	180 ,	1
48	\%	\%)	:-	;
4	Y!	:	\div	\%	P
:	\cdots	140	\square	F=	F
!	1	\%	$=$	4	P
H:	:	E.	TH	i,	i
100	\%!	4%	\%	E=	E
100	\therefore	:	\cdots	Fit	C
"	\%	\%	\because	4	+
\%	?	i:	1	F=	T
\%	\pm	\%\%	\%	190	-1
\%	\%	\% :	!	I,	,
\%	T1	\square	I	\cdots	\cdots
\%	\%	150	\%	Fiz	C
\%	:	\%	T	4	P1
:	:	\%;	\cdots	-	1
110	4	\%\%)	E,	\%
110 :	\%	\%	\%	5%	\%
\%":	\%	4%	¢!	4	H
$\because:$	-	-	\%	5	+
\%	\%	-	-	200 \%	-
\%	\%	\%	P	-	-
\%	\%	F\%	CT	4	\%
\%	\%	160 \%	Q:	i.	,
\%		\%	\%	\%	\because
\because	\cdots	\%	\square	\%	\%
120 \%	\because	\%	\%T	\%	I
\%	9	\%:	\square	\%	-
\%	1	-:	\%	\square	
\%	1	\because	F	\%	T
\%	T	4%	rio	$210=$	\cdots
\%	\cdots	T.	-	\%	\%
4	\%T	\%	3	E,	F
:	\square	170 \%	\cdots	4%	!
E:	\cdots	\%:	\cdots	\square	E
4%	¢	4	\cdots	\%	F

084	6SB9	2389	130	6	QE	176	8	ε
085	1	01	131	1	01	177	5	ℓ
086	8	98	132	γ^{x}	31	176	$\mathrm{X}+\mathrm{i}$	-4
087	0	00	133	-	-62	179	\doteqdot	-2
088	+	-55	134	6	86	184	-	-
089	6589	2309	135	8	08	181	0	¢
096	ST06	3506	136	6	00	182	1	
891	1	01	137	4	04	183	7	
492	8	86	138	\times	-35	184	5	
893	8	00	139	STOB	3512	185	x	-
094	-	-45	148	.	-62	186	$\mathrm{P}+\mathrm{S}$	16-:
095	6589	2309	141	7	0°	187	STOS	35
896	PRTX	-14	142	8	08	188	$P \pm 5$	16-:
097	RTN	24	143	1	01	189	RCLC	36
098	*LBL9	2109	144	9	89	198	RCLB	36
099	3	03	145	RCL5	3605	151	\times	-:
186	6	06	146	LN	32	192	-	-
101	0	00	147	.	-62	153	8	
102	\rightarrow R	44	148	2	02	194	3	
163	+ F	34	149	5	05	155	4	
104	$\mathrm{X}=\mathrm{Y}$	-41	156	4	84	196	2	
165	X<0?	16-45	151	1	01	197	\div	-.
166	+	-55	152	\times	-35	198	STOE	35
107	RTN	24	153	-	-45	199	RTN	
188	*LBLE	2108	154	STOC:	3513	204	*LBLa	2116
109	ST00	3500	155	RCL5	3605	281	R/S	
110	+	-55	156	.	-62	202	*LELO.	2116
111	RCL2	3602	157	0	00	263	+R	
112	+	-55	158	5	95	294	ST04	35
113	6589	2309	159	3	83	265	$\mathrm{X}=\mathrm{Y}$	-
114	Stô	35 11	160	9	09	266	STOI	35
115	RCL6	3606	161	CHS	-22	$26{ }^{7}$	RTN	
116	RTN	24	162	-	-35	288	R/S	
117	*LBLD	2114	163	5	85			
118	$\mathrm{F}+\mathrm{S}$	16-51	164	3	83			
119	ST00	3500	165		-62			
126	R/S	51	166	0	00			
121	*LBLD	2114	167	0	00			
122	STOI	3501	168	2	82			
123	$P \ddagger 5$	16-51	169	5	05			
124	RTN	24	176	LN	32			
125	*LBLE	2115	171	+	-55			
126	RCL5	3605	172	e^{x}	32			
127		-62	173	$5 T 03$	3503			
128	7	$0{ }^{\circ}$	174	RCL3	3683			
129	7	07	175	1	01			

131	2	02	177	0	00	Entries for steps 101-5, 107-		
132	\div	-24	178	-	-45			
133	ST-3	35-45 03	179	DSP2	-6302	119-24 replace	as shown	e
134	GTOA	2211	180	PRTX	-14	discuss	of custo	
135	- LBL2	2102	181	RTN	24	program	earlier in	
136	RCL2	3602	182	+LBL4	2104	append		
137	$\mathrm{P}+\mathrm{S}$	16-51	183	$\mathrm{X}+\mathrm{Y}$	-41			
138	RCLI	3601	184	3	03	081	* LBLA	211
139	$P \rightarrow 5$	16-5i	185	6	86	062	STUT	35
140	$\mathrm{X}_{4}+$	-41	186	0	86	093	R/S	
141	\doteqdot	-24	187	+	-55	084	- 1 BLA	21
142	+HMS	1635	188	DSP2	-6302	005	ST08	35
143	DSP4	-6304	189	PRTX	-14	086	R/S	
144	PRTX	-14	190	RTN	24	007	\# LBLA	21
145	RTN	24	191	- + BLC	2113	888	ST09	35
146	+LBLI	2101	192	RCLÉ	3602	069	R/S	
147	3	63	193	PRTX	-14	010	- L BLA	21
148	6	86	194	SPC:	16-11	811	$P+S$	$16-2$
149	0	06	195	RTN	24	012	ST04	35
150	+	-55				013	$P+5$	16-!
151	RTN	24				014	COS	
152	+ LBLB	2112				815	x^{2}	
153	RCL6	3606				016	STOA	35
154	RCL3	3683				017	RCL9	36
155	+	-55				018	1	
156	RCLI	3601				019	+R	
157	-	-45				020	X^{2}	
158	RCL 0	3600				021	$X+Y$	-
159	-	-45				822	S'	
168	3	03				023	RCLA	36
161	6	06				024	x	
162	0	06				825	$+$	
163	$X \leq Y ?$	16-35				026	$\sqrt{ } \times$	
164	$6 T 03$	2203				827	RCL 7	361
165	$X \rightarrow Y$	-41				828	$X \rightarrow Y$	-
166	0	86				829	\doteqdot	-
167	x) 17	16-34				036	ST07	35
168	$6 T 04$	2204				031	RCL9	36
169	$X+Y$	-41				032	$\mathrm{X}+\mathrm{Y}$	-
178	DSP2	-6302				033	$\rightarrow R$	
171	PRTX	-14				034	RCL 8	36
172	RTN	24				835	-	-
173	- L $^{\text {L }} 3$	2103				036	+ P	
174	$X+Y$	-41				037	ST05	35
175	3	03				038	PRTX	-
176	6	06				039	RCL7	36

4	X^{2}	53	886	$\mathrm{X}=\mathrm{Y}$	-41	132	2	02
11	RCL8	3668	887	$x<0$?	16-45	133	5	65
12	$X \overline{0}$	53	888	+	-55	134	LN	32
13	-	-45	889	RTN	24	135	+	-55
14	RCL5	3605	496	* LBL 6	2100	136	e^{x}	33
45	x^{2}	53	691	ST08	3500	137	1	01
16	-	-45	092	+	-55	138	8	68
$i 7$	2	02	093	RCL2	3602	139	0	00
18	\bigcirc	-24	694	+	-55	148	$X+Y$	-42
19	RCL8	3668	895	6569	2309	141	-	-45
56	\doteqdot	-24	896	Stor	3511	142	ST06	3506
51	RCL5	3665	097	RCL6	3686	143	RCL6	3686
32	\div	-24	698	RTN	24	144	RCL5	3665
33	COS^{-1}	1642	699	*LBLD	2114	145	$\rightarrow R$	44
34	5706	3566	186	RCL5	3605	146	RCL 8	36.18
35	PRTX	-14	101	-	-62	147	RCL	-55
16	RTN	24	102	5	85	148	+ ${ }^{\text {F }}$	34
37	*LBLE	2112	103	8	08	149	$5 T 07$	3507
58	* \angle BLC	$21: 3$	184	2	02	150	RCL5	3605
59	STO2	3542	105	8	08	151	x^{2}	53
50	R/S	51	106	γ^{*}	31	152	FCLI 7	3607
51	*LELB	2112	107	1	61	153	X2	53
52	*LBLC	2113	108		-62	154	-	-45
53	STO1	3501	169	z	02	155	RCL 8	3608
54	R/S	51	116	7	67	156	X^{2}	53
55	*LBLB	2112	111	3	03	157	-	-45
\%6	SF1	162101	112	5	05	156	RCL 7	3607
i7	6SB6	2300	113	${ }_{\text {x }}$	-35	159	\div	-24
i8	-	-45	114	DSP2	-63 02	160	RCL 8	3605
i9	6SB9	2309	115	FRTX	-14	161	\div	-24
'0	ST03	3583	116	ST08	3508	162	2	02
'1	F/S	51	117	RTN	24	163	\div	-24
'2	*LBLC	2113	118	*LBLE	2115	164	CHS	-22
'3	CF1	162201	119		-62	165	COS^{-1}	1642
'4	6SB6	2300	120	8	00	166	ST09	3569
'5	+	-55	121	5	05	167	FCL 7	360
'6	6589	2309	122	3	63	168	RCL9	3609
'7	ST03	3503	123	9	09	169	COS	42
'8	PRTX	-14	124	CHS	-22	170	χ^{2}	53
9	RTN	24	125	RCL5	3605	171	RCL9	3609
0	*LBL9	2109	126	x	-35	172	SIN	41
1	3	03	127	5	85	173	X^{2}	53
2	6	66	128	3	03	174	P +5	16-51
3	0	00	129		-62	175	RCL4	3604
4	*R	44	136	0	00	176	$\mathrm{P} \ddagger \mathrm{S}^{\text {S }}$	16-51
5	$\rightarrow F$	34	131	6	00	177	COS	42

Program 3.19

178	X^{2}	53	Entries for steps 143-48, 150-54, 156-61, 165-170, 174-79, and 183-88 are to be replaced as shown in the discussion of customized programs earlier in this appendix.	$\underline{2}=$	4
179	x	-35		\%	$\stackrel{\square}{*}$
188	+	-55		\underline{z}	.
181	$\sqrt{ } \times$	54		40 \%	\%
182	x	-35		4	4
183	PRTX	-14		\square	-
184	RTN	24		F,	-
185	* LBLa	211611	E.	$\%$	0
186	RCL9	3609	E, ET	\%	1
187	PRTX	-14	\square	\%	1
188	RTN	24	\cdots	4%	5
189	* LBL6	211612	- \%	-	:
198	RCL 3	3603	44	\%	\%
191	RCL6	3606	$\because \because \%$	50	-
192	+	-55	\%	50	-
193	6SE9	2309	\%	:-	,
194	STOA	3511	\%	-	;
195	6SE6	2366	10 ¢!	-	
196	6SB9	2309	:	$=$	\%
197	R/S	51	;	-:	\ddagger
198	*LBLb	211612	\%	4	Q
199	-	-45	4.	=	!
200	6SB9	2309	!	\%	\%
261	PRTX	-14	;	\%	-
202	RTN	24	\%	$60+3$	Q
263	* LBLC	211613	\%	\%)
264	RCL3	3603	-	$\underline{=}$	\%
205	RCL6	3606	20 :	\%	\cdots
286	-	-45	20 \%	-	-
207	6569	2369	\%:	U,	!
268	STOA	3511	\%\%	\%:	$=$
209	6SB6	2380		$\cdots=$:
216	GSE9	2369	サ\%	\bigcirc	-
211	F/S	51		$4=$:
212	- LBL $^{\text {c }}$	211613	\square	70	
213	-	-45	\%,	70 -	:
214	6SE9	2309	\%:	4	P
215	PRTX	-14	i.	-	!
216	RTN	24	30 \%	\%	:
217	* 2 BL 6	2106	\%\%:	\%	E
218	RCL1	3601	अ.	!	-
219	-	-45	\cdots	!	-
220	RTN	24	\cdots	4	T
			!,	\ldots	
			\%\%	:	\%

80 \%	PG	\%,	PPT	\%	\%
-	0	¢¢	PS	4	4
F	7	48	HEL.	4	,
9.	P R	\%'	:	\because	:
44.	U1	Es.	\cdots	170 \%	
\%	1	:	:	170	
E.]	95	$=$	\because	H
4,	ए\%	1305	\because	\%"	\cdots
i=	1	\%	2	\%	
\cdots	\cdots	9 y	$=$	U.	-
904	Su	94.	$+\cdots$	-	1
-	T	44	¢	F	5
-]].]	5	F
48	P!	2	2	\%.	-
1.	1	T,]	180 ¢	<
E	\%	4 :	$5 \square$	1.	日
Q.	H1	i=	1	छ5.	$+$
9 S	P\%	140 \%	\%	5\%	$=$
75	-	1:	1	I.]
\%	सt	E.	\%	1.	1
100 \%	\pm	9.		\%	\%
U,]	3.	3	\%	\%
9,	$=$	5	\%	94.	$+\cdots$
\ldots	P	4.	4	E	x
Fi,		5	E	190 :	
1.	-	94.	$+\cdots$	95	$=$
Pe	$=$	E.	$+$	5.	:
\%,	: +	15093		4 \%	P!
\%\%	$:=$;	3	9	\cdots
4 \%	P!	\%	\%	\%	9
110	-	9	\%	E.	$+$
\%.	!	\%	3	4.	ए¢
E.	U11	Q5.	\div	\%	
5	-	\%.	-	\%.	\%
\cdots	Q	O.]	2005	
:	\square	E.	5	$4!$	4
:		;	3	29.	\%
95	$=$	160%	9	46	$\underline{4}$
$2 \mathrm{O}=$	\%	T,	T	14.	
$2=$	H1	5.	\%	49	ET
120 \%=	Ms	15	H,	\%.]
57=	FTY	S5:	\square	5	\%
4	4	4,	$=$	1.	F

001	*LBLA	21.11	847	x^{2}	53	601	*LBLA		2111
062	DSF2	-63 02	048	RCL9	3689	882	9		09
003	\rightarrow HMS	1635	849	\div	-24	803	ST04		3504
864	EEX	-23	850	-	-45	804	STOI		3546
685	2	02	651	\div	-24	865	,		61
866	\div	-24	052	Ston	3511	86.	* LBLa	2116	1611
607	HMS ${ }^{\text {a }}$	1636	853	RCLE	3686	607	R/S		51
808	$\mathrm{P} \ddagger 5$	16-5:	054	RCL9	3609	068	IS2I	1626	646
069	STi3	3503	055	\div	-24	009			-41
816	$\mathrm{P} \ddagger \mathrm{S}$	16-51	856	RCL4	3604	816	$570{ }^{\text {a }}$		3545
811	RTN	24	857	RCL9	3609	611	F \downarrow		-31
012	*LBLE	2112	858	\doteqdot	-24	012	IS2I	1626	2646
813	HMS ${ }^{\text {+ }}$	1636	859	RCLA	3611	013	STO:		3545
014	FCLI	3646	060	x	-35	014	Ft		-31
015	$\mathrm{X}=0$?	16-43	861	-	-45	615	1		01
816	6701	2281	062	STOE	3515	816	+		-55
017	R \downarrow	-31	863	$P+5$	16-51	017	6TOa	221	1611
018	RCLI	3646	664	RTN	24	818	*LBLE		2115
015	-	-45	865	*LELE	2115	019	F2\%		16-51
826	$\mathrm{P}+5$	16-51	860°	CLEE	16-53	620	HLTA		16-6:
021	5708	3500	867	$\mathrm{F}+5$	16-51	021	RTN		24
822	*LBL2	2102	468	CLRG	16-53	622	*LELB		212
023	FCLI	3603	665	F\%S	16-51	023	$F \pm 5$		16-51
824	FCLO	3600	876	CLX	-51	824	RCL 8		3600
825	P*5	16-51	071	ETN	24	025	STOE		3515
026	$\overline{\text { i }}$	56	072	* Lbla	2114	026	R \downarrow		-31
827	RTN	24	673	hims	1636	027	1		6:
028	*LBL1	2181	874	RCLI	3646	028	2		02
829	F \downarrow	-31	675	-	-45	829	\div		-24
836	STOI	3546	076	Stod	3514	836	INT		1634
031	8	00	875	RCLA	3611	031	1		01
832	$\mathrm{F}+\mathrm{S}$	16-51	078	\times	-35	033	Y		97
833	STOQ	3500	679	FCLE	3615	833	$\mathrm{X}+\mathrm{Y}$		-4:
034	$6 T 02$	2292	886	${ }^{+}$	-55	034	cT00		-45
035	RTN	24	681	STUE	3512	035	ST00		3500
036	*LBLC	2113	482	+HMS	1635	${ }^{6} 96$	FiS		16-51
037	$\mathrm{P}+5$	16-51	883	DSF4	-63 84	037	5706		3500
038	RCL 8	3688	088	FRTX	-14	038	*LELD		2114
639	RCL4	3604	085	RTN	24	639	1		81
040	RCL 6	3606				6141	STOI		3545
041	RCL9	-35				642	ST		06
	RCL 9	3609 -24				643	*LBLb	211	1612
844	-	-45				044	K/S		51
845	RCL5	3605				045	ISZI		2646
846	RCL 4	3684				846	STO:		3545

Program 4.3

(147	$C L$.	-51	001	*LELA	21 i:	447	$\mathrm{P} \ddagger \mathrm{S}$	16-5
648	5	85	002	-	-62	448	WDTA	16-6.
849	$X+Y$	-41	063	5	85	849	R/S	51
856	1	0.	664	-	-45			
051	+	-55	605	1	$6:$			
05%	XPY?	16-34		2	02			
053	8	60	-607	$\stackrel{\square}{\square}$	-24			
- 454	6 6TO	221612	688	5706	3506			
055	* LBLC:	2113	069	3	03			
656	ST01	3501	016	ϵ	65			
457	F \downarrow	-31	611	0	06			
058	STOD	3514	¢12	${ }^{\times}$	-35			
059	R \downarrow	-31	813	SIN	41			
060	ST03	3583	014	stol	3501			
661	3	05	615	LSTX	16-62			
662	0	90	016	cos	42			
863	Stoi	3545	017	STOZ	3502			
064	RCL3	3603	618	9	09			
665	8	08	619	STOI	3546			
666	\div	-24	826	1	01			
867	INT	1634	621	RTN	24			
868	RCL 3	3603	822	*LELE	2112			
869	+	-55	6.3	ISZI	162646			
876	2	02	824	$5 T 04$	354			
871	\div	-24	025	RTN	24			
672	FRC	1644	826	*LELC	$21: 3$			
073	$x=0$?	16-42	627	ST05	3505			
074	IS2I	162646	628	CLX	-5:			
075	RCL 3	3603	029	RCLE	3602			
876	2	02	836	51×5	35-35 05			
077	$X \neq Y$?	16-32	631	CLX	-51			
078	6T0C	221613	632	RCLI	3601			
079	RCL1	3601	633	*	-35			
086	4	64	634	ST+5	35-55 05			
081	\div	-24	635	CLX	-51			
882	FRC	1644	836	FCLE	3600			
083	X $\ddagger 8$?	16-42	037	+	-35			
084	DSZI	162546	036	$5 T+5$	35-55 05			
085	DSZI	162546	039	CLS	-51			
086	*LBLC	211613		RCL5	3605			
${ }^{687}$	RCLI	3646	641	+	-55			
088	STOE	3515	642	RCL4	3604			
889	GTOD	2214	043	+	-55			
090	R / S	51	044	STai	3545			
			045	RTN	24			
			646	*LBLE	2115			

6 E 1	HLELA		21 i1	047	+LELC	2113	693	\div		-24
002	8		96	648	656\%	2360	094	RCL9		3609
603	\div		-24	049	6584	2304	895	TAN		43
064	FRG:		1644	650	$5 T 09$	3569	696	RCLO		3690
685	$X=6$		16-43	651	Rt	-31	097	cos		42
086	ETOX	22	1614	052	ESE3	2383	898	$5 T 04$		3584
687	1		61	653	$5 T 08$	3586	099	x		-35
688	6		86	054	RTN	24	180	R ${ }^{4}$		16-31
669	x		- 5	855	- LBLII	2114	161	\div		-24
616	8		68	856	HMS ${ }^{\text {+ }}$	1636	162	-		-45
011	+		-55	857	$\underline{X+Y}$	-41	103	x		-35
612	STOI		3546	058	HMS ${ }^{\text {+ }}$	1636	104	+F		34
813	$F \pm 5$		16-5i	859	6T0a	221611	105	CLX		-51
614	RCLi		3645	866	*LELE	2115	180	1		01
015	ISEI	16	2646	861	$P+5$	16-51	107	8		08
016	RCLi		3645	062	RCLi	3687	168	0		00
6.7	*LBLe	21	1615	063	\dot{x}	-35	109	+		-55
618	ST09		3509	864	6	86	110	ST02		3502
415	Rt		- 31	865	0	00	111	R/5		51
028	ST08		3508	666	\div	-24	112	RCL 0		3680
021	F\%S		16-51	E66i	$\rightarrow \mathrm{R}$	44	113	SIN		41
022	ETN		24	868	RCLO	3680	114	RCL9		3609
023	*LELd	21	1614	669	$+$	-55	115	SIN		41
824	RCLE		3615	876	$\mathrm{X}^{\prime}+{ }^{\prime}$	-41	116	x		-35
025	RCLI		3646	871	RCL4	36.64	117	RCL4		3604
826	GTOE	22	1615	872	\doteqdot	-24	118	RCL9		3689
627	* LBLB		2112	673	RCLI	3601	119	cos		42
628	65B6		2360	674	$X+Y$	-41	128	x		-35
629	6SB4		2304	675	X	-45	121	RCL 8		3688
838	GTOb	22	1612	676		-41	122	cos		42
631	+LELA		2111	077	P\% 5	16-51	123	x		-35
032	FCLE		3615	078	+LBLa	211611	124	+		-55
833	STOE		3506	079	ST08	3500	125	SIN ${ }^{-4}$		1641
034	F \downarrow		-31	688	$\underline{X}+Y$	-41	126	R/S		51
035	6SB6		2380	681	ST01	3501	127	HMS*		1636
636	GSE3		2302	882	ST-8	35-45 89	128	$X+Y$		-41
037	*LBLb	21	1612	683	$\mathrm{P}+5$	16-51	129	JX		54
638	$F+5$		16-51	084	RCL6	3606	136	6		06
635	RCL8		3608	085	$\mathrm{P}+5$	16-51	131	2		02
648	+		-55	886	ST06	35 6\%	132	\div		-24
041	FCL9		3689	887	ECL 8	3686	135	-		-45
842	P+5		16-51	088	SIN	41	134	$F \pm 5$		16-51
543	ST09		3569	889	RCLE	3690	135	F1?	16	2361
644	R +		-31	096	SIN	41	136	6569		2369
045	STO8		3508	091	RCL 8	3608	137	F2?	16	2362
046	RTN		24	092	TAN	43	138	6SE9		2369

Program 4.5

139	ENT 4	-21	185	DSZI	162546	001	*LBLA	$2 \pm$
146	TAN	43	186	FCL;	3645	862	$F+5$	16-5
141	1×8	52	187	+	-55	603	656旡	236
142	6	06	188	$P+5$	16-51	864	6SE4	236
143	6	00	189	RTN	24	885	ST09	356
144	\div	-24	196	* LBLO	2100	006	RCL5	36
145	-	-45	191	HMS +	1636	007	6SE3	236
146	-	-45	192	ENT \uparrow	-21	808	ST08	35
147	6	06	193	$\mathrm{F} \div 5$	16-51	089	$F \pm$ S	16-5
148	0	00	194	RCL6	3605	018	RTN	
149	x	-35	195	-	-45	011	*LBLE	211
150	$\mathrm{P} \ddagger \mathrm{S}$	16-51	196	STOT	3507	612	P \ddagger S	16-5
151	5103	3503	197	R \downarrow	-31	013	RCL5	368
152	$\mathrm{P}+5$	16-51	198	ST06	3506	014	6584	236
153	FTN	24	199	2	02	815	STOE	351
154	*LBL3	2103	206	4	04	016	RCL5	36
155	1	01	201	\div	-24	817	6SE3	236
156	6	06	202	+	-55	018	STOL	351
157	ETO1	2201	203	$\mathrm{P}+\mathrm{S}$	16-51	019	RCL9	368
158	*LBL4	2184	264	RCLE	3660	020	RCL8	36
159	2	02	285	$P \ddagger 5$	16-51	621	$\mathrm{P}+\mathrm{S}$	16-5
166	2	02	206	-	-45	622	5708	35
161	*LBL1	2181	207	1	01	623	Ft	-
162	5701	3545	208	6	06	$\underline{4} 24$	STO9	358
163	F \downarrow	-31	209	\div	-24	025	RTN	
164	ENT 4	-21	218	ST05	3505	026	* LBLD	211
165	ENT*	-21	211	F +5	16-51	027	HMS ${ }^{\text {a }}$	16
166	$P \pm S$	16-51	212	RTN	24	026	$\mathrm{X}+\mathrm{Y}$	-4
167	RCL	3645	215	*LBL9	2109	829	HMS ${ }^{\text {a }}$	16 \%
168	x	-35	214	RCL5	3605	038	6T0a	22161
169	DSEI	162546	215	RCLE	3615	831	*LBLE	211
170	RCL	3645	216	x	-35	632	P+5	16-5
171	+	-55	217	RCLD	3614	633	RCL7	361
172	x	-35	218	+	-55	634	x	-
173	DSEI	162545	219	F1?	162301	635	6	¢
174	RCL	3645	226	CHS	-22	836	0	¢
175	+	-55	221	+	-55	037	\doteqdot	-
176	x	-35	222	CF1	162201	838	$\rightarrow R$	4
177	DSEI	162546	223	RTN	24	639	FCLE	368
178	RCL;	3645	224	R/S	51	646	+	-
179	+	-55				041	$\mathrm{X}+\mathrm{Y}$	-
186	x	-35				042	RCL4	368
181	DSZI	162546				043	\cdots	-
182	RCL;	3645				844	RCL1	361
183	+	-55				845	$x+Y$	-
184	x	-35				046	-	-

147	$X \pm{ }^{+}$	-41	093	cas	42	139	ENT 1	-21
148	$\mathrm{P}+5$	16-51	094	x	-35	140	ENT \uparrow	-21
349	*LBLa	211611	695	+	-55	141	RCL;	3645
350	ST0日	3509	896	SIN ${ }^{-1}$	1641	142	x	-35
351	$\mathrm{X}+\mathrm{Y}$	-41	097	R/S	51	143	DSEI	162546
352	Stoi	3501	098	HMS ${ }^{\text {+ }}$	1636	144	RCL;	3645
353	ST-8	35-45 08	899	$\mathrm{CHF}^{\text {P }}$	-41	145	+	-55
354	$P \ddagger 5$	16-51	186	5x	54	146	x	-35
355	RCL6	3606	161	6	16	147	DSEI	162546
356	Fas	16-51	182	2	02	148	RCL;	3645
857	5706	3506	163	\div	-24	145	+	-55
958	RCL8	3688	164	-	-45	150	r	-35
859	SIN	41	105	ENT \uparrow	-21	151	USZI	162546
868	RCLA	3600	166	cas	42	152	RCLi	3645
961	SIN	$4:$	167	RCLD	3614	153	+	-55
962	RCL8	3688	108	I	-35	154	\times	-35
363	TAN	43	109	+	-55	155	DSCI	162546
964	\div	-24	116	F1?	162301	156	RCLi	3645
365	RCLS	3609	111	6589	2369	157	+	-55
366	TAN	43	112	F2\%	162302	158	x	-35
867	RCLE	3680	113	6569	2369	159	[SSZI	162546
868	COS	42	114	ENT*	-21	166	FCLi	3645
369	ST04	3504	115	TAN	43	161	+	-55
970	\times	-35	116	18	52	162	RTN	24
971	Rt	16-31	117	6	06	163		2100
872	\doteqdot	-24	118	6	00	164	HMS ${ }^{\text {- }}$	1636
573	-	-45	119	\div	-24	165	ENT \uparrow	-21
974	x	-35	126	-	-45	166	ENT \uparrow	-21
975	+ P	34	121	-	-45	167	RCL6	3606
876	CLX	-51	122	6	06	168	-	-45
977	,	81	123	0	80	169	$5 T 07$	3507
978	8	88	124	\times	-35	176	R \downarrow	-31
379	0	89	125	5763	3503	171	5706	3506
386	+	-55	126	F*S	16-51	172	2	02
981	5702	3502	127	RTN	24	173	4	04
98c	R/5	51	128	* LBL3	2183	174	\div	-24
383	RCLE	3600	129	1	01	175	+	-55
384	SIN	41	138	6	06	176	RCLE	3615
985	RCL9	3609	131	6701	2281	177	$X \pm Y$	-41
386	SIN	41	132	*LEL4	2184	178	RCLD	3614
387	χ	-35	133	2	02	179	-	-45
388	RCL4	3604	134	2	02	180	X<0?	16-45
389	RCLG	3609	135	*LBLI	2101	181	+	-55
396	COS	42	136	STOI	3546	182	3	03
391	x	-35	137	R \downarrow	-31	183	-	-45
392	RCL 8	3608	138	ENT 4	-22	184	3	03

Program 4.6

185	\div	-24	081	* $\mathrm{CBL1}$	2101	647	x	-3.
186	ST05	3585	002	RCL2	3662	648	RCL2	360.
187	RTN	24	003	RCL3	3603	049	TAN	4.
188	* LBL 9	2109	004	6	06	856	1/8	5.
189	RCLE	3615	085	0	80	651	STOB	351.
190	F1?	162301	606	\div	-24	052	RCL8	36
191	CHS	-22	007	CHS	-22	653	x	-3.
192	+	-55	888	$\rightarrow \mathrm{R}$	44	054	+	-5.
193	CF1	162201	009	RCLO	3600	855	RCLA	361
194	RTN	24	010	+	-55	056	TAN	4
195	R / S	51	011	$X+Y$	-4i	857	1/8	5.
			012	RCL4	3604	058	STOC	35 i,
			013	\div	-24	859	RCL6	3601
			014	RCL1	3681	060	x	-3!
			015	-	-45	661	-	-4
			816	CHS	-22	862	RCLB	361
			017	RTN	24	663	RCLC	361
			018	+LELA	2111	864	-	-4:
			019	P+S	16-51	865	\div	-2
			020	RCL2	3602	866	ST00	351.
			021	STOA	3511	067	RCL8	36 0:
			022	RCLE	3600	668	-	-4.
			023	RCLI	3681	069	RCLB	361.
			024	P\%S	16-51	076	x	-3.
			025	STO1	3581	871	RCLL	360
			826	R \downarrow	-31	872	\div	-2
			827	STOQ	3500	073	RCL9	36
			028	6SE1	23 6:	9i4	+	-5.
			029	ST09	3509	075	STOE	351
			836	R \downarrow	-31	676	RCLD	361
			631	ST08	3508	077	+HHS	163
			832	$F+5$	16-51	078	DSP4	-630
			633	ESB1	2301	879	PRTX	-1
			034	$F \pm 5$	16-51	088	RCLE	361
			035	ST07	3507	081	+HHS	163
			036	Rt	-3i	082	PRTX	-1
			637	5706	3586	083	RTN	2
			638	RCL 8	36188	084	R / S	5
			839	+	-55			
			646	2	62			
			641	\doteqdot	-24			
			042	cos	42			
			843	ST05	3585			
			844	RCL 7	$36 \mathrm{~B}^{7}$			
			045	RCL9	3609			
			846	-	-45			

Igram 4.7

001	*LBLA	21.11	047	RTN	24	093	RCL2	3602
082	\rightarrow HMS	1635	048	*LBLC	2113	094	x	-35
083	EEX	-23	649	$P \pm 5$	16-51	095	ST05	3505
084	2	02	858	RCL9	3609	896	-	-45
005	\div	-24	651	RCL5	3605	097	RCLA	3680
886	HMS ${ }^{\text {a }}$	1636	052	x	-35	098	$P \ddagger$ S	16-51
007	P \ddagger S	16-51	053	RCL4	3604	099	RCL9	3609
068	5703	3503	654	χ^{2}	53	106	RCL2	3682
089	$P \pm 5$	16-51	855	-	-45	101	-	-35
010	RTN	24	856	$\mathrm{P}+\mathrm{S}$	16-51	162	RCL5	3605
011	*LBLB	2112	857	ST00	3580	183	X^{2}	53
012	HMS ${ }^{\text {a }}$	1636	858		16-51	104	-	-45
613	RCLI	3646	859	RCL9	3609	105	x	-35
014	$x=0$?	16-43	868	RCLI	3601	186	Pats	16-51
015	6701	2201	861	x	-35	107	RCLI	3601
016	R \downarrow	-31	662	RCL 4	3604	108	$P \ddagger+$	16-51
617	RCLI	3645	063	RCL5	3605	169	x^{2}	53
018	-	-45	864	\times	-35	116	-	-45
019	$\mathrm{P} \rightarrow{ }^{\text {¢ }}$ S	16-51	865	-	-45	111	\doteqdot	-24
028	STOO	3500	066	F\% ${ }^{\text {S }}$	16-51	112	P75	16-51
621	* LBL 2	2102	067	STO1	3501	113	ST06	3506
822	3	03	868	$\mathrm{P} \ddagger 5$	16-51	114	$\mathrm{P}+\mathrm{S}$	16-51
023	Y^{*}	31	069	RCL9	3609	115	ST03	3503
824	ST+1	35-55 01	878	RCL 8	3608	116	$P+5$	16-51
025	RCLE	3609	071	x	-35	117	RCL2	3602
026	4	84	872	RCL4	3684	116	RCLI	3601
027	γ^{*}	31	873	RCL6	3606	119	RCL6	3606
028	ST+2	35-55 02	074	\times	-35	120	x	-35
829	RCLO	3680	675	-	-45	121	-	-45
036	X^{2}	53	076	$\mathrm{P}+\mathrm{S}$	16-51	122	RCLE	3680
031	RCL 3	3683	077	ST02	3502	123	\cdots	-24
032	\times	-05	878	$\mathrm{P} \div 5$	16-51	124	ST07	3507
033		16-51	079	RCL9	3609	125	P\% ${ }^{\text {S }}$	16-51
834	ST+3	35-55 83	086	$P \pm 5$	16-51	126	RCL6	3606
835	$\mathrm{P} \ddagger 5$	16-51	881	RCL3	3603	127	$P \ddagger$ S	16-51
036	RCL3	3603	082	F*S	16-51	128	RCL6	3606
037	RCL 0	3600	083	x	-35	129	$\mathrm{P} \ddagger \mathrm{S}$	16-51
038	$\mathrm{P}+5$	16-51	884	RCL5	3605	130	RCL5	3605
839	$\overline{+}$	56	885	RCL6	3606	131	x	-35
040	RTN	24	886	x	-35	132	$-$	-45
041	*LBL1	2101	887	-	-45	133	P $\ddagger 5$	16-51
042	R \downarrow	-31	888	$\mathrm{P}+\mathrm{S}$	16-51	134	RCL7	3607
043	STOI	3546	889	RCL0	3600	135	P $\ddagger 5$	16-51
844	0	00	098	x	-35	136	RCL4	3684
845	$\mathrm{P}+5$	16-51	091	ST04	35.84	137	x	-35
046	$6 T 02$	2202	092	RCL1	3601	138	-	-45

Program 4.8

139	RCL9	3609	185	ST01	3501	801	*LBLA	211
146	\div	-24	186	$P \ddagger 5$	16-51	082	6SE8	23
141		16-51	187	+HMS	1635	883	6584	230
142	ST08	3508	188	PRTX	-14	864	ST09	350
143	RCL 7	3607	189	RTN	24	085	R \downarrow	-3
144	RCL6	3606	196	*LBLa	211611	066	6SB3	23
145	2	82	191	CLRG	16-53	007	ST08	35
146	x	-35	192	$\mathrm{P} \ddagger 5$	16-51	008	RTN	2
147	\div	-24	193	CLRG	16-53	809	* LBL3	218
148	CHS	-22	194	CLX	-51	010	1	0
149	RCLI	3646	195	RTN	24	011	6	8
156	+	-55	196	*LBLb	211612	612	6701	228
151	STOB	3512	197	RTN	24	813	*LBL4	210
152	RCLA	3611	198	*LBL6	211612	814	2	0
153	2	02	199	+	-55	615	2	b.
154	\div	-24	208	RTN	24	816	*LBL1	210
155	$\mathrm{P} \ddagger 5$	16-51	201	*LBLC	211613	017	STOI	354
156	RCL3	3603	202	$+$	-55	818	R \downarrow	-3.
157		-24	283	COS	42	019	ENT \uparrow	-2.
158	-	-45	204	ABS	1631	820	ENT \uparrow	-2.
159	ST08	3508	285	CHS	-22	821	$\mathrm{P} \ddagger \mathrm{S}$	16-5.
160	P $\ddagger 5$	16-51	266	RTN	24	822	RCL;	$364!$
161	-HMS	1635	207	*LBLd	211614	823	x	-3!
162	PRTX	-14	208	+	-55	024	DSZI	16254
163	HMS ${ }^{\text {+ }}$	1636	269	cos	42	025	RCL;	36
164	RCLB	3612	210	ABS	1631	826	+	-5!
165	RCLI	3646	211	RTN	24	827	x	-3!
166	-	-45	212	*LBLe	211615	028	USZI	16254
167	STOD	3514	213	\times	-35	829	RCL	364
168	x^{2}	53	214	6	06	036	+	-5
169	RCL6	3606	215	0	00	031	x	-3!
176	x	-35	216	\div	-24	832	OSZI	16254
171	RCLD	3614	217	STOA	3511	033	RCL;	36 4!
172	RCL 7	3607	218	RTN	24	834	+	-5
173	\times	-35	219	*LBLD	2114	835	x	-3!
174	+	-55	220	$P \pm 5$	16-51	036	DSZI	16254
175	RCL8	3608	221	RCL8	3608	037	RCL;	364
176	+	-55	222	F*S	16-51	038	RCL	-5
177	RCLA	3611	223	\rightarrow HMS	1635	639	x	-3!
178	x^{2}	53	224	RTN	24	046	DSZI	16254
179	4	-04				841	RCLi	364
188	\bigcirc	-24				842	RCL	-5
181	P\# ${ }^{\text {a }}$	16-51				043	$P \ddagger 5$	16-5
182	RCL3	3683				044	RTN	2
183	\doteqdot	-24				845	*LBL6	21
184	+	-55				846	HMS ${ }^{\text {+ }}$	163

047	ENT4	-21	693	RCL1	3601	139	RCL9		3699
048	$\mathrm{P}+5$	16-51	894	$\mathrm{X} \rightarrow \boldsymbol{Y}$	-41	148	ABS		1631
049	RCL6	3606	095	-	-45	141	$P \div 5$		16-51
058	-	-45	096	ST01	3501	142	RCL2		3602
051	$5 T 07$	3507	897	CLX	-51	143	$\mathrm{P}+5$		16-51
052	R \downarrow	-31	098	$\mathrm{F}+5$	16-51	144	9		89
853	ST06	3506	099	F1?	162301	145	0		84
054	2	02	108	6589	2309	146	XFF		-41
055	4	84	101	F2?	162392	147	-		-45
856	\div	-24	102	6SB9	2309	148	F6?		2300
657	+	-55	163	$\mathrm{P} \ddagger 5$	16-51	149	CHS		-22
058	FaS	16-51	184	RCLI	3601	150	ST01		3501
059	RCLO	3680	105	+	-55	151	ABS		1631
068	$P \rightarrow 5$	16-51	106	ENT*	-21	152	$X \leq Y ?$		16-35
061	-	-45	187	TAN	43	153	6708		2208
062	1	01	108	1/8	52	154	RCL1		3601
063	6	86	189	6	06	155	RCL9		3609
064	\doteqdot	-24	110	0	06	156	+		-55
065	ST05	3595	111	\div	-24	157	+HMS		1635
066	P $\ddagger 5$	16-51	112	-	-45	158	CF6	16	22 96
067	RTN	24	113	ST02	3502	159	PRTX		-14
068	+LBL9	2109	114	$P \pm S$	16-5i	160	RTN		24
069	RCL5	3605	115	RTN	24	161	*LBL8		2108
076	RCLE	3615	116	+LBLD	2114	162	RCL9		3609
071	x	-35	117	RCL9	3689	163	RCLI		3601
072	RCLD	3614	118	$X>6$?	16-44	164	+		-55
073	+	-55	119	GTOC	221613	165	+HMS		1635
074	F1?	162301	129	GTOd	221614	166	PRTX		-14
075	CHS	-22	121	RTN	24	167	RTN		24
876	+	-55	122	* LBLC	211613	168	* LBLE		2115
077	CFI	162201	123	RCL9	3689	169	RCL9		3689
078	RTN	24	124	$\mathrm{P} \div 5$	16-51	176	SF0	16	2109
079	* L BLE	2112	125	RCL2	3682	171	CHS		-22
088	SF1	162101	126	$\mathrm{P}+5$	16-51	172	$x>6 ?$		16-44
081	6587	2307	127	9	89	173	GTOC	22	$16 \quad 13$
082	RTN	24	128	0	00	174	GTOd	22	1614
883	+LBLC	2113	129	$X \pm Y$	-41	175	RTN		24
084	SF2	162102	136	X	-45	176	+ ${ }^{\text {LBLE }}$	21	1615
085	6SB7	2307	131	F6?	162390	177	RCL8		3608
086	RTN	24	132	CHS	-22	178	1		01
087	* LBL 7	2107	133	+	-55	179	$\rightarrow \mathrm{R}$		44
088	$\sqrt{ } \times$	54	134	+HHS	1635	188	$\pm P$		34
089	6	06	135	PRTX	-14	181	$X+Y$		-41
098	2	02	136	CFE	162200	182	$x<9 ?$		16-45
091	\div	-24	137	RTN	24	183	6562		2382
692	$\mathrm{P} \rightarrow 5$	16-51	138	*LBLd	211614	184	$6 T 05$		2205

Program4.9

185	*LBLb	211612	001	*LBLA	2111	047	DS2I	16254
186	\rightarrow HMS	1635	862	RTN	24	048	RCL	364
187	PRTX	-14	003	*LBLA	2111	049	+	-5
188	RTN	24	884	STOE	3515	850	x	-3!
189	*LBL2	2182	885	RTN	24	851	DSZI	16254
198	- 3	03	086	*LBLB	2112	852	RCL;	36 4!
191	6	86	007	6586	2309	853	+	-5
192	0	00	808	GSB4	2304	854	$P \ddagger 5$	16-5.
193	$+$	-55	069	ST09	3509	855	RTN	2
194	RTN	24	610	R \downarrow	-31	856	*LBL0	218
195	*LBL5	2105	011	6SE3	2303	857	HMS ${ }^{\text {a }}$	163
196	ENT 4	-21	012	1	01	858	ENT4	-2
197	ENT \uparrow	-21	013	$\rightarrow \mathrm{K}$	44	859	$P \pm$ S	16-5
198	1	01	014	$\rightarrow \mathrm{F}$	34	068	RCL6	36 O
199	8	08	015	$X \pm Y$	-41	061	-	-4!
206	0	80	016	ST08	3508	862	STOT	35
201	-	-45	817	+HMS	1635	063	R \downarrow	-3.
202	$x<0$?	16-45	018	PRTX	-14	064	ST06	35
263	6706	2206	819	RTN	24	065	2	0
204	$R \downarrow$	-31	029	* 2 BL3	2103	066	4	0
285	3	83	021	1	01	067	\div	-2
266	6	06	022	6	06	868	+	-5!
207	0	80	823	6701	2201	069	$\mathrm{P}+5$	16-5:
208	-	-45	024	*LBL4	2104	878	RCLE	3681
209	\rightarrow HMS	1635	025	2	82	871	$\mathrm{P}=5$	16-5:
218	PRTX	-14	026	2	02	072	-	-4!
211	RTN	24	827	*LBL1	2101	073	1	0
212	*LBL6	2106	828	STOI	3546	074	6	$8 i$
213	R \downarrow	-31	029	R \downarrow	-31	075	\div	-2
214	6TOb	221612	836	ENT ${ }^{\text {a }}$	-21	076	ST05	350
215	* \& BLa	211611	031	ENT4	-21	077	$\mathrm{P} \pm \mathrm{T}^{\text {S }}$	16-51
216	HMS ${ }^{\text {c }}$	1636	032	F+5	16-51	678	RTN	2
217	$\mathrm{P} \ddagger \mathrm{S}$	16-51	033	RCL	3645	079	*LBLC	211
218	STO1	3501	834	x	-35	089	$\mathrm{P} \ddagger \mathrm{S}$	16-51
219	$P \ddagger 5$	16-51	835	DSZI	162546	081	STOO	358
228	RTN	24	836	RCL	3645	082	$\mathrm{P} \ddagger \mathrm{S}$	16-51
221	* LBLa	211611	837	+	-55	083	RTN	24
222	RTN	24	038	,	-35	884	*LBLC	2115
223	*LBLa	2116 i1	039	DSZI	162546	885	+	-5
224	RTN	24	046	RCL;	3645	086	P $\ddagger 5$	16-51
			041	+	-55	087	STOO	350
			642	x	-35	088	$\mathrm{P} \ddagger \mathrm{S}$	16-51
			043	DSZI	162546	889	RTN	24
			044	RCL ${ }^{\text {i }}$	3645	898	*LBLC	211
			645	+	-55	891	+	-5
			846	x	-35	092	$P \ddagger S$	16-51

Program 4.11

193	ST00	3580	139	P*S	16-51	001	*LBLa	211611
194	$\mathrm{P}+5$	16-51	148	2	02	802	DSF0	-63 00
195	RTN	24	141	4	04	803	F8?	162300
196	*LBLD	2114	142	$X \leq Y$?	16-35	664	6709	2286
197	P+5	16-51	143	6588	2388	085	0	00
198	STO1	3581	144	F\%	16-51	806	SF0	162100
199		16-51	145	RCL?	3607	887	RTN	24
160	RTN	24	146	P\% ${ }^{\text {P }}$	16-51	868	* LBL (${ }^{\text {a }}$	2109
181	*LBLE	2115	147	+HMS	1635	009	1	01
182	HMS ${ }^{\text {P }}$	1636	148	PRTX	-14	610	CF6	162280
103	$\mathrm{P}+5$	16-51	149	SPC	16-11	011	RTN	24
184	ST03	3503	156	RTN	24	012	* L LLA	2111
185	$\mathrm{P}+5$	16-51	151	*LBL2	2182	013	HMS ${ }^{-}$	1636
186	$x<8$?	16-45	152	Pa ${ }^{\text {a }}$	16-51	014	STOC	3513
107	6S82	2302	153	RCL3	3603	015	R \downarrow	-31
108	RCL8	3688	154	3	03	016	HMS ${ }^{\text {a }}$	1636
189	-	-45	155	6	06	017	ST00	3500
110	1	01	156	0	80	818	RTN	24
111	\rightarrow R	44	157	$+$	-55	019	*LBLE	2112
112	$\rightarrow \mathrm{P}$	34	158	$P \ddagger 5$	16-51	020	STOD	3514
113	$X \pm Y$	-41	159	RTN	24	- 21	$\underline{X}+\gamma$	-41
114	$X<\theta$?	16-45	160	*LELS	2109	022	5 TOI	3546
115	6SB9	2309	161	3	03	023	3	03
116	$\mathrm{P} \ddagger \mathrm{S}$	16-51	162	6	BE	024	0	00
117	ST04	3584	163	0	00	825	5	85
118	RCL1	3681	164	+	-55	826	6	06
119	RCLE	3600	165	RTN	24	827	$\%$	55
120	$\mathrm{P}+\mathrm{S}$	16-51	166	*LBL8	2108	828	INT	1634
121	SIN	41	167	F\%5	16-51	029	Rt	16-31
122	x	-35	168	RCLT	3607	838	STOE	3515
123	6	86	169	$P \ddagger 5$	16-51	631	R \downarrow	-31
124	0	00	176	2	02	032	RCLD	3614
125	\doteqdot	-24	171	4	04	633	${ }^{+}$	-55
126	1	01	172	-	-45	034	STOL	3514
127	5	05	173	$F \% S$	16-51	035	RCL 4	3604
128	+	-55	174	ST07	3507	036	3	03
129		16-51	175	$\mathrm{P} \ddagger \mathrm{S}$	16-51	037	X) ${ }^{\prime}$?	16-34
130	RCL4	3604	176	RTN	24	638	1	01
131	$F \pm 5$	16-51				839	RCL5	3605
132	$\mathrm{X}+\mathrm{Y}$	-41				846	4	84
133	\div	-24				641	\div	-24
134	RCLE	3615				042	FRC	1644
135	HMS ${ }^{\text {a }}$	1635				043	+	-55
136	+	-55				644	1	01
137	$\mathrm{P}+5$	16-51				045	$X+Y$	-41
138	ST07	3507				646	$\delta=Y$?	16-33

(CONTINUED) 401

185	$X \pm I$	16-41		
186	+	-55		
187	$x+1$	16-41		
188	-	-45		
189	$\rightarrow P$	34		
198	R \downarrow	-31		
191	1	81		
192	8	08		
193	8	00		
194	+	-55		
195	RCLC	3613		
196		16-41		
197	SIN ${ }^{-1}$	1641		
198	5	05		
199	$X \leq Y$?	16-35		
208	GSB6	2380		
201	RTN	24		
282	*LBL0	2180		
283	SPC	16-11		
284	CLX	-51		
205	RCLD	3614		
206	6585	2305		
267	DSP2	-63 02		
288	+HMS	1635		
209	6SB5	2365		
210	DSF 1	-63 01		
211	*LBL5	2105		
212	PRTX	-14		
213	F0?	162300		
214	R/S	51		
215	F \downarrow	-31		
216	RTN	24		
217	*LBLb	211612		
218	1	01		
219	8	08		
226	\times	-35		
221	FRC	1644		
222	LSTX	16-63		
223	$X+Y$	-41		
224	RTN	24		

ram 5.1

361	*LBLA	2111	047	PTS	16-51	093	ST -6	35-24 66
302	HMS*	1636	048	ST03	3503	694	$5 T \div 7$	35-24 07
303	STOB	3512	849	$\mathrm{P}+5$	16-51	095	ST $=8$	35-24 88
104	R \downarrow	-31	950	6563	2303	896	ST $\ddagger 9$	35-24 09
185	HMS ${ }^{\text {a }}$	1636	651	5703	3503	097	$\mathrm{P}+5$	16-51
366	stan	3511	052	6SB4	2304	098	6SE6	2300
307	RTN	24	653	ST06	3586	899	RTN	24
308	* LBLE	2112	854	6565	2385	160	*LBLO	2100
369	HMS ${ }^{\text {a }}$	1636	855	ST09	3589	101	RCLE	3615
116	STOD	3514	056	RCLE	3680	182	RCLI	3646
311	F \downarrow	-31	857	COS	42	103	RCLC	3613
312	HMS ${ }^{\text {a }}$	1636	058	$P \pm 5$	16-51	104	RCLD	3614
313	STOC	3513	059	RCL2	3602	105	STOI	3546
314	RTN	24	066	COS	42	106	R \downarrow	-31
315	*LBLC	$21: 3$	061	ECL3	3603	167	STOE	3515
116	HMS ${ }^{\text {a }}$	1636	662	COS	42	168	$R \downarrow$	-3:
317	STOI	3546	663	x	-35	169	RCLA	3611
316	Ft	-31	864	-	-45	110	RCLE	3612
319	HMS ${ }^{\text {a }}$	1636	665	KCL2	3602	111	STOD	3514
326	STOE	3515	866	SIN	41	112	R \downarrow	-31
121	3	03	867	RCL3	3603	113	STOC	3513
122	7	$0 \overline{0}$	068	SIN	41	114	R \downarrow	-31
123	1	a.	069	x	-35	115	STOB	3512
124	ST08	3508	674	\div	-24	116	R \downarrow	-31
125	$\mathrm{P}+\mathrm{S}$	16-51	071	cos^{-1}	1642	117	STOA	3511
326	6581	2301	872	ST09	3509	118	RTN	24
127	stoe	3500	073	RCLE	3615	119	*LBLI	2101
128	6583	2303	674	SIN	41	126	RCLD	3614
129	ST01	3501	675	F+S	16-51	121	RCLC	3613
136	6S84	23014	076	RCL7	3607	122	* LBLZ	2102
131	ST04	3504	677	X	-35	123	COS	42
132	6SB5	2385	078	RCLC	3613	124	LSTX	16-63
$i 33$	STOT	3507	079	SIN	41	125	SIN	41
134	6580	2300	088	RCL8	3608	126	RCLA	3611
135	6581	2301	081	$\stackrel{+}{1}$	-35	127	SIN	41
136	$\mathrm{P} \ddagger 5$	16-51	082	$\stackrel{+}{+}$	-55	128	\times	-35
137	ST02	3502	683	RCLA	3611	129	RCLB	3612
138	$\mathrm{P} \ddagger 5$	16-51	684	SIN	41	138	R4	16-31
139	6S63	2303	085	RCL9	3609	131	-	-45
140	5702	3502	086	x	-35	132	\cos	42
141	6S84	2384	887	$+$	-55	133	RCLA	3611
142	5705	3505	088	$S T \div 1$	35-24 01	134	COS	42
143	6565	2385	889	ST -2	35-24 02	135	R 4	16-31
144	ST08	3508	898	ST\%3	35-24 03	136	x	-35
145	GSB9	2300	091	ST -4	35-24 18	137	\times	-35
146	6581	2361	092	ST $=5$	35-24 05	138	+	-55

139	COS^{-1}	1642	185	RCLI	3646	081	$\begin{gathered} * L B L A \\ * R C L 4 \end{gathered}$	$\begin{aligned} & 21 \\ & 366 \end{aligned}$
148	RTN	24	186	SIN	41	002	RCL4	$36 E$
141	*LBL3	2103	187	RCLD	3614	803	PCL 8	-4
142	RCLE	3615	188	COS	42	884	RCL8	36 E
143	COS	42	189	x	-35	085	$\stackrel{\square}{\square}$	-
144	RCLI	3646	198	-	-45	086	STOA	351
145	SIN	41	191	RCLE	3615	007	RTN	
146	RCLC	3613	192	COS	42	008	*LBLB	211
147	SIN	41	193	x	-35	089	RCL5	366
148	x	-35	194	RCLC	3613	010	-	-4
149	\times	-35	195	cos	42	011	RCL8	366
156	RCLE	3615	196	x	-35	012	$\stackrel{\square}{\square}$	-2
151	SIN	41	197	RTN	24	013	STOB	351
152	RCLC	3612	198	*LBLE	2115	014	RCLA	361
153	cos	42	199	ST05	3505	015	COS	4
154	RCLD	3614	206	R \downarrow	-31	016	RCL2	368
155	SIN	41	201	STO4	3504	817	COS	4
156	x	-35	282	R \downarrow	-31	018	-	-4
157	\times	-35	203	HMS ${ }^{\text {a }}$	1636	619	RCL2	36
158	-	-45	204	STOT	3507	024	SIN	4
159	RTN	24	285	R \downarrow	-31	021	\div	-2
166	*LBL4	2184	286	HMS ${ }^{\text {a }}$	1636	022	STOC	351
161	RCLE	3615	287	ST06	3506	023	RCLA	361
162	SIN	41	208	6S86	2386	024	SIN	4
163	RCLC	3612	209	ST+4	35-55 04	025	RCL2	368
164	cos	42	210	ST+5	35-55 05	826	SIN	4
165	RCLD	3614	211	GSB6	2366	027	I	-
166	COS	42	212	ST-5	35-45 05	028	STOD	351
167	x	-35	213	6S86	2386	029	RCLB	361
168	x	-35	214	ST-4	35-45 84	838	COS	4
169	RCLE	3615	215	UDTA	16-61	031	RCL3	36 E
176	COS	42	216	RTN	24	032	COS	4
171	RCLI	3646	217	*LBL6	2186	033	-	-
172	COS	42	218	6SB6	2309	034	RCL3	366
173	RCLC	3613	219	RCL7	3687	035	SIN	4
174	SIN	41	220	RCL6	36 BE	836		-
175	x	-35	221	6SB2	2302	037	STOI	354
176	x	-35	222	RCL8	3688	038	RCLE	361
177	-	-45	223	x	-35	639	SIN	4
178	RTN	24	224	RTN	24	049	RCL3	368
179	* 2 BL5	2105				841	SIN	4
186	RCLI	3646				842	\div	-2
181	COS	42				043	STO8	35
182	RCLD	3614				844	RCLI	36 c
183	SIN	41				045	RCLD	36 :
184	x	-35				846	x	-

$\overline{147}$	RCLC	3613	893	RCLE	3612	139	PRTX	-14
148	RCL0	3600	094	x	-35	148	RTN	24
149	\times	-35	095	+	-55	141	*LBL8	2100
158	-	-45	096	+	-55	142	RCLI	3646
151	ST00	3500	097	STOD	3514	143	χ^{2}	53
152	RCLC	3613	098	RCL4	3604	144	RCL1	3601
153	RCL 9	3699	099	RCLA	3611	145	x^{2}	53
154	cos	42	186	x	-35	146	+	-55
155	x	-35	101	RCL5	3685	147	RCLE	3600
156	RCLI	3646	182	RCLC	3613	148	χ^{2}	53
357	-	-45	103	x	-35	149	-	-45
158	STOI	3546	184	RCL6	3606	158	$5 \times$	54
359	RCLC	3613	185	RCLE	3612	151	x	-35
360	RCLI 9	3689	106	x	-35	152	RCLI	3646
361	SIN	41	167	+	-55	153	RCL0	3609
362	\times	-35	108	+	-55	154	x	-35
363	ST01	3501	189	STOI	3546	155	+	-55
364	GSB0	2300	110	RCL7	3607	156	RCLI	3646
165	RCL1	3601	111	RCLA	3611	157	${ }^{12}$	53
366	CHS	-22	112	x	-35	158	RCL1	3691
367	6588	2300	113	RCL8	3688	159	χ^{2}	53
368	$X\rangle Y$?	16-34	114	RCLC	3613	160	+	-55
169	$\mathrm{X}=\mathrm{Y}$	-41	115	x	-35	161	\div	-24
178	F8?	162300	116	RCL9	3609	162	RCLD	3614
171	$X \pm Y$	-41	117	RCLB	3612	163	+	-55
372	ST01	3501	118	x	-35	164	RCLC	3613
173	RCLA	3611	119	+	-55	165	$X \pm Y$	-41
174	+	-55	128	+	-55	166	\doteqdot	-24
175	\cos	42	121	$\mathrm{P}+\mathrm{S}$	16-51	167	TAN ${ }^{-1}$	1643
176	Stoa	3511	122	ST00	3500	168	$x>0$?	16-44
177	RCL1	3601	123	RCLI	3646	169	RTN	24
178	RCLB	3612	124	RCLD	3614	176	1	01
179	+	-55	125	+ P	34	171	8	08
188	cos	42	126	R \downarrow	-31	172	0	00
181	STOB	3512	127	STOB	3512	173	+	-55
182	RCL1	3681	128	SIN	41	174	RTN	24
183	cos	42	129	RCLA	3680	175	* LBLC	2113
184	STOC	3513	138	x	-35	176	HMS \rightarrow	1636
185	P $\ddagger 5$	16-51	131	RCLI	3646	177	ST07	3507
186	RCL1	3601	132	\div	-24	176	$R \downarrow$	-31
187	RCLA	3611	133	TAN ${ }^{-1}$	1643	179	HMS*	1636
188	-	-35	134	STOA	3511	188	ST06	3506
189	RCL2	3602	135	\rightarrow HMS	1635	181	RTN	24
196	RCLC	3613	136	PRTX	-14	182	* LBLD	2114
91	x	-35	137	RCLB	3612	183	RCLA	3611
192	RCL3	3603	138	+HMS	1635	184	ST06	3506

Program 5.3

Program 5.4

933	P* \ddagger	16-51	139	0	06	匂1	*LELa	$2116: 1$
394	-	-35	140	ST04	3504	पйव	F+5	16-51
395	6	86	141	ST05	3585	663	STOE	3562
396	8	06	142	5107	3507	064	R \downarrow	-31
397	\div	-24	143	STO9	3509	645	$5 T 03$	3506
398	+R	44	144	RCL3	3605	640	FFS	16-51
399	ST-7	35-45 07	145	RCL2	3602	[10\%	ETN	24
180	XFY	-4!	146	P $\ddagger 5$	16-51		* LBL Le	2111
181	ST-6	35-45 86	147	ST04	3504	069	STOE	3515
182	RCL6	3686	148	R \downarrow	-31	010	RTN	24
183	RCL 7	3607	149	ST05	3505	011	* LBLA	$21:$
184	+P	34	156	RCL6	3606	012	Stóio	3514
185	6	86	151	P+5	16-51	613	RTN	24
106	0	00	152	RTN	24	614	*LELA	2111
167	x	-35	153	*LBL8	2100	615	STOI	3545
188		16-51	154	3	63	616	ETN	24
189	RCL6	3606	155	6	86	617	* LBLE	21.12
118	\doteqdot	-24	156	${ }^{6}$	04	618	STOC	3513
111	Pas	16-51	157	+R	44	615	RTN	24
112	ST05	3505	158	$\rightarrow{ }^{+}$	34	-20	*LELa	2116 -4
113	PRTX	-14	159	$\mathrm{K}+\mathrm{Y}$	-41	621	$\mathrm{F} \ddagger 5$	16-5i
114		-41	160	$x<0$?	16-45	822	STOU	3560
115	6SB6	2300	161	$+$	-55	623	FTN	24
116	ST04	3504	162	RTN	24	6, 4	*LELa	211614
117	PRTX	-14	163	*LELE	2115	625	5701	350
118	RCLA	3611	164	CLRG	16-53		$F+5$	16-51
119	ST00	3500	165	P\%5	16-51	$\overline{6} \bar{i}$	RTN	24
124	$\mathrm{P} \ddagger 5$	16-51	166	CLRG	16-53	E28	*LELb	211612
121	STOO	3500	167	$P \ddagger 5$	16-51	029	HMS*	1636
122	$\mathrm{P} \ddagger \mathrm{S}$	16-51	168	CLX	-51	$63 \overline{4}$	sTub	3500
123	RCLB	3612	169	RTN	21.24	$6{ }^{6} 1$	RTN	24
124	ST01	3501	176	*LBLD	211614		*LBL6	211612
125	$P \ddagger 5$	16-51	171	STOI	3546	633	HME.	1636
126	ST01	3501	172	FCLI	163645	6.34	FCLC	36.00
127	$\mathrm{P}+5$	16-51	173	ISZI	162646	635	-	-45
128	RCL4	3604	174	RCL	3645	836	$5 T 04$	35.4
129	RCL5	3605	175	RTN	21 16	637	ETN	24
138	$\mathrm{F}+5$	16-51	176	*LBLe	211615	635	*LELC	$2116: 3$
131	STOF	3507	177	5703	3503	639	$F \div 5$	16-51
32	R \downarrow	-31	178	Rt	-31	649	FCL2	3608
33	ST06	3506	179	ST02	3502	641	RCLS	3603
34	6	86	188	RTN	24	24E	$5 T 01$	3541
35	ST09	3509	181	R / S	51	643	Fi	-31
36	RCL4	3604				644	stoe	3506
137	STOD	3514				845	$\mathrm{P} \ddagger 5$	16-5:
38	$\mathrm{F}+\mathrm{S}$	16-51						

646°	KTN	24	891	$P \div 5$	16-51	136	$X \pm Y$	-4
047	* 1 BLC	2113	092	RCL2	3602	137	\doteqdot	-2
548	ST02	3502	093	RCL3	3603	138	\rightarrow HMS	16
049	RTN	24	094	6580	2300	139	USP4	-63 6
050	* 1 BLC	2113	895	ST08	3580	140	PRTX	-1
851	ST03	3503	696	$\mathrm{X}+\mathrm{Y}$	-41	$14 i$	PSE	165
652	RTN	24	097	6SE2	2302	142	RTN	2
853	* 1 BLE	2114	098	ST09	3509	143	* LBLE	211
854	$\mathrm{F}+5$	16-51	699	RCLA	$361:$	144	RCLE	361
655	RCLO	3680	160	RTN	24	145	6SE3	230
056	FCLI	3601	101	+ ${ }_{\text {L BLE }}$	211615	146	RCLC	361
657	RCL2	3602	102	RCLS	3609	147	RCLA	$36:$
658	RCL3	3603	163	RCLA	3611	148	RCLE	361
059	6SE0	2300	104	-	-45	149	6SE1	230
868	PRTX	-14	185	SIN	41	156	$\mathrm{F}+5$	10-5
661	ST04	3504	166	FCLE	3612	151	ST07	350
862	$X+Y$	-4:	187	x	-35	152	$X+Y$	-4
663	6SE2	2302	108	RCLC	3612	153	RCL7	360
664	PRTX	-14	109	\div	-24	154	$\mathrm{P} \ddagger 5$	10^{-5}
665	ST05	3505	110	SIN ${ }^{-1}$	1642	155	ECLL 4	369
866	$F \div 5$	16-51	111	FCLS	3609	156	\boldsymbol{x}	-3
667	RCL4	3684	112	+	-55	157	$P+5$	16-5
868	$F+5$	16-5:	113	6SE2	2362	158	RCLE	360
669	RCL4	3684	114	$\mathrm{F}+\mathrm{S}$	16-51	159	RCL3	368
670	$\mathrm{P} \ddagger 5$	16-5:	115	ST08	3598	168	6SB1	230
071	$X+Y$	-41	116	$P+5$	16-51	161	$5 T 03$	350
072	\doteqdot	-24	117	RCLI	3614	162	$\overrightarrow{x+} \vec{\gamma}$	-4
073	ST05	3505	118	-	-45	163	STU2	350
074	RCLE	3615	119	RCLI	3646	164	RCL 3	360
675	6SE3	2303	120	-	-45	165	$\mathrm{F}+5$	16-5
676	RCLC:	3613	121	6SE2	2302	166	RCL2	360
677	$\mathrm{F}+5$	16-51	122	STOE	3515	167	RCL3	360
678	RCL5	3605	123	FRTX	-14	168	6SB6	230
075	$\mathrm{P}+5$	16-5:	124	$\mathrm{P} \ddagger 5$	16-5i	169	ST08	350
080	KCL5	$36 \quad 05$	125	KCL8	3689	170	PRTX	-1
081	$65 B 6$	2300	126	$\mathrm{F}+\mathrm{S}$	$16-51$	171	$\mathrm{X}+\overrightarrow{\mathrm{Y}}$	-4
082	STOB	3512	127	RCLC	$36: 3$	172	6SE2	230
683	PRTX	-14	128	RCLA	3611	173	ST09	350
684	$x+4$	-4i	125	FCCLE	3612	174	FRTX	-1
085	6562	2302	130	6SE1	2365	175	RTN	-
686	PRTX	-14	131	FRTX	-14	176	* LBL 0	218
687	STOA	35 it	132	F\%S	$16-51$	177	$\rightarrow R$	4
688		$10-51$	133	5706	35 at	178	R \downarrow	-
089	RCL2	3602	134	P\%S	16-5:	179	R \downarrow	-
096	FCLJ	36103	135	FCL8	3686	186	$\rightarrow \mathrm{R}$	4

Program 5.5

181	$\mathrm{XF} \mathrm{Y}^{\prime}$	-41	061	*LBLA	2111	846	x	-35
182	Kt	-31	802	RCL4	3684	047	RCLC	3613
183	-	-45	063	-	-45	048	RCLE	3600
184	Ft	-31	004	RCL 8	3688	849	\times	-35
185	$\mathrm{X}+\mathrm{Y}$	-41	005	\div	-24	850	-	-45
180	-	-45	806	STOA	3511	051	ST00	3500
187	Fi	16-31	887	RTN	24	052	RCLC	3613
188	$\rightarrow \mathrm{P}$	34	068	*LBLB	2112	853	RCL9	3609
189	RTN	24	089	RCL5	3605	054	COS	42
198	* LBL1	2101	010	-	-45	055	X	-35
191	$\rightarrow R$	44	011	FCL8	3688	056	RCLI	3646
192	K \downarrow	-31	012	\doteqdot	-24	057	-	-45
193	Kt	-31	013	STOB	3512	058	STOI	3546
194	\rightarrow F	44	014	ECLA	3611	659	RCLC	3613
195	$X+Y$	-41	815	COS	42	068	RCL9	3609
196	R \downarrow	-31	816	RCL2	3602	661	SIN	41
197	+	-55	017	COS	42	062	x	-35
198	Ft	-31	818	-	-45	063	ST01	3501
199	+	-55	019	RCL2	3602	864	6SEA	2380
260	R 4	16-31	020	SIN	41	065	RCLI	3601
201	+F	34	021	\div	-24	066	CHS	-22
202	RTN	24	022	STOC	3513	667	6SB6	2300
283	-LEL2	2102	023	RCLA	3611	068	$X>Y^{\prime}$	16-34
204	3	83	824	SIN	41	069	XIF Y	-41
205	6	66	025	RCL2	3602	670	F6?	162300
206	6	00	026	SIN	41	071	$\mathrm{X}+\mathrm{Y}$	-41
267	+F	44	627	\div	-24	072	ST01	3501
208	$\rightarrow F$	34	828	STOD	3514	873	RCLA	3611
269	$\mathrm{X}+\mathrm{F}$	-41	029	RCLE	3612	674	+	-55
210	x<9?	16-45	030	COS	42	875	cos	42
211	+	-55	031	RCL3	3603	076	STOA	3511
212	RTN	24	032	COS	42	077	RCLI	3601
213	+LBL3	2103	033	-	-45	078	RCLB	3612
214	RCLD	3614	034	RCL3	3683	079	+	-55
215	+	-55	035	SIN	41	086	cas	42
210	RCLI	3646	836	\div	-24	881	STOB	3512
217	+	-55	037	STOI	3546	082	RCLI	3601
218	RTN	24	038	RCLE	3612	083	COS	42
219	R 5	51	039	SIN	41	884	STOC	3513
			648	RCL3	3603	085	$F \%$ S	16-51
			641	SIN	41	886	RCL1	3601
			042	\div	-24	087	RCLA	3611
			843	ST0G	3580	088	x	-35
			044	FCLI	3646	889	RCL2	3602
			045	RCLD	3614	696	RCLC	3613

891	x	-35	136	PRTX	-14	181	RCLB	3612
892	FCLS	3603	137	RCLB	3612	182	RCLA	3611
893	RCLB	3612	138	+HMS	1635	183	6SB6	2306
694	x	-35	139	PRTX	-14	184	ST06	3506
895	+	-55	148	RTN	24	185	RCLD	3614
896	+	-55	141	*LBL0	2180	186	RCLC	3613
097	Stan	3514	142	RCLI	$364 E$	187	6566	2306
098	RCL4	3604	143	${ }^{2}$	53	186	ST07	3507
899	RCLA	3611	144	RCL1	3601	189	RCLI	3646
100	x	-35	145	X^{2}	53	198	RCLE	3615
181	RCL5	3685	146	+	-55	191	6SB6	23 日E
182	RCLC	3613	147	RCLO	3680	192	ST-7	35-45 07
163	x	-35	148	X^{2}	53	193	ST-6	35-45 06
184	RCL6	3606	149	-	-45	194	RCL6	3606
185	RCLE	3612	156	5X	54	195	RCL4	3604
106	x	-35	151	x	-35	196	+	-55
167	+	-55	152	RCLI	3646	197	PRTX	-14
108	$+$	-55	153	RCLO	3680	198	RCL 7	3607
109	STOI	3546	154	x	-35	199	RCL5	3605
116	RCL 7	3607	155	+	-55	268	+	-55
111	RCLA	3611	156	RCLI	3646	281	PRTX	-14
112	x	-35	157	X^{2}	53	202	RTN	24
113	RCL 8	3608	158	RCLI	3681	283	*LBL6	2186
114	RCLC	3613	159	χ^{2}	53	284	COS	42
115		-35	168	+	-55	205	LSTX	16-63
116	RCL9	3609	161	$\stackrel{+}{\square}$	-24	206	SIN	41
117	RCLE	3612	162	RCLD	3614	287	RCLE	3606
118	x	-35	163	+	-55	288	SIN	41
119	+	-55	164	RCLC	3613	289	x	-35
128	+	-55	165	$X \pm Y$	-41	216	RCLI	3601
121	F \ddagger	16-51	166	\div	-24	211	R \uparrow	16-3!
122	STOO	3500	167	TAN ${ }^{-1}$	1643	212	-	-45
123	RCLI	3646	168	$X>8$?	16-44	213	COS	42
124	RCLD	3614	169	RTN	24	214	RCLA	3606
125	+ P	34	176	1	01	215	COS	$4 E$
126	R \downarrow	-31	171	8	08	216	R1	16-31
127	STOB	3512	172	8	00	217	x	-35
128	SIN	41	173	+	-55	218	x	-35
129	RCL 8	3600	174	RTN	24	219	$+$	-55
136	x	-35	175	*LBLE	2115	226	$\cos ^{-1}$	1646
131	RCLI	3646	176	HMS ${ }^{\text {- }}$	1636	221	RCL8	360
132	$\stackrel{ }{-}$	-24	177	ST01	3501	222	T	-35
133	TAN ${ }^{-1}$	1643	178	$X \rightarrow Y$	-41	223	RTN	24
134	STOA	3511	179	HMS ${ }^{\text {a }}$	1636			
135	\rightarrow HMS	1635	189	5708	3508			

412

Index

[For each major topic, routines are listed under a separate heading following the subject entries.]

Adler, Alan J., 157
Almanac for Computers (Doggett, Kaplan, and Seidelmann), 8, 227, 230-31, 234, 261-62
Stellar Tables in, 231, 262
altitudes of celestial objects
regression methods and, 4, 9, 228-29, 241-42
see also local apparent noon
anemometers, 153
heel angle's effect on, 155-56
apparent wind, $153,154,156,160$
leeway and, 157-58, 176
racing and, 176
Aries, GHA of, 8, 256
data cards for, 230, 233
average speed, determination of, 34-35
averaging of bearings, 5, 19-23
see also regression
azimuth, calculation of, 4, 9, 236-40
see also sight reduction
Barco-Navigation, 14, 312
bearing error, defined, 18
bearing regression, see linear regression; regression running fix
beat to windward
in cruising, 158-71
defined, 173
in racing, 172-97
beat to windward, routines: (HP-67/97) 18990; (SR-52) 168-70, 196
"Best Course to Windward, The," (Adler), 157
"Bowditch"-American Practical Navigator, vol. 1 (Defense Mapping Agency Hydrographic Center), 228, 265
buoys and floating aids, updating position of, 90-91
calculator navigation
accuracy of, 5, 7
convenience of, 4
intended users of, 5-6
objectives of, 3-5
calculators, 3-14
external memory of, 3-4
use of, in marine environment, 14
see also specific calculators
celestial linear regression, routine: (HP-67/97) 229
celestial navigation, 8-9, 13, 226-62
abbreviations in routines of, 226
introduction to, 227-28
magnetic-card memory used in, $3,4,227$, 230-35
observations at local apparent noon in, 243-55
prerecorded almanac data cards in, 230-35, 311-12
regression for accuracy improvement in, 227, 228-29
sight reduction in, 8-9, 227, 230-43
star observations planned in, 256-62
tenths of minutes in, 91
celestial navigation, routines: (HP-67/97) 229, 232-35, 237-40, 251-53, 255, 257-59
see also specific routines
chart factor
calculation of, $87,92 n$
defined, 19, 87
chart-factor method
estimated position by, 104-5
fixing by, 87, 122-26, 133-37, 138, 139-43
planning by, 96, 97, 98-99, 281
set and drift by, 126-27, 134-35
tracking by, 104, 105-7, 111-15
chart plotting, 4, 227, 243
charts, 19, 243
as source of co-ordinates for prerecording, 90
updating of, 91
Coastal Navigation (Williams), 24n
Coast Guard, U.S., 90
coastwise navigation, 4-5, 16-150, 228, 243
abbreviations in routines of, 16
defined, 17
using distances and bearings, $17,18,28-86$
HP-65 in, 3
introduction to, 17-18
using latitude and longitude, 7-8, 17, 18, 87150
latitude and longitude vs. distance and bearing in, 18
magnetic-card memory used in, 3, 4, 7-8
commercial mariners, calculator navigation for, 5, 6
compass, magnetic, variation and deviation of, 4-5, 9, 24
correction and uncorrection, 25-27, 157-58
defined, 25
course and speed made good, 17
in cruising, 158-60
leeway and, 24-25
in loran navigation, 282-85
in racing, see downwind sailing; optimum speed to windward
from two fixes, $80-86,138,149-50$
course and speed made good, routines
using distances and bearings: (HP-67/97) 81-82, 193-94, 282-84; (SR-52) 83-85, 169-70
using latitude and longitude: (SR-52) 149-50
loran navigation: (HP-67/97) 282-84
see also course made good, routines
course made good
regression used for, 61, 76-79
from three bearings, $61,62,76-80$
see also course and speed made good
course made good, routines: (HP-67/97) 77; (SR-52) 79
see also course and speed made good, routines
course to steer, see planning
crab angle, defined, 25
cruise sailing, 153, 158-71
cruise sailing, routines: (HP-67/97) 162-63; (SR-52) 168-71
current
tacking and, 153
wind combined with, 153-54
see also set and drift
current wind, 153
curve fitting, routines: (HP-67/97) 181-84; (SR-52) 185-87, 202-3
data cards
celestial, use of on HP-41C, 311-12
duplication of, 14, 91
prerecorded almanac, 230-35
prerecorded latitude and longitude, 90-95, 310
purchase of, 14,312
for star planning, 256-59, 311
data cards, routines
GHA Aries: (HP-67/97) 233
latitude and longitude: (HP-41C) 310; (HP67/97) 92-93; (SR-52) 94-95
moon: (HP-67/97) 233-34
planet: (HP-67/97) 232-33
star: (HP-67/97) 232, 235
star planning: (HP-41C) 311; (HP-67/97) 257
Defense Mapping Agency Hydrographic Center, 228, 265
deviation, see variation and deviation
distances and bearings, 18, 28-86
coastwise navigation using, 17, 18, 28-86
course and speed made good by, 80-86
estimated position by, 31-32, 42-46, 53-60
fixing by, 28-30, 32-37, 39, 45, 47-50, 5253
in loran navigation, 279, 282-90
planning by, $30-31,37-41,50-53$
set and drift by, $32,46,80,81-82,85-86$
tracking by, 56-60
Doggett, LeRoy E., 227n
downwind sailing, 197-224
direct, 197-216
direct, current present, 209, 210, 215-16
direct, no current, 211-15
Fourier-series coefficients and, 204, 205-10, 211, 222-23
polar performance curves and, 197-214
tacking, 8, 153, 215-24
downwind sailing, routines
direct: (HP-67/97) 213-14; (SR-52) 224
exponential curve fit: (HP-67/97) 183; (SR-52) 202
Fourier series: (HP-67/97) 207; (SR-52) 208
logarithmic curve fit: (HP-67/97) 184; (SR-52) 203
power curve fit: (HP-67/97) 182-83; (SR-52) 186-87
tacking: (HP-67/197) 218-19; (SR-52) 196
downwind-speed curve, 200
downwind tacking, 8, 153, 215-24
current present, 215, 217, 221
desirable circumstances for, 172, 173, 197-99
direct-downwind sailing compared to, 22021, 222
no current, 219-20
downwind tacking, routines, see downwind sailing, routines
downwind tacking sector, routines: (HP67/97) 183; (SR-52) 202
due-downwind speed, routines: (HP-67/97) 182-83; (SR-52) 186-87
Dutton's Navigation and Piloting, 265
estimated position, 17, 265
defined, 42
using distances and bearings, 31-32, 42-46, 53-60
using latitude and longitude, 87, 104-8, 114, 116-22
leeway and, 25
in loran navigation, 283-90
multiple legs, 54-56, 116-22
see also tracking
estimated position, routines
using chart-factor method: (HP-67/97) 105
using distances and bearings: (HP-67/97) 31-32, 57-58, 283-84; (SR-52) 54
using latitude and longitude: (HP-67/97) 105-10, 118-20; (SR-52) 121-22
in loran navigation: (HP-67/97) 283-84
using mid-latitude method: (HP-67/97) 108, 118-20; (SR-52) 121-22
multiple legs in: (HP-67/97) 32, 58, 106-7, 120, 283-84; (SR-52) 54, 122
tracking of, see tracking, routines
exponential curve fit, routines: (HP-67/97) 183; (SR-52) 202
external memory
advantage of, 3
latitude and longitude method facilitated by, 87-90
two forms of, 3-4
fishing, 6
fixing, 5-6, 7-8, 17
in celestial navigation, 227, 230, 240-43, 250, 252-53
in determining course and speed made good, 80-86
using distances and bearings, 27-30, 32-41, 44-53, 61-75
using latitude and longitude, 87, 90, 122-26, 128-31, 133-48
leeway and, 25
linear regression in, 7, 20-22, 33, 61-69
in loran navigation, 9-10, 268, 273-79
loran vs. celestial navigation for, 272
from moving vessel, 27-28
planning combined with, 39-41, 50-53, 133-34
see also fix on two objects; regression run-
ning fix; running fix on one object; running fix on two objects
fixing, routines
in celestial navigation: (HP-67/97) 240, 253
using chart-factor method: (HP-67/97) 12326; (SR-52) 139-43
using distances and bearings: (HP-67/97) 29-30, 65-66, 73; (SR-52) 48-50, 74-75
fix on two objects: (HP-67/97) 29, 65-66, 123-24, 128-29; (SR-52) 48, 139-40, 144-45
using latitude and longitude: (HP-67/97) 123-32; (SR-52) 139-48
with linear regression: (HP-67/97) 65-66
using loran: (HP-67/97) 274-76
using mid-latitude method: (HP-67/97) 128-31; (SR-52) 144-48
noon fix: (HP-67/97) 253
planning combined with: (HP-67/97) 41; (SR-52) 51-52
regression running fix: (HP-67/97) 73; (SR-52) 74-75
running fix on one object: (HP-67/97) 29-30, 73, 125-26, 129-30; (SR-52) 48-49, 140-41, 145-46
running fix on two objects: (HP-67/97) 30, 126, 130-31; (SR-52) 49-50, 142-43, 146-48
fix on two objects, 8, 17
course and speed made good determined by, 80-86
linear regression and, 21, 61-69
problem of, 27-28
routines, see fixing, routines
see also running fix on two objects
Fourier-series coefficients, 204, 205-10
course to steer downwind and, 209-10, 211
downwind sailing and, 204, 205-10, 211, 222-23
samples for calculation of, 204-6
Fourier-series coefficients, routines: (HP67/97) 207; (SR-52) 208

GHA, see Greenwich hour angle
great-circle calculations, 10, 19
Greenwich hour angle (GHA)
of Aries, 8, 230, 233
of sun, 8, 254
gyrocompass, $24 n$
heaving deck, 6
heel angle, anemometer affected by, 155-56
Hewlett-Packard, 14
navigation program packages of, $8,10,161$ n, 180n, 206n, 256n
RPN used in calculators manufactured by, 13
Hewlett-Packard 41C (HP-41C), 13-14
use of with HP-67/97 data and program cards with, 309-12
Hewlett-Packard 65 (HP-65), 3, 4
Hewlett-Packard 67 (HP-67)
advance in, 4
display interval interrupted on, 308-9
Hewlett-Packard 67 and 97 (HP-67/97), 5, 10, 13, 14
calculation time for, 7, 111
celestial navigation and, 226-62
chart factor and variation stored in, 90
comparison of, 10-12
decimals and trigonometric mode set on, 308 description of, 10-12
loran and, 264-92
magnetic-card memory used in, 3, 167
prerecorded cards for, 14
variation and deviation with, 24
see also specific routines
Hewlett-Packard 97 (HP-97), 4
nonprint operation of, 308
nonprint tracking on, 97
printed display of, $12,56,116$
intercept, calculation of, see sight reduction
Kaplan, George H., 227n
knotmeters, 153
Kochab, in fixing, 242-43
LAN, see local apparent noon
latitude, defined, 243
latitude and longitude, 87-150
calculation of, 9
coastwise navigation using, 7-8, 17, 18, 87150
course and speed made good by, 90, 149-50
estimated position by, 87, 104-8, 114, 116-22
fixing by, 87, 90, 122-26, 128-31, 133-48
length of degree of, 87, 88-89
in loran calculations, $10,265,266,279-81$
in loran current calculation, 279-81
plane-earth assumption and, 18,87
planning by, 87, 93, 96-103, 113-14, 133-35
prerecorded cards for, 90-95, 310
set and drift by, 111, 126-27, 131-32, 135
spherical-earth calculations and, 18-19, 87
tracking by, 87, 104, 105-10, 111-16
see also chart-factor method; local apparent noon; mid-latitude method
lay line, 159-161, 166
lay line, distance and time to, routines: (HP67/97) 162-63; (SR-52) 169-70
leeway, 24-27
apparent wind and, 157-58, 176
application of, 25, 93, 157
correction and uncorrection for, 25-26, 157-58
course shifts due to, 26
defined, 24
modified-true-wind calculations and, 157-58
navigational aspects of, summarized, 25
wind conditions and, 26
linear regression, 9, 20-22
accuracy of, 7, 63-64
assumption behind, 21-22
in celestial navigation, 227, 228-29, 241
in celestial vs. coastwise navigation, 228
course made good from three bearings and, 76-80
description of, 20-21
fixing by, 7, 20-22, 33, 61-69
sun line of position and, 241-42
linear regression, routines: (HP-67/97) 65-66, 229; (SR-52) 68
local apparent noon (LAN)
fluctuations in observation of, 243-50
observations at, 243-55
parabolic regression and, 244, 245-55
predicting time of, 254-55
shift in time of, due to vessel motion, 247-50
local apparent noon, routines
parabolic regression: (HP-67/97) 251-52
time of: (HP-67/97) 255
logarithmic curve fit, routines: (HP-67/97) 184; (SR-52) 203
longitude, see latitude and longitude
loop time, 60, 113
loran, 5, 6, 13, 264-92
abbreviations in routines of, 264
accuracy of, 9, 10, 266-67
calibration coverage of, 266-67, 290
calibrations, preparation of, 268-73
charts for, 5, 10, 272-73
distance and bearing navigation with, 282-90
in fixing, $9-10,268,273-79$
latitude and longitude and, $10,265,266$, 279-81
Loran A converted to C, 5, 6, 10, 265-66, 290-92
in planning, 265, 279, 281, 282-285
position location with, 273-79
set and drift calculated by, 277, 279-81, 28284, 285, 287, 288-90
sky-wave signals used in, 273, 290
time differences in, 10, 265-66, 290-92
two methods in calculations with, 10
loran, routines
calibrator: (HP-67/97) 269
conversion to (or from) Loran C time differences: (HP-67/97) 291-92
current calculation: (HP-67/97) 280-81, 282-84
direct-mode position location: (HP-67/97) 274-75
distance and bearing navigation: (HP-67/97) 282-84
relative-mode position location: (HP-67/97) 275-76
time-difference readings predicted: (HP67/97) 291-92
magnetic-card memory, 3-4
mark, distance and bearing to, routines: (HP67/97) 162-63, 193-94; (SR-52) 171
Mars, 230
Mercator chart-factor method, see chart-factor method
meridian passage, see local apparent noon
mid-latitude, defined, 19, 87
mid-latitude method
errors in, 19
estimated position by, 87, 104, 108, 118-22
fixing by, 87, 90, 128-37, 138, 144-48
planning by, 87, 96, 97, 100-103
set and drift by, 131-32, 135
tracking by, 87, 104, 108-10, 116
modified true wind, 153-58, 160
calculation of, 154-58
defined, 153
leeway and, 157
on port vs. starboard tack, 156
racing and, 172, 173, 188
modified true wind, routines: (HP-67/97) 162; (SR-52) 168
moon, 8-9, 227
data cards for, 230, 233-34
in fixing, 230, 242-43
moon, sight-reduction routine: (HP-67/97) 239-40
natural true wind, 153
Naval Observatory, U.S., Nautical Almanac Office of, 8, 227
naval officers, calculator navigation for, 5, 6
navigation officers, calculator navigation for, 5 , 6
nested parentheses, 13
noon fix, routine: (HP-67/97) 253
optimum course, 6, 7
see also downwind sailing, optimum sailing to windward
optimum course and speed, routine: (HP67/97) 189-90
optimum downwind tacking speed, routines: (HP-67/97) 182-83; (SR-52) 186-87
optimum sailing, see downwind sailing; optimum sailing to windward
optimum sailing to windward, 172-97
optimum sailing to windward, routines
beat to windward: (HP-67/97) 189-90; (SR-52) 168-70, 196
course and speed made good: (HP-67/97) 193-94; (SR-52) 169-70
position relative to mark: (HP-67/97) 19394; (SR-52) 171
optimum speed to windward, 172-97
optimum speed to windward, routines: (HP67/97) 181, (SR-52) 185
optimum tacking angle to windward, routines: (HP-67/97) 181-82; (SR-52) 185-86
parabolic regression, 227, 241
in fluctuations at noon sight, reduction of, 245-46
LAN and, 228, 244, 245-52
parabolic regression, routine: (HP-67/97) 251-52
plane-earth assumption, 18-19, 87
planets, 8, 227
data cards for, 230, 232-33, 234
planets, sight-reduction routine: (HP-67/97) 238
planning, 5-6, 17
using distances and bearings, 30-31, 37-41, 50-53
fixing combined with, 39-41, 50-53, 133-34
using latitude and longitude, 87, 93, 96-103, 113-14, 133-35
leeway and, 25,93
loran in, 265, 279, 281
tracking combined with, 113-15
planning, routines
using chart-factor method: (HP-67/97) 98-99
using distances and bearings: (HP-67/97) 30-31, 41; (SR-52) 51-52
fixing combined with: (HP-67/97) 41; (SR-52) 51-52
using latitude and longitude: (HP-67/97) 98-101; (SR-52) 102-3
using mid-latitude method: (HP-67/97) 100-1; (SR-52) 102-3
to separate destination: (HP-67/97) 41
tracking combined with: (HP-67/97) 107, 110
plotting sheets, 227
polar performance curves, 6, 8, 172-88
downwind sailing and, 197-214
polar performance curves, routines: (HP67/97) 177; (SR-52) 178
position relative to mark, routines: (HP-67/97)
162-63, 193-94; (SR-52) 171
power curve fit, routines: (HP-67/97) 182-83; (SR-52) 186-87
program cards
duplication of, 14, 91
labeling of, 7
purchase of, 14
program listings, 313-412
programs, 295-412
customized, 173-188, 199-210, 296-307
decimals and trigonometric mode set on HP67/97 and, 308
defined, 6
information for use of, 6-7
interrupting display interval on HP-67 and, 308-9
nonprint operation of HP-97 and, 308
recording procedures for, 295-96
racing, see downwind sailing, optimum sailing to windward
racing, routines, see downwind sailing, routines; optimum sailing to windward, routines; polar performance curves, routines
racing sailors, calculator navigation for, 6, 8
radar, 279, 285
radar maneuvering problems, 10
ratio $\Delta S / S d$, routines: (HP-67/97) 184; (SR-52) 203
regression, 5, 6, 9, 20-23, 61-79
in celestial navigation, 227, 228-29, 241-42, 245-46
course and speed made good and, 80
see also linear regression; parabolic regression; regression running fix
regression, routines
celestial linear regression: (HP-67/97) 229
fix on two objects: (HP-67/97) 65-66
linear regression: (HP-67/97) 65-66, 229; (SR-52) 68
parabolic regression: (HP-67/97) 251-52
regression running fix: (HP-67/97) 73; (SR-52) 74-75
regression running fix, 22-23, 69-75
regression running fix, routines: (HP-67/97) 73; (SR-52) 74-75
Reverse Polish Notation (RPN), 13
rhumb line, defined, 19
routines
defined, 6
leeway and, 26-27
use of, 6-7
see also specific routines
RPN, see Reverse Polish Notation
running fix
in celestial navigation, 242, 243
using distances and bearings, 29-30, 33-37, 47, 48-49, 52-53
using latitude and longitude, 136-138
leeway and, 25
linear regression and, 21
routines, see fixing, routines
see also regression running fix; running fix on one object; running fix on two objects
running fix on one object, 17, 136, 138
linear regression and, 61-69
multiple legs, 35-37
planning and estimated position combined with, 44-46
planning combined with, 44-46, 50-53
regression running fix as, 22-23, 61, 69-75
routines, see fixing, routines
running fix on two objects, 17, 28, 136-37, 138
multiple legs, 47
planning combined with, $39,40,50-53$
routines, see fixing, routines
sailing, 6, 8, 152-224
abbreviations in routines of, 152
cruising, 158-71
customizing programs for, 173-88, 199-210, 296-307, 311
downwind, see downwind sailing
introduction to, 153
modified true wind calculated in, 154-58
racing, 172-97
wind and current combined in, 153-54
Sandy Hook Pilots' Association, 9-10
Seidelmann, P. Kenneth, $227 n$
set and drift, 10, 17
using distances and bearings, $32,46,80,81-$ 82, 85-86
effects of, 23-24
using latitude and longitude, 111, 126-27, 131-32, 135
leeway and, 25
in loran navigation, 280-81
set and drift, routines
using chart-factor method: (HP-67/97) 126-27
using distances and bearings: (HP-67/97) 32, 81-82, 282-84; (SR-52) 85
using latitude and longitude: (HP-67/97) 126-27, 131-32, 280-81
using loran: (HP-67/97) 280-81, 282-84
using mid-latitude method: (HP-67/97) 131-32
sextant angles, regression and, 228, 245-46
sidereal hour angle (SHA), of stars, 8, 231, 256
sight reduction, 8-9, 227, 230-43
prerecorded almanac data cards for, 230-35, 311-12
sight reduction, routines
for moon: (HP-67/97) 239-40
for planets: (HP-67/97) 238
for stars, (HP-67/97) 237-38
for sun: (HP-67/97) 238
sight-reduction tables, 3, 227

Simonsen's Navigation (Simonsen), $5 \boldsymbol{n}$
sky-wave signals, loran, 273, 290
solid-state memories, disadvantage of, 3-4
speed made good, see course and speed made good
spherical-earth calculations, 18-19, 87
stars, 8, 227
data cards for, 230-31, 232, 235, 311-12
observations planned for, 256-62
sidereal hour angles of, 8, 231
stars, sight-reduction routine: (HP-67/97) 237-38
star sight planner, routine: (HP-67/97) 258-59
sun, 8, 9, 227, 230
data cards for, 230, 232-33, 234
observations of, at LAN, 243-55
regression and position of, 241
sun, sight-reduction routine: (HP-67/97) 238
tacking, 153
alternate courses in, 159
course and speed made good and, 158-60
currents and, 153
as unnecessary, 173
tacking angle, 160
boat speed vs., 204
Fourier series and, 205-6, 210
racing and, 173-75, 176
wind speed and, 176
tacking angle, routines: (HP-67/97) 181-82;
(SR-52) 185-86
tacking downwind, see downwind tacking
Tamaya NC-77, 8
Texas Instruments, 14
navigation program packages of, $10,28 n$, $167 n, 180 n, 206 n$
nested parentheses used in calculators manufactured by, 13
Texas Instruments PC-100A (printer), 12
Texas Instruments SR-52, 10, 28
chart factor and variation in, 90
description of, 12-13
mid-latitude method for, 87-90, 91, 93-95
variation and deviation with, 24
see also specific routines
Texas Instruments 58 (TI-58), 28n, 167n
Texas Instruments 59 (TI-59), 3, 13, 14, 28n, $167 n$
tracking, 6, 7, 17, 97
using distances and bearings, 56-60
using latitude and longitude, 87, 104, 10510, 111-16
nonprint, on HP-97, 116
planning combined with, 113-15
with printout, on HP-41C, 309-10
timing important in, 60, 111-12
tracking, routines
using chart-factor method: (HP-67/97) 105-7
using distances and bearings: (HP-67/97) 57-58
using latitude and longitude: (HP-67/97) 105-10
using mid-latitude method: (HP-67/97) 108-10
planning combined with: (HP-67/97) 107, 110
see also estimated position, routines
variation and deviation, 4-5, 9, 24
regression and, 63
wake course, 24-25, 26
defined, 24
Williams, Thomas John, $24 n$
wind
current combined with, 153-54
see also apparent wind; modified true wind wind conditions, leeway and, 24, 26
wind vanes, 153
yachtsmen-navigators, calculator navigation for, 4, 5-6 manufacturers and has written on the subject of calculator navigation for magazines such as Yachting. He lives in Washington, D.C.

A Partial Listing of Contents

COASTWISE NAVIGATION

Applications involving distance and bearing
Fixing, including running fix on one or two objects
Planning-course to steer, speed made good, elapsed time
Tracking and estimated position
Calculation of current
Applications involving latitude and longitude
Fixing, including running fix on one or two objects
Planning-course to steer, distance made good, elapsed time
Tracking and estimated position
Calculation of current
Regression methods for maximum accuracy

SAILING

Calculation of speed made good, course made good, time to lay line
Customized programs for racing
Calculation of optimum course and speed to windward and downwind Comparison of tacking downwind and direct sailing

CELESTIAL NAVIGATION

Sight reduction-observations on the sun, stars, planets, and moon
Fixing from celestial lines of position
The noon fix

LORAN

Obtaining position from loran time differences
Loran distance and bearing navigation
Conversion from Loran A to Loran C, conversion of Loran read-outs directly to latitude and longitude

PROGRAM LISTINGS FOR ALL APPLICATIONS

[^0]: *A typical device for recalling the rules for applying variation and deviation to compass or chart angles, quoted (along with others) by S. T. Simonsen, Simonsen's Navigation (Englewood Cliffs, N.J.: Prentice-Hall, 1973), pp. 24-25.

[^1]: *If a gyrocompass is used, corrections, if any, can be entered as deviations, and the variation set equal to zero. In this instance, all directions, both in the input data and in the results, will be true.
 \dagger The concept of wake course is clearly discussed and illustrated in Thomas John Williams, Coastal Navigation, Reed's Yachtsmaster Series (London, Thomas Reed Publications, 1970), pp. 9092.

[^2]: *Some of the equations and programs for the SR-52 developed by the author and presented in this chapter are utilized in two publications issued by Texas Instruments: the Navigation Library (Program Manual NG1) for the SR-52 and the manual on Marine Navigation for the TI-58 and TI-59.

[^3]: ${ }^{1}$ For an alternative method of estimating deviation in planning, see p. 38.
 **Uncorrect for leeway; see table 2.2.
 *Correct for leeway; see table 2.2.

[^4]: **Uncorrect for leeway; see table 2.2.

[^5]: 2.34. Tracking Combined with Planning (Latitude and Longitude)

[^6]: *Correct for leeway; see table 2.2.

[^7]: *These values are from Alan J. Adler, "The Best Course to Windward," Sail, February 1975, p. 26 .

[^8]: *The equations and program developed by the author for this routine are utilized in "Beating to Windward" in Hewlett-Packard's Navigation Pac 1.

[^9]: **Uncorrect for leeway; see table 2.2.

[^10]: *The programs for the SR-52 sailing routines (3.2-3.4, 3.11, and 3.19) were developed by Texas Instruments on the basis of equations supplied by the author. Except for routine 3.6, the SR-52 routines and programs presented in this chapter and in the corresponding section of the Appendix can also be found (the routines in slightly different form) in the Navigation Library (Program Manual NG1); some of them are also included in the manual on Marine Navigation for the TI-58 and TI-59.

[^11]: 'The convention of using "plus" for westerly variation and deviation, and "minus" for easterly variation and deviation, conforms to the usage in the SR-52 and Tl-59 navigation-program packages.
 **Uncorrect for leeway; see table 2.2.

[^12]: **Uncorrect for leeway; see table 2.2.

[^13]: *Preprogrammed magnetic cards that can be employed for these routines are supplied by the manufacturers. For the HP-67 or HP-97, the "Curve Fitting" program, included in the Standard Pac, is used for the various segments of routine 3.7. It is reproduced in this volume by permission of Hewlett-Packard. For the SR-52 the equivalent material is in the Navigation Library (Program Manual NG1), and is reproduced by permission of Texas Instruments; the "Power Curve Fit" program in the Navigation Library corresponds to routine 3.8, the "Exponential Curve Fit" program to routine 3.12, and the "Logarithmic Curve Fit" program to routine 3.13.

[^14]: *The programs for these two routines were developed by the manufacturers. For the HP-67 and HP- 97 the "Fourier Series" program, in the E E Pac, is used. It is reproduced in this volume by permission of Hewlett-Packard. For the SR-52 the "Discrete Fourier Series" program, in the Navigation Library (Program Manual NG1), is used. It is reproduced by permission of Texas Instruments.

[^15]: 'The convention of using "plus" for westerly variation and deviation, and "minus" for easterly variation and deviation, conforms to the usage in the SR-52 and TI-59 navigation-program packages.

[^16]: *LeRoy E. Doggett, George H. Kaplan, and P. Kenneth Seidelmann, Almanac for Computers (Washington, D.C.: Nautical Almanac Office, United States Naval Observatory). This volume, which is to be published each year, can be purchased directly from the Nautical Almanac Office, Washington, D.C. 20390. The price in 1978 is $\$ 3.00$

[^17]: *The program is formulated so that the correction factors are used as shown in the following equations:
 $T_{L A N}=T_{M}-\frac{S}{2 C}$
 and
 $H_{L A N}=H_{M}+\frac{S^{2}}{4 C}$
 where $T_{L A N}=$ corrected time of local apparent noon,
 $T_{M}=$ time of the vertex of the regression parabola,
 $H_{L A N}=$ corrected sun altitude at $L A N$,
 $H_{M}=$ sun altitude at the vertex of the regression parabola,
 \boldsymbol{S} = speed, in degrees of latitude change per hour (+if away from the sun, - if toward the sun),
 $C \quad=$ coefficient of the second-order term of the regression parabola, in units of degrees per hour squared, and always negative.

[^18]: *Routine 4.10 and routine 4.11 (with its accompanying program) were developed by HewlettPackard and are included as "SHA Star Data Card" and "Star Sight Planner" in Navigation Pac 1. They are reproduced in this volume by permission of Hewlett-Packard.

[^19]: 1LeRoy E. Doggett, George H. Kaplan, and P. Kenneth Seidelmann, A/manac for Computers (Washington,
 D.C.: Nautical Almanac Office, United States Naval Observatory, 1978), extracts from pp. C1, C3, C8, and F6.

