CalcWare

Application Software for HP 48G Series Calculators

Physics Series

Mechanics \& Thermodynamics

CalcWare ${ }^{\text {TM }}$ User's Guide

SPARCOM CORPORATION

Physics Series

Mechanics \& Thermodynamics
PN 12055-1A

Notice

This manual, the accompanying software, and the examples contained herein are provided "as is" and are subject to change without notice. Sparcom Corporation makes no warranty of any kind with regard to this manual or the accompanying software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Sparcom Corporation shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual, the accompanying software, or the examples herein.
© Copyright Sparcom Corporation 1994. All rights reserved. Reproduction, transmission in any form or by any means, adaptation, or translation of this manual is prohibited without prior written permission of Sparcom Corporation, except as allowed under the copyright laws.

The owner of this manual is granted a one-user, non-commercial license to use the enclosed software, and may not copy, distribute, or transfer the software under any circumstances without prior written permission of Sparcom Corporation.

CalcWare is a trademark of Sparcom Corporation.
Apple and Macintosh are registered trademarks of Apple Computer Incorporated.

Customer Support

Customer satisfaction is important to Sparcom Corporation. Technical support is available Monday through Friday, 9 a.m. to 12 p.m. Pacific Coast Time, by calling (503) 757-8416. Your questions are also welcome by facsimile (503) 753-7821 or by e-mail (Internet: support@ sparcom.com).

Credits

CalcWare ${ }^{\mathrm{TM}}$ Mechanics \& Thermodynamics was made possible by:

- Product Manager: Alan Fudge.
- Project Leader: Sara Algots.
- Software Development: Scott M. Burke, Brian J. Maguire.
- Physics Content Organization: Scott M. Burke, Jerry Cooperstein, Karl J. Smith.
- User's Guide: Spike Albright.
- User's Guide Editing: Scott M. Burke, Alan Fudge, Brian J. Maguire, Bill Welsch.
- Beta Testers: Harri Ahola, Patrick Feisthammel, Scott Gustafson, Ned Holbrook, Juha Husgafvel, Brad Leutwyler, Bill Welsch.

Sparcom Corporation
P.O. Box 927

Corvallis, OR 97339
U.S.A.

Printing History

Edition 1
December 1994
Software Reorder No. 12055-1A

Contents

CONTENTS iv

1 GETTING STARTED 11
System Requirements 11
Manual Conventions 12
Copying CalcWare to your Computer 13
PC. 13
Macintosh 13
Installing CalcWare onto your HP 48 14
To prepare for installation 14
To install the CalcWare shell onto the HP 48 14
To install CalcWare applications onto the HP 48 15
To install all CalcWare applications at once 15
Using CalcWare 16
To start CalcWare 16
To move around in CalcWare 16
To use the home screen 16
To use the Options menu 17
To use the Calculator Modes screen 18
Deleting CalcWare 19
To delete a CalcWare application. 19
To delete the CalcWare shell and all applications 19
2 ANALYSIS ROUTINES 20
Using an Analysis Routine 20
Analysis Menu Keys 23
Edit fields 23
Choose fields 24
Result fields 24
3 EQUATION SETS 25
Using an Equation Set 25
Solve the equation set 27
Plot one equation 28
Overview of Equation Set Screens 29
Equations Screen 30
Equations menu keys 30
Viewing equations 31
Displaying a picture 31
Solver Screen 31
Comments about the Solver 32
Solving an equation 32
Changing the value of a variable 33
Resetting variables 33
Converting a value 33
Changing the font size 34
Solver icons 34
Solver screen menu keys 35
Answer screens 36
Answer screen menu keys 36
HP 48 PLOT Application Screen 37
Plotting an equation 37
HP 48 PLOT Application fields 38
HP 48 PLOT Application menu keys 38
Plot Options screen 40
4 REFERENCE TABLES 41
Using a Reference Table 41
Reference Menu Keys 43
Panztrmales sentas
5 ALGEBRAIC FUNCTIONS 47
To install Algebraic Functions 47
Taylor Polynomial 48
6 COORDINATE SYSTEMS 49
To install Coordinate Systems 49
Variables 50
XY \leftrightarrow Polar 50
XYZ \leftrightarrow Cylindrical 51
$\mathrm{XYZ} \leftrightarrow$ Spherical 51
7 HYPERBOLICS 52
To install Hyperbolics 52
Hyperbolic Functions 53
8 TRIGONOMETRY 54
To install Trigonometry 54
Trigonometric Functions 55
9 VECTORS 56
To install Vectors 56
Vector Functions 57
Vectors 58
10 ANGULAR MECHANICS 59
To install Angular Mechanics 59
Variables 60
Angular Motion 61
Banked Curves 61
Circular Motion 62
Momentum and Precession 62
Momentum, Torque, and Work 63
Parallel Axis Theorem 63
Moments of Inertia 64
11 FLUID MECHANICS 65
To install Fluid Mechanics 65
Variables 66
Bernoulli’s Equation 67
Flow Velocity 67
Poiseuille's Law 67
Pressure and Density 68
Pressure Variation 68
Reynolds Number 69
Stokes' Law 69
12 FORCES 70
To install Forces 70
Variables 71
Drag Force 72
Frictional Force 72
Coefficients of Friction (μ) 72
13 GRAVITATION 73
To install Gravitation. 73
Variables 74
Escape Velocity 75
Free Falling Object 76
Gravitational Force 76
Orbits (Circular) 77
Orbits (Elliptical) 77
Projectile Motion 78
Terminal Velocity 78
14 LINEAR MECHANICS 79
To install Linear Mechanics 79
Variables. 80
Center of Mass 81
Collisions (Elastic) 82
Collisions (Elastic, Fixed m2) 82
Collisions (Inelastic) 83
Linear Motion 83
Momentum, Force, and Work 84
Rocket Science 84
Object Centroids 85
15 THERMODYNAMICS. 86
To install Thermodynamics 86
Variables. 87
Adiabatic Expansion 88
Carnot Cycle 89
Entropy 89
First Law of Thermodynamics 90
Heat Capacity 90
Heat Engines \& Refrigerators 91
Heat of Transformation 91
Ideal Gas Law 92
Isothermal Expansion 92
Thermal Conduction 93
Thermal Expansion 93
Coef. of Linear Expansion (α) 94
4ขอanaternatinioct
A TROUBLESHOOTING 97
General 97
Analysis Routines 98
Equation Sets 100
Reference Tables 102
B SERVICE AND WARRANTY 103
Technical Support 103
Shipping Instructions 104
If your disk requires service 104
Service Charge for Out-of-Warranty Disk 104
Disk: Limited 90-Day Warranty 105
What is covered 105
What is not covered 105
INDEX 106

Introduction to CalcWare

1 Getting Started

This chapter covers:

- System Requirements
- Manual Conventions

Copying CalcWare to your Computer

- Installing CalcWare onto your HP 48
- Using CalcWare
- Deleting CalcWare

System Requirements

Hardware

- Any computer that can run connectivity software and read PC-formatted disks:

IBM PC or compatible
Macintosh ${ }^{\circledR}$

- HP 48G series calculator:

HP 48G
HP 48GX

- Serial interface cable

Software

- Any connectivity software:

CalcWare Link
HP 48 Serial Interface Kit
Kermit

- Any CalcWare applications software:

Chemistry Series
Electrical Engineering Series
Mathematics Series
Mechanical Engineering Series
Physics Series

- CalcWare shell software
(included on any CalcWare
applications disk)

NOTE If your computer cannot read PC-formatted disks, contact Sparcom Corporation to inquire about alternate formats.

Manual Conventions

There are a few simple conventions used throughout this manual:

- Keys on the HP 48 keyboard are shown in a boxed typeface, e.g., ENTER.
- The green and purple key labels located above the keys on the HP 48 are also shown in a boxed typeface. For instance, the I/O command is a green label located above the \square key, and is accessed by pressing the green shift key \square then the $\quad 1$ key. These keystrokes are represented in the following manner: $\boldsymbol{\Gamma}$.
- Menu keys are located at the bottom of the HP 48 screen and correspond directly to the top row of keys on the HP 48 keyboard. They are shown in inverse typeface, such as HOME.
- Field names are indicated in bold typeface, such as Result.
- All examples assume that pressing a locks the alpha entry mode. If
 lock Alpha entry mode.
- To the right of each heading is a map of the path taken to get to that particular application. Each indentation represents a subdirectory and the arrow points to the current application. For example, the Partial Fraction Expansion application is in the Algebraic Functions subdirectory of the Mathematics Series directory in the CalcWare shell.
- Partial Fraction Expansion
- There are three types of CalcWare applications. These are indicated by the following icons, which appear under the heading of each application:

Analysis
Routines

Equation
Sets

Reference
Tables

- For each example, there is a listing of the mode settings required to obtain the indicated results. To change the modes, press at any CalcWare screen.

Copying CalcWare to your Computer

PC

1. Insert the CalcWare applications disk into the floppy drive.
2. If you are in Windows, bring up a DOS prompt.
3. At the DOS prompt, type: a : and press ENTER. (If your floppy drive is not a : , replace "a" with the correct drive letter.)
4. Type: install c:
and press ENTER. (If your hard drive is not c : , replace " c " with the correct drive letter.)
5. When installation is complete, press any key. The CalcWare files will be in the directory c: \calcware on your hard disk.
6. Optional: Exit the DOS prompt and return to Windows.

NOTE For convenience, the installation creates two exact copies of this CalcWare product on your hard drive:

- A hierarchical version organized by topic in subdirectories (e.g., math) for downloading a few applications; and
- A flat version with all the files in one directory (e.g., math.all) for downloading the entire series at once.

Macintosh

1. Insert the CalcWare applications disk into the floppy drive. If your Macintosh cannot read PC-formatted disks, contact Sparcom Corporation to inquire about alternate formats.
2. Drag the floppy disk icon onto your hard drive icon to continue. If you are using System 6, a dialog box will appear to confirm the operationclick OK. This will create a copy of the floppy disk on your hard drive.
3. When copying is complete, the CalcWare files will be in a folder on your hard drive of the same name as the floppy disk. (e.g., MATH1\#2_0 or MATH2\#2_0 for the Mathematics series.)
4. Rename the newly-created folder to calcware.
5. Optional: If you have multiple CalcWare products, you should combine duplicate folders inside calcware as necessary. (In DOS, the installation script does this automatically.)

Installing CalcWare onto your HP 48

The instructions below are general instructions for installing the CalcWare shell and applications onto your HP 48 from your computer. These instructions do not provide specific details for using your connectivity software on your computer because of the wide variety of communications packages available.

NOTE Sparcom Corporation will provide customer support for registered users of CalcWare Link, which is Sparcom's connectivity software for the PC or Macintosh.

We cannot provide customer support for any other connectivity software-instead, please refer to the manufacturer's documentation that accompanied the software.

To prepare for installation

HP 48: Turn on the HP 48.
HP 48: If necessary, press tanal to quit any software (such as CalcWare) and return to the HP 48 stack.
Computer: Start the connectivity software.
Both: Attach the serial cable to the HP 48 and the computer.

To install the CalcWare shell onto the HP 48

HP 48: If necessary, press $\boldsymbol{\square}$ Home to go to the HOME directory of the HP 48.
HP 48: Press $\boldsymbol{\square}$ to put the HP 48 into server mode.
Computer: Change to the calcware directory on your hard drive and download the files setupew and cw. lib to the HP 48.
HP 48: When the transfer is complete, press tanal exit server mode.
HP 48: Press to display the HP 48 user memory and then SETUP to install the CalcWare shell. (You may need to press until SETUP appears in the menu).
HP 48: When the installation is complete, the HP 48 will turn off. Press ON to turn it back on.

NOTE The HP 48 screen may blink or shift briefly to one side when it is turned on-this is normal.

To install CalcWare applications onto the HP 48

HP 48: If necessary, press Howe to go to the HOME directory of the HP 48.
HP 48: Press to put the HP 48 into server mode.
Computer: Change to the subdirectory under calcware which contains the desired CalcWare application files and download them to the HP 48. (To determine exactly which files to send, see the diagram at the beginning of the relevant chapter in this manual.)
HP 48: When the transfer is complete, press analal to exit server mode.
HP 48: Press $\boldsymbol{\square}$ LEBAN to display the library menu and then CWAR CW to start CalcWare. All of the CalcWare applications you just downloaded will be installed automatically.

NOTE When you enter the first CalcWare application screen for this product, you will be requested to enter the serial number that appears on the inside front cover of this manual.

To install all CalcWare applications at once

If you have an HP 48GX, you may wish to take advantage of the .all directory (e.g., math.all) and download all of the CalcWare applications at once. If you have an HP 48G, you will not have enough free memory to do this.

HP 48:	If necessary, press HP 48.
HP 48: to go to the HOME directory of the	
Computer:	

Using CalcWare

To start CalcWare

1. Press $\boldsymbol{D E R A M Y}$ to display the library menu.
2. Press CWAR then CW to start CalcWare, or type $\square \mathrm{CW}$ ENTER.

NOTE At any point, you can exit CalcWare and return to the HP 48 stack by pressing awal (the key). You may need to press canas more than once.

To move around in CalcWare

The HP 48 arrow keys are your navigation tools for accessing every part of CalcWare. The right arrow takes you to the next screen. The left arrow \triangle takes you to the previous screen. When you have gone as far as you can go in one path with \triangle, you can return back with $\boldsymbol{\square}$. For example:

Mathematics
\square Tutorial

- Trigonometric Functions

To return back, press:

- Tutorial

Mathematics
Home Screen

You can also press \boldsymbol{H} HomG to return directly to the home screen. The up arrow \triangle and down arrow ∇ allow you to move the highlight bar from one line to another, selecting a new topic or a new field.

To use the home screen

The home screen appears when you start CalcWare for the first time or when you press $\boldsymbol{\nabla} \boldsymbol{\operatorname { H o m E }}$ from any CalcWare screen. It lists the CalcWare series that are currently installed in your HP 48. To select a series, move the highlight bar to
 the desired series and press ENTER or \square.

NOTE To move back to a previous screen at any time, press $\boldsymbol{4}$ or UP or UP. To return to the home screen at any time, press $\boldsymbol{\square} \boldsymbol{\square}$

DEL. Deletes the selected item from the HP 48 user memory. To reinstall the item, download it from the computer again. Refer to "To install CalcWare applications onto the HP 48," page 15.
OPTS. Displays the Options menu. Refer to "To use the Options menu," see below.
QUIT Exits CalcWare and returns to the HP 48 stack.
At screens other than the home screen, an additional menu key may appear:
UP Goes to the previous screen (the same as pressing or $\boxed{\square}$).

To use the Options menu

The Options menu provides useful utilities and helps you customize settings for CalcWare. These settings apply to CalcWare only, not to the HP 48 stack. To access the Options menu, press OPTS. This will display the following menu keys:
\rightarrow STK Copies the highlighted item to the HP 48 stack without leaving CalcWare.
CALC. Copies the highlighted item to the HP 48 stack and allows you to view and/or manipulate the
 item at the stack. For edit fields only: When you have finished editing the item at the stack, press OK to leave the stack and insert the edited item into the current edit field, or press CANCL to leave the stack without changing the value of the current edit field. For all other fields and for reference tables: Edits made at the stack will not affect the value in the field. Press EXITI to leave the stack and return to CalcWare.
HELP Toggles display of help text on the bottom of the screen. When the box inside the key appears (HELP -), help is turned on. Some screens do not have help text.
FONT Toggles font size between large and small. The small font displays information in a proportional, uppercase font. The large font displays information in a monospaced, case-sensitive font.
ABOUT Displays product information and the current version of the active CalcWare application.
EXIT Leaves the Options menu and returns to the regular menu.

To use the Calculator Modes screen

All the examples in this manual list the mode settings required to obtain the indicated results:

Example

To change the modes on the HP 48, press \square dimes to display the 48 Calculator Modes screen. This screen sets the default settings for both CalcWare and the HP 48. Once you exit CalcWare, these settings will remain in effect. The Calculator Modes screen is available throughout CalcWare.

To change any of the settings at the Calculator Modes screen, use the arrow keys to select the desired item and press CHOOS or to step through the choices. When you are finished changing the settings, press OK or ENTER to save the changes. To exit the screen without changing the settings, press
CANCL or anal.

NUMBER FORMAT: Press CHOOS or to select Standard, Fixed, Scientific or Engineering. If applicable, enter the desired number of decimal places.
ANGLE MEASURE: Press CHOOS or to select Degrees, Radians, or angular inputs and what angle measure is used to display angular outputs.
COORD SYSTEM: (Coordinate System) Press CHOOS or to select rectangular, polar or spherical. This setting determines whether complex numbers are displayed as (x, y) or $(\mathrm{r}, \Delta \theta$), and how vector functions interpret inputs and which coordinate system is used to display vector outputs.

From this screen you can also enable the standard beep, display a ticking clock, and change the fraction mark (FM) from "." to "," or vice versa. To change any other HP 48 system flags, press FLAGI. Refer to the HP 48G Series User's Guide.

Deleting CalcWare

CalcWare is customizable, allowing you to load into your HP 48 just the applications that you need at any given time. Once you are finished with an application, you can easily delete it from your HP 48 user memory to make room for another application. You can also delete the CalcWare shell and all CalcWare applications to free a significant amount of user memory in your HP 48.

To delete a CalcWare application

1. Use the and keys to move to the screen listing the application you wish to delete.
2. Use the $\boldsymbol{\nabla}$ and keys to select the name of the application you wish to delete.
3. Once the correct application has been selected, press $\begin{aligned} & \text { DEL } \\ & \text { to delete it. }\end{aligned}$

> CAUTION DELI will immediately delete the selected item from your HP 48 user memory. To reinstsall the item, download it from the computer again.

You can delete the following items with DEL :

- A single application, such as Trigonometric Functions
- A group of applications, such as Trigonometry
- An entire series, such as Mathematics

To delete the CalcWare shell and all applications

1. Go to the HP 48 stack. (If you are currently in CalcWare, press to exit and return to the stack.)
2. Press $\boldsymbol{\square}$ LeBidy to display the library menu.
3. Press CWWAR then DELET to delete CalcWare.

> CAUTION DELETI will delete the CalcWare shell and all applications from your HP 48 user memory. The HP 48 screen may blink or shift briefly to one side. This is normal.

[^0]
Analysis Routines

This chapter covers:

- Using an Analysis Routine

Example: Trigonometric Functions
Descriptions of Analysis Menu Keys
There are three types of CalcWare applications; the first is an analysis routine. Analysis routines perform some type of automated calculation and have fields for entering data, choosing inputs, and displaying results.

Using an Analysis Routine

1. Use the arrow keys to navigate to the desired analysis routine screen.
2. Enter values for all edit fields and select values for all choose fields.
3. Press SOLVE to calculate the results of the analysis, which will be displayed in result fields.
4. Optional: Press $\boldsymbol{\rightarrow} \boldsymbol{S T K}$ to copy the selected item to the stack for use in further calculations. The item will remain on the stack when you exit CalcWare.
5. When finished, press or $\boldsymbol{\square}$ to return to the previous screen or

Example: Trigonometric Functions

What is the secant of 45° ?

This problem can be solved using the Trigonometric Functions analysis routine. To install this application, follow the instructions on page 15 , "To install CalcWare applications onto the HP 48," and download the following file:

Computer File Structure © c:

calcware
\square tutorial
圈 tutrgfnc.anl $\rightarrow \quad$ Trigonometric Functions

Once the application has been downloaded, if you are not already in CalcWare, press CWAR CW to start CalcWare. Then enter the Trigonometric Functions screen by pressing these keys:

E HOME Home screen

- Tutorial
- Trigonometric Functions

NOTE When you enter the first CalcWare application screen for this product, you must enter the serial number that appears on the inside front cover of this manual.

Now that the Trigonometric Functions analysis routine has been installed and is running, the problem can be solved:

1. Set the modes (if necessary):
a. Press $\boldsymbol{\square}$ wess to go to the Calculator Modes screen.
b. Set the modes as listed in the Example heading above:

NUMBER FORMAT: Standard angle measure: Degrees COORD SYSTEM: Rectangular BEEP, CLOCK, FM: Your choice
c. Once the modes are set, press

OK or ENTER to save the mode settings and exit the Calculator Modes screen.
2. Move the highlight bar to the \mathbf{x} field (an edit field), type 45 and press ENIER.
3. At the Func field (a choose field), press CHOOS or ENIER to display the choices for the field. Move the highlight bar down to SEC and press OK or ENEE. Or, you can just press $7-1$ at the Func field to step through the choices.
4. Press SOLVE to calculate Result, ${ }^{2}$ which is 1.41421356237 .
5. Optional: At the Result field, press $\boldsymbol{\rightarrow} \rightarrow$ STK to copy the result to the stack for use in further calculations, once you exit CalcWare.
6. When finished, press or $\boldsymbol{\square}$ to return to the previous screen (in this case, Tutorial) or press $\boldsymbol{\square}$ nome to return to the home screen.

[^1]
Analysis Menu Keys

The menu keys in analysis routine screens change depending on the type of field that is highlighted．Analysis routine screens use three basic types of fields：edit fields，choose fields，and result fields．These fields and their associated menu keys are described below．The OPTSI and SOLVE menu keys are always present，regardless of the field type．

Edit fields

These fields accept values entered from the keyboard．In the example， \mathbf{X} is an edit field．

EDITI Edits the highlighted item．Press
OK to save editing changes or CANCL to cancel editing．
CALCI Copies the highlighted item to the HP 48 stack and allows you to view and／or manipulate the item at the stack．When you have
 finished editing the item at the stack，press OK to leave the stack and insert the edited item into the current edit field，or press CANCL to leave the stack without changing the value of the current edit field．
OPTS．Displays the Options menu．Refer to＂To use the Options menu，＂ page 17.
TYPES Displays the allowed object types，such as real number，list，real array，algebraic，etc．（see the table below）．Move the highlight bar to the desired input type and press NEW to enter a new item of that type，with the appropriate delimiters．Or press OK to return to the analysis screen without entering a new item．

To enter a	Such as	Type these keys
Real number	10	10
Complex number	$(1,2)$	可回回 2
Name	X	团
List	\｛223\}	T－ 2 sscd 2 spol 3
Real array	［123］	［旬1 1 spol 23
Complex array	［（1，2）（3，2）］	
Algebraic	＇SIN（X）＇	－ \sin 可
Binary integer	\＃123d	

SOLVE Performs a calculation using the entered values．The results are displayed in the result fields．If there are too many result fields to fit on the screen，they will be displayed in a separate result screen．

Choose fields

These fields only accept values from a predefined list that is accessed by pressing CHOOS. In the example, Func is a choose field.

CHOOS Displays the available choices for a choose field. Scroll through the list of choices by pressing \qquad and ∇ until the desired item is highlighted and press \square OK or ENIER, or press CANCL to abort
 the selection.
CALC. Copies the highlighted item to the HP 48 stack and allows you to view and/or manipulate the item at the stack. Edits made at the stack will not affect the value in a choose field. Press EXIT to leave the stack and return to CalcWare.
OPTS】 Displays the Options menu. See "To use the Options menu," page 17.
SOLVE Performs a calculation using the entered values. The results are displayed in the result fields. If there are too many result fields to fit on the screen, they will be displayed in a separate result screen.

Result fields

These fields display the results of a calculation. In the example, Result is a result field.
\rightarrow STK Copies the highlighted item to the HP 48 stack.
CALC. Copies the highlighted item to the HP 48 stack and allows you to view and/or manipulate the item at the stack. Edits made at

FSTE Cild	DPTS		

OPTS Displays the Options menu. See "To use the Options menu," page 17.
SOLVE Performs a calculation using the entered values. The result is displayed in the result fields. If there are too many result fields to fit on the screen, they will be displayed in a separate result screen.
EXIT (Result screens only) This key appears when there are too many result fields to fit on the input screen and a separate result screen is needed.
EXIT returns to the input screen.

NOTE Pressing \boldsymbol{H} Homa will not work at a result screen. To return to the home screen from a result screen, first press EXXIT to return to the input screen, then press \square Home.

3 Equation Sets

This chapter covers:

- Using an Equation Set

E Example: Right Triangles
O Overview of Equation Set Screens

- Equations Screen
- Solver Screen
- HP 48 PLOT Application Screen

A second type of CalcWare application is an equation set. Equation sets are lists of common related textbook equations which can be solved for unknown variables or plotted. Enter values of known variables and CalcWare will solve either for a specific variable or for all unknown variables. Calcware also provides a link to the HP 48 PLOT application for plotting equations.

Using an Equation Set

1. Use the arrow keys to navigate to the desired equation set screen.
2. Press SOLVR to enter the Solver screen.
3. Enter values for all known variables.
4. Press SOLVE to solve for all unknown variables, or move the highlight bar to an unknown variable and press SOLV11 to solve for that particular unknown variable.
5. When finished, press $\boldsymbol{\square}$ or to return to the previous screen or

Example: Right Triangle

Given that one side of a right triangle measures 5 cm and that the angle opposite that side measures 30 degrees, find the length of the other two sides, the other angle (besides the right angle), the area, and the perimeter of the triangle.

This problem can solved using the Right Triangles equation set. To download this application, follow the instructions on page 15, "To install CalcWare applications onto the HP 48," and download the following file:

```
Computer File Structure
c:\
    calcware
    tutorial
        且 turtetri.eqn 隹 Right Triangle
```

Once the application has been downloaded, if you are not already in
 Right Triangle Equations screen by pressing these keys:

Howe Home screen
\square Tutorial
\triangle Right Triangle

Right Triangle Equations screen

NOTE When you enter the first CalcWare application screen for this product, you must enter the serial number that appears on the inside front cover of this manual.

Now that the Right Triangles equation set has been installed and is running, the problem can be solved and plotted:

Solve the equation set

1. At the Equations screen, press SOLVR to go to the Solver screen.
2. Reset all the variable values by pressing NXT RESET OK , then NXT to return to the menu shown.
3. Display the picture by pressing

PICT. One side is known to be 5 cm and the angle opposite that side is known to be 30°. From the picture, it is apparent that the known side and angle are a and $\theta \mathbf{a}$, or \mathbf{b} and $\theta \mathbf{b}$-it makes no difference. Press any key to return to the Solver screen.

Right triangle picture
4. Enter the values for the known variables \mathbf{b} and $\theta \mathbf{b}$. Move the highlight bar to the appropriate variable name, type in the value, then select the units by pressing the indicated menu key:
Side b: Type 5 and press CM Angle b: Type 30 and press The entered variables are marked as known by \bullet.

5. Press SOLVE. The Solver solves for each unknown variable in turn.
6. To view the found variable values at the Solver screen, scroll through the variables list by pressing Δ and ∇. The found variables are those for which values were calculated and are marked by \odot. The known variable which were used to solve for the unknowns are now marked by 0 .
7. To change the units of a found variable (e.g., to view $\theta \mathbf{a}$ in degrees rather than radians), move the highlight bar to the appropriate variable, press CONV, and select the appropriate unit by pressing $\quad \circ$. The variable will

Found variables

Converted units be updated to the converted value and selected units.
8. The results can now be viewed by scrolling through the variable list by by pressing and $\boldsymbol{\nabla}$. Inspection shows $\mathbf{a}=8.66 \mathrm{~cm}, \mathbf{c}=10 \mathrm{~cm}, \theta \mathbf{a}=$ $60^{\circ}, \mathbf{A}=21.65 \mathrm{~cm}^{2}$, and per $=23.66 \mathrm{~cm}$.

Plot one equation

To plot the variation of the area \mathbf{A} with respect to the side length \mathbf{b}, for constant side length a:

1. Press EQNS to go to the Equations screen. Press $\overline{\mathrm{Nx} \mathrm{\top}}$ to display EEQNSI, if necessary.
2. Highlight the $A=1 / 2^{*} a^{*} b$ equation.
3. Press PLOTR to go to the HP 48 PLOT Application screen.
4. Enter $b(\square G B \square O K$) for the independent variable.
5. Enter 0 to 5 for \mathbf{H}-VIEW.
6. Highlight the AUTOSCALE check field for V-VIEW and press $\boldsymbol{\checkmark}$ CHK.

7. Press ERASE to erase any previous plots.
8. Press DRAW to draw the plot. The plot shows the linear relationship between the length of side \mathbf{b} and the area \mathbf{A} of the triangle when side \mathbf{a} is held constant.
9. When finished, press cancal anal or CANCL ankal to exit the HP 48 PLOT

Plot of $\mathrm{A}=1 / 2^{*} \mathrm{a} * \mathrm{~b}$ Application and return to the Equations screen.

Overview of Equation Set Screens

There are three main screens in equation sets for viewing, solving, and plotting. The Equations screen displays a group of related equations, which can be viewed in the HP 48 EquationWriter or copied to the stack. The Solver screen allows for the entering and converting of values, then solving for unknowns. The Plotter screen displays the HP 48 PLOT application which plots the selected equation. The relationship of these screens and several additional screens are indicated in the following diagram.

Equations Screen

HP 48 PLOT Application Screen

HP 48 PICTURE Environment

Solver Screen

Equations Screen

The Equations screen is the first screen seen when an equation set is entered. Equation screens display a list of related equations which can be graphically viewed or selected for solving. The screen to the right is the Equations screen for Right Triangles.

The Equations screen plays a central role in

Right Triangle Equations screen the CalcWare equation set application environment. From the Equations screen both the Solver screen and the HP 48 PLOT application are accessible. To enter the Solver from the Equations screen, press SOLVR; to return to the Equations screen, press EONSI. Similarly, the HP 48 PLOT application may be entered from the Equations screen by pressing PLOTE; to return to the CalcWare Equations screen press anala, or press N*x] then CANCI or OK Note that the Solver is not directly accessible from the HP 48 PLOT application, nor vice versa.

Equations menu keys

These are descriptions of the menu keys available at the Equations screen:
EQWR Displays the highlighted equation in the HP 48 EquationWriter. Refer to "Viewing equations," page 31.
CALCI Copies the highlighted item to the HP 48 stack and allows you to view and/or manipulate the

Right Triangle Equations screen item at the stack. Edits made at the stack will not affect the equation in the Equations screen. Press EXITI to leave the stack and return to CalcWare.
PICTI (if available) Displays a picture. This menu key will not appear for equation sets which do not have a picture. Refer to "Displaying a picture," page 31.
OPTS Displays the Options menu. Refer to "To use the Options menu," page 17.
PLOTR Goes to the HP 48 PLOT application. Refer to "HP 48 PLOT Application Screen," page 37.
SOLVR Goes to the Solver screen. Refer to "Solver Screen," page 31.

Viewing equations

To display an equation in a graphics view using the HP 48 EquationWriter, move the highlight bar to the desired equation and press EOWRI. Press aranal to return to the Equations screen.

Displaying a picture

Most equation sets have a diagram to illustrate the relationship of the variables. To display the diagram for the current equation set, press PICTI. This menu key appears in both the Equations and Solver screens when available. Press any key to return to the previous screen.

Right Triangle Picture screen

NOTE The sides of the right triangle shown above are represented by lowercase letters in the equation set, but appear as uppercase letters in the Picture screen. Variable names in pictures are always displayed in the uppercase small font, regardless of their case in the equations.

Solver Screen

The Solver screen allows for the input of values for each variable in the equation set. Variables can also be edited, copied to the stack, or converted to different units. Once the known variable values have been entered, the user can have the Solver solve for a single unknown variable, or for all unknown variables in the equation set. When the equation set is solved, any unknown variables which can be found are solved for, while the unknown variables which cannot be found from the information given are left blank. The Solver screen is accessible from the Equations screen by pressing SOLVR.

Comments about the Solver

If an equation has multiple roots, the Solver will only find the first one it encounters, although you can direct its search by entering a guess near the expected result. To use a guess, enter a value for the desired variable near the expected result, and then press IMARK to make sure the variable is not marked as known. The solver will use the current value of the variable as the starting point of its search.

The Solver can handle only real numbers or unit objects as inputs or results; complex numbers can only be used in analysis routines. If an equation has only complex roots, the Solver will probably halt at an extremum and return an incorrect real result. This is commonly indicated by the message, "Extremum," which appears during solving.

In general, apply common sense when interpreting any result returned by the Solver. When examining an important result, ask yourself: "Does this answer make physical sense?" If the Solver has come up with a negative area or an angle of 9000°, it has probably found a non-principal solution to the equation and needs assistance with a guess.

For more information, refer to the Equation Sets section of the Troubleshooting chapter.

Solving an equation

Below are general instructions for using Solver screens. For a detailed example using Right Triangles, see page 26.

1. Go to the Solver screen by pressing

SOLVR from the Equations screen.
2. Enter the known values:
a. Move the highlight bar to the desired variable.
b. Type in the value for the variable and press a unit menu key, or

EQLE CALC FICT DPTS PLDTE SLDNE
Right Triangle Solver screen press ENTER to accept the default SI unit, which is always listed as the first menu key. The variable is now known and marked by \bullet.
3. Solve for unknown variables:

- One variable: To solve for one variable, move the highlight bar to the desired unknown variable and press SOLV1.
- All variables: To solve for all the unknown variables press SOLVE.

4. The found variables are indicated by \odot, and the known variables which were used to find them are indicated by 0 . Refer to "Solver icons," page 34.
5. Optional: To see which equations were used to solve for the found variables, go to the Answer screen by pressing NXT ANS. Then press EQNS to display the equations used. Refer to "Answer screens," page 36. When you are finished, press EXIT to return to the Solver screen,
6. Optional: Press to return to the previous screen or press $\boldsymbol{\square} \boldsymbol{\pi}$ return to the home screen.

Changing the value of a variable

To edit the existing value of a variable:

1. Move the highlight bar to the desired variable and press ENIER or EDIT to place it on the edit line.
2. Edit the value.
3. After you have finished editing the value, press a unit menu key (or ENTER to accept the default SI unit) to change the value or aral to cancel the change.

To replace the value of a variable:

1. Move the highlight bar to the variable.
2. Type in the new value.
3. Press ENTER or a unit menu key to complete the entry.

Any time you edit or change a value, that variable becomes known, and indicated by \bullet. Refer to "Solver icons," page 34.

Resetting variables

To reset the values of variables, press RET RESET. This will clear the values of all variables at the Solver screen and purge the variables from user memory.

Converting a value

Once a variable value has been entered or solved for, it can easily be converted to different units. To do this, highlight the desired variable and press CONV. The value is placed on the edit line and the units available for the highlighted variable are displayed as menu keys (press $\overline{\mathrm{NXT}}$ for more units, if appropriate).
Press a unit menu key to convert the value to the new unit, or press ancal to cancel the conversion.

Changing the font size

The small font shows variables only in uppercase, which makes it difficult to distinguish between an a and an \mathbf{A}. However, it does allow more data to be displayed on the screen, making it easier to see your results. To change the font:

1. Press OPTS FONT to switch to the larger font, which is case-sensitive. Also, pressing HELP - to turn help text off provides more room on the screen so that more of the variables can be displayed at once.
2. Press EEXIT to leave the Options menu and return to the Solver screen.

Solver icons

There are several different symbols or icons used to identify different kinds of variables.

- Known Variables

A solid circle (${ }^{\bullet}$) indicates that a variable is known. The values of known variables are never changed by the Solver, because those variables are considered user-defined. Every time you enter a value for a variable, the variable is automatically marked as known. To remove the known icon from a variable, move the highlight bar to the variable and press MARK (if necessary press $\overline{\mathrm{NXT}}$ first) and the solid circle will disappear, which means the variable is unknown.

\bigcirc Found Variable

A circle with a dot in the middle ($\odot)$ indicates that a solution was found for the variable by the Solver during the most recent solve operation.

- Used Variable

A black circle with a white dot in the middle (O) indicates that this known variable was used by the Solver in finding answers for the found variables during the most recent solve operation.

Solver screen menu keys

These are descriptions of the menu keys available at the Solver screen:
EDIT Edits the highlighted variable. Press ENTER to save edit changes or ara to cancel editing.
CALC. Copies the highlighted item to the HP 48 stack and allows you to view and/or manipulate the item at the stack. When you have finished editing the item at the
 stack, press OK to leave the stack and insert the edited item into the current edit field, or press CANCL to leave the stack without changing the value of the current edit field.
PICT (if available) Displays a picture. This menu key will not appear for equation sets which do not have a picture.
OPTS. Displays the Options menu. Refer to "To use the Options menu," page 17.
SOLV1 Solves for the highlighted variable only using the known variables. Refer to "Solving an equation," page 32.
SOLVE Solves for all the unknown variables using the known variables. Refer to "Solving an equation," page 32.

Press $\overline{\mathrm{NXT}}$ for the following menu keys:
MARK Marks or unmarks the highlighted variable as known. Refer to "Known Variables," page 34.
CONV Converts the value of the highlighted variable to a different unit. Refer to "Converting a value," page 33.

RESET Resets all of the variables. Refer to "Resetting variables," page 33.
ANS Goes to the Answer screen. Refer to "Answer screens," page 36.
EQNS Goes to the Equations screen. Refer to "Equations Screen," page 30.

Answer screens

After the Solver finishes solving for the unknown variables, the equations used for solving may be viewed in the Answer screen. To enter the Answer screen from the Equations screen, press ANS. Only the found variables are displayed at the Answer screen, initially with their
 numerical values. To view the equations used to find each variable, press EQNS. When you are finished, press EXIT to return to the Solver screen.

Answer screen menu keys

These are descriptions of the menu keys available at the Answer screen:
VALUE Displays the numerical values of the found variables. When the values are displayed, the menu key is VALU.
EQNS Displays the equations which the Solver used to compute the found variable values from the known variables. When the equations are displayed, the menu key is EQRN.
PRINT Prints the Answer screen via the IR or the serial port. Refer to the HP 48G Series User's Guide.
EXIT Returns to the Solver screen.

HP 48 PLOT Application Screen

The HP 48 PLOT application screen enables you to plot any of the equations listed in the Equations screen. A variety of plot parameters can be specified. The HP 48 PICTURE environment is used to display the plots.

Below are general instructions for using the HP 48 PLOT Application. For a detailed example using Right Triangles, see page 26.

Plotting an equation

1. Set the values of any extra variables at the Solver screen. Only the independent and dependent variables will vary as the equation is plotted, so all other variables must have values.
a. Press SOLVR to go to the Solver screen.
b. Move the highlight bar to each of the extra variables in turn and enter values for them.
c. Press EQNS to return to the Equations screen.
2. Highlight the desired equation and press PLOTR to go to the HP 48 PLOT application.
3. Move the highlight bar to the INDEP field and type in the independent variable.
4. Move the highlight bar to the H -VIEW

PLD			
```TMPE: Funict ion s: Deg EQ: \(\quad\) ■^こ= INDEP: 6 H-YIEW: 0```			

HP 48 PLOT Application screen field and enter values for the range of the horizontal axis in the plot.
5. Set the vertical range or choose autoscale.

- To set the vertical range: Move the highlight bar to the V-VIEW field and enter values for the range of the vertical axis in the plot.
- To autoscale the plot: Move the highlight bar to the AUTOSCALE field and press $\mathbf{V C H K}$.

6. Press ERASE to erase any previous plots. You can overlay multiple plots by pressing IDRAWI more than once with different parameters without pressing ERASE between plots.
7. Press DRAW to plot the equation.
8. Press CANCL to return to the HP 48 PLOT application.
9. When finished, press [awad or CANCL to exit the plot application and return to the Equations screen.


HP 48 PLOT Application DRAW screen

## HP 48 PLOT Application fields

These are descriptions of each of the fields which appear in the HP 48 PLOT application. Refer to the HP 48G Series User's Guide.

TYPE: (Plot type) This field must always be set to Function.
८: (Angle measure) Press CHOOS to select Degrees, Radians, or Grads.
EQ: (Equation to plot) This is the equation to be plotted.
INDEP: (Independent variable) Enter the
 independent variable, which varies across the horizontal axis.
H-VIEW: (Horizontal range) Enter the minimum and maximum values of the independent variable view, which is plotted along the horizontal axis.
V-VIEW: (Vertical range) Enter the minimum and maximum values of the dependent variable view, which is plotted along the vertical axis.
AUTOSCALE: (Autoscale vertical axis) Press TVCHK to autoscale the plot. If autoscale is checked $(\checkmark)$, the values for $\mathbf{V}$-VIEW are changed to Auto.

## HP 48 PLOT Application menu keys

The menu keys in the PLOT Application screen change depending on the type of field that is highlighted. HP 48 PLOT Application screens use three basic types of fields: edit fields, choose fields, and check fields. These fields and their associated menu keys are outlined below. The IOPTSI, ERASE and DRAWI menu keys are always present, regardless of the field type.

## Edit Fields

These fields accept values entered from the keyboard. INDEP, H-VIEW, and $\mathbf{V}$-VIEW are edit fields.

EEDIT Edits the highlighted item. Press OK to save edit changes or CANCI to cancel editing.
OPTS】 Displays the Plot Options screen. Refer to "Plot Options screen," page 40.


ERASE Erases any previous plots.
DRAW Plots the current equation.

## Choose Fields

These fields only accept values from a pre-defined list that is accessed by pressing CHOOS. TYPE and $\Delta$ are choose fields.

EDIT (for EQ only) Edits the highlighted item. Press OK to save edit changes or CANCL to cancel editing.
CHOOS Displays the possible choices for a choose field. Highlight the desired value and press ENTER or


OK , or press CANCL to abort the selection.
OPTS. Displays the Plot Options screen. Refer to "Plot Options screen," page 40.
ERASE Erases any previous plots.
DRAW Plots the current equation. You can overlay multiple plots by pressing DRAW more than once with different parameters without pressing ERASE between plots.

## Check Fields

These fields are toggle fields. A $\checkmark$ in front of the field turns that specific control on. AUTOSCALE is a check field.
$\sqrt{ }$ CHK Toggles a check mark.
OPTS Displays the Plot Options screen. Refer to "Plot Options screen," page 40.
ERASE Erases any previous plots.
DRAW Plots the current equation.


In all fields, press for these menu keys:
RESET Resets the values for the plot parameters, or resets the plot.
CALC. Copies the highlighted item to the HP 48 stack and allows you to view and/or manipulate the item at the stack. When you have finished editing the item at the
 stack, press OK to leave the stack and insert the edited item into the current edit field, or press CANCL to leave the stack without changing the value of the current edit field.

TYPES Displays the allowed object types, such as real number, list, real array, algebraic, etc. (see the table on page 23). Move the highlight bar to the desired input type and press ■NEW to enter a new item of that type, with the appropriate delimiters. Or press $\square$ OK to return to the the PLOT application screen without entering a new item.
CANCL Returns to the previous screen without saving any parameter changes. Saves any parameter changes and returns to the previous screen.

## Plot Options screen

Additional plot parameters can be set in the Plot Options screen. These plot parameters should be left at their default settings when using CalcWare, with the exceptions noted below. To get to this screen, press OPTS at the Plotter screen. Refer to "Function Plots" in the HP 48G Series User's Guide.

AXES: (Draw axes) Press $\sqrt{ }$ CHK to determine whether the coordinate axes are drawn with the plot. If AXES is checked $(\checkmark)$, the axes are drawn.
CONNECT: (Connect plot points) Press

$\checkmark$ CHK to determine whether the plot points are connected by short line segments. If CONNECT is checked $(\checkmark)$, the points are connected.
STEP: (Independent variable increments) Enter the horizontal distance between plotted points, which determines the resolution of the plot.
PIXELS: ("Step" units are pixels) Determines whether the value in STEP is interpreted as pixels or units. If PIXELS is checked $(\checkmark)$, the STEP values are interpreted as pixels.
H-TICK: (Horizontal tick spacing) Enter the distance between tick marks on the horizontal axis.
V-TICK: (Vertical tick spacing) Enter the distance between tick marks on the vertical axis.
PIXELS: ("Tick" units are pixels) Press $\mathbb{C C H K}$ to determine whether the values in H-TICK and V-TICK are interpreted as pixels or units. If PIXELS is checked $(\checkmark)$, the TICK values are interpreted as pixels.

## 4 Reference Tables

This chapter covers:
Using a Reference Table

- Example: SI Prefixes
- Descriptions of Reference Menu Keys

A third type of CalcWare application is a reference table. Reference tables display information organized in the same manner as a printed reference book. The information may consist of data, equations, text, or a combination of these types. Some reference tables are more advanced and can perform calculations, much like analysis routines.

## Using a Reference Table

1. Use the arrow keys to navigate to the desired reference table screen.
2. Choose parameters (if appropriate). Some reference tables have choose fields which control the specific data to be displayed, while other reference tables consist of only one table of data.
3. Locate the specific item of interest using the arrow keys. With some reference tables, you can press DESC to toggle the positions of the reference data and the help text, which may make it easier to find the desired item.
4. Optional: Press $\boldsymbol{\rightarrow} \boldsymbol{S}$ TK to copy the selected item to the stack for use in further calculations. The item will remain on the stack when you exit CalcWare.
5. Optional: Press CALC $\nabla$ to view the selected equation in the HP 48 EquationWriter; press analard to exit the EquationWriter to the HP 48 stack, then EXITTI to return to CalcWare.
6. When finished, press $\boldsymbol{4}$ or to return to the previous screen or press $\boldsymbol{B}$ Bows to return to the home screen.

For more advanced reference tables which perform calculations, the basic steps are similar to those used in analysis routines, as described in "Using an Analysis Routine" page 20. Solving reference tables will always have a SOLVE menu key.

What is the SI prefix for a bigillion?
This problem can be solved using the SI Prefixes reference table. To install this application, follow the instructions on page 15, "To install CalcWare applications onto the HP 48," and download the following file:

## Computer File Structure $0 \mathrm{c}: 1$


calcware
tutorial
( : tusipref.ref

HP 48 CalcWare Structure

Tutorial
$\rightarrow \quad$ SI Prefixes

Once the application has been downloaded, if you are not already in CalcWare, press $⿴ 囗 \rightarrow$ CBARMAR CW to start CalcWare. Then enter the SI Prefixes screen pressing these keys:

Drame Hom
Tutorial
$\triangle$ SI Prefixes


NOTE When you enter the first CalcWare application screen for this product, you must enter the serial number that appears on the inside front cover of this manual.

Now that the SI Prefixes reference table has been installed and is running, the problem can be solved:

1. Scroll through the reference table by pressing $\triangle$ and $\square$.
2. Each line shows an SI prefix and the power of ten which it represents.
3. The full name of the highlighted prefix is shown in the help text.
4. To browse the prefixes by name instead of powers of ten, press DESC. Each line now shows the SI prefixes and the full name, while the help text displays the power of ten represented.
5. Careful inspection shows that $Z$ (zetta) is the prefix for $10^{21}$ and $Y$ (yotta) represents $10^{24}$. Although these numbers are very large, they're not quite large enough. It can only be speculated that the standards committee ran out of capital letters before they got to a bigillion....

## Reference Menu Keys

These are descriptions of the menu keys available at reference table screens:
$\rightarrow$ STK Copies the highlighted item to the HP 48 stack.
CALC. Copies the highlighted item to the HP 48 stack and allows you to view and/or manipulate the item at the stack. Edits made at the stack will not affect the data
 in the reference table. Press EXIT to leave the stack and return to CalcWare.
PICT (if available) Displays a picture. This menu key will not appear for reference tables which do not have a picture.
OPTS. Displays the Options menu. Refer to "To use the Options menu," page 17.
DESC. (if available) Toggles positions of the reference data and the help text. This menu key will not appear for reference tables which do not contain switchable information.
SOLVE (if available) Performs a custom calculation using the data in the reference table. This menu key will not appear for reference tables which do not have a custom solving routine. The details of the calculation will be explained in the relevant chapter.

## Part 2

## Physics Series

## Mechanics \& Thermodynamics

Mathematics<br>Algebraic Functions<br>Taylor Polynomial<br>Coordinate Systems<br>$X Y \leftrightarrow$ Polar<br>$X Y Z \leftrightarrow$ Cylindrical<br>$X Y Z \leftrightarrow$ Spherical<br>Hyperbolics<br>Hyperbolic Functions<br>Trigonometry<br>Trigonometric Functions<br>Vectors<br>Vector Functions<br>Cross Products<br>Curl<br>Del Operator<br>Divergence<br>Dot Products<br>Gradient<br>Laplacian<br>Physics<br>Angular Mechanics<br>Angular Motion<br>Banked Curves<br>Circular Motion<br>Momentum and Precession<br>Momentum, Torque, and Work<br>Parallel Axis Theorem<br>Moments of Inertia<br>Fluid Mechanics<br>Bernoulli's Equation<br>Flow Velocity<br>Poiseuille's Law<br>Pressure and Density<br>Pressure Variation<br>Reynolds Number<br>Stokes' Law

Forces
Drag Force
Frictional Force
Coefficients of Friction ( $\mu$ )
Gravitation
Escape Velocity
Free Falling Object
Gravitational Force
Orbits (Circular)
Orbits (Elliptical)
Projectile Motion
Terminal Velocity
Linear Mechanics
Center of Mass
Collisions (Elastic)
Collisions (Elastic, Fixed m2)
Collisions (Inelastic)
Linear Motion
Momentum, Force, and Work
Rocket Science
Object Centroids
Thermodynamics
Adiabatic Expansion
Carnot Cycle
Entropy
First Law of Thermodynamics
Heat Capacity
Heat Engines \& Refrigerators
Heat of Transformation
Ideal Gas Law
Isothermal Expansion
Thermal Conduction
Thermal Expansion
Coef. of Linear Expansion ( $\alpha$ )

## 5 Algebraic Functions

This chapter covers:
T. Taylor Polynomial

## To install Algebraic Functions

1. Send the files marked with "冒" below from the computer to the HP 48 . See "To install CalcWare applications onto the HP 48," page 15.
2. Start CalcWare by pressing $\boldsymbol{\square}$ CBFAMARICW and go to the Algebraic Functions screen.

## Computer File Structure

E c:
E calcware
$\square$ math
algebra
taylorx.anl

HP 48 CalcWare Structure

Mathematics
Algebraic Functions
Taylor Polynomial

## Taylor Polynomial

\&This application computes the Taylor polynomial of a function to the specified order about a given point.

## Standard <br> Example <br> Radians Rectangular

What is the 2nd-order Taylor polynomial of $\sin (x)$ about the point $x=2$ ?

1. Enter 'SIN(X)' for Expr by typing - Sin X Enier.
2. If necessary, enter $X$ for Var.
3. Enter 2 for Order and 2 for Point. (Note: Press in you need to
 set the angle measure to radians.)
4. Press SOLVE to calculate Result.

This application extends the built-in HP 48 routine TAYLR to allow for expansion of the Taylor polynomial about any point. The built-in HP 48 routine actually does a Maclaurin series expansion about the point 0 .

## 6 Coordinate Systems

This chapter covers：
［ XY $\leftrightarrow$ Polar
－XYZ $\leftrightarrow$ Cylindrical
－XYZ $\leftrightarrow$ Spherical

## To install Coordinate Systems

1．Send the files marked with＂旌＂below from the computer to the HP 48 ． See＂To install CalcWare applications onto the HP 48，＂page 15.
 Coordinate Systems screen．

## Computer File Structure

$\because \mathbf{c}: 1$
calcware
math
Foord＿sys
置 xypolar．eqn
xyzcyln．eqn $\rightarrow$
圈 xyzsphr．eqn

HP 48 CalcWare Structure

Mathematics
Coordinate Systems $X Y \leftrightarrow$ Polar $X Y Z \leftrightarrow$ Cylindrical
$X Y Z \leftrightarrow$ Spherical

## Variables

The table below lists all the variables used in this chapter, along with a brief description and the default SI unit.

Variable	Description	SI Unit
$\varnothing$	azimuthal angle	r
$\theta$	polar angle	r
r	radial distance	unitless
x	abscissa	unitless
y	ordinate	unitless
z	z-axis distance	unitless

Example: What is the location of the Cartesian point $(7,13)$ in polar coordinates?

Given:

$$
\begin{aligned}
& \mathbf{x}=7 \\
& \mathbf{y}=13
\end{aligned}
$$

Results: $\quad \mathbf{r}=14.76$
$\theta=1.07 \mathrm{r}$

$$
=61.7^{\circ}
$$

## $X Y \leftrightarrow$ Polar

$Y=$ These equations describe the relationship between Cartesian and polar coordinates in two dimensions. The first two equations define $\mathbf{x}$ and $\mathbf{y}$ coordinate values in terms of $\mathbf{r}$ and $\theta$. The last two equations show the inverse relationship between $\mathbf{r}, \theta$ and $\mathbf{x}, \mathbf{y}$. When solving for $\theta$, an appropriate initial guess may help the solver find a solution in the desired quadrant.

$x=r \cdot \cos (\theta)$

$$
r=\sqrt{x^{2}+y^{2}}
$$

$y=r \cdot \operatorname{SIN}(\theta)$
$\theta=\operatorname{ASIN}\left(\frac{y}{r}\right]$

These equations describe the relationship between Cartesian and cylindrical coordinates in three dimensions. The first three equations define the relationship between the Cartesian coordinates $\mathbf{x}, \mathbf{y}$ and $\mathbf{z}$ and the cylindrical coordinates $\mathbf{r}, \theta$ and $\mathbf{z}$. The last two equations show the inverse relationship between $\mathbf{r}, \theta$ and $\mathbf{x}, \mathbf{y}$. When solving for $\theta$, an appropriate initial guess may help the solver find a solution in the desired quadrant.


$x=r \cdot \operatorname{CoS}(\theta)$	$y=r \cdot \operatorname{SIN}(\theta)$	$z=z$
$r=\sqrt{x^{2}+y^{2}}$	$\theta=\operatorname{ASIN}\left(\frac{y}{r}\right)$	

## $\mathbf{X Y Z} \leftrightarrow$ Spherical

Mathematics Series
$X Y Z \leftrightarrow$ Spherical
$Y=$ These equations describe the relationship between Cartesian and spherical coordinates. The first three equations show the relationship between the Cartesian coordinates $\mathbf{x}, \mathbf{y}$ and $\mathbf{z}$ and the spherical coordinates $\mathbf{r}, \theta$ and $\varnothing$. The last three equations show the inverse relationship between $\mathbf{r}, \theta$ and $\varnothing$ and $\mathbf{x}, \mathbf{y}$ and $\mathbf{z}$. When solving for $\theta$ or $\varnothing$ an appropriate initial guess may help the solver find a solution in the desired quadrant.


$$
\begin{gathered}
x=r \cdot \operatorname{COS}(\theta) \cdot \operatorname{SIN}(x) \quad y=r \cdot \operatorname{SIN}(\theta) \cdot \operatorname{SIN} \\
r=\sqrt{x^{2}+y^{2}+z^{2}} \quad \theta=\operatorname{ATAN}\left(\frac{y}{x}\right)
\end{gathered}
$$

$$
z=r \cdot \cos (\phi)
$$

## Mathematics Series

## r Hyperbolics

## 7 <br> Hyperbolics

This chapter covers:
$\square$ Hyperbolic Functions

## To install Hyperbolics

1. Send the files marked with "冨" below from the computer to the HP 48. See "To install CalcW are applications onto the HP 48," page 15.
2. Start CalcWare by pressing $\boldsymbol{\square}$ LeARPV CWAR CW and go to the Hyperbolics screen.

## Computer File Structure

B c:
B calcware
$\square$ math
$\square$ hyperbol
图 hyprfunc.anl

HP 48 CalcWare Structure

Mathematics Hyperbolics

Hyperbolic Functions

## Hyperbolic Functions

$\varangle$ This application covers the hyperbolic functions and their inverses:

- SINH
- COSH
- TANH
- COTH
- SECH
- CSCH
- ASINH
- ACOSH
- ATANH
- ACOTH
- ASECH
- ACSCH


## Example

What is the hyperbolic secant of 0.5 ?

1. Enter 0.5 for $\mathbf{X}$.
2. Choose SECH for Func.
3. Press SOLVE to calculate Result.

FSTK CiLC IPTS	SDLDE

Mathematics Series
r Trigonometry

## 8 Trigonometry

This chapter covers：
Trigonometric Functions

## To install Trigonometry

1．Send the files marked with＂冒＂below from the computer to the HP 48. See＂To install CalcWare applications onto the HP 48，＂page 15.

2．Start CalcWare by pressing $\boldsymbol{\square}$ 比桝 CWAR CW and go to the Trigonometry screen．

Computer File Structure
$\mathrm{c}: 1$
calcware
$\square$ math
$\square$ trig
置 trigfunc．anl

HP 48 CalcWare Structure

## Mathematics

Trigonometry Trigonometric Functions

## Trigonometric Functions

This application covers the trigonometric functions and their inverses:

- SIN
- ASIN
- COS
- ACOS
- TAN
- ATAN
- COT
- ACOT
- SEC
- ASEC
- CSC
- ACSC


## Example

What is the secant of $45^{\circ}$ ?

1. Enter 45 for $\mathbf{X}$.
2. Choose SEC for Func.
3. Press SOLVE to calculate Result. If your result differs, press $\boldsymbol{\nabla}$ woss to
 set the angle measure to degrees and re-solve.

## Mathematics Series

## ，Vectors

## 9 vectors

This chapter covers：
－Vector Functions
－Vectors

## To install Vectors

1．Send the files marked with＂馆＂below from the computer to the HP 48. See＂To install CalcWare applications onto the HP 48，＂page 15.

## 2．Start CalcWare by pressing 且 CRWARICW and go to the Vectors screen．

Computer File Structure
$\square \mathrm{c}: 1$
$\square$ calcware
$\square$ math
$\square$ vectors
目 vectfunc．anl
置 vectcros．ref
圊 vectcurl．ref
图 vectdel．ref
目 vectdiv．ref
T）vectdot．ref
且 vectgrad．ref
目 vectlapl．ref

HP 48 CalcWare Structure

Mathematics
Vectors
Vector Functions
Cross Products
Curl
Del Operator
Divergence
Dot Products
Gradient
Laplacian

This application covers several vector functions:

- Gradient
- Curl
- Divergence
- Laplacian


## Example

## Standard

Degrees Rectangular

What is the Laplacian of $\ln (\mathrm{R})$ in spherical coordinates?

1. Choose Laplacian for Function.
2. Choose Spherical for Coord.
3. Enter 'LN(R)' for $\mathbf{F}(\mathbf{R}, \mathbf{T}, \mathbf{P})$ by typing $\square \longrightarrow$ LN ENTER.
4. Press SOLVE to calculate $\mathbf{F}(\mathbf{R}, \mathbf{T}, \mathbf{P})$,
 (the result).
5. Simplify the result at the stack. To do this, move the highlight bar to the last field and press CALC. Then press $\boldsymbol{\square}$ COLCT. The simplified result is $1 / \mathrm{R}^{2}$.
6. Press to return to CalcWare.


NOTE Changing Coord will affect the mode setting of the HP 48. To return to the previous mode setting, press $\sim$ booss to enter the Calculator Modes screen and reset the coordinate system.

There are several Vectors reference tables, all of which contain information that can be viewed or copied to the stack:

- Cross Product
- Dot Product
- Curl
- Del Operator
- Gradient
- Laplacian
- Divergence

Standard
Degrees
Rectangular

What is the formula for divergence in spherical coordinates?

1. Move the highlight bar to

Divergence and press ENTER or $\Delta$.
The fifth formula is the answer.
2. Optional: To view the formula in the EquationWriter, press CALC then V. If necessary, press $\qquad$ and to scroll to the right and left. When you have finished viewing the formula, press analay and then EXIT to exit the EquationWriter and return to CalcWare.


## Example



In these equations, the vector components of the function F are indicated by $\mathbf{F X}, \mathbf{F Y}, \mathbf{F R}, \mathbf{F} \theta$, etc. These correspond to the standard notation $\mathrm{F}_{\mathrm{X}}, \mathrm{F}_{\mathrm{Y}}, \mathrm{F}_{\mathrm{R}}, \mathrm{F}_{\theta}$, etc. Also, the convention used is that $\theta$ is the polar angle, while $\varnothing$ is the azimuthal angle.

## 10 Angular Mechanics

This chapter covers：
$\square$ Angular Motion
B Banked Curves
－Circular Motion
－Momentum and Precession
Momentum，Torque，and Work
$\square$ Parallel Axis Theorem
$\square$ Moments of Inertia

## To install Angular Mechanics

1．Send the files marked with＂艮＂below from the computer to the HP 48. See＂To install CalcWare applications onto the HP 48，＂page 15.

2．Start CalcWare by pressing CW LleRtary CWAR and go to the Angular Mechanics screen．

Computer File Structure
$\because \mathrm{c}: 1$
calcware
physics
angular
管 angmotn．eqn $\rightarrow$
－it bankcurv．eqn $\rightarrow$
R circmotn．eqn $\rightarrow$
冨 momnprec．eqn $\rightarrow$
䍚 momntorq．eqn $\rightarrow$
圈 parlaxis．eqn $\rightarrow$
圈 momniner．eqn $\rightarrow$

HP 48 CalcWare Structure

## Physics

Angular Mechanics
Angular Motion
Banked Curves
Circular Motion
Momentum and Precession
Momentum，Torque，and Work
Parallel Axis Theorem
Moments of Inertia

## Variables

The table below lists all the variables used in this chapter, along with a brief description and the default SI unit.

Variable	Description	SI Unit
a	total acceleration	$\mathrm{m} / \mathrm{s}^{2}$
ac	centripetal acceleration	$\mathrm{m} / \mathrm{s}^{2}$
at	tangential acceleration	$\mathrm{m} / \mathrm{s}^{2}$
f	frequency	Hz
Fc	centripetal force	N
I	moment of inertia	$\mathrm{kg} / \mathrm{m}^{2}$
Icm	I at center of mass	$\mathrm{kg} / \mathrm{m}^{2}$
Kf	final kinetic energy	J
Ki	initial kinetic energy	J
L	angular momentum	$\mathrm{kg} \mathrm{m} / \mathrm{s}$
m	mass	kg
N	normal force	N
Pavg	average power	W
pt	tangential momentum	$\mathrm{kg} \mathrm{m} / \mathrm{s}$
r	radius	m
s	arc length	m
T	period	s
t	time	s
$v$	velocity	$\mathrm{m} / \mathrm{s}$
vt	tangential velocity	$\mathrm{m} / \mathrm{s}$
W	work	J
x	x position	m
y	y position	$\mathrm{m}$
$\alpha$	angular acceleration	$\mathrm{r} / \mathrm{s}^{2}$
$\theta$	angular displacement	r
$\theta \mathrm{b}$	bank angle	r
$\theta \mathrm{f}$	final angular displacement	r
$\theta \mathrm{i}$	initial angular displacement	r
$\tau$	torque	N m
$\omega$	angular velocity	r/s
$\Omega$	precession rate	r/s
$\omega$ avg	average angular velocity	r/s
$\omega \mathrm{f}$	final angular velocity	r/s
$\omega \mathrm{i}$	initial angular velocity	r/s

A car is going around a curve of radius 700 m , banked at an angle of $7^{\circ}$. How fast can it go before it will escape the road?

Given:

$$
\begin{array}{lrl}
\theta \mathbf{b}=7^{\circ} & \text { Result: } & \mathbf{v}=29 \mathrm{~m} / \mathrm{s} \\
\mathbf{r} & =700 \mathrm{~m} & \\
& =65 \mathrm{mph}
\end{array}
$$

If the mass of the car is known, the normal force can also be calculated.

## Angular Motion

These equations describe the fundamentals of Newtonian angular motion at constant angular acceleration $\alpha$. The first equation computes the final angular velocity $\omega \mathbf{f}$ using the initial angular velocity $\omega \mathbf{i}$, time t , and $\alpha$. The second equation relates $\omega \mathrm{f}$ to the change in angular position $\theta \mathbf{f}-\theta \mathbf{i}$. The next two equations compute the average angular velocity $\omega$ avg. The last three equations compute the final angular position, $\theta \mathbf{f}$.


$$
\begin{aligned}
& \omega f=\omega i+\alpha \cdot t \quad \omega f^{2}=\omega i^{2}+2 \cdot \alpha \cdot(\theta f-\theta i) \quad \omega a v g=\frac{1}{2} \cdot(\omega i+\omega f) \\
& \omega a v g=\frac{(\theta f-\theta i)}{t} \quad \theta f=\theta i+\omega i \cdot t+\frac{1}{2} \cdot \alpha \cdot t^{2} \quad \theta f=\theta i+\omega f \cdot t-\frac{1}{2} \cdot \alpha \cdot t^{2} \\
& \theta f=\theta i+\omega a u g \cdot t
\end{aligned}
$$

## Banked Curves

Physics Series
Angular Mechanics
Banked Curves

回
These equations describe a vehicle moving along a banked curve. They allow calculations of the bank angle $\theta$ for specified maximum velocity $\mathbf{v}$ and curve radius $\mathbf{r}$.


$$
N \cdot \operatorname{SIN}(\theta b)=\frac{m \cdot v^{2}}{r} \quad N \cdot \operatorname{COS}(\theta b)=m \cdot 9 \quad \operatorname{TAN}(\theta b)=\frac{v^{2}}{r^{\prime} \cdot 9}
$$

## Circular Motion

$Y=$
These equations describe circular motion (angular motion at constant radius). They relate centripetal force, arc length, linear position, angle, tangential velocity, and centripetal and tangential acceleration. The expressions involving the frequency and period may be used only when the angular acceleration vanishes.


$$
\begin{array}{lcr}
\text { Fi=m.ac } & a c=\frac{u t^{2}}{r} & a c=w^{2} r \\
a t=\alpha \cdot r & a^{2}=a t^{2}+a c^{2} & u t=\omega r \\
s=r \cdot \theta & x=r \cdot \cos (\theta) & y=r \cdot \sin (\theta) \\
r^{2}=x^{2}+y^{2} & \omega=2 \cdot \pi \cdot f & T=\frac{1}{f}
\end{array}
$$

## Momentum and Precession

- Momentum and Precession

These equations cover the angular momentum and precession of an object in terms of its moment of inertia and angular velocity.
$L=I \cdot$
$I=m \cdot r^{2}$
$9=\frac{\text { M" } 94}{I \cdot 6}$
$\mathrm{w}=2 \cdot \pi \cdot f$
$T=\frac{1}{f}$

## Momentum, Torque, and Work

These equations relate angular momentum, work, kinetic energy, torque, and particle angular momentum. The first three equations define $\tau, \mathbf{K i}$ and $\mathbf{K f}$, the torque, initial and final kinetic energies of an object with moment of inertia I and initial and final angular velocities $\omega \boldsymbol{i}$ and $\omega \mathbf{f}$. The fourth equation gives the work done on the object in terms of the change in kinetic energy. The next two equations compute the work done by a constant external torque $\tau$, and also Pav, the average power expended in time $\mathbf{t}$. The last three equations give the angular momentum of a particle at distance $\mathbf{r}$ from a fixed axis, in terms of its tangential velocity $\mathbf{v t}$ and tangential momentum pt.


$\tau=I \cdot \alpha$	$K i=\frac{1}{2} \cdot I \omega i^{2}$	$K f=\frac{1}{2} \cdot I \cdot \omega f^{2}$
$W=K f-K_{i}$	$W=\tau \cdot(\theta f-\theta i)$	Pavg= $=\frac{W}{t}$
$L=$ Ft.r	$L=m u t \cdot r$	Pt=mut

## Parallel Axis Theorem

Physics Series
Angular Mechanics
Parallel Axis Theorem
$Y=$ The parallel axis theorem relates the moment of inertia of a body about its centroid (center of mass) Icm to the moment of inertia about a point a distance $\mathbf{r}$ from the center of mass.

$$
\mathrm{I}=\mathrm{I} c m+m \cdot r^{2}
$$

## Moments of Inertia

The Moments of Inertia reference table contains moment of inertia information for twelve solids. The information can be viewed or copied to the stack.

## Standard <br> Example

Where are the moments of inertia for a cone?

1. Move the highlight bar to BODY, press CHOOS, and highlight Cone and press OK .
2. Scroll through the data list by pressing $\boldsymbol{\square}$ and $\boldsymbol{\nabla}$. The moments of inertia are identified in the help
 text.

## 11 <br> Fluid Mechanics

This chapter covers：
$\square$ Bernoulli＇s Equation
$\square$ Flow Velocity
$\square$ Poiseuille＇s Law
$\square$ Pressure and Density
$\square$ Pressure Variation
－Reynolds Number
$\square$ Stokes＇Law

## To install Fluid Mechanics

1．Send the files marked with＂踾＂below from the computer to the HP 48. See＂To install CalcWare applications onto the HP 48，＂page 15.
2．Start CalcWare by pressing 且 CBRAR CW and go to the Fluid Mechanics screen．

Computer File Structure $0 \mathrm{c}: 1$ calcware physics fluids管 bernouli．eqn图 flowvel．eqn圊 poiseuil．eqn － 1 presdens．eqn图 presvari．eqn畨 reynolds．eqn图 stokslaw．eqn $\rightarrow$

HP 48 CalcWare Structure

Physics
Fluid Mechanics
$\rightarrow \quad$ Bernoulli＇s Equation
$\rightarrow \quad$ Flow Velocity
$\rightarrow \quad$ Poiseuille＇s Law
$\rightarrow \quad$ Pressure and Density
$\rightarrow \quad$ Pressure Variation
$\rightarrow \quad$ Reynolds Number
$\rightarrow \quad$ Stokes＇Law

## Variables

The table below lists all the variables used in this chapter, along with a brief description and the default SI unit.

Variable	Description	SI Unit
A	area	$\mathrm{m}^{2}$
A1	area 1	$\mathrm{m}^{2}$
A2	area 2	$\mathrm{m}^{2}$
D	pipe diameter	m
F	force	N
1	length	m
m	mass	kg
Re	Reynolds number	unitless
P	pressure	$\mathrm{N} / \mathrm{m}^{2}$
P1	pressure at 1	$\mathrm{N} / \mathrm{m}^{2}$
P2	pressure at 2	$\mathrm{N} / \mathrm{m}^{2}$
Q	volume flow rate	$\mathrm{m}^{3} / \mathrm{s}$
r0	pipe radius	m
r	radius	m
V	volume	$\mathrm{m}^{3}$
v	velocity	$\mathrm{m} / \mathrm{s}$
v1	velocity 1	$\mathrm{m} / \mathrm{s}$
v2	velocity 2	$\mathrm{m} / \mathrm{s}$
vt	terminal velocity	$\mathrm{m} / \mathrm{s}$
y1	y position 1	m
y2	y position 2	m
$\eta$	viscosity	P (poise)
$\rho$	density	$\mathrm{kg} / \mathrm{m}^{3}$
pfl	fluid density	$\mathrm{kg} / \mathrm{m}^{3}$

## Example: Pressure and Density

Find the mass of $7.4 \mathrm{~m}^{3}$ of air at a density of $0.001 \mathrm{~g} / \mathrm{cm}^{3}$.
Given: $\quad \mathbf{V}=7.4 \mathrm{~m}^{3}$

$$
\begin{aligned}
\rho & =.001 \mathrm{~g} / \mathrm{cm}^{3} \\
& =1 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

# Bernoulli's Equation 

This is Bernoulli's equation, which governs flow of an incompressible fluid of density $\rho$ along a stream line. It allows one to calculate the pressure change $\mathbf{P 2} \mathbf{- P 1}$ when there is a change of height and/or a change of velocity.


$$
F 2-P 1+\frac{1}{2} \cdot p \cdot\left(w 2^{2}-w 1^{2}\right]+\rho \cdot g \cdot(\underline{2}-y 1)=0
$$

## Flow Velocity

$Y=$ These equations cover the fluid flow rate $\mathbf{Q}$ through a pipe where the fluid enters one end (of cross-sectional area A1) at velocity $\mathbf{v 1}$ and leaves at the other end (of crosssectional area A2) at velocity $\mathbf{v 2}$. It expresses continuity of mass flow.


A1 $1=$ A2 02
$0=\mathrm{Al} \because 1$
$0=\mathrm{A} 2 \mathrm{\omega} 2$

## Poiseuille's Law

Physics Series Fluid Mechanics

Poiseuille's Law
$Y=$ The first equation expresses Poiseuille's Law, which gives $\mathbf{Q}$, the volume rate of laminar flow of an incompressible fluid of viscosity $\eta$ through a pipe of radius $\mathbf{r 0}$ and length $\mathbf{l}$, with a pressure differential of $\mathbf{P 1}-\mathbf{P 2}$ over the pipe's length. The second equation gives $\mathbf{v}$, the fluid velocity within the pipe as a function of $\mathbf{r}$, the distance from the central axis, where $\mathbf{r}<\mathbf{r} \mathbf{0}$.


$$
0=\frac{\pi}{8} \cdot\left(\frac{r-\theta^{4}}{\eta}\right) \cdot\left(\frac{(P 1-P 2)}{1}\right) \quad u=\frac{(P 1-P 2)}{4 \cdot \eta \cdot l} \cdot\left(r-\theta^{2}-r^{2}\right)
$$

## Pressure and Density

$Y=$ These equations define the density $\rho$ in terms of the mass $\mathbf{m}$ that occupies a volume $\mathbf{V}$, and the pressure $\mathbf{P}$ as the force $\mathbf{F}$ on an area $\mathbf{A}$.



## Pressure Variation

$Y=$ This equation gives the difference in pressure according to height (or depth) in an incompressible fluid of density $\rho$ between vertical positions $\mathbf{y 1}$ and $\mathbf{y 2}$.

$P 2=F 1+F \cdot g(41-y 2)$

## Reynolds Number

$Y=$ This equation defines Re, the Reynolds number, for the flow of an incompressible fluid of density $\rho$ and viscosity $\eta$ at velocity $\mathbf{v}$ through a pipe or tube of diameter $\mathbf{D}$. When $\mathbf{R e}$ is greater than 3000 the flow is turbulent; below 2000 the flow is laminar; and in between these values the flow is transitional.

$$
\operatorname{Re}=\frac{P u \cdot[ }{\eta}
$$

## Stokes' Law

$Y=$ The first equation is Stokes' Law, which gives the viscous drag force on a sphere of radius $\mathbf{r}$ moving at velocity $\mathbf{v}$ through a fluid of viscosity $\eta$. The second equation gives the terminal velocity $\mathbf{v t}$ for a sphere of density $\rho$ falling through a fluid of density $\rho f l$.

$$
F=6 \cdot \pi \cdot \pi+v
$$

$$
u t=\frac{2}{9} \cdot\left(\frac{r^{2} \cdot g}{\pi}\right) \cdot(p-\rho f 1)
$$

## 12 forces

This chapter covers：
$\square$ Drag Force
－Frictional Force
$\square$ Coefficients of Friction

## To install Forces

1．Send the files marked with＂国＂below from the computer to the HP 48. See＂To install CalcWare applications onto the HP 48，＂page 15.

2．Start CalcWare by pressing $\square$ CWAR CW and go to the
Forces screen．

## Computer File Structure

Bc：
$\square$ calcware
$\square$ physics
$\square$ forces
在 dragforc．eqn
管 fricforc．eqn
图 coefrict．ref

HP 48 CalcWare Structure

Physics
Forces
Drag Force
Frictional Force
Coefficients of Friction

## Variables

The table below lists all the variables used in this chapter, along with a brief description and the default SI units.

Variable	Description	SI Unit
A	area	$\mathrm{m}^{2}$
Cd	drag coefficient	unitless
F	force	N
fk	kinetic friction force	N
fs	static friction force	N
m	mass	kg
N	normal force	N
v	velocity	$\mathrm{m} / \mathrm{s}$
$\mu \mathrm{k}$	coefficient of kinetic friction	unitless
$\mu \mathrm{s}$	coefficient of static friction	unitless
$\rho$	density	$\mathrm{kg} / \mathrm{m}^{3}$

## Example: Frictional Force

Standard
Degrees
fectangular

An object exerts a normal force of 24 N on a surface with which it has a coefficient of static friction of 0.14 and a coefficient of kinetic friction of 0.10. What force is required to dislodge the block from rest, and what force is required to keep it moving at constant velocity?

Given: $\quad \mathbf{N}=24 \mathrm{~N}$

$$
\mu \mathbf{s}=0.14
$$

Results: $\quad \mathbf{f s}=3.36 \mathrm{~N}$
$\mu \mathbf{k}=0.10$

## Drag Force

These equations describe the drag force $\mathbf{F}$ and terminal velocity $\mathbf{v}$ associated with an object of mass $\mathbf{m}$ and cross-sectional area $\mathbf{A}$ moving through a fluid (including air) of density $\rho$.

$$
F=C \cdot d \cdot\left(\frac{p u^{2}}{2}\right) \cdot H \quad u=\sqrt{\frac{2 \cdot m \cdot g}{C \cdot d \cdot p \cdot \bar{H}}}
$$

## Frictional Force

$\mathrm{Y}=$ These equations describe the static and kinetic frictional forces encountered by an object at rest or moving along a surface which acts upon it with normal force $\mathbf{N}$.
$f s=\mu s \mathrm{~N}$
$f k=\mu k N$

## Coefficients of Friction ( $\mu$ )

- Coefficients of Friction ( $\mu$ )

The Coefficients of Friction reference table contains the static and kinetic coefficients of friction for various pairs of substances. The information may be viewed or copied to the stack.

## Example

Standard
Degrees
Rectangular

What is the kinetic coefficient of friction for steel on steel?

1. Move the highlight bar to COEFFICIENT and press CHOOSS. Highlight Kinetic ( $\mu \mathrm{k}$ ) and press OK.
2. Scroll through the data list by pressing $\square$ and $\boldsymbol{\nabla}$ until the
 answer is found (the second item in the list).

## 13 Gravitation

This chapter covers：
$\square$ Escape Velocity
$\square$ Free Falling Object
$\square$ Gravitational Force
$\square$ Orbits（Circular）
$\square$ Orbits（Elliptical）
$\square$ Projectile Motion
$\square$ Terminal Velocity

## To install Gravitation

1．Send the files marked with＂管＂below from the computer to the HP 48. See＂To install CalcWare applications onto the HP 48，＂page 15.

2．Start CalcWare by pressing LEPRAMVAR CW and go to the Gravitation screen．

## Computer File Structure

B c ！
calcware
$B$ physics
gravity
管 escapvel．eqn $\rightarrow$
freefall．eqn $\rightarrow$
Tit gravforc．eqn $\rightarrow$
置 orbitcir．eqn $\rightarrow$
笡 orbitell．eqn $\rightarrow$
置 projmotn．eqn $\rightarrow$
直 termvel．eqn $\rightarrow$

## HP 48 CalcWare Structure

Physics
Gravitation
Escape Velocity
Free Falling Object
Gravitational Force
Orbits（Circular）
Orbits（Elliptical）
Projectile Motion
Terminal Velocity

## Variables

The table below lists all the variables used in this chapter, along with a brief description and the default SI unit.

Variable	Description	SI Unit
A	cross sectional area	$\mathrm{m}^{2}$
a	semi-major axis	m
a1	acceleration of ml	$\mathrm{m} / \mathrm{s}$
a2	acceleration of m2	$\mathrm{m} / \mathrm{s}$
Cd	drag coefficient	unitless
E	eccentricity	unitless
Etot	total energy	J
F	gravitational force	N
Fc	centripetal force	N
H	maximum height	m
K	kinetic energy	J
Kf	final kinetic energy	J
Ki	initial kinetic energy	J
m	mass	kg
m1	mass 1	kg
m2	mass 2	kg
mc	central mass	kg
Mp	planet mass	kg
ms	orbiting satellite mass	kg
R	maximum range	m
r	separation	m
ra	aphelion	m
Rp	planet radius	m
rp	perihelion	m
T	period	s
t	time	s
U	potential energy	J
Uf		J
Ui	initial potential energy	J
v	velocity	$\mathrm{m} / \mathrm{s}$
vf		$\mathrm{m} / \mathrm{s}$
vi	initial velocity	$\mathrm{m} / \mathrm{s}$
vx	x velocity	$\mathrm{m} / \mathrm{s}$
vy	y velocity	$\mathrm{m} / \mathrm{s}$
xf	final x position	m
xi	initial $x$ position	m
yf	final y position	m
yi	initial y position	m
$\theta$	launch angle	${ }^{3}$
$\rho$	fluid density	$\mathrm{kg} / \mathrm{m}^{3}$

## Example: Free Falling Object

Part 1: An object of mass 1.3 kg is thrown upward from the ground with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. How high will it go before it turns around?

Given:

$$
\begin{array}{ll}
\mathbf{m}=1.3 \mathrm{~kg} & \text { Result: } \quad \mathbf{y f}=20.4 \mathrm{~m} \\
\mathbf{y i}=0 \mathrm{~m} & \\
\mathbf{v i}=20 \mathrm{~m} / \mathrm{s} \\
\mathbf{v f}=0 \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Part 2: When it falls back down, what will be its kinetic and gravitational potential energies when it has fallen halfway back down to the ground, and how long will this take?

Given:	$\mathbf{m}=1.3 \mathrm{~kg}$	Results:	$\mathbf{K f}=130 \mathrm{~J}$
	$\mathbf{y i}=20.4 \mathrm{~m}$		$\mathbf{U f}=130 \mathrm{~J}$
	$\mathbf{y f}=10.2 \mathrm{~m}$	$\mathbf{t}=1.44 \mathrm{~s}$	
$\mathbf{v i}=0 \mathrm{~m} / \mathrm{s}$			

In the second part, both $\mathbf{t}=1.44 \mathrm{~s}$ and $\mathbf{t}=-1.44 \mathrm{~s}$ solve the problem mathematically, but the positive time is the physical solution. The calculator may arrive at either answer depending on the initial value stored for $\mathbf{t}$.

## Escape Velocity

$Y=$ This equation gives the escape velocity necessary for an object to escape a planet of mass $\mathbf{M p}$ from a distance $\mathbf{R p}$ from its center. If the object is at the surface of the planet, $\mathbf{R p}$ is the planet radius. The object's mass is assumed to be negligible in comparison to the planet mass.

$$
v=\sqrt{\frac{2 \cdot \sigma_{1} \cdot \mu_{\mathrm{F}}}{R_{\mathrm{F}}}}
$$

## Free Falling Object

$Y=$ These equations describe the motion of a freely falling object of mass $\mathbf{m}$ in the Earth＇s gravitational field，using the equations of linear motion with $\mathbf{a}=-\mathbf{g}$ ．With these equations，the initial and final positions， velocities，and kinetic and potential energies can be calculated as a function of time．

$$
\begin{aligned}
& \text { uf=ui-g't. } \quad \exists f=y i+u i \cdot t-\frac{1}{2} \cdot g \cdot t^{2} \quad \exists f=y i+u f \cdot t+\frac{1}{2} \cdot g \cdot t^{2} \\
& u f^{2}=u i^{2}-2 g(y f-y i) \\
& k i=\frac{1}{2} \cdot m i^{2} \\
& k f=\frac{1}{2} \cdot m \cdot f^{2} \\
& \text { Ui=ヶリ'9"リi } \\
& \text { Uf=m"9—uf } \\
& \text { Et.ot. }=\mathrm{Ki}+\mathrm{JI}_{\mathrm{i}} \\
& \text { Et.ot }=\mathrm{Kf}+\mathrm{l} \mathrm{If}
\end{aligned}
$$

## Gravitational Force

$Y=$ These equations cover the gravitational attraction between two masses， $\mathbf{m 1}$ and $\mathbf{m 2}$ ，separated by a distance $\mathbf{r}$ ．Computed are the attractive force， the acceleration of each mass，and the potential energy of interaction．
$F=\frac{[m 1 \cdot m 2}{r^{2}}$
$a 1=\frac{\square \cdot m \overline{2}}{r^{2}}$
$a Q=\frac{[\cdot m 1}{r^{2}}$
$\mathrm{IJ}=\frac{-[\mathrm{G} \cdot \mathrm{m} 1 \cdot \mathrm{~m} 2}{\mathrm{r}^{-}}$

## Orbits (Circular)

$Y=$ These equations cover Kepler's third law of motion, which relates the orbital period to the separation between and masses of two objects. In this simplified case, the central mass mc is assumed to be much greater than the orbiting satellite mass ms and the orbit is taken to be circular. The second equation gives the velocity of the orbiting mass, the third gives the centripetal force supplied by gravitation, the fourth gives the kinetic energy, and the fifth computes the potential energy associated with the orbit.

$$
\begin{array}{rlr}
T^{2}=\frac{4 \cdot \pi^{2}}{\Gamma \cdot(m C+m s)} \cdot r^{3} & v^{2}=\frac{G \cdot m c}{r} & F \sigma=\frac{m s v^{2}}{r} \\
K=\frac{G \cdot m s \cdot m c}{2 r} & U=\frac{-G \cdot m s \cdot m G}{r} &
\end{array}
$$

## Orbits (Elliptical)

$Y=$These equations cover Kepler's third law of motion, which relates the orbital period to the separation between and masses of two objects. The equations are not simplified for the case where the central mass mc is much greater than the orbiting mass $\mathbf{m s}$, or for the case where the orbit is circular. The second equation gives the velocity of the orbiting mass and the third gives the kinetic energy at any point along the orbit. The last two equations determine ra and rp, the aphelion and perihelion distances, as a function of $\mathbf{E}$ and $\mathbf{a}$, the eccentricity and semimajor axis of the orbit.


$$
\begin{array}{ll}
T^{2}=\frac{4 \cdot \pi^{2}}{G \cdot(m S+m C)} a^{3} & v^{2}=G \cdot(m S+m C) \cdot\left(\frac{2}{r}-\frac{1}{a}\right) \\
K=\frac{1}{2} \cdot m S v^{2} & r a=a \cdot(1+E) \quad r F=a \cdot(1-E)
\end{array}
$$

## Projectile Motion

$Y=$ These equations describe the motion of a projectile launched with initial velocity vi from position ( $\mathbf{x i}, \mathbf{y i}$ ), at launch angle $\theta$ with respect to the ground. The final position and velocity are expressed, as well as the maximum height and range the projectile may achieve.

$x f=x i+u i \cdot \cos (\theta) \cdot t$
$y f=y i+u i \operatorname{SIN}(\theta) \cdot t-\frac{1}{2} \cdot g \cdot t^{2}$
vx=ui $\operatorname{Cos}(\theta)$
Uy=visIN( B$)$
$u f^{2}=u x^{2}+u y^{2}$
$R=\frac{u i^{2}}{9} \operatorname{SIN}(2 \cdot \theta)$
$H=y i+\frac{u i^{2} \sin (\theta)^{2}}{2 \cdot g}$


## Terminal Velocity

This equation calculates the terminal velocity $\mathbf{v}$ achieved by an object of mass $\mathbf{m}$ and cross-sectional area $\mathbf{A}$ moving through a fluid (including air) of density $\rho$.

$$
y=\sqrt{\frac{2 \cdot m \cdot g}{C d \cdot p \cdot \bar{H}}}
$$

## 14 Linear Mechanics

This chapter covers：
C Center of Mass
$\square$ Collisions（Elastic）
Collisions（Elastic，Fixed m2）
$\square$ Collisions（Inelastic）
$\square$ Linear Motion
D Momentum，Force，and Work
$\square$ Rocket Science
O Object Centroids

## To install Linear Mechanics

1．Send the files marked with＂冨＂below from the computer to the HP 48 ． See＂To install CalcWare applications onto the HP 48，＂page 15.

2．Start CalcWare by pressing $\boldsymbol{\square}$ CRBAPMAR CW and go to the Linear Mechanics screen．

## Computer File Structure

 $\square \mathrm{c}: \backslash$calcware
$\square$ physics
linear
署 centmass．eqn $\rightarrow$
（1）collelas．eqn $\rightarrow$
－ 署 collfixd．eqn $\rightarrow$
－collinel．eqn $\rightarrow$
［目 linrmotn．eqn $\rightarrow$
圊 momforce．eqn $\rightarrow$
图 rockets．eqn $\rightarrow$
圊 objcentr．ref $\rightarrow$

HP 48 CalcWare Structure

Physics
Linear Mechanics
Center of Mass
Collisions（Elastic）
Collisions（Elastic，Fixed m2）
Collisions（Inelastic）
Linear Motion
Momentum，Force，and Work
Rocket Science
Object Centroids

## Variables

The table below lists all the variables used in this chapter, along with a brief description and the default SI unit.

Variable	Description	SI Unit
a	acceleration	$\mathrm{m} / \mathrm{s}^{2}$
F	force	N
Kf	final kinetic energy	J
Ki	initial kinetic energy	J
m	mass	kg
m1	mass 1	kg
m2	mass 2	kg
m3	mass 3	kg
m4	mass 4	kg
mf	final rocket mass	kg
mi	initial rocket mass	kg
p	momentum	$\mathrm{kg} \mathrm{m} / \mathrm{s}$
Pavg	average power	W
R	fuel consumption	kg/s
t	time	s
u	exhaust gas velocity	$\mathrm{m} / \mathrm{s}$
v	velocity	$\mathrm{m} / \mathrm{s}$
v1f	final velocity of ml	$\mathrm{m} / \mathrm{s}$
v1i	initial velocity of m1	$\mathrm{m} / \mathrm{s}$
v2f	final velocity of m2	$\mathrm{m} / \mathrm{s}$
v2i	initial velocity of m2	$\mathrm{m} / \mathrm{s}$
vavg	average velocity	$\mathrm{m} / \mathrm{s}$
vcm	center of mass velocity	$\mathrm{m} / \mathrm{s}$
vf	final velocity	$\mathrm{m} / \mathrm{s}$
vi	initial velocity	$\mathrm{m} / \mathrm{s}$
W	work	J
x 1	$x$ position of ml	m
x 2	$x$ position of m2	m
x3	$x$ position of m3	m
x4	x position of m4	m
xcm	center of mass, x position	m
xf	final position	m
xi y 1	initial position	m
y 1 y 2	y position of m1 y position of m 2	m
y3	y position of m3	m
y4	y position of m4	m
ycm	center of mass, y position	m

## Example: Rocket Science

A rocket's engine expels $10 \mathrm{~kg} / \mathrm{s}$ of exhaust gas at a velocity of $20 \mathrm{~m} / \mathrm{s}$ relative to the rocket. If the rocket starts out at rest, what is its velocity when it has lost half of its mass in fuel?

Given: $\quad$| $\mathbf{R}$ | $=10 \mathrm{~kg} / \mathrm{s}$ |
| ---: | :--- |
| $\mathbf{u}$ | $=20 \mathrm{~m} / \mathrm{s}$ |
| $\mathbf{v i}$ | $=0 \mathrm{~m} / \mathrm{s}$ |
| $\mathbf{m i}$ | $=1.0 \mathrm{~kg}$ |
| $\mathbf{m f}$ | $=0.5 \mathrm{~kg}$ |$\quad$ Result: $\mathbf{v f}=13.9 \mathrm{~m} / \mathrm{s}$

For the question posed, only the ratio of $\mathbf{m f}$ to $\mathbf{m i}$ is needed, and thus mi may be set to 1.0 kg and $\mathbf{m f}$ taken to be half of that value. Also, if $\mathbf{m}$ is set, the acceleration can be computed. However, note that if the rocket continually loses mass, the accleration will not be constant, so these two equations cannot be solved simultaneously, except in the approximation that the mass lost is much less than the mass of the rocket.

## Center of Mass

These equations compute the center of mass coordinates ( $\mathbf{x c m}, \mathbf{y c m}$ ), of a system of up to four distinct objects lying in the xy-plane. If fewer than four objects are desired, leave the remaining masses zero.

$$
\begin{aligned}
& x-m=\frac{(x 1 \cdot m 1+x 2 \cdot m 2+x 3 \cdot m 3+x 4 \cdot m 4)}{m 1+m 2+m 3+m 4} \\
& y-m=\frac{(y 1 \cdot m 1+y 2 \cdot m 2+y 3 \cdot m 3+y 4 \cdot m 4)}{m 1+m 2+m 3+m 4}
\end{aligned}
$$

## Collisions (Elastic)

$Y=$
These equations describe a one-dimensional elastic collision between an object of mass $\mathbf{m 1}$ moving at initial velocity $\mathbf{v 1 i}$ and an object of mass $\mathbf{m} \mathbf{2}$ moving at initial velocity $\mathbf{v} \mathbf{2 i}$. They relate the final and initial velocities and give the center of mass velocity, $\mathbf{v c m}$. For the special case of a stationary target, set $\mathbf{v} \mathbf{2}=0$.


$$
\begin{array}{cc}
v 1 f=\frac{(m 1-m 2)}{m 1+m 2} \cdot u 1 i+\frac{2 \cdot m 2}{m 1+m 2} \cdot v 2 i & v 2 f=\frac{2 \cdot m 1}{m 1+m^{2}} \cdot v 1 i+\frac{(m 2-m 1)}{m 1+m 2} v 2 i \\
v C m=\frac{(m 1 \cdot u 1 i+m 2 \cdot v 2 i)}{m 1+m 2} & v C m=\frac{(m 1 \cdot u 1 f+m 2 \cdot v 2 f)}{m 1+m 2}
\end{array}
$$

## Collisions (Elastic, Fixed m2)

- Collisions (Elastic, Fixed m2)
$Y=$
These equations describe a one-dimensional elastic collision between an object of mass $\mathbf{m 1}$ moving at initial velocity $\mathbf{v 1 i}$ and a fixed target of mass $\mathbf{m 2}$. They relate the final and initial velocities and give the center of mass velocity, vcm. These equations can be derived from the equation set for Collisions (Elastic), for the case $\mathbf{v} \mathbf{2} \mathbf{i}=0$.

$u 1 f=\frac{(m 1-m 2)}{m 1+m 2} \cdot u 1 i$
$v 2 f=\frac{2 \cdot m 1}{m 1+m \overline{2}} \cdot v 1 i$
$v C m=\frac{m 1}{m 1+m L^{2}} \cdot v 1 i$


## Collisions (Inelastic)

$Y=$
This equation describes a one-dimensional inelastic collision in which an object of mass $\mathbf{m 1}$ and initial velocity $\mathbf{v 1 i}$ collides with a stationary target of mass $\mathbf{m} 2$. After the collision, the two objects move together at a final velocity $\mathbf{v f}$.


FINAL


$$
u f=\frac{u l i \cdot m l}{m 1+m 2}
$$

## Linear Motion

$Y=$ These equations describe the fundamentals of Newtonian linear motion at constant acceleration $\mathbf{a}$. The first equation computes the final velocity $\mathbf{v f}$ using the initial velocity vi, time $\mathbf{t}$, and acceleration $\mathbf{a}$. The second equation relates vf to the change in position $\mathbf{x f}-\mathbf{x i}$. The next two equations compute the average velocity vavg. The last three equations compute the final position $\mathbf{x f}$.

$$
\begin{aligned}
& v f=v i+a \cdot t . \quad u f^{2}=v i^{2}+2 \cdot a \cdot(x f-x i) \quad v a v g=\frac{1}{2} \cdot(v i+u f) \\
& v a v g=\frac{(x f-x i)}{t} \quad x f=x i+u i \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \quad x f=x i+u f \cdot t-\frac{1}{2} \cdot a \cdot t \\
& x f=x i+v a v g \cdot t .
\end{aligned}
$$

# Momentum, Force, and Work 

These equations relate momentum, work, kinetic energy, force, and particle momentum. The first two equations define $\mathbf{K i}$ and $\mathbf{K f}$, the initial and final kinetic energies of an object with mass $\mathbf{m}$ and initial and final velocities vi and vf. The third equation gives the work $\mathbf{W}$ done on the object in terms of the change in kinetic energy. The next two equations assume a constant external force $\mathbf{F}$ and compute the work done and the average power expended, Pavg. The last three equations give the momentum of a particle moving at velocity $\mathbf{v}$.

$$
\begin{array}{lcc}
K_{i}=\frac{1}{2} \cdot m \cup i{ }^{2} & K f=\frac{1}{2} \cdot m \cup f^{2} & W=k f-K_{i} \\
W=F \cdot(\sim f-x i) & F a v g=\frac{W}{t} & F=m \cdot a \\
F=m \cup & &
\end{array}
$$

## Rocket Science

$Y=$
These equations describe rockets and other varying mass objects, relating the rocket acceleration a to the exhaust gas velocity $\mathbf{u}$ and fuel rate consumption $\mathbf{R}$. The final velocity vf can be computed knowing the inital and final rocket masses, mi and mf.

Ru=na

$$
u f=u i+u \cdot L N\left(\frac{m i}{m f}\right)
$$

The Object Centroids reference table contains information on the position of the centroid (center of mass) of various figures and solids. The information may be viewed or copied to the stack.

## Standard <br> Example

Where is the centroid of a cone of height 2 m ?

1. Scroll through the object list by pressing $\square$ and $\boldsymbol{\nabla}$ until Pyramid or Cone is found (the fourth item on the list).
2. The answer is shown to be $1 / 4^{*} h$, and the help text identifies this distance
 to be above the center of the cone's base centroid.
3. To compute the numerical value of the distance above the base centroid at which the cone's centroid is located, copy the equation to the stack by pressing CALC. Then, guided by the equation, press
 1 ENTER 4.2 . The cone's centroid is shown to be 0.5 m above the base centroid of the cone.
4. Press EXIT to return to CalcWare.

## 15 Thermodynamics

This chapter covers：
$\square$ Adiabatic Expansion
$\square$ Carnot Cycle
－Entropy
First Law of Thermodynamics
－Heat Capacity
Heat Engines \＆Refrigerators
$\square$ Heat of Transformation
$\square$ Ideal Gas Law
Isothermal Expansion
$\square$ Thermal Conduction
Thermal Expansion
$\square$ Coef．of Linear Expansion（ $\alpha$ ）

## To install Thermodynamics

1．Send the files marked with＂冨＂below from the computer to the HP 48. See＂To install CalcWare applications onto the HP 48，＂page 15.
2．Start CalcWare by pressing $\boldsymbol{\square}$ LepRem CWAR CW and go to the
Thermodynamics screen． Thermodynamics screen．

Computer File Structure
$\square \mathrm{c}: 1$
$\square$ calcware
$\square$ physics
$\square$ thermo
相 adiabatc．eqn
踢 carncycl．eqn
耝 entropy．eqn
艮 firstlaw．eqn $\rightarrow$
䍚 heatcapc．eqn $\rightarrow$
管 heatengn．eqn $\rightarrow$
Tr heattran．eqn $\rightarrow$
管 idealgas．eqn $\rightarrow$
管 isotherm．eqn $\rightarrow$
圈 thermcon．eqn $\rightarrow$
Thermexp．eqn $\rightarrow$
管 coeflinr．ref $\rightarrow$
$\rightarrow$

HP 48 CalcWare Structure

Physics
Thermodynamics
$\rightarrow \quad$ Carnot Cycle
$\rightarrow \quad$ Entropy
$\rightarrow \quad$ First Law of Thermodynamics
$\rightarrow \quad$ Heat Capacity
$\rightarrow \quad$ Heat Engines \＆Refrigerators
$\rightarrow \quad$ Heat of Transformation
$\rightarrow \quad$ Ideal Gas Law
$\rightarrow \quad$ Isothermal Expansion
$\rightarrow \quad$ Thermal Conduction
$\rightarrow \quad$ Thermal Expansion
$\rightarrow \quad$ Coef．of Linear Expansion（ $\alpha$ ）
Adiabatic Expansion

## Variables

The table below lists all the variables used in this chapter, along with a brief description and the default SI unit.

Variable	Description	SI Unit
A	area	$\mathrm{m}^{2}$
C	heat capacity	J/K
Cp	molecular specific heat at constant pressure	$\mathrm{J} /(\mathrm{K} \mathrm{mol})$
Cv	molecular specific heat at constant volume	$\mathrm{J} /(\mathrm{K} \mathrm{mol})$
E	thermal efficiency of engine	unitless
Eint	internal energy	J
H	heat conduction rate	W
K	performance coefficient of refrigeration	unitless
k	thermal conductivity	$\mathrm{J} /(\mathrm{K} \mathrm{m} \mathrm{s})$
Kavg	average translational energy	J
L	slab thickness	m
Lf	heat of fusion	J/kg
Lv	heat of vaporization	J/kg
m	mass of object	kg
MWT	molecular weight	$\mathrm{kg} / \mathrm{mol}$
n	number of moles	mol
P	pressure	$\mathrm{N} / \mathrm{m}^{2}$
Pf	final pressure	$\mathrm{N} / \mathrm{m}^{2}$
Pi	initial pressure	$\mathrm{N} / \mathrm{m}^{2}$
Q	heat added to system	J
Qc	heat discharged by engine	J
Qf	heat needed to melt	J
Qh	heat taken in by engine	J
Qv	heat needed to vaporize	
Rt	thermal resistance	K m ${ }^{2} / \mathrm{J}$
s	specific heat	$\mathrm{J} /(\mathrm{K} \mathrm{kg})$
S	entropy	J/K
T	temperature	K
Tc	temperature of cold reservoir	K
Tf	final temperature	K
Th	temperature of hot reservoir	K
Ti	initial temperature	K
V	volume	$\mathrm{m}^{3}$
Vf	final volume	$\mathrm{m}^{3}$
Vi	initial volume	$\mathrm{m}^{3}$
vrms	root mean square speed	$\mathrm{m} / \mathrm{s}$


W	work done by system	J
w	number of system states	unitless
$\alpha$	coeffient of linear expanansion	$1 / \mathrm{K}$
$\beta$	coeffient of volume expanansion	$1 / \mathrm{K}$
$\Delta \mathrm{Eint}$	change in internal energy	J
$\Delta \mathrm{L}$	change in length	m
$\Delta \mathrm{Q}$	heat conducted through slab	J
$\Delta \mathrm{S}$	change in entropy	$\mathrm{J} / \mathrm{K}$
$\Delta \mathrm{t}$	time elapsed	s
$\Delta \mathrm{V}$	change in system volume	$\mathrm{m}^{3}$
$\gamma$	ratio of molecular specific heats	unitless

## Example: Heat of Transformation

How much water can be vaporized at its boiling point by 2000 KJ of heat? If the same quantity of water is frozen to ice at its freezing point, how much heat is liberated? The heats of fusion and vaporization for water are:
$\mathrm{Lf}=333 \mathrm{KJ} / \mathrm{kg}, \mathrm{Lv}=2260 \mathrm{KJ} / \mathrm{kg}$.
Given:

$$
\begin{aligned}
& \mathbf{Q v}=2000 \mathrm{KJ} \\
& \mathbf{L v}=2260 \mathrm{KJ} / \mathrm{kg} \\
& \mathbf{L f}=333 \mathrm{KJ} / \mathrm{kg}
\end{aligned}
$$

Results: $\quad \mathbf{m}=0.885 \mathrm{~kg}$
Qf $=294690 \mathrm{~J}$
Qf $=295 \mathrm{KJ}$

## Adiabatic Expansion

$Y=$ This equation gives the work done by an ideal gas in adiabatic (isolated) expansion from Vi to $\mathbf{V f}$.
$P i V_{i}{ }^{\nu}=P f . V f^{\gamma}$
$\mathrm{r}=\frac{\mathrm{CP}}{\mathrm{C}}$
$r=1+\frac{R}{C u}$

## Carnot Cycle


These equations describe the operation of ideal (reversible) heat engines and refrigerators following the Carnot Cycle. No real system can have a greater efficiency or coefficient of performance. The efficiency of the heat engine is denoted by $\mathbf{E}$, and the performance coefficient of the refrigerator by $\mathbf{K}$. The engine and refrigerator are each connected to a cold reservoir of temperature $\mathbf{T c}$ and a hot reservoir of temperature $\mathbf{T h}$.


$$
E=\frac{\left(T h_{1}-T_{c}\right)}{T h} \quad K=\frac{T I}{T T_{1}-T_{I}}
$$

## Entropy

$Y=$ These equations describe changes in the entropy of a system, $\Delta \mathbf{S}$. In the first equation, an amount of heat $\mathbf{Q}$ is added at temperature $\mathbf{T}$. In the second equation, the volume of $\mathbf{n}$ moles of gas changes from $\mathbf{V i}$ to $\mathbf{V f}$. This equation should only be used for free expansion, in which there is no external work done or heat transfer. The last equation defines the entropy as being proportional to the natural logarithm of the number of ways a system can be internally rearranged without changing its external macroscopic properties.

$$
\begin{equation*}
\Delta S=\frac{D}{T} \quad \Delta S=\pi \cdot R \cdot L N\left(\frac{\psi f}{W_{i}}\right) \tag{LN}
\end{equation*}
$$

## First Law of Thermodynamics

$Y=$ These equations give a system's change of internal energy $\Delta$ Eint as the difference between $\mathbf{W}$, the work done by the system when its volume changes from Vi to Vf at pressure $\mathbf{P}$, and $\mathbf{Q}$, the heat added to the system.
$\Delta$ Eint $=\left[\mathbf{D}-W \quad W=F \cdot \Delta V \quad \Delta V=V f-V_{i}\right.$

## Heat Capacity

$Y=$ These equations give $\mathbf{Q}$, the heat added to an object of mass $\mathbf{m}$, as when its temperature changes. The involve the heat capacity $\mathbf{C}$ and specific heat $\mathbf{s}$.

$$
\mathbb{Q}=\mathrm{C} \cdot(\mathrm{Tf}-\mathrm{Ti}) \quad \mathbb{Q}=\mathrm{S} \cdot m \cdot(\mathrm{Tf}-\mathrm{Ti}) \quad \mathrm{C}=\mathrm{S} \cdot \mathrm{~m}
$$

## Heat Engines \& Refrigerators

$Y=$ These equations give $\mathbf{E}$, the efficiency of a heat engine, and $\mathbf{K}$, the performance coefficient of a refrigerator, either of which does an amount of work given by $\mathbf{W}$. In the case of the heat engine, $\mathbf{Q c}$ is the heat discharged and $\mathbf{Q h}$ is the energy taken in by the engine. In the case of the refrigerator, $\mathbf{Q c}$ is the heat extracted by and $\mathbf{Q h}$ is the heat discharged by the refrigerator.

$E=\frac{W}{0 h}$
$E=\frac{(\mathrm{Oh}-\mathrm{O} \mathrm{c})}{\mathrm{OH}}$
$K=\frac{D C}{W}$
$K=\frac{0 c}{0.1-2 x}$

## Heat of Transformation

Physics Series Thermodynamics

Heat of Transformation
$Y=$ These equations give the heat needed to vaporize a liquid or melt a solid. The heat released by the reverse processes of condensation and freezing is the negative of this quantity.
$00=L 0 \cdot m$
$D f=L f \cdot m$

## Ideal Gas Law

$Y=$ These equations cover the properties of an ideal gas, relating pressure, volume, temperature, internal energy, average molecular velocity and kinetic energy, and molar specific heats at constant volume and pressure. The last equation gives the molar specific heat for processes done at constant volume. A similar equation $C p=\frac{Q}{n(T f-T i)}$ applies when heat is added at constant pressure.
$P \cdot V=\Pi \cdot R \cdot T$ $P=\frac{\square \cdot \| W T \cdot U-T I s^{2}}{3 \cdot V}$ Ur ms $=\sqrt{\frac{3 \cdot R \cdot T}{\text { IN WT }}}$ $\mathrm{Kavg}=\frac{3}{2} k \cdot T$
Eint=n.CuTT
$\mathrm{C}=\mathrm{Cu}+\mathrm{R}$
$\overline{C u}=\frac{\mathbb{Q}}{\Pi \cdot(T f-T i)}$

## Isothermal Expansion

Isothermal Expansion
$Y=$ This equation gives the work done by an ideal gas in isothermal (constant temperature) expansion from Vi to Vf.

$$
W=n \cdot R \cdot T \cdot L N\left(\frac{U f}{U i}\right)
$$

$Y=$ These equations relate $\mathbf{H}$, the heat conducted per unit time across a slab of thickness $\mathbf{L}$ and area $\mathbf{A}$, with a temperature difference Th-Tc between its faces, to the material's thermal conductivity $k$, and thermal resistance $\mathbf{R t}$.

$H=\frac{\Delta 0}{\Delta t}$
$H=\frac{k \cdot A \cdot(T h-T C)}{L}$
$H=\frac{\mathrm{A} \cdot\left(\mathrm{T},-\mathrm{T}_{\mathrm{E}}\right)}{\mathrm{Rt}}$
$R \mathrm{E}=\frac{\mathrm{L}}{\mathrm{k}}$

## Thermal Expansion

Physics Series Thermodynamics Thermal Expansion
$Y=$ These equations relate the change in size and volume of a solid or a liquid to a change in its temperature. If only $\Delta \mathbf{T}$ is known (and not $\mathbf{T f}$ and $\mathbf{T i}$ ), then enter dummy values for $\mathbf{T f}$ and $\mathbf{T i}$ such that $T f-T i=\Delta T$.
For a solid, the coefficients of volume and linear expansion are related by $\beta=3 \alpha$.

$$
\Delta L=L \cdot \alpha \cdot(T f-T i) \quad \Delta V=\psi \cdot \beta \cdot(T f-T i)
$$

## Coef．of Linear Expansion （ $\alpha$ ）

－Coef．of Linear Expansion（ $\alpha$ ）

曲
The Coefficients of Linear Expansion（ $\alpha$ ）reference table contains the coefficients of linear expansion for various common substances．The information may be viewed or copied to the stack

## Example

Degrees
Rectangular

What is the coefficient of linear expansion for pyrex glass？
1．Scroll through the data list by pressing $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ ．
2 The coefficient of linear expansion for pyrex glass is $3.2 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$（room temperature）．

殓CDEF．DF LINEAR EXPANSIDN（ox）\％		
COPPEF： $17-10 \times 6$		
STEEL： $11-10^{*}-6{ }^{\text {a }}$		
回LEs（f）		
הT 25		
\％STK CiLC	DPTS	

## Appendices and Index

## A Troubleshooting

This appendix lists the most common questions about CalcWare. Scan this list before calling customer support-you might save yourself a phone call!

This appendix covers:

- General
- Analysis Routines
- Equation Sets
- Reference Tables


## General

These are the most commonly asked questions about general features of CalcWare.

Q Why is there a 'CalcWare' directory in my HP 48 user memory? (The directory appears as CALC. when you press VAA to display the variables in your HP 48 user memory.)

A The 'CalcWare' directory is where CalcWare applications are installed in your HP 48 when you run the CalcWare shell. This directory may appear to be empty, but that is to protect it from files being accidentally deleted, which would cause erratic behavior. CalcWare applications should be deleted from inside CalcWare by pressing DELI, not from the HP 48 stack.

Q What do the three dots (...) mean at the end of an item on the screen?
A They mean that the item is too wide to fit on the screen. To view the entire item, highlight it and press CALC to take it to the HP 48 stack, where it will be shown on multiple lines. If the item is an equation, it can be viewed in the EquationWriter by pressing $\boldsymbol{\nabla}$ at the stack.

Q I downloaded a CalcWare application, but was interrupted by an "Insufficient Memory" error during the transfer. What can I do?

A Either delete an installed CalcWare application (using DELI from inside CalcWare) or purge other objects from your HP 48 user memory. See "To delete a CalcWare application," page 19, or see your HP 48G User's Guide for more information about purging HP 48 objects. You should have at least 3 K to 4 K of free memory in your HP 48 to run CalcWare, but you will need more free memory if you want to install
additional CalcWare applications. To check the bytes of free memory in your HP 48, press ك G MEM.

Q I pressed CW , but got an "Insufficient Memory" error. What can I do?
A Purge some objects from your HP 48 user memory or delete the CalcWare shell and all CalcWare applications and reinstall a smaller number of CalcWare applications. The CalcWare shell typically needs at least 3 K to 4 K of free memory to run. If you do not have 3 K to 4 K free memory, you may be unable to run the CalcWare shell, which means you will also be unable to delete individual CalcWare applications by pressing DDEL from within CalcWare. The only solution to this is to either free up enough user memory by purging other objects or delete all of CalcWare and reinstall the CalcWare shell and a smaller number of CalcWare applications.

## Analysis Routines

These are the most commonly asked questions about CalcWare applications which are analysis routines. Analysis routine applications are indicated by the icon shown at left.

Q I'm solving a problem involving a trigonometric function, and the result isn't the value I expected. What could be wrong?

A Your HP 48 angle measure mode setting is probably the cause. Press $\square$ ninoss to display the Calculator Modes screen and check the angle measure setting. For proper evaluation of trigonometric derivatives and integrals, make sure your HP 48 angle measure is set to radians.

Q I pressed SOLVE and got an expression with $\pi / 180$ in it. What does that mean?

A Your HP 48 is in degrees mode and the solution involves a trigonometric function, so the result includes the conversion factor $\pi / 180$ to convert between degrees and radians. Press $\boldsymbol{\square}$ imess to enter the Calculator Modes screen, set your HP 48 angle measure to radians, and re-solve.

Q When I press SOLVE, I'm getting a symbolic result but want a numeric result or vice versa. What could be wrong?

A Your HP 48 symbolic results mode setting is probably the cause. Press $\boldsymbol{\square}$ hooss to display the Calculator Modes screen. Then press FLAG to display the system flags screen. For numeric outputs, make sure flag 03 reads, "Function $\rightarrow$ num" and has a check mark in front of it. For symbolic outputs, make sure flag 03 reads, "Function $\rightarrow$ symb" and has no check mark in front of it. After changing the setting, press OK to save the flag settings and exit the Calculator Modes screen.

If you are getting symbolic results and want numeric results, it is also possible that one or more of the variables in the result may not be defined numerically, which means you will need to enter a numeric value for it.

If you are getting numeric results and want symbolic results, it is also possible that one or more of the variables in the result have values stored in them in your HP 48 user memory outside CalcWare. If a variable exists in your HP 48 user memory, its value may have been substituted into the result, giving a numeric answer. To purge the variable from your HP 48 user memory, press CALC to go the HP 48 stack and press home to go to the HOME directory, which is the most likely location of the variable. Enter the name of the variable you want to purge by typing $\square \rightarrow$, followed by the name of the variable (e.g. X) and then ENTER. Then press $\square$ EROG to purge the variable. Finally, press $\mathbb{E X I T}$ to return to CalcWare and re-solve the problem.

Q When I press SOLVE, I get the message, "Undefined Name." Why?
A Your HP 48 symbolic results mode setting is probably the cause. Your HP 48 is attempting to find a numeric result but one or more of the variables is undefined and cannot be evaluated to a number. Press $\boldsymbol{\pi}$ wimess to display the Calculator Modes screen. Then press FLAG to display the system flags screen. For symbolic outputs, make sure flag 03 reads, "Function $\rightarrow$ symb" and has no check mark in front of it. After changing the setting, press $\quad 0 K \square O K$ to save the flag settings and exit the Calculator Modes screen. Then re-solve the problem.

## Equation Sets

$Y=$ These are the most commonly asked questions about CalcWare applications which are equation sets. Equation set applications are indicated by the icon shown at left.

Q I entered values for some variables and pressed SOLVE, but I get the error "Too Many Unknowns." Why?

A Sometimes the Solver doesn't have enough information (i.e., enough known variables) to solve for all the remaining, unknown variables You will have to enter more known values and re-solve.

Q There are already values stored in some of my variables. How do I clear those values?

A The values remain from previous solving operations. It is okay to ignore the values, because as long as they aren't marked as known, they will be overwritten by new solutions. If you want to reset the variables, press RESET to clear one or all of the variables.

Q The solution to my problem is clearly wrong! (An angle might be negative or unreasonably large.) Why?

A This is most likely to happen when angles are involved in the equations you are solving. What has happened is that the HP 48 has found a nonprincipal solution to your equation.

Example: Imagine solving the equation $\sin (x)=0.5$. Solutions include: $30^{\circ}, 390^{\circ},-330^{\circ}, 750^{\circ}$, etc., but the principal solution is $30^{\circ}$.

If a non-principal solution is found, it may then be used to solve other equations, leading to strange results.

Example (cont.): Now imagine solving the equation $x+y=90^{\circ}$. If $x$ is $30^{\circ}$, then $y$ should be $60^{\circ}$. But if a non-principal solution for $x$ was found, such as $750^{\circ}$, then the value of $y$ will be $-660^{\circ}$, which although technically correct, is also not a principal solution.

The way to fix this problem is to put in an initial guess for angle variables.

Example (cont.): Before solving for $x$, enter the value $45^{\circ}$ for $x$ and then press MMARK to unmark $x$ as known. Now, when you press
SOLVE to solve for $x$, the guess of $45^{\circ}$ will be used, and it is close enough to the principal solution of $30^{\circ}$ that the solver is very likely to find the principal solution.

Q CalcWare seems to be taking a long time to go from the Equations screen to the Solver screen. Why?

A The number of equations in an equation set affects how long it takes to get to the Solver screen, so CalcWare needs more time to get to the Solver screen for large equation sets. Additionally, if the HP 48 has less than 3 K to 4 K of memory free, CalcWare will run slowly.

Q When I try to solve for a variable, I get an answer which is wrong and the message, "Extremum." What does this mean?

A CalcWare relies on the built-in HP 48 numerical solver, which has several limitations. One limitation is that it cannot handle complex numbers as input or output, and when the solution to an equation is complex, the Solver may get stuck at an extremum while attempting to find a real solution. Try entering a guess near the expected solution for the troublesome variable and re-solve.

For more information about the Solver, refer to "Comments about the Solver," page 32.

Q When I try to solve an equation which has two possible answers, only one is displayed. Why?

A Because the Solver only returns the first root it finds. A second- or higher-order equation may have more than one root, but the Solver will only find one. To assist the Solver to find the desired root (e.g., if both positive and negative roots are possible, and the positive root is the only one with physical meaning), try entering a guess near the expected solution and re-solve.

For more information about the Solver, refer to "Comments about the Solver," page 32.

## Reference Tables

These are the most commonly asked questions about CalcWare applications which are reference tables. Reference table applications are indicated by the icon shown at left. If your question relates to a solving feature of a reference table, see also the above section, "Analysis Routines."

Q How do I copy the help text to the stack?
A You can't. Only reference data can be copied to the stack.
Q I want to solve an equation in a reference table but there's no SOLVE key in the menu. How do I solve the equation?

A If the SOLVE key does not appear in the menu, then the CalcWare application does not have a custom solving routine for that reference table. To try to solve an equation from that reference table, highlight the equation and press CCALC to take the item to the stack. Then type व STEQ ENTER to store the equation. Finally, enter the HP solver by typing SOLVE then ENTER. For more information about the HP solver, see your HP 48G User's Guide.

Q I copied an equation to the stack that the HP 48 won't solve. What could the problem be?

A Some reference equations use mathematical functions or operators that the HP 48 does not accept. After copying the equation to the stack, if it begins and ends with single quotes ('), the HP solver should have no trouble with it. However, if the equation begins and ends with double quotes ("), then the equation is not a valid expression and the HP 48 cannot solve it. The latter type of equations are intended only for reference information and cannot be solved.

## B <br> Service and Warranty

## Technical Support

You can get answers to your questions about CalcWare from Sparcom Corporation. Contact us in one of the following ways:

- E-Mail

Internet: support@ sparcom.com
Compuserve: >Internet:support@sparcom.com
FidoNet: To:support@sparcom.com

- Standard Mail

Sparcom Corporation
Attn: Technical Support Department
P.O. Box 927

Corvallis, OR 97339, USA

- Telephone
(503) 757-8416

Monday to Friday, 9 a.m. to 12 noon, Pacific Time

- Facsimile
(503) 753-7821


## Shipping Instructions

## If your disk requires service

1. Call Sparcom Corporation for a Return Merchandise Authorization (RMA) number.
2. Ship the products back to Sparcom Corporation in the following manner:

- Include your return address, phone number and a detailed description of the problem.
- INCLUDE YOUR RMA NUMBER WITH THE MERCHANDISE. The RMA number must be written on the outside of the package, or the package will be returned to you unopened.
- If the product is still under warranty, include the proof of purchase date.
- Include a check, purchase order, or credit card number and expiration date (VISA or MasterCard) to cover the estimated charge.
- Should the disk require further service, Sparcom Corporation will notify you of the additional repairs and charges.
- Ship your disk, postage prepaid, in protective packaging adequate to prevent damage. Ship the package to:

Sparcom Corporation
RMA \# $\qquad$
897 NW Grant Avenue
Corvallis, OR 97330, USA

- We highly recommend that you insure the shipment.

Products are usually serviced and reshipped within five working days.

## Service Charge for Out-of-Warranty Disk

Charges for out-of-warranty repairs are individually determined based on time and material. These charges are subject to your local sales or value-added tax, wherever applicable.

## Disk: Limited 90-Day Warranty

## What is covered

The disk is warranted by Sparcom Corporation against defects in materials and workmanship for ninety (90) days from the date of original purchase. If you sell your disk or give it as a gift, the warranty is automatically transferred to the new owner and remains in effect for the original ninety-day period. During the warranty period, we will repair or, at our option, replace at no charge a disk that proves to be defective, provided you return the disk, shipping prepaid, to Sparcom Corporation. (Replacement may be made with a newer disk of equal or better functionality.)

This warranty gives you specific legal rights, and you may also have other rights that vary from state to state, province to province, or country to country.

## What is not covered

This warranty does not apply if the disk has been damaged by accident or misuse or as the result of service or modification by other than an authorized Sparcom Corporation service center.

No other express warranty is given. The repair or replacement of the disk is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE NINETY-DAY DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. IN NO EVENT SHALL SPARCOM CORPORATION BE LIABLE FOR CONSEQUENTIAL DAMAGES. Some state, provinces, or countries do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time of manufacture. Sparcom Corporation shall have no obligation to modify or update products, once sold.

## Index

## A

adiabatic expansion • 88
algebraic functions
installation $\bullet 47$
Taylor polynomial • 48
alpha
entry mode • 12
lock • 12
analysis routines - 20
angle measure - 18
angular mechanics
angular motion - 61
banked curves $\cdot 61$
circular motion - 62
installation - 59
moments of inertia • 64
momentum and precession $\bullet 62$
momentum, torque, and work • 63
parallel axis theorem $\cdot 63$
angular motion $\bullet 61$
arrow keys • 16

## B

banked curves • 61
Bernoulli's equation • 67

## C

Calculator Modes screen - 18
CalcWare
deleting • 19
installation • 11, 13
starting $\bullet 16$
types of applications • 12, 41
CalcWare Link • 11
Carnot cycle - 89
center of mass • 81
check fields • 39
choose fields • 39
circular motion • 62
coefficients of friction - 72
coefficients of linear expansion • 94
collisions
elastic - 82
fixed m 2 - 82
inelastic - 83
computer requirements • 11
conduction, thermal • 93
connectivity software 11
coordinate system • 18
coordinate systems
XY to polar • 50
XYZ to cylindrical • 51
XYZ to spherical • 51
customer support • 103
cylindrical coordinates • 51

## D

drag force • 72
E
edit fields • 38
entropy • 89
Equations
displaying a picture $\cdot 31$
menu keys 30
Solver - 31
viewing an equation $\cdot 31$
EquationWriter • 41
examples
banked curves - 61
coefficients of friction • 72
coefficients of linear expansion • 94
free falling object $\cdot 75$
frictional force $\mathbf{7 1}$
heat of transformation - 88
hyperbolic functions • 53
moments of inertia • 64
object centroids • 85
pressure and density $\bullet 66$
right triangle - 26
rocket science $\cdot 81$
SI prefixes - 42
Taylor polynomial • 48
trigonometric functions $\cdot 21,55$
vector functions• 57
vectors • 58
$\mathrm{XY} \leftrightarrow$ polar • 50
excape velocity $\cdot 75$
expansion, isothermal - 92
expansion, thermal • 93

## F

fields
check - 39
choose - 39
edit • 38
first law of thermodynamics - 90
flow velocity • 67
fluid mechanics
Bernoulli's equation • 67
flow velocity • 67
installation • 65
Poiseuille's law • 67
pressure and density $\bullet 68$
pressure variation $\bullet 68$
Reynolds number • 69
Stokes' law • 69
font size • 34
forces
coefficients of friction • 72
drag force • 72
frictional force $\cdot 72$
installation - 70
free falling object $\cdot 76$
frictional force - 72

## $G$

gas law, ideal • 92
getting started • 11
gravitation
escape velocity $\bullet 75$
free falling object $\cdot 76$
gravitational force • 76
installation - 73
orbits (circular) • 77
orbits (elliptical) • 77
projectile motion • 78
terminal velocity $\bullet 78$
gravitational force • 76

## H

hardware requirements $\bullet 11$
heading map • 12
heat capacity • 90
heat engines and refrigerators $\bullet 91$
heat of transformation • 91
home screen • 16
HP 48
Serial Interface Kit • 11
server mode • 14
hyperbolics
hyperbolic functions • 53
installation • 52

## I

icons • see Solver
ideal gas law • 92
independent variable $\cdot 37,38$
installation
algebraic functions • 47
all CalcWare applications • 15
angular mechanics • 59
CalcWare applications • 15
CalcWare shell • 14
fluid mechanics • 65
forces • 70
gravitation • 73
HP $48 \cdot 14$
hyperbolics• 52
linear mechanics $\bullet 79$
Macintosh • 13
PC • 13
thermodynamics• 86
trigonometry • 54
vectors • 56
isothermal expansion • 92

## K

Kermit • 11
keystrokes • 12

L
linear mechanics
center of mass - 81
collisions (elastic) • 82
collisions (fixed m2) • 82
collisions (inelastic) • 83
installation - 79
linear motion • 83
momentum, force, and work $\bullet 84$
object centroids $\cdot 85$
rocket science - 84
linear motion - 83

## M

manual conventions • 12
menu keys
>STK • 17, 24, 43
ABOUT• 17
ANS• 35
CALC • 17, 23, 24, 30, 35, 39, 43
CANCL• 40
CHK • 39
CHOOS • 24, 39
CONV• 35
CW • 15
CWAR • 15
DEL• 17
DESC • 43
DRAW • 38, 39
EDIT • $23,35,38,39$
EQNS • 35, 36
Equations screens • 30
EQWR • 30
ERASE • 38, 39
EXIT • 17, 24, 36
FONT • 17
for choose fields • 24
for edit fields • 23
for result fields • 24
HELP • 17
MARK• 35
OK•40
OPTS • $17,23,24,30,35,38,39$, 43
PICT • 30, 35, 43
PLOTR • 30
Plotter screens • 38
PRINT• 36
QUIT•17

RESET•35, 39
SETUP • 14
SOLV1•35
SOLVE • 23, 24, 35, 43
Solver screens • 35
SOLVR • 30
TYPES • 23, 40
UP•17
VALUE• 36
menus
convert • 33
modes • 12,18
moments of inertia • 64
momentum and precession $\bullet 62$
momentum, force, and work $\cdot 84$
momentum, torque, and work $\bullet 63$

## N

number format $\bullet 18$

## 0

object centroids • 85
options menu • 17
orbits
circular • 77
elliptical • 77

## $p$

parallel axis theorem • 63
Plot Application
screens• 37
Plotter
autoscale • 37
drawing the plot $\cdot 37$
field descriptions $\cdot 38,40$
menu keys • 38
plotting an equation $\cdot 37$
selecting the independent variable 37, 38
setting the horizontal range $\cdot 37$
setting the vertical range $\cdot 37$
Poiseuille's law • 67
polar coordinates • 50
polynomial
Taylor • 48
pressure and density $\bullet 68$
pressure variation $\cdot 68$
projectile motion $\bullet 78$

R
refrigerators and heat engines - 91
Reynolds number • 69
rocket science - 84

## S

screens
Plot Application • 37
Solver - 31
server mode - 14
service - 103
charges • 104
setup - 14
shipping instructions • 104
software requirements $\cdot 11$
Solver
answer found $\cdot 34$
converting a value $\cdot 33$
entering values $\cdot 32$
font size - 34
known variables • 34
menu keys • 35
no answer found • 34
resetting variables $\cdot 33$
screens • 31
solution found $\cdot 34$
solving an equation $\cdot 32,37$
Sparcom Corporation
contacting • 103
phone number • 103
spherical coordinates $\cdot 51$
starting CalcWare $\cdot 16$
Stokes' law - 69
system requirements $\bullet 11$

## T

Taylor polynomial • 48
technical support • 103
terminal velocity $\bullet 78$
thermal conduction - 93
thermal expansion • 93
thermodynamics
adiabatic expansion • 88
Carnot cycle • 89
coefficients of linear expansion • 94
entropy $\bullet 89$
first law of • 90
heat capacity • 90
heat engines and refrigerators - 91
heat of transformation - 91
ideal gas law - 92
installation - 86
isothermal expansion • 92
thermal conduction - 93
thermal expansion • 93
trigonometry
installation - 54
trigonometric functions • 55

## V

variables
answer found • 34
converting • 33
entering (for Plotter) • 37
entering (for Solver) • 32
independent variable (for plotting) • 37, 38
known • 34
no answer found • 34
resetting • 33
vector functions - 57
vectors • 58
installation • 56
vector functions - 57
view - 41

## W

warranty • 105

## X

XY to polar • 50
XYZ to cylindrical - 51
XYZ to spherical • 51

## CalcWare

## Application Software for HP 48G Series Calculators

Physics Series

## Mechanics \& Thermodynamics

Mechanics \& Thermodynamics is diskette-based software for students in physics and engineering who use the HP 48G or HP 48GX calculator.

Can be used in the following classes:<br>1st Year Phusics<br>Phusics lab<br>1st Year Engineering<br>Science

## Saves Time

No need to program the HP 48G or HP 48GX. Just load the software and you are ready to go. Explore basic concepts and master the subject material at your own pace.

## Easy-To-Use Software

Sparcom's software is menu-driven and includes help text.

## Covers Major Subjects of Physics

Quickly customize your calculator with standard physics routines to match the needs of the class you are taking.

Angular Mechanics	Fluid Mechanics	Thermodynamics	Friction
Linear Mechanics	Gravitation	Drag Force	Vectors

Contents: User's Guide, Software

## The following items are needed to run CalcWare application software:

- HP 48G or HP 48GX Calculator
- Serial Interface Cable
- Connectivity Software: CalcWare Link for PC or Macintosh, HP Serial Interface Kit or other transfer software such as Kermit
- Personal Computer that can run connectivity software: IBM PC Compatible or Macintosh that reads PC-formatted diskettes


[^0]:    4. To reinstall CalcWare, refer to "Installing CalcWare onto your HP 48," page 14.
[^1]:    ${ }^{1}$ If the value must be entered in specific units, or if there are special conditions or limits on the input, that information will appear in the help text.
    ${ }^{2}$ Some analysis routines have too many result fields to display on the input screen; in such cases, a separate output screen is displayed with all the result fields.

