
W&W SOFTWARE PRODUCTS GMBH

LLU - Module

Owner’s Manual

For the HP-41

fCCeee 5'5;52% i

Foreword

The CCD-Module was developed with the goal of providing a tool
for improving all applications of the HP-41, and to simplify
programming. User friendliness was an objective of particular
importance in obtaining this goal.

The CCD-Module should support the programmer to such an extent
that he can concentrate on the actual problem he is attempting
to solve, rather than expend a great deal of effort in the
mechanics of programming. Other sections of the program such
as the formatting of input and output, can be assembled with
the new functions supplied by the module, and problems which
were previously insoluble can be solved.

More than a year was required for the development of this
module. Special thanks are due for the support furnished by
all of members of CCD (Computer Club of Germany), who made
possible the production of this module in its present form, by
their strong interest, by proposing routines for functions to
be included in the module, and not least by the patience they
exhibited. Further thanks are due to Dr. Baltes, the
spiritual father of the module, through whose work in
coordinating the programming much room was created for new
functions; also to Mr. Holger Adelmann by whose stimulus and
programming efforts the CCD-Module was optimized.
Furthermore I thank everyone who tested our module during its
development phase, and who enhanced the success of this
hanbook by contributing applications for individual function.
In this regard I am particularly grateful to Mr. Gerhard
Kruse, who has written a variety of excellent and optimized
programs for the handbook, and to Mr. Andreas Meyer for his
literary work and for his superb preparation of figures.
Furthermore I thank the Hewlett-Packard Company in Germany for
their support, and last but not least, my friends Ken Emery,
Stephan Abramson and Jeremy Smith who by their assistance in
translation, have helped to make this module known throughout
the world.

W&W Software Products GmbH

Wilfried Kotz, President

(C) Copyright W&W Software Products GmbH 1985 I

(C) Copyright W&W Software Products GmbH 1985 II

Chapter Index

1 Internal Design of the HP-41

2 Operating System Enhancements

3 Functions from Catalog 2 (-W&W FNS)

4 Matrix Functions (-ARR FNS)

5 Binary Functions (-HEX FNS)

6 Input/Output Functions (-I/O FNS)

7 Functions for Advanced Programming (-ADV FNS)

8 XF/Memory Functions (-XF/M FNS)

9 Bar Codes

10 Function Index

11 Compatibility

12 Literature

(C) Copyright W&W Software Products GmbH 1985 ITI

Subject Index

0171P5.19
I's Complement Modec0... 5 .12
2’s Complement Mode...ttt 5 .12
2O..ee5 .20
Soeee 4 .19
SR.eeee 4 .21
BCASee6 .15
Lee ee 4 .14
LAeeee 4 .15
"A?" (Bar Code on Page 9 .05), 7 .25
"ABIN" (Bar Code on Page 9.05) 4 .77
ABSP.eee 6 .29
ACAXY.ee6 .17
ACLX.eeee 6 .22
Address Structure of the HP-41 Status Registers 2 .14
ALPHA FUuncCtionsoiiiitiiiiitttiteieeeeennnn 6 .29
ANDLeee 5 .27
ARCLee 2 .13
ARCLE.ee 6 .32
ARCLHiee 6 .35;5 .25
ARCLIee 6 .37
ASNLee 2 .11
ASTO ..e2 .13
DOee5 .43
DSe5 41
"BS?" (Bar Code on Page 9 .06) 8 .08
Boeee 3 .05
Bar Codes for the Functions of the CCD-Module 9 .18
Bar Codes for Programs iiiinnnn.. 9 .05
Bar Codes for the Functions of the CCD-Module 9 .18
Basic Setup (FHEX FNS) ...iii ii 5 .16
Binary Number System 5 .05
Byte/Function Table 1 .20
Gl4 31
O4 .23
Ge4 .25
Calculating of Absolute Adresses cccvinn.. 7 .09
CASee 3 .09
CatalogS..oe2 .05
]25 .45
"CB" (Bar Code on Page 9 .07), 7 .36
"CDE" (Bar Code on Page 9.07) 7 .15

(C) Copyright W&W Software Products GmbH 1985 IV

"CF55" (Bar Code on Page 9 .08)50
"CHK" (Bar Code on Page 9.08)34
CLA-eee .30
@17Z.07
"CLK" (Bar Code on Page 9.08) g1
CMAXAB ...eee .43
CNRMe .54
Complement.ttte .10
Complement (Signed) Modescciiiiiiinnnn.. 5 .11
Complement Notationciiirirrrneeeenennnnnnnn 13
Construction and Manipulation of Arrays05
Construction of Arraysciiitit .06
CSUM.ee 52
Data RegISteIS .. oi ittt ittt ee 11
DO..ee .14
Decoding Functionc.oiiiineennnnnnnnns .14
Determining the Extreme Values of Array Elements39
DIMee 13
Direct and Indirect Memory Access Functions A3
Display Format Instructionsc.ciiiiirnnnnnn. 23
Distribution of Ranges of Values A1
END Instructionciiuiiiiiiremiinennennnnn. .16
END InStruCtionsc.ttiiinneennnneeennneeennnnn 25
Examples of the Contents in a Numeric Register14
F/Eeee 27
FIX/ENG Modeee ei 6 .27
Flag and Display Format Instructions 23
FNRM ..ee .56
Functions for Calculating of Absolute Addresses 09
Functions for the Construction and Manipulation of

ATTAYS ottt itttee .05
Functions for Determing the Extreme Values of Array

Elementse, .39
Functions for Manipulating the Program Pointer16
Functions for Printer Output iiiniinn... A7
Functions for Shifting and Exchanging Elements 31
Functions for the Manipulation of Element Pointers 14
Functions for the Manipulation of Individual Bits 33
"GE" (Bar Code on Page 9 .09), 27
GETBee .07
GETK ...e .10
GTO and XEQ Instructionsc.uitiiinuneeennn. 25
Hexadecimal Byte/Function Table20
Hexadecimal Number System..................ccvivn.... .09
"H-O" (Bar Code on Page 9 .09) A1
I/O Buffers (Design and Inner Structure) 33
8.16
L=Aee 17

(C) Copyright W&W Software Products GmbH 1985 v

"INP" (Bar Code on Page 9 .09)ot 6 .05
INPTLeeeee 6 .05
Input and Output Functions for Data Arrays 4 .18
Input and Output Functions for Use with -HEX FNS 5 .22
Input FUnCtionscittt eennnnnn 6 .05
Input of Any Alpha Character String 2 .15
"INV" (Bar Code on Page 9 .10), 4 83
KEY. itieeeee ee 6 .14
Key Assignments (Design and Inner Structure) 1 .31
Label InStructionsciiitttiiineeeenneeeennnn 1 .23
Layout of a Numeric Register iiiie... 1 .13
Line Numberingttt iiiiieeaeeens 1 .30
Moeeteee 4 .57
1PP4 .59
Mee ee 4 .61
MMee4 .65
12P4 .63
J\YE:38 (B (51110o2R1 .09
Main Memory Configurationccoiuieinnnen... 1.10
Manipulating the Program Pointer 7 .16
Manipulation of Element Pointers 4 .14
Manipulation of Individual Bits 5 .33
MAXeeeee 4 .39
MAXAB...ee 4 41
Memory Access Functions 2 .13
MDDIM ...ee4 .09
MINeee ee 4 45
Modes...eee ee 5 .11
MOVE..ee4 .35
MRGK...e8 .12
Negative Numbersttt 5.10
NOT.ee5 .32
Number Input.......ii 1 .28
Number Systemscoiiiitii5 .05
Octal Number Systemi, 5 .07
One Byte INStrucCtionsoiiuirieeeneennennnnn 1 .22
O.eee 5.29
Organization and Construction of Arrays 4 .06
Output FUNCtIONSo ittt e e e e ettt e e ee 6 .17
Output Functions for Data Arrays 4 .18
Output Functions for Use with -HEX FNS 5 .22
"PBC" (Bar Code on Page 9 .11)i .. 7 .40
PC<>RTN..7 .21
P>Xe7 .16
PEEK and POKE Functions.coinn.. 7 .24
PEEKB...7 .24
PEEKR ..ee7 .29

(C) Copyright W&W Software Products GmbH 1985 VI

"PHINPT" (Bar Code on Page 9.12) 6 .07
Physical Address Structure of the HP-41 Status

RISIS .. iteee 2 .14
PVee4 .46
PHDD...ee7 .08
"PK" (Bar Code on Page 9 .12)t 8 .13
PLING ..eeee 7 .05
PMTAee6 .09
PMTH ...ee 6 .11;5 .22
PMTK..eee 13
POKE FUNCHIONS.ttt it ettt et ieeeeeeeanes 7 .24
POKEBe7 .31
POKER ...ee7 .35
PPLING ...eee 7 .07
PReeee 6 .18
"PR1" (Bar Code on Page 9 .13) 6 .22
"PR4" (Bar Code on Page 9 .14), 6 .24
PRAXYoee6 .20
Printer Outputie6 .17
PR..e6 .24
Program Code of the HP-41 1 .19
Program Line Numbering.................. ..., 1 .30
Program Memory (Design)ciitiiiiinnnnnnnnn. 1 .15
Representation of Negative Numbers 5.10
R-PR.eee 4 .73
R-QRLee 4 .69
P5 .37
34 .33
RS>eee 5 .39
Reee 4 27
Re4 .29
R>Re4 47
RCL.e2 .13
Register Functionsittt 1 .22
RMAXAB ...eeee 4 44
RNDM.ee3 .10
RNRM.ee4 .55
ROM Memory Configuration..............ccouiiiuneeennn. 2 .10
RSOUMee4 .53
Siteeeee 5 .33
Sieee 5 .35
SAS.ee3 .08
SAVEB ..eee 8 .05
SAVEK ..ee8 .09
N155 .47
SEED...ee 3 .12
Setting FIX/ENG Mode 6 .27
SORT ..ee3 .13

(C) Copyright W& W Software Products GmbH 1985 VII

SORTFL ...ee
"ST" (Bar Code on Page 9 .14)
STO.ee
SUM.e
SUMABe
SWAP ..e
"T"

"TLC";"TLCI1";"TLC2" (Bar Codes on Page 9 .16)

"VB" (Bar Code on Page 9 .16)

"VR" (Bar Code on Page 9 .17)

"WEF" (Bar Code on Page 9 .17)
WSIZE

XE
XEQ Instructions

XR>RTN

(C) Copyright W&W Software Products GmbH 1985

--

TAB.e
Table of Complementsc.cciiiiininn..
"TD" (Bar Code on Page 9 .15)
Text InStructionsc.outiiiieeennnnnnn.
The I’s Complement Mode.
The 2’s Complement Mode.
The Binary Number System
The Catalogsciiiiiii iti
The Complementc0i,
The Decimal Number System........................
The Hexadecimal Number System....................
The Input of Any Alpha Character String
The Meaning of the END Instruction
The Octal Number System
The Program Code of the HP-41
The Unsigned Mode

TONEee
UNSe

VIEWH ...e

"W?" (Bar Code on Page 9 .17)

XOR ..o otteeet

...............................

...... 2 .

...... 4 .

...... 4 .

...... 4 .

...... 6 .

...... 5 .

...... 5.

...... 5.

...... 5.

...... 2.

...... 5.

...... 5

...... 5.

...... 5

...... 1.

...... 5.

...... 2 .

...... 5.

------ 5 .

VIII

Introduction

The CCD-Module is an extension for the HP-41 handheld
calculator, which expands the calculator’s vocabulary by
nearly a 100 new functions. The module also provides several
enhancements to the operating system of the HP-41, such as new
catalogs and the capability of direct keyboard entry of lower
case letters.

The ideas and wishes of many members of CCD (Computer Club of
Germany) were particularly taken into account in planning the
module; thus the module is named after the group.

The CCD-Module was programmed in machine code (MCODE), which
sets it apart from other application modules. This design
approach affords accuracy and rapid execution of the functions
of the CCD-Module, which would have other wise been
unattainable.

The CCD-Module is a valuable addition to a "bare-bones" (i.e.
an otherwise unenhanced) HP-41; however, as the size of the
system increases, so do the possibilities afforded by the
module. Thus, in particular, the CCD-Module supports all
printer characters, the Extended Functions/Memory module and
the Hewlett-Packard Interface Loop (HP-IL).

(C) Copyright W&W Software Products GmbH 1985 IX

(C) Copyright W&W Software Products GmbH 1985

Chapter 1

Internal Design
of the

HP-41

(C) Copyright W& W Software Products GmbH 1985 1 .02

Contents Chapter 1

=)
20
»n
]

)

K
j=t
—
o
R

=
lomnlInternal Design of the HP-41

Internal Design of the HP-41 1 .05
The RAMof the HP-41 1 .06

The Structure of RAM 1 .07
Main Memoryttte 1 .09

Main Memory Configurationccco..... 1 .10
Data Registerscoiiiiiiiiiiiinnn.. 1 .11
Data Registers (Inner Structure) 1 .13
The Register Structure cciiriiienen... 1 .13

Layout of a Numeric Register 1 .13
Examples of the Contents in a Numeric Register .. 1 .14
Design of an ASCII Register 1 .14
Examples for the Contents of an ASCII Register .. 1 .15

Program Memory (Design)cciiien.... 1 .15
The Meaning of the END Instruction 1 .16

Program Memory (Inner Structure) 1 .17
How a Program Consists of Instructions 1 .17

The Program Code of the HP-41........................... 1 .19
Hexadecimal Byte/Function Table 1 .20
One Byte Instructionscciiininnnnn.. 1 .22
Flag and Display Format Instructions 1 .23
Label Instructions c.iiitiiinrennnnnn.. 1.23
END Instructionscoiiiiiiniinneennnnnnn. 1 .25
GTO and XEQ Instructionscccuiuun.... 1 .25
Text Instructions iiiiniinnnnnn.. 1 .27
Number Inputi 1 .28
Instructions from Plug In Modules 1 .28
SUMMATY . . .tttettte 1 .30
Program Line Numbering 1 .30
Instructions in Plug In Modules 1 .31

Key Assignments (Design and Inner Structure) 1 .31
I/O Buffers (Design and Inner Structure) 1 .33

(C) Copyright W& W Software Products GmbH 1985 1.03

(C) Copyright W& W Software Products GmbH 1985 1.04

Internal Design of the HP-41

Many functions of the CCD-Module (PEEK, POKE and "Synthetic")
operate on all of the HP-41‘s RAM. This RAM includes the main
memory (data registers, programs, key assignments and I/0
buffers), the status registers (stack, flag register and other
informations for the operating system) and extendend memory.
The operating system uses memory locations to store status
information. The careless use of some registers can crash your
HP-41, lose the memory contents but will never harm the
machine itself.

First, we will explain the design and the organization of RAM.

The HP 41 has two different types of memory

- Random Access Memory (RAM)
- Read Only Memory (ROM)

As only RAM can be altered by the user, its design and logical
organization is the most interesting for us and will be
covered first.

(C) Copyright W&W Software Products GmbH 1985 1.05

e

c
18
it

1721

a
f—
<

c
S
0}
—

=
e

The RAM of the HP-41

HP-41 RAM comprises space for 1024 registers which are each 56
bits wide. The CPU is only capable of reading one register
at a time. If it wants to alter one bit, it has to read the
whole register, set or clear the bit and then write the whole
register back again. Inside the CPU the register contents can
be altered all together or in parts. The smallest part is the
bit. Other parts are a nybble (4 bits) or a byte (8 bits).
Bits, nybbles and bytes in a register are numbered starting
with 0 from right to left. The bits are counted from 0 to 55,
the nybbles from 0 to 13, and the bytes from 0 to 6.

6 5 4 3 2 1 0 Byte number

13(12(11|110]1 98| 7|6 54| 3|2 1| O Nybble number

sso|]|7654]3210] Bit number

We should not not forget that this is only a logical division
in a register.

The HP-41 CPU is able to address 1024 registers. The registers
are numbered from 0 to 1023. The register number is an
absolute value. It is only dependent on the physical location
of the register in RAM. That the CPU is able to address 1024
registers does not mean that they are available to the user
because the operating system needs certain gaps for its own
use.

(C) Copyright W& W Software Products GmbH 1985 1.06

The Structure of RAM

HP-41 Memory Configuration

Byte: 6 5 4 3 2 1 0

Byte: 6 5 4 3 2 10

511 1FF 1023------------ - 3FF Gap

Dcte regetars 1007 e (16 Reg)

RGO
First USER—program

Extended

Frogrom memeny Main memory memory

______ END. (320 Req.) area 2

(239 Reg.)

free registers

T Votondcombatier
_______ X—Memory status register

192 Ko ceslgmmentg 0Co 769 397 Gap
191 0BF 751 26F (17 Reg.)

Extended

memory

area

—Fct— |Efzgcéengd“ ©) Extended
64 X—Function status register 040 memory

| | area 1

| | Gap (239 Reg)

: : (48 Reg.)

[I
15 00F .

Status registers

0 0 (16 Reg') 513 x-Memory statusregister 201 Gap

(dec.) (hex.) 512 200 (1 Reg.)
(dec.) (hex‘)

Up to now we only talked about the physical configuration of
RAM. We shall now discuss the logical configuration of RAM.
RAM is subdivided into three parts, according to its use:

1) status registers
2) main memory
3) extended memory

(C) Copyright W& W Software Products GmbH 1985

J]

Peol
1]
=
=
72]
L

—
<
joo
bl
L
e

=)
P

Designation Start Address - End Address Start Address - End Address

decimal hexadecimal

Status Registers 0 — 15 000 — OOF

Main Memory 192 - 511 0CO - 1FF

Extended Memory:

X Function Mem. 64 - 191 040 - 0oBF

X Memory 1 513 — 751 201 — 2EF

X Memory 2 769 — 1007 301 — 3EF

We recognize that the extended memory is split in 3 parts
(extendend functions and 2 extended memory). In the HP-41 C
main memory ranges from register 192 to 255. It can be

expanded in 64 register increments till the limit of S11 is
reached.

(C) Copyright W& W Software Products GmbH 1985 .08

Main Memory

=
20

)

=
=
o
)b
=
L

Four different kinds of data can be stored in the main memory:

alphanumeric data
programs
key assignments
I/O buffers

There i1s a special place in memory reserved for each data
type. The operating system allocates space for each type of
data on request.

(C) Copyright W&W Software Products GmbH 1985 1.09

Main Memory Configuration:

Byte: 6 5 4 3 2 10

511

192

Data registers

First USER—program

Program memory

free registers

Key assignment registers

1FF

Main memory

(320 Req.)

0CO

191 0BF
Extended

memory
area
(X—Fct—Module)
(128 Reg.) X—Function status register 64 040

Gap

(48 Req.)

00F .
Status registers

(16 Req.) 000
(hex.)

The operating system has four different modes of data storage:

data storage
program storage
KA
I/0

-storage
Buffer storage

Free memory is allocated for use by the operating system.

(C) Copyright W& W Software Products GmbH 1985 1.10

e

Data Registers

c
o1}

[72]

a
<
=
bl
O
iy

=
]

The data registers are located in the upper part of main
memory. The commands STO and ASTO are used to save all kinds
of numeric and alphanumeric data in the data registers. The
register numbers used for that will be called "relative
numbers" in this book.

The upper boundary for data registers is 511 absolute in the
CV and CX, but in the C it is dependent on the number of
memory modules plugged in.

Memory Address Address
Remarks

modules (decimal) (hexadecimal)

0 192 — 255 0CO — OFF HP-41 C basic configuration

1 256 - 319 100 — 13F

2 320 - 383 140 — 17F
or Quad RAM; note that for

3384 - 4 180 — 18F the HP-41 CV and HP-41 CX
4 448 — 511 1CO0 — 1FF all of these addresses are

permanently built in.

The lower boundary is assigned by the operating system after
executing the SIZE function.

Lower boundary = upper boundary + 1 - SIZE

(C) Copyright W& W Software Products GmbH 1985 1.11

As the upper boundary is 511 in most cases the formula reduces
to:

lower boundary = 512 - SIZE

The lower boundary is called the curtain because it separates
data registers from programs. In numbering the data registers,
which is assigning relative addresses to the data registers,
one starts at the curtain with 00.

The relation between absolute and relative addresses is shown
by the table below:

Absolute Address Relative Address

upper boundary Size-1
Curtain 0
Curtain + nnn Register nnn

One can imagine that the operating system needs the curtain to
change relative into absolute addresses. Because of this the
address of the <curtain is stored in one of the status
registers. The curtain is only a logical division between data
and program registers.

Having explained where the data registers are, and how they
are counted, numbered and addressed we will now explain how
the data is actually stored in a register.

(C) Copyright W& W Software Products GmbH 1985 1.12

O

Data Registers (Inner Structure)

=
)
72!
)

=
=
bl
)3
=
P

An important rule for this:

1) Everything we store with STO or ASTO occupies a whole
register

2) There are no physical boundaries, only logical boundaries

The Register Structure

We distinguish between numeric data (numbers) and alphanumeric
or ASCII data.

Layout of a Numeric Register

F] 1 1 1 1 1 1 L] I 1

13 12111110 9 8 7 6 5 4 3 2 1 o0 Nybble
number

/ [\
Mantissa Mantissa Exponent Exponent

sign sign

(C) Copyright W& W Software Products GmbH 1985 1.13

Examples of the Contents in a Numeric Register

[9]8,7,5, 1,2 0 0, 0 0, 0]0]O 0]=-87512
| | | | | 1 1 1 L

o8, 7, 5,1 2 0 0 0 0 0[0]0 0]=87512

11>(0[1, 0 0 0 0 0,0, 0 0, 0JO0]1,2] 21,0000 12

I[0[1,0,0,0 0, 0,0 0 0, ,0]0]0, O] =1,0000

[9]8,7,.5 1 2 0, 0,0, 0 0[9]8 5]=-87512~15

The digit 0 indicates a positive number and the digit 9
indicates a negative number. The system in which each nybble
contains a number between 0 and 9 is called BCD (Binary Coded
Decimal). This means that nybble 13 of a numeric data register
must either contain a 0 or a 9.

Design of an ASCII Register

LD Xe
13 12 11 10 9 8 7 6 5 4 3 2 1 0 Nybb]e number

6 5 4 3 2 1 0 Byte number

All ASCII registers have the digit 1 in nybble 13. In the
bytes 0 to 5 there can be up to 6 ASCII letters right
justified. If a register contains only one letter the bytes 1
to 5 are null bytes and byte 0 contains the letter.

(C) Copyright W& W Software Products GmbH 1985 1.14

Examples for the Contents of an ASCII Register:

[1Jo,0, 0,0 0,4 1,4 2,4 3,2 0]=2"ABC"

|1]o,0, 0,0 0,2 0,4 1,4 2,4 3]2"ABC"

[1J]o,0,0,0 0,0 0,4 1,4 2,4 3]=2"ABC"

[1J]o,0 0,2 0,4, 1,4 2,4 3,2 0]=a"ABC"
1

It 1s simple to determine the difference between number and
ASCII registers: one must only analyse nybble 13. If it is 1
it is an ASCII register, if it is 0 or 9 it is a data
register. The nybble 12 can have any value in calculators
manufactured with serial numbers less than 2036.... All
machines manufactured since then place a zero in nybble 12.

The CCD-Module contains a function which makes it very simple
to analyse a register: DCD (DeCoDe the X register).

Program Memory (Design)

Program memory starts with the register below the curtain (see
the main memory map). It ends with the .END. instruction. The
structure of the program registers is excactly the opposite of
the data registers, the first program is in the topmost
register and later programs are in lower numbered registers.

(C) Copyright W& W Software Products GmbH 1985 1.15

J

-=
%=
72!
)

-
=
=-
)2
S
—

The Meaning of the END 1nstruction

The significance of the END instruction. The beginning of a
program is either behind the END of the last program or
directly below the curtain. Every END instruction contains
information for how far away is the next highest LBL or END.
The shortest possible program is only an END.

When we start with a "MEMORY LOST" and key in some program
steps then we have a program with an END already attached.
That is easy to see: just key RTN and R/S (in run mode). The
operating system has a permanent END: the .END. instruction.
This means that after "MEMORY LOST" there already exists a
program in memory: the .END.

The .END. has a special function: it is the last END in
program memory and can not be deleted by normal means, nor
should it be deleted by any other means.

When one writes or debugs programs and new steps are written
into memory, null bytes are overwritten. When there are no
null bytes available the operating system produces some. To do
this the operating system shifts program memory down 1
register into the free memory space. By doing that 7 null
bytes are produced. The information about the program length
in the END is renewed.

"PACKING" removes unnecessary null bytes from program memory.
Here too, the length information in the END is renewed.

(C) Copyright W& W Software Products GmbH 1985 1.16

Program Memory (Inner Structure)

How a Program Consists of Instructions

The operating system of the HP-41 has a list of all functions
(CAT 3) each having a special code. When a function is keyed
in (with XEQ ALPHA function ALPHA), the operating system
searches this list. When the function is found the operating
system stores the code and branches (if necessary) to the
prompt for the argument byte. Then the function code and
argument can be saved as program step.

A special feature of the HP-41 is that the function list can
be increased by plug-in modules (such as the CCD-Module) and
with programs created by the user.

The function list is made visible with the CAT instruction.

When the operating system searches for a program or a function
it does so in the following sequence :

- user programs in the reverse order than they appear in
catalog 1

- instructions from plug in modules starting with page 5 (TIME
module)

- internal function list (CAT 3)

(C) Copyright W& W Software Products GmbH 1985 1.17

=
ol
R

a
S
=
ot
)
R

=
Ll

O

After keying in a function the operating system first makes a
syntax check, making it normally impossible for us to key in
functions like STO M or TONE 57. After the syntax check the
operating system stores the function and argument code in the
memory.

While executing a program the operating system reads the
program line by line and interprets each instruction by
branching to the appropriate machine code program. (There is a
machine code program for every instruction). This part of the
operating system 1is called the interpreter.

The interpreter works without knowing how the program code was
assembled.

An understanding of this is the basics of synthetic
programming. Synthetic programming is nothing more than making
a program code by bypassing the syntax check.

Up to here we have only explained how an instruction is
produced in program memory via the syntax check. We will now
explain what the instruction itself looks like.

(C) Copyright W& W Software Products GmbH 1985 1.18

The Program Code of the HP-41

The program code of the HP-41 is byte oriented. This means
that the interpreter works byte by byte through program
memory. It works from top to bottom, or from high addresses to
low.

256 instructions can be coded with one byte. However, the
number of instructions alone from STO, RCL and ASTO with
register numbers 00-99 is greater than 256. This problem is
avoided in the HP-41 by using an argument byte (the second
byte is an argument byte for an STO instruction). Depending on
the number of argument bytes used we may have one, two, three
or multiple byte instructions.

In all program lines the first byte is the instruction and all
following bytes are the arguments.

In the following byte table all possible instructions are
shown. The table is shown as a 16 * 16 matrix. This is because
every byte can be sliced into two nybbles, the first nybble is
the row number the second is the column number. Instructions
in one row are always of the same type.

On the next two pages you will see the HEX table for the HP-
41. Every square 1is structured like the following diagram:

Funktion for key

Function cLP assignment (bytes

orprefix ——}| 0to1l only)
LBL 03

Symbol or
04 XT

Postfix —| additional

4 o special

character

//

decimal value Printer

character

(C) Copyright W& W Software Products GmbH 1985 1.19

E

-=
)=
72
5

.
<
==
)b
S
.

HP
-4
1C

QU
IC

K
RE
FE
RE
NC
E
C
A
R
D

FO
R

SY
NT

HE
TI

C
P
R
O
G
R
A
M
M
I
N
G

<
19
82
,

SY
NT

HE
TI

X

0
1T

7
21

3
¢

5]
6]

7]
8

9]
A

68
c]

o]
€
]
~

FL
AG

S
(Re

gis
ter

)
33

Lo
bs

ol
ut

e

CA
T

 |
@c
(6
70
.)
]

DE
L

CO
PY

CL
P

RI
S

SI
ZE

BS
T

SS
T

ON
PA
CK

|+
—(
PR
GM
)J
US
R/
P/
A]

2
__

SH
IF

T
AS
N

00
-1

0
ge
ne
ra
l

34
no
t
us

ed

N
U
L
L

[L
BL

O
O
|
L
B
L
O
1
|
L
B
L

0
2

JL
BL

0
3
|
L
B
L
0
4

|L
BL

O
5
|
L
B
L
O
6
|
L
B
L
O
7

|L
BL

0
8
|
L
B
L

0
9

|L
BL

1
0

JL
BL

11
|L
BL

1
2
|
L
B
L

1
3
|
L
B
L

1
4

p
u
r
p
o
s
e

3
5

no
t
u
s
e
d

00
-

|0
1

%
|0
2
(
0
3

®
JOo

4
-

|
0
5
~

|0
6

7
(0

7
B

JO
8

®
|0
9

®
|1

0
&

{11
&

|1
2

-
(1
3

.
|1
4

&
(1
5
€
]
O

11
au
to

ex
ec
ut
e

36
-3
9

nu
mb

er
0
(
1

»
|2
|
3

<«
14

«
|
5
|
6

|
7

4
|
8

2
|
9

o
|1
0
|
1
1

=~
|1
2
|
1
3

<
|1
4

~
|1
5

¥
1
2

d
o
u
b
l
e
w
i
d
e

of
di
gi
ts

<\

g

0
1

2
3

4
5

6
7

8
9

.
EE

X
13

lo
we
r
ca
se

di
sp
la
y

16
8
1
7

8
(1
8

8
[
1
9

8
|
2
0

8
21

&
|2
2

8
|
2
3

B
|2
4

&
|2
5

®
(2

6
&

|2
7

&
]

14
ov
er
wr
it
e

sC
l

16
&

|1
7
2
1
8

&
[
1
9

a
l
2
0

a
|2
1
&

|2
2
6
|
2
3
=
2
4

6
|
2
5

0
|
2
6

O
|2
7

&
15
-1
6

IL
pr

in
te

r
E
N
G

RC
L

00
|

RC
L
O
1
|
R
C
L

02
|

RC
L
O
3
J
R
C
L

04
|

RC
L

OS
5|

RC
L
0
6
[
R
C
L
O
7
J
R
C
L

0O
8|
RC
L

09}
RC

L
1
0
|
R
C
L

T
1
J
R
C
L

12
|

RC
L

13
{R

CL
1
4
|
R
C
L

15
8

?
:J
A(
?:
M

::
;/

EN
G

32
33

©
|3

4
"

[3
5

5
|
3
6

©
[
3
7

%
(3
8
|
3
9

"
|4
0

¢
(4
1

:
[4

2
x

|4
3

-
|4

4
<
|
4
5

-
(4

6
|
4
7

|
2

.
.

A
_

B
)

1
0

TR
AC
E

tr
ig

mo
de

32
(33

v
|34

|35
#

|36
$[

37
=<

[38
&

|39
|a0

<
[
4

>
|42

x
|43

+
Jaa

-
|45

|46
|47

1
1

TR
IS

TA
CK

DE
G

ST
O
00
[S
TO

01
]S
TO

02
[S
TO

03
]S

TO
04|

ST
O
05

[S
TO

06
]S

TO
07

[S
TO

08
]S
TO

09[
ST

O
10

{S
TO

11
[S
TO

12
{S

TO
13

[S
TO

14
]S

TO
15

17
re
co
rd

RA
D

49
|5
0

2|51
3|
52

|
5
3

3|
54

6|
55

t|
s6

5|
57

G|
s8

@
5
9

.
|eo

|6
1

-
|e2

|
6
3
|
3

in
co

mp
le

te
GR
AD

RA
D

48
@
4
9

1
|50

2|
51

3
|
5
2

4|
53

S
|54

&
[55

7|
56

©]
57

9|
58

|59
;

Jeo
<

|61
=
6
2
6
3

>
18

Jg
en

er
al

us
e

T
|-

*
/

X<
Y?

|X
>Y

?
|X

<Y
?

L
+

|L
-

|H
MS

+|
HM

S-
[M

OD
[%

%
C
H

|P
2R

|R
—P

19
|c

le
ar

ed
at

co
nt

.
ON

68
|
6
5
A
6

|
6
7

|
6
8

|
6
9

£
|70

7|
70

o
|72

|
7
3

1|
74

2
|75

v
|76

|
7
7

|
7
8

n|
79

o
4

20
Jt

ur
n-

on
sy

st
em

64
@|
65
a
6

|
6
7

cl
68

D
6
9

E
|70

F
|71

G
|72

w
7
3

1
7
4

2
|
7
5

¥
76

L
|77

m[
|7

8
N

|79
o

21
pr

ir
en

ab
le

da
ta

en
tr
y

—O—~O—~MNO—O—
<

'
OO0~ NOO—m—< W

g < <

LN
Xx
t2

|S
QR

T
|Y
tX
x

[J
cH

s
[e
tx

[o
c

[1
ot
x

[e
tx

-1
[s

IN
co
s

[T
AN

 J
As

IN
[A
co
s

[A
TA

N
[-
DE
C

22
nu
m.

en
tr

y
46

pa
rt
ia
l
ke

y
80

|
8
1

5
8
2

~[
83

=
|84

|
8
5

i[
86

i
[87

|
8
8

x
|89

|
9
0

2|
91

|
9
2

-
[93

I
|94

|
9
5

_
|5

23
al
ph
a

en
tr

y
se

qu
en
ce

80
F

|81
|
8
2

R
|
8
3

<
|8

4
T
[
8
5

u
(8

6
|
8
7

W
|8

8
%
1
8
9

v
|9

0
Z
[
9
1

C
|9

2
~

|9
3

1
[
9
4

+
]
9
5

_
24

ra
ng

e
ig

no
re

47
SH
IF
T

I/
X

_|A
BS

|F
AC

T
|X

#0
?

[X
>0

?
|I

N1
+X

|X
<0

?
[X
=0
?

|IN
T

|FR
C

|D
—R

|R
—D

|+
HM
S

[+
HR

|[R
ND

|=
OC

T
25

er
ma
ri

gn
Or

e
e
o

BA
T

96
"

97
|
9
8

5|
99

c
oo

f
l
0
1
.
|
A

B|
B

B|
c

®|
D

®|
E

B|
F

E|
c

®(
H

B|
[1

=|
)

%
6

-
-

.
27

US
ER

m
o
d
e

50
me
ss
ag
e

9
6

9
7
2
|
9
8

b
|9

9
c

|1
00
4
1
0
1

=
]1
02

£
1
0
3
3

1
0
4
h

|1
05

1
[1
06

4
[1
07

K
|1
08

1
[1

09
™

[1
10

rn
(
|
1
1
1

2
8

d
e
c
.
/
c
o
m
m
a

51
SS
T

(C) Copyright W& W Software Products GmbH 1985

CL
L_

[X
x<

>Y
[Pl

[CI
ST

[RT
 |R

ON
[L
AS
TX

|CL
X

|X
=Y

?
[X

#Y
?

|SI
GN

|X
<0

?
|M

EA
N

|S
DE

V
|A
VI
EW

|CL
D

29
dig

it
gr

ou
pi

ng
52

PG
RM

T
8
|
z

®
|
Y

B|
(X

x
®
|
L

E
M
I
B
|
N
\
B
O
I
B
|
P
t

B
|
Q
_
B

|F
"

8|
ac

B
|
b

®
|
c

&
|
d
e

:
|7

30
C
A
T

53
1/
0

]
1
2
9
1
1
3
‘
1
1
]
4
"
]
1
5
5
1
1
6
1
1
1
7
U
1
1
'
~
J
'
H
9
l
~
'
l
2
0
.
¥
]
2
1
"
1
2
2
2
1
2
3
"
]
2
4
'
1
2
5
*
1
2
6
3
1
2
7
F

3
1
1
i
m
e
r

5
4
P
S
E

 0
]

2
3

a
S

6
7

8
9

A
B

C
D

£
F

DM
Y
/M
DY

55
pr

in
te

r

 0
0
0
0

00
01

0
0
1
0

00
11

0
1
0
0

01
01

O
N

00
|

11
01

1
1
1
0

1
1
1

32
ma

nu
al

IL
1/
0

ex
is

te
nc

e

N
m
w
n
|
o
r
o
o
o

o
«

bi
t
n
u
m
b
e
r
s

in
o

0l
o

N
M
O
I
T
N
O
~
D
O

—
N
N
N
|
[
N
N
N
N
S
O

@
7-
by
te

re
gi

st
er

1.20

Hexadecimal Byte/Function Table

HP
-4

1C
QU

IC
K

RE
FE

RE
NC

E
CA

RD
FO

R
SY

NT
HE

TI
C
PR

OG
RA

MM
IN

G
<1

98
2,

SY
NT

HE
TI

X
0

1
2

3
4

5
6

7
8

9
A

B
C

D
J’

_
E

F
St

ru
ct

ur
e

of
mu

lt
i-

by
te

in
st
ru
ct

io
ns

DE
G

 |R
AD

|G
RA
D

|E
NT

ER
T[

ST
OP

|R
TN

|B
EE
P

|C
LA

|A
SH

F
|PS

E_
|C
LR
G

|A
OF

F
|A
ON

|O
FF

|P
RO
MP
T|
AD
V

Tw
o-

by
te

in
st

ru
ct

io
ns

IN
D
03

JI
ND

04
|I

ND
05

|I
ND

06
[I

ND
07

|I
ND

08
|I

ND
09

|I
ND

10
{I
ND

11
JI
ND

12
|I

ND
13

|I
ND

14
|I

ND
15|

8|
ST

O1
6=

14
51

6
D
S
E

IN
D
55

=1
51

,1
83

12
8
*

[1
29

~
[1

30
=

[13
1
«

13
2
=

[1
33

8
[1

34
 [

13
5
4

|1
36

&
[1

37
@

[1
38

«
{1

39
=~

|1
40

«
[14

1
<

[1
42

~
[1

43
&

lé
%f

ir
zw

,g
?

;s
&c

im
nv

=1
70

,2
42

‘
-
B
i
E

=
AR

CL
|FI

X
 |S

CI
|E
NG

 |
TO

NE
=1

44
.1

24
89

=1
59

89
IN
D
27

|I
ND

28
|I

ND
29
|I
ND

30
|iI

ND
31]

9|
X<

>M
=2

06
,1

17
ST

+
IN

D
N

=1
46
,2
46

15
5
&

11
56
e

[1
57
=

|1
58

£
[1
59
#

T‘
“@

;"
’W

'F
f’

VI
EW

H(
10
9)
=1

52
,1

09
-

H
—

Tw
o-
i

s
p
e
c
i
a
i

c
a
s
e
s

FC
PC

JFs
?

 [F
C?

IS
IN

D
[S
PA
RE

GT
OI
ND
=1
74
,r
re

g
XE
Q
IN
D=
17
4,
12
8+
r

IN
D
46

[I
ND

47
GT

OI
ND

09
=1
74
,9

XE
QI

ND
X
=1
74
,2
43

17
4

»
|1

75
»

XR
OM

i,j
=1
60
+i
/4
,6
4(
i
mo

d
4)

+]
WS

TS
=
X
R
O
M

30
,1

0
=

16
7,
13
8

sh
or

t
fo
rm

GT
O
=1

77
+

la
be
l .

0
GT

O
12

=1
89

,0

o~
o
o

z

o
[=]

=
o
3
o
z

©

<

G
T
O
1
3
|
G
T
O

14

ND
54

(i
IN
D
59

JI
ND

6
0

|I
ND

61
|I
ND

6
2

|I
ND
6
3
1
8

8
,
3
2
6
;
?
8
3
\
%

1
8
4
8

|1
85
9
1
1
8
6

:
{
1
8
7

;
}1
88
€

1
8
9
=
1
1
9
0
>
[1

9]
1
2

(C) Copyright W& W Software Products GmbH 1985

 01
2

3
4

5
6

7
8

9
A

B
C

D
E

F

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
N

Fo
r

pr
ic
e
in
fo
rm
at
io
n
an

d
a

li
st

of
de
al
er
s

in
yo
ur

ar
ea

,
se
nd

o
se
lf
-a
dd
re
ss
ed

st
om
pe
d

en
ve
lo
pe

to
 S

YN
TH

ET
IX

,
15
40

Ma
th

ew
s

Av
e.

,
Ma

nh
at

ta
n

Be
ac

h,
CA

90
26

6,
US
A

1.21

In
te

rn
al

D
e
s
i
g
n

One Byte Instructions

Without exception all instructions in row 0 and 2 through 8
are one byte instructions.

Register Functions

The functions ARCL, ASTO, DSE, ISG, RCL,=REG, ST+, ST-, ST*,
ST/ and X<> are register instructions. All expect a register
number as an argument. These instructions are two byte
instructions. The first byte specifies the action, the second
the register number (coded hexadecimally). The codes are hex
00 to hex 63 for the registers numbered 0-99 and hex 70 to hex
74 are used for the stack registers T, Z, Y, X and L.

The instruction RCL 87 is coded as follows: Hex 90 57

The first byte (instruction Byte) is the RCL, the second
(argument byte) is 87.

What happens when there is a RCL IND 87 in the program memory?

When a register is used indirectly, hex 80 is added to the
argument byte, that means hex 57 + hex 80 = D7. You can see
the different arguments and their hex equivalents in the byte
Table.

There is one special thing with RCL and STO Instructions: As
they are very often used with register numbers up to 15 there
are special one byte instructions used for this purpose (rows
2 and 3). This not only helps to save memory space but even
speeds up instruction time.

(C) Copyright W& W Software Products GmbH 1985 1.22

Flag and Display Format Instructions

The functions CF, FC?, FC?C, FS?, FS?C, SF, ENG, FIX and SCI
are similar to the register functions. They are also placed
in program memory in the same format with an instruction and
an argument byte.

Register, flag and display format instructions all have the
following bit structure : bbbb bbbb iaaa aaaa

Each letter stands for one bit of the code. The b’s signify
the instruction byte, the i means indirect (if it is one) and
the 7 a’s stand for the argument.

Label Instructions

We need to distinguish between numeric and ALPHA labels. The
numeric ones are coded like register instructions except that
there is no "indirect". Again the labels 0 to 14 are coded as
one byte instructions.

The bit structure of an ALPHA label is:

1100 bbbr rrrrrrrr 1111 nnnn kkkkkkkk ttet ttet ...

In the field bbbrrrrrrrrr the distance to the highest label or
END in memory is stored. bbb shows the byte difference and
rrrrrrrrr the register difference.

All ALPHA labels and END’s are linked together into a global
chain. In every global instruction (ALPHA labels and END
instructions) the distance to the preceding global instruction
is stored.

(C) Copyright W&W Software Products GmbH 1985 1.23

jo
jo10)]

a
&
=
ol
]
-

jom)
]

The operating system administers these links by keeping them
up to date when you write or change any program. When the
operating system searches for a program it starts searching
the global chain with the .END. instruction, again
demonstrating the significance of the .END. instruction.

The end of the chain is found when a global instruction with
the link value of "0" is found.

As the operating system thinks that all links are correct, the
careless change of any data in the link can cause a "MEMORY
LOST" or lock up your calculator.

What do these links look like: When you calculate the
difference between the addresses of the first two bytes of two
neighboring global instructions and express these in bytes and
registers, you get the information which is stored in bbbr
rrrr rrrr array. In our example (4 bytes and 1 register) this
would be bin 1000 0000 0001 or hex 108.

The bits 1111nnnn follow the link array. The four ones (hex
F) signify a character string (or rather, the byte hex Fn; see
also text instructions!). This means that we are dealing with
an ALPHA label (and not an END instruction). The nnnn array
indicates the number of letters in the label plus one, which
follow this third byte. The first letter of this chain is
reserved for the possible key assignment byte or keycode. The
following bytes are the ASCII codes of the letters in the
name. Thus the program line LBL "ABCD"” consists of:

hex CO 00 F5 00 41 42 43 44

(here the distance and key code arrays are set to 0.)

(C) Copyright W& W Software Products GmbH 1985 1.24

END Instructions

The general bit structure of an END instruction is:

1100 bbbr rrrr rrrr 00e0 xpdx

As already explained in the section "Label instructions", the
first 4 nybbles of this instruction are identical to those of
an ALPHA label. The next eight bits though have a totally
different meaning:

e bit: This bit is usually a 0. Only the .END. instruction
sets this bit.

p bit: In a newly written program this bit is set in the END
to indicate whether the program is packed. A packed
program has all the null bytes removed, or "PACKed"
away.

d bit: This bit is used by the operating system to signify
that a program has been changed.

GTO and XEQ Instructions

Here too, we must distinguish between numeric and ALPHA
arguments.

ALPHA GTO’s and XEQ’s have a simple structure:

GTO: bin 0001 1101 1111 nnnn
XEQ: bin 0001 1110 1111 nnunn

(C) Copyright W& W Software Products GmbH 1985 1.25

The first byte indicates whether we are dealing with a GTO
(hex 1D) or an XEQ (hex 1E) instruction. The second byte (hex
Fn) indicates, similar to an ALPHA LBL, that a character
string follows. These n letters indicate the name of the ALPHA
LBL to which we want to jump. The instruction contains no
information about the distance to the ALPHA LBL and no
information about a possible key assignment!

If, during a running program, an ALPHA GTO or XEQ is executed,
the operating system will first search the global chain
starting at the .END., up to the topmost label in the chain.
If the corresponding ALPHA label is not found, the operating
system will search for the instruction in catalogs 2 and 3.

Now to the instructions GTO and XEQ with numeric arguments.
Their structure is:

Two byte GTO: bin 1011 n‘n‘n‘n‘dbbb rrrr
Three byte GTO: bin 1101 bbbr rrrr rrrr dnnn nnnn

XEQ: bin 1110 bbbr rrrr rrrr dnnn nnnn

You will surely recognize some of these arrays. The nnnn
array of the two and three byte instructions contains the
label number that program execution will branch to. In the
two byte GTO this corresponds to the n‘n‘n‘n‘array, only here
we have the label number plus 1.

When first executing one of these instructions, the b, d and r
bits are set to 0. The calculator starts to search for the
corresponding numeric label. As soon as this is found, the
distance to the label is stored in the b and r bits. The d
bit is the direction bit, one for backwards and zero for a
forwards jump. Program execution continues at the label. The
next time the leap instruction is executed, the operating
system will know that the jump distance is already
calculated, and therefore must not search for the label again.
It branches directly to the calculated place without checking
to see if the employed label is the correct one, or if one
even exists at all!

(C) Copyright W& W Software Products GmbH 1985 1.26

The jump distance is measured from the byte containing the
first part of the distance code to the byte which is directly
in front of the label.

The short form GTO instruction is the two byte GTO. On the
one hand program memory is saved, but on the other hand there
1s less space for the leap distance than in the three byte
GTO, namely only 4 bits. This corresponds to a maximum leap
of 15* 7 + 6 =111 bytes (bbb rrrr = 111 1111). This holds
true for labels 0 to 14.

Text Instructions

All text instructions start with a byte of the format bin 1111
nnnn. The nnnn array indicates how many letters are in the
text instruction, with a maximum of 15 letters.

How are letters stored? Corresponding to the American
Standard Code for Information Interchange one byte is used for
each letter. The abbreviation for this is ASCII.

Using the CCD-Module lower case mode it is possible to enter a
byte of any value (this mode will be explained in detail
later).

The byte hex 7F, depending on its position in the text string,
has a different meaning. If it immediately follows the text
byte (hex Fn), it is not interpreted as a letter, instead
indicating that the letters are to be appended to the ALPHA
register without first erasing it. At any other place in the
text string this byte will be interpreted as a "lazy T".

(C) Copyright W& W Software Products GmbH 1985 1.27

=
)
7

a
=
=
Lo
3
R

=
Ll

Number Input

If a number is entered as a program line, each digit has a
correponding byte in program memory. Each of these bytes
represents a one byte instruction, which simulates the manual
pressing of a key:

hex code digit keystrokes

10 0
11 1
12 2
13 3

19 9
1A decimal comma
1B EEX key

1C CHS key

Just as manual number input is closed by pressing the ENTER
key or by the execution of some other function, the operating
system will treat numeric input from a program line as
terminated as soon as a byte is read having a value other
than hex 10 to 1C.

Instructions from Plug In Modules

The possibility of extending the instruction set of the HP-41
by plug in modules represents one of the strong points of this
calculating system. How are these extra instructions coded?
This calls for a detailed explanation of the behavior of the
operating system:

(C) Copyright W& W Software Products GmbH 1985 1.28

As mentioned before, the HP-41, besides having RAM (for data),
also possesses a ROM address space for the operating system
and plug in modules. Just like RAM, this ROM has a predefined
address area, which is divided into 16 sections of identical
size (4k blocks). The first 8 sections are occupied by the
operating system and several hard-addressed modules: TIME,
Printer and HP-IL module. The other 8 sections are assigned
to the ports, each getting two sections (max. 8k byte).
Therefore a module always occupies exactly one or two of these
4k blocks. If a module is plugged into the calculator, the
microprocessor is able to read instructions out of the
corresponding addresses. Otherwise the ROM area will seem
empty.

The first two bytes within such a plug in ROM have a special
meaning. They are the identity number and the number of
functions within this module. The following bytes form the
function list of the module, and then begins the actual
function coding. Thus each function is clearly identified by
two numbers:

- by the identity number of the module containing the function

- by its place in the module list: the function number.

These two numbers comprise the familiar XROM number. This
XROM number appears in program memory instead of a ROM
function when the corresponding module has been removed from
the calculator.

Since the calculator can display these two numbers without the
module being plugged in, we can be sure that they are
contained in the code for the corresponding function.
Furthermore we know that these numbers characterize the
function sufficiently and do not expect further information in
the instruction. Now for the structure:

bin 1010 0iii iiff ffff.

The i array indicates the ROM-ID, and the f array the function
number. The ROM-ID and numbers of the functions are listed in
the module handbooks. For example:

(C) Copyright W& W Software Products GmbH 1985 1.29

j=
o0

R7)
o

@)

=
j=
b
0]
+—

=
[

The function RNDM from the CCD-Module has the number 4 and the

module ID is 9. Thus:

iiiii = 01001
ffffff = 000100

XROM 09,04 = bin 1010 0010 0100 0100 = hex A2 44

This coding allows 31 different ROM-IDs (The ID = 0 is not
allowed!) and 64 functions per ROM.

Summary

Besides needing instruction codes, some functions also need
information about a register address, a numeric label or such.
Using the CCD-Module it is possible to build the single
instruction codes by filling in the appropriate parameters.
The following paragraphs will hopefully answer a variety of
questions, and others may be solved simply by trying them out!
The CCD-Module contains the necessary functions to execute
this in a simple way.

Program Line Numbering

When talking about the structure of each instruction nothing
was indicated for the program line number as these are not
coded in the same way. A program, whose address is fixed by
the global chain, is always interpreted starting at line Ol.
From that point on the operating system must keep track of
where an instruction starts and how many bytes it needs. The
leap distances stored in GTO’s and XEQ’s naturally support
this regulation during program execution. This means that
each byte must, from the beginning, be looked at as the first
or postfix byte of a multiple byte instruction. If we are
moving forwards in program memory, this poses no problem. But
if we are moving backwards (for example with BST), the
operating system must calculate where the preceding step
starts.

(C) Copyright W& W Software Products GmbH 1985 1.30

Instructions in Plug In Modules (Parameter)

Why do programmable instructions from plug in modules not have
parameters, as, for example, the STO instruction? If the
operating system recognizes an XROM instruction, it supposes
that it is a two byte instruction. Of course it would have
been possible to plan an extra parameter. Since not every
instruction is to be extended by a parameter, it would have to
be possible to distinguish between those with and those
without, even if the corresponding module is not plugged in,
because otherwise the extra argument byte would be interpreted
as a new program line and therefore cause confusion when
counting the program lines (see above). Unfortunately, a
distinction like this is not planned in the operating system;
moreover there would hardly be any space for this in the XROM
instructions.

Key Assignments (Design and Inner Structure)

Key assignments are of two different types:

- assignments of USER programs in the main memory
- assignments of functions and programs of plug in modules and
mainframe functions.

Assignments of programs which are located in the main memory
store the keycode in the fourth byte of the corresponding LBL.
Therefore the information is not lost when saving a program to
cards, tape, or extended memory.

Assignments of functions and programs of plug in modules (XROM
numbers) store the assignment information in the key
assignment registers. These key assignment registers start in
the main memory at address 192 (hex 0C0O). As soon as new
assignments are made the old ones are pushed upward (to the
higher addresses), and the new assignment is now at address
192. Thus, since reglsters from the main memory are needed,
the number of free registers which are left for programming is
diminished by one register per two key assignments.

(C) Copyright W& W Software Products GmbH 1985 1.81

jo
=y
172
)

A
s
=
b
0}
—

=
[

To show the layout of the key assignment registers, we will
look at the following example:

First we assign the function BEEP to key -11 and the function
SAS (XROM 09,05) to key 15. These assignments can later be
checked with CAT’6. If we now decode the register at address
192 with the key sequence 192 PEEKR DCD ALPHA, we can see the
following ALPHA characters (the bytes are represented
hexadecimally):

FO A245 41 0486 09

or to be more exact:

FO : recognizing byte for key assignment registers
(always FO)

A245 : code of the two byte function SAS (XROM 09,05)
41 : key code of key 15
0486 : code of the function BEEP. The byte 04 serves only

as filler byte and is "prefix" of all one byte
functions from CAT 3

09 : key code of the key -11

After erasing the key assignment BEEP on key -11, the contents
of the key assignment register change as follows:

FO A245 41 0486 00

We can see, when erasing a key assignment, that only the key
code is set to 00. By this means the operating system knows
that the key assignment is not active anymore. Still the
plain existence of key assignment registers does not suffice
for the calculator to recognize such. To be able to quickly
recognize these assignments, so called "key assignment bits"
are contained for all keys in the status registers * and e.
When pressing a key, the operating system of the HP-41 first
checks if the corresponding key assignment bit is set. If
this is the case, the assigned function becomes active (only
in USER mode!). If the bit is cleared, it does not even
search for a possible assignment in the key assignment
registers and program labels. This allows for a fast
distinction of whether an assignment is present or not.

(C) Copyright W& W Software Products GmbH 1985 1.82

I/O Buffers (Design and Inner Structure)

I/0 usually stands for input and output. Here it means
’dialog with RAM memory while avoiding the operating system’.
The I/O buffer may be used by plug in modules. Some modules
for example, the TIME and CCD-Module, each construct an I/0O
buffer and manage it independently. The I/O buffer appears to
the operating system as a closed register block.

Each I/O buffer is identified by the base register which, is
the lowest numbered register in the block. The four nybbles
at the very right contain the most important information:

Base register: hex ii /l........

A copy of the buffer ID number is contained in nybbles 12 and
13 (ii), an ID number between hex 1 and hex E (hex F is
reserved for the key assignment registers) is allowed. The
two nybbles // indicate the length of the buffer in registers.

When switching on the calculator, the operating system
searches for buffers. If one is found, it erases the ID in
nybble 13. Then it jumps to the register above the buffer and
checks if there is another buffer there, and so on. If no
more buffers are found, it branches into the plug in modules,
which can reclaim their buffers by restoring nybble 13. Once
all of the modules are checked we branch back into the
operating system, which now erases the unclaimed buffers using
a special PACK-I/0O routine, and packs the buffer registers.
This elucidates why, if the appropriate module is not plugged
in when the calculator is turned on, the I/O buffer is erased.

(C) Copyright W& W Software Products GmbH 1985 1.33

e

c
=1

a
=
j=!
b
]
ey

=
]

(C) Copyright W& W Software Products GmbH 1985 1 .34

(c

Chapter 2

Operating
System

Enhancements

) Copyright W& W Software Products GmbH 1985

(C) Copyright W& W Software Products GmbH 1985 .02

Contents Chapter 2

Operating System Enhancements

The Catalogsi2.05 B
ROM Memory Configuration.............c.ouviiueennnnn... 2 ..10 @
The Functions ASN and XEQ................ ..., 2 .11 s
ASNe2 .11 B
XEQoot2 .12 BE

Direct and Indirect Memory Access Functions 2 .13 =
Physical Address Structure of the HP-41 Status <

ReEgIStErS ... ittte2 .14 B=
The Input of Any Alpha Character String 2 .15

(C) Copyright W&W Software Products GmbH 1985 2.03

(C) Copyright W& W Software Products GmbH 1985 .04

Enhancements of the Operating System

In contrast to the application modules commonly used with the
HP-41, the CCD-Module expands the operating system of the
calculator; thus as soon as the module is inserted, in
addition to the CATalog 2 functions provided by the module,
several functions "native" to the HP-41 are expanded in their
scope and utility. In particular, the module provides the HP-
41 with additional CATalogs and catalog functions,
improvements for the XEQ and ASN functions, the capability of
executing and programming synthetic functions directly from
the keyboard and an enhanced alpha mode for the input of lower
case and special characters (these extensions for the
operating system are not available in very early HP-41s; see
appendix entitled Compatibility).

The Catalogs

With the CCD-Module plugged into the calculator, the three
previously existing CATalogs (6 in the HP-41CX) are expanded
to a total of 16, and their functions are considerably
enhanced. All of the new catalogs may be halted during
execution by R/S, and subsequently stepped through in either
direction using SST or BST. In contrast to the operation of
the native catalogs of the HP-41, the SHIFT annunciator
remains lit during the use of BST. The key sequence SHIFT
R/S will even cause the catalog listings to be run in reverse.
A running catalog may be speeded up by pressing any key other
than R/S or ON. The catalogs will now be individually
described.

CAT'0

CAT’0 shows the ID or AID of all devices in the Hewlett-
Packard Interface Loop if any are present. When the catalog
is stopped the displayed device can be selected by pressing
ENTER, if you press C, and the selected device is displayed, a
Selected Device Clear message will be sent to that device.

(C) Copyright W& W Software Products GmbH 1985 2.05

%]
A

jo
Q

=)
)
|5}
)
<
et
=)
88

%)

o

Pressing the back arrow key terminates the stopped catalog.
When there is no HP-IL module in the calculator, the message
"NO HPIL" is displayed.

CAT’1

This catalog executes the normal CAT 1 of the HP-41 with no
enhancements in the manner of execution. More information can
be found in the HP-41 handbook.

CAT’2

This catalog is greatly enhanced in its operation in
comparison to the standard CAT 2 of the HP-41. When it is
first executed only the "headers" of each ROM are displayed
(like the HP-41CX). If the catalog is halted with R/S the
user may press ENTER to view the function block of the
currently displayed "header". When the desired function is
located, it may be executed directly from the catalog by
pressing XEQ (the function will be inserted in program mode),
or the function may be assigned to a key by pushing the A key.
A second press of the ENTER button returns you to the catalog
listing of only the ROM "headers".

CAT’3

This catalog executes the normal CAT 3 of the HP-41. There
are no changes in the manner of execution. More information
can be found in the HP-41 handbook.

(C) Copyright W&W Software Products GmbH 1985 2.06

CAT'4

Like the function EMDIR of the Extended Functions module and
CAT 4 of the HP-41CX, CAT’4 displays the names lengths, and
types of all files in extended memory. It has the additional
feature of displaying the three additional file types used by
the CCD-Module. The three file types are, I/O buffers
(displayed as B), matrices (M), and key assignment files (K).
If no extended memory is present the error message "NO XF/M"
is displayed.

CAT’5

Executes the function ALMCAT of the TIME module. When there
is no TIME module in the calculator the message "NO TIMER" is
displayed.

A note regarding use of this instruction: If you have an
older HP-41 equipped with an early revision of the 82104A card
reader, and if no alarms exist, the calculator will appear to
lock up with "CAT’5" in the display. This is not a system
failure but a trivial quirk of the older machine; the next
keystroke will cause the message to disappear and the pressed
key will be executed.

CAT'’6

CAT’6 shows all key assignments in keycode order, starting at
the sigma + key and working its way horizontially and then
dropping down to the next row etc.. On the right side you
will see the keycode and on the left side the function will be
displayed. Even synthetic key assignments ("RCL M", "TEXT 7")
are shown correctly and not as an XROM number. Pressing "C"
deletes the shown key assignment when the catalog is stopped.
When there are no key assignments the message "NO KEYS"is
generated.

(C) Copyright W& W Software Products GmbH 1985 2.07

1721Zz
=
5}
=
5}
Q
=
<

<=
=
88

%)

CAT'7

Executes the function DIR of the HP-IL module. For a detailed
description of this function see the owners handbook for the
HP-IL module. When there is no HP-IL module in the
calculator, the message "NO HPIL" is shown.

CAT’8 - CAT'F

These catalogs operate in a manner similar to the enhanced
CAT’ 2 function of the CCD-Module, except that each of these
catalogs addresses a single "ROM page" of the I/O ports of the
HP-41. Both the catalogs and the ROM pages are numbered from
8, to F,; as one might therefore expect, each of the catalogs
in this group has a number identical to the ROM page whose
contents it examines. The I/O ports are addressed as follows:

Port 1: Page 8 and 9
Port 2: Page A and B
Port 3: Page C and D
Port 4: Page E and F

Each port of the HP-41 can thus be occupied by up to 8 Kbytes
of program material. Since most application modules address
the lower 4K of the port in which they reside (if it is a 4K
application module), then the upper page of that I/O port is
inaccessible under normal circumstances, and the appropriate
catalog will display the message "NO ROM" for that address
block.

The operating system of the HP-41 addresses 16 4k Byte pages.
They are used in the following manner:

Page Used for

0 operating system (System ROM 0)
1 operating system (System ROM 1)
2 operating system (System ROM 2)
3 Not used by HP-41C and CV. Extended

operating system of the HP-41 CX
(System ROM 3)

4 Service Module or disabled IL printer

(C) Copyright W&W Software Products GmbH 1985 2.08

5 Used for the TIME module in the HP-41
C and CV. Extended operating system
in the CX (system 5a and 5b with bank
switching)

6 Used for by the printer ROM
7 Used for the HP-IL module (note.: the

printer ROM is contained in the HP-IL
module, but can, using a certain
switch, be put on the address area 4,
and therefore be switched off)
Port 1 lower 4 kByte
Port 1 upper 4 kByte
Port 2 lower 4 kByte
Port 2 upper 4 kByte
Port 3 lower 4 kByte
Port 3 upper 4 kByte
Port 4 lower 4 kByte
Port 4 upper 4 kByteT

E
T
O
E

P>
O
X

The read/write memory of the main and extended RAM expansion
modules is managed in a different manner from ROM, and is not
addressed to the port in which it occupies; thus it 1is
possible to have all of your memory modules built into the HP-
41, leaving the four I/O ports free for application pacs. One
could even have the CCD-Module installed internally and
addressed to port 3, leaving that port free for the HP-IL or
printer modules; since the addresses of these ROMs are fixed
internally by the HP-41, other modules may be inserted in the
"ports" they occupy if special electronic modifications are
arranged to enable this (for more information on this subject
contact any W&W Software Products division).

(C) Copyright W& W Software Products GmbH 1985 2.09

2]2]
=
5}
£
O
Q
=
<

=
=
88

%)

®)

ROM Memory Configuration

Page

m
a

O
=
~
N
W
P
N

O
X
X
W
O
O
M

PORT 4
(Card Reader)

PORT 3

PORT 2

PORT 1

HP—IL Module (MASS sT)

Printer Module Switched bank

Time Module CX : —EXT FCN

Reserved

CX : —EXT FCN
 Operating system

(C) Copyright W& W Software Products GmbH 1985 .10

The Functions ASN and XEQ

To understand the following you should carefully read the
section entitled Functions for advanced programming or have at
least basic knowledge about synthetic programming.

ASN

The enhanced ASN function permits the following keyboard
entries:

a)

b)

c)

The normal ASN function: If the user presses ASN followed
by ALPHA, the standard ASN function of the unenhanced HP-
41 will be run.
The assignment of any two byte function: When you press
the ASN key with the CCD-Module present you will see the
following prompt: "ASN: :", The calculator is
prompting for two decimal byte values. When you key in
two bytes and press any key after that the two byte
function is assigned to that key. If you first press the
H key the operating system will prompt for hexadecimal
values. With ENTER or "." you return to the decimal
prompt.

Assigning an XROM number: The ASN function of the CCD-
Module allows the assignment of XROM numbers without the
module with that XROM number in the calculator. After you
have pressed ASN you simply press XEQ and you will see:
"ASN XROM: ". This prompt initially requests input of
the ROM ID (i. e., the portion of the XROM number which
precedes the comma, such as 9 or 11 for the CCD-Module).
After the entry of these digits, the prompt becomes "ASN
XROM:009: ", which indicates that input of the function
ID, which isto say, the portion of the XROM number which
follows the comma, is now expected (e. g. 01, for the
function "B?" of the CCD-Module). The prompt becomes
"XROM:09:01 ", which requests input of the code for the
key to which the function is to be assigned.

(C) Copyright W& W Software Products GmbH 1985 2.11

172]
A

=
5}
=)
3}
Q

=
<

<
=
88

%)

®)

XEQ

The enhanced XEQ function allows the following keyboard
entries:

a)

b)

The normal XEQ function: If ALPHA or a number key is
pressed after XEQ, we obtain the normal XEQ function. it
is the same as the unenhanced XEQ function of the HP-41.
The execution of any two byte function: When you press
XEQ and then ENTER you will see the prompt: "XEQ:
The calculator is prompting for two decimal byte values
When you key in two values the function is executed or
inserted into a program. If you press H before keying in
any value you will see "XEQ"__"__"and the calculator
prompts for a hexadecimal input.By pressing ENTER or "."
you are returned to the decimal prompt.
The execution of an XROM number: The expanded XEQ
function provided by the CCD-Module also permits the
execution of function or application programs by XROM
number, even if the module is not present in the HP-41.
The key sequence XEQ ENTER XEQ generates the prompt "XEQ
XROM:_"; this initially the input of the ROM ID number
(the portion of the which precedes the comma, such as 09
or 11 for the CCD-Module). After the entry of these
digit, the prompt becomes "XEQ XROM:09: ", which
indicates that the input of the function ID, which is to
say, the portion of the XROM number followmg the comma,
is now expected (e. g., 01, for the function B? of the
CCD-Module). If the calculator is in run mode and the
appropriate module is present (the CCD-Module in our
example), the function is immediately executed; otherwise
the error message "NONEXISTENT" is displayed. If the HP-
41 is in program mode then the instruction is inserted as
a program line.

NOTE

To avoid confusion, throughout this manual, and in the
programming of the CCD-Module, the appearance of the colon (:)
preceding and input prompt indicates that the number to be
input is of the decimal form, and if the colon is replaced by
an apostrophe (’), the input is in the hexadecimal format.

(C) Copyright W&W Software Products GmbH 1985 2.12

Direct and Indirect Memory Access Functions

To simplify the insertion of synthetic program lines, the CCD-
Module provides the capability for the direct entry of
synthetic instructions. Note that for very early HP-41’s
these capabilities are not available, so one must use
synthetic key assignments if this capability is desired from a
very early machine (see appendix on compatability).

All memory access functions (RCL, STO ,X<>) can now be
accessed directly from the keyboard and used to address all of
the status registers of the HP-41. Thus access to and
manipulation of the contents of registers M, N, O, P, Q, a, b,
¢, d, e, and lazy T is now no more complex than working with
X, Y,Z, T, and L. The keystroke sequence used to apply these
functions to the status registers is RCL . d.

Exercise caution in manipulating status register contents:

Altering the contents of registers - and a through e can lead
to a "MEMORY LOST" condition or to a system crash if the
register contents are improperly altered. Alteration of the
"cold start constant" 169 in register ¢ will always result in
"MEMORY LOST". Before experimenting with these registers the
user should throughly familiarize himself with the theory and
practical applications of synthetic programming. Several of
the references listed in the bibliography provide excellent
discussion on the subject.

(C) Copyright W& W Software Products GmbH 1985 2.13

72
—

jol
5}
=
O
O
<
=
=
=
88

75

®

Physical Address Structure of the HP-41 Status
Registers

Byte: 6 S 4 3 2 1 0
I 1 1 I I

1

Line

e Shifted key assignment flag bits Scratch number F

d Flag register E

c|L REG |[seraten) 16 9| Ry, .END. D

' % % Pro rori\

b Program pointer . C

q return stack ' B

|— Unshiflted key o'ssignme:t flag bitrs I I A

Q Scratch 9

P 8 o
g } f f 8

c O 7 5
Z) o

N ALPHA — Register 5 <

M)

L Stack register L 4

X Stack register X 3

Y Stack register Y 2

Z Stock register Z 1

T Stock reglster T 0

\ !<— Mantissa%! \ IExponent

Sign Sign

Status registers

(C) Copyright W& W Software Products GmbH 1985 2.

The Input of Any Alpha Character String

The CCD-Module enables the user to place in the ALPHA
register, or enter directly into a program line, any of the
256 character bytes available on the HP-41 (see byte table,
pages 1.20 - 1.21). This was previously possible using the
Extended Functions module or synthetic programming techniques.
Previously undreamed of possibilities, exploiting the use of
direct entry of lower case and special characters, are
presented especially to programmers making extensive use of
printers and HP-IL peripherals. The short sample programs
which follow make it apparent as to the extent to which memory
space may be conserved by taking advantage of these functional
enhancements:

Printout of the Text Line "Hewlett-Packard"

Using standard Using the lower
programming case mode of the
techniques CCD-Module

@i+l EL “HF HielEL “"HF"™
A= "H*~ HZ "Hewlett

A= HCAH —Fackard"”

A4 SF 13 A2 AYIEHW
A5 EWLETT— B4 EHI

#s ACH FLHG “HP"
a7 CF 13 & EBYTES
B:E: s Fl =

H#H3I AHCH
18 SF 132
11 "HCEKRED
12 HCH
12 CF 1=

14 FEREUF
15 EHID

FLHG “HF"™
45 EBYTEZ=

(C) Copyright W& W Software Products GmbH 1985 2.15

72!
S

=
(9]

=
3
9]

==

=
8]

%)

Sending an ESC-Sequence to the Think Jet Printer

using standard
programming
techniques

Ai«lEL “HWID
E

a2 =7
#BZ HCCHE
g4 2=
A5 HCLCHE
#de 1@y
A7 HCCHE
HE 49
843 ACCHRE
184 =22
11 ACCHE
12 EHD

FLHLG "HWIIDE
22 BYTES

by explointing the
lower case mode of
the CCD-Module

AlelLBL “"WI

FLHG “WIDE"
19 BYTES

Thus it is readily apparent that the direct entry of lower
case and special characters greatly facilitates the ease and
"byte economy" in programming.

The lower case and special character entry mode of the CCD-
Module is available in ALPHA mode when user mode is off. The
special keyboard overlay included with your CCD-Module has the
printer control characters and other special characters listed
according to the color code which is described in the table on
the next page.

(C) Copyright W& W Software Products GmbH 1985

User Mode on Normal Alpha keyboard is active

Blue letters on key faces Capital letters A-Z and some
special characters

Blue letters overlay Special characters available by
pressing SHIFT

User mode off Lower case mode active

Red letters on overlay Special characters for unshifted
keys (note: that there are no
special notations for the lower
case letters, which have normal
key locations).

Green letters on overlay Special characters available by
pressing SHIFT

If the desired character is not available on the keyboard you
can key it in by its decimal or hexadecimal value by pressing
SHIFT ENTER for the decimal, or press SHIFT ENTER H if you
want to enter the character in hex.

Warning:
It is not possible to cancel this byte prompt. If you see the
prompt, just key in any character (except zero) and delete it
afterwards. If the lower case mode is not desired it can be
suspended by using the program TLC (Advanced Programmers
Functions).

When a special character is also a printer or IL device
control code it is shown on the right side of the key with its
control code function name (see the overlay included with the
CCD-Module).

Please note:
In version -W&W CCD A you must not key in a space in a program
line while your are in lower case mode because program memory
could be altered. If you want to key a space in a program
line either turn the lower case mode off or use the byte
prompt!

(C) Copyright W& W Software Products GmbH 1985 2.17

%]
S

=
5}
=)
O
Q
=<
=
=
88]

%)

o)

(C) Copyright W& W Software Products GmbH 1985

(c

Chapter 3

Functions

from

Catalog 2

) Copyright W& W Software Products GmbH 1985

(C) Copyright W& W Software Products GmbH 1985 .02

Contents Chapter 3

Functions Appearing in Catalog 2

Bee3 .05
CLB.3 .07
SAe3 .08
CASe3 .09
RNDM.e3 .10
SEEDe3 .12
SORT ..e3 .13

 (C) Copyright W& W Software Products GmbH 1985 3.03

(C) Copyright W&W Software Products GmbH 1985 .04

Functions from Catalog 2

B?

B? is used when you wish to determine whether a given I/0O
buffer exists. The buffer ID number, a decimal number from 1
to 14 which identifies the ROM which generated the buffer, is
expected in X. If the function is executed as part of a
running program, the program line immediately following it is
executed if the buffer is present; the step i1s skipped if the
buffer does not exist. If B? is executed from the keyboard,
then a YES or NO is displayed depending on whether the buffer
is present in the machine. This behavior is analogous to
standard HP-41 conditional functions such as, X=Y?. If the
absolute value of the integer portion of X is greater than 14
then a "DATA ERROR" message is generated.

Many modules create I/O buffers for intermediate data storage.
For these I/O buffers the free memory space between the key
assignments and the last program (starting with the .END.) is
used. The room used by the I/O buffers is taken away from
space available for programs. The following I/O buffers are
known up to now:

Module ID Used for

DAVID-ASSEM 1 and 2 Where the program counter
is and to save labels.
Buffer 2 is for jumps to
nonexistent labels.

CCD-Module 5 Wordsize, random number,
active matrix

HP Advantage ROM 5 Same as the CCD-Module
Matrix functions

TIME Module 10 Time alarms
Plotter Module 11 Intermediate storage for

plotter and bar code
instructions

HP-IL Development 12 Scope Mode and used for
saving HP-IL commands

CMT 300 13 Used for I/O of the CMT
measurement system

DATAFILE ROM 14 Active data file

(C) Copyright W&W Software Products GmbH 1985 3.05

%
Z.
.8

=
<
=

|

Input

X register: aa (Buffer ID)

Example

We wish to determine if the Time Module has an active alarm
buffer. This is accomplished by using the keystroke sequence

10 B?

If the buffer exists you will see a "YES" in the display,
otherwise the message "NO" will be displayed.

Further Hints

The function B? uses only the absolute integer part of the
number in the X register. Executing -5.678 B? will show the
same result as 5 B?

Related Functions

CLB, GETB, SAVEB

(C) Copyright W& W Software Products GmbH 1985 3.06

CLB

The function CLB clears an I/O buffer. The buffer ID number
(between 1 and 14) is expected in X.

Input

X register: aa (Buffer ID)

Example

In order to create more free registers in RAM we wish to clear
the time alarms currently in our HP-41. We do this with the
key sequence

72

p4
&9

P

=
=

|

10 CLB

Further Hints

The function CLB uses only the absolute integer part of the
number in the X register. Executing -5.678 CLB will show the
same result as 5 CLB. If the specified buffer does not exist
no error message is generated.

Related Functions

B?, GETB, SAVEB

(C) Copyright W& W Software Products GmbH 1985 3.07

SAS

This sets the autostart flag of the CCD-Module. When this
flag is set, the HP-41 begins program execution from its
current position in program memory whenever the calculator is
turned on using the ON key. Its operation is different from
user flag 11 which is cleared every time the HP-41 is turned
on and must be set each time before the calculator is turned
off. With SAS one can turn off the calculator without
interrupting a program, since execution will resume at the
next step when the HP-41 is turned on.

Input

none

Example

The following program must not be interrupted even by toggling
the calculator off then on with the ON key. You only have to
put the SAS function in your program and if you turn the
calculator off and on again your program will continue from
the same location. In our example the program may not be
stopped when PMTK is executed.

01 SAS
02 "YES/NO YN"
03 PMTK
04 CAS
05 END

Further Hints

The flag that controls this function resides in byte 4 of the
c status register. It uses bit 6 of this byte. Therefore
this flag is not one of the 56 standard HP-41 user flags.

Related Function

CAS

(C) Copyright W&W Software Products GmbH 1985 3.08

CAS

The function CAS (clear autostart) clears the autostart flag
of the CCD-Module.

Input

none

Further Hints

The CCD-Module autostart flag is not in flag register d but is
in status register ¢ (Reg. 13, Byte 4, Bit 6).

72!

Z
oS

=
S

=
l

Related Function

SAS

(C) Copyright W& W Software Products GmbH 1985 3.09

RNDM

The function RNDM creates a random number which is written
into the X register. The random number has a value between 0
and 1.

Input

none, but you can create a starting value with the function
SEED.

Examples

With a starting value of 0.1 the following random numbers are
generated:

0.1 SEED
RNDM 0.311327
RNDM 0.753794
RNDM 0.222201
RNDM 0.447348 etc.

Further Hints

The most recent random number will be saved in the I/O buffer
of the CCD-Module. Any new random numbers will be created from
the previous one using the following Algorithm: X=FRC
(Buffer*9821+0.211327). If there is not enough memory for the
I/O buffer, the message "NO ROOM " is displayed.

(C) Copyright W& W Software Products GmbH 1985 3.10

Caution:

In the version -W&W CCD A of the CCD-Module values output by
RNDM which are less than 0.1 are not normalized correctly.
When you use the random number instantly there will be no
mistake, but if it is to be saved in a data register you must
use FRC right after RNDM because otherwise all random numbers
smaller than 0.1 are changed to zero.

Related Function

SEED

(C) Copyright W& W Software Products GmbH 1985 3.11

—
W
&
W

E
N
S

SEED

SEED furnishes an initial value, which is stored in the I/0O
buffer of the CCD-Module, for the computation of a random
number using the function RNDM. Only the fractional part of
the X register is used for the starting value.

Input

X register: starting value, only the part to the right of
the decimal point is used.

Further Hints

With CLX SEED you can clear the random number register from
the buffer, thus freeing one more register for program
storage.

Related Function

RNDM

(C) Copyright W& W Software Products GmbH 1985 3.12

SORT

This function sorts the contents of registers starting with
register R;;iup to register Rj ... Alpha Data may also be
intermingled with the data to ¥d sorted. The largest value
will be stored in register R . By choosing clever parameters
you can either sort high to low’d¢ low to high.

Input

X register: iii.jjj

Examples:

The contents of the registers 1-10 will be sorted first low to
high and then high to low. The original order of the register
contents is

FRal= . 1250
Raz== .54
Rai= F.TEES
Fad= Z.34132E
Ras= V.84
RE&= 4.8062%
Ra7= 4.A548c
Ras= Z.3577
Ra3= F.2921
Fi1ia= d@. 1226

(C) Copyright W& W Software Products GmbH 1985 3.13

1) 1.010 SORT 2) 10.001 SORT

RB1I= @.1226 RB1= 9.73E3

RAZ= @.135& RAzZ= S.2921
RBZ= 2.4138 RAZ= 7.84E7

RB4= Z.9577 RA4= 4.@0629

RAS= ZF.5462 RAS= 4.05Gc

FAas= G

.

A58 RAG= 35460

RA7= 4.@862% RAT= 2.9S77

RA3= 7.3487 FRA3= Z.413%

A3= .31 RA9= G. 1355

RFia= 3.73:63 RiB= G.1Z28

Further Hints

When ALPHA and numerical data are sorted together, ALPHA data
is considered greater than numerical data.

Related Function

SORTFL

(C) Copyright W& W Software Products GmbH 1985 3.14

Chapter 4

Matrix

Functions

2
Z.
S

a4
a4
<

|

C) Copyright W&W Software Products GmbH 1985

(C) Copyright W&W Software Products GmbH 1985 .02

Contents Chapter 4

Matrix Functions

Introductioni4 .05
Organization and Construction of Arrays 4 .06
Functions for the Construction of Data Arrays 4 .09

MDIM.e4 .09
DIM..e4 .13

Functions for the Manipulation of Element Pointers 4 .14
LTee4 .14
88-4 .15
L=4 .16
IJ= Ae4 .17

Input and Output Functions for Data Arrays 4 .18
SOee4 .19
>Reee 4 21
04 23
Gee4 .25
S4 27
Reee 4 .29

Functions for Shifting and Exchanging Elements 4 31
Gleee 4 31
R<>Re4 .33
MOVE ..e4 35 BN
SWAP..4 .37 8

Functions for Determining the Extreme Values of 7
Array EIBMeNtsttt 4 .39 B
MAX.ee4 .39 |
MAXAB ...ee 4 41
CMAXAB...4 43
RMAXAB...4 .44
MINe4 45
PIVee4 .46
R>Re4 47

Sums and NOrmsc.iittt 4 .49
SUMLe4 .49
SUMAB ...e4 51
CSUM.e4 .52
RSUM.eee 4 .53
CNRM.e4 .54
RNRM ...e4 .55
FNRMe4 .56

(C) Copyright W& W Software Products GmbH 1985 4.03

Y

..

..

..

..

Program Examplest
Program "ABIN" (Solution of a System of Linear

Equations)ouiiiiiiinn..
Program "INV" (Computation of an Inverse Matrix)

(C) Copyright W&W Software Products GmbH 1985

4
4 .

.04

Functions for the Construction and Manipulation
of Arrays

In this section we shall describe the use of the CCD-Module in
the construction and manipulation of one and twodimensional
arrarys. We shall begin with two observations:

The arrays may contain numeric as well as alphanumeric data.
Arrays with only numeric elements are called twodimensional
matrices. All mathematic functions can be performed only on
arrays such as this. In this chapter all arrays are
illustrated in square cells with borders to convey the
relationships between these elements and the memory locations
used in storing them. For example,

Ay Qy2 943 944 Qi1

|

g2

|

di3

|

914

dyqy Qop Qo3 dpy = Aoy

|

Qoo

|

Q23

|

Go4

dzy Q3o Q33 dzy Q3¢

|

Q32

|

Q33

|

934

Arrays can be constructed and stored in either main or

extended memory. In the first case they are called RAM

Arrays, and in the second they are called XM Arrays. Except

some few differences in names and arrangements both kinds of

arrays are the same. In Catalog 4 of the CCD-Module the XM

Arrays can be recognized by the letter M (for Matrix).

(C) Copyright W& W Software Products GmbH 1985 4.05

%!
Z
[
4
a4
<

|

Organization and Construction of Arrays

Each array consists of status information and its element
values. The status information contains the array name, the
array dimensions, and a pointer. A status register is set
aside for RAM Arrays and it contains this information except
for the name. The name is given by the position of the
register: the RAM Array "R0O12" has its status register in
register 12. Its elements are saved in the registers
immediately following. So that the status information cannot
be destroyed when handling register 12, (for example ST+ 12 or
RCL 12) it is arranged in the form of ALPHA data. The status
information of XM Arrays is contained within the file status
register of the extended memory file (usually called the "file
header") and therefore no extra memory is needed.

Each element is marked through its position in the array,
i.e., by specifying the row and column in which it is found.
We shall call these positional numbers the row and column
indices, and designate them by the letters i and j. The
smallest possible value for i and j is 1, the greatest
possible for i is m and for j it is n. Therefore:

Row index l<=i<=m

Column index l<=j<=n

For all array functions: If the value 0 should be given for
i or j, it is changed to 1.

To construct an array the command MDIM is used. By giving the
array name (in the ALPHA register) and the array dimensions (X
value= mmm.nnn) the suitable file is constructed. The
dimension may be input later, however, using the function DIM.

(C) Copyright W& W Software Products GmbH 1985 4.06

The position and size of the arrays (matrices, vectors, etc.)
are managed automatically using new functions provided in the
CCD-Module. Therefore the user does not have to keep track of
the position of single registers or rather, single elements.
For example, matrix arrays can be arranged in the extended
memory, and these arrays can be combined with matrix arrays
that are positioned in main memory. The CCD-Module makes
possible a wide variety of unified input instructions for
performing these combinations.

Input Commands for Array Functions:

All CCD-Module matrix combination functions expect their input
parameters in the ALPHA register. If, for instance, there are
three matrices of the same size, "A", "B", and "C", which have
previously been dimensioned with MDIM, then the functions for
combining matrices have to obey the following rules with
regard to the alpha register:

1) We want to combine matrix "A" with matrix "B" and put the
resultant array in matrix "C". The input into the ALPHA
register would be "A,B,C," with the operands being
separated by commas. Now the desired function (for
example M*M) may be executed.

2) Matrix "A" is to be combined with matrix "B" the
resultant matrix is placed in array "B". The ALPHA
register should look as follows: "A,B,B" or simply
"A,B". If the resultant array is not mentioned, the
result is placed in the second array. (Caution: When
using the function M*M the resultant array should not
have the same dimensions as one of the operands, as this
will lead to an error message!)

3) We want to matrix "A" with itself and put the resulting
array in matrix "C". The ALPHA register would look as
follows: "A,A,C" or simply "A,,C". Since the second
operand is identical to the first one, it does not have
to be mentioned. But in no case should you forget the
second separating comma. (Rule: There should always be
two commas to the left of the resultant matrix unless the
result matrix is the same as the second operand.)

(C) Copyright W& W Software Products GmbH 1985 4.07

—
A
R
R
F
N
S

4) We want to multiply matrix "A" with itself and put the
resultant matrix into "A". So the ALPHA register
contains: "A,A,A" or simply "A". This is a logical
presumption after having read all of the above. If a
combination function finds only one name in the ALPHA
register, the operation will only be done on this array
and the result put there as well.

5) If one operand is given the name "X", the other operand
will be combined with the contents of the X register.

Matrices that are located in the main memory always have
a name consisting of four characters. The first letter
must always be "R" (for register). The next three
characters consist of numbers which specify the relative
address of the first register of the matrix (see the next
section MDIM). In the rest of the chapter the
abbreviations OPI, OP2, and RES are used as names for the
data arrays (Operand 1, operand 2, result).

(C) Copyright W& W Software Products GmbH 1985 4.08

Functions for the Construction of Data Arrays

MDIM

MDIM is used to create one or two dimensional arrays, and to
redimension them.

Input

ALPHA register: name of array

The array name is also the name of the file. For files in
main memory, this name must take on the form "Rxxx", where xxx
is a three digit decimal number giving the relative address of
the status register, which is also the first register of the
stored array (subsequent registers contain the matrix
elements). For arrays in extended memory the first seven
characters in alpha are used. The name "X" may not be used,
since for several matrix functions it names the X register as
an operand. If ALPHA is cleared when MDIM is executed, then
no array has been specified, and the function operates on the
current extended memory file which must be of file type M.

X register : mmm.nnn (Array dimensions)

mmm 1S the number of rows and nnn is the number of columns.
If either m or n have the value 0, it will be changed to 1.

(C) Copyright W& W Software Products GmbH 1985 4.09

—
A
R
R
F
N
S

Examples

To construct an array named "MATRIX" with 3 rows and 4
columns, in extended memory, the following key sequence is
used:

"MATRIX"

To build the same array in the main memory, starting with
register 10, we execute:

"RO10"
3.004
MDIM

In this case registers R11 through R22 will contain the twelve
elements of the 3 * 4 array. The field created by either of
these operations will have elements which we designate a;; to
azy, as shown below

Column

dyy dqp dq3 g

% a a a a21 22 23 24
4

Q34 dsp dzz Q34

(C) Copyright W& W Software Products GmbH 1985 4.10

Using

"MATRIX"
4.004
MDIM

the array "MATRIX" is redimensioned so it now has the elements
a;; - ayy.11 44

Further Hints

When a new array is created, all of its elements are set to O.
This is true for arrays both in main memory and XM. However,
when an array is redimensioned, only the newly added elements
are cleared; the values in the old elements constituting the
original array are retained. When the dimension of an array
is reduced, the values which were in the elements are now
superfluous, and are lost.

The values of the array elements are saved row by row, 1. e.,
the value of the last element of the first row is followed by
the value of the first element of the second row. When
redimensioning an array the sequence of the rows is preserved,
although as a rule, their relative positions are altered after
the redimensioning).

Example: Array "A" is formed with dimensions of 2 * 3 and
contains the values 1-6 in the following order:

Column

a4 912 913

1 2 33 |

O S — — R

Y, a4 972 23

4 5 6

(C) Copyright W& W Software Products GmbH 1985 4.11

9]

4
=
(a4
a4
<

|

After redimensioning using the key sequence

"A"

3.002
MDIM

we obtain the following array

Column

R
o
w

If an array is enlarged while redimensioning, the new elements
are initialized with the value 0. If an array in XM is made
smaller by redimensioning the extra elements are lost after
the operation. In a RAM array only the dimension which is
stored in the status register is changed, the registers and
their contents are preserved.

Related Function

DIM

(C) Copyright W& W Software Products GmbH 1985 4.12

DIM

DIM is used to recall the dimensions of an array.

Input

ALPHA register: Array name

Output

X register : mmm.nnn (this number represents the array
dimensions. mmm accounts for the number
of rows, and nnn for the number of
columns.)

Further Hints

If, while dimensioning an array, m or n have the value 0, the
value 1 is used. This is shown in the output of DIM, by the
following example:

IIROOOII

CLX
MDIM
DIM

the result i1s the number 1.001 in the X register.

Related Function

MDIM

(C) Copyright W& W Software Products GmbH 1985 4.13

2]

p4
S8

24
a4
e

|

Functions for the Manipulation of Element Pointers

?1J

The function ?IJ places in X the current pointer position
iii.jjj of the current data array (the stack is lifted).

Input

None

Example

In an existing matrix named "MAT" we shall set the element
pointer to a 2 the second element of the first row, using the
function IJ=.t{, and the keystroke sequence:

"MAT"

1.002
1J=A

At a later point in the program we want to recall the pointer
position. We do this using:

?1J

In this case, the function ?IJ puts the value 1.002 into the X
register.

Further Hints

The function ?1J does not need an ALPHA input. The output is
always the pointer position of the current data array!

Related Functions

MIA, LJ=, IJ=A

(C) Copyright W& W Software Products GmbH 1985 4.14

?2UA

The function ?IJA places the pointer position iii.jjj of the
specified data array into the X register (the stack is
lifted).

Input

ALPHA register: Name of the data array

Example

After dimensioning a matrix we wish to determine the location
of the element pointer and to make it the current array. This
is accomplished by performing
"MAT"

3.003
MDIM
21JA

Now the matrix "MAT" is the current matrix. Since the value
1.001 has been placed in X, the pointer is set to a;; after
the array was redimensioned.

Further Hints

After executing the function ?IJA the specified data array has
become the current data array. The information about the
current data array is stored in the I/O buffer of the CCD-
Module, i.e. if there are no existing registers for this
buffer, the error messages "PACKING" and "TRY AGAIN" show up.
If there is no name mentioned, the error message "NAME ERR"
will be displayed.

Related Functions

1J, IJ=, 1J=A

(C) Copyright W& W Software Products GmbH 1985 4.15

—
A
R
R
F
N
S

U=

Through the function IJ= the pointer of the current data array
is put on the element with the row index iii and the column
index jjj.

Input

X register : jii.jjj

Example

The pointer of the current data array should be positioned to
the element a,,, so that the value of this element can be
recalled. This is accomplished by

1.002
1J=
C>+

Further Hints

If there is no existing current data array (for example
because of loss of the I/O buffers) the error message
"NONEXISTENT" will be generated.

Related Functions

?1J, ?1JA, 1J=A

(C) Copyright W& W Software Products GmbH 1985 4.16

J=A

With the function IJ=A the pointer of the specified data array
will be positioned to the element with the row index iii and
the column index jjj.

Input

X register T dijjj
ALPHA register : Name of the data array

Example

After dimensioning a matrix with the name of "R010", the
pointer may be set to the last element of this matrix. This
happens with the following steps:

"R010"
5.005
MDIM
1J=A

Further Hints

After executing the function IJ=A the specified data array is
the current data array. Information about the current data
array 1s saved in the I/O buffer of the CCD-Module, i.e. if
there are no free registers present to create this buffer, the
error messages "PACKING" and "TRY AGAIN" are generated. If no
name is mentioned, the error message "NAME ERR" will be
displayed.

—
A
R
R
F
N
S

Related Functions

?1J, 1JA, 1J=

(C) Copyright W& W Software Products GmbH 1985 4.17

Input and Output Functions for Data Arrays

>C+, >R+, C>+, C>-, R>+, R>-

These six functions are the input and output functions that
the CCD-Module uses for all data arrays. Storage or recalling
is always done from the current pointer position (see IJ= and
IJ=A). The following nomenclature has been established for
this group of functions.

A preceding ">" sign means input function: The element at the
current pointer position will be filled the value in the X
register.

A following ">" sign denotes an output function: The stack is
lifted and the element at the current pointer position will be
written to the X register. The "+" sign means that the
pointer will be incremented by one position, and the "-" sign
means that the pointer will be decremented one position.

The letter "C" (column) means that storing and recalling will
be done columnwise, the letter "R" (row) signifies that this
will be done rowwise.

(C) Copyright W& W Software Products GmbH 1985 4.18

>C+

The function >C+ enabes us to fill in data array elements
column by column, i.e. in an array with i rows and j columns,
the value of i is incremented by 1. The order of element input
is shown clearly in the diagram below:

Column

913 91aI

|
B

R
o
w

A
N
- S
~

Input

X register: value to be placed in array element (may be Alpha
data!)

%)
Z
&S

a4
a7
N

[
Example

The following program shows how to input the elements of a
matrix columnwise.

O01*LBL "CIN"
02 "RO10"
03 CLX
04 IJ=A

05*LBL 01
06 STOP input your data here and then hit R/S
07 >C+
08 GTO 01
09 END

(C) Copyright W& W Software Products GmbH 1985 4.19

A similar program for the output of elements of a matrix is

explained in the section for the function C>+.

Further Hints

When the last element of a matrix has been input, the pointer

is positioned on a nonexistent element. Attempts to store or

recall further elements will result in the error message "END
OF FL".

Related Functions

>R+, C>+, C>-, R>+, R>-

(C) Copyright W& W Software Products GmbH 1985 4.20

>R+

The function >R+ makes it possible to store data array
elements row by row, thus in an array with /i rows and j
columns the value of j will be incremented by one after the
input of each element. The order of the element input can be
clearly seen in the diagram below:

R
o
w

Input

X register: value to be placed in array element (may be ALPHA
data)

2
Z
oS

a2
a4
<

I

Example

The following program shows how to input the elements of a
matrix row by row:

O1*LBL "RIN"
02 "RO10"
03 CLX
04 IJ=A

05*LBL 01
06 STOP enter your data here and then hit R/S
07 >R+
08 GTO 01
09 END

(C) Copyright W& W Software Products GmbH 1985 4.21

A corresponding program for the output of elements of a matrix
row by row is explained under R>+.

Further Hints

When the last element of a matrix has been input, the pointer
is positioned to a nonexistent element. Attempts to put in or
recall further elements will generate the error message "END
OF FL".

Related Functions

>C+, C>+, C>-, R>+, R>-

(C) Copyright W& W Software Products GmbH 1985 4.22

C>+

The function C>+ allows the recalling data array elements
column by column, i.e. in an array with /i rows and j columns
the value of i will be incremented by one after each element
is output. The stack is raised and the data element will be
written to X. The order of the element output can be clearly
seen in the diagram below:

R
o
w

Input

none %
o
o
2

Example l

The following program is a simple way to recall the elements
of a matrix:

O01*LBL "COU
T"

02 "RO10"
03 CLX
04 1J=A

05*LBL 01
06 C>+
07 PSE
08 GTO 01
09 END

(C) Copyright W& W Software Products GmbH 1985 4.23

Further Hints

When the last element of a matrix has been output, the pointer
will be positioned to a nonexistent element. Attempts to
recall further elements will generate the error message "END
OF FL".

Related Functions

>C+, >R+, C>-, R>+, R>-

(C) Copyright W& W Software Products GmbH 1985 4.24

C>-

The function C>- allows us to recall data array elements
column by column, i.e. however, an array with / rows and j
columns will the value of i reduced by 1 after each execution
of the function. The stack is raised and the array element is
written to X. The order of the element output can be seen
clearly in the diagram below:

Column

aq4 a7 943 SEPt

A ANVI
d31 932 933 Q34 I

R
o
w

Input

none

Example

The following program shows a simple way to output the
elements of a matrix column by column, but in reverse order.

01*LBL "CBO
UT"

02 "RO10"
03 DIM
04 IJ=A

05*LBL 01
06 C>-
07 PSE
08 GTO 01
09 END

(C) Copyright W& W Software Products GmbH 1985 4.25

w

o
7
<

|

Further Hints

When the last element of a matrix has been output, the pointer
will be positioned to a nonexistent element (in this case, the
element 0.000). Attempts to recall further elements will
result in the error message "END OF FL".

Related Functions

>C+, >R+, C>+, R>+, R>-

(C) Copyright W& W Software Products GmbH 1985 4.26

R>+

The function R>+ enables us to output data array elements row
by row, i.e. in an array with /i rows and j columns, the value
of j will be incremented by 1 after the element is output.
The stack is be raised and the array element is written to X.
The order of the element output is shown clearly in the
diagram below:

R
o
w

Input

none
22

%
—_—

o
o
<

|Example

The following program shows how to output the elements of a
matrix row by row:

O01*LBL "CBO
UT"

02 "R0O10"
03 CLX
04 1J=A

05*LBL 01
06 R>+
07 PSE
08 GTO 01
09 END

(C) Copyright W& W Software Products GmbH 1985 4.27

Further Hints

When the last element of a matrix has been output, the pointer
will be positioned to a nonexistent element. Attempts to
further recall elements will generate the error message "END
OF FL".

Related Functions

>C+, >R+, C>+, C>-, R>-

(C) Copyright W& W Software Products GmbH 1985 4.28

R>-

The function R>- allows us to output data array elements row
by row, i.e. for an array with i rows and j columns, the value
of j will be decremented by 1 after each element is output.
The stack i1s raised and the array element is written to X.
The order of the element output is clearly shown in the
diagram below:

Column

aq4 942 a3 Q14

s [0 oo|
O :

Qfi /

Input

none

Example

22

4
L]

o
%
<

|
The following program shows how to recall the elements of a
matrix backwards, row by row

01*LBL "RBO
UT"

02 "RO10"
03 DIM
04 IJ=A
05*LBL 01
06 R>-
07 PSE
08 GTO 01
09 END

(C) Copyright W& W Software Products GmbH 1985 4.29

Further Hints

When the last element of a matrix has been output, the pointer
will be positioned to a nonexistent element. Attempts to
recall further elements will generate the error message "END
OF FL".

Related Functions

>C+, >R+, C>+, C>-, R>

(C) Copyright W& W Software Products GmbH 1985 4.30

Functions for Shifting and Exchanging Elements

C<>C

The function C<>C exchanges column kkk with column /l// of the
specified data array.

Input

X register . kkk.lll
ALPHA register : array name

Example

We want to exchange the first column of the data array shown
below with the second column; the original data array is:

%

4
ol

a4Column =

Q14 !012 913 T

1 L2 3
3 |o ,
M Q24 ‘022 923

4 | 5 6

(C) Copyright W& W Software Products GmbH 1985 4.31

After the sequence 2.001 C<>C we get the following array:

Column

aq a2 [a1s

2 1 3
B
o . — e

M Q24 922 923

5 4 6
|

Related Functions

R<>R, MOVE, SWAP

(C) Copyright W& W Software Products GmbH 1985 .32

R<>R

The function R<>R exchanges row kkk with row [/l of the
specified data array.

Input

X register kkk.111
ALPHA register : array name

Example

We want to exchange the first row of the data shown below with
the second row; the original data array is:

R
o
w

| \ \ - | 1

—
A
R
R
F
N
S

After the sequence 2.001 R<>R the following array is left:

Column

Ay, 942 ‘O‘b

4 5 6
3 |
o — — T
(0% a4 a2 ‘073

1 ’{ 2 3

(C) Copyright oftware Products GmbH 1985 4.33

Further Hints

The exchanging of rows occurs when pivoting a matrix.

Related Functions

C<>C, MOVE, SWAP

(C) Copyright W& W Software Products GmbH 1985 4.34

MOVE

The function MOVE copies the specified elements from the OPI
array to the specified elements in the RES array. Only
"rectangular" parts of a matrix can be moved; the block is
determined by the description of two opposing corner elements
iti.jjj and kkk.lll of the OPIl matrix. The upper left corner,
mmm.nnn of the goal block must be specified in the Z register.

Input

X register DLjj
Y register . kkk.lll
Z register . mmm.nnn
ALPHA register : OPI1,RES

Example

We wish to transfer the elements a 2, 33, A4, and a,, of the
illustrated 4*3 data array "A" into data array "B". 41311e goal
elements in array "B" shall be b22, b23, b32 and b33. The
data arrays "A" and "B" are shown below:

N

Z
|

Matrix A Matrix B Dé

S8
|

Column Column

Q14 aq7 Q43 by, b, b3

1 2 3 Q0 Q0 Q

[0y oo o by bas b3

4 5 6 Q 9 @
2

S
Q0

by

0
(C) Copyright W&W Software Products GmbH 1985 4.35

Naturally the data arrays may have different dimensions.
After the sequence ALPHA A,B ALPHA 2.002 ENTER 4.003 ENTER
3.002 MOVE the following picture of the data arrays "A" and
"B" develops:

Matrix A Matrix B

Column Column

R
o
w

The array "A" was not changed in any way, in array "B" all
elements are in their desired places.

Further Hints

The block that is to be moved can be described in several
ways:

1) the upper left and the lower right element or
2) the lower left and the upper right element

The contents of the X and Y registers may be exchanged, i.e.
kkk.lll may be placed in X and iii.jjj may be placed in Y.

Related Functions

C<>C, R<>R, SWAP

(C) Copyright W& W Software Products GmbH 1985 4.36

SWAP

The function SWAP exchanges selected elements of a specified
data array with the elements of a different data array. Only
"rectangular" parts of a matrix may be exchanged. The block
is determined by the description of two opposing corner
elements iii.jjj and kkk.lll (much like MOVE). The upper left
corner of the second data array, mmm.nnn must be placed in Z.

Input

X register DLjjJ
Y register . kkk.lll
Z register . mmm.nnn
ALPHA register : OPI,OP2

Example

We want to exchange the elements a , 432, a4 and a of the
illustrated 4*3 data array "A" with tghze efégmer‘{gs b22, 1)3 , b32
and bé3 of data array "B". Data arrays "A" and 'Zg" aTeé

b

depicted "below:
%)
Z.
&8

Matrix A Matrix B ?é

<
|

Column Column

ay4 T(’w? 913 by, by, b3

1 2 3 0 Q0 Q0

924 Q22 923 by, boy by

6> 4 5 Q0 Q0 Q

o i

|9 a3y 33 bs; by bs3

7 8 9 Q @ 9

7641 G40 B4 b4y b4 b43

10 11 12 Q 0 Q

(C) Copyright W& W Software Products GmbH 1985 4.37

Naturally the data arrays may have different dimensions. After
the sequence ALPHA A,B ALPHA 2.002 ENTER 4.003 ENTER 3.002
SWAP the following picture of data arrays "A" and "B"
develops:

Matrix A Matrix B

R
o
w

[

The selected elements of arrays "A" and "B" have been
exchanged.

Further Hints

The block to be moved can be described in several different
ways:

1) the upper left and the lower right element or
2) the lower left and the upper right element

Moreover the X and Y registers may be exchanged, i.e. kkk.lll
may be placed in X and iii.jjj may be put into Y.

Related Functions

C<>C, R<>R, MOVE

(C) Copyright W& W Software Products GmbH 1985 4.38

Functions for Determining the Extreme Values of
Array Elements

These functions are needed for numeric solution procedures and
Algorithms.

MAX

The function MAX sets the pointer to the greatest element of
the given data array. This element is placed in the X
register.

Input

ALPHA register : OPI

Example

Column

a) T‘Ows Q14 s

1 2 3 4 Z
T %

az |922 ‘Gs i“u E{.C

s © —4 -8 -12 |
o — I %,,f

o, |9 |93 | 933 934

6 -8 -—16 -24
L

Q41 942 Q43 Q44

o | —12 -24 -36
When using the function MAX on the above depicted data array,
the pointer is set to element ajy and a value of 4 is output
to X.

(C) Copyright W& W Software Products GmbH 1985 4.39

Further Hints

The function MAX outputs the largest element, and not,
contrary to MAXAB, the greatest absolute element. If there is
no element greater than element a (for example all array
elements equal 0), then it is output. In this case the
pointer will be positioned on element a71 38 well.

Related Functions

CMAXAB, MAX, MAXAB, MIN, PIV, R>R?, RMAXAB

(C) Copyright W& W Software Products GmbH 1985 4.40

MAXAB

The function MAXAB sets the pointer to the element with the
largest absolute value in the given data array. The absolute
value of this element is placed in X.

Input

ALPHA register : OPI

Example

Column

a1 Q4o iou Q4

1 2 3 4

o o [|o

Q0 —4 -8 —12
2
o
[a% a3, a3z 933 Q34

@ -8 —16| —24 5
Z.

9y %42 %3 Q4a [;

9 —-12 =24 =36 I~
<«

|

The greatest absolute element of the depicted array is -36.
The function MAXAB sets the pointer on the element ay and
gives its absolute value (thus 36) in the X register.

(C) Copyright W& W Software Products GmbH 1985 4.41

Further Hints

The element that is output to the X register is only equal to
the element in the given position when this element is
positive. If the element is negative, its absolute value will
be placed in the X register. If there is no element whose
absolute value is greater than element a (for example all
array elements equal 0), it will be output. The pointer will
be positioned on element a7] 38 well.

Related Functions

CMAXAB, MAX, MIN, PIV, R>R?, RMAXAB

(C) Copyright W&W Software Products GmbH 1985 4.42

CMAXAB

The function CMAXAB sets the pointer to the greatest absolute
element of column jjj of the given data array. This element
is output in the X register.

Input

X register 2 JJjJ
ALPHA register : OPI

Example Column

T2 3 4

07717 7 T1072 923 :024

— — —-123 Q | 4 | 8 1
@) R 1 | L

7 a34 1'0,57 | 933 (934

o -8 -16 —24

o o les low |
@ %—12\ —24 | —36

After the key sequence 3 CMAXAB the pointer is positioned to
element a3 and its absolute value (24) is placed into X.

%)
p4
.S

a4
a2
<

|

Further Hints

The search for the greatest absolute element occurs only in
the given column. If there is no element of column j whose
absolute value is greater than element a j (for example all
column elements equal 0), it is outpuIt. The pointer is
positioned to element a1j as well.

Related Functions

CMAXAB, MAX, MIN, PIV, R>R?, RMAXAB

(C) Copyright W& W Software Products GmbH 1985 4.43

RMAXAB

The function RMAXAB sets the pointer to the position of the
element with the greatest absolute value in the specified row
iii of the given data array.

Input

X register i1
ALPHA register : OP1

Example

Column

2 3 4
. 1

Qg ‘;072 ‘ Q5 ‘024

;| @ -4 -8 | —12
2 | [|
Q{‘ Q34 as) a33 %54

0 \ -8 —164 —24

754% Q42 043777 . 944 .

0 —12\ —24] _36

After the key sequence 2 RMAXAB the pointer is set to element
a,4 and the number 12 can be seen in the X register.

Further Hints

The search for the greatest absolute element takes place only
in the given row. If in row i there is no element of greater
absolute value than element a.; (for example all row elements
equal 0), it is output. The pointer is positioned to this
element a;; as well.

Related Functions

CMAXAB, MAX, MAXAB, MIN, PIV, R<R?

(C) Copyright W& W Software Products GmbH 1985 4.44

MIN

The function MIN sets the pointer to the smallest element of
the specified data array. This element is output to the X
register.

Input

ALPHA register : OPI

Example

Column

ay, 101 10y :0'4
| |

1 2 3 \ 4

Q24 . 07; 23 1034

—4 -8 —12> © ‘o]
(07 a3, A3z 933 Q34

9 -8 —16 —24

ay lor|04|oae é

9 —-12 =24 —-36 »

a4
e

|After executing the function MIN the pointer is set to ayy and
the value -36 is placed into X.

Further Hints

If a is the smallest element of the array (for example all
array elements equal 0), it is output. The pointer is
positioned to this element a7] @s well.

Related Functions

CMAXAB, MAX, MAXAB, PIV, R>R?, RMAXAB

(C) Copyright W& W Software Products GmbH 1985 4.45

PIV

The function PIV sets the element pointer to the coordinates
of the element, under the principal diagonal of the selected
column jjj of the specified array, with the greatest absolute
value. The absolute value of this element is placed in X.

Input

X register 2 JjJjJ
ALPHA register : OP1

Example
Column

1 2 3 4
1 +

a1 a2 “ az3 %074

7 | 8s |5 |6 }
o 4 S— l

07 a3y azp } ass “034

9 |10 11 | 12

Q41 Q42 | 943 | 944

0 |—12 —24 -36
| i

With the key sequence 2 PIV the pointer is set to element a
and the absolute value of this element (12) is put into the4)g
register.

Further Hints

The function PIV uses only the integer part of the X register.
The fractional part is ignored during the procedure. The
search for the greatest absolute element starts with element
2 (on the main diagonal) and is continued downward in column
J:

Related Functions

CMAXAB, MAX, MAXAB, MIN, R>R?, RMAXAB

(C) Copyright W& W Software Products GmbH 1985 4.46

R>R?

The function R>R? compares the elements of row kkk with those
of row [ll of the specified data array. The elements are
compared columnwise, starting with column one. If the
elements of this column are the same, the two elements of the
next column are compared until there are either two unequal
elements or until the end of the row is reached. The answer
is "YES", as soon as an element of the row [/l is greater than
the element in the same column of row kkk. When finding an
element in row [/l which is smaller than the corresponding
element in row kkk, the answer 1s "NO" and a step is skipped
in a running program.

Input

X register : kkk.1ll
ALPHA register : OP1

Example

We want to check if the first row of the depicted data array
is greater than the third:

Column

aiq \‘0\7 a13 Gis4

12 3| 4
L . i .

ay4 ‘022 a23 Q24

5 | 6 \ 7 8

e, Q34 asp [05;5 Q34

9 \ -8 l —-16 |—24

Qs FJ B %045 Q|

13 \ -12. —24‘ ~36

(C) Copyright W& W Software Products GmbH 1985 4.47

%)
4
.S

24
a4
e

|

After keying in the sequence 1.003 R>R? we get the answer
"NO", since the element in row 3 of the first column is
greater than that in row 1.

Further Hints

In a running program if the answer is "YES", the next program
line is executed, otherwise a line is skipped.

Related Functions

MAX, MAXAB, MIN, CMAXAB, RMAXAB, PIV

(C) Copyright W& W Software Products GmbH 1985 4.48

Sums and Norms

These functions are, like the functions for finding the
extreme values, needed for numeric solution methods and
algorithms. Using norms it can be established whether a
linear equation is singular, i.e. whether it is definitely
solvable or not. Moreover, norms can give information about
the reliability of a result; in this case we talk about the
conditional number of the matrix.

SUM

SUM adds all elements of the specified data array and writes
the result in X.

Input

ALPHA register: OPI

)

Z
Example >

o
%
e

|

Column

ais !017 a3 lar

1 \ 2 | 3 | 4
| | |

a4 a, lays a

5 6 7 8
2
o T 5
m as 10_53 a

9 @ 10 11 12

0 -12 =24 =36
(C) Copyright W& W Software Products GmbH 1985 4.49

After keying the sequence ALPHA 4 ALPHA SUM the sum of all
array elements (6), is put into the X register.

Further Hints

The function SUM does not have any influence on the pointer,
therefore its position is not changed.

Related Functions

SUMAB, CSUM, RSUM

(C) Copyright W& W Software Products GmbH 1985 4.50

SUMAB

SUMAB adds the absolute values of all elements of the
specified data array and writes the result to X.

Input

ALPHA register: OPI

Column
Example

agy aqp a3 Q14

1 2 3 4

az4 az2 a23 924

5 6 7 8

R
o
w

 0 —-12 —24 —36

After the sequence ALPHA 4 ALPHA SUMAB the sum of the absolute
values of all the array elements (150), is placed into X.

4
-

%
o
i

|
Further Hints

The function SUMAB does not have any influence on the position
of the pointer, so its position remains the same.

Related Functions

SUM, CSUM, RSUM

(C) Copyright W& W Software Products GmbH 1985 4.51

CSUM

CSUM adds all elements of each column of the OPI data array
and places the results into the RES data array.

Input

ALPHA register: OPI,RES

Example

To form the column sums of the depicted data array "A" (2 rows
and 3 columns), one more data array is needed, which must also
have 3 columns, but need only have one row. After the key
sequence ALPHA A4,B ALPHA CSUM the data array "B" contains the
following elements:

Column

914 [012]015

3|22
QC_/: 07217 Q22 T%}

4 5 6
|

byy by b3

5 7 9

Further Hints

The only inputs needed prior to the execution of CSUM are the
OP] and the RES matrices. The RES matrix must have the same
number of columns as OPI but needs only one row.

Related Functions

SUM, SUMAB, RSUM

(C) Copyright W& W Software Products GmbH 1985 4.52

RSUM

RSUM adds all elements of each row of the given data array and
writes the results in the second given data array.

Input

ALPHA register: OPI,RES

Example

To form the row sums of the depicted data array "A" (2 rows
and 3 columns) a second data array is needed, which must also
have 2 rows, but need only have one column. After keying the
sequence ALPHA A4,B ALPHA RSUM the data array "B" contains the
respective row sums:

Column

|> 1 | 2 3 -

o - Z
M a, ‘10:7 a ;

4 | O 6 ™
¢

|

Further Hints

To calculate the results, RSUM always needs a data array which
has the same number of rows as the data array whose row sums
are to be calculated.

Related Functions

SUM, SUMAB, CSUM

(C) Copyright W& W Software Products GmbH 1985 4.53

CNRM

The function CNRM computes the column norm, defined as the
largest column sum of absolute values for a matrix, for the
array specified in ALPHA and places the result in X. This
norm is computed using the equation

m

[Allg= max) [al

1<j<n =1

Input

ALPHA register : OPI

Example

Column

aqy a2 a13 914

1 2) 4

az1 az2 a23 924

5 6 7 8

R
o
w

Q41 942 943 Q44

0 —12 =24 —36

The key sequence ALPHA OP1 ALPHA CNRM yields the value 60 in
the X register; this is the sum of the absolute values of the
elements in the fourth column, which is the largest sum of
absolute values of the array.

Related Functions

RNRM, FNRM

(C) Copyright W& W Software Products GmbH 1985 4.54

RNRM

The function RNRM calculates row norm, defined as the largest
row sum of absolute values for a matrix, for the array
specified in ALPHA. The result is written to the X register.
The formula for this is:

1<i<m

n

|Allg= max) |aq;l
j=1

Input

ALPHA register : OPI

Example

Column

Qq4 Q42 913 Q14

1 2 3 4

Q21 22 Q23 924

5 6 7 8

R
o
w

2]

a
2
o
N

[
41 Q42 943 Q44

Q —-12 —24 =36

Using the key sequence ALPHA 4 ALPHA RSUM the sum of the
absolute values of the elements in the fourth row, which is
the largest row sum of absolute values of the depicted array.
This sum (in this case 72) is put into the X register.

Related Functions

CNRM, FNRM

(C) Copyright W& W Software Products GmbH 1985 4.55

FNRM

The function FNRM calculates the frobenius norm of the
specified data array and writes the result to the X register.
The formula for this is:

1Al= (Y af)”

ALPHA register : OPI

Input

Example
Column

R
o
w

After the key sequence ALPHA OP1 ALPHA FNRM we get the value
51.6333 in the X register. This number is the calculated
value of the frobenius norm of the depicted data array.

Further Hints

The frobenius norm of a square matrix corresponds to its
euclidial length.

Related Functions

CNRM, RNRM

(C) Copyright W& W Software Products GmbH 1985 4.56

Functions for Mathematical Manipulation of Arrays

This section of routines for manipulating arrays includes
eight functions with two subgroups of related functions.
Included in the first of these groups are the functions M+, M-
, M* and M/ which are very versatile, since many different
possibilities for the manipulation of data arrays can be
exploited by the judicious selection of operands. The
execution time, compared to user code programs, is extremely
short.

M+

The function M+ adds the elements with the same indices of two
data arrays (only numerical data is allowed). The formula for
this is:

c. =aqa. + b.
IJ IJ IJ

Input

ALPHA register : OP1,0P2,RES

Example

We want to add the depicted arrays "A" and "B":

Matrix A Matrix B

Column Column

IR ay2 Qi3 by, by b3

> 1 2 3 50 —47 9

Qofi a4 a2 Oy b4 - b224 bs3 o

4 5 6 20 7 12

(C) Copyright W& W Software Products GmbH 1985 4.57

%2
4
.8

a2
a2
N

|

Following the key sequence ALPHA A4,B,C ALPHA M+ the array "C"
contains the following elements:

Matrix C

Column

R
o
w

Further Hints

If only OPI is mentioned in the ALPHA register, the value of
each element in the specified data array is doubled. If,
while executing the function, the error message "OUT OF RANGE"
shows up, it signifies that parts of the data array have
already been worked on, meaning that the result can not be
used. If one of the operands is called "X", the value in the
X register is supposed to be added to each element. The given
data arrays must have the same dimensions.

Related Functions

M-, M*, M/

(C) Copyright W& W Software Products GmbH 1985 4.58

M-

The function M- subtracts elements with identical indices of
two data arrays (only numeric data is allowed). The formula
for this is:

Input

ALPHA register : OP1,OP2,RES

Example

We want to subtract the depicted array "B" from array "A"™

Matrix A Matrix B

Column Column

14 942 943 by by, b3

> 1 2 3 50 —47 9

QC/_: ay a5 a5 by, b22 bo3

4 5 6 20 7 12

(C) Copyright W& W Software Products GmbH 1985 4.59

After the key sequence ALPHA A,B,C ALPHA M- the array "C"
contains the following elements:

Matrix C

Column

R
o
w l | \

Further Hints

If only OP1I is specified in ALPHA, then the value of each
element will be 0. If during the execution of this function
the error message "OUT OF RANGE" is generated, then parts of
the data array have already been worked on, and the result can
not be used. If one of the operands is "X" the value in the X
register is subtracted from each element. The given data
arrays must have the same dimensions.

Related Functions

M+, M*, M/

(C) Copyright W&W Software Products GmbH 1985 4.60

M*

The function M* multiplies elements of two data arrays with
the same indices (only numerical data is allowed). The
formula for this is:

Input

ALPHA register: OPI1,OP2,RES

Example

We want to multiply the elements of the depicted arrays "A"
and "B":

Matrix A Matrix B

Column Column

Qyy iom [01\5 by [bwz :lbw

S| 2 Jr 3 50 | —47 # 9

Q? (o1o o o, l[bzz '137} -

4 5 \l 6 20 “ 7 | 12
|

(C) Copyright W& W Software Products GmbH 1985 4.61

%)
=s
4
a4
N

[

After the key sequence ALPHA A4,B,C ALPHA M* array "C" contains
the following elements:

Matrix C

Column

Ciq €12 €13

50 —94 27

C24 €22 C23

80 35 72

R
o
w

Further Hints

The squaring of the elements of a data array is accomplished
if only OP1I is placed in the ALPHA register. If, during
execution of this function, the error message "OUT OF RANGE"
is displayed, then parts of the data array have already been
worked on, and the result can not be used. The given data
arrays must have the same dimensions, if one of the operands
is "X" then we want to multiply each element by the value in
the X register (scalar multiplication).

Related Functions

M+, M-, M/

(C) Copyright W& W Software Products GmbH 1985 4.62

M/

The function M/ divides the elements of two data arrays with
the same indices (only numeric data is allowed). The formula
for this is:

c, =a,/ b,
1)

Input

ALPHA register : OP1,0P2,RES

Example

To prepare this example we want to transfer the elements of
array "C" into array "A": ALPHA C,4 ALPHA 1.001 ENTER 2.003
ENTER MOVE. After doing this the arrays "A" and "B" contain
the following elements:

N

4[
Y,

Matrix A Matrix B EE

|

Column Column

SRR 942 943 by, by b3

3 50 —94 27 50 —47 9

Qo(‘ ay, ay; a3 bys b2 ba3

80 35 72 20 7 12

(C) Copyright W& W Software Products GmbH 1985 4.63

With the help of key sequence ALPHA A4,B,C ALPHA M/ we now
divide the elements of array "A" by the elements of array
"B". Now array "C" contains the following elements:

Matrix C

Column

Ciy Ci2 Ci3

1 2 3
2
O | —

Q{‘ Coy €22 €23

4 5 6
Further Hints

If only OP1I is mentioned in ALPHA, and if none of the elements
in the matrix are zero, then a unit matrix is obtained (all
elements equal to 1). If, during execution of this function,
the error message "OUT OF RANGE" shows up, it signifies that
parts of the data array have already been worked on, meaning
the result can not be used. The given data arrays must have
the same dimensions, unless one of the operands is "X" in
which case the value of the X register is used.

Related Functions

M+, M-, M*

(C) Copyright W&W Software Products GmbH 1985 4.64

M*M

The function M*M allows the multiplication of matrices. This
multiplication is done according to the following rule:

c, = Z Oij . bjk

=1

Input

ALPHA register : OP1,0P2,RES

Example

Using the given matrix "A" and the given column vector "B" and
the key sequence ALPHA A,B,C ALPHA M*M we get the resultant
column vector "C" of a series of equations with a unique
solution. For this application, the dimensions of the
matrices must be linked, so that if "A" is a square 4 * 4
matrix then any operand "B" must have four rows. Since in
this case "B" is a column vector, this array has only one
column. The resultant array is then an array of the dimension
4 * 1. The arrays "A", "B", and "C" and their elements are
shown below:

Column
ay, ay, a a,, b, Cqy

1 2 3 4 -3 18

o oyoy e b,

5| 5 6 7 8 5 38

§ ay, as, a5y .054 bs, cs,

9 10 | 11 12 1 58

o ag o b, o

13 14 | 15 16 2 78
|

(C) Copyright W& W Software Products GmbH 1985 4.65

—
A
R
R
F
N
S

Further Hints

The dimensions of the given data arrays OPl and OP2 must be
linked i.e. if the array OPI has the dimension i*j, array OP2
must have the dimension j*k. If the dimensions of the
operands are not related in this manner then the error message
"DIM ERR" appears. The result of this operation is a data
array of the dimension i*k, meaning the array RES must already
exist with this dimension before executing this function.

An important application of M*M lies in the solution of non
singular, linear equation systems: if an inverse (square
matrix which has dimensions i*i) matrix is multiplied with a
column vector, the result will also be a vector. This
operation is especially rewarding if one fixed array is
multiplied by a number of different column vectors (for
example, for the analysis of a series of many measurements
with a single system). In this case it is not necessary to
solve the equation system anew every time, it suffices to
execute the function M*M with successive column vector.

Related Functions

M+, M-, M*, M/

(C) Copyright W& W Software Products GmbH 1985 4.66

YC+C

The function YC+C makes it possible to add a multiple (factor
in Y) of column i to column j.

Input

ALPHA register : OPI
X register TLgjj
Y register : factor

Examples

We want to work on the given data array "A"

Column

94 942 943

1 2 3
3
o
o |21 922 923

4 5 6 2]

a8
a4
a4
e

)The key sequence ALPHA A ALPHA 5 ENTER 1.001 YC+C yields the
array:

Column

Qq4 aq2 913

2 3g 6

o Tzw 922 az3

24 5 6

The first column was multiplied by 5 and added to itself.

(C) Copyright W& W Software Products GmbH 1985 4.67

In the second example we shall also start with array "A"

Column

qq 942 913

35 1 2

o
|92 9z 923

4 5 6

After the key sequence ALPHA A ALPHA -50 ENTER 3.001 YC+C the
following picture develops:

R
o
w

The elements of the third column were multiplied by -50 and
then added to the elements of the first column.

Further Hints

If, during execution of this function, the error "OUT OF
RANGE" is displayed, then parts of the data array have been
worked on, and the result is useless.

(C) Copyright W& W Software Products GmbH 1985 4.68

R-QR

The function R-QR performs one step of a Gauss procedure,
which transforms an array so that all the elements under the
principal diagonal become equal to zero. Using this method a
system of equations may be solved by backwards insertion.
execution of the function proceeds according to the following
protocol:

for Q =aq, / a, we obtain:

for1<j<n: ag,=aq,—-Q-a

The element coordinates kkk.lll are of course specified as
input. After execution, the element ay is transformed to
zero. Thus [l spe01f1es the row winch after being
multiplied by Q, is subtracted from row kkk; so Q = a;,;/aj
Note that for the matrix upon which this operatlon 1s
performed, no diagonal element may equal zero.

Input

X register : kkk.lll

Example

As an example we will work on the equation system A * x = 0,
"A" is a 4 * 4 matrix and is shown on the next page.

(C) Copyright W& W Software Products GmbH 1985 4.69

—
A
R
R
F
N
S

Column

9y 942 943 T4

1 2 3 4

924 922 923 924

5 6 7 8
B
o
Y, 931 932 933 Q34

9 10 11 12

944 942 Q43 Q44 o

13 14 15 16

Column

aqq a2 913 Q4

1 2 3 4

21 Q22 Q23 Q24

3 5 6 7 8

o
7 |93 azp a33 a34

9 10 11 12

943 Q44

—-24 —-36

Column

a1 a2 13 Q14

1 2 3 4

Q21 Q22 Q23 Q24

2 5 6 7 8
o

M a33 Q34

(C) Copyright W&W Software Products GmbH 1985 .70

with 2.001 R-QR we get:

Column

HOH ay, %01‘5 Ay

1 2 3 4

923 Qo4

o |]

a4 93 Q34

—-16 |—24

Jous ays

—24 |—36

with 4.002 R-QR we get:

R
o
w

with 3.002 R-QR we get:

R
o
w

(C) Copyright W& W Software Products GmbH 1985 .71

It is plain to see that by repeated use of R-QR results in the
formation of an upper triangular array, as the shaded lower
elements are successively transformed to zero. Note that in
the course of transforming the array for this example we have
used additional elements from the upper triangular portion of
the array and these have also become zero. At each step, the
element which must be transformed is shaded darker gray. An
example of a system of inhomogeneous solutions of the A * x =
b (with a matrix consisting of A and the column vector b) is
relinquished.

Further Hints

In contrast to the so called "L-R analysis" (see R-PR) no
column vector may be introduced at a later stage of execution.

Related Function

R-PR

(C) Copyright W& W Software Products GmbH 1985 4.72

R-PR

The function R-PR works similar to the function Q-QR. Since,
when working with Gausian algorithms, all elements of the
lower triangle matrix become equal to 0. Thus it is possible
to restore the original matrix by working backwards from the
transformed array. Furthermore, it is possible to introduce a
new column vector as part of the process. The algorithm works
exactly the same way as in R-QR:

for Q = a, / q, we obtain:

forI<J<n:0kJ.=okJ.—Q'oU.

for j = 1| a,=Q

1 << . —for 1 <j<1 : a,=aq,

—
A
R
R
F
N
S

For the elements /+] to n of line kK the same operation as in
R-QR is used; the element a;; gets the value Q and all
elements to the left of a;; stay t[he same. kkk.lll is placed
in the X register. [/l gives us the row that multiplied by Q
and then is subtracted from row kkk. Thus

Q=a;/3
In this operation the elements may not be equal to 0!

Input

X register : kkk.lll
ALPHA register : array name

(C) Copyright W&W Software Products GmbH 1985 4.73

Example

As an example we will work on the equation system A * x = b.
"A" is a 4 * 4 matrix and the column vector "b" (inhomogenous
part) is moved into the matrix, so that there arises a 4*5
matrix:

Matrix A Vektor b

Column Column

b,

Q
——

3 2|o

g 2 -
2

b,

3

Depicted above are matrix "A" and column vector "b", and below
the new 4*5 matrix which has been combined with the column
vector.

Column

a1y a12 913 Q14

1 2 3 4

924 Q22 23 Q24

5 6 7 8

R
o
w

Q34 Q32 33 Q34

9 10 11 12

(C) Copyright W& W Software Products GmbH 1985 4.74

using 4.001 R-PR we get:

Column

Q14 912 a3 Q14 915

1 2 3 4 Q

Q24 22 . 23 Q24 a5 .

3 S 6 7 8 1
o

Qfi a3y Q32 G33 Q34 a3s

9 10 11 12 2
Q42 943 1944 Q45

-12 —-24 -36| 3
using 3.001 R-PR we get:

a1 a2 913 Q4 Q15

1 2 3 4 Q

a24 Q22 a3 Q24 d2s

3) 6 7 8 1

o}
(a4 ass Q34 a3s

-16 =24 2
n

Ta a a S43 44 45 o5

-24 -36| 3 gg
0

|

using 2.001 R-PR we get:

Q14 Q2 913 ’014 Q15

1 2 3 4 0
|
|]

2 -8 —12]| 1
s |

-16 —24 2

—-24 -36 3

(C) Copyright W& W Software Products GmbH 1985 4.75

using 4.002 R-PR we get:

R
o
w

using 3.002 R-PR we get:

Q4 Q15

4 Q

Q24 Q25 -

—12 1

Q34 a3s

—24 2

Q44 Q45

0 Q0

Further Hints

The L-R analysis is practically the same as the Gauss
procedure, except that here the moving in of a new column
vector is possible, since the factors Q are saved. These
factors Q are placed in the lower triangle matrix, whose
elements would otherwise be equal to 0. For the backwards
input though only the upper triangle matrix may be examined.

Related Function

R-QR

(C) Copyright W& W Software Products GmbH 1985 4.76

Program Examples

We shall now present two helpful programs that will show you
the use of some CCD-Module matrix functions to demonstrate
their use.

Gaussian-algorithm

The first program allows the solving of a linear equation
system with a quadratic coefficent matrix by the Gauss
elimination procedure. The program consists of several
exchangable parts that need information in any of two
registers. In this case the registers 00 and 05 were chosen.

Using the program:

Using the program subroutine "ABIN", all values of the
expanded coefficient matrix are input. The transformation
into a triangular form as well as the final output of the
resultant vector are handled by the subroutine "TRANS".

01*LBL "ABI Start of the input routine (RO1 is used as

N" the control register.)
02 "DIM(N)? Requests the input of the dimension n of

the equation system %
03 PROMPT and stores it in R0OO Z
04 STO 00 e
05 E Lines 5 - 10 generante the number nnn.mmm %
06 + which 1is produced for the dimensioning of ,
07 E3 the matrix, where mmm = n+l
08 /
09 RCL 00
10 +
11 "NAME" Input of the matrix name (for example
12 PMTA "R006" for a matrix in the main memory)

maximum 6 letters
13 ASTO 05 Saves this name in R0O5
14 MDIM Creation of the matrix
15 STO 01 Storage of the control index for data

input
16 CLX Using IJ=A, set pointer to a (not

necessary when working with ~‘register
matrices, see MDIM)

(C) Copyright W&W Software Products GmbH 1985 4.77

17*LBL "COR
R"

18 CLA
19 ARCL 05
20 J=A

21*LBL 00
22 RCL 01
23 1)
24 X>Y?
25 RTN
26 IIA("

27 ARCLI
28 FRC
29 E3
30 *
31 " l_,"

32 X>Y?
33 NB("

34 X>Y?
35 ?71J
36 ARCLI
37 " l_): "

38 ?1J
39 C>-
40 ARCL X
41 X<>Y
42 1J=
43 RDN
44 PROMPT

45 >C+
46 GTO 00

47*LBL "TRA
NS"

48 CLA
49 ARCL 05
50 RCL 00
51 DSE X

(C) Copyright

If wrong element input, there is a
possibility of correction. Input in X:
ii.jjj
Selection of the chosen matrix (name in
RO05) as the current matrix

Start of the input routine

Has the last element already been read?
Yes, End of input loop

Production of message "A("
Appending of i: "A(1"
X: current pointer iii.jjj
Production of j

ALPHA: "A(,"
Is j greater than the dimension n?

Yes, input of Y values. ALPHA: "Y("
Is j greater than dimension #?

Yes,in X j is substituted by iii.jjj
Appending of the integer value to ALPHA
ALPHA: "A(i,)):" or "B(i):
Reading of the current pointer position
and the element on this position
Appending of this element to ALPHA

Obtain the current pointer position
Old element to X

Input of a new value or use
of the old as well as storing the value

Back to the start of the input routine

Start of the program for the
transformation of the matrix to triangle
shape

The matrix name must, for PIV
and R-QR (or R-PR), be in ALPHA
All in all the pivoting is executed n-1
times

W&W Software Products GmbH 1985 4.78

52*LBL 02 Outer routine i=1-(n-1)

53 RCL 00 Calculation of the pivot line number
54 RCL'Y Y runs from (n-1) to 1
55 - i=n-Y
56 RCL X Calculate iii.iii
57 E3 This E3 moves the Y contents, as
58 / after LBL 02 to T.
59 + Outer counter now in Z
60 PIV Search for the pivot element
61 X=0? If this element is equal to 0, there

exists
62 RTN no one definite solution: Backtrack

with X=0
63 RDN Pivot element is of no interest
64 1) If the pointer of the pivot element is
65 X=Y unequal to the calculated one:
66 R<>R exchange lines
67 RDN Put current pointer on iii.iii
68 1J=

69*LBL 03 Inner routine: j=n-i+l
70 RDN Calculate pointer jjj.iii
71 1) Pivot pointer
72 RCL Y Counter from (n-1)-1
73 +
74 R-PR or R-QR Transformation of line j starting from ”

column i V4
75 DSE Y If counter is greater than 0 ”
76 GTO 03 work on next highest row 1~
77 RDN Bring outer counter to X i
78 RDN |
79 DSE X If counter is greater than 0, work on
80 GTO 02 next row under matrix
81 SIGN X not equal to 0 if definite solution (if

called out as a subprogram)

82*LBL "X" Calculation of the resultant vector
83 CLA ALPHA: matrix name
84 ARCL 05
85 DIM Production of 0,(nnn+1)
86 FRC
87 STO [Use of register M as scratch register
88 LASTX X: nnn.(nnn+1)

(C) Copyright W& W Software Products GmbH 1985 4.79

89*LBL 04
90 INT
91 RCL X
92 E3
93 /
94 +

95*LBL 05
96 1J=
97 INT
98 RCL [
99 +
100 C>-
101 71J
102 X<> Z
103 1J=
104 C>-
105 X<>Y
106 1J=
107 RDN
108 X<>Y
109 /
110 STO
111 >C+
112 RDN
113 X=0?
114 GTO 07

115*LBL 06
116 1J=
117 C>-

Main routine; i=n-1
Calculation of iii.iii

Put pointer on iii.iii
Get pointer of the result element to be
calculated:iii.(nnn+1)

Read element iii.iii, decrement line
pointer. This pointer is 0, if the upper
line has been worked on see comparison X=0?
Put pointer on iii.(nnn+1)
Read element

Again put pointer on iii.(nnn+l)

Calculate result element X;
X.=Qa. I/a.

Sforfn'gm fl)’enlp register N as well
as at his result place iii.(nnn+l)

If first line has been worked on:
ready, output!

Inner routine:j=i-1 -1
Put pointer to jjj.iii

Product aj i*xi

Read pointer (jjj-1).iii and
save

Calculation of jjj.(nnn+1)

(C) Copyright W& W Software Products GmbH 1985 4.80

125 1J=
126 X<>Y
127 R>-
128 X<>Y
129 -
130 X<>Y
131 IJ=
132 X<>Y
133 >R+
134 X<>Z
135 X<Y?
136 GTO 06
137 FRC
138 E3
139 *
140 GTO 04

141*LBL 07
142*LBL "XOU

T"

143 CLA
144 ARCL 05
145 DIM
146 FRC
147 ISG X
148 1J=A

149*LBL 08
150 1)
151 "X("

152 ARCLI
153 RDN
154 " l")= "

155 C>+
156 ARCL X
157 SF 25

Subtraction of product aj i*xi
from current value X; ’

read ait

Subtract product

Put pointer on jjj.(nnn+l)

Store difference
If pointer on a;
to line n (by €
reached 1
Line i-1 is next to be worked on

has not yet jumped
'-), J has not yet

Back to main routine

End of calculation and
output of the result vector (xl- values)

Matrix name in ALPHA

Produce pointer 1.(nnn+1)

Put pointer on x
Start of output routine

—
A
R
R
F
N
S

Set for message "X(i)="

Reading of the value x; and
appending to ALPHA

Print, if printer present

(C) Copyright W& W Software Products GmbH 1985 4.81

158 PRA
159 FC?C 25
160 PROMPT Otherwise message of x; values
161 GTO 08 Back to start of output routine
162 END End of program

PLNG "ABIN"
301 BYTES

(C) Copyright W& W Software Products GmbH 1985 .82

Calculation of the Inverse Matrix

The program "INV" calculates the inverse np "L of a given
quadratic matrix "A". After calculating the inverse the
linear equation systems of the form A*x=b are easily solved
with the help of a simple matrix multiplication (for example
using the function M*M of the CCD-Module):

X= A—I*b

The program INV solves singular matrices as well. For this,
INV calculates a conditional number that allows for a
statement about the exactness of the solution to be made. The
relative error of the solution x can now be determined by
multiplying the conditional number with the relative error of
the column vector b (thus on the HP- 41 minimal 1E-10).

Use:

A name of a previously arranged quadratic data array is
expected in the ALPHA register. After execution of "INV" this
data array contains the inverse of the original array. The X
register displays the conditional number. "INV" changes the
stack as well as the registers R0O0 to R02. Furthermore, "INV"
needs just as many extra registers as the data array given in
the ALPHA register occupies. If the data array finds itself
in the data memory area of the HP-41 (name Rxxx), then "INV"
expects these extra data registers after the data array.
Example: So that "INV" can calculate the inverse of a data
array with the name R010 of dimension 5*5, beforehand there
has to be at least SIZE 61, otherwise the message
"NONEXESTENT" appears. If the data array is located in the
extended memory, the function EMDIR has to show at least 25
empty registers after arranging of the data array, otherwise
the message "NO ROOM" will appear.

Description of the function:

The procedure employed calculates the inverse of matrix "A"
columnwise by solving the equation systems A*y, =¢;. e are
the columns of the unit Imatrix "E", the solutions Yyare the
columns of the inverses "A™"".

(C) Copyright W& W Software Products GmbH 1985 4.83

—
A
R
R
F
N
S

For the solving of the equation systems an algorithm after
Gauss-Jordan is employed. Since the hereby appearing shape
changes of matrix "A" have to be used on all "right sides" e, ,
there is produced a matrix whose left half contains the matrix
"A" and whose right half contains the unit matrix "E". Since
the functions of the CCD-Module store the matrices linewise,
the number of lines of the matrix to be inverted is doubled
(program lines 4-8). MDIM zeros all newly added elements, so
that the matrix will look as depicted below:

Q 9 @

@ @ @

Q @ 0
Now all lines are switched in a way so that between two lines
of the original matrix there is always an empty lin
lines 9-16): Y pty line (program

(C) Copyright W& W Software Products GmbH 1985 4.84

A sub program, starting at LBL 20, now exchanges the number of
lines of the dimension with their column number:

Ay Q42| G4z @ 9 Q

—
A
R
R
F
N
S

The program lines 18-30 produce the unit matrix in the still
empty right half.

dyq Q42 943 1 Q 9

Ay Gy Gp3 O 1 9

3y G35 933 @ 9 1
(C) Copyright W&W Software Products GmbH 1985 4.85

The changing of the matrix after Gauss-Jordan happens with two
program routines. The outer one, with the pointer / in ROl
(initiation in program lines 31-35, starting at LBL 02) now
executes the so called pivoting: The function PIV (program
line 43) searches the / column from the / to the last line for
the greatest absolute element. Now two lines are exchanged in
a way that this element gets to the / line (program line 49).
Here it is used as a so called pivot in the following inner
routine, with the pointer k in R02 (initiation in program
lines 37-41), starting at LBL 03. The order R-QR (program
line 60) subtracts a manifold of the line of the pivot from
the k line in such a way, that the element lying in the column
of the pivot becomes equal to 0. The necessary factor for
this is calculated beforehand by R-QR by a division of the
later to become equal to a 0 element by the pivot (see
description of function R-QR). So as to cut down on the
errors occuring during the division, the pivoting is executed
before. If the number 0 is found as a pivot, matrix "A" was
either singular or or least practically singular; because of
the occuring round up mistakes the calculator can not
distinguish between these. So that during the division the
program does not break off with the message "DATA ERROR", a 0
pivot is substituted with a number that is 1E-10 times the
greatest absolute in the column of the pivot appearing number,
or at least 1E-99 (sub program starting at LBL 30). This
number usually lies within the number range of the occuring
round up mistakes.

After the working off of both routines, the left half of the
matrix, thus the original matrix "A", has been changed into a
diagonal matrix:

(C) Copyright W& W Software Products GmbH 1985 4.86

The solution matrix npI is reached, when all elements of the
right half are divided by the same line positioned diagonal
element of the left half. This happens in the routines,
starting with LBL 05 and LBL 06, as well as the pointers R 01
on the diagonal element and R 02 on the columns in the right
half. If a diagonal element is equal to O, it is substituted
by the greatest absolute element of the column, or at least by
1E-99 (sub program starting with LBL 35). This is possible,
because the preceding change made all other elements of the
column, except the round up mistakes, equal to 0. Therefore a
number is found that is unequal to 0, but still in the number
range of the occuring round up mistakes.

After the routines are done calculating the solution N
lies in the right half of the matrix. This solution is now
transferred to the place of the original matrix "A" by
exchanging of the dimensions (program line 106), changing of
the lines (program lines 107-116) and then finally by redimen-
sioning to a quadratic matrix (program lines 117-120). The
conditional number is calculated by multiplication of the
frobenius norm of matrix "A" before the change (program lines
2-3) with the frobenius norm of its inverses (program lines
121-123).

Al1eLBL "INV 17 XEQ Z@&

) 18 IHNT

B2 FHRM 19 EZ

83 STO aa za -

84 DIM 21 1

8Ss IHT 2 o+

A6 LASTH 2Z I.4=R

a7 + 24 LASTH

82 MDIM
g3 1 2SeLBL &1

18 - 26 R>+
27 RDH

11+«LBL 11 28 >C+

12 R<>R 29 ISG ¥

12 1.8a81 36 GTO 61

14 - 31 RDH

1S5 DSE ¥ 32 FRC

16 GTO 11 23 1

(C) Copyright W& W Software Products GmbH 1985 4.87

72Z

.S

a4
4
<

34
35

25+BL

37
38
39
4a
41
42
43
44
45
46
47
43
49

SA<+LBL

51
52
53
54

+

STO = e
o
k

r‘:
,:l

m
m

RCL
FRC
1
-+

STO
RCL
FIV
21
RLFY
»=a7
x»EG 2@
RDHN
R<>R

e oo
k

r'l
_:]

m M
)

RCL
INT
RCL
INT
x=v7
GTO @4
EZ

-

4+

R—-GE

= k
e

clelLBL &4
62
63
64
65
66
67
638
593
78

ISG az
GTO a3z
ISG a1
GTO a:z
RCL 91
FRC
1
+

STO a1

fleLBL a5
=
73
73
7D
6
s
78
=
g8a
81
82
83
84
85
86
87
83
89
30
91
9Z2«LBL A
93
a4
a5
5
a7
23
99

1808
181
182
183
184
185
186
187
188
189
116

DIM
1
+

STO
RCL
INT
1.0861
»*¥

I.J=
R>+
K=8"
XG
RCL
EX

o~

RCL
INT
+

IJ=
RDH

o
w

o
r'l

-‘l

o
)

=
)

r‘
l
)

I_
fl

= o
t

*Id
R>+
R EY
I1=
RDHN
X< FY
-

R+
LASTH
ISG @Az
GTO 85
ISG a1
GTO a5
xEQ Za
INT
2
-
7

a

(C) Copyright W& W Software Products GmbH 1985

T

.88

DSE ¥
6 GTO 12

117 INT
118 1.0a1
119 *
128 MDIM
121 FHREM
122 RCL 608
123 *
124 RTH

125«LBL 2Z8a
126 DIM
127 FRC
128 LASTX
129 INT
1308 E3
131 -~
132 XI>Y
133 LASTE=
134 *
135 +
136 MDIM
137 RTH

138«LBL 320
139 RDN
148 RCL a1
141 CMAXAEB
142 E1la
143 -~
144 E—-399
145 +
146 RCL Z
147 IJ=
148 R<FY
149 >R+

158 RTH

151«LBL 35
152 RCL A1
153 CHMAXHEBE
154 E-99
155 +
156 EHND

PLHG =" IHNWY"
247 BYTES

(C) Copyright W& W Software Products GmbH 1985 4.89

78]

Z
8

o2
z
e

|

(C) Copyright W& W Software Products GmbH 1985 4.90

Chapter 5

Binary Functions
(Hexadecimal Functions)

2
4o

(C) Copyright W&W Software Products GmbH 1985 5.01

(C) Copyright W& W Software Products GmbH 1985 .02

Contents Chapter 5

Hexadecimal Functions

Hexadecimal Functions (Introduction) 5 .05
Number Systemsciiiiiiiiiiiiiiiiinnnnneeeennn 5 .05

The Binary Number Systemccvvvuen... 5 .05
The Octal Number System 5 .07
The Decimal Number System 5 .08
The Hexadecimal Number System...................... 5 .09

Representation of Negative Numbers 5.10
The Complementcitiiiiiiineeeennnnn. 5.10
Distribution of Ranges of Values 5 .11
Complement (Signed) Modescciiiviinnn.. 5.11

The 1’s Complement Mode 5 .12
The 2’s Complement Mode 5 .12
The Unsigned Mode, 5.12

Complement NoOtationcoiittieennnneeennnnn 5.13
General Conventions for Hexadecimal Functions 5 .14
BasiC SetUD ...tttieeeet 5 .16
Functions for Setting Wordsize and Signed Mode 5 .17
)V7725.17
ICMP..eeeee 5 .19
11\05.20
UNSiiit ettt e e e ee 5 .21

Input and Output Functions for Use with -HEX FNS........ 5 .22
PMTH ...ieeee 5 .22
VIEWH ...iei iettt 5 .24
ARCLH ...iieie 5.25
XTOAH ...iti ie ee 5 .26

Logical Operationsiiiiiiiiineeeennneeennnns 5 .27
AND.eee 5.
0)5.
XOR..eeee 5.
(1025. g

Functions for the Manipulation of Individual Bits 5. >
Sieee 5. 5
Sieee 5. T
S5. '

5.
DSee5.
1S5
Doeee 5
O.eee 5

(C) Copyright W& W Software Products GmbH 1985 5.03

Program Examplescctiiiirtinmininnnn..
Program "W?" (Determination of the Set Wordsize) -
Program "CF55" (Clearing of Flag 55)

(C) Copyright W& W Software Products GmbH 1985 b .04

Hexadecimal Functions

The hexadecimal or logical function set consists of the
functions 1CMP, 2CMP, AND, bC?, bS?, Cb, NOT, OR, R<, R>, S<,
S>, Sb, UNS, WSIZE and XOR. Furthermore these functions are
completed by ARCLH, PMTH, VIEWH and XTOAH from the input and
output function set (-I/O FNS) of the CCD-Module.

Familiarity with the use of sign modes and number systems in
different bases is essential for understanding the
descriptions of the functions presented here. Although this
knowledge is presupposed, in order to define the meanings and
connotations of these concepts to best reflect their use for
the functions in the CCD-Module, we shall briefly review them
below.

All the hexadecimal functions in the module follow the logical
protocol outlined in the flow chart on page 5.15 in their
execution, and thus they automatically correct for word size
and sign mode.

Number Systems

The Binary Number System

The base of the binary number system is the number 2; all
numbers are represented by combinations of the numbers 0 and
1. binary numbers are denoted in this text by the subscript
b, thus 1001y = 94 (decimal). The transition to the next
higher digits place in binary occurs at 243. The table on the
next page presents the decimal numbers 0 to 10 and their
binary equivalents.

(C) Copyright W& W Software Products GmbH 1985 5.05

—
H
E
X
F
N
S

Note that there are two representations given for the binary
equivalent of 104. The first is the standard notation that
would be obtained, for example by adding 0010y to 1000y,. The
second is the way 104 is represented in the notation referred
to as binary coded decimal (or BCD), for which each decimal
digit is represented by a separate grouping of 4 binary
d}igi}tls; ;his is the way the numbers are coded internally by
the HP-41.

Decimal Binary

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

0001 0000

O
C
l
o
|
l
o
m
|
N
l
o
l
o
|
l
p
d
p
|
l
w
|
N
|
—
~
|
O

—
(C) Copyright W& W Software Products GmbH 1985 5.06

The Octal Number System

This is a number system of base 84, which utilizes the
standard digits 0 through 7 (there is no 8 in this notation);
thus the correspondence with decimal 0 through 10 is

Decimal Octal

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 10

9 11

10 12

Numbers in octal notation in this text will be identified by
the subscript o. In the octal number system the carryover to
the next highest place occurs at decimal 8. Each octal digit
represents 3 binary digits (3 bits); through this the octal
number system uses the full value range of these 3 places (dec
0 to 7 representing 000y to 111y).

The functions OCT and DEC of the HP 41 operating system give
the possibility for calculations in the octal number range.

(C) Copyright W&W Software Products GmbH 1985 5.07

2
Z
.S

et
88
o

|

The Decimal Number System

The decimal number system is the customary number system. The
functions of the HP-41 support calculations in the base 10
system for all operations. Numbers to base 10 are marked by

the subscript d: 1364 = decimal number 136. Numbers whose
number base has not been clearly given, are assumed to be

decimal numbers.

(C) Copyright W& W Software Products GmbH 1985 5.08

The Hexadecimal Number System

The base of this number system is 164. The numbers 0, 1, 2,
3, 4,5,6, 7,8, and 9 as well as the letters A, B, C, D, E
and F are usedto represent 11 through 154. The carry over to
the next highest place takes place at 164. The correspondence
between binary, decimal and hexadecimal numbers is:

dl-c:f:?:l;l Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 S

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10)
B 1011 11 s
C 1100 12 %

D 1101 13

E 1110 14

F 1111 15
(C) Copyright W& W Software Products GmbH 1985 5.09

Warning:

Hexadecimal numbers "arise" through the use of the full 4
binary digits (4 bits); therefore the hexadecimal number
system uses the 4 bits of a nybble in the full value range.
Each nybble can represent values from bin 0000 to 1111, in
hexadecimal from Op to Fp. This number system is often used
in the computer field.

Representation of Negative Numbers

In a given, limited digit number m (in this case between 0 and
32 binary digits) the value range of the numbers to be
represented is O0<=n<=2M-1; note that no negative numbers are
included in this system of notation. To get rid of this
deficiency, a complement is introduced.

The Complement

The complement KOM of a number X is defined as:

KOM (X)=K - X

for which the value of K is fixed by the chosen complement.
Since in the binary number system the usual values of K are 2
and (2 -]), we usually speak of the "one’s Complement" or
the "two’s complement". In general complement’s exist in
every number system of base B (for example B=10 in the decimal
system, B = 16 in the hexadecimal system, etc.). For any base
B there will be a (B-1) and a B Complement, in the decimal
system these are the 9’s and 10’s Complements.

(C) Copyright W& W Software Products GmbH 1985 5.10

Distribution of Ranges of Values

If there seems no reason for the existence of complement
notation, recall that up to this point we have not dealt with
negative numbers. We shall include these by adopting an
arbitrary distribution of ranges of values in our number
systems: 1in the binary system, for example, we shall define a
negative number as one whose most significant (leftmost) bit
is set (has a value of 1). By manipulating number
distributions and employing complements, the ranges of values
are changed as follows:

before complement

0 <= X <= (BM)-1

after employing the complement

(B complementation): - B(M-1) <= x <= B(m-1)_

((B-1) complementation): - BS(M-1)_] «= x <= p(m-1)_;

Complement (Signed) Modes

The transformation of decimally represented numbers into
binary numbers and vice versa, varies with the signed mode
that is used. The three modes are:

1I’s Complement mode
- 2’s Complement mode
- unsigned mode

When complement notation is used, it becomes simpler for an
arithmetic processor to execute subtraction, since this has
now been reduced to an addition operation. In addition, it is
quite simple for a calculator to construct the complement of a
number in a number in binary notation (see below).

(C) Copyright W& W Software Products GmbH 1985 5.11

2
Z.
8
e
a8
s

[

The 1’s Complement Mode

The 1’s complement of a number is created by subtracting this
number from the greatest representable number in the chosen
word size, i.e. imagining a word size of 5 bits, the I’s
Complement of (- ap) is (11111 - ap). The processor simply
inverts all bits of the original number, it executes the
logical function "not". Through this arbltrary but definite
segmentation of the value range all negative numbers have
their highmost bit set which plays the role of the "-" sign.
In the 1’s Complement mode the number of positive and negative
numbers represented are the same, i.e. even zero has two
possible representations: 0 and - 0, in binary this would
mean 00000 and 11111 (still a word size of 5 bits assumed).

The 2’s Complement Mode

The 2’s Complement of a number is created by subtraction of
this number from the greatest representable number and
following addition of 1, i.e., supposing a word size of 5 bit
the 2°s Complement of (- ap) = (11111 - ap) + 1. The 2’s
Complement of bin (10001) 1s the number b1n (01111). We
notice, that by segmenting even in the 2’s Complement mode the
very left bit is set for all negative numbers and therefore
takes over the role of the "-" sign. In the 2’s Complement
mode there is one more negative number than in in the positive
number range, since zero only has the representation 0.

The Unsigned Mode

Since the Complement mode employs a bit as the negative sign,
the range of values for a word size of 8 bits in the 1’s
complement is from +1274 to -1274 or +1274to -1284 for 2’s
complement. Although these are 25(C>l values sometxmes only the
positive number range is needed. In this case the Unsigned
mode is used, having no preceding sign bit. Therefore,
assuming the same wordsize of 8 bits, the value range from dec
0 to 255 is covered.

In the table below, decimal values are assigned to the
corresponding binary numbers in the three sign modes for a
four bit word size.

(C) Copyright W& W Software Products GmbH 1985 5.12

Complement Notation

Binary I’s C(l)nn:,%l:ment 2’s C(l)nn:)[()ll:ment Ur:;(i)%l;ed

0111 7 7 7

0110 6 6 6

0101 S S S

0100 4 4 4

0011 S S S

0010 2 2 2

0001 1 1 1

0000 0 0 0

1111 -0 -1 19

1110 -1 -2 14

1101 —2 -3 13

1100 -3 —4 12

1011 -4 -5 11 i

1010 -5 —6 10 E

1001 -6 -7 9 T
1000 -7 -8 8

(C) Copyright W& W Software Products GmbH 1985 5.13

General Conventions for Hexadecimal Functions

We shall now consider the arrangement of the hexadecimal
functions. All functions in the CCD-Module observe the
following protocol:

1) The current wordsize. It is defined with the function
WSIZE.

2) The current sign mode. The decimal representation and
the 1internal hexadecimal representation are linked by
the complement, or sign mode employed. Before executing
a certain arithmetic function the display always
decimally represents the number which is first
transformed into binary. The binary result is then
retransformed into decimal depending on the current
mode.

3) The functions only use the integer portion of the
decimal number in X.

The principle operation of the hexadecimal functions is shown
in the following flow chart:

(C) Copyright W& W Software Products GmbH 1985 5.14

Flow Chart for the Functions
AND, OR, XOR, NOT, S<, S>, R< and R>

(Function call)

Numbers
in the value DATA

range? ERROR

Change into a binary number

Operation

No

Overflow?
v

/ z
e

Set flag 00 Clear flag 00 g:.J

|

v v
Change into a decimal number

(C) Copyright W& W Software Products GmbH 1985 5.15

Keynotes to the Flowchart:

1)

2)

It is checked, if all for the operation needed values are
representable in the current wordsize and the chosen
signs.
The numbers, decimally represented in the stack of the
HP-41, are changed into binary numbers (dependent on the
sign mode).
The actual operation is executed.
It i1s checked, if an overflow has taken place during the
executed operation (check if the carry has been set). The
flag 0 is used as a carry bit.
The binary numbers are changed to decimal numbers and
placed in the stack.

Basic Setup

Following setups are available after first insertion of the
CCD-module, or after a "MEMORY LOST" with the CCD-Module in
place:

- Wordsize is set to 8 bits.
- Unsigned mode is set.

Description of the functions

To enable the above mentioned conditions at any time, execute
the following steps:

UNS turn on the Unsigned mode
CLX WSIZE set wordsize to 8 bits.

(C) Copyright W& W Software Products GmbH 1985 5.16

Functions for Setting Wordsize and Signed Mode

WISZE

The function WSIZE sets the wordsize bb for all hexadecimal
functions of the CCD-Module. The range of bb is 1 to 32 bits.
The wordsize is stored in the CCD-Module’s I/O buffer. CLX
WSIZE clears the wordsize input in the I/O buffer. If the
CCD-Module buffer does not exist a wordsize of 8 bits is
assumed. The stack is not changed by this function.

Input

X register: bb

Examples

Key sequence Description

9 WSIZE Selected wordsize 9 bits, operations
possible between 04 to 5114.

33 WSIZE Error message:"DATA ERROR". Wordsize was
not changed, since values greater than 32
are not allowed.

16 WSIZE Selected wordsize is 16 bits.

(C) Copyright W& W Software Products GmbH 1985 5.17

2
Z
as

P
88
an

|

Further Hints

The number in the X register may be negative as well as
contain digits after the decimal point; only the absolute
integer value is used. "DATA ERROR" will show when numbers
outside the range of 324 to -324 are used, "NONEXISTENT" will
be displayed when numbers over 1,000 are used. The selected
wordsize has no influence on the contents of the stack or the
memory registers. When executing WSIZE, the error message "NO
ROOM" may occur, since the wordsize is stored in the I/0O
buffer of the CCD-Module. In this case new memory space has

“to be made available before selcting the word size.

(C) Copyright W& W Software Products GmbH 1985 5.18

1CMP

The function 1CMP puts the HP-41 into the 1’s Complement mode.
Other sign modes (2’s Complements or Unsigned modes) are
cancelled. The contents of the X register are placed in the
LASTX register and are then substituted by the new
representation of the hexadecimal number; i.e. the number from
the X register is first changed into a binary number in the
old mode and after switching to the new mode is changed back
into a decimal number.

Input

none

Example

Key sequence Description

1CMP The HP-41 is put into the 1’s Complement
mode (only valid for binary functions of
the CCD-Module).

Further Hints

If the number in the X register with the new sign mode can not
be represented, the error message "DATA ERROR X" will result
and the Signed mode will not be changed.

Related Functions

2CMP, UNS

(C) Copyright W& W Software Products GmbH 1985 5.19

%)
4
-

a8
s

|

2CMP

The function 2CMP puts the HP-41 into the 2’s Complement mode.
Other sign modes (1’s Complement or Unsigned mode) are
deleted. The contents of the X register are put into the
LASTX register and then replaced by the new representation of
the hexadecimal number, i.e. the number in the X register is
first changed into a binary number in the old mode and after
switching to the new mode is changed back into a decimal
number.

Input

none

Example

Key sequence Description

2CMP The HP-41 is put into 2’s Complement mode
(only valid for binary functions of the
CCD-Module).

Further Hints

If the number in the X register can not be represented in the
new mode, the error message "DATA ERROR X" will occur and the
mode will not be changed.

Related Functions

1CMP, UNS

(C) Copyright W& W Software Products GmbH 1985 5.20

UNS

The function UNS puts the HP-41 into Unsigned mode. The other
signed modes (1’s or 2’s Complement modes) are cancelled. The
contents of the X register are stored in the LASTX register
and are then replaced by the new representation of the
hexadecimal number, i.e. the number in the X register is first
changed into a binary number in the old mode and after
switching to the Unsigned mode is changed back into a decimal
number.

Input

none

Example

Key sequence Description

UNS The HP-41 is put into the Unsigned mode
only valid for binary functions of the
CCD-Module)

Further Hints

If the number in the X register can not be represented in the
new mode, the error message "DATA ERROR X" will occur and the
mode will not be changed.

Related Functions

1CMP, 2CMP

(C) Copyright W& W Software Products GmbH 1985 5.21

—
H
E
X
F
N
S

Input and Output Functions for Use with -HEX FNS

These functions are also described in the chapter on -1/O FNS,
but for completeness these input and output aides for the CCD-
Module hexadecimal functions are also explained in this
chapter.

PMTH

The function PMTH allows for the input of hexadecimal numbers.
It writes the equivalent decimal value into the X register.
The stack is rolled up before the value is copied to X.

Input

The number of the digits to be put in is dependent on the
current wordsize.

Example

Key sequence Description

UNS switches on the Unsigned mode
CLX WSIZE sets the wordsize to 8 bits
PMTH 8E Input of the value hex 8E. Immediately

after input of the last digit (in this case
E). The decimal value will be shown in the
X register (in this case 142).

Example program:

"ADDRESS"
PMTH

Using these two steps, the message "ADDRESS’ " will show,
after the input of two numbers the program will be continued.

(C) Copyright W& W Software Products GmbH 1985 5.22

Further Hints

Text can be shown during the execution of PMTH to specify the
data wanted for the prompt. The function rejects input values
which are too large. Only the keys 0 to 9 and A4 to F are
active. Terminating the function can be done with the
backarrow or ON keys.

(C) Copyright W& W Software Products GmbH 1985 5.23

2!
Z
&9
b
88
s

|

VIEWH

The function VIEWH views the hexadecimal equivalent of the
number in X.

Input

X register : decimal number in the permitted value
range (dependent on the current wordsize
and the selected mode).

Example

Key sequence Description

142 VIEWH The number in the X register (142) is
changed into its hexadecimal equivalent
and this is viewed (in this case 8E).

Further Hints

ALPHA data in X generates the error message "ALPHA DATA". If
the decimal number in the X register is not representable in
the current wordsize or sign mode, the error message "DATA
ERROR X" will be indicated. For numbers whose hex
representation has less digits than the current wordsize is
set for, leading zeros are placed in the most significant
digits.

Related Function

ARCLH, PMTH

(C) Copyright W& W Software Products GmbH 1985 5.24

ARCLH

ARCLH appends the hexadecimal equivalent of the number in the
X register to the contents of the ALPHA register.

Input

X register : Decimal number in the allowed value range
(dependent on the current wordsize and the
selected complement mode).

Example

Key sequence Description

UNS switches on the Uunsigned mode
CLX WSIZE set the wordsize to 8 bits
"ABC" Input of the text "ABC" into the ALPHA

register
ARCLH appends two hexadecimal numbers to the

ALPHA register; in this case 00, i.e., the
ALPHA register now contains ABCO00".

55 ARCLH The number hex 37 is appended to the ALPHA
register

Further Hints

For ALPHA data in X, the error message "ALPHA DATA" will show.
If the decimal number in the X register is not representable
in the current wordsize and the sign mode, the error message
"DATA ERROR X" will be shown.

Related Functions

2!
Z
..

e
88
o

|VIEWH, PMTH

 (C) Copyright W&W Software Products GmbH 1985 5.25

XTOAH

The function XTOAH appends one or more characters with the
value of the X register to the contents of the ALPHA register.

Input

X register : Value of the characters to be appended
(depends on the current wordsize and sign
mode)

Example

Key sequence Description

CLA 10 WSIZE The ALPHA register is erased and a wordsize
of 10 bits is set.

340 XTOAH 340 equals 154y,. Therefore the following
characters are appended to ALPHA, the man
character (hex byte 01) and "T" (Byte hex
54).

Further Hints

With ALPHA data in X the error message "ALPHA DATA" is
generated. If the decimal number in the X register is not
representable in the current wordsize and sign mode, the error
message "DATA ERROR X" will be indicated.

Related Function

XTOA (function in the Extended Functions module)

(C) Copyright W& W Software Products GmbH 1985 5.26

Logical Operations

AND

The function AND combines X and Y using the logical AND
function, i.e. in the result all bits that were set in both
binary numbers at the same time are set, all other bits are
cleared (set to zero). The stack is pushed down and the old X
value is placed in LASTX (Binarily this would mean for
example: 1011 and 0111 is equal to 0011.)

Input

Y register : Operand 1
X register . Operand 2

Example

Key sequence Display Description

4 WSIZE 4.0000 selecting wordsize 4 bits
3 ENTER 1 AND 1.0000 0011 and 0001 equals 0001
7 ENTER 8 AND 0.0000 0111 and 1000 equals 0000
7 ENTER 15 AND 7.0000 0111 and 1111 equals 0111

Further Hints

Using ALPHA data, the error message "ALPHA DATA" be
encountered. If the decimal number in the X or Y register is
not representable in the current wordsize and sign mode, the
error message "DATA ERROR X" or "DATA ERROR Y" will be
indicated.

(C) Copyright W& W Software Products GmbH 1985 5.27

%)
Z
-

>
a8
s

|

Related Functions

OR, XOR, NOT

(C) Copyright W& W Software Products GmbH 1985

OR

The function OR combines X and Y with the logical OR function,
i.e., all bits that were set in both individual binary numbers
before the execution of this function, are set in the result.
The stack is pushed down and the old X value is put down in
the LASTX register. (Binarily this would mean for example:
1011 OR 0111 equals 1111.)

Input

Y register : Operand 1
X register : Operand 2

Examples

Key sequence Display Description

4 WSIZE 4.0000 sets wordsize of 4 bits.
3 ENTER 1 OR 3.0000 0011 or 0001 equals 0011
7 ENTER 8 OR 15.0000 0111 or 1000 equals 1111
7 ENTER 15 OR 15.0000 0111 or 1111 equals 1111

Further Hints

Using ALPHA data the error message "ALPHA DATA" will be
generated. If the decimal number in the X or Y register is
not representable in the current wordsize or sign mode, the
error message "DATA ERROR X" or "DATA ERROR Y" will be shown.

Related Functions

AND, XOR, NOT

N

Z
S

<
a
=z

|

(C) Copyright W& W Software Products GmbH 1985 5.29

XOR

The function XOR connects X and Y with the logical EXCLUSIVE
OR function, i.e. all bits that were set in only one of the
two original binary numbers are set in the result. If a bit
is set if both of the operands or, is clear in both of the
operands then it will be cleared in the final result. The
stack is lowered and the old X value is placed in LASTX.
(Binarily this would mean for example: 1011 exclusive or 0111
equals 1100.)

Input

Y register : Operand 1
X register : Operand 2

Examples

Key sequence Display Description

4 WSIZE 4.0000 sets the wordsize 4 bits
3 ENTER 1 XOR 2.0000 0011 exclusive or 0001 equals 0010
7 ENTER 8 XOR 15.0000 0111 exclusive or 1000 equals 1111
7 ENTER 15 XOR 8.0000 0111 exclusive or 1111 equals 1000

Further Hints

Using ALPHA data, the error message "ALPHA DATA" is generated.
If the decimal number in the X or Y register is not
representable in the current wordsize or sign mode, the error
message "DATA ERROR X", or "DATA ERROR Y" is displayed.

(C) Copyright W& W Software Products GmbH 1985 5.30

Related Functions

AND, OR, NOT

72!

Z
.9

e

—
H
E

(C) Copyright W&W Software Products GmbH 1985 5.31

NOT

The function NOT inverts all bits of the number in the X
register. The old X value is placed in the LASTX register.
(binarily this would mean for example: NOT 1011 equals 0100.)

Input

X register : Decimal number

Examples

Key sequence Display Description

4 WSIZE 4.0000 sets wordsize 4 bits
3 NOT 12.0000 not 0011 equals 1100
7 NOT 8.0000 not 0111 equals 1000
15 NOT 0.0000 not 1111 equals 0000

Further Hints

Using ALPHA data, the error message "ALPHA DATA" will display.
If the decimal number in the X register is not representable
in the current wordsize and sign mode, the error message "DATA
ERROR X" is displayed. In the 1’s Complement mode executing
the function NOT would carry with it a change of sign (+ to -
or - to +).

Related Functions

AND, OR, NOT

(C) Copyright W&W Software Products GmbH 1985 5.32

Functions for the Manipulation of Individual Bits

S<

The function S< shifts the bits of the X register by one bit
(one binary place) to the left. The bit that was pushed out
is stored in the carry bit (Flag 0). If, before shifting, the
very left bit was set, Flag 0 is set, if it was cleared, Flag
0 will be cleared as well. While shifting the bits the value
0 is always pushed in from the right.

Input

X register : decimal number which 1is binarily
representable in the selected wordsize
and the set sign mode.

Example

Key sequence Display Description

4 WSIZE 4.0000 setting the wordsize on 4 bits
UNS 1 1.0000 selecting of the Unsigned mode
S< 2.0000 0001 becomes 0010, Flag O is cleared
S< 4.0000 0010 becomes 0100, Flag O is cleared
S< 8.0000 0100 becomes 1000, Flag O is

cleared and stays cleared
S< 0.0000 1000 becomes 0000, Flag O is set
S< 0.0000 0000 stays 0000, Flag O is clear

(C) Copyright W& W Software Products GmbH 1985 5.33

%)
4
e

ot
58
s

|

Further Hints

S< is equivalent to, in the Unsigned mode and the 2’s
Complement a multiplication by 2. In the 1’s Complement the
shift to the left in a positive number range also equals a
multiplication by 2, whereas in a negative number range it
would be equal to a multiplication by 2 and then a subtraction
of 1. Using ALPHA data, the error message "ALPHA DATA" will be
displayed. If the decimal number in the X register is not
representable in the current wordsize and sign mode the error
message "DATA ERROR X" is generated.

Related Functions

S>, R<, R>

(C) Copyright W& W Software Products GmbH 1985 5.34

S>

The function S> shifts the binary equivalent of the X
register by one bit (one binary place) to the right. The
pushed out bit is stored in the carry bit, i. e. in Flag 0.
If, before moving, the very right bit was set, Flag 0 is set,
whereas if it was cleared, Flag 0 will be cleared as well.
Whenf shifting the bits the value 0 is always pushed in from
the left.

Input

X register: Decimal number that is binarily representable
in the selected wordsize and the set sign
mode.

Example

Key sequence Display Description

4 WSIZE 4.0000 set wordsize on 4 bits
UNS 8 8.0000 selection of unsigned mode
S> 4.0000 1000 becomes 0100, Flag 0 is cleared
S> 2.0000 0100 becomes 0010, Flag O is cleared
S> 1.0000 0010 becomes 0001, Flag 0 is cleared
S> 0.0000 0001 becomes 0000, Flag 0 is set
S> 0.0000 0000 stays 0000, Flag O is cleared

(C) Copyright W&W Software Products GmbH 1985 5.35

2

Z
A
a8

i

Further Hints

For ALPHA data, the error message "ALPHA DATA" shows. If the
decimal number in the X register is not representable in the
current wordsize and sign mode, the error message "DATA ERROR
X" will be shown.

Related Functions

S<, R<, R>

(C) Copyright W& W Software Products GmbH 1985 5.36

R<

The function R< rotates on a binary representation of the X
register by one bit (one binary place) to the left. The
pushed out bit is stored in the carry bit, in Flag 0 and then
pushed in again from the right. If, before rotating, the very
left bit was set, Flag 0 is set, if it was cleared, Flag 0O
will be cleared as well.

Input

X register : decimal number that is representable in
the selected wordsize and set sign mode.

Example

Key sequence Display Description

4 WSIZE 4.0000 set wordsize on 4 bits
UNS 1 1.0000 selecting Unsigned mode
R< 2.0000 0001 becomes 0010, Flag 0 is cleared
R< 4.0000 0010 becomes 0100, Flag 0 is cleared
R< 8.0000 0100 becomes 1000, Flag O is cleared
R< 1.0000 1000 becomes 0001, Flag O is set
R< 2.0000 0001 becomes 0010, Flag 0 is cleared

(C) Copyright W& W Software Products GmbH 1985 5.37

2!
Z
oS

o
a8}
s

|

Further Hints

With ALPHA data in X, the error message "ALPHA DATA" is
displayed. If the decimal number in the X register is not rep
resentable in the current wordsize and sign mode, the error
message "DATA ERROR X" will be generated.

Related Functions

S<, S>, R>

(C) Copyright W& W Software Products GmbH 1985 5.38

R>

The function R> rotates the binary equivalent of the X
register by one bit (one binary place) to the right. The
pushed out bit is stored in the carry bit (Flag 0) and then
pushed in again from the left. If, before rotating, the very
right bit was set, flag 0 i1s set, if it was zeroed flag 0 will
be cleared.

Input

X register : decimal number that is binarily
representable in the selected wordsize and
set sign mode.

Example

Key sequence Display Description

4 WSIZE 4.0000 set wordsize 4 bits
UNS 8 8.0000 select Unsigned mode
R> 4.0000 1000 becomes 0100, Flag 0 is cleared
R> 2.0000 0100 becomes 0010, Flag 0 is cleared
R> 1.0000 0010 becomes 0001, Flag O is cleared
R> 8.0000 0001 becomes 1000, Flag O is set
R> 4.0000 1000 becomes 0100, Flag O is cleared

2!
p4
&8

e
a8}
s

|

 (C) Copyright W&W Software Products GmbH 1985 5.39

Further Hints

For ALPHA data, the error message "ALPHA DATA" is displayed.
If the decimal number in the X register is not representable
in the current wordsize and sign mode, the error message "DATA
ERROR X" will be shown.

Related Functions

S<, S>, R<

(C) Copyright W& W Software Products GmbH 1985 5.40

bS?

The function bS? makes it possible to check if binary digits
in the X register are set or clear. The decimal number is
changed to its binary representation and then the specified
bit is checked. This questioning is similar to the checking
of a single flag, after the number in X was transferred to
flags 0-7 with X<>F (X<>F is contained in the extended
functions module, or the HP-41CX). This roundabout way
through the flags is not necessary in the bit manipulation
functions of the CCD-Module. The answer to bS? is "YES", if
bit bb as specified in the X register is set, it is "NO", if
the bit is cleared. A stack drop follows, the old X value is
written into the LASTX register.

Input

X register : bb (decimal number; 0 <= bb <= current
wordsize - 1)

Y register : decimal number that is binarily representable
in the selected wordsize and the set sign
mode.

Examples

Key sequence Display Description

4 WSIZE UNS 4.0000 setting of wordsize 4 bits and
Unsigned mode

7 ENTER 0 bS? YES Bit 0 of the binary number
0111 or 7 is set.

CLX 7.0000 erasing of indication YES
7 ENTER 3 bS? NO The third bit of the binary

number 0111 or 7 is not set.

—
H
E
X
F
N
S

 (C) Copyright W& W Software Products GmbH 1985 5.41

Further Hints

With ALPHA data in X, the error message "ALPHA DATA" displays.
If the decimal number in the Y register is not representable
in the current wordsize and the sign mode, the error message
"DATA ERROR Y" is generated. The error message "DATA ERROR X"
comes up if the given bit bb lies beyond the allowed value
range. The numbering of the bits takes place from right to
left, the rightmost bit is 0 bit. The highest bit number that
can be given is always one smaller than the current wordsize
(using wordsize 8 bits 0-7 can be given, thus all 8 bits of
the binary number). During a program run the next step 1is
executed, if the given bit is set, if it is cleared the next
step 1s skipped.

Related Functions

bC?, Sb, Cb

(C) Copyright W& W Software Products GmbH 1985 5.42

bC?

The function bC? allows us to check if a bit of the binary
representation in the Y register is cleared. The number of
the bit to be checked is in X. The answer is "YES" if the
corresponding bit in the X register, bit bb, is cleared, it is
"NO" if the bit is set. A stack drop follows, the old X value
1s written into the LASTX register.

Input

X register : bb (decimal number; 0 <= bb <= current
wordsize - 1)

Y register : decimal number which is binarily representable
in the selected wordsize and the set sign
mode.

Examples

Key sequence Display Description

4 WSIZE UNS 4.0000 setting of wordsize 4 bits and
Unsigned mode.

7 ENTER 0 bC? NO bit 0 of the binary number 0111y,
or 7 is not cleared.

CLX 7.0000 clearing of displayed "NO"
7 ENTER 3 bC? YES bit 3 of the binary number 0111y

or 7 is cleared.

2

Z
L

e
88

T
|

 (C) Copyright W& W Software Products GmbH 1985 5.43

Further Hints

For ALPHA data, the error message "ALPHA DATA" is generated.
If the decimal number in the Y register is not representable
in the current wordsize and sign mode, the error message "DATA
ERROR Y" will be shown. The error message "DATA ERROR X"
displays, if the given bit bb lies beyond the allowed value
range. The numbering of the bits takes place from right to
left, the rightmost bit is the 0 bit. The highest bit number
that can be in X i1s always smaller than the current wordsize
by one (using wordsize 8, bit 0-7 can be given, thus all 8
bits of the binary number). In a running program the next
program step is executed, if the given bit is cleared, if it
1s set, the next step is skipped.

Related Functions

bS?, Sb, Cb

(C) Copyright W& W Software Products GmbH 1985 5.44

Cb

The function Cb allows us to clear the a bit of the binary
equivalent of the decimal number in Y. The specified bit
number is in the X register. A stack drop follows, the old X
value is written into the LASTX register.

Input

X register : bb (decimal number; 0 <= bb <= current
wordsize - 1)

Y register : decimal number which 1is binarily
representable in the selected wordsize and
the set sign mode.

Examples

Key sequence Display Description

4 WSIZE UNS 4.0000 setting of wordsize 4 bits and
Unsigned mode

7 ENTER 0 Cb 6.0000 bit 0 of the binary number bin 0111
was cleared i.e. 0111 became 0110

7 ENTER 3 Cb 7.0000 bit 3 of the binary number bin 0111
was not changed, since it is already
cleared

9]

Z
oS

X
8
o

|

(C) Copyright W& W Software Products GmbH 1985 5.45

Further Hints

With ALPHA data in X, the error message "ALPHA DATA" will be
shown. If the decimal number in the Y register is not
representable in the current wordsize and sign mode, the error
message "DATA ERROR Y" will be displayed. The error message
"DATA ERROR X" is generated if bit bb lies beyond the allowed
value range. The numbering of the bits takes place from right
to left, the rightmost bit is always bit 0. The highest bit
number that can be given is always one smaller than the
current wordsize (using wordsize 8 bits 0-7 can be given, thus
all 8 bits of the binary number).

Related Functions

bC?, bS?, Sb

(C) Copyright W& W Software Products GmbH 1985 5.46

Sb

The function Sb enables us to set any bit of the binary number
representation of the decimal number in Y. The number in the
X register in the given bit bb of the number in the Y register
that is to be set. A stack drop follows, the old X value is
written into the LASTX register.

Input

X register

Y register

Examples

Key sequence

4 WSIZE UNS

7 ENTER 0 Sb

7 ENTER 3 Sb

bb (decimal number; 0 <= bb <= current
wordsize - 1)
decimal number which is binarily
representable in the selected wordsize and
the set sign mode.

Display

4.0000

6.0000

15.0000

Description

setting of wordsize 4 bits and
Unsigned mode.
bit 0 of the binary number 0111y
was not changed, since it was
already set.
bit 3 of the binary number 0111
was set, 0111 became 1111.

—
H
E
X
F
N
S

(C) Copyright W&W Software Products GmbH 1985 5.47

Further Hints

With ALPHA data in X, the error message "ALPHA DATA" will
show. If the decimal number in the Y register is not
representable in the current wordsize and sign mode, the error
message "DATA ERROR Y" displays. The error message "DATA
ERROR X" is shown, if the given bit bb lies beyond the allowed
value range. The numbering of the bits takes place from right
to left, the rightmost bit is always the 0 bit. The highest
bit number that can be given is always one smaller than the
current wordsize (using a wordsize of 8, bits 0-7 can be
specified, thus all 8 bits of the binary number).

Related Functions

bC?, bS?, Cb

(C) Copyright W& W Software Products GmbH 1985 5.48

Program Examples

Following you will find two helpful programs that will help
you to better understand the CCD-Module binary functions.

Determination of the Set Wordsize

Using the following programs the current wordsize can be
calculated:

O1*LBL "wW?"

02 CLX
03 UNS
04 NOT
05 LNI1+X
06 4
07 LN
08 /
09 ST+ X
10 END

Z
58

88
s

|

(C) Copyright W& W Software Products GmbH 1985 5.49

Clearing of Flag 55

If the printer is plugged in, usually the printer existence
flag (flag 55) will be set. In program sections during which
no prlnter is necessary, it is sometimes sensible to clear
flag 55, since programs with flag 55 cleared will run faster.
The clearmg of this flag can be done with the following
program:

01*LBL "CF55"
02 14
03 PEEKB
04 0
05 Cb
06 POKEB
07 END

When executing a printer function or a flag 55 question
instruction with the printer plugged in, flag 55 will
automatically be set or if the program stops runing.

(C) Copyright W& W Software Products GmbH 1985 5.50

Chapter 6

Input/Output
Functions

%2
p4
o8

<

(C) Copyright W& W Software Products GmbH 1985 6.01 !

(C) Copyright W& W Software Products GmbH 1985 .02

Contents Chapter 6

Input/Output functions

Introductionee 6 .05
Input FUNCtiONSttt 6 .05

INPT6 .05
Programs:

"INP" (Input to Blocks of Data Registers) 6 .05
"PHINPT" (Input of pH values) 6 .07

PMTHe6 .09
PMTH ...e6 .11
Program:

"H-O" (Transformation from HEX to Octal Notation
and VviCe Versa) ... 6 .11

PMTK.e6 .13
Programs:

"KEY" (Menu Control)cco... 6 .14
"IS>CAS" (INQUITY) ootee ee 6 .15

Output FunCtionsc.uiittiiieiiinenneennn 6 .17
Functions Controlling Printer Output 6 .17
ACAXYe6 .17
Programs:

"PR" (Print Example)c.. ... 6 .18
"TAB" (Expression of Tabulation) 6 .19

PRAXY ..e6 .20
Programm:

"PR3" (Formatted Printing) 6 .21
ACLXeee 6 .22
Programm:

"PR1" (Print Example) 6 .22
PRL..e6 .24
Programm:
"PR4" (Print Lines)00ttt 6 .24

Display of Numbers in Hexadecimal Notation 6 .26
VIEWHe6 .26

Setting the Fix/Eng Display Mode 6 .27
F/Eee6 .27

ALPHA Functionstiiiuiiiiiiinnnnennn 6 .29
Functions for Manipulating Contents of ALPHA 6 .29

ABSP..e6 .29
CLA-6 .30
XTOAH ...ee 6 .31

 —1/OFNS(C) Copyright W& W Software Products GmbH 1985 6.03

Output Functions Dealing with the ALPHA Register ..

ARCLE ...iie e ee

Program:
"PR2" (Printout of SI Units)

ARCLH ...ettt

(C) Copyright W&W Software Products GmbH 1985

32
32

32

37

.04

In and Output Functions

The functions in this chapter are meant to aid the user in the
dialog-oriented programming of the HP-41. These functions
give many possibilities for formated input and output. With
this kind of help the user can concentrate fully on the actual
solution to the problem, without having to worry about the
input and output. In particular, the CCD-Module makes output
to HP-IL devices like the Thinkjet printer or Video interface,
much easier than ever before. Furthermore the CCD-Module
functions help save RAM memory that is needed for other uses,
if such functions were written in normal USER-code. Also, the
execution time of the programs can be greatly cut down by
using the CCD-Module functions.

Input Functions

INPT

The function INPT is a universal data input function. With
its help data blocks can be filled very comfortably. This
function may be replaced by the following USER-code program:

01*LBL 05
02 TONE 0

03*LBL "INP" A colon and a space are added to the
04"F:" contents of ALPHA
05 RCL IND 00 The contents of the register specified
06 ARCL X by control register RO0 are recalled to

X and appended to the contents of ALPHA
07 PROMPT The contents of ALPHA are displayed and

execution is halted; the HP-41 expects
numerical input

08 CLA- The original contents of ALPHA are
09 ABSP cleared, 1.e., from the Ileftmost

(C) Copyright W& W Software Products GmbH 1985 6.05

9]

z

S

10 ABSP character up to and including the colon
111 for comparison; if then number in X lies
12 X<>Y outside this range (the limits are

specified in RO1 and R02), execution
13 X<NN? returns to the beginning of the routine
14 GTO 05 (note that the conditionals X<NN? and
152 X>NN? are HP-41 CX functions)
16 X<>Y
17 X>NN?
18 GTO 05
19 STO IND 00 The value lies within the previously
20 ISG 00 established limits; the contents of the
21 END register specified in ROO are

overwritten by the contents of X;
finally (line 20) the control number in
ROO is incremented

PLNG "INP"
44 BYTES

As can be clearly seen, using the function INPT saves a lot of
complex programming, which would otherwise use up a great
amount of program memory. Actually this function consists of
two different partial functions. When first executing the
function only the first function part is executed. In the
above shown USER program this corresponds to the code up to
line 07 PROMPT. Then the function INPT executes BST, so that
the program pointer points to INPT. In order for the function
to know which part of the function to execute, namely the
second part, the CCD-Module input flag is set (Bit 5 of byte 4
in Reg. 13).

Now.the user is asked to commence with data input, and after
pushing the R/S key the second part of the INPT function is
executed. This part compares the input value with the input.

(C) Copyright W&W Software Products GmbH 1985 6.06

boundaries of registers 01 and 02 and stores it, corresponding
to the control number in register 00. If no new value was
given, the old one is used, but only if it lies within the
input boundaries. After this the control number iii.fffcc in
the register 00 is incremented by the value cc and the next
program line is skipped, if: iii>fff (also see ISG in the HP-
41 users handbook).

Input

RO000: control number iii.fffcc
ROO1: possible minimum input value
R002: possible maximum input value

Examples

During a chemical experiment 10 different pH values were
measured. These are to be put in data registers 10-19 for
evaluation by a program that might look like this:

O01*LBL "PHI
NPT"

02 10.019 The control number iii,fffcc is entered
03 STO 00 and stored in ROO
04 CLX The minimum permitted input (min = 0) is
05 STO 01 stored in ROl
06 14 The maximum allowed input (max = 14) is
07 STO 02 stored in R02
08 "PH"

09*LBL 01 This loop accomplishes input of the 10
10 INPT data points
11 GTO 01
12 BEEP Execution is completed
13 END

PLNG "PHINPT"
34 BYTES

(C) Copyright W&W Software Products GmbH 1985 6.07

%)
Z
5

<
|

Further Hints

The function INPT, like all prompt functions of the CCD-
Module, executes BST once during the execution in the program.
If BST is executed at the end of a program, this would take a
long time when using large programs. Therefore it is
advisable to put all prompt functions of the CCD-Module at the
beginning of the concerned program (possibly in a subprogram),
or shortly behind a global label. Furthermore the function
INPT, as well as the function PMTA, sets the input flag of the
CCD-Module (bit 5 of Reg. byte 13.4). This means that if the
function INPT was broken off incorrectly (the only right keys
are R/S and ON), the flag is still set, so that when
executing the function only the second part is executed. To
be sure that the input flag is erased at a certain place in
the program, it is best to insert the following program lines
before the INPT instruction:

134 These instructions erase the CCD-Module input flag.
1
POKEB

If only the second part of the function INPT is to be
executed, the number 1 should be substituted by the number 33.

Related Functions

ISG, PMTA

(C) Copyright W& W Software Products GmbH 1985 6.08

PMTA

The function PMTA gives the possibility of a comfortable ALPHA
input. Like the function INPT this function consists of two
parts. If PMTA is executed in a running program, the program
run will be interrupted and the program pointer will be set
back by one program line to the function PMTA. Now the CCD-
Module input flag (bit 5 of byte 4 in reg. 13) is set, the
ALPHA register is switched and a prompt sign is placed into
the display (ALPHA is switched on!). Using R/S and ON the
function can be terminated, without the loss of the original
ALPHA contents. If a different key is pushed, all of the
previous contents of the ALPHA register are erased, which has
no influence on the indication. If the depressed key is a
letter key, the ALPHA register will be overwritten with the
corresponding letter and this will be appended to the display.
After pushing the key R/S, PMTA is executed for the second
time. The function recognizes this by the fact that the input
flag of the CCD- module is still set. Now this flag is
erased, ALPHA is turned off and flag 23 is set, if there was
any input into ALPHA.

Input

none

Example

The following subprogram clearly shows the effect of the
function PMTA. In this program the user is asked for his
name.

(C) Copyright W& W Software Products GmbH 1985 6.09

O01*LBL "NAM
E"

02*LBL 01 Beginning of the function loop
03 CF 23 The ALPHA input flag is cleared
04 "NAME: "
05 PMTA The HP-41 requests the input of a name
06 FC? 23 Has the name been supplied?
07 GTO 01 If not, return to LBL 01 and ask again
08 END The name has been input and execution is

finished

Further Hints

If, during execution of the function PMTA the ALPHA register
is empty, the string "TEXT: " is indicated. Like all prompt
functions of the CCD-Module, the function PMTA executes BST
once during the execution of the program. If BST is executed
at the end of a program, this will take quite a long time when
using large programs. Therefore it is advisable to put all
prompt functions of the CCD-Module at the beginning of the
program (possibly in a sub program), or shortly behind a
global label. PMTA also employs the input flag of the CCD-
Module (see INPT).

Related Functions

INPT, PMTH, PMTK, PROMPT

(C) Copyright W& W Software Products GmbH 1985 6.10

PMTH

The function PMTH is the input function of the CCD-Module for
hexadecimal numbers. If PMTH is executed using the from the
keyboard, the user is asked to enter a hexadecimal number,
corresponding to the set wordsize.(See binary functions) Now
the keys 0-9 and A-F are active. If a hexadecimal number is
input which is larger than the set wordsize, the function will
begin anew and again asks for the input. If the input is
correct, the stack is lifted and the number, after having been
changed to a decimal number, is written into the X register.
If the function is executed in a running program, the ALPHA
reglster is placed in the left of the display and the program
run is 1nterrupted After input of the last hex digit the
program execution is automatically continued.

Input

The amount of the hexdigits to be given in is dependent on the
set wordsize.

Example

The following program changes a hexadecimal number into an
octal number and vice versa. Asking for the input of the
corresponding numbers happens automatically.

01*LBL "H-O" Change from HEX to OKT
Setting of wordsize to 16 bit. The

02 16 greatest HEX number therefore is FFFF
03 WSIZE which 1s 177777 octal.
04 UNS Setting of Unsigned mode
05 "HEX" Using "HEX" in ALPHA the function PMTH
06 PMTH asks for HEX input.
07 OCT The decimal number is changed into an
08 "OCT: " octal number and as an integer number is
09 ARCLI now appended to the ALPHA string "OCT:".
10 PROMPT Now the octal result is shown.

(C) Copyright W&W Software Products GmbH 1985 6.11

11*LBL "O-H"
12 "OKT _"
13 PROMPT
14 DEC
15 "HEX "
16 ARCLH

17 PROMPT
18 END

PLNG "H-O"
55 BYTES

Further Hints

changing OCT to HEX
Using string "OCT_" it is asked for the
input of an octal number.
Which is changed into its decimal
equivalent. The hexadecimal representa-
tion of this number is now appended to
the ALPHA string "HEX".
Now the hexadecimal result is shown.
END!

Like all prompt functions of the CCD-Module, the function PMTH
executes BST once during the execution of the program. If BST
is executed at the end of a program, it will take quite a long
time when using large programs. Therefore it is advisable to
put all prompt functions of the CCD-Module at the beginning of
the program (possibly in a sub program) or shortly after a
global label.

Related Function

ARCLH

(C) Copyright W& W Software Products GmbH 1985 6.12

PMTK

The function PMTK makes it possible to use a menu function
for the HP-41. The ALPHA register is displayed and program
execution is interrupted. Now the calculator is waiting for
the user to press a key. For this there are four different
possibilities:

1)

2)

3)

4)

The ON key turns off the calculator. The program pointer
is still set to the function PMTK, so that when starting
the program at this place the function is executed again.
A wrong key is pressed. The calculator answers this with
a short sound (only when flag 26 is set).
A correct key is pressed. Correct meaning, its ALPHA
character is in the display. Additionally, extra texan
be placed in the ALPHA register, which has no influence on
the menu control. This text must be placed into the ALPHA
register, and it is then followed by at least one space
and then correct ALPHA character. The function PMTK will
distinguish between the extra informative text and the
correct characters by use of the space, which separates
the two text groups from each other. If a key, whose
ALPHA character is displayed is pressed, the digit value
of the character is written into the X register (the
leftmost character being a value of 1). The stack is
lifted. This number, being key dependent, can now be used
for program ramification. The ALPHA register is erased,
except for the commentary text and one empty space.
If the ALPHA register is empty, "KEY?" is displayed and
the key code (also see ASN and GETKEY from the extended
functions module) of the next key that is pressed will be
entered into the X register. The stack is lifted.

Input

ALPHA register: commentary text and correct key signs,
separated by at least one empty space or
empty ALPHA register.

(C) Copyright W& W Software Products GmbH 1985 6.13

Example

We want to explain the menu control with a simple example.
Controlled by different keys, we want the HP-41 to execute
BEEP 1-4 times.

O1*LBL "KEY"
02 "1234"

03 PMTK

04 GTO IND X

05*LBL 04
06 BEEP

07*LBL 02
08 BEEP

09*LBL 02
10 BEEP

11*LBL 01
12 BEEP
13 END

The correct keys are entered into the
ALPHA register.
Using PMTK "1:2:3:4" is displayed and
the calculator is expecting a key to be
pressed.

Depending on the digit value, which in
this case corresponds to the ALPHA
character
we now go to to LBL 1-4.

(C) Copyright W& W Software Products GmbH 1985 6.14

In the following example an application is shown, where the
commentary text shall be also be displayed. The user is asked
if the given data is supposed to be stored on tape or not.

01*LBL "?7>C
AS"

02 "->TAPE?
YN"

03 PMTK

04 X<>Y

05 GTO IND Y

06*LBL 01
07 WRTRX

08*LBL 02
09 END

Commentary text and the correct
characters (Y and N) are entered into
the ALPHA register.
Using PMTK the display will show:
"->TAPE? Y:N" with Y for yes and N for
NO. The two characters are spearated by
a colon.
The control number for the function
WRTRX is exchanged with the value 1 or
2, which was produced by the function
PMTK
Depending on whether Y or N was pushed,
we now go to the corresponding label 01
or 02.

Write to tape.

LBL 02 no operation.
Ready!

If the ALPHA register is empty, the function PMTK works as
follows:

Key sequence Display Commentary

CLA PMTK KEY? asking for a key to be pressed
SHIFT 31.0000 The key code of the SHIFT key

(row 3, column 1 on the keys)
is entered into the X register.

(C) Copyright W&W Software Products GmbH 1985 6.15

Further Hints

If a wrong key is pushed, it can be corrected by pressing it
until "NULL" appears in the display. If the ALPHA register is
empty, the key code of the key that was pressed, is displayed.
If a comma, period or colon are to be one of the characters
directly behind the space, at least two empty spaces are
needed.

Following extra characters are useful as well:

Character code decimal Key

005 R/S
007, 008 SST
012 USER, PRGM, ALPHA
014 SHIFT

Like all prompt functions of the CCD-Module, PMTK executes BST
once during the execution of the program. If BST is executed
at the end of a program, it may take quite a long while when
using large programs. Therefore it is advisable to put all
prompt functions of the CCD-module at the beginning of the
program (perhaps in a sub program), or shortly behind a global
label.

Related Functions

PMTA, PMTH, GETKEY

(C) Copyright W& W Software Products GmbH 1985 6.16

Output Functions

Functions for Printer Output

ACAXY

With ACAXY (accumulate ALPHA and X by Y) it is possible to
transfer text and numbers in the X register to the printer
buffer. The contents of ALPHA are justified to the left and
the contents of the X register to the right. If flag 20 is
set, all of the spaces between the text and the X value are
substituted by dots. If text and X value together need more
space than the given printer width, the printer width is
doubled until there is enough space for an interval. If the
ALPHA register is empty, only the X value is transferred (to
the right). In FIX/ENG mode the X value is transferred in
ENG format with a letter instead of an exponent. After
executing the function the X value is stored into the LAST X
register and the stack drops. ACAXY works only with the plug
in printer, or with an HP-IL module.

Input

X register : Number which is to be transferred in format
to the right.

Y register : Printer width (number between 0 and 99)
ALPHA register : Text to be printed to the left.

(C) Copyright W& W Software Products GmbH 1985 6.17

2
4
59

S
l

Examples

Example 1

The following line is to be printed with a 24 character
printer.

Width: 200.00 meters

In the program mode the following program steps are necessary:

O1*LBL "PR"
02 "WIDTH"
03 18
04 RCL 00
05 ACAXY
06 "METER"
07 ACA
08 PRBUF
09 END

Example 2

The register contents of the registers 1-9 are to be printed
in table format using a 24 character printer:

Register Contents Print with TAB Program

ROI="200.00 200.00 15.88 16.29
RO 129 150.08 26.58 12.29
RO4: leOO 159.88 12.8@8 42,32

R05= 20.50
R06= 12.20
RO7= 150.00
R08= 18.80
R09= 42.32

(C) Copyright W& W Software Products GmbH 1985 6.18

Program Listing

01*LBL "TAB"
02 CLA
03 1.009
04 8

05*LBL 01
06 RCL IND

Y
07 ACAXY
08 ISG Y
09 GTO 01
10 PRBUF
11 END

Further Hints

If printer width in the Y register is equal to 0, the
standard printer width of 24 characters is assumed. If
negative printer widths occur, the absolute value is chosen.

A table of the internationally standardized characters for the
exponent is found by looking at the function ARCLE.

Related Function

PRAXY

0]

4
S5

S
|

(C) Copyright W& W Software Products GmbH 1985 6.19

PRAXY

PRAXY (print ALPHA and X by Y) makes it possible to print text
and number in the X register formated on the carriage width
in Y. The contents of ALPHA are printed to the left and the
contents of X to the right, depending on the width of the
printing field specified in Y. This interval is automatically
filled with empty spaces. If flag 20 is set, all spaces
between text and X value are substituted by dots. If text
and X value together need more space than the given printer
width, the printer width is doubled until there is enough
space for an interval. If the ALPHA register is empty, only
the X value is printed (to the right). In FIX/ENG mode the X
value is printed in ENG format with a letter instead of an
exponent. After executing the function, the X value is
stored into the LASTX register and the stack drops. PRAXY
only works with the plug in printer, or with the HP-IL module
plugged in.

Input

X register : Value to be printed formatted to the right
Y register : Printer width (number between 0 and 99)
ALPHA register : Text to be printed to the left

Example

The following line is to be printed using a 40 character
printer:

NUMBER OF ITEMS.....o 129

(C) Copyright W& W Software Products GmbH 1985 6.20

In the program mode the following program steps are necessary:

01*LBL "PR 3"
02 FIX 0
03 "NUMBER OF

ITEMS"
04 SF 20
05 40
06 120
07 PRAXY
08 END

Further Hints

If the printer width in the Y register is equal to 0, the
standard printer width of 24 signs is assumed. If negative
printer widths should occur, the absolute value is selected.

A table with the internationally standardized characters for
exponents can be found by looking at the function ARCLE.

Related Function

ACAXY

(C) Copyright W& W Software Products GmbH 1985 6.21

ACLX

ACLX (accumulate line by X) transfers aa characters with the
character code bbb into the printer buffer. aa.bbb is
specified in X. This function makes it possible to output a
line of the specified character, this quite fast and saves
program memory. ACLX works only with the plug in printer, or
with the HP-IL module.

Input

X register: aa.bbb

Example

A number column is to be underlined on the right and the
printer stripe is to be limited by two lines, using a 24
character printer:

Print

SELLSLSPLe

288. a4

eo eooe ke ke ke ke ke ok

Program Listing

O1*LBL "PR1"
02 SF 12
03 CLX
04 ACLX
05 RCL 00
06 ACX
07 ADV
08 6.045
09 ACLX
10 ADV
11 .042
12 ACLX
13 ADV
14 END

(C) Copyright W& W Software Products GmbH 1985 6.22

Further Hints

If the value aa in the X register is equal to 0, the standard
printer width of 24 characters is assumed. If negative values
should occur, the absolute value is used.

Related Function

PRL

 —1/OF
N
S

(C) Copyright W& W Software Products GmbH 1985 6.23

PRL

The function PRL (print line) prints a line of 24 (or 12, if
flag 12 is set) "-" characters. If any characters were
present in the printer buffer, these are printed first,
followed by a line feed and then the dashes.

Input

none

Example

The following program clearly shows the effect of PRL.

Print Program Listing

TEST! O01*LBL "PR4"
------------------------ 02 CF 12

- 03 "TEST1"TESTZ2 04 ACA

05 PRL
06 SF 12
07 "TEST2"
08 ACA
09 PRL
10 END

(C) Copyright W& W Software Products GmbH 1985 6.24

Further Hints

To reach underlinings of any length the function ACLX must be
employed. PRL 1is only meant for the 24 character printers
made by Hewlett-Packard.

Related Function

ACLX

7

4
7~

A

(C) Copyright W& W Software Products GmbH 1985 6.25

Display of Hexadecimal Number Values

VIEWH

The function VIEWH (view hex) displays the hexadecimal
equivalent of the X value (depends on the set word size and
the set mode, see ~-HEX FNS, otherwise error message "DATA
ERROR X" is displayed.")

Input

X register : Decimal number in the allowed value range
(dependent on the set wordsize and the
selected mode).

Example

Key sequence Description

142 VIEWH The number from the X register is
changed into its hexadecimal equivalent
and displayed (8E).

Further Hints

ALPHA data in the X register calls forth the error message
"ALPHA DATA", values that are too great cause the error
message "DATA ERROR X".

Related Function

ARCLH

(C) Copyright W& W Software Products GmbH 1985 6.26

Setting FIX/ENG Mode

F/E

The function F/E sets the so called Fix/Eng mode. Flag 40 and
41 are set. The calculator now displays all numbers as in the
FIX format. If the number is so large, that it has to be
expressed with exponents (>9,999,999,999), it is displayed in
the ENG format. The number of digits after the decimal point.
This F/E mode is looked upon as an indicator for a special
printer type by the functions ACAXY and PRAXY (see ACAXY and
PRAXY).

Input

none

Example

Number representation in the different modes (for example with
two digits after the decimal point):

FIX ENG F/E

0,00 0,00 00 0,00
1500,00 1,50 03 1500,00

89.456,25 89,5 03 89.456,25

9.999.999.999 10,0 09 9.999.999.999

1,00 11 100, 09 100, 09
1,59 52 159 51 15,9 51

-7,95 53 =795, 51 -795, 51

(C) Copyright W& W Software Products GmbH 1985 6.27

Further Hints

The F/E mode stays active as long as no other mode (FIX, ENG
or SCI) is selected. If the number of digits after the comma
in the F/E mode is to be changed, it is first changed with the
function FIX. Afterwards the Fix/Eng mode has to be switched
on with F/E.

Related Functions

FIX, SCI, ENG, ACAXY, PRAXY

(C) Copyright W& W Software Products GmbH 1985 6.28

ALPHA Functions

Functions for Manipulating of the ALPHA Register

ABSP

The function ABSP (ALPHA backspace) erases the rightmost
character in the ALPHA register.

Input

none

Example

If the text "ABCDEFG" is in the ALPHA register, the function
ABSP erases the right character (in this case "G") and only
"ABCDEF" is left in the ALPHA register.

Further Hints

The function ABSP works just as well if the last byte on the
right in the ALPHA register has the value 00.

Related Function

CLA-

(C) Copyright W&W Software Products GmbH 1985 6.29

2!
Z
.S

-
i

CLA-

The function CLA- erases the ALPHA register from the right,
until it finds a letter followed by an empty space to the
right. The space belonging to this letter is not erased.

Input

none

Example

If ALPHA displays for example "KEY 123", after execution of
the function CLA- the ALPHA register will display "KEY ".
The character string "123" has been erased!

Further Hints

If the ALPHA register is empty or contains only empty spaces
or letters, the whole ALPHA register will be erased.

Related Functions

CLA, ABSP

(C) Copyright W& W Software Products GmbH 1985 6.30

XTOAH

The function XTOAH (X to ALPHA hex) appends (depending on the
set wordsize) one or more characters to the ALPHA register.
These characters correspond to the hexadecimal equivalent of
the X register.

Input

X register: value of the character(s) to be appended

Example

Key sequence Description

CLA 10 WSIZE The ALPHA register is erased and a
wordsize of 10 bits is set.

340 VIEWH The value 340 is hexadecimally
displayed as ‘154.

XTOAH The characters ‘01 and ‘54 ("man"
and "T") are appended to the ALPHA
register.

Further Hints

Assuming a wordsize of 8 bits the function XTOAH works exactly
like the function XTOA in the Extended Functions module.

Related Function

XTOA (Extended Functions module)

(C) Copyright W& W Software Products GmbH 1985 6.31

%2)

ZS8
£

|

Functions for Output of the ALPHA Register

ARCLE

The function ARCLE (ALPHA recall engineering) works similar to
the function already present in the HP-41 ARCL X (with ENG
format), but substitutes the exponent with a letter,
corresponding to the internationally standardized SI
characters (see table).

Input

X register : Number to be appended to the ALPHA register.

Example

A number with an SI units is supposed to be inserted into the
text and then printed on an 80 character printer:

Program

01*LBL "PR2" 07 RCL 00 RO00= 15,000.00
02 "THE " 08 ARCLE
03 ACA 09 " Fm."
04 "STREET 10 ACA
LENGTH " 11 PRBUF

05 ACA 12 END
06 "IS "

Print

THE STREET LENGTH I5 15.48 km.

(C) Copyright W& W Software Products GmbH 1985 6.32

Table of the Internationally Standardized SI Characters

Factor Name | Symbol

10 '° Exa E

10 ° Petq P

10 '# Tera T

10 ° Giga G

10° Mega M

10° Kilo k

1077 Milli m

10°° Micro U (instead of 1)

1077 Nano n

107" |Pico D

1072 |Femto |f

107'° |Atto q

(C) Copyright W& W Software Products GmbH 1985 .33

Further Hints

If the e)igonent of the numl;gr in the X register is smaller
than 107°° or greater than 10°°, this number is, as in ARCL X,
appended to the ALPHA register with its exponent.

Related Functions

ARCLH, ARCLI

(C) Copyright W& W Software Products GmbH 1985 6.34

ARCLH

ARCLH (ALPHA recall hex) appends the hexadecimal
representation of the number in the X register to the
contents of the ALPHA register. This representation is
dependent on the selected wordsize and the set complement mode
(see binary functions). Only characters between 0 and 9 and A
to F are appended to the ALPHA register. If the wordsize is
unchanged, the number of appended characters is always the
same. Depending on the wordsize it may be between 1 and 8
characters.

Input

X register: decimal representation of a hex number

Example

A hexadecimal number is to be appended to a present text in
ALPHA:

CLX WSIZE Setting wordsize on 8 bits
"VALUE" The text "VALUE" is written

into the ALPHA register.

PMTH 8E The hexadecimal number 8E is decimally
entered into the X register as value
142,

ARCLH The value 142 i1s appended to the ALPHA
register as hexadecimal number 8E.
Display shows: "VALUE 8E".

(C) Copyright W& W Software Products GmbH 1985 6.35 U
N

Further Hints

To avoid mistakes made when using this function, it is
advisable to read the chapter binary functions first.

Related Functions

VIEWH, PMTH, XTOAH, ARCLE, ARCLI, ARCL X

(C) Copyright W& W Software Products GmbH 1985 6.36

ARCLI

The function ARCLI (ALPHA recall integer) makes it possible to
append only the integer part of a number to the ALPHA
register, without changing the display format of the
calculator.

Input

none

Example

ALPHA says for example "COLUMN?", the value in the X register
is 15.002. After executing the function ARCLI, The ALPHA
register displays "COLUMN 15",

Further Hints

none

Related Functions

ARCL X, ARCLE, ARCLH

(C) Copyright W& W Software Products GmbH 1985 6.37

2
Z

S
I

(C) Copyright W& W Software Products GmbH 1985 6.38

(Cc

Chapter 7

Functions for

Advanced

Programming

) Copyright W&W Software Products GmbH 1985

(C) Copyright W& W Software Products GmbH 1985 .02

Contents Chapter 7

Functions for Advanced Programming

Introduction 7 .05
PLING...e7 .05
PPLNG...e7 .07
PHDD...e7 .08

Functions for Calculating of Absolute Addresses 7 .09
A7 .09
A+B7 .11
Aee7 .12
A=Ae7 .13

Decoding Function0 iuninennennnn. 7 .14
DO..e7 .14

Program: "CDE" (CODE)............... 7 .15
Functions for Manipulating the Program Pointer 7 .16

P>Xe7 .16
X>PC.e7 .18
X>RN.7 .20
PC<>RTN.e7 .21
XR>RTNe7 .23

PEEK and POKE Functionsccuuiuiuiunnnnnn. 7 .24
PEEKBe7 .24
Programs:

"A?" (Size of I/O Buffers) 7 .25
"VB" (VIEW BYTES) 7 .26
"GE" (GTO END) ..ottt 7 .27

PEEKR.e7 .29
Program: "VR" (VIEW REGISTER) 7 .30

POKEBe7 .31
Programs:

"TD" (Tone Duration)coivuveee.... 7 .31
"T" (Tone without TIME Module).................. 7 .32
"TLC", "TLCI1" and "TLC2" (Toggle Lower
Case Mode)...t 7 .33
"CHK" (Correction of Checksum) 7 .34

POKER ...e7 .35
Program: "CB" (Clear buffer) 7 .36

Sample Programs:e 7 .38
"ST" (Synthetic Text Lines) 7 .38
"PBC" (Printout of Program Bar Codes) 7 .40

(C) Copyright W& W Software Products GmbH 1985 7.03

(C) Copyright W& W Software Products GmbH 1985 7. 04

Functions for Advanced Programming

The 17 functions of this block form the basis for advanced
programming techniques, many of which were previously possible
only with a great amount of effort, if at all. The following
chapter explains each function and demonstrates possible
applications example programs. To be able to fully understand
this chapter it is important to know about the HP-41 register
structure and addressing. These are explained in detail in
chapter 1 ’Internal Design of the HP-41.

PLNG

The function PLNG prompts for the input of the program name
(global label), In the same way as the function CLP does.
Execute the function and press ALPHA name of the label ALPHA.
The length of the program in bytes is displayed. No status
registers are changed, meaning that the program pointer 1is
unaltered, as are the X register and all the stack registers.
As in the function CLP the input sequence PLNG ALPHA ALPHA
will display the program length for the current program, which
is the one the program pointer is set to.

Input

The program name.

(C) Copyright W& W Software Products GmbH 1985 7.05

—
A
D
V
F
N
S

Example

If the program "CDE" is present in the calculator, the key
sequence PLNG ALPHA CDE ALPHA will display the message " 60
Bytes". If a printer in TRACE or NORM mode is plugged into
the calculator, the number of bytes is printed.

Further Hints

PLNG is not normally programmable although the byte sequence
(162, 220) may be entered into a program line. When executed
this would normally display the error message "NONEXISTENT".
However, if register Q contains a program name backwards the
program will stop and display the length of that program in
bytes. If register Q is clear then the current program length
is displayed, and also program execution is not interrupted.

Related Function

PPLNG

(C) Copyright W& W Software Products GmbH 1985 7.06

PPLNG

PPLNG (Programmable Program Length) is the programmable
version of PLNG. The name of the program is expected in the
ALPHA register, or any global label whithin the program. The
result is pushed into the X register, lifting the rest of the
stack.

Input

ALPHA register: program name

Example

The program lines
llCDE"

PPLNG

puts the value 60 into the X register, if the program "CDE" is
In main memory.

Further Hints

If the ALPHA register is clear, PPLNG shows the length of the
current program. When executing PPLNG from the keyboard the
program pointer is unchanged. After execution in a program the
pointer is moved to the next line to be executed, as would be
expected, rather than branching to the program whose length
has been calculated.

Related Function

PLNG

(C) Copyright W& W Software Products GmbH 1985 7.07

—
A
D
V
E
N
S

PHD

The function PHD (program head) gives the absolute address of
the first byte of a program. Like PPLNG, a global label is
expected in the ALPHA register. If the ALPHA register is
clear the absolute address of the current program is returned.
The absolute address of the program head is written into the X
register. The format of the address is such that it can be
immediately used by PEEKB, POKEB, X>PC or X>RTN.

Input

ALPHA register: program name

Example

Assuming SIZE 000, the key sequence ALPHA name of the first
program in CAT 1 ALPHA PHD will return 511.6 in X (on an HP-41
CV or CX).

Further Hints

It should be noted that the absolute address of a program line
can change for many reasons and with it the result of PHD.
The address changes when the SIZE is changed, often during
packing, and all program lines following an inserted program
line, including programs further down the catalog chain.

Related Function

PC>X

(C) Copyright W& W Software Products GmbH 1985 7.08

Functions for Calculation of Absolute Addresses

The calculation functions for absolute addresses are A+, A+B,
A-, A-A. These work for the entire memory range of the HP-41,
which is from 0.0 to 1023.6. The digits before the decimal
point are the absolute register address aaa and the digits
after the decimal point are the absolute byte address ¢ within
the given register. Values in the X or Y register, that do
not correspond to the given range will cause the error message
"DATA ERROR X" or "DATA ERROR Y". The digits following the
first digit after the decimal point are not used for absolute
addresses by the calculation functions, they do not call forth
any error messages.

A+

This function increments the absolute address aaa.c specified
in the X register by one byte. The result is entered into X,
the original value of X before execution of A+ is placed in
the LAST X register.

Input

X register: aaa.c

Examplcs

192.0 A+ results in 192.1
192.6 A+ results in 193.0

(C) Copyright W& W Software Products GmbH 1985 7.09

—
A
D
V
F
N
S

Further Hints

The function A+ does not check if the absolute address it
calculates actually exists.

Related Functions

A+B, A-, A-A

(C) Copyright W& W Software Products GmbH 1985 7.10

A+B

This function adds the absolute address aaa.c contained in the
Y register to a number (n bytes) specified in X. If the X
register contains a negative number, a subtraction will be
made corresponding to this. As in a "normal" calculating
function, for example +, the stack registers are pushed down:
The result of the calculation "address plus bytes" is placed
in the X register, the amount of the added bytes (original
value of the X register) is put into the LAST X register.

Input

X register: nnnn
Y register: aaa.c

Examples

412 ENTER 70 CHS A+B results in 402
192 ENTER 2239 A+B results in 511.6
(= entire main memory range of the HP-41 CV or CX.)

Further Hints

The function A+B works independent of the fact that the
absolute address actually exists, for the entire calculating
range of 0,0 to 1023,6. The greatest correct input for the X
register (amount of the bytes that are to be added) is 7167
(or -7167).

Related Functions

A+, A-, A-A

(C) Copyright W& W Software Products GmbH 1985 7.11

A-

This function decrements the absolute address aaa.c spegified
in X, by one byte. The result is entered into X, the original
value of the X register, before execution of A-, is placed
into the LAST X register.

Input

X register: aaa.c

Example

192.1 A- results in 192.0
193.0 A- results in 192.6

Further Hints

The function A- works independent of the fact if the absolute
address really exists, for the entire calculating range of 0.0
to 1023.6.

Related Functions

A+, A+B, A-A

(C) Copyright W& W Software Products GmbH 1985 7.12

A-A

This function calculates the difference between an absolute
address aaa.c in the Y register and an absolute address ddd.e
in the X register. The result in bytes is entered into X. As
in a "normal" subtraction, the stack registers are pushed
down; the absolute address, which the X register contained
before the execution of A-A is entered into LAST X. If,
before the execution of A-A, the value in the Y register was
greater than the value in the X register, the result will
become negative.

Input

X register: ddd.e
Y register: aaa.c

Example

511.6 ENTER 192 A-A results in 2239
402 ENTER 412 A-A results in -70

Further Hints

The function A-A works independent of the fact if the absolute
addresses actually exist, for the entire calculating range of
0.0 to 1023.6.

Related Functions

A+, A+B, A-

(C) Copyright W& W Software Products GmbH 1985 7.13

—
A
D
V
F
N
S

DCD

The function DCD (decode) decodes the value in X and appends
the hexadecimally decoded representation to the ALPHA
register. This function is especially useful for the analysis
of non normalized numbers.

Input

X register: value to be decoded

Example

CLA RCL b DCD ALPHA

Result for example 000000000060F7, this means: The register b
did not contain a return address, the program pointer was
positioned to 247.5 (according to PC>X).

Further Hints

In the result representation of DCD, two hexadecimal numerals
correspond to one byte, therefore the representation always
has 14 digits and every single byte is definitely
identifiable.

The return function of DCD would be "CDE" (code). The
following program codes a hexadecimal representation from the
ALPHA register and writes the result into the X and the M
register (visible as text):

(C) Copyright W&W Software Products GmbH 1985 7.14

—
A
D
V
F
N
S

BleLBL CIhE 19 =X<@7?

28 CLAx

B2 CL= 21 FS?C 22

83 HWSIZE 22 GTO 4aa

A4 6.5 23 16

AS SF 22 24 *k

25 +

As«LBL G@a 26 FPOKEEB

a7y 5 27 SF 2=z

B3 FEEKE 22 CL=

A2 ABSF 29 S.5

189 XL:=Y 28 K4FY

i1 RDH 21 A-

57 22 H=:Y

232 GTO waa@

a7 =4 RCL L[

25 END

FPLNG “CDE*"
ead BYTESbo

k
o
k

o
k

o
k

o
k

o
k

o
k

=
o
l

b
G
M

+
W0
X
M
3

Il =
I

(C) Copyright W& W Software Products GmbH 1985 7.15

Functions for Manipulating the Program Pointer

The group of functions that make manipulations of the pointer
and the return addresses possible, will be explained next.
The functions PC<>RTN, PC>X, X>PC, X>RTN, and XR>RTN allow
program manipulation of the program counter and the return
stack. This is available for the entire memory range, the
status registers and especially to the extended memory of the
extended functions module and X memory modules. Additionally,
XR>RTN allows a program to jump into any section of code in a
plug in software module.

PC>X

The function PC>X (program counter to X) reads the absolute
address of the program pointer out of the status register b
and writes it into the X register. Since the value is a
decimal number it can be stored in a data register. This
function makes it possible to calculate any kind of byte
distances very easily. It is, for example, possible to
recognize if the jumping range of a two byte GTO is long
enough for the required jump.

Input

none

Example

We want to calculate the leap length, to find out if a two
byte GTO will suffice for this distance. This calculation
could be done with the following steps:

Go to the program line after GTO NN, PRGM off, PC>X. Then go
to LBL NN; PC>X, A-A.

(C) Copyright W& W Software Products GmbH 1985 7.16

If the displayed value is smaller than 112, a two-byte-GTO
will be able to hold the jump distance when the jump is to be
compiled. In case the result was negative (in the program LBL
NN is in front of GTO NN), it is necessary before to go to the
first PC>X on the program line which is before GTO NN, to
exactly calculate the leap distance.

Further Hints

none

Related Functions

PHD, X>PC

(C) Copyright W&W Software Products GmbH 1985 7.17

—
A
D
V

E
F
N
S

X>PC

This function (X to program counter) sets the pointer to the
absolute address aaa.c given in the X register. Every
existent absolute address may be given, not only in the
"normal" program memory range. X>PC is meant especially for
reaching a certain place in a program where the absolute
address of the program pointer was beforehand determined by
PC>X. If this method is employed in the program memory range,
the amount of the data registers may not be changed in the
meantime, since otherwise the absolute addresses of the
program would change.

Input

X register: aaa.c

Example

01 PC>X
02 TONE
03 X>PC

This is a neverending program routine and corresponds to the
program sequence RCL b, TONE N, STO b, except the address
returned by PC>X can be, contrary to the value from RCL b,
stored in a data register, and the value for X>PC can be a
simple decimal number without causing any problems, whereas
the value for STO b must be encoded before it may be stored
away.

Further Hints

X>PC is especially useful for directly reaching all of the
extended memory of the extended functions or X memory module.
The absolute address of the first byte in the extended
functions module is 191.6. Here the header of the first file
starts. Each file has two header registers and then starts
with its actual contents. The absolute addresses are, like in
the program memory, descending.

(C) Copyright W& W Software Products GmbH 1985 7.18

Example

CAT*4 displays:
KA K004 (Keyfile 4 register)
CLK K000 (Keyfile 0 register)
ALM B006 (Bufferfile 6 registers)
K? PO007 (Program file 7 registers)

99.0000 (free registers in the extended functions module)

(The explanations to the file types K and B are given in the
function block X/F memory functions;, the program for the
production of the file "CLK" with 0 registers can be found
there as well.)

Now we want to directly execute the program "K?" in the file
"K?" with the function X>PC. For this the absolute address of
the program start in the program file must be calculated:

First byte in the extended functions module : 191.6
minus two header registers of "KA" results in : 189.6
minus four register files "KA" results in : 185.6
minus two header registers of "CLK" results in : 183.6
minus zero registers of "CLK" results in : 183.6
minus two header registers of "ALM" results in : 181.6
minus six registers of "ALM" results in : 175.6
minus two header registers of "K?" results in : 173.6

This 1s the absolute address of the first byte of the program
"K?" as a program file in the extended functions module. With
173.6 in the X register and X>PC in this case, we get directly
into the program "K?" and can execute it immediately. If the
program is not to be executed starting from the first program
line, the absolute address of each program line can be deter-
mined (for example go through program with SST and then read
the program pointer with PC>X).

Related Functions

PC>X, PHD

(C) Copyright W& W Software Products GmbH 1985 7.19

X>RTN

The function X>RTN (X to return stack) sets the first return
address to the absolute address aaa.c specified in X.

Input

X register: aaa.c

Further Hints

Like in X>PC, this function can display all actually existing
absolute addresses (not only the ones in the program memory).
At the next RTN or END the pointer is set to the given
address. Each one of the used return addresses can be stored;
this enables us to construct a practically unlimited return
stack. Since ramification only occurs at RTN or END, all stack
registers may be set up as necessary.

Related Functions

PC<>RTN, XR>RTN

(C) Copyright W& W Software Products GmbH 1985 7.20

PC<>RTN

—
A
D
V
F
N
S

This function (program counter exchange return address)
exchanges the present value of the pointer with the present
value of the first return address. The function PC<>RTN may
therefore only be executed, if there is at least one return
address present (otherwise "DATA ERROR").

Input

none

Example

The function sequence

Program A
rrr.b
X>RTN
PC<>RTN
Program B

has the following function:

First program A is executed, then the absolute address rrr.b
is stored as the first return address, and PC<>RTN exchanges
the pointer with this first return address. Thus the program
execution is continued from the absolute address rrr.b (for
example in the Extended Functions module!), until RTN or END
is reached. Now the program B is executed, since PC<>RTN
stored the program pointer at the start of program B as the
first return address.

(C) Copyright W& W Software Products GmbH 1985 7.21

Further Hints

The function PC<>RTN makes it possible to program a subroutine
call for any absolute address. A subroutine call and a return
from the Extended Functions module are also made possible.

Related Functions

X>RTN, XR>RTN

(C) Copyright W& W Software Products GmbH 1985 7.22

XR>RTN

This functions allows the subroutine call or a jump into the
program with an XROM number kk./l of a software module at any
program line nnn (not only where there is a label!).
Therefore this function makes it possible to evade the PROMPT
functions in some modules or to use only parts of programs as
subroutines.

Input

X register: program line number nnn
Y register: XROM number kk.ll

Example

The program "T1" in the PPC ROM starts with program line 140,
contains first 13 synthetic tones, then an RTN. It has the
XROM number 10,47. Usually only XROM "T1" is able to execute
all 13 tones together. The function XR>RTN now allows us to
execute only part of program "T1". The sequence 10.47 ENTER
150 XR>RTN for example, only executes four tones (lines 150-
153).

Further Hints

If a return into the main program is desired, PC<>RTN needs to
be used after XR>RTN.

Related Functions

PC<>RTN, X>RTN

(C) Copyright W&W Software Products GmbH 1985 7.23

—
A
D
V
F
N
S

PEEK and POKE Functions

The functions for the pointer manipulation offer a variety of
new programming techniques which could only be hinted at in
the previous paragraph. For example it is even possible to
run programs below the .END., these programs are not listed in
CAT*‘1 and usually not immediately discovered. To be able to
program there, the functions PEEKB, POKEB, PEEKR and POKER,
which are talked about in this section, are needed. These
functions allow every conceivable byte manipulation in the
entire memory range of the calculator. This opens up more and
more possibilities as will be shown in several programs.

PEEKB

This function reads the decimal value of the byte, whose
absolute address aaa.c is displayed in the X register. The
result is placed in X and the stack is lifted. The LAST X
register is not changed. The absolute address of a byte is to
be entered in the format aaa.c, in the course of which aaa is
the absolute register address and ¢ is the byte position
within the register aaa.

Input

X register: aaa.c

(C) Copyright W& W Software Products GmbH 1985 7.24

Examples

If there are any User key assignments (from CAT 2 or CAT 3)
the byte 192,6 has the value 240. Using PEEKB it can be
determined how many key assignment registers are occupied,
since byte 6 of any key assignment register is 240. Therfore
first 192,6 has to be tested, then 193,6 etc., until a value
different from 240 results.

Program Example "A?"

Program "A?" determines how many registers all in all are
occupied with key assignments and I/O buffers (alarm
registers, buffers of the CCD Module or other buffers). The
correct result can only be obtained if there is at least one
free register after the .END.. If there is no unoccupied
register, programming will not be easy. If only the amount of
the occupied key assignment registers is to be calculated, the
program lines from 15-21 need to be deleted.

al«LBL A" l1c6«LBL A1
a2 191.6 17 +
a3 KT 18 PEEKE
a4 240 19 x=+a7

28 GTO at
aSeLBL Q48 21 CL=x
8 ET 22 192
a7y RT 23 -
as IsSG X 24 INT
B#9 PEEKEB 25 EHD
18 BT
11 X=%7 PLHG "H7?"
12 GTO Ga 47 BYTES
132 KT
14 RT
15 —-.1

(C) Copyright W& W Software Products GmbH 1985 7.25

7
4
88

P
A
5

|

Another Program Example for PEEKB:

"VB" (VIEW BYTES)

The program "VB" makes it possible to clearly identify text
lines in programs or to decode status registers in decimal or
hexadecimal form. If the output is desired to be in
hexadecimal format, line 11 is to be substituted by ARCLH, and
CLX, WSIZE should be executed before starting the program to
set the wordsize to 8 bits.

The program "VB" displays any amount of bytes in the ALPHA
register in the following format:

absolute byte address - - - decimal value of the byte

The program can be used to display any byte in the memory
range of the calculator (except the ALPHA register, since the
program changes the ALPHA as well as the stack registers).

Input would be:

Number of desired bytes, ENTER, absolute address of the first
byte. If a program is to be completely decoded, the following
function sequence is possible:

Enter program name in ALPHA, then PPLNG, PHD, XEQ"VB".

A1+LBL “VE" 11 ARCLI
AZe+LBL G& 12 AVIEW
ez - - 12 RIDH
84 RCL o 14 A-
85 FI¥ 1 15 DSE ¥
A6 ARCL ¥ 16 GTO A
@7 STO d 17 CLST
A5 RDH 18 CLD
89 “k___-" 19 END
18 PEEKE

PLHG “VE-"
4@ BYTES

(C) Copyright W& W Software Products GmbH 1985 7.26

The output of the program "VB" itself is, for example, is as
follows (in the course of which the given absolute addresses
are displayed differently, depending on where in memory "VB"
resides):

25@a.1__ 1935
Z25a.8___
273 ,6___Z2432
279.5___@
279,44 ___5E

One more useful program using PEEKB: "GE"

This program sets the pointer on the first line of the last
program in main memory, thus to the program which contains
.END. as its last program line. This makes its function
identical to its namesake program in the PPC ROM, only much
shorter and without synthetics. Therefore the last program is
reached quickly (even if it does not have a global label!),
without having to run through the entire CAT 1.

In lines 02 to 13 the absolute address of the .END. is decoded
out of the bytes 13.0 and 13.1 (register ¢). Two A+’s result
in the absolute address of the start of .END. ; this address
becomes the first return address and after CLST END executes
the jump to the .END., which stops the program run. Now if we
switch to the PRGM mode, line 01 of the last program can be
seen. (If GTO.. was executed before, this last program
contains only the .END.)

@1eLBL "GE" 11 *
Bz 13 12 BT
83 PEEKE 13 +

B4 H< Y 14 A+
35S H+ 15 H+

bBc PEEKE 16 X>RTH

a7y 1& 17 CLST
83 MOD 18 END
@2 LASTH
18 Xtz PLHG “GE"

232 BYTEZ=

(C) Copyright W& W Software Products GmbH 1985 7.27

%
Z.
o9

e
)
e

|

Further Hints

none

Related Functions

PEEKR, POKEB, POKER

(C) Copyright W& W Software Products GmbH 1985 .28

PEEKR

This function can be compared to the RCL function. However,
it is now possible to read the contents of any register,
without normalization, into the X register. This removes one
of the main problems of synthetic programming. The address of
the register to be read is entered as absolute address aaa
into X. As when using an RCL IND X, the stack registers are
changed.

Input

X register: aaa

Example

Program Example for PEEKR: "VR" (VIEW REGISTER)

The program "VR" shows any number of register contents in
hexadecimally decoded format or prints the results. The
absolute address is shown as well.

Input would be:
Absolute address of the first desired register as the part
before the decimal point, and the last desired register as the
number after the decimal point. 192.205 for example displays
registers 192 to 205. The program "VR" was principally
written for the decoding of the key assignment registers or
buffer registers, therefore the registers are treated in
ascending order. Line 05 appends three spaces to the ALPHA
register. The program "VR" is only possible in this simple
format, because PEEKR can not be normalized and simply decoded
with DCD. Lines 09 to 11 were inserted so that the program
will run faster when the printer is being used (no scrolling).

(C) Copyright W& W Software Products GmbH 1985 7.29

—
A
D
V
F
N
S

ai«LBL “¥YE-"©

az2«+LBL 4@

B3 CLA

B4 ARCLI
as “F -

85 FEEEKE

a7y DCh

A3 KEDH

B9 SF 25

i PRHA

11 FC7?C 25

12 AVIEH

13 ISG =

i4 GTO Q|

15 END

PLHNG “YR"
34 BYTES

Further Hints

PEEKR works for every existing register address from 0 to
1023, if we want to use data (relative) register addresses
with PEEKR, the absolute addresses of the data registers must
be calculated.

Related Functions

PEEKB, POKEB, POKER

(C) Copyright W& W Software Products GmbH 1985 7.30

POKEB

This function writes over the byte, whose absolute address
aaa.c is specified in Y, with the value bbb specified in X.
POKEB works for the entire memory area of the calculator. The
stack registers remain unchanged, as long as they are not
specified by the absolute address in Y.

Input

X register: bbb
Y register: aaa.c

Examples

As the first program example we want to show a program for the
production of synthetic tones and for the measuring of the
tone duration, which changes itself depending on the input
value. Thus we are talking about a "self programming"
program.

—
A
D
V
F
N
S

ale«LBL =TD" 16 ¥ E—&
@ .-’_':h sz asz ? —_—

A3 ARCLI 18 E4

a4 “F___" 19 *

as FC>XH 28 RCL d

As 11 21 FIxX =2

AY CHS 22 ARCL %

#2 A+E 23 STO o

A9 X< >Y 24 ET

i FPOKEE 22 RT

11 TIME 26 AVIEW

12 TOHE = 27 END

12 TIME

14 HLEY PLNHNG *TD"

15 HMZ=- 55 BYTEES=

(C) Copyright W& W Software Products GmbH 1985 7.31

The Program "TD" (Tone Duration)

The program "TD" executes every tone in the range of 0 to 127,
by changing the second byte of the function in line 12. If,
for example, the program is started with 120 in the X
register, line 12 is changed into TONE P.; this change is
brought about by the function POKEB, which is in line 10! The
rest of the program consists of the time measuring with the
help of the function TIME of the TIME module. If the
principle of POKEB, as represented here, is to be used without
the time measuring with the TIME module, the program is to be
shortened accordingly:

al+LBL ~T*"

Bz PLC >R

3 -8

A4 A+B

A5 KLY

A5 FPOKEE

nY TOHE =

N3 END

Any TONE function may be entered into the program at line 07.
Before executing "TD" or "T", the program memory must be
packed, to exclude any possibility of an error.

A program using the functions PEEKB and POKEB is "TLC". It
serves the function of switching, enabling and disabling the
lower case mode of the CCD Module. If ALPHA mode is on and
USER mode is off, it is possible to enter any ALPHA
characters. This special function can be deactivated or
activated again with the program "TLC". The corresponding
coding takes place in register ¢ (13) byte 4. Inputs are not
necessary for "TLC".

(C) Copyright W& W Software Products GmbH 1985 7.32

Al«+«LBL ~"TLLC AlelLBL ~TLC

az 13.4 az 132.4

AZ PEEKEBE B3 PEEKE

a4 12& a4 122

a5 20K B§ §<f?

A& POKEE As CHS

A7y CLST A7 +

ag END a2 FPOKEE

a9 CLST

PLHNG =TLC™ id EHD

24 BYTEZ=
PLHG =TLC®

25 BYTES

AleLEBL ~TLLC a7 =<>F

- nE FOKEE

Az 13.4 A9 CLST

AZ FEEKE 18 EHNHD

R4 X< >F

AS FC?C ay PLHG ~TLC"™

AGc SF ary 27 BYTEZ=

As can be seen when looking at the program example, there are
several different possibilities to switch a bit around.

Another especially useful program using PEEKR, PEEKB and POKEB
is "CHK". It corrects the checksum of a program file in the
Extended Functions module. If an uncompiled program (not all
GTO’s and XEQ’s were executed before the storing into the
extended functions module) is directly executed in the
extended functions module, it will not be possible to get the
program back into main memory using GETP or GETSUB. If this
1s attempted it will call forth the error message "CHKSUM
ERR". Now only the program "CHK" has to be executed with the
name of the program file in the ALPHA register, and the
checksum is corrected. The program file must be completely in
the Extended Functions module! The program "CHK" may also be
used for programs,which are completely inside an X memory
module.

(C) Copyright W&W Software Products GmbH 1985 7.33

—
A
D
V
F
N
S

Now line 03 should be changed to 751 or 1007, depending in
which port the X memory module has been plugged. Line 04
appends six spaces to the ALPHA register.

alelBL “CHE 19«LBL 91
" 28 RDH

a2 RCLFTRH 21 A-
a3 191 22 PEEKE
a4 "k 232 ST+ T

" 24 DSE Z
5 7 22 GTO @1

Be AROT 26 RIDHN
a7y RCL L 27 H-

28 RCL Z
a8«BL Q0G0 29 256
B9 RT 3a MOD
18 BT 31 POKEE
11 PEEKE 32 END
12 DSE ¥
12 BT PLHG “CHE™"
14 HK=+%¥7 &6 BYTES
15 GTO B8a
16 CL=x
17 STO ~
18 KEDH

Further Hints

Since POKEB can change any byte, this function should only be
employed if the calculation function is clear. Otherwise it
may draw forth unwanted changes in programs, data registers,
status register etc. or "MEMORY LOST".

Related Functions

PEEKB, PEEKR, POKER

(C) Copyright W& W Software Products GmbH 1985 7.34

POKER

This function writes over the absolute register, whose address
aaa 1s specified in the Y register, with the contents of the X
register. POKER works for the entire exisiting register range
of the calculator. The stack registers remain unchanged, as
long as they are not specified by the absolute address in the
Y register.

Input

X register: value to be stored
Y register: aaa

Examples

Program Example for POKER: Program "CB" (Clear Buffer)

The function of the program "CB" corresponds to the program
"CK" from the PPC ROM. 1 erases the entire I/O buffer area.
All registers starting with the register with the absolute
address 192 up to the register directly under the .END. are
erased. This erases all I/O buffers and all key assignments
from CAT 2 or CAT 3 . In CAT‘ it is necessary to erase the
key assignment bit to each key with the key C (assignments
appear as ABS). All key assignments bits can be erased at
once using 15 ENTER CLX POKER and 10 ENTER CLX POKER; butthis
also causes all key assignments of the global labels to become
ineffective. The actual purpose of the program "CB" is to
erase garbage that has been placed in the I/O buffer area.

(C) Copyright W&W Software Products GmbH 1985 7.35

AaleLEBL “CB"~ 1e -~
az 13 17 193

832 PEEKE 15 +

a4 XI>Y 19 DSE =

aS A+ 28 CLST

A6 FEEKE 21 .

a7 16
ag MabD 22«LEL B@&

A9 LASTEH 23 POKERE

18 XT12 24 IsSG ¥

11 * 25 GTO 8.

12 ET 26 EHND

13 +
14 DSE =& PLNG "CE*”

15 EZ 46 BYTES

The program "CB" calculates the absolute address of the
register, in which the .END. is stored. Afterwards this
address is decreased by one in line 14. If there are some
free registers present in the calculator (RTN, PRGM on:
displays OOREG NN), these registers can be hidden by storing a
number into the register directly under the .END. Thus "CB"
is only run until line 14 (incl.) and then the input: ENTER,
POKER follows. Now the HP-41 does not show any free
registers. This faulty state can be neutralized by executing
program "CB".

Every unwanted register within the free registers can be
erased with "CB". The program can also be modified in such a
way that a certain number of key assignment registers and
buffer registers is preserved; for this the number of the
registers to be preserved has to be subtracted from 193 and
the result has to be inserted in line 17 of the program "CB".
Corresponding to this, the programs "A?" and "CB" can be
combined.

(C) Copyright W&W Software Products GmbH 1985 7.36

Further Hints

w

Z
n
>
o
<

|Since POKER can change any register, this function should only
be employed if the calculating structure is clear. Otherwise
it may result in unwanted changes in programs, data registers,
status registers, etc. or "MEMORY LOST".

Related Functions

PEEKB, PEEKR, POKEB

(C) Copyright W& W Software Products GmbH 1985 7.37

The entire function block of the -ADV FNS offers a great
number of new possibilities for advanced programming of the
HP-41. A further example for this is the program "ST". It
serves to find all synthetic text lines of a program decodes
them and then prints them. After the prompt "PRGM?" a global
label of the program to be checked has to be entered and
started with R/S. SIZE 020 is needed. The program "ST" does
not contain any synthetic text lines, but does contain three
synthetic three byte GTO functions:

line 031 GTO 13
line 121 GTO 08
line 142 GTO 08

The Program "ST" (Synthetic Text Lines)

BlelLBL “ST* 21«LBL O3
az CLST 22 XEQ Al
83 WSIZE 23 GTO A&
a4 STO A1
as "PRGM? ~© 24«BL G4
ac PMTH 25 XE@ a1
a7y PRA
A8 PHD 2o+lBL S
a9 STO a4 27 XE@ A1
184 CF 22 28 240
11 GTOG a8 =29 -

38 X<a?
1Z2«LEBL 91 321 GTO 13
132 RCL 94 322 STO a3
14 A-
15 STO aa 33<«LBL 85
16 LAST= 34 XEQ A1l
17 PEEKE 35 DSE a3
18 RTH 36 GTO @&

27 GTO @s
19«LBL A2
o@ KEQ@ 01

(C) Copyright W& W Software Products GmbH 1985 7.38

)

Y
@)
<

|

38«LBL @7 TE ¥=Y¥7?
29 Fs? 22 77 GTO a3
48 GTO @9 g8 1
41 SF 22 9+

88 X=v7
42«LBL @8 81 GTO @=
43 ISG @1 82 XK>Y7?
44 CL¥ 832 GTO a4

45 CF 21 84 33
46 VIEW @61 35 +

86 HK>Y7?
47«LBL @9 87 GTO az
48 XEGQ a1 88 -—
49 STO @4 29 X=@a7
S8 X=07 9@ SF 21
S1 CF 22 a1 4
S2 ¥X=@a7? a9z +
S3 GTO @9 a3z E=
54 16 a4 -
895 X>¥Y7? a5 5

S6 GTO @88 96 +
S7 13 97 STO @z
28 + ag 1
599 RXK>Y7? 9g —

68 GTO a7 1i6@ STO a3z
61 CF 22 1@1 Fs? 21
62 Z2 182 GTO 11
&3 +
64 K>Y? 163«LBL 10
65 GTO B85 1604 XEQ @1
66 113 185 127
&7 + 186 X=v7
68 X>¥7? 187 GTO 11
69 GTO Aag 188 32
78 48 1@9 -
1+ 118 X<vy?
re R®2Y7? 111 SF 21
73 GTO @3 112 X<> L
74 14 113 X>v?
7S + 114 SF 21

(C) Copyright W& W Software Products GmbH 1985 7.39

115«LBL 11 133«LBL 12
116
117

118
119
128
121
122
123
124
125
126
127
128
129
1306
131
132

RDHN 1324 RCL IND
STO IND 5I

Bz 135 ARCL
ISG 8z 1Z6 "F -
GTO 1@ 127 ACH
FC? 21 138 CLA
GTO @s 139 ISG 83
CLA 148 GTO 12
RCL a1 141 PRBUF
E2 142 GTO a8

KOV 7?
-9 143«LBL 13
SERT 144 SF 21
®IY7? 145 ADY
“ra- 146 BEEP
KLY 147 EHND
ARCLI
n'_: s PLNG "E;T"

251 BYTES

Barcodes of Programs in Main Memory
with the CCD-Module and ThinkJet Printer

The program "PBC" makes it possible to print bar codes of any
program directly out of the RAM of the HP-41. For this the
extended functions module, the ThinkJet printer (with IL
module) and the CCD-module are required.

Program Use:
1.

2.
3.

Find the printer and select with CAT‘O and set back.
(Key ENTER and key C in CAT*0)
SIZE 019 is necessary.
A global label of the program, of which the bar codes are
to be printed is entered into ALPHA. If the ALPHA
register is empty, the program "PBC" prints its own bar
codes.
Start the program "PBC".

(C) Copyright W&W Software Products GmbH 1985 7.40

—
A
D
V
F
N
S

Al«LBL “FELC 27 &4

" 28 -

Az FPHD 29 BL{=@a7?

A3 CLEG 4 34

A4 STO aa 41 3=z

> 1 42 -

86 PPLHNG 43 XK<{=@a7?
A7 STO B2 44 3=

ags - 45 STO @t

A9 A+EB 46 STO a4

18 PEEKE

11 SF =23 47eLEBL @1

12 & 42 ISG A3

132 bS™? 49 ¥X<La7

14 CF 23 58 GTa az

1S5S 9.4a18& 51 DSE @Az

16 STO A3 52 GTO aa

17 SF 21

18 PRA S3eLBL A=z

19 "gE#*#r7845 54 RCL @5

. 55 16

28 ACA S& MOD

21 "Tp- 57 LASTH

22 23 58 FC7?7 2232

23 CRFLAS 99 ST+ =

6a +

24«BL 48 61 ST+ das

25 RCL @@a 62 STO G7

26 A- 63 ISGC a5

27 X< > aa 64 CLHA

28 FPEEKB 65 RCL @4

29 STO IHD 66 RCL 461

a2z 67 DSE ¥

28 ST+ A6 &8 -—

21 DSE a1 69 RCL @8

22 GTO a1 A +

23 143= 1 STO @as

34 - 2 RCL @a&

35 XR<=@av 3 +

36 97 ¥4 255

(C) Copyright W& W Software Products GmbH 1985 7.41

72 MOD 112 CLA
v6 X=87 112 RDHNH
77 LASTH 114 ISG Y
78 STO 86 115 GTO @3
79 RCL 83 116 XEG @8
88 INT 117 XEQ@ a7
21 DSE X 118 APPCHR
g2 EZ= 119 26
83 -
84 9 126¢LBL a5
85 + 121 RCLPT
86 STO A= 122 E3
8y 3 123 *
88 - 124 “gExb*"
89 CLA 125 ARCLI
98 RCL a5 126 “FWH-

21 CHS 127 ACHAH
92 ARCLI 128 CL¥
93 “"F-—- 129 SEEKPT
94 PRRA

95 "eppRp" 138<¢LEBL Q&
96 SF 22 131 GETREC

132 0OUTA
o97«LBL @3 123 FS? 17
98 XIL>Y 134 GTO A&
99 RCL IND 135 X{>Y

= 136 DSE X
168 7 137 GTO as
181 CHS 138 6

139 “"fExblle-
1802«LBL G4 1486 GTO 18
183 bC™?

1684 XEG a7 141«LBL 87
185 LAST¥ 142 FS? 22
186 bS? 142 “"Fp-

167 XEG @48 144 FC?» 22
188 LASTX 145 “F4 -
189 ISG X 146 RTH
116 GTO a4
111 APPCHE

(C) Copyright W&W Software Products GmbH 1985

147<«LBL QS5 166 0OUTH
148 FC?C 22 167 16
149 GTO a3 168 RCL A1
1586 "FHF- 169 DSE X
151 RTH 178 *

171 STO a3z
15Z2<«LBL 89 172 DSE A=z
153 “"Hi4- 172 GTO A&

154 SF 22 174 PURFL
155 RTH 175 "“f*rB-

176 OUTH
156«LBL 108 177 BEEF
157 AHCH 178 EHND
158 DSE =
159 GTO 184 PLNG “FPEC™

168 "p- 3219 BYTES
161 CLFL
162 RCL @65
163 18
164 MOD
165 X=87

Program Description:

The program uses two routines from the bar code program of
Winfried Maschke, as was published in PRISMA 10/11-1982 and in
the PPC Calculator Journal YVOIN4P45. The bar codes are,
corresponding to the status of the program of which they are
printed, produced in normal and privately protected format.
To be sure that the graphic capacity of the ThinkJet printer
can never be exceded only ten program bytes (+ three control
bytes) are printed in one row. The program contains eleven
synthetic text lines:

(C) Copyright W& W Software Products GmbH 1985 7.43

Z<

P
a
<

I

Line Decimal values Description
019 247,027,042,114 Escape sequence for the

055,056,052,083 graphic mode.
021 241,012 File name
095 242,112,112 Start bits 0 0
124 243,027,042,098 Escape sequence for the

number of the graphic bytes
together with lines 125,126

139 246,027,042,098, Escape sequence for a
049,087,000 graphic feed

143 242,127,112 Graphic byte for 0 bit
145 242,127,007 Graphic byte for 0 bit
150 242,127,127 Graphic byte for 1 bit
153 243,127,007,240 Graphic bytes for 1 bit
160 241,012 File name and paper feed
175 244,027,042,114,066 Escape sequence for end of

graphic mode

The decimal byte values of the program of which the bar codes
are to be printed, are read out of the program memory with
PEEKB (line 28) and stored in the data registers 9 to 18 (line
29). Register 00 contains the absolute byte address of the
byte to be worked on next. The number of program bytes is
stored in data register 02; this register is used as a counter
(lines 51 and 172). If ten byte values are stored, the values
for three control bytes are calculated (lines54 to 78); these
are stored in data registers 06, 07, and 08; registers 05
contains the respective row number.

For each single bit of the bar code row a graphic byte is
stored into a text file, starting with line 95. Line 95
contains the two bits for the two start bits; all other bits
are formed in the labels 07,08 or 09 for each bit of the read
program. Each byte of the program gives us 8 to 12 graphic
bytes. To reach the desired height of the bar code rows, the
entire graphic information of a row is sent to the printer 26
times (Label 05 and Label 06). The height of these bars can
be changed using the control number in line 119. Lines 156 to
159 in connection with the escape sequence from line 139 cause
a line feed to the next bar code row. This control number (6)
is in line 138 and can be changed as well.

(C) Copyright W&W Software Products GmbH 1985 7.44

The program prints a row of immediately readable bar codes in
first quality in about 3 1/2 minutes. If the graphic bytes
were not stored in a text file, a program with the same
function, such as "PBC" would be possible without the Extended
Functions module,but in this case the printing of a bar code
row would take about 35 minutes! After 18 bar code rows have
been printed on one page, the program automatically executes a
form feed (lines 162 to 166); control number for this in line
163. This way the program automatically prints bar codes for
programs of any length using endless paper. If single pages
are used, a new paper has to be put in by hand after the paper
output and the blue key "TOF" has to be used. (For this paper
change the program does not have to be stopped.)

Flags 17, 22 and 23 are used. The program can be stopped at
any time; it can also be executed using SST. If the
calculator is to be turned off during the program run (for
example for a battery change), the state of the flags 17, 22
and 23 has to be asked about beforehand. This state must be
reconstructed when starting anew. The stack registers and the
ALPHA register, the data registers used by the program (0 to
18) and SIZE may obviously not be changed either, if the
program is to be executed successfully. If the program is to
be broken off, the printer must be cleared (by CAT‘0) and the
text file should be erased.

If you own an Extended Functions module of the B revision, you
should, after the program ends, define a working file
(because of PURFL in line 174). The program contains a Long
Form GTO (208,000,000) in line 173.

Program (319 bytes) and text by Gerhard Kruse.

(C) Copyright W& W Software Products GmbH 1985 7.45

(C) Copyright W& W Software Products GmbH 1985 .46

Chapter 8

XF/Memory
Functions

(C) Copyright W&W Software Products GmbH .02

Contents Chapter 8

XF/Memory Functions

The Extended Functions/Memory Functions Block........... 8 .
SAVEB.e8 . »
GETB...8 . %

Program "BS?" (Buffer Size?), 8 . =
SAVEK ...e8 . =
GETK.ee8 . ’l’

Program "CLK" (Establishment of a Key Assignment
file with 0 Registers) ot 8 .

MRGK...e8 .
Program "PK" (Pack Key Assignment Registers) 8 .

SORTEFL ...ee8 .

Program "WF" (Write and Read File)

(C) Copyright W&W Software Products GmbH 8.03

(C) Copyright W& W Software Products GmbH .04

The Extended Functions/Memory Functions block

These functions expand the capability and utility of the
Extended Functions module. Therefore they can only be
employed in connection with this module or an HP-41CX.
Otherwise the error message "NO XF/M" will occur.

SAVEB

Saves the I/O buffer with the ID number aa in the buffer file
specified 1n alpha, aa 1s specified in X. If the ALPHA
register is empty, the current file is used. The function
SAVEB allows us to construct as many files as wanted (with
different names) of the same buffer ID number (for a
description of the various buffers ID’s in use see B?).

Input

X register I aa
ALPHA register : file name

Example

The present alarm data are to be stored as a file with the
name "ALM".

Input: ALPHA ALM ALPHA 10 SAVEB.

These inputs cause the bufferfile "ALM" to be constructed and
the data in this buffer is saved. The original buffer is
preserved in memory. The alarm data may be erased by using 10
CLB, this will free the registers.

(C) Copyright W&W Software Products GmbH 8.05

—
X
F
/
M
F
N
S

Further Hints

A buffer file with the file type B is displayed in using CAT‘4
with the CCD Module in the calculator. The CCD module
distinguishes between different buffer files, since it is not
visible in CAT*‘4; this means, a buffer file which contains
alarm data for the TIME module can not be written over by a
buffer file with a different ID number.

Related Functions

GETB, SAVEK, GETK

(C) Copyright W&W Software Products GmbH 8.06

GETB

This function puts the buffer data from the buffer file back
into the I/O buffer. The file name is in the ALPHA register,
if the ALPHA register is empty, the current file is employed.
If an I/O buffer which corresponds to the buffer file to be
retrieved already exists, this I/O buffer is erased before
using the file data to construct a new buffer.

Input

%2,
Z
s

p>
2o
X

|

ALPHA register: file name

Example

Program for I/O Buffers: "BS?" (Buffer Size)

The program "BS?" is to be started with the desired buffer ID
number in the X register. It then calculates how many
registers the corresponding buffer occupies. If the number
given in X does not correspond to an existing buffer the
function SF 99 in line 04 shall cause the error message
"NONEXISTENT". The program works perfectly independent of how
many different buffers exist. Also any amount (or none) of
key assignment registers may be occupied. The ID number of
the buffer which is constructed by the CCD Module itself, is
5. Therefore 5 XEQ "BS?" indicates how many registers this
buffer occupies.

(C) Copyright W& W Software Products GmbH 8.07

B1+«LEBL "EBES™ 19 ¥X=%7

" 28 GTO @aZ

Az B
A3 X=a7 Z1+LBL @l

a4 SF 99 22 XEGQ az

as 17 23 +

AGc * 24 A+

A7 191.c 25 PEEKE

gz ET 26 RCL Z

A9 248 27 X=2Y¥7?

Z8 GTO a1l

18+«BL @4

i1 ET 29«LBL &A=

12 ET 2a RCL Z

13 ISG = 21 H-

14 FPEEKE 22 PEEKE

15 ET Z3 EHND

16 X=%7

17 GTO @i PLHG "BS7T

18 <> T &4 ENYTE:=

Further Hints

If the calculator is switched on without the module that
created the I/O buffer, the management system of the HP-41
automatically erases that I/O buffer. But the functions SAVEB
and GETB work independent of the fact if the module belonging
to the treated buffer is plugged in or not.

The function CLFL should not be executed for buffer files; for
erasing the files, PURFL should be used.

Related Functions

SAVEB, SAVEK, GETK, MRGK

(C) Copyright W&W Software Products GmbH 8.08

SAVEK

This function stores all key assignments of functions from CAT
2 and CAT 3 as a keyfile in extended memory.

The use is analoguous to SAVEP. The file name must be
specified in the ALPHA register. If the ALPHA register is
empty, the current file is employed.

Input

The existing key assignments from CAT 2 and CAT 3 are to be
stored in a keyfile with the name "KEYS". For this the
following steps are necessary:

ALPHA "KEYS" ALPHA SAVEK

Further Hints

A keyfile is displayed in CAT‘4 with the display K. The key
assignments are preserved unchanged.

Related Functions

GETK, MRGK, GETB, SAVEB

(C) Copyright W&W Software Products GmbH 8.09

—
X
F
/
M
F
N
S

GETK

This function erases all key assignments of functions from CAT
2 and CAT 3, and then activates the stored key assignments in
the specified key file. The file name is in the ALPHA
register. If the ALPHA register is empty, the current file
is used.

Input

ALPHA register: file name

Example

A Program for GETK: "CLK" (Constructing of a CLEAR KEY FILE)

The program "CLK" constructs a file which is displayed as "CLK
KO000" in CAT‘4, it consists only of header registers. This
file erases all key assignments of functions from CAT 2 and
CAT 3. (CLKEYS would erase all key assignments of global
labels as well.) This program does not require any input. It
can only be used if there are at least two free registers in
the extended functions portion of extended memory. Otherwise
the program will stop in line 10 displaying "NONEXISTENT" or
at line 17 displaying "DATA ERROR".

The program "CLK" contains two synthetic text lines:

line 03: F7, FF, FF, FF, FF, FF, FF, FF
line 30: FO (NOP).

line 18 contains the file name "CLK" and four spaces; meaning
the ALPHA register has the length 7!

Immediately after "MEMORY LOST" or after the extended function
module was plugged in anew, it is necessary to execute CAT‘4
once, before the program "CLK" can be used.

(C) Copyright W&W Software Products GmbH 8.10

A register with seven hex FF bytes (dec 255) is stored as a
limit below the last employed register in the extended memory.
First, the program "CLK" searches for this border (lines 02 to
13). Now this border register is written over with the file
name "CLK" (lines 18 to 20), and the register immediately
below gets the criterion as keyfile (lines 22 to 28). The
register directly below is now marked as a new border register
(lines 29 to 32). Now GETK, with the help of the produced
keyfile, erases all key assignments of functions from CAT 2
and CAT 3.

Ale«lLBL “CLK 19 RCL L

* 28 POKER

az 192 21 DSE ¥

a3 =" 22 CL=

A4 RCL L 23 POKER

A5 ENTERT 24 CL=X
25 .6

AG6<«LEL QA 26 +

a7 ET 27 96

ag kT 28 POKEE

@9 DSE X 29 DSE Y

18 PEEKRE B ="

11 ET 321 ®<> T

12 X=+¥7 32 FPOEKEE

132 GTO 488 232 CLST

14 &6 34 GETK

15 BT 25 EHD

16 HL=Y"7
17 ASIHN PLHG "CLE"
18 "CLK 7S BYTES

Further Hints

Key assignments of programs are only erased if a different
assignment is put on the corresponding key by the fetched
keyfile.

Related Functions

SAVEK, MRGK, SAVEB, GETB

(C) Copyright W&W Software Products GmbH 8.11

—
X
F
/
M
F
N
S

MRGK

This function activates the key assignments stored in the
employed keyfile. Existing key assignments are only erased if
the same key is occupied by a key in the keyfile. Other
existing assignments remain unchanged.

Input

ALPHA register: file name

Example

Since the function GETK erases all exisitng key assignments
from CAT 2 and CAT 3, the functions SAVEK and GETK give a
simple and quick possibility to pack the key assignment
registers.

The key sequence for this is:

Put any name into ALPHA, SAVEK, GETK, PURFL. If you possess
an Extended Functions module of the revision B, CAT‘4 or EMDIR
should be executed following this, to secure the files in
extended memory.

The following program packs the key assignment registers only
by use of the functions PEEKB and POKEB. The program needs no
input and can be stopped at any time or executed with SST.
But if the function POKEB has been reached once, the program
must run through until the end, since otherwise there will be
chaos or double storages in the assignment registers. The
program "PK" requires SIZE 002. All buffers remain untouched.

(C) Copyright W&W Software Products GmbH 8.12

Aal«LBL

Az 19=-
B3 STO
A4 STO

AaS+|LEL

A& RCL
A7 . &
as +

a2 PEEK
16 zZ44a
11 H=*¥
12 GTO
13 RCL
14 PEE
15 =R=87
16 XER
17 RCL
12 .3
19 +
28 FEE
21 x=@
Falyk

22 ISG
24 CL=

GTOM I
-

c+LBL
RCL
RCL
K=Y
GTO
a
POEK
ML n
H+

ML
POK

(
G

Ga
d

Ga
d
G
)
G
G

PO
D
D
R

=J
M
O
B
B

e
3
0
0
0
)
T

mLEY

a@

01
Ba
a1

-

a5

EE
N

o

EE
Y

35 H+
39 XEQ @3
4 GTO @1

41«BL @2
42 RCL @1
43 XEQ a4
44 XEQ @4

45«+LEL QA=
46 =IFY
47 POEKEE
48 =IFY
49 ENTEET
28 FRC
o1 o+
o2 ENTEET
53 FERC
o4 4

56 -
57 STO @1
o2 ETH

T
P
M

T
N

S
T
R

W
M
e
3
D«LEL @4

ATEY
FOKEE
RCL 2
H+

FEEKE
o
H+

ETH

&8«BL @5
&3
7a
1

CLET
SEED
END

PLHG ~FK-
113 BYTES

(C) Copyright W& W Software Products GmbH

—
X
F
/
M
F
N
S

Further Hints

none

Related Functions

SAVEK, GETK, SAVEB, GETB

(C) Copyright W&W Software Products GmbH .14

SORTFL

This function sorts the registers of a data file. The file
name is specified in ALPHA. If the ALPHA register is empty,
the current file is employed. Numeric as well as ALPHA data
is sorted. The stack registers are not changed. After
executing SORTFL, the first data register of the file now
contains the smallest value of the specified data file.

Input

ALPHA register: file name

Further Hints

Contrary to the function SORT, descending sorting is not
possible!

Related Function

SORT

(C) Copyright W&W Software Products GmbH 8.15

2
4
.S

>
=

|

At the end of this function block we will show just one more
program which solves an often occuring problem quite easily:

Storing a Text File on Magnetic Cards

The program "WF/RF", which only contains one synthetic step,
can be used for any extended memory file type, but was
actually only written for text files (ASCII files). Line 18
appends six spaces to the ALPHA register. The second header
register of the file must reside in the the Extended Functions
module (absolute address 69 to 190).

The program "WF" (Write File) transfers all registers of the
file to data registers. For this the number of data registers
is set to the number of file registers (FLSIZE, PSIZE).
Therefore this program can only be used for files which can be
wholly saved into data registers (plus existing free
registers). Nevertheless, files up to a size of over 300
registers can be processed in an HP-41 CV or HP-41 CX!

Program use:

The file name is specified in ALPHA. Now "WF" must be
executed, to store the file on magnetic cards. At the input
prompting "RDY 01 OF NN" it is imperative to slide in one
(several) magnet card(s) or to start the program again using
R/S twice. Otherwise the file type, which was temporarily
changed, will not be changed back to the original file type.

Before being able to read back the file content from the
magnetic cards using the program "RF" (Read File), the desired
file must be constructed with the right file type and in
sufficient length. Now the file name must again be placed in
the ALPHA register and "RF" must be executed. After the
input prompting "CARD" it is imperative to slide in one
(several) magnet card(s) or to start the program again using
R/S twice (see above).

The program can also just be used to transfer the file to data
registers or vice versa. For this the functions WDTA and RDTA
must be deleted. Now it is possible to enlarge a textfile
without having to input the contents again. For this
application one would excute "WF" and then destroy the file in
extended memory and resize it larger, and then execute "RF".

(C) Copyright W&W Software Products GmbH 8.16

The program "WF/RF" can be used for all file types. Naturally,
using it on program files is senseless. If the program is
used for buffer files, the buffer file where the data will be
saved must be of the same type as the buffer saved in the data
registers. To avoid problems, the size should be the same as
well. If all these restrictions are followed, there should be
no problem storing all kinds of buffers on magnetic cards
using "WF" and "RF".

—
X
F
/
M
F
N
S

Bl«LBL "WF"™ 28 AROT

Az xKEQ ai@ 21 RERCL L[

A GETE 22 CLA

A4 WDTH 23«LBL @1

A5 POKEE 22 BT

HAs RTH 25 ET

26 PEEKE

a7+LBL “"EF" 27 DSE ¥

a8 XEQ an 28 CFh

A9 RIDTH 29 R7T -

18 SAVER 20 XY

11 POKEE 21 GTO a1

12 RTH 22 ECL_&

22 PEEKE

13Z«LEBL @A 34 fif}T

i4 RCLFPTH 25 3&_

15 FLSIZE 36 POKEE

15 PSIZE 37 CL=R

17 191.6 38 SEEKFT

i "F 29 XL 2

" 48 TOHE &

19 7V 41 EHNID

FLHG “WF*-

39 BYTES

(C) Copyright W&W Software Products GmbH 8.17

(C) Copyright W&W Software Products GmbH .18

Chapter 9

Bar Codes

 BarCod
e
s

(C) Copyright W& W Software Products GmbH

(C) Copyright W&W Software Products GmbH .02

Contents Chapter 9

Bar Codes

"A?" (from Page 7 .25)t 9 .05
"ABIN" (from Page 4 .77) ...t.. 9 .05
"BS?" (from Page 8 .08)..., 9 .06
"CB" (from Page 7 .36)oiiii. 9 .07
"CDE" (from Page 7 .15)o 9 .07
"CF55" (from Page 5.50)..ot 9 .08
"CHK" (from Page 7 .34) 9 .08
"CLK" (from Page 8 .11)..., 9 .08
"GE" (from Page 7 .27)... 9 .09
"H-O" (from Page 6 .11), 9 .09
"INP" (from Page 6 .05)..., 9 .09
"INV" (from Page 4 .83) 9 .10
"PBC" (from Page 7 .40)ot 9 .11
"PHINPT" (from Page 6 .07) uuuinin... 9 .12
"PK" (from Page 8 .13)ooo, 9 .12
"PR1" (from Page 6 .22) 9 .13
"PR4" (from Page 6 .24) 9 .14
"ST" (from Page 7 .38)...t 9 .14
"TD" (from Page 7 .31)co... 9 .15
"TLC" (from Page 7 .33)ot 9 .16
"TLC1" (from Page 7 .33)..., 9 .16
"TLC2" (from Page 7 .33)o, 9 .16
"VB" (from Page 7 .26)ou.. 9 .16
"VR" (from Page 7 .30)0ovi 9 .17
"W (from Page 5.49) 9 .17
"WE" (from Page 8 .17)o, 9 .17
Bar Codes of the Functions of the CCD-Module 9 .18

(C) Copyright W&W Software Products GmbH .03

B
a
r
C
o
d
e
s

(C) Copyright W& W Software Products GmbH .04

A?

4
umm@mm@m@mmmmmmwmwmmmmmwmwmmmmmmmmwmmm
O
T
O

ABIN

||II|||||IfllI|||||||:|1|2|!EI:I)|||||II|||||||I|I||||I|||||||||I||||I|||||||I||I||I||II|I|III|IIIIIIIIII||I||||I|I|III|I|||I||||I||I||||
P
e
WWWWMMWWWWWWWWWWWWW
HmWMMWWMMWWMWMWMMNMMWMMWMWMWMWMWWMW
MWMWWMWNMWWMWWMWWWMMWWWWMWMWWW
MWWWMMMWWMMWMWWWWWWWWMMWMMWWWWH
mMWMMWWNWWMMMMWMMWWWWWMMWWMMMMWWWH
|mmmwm@mmmmmmwmmmmmmmmmmmmmmmmmmmmmwmmwm
O
T

B
a
r
C
o
d
e
s

 (C) Copyright W& W Software Products GmbH 9.05

12 (72-79)

0O
13 (80-85)

O0O
14 (86-95)

0A
(96-103)

O

MWMMWWWWMMMMWWMMWWMMWWWWWWWWM

WWWWMWMMMWWWWWWWWWWWWMMW

IWMWWWWWWWWWMWWMWWMMWWWWMWWW

O
20 (138-142)

O
21 (142-150)

0
22 (150-155)

O
23 (155-162)

LO
24 (162)

O

BS?

(C) Copyright W& W Software Products GmbH 9.06

-274 (20-27)

A

I

Ti

CB

HW@WMMWMWWWWWWWWWWMWWMW
OEI
I
LT

CDE

MW@WMMMWWWMWWWMWMMMMWWMMWWWWWM
A
A
O
O0O

(C) Copyright W&W Software Products GmbH

B
a
r
C
o
d
e
s

 .07

CF55

CHK

o
IMm@MwwmmMWMMWWMWMWWMMMWWNMWWWWWMNM
e
L
WMWWWWMWWMMWNWMWWMMWWWWW“M
NWWWWWMMWMWWWMWMWMMWWMWMMWWMM
S

CLK

mmm@mm@@mmwwmmmwmmwmmmmwmmmmmmmmmmumnmumum
0000000
HwMWWWMMMWMNWNMWWMWWMMMMWMMMMMWWWW
MMWmMWMWWMMMWWWWWWWWWWMWMWWWWM
NWWWWWWMWWWWWWMWWWWMMWMWM
S

(C) Copyright W&W Software Products GmbH 9.08

GE

1 (1-5)

L

L

A0

H-0

WWMWWWWWWWWWWWMMWMWWMWW
WWWWWWMMWWWWMMMMWWNMWWMWWWWMWWM
WNWWMMWWWMWWMWWMWWWMMWWMW
O
A

B
a
r
C
o
d
e
s

INP

mWWW@%WMWWWWWWWWMMMWWMMMWM
OO0
O
T

(C) Copyright W& W Software Products GmbH 9.09

INV

WM@W@@MWWWWWWWWWWWMWWWMMMMMM
L
MWMMWWWWMWWMWWWWWWWMWWWWMMWW
WMWWWWMWWWMMMWMMMMNMNWNMWMMWWNWWW
WMMWWWMWWWMMMWWMWWMWWMWWWWW
WWMMWMMNWMMMWWWWWMWWWMWWWMW
|WWMWMMMMWMWWMWMWWMWWMMWWWWWWMWW
k0
I
O
|WWMWWWWWWWWWWMWMWWWWWWWW
umwmmmwmmmmmwmmmmmmmmwmmmmmmmmmmmmmmmmmww
WWWWMMMWMWWWMWWWWWWWWWWWMWW
L
0
]
mmmwmmmmwmwmwmmmmmmmmmwwmwmmwmwwm
WMWMWWWWMWWMWWWMMMMMMMWWWM
A

(C) Copyright W&W Software Products GmbH 9.10

PBC

MWMMMMMWMWNWWWMWMMMWNMWNNWMMMWWWMI

WWWWMWWWWWWWWWWWWWWW

mMWWMWMMNWWWWWMWWWWWWNMMWNMWWMMMMWW

WWWMWWWWWWMMMWWW%WWW%MWWMWW

MMMMMMMMMWMWWMWMWWMWWWMWMMWWM

WWWMWMMWWWMMMWWWMWWWMWWMWWWMH

WWWWWMWMWMMMWWMWWWWWMWMMWWMWMMM

HWWWWWWWWWMM%MWWWWNMMMWWM

MMWWMMmWWMWWMMWWMWWWMWMMMMMMWWMM

IWMWmMMMWNMWMWWMMWNWWMWMWMWWNMWWWWNW

MMWWWWWMMMWWWWWWWWWWWWWWWMM

MWWMWWMMMWWWMMWWWWW

O
14 (105-111)

OA
15 (111-118)

ODOO
16 (118-124)

O
17 (125-130)

OO
18 (131-138)

OA

B
a
r
C
o
d
e
s

 (C) Copyright W&W Software Products GmbH 9.11

19 (138-142)

21 (150-155)

25 (177-183)

PHINPT

1 (1-2

A

L

A

PK

"
||IIIIIIIILIIIIIIII|ljljlltl;’lfltljl|||||||||||IIIIIIII|||||||||II||||||I||I|IIIII||||I|||I||||||||||I|IIII||I|||II|||I|||||||I|||||!I|I|
T
Akt
OO
OOl

(C) Copyright W&W Software Products Gmb 9.12

39-45)

PR1

1 (1-5)

O

|||II|||III||I|||II|||||||I|I||III|I|l|||||||||||||||I|IIIII|II|I||||II||||||||I|I|||I|I|I||||||I|II||||II||I|IIII|||II|I|||||I|||||

m——"”

(C) Copyright W&W Software Products GmbH

B
a
r
C
o
d
e
s

PR4

1 (1-3)

e

Dc

O

ST

|WW@W@@MMWMMWWWWWWMMWWWWMMMWWMMN

O
O
L
e
O
HMWWMWMWMWWMMWWMWMMWMWW%MWMMMMM
S

(C) Copyright W&W Software Products Gmb 9.14

(56-65)

HWMWWMMMMMMMMMWWMMMWMWMNMWWWMWWWWNWMH
WWMWWWWWWWWMMWWWWWMW

WMMWMWWWMMWMMMWWMWWWMWWWMM

IWWWWWMWWWWMWMWWWWMWWWMWW

IWMMWWWWWWWWWWWMWWMWWWWMMMWWW

T—————"
15 (108-117)

O
16 (117-124)

0
17 (124-132)

OO
18 (132-138)

A
19 (139-145)

OAl
20 (146-147)

AA

D

B
a
r
C
o
d
e
s

(C) Copyright W&W Software Products GmbH 9.15

TLC

TLCH

TLC2

1 (1-3)

R

R

M

VB

-
|||IlIIIIIflIIIIlIIII((IIjI_IiiI,I||||||||||||III|||II|||||||||IIIIIIIIIIIIIIIIII||||III|I|||I||I|||||I||I||||lIIIIIIIIIIIIIlIl||||||II|
O
L
A

(C) Copyright W&W Software Products GmbH 9.16

VR

1 (1-5)

O
L
00OOt

wW?

1 (1-6)

L

LR

WF

IIIIIIIII			I															I												III														I	I	III					II	III	II								II					II	I	I		I			I	I		III	I		II						IIII												
		I	I							I			I							II	II				II	IIIIII				I	III			I								I	IIII	IIIIIII					I	I		I							I						I									I								I	I				II										
	l			III			II		I									I					I	I				II		II		IIII	I			I	II	IIIIIIII		I	I								I	I			I		II	I	I	IIIIIII		I		II				I			I		I	IIII																									
		I			I								II											I			I			II										I			II	I				I				IIIIIIII		I	II	I		I							I							I						II							I							I					I
	I			II							I													I	IIIIII		III	I			I		I		I					III				I				III						I		IIIII			III	I		III	IIIIII	I		I				I	III	III		I	I																						
l|||||||||fl|||I|I|[|fl[ll_|!j!|)l|||||||I||||III|||I|I|||I|II|I|||II||||||||III|||II|I|||I|II||I||I|II||IIIIIIIIIIII||I||I|||||||I|I|
i

(C) Copyright W&W Software Products GmbH 9.17

BAR- CODES CCD - ROM

B? CAS CLB RNDM SAS SEED SORT

IR
>C+ >R+ ?IJ ?IJA C<>C C>+ C>—

(NN (RAAATI CUNAOND ARORD (NTVAAICA AT CRURRR
CMAXAB CNRM CSUM DIM FNRM [J= [J=A

[T THITRENTD TV
M+ M- M* M*M M/ MAX MAXAB

I0T
MDIM MIN MOVE PIV R-PR R-QR R<>R

IR
R>+ R>— R>R? RMAXAB RNRM RSUM SUM

TN IR (T
SUMAB SWAP YC+C

1CMP 2CMP AND bC? bs? Cb NOT

T TRTNER
OR R< R> S< S> Sb UNS

(ATTRED (AT VAR AVRRRIEAR TOVENARARD (ARTIRET RO
WSIZE XOR

TR
-1/0 FNS ABSP ACAXY ACLX ARCLE ARCLH ARCLI

CLA- F/E INPT PMTA PMTH PMTK PRAXY

(I
PRL VIEWH XTOAH

TR
-ADV_FNS A+ A+B A- A=A DCD PC<>RTN

MITUTERN OGO (OSUTRARR ORETARTED (AR
PC>X PEEKB PEEKR PHD PLNG POKEB POKER

(T
PPLNG X>PC X>RTN XR>RTN -XF/M FNS GETB GETK

MRGK SAVEB SAVEK SORTFL

(C) Copyright W&W Software Products GmbH 9.18

Chapter 10

Function Index

e
9]-_—
]
—c
—
P
c=
)
=
=]
oo
—

55

(C) Copyright W& W Software Products GmbH 10.01

(C) Copyright W&W Software Products GmbH 10.02

Function Index

The following CAT 2 function list of the CCD-Module shows the
XROM numbers, byte combinations and the stack requirements of
all CCD-Module functions.

Sign Description:
- The stack is not changed
1 The stack is lifted; a result value is entered in X.
" Stack drop.
L The original X value is entered into the LASTX register.

—W&W CCD A

FCN-NAMLE HXROM-# BYTES STACK Page

~-uygy CCD A 09 .00 162=064

B? 09 .01 162:=065 - 3.05

CAS 09 .02 162=066 - 3.09

cLB 09 .03 162:=067 - 3.07

RNDA 09 .04 162=068 1 3.10

SAS 09 .05 162:=069 - 3.08

SEED 09 .06 162=070 - 312

SORT 09 .07 162:=071 - 3.13

—ARR FNS

N
3)
1~

=i
-=Se
=
)===
(e

—ARR FNS 09 .08 162=072
dC+ 09 .09 162:=073 - 4.19

SR+ 09 .10 162=071 - 4.21

21 09 .11 162:=075 1 4.14

?1JA 09.12 162=076 1 4.15

c<>C 09 .13 162:077 — 4.31

CHOs 09 .14 162=078 1 4.23

C>- 09 .15 162:=079 1 4.25

(C) Copyright W&W Software Products GmbH 10.03

FCH-NARE

CrHAXAB

CHRN

csun

DI

FHRA

IJ=

IJ=A

s
n_

T

Fbe il
N/

A

NAXAB

NMDIR

MIN

MOVE

PIU

R-PR

R-QR

R<OR

R>+

R>—

RO>R?

RAAXAB

RHRI

RSUN

SUR

sunns

SUAP

YC+C

- HEX FNS

—HEX FHS

1crp

2Cnp

AND

XROM-#

09 .16

09 .17

09.18

09 .19

09 .20

a9 .21

09 .22

09 .23

09 .24

09 .25

09 .26

a9 .27

09 .28

092 .29
09 .30
09 .31

09 .32

09 .33

09 .34

a9 .35

09 .36

09 .37

09 .38

a9 .39

09 .40

09 .41

09 .42

09 .43

09 .14

09 .45

09 .46

09 .47

09 .48

09 .49

09 .50

BYTES

162:=080

162:=081

162:=082

162=083

162-084

162:=085

162:=086

162:=087

162:=088

162=089

162:=090

162=091

162=092

162:=093

162=091

162=095

162=096

162:=097

162=098

162:=099

162=100

162:=101

162=102

162=103

162=104

162=105

162:=106

162=107

162=108

162=109

162=110

162=111

162=112

162=113

162:=1114

STACK Page

1 4.43

1 4.54

- 4.52

1 4.13

1 4.56

- 4.16

- 4.17

- 4.57

- 4.59

- 4.61

- 4.65

- 4.63

1 4.39

1 4.41

- 4.09

- 4.45

- 4.35

1 4.46

- 4.73

4.69

4.33

4.27

4.29

4.47

4.44

4.55

4.53

4.49

4.51

4.37

- 4.67

-
>

|
5
>
>

|
5
>
>

|
|

L 5.19

VL 5.20

VL 5.27

(C) Copyright W&W Software Products GmbH

FCN—-NANLE XROM—# BYTES STACK Page

A+ 11.18 162=210 L 7.09

A+B 11 .19 162:=211 VL 7.11

A- 11 .20 162:=212 L 7.12

A-A 11 .21 162:=213 VL 7.13

Dco 11 .22 162=2114 - 7.14

PC<{ORTHN 11 .23 162=215 - 7.21

PCOX 11 .24 162=216 1 7.16

PEEKB 11.25 162:=217 1 7.24

PEEKR 11.26 162=218 1 7.29

PHD 11 .27 162:=219 1 7.08

PLHNG 11 .28 162=220 1 7.05

POKEB 11.29 162=221 - 7.31

POKER 11 .30 162=222 - 7.35

PPLNG 11 .31 162:=223% 1 7.07
XOPC 11 .32 162=224 - 7.18

XORTH 11 .33 162:=225 - 7.20

AR>RTN 11 .34 162=226 - 7.23

—XF/7M FNS

—XF/N FNS 11.35 162:=227 5
GETB 11 .36 162:=228 — 807 S
GETK 11 .37 162:=229 — 8.10 =
MRGK 11 .38 162=230 - 812 £
SAVEB 11 .39 162:=231 - 805 '§
SAVEK 11 .40 162=232 — 8.09 Z
SORTFL 11 .11 162:=233 — 815

(C) Copyright W& W Software Products GmbH 10.05

FCN—NANLE XROM-1 BYTES STACK Page

A 11.18 162=210 L 7.09

B 11 .19 162:=211 VLo 7.11

A- 11 .20 162:=212 L 7.12

A-A 11 .21 162=213 VLo 7.13

Dco 11 .22 162=214 - 7.14

PC<ORTN 11 .23 162:=215% - 7.21

PCOX 11 .24 162:=216 1 7.16

PEEKB 11.25 162:=217 1 7.24

PEEKR 11 .26 162:=218 1 7.29

PHD 11 .27 162=219 1 7.08

PLHNG 11 .28 162=220 1 7.05

POKEB 11.29 162:=221 - 7.31

POKER 11 .30 162=222 - 7.35

PPLNG 11 .31 162:=223 1 7.07

>PC 11 .32 162=224 - 7.18

XORTH 11 .33 162:=225 - 7.20

XR>RTN 11 .34 162:=226 - 7.23

—XF/M FNS

—XF/N FNS 11 .35 162:=227

GETB 11 .36 162:=228 - 8.07

GETK 11 .37 162:=229 - 8.10

FMRGK 11.38 162=230 - 8.12

SAVEB 11 .39 162:=2351 - 8.05

SAUVEK 11 .40 162=232 - 8.09

SORTFL 11 .11 162=233 - 8.15

(C) Copyright W&W Software Products GmbH 10.06

Chapter 11

Compatibility

>
=E
==
o
=)
o
@)

(C) Copyright W&W Software Products GmbH 1985 11.01

(C) Copyright W& W Software Products GmbH 1985 11.02

Compatibility

Once you have plugged the CCD-Module into your calculator, it
may happen, as described below, that some functions do work as
described. To avoid this, please check if any of the points
mentioned below apply to you:

1) Your calculator has an old operating system. The
operating system extensions are only possible, if the
module can, after every press of a key, take control of
the calculator for a short while. This is only possible
with the newer operating system of the HP-41. Therefore,
if you possess an older HP-41 (i.e., the serial number is
smaller than 2035...), it may be possible that some CCD-
Module operating system extensions will not work. If this
i1s the case you can:

a) simulate some functions, by plugging the CCD-Module
into Port 1 and reading the barcodes for "ASN", "CAT"
and "XEQ" (see barcodes).

ASN

CAT

||I|||I||I|||I||||I||||||||||II|||||||||||IIII|I|||||||I|||||||||I|II||||||I|I|III|I|I||II|I||||II|I|||||I|I|||I|I||||III||III||I|I|
O

(C) Copyright W&W Software Products GmbH 1985 11.03

>
R2
g©
%
=
S
O

b)

c)

XEQ

1 (1-4)

O

0

Suppose a barcode reader is plugged in, press a key, if
"Prompt" is displayed. Through this the CCD-Module takes
control and the extended function is put to use.
Exchange your operating system against the usual costs at
any HP service center

For incompatibilities with possibly newly developed HP-41
models no liability is taken. The CCD-Module works with all
HP-41 models built until January 1985.

2)

3)

4)

You work the CCD-Module together with the HP-IL
development module. If you would like to use an HP-
development module in conjunction with the CCD-Module,
make sure that the CCD-Module is before the HP-IL
development module. If this is not the case, some of the
CCD-Module operating system extensions may not work. If
the modules are plugged in the order explained above,
there is nothing to worry about.

Using the CCD-Module in connection with the ZENROM. When
employing the ZENROM, there is an incompatibility in the
small letter mode, since the ZENROM is able to produce
small letters as well. This can only be avoided by
switching off the small letter mode of the CCD-Module
(see program "TLC").

Using the CCD-Module in conjunction with a module of the
same XROM number. Once you have plugged in the CCD-
Module, further modules with the XROM numbers 9 or 11 may
not be plugged in anymore.

Up until now these are the following:

- Home management module
- Real estate module
- PANAME module

(C) Copyright W& W Software Products GmbH 1985 11.04

Chapter 12

Literature

0]
o]
=1
Ry

<
=
%
B~
-

(C) Copyright W& W Software Products GmbH 1985 12.01

{(C) Copyright W& W Software Products GmbH 1985 12.02

Literary Hints

If you are interested in knowing more about synthetic or
optimized programming of your HP-41, we recommend the
following books:

1) Synthetic Programming on the HP-41C
Author: W. C. Wickes

2) HP-41 Synthetic programming made easy
Author: K. Jarrett

3) Optimales Programmieren mit dem HP-41
Author: Gerhard Kruse

 Literatu
r
e

(C) Copyright W& W Software Products GmbH 1985 12.03

(C) Copyright W& W Software Products GmbH 1985 12.04

NOTICE

W&W Software Products makes no express or implied warranty with regard to the program

material offered or the merchantibility or the fitness of the program material for any

particular purpose. The program material is made available solely on an "as is" basis, and

the entire risk as to its quality and performance is with the user. Should the program

material prove defective, the user (and not W&W Software Productsnorany otherparty) shall

bear the entire cost of all necessary correction and all incidental or consequential damages.

W&W Software Products shall not be liable for any incidental or consequential damages in
connection with or arising out of the furnishing, use, or performance of the program

material.

AR
W&W SOFTWARE PRODUCTS GMBH

W&W Software Products
2056 Maple Avenue

Costa Mesa
California 92627

United States of America
Telephone: (714) 642-6616

W&W Software Products
Im Aehlemaar 20
Postfach 800133

D-5060 Bergisch Gladbach 2
West Germany

Telephone: 02202/85068

	Cover
	1 Internal Design of the HP-41
	Internal Design of the HP-41
	The RAM of the HP-41
	Main Memory
	The Program Code of the HP-41
	Key Assignments (Design and Inner Structure
	I/O Buffers (Design and Inner Structure)

	2 Operating System Enhancements
	The Catalogs
	ROM Memory Configuration
	The Functions ASN and XEQ
	Direct and Indirect Memory Access Functions
	Physical Address Structure of the HP-41 Status Registers
	The Input of Any Alpha Character String

	3 Functions from Catalog 2 (-W&W FNS)
	B?
	CLB
	SAS
	CAS
	RNDM
	SEED
	SORT

	4 Matrix Functions (-ARR FNS)
	Introduction
	Organization and Construction of Arrays
	Functions for the Construction of Data Arrays
	Functions for the Manipulation of Element Pointers
	Input and Output Functions for Data Arrays
	Functions for Shifting and Exchanging Elements
	Functions for Determining the Extreme Values of Array Elements
	Sums and Norms
	Functions for Mathematical Manipulation of Arrays
	Program Examples

	5 Binary Functions (-HEX FNS)
	Hexadecimal Functions (Introduction)
	Number Systems
	Representation of Negative Numbers
	General Conventions for Hexadecimal Functions
	Basic Setup
	Functions for Setting Wordsize and Signed Mode
	Input and Output Functions for Use with -HEX FNS
	Logical Operations
	Functions for the Manipulation of Individual Bits
	Program Examples

	6 Input/Output Functions (-I/O FNS)
	Introduction
	Input Functions
	Output Functions
	ALPHA Functions
	Output Functions Dealing with the ALPHA Register

	7 Functions for Advanced Programming (-ADV FNS)
	Introduction
	Functions for Calculating of Absolute Addresses
	Decoding Function
	Functions for Manipulating the Program Pointer
	PEEK and POKE Functions
	Sample Programs

	8 XF/Memory Functions (-XF/M FNS)
	The Extended Functions/Memory Functions Block
	SAVEB
	GETB
	SAVEK
	GETK
	MRGK
	SORTFL

	9 Bar Codes
	10 Function Index
	11 Compatibility
	12 Literature

