WAV

W&W SOFTWARE PRODUCTS GMBH

L LU - Module

Owner’s Manual
For the HP-41

Foreword

The CCD-Module was developed with the goal of providing a tool
for improving all applications of the HP-41, and to simplify
programming. User friendliness was an objective of particular
importance in obtaining this goal.

The CCD-Module should support the programmer to such an extent
that he can concentrate on the actual problem he is attempting
to solve, rather than expend a great deal of effort in the
mechanics of programming. Other sections of the program such
as the formatting of input and output, can be assembled with
the new functions supplied by the module, and problems which
were previously insoluble can be solved.

More than a year was required for the development of this
module. Special thanks are due for the support furnished by
all of members of CCD (Computer Club of Germany), who made
possible the production of this module in its present form, by
their strong interest, by proposing routines for functions to
be included in the module, and not least by the patience they
exhibited. Further thanks are due to Dr. Baltes, the
spiritual father of the module, through whose work in
coordinating the programming much room was created for new
functions; also to Mr. Holger Adelmann by whose stimulus and
programming efforts the CCD-Module was optimized.
Furthermore I thank everyone who tested our module during its
development phase, and who enhanced the success of this
hanbook by contributing applications for individual function.
In this regard I am particularly grateful to Mr. Gerhard
Kruse, who has written a variety of excellent and optimized
programs for the handbook, and to Mr. Andreas Meyer for his
literary work and for his superb preparation of figures.
Furthermore I thank the Hewlett-Packard Company in Germany for
their support, and last but not least, my friends Ken Emery,
Stephan Abramson and Jeremy Smith who by their assistance in

translation, have helped to make this module known throughout
the world.

W&W Software Products GmbH

UW 1
Wilfried Kotz, President

(C) Copyright W& W Software Products GmbH 1985 I

(C) Copyright W& W Software Products GmbH 1985

II

Chapter Index

1 Internal Design of the HP-41
Operating System Enhancements
Functions from Catalog 2 (-W&W FNS)
Matrix Functions (-ARR FNS)

Binary Functions (-HEX FNS)

A W A WN

Input/Output Functions (-I/O FNS)

Functions for Advanced Programming (-ADV FNS)
8 XF/Memory Functions (-XF/M FNS)

9 Bar Codes

10 Function Index

11 Compatibility

12 Literature

(C) Copyright W&W Software Products GmbH 1985

Subject Index

ICOMP .. e e e
I's Complement Modecciiiinnnnnn..
2’s Complement Modeo,
1 0% U

L e e
I A e e e
"A?" (Bar Code on Page 9 .05)
"ABIN" (Bar Code on Page 9.05)
ABSP . . e

Address Structure of the HP-41 Status Registers -
ALPHA Functionsciuiiiiiuennennnnnn.

"BS?" (Bar Code on Page 9 .06)

Basic Setup (-HEX FNS)

Byte/Function Table
C<>C

C>-

(C) Copyright W&W Software Products GmbH 1985

DS

BY o oo
Bar Codes for the Functions of the CCD-Module
Bar Codes for Programsccovuvnn...
Bar Codes for the Functions of the CCD-Module
Binary NUmber SYStemooveeunnnoo..

..
...

"CB" (Bar Code on Page 9 07)
"CDE" (Bar Code on Page 9.07)

...... 5
...... 3.

v

"CF55" (Bar Code on Page 9 .08)
"CHK" (Bar Code on Page 9.08)
CLA-
L 7 -
"CLK" (Bar Code on Page 9.08)
CMAXAB
CNRM ... e
Complement.coiiittiiiiieennnnnns
Complement (Signed) Modes
Complement Notationcovtiiuireennnnnn.
Construction and Manipulation of Arrays
Construction of Arrays
CSUM. . e
Data Registers
DO ... e
Decoding Functioncciiuuin.n.
Determining the Extreme Values of Array Elements
DIM . e
Direct and Indirect Memory Access Functions
Display Format Instructions
Distribution of Ranges of Values
END Instruction
END Instructionsc.iuitiriinennennnnn
Examples of the Contents in a Numeric Register ...
F/E e
FIX/ENG Mode.............iiiiiiiiiiiinnnnn.
Flag and Display Format Instructions
FNRM. e e
Functions for Calculating of Absolute Addresses
Functions for the Construction and Manipulation of
N o £
Functions for Determing the Extreme Values of Array
Elements i,
Functions for Manipulating the Program Pointer
Functions for Printer Output
Functions for Shifting and Exchanging Elements
Functions for the Manipulation of Element Pointers
Functions for the Manipulation of Individual Bits
"GE" (Bar Code on Page 9 .09)
GETB
GETK e
GTO and XEQ Instructionscouu....
Hexadecimal Byte/Function Table
Hexadecimal Number System.......................
"H-O" (Bar Code on Page 9.09)
I/O Buffers (Design and Inner Structure)
Id= o e e
1J=A

(C) Copyright W&W Software Products GmbH 1985

"INP" (Bar Code on Page 9 .09)

INPT

Input and Output Functions for Use with ~-HEX FNS
Input Functions

"INV" (Bar Code on Page 9 .10)
"KEY’"
Key Assignments (Design and Inner Structure)
Label Instructions
Layout of a Numeric Register
Line Numbering
M+

Main Memory
Main Memory Configuration
Manipulating the Program Pointer
Manipulation of Element Pointers
Manipulation of Individual Bits

MAX

MDIM

NOT
Number Input
Number Systems
Octal Number System
One Byte Instructions
OR
Organization and Construction of Arrays
Output Functions
Output Functions for Data Arrays
Output Functions for Use with -HEX FNS
"PBC" (Bar Code on Page 9 .11)
PC<>RTN
PC>X

PEEKB

(C) Copyright W&W Software Products GmbH 1985

...

Input and Output Functions for Data Arrays

Input of Any Alpha Character String

...

.................................
.................
...
...

...

...

"PHINPT" (Bar Code on Page 9.12) 6 .07
Physical Address Structure of the HP-41 Status

REgIStEIS ..ttt e e e 2 .14
PV e e 4 .46
PH D ... e e 7 .08
"PK" (Bar Code on Page 9 .12)ccciiiiniinnnn. 8 .13
PLNG .. e e e 7 .05
PM T A e e 6 .09
PMTH ... e e 6 .11;5 22
PMTK . e e 6 .13
POKE FUnCtions. . ..ottt iit it ini e 7 .24
POKEB i e e 7 .31
POKER ... i e e 7 .35
PPLNG e e 7 .07
PR e e e e 6 .18
"PR1" (Bar Code on Page 9 .13)ccccviiennnn. 6 .22
"PR4" (Bar Code on Page 9 .14), 6 .24
PRAXY e e 6 .20
Printer OUtpUt ittt i e ettt 6 .17
PR .. e e 6 .24
Program Code of the HP-41 1.19
Program Line Numbering..................covviiinena .. 1 .30
Program Memory (Design)cciiiiiiinennnennnn. 1.15
Representation of Negative Numbers 5.10
R-PR . e e 4 .73
R-OR . e e 4 .69
R i e e e 5 .37
R R e e e e e 4 33
R e e 5 .39
Rod 4 27
R>— e 4 .29
R R 4 .47
RCL e 2 .13
Register FUNCtionscouiiiriiennnnenn. 1 .22
RMAXAB ... i e e e 4 44
RN DM . . e 3 .10
RN RM .. e 4 .55
ROM Memory Configuration..............couiiueennnnn.n. 2 .10
RSOUM . e 4 .53
S i e e e e 5 .33
S i e 5 .35
SAS . e 3 .08
SAVEB ... e 8 .05
SAVEK ... e 8 .09
O e e 5 .47
SEED ... e 3 .12
Setting FIX/ENG Mode i, 6 .27
SORT .. e 3 .13

(C) Copyright W& W Software Products GmbH 1985 VII

The Octal Number System
"TLC";"TLC1";"TLC2" (Bar Codes on Page 9 .16)
TONE

"VB" (Bar Code on Page 9 .16)
VIEWH

WSIZE

XE
XOR

XTOAH

(C) Copyright W&W Software Products GmbH 1985

Table of Complementsc.ciiiiiiinnnnn..
"TD" (Bar Code on Page 9 .15)
Text Instructionscciiiiininnennnnn..
The 1’s Complement Mode.
The 2’s Complement Mode.
The Binary Number System
The Catalogscoivii ittt e i e
The Complementcciiiiiiiiinennnn...
The Decimal Number System........................
The Hexadecimal Number System....................
The Input of Any Alpha Character String
The Meaning of the END Instruction
The Program Code of the HP-41
The Unsigned Mode,

"VR" (Bar Code on Page 9 .17)
"W?" (Bar Code on Page 9 .17)
"WF" (Bar Code on Page 9 .17)

..

VIII

Introduction

The CCD-Module is an extension for the HP-41 handheld
calculator, which expands the calculator’s vocabulary by
nearly a 100 new functions. The module also provides several
enhancements to the operating system of the HP-41, such as new
catalogs and the capability of direct keyboard entry of lower
case letters.

The ideas and wishes of many members of CCD (Computer Club of
Germany) were particularly taken into account in planning the
module; thus the module is named after the group.

The CCD-Module was programmed in machine code (MCODE), which
sets it apart from other application modules. This design
approach affords accuracy and rapid execution of the functions
of the CCD-Module, which would have other wise been
unattainable.

The CCD-Module is a valuable addition to a "bare-bones" (i.e.
an otherwise unenhanced) HP-41; however, as the size of the
system increases, so do the possibilities afforded by the
module. Thus, in particular, the CCD-Module supports all
printer characters, the Extended Functions/Memory module and
the Hewlett-Packard Interface Loop (HP-IL).

(C) Copyright W&W Software Products GmbH 1985 IX

(C) Copyright W&W Software Products GmbH 1985

(c

Chapter 1

Internal Design
of the
HP-41

) Copyright W& W Software Products GmbH 1985

(C) Copyright W& W Software Products GmbH 1985 1.02

=

Contents Chapter 1

=}
20
=
7
L
<
=i
-
L
-
(=i
—

Internal Design of the HP-41

Internal Design of the HP-41 1 .05
The RAMof the HP-41 1 .06
The Structure of RAM 1 .07
Main Memoryoi i 1 .09
Main Memory Configuration 1.10
Data Registersoiiinii i, 1 .11
Data Registers (Inner Structure) 1.13
The Register Structure cciiiiineinn ... 1 .13
Layout of a Numeric Register 1.13
Examples of the Contents in a Numeric Register .. 1 .14

Design of an ASCII Register 1 .14
Examples for the Contents of an ASCII Register .. 1 .15
Program Memory (Design) 1.15
The Meaning of the END Instruction 1 .16
Program Memory (Inner Structure) 1 .17
How a Program Consists of Instructions 1 .17

The Program Code of the HP-41. 1 .19
Hexadecimal Byte/Function Table 1.20
One Byte Instructions covirenennnn.. 1 .22
Flag and Display Format Instructions 1 .23
Label Instructions ciiiiirinennnnnn.. 1 .23
END InStructionsouuiiiiiiinenennnnnn.. 1 .25
GTO and XEQ Instructionsc.covuvvunnn.. 1 .25
Text Instructions c.iuiririniinnnennn.. 1 .27
Number Input 1 .28
Instructions from Plug In Modules 1 .28
SUMMATY. . .ttt ittt et ettt e e e 1 .30
Program Line Numbering 1 .30
Instructions in Plug In Modules 1 .31
Key Assignments (Design and Inner Structure) 1 .31
I/O Buffers (Design and Inner Structure) 1 .33

(C) Copyright W&W Software Products GmbH 1985 1.03

(C) Copyright W& W Software Products GmbH 1985 1.04

Internal Design of the HP-41

Many functions of the CCD-Module (PEEK, POKE and "Synthetic")
operate on all of the HP-41‘s RAM. This RAM includes the main
memory (data registers, programs, key assignments and I/0
buffers), the status registers (stack, flag register and other
informations for the operating system) and extendend memory.
The operating system uses memory locations to store status
information. The careless use of some registers can crash your
HP-41, lose the memory contents but will never harm the
machine itself.

First, we will explain the design and the organization of RAM.

The HP 41 has two different types of memory

- Random Access Memory (RAM)
- Read Only Memory (ROM)

As only RAM can be altered by the user, its design and logical

organization is the most interesting for us and will be
covered first.

(C) Copyright W&W Software Products GmbH 1985 1.05

=)
20
R7)
a)
=
=)
=
0]
=
=]
—_

The RAM of the HP-41

HP-41 RAM comprises space for 1024 registers which are each 56
bits wide. The CPU is only capable of reading one register
at a time. If it wants to alter one bit, it has to read the
whole register, set or clear the bit and then write the whole
register back again. Inside the CPU the register contents can
be altered all together or in parts. The smallest part is the
bit. Other parts are a nybble (4 bits) or a byte (8 bits).
Bits, nybbles and bytes in a register are numbered starting
with 0 from right to left. The bits are counted from 0 to 55,
the nybbles from 0 to 13, and the bytes from 0 to 6.

6 5 4 3 2 1 0 Byte number
13(12(11(101 9|8 | 7|6 | 54| 3|2 | 1|0 | Nybblenumber
55| oo] . |7654[3210] Bit number

We should not not forget that this is only a logical division
in a register.

The HP-41 CPU is able to address 1024 registers. The registers
are numbered from 0 to 1023. The register number is an
absolute value. It is only dependent on the physical location
of the register in RAM. That the CPU is able to address 1024
registers does not mean that they are available to the user

because the operating system needs certain gaps for its own
use.

(C) Copyright W& W Software Products GmbH 1985 1.06

The Structure of RAM

HP-41 Memory Configuration

Byte:

6543210,

511

192

Dota registers

free regleters

1FF

Main memory
(320 Reg.)

oco

191

0BF
Extended

memory

area
(X—Fct—Module)
(128 Reg.)

64

040

|

! Gap
1 (48 Reg.)
I

00F .
Status registers

16 Reg.
ooo(g.)

(hex.)

Byte: 6 54 3210

1023 - ~---------- 3 3FF Gap
10077 1 3gr (18 Reg.)
Extended
memory
area 2
(239 Reg.)
769 ‘ X—Memory status register 301 Gap
751 | 267 (17 Reg.)
Extended
memory
area 1
(239 Regq.)
e 201 Gap
512 200 (1 Reg.)
(dec.) (hex.)

Up to now we only talked about the physical configuration of
RAM. We shall now discuss the logical configuration of RAM.
RAM is subdivided into three parts, according to its use:

1) status registers

2) m

ain memory

3) extended memory

(C) Copyright W& W Software Products GmbH 1985

-

ol
a)
=
=
b
3
2
=
—_

Designation Start Address - End Address| Start Address - End Address
decimal hexadecimal

Status Registers 0 — 15 000 — O0OF

Main Memory 192 — 511 0CO — 1FF
Extended Memory|

X Function Mem. 64 - 191 040 - 0BF

X Memory 1 513 - 751 201 - 2EF

X Memory 2 769 — 1007 301 - 3EF

We recognize that the extended memory is split in 3 parts
(extendend functions and 2 extended memory). In the HP-41 C

main memory ranges from register 192 to 255. It can be
expanded in 64 register increments till the limit of 511 is

reached.

(C) Copyright W& W Software Products GmbH 1985

.08

3

Main Memory

=
=)
7
U
=
c
Bt
)
s
=
_

Four different kinds of data can be stored in the main memory:

alphanumeric data
programs

key assignments
I/0 buffers

There is a special place in memory reserved for each data

type. The operating system allocates space for each type of
data on request.

(C) Copyright W&W Software Products GmbH 1985 1.09

Main Memory Configuration:

Byte: 6 5 4 32 1 0

511

192

Data registers

First USER—progrom

Program memory

froe registers

Key assignment reglsters

1FF

Main memory
(320 Reg.)

0co

191

0BF
Extended

memory
area
(X—Fct—Module)
(128 Reg.)

64

X—Function status register

I

I Gap
: (48 Reg.)
I

Status registers
16 Reg.
000 ¢ 9.)

(dec.)

The operating system has four different modes of data storage:

KA
I/0

data storage
program storage

-storage
Buffer storage

(hex.)

Free memory is allocated for use by the operating system.

(C) Copyright W& W Software Products GmbH 1985

Data Registers

=
Sl
72l
O
=
£
)
L
=
=

The data registers are located in the upper part of main
memory. The commands STO and ASTO are used to save all kinds
of numeric and alphanumeric data in the data registers. The
register numbers used for that will be called "relative
numbers" in this book.

The upper boundary for data registers is 511 absolute in the
CV and CX, but in the C it is dependent on the number of
memory modules plugged in.

Memory Address Address
Remarks
modules (decimal) (hexadecimal)
0 192 — 255 0CO — OFF HP-41 C basic configuration
1 256 — 319 100 — 13F
2 320 - 383 140 — 17F
or Quad RAM; note that for
3984 - 4/ 180 — 1BF the HP-41 CV and HP-41 CX
4 448 — 511 1C0 — 1FF all of these addresses are

permanently built in.

The lower boundary is assigned by the operating system after
executing the SIZE function.

Lower boundary = upper boundary + 1 - SIZE

(C) Copyright W& W Software Products GmbH 1985 1.11

As the upper boundary is 511 in most cases the formula reduces
to:

lower boundary = 512 - SIZE

The lower boundary is called the curtain because it separates
data registers from programs. In numbering the data registers,
which is assigning relative addresses to the data registers,
one starts at the curtain with 00.

The relation between absolute and relative addresses is shown
by the table below:

Absolute Address Relative Address
upper boundary Size-1

Curtain 0

Curtain + nnn Register nnn

One can imagine that the operating system needs the curtain to
change relative into absolute addresses. Because of this the
address of the <curtain is stored in one of the status
registers. The curtain is only a logical division between data
and program registers.

Having explained where the data registers are, and how they
are counted, numbered and addressed we will now explain how
the data is actually stored in a register.

(C) Copyright W& W Software Products GmbH 1985 1.12

Data Registers (Inner Structure)

=}
T8
12l
o]
=
<
=)
—
]
-
=}
—

An important rule for this;

1) Everything we store with STO or ASTO occupies a whole
register

2) There are no physical boundaries, only logical boundaries
The Register Structure

We distinguish between numeric data (numbers) and alphanumeric
or ASCII data.

Layout of a Numeric Register

[I 1 1 1 1 1 1 1 I l 1
372 77 0 9 8 7 6 5 4 3 2 1 0 Nybble
number
/ AN
Mantissa Mantissa Exponent Exponent
sign sign

(C) Copyright W& W Software Products GmbH 1985 1.13

Examples of the Contents in a Numeric Register

[9]8,7,5 1 2 0,0, 0 0 ,0]J0JO

1 1 | I s 1 1 1 L

0 |=-87512

Il

[0][8, 7,5 1 2 0,0 0,0 0[]0][]0, 0]=87512

[0J1,0 0 0, 0, 0,0 0,0 0J0O]1

N
I

1,0000 12

[0[1,0,0 0, 0,0,0,0 0 0f0]O

o
1>

1,0000

[9]8,7 5 1 2, 0,0,0 0 0[9][8, 5]=-87512-15

The digit 0 indicates a positive number and the digit 9
indicates a negative number. The system in which each nybble
contains a number between 0 and 9 is called BCD (Binary Coded
Decimal). This means that nybble 13 of a numeric data register
must either contain a 0 or a 9.

Design of an ASCII Register

I RS
1312 11 10 9 8 7 6 5 4 3 2 1 0 Nybblenumber
6 5 4 3 2 1 0 Byte number

All ASCII registers have the digit 1 in nybble 13. In the
bytes 0 to 5 there can be up to 6 ASCII letters right
justified. If a register contains only one letter the bytes 1
to 5 are null bytes and byte 0 contains the letter.

(C) Copyright W&W Software Products GmbH 1985 1.14

Examples for the Contents of an ASCII Register:

[1Jo,0 0,0 0,4 1,4 2,4 3, 2 0]a"aBC"
[1]0,0,0,0,0,2,0,4, 1,4 2,4 3]=2a"ABC"
[1JOo,0 0,0, 0,0,0,4 1,4 2, 4 3]="ABC"

[1Jo,0, 0,2 0,4 1,4 2,4 3,2 0]a"ABC"

It is simple to determine the difference between number and
ASCII registers: one must only analyse nybble 13. If it is 1
it is an ASCII register, if it is 0 or 9 it is a data
register. The nybble 12 can have any value in calculators
manufactured with serial numbers less than 2036.... All
machines manufactured since then place a zero in nybble 12.

The CCD-Module contains a function which makes it very simple
to analyse a register: DCD (DeCoDe the X register).

Program Memory (Design)

Program memory starts with the register below the curtain (see
the main memory map). It ends with the .END. instruction. The
structure of the program registers is excactly the opposite of
the data registers, the first program is in the topmost
register and later programs are in lower numbered registers.

(C) Copyright W& W Software Products GmbH 1985 1.15

0

=)
5
7
O
o
=
£
)
L
=1
_—

The Meaning of the END 1nstruction

The significance of the END instruction. The beginning of a
program is either behind the END of the last program or
directly below the curtain. Every END instruction contains
information for how far away is the next highest LBL or END.
The shortest possible program is only an END.

When we start with a "MEMORY LOST" and key in some program
steps then we have a program with an END already attached.
That is easy to see: just key RTN and R/S (in run mode). The
operating system has a permanent END: the .END. instruction.
This means that after "MEMORY LOST" there already exists a
program in memory: the .END.

The .END. has a special function: it is the last END in
program memory and can not be deleted by normal means, nor
should it be deleted by any other means.

When one writes or debugs programs and new steps are written
into memory, null bytes are overwritten. When there are no
null bytes available the operating system produces some. To do
this the operating system shifts program memory down 1
register into the free memory space. By doing that 7 null

bytes are produced. The information about the program length
in the END is renewed.

"PACKING" removes unnecessary null bytes from program memory.
Here too, the length information in the END is renewed.

(C) Copyright W& W Software Products GmbH 1985 1.16

Program Memory (Inner Structure)

How a Program Consists of Instructions

The operating system of the HP-41 has a list of all functions
(CAT 3) each having a special code. When a function is keyed
in (with XEQ ALPHA function ALPHA), the operating system
searches this list. When the function is found the operating
system stores the code and branches (if necessary) to the
prompt for the argument byte. Then the function code and
argument can be saved as program step.

A special feature of the HP-41 is that the function list can
be increased by plug-in modules (such as the CCD-Module) and
with programs created by the user.

The function list is made visible with the CAT instruction.

When the operating system searches for a program or a function
it does so in the following sequence :

- user programs in the reverse order than they appear in
catalog 1

- instructions from plug in modules starting with page 5 (TIME
module)

- internal function list (CAT 3)

(C) Copyright W& W Software Products GmbH 1985 1.17

=)
N
a
=
<
j=)
S
Q
=
=)
=t

After keying in a function the operating system first makes a
syntax check, making it normally impossible for us to key in
functions like STO M or TONE 57. After the syntax check the
operating system stores the function and argument code in the
memory.

While executing a program the operating system reads the
program line by line and interprets each instruction by
branching to the appropriate machine code program. (There is a
machine code program for every instruction). This part of the
operating system is called the interpreter.

The interpreter works without knowing how the program code was
assembled.

An understanding of this is the basics of synthetic
programming. Synthetic programming is nothing more than making
a program code by bypassing the syntax check.

Up to here we have only explained how an instruction is

produced in program memory via the syntax check. We will now
explain what the instruction itself looks like.

(C) Copyright W& W Software Products GmbH 1985 1.18

The Program Code of the HP-41

The program code of the HP-41 is byte oriented. This means
that the interpreter works byte by byte through program

memory. It works from top to bottom, or from high addresses to
low.

256 instructions can be coded with one byte. However, the
number of instructions alone from STO, RCL and ASTO with
register numbers 00-99 is greater than 256. This problem is
avoided in the HP-41 by using an argument byte (the second
byte is an argument byte for an STO instruction). Depending on

the number of argument bytes used we may have one, two, three
or multiple byte instructions.

In all program lines the first byte is the instruction and all
following bytes are the arguments.

In the following byte table all possible instructions are
shown. The table is shown as a 16 * 16 matrix. This is because
every byte can be sliced into two nybbles, the first nybble is
the row number the second is the column number. Instructions
in one row are always of the same type.

On the next two pages you will see the HEX table for the HP-
41. Every square is structured like the following diagram:

Funktion for key

Function ~ assignment (bytes

CLP~
p——"1 0to 15 only)
LBL @3

or prefix

0 4 + | Symbol or
Postfix — | " additional

4 [special

) character
7 \
~ N

decimal value Printer

character

(C) Copyright W& W Software Products GmbH 1985 1.19

3

=
oL
7]
o
—_—
<
=t
—
L
-
=
—

Hexadecimal Byte/Function Table

30Ua}SIXd
sajund GG
35d ¢S
0/l €5
WY9d 2§
155 1S
abossaw (g
1vE Mol 6v
VHdWV 8¢
HIHS Lv
8duanbas
Aey |ouiod 9y
AJjua osop
wajshs Gy
NO '4u0d ¢
avy
avyo
avy
910
apow b1y
IN3I/ X4
X
ON3
125
Aodsip
sbip 40
Jaquinu 6g-9¢
pasn jou G¢
pasn jou pg
|onuow
ainjosqo 7} €€

—O—~O0O—~MmO—Or—
<
<

<
Soo~~NOO~—

-

0/1 71 |onuow
AQW/AWQ
Jawny
1v)
buidnoub 4161p
DWWOd/ 23p
apow ¥3sn
3|qoua o1pno
aJoubi Jousd
aoubr abuo.
Aspua oydjo
AJpud ‘wnu
a|qoua Jpid
uo-uiny

1D paJoa)d
asn |osauab
a43)dwodul
pi0d3s
XVLIS/AL L
VAL 0
WYON |
NYW 0

Ja4uud | 91~

3}1UMIBA0
asD) JaMo|
3pimajgnop

34n23xa 04ND
asodund

|oJauab -

43

LE
0¢
62
8L
24
9
114
v
€2
144
84
0z
6l
8l

Ll
L
L
0
0
St
14}
€l
1}
Ll

00

(p 4a45169Y) SOV14

Jaisibas aikg- Cr VN NN e A AL s BEAE[WWOW WEWWW][BDRN RN N === oo oo
ousiaquiu g = [SESKZESE(IEER B 28|38UE KRB 2EIR INYN 83533 &% 8328
[Turoee Touer [rort Joott [reol Jotot [tool [ooot JLito Jotto 0010 1000 | 0000
E| 3 a J 4 v 6 8 L 9 |4 L 0
AL Z 90| «STL| 1L vTL)wETL|Z 2L ~1TL| < 0CZLfmbLL|m8LL 1911 €Ll TLL
(0 > pP|l® o8 9|8 o8 ,-4(@708 Id|®8 (0|8 \N 8 Z|8 |1
Q1| MIIAV| AIQS| NVIW] cOSX| NOIS| éA#X] éA=X X1D| X1SV1 % A<>X 31D
O LLLf{YOoll|we6OL]| T8OL)A LOL| " 90L|T SOL|YvOL] &€OL|+ ZOL P 00L € 6] » 96
9% (|% |2 H|& 9|® 4|8 3|8 q|8& DJ|8® 8|8 V 00t L6] . 96
130«| GONY| ¥H«| SWH«]| a+<¥| d+a ¥4 INI| é0=X] ¢0>X 0<X sav X/1
T OS6|+ ve| L €6~ T6) T L6|Z 06| A 68 X 88 M /(8N 98 1 8 1gf4 08
S| S6|. vl €6 6| I L6 2 06| « 68 x 88) rt (8] .1 98 i v8 18| 08
J30+~| NVIV| SOJOV| NISV] NVl S0J NIS| L-X 3] Xi0L 901 SH) 24X N1
O 6L M BL W LL{TY 9Ly A SL| T LT €LIH TLD LS 0L a 89 B S9(a v9
VLo 6L 8L LL| T 9Ly SLL T vL| T LM TS ULy 0L I 89 HoS9la v9
ded| ¥ed]| HI% %] QOW [-SWH [+SWH - 3] 1+ 3| ¢ASX LA>X — +
< €9 Z9| = L9|> 09] ¢ &S 8S|6 LS8 95| & SS| 2 S L NAY T 6v| B 8Y
€l €917 29| 19|77 09 65|18 8S|H LS| B 95| L SS| 9 ¥S BERAY 6v| 2 8y
SLOLS|¥L OLS|EL OLS|ZL OLS)LL OLS|OL OLS [60 OLS (80 OLSJ£0 0LS]|90 OLS ¥0 0L L0 015{00 OLS
* T C Ly| > OFf . 6E|3 B8E $ 9¢ €€ 143
LAY ly|: Ov] . 6E| % 8E % 9¢ €€ 143
0L 104 {60 124 {80 124]£0 12490 12y v0 123 L0 124 {00 12¥
N 9|0 ST|Q vZ|w €| W ° 0T LU & 9l
8 97| & ST|® vI|® €2| 8 I g 0z 8 L1 8 91
. 6 8 L 9 |4 L 0
FSL| A pLf T €L~ T Ll e OL] o 6% 8]t L[J 9 oyl > €= Zf < Ll * 0
O|% SL|® vLf * €L~ CZL| & LL|® OL| @ 60(@ 80| 8 £O| . 90 Y v0|] @ €0| & 20 x LO| _ 00
pL181{€L181|ZL181{LL 181§01 18760 181{80 181| £0 181} 90 181 S0 181 €0181J20181)10181/00181] TINN
NSV 141HS 2 «\&E_Sux&l MIvd NO 1SS 158 3715 S/¥ d1) Ad0D 130 (0192 1v)
] 3 4 B [v 6 8 L 9 3 [) £ [2 L | o

XILIHINAS 'T861

3

ONIWWVYO03d JILIHLINAS 304 QYVI IONIYI4 XIIND JLv-dH

1.20

(C) Copyright W& W Software Products GmbH 1985

ugisa(g [euIdu]

! 0'68L= Z1 019
01890| + /£ 1 = QL9 w0y pioys
8EL'Z91 = 01'0E WONX= SLSM
T+(p pow Np9'p/1+091 = 't WONX
€P2'vL1=X ONIDIX 6'pL1=60ONIOLOD
41+8Z1'vL1=QNI BIX Bas'p/1=0ONI 019
. 53502 |DI12ads 33Aq-om |
60L°ZSL=(601)H MIIA LZ1'£0Z=D 181
9PZ'9%L= N QNI +1S £11'90Z=W<>X
686G1= 68 INOL vZL'yPl=910¥
ZvZ°0LL= A QNI JiSd [Z1'L0z2= @18
€8L°1S1= SS ANI 35 “9L'SPL=9101S
SU0HINLSUI BIAG-OM|
SUOLIINIYSUI 34AG-13|NW 4O 3UN4INLS

VSN 99206 VD 42098 UDLOYUOW ""3AY SMAYOW 0S| XILIHINAS

04 2d0|aAUd PadWO4S PISS3IPPO-4@S D PUaS 'DAID INOA Ui SIBDIP 4O 4SI| D PUD UOLDWIOHUI 31d JO3

Leee ottt
k] 3

[=]

0 £0Z] N 902
64 GNI| 82 GNI

vl 019/€1 019
P
v| v anif 9% ONI
38vds| NI 575

651) 3 851

b]

T - Eq .iAvx
9 moa! 29 ANI L9 QN

2L 019]11 019]0L 019 89»
=Bl * «D + LeLf = ost]

24|

oLt
a

4]

ootLt
J

&5

Lot
]

otot
v

d¢sd|
= /SL| ® 95} B SSLE O #SLI O €S

Loot
6

000t
8

LLL0
L

oLto
9

LoLo | ooto
S 14

L100
€

0100
l

1000 | 0000
L 0

6] LE ONI| OE ONI|6Z ONI| 8Z GNIf £Z GNI| 92 ONI| SZ ONI| ¥Z at_ £ i 6
|] 3NOL| ON3 125 Xl ,U¢<, 01SY| 9I| MIIA] Ot 2 1 - " 018 ¥
B EVLL > VLT LYl T OvL| 2 6EL| & BELf 2 LEL| ¥ 9EL ﬁmm— Lvm_ g EEL{© ZEL| » LEL| x OEL| = 6ZL| & 8T
8|SLANI[¥L ONI|EL ONI{ZL ONIJ LL ONI{OL ONI| 60 ONI| 80 GNI| £O ONI| 90 GNI| SO ONI|¥0 ONIJ €0 ANI| Z0 ONI| LO GNI| 00 ONI| 8
AQV]1dWO¥d! 440] NOV] 440v| 9d1D 35d| 4HSV. V1D| d338[N1¥]| dOISI¥3IINI| Qv¥o| avd] 93
E] 3 a b}] v 6 8 L 9 S 14 € 4 L 0

XILIHINAS Z861

ONIWWVY90dd JILIHLINAS 304 Q3VD 3DNF¥IAFY XDIND JLb-dH

1.21

(C) Copyright W& W Software Products GmbH 1985

One Byte Instructions

Without exception all instructions in row 0 and 2 through 8
are one byte instructions.

Register Functions

The functions ARCL, ASTO, DSE, ISG, RCL,=REG, ST+, ST-, ST*,
ST/ and X<> are register instructions. All expect a register
number as an argument. These instructions are two byte
instructions. The first byte specifies the action, the second
the register number (coded hexadecimally). The codes are hex
00 to hex 63 for the registers numbered 0-99 and hex 70 to hex
74 are used for the stack registers T, Z, Y, X and L.

The instruction RCL 87 is coded as follows: Hex 90 57

The first byte (instruction Byte) is the RCL, the second
(argument byte) is 87.

What happens when there is a RCL IND 87 in the program memory?

When a register is used indirectly, hex 80 is added to the
argument byte, that means hex 57 + hex 80 = D7. You can see

the different arguments and their hex equivalents in the byte
Table.

There is one special thing with RCL and STO Instructions: As
they are very often used with register numbers up to 15 there
are special one byte instructions used for this purpose (rows

2 and 3). This not only helps to save memory space but even
speeds up instruction time.

(C) Copyright W& W Software Products GmbH 1985 1.22

Flag and Display Format Instructions

The functions CF, FC?, FC?C, FS?, FS?C, SF, ENG, FIX and SCI
are similar to the register functions. They are also placed
in program memory in the same format with an instruction and
an argument byte.

Register, flag and display format instructions all have the
following bit structure : bbbb bbbb iaaa aaaa

Each letter stands for one bit of the code. The b’s signify
the instruction byte, the / means indirect (if it is one) and
the 7 a’s stand for the argument.

Label Instructions

We need to distinguish between numeric and ALPHA labels. The
numeric ones are coded like register instructions except that
there is no "indirect". Again the labels 0 to 14 are coded as
one byte instructions.

The bit structure of an ALPHA label is:

1100 bbbr rrrrrrrr 1111 nnnn kkkkkkkk ttet tett ...

In the field bbbrrrrrrrrr the distance to the highest label or
END in memory is stored. bbb shows the byte difference and
rrrrrrrrr the register difference.

All ALPHA labels and END’s are linked together into a global

chain. In every global instruction (ALPHA labels and END

instructions) the distance to the preceding global instruction
is stored.

(C) Copyright W& W Software Products GmbH 1985 1.23

=}
&
172}
a
=
=}
j=
3]
et
=]
—

The operating system administers these links by keeping them
up to date when you write or change any program. When the
operating system searches for a program it starts searching
the global chain with the .END. instruction, again
demonstrating the significance of the .END. instruction.

The end of the chain is found when a global instruction with
the link value of "0" is found.

As the operating system thinks that all links are correct, the
careless change of any data in the link can cause a "MEMORY
LOST" or lock up your calculator.

What do these links look like: When you calculate the
difference between the addresses of the first two bytes of two
neighboring global instructions and express these in bytes and
registers, you get the information which is stored in bbbr
rrrr rrrr array. In our example (4 bytes and 1 register) this
would be bin 1000 0000 0001 or hex 108.

The bits 1111nnnn follow the link array. The four ones (hex
F) signify a character string (or rather, the byte hex Fn; see
also text instructions!). This means that we are dealing with
an ALPHA label (and not an END instruction). The nnnn array
indicates the number of letters in the label plus one, which
follow this third byte. The first letter of this chain is
reserved for the possible key assignment byte or keycode. The
following bytes are the ASCII codes of the letters in the
name. Thus the program line LBL "ABCD" consists of:

hex CO 00 F5 00 41 42 43 44

(here the distance and key code arrays are set to 0.)

(C) Copyright W& W Software Products GmbH 1985 1.24

END Instructions

The general bit structure of an END instruction is:

1100 bbbr rrrr rrrr 00e0 xpdx

As already explained in the section "Label instructions", the
first 4 nybbles of this instruction are identical to those of
an ALPHA label. The next eight bits though have a totally
different meaning:

e bit: This bit is usually a 0. Only the .END. instruction
sets this bit.

p bit In a newly written program this bit is set in the END
to indicate whether the program is packed. A packed
program has all the null bytes removed, or "PACKed"
away.

d bit: This bit is used by the operating system to signify
that a program has been changed.

GTO and XEQ Instructions

Here too, we must distinguish between numeric and ALPHA
arguments.

ALPHA GTO’s and XEQ’s have a simple structure:

GTO: bin 0001 1101 1111 nnnn
XEQ: bin 0001 1110 1111 nnnn

(C) Copyright W& W Software Products GmbH 1985 1.25

The first byte indicates whether we are dealing with a GTO
(hex 1D) or an XEQ (hex 1E) instruction. The second byte (hex
Fn) indicates, similar to an ALPHA LBL, that a character
string follows. These n letters indicate the name of the ALPHA
LBL to which we want to jump. The instruction contains no
information about the distance to the ALPHA LBL and no
information about a possible key assignment!

If, during a running program, an ALPHA GTO or XEQ is executed,
the operating system will first search the global chain
starting at the .END., up to the topmost label in the chain.
If the corresponding ALPHA label is not found, the operating
system will search for the instruction in catalogs 2 and 3.

Now to the instructions GTO and XEQ with numeric arguments.
Their structure is:

Two byte GTO: bin 1011 n‘n‘n‘n‘dbbb rrrr
Three byte GTO: bin 1101 bbbr rrrr rrrr dnnn nnnn
XEQ: bin 1110 bbbr rrrr rrrr dnnn nnnn

You will surely recognize some of these arrays. The nnnn
array of the two and three byte instructions contains the
label number that program execution will branch to. In the
two byte GTO this corresponds to the n‘n‘n‘n‘array, only here
we have the label number plus 1.

When first executing one of these instructions, the b, d and r
bits are set to 0. The calculator starts to search for the
corresponding numeric label. As soon as this is found, the
distance to the label is stored in the b and r bits. The d
bit is the direction bit, one for backwards and zero for a
forwards jump. Program execution continues at the label. The
next time the leap instruction is executed, the operating
system will know that the jump distance is already
calculated, and therefore must not search for the label again.
It branches directly to the calculated place without checking

to see if the employed label is the correct one, or if one
even exists at all!

(C) Copyright W& W Software Products GmbH 1985 1.26

The jump distance is measured from the byte containing the
first part of the distance code to the byte which is directly
in front of the label.

The short form GTO instruction is the two byte GTO. On the
one hand program memory is saved, but on the other hand there
is less space for the leap distance than in the three byte
GTO, namely only 4 bits. This corresponds to a maximum leap
of 15* 7 +6 =111 bytes (bbb rrrr = 111 1111). This holds
true for labels 0 to 14.

Text Instructions

All text instructions start with a byte of the format bin 1111
nnnn. The nnnn array indicates how many letters are in the
text instruction, with a maximum of 15 letters.

How are letters stored? Corresponding to the American
Standard Code for Information Interchange one byte is used for
each letter. The abbreviation for this is ASCII.

Using the CCD-Module lower case mode it is possible to enter a

byte of any value (this mode will be explained in detail
later).

The byte hex 7F, depending on its position in the text string,
has a different meaning. If it immediately follows the text
byte (hex Fn), it is not interpreted as a letter, instead
indicating that the letters are to be appended to the ALPHA
register without first erasing it. At any other place in the
text string this byte will be interpreted as a "lazy T".

(C) Copyright W& W Software Products GmbH 1985 1.27

&

=
50
.=
v
a
s
=
—
3}
2
5
—

Number Input

If a number is entered as a program line, each digit has a
correponding byte in program memory. Each of these bytes
represents a one byte instruction, which simulates the manual
pressing of a key:

hex code digit keystrokes
10 0

11 1

12 2

13 3

19 9

1A decimal comma
1B EEX key

1C CHS key

Just as manual number input is closed by pressing the ENTER
key or by the execution of some other function, the operating
system will treat numeric input from a program line as
terminated as soon as a byte is read having a value other
than hex 10 to 1C.

Instructions from Plug In Modules

The possibility of extending the instruction set of the HP-41
by plug in modules represents one of the strong points of this
calculating system. How are these extra instructions coded?
This calls for a detailed explanation of the behavior of the
operating system:

(C) Copyright W& W Software Products GmbH 1985 1.28

As mentioned before, the HP-41, besides having RAM (for data),
also possesses a ROM address space for the operating system
and plug in modules. Just like RAM, this ROM has a predefined
address area, which is divided into 16 sections of identical
size (4k blocks). The first 8 sections are occupied by the
operating system and several hard-addressed modules: TIME,
Printer and HP-IL module. The other 8 sections are assigned
to the ports, each getting two sections (max. 8k byte).
Therefore a module always occupies exactly one or two of these
4k blocks. If a module is plugged into the calculator, the
microprocessor is able to read instructions out of the
corresponding addresses. Otherwise the ROM area will seem
empty.

The first two bytes within such a plug in ROM have a special
meaning. They are the identity number and the number of
functions within this module. The following bytes form the
function list of the module, and then begins the actual
function coding. Thus each function is clearly identified by
two numbers:

- by the identity number of the module containing the function
- by its place in the module list: the function number.

These two numbers comprise the familiar XROM number. This
XROM number appears in program memory instead of a ROM
function when the corresponding module has been removed from
the calculator.

Since the calculator can display these two numbers without the
module being plugged in, we can be sure that they are
contained in the code for the corresponding function.
Furthermore we know that these numbers characterize the
function sufficiently and do not expect further information in
the instruction. Now for the structure:

The i array indicates the ROM-ID, and the f array the function
number. The ROM-ID and numbers of the functions are listed in
the module handbooks. For example:

(C) Copyright W& W Software Products GmbH 1985 1.29

c
e
R7)
al
=
s
-
2]
2
=
_

The function RNDM from the CCD-Module has the number 4 and the
module ID is 9. Thus:

iiiii = 01001
f11fff = 000100

XROM 09,04 = bin 1010 0010 0100 0100 = hex A2 44

This coding allows 31 different ROM-IDs (The ID = 0 is not
allowed!) and 64 functions per ROM.

Summary

Besides needing instruction codes, some functions also need
information about a register address, a numeric label or such.
Using the CCD-Module it is possible to build the single
instruction codes by filling in the appropriate parameters.
The following paragraphs will hopefully answer a variety of
questions, and others may be solved simply by trying them out!
The CCD-Module contains the necessary functions to execute
this in a simple way.

Program Line Numbering

When talking about the structure of each instruction nothing
was indicated for the program line number as these are not
coded in the same way. A program, whose address is fixed by
the global chain, is always interpreted starting at line O1.
From that point on the operating system must keep track of
where an instruction starts and how many bytes it needs. The
leap distances stored in GTO’s and XEQ’s naturally support
this regulation during program execution. This means that
each byte must, from the beginning, be looked at as the first
or postfix byte of a multiple byte instruction. If we are
moving forwards in program memory, this poses no problem. But
if we are moving backwards (for example with BST), the

operating system must calculate where the preceding step
starts.

(C) Copyright W& W Software Products GmbH 1985 1.30

Instructions in Plug In Modules (Parameter)

Why do programmable instructions from plug in modules not have
parameters, as, for example, the STO instruction? If the
operating system recognizes an XROM instruction, it supposes
that it is a two byte instruction. Of course it would have
been possible to plan an extra parameter. Since not every
instruction is to be extended by a parameter, it would have to
be possible to distinguish between those with and those
without, even if the corresponding module is not plugged in,
because otherwise the extra argument byte would be interpreted
as a new program line and therefore cause confusion when
counting the program lines (see above). Unfortunately, a
distinction like this is not planned in the operating system;
moreover there would hardly be any space for this in the XROM
instructions.

Key Assignments (Design and Inner Structure)
Key assignments are of two different types:

- assignments of USER programs in the main memory
- assignments of functions and programs of plug in modules and
mainframe functions.

Assignments of programs which are located in the main memory
store the keycode in the fourth byte of the corresponding LBL.
Therefore the information is not lost when saving a program to
cards, tape, or extended memory.

Assignments of functions and programs of plug in modules (XROM
numbers) store the assignment information in the key
assignment registers. These key assignment registers start in
the main memory at address 192 (hex 0C0). As soon as new
assignments are made the old ones are pushed upward (to the
higher addresses), and the new assignment is now at address
192. Thus, since reglsters from the main memory are needed,
the number of free registers which are left for programming is
diminished by one register per two key assignments.

(C) Copyright W& W Software Products GmbH 1986 1.31

S5

=
)
7
o
—_
<
=
9)
2
=
=

To show the layout of the key assignment registers, we will
look at the following example:

First we assign the function BEEP to key -11 and the function
SAS (XROM 09,05) to key 15. These assignments can later be
checked with CAT’6. If we now decode the register at address
192 with the key sequence 192 PEEKR DCD ALPHA, we can see the
following ALPHA characters (the bytes are represented
hexadecimally):

FO A245 41 0486 09

or to be more exact:

FO : recognizing byte for key assignment registers
(always FO)

A245 : code of the two byte function SAS (XROM 09,05)

41 : key code of key 15

0486 : code of the function BEEP. The byte 04 serves only

as filler byte and is "prefix" of all one byte
functions from CAT 3
09 : key code of the key -11

After erasing the key assignment BEEP on key -11, the contents
of the key assignment register change as follows:

FO A245 41 0486 00

We can see, when erasing a key assignment, that only the key
code is set to 00. By this means the operating system knows
that the key assignment is not active anymore. Still the
plain existence of key assignment registers does not suffice
for the calculator to recognize such. To be able to quickly
recognize these assignments, so called "key assignment bits"
are contained for all keys in the status registers * and e.
When pressing a key, the operating system of the HP-41 first
checks if the corresponding key assignment bit is set. If
this is the case, the assigned function becomes active (only
in USER mode!). If the bit is cleared, it does not even
search for a possible assignment in the key assignment
registers and program labels. This allows for a fast
distinction of whether an assignment is present or not.

(C) Copyright W& W Software Products GmbH 1985 1.32

I/O Buffers (Design and Inner Structure)

I/0 usually stands for input and output. Here it means
’dialog with RAM memory while avoiding the operating system’.
The I/O buffer may be used by plug in modules. Some modules
for example, the TIME and CCD-Module, each construct an I/O
buffer and manage it independently. The I/O buffer appears to
the operating system as a closed register block.

Each I/O buffer is identified by the base register which, is
the lowest numbered register in the block. The four nybbles
at the very right contain the most important information:

Base register: hex ii li........

A copy of the buffer ID number is contained in nybbles 12 and
13 (ii), an ID number between hex 1 and hex E (hex F is
reserved for the key assignment registers) is allowed. The
two nybbles // indicate the length of the buffer in registers.

When switching on the calculator, the operating system
searches for buffers. If one is found, it erases the ID in
nybble 13. Then it jumps to the register above the buffer and
checks if there is another buffer there, and so on. If no
more buffers are found, it branches into the plug in modules,
which can reclaim their buffers by restoring nybble 13. Once
all of the modules are checked we branch back into the
operating system, which now erases the unclaimed buffers using
a special PACK-I/0 routine, and packs the buffer registers.
This elucidates why, if the appropriate module is not plugged
in when the calculator is turned on, the I/O buffer is erased.

(C) Copyright W& W Software Products GmbH 1985 1.33

)

=}
ol
7
0
=
=}
St
[
2
=
—

(C) Copyright W& W Software Products GmbH 1985

1.34

(c

Chapter 2

Operating
System
Enhancements

) Copyright W& W Software Products GmbH 1985

(C) Copyright W& W Software Products GmbH 1985

.02

Contents Chapter 2

Operating System Enhancements

The Catalogsovitiii ittt et ettt et 2. £
ROM Memory Configuration................covuuinnennn... 2. £
The Functions ASNand XEQcoiiinin.... 2 5

ASN 2. E

XEQ .ottt 2. £
Direct and Indirect Memory Access Functions 2 =
Physical Address Structure of the HP-41 Status <

RIS IS . ittt i i e e 2 o
The Input of Any Alpha Character String 2

(C) Copyright W&W Software Products GmbH 1985 2.03

(C) Copyright W& W Software Products GmbH 1985

.04

Enhancements of the Operating System

In contrast to the application modules commonly used with the
HP-41, the CCD-Module expands the operating system of the
calculator; thus as soon as the module is inserted, in
addition to the CATalog 2 functions provided by the module,
several functions "native" to the HP-41 are expanded in their
scope and utility. In particular, the module provides the HP-
41 with additional CATalogs and catalog functions,
improvements for the XEQ and ASN functions, the capability of
executing and programming synthetic functions directly from
the keyboard and an enhanced alpha mode for the input of lower
case and special characters (these extensions for the
operating system are not available in very early HP-41s; see
appendix entitled Compatibility).

The Catalogs

With the CCD-Module plugged into the calculator, the three
previously existing CATalogs (6 in the HP-41CX) are expanded
to a total of 16, and their functions are considerably
enhanced. All of the new catalogs may be halted during
execution by R/S, and subsequently stepped through in either
direction using SST or BST. In contrast to the operation of
the native catalogs of the HP-41, the SHIFT annunciator
remains lit during the use of BST. The key sequence SHIFT
R/S will even cause the catalog listings to be run in reverse.
A running catalog may be speeded up by pressing any key other
than R/S or ON. The catalogs will now be individually
described.

CAT'0

CAT’0 shows the ID or AID of all devices in the Hewlett-
Packard Interface Loop if any are present. When the catalog
is stopped the displayed device can be selected by pressing
ENTER, if you press C, and the selected device is displayed, a
Selected Device Clear message will be sent to that device.

(C) Copyright W&W Software Products GmbH 1985 2.05

1721
]
=}
)
=)
)
o
=
<
=
=}
sa}
%)
A
<

Pressing the back arrow key terminates the stopped catalog.
When there is no HP-IL module in the calculator, the message
"NO HPIL" is displayed.

CAT’1

This catalog executes the normal CAT 1 of the HP-41 with no
enhancements in the manner of execution. More information can
be found in the HP-41 handbook.

CAT’2

This catalog is greatly enhanced in its operation in
comparison to the standard CAT 2 of the HP-41. When it is
first executed only the "headers" of each ROM are displayed
(like the HP-41CX). If the catalog is halted with R/S the
user may press ENTER to view the function block of the
currently displayed "header". When the desired function is
located, it may be executed directly from the catalog by
pressing XEQ (the function will be inserted in program mode),
or the function may be assigned to a key by pushing the A key.
A second press of the ENTER button returns you to the catalog
listing of only the ROM "headers".

CAT’3

This catalog executes the normal CAT 3 of the HP-41. There
are no changes in the manner of execution. More information
can be found in the HP-41 handbook.

(C) Copyright W& W Software Products GmbH 1985 2.06

CAT’A

Like the function EMDIR of the Extended Functions module and
CAT 4 of the HP-41CX, CAT’4 displays the names lengths, and
types of all files in extended memory. It has the additional
feature of displaying the three additional file types used by
the CCD-Module. The three file types are, I/O buffers
(displayed as B), matrices (M), and key assignment files (K).
If no extended memory is present the error message "NO XF/M"
is displayed.

CAT'5

Executes the function ALMCAT of the TIME module. When there
is no TIME module in the calculator the message "NO TIMER" is
displayed.

A note regarding use of this instruction: If you have an
older HP-41 equipped with an early revision of the 82104A card
reader, and if no alarms exist, the calculator will appear to
lock up with "CAT’5" in the display. This is not a system
failure but a trivial quirk of the older machine; the next
keystroke will cause the message to disappear and the pressed
key will be executed.

CAT’6

CAT’6 shows all key assignments in keycode order, starting at
the sigma + key and working its way horizontially and then
dropping down to the next row etc.. On the right side you
will see the keycode and on the left side the function will be
displayed. Even synthetic key assignments ("RCL M", "TEXT 7")
are shown correctly and not as an XROM number. Pressing "C"
deletes the shown key assignment when the catalog is stopped.
When there are no key assignments the message "NO KEYS"is
generated.

(C) Copyright W& W Software Products GmbH 1985 2.07

12
Zz
=
5
=
)
Q
=]
=
<
=
[
88

O.S.

CAT'7

Executes the function DIR of the HP-IL module. For a detailed
description of this function see the owners handbook for the
HP-IL module. When there is no HP-IL module in the
calculator, the message "NO HPIL" is shown.

CAT’8 - CAT'F

These catalogs operate in a manner similar to the enhanced
CAT’ 2 function of the CCD-Module, except that each of these
catalogs addresses a single "ROM page" of the I/O ports of the
HP-41. Both the catalogs and the ROM pages are numbered from
8, to F,; as one might therefore expect, each of the catalogs
in this group has a number identical to the ROM page whose
contents it examines. The I/O ports are addressed as follows:

Port 1: Page 8 and 9
Port 2: Page A and B
Port 3: Page C and D
Port 4: Page E and F

Each port of the HP-41 can thus be occupied by up to 8 Kbytes
of program material. Since most application modules address
the lower 4K of the port in which they reside (if it is a 4K
application module), then the upper page of that I/O port is
inaccessible under normal circumstances, and the appropriate

catalog will display the message "NO ROM" for that address
block.

The operating system of the HP-41 addresses 16 4k Byte pages.
They are used in the following manner:

Page Used for

0 operating system (System ROM 0)

1 operating system (System ROM 1)

2 operating system (System ROM 2)

3 Not used by HP-41C and CV. Extended
operating system of the HP-41 CX
(System ROM 3)

4 Service Module or disabled IL printer

(C) Copyright W& W Software Products GmbH 1985 2.08

5 Used for the TIME module in the HP-41
C and CV. Extended operating system
in the CX (system 5a and 5b with bank

switching)
6 Used for by the printer ROM
7 Used for the HP-IL module (note: the

printer ROM is contained in the HP-IL
module, but can, using a certain
switch, be put on the address area 4,
and therefore be switched off)

Port 1 lower 4 kByte

Port 1 upper 4 kByte

Port 2 lower 4 kByte

Port 2 upper 4 kByte

Port 3 lower 4 kByte

Port 3 upper 4 kByte

Port 4 lower 4 kByte

Port 4 upper 4 kByte

TETOR P O®

The read/write memory of the main and extended RAM expansion
modules is managed in a different manner from ROM, and is not
addressed to the port in which it occupies; thus it is
possible to have all of your memory modules built into the HP-
41, leaving the four I/O ports free for application pacs. One
could even have the CCD-Module installed internally and
addressed to port 3, leaving that port free for the HP-IL or
printer modules; since the addresses of these ROMs are fixed
internally by the HP-41, other modules may be inserted in the
"ports" they occupy if special electronic modifications are
arranged to enable this (for more information on this subject
contact any W&W Software Products division).

(C) Copyright W&W Software Products GmbH 1985 2.09

)
2
=
[
£
L
Q
=t
<
<
=
68}
%)
@)

ROM Memory Configuration

Page

M

O -~ N W POOONOOO>P»rOVWOOM

PORT 4

(Card Reader)

PORT 3

PORT 2

PORT 1

HP—IL Module (MAss sT)

Printer Module

Switched bank

Time Module

CX : —EXT FCN

Reserved

CX : —EXT FCN

Operating system

(C) Copyright W&W Software Products GmbH 1985

.10

The Functions ASN and XEQ

To understand the following you should carefully read the
section entitled Functions for advanced programming or have at
least basic knowledge about synthetic programming.

ASN
The enhanced ASN function permits the following keyboard
entries:
a) The normal ASN function: If the user presses ASN followed

b)

c)

by ALPHA, the standard ASN function of the unenhanced HP-
41 will be run.

The assignment of any two byte function: When you press
the ASN key with the CCD-Module present you will see the
following prompt: "ASN: ~ : " The calculator is
prompting for two decimal byte values. When you key in
two bytes and press any key after that the two byte
function is assigned to that key. If you first press the
H key the operating system will prompt for hexadecimal
values. With ENTER or "." you return to the decimal
prompt.

Assigning an XROM number: The ASN function of the CCD-
Module allows the assignment of XROM numbers without the
module with that XROM number in the calculator. After you
have pressed ASN you simply press XEQ and you will see:
"ASN XROM: ". This prompt initially requests input of
the ROM ID (i. e., the portion of the XROM number which
precedes the comma, such as 9 or 11 for the CCD-Module).
After the entry of these digits, the prompt becomes "ASN
XROM:09: ", which indicates that input of the function
ID, which is to say, the portion of the XROM number which
follows the comma, is now expected (e. g. 01, for the
function "B?" of the CCD-Module). The prompt becomes
"XROM:09:01 ", which requests input of the code for the
key to which the function is to be assigned.

(C) Copyright W& W Software Products GmbH 1985 2.11

12}
Zz
=
=
)
Q
<
<
=
=
88}
%)
o
©)

XEQ

The enhanced XEQ function allows the following keyboard
entries:

a)

b)

The normal XEQ function: If ALPHA or a number key is
pressed after XEQ, we obtain the normal XEQ function. it
is the same as the unenhanced XEQ function of the HP-41.

The execution of any two byte function: When you press
XEQ and then ENTER you will see the prompt: "XEQ:

The calculator is prompting for two decimal byte values
When you key in two values the function is executed or
inserted into a program. If you press H before keying in
any value you will see "XEQ"__"__ "and the calculator
prompts for a hexadecimal input. By pressing ENTER or "."
you are returned to the decimal prompt.

The execution of an XROM number: The expanded XEQ
function provided by the CCD-Module also permits the
execution of function or application programs by XROM
number, even if the module is not present in the HP-41.
The key sequence XEQ ENTER XEQ generates the prompt "XEQ
XROM: "; this initially the input of the ROM ID number
(the portion of the which precedes the comma, such as 09
or 11 for the CCD-Module). After the entry of these
digit, the prompt becomes "XEQ XROM:09: ", which
indicates that the input of the function ID, which is to
say, the portion of the XROM number followmg the comma,
is now expected (e. g., 01, for the function B? of the
CCD-Module). If the calculator is in run mode and the
appropriate module is present (the CCD-Module in our
example), the function is immediately executed; otherwise
the error message "NONEXISTENT" is displayed. If the HP-

41 is in program mode then the instruction is inserted as
a program line.

NOTE

To avoid confusion, throughout this manual, and in the
programming of the CCD-Module, the appearance of the colon (:)
preceding and input prompt indicates that the number to be
input is of the decimal form, and if the colon is replaced by
an apostrophe (’), the input is in the hexadecimal format.

(C) Copyright W& W Software Products GmbH 1985 2.12

Direct and Indirect Memory Access Functions

To simplify the insertion of synthetic program lines, the CCD-
Module provides the capability for the direct entry of
synthetic instructions. Note that for very early HP-41’s
these capabilities are not available, so one must use
synthetic key assignments if this capability is desired from a
very early machine (see appendix on compatability).

All memory access functions (RCL, STO ,X<>) can now be
accessed directly from the keyboard and used to address all of
the status registers of the HP-41. Thus access to and
manipulation of the contents of registers M, N, O, P, Q, a, b,
¢, d, e, and lazy T is now no more complex than working with
X,Y,Z, T, and L. The keystroke sequence used to apply these
functions to the status registers is RCL . d.

Exercise caution in manipulating status register contents:

Altering the contents of registers - and a through e can lead
to a "MEMORY LOST" condition or to a system crash if the
register contents are improperly altered. Alteration of the
"cold start constant" 169 in register ¢ will always result in
"MEMORY LOST". Before experimenting with these registers the
user should throughly familiarize himself with the theory and
practical applications of synthetic programming. Several of
the references listed in the bibliography provide excellent
discussion on the subject.

(C) Copyright W&W Software Products GmbH 1985 2.138

wl
8
=
o
=)
L
Q
=t
<
=
=
88}
»
@)

Physical Address Structure of the HP-41 Status
Registers

Byte: 6) 4 3 2 1 0

e Shifte:i key osslignment IfIc:g bits l Scr1otch lr;‘i:;ber F

d Flag register E

c|X REG [scratech| 1 6 9 Rooo .END. | D

I t t Pro roriw

b Program poir?terl C

q return stack ' B

F Unshiflted key olssignmerl\t flag bi':s ' I A

Q Scratch 9

P 8 o
0 t = % 0
s O 735
z . ©

N ALPHA — Register 6 <

M 5

L Stack register L 4

X Stack register X 3

Y Stack register Y 2

Z Stock register Z 1

T Stock reglster T 0

\ ! <—— Mantissa ———‘% ! \ IExponent
Sign Sign

Status registers

(C) Copyright W& W Software Products GmbH 1985 2.

The Input of Any Alpha Character String

The CCD-Module enables the user to place in the ALPHA
register, or enter directly into a program line, any of the
256 character bytes available on the HP-41 (see byte table,
pages 1.20 - 1.21). This was previously possible using the
Extended Functions module or synthetic programming techniques.
Previously undreamed of possibilities, exploiting the use of
direct entry of lower case and special characters, are
presented especially to programmers making extensive use of
printers and HP-IL peripherals. The short sample programs
which follow make it apparent as to the extent to which memory
space may be conserved by taking advantage of these functional
enhancements:

%
-
=
o
=
=
L
Q
=
<
=
=
wn
~
<

Printout of the Text Line "Hewlett-Packard"

Using standard Using the lower
programming case mode of the
techniques CCD-Module
al«LEL “HF" G1elLEL "HF~
Az "H- A2 "Hewlett
"Z HCH —Fackard"
a4 SF 13 A3 AYIEW
A4S “EWLETT-— #4 EHD
a5 HCH FLHG “HF*"
a7 CF 13 =& BYTE=
As P
a3 ACH
1 SF 12
11 “"HCKAED
12 ACH
12 CF 13
14 FPREUF
1S5 EHID

FLHG “HPF*"

46 BYTES

(C) Copyright W& W Software Products GmbH 1985 2.15

Sending an ESC-Sequence to the Think Jet Printer

using standard
programming
techniques

Aail«lBL “WIT

E:x
gz =27
a3 ACCHE
w4 2=
#@5 ACCHE
He 1ay
A7 ACCHE
#4249
@3 HACCHE
1a 23
11 ACCHE
12 EHD
FLHG “"WIDE"
22 EYTES

by explointing the
lower case mode of
the CCD-Module

AlelLBL "I

E T3
az “"Ezk1ISC
H#Z HCH
@4 EHD

FLHG "HIDE™
12 EBEYTES

Thus it is readily apparent that the direct entry of lower
case and special characters greatly facilitates the ease and

"byte economy" in programming.

The lower case and special character entry mode of the CCD-
Module is available in ALPHA mode when user mode is off. The
special keyboard overlay included with your CCD-Module has the
printer control characters and other special characters listed
according to the color code which is described in the table on

the next page.

(C) Copyright W& W Software Products GmbH 1985

User Mode on Normal Alpha keyboard is active

Blue letters on key faces Capital letters A-Z and some
special characters

Blue letters overlay Special characters available by
pressing SHIFT

User mode off Lower case mode active

Red letters on overlay Special characters for unshifted

keys (note: that there are no
special notations for the lower
case letters, which have normal
key locations).

Green letters on overlay Special characters available by
pressing SHIFT

If the desired character is not available on the keyboard you
can key it in by its decimal or hexadecimal value by pressing
SHIFT ENTER for the decimal, or press SHIFT ENTER H if you
want to enter the character in hex.

Warning:

It is not possible to cancel <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>