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Before the Heaven and Earth existed

There was something nebulous:

Silent, isolated,

Standing alone, changing not,

Eternally revolving without fail,

Worthy to be Mother of Al1 Things.

I know not its name

And address it as Tao.

How the universe is like a bellows!

Empty, yet it gives a supply that never fails;

The more it is worked, the more it brings forth.

By many words is wit exhausted.

Rather, therefore, hold to the core.

The Book of Tao, LAOTSE
 

 
 





"I find my zenith doth depend upon a most auspicious star"
The Tempest, Shakespeare

FOREWORD

Our zenith is directly over our head. The zenith of a star is
its highest point of ascendancy as it climbs and descends the
horizon. A line from our position, our zenith, through the zenith
of the star marks the earth's polar axis. It is one of the
simplest and most useful truths of celestial navigation.

The practicality of using the sun and the stars for
navigation has been greatly advanced by development of portable
calculators and computers which render feasible the tedious and
lengthy calculations formerly made by use of logarithms aided by

charts and tables.

A second advance is given by this book (for what is believed
to be the first time) in using the Celestial Sphere as a
framework for orthographic projections to present a unified
picture of the location of the Observer, his position, and that
of the Star. This method allows identifying the essential

data needed for analysis and shows how they are related. Further,
it indicates the correctness of the solution.

Celestial navigation penetrates the nature of the universe.
Is the earth its center? What is the distance to the stars? These
questions have occupied the thoughts of all thinking men, among
them Aristotle, Galileo, Newton, Einstein and Kepler. They have
built our concept of the universe. New data are being
accumulated; new theories are being formulated. The study of
celestial navigation prepares us for improved future
understanding.
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INTRODUCTION

Celestial Navigation combines the science of applied
Mathematics (principally plane and solid geometry) with the
science of Astronomy.

Geometry is, like Astronomy, an ancient science, dating at
least from the Babylonian era of some 4000 years ago. Our basic
texts on Geometry were devised by Euclid over 2000 years ago.
Geometry deals with (1) the relation between the angles, lengths
and surfaces of a triangle, and other Plane (that is, flat)
shapes, and (2) the relation between the angles, lengths and

surfaces of a sphere and other Solid shapes .
Astronomy deals with the materials and energies of the

universe. It is subject to the universal laws of nature which
govern the relations between the elements. These include the
phenomena of Gravitation and Electromagnetic Waves (including
Light), and the Conservation of Energy.

Astronomy is an Observational Science. We cannot employ the
usual scientific approach to conducting experiments by varying
parameters. Yet, the countless observations recorded since the
dawn of history have supplied us with data to prove and disprove

many profound theories of the Universe.
The study of any science has a value, not only in defining

those laws which to it apply, but by pointing the way to central
fundamental laws. Celestial Navigation calls our attention to (1)
The Universal Totality of Energy and its conservation, and (2)

The Law of Rhythmical or Cyclical Behaviour.
The Totality of Energy is shown through the immutability of

the stars on the background of the Celestial Sphere. It is as if,
as Omar Khayyam said, they might be mere perpetual pin points of
light 1lit by a distant candle beyond the curtain of darkness. At
the same time, there is a destiny in our far future, as the
novelist H.G.Wells predicted, in which our Sun becomes a dull and
dying star. This, too, conforms to another scientific truth, the
Law of Entropy, in which all organized directed energy degrades

inevitably into chaotic unavailable energy.
Cyclical behaviour is shown by the yearly movement of the sun

to the north and south, by the rise and fall of the tides, and by
the waxing and waning of the moon. As le Chatelier wrote, any
change of a condition generates opposing forces tending to
restore the original condition. Thus, does a cycle develop.

These factors play a part in the nature of our world and the
universe. The study of Celestial Navigation can reveal many of

their workings and evidences of their existance.





METHODOLOGY

What instruments and data are needed for celestial

navigation?

First, a sextant, quadrant or astrolabe for finding the
elevation of the celestial body, that is, its angle from the
horizontal.

Second, a clock for determining the time of the observation.

Third, a method for finding the predicted location of this
body at this time combined with data given by the Nautical
Almanac. (One of the purposes of this book is to explain the
origin and significance of the data given in the Almanac and to

show how and why it changes from hour to hour; from day to day
and from year to year.)

Finally, a trusted compass is needed at all times to maintain
a continuity between position fixes, especially in times of heavy

weather.



NAVIGATION TERMS

Location
CELESTIAL SPHERE - As used in this book, a shell of zero

thickness having a radius of one Celestial Unit with the Observer

of zero dimension at its center and upon which all celestial
bodies are located. From this Celestial Sphere can be made ortho-

graphic (right angle) projections, or views, to show the Zenith
Plane, the Orbit Plane, the Horizon Plane and the Latitude Plane,
on which all necessary angles and directions are shown to scale.

ZENITH - (Spanish, cenit, from error in transcription of the
Arabic semt ar-ra's, the place of the head.) The point on the
Celestial Sphere directly above the Observer.

NADIR - Arabic, opposed, the point on the Celestial Sphere
below the observer's vertical.

POLE - The axis through the Earth's center toward the portion
of the Celestial Globe to which it always points. In the Northern
Hemisphere, the pole points to Polaris, the North Star. In the
Southern Hemisphere there is no prominent star to mark it, but it
is found with the aid of the Southern Cross.

EQUATOR - The plane through the center of the Earth perpen-
dicular to the Pole.

ECLIPTIC - The plane of the Earth's orbit about the Sun, and

on which the eclipses of the Moon occur; hense, the name.
UPPER TRANSIT - The highest elevation of the observed body as

it reaches its zenith in its orbit.
LOWER TRANSIT - The lowest elevation of the body as it

reaches the nadir in its orbit.
LATITUDE - The angle from the Earth's center, north or south

of the equator, from 0 to 90°.
MERIDIAN - The arc from pole to pole through a designated

position on the Earth's surface or on the Celestial Sphere.
GREENWICH - The original location of the Greenwich Royal

Observatory, just outside London, used as the zero reference for

positions east or west.
LONGITUDE - The angle from the Earth's center, east or west

measured from the Greenwich Meridian to the observer.
DECLINATION - The angular distance of a celestial body North

or South of the equator.
VERNAL EQUINOX - The spring passage of the Sun across the

equator.

ZODIAC - A band on the Celestial Sphere 8° to each side of
the ecliptic and divided into twelve 30° segments. During the
year, as the Sun appears to move in its circuit about the
Celestial Sphere, new portions of the Zodiac reach their
ascendancy during the hours of darkness and become visible.

FIRST OF ARIES - The position of the sky at the time of the
Vernal Equinox, originally at the start of the ascendancy of

Aries, the Ram.
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NAVIGATION TERMS

Directions
QOURSE - The path of movement of the vessel.
BEARING - The direction of the object as viewed by the

observer in the Horizon Plane; measured from the North and to the
East or West according to the location of the object on the
observer' meridian.

RHUMB LINE - (Spanish, straight) A course of constant
direction.

GREAT CIRCLE ROUTE - A course of changing direction; the

shortest distance along the Earth's spherical surface.
AZIMUTH - The same or a complement of the bearing but with

the angle measured eastward only.
ELEVATION - The vertical angle from horizon to observer to

the celestial body;
HOUR ANGLE - The angle between the designated meridian, the

Earth's center and the body measured westward from upper transit.

Time
APPARENT SOLAR TIME - The time shown by the sundial, telling

the arrival of the Sun at it's Zenith at the Observer's meridian.
MEAN TIME - The average time of a day given by a perfect

clock.
EQUATION OF TIME - The difference between mean time and

apparent time.
SIDEREAL TIME - Time as measured by the stars.

ix
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BASIC CONSIDERATIONS

CELESTIAL BODIES

The Sun

The Sun's energy, like that of other stars, is the result of

thermonuclear processes. Its core temperature is estimated to be
15 million degrees Kelvin (Celsius + 273). At the surface its
temperature is 6,000 K.

The surface of the sun is entirely gaseous and there can be
seen dark patches of turbulence known as sunspots. At the edges
there are discharges called flares, streamers and prominences.
These produce electromagnetic effects which interfere with radio
and TV reception and satellite navigation aids. Solar activity
varies in intensity and some studies indicate a cycle of seven

years.
The composition of the sun was first investigated by Joseph

Von Fraunhofer, a German optician, in the early 1880's. He mapped
the spectral separation of light into its wavelengths by passing
it through a triangular glass prism. Light emmited by each
element and viewed through such a prism creates a pattern of dark
lines (shadows). The pattern identifies the element. Von
Fraunhofer found an element unknown at the time which he named
Helium (Gr. helios, the sun).

The sun appears to move through the sky so that its track is
fartherest North in June and fartherest South in December. Its
angle from the earth's equator during this travel is called the
Declination. North Declination is signed positive; South
Declination is signed negative.

Declination is a maximum at the time of the two Solstices
(l1iterally, the sun stands still) which occcurs on June 21 and
December 21 for non-leap years and on June 20 and December 20 for
leap years.

Declination is zero at the time of the two Equinoxes
(literally equal day and night) which occur on March 21 and
September 21 for non-leap years and on March 20 and September 20
for leap years.

PLANE OF APPARENT ROTATI/ON
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 M—Sun in December
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The usual reference for astronomical calculations is the
Vernal (Spring) Equinox, or First of Aries,”*, named originally
for the constellation of stars visible at the time.

The time between successive events of solstices or of
equinoxes, as measured by the apparent travel of the sun about
the heavens, is approximately one-fourth year. However, as
Hipparchus noted in =120, it takes 186 days for the sun to pass
from the Vernal Equinox to the Autumnal but only 179 days to

return.
As an approximation, the sun's declination can be expressed

as a sine function:

Dec. = 23.44 sin ©

where Dec. = Declination, degrees
6 = Travel from Aries, 7, deg.

 

  

N23°26.5"

< T 2 7y

-—— 186days——] 523°26.5°

 

Example DECLINATION OF SUN

For year 1984. Vernal Equinox March 20, 10h GMT
Find sun declination August 1, 10h GMT

Count days between dates:

MAR APR MAY JUN JUL AUG

20 20 20 20 20 1
31+ 30+ 31+ 30+ 12 = 134 days

Convert to angle : (134/365.24) x360= 132.08°

Dec. = 23.44 sin 132.08 = 17.40°
(Compare to Almanac, N17° 54.8')



The Earth

The nearly spherical form of the earth was taught by the
Greeks: Pythagoras in =600 and Aristotle in =-400. The latter
cited the shape of the earth's shadow on the moon during an

eclipse. Other arguments for this shape are the progressive
upward emergence of a distant body as we approach it on the
horizon and the changing position of the stars as we move from
north to south. Magellan's ship circumnavigated the globe in 1522
to prove this postulate and recent space explorations sent back
visual evidence.

The earth's size was first determined by Eratosthenes of
Alexandria in -250. He made two simultaneous observations of the
sun's altitude in midsummer: one at Syene, near the equator, and
one at Alexandria, 500 miles to the north. He found the sun at
Syene to give a shadow at its zenith which was 7-1/4 degrees less
than the one at Alexandria. He deduced that the angular
difference corresponded to the difference in latitude.

By ratioing Eratosthenes data, we see that:
(360/7.25) x 500= 25,000 miles

At the time of Columbus the earth was thought to be
considerably smaller, which is the reason that Columbus thought
he had found islands off the coast of China (hense, the West
Indes) .

The earth's rotation was demonstrated in 1851 by Jean Bernard
Foucault (who invented the gyroscope) using a heroic experiment
in which he swung an iron ball from the dome of the Pantheon in
Paris. The motion was started by the burning of a cloth tether
with the ball drawn to the side. The plane of motion was found to
shift with each swing (marking a track along the sanded floor)
and to rotate its plane once each 32 hours.

Considering that the ball swings in a constant plane and the
earth rotates, the rotation should be 24 hours at the pole and
increasing toward the equator.

Deviation= 15.00 sin L in degrees/hour
L= Latitude, deg.

Example LATITUDE BY FOUCAULT PENDULUM

Observed: 40 hours per revolution

Latitude= sin~1((360/40)/15) = 36.87°



The Moon

The moon rotates about the earth and rotates about its own

axis at a rate such that only one half of the moon's surface is
ever visible from the earth. :

The distance of the moon from the earth can be determined by
triangulation. That is, by measuring the angle of the moon's

direction from two points separated by a known distance. The

method is known as Geocentric Parallax. The mean distance from
the earth to the moon is 238,000 miles.

The moon's diameter can be found by observing its angular
width in a telescope and then computed from the known distance.

The moon, like the sun, moves through the sky in an east-to-
west direction, but falls behind the motion of the stars by some

13 degrees per night. It makes a circuit of the stars, a lunar
month, in approximately 27-1/3 days.

With reference to the sun, the lunar month is about 29-1/2

days (a month is a moon). This is known as a synodic month (a
conjunction). The time varies more than half a day by effects of

the earth and sun gravity.
The phases of the moon result from the changing angle of view

from the earth:

O @ ——
@ Qi‘la:f;r @ -

Gibbous Crescent

D O -—
Full Dark SUN

EARTH New

D D —
D -

Third Quarter

PHASES OF THE MOON



The Stars

The Celestial Pole is the extension of the Earth's Pole and
is marked by two points on the Celestial Sphere. In the northern
hemisphere the pole is located within one degree of Polaris; in
the southern hemisphere there is no prominent pole star but it
can be found by the Southern Cross. The stars appear to rotate
daily about the two poles as viewed from either hemisphere. It is
the constancy of the rate of rotation and angle of rotation of
the Earth, like a constant spinning top, that causes this effect.

The stars are visible during the daylight hours and during
their elevation above the horizon of the observer. This precludes
viewing those stars which reach our horizon only during daylight;
they become visible when the Sun has moved to a new location in
its apparent yearly circuit about the sky.

In the whole celestial sphere there are some six or seven
thousand stars visible to the naked eye. The stars were studied
by the Babylonians some four thousand years ago and who had vast
libraries of clay tablets inscribed by cuneiform (wedgeshaped)
writing equivalent to phonetic script on subjects which included
astronomy and mathematics. The Babylonians were the first to use
the structural arch and from them we derive our system of sets of
12 and 30; our circle of 360 divisions.

The first star catalog was made by Hipparchus of Bithynia in
-125 and listed 1080 stars. This catalog was used by Ptolemy 250
years later. In 1450 a star catalog was made by Ulug Beigh at
Samarcand. Tycho Brahe noted 1005 stars. The Nautical Almanac
lists 57 stars as being of importance to navigators.

Hipparchus and Ptolemy graded stars into six classes of

magnitude with the brightest as Class 1 and the barely visible as
Class 6. Sir John Herschel, using photography, showed about 1830
that the first magnitude star is about 100 times as bright as the
sixth. Negative values, as for Venus, indicate exceptional
brilliance.

Star distance is so vast that until 1833 no estimates were
made. In that year Henderson of th Cape of Good Hope estimated

the distance of a star using the comparative angles as viewed in
Winter and Summer, in effect using the Earth's orbit as a triang-
ulation base. The nearest star is Alpha Centauri at 271,000 AU
(Astronomical Units, the distance of the Earth to the Sun).

Our own sun is a star in the Milky Way Galaxy (Gr. Milky)
which stretches across the sky as countless points of light.
Telescopes resolve other apparent stars as other galaxies, each

composed of millions of suns.



Change in Star Positions

The stars have changed little in observed declination in the

last two thousand years but have changed some 30 degrees in Right
Ascension, or Sidereal Hour Angle. The principal factor in
changing the star's apparent position is the rotation of the
intersection of the earth's pole on the Celestial Sphere. This
rotation is at the rate of 25,800 years or about 50.2" per year.

The physical cause of precession was described by Newton as
being the gyroscopic effect caused by the equatorial bulge and

the earth's rotation. The attraction of the Moon has a disturbing
effect on precession with the Sun as a lesser factor. The effect

of the Sun and the Moon is zero at the time both are at the
equator. The maximum disturbance is about 9.2" and runs over a

period of 19 years, corresponding to the Lunar Cycle.
Another factor to change the apparent star positions is the

aberration of light, as discovered by Bradley in 1725. This
results by combining the effects of the speed of 1ight and the

earth's motion. The maximum aberration of any star is about
20.5", which is called the Constant of Aberration. Stars near the

pole move in a circle of diameter 41"; stars at the ecliptic move
in straight lines of length 41". Those between the pole and the
ecliptic move in an ellipse of major axis parallel to the

ecliptic and always 41" long.
Almanac data show the following change in location for the

star Beta Gemmini, Pollux:

1925 Jan 1 R.A. 7h 40m 44.3s (7.6789h)
SHA = 360° -(7.6789 x (360/24)

= 244.8154°
= 244° 48.9"'

1983 Jan 1 SHA = 243 55.8

SOIAR SYSTEM DATA

 

Body Mean Distance Sidereal Diameter Inclination Known
From Sun, AU Period Miles to Ecliptic Moons

Sun ® - -— 865,000. -— -—-
Moon ¢ --- 27.3 days 2,160. 5° 9! -—
Mercury ¥ 0.387 87.9 days 3,100. 7 0! 0
Venus @ 0.723 22)y.7days 7,700. 3% 2| 0
Earth @® 1,000 365.2)y days 7,927. —— 1
Mars o' 1.524 1.88 years ),200. 1° 51! 2
Jupiter % 5.203 11.86 years 88,700. 19 18! 12
Saturn W 9,539 29.46 years 75,100, 2° 29t 9
Uranus 19,182 8l;.01 years 32,000. 0° Lé6! 5
Neptune ¥ 30.058 164.79 years 27,700, 1° 46! 2
Pluto 39.518 2L8.43 years 3,600. 17° 9! 0

% Mean Sclar Days



The Planets

Planet is a Greek term meaning "the wanderer". As such, they
grouped the Sun, the Moon, and Mercury, Venus, Mars, Jupiter and

Saturn.
Mercury is visible to the naked eye near the horizon before

sunrise or after sunset. (The noted observer Tycho Brahe was
never able to see Mercury.) Venus is brighter than any star and
can be seen in the daytime if not too near the sun. The angle
between Venus and the Sun is never more than 47 degrees. Jupiter,
and sometimes Mars, are brighter than any star. Saturn appears as
another star.
When two planets are close together the body with the greatest

Right Ascension is most eastward. The term comes from the right
angle which the body makes with the horizon as it first becomes
visible in moving to its zenith.

The Constellations

The constellations are configurations of stars. The Greeks
recognized 48 constellations with which they connected the forms
of heroes and animals. Twelve of these comprise the Zodiac.

The stars in a constellation are subnamed generally by the
method of Bayer in 1603. He preceeded each star in the
constellation with a letter of the Greek alphabet according to
its relative brightness.
The stars in some constellations are named with the Greek

letter according to its order of appearance on the horizon (its

Right Ascension).

THE GREEK ALPHABET

1 Alpha A & 13 Nu N ¥
2 Beta 3 3 1, X = <
3 Gamma r v 15 Omicron O o
L Delta A d 16 Pi I 7
5 Epsilon E € 17 Rho P r
6 Zeta zJ 18 Sigma y o
T Eta H n 19 Tau ™ 7
8 Theta © @ 20 Upsilon T v
9 Iota |o¢ 21 Phi d ¢

10 Kappa K K 22 Chi X X
1 Lambda N A 23 Psi ¢ w
12 Mu M K 2l Omega N0 w



The Zodiac

The Zodiac (Gr. Zoo) was described by Hipparchus in -200. It

is a part of the celestial sphere through which the sun and

planets move. The Ecliptic, the path of the sun (along which it

may eclipe the moon), is at the center of the Zodiacal Band which

has a width of 16 degrees.
The Zodiac is divided into twelve constellations or Signs or

Houses. Half of these lie north of the equator.
The Precession of the Equinoxes causes the stars to advance in

relation to the Vernal Equinox (the time of zero sun declination
in the spring). This effect was first described by Hipparchus in
-125 who cited its discovery by the Babylonians some 400 years
earlier. The rate is one day in 70 years. The stars have shifted

30 degrees since the time of Hipparchus. While we say the Vernal

Equinox to occur at the first point of Aries our observations
show it to be in Pisces.

SIGNS OF THE ZONIAC

1 o ARIES, Ram Mar 21 Vernal Equinox

2 8 TAURUS, Bull Apr 20
3 X GEMINI, Twins May 21

l, % CANCER, Crab Jun 22  Summer Solstice

5 i LEO, Lion Jul 23
6 wp VIRGIO, Virgin Aug 23
7 £ LIBRA, Scales Sep 23  Autumn Equinox

8 m_ SCORPIO, Scorpion Oct 23
9 &  SAGITTARIUS, Archer Nov 22
10 v¢ CAPRICORNUS, Goat Dec 22 Winter Solstice
11 X% AQUARIUS, Water Bearer Jan 20
12 ¥ PISCES, Fishes Feb 19



CELESTIAL MECHANICS

Historical

The Geocentric Theory- The Geocentric (Gr. Earth) theory holds
that the earth is the center of the universe. It assumes the
earth to be stationary and the sun, planets and stars to revolve
about it. It is the theory most in accord with our senses. The
theory was advanced by Hipparchus and is also known by the name
of Claudius Ptolemaeus, a Greek-Egyptian mathematician and
mapmaker.

The Geocentric Theory has one disturbing effect to account
for. At times the planets appear to move backwards through the
sky to describe elongated ellipses. The ancients explained that
the planets both moved in circles about the earth as well as in
circles about themselves, producing Epicycloidal Motions.

The Heliocentric Theory- This theory, that the sun is the
center of the universe, was first attributed to Aristarco of
Samos in -270. The theory was revived by Nicolaus Copernicus, a
Polish astronomer, in 1543. The theory explains the apparent
motion of the planets.

The Tychonic System—- Tycho Brahe, a Danish astronomer, held
that the earth was stationary but that the other planets moved
about the sun. He made special instruments including a steel
quadrant with which he could measure within a minute of arc.

Only the Copernican theory agrees with the test of the
aberration of light (the apparent shifting of position of the
stars caused by their motion) and the annual parallax of the

stars (the shift in star position with the seasons).

Galileo's Law of the Pendulum

Galileo Galilei was the first to observe celestial bodies with
a telescope. His work was published in 1610. He discovered the
moons of Jupiter and noted its analogy with the theory of
Copernicus. For denying the Geocentric Theory he was imprisoned
by the authorities but allowed to continue his work. (The Holy
Roman Empire ruled Central Europe from 962 to 1806). He began a
scientific revolution and made findings of (1) the principle of
inertia, (2) the law of the descent of bodies, (3) the principle
of relativity, (4) the composition of velocities, and (5) the law

of the pendulum.

The Law of the Pendulum:

T = 27 (L/g) /2

where T = Period, seconds (time for swing cycle)

L = Length of swing, feet
g = Gravity, feet/sec-sec



Kepler's Laws of Planetary Motion

Johannes Kepler worked with Tycho Brahe and used his data and

observatory to devise fundamental laws of planetary motion. The
first two were published in 1609.

1. The orbit of each planet is an ellipse, with
the sun being at one foci.

2. The radius vector of each planet (the line joining
its center with that of the sun) moves over equal
areas in equal times.

3. The square of the period of each planet's
revolution around the sun is proportional to the
cube of its distance from the sun.

Newton's Laws of Motion and Gravity

Isaac Newton published in 1687 the Principia Mathematicia
which proved the assumptions of Kepler and added new laws:

1. A body in motion tends to remain in motion unless
acted upon by external force.

2. Force is equal to mass times acceleration.
3. The attraction between any two particles is

proportional to the product of the mass of each
particle divided by the square of the distance
between them.

Bode's law of Planetary Spacing

J.E. Bode, a German astronomer, attributed to Titus of
Wittenburg the relation which was responsible for discovery of
the asteroids. The distance from the planet to the sun is found
(in A.U.) by the number 4 plus 3 doubled for each increment.

RRPR+ + + + + + 96 4192 .3

T 7 To 16 2 57 150 156 388
0.4, 0.7 1.0 1.6 2.8 5.2 10.0 19.6 38.8

; ;< © H 0
0 + &~ + 3 g

§ & B 8 3 & § 8 &$8 54 & 3 5 5 8
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RHYTHM

The realization of Newton's First Law of Motion implies the

absence of any second particle of matter in the universe. This
not being so, as the simplest case imagine a second particle of a
different mass and with a velocity in another direction.

The two particles will be attracted to each other, toward a
center of mass between the two particles. They will accelerate
toward this point. The point is not fixed, however, but moving.

Considering one body alone, it will move in a closed curve of
which one of the foci must coincide in position with the common
center of gravity.

This condition is realized in every case of planetary
revolution. This constitutes rhythmical behaviour; velocitys are
rhythmically augmented and diminished.

Thus in all cases, whether molar or molecular, the rhythm of
motion is necessitated by the fact that no portion of matter is
uninfluenced by other forms of matter.

The theory of rhythm is eloquently put by John Fiske, circa
1890, in his Outlines of Cosmic Philosophy:

"Periodicity, rise and fall, recurrence of maxima
and minima,...this is the law of all motions whatever,
whether exemplified by the star rushing through space,
by the leaf that quivers in the breeze, by the stream
of blood that courses through the arteries, or by the
atom of oxygen that oscillates in harmony with its
companion atoms of hydrogen in the raindrop...The
phenomena which are represented to our consciousness as
light, heat, electricity and magnetism, are the
products of a perpetual trembling, or swaying to and
fro of the invisible atoms of which visible bodies are
composed. When we contemplate the heavens on a clear

autumn evening, and marvel at the beauty of Sirius,
that beauty is conveyed to our senses by the medium of
atomic shivers, kept up unceasingly during the past
twenty-two years, at the average rate of six hundred

millions of millions per second."
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TERRESTRIAL COORDINATES

The earth is usually assumed to be a sphere. The equatorial

diameter is about 7,926 miles; the polar diameter about 27 miles
less. This results in an equatorial circumference of 24,900
miles.

Navigation distances are given in nautical miles of 6080 feet
(as compared to 5280 feet per statute mile, for a ratio of 1.1515

nm/sm). Accordingly, the equatorial diameter is 21624 nm, or 60
nm/degree or 1 nm/minute of arc.

Latitude- The earth is assumed to be circled by parallel
lines extending east and west and reaching from the equator to
the poles. The parallel of zero latitude is the equator. The
parallel of 90 degree latitude is at the pole. The distance
between any two parallels is constant.

ILongitude- The earth is assumed to be covered by arcs or
meridians extending from pole to pole. The Prime Meridian passes
through the Royal Observatory at Greenwich, near London.
Meridians of longitude extend 180 degrees to the west and to the
east (signed positive for west and negative for east in this
text). East and West Longitudes meet in the Pacific at the
International Date Line, at which the new day begins.

12



MAPMAKING

The Greeks were the first to elevate mapmaking to a science.

Erastostenes, head of the great library of Alexandria (which was
later burned totally), determined the circumference and tilt of
the world. His map showed known geographical features with

considerable precision of latitude and longitude. Strabo (=63 to
21) is known for 27 volumes of geography.

The New World is named for Amerigo Vespucci, famed Florentine
navigator and cartographer, who discovered the Falklands in 1504.

It was Vespucci who determined that Columbus had found a new
land. Vespucci also discovered the mouths of the Amazon and
devised a system for computing exact longitude by use of the
moons of Jupiter.

In general, however, early maps appear distorted by (1) the
general inability of the ancients to determine proper longitude,
and (2) lack of a good method for showing the earth's sphere on a

flat plane.
The most used projection for navigation was devised by

Mercator a Flemish man named Gerhard Kremer (Kremer, German,
merchant). His map appeared in 1569. This is a Conformal
Projection, one in which the shape of a feature is the same as on
the globe. The meridians appear as evenly spaced vertical lines.
The latitudes are spaced proportional to meridian spacing on the
globe. Areas are exaggerated near the poles. Compass directions
appear as straight lines. A great circle is a curved line.

The Gnomic Projection was originated by Jean Dominique
Cassini (1625-1712), member of a famous family of French
Astronomers originally from Italy. Jean Dominique used

simultaneous observations at the Paris observatory and at other
localities to prepare maps of great accuracy. In the Gnomic
projection, which is a projection upon a tangent plane from the
earth's center, all great circles are shown as straight lines.
Use is made of the Polar and the Equatorial case.

The Lambert Conformal projection shows the earth's surface upon
a cone. Meridians and parallels intersects at right angles. Three

cases are used: the Polar Hemisphere, the Equatorial Hemisphere,
and the Oblique World Map.
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NAVIGATION INSTRUMENTS

The Compass

A primitive compass can be made by floating on a cork a

naturally magnetized lodestone. The stone will align its axis
with the local magnetic field so that a particular end will

always point to magnetic north.
The magnetic north is in the vicinity of Hudson's Bay in

northern Canada. Magnetic north has had historical migrations as

shown by ancient stones.

The compass direction of magnetic north can vary according to
earth magnetic fields. The difference in compass direction and
true north is called variation or magnetic declination. It can
exceed 30 degrees.

An installed compass must be calibrated for deviation, the
effect of the ship's magnetism. This is done be swinging the

ship, that is, facing the ship in directions around the compass
and noting the compass error at each point. Deviation can be
minimized by use of "Flinders' Bars" (named for Captain
Flinders) to counteract such local magnetism as the engine.

The modern compass has been rendered insensitive to most
error by addition of the gyroscope in 1920 by Elmer Ambrose
Sperry. The gyroscope is the nucleus of inertial guidance
instrument which sums motions in three axes. Like all complex

instruments it should have backup provisions.
The compass is graduated into 360 degrees of arc with each

degree divided into 60 minutes and each minute into 60 seconds.

The marine compass is divided into 32 points of 11-1/4 degrees
each. The Cardinal Points are North, South, East and West. Boxing
the Compass consists of naming the points: North, N by E, NNE, NE
by N, NE, NE by E, ENE, E by N, East, etc.

The Lubber's Line is a mark on the compass bowl to indicate

the direction of the ship's keel. The Pelorus is a dummy compass
with sighting vanes and a lubber's line to take bearings of

distant objects.

14



The Astrolabe and Quadrant

These are device for measuring angles, usually from the

horizon to a star. The astrolabe (from the Greek, meaning to know
the stars) is thought to have been invented in the latter part of
the sixteenth century by the Arabs. It has a small circular disc

with moveable sights and scribed markings. They were often
carried by travelers on a lanyard about the neck. Quadrants
served the same purpose for stationary studies and were often
made in large sizes.

The Telescope

Galileo is credited with making the first telescope in 1609.
He is said to have heard of such devices in Holland. His was a
refracting telescope consisting of two lenses through which light
passes with a change of direction, refracted by the glass boundaries.

The reflecting telescope consists of a curved mirror by which
light is concentrated to an observation point. The 200 inch Hale
telescope at Mount Palomar is of this type. Mount Palomar has
also a Schmidt telescope which combines the reflecting mirror
with a refractive lens for greater angle of field.

Archimedes of Syracuse is reported in the Roman siege of =212
to have set fire to the ships in the harborby use of mirrors to
concentrate the sun. The laws of optics were studied by the
Islamic Ibn al-Haytham, or Alhazen (965-1038). He investigated
reflection and developed equations describing use of curved
mirrors. His work on lenses was unsurpassed for centuries.

Soon after Galileo's discovery, Christiaan Huygens published
works on improved lenses and theory. He gave us the principle of
the wave theory of light. The wave theory of light was developed
by Augustin Jean Fresnel (1788-1827). He dealt with interference
and polarization and invented the Fresnel lens, flat transparent
and ridged with circular groves on one side.

Huygens Principle: Every point on a wave
front of light is the source of new waves.

The classic work on Optics was written in 1704 by Isaac
Newton who treated light as minute particles. Those of different
size have different color.

15



The Sextant

The sextant (sixth of a circle) came into use about 1730. The
framework is a circular arc marked from 0 to 120 degrees. A
moveable arm intercepts the graduated arc and holds a mirror at
its pivot. A second fixed mirror on the frame reflects light to

the observer who also sees simultaneously the horizon through the
fixed mirror which is half-silvered. When the sextant is set at
zero angle the horizon viewed through the clear glass and the two
mirrors should appear as a single line. If the reading is not
zero an "index error" occurs, which can be adjusted to zero.

In using the sextant on a star, the angle is set to zero to

view the star, then, holding the star in view, draw down the
angle to the horizon.

Corrections must be made for the difference between true and
observed angle caused by refraction and parallax. Refraction is
caused by bending of the light ray as it enters the earth's
atmosphere. Parallax is caused by the observer not being at the
earth's center. Values for refraction and parallax are combined
in Almanac "Altitude Tables".

The horizon appears to be lower as the observer's height is
increased. This effect is known as dip. The value of dip is given
by the Almanac.

Observations of the sun and moon are made at the upper or
lower edge, spoken of as the limb. The semidiameter must be added
or subtracted using Almanac values.

Example SEXTANT CORRECTIONS

Data: Observer's height, 45 feet

Observed star at altitude, 46° 00.5'

Procedure, with Values from Almanac:

Sextant Altitude, He=  46° 00.5'
Dip = -11.2"

Sextant Apparent Altitude, Hy=  45° 48.3'
Altitude Correction= -00.9'

Observed (corrected) Altitude, H_= 45° 47.4'
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The Chronometer

Mechanical clocks date from the fourteenth century and were
at the time so large they were placed in clock towers where
everyone could see. Portable clocks were made in 1430, and in
1509 the first pocket watch was made. Christiaan Hugens in 1660
made his first chronometer. John Harrison made an accurate

timekeeper in 1735 weighing 65 pounds and using pendulums.
The chronometer (Gr. chronos, time) is the name for a highly

accurate clock used for navigation. Current technology has
brought high accuracy to the inexpensive quartz watch, timed by
the vibrations of the quartz crystal excited by electrical
impulses. Quartz watch accuracy of 30 seconds in a year is
typical, with a battery life of two years or more. A spare watch
should be carried and set to Greenwich time.
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PLANE NAVIGATION

Analytical Considerations

Navigation consists of setting a compass course, or series
of courses, from an origin described by a set of latitude and

longitude to a destination described by a new set of latitude and
longitude.

The essentials of navigation are increments of speed, time and
direction. Each of these variables needs to be recorded in the
log at the instant that the change occurs, or if constant,
confirmed at intervals. Paths of constant speed and direction
constitute legs of the journey and are used to compute the dead

reckoned position.
Plotting should be used where feasible to indicate the chart

position and heading. Plotting can reveal gross errors not seen
when inputting data to computers.

A navigation position is most accurately determined by direct

observation of known geographical features. Navigation aids, such
as satellite data, bouys, radio direction signals, and navigation
lights are the usual source of navigation data. It is always
desirable to confirm their validity by celestial navigation.

Precision of Computation

The precision with which a position can be located depends on
the accuracy of the data and its depth of subdivision. By design,
one minute of arc equals one nautical mile. For a positional

accuracy of one mile, then, we require data and computation
accurate to one minute of arc.

(Note that an accuracy of one nautical mile allows
a latitude tolerance of plus or minus one mile as
well as a longitude tolerance of one mile.)

An equivalent precision is required for time measurements.
The global circumference in terms of time is 24h x 60m, while in
terms of arc it is 360° x 60'. We see then that one minute of arc
is equivalent to 24m/360' or 1/15m = 4s. Accordingly, one
nautical mile accuracy would require a time measurement within 4
seconds.

In fractional terms, one minute of arc requires a computational
accuracy of

1'/ 60'= 0.0167 degree

4s/(60m x 60s)= 0.0011 hour

18



Plane Geometry

Geometry by Inspection - The Propositions of Euclid (of which
G.A.Wentworth in Plane and Solid Geometry, Ginn & Co., 1902,
describes over a hundred) form the basis of plane geometry and
provide rules by which geometric figures can be rapidly
categorized. Some of the most useful are:

  

1. Parallel lines are everywhere equidistant.
2. Parallel lines cut by a transversal form angles

which are the same at each parallel line.
3. For two intersecting straight lines the opposite

angles are equal.
4. A perpendicular is the shortest line which can be

drawn to a straight line from an external point.
5. An acute angle is one of less than 90 degrees;
an obtuse angle is one between 90 and 180 degrees.

The extention of one side of an acute angle past the apex
forms an obtuse angle equal to 180 degrees minus the acute angle.

6. A right triangle is one which has one interior
angle equal to 90 degrees.

7. The sum of the interior angles of a triangle is 180
degrees.

Pythagorean Theorem - The square of the hypotenuse of a right
triangle is equal to the sum of the squares of the other two
sides.

al + b2 = 2

Geometric Identities - There are three fundamental geometric
identities which relate to a right triangle:

SINE - or sin; opposite side
divided by hypotenuse; sin A=a/c

B
COSINE - or cos; adjacent side

divided by hypotenuse; cos A=b/c

TANGENT - or tan; opposite side
divided by adjacent side; tan A=a/b c a

A C 
19



The Law of Sines - The sides of a triangle are proportional
to the sines of the opposite angles:

a/sin A = b/sin B = ¢/sin C

The Law of Cosines - The square of any side of a plane
triangle is equal to the sum of the squares of the other two
sides diminished by the product of the othe two sides and the
cosine of their included angle:

a2=b2+c2-2bccosA

Vectors

A vector is a straight line which represents both a magnitude

and a direction. For example, a speed of ten knots and a course

of 45 degrees could be represented by a line of a certain scale
length and a particular angle to the chart base line. The top of
the chart is usually North, and is so noted. The direction is

represented by an arrow head, with the other end called the tail
of the vector.

A vector can be resolved into components which are parallel

to the vertical and horizontal axes. For navigation, the vertical
dimension is the change of latitude; the horizontal dimension is

the change of departure. (Considering that distances between
longitudes are variable.)

Vectors can be combined on a chart by adding the tail of the
second vector to the head of the first. The resultant vector is
drawn from the origin to the end.

Alternately, vectors can be combined at the origin. Then, a

parallelogram is constructed by adding two parallel sides. The
diagonal is the resultant.

[
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Earth locations on a map are determined by Cartesian
Coordinates (devised by Rene' Descartes). The origin is our
starting point and through it extend horizontal and vertical
lines representing the four cardinal compass points, N,E,S, and
W. These lines separate the the circle into four Quadrants,
reading clockwise numbered I, II, III, and IV. Plus is to the

North and East. Minus is to the South and West. Accordingly, any
point on the map can be connected with the origin and the base
lines to form a triangle. The trignometric functions of this
triangle have signs corresponding to the quadrants.

The direction measured clockwise from North is called the
Azimuth. By use of trignometric relations we can use this angle
to find the vector components and resultant vector for, say, two
legs of a traverse.

East-West distance (Departure):

North-South distance, Latitude:

dL = D1 cos A1 + D2 cos

Resultant: R = (dD2 + sz)l/2

In the First Quadrant, the azimuth angle, 0, is:

8 = tan"1(dD/dL).....which is read
"the angle whose tangent is"

Angles in other Quadrants have equivalent
values:

Second Quadrant, 6 = 180 - abs 6
Third Quadrant, 6 = 180 + abs ©
Fourth Quadrant, 6 = 360 - abs 6

 

   
ADDITION OF VECTORS SIGNS OF COMPASS QUAIRANTS
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The Rhumb Line and Traverse: - A course of constant direction
is a Rhumb Line (Span. direction). It appears on a Mercator chart
as a straight line. A series of rhumb lines constitute a Traverse.

Example TRAVERSE DIRECTION AND TRUE COURSE

Data: Leg 1 Distance, D; 240 nautical miles

Azimuth, Aq 68. degrees

Ieg 2 Distance, D, = 15 nm
Azimuth, A5 = 165.°

Procedure:

(1) Find value for departure, dD

dD = Dl Sin A1+D2 Sin A2

240 sin 68. + 15 sin 165. = 226.41 nm

(2) Find value for latitude, dL

dL Dl Ccos Al + D2 cos A2

240 cos 68. + 15 cos 165 75.42 nm

(3) Find Resultant, R

R (a2 + ar?)1/2

((226.41)2 + (75.42)2)1/2 - 238.64nm

(4) Find azimuth of resultant, 6

8 =tan~l(dD/dL)

tan~1(226.41/75.42) = 71.58°

The vector is in the First Quadrant

22



Example OOURSE CORRECTION FOR DRIFT

Data: Azimuth, true heading, 6;  68.°

Speed, True Heading, Sy 240. knots

Azimuth, Drift, 6p 165.°

Speed, Drift, Sy 15. knots

(Currents are described in direction as set
with speed inknots as drift)

(1) Departure component, Cy

CH = SH sin GH + SD sin GD

= 240 sin 68 + 15 sin 165 226.41 knots

(2) Latitude component, Cy

Cy = Sy cos 8y + Sp cos 6p

= 240 cos 68 + 15 cos 165 75.42 knots

(3) Resultant, R

R = ((226.41)2 + (75.42)2)1/2 - 238.63 knots

(4) True Course, ©

8 = tan~1(226.41/75.42) = 71.57°

True Heading
True Course
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Middle ILatitude Sailing

"Sailing" is the term which describes a method of solving
navigation problems. These problems are:

1. To find the course and distance between two known points.

2. To find the position after sailing a known distance on a
given course.

Middle Latitude Sailing is a navigation analysis method which

uses the latitude midway between the point of departure (origin)
and point of destination to determine the departure (East-West
distance). The root of the problem is that the distance between
longitudes is not constant, being 60 nautical miles at the
equator amd zero at the poles.

By definition the Longitude change at the Equator per degree
is:

dm/d, = 60 nm/deg = 2 pi r,/360
The radius of the earth at a given Latitude is:

Iy = Iy COs L

The Longitude change per degree at the Latitude is:

dm/d; = 2 pi (rg cos L) /360

Transposing: r, = 60 x 360/ (2 pi)

then dm/d; = 60 x (2 pi/360) x (360/(2 pi)) cos L
= 60 cos L deg/nm

for instance, the longitude spacing at latitude 59 is

dm/dgg = 60 cos 59.0000 = 30.9022 nm/deg5
further, the departure distance per minute of arc at 59° is

simply cos 59.0000 = .5150nm/’'
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Dead Reckoning

Dead reckoning is the term used to describe estimating the
location by use of a known point of origin and measured courses
and distances. Middle latitude sailing can be used in this
analysis.

The indicated direction needs to be corrected for (1)
Compass Deviation, (2) Compass Variation, (3) Vessel leeway, and
(4) Vessel Drift.

Deviation is the result of onboard magnetic disturbances.
The deviation varies with the heading of the vessel. A "compass

card" is made up to describe the magnitude and direction of the
correction to be made as found by test.

Variation is read from a chart of the locality. It can
change over a period of years.

Leeway describes the action of the wind and the waves which
cause the vessel to deviate from the desired direction of travel.
It may be influenced by unsymmetrical drag.

Drift refers to the currents which add secondary components
of motion to the vessel.

These items are tabulated in columns with rows for each
course, together with distance and the Latitude/Departure
components; then summarized. The direction of the wind should be

noted.
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Example (continued)

Dead Reckoning From Farallon Island Light

Use Program TRAVERSE COMPONENT SUMMATI QN

ENTER: N =8

 

 

1 Dist., = 12

Head. = 263

2 Dist. = 60
Head = 352

3 Dnist = 65
Head = 183

L, Dist = 64
Head = 255

5 Dist = 63
Head = 287

6 Dist = 62
Head = 317

7 Dist = 61
Head = 33l ZHEPARTVEE——b=  £ARALLN

8 Dist = 18 | s
Head = 171

Find: Latitude = 77 .29 nm
Departure = 211,94 nm
Distance made good = 225,59 nm

Find Middle Latitude:

Change of latitude: 77.29 nm/60 m/deg = 1.29 deg

Original latitude: 37° L1' 51" N = 37.70°N

Final Iatitude : 37.70 + 1.29 = 38.99°N

Middle Latitude : 37.70 + 1/2 x 1.29 = 38.35°N

MIDDIE LATITUIE ILONGITUDE SPACING

Spacing is 47.0l nm/degree

123° 0Q! O7" W + (211.94/L7.0L)Final Longitude
127.51°W

Dead Reckoned New Position: Iatitude 38.35°N
Longitude 127.51°W
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True Speed by Observation of Fixed Object

The navigator can determine his true speed by observing a

fixed object while maintainming a constant speed and direction.
The method consists of observing the angle between the true
course and the object through an angle change of some 20 degrees
and noting the time lapse between readings.

Note that the true course is the track across the earth'!s

surface accounting for drift. The true heading is the corrected

compass direction.

The perpendicular distance from the true course to the

object must be known. For an airplane this is the altitude. The
direct distance from the ship to the object, as measured by a

rangefinder, must be corrected to the perpendicular.

Dp=I.hsinO

where D_ = Perpendicular distance

Lh = Range from ship to object
©" = Angle between path of ship and object

PATH
 

 
 

 

The distance from the object on a perpendicular through
the object is

L2 =Dp/tan 02

13 =D /tan 6
p 1

The true speed of the ship during the imterval dT is:

S = (Dp/tan e, - Dp/tan 01)/d£[‘
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TRUE SPEED BY FIXED OBJECT

Example TRUE SPEED BY OBSERVING FIXED OBJECT

DATA: Range to object, 5320 feet, L
First angle from path to object, 6, = 70. deg
Second angle from path to object, éz = }j0. deg
Time interval for observation, dT = 14. sec

PROCEDURE: TRUE SPEED BY FIXED OBJECT

(1)

(2)

(3) Find

Dp = Ih sin 91

= 5320 sin 70 =

Find distance travelled

(L999/tan LO) - (L999/tan 70)
L4138, ft

dL = Ifl

true speed

S = }138/1, =

Find perpendicular distance to object,

4999. ft

295.6 ft/sec
x 3600/6080 = 175. knots
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Course For Intercept Mission

A course for intercepting a second vessel can be calculated

from observing its direction, path and speed.

N N

_V.t INTERCEPT
Sz POINT

Speed of first vessel

Speed of second vessel
Time of interception
Initial range to
second vessel
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¢2 = Angle between path of
oS T second vessel and

I VESSEL azimuth to second
vessel

These variables can be related by the above described Law
of Cosines:

2 2 2
(V3t) = I.1 + (V2 t)° -2 L, (V2 t) cos ¢2

Also, ¢2 =6, + (180 - 0,) by inspection

Collecting terms of the first equation:

2 2
(V§ -Vg)t -;-(21.1V2 cos §,) t - Ly =0

This is a quadratic equation and can be solved for t by
the formula 5

t = -bi\]b - L, a ¢/(2a)

h a=\12-where 3 Vg

b= 2 L1V2 cos ¢2

c=-L2

Again, by the Law of Cosines, find the angle ¢1

2 2 2
L2=L1+1.3;2L1 L3:°S¢1

g, =cos” (I + I - 1)/(2 I, L))
The course for intercept is 91 + ¢1
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(1)

(2)

(3)

(L)

(5)

(6)

Example COURSE FOR INTERCEPT MISSION

DATA: Azimuth of second vessel, 0,
Range to second vessel, L
Speed of second vessel, V 10. knots
Path of second vessel, © 2 75. degrees
Speed of intercepting ship, Vy = 15. knots

15. degrees
12, nm

W
w
n
n

PROCEDURE: COURSE FOR INTERCEPT MISSION

Find angle f,, the angle between its path and azimuth from
first vessel

Po = 15. + (180. - 75) = 120. deg

Find coefficients for quadratic equation:

(15)2 - (10)% = 125.
2 x 12 x 10 cos 120 = -120.

- (12)2 = =14},

Find value for intercept time, t:

a

b

c

5 1/2
((-120)" - (L x 125 x (-14L))) = 293.94

t = (120 % 293.94)/(2 x 125) = 1.66 hour

Determine distance travelled

13 =15 x 1.66 = 2;,.83 nm

=10 x 1.66 = 16.6 nm12

Find angle ¢1 between azimuth to second vessel

-1 2 2 2
¢1 = cos ((13 * L - 12)/§2 L3 L1))

cos™! ((24.83)% + (12)° - (16.6)%)
35-)48 deg /(2 X 2)4.83 X 12)

Find course for interception, 95:

6 = 35.48 + 15 = 50.48 deg
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Wind-Star Wind Vector

The wind-star method for determining wind direction and
speed requires two observations of the true course and the drift
angle at a constant speed. A vector triangle can be constructed
for each of the observations within a circle.

The three vectors are:
True Course
True Heading
Wind Vector

The true heading extends from the perimeter of the circle
to the center, labelled BN and AW. The true course is drawn from
the perimeter to the head of the wind vector whose origin is at
the center of the circle. A vertical line through the center of
the circle represents true north. The angles WAP and BWP are the
observed drift angles.

North

   
  

  

  

Wind
Vector ““\

True Course A 
 

True Heading A

Course B

WIND-STAR WIND VECTOR
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Inspection of the diagram shows that the wind vector, W,
can be evaluated by summing the north-south and east-west values.

East-West components:

VAW sir ¢1— Vpp sin (¢1 + 01) = VBW sin ¢2 - VBP Sin(¢2+92)

North-South components:

Vyy cos ¢1- VAP cos (¢1 +91) = Vgy cos ¢2 - Vgp cos (¢2+92)

where @
e

True Heading, degrees
Drift Angle, degrees (positive far right drift;

negative for left drift)

Solve the first equation for V,p: (VAW = VBW)

VAW,BW (sin ¢1 -sin ¢?)+VBP sin (¢2 + 92)

Vap = sin (7, + ;)
 

s 2 - = o ct = " vAw’Bw(sin g,- sin #,)/sin (¢1 +6,)

sin (8, + 6))/sin (8 + ©))= n

then, V._ =M+ V__N

 

AP BP

Similarly, solve the second equation for VBP:

VAW,BW(COS ¢2 - cos ¢1) + Vyp cos (¢1 + 91)

Vgp = cos 1762 + 92)

now, let T = VAW,BW (cos ¢2 - cos ¢1)/cos (¢2 + 92)

U = cos (¢1 + 91)/cos (¢2 + 92)

then, Vop =T + V,, U
BP

Now, substituting the first equation in the second:

VBP =(T+UM/(1 -UN)

With two sides of the triangle and the included angle WAP
known, the third side WP can be found by the Law of Cosines:

‘fiP=Vl2\P+V§W-2VAPVAWc°S ©
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The angle PWA, or j, can also be found by the Law of Cosines.

cos J = (Viw ¥ v%P - Vip V@V Y
. -1
j=cos J

Finally, the wind direction equals the angle j subtracted

from the true course, @.:
1

2, - ¢1 -3

Example WIND-STAR DRIFT VELOCITY

Data: True Heading, #. , 100 degrees; Drift Angle, ©.,, 5. deg.
True Heading, #,, 158 degrees; Drift Angle, 05, 12. deg.

Ship Speed, VAW Ba’ 95 MPH
3

WIND STAR WIND VELOCITY
PROCEDURE:

(1) Find values for N,U, M and T

N = sin (158 + 12)/sin (100 + 5) = 0.1798

U = cos (100 + 5)/cos (158 + 12) = 0.2628

M = 95(sin 100 - sin 158)/sin (100 + 5) = 60.0140

T = (95 cos 158 - 95 cos 100)/cos (158 + 12) = 72.6902

(2) Find values for True Course BP and AP and wind velocity WP

V= (72.6902 +(0.2628 x 60.0140))/(1 - (0.2628 x 0.1798))
BP - 92,85 MPH

YAP = 60.0140 + (0.1798 x 92.85) = 76.71 MPH

2 2 1/2
Vop =((76.71)" + (95)° - (2 x 76.71 x 95 cos 5) = 16,75 MPH

(3) Find Wind Direction, Q)W

cos~1(((99)2 + (19.75)2 - (76.11)2)/(2 x 95 x 19.75))
19.80 deg

J

¢W = 100 - 19.80 = 80.20 deg
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TIME

The Calendar

The Year - By noting the seasons we can mark the year. The
ancients observed the night sky and prepared maps of the visible
stars. They inferred the yearly circuit of the Sun through the

heavens; through the twelve houses of the Zodiac. They marked the
yearly travel of the Sun from north to south and return; its
extremities and its mean. Its midway point, in Spring and Autumn,
we call the Equinox. The Spring, or Vernal Equinox, with the Sun
moving north, is the reference point for astronomers and
navigators and is commonly called the First Point of Aries, or

simply Aries, the Ram,??, and marks the celestial longitude at
which the house of Aries begins, and into which the Sun entered
when the name was applied some two thousand years ago.

The length of time of passage from one Vernal Equinox to the

next marks the Equinoctial Year. This time can be found from
Almanac data by interpolating to find the time at which the
declination is zero for the two years. Note that the time elapsed
is the same for any two specific declinations. The true length of
the Equinoctial Year is 365d 5h 48m 45.5s.

 

The Julian Year is the fundamental basis for our calendar
and consists of 365 days and 1/4 solar years. The day is too long
by 11m 14.5s. On October 4, 1582 Pope Gregory ordered ten days
striken from the Julian calendar. Further, he ordered that leap
years should be omitted in century years not divisible by 400 (as
the year 2000 is a leap year, which will not occur again until
2400) .

 

The time of the Vernal Equinox can be estimated by using
reference Almanac values to describe the yearly increment:

The 1976 Almanac gives V.E. at Mar 20, 11:80h
diff.=-1:40h

The 1984 Almanac gives V.E. at Mar 20, 10:40h or .175h/yr

Example: Prediction of Time of Vernal Equinox for 1983
Use 1976 as reference year
Note that V.E. for 1983 falls on March 21
The years correction is 7yr x .175h/yr = 1.225h

Observe that 1983 is 3 years past leap year

  

Add a correction of 3 yrs x (6hr/yr + .0375hr/yr)= 18.110h
New time of V.E. = Mar 20, 11.80h + 18.110 - 1.225

= Mar 20, 28.685h or Mar 21, 4.68h
(Almanac value: Mar 21, 4.6h)
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The Months- There are 235 lunar orbits to correspond to the
same position of the sun as found by Meton in -433. This is
approximately nineteen solar years. The lunar month is then 29.53

days.
The early Roman calendar had ten months. Julius Caesar, on

the advice of the Alexandrian astronomer Sosigenes, established
in -45 the present calendar. He adopted a year of 365 days with
each fourth year, when divisible evenly by four, to be a "leap
year" with one day added. He also added a month, named for
himself. His successor, Augustus, added a second month. Thus, we
have the latter months improperly named: September (seven),
October (eight), November (nine), and December (ten).

The Days- The days of the week have been in most languages
named for the seven visible heavenly wanderers. Further, their
order of naming is in sequence of their relative motions.

 

Planet English Sparnish

Sun Sunday Domingo

Moon Monday Tuna

Mars Tuesday Martes

Mercury Wednesday Miercoles

Jupiter Thursday  Jueves

Verus Friday Viernes

Saturn Saturday  Sabado

N Sen'y apprent [‘"M
I (garth’s)

| Ceresrirne
; \j%___fi” Ejua#fl’

/e
of L‘c/:' c

Vernsl 'nox
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The Hours

The day is divided into 24 hours of which the 12 hours before
noon are classed as A.M. (ante-meridian) and the 12 hours after
noon as P.M. (post-meridian).

The Civil Day begins with the sun at its nadir at midnight,
OOhours. Mid-day occurs at 12hours, at its zenith, high noon,
and, in navigation terms, we continue counting to complete the
cycle in 24hours.

Local Apparent Time is marked by the zenith of the sun,
frequently called its transit, at our particular locality, that
is at the exact longitude we happen to be in at that instant.
Until the coming of the railroad in the last century, requiring
coordination of time, it was customary for each locality to have
its clocks set to agree with its local apparent time.

The Sun moves through each day in a slightly irregqular
fashion so that, as measured by a perfect timepiece, it sometimes
is early to its zenith and sometimes late. This discrepancy as

measured in minutes is called the Equation of Time.
The Equation of Time refers to the difference between the

mean sun time and the true sun time (its position). The term

"equation" is used in the sense of being a variation.
The Equation of Time is a yearly recurring phenomena and is

zero at four times of the year. The value can be positive or
negative and as much as 15 minutes. The values are given in the
Almanac for each day at 00h and at 12h. They are also obtainable
from the main table of the Sun's location by converting degrees
to hours and comparing to the mean time.

Mean Time is given by a precision clock. The location of the
Sun can be found by adding to the Mean Time the Equation of Time.
Conversely, the local noon can be found by an observation of the
Sun and application of the Equation of Time in the opposite
manner.

As we move from East to West we find that the time of high
noon is delayed by an amount corresponding to our distance from
the reference longitude. The navigation reference meridian,

the half circle of zero longitude, is at the original site of
Greenwich Observatory, near London. Since there are 360 degrees

in the Earth's circumference, and our Sun rotates once in 24
hours, it follows that a change of 15 degrees of longitude
corresponds to a one hour delay in the Sun's zenith.

The Hour Circle is a circle drawn on the Celestial Sphere
through the heavenly body. The Hour Angle is the angle between

the Hour Circle of the body and the meridian of the observer.
Civil Time at any place equals the hour angle of the mean sun

plus 12 hours, dropping 24 hours if the sun exceeds that amount.
At high noon, the hour angle of the Sun is zero; thus the Civil
Time is 12:00 o'clock.
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Zone Time was established by the US Navy in 1920 for ships at
sea. There is a Zero Zone of 7.5 degrees to each side of the zero
meridian. From this Zero Zone are measured twelve Zones to the
east and west. Zones One to Eleven contain 15 degrees of
Longitude; the Twelfth Zone has 7.5 degrees to each side.

The Time Zone at a specified longitude can be found by the
equation:

Zone= INT( (abs(Longitude - 7.5)/15.)+1.)

(using negative values for East Longitude)

Longitude: 173° 47'E. Zone -12
6° 57'W. 0

141° 33'E. -9
128° 02'w. 9

Continental Time Zones in the United States were introduced
as Standard Railway Time on Nov. 18, 1883 and legalized by
Congress in 1918. It provides four time zones: Eastern, Central,
Mountain and Western with numerous adjustments for local
preference to a particular zone. Daylight Saving Time was
invented by Benjamin Franklin and advances the clock one hour in
the spring and retards it one hour in the fall ("Spring ahead;
Fall behind"). These time zones are irregularly applied according

to local preference.

Example: Conversion of Local Zone Time to GMT, IMT and LAT

Data: ILocal Zone Time is 6:15PM Date: Nov 10, 1984
Longitude is 76° 30'W

Procedure for GMT:

1. Find Time Zone = INT(abs(76.5-7.5)/15. +1)
2. GMT = 5h + 6h 25m + 12h = 23h 15m, Nov 10

I 18
]

Procedure for IMT:

IMT = GMT - (Longit./15.) _
= 23.25h - (76.50/15.) = 18.15h or 18h 9m

Procedure for LAT:
1. By Almanac, Equation of Time at 12h Nov 10

at 00h Nov 11

Meridian Passage at 12h Nov 10 is 11h 44m
SO, Sun preceeds Mean Time

By interpolation, EqTm = =(16m + (3s-((23.25-12)/12)x03))
= =16m 0.1s

16m 03s

16ém 00s

2. IAT IAT + EqTm
18h 9m + (-16m 0.1s) = 17h 52m 59.9s
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Example Find Meridian Angle and Local Apparent Time
 

DATA: Date is Dec. 3, 1976; GMT is 14h 36m
Position: 30° 25'N, 81° 251w
By Almanac, EqTm at Dec 3, 12h= 10m 04s

Dec 4, 00h= 09m 52s

1. By interpolation, EqTm= 10.06m - (.1083 x (10.06-9.86))
= 10.04m

2. Find Greenwich Hour Angle (of Sun):

GHA = (GMT + EqTm) - 12h
= (14.600+.167) - 12 = 2.767h

3. Find Meridian Angle:

t Iongit. - (GHA x (360/24))
= 81.417 - (2.767 x (360/24)) = 39.912CE.

4. Find Local Apparent Time:

 

 

LAT = 12h - (t x (24/360))
= 12h - (39.912 x (24/360)) = 9.33%9h or 9 h 20.35m

Mean Sun

ooh G ———\3— /

LHA

Apparent Sun
Oo0h G

FL‘\~Mean sun at OOh 
for local Meridian
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Sidereal Time

Sidereal (si-de're-al, L. Star or constellation) time is
measured by the stars. The sky appears to rotate about the pole
daily and a sidereal day can be marked by two passages of a star

across a north-south transit. The sidereal year is the

consecutive passages of a star across such a transit at the end

of the earth's circuit about its orbit.
The reference meridian of the sky is called the First Point

of Aries and has its zenith at the moment of the Sun's Vernal

Equinox (passing from South Declination to North Declination).
Our navigation methods relate the position of the stars to that

of Aries. Unfortunately, there are no significant stars along the
path of this line and it must be found by mathematical analysis.
There is accordingly a constant need in the practice of Celestial
Navigation for the conversion of clock time and angles of

rotation and spherical measurement.

The length of the solar day exceeds the length of the
sidereal day by 3m 56.6s. This can be expressed as an angle:

3.94333 x ((360 x 60)/(24 x 60) = 59.15'

By reference to the 1984 Almanac:

Mar 19, O0h GMT Aries 176° 43.3'
Mar 20, 00h 177 42.4"

diff: —59.1'

In a solar year this amounts to a full circle so that the
sidereal year consists of an extra day. The long term consequence

of this difference in time is that the position of the stars
advances at the time of the Vernal Equinox (or any other similar

base point). This is known as the Procession of the Equinoxes. It
has moved some 30 degrees in two thousand years.

Consider the change in the location of Aries over a short

time as given by Almanac data:

Mar 20, 1976 00h GMT GHA,.
177° 39.1°'

Mar 20, 1984 00h GMT 177 42.4
diff 3.3'/8yr

or 0.0069°/yr
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Example 13. Find Meridian Angle of Star
 

DATA: Date is Jan 1, 1976; Zone Time is 06h 15m
Position: 74°W
Observed: Spica
Almanac data: Spica (#33);Magnitude 1.2;SHA 159.008°

Declination -11.040°

1. Determine Time Zone = Int((74 - 7.5)/15 + 1)= 5

2. Find GMT Zone Time + Zone
6.25h + 5 = 11.25hn

o
n

3. Find position of Aries from Almanac:

Aries at 11h 00m GMT 265° 14.3' GHA
12h 00m 280° 16.7'

by interpolation, increment =(15/60min) x 15° 2.4'
increment = 3° 45.6'

GHA, Aries = 265.238+3.760 = 268.998°

4, Find Local Hour Angle, LHA, of Spica (angle measured
westward from upper branch of meridian)

LHA = -Longitude + .+ SHA_,..)
= 274 + 268.998+F59.008°2F
= 354.006° Note: Correct value as necessary
for excess of 360°

5. Find Meridian angle, t: The Meridian Angle is measured
east or west of the meridian according to the location.

In this case, t = 5.994“E.

WEST
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SPHERICAL NAVIGATION

SPHERICAL. GEOMETRY

Propositions:

1. If two angles of a spherical triangle are equal, the
sides opposite are equal; and conversely.

2. The sum of the angles of a spherical triangle is more
than 180 degrees and less than 540 degrees.

3. The sum of two sides of a spherical triangle is greater

than the third side.

Right Spherical Triangles -John Napier, Scot. mathematican

(1550-1617), the inventor of natural logarithms, and the decimal

point for numbers, represented the two angles and three sides of
a spherical triangle as being parts of a circle. Proceeding from

the right angle, we have:

- b = side of right angle opposite B, leg
A = 90-A = angle opposite side a, co-value of A
T = 90-c = side opposite right angle C, hypotenuse
B = 90-B = angle opposite side b, co-value of B

a = side opposite angle A, leg

Nagier's Rules:

I. The sine of any middle part is equal to the product of

the cosines of the opposite part.
II. The sine of any middle part is equal to the product of

the tangents of the adjacent parts.

Briefly: sin middle = cos opposite = tan adjacent

   SPHERICAL RIGHT TRIANGLE

NAFTER'S CIRCLE
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Radius of Inscribed Circle for Spherical Triangle

r = (sin(s-a) sin(s-b) sin(s—c)/sin(s))1/2

where s = 1/2(a+b+c)

Angle of Spherical Triangle with Known Sides

tan(1/2 A) = r/(sin (s-a))

Law of Sines for Spherical Triangle

sin A/sin a = sin B/sin b = sin C/sin ¢

Note: Since sin A = sin(180-A) the part found may be in
either the first or the second quadrant. It may help to know
that:

(1) The sum of two sides is greater than the third side.
(2) The order of magnitude of the sides is the same as the

order of magnitude of the respective opposite angles, as
if a<b<c then A<BKLC

Equivalence of Trigonometric Functions

cos(90-8) = sin 0 1/sin # = csc f = cosecant #
sin(90-8) = cos @ 1/cos @ = sec # = secant
tan(90-¢) = 1/tan @ 1/tan § = cotan @

Law of Cosines for Sides

The cosine of any side of a spherical triangle is equal to
the product of the cosines of the other two sides increased by
the product of the sines of the other two sides and the cosine of

the angle included between them, e.g.:

Cos a = cos b cos ¢ + sin b sin ¢ cos A

Law of Cosines for Angles

cos A = —cos B cos C + sin B sin C cos a

***Note*** All values must appear as angles
(degrees or radians)



THE ASTRONOMICAL TRIANGLE

The astronomical triangle is a spherical triangle drawn upon

the celestial sphere with points at the pole, the observer and
the celestial body. It relates the four parameters essential to

celestial navigation:

t, the meridian angle of the observed body
d, the declination of the observed body
h, the altitude of the observed body

L, the latitude of the observer

It will be seen that these parameters consist of three sides
and one angle. Each must be expressed as degrees of the arc

subtended by a full circle.
Conventionally, the pole point is designated P; the observed

body is M; and the observer's zenith is Z.
The observer's meridian is the arc PZ. The length of this arc

is equal to his co-latitude, or 90 degrees minus the latitude.
The body's altitude is the extension of the arc ZM to the

horizon. The length of the arc ZM is the co-altitude of the
altitude, or 90 degrees minus the altitude.

The body's declination is the extension of the arc PM to the
equator and may be either North or South. The length of the arc

PM is the co-declination which equals 90 degrees plus or minus
the declination to describe the distance from the pole.

The zenith angle is the angle between the pole, P, and the
body, M, as measured at the observer, Z.

The meridian angle, t, is the angle between the observer's

meridian, Z, and the body, M, as measured at the pole, P. The
meridian angle is measured and designated East or West as
required and cannot exceed 180 degrees.

Equation for the Astronomical Triangle
 

By the law of cosines for sides:

cos a = cos b cos ¢ + sin b sin ¢ cos A

here: a =90 - h

b=90-1L
c =90 -d
A=t

then: cos(90-h) =cos(90-L) cos (90-d)

+sin(90-L) sin(90-d) cos t

by trigonometric equivalents:

sin h =sinL sind + cos L cos d cos t



 
 

 
THE ASTRONOMICAL TRIANGIE
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THE CELESTIAL SPHERE

Celestial Sphere: Omar Khayyam spoke of "this inverted bowl
we call the sky." It is a useful similie. Consider the heavens to
be a thin bowl with a radius of One Celestial Unit upon which the
stars and the sun are placed. In effect, we have conceived a

"Celestial Sphere". Our position is at the center of the sphere,
at the location usually designated "O" for Observer.

The spot above the Observer's head is designated the Zenith;
the spot on which he stands is at a certain Meridian (which goes
from pole to pole at some particular angle of longitude from the
Greenwich Prime Meridian.)

Zenith Plane: The key diagram for understanding is the
Zenith Plane. Given a Horizontal Axis and a Vertical Zenith Line
at the intersection of which the Observer (of zero size) is
located. To the left is North; to the right is South. Draw then a
circle of radius=1.0 which represents the Celestial Sphere.

Now, lay off a line at an angle to the Zenith which is equal

to the Latitude of the Observer, To the right for North
ILatitudes; to the left for South Latitudes. (The angle is located
by measuring off a distance from the Z axis equal to the tangent

of the angle, as, for Latitude 34degN, measure .6745 to the right
from the periphery of the circle.) The line thus located is the

Equator. At 90 degrees to it draw the Pole.
From the Almanac value of the Declination of the Star (or

the Sun) measure angles from the Equator equal to the tangent of
this value according to whether it be South or North. The inter-
sections of these radii from the center with the Celestial Globe
mark the Upper Transit and the Lower Transit. The connecting line

between them locates the Star Plane, or the Orbit Plane. The

length of this line determines the diameter of the Orbit.
Orbit Plane: The Orbit Plane or the Star Plane corresponds

to the familiar Equatorial Diagram, but in this case with the
added convenience of having a definite diameter and orientation.

An orthographic projection of the Orbit Plane (at right angle to
the Polar axis) turns the Star Plane into a circle. We can
identify the Upper Transit and the Lower Transit (which fall
along the Meridian Line) and directions East and West. The day
begins at the Lower Transit and moves Eastward. The position of
the star can be located on this circle according to its
Local Hour Angle, LHA, which is measured westward from upper
transit. Meridian Angle, t, is the smallest angle between the
star and the Meridian.

A parallel projection from the star in the Orbit Plane to
intersect the Star Plane in the Zenith Plane locates the Star in
the Zenith Plane. Note, particularly, that the angle of a line
drawn from the Observer origin to the star in the Zenith Plane
does not give the observed altitude of the star unless the star
happens to be at Upper or Lower Transit. This is because the star
is not really in the Zenith Plane.
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Horizon Plane: The orthographic projection of the Star Plane
parallel to the Z axis gives an ellipse in the Horizon Plane. The
vertical centerline of the ellipse is the projection of the
intersection of the Pole and the Star Plane in the Zenith Plane.
Extentions of the Upper and Lower Transits give the semidiameter

in the North-South axis. The semidiameter along the Pole axis is
the same as that of the Star Plane.

Positions along the ellipse can be calculated by use of the
equation of the ellipse:

(x?/sdiax?) + (y?/sdiay?) = 1.0

Then, for a given value of vy,

X = sqrt(sdiax? x (1.0 - (y?/sdiay?)))

The bearing is the angle measured from the North from the
Observer to the star in this Horizon Plane measured eastward or
westward according to the direction of the star from the
meridian. The azimuth is the same angle measured from the North
in an easterly direction.

Latitude Plane: An orthographic projection of the Star Plane
parallel to the Horizon gives an ellipse in the Latitude Plane.
This view shows the location of the Observer relative to the Pole
about which the star rotates and indicates the portion of the
Orbit visible to the Observer as well as the elevation of the
Pole and the apparent shape and size of the Orbit.
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Path of Sun

The methods already discussed can be used to determine the

change in elevation of the Sun during the course of the dayas
well as its azimuth and the length of shadow of a gnomen.

Example: Given Latitude 33.4°N
Date Dec 18, 1984

1. Zone = Int(117.4 - 7.5)/15. + 1) 8

2. At 12 noon, Local Mean Time, GMT 18h, Dec 18
3. By Almanac, Declination of Sun is S23° 24.5'

3 hours before noon

t (3 1;) x 180° = 45°
h sin"7(sin L sin d + cos L cos d cos t)

sin~1(sin(33.4) sin(-23.4083) +
(cos(33.4) cos(=23.4083) cos(45.))

18.8472°
cos. ((sin d - sin L sin h)/(cos L cos h))
cos'l((sin(-23.4083) - sin(33.4) sin(18.8472))/

cos(33.4) cos(18.8472))

136.7114°
4 hours before noon

t (4/1f) x 180° = 60°
h sin*(sin(33.4) sin(-23.4083) +

(cos (33.4) cos(-23.4083) cos(60.))
9.4608°

7 = cos1 ((sin(-23.4083) - sin(33.4) sin(9.4608))/
(cos (33.4) cos(9.4608))

 

126.3213°
1 hour before noon

t (1/1f) x 180 = 15°
h sin"*(sin(33.4) sin(-23.4083) +

(cos(33.4) sin(-23.4083) cos(15.))
= 31.4219°

7 = cos1((sin(-23.4083) - sin(33.4) sin(31.4219))/
(cos(33.4) cos(31.4219))

  

= 81.0937°
Noon

t =0
h = sin"l(sin(33.4) sin(-23.4083) +

(cos(33.4) cos(-23.4083) cos(0.))

= 33.1917°
Zz = 180.°
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Path of Sun(Continued

Find Length of Shadow

Height of gnomen is 2.0"

 
 

Noon: Shad = 2.0/tan(h)
= 2.0/tan(33.1917) = 3.0573"

8 AM, Shad = 2.0/tan(09.4608) =12.0020"

9 AM, Shad = 2.0/tan(18.8472) = 5.8591"

11AM, Shad = 2.0/tan(31.4219) = 3.2737"
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SUNSET

Night comes on gradually because the upper air reflects the
sunlight after the sun is no longer visible. As Professor Baker,
in his Manual of Astronomy describes it poetically:
 

"...as the Sun sinks farther below the horizon;

as the dull blue twilight arch of the Earth's shadow
rises in the East and overspreads the sky..."

Sunrise and Sunset occurs with the Sun at the Horizon, 90°
from the Zenith, plus the Sun semidiameter of 16' and refraction
of 35', giving a total angle of 0.850° below the Horizon.

Civil twilight occurs with the Sun's center 6° below the
horizon. It is the state of darkness that precludes normal
daylight activity.

Nautical twilight occurs with the Sun at 102° from the
Zenith (12° below the Horizon). At this time, the Horizon is
generally not visible.

Astronomical twilight occurs with the Sun at 18° below the

Horizon. At this time, the faintest stars are visible.

Example: Find the time of Sunset
at 35deg N on April 25, 1984

by the Almanac, the Sun declination is N13° 26.0'

1. The elevation, h = -0.833°
2. Meridian_ Angle,

t = cos“((sin h - sin L sin d)/
(cos L cos d))

=cos™1((sin(-0.833)-sin(35.) sin(13.4333)/
(cos(35.) cos(13.4333))

= 100.6897°
3. Equation of Time = 2m 07s with sun leading clock

5. ILocal Mean Time of Sunset
12h + 6h + (4m/deg x 100.6897-90)) —-(2m 07s)
18h + 42.7588m - (2m 07s)

18h 40m 45s
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Example: Find the time of Nautical Twilight

at 35deg N on April 25, 1984
by the Almanac, the Sun declination is N13° 26.0°

1. The elevation, h = -12.°
2. Meridian Angli,

t =cos ~((sin h - sin L sin 4)/
(cos L cos d))

cos1 ((sin(-12.) - sin(35.) sin(13.4333))/
(cos(35.) cos(13.4333))

115.3531°
3. Equation of Time = 2m 07s with sun leading clock
4. local Mean Time of Twilight

12h + 6h + (4m/deg x (115.3531-90)) - (2m 07s)

18h + 101.41254m - (2m 07s)
19h 39m 18s

Example: Find the time of Civil Twilight
at 64deg N on April 25, 1984

1. The elevation, h = -6.°
2. Meridian Anglf,

t = cos~((sin(-6.) - sin(64.) sin(13.4333))/
(cos(64.) cos(13.4333))

= 137.2958°
3. ILocal Mean Time of Civil Twilight

12h + 6h + (4m/deg x (137.2958-90)) - (2m 07s)
18h + 189.1833m - (2m 07s)
21h 07m 04s
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AZIMUTH AND BEARING

The navigator's work at sea consists largely of computing

lines of position which have only two essentials: the elevation

of the observed celestial body and its direction, as measured by
its azimuth.

The calculation of altitude, with which the observed reading
must be compared, is relatively simple and straightforward.

The calculation of azimuth is complicated bythe fact that
the angle is measured in the Horizon Plane with the Observer
either North or South of the center of the apparent ellipse along
which which the body moves. Accordingly, a large number of
methods have been developed for computing the azimuth. In the
past, and even today, these methods relied on voluminous tables

for selected latitudes and declinations to simplify the work of
the navigator. Such tables, or the specific case desired, can now
be generated effortlessly for normal usage by the modern

calculator and portable computer.
Keep in mind that azimuth is the direction of the star from

the observer's north, measured in an easterly direction. Bearing
is the direction of the star from the observer's north, measured
to either the east or west according to the side of the meridian

on which the body is located at the time. Bearing corresponds to
the Zenith Angle of the Astronomical Triangle. (Accordingly, we
find four cases for determination of azimuth: Star east or west;

observer north or south of center.) Bearing equals azimuth when
the bearing is toward the East. When bearing is toward the west,
the azimuth is 360 degrees minus the bearing.

Bearing can be observed by use of an azimuth prism attachment
to the compass. It consists of a system of mirrors and prisms
mounted in a fitting which turns about the center of the compass.
Bearings can be taken by: 1. reflecting light from the body

directly onto the compass card, 2. by reflecting part of the
compass card onto the field of view, or 3. by observing the
reflection of the body on the prism directly in line with the

compass card.
This section gives several methods for calculating azimuth

and bearing.
The first method finds the Zenith Angle by direct use of

formulas from the Astronomical Triangle. A sketch of the
Celestial Sphere helps to locate the azimuth. Two examples show
the contrast between the cases of having the observer positioned
north or south of the star's pole.

The second method finds the Zenith Angle by a mathematical
relation between the sides of the Astronomical Triangle and its
inscribed circle.

The third method finds the Zenith Angle by the Law of Sines

and the Astronomical Triangle.

52



Locating Stars from the Astronomical Triangle

Given data: Position 30° 24'N ILatitude, 134° 40'W Longitude
Date: July 3, 1984, 21h 0Om ship time

Locate: Denebola and Antares

Time Zone= Int(134.667-7.5)/15 + 1) = 9; GMT 06h 00m July 4

By Almanac: GHApjog = 12° 25.9'
SHADchebola= 182° 56.3'; dec=N14° 39.7'
SHApntares = 112° 52.3'; dec=526° 24.0'

Find IHA's: LHA=SHA + GHA,... — Longitude
- 185858 + 1279355~ 134.667 = 60.703°

IHA is less than 90; Denebola £=60.703°
LHA;= 112.887 + 12.432 - 134.667 = 9.348°

LHA is less than 90; Antares £=9.348°

sin-l(sin L sind + cos L cos d cos t)
sin"1(sin(30.400) sin(14.662) +

(cos(30.400) cos(14.662) cos(60.703))

32.439°
sin*(sin(30.400) sin(-26.400) +

(cos(30.400) cos(=26.400) cos(9.348))
32.500°

Find Altitudes: hD

hp

Find Zenith Anglesi
Z =cos~((sind - sin L sin h)/(cos L cos h))

Zp = cos™((sin(14.662) - sin(30.400) sin(32.439))/
(cos (30.400) cos(32.439))

= 91.442°
since bearing is W, Azimuthy=360-91.442= 268.558°

Zp = cos'l((sin(-26.400)- sin(30.400) sin(32.500))/
(cos(30.400) cos(32.500))

= 169.845°
since bearing is W, Azi_muthA=360-169.845=190.155°

   )
 S

Y| Denebola  
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True Azimuth by Radius of Inscribed Circle
and Opposite Angle

The true azimuth can be computed by finding the radius of the
inscribed circle and from that the angle of the azimuth.
For example, recreate Captain Sumner's observation of the Sun at
10AM, Dec 18, 1837 at true position of Latitude 51° 30'N,
Longitude 6° 35'W.

Given:

Time Zone = 0; Ship time = 10.00h
Sun GHA = 330° 54.6'
Sun Declination, d = $23° 22.7°
Meridian angle, t = 35.6733°E.
Elevation, true = 8.8384°

Find the parameter s, where a=90-d=90-(-23.3783)=113.3783°
b=90-h=90-8.8384 = 81.1616°
c=90-L=90-51.5000 = 38.5000°

s=1/2(a+b+c)=1/2(113.3783+81.1616+38.5000) =116.5199°

Find the radius of the inscribed circie;2
r=(sin(s-a) sin(s-b) sin(s-c)/sin s))
r=(sin(116.5199-113.3783) sin(116.3783-81.1616)

sin(116.5199-38.5000) /sin (116.5199))1/2
(sin(3.1416) sin(35.2167) sin(78.0199) /sin(116.5199)°
.1859

Find the Zenith Angle,
which is the aTgle opposite the side a:

Zy 2 tan_l(r/sin(s-a))
2 tan—(.1859/5in(116.5199-113.3783))
147.1487°

Since the time is A.M., the Sun has an Easterly bearing and

the bearing and azimuth both equal the Zenith Angle.
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True Azimuth by Law of Sines

The true azimuth can be found by the Law of Sines with

consideration to locating the vector in the proper quadrant.

Consider again the observation of Capt. Sumner at his true
position of Latitude 51° 30'N, Longitude 6° 35'W at 10AM, Dec
18,1837:

Time Zone = 0 Ship time = 10.00h GMT=10.00h
Sun GHA = 330° 54.6°
Sun declination, d = S23° 22.7'
Meridian angle, t = 35.6733°
Elevation, true, h= 8.8384°

Z = sin;}(sin t cos d/cos h)
=sin~(sin(35.6733) cos(-23.3783)/cos(8.8384))
= 32.8008°

Find angle at star from zenith to pole, PMZ:

PMZ=cos'1((sin L - sin d sin h)/(cos 4 cos h))
=cos'1((sin(51.5000)—(sin(-23.3783) sin(8.8384)))/

(cos(-23.3783) cos(8.8384)))

= 21.5547°

Compute sum of angles, S= 21.5547+32.8008+35.6733= 90.0288°

Sum of angles must be more than 180° and less than 540°

then, Z = 180-32.8008 = 147.1992°

now S=147.1992+21.5547+35.6733= 204.4272°

The test is satisfied and Z_ = 147.1992°

m©
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Identifying a Star

It is good practice when sighting a star to note its bearing
as well as its altitude. Calculations can then be made to confirm
its identity.

The Astronomical Triangle can tell

us the Declination, d, with the bearing

giving the Zenith Angle, Z, between the
star and the Pole at the Observer's
head. Using the Law of Cosines for
Sides:

cos a = cos bcos c + sin b sinc cos A

 

then, cos(90-d)=cos(90-L) cos (90-h)
+sin(90-L) sin(90-h) cos 2

by equivalents,

*
sind = sin L sin h + cos L cosh cos 2 t “L

by the Law of Sines: .

w_[ 94 ‘\%\
sin t/sin(90-h) = sin Z/sin(90-4)

then, t = sin-l(sin Z cos h/cos 4)  Example: Identifying a Star
Data: Observed unknown star Apr 13, 1984

ILocal Mean Time 06h 43m P.M. Local Mean Time
Estimated Position, 33° 45'N, 118° 25'W
Altitude 34° 18', Bearing N150W

Calculation:

Zone = Int(((abs(118.416)-7.5)/15)+1) =
=8+ 12 + 6.716 = 26.716h or 2.716hApr 14

By Almanac, Aries = 243.183°
Finddecilnation, d:

d (sin L sin h + cos L cos h cos Z)
“*+(sin(33.750) sin(34.300) +

(cos(33.750) cos(34.300) cos(150.))

-16.366° (south)
Find me:fidlan angle, t= sinl(51n Z cos h/cos Ad)

t = sin ~(sin(210) cos(34.300)/cos(-=16.366))

= =25.499° (West)
Find SHA of star:

 

ILHA Iong. + GHA
Aries,o417 + 243, 1g371es
= 124.766

gHA = 25,499°P
2802924.766) + 180 + 25.499 = 260.733

i%aanac, star is Sirius, # 18
SHA 258 53.5', Decl. S 160 41.8'
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THE NOON SIGHT

The noon sight (of the sun) can be considered the single most
important job of the navigator. It tells at once with a minimum
of calculation the position in latitude and longitude.

Determination of Latitude
As Mixter put it in his Primer of Navigation, "When the sun,

on the meridian, bears true north and south at the time of the
local apparent noon, the momentary collapse of the astronomical
triangle makes possible the ages o0ld solution used by all

mariners” for finding latitude.
Consider the illustration of a noon

 

 

 

sight in north latitude with observed Pole

sun at 60 deg and declination at 20 4.0"‘
deg‘ 1~ 7

By inspection, a; = a ATOR
al = 98 - L

a, =h-d \
then, h-d=90-1L
or, L=9- (h-4d)  
in this case, L = 90 - (60 - 20)

= 50°N.
Since time is not a factor, a watch is not necessary,

however, as a practical matter, the time of local apparent noon,

L.A.N., is needed to know when to take the observation. Further,
since there may be error in the reading, particularly in heavy
seas and in a small vessel, it is wise to take several readings
before and after the sun's zenith to obtain an mean value at
noon.

A reading of the sun made near the zenith can be "reduced to
the meridian" by use of tables developed by Bowditch. These are
rather extensive since the sun elevation and its rate of rise

depends on the latitude.

Determination of Longitude
At the time of the noon sight, the local meridian angle is

zero. The Civil Mean Time at the Greenwich meridian is known. The
Almanac gives the value of the GHA (Greenwich Hour Angle) of the
sun at this instant. Since the sun is at this instance directly
in line with the overhead meridian the local longitude equals
the value of the GHA if less than 180 degrees or 360-GHA if the
GHA exceeds 180 degrees.
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Longitude based on noon sight
Consider the case for finding longitude with a noon sight

observed at 10h GMT on August 9, 1983.

By Almanac: GHA Sun is 328° 37.0'

The meridian angle of the sun at Greenwich is

359° 60.0'
3282 37.0'

t=31° 237£

Since it is noon at the local meridian but only 10 o'clock AM

at Greenwich, then the position must be East of Greenwich. It is
east of Greenwich by the value just determined. Observe that this
value when divided by 15 degrees per hour gives two plus hours
which agrees with the difference in local and Greenwich time of

two hours.

Consider now the Equation of Time. By the Almanac, the value
is 05m 34s with the sun lagging the hour. This corresponds to an
angle of:

((5.567m/60) /12.) x 180. = 1.392°

The GHA for 10.00h for Civil Mean Time at EqTm=0 is

180° + ((10/12) x 180 = 330.00°

The indicated Sun GHA is then: 330.000-1.392 = 328.608°
or 328° 36"

which is in agreement with the Almanac value
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LATITUDE BY PHI-1/PHI-2 METHOD

A review of the problem of locating one's position shows that
Longitude can be readily established having the essentials of a
watch to show Greenwich time and an Almanac to find Greenwich
Hour Angle of the observed celestial body.

Finding Latitude by observation of the Sun at its zenith or
of a star at either its zenith or nadir (upper transit or lower

transit) is similarly readily accomplished. Observation of
Polaris, which is less than a degree from the Celestial Pole, is
particularly suitable for Latitude observation.

Finding Latitude by observation of celestial bodies at

positions in which their meridian angle from the observer is not
zero is more complex when done entirely by computation. (A later
chapter shows how to find position by a combination of

calculation and "line of position" charting.)
Latitude can be found by use of the Astronomical Triangle,

separating it into two right angles by extending a perpendicular
from the star to the observer's meridian; that it, from the star
to a line from the Pole to the Zenith. The distance from the Pole
to the intersection is called #,; the distance from the Zenith to
the intersection is called flz. his is known accordingly as the
Phi-1/Phi-2 Method as described in Bodwitch's 1936 American
Practical Navigator.

Triangle 1 encompasses M (star), Pole (with angle t), and
Phi-2. M-P is 90-d.

Triangle 2 encompasses M (star), Zenith, and Phi-1. The
length of the perpendicular is p. M-Z is 90-h.

The sum of Phi-1 and Phi-2 equals 90-L.

 

 

IATITUDE BY ASTRONOMICAL TRIANGLE
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The Phi-1/Phi-2 Method

By Triangle 1, the length of the perpendicular, p, can be
found by Napier's rule for opposite parts:

sin p = cos (90-d) cos P

now, the co-value of 90-d is d
P = t and its co-valueis 90-t

and by equivalence, cos P = sin t

then, sin p = cos d sin t

The value of Phi-2 in Triangle 1 can now be found by Napier's

rule for opposite parts:

sin (90-d) = cos p cos A"

since (90-d) = d

cos @" = sin d/cos p

The value of Phi-1 in Triangle 2 is found similarly:

 

sin (90-h) = cos &' cos p
———

since 90-h = h

cos @' = sin h/cos p

Mark #" North or South according to the name of the
declination; mark @' North or South according to the Zenith
distance, it being North if the body bears South and East or

South and West, and South if it bears North and East or North and
West. Then, combine Phi-1 and Phi-2 according to their names
(that is, using plus and minus for North and South), except that
in the case of bodies of lower transit, when 180-f" must be
substituted for #" to obtain the Latitude.

NAPIER'S CIRCLE FOR IATITUDE NAPIER'S CIRCIE FOR IATITUDE
TRIANGLE I TRIANGIE II



Latitude by Observation of Star

Data: (Case Number 2, Achernar, Bowditch(1936,p.145))
Estimated Latitude, -53.0856deg; Longitude, -146.5330deg

Date: Aug 6,1925 Zone Time 19.0617hr
Star Number 5, Elevation 23.9300; Near Iower Transit

Reference Data: Achernar; Magn. 0.6; SSHA 335.8000
Declin. =57.3600

Calculations:

Zone =- Int(((abs(Longit.)=7.5)/15)+1)
== Int(((abs(-146.5330)-7.5)/15)+1) = =10

GMT = Zone + Zone Time = 19.0617 - 10 = 9.0617hr

Greenwich date is Aug 6,

GHA Aries by Almanac (estimated) 89.6165deg
SHA Star " 336.5036 "

Equatorial Direction star,

eqtdr 360+ (Longit. —SHAA - SHA)
360 +(-146.5330-89.6165-336.5036)
-212.6522 (+360)= 147.3478 deg

Meridian Angle, t = 147.3478deg

Length of Perpenglcular, = 51n-l(cos(d) sin(t))
p—31n (cos(=57.3600) sin(147.3478))
= 16.9181deg

Declination Distance,
Phi-2 = a?s(51nl(sm(d)/cos(p)))

Ph1-2—abs(51n (sin(=57.3600) /cos (16.9181)))
= 61.6626deg

"...except that for bodies of lower transit, use 180-(Phi-2)
then, Phi-2=180-61.6626= 118.3374deg

"Mark Phi-2 according to the declination, being North

for a South Body..."
then, Phi-2=-118.3374deg

Zenith distance, Phi-1 = cgs~(sin(h)/cos(p))
Phi-1 = cos™~(sin(23.9300) /cos(16.9181))

= 64.914deg
"Mark Phi-1 according to Zenith distance, minus if

North..."
then, Phi-1 = 64.914deg

Phi-1 + Phi-2
64.914 - 118.3374 = -53.4234deg

Latitude
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Latitude by Observation of Sun

Data: (Case Number 12, Achernar, Bowditch(1936,p.144))
Estimated Latitude, 30.4160deg; Longitude, 81.4250deg

Date: Jun 7,1925 Zone Time 13.3378hr
Star Number 59, Elevation 75.7580; Bearing South and West

Reference Data: Sun; Magn. ***; SSHA ——-

Declin., —

Calculations:

Int(((abs(Longit.)=7.5)/15)+1)
Int(((abs(81.4250)=7.5)/15)+1) = 5

Zone

GMT = Zone + Zone Time = 5+ 13.3378= 18.3378hr

Greenwich date is Jun 7,

Equation of Time by Almanac (estimated) = =1.1463min
Declination by Almanac (estimated) = 22.8282deg

Sun at Greenwich, GHAS=((GMT-(EQTM/60)+12)/24) x 360
GHAS=((18.3378-(-1.1463/60) +12) /24)x360

= 455.3535 (-360)=95.3536deg
Equatorial Direction Sun,

eqtdr 360+ (Longit. -GHAS )
360 +(81.4250-95.3536)
346.0714deg

Meridian Angle, t =360-346.0714 = 13.9286deg

Length of Perpengicular, p = sin~!(cos(d) sin(t))
p=sin~(cos(22.8282) sin(13.9286))
= 12.8182deg

Declination Distance,

Phi-2 = abs (sin~1(sin(d)/cos (p)))
Phi-2=abs (sin™ (sin(22.8282) /cos (12.8182)))

= 23.4460deg
"...except that for bodies of lower transit, use 180-(Phi-2)

then, Phi-2=23.4460deg
"Mark Phi-2 according to the declination, being North

for a South Body..."
then, Phi-2= 23.4460deg

Zenith distance, Phi-1 = cos-~ (sin(h)/cos(p))
Phi-1 = cos™ ~(sin(75.7580) /cos (12.8182))

= 6.2598deg
"Mark Phi-1 according to Zenith distance, minus if

North..."
then, Phi-1 = 6.2598deg

Phi-1 + Phi-2
6.2598 + 23.4460 = 29.7058deg

Latitude
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LATITUDE BY PHI-1/PHI-2 METHOD
Case Number 1 Vega, Dutton(1942,p.320)

Est. Latitude, deg. 59.5000
Zone Time, hr. 4.4969

Star Number/Elev. 49/69.2500
Reference Data:

Magnitude .1
Calculated Results

TimeZone/Grnwchdate 1// 5/ 1
Hr. Sun Zero Decl. 12.9164
Eqtrl direct. star 179.9506

Meridian Angle, t .0494
Ht.UT/LT(rads=1.) .9352/ .1436

AngleEqtr (frmSouth) 30.5000
Bearing 178.0977
Dist. Perpendicular .0386
GMT, hr. 5.4969

 

Est. Longitude, deg. 22.0167

Month/Day/Year 5/ 1/1939

At upper transit
Vega

SHA/Declin. 80.9670/ 38.7590

Ref.day/days to Ref.day 21/ 41
GHA Sun 263.1721
GHA Aries 300.4875

SHA Star 81.4797
Ht. Star(radius=1.) .9351
Angle UT/LT 69.2590/171.7410
Phi-1 20.7515
Phi-2 38.7590
Latitude 59.5105

N

 

 

 

   
 

 

S HoRiZoN
 "  

Latitude Plane

Zenith Plane

CELESTIAL
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LATITUDE BY PHI-1/PHI-2 METHOD

Case Number 2 Achernar, Bowditch(1936,p.145)

Est. Latitude, deg. =53.0856
Zone Time, hr. 19.0610

Star Number/Elev. 5/23.9000
Reference Data:

Magnitude .6

Calculated Results

TimeZone/Grnwchdate -10// 8/ 6

Est. Longitude, deg. -146.5330
Month/Day/Year 8/ 6/1925

Achernar
SHA/Declin. 335.8000/-57.3600

Ref.day/days to Ref.day 21/138
GHA Sun 314.4931

GHA Aries 89.6059
SHA Star 336.5036
Ht. Star(radius=1l.) .4051

Angle UT/LT 85.7256/ 20.4456
Phi-1 64.9484

Phi-2 -118.3399

Latitude -53.3915

 

 

 

 

   

Hr. Sun Zero Decl. 3.5511
Eqtrl direct. star 32.6426

Meridian Angle, t 32.6426
Ht.UT/LT(rads=1.) .9972/ .3494

AngleEqtr (frmSouth) 143.0856
Bearing 160.6598

Dist. Perpendicular 16.9140
GMT, hr. 9.0610
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LATITUDE BY PHI-1/PHI-2 METHOD
Case Number 3 Vega, Bowditch(1936,p.178m)

Est. Latitude, deg. 40.7200 Est. Longitude, deg. 68.5000
Zone Time, hr. 19.7542 Month/Day/Year 5/15/1934
Star Number/Elev. 49/14.5000 Bearing N51degE

Reference Data: Vega
Magnitude .1 SHA/Declin. 80.9670/ 38.7590

Calculated Results
TimeZone/Grnwchdate 5// 5/16 Ref.day/days to Ref.day 21/ 55
Hr. Sun Zero Decl. 7.8471 GHA Sun 192.2647
Eqtrl direct. star 75.9655 GHA Aries 242.9168
Meridian Angle, t 75.9655 SHA Star 81.5487
Ht.UT/LT(rads=1.) .9994/-.1826 Ht. Star(radius=1.) .2504
AngleEqtr (frmSouth) 49.2800 Angle UT/LT 88.0390/190.5210
Bearing 50.9069 Phi-1 -67.4908
Dist. Perpendicular 49,1585 Phi-2 106.8080

GMT, hr. .7542 Latitude 39.3172
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LATITUDE BY PHI-1/PHI-2 METHOD

Case Number 4 Procyon, Bowditch(1936,p.178m)
Est. Latitude, deg. 40.7200 Est. Longitude, deg. 68.5000
Zone Time, hr. 19.7542 Month/Day/Year 5/15/1934
Star Number/Elev. 20/26.5500 Bearing N107degW

Reference Data: Procyon
Magnitude .5 SHA/Declin. 245.4800/ 5.2830

Calculated Results
TimeZone/Grnwchdate 5// 5/16 Ref.day/days to Ref.day 21/ 55
Hr. Sun Zero Decl. 7.8471 GHA Sun 192.2647
Eqtrl direct. star 240.4785 GHA Aries 242.9168
Meridian Angle, t 60.4785 SHA Star 246.0617
Ht.UT/LT(rads=1.) .8147/-.6946 Ht. Star (radius=1.) .4470
AngleEqtr (frmSouth) 49.2800 Angle UT/LT 54.5630/223.9970

Bearing 107.1134 Phi-1 26.4520

Dist. Perpendicular 60.0515 Phi-2 10.6280
GMT, hr. .7542 Latitude 37.0800

CASE4
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LATITUDE BY PHI-1/PHI-2 METHOD

Case Number 12 Sun, Bowditch(1936,p.144)

 

 

 

  
  

  
 

Est. Latitude, deg. 30.4160 Est. Longitude, deg. 81.4250
Zone Time, hr. 13.3378 Month/Day/Year 6/ 7/1925
Star Number/Elev. 59/75.7580 Bearing South and West

Reference Data: Sun
Magnitude -9.0 SHA/Declin. .0000/ 22.8282

Calculated Results
TimeZone/Grnwchdate 5// 6/ 7 Ref.day/days to Ref.day 21/ 78
Hr. Sun Zero Decl. 3.5511 GHA Sun 95.3536

Eqtrl direct. star 193.9286 GHA Aries 170.0005
Meridian Angle, t 13.9286 SHA Star .7059
Ht.UT/LT(rads=1.) .9912/-.5984 Ht. Star(radius=l.) .9693
AngleEqtr (frmSouth) 59.5840 Angle UT/LT 82.4122/216.7558
dT Ellipt. Path 3.1962
dT Eclipt. Path -4.3426 Equation of Time -1.1463

Bearing 118.9584  Phi-1 6.2632
Dist. Perpendicular 12.8182 Phi-2 23.4460
GMT, hr. 18.3378 latitude 29.7093

GMT, hr.
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LATITUDE BY PHI-1/PHI-2 METHOD

Case Number 14 Data to Calculate Sun Path

Est. Latitude, deg. 33.4000
Zone Time, hr. 9.0000

Star Number/Elev. 59/20.8070
Reference Data:

Magnitude -9.0

Calculated Results
TimeZone/Grnwchdate 8//12/18

Hr. Sun Zero Decl. 10.2536
Eqtrl direct. star 138.4446
Meridian Angle, t 41.5554

Ht.UT/LT(rads=1.) .5470/-.9849

AngleEqtr (frmSouth) 56.6000
dT Ellipt. Path -1.8077

dT Eclipt. Path -1.5708
Bearing 139.4810
Dist. Perpendicular 37.4897
GMT, hr. 17.0000

CELEST/AL

Est. Longitude, deg. 117.4000

Month/Day/Year 12/18/1984
Bearing South and East

Sun

SHA/Declin. .0000/-23.4370

Ref.day/days to Ref.day 20/273
GHA Sun 75.8446
GHA Aries 342.4855
SHA Star -.1216
Ht. Star (radius=1.) .3552
Angle UT/LT 33.1630/260.0370

Equation of Time -3.3785
Phi-1 63.4065
Phi-2 -30.0839
Latitude 33.3227

£A T/
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Sight Reduction

Sight Reduction is the process of determining a Line of
Position (or simply a Position) from observation of celestial
bodies. The process can be separated into six steps for finding a
Line of Position: (1) Correction of sextant altitude, (2)
Determination of GHA and declination, (3) Selection of assumed

position and finding meridian angle, and (4) Computation of
altitude and azimuth, (5) Comparison of computed and observed
altitudes, and (6) Plot of the Line of Position.

Tables and methods for facilitating sight reduction are based
on the Astronomical Triangle. The first to divide this triangle
into two parts by dropping a perpendicular from the Zenith was
Souillagouet in 1891. The 1962 edition of Bowditch lists more

than twenty variations of the method. The 1936 edition of
Bowditch cites the Phi-1/Phi-2 Method (named for the two
triangles) and cautions that "the solution is impractical when

the declination is 0 degrees as well as when the hour angle is
6h; and in fact, it is commonly advised that this observation
should be limited to conditions where the celestial body is
within three hours of meridian passage and where it is not more
than 45 degrees from the meridian; also where the declination is
at least 3 degrees". (The solution adds or subtracts two legs of
the triangles according to whether the bearing is North or South;
accordingly, a small error in bearing when at nearly 90 degrees
can change the result drastically.)

A small error leading to a determination of excessive

altitude can prevent solution by trigonometric analysis where
inverse sine and cosine functions are unacceptably found to
exceed a value of 1.0.

Terminology of Positions

A fix is an accurate determination of latitude and longitude,
most reliably by two lines of position. Dead Reckoning is a
method of determining a ship's position by applying the to latest
well determined position fix the course changes using only
directions and speeds. A Running Fix is a position determined by
the intersection of two or more lines of position established at
different times, but adjusted to the same time by consideration
of speed and course. Estimated Position is the best position

obtainable short of a fix or running fix.
Three simultaneous lines of positions usually intersect to

form a triangle. For any triangle, there are four points
equidistant from the points; one inside and three outside. The
most probable location is found by:

(1) Identify the vertexes as A-B, B-C and A-C according

to the lines of position A, B and C.
(2) At Vertex A-B draw the azimuths of A and B.

Similarly, draw in the azimuths at B and C.
(3) Bisect the azimuths at each vertex. The bisection

lines will intersect at the most probable position.
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The Sumer Line

In Winter, 1837, Capt. Thomas A. Sumner, an American Master,

was bound for Greenock (the port of Glascow) and making for the
passage into the Irish Sea through St. George's Channel from the

South mid Tuscar Light off Ireland's shore and Small's Light on
the shoals of Wales. Having passed the Azores and Longitude 21,

with winds from the southward and thick weather allowing no

observation, soundings were made not far, it was supposed, from
the shore.

In thick and heavy weather, the winds boisterous and toward

the shore, he arrived about midnight, 17th December, within 40
miles by dead reckoning from Small's Light going ENE under short
sails. About 10 A.M. an observation of the Sun was made and time

ngted at a dead reckoned position (as reconstructed) of 51°35'N,
6-40'W.

Using his estimated Latitude, he computed his Longitude. It
was 15 minutes of arc East of his dead reckoned position and
nearer the danger. A second calculation assumed 10' farther north
gave a position 27nm ENE; a third latitude 10' farther north gave
a position again ENE. Plotting these on his chart, he found them

to fall in a straight line which passed through Small's Light.
Maintaining this course of ENE with his compass, Small's Light
was soon seen bearing ENE 1/2E and close aboard. (It has been
calculated that the dead reckoned position was 8' north of the
true position.)
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Reconstructing the Sumner Line

Given the true position as Latitude 51° 30'N, Longitude 6°
35'W at 10.00 AM, Dec. 18, 1837.

Using the 1985 Almanac (similarly one year past the Leap
Year) :

Time Zone = 0; Ship time = GMT
Sun GHA = 330° 54.6'
Sun declination, d = $23° 22.7'

Iongit + 360 - GHAMeridian angle, t S
6.5833 + 360 - 330.9100 = 35.6733°E.n

n
Elevation (true),

= sin'l(sjln L sind + cos L cos d cos t)
= sin~(sin(51.5000) sin(-23.3783)

+ (cos(51.5000) cos(-23.3783) cos(35.6733))

= 8.8384°

htrue

 

Now, presuming that the sighting was made from a location 10'
farther north, find the angle t and the longitude:

t = cos-l((sin h - sin L sin d)/(cos L cos 4d))
= cos'l((sin(8.8384) - sin(51.6667) sin(-23.3783))/

(cos(51.6667) cos(=23.3783)))

= 35.2540°

Long. t - 360 + GHA
35.2540 - 360"330.9100 = 6.1650°

or 6° 9.8' W.

These two points mark the Sumner Line.
The East/West departure at Latitude 51.5 is

60 x cos(51.5) = 37.35 nm/degree
The North-South distance is 10 degrees or 10nm
The East-West departure is (6.5833-6.1650) x 37.35

= 15.6235nm
The slope of the Sumner Line is then

tan™1(10.0000/15.6235) = 32.6217°

The Azimuth of the Sun is 180 - 32.6217 = 147.3782°
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THE LINE OF POSITION

The Sumner Line was a monumental advance in the art of

Navigation. It constitutes a method by which from an assumed

Latitude and a single sighting of a Celestial Body at a known
time a Line can be charted on which the probable position lies.

The Sumner Line is at right angle from the observed body as shown
by the forgoing analysis and charting.

In 1875 the French Commander Marqg Saint-Hilare found that the

altitude of a star represented a constant distance from the
projection of that star's radius from the center of the earth. In
other words, the altitude observation is constant at any position

on a circle drawn with the focus at which the altitude is 90
degrees. The Sumner Line is a tangent to this "circle of equal
latitudes".

It followed from St.-Hilare's insight that the Sumner Line
must lie somewhere perpendicular to the line of bearing of the
observed body and at a distance which differed from the assumed

location by an amount proportional to the difference in the true
(observed) elevation and the calculated elevation. This direct

application is called St.-Hilare's Line of Position.
The true position can be nearer or farther toward the bearing

of the observed body than the assumed position. The correct
direction can be found by assuming an exaggerated condition.

Suppose the true distance were several hundred miles farther
away: the star would appear lower; if closer, the star would

appear higher. Thus, if the star actual elevation is lower than
the elevation computed by the assumed position, move
away from the star to find the true position. The amount of

movement is equal to the difference; 60nm/°.
Suppose that Capt. Sumner had used the Method of St.-Hilare:

Estimated position: 51° 35'N,6° 40'W; Dec 18, 1837, 10AM

By Almanac(1984), GMT 10h OOm 00s
GHA Sun 330°54.6'
Decl. Sun S23°22.7'
Bearing, Z, of Sun 147.3782°

Altitude for true location on Line
of Position (previous calc.),

Observed altitude:

 

o = 8.8384°
Meridian angle,t = 6.5833+360-330.9100

= 35.6733°
Altitudecalculated for assumed
position (as recreated):

h = sin~1(sin(51.5833) sin(-23.3783)
+cos(51.5833) cos(-23.3783) cos(35.8384))

= 8.7127°
Altitude difference = 8.8384-8.7127 = 0.1257° (calc h<observ h)

Make correction toward Sun along line of bearing a distance of
60nm/deg x .1257° = 7.54nm

 

 
calc
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Example. Running Fix

Position 1:
Deadreckoned position, 51° 30'N, 6° 10'W
Ship time 08h 46m 00s, Dec 18, 1983
Time zone Int((6.167-7.5)/15 +1)=0 GMT=08h 46m 00s
GHA_,,,=312° 25.3';dec1=523° 22.6’
Sun meridian angle, t=360-212.422+6.667=53.745°E.
Observed elevation, h=1°32.5';bearing 2=132.377°
Calculated h=sin. (sin L sin d + cos L cos d cos t)

=sin"1(sin(51.500) sin(-23.377)
+(cos(51.500) cos(=23.377) cos(53.745))

= 1.750° (1° 34.2')
minus observed h = 34.2'-32.4'=1.8nm
observed elevation is lower; move position away

Course and Speed: 238.93°, 15.71kn

Position 2:
Dead reckoned position, 51° 11.9'N, 6° 58.1W
Ship time 11h 00m 00s, Dec 18 GMT=same
GHA,,=345° 54.2';dec1=523° 22.8'
Sun meridian angle, t=360-345.903+6.969=21.066E.
Observed elevation h_ =13° 20.0';bearing %=160.697°
Calculated h=sin'1(51n(51.198) sin(-23.380)

+cos (51.198) cos (-23.380) cos(21.066))
= 13.149° (13° 8.9'")

minus observed h = 13° 8.9'-13° 20.0'=11.1nm
observed elevation is higher: move position away

Latitude diff: 51° 30'N - 51° 11.9'N = 18.1'S=18.1nmS.
middle latitude= 51.349°;
longitude spacing=cos(51.349) = .6245nm/'

Longitude diff:6° 58.1'W - 6° 10'W = 48.1'W
departure = 48.1' x .6245nm/'_= 30.04nni.

Course: tan- (dLat/departure)=tan—(-18.1/-30.04)
= 31.070°S.W.

or, = 360 -(90+31.070) = 238.93°
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Running Fix (continued)

The charting procedure is to start with the dead reckoned

position (D.R.) at Position 1 (08h 40m) and the dead reckoned
position at Position 2 (11h 00m) charted at the relative
locations as connected by the course (C) and speed (S)

At D.R.; the Sun azimuth vector is drawn and the Line of

Position 1 is measured from the the origin in the proper

direction and drawn through at 90 degrees.
At D.R., a parallel to the line of position at D.R.; is drawn

the same gistance away as for D.R.,. The second Sun azimuth
vector is drawn through D.R., and the Line of Position 2 is
measured off and drawn at 90 %egrees and extended to intersect
Line of Position 1 which gives the Running Fix.
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Navigation Fix, Two Stars with Azimuths Unknown

Dead reckoned position: 135°, 30°W
July 3, 1984, Zone Time 21.00h

Observe: Denebola, h = 32.439° (true)
Antares, h = 32.500° (true)

by Almanac, Denebola, SHA
Antares, SHA

Aries, GHAA

N14° 39.7'
S26° 24.0'

182° 56.3", decl.
112° 53.2', decl.
12° 25.9°

Calculate meridian angle, t, and longitude for 30°N.
Denebola:

t=cos'1((sin h - sin L sin d)/(cos L cos d))
=cos~1((sin(32.439)-sin(30.) sin(14.662))/

(cos(30.) cos(14.662))
= 60.714°

Iong. = SHA + GHAA - t
= 182.938 + 12.432 - 60.714 = 134.656°

Antares:

t=cos™!((sin(32.500)-sin(30.) sin(-26.400))/
(cos(30.) cos(-26.400))

11.691°
112.887 + 12.432 - 11.691 = 137.010°Long.

Similarly, find values for Latitude= 29° 30'N, and 30° 30'N

Denebola Longit. Antares Longit.
 

 

  

    

Assumed Latitude 29° 30'N 134.646 139.374
30° 00'N 134.656 137.010
30° 30'N 134.670 133.981

Plot and locate fix:
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NAVIGATION FIX BY TWO STARS WITH KNOWN AZIMUTHS

Dead reckoned position 135°W, 30°N
July 3, 1984 21h OOm 00s ship time M 4

Observe Denebola, h = 32.,39 gtme) ks t ANTRRES
Azimuth, Z = 268,558 e

Antares, h = 32, Ooogtrue) w E
Z = 169.845 5.';.“'\‘

Time Zone = INT({135-7.5)/15 +1)=9 g

GMT= 06h OOm 00s July L

Almanac data: GHAsp Aries=12°25.9!
Denebola, SHA =182956.3' dec. N14°39.7!
Antares, SHA =112953.2' dec. S26°2L,0!

Calculate meridian angles:

Denebola, t = SHA, + GHAqe + 2

182,938 + 12.132 - 135 = 60.370%W

Antares, t = 112,887 + 12.432 - 135 = -9.681° or 9.681°E

Calculate altitudes:

Denebola, h = sin~V(sin L sin d + cos L cos d cos t)

sin"1(sin 30.000 sin 14.662 + cos 30.000
32.736° cos 14.662 cos 60.370)n

n

Antares, h sin~'(gin 30.000 sin (-26.L400) + cos 30.000
32.813° cos (-26.400) cos 9.681)

Evaluate difference in altitudes:

Denebola: calc h= 32.7360%’5 Antares: cslc h = 32.8)3°
25 obsv h= 32.1,39 , =
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A Classical Navigational Fix

There is an interesting fictional account of a navigational
fix made under emergency conditions in Jules Verne's The
Mysterious Island. Several ballonists, including Cyrus Harding,
an engineer, are blown out to sea in a violent storm to become

wrecked on an uninhabited island. The engineer has a watch set to
the time of Washington, D.C. He proceeds to determine their

location by use of his watch, the sun and the stars.
Longitude:

Fortitutiously, the date of their observation is April 16,
one of the four times of the year at which the Equation of Time
is zero (when mean time corresponds to sidereal time).

The engineer makes a gnomen: He sets a pole in the sand and
observes the solar shadow. Its traced path locates the Sun's
zenith, local high noon at his location. His watch shows 5
o'clock Washington time; indicating their longitude to be 5 hours
West of Washington. At 15 degrees per hour, this is 75 degrees
west of Washington which he knew to be at 77 degrees West

longitude, giving their longitude as 152 degrees West.
Latitude:
The ballonists have determined that they are in the Southern

hemisphere by noting the absence of the Northern stars and the
presence of the Southern Cross, the star Fomalhaut, Antares in

the constellation Scorpio, and the Centaur.
Harding decided to make a fix on the star Alpha of the

Southern Cross, which he knew to be 27 degrees from the pole. He

prepared a crude compass (astrolabe) by joining two flat boards
flexibly at one end with an arrangement for fixing the angle of

the two.
He had already determined North by his solar observation. Its

direction was marked by the position of the shadow tip at noon

from the gnomen.
He waited for the star to pass to the lowest point of its

orbit at which time he took a fix of the angle to the horizon
with his compass, holding the lower board level and sighting
along the star with the upper board.

Harding improvised a protractor by scribing a circle which he
divided into quadrants of 90 degrees. One of these he further
divided. He found his fix to be 26 degrees. To this value he

added the star polar distance of 27 degrees giving a distance of
his horizon of 53 degrees. He then knew his latitude to be 90-53

or 37 degrees South.
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Great Circle Route

A great circle is the intersection of a plane passing through

the center of a sphere, in our case, the Earth. Consider a First
location at Meridian Mq Latitude A, and a Second location at
Meridian M, Latitude B. The angle from the Pole between the two
Meridians is P. Three great circles can then be formed: two from

the Pole through A and B and the third through A and B, the
latter being the required great circle route. Designate the sides

by the angles opposite, as: side P-A is b, side P-B is a, and
side A-B is D.

By the Law of Cosines for sides:

cos D = cos(90-Lat,) cos(90-I_atB) +

sin(9O-LatA) sin(90—LatB) cos P

by equivalences:

cos D = sin(LatA) sin(LatB) +

cos (LatA) cos (LatB) cos P

Example: Great Circle Distance

Origin, 40° 45'N, 73° 37'W
Destination, 48° 50'N, 2° 20'E

Find angle P at Pole: P = 73.6167 - (-2.3333)= 75.9500°

cos™L(sin(40.7500) sin(48.8333) +
(cos (40.7500) cos (48.8333) cos(75.9500))

52.2326 degrees

x 60 = 3133.9 nm

D

 

 

My Ma
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Great Circle Course

Layout a great circle course from Los Angeles to Hawaii.

Origin: Pt. Fermin Light, 33° 42'N, 118° 18'w
Destination: Diamond Head Light

21° 16'N, 157° 49'wW

Cruising speed, 8 knots, 192nm/day
Time of Departure, 06h O0m Zone Time, March 10, 1984

Time Zone = Int((118.3000 -7.5)/15) + 1) = 8
GMT at departure, 06 + 8 = 14h, Mar 10
Polar angle, P = 157.8167-118.3000 = 39.5167°
Great circle ?istance,

D = cos+(sin(33.7) sin(21.2667) +
cos (33.7) cos(21.2667) cos(39.5167))

= 36.9325°
X 60 = 2215.9nm

Leg 1:
Find M;, angle of spherical triangle at origin

cos(90—LatB) = cos(90—LatA) cos (Dist) +
sin(90—LatA) sin(Dist) cos A

then A = cos—l((sin(LatB) - sin(Lat,) cos (Dist) )/
(cos(LatA) sin(Dist)))

A = cos1 ((sin(21.2667)-sin(33.7) cos(36.9325))/
(cos(33.7) sin(36.9325)))

= 99.301° (w9.301°s)
At end of day: ILaty = 33.7 - (192nm/60nm/deg)sin(9.301)

=33,183°N
Longy= 118.3 + (192/60) cos(9.301)

=122.084%W
Polar Angle, P = 157.8167-122.084 = 35.7327°
Dist; = cos©(sin(33.183) sin(21.2667) +

cos(33.183) cos(21.2667) cos(35.7327))

= 33.7337° x 60 = 2024.0 nm

19



GREAT CIRCLE COURSE———ILOS ANGELES TO HAWAII

Departure

Iocal: 3/10/84 Zone 8, 06:00h Location: 33.700N, 118.300W

GMT: 3/10/84 16:00h  Distance: 2215.9nm (36.933°)
Course 260.699 (W9.301S) Speed 8kn TimeonCourse: 24h
DistMadeGood 192nm (50.067nm/deg)

Iocal: 3/11/84 Zone 8 06:00h Location: 33.183N, 122.084wW
GMT: 3/11/84 16:00h Distance: 2024.0nm (33.734)

Course 258.527 (W11.473S) Speed 8kn TimeonCourse: 24h
DistMadeGood 192nm (50.397nm/deq)

Iocal: 3/12/84 Zone 8 06:00h Iocation: 32.547N, 125.818W

GMT: 3/12/84 16:00h Distance: 1832.1nm (30.535)
Course 256.435 (W13.595S) Speed 8kn TimeonCourse: 24h
DistMadeGood 192nm (50.788nm/deq)

Iocal: 3/13/84 Zone 9 05:00h Location: 31.795N, 129.493wW
GMT: 3/13/84 16:00n Distance: 1640.1nm (27.335)

Course 254.342 (W15.568S) Speed 8kn TimeonCourse: 24h

DistMadeGood 192nm (51.233nm/deg)
Iocal: 3/14/85 Zone 9 05:00h Location: 30.931N, 133.102wW

GMT: 3/14/85 16:00h Distance: 1448.1nm (24.135)

Course 252.375 (W17.625S) Speed 8kn TimeonCourse: 24h
DistMadeGood 192nm (51.727nm/deq)

Iocal: 3/15/84 Zone 9 05:00h Location: 29.961IN, 136.639W
GMT: 3/15/84 16:00h Distance: 1256.1nm (20.936)

Course 250.424 (W19.576S) Speed 8kn TimeonCourse: 24h
DistMadeGood 192nm (52.260nm/deg)

Iocal: 3/16/84 Zone 9 05:00h Iocation: 28.889N, 140.101w

GMT: 3/16/84 16:00h Distance: 1064.2nm (17.736)
Course 248.533 (W21.427S) Speed 8kn TimeonCourse: 24h

DistMadeGood 192nm (52.826nm/deg)
Local: 3/17/84 Zone 10 04:00h Location: 27.720N, 143.484W

GMT: 3/17/84 16:00h Distance: 872.2nm (14.537)

Course 246.797 (W23.203S) Speed 8kn TimeonCourse: 24h
DistMadeGood 192nm (53.418nm/deqg)

Local: 3/18/84 Zone 10 04:00h Iocation: 26.459N, 146.788W
GMT: 3/18/84 16:00h Distance: 680.2nm (11.337)

Departure nm/deg = 60 x cos(0.5 x (26.459+21.267))=54.87

Rhumb Line_ Course:
RIC = tan'l(60x(21.267—26.459)/(54.87x(157.817-146.788)))

= =27.238°, or W27.238S
Speed 8kn TimeonCourse: 680.2nm/8kn = 85:00h or 3d, 13h

Destination
Iocal: 3/21/84 Zone 11 16:00h Iocation: 21.267N, 157.8167W

GMT: 3/22/84 03:00n
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Star Altitude Curves for a Flight Plan

The flight is from New York to London, Takeoff at 18h 30m,
on Feb 07, 1984. Select two stars for viewing at three
intermediate positions.

Flt Plan 00h 30m: GMT=2/08/84, 00h 00m, 44.220°N,71.238%.
" " 02h 30m: 2/08/84 00h 00m, 52.938°N,49.637°W.
" " 05h 10m: 2/08/84 00h,40m, 55.007°N,11.655°

GHA Aries at Flt Plan 00h 30m: 144° 48.9'
02h 30m: 174° 53.8'
05h 10m: 215° 00.5°

Local Hour Angle, LHA, of Aries = -Longit. +GHAp
at Flt Plan 00h 30m: -71.238+144.815= 73.577°

02h 30m: =-49.637+174.987=125.350°
05h 10m: -11.655+215.008=203.353°

Select Pollux(#21, Magn. 1.2, Gemini)

SHA 243° 54.8', decl. N28° 04.'
Alphard (#25, 8n 2.2, Hydrae)

SHA 218° 17. 8', decl. S08° 35.4°

Pollux Alphard

F1t Plan 00h 30m:
ILHA=-71.238+144.815+243.913 1HA=-71.238+144.815+218.297
=317.490; t=42.51East =291.874; t=68.126East
Flt Plan 02h 30m:

LHA=-49.637+174.987+243.913 1LHA=-49.637+174.987+218.297
=369.263 or 9.263;t=9.263West =343.647; t=16.353East
F1t Plan 05h 10m:
IHA=-11.655+215.008+243.913 =-=11.655+215.008+218.297

=447.266 or 87.266;t=87.266W =421.650 or 61.650;t=61.65W

Altitudes

Altitude, h = 51?1(s1n L sind + cos L cos d cos t)

00h 30m hP—51n (sin(44.220) sin(28.067)
+cos (44.220) cos(28.067) cos(42.510))=52.590°

02h 30m hP—sin'l(sin(52.938) sin(28.067)
fos(52.938)cos(28.067)cos(—9.263))=64.200

05h 10m P-51n (sin(55.007) sin(28.067)
+cos (55.007) cos(28.067) cos(=87.266))=24.178

00h 30m hA-sin' (sin(44.220) sin(-8.590)
fos(44.220) cos (-8.590) cos(68.126)=9.198

02h 30m A—Sln (sin(52.938) sin(-8.590)
ios(52.938) cos (-8.590) cos(16.353)=26.912

05h 10m A-51n (sin(55.007) sin(-8.590)
+cos (55.007) cos(-8.590) cos(-61.650)=8.447
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Star Altitude Curves (Continued)
 

Zenith Angle 1

Z =cos~((sin d - sin L sin h)/(cos L cos h)
Pollux

00h 30m ZP=cos'1((sin(28.067)—sin(44.220) sin(52.590))
/ (cos (44.220) cos(52.590)))= 101.051

02h 30m ZP=cos'1((sin(28.067)-sin(52.938) sin(64.200))

/ (cos(52.938) cos(64.200)))=160.947
since_t is West, Azimuth =180+ (180-160.947)=199.053

05h 10m ZP=cos_l((sin(28.067)—sin(55.007) sin(24.178))

/ (cos (55.007) cos(24.178)))=75.049
since t is West, Azimuth =180+ (180-75.049) =284.951

AlEhard

00h 30m ZA=cos'1((sin(-8.590)-sin(44.220) sin(9.198)

/ (cos (44.220) cos(9.198)))=111.636

02h 30m ZA=cos'1((sin(—8.590)-sin(52.938) sin(26.912)

/ (cos(52.938) cos(26.912)))=161.807
05h 10m ZA=cos'1((sin(—8.590)-sin(55.007) sin(8.447)

/ (cos (55.007) cos(8.447)))=118.389
since t is West, Azimuth =180+ (180-118.389)=241.611

Test Z for Proper Quadrant
Angle at Star, M

M=cos ((s}n L - sin d sin h)/(cos d cos h))
00h 30m MP=cos' ((sin(44.220)-sin(28.067) sin(52.590))

/ (cos (28.067) cos(52.590)))=52.856
02h 30m MP=cos"l((sin(52.938)-sin(28.067) sin(64.200))

/ (cos (28.067) cos(64.200)))=12.882
05h 10m MP=cos-l((sin(55.007)-sin(28.067) sin(24.178))

/ (cos (28.067) cos(24.178)))=38.896

 :

00h 30m MA=cos'1((sin(44.220)-sin(-8.590) sin(9.198))
/ (cos (-8.590) cos(9.198))) =42.356

02h 30m MA=cos-l((sin(52.938)-sin(-8.590) sin(26.912))

/ (cos (-8.590) cos(26.912)))=10.970
05h 10m MA=cos'l((sin(55.007)-sin(-8.590) sin(8.447))

/ (cos (-8.590) cos(8.447))) =35.396

Find Sum of angles M+Z+t; must be more than @9@ less
than 540~ (use absolute value of t)

00h 30m Sp=52.590+101.051+42.510 =196
02h 30m Sp=12.882+199.053+9.263 =221
05h 10m Sp=38.896+284.951+87.26 =411

 

00h 30m SA=42.356+111.636+68.126 =222
02h 30m SA=10.970+161.8O7+16.351 =188
05h 10m SA=35.396+241.611+61.650 =338 Z values are correct
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Star Altitude Curves (Continued)

Summary of Results

00h 30m 44°13.2'N, 71°14.3'W
Pollux h=52°35.4' Azimuth =101° 3.1'
Alphard h= 9°11.9' Azimuth =111°38.2'

02h 30m 52956.3'N, 49°38.2'W
Pollux h=64°12' Azimuth =199°03.2'
Alphard h=26°54.7' Azimuth =161°48.4"

05h 10m 55°00.4'N, 11°39.3'W
Pollux h=24°10.7' Azimuth =284°57.1'
Alphard h= 8°26.8' Azimuth =241°36.7'
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TRUE SUN ELEVATION AND AZIMUTH FOR A SET COURSE

Position 1: Ship time 08h Lém 00s, Dec 18, 1983
5°591w, 51°L0'N

Time Zone = Int(5.983-7.5/15 + 1)=0
GMI' = 08h Lém 00s o o

GHA sun, by Almanac, 312°25.3', dec.=S23 22.6!
Meridian angle, t = 360-312.122+ 5.983 = 53.561°E

h = sin'1(sin L sind+ cos Lcos dcos t)
= sin~1(sin 51.667 sin (-23.377) + cos 51.667

o cos (-23.377) cos 53.377)
= 1.542" (1°932,51)

Azimuth, Z cos"1((sin d - sin L sin h)/(cos L cos h))
cos™1 ((sin (-23.377) - sin 51.667 sin 1.542)/

(cos 51.667 cos 1.542))
132.377°

Course: 260° true (W10°S)
8 knots for 2h 1lm
Distance made good 17.867nm

Longitude nm/deg = 60 sin (90 - 51.667)= 37.21L
Position 2: o o

Latitude = 51.667 -(1%867/60)sin 10 = 51,615 N(51 36.9'N)

5,983 +(17.867/37.21L) cos 10 = 6,456W(6°27.3'W)

Time Zone = 03 GMT

Longitude

08h Lém + 2h 1lm = 11h OOm 0Os

GHA sun by Almanac = 31;505)4.2', dec. = S23°922.8!

   

t = 360 - 345.903 + 6.156 = 20.553°E

h = sin” (sin 51.615 sin (-23.380) + cos 51.615
o cos (-23,380)cos 20.553)

= 12.863" (12951,8")

7 = cos™1((sin(-23.380) - sin 51.615 sin 12.863)/
o (cos 51.615 cos 12.863))

= 160,697
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ORBITAIL, MECHANICS

Nomenclature

Planetary orbits necessarily have the shape of an ellipse, as
proved by Newton. The ellipse is characterized by two axes at
right angles. The long axis is called the major, and its distance
from the center ,a, the major semidiameter; the short axis is the
minor and its distance from the center ,b,the minor semidiameter.
The ellipse has two foci, placed along the major axis such that

the sum of the distances from each focus to any point of the
ellipse is a constant, equal to 2a, with the distance between
foci being equal to 2c (c being the distance between the center
of the ellipse and one foci).

then, the ratio c/a is called the eccentricity, e
or c=ae

The Sun is at one focus of the planetary ellipse. The

condition of perihelion occurs when the planet is nearest the Sun
which is then along the major axis. The condition of aphelion
occurs when the planet is fartherest from the Sun which is then
also along the major axis. The Line of Apsides is the major axis
projected in both directions.

A line drawn from the Sun to the planet at any point in its
path is called a radius vector. The angle between the radius
vector and the point of perihelion is called the anomaly.

The seven characteristics needed to define an orbit are:
The semi-major axis, a
The eccentricity, e
The inclination to the ecliptic, i (0 for Earth)
The longitude of the ascending node, - (0 for Earth)
The longitude of perihelion, 7= w *—<
The period, P, or else the daily motion,

The epoch, E, (the date)

Line of H/osIJe.s

  

  Eccentricity, ¢ = a e



Changes in Orbit of the Earth

toward the opposite constellations of Gemini and Satittarius. It
moves Eastward and at the current rate would rotate once in about

one hundred and eight thousand years.

Change of Eccentricity - The eccentricity of the orbit is now
0.016 and is slowly diminishing with a predicted value of 0.003

in twenty-four thousand years.

 

Change in Obliquity of the Ecliptic - The plane of the
Earth's orbit, which defines the ecliptic, is at present
decreasing about 0.5" per year. The obliquity is now 24' less

than it was two thousand years ago.

 

Periodic Disturbances in the Earth's Orbit - There is a
monthly movement of the Earth's center above and below the true
plane of the ecliptic by reason of the influence of the Moon.

There are smaller effects caused by the planets which move the
Earth forward, backward or sideways. These effects move the

apparent location of the Sun, but do not affect the stars because
of their great distance.

 

Precession of the Equinoxes
Hipparchus in =125 found that the time from Equinox to

Equinox was less than that of repeated sequential pattern of the
stars, that is the "Equinox preceded the stars". To put it
another way, the year of the seasons is about 20 minutes shorter
than the sidereal year. It is the motion of the equator and not
of the ecliptic which causes the precession. That is, the plane

of the Earth's orbit remains constant while the pole marks a

circle upon the Celestial Sphere in the manner of a wobbly
spinning top, making a circle in 25,800 years.
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ELLIPTICAL MOTION

The Earth's motion is along an elliptical path and by
Kepler's Law its speed is such that the area of the ellipse swept

each day is a constant. The area of an ellipse is
=piab where A = Area, a = major semidiameter

b = minor semidiameter
The mean distance of the Sun, a, is One Astronomical Unit,

approximately 92,900,000 miles. The eccentricity of the earth, e,
is 0.01667, and the distance of the two focal points of the
ellipse (with the Sun occupying one) is

c =1.0 x 0.01667 = 0.01667 AU
The minor semjdiameter,

b sqrtem% ams
sqrt(l.2 - 0.016672)
0.999859 AU

, by Kepler's Law,

R 0
ANOMALYI 3o o

n
o
n
o
n

 7 e the area swept per day is
I’; 2c I dA = 3.14159 x 1.0 x 0.999859/365.25

= 0.0086 sgAU/day
The daily angular change depends on the radius, PF,. Observe

that a triangle can be constructed with sides PF;,2c, and PF,.

The angle at F;, as measured from the major axis at peri_helion is
known by the calendar. The angle Fq of the triangle is 180-anom.

the_Law ofCosmes.
= 12+(2c§ - 2(r; x 2c cos (180~ )
= + 4c® - 4rccos(180-0<)

Also,by ellipse geometry, ry + r, = 2a where a =1.0

then, ra = 2., -

and r, =4 - 12’,
so: 4 - 4rq + r, =ni 4c” = 4r, cos(180- K)
which reduces to: r; = (l.-c)/(1- ¢ cos(180-K)
The mean distance along the orbit path we can call K, the

mean anomoly. Then, K = days x (360deg/365.25days), degrees

The true distance along the orbit path is
dA = 1/2 x ré X (r] tan(X)

=1/2 x r® d«

where dx is ths daily anomoly, given in radians
or, &,.o = (2 dA/r) x (360/2 pi), degrees

The daily correction is the cummulative difference between

the true anomaly and the mean anomaly.
Days True Anomaly Mean Anomaly Radius,AU dt,minutes
1 1.0194 0.9856 0.9833 0.1350

10 10.1906 9.8562 0.9835 1.3374
20 20.3711 19.7124 0.9842 2.6350
60 60.8044 59.1372 0.9914 6.6687

100 100.4664 98.5620 1.0025 7.6177
140 139.2773 137.9968 1.0123 5.1619
180 177.4116 177.4116 1.0166 0.4828
280 274.0924 275.9737 0.9988 -7.5235
360 354.6568 354.8233 0.9834 -0.6660
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THE ECLIPTIC

Consider the ecliptic as the surface of a bowl of water in

which the Earth floats half submerged. Then, the surface and the

ecliptic are equivalent to the plane in which the Earth revolves

about the Sun.
Moreover, the Earth's pole is not perpendicular to the plane

of motion but points constantly (at the north) to the star

Polaris which is at an angle of 23-1/2 degrees from the
perpendicular to the plane of motion. This causes the Sun to
reach its daily zenith at a time different from the mean value,

giving us one of the two components of the Equation of Time.
F The illustration shows the mean path AB

and the true path AC. These coincide at
four times ( solstices and equinoxes).

Note that the angle C is a right angle,
being drawn from the pole through a
diameter at right angles to that pole.

The value of ¢, the side perpendicular to
the pole, with its origin at the Vernal
Equinox, 7°, is and its length determined
by the calendar is a known value.

The value of b, the slanted side which represents the Sun's
path, can be found. We draw Napier's circle and see that we know
c, and A, the angle of the ecliptic. We then have three adjacent
parts. "The sine of any middle part is equal to the product of

the tangents of the adjacent parts".

 

 

sinA =tan<C tan b
by equivalents becomes b=tan"l(cos A tan c)

There are (24h x 60m) per day which correspond to a
sun rotation of 360 degrees. Thus we convert the
angle to minutes by multiplying degrees by 4.

Eqtm = b x 4, minutes

 

Angle from Aries ES%%ecl Angle from Aries Eqtm,
0 deg 0 min 205 7.3498

25 7.3490 225 9.8573
45 9.8573 245 7.7677
65 7.7679 270 0.
90 0. 295 -7.3498

115 -7.3498 315 -9.8573
135 -9.8573 335 -7.7679
155 -7.7679 360 0.
180 0.
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THE BEQUATION OF TIME

The components of the effects of elliptical motion and
ecliptical motion are summed as the Equation of Time. This is
clearly shown in the illustration taken from Manual of Astronomy
by Charles A. Young, Ginn and Company 1902. Professor Young
stated that the "heavy-line curve is carefully laid out from the
Nautical Almanac for 1902 (a mean year in the "leap-year cycle")

and will give the equation of time for any date during the next
fifty years within less than half a minute; not exactly because
from year to year the equation of time for any day of the month

varies a few seconds."
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THE MOON

The Sidereal Month of the Moon is the time for it to revolve

in the sky from a given star to the same star again. The time

averages 27d 7h 43m (27.32166d), but itvaries some three hours
begause of perturbations. The mean daily motion is 360/27.32166=

13¥ 11°'.
The Synodic Month of the Moon is the time for it to move

between two successive conjunctions or oppositions. Its average
value is 29d 12h 44m but it varies nearly thirteen hours, mainly

because of the eccentricity of the lunar orbit.
The Moon's apparent diameter ranges from 33' 33" when nearest

and 29' 24" when most remote. The orbit has an eccentricity of
about 1/18, varying from 1/15 to 1/21. In her motion the Moon

very nearly follows Kepler's Law of Equal Areas. Its path is
deflected by the gravity of the Sun, always concave toward it.

The inclination of the Moon's orbit to the Ecliptic is 5° 08'
40".

The Sidereal Month, the Synodic Month and the Sidereal Year
are related by the simple equation:

1/M - 1/E = 1/

where M = Moon's sidereal period, 27.32166 days
E = Length of sidereal year, 365.25635 days

S = Synodic month, 29.53058 days

The difference between the value of 1/M and 1/E represents
the amount by which the Moon gains on the Sun each day. That is,

the value of 1/S equals the fraction of a revolution per day.
1/S = (1/29.53058) x 360 = 12.190°/day

It is useful to remember that the Moon arrives each day on
the Eastern horizon some 10 to 14 degrees behind its position on
the previous day as shown by Almanac data: 1984 Almanac, OOh GMT

MoonGHA-SunGHA  MoonGHA-AriesGHA

Jan 12.592° 13.695°
Mar 10.741 11.678
May 11.110 12.066
Jul 13.973 15.007
Sep 12.962 13.867
Nov 11.265 12.245
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THE INNER PLANETS

The planets closer to the Sun than the Earth, of which there
are only two, Venus and Mercury, are called the inner or inferior
planets (as Mars would be an outer or superior planet). As seen

from the Earth their maximum distance from the Sun is the angle,
or elongation, between the Sun and a tangent to their orbit.

sin™1(0.732) e

A! 4 | ZERO £LoNg

N\

Venus: 0

sin~1(0.387)
22.7°

Mercury: ©   
Conjunction occurs when the elongation

is zero. For an inner planet there is inferior and superior
conjunction. For the Moon and outer planets Opposition occurs
when conjunction is 180 degrees and the planet rises at sunset.
The time between two successive conjunctions is the synodic

El *

Mercury & 0.387AU 0.2408 sdrl.yr 0.317synd.yr
Venus Q9 0.723 0.6152 1.598

From Almanac at 00h GMT, 1lst of Month:

1983 VenusGHA SunGHA diff.

Jan 163° 54.5' 179° 12.5' -15.3°
Feb 155 17.3 176 37.5 =-21.3 o
Apr 146 17.3 178 57.3 -32.7 ;ZZSQ?
Jun 131 55.4 180 35.9 -48.7
Aug 149 38.0 178 25.1 -28.8
Oct 221 04.3 182 30.6 38.6
Dec 226 43.8 182 49.6 43.9

   

  1984
VIORNNC( STAR

Feb 212 09.5 176 38.7 35.5 ?
. h

Apr 196 42.9 179 00.4 17.7 EVEMNG © suN AT 0o q

Jun 184 49.2 180 34.1 04.3 s

Aug 165 18.9 178 25.7 -13.1 " Sarewell, %rnmg Sl’ef; herafd o/’%q(;wn

Oct 155 43.5 182 34.2 -26.8 and qurckly come 95 the [,,em',,J Star

Dec 137 37.6 182 45.5 -45.1 bn”fi""} djc’l'n i Secret her whom

Hou Folest away !
—MELEAGER,

PIORNIN G
STAR

e 4 —d 4 4 L 4 ol L 1 L

D F A J A o D ~ A J o D
BVENIN

S7TAR 1983 Ba—tpp- /95F

r* ——————38YNODIC YEAR:
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THE OUTER PLANETS

The three outer planets used for navigation are Mars, Jupiter
and Saturn. The longitudes are presented in the Almanac as GHA
values. This obscures the relative constancy of their locations

as measured by the SHA value from Aries or as given by the more
ancient method of designating geocentric longitudes by use of the
Zodiac.

The twelve Houses of the Zodiac, of which Aries is the first,
are divided each into 30 degrees. To say that "Saturn is in the

twelvth degree of the Eight House" has a definite angular meaning
as well as an elegance of expression and, when the symbols are
used, brevity.

The data below were taken from a compilation by Raphael for

Geocentric Longitudes and Declinations of Neptune, Herschel,
Saturn, Juplter & Mars, from 1900 to 2001, W. Foulsham & Co.,

Iondon, circa 1900.
A study of such data reveals apparent retrograde movements

which confounded some of the ancients and led to the epicyclic
movements by which they described the planets. The effect is the
result of the sometime nearly parallel paths of the earth and the
planets.

    

 

MARS Sldereal Period 1.88 years
1984, Jan 26° of Libra (7th House), decl. 08°S SHA=154°

Mar 23° of Scorpio(8th House), decl. = 17°S =127
May 24° of Scorpio(8th House), decl. = 189S =126
Jul 13° of Scorpio(8th House), decl. = 17°S =137
Sep 08° of Sagit. (9th House), decl. = 24°S =112
Nov 19° of Capr. (10th House), dec. = 24°S =101

1985, Jan 05° of Pisces(12th House), decl. = 10°S = 25
Mar 20° of Aries (1lst House), decl. = 8°N =340
May 04° of Gemini (3rd House), decl. = 22°N =278
Jul 15° of Cancer (4th House), decl. = 24°N =255
Sep 25° of Leo (5th House), decl. = 14°N =215
Nov 03° of Libra (7th House), decl. = 00°S =177

Jupiter Sidereal Period 11.86 years
1984 Jan 26° of Sagit. (9th House), decl. 23°S SHA= 94°
1985 Jan 22° of Capr. (10th House), decl. = 10°S = 68
1986 Jan 18° of Aquar. (1lth House), decl. = 16°S = 42
1987 Jan 18° of Pisces (12th House), decl. = 06°S =12
1988 Jan 21° of Aries (lst House), decl. = 07°N =339

Saturn Sidereal Period 29.46 years
1984 Jan 14° of Scorpio (8th House), decl. 14°S SHA=136°
1988 Jan 26° of Sagit. (9th House), decl. = 22°S = 94
1992 Jan 06° of Aquar. (1lth House), decl. = 1995 = 54
1996 Jan 19° of Capr. (10th House), decl. = 06°S =71
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WIND, WEATHER AND STORMS

The navigator is perpetually at the mercy of the weather

which when favorable accelerates and pleasures his journey and
when unfavorable perils his life and vessel. Consequently, there

have developed over the ages a store of methods by which it is
attempted to predict the weather. These are not always
successful, as evidenced by the recent case of the tall sailing
ship lost near Bermuda while attempting a sailing record. It is
thought she went down in a sudden gust with full sails.

The normal background for wind and weather is presented in an
exposition in the American Merchant Seaman's Manual, by F.
Cornell and A. Hoffman, Cornell Maritime Press, 1942. The Earth's
surface receives the greatest heat just north of the equator in a
narrow band of latitudes called the Doldrums or Equatorial Belt
of Calms which lies between two tradewind belts. The Doldrums is
an area of low pressure, light variable rains, squalls and
thunderstorms. As Cornell puts it, "the air, so warmed, rises and
a low barometric pressure is continuous. Colder air from the
higher pressure air to the North and South flows in and the trade
winds are the result. If it were not for the Earth's rotation the

trades would be north and south, but the Earth at latitudes away
from the equator has a lower linear velocity. Consequently, the
air in the higher latitudes takes the lower velocity of the

Earth. The air tends to lag as it moves toward the equator where
there is higher velocity. The rotation of the Earth being West to
East, an easterly component is given to the air movements and the
Trade Winds become Northeast in the Northern Hemisphere and

Southeast in the Southern Hemisphere."
A further visualization can be made of the phemomena along

the lines of fluid dynamics. There is a narrow band of warm,
stagnant air rotating West to East. Along each side from the
poles there is cold air flow toward this band; frictionally

dragged along with it while dissipating its velocity and cooling

which again carries it toward the poles. Such a movement is
basically circular, but also three dimensioned and layered
because of the perpetual thinness and coldness of the upper air.
There are added turbulences and vortices caused by unequal

heating over land and sea masses and by cloud cover which, when
barometric differences become excessive, develop into cyclonic

storms. In the Northern Hemisphere these cyclones rotate
counterclockwise and move in a northern arc initially toward the
west. In the Southern Hemisphere the cyclones rotate clockwise
and move in a southern arc initially toward the west. At high
altitudes toward the poles high velocity jet streams develop
which affect aircraft true speed.
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EPILOGUE

A final word of caution: Observations, data, charts and

position determinations are fallible. The navigator carries the
fate of the vessel in his hands.

Two things are critical: position and course. The navigator
should always refer back to the last confirmed position and to
the probable excursion from that base in time, distance and
direction before judging his present position to be correct.

Choice of the course should consider prevailing winds, tides
and currents as well as hazardous shoals, reefs, islets and, in
the case of aircraft, peaks and towers. The chart furnished the
navigator may lack notation of important features. There is the
recent case of an aircraft bound from Madrid to Bilbao which
crashed on a "hill" of some 4,000 feet on which was a TV antenna,
neither of which was on his chart.

Especially, be wary of charts in less well traveled lanes.
Topography does change; sometimes with startling suddenness as

the result of volcanic elevation of land from the bottom of the
ocean, or with equal suddenness their sinking and disappearance.

Further, there are areas in which it is hazardous to operate
a vessel because of possible piracy or hostile action by foreign
nationals. Unfortunately, this aspect covers such large areas as
the Carribean, the West Coast of Africa and the South Pacific.

Regrettably, there is a history of incorrect positioning by
responsible mariners. For example, in 1739 the French explorer

Bouvet sighted an island 1500 miles southwest of the Cape of Good

Hope, some five miles in diameter and partly covered with a

glacier. Unsucessful searches were made for it by the noted
explorer Captain James Cook in 1772 and 1775 as well as by

Captain Furneaux in 1774. In 1808 two sealers reported sighting
the Island and in 1822 Captain Benjamin Morell claimed to have
landed on the island. Two British expeditions in 1843 and 1845

failed to find the island. Other expeditions were made with
varying confirmation or denials. It is now definitely known to
exist.

The prudent navigator takes advantage of every opportunity to
confirm the accuracy of his position and to accertain that his
course, as indicated by charts, radar, soundings or whatever
means are at his disposal, will bring his vessel safely home.

BON VOYAGE

J. Slocum
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APPENDIX I

AIGEBRAIC CALCULATOR PROGRAMS

Vector Components and Sum
Vector Heading
Traverse Component Summation

True Speed from Sighted Fixed Object

Course for Intercept Mission

Great Circle Distance
Altitude by Astronomical Triangle
Latitude by Phi-1/Phi-2 Method
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Algebraic Program 1. VECTOR COMPONENTS AND SUM

Loc.
00
01
02
03

Latitude change, Vs

Departure change, Vg

Name
Azimuth

Speed
Azimuth
Speed N

N
B

Value
68.

240.
165.

15.

Combined Velocity = sqrt(Vyg +

(
(
RCL
X

RCL
COs
)
+

(
RCL
X
RCL
Cos
)
)
STOP
STO 04
(
(

01

00

03

02

Vg 226.406

102

Dimension
Degrees

= Vl COs Al + V2 COSs A2

=VlSinAl+V25inA2

RCL 01

RCL 00
SIN

)
+

(
RCL 03
X
RCL 02
SIN

)
)
STOP
SQUARE
+

RCL 04
SQUARE

EQUAL
SORT
STOP

Vygr 75.417

VvV, 238.63



Algebraic Program 2. VECTOR HEADING

lLoc. Name Value Dimension
03 scratch —

04 Latitude, Viyg  77.417 Degrees
05 Departure,Vgy 226.406

06 Cq 90.

07 Test 0.

First Quadrant: A, = tan™(abs (Vigy/Vys))

Second Quadrant: A2 = 180 - Al

Third Quadrant: A3 = 180 + A1

Fourth Q.ladrant: A4 = 360 - Al

00 -—- 22 RCL 03
01 RCL 05 23 FEQUAL

02 DIVIDE 24 STOP A4

03 RCL 04 25 IBL 1
04 EQUAL 26 RCL 05

05 ABS 27 IF(x>t)

06 TANL 28 GOTO 03
07 STO 03 29 RCL 06

08 RCL 04 30 X
09 IF(x<t) 31 2

10 GOTO 1 32 EQUAL

11 RCL 05 33 -
12 IF(x<t) 34 RCL 03

13 GOTO 2 35 EQUAL

14 RCL 03 36 STOP A,
15 STOP A,, 37 I1BL 2

16 IBL 2 71.57deg 38 RCL 06

17 RCL 06 39 X
18 X 40 2

19 4 41 BQUAL

20 EQUAL 42 +

21 - 43 RCL 03
44 FQUAL

45 STOP Ay
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Latitude component

Departure component

Algebraic Program 3. TRAVERSE COMPONENT SUMMATION

Ioc. Name Value Dimension
00 scratch —
0l ”n

 
 

Test t (scratch)

Distance cos (Heading)

Distance sin(Heading)

- 20 X
0 21 RCL 02
STO 00 22 EQUAL
STO 01 23 SUM 01
STO 05 24 1

STOP Enter n=2 legs 25 SUM 05
STO 04 26 RCL 05 (=t)
RCL 05 27 x (transposes) t

GOTO 1 28 RCL 04 (=x)
IBL 1 29 IF (x #t)

STOP Enter dist 30 GOTO 1
STO 02 n=1,dist=240 31 RCL 00
X n=2,dist= 15 32 STOP Lat. = 75.42nm

STOP Enter heading 33 SQUARE

STO 03 n=1,head=68" 34 +
QoS n=2,head=165 35 RCL 01
EQUAL 36 STOP Departure=226.41nm

SUM 00 37 SQUARE

RCL 03 38 EQUAL
SIN 39 SOQORT

40 STOP Dist.=238.64nm
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Algebraic Program 4 TRUE SPEED FROM SIGHTED OBJECT

Loc. Name

00 Initial Angle, Al

01 Final Angle, A2
02 Normal Distance, DN

03 Time lapse, dt
04 Cl (=3600/6080)

Value
 

70.
40.
5000.
14.
0.5921

Dimension
Degrees

Feet

seconds

knots (ft/sec)

True distance travelled, L1 = (DN/tan(A2)) - (DN/tan(Al))

True speed, VT = Cl1 x (L1/dt)

01 RCL 02
02 DIVIDE
03 RCL 01
04 TAN
05 EQUAL
06 STO 05
07 RCL 02
08 DIVIDE
09 RCL 00
10 TAN
11 EQUAL
12 CHG SGN
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+

RCL 05
BQUAL
DIVIDE

RCL 03
BQUAL
X
RCL 04
EQUAL
STOP VT, 175kn



Algebraic Program 5. OOURSE FOR INTERCEPT MISSION

 

Part 1 of 2

Ioc. Name Value Dimension
00 Distance to object, L1l 12. nm

01 Speed of object, V2 10. knots

02 Speed of vessel, V3 15. "
03 Azimuth of object, Al 15. degrees
04 Path of object, A2 75. "
05 Cl 180. "

Angle of object from vessel to point of interception,

A3 = Al + (180-A2)

Elements of quadratic equation: a = 32 - 22

c = -11% b = 2 11 V2 cos(A3)

Time for intercept, t = a tb+bt+c=0

t = (-b % sqrt( - 4ac))/(2 a)

00 —-—— 16 STOP A3, 120. deg.
01 ( 17 QOs

02 RCL 02 18 X
03 SQUARE 19 (
04 - 20 2
05 RCL 01 21 X
06 SQUARE 22 RCL 01
07 ) 23 X

08 STOP a, 125. 24 RCL 00
09 ( 25 )

10 RCL 05 26 PEQUAL

11 - 27 STOP b, -120.
12 RCL 04 28 RCL 00
13 + 29 SQUARE

14 RCL 03 30 CHG SGN

15 ) 31 STOP c, -144.

Solve for t: t = (120.'.tSQR’I‘((-12O.)a -(4 x 125. x (-=144)))/
(2 x 125.)

= l.66hours
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Object distance to intercept point, L2

Vessel distance to intercept point, L3

Algebraic Program 5. COURSE FOR INTERCEPT MISSION
Part 2 of 2

Name
Time to intercept, t

Distance to object, Ll
Speed of object, V2
Speed of vessel, V3
Azimuth of object, Al
scratch

scratch
scratch

Value Dimension
1.66 hours

12. nm
10. knots
15 "

15. degrees

V2 t

V3 t

Angle of vessel from object to intercept point,

A4 = cos1((132 + 112 - 122)/(2 13 11))

Vessel course for intercept, AS = A4 + Al

00
RCL 02
X
RCL 00
BEQUAL
STO 05 L2, 16.60nm

RCL 03
X

RCL 00
EQUAL
STO 06 L3, 24.90nm
SQUARE
STO 07

RCL 01
SQUARE
SUM 07

RCL 05
SQUARE

CHG SGN
SUM 07
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20 RCL 07
21 DIVIDE
22 (
23 2
24 X
25 RCL 06

26 X
27 RCL 01

)
29 EQUA%
30 COs” A4, 35.18deg

31 +
32 RCL 04
33 EQUAL
34 STOP A5, 50.18deg



Algebraic Program 6. GREAT CIRCLE DISTANCE

Ioc. Name
00 Latitude A

01 Iongitude A
02 Latitude B

03 Longitude B

Dist. = cos_l((sin LatA sin LatB) +
(cos LatA cos LatB cos(LongA - LongB))

06 EQUAL

07 Cos

11 00
12 COs

15 02
16 COS

18 EQUAL

Value
33.70

118.30
21.27

157.82
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Dimension

19
20
21
22
23

degrees
"

+

(
RCL
00
SIN

X

RCL
02
SIN

)
BEQUAL
INVERT
Qos
X

6
0
BQUAL
STOP Dist.,2215.9nm



Algebraic Program 7. ALTITUDE BY ASTRONOMICAL TRIANGLE

 

Loc. Name Value Dimension
00 Latitude, L 45, degrees
01 Declination, d 22.76 degrees (North)
02 Meridian Angle, t 13.99 degrees

Altitude, h = sin-l((sin L sin d) + (cos L cos d cos t))

00 —- 11 X
01 RCL 00 12 RCL 01
02 SIN 13 QoS
03 X 14 X
04 RCL 01 15 RCL 02
05 SIN 16 ©O0S
06 BQUAL 17 )
07 STO 03 18 +

08 ( 19 RCL 03
09 RCL 00 20 EQUA&.
10 ©0S 21 SIN™

22 STOP h, 64.99°
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Example 8. LATITUDE BY PHI-1/PHI-2 METHOD

Part 1 of 2 Case Number 3, Vega

Loc. Name Value Dimension
00 Altitude, h 14.5000 degrees
01 Declination, d 38.7590 degrees (North)
02 Meridian Angle, t 75.9655 degrees
03 Cl 180
04 Cc2 90
05 Bearing 50.9069 degrees (North&East)
06 Equatorial Direct. 75.9655 degrees
07 Scratch (Phi-1) ——

08 Scratch (Phi-2) —-—
09 Scratch (AP) ——

10 C1l 270

AP = sin'l(cos d sin t) Phi—l=cos'1(s' h/cos AP)

Phi-2=sin- (sin d/cos AP)
but if Bearing<90 then Phi-1 = -Phi-1

and if Eqtdr<90 and Eqtdr<270 then Phi-2=180-Phi-2
and if d<0 then Phi-2=-Phi-2

Find AP: Find Phi-1:

00 =——- 27 |
01 ( 28 RCL
02 RCL 29 00
03 02 30 SIN
04 SIN 31 DIVIDE

05 X 32 RCL
06 RCL 33 09
07 01 34 QOS

08 QOs 35 )
09 ) 36 INVERSE
10 INVERSE 37 COS

11 SIN 38 STO

12 STO 39 07 Phi-1, 67.4894deg
13 09 AP, 49.1585deg Test for Phi-1 correction:
Find Phi-2: 40 A
14 ( Test for Phi-2 correction:

15 RCL 41 B
16 01 Find Latitude:
17 SIN 42 RCL
18 DIVIDE 43 07

19 RCL 44 +

20 09 45 RCL
21 QOs 46 08
22 ) 47 BQUAL
23 INVERSE 48 STOP ILat., 39.3172°
24 SIN

25 STO

26 08 Phi-2, 73.1926deg
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130
131
132
133
134
135
136
137
138

Example 8. LATITUDE BY PHI-1/PHI-2 METHOD
Part 2 of 2

Label
A

RCL
04
exchange x for test
RCL
05
INVERSE

If (x>t)
C
Inverse Subroutine

Label
C

RCL
07

CHG SGN
STO

07

Inverse Subroutine

Label

D

RCL
10
exchange x for test
INVERSE

If (x>t)
E

Inverse Subroutine

111

110
111
112
113
114
115
116
117
118
119
120

150
151
152
153
154
155
156
157

Label
B

RCL
04
exchange x for test
RCL
06
INVERSE

If (x>t)
D

0
exchange x for test
INVERSE

If (x>test)
Al

Inverse Subroutine

Label
E

RCL

03

RCL

08
EQUAL

STO

08
Inverse Subroutine

Label
Al

RCL
08
CHG SGN

STO
08
Inverse Subroutine
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