CURVE FITTING FOR

PROGRAMMABLE CALCULATORS

THIRD EDITION

THIRD EDITION

Copyright © 1984 by William M. Kolb, 34 Laughton Street, Upper Marlboro, Maryland 20772, U.S.A.

Abstract

A11 rights reserved. Reproduction or use of editorial or pictorial content in any manner without express permission is prohibited. Programs may be stored and retrieved electronically for personal use and may be used in published material if their source is acknowledged. While every effort has been made to assure the accuracy of material presented, no liability is assumed with respect to the use of programs or information contained herein. Neither is any 1 iability assumed for damages resulting from the use of material contained herein.

This manuscript was prepared on the ATARI® 800 computer with Letter Perfect ${ }^{\text {m }}$ (a trademark of LJK Enterprises, Inc.). It was typeset on a NEC Spinwriter ${ }^{\circledR}$ in Technical Math/Times Roman font. The cover design is by the author.

Library of Congress Catalog Card Number: 83-51845
Internationa1 Standard Book Number: 0-943494-02-8

SYNTEC INC.
P.O. Box 1402

Bowie, Mary1and 20716
U.S.A.

CURVE FITTING FOR

PROGRAMMABLE CALCULATORS
by
William M. Kolb

To Hiroko

- ii -

PREFACE

This is a practical sourcebook of curve fitting formulas for users of programmable calculators and micro-computers. Allof the essential information needed to fit data to the most common curves is provided in a form that minimizes calculations and makes programming easy. The curves selected for this volume consist primarily of models with one- and two-independent variables that do not require iterative solutions. A basic introduction is included for the novice user of statistical models while the more intrepid explorer may find the sections on transformation, derivation, decomposition and substitution valuable for developing custom curve fitting routines. Owners of the Hewlett-Packard HP-41C programmable pocket computer can make immediate use of many models presented with the program and barcode included. Similar programs for other popular handheld computers are also provided.

The figures used to illustrate the text were drawn on an HP-85 desktop computer with a modified version of the computer's Standard Pac. The cover design was also done on the HP-85 with a hidden-1ine plotting algorithm.

It is a pleasure to acknowledge the contributions of Maurice Swinnen and Rick Conner to this edition. Maurice prepared the multiple curve fitting routines for the $T I-59$ under severe running time and storage contraints without sacrificing user friendiiness or versatility. Rick prepared an excellent BASIC language version of the HP-75 program that fits nineteen curves and uses many of the special features of the PC-1500. I am especially indebted to Robert, Jeanne, Michael and Hiroko for their continuing enthusiasm and support in revising and updating previous editions.

January 1984
Wi11iam M. Kolb

TABLE OF CONTENTS

Part I

1. Regression 1
2. Transformations 2
3. Multiple Linear Regression 3
4. Fitting a Family of Curves 4
5. Decomposition and Substitution 5
6. Scaling 6
7. Goodness of Fit 6
8. Significance 7
9. Getting Started 8
Part II
Straight Line 12
Straight Line Through the Origin 14
Straight Line Through a Given Point 16
Alternative Straight Line Through a Given Point 18
Isotonic Linear Regression 20
Reciprocal of a Straight Line 22
Reciprocal of Straight Line Through a Given Point 24
Hyperbola 26
Hyperbola Through a Given Point 28
Reciprocal of a Hyperbola 30
Combined Linear and Hyperbolic 32
Second Order Hyperbola 34
Parabola 36
Parabola Through the Origin 38
Parabola Through a Given Point 40
Power 42
Modified Power 44
Root 46
Super Geometric 48
Modified Geometric 50
Exponential 52
Modified Exponential 54
Poisson 56
Logarithmic 58
Reciprocal of Logarithmic 60
Linear-Exponential 62
Hoerl Function 64
Modified Hoerl Function 66
Normal Distribution 68
Log-Normal Distribution 70
Beta Distribution 72
Gamma Distribution 74
Cauchy Distribution 76
Multiple Linear Regression-Two Independent Variables 78
Multiple Linear Regression-Three Independent Variables 80
Generalized 2nd Order Polynomial 83
Generalized 3rd Order Polynomial 85
Circle 87
Correction Exponential 89
Logistic Curve 92
Part III
A. Abbreviations and Symbols A1
B. Register Assignments B1
C. Derivation of a Regression Curve C1
D. Multiple Curve Fitting Program for the HP-41C/V D1
E. Barcode Program for the HP-41C/V E1
F. Multiple Curve Fitting Program for the TI-59 F1
G. Multiple Curve Fitting Program for the Sharp PC-1211 G1
H. Multiple Curve Fitting Program for the HP-75 H1
I. Multiple Curve Fitting Program for the Sharp PC-1500 I1
J. References J1
K. Index K1
"If you know it to one significant place, then you know it!"
G. S. Shostak

INTRODUCTION

This book presents a wide variety of curve fitting formulas intended to help anyone with an interest in data analysis. It can be used to fit a specific curve to your data or as a gide in selecting appropriate models. The curves consist of equations with one-, two- and three-independent variables that can be solved simply and without complicated mathematics. A number of special-purpose curve fitting routines are included to help solve unusual prob1ems.

The equations for these models are arranged to minimize the number of computations required and are therefore ideally suited to the programmable scientific calculator. Register numbers are used in a consistent manner for all formulas which makes it easy to experiment with different models once the data have been entered. If your calculator has less than 90 data registers available, however, you may find it necessary to use different register assignments for some equations. Graphs and general descriptions of the various equations are included to help with model selection and an example is worked out for each equation to assist in debugging programs.

The book is divided into three major sections. This first section is a general discussion of the curve fitting process intended as a primer for the beginner. The second section contains various statistical models and the formulas necessary for estimating the coefficients. The final section is a series of appendixes that will help you program these models and develop new ones.

The remainder of this introduction provides some insight into the techniques used to formulate a model and the basics of regression analysis. The uninitiated user of statistical models should review this section carefully before drawing conclusions about the significance of any model.

1. REGRESSION

If you were asked to estimate the heights of various trees in a forest, how would you go about it. One way is to develop a mathematical relationship between the height of the tree and its diameter. The height of a particular tree could then be estimated from a simple measurement of its diameter. In this case there would be one independent variable (diameter) and one dependent variable (height). Unfortunately, the relationship between diameter and height may not work particularly well in all instances. We might conclude that other independent variables are required to take into account such things as annual rainfall, forest density and type of tree.

One technique used to formulate a statistical relationship among such variables is regression (the term regression is applied for historical reasons). In our forestry problem, actual data consisting of diameters and heights for various trees would be regressed to produce the best fitting line through all of the points.

The usual meaning of best fit is the line that minimizes the sum of the squares of the vertical distances from each data point to the ine of regression: the term least squares describes this fitting method. Other regressions, however, could be developed where best fit defines a line that minimizes the sum of all perpendicular distances between the regression ine and the data points, or the line that minimizes the square of vertical distances to transformed data points, e.g., the log of height (more on this in the next section).

The most common form of regression is a straight-1ine fit. In this case, we are trying to find the coefficients A and B that result in a least squares vertical deviation from the straight line: $y=A+B x$. Actually the values obtained for A and B are only estimates and are sometimes written A^{\prime} and B^{\prime} to remind us of this. When we calculate y from a value of x using these coefficients, it too may be written y^{\prime}. Note that the coefficients derived in this regression process are specifically designed to predict y from a knowledge of x : the values obtained for A and B are generally not the best ones to use if we want to estimate x from a knowledge of y.

The more data points we have in our sample, the closer our estimate of A and B will be to the expected values. If the data sample is fairly small, as it frequently is, we should not be tempted to use more than two or three significant places for A and B. Even if A and B are determined with great precision from ample data, we should not conclude that x and y are actually related by the equation $y=A+B x$. The values obtained for A and B merely reflect our assumption that y can be predicted from x using a straight-1ine approximation.

2. TRANSFORMATION

Often we can plot our data and see immediately that the assumption of a straight-line fit is not correct. Our intuition or experience may suggesta totally different relationship between y and x such as $(y-A)(x+B)=1$ or $y=k c{ }^{x}$. Rather than invent a new regression for each case, it is common practice to transform the expression into one that has the properties of a straight ine. Consider the expression $y=k c^{x}$, for example. By taking the natural logarithm of both sides, we obtain $1 n(y)=1 n(k)+x \ln (c)$. Since the logarithm of a constant is a constant, we can rewrite the last expression as $1 \mathrm{n}(\mathrm{y})=\mathrm{A}+\mathrm{Bx}$ where $A=\ln (k)$ and $B=\ln (c)$. Now we have a dependent variable on the left that is linearly related to an independent variable on the right which means we can apply a straight-1ine fit. The transform applied in this case is the natural logarithm, and instead of using y in the regression formula, we input ln(y). The values for coefficients A and B, however, must be transformed back using anti-1ogs to obtain estimates for k and c.

It should be noted that the transformation applied in this example produces a least squares regression of $\ln (y)$, rather than y. The coefficients k and cobtained in this manner are not necessarily the same ones that would be obtained by an actual least squares regression of y on x. The difference will be small, however, if the fit is good. Transforms thus provide a convenient and relatively uncomplicated method for estimating coefficients in more complex models without resorting to unwieldy iterative techniques.

3. MULTIPLE LINEAR REGRESSION

Many phenomena cannot be expressed in terms of a simple inear model. What happens, for example, when there are several variables? We would still like a regression technique that minimizes the sum of squared deviations between the regression line and the actual data. One such linear regression model for a dependent variable, w, and three independent variables, can be written as: $\quad w=A+B x+C y+D z . \quad Y$ and z can represent almost any independent variable we want including a function of x such as $1 / x$ or x^{2}. Thus an easy way to fit data to a cubic equation would be to substitute x^{2} for y, and x^{3} for z. Where the input of our regression formula calls for x, we input x. Where it calls for y and z, we input x^{2} and x^{3}, respectively. After the coefficients A, B, C and D are computed, we will have a best fit curve for the expression

$$
y=A+B x+C x^{2}+D x^{3}
$$

More complicated equations can be fitted by transforming the data to an expression that has the form of a multiple linear regression. This process can be used to develop models for probability distribution functions such as the familiar bell-shaped (normal) curve. Unfortunately, not all equations can be transformed to a linear model and iterative methods must often be employed to fit data to a curve.

Sometimes an alternative to iterative methods is to divide the curve into two or more pieces, each of which can be approximated by a separate regression equation. If it is desirable to join these curves together precisely, we need to specify a particular point through which one or both curves must pass. Several regressions are included in this book to provide a least squares fit through such a point. Others can be developed as needed.

The general technique for joining two curves consists of moving the origin $(0,0)$ to the desired point (h,k) and then forcing one or both regression curves through the origin. For a simple linear model, merely subtracting h from each x value and subtracting k from each y value as the data is entered will move the origin to (h, k). The Generalized 2nd Order and Generalized 3 rd Order equations are then used to force a regression line through the origin, now located at (h, k). Once the coefficients for this regression model are computed, substitute the value of h for x and the value of k for y and solve for the constant term A in the regression equation.

The underlying assumptions to keep in mind whenever linear regression is used are 1) the independent variables are free of error, 2) the independent variables are not affected by the dependent variable, 3) the data consists of a random sample from the population and not the entire population, and 4) the model accurately describes the data, although it need not correctly define the underlying physical phenomena involved.

4. FITTING A FAMILY OF CURVES

Sometimes it is necessary to find a single equation that describes a family of curves such as those shown in the following figure. A useful technique for doing this involves fitting just one of the curves to determine the general equation that best represents the entire family.

When choosing the general equation, it is important to check the curves at either extreme for goodness of fit. Once a general equation has been selected, each individual curve in the family is fit to that model. In the example shown, the best general equation was found to be

$$
n=A e^{(B+\ln t)^{2} / C}
$$

If each curve in the family is fit to this model, we obtain the following set of equations for the different values of P :

$$
\begin{array}{ll}
\left.n=0.726 e^{(2.79+1 n} t\right)^{2} / 23.8 & \text { for } P=0.02 \\
n=0.696 e^{(1.99+\ln t)^{2} / 19.8} & \text { for } P=0.05 \\
n=0.555 e^{(1.93+\ln t)^{2 / 18.6}} & \text { for } P=0.10 \\
n=0.414 e^{(1.78+\ln t)^{2} / 16.9} & \text { for } P=0.20
\end{array}
$$

The next step is to find a relationship for each of the coefficients appearing in the model. In other words, we are looking for a set of equations that estimate A, B and C based on P. When $P=0.02$ we need an equation for A that gives $A=0.726$, when $P=.05$ we want $A=0.696$, etc. We 1 ikewise need an equation to estimate B so that $B=2.79$ when $P=0.02$, and $B=1.99$ when $P=0.05$, etc. After curve fitting each coefficient, we might finally decide on the following equations:

$$
\begin{aligned}
& \mathrm{A}=0.188\left(0.985^{1 / \mathrm{P}}\right)\left(\mathrm{P}^{-0.535}\right) \\
& \mathrm{B}=1.77 \mathrm{P}^{-0.0023 / \mathrm{P}} \\
& \mathrm{C}=18.1-8.45 \mathrm{P}+0.118 / \mathrm{P}
\end{aligned}
$$

Given these equations, we can now estimate A, B and C for any value of P in the range from 0.02 to 0.20 . We can then substitute these values in the original model along with a value for t in order to estimate n.

5. DECOMPOSITION AND SUBSTITUTION

It is possible to express a generalized regression equation in several different forms by decomposing its coefficients or by substituting other variables for the ones given (this was done earlier when x^{2} was substituted for y and x^{3} for z). These techniques should always be tried before developing a new regression formula. The following examples illustrate a few of the variations possible with models presented in this book.

General Equation

$$
\begin{aligned}
& y=a x^{b} \\
& y=a b^{x} \\
& y=a b^{x} x^{c} \\
& y=a b^{x} x^{c} \\
& y=b x \\
& y=a+b x \\
& y=a+b x
\end{aligned}
$$

Alternate Form

$$
\begin{aligned}
y & =1 /\left(r x^{t}\right) \\
y & =r e^{(s x)} \\
y & =r x^{s} e^{t x} \\
y & =r(x / s)^{t} e^{(x / s)} \\
y & =b / x \\
y & =a+b * \arcsin (x) \\
1 n y & =a+b x
\end{aligned}
$$

The first three examples illustrate substitution of new coefficients for the originals. In the first case, the coefficients are related by $r=1 / a$ and $t=-b$. In the second case, $r=a$ and $s=1 n b$. In the third example, $r=a, t=1 n b$, and $s=c$. The fourth example involves decomposing or partitioning a coefficient into factors such that $a=r /(s)$, $c=t$ and $1 \mathrm{nb}=1 / \mathrm{s}$. The 1ast three examples involve substituting a new variable in the general equation. In the fifth example, the reciprocal of x is substituted for x. In the sixth example, the inverse sin of x is substituted for x and in the last, lny is substituted for y. These techniques can also be applied simultaneously to greatly expand the range of equations that can be fit with just a few basic regression formulas.

6. SCALING

Most programmable calculators are capable of storing only ten digits in a register. This limitation presents a problem if the less significant digits are lost during calculation. The problem can be particularly acute when one variable is much larger than another or when one variable changes much more rapidly than another. There are two techniques that are often used in such cases to maintain maximum accuracy.

The first consists of subtracting a common value from each y value before entering the data. After the coefficients have been determined, this value is then added to the general equation for y. If our data consisted of X, Y pairs such as $(10,994)$, $(20,1015),(30,1033)$, and $(40,1057)$, we could subtract 1000 from each y value and use $(10,-6)$, $(20,15),(30,33)$, and $(40,57)$ to find the regression coefficients. Using a linear fit, the final result would be $(y-1000)=-27+2.07 x$ which can be rewritten as $y=973+2.07 x$. The same result is obtained using the original data but with some loss of accuracy.

The second technique consists of multiplying or dividing by a constant factor before entering the data. This technique would be very useful with the following data: $(10,994),(20,1930),(30,3160)$, and $(40,4050)$. Dividing each y value by 100 gives us $(10,9.94),(20,19.3),(30,31.6)$, and $(40,40.5)$. The best linear fit would then be $(y / 100)=-0.660+1.04 x$ which can be rewritten as $y=104 x-660$. While this technique could have been used with the data in the previous example, it would not have emphasized the absolute differences in y. On the other hand, if we had subtracted 1000 from each y in the second example, we would still have the problem of some y values being much larger than x. Both of these techniques can be applied to x as well as y. They may also be used simultaneously as long as you remember to rewrite the final equation accordingly.

7. GOODNESS OF FIT

For peace of mind, we would like some assurance that the straight line resulting from our regression analysis is a reasonable approximation or good fit. There are a number of ways to evaluate how good the fit is, each with its own advantages and limitations. Perhaps the most commonly used measure of goodness of fit is the coefficient of determination, RR. (The square-root of RR is called the correlation coefficient.) A usefulproperty of the coefficient of determination is that it applies to any linear regression and may be used to determine which transform produces the best fit.

Another property of $R R$ is that it ranges from 0 to 1 : it is 1 when all of the data points (or transformed data points) fall exactly on a straight ine, and it is 0 for values of x and y chosen at random. RR has a direct interpretation as we11: it is the proportion of the total variation in y explained by the regression line. Thus an RR of 0.80 means that 80% of the observed variation in y can be attributed to variation in x : 20% of the variation in y is unexplained by the regression ine. If the data are very noisy (i.e., contain significant random errors), an RR of 0.8 may represent a fairly good fit. It is possible to have a coefficient of determination near 1 , however, and not have a good fit if the data have very little noise. Even
with a high degree of correlation, we cannot infer that the data actually fit a particular model without assuming something about the distribution of errors in the measurements of y. Moreover, a high RR does not prove causality and does not guarantee that new data will necessarily fit the model.

In general, a model is only valid over the range of input data and should not be used to extrapolate values outside of this range. A inear relationship between age and weight in children, for example, could not be used to accurately predict adult weight. Furthermore, losing weight will not reduce your age no matter how good the fit.

Whenever RR is used to compare one model with another, it should be corrected to eliminate any bias due to the size of the data sample and the number of coefficients being estimated. Appropriate corrections are included for most models in the book. It should be noted that RR is purely a function of the original (or transformed) values of x and y and expresses the strength of the linear relationship between them regardless of the curve being fit. It is not useful for measuring the goodness of fit in special cases such as lines forced through a point.

8. SIGNIFICANCE

We should always select a model for our data on the basis of either theoretical or empirical knowledge. Whenever possible, we should even design the data-collection so that goodness of fit, lack of fit, and measurement errors can all be tested. Unfortunately, it is not always possible to control what data are collected or to completely understand the phenomena involved. In such cases, the model must always be suspect until tests of significance are applied to each of the variables.

For regressions involving several terms, it is possible to determine the correlation between each pair of variables. If two independent variables are highly correlated, we should consider redoing the regression and omitting one of them since it contributes little toward reducing the variance in the dependent variable. If an independent variable exhibits little or no correlation to the dependent variable, we should also consider omitting it from the model.

It is usually the case that higher order curves with more variables will produce a better coefficient of determination. It is therefore prudent to determine if the improvement in RR is truly significant before opting to use the higher order curve. There are a number of methods for testing the significance of the coefficient of determination, but one of the most commonly used is the F-test. This is essentially a test of the hypothesis that the dependent variable is linearly related to the independent variables. The F value can be computed from the sample size and RR using the equation $F=(n-$ 2)RR/(1-RR), where n is the number of data points. F may be adjusted for the number of degrees of freedom (m) as follows: $F=(n-m-1) R R / m(1-R R)$. The interpretation of such tests is beyond the scope of this book, however, and the interested reader should consult one of the more advanced statistical texts 1 isted under references.

We shall conclude with an example that illustrates how to fit data to a curve using the information in this book. Suppose the heights of a small group of adults picked at random were measured as follows: 53, 54, 55, 56, 56, 57, 57, 57, $58,58,58,59,59,60,60,62$ and the frequency of each height summarized in a table.

Height (x)
53 in.
54 in.
55 in.
56 in.
57 in.
58 in.
59 in.
60 in.
62 in.

Frequency (y)
6.25\%
6.25\%
6.25\%
12.50\%
18.75\%
18.75\%
12.50%
12.50%
6.25\%

We would like to find a curve that fits these data and use it to estimate what percentage of the adult population have a height of 65 inches. We have converted the data to percentages in this case only because we want the final answer to be a percentage. The first step is to plot the data. Since height is the independent (or given) variable, it is plotted along the x-axis while frequency (or the unknown) is plotted along the y-axis. The plot will look something like this

We have the option at this point of scaling the data, if it is desirable. Since all of the x values are clustered between 53 and 62, we could simply subtract 50 from each and remember to add 50 to x in the final regression equation. In this example, the differences between and y are not quite large enough to be troublesome so we shall not bother to scale them.

The next step is to examine the curve and delete any points that appear to be extremes, or outiiers. This should be done with discretion so that the results are not biased by preconceptions of what the curve should look like.

We should also consider how the curve might behave on either side of the data sample we have plotted: does it reach some limit or does it swing upward again at some point? Does the curve pass through the origin? Knowing or assuming these details will make the selection of model easier. In some instances it may help to make up and use additional data. We may assume, for example, that there are no adults two feet tall or ten feet tall.

Now we look through the graphs for various equations and pick out ones that are similar to the plotted data. When it is difficult to find a curve that looks similar to our plot, we might replot the data with x values on the y-axis and y values on the x-axis to find a better match. In this particular case, it seems reasonable that the data belong to a normal distribution and replotting isn't necessary.

Turning to the normal distribution, the first thing we find is a $1 i s t$ of summation terms that are required. The first sum (R16) is simply the total of all the x values. The second sum (R17) involves squaring each x value before adding them together. The fourth sum requires taking the natural logarithm of each y value and then adding the logarithms together. When each of these summations has been calculated, the results should look like this:

R16 $=\Sigma \mathbf{x}_{\mathbf{i}}$	514.000
$\mathrm{R17}=\Sigma \mathrm{x}_{\mathbf{i}}^{\mathbf{2}}$	29,424.000
$\mathrm{R} 21=\mathrm{n}$	9.000
$\mathrm{R} 30=\Sigma 1 \mathrm{n} \mathrm{y}_{\mathbf{i}}$	20.770
$\mathrm{R} 31=\Sigma 1 \mathrm{n} \mathrm{y}_{\mathbf{i}}^{\mathbf{2}}$	49.755
R40 $=\Sigma \mathrm{x}_{\mathbf{i}}^{\mathbf{3}}$	1,688,344.000
R43 $=\Sigma \mathrm{x}_{\mathbf{i}}^{4}$	97,104,852.000
$\mathbf{R 4 6}=\Sigma \mathrm{x}_{\mathbf{i}}{ }^{*} \ln \mathrm{y}_{\mathbf{i}}$	1,189.588
$\mathrm{R} 54=\Sigma \mathrm{x}_{\mathrm{i}}^{2 *} \ln \mathrm{y}_{\mathrm{i}}$	68,268.885

If suggested register assignments are used, the formulas in the text can be applied directly to calculate allof the terms required. For this particular example, the terms become

R05 $=$	620.000
R06 $=$	$3,286.447$
R07 $=$	$71,160.000$
R08 $=$	30.564
R09 $=$	$8,171,892.000$
R11 $=$	-160.109
R12 $=$	5.625
R13 $=$	-0.049

The coefficients of the normal distribution equation are calculated from the last three registers.

$$
\begin{array}{lr}
\mathrm{a}= & 15.020 \\
\mathrm{~b}= & 57.895 \\
\mathrm{c}= & -20.586
\end{array}
$$

Substituting these coefficients into the general equation gives us the best fitting normal distribution for our data.

$$
y=15.0 e^{(x-57.9)^{2} /(-20.6)}
$$

The coefficient of determination is found to be 0.748 , meaning that approximately 75% of the observed variance in y is explained by x. For the limited data sample used, this probably represents a fairly good fit. If we were to try another curve with the hope of getting a better fit, it would be necessary to calculate the corrected coefficient of determination (0.664) for comparison. The curve with the larger corrected value of RR would generally be considered the better fitting curve. In this case, there is at least one other curve with a higher coefficient of determination, namely the cauchy distribution. Unless there is some strong justification for believing the adult population follows a cauchy distribution, however, we should not select it over the normal distribution for extrapolating outside of the range of our data. The regression curve we finally settle on should be plotted along with our data as a visual check of the calculations and goodness of fit.

Assuming we are satisfied with the model, we can now use our regression coefficients to estimate any value of y. By substituting 65 for x in the last expression, we can estimate the expected proportion of the adult population that is 65 inches in height. Based on the data sample used, we would expect about 1.3% of the population to be 65 inches tall. (The cauchy distribution model would have predicted 3.1\%.)

GENERAL CURVE FITTING EQUATIONS

STRAIGHT LINE

General Equation: $\quad \mathbf{y}=\mathbf{a}+\mathbf{b x}$

This is perhaps the most common equation used to fit data. It enjoys widespread use in general forecasting, biology, economics and engineering. It can be used any time y is proportional to x. The following formulas will estimate the coefficients of a linear equation that best fits the data when three or more points are given. X and y may be positive, negative or equal to zero.

$$
\begin{array}{lll}
\mathrm{R} 16=\Sigma \mathbf{x}_{\mathbf{i}} & \mathrm{R} 18=\Sigma \mathrm{y}_{\mathrm{i}} & \mathrm{R} 20=\Sigma \mathbf{x}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathrm{i}} \\
\mathrm{R} 17=\Sigma \mathrm{x}_{\mathbf{i}}^{2} & \mathrm{R} 19=\Sigma \mathrm{y}_{\mathbf{i}}^{2} & \mathrm{R} 21=\mathrm{n}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit straight line are computed as follows:

```
R05 = R17*R21 - (R16)'2
R11 = (R17*R18 - R16*R20)/R05
R12 = (R20*R21 - R16*R18)/R05
```

The coefficients of the best fit line are:

$$
\begin{aligned}
& \mathbf{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 18+\mathrm{R} 12 * \mathrm{R} 20-(\mathrm{R} 18)^{2} / \mathrm{R} 21}{\mathrm{R} 19-(\mathrm{R} 18)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Examp1e:

$X=$	10	20	30	40	50
$Y=$	28	32	46	59	72

$$
\begin{array}{lr}
\mathrm{R} 16= & 150.00 \\
\mathrm{R} 17= & 5,500.00 \\
\mathrm{R} 18= & 237.00 \\
\mathrm{R} 19= & 12,589.00 \\
\mathrm{R} 20= & 8,260.00
\end{array}
$$

| $\mathbf{R} 21=$ | 5.00 |
| ---: | ---: | ---: |
| $\mathbf{R} 05=$ | $5,000.00$ |
| $\mathbf{a}=$ | 12.90 |
| $\mathbf{b}=$ | 1.15 |
| $\mathbf{R R}=$ | 0.976 |

STRAIGHT LINE

THROUGH THE ORIGIN

General Equation: $\quad y=b x$

There are many situations where the relationship between x and y is such that y must be zero when x is zero. If blood pressure is zero, for example, then the volume of blood flow is zero. Voltage and current in simple electrical circuits exhibits a similar relationship. This equation can be used to fit a straight line to these kinds of data and is used any time y is directly proportional to x. The following formulas will estimate the coefficient of a linear equation that best fits the data when two or more points are given. X and y may be positive, negative, or equal to zero.

$$
\text { R17 }=\mathbf{x}_{\mathbf{i}}^{2} \quad \mathrm{R} 20=\mathbf{x}_{\mathrm{i}} *_{\mathrm{i}}
$$

where x and y are the values associated with each data point. The coefficient of the best fit straight line is computed as follows:

$$
\mathbf{R} 12=\mathrm{R} 20 / \mathrm{R} 17
$$

The coefficient of the best fit line through the origin is:

$$
\mathbf{b}=\mathrm{R} 12
$$

Examp1e:

$X=$	11	17	23	29
$Y=$	15	23	31	39

$$
\begin{array}{rlr}
\mathrm{R} 17 & =1,780.00 \\
\mathrm{R} 20 & =2,400.00 \\
\mathrm{~b} & =1.348
\end{array}
$$

STRAIGHT LINE

THROUGH A GIVEN POINT

General Equation: $\quad y=a+b x$

This is a variation of the linear equation. It is used to fit data to a straight line which passes through the point h, k. It can be used whenever the value of one point is known or assumed to be correct, e.g., surveying through a known tie point or benchmark. The following formulas will estimate the coefficients of a linear equation that best fits the data when three or more points are given. X and y may be positive, negative or equal to zero.

$$
\begin{array}{lll}
\mathbf{R} 16=\mathbf{x}_{\mathbf{i}} & \mathrm{R} 18=\mathrm{y}_{\mathbf{i}} & \mathrm{R} 20=\mathbf{x}_{\mathbf{i}}^{*} \mathbf{y}_{\mathbf{i}} \\
\mathrm{R} 17=\mathbf{x}_{\mathbf{i}}^{2} & & \mathrm{R} 21=\mathrm{n}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit straight line are computed as follows:

$$
\mathrm{R} 11=\frac{\mathrm{h} * \mathrm{k} * \mathrm{R} 16-\mathrm{k} * \mathrm{R} 17-\mathrm{h}^{2} * \mathrm{R} 18+\mathrm{h} * \mathrm{R} 20}{2 * \mathrm{~h} * \mathrm{R} 16-\mathrm{R} 17-\mathrm{h}^{2} * \mathrm{R} 21}
$$

The coefficients of the best fit line are:

$$
\begin{aligned}
& a=R 11 \\
& b=(k-R 11) / h
\end{aligned}
$$

Examp1e:

$X=$	100	200	300	400	500
$Y=$	140	230	310	400	480

Find the best fitting straight line that passes through the point (300,310).

$$
\begin{aligned}
& \mathrm{R} 16= \\
& \mathrm{R} 17=550,500.00 \\
& \mathrm{R} 18= \\
& \mathrm{R} 20= \\
& \mathrm{R}=553,560.000 .00
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R} 21 & = & 5.00 \\
\mathrm{a} & = & 55.00 \\
\mathrm{~b} & = & 0.850
\end{aligned}
$$

ALTERNATIVE STRAIGHT LINE

THROUGH A GIVEN POINT

General Equation: $\quad y=a+b x$

These equations will find the best fitting straight line that passes through the point h, k. It produces the same coefficients as the previous method but the technique is somewhat different and is generally applicable to other regression curves. It may be used to join two curves at a common point, e.g., a straight line and an arc. The following formulas will estimate the coefficients of a linear equation that best fits the data when three or more points are given. Note that h is subtracted from each x value and k is subtracted from each y value as the sums are calculated. X and y may be positive, negative or equal to zero.

$$
R 17=\left(x_{i}-h\right)^{2} \quad R 20=\left(x_{i}-h\right) *\left(y_{i}-k\right)
$$

where x and y are the values associated with each data point and h and k are the coordinates of the fixed points. The coefficients of the best fit straight line are computed as follows:

$$
\begin{aligned}
& \mathbf{R 1 2}=\mathrm{R} 20 / \mathrm{R} 17 \\
& \mathrm{R} 11=\mathrm{k}-\mathrm{h} * \mathrm{R} 12
\end{aligned}
$$

The coefficients of the best fit line are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

Example:

$X=$	100	200	300	400	500
$Y=$	140	230	310	400	480

Find the best fitting straight line that passes through the point $(300,310)$.

```
R17 = 100,000.000
a}=55.00
R20 = 85,000.000
b}=0.85
```


ISOTONIC LINEAR REGRESSION

General Equation: $\quad y=a+b x$

This is a variation of the linear equation based on minimizing the sum of squared deviations as measured perpendicular to the regression ine. It corresponds most nearly to a free-hand line drawn through the points. Isotonic regression can be used when there are equal errors in both x and y, e.g., surveying through a number of points that lie on a straight line. The following formulas will estimate the coefficients of a linear equation that best fits the data when three or more points are given. X and y may be positive, negative or equal to zero.

$$
\begin{array}{lll}
\text { R16 }=\Sigma \mathbf{x}_{i} & \mathrm{R} 18=\Sigma \mathrm{y}_{\mathrm{i}} & \mathrm{R} 20=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathrm{i}} \\
\mathrm{R} 17=\Sigma \mathrm{x}_{\mathrm{i}}^{2} & \mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{2} & \mathrm{R} 21=\mathrm{n}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit straight line are computed as follows:

$$
\begin{aligned}
& \mathrm{R} 05=\frac{(\mathrm{R} 17-\mathrm{R} 19) * \mathrm{R} 21+(\mathrm{R} 18)^{2}-(\mathrm{R} 16)^{2}}{2 *(\mathrm{R} 20 * \mathrm{R} 21-\mathrm{R} 16 * \mathrm{R} 18)} \\
& \mathrm{R} 11=-\mathrm{R} 05 \pm \sqrt{\mathrm{R} 05^{2}+1} \\
& \mathrm{R} 12=(\mathrm{R} 18-\mathrm{R} 11 * \mathrm{R} 16) / \mathrm{R} 21
\end{aligned}
$$

There are two possible lines which satisfy the regression equation, each is perpendicular to the other. The correct solution for most applications is given by the value of R11 that minimizes the expression

$$
|(R 12 * R 16-R 20) * R 11-R 12 * R 18|
$$

The coefficients of the best fitting straight line are then given by

$$
\begin{aligned}
& \mathbf{a}=\mathrm{R} 12 \\
& \mathrm{~b}=\mathrm{R} 11
\end{aligned}
$$

Example:

$X=$	100	200	300	400	500
$Y=$	140	230	310	400	480

$$
\begin{array}{lr}
\text { R16 }= & 1500 \\
\text { R17 }= & 550,000 \\
\text { R18 }= & 1,560 \\
\text { R19 }= & 559,000
\end{array}
$$

$$
\mathrm{R} 21=5.000
$$

$$
\mathrm{R} 05=0.163
$$

$$
a=664.88 \text { or } 56.96
$$

$$
b=-1.176 \text { or } 0.850
$$

Since the expression $|(R 12 * R 16-R 20) * R 11-R 12 * R 18|$ is minimum (486, 351 versus $1,559,850$) when R11 equals 0.85 , the coefficients of the best fit line are: $a=56.96$ and $b=0.85$.

General Equation: $\quad y=\frac{1}{a+b x}$

This equation is the reciprocal of a straight line. It is used when x is inversely proportional to y, e.g., exposure time versus brightness in photography. The following formulas will estimate the coefficients of a reciprocal equation that best fits the data when three or more points are given. Y must not be equal to zero (any small number may be substituted for y when it is).

$$
\begin{array}{lll}
\mathrm{R} 16=\Sigma \mathbf{x}_{\mathbf{i}} & \mathrm{R} 21=\mathrm{n} & \mathrm{R} 25=\Sigma 1 / \mathrm{y}_{\mathbf{i}}^{2} \\
\mathrm{R} 17=\Sigma \mathbf{x}_{\mathbf{i}}^{2} & \mathrm{R} 24=\Sigma 1 / \mathbf{y}_{\mathbf{i}} & \mathrm{R} 34=\Sigma \mathbf{x}_{\mathbf{i}} / \mathrm{y}_{\mathbf{i}}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R17*R21 - (R16)'2
R11 = (R17*R24 - R16*R34)/R05
R12 = (R21*R34 - R16*R24)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 24+\mathrm{R} 12 * \mathrm{R} 34-(\mathrm{R} 24)^{2} / \mathrm{R} 21}{\mathrm{R} 25-(\mathrm{R} 24)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	5.1	3.1	2.2	1.7	1.4

```
R16 = 15.000
R17 = 55.000
R21 = 5.000
R24 = 2.276
R25 = 1.205
\[
\begin{aligned}
\text { R34 } & =8.129 \\
\text { R05 } & =50.000 \\
\mathrm{a} & =0.065 \\
\mathrm{~b} & =0.130 \\
\mathrm{RR} & =1.000
\end{aligned}
\]
```


RECIPROCAL OF STRAIGHT LINE

THROUGH A GIVEN POINT

General Equation: $\quad y=\frac{1}{a+b x}$

This equation is the reciprocal of a straight line forced to pass through a given point h, k and can be used to join two curves through a common point. The following formulas will estimate the coefficients of a reciprocal curve when three or more points are given. Subtract h from each x value and $1 / k$ from $1 / y$ when calculating the sums. Y must not be equal to zero (any small number may be substituted for y when it is).

$$
R 17=\left(x_{i}-h\right)^{2}
$$

R34 $=\left(x_{i}-h\right) *\left(1 / y_{i}-1 / k\right)$
where x and y are the values associated with each data point and h and kare the coordinates of the given point. The coefficients of the best fit curve are computed as follows:

```
R12 = R34/R17
R11 = (1/k) - h*R12
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	5.1	3.1	2.2	1.7	1.4

Find the best fitting reciprocal curve that passes through the point $(3,2)$.

$$
\begin{array}{rl}
\text { R17 }=10.000 & a=0.109 \\
\text { R34 }=1.302 & b=0.130
\end{array}
$$

HYPERBOLA

General Equation: $\quad y=a+b / x$

The following formulas can be used to estimate the coefficients of a hyperbolic equation that best fits the data when three or more points are given. X must not be equal to zero (any small number may be substituted for x when it is).

$$
\begin{array}{lll}
\mathrm{R} 18=\Sigma \mathrm{y}_{\mathrm{i}} & \mathrm{R} 21=\mathrm{n} & \mathrm{R} 23=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{2} \\
\mathrm{R} 19=\Sigma \mathrm{y}_{\mathbf{i}}^{2} & \mathrm{R} 22=\Sigma 1 / \mathbf{x}_{\mathrm{i}} & \mathrm{R} 35=\Sigma \mathrm{y}_{\mathbf{i}} / \mathrm{x}_{\mathrm{i}}
\end{array}
$$

where x and y are the values associated with each data point and in the total number of points. The coefficients of the best fit hyperbola are computed as follows:

```
R05 = R21*R23 - (R22)'2
R11 = (R18*R23 - R22*R35)/R05
R12 = (R21*R35 - R18*R22)/R05
```

The coefficients of the best fit hyperbola are:

$$
\begin{aligned}
\mathrm{a} & =\mathrm{R} 11 \\
\mathrm{~b} & =\mathrm{R} 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 18+\mathrm{R} 12 * \mathrm{R} 35-(\mathrm{R} 18)^{2} / \mathrm{R} 21}{\mathrm{R} 19-(\mathrm{R} 18)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Example:

$\mathrm{X}=$	1.0	2.0	3.0	4.0	5.0
$\mathrm{Y}=$	5.1	3.1	2.2	1.7	1.4

```
R18 = 13.500
R19 = 43.310
R21 = 5.000
R22 = 2.283
R23 = 1.464
\begin{tabular}{rl} 
R35 & \(=8.088\) \\
R05 & \(=2.104\) \\
a & \(=0.613\) \\
b & \(=4.570\) \\
RR & \(=0.992\)
\end{tabular}
```


HYPERBOLA THROUGH A GIVEN POINT

General Equation: $\quad y=a+b / x$

The following formulas can be used to estimate the coefficients of a hyperbolic equation that passes through the point h,k when three or more points are given. Subtract k fromeach y value and $1 / h$ from $1 / x$ when calculating the sums. X must not be equal to zero (any small number may be substituted for x when it is).

$$
R 23=\left(1 / x_{i}-1 / h\right)^{2} \quad R 35=\left(y_{i}-k\right) *\left(1 / x_{i}-1 / h\right)
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit hyperbola are computed as follows:

$$
\begin{aligned}
& \mathrm{R} 12=\mathrm{R} 35 / \mathrm{R} 23 \\
& \mathrm{R} 11=\mathrm{k}-\mathrm{R} 12 / \mathrm{h}
\end{aligned}
$$

The coefficients of the best fit hyperbola are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

Example:

Find the best fit hyperbola that passes through the point (3,2).

$X=$	1.0	2.0	3.0	4.0	5.0
$\mathbf{Y}=$	5.1	3.1	2.2	1.7	1.4

R23 $=0.497$
$a=0.420$
R35 = 2.355
$b=4.739$

RECIPROCAL OF A HYPERBOLA

General Equation: $\quad y=\frac{x}{a x+b}$

This equation is the reciprocal of a hyperbola. The following formulas will estimate the coefficients of the equation that best fits the data when three or more points are given. Neither mor y can be equal to zero (any small number may be substituted for y when they are).

$$
\begin{array}{lll}
\mathrm{R} 21=\mathrm{n} & \mathrm{R} 23=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{2} & \mathrm{R} 25=\Sigma 1 / \mathrm{y}_{\mathbf{i}}^{2} \\
\mathrm{R} 22=\Sigma 1 / \mathbf{x}_{\mathbf{i}} & \mathrm{R} 24=\Sigma 1 / \mathrm{y}_{\mathbf{i}} & \mathrm{R} 26=\Sigma 1 /\left(\mathbf{x}_{\mathbf{i}}{ }^{*} \mathrm{y}_{\mathbf{i}}\right)
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R21*R23 - (R22)'2
R11 = (R23*R24 - R22*R26)/R05
R12 = (R21*R26 - R22*R24)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 24+R 12 * R 26-(R 24)^{2} / R 21}{R 25-(R 24)^{2} / R 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

$$
\begin{aligned}
& \text { R21 }=5.000 \\
& \text { R22 }=2.283 \\
& \text { R23 }=1.464 \\
& \text { R24 }=1.195 \\
& \text { R25 }=0.320
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R} 26 & =0.656 \\
\mathrm{R} 05 & =2.104 \\
\mathbf{a} & =0.120 \\
\mathrm{~b} & =0.262 \\
\mathrm{RR} & =0.830
\end{aligned}
$$

General Equation: $\quad y=a+b x+c / x$

This equation combines a straight line with a hyperbola and is especially useful for fitting many curves when the underlying phenomena is not well defined. The following formulas will estimate the coefficients of such a curve when four or more points are given. X must not be equal to zero (any small number may be substituted for x when it is).

$$
\begin{array}{lll}
\mathrm{R} 16=\Sigma \mathrm{x}_{\mathrm{i}} & \mathrm{R} 19=\Sigma \mathrm{y}_{\mathbf{i}}^{2} & \mathrm{R} 22=\Sigma 1 / \mathrm{x}_{\mathrm{i}} \\
\mathrm{R} 17=\Sigma \mathrm{x}_{\mathbf{i}}^{2} & \mathrm{R} 20=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{* \mathrm{y}_{\mathrm{i}}} & \mathrm{R} 23=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{2} \\
\mathrm{R} 18=\Sigma \mathrm{y}_{\mathrm{i}} & \mathrm{R} 21=\mathrm{n} & \mathrm{R} 35=\Sigma \mathrm{y}_{\mathrm{i}} / \mathbf{x}_{\mathbf{i}}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R17*R21 - (R16)2
R08 = R20*R21 - R16*R18
R06 = R21*R35 - R18*R22
R09 = R21*R23 - (R22)'2
R07 = (R21)'2 - R16*R22
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R18 - R12*R16 - R13*R22)/R21
```

The coefficients of the best fit curve are:
$\mathrm{a}=\mathrm{R} 11$
$\mathrm{b}=\mathrm{R} 12$
$\mathrm{c}=\mathrm{R} 13$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 18+\mathbf{R} 12 * \mathbf{R} 20+\mathrm{R} 13 * \mathbf{R} 35-(\mathrm{R} 18)^{2} / \mathrm{R} 21}{\mathrm{R} 19-(\mathrm{R} 18)^{2} / \mathrm{R} 21}
$$

When $R R$ is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Example:

$X=$	5	10	15	20	25
$Y=$	21	12	15	21	28

```
R16 = 75.000
R17 = 1,375.000
R18 = 97.000
R19 = 2,035.000
R20 = 1,570.000
R21 = 5.000
R22 = 0.457
R23 = 0.0585
R35 = 8.570
```

```
R05 = 1,250.000
R06 = -1.447
R07 = -9.250
R08 = 575.000
R09 = 0.084
    a= -23.628
    b = 1.781
    c = 178.559
    RR = 1.000
```


SECOND ORDER HYPERBOLA

General Equation: $\quad y=a+b / x+c / x^{2}$

This is a second degree polynomial where $1 / x$ has been substituted for x. It is similar to the hyperbola but generally exhibits a steeper descent along the y-axis. The following formulas will estimate the coefficients of such a curve when four or more points are given. X must not be equal to zero (any small number may be substituted for x when it is).

R18 $=\Sigma \mathrm{y}_{\mathbf{i}}$	$\mathrm{R} 22=\Sigma 1 / \mathrm{x}_{\mathrm{i}}$	R38 $=\Sigma \mathrm{y}_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}^{2}$
$\mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{2}$	$\mathrm{R} 23=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{2}$	$\mathrm{R} 41=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{3}$
$\mathrm{R} 21=\mathrm{n}$	R35 $=\Sigma \mathbf{y}_{\mathbf{i}} / \mathbf{x}_{\mathbf{i}}$	$\mathrm{R} 44=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{4}$

where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R21*R23 - (R22)'2
R08 = R21*R35 - R18*R22
R06 = R21*R38 - R18*R23
R09 = R21*R44 - (R23)'2
R07 = R21*R41 - R22*R23
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R18 - R12*R22 - R13*R23)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12 \\
& \mathrm{c}=\mathrm{R} 13
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 18+\mathrm{R} 12 * \mathrm{R} 35+\mathrm{R} 13 * \mathrm{R} 38-(\mathrm{R} 18)^{2} / \mathrm{R} 21}{\mathrm{R} 19-(\mathrm{R} 18)^{2} / \mathrm{R} 21}
$$

When $R R$ is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

```
R18 = 23.700
R19 = 125.890
R21 = 5.000
R22 = 2.283
R23 = 1.464
R35 = 8.848
R38 = 4.768
R41 = 1.186
R44 = 1.080
```

 R05 = 2.104
 R06 = -10.848
R07 $=2.586$
R08 $=-9.873$
R09 = 3.260
$\mathrm{a}=11.153$
$b=-24.238$
$\mathrm{c}=15.904$
$R R=0.986$

PARABOLA

General Equation: $\quad y=a+b x+c x^{2}$

The parabolic equation belongs to a family of curves known as polynomials. This particular equation is a second degree polynomial with many applications in the physical sciences, e.g., describing the motion of an object under the influence of gravity or acceleration. The following formulas will estimate the coefficients of such a curve when four or more points are given. X and y may be positive, negative, or equal to zero.

$$
\begin{aligned}
& \text { R16 }=\Sigma \mathbf{x}_{\mathbf{i}} \\
& \mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{\mathbf{2}} \\
& \text { R36 }=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{2}} \mathbf{y}_{\mathbf{i}} \\
& \text { R17 }=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{2}} \\
& \mathbf{R 2 0}=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \mathbf{y}_{\mathbf{i}} \\
& \mathbf{R 4 0}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{3}} \\
& \text { R18 }=\Sigma \mathrm{y}_{\mathrm{i}} \\
& \text { R21 = } \mathrm{n} \\
& R 43=\Sigma x_{i}^{4}
\end{aligned}
$$

where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R17*R21 - (R16)2 R08 = R20*R21 - R16*R18
R06 = R21*R36 - R17*R18 R09 = R21*R43 - (R17)2
R07 = R21*R40 - R16*R17
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R18 - R12*R16 - R13*R17)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12 \\
& \mathrm{c}=\mathrm{R} 13
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 18+\mathrm{R} 12 * \mathrm{R} 20+\mathrm{R} 13 * \mathrm{R} 36-(\mathrm{R} 18)^{2} / \mathrm{R} 21}{\mathrm{R} 19-(\mathrm{R} 18)^{2} / \mathrm{R} 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R16 $=$	15.000
R17 $=$	55.000
R18 $=$	23.700
R19 $=$	125.890
R20 $=$	82.600
R21 $=$	5.000
R36 $=$	331.400
R40 $=$	225.000
R43 $=$	979.000

R05 $=$	50.000
R06 $=$	353.500
R07 $=$	300.000
R08 $=$	57.500
R09 $=$	$1,870.000$
a $=$	2.140
b $=$	0.421
c $=$	0.121
RR $=$	0.991

PARABOLA THROUGH THE ORIGIN

General Equation: $\quad y=a x+b x^{2}$

This equation represents a parabolic curve that is constrained to pass through the origin. It is especially useful for estimating the relationship between elapsed time and counter readings on tape recorders and video recorders. The following formulas will estimate the coefficients of such a curve when three or more points are given. X and y may be positive, negative, or equal to zero.

$$
\begin{array}{ll}
\text { R17 }=\mathbf{x}_{\mathbf{i}}^{2} & \mathrm{R} 40=\mathbf{x}_{\mathbf{i}}^{3} \\
\mathrm{R} 20=\mathbf{x}_{\mathbf{i}}^{*} \mathrm{y}_{\mathbf{i}} & \mathrm{R} 43=\mathbf{x}_{\mathbf{i}}^{4} \\
\mathrm{R} 36=\mathbf{x}_{\mathbf{i}}^{2 *} \mathbf{y}_{\mathbf{i}} &
\end{array}
$$

where x and y are the values associated with each data point. The following terms must now be calculated in order to obtain the coefficients of the equation:

$$
\begin{aligned}
& \text { R05 }=\text { R17*R43 }-(\text { R40 })^{2} \\
& \text { R11 }=(\text { R20*R43 }- \text { R36*R40) } / \text { R05 } \\
& \text { R12 }=(\text { R17*R36 }- \text { R20*R40) } / \text { R05 }
\end{aligned}
$$

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathbf{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	49	84	113	138	161

$\mathrm{R} 17=\quad 55.00$
$\mathrm{R} 20=1,913.00$
R36 $=7,635.00$
$\mathbf{R 4 0}=225.00$
$\mathbf{R 4 3}=979.00$
R05 $=3,220.00$
$\mathrm{a}=48.12$
$\mathrm{b}=-3.26$

PARABOLA THROUGH A GIVEN POINT

General Equation: $\quad y=a+b x+c x^{2}$

This equation represents a parabolic curve that is constrained to pass through the point h, k. The following formulas will estimate the coefficients of such a curve when four or more points are given. Subtract h from each x value and k from each y value when calculating the sums. X and y may be positive, negative, or equal to zero.

$$
\begin{aligned}
& \text { R17 }=\Sigma\left(x_{i}-h\right)^{2} \\
& \text { R20 }=\Sigma\left(x_{i}-h\right)^{*}\left(y_{i}-k\right) \\
& \text { R36 }=\Sigma\left(y_{i}-k\right) *\left(x_{i}-h\right)^{2}
\end{aligned}
$$

$$
\mathrm{R} 40=\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mathrm{h}\right)^{3}
$$

$$
R 43=\Sigma\left(\mathbf{x}_{\mathrm{i}}-\mathrm{h}\right)^{4}
$$

where x and y are the values associated with each data point and h and k are the coordinates of the given point. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R17*R43 - (R40) }\mp@subsup{}{}{2
R11 = (R20*R43 - R36*R40)/R05
R12 = (R17*R36 - R20*R40)/R05
```

The coefficients of the best fit parabola are:

$$
\begin{aligned}
& a=k-(R 11-R 12 * h) * h \\
& b=R 11-2 * h * R 12 \\
& c=R 12
\end{aligned}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

Find the best fitting parabola through the point (4.5,6.5).

$$
\begin{aligned}
& \text { R17 }=21.250 \\
& \text { R20 }=24.700 \\
& \text { R36 }=-70.200 \\
& \text { R40 }=-61.875 \\
& \text { R43 }=194.313
\end{aligned}
$$

$\mathrm{R} 05=300.625$
$\mathrm{R} 11=1.516$
$a=2.139$
b $=0.422$
$\mathrm{c}=0.122$

POWER

General Equation: $\quad y=a x^{b}$

This equation is commonly referred to as the learning curve. It describes trends which are geometric in nature and is often applied when y increases at a much faster (geometric) rate than x. The following formulas will estimate the coefficients of a power curve that best fits the data when three or more points are given. X and y must be positive numbers greater than zero.

$$
\begin{array}{lll}
\mathrm{R} 21 & =\mathrm{n} & \mathrm{R} 29=\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2}
\end{array} \begin{array}{ll}
\mathrm{R} 31 & =\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2} \\
\mathrm{R} 28=\Sigma \ln \mathrm{x}_{\mathrm{i}} & \mathrm{R} 30=\Sigma \ln \mathrm{y}_{\mathrm{i}}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R21*R29 - (R28)'2
R11 = (R29*R30 - R28*R32)/R05
R12 = (R21*R32 - R28*R30)/R05
```

The coefficients of the best fit power curve are:

$$
\begin{aligned}
& \mathbf{a}=\mathbf{e}^{R 11} \\
& \mathbf{b}=R 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathbf{R R}=\frac{\mathrm{R} 11 * \mathrm{R} 30+\mathrm{R} 12 * \mathrm{R} 32-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R21 =	5.000	R05 =	8.077
R28 =	4.787	R11 =	0.919
R29 =	6.200	$\mathrm{a}=$	2.506
R30 =	7.468	$\mathrm{b}=$	0.600
R31 =	11.789	$\mathbf{R} \mathbf{R}=$	0.917
R32 =	8.121		

MODIFIED POWER

General Equation: $\quad y=a b^{\mathbf{x}}$

This equation is a variation of the power curve. It also describes trends which are geometric in nature and is applied when the ratio between successive terms in a series is constant. The following formulas will estimate the coefficients of a modified power curve that best fits the data when three or more points are given. Y must be a positive number greater than zero.

$$
\begin{array}{lll}
\text { R16 }=\Sigma \mathbf{x}_{\mathbf{i}} & \mathrm{R} 21=\mathrm{n} & \mathrm{R} 31=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2} \\
\text { R17 }=\Sigma \mathbf{x}_{\mathbf{i}}^{2} & \mathrm{R} 30=\Sigma \ln \mathrm{y}_{\mathbf{i}} & \mathrm{R} 46=\Sigma\left(\mathrm{x}_{\mathrm{i}}{ }^{*} \ln \mathrm{y}_{\mathbf{i}}\right)
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R17*R21 - (R16)2
R11 = (R17*R30 - R16*R46)/R05
R12 = (R21*R46 - R16*R30)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{R 11} \\
& b=e^{R 12}
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathbf{R R}=\frac{\mathrm{R} 11 * \mathbf{R} 30+\mathrm{R} 12 * \mathbf{R} 46-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

```
R16 = 15.000
R17 = 55.000
R21 = 5.000
R30 = 7.468
R31 = 11.789
R46 = 24.904
```

$\mathbf{R} 05$	$=50.000$
R11	$=0.743$
R12	$=0.250$
\mathbf{a}	$=2.103$
\mathbf{b}	$=1.284$
RR	$=0.984$

General Equation: $\quad y=a b^{1 / x}$

This equation is a variation of the modified power curve. It fits the xth root of a constant to the dependent variable y. The following formulas will estimate the coefficients of this equation when three or more points are given. Y must be a positive number greater than zero and x must not be equal to zero (any small number may be substituted for x when it is).

$$
\begin{array}{lll}
R 21=n & R 23=\Sigma 1 / x_{i}^{2} & R 31=\Sigma\left(\ln y_{i}\right)^{2} \\
R 22=\Sigma 1 / x_{i} & R 30=\Sigma \ln y_{i} & R 47=\Sigma\left(\ln y_{i}\right) / x_{i}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best curve are computed as follows:

```
R05 = R21*R23 - (R22)'2
R11 = (R23*R30 - R22*R47)/R05
R12 = (R21*R47 - R22*R30)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{R 11} \\
& b=e^{R 12}
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 30+R 12 * R 47-R(30)^{2} / R 21}{R 31-R 30^{2} / R 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R21 =	5.000
R22 =	2.283
R23	1.464
R30 =	7.468
R31 =	11.789
R47	2.958

$$
\begin{array}{rlr}
\text { R05 } & = & 2.104 \\
\text { R11 } & = & 1.984 \\
\text { R12 } & = & -1.074 \\
\mathbf{a} & = & 7.271 \\
\mathbf{b} & = & 0.342 \\
\text { RR } & =0.763
\end{array}
$$

SUPER GEOMETRIC

General Equation: $\quad y=a x^{b x}$

This equation is similar to the power curve but changes much more rapidly. The following formulas will estimate the coefficients of this curve when three or more points are given. X and y must be positive numbers greater than zero.

$$
\begin{array}{lll}
\mathrm{R} 21 & =\mathrm{n} & \mathrm{R} 31=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2} \\
\text { R30 }=\Sigma \ln \mathrm{y}_{\mathrm{i}} & \mathrm{R} 48=\Sigma \mathrm{x}_{\mathrm{i}} * \ln \mathrm{x}_{\mathrm{i}} & \mathrm{R} 49=\Sigma\left(\mathrm{x}_{\mathrm{i}} * \ln \mathrm{x}_{\mathrm{i}}\right)^{2} \\
\mathrm{R} 50=\Sigma\left(\mathrm{x}_{\mathrm{i}} * \ln \mathrm{x}_{\mathrm{i}} * \ln \mathrm{y}_{\mathrm{i}}\right)
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

$$
\begin{aligned}
& \text { R05 }=\text { R21*R49 }-(\mathrm{R} 48)^{2} \\
& \text { R11 }=(\text { R30*R49 - R48*R50) /R05 } \\
& \text { R12 }=(\text { R21*R50 }- \text { R30*R48) /R05 }
\end{aligned}
$$

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{R 11} \\
& b=R 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 30+R 12 * R 50-(R 30)^{2} / R 21}{R 31-(R 30)^{2} / R 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R 21 =	5.000	R05 =	207.496
R30 =	7.468	R11 =	1.047
R31 =	11.789	$\mathrm{a}=$	2.848
R48 =	18.274	$\mathrm{b}=$	0.122
R49 =	108.291	$\mathbf{R} \mathbf{R}=$	0.977
R50 =	32.370		

MODIFIED GEOMETRIC

General Equation: $\quad y=a x^{b / x}$

This equation is another variation of the modified power curve. The following formulas will estimate the coefficients of this curve when three or more points are given. X and y must be positive numbers greater than zero.

$$
\begin{array}{lll}
\text { R21 }=\mathrm{n} & \mathrm{R} 31=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2} & \mathrm{R} 53=\Sigma\left[\left(\ln \mathrm{x}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{i}}\right]^{2} \\
\mathrm{R} 30=\Sigma \ln \mathrm{y}_{\mathrm{i}} & \mathrm{R} 45=\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{i}} & \mathrm{R} 58=\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}{ }^{\left.* \ln \mathrm{y}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{i}}}\right.
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R21*R53 - (R45)}\mp@subsup{}{}{\mathbf{2}
R11 = (R30*R53 - R45*R58)/R05
R12 = (R21*R58 - R30*R45)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathbf{a}=e^{R 11} \\
& b=R 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 30+\mathrm{R} 12 * \mathrm{R} 58-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

```
R21 = 5.000
R30 = 7.468
R31 = 11.789
R45 = 1.381
R53 = 0.478
R58 = 2.213
```

```
R05 = 0.482
R11 = 1.065
    a = 2.900
    b = 1.552
    RR=0.365
```


EXPONENTIAL

General Equation: $\quad y=a e^{b x}$

This equation is used to model many natural phenomena including: chance or random failures, the time between failures in systems with many independent components, radial errors in centering, the distribution of lifetimes, and radioactive decay. It is essentially the same as the modified power curve. The following formulas will estimate the coefficients of an exponential curve that best fits the data when three or more points are given. Y must be a positive number greater than zero.

$$
\begin{array}{lll}
\text { R16 }=\Sigma \mathbf{x}_{i} & \mathrm{R} 21=\mathrm{n} & \mathrm{R} 31=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2} \\
\mathrm{R} 17=\Sigma \mathrm{x}_{\mathbf{i}}^{2} & \mathrm{R} 30=\Sigma \ln \mathrm{y}_{\mathbf{i}} & \mathrm{R} 46=\Sigma\left(\mathrm{x}_{\mathrm{i}}{ }^{*} \ln \mathrm{y}_{\mathrm{i}}\right)
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R17*R21 - (R16)'2
R11 = (R17*R30 - R16*R46)/R05
R12 = (R21*R46 - R16*R30)/R05
```

The coefficients of the best fit exponential curve are:
$a=e^{R 11}$
$\mathrm{b}=\mathrm{R} 12$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 30+R 12 * R 46-(R 30)^{2} / R 21}{R 31-(R 30)^{2} / R 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R16 =	15.000	R05 =	50.000
R17 =	55.000	R11 =	0.743
R21 =	5.000	$\mathrm{a}=$	2.103
R30 =	7.468	$\mathrm{b}=$	0.250
R31 =	11.789	$\mathbf{R R}=$	0.984
R46 =	24.904		

MODIFIED EXPONENTIAL

General Equation: $\quad y=a e^{b / x}$

This equation is a variation of the exponential curve and is essentially the same as the root curve. The following formulas will estimate the coefficients of this equation when three or more points are given. Y must be a positive number greater than zero and must not be equal to zero (any small number may be substituted for x when it is).

$$
\begin{array}{lll}
\mathrm{R} 21=\mathrm{n} & \mathrm{R} 23=\Sigma 1 / \mathrm{x}_{\mathrm{i}}^{2} & \mathrm{R} 31=\Sigma\left(1 \mathrm{n} \mathrm{y}_{\mathrm{i}}\right)^{2} \\
\mathrm{R} 22=\Sigma 1 / \mathrm{x}_{\mathrm{i}} & \mathrm{R} 30=\Sigma \ln \mathrm{y}_{\mathrm{i}} & \mathrm{R} 47=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right) / \mathrm{x}_{\mathrm{i}}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best curve are computed as follows:

```
R05 = R21*R23 - (R22)'2
R11 = (R23*R30 - R22*R47)/R05
R12 = (R21*R47 - R22*R30)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{e}^{\mathrm{R} 11} \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 30+\mathrm{R} 12 * \mathrm{R} 47-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Examp1e:

$\mathrm{X}=$	1.0	2.0	3.0	4.0	5.0
$\mathrm{Y}=$	2.8	3.2	4.6	5.9	7.2

```
R21 = 5.000
R22 = 2.283
R23 = 1.464
R3O = 7.468
R31 = 11.789
R47 = 2.958
```

$$
\begin{aligned}
\text { R05 } & =2.104 \\
\text { R11 } & =1.984 \\
\mathrm{a} & =7.271 \\
\mathrm{~b} & =-1.074 \\
\text { RR } & =0.763
\end{aligned}
$$

POISSON

General Equation: $\quad y=a b^{x} / x!$

The Poisson distribution is commonly used to describe the space or time distribution of random events, e.g., the probability of exactly x arrivals in a given period of time. The following formulas will estimate the coefficients of this curve when three or more points are given. Y must be a positive number greater than zero and must be a positive integer.

$$
\begin{aligned}
& \text { R16 }=\Sigma \mathbf{x}_{\mathbf{i}} \\
& R 21=n \\
& \text { R33 }=\Sigma \mathbf{x}_{i} * \ln \left(x_{i}!\right) \\
& R 17=\Sigma \mathbf{x}_{\mathbf{i}}^{2} \\
& R 27=\Sigma \ln \left(x_{i}!\right) \\
& \text { R46 }=\Sigma\left(\mathbf{x}_{i} * \ln y_{i}\right) \\
& \mathbf{R 3 0}=\Sigma \ln \mathbf{y}_{\mathbf{i}}
\end{aligned}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R17*R21 - (R16)'2
R06 = R27 + R30
R07 = R33 + R46
R11 = (R06*R17 - R07*R16)/R05
R12 = (R07*R21 - R06*R16)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{R 11} \\
& b=e^{R 12}
\end{aligned}
$$

Example:

$\mathbf{X}=$	0	1	2	3	4
$\mathbf{Y}=$	1.000	0.800	0.320	0.085	0.017

R16 $=$	10.000	R05	$=50.000$
R17 $=$	30.000	R06	$=-2.239$
R21 $=$	5.000	R07	$=-6.722$
R27	$=$	R11	$=0.001$
R30	$=-7.903$	R12	$=-0.224$
R33	$=19.474$	a	$=1.001$
R46	$=-26.195$	b	$=0.799$

LOGARITHMIC

General Equation: $\quad y=a+b * \ln x$

This equation represents a logarithmic curve. It describes trends where y increases at a much slower rate than x. The following formulas will estimate the coefficients of a logarithmic curve that best fits the data when three or more points are given. X must be a positive number greater than zero.

$$
\begin{array}{lll}
\text { R18 }=\Sigma \mathrm{y}_{\mathrm{i}} & \mathrm{R} 21=\mathrm{n} & \mathrm{R} 29=\Sigma\left(1 \mathrm{n} \mathrm{x}_{\mathrm{i}}\right)^{2} \\
\mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{2} & \mathrm{R} 28=\Sigma \ln \mathrm{x}_{\mathrm{i}} & \mathrm{R} 51=\Sigma \mathrm{y}_{\mathrm{i}}{ }^{*} \ln \mathrm{x}_{\mathrm{i}}
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

$$
\begin{aligned}
& \text { R05 }=\text { R21*R29 }-(\mathrm{R} 28)^{2} \\
& \text { R11 }=(\text { R18*R29 }- \text { R28*R51) } / \mathrm{R} 05 \\
& \text { R12 }=(\mathrm{R} 21 * R 51-\mathrm{R} 18 * R 28) / \mathrm{R} 05
\end{aligned}
$$

The coefficients of the best fit logarithmic curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 18+\mathrm{R} 12 * \mathrm{R} 51-(\mathrm{R} 18)^{2} / \mathrm{R} 21}{\mathrm{R} 19-(\mathrm{R} 18)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Example:

$\mathrm{X}=$	1.0	2.0	3.0	4.0	5.0
$\mathrm{Y}=$	2.8	3.2	4.6	5.9	7.2

R18 $=$	23.700
R19 $=$	125.890
R21 $=$	5.000
R28 $=$	4.787
R29 $=$	6.200

$$
\begin{aligned}
\mathrm{R} 51 & =27.039 \\
\mathrm{R} 05 & =8.077 \\
\mathrm{a} & =2.164 \\
\mathrm{~b} & =2.690 \\
\mathrm{RR} & =0.863
\end{aligned}
$$

RECIPROCAL OF LOGARITHMIC

General Equation:

$$
y=\frac{1}{a+b * \ln x}
$$

This equation is the reciprocal of the logarithmic curve. The following formulas will estimate the coefficients of such a curve when three or more points are given. X must be a positive number greater than zero. Y must not be equal to zero.

$\mathrm{R} 21=\mathrm{n}$	$\mathrm{R} 25=1 / \mathrm{y}_{\mathrm{i}}^{2}$	$\mathrm{R} 29=\left(1 \mathrm{n} \mathrm{x}_{\mathrm{i}}\right)^{2}$
$\mathrm{R} 24=1 / \mathrm{y}_{\mathrm{i}}$	$\mathrm{R} 28=1 \mathrm{n} \mathrm{x}_{\mathrm{i}}$	$\mathrm{R} 52=\left(1 \mathrm{n} \mathrm{x}_{\mathrm{i}}\right) / \mathrm{y}_{\mathrm{i}}$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

```
R05 = R21*R29 - (R28) }\mp@subsup{}{}{2
R11 = (R24*R29 - R28*R52)/R05
R12 = (R21*R52 - R24*R28)/R05
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 24+R 12 * R 52-(R 24)^{2} / R 21}{R 25-(R 24)^{2} / R 21}
$$

When R is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
\mathrm{RR}_{\text {corrected }}=1-\frac{(1-\mathrm{RR}) *(\mathrm{R} 21-1)}{(\mathrm{R} 21-2)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

```
R21 = 5.000
R24 = 1.195
R25 = 0.320
R28 = 4.787
R29 = 6.200
```

$\mathrm{R} 52=0.914$

R52	$=$	0.914
R05	$=$	8.077
\mathbf{a}	$=$	0.376
\mathbf{b}	$=$	-0.143
RR	$=$	0.950

LINEAR-EXPONENTIAL

General Equation: $\quad y=a x / b^{x}$

This equation is used to model many biological phenomena including dose response and stimuli response times. The following formulas will estimate the coefficients of this curve when three or more points are given. Both x and y must be positive numbers greater than zero.

$$
\begin{aligned}
& \text { R16 }=\Sigma \mathbf{x}_{\mathbf{i}} \\
& R 21=n \\
& \mathbf{R 4 6}=\Sigma\left(\mathbf{x}_{\mathbf{i}} * \ln \mathrm{y}_{\mathbf{i}}\right) \\
& \mathbf{R 1 7}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{2}} \\
& \text { R28 }=\Sigma \ln x_{i} \\
& \mathrm{R} 48=\Sigma\left(\mathrm{x}_{\mathrm{i}} * \ln \mathrm{x}_{\mathrm{i}}\right) \\
& R 30=\Sigma \ln \mathbf{y}_{\mathbf{i}}
\end{aligned}
$$

where x and y are the values associated with each data point and n is the total number of points. The coefficients of the best fit curve are computed as follows:

$$
\begin{aligned}
& \mathrm{R} 05=\mathrm{R} 17 * \mathrm{R} 21-(\mathrm{R} 16)^{2} \\
& \mathrm{R} 06=\mathrm{R} 30-\mathrm{R} 28 \\
& \mathrm{R} 07=\mathrm{R} 48-\mathrm{R} 46 \\
& \mathrm{R} 11=(\mathrm{R} 06 * \mathrm{R} 17+\mathrm{R} 07 * \mathrm{R} 16) / \mathrm{R} 05 \\
& \mathrm{R} 12=(\mathrm{R} 07 * \mathrm{R} 21+\mathrm{R} 06 * \mathrm{R} 16) / \mathrm{R} 05
\end{aligned}
$$

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{R 11} \\
& b=e^{R 12}
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 *(\mathrm{R} 30-\mathrm{R} 28)+\mathrm{R} 12 *(\mathrm{R} 48-\mathrm{R} 46)-(\mathrm{R} 30-\mathrm{R} 28)^{2} / \mathrm{R} 21}{\mathrm{R} 29+\mathrm{R} 31-2 * \mathrm{R} 32-(\mathrm{R} 30-\mathrm{R} 28)^{2} / \mathrm{R} 21}
$$

When RR is to be used for comparison with other regression curves, it should be corrected to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-2)}
$$

Example:

$\mathrm{X}=$	1.0	2.0	3.0	4.0
$\mathbf{Y}=$	0.667	0.889	0.889	0.790

HOERL FUNCTION

General Equation: $\quad y=a b^{\mathbf{x}} \mathbf{x}^{c}$

This is a generalized form of Hoerl's equation. The following formulas will estimate the coefficients of such a curve when four or more points are given. Both x and y must be positive numbers greater than zero (any small number may be substituted for 0).

$$
\begin{aligned}
& \text { R16 }=\Sigma \mathbf{x}_{\mathbf{i}} \\
& \text { R28 }=\Sigma \ln x_{i} \\
& \text { R32 }=\Sigma \ln \mathbf{x}_{\mathbf{i}}{ }^{*} \ln \mathbf{y}_{\mathbf{i}} \\
& R 17=\Sigma \mathbf{x}_{\mathbf{i}}^{2} \\
& R 29=\Sigma\left(\ln x_{i}\right)^{2} \\
& \text { R46 }=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \ln \mathbf{y}_{\mathbf{i}} \\
& \text { R21 }=\mathrm{n} \\
& R 30=\Sigma \ln y_{i} \\
& \mathbf{R 4 8}=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \ln \mathbf{x}_{\mathbf{i}} \\
& \text { R31 }=\Sigma\left(\ln \mathbf{y}_{\mathbf{i}}\right)^{\mathbf{2}}
\end{aligned}
$$

where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R17*R21 - (R16)'2
R08 = R21*R46 - R16*R30
R06 = R21*R32 - R28*R30
R09 = R21*R29 - (R28) }\mp@subsup{}{}{2
R07 = R21*R48 - R16*R28
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R30 - R12*R16 - R13*R28)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{R 11} \\
& b=e^{R 12} \\
& c=R 13
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 30+\mathrm{R} 12 * \mathrm{R} 46+\mathrm{R} 13 * \mathrm{R} 32-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R16 =	15.000
R17 =	55.000
R21 =	5.000
R28 =	4.787
R29	6.200
R30 =	7.468
R31 =	11.789
R32 =	8.121
R46 =	24.904
R48 =	18.274
R05 =	50.000

$\mathrm{R} 06=4.850$
$\mathrm{R} 07=19.560$ $\mathrm{R} 08=12.504$ R09 = 8.077 R11 $=0.723$ R12 $=0.288$
$a=2.060$
$b=1.333$
$\mathrm{c}=-0.096$
$\mathbf{R} \mathbf{R}=0.985$

MODIFIED HOERL FUNCTION

General Equation: $\quad y=a b^{1 / x} x^{c}$

This is a modified form of Hoerl's equation. The following formulas will estimate the coefficients of this equation when four or more points are given. Both x and y must be positive numbers greater than zero (any small number may be substituted for 0).

$$
\begin{aligned}
& \text { R21 = } \mathrm{n} \\
& \text { R22 }=\Sigma 1 / \mathbf{x}_{i} \\
& R 28=\Sigma \ln x_{i} \\
& \mathrm{R} 32=\Sigma \ln \mathrm{x}_{\mathrm{i}}{ }^{*} \ln \mathrm{y}_{\mathrm{i}} \\
& \mathrm{R} 29=\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{\mathbf{2}} \\
& \mathbf{R 4 5}=\Sigma\left(1 \operatorname{n} x_{i}\right) / x_{i} \\
& \mathrm{R} 23=\Sigma 1 / \mathbf{x}_{\mathbf{i}}^{2} \\
& R 30=\Sigma \ln \mathbf{y}_{\mathrm{i}} \\
& \mathbf{R 4 7}=\Sigma\left(\ln \mathrm{y}_{\mathbf{i}}\right) / \mathbf{x}_{\mathbf{i}} \\
& \text { R31 }=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2}
\end{aligned}
$$

where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R21*R23 - (R22)'2
R08 = R21*R47 - R22*R30
R06 = R21*R32 - R28*R30
R09 = R21*R29 - (R28)'2
R07 = R21*R45 - R22*R28
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R30 - R12*R22 - R13*R28)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{R 11} \\
& b=e^{R 12} \\
& c=R 13
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathbf{R R}=\frac{\mathrm{R} 11 * \mathrm{R} 30+\mathrm{R} 12 * \mathrm{R} 47+\mathrm{R} 13 * \mathrm{R} 32-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

```
R21 = 5.000 R06 = 4.850
R22 = 2.283 R07 = -4.025
R23 = 1.464
R28 = 4.787
R29 = 6.200
R30 = 7.468
R31 = 11.789
R32 = 8.121
R45 = 1.381
R47 = 2.958
\begin{tabular}{rr} 
R06 \(=\) & 4.850 \\
R07 \(=\) & -4.025 \\
R08 \(=\) & -2.259 \\
R09 \(=\) & 8.077 \\
R11 \(=\) & -0.576 \\
R12 \(=\) & 1.600 \\
a \(=\) & 0.562 \\
b \(=\) & 4.954 \\
c \(=\) & 1.398 \\
RR \(=\) & 0.996
\end{tabular}
```

R05 = 2.104

NORMAL DISTRIBUTION

General Equation: $\quad y=a e^{(x-b)^{2} / c}$

The normal or Gaussian distribution is often used to describe the expected frequency of some characteristic in a large population, e.g., the height of adult males. It applies to many natural and biological phenomena and is particularly appropriate when the data results from numerous additive factors. The following formulas will estimate the coefficients of this curve when four or more points are given. Y must be a positive number greater than zero.

R16 $=\Sigma \mathbf{x}_{\mathbf{i}}$
$\mathbf{R 3 0}=\Sigma \ln \mathbf{y}_{\mathbf{i}}$
R43 $=\Sigma \mathrm{x}_{\mathrm{i}}^{4}$
$\mathrm{R} 17=\Sigma \mathrm{x}_{\mathrm{i}}^{2}$
$R 31=\Sigma\left(\ln y_{i}\right)^{2}$
R46 $=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \ln \mathbf{y}_{\mathbf{i}}$
R21 $=\mathrm{n}$
$\mathbf{R 4 0}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{3}}$
R54 $=\Sigma \mathrm{x}_{\mathrm{i}}^{2 * \ln } \mathrm{y}_{\mathrm{i}}$
where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

$$
\begin{array}{ll}
\text { R05 }=\text { R17*R21 - (R16) }{ }^{2} & \text { R08 }=\text { R21*R46 - R16*R30 } \\
\text { R06 }=\text { R21*R54 - R17*R30 } & \text { R09 }=\text { R21*R43-(R17) }{ }^{2} \\
\text { R07 }=\text { R21*R40 - R16*R17 } &
\end{array}
$$

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R07 2)
R12 = (R08 - R07*R13)/R05
R11 = (R30 - R12*R16 - R13*R17)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{\left[R 11-(R 12)^{2} /(4 * R 13)\right]} \\
& b=-(R 12) /(2 * R 13) \\
& c=1 / R 13
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathbf{R R}=\frac{\mathrm{R} 11 * \mathrm{R} 30+\mathrm{R} 12 * \mathrm{R} 46+\mathrm{R} 13 * \mathrm{R} 54-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When $R R$ is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Example:

$\mathrm{X}=$	1.0	2.0	3.0	4.0	5.0
$\mathrm{Y}=$	0.9	3.7	4.7	1.8	0.2

R16 $=$	15.000	R07 $=$	300.000
R17 $=$	55.000	R08 $=$	-18.644
R21 $=$	5.000	R09 $=$	$1,870.000$
R30 $=$	1.729	R11 $=$	-2.746
R31 $=$	7.054	R12 $=$	3.236
R40 $=$	225.000	R13 $=$	-0.601
R43 $=$	979.000	a $=$	4.986
R46 $=$	1.458	b $=$	2.690
R54 $=$	-11.775	c $=$	-1.663
R05 $=$	50.000	RR $=$	1.000

R06 $=-153.965$

General Equation: $\quad y=a e^{(b-\ln x)^{2} / c}$

The log-normal distribution is often used when the range of data spans several orders of magnitude. It is frequently applied in economics, biology, and the physical sciences when the data results from numerous multiplicative factors. The following formulas will estimate the coefficients of this curve when four or more points are given. Both x and y must be positive numbers greater than zero.

$$
\begin{aligned}
& R 21=n \\
& \text { R30 }=\Sigma \ln \mathrm{y}_{\mathbf{i}} \\
& R 55=\Sigma\left(\ln x_{i}\right)^{3} \\
& \text { R28 }=\Sigma \ln \mathbf{x}_{\mathbf{i}} \\
& \mathrm{R} 31=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{2} \\
& R 56=\Sigma\left(\ln x_{i}\right)^{4} \\
& R 29=\Sigma\left(\ln x_{i}\right)^{2} \\
& R 32=\Sigma \ln x_{i} * \ln y_{i} \\
& R 57=\Sigma\left(1 n x_{i}\right)^{2 *} \ln y_{i}
\end{aligned}
$$

where x and y are the values associated with each data point and in the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R21*R29 - (R28)2
R08 = R21*R32 - R28*R30
R06 = R21*R57 - R29*R30
R09 = R21*R56 - (R29) }\mp@subsup{}{}{2
R07 = R21*R55 - R28*R29
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R30 - R12*R28 - R13*R29)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=e^{\left[R 11-(R 12)^{2} /(4 * R 13)\right]} \\
& b=-(R 12) /(2 * R 13) \\
& c=1 / R 13
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 30+\mathrm{R} 12 * \mathrm{R} 32+\mathrm{R} 13 * \mathrm{R} 57-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Examp1e:

$X=$	100	200	300	400	500
$Y=$	330	300	270	240	220

R 21 =	5.000	R 07 =	87.176
R28 =	27.813	R08 =	-2.020
R29 =	156.332	R09 =	942.656
R30 =	27.976	R11 =	3.268
R31 =	156.634	R12 =	1.145
R32 =	155.215	R13 =	-0.129
R55 =	887.058	a	331.304
R56 =	5,076.463	b $=$	4.429
R57 =	870.288	$\mathrm{c}=$	-7.737
R05 =	8.077	$\mathbf{R} \mathbf{R}=$	0.999
R06 =	-22.034		

BETA DISTRIBUTION

General Equation: $\quad y=a x^{b}(1-x)^{c}$

The beta distribution is sometimes encountered in statistics when the independent variable ranges between zero and one. The following formulas will estimate the coefficients of this equation when four or more points are given. X must be between zero and one and y must be a positive number greater than zero (any small number may be substituted for 0).

$$
\begin{aligned}
& \text { R21 }=\mathrm{n} \\
& \mathbf{R 3 0}=\Sigma \ln \mathbf{y}_{\mathbf{i}} \\
& \text { R28 }=\Sigma \ln x_{i} \\
& \text { R31 }=\Sigma\left(\ln \mathrm{y}_{\mathrm{i}}\right)^{\mathbf{2}} \\
& \text { R29 }=\Sigma\left(\ln x_{i}\right)^{2} \\
& \text { R32 }=\Sigma \ln x_{i}{ }^{*} \ln y_{i} \\
& \text { R60 }=\Sigma\left[\ln \left(1-x_{i}\right)\right]^{2} \\
& R 61=\Sigma \ln x_{i} * \ln \left(1-x_{i}\right) \\
& \text { R62 }=\Sigma \ln y_{i} * \ln \left(1-x_{i}\right) \\
& R 59=\Sigma \ln \left(1-x_{i}\right)
\end{aligned}
$$

where x and y are the values associated with each data point and in the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R21*R29 - (R28)'2
R08 = R21*R32 - R28*R30
R06 = R21*R62 - R30*R59
R09 = R21*R60 - (R59)2
R07 = R21*R61 - R28*R59
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R30 - R12*R28 - R13*R59)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{e}^{\mathrm{R} 11} \\
& \mathrm{~b}=\mathrm{R} 12 \\
& \mathrm{c}=\mathrm{R} 13
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 30+R 12 * R 32+R 13 * R 62-(R 30)^{2} / R 21}{R 31-(R 30)^{2} / R 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Examp1e:

$X=$	0.1	0.2	0.3	0.4	0.5
$Y=$	1.0	1.6	2.2	2.6	3.1

```
R21 = 5.000
R28 = -6.725
R29 = 10.662
R30 = 3.345
R31 = 3.036
R32 = -3.365
R59 = -1.889
R60 = 0.930
R61 = 1.980
R62 = -1.658
```

| R05 $=$ | 8.077 |
| ---: | ---: | ---: |
| R06 $=$ | -1.972 |
| R07 $=$ | -2.807 |
| R08 $=$ | 5.672 |
| R09 $=$ | 1.079 |
| R11 $=$ | 1.603 |
| a $=$ | 4.968 |
| b $=$ | 0.698 |
| c $=$ | -0.012 |
| RR $=$ | 0.999 |

General Equation: $\quad y=a(x / b)^{c} e^{x / b}$

The gamma distribution is commonly used in statistics to describe the sum of several identical exponential distributions. It is essentially the same as the Hoerl function. The following formulas will estimate the coefficients of such a curve when four or more points are given. Both x and y must be positive numbers greater than zero (any small number may be substituted for 0) .

$$
\begin{array}{lll}
\mathrm{R} 16=\mathrm{x}_{\mathrm{i}} & \mathrm{R} 28=\ln \mathrm{x}_{\mathrm{i}} & \mathrm{R} 32=\ln \mathrm{x}_{\mathrm{i}} * \ln \mathrm{y}_{\mathrm{i}} \\
\mathrm{R} 17=\mathrm{x}_{\mathrm{i}}^{2} & \mathrm{R} 29=\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{2} & \mathrm{R} 46=\mathrm{x}_{\mathrm{i}} * \ln \mathrm{y}_{\mathrm{i}} \\
\mathrm{R} 21=\mathrm{n} & \mathrm{R} 30=\ln \mathrm{y}_{\mathrm{i}} & \mathrm{R} 48=\mathrm{x}_{\mathrm{i}} * \ln \mathrm{x}_{\mathrm{i}}
\end{array}
$$

where and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R17*R21 - (R16)2 R08 = R21*R46 - R16*R30
R06 = R21*R32 - R28*R30
R09 = R21*R29 - (R28) }\mp@subsup{}{}{2
R07 = R21*R48 - R16*R28
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R30 - R12*R16 - R13*R28)/R21
```

The coefficients of the best fit curve are:

```
\(\left.a=e^{[R 11}+R 13 * 1 n(1 / R 12)\right]\)
\(\mathrm{b}=1 / \mathrm{R} 12\)
\(\mathrm{c}=\mathrm{R} 13\)
```

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 30+\mathrm{R} 12 * \mathrm{R} 46+\mathrm{R} 13 * \mathrm{R} 32-(\mathrm{R} 30)^{2} / \mathrm{R} 21}{\mathrm{R} 31-(\mathrm{R} 30)^{2} / \mathrm{R} 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R16 =	15.000	R06 =	4.850
R17 =	55.000	R07 =	19.560
R21 =	5.000	R08 =	12.504
R28	4.787	R09 =	8.077
R29	6.200	R11 =	0.723
R30	7.468	R12 =	0.288
R31 =	11.789	a	1.826
R32	8.121	$\mathrm{b}=$	3.475
R46	24.904	c	-0.096
R48 =	18.274	$\mathbf{R} \mathbf{R}=$	0.985
R05	50.000		

CAUCHY DISTRIBUTION

General Equation: $\quad y=\frac{1}{a(x+b)^{2}+c}$

The cauchy distribution is sometimes used in statistics to describe distributions that have a mean but no standard deviation. The following formulas will estimate the coefficients of this curve when four or more points are given. Y must not be equal to zero (any small number may be substituted for y when it is).

R16 $=\Sigma \mathbf{x}_{\mathbf{i}}$
$\mathrm{R} 24=\Sigma 1 / \mathrm{y}_{\mathrm{i}}$
R37 $=\Sigma \mathbf{x}_{\mathbf{i}}^{2} / \mathbf{y}_{\mathbf{i}}$
$\mathbf{R 1 7}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{2}}$
R25 $=\Sigma 1 / y_{i}^{2}$
$\mathbf{R 4 0}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{3}}$
R21 $=\mathbf{n}$
R34 $=\Sigma \mathbf{x}_{i} / y_{i}$
$\mathbf{R 4 3}=\Sigma \mathbf{x}_{\mathbf{i}}^{4}$
where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R17*R21 - (R16)2
R08 = R21*R34 - R16*R24
R06 = R21*R37 - R17*R24
    R09 = R21*R43 - (R17)'2
R07 = R21*R40 - R16*R17
```

```
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R11 = (R24 - R12*R16 - R13*R17)/R21
```

The coefficients of the best fit curve are:

$$
\begin{aligned}
& a=R 13 \\
& b=R 12 /(2 * R 13) \\
& c=R 11-\left[(R 12)^{2} /(4 * R 13)\right]
\end{aligned}
$$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathbf{R R}=\frac{\mathrm{R} 11 * \mathrm{R} 24+\mathrm{R} 12 * \mathrm{R} 34+\mathrm{R} 13 * \mathrm{R} 37-(\mathrm{R} 24)^{2} / \mathrm{R} 21}{\mathrm{R} 25-(\mathrm{R} 24)^{2} / \mathrm{R} 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Example:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	2.8	3.2	4.6	5.9	7.2

R16 $=$	15.000	R06 $=$	-17.009
R17 $=$	55.000	R07 $=$	300.000
R21 $=$	5.000	R08 $=$	-2.898
R24 $=$	1.195	R09 $=$	$1,870.000$
R25 $=$	0.320	R11 $=$	0.451
R34 $=$	3.007	R12 $=$	-0.090
R37 $=$	9.748	a $=$	0.005
R40 $=$	225.000	b $=$	-8.388
R43 $=$	979.000	c $=$	0.072
R05 $=$	50.000	RR $=$	0.980

MULTIPLE LINEAR REGRESSION

TWO INDEPENDENT VARIABLES

General Equation: $\quad z=a+b x+c y$

This equation can be used to fit any linear equation involving two independent variables. The following formulas will estimate the coefficients of such an equation when four or more points are given. X, y and z may be positive, negative, or equal to zero.

$$
\begin{aligned}
& \text { R16 }=\mathbf{x}_{\mathbf{i}} \\
& \mathbf{R 1 9}=\quad \mathbf{y}_{\mathbf{i}}^{\mathbf{2}} \\
& \mathrm{R} 64=\mathrm{z}_{\mathbf{i}}^{\mathbf{2}} \\
& \text { R17 }=X_{i}^{2} \\
& \text { R20 }=\mathbf{x}_{\mathbf{i}} \text { * }_{\mathbf{i}} \\
& \text { R65 }=X_{i}{ }^{*} z_{i} \\
& \text { R18 }=y_{i} \\
& \text { R21 }=\mathrm{n} \\
& \text { R66 }=\mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{z}_{\mathbf{i}} \\
& \text { R63 }=z_{i}
\end{aligned}
$$

where x, y and z are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R05 = R17*R21 - (R16) 2 R07 = R20*R21 - R16*R18
R06 = R21*R66 - R18*R63
R08 = R21*R65 - R16*R63
```

```
    R09 = R19*R21 - (R18)'2
```

 R09 = R19*R21 - (R18)'2
 R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R13 = (R05*R06 - R07*R08)/(R05*R09 - R072)
R12 = (R08 - R07*R13)/R05
R12 = (R08 - R07*R13)/R05
R11 = (R63 - R12*R16 - R13*R18)/R21

```
R11 = (R63 - R12*R16 - R13*R18)/R21
```

The coefficients of the best fit curve are:
$\mathrm{a}=\mathrm{R} 11$
$\mathrm{b}=\mathrm{R} 12$
$\mathrm{c}=\mathrm{R} 13$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
R R=\frac{R 11 * R 63+R 12 * R 65+R 13 * R 66-(R 63)^{2} / R 21}{R 64-(R 63)^{2} / R 21}
$$

When RR is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-3)}
$$

Examp1e:

$X=$	1.1	2.3	3.2	4.5	5.1
$Y=$	1.7	3.0	5.2	7.1	9.2
$Y=$	2.8	4.6	3.8	4.9	3.3

R16 =	16.200	R05 =	52.560
R17 =	63.000	R06 =	9.070
R18 =	26.200	R 07 =	96.960
R19 =	173.980	R08 =	9.220
R20 =	104.280	R09 =	183.460
R21	5.000	a	2.038
R63	19.400	$\mathrm{b}=$	3.364
R64	78.340	$\mathrm{c}=$	-1.728
R65 =	64.700	$\mathrm{R} R=$	1.000
R66 =	103.470		

MULTIPLE LINEAR REGRESSION

THREE INDEPENDENT VARIABLES

General Equation: $\quad t=a+b x+c y+d z$

This regression can be used to fit any linear equation involving three independent variables. The following formulas will estimate the coefficients of such an equation when five or more points are given. X, y, z and t may be positive, negative, or equal to zero.

$$
\begin{aligned}
& \text { R16 }=\Sigma \mathbf{x}_{\mathbf{i}} \\
& \mathrm{R} 21=\mathrm{n} \\
& R 67=\Sigma t_{i} \\
& \text { R17 }=\Sigma \mathbf{x}_{\mathbf{i}}^{2} \\
& \text { R63 }=\Sigma \mathrm{z}_{\mathrm{i}} \\
& \text { R68 }=\Sigma \mathrm{t}_{\mathbf{i}}^{\mathbf{2}} \\
& \text { R18 }=\Sigma \mathrm{y}_{\mathrm{i}} \\
& \text { R64 }=\Sigma \mathrm{z}_{\mathbf{i}}^{\mathbf{2}} \\
& \text { R69 }=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \mathrm{t}_{\mathrm{i}} \\
& \mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{2} \\
& \text { R65 }=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \mathbf{z}_{\mathbf{i}} \\
& \mathbf{R 7 0}=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathrm{t}_{\mathbf{i}} \\
& \mathbf{R 2 0}=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \mathbf{y}_{\mathbf{i}} \\
& \text { R66 }=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{z}_{\mathbf{i}} \\
& \mathrm{R} 71=\Sigma \mathrm{z}_{\mathrm{i}}{ }^{*} \mathrm{t}_{\mathrm{i}}
\end{aligned}
$$

where x, y, z and t are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R81 = (R20* - R17*R19)*R63 + (R17*R66 - R20*R65)*R18 + (R19*R65 - R20*R66)*R16
R82 = (R20*R21 - R16*R18)*R66 + (R16*R19 - R18*R20)*R63 + (R182 - R19*R21)*R65
R83 = (R17*R63 - R16*R65)*R18 + (R21*R65 - R16*R63)*R20 + (R162 - R17*R21)*R66
R84 = R17*R21 - R16 }\mp@subsup{}{}{2
R85 = R19*R84 + 2*(R16*R18*R20) - (R21*R202) - (R17*R182)
R86 = R21*R69 - R16*R67
R87 = R20*R21 - R16*R18
R88 = R21*R65 - R16*R63
R89 = (R21*R70 - R18*R67)*R84 - (R86*R87)
```

$$
\begin{aligned}
& R 14=\frac{(\mathrm{R} 67 * \mathrm{R} 81+\mathrm{R} 69 * \mathrm{R} 82+\mathrm{R} 70 * \mathrm{R} 83+\mathrm{R} 71 * \mathrm{R} 85)}{(\mathrm{R} 63 * \mathrm{R} 81+\mathrm{R} 65 * \mathrm{R} 82+\mathrm{R} 66 * \mathrm{R} 83+\mathrm{R} 64 * \mathrm{R} 85)} \\
& \mathrm{R} 13=\frac{[(\mathrm{R} 18 * \mathrm{R} 63-\mathrm{R} 21 * \mathrm{R} 66) * \mathrm{R} 84+(\mathrm{R} 87 * \mathrm{R} 88)] * \mathrm{R} 14+\mathrm{R} 89}{\left(\mathrm{R} 19 * \mathrm{R} 21-\mathrm{R} 18^{2}\right) * \mathrm{R} 84-(\mathrm{R} 87)^{2}} \\
& \mathrm{R} 12=\frac{\mathrm{R} 86-\mathrm{R} 13 * \mathrm{R} 87-\mathrm{R} 14 * \mathrm{R} 88}{\mathrm{R} 84} \\
& \mathrm{R} 11=\frac{\mathrm{R} 67-\mathrm{R} 12 * \mathrm{R} 16-\mathrm{R} 13 * \mathrm{R} 18-\mathrm{R} 14 * \mathrm{R} 63}{\mathrm{R} 21}
\end{aligned}
$$

The coefficients of the best fit curve are:
$\mathrm{a}=\mathrm{R} 11$
$\mathrm{b}=\mathrm{R} 12$
$\mathrm{c}=\mathrm{R} 13$
$\mathrm{d}=\mathrm{R} 14$

The goodness of fit (coefficient of determination) is calculated from the following expression:

$$
\mathrm{RR}=\frac{\mathrm{R} 11 * \mathrm{R} 67+\mathrm{R} 12 * \mathrm{R} 69+\mathrm{R} 13 * \mathrm{R} 70+\mathrm{R} 14 * \mathrm{R} 71-(\mathrm{R} 67)^{2} / \mathrm{R} 21}{\mathrm{R} 68-(\mathrm{R} 67)^{2} / \mathrm{R} 21}
$$

When $R R$ is to used for comparison with other regression curves, it should be corrected as follows to obtain an unbiased estimate for the coefficient of determination.

$$
R_{\text {corrected }}=1-\frac{(1-R R) *(R 21-1)}{(R 21-4)}
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0	6.0
$Y=$	2.8	3.2	4.6	5.8	7.2	8.4
$Z=$	4.8	2.6	9.4	6.4	2.4	8.0
$T=$	4.0	2.5	8.8	5.4	1.1	6.8

R16	0
R17	91.000
R18	32.000
R19	195.280
R20	132.600
R21	6.000
R63	33.600
R64	228.880
R65	123.800
R66	186.600
R67	28.600
R68	176.300
R69	103.300
R70	156.040
R71	200.02

```
R81 = }rrr\mp@code{153.768
```



```
R89 = -163.920
```

R71 $=200.020$

General Equation: $\quad y=a x^{r}+b x^{s}$

This is a generalized second order polynomial where r and s must both be specified to use the regression. When requals zero and sequals one, it reduces to a straight line equation. When r and s have values other than zero, the curve will pass through the origin. The following formulas will estimate the coefficients of such an equation when three or more points are given. Y may be positive, negative, or equal to zero. If either r or is negative, x must not be equal to zero. If either r or s is non-integer, x must be positive.

$$
\begin{aligned}
& \text { R18 }=\Sigma \mathrm{y}_{\mathrm{i}} \\
& \mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{2} \\
& \mathbf{R 7 2}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{2 r}} \\
& \mathbf{R 7 8}=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{x}_{\mathbf{i}}^{\mathbf{r}} \\
& \mathbf{R 7 3}=\Sigma \mathbf{x}_{\mathbf{i}}^{2 \mathrm{~s}} \\
& \text { R79 }=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{x}_{\mathbf{i}}^{\mathbf{s}} \\
& R 21=n \\
& R 75=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{r}+\mathbf{s}}
\end{aligned}
$$

where x and y are the values associated with each data point and n is the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R12 = (R72*R79 - R75*R78)/(R72*R73 - R752)
```

R11 $=($ R78 $-R 12 * R 75) / R 72$

The coefficients of the best fit curve are:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{R} 11 \\
& \mathrm{~b}=\mathrm{R} 12
\end{aligned}
$$

Example:

$\mathbf{X}=$	1.0	2.0	3.0	4.0	5.0
$\mathbf{Y}=$	1.0	0.9	0.5	0.3	0.2

Given that $r=-2$ and $s=-3$, find the coefficients of the best fitting curve.

$\mathbf{r}=$	-2.000	R73 =	1.017
S $=$	-3.000	R75 =	1.037
R18 =	2.900	R78 =	1.307
R19 =	2.190	R79 =	1.137
R21 =	5.000	$\mathrm{a}=$	6.191
R72 =	1.080	$\mathrm{b}=$	-5.191

General Equation: $\quad y=a x^{\mathbf{r}}+b x^{s}+c x^{t}$

This is a generalized third order polynomial where the values of r, s and t must be specified to use the regression. When requals zero, sequals one, and t equals 2 , it reduces to a parabola. When r, s and t have values other than zero, the curve will pass through the origin. The following formulas will estimate the coefficients of such an equation when four or more points are given. Y may be positive, negative, or equal to zero. If r, sor is negative, x must not be equal to zero. If r, s or t is non-integer, x must be positive.

$$
\begin{aligned}
& \text { R18 }=\Sigma \mathbf{y}_{\mathrm{i}} \\
& R 73=\Sigma \mathbf{x}_{\mathbf{i}}^{2 s} \\
& \mathbf{R 7 7}=\Sigma \mathbf{x}_{\mathbf{i}}^{s+t} \\
& \mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{2} \\
& R 74=\Sigma \mathbf{x}_{\mathbf{i}} \mathbf{t}^{\mathrm{t}} \\
& R 78=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{x}_{\mathbf{i}}^{\mathbf{r}} \\
& R 21=n \\
& \mathbf{R 7 5}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{r}+\mathbf{s}} \\
& \text { R79 }=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{x}_{\mathbf{i}}^{\mathbf{s}} \\
& \mathbf{R 7 2}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{2 r}} \\
& \mathbf{R 7 6}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{r}+\mathbf{t}} \\
& \mathbf{R 8 0}=\Sigma \mathbf{y}_{\mathbf{i}} * \mathbf{x}_{\mathbf{i}}^{\mathbf{t}}
\end{aligned}
$$

where x and y are the values associated with each data point and in the total number of points. The following terms must now be calculated in order to obtain the coefficients of the equation:

```
R81 = (R72*R73*R80) + (R75*R76*R79) + (R75*R77*R78) - R80*(R75)2
    - (R73*R76*R78) - (R72*R77*R79)
R82 = (R72*R73*R74) + 2*(R75*R76*R77) - R74*(R75)2 - R73(R76)2 - R72*(R77)2
R13 = (R81/R82)
R12 = (R75*R76 - R72*R77)*R13 + R72*R79-R75*R78
R11 = (R78 - R12*R75 - R13*R76)/R72
```

The coefficients of the best fit curve are:

$$
\mathrm{a}=\mathrm{R} 11
$$

$$
\mathrm{b}=\mathrm{R} 12
$$

$$
c=R 13
$$

Examp1e:

$X=$	1.0	2.0	3.0	4.0	5.0
$Y=$	0.5	1.4	2.8	4.6	6.6

Given that the exponents of x are: $\quad r=0.2, s=0.8$, and $t=1.2$, calculate the coefficients of the best fitting curve.

$\mathbf{r}=$	0.200	R76 =	24.777
$\mathbf{s}=$	0.800	R77 =	55.000
t	1.200	R78 =	20.772
R18 =	15.900	R79 =	47.543
R19 =	74.770	R80 =	83.991
R21 =	5.000	R81	4.552
R72 =	7.516	R82 =	1.914
R73 =	32.153	a	1.328
R74 =	95.694	$\mathrm{b}=$	-3.209
R75 =	15.000	c $=$	2.378

CIRCLE

General Equation: $\quad r^{2}=(x-h)^{2}+(y-k)^{2}$

This is the general equation for a circle with a radius of r and center at h, k. It is used in surveying to determine the best fit circle for points which lie on an arc. The circle is best fit in the sense that the squared deviation of the area is minimized. The following formulas will determine the coordinates of a best fit circle when four or more points are given. X and y may be positive, negative, or equal to zero.

$$
\begin{array}{lll}
\mathrm{R} 16=\Sigma \mathrm{x}_{\mathrm{i}} & \mathrm{R} 19=\Sigma \mathrm{y}_{\mathbf{i}}^{2} & \mathrm{R} 39=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathrm{i}}^{2} \\
\mathrm{R} 17=\Sigma \mathrm{x}_{\mathrm{i}}^{2} & \mathrm{R} 20=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathrm{i}} & \mathrm{R} 40=\Sigma \mathrm{x}_{\mathrm{i}}^{3} \\
\mathrm{R} 18=\Sigma \mathrm{y}_{\mathrm{i}} & \mathrm{R} 21=\mathrm{n} & \mathrm{R} 42=\Sigma \mathrm{y}_{\mathrm{i}}^{3} \\
& \mathrm{R} 36=\Sigma \mathrm{y}_{\mathrm{i}}{ }^{*} \mathrm{x}_{\mathrm{i}}^{2} &
\end{array}
$$

where x and y are the values associated with each data point and n is the total number of points.

```
R05 = R20*R21 - R16*R18
R06 = (R17 + R19)*R18 - (R36 + R42)*R21
R07 = (R18)2 - R19*R21
R08 = (R17 + R19)*R16 - (R39 + R40)*R21
```

$$
\begin{aligned}
& \text { R09 }=(\mathrm{R} 16)^{2}-\mathrm{R} 17 * \mathrm{R} 21 \\
& \mathrm{R} 10=\mathrm{R} 07 * \mathrm{R} 09-(\mathrm{R} 05)^{2}
\end{aligned}
$$

The solution is undefined whenever R08 is equal to zero. Otherwise the parameters of the best fit circle are

$$
\begin{aligned}
& h=(R 05 * R 06+R 07 * R 08) /(2 * R 10) \\
& k=(R 05 * R 08+R 06 * R 09) /(2 * R 10)
\end{aligned}
$$

After the values of h and k have been determined, the radius of the circle can be calculated as follows:

$$
r=\sqrt{\frac{\mathrm{R} 17+\mathrm{R} 19-2 *(\mathrm{~h} * \mathrm{R} 16+\mathrm{k} * \mathrm{R} 18)+\left(\mathrm{h}^{2}+\mathrm{k}^{2}\right) * \mathrm{R} 21}{\mathrm{R} 21}}
$$

Examp1e:

$X=$	6	10	13	13	14
$Y=$	12	11	8	0	4

R16 = 56
R17 = 670
R18 = 35
R19 = 345
R20 $=342$
R21 $=\quad 5$
R36 $=3,668$
R39 = 3,130
R40 $=8,354$
R42 $=3,635$

$$
\begin{aligned}
\mathrm{R} 05 & = & -250 \\
\mathrm{R} 06 & = & -990 \\
\mathrm{R} 07 & = & -500 \\
\mathrm{R} 08 & = & -580 \\
\mathrm{R} 09 & = & -214 \\
\mathrm{R} 10 & = & 44,500 \\
\mathrm{~h} & = & 6.04 \\
\mathrm{k} & = & 4.01 \\
\mathrm{r} & = & 8.01
\end{aligned}
$$

CORRECTION EXPONENTIAL

General Equation: $\quad y=a+b c^{x}$

The correction exponential curve is commonly used in economic forecasting but it generally requires iterative techniques to find the coefficients. If the values of x are evenly spaced, however, the following non-iterative technique can be applied to estimate the coefficients.

The x, y pairs must first be arranged in ascending order starting with the lowest value of x and ending with the highest value of x. The data must now be divided into three even groups with the same number of points in each group. The first one or two data points can be discarded in order to make the groups come out even. Now replace each x value with the numbers zero through N-1 where N is the total number of points to be used. Sums for each of the groups are calculated as follows:
($\mathrm{N}-3$)/3

$$
R 05=\sum_{i=0} y_{i}
$$

$$
R 06=\sum_{i=N / 3}^{(2 N-3) / 3} y_{i}
$$

($\mathrm{N}-1$)

$$
R 07=\sum_{i=(2 N / 3)} y_{i}
$$

The following terms must now be calculated in order to obtain the coefficients of the equation.

$$
\begin{aligned}
& \mathrm{R} 08=(\mathrm{R} 07-\mathrm{R} 06) /(\mathrm{R} 06-\mathrm{R} 05) \\
& \mathrm{R} 13=(\mathrm{R} 08)^{3 / N} \\
& \mathrm{R} 12=(\mathrm{R} 06-\mathrm{R} 05) *(\mathrm{R} 13-1) /(\mathrm{R} 08-1)^{2} \\
& \mathrm{R} 11=\frac{\mathrm{R} 05-[(\mathrm{R} 08-1) /(\mathrm{R} 13-1)] * \mathrm{R} 12}{(\mathrm{~N} / 3)}
\end{aligned}
$$

The coefficients of the best fit correction exponential are
$\mathrm{a}=\mathrm{R} 11$
$\mathrm{b}=\mathrm{R} 12$
$\mathrm{c}=\mathrm{R} 13$

Examp1e:

Year	i	Production
1922	0	33.8
1923	1	38.9
1924	2	37.7
1925	3	42.5
1926	4	46.3
R05	=	199.2
1927	5	50.6
1928	6	55.2
1929	7	58.9
1930	8	58.0
1931	9	60.5
R06	=	283.2
1932	10	62.8
1933	11	63.5
1934	12	60.4
1935	13	63.9
1936	14	68.2
R07	=	318.8

N	$=$	15.000
R 08	$=$	0.424
R 11	$=$	68.997
R 12	$=$	-39.917
R 13	$=$	0.842

LOGISTIC CURVE

General Equation: $\quad y=\frac{a}{1+b^{x}}$

The logistic curve is commonly used in economic forecasting but it generally requires iterative techniques to find the coefficients. If the values of x are evenly spaced, however, the following non-iterative technique can be applied to estimate the coefficients.

The x, y pairs must first be arranged in ascending order starting with the lowest value of x and ending with the highest value of x. The data must now be divided into three even groups with the same number of points in each group. The first one or two data points can be discarded in order to make the groups come out even. Now replace each x value with the numbers zero through N-1 where N is the total number of points to be used. Sum for each of the groups are calculated as follows:
($\mathrm{N}-3$)/3

$$
R 05=\sum_{i=0} 1 / y_{i}
$$

(2N-3)/3

$$
R 06=\sum_{i=N / 3} 1 / y_{i}
$$

($\mathrm{N}-1$)

$$
R 07=\sum_{i=(2 N / 3)} 1 / y_{i}
$$

The following terms must now be calculated in order to obtain the coefficients of the equation.

$$
\begin{aligned}
& \mathrm{R} 08=(\mathrm{R} 07-\mathrm{R} 06) /(\mathrm{R} 06-\mathrm{R} 05) \\
& \mathrm{R} 13=(\mathrm{R} 08)^{3 / \mathrm{N}} \\
& \mathrm{R} 12=(\mathrm{R} 06-\mathrm{R} 05) *(\mathrm{R} 13-1) /(\mathrm{R} 08-1)^{2} \\
& \mathrm{R} 11=\frac{\mathrm{R} 05-[(\mathrm{R} 08-1) /(\mathrm{R} 13-1)] * \mathrm{R} 12}{(\mathrm{~N} / 3)}
\end{aligned}
$$

The coefficients of the best fit correction exponential are
$a=1 / R 11$
b $=$ R12/R11
$\mathrm{c}=\mathrm{R} 13$

Examp1e:

Year	i	Production	1/Production
1956	0	40	0.02500
1957	1	50	0.02000
1958	2	67	0.01493
1959	3	88	0.01136
1960	4	119	0.00840
1961	5	146	0.00685
R05		=	0.0865
1962	6	182	0.00549
1963	7	123	0.00813
1964	8	273	0.00336
1965	9	322	0.00311
1966	10	388	0.00258
1967	11	475	0.00211
R06		=	0.02508
1968	12	591	0.00169
1969	13	713	0.00140
1970	14	845	0.00118
1971	15	983	0.00102
1972	16	1143	0.00087
1973	17	1256	0.00080
R07		$=$	0.00697

N	$=$	18.000
R 08	$=$	0.295
R 11	$=$	$-9.961 \mathrm{E}-05$
R 12	$=$	0.023
R 13	$=$	0.816
a	$=$	$-10,039.033$
b	$=$	-228.532
c	$=$	0.816

ABBREVIATIONS AND SYMBOLS

e
e^{x}
\mathbf{i}
$\ln x$
n
\mathbf{x}_{i}
$\mathbf{y}_{\mathbf{i}}$
$|X|$

X!
Σ

Rnn the contents of calculator register nn
RR the coefficient of determination (the square-root of $R R$ is the correlation coefficient)
the base of the natural logarithm (2.71828....)
e raised to the x power
an index used to refer to the ith data point
the natural logarithm of x
the total number of data points
the value of x at the ith data point
the value of y at the ith data point
the absolute value of x
the factorial of X, e.g., $5!=5 \times 4 \times 3 \times 2 \times 1=120$
the sum of all terms from the first data point to the last

R00 = curve number	$\mathrm{R} 23=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{2}$
R01 = a or 1ast X	R24 $=\Sigma 1 / y_{i}$
R02 $=$ b or 1ast Y	R25 $=\Sigma 1 / \mathrm{y}_{\mathbf{i}}^{2}$
$\mathrm{R03}=\mathrm{c}$	R26 $=\Sigma 1 /\left(\mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathrm{i}}\right)$
$\mathrm{R} 04=\mathrm{d}$	$\mathrm{R} 27=\Sigma \ln \left(\mathrm{x}_{\mathbf{i}}!\right)$
R05 = used	$\mathrm{R} 28=\Sigma \ln \mathrm{x}_{\mathrm{i}}$
R06 = used	$\mathrm{R} 29=\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right)^{\mathbf{2}}$
R07 = used	$\mathrm{R} 30=\Sigma \ln \mathrm{y}_{\mathrm{i}}$
R08 = used	$\mathrm{R} 31=\Sigma\left(1 \mathrm{n} \mathrm{y}_{\mathrm{i}}\right)^{2}$
R09 = used	R32 $=\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right) *\left(\ln \mathrm{y}_{\mathrm{i}}\right)$
R10 = corrected RR	R33 $=\Sigma \mathrm{x}_{\mathrm{i}} * \ln \left(\mathrm{x}_{\mathrm{i}}!\right)$
R11 = used	R34 $=\Sigma \mathrm{x}_{\mathrm{i}} / \mathrm{y}_{\mathrm{i}}$
R12 = used	R35 $=\Sigma \mathrm{y}_{\mathbf{i}} / \mathbf{x}_{\mathbf{i}}$
R13 = used	$\mathrm{R} 36=\Sigma \mathrm{x}_{\mathbf{i}}^{2} \mathrm{~F}_{\mathbf{y}}^{\mathrm{i}}$
R14 = used	R37 $=\Sigma \mathrm{x}_{\mathbf{i}}^{2} / \mathbf{y}_{\mathbf{i}}$
R15 = best curve	R38 $=\Sigma \mathrm{y}_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}$
$\mathrm{R} 16=\Sigma \mathrm{x}_{\mathrm{i}}$	R39 $=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathbf{i}}$
$\mathrm{R} 17=\Sigma \mathrm{x}_{\mathrm{i}}$	$\mathbf{R 4 0}=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{3}}$
$\mathrm{R} 18=\Sigma \mathrm{y}_{\mathrm{i}}$	R41 $=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{3}$
$\mathrm{R} 19=\Sigma \mathrm{y}_{\mathrm{i}}^{2}$	$\mathrm{R} 42=\Sigma \mathrm{y}_{\mathrm{i}}^{\mathbf{3}}$
$\mathrm{R} 20=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{y}_{\mathbf{i}}$	$\mathrm{R} 43=\Sigma \mathrm{x}_{\mathrm{i}}^{4}$
R 21 = n	$\mathrm{R} 44=\Sigma 1 / \mathrm{x}_{\mathbf{i}}^{4}$
$\mathrm{R} 22=\Sigma 1 / \mathrm{x}_{\mathrm{i}}$	$\mathrm{R} 45=\Sigma\left(\ln \mathrm{x}_{\mathrm{i}}\right) / \mathrm{x}_{\mathbf{i}}$

$$
\begin{aligned}
& \mathbf{R 4 6}=\Sigma \mathbf{x}_{\mathrm{i}}{ }^{*} \ln \mathrm{y}_{\mathrm{i}} \\
& \mathbf{R 4 7}=\Sigma\left(\ln \mathrm{y}_{\mathbf{i}}\right) / \mathbf{x}_{\mathbf{i}} \\
& \mathrm{R} 48=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{*} \ln \mathrm{x}_{\mathrm{i}} \\
& \mathrm{R} 49=\Sigma\left(\mathrm{x}_{\mathrm{i}}{ }^{*} \ln \mathrm{x}_{\mathrm{i}}\right)^{\mathbf{2}} \\
& R 50=\Sigma \mathrm{x}_{\mathrm{i}} *\left(\ln \mathrm{x}_{\mathrm{i}}\right) *\left(\ln \mathrm{y}_{\mathrm{i}}\right) \\
& R 51=\Sigma y_{i}{ }^{*} \ln x_{i} \\
& R 52=\Sigma\left(\ln x_{i}\right) / y_{i} \\
& R 53=\Sigma\left[\left(\ln x_{i}\right) / x_{i}\right]^{2} \\
& \text { R54 }=\Sigma \mathbf{x}_{\mathbf{i}}^{2 *} \ln \mathbf{y}_{\mathbf{i}} \\
& R 55=\Sigma\left(\ln x_{i}\right)^{3} \\
& R 56=\Sigma\left(1 n x_{i}\right)^{4} \\
& R 57=\Sigma\left(\ln x_{i}\right)^{2 * 1 n} y_{i} \\
& R 58=\Sigma\left(\ln x_{i} * \ln y_{i}\right) / x_{i} \\
& \text { R59 }=\Sigma \ln \left(1-x_{i}\right) \\
& \text { R60 }=\Sigma\left[\ln \left(1-x_{i}\right)\right]^{2} \\
& R 61=\Sigma\left(\ln x_{i}\right) * \ln \left(1-x_{i}\right) \\
& R 62=\Sigma\left(\ln y_{i}\right) * \ln \left(1-x_{i}\right) \\
& \text { R63 }=\Sigma \mathrm{z}_{\mathrm{i}} \\
& \text { R64 }=\Sigma \mathrm{z}_{\mathrm{i}}^{\mathbf{2}} \\
& \text { R65 }=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{*} \mathbf{z}_{\mathbf{i}} \\
& \text { R66 }=\Sigma \mathrm{y}_{\mathbf{i}}{ }^{*} \mathbf{z}_{\mathbf{i}} \\
& \mathbf{R 6 7}=\Sigma \mathrm{t}_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R} 68=\Sigma \mathrm{t}_{\mathrm{i}}^{2} \\
& \mathrm{R} 69=\Sigma \mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{t}_{\mathrm{i}} \\
& \mathrm{R} 70=\Sigma \mathrm{y}_{\mathrm{i}}{ }^{*} \mathrm{t}_{\mathrm{i}} \\
& \mathrm{R} 71=\Sigma \mathrm{z}_{\mathrm{i}}{ }^{*} \mathrm{t}_{\mathrm{i}} \\
& \mathrm{R} 72=\Sigma \mathrm{x}_{\mathrm{i}}^{2 \mathrm{r}} \\
& \mathrm{R} 73=\Sigma \mathbf{x}_{\mathrm{i}} \mathrm{~s} \\
& \text { R74 }=\Sigma \mathbf{x}_{i}^{2 t} \\
& \text { R75 }=\Sigma \mathbf{x}_{\mathbf{i}}{ }^{\mathbf{r}}{ }^{\text {s }} \\
& \text { R76 }=\Sigma \mathbf{x}_{i}^{\text {rit }} \\
& \mathrm{R} 77=\Sigma \mathbf{x}_{\mathbf{i}}^{\mathbf{s}+\mathrm{t}} \\
& \text { R78 }=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{x}_{\mathbf{i}}^{\mathbf{r}} \\
& \text { R79 }=\Sigma \mathbf{y}_{\mathbf{i}}{ }^{*} \mathbf{x}_{\mathbf{i}}^{\mathbf{s}} \\
& \text { R80 }=\Sigma \mathrm{y}_{\mathrm{i}}{ }^{*} \mathrm{x}_{\mathrm{i}}^{\mathrm{t}} \\
& \text { R81 }=\text { used } \\
& \text { R82 }=\text { used } \\
& \text { R83 = used } \\
& \text { R84 = used } \\
& \text { R85 = used } \\
& \text { R86 = used } \\
& \text { R87 = used } \\
& \text { R88 = used } \\
& \text { R89 = used }
\end{aligned}
$$

The following example illustrates how a regression formula can be derived for the equation

$$
y=a x+b x^{2}
$$

The estimated values of for this equation that correspond to given values of X, i.e., $X_{1}, X_{2}, X_{3}, \ldots \ldots . . . X_{n}$ are

$$
a X_{1}+b X_{1}^{2}, \quad a X_{2}+b X_{2}^{2}, \quad a X_{3}+b X_{3}^{2}, \ldots \ldots . . ., a X_{n}+b X_{n}^{2}
$$

The actual values of Y, however, are $Y_{1}, Y_{2}, Y_{3}, \ldots \ldots, Y_{n}$.

The least square regression curve is the one that minimizes the sum of the squared differences between the estimated Y values and the actual Y values.

$$
S=\left(a X_{1}+b X_{1}^{2}-Y_{1}\right)^{2}+\left(a X_{2}+b X_{2}^{2}-Y_{2}\right)^{2}+\ldots .+\left(a X_{n}+b X_{n}^{2}-Y_{n}\right)^{2}
$$

The minimum value of S can be determined from the calculus by taking the partial derivatives with respect to each coefficient (a and bin this case) and equating them to zero.

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=0=2\left(a X_{1}+b X_{1}^{2}-Y_{1}\right) X_{1}+ 2\left(a X_{2}+b X_{2}^{2}-Y_{2}\right) X_{2}+\ldots \\
& \ldots+2\left(a X_{n}+b X_{n}^{2}-Y_{1}\right) X_{n} \\
& \frac{\partial S}{\partial b}=0=2\left(a X_{1}+b X_{1}^{2}-Y_{1}\right) X_{1}^{2}+2\left(a X_{2}+b X_{2}^{2}-Y_{2}\right) X_{2}^{2}+\ldots \\
& \ldots+2\left(a X_{n}+b X_{n}^{2}-Y_{1}\right) X_{n}^{2}
\end{aligned}
$$

$$
\mathrm{C}-1
$$

These equations can be reduced and expressed in summation form as

$$
\begin{align*}
& \mathrm{a} \Sigma \mathrm{X}^{2}+\mathrm{b} \Sigma \mathrm{X}^{3}-\Sigma \mathrm{XY}=0 \tag{1}\\
& \mathrm{~b} \Sigma \mathrm{X}^{3}+\mathrm{b} \Sigma \mathrm{X}^{4}-\Sigma \mathrm{X}^{2} Y=0 \tag{2}
\end{align*}
$$

Rewriting (1) and (2) to solve for the coefficients a and b gives:

$$
\begin{align*}
& \mathrm{a}=\frac{\Sigma \mathrm{XY}-\mathrm{b} \Sigma \mathrm{X}^{3}}{\Sigma \mathrm{X}^{2}} \tag{3}\\
& \mathrm{~b}=\frac{\Sigma \mathrm{X}^{2} \mathrm{Y}-\mathrm{a} \Sigma \mathrm{X}^{3}}{\Sigma \mathrm{X}^{4}} \tag{4}
\end{align*}
$$

Solve for the coefficients and by first substituting brom equation (4) into equation (3), and then substituting a from equation (3) into equation (4).
$a=\frac{\Sigma X Y * \Sigma X^{4}-\Sigma X^{2} Y * \Sigma X^{3}}{\Sigma X^{2} * \Sigma X^{4}-\Sigma X^{3} Y * \Sigma X^{3}}$
$b=\frac{\Sigma \mathrm{X}^{2} * \Sigma \mathrm{X}^{2} \mathrm{Y}-\Sigma \mathrm{XY} * \Sigma \mathrm{X}^{3}}{\Sigma \mathrm{X}^{2} * \Sigma \mathrm{X}^{4}-\Sigma \mathrm{X}^{3} \mathrm{Y} * \Sigma \mathrm{X}^{3}}$

DERIVATION OF MODELS BY TRANSFORMATION

The general linear regression and multiple linear regression models can be used to fit many other curves. The following tables provide a framework for deriving many of the equations presented in the text and illustrate how new models can be developed by transforming X and Y. These tables are especially useful for developing your own curve fitting programs. Remember that a least squares fit based on transforms is not identical to a least squares fit of the original X and Y (see p. 2).

One Independent Variable

A general linear regression model for one independent variable can be written as:

$$
\begin{aligned}
& R 11=(A * D-B * E) /\left(A * N-B^{2}\right) \\
& R 12=(E * N-B * D) /\left(A * N-B^{2}\right)
\end{aligned}
$$

These two equations can be used to fit many curves by simply substituting the appropriate transformations from Table 1.

TABLE 1. TRANSFORMATIONS FOR ONE INDEPENDENT VARIABLE

Two Independent Variables

A general multiple linear regression model for two independent variables can be solved as follows:

$$
\begin{aligned}
& \text { R05 }=\mathrm{B}^{*} \mathrm{~N}-\mathrm{A}^{2} \\
& \text { R06 }=\mathbf{H} * N-D * E \\
& \mathbf{R 0 7}=\mathbf{J} * N-A * D \\
& \text { R08 }=\mathbf{G} * N-A * E \\
& \text { R09 }=\mathbf{C} * N-D^{2}
\end{aligned}
$$

where N is the total number of data points. The different curves are fit by substituting appropriate transformations from Table 2 in these equations and then solving for the following

$$
\begin{aligned}
& \text { R13 }=(\mathrm{R} 05 * \mathrm{R} 06-\mathrm{R} 07 * \mathrm{R} 08) /\left(\mathrm{R} 05 * \mathrm{R} 09-\mathrm{R} 07^{2}\right) \\
& \mathrm{R} 12=(\mathrm{R} 08-\mathrm{R} 07 * \mathrm{R} 13) / \mathrm{R} 05 \\
& \mathrm{R} 11=(E-\mathrm{A} \text { R12 }-\mathrm{D} * \mathrm{R} 13) / \mathrm{N}
\end{aligned}
$$

The coefficients a, b and c are derived from R11, R12 and R13 as shown in the last three columns of the table.

MULTIPLE CURVE FITTING PROGRAM

$$
\mathrm{HP}-41 \mathrm{C} / \mathrm{V}
$$

This program fits up to 19 curves to an unimited number of X, Y data points. Any curve can be selected by entering the appropriate curve number from the table below. The best fitting curve can be determined automatically based on the adjusted coefficient of determination, RR. Once a curve has been selected either manually or automatically, values of Y can be estimated for any given value of X.

Curve Number	Type	General Equation	Page
1	Linear	$\mathbf{Y}=\mathbf{a}+\mathbf{b} \mathbf{X}$	12
2	Reciprocal	$Y=1 /(a+b X)$	22
3	Linear-Hyperbolic	$Y=a+b X+c / X$	32
4	Hyperbola	$\mathrm{Y}=\mathrm{a}+\mathrm{b} / \mathrm{X}$	26
5	Reciprocal Hyperbola	$\mathbf{Y}=\mathbf{X} /(\mathrm{aX}+\mathrm{b})$	30
6	2nd Order Hyperbola	$Y=a+b / X+c / X^{2}$	34
7	Parabola	$Y=a+b X+c X^{2}$	36
8	Cauchy Distribution	$\mathrm{Y}=1 /\left[\mathrm{a}(\mathrm{X}+\mathrm{b})^{2}+\mathrm{c}\right]$	76
9	Power	$\mathrm{Y}=\mathrm{aX}$	42
10	Super Geometric	$Y=a X^{b X}$	48
11	Modified Geometric	$Y=a X^{b / X}$	50
12	Hoer1 Function	$Y=a b X^{c}$	64
13	Modified Hoerl	$Y=a b^{1 / X} X^{c}$	66
14	Log-Norma 1	$Y=a e^{(b-1 n X)^{2} / c}$	70
15	Logarithmic	$\mathbf{Y}=\mathrm{a}+\mathrm{b} \ln \mathbf{X}$	58
16	Reciprocal Log	$Y=1 /(a+b 1 n X)$	60
17	Modified Power	$\mathrm{Y}=\mathrm{ab}^{\mathbf{X}}$	44
18	Root	$Y=a b^{1 / X}$	46
19	Normal Distribution	$Y=a e^{(X-b)^{2 / c}}$	68

Program Operation

The program displays the equation for any selected curve as well as the coefficients and the adjusted coefficient of determination, RR. Errors are easily corrected and accidentally pressing R / S in most cases simply repeats the last function executed. The program requires a QUAD Memory Module when used with the HP-41C. A printer is optional. After running the program, remember to save the data on magnetic cards, cassette tape or in Extended Memory. You may then easily reenter this data at any time to add more points, delete points or try a different equation.

Early HP-41C Ca1cu1ators

Very early HP-41C calculators did not store X in the LSTX register when executing $\Sigma+$ or $\Sigma-$. To see if you have one of these machines, enter 169, press $\Sigma+$, and then press LSTX. If the display shows anything other than 169 , you have an early HP-41C and the Multiple Curve Fitting (MCF) program must be changed as follows to work on your calculator.
(1) Switch to PRGM mode, (2) Press GTO. 150 and then enter STO.L, (3) Press GTO. 117 and enter STO.L, (4) Press GTO. 051 and enter STO.L, (5) Press GT0. 018 and enter STO.L, (6) Switch out of PRGM mode and execute PACK.

Be sure to make these changes in the order shown. Use the example on page 33 for the combined linear-hyperbolic equation to verify that the program now works correctly.

Compiling Your Program

If you enter the MCF program manually or with the wand, several minutes will be required to execute the automatic curve fit routine (LBL E) the first time. This is because numerous XEQ and GTO instructions in the program are being compiled. The next time you execute LBL E the program will run in about 90 seconds. Remember that anytime you modify a program, it automatically reverts to the decompiled state.

Limits and Warnings

Enter at least four data points when using the automatic curve selection feature (LBL E). This is necessary because the corrected RR calculation uses a divisor of $\mathrm{N}-3$ for curves $3,6,7,8,12,13,14$ and 19 , where N is the number of data points. A11 other curves require a minimum of three data points. It is a good practice to run the MCF program a second time with the values of X and Y exchanged to determine if a higher RR can be obtained.

The corrected coefficient of determination is displayed for $R R$ and used in all comparisons to find the best fitting curve. If the corrected RR is negative, it is set to zero. Because of round-off errors, it is also possible for RR to be slightly greater than one (refer to the section on scaling, p. 6, in such cases).

Whenever X or Y is zero, it is replaced with $9 E-09$ by the data entry routine. This technique for dealing with zero may sometimes cause curves with $1 / X$ or $1 / Y$ terms to halt the program and display DATA ERROR. If this happens, either eliminate any point with a zero or avoid fitting curves that would involve the reciprocal of zero. If any value of X is negative, curves 9 through 16 should not be selected. If any value of Y is negative, curves 9 through 14 and curves 17 through 19 should not be selected.

The $\Sigma-$ (SHIFT A) and DELETE LST X,Y (SHIFT B) functions are limited by the internal accuracy of the HP-41. The last few digits in certain summations may be in error as a result of using these two functions.

Registers

The MCF program requires a total of 241 program registers and 70 data registers. Data register assignments are consistent with those used in the text except for R27, R33, R39 and R42 which are not computed, and R59 through R69 which are used for computations.

F1ags

F01 is set when the program is searching for the best fit curve.
F02 is set if any value of X is negative.

F03 is set if any value of Y is negative.

F21 is used to automatically control the printer if attached.

Key Assignments

When the calculator is in USER mode, the upper row of keys are assigned alternate functions as follows
$A \quad$ Used to input values of X and Y.

SHIFT A Used to delete values of X and Y once entered.

B Fits the curve designated in the X-register.
SHIFT B Deletes the last value of X and Y (use only during data entry).
$C \quad$ Predicts Y for a given value of X using the curve selected.

E Finds the best fitting curve automatically.
SHIFT E Clears registers and initializes the data entry routine.

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
	Set calculator to USER mode.			
1	Set SIZE to 070.		XEQ SIZE 070	
2	Load program "MCF" and execute GTO . . in order to pack memory. Now execute GTO "MCF" to begin.		$\begin{aligned} & \text { GTO . . } \\ & \text { GTO "MCF" } \end{aligned}$	
3	Initialize program memory and flags.		SHIFT E	X, ENTER, Y, $\mathrm{\Sigma}^{+}$
4	Key in the X value for the first point.	X	ENTER	X
5	Key in the Y value for the first point and press $\Sigma+$ or R/S. Each entry takes about 5 seconds. The total number of points is displayed after each entry.	Y	A or R/S	n
6	Repeat steps 4 and 5 for all points.			
7a	Correct the last entry by pressing Shift B and going to steps 4 and 5.		SHIFT B	n-1
7 b	Delete any point by entering X and Y, then pressing the Σ - key.	$\begin{aligned} & X \\ & Y \end{aligned}$	ENTER SHIFT A	$\begin{aligned} & x \\ & n-1 \end{aligned}$
8a	Find the best fitting curve. The calculator displays the number for each curve and the corrected value of RR (coefficient of determination). The equation of the best fitting curve will be displayed after approximately 90 seconds.		E	i.RR equation
8b	Press R/S to obtain the coefficients of the best fitting curve and the corrected coefficient of determination (RR).*		R/S R/S R/S R/S	$\begin{aligned} & a \\ & b \\ & c \\ & \text { RR } \end{aligned}$
9	Determine the coefficients for any selected curve at any time by entering the curve number (i) and pressing 'B.' Press R/S to get each of the coefficients.*	i	B R/S R/S R/S R/S	```equation a b c RR```
10a	Calculate the value of Y corresponding to any given value of X by entering X and pressing ' C.' (This routine uses the coefficients of the last equation displayed.)	X	C	Y
10b	Calculate additional values of \mathbf{Y} by entering values of X and pressing ' C ' or R / S. *If the printer is attached, the coefficients are automatically printed out.	X	C or R/S	Y

HP-41C/V PROGRAM LISTING

HP－41C／V PROGRAM LISTING

501 XEQ 20	601	Sto a6	761 CLA	8日1 ENTERT	961 RCL 03
502 FC？C 01	602	RCL 21	762 FIX 0	892 XEQ IND	962 YT
503 GTO 19	603	RCL 68	703 ARCL 09	2	903 RCL 02
504 RCL 11	604	＊${ }^{\text {R }}$	704 ＂t ．	$803-\gamma=\cdots$	964 RCL Z
$505 \mathrm{ET} \times$	605	RCL 61	705 FIX 3	864 ARCL \times	9051%
506 507 STO	606	RCL 66		865 AVIEW	
	607 608	－	$\begin{array}{ll}707 & \text { CF } 21 \\ 708 & \text { RVIEW }\end{array}$	806 RTN 807 GTO	${ }^{907}$ 908 RCL 01
509 STO 02	609	STO 07	709 SF 21	$868 \cdot$ LBL 75	969 ＊
$510 \sim \gamma=a b \uparrow<1$	610	RCL 65	710 RCL 10	809 LN	916 RTN
－x）＂	611	RCL 21	$711 \times$ X＜${ }^{7}$	8104 LEL 61	911＊LBL 74
511 RTN	612	＊	$712 \times<=Y$ ？	811 RCL 02	912 LN
512．LEL 19	613	RCL 61	713 RTN	812 ＊	913＊LEL 79
513 XEQ 23	614	RCL 63	$714 *$ LBL 09	813 RCL 91	914 RCL 02
$514 \times$ XEQ 29 515×1	615 616	＊		$814{ }^{815}$ RTN	915 － 916
516 RCL 46	617	STO 08	717 STO 15	$816+$ LBL 62	917 RCL 03
517 RCL 40	618	RCL 21	718 RTN	817 XEQ 61	918
518 RCL 54	619	RCL 67	$719 *$ LEL 23	8181 －\times	919 ETX
51919	620	＊	720 RCL 16	819 RTN	920 RCL 41
520 XEQ 21	621	RCL 66	721 STO 61	8264 LBL 63	921 ＊
521 FCOC 01	622	$\times 12$	722 723 STL 17	821 RCL 03	922 RTN 26
522 GTO 523 RCL 11	623	डто 09	723 STO 62	822 823	$923 *$ LEL 924 XEQ 75
524 RCL 12	625	RCL 05	725＊LEL 24	824 RCL 02	9251 x
525×12	626	RCL 06	726 RCL 18	825 LASTX	926 RTN
526 RCL 13	627	＊	727 STO 63	826 ＊	$927 . E N D$.
527 ST＋X	628	RCL 07	728 RCL 19	827 ＋	
528 CHS	629	RCL 08	729 STO 64	828 RCL 01	WM KOLE
	636 631	＊		$829+$	
531 ，	632	RCL 05	732 RCL 24	831. LBL 64	
$532+$	633	RCL 99	733 STO 63	832 RCL 82	
533 ETX	634	＊	734 RCL 25	833 X＜＞V	
534 STO 01	635	RCL 07	735 STO 64	834 ，	
535 RCL 13	636	$\times 12$	736 RTN	835 RCL 01	
5361 －	637	－	737＊LBL 26	$836{ }^{+}$	
537 STO 03	638		738 RCL 22	837 RTN	
$538 \sim \gamma=a E X P[$	639	STO 13	739 STO 61	$838 *$ LEL 65	
	641	RCL 88	741 STO 62	839 840 $1 / X$	
540 RTH	642	RCL 97	742 RTN	841 RTH	
$541 *$ LBL 20	643	RCL 13	743＊LEL 27	842．LBL 66	
542 STO 日日	644	＊	744 RCL 17	8431 －${ }^{\text {d }}$	
543 RDN	645	－	745 STO 66	844 ENTER \uparrow	
544 STO 65	646	RCL 05	746 RCL 43	845 ENTER \uparrow	
545 RCL 62	647		747 STO 67	$846 *$ LBL 67	
	648 649	$\begin{array}{ll}\text { STO } & 12 \\ \text { STO } \\ \text { St }\end{array}$		847 848 88	
548 RCL 61	650	RCL 63	750 RCL 28	849 RCL 92	
549×12	651	RCL 12	751 STO 61	$850+$	
$550-$	652	RCL 61	752 RCL 29	851 ＊	
552 RCL 62	654	，	754 RTN 62	852 853	
553 RCL 63	655	RCL 13	755＊LBL 29	854 RTN	
554 ＊	656	RCL 66	756 RCL 30	855＊LBL 68	
555 RCL 61	657	＊	757 STO 63	856 RCL 02	
556 RCL 65	658	－ 21	758 RCL 31	857 ＋	
557＊	659	RCL 21	759 STO 64 768 RTN	$858 \mathrm{X12}$ 859 RCL 861	
559 RCL 05	661	STO 11	761 LEL 36	$86{ }^{\text {8＊}}$	
560	662	Sto al	762 RCL 28	861 RCL 93	
561 STO 11	663		763 STO 66	$862+$	
562 STO 21	$664{ }^{6}$	LEL 22	764 RCL 29	863 1 \times	
563 564 RCL 65 1	665	$\begin{array}{ll}\text { RCL } & 11 \\ \text { RCL } & 63\end{array}$	765 STO 67		
565 ＊	667	＊	767＊LBL 31	866 RCL 92	
566 RCL 61	668	RCL 12	768 RCL 15	867 YTX	
567 RCL 63	669	RCL 65	$769 *$ LBL B	868 RCL 0^{1}	
568 ＊	678	＊	776 STO 00	869 ＊	
569 －	671	${ }_{+}^{+}$	771 SF 72	870 RTN	
571 ，	673	RCL 69	$\bigcirc 73$ XEQ IND	8714 872 LEL 78	
572 STO 12	674	＊	08	873 LBL 77	
573 STO 02	675	＋	774 TONE ${ }^{7} 7$	874 RCL 02	
574 CLX	676	RCL 63	775 RVIEW	$875 \times<\gg$	
575 ST0 03	677	$\mathrm{X}+2$ RCL 21	376 ＂a＝＂	876 Y1×	
$576 \mathrm{~S}^{\text {S10 }} 13$ 577	678	RCL 21	777 ARCL 778 78	877 878 $*$	
578 GTO 22	680	－	779 －b＝＂．	879 RTN	
$579 *$ LEL 21	681	RCL 64	780 PRCL 02	$886 \cdot$ LBL 71	
586 STO 06	682	LASTX	781 AVIEW	881 1－×	
581 RDN	683	－	782 RCL 03	882＊LBL 70	
582 583 88 STO 1	684	1	783 784 GTO	${ }_{883}^{88}{ }^{\text {R }}$＊${ }^{\text {R }}$	
584 STO 68	686	－	785 ＂c＝${ }^{78}$	885 Yヶ×	
585 RDN	687	LASTX	786 ARCL \times	886 RCL 01	
586 STO 65	688	RCL 21	387 RVIEW	887 ＊	
587 588 RCL	689	－		888 RTN	
588 RCL 21	690			$889 * L B L ~$ 898 89	
590 RCL 61	692	RCL 21	791 PVIEW	$891 \times<>$	
591×12	693	－	792 MDV	892 YヶX	
$592-105$	694	i	793 RTN	$893 \times<\gg$	
593 594 STO R	695	1	794 GTO 31	894 RCL 03	
594 595 RCL 189	696	$\stackrel{+}{x}<0$ ？	$795 * L B L ~ C ~$	895 YイX	
596 ＊	698	CLX	797 RCL 15	897 RCL 81	
597 RCL 63	699	FS？ 01	79868	898 ＊	
598 RCL 66	700	GTO 00	799 ＋	899 RTN	
599＊			$800 \times<\gg$	906＊LBL 73	

See page E－8 for notes regarding the use of special characters（）［ ］in programs．

HP-41C/V MULTIPLE CURVE FITTING PROGRAM

(Program Registers Required: 241)

Special characters such as () [] cannot be keyed into a program directly. Custom barcodes are available, however, to put these characters in any alpha string with the aid of the wand. Users interested in advanced programming techniques such as these should contact the PPC, 2545 West Camden P1ace, Santa Ana, California 92704, U.S.A. The PPC is the oldest and largest member supported personal computing users group.

NOTE: If you are unable to read a line of barcode, press the SST key and continue reading on the next line. Note the program steps in parentheses above the missing line. If you are unable to read the last ine of barcode, press the BACK ARROW key. After the program is entered, manually key in the missing steps from the program 1isting on pages $D-1$ and $D-2$.

MULTIPLE CURVE FITTING PROGRAM FOR THE TI-59

by Maurice Swinnen

This set of programs fits as many as 9 curves to an unimited number of X, Y data points. The best fitting curve can be determined automatically based on the coefficient of determination, RR. Once a curve has been selected, values of Y can be estimated for any given value of X, and X may calculated for any given Y. A specific curve may also be selected manually by entering the appropriate curve number. The programs can be used with or without the PC-100 printer. For hand-held use only, the program will stop at the appropriate places to allow you to copy the results by hand. With the printer attached, print out is automatic.

Curve Number	Type	General Equation	Page
1	Linear	Logarithmic	$Y=a+b X$
2	Quadratic	$Y=a+b 1 n X$	12
3	Hyperbola	$Y=a+b X^{2}$	58
4	Reciprocal	$Y=a+b / X$	26
5	Exponential	$Y=1 /(a+b X)$	22
7	Power	$Y=a e^{b X}$	52
8	Parabola	$Y=a X^{b}$	42
9	Linear-Hyperbolic	$Y=a X^{2}+b X+c$	36

Program Operation

The program consists of four magnetic cards. The first magnetic card contains a data entry routine that creates the data base used by all curve fitting routines. It allows an unlimited number of data points to be entered in the format: $X, R / S, Y, R / S$. Each data point requires about 12 seconds to enter. An error correction routine resides in the same program and allows you to delete a data point at any time. With the printer attached, all data points are printed.

The second magnetic card contains a program that will compute the coefficient of determination (RR) and the coefficients a and bor the first seven curves. This program also has provisions for automatically selecting the best fitting curve based on RR. The automatic curve fitting routine requires about 40 seconds to execute. Two additional routines allow you to estimate Y for a given X, and to calculate X for a given Y.

The third magnetic card contains a polynomial (parabolic) curve fit routine, while the fourth magnetic card has a program that fits a combined linear and hyperbolic curve. Both of these programs, although of great practical value in themselves, are also intended to serve as examples of how you can expand your library of curve fitting programs for use with the data entry routine. Even a novice programmer will have no difficulty in deciphering the code in these rather simple routines. Programs such as the multiple curve fit on the second magnetic card, however, are quite complex and should be left to experienced programmers.

It should be noted that comparing the coefficient of determination (RR) of the first seven curves to each other is valid, since each equation has the same number of coefficients. Comparing RR from these seven curves to RR for curves 8 and 9 is not valid because the extra coefficient removes one degree of freedom. The corrected coefficient of determination (see page 7) should be calculated and used in all comparisons between curves with an unequal number of coefficients. (Note that there is enough room on the third and fourth magnetic cards to add these routines, if so desired.) It is also a good practice to run the curve fitting routines a second time with the values of X and Y exchanged to determine if a higher value of $R R$ can be obtained.

This program could not have been written without heavy borrowing from two prior efforts, one by Bill Skillman and another by Frank B1ach1y. I thank both of them for allowing me to use some of their superbly written code.

Programming Aides

Key in each program according to the program listing. After each program is entered, record it on a magnetic card by entering the bank number (1 in this case), pressing 2nd WRITE, and then inserting a magnetic card. After the first bank is recorded, enter 2, press 2nd WRITE, turn the magnetic card end for end and insert it again. Label the card so that you can identify the program. Do this for each program to make a complete set of program cards. The data entry card is a special case and should be recorded using bank 1 and bank 3. This is because printer formatting data is stored registers 30 through 51 of bank 3 in addition to the program in bank 1. Note that banks 1 and 2 are always reserved for program storage while banks 3 and 4 are used exclusively for data. Once entered, data may also be stored on magnetic cards by following the above procedure for banks 3 and 4.

In order to get RTN (INV SBR) into place at the end of the multip1e curve fitting program, temporarily partition to 5 OP 17, thus making more memory available. Then, when you reach the end of your listing, repartition to $60 P$ 17 before recording the program on a magnetic card.

Users interested in further information on advanced programming techniques such as those used in these programs should contact TI PPC Notes, P.O. Box 1421, Largo, Florida 34294-1421, U.S.A.

MULTIPLE CURVE FITTING PROGRAM

TI-59

Program Registers

The limited amount of memory available in the TI-59 requires that registers be assigned differently from those in the text. The following table provides a cross-reference between the assignments used in the text and those used in the TI-59. Note that data is stored exclusively in memory banks 3 and 4 while the various curve fitting routines are stored in banks 1 and 2 so that either can be changed without affecting the other.

TI-59	CONTENTS	TEXT	TEXT	CONTENTS	TI-59
R01	$\Sigma \mathbf{Y}$	R18	R01	X	R14
R02	$\Sigma \mathbf{Y}^{2}$	R19	R02	Y	R07
R03	n	R21	R16	$\Sigma \mathbf{X}$	R04
R04	$\Sigma \mathbf{X}$	R16	R17	ΣX^{2}	R05
R05	$\Sigma \mathrm{X}^{2}$	R17	R18	$\Sigma \mathrm{Y}$	R01
R06	$\boldsymbol{\Sigma} \mathbf{X * Y}$	R20	R19	$\Sigma \mathbf{Y}^{\mathbf{2}}$	R02
R07	Y	R02	R20	$\boldsymbol{\Sigma} \mathbf{X}$ * \mathbf{Y}	R06
R10	$\Sigma \operatorname{lnY}$	R30	R21	n	R03
R11	$\Sigma(1 n Y)^{2}$	R31	R22	$\Sigma 1 / \mathrm{x}$	R19
R12	$\Sigma 1 / Y$	R24	R23	$\Sigma 1 / X^{2}$	R20
R13	$\Sigma 1 / Y^{2}$	R25	R24	$\Sigma 1 / Y$	R12
R14	X	R01	R25	$\Sigma 1 / \mathrm{Y}^{2}$	R13
R17	$\Sigma \ln \mathrm{X}$	R28	R28	$\Sigma \operatorname{lnX}$	R17
R18	$\Sigma(\ln X)^{2}$	R29	R29	$\Sigma(\ln X)^{2}$	R18
R19	$\Sigma 1 / \mathrm{X}$	R22	R30	$\Sigma \ln Y$	R10
R20	$\Sigma 1 /{ }^{2}$	R23	R31	$\Sigma(1 n Y){ }^{2}$	R11
R21	$\Sigma \mathrm{X}^{3}$	R40	R32	$\Sigma(1 n X * 1 n Y)$	R29
R22	$\Sigma \mathrm{X}^{4}$	R43	R34	$\Sigma \mathbf{X} / \mathrm{Y}$	R27
R24	$\Sigma \mathrm{Y}$ ¢ 1 nX	R51	R35	$\Sigma \mathrm{Y} / \mathrm{X}$	R26
R25	$\Sigma \mathbf{Y} * \mathrm{X}^{2}$	R36	R3 6	$\Sigma \mathbf{Y} * \mathrm{X}^{2}$	R25
R26	$\Sigma \mathrm{Y} / \mathrm{X}$	R35	R40	$\Sigma \mathrm{X}^{3}$	R21
R27	$\Sigma \mathbf{X} / \mathrm{Y}$	R3 4	R43	$\Sigma \mathrm{X}^{4}$	R22
R28	$\Sigma \mathrm{X}$ * $\ln \mathrm{Y}$	R46	R46	$\Sigma \mathrm{X}$ * $1 \mathrm{n} Y$	R28
R29	$\Sigma(\ln X * \ln Y)$	R32	R51	$\Sigma \mathrm{Y}$ (1nX	R24

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
	Load side 1 of the data entry card. Load side 2 of the data entry card.		$\begin{aligned} & \text { CLR } \\ & \text { CLR } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
1	Initialize program and registers.		2nd E^{\prime}	
2	Enter the X value and press R/S.	X	R/S	X
3	Enter the Y value and press R/S. The point number is displayed in approximately 12 seconds.	Y	R/S	Y
4	Repeat Steps 2 and 3 for all data.			
	To recover from an error, use one of the following procedures.			
5a	After X has been entered but not Y, enter the correct X and press A.	X	A	
$\mathbf{5 b}$	Enter Y and press R/S.	Y	R/S	n
5c	Continue entering data (Step 2).			
6a	Delete the last X and Y entered.		2nd A^{\prime}	- (n-1)
6b	Enter the correct X and press A.	\mathbf{X}	A	
6 c	Enter the correct Y and press R/S.	Y	R/S	n
6d	Continue entering data (Step 2).			
7a	Delete any data point.			
7b	Enter the X value to be deleted.	X	ST0 14	X
7 c	Enter the Y value to be deleted.	Y	ST0 07	Y
7d	Press 2nd A^{\prime} to delete this point.		2nd A^{\prime}	-(n-1)
7 e	Go to Step 6b .			
	Load sides 1 and 2 of the multiple		CLR	1
	curve fit program.		CLR	2
8a	Find the best fitting curve and display the coefficient of determination.		C	RR
8b	Display the A coefficient.		R/S	A
8 c	Display the B coefficient.		R/S	B
9a	Find the coefficients of any curve.			
9b	Enter the curve number and press A.	i	A	
9c	Display the coefficient of determination.			RR
9d	Display the A coefficient.		B	A
9e	Display the B coefficient.		R/S	B

TI-59 USER INSTRUCTIONS (CONT.)

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
$\begin{aligned} & 10 a \\ & 10 b \end{aligned}$	Estimate Y for a given X. Enter the X value and press D.			
	Enter the X value and press D.	X	D	Y'
11a	Calculate X for a given Y.			
11b	Enter the Y value and press E.	Y	E	X
	Load sides 1 and 2 of the polynomial		CLR	1
	curve fit program.		CLR	2
12	Press E to fit the curve and display the coefficient of determination.		E	RR
13	Display the A coefficient.		A	A
14	Display the B coefficient.		B	B
15	Display the C coefficient.		C	C
$\begin{aligned} & 16 a \\ & 16 b \end{aligned}$	Estimate Y for a given X. Enter the X value and press D.	X	D	Y^{\prime}
	Load sides 1 and 2 of the linear-		CLR	1
	hyperbolic curve fit program.		CLR	2
17	Press E to fit the curve and disp1ay the coefficient of determination.		E	RR
18	Display the A coefficient.		A	A
19	Display the B coefficient.		B	B
20	Display the C coefficient.		C	C
$\begin{aligned} & 21 a \\ & 21 b \end{aligned}$	Estimate Y for a given X. Enter the X value and press D.	X	D	Y^{\prime}

ロ0ワ		LEL	067	44	S1m	134	42	STD	201	01	1
001	19	\square^{\prime}	068	17	17	135	15	15	20	06	6
002	33	S	069	18	E^{\prime}	196	43	FCL	208	01	1
009	76	LEL	070	44	Sul	137	0.5	05	204	08	3
004	19	I＇	071	18	18	138	42	STD	205	03	3
005	95	$=$	072	43	REL	199	16	16	206	07	7
006	22	IH？	073	14	14	140	43	FCL	207	01	1
00？	87	IFF	074	35	1%	141	06	06	208	03	3
00¢	01	00	075	19	II＇	142	42	ETD	209	69	－${ }^{\text {P }}$
009	00	00	076	44	gum	143	23	23	210	D2	02
010	12	12	077	19	19	144	43	RCL	211	69	－${ }^{\text {P }}$
011	94	$+\cdots-$	078	18	$\square^{\prime \prime}$	145	03	03	212	05	05
012	92	RTH	079	44	81m	146	19	［11	213	69	－${ }^{\prime}$
013	76	LEL	पह0	20	20	147	98	HIT	214	00	00
014	11	H	00^{1}	35	1%	148	99	PRT	215	04	4
015	42	STD	6ez	16	C：	149	32	$X+T$	216	04	4
016	14	14	08S	4	Eut	150	04	4	217	69	DF＇
117	91	F B	084	22	2 e	151	04	4	218	01	01
018	42	ETD	O8：	43	RCL	152	69	DF	219	43	RCL
019	07	07	086	07	07	159	04	04	220	51	${ }_{5}^{51}$
120	22	IHV	08？	65	x	154	43	ECL	221	69	－${ }^{\prime}$
021	86	STF	प8马	43	RCL	15	14	14	222	Q2	$\square 2$
022	00	ण1	089	09	19	156	69	－${ }^{\text {P }}$	2 z	04	4
023	32	X：T	090	19	$1{ }^{1}$	157	06	06	224	05	5
024	43	ECL	091	4	SU1	159	04	4	225	69	DF＇
125	14	14	192	24	24	159	05	5	2 E	03	03
026	32	\％${ }^{1}$	093	43	ECL	160	69	DP	227	43	ECL
027	22	IH？	094	0	07	161	04	04	22 B	51	51
प28	E？	IFF	095	65	x	162	43	FCL	2 c	69	DF＇
029	00	00	096	43	RCL	168	07	07	230	04	104
पड0	00	00	097	14	14	164	6	DF	231	69	－F
031	2 s	23	096	16	C^{-1}	165	06	06	232	05	05
132	22	IHU	099	4.4	SU1	166	S2	X！	236	69	DF＇
13S	78	I +	100	25	25	167	91	F， 3	234	00	010
084	43	BCL	101	43	RCL	168	61	GTD	235	98	AIV
195	14	14	102	07	07	169	11	A	296		CLE
036	45	\％	108	5	\div	170	76	LEL	237	91	F
197	08	3	104	49	RCL	171	16	B^{\prime}	239		GTD
0 06	19	$1{ }^{\text {i }}$	105	14	14	172	43	ECL	239	11	H
039	44	Sum	106			178	07	97			
040	21	21	107	4	SU1	174	61	CTO			
041	43	ELL	108	26	26	175	00	01			
142	07	07	109	35	13 X	176	21	21			
049	23	LHS	110	44	611	177	76	LEL	DATA		REGISTER
044	42	STD	111	27	27	178	10	E^{\prime}			
045	0 O	D8	112	43	ECL	179	08	3	51141796		80
146	19		118	14	14	180	69	DF＇	315.544		31
047	44	Sum	114	65	\％	181	17	17	324.4664		32
1048	10		115	43	RCL	182	47	CHE	399． 4614		39
049	18		116	08	08	183	DE	θ	354． 4574		34
050	44	SUn	117	19	II ${ }^{\text {a }}$	184	6	－${ }^{\prime}$	369， 454		85
051	11	11	118	44	Sum	185	17	17	391．3114		86
052	43	ECL	119	2 c	2 B	186	2	CLE	40 A .464		37
053	07	OT	120	43	RCL	187	69	－${ }^{\prime}$	47144	．	\％8
054	8	1\％	121	01	01	18 C	010	10	47142714		89
055	19	$1^{\text {² }}$	12 c	48	EरC	189	01	1	4714477		40
056	44	SUH	123	08	08	190	07	7	471464		41
057	12	12	124	65	\cdots	191	02	2	212437		42
058			125	43	RCL	192	19	9	546144400		43
059	44	SU1	126	12	02	196	03	3	4460140000		44
060	13	13	127	48	EरS	194	07	7	450064001		45
061	43	RCL	128	09	09	195	01	1	465：4		46
062	14	14	129	19		196	07	7	44		47
063	2	LH\％	130	44	EUH	197	03	3	4470004700		48
064	42	$51 \square$	131	29	29	198	05	5	1444010471		49
065	09		132	43	FCL	199	6.9	－${ }^{\text {P }}$	471563		50
066			13 S	04	04	2010	01	01	356360		51

000	7E LEL	051	03	03	102	01	01	159	04	04
001	43 FCL	05	69	－F＇	103	06	06	154	76	76
002	43 FCL	0.53	13	13	104	22	IHV	15	11	H
003	1515	054	33	X	105	23	LH：	156	12	E
0104	42 STO	0.5	92	FTH	106	71	SER	157	92	FTH
005	0404	05	76	LEL	107	04	04	158	76	LEL
006	43 FCL	0.57	11	H	108	74	74	159	14	II
0 OT	1616	058	98	HIT	109	01	1	160	98	HIU
008	42 STO	0.59	97	FRT	110	04	4	161	32	\％ T
009	0505	060	69	－${ }^{\circ}$	111	61	CTD	162	04	4
010	92 FTH	061	010	ロ10	112	04	04	163	104	4
011	76 LEL	062	71	SEF	113	71	71	164	69	－
012	3% \％	063	33	\％ CB	114	76	LEL	165	04	04
013	42 ETO	064	32	XtT	115	13	－	166	32	
014	0000	065	43	FCL	116	07	T	167	69	DF＇
015	43 FCL	06	45	45	117	42	ETD	168	06	06
016	0808	067	69	－${ }^{\text {P }}$	118	07	日？	16.9	71	ERE
017	42 STO	068	02	02	119		CF	170	40	IHI
018	0101	069	69	－${ }^{\text {P }}$	120	98	नIV	171	47	47
019	43 FEL	070	05	DC	121	69	－F＇	172	32	
020	0909	071	03	3	122	00	00	173	04	4
021	42 STO	072	05	5	123	43	FCL	174	0.5	5
022	0202	073	07	7	124	30	30	175	06	θ
023	03	074	00	\square	125	69		176	05	5
024	010	075	61	GTD	126	02	02	177	61	GT0
ロこ5	44 SUM	076	04	04	127	43	FCL	178	0.1	$\square 1$
026	0100	077	71	71	12 B	42	42	179	71	71
027	73 EC	078	76	LEL	129	69	－F＇	180	76	LEL
028	0100	079	12	E	130	03	03	181	15	E
029	42 STO	080	43	FCL	131	69	－${ }^{\prime}$	182	98	BIV
030	1414	081	00	00	132	0.5	05	163	32	Xt T
031	2 I IHV	082	32	为	133	43	FCL	184	04	4
082	5 SH	089	09	3	134	07	O7	185	0.5	5
083	52 EE	084	05	5	135		GEF	186	69	$\square \mathrm{F}$
084	\square	085	77	GE	136			187	04	04
085	22 IHv	086	00	0	137	2 c	IHY＇	188	32	$\therefore+\mathrm{T}$
036	52 EE	087	89	89	136	77	LE	189	69	$\square \mathrm{F}$
037	42 STO	088	22	IHV	139	01	01	190	06	$\square 6$
038	$46 \quad 46$	089	86	STF	140	46	46	191	71	SEF
089	2 IH	090	01	01	141	32	$\cdots+T$	192	40	IHII
040	59 INT	091	69	DF＇	142	43	FEL	193	46	46
041	52 EE	092	12	12	143	07	07	194	32	$\therefore+T$
042	03	093	65	x	144	42	STI	195	04	4
043	2 INY	104	01	1	145	59	5	196	04	4
044	52 EE	095	03	3	146	97	152	197	06	θ
04.5	42 STD	096		－F	147	07	07	198	05	5
046	$47 \quad 47$	097	04	114	148	01	01	199	61	GT0
047	71 SER	098		1	149	33	33	200	04	04
048	40 IHI	099	95	$=$	150	43	FCL	201	71	71
049	1414	1010	87	IFF	151	59	5.9			
050	69 PF	101	01	01	152	71	EER			

NOTE：Steps 202 through 310 should be left blank（00）．

TI-59 POLYNOMIAL CURVE FITTING PROGRAM

010	76	LBL	061	65	x	122	43	ECL	183	01	01
001	69	DF	062	43	RCL	123	05	05	184	32	$\cdots: T$
002	69	DF	06.3	23	23	124	95	$=$	185	01	1
003	00	010	064	75	-	125	42	ST0	186	03	3
004	69	- ${ }^{\text {P }}$	06.5	43	RCL	126	\square	00	187	71	SEF
00.5	04	04	066	15	15	127	43	ECL	188	69	$\square \mathrm{F}$
D06	32	$\chi: T$	067	65	χ	128	08	08	189	91	F S
007	69	DP	068	43	RCL	129	75	-	190	76	LEL
008	06	06	069	08	08	130	43	FCL	191	12	E
009	92	RTH	070	54)	131	01	01	192	43	FCL
010	76	LEL	071	42	STD	132	65	\times	193	$\square 10$	00
011	15	E	072	04	04	133	43	FCL	194	32	$X!T$
012	98	AIV	073	6.5	<	134	16	16	195	01	1
013	69	- ${ }^{\text {P }}$	074	53	C	135	75	-	196	04	4
014	010	010	075	43	RCL	136	43	FCL	197	71	SEF
015	43	RCL	076	03	03	137	010	00	198	69	-F
016	45	45	077	65	\%	138	6.5	x	199	91	F
017	69	- ${ }^{\text {P }}$	O78	43	FCL	139	43	FCL	200	76	LEL
018	02	02	079	21	21	140	15	15	201	13	E
019	43	FCL	080	75	-	141	95	$=$	202	43	FCL
020	48	43	081	43	RCL	142	55	\div	203	14	14
021	69	-F	082	16	16	143	43	FCL	204	32	吅T
022	08	03	089	65	\%	144	03	0	205	01	1
023	43	FCL	084	43	PCL	145	95	=	206	0.5	5
024	49	49	085	15	15	146	42	STD	207	71	ger
025	69	- ${ }^{\text {P }}$	086	54)	147	14	14	208	69	- ${ }^{\text {' }}$
026	04	04	087	42	GTD	148	43	FCL	209	98	FIV
027	6.9	- ${ }^{\text {P }}$	088	02	02	149	01	01	210		F
029	05	0.5	089	95	$=$	150	65	<	211	76	LEL
029	43	FCL	090	5	\div	151	43	RCL	212	14	II
030	03	03	091	53	¢	152	06	06	213	42	ST0
031	65	x	092	53	¢	159	85	+	214	07	OT
032	43	FCL	093	43	FCL	154	43	RCL	215	32	$8 \div$
033	25	25	094	09	09	155	00	00	216		
034	75	-	095	65	\bar{x}	156	65	\times	217	04	4
035	43	ECL	096	43	FCL	157	43	RCL	218	71	EER
036	16	16	097	22	22	158	04	04	219		- ${ }^{\text {P }}$
037	65	\times	098	75	-	159	95	$=$	2 c	39	\cdots
038	43	FCL	099	43	FCL	160	55	\div	2 V	65	
039	08	08	100	16	16	161	5	¢	22	43	FCL
040	95	$=$	101	36	XE	162	43	PCL	2 z		01
041	42	STD	102	54	\%	163	03	13	224	95	
042	06	06	103	65	\times	164	65	\cdots	2 5	85	
043	65	χ	104	43	FCL	165	43	RCL	226	43	FCL
044	58	C	105	05	05	166	09	09	227	07	07
045	43	FCL	106	75	-	16.7	75	-	22 c		
046	03	03	107	43	FCL	168	43	FCL	229	43	FCL
047	65	\times	108	$\square 2$	O2	16	08	08	230	-0	$0 \square$
048	43	FCL	109	33	\%	170		x	231	85	
049	16	16	110	95	$=$	171	95		232	43	FCL
050	75	-	111	42	GTD	172		为t	233		14
0.51	43	FCL	112	01	01	173		3	234	95	$=$
052	15	15	113	94	$+\square-$	174	05	5	235	32	
053	33	X	114	65	\%	175	06	6	236	04	4
0.54	54	\%	115	43	FCL	176	08	E	237	05	5
05	42	STD	116	12	02	177		SER	238		θ
056	05	05	117	85	$+$	178		DF	239	05	5
057	75	-	118	43	FCL	179	91	R S	240		SER
058	53		119	104	04	180		LEL	241		- ${ }^{\text {P }}$
0.9	43	FEL	120	95	$=$	181	11		242		HIV
060	03	03	121	5	\div	182	43	REL	243		FS

TI-59 LINEAR-HYPERBOLIC CURVE FITTING PROGRAM

000	76	LBL	069	43	RCL	138	95	$=$	207	07	7
001	69	DP	070	06	06	139	42	STD	208	08	8
002	69	DP	071	65	x	140	58	56	209	71	SBR
003	00	00	072	43	RCL	141	43	RCL	210	69	DF
004	69	-P	073	03	03	142	01	01	211	91	R S
005	04	04	074	54)	143	75	-	212	76	LBL
006	32	X:T	075	75	-	144	43	RCL	213	11	H
007	69	DP	076	43	RCL	145	58	58	214	43	RCL
008	06	06	077	04	04	146	65	x	215	59	59
009	92	RTH	078	65	\times	147	43	REL	216	32	$x+T$
010	76	LBL	079	43	RCL	148	04	04	217	01	$n+1$ 1
011	15	E	080	01	01	149	95	-	218	03	3
012	98	RIV	081	95	$=$	150	75	-	219	71	SER
013	69	DP	082	42	STD	151	43	RCL	220	69	DF
014	00	00	083	55	55	152	57	57	221	91	F
015	43	RCL	084	43	RCL	153	65	\bar{x}	222	76	LEL
016	45	45	085	03	03	154	43	FCL	223	12	E
017	69	DP	086	65	8	155	19	19	224	43	FE C
018	02	02	087	43	RCL	156	95	$=$	225	58	58
019	43	RCL	088	20	20	157	55	\div	226	32	Xt
020	38	38	089	54)	158	43	FCL	227	01	1
021	69	DP	090	75	-	159	03	03	229	04	4
022	03	03	091	43	RCL	160	95	$=$	229	71	SER
023	43	RCL	092	19	19	161	42	STD	230	69	DF
024	50	50	093	33	X	162	59	5	231	91	F\%
025	69	DP	094	95	=	163	43	RCL	232	76	LEL
026	04	04	095	42	STD	164	01	01	233	13	E
027	69	DP	096	56	56	16.5	33	X	234	43	FiL
028	05	0.5	097	43	FCL	166	55	\div	235	57	${ }_{517}$
029	43	RCL	098	52	52	167	43	RCL	236	32	人:T
030	05	05	099	65	\times	168	03	03	237	01	1
031	65	$\stackrel{\gamma}{8}$	100	43	FCL	169	95	$=$	238	05	5
032	43	RCL	101	53	53	170	42	STD	239	71	ERR
033	03 5	03	102	75	$\stackrel{-}{-1}$	171	14	14	240	69	- ${ }^{\text {P }}$
034	54)	103	43	RCL	172	43	FCL	241	98	AIV
035	75	-	104	54	54	173	59	59	242	91	F / S
036	43	RCL	105	65	\times	174	65	\times	243	76	LEL
037	04	04	106	43	RCL	175	43	RCL	244	14	II
038	33	$\chi 2$	107	55	55	176	01	01	245	42	ST0
039	95	$=$	108	95		177	54)	246	07	-7
040	42	ST0	109	55	\div	178	85	$+$	247	32	$x+T$
041	52	52	110	53	¢	179	43	FCL	248	04	4
042	43	RCL	111	53	-	180	58	58	249	04	4
043	03	03	112	43	FCL	181	65	Х	250	71	SEF
044	65	¢	113	52	52	182	43	RCL	251	69	DF
045	43	RCL	114	65	\times	183	106	06	252	65	X
046	26	26	115	43	FCL	184	54)	253	43	RCL
047	54	-	116	56	56	185	85	$+$	254	58	58
048	75	-	117	54)	186	43	REL	255	54	\bigcirc
049	43	RCL	118	75	$\stackrel{-}{-1}$	187	57	57	256	85	+
050	01	01	119	43	Fict	188	65	\times	257	43	RCL
051	65	¢ C	120	54	$\stackrel{5}{5}$	189	43	FCL	258	59	59
052	43	RCL 19	121	93	S $=$ $=$	190	26 54	26	259	5	+
054	95	$=$	123	42	STO	192	75	-	261	43	RCL
055	42	STI	124	57	57	193	43	REL	262	57	57
056	53	53	12.5	43	REL	194	14	14	263	55	\div
057	43	FCL	126	5	55	195	95	$=$	264	43	RCL
058	03	03	127	75	-	196	55	\div	265	07	-17
059	33	人	128	53	$\stackrel{\square}{\circ}$	197	5	¢	266	95	$=$
060	75	$\stackrel{-}{-}$	129	43	RCL	198	43	RIL	267	32	$\cdots!$
061	43	RCL	130	54	54	199	02	02	268	04	4
062	04	04	131	65	$\stackrel{\square}{\times}$	200	75	$\stackrel{-}{-}$	269	0.5	5
063	65	$\stackrel{x}{8}$	132	43	RCL	201	43	RC L	270	06	6
064	43	FCL	133	57 95	57 $=$	202	14	14	271	05	5
065	19	19 $=$	134	959	\bigcirc	203	95	$=$	272	71	SER
066	45	ST0	135	5	$\stackrel{\square}{\square}$	204	32	$\cdots: T$	273	69	DF
068	54	514	137	5	ric	205 206	03 0.5	3 5	274 275	98	RIV R

MULTIPLE CURVE FITTING PROGRAM

SHARP PC-1211/TRS-80 PC-1

This program fits 8 curves to a set of X, Y data points. Data may be added or deleted from the calculator at any time. The best fitting curve can be determined automatically in about 45 seconds based on the coefficient of determination, RR. A curve can also be selected manually by entering the appropriate curve number from the table below. An estimate of Y can be computed for any value of X once a curve has been selected.

Curve Number	Type	General Equation	Page
1	Linear	$\mathbf{Y}=\mathrm{a}+\mathrm{bX}$	12
2	Reciprocal	$Y=1 /(a+b X)$	22
3	Hyperbo1a	$\mathbf{Y}=\mathrm{a}+\mathrm{b} / \mathrm{X}$	26
4	Reciprocal Hyperbola	$\mathbf{Y}=\mathbf{X} /(\mathrm{aX}+\mathrm{b})$	30
5	Logarithmic	$Y=a+b \ln X$	58
6	Reciprocal Log	$\mathrm{Y}=1 /(\mathrm{a}+\mathrm{b} 1 \mathrm{nX})$	60
7	Modified Power	$Y=a b^{X}$	44
8	Power	$Y=a X^{\text {b }}$	42

Program Operation

The MCF program requires all of memory and is designed to work with the optional printer when attached. The program displays the equation of any selected curve as well as its coefficients and the coefficient of determination, RR. Each X, Y data point requires about 7 seconds to input and may be deleted or corrected at any time.

Limits and Warnings

The coefficient of determination is displayed for RR and is used in all comparisons for the best fitting curve. A corrected value of RR should be used for all comparisons with higher order curves as shown on page 13.

Whenever X or Y is zero, it is replaced with $1 E-09$ by the data entry routine. This technique for dealing with zero may sometimes cause curves with $1 / X$ or $1 / Y$ terms to halt the program and display an error. If this happens, either eliminate points with a zero or avoid fitting curves that would involve the reciprocal of zero. If any value of X is negative, curves 5 , 6 and 8 should not selected. If any value of Y is negative, curves 7 and 8 should not be selected.

REGISTER ASSIGNMENTS
SHARP PC-1211/TRS-80 PC-1

The MCF program requires registers $A(1)$ through $A(32)$ for data storage and uses the remainder of memory for the program. The limited amount of memory available requires that registers be assigned differently from those in the text and that temporary registers be reused as much as possible.

```
A = X value, coefficient A
B = Y value, coefficient B
C = 1 (add data), -1 (de1ete data)
D = ln X, temporary
E = ln Y, temporary
F = RR, temporary
G = curve number
H = best RR, solve or print if 9
I = \Sigma X
J = \Sigma X }\mp@subsup{}{}{2
K = \Sigma Y
L}=\Sigma\mp@subsup{\textrm{Y}}{}{2
M = \Sigma X*Y
N = number of data points
O = \Sigma1/X
P = \Sigma 1/X }\mp@subsup{}{}{2
```


KEY ASSIGNMENTS

SHARP PC-1211/TRS-80 PC-1

When the calculator is in DEF mode, the following functions are assigned to the keyboard:

SHIFT A	Enter values of X and Y.
SHIFT B	Find the best curve.
SHIFT C	C1ear all registers and initialize program.
SHIFT D	Delete any value of X and Y.
SHIFT F	Find coefficients for a specific curve.
SHIFT K	Delete the 1ast values of X and Y entered. (Use before B or F.)
SHIFT S	Solve for Y using the selected curve and a value of X.

If the optional printer is attached, the calculator will automatically record all input and output data. If the printer is not attached, the calculator will stop after each output so that you may record the data.

It is a good practice to run the MCF program a second time with the X and Y values exchanged when you are trying to obtain the best possible fit.

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
	Enter the program and set the calculator in DEF mode using the MODE key.			
1	Initialize program and registers.		SHIFT C	ENTER X:
2	Enter the X value.	X	ENTER	ENTER Y:
3	Enter the Y value.	Y	ENTER	
4	Repeat steps 2 and 3 for each data point.			ENTER X:
5a	View the last X value entered.		SHIFT V	X
5b	View the last Y value entered.		ENTER	Y
5 c	Continue entering data (Step 2)		ENTER	ENTER X:
6a	Delete the 1ast X and Y entered prior to Steps 7 through 11.		SHIFT K	
6b	Continue entering data (Step 2).			ENTER X:
7a	Delete any value of X and Y.		SHIFT D	DELETE DATA
7 b	Press ENTER after the prompt.		ENTER	ENTER X:
7 c	Enter the X value to be deleted.	X	ENTER	ENTER Y:
7d	Enter the Y value to be deleted.	Y	ENTER	
7 e	Continue entering data (Step 2)			ENTER X:
8a	Find the best fitting curve.		SHIFT B	
8 b	Display the A coefficient.		ENTER	A
8 c	Display the B coefficient.		ENTER	B
8d	Display the coefficient of determination.		ENTER	$\mathbf{R R}$
9a	Find the coefficients of any curve.		SHIFT F	ENTER CURVE NUMBER:
9b	Enter the curve number.	i	ENTER	
9 c	Display the A coefficient.			A
9d	Display the B coefficient.		ENTER	B
9 e	Display the coefficient of determination.		ENTER	RR
10a	Estimate Y for a given X .		SHIFT S	SOLVE FOR Y WHEN $X=$
10b	Enter the X value.	X	ENTER	
10c	Estimate the value of Y.		ENTER	Y
10d	Solve for another Y (Step 10a).		ENTER ENTER	
$\begin{aligned} & 11 a \\ & 11 b \end{aligned}$	Enter additional X,Y values. Repeat steps 2 and 3.		SHIFT A	ENTER X:

MULTIPLE CURVE FITTING PROGRAM

SHARP PC-1211/TRS 80 PC-1

```
10:"A":BEEP 1:C=1
11:INPUT "ENIER X: ";A,"ENIER Y: ";B:IF A=0LET A=B-9
12:IF B=0LET B=B-9
13:I=I+AC:J=J+AAC:K=K+BC:L=L+BBC:M=M+ABC:N=N+C:
    O=O+C/A:P=P+C/(AA):Q=Q+C/B
14:R=R+C/(BB):S=S+C/(AB):T=T+CA/B:U=U+CB/A
15:IF A>OLET D=LN (A):A (29) =A (29)+CD/B:GOTO 17
16:D=0:A(30)=0
17:IF B>OLET E=LN (B):GOTO 19
18:E=0:A (31) =0
19:V=V+CD:W=W+CDD:X=X+CE:Y=Y+CEE:Z=Z+CED:A (27) =A (27) +BCD:
    A (28) =A (28) +ACE:GOTO 10
20:"C":CLEAR :A(30)=1:A(31)=1:GOTO 10
21:"D":PRINT "DELEIE DATA:":C=-1:GOTO 11
22:"V":PRINT "X=";A:PRINT "Y=";B:GOT0 10
23:"F":INPUT "ENIER OURVE NUMBER: ";G
24:H=9:GOIO G*6+21
25:"S":INPUT "SOLVE FOR Y WHEN X= ";D:GOTO G*6+25
26:"B":H=0
27:G=1:A=J:B=I:D=K:E=M:F=L:GOTO 78
29:PRINT "Y=A+BX":GOTO 81
31:E=A+BD:GOTO }8
33:G=2:A=J:B=I:D=Q:E=T:F=R:GOIO 78
35:PRINT "Y=1/(A+BX)":GOTO 81
37:E=1/(A+BD) :GOTO 82
39:G=3:A=P:B=O:D=K:E=U:F=L:GOTO 78
41:PRINT "Y=A+B/X":GOTO 81
43:E=A+B/D:GOIO }8
45:G=4:A=P:B=O:D=Q:E=S:F=R:GOIO 78
47:PRINT "Y=X/(AX+B) ":GOTO 81
49:E=D/(AD+B) :GOTO 82
51:G=5:IF A (30) LET A=W:B=V:D=K:E=A (27) :F=L:GOTO 78
52:GO1O 83
53:PRINT "Y=A+B*LN(X)":GO1O 81
55:E=A+B*LN (D) :GOIO 82
57:G=6:IF A (30) LET A=W:B=V:D=Q:E=A (29) :F=R:GOIO 78
58:GOTO 83
59:PRINT "Y=1/(A+B*LN(X))":GOTO 81
61:E=1/(A+B*LN (D)) :GOTO 82
63:G=7:IF A(31)LET A=J:B=I:D=X:E=A (28) :F=Y:GOTO 78
64:GO1O 83
65:PRINT "Y=A*B^X":A=EXP (A):B=EXP (B):GOTO 81
67:E=AB^D:GOTO 82
69:G=8:IF A(30)A(31)LET A=W:B=V:D=X:E=Z:F=Y:GOIO 78
70:G010 83
71:PRINT "Y=A*X^B":A=EXP (A):GOIO 81
73:E=AD^B:GOTO 82
75:G=A(32):GOIO 24
78:C=AN-BB:A=(AD-BE)/C:B=(EN-BD)/C:F=(AD+BE-DD/N)/(F-DD/N):
    IF F>HLET H=F:A (32) =G
79:IF H<>9GOIO G*6+27
80:BEEP 1:GOIO G*6+23
81:USING :PRINT "A= ";A:PRINT "B= ";B:PRINT USING "##,*###";
    "RR= ";F:PRINT " ":END
82:USING :PRINT "X= ";D:PRINT "Y ";E:PRINT " n:GOTO 25
83:IF H<>9GODO 79
84:PRINT USING ;"CANNOT FIT'NO. ";G
85: "K":C=-1:GOTO 13
```

NOTE: Lines 11 and 12 contain the exponent E-9.

MULTIPLE CURVE FITTING PROGRAM

HP-75C

This program fits up to 19 curves to an unimited number of X, Y data points. Any curve can be selected by entering the appropriate curve number from the table below. The best fitting curve can be determined automatically based on the adjusted coefficient of determination, RR. Once a curve has been selected either manually or automatically, values of Y can be estimated for any given value of X.

Curve Number	Type	General Equation	Page
1	Linear	$\mathbf{Y}=\mathbf{a}+\mathbf{b} \mathbf{X}$	12
2	Reciprocal	$Y=1 /(a+b X)$	22
3	Linear-Hyperbolic	$Y=a+b X+c / X$	32
4	Hyperbola	$Y=a+b / X$	26
5	Reciprocal Hyperbola	$\mathbf{Y}=\mathbf{X} /(\mathrm{aX}+\mathrm{b})$	30
6	2nd Order Hyperbola	$\mathrm{Y}=\mathrm{a}+\mathrm{b} / \mathrm{X}+\mathrm{c} / \mathrm{X}^{2}$	34
7	Parabola	$\mathbf{Y}=\mathbf{a}+\mathbf{b} \mathbf{X}+\mathbf{c} \mathbf{X}^{2}$	36
8	Cauchy Distribution	$Y=1 /\left[a(X+b)^{2}+c\right]$	76
9	Logarithmic	$\mathbf{Y}=\mathbf{a}+\mathrm{b} \ln \mathrm{X}$	58
10	Reciprocal Log	$Y=1 /(a+b 1 n X)$	60
11	Power	$\mathrm{Y}=a \mathrm{X}^{\mathrm{b}}$	42
12	Super Geometric	$Y=a X^{\text {b }}$	48
13	Modified Geometric	$\mathbf{Y}=a \mathbf{X}^{\mathbf{b} / \mathrm{X}}$	50
14	Hoer1 Function	$Y=a b^{X}{ }^{c}$	64
15	Modified Hoerl	$Y=a b^{1 / X} X^{c}$	66
16	Log-Norma1	$Y=a e^{(b-1 n X)^{2} / c}$	70
17	Modified Power	$\mathbf{Y}=\mathbf{a b}^{\mathbf{X}}$	44
18	Root	$Y=a b^{1 / X}$	46
19	Normal Distribution	$Y=a e^{(X-b)^{2 / c}}$	68

Program Operation

The program is designed so that the user need only step through a menu using the space bar until the desired selection is found. Pressing the RTN key causes the current menu item to be executed. Menu items are preceded by an * to distinguish them from commands requiring user input. When first executed, the MCF program also allows a print option to be selected.

The HP-75C is somewhat unique in that multiple data files may be stored in memory and randomly accessed. The program allows such files to be created and selected by the user at any time.

Most programmers will have little difficulty in adding new curves to the MCF program using the information on pages $\mathbf{C - 3}$ through C-5.

Limits and Warnings

Enter at least four data points when using the FIND BEST FIT option. This is necessary because the corrected RR calculation uses a divisor of N-3 for curves $3,6,7,8,12,13,14$ and 19 , where N is the number of data points. All other curves require a minimum of three data points.

Data may be deleted at any time by exercising the DELETE LAST X,Y or DELETE DATA options. When using the DELETE DATA option, be sure that you delete a valid data point or the data base will be meaningless. You can determine the 1 ast X and Y entered or deleted by halting the program and pressing X RTN or Y RTN. Resume program execution by keying CONT and pressing RTN.

Whenever X or Y is zero, it is replaced with $1 E-10$ by the data entry routine. This technique for dealing with zero may sometimes cause curves with $1 / X$ or $1 / Y$ terms to display a data error or warning. If this happens, either eliminate any point with a zero or avoid fitting curves that would involve the reciprocal of zero.

The logarithm of a negative data point is automatically set to zero during input. The results are therefore meaningless if you try to fit certain models to negative data. If any value of X is negative, curves 9 through 16 should not be selected. If any value of Y is negative, curves 9 through 14 and curves 17 through 19 should not be selected.

The corrected coefficient of determination is displayed for $R R$ and used in all comparisons to find the best fitting curve. If the corrected RR is negative, it is set to zero.

When seeking the best possible fit, it is a good practice to run the MCF program a second time with the values of X and Y exchanged during input.

HP-75 REGISTER ASSIGNMENTS

The MCF program requires approximately $8 k$ bytes of memory plus 387 bytes for each data file created by the curve fitting program. The correspondence between HP-75C registers and those used in the text is shown in the following table.

HP-75	REGISTER CONTENTS	TEXT	TEXT	REGISTER CONTENTS	HP-75
R(01)	$\Sigma \mathbf{X}$	R16	R16	$\Sigma \mathbf{X}$	R(01)
R(02)	$\Sigma \mathbf{X}^{2}$	R17	R17	$\Sigma \mathrm{X}^{2}$	R(02)
R(03)	$\Sigma \mathrm{Y}$	R18	R18	$\Sigma \mathrm{Y}$	R(03)
R(04)	$\Sigma \mathrm{Y}^{2}$	R19	R19	$\Sigma \mathrm{Y}^{2}$	R(04)
R(05)	$\Sigma \mathbf{X * Y}$	R20	R20	$\Sigma \mathrm{X} * \mathrm{Y}$	R(05)
R(06)	n	R21	R21	n	R(06)
R(07)	$\Sigma 1 / \mathrm{X}$	R22	R22	$\Sigma 1 / \mathrm{X}$	R(07)
R(08)	$\Sigma 1 / \mathrm{X}^{2}$	R23	R23	$\Sigma 1 /{ }^{2}$	R(08)
R(09)	$\Sigma 1 / Y$	R24	R2 4	$\Sigma 1 / \mathrm{Y}$	R(09)
R(10)	$\Sigma 1 / Y^{2}$	R25	R25	$\Sigma 1 / Y^{2}$	R(10)
R(11)	$\Sigma 1 /(\mathrm{X} * \mathrm{Y})$	R26	R26	$\Sigma 1 /(\mathrm{X} * \mathrm{Y})$	R(11)
R(12)	$\Sigma \mathrm{X} / \mathrm{Y}$	R34	R2 8	$\Sigma \ln X$	R(23)
R(13)	$\Sigma \mathrm{Y} / \mathrm{X}$	R3 5	R29	$\Sigma(1 n X)^{2}$	R(24)
R(14)	$\Sigma \mathrm{X}^{\mathbf{2}} \mathbf{*} \mathrm{Y}$	R36	R30	$\Sigma \operatorname{lnY}$	R(34)
R(15)	$\Sigma \mathrm{X}^{2} / \mathrm{Y}$	R37	R31	$\Sigma(1 n Y){ }^{2}$	R(35)
R(16)	$\Sigma \mathrm{Y} / \mathrm{X}^{2}$	R3 8	R32	$\Sigma(1 n X) *(\ln Y)$	R(39)
R(17)	$\Sigma \mathrm{X} * \mathrm{Y}^{2}$	R39	R34	$\Sigma \mathrm{X} / \mathrm{Y}$	R(12)
R(18)	$\Sigma \mathrm{X}^{3}$	R40	R3 5	$\Sigma \mathrm{Y} / \mathrm{X}$	R(13)
R(19)	$\Sigma 1 / X^{3}$	R41	R36	$\Sigma \mathrm{X}^{2 *} \mathrm{Y}$	R(14)
R(20)	$\Sigma \mathrm{Y}^{3}$	R42	R37	$\Sigma X^{2} / \mathrm{Y}$	R(15)
R(21)	$\Sigma \mathrm{X}^{4}$	R43	R3 8	$\Sigma \mathrm{Y} / \mathrm{X}^{2}$	R(16)
R(22)	$\Sigma 1 /{ }^{4}$	R44	R3 9	$\Sigma \mathrm{X} * \mathrm{Y}^{2}$	R(17)
R(23)	$\Sigma \ln X$	R28	R40	$\Sigma \mathrm{X}^{3}$	R(18)
R(24)	$\Sigma(1 n X)^{2}$	R29	R41	$\Sigma 1 / \mathrm{X}^{3}$	R(19)
R(25)	$\Sigma(1 n X) / X$	R45	R42	$\Sigma \mathrm{Y}^{3}$	R(20)
R(26)	$\Sigma \mathrm{X} * \operatorname{lnX}$	R48	R43	$\Sigma \mathrm{X}^{4}$	R(21)
R(27)	$\Sigma(\mathrm{X} * \operatorname{lnX})^{2}$	R49	R44	$\Sigma 1 /{ }^{4}$	R(22)
R(28)	$\Sigma \mathrm{Y} *(\ln \mathrm{X})$	R51	R45	$\Sigma(1 n X) / X$	R(25)
R(29)	$\Sigma(\ln X) / \mathrm{Y}$	R52	R46	$\Sigma \mathrm{X}$ ($\ln \mathrm{Y})$	R(36)
R(30)	$\Sigma[(\ln X) / \mathrm{X}]^{2}$	R53	R47	$\Sigma(\ln Y) / \mathrm{X}$	R(37)
R(31)	$\Sigma(1 n X){ }^{3}$	R55	R48	$\Sigma \mathrm{X} * 1 \mathrm{nX}$	R(26)
R(32)	$\Sigma(\ln X)^{4}$	R56	R49	$\Sigma(\mathrm{X} * \operatorname{lnX})^{2}$	R(27)
R(33)	$\Sigma \mathrm{Y}$ (1 ln X$) / \mathrm{X}$	R58	R50	$\Sigma \mathrm{X} *(1 \mathrm{nX}) *(\ln \mathrm{Y})$	R(40)
R(34)	$\Sigma \operatorname{lnY}$	R30	R51	$\Sigma \mathrm{Y}$ * 1 nX	R(28)
R(35)	$\Sigma(1 n Y){ }^{2}$	R31	R52	$\Sigma(1 n X) / Y$	R(29)
R(36)	$\Sigma \mathrm{X} * \ln \mathrm{Y}$	R46	R53	$\Sigma[(\ln X) / \mathrm{X}]^{2}$	R(30)
R(37)	$\Sigma(\ln \mathrm{Y}) / \mathrm{X}$	R47	R54	$\Sigma(1 n Y) * X^{2}$	R(38)
R(38)	$\Sigma(1 n Y) * X^{2}$	R54	R55	$\Sigma(1 n X){ }^{3}$	R(31)
R(39)	$\Sigma(1 n X) *(1 n Y)$	R32	R56	$\Sigma(1 n X) 4$	R(32)
R(40)	$\Sigma \mathrm{X} *(1 \mathrm{nX}) *(\ln \mathrm{Y})$	R50	R57	$\Sigma(\ln \mathrm{Y}) *(\operatorname{lnX})^{2}$	R(41)
R(41)	$\Sigma(1 n Y) *(1 n X){ }^{2}$	R57	R5 8	$\Sigma \mathrm{Y} *$ (1 nX)/X	R(33)

HP-75C USER INSTRUCTIONS

The following is a iist of menu options in the MCF program. All menu items are preceded by an $*$ to distinguish them from commands that require user input. Whenever the program prompts for an input, the RTN key may be pressed instead to take you back into the menu. Use the space bar whenever you want to step to the next menu item.
IS HP-IL CONNECTED (Y/N)?
PRINT OUTPUT (Y/N)? $\quad\left\{\begin{array}{l}* \text { START NEW DATA FILE } \\ \text { * USE OLD DATA FILE } \\ * \text { SAVE DATA FILE } \\ * \text { MODIFY DATA } \\ * \text { SELECT A CURVE } \\ * \text { FIND BEST FIT } \\ * \text { SOLVE FOR Y }\end{array} \quad\left\{\begin{array}{l}* * \text { ADD DATA } \\ * * \text { DELETE LAST X, Y } \\ * * \text { DELETE DATA }\end{array}\right.\right.$

RUN "MCF". Start the multip1e curve fitting program by entering RUN "MCF" and pressing the RTN key.

IS HP-IL CONNECTED (Y/N)? This option appears when the program is first started. Press Y and RTN if the HP-IL loop is connected to the HP-75 (make sure each device on the loop is first powered up). If you do not wish to use the HP-IL loop, press N (or any key other than Y) and RTN. (Be sure to execute the command 'OFFIO' prior to 1) turning off a device on the 1oop, 2) disconnecting a device on the loop, or 3) disconnecting the loop from the computer.)

PRINT OUTPUT (Y/N)? This option appears if the response to the previous question was yes. Press Y and RTN if a printer is attached and you desire to print all input and output data. The program will direct output to any peripheral assigned a device code of P. (Device codes are declared with the ASSIGNIO command. Output may be directed to both a printer and a tv monitor using the command PRINTER IS ': P, :TV'. You may also want to direct display information to a tv monitor using the command DISPLAY IS ':TV'). If you do not wish to direct output to a printer, respond to PRINT OUTPUT (Y/N) by pressing N (or any key other than Y) and RTN.

START NEW DATA FILE. Press RTN if you want to enter data that has not been previously stored in a file. The program will now prompt you for data entry as described under ADD DATA. This option can also be used to clear out the current data file without storing it.

USE OLD DATA FILE. Press RTN if you want to call an existing data file. The program will prompt you for the file name and load this file into the data registers. If the file does not exist, a tone will sound for 0.5 seconds before returning to the same menu item.

SAVE DATA. Press RTN if you want to save the current file. The program will prompt for the file name you want the data stored under and return to the main menu. If a name is not entered, a tone sounds for 0.5 seconds to warn you
that no file has been saved. It is a good practice to save newly created files before modifying the data or fitting any curves.

MODIFY DATA. Press RTN if you want to add or delete data from the current file. A secondary menu will appear.

ADD DATA. Press RTN if you want to add data to the current file. The program will now prompt you for each data point by displaying ENTER X(n),Y(n). Enter the value of X followed by a comma and the value of Y. Press RTN to store the data. If you press RTN without entering data, the program will return to the main menu.

DELETE LAST X,Y. Press RTN if you want to delete the last data point entered. This option should only be used if you have been entering data. It should never be used once the curve fitting routines have been exercised since last X and Y are lost. If this option is selected, the display will momentarily show DELETED: and return to the main menu.

DELETE DATA. Press RTN if you want to delete a point from the current file. The program will prompt you for the value of X and Y and signify that the data are to be deleted by displaying ENTER $X(-1), Y(-1)$. Enter the value of X followed by a comma and the value of Y. When you press RTN, the display will momentarily show DELETED: and return to the main menu. The program will also return to the main menu if no data are entered.

SELECT CURVE. Press RTN if you want to fit a specific curve. The program will prompt you for a curve number (see p. H-1). The curve corresponding to this number will be displayed along with the coefficients and the corrected coefficient of determination (RR). If a printer is not being used, press any key to display the next output. Note that the coefficient cis not displayed if it is equal to zero. When an invalid curve number is used, a tone sounds for 0.5 seconds before returning to the main menu.

FIND BEST FIT. Press RTN if you want the program to find the best fitting curve automatically. The display will show the corrected coefficient of determination (RR) for each curve before displaying the best fit curve and its coefficients. (Note that the output can be slowed down by changing the delay constant in line 15 of the program.) If a printer is not being used, press any key to display successive coefficients.

SOLVE FOR Y. Press RTN if you want to use the 1 ast curve displayed to calculate Y for a given X. The program will prompt you for a value of X. Press RTN to find the corresponding value of Y. The program will continue to prompt for X until you press RTN without entering a value. If you try to evaluate a curve such as $Y=a+b / X$ for $X=0$, the program will prompt you to select another curve.

Two additional commands that will be useful are CAT ALL and PURGE. CAT ALL displays one file each time the \downarrow key is pressed. Execute PURGE "filename" to delete any unwanted files.

```
10 DPTION BASE 1 E DIM R(41)
15 FS=O e DELAY 1 E REM DISPLAY PAUSE IS 1 SECOND
20 INPUT "IS HPIL CONNECTED (Y/N)? ";R\$
25 IF R\$\#"Y" AND R\$\#"Y" THEN 50
30 DISP "PRINT OUTPUT (Y/N)"; E INPUT R\&
35 IF R\$\#"Y" AND R\$\#"y" THEN PRINTER IS * @ GOTO 50
40 F3=1 巴 PRINTER IS ": \(\mathrm{P}^{\prime}\) e PRINT "MULTIPLE CURVE FIT" 巴 DELAY O
50 DISP "* START NEW DATA FILE"
55 K=NUM (KEY\$) 巴 IF K\#13 AND K\#32 THEN GDTO 55
60 IF \(K=13\) THEN GOTO 250
65 DISP "* USE OLD DATA FILE"
70 K=NUM (KEY\$) e IF K\#13 AND K\#32 THEN GOTO 70
75 IF K=13 THEN GOTO 160
80 DISP "* MODIFY DATA"
85 K=NUM (KEY\$) © IF K\#13 AND K\#32 THEN GOTO 85
90 IF K=13 THEN GOTO 195
95 DISP "* SAVE DATA FILE"
100 K=NUM (KEY\$) 巳 IF K\#13 AND K\#32 THEN GOTO 100
105 IF \(K=13\) THEN \(W=1\) e R1=0 e GOTO 180
110 DISP "* SELECT A CURVE"
115 K=NUM (KEY\$) e IF K\#13 AND K\#32 THEN GOTO 115
120 IF \(K=13\) THEN GOTO 400
125 DISP "* FIND BEST FIT"
130 K=NUM (KEY\$) e IF K\#13 AND K\#32 THEN GOTO 130
135 IF K=13 THEN GOTO 415
140 DISP "* SOLVE FOR Y"
145 K=NUM (KEY\$) E IF K\#13 AND K\#32 THEN GOTO 145
150 IF K=13 THEN GOTO 675
155 GOTO 50
160 ON ERROR BEEP 2000, 5 e GOTO 175
165 INPUT "OLD FILE NAME? "; R\$ e ASSIGN \# 1 TO R\$ e READ \# 1 ; R(),F1,F2
170 ASSIGN \# 1 TO * E OFF ERROR e GOTO 80
175 DISP "NO SUCH FILE" e GOTO 65
180 ON ERROR BEEP 2000, 5 e GOTO 110
185 INPUT "FILE NAME? "; R\$ 巴 ASSIGN \# 1 TO R\$ e PRINT \# 1 ; R(),F1,F2
190 ASSIGN \# 1 TO * e GOTO 80
195 DISP "家* ADD DATA"
200 K=NUM (KEY\$) 巳 IF K\#13 AND K\#32 THEN GOTO 200
205 IF K=13 THEN GOTO 255
210 ON ERROR GOTO 80
215 DISP "** DELETE LAST \(X, Y\) "
220 K=NUM (KEY\$) e IF K\#13 AND K\#32 THEN GOTO 220
225 IF \(K=13\) THEN \(S=-1\) G GOTO 290
230 DISP "** DELETE DATA"
235 K=NUM (KEY\$) e IF K\#13 AND K\#32 THEN GOTO 235
240 IF \(K=13\) THEN \(S=-1\) e \(I=S\) E GOTO 270
245 GOTO 95
250 FQR I=1 TQ 41 e R(I)=O e NEXT I e F1=0 e F2=0 e REM INITIALIZE REGISTERS
255 S=1 e REM DATA ENTRY ROUTINE
260 ON ERROR GOTO 95
265 I \(=\) R ( 6 ) + 5
270 DISP "ENTER X("; I;"), Y("; I;"):"; e INPUT \(X, Y\)
275 IF \(S>0\) AND F3 THEN GOSUB 910
280 IF \(X=0\) THEN \(X=.0000000001\) E REM MAKE \(X\) NON-ZERD
285 IF \(Y=0\) THEN \(Y=.0000000001\) 巴 REM MAKE \(Y\) NON-ZERD
\(290 R(1)=R(1)+S * X E R(2)=R(2)+S * X * X E R(3)=R(3)+S * Y\) E \(R(4)=R(4)+S * Y * Y\)
\(295 R(5)=R(5)+S * X * Y E R(6)=R(6)+S E R(7)=R(7)+S / X\) e \(R(8)=R(8)+S /(X * X)\)
\(300 R(9)=R(9)+S / Y\) e \(R(10)=R(10)+S /(Y * Y) \mathrm{e} R(11)=R(11)+S /(X * Y)\)
```


HP－75C PROGRAM LISTING

```
305 R(12)=R(12)+S*X/Y e R(13)=R(13)+S*Y/X E R(14)=R(14)+S*X*X*Y
310 R(15)=R(15)+S*X*X/Y e R(16)=R(16)+S*Y/(X*X) eR(17)=R(17)+S*X*Y*Y
315 T=X*X*X e R(18)=R(18)+S*T @ R(19)=R(19)+S/T @ R(20)=R(20) +S*Y*Y*Y
320 T=X*T e R(21)=R(21)+S*T e R(22)=R(22)+S/T
325 IF X<O THEN K=O e F1=1 e GOTO 335
330 K=LOG(X)
335 R(23)=R(23)+S*K e R(24)=R(24)+S*K*K e R(25)=R(25)+5*K/X
340 T=K*X e R(26)=R(26)+S*T e R(27)=R(27) +S*T*T e R(28)=R(28)+S*K*Y
345 R(29)=R(29)+S*K/Y 巴 R(30)=R(30)+S*K*K/(X*X)
350 T=K*K*K e R(31)=R(31)+S*T e R(32)=R(32)+S*K*T
355 IF Y<O THEN L=O e F2=1 e GOTO 365
360 L=LOG(Y)
365 R(34)=R(34)+S*L E R(35)=R(35)+S*L*L Q R(36)=R(36)+S*X*L
370 R(37)=R(37)+S*L/X @ R(38)=R(38)+S*X*X*L e R(33)=R(33)+S*K*L/X
375 R(39)=R(39)+S*K*L E R(40)=R(40)+S*X*K*L E R(41)=F(41)+5*K*K*L
380 IF S`O THEN GOTO 265
385 PRINT "DELETED: "; e IF FS=0 THEN FRINT E GOTO 80
390 GOSUB 910 e GOTO 80
595 GOTO 265
400 ON ERROR BEEP 2000,.5 e GOTO 110 e REM SELECT CURVE
405 DISP "INFUT CURVE NUMBER: "; 巨 INPUT I @ W=O E PRINT
410 ON I GOTO 420,430,440,455,465,475,490,505,530,540,555,565,575,585,600,6
15,635,645,655
415 R1=O e W=1 e REM FIND BEST FIT
420 PRINT " 1:Y=a+bX "; e A=R(2) e B=R(1) e D=R(3) e E=R(5) e F=
R(4)
425 I=1 e GOSUB 800 e IF W=0 THEN GOTO 885
430 PRINT " 2:Y=1/(a+bX) "; e A=R(2) e B=R(1) E D=R(9) e E=R(12) eF
=R(10)
435 I=2 e GOSUB 800 e IF W=0 THEN GOTO 885
440 PRINT " 
445 E=R(3) 巴 F=R(4) 巴 G=R(5) @ H=R(13) @ J=R(6)
450 I=3 @ GOSUB 815 e IF W=O THEN GOTO 885
455 PRINT " 4:Y=a+b/X "; e A=R(8) E B=F(7) e D=R(3) e E=R(13) e F
=R(4)
460 I=4 e GOSUB 800 E IF W=0 THEN GOTO 885
465 PRINT " 5: Y=X/(aX+b) "; e A=R(8) e B=R(7) e D=R(9) e E=R(11) e F
=R(10)
470 I=S e GOSUB 800 巨 IF W=0 THEN GOTO }88
475 FRINT " 6:Y=a+b/X+c/X`2 "; E A=R(7) e B=R(8) e C=R(22) e D=R(8)
480 E=R(3) e F=R(4) e G=R(13) e H=R(16) e J=R(19)
485 I=6 E GOSUB 815 E IF W=0 THEN GOTO 885
490 FRINT " 7:Y=a+bX+cX^2 "; e A=R(1) e B=R(2) e C=R(21) e D=R(2)
495 E=R(3) e F=R(4) e G=R(5) e H=R(14) e J=R(18)
500 I=7 e GOSUB 815 e IF W=0 THEN GOTO }88
505 PRINT " 8: Y=1/[c+a(X+b)^2] "; e A=R(1) e B=R(2) e C=R(21) e D=R(2)
510 E=R(9) e F=R(10) e G=R(12) e H=R(15) e J=R(18)
515 I=8 @ GOSUB 815 e IF W THEN GOTO 525
520 A=A-B*B/(4*C) e B=B/(C+C) e T=A e A=C e C=T e GOTO 885
5 2 5 ~ I F ~ F 1 ~ T H E N ~ G O T O ~ 6 S O ~ E ~ R E M ~ L O G ~ O F ~ N E G A T I V E ~ X ~
530 FRINT " 9:Y=a+b*lnX "; e A=R(24) e B=R(23) e D=R(3) e E=R(28) e
    F=R(4)
535 I=9 e GOSUB 800 E IF W=0 THEN GOTO 885
540 PRINT "10:Y=1/(a+b*lnX) "; e A=R(24) e B=R(23) e D=R(9) e E=R(29) e
    F=R(10)
5 4 5 ~ I = 1 0 ~ e ~ G O S U B ~ 8 0 0 ~ e ~ I F ~ W = 0 ~ T H E N ~ G O T O ~ 8 8 5 ~
550 IF F1 THEN GOTO 905 E REM LOG OF NEGATIVE Y
555 PRINT "11:Y=aX`b "; e A=R(24) E E=R(23) e D=R(34) e E=R(39)
e F=R(35)
560 I=11 e GOSUB 800 @ IF W=0 THEN GOTO }87
565 FRINT "12:Y=aX`(bX) "; e A=R(27) e E=R(26) e D=R(34) e E=R(40)
e F=R(35)
```

```
570 I=12 e GOSUB 800 e IF W=0 THEN GOTO 875
575 PRINT "13:Y=aX^(b/X) "; e A=R(30) e B=R(25) e D=R(34) e E=R(33)
e F=R(35)
580 I=13 @ GOSUB 800 e IF W=0 THEN GOTO 875
585 PRINT "14:Y=a(b^X)(X^c) "; e A=R(1) e B=R(2) e C=R(24) e D=R(23)
590 E=R(34) e F=R(35) e G=R(36) e H=R(39) e J=R(26)
595 I=14 e GOSUB 815 e IF W=O THEN GOTO 870
600 PRINT "15: Y=a(b^1/X)(X^c) "; e A=R(7) e B=R(8) e C=R(24) e D=R(23)
605 E=R(34) e F=R(35) e G=R(37) e H=R(39) e J=R(25)
610 I=15 e GOSUB 815 e IF W=0 THEN GOTO 870
615 PRINT "16: Y=ae^[(b-lnX)^2/c]"; e A=R(23) e B=R(24) e C=R(32) e D=R(24)
620 E=R(34) e F=R(35) e G=R(39) e H=R(41) e J=R(31)
625 I=16 e GOSUB 815 e IF W=O THEN GOTO 670
630 IF F2 THEN GOTO 905 @ REM LOG OF NEGATIVE Y
635 PRINT "17:Y=ab^X "; e A=R(2) e B=R(1) e D=R(34) e E=R(36) e
F=R(35)
640 I=17 e GOSUB 800 e IF W=0 THEN GOTO 870
645 PRINT "18:Y=ab^(1/X) "; e A=R(8) e B=R(7) e D=R(34) e E=R(37) e
F=R(35)
650 I=18 巴 GOSUB 800 @ IF W=O THEN GOTO 870
655 PRINT "19:Y=ae^[(b-X)^2/c] "; e A=R(1) e B=R(2) e C=R(21) e D=R(2)
660 E=R(34) e F=R(35) e G=R(36) e H=R(38) e J=R(18)
665 I=19 e GOSUB 815 e IF W THEN W=O e I=I1 e PRINT e GOTO 410
670 A=EXP(A-B*B/(4*C)) e B=-B/(C+C) e C=1/C e GOTO 885
675 ON ERROR GOTO 110 e REM SOLVE FOR Y
6 8 0 ~ D I S P ~ " E N T E R ~ X : ~ " ; ~ @ ~ I N P U T ~ X ~
685 ON I GOSUB 700,705,710,715,720,725,730,735,740,745,750,755,760,765,770,
775,780, 785,790
690 GOSUB 910
6 9 5 ~ G O T O ~ 6 8 0 ~
700 Y=A+B*X e RETURN
705 Y=1/(A+B*X) @ RETURN
710 Y=A+B*X+C/X @ RETURN
715 Y=A+B/X E RETURN
720 Y=X/(A*X+B) @ RETURN
725 Y=A+B/X+C/(X*X) @ RETURN
730 Y=A+B*X+C*X*X @ RETURN
735 Y=1/(C+A* (B+X)^2) e RETURN
740 Y=A+B*LOG(X) E RETURN
745 Y=1/(A+B*LOG(X)) e RETURN
7 5 0 ~ Y = A * ~ X ` B ~ e ~ R E T U R N
755 Y=A*X^(B/X) e RETURN
760 Y=A* X^B E RETURN
765 Y=A*B^X*X^C e RETURN
770 Y=A*B^(1/X)* X^C @ RETURN
775 Y=A*EXP((B-LOG(X))^2/C) e RETURN
780 Y=A*B^X e RETURN
785 Y=A*B^(1/X) E RETURN
790 Y=A*EXP((B-X)^2/C) e RETURN
795 REM FIND COEFFICIENTS A & B AND RR
800 C=A*R(6)-B*B @ A= (A*D-B*E)/C e B=(E*R(6)-B*D)/C e C=0
805 K=D*D/R(6) e E=(A*D+B*E-K)/(F-K) e F=2 e GOTO 840
810 REM FIND CDEFFICIENTS A, B & C AND RR
815 B=B*R(6)-A*A E C=C*R(6)-D*D e J=J*R(6)-A*D e L=G*R(6)-A*E
820 C= (B* (H*R(6)-D*E)-J*L)/(B*C-J*J)
825 B=(L-C*J)/B e A= (E-A*B-C*D)/R(6)
830 K=E*E/R(6) e E=(A*E+B*G+C*H-K)/(F-K) e F=3
835 REM COMPUTE CORRECTED RR
840 E=1-(1-E)*(R(6)-1)/(R(6)-F) E IF E<O THEN E=0
845 IF E>1 THEN E=1
850 IF W=O THEN PRINT E RETURN
855 PRINT USING "> RR=`,d.dddd" ; E
```


HP－75C PROGRAM LISTING

```
860 IF E>R1 THEN R1=E e I 1=I e REM STORE BETTER CURVE
865 RETURN
870 B=EXP (B)
875 A=EXP (A)
880 REM DISPLAY COEFFICIENTS
885 GOSUB 915 e PRINT " a= ";A e GOSUB 915
890 PRINT " b= ";B e GOSUB 915
895 IF C#O THEN PRINT " c= ";C e GOSUB 915
900 PRINT " RR= ";E E GOSUB }91
905 PRINT e GOTO 140
910 PRINT "X= ";X; 巴 PRINT " Y= "; Y
915 IF F3 THEN RETURN
920 IF KEY$="" THEN GOTO 920 ELSE RETURN E REM HALT UNTIL A KEY IS PRESSED
```


TRANSLATING HP BASIC

The following comments will be useful to anyone unfamiliar with HP BASIC when translating to another BASIC．

Line 10 OPTION BASE 1 starts array R at $R(01)$ rather than $R(00)$ ．

Line 15 DELAY n pauses the program n seconds each time output is displayed．

Line 25 \＃represents NOT EQUAL，e．g．，〈〉in some BASICs．

Line 30 DISP directs program output to the LCD disp1ay．
Line 55 KEY returns the last character entered．NUM（KEY\＄）returns the value of the 1ast key pressed（RTN＝13 and SPACE＝32）．

Line 160 ON ERROR redirects program flow when an error is encountered． It is used frequently in this program to branch back to the main menu if numeric input does not follow an INPUT command． BEEP f，d causes a tone of frequency f to sound for d seconds．

Line 165 This statement reads the file named into array $R()$ along with values for F1 and F2．

Line 180 This statement stores the contents of array $R()$ along with F1 and $F 2$ into the file named．

Line 385 PRINT directs output to the display if a printer is not used．

MULTIPLE CURVE FITTING PROGRAM
Sharp PC-1500 and TRS-80 PC-2
By Rick Conner

This program fits any of nineteen curves to an unimited number of X, Y data points. The curve selection can be made manually or the program can be instructed to find the best fit curve automatically on the basis of the highest adjusted coefficient of determination. Once fitted, the equation may be solved for Y with any given value of X. Data may be printed on the PC's plotter/cassette interface if it is available.

Curve Number	Type	General Equation	Page
1	Linear	$\mathbf{Y}=\mathbf{a}+\mathrm{b} \mathbf{X}$	12
2	Reciprocal	$Y=1 /(a+b X)$	22
3	Linear-Hyperbo1ic	$Y=a+b X+c / X$	32
4	Hyperbola	$\mathbf{Y}=\mathrm{a}+\mathrm{b} / \mathrm{X}$	26
5	Reciprocal Hyperbola	$\mathbf{Y}=\mathbf{X} /(\mathbf{a X}+\mathbf{b})$	30
6	2nd Order Hyperbola	$Y=a+b / X+c / X^{2}$	34
7	Parabola	$Y=a+b X+c X^{2}$	36
8	Cauchy Distribution	$Y=1 /\left[a(X+b)^{2}+c\right]$	76
9	Power	$\mathbf{Y}=a \mathrm{X}^{\text {b }}$	42
10	Super Geometric	$Y=a X^{b X}$	48
11	Modified Geometric	$Y=a X^{b / X}$	50
12	Hoer1 Function	$\mathbf{Y}=\mathbf{a b}{ }^{\text {X }} \mathbf{X}^{\mathbf{c}}$	64
13	Modified Hoer1	$Y=a b^{1 / X_{X}} c$	66
14	Log-Norma 1	$Y=a e^{(\ln X-b)^{2 / c}}$	70
15	Logarithmic	$\mathbf{Y}=\mathrm{a}+\mathrm{b} 1 \mathrm{nX}$	58
16	Reciprocal Log	$Y=1 /(a+b 1 n X)$	60
17	Modified Power	$\mathbf{Y}=\mathrm{ab}^{\mathbf{X}}$	44
18	Root	$Y=a b^{1 / X}$	46
19	Normal Distribution	$Y=a e^{(X-b)^{2 / c}}$	68

Entering the Program

Press MODE to put the PC-1500 into PRO mode. Type the command NEWø to clear the program memory. Enter the program lines as shown in the program listing, remembering to switch back to upper case since the PC does not accept BASIC statements typed in lower case. The following hints will help save time when entering this very long program:

Assign repetitive keystroke sequences such as $\underline{R}()=$,R , and) $+C^{*}$ to the reserve function keys, i.e., keys F 1 through F .

The curve fitting routines are all similar in structure. Enter one of them, e.g., 1 ines 311 to 314 , and copy it 18 times by changing the 1 ine numbers (i.e., change 1 ine 311 to 321,321 to $331, \ldots$, and 481 to 491 , then change 312 to 322,322 to $332, \ldots$, and 482 to 492 , etc.). Now go back and edit each line to make the necessary individual changes.

When you have finished entering the program and whenever you load it into memory, you should first type DEF and then C to initialize it.

Limits and Warnings

Enter at least four data points when fitting curves 3, 6, 7, 8, 12, 13, 14, or 19 and whenever you are using the DEF B function. At least three data points are required in all other cases. (You may satisfy these requirements by entering each of the data points twice.)

Whenever an X or Y value of zero is entered, it is automatically changed to 1E-9 to avoid division by zero during certain calculations. This technique for dealing with zero may sometimes cause curves with $1 / X$ or $1 / Y$ terms to display a data error or warning when the program is running. If this happens, either eliminate any point with a zero or avoid fitting curves that would involve the reciprocal of zero.

Whenever a negative or zero value of X or Y is entered, the logarithm of the value is also set to zero to avoid a data error. Fitting such data to certain curves will therefore be meaningless:

If any X is less than or equal to zero, disregard curve numbers 9 through 16

If any Y is less than or equal to zero, disregard curve numbers 9 through 14 and curves 17 through 19.

The program uses the corrected coefficient of determination whenever RR is displayed and in all comparisons to find the best fitting curve. When seeking the best possible fit, it is a good practice to run the program a second time with the values of X and Y exchanged during input.

This program consists of several carefully interwoven routines. You may start these routines simply by pressing the DEF key followed by the appropriate letter. You may also go directly to any one of these routines whenever the BUSY indicator is not on.

DEF A ADD one or more X, Y data points.
DEF B Find the BEST fitting curve.
DEF C CLEAR registers and go to the data entry routine.
DEF D DELETE one or more X and Y data points.
DEF F FIT any curve.
DEF L LIST functions on the display or plotter.
DEF M Display MENU of curves.

DEF $S \quad$ SOLVE for Y when X and the curve number are given.
DEF V VIEW the last value of X and Y.

The user activates any of these predefined functions by pressing the DEF key followed by the appropriate letter. The following is a detailed account of what each of these functions does.

CLEAR. DEF C should always be the first thing you type whenever you load the program into memory. Executing the DEF Command will cause the program to clear all variables and registers (you will lose any data stored), and ask whether the plotter is to be used before branching to the ADD data function.

ADD. In the DEF A mode of operation, you will be prompted for X and Y values to add to the data base. A special 'sigma-plus' flag will appear on the right side of the display to remind you that you are entering data. If you are using the plotter, the X and Y values as well as the index (the number of points entered so far) will be printed in black. About five to ten seconds is required to enter each data pair, after which you will be prompted for the next pair.

DELETE. DEF D allows you to delete points from the data base at any time. The program does not store the X and Y values themselves but only the register totals derived from them. You should therefore make sure that the points you want to delete have actually been entered before using this function. The DELETE function will show a 'sigma-minus' sign in the display and print the X and Y values in red along with the index. Note that you must type DEF A in order to return to the ADD mode.

VIEW. The DEF V command will display or print the last data pair entered along with a flag indicating whether or not the point was added or deleted. If the point was added, the displayed index value includes that point. If the point was deleted, the index does not include that point.

FIT. The DEF F function allows you to fit any of the nineteen curves to your data, subject to the limitations previously discussed. About two seconds after you enter a curve number, the value of coefficient A will be displayed: press the ENTER key repetitively to see the values of B, C and RR. If you are using the plotter, these values will be printed in green.

BEST. Typing DEF B will instruct the program to fit each of the nineteen curves to your data in search of the one that results in the highest corrected coefficient of correlation (RR). This curve and its coefficients will be displayed after 20 seconds.

SOLVE. Use DEF S to fit any of the curves to your data and solve for Y. Enter the curve number of the desired equation as in the DEF frunction. You will now be prompted for a value of X : the corresponding Y value will be calculated and displayed immediately. You may press ENTER to clear the display and get the next X prompt without entering the curve number again. Like the ADD and DELETE functions, you must either go to another routine or press BREAK to exit this function.

LIST. The DEF L command will cause the DEF key functions to be 1 isted on the display or on the plotter.

MENU. The DEF M function will instruct the program to print the numbers, names, and formulas of the nineteen curve types in the display or on the plotter.

1:REM Multi cur ve fitting for PC-1500, PC-2
2:REM Adapted b y Rick Conner
9:REM CLEAR \& R ESET PROGRAM
10:"C":CLS :BEEP
5:WAIT 100:
PRINT "***** C LEAR PROGRAM * ****":CLEAR : DIM $R(41): W A=1$ 00
11: INPUT "Use plo tter? (y / n)... "; P\$
12: IF P\$="Y"GOSUB 1000
13:DIM NA\$(1)*32, BD \$(1)*36:BD\$(1)="-------------------------
19:REM VIEW LAST POINT
20:"V":IF P\$="Y" GOSUB 1005: GOTO 100
21:WAIT WA:PRINT "View last poi nt...":GOSUB 6 00:WAIT 0: CURSOR 0:PRINT "X=";LX:CURSOR 10:WAIT :PRINT "Y=";LY
22:GOSUB 600:WAIT :PRINT "n = "; R(6):GOTO 100
29:REM FIND BEST FIT
30: "B": IF P\$="Y" GOSUB 1010
31:WAIT WA:PRINT "Finding best fit...":MR=0:M I=0:K=0
32:ON ERROR GOTO 750:GOTO 311
39:REM FIT A CUR VE
40:"F":WAIT WA: PRINT "Fit any curve...": GOSUB 610: INPUT "Enter c urve..."; $1:$ GOSUB 630+1
41:IF P\$="Y"GOSUB 1015:GOSUB 104 0
42:GOSUB 610:WAIT $0:$ PRINT NA\$(1)
43: K=1:L=1:GOTO । * $10+300$

49:REM FIND Y-VA LUES

50:"S":WAIT WA:
PRINT "Solve f or Y...":GOSUB 620:INPUR "Ent er curve numbe r..."; I:L=1:K= 2

51 :GOSUB 630+1:
GOSUB 620:WAIT WA:PRINT NA\$: IF P\$="Y"GOSUB 1020:GOSUB 104 0
52:GOTO 301+10*|
53:GOSUB 620: INPUT "X = "; X :GOTO 303+1*10
55:L=0:IF P\$="Y" GOSUB 1050: GOTO 53
56:GOSUB 620:WAIT :PRINT "Y = "; Y:GOTO 53
59:REM DISPLAY F UNCT IONS
60: "L": IF P\$="Y" GOSUB 1030: GOTO 65
61:BEEP 1:WAIT WA :PRINT "List f unctions..."
62:FOR L=1TO 8: GOSUB 660+L: WAIT :PRINT NA \$(1)
63:NEXT L
64:GOTO 999
65:FOR L=1TO 8: GOSUB 660+L:LF 1:GOSUB 1040 66: NEXT L
67:LF 1:LPRINT BD \$(1):LF 2:GOTO 999
69: REM DISPLAY C URVES
70:"M":IF P\$="Y" GOSUB 1035: GOTO 75
71:FOR L=1TO 19: GOSUB 630+L: WAIT : PRINT NA \$(1)
72:NEXT L
73:GOTO 999
75:FOR L=1TO 19: GOSUB 630+L: GOSUB 1040
76: NEXT L
77:LPRINT BD\$(1): LF 2
78:GOTO 999
79:REM DELETE PO INTS
80:"D":C=-1:WAIT WA:PRINT "Dele te points...": GOSUB 601:GOTO 100
89:REM ADD POINT

90:"A":C=1:WAIT W A:PRINT "Add p oints...": GOSUB 601
99:REM REGISTERS
100: INPUT "X = "; X :CURSOR 11:
INPUT "Y = "; Y
101: IF $X=0$ LET $X=1 E$ -9
102: IF $Y=0$ LET $Y=1 E$ -9
103: LX=0:IF X>OLET $L X=L N X$
104:LY=0:IF $Y>0 L E T$ LY=LN Y
105: $R(1)=R(1)+C * X:$ $R(2)=R(2)+C *{ }^{*}$ $X: R(3)=R(3)+C^{*}$ $Y: R(4)=R(4)+C^{*}$ $Y * Y: R(5)=R(5)+$ C*X*Y
106: $R(6)=R(6)+C: R($ 7) $=R(7)+C / X: R($ 8) $=R(8)+C / X / X$: $R(9)=R(9)+C / Y:$ $R(10)=R(10)+C /$ Y/Y
107:R(11)=R(11)+C/ $X / Y: R(12)=R(12$) $+C * X / Y: R(13)=$ $R(13)+C * Y / X: R($ 14) $=R(14)+C^{*} X^{*}$ $X * Y$
108: R(15) $=R(15)+C^{*}$ $X * X / Y: R(16)=R($ 16) $+C * Y / X / X: R($ 17) $=R(17)+C * X^{*}$ Y*Y
109: $R(18)=R(18)+C^{*}$ $X * X * X: R(19)=R($ 19) $+C / X / X / X: R($ 20) $=R(20)+C * Y^{*}$ $Y^{*} Y$
110: $R(21)=R(21)+C^{*}$ $X * X * X * X: R(22)=$ $R(22)+C / X / X / X /$ $X: R(23)=R(23)+$ C*LX
$111: R(24)=R(24)+C^{*}$ $L X * L X: R(25)=R($ 25) $+C$ * $L X / X: R(2$ $6)=R(26)+C * L X^{*}$ X
112: $R(27)=R(27)+C^{*}$ $X * X * L X * L X: R(28$ $)=R(28)+C * Y * L X$ $: R(29)=R(29)+C$ *LX/Y
113: $\mathrm{R}(30)=R(30)+\mathrm{C}^{*}$ LX*LX/X/X:R(31) $=R(31)+L X * L X *$ $L X: R(32)=R(32)$ +C*LX^4
114: R(33) $=R(33)+C^{*}$ LY*LX/X:R(34)= $R(34)+C * L Y: R(3$ 5) $=R(35)+C * Y^{*}$ 2:R(36) $=R(36)+$ C*X*LY

115: $R(37)=R(37)+C *$ $L Y / X: R(38)=R(3$ 8) $+C * L Y * X * X: R($ 39) $=R(39)+C * L X$ *LY
116: $\mathrm{R}(40)=R(40)+C^{*}$ X*LX*LY:R(41)= $R(41)+C *$ Y*LX* $L X: Q=C: L X=X: L Y$ =Y
120:IF P\$="Y"GOSUB 1025
121:GOSUB 601:GOTO 100
299: REM CURVE-FIT ROUTINES
310:GOSUB 631:REM LINEAR
$311: A=R(2): B=R(1)$: $C=R(3): D=R(5):$ $E=R(4): I=1$
312:GOSUB 500:IF K $=10 \mathrm{R}$ K=2GOTO 5 55
313: IF K=2LET $\mathrm{Y}=\mathrm{A}+$ B*X:GOTO 55
314:IF RR>MRLET MR =RR:MI=1
320:GOSUB 632:REM RECIPROCAL
$321: A=R(2): B=R(1)$: $C=R(9): D=R(12)$: $E=R(10): I=2$
322:GOSUB 500:IF K $=10 \mathrm{~K}$ K=2GOTO 5 55
323: IF K=2LET $Y=1 /$ $(A+B * X)$:GOTO 5 5
324:IF RR>MRLET MR =RR:MI=1
330:GOSUB 633:REM LIN-HYPERBOLI C
$331: A=R(1): B=R(7)$: $C=R(6): D=R(3):$ $E=R(4): F=R(5):$ $G=R(13): H=R(8)$: $J=R(2): I=3$
332:GOSUB 520:IF K $=10 \mathrm{RK} \mathrm{K}=2 \mathrm{GOTO} 5$ 50
333: IF K=2LET Y=A+ $B * X+C / X: G O T O 5$ 5
334:IF RR>MRLET MR =RR:MI=1
340:GOSUB 634:REM HYPERBOLA
$341: A=R(8): B=R(7):$ $C=R(3): D=R(13)$: $\mathrm{E}=\mathrm{R}(4): 1=4$
342:GOSUB 500:IF K $=10 \mathrm{R}$ K=2GOTO 5 55

343: IF K=2LET $Y=A+$ B/X:GOTO 55
344:IF RR>MRLET MR =RR:MI=1
350:GOSUB 635:REM 1/HYPERBOLA

PC-1500 MULTIPLE CURVE FITTING PROGRAM

$351: A=R(8): B=R(7)$:	400:GOSUB 640:REM	442:GOSUB 520:A $=$	492:GOSUB 520:A $=$
$C=R(9): D=R(11)$	SUP. GEOM.	EXP (T8-T7*T7)	EXP (T8-T7*T7)
: $\mathrm{E}=\mathrm{R}(10): \mathrm{l}=5$	401: $A=R(27): B=R(26$	T6/4) : $\mathrm{B}=-1$ *T7/	T6/4) : $\mathrm{B}=-1$ *T7/
352:GOSUB 500:IF K) : $C=R(34): D=R($	T6/2:C=1/T6: IF	T6/2: C=1/T6: IF
$=10 R \mathrm{~K}=2 \mathrm{COTO} 5$ 55	40) : $\mathrm{E}=\mathrm{R}(35): 1=$	$\mathrm{K}=10 \mathrm{R} \quad \mathrm{K}=2 \mathrm{GOTO}$ 550	$\begin{aligned} & K=10 R \quad K=2 G O T O \\ & 550 \end{aligned}$
353: IF K=2LET Y=X/	402:GOSUB 500:A $=$	443: IF K=2LET $Y=A *$	493: IF K=2LET Y=A*
($A * X+B)$:GOTO 5	EXP A:IF K=10R	EXP ($(B-L N X)^{\wedge}$	EXP ($(X-B)^{\wedge} 2 / C$
5	$\mathrm{K}=2$ 20TO 555	2/C):GOTO 55):GOTO 55
354:IF RR>MRLET MR	403: IF K=2LET Y=A*	444: IF RR>MRLET. MR	494:IF RR>MRLET MR
=RR: $\mathrm{Ml}=1$	$\mathrm{X}^{\wedge}\left(B^{*} \mathrm{X}\right)$ GOTO 5	=RR: $\mathrm{Ml}=1$	=RR:MI=1
$\begin{aligned} & 360: \text { GOSUB } 636: \text { REM } \\ & \text { TND HYP. } \end{aligned}$	$\begin{gathered} 5 \\ 404: \text { IF RR>MRLET MR } \end{gathered}$	450:GOSUB 645:REM LOGARITHMIC	495:REM GO BACK T 0 BEST FIT
$361: A=R(7): B=R(8):$	$=R R: M I=1$	$451: A=R(24): B=R(23$	$496: L=1: K=1: I=M \mid:$
C=R(19) : $\mathrm{D}=\mathrm{R}(3)$	410:GOSUB 641:REM) : $C=R(3): D=R(2$	GOSUB 630+1: IF
: $\mathrm{E}=\mathrm{R}(4)$: $\mathrm{F}=\mathrm{R}(13$	MOD. GEOM.	8) : $\mathrm{E}=\mathrm{R}(4): \mathrm{I}=15$	P\$="Y"GOSUB 10
) :G=R(16) : $\mathrm{H}=\mathrm{R}$ (411: $A=R(30): B=R(25$	452:GOSUB 500:IF K	40:GOTO 301+10
22) : J=R(8): $1=6$) : $\mathrm{C}=\mathrm{R}(34): \mathrm{D}=\mathrm{R}($	=10R K=2GOTO 5	* 1
362:GOSUB 520:IF K	33) : $\mathrm{E}=\mathrm{R}(35): 1=$	55	497:WAIT : BEEP 3:
=10R K=2GOTO 5	11	453: IF K=2LET Y=A+	PRINT NA\$(1):
50	412:GOSUB 500:A $=$	B*LN X:GOTO 55	GOTO 301+10*I
363:IF K=2LET Y=A+	EXP A:IF K=10R	454: IF RR>MRLET MR	499:REM CALC A,B,
B/X+C/X/X:GOTO	K=2GOTO 555	=RR:MI=1	RR
55	413: IF K=2LET Y=A*	460:GOSUB 646:REM	500:GOSUB 610:T1=A
364:IF RR>MRLET MR	$X^{\wedge}(B / X):$ GOTO 5	1/LOGARITHMIC	*R(6)-B*B:T2=
=RR:MI=1	5	461: $A=R(24): B=R(23$	A*C-B*D)/T1: 73
370:GOSUB 637:REM	414:IF RR>MRLET MR) : $C=R(9): D=R(2$	$=(D * R(6)-B * C) /$
PARABOLA	=RR:MI=1	9) : $\mathrm{E}=\mathrm{R}(10): \mathrm{l}=1$	T1
371 : $A=R(1): B=R(2): ~$	420:GOSUB 642:REM	6	501: $A=C * C / R(6): R R=$
$\mathrm{C}=\mathrm{R}(18): \mathrm{D}=\mathrm{R}(3)$	HOERL	462:GOSUB 500:IF K	(T2*C+T3*D-A)/
: $\mathrm{E}=\mathrm{R}(4)$: $\mathrm{F}=\mathrm{R}(5)$	$421: A=R(1): B=R(23)$	=10R K=2GOTO 5	(E-A) :F=2:A T2
:G=R(14) : $\mathrm{H}=\mathrm{R}(2$: $\mathrm{C}=\mathrm{R}(26): \mathrm{D}=\mathrm{R}(3$	55	: $\mathrm{B}=\mathrm{T3}: \mathrm{D}=1:$ GOTO
1): $\mathrm{J}=\mathrm{R}(2): 1=7$	4) : $\mathrm{E}=\mathrm{R}(35): \mathrm{F}=\mathrm{R}$	463: IF K=2LET Y=1/	525
372:GOSUB 520:IF K	(36):G=R(39): H	$(A+B * L N X)$:	519:REM CALC A,B,
= 10R K=2GOTO 5	$=R(24): J=R(2):$	GOTO 55	C, RR
50	$\mathrm{I}=12$	464: IF RR>MRLET MR	520:GOSUB 610:T1=J
373: IF K=2LET Y=A +	422:GOSUB 520:A $=$	=RR:MI $=1$	*R(6)-A*A:T2=G
$B * X+C * X * X: G O T O$	EXP $A: B=E X P$ B:	470:GOSUB 647:REM	*R(6)-D*B:T3 $=C$
55	IF $K=10 \mathrm{R} K=2$	MOD. POWER	*R(6)-A*B:T4 $=F$
374:IF RR>MRLET MR	GOTO 550	471: $A=R(2): B=R(1)$:	*R(6)-A *
=RR:MI=1	423: IF K=2LET Y=A*	$C=R(34): D=R(36$	$521: T 5=H * R(6)-B * B:$
380:GOSUB 638:REM	B^ $\chi^{*} X^{\wedge}$ C:GOTO 5): $\mathrm{E}=\mathrm{R}(35): 1=17$	T6 $=(T 1 * T 2-T 3 * T$
CAUCHY	5	472:GOSUB 500:A $=$	4) $/(T 1 * T 5-T 3 * T$
$381: A=R(1): B=R(2):$	424:IF RR>MRLET MR	EXP $A: B=E X P B$:	3) : $T 7=(T 4-T 3 * T$
C=R(18) : $D=R(9)$	=RR:MI=1	IF $\mathrm{K}=10 \mathrm{R} \mathrm{K}=2$	6)/T1
: $\mathrm{E}=\mathrm{R}(10): \mathrm{F}=\mathrm{R}(1$	430:GOSUB 643:REM	GOTO 555	522: T = ($\mathrm{D}-\mathrm{T7}$ * $\mathrm{A}-\mathrm{T6}$ *
2) $: G=R(15): H=R$	MOD. HOERL	473: IF K=2LET Y=A*	B) $/ R(6): A=T 8: B$
(21): $J=R(2): 1=$	431: $A=R(7): B=R(23)$	$B^{\wedge} \mathrm{X}$:GOTO 55	= T7: C=T6:H=D*D
8	: $\mathrm{C}=\mathrm{R}(25): \mathrm{D}=\mathrm{R}(3$	474:IF RR>MRLET MR	/R(6)
382:GOSUB 520:A T6	4): $\mathrm{E}=\mathrm{R}(35): \mathrm{F}=\mathrm{R}$	=RR: $\mathrm{MI}=1$	$523: R R=(A * D+B * F+C *$
: $B=T 7 / T 6 / 2: C=T$	(37):G=R(39): H	480:GOSUB 648:REM	G-H)/(E-H) : F=3
8-T7*T7/T6/4:	=R(24) : J=R(8) :	ROOT	: D=0
IF K=10R K=2	$\mathrm{I}=13$	481: $A=R(8): B=R(7)$:	524:REM CALC CORR
GOTO 550	432:GOSUB 520: $\mathrm{A}=$	$\mathrm{C}=\mathrm{R}(34): \mathrm{D}=\mathrm{R}(37$	ECTED RR
383: IF K=2LET Y=1/	EXP $A: B=E X P$ B:): $E=R(35): 1=18$	525: RR=1-((1-RR)* (
$\left(A^{*}(X+B) \wedge 2+C\right):$	IF $K=10 \mathrm{R} K=2$	482:GOSUB 500: $\mathrm{A}=$	$R(6)-1) /(R(6)-$
GOTO 55	GOTO 550	EXP $A: B=E X P$ B:	F)) : IF RR<OLET
384:IF RR>MRLET MR	433: IF K=2LET Y=A*	IF K=10R K=2	$\mathrm{RR}=0$
=RR: $\mathrm{Ml}=1$	$B^{\wedge}(1 / X) * X^{\wedge} C$:	GOTO 555	527:RETURN
390:GOSUB 639:REM	GOTO 55	483: IF K=2LET Y=A*	549:REM DISPLAY A
POWER	434:IF RR>MR LET MR	B^ (1/X): GOTO 5	,B,C,RR
$391: A=R(24): B=R(23$	$=R R: M I=1$	5	550:D=0:GOTO 557
) : $C=R(34): D=R($	440:GOSUB 644:REM	484: IF RR>MRLET MR	555: $\mathrm{D}=1$
39) : $\mathrm{E}=\mathrm{R}(35): 1=$	LOG NORMAL	=RR: $\mathrm{MI}=1$	557: IF P\$="Y"GOSUB
9	441 : $A=R(23): B=R(24$	490:GOSUB 649:REM	1045:GOTO 561
392:GOSUB 500: $\mathrm{A}=$) : $\mathrm{C}=\mathrm{R}(31): \mathrm{D}=\mathrm{R}($	NORMAL	558:BEEP 2:GOSUB 6
EXP A:IF K=10R	34): $\mathrm{E}=\mathrm{R}(35): \mathrm{F}=$	491: $A=R(1): B=R(2)$:	10:WAIT :PRINT
K=2GOTO 555	$\mathrm{R}(39): G=R(41)$:	$\mathrm{C}=\mathrm{R}(18): \mathrm{D}=\mathrm{R}(34$	"a = "; A:GOSUB
$393 \text { : IF K=2LET } Y=A *$	$H=R(32): J=R(24$) : $\mathrm{E}=\mathrm{R}(35): \mathrm{F}=\mathrm{R}($	610:WAIT :
$\text { X^B:GOTO } 55$) : $1=14$	36): $\mathrm{G}=\mathrm{R}(38): \mathrm{H}=$	PRINT "b = "; ${ }^{\text {c }}$
394:IF RR>MRLET MR		$R(21): J=R(2): 1$	559:IF D=0GOSUB 61
=RR:MI=1		$=19$	$0:$ WAIT :PRINT
			"c = "; C

560:GOSUB 610;WAIT :PRINT "RR = " ;RR	636:NA\$(1)="6. 2nd Нур $y=a+b / x+c$ *x^2": RETURN	$665:$ NA $\$(1)=$ " < DEF $>$ B - Find best fit ":RETURN	1026: IF C=1COLOR $0:$ LPRINT " +)";TAB 10;LX
561: IF K=2GOTO 53	637:NA\$(1)="7. Par	666:NA\$(1)="<DEF>	;TAB 20;LY;
562:GOTO 999	abola $y=a+b x+c$	S - Solve for	TAB 32;R(6):
599:REM DISPLAY P	x^2":RETURN	Y': RETURN	RETURN
ROMPTS	638:NA\$(1)="8. Cau	667:NA\$(1)="<DEF>	1027: IF C=-1COLOR
600 : C=Q	chy $y=1 /(a) x+b$	M - Curve menu	3:LPRINT "(-
601:CLS :GCURSOR 1	$\left.)^{\wedge} 2+c\right) ":$ RETURN	": RETURN)";TAB 10;LX
38:WAIT 0	639:NA\$(1)="9. Pow	668:NA\$(1)="<DEF>	;TAB 20;LY;
602: IF C=1GPRINT "	er $\mathrm{y}=a \mathrm{x}^{\wedge} \mathrm{b}^{\prime \prime}$:	L - Function m	TAB 32;R(6):
0814224101456 D	RETURN	enu ":RETURN	RETURN
55450111391101	$640: N A \$(1)=" 10 . \mathrm{Su}$	750:BEEP 5:WAIT WA	1030:COLOR 2:LF 2
49556341"	p.Geom. $\mathrm{y}=\mathrm{ax}$ ^(:PRINT "CALCUL	:LPRINT BD\$(
603: IF C=-1GPRINT	bx)":RETURN	ATION ERROR!!!	1):LPRINT "
"0814224101456	641 :NA\$(1)="11. Mo	"	MULTIPLE
D5545011111110	d.Geom. $\mathrm{y}=\mathrm{ax}{ }^{\wedge}($	751:GOSUB 610:	URVE FITTING
149556341"	b/x)":RETURN	INPUT "Restart	PROGRAM"
604:CURSOR 0:	642:NA\$(1)="12. Ho	© curve\#...";	1031:LPRINT TAB 1
RETURN	erl $y=a b^{\wedge} \times{ }^{\wedge}$	I:GOTO 300+1*1	2;"Function
610:CLS :GCURSOR 1	$c ": R E T U R N$	0	menu":LPRINT
17:WAIT 0	$643: N A \$(1)=$ "13. Mo	999:END	BD\$(1) :
611:GPRINT "416355	d. Hoerl $y=a b^{\wedge}($	1000:TEXT :COLOR	RETURN
49C17D15150501	$1 / \mathrm{x}) \mathrm{x}^{\wedge} \mathrm{c}$ ":	1:CSIZE 1:LF	1035:COLOR 2:LF 2
7D0105057D0505	RETURN	2:LPRINT "A/	:LPRINT BD\$(
41221408"	644:NA\$(1)="14. LN	D";TAB 10;"	1):LPRINT "
612:CURSOR 23:WAIT	$y=a e^{\wedge}((b-\ln x)$		MULTIPLE C
$0:$ PRINT I:	*2/c)":RETURN	Y";TAB 32;"	URVE FITTING
CURSOR 0:	645:NA\$(1)="15. Lo	n"	PROGRAM"
RETURN	garithm $\mathrm{y}=\mathrm{a}+\mathrm{bl}$	1001:LPRINT "==="	1036:LPRINT TAB 1
620:CLS :GCURSOR 1	$n \times 1$:RETURN	;TAB 10;"===	3;"Curve men
11:WAIT 0	646:NA\$(1)="16. $1 /$	";TAB 20;"==	u":LPRINT BD
$621:$ GPRINT "416355	Log $y=1 /(a+b \mid n$	=";TAB 32;"=	\$(1):RETURN
49017D25251901	x)": RETURN	==":RETURN	1040:LPRINT NA\$(1
7D414101394545	$647: N A \$(1)=117 . \mathrm{Mo}$	1005:LF 2:LPRINT): RETURN
39010570050141	d. Power $\mathrm{y}=\mathrm{ab}^{\wedge}$	"Last point	1045: IF L=ORETURN
221408"	$\times \mathrm{x}$:RETURN	entered/dele	1046:LPRINT BD\$(1
622:CURSOR 23:WAIT	648:NA\$(1)="18. Ro	ted...":) : LPRINT
$0:$ PRINT I:	ot $y=a b^{\wedge}(1 / x) "$	GOSUB 1025:	$a=1 ; A$:
CURSOR 0:	: RETURN	RETURN	LPRINT " b
RETURN	649:NA\$(1)="19. No	1010:LF 2:COLOR 2	= "; ${ }^{\text {B }}$
630:REM CURVE NAM	rmal $y=a e^{\wedge}((x-$:LPRINT "Bes	1047:IF D=OLPRINT
ES	b)^2/c)":	t-fit curve	" $c=$ "; C
631:NA\$(1)="1. Lin	RETURN	is...":	1048:LF 1:LPRINT
ear $y=a+b x$ ":	660:REM FUNCTION	RETURN	" RR = "; RR:
RETURN	NAMES	1015:LF 2:COLOR 2	LF 1:LPRINT
632:NA\$(1)="2. 1/L	661:NA\$(1)="<DEF>	:LPRINT "Fit	BD\$(1):LF 2:
inear $\mathrm{y}=1 / \mathrm{l} a+\mathrm{b}$	C - Clear \& re	ting...":	RETURN
x)":RETURN	set ":RETURN	RETURN	1050:LPRINT "X =
633:NA\$(1)="3. Lin	662:NA\$(1)="<DEF>	1020:LF 2:COLOR 2	";X;TAB 15;"
-Hyp y=a+bx+c/	A - Add data p	:LPRINT "Fin	$Y=7$; Y :
$\times \mathrm{\prime}$:RETURN	oints ":RETURN	ding y-value	RETURN
634:NA\$(1)="4. Hyp	663:NA\$(1)="<DEF>	s for...":	
erbola $y=a+b / x$	D - Delete poi	RETURN	
":RETURN	nts ":RETURN	1025: C=Q	
635:NA\$(1)="5. $1 / \mathrm{H}$	664:NA\$(1)="<DEF>		
$y p \mathrm{y}=\mathrm{x} /(\mathrm{ax}+\mathrm{b})$ "	F - Fit a curv		
:RETURN	e ":RETURN		

Note the difference between the letters " 1 " and " 0 " and the numbers " 1 " and " 0 " when entering this program.

Modifying the Program

This program requires approximately 8,500 bytes of memory plus an additional 400 bytes for the date file created by the program. Thus the $8 k$ RAM extension module is a necessity. The register numbers used are identical to those for the HP-75C on page H-3.

A11 plotter commands are located in subroutines beginning at line 1000 . If you don't have the plotter or don't wish to use it, you can either answer N when prompted by the CLEAR function, or you can eliminate these routines and their calls from the program altogether for a savings of about 1,100 bytes. In any case, these statements are disabled whenever the PC is disconnected from the plotter.

The PC preserves all programs and data in memory even while the power is off. In fact, the PC can even shut itself off while waiting for an input and will resume waiting at the same step when you turn it back on. You can also interrogate the $P C$ for the value of any variable while in RUN mode simply by typing its name and pressing ENTER. This is a useful feature for debugging purposes.

Program statements unique to extended Pocket Computer BASIC include:
WAIT n - sets the display hold time to ' n ' ticks. Without an argument, it indicates that the display is to be held until ENTER is pressed.

CURSOR n - positions the cursor to the nth (0 to 25) position in the LCD disp1ay.

GPRINT (string), GCURSOR n - any of the 155 columns of the LCD dot-matrix display may be independently turned on. GCURSOR n positions the display graphic cursor at one of the columns, and GPRINT (string) turns on the dot pattern specified by the string.

BEEP n - produces n beeps from the internal beeper.

COLOR n - changes the pen color of the plotter (0-b1ack, 1-blue, 2-green, 3-red).

CSIZE n - selects one of the nine plotter character sizes.

REFERENCES

ARKIN, H. and R.R. COLTON. Statistical Methods, 5th Edition. New York: Barnes and Noble Co11ege Out1ine Series, 1970.

BROWNLEE, K.A. Statistical Theory and Methodology in Science and Engineering, 2nd Edition. New York: John Wiley and Sons, Inc., 1965.

DAGEN, H. Multiple Regression. ARINC Research Technical Perspective No. 12. Annapolis Maryland: ARINC Research Corp, March 1974.

DANIEL, C. and F.S. WOOD. Fitting Equations to Data. New York: John Wiley and Sons, 1981.

DRAPER, N.R. and H. SMITH. Applied Regression Analysis, 2nd Edition. New York: John Wiley and Sons, 1981.

DYNACOMP, INC. Regression I. New York: Dynacomp, Inc.
FERGUSON, G.A. Statistical Analysis in Psychology and Education, 3rd Edition. New York: McGraw-Hill Book Co., 1966.

FOGIEL, M. The Statistics Problem Solver. New York: Research and Education Association, 1978.

FRANCO, E.L. and A.R. SIMONS. LIN-EXP Curve Fitting in Biological Sciences. Santa Ana, California: PPC Ca1culator Journa1, V9N7, October/November, 1982.

GENERAL ELECTRIC COMPANY. Statistical Analysis System User's Guide, Revision C. Rockville, Maryland: General Electric Company, Information Services Business Division, 1975

HINES, W.W. and D.C. MONTGOMERY. Probability and Statistics. New York: Roland Press Co., 1972.

KELLY, L.G. Handbook of Numerical Methods and Appiications. Reading, Massachusetts: Addison-Wesley Publishing Co., 1967.

LENTNER, M. E1ementary Appiied Statistics. Tarrytown-on-Hudson, New York: Bogden and Quig1ey, Inc.., 1972.

MASON, R.D. Statistical Techniques in Business and Economics, 3rd Edition. Homewood, Il1inois: Richard D. Irwin, Inc., 1974.

SHARP CORPORATION. PC-1211 Sharp Pocket Computer App1ications Manual. Osaka, Japan, 1980.

SPIEGEL, M.R. Schaum's Outline of Theory and Problems of Probability and Statistics. New York: McGraw-Hill Book Co., 1975.

SPIEGEL, M.R. Schaum's Outline of Theory and Problems of Statistics. New York: McGraw-Hill Book Co., 1961.

STEFFEN, W.W. 11 Curves-Best Fit. Santa Ana, California: PPC Calculator Journa1, V8N6, August/December 1981.

TUKEY, J.W. Exploratory Data Analysis. Reading, Massachusetts: Addison Wesley Publishing Co., 1977.

beta distribution, 72

Cauchy distribution, 10,76
circle, 87
coefficient of determination, 6
combined 1 inear hyperbolic, 32
correction exponential, 89
correlation coefficient, 6
cubic equation, 3
decomposition, 5
distributions
beta, 72
Cauchy, 10,76
gamma, 74
log-norma1, 70
normal, 68
exponential, 52
correction, 89
modified, 54

F-test, 7
family of curves, 4
gamma distribution, 74
generalized polynomial
2nd order, 83
3rd order, 85
geometric, 42,44
modified, 50
super, 48
goodness of fit, 6

Hoerl function, 64,74
modified, 66
hyperbo1a, 26
reciprocal, 30
second order, 34
through a point, 28
isotonic linear regression, 20
least squares fit, 2
learning curve, 42
1inear exponential, 62
linear hyperbolic, 32
1inear regression, $1,2,3,12,14$, 16,18,20
logarithmic, 58
reciprocal, 60
logistic, 92
log-normal distribution, 70
multiple 1 inear regression, $\mathbf{3 , 7 8 , 8 0}$
normal distribution, 9,10,68
parabola, 36
through a point, 40
through the origin, 38
Poisson, 56
polynomia1, 34,36,83,85
power, 42,48
modified, 44,46,50
reciprocal, 22
hyperbola, 30
logarithmic, 60
straight line, 22,24
regression, 1,3
root, 46,54
RR, 6
scaling, 6
second order
generalized, 83
hyperbola, 34
po1ynomia1, 36,38,40
significance, 7
straight 1 ine, 12
isotonic, 20
through a point, 16,18
through the origin, 14
substitution, 5
third order polynomial, 85
transformation, 2
variable, 1

ORDERING PROGRAMS

Multiple curve fitting programs for the HP-41C/V and HP-75C are available in prerecorded form. Postage paid prices and order numbers are:

Calculator	Medium	Order Number	Price
HP-41C/V	Cards	MCF41-CRD	MCF41-CAS
HP-41C/V	Cassette	MCF40.00	
HP-75C	Cards	Not Avai1ab1e	$\$ 12.00$
HP-75C	Cassette	MCF75-CAS	--
			$\$ 12.00$

Orders should be sent prepaid to the following address:

SYNTEC Inc.
P.O. Box 1402

Bowie, Mary1and 20716
U.S.A.

TI-59 curve fitting programs are available on prerecorded magnetic cards from Maurice Swinnen, 9213 Lanham Severn Road, Lanham, Maryland 20706, U.S.A. The price including postage is $\$ 5.00$. Payment should accompany your order.

A Public Domain BASIC program incorporating 25 of the curves in this book is available for $\$ 6.00$ from:

```
Thomas S. Cox
102 Evergreen Street
Easley, SC 29640
```

The program, along with all appropriate documentation for running the program, will be supplied on a computer disk.

Versions of the program are available for IBM and Compatible machines and for 8 -bit $C P / M$ machines. IBM version requires IBM BASIC or BASICA. The CP/M versions require either Microsoft's MBASIC or OBASIC. Note: All files are in ASCII format.

The $\$ 6.00$ charge is for persons wishing me to supply disk, and pay for shipping. For those that will supply a formatted disk and a stamped, self-addressed mailer, there is no charge. Note: If you send a disk but fail to include sufficient postage for returning the disk (Postage should be for 3 ounces) you have just lost the disk.

Note: All documentation files are on program disk and can be printed by the user at any time. A program is included on the disk to make a neat listing of the BASIC program.

ORDER BLANK
(Please Print or Type Clearly, This is your Shipping Label)
SHIP TO:

DISK FORMAT SPECIFICATION
Disk Format Required: IBM or Compatible (40 Tracks Only)

	Single or Double Sided		(Circle One)
	$160 \mathrm{k} / 320 \mathrm{k}$ or $180 \mathrm{k} / 360 \mathrm{k}$		(Circle One)
Disk Format Required:	CP/M 8-Bit Machines	(40	Tracks Only)
	Single or Double Sided		(Circle One)
	Format:		(See Below)

CP/M Formats Supported: Televideo, Morrow, Osborne, Kaypro, Zorba (Various other CP/M Formats are available. Write for info.)
\# Disks Ordered: Amount Enclosed for Disks:

All orders will be shipped by U. S. Postage, First Class Mail. Only orders to USA or CANADA will be accepted. For further information; send a Stamped, Self-Addressed Envelope.

Type of Curve	General Equation	Page
Linear	$y=a+b x$	12
Linear Through Origin	$\mathrm{y}=\mathrm{bx}$	14
Linear Through Given Point	$y=a+b x$	16
Linear Through Given Point	$y=a+b x$	18
Isotonic Linear Regression	$y=a+b x$	20
Reciprocal of Linear	$y=1 /(a+b x)$	22
Reciprocal Through Given Point	$y=1 /(a+b x)$	24
Hyperbola	$y=a+b / x$	26
Hyperbola Through Given Point	$y=a+b / x$	28
Reciprocal of Hyperbola	$y=x /(a x+b)$	30
Linear-Hyperbolic	$y=a+b x+c / x$	32
Second Order Hyperbola	$y=a+b / x+c / x^{2}$	34
Parabola	$y=a+b x+c x^{2}$	36
Parabola Through Origin	$y=a x+b x^{2}$	38
Parabola Through Given Point	$y=a+b x+c x^{2}$	40
Power	$y=a x^{\text {b }}$	42
Modified Power	$y=a b^{x}$	44
Root	$y=a b^{1 / x}$	46
Super Geometric	$y=a x^{b x}$	48
Modified Geometric	$y=a x^{\text {b/x }}$	50
Exponential	$y=a e^{b x}$	52
Modified Exponential	$y=a e^{b / x}$	54
Poisson	$y=a b^{\mathbf{x}} / \mathrm{x}$!	56
Logarithmic	$y=a+b 1 n x$	58
Reciprocal of Logarithmic	$y=1 /(a+b 1 n x)$	60
Linear-Exponential	$y=a x / b^{x}$	62
Hoerl Function	$y=a b^{\text {x }}{ }^{\text {c }}$	64
Modified Hoerl Function	$y=a b^{1 / x_{x}}{ }^{\text {c }}$	66
Normal Distribution	$y=a e^{(x-b)^{2} / c}$	68
Log-Normal Distribution	$y=a e^{(b-\ln x)^{2} / c}$	70
Beta Distribution	$y=a x^{b}(1-x){ }^{\text {c }}$	72
Gamma Distribution	$y=a e^{x / b}(x / b)^{c}$	74
Cauchy Distribution	$y=1 /\left[a(x+b)^{2}+c\right]$	76
Two Variable Multiple Linear	$z=a+b x+c y$	78
Three Variable Multiple Linear	$\mathbf{t}=\mathrm{a}+\mathrm{bx}+\mathrm{cy}+\mathrm{dz}$	80
2nd Order Polynomial	$y=a x^{\mathbf{r}}+\mathbf{b x}$	83
3rd Order Polynomial	$y=a x^{\mathbf{r}}+b x^{s}+c x^{t}$	85
Circle	$\mathbf{r}^{2}=(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}$	87
Correction Exponential	$y=a+b c^{\text {x }}$	89
Logistic Curve	$y=a /\left(1+b c^{x}\right)$	92

CURVE FITTING FOR PROGRAMMABLE CALCULATORS

Everyday questions relating to our interests and our professions can often be answered simply and precisely by curve fitting. For example:
--If your diet averages 1750 calories a day, how much will you weigh in 90 days? (See page 52.*)
--If your microwave oven takes four and a half minutes to bake one potato, how long will it take to bake five potatoes? (See page 12.)
--How much time is left on your video (or cassette) tape when the counter reads 790? (See page 38.)
--How much antifreeze should you add to your radiator for protection down to -20 degrees F? (See page 36.)
--How much aspirin remains in your blood if you consumed one gram 12 hours ago? (See page 62.)
--What is the distribution of insects per plant after treatment with a new insecticide? (See page 56.)
--What is the estimated U.S. grain production for the next three years? (See page 92.)

With a few measurements and a scientific calculator, anyone can answer these and many similar questions using this book. Inside are forty of the most useful curves presented in an easy to use format that will help you discover fascinating relationships in the information that surrounds us.

Users in all fields will appreciate the clear, well organized style as well as ready-to-use programs for seven popular calculators and small computers. These programs automatically fit up to 19 different curves, select the best one and produce estimates for new points.

The introduction, appendixes and curves themselves provide the reader with 1) useful ideas for dealing with unusual problems, 2) ways to adapt the models presented to new situations, 3) techniques for developing custom models, and 4) suggestions for programming other calculators and computers.

* Subtract your average daily caloric intake divided by 15 from all weight measurements then add it back after fitting the curve.

ISBN: 0-943494-02-8

