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There are other sources of calculator programs
that carry out some of the statistical analyses de-
tailed here. But none of the usual “statistical
packages” was designed specifically for engi-
neering problems, and none of them offers you—
as this one does—

e programs that not only carry out statistical
analyses but also calculate associated proba-
bilities

e explanations of the particular functions em-
ployed

e programs in both RPN and AOS languages

In other words, this is no mere “cookbook.” It is,
rather, an all-round guide that enables you to calcu-
late all statistical parameters and corresponding
probabilities without reference to math tables. It
provides enough theory and explanation to enable
you to modify programs and solutions without refer-
ring to any other source. And because each pro-
gram calculates the probability associated with the
calculation, there is no need to refer to probability
tables.

Armed with this unique guide you don't have to be
a math expert to have your own statistical programs
and to be in control of the size of the risks and the
magnitude of the errors in your conclusions.

Each chapter deals with a different type of statisti-
cal procedure and provides: an explanation of the
underlying probability function . . . a discussion of
its application to engineering data . . . an outline of
the types of problems to which it applies . . . and
examples from typical engineering problems for
each program.

In addition, programs are presented in detail with a
line by line explanation as well as logic flow dia-
grams. And each is illustrated by one or more ex-
amples in both RPN and AOS languages—examples
that you can use to check the accuracy of the pro-
grams in your calculator.
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INTRODUCTION

1.1 OBJECT

The object of this book is to present those methods of statistics that will be helpful
to the engineer in the analysis of experimental data. The statistical methods are
presented from an applications point of view without detailed theoretical develop-
ment. Sufficient theory is included so that the application may be understood.

The application of statistics usually involves reference to tables of statistical
functions. In this book emphasis is placed on the solution of statistical problems
by means of small, programmable calculators. Programs for the statistical functions
and for the statistical analysis of data are given. Although reference to statistical
tables is made, programs for the generation of all the tables required are given
and once these programs are available on magnetic cards no reference to tables
is required.

Programs are presented in detail so they may be run by any engineer familiar
with the calculator. All programs and calculator references are given for both
the Hewlett-Packard (HP) and the Texas Instruments (TI) calculators. Whenever
it is practical, the same symbols and program steps are used in both types of
programs so that the translation from one to the other is simplified. Adequate
explanations and flow diagrams of the programs are given so that the programs
can be used in larger computer systems if the engineer desires to do so.

All examples in the text are given for both types of calculators when there is
any difference in data input or program performance. All examples show the actual
running time of the calculator in the form (HP/TI), with the time in seconds.
These times do not include the time of data input. The calculator times are given
not only to show the short time required for most of the calculations, but also
to indicate when the calculator time may be longer than usual, e.g., when a number
of iterations is required for a solution. The longer times are indicated so that the
user does not terminate the program under the impression that it has gone into
an endless loop.
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All programs terminate with a clearing of all program flags so that repeated
calculations can be made without error from residual values. However, if programs
are interrupted before termination, the calculator may not be clear for further
calculation. And if the programs are run immediately following other calculator
operations, there may be interference from prior flag settings. To ensure correct
operation, all flags should be cleared either before the first operation of the program
or for operation after an interruption. KEY RST in the Texas Instruments calculator
or the CLEAR FLAG 0, 1, 2 operation in the Hewlett-Packard calculator will
provide for correct operation.

It is suggested that all programs be tested with examples from the text the
first time they are run before they are used with experimental data. Such testing
will not only ensure that the program has been copied correctly, but will also
give the operator an idea of the calculator running time.

References to program steps are given in upper-case type: KEY A, STO B
(store in register B), etc.

STATISTICAL METHODOLOGY

The statistical methods discussed in this book are those in which data are observed
and compared with some probability distribution so that statements with mathemat-
ically defined confidence may be made about the results. For example, an engineer
makes several determinations of a process yield. There is a small amount of variation
among the results and it would be useful to state with 95% certainty, or with
99% certainty, where the true yield lies (Sec. 4.3).

There are two types of quantitative data: measurements and counts. The measure-
ments usually form a continuous variable with the continuity limited only by the
precision of the measurements. The counted data are in discrete intervals. Different
probability functions are used for these different types of data (Secs. 3.2, 3.5,
and 3.9).

Two aspects of experimental results are subject to statistical analysis: the mean,
some central tendency of the data; and the variation, the difference among results.
Methods are provided for testing hypotheses about the mean: Is the mean such
and such (Sec. 4.2)? Is there a difference between means from two sources (Sec.
4.2)? Where does the true mean lie (Sec. 4.3)?

Methods are also provided for dealing with questions about the variation of
data. Does one set of measurements vary more than another set (Sec. 6.4)? Is
the variation more than could be attributable to experimental error (Sec. 6.8)? Is
the variation associated with changes in temperature, pressure, flow rate, etc. (Sec.
6.9)?

Another statistical relation discussed is that between two variables. How is
one variable related to another (Sec. 7.2)? What is the best curve to draw through
some data (Sec. 7.4)?

In all cases hand-calculator programs are presented both to process the data
for making the necessary statistical calculations and to provide the probability
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associated with the calculated results. Programs for all the statistical functions
are given in the text so that no reference to statistical tables is necessary.

CALCULATOR PROGRAMS

The calculator programs are written for both the Hewlett-Packard HP-97 and
for the Texas Instruments TI-59, and they are in a form suitable to be copied
directly into the calculator or stored on magnetic cards. The actual program listings
and line-by-line descriptions are given in the Appendix. A logic diagram for each
program is given as it is presented in the text so that the programs may be translated
into any other language suitable for use in another type of calculator.

The programs as presented for the HP-97 will run equally well in the Hewlett-
Packard models HP-67 and HP-41C. The programs given for the TI-59 will run
equally well in the TI-58.

This book is not intended to give instruction in calculator programming, but
some suggestions for modification or expansion are included with some of the
programs. Some of the programs might be written in a more simple format, but
in the presentation of a series of programs to do several similar tasks, it was
considered better to keep the format uniform with respect to data entry, program
operation, and output of results. Each program is complete and operable as pre-
sented, and several of the programs have subroutines for statistical function calcula-
tions that can be used either separately or in conjunction with other programs.
These subroutines are sufficiently identified so that they can be used as separate
programs.

Several relatively short programs may be stored with others on the same magnetic
card. If this is done, it may be necessary to relabel the programs and any subroutines
present to distinguish clearly between the programs stored on the same magnetic
cards.

All the examples in the text are given for both the Hewlett-Packard programs
and for the Texas Instruments programs. All of the programs are written for
calculators with printing facility. The programs will run equally well in calculators
without printing facility, but some modification is required to have the program
stop or pause long enough for the results to be written. The changes are pointed
out in the Appendix where the programs are discussed in detail.

Some of the calculator programs presented may be similar to those available
from other sources. The solutions to statistical problems are presented in many
texts and the programming of these solutions is fairly straightforward. However,
all of the programs in this book were written specifically for this text.






STATISTICAL
PARAMETERS

2.1 MEASURES OF CENTRAL TENDENCY

It is the general practice to use one number to describe a process or technique.
The octane number is 92; the carbon content is 15 ppm; the gas mileage is 16.2
mi/gal. When the single number is a result of some experimental data it is also
important to give some indication of how much variation there is in the data.
The American Society for Testing and Materials (ASTM) recommends** presenting
as a minimum the mean, the standard deviation, and the number of observations.
The mean is a measure of the central tendency. The standard deviation is a measure
of the variation.

The single value most often used to report some data or process is the mean,
the arithmetic mean. This number is intended to show the value around which
all of the data cluster. There are other measures of the central tendency of the
data and a number of these are listed in Table 2.1.

This book deals principally with the arithmetic mean, referred to in most cases
simply as “the mean.” It is not always the most suitable measure, however, and
examples illustrating where one of the other measures is preferable are given in
the sections that follow.

Table 2.1 Measures of Central Tendency

Arithmetic mean
Geometric mean
Harmonic mean
Weighted mean
Median

Mode

Midrange

* All references are listed after the Appendix.
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The Arithmetic Mean

The arithmetic mean is the sum of all the data (2x;) divided by the number of

observations (n):

2x
n

x= .1

The arithmetic mean is the most commonly reported measure of central tendency.
It is relatively easy to calculate and its calculation includes all of the data. Most
programmable calculators have a single key that both sums and counts the data
and a second key that carries out the division to give the mean. In fact, the key
that sums and counts the data will sum two sets of data entered at the same
time so that the arithmetic mean of two sets of data may be obtained by just
entering the data with the proper key.

One very important characteristic of the arithmetic mean is that its distribution
tends toward a normal distribution. The larger the value of n the closer is the
approximation of the distribution of the means toward the normal. The significance
of this fact is that means of samples taken from any type of distribution (with
minor restraints) will approach the normal distribution, and the statistical functions,
which are discussed in the following chapters, can be used with confidence even
when the distribution of the population from which the samples are taken is not
known.

The Geometric Mean

The geometric mean is the nth root of the product of n observations:
Xe=~/X1 " Xg " Xn (2.2)

The logarithm of the geometric mean tends to be normally distributed inasmuch
as the log of x¢ is the arithmetic mean of the logarithms of the variable values:

log (xg) = X log (x;)/n 2.3)

and the transformation to log functions is sometimes employed when there is a
wide range of the variable values.

With growth data, if the mean calculation is made to find one value that best
represents all of the data, the geometric mean rather than the arithmetic mean
should be used. This application occurs more frequently with business data than
with engineering data. A simple illustration is with interest rates. If interest rates
vary at regular intervals, the geometric mean, rather than the arithmetic mean,
will give the correct average rate. See Example 2.4.1.

The Harmonic Mean

The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals
of the data:
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_ 1
TS (1/x)/n 24

The harmonic mean is used with rate data under certain conditions. If the
average gasoline mileage is to be determined and in three test runs of 150 mi
each a car gets 15, 17, and 19 mi/gal, what is the average mileage? If the test
runs were made with fixed amounts of gasoline—say 10 gal in each run—and
the same data were obtained, what would be the average mileage? In the first
case the harmonic mean is used and in the second the arithmetic mean.

The proper selection is most easily explained in terms of the dimensions of
the measurements. If the data are obtained at constant values of the variable that
is the numerator of the rate measurements, the harmonic mean is used. If the
data are at constant values of the denominator variable, the arithmetic mean is
used.

With a process tested to determine yield in pounds per hour and data taken
at regular time intervals, the arithmetic mean gives the average yield. If the data
are taken in fixed quantities of product, the harmonic mean gives the correct
average yield.

The reciprocals of harmonic means will tend toward normality since they are
the arithmetic means of the reciprocals of the data, and the means from any
distribution tend to be normally distributed.

Weighted Means

In most statistical analyses each measurement gets equal weight. There are occa-
sions, however, when some data are considered more reliable than others and
are given more weight in calculating means and other statistical parameters.

On other occasions, where there are large amounts of data, the measurements
are grouped into classes and the statistical parameters are calculated by using
the class midpoint and a weight corresponding to the number of measurements
in the class. The presentation of large amounts of data is simplified and made
easier to comprehend when the data are grouped into classes and shown as a
frequency distribution with the frequency plotted as ordinate and the class values
as abscissa. An example of a frequency distribution is given in the next chapter.

The ASTM manual on quality control suggests using between 13 and 20 classes.
When there are very large amounts of data, as with income tax returns and other
government statistics, or even with small-parts manufacture or catalyst testing,
the grouping of the results is the only practical way to present the data.

If f; is the weight or frequency of measurement x;, the weighted arithmetic
mean Xy, geometric mean Xg,, and harmonic mean Xy,, corresponding to the
three means discussed before, are:

Efixi
2fi
_ _2f;

XGy = \/xlfl cxpf2 e - xpfn (2.6)

Xow = 2.5
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Median and Mode

The median and mode are not discussed in this text beyond what is written here.
The median and mode cannot be obtained readily with a hand calculator. They
are used, however, in some statistical evaluations and it is useful to be familiar
with what they represent.

The median is the middle value when the data are arranged in numerical se-
quence. Approximately 50 percent of the observations are greater than the median
and 50 percent are less. With an odd number of observations, the median is a
unique value. With an even number, the median is the arithmetic mean of the
two middle values.

The median has particular value in life testing. Its practical advantage is that
it is not necessary to wait for all of the data before obtaining its value. In flex-
life testing of electric cable, when half the test pieces have failed the median life
is obtained. In radioactive decay, the half-life is the median time of decay of the
starting atoms.

The mode is the most frequent value. If the statistical parameter that corresponds
to most of the population is desired, the mode is needed rather than a mean. In
the social sciences it is often more desirable to know the mode—the income of
the largest group or the test score achieved by the largest number of contestants—
rather than the mean income or the mean score.

If a frequency distribution of data is symmetrical, the arithmetic mean, the
median, and the mode will coincide. If the data are not symmetrical, the median
will be between the mean and the mode. If the median and mode are less than
the mean, the distribution is skewed to the left. If the median and mode are
larger than the mean, the distribution is skewed to the right.

Midrange

The midrange is the arithmetic mean of the extreme values. The range is often
used in quality control, and the midrange is easily calculated. It is seldom used
with engineering data and is merely mentioned to complete the list. The range
and the midrange are calculated from only two values in a sample and hence
are less representative of the whole lot than the other parameters.

Log Mean

The log mean is not a statistical parameter, but is a mean used by engineers for
calculating the mean driving force for a transfer problem where the rate of transfer
is a function of the driving force and the driving force varies over the length of
the system. In heat transfer, if the rate of transfer is proportional to a temperature
difference, and the temperature difference varies over the length of the reactor in
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proportion to the heat transferred, the log mean temperature difference gives the
mean driving force. The log mean is the difference between the differences at the
ends of the system divided by the natural log of their ratio:

AT, — AT,

In (ATy/ATh) 28)

log mean AT=

In the statistical parameter program discussed later in this chapter the log

mean is calculated from the maximum and minimum values of the data input. It
is simply available in the program if the log mean is desired.

MEASURES OF DISPERSION

In addition to a measurement of the central tendency of the data, it is important
to have a measure of the dispersion or variation. It is obvious that two sets of
data could have the same mean but one set could have much more scatter, indicating
less process control. Or the scatter might be caused by variation in operating
factors.

As with means, there are several measures of dispersion. The most common
are listed in Table 2.2. The one that is most useful statistically is the standard
deviation.

The standard deviation is the square root of the variance, and the variance
will be discussed first. But a few words need to be said about the sample and
the population.

A sample is a portion of information taken from a much larger population.
The population has certain defining parameters that are usually not known: the
mean, the range, the variance, etc. Measurements are usually made on the sample
with the aim of estimating the population parameters. The measurements on the
sample are called statistics. Sometimes the population is a theoretical one and
the parameters are known by definition: a population of random numbers, for
example; or the distribution of winning numbers in a game of chance. In situations
of this latter type, the samples are tested to determine if they conform with the
defined population. Most of this text deals with problems of the first kind.

Probability theory permits the experimenter to make statements about the popu-
lation parameters from the sample statistics with calculable chance of error. This
book does not discuss probability theory, but the risks assumed in evaluating sample
measurements are discussed when the statistical tests are applied.

Table 2.2 Measures of Dispersion

Variance

Standard deviation
Coefficient of variation
Range

Mean deviation
Weighted measures
Percentiles




2.2.1

2.2.2

10 CHAPTER TWO

Variance, Population

The variance is defined as the arithmetic mean of the squares of the deviations
of all of the values from the arithmetic mean of the population. The usual symbol
for the variance is sigma square, o2

, — 2
o2 = 2K m)* 2.9)
n
The population mean is designated m to differentiate it from a sample mean which
is designated x. The value of m is usually not known and is only estimated by
the sample value Xx.
The variance is always positive, and, as is shown in Chap. 6, subject to rigorous
mathematical operation.

Standard Deviation, Population

The standard deviation is the positive square root of the variance. The mean and
the standard deviation are the only parameters required to define the distribution
of a normal population. The normal distribution is discussed in the next chapter.

Variance, Sample

The sample variance is calculated usually as an estimate of the population variance
from which the sample was taken. The population variance, as defined in Eq.
(2.9), is calculated from the sum of squares of deviation from the population mean.
The sum of squares of deviation of a set of numbers from their mean is less
than the sum of squares of deviation from any other value. Therefore the sum of
squares of deviation of sample values from the sample mean will be less than (or
at most equal to) the sum of squares of deviation from the population mean. If
Eq. (2.9) is used to calculate an estimate of the population variance from the
sample values, the sum of squares of deviation would be calculated from the sample
mean and the resulting answer would be smaller than if the sum of squares were
calculated from the population mean. To correct for this bias in the calculation
from the sample data, the sum of squares is divided by »n — 1 instead of by n.
The variance estimate, calculated from the sample, designated s2 to differentiate
it from the true variance o2, is calculated as follows:

E(x, x )?
—1

The calculation of the sum of squares of deviation from the sample mean may
be performed by calculating the mean, then squaring the difference between the
mean and each value, and obtaining the sum. There is an easier method, and it
is the one used in most calculator programs. The following equality is the basis
of the calculation:

s} (x) = (2.10)

S(x— X)2=Sx2— (Ex)2/n

=3x2—Xx- 3x @.11)
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Most programmable calculators have a single key, KEY 2+, which calculates
3x2, 2x, and n with a single entry of the data.

Standard Deviation, Sample

The standard deviation estimated from the sample is the positive square root of
the estimated variance from Eq. (2.10). If the data are entered into a programmable
calculator with KEY 2+, the calculator usually has keys labeled x and s. These
keys will give the arithmetic mean and the estimated standard deviation. If the
data entered are not a sample but are the total population, the value given by
KEY s in the calculator will have been calculated by Eq. (2.10) and must be
corrected by the factor v/(n — 1)/n to get the correct o value.

The standard deviation estimate calculated from sample data is a very important
statistic. It, together with the mean and the sample size, are specified by the ASTM
as the minimum information that should be presented with all data. The standard
deviation has the same units as the sample measurements. It is used to set confidence
limits to the mean and to compare means from two sets of data, it is used to set
quality control limits in production processes, and it has other uses that will be
mentioned further on in the text.

Coefficient of Variation

The coefficient of variation is the ratio of the standard deviation to the mean,
usually expressed as a percentage:

100 s(x)
g

o\ (2.12)

The coefficient of variation provides a measure for comparing the dispersion
of measurements having different means and different units. The coefficient of
variation is dimensionless. It is not used in any of the material in this book.

The Range

The range is the difference between the smallest and the largest values in a set
of data. It involves only two observations and is simple to determine. It is used
for comparing large numbers of small samples. It is used to a large extent in
quality control, and constants are available for estimating population standard
deviation and variance from the mean range of a number of samples.

Mean Deviation

The mean deviation is the mean absolute deviation of the sample measurements
from the sample mean:

Sixi— X
MD — 2%~ X] 2.13)

n
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The mean deviation is less sensitive to extreme values than is the standard
deviation inasmuch as the deviations are not squared. It is sometimes used in
reporting data because its value is always smaller than that of the standard deviation.
It has limited use in statistical calculations and is not used in any of the calculations
in this book.

Weighted Measures

As discussed in Sec. 2.1.4, with large quantities of data the observations are often
grouped into classes and the calculations are made by using the class means and
the class frequencies rather than all of the individual values. Equations for calculat-
ing the arithmetic mean and the variance from grouped data are given below,
where f; is the frequency or weight of the x; measurement:

P
Xw = S, (2.5)
0 2(x) = Efi(x; 2 Xw)® _ Zfixi? —sz:v © 3fixi 2.14)

Inasmuch as data are seldom grouped into classes for calculating purposes unless
there are at least 100 or more observations, the n — 1 correction for the estimated
variance calculation usually does not make a significant difference in the result.

The calculator KEY 3+ cannot be used to calculate the means and standard
deviations of weighted or grouped data.

Percentiles

Percentiles are used principally with social science data. They define where the
specified percentages of the data fall: 10 percent of the observations fall below
the 10th percentile; 90 percent of the data will lie between the 5th and the 95th
percentiles. The 25th percentile is sometimes called the first quartile, the 5Oth
percentile the second quartile, and so forth. This nomenclature is seldom used
with engineering data.

STATISTICAL PARAMETER PROGRAM

The statistical parameter program calculates all of the values in Table 2.3 for
either individual data or for weighted data.

When all the data have been entered and the calculator program has been
run, all the results in Table 2.3 are available in the machine. The program as
presented will print all the values in the order listed. However, for practical usage,
only the values desired need be printed. The modification of the program to get
specific values is explained in the next section.

The harmonic mean, using 1/x, and the geometric mean, using log (x), cannot
be obtained for zero values. The geometric mean cannot be obtained if one of
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Table 2.3 Values Obtainable with
Statistical Parameter Program

Arithmetic mean
Midrange
Geometric mean
Harmonic mean
Log mean
Estimated standard deviation
Data standard deviation
Estimated variance
Data variance
Range
Minimum value
Maximum value
3x
>x2
(Number of groups for weighted data)
Total number of data points

the values is negative. The program provides for this eventuality. If either zero
or negative values are entered, the program makes all the other calculations and
gives zero values for the means that cannot be calculated.

Discussion of Statistical Parameter Program

Figure 2.1 is a flow diagram for the statistical parameter program. A listing and
detailed description are given in the Appendix. Appendix A has the Hewlett-Pack-
ard listing and description, and Appendix B has the Texas Instruments listing
and description. In the discussions that follow, any differences between the programs
with respect to data input or other operation are pointed out in the text. When
no difference is mentioned, there is no difference.

For equally weighted data each value is entered with KEY A: x;, KEY
A, x;, KEY A, . . ., x,, KEY A. When all the data are entered, the

program is run with KEY C.

For weighted data, the weighting factor and the data value are entered
with KEY B:
With the Hewlett-Packard calculator:

fi, ENTER 1, x;, KEY B, f;, ENTER 1, x5, KEY B, . . ., fo, ENTER 1, x,, KEY B.

When all the data are entered, KEY C carries out the calculation.
With the Texas Instruments calculator:

SLKEY x= 1t x;, KEY B, o, KEY x = 1, X2, KEY B, . . ., fo, KEY X = 1, Xa,
KEY B.

KEY C starts the calculation when all the data are in.
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Figure 2.1 Flow diagram of statistical parameter program.

When weighted data are used, each x value must be preceded by a weighting
factor even if it is unity. If no weighting value is entered, the program will use
the last value that was in the calculator with the Hewlett-Packard program, or
the last value in the ¢ register with the Texas Instruments program.

At the end of the calculation, the final values are in the storage registers shown
in Table 2.4. The programs presented call for printing all of these values in the
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Table 2.4 Location of Results after Running
Statistical Parameter Program

Register

HP Tl Result

0 00 X, Arithmetic mean

1 01 Midrange

2 02 Xg, Geometric mean

3 03 xy, Harmonic mean

4 04 Log mean of two extreme values
5 05 s, Estimated standard deviation

6 06 o, Data standard deviation

7 07 s2, Estimated variance

8 08 2, Data variance

9 09 Range

A 10 Minimum value

B 11 Maximum value

C 12 3x (or 2fx)

D 13 3x2 (or £fx?)

E 14 Number of groups for weighted data
| 15 Number of data values, n (or Xf)

order listed. If only specific results are wanted, the programs can be readily modified.
In the Hewlett-Packard program the PREG (Print Register) instruction at line
155 can be replaced with statements calling the particular result desired and printing
only that. In the Texas Instruments program, the print routine starts at line 306.
Instructions calling particular results and printing these can be placed at this loca-
tion in the program. See Example 2.4.1.

If zero values are entered, the harmonic mean, the geometric mean, and the
log mean are not calculated, and the values in Registers 2, 3, and 4 will be zero.
If negative values are entered, the geometric mean and the log mean are not calcu-
lated, and the values in Registers 2 and 4 will be zero. If the data are not weighted,
the value in Register E (HP) or Register 14 (TI) will be zero.

With the first data entry the program clears all the registers so that any previous
calculations will not interfere with the results. The first entry is stored in two
registers, one for the minimum input and one for the maximum. Each subsequent
data input is compared with the values in these registers; if it is larger than the
maximum, in Register B, or 11; or if it is smaller than the previous minimum,
in Register A, or 10, a substitution is made. The minimum and maximum values
are used to calculate the log mean and the range.

If unweighted data are entered, KEY 3+ is used to accumulate £x and 3x2;
31/x and 2 log (x) are accumulated separately. If there are negative or zero
values, the last two calculations are bypassed.

With weighted data, the summations are made separately. The use of KEY B
for weighted data sets Flag O in the calculator to direct the program to the proper
summation routines.
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When all the data are entered, with unweighted data the built-in functions of
KEY xand KEY sare used to obtain the mean and the estimated standard deviation.
The data variance is obtained directly in the Texas Instruments program with a
built-in function, and from the estimated standard deviation value in the Hewlett-
Packard program.

The geometric mean and harmonic mean are calculated from Egs. (2.3) and
(2.4), taking the antilog of the result of Eq. (2.3) for the geometric mean. With
weighted data, Egs. (2.5), (2.6), (2.7), and (2.14) are used.

The program gives more information than is usually desired, but the total calcula-
tor time is less than 30 seconds (s), so there is not much to be gained by having
a smaller program.

EXAMPLES OF THE STATISTICAL PARAMETER PROGRAM

If a money market certificate pays 7.193 percent interest the first 6 months (mo),
11.237 percent the second and 10.734 percent the third, what is the average interest
over the 18 mo? For an answer the geometric mean is required, and this value is
stored in Register 2. Since none of the other values is of interest, the program
will be modified to give only the geometric mean:

HP Tl
Delete line 155 Starting at line 306 replace
Replace with: the program lines with the
following:
RCL 2 (Recall Register 2) 306 RCL (Recall )
PRTX (Print x) 307 02 (Register 02)

308 PRT (Print )
309 GTO (Goto )
310 — (Label — )

With these changes in the program, the problem is solved as follows:

1.0793, KEY A, 1.11237, KEY A, 1.10734, KEY A, KEY C. Answer: 1.09706.
(Time:6/10)

The average interest rate over the three periods is 9.706 percent. The arithmetic
mean of the three rates is 9.721, which is an incorrect answer to the problem.

In the body of the text the question was raised about the average gasoline mileage
for a car that was driven 150 mi in each of three runs and obtained 15, 17, and
19 mi/gal in the three runs. The average mileage will be the harmonic mean.
Change the program to recall storage register 3 and proceed as follows:

15, KEY A, 17, KEY A, 19, KEY A, KEY C. Answer: 16.84 mi/gal (Time:5/10)

The arithmetic mean of the three rates is obviously 17, which is too high an
answer. The geometric mean and the harmonic mean are always less than the
arithmetic mean.
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Table 2.5 Weights of Coating of 100 Sheets of Galvanized
Iron, ounces per square foot

1.467 1.603 1.577 1.563 1.437 1.337 1.543
1.623 1.603 1.577 1.393 1.350 1.637 1.473
1.520 1.383 1.323 1.647 1.5630 1.753 1.603
1.767 1.730 1.620 1.620 1.383 1.567 1.570
1.550 1.700 1.473 1.530 1.457 1.633 1.467
1.533 1.600 1.420 1.470 1.443 1.373 1.490
1.377 1.603 1.450 1.337 1.473 1.617 1.763
1.373 1.477 1.337 1.580 1.433 1.563 1.457
1.637 1.513 1.440 1.493 1.637 1.550 1.477
1.460 1.633 1.657 1.563 1.500 1.573 1.503
1.627 1.593 1.480 1.543 1.607 1.660 1.577
1.637 1.503 1.477 1.567 1.423 1.750 1.637
1.533 1.600 1.550 1.670 1.573 1.550 1.323
1.483 1.497 1.420 1.647 1.647 1.600 1.717
1.513 1.690

Table 2.6 Grouping Data from Table 2.5

Cell range Cell midpoint Number in cell
1.3000-1.3399 1.3200 5
1.3400-1.3799 1.3600 4
1.3800-1.4199 1.4000 3
1.4200-1.4599 1.4400 10
1.4600-1.4999 1.4800 15
1.5000-1.5399 1.5200 13
1.5400-1.5799 1.5600 18
1.5800-1.6199 1.6000 11
1.6200-1.6599 1.6400 11
1.6600-1.6999 1.6800 3
1.7000-1.7399 1.7200 3
1.7400-1.7799 1.7600 4

2.4.3 Table 2.5 shows some data on laboratory measurements of galvanized iron coating
weights.! The tabulated data are difficult to evaluate and they will be grouped
into classes for easier presentation. Table 2.6 shows the same data grouped into
12 classes. The smallest value in Table 2.5 is 1.323 and the largest is 1.767, giving
a range of 0.444. Each of the 12 classes of the grouped data has a width of 0.04
giving a total range of 0.480. The first class starts at 1.300, just below the smallest
value, and the last class ends at 1.780, above the largest value.

The data from Table 2.6 are run with the statistics parameter program as
follows:

5, ENTER 1, 1.32, KEY B, 4, ENTER 1, 1.36, KEY B, . . . , 4, ENTER 1, 1.76, KEY B

for the Hewlett-Packard program, or
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5 KEY x = t,1.32, KEY B, 4, KEY x =1, 1.36, KEYB, . . . , 4, KEY x = ¢, 1.76,
KEY B

for the Texas Instruments program.

With all the data entered, KEY C carries out the calculation. The output is
shown in Table 2.7. Just for comparison, the data of Table 2.5 were run without
grouping, using KEY A. These results are also given in Table 2.7.

The calculator time for both calculations was 22 to 32 s, but of course the
time to enter the data for the individual value calculation was greater than for
the grouped data. There is very little difference between the results for the two
different types of calculation, and the grouped data are easier to comprehend visu-
ally. The statistical parameter program provides for either calculation. The engineer
can make the choice.

Table 2.7 Comparison of Individual and Grouped
Data Calculations with Statistics Parameter
Program for Data in Tables 2.5 and 2.6

Individual Grouped
Arithmetic mean 1.5351 1.5356
Midrange 1.5450 1.5400
Geometric mean 1.5316 1.5320
Harmonic mean 1.5281 1.5284
Log mean 1.56343 1.5295
Estimated standard deviation 0.1038 0.1051
Data standard deviation 0.1033 0.1046
Estimated variance 0.0108 0.0111
Data variance 0.0107 0.0109
Range 0.4440 0.4400
Minimum value 1.3230 1.3200
Maximum value 1.7670 1.7600
3x (2fx) 153.508 153.5600
3x2 (2fx?) 236.7134 236.9008
Number of cells 0 12

n (f) 100 100




PROBABILITY
DISTRIBUTIONS

3.1 FREQUENCY DISTRIBUTIONS

A popular way of presenting data for visual appreciation is by means of a frequency
diagram. In a diagram of this nature the value of the observations is scaled along
the abscissa and the number of observations is shown as the ordinate. The measure-
ment of variable shown as the abscissa is often indicated in fixed intervals, and
all the observations falling within an interval are grouped together. The number
of observations for each interval or class is indicated by a line or rectangle with
length proportional to the number. An example of a frequency diagram for some
income tax return data is shown in Fig. 3.1. The ordinate is the number of returns,
in units of 10,000, and the abscissa is the amount of interest claimed as an itemized
deduction for a particular income class.

If the frequency scale is changed from the actual number of observations to
the relative frequency—dividing each value by the total number of observations—

63

52

44

27 gom 34

21 27

14

Number of returns, 10,000

o

400 800 1200 1600 2000 2400
Interest deduction, dollars

Figure 3.1 Interest deductions on income tax returns.
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Y = f(x)

Relative number of returns, Y

| | 1 | 1 1 1
400 800 1200 1600 2000 2400 2800

Interest deduction, X, dollars

Figure 3.2 Probability distribution for income tax data.

the shape is not changed, but the diagram would then be called a probability
distribution diagram. The ordinate scale would be the probability of an observation
occurring in the class indicated by the abscissa.

If it were possible to write a mathematical function that would give the relative
frequency of returns in terms of the amount of deductions as in Eq. (3.1),

Relative frequency of returns = f (Amount of interest claimed) 3.1

this would be a probability distribution function, more commonly called a probabil-
ity distribution. Such a function would be represented by a continuous curve that
smoothed out the rectangular frequency distribution figure.

Figure 3.2 shows the probability distribution function for the income tax data
of Fig. 3.1.

The fraction of the area under the curve up to any value of the abscissa represents
the probability of a return having up to that amount of interest claimed. The
fraction of the area beyond that point represents the probability of having that
much or more interest claimed. The fraction of the area under the total curve is
1.0, equal to the probability of the data falling somewhere in the range depicted.
Any continuous positive function enclosing a finite area may be regarded as a
probability function if the fraction of the area under the curve of the function
up to some value of the abscissa is taken as the probability of that value or less.

In general, a sample or samples are observed and their values are compared
with some mathematical probability distribution. If they fall in an area of low
probability, then questions are raised as to whether they came from the assumed
distribution. If the distribution of Fig. 3.2 is taken to represent the tax returns
for the $20,000 to $25,000 income group and a return from someone in that group
has an interest deduction of $400 or less, which lies in an area covering about 2
percent of the total area, the question can be raised as to whether this return is
from the general population. Of course the Internal Revenue Service would be
more interested in questioning returns with low probability from the other end
of the curve.
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3.2 NORMAL DISTRIBUTION

The normal distribution is the most frequently used probability function for the
statistical analysis of data. It represents the mathematical function obtained when
a large number of independent variables are contributing to the variation of a
single result. The normal function is defined by the equation:

1
o\ 2m

y= e~ (z-m)2/20 3.2
which produces the familiar bell-shaped curve shown in Fig. 3.3.

In Eq. (3.2) m is the mean (sometimes called the average) and is equal to the
sum of all the values divided by the number of values:

zx
m=—

(3.3)
n

where n is the number of observations.
Again, o is the standard deviation, the square root of the mean of the squares
of deviation of the individual values from the mean:

o= /@ (.4)

If a random variable x is normally distributed with mean m and a standard
deviation o, the probability of observing a value equal to or greater than X; is
the integral of Eq. (3.2) from X, to .

1 00

o\/ 2w Xo

Pr(x= X;) = e (z-m?2/20 dx 3.5)

This probability is represented by the single cross-hatched area in Fig. 3.3.
The probability of a value equal to or less than X; is equal to the integral
from — to X, represented by the double-crossed-hatched area of Fig. 3.3.

g—tx — m%/(20)

y - Frequency of x

X
x - A normally distributed variable

Figure 3.3 Normal distribution.
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The probability of a value between X; and X, is the integral from X; to Xz of
Eq. (3.2):

1 X
e (z—m2/20 Jy (3.6)
o\ 2T X1

Pr(Xl =x= Xz) =

This probability is represented by the clear area under the curve of Fig. 3.3.

The probability values associated with the normal distribution are usually ob-
tained from tables of the function. One set of values can be used for all values
of m and o if the variable x is transformed by the relation:

X—m

3.7

7=
o

If x has a normal distribution with mean m and a standard deviation o, z
will have a normal distribution with mean zero and a standard deviation equal
to 1.0. Thus any normally distributed variable may be transformed into a normal
distribution with mean zero and standard deviation 1.0 by subtracting the actual
mean and dividing by the actual standard deviation. The transformed variable is
called the standardized normal distribution; z is the standard deviate, and it is
the distribution of z that is given in normal distribution tables.

In the example cited just above, the area beyond X; in Fig. 3.3 would correspond
to the area beyond (X, — m)/o in the standardized form, and the probability
would be found in a normal table at a value of z equal to (X, — m)/o.

If the value below which 95 percent of a normally distributed result were expected
to occur was wanted, the z value corresponding to 0.05 (that is, 5 percent of the
normal area lies beyond this point) would be located in the normal table. The
corresponding x value from Eq. (3.7) would then be calculated:

Xo9s=m+ O - 205 (3.8)

If 5 percent of the area lies above 7 o5, then 95 percent lies below. The normal
distribution is symmetrical about the mean m, and only positive values are given
in tables. The value below which 5 percent of the area lies is the negative value
of the tabulated z ¢s. If it was desired to find the value of the normally distributed
variable below which 5 percent of the results would be found, the same value of
205 would be obtained from the normal table and the variable value would be
m— O ° Zos5.

Ninety percent of the observations would be in the range of m = o - 2z s.
The generally accepted nomenclature is that for a normally distributed variable,
1 — a fraction of the observations is in the range m * (Zq/2)0.

For example, if the income tax data from Fig. 3.2 were normal with a mean
of $1762 and a standard deviation of $633, and one desired to know the probability
of a deduction of $3200 or more, the z value would be calculated from Eq. (3.7)
and the probability associated with that z determined from a table of the normal
function:

z=(3200 — 1762)/633 =2.27 (3.9)
The probability value is 0.01.
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The calculator program for the normal distribution solves problems of this
type. The program is entered with the mean and the standard deviation and some
value of the variable for which the probability is desired. The program will give
either the probability of a value equal to or greater than the input value, or the
probability of a value equal or less, depending on the key used. The program
will also give the probability between two values if two values are entered.

The program can also be used in the inverse way. If along with the mean and
the standard deviation, a probability is entered, the program will calculate the
maximum or minimum value corresponding to that probability. With the income
tax data, the program would be entered with 1762 (the mean), 633 (the standard
deviation), and some probability, say 0.05. The calculator will find either the value
which was the lower boundary of the top 5 percent, or the upper boundary of
the lowest 5 percent, depending on the key used.

NORMAL PROBABILITY PROGRAM

A flow diagram for the normal program is given in Fig. 3.4, and a listing and
detailed description are given in the Appendix. Table 3.1 shows the operation of
the program.

The mean is entered, the standard deviation is entered, and then either one or
two values of the variable, or a probability value (decimal fraction). With the
Hewlett-Packard program the data are entered with the ENTER 1 key, and then,
depending on the problem to be solved, one of the program keys is activated.
With the Texas Instruments program all the data are entered with the particular
program key for the problem. The calculation starts with the last data entry.
KEY A gives the probability between two variable values. KEY C gives the probabil-
ity of an equal or greater value. KEY E gives the probability of an equal or
lesser value.

If a probability value was entered, KEY c (in the Hewlett-Packard, or C' in
the Texas Instruments) gives the variable value which is equaled or exceeded with
the input probability. KEY e (KEY E') gives the variable value that is the upper
boundary of the lower portion of the distribution that occurs with the input probabil-
ity.

When the program has been run, the input data (in the order of entry) are in
Registers A, B, C, and D in the Hewlett-Packard calculator and in Registers 1,
2, 3, and 4 in the Texas Instruments calculator for verification.

For the calculation of the probability between two values of a variable, the
order of input of the two variable values is not important. The program gives
the absolute value of the probability although it calculates the difference between
the probability of the second value subtracted from the probability of the first.

The formulas used for calculating the normal probability function values are
taken from the Handbook of Mathematical Functions.? The results from the program
are good to four significant figures, which is the accuracy in most of the published
normal tables. Greater accuracy can be obtained with the same program if some
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Figure 3.4 Flow diagram of normal probability program.
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Table 3.1 Normal Probability Program Operation

HP TI
For: Pr(x; = x = xp) Mean ENTER 1 KEY A
Standard deviation ENTER 1 KEY A
X ENTER 1t KEY A
X2 KEY A KEY A
For: Pr(=x) Mean ENTER 1 KEY C
Standard deviation ENTER 1 KEY C
X KEY C KEY C
For: Pr(=x) Mean ENTER 1t KEY E
Standard deviation ENTER 1 KEY E
X KEY E KEY E
For: x that P= Pr(=x) Mean ENTER 1 KEY C'
Standard deviation ENTER 1 KEY C'
P KEY ¢ KEY C'
For: x that P= Pr(=x) Mean ENTER 1 KEY E'
Standard deviation ENTER 1 KEY E'
P Key e KEY E'

of the constants are changed. The necessary changes are mentioned in the next
section. Calculator time for obtaining probability values is 5 to 15 s.

With an input value of mean = O and standard deviation = 1, the program
will give the values tabulated for the standardized normal function. The program
may therefore be used to interpolate for values that are not given in the commonly
available normal tables.

Normal Program Discussion

The normal probability program is actually two separate programs (except for a
common “print” statement) in both the Texas Instruments and the Hewlett-Packard
programs, and a common routine to store the input data in the Hewlett-Packard
program. The first part of the program calculates the normal probability with
input of the mean, standard deviation, and variable value. The second part calculates
the variable value with input of mean, standard deviation, and probability. Either
part could be used as a complete program and attached to some other program
that made a calculation and produced the necessary input values.

The first part, which calculates the normal probability, uses the following equa-
tions from the cited reference:

Pr(Z2) = W(2)(a,u + axu? + azu®) (3.10)

1
27
u=1/1+a - z) (3.12)

W(2) = 2212 (3.11)
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Table 3.2 Constants for Normal Probability
Calculation

Constants Program values Reference values

ao 0.3327 0.33267
a 0.4362 0.4361836
a, —0.1202 —0.1201676
a, 0.9373 0.9372980
|x—m|
z=— the absolute value of the (3.13)
o standardized input variable

where a, to a3 are numerical constants

The values of the numerical constants are given in the cited reference to seven
significant figures. Only four significant figures are used in the normal program.
If greater accuracy is desired, the additional significant figures could be added to
the program. The two sets of values are given in Table 3.2.

Equation (3.10) is Eq. (26.2.16) of the reference. For easier programming, the
equation form is modified to the following:

Pr(=2) = W(2)(u(a; + u(az + u - a3))) (3.14)

The probability = x is equal to one minus the probability = x. The program
uses Eq. (3.14) for both types of probability calculation and simply subtracts the
result from one if the = probability is called for.

The second part of the program, to calculate a variable value for a given probabil-
ity, uses Eq. (26.2.23) from the reference. This equation is:

ot wte- w?
l+c-wte-witc - w

[1
w=In P (3.16)

The values of the ¢ constants are:

Zm=w (3.15)

Co 2.515517

a 0.802853
C 0.010328
C3 1.432788
Cy 0.189269

Cs 0.001308

Pis the input probability, as a decimal fraction, and is the area under the standard-
ized normal curve beyond the value zp.
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Table 3.3 Alternative Solution
to the Normal Program

Pr=x Pr=x
Pr=05 m-—zo m+ zo
Pr=0.5 m+ zo m—zo

For calculation purposes Eq. (3.15) is rearranged in the program to the following:

_ ot wl+c - w
14+ w(cs+ w(cs + ¢5 - w))

Z=w (3.17)
After zp, the standardized value, has been calculated, it is transformed into
the dimension of the input variable by the reverse of Eq. (3.13):

xp=m+2z-0o (3.18)

The equations above give the correct answer if the input probability is less
than 0.5 and is the probability for values = x. If the input probability is greater
than 0.5, or the probability value sought is for a probability = x, a correction is
required. Table 3.3 shows the possibilities and the change in the solution.

The program keeps track of the input value of P and the probability sought
and makes the proper correction to Eq. (3.18) to obtain the correct result.

3.4 EXAMPLES OF THE NORMAL PROGRAM

3.4.1 A normal population has a mean of 395.1 and a standard deviation of 9.98. What
fraction of the population is equal to or greater than 412.5?
With the program in the calculator:

HP TI
395.1 ENTER 1 KEY C
9.98 ENTER 1 KEY C
4125 KEY C KEY C Output: 0.0406 (Time:5/7)

8.4.2 With the income tax data, what value is exceeded by only 25 percent of the returns:

HP TI
1762 ENTER 1 KEY C' The mean
633 ENTER t KEY C' Standard deviation
0.25 KEY ¢ KEY C' P value Output: 2188 (Time:9/13)

3.4.3 If a variable is normally distributed about a mean of 0.007 with a standard deviation
of 0.85, what is the probability of a value equal to or less than —0.03?
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T

HP
0.007 ENTER 1
0.85 ENTER 1
—0.03 KEY E

KEY E
KEY E
KEY E

Output: 0.4826 (Time:6/8)

3.4.4 With the same variable as in Example 3.4.3, below what value does 5 percent of

the data lie?

T

HP
0.007 ENTER 1
0.85 ENTER 1
0.05 KEY e

KEY E'
KEY E'
KEY E'

Output: —1.39 (Time:7/9)

3.4.5 For the standardized normal function, what fraction of the area under the normal

curve lies below 1.0?

HP TI
0.0 ENTER 1t KEY E The mean
1.0 ENTER 1 KEY E Standard deviation
1.0 KEY E KEY E Variable Output: 0.8414 (Time:6/9)
What fraction lies above 2.0?

HP T

0.0 ENTER 1 KEY C

1.0 ENTER 1 KEY C

2.0 KEY C KEY C Output: 0.0228 (Time:6/8)

3.4.6 A normal population has a mean of 0.745 and a standard deviation of 0.008.
What fraction of the population lies between 0.735 and 0.760?

HP Tl
0.745 ENTER 1 KEY A
0.008 ENTER 1 KEY A
0.735 ENTER 1 KEY A
0.760 KEY A KEY A Output: 0.8640 (Time:12/16)

Note: If the larger value of the variable was entered before the smaller value, the

answer is the same.
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3.5 BINOMIAL PROBABILITY DISTRIBUTION

Quantitative data are of two kinds: measured values and counted values. The
normal distribution of the previous sections applies to measured data. The normal
distribution is a continuous function and is used where the interval between measure-
ments is limited only by the accuracy of the measurements.

Counted data, on the other hand, have only discrete values. With the continuous
normal probability, the probability equal to or greater than some value (or the
probability between two values) is equal to the area under the normal curve corre-
sponding to the problem. The probability for any specific value is infinitesimal.
It is represented by the area under one point on the curve. With a discrete probability
there is a probability associated with each discrete number. The probability of
some value or a greater one is the sum of the probabilities for each possible discrete
value equal to or greater than the one in question. When the binomial probability
distribution is shown as a series of rectangles or horizontal lines, as illustrated
later in Fig. 3.5, the probability associated with a particular event is the fraction
of the area under the curve from half the distance to the previous value to half
the distance to the next value. The probability of three events is the fraction of
the area under the curve from 2.5 to 3.5. The probability of three or more events
is the fraction of the area from 2.5 to the end of the curve. The probability of
three or fewer events, is the fraction of the area from the start to 3.5.

Two probabilities for discrete events are discussed in this book: the binomial
and the Poisson. The binomial probability is that which is obtained with a fixed
sample size when the probability of an event is constant for each item in the
sample. The Poisson probability applies when the expected number of events is
fixed but the sample size is undefined. For example, the expected number of acci-
dents over a long weekend is 547, what is the probability of 600 or more? The
binomial probability is discussed first.

If a coin is tossed, the probability of “heads” is 0.5. The distribution of the
number of heads when 10 coins are tossed a number of times will be a binomial
distribution. If two dice are tossed, the probability of their exposed faces adding
to seven is 1/6. The distribution of the number of “sevens” with 10 tosses of a
pair of dice will be a binomial distribution. The probability is constant for each
event, and the sample size is fixed. The distributions for these two examples are
shown in Fig. 3.5, and the probabilities are given in Table 3.4.

The probabilities for the binomial distribution are calculated by the formula
of Eq. (3.19):

Pr(r) =iy PO =P (3.19)

where n= the sample size, the total number of trials
r = the number of “events” occurring in n trials
p = the constant probability for the event
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0.40 -

Probability of “seven’’
in dice throws
0.30 -

r—a
_; L Probability of “heads”
0.20 r - - / in coin tosses

Probability

0.10+

Number of ““events”

Figure 3.5 Binomial probability distributions.

In the example of tossing 10 coins, the probability of observing exactly four
heads is:
10!
Pr(4) = a6 (0.50)* (0.50)¢ = 0.2051

The probability of observing 3 sevens in the dice example, where the probability
of a seven is 1/6, is calculated as follows:

10! /1\3/5\7
Pr(3)—ﬁ<g> <g) =0.1550

Table 3.4 Calculated Binomial Probabilities

Number of
heads or sevens 10 coin tosses 10 dice throws

0 0.0010 0.1615
1 0.0098 0.3230
2 0.0439 0.2907
3 0.1172 0.1550
4 0.2051 0.0543
5 0.2461 0.0130
6 0.2051 0.0022
7 0.1172
8 0.0439 0.0003
9 0.0098

10 0.0010

1.0001 1.0000
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Usually of more interest than the probability of some specific number of observa-
tions is the probability of a specific quantity or a larger one; or a specific quantity
and a smaller one. For example, if a shipment of small parts is supposed to have
only 1 percent defectives, what is the probability of finding 2 or more defective
ones in a sample of 50?7 What is the probability of finding 4 or more defective
ones in a sample of 100? Or, if an organization claims that 80 percent of its
students usually pass the Professional Engineers’ examinations, what is the probabil-
ity that out of a class of 90 only 65 or fewer students will pass?

To solve problems of this type it is necessary to obtain the sum of the binomial
probabilities over the range of interest. With a sample of size n and a constant
probability p, the probability of r or fewer events is:

<p) = - (_n’_._.) i1 — n—i
Pr(=r) Eﬁ Tn—0)? (1—p (3:20)

The probability of r or less than r equals unity minus the probability of more
than r. The probability of r, given n and p, written Pr(=r|n,p), is equal to the
probability of (n — r) given nand 1 — p: Pr(=(n — r)|n, 1 — p). In the calculator
program discussed in the next section, the probability of Eq (3.20) is calculated,
starting with the probability of zero events and summing the probabilities to the
probability of . Use is made of the following equalities to obtain other probabilities
when they are desired.

Pr(=rjnp) =Pr(Z(n—r)
Pr(=rin,p) = Pr(=(n—r)

n, 1—p)=1—Pr(>rlnp) 3.21)
n, 1 —p)=1—Pr(<rlnp) (3.22)

The binomial program, in addition to calculating the probability associated
with an input of n, p, and r, can also calculate the number of events expected
with an input of n, p, and a probability value. The second type of solution is for
problems exemplified by the two that follow: If a shipment of material is supposed
to be not more than 0.1 percent defective, what maximum number of defectives
would be expected in samples of 1000 95 percent of the time? If a candidate
assumed that 51 percent of the electorate was on his side, what is the minimum
number in his favor that he would expect in a poll of 100 voters 90 percent of
the time? Answers to questions of this type are usually taken from curves of the
binomial distribution and require interpolation to fit the particular problem. The
binomial program gives exact answers.

BINOMIAL PROBABILITY PROGRAM

The binomial program carries out two general types of calculations. It calculates
the probability for a particular binomial distribution, and, with a given probability,
it calculates the binomial value. For both solutions the program follows the same
formula, Eq. (3.20), so the two programs cannot be readily separated as is the
case with the normal program.

Table 3.5 shows the calculations that can be made with the binomial program:
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Table 3.5 Binomial Probability Program Operation

HP TI Gives

n, ENTER 1, p, ENTER 1, r, KEY A n, KEY A, p, KEY A, r, KEY A Pr(r)
n, ENTER 1, p, ENTER 1, r, KEY B n, KEY B, p, KEY B, r, KEY B Pr(>r)
n, ENTER 1, p, ENTER 1, r, KEY C n, KEY C, p, KEY G, r, KEY C Pr(=r)
n, ENTER 1, p, ENTER 1, r, KEY D n, KEY D, p, KEY D, r, KEY D Pr(<r)
n, ENTER 1, p, ENTER T, r, KEY E n, KEY E, p, KEY E, r, KEY E Pr(=r)
n, ENTER 1, p, ENTER 1, P, KEY ¢ n, KEY C', p, KEY C', P, KEY C' r such that

Przr)=P
n, ENTER 1, p, ENTER 1, P, KEY e n, KEY E', p, KEY E', P, KEY E' r such that

Pr=r)=P

Note: n = sample size; p = constant probability; 7 = number of events; P = desired probability.

The actual calculation in all cases is for the probability equal to or less than
r. All the other probabilities are obtained from that calculation. If Pr(r) is desired,
KEY A, the difference between the last two calculations in the program: Pr(=r)
and Pr(=r — 1) is used. If Pr(<r) is desired, the summation before the last term
is taken. If Pr(Cr) is wanted, 1 — Pr(=r) is used. If Pr(Zr) is wanted, 1 — Pr(<r)
is used. At the end of the program all of these values are stored in the calculator
but only the one called for is printed.

The summation calculation for the probability equal to or less than r starts
with the probability of zero:

n!
o n!

Pr(Q)=——p°(0—p"=1—p" (3.23)
Each term in the binomial summation is related to the previous term by the
simple relation:

Pr(i) = Pr(i— 1)(L><"—’,+1) (3.24)
1—p i

The use of Eq. (3.24) for calculating the individual terms after the first one
not only simplifies the programming but also avoids the possibility of exceeding
the factorial limits of the calculator if Eq. (3.19) were used for each term.

The calculation of the first term of the cumulative probability is Eq. (3.23). If
p is close to one and n is large, (1 — p)™ may be less than the lower limits of
the calculator and give a zero answer. If this occurs, all subsequent terms will
be zero since they are obtained by multiplication of the first term. The program
has a check of the initial calculation, and if it is zero, the program substitutes
one of the equivalent probabilities from Eq. (3.21) or (3.22).

The program also checks for impossible requests: » > n, or a probability input
greater than one, for example. In these cases the program stops with an ‘“‘error
message.” In the Hewlett-Packard, this is an actual display of the word “Error.”
In the Texas Instruments calculator, it is a flashing light. The input values are
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stored in Registers A, B, and C in the Hewlett-Packard and in Registers 01, 02,
and 03 for verification after the program has been run.

The output for the first part of the program is a single value, the probability
as a decimal fraction.

In the second type of operation, with an input of probability that is to be
matched, the program checks the calculated probability after each calculation

Enter
data

Pr Calculate r Set
Prorr Flag 1
'7 |
Set Set
solution solution
wanted wanted

Impossible
request
?

Pr
greater
than 1

r
negative

Set
i=0
Go to Go to
calculation > calculation
routine routine
Calculate
Pr(=i)

f Eq. (3.20) ‘
Calculate Calculate
probabilities probabilities
from Egs. Has from Egs.

(3.21) and (3.22)

!

Print
result

(3.21) and (3.22)

!

Print
results

rorPr
been

reached
?

/ Divide by
zero.

Figure 3.6 Flow diagram for binomial probability program.
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Table 3.6 Register Values at Conclusion of Bino-
mial Program

Register

KEYS A, B,C,D, E HP Tl KEYSc(C'), e (E')

n A 01 n

p B 02 p

r C 03 P
Pr(r) 1 04 Pr(r)
Pr(>r) 2 05

Pr(zr) 3 06

Pr(<r) 4 07 Pr(<r)
Pr(=r) 5 08 Pr(=r)
r | 09 r

against the input value. Since it is unlikely that the calculated probability will
exactly equal the input value to the number of significant digits used by the calcula-
tor, the calculation continues until the input probability is exceeded. The program
then prints the two calculated probabilities that bracket the input value along
with the r values for each.

When the program ends, it clears all flags that were used to identify the different
types of calculations so that the calculator may be used immediately for another
binomial calculation. A flow diagram of the program is given in Fig. 3.6, and a
listing and detailed description are given in the Appendix.

At the end of either type of calculation, the program prints the answer asked
for. The values of the other probabilities are stored in the calculator and may be
recovered if desired. Table 3.6 shows the location of the various values at the
end of the program.

The binomial probability calculation is a summation of r + 1 terms. Each
term takes slightly more than 1 s of calculator time; so if 7 is large, the calculator
time may be longer than expected. It is possible to make approximations to the
binomial probability, and the normal approximation is discussed in Sec. 3.8. How-
ever, the solution with the binomial program is exact, and the calculator time is
not unreasonable as indicated by some of the following examples. The approximate
calculation is available if several minutes of calculator time seem exorbitant.

EXAMPLES OF THE BINOMIAL PROBABILITY PROGRAM

In 100 tosses of a coin, what is the probability of observing 60 or more heads?
n =100, p = 0.5, r = 60; wanted: Pr(=60).

HP Tl
100 ENTER 1 KEY C
0.5 ENTER 1 KEY C

60 KEY C KEY C Output: 0.0284 (Time:106/195)
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3.7.2 A manufacturing process averages 0.2 percent defectives. What is the probability

3.7.3

3.7.4

3.7.5

of finding less than 2 defectives in a sample of 1000? n = 1000, p = 0.002, r = 2;
wanted: Pr(<2).

HP TI
1000 ENTER 1 KEY D
0.002 ENTER 1 KEY D
2 KEY D KEY D Output: 0.4057 (Time:7/11)

If you toss 10 coins, what is the probability of exactly 5 heads? n = 10, p = 0.5,
r = 5; wanted: Pr(5).

HP T
10 ENTER 1 KEY A
0.5 ENTER 1 KEY A
5 KEY A KEY A Output: 0.2461 (Time:11/20)

A person rolls 30 dice and you wager 3 to 1 that he or she will not roll a certain
number, say “sixes,” more than X times. What is the minimum value of X so
that you will come out about even?

If you give 3:1 odds, you cannot afford to lose more than 25 percent of the
time; that is, Pr = 0.25. The probability of any specific number for one roll of a
die is 1/6. n = 30, p = 1/6, P = 0.25; wanted: the value of r such that
Pr(=r) = 0.25.

HP TI
30 ENTER 1 KEY C'
1 ENTER 1 =+
6 =+ =
KEY C'
0.25 KEY ¢ KEY C' Output:  0.2235 (Pr=r)
7 (r)
0.3836 (Pr=17)
6 n (Time:17/34)

The probability of 7 or more is 0.2235
The probability of 6 or more is 0.3836

You will be safe with a bet at 3:1 odds if you wager that your opponent will
not roll a specific number more than six times in 30 rolls.

If a shipment of small parts is supposed to have only 1 percent defectives, what
is the probability of finding 2 or more defectives in a sample of 50? n = 50,
p = 0.01, r = 2; wanted: Pr(=2).
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HP T
50 ENTER 1 KEY C
0.01 ENTER 1 KEY C
2 KEY C KEY C Output:  0.0894 (Time:6/12)

If the previous problem had been phrased differently, asking for the probability
of finding no more than 48 nondefects, the procedure would be: n = 50,
p = 0.99, r = 48; wanted: Pr(=48).

HP T
50 ENTER 1 KEY E
0.99 ENTER 1 KEY E
48 KEY E KEY E Output: 0.0894 (Time:8/17)

The answer is the same as in Example 3.7.5. The actual calculation was made
for p = 0.01 and r = 2, and the probability = 2 was calculated. The reason is
that the program made a substitution based on Egs. (3.18) and (3.19) inasmuch
as Pr(0) based on the original figures, (0.01)%, is less than the smallest number
the calculator can handle. This substitution is pointed out in the description of
the program in the Appendix.

If an organization claims that 80 percent of its students usually pass the Professional
Engineers’ examinations, what is the probability that out of a class of 90 only 65
or less will pass? n = 90, p = 0.80, r = 65; wanted: Pr(=65).

HP TI
90 ENTER 1 KEY E
0.80 ENTER 1 KEY E
65 KEY E KEY E Output: 0.0474 (Time:115/240)

If a shipment of material is supposed to be not more than 0.1 percent defective,
what maximum number of defects in samples of 1000 would be expected 95 percent
of the time? n = 1000, p = 0.001, P = 0.95; wanted: r such that Pr(=r) = 0.95.

HP Tl
1000 ENTER 1 KEY E'
0.001 ENTER 1 KEY E'
0.95 KEY e KEY E' Output: 0.9811 (Pr=1r)

3 n
09198 (Pr=7r)
2 (r) (Time:7/19)
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The probability of three or fewer defects is 0.9811, and the probability of two
or fewer defects is 0.9198. Two defects could be expected 92 percent of the time
and three defects 98 percent of the time.

NORMAL APPROXIMATION TO THE BINOMIAL

As mentioned earlier, because of the cumulative nature of the binomial probability
calculation, the calculator time may be more than expected. One way to cut down
on calculator time is to use the normal program for an approximation to the
binomial probability calculation. How close the approximation will be depends
on the values of n, p, and ». Some examples are given in the following paragraphs.

The larger the value of s, the closer p is to 0.5, and the closer ris to n - p,
the better will be the approximation. No exact rule can be given as to when the
normal approximation will be satisfactory. Examination of the following examples
and some experience with specific data will indicate when to substitute the approxi-
mate calculation for the exact binomial value in order to save calculator time.

The mean of the binomial distribution is n - p, and the standard deviation is
v/n- p- (1 —p). These values are exact and may be substituted in the normal
program for the corresponding values of m and o. The value of r needs to be
adjusted for the normal estimate of the binomial because of the difference in the
two types of probability distribution functions.

The binomial function deals with discrete values of the variable. The probability
of a variable being equal to or greater than the value r is one minus the proba-
bility of the variable being equal to or less than the value r — 1. Pr|B(Zr) =
1 — Pr|B(=r — 1), where Pr|B indicates binomial probability. The normal distribu-
tion function is a continuous function and there is no gap in the normal probability
between successive values. The probability of a variable being equal to or greater
than the value 7, in the normal distribution, is one minus the probability of the
variable being equal to or less than the value r. Pr|N(Z#) = 1 — Pr|N(=r), where
Pr|N indicates normal probability. Therefore, when the normal probability is used
to estimate the binomial, the variable values used are adjusted for one-half the
difference between successive numbers. For the normal estimate of the binomial
probability for a value equal to or greater than 6, we use a value of 5.5. For the
probability of a value greater than 6, estimated by the normal probability, we
would calculate the probability of a value greater than 6.5.

Table 3.7, a table of comparison of the probabilities calculated by both programs,
illustrates both the method and the degree of agreement.

The agreement between the two calculations can be seen from Table 3.7. When
r is large, 60 and 65 in Examples 3.7.1 and 3.7.3, the agreement is reasonably
good. When r is small, in Example 3.7.2, the agreement is poor. Whether the
time saved, perhaps 100s, is worth the loss in accuracy will depend on the problem
and the engineer running it. If the normal program is to be used as an estimate
of the binomial probability calculation, it would be simple to add a short routine
to calculate the mean and standard deviation directly from the input binomial
parameters so no preliminary calculations would be required.
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3.9 POISSON PROBABILITY DISTRIBUTION

The binomial distribution describes the frequency of events from a population of
a definite size with a constant probability. The Poisson distribution describes the
distribution of events from a large but indefinite population, where the probability
is small but a definite expected number can be calculated; for example, the number
of accidents occurring on a section of an interstate highway during half-hour periods
from 8 A.M. to 6 P.M., or the number of Supreme Court Justices appointed in a
calendar year.

The Poisson distribution involves only one parameter, the “expected value.”
In the 1978 baseball season of 1936 games, there were 2956 home runs, or 1.527
home runs per game. If this value is taken as the expected number of home runs
per game, the Poisson distribution function can be used to calculate the probability
that in the next game you see there will be no home runs, or more than three,
or any other number. The expected value, usually designated m in the Poisson
distribution, corresponds to the mean of the normal distribution and to n - p of
the binomial.

The Poisson probability distribution is based on the following equation:

Pr(n=e m%r (3.25)

The use of Eq. (3.25) might best be described by an example. In the 188 years
from 1790 to 1978, 100 Justices have been appointed to the U.S. Supreme Court.3
This is an average of 100/188 or 0.5319 Justices per year. With this value and
Eq. (3.25) it is possible to calculate the probability of no Justices being appointed
during a year, of one Justice, and so forth.

Pr(0) = ¢05319 (0.5319)°/0! = 0.5875
Pr(1) = 705319 (0.5319)1/1! = 0.3125

The product of the calculated probabilities and the total number of years gives
the predicted number of years that that number of Justices would be appointed.
The probability of zero Justices, 0.5875, times the total number of years, 188,
equals a predicted 110.4 as the number of years (out of 188) that no Justices
would be appointed. Table 3.8 shows the predicted number and the actual number.

Although the data from the appointment of Supreme Court Justices is an ex-
tremely good fit, it is not unusual. The Poisson distribution has been fitted to
the number of men killed by the kick of a horse, to the occurrence of rainstorms,
and to the number of lost articles turned in at a busy office building. With data
of an accidental nature with low probability of occurrence in a large population,
the Poisson distribution often gives a reliable prediction.

One use of the Poisson probability is to size facilities so as to prepare for the
expected number of events, but not to oversize them to handle the events that
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Table 3.8 Number of U.S. Supreme Court Jus-
tices Appointed per Year

Number of years
for each number

No. appointed Poisson
a year probability Predicted Actual
0 0.5875 110.4 110
1 0.3125 58.8 60
2 0.0831 15.6 15
3 0.0147 2.8 2
4 0.0020 0.4 1

have a low probability of occurrence. In designing a truck loading facility, the
design should accommodate the usual number of trucks, but it need not be so
large as to handle the number that would occur only once in 100 times.

As with the binomial probability, the Poisson calculation of most interest is
the probability of the number of events equal to or greater than some specification;
for example, the probability of 10 or more trucks in a half-hour period. Of equal
interest is the probability of some number or one that is less; for example, what
is the probability of a blood count lower than some specified value?

The calculation of a value greater than or less than probability involves the
summation of the individual probabilities. For the probability of r or fewer events,
the calculation sums the values of Eq. (3.25) from zero to r:

1

.
Pr(SH =3 e m-
i=0 i!

(3.26)
The cumulative Poisson probability is easily computed in a calculator from

Eq. (3.26), since the probability of zero events is e~™, and the probability of each

successive term is the probability of the previous term multiplied by m/i:

Pr(i+ 1) = Pr(i) 7—+'"—1 (3.27)

Most calculators have a limitation in the numbers they can handle, about 9 X
10%. This limitation would prevent a Poisson probability calculation for m greater
than 227. A way around this limitation is included in the Poisson probability
program discussed in the next section. However, with expected values greater
than about 100, a normal approximation to the Poisson may be close enough. A
comparison between the Poisson probabilities and the normal approximation is
given in Sec. 3.12.

Individual Poisson probabilities calculated from Eq. (3.25) require a factorial
evaluation. Factorials of numbers larger than 69 exceed most calculators’ capacity,
so that if the multiplying factor of Eq. (3.27) was not used, a very strict limitation
would be put on calculating the Poisson probabilities.



42 CHAPTER THREE
3.10 POISSON PROBABILITY PROGRAM

The Poisson calculation requires input of only the expected value m, and then
either a variable value 7, or a probability value P. With a variable value the program
will calculate the probability; and with a probability input, the program will calcu-
late the variable value. As with the binomial program, the program will calculate
probabilities equal to, less than, or greater than the input variable. Table 3.9 shows
the operation of the Poisson program.

All calculations start with the probability of zero events: e~ ™(m°/0!) = e~ ™
Each successive term is calculated by Eq. (3.27). The calculation continues until
the value of r is obtained, or until the cumulative probability first exceeds P.
The last two cumulative probabilities are stored in the calculator after each calcula-
tion, and all the probabilities in Table 3.9 are calculated from these two. Thus

Pr(=r) = Pr(») + Pr(<r) (3.28)
PrEn=1—Pr(<p (3.29)
Pr(>r) =Pr(=r) — Pr(r) (3.30)

All of the probabilities are available in the calculator at the end of the calculation,
but only the one asked for is printed.

If there is probability input to find the variable value to match the probability,
there is output of two values, the calculated probability that just exceeds the input
value together with the corresponding r value, and the probability just before
with its variable value, so that the input probability is bracketed.

The initial calculation for the probability summation is e~™ If m is greater
than 227, it will exceed the capacity of the calculator. Before the start of the
calculation the program checks the value of m and, if it is greater than 227, it is
factored in smaller increments which are easily handled. The following relation
is used:

e—m=e I . e—y. e_Z

where x + y+ z=m.

Table 3.9 Poisson Probability Program Operation

HP TI Gives

m, ENTER 1, r, KEY A m, KEY A, r, KEY A Pr(r)
m, ENTER T, r, KEY B m, KEY B, r, KEY B Pr(>r)
m, ENTER 1, r, KEY C m, KEY C, r, KEY C Pr(=r)
m, ENTER 1, r, KEY D m, KEY D, r, KEY D Pr(<r)
m, ENTER 1, r, KEY E m, KEY E, r, KEY E Pr(=r)

m, ENTER 1, P, KEY ¢ m, KEY C', P,KEY C' rsuch that

Prr)=P
m, ENTER t, P, KEY e m,KEYE', P,KEY E' rsuch that
Pr(=r)=P

Note: m = exected value; r = number of events; P = desired probability.
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Table 3.10 Register Values at Conclusion of Poisson

Program

Register
KEYS A,B,C,D, E HP TI KEYSc,(C'), e, (E')
m A 01 m
r B 02 P
Pr(r) 1 03 Pr(r)
Pr(>r) 2 04
Pr(zr) 3 05
Pr(<r) 4 06 Pr(<r)
Pr(=r) 5 07 Pr(=r)
r | 08 r

With the operation just described there is no limit to the Poisson probability
calculation, aside from calculator time. There is no other readily available source
for getting Poisson probabilities for expected values greater than 100. The calculator
time is about 1.5 s for each calculation in the summation, so that with r values
of 50 or greater, the calculator time may be more than is usually required, but
there is no other source for an exact Poisson probability.

At the end of the calculation, the input data and the unprinted probability
values are available in the calculator. The location of these values is shown in
Table 3.10.

Figure 3.7 gives the flow of the Poisson program. Details and a listing are
given in the Appendix.

EXAMPLES OF THE POISSON PROBABILITY PROGRAM

If the average red-cell count in a certain volume of blood is 20, what is the
probability of a normal person having a count below 16? m = 20; wanted: Pr(=15).

HP TI
20 ENTER 1 KEY E
15 KEY E KEY E Output: 0.1565 (Time:23/33)

3.11.2 From the data of Table 3.8, the expected number of Justices appointed per year

is 0.5319. What is the probability of three Justices being appointed next year?
m = 0.5319; wanted: Pr(3).

HP TI

0.5319 ENTER 1 KEY A
3 KEY A KEY A Output: 0.0147 (Time:6/10)
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Figure 3.7 Flow diagram for Poisson probability program.
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A switchboard usually gets 10 calls every minute between 9:30 and 11:30 A.M.
It will be overtaxed with 20 calls. What is the probability that in the next minute
it will be overtaxed? m = 10; wanted: Pr(Z20).

HP T
10 ENTER 1 KEY C
20 KEY C KEY C Output: 0.0035 (Time:31/48)

With the data of Example 3.11.3, what is the probability the switchboard will
be overtaxed at least once in the next hour?

The probability it will be overtaxed at least once is one minus the probability
it will not be overtaxed at all. The probability it will not be overtaxed in the
next minute (from Example 3.11.3) is 1 — 0.0035 = 0.9965. The probability it
will not be overtaxed in the next 60 minutes (min) is (0.9965)¢ = 0.8103. The
probability it will be overtaxed at least once in the next hour is 1 — 0.8103 =
0.1897.

If the usual number of accidents under certain conditions is 14, what number
should be prepared for to keep the probability of being overtaxed at 0.05 or less?
m = 14; wanted: r such that Pr(>r) = 0.05.

HP Tl
14 ENTER 1 KEY C'
0.05 KEY ¢ KEY C'  Output: 0.0479 (Pr=7)

21 ()
0.0765 (Pr=r)
20 (n (Time:32/54)

The probability of 20 or more accidents is 0.0765.
The probability of 21 or more accidents is 0.0479.

If preparation is made for 21 accidents, when the expected number is 14, there
is only a 0.0479 probability of being overtaxed.

NORMAL APPROXIMATION TO THE POISSON

The mean of the Poisson distribution is m, the expected value, and the standard
deviation is v/m. These values may be used with the normal program to estimate
probabilities corresponding to the Poisson calculation. When the normal probability
is used to approximate the Poisson, it is necessary to correct for the continuous
nature of the normal compared to the discrete values for which the Poisson is
applicable. The correction is the same as that discussed for the binomial program
in Sec. 3.8. A correction of half a unit is made to the input value for the normal
approximation. Table 3.11 shows the values used for the various cases:
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Table 3.11 Adjustments to Input Values for the Normal
Approximation to the Poisson Probability

Poisson calculation

Normal approximation

Pr(5)

Pr(>5)
Pr(=5)
Pr(<5)
Pr(=5)

Pr(4.5=r=5.5)
Pr(>5.5)
Pr(=4.5)
Pr(<4.5)
Pr(=5.5)

The closeness of the normal approximation to the Poisson calculation will depend
on the values of m and r. The larger the value of m and the closer r is to m,
the closer will be the normal approximation. The following comparisons show
the amount of agreement. The same data that are used for the binomial and normal
comparison are used for the Poisson and normal so that the similarity of the
three distributions might be observed. The comparison is shown in Table 3.12.

A very simple adjustment to the normal program permits the mean and standard
deviation to be calculated directly with input of m. Again, however, the Poisson
calculation, although it is somewhat longer, gives the exact probabilities without

any exact calculations.
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THE t TEST

4.1 INTRODUCTION

In the discussion of the normal distribution it was pointed out that if the mean
and the standard deviation of the distribution were known, the distribution was
defined and probability statements could be made about the value of observations
drawn from the population. The ¢ distribution is used in a similar manner where
the mean of samples and the standard deviation estimated from the samples are
used to make probability statements about the value of observations in the popula-
tion from which the samples were drawn. The estimate of the standard deviation
is calculated as described in Chap. 2:

E — ¥ )2
s(x)= \/—(—:_—f) 4.1)

This chapter gives two ¢ programs that provide for making the following calcula-
tions based on the ¢ distribution and data from samples.

1. Comparison of a mean calculated from input data with a target value.

2. Comparison of two means each calculated from input data.

3. Calculation of the probability value associated with an input value of
t and the amount of data from which ¢ was calculated. (This calculation
is equivalent to finding the value in a ¢ table.)

4. Finding the confidence interval for a mean from input data and the
desired confidence probability.

5. Finding the number of samples required when a specific confidence
interval and probability are set.

6. Finding the ¢ value associated with an input probability level and sample
size. (This calculation is equivalent to using the ¢ tables in the reverse
way from item 3, above.)
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4.2 THE ¢ FUNCTION

With a variable x that is normally distributed with a mean m and a standard
deviation o, the probability of observing a value equal to or greater than some
value x; is equal to the area under the standardized normal curve beyond the
value of z,, where z, was defined in Chap. 3 as:

X1—m

3.7

Zy =
o

The ¢ distribution is used in a similar manner. The probability of the mean of
a sample being equal to or greater than x when the population mean is m, is the
area under the ¢ curve beyond the value indicated by the following equation:

_X—m
T s(x)

In Eq. (4.2) there are two new terms, v and s(x). The term v represents the
degrees of freedom, the number of items in the sample that could be independently
varied while the mean from which the deviations are measured to calculate the
variance estimate remains fixed. In this example, v is equal to n — 1. The term
s(x) is the standard deviation estimate of the mean, and is related to the standard
deviation estimate by the relation: s(x) = s(x)/v/n

The probability distribution of ¢ varies with the number of degrees of freedom
associated with its calculation. The ¢ values approach the normal function values
as the degrees of freedom increase. For degrees of freedom greater than about
120, the difference is usually taken to be insignificant, and ¢ table values are usually
not given for degrees of freedom beyond 120. In the programs given later, there
is no limit to the degrees of freedom that may be used.

The most common use of the ¢ function is to establish some hypothesis, called
a “null hypothesis,” for which ¢ may be calculated. If the resultant ¢ is one of
low probability when the hypothesis is true, the hypothesis is rejected. The steps
in this procedure are listed below:

t “4.2)

1. A null hypothesis is made regarding some parameter of a population
from which a sample is taken. (Example: Hp: Population mean equals
100.)

2. A probability value is selected for an acceptable risk of a false rejection
of the hypothesis. This would be rejecting the hypothesis, saying the
mean was not 100, when it really was. The probability is usually desig-
nated a. (Example: a = 0.05; a 5 percent chance of a false rejection.)

3. The value of ¢ is calculated from a suitable equation, with statistics
calculated from the sample. [Example: Use Eq. (4.2), where x is the
sample mean and s(x) is the sample estimate of the standard deviation
of the mean, t = (x — 100)/s(x).]
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4. The calculated ¢ from step 3 is compared with values in the ¢ tables
at the degrees of freedom of the calculation, n — 1.

5. If the calculated ¢ is larger than the tabulated ¢ for the degrees of
freedom involved at the probability a set at step 2, the hypothesis is
rejected.

In the ¢ programs that follow, the actual probability associated with the calculated
t is given as output. If this probability is less than the a value set for the test,
the hypothesis is rejected.

Two-Sided f Test

The ¢ distribution is symmetrical about a zero mean, and only the positive values
of t are tabulated. The probabilities associated with these values are for the sum
of the areas under the ¢ probability curve beyond the positive value and below
the negative value. In step 5 of the procedure given above, the hypothesis is re-
jected if t is larger because x is greater than m, or if —t is larger because X is
smaller than m. There are occasions when only one side of the test is of interest.
A discussion of the one-sided test is given in the next section. Numerical examples
are given at the end of the chapter. The following is typical of the two-sided
test.

With a continuing manufacturing process the hypothesis is made that the mean
of some quantity is equal to m:

Hy: mean=m

The manufacturer is willing to take a 1 percent risk of falsely rejecting this
hypothesis, that is, saying the mean is not m when it really is:

a=0.01

Samples are taken from the process, and measurements are made of n items.
The sample measurements, along with the value of m are entered into the calculator.
The program calculates ¢ from the relation t = (x — m)/(s(x)/+/n), although t
from Eq. (4.3) is actually the value of interest:

— |x— m|
T s()/A/n

where s(x) is the estimated standard deviation, calculated from the data as explained
i