
by
Jean-Daniel Dodin

revised and expanded by

Keith Jarett

J. Daniel Dodin

o
m
o
=
Z
m

(Reverse Polish Notation Made Easy)

Translated from French by Mary-Denise Dodin

Revised and expanded by Keith Jarett

Published by:

SYNTHETIX

P.O. Box 1080

Berkeley, CA 94701 USA

ISBN 0-9612174-2-1

Library of Congress #84-51380

Also available from SYNTHETIX:

HP-41 Extended Functions Made Easy, by Keith Jarett

HP-41 Synthetic Programming Made Easy, by Keith Jaret

HP-41 Quick Reference Card for Synthetic Programming

French language publications on HP calculators are

available from:

Editions du Cagire

77 rue du Cagire

31100 Toulouse FRANCE

Copyright 1984 SYNTHETIX and Editions du Cagire

This book may not be reproduced, either in whole or

in part, without the written consent of the pub-

lisher and the author. Permission is hereby given

to reproduce short portions of this book for pur-

pose of review.

-ii-

FOREWORD

This book is especially for owners of Series 10 HP

calculators, including the HP-10C, 11C, 12C, 15C,

and 16C. It is designed to help you better under-

stand and utilize your machine. The concepts in-

troduced here apply to all HP calculators, plus a

few other calculators that have an ENTER key.

Chapters 1, 2, and 3 will introduce you to how the

ENTER key works and how to solve simple problems on

your calculator. Chapter 4 introduces the concept

of programming. Chapter 5 presents several short

application programs, and Chapter 6 gives tips on

more efficient use of your Series 10 machine.

ABOUT THE AUTHOR

The author is French. He teaches drafting and en-

gineering calculation at a high school in Toulouse.

He was introduced to Reverse Polish Notation in

1975, withthe non-programmable HP-21 calculator.

In 1979, when the HP-41C first became available, it

was natural for him to order one. Buying a HP-15C

when it became available was also somewhat inevita-

ble. He learned about the PPC in early 1981

through Bill Wickes's book "Synthetic Programming

on the HP-41C", and in September of the same year

founded a PPC chapter in Toulouse. This chapter,

with 400 members, was at the time the largest

French speaking chapter. The author is also the

editor of the French chapter newsletter, PPC-T.

-iii-

Notation used in this book:

/ denotes division, * denotes multiplication.

Greek letters are avoided, except that pi is

written as PI.

The function "square root of x" is written

SQORT, without any x.

In the programs, the operations are in bold-

facetype, preceded and followed by a space.

Digits and other information entered from the

keyboard are in normal type. This includes names

of variables, which represent numeric data that

will be entered from the keyboard.

Examples : sine of 30 degrees is written

30 SIN ;

goto 1 1s written

GTO 1.

Because prefix keys and displayed codes for

program steps vary from one machine to the next,

these prefix keys and keycodes will be omitted

here.

The material in this book is supplied without

representation or warranty of any kind. Neither

the publisher nor the author shall have any liabil-

ity, consequential or otherwise, arising from the

use of any material in this book.

iv

TABLE OF CONTENTS

IntrOductiono.-.o.oo...oo......o.....Qo...o.on..o'l

Chapter l: AMatter of Logic.....................

1.1

1.2

I—anguage and I—-ogicoon--..oo.o.o.oo..o.....oo

1.3 Algebraic Notation vS. RPN....ieeeoecooocanes

1.4

5
7

FOrmulas...eceeeeecscccecoscsassscscccccncnnnnasl

9

1Pencil and Paper vS. RPN.u.eceeeeeoocoocococsoal

Chapter 2: Using Reverse Polish Notation (RPN)..13

2.0

2.1

2.2

N
N

.3

.4

.5

.6

.7

.8N
N

USING RPN.:::eeeeeeeoecccccccscccoscscsacccosseald

One-number funCtionNS...ecceececcceccccccceaald

Two-number funCtionNnS.....ceceecccccccccccaeeld

Chain CalculationNS..eceeecececccccccceceaeald

The StacCK..eeeeeeeeeeeeecessesoscssasoncsasnaalbd

How the Stack works during calculations....19

The LASTX regisSter..ccececececececcccccceecs ceeel?

Data Storage RegisSterS....cececcccccccccceall

E‘ancy Functionsooo.00.......00..00.0.- 24

Chapter 3: Calculating in RPN..eeeceececececcecocnces 27

3.1

3.

3.

3.

3.

3.2

3.

3.

3.3

Introducing the HP RPN machinesS...ceecceeeee 29

1.1 Series 40...cceececcccccccnscccaccccccsceld

1.2 Series 10..eeeecececccccssccccnssnsR1

1.3 Special features of each model.........30

1.4 Common features, limitS..ccceecececocceccesesl?

How to approach a calculation..ececeeeecee...34

2.1 FOrMUlasS...ccieeeeeeccoosccssscscccccsccsasld

2.2 Calculating "on the fly".ieeeeeeeeeceesl3?

Advanced useS...o-...000000000000000.00000.40

Chapter 4: RPN programming....... ceccscccscccseedl

4.0 Keystroke sequence or program?...ccece.e. eses45

4.1

4.2

4.

4.

4.

4.

4.

4.

4.3

4.

4.

4.

4.

First difference: Memory US@g€..cceceeseeseadd

Flow control instructionS....c.cccccececccscecssd?

2.] LabelS.iceeeeeeececcsscccscsoscccccccossecessid8

2.2 RUN/StOPecceccccssccsscscsccsssssccssccccssilB

2.3 BranChingeeceeeeeeesccecscscscssccscsccccscessid9

2.4 Test INStruCtionNS.cccececececccccccccsscssd?

2.5 FlagSeeeeeceececeocececccscscscscscscoscsesdl

2.6 Counting InstructionNS.ccececccecccccccsesdd

4.2.6.]1 ISG Gnd DSE.cececccccccccccssccssssdd

4,2.6.2 Plain countinNgececcecccecccccccsascssdd

4.2.6.3 Counting between two valueS....e...57

4.2.6.4 Negative numbers....cccccceeeceecese59

Constructing @ PrograM.cccecceccecceccccscsssscsasbl

3.1 Instant ProgramS.ccecceeccccscccccccscscsssbl

3.2 More elaborate pProgramS.ccceccecscececeseesb2

3.3 The indirect operationS..cececcecceecceecssl0

3.4 Testing your pProgramM..ccceccscccccscceesl/l

Chapter 5: Application programS...cccccececssssssld

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Initialize a block of registersSeececececeeceel?

View a block of data registers....ccceceecec../8

Pseudo-random numbersS...cccececceccccccsccecces/8

Fibonacci numbers...cccccecececccccccccccescea8l

PermutationS..cccceccccccccccccccccccccscssadl

CombinationNS...ccececccccccoscccscsccssscccccced3

Greatest common diViSOl.ccceccccsceccscecesa8d

Sum of the digits of an integer............84

Convert a real number to an integer

or a decimal fracCtiON.ceeececooccccccccceseldbd

5.10 Reverse an integer........................86

5.11 Decimal to fraction conversSioON.ccecececeececeeesd7

5.12 Factorial calculatioNS..cececececececccoccccscessd8

5.

S.

5.

12.1 The factorial funCtiON.ceeceececcecoocecesesesd8

12.2 n! for any n..........................89

12.3 Inverse factorial functioNe.ececececeeceecessd0

-vi-

5.

5.13

5.14

5.15

Chapte

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

Append

Append

12.4 Stirling's approximatioN..ccececececeesess9l

Root-finding..............................93

Financial calculationNS...cececcecccceccecsseeadbd

Time foragameI.............‘........‘..103

r 6: Tips and tricks for the Series 10...105

EXponentS.eceeecececcececcsccsccscccscaccccscseall?

LeadinNg ZEerOS..cecececccccccscccsccccccscesell?

Avoid CLX in pProgramS..cccececccccssssssssesl0”

Checking number of registers allocated....108

Doubling a number....cccecececececccccccseasl0l

Duplicating Y to the top of the stack.....109

ROUNAINGecceeeececcocsccsoscccsccscscssasscssseeall9

Mile/kilometer conversiONe.ccececececcecsessssalll

Multiples Of Pleceecececcecccscccsncssnoasssalll

Tricks with trigonometric functions......1l1l1

Hyperbolic trig functionS...cccecececcecesall2

Law O0f CoSiNeS...cceecceccscscccssncssssaslll

Spherical coordinateS...cceeececcccccceaaalll

Functions not available on the keyboard..114

Combined test instructionNnS...ccceceeceecessalld

Editing @ pProgramecececceccecccecccccsccccsssall?

Repeated execution of a program..........118

Solve and Integrate subroutines (HP-15)..118

Displaying two integer numbers at once...118

Exchanging two data registerSeececececececees.119

Matrix manipulationN..ccececcececcceccccccocaesall?

Beware of USER mode (HP-11 and 15).c¢c¢e¢...120

Shortcuts with %...ccceecceccccccceccssceeal20

Polynomial evaluatioN.cecceececcccccsceosal2l

Easy histogramS...ceeeeeececcccccccscecesssal22

Multi"})urpose labeISo.000000-0.0000000000123

ix A: Roots of Reverse Polish Notation...125

ix B: Further Reading....................l37

-vii-

INTRODUCTION

Pocket calculators using Reverse PolishNota-

tion (RPN for short), featuring the ENTER key, have

had the reputation among some people of being dif-

ficult to understand. Competitive machines that

use Algebraic notation (with the = key) claim to be

more "natural" to use. Nothing could be further

from the truth.

Hewlett-Packard's Series 10 and Series 40

calculators are virtually unique among today's

computing devices in their use of RPN. However,

some advanced computer languages like FORTH and

LISP use the same RPN concept.

As you will see in Chapter 1, RPN and Alge-

braic notation each have their own logic and spe-

cial advantages. You will see that in day-to-day

calculations RPN is far superior. It's simply a

matter of efficiency and ease of use. Examples

comparing algebraic and RPN calculationswill make

this quite clear. If you have an algebraic calcu-

lator handy (they are cheap and commonly avail-

able), you can follow through the examples both

ways and convince yourself.

This book supplements but does not replace the

excellent and thorough Owner's Manual supplied with

each Hewlett-Packard calculator. A careful reading

of the manual, especially after you finish ENTER,

isguaranteed toimprove yourunderstanding of your

machine.

CHAPTER 1

A Matter of Logic

1.1 Language and Logic

A friend of mine, a teacher of mathematics and

physics in a French University, pointed out one day

that the Chinese have seen their civilization stag-

nate for centuries, partly onaccountof a language

inconsistent with a high technical level. This may

explain why very ancient inventions like the rocket

never gave rise to practical developments.

It is said that some Chinese scientists actu-

ally think in English., Of course, not all of them

do, but the fact that any scientist would choose to

think in a foreign language is striking.

Mind is conditioned by language.

As you will see, the "language" of Reverse

Polish Notation (RPN) is much better suited to

exploratory calculations than is Algebraic Nota-

tion. In addition to giving you faster results,

RPN may actually improve your ability to think

about problems,

1.2 Formulas

Most users of scientific calculators in the

western world have acquired a technical and

mathematical background from high schools. From

France to the United States, these schools use

similar mathematical notation.

For example, you probably recognize the for-

mula:

-b + (b%-4ac)1/2

2a

as the expression for one of the two roots of a

quadratic equation.

Here is another example. The figure:

is sufficient for you to realize that R and t are

known if x and y are known.

The language of high school mathematics is

common to us.

But do you recognize this ?

bx?-a*c#*4=S0RT-b=/(2%*a)-=

or this ?

b x2 aENTERC * 4 * -~ SQRT b —a / 2 /

I suspect that you recognize neither of them.

These are in fact step-by-step procedures to eval-

uate the preceding mathematical formula. The first

procedure applies to algebraic calculators, while

the second procedure can be used with machines that

use RPN. Details may vary slightly from machine to

machine. Boldface letters indicate a key to be

2pressed. For example, x“ means press the x2 key.

-8-

(On HP Series 10 calculators, you will have to

press a shift key, then the key for x2,) The

asterisk (*) indicates multiplication. SQRT indi-

cates that you should take the square root. Normal

(non-boldface) letters mean "key in the value

of...", and apply to variables and other inputs to

the formula.

This quadratic formula example shows that

neither RPN nor algebraic notation is obvious at

first.

1.3 Algebraic Notation vs. RPN

To properly appraise the logic underlying the

two types of calculator notation, we should compare

them with previous operating methods.

The engineer, like the applied mathematician,

works essentially with formulas, even though these

formulas are often drawn from his memory. He pro-

ceeds with his calculations step by step, starting

with the known values and calculating intermediate

results until the final result is obtained. Prob-

lems of the classical form :

unknown quantity = expression (data)

are found more often in textbooks than in actual

practice. However, algebraicnotation insists that

you proceed in this textbook manner. To use this

method conveniently and without mistakes, you must

write formulas not in their common form but com-

plete with parentheses to indicate the order in

which the operations are to be performed. You must

also remember to explicitly indicate multiplication

where it is implied in the formula.

-9-

Most calculators that use algebraic notation

have a hierarchy of operations. These operator

precedence rules guarantee, for example, that 2+3x4

is interpreted as 2+(3x4), and not as (2+3)x4.

These precedence rules cut down on the number of

parentheses needed if you can remember the rules

and apply them correctly. The need for parentheses

can also be partially alleviated by frequent use of

the = key. Both of these methods were used in the

algebraic notation procedure given on page 8.

In the BASIC computer language, the notation

issimilar to algebraic calculator notation, except

that no = key shortcuts are allowed. For example,

the quadratic root formula is written like this:

X = (-B+SQR(BT2-4*A*C))/(2*Aa) .

Although this resembles the mathematical notation,

it is not a "natural" way of working. This type of

notation can be justified in computer programming,

where complex tasks must be performed. But for

simple, day to day calculations, this notation is

neither necessary nor convenient. It forcesyouto

think quite far ahead, so that you can open each

set of parentheses at the right place.

Reverse Polish Notation, in contrast, allows

you to proceed directly to the calculation without

writing a detailed, parenthesized equivalent of the

mathematical formula, and without having to think

beyond the next operation. The mathematical formu-

la itself is sufficient to work from. A few exam-

ples and a little practice will make this clear.

-10-

1.4 Pencil and Paper vs. RPN

To add the numbers 2 and 1 using algebraic

notation, youmust write down the equation

X =2+1

which is to be performed using the key sequence

2 + 1= (result).

In contrast, to use Reverse Polish Notation,

you should first ask yourself how you would perform

this calculation by hand. You find this example

unsuitable? Good! Thismeans that you appreciate

the ability to take the shortest path to the re-

sult!

Certainly you can add 2 and 1 in your head.

But suppose you have to add 35728 and 442132 1In

your head? Of course not! With pencil and paper?

Why not? Yousimply write the two numbers:

35728

44213

and you do the addition. Notice that the nature of

the operation is not written down.

It's the same with Reverse Polish Notation.

You key in 35728, youget a new line (press ENTER),

you key in 44213, then you designate the operation

to be performed (press +). The result is 79941.

This example illustrates two important charac-

teristics of Reverse Polish notation:

First Principle

Reverse Polish Notation stores numbers. It never

stores operations.

-11-

Second Principle

Reverse Polish Notation performs operations in the

same order in which you would do them by hand.

The first principle reveals the efficiency of

RPN. Since there are never any pending (stored)

operations, you do not have to keep track of the

parentheses in your head. This frees you to con-

centrate on the structure of the problem, rather

than the structure of the calculation.

The second principle reveals that RPN is prob-

ably already more familiar to you than you realize.

As you use RPN, you will find it more and more

natural. Eventually you will wonder how anyone can

calculate without it,

-12-

CHAPTER 2

Using Reverse Polish Notation (RPN)

-13-

2.0 Using RPN

Complete instructions for using RPN can be

found in your Owner's Manual. This chapter is

intended to be a brief introduction illustrating

the power and simplicity of RPN calculation.

2.1 One-number functions

One-number functions, such as SIN, 1/x, and

LOG, use only the number in the display. They

replace that number with the result. For example,

to compute the sine of 30 degrees, you would first

press

30

to load the number 30 into the display, then

SIN

to calculate the sine. The result is 0.5.

2.2 Two-number functions

When a function, such as + or * (multiplica-

tion), requires two numbers, both numbers must be

loaded in the calculator before you press the key

that executes the function. You use the ENTER key

to separate the two numbers from each other. For

example, to subtract 48 from 722, press

722 ENTER 48 - .

The ENTER separated the two numbers so you did not

get 72,248 when you keyed them in.

2.3 Chain Calculations

Any calculator can do simple calculations

involving one or two numbers. When youget to more

-15-

complex calculations, the advantages of RPN become

much more apparent. Chief among these is that

intermediate results are displayed as they are

calculated, allowing you to check them for reason-

ableness. Furthermore, intermediate results are

handled automatically by the calculator so that

they are where you need them when you need them

later in the calculation.

As a simple example of a chain calculation,

consider the problem (4+5)*(12-7). If you were

doing this calculation by hand, you would first

evaluate (4+5), then (12-7), then you would multi-

ply the two results. It's the same with RPN.

First add 4 and 5:

4 ENTER 5 + (result is 9).

Next subtract 7 from 12:

12 ENTER 7 - (result is 5).

Now multiply:

* (result is 45).

The order of operations is natural, but you may be

wondering how the intermediate result 9 managed to

disappear yet still be available for the final

multiplication. The next two sections will make

this handling of the intermediate results clear.

2.4 The Stack

Intermediate results are stored inside your

machine in a group of registers called the stack.

It is important for you to visualize this stack as

you are learning to use RPN. Beginners will also

find it helpful to check the contents of the stack

(using the roll-down key as explained later) to

make sure that the intermediate results are where

they should be.

-16-

The stack has 4 levels. The

bottom register, called X, is al- I

ways shown in the display. The I I

other registers are named Y, Z, |

I X
<

N
3

and T (top), as shown here.

Each register holds one full-precision number.

To see the contents of registers Y, 2, and T,

you can rotate the stack downward using the R#¢

(roll-down) key, which will be written as RDN here.

Each press of RDN rotates the stack contents down

one level, with the displayed number (in X) moving

to the top of the stack. To see how this works,

load the stack like this:

4 ENTER 3 ENTER 2 ENTER 1

The stack now looks like this:

o
o

W
e

X
<
K

N
3

although only the 1 in X is visible.

Now consider what happens as you press RDN four

times:

xX
<K

N
3

Each number in the stack is displayed in turn,

until the original number returns to the display.

At this point the stack is back in its original

State.

Tip: pressing RDN four times is an easy way to

review the contents of the stack without disturbing

it.

Another stack manipulation function is x<vy,

which will be written here as X<>Y. This function

exchanges the contents of the X and Y registers.

Tip: press X<>Y twice if you want to check the

contents of the Y register before executing a two-

number function. The first X<>Y shows you what was

in Y, and the second X<>Y puts things back where

they were.

Some HP calculators, including the HP-11, 15,

and 16, have a RT (roll-up) function that rotates

the stack upward, with the contents of register T

going to X. If you want to rotate the stack upward

but you do not have a RT function, press RDN three

times instead.

The ENTER key duplicates the contents of X

into Y. The number that was in Y is pushed into Z,

and the number that was in Z is pushed into T.

(The number that was in T is lost.) After you

press ENTER, the calculator is prepared to accept a

new number which will replace the original copy of

the number just ENTERed into Y.

For example, you loaded the stack for the RDN

example by pressing 4 ENTER 3 ENTER 2 ENTER 1.

Each numeric entry went into the X register, and

each ENTER duplicated the preceding entry in the

stack:

T101 1ol 1ol 101 1ol | 41 141T
Zz 1ol 1ol 1ol .41 141 131 131z
YL 0Ol 1 41 1. 41 1.31 1.31 121 121%
X141 1. 41 1.31 1.31 121 121 111%
4 ENTER 3 ENTER 2 ENTER 1

Note: you may review the stack using RDN after a

number entry, but not after ENTER.

2.5 How the Stack works during calculations

The most important point to remember when

using RPN is that the numbers must be in position

before you try to perform the operation. For exam-

ple, to divide 34 by 8, you would first press

34 ENTER 8

to load 34 into Y and 8 into X. (Note that for

division the position of the numerator in the stack

is above the denominator. This is the same as

writing a fraction on paper.) Next you would press

¢ (written / here),

the division key, to get the result, 4.25.

The ENTER key is not always needed to position

a number in the Y register. In fact, the ENTER key

is only needed when you either have to make a

second copy of a number or when you have to sepa-

rate two numbers that are being entered from the

keyboard.

If you have the result of a previous calcula-

tion displayed in the X register, that result is

automatically pushed up into the Y register when

you start to key in a new number. Similarly, the

numbers in Y and Z are pushed into Z and T, respec-

tively. When you execute a two-number function,

the stack drops automatically. The number that was

in Z moves to Y. The number that was in T is

duplicated into both T and Z. This automatic lift-

ing and dropping of numbers in the stack is the key

to the calculator'sefficient and easy-to-use meth-

od of handling intermediate results.

-19-

An example should make this more clear. Con-

sider the problem (4+5)*(12-7) that you worked

earlier. You may want to start with

0 ENTER ENTER ENTER

to clear the stack if you plan to use RDN to check

the stack as you go. 1In fact, clearing the stack

is never necessary prior to starting a calculation

unless you are worried that leftover results may

confuse you. (They will notconfuse the machine.)

Here is a step-by-step trace of the stack

contents during the calculation of (4+5)*(12-7):

T T T T T T T T NTN T A T T O
z L 1lT1er1erl_11 1 z
Y oL l.al 1.4l 11 1. 91 1121 1121 1. 91 |__1 ¥
X 1.4l | 4l 151 1.91 1121 1121 171 1.5 1451 X

4 ENTER 5 + 12 ENTER 7 - *

Registers not shown may contain any previous re-

sults or other data. It does not matter since

these numbers play no part in the calculation.

In this example, notice that when you keyed in

the 12, the previous result 9 was automatically

pushed into Y. It remained "floating" just above

the 12 until it was needed for the final multipli-

cation. Study this example until you understand

it completely.

The concept of intermediate results floating

in the stack above current calculations is the

essence of the RPN calculation process.

The intermediate results are automatically

held in the stack. They are returned to the calcu-

lation as needed on a last-in, first-out basis.

-20-

Try a few examples on your own to convince

yourself that the intermediate results will always

be where you need them when you need them in the

later stages of the calculation.

example:

3% (27-1)

(6*7)+(4/12)

Here is one more

The stack is shown horizontally here for conve-

nience. This step-by-step listing is a powerful

method for analyzing the usage of the stack.

Function X

2 2

ENTER

7 7

yX 128

1 1

- 127

3 3

* 381

6 6

ENTER 6

7 7

* 42

4 4

ENTER 4

12 12

/ 0.33

+ 42,33

/ 9.00

All calculators,

128

127

381

381

42

4

4

42

381

381

whether RPN or Algebraic,

381

381

381

42

42

381

381

381

T

381

381

381

381

381

use a

stack. Algebraic machines store each pending oper-

ation and the numbers associated with it.

-21-

With

RPN, there are no pending operations, so only num-

bers need to be stored in the stack. The other

difference is that on Algebraic machines, you have

no access to the stack. You just have to hope you

put the parentheses in the right places. With RPN,

you are in full control at all times.

2.6 The LASTX register

In addition to the four stack registers, your

calculator maintains a copy of the number that was

in X the last time you executed a numeric function.

This copy is kept in a register called the LASTX

register. You may be thinking: "What use is this

LASTX register? It must not be very important, or

I would not have been able to get this far without

knowing aboutit."

While it is true that the LASTX register is

not necessary for calculation, it can save you time

and frustration. The LASTX register has two uses.,

First, it can save you from having to re-enter the

same number twice. For example, if you are calcu-

lating sin(6.24) * tan(6.24/2), youcan press

6.24 SIN LASTX 2 / TAN *

The LASTX gives you a copy of the number that was

in X the last time you executed a function. 1In

this case, it was 6.24 when SIN was executed. This

number can then be used just as if you had keyed it

in by hand.

The second use of LASTX is to correct mis-

takes. Since we never make mistakes, we can forget

this use...

Seriously, suppose you had accidentally

pressed the COS key instead of the TAN key in the

last example. Youcouldpress

-22-

RDN

to get rid of the result cos(6.24/2), then

LASTX

torecover the argument 6.24/2, then

TAN

to complete the correction of the error.

If youpressanincorrect two-number function,

the recovery procedure is one step longer. For

example suppose you want to divide 34 by 8, but you

accidentally subtract instead:

34 ENTER 8 - Wwhoops!

Now you have 34-8 in X. To recover 34 in Y and 8

in X, you must press

LASTX +

to undo the subtraction and put 34 in X, then

LASTX

again to put 8 in X and push 34 into Y. Now if you

press

/ (the < key)

you will get the desired result 34/8 = 4,25,

2.7 Data Storage Registers

Your calculator has several registers that are

for your use to save constants, results of earlier

calculation, or any other numbers you need to

store. These registers are never disturbed by the

calculator; they can only be accessed by direct

STO (store) and RCL (recall) commands.

Your Owner's Manual has the details on storage

registers for your machine. The principle is sim-

ple. If you want to save a value from the display

(X-register) in dataregister number 0, just press

STO O

-23=-

If you want to recover a value that you saved

earlier in register 5, press

RCL 5

What could be simpler?

If you make frequent or extensive use of data

registers, it is a good idea to keep notes of what

number is stored where. This can save you a bit of

frustration as you search for that number you just

stored a few minutes ago.

Since the HP-45, HP calculatorshave had stor-

age register arithmetic capability. For example,

to add 5 to register 3, you would press

5 STO+3 .

Using the other three arithmetic operations you can

subtract a number in X from a register, multiply by

a number in X, and divide by a number in X.

The HP-11C, 15C, and 16C have a special

index register, designated I. (This is not to be

confused with the interest register on the HP-12C,

designated i.) The index register is used for

advanced features like indirect addressing and loop

control, It is accessed just like any other

register, by STO I and RCL I.

2.8 Fancy Functions

Your calculator has some complex functions

that mimic similar functions on computers. Their

structure is often hybrid, partly algebraic and

partly RPN. For example, DSE (Decrement and Skip

if Equal), a function which will be covered in

section 4.2.6, uses an operand (a register number)

that is keyed in after the DSE. This is reminis-

cent of algebraic logic. However another operand

is given before the DSE, because the contents of

-24-

the register must be prepared before the DSE is

executed.

Chapter 4, which introduces the subject of

programming, covers this class of functions., If

you do little or no programming, you will not need

to learn all about these functions, but at least

you will get an idea what all those extra functions

on your keyboard are good for.

-25-

CHAPTER 3

Calculating in Reverse Polish Notation

-27-

3.1 Introducing the Hewlett-Packard RPN machines

If you are reading this book, you probably own

or have the use of a Hewlett-Packard (HP) calcula-

tor. All HP calculators use Reverse Polish nota-

tion, except the HP-71B.

The HP's first scientific calculator was, of

course, the HP-35, introduced in 1972. Since then,

many more modelshave come andgone: the HP-45, 80,

55, 65, 67, 70, 91, 92, 97, 10 (the handheld prin-

ting calculator), 19, 29, 21, 22, 25, 27, 29, 31,

32, 33, 34, 37, and 38, Some of the later models

have carried the designation C, indicating Contin-

uous Memory. Since these models are no longer

available, I will not describe them here. If you

have one of them, consult your Owner's Manual for

details of its use.

This book is designed primarily for users of

the popular new Series 10 calculators. However,

users of the HP-41 or of one of the older HP calcu-

lators will be able to use the techniques described

here with just a few variations.

3.1.1 Series 40

The HP-41C, CV, and CX are very advanced pro-

grammable calculators. Their alphanumeric display,

keyboard redefinition capability, and advanced

programming features provide a wonderful combina-

tion of convenience and power.

If you currently own a Series 10 calculator,

this book will help you get the most out of your

machine. But if you ever decide that you really

need something more powerful, take a look at the

HP-41.

-29-

3.1.2 Series 10

The Series 10 machines are HP's first horizon-

tal format calculators. They differ from their

predecessorsin two importantrespects., First they

are much thinner, so they can be carried in your

pocket without filling it completely. Although

details vary from one machine to the next, all the

Series 10 calculators share the following features:

The liquid crystal display occupies the upper

left portion of the calculator. It is placed

slightly to the left to allow room for the batter-

ies.

The numerical keypad is on the right side. It

includes the digits from 0 to 9 and the four arith-

metic operations.

The function area occupies the left side of

the keyboard. Also, because of the shift keys,

there are functions associated with the numeric

keys as well.

The back side of the machine has a label with

some usefulinformation forquickreference.

3.1.3 Special features of each model

HP-10C

As of March 1984, the HP-10C is no longer

being manufactured. It was the least expensive

Series 10 model, and a successor to the HP-25 and

33. 1Its programming capability is limited, but it

is excellent for day-to-day calculations. Like the

other Series 10 machines, it has continuous memory.

This means that all the numbers and program

instructions in the machine, plus the display set-

-30-

ting and other key statusinformation are preserved

when you turn the machine off.

HP-11C

This very popular machine is now the least

expensive HP calculator available. Itisneverthe-

less quite powerful, with hyperbolic functions, a

random number generator, 203 bytes of memory, and

the very useful backarrow (digit entry correction)

key. The 11C is eminently suitable for students

and engineers who are willing to pay for quality

and who do not need the advanced features of the

HP-15 or HP-41.

Unless you use them, advanced functions merely

clutter the keyboard, making the functions that you

do use harder to find. The simplest machine that

fills your current and projected needs is the best

choice.

HP-15C

The most powerful Series 10 machine, the HP-

15C has enough functions to upset a mathematics

teacher! Root finding, integration, advanced ma-

trix and complex number operations, and lots of

memory make this machine well worth the additional

cost compared to the 11C. As an example of the

power of these functions, you can multiply all the

elements of an 8x8 matrix by 7 in under 5 seconds.

You can invert the same matrix in 70 seconds.

Most of the HP-15's advanced functions are not

even available as built-in functions on the HP-41!

If you think you will be able to use these func-

tions, the 15C is a good choice for you.

-31-

HP-12C

This is the financial model of the series,

suitable for the day-to-day business calculations

of bankers, insurance agents, and real estate

agents. The HP-12 succeeds earlier financial cal-

culators made by HP, providing essentially the same

functions in a much more compact package. The 12C

has a modest provision for programming (99 bytes

total for data and program). This machine is the

only one that uses the BEGIN annunciator which you

can see in the display of any Series 10 machine

after executing one of the self-test sequences

described in the Owner's Manual.

HP-16C

This calculator is designed especially for

those people who do a lot of work with computers.

Computers typically manipulate numbers in binary

(base 2) or hexadecimal (base 16). The HP-16 ex-

cels at these manipulations. It can add, subtract,

multiply, divide, and much more in four number

bases. (Base 8 is thrown in to deal with unusual

computer systems, and base 10 is provided for hu-

mans.) The HP-16 makes it easy to debug computer

programs when, for example, a printout lists the

location of the error in hexadecimal. This machine

is also a great toy for "bit fiddlers."

3.1.4 Common features, limits

The basic principles of RPN introduced here

apply to all HP RPN calculators. Although the

examples may be geared to the Series 10 machines,

they are easy to adapt to your particular machine.

Just consult your Owner's Manual if you are in

-32-

doubt as to how to do this.

Besides their shape, continuous memory, and

Reverse Polish Notation, the Series 10 machines

have flexible memory allocation. Youcan allocate

part of the memory as data registers and part as

program steps. One register equals 7 program steps

(except on the HP-16C, where registers can be dif-

ferent sizes). In effect, you can trade a few data

registers for more program space, or vice versa.

The amount of program steps in memory determines

the program allocation; everything left over is

available as data registers (including matrix and

complex stack data on the HP-15C). So don't be

misled by the 448 program steps advertised for the

HP-15C. First consider the impracticality of key-

ing in such a long program. Second, you will need

quite a few data registers to be able to use the

advanced matrix operations.

Now a few points of operating philosophy. The

Series 10 machines are handheld calculators de-

signed first and foremost to perform manual calcu-

lations quickly and efficiently, and incidentally

to run a program. Programs are simply a means of

customizing your calculator by adding supplementary

and specific functions.

The Series 10 machines cannot becompared with

BASIC microcomputers, because BASIC machines are

very poor tools for manual calculations. They are

instead designed primarily to run programs, and

they succeed very well in that respect. This dif-

ference between RPN and BASIC machines permeates

all the architectural and operational aspects of

the machines. The keyboard layout of an RPN ma-

chine has function keys that allow you to execute

functions with a very few keystrokes. BASIC ma-

-33-

chines require you to spell out the name of each

function you use. (The HP-41 is an intermediate

case in which only the frequently used functions

are directly available on the keyboard.) Program

organization and executiondiffersgreatly between

the two types of machines, as well.

With the Series 10 you have a very smooth,

tactile feedback keyboard whichrelieves you of the

need to check the display as you press the keys.

There is, however, no alphabetic display capabil-

ity.

The main disadvantages of programming on the

Series 10 machines are that the program length is

limited and the program execution is slow. The

main advantages are that there is no programming

language to learn, and that for simple problems you

can often get a result faster than you could, for

example, using BASIC.

3.2 How to approach a calculation

3.2.1 Formulas

Suppose you wish to evaluate the quadratic

formula

- -b + (b%-4ac)l/2
2a

where the values of a, b, and ¢ are known.

X

There are two possible ways to evaluate this

formula. The "brute force" approachis to proceed

from left to right. A more natural approach is to

work the problem starting from the inside and wor-

king outward.

Here's how the "brute force" approachworksin

-34-

RPN :

b CHS ENTER x2 4 ENTER a * c * -

SQRT + 2 ENTER a * /

For example: a=-1, b=2, c=3 gives x=-1.

stroke sequence makes use of one trick:

of b.

(—b)2 is the same

status of the stack during the calculation.

 Function LASTX

b -

CHS -

ENTER -

x2 -b

4 -b

ENTER -b

a -b

* a

a

C

- 4ac

SQRT b2-4ac

+ R

2 R

ENTER R

a R

* a

/ 2a

Abbreviations used:

don't care

(b2-4ac)l/2R

as b2.

X

4a

dac

b2-4ac

-b+R

2

2

a

2a

-b+R/2a

-35-

Now let's look at the

Y z

This key-

after the

first ENTER, you don't have to re-enter the value

The value -b is already in the display, and

(-
3

Because all 4 levels of the stack are used, the

value -b is duplicated from register T as the stack

drops. This causes -b to be left in stack regis-

ters T, Z, and Y at the completion of the calcula-

tions. With a more complicated formula, you could

easily exhaust the capabilities of the 4-level

stack if you attempted to proceed directly from

left to right. Unless you were very careful not to

push data off the top of the stack, your result

would be incorrect.

This illustrates a danger of the left-to-right

method. Besides being dangerous and difficult to

follow, this left-to-right method is inefficient.

Let's look at the inside-out method:

4 ENTER a * c * CHS b x2 + SQORT b - 2 / a /

This is only one step shorter than the left-to-

right solution, but if you investigate the stack

usage, you will see that only the X and Y registers

are used. This makes the process easier to follow.

In fact, this is by far a more natural way to

proceed. Each value is keyed in only when it will

be used immediately for a calculation. This is

exactly the way you would proceed when doing a

pencil-and-paper calculation. The last few steps

of this keystroke sequence illustrate another help-

ful technique. The multiplication in the denomina-

tor is performed as a sequence of divisions, rather

than a multiplication followed by a division. This

avoids raising the stack.

The real power of the inside-out calculation

method is the speed with which it can be used "on

-36-

the fly", when you perform calculations without

writing equations.

3.2.2 Calculating "on the fly"

Suppose you want to calculate how far away a

satellite is when it is 5 degrees above the horizon

as seen from an earth station. You know the radius

of the earth is

r, = 6378 kilometers.

For this example, assume that the satellite is in a

circular orbit at an altitude of

h = 800 kilometers.

The figure below shows the triangle formed by the

center of the earth, the satellite, and the earth

station's location on the earth's surface. The

line from the earth station to the satellite is 5

degrees above a tangent, so that the satellite

appears5 degrees above the horizon.

Satellite

Earth

Station

Earth

Center

-37-

It is clear from the figure that enough infor-

mation has been given to compute the range r from

the earth station to the satellite. However, as is

typically the case in real problems, the formula

needed to compute the result is not simple.

There are at least two ways to proceed. The

simpler way is to use the law of sines:

a — b c

sin A sin B sin C ’

where a, b, and c are the three sides of a triangle

and A, B, and C are the angles opposite sides a, b,

and c, respectively. If you were to spend a minute

or two with pencil and paper, you could probably

come up with the formula:

r=(ro+h)sin(180-95-sin™1(r(sin 95)/(rg+h)))/sin 95.

With an RPN calculator, you don't have to work this

way. Instead, youproceedstep-by-steptoward the

solution using nothing more than the law of sines

formula. Yousaveseveral minuteseven before you

start!

To get the value of r, you will need to know

the opposite angle (at the center of the earth).

You can find the size of this central angle by

first computing the size of the other two angles in

the triangle, then taking account of the fact that

the three interior angles of a triangle add up to

180 degrees.

The interior angle at the earth station is 95

degrees, 90 degrees from the vertical to horizon-

tal, plus 5 degrees elevation. The law of sines

can be used to find the interior angle tg at the

-38-

satellite:

(re+h)/sin 95 = r./sin tg, or

tg = sin™l(ro/((rg+h)/sin 95))

The value of the ratio (r +h)/sin 95 will be needed

to apply the law of sines after you have computed

the earth-center angle, so you should store it in a

dataregister. The keystroke sequence is

6378 ENTER 800 + 95 SIN / STO 1

6378 x<>Y / SINT1
The result is 62.3 degrees. Next, compute the

earth-center angle

te = 180 = 95 - tg4

The keystroke sequence, with tg still in the dis-

play, is

180 X<Y - 95 -

The result is 22.7 degrees. Now, to get the range

to the satellite, note that the law of sines gives

r/sin t. = (re+h)/sin 95, or

r = (sin tc)*(re+h)/sin 95

The keystroke sequence, with t, in the display and

(rg+h)/sin 95 in register 1 is

SIN RCL 1 *

The result is 2784 kilometers. The most striking

feature of the RPN solution to this real problem is

that no elaborate manipulation of equations was

required. Yousimply proceeded one step at a time,

using formulas simple enough that youreally didn't

evenneed to write them down.

In addition to helping you avoid detailed

equations, this procedure gives you more confidence

in the result. You get to see and check the inter-

mediate results, rather than having the whole thing

evaluated at once when you press an = key.

-39~

3.3 Advanced uses

Is it necessary to know how to perform very

long calculations on these machines? Not if you

don't want to. Any long calculation consists of a

series of shorter calculations. If you were using

pencil and paper, you would do each calculation,

writing down the results. Then you would use these

intermediate results to compute the final result.

It's the same with RPN calculators. You can

compute each intermediate result and use the STO

(store) function to put the result in one of the

calculator's data registers. Whenever you need

that intermediate result, RCL (recall) brings it

back from storage. In addition to using the calcu-

lator's storage, it is a good idea to write down

the first few digits of each intermediate result in

case you forget which register you used to store a

particular intermediate result. Remember, a calcu-

lator does not completely replace your pencil and

paper. It merely provides faster, more accurate

results.

Remember when using pencil and paper as a

memory aid that the calculator's data registers

contain the full-precision intermediate results.

The display setting (FIX 2, for example), rounds

the displayed value, but not the internal value.

For maximum accuracy, approximate on the final

result, and on the final result only. Do not round

or re—key any of the intermediate results.

If you make a mistake during a calculation,

you should either use the LASTX capability to cor-

rect the mistake (if you can do so carefully enough

to avoid altering stack registers Z and T), or you

-40-

should redo the calculation from the beginning. 1If

the calculation is important, you should probably

do it a second time as a check anyway.

When you are doing long calculations, it is

impractical to start over after a mistake. The

simple solution is to break the calculation into

several parts. Write down and store the exact

results from each part, so that you will never need

to redo more than one portion of the calculation.

Another solution to the problemof long calcu-

lations is to write a program to perform the calcu-

lation. This is the best approach if you will have

to do the same calculation more than a few times.

-4]1-

CHAPTER 4

Reverse Polish Notation programming

-43-

4.0 Keystroke sequence or program?

The Owner's Manuals all explain that a program

is merely the same series of keystrokes that you

would use to solve the problem by hand. When you

run a program, the calculator executes the same

internal ("microcode") instructions that it would

have executed if you performed the calculation one

keystroke at a time. There are, nevertheless,

three differences. These are: memory usage, flow

control instructions, and preparation time

4.1 First difference: Memory Usage

You saw in the last example of Chapter 3 that

it is often necessary to use the same value twice

in a calculation. The simple solution is to store

the value in a data register for later use.

If you use more than two memories, it starts

togetdifficult toremember which value was stored

where. With a program, the program's development

(figuring out the correct keystroke sequence) is

separate from its utilization. This makes it much

more practical to write down on a piece of paper

the role of each data register. For example (R

means register):

Rp = radius of the earth

R; orbit altitude

R2 I elevation angle

When you are doing a calculation manually, it

is most convenient to key in each number as it is

needed. However when you utilize a program, it is

more convenient to key in all the data before

starting the program, so that the program does not

-45-

have to halt to let you key in more data. For this

purpose, the RPN stack isinvaluable. For example,

if you were utilizing a program to compute the dis-

tance to a satellite, you might want it to be

usable by pressing

earth radius ENTER orbit altitude

ENTER elevation angle

to load the necessary data into the stack. The

order in which you enter the numbers is important,

because the program can only identify each number

by its position is the stack. If this is a con-

cern, you can construct the program so that the

initialization for each usage is done with data

registers. For example,

earth radius STO 0 orbit altitude STO 1

elevation angle STO 2 .

This is the only way you can initialize a multi-

input program on a non-RPN machine, and some people

feel more comfortable working this way. However

the ENTER method of initializing the program saves

one keystroke per entry, and is the approach most

often used by experienced RPN programmers.

Once vyou have all the data in the stack, you

can review it by pressing the roll-down key 4 times

before starting the program. The X<>Y key or RT

key (if available) can also be used to review the

stack. Be sure to put the stack back in its origi-

nal configuration before you start the program!

Depending on its complexity, the program can

use the data directly from the stack or store it in

data registers first, using a sequence like

LBL A (allows you to start the program by

pressing the A key.)

STO 2 Store the elevation angle.

RDN Roll down the stack.

-46-

STO 1 Store the orbit altitude.

RDN Roll down the stack.

STO O Store the earth radius.

Sequences like this are commonly found at the be-

ginning of programs. Their only purpose 1is to

simplify the use of the program.

4.2 Flow control instructions

Flow control instructions, which have no use

except in programs, include labels, stops, bran-

ches, tests, and counting instructions.

The P/R (program/run) key allows you to enter

and leave program mode. When you switchinto pro-

gram mode, the calculator displays one line of the

program. This position in the program is simply

the location where the machine stopped the last

time the program was run. The calculator keeps a

record of this position in continuous memory. The

internal register in which this position is kept is

called the program pointer register. You can vi-

sualize the program pointer as an arrow pointed at

the current line of a program, that is, the line

that will be executed next.

Because the display lacks alphabetic charac-

ters, each line is represented by a numeric code.

Each two-digit number of this code represents one

keystroke. The first digit is the row number of

the key, and the second digit is the column number

(0 indicates the tenth column on the Series 10

machines). Decimal digits are shown shown by their

own values, 0 through 9 (one digit only).

While in program mode, any keys that you press

will be inserted into the program following the

line in the display. The program can be reviewed

-4-

one step at a time by pressing the SST (single-

step) key, or continuously if you hold the key.

The BST (back-step) key allows you to go backwards.

Line 000 is a place-holder at the top of the pro-

gram., It is needed to allow you to insert new

instructions in front of the first instruction in

the program.

4.2.1 Labels

Label instructions (LBL n) on the HP-11, 15,

and 16 allow you to mark positions in a program, so

that you can quickly get to the start of important

sections of the program. Alphabetic labels like

LBL A permit single-key execution of sections of

your program. See your Owner's Manual for details.

The number of available labels varies with the

power of the calculator, but you should find the

number quite reasonable compared to the maximum

program size that the calculator allows.

On the HP-10 and 12, no labels are provided

because of the limited program size. (Each label

uses one program line.) Instead of using labels on

these machines, you must refer to positions in the

program by line number.

4.2.2 Run/Stop

The Run/Stop function (R/S) stops a running

program. If the program is not running, R/S will

start it running at the current line.

The SST (single-step) and BST (back-step) keys

allow you to review the program one step at a time

in program mode. In run mode, the SST key allows

you to execute the program one step at a time. If

-48-

you hold down the SST key, the current line of the

program will be displayed. The instruction 1is

executed when yourelease the SST key. (0On the HP-

15 in matrix mode, and on the HP-41, you can abort

the execution of the line by holding the key.)

The PSE (pause) instruction stops the program

for a second or so, displaying the contents of the

X register.

4.2.3 Branching

The GTO (go to), GSB (go subroutine), and RTN

(return) instructions allow you to jump to any

location in the program.

GTO, followed by a 1label name (on the HP-11,

15, or 16) or a line number (on the HP-10 or 12),

jumps the program pointer to the designated label

or line. This works the same from the keyboard or

in arunning progranm.

GSB, followed by a 1label name or line number,

works differently from the keyboard than it does in

a running program. From the keyboard, it starts

running the program at the designated label or

line. In a running program, it inserts the execu-

tion of the named subroutine in the main program.

For alphabetic labels, the GSB can sometimes be

omitted. See your manual for details.

4.2.4 Test Instructions

One of the most powerful features that you can

put in a program is conditional execution. Depen-

ding on the outcome of a certain test, different

segments of the program can be executed. This

-49-

allows you to apply a different formula over dif-

ferentintervalsof variable values:

true '

| false | Apply formula 1 |

I I

v I

l

|

| Apply formula 2 |

l

|

| Continue here |

| in either case]l

On the HP-11C, the test instructions X<Y, X>Y,

X#Y, X=Y, X<0, X>0, X#0, and X=0 are available.

The other Series 10 machines have similar test

instructions. Twelve tests are available on the

HP-15. The test instruction causes the following

line to be executed if the test is true, ana

skipped otherwise. Usually the line following the

test instruction is a GTO instruction. For exam-

ple:

Instruction Effect

X=0 If x=0,

<{-- GTO 9 then skip to LBL 9.

I ces Otherwise ignore the GTO

| cee and continue with this

I cee block of instructions.

I cee

--> LBL 9 (This would be line 09 on

the HP-10C or 12C, since

they do not use labels.)

-50-

Suppose you were trying to write a program to

compute the complex roots of any quadratic equa-

tion. Dependingcnlwhetherb2-4acisposfljve,you

have to apply different formulas. Without the

conditional execution capability that testinstruc-

tions give you, your task would be terribly compli-

cated.

If your problem has the structure shown in the

following flowchart, it is convenient to use a GSB

instruction instead of a GTO following the test.

true

v
| false | Do this |

| o I

v

| Continue here |

| in either case |

An even greater simplification is possible if you

only need to conditionally execute a single in-

struction. Then instead of using a GSB instruc-

tion, you can substitute the actual single instruc-

tion you want to execute if the test is true. For

example, suppose you want a program to treat all

negative inputs as zero. The sequence

X<0 If x is negative,

CLX then substitute zero.

placed at the beginning of the program, will do the

job. (On the HP-15, use TEST2 for X<0.)

Tests cansometimes be used in even more clev~-

er ways. Forexample, the sequence

-51-

enters the value 1.0 if x is zero, 0 if x is not

zero. The sequence

X>Y

1/x

*

performs division if x is greater than y, multipli-

cation otherwise.

Tests for equality should be used with care.

The problem is that values which should be equal

are sometimes very slightly different due to

rounding errors. For example, if you compute the

SIN of PI in radian mode, you will find that the

result is -4.1 x 10710, 0Of course the expected

answer is zero. But in fact the PI that your

calculator uses only represents the first 10 digits

of PI.

If you are working with values that may con-

tain roundoff error, do not demand strict equality.

Instead, round the numbers first if your calculator

has a RND (round) function, or use an inequality

test. For instance, in the sine of pi example, you

could test whether the absolute value of x is less

than 10~8, These cautions against demanding exact

equality apply even more strongly to a test used to

control a loop. For example if you use the se-

guence

LBL A

-52-

an "infinite loop" will occur if x does not become

exactly zero.

4.2.5 Flags (HP-11C, 15C, and 16C only)

A flag is a yes/no indicator that can be

initialized either by you or by the status of the

calculator. The "yes" and "no" states of the flag

arereferred to as "set" and "clear", respectively.

Flag 8 on the HP-15C is an example of a status

flag. Whenever you perform a complex number opera-

tion, the calculator sets flag 8 and lights up the

"C" annunciator in the display. This indicates

that the complex number mode is active. Similarly,

if you use SF 8 to set flag 8 directly, the complex

number mode and annunciator are also activated.

The instruction CF 8 (clear flag 8) de-activates

the complex number mode.

Other HP machines have different numbers of

flags. The HP-41 has 56. Flags may be set (SF n),

cleared (CF n), or tested (F? n), where n is the

number of the flag.

The most important use of flags is to allow

delayed conditional execution. For example, sup-

pose you want the program to subtract 2 from X if x

is greater than y. The difficulty is that the X

and Y registers are not set up properly for sub-

tracting 2 at the time the comparison of x and y is

made. This problem can be easilyovercome by using

aflag:

SF O Make sure that flag O

is set to start.

X>Y If X is greater than Y,

CF 0 then clear flag 0.

Otherwise flag 0 stays set.

-53-

F2 0 I1If flag 0 is set,

CLX change the 2 to zero.

- Subtract 2 if X was greater

than Y, zero otherwise.

Flags can also provide mode selections for your

programs. For example, you can use a flag to

control whether intermediate results are displayed:

F?2 1 I1f flag 1 is set,

PSE then pause and display X.

coe Otherwise do not pause.

4.2.6 Counting instructions

4.2.6.1 1SG and DSE

The most powerful conditional execution in-

structions on Hewlett-Packard calculators, inclu-

ding the Series 10 machines, are the loop control

instructions. You have already seen how to con-

struct a loop using a label at the top of the loop

(except the 10C and 12C), and a test instruction

followed by a GTO at the bottom of the loop. 1If

you use a counter to control the loop, you can

subtract 1 from the value of the counter each time

through the loop, and continue until it reaches

zero:

14 Execute the loop 14 times.

STO 1 Store initial counter value.

--> LBL 0 Top of loop

I oo

I cee Main body of instructions

I oo in the loop

-54-

RCL 1 Recall the counter,

I

I

| 1 subtract 1,

| -

I STO 1 and store the new value.

| X>0 Until the counter becomes zero

<{-- GTO O continue the loop.

The ISG (Increment and Skip if Greater) and

DSE (Decrement and Skip if Equal) instructions

provide a much more compact way of implementing

this type of looping. In fact, the preceding exam-

ple reduces to thissimple sequence:

14 Execute loop 14 times.

STO I Store initial counter value

in the index register.

--> LBL O Top of loop

I cee

l cee Main body of instructions

| .o in the loop

| cee

I DSE Decrement and skip if zero;

<-- GTO 0 otherwise continue the 1loop.

If you are using an HP-15C, use DSE I in place of

DSE. On the HP-11C, the ISG and DSE instructions

do not need a register number, because the index

register "I" is always used.

The counter used by the ISG and DSE instruc-

tions has the form nnnnn.xxxyy, where nnnnn is the

current value of the counter, xxx is the limit

value, and yy is the increment. If the increment

Yy is zero, the default value of 1 is assumed.

wWwhen the calculator encounters an ISG instruction

in a program, it adds yy to nnnnn. If the new

-55-

value of nnnnn is greater than xxx, the next in-

struction (usually a GTO) is skipped.

DSE works similarly, except that yy is sub-

tracted from nnnnn, and the next instruction is

skipped if the new value of nnnnn is equal to or

less than xxx.

On some HP calculators, including the HP-16C,

the ISG and DSE instructions are replaced by the

simpler ISZ (increment and skip if zero) and DSZ

(decrement and skip if zero) instructions. These

work similarly to ISG and DSE. The xxx and yy

fields are ignored. ISZ adds one to the number in

the index register and skips if the result is

exactly zero. DSZ subtracts one and skips if the

result is zero.

When you want to use the value of a counter

within the loop, be sure to strip off the xxxyy

portion by following the RCL instruction with an

INT instruction.

4.2.6.2 Plain counting

When you want to execute a loop 10 times, you

can use the DSE (or DSZ) instruction as shown in

the example on page 53. The sequenceis

10 Execute the loop 10 times.

STO I

LBL 0

[instructions to be performed 10 times]

DSE (use DSE I on the HP-15)

GTO O

[remainder of the program].

The counter value in register I starts at nnnnn=10.

The limit value xxx is zero, and the increment yy

is 1 (the default value).

-56-

Each time through the loop, the counter value

is reduced by 1 (decremented) and the GTO 0 in-

struction sends the pointer back to the top of the

loop (LBL O). The counter value becomes 9, then 8,

7, 6, 5, 4, 3, 2, and 1. The tenth time through

the loop, the counter value is decremented for the

tenth time, from 1 to 0. Since the "equal" condi-

tion (nnnnn=xxx) is now satisfied, the GTO 0 in-

struction 1is skipped and execution continues

through the rest of the program.

If a premature ending of the loop is needed, a

good solution can be 1 STO I. This sets the coun-

ter to 1, so that the GTO 0 instruction at the

bottom of the loop will be skipped. Note that CLX

will work aswell as1l with DSE, but not with DSZ.

Some programs may require a variable number of

loop executions according to the internal condi-

tions in the loop. You can use STO I to change the

counter as needed. Sorting programs usually need

this kind of approach. It gets a 1little tricky

sometimes, but it can be done.

4.2.6.3 Counting between two values

In this case the loop is to be repeated a

certain number of times, but the counter must take

values different from the loopnumber. The counter

register has to be initialized with xxx as well as

nnnnn fields. The yy field is only needed if an

increment other than 1 is desired. Note also that

the ISZ and DSZ functions provided on some HP

calculators do not allow this type of looping to be

implemented directly.

-57-

For example, to count from 10 to 15, you would

use a sequence like this:

10.015 Start at 10, stop at 15.

STO I Store initial counter value.

--> LBL O Top of loop

I cee

I .o Main body of instructions

| cee in the loop

| cos

| 1SG Increment and skip if >15;

<-- GTO O otherwise continue the loop.

It is usually a matter of programming convenience

whether you use ISG, counting forward, or DSE,

counting backward.

As another example, suppose you want to count

from 100 down to 50 by 5. You would use DSE with

aninitial counter value of 100.04505. The "equal"

condition is set to 45, so that the loop will still

be executed once more after the counterreaches 50.

To count up from 50 to 100 by 5, use ISG and an

initial counter value of 50.10005.

When the nnnnn or xxx value is the result of a

previous calculation, you should be aware of the

fact that the instructions in the loop will be

executed once even if the final value has already

been passed. If this is a concern, you can test

the counter value with an ISG or DSE instruction

before entering the loop. Another alternative is

to use a structure like this:

LBL A Top of loop.

1SG If final value is not reached,

GTO B then jump to LBL B section.

GTO C Else skip to rest of program.

-58-

LBL B [Instructions to be executed

cee each time through the 1loop]

GTO A Return to top of the loop.

LBL C [Remainder of the program]

Thisdouble-GTOstructure accomplishes the equiva-

lent of a "increment and skip if not greater"”

instruction. There is a slightly less cumbersome

approach that gives the same result. For this

technique, you need to follow the ISG or DSE in-

struction with a test instruction that will always

give a FALSE condition. For example, if the X

register isknown to contain a positive number, you

can use the sequence:

LBL A Top of loop.

ISG If final value is not reached,

X<0 then skip over the GTO C.

GTO C Else skip to rest of program.

coe [Instructions to be executed

oo each time through the loop]

GTO A Return to top of the loop.

LBL C [Remainder of the program]

It may be more convenient to use a flag test for

the "skip" instruction (X<0 here). Any test that

can be guaranteed to yield a FALSE condition will

do the job.

4.2.6.4 Negative numbers

The ISG and DSE instructions have one defi-

ciency: the limit value xxx cannot be negative.

You can count from -50 to 100, but not from 100 to

-50.

The simplest way around this problem is to

-59-

count from -100 to 50 and to use the sequence INT,

CHS before using the counter in a calculation.

However if the counting limits are calculated with-

in the program and are not known beforehand, sol-

ving the problem of a negative limit is much more

difficult. In this situation, it may be best to

abandon the ISG and DSE instructions and use other

methods of loop control.

You will face similar problems if you need a

limit value greater than 999 or an increment great-

er than 99. Fortunately, these constraints on ISG

and DSE arerarely aprobleminnormal programming.

If you ever do need to construct your own

counter, use the loop control technique illustrated

in section 4.2.6.1.

4.3 Constructing a program

There are several types of programs that are

appropriate for a calculator. First are the "dis-

posable" programs -- those that will be used only

once. These are usually very simple, short rou-

tines that do not use looping or other advanced

features. They can be written immediately at the

keyboard. They are typically used to perform the

same operationon many different piecesof data.

Second are general-purpose programs that you

will use more than once. These are usually written

down on paper so that they can be quickly keyed in

when needed.

Finally, don't forget the demonstration pro-

grams intended to impress your friends (provided

that you don't tell how many hours you spent devel-

oping them). Chapter 5 contains some programs of

this sort.

-60-

4.3.1 Instant programs

You will often need short programs to perform

the same calculation several times. The progranm is

a sequence of steps identical to the steps that

would be used to perform the calculation by hand.

No looping or testing is involved.

Here is a typical example. Recently some

fellow teachers and I were correcting 600 copiesof

an examination. Each score consisted of three

parts which totaled to 80 points for a perfect

score. Since the normalized score was to be a

number from 0 to 20, we needed to add the three

scorecomponents anddivide by 4.

This task is certainly not difficult, but when

you are doing it 600 times you should invest a

little time to speed up the process. A simple

programdoes the job:

+ + R/S 4 /

To use this program, take the three components of

the score (call them a, b, and c¢c) and load them in

the stack:

a ENTER b ENTER c .

Then a press of

R/S

provides the raw score out of 80. Another press of

R/S

provides the normalized score out of 20. Any frac-

tional part is rounded up to the next integer, but

this is most quickly done mentally.

This example shows how, with a bare minimum of

programming effort, you can save yourself signifi-

cant amounts of time in simple, repetitive calcula-

tions.

-61-

One note: pressing R/S to start this program

assumes that you are at the top of the program to

begin with. Before you use the program for the

first time, you should press

RTN

in run (non-program) mode to set the program poin-

ter to the top of the program (line 000). After

each time you use the program, the / instruction

will leave the pointer at line 000 again. If you

want this program to co-exist with other programs

in the calculator, you will have to add a RTN

instruction to get the pointer to line 000 after

the / instruction (see section 6.17).

Even for short programs like this, it makes

sense to write the program down on paper and to

test it once using SST. But for the quickest

results, avoid trying any fancy stuff. Using the

stack for inputs and results is highly recommended,

because it simplifies the usage of the program.

Then, as long as there are no more than 4 inputs

and 4 results, you won't have to stop the progranm.

4.3.2 More elaborate programs

Now let's consider the quadratic equation

example from Chapter 3. It may not be the most

useful example, but it should at least be familiar

to you. From the calculation example of section

3.2.1, we can write a simple program:

LBL A 4 ENTER R/S STO 2 * R/S * CHS

R/S STO1 x2 + SORT RCL1 2 / RCL 2 /

Notice that we have substituted R/S for the letters

a, b, and c. At each R/S instruction, the program

stops so that you can key in the appropriate value

(a, then ¢, then b). After keying in each value,

-62-

you have to press R/S to restart the program. The

STO and RCL instructions have been introduced to

avoid the need tore-enter the same data.

Running this program is a fairly tedious un-

dertaking. First you press GSB A to get the pro-

gram started. Then the program stops for you to

key in the value of a (-1 in the example from

Chapter 3, so press 1 CHS). You press R/S to

restart the program, and it stops again for you to

input the value of ¢ (3 in this example). Another

press of R/S and the calculator stops again for the

value of b (2 here). Press R/S again and the

result finally appears: -1.

This method of programming, while it is very

much like what non-RPN calculators force you to do,

is not usually necessary on RPN calculators. The

order of data entry is not natural, errors during

data entry can disrupt the calculation, and the

continual starting and stopping is annoying.

Let's try to rewrite this program assuming

that the user of the program will introduce all the

data at the beginning, using the very reasonable

sequence:

a ENTER b ENTER c

This makes the programming job a little more diffi-

cult because now the data has to be extracted from

the stack. But you only have to write the program

once; you have to use it a great number of times.

Therefore it makes a lot of sense to make the

program easy to use.

At the beginning of the program the stack will

contain c¢c in X, b in ¥, and a in Z. The value c is

used only once (to compute 4ac), so it doesn't make

sense to store c in a register. A reasonable first

operation for the program is then to roll down the

-63-

stack to get to the value b, which needs to be

stored for later use. Since b2 is needed before b,

an x2 instruction is appropriate here. So far we

have the steps

RDN STO 1 x2,

after which the stack contains:

T =c

Z = don't care

Y = a

X = b2

LASTX = b

and

Rl = b

Next we need to save the value of a and subtract

4ac from b2. This is easy to do with these steps:

X<>Y STO 2 RT * 4 * - |

The RT brings the value of ¢ back into the X regis-

ter. On machines without a RT (roll-up) function,

you can use three roll-downs instead.

The registers now contain:

T

Z = don't care

don't care

Y = don't care

X = b2-4ac

LASTX = 4ac

and

Rl = b

R2 = a .

Now the calculation is easy to complete:

SORT RCL1 - 2 / RCL 2 /

(square root, subtract b, divide by 2a). The

result is left in the X register.

Here is the complete program:

LBL A RDN STO 1 x2 X<Y STO 2 RT *

-64-

4 * - SORT RCL1 - 2 / RCL 2 /

The length of this program is essentially the same

as the previous monstrosity, but it's far easier to

use, Just press

a ENTER b ENTER ¢ GSB A

and you get the result.

Sure, it's a little extra effort to program

this way, but if you plan to use the program a lot

(and you shouldn't be writing programs if this

isn't the case), you will save time and frustration

in the long run. Just keep this simple principle

in mind:

All the data should be in the stack at the

start of the program.

If there are more than 4 inputs (your problem

may already be too complex for a calculator), input

just the first four. Let the program perform any

reductions and data storage necessary to free the

stack. The program can then halt for input of the

next 4 values.

When a program has two or more results, it is

good programming practice to put the primary result

in X, the secondary result in Y, and so forth.

This way it is easy to review the results as many

times as you want without having to restart the

program. If the programcalculatesonly oneresult

at a time, using R/S to start the calculation of

each secondary result, earlier results may be lost.

This means that you will have to restart the pro-

gram to get another look at earlier results.

Now let me dispel a popular myth. It is not

generally true that programming "tricks" will

produce great improvements in a program. You will

save a few steps here and there, but you are un-

-65-

likely to significantly shorten the program unless

you rethink the structure of the algorithm behind

the program.

The preceding program is a good example of

this. You can use clever tricks to shorten it a

little bit, but this is probably not worth your

time to do.

As another example, let's extend the quadratic

solution program to make it more generally useful.

This time, we will allow for both roots of the

equation and also allow for the case in which the

roots are complex numbers.

The complete formula is:

-b + (b2-4ac)1/2

2a

Using a 1little algebra you can incorporate the

division into the numerator:

-(b/2a) + [(b/2a)?-(c/a)]l/2

In this form it is easy to see that the calculation

can be simplified. Rather than dealing directly

with a, b, and c, you can first compute b/2a and

c/a, after which it is easy to get the result.

This simplification of the problem by manipulating

the formula is the most important step in develop-

ing anefficient program.

Now you are ready to write the program to

evaluate the formula. You can start by writing the

sequence of instructions that you would use to do

the computation directly on the keyboard. Wherever

you need a value that you have used before, you

-66-

should review the program to see whether you can

keep a copy of the value in the stack.

To duplicate a value in the stack, you can use

ENTER. You should be aware that ENTER temporarily

disables the automatic stack lift. If the ENTER is

followed by a RCL or any similar instruction that

loads a number into the X register, the duplicated

value in the X register will be overwritten. 1In

this situation, the ENTER has no effect. You can

overcome this problem by using two ENTERs or by

rearranging the program so that the ENTER is fol-

lowed by a stack or arithmetic operation. [On the

HP-41, you can use RCL X to duplicate the value in

X without disabling the stack 1lift. Since this

book primarily concerns Series 10 machines, such

advanced capabilities are not assumed.] For more

details on stack lift, consult your Owner's Manual.

If you are out of stack registers or if you

prefer not to juggle numbers within the stack, you

can use a STO instruction to create a copy of a

value that you will need later. Purists like to

create programs that only use the stack, so that

the storage registers are not disturbed. Often

these programs are shorter and faster than versions

which use data registers.

There are two disadvantages of programs that

juggle values in the stack. The first is that such

programs are difficult to write. Developing the

program takes significantly longer. The second

disadvantage is that you will find it very diffi-

cult to debug the program, or to modify it later.

Therefore, unless you will use the program very

frequently or unless there is an urgent need not to

disturb the data registers, this kind of program-

ming is not worth your time. Of course, if you are

-67-

one of the many people who take pleasure in con-

structing the best possible program, you can con-

sider your time an investment to improve your pro-

gramming skills.

Now to develop the program. First, assume as

before that the value c is in X, b is in Y, and a

is in Z. This allows a natural order of data entry

by the user of the program.

The calculation starts by evaluating b/2a and

c/a. The value a will be used twice here, but the

LASTX register provides an easy way to do this. We

compute c/a, then b/2a. The stepsneeded are shown

below, together with a "stack analysis" that illus-

trates the contents of the stack at each step.

Function LASTX X Y Z T

LBL A - c b a -

X<>Y - b C a -

RDN - c a - b

X<>Y - a c - b

/ a c/a - b b

RT a b c/a - b

LASTX a a b c/a -

ENTER a a a b c/a

+ a 2a b c/a c/a

/ 2a b/2a c/a c/a c/a

The first few stack manipulations allow c/a to be

calculated before b/a. Then the RT 1instruction

brings b back to X for the calculation of b/2a.

One "trick" is used: a+a is calculated instead of

2a because it is significantly faster.

The rest of the program computes the deter-

minant D=(b/2a)2-(c/a) and checks whether D is

-68-

negative, indicating that the roots are complex

numbers. If D is non-negative, the two results

X1=(-b/2a)+SQRT (D) and x,=(-b/2a)-SQRT (D) are com-

puted. The LASTX register is used to duplicate the

value of D during this computation.

If D is negative, then the result is given in

two parts. The real part, (-b/2a), is in the X

register, while the magnitude of the imaginary

part, SQRT (D), is given in Y. GRAD mode is set to

indicate this condition; otherwise DEG mode is set.

Here is the rest of the program:

Function LASTX X Y Z T

CHS 2a -b/2a c/a c/a c/a

ENTER 2a -b/2a -b/2a c/a c/a

RDN 2a -b/2a c/a c/a -b/2a

x2 -b/2a (b/2a)? c/a c/a -b/2a

- -b/2a -D c/a -b/2a =-b/2a

X>0 -b/2a -D c/a -b/2a -b/2a

GTO 9 -b/2a -D c/a -b/2a -b/2a

DEG -b/2a -D c/a -b/2a -b/2a

ABS -D D c/a -b/2a -b/2a

SORT D SQRT (D) c/a -b/2a =b/2a

RT D -b/2a SQRT (D) c/a -b/2a

XY D SQRT (D) =-b/2a c/a -b/2a

- SQRT (D) X5 c/a -b/2a -b/2a

LASTX SQRT (D) SQRT (D) Xy c/a -b/2a

RT SQRT (D) -b/2a SQRT (D) X5 c/a

+ -b/2a X1 X5 c/a c/a

RTN X X9

LBL 9 -b/2a ID| c/a -b/2a -b/2a

SQORT IDI SQRT(IDI|) c/a -b/2a -b/2a

RT ID| -b/2a SQRT(ID|) c/a -b/2a

GRAD ID| -b/2a SQRT(ID|) c/a =b/2a

RTN -b/2a SQRT(ID])

-69-

On an HP-10, you have no RT instruction. You can

either use three RDN instructions or you can re-

write the program to use a data register or two.

Another difference 1is that you will use a line

number rather than a label as the object of the GTO

instruction.

4.3.3 The indirect operations

One of the least understood but most important

capabilities of most HP programmable calculators is

indirect addressing, designated by the mysterious

(i) key on Series 10 keyboards. [On the HP-41, the

shift key is used to indicate indirect addressing.

Check your Owner's Manual.] When usedincombina-

tion with ISG/DSE loop control, indirect addressing

allows you to write very short programs to perform

the same operations on a set of registers.

The way you use indirect addressing on HP

calculators is consistent with the principle of

Reverse Polish Notation that the numbers precede

the operation. For example, you put in the X

register a number to be stored. You put the number

of the data register in a special register called

the I (index) register. Then if you execute STO (1)

the number in X will be stored into R, the regis-

ter designated by the contents of the index regis-

ter. [On the HP-15 and HP-41, other registers can

be used as index registers, but the principle is

the same.]

As a simple example of the power of indirect

addressing, suppose youwant to add thesame number

to registers 5 through 11. Assume that the number

to be added is in X at the start of the program.

-70-

The following short sequence does the job:

LBL A

5.011

STO I Initialize the index register.

RDN The number to be added.

LBL O Top of loop.

STO+ (1) Add number to register contents.

ISG On the HP-15, use 1ISG I.

GTO O Loop until greater than 11.

RTN

On the HP-15, you can do arithmetic while recalling

registers. Try replacing the STO+ (i) instruction

with RCL+(1i). If you then start the program with

zero in X, what is the result?

4.3.4 Testing your program

Every time you key a program into memory you

must test its operation for correctness. Even if

you have previously debugged the program, there is

always the possibility that one of the instructions

was mis-keyed.

If your trial run of the program gives an

incorrect result, you could switch into program

mode and attempt to check the program's numeric

codes for correctness. This is quite tedious,

except on the HP-41 where the program instructions

are spelled out by their true names,

A better way to debug your program is to use

the step by step execution capability of the calcu-

lator. While you press the SST (single-step) key,

you can compare each result with what you expect

from your program listing. If your program listing

is accompanied by a numerical example showing all

-71-

the intermediate results, so much the better.

When you see an intermediate result that is

not correct, you can quickly find the incorrect

instruction by switching into program mode. You

may have to press BST (back-step) once or twice if

you did not recognize the incorrect result immedi-

ately.

If you are developing a long program, you can

insert PSE (pause) or R/S instructions to display

intermediate results. These instructions can be

deleted once the program is working.

Naturally, a step by step stack analysis like

the one in the previous section is a very valuable

tool for debugging. If your program uses a lot of

memory registers you may need to record the usage

of data registers as well. 1If you do analyze the

usage of data registers, you may find that you can

save program steps by frequent use of the X<>

(exchange) instructionon the HP-15.

Finally, do not forget that except for the HP-

41, these calculators can only hold one program at

a time. Nevertheless, it is possible to merge two

programs as long as the GTO and LBL instructions do

not conflict with each other. To eliminate con-

flicts, you should know how the GTO or GSB instruc-

tions search for their corresponding labels. [This

discussion does not apply to the HP-10 or 12, which

use line numbers instead of labels.] The search

proceeds downward from the GTO or GSB until the

label is found. 1If the bottom of the program is

encountered, thesearchcontinues fromline 000.

You can use this label search feature to your

advantage. A label can be re-used as long as its

GTOs or GSBs precede it in the program and as long

as the label precedes the line at which it is

-72-

needed next. The structure for re-use of labels

looks like this:

Gro1l IBL1 ... GTO 1 LBL 1

| 1 | T

-73-

CHAPTER 5

Application Programs

-75-

5.1 1Initialize a block of data registers

This short program loads a block of data reg-

isters beginning at Ryand ending at R with aeee
single value. Just key in the value to be loaded,

then ENTER, then put the register index of the form

bbb.eee in the X register, and press GSB A.

LBL B Clear a block of registers

0 Value to be loaded

X<>Y

LBL A Load a block of registers

STO 1 Store bbb.eee in I

RDN Value to be loaded is now in X

LBL O

STO (1) Store value in Ry

ISG (use ISG I on the HP-15)

GTO O Loop until Rg, is passed

RTN

For example, to load the value 1 in registers 4

through 7, press

1 ENTER 4.007 GSB A .

To clear a block of registers, key in the

register index and press GSB B . This simply loads

the value 0 in all the registers in the block.

As an exercise, you may want to replace the

ISG instruction with a DSE instruction. 1Instead of

bbb.eee, you will then need to use a register index

of the form eee.(bbb-1). This will save some time

when initializing a block that begins with register

1. In fact, if you have an HP-16, you will need to

use DSZ to make the program usable.

-77-

5.2 View a block of data registers

This simple routine uses ISG to show you the

contents of each register of a block. Just put the

bbb.eee index in X and press GSB C.

LBL C

STO 1 Store index in I

LBL 1

RCL (1) Recall R;

PSE Pause to display value

ISG (use ISG I on the HP-15)

GTO 1 Continue until eee is reached

RTN

For example, to view the contents of registers 2

and 5, press

2.005 GSsB C .

Of course, you can substitute DSE or DSZ for ISG,

using an index of the form eee.(bbb-1).

5.3 Pseudo-random numbers

Thisroutine generates pseudo-randomnumbers

that are uniformly distributed in the interval

between 0 and 1. (The numbers are not truly ran-

dom, because you will alwaysget the same sequence

if you start the program the same way.)

To use this routine, key in a "seed" number

between 0 and 1, preferably containing 8 to 10

digits. Press GSB E to store the seed in register

0. Then, each time you need a new random number,

press GSB A. Delete the previous programs before

keying this one in (LBL A is duplicated).

LBL E

STO 0 Store initial seed

RTN

-78-

LBL A

RCL O Recall the current number

9821 (this step uses 4 lines)

*

.211327 (this step uses 7 lines)

+

FRAC

STO O Store new random number

RTN

For example, try a seed of .624518534, which is to

be stored in register 0 (GSB E). Then the series

of random numbersgenerated by GSB Ais:

.607849

.896356

.323603

.316390

Different calculator models may give different

results, depending on their internal precision.

This random number generator is somewhat longer

than others, but it is better benaved. It was

used in the PPC ROM for the HP-41 (see Appendix B).

If program space is limited, this less sophis-

ticated uniform random number generator may be

sufficient for your needs:

LBL A

RCL O Recall the current number

->DEG Multiply by 180/PI

FRAC Retain fractional part

STO O Save the new number

RTN

The next program section uses the uniform

random number program to generate Gaussian (normal-

ly distributed) random numbers with zero mean and

variance 1.

-79-

LBL B

GSB A (Execute the uniform generator)

360

*

GSB A

LN

ENTER

+

CHS

SQRT

P->R

RTN

Thisroutine actually produces two Gaussianrandom

numbers, one in X and one in Y. For example, with

a seed of .624518534 again, the Gaussian random

numbers are, rounded to 6 digits:

X X
-.364442 -.293287

-.676853 1.357730

-.440438 .062636

Again, the exact numbers you get depend on the

calculator model. To get a variance vz,nufltiply

the result by v. To get a mean m, add m,

5.4 Fibonacci numbers

Fibonacci numbers are a series of integers in

which each number is the sum of the two preceding

numbers. The first two numbers of the series are 1

and 1. Thus

1+1 =

1+2 =

2+3 =

3+5 =

5+8 = —
0

U
W

N

-80-

etc.

Here is a program to generate the series:

LBL A

FIX O Display integers

1

ENTER Start with 1 in Y

CLX and 0 in X

LBL O

+ Add two numbers

PSE Pause to display new number

LSTX Get last number from LASTX

X<>Y New number in X, old in Y

GTO 0 Repeat until user presses R/S

5.5 Permutations

The permutation function

P(n,k) n!/(n-k)!

gives the number of different arrangements (order-

ings) of all subsets of k items taken from a set of

n items. If you are unfamiliar with the "!" nota-

tion, see section 5.12.1 for an explanation of the

factorial function. P(n,k) is available on the

keyboards of the HP-11 and 15, but many other

machines, including the HP-41, lack this valuable

function. TocomputeP(n,k) oncalculatorslacking

the factorial function, key in

n ENTER k GSB A .

-81-

Here is the program listing:

L X Y z T
LBL A k n

1 1 k n

ENTER 1 1 k n

* 1 k n n

RDN k n n

- n—k n 1

X<>Y n n-k 1

LBL 1 n-1i n-k Pj-1

X=Y

GTO 2 (Quit when x reaches n-k)

ENTER n-1 n-1i n-k Pi-1

RT Pj-; n-i n-i n-k

* Pj n-1i n-k n-k

RDN n-1 n-k n-k P

X<>Y n-k n-1

RDN n-1 n-k Pj

1 1 n-i n-k Pi

- n-(i+l) n-k Pj Pi

GTO 1

LBL 2

RT Pk

RTN

As an example, the number of permutations of 7

items taken from a set of 52 items is

52 * 51 * 50 * 49 * 48 * 47 * 46 = 6.7427x1011,

(The first item can be chosen 52 ways, the second

51 ways, etc.). To check this result, press

52 ENTER 7 GSB A

-82-

5.6 Combinations

The combination function

C(n,k) n!/k! (n-k)!

- n(n-1) (n-2)...(n=-k+1)

k(k-1) (k=2) ... (k=-k+1)

gives the number of different subsets (without

regard to ordering) of k items taken from a set of

n items. C(n,k), like the permutation function, is

built into the HP-11 and 15. For other machines,

including the HP-41, you need to use a program. To

use this C(n,k) program, key in

n ENTER k GSB B .

Here is the program listing:

1 x ¥ <z T
LBL B k

STO I k

RDN n

1 1 n

X<OY n 1

ENTER n n 1

LBL 1 k-1 n-i n-i C(n,1i)

RCL I k-1 n-1i n-1 C(n,1)

/ (n-i)/(k-i) n-i C(n,i) C(n,1i)

RT

* C(n,i+l) n-i

X<>Y

1

- n-(i+l) C(n,i+l)

ENTER n-(i+l) n-(i+l) C(n,i+l1)

DSE (or DSZ)

GTO 1 (Continue until k=i reaches 0)

RDN

RDN C(n,k)

RTN

-83-

As an example, the number of combinations of 5

items taken from a set of 12 is

12*11*10*9*8 _ 795 -

5%4*3%2%]

5.7 Greatest common divisor

To find the largest common factor of two num-

bers x and y, key in

y ENTER x GSB A

using this program:

IBL A MOD LSTX X<>Y X#0 GTO A + RTN

This clever routine was written by John Kennedy.

If you do not have a MOD key on your calculator,

use this alternate version:

LBL A ENTER ENTER - RDN X<>Y LSTX /

LSTX RDN INT * - X#0 GTO A + RTN

This uses the MOD routine from section 6.14.

The program makes use of the fact that any

common factor of x and y must also be a factor of x

MOD y and y MOD x. Similarly, any common factor of

y MOD x and x must be a factor of x MOD (y MOD x).

THe program continues in this recursive fashion,

calculating (y MOD x) MOD (x MOD (y MOD x)), etc.

until a remainder of zero is found. At this point,

the greatest common divisor is in Y, from which the

+ instruction extracts it.

5.8 Sum of the digits of an integer

This short program accepts an integer in the X

register and adds its digits:

IBLA STO 1] STO-1 LBL 0 10 / STO+1 INT

STO-1 X#0 GTO 0 10 STO*1 RCL 1 RTN

-84-

For example, put 1234556789 in X, and run the

program to get the result, 50. This program was

written by John Kennedy.

This program uses a valuable trick. The se-

guence

STO 1 STO-1

is used only to clear register 1. The advantage of

this over the more standard CLX STO 1 is that it

clears register 1 without disturbing the stack.

The rest of the program starts by dividing the

number by 10. This leaves one digit to the right

of the decimal point. The sequence STO+1 INT

STO-1 adds the fractional part of X to register 1,

and replaces X by its integer part. The loop

repeats this procedure, dividing by 10 and adding

the fractional part (one digit) to register 1,

until all the digits have been processed and the

number in X is 0. Then register 1 contains 0.1

times the sum of the digits in the original number.

The last 3 lines leave the sum of the digits in

both register 1 and the X register.

On the HP=-10, you have no instruction for X#0.

You can use the X=0 instruction instead as shown

below.

X=0 GTOxx GTOyy (line xx)

b11

|

A

-85~

5.9 Convert a real number to an integer or

a decimal fraction

The following sequence convertsareal number

to an integer by multiplying by 10 until there is

no fractional part. For example, 123.45 would be

converted to 12345:

LBL A INT LSTX X=Y RTN 10 * GTO A

The stopping criterion is INT(x)=x, meaning that

there is no fractional part of x.

The sequence belowconvertsareal number to a

fraction by dividing by 10 until there is no inte-

ger part. For example, 123.45 would be converted

to 0.12345:

LBL B FRAC LSTX X=Y RTN 10 / GTOB

This program works analogously to the previousone.

The stopping rule is FRAC (x) =x.

5.10 Reverse an integer

This program, written by James Davidson, re-

verses the digits of an integer in the X register:

LBL A STO 1 STO-1 LBL 0 FRAC STO+1 LSTX

INT 10 STO*1 / X#0 GTO 0 RCL 1 RTN

This program starts by clearing register 1, then it

enters a loop. In this loop, the number is divided

by 10, the fractional part is added to register 1,

and register 1 is multiplied by 10. This multipli-

cation shifts the previous digits to the left one

position and moves the last digit to the left of

the decimal point. When all the digits have been

processed, X 1is zero and the result is recalled

from register 1.

-86-

5.11 Decimal to fraction conversion

These routines are handy if you have to work

with fractions of inches. The problem with inches

is, of course, that your calculator cannot multiply

2-11/16 inches by 3 and come up with 8-1/16. This

program helps you do that by quickly converting a

fraction to a decimal number which can be used in

any calculation. Then another section of the pro-

gram can convert the decimal number back to a

fraction.

The LBL A section below converts a fraction to

adecimal number. Load the stack with

integer part ENTER numerator

ENTER denominator,

then press

GSB A .

The decimal result will appear in X.

The LBL Bsection converts adecimal number to

a fraction, with a maximum error of +1/64. Just

put the number in X and press

GSB B .

The fractional result appears in three parts. The

integer part is in X, the numerator is in Y, and

the denominator (2, 4, 8, 16, or 32) is in Z.

Press RDN to see the numerator, and RDN again to

see the denominator.

LBL A / + RTN LBL B INT LSTX FRAC

32 * LSTX X<>Y ENTER FRAC + INT

X=Y GTO 3 LBL 1 2 / ENTER FRAC X#0

GTO 2 RDN X<>Y 2 / X<>Y GTO 1] LBL 2

/ RT RTN IBL 3 CLX RT 1 + RTN

As an example, divide 8-1/16 by 3. Press

8 ENTER 1 ENTER 16 GSB A .

-87-

The result is 8.0625. Next press

3 /7 .

Now convert back to a fraction:

GSB B .

The result is

2 (RDN) 11 (RDN) l6,

or 2-11/16.

5.12 Factorial calculations

Factorial calculations in the following sec-

tions illustrate some of the general techniques

that can be used in solving problems on a program-

mable calculator.

5.12.1 The factorial function

The quickest way to obtain a very large number

on an HP-10, 11, or 15 is to press

69 x! (use n! on the HP-10).

The result is 1.711224524x10°8, Perhaps the nota-

tion ! refers to the surprisingly rapid increase of

the factorial function.

The factorial function of an integer n is the

result of the multiplication of all the integers

from 1 to n:

n! =1 %* 2 * ___, %,

This function can be generalized for non-integers.

Itiscalled thegamma function, withGAMMA (n+1)=n!

if nis aninteger. Consult a good advanced mathe-

matics text if you are interested in the properties

of thegamma function.

-88-

5.12.2 n! for any n

If you need to know n! for a number greater

than 69, this routine will calculate it. Instead

of multiplying all the numbers from 1 to n, this

program adds the logarithms of all the numbers from

l to n, using the mathematical identity:

log(n!)=log(1*2*,,..*n)=1log(1)+log(2)+...+1log(n).

The fractional part of log(n!) is converted back to

a mantissa, so that the result is

n!= x 10Y,

where x and y are the numbers left in the X and Y

registers at the completion of the program. The

result in x is called the mantissa, and y is called

the characteristic. To use the program, just key

in an integer and press R/S:

1 L x ¥ -z T
LBL A

=0

1 Calculate 1! for 0!

STO I n

0 0

LBL 1 i Sj+1=log(n)+...+log(i+l))

RCL I i Si+l

LOG log (i)

+ S5

DSE (or DSZ) Continue until i reaches zero

GTO 1 i-1

Sp=log(n)+...+log(l)=1log(n!)

INT log(n)! vy

LSTX log(n!) vy

FRAC

10X X y

RTN

~89—

On the HP-15, use DSE I instead of DSE. The pro-

gram is quite slow, but its results are reasonably

accurate. For example, 1if x=5, the result

51=1.200000003x102 appears after about 5 seconds.

The actual result is 120.

The first few steps in the program take care

of the special case 0!=1 by replacing a 0 with 1.

The number n is then stored in the index register,

so that 1t can be used to control the DSE loop.

Each time through the loop, log (i) is added to the

subtotal, for i=n, n-1,...,1.

The structure of this program is quite

straightforward. It is another example of the

power and simplicity that the DSE instruction pro-

vides.

5.12.3 Inverse factorial function

Suppose you have a number x 10Y, and you want

to find the smallest number n such that n! is at

least as big as x 10Y. The following program does

the calculation (after you put y in the Y register

and x in the X register):

LBL A LOG + 0 ENTER RDN [L[BL 2 RT 1

+ LOG LSTX RDN + X<Y GTO 2 RT RTN

There is a slight chance that the answer will be

incorrect by one unit due to roundoff error. To be

sure you have the right answer, you can use a non-

integer value for x. For example, use 119.99 in-

stead of 120.

The program works much the same as the pre-

vious one, computing log(i!) for increasing values

of i, until log(x) is equalled or exceeded. Log(Xx)

is held 1in the Y register, and the sum 1log(l)+

log(2)+...+log (1) 1is held in the X register. The

-90-

number 1 is held in stack register T, accessible by

RT. Each time through the loop, log(i+l) is added

to the sum, and i is replaced by i+l and rolled-

down into the T register. The new sum is compared

to log(x), and the loop is repeated until log(x) 1is

equalled or exceeded. Then a RT instruction brings

the result i back into the X register.

5.12.4 Stirling's approximation

Stirling's formula is an approximation to n!

(and to the gamma function of n+l) that becomes

increasingly good as n becomes larger. For n=69,

the accuracy is 4 to 5 digits. The formula is:

nt = (2 p1)l/2 pntl/2 e-n+l/12n, or equivalently,

In(n!) = (1/2)1In(2 PI) + (n+1/2)1ln(n) = n+ 1/12n,

and log(n!) = 1ln(n!)/1ln(10).

Despite the complexity of the formula, the program

is quite simple and fast, because no looping is

needed:

L X Y z T
LBL C n

ENTER

ENTER

LN In(n) n n

5 .5 In(n) n n

RT n .5 In(n) n

(n+.5) 1n(n) n n

* (n+.5)1n(n) n n n

X<>Y

- (n+.5)1In(n)=-n

-9]-

LSTX n

12

* 12n

1/x 1/12n

+ (n+.5)1n(n)-n+1/12n

PI PI

ENTER PI PI

+ 2P1

LN In(2PI)

2

/ .51n (2PI)

+ .51n(2PI)+(n+.5)1n(n)-n+1/12n

10

LN

/ In(n!)/1In(10) = log(n!)

INT log(n!) vy

LSTX log(n!) vy

FRAC

10X X y

RTN

You Jjust put the number n in the X register and

execute the program. The result is in two parts, X

in the X register and y in the Y register, with

nt = x 10Y .

The mantissa is in X, and the exponent in Y. For

example, for 8! the result is

81 = 4.032021804 x 104,

compared to the true value of 4032. A major advan-

tage of this program is that the execution time is

roughly the same for all values of n.

The program first calculates 1n(n), then

(n+l1/2)1n(n). Next n is subtracted, 1/12n is add-

ed, and (1/2)1In(2 PI) is added. Dividing by 1n(10)

-92=

gives log(n!). The fractional part of this loga-

rithm is converted into the mantissa, while the

integer part is the characteristic.

If you have an HP-10, which has no RT func-

tion, you can start the program with STO 0 rather

than ENTER ENTER to store the value of n. Then

replace the RT instruction with RCL 0.

5.13 Root-finding

One frequent application of programmable cal-

culators is solving equations of the form f(x)=0;

that is, finding the value of x that makes this

equation true for a user-supplied function f. For

example, suppose that you need to find the value of

X for which 2x=1n((x+1)/(x-1)). Justrearrange the

equation to be 2x-1ln((x+1)/(x-1))=0, which is of

the form f£(x)=0.

Minimization and maximization problems can

also be solved in the form f(x)=0 by using the

appropriate first derivative function for f.

A root-finder is built into the HP-15 and 34

calculators, but for other machines you will need a

program. The root finder program given here uses

Newton's method, which generally produces fast

convergence. It can fail in some cases, but you

will not normally encounter suchsituations.

Given the previous two root estimates x, and

Xn-1+ the formula for the next root estimate is

Xpn4+1 = Xp ~ (Xp=%Xp-1) E(xp) /7 (£(x)-E(xp_1)) - This

formula is applied repeatedly until x4, is the

same as x,, Wwithin the current display rounding

accuracy.

-93-

Here is the root finder program, together with

a stack and data register analysis:

LBL A

STO O

EEX

2

/

X<>Y

X=0

X<OY

STO 1

CLX

STO 2

LBL 9

RCL 0

PSE

GSB B

ST-2

STO*1

RCL 1

RCL 2

X#0

STO 1

RDN

STO 2

RCL O

LSTX

RCL 1

STO O

X#Y

X Y Z RO R1 R2

X] X17Xp X]

.le1

Xl-XO .Ole

X1-Xp
0

0

Xn Xp~Xp-1 fpo

Xn

(optional)

fh

fn—l'fn

(Xp=Xp-1) £y

(Xp=-xn-1) £, fp

fh-1-fnh (Xp=xp-1)fh £p

(Xp=xp-1) En/ (fn-1-£fn) fq

Xn+1~%Xn

fn

£

Xn

RND (x,)

Xn

Xn+1"Xn Xp

Xn+1 RND(xn)

Xn+1l

RND (X;;4+1) RND(xp)

-94-

GTO 9

LSTX Xn+1
RTN

Xn+1 Xpn+1-%n fn-fh+1

To use this root-finding program, you need to

write an instruction sequence starting with LBL B

that accepts a number in the X register and returns

the value f(x) in the X register. This sequence

should not alter the values in registers 0, 1, or

2, and it should not contain a LBL 9 instruction.

(Of course, you could rewrite the root-finder to

use different numbered registers if there is a con-

flict.) For the example f(x)=2x-1ln((x+1)/(x-1))

youcan use the sequence:

LASTX X Y Z T

LBL B X

ENTER X X

ENTER X X X

ENTER X X X X

1 1 X X X

+ 1 x+1 X X X

X<>Y X x+1 X X

LSTX 1 X x+1 X

- x=-1 x+1 X X

/ (x+1)/(x-1) X X

LN In((x+1)/(x-1)) x X

- Xx=-1In((x+1)/(x-1)) x

+ 2x=1n((x+1)/(x-1))

RTN

This program makes use of the automatic dupli-

cation of stack register T when the stack drops.

The first several steps of the program push the

value of n up to the top of the stack.

Once you have the f(x) sequence prepared and

-95-

tested, you are ready to start the root finder.

Key in an initial step size, ENTER, an initial

guess for the root x, then press GSB A to start the

root-finder. The initial step size is optional.

If you enter 0 as the step size, the program will

use 1% of the initial guess as the initial step

size. For the example given above, try

0O ENTER 1.1 GSB A .

You will see the series of estimates:

1.100000

1.089000

1.169700

1.191627

1.199193

1.199671

1.199679

1.199679

Note that convergence becomes more rapid as the

program gets closer to the true root.

S5.14 Financial calculations

One of the most commonly encountered financial

problems is to calculate missing components of a

level-payment cash flow, such as a mortgage. Al-

though this capability is built into the HP-12,

this problem requires a program on most other HP

calculators. The program presented here is inten-

ded to simulate the basic features of a level-

payment financial calculator."

A level-payment cash flow has five variables:

the number of payments N, interest rate I (percent

per period), present value PV, payment per period

PMT, and future value FV. The last three of these

variables can be either positive or negative. Pos-

-96-

itive numbers indicate cash received; negative

numbers indicate cash paid out. If you know four

of the five variables the program presented here

will calculate the missing component needed to

balance the present values of the inflow and out-

flow.

To use the program, first store the four known

components in the corresponding registers:

register 1 2 3 4 5

value N I PV PMT FV

Then press GSB y, where y is the register number (1

to5) of the unknown parameter.

For example, consider a mortgage of $100,000

at 11% per year for 30 years (360 months). Since

the payments are made monthly, youneed to convert

the interest rate to a monthly rate of 11/12%.

Here is the full solution:

360 STO 1 (360 payments)

11 ENTER 12 / STO 2 (11/12% per month)

100000 STO 3 ($100,000 received at start)

0 STO 5 (no money paid at end of 1loan)

GSB 4 (solve for PMT)

The result is a monthly payment of -$952.32, nega-

tive because money is being paid out.

The formulas used in the program are all de-

rived from the basic equation:

FV + PV(1+i)N + puT[(1+i)N-11/i = 0

(Here 1 = I/100 is a fraction.) This equation can

be solved for each of the individual parameters

excepti:

N = 1In[(PMT/i-FV)/(PMT/i+PV)]/1n(1+1)

PV = -FV(1+i)~N —(pMT/i) [1-(1+i)~N)

PMT = -i[PV + (FV+PV)/((1+i)N-1)]

FV = -PV - (PV+PMT/i) [(1+i)N-1]

To solve for i, the basic equation can be viewed as

-97-

a problem of the form £(i)=0 and solved by Newton's

tangent method. Starting with an estimatein of i,

the next estimate i, can be computed as

i n+1l inp + £(i)/£' (i), where

£(iy) = FV + PV + (PV+PMT/i) [(1+i)N~1], and

£' (i)= N(1+i)N"L(pvepmT/i) - (PMT/i2) [(1+i)N71])

The initial guess is

ig =IPMTI/(IPVI+IFV]) + (IPVI+|EV])/(N3IPMTI),
a formula developed by Don Dewey for the financial

calculation program in the PPC ROM (see Appendix

B).

Here is the program, with a stack analysis:

LASTX X Y Z T

LBL O

CLX (This segment merely initializes

STO 1 the five registers to zero)

STO 2

STO 3

STO 4

STO 5

RTN

LBL 1

GSB 7 i PMT/ i 1+i (1+i)N (1+i)N

ENTER PMT/ 1 PMT/ 1 1+1

X<>Y (enables stack 1lift)

RCL 5 FV PMT/1i PMT/1 1+1

- PMT/i-FV PMT/i 1+1

X<>Y PMT/i PMT/i-FV

RCL 3 PV PMT/i PMT/i-FV 1+i

+ PMT/i+PV PMT/i-FV 1+i

/

LN In[(PMT/i+PV)/ (PMT/i-FV)]

X<>Y

LN In(1+1)

/

98

LASTX X Y Z T

In[(PMT/i+PV)/(PMT/i-FV)]/1n(1+i)

| PMT |

|PV | | PMT |

|FV| | PV | | PMT |

IPMT I/ (IFVI+|PV])

(IFVI+IPVI])/IPMT| |PMTI/(IFVI+|PV])

Io

(Register 0 will be used to form PV+PMT/1i)

i PMT/ i 1+i (1+i)N (1+i)N

PMT/i2

(1+i)N-1 (1+i)N pmT/i2

-99-

ENTER

RT

RT

RCL 1

RCL O

X<>Y

RCL O

RCL 3

RCL 5

X<>Y

EEX

RCL 2

X<>Y

LSTX

STO 2

X#Y?

GTO 6

LSTX

RTN

LBL 3

LASTX X Y Z T

(1+i)N-1 (1+i)N-1 (1+i)N-1 pmr/i?

PMT/i2[(1+i)N-1] (1+i)N-1 (1+i)N-1

(1+41)N-1 (py+pMT/i) PMT/i2[(1+i)N-1] (1+i)N-1

N(1+i)N-1 (pv+pPMT/i)

£'(i) (1+i)N-1

(PV+PMT/1i) (1+i)N-1 f£' (i)

£(1) £' (1)

£(1)/£" (1)

In+1"In

In

I,+1-I, RND(Ip)

In

In+l

RND (I1) RND(Ip)

n+1

-100-

GSB 7

RCL S

RT

X<>Y

LSTX

1/x

CHS

STO 3

RTN

LBL 4

GSB 7

LSTX

RT

RCL 5

RCL 3

X<OY

LASTX X Y Z T

i PMT/ i 1+i (1+i)N (1+i)N

(1+i)N FV PMT/ i 1+i

PMT/i FV(1+i)~N

(1+i)N 1 PMT/i FvV(1+i)~N

1-(1+i)"N pMT/i FV(1+4i)~N

-[FV(1+i) "N+ (pMmT/i) (1- (1+i) "Ny

i PMT/ i 1+i (1+1)N (1+1i)N

(1+i)N i

FV+PV (1+i)N i

(1+i)N-1 Fv+pvV i

PV+ (FV+PV) /[(1+i)N-1] i

-i(PV+ (FV+PV) /[(1+1i)N=-17)

i PMT/ i 1+i (1+i)N (1+1)N

-101-

LASTX X Y Z T
+

RT (1+i)N pv+pMT/i

1

* (PV+PMT/I) [(1+1)N-1)

RCL 3
+

CHS

STO 5 -PV- (PV+PMT/I) [(1+i)N-1]

RTN

LBL 7

1 1

RCL 2 I 1

% i 1

+ 1+1

RCL 1 N

y¥ (1+i)N
RCL 4 PMT

1

RCL 2 I 1 PMT (1+i)N

% i 1

+ i 1+i PMT (1+i)N

X<>Y

LSTX i PMT 1+i (1+i)N

/ i PMT/ i 1+i (1+i)N (1+i)N
RTN

As another example, let's calculate the annual

percentage rate on the $100,000 mortgage if you

have to pay an loan origination fee ("points") of

$2000:

2000 STO-3 (only $98000 is actually received)

GSB 2 (solve for the real interest rate)

The result is an interest rate of 0.93805% per

-102-

month, or11.26% per year.

One more example. Suppose you want to repay

the loan after 5 years. What is the balance?

60 STO 1 (5 years = 60 months)

GSB 5 (calculate the remaining balance due)

The result is -$95,356.60, indicating that you have

to pay this amount of money to cancel the loan.

5.15 Time for a game

This next program will allow you to journey

through time! Alas, your time machine is not fully

perfected. Youcanonlyspecify the maximum possi-

ble jump. The direction and size of the jump is

random, up to the specified maximum.

Your goal is to reach a precise year in the

fewest possible jumps. Key in a "seed" value be-

tween 0 and 1 for the random number generator,

ENTER, the starting year, ENTER, the target year,

then R/S.

The calculator will halt with the starting

year in the display. Key in the maximum jump and

press R/S again. The display shows the year in

which you have arrived. Be patient; it is indeed

possible to succeed! When you do arrive, the num-

ber of jumps will be shown in FIX 2 format.

An optimum strategy exists, based on minimiz-

ing the expected logarithm of the distance to the

target year. I will not spoil your fun by reveal-

ing it, though.

The program uses 4 memory registers. This

helps to protect it from alteration of the stack

when the program is halted for input.

-103-

LBL A FIX 0 STO 2 RDN STO 1] RDN STO 4

CLX STO 3 LBL 0 1 STO+3 RCL 1 R/S

RCL 4 9821 * _211327 + FRAC STO 4

ENTER + 1 - * INT STO+1 RCL 2

RCL1 X#Y GTO 0 RCL 3 FIX 2 RTN

On the HP-11 and 15, you can use the RAN (random

number) function to replace the instructions from

RCL 4 through STO 4, inclusive. You can also

delete the RDN STO 4 in the beginning part of the

program., Therandomnumber generator usedhere was

described in section 5.3.

The first part of the program, from LBL A to

LBL 0, initializes the data registers. Register 1

contains the current date, register 2 the destina-

tion date, register 3 the number of jumps, and

register 4 therandom number (between 0 and1).

The main part of the program 1is the

LBL 0/GTO 0 loop. In this loop the calculator

multiplies the maximum jump size by arandom number

between -1 and +1, to get the actual jump size and

direction. This jump is added to the current year

to get the new current year. If this is not the

destination year, the program returns to LBL O,

where 1 is added to the number of jumps and the new

current year is displayed.

When the destination year is reached, the

display mode is changed to FIX 2 and the number of

jumps is recalled to the X register. Congratula-

tions!

-104-

CHAPTER 6

Tips and tricks for the Series 10 machines

-105-

6.1 Exponents

It is not necessary to key in both digits of

the exponent if the left one is zero. For example,

4 x 108, which displays as

4 08

can be keyed in by pressing 4 EEX 8.

Another tip: When you have a number with an

exponent in the display, only 8 digits of the

number are visible. The Series 10 machines provide

a convenient way to view all 10 digits of the

internal representation without actually changing

the numberin X. Just press and hold

f PREFIX

All 10 digits of the number will be displayed as

long as you hold down the PREFIX key. When you

release the key, the standard numeric display will

return. Some earlier HP calculators have a MANT

(mantissa) key that works the same way.

6.2 Leading zeros

When you key in a fractional number like 0.32,

you do not need to key in the leading zero. Just

press: .(decimal) 3 2

6.3 Avoid CLX in programs

If you use CLX in a program, do not depend on

the stack lift being disabled. For example, when

CLX is followed by a RCL instruction or a digit

entry, the zero in the X register is normally

overwritten with the new value. However, on some

HP calculators (including the HP-41), this is not

always the case. If you interrupt the program just

-107-

after the CLX instruction, then restart it, the

stack is lifted by the RCL and X is not overwrit-

ten. This inconsistency has been fixed on later HP

machines, but it's better to be safe. Instead of

using the sequence

CLX RCL n

in a program, use

RDN RCL n

This ensures that interruption and restarting of

the program will not affect the result, even if you

use X<>Y twice or RDN four times to review the

stack.

6.4 Checking the number of registers allocated

HP's newer calculators, including the Series

10 machines, automatically reduce the number of

data registers as the size of the program increas-

es. If you have recently added to a program, you

may not have enough data registers left to run the

program. When you run the program, it will calcu-

late until it hits an instruction that calls for a

data register beyond the current allocation, then

you will get an error message. A better approach

is to put a

RCL n

instruction at the top of the program to check the

needed number of data registers immediately.

If you are using the complex stack or matrix

features of the HP-15, you will need to use g MEM

to check the memory allocations for dataregisters,

complex stack, matrix data, and programs.

-108-

6.5 Doubling a number

Use

ENTER +

instead of

2 *

It's faster.

6.6 Duplicating Y to the top of the stack

This short sequence duplicates the number in Y

into the Z and T registers, without changing the

number in X:

ENTER ENTER - +

If your calculator has a RT key, vyou can use the

sequence

X<>Y ENTER ENTER RT ,

which is faster in a program, but harder to perform

from the keyboard.

6.7 Rounding

To round a number to the nearest integer, the

standard technique is to add 0.5 and take the

integer part. However, the sequence

ENTER

FRAC

+

INT

is slightly faster. If you want to round to the

nearest multiple of q (where q is something other

than 1), use the sequence

-109-

LSTX

X<O>Y

ENTER

FRAC

+

INT

*

On the HP-11 and 15, there is a RND function that

provides rounding to the current display setting.

There is a potential problem with the standard form

of rounding. For example, in FIX 0 mode, all

numbers that end in .5 are rounded up to the next

integer. If you have a large amount of data, this

could bias the average upward. Astronomers use a

slightly different form of rounding, in which num-

bers that end in .5 are rounded up or down to an

evennumber. Toimplement thistype of rounding on

the HP-11 or 15 (or 41), use the sequence

6.8 Mile/kilometer conversion

To quickly convert miles to kilometers, or

vice versa, you can make use of the fact that

In(5), which is 1.6094... is within 0.01% of the

true conversion factor. This was documented by

Neil Murphy in VIN2 of "65 Notes".

For example, to convert 40 km to miles, press

40

-110-

ENTER

LN

6.9 Multiples of PI

To get a multiple of PI, it is often faster to

use the degrees-to-radians conversion function.

For example, if you need (4 PI/3), you can press

240

->RAD .

This technique was documented byBill Kolbin "Bet-

ter Programming on the HP-67/97", a publication of

PPC.

As another example, toget PI/180, press

1

-=>RAD .

6.10 Tricks with trigonometric functions

To keep an angle within the range -90<x<90,

use the sequence

SIN SIN"1 |

To keep an angle within the range 0<x<180, use

cos cos™1 |
Source: Dave Wilder in "Better Programming on the

HP-67/97".

If you need both the sine and the cosine of an

angle, use the sequence

angle ENTER 1 P-R .

The cosine is left in X, the sine in Y.

To calculate the supplementof anangle, 180-x

for x between 0 and 180 degrees, press

cos cHs cos™1

-111-

Trigonometric functions provide a shortcut to

compute certain special functions, provided that x

is in the range -1<x<1.

(1-x2)1/2 cos™! sIN
x/(1-x2)1/2 SIN~1 TAN

(1-x2)1/2/% cos~l TAN

1/(1-x2)1/2 Tan~1 cos

x/ (1+x2)1/2 TaN"1 SIN

Source: Bill Kolbin "Better Programming on the HP~-

67/97".

6.11 Hyperbolic trig functions

The HP-15 is HP's only calculator that has

built-in hyperbolic trig functions. The program

sequences in this section will enable you to use

hyperbolics on any HP calculator.

Many of the shortcut formulas given here rely

on interesting properties of the gudermannian func-

tion:

gd(x) = 2 tan~! eX - pI/2

and the inverse gudermannian function:

gd~l(x) = 1n tan (PI/4 + x/2) .

For calculations involving the gudermannian func-

tion and the inverse gudermannian function, degree

mode will be assumed. This means that 90 degrees

is used instead of PI/2, and 45 degrees instead of

PI/4.

Hyperbolic cosine, cosh(x)=(eX+e™X)/2

eX ENTER 1/x + 2 /

Hyperbolic sine, sinh(x)=(e¥-e™X)/2

eX ENTER 1/x - 2 /

Hyperbolic tangent, tanh(x)=sin gd(x)

-112-

eX TAN"! ENTER + 90 - SIN
Inverse hyperbolic sine, sinh"l(x)=gd'1 tan'l(x)

a1l 2 ,/ 45 + TAN LN

Inverse hyperbolic cosine, cosh"l(1n()=gd"l sin~1 (x)

sin“l 2 /s 45 + TAN LN

Inverse hyperbolic tangent, tanh"l(x)=gd"1 cos~1 (x)

cos™l 2 /s 45 + TAN LN

6.12 Law of Cosines

Your calculator's built-in rectangular/polar

coordinate conversion functions are handy for many

complicated trigonometric calculations. For exam-

ple, to evaluate the formula

c = (a2 + b2 - 2ab cos C)l/2

first note that this can be rewritten as

c=((acosC - b)2 + (a sin C)2)1/2

This leads to the simplified sequence

C ENTER a P->R b - R->P ,

to calculate the value of c. Source: Bill Kolb.

6.13 Spherical coordinates

To convert from rectangular to spherical coor-

dinates, use the sequence

z ENTER y ENTER X

R->P ENTER CLX + RT R->P .

The radius r ends up in X, the z-axis angle theta

in Y, and the x-y angle phi in Z. If the rectangu-

lar coordinate data is coming from data registers,

you may wish to use the slightly shorter sequence

RCL y RCL x R->P RCL z R->P ‘

which gives the same results.

To convert from spherical to rectangular coor-

dinates, use the sequence

-113-

phi ENTER theta ENTER r

P->R ENTER RT RT P->R .

The rectangular coordinate z ends up in Z, vy in Y,

and x in X. If you have the spherical coordinates

in data registers, you can use the sequence

RCL theta RCL r P->R

X<>Y RCL phi X<>Y P->R .

If your calculator does not have a RT func-

tion, vyou can use three RDN's for one RT, or two

RDN's for two RT's.

6.14 Functions not available on the keyboard

SIGN

The SIGN function replaces the number x in the

X-register by -1 if x is negative, 1 if x is posi-

tive. 1If x is zero, the result is normally O.

However, the SIGN function on the HP-41 sets

SIGN(0)=1, which is not consistent with the stan-

dard mathematical definition of the SIGN function.

If you can be sure that x is not zero, the

SIGN function can be calculated using three steps:

ABS LSTX / .

If x may be zero, the following sequence does the

job:

ABS LSTX X#0 / , for the HP-11 or 15,

or ABS X=0 GTO nn LSTX /, followed by line nn

for the HP-10 or 12.

MOD

The MOD (modulo) function is defined as:

a MOD b = a - b*INT(a/b).

The modulo function gives the remainder of the

division of a by b. For example, when you divide

25 by 4, the result is 6 with a remainder of 1.

-114-

Therefore 25 MOD 4 is 1.

The MOD function is often useful, but it is

not provided on any of the Series 10 machines. On

the HP-16, no INT function is provided, so you

cannot program a MOD function. However, the RMD

(remainder) function is available in integer mode.

To compute the MOD function, load the stack with:

a ENTER D ,

then press

ENTER ENTER - RDN X<>Y LSTX / INT * -

Now let's see how this sequence works. Here is the

full stack analysis:

LASTX X Y Z T

b a

ENTER b b a

ENTER b b b a

- b 0 b a a

RDN b b a a 0

X<OY b a b a 0

LSTX b b a b a

/ b a/b b a a

INT a/b INT (a/b) b a a

* INT(a/b) DINT(a/b) a a a

- bINT (a/b) a MOD b a a a

Note that most of this short sequence is needed

just to get the stack arranged so that X=b, Y=a,

Zz=b, and T=a. The rest is simple.

6.15 Combined test instructions

The HP-11 and 16 calculators (as well as the

HP-41) lack tests for X>0 and for X>Y. These are

-115-

easy tosimulate.

For X>0 use: For X>Y use:

X#0 X#Y
X>0 X>Y

To see how these sequences work, consider the three

possible cases:

X 1is negative X is zero X is positive

X#0 true X#0 false X#0 true

X>0 false X>0 skipped X>0 true

... Skipped ... not skipped ... not skipped

The line following X>0 is skipped unless X is

greater than or equal to zero. Sequential tests

like this are frequently used by advanced program-

mers.

The technique used to create the X>0 and X>Y

tests can be generalized. To create a special test

that is true if either test A or test B is true,

use the sequence

inverse of test A

test B

... sSkipped unless A or B is true

For example, if test A is X=0 and test B is X>0,

the sequence X#0 X>0 simulatesX>Y.

To create a special test that is true only if

both test A and test B are true, use the sequence

test A

inverse of test B

any test instruction that will be false

if test A is false or test B is false

... Skipped unless both A and B are true

For example, if test A is X>0 (actually X#0 X>0)

and test B is X>Y, the sequence

-116-

CF 0 X#0 X>0 X<Y F2 0

will skip the next instruction unless X>0 and X>Y.

With 4 test instructions in a row, this is a rather

unusual example, but it shows how far the concepts

of combined testing can be carried.

6.16 Editing a program

If you have to modify a program that you have

already written down on paper, begin from the end

and work your way upward. When you work this way,

adding and deleting lines only changes the line

numbers in the part of the program that has already

been corrected. As you work backward, you can use

BST (backstep) to move a few steps backwards, and

GTO to skip over more steps. When you use GTO to

move around while editing the program, make sure

you do not accidentally enter a GTO instruction

into the program. On the HP-15, you must press GTO

CHS followed by the 3-digit line number. On the

other Series 10 machines, press GTO, the decimal

point, then the 3-digit line number.

On the HP-10 and 12, instructions cannot be

inserted and deleted. You canonly over-write the

existing program. On these and other "line-

addressed" calculators (those that do not use la-

bels), you might as well re-key the program star-

ting at the first needed insertion or deletion.

One way to avoid this problem is to sprinkle

PSE (pause) instructions throughout a program as

you are developing it. The PSE instructions act as

space fillers that can be deleted when you need to

insert instructions in the program. When you have

a final working version, you can re-key the program

without the PSE steps.

-117-

6.17 Repeated execution of a program

The RTN instruction has the normal function in

a program of marking the end of a subroutine. When

the RTN instruction is encountered, execution con-

tinues with the line following the GSB instruction

that called the subroutine.

If the RTN instruction is encountered when no

subroutine was called, the program pointer is set

to line 000 and execution halts. This is a conve-

nience feature because youcan thenrun the program

again by just pressing R/S from the keyboard.

Keep this feature in mind when you need to put

stopping instructions in your programs. If you

want execution to restart at the same point, use an

R/S instruction to stop. If you want to allow

restarting from the beginning of the program, use

RTN. You do not need to put a RTN at the last line

of the program, because the calculator automatical-

ly does a RTN after the last instruction in program

memory.

6.18 Solve and Integrate subroutines (HP-15)

Do not use R/Sin a function program for Solve

or Integrate. This will lead to incorrect results.

6.19 Displaying two integer numbers at once

Suppose you have two integers in the X and Y

registers, and each is less than 100,000. You can

display bothnumbers by doing:

EEX S5 / + .

This displays the former Y register contents as the

-118-

integer part, and the integer that was in X as the

fractional part.

6.20 Exchanging two data registers

Suppose you want to interchange the contents

of data registers 1 and 2. On the HP-15 (or on the

HP-41) you can do:

XX> 1 X< 2 X<>1 .

This sequence preserves the stack contents. For

other machines, do:

RCL 1 RCL 2 STO 1 X<>Y STO 2 .

Follow this with two RDN instructions if you want

to bring back the original values to X and Y. The

former contents of the Z and T registers are lost.

6.21 Matrix manipulation

On the HP-15, you can reduce the dimension of

a matrix without losing the coefficients that you

want to keep. You just need to keep in mind the

order in which data registers are allocated. For

example, the 9 elements of a 3x3 matrix are stored

in the order: (rowl, columnl), (row 1l, column 2),

(row 1, column 3),..., (row 3, column 3). If you

reduce the dimension to 2x3 or 3x2, only 6 elements

are needed. The last three elements are lost in

the redimensioning. This is correct if you are

redimensioning to 2x3, but not 3x2.

The way to redimension without losing data is

to transpose the matrix and/or interchange rows

until the data you want to keep is in the lowest

numbered rows.

For example, suppose you want to reduce a 3x3

matrix to 2x2, retaining the first two rows and

-119-

columns. This requires two steps if you don't want

to lose data. First reduce the dimension to 2x3,

eliminating the last row. Next, transpose the

matrix so that it is 3x2, with the two unwanted

entries in the last row. Now you can reduce the

dimension safely to 2x2. Transpose again to get

the desired matrix.

Reducing the matrix dimension and resizing

back to the original dimension is a quick way to

zero the last row or rows. If you transpose first,

you can zero the last columns.

6.22 Beware of USER mode (HP-11] and 15)

If you get an error message while trying to

key 1/x, check the display for the USER annunci-

ator. In USER mode (when the annunciator is visi-

ble) the white functions on the key are obtained by

first pressing the gold (f) shift key. You can

activate or deactivate USER mode by executing the

USER function.

6.23 Shortcuts with §

The % function replaces the number in X with

Xy/100, which is x% of y. The stack is not dropped

as it is for almost all other two-number functions.

The Y register remains undisturbed for further

calculations. This allows percentagesto be easily

added to or subtracted from the base value.

Calculations like

n ENTER .03 *

can sometimes be replaced by

n ENTER 3 % .

The result is the same, but the % version leaves

-120-

the number n in the Y register. If you are in the

middle of a calculation, this difference may force

you to use the normal multiplication method.

Calculating discounts or markups is much easi-

er with the % function. For example, to calculate

$135 less 5% discount, use

135 ENTER 5 & - .,

To calculate $49 plus 7% tax, use

49 ENTER 7 & + .

Another handy use of the % function is for

repeated multiplication or division by 10. To

multiply a number repeatedly by 10, key in the

number, then press

EEX 3 XY & % & % ...

The number 1000 remains in Y, so that each press of

% produces 1000% of x, or 10 times x. To repeated-

ly divide a number by 10, press

EEX 1 X<>Y & &% & & ...

This takes 10% of x each time you press %. This

technique was first suggested by Curt Rostenback.

6.24 Polynomial Evaluation

Horner's method is a fast way to compute the

value of a polynomial function. This method is

best illustrated by an example. Suppose you have

to evaluate the polynomial formula

24x% + 5x3 + 7x + 9

for several values of x. The first step is to

factor the formula:

((((24x+5)x)x + 7)x + 9 .

The sequence of steps you need to evaluate this

formulais

-121-

X

ENTER ENTER ENTER

24 %

5 +

*

*

7 +

*

9 +

The first three steps load the stack with copies of

X, so that multiplication by x requires just a

press of the * key. Study the alternate multipli-

cation and addition in this example, and compare it

to the factored formula. The correspondence is

simple and direct.

6.25 Easy histograms

A histogram is a summary of the frequency of

occurrenceof differentvaluesof arandomvariable

or any other event or function under study. The

usual procedure is to divide the set of outcomes

into "bins", or intervals, and to total the number

of times the outcome falls within each bin.

Your calculator's indirect addressing capabil-

ity makes this easy. Once you have computed the

bin number, just use this sequence:

STO I Store bin number in I

RDN

1

STO+1 Add 1 to the register

designated by I

-122-

6.26 Multi-purpose labels

Many of HP's programmable calculators have two

or more keys labeled A, B, etc., that allow you to

execute segments of a program from the keyboard.

For example, when you press the A key the calcula-

tor searches downward from the current position in

the program until it finds the first LBL A, then it

begins execution there.

Sometimes you will find that you need more of

these program entry keys than you have on the

keyboard. Here is a trick you can use on calcula-

tors that allow indirect branching (including the

HP-11, 15, and 16). Set up your program like this:

LBL A Entry point for Al, A2, etc.

STO I The number in X selects which

RDN of the "A" routines to use.

GTO 1

LBL 1 Start of Al section

RTN

LBL 2 Start of A2 section

RTN

LBL 3 Start of A3 section

RTN

LBL B Entry point for B1l, B2, etc.

STO I The number in X selects which

RDN of the "B"™ routines to use.

GTO 1

-123-

LBL 1 Start of Bl section

RTN

LBL 2 Start of B2 section

and so on. To use this setup, key in the number of

the program section youwant to execute, then press

the appropriate letter key. For example, to exe-

cute the A3 section, press

3 A .

This technique provides a virtually unlimited num-

ber of easy entry points from the keyboard. 1In

fact, youwill runout of program memory before you

run out of entry points.

Note that you cannot use backward GTO's or

GSB's to labels that are re-used. Each backward

branch should have its own distinct label.

-124-

APPENDIX A

The roots of Reverse Polish Notation

-125-

The following text is a summary of an article

written by John Kennedy (PPC member 918) and pub-

lished in the August 1982 PPC Calculator Journal

(see Appendix B for information on PPC).

Many people know that RPN stands for Reverse

Polish Notation, but few really understand the

foundations of this system of notation or know of

its significance in the world of calculators and

computers. JanLucasiewiczwas the Polishlogician

who invented a parenthesis-free notation used to

describe logical expressions in the subject gener-

allyknow assymboliclogic. Because Lucasiewicz's

nationality is much easier to remember and pro-

nounce compared to his last name, his system of

notation has come to be known as Polish notation.

A description of Lucasiewicz's notation was

published in two of his papers in 1929. One of

those papers consisted of notes from lectures de-

livered at Warsaw University in the autumn trimes-

ter of the 1928-29 academic year. It is signifi-

cant that in listing the more important results of

his research in mathematical logic, Lucasiewicz

chose his parenthesis-free notation as the first

item on the list. This idea must have originated

in the year 1928 (or earlier), a date that precedes

the completion of the first electronic computer by

almost 20 years.

Symbolic logic is concerned in part with de-

veloping techniques to determine whether or not

certain logic sentences follow fromcertainothers.

Simple sentences have a truth value within a given

context. They can be regarded as the building

blocks from which compound sentences can be con-

structed. Insequential or propositional calculus,

simple sentences are combined by using logical

-127-

connectives. The five standard logical connectives

are "and", "or", "not", "if...then...", and "if and

only if".

Symbolism is introduced into logic by using

single letters of the alphabet to represent senten-

ces and using special symbols to represent the

logical connectives. As an example of translation

into symbolic form, consider the sentence:

If George drinks and George does not

smoke cigarettes, then George is in

good health.

This is a compound sentence made up of three simple

sentences. We may let each of the letters p, q,

and r denote one of the simple sentences.

p : George drinks.

q : George smokes cigarettes.

r : George is in good health.

If, in addition, we let the symbol -~ stand for

"not", => stand for "if...then...", and ~ stand for

"and", then the above sentence can be written in

symbolic form as:

(P~~q)=>r

As further illustrations, if we let the letter

sdenote thesentence:

S : George should quit his bad habits.

Then the symbolic expression (p~q)=>(~r-~s) would

translate into ordinary English as:

If George drinks and smokes cigarettes, then

George is not in good health and he should

quit his bad habits.

We have used parentheses in the above two examples

of symbolic expressionstoindicate proper grouping

of sentence variables and logical connectives. The

parentheses are needed to eliminate any ambiguity

which might be associated with such symbolic forms.

-128-

In this sense, the reason for employing parentheses

as grouping symbols is identical to the reason for

using parentheses in mathematical expressions.

The mathematical expression 2+3*7 may be sub-

ject to misinterpretation if one does not agree to,

or is not aware of, standard mathematical conven-

tions. If you perform the operations from left to

right, you would first add 2 and 3 to get 5, then

multiply 5 by 7 to come up with a final answer of

35. O0f course you could just as well begin by

multiplying 3 and 7 to get 21, then add 2 to that

result to get 23 for the final answer. Thus the

expression 2+3*7 is ambiguous. One way to remove

the ambiguity is to introduce parentheses. 1If the

intended meaning is to add first, you would write

(2+3)*7. To specify multiplication first, you

would write 2+(3*7).

Although this example is quite simple, it

clearly demonstrates the need for parentheses as

grouping symbols. In more complicated examples

several sets of parentheses may be needed to give

an expressionitsintended meaning. As more paren-

theses are added, the expression becomes more dif-

ficult to read. Strictly speaking, it is not in-

correct to add more parentheses than are needed,

but it is best to use the minimum number of paren-

theses needed to make the meaning clear. For this

reason certain conventions have been adopted in

mathematics.

One of these conventions is that we should

perform multiplications and divisions before addi-

tions and subtractions. With this idea in mind the

expression 2+3*7 is no longer ambiguous. The mul-

tiplication is to be performed first. Of course,

if you wanted the addition to be performed first,

-129-

you have to write (2+3)*7,

This convention does not resolve the ambiguity

of the simple expression 16/8/2. 1If you perform

the operations left to right the result is 1. But

if you perform 8/2 first, the final answer will be

4. Therefore asecond convention is added, stating

that operations of equal priority are performed

left to right.

The calculation procedure is to start at the

innermost set of parentheses and work outward,

doing multiplication/division before addition/sub-

traction and calculating left to right at each

level of parentheses.

Now let's go back to George. 1In symbolic

logic you can also encounter ambiguity of expres-

sions. This time the variables will denote the

following simple sentences:

p : George will play the piano.

q : George will sing.

r : George's sister will sing.

Also, let the symbol v denote the logical connec-

tive "or". Then the symbolic expression pvqg-r is

ambiguous; it can be treated as pv(g-~r) or as

(pvg) ~r. The symbolic expression pv(gq-r) trans-

lates as:

George will play the piano, or George and

his sister will sing.

The expression (pvqg)-r translates as:

George will play the piano or sing, and

his sister will sing.

The meanings of these two translations are obvious-

ly different, since in the second case George's

sister is going to sing regardless of what George

does.

Just as in mathematics, symbolic logic has

=130~

certain conventions that dictate which 1logical

connectives take precedence over others. These

conventions also help keep the number of parenthe-

ses to a minimum,

Now that youhave seen the standard approaches

to minimizing the need for parentheses you will be

better able to appreciate Lucasiewicz's achievement

of devising a parenthesis-free notation. 1In fact,

this notation is free of any kind of grouping!

Lucasiewicz used capital letters to denote the

logical connectives:

C : => Conditional (if...then...)

A : v Alternation (or)

K : - Conjunction (and)

N : ~ Negation (not)

E : <=> Equivalence (if and only if)

The simple conditional "if p then g", which in

standard notation would be denoted by p=>q, is

denoted Cpg in Polishnotation. The expression p~g

becomes Kpgq, pvq becomes Apgq, and ~p becomes Np.

In this notation, the capital letters which

denote the logical connectivesactasoperators and

the lowercase letters act as the operands. The

operator is placed to the left of the operands in

Polish notation. The order in which the operands

follow the operator is important in the case of the

operator C. Cpq denotes "if p then q", whereas Cgp

denotes "if q then p". Complex symbolic sentences

can be formed unambiguously and without parentheses

using Polish notation. As Lucasiewicz pointed out,

his notation is also very easy to write using a

standard typewriter.

The symbolic formula (p~~qg)=>r, when written

in Polish notation, becomes CKpNqQr. This is a

well-formed formula (WFF) whose construction can be

-131-

understood by beginning with the expression in

parentheses in the standard notation. There you

see p~~q, which means "p and not q". Ng denotes

"not q". When you from the conjunction of p with

Ng, you write K to the left of these two terms.

Thus KpNq is the antecedent of the above condition-

al whose consequent is r. To form the complete

expression, write both KpNg and r to the right of

the letter C. The final form is then CKpNqr.

By similar reasoning, (p~q)=>(~r-~s) becomes

CKpgKNrs. The antecedent and consequent of this

basic conditional statement are Kpg and KNrs, re-

spectively. The conditional is formed by writing

these two terms to the left of the letter C. Now

you can easily see why Polish notation does not

require parentheses.

Now let's take another look at the performance

of George and his sister to see how the symbolic

formula pvg~r may be rendered unambiguous using

Polish notation. The formula pv(g~r) becomes

ApKqgr, while the other variation, (pvq) ~r, becomes

KApgr. Note that in the expression ApKgr the con-

nective A applies to p and Kgqr, while the connec-

tive K applies to q and r. In KApqgr, the connec-

tive A applies only to p and q, while K applies to

Apq and r.

As noted earlier, the reasons for using paren-

theses in symbolic logic are identical to the rea-

sons for using parenthesesinordinary mathematical

notation. In fact, there is a very close relation-

ship between the well-formed formulas (WFFs) in

propositional calculus and formulas in mathematics.

Every WFF can be translated into a mathematical

formula whose only operations are addition, multi-

plication, and negation. The reverse translation

-132-

is also possible. By translating WFFs into mathe-

matical formulas we can more clearly see their

algebraic character.

The algebra of logic obeys many (but not all)

of the laws of arithmetic. When we translate a

formula from propositional calculus into a mathe-

matical formula thevariablesareno longer senten-

ces, but numerical quantities which represent the

truth-value of the sentences. Each numerical quan-

tity can take one of two values: 0 or 1. The value

0 denotes FALSE, while 1l denotes TRUE. The logical

connectives become the familiar mathematical opera-

tions.

For example, logical conjunction translates as

multiplication. The WFF p~q becomes p°gqg. Note

that if p is TRUE and q is FALSE then the conjunc-

tion p~q is FALSE. Substituting 1 for p and 0 for

q in the mathematical formula p°q yields 1°0=0,

which also represents a FALSE result. As a matter

of fact, the only time p~q is TRUE is when p and q

are both TRUE. Similarly, the only time p°q yields

a numerical value 1 is when p and q both take on

the value 1.

Alternation is translated into addition. The

connective "or" as used in logic always refers to

the non-exclusive case. Thus pvg means "p or q or

possibly both". 1In order for pvg to be TRUE, at

least one of p and q must be TRUE. The only time

pvqgq is FALSE is when both p and q are FALSE. Note

that the only time p+g=0 is when both p and q are

zero. One slight complication is that we must

redefine the + operation slightly so that 1+1=1.

Then, if both p and q are TRUE, the result p+q is

still TRUE.

Since negating a TRUE sentence yields a FALSE

-133-

one, and vice versa, we must also make the arith-

metic definitions -1=0 and -0=1. Then ~p trans-

lates as -p.

Lucasiewicz was an historian of logic. Al-

though Polish notation was originally applied to

propositional calculus, Lucasiewiczwaswell aware

of the translation of formulas from symbolic logic

into ordinary mathematical notation.

The connection will now become most apparent

if we take another look at the above examples of

the translation process in terms of Polish nota-

tion. Rewriting the above logic formulas in Polish

notation and then translating into mathematical

notation, we have:

Apq becomes +pg

Kpqg becomes *pPq

ApKQgr becomes +p°qr

AKpPNrs becomes +°p-rs

AKpgKQgNr becomes +°pg°g-r

KApgAQr becomes *+pg+qr

The reader with sufficient experience will immedi-

ately make the connection between the last pseudo-

mathematical expressions and how calculations are

performed on RPN calculators. Reading the expres-

sions from right to left tells you what quantities

are to be entered into the calculation and what

operations are tobe performed.

Now consider the four analogous and equivalent

expressions:

pv(g~r) p+(g°r) ApKqr +p°gr .

Reading the fourth expression backwards tells you

precisely how to compute the second expression.

Following the standard mathematical convention, we

should enter r and p into the calculation first,

then multiply, then enter p, then add. Reading

-134-

backwards can be avoided by writing the terms of

the expression in reverse order.

Eureka! Reverse Polish Notation!

Writing the expression in reverse yields

rq°p+, which is the RPN equivalent of the above

four notations. The third notation ApKgr is gen-

uine Polish notation as formulated by Lucasiewicz

in 1929,

In actual practice mathematical formulas are

not written in RPN, but they may be thought of as

if they were written that way (especially when the

formula is to be evaluated on an RPN calculator.

Once the basic principles behind RPN are under-

stood, it is a simple matter to mentally convert

from ordinary mathematical notation to RPN while a

formula is being read and evaluated. The transla-

tion process is as simple for complex formulas as

it is for elementary formulas. The big advantage

over algebraic logic is that the problem solving is

so natural that you do not need to write down the

formula at all.

-135-

APPENDIX B

Further Reading

-137-

1. HP Key Notes is no longer published, but back

issues are still available from HP. For price and

availability information, write to:

HP Key Notes

1000 N.E. Circle Boulevard

Corvallis, OR 97330 UsA

2. The PPC Calculator Journal, published by Per-

sonal Programming Center, a users' group organized

as a non-profit public benefit California corpor-

ation. The Calculator Jdournal issues from July

1979 (Volume 6, Number 4) to the present cover the

HP-41; earlier issues offer helpful hints and pro-

grams of moregeneralinterest.

To obtain a PPC membership application and a

price list for back issues of the Calculator Jour-

nal, send $1 to:

PPC Dept. EN

P.0. Box 9599

Fountain valley, CA 92728-9599 USA

3. The PPC ROM for the HP-41, an 8K custom module

for the HP-41, designed by PPC members and manufac-

tured by Hewlett-Packard. The PPC ROM contains 122

programs of general utility, and it comes with a

500-page User's Manual. The program 1listings,

instructions, and line-by-line analysis in the

User's Manual are excellent learning tools for

aspiring programmers. For price and ordering in-

formation, check your calculator dealer or write to

PPC at the above address. The PPC ROM User's

Manual is also available separately.

4. HP-41 Extended Functions Made Easy, a book by

Keith Jarett. 264 pages, plastic spiral bound. A

-139-

step-by-step introduction, from the basic concepts

of extended memory to explanations and examplesof

each of the extended functions. The second half of

the book presents over 30 utility programs, inclu-

ding a text editor, a mailing list manager, solve,

integrate, and more. Check with your calculator

dealer or write to:

SYNTHETIX, Dept. EN

P.0. Box 1080

Berkeley, CA 94701-1080 USA

The price per copy is $16.95 plus shipping: $1

(UsA, book rate), $2 (USA, United Parcel Service),

$3 (USA or Canada, air mail), or $5.55 (elsewhere,

air mail). California residents add sales tax.

Checks must be payable through a U.S. bank.

5.HP-41 Synthetic Programming Made Easy, a book by

Keith Jarett. 192 pages, plastic spiral bound.

Introduces the fascinating subject of synthetic

programming, encompassing the creation and use of

instructions that cannot normally be keyed on the

HP-41. Synthetic instructions range from non-

standard tones to powerfulinstructionsthat access

the HP=-41's operating system scratch registers.

Synthetic capabilities include expanded key assign-

ments and additional display characters. "HP-41

Synthetic Programming Made Easy" containsgeneral

utility programs, plus application programs for the

Extended Functions and Time modules. The tech-

niques and programs work equally well on the HP-

41C, CV, or CX. Includes a plastic Quick Reference

Card for Synthetic Programming. Check your dealer

or write to SYNTHETIX at the address in item 4.

The price and shipping charges are the same as for

"HP-41 Extended Functions Made Easy".

-140-

6. An Easy Course in Using the HP-12C, a book by

Chris Coffin and Ted wWadman. 256 pages, spiral

bound. Explains financial computations, why they

work, and how to do them on the HP-12C. A self-

paced course with examples, self-tests, and handy

hints. Check your dealer or write to:

Grapevine Publications, Inc., Dept EN

P.O. Box 118

Corvallis, OR 97339-0118 USA

The price per copy is $17.95 plus shipping, which

is $2 (usAa), $3.50 (Canada), or $6 (elsewhere).

Checks must be payable through a U.S. bank.

7. An Easy Course in Programming the HP-41, a book

by Ted Wadman and Chris Coffin. 255 pages, spiral

bound. Perfect for beginners. Programmed learning

of HP-41 programming! Written by two former HP

employees, this book will teach anyone how to pro-

gram the HP-41. What's more, it's easy and fun.

Check your dealer or write to Grapevine (same price

and shipping charges as item 6).

8. Calculator Tips and Routines (Especially for the

HP-41), a book edited by John Dearing. 130 pages,

spiral bound. This book contains many helpful

hints, 1listings of utility programs, and short,

useful instruction sequences. This book is avail-

able fromdealersor directly from:

Corvallis Software, Inc., Dept. EN

P.O. Box 1412

Corvallis OR 97339-1412 USA

The price is $15 within the USA and Canada, $20

elsewhere, airmail prepaid. Checks must be payable

through a US bank.

-141-

INDEX

-143~

Algebraic notatioN..eeeeeeececceeccccceeeesad,9,21,22

BASIC.eeeeeeceosoesoscesscsssssoscsscsossscsssssssccscesld3

BiNAryYeeeeeeeeeessesssssssosscsosccsossssssssscsssccesd2

BranChingee.eeeeeeceeeecesccscecscscsscscscsscsnccacsseesd9

Chain calculationNS..ceeeccececccscccscssscccsessssld, 10

CompleX NUMDEIrS.ceeecesssoscsscsssscssssscscsssccsssdl

Dat@ EeNtrYeceeeseesccsccscsscssscsscssesseasad6,63,65

Data storage registersS.cececeeceeces...23,33,46,78,108

Editing bottom tO tOPececececececscccccccccssnssassesll’

ENTEReeeeoscoooosassscosesscssssssosccssssssssseald, 18,67

FlagS.eeeeeeeoeesessesescscscsscscccscsasscssssscsncssscccseedl

Flow control instrucCtionNS..cecceccccccccsccescesdd, 47

HexadeCimal.eeeeeeeooooeoeoosscsassscsccsoscsoscccscsssssel2

Horner's method...eeeeeeeeecescscssssccecossasssssl2l

Hyperbolic functionS.....cccceececececcecescsseal3l, 112,113

Indirect operationSececeescsccsscssscscccccccccssssll

InitializatioNeeeeeeeeeeecsscssosssosossccccccccessdb, 77

IntegratioONeecececcecececececscsccccscsccccscsasealdl,llB

Io=Y33

Label reUSE.ceceeccececccccscscscscsscscsccscssscaecel2,123

LASTX ceeeoosssscscaosososssssscccsssssssssasccsssel2, 40

Matrix operationS.ceceecececescecscscsscscsscsssaal3dl, 119

MEMOLY e eoooooooocosoooscoscososossssssssssssscsascsccccsdd

MiCroCOdEe.eseeeeecececescsccccsoscsosossscscsssossssssssidd

MODULO funcCtioN..eeeecececcccccccccasssssssssdd,l114

Newton's Method.eeeeeeeecssscccaosssssssscccnasesadl

PPCiceccecceacsosscssaceaossosscsssssscsssssnssssssiii,139

P/R KeYeeeeeeeoeesesoosoasesosscasososesssnsscnnsesid?

Program pointer..c.ceececcecsccescs cececcscscssssssssssd]

Programming "tricks"..eeeeeeececceccscccceaceesadd>, 68

Quadratic formula@.eceeccecececcsccsccecssscsccacssel ,606-69

Random number generator.ceececececcecececeseadl, 78,79

RDN:eoeooosoooaosns ceccccsssscssscscccscsssessssll, 1B

Restarting @ pPrograM.eesecescscccscesscsscsscsscsccassll8

-145-

Reverse Polish Notation..8,9-11,15,21,22,29,127-135

Root findinNng.eeeeecceeccccccccscscccscccccscccsell,93-96

Roundoff..cceeeeeeeecceccssscccccosonansssaed2, 109,110

SIGN functioN.ceeeececeas cecssscsscscccsessssccscccslld

Spherical coordinate conversionS.eceeeceeces..113-114

SQRT...............................".‘..........iv

StaCK......................‘...16’36,46'107‘109’120

Test instrUCtions.c..ooo.ooc0000-0049'50,511115,116

-146-

ORDER BLANK

Quantity Amount

HP-41 Extended Functions Made Easy
By Keith Jarett. Introduction to Extended Functions module
(built into HP-41CX). Helps you get the most from your

Extended Functions. Over 30 powerful utility programs.

$16.95 per copy

HP-41 Synthetic Programming Made Easy

by Keith Jarett. Learn to create and use non-keyable (synthetic)

instructions. Multiplies the power and convenience of your HP-41

$16.95 per copy

Quick Reference Card (QRC)

Indispensable for synthetic programming. Printed on durable

plastic. $3.00 each 3

ENTER (Reverse Polish Notation Made Easy)
By J.-D. Dodin. Revised and expanded by Keith Jarett to include
programming techniques, programs, and tips for owners of HP
Series 10 calculators. $12.95 per copy 9

Subtotal: $

Sales Tax (California orders only, 6 or 6.5%) $

Shipping, per book
within USA, bookrate (dthclass) $1.00

USA 48 states, United Parcel Service $2.00

USA,Canada,airmail. $3.00
elsewhere,airmail $5.55

Shipping for QRC plastic cards (any number)

Free with a book order or with a self-addressed,

stamped envelope. Otherwise $1.50

Enter shipping total here $

Total enclosed: $

Checks must be payable through a US bank.

Name Mail to:

Address
SYNTHETIX

P.O. Box 1080

City State Zip Berkeley, CA
94701-1080 USA

Country

ORDER BLANK

Quantity Amount

HP-41 Extended Functions Made Easy
By Keith Jarett. Introduction to Extended Functions module
(built into HP-41CX). Helps you get the most from your

Extended Functions. Over 30 powerful utility programs.

$16.95 per copy $

HP-41 Synthetic Programming Made Easy

by Keith Jarett. Learn to create and use non-keyable (synthetic)

instructions. Multiplies the power and convenience of your HP-41.

$16.95 per copy

Quick Reference Card (QRC)
Indispensable for synthetic programming. Printed on durable

plastic. $3.00 each 9

ENTER (Reverse Polish Notation Made Easy)
By J.-D. Dodin. Revised and expanded by Keith Jarett to include
programming techniques, programs, and tips for owners of HP
Series 10 calculators. $12.95 per copy $

Subtotal: $

Sales Tax (California orders only, 6 or 6.5%) $

Shipping, per book
within USA, book rate (4thclass) $1.00

USA 48 states, United Parcel Service $2.00

USA, Canada, airmail $3.00
elsewhere,airmail$5.55

Shipping for QRC plastic cards (any number)

Free with a book order or with a self-addressed,

stamped envelope. Otherwise $1.50

Enter shipping total here $

Total enclosed: $

Checks must be payable through a US bank.

Name Mail to:

Address
SYNTHETIX

P.O. Box 1080

City State _____ Zip________ Berkeley, CA
94701-1080 USA

Country

The ENITER key is a prominent feature of
Hewlett-Packard calculators. I is central to the
Reverse Polish Notation (BPN) logic system
used by these machines. ENTER was written
especially for owners ol Series 10 machines,
most notablvthe HP-11C and HP-15C and also
the HP-100HP-12C, and the HP-16C.
“ENTER will show yvou how BPN works and

how 1o write simple programs for vour
calculator. Over b0 useful tricks and applica-
tion proarams are presented, includingfraction
conversion, root finding, and tinancial calcula-
nons.
Whether vou are a beginner or an experi-

enced user,”ENTERwill help vou get the most
__out of your Hewlett-Packard calculator.

1ISBN 0-9612174-2°'1 $12.95

	Cover
	Table of Contents
	Introduction
	Chapter 1: A Matter of Logic
	1.1 Language and Logic
	1.2 Formulas
	1.3 Algebraic Notation vs. RPN
	1.4 Pencil and Paper vs. RPN

	Chapter 2: Using Reverse Polish Notation (RPN)
	2.0 Using RPN
	2.1 One-number functions
	2.2 Two-number functions
	2.3 Chain Calculations
	2.4 The Stack
	2.5 How the Stack works during calculations
	2.6 The LASTX register
	2.7 Data Storage Registers
	2.8 Fancy Functions

	Chapter 3: Calculating in RPN
	3.1 Introducing the HP RPN machines
	3.1.1 Series 40
	3.1.2 Series 10
	3.1.3 Special features of each model
	3.1.4 Common features, limits

	3.2 How to approach a calculation
	3.2.1 Formulas
	3.2.2 Calculating "on the fly"

	3.3 Advanced uses

	Chapter 4: RPN programming
	4.0 Keystroke sequence or program?
	4.1 First difference: Memory Usage
	4.2 Flow control instructions
	4.2.1 Labels
	4.2.2 Run/Stop
	4.2.3 Branching
	4.2.4 Test Instructions
	4.2.5 Flags
	4.2.6 Counting Instructions
	4.2.6.1 ISG and DSE
	4.2.6.2 Plain counting
	4.2.6.3 Counting between two values
	4.2.6.4 Negative numbers

	4.3 Constructing a Program
	4.3.1 Instant Programs
	4.3.2 More elaborate programs
	4.3.3 The indirect operations
	4.3.4 Testing your program

	Chapter 5: Application programs
	5.1 Initialize a block of registers
	5.2 View a block of data registers
	5.3 Pseudo-random numbers
	5.4 Fibonacci numbers
	5.5 Permutations
	5.6 Combinations
	5.7 Greatest common divisor
	5.8 Sum of the digits of an integer
	5.9 Convert a real number to an integer or a decimal fraction
	5.10 Reverse an integer
	5.11 Decimal to fraction conversion
	5.12 Factorial calculations
	5.12.1 The factorial function
	5.12.2 n! for any n
	5.12.3 Inverse factorial function
	5.12.4 Stirling's approximation

	5.13 Root-finding
	5.14 Financial calculations
	5.15 Time for a game

	Chapter 6: Tips and tricks for the Series 10
	6.1 Exponents
	6.2 Leading zeros
	6.3 Avoid CLX in programs
	6.4 Checking number of registers allocated
	6.5 Doubling a number
	6.6 Duplicating Y to the top of the stack
	6.7 Rounding
	6.8 Mile/kilometer conversion
	6.9 Multiples of Pi
	6.10 Tricks with trigonometric functions
	6.11 Hyperbolic trig functions
	6.12 Law of Cosines
	6.13 Spherical coordinates
	6.14 Functions not available on the keyboard
	6.15 Combined test instruction
	6.16 Editing a program
	6.17 Repeated execution of a program
	6.18 Solve and Integrate subroutines (HP-15)
	6.19 Displaying two integer numbers at once
	6.20 Exchanging two data registers
	6.21 Matrix manipulation
	6.22 Beware of USER mode (HP-11 and 15)
	6.23 Shortcuts with %
	6.24 Polynomial evaluation
	6.25 Easy histograms
	6.26 Multi-purpose labels

	Appendix A: Roots of Reverse Polish Notation
	Appendix B: Further Reading

