
ERAMCO
SYSTEMS

ES 83120A
ERAMCO MLDL-OFERATING SYSTEM EFROM

OWNER 'S MANUAL

February 1984

Frinted in the Netherlands (c) Eramco systems 1984

MLDL operating system eprom

CONTENTS

Introduction........cccciirncccccacacncannannnnnas e e

Installation........ ceesscscancaana ccssmsesemnaanas .-

Organisation of the instruction set.........-

MLDL write functions........... ceeemsnn ceeessssaanans

Utility functions........cc.c.... csesememcansaancsanceas
Update functions............. cessscacsnens seasessancns

Appendix A: Input / Output............. cesssssans “eu=

Appendix B: Frogrammability....... csamessanns cassse=e

Appendix C: MessageS...cccsccscnncanas cmsesseenss.

Appendix D: XROM numbers........ cecececsassssasananas

Appendix E: XROM and FAT structure.......... csasasaaa

Appendix F: Interrupting Foints....... cuessssssesvess

Appendix G: Assembly language information.......... “o

Function Index......cccceca-n neseceoa ceessesscas e

Care and Warranty........ ssssssessssssssscncessanassns

How to set up your own EROM page..........

Page 2

o
G

2@

MLDL operating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL operating system eprom. To

get a full understanding aof all the routines and functions 1in

this eprom set, it 1is advisable to read through this manual

carefully before operating any of the functions or routines.

INSTALLATION

Follow the instructions of your ERAMCO MLDL-box carefully when

installing the eprom set in your box. It may be necessary to bend

the feet of the two eproms slightly inward to make them fit

easily into the eprom sockets. Do not forget to enable the page

on which you insert the eproms (for more detailed information on

how to insert the eproms, consult your hardware manual of the

ERAMCO MLDL-box). A lower address is the most appropiate page

for 1insertion of the eprom. This provides a quick access to the

routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

As you will soon discover the routines and functions 1n this

eprom set are divided into three sections. The first section

contains all the functions and routines that will change anything

in the MLDL-ram you are working on. So always be careful when

using any of these functions. A single mistake can destroy the

whole 4K ram block that is under development.

The second section contains the functions that facilitates

working with the MLDL-ram. They do not change anything in the ram

but will provide a quicker access to the ram (LROM will tell you

almost i1immediately where you can continue with writing in the ram

or where you can store a User—-code program).

The third and last section in fact belongs to the two mentioned

above. However, this 15 a seperate section to keep compatible

with the xrom numbers of an older version.

Page 3

MLDL operating system eprom

Note : All inputs which has to be placed in the alpha-register

are related to hexadecimal

In the description of the functions it 1s assumed, that you have

one MLDL ram page available for exercising the examples. To

ensure that the examples work out in the way we have described

them, 1s 1t necessary to clear one block and to place it at the

proper page. Flace the first block off your MLDL ram at page 7.

This 1s easily achieved by turning the appraopriate (left}) hex

rotary switch to 7. Disable the block by switching the 1left

enable switch down (off). To avoid problems with the second

block, it is advisable to switch this block of too.

Aftter these preparations we can clear the whole block. Input for

this is 7 in ALFHA. Now execute the function CLBL. For detailed

information of it’'s operation see page 14.

Switch the MLDL ram page on line by switching the 1left enable

switch to the ON state. It is now ready for the examples.

INPUT : All the hexadecimal 1input in the ALPHA register is

checked on valid data. Data is valid only, i+ it

consists of the hexadecimal characters. These characters

are the numbers from @ upto 9 and the letters A through

F. Any other character in ALFHA will cause an error. The

display will show DATA ERROR.

I+ the error occurs in a function during a running

program, the error will be displayed and the program is

halted at the instruction, that caused the error.

OUTPUT : Every function in this MLDL rom that gives an

hexadecimal output to the ALFHA register, will

automaticcally execute an AVIEW after it has put 1it’'s

data into the ALFPHA register. 5a, 1f you are using for

example the function LOCA in a program, 1t 1is not

necessary to do a AVIEW after the function. { Otherwise

the result will be displayed twice. In conjunction with

the printer your results will also be printed twice.

Page 4

MLDL operating system eprom

MLDL WRITE FUNCTIONS

RAMWR (RAM WRite)
XROM 11,31

This non programmable function allows the user to read every word

in a ROM, EPROM, or MLDL-ram (EROM). In case of MLDL-ram it is

also possible to change or write in this MLDL-ram. The addresses

and data are prompted for and given in hexadecimal +form. This

function will redeftine the keyboard as long as it is used to make

hexadecimal input easier.

After calling this function it will prompt Ffor the absolute

address in ROM. The following keys are now active: 8-9, A-F,

back—arrow and the on key. The back-arrow key is used 1in the

usual way to correct the last given input. NULL will be displayed

if you hold the last input-key. When you release this key after

NULL 1is displayed, vyou will be prompted again for the address.

Fressing back—-arrow without input causes the function to exit to

normal aperation of the HF-41.

The address and three prompt signs are shown in the display (

ARAA __). From now on the keyboard is defined as follows:

-STO0 will give vyou the data at this and the following

addresses. Each address and the data are displayed for about

8.5 sec. Fressing any key accept the R/S or the ON key, will

slow down the listing of the data that i1is displayed. The R/S

key will stop the listing at any desired place. The ON key

will switch off the machine in the usual way.

Example : If vyou press RAMWR and fill in the prompt with

XFDS (X represents the page the MLDL rom 1is

located) you will see @93. This is the last

letter of the xrom name of the MLDL rom. i¥f vyou

press 5T0, you will see the whole name of the rom,

displayed one character at the time. Stop the

display after you have seen 3EQ. This is the end

of the xrom name.

FPage 5

MLDL operating system eprom

—TAN or BST decreases the address by one. This enables you to

go through the listing by hand.

Example : After you have stopped the listing in the previous

example, vou can see the first letter of the xrom

name, by pressing TAN or BST once. The display

shows XFFD @0S5S.

—-88T increases the address by one, making it possible to step

through the listing by hand.

Example :

—-back—arrow

Fressing 55T once places you at the end of the

xrom name. The display shows XFFE 3EB. Fressing

SST once more places you at address XFDF with data

az2.

asks vyou for a new address if there is no data

input. Otherwise it will operate in the usual way to correct

the last input.

Example :

—-ngn .

as new

because

2,1,2

"1",

ar

Fress back—arrow once. You are prompted for the

new address. Fill in the prompt with 2Z2FFE. This

address contains the revision level of the second

operating system rom. The number represents the

position of the letter in the alphabet. So 1+ vyou

see B4, your revision level is F.

o H-ru2", "3" (numberkey’'s @0,1,2,3) are interpreted

data. In this way wrong data input 1is prevented,

the +first character of a data word can only be

J3. For the rest of the data input the hexadecimal

keyboard is available again. Holding the last data key will

NULL the

prompt for new data. With the back-arrow key it is possible

to

increased

facilitate the writing of 1long programs.

input function and after releasing the key will

correct the last given input. The address will be

by one after completion of data input. This will

Page &

MLDL operating system eprom

We will initialize our ram block with a name.

Therefore we have to go to page 7. Fress back-

arrow once and +ill in the prompt with 70808. At

this address the XROM number of our rom 1is

located, and we have to give the ram block an XROM

number before writing to it. This is necessary,

far RAMWR checks this address every time we write

to ram. If it is zero, the message NO ROM is given

and we are asked for an address again.

The XROM number we will use is F1. This is the

same XROM number as the cardreader, so to avoid

problems you should disconnect your cardreader.

After this is done, we can start writing to our

MLDL ram. Fress back—-arrow again and goto address

7886. The first thing to do, 1is to give the MLDL

ram block a name. The name we are going to use is

NEWUSER @1.

This name is coded as follows :

Address Data Comment

7086 @2B1 1 end of the name

7087 2z 2

7@88 220 space

7889 @212 R

7@38A a5 E

7@8E a1z S

7@08C B1s u

7@8D @17 W

7@8E 205 E

7@8F QGE N start of the name

7090 ZEQ@ start of function

The name can easily be entered by pressing the

data words after each other. If you make a mistake

during entry, vyou can correct it with the back-

arrow key. If you discover the mistake after vyou

have finished the data waord, vyou can go back with

BST or TAN and try it again. With AFAT we will

complete the initialization of our MLDL ram page.

Fress backarrow twice to exit the RAMWR mode.

Page 7

MLDL operating system eprom

You can exit this function, when you are in input-mode, by means

of pressing the back-arrow key twice.

I+ you are at address #0008 and you try to do a backstep, vyou

will find yourself at #880@1. This is done to avoid an unexpected

wrap around to #FFFF. If you really want to backstep to #FFFF you

have to press backarrow once and continue at this address.

WARNING : Be careful with the addresses from xFF4 up to xFFA.

These addresses are scanned by the operating system of

vour calculator. It’'s possible that the calculator will

crash when these adresses contain error data. For more

information see appendix F.

MMTORAM (Main Memory TO RAM)

XROM 11,@2

The function MMTORAM is used to copy a program from main memory

in the calculator to the desired MLDL-ram page in a MLDL-box. All

the necessary translations for a good operation of this program

are made automatically. The Function Access Table (FAT) is

updated at the same time with the new Global Labels of the

program. For good operation of this function it is necessary to

initialize the MLDL-ram in the proper wavy.

Freparation of the MLDL-ram: You need a block of ram words that

is 1long enough to hold the desired program. The length of the

program can be found with the help of CBT (see CBT). Add two to

this number of bytes and you have the number of bytes that will

be needed for the program when loaded into the MLDL-ram. Now you

must Ffind a block in the ram space that is large enough. Write

down the starting address of this block. BE CAREFUL Addresses in

ram are given in hexadecimal form, but the length of the program

(by CBT) is given in decimal form. Key into ALFHA the starting

address of the block (it’'s advisable to leave about 20 words

between the starting address of the block where the program will

be written and the first empty word in the ram you have found,

for future revisions).

When vou are initializing a 4K block of MLDL ram automatically

with the help of IFAGE, vyou do not have to do all of this. The

loading address will be automatically given by IFPAGE. Also the

first next empty word will be returned by MMTORAM to the ALFHA

register, to make loading easier.

Page B

MLDL operating system eprom

User flags @ and 1 can be set or cleared to achieve the desired

private status

flag @ : flag 1 : status

cleared ' cleared : program open

cleared : set : praogram open, aftter COFPY

: : private

set : cleared : program private

set i set : praogram private

With the help of these two user flags it 1s possible to make the

program completely private in the MLDL-—ram, e.g. you can not go

into FRGM mode to examine the program and it is not possible to

copy the program into the main memory with the help of the COFY

function. A partly private status is also possible. In this case

it is possible to examine the program, but after copying it into

the main memory i1t will be private. The third option means no

security at all. Frograms are now free to examine and to copy (

compare with e.g. the math module).Flease note that changes in

the program are only possible when it is stored in main memary (

see the manual of the calculator for i1it’'s behavior when you are

in rom).

With wuser +flag 3 you can have the option to delete the numeric

labels in a program. (for more information about this ogption see

CMPDL).

When this flag is set, nothing unusual will happen. The program

is first compiled and then loaded into MLDL-ram with the desired

private status according to the settings of flag @ and 1.

I+ this +flag is cleared to the contrary, the program will be

loaded with all numeric labels deleted. (if this is possible)

MMTORAM can be executed after these preperations regarding the

user flags. The function will prompt for the name of the program

that has to be copied. It is enough to press ALPHA twice when

the program counter 1s already set 1in the wanted program.

Otherwise vyou must enter the name of the program in the same way

as with CLF or COFY.

MMTORAM calls one of the two present compilers, depending on the

status of user flag 2 and will compile the program (for messages

during compilation see COMFILE). When the program is compiled,

the message LOADING FGM will be displayed. When the whole process

is finished, a tone will sound and the message READY will be

displaved.

Page 2

MLDL operating system eprom

When the function has been finished, it will return the address

of the next +ree byte in MLDL-ram. Be carefull. I+ vou are

loading manually, this is the address of the first byte after the

program. It doesn’'t have to be necessarily empty. Whenever vyou

are loading, with the MLDL-page initialized with IFAGE, it will

be the next {free byte available.

A CAT 2 or a CAT x (x is the pagenumber of the MLDL-ram where the

program has been written on) will show you the updated FAT with

the new labels.

Noting down the start and end-—address of the used block will

allow you to make changes without address mistakes.

For an example of how to load your user code programs in the MLDL

box, we rever to How to set up your own EROM page. There a

complete description is given how to set up a MLDL ram page for

loading user—code programs.

AFAT (Append FAT entry)

XROM 11,83

The +function AFAT enables the user to update the FAT, e.g. to

append the starting address of a routine that has been written in

the MLDL-ram. Functions are only accessable to the HF-41 when

they have an entry in the FAT. This also holds true {for programs

that are transferred to the MLDL-ram. The function MMTORAM takes

care of this automaticaly.

Input for AFAT is in the format UOFAAA. AAA is the start—-address

of the function within a page, F 1s the page number where the

function 1is loaded, 0O is an aoffset and U tells the HFP-41 i+ the

routine is a M—-code routine or a User code program.

U=0@ M-code function. The address points to the first word that

is executable

=2 User code routine. The address points to a Global Label

Example : AAA=3ZFF The start of the function or routine is +found

at X3FF.

Page 1@

MLDL operating system eprom

In order to understand the interaction of O and F it i1s necessary

to realise that EFROM and MLDL-ram can be placed at every wanted

page, e.g. at any desired port. It must also be kept in mind that

an EFROM or MLDL-ram page contains only 4kK. The value of F 1is

only pointing to the page where the MLDL-ram is positioned at at

this moment. The value of F will change when you address the

MLDL-—ram to a different page. Opposite to this is the behavior of

the value for 0. 0 is a constant added to the pagenumber. It will

not change when you place the MLDL-ram at a different page. The

constant 0 allows you the possibility to execute functions and

routines from another page other than the one where the FAT entry

is lodged. 5o it is evident that the page which is called must

always be 0 pages further in the memorvy.

Example : The page that contain the FAT is at page 8, and the

page that contain the routine itself is at page C,

address 1is 490. We want to make an entry for a User-—

code routine with AFAT.

The value of 0O (the offset) is C - 8 = 4

The value of P (page containing the fat) is 8.

The value of AAA (start—address) is 4%0.

The value of U (M- or User code) is 2.

We do now need the following input for AFAT

248490

When we move the first ROM to another address we must also move

the second ROM the same number of pages in the same direction 1if

the value of 0 is something else then zero. Leading zero’'s in the

input can be omitted

Page 11

MLDL operating system eprom

Example : For our MLDL ram we have written the rom name with the

help of RAMWR. To be able to see the rom name when we

are executing a catalog 2, we have to place the xrom

name entry into the FAT. This is done with AFAT.

We do have a function name, sc the digit representing U

will be zero.

The rom name is not located at another page, so the

offset is alsoc zero.

We are working at page 7, so the value of F will be 7.

The starting address of the function 1is the Ffirst

executable word of the function and is in our case

located at @90.

This results in a total entry for AFAT of 0G@70708

As leading zero’'s can be omitted, we can use 7898 as

the entry address for AFAT. Write the entry into ALFHA.

Go out of ALFHA and execute AFAT. If you do now a

catalog 2 you will see NEWUSER @1 in the display when

the catalog routine has arrived at page 7. (i+ vyou

have no printer or timer module, it will be the first

name that appears in the catalog.

DFAT {(Delete FAT entry)

XROM 11,04

The Ffunction DFAT is used when you want to delete an entry {rom

the FAT. The +function or routine which 1s deleted will be

invisible for the HP-41 after execution of DFAT. The XROM numbers

of all the routines and functions that came after the deleted

function 1in the FAT, will get one lower. Fay attention to this

fact when vyou use functions or routines from the ram vyou are

working on. The same input format is used as with AFAT. The

difference is that you do not need to specifty the value of U.

So the input format will be OFAAA (offset) ,(page) ,{(address

)

DFAT will search in the page with number F and delete the

specified entry. Leading zeros may be omitted.

Page 12

MLDL operating system eprom

Example : In the example of the function AFAT we have added the

function name to the FAT, to give the MLDL ram page a

name. We will add another name to the FAT, USER @1, by

appending a name to the FAT with address 788D. {(for

detailed instructions how to append an entry to the FAT

see AFAT).

If you execute a catalog 2, vyou will see NEWUSER 81 and

after this USER 81. The last entry has to be removed.

This 1s easily accomplished by getting the right entry

address into ALFHA and execution of DFAT.

Give in ALFHA the entry address of USER 81. This

address 1is 7808D. Get out of ALFHA and execute DFAT.

With a catalog 2 you can check, that the entry has been

removed. You should only see NEWUSER 81 in the catalog.

MOVE (MOVE ram block)}

XROM 11,805

The function MOVE allows the user to move certain parts in a ROM,

EFROM or MLDL-ram to another place. FKeep in mind that yvou can

only move into MLDL-ram. MOVE makes it possible to insert words

or delete words at any place in the MLDL-ram. It is also

advisable to copy only small routines or functions +rom another

page to the MLDL-ram page you are working on.

The input format in ALPHA is as follows : BEEBBEEEEDDDD

BBBE gives the starting address of the block that has to be maoved

(it is the first word that will be moved).

EEEE gives the end—address of the block that has to be moved (it

is the last word that will be moved).

DDDD gives the address of the first word of the block where the

source block will be copied.

The Ffunction will accept a destination address within the

original block.

Page 13

MLDL operating system eprom

Example : We want to copy the rom name to another part of the

rom, to be able to make some changes and to use it as a

second header. This second name has to start at address

7DDE. The rom name is located at 7886 to 70790.

The begin address is 7886

The end address is 7890

The destination address is Z7DDE

This gives a total entry for move of 7884707@7DDE.

Enter this in ALFHA and execute MOVE.

With the help of RAMWR you can check, that the word at

7DDE is @Bl and at 7DEB is 3EB. These are the +irst and

last words of the rom name.

CLBL (Clear ram Blaock

XROM 11,806

Clearing a block of MLDL-ram is done with the help of CLBL. Input

is in ALFHA in the format BBBBEEEE.

BEBE is the first word of the block that has to be cleared.

EEEE is the last word of the block that must be cleared.

Execution of CLEBL puts zero in all the addresses between the

given ones, including the start and end addresses.

Example : We discover after some time, that we don’'t want to use

the second rom name after all. We could leave it in the

ram page, but for good housekeeping we want it to be

cleared. This 1is accomplished by getting the right

begin and end address into ALFHA and execution of CLBL.

Switch to ALFHA and give as input the start and end

address of the block of code we created with MOVE. The

starting address of this block is 7DDE (destination

address when we moved). The end address is 7DEB (this

we have found with RAMUWR).

So the total entry for CLBL is 7DDE7DEB. Get out of

ALFHA and execute CLBL. With RAMWR you can check, that

the words at the specified addresses are deleted.

Page 14

MLDL operating system eprom

Another option of CLBL is to clear a whole 4K block at once. For

this 1input F in ALFHA. F represents the pagenumber of the page

vyou want to clear. ##%% ATTENTION #%#% This 1last option is

dangerous. It operates like MEMORY LOST, but in this case it is a

memory loss of the specified MLDL-ram page.

Example : Switch the other page of MLDL ram to page 6. Get into

ALFHA and give the address of the page to be cleared (

&). Bet out of ALFHA and execute CLBL. Now you can

switch the second MLDL ram page on line by setting the

right enable switch to the ON position.

COPYR (COFY Rom page)

XROM 11,07

The function COFYR enables the user to copy an entire page of ROM

or MLDL-ram to another page of MLDL-ram. This gives vyou the

opportunity to change anything you want in the just copied block

of ROM.

Input is in ALFHA and has the format S5D.

S is the page from where the copy has to be made (Source).

D is the page to which the copy is destined (Destination).

This function will sound a low tone to indicate the completion of

the function.

Example : We want to make a copy of our working MLDL ram page.

This could be done with move by giving as input

70087FFF6000. But this will take longer and asks for a

more complicated input. Therefore we will make use of

COFYR. The input for this example is 76 in ALFHA. When

this is done, the function COFYR can be executed. After

the tone has sounded we can check, if the second rom is

available by executing a catalog 2. You will now see

the romname NEWUSER @1 appearing twice in the catalog.

FPage 15

MLDL operating system eprom

ROMSUM
XROM 11,@8

To check if a ROM is still in good shape HEWLETT-FACKARD has put

a checksum in each ROM. With the function ROMSUM vou are able to

compute this checksum and put it at the proper place in the MLDL-

ram you are developing. The checksum is calculated by adding all

the words on this page, take modulo 255 and put the remainder in

xFFF.

The input i1is P in ALFHA. P is the page number of the MLDL-ram you

want to update the checksum.

Example : To be able to detect if our rom is still in good shape,

we are going to compute the checksum of the rom. Give

the address of the rom in ALPHA. Attention, we are

using the second MLDL ram page now, so the input will

be & instead of 7. Get back to normal operation mode

again and execute the function ROMSUM. This will take a

few seconds. During this time the display will remain

blank.

When the function is completed, vyou can check i+ the

checksum 1s calculated in the proper way. This 1is

achieved by keving into the X-register the used xrom

number 31. Now execute ROMCHKX. The display will change

into 31 @e@-@e T5T. After a few seconds it will change

to 31 @@-aa (Ok.

(Remember X1 is the xrom number we used for our MLDL

ram page).

REG>ROM (REGisters to ROM)
XROM 11,89

This function is the opposite of ROM>REG (for more information on

this function see at ROMXREG). This routine will translate the

registers with it’'s 5 words/register back into S different words

and place them at the proper addresses in a MLDL-ram page.

The input in the Y-register determines where the data will be put

back in the MLDL-ram. 3 different options are available to

achieve this.

Page 16

MLDL operating system eprom

1. "vy"= 0@ The block will be placed at the same

location as where the original was (if the

original was located from B3IFF to 84546 it

will be restored at the same addresses.

2. "¥Y"= F F represents a page number that is created

with the help of COD. The block will now be

loaded at the same relative addresses from

which it came +rom but at a different page(

if the original was located at B3IFF to 8456

it will be restored at FIFF to F456).

3. Y = EBBE Here BEEBE represents the start-address

where the block will be stored (BEER >=

Ba1@). The block will be loaded starting

at the address given by BBEE 1ndependent

+rom the original start-address of the

block.

The X-register must hold the number of the register that contains

the +First data words of the block that has to be read back (

actually the +First register contains a header that is used by

REG>*ROM and is made by ROMXREG).

Writing entire 4K blocks of MLDL-ram from a storage medium 1s

facilitated by the functions SAVEROM and GETROM.

Example : Let us assume, that you have used the function ROM:>REG

before. This can be accomplished by getting to the

example of ROM>REG at page Z23. Here the romname 1s

loaded to the registers in order to save it on magnetic

cards or a cassette drive.

First we will 1load the data back to 1t’'s original

place. To see this really happening, we must Ffirst

clear the block, where the data is located. This 1is

done by CLEL. Fut in ALFHA the begin and end address of

the block to be cleared (708467890). Execute CLBL to

remove the data from the MLDL ram page.

Page 17

MLDL operating system eprom

We can now restore the data by getting it back with

REG>ROM.

First we are going to get it back to the original place

in the MLDL ram page. This is necessary 1in order to get

our rom—name back. Input for this is zero in register Y

and zero 1n the X-register. The data will be loaded

back at 1t’'s original place. You can check this with

RAMWR.

We also want the data loaded back at a completely

different page. Therefore it is needed to get the page

number i1into the Y register This i1s accomplished with

the function COD. Flace 1in ALFHA the letter

representing the page we want to store to (&). After

getting out of ALFHA we execute COD. The display will

change a 1little. Now press 8@ to move the binairy

representation of the page to the Y register and get

the address of the header register in the X register.

Mow execute REGXROM. You will find at the addresses

65886 to 607@ the data that also is located at 7886 to

7@070.

The 1last option of REG*ROM is to restore the data at

completely different addresses. If we don't want to

have the data at address 7884, but at address 7AEE

instead, we must make use of the last option of

ROM:>REG. Now we have to specify the starting address in

the Y register. This 1s done as with the previous

example. Flace in ALFHA the starting address (7AEE)

and execute COD. Again the display may differ from what

you are used to. Fress @ to enter the starting address

to Y and place the first register to use into the X

register.

After these initial actions the function REG>ROM can be

executed. After termination you can check with RAMWR to

see it the data really got there.

Page 18

MLDL operating system eprom

XROM 11,10

This 1= not a normal function. It does not do anything when

executed but 1t 1is used as a spacer from write routines and

application routines within the MLDL-ram . One possible

application 1is to use 1t as a NOF. It will also terminate data

input without raising the stack.

Page 19

MLDL operating system eprom

UTILITY FUNCTIONS

COMPILE
XrROM 11,11

The +function COMFILE places in every numerical GTO and XEG the

distance to that numerical label. Frograms prepared with the help

of COMFILE will usually run faster than programs that have to

calculate these distances while running. Two byte GOTO's that can

not make the distance will be transformed to three byte GOTO's.

Therefore your program can be made longer by this routine and it

is required to have at least three registers 1left after the

program. (.END. REG xxx with xxx not equal to zerao).

Compile prompts for the name of the program you want to compile.

Input 1s in the same way as with the mainframe function CLF. So

if you are not in the program you want to compile, you must input

the complete name. Otherwise it is possible to press ALFHA twice.

The function will first pack the program (FACKING), then handle

the two bvyte GOTO's (COMFL ZB G) and if needed (in this case

compile has found a 2 byte GTO that can not make it and will

replace it with a three byte GTO, thus causing insertion of null

bytes that have to be packed as well) repeat this sequence.

After this is done it will continue with the three byte’'s GOTO’'s

and XEG's (COMFL 3B G/X). After the routine is finished 1t will

put the message READY in the display. Labels not found will give

the error condition NO LEBL xx, with the number xx as the 1label

not found. When vyou switch to program mode you will +Ffind the

program step that caused the error condition.

I+ the program has the .END. as last statement instead of a

normal END, it will change the .END. 1into a normal one. This is

done for MMTORAM, which expects a program to be terminated with a

normal END.

To be able to change the .END. into a normal one, the compiler

needs at least one empty register after the program. During the

initial packing of the program a check is made to see if there 1is

at 1least one register available. I¥+ this is not the case, the

program will terminate with the message TRY AGAIN. If so vou

should decrease the number of allocated memory registers. (

change size)

Page 20

MLDL operating system eprom

After execution of compile you will be placed at the first step

of the program.

Deleting steps or adding steps in a program, will change the

status of the program into a decompiled one. Reusing the compiler

will speed up the execution after the editing session.

Example Create the next program in your calculator

A1 LBL "TST 18 GTO 16
22 LBL @O 12 LBL 17
a3 LEL @1 2@ BEEF
84 GTO A2 21 GTO @a
@5 LBL @2 22 LBL @2
as GTO @4 23 670 &=
87 LBL @5 24 LBL 24
28 GTO @6 25 GTO @5
a7 LBL @7 26 LBL 86
18 GTO @8 27 6GTO @7
11 LBL @9 28 LBL @8
12 GTO 1@ 29 GTO @9
13 LBL 11 3@ LBL 10
14 GT0 12 31 GTO 11
15 LBL 13 32 LBL 12
16 GTO 14 33 GTO 13
17 LBL 15 34 LBL 14

33 GTO 15
36 LBL 16
37 GTO 17

If vyou execute this program after you have loaded 1it,

vou will notice the significant time it takes before

vou hear the first beep. You will hear the second one

much sooner. Stop the program and goto step 1. Delete

the superfluocus label 81.

Execute the function COMFILE. You will be prompted for

the name of the program to be compiled. Fress ALFHA

twice, since we are in the program already. (It’'s also

possible to give the full name of the program (TST) .

Now the message FACKING i1s displavyed. I+ you do not

have enough room after the program, COMPILE will

terminate with the message TRY AGAIN. Then the messages

CMFL 2B G and CMFL 3B G/X will be showed shortly after

each other. When the compiler 1s through these

messages, a tone will be sounded and the display gives

the message READY.

Page 21

MLDL operating system eprom

I+ you press FRGM once, vyou will find yoursel+ at the

start address of the program. Fress FRGM once more and

press R/5. NMNotify the fact that there 1is no delay

before the first beep sounds.

Goto step one once more and delete label 80. Execution

of COMFILE will give the error message NO LEBL 00. If

vyou go into FRGM mode you will be at the step that

caused the error, step 19. Flease restore the program

with LBL 88 at step @1 again,because we are going to

use this program again in the example of CMFDL.

LOCA (LOCAte word)}

XROM 11,12

This function allows you to locate a data-word in a 4K block of

ROM, EFROM or MLDL-ram.

The input format in ALPHA is as follows: EBEBEDDD.

BBBE specifies the address from where LOCA starts searching 1in

the 4K block. Actually it will start at BBBE + 1 to allow

repeated search in the block. NONE will be displayed when the

wanted data (DDD) is not found in this 4K block. Whenever a

data-word 1is found, 1t will be displayed together with the

address at which it is found. The data in ALPHA (adress + word)

will be replaced with the data found.This makes it possible to

continue searching for the same word.

Example : With a small user code program you can easily print out

all the occurrences of an instruction in a rom or MLDL

ram page. Create the following user code program (make

sure you saved the TST program)

@1 LBL °LOCATE 85 ACFF
B2 "ADD + DATA @6 LBL a1
8= ACN 87 LOCA
@4 FROMFPT a8 GTO @1

Input for this program could be a starting address like

X0@® and the data to search for could be 84@. This

would give you a complete list of all the MLDL WRITE

instructions in the MLDL rom. Enter for X the page

address where the MLDL rom is located (usually page F

).

Page 22

MLDL operating system eprom

LROM (Last ROM word)

XROM 11,13

LROM searches backwards for the last non zero word in a block

beginning at a given start-address. Input is AAAA in ALFHA. The

display will give the address of the last non zero word and the

value at this address. NONE will be returned when the block

between the start address and the beginning of this 4K page does

not contain any word (other than zero).

This function can be very useful when the end—-address of the last

program entered has to be found. In this case the easiest way is

to put «FF4 into ALFHA and execute LROM. It will give you the

address of the last word that is occupied by the program.

Example : If we want to find out where we can load our next user

code programs, we could search for empty space with the

help of RAMWR, but this would be rather cumbersome. To

avoid this, we are going to use the function LROM. In

this case we want to search on page 7, starting from

the end and working backwards. Input +for this is 7FFF

in ALFHA. Execution of LROM will return 7AF73EB@ to the

display after a short search time. This tells us, that

the next available word in our rom is at address 7AFS8.

If we are searching on a completely empty page, LROM

will return the message NONE to the display, because 1t

can not find any word unequal to zero on the page. Try

this with page S for example. Input for this is SFFF in

ALFHA. Execute LROM. After a short while the message

MONE will be displayed.

COD (CODe)
XROM 11,14

The hexadecimal number in the ALFHA-register is converted to it’'s

—-bit—-representation and this will be placed in the X-register.

The contents of the ALFHA-register is unchanged. The stack will

be rolled up and the value in the X-register before COD was

executed is placed in the LASTX-register.

The display won’'t be intelligable after the function COD has been

executed. For the synthetic programmer this will sound normal.

Page 23

MLDL operating system eprom

Example : Input 1in ALFHA the hexadecimal address of our romname

and the start address of our romname (70@08678%0).

Execute COD after placing the address in ALFHA. I+ we

change the display format to fix 9, the display will

look like this 0.00068708 <%0 Save this coded

representation of the address, for we are using it to

demonstrate an example with DECOD.

These so called non normalized numbers (NNN's) should

not be used to make calculations, +for they can hang up

the calculator for gquite some time. Also they can not

be stored and recalled in the sa2me mannner as normal

numbers, +for they are normalized after being recalled.

This is easily dzmonstrated by pressing 570 81 and RCL

@1 after each other. The result is a zero X register.

DECOD (DECODe)
XROM 11,15

The Ffunction DECOD is the opposite of the function COD. It will

translate a -bit-representation in the X-register to the same

hexadecimal Fform as is used by the function COD. The output is

given 1in the ALFHA-register. When DECOD is executed manually

DECOD will also give the hexedecimal representation in the

display.

Example : We are going to use the same number as we have created

with the function COD. First clear the ALFHA register.

Now we must get back our just created number. I+ you do

a RDN, it will come back to the X register. Execute the

function DECOD. The hexadecimal representation of the

number will appear in the display. I+ yvyou press back-—

arrow once, it will disappear and the nonnormalized

number is viewed again. Go into ALFHA and discover the

hexadecimal representation here.

FPage 24

MLDL operating system eprom

ROMCHKX (ROMCHeck by X-reg.)

XROM 11,16

This function enables you to check 1+ a ROM or MLDL-ram is still

in good shape. Important though is the fact that a ROM or MLDL-

ram must contain a good computed checksum (see ROMSUM for the

definition of the checksum). HF rom’'s will always contain a good

checksum. During the test the XROM number is displayed along with

the short form of the name and the revision number of the ROM. If

the ROM or the MLDL-ram doesn’'t contain this short name or the

revision number, the display will show @@-&.

Input in the X-register, the XROM number of the ROM or MLDL-—ram

vou want to test (an example is 3@ for the cardreader). During

the test XX NN-RR TST will be displayed. XX is the XROM number of

the ROM that is tested, NN is the shortened name and RR is the

revision number.

Output of ROMCHEX is the display XX NN-RR BAD (indicates a bad

ROM 3 or the display XX NN-RR OK (indicates a good ROM)} These

outputs will be given only when the function 1s executed from the

keyboard.

The behavior of ROMCHEX will be different when it 1s executed in

a program; when a ROM is found to be good it will do the next

step in the program. Else 1t will skip the next step (compare

the function FS?: the rule do if true is in force).

When there is no ROM present with the desired XROM number the

message NO ROM XX will be displayed. Again it’s behavior in FRGM

mode is different. It will act as if the ROM is bad and skip the

next line.

Example : We can check 1if the MLDL operating system eprom 1s

still good. For this we need an input of 11 in the X

register (this is the xrom number of the MLDL rom).

When we execute the function ROMCHEX, the display will

change to 11 AS- A TST. This indicates that the rom

with xrom number 11 is under test. The revision code of

this rom is AS A. Aftter a short time the display will

change to 11 AS- A O . When we execute ROMCHEX with a

“xrom number that is not present i1t will say NO ROM nn.

This can be tried with zero in the X register because a

rom never can have xrom nr @88. The display will show NO

ROM B0 after ROMCHKX has been executed.

Page 25

MLDL operating system eprom

ROM>REG (ROM to REGisters)
XROM 11,17

All the credits for this function and its counterpart (REG>ROM)

go to Faul Lind and Lynn Wilkins who have written these two

routines. ROMXREG places S words of 18 bits each in one HF-41

register. To avoid damage to the stored data it is saved as alpha

data. This guarantees an optimal use of the available registers

in the main memory of the calculator. Because of these functions

it 1is now possible to store the routines and functions that are

written in a MLDL-ram on tape or cards and they make it easier

to exchange M-code with other users.

To transfer complete blocks roms to and from tape the functions

SAVEROM and GETROM are incorporated in this rom.

The input +or this function must be given in the Y-register. It

has the form BBEBEEEE.

BEBB is the address of the first word to staore.

EEEE is the address of the last word to store.

This 1input has to be in binary and right Jjustified. This 1is

achieved by putting the BBBBEEEE +form in ALFHA and executing COD

after this. The binary representation can be transferred to the

Y-register by means of keying in a number in the X-register. The

X-register holds the number of the first data register that will

be used as data staore. (normally this will be register @0)

I+ the number of registers needed, exceeds the number of +free

registers you will get the error message NOMEXISTENT.

There is also output from this function. In the LASTX-register

the last used register is given. By subtracting X from LASTX you

will get the number of used registers minus 1. If you add 1 to

this vyou will get the number of registers needed to store the

desired MLDL-ram block.

Page 26

MLDL operating system eprom

Example : We will save our romname in the user registers. This

block of registers is also used for the example of the

function REGX*ROM. To execute this function properly, we

have to give the block to be saved in a binary

representation in the Y register. In the previous

example we have already created the address in the

ALFHA register, so we only have to execute the function

CoD. This gives us the binary representation of the

block to be saved in the X register. We want to save

the block 1in the user registers starting at register

@, so we have to enter zero into the X register. Fress

@. This also moves the binary representation of the

block to be saved to the Y register.

After these preparations the function ROMXREG can be

executed. Fressing LASTX gives wus the 1last used

register. This means we needed 4 registers to store the

block (Z2-8 + 1).

MNEM (MNEMonics)

XROM 11,18

This Function will give in conjunction with DISASM the name of a

M—-code instruction that is fetched with DISASEM. The mnemonics

that are used are the so called HF-mnemonics (there are also FFC

({ Jacabs) mnemonics). The mnemonics are left as a string in the

Z-register. Eventual surplus information (jump-distance, value,

field specifications)} 1s given in the T-register. In case of two

word instructions the LASTX-register is used. The following User-—

code program makes it possible to translate every ROM that vyou

want.

Page 27

Example : With

MLDL operating system eprom

the following user code program you are able to

print out the machine code on a rom page.

@1 LEL "'mdis Mame of program

az CLST initialize the stack registers

@3 ST0 L initialize the LAST X-register

@4 SF 21 makes program stop at aview

A5 ‘start add®? ask for start-—address

B6 AON make ready for input

@7 FROMPT ask and wait for input

28 AOFF leave the ALFHA mode

@2 COD put the start-address in X

18 LBL @1 start ot the loop

11 DISASM get the instruction

12 AVIEW view the address, wvalue and the

character

1= MNEM build the mnemonic in the stack

14 CLA initialize the ALFHA-register

15 ARCL Z get the first part of the mnemonic

16 '@ append a space

17 ARCL T get the second part of the mnemonic

18 AVIEW view the mnemonic

12 GTO 81 restart the loop

This routine is meant to be used in "manual’ mode. Far

use with the printer it must be rewritten. The choice

is up to the user.

DISASM (DISASeMbler)
XROM 11,19

The function DISASM makes 1t possible to put the contents of ROM

into the display. At the same time the character representation

from the word is given 1in the display.

Input: The X-register must contain the address of the wanted word

{ this can be done with the help of COD).

Output: The X-register will be incremented by ane to make it easy

to use DISASM in a loop. The Y-register holds the binary value of

the address and the data at this address (these values can be

made visible with DECOD). The ALFHA-register contains AARAA WWW L

Page 28

MLDL operating system eprom

AAAA 1is the address of the wanted word.

WWiW 1s the value of this word.

L is the character representation of the word.

There are two ways to represent characters in the HP-41. One way

is the use of the ASCII standard. The other way is derived from

this standard by subtracting 4@ [Chex] from the codes in the range

from 4@ hex through 5F [hexl. This gives you codes that lay in

the range from 8 hex to 1F [hex]l]. These are the codes, that are

used for the display. Therefore DISASM will translate these codes

to normal characters.

Example : To see how the function DISASM is used see the function

MNEM and the related user code program to print the

contents of a rom with microcode functions.

CAT (CATalog)
XROM 11,70

The Ffunction CAT gives you a selective CAT Z. This routine is

especially useful when you have to examine the catalog of a ROM

that 1i1is located at a higher numbered port. When the system 1is

locaded with a lot of roms it will take a long time before vyou

arrive at the desired ROM (maybe you must go through the TIMER,

FRINTER, IL-MODULE before vyou reach the wanted ROM }. The

function prompts in the same way as the CAT function of the HPF-

41. The prompt can be answered with the hex digits B-F (CAT will

redefine the keyboard in the same way as RAMWR). Entering digits

B-2 results in the normal CAT function from the HF-41. Digits 5-F

will start the catalog at the wanted page. For further details we

refer tao the manual of the HF-41.

Users of an HF-41CX have to be careful using this function. In

some cases there have been crashes reported, due to changes in

the Ffunctioning of the CAT function of the HF-41CX. This 1s

highly dependant of the contents of the status registers.

FPage 29

MLDL operating system eprom

Example : If the MLDL rom is installed at page F (this will

usually be the case, when the box is delivered to you

straight +from the supplier)} you would see with a

normal CAT 2 all the functions of the roms that are

physically located before the MLDL rom. At least one is

located there at the moment, and that is the test rom,

we are working on in our examples. So if vyou do a

normal CAT 2 vyou will first see NEWUSER @1. To skip

this part, we can start our catalog at page F. Execute

the function CAT and fill the prompt with the digit F.

The catalog will start up immediately at page F thus

showing the contents of the MLDL rom.

CBT (Count BYtes ?

XROM 11,21

This Ffunction counts the number of bvtes that is occupied by a

program. The END statement is taken in account. At the prompt the

name of the desired program must be keyed in or 1f vyou are

already 1in the desired program press ALFHA twice (compare with

the function CLP).

Output 1is given in the display only. The stack and the ALFHA-

register are left undisturbed.

If vyou try to get the length of a program that is resident in a

rom module the error message ROM is given.

Example : At the explanation of COMFILE we have written a short

user code program to demonstrate you the advantages of

COMFILE. Execute COMFILE once more on this program to

make sure the program is as compact as possible. Now

you can find out how long the program actually is. If

vou execute CBT and press ALFHA twice, the display will

change to &8 BYTES. This is the length of your program

including the END statement

Remember this length for you will see that the use of

CMFDL will significantly decrease the number of used

bytes, thus giving vyou a lot of memory back.

Page 30

MLDL operating system eprom

SYNT (SYNTasize ?}

XROM 11,22

With this function you can create two—- and some three bytes

instructions 1n program memory without using the bytegrabber.

Data Ffor this +function needs to be given in the X- and Y-

register. The first byte of the instruction (decimal coded)} is

given 1in the X-register. The second byte is given in the Y-

register. SYNT will place the instruction after the program line

where the program counter is pointing at that moment. ATTENTION :

this routine works both in PRGM and RUN mode. Therefore you must

be very careful when assigning SYNT to a key. Carelessly pressing

the assigned key will produce an unwanted life in your program or

even worse.

Example : 159 ENTER™ 5B execute SYNT will give a TOME B in vour

program which is completely different from the normal

TONE B. An input of 247 in X and Y will give you a byte

grabber.

GE (Go to .End)}

XROM 11,23

This function is a sort of replacement of the GTO.. function of

the HF-41. It will put vyou at the end of program memory, but 1t

is not packing the memaory. Furthermore it does not put an end to

the last program in memory. When yvou do not know where you are 1in

main memory use GE and you are at a familiar place again.

This routine will display @@ REG NNN and also circumvents the

line number bug in the HF-41 operating system.

XROM 11,24

This 1is just a seperator for the second and third section. For

more details see page 16.

Page 31

MLDL operating system eprom

UPDATE FUNCTIONS

SAVEROM
XROM 11,25

With this function you can save the contents of an entire rom on

cassette tape. The input format for this function is a name in

the alpha register and the desired page number in x.

A File will be created on tape of 640 registers, occupying 28

records.

Because there are a lot of users who have been using the Mountain

Computer eprom burner set with the functions READROM and WRTROM

we also included a user code program to be able to read back rom

files in the old 824 format. This is the program "RROM in

appendix H.

The +File identifier on tape for the new file created by SAVEROM

is ¥ @7. This means that the files are presented in the DIR as :

NAME 77,5 640

We have chosen for a nonexistant file type to be sure that the

data 1is not accidently destroyed. Therefore the file 1is also

automatically secured after creation. SAVEROM saves 7 records per

file compared to WRTROM or "WROM. Now you will be able to get the

maximum number of roms on your tape (e.g. 24 files).

To get the maximum number of files on your tape it is recommended

to do a NEWM with 27 +file directory entry’s. You can write 12

files on each side of the tape then. After having written 12

files you should protect the tape from rewinding from one side to

the other by creating a dummyfile "ENDTAPE" of 380 registers.

FPage 32

MLDL operating system eprom

Example : I+ vyou have a cassette drive you can try the following

example. We will save the contents of ocur rom at page 7

on tape and read it back with GETROM. Give a filename

in ALFHA, for example USER1. Since we have our rom at

page 7, were also the HFIL module resides, we have tao

move 1t to another page. This could be page 5. If vyou

can not use this page, place your rom at anocther page.

If =0 replace in the following example the pagenumber

with your new page number

We have the name in ALFHA and now we have to give the

page address in the X register. In cur example this

will be 5. Execute SAVEROM. You will hear the cassette

drive working for some time. If you watch the drive

closely, you will notice that it writes 20 blocks after

each other.

When the drive 1s ready again you could do a DIR and

see as entry 1in the directory of the tape our Jjust

created romfile. It will be in the form as described

under the function description,

2.9 USER1 745 &£48.

GETROM
XROM 11,76

This is the counterpart of the SAVEROM function. Input format 1is

the same, so the name must be in alpha and the page number must

be 1in x. For more information on the format of the files, we

refer to the function SAVEROM.

Getrom will read back the contents of the rom file and put 1t in

the desired ram page. There is no checking done to see if the

specified page is actually a ram page. This is to allow you to

get a rom file to a page that is not switched on.

Example : If vyou have saved our rom Ffile on tape, we can

demonstrate it coming back. First of all clear the page

we are warrking on. This is done with CLBL. You probably

know by now how this function works, so 1t 1s left up

to vyou to clear the block. Fut in ALFHA the name of the

file we want to read back, e.g. USER1. In the X

register the page address should be entered to which we

want the rom read back. In cur case this will be page

5. Now the function GETROM can be executed. After 1t

has finished, vyou can check if it is back again in the

usual way with a CAT 2.

Page 33

MLDL operating system eprom

CMFPDL
XROM 11,27

This 1is in fact nearly the same function as the normal COMFPILE.

Therefore we are refering to COMFILE +for the set up of the +flags

and the input format for COMFILE. They are both equal.

The only difference is that this function will delete the numeric

labels in the program while compiling. This shortens the progiram

and speeds it up. This can be done, because the HF-41 remembers

where to jump to in the jump and execute functions. 5o after the

first run of a program, the HF-41 knows the distances to all the

labels and will always jump this distance. It does not matter i+

there 1s a 1label or not. Therefore the labels can easily be

deleted. Only when the program contains indirect Jjumps or xeq’'s

is it impossible to do so. This is due to the fact, that the HF-

41 can not remember all the possible addresses of all labels 1in

the program. For this reason you can not use this function when

the program contains a GTO ind or XE& ind.

The program respects all the local labels. 5o the labels A

through J and the labels a through e are respected and will not

be deleted. This is necessary because the HF-41 searches for them

when you use them from the keyboard.

When this function is executed, 1t will make use of the user

registers to hold the addresses of the deleted labels. Therefore

make sure that the number of allocated registers is more then the

number of labels in the programs. If you don’'t take care of this

the calculator might crash.

To protect the compiled status as much as possible we change the

terminated by the .END. This protects you from accidently writing

at the end of the program if you want to continue at the end of

the programmemory with new programs.

During program compilation, you will see the following messages

after each octher. FACKING

COMFL 2B G

COMFL ZB G/X

FACKING

COMFL 2B G

COMFL 3B G/X

READY

Page 34

MLDL operating system eprom

The compiler makes use of the normal compiler. First the whole

program 1is compiled to find out where to jump to. Then all the

LBL 's are deleted and their addresses are remembered in the user

registers. This i1s done during the packing stage. After this the

program is compiled again. When the function is through you are

at the beginning of the program.

The user registers contain the information where the program

resided and where the specified labels in the program were. The

structure of a register is as follows 100SSSSLLLLANN. The first

two digits indicate alpha type of data. The 8888 part gives vou

the start address of the program in program counter format. The

LLLL part gives vyou the address of the 1label 1in the packed

program without the labels. The NN part gives you the deleted

label at this address.

Example : We will compile the program that we used by the example

of COMFPILE again. This time we are going to compile it

with CMFDL. This is easily done. First make sure we

have enough empty registers by setting the size to 18

or greater. We can now execute CMFDL. At the prompt

give the name of the program : TST. After the compiler

has +finished we can see the results. Just run the

program. Again there 1is no delay in the first beep.

Also notify the fact that the flying goose does not

mave anymore. This is because the goose only moves one

place to the right whenever the program encounters a

label. But since all labels are deleted, it 15 not

necessary anymore to move the goose. I+ you stop the

program and execute the function CBT, vou will get as

result 48 BYTES. This implies that we have saved 20

bytes of memory, and in this case it means that the

program 1is shortened by roughly one third of 1it’'s

original length.

IPAGE
XROM 11,28

This function sets up a ram page to load user programs and/or

assembler code functions. The entire specified page is cleared

and the specified xrom number and the name in alpha are written

at the appropriate places. This we have already done manually

when we explained RAMWR and AFAT. With this function 1t will be

much easier.

Page 35

MLDL operating system eprom

Input Ffor this function in ALFHA i1s the name of the rom. This

name must be from one to 11 characters. As it 1s the name of the

rom 1t is advisable to make it at least 8 characters. This has

two reasons. First, a function name of more then 7 characters can

not be executed. Second and more important is the fact that the

CAT Ffunction of the HF-41 CX searches for names that are longer

then 7 characters. So, 1f vyou use a name of 1less then B8

characters, the rom name will not show up in the header catalog

of the HF-41 CX. This is also the case with the CCD module, a

module likely to spread out as much as the FPC rom. Second thing

to give as input i1s the MLDL ram page number to be initialized.

This page number 1is given in the X register. (in decimal)}

When the function is executed, it will prompt yvou for the xrom

number of the page. There is no checking done on the input,

because it 1s possible to use other xrom numbers, but you can not

execute a function in a rom with a xrom number higher then 31, so

it 1is advisable to use a xrom number between 1 and 31. See for

the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the first

eleven characters in the alpha register when you have no more

then 12 characters. If you have more then 12 characters in alpha

the name will be the first 11 characters that are left 1in the

display after having it displavyed. In other words the first 11

characters of the last 12 characters in the alpha register will

be used and write into MLDL ram.

When you have less then 11 character=s the last character can be

an underscaore.

Dutput of the function 1s in alpha the address of the first empty

word as it is used for the function MMTORAM.

Example : We will now initialize our page with the help of IPAGE.

First switch the MLDL ram page back from page 5 to page

7. OGive the desired name in ALFHA. We will make use of

the same name as we used in the examples before. It

will be NEWUSER @1. Give the right page number in the X

register (7 }. Now execute the function IFAGE. At the

prompt the desired xrom number can be given. We will

make use of xrom number 21. This is the xrom number for

user roms. After a short while a tone will sound and

the message READY will be in the display. Fressing

ALFHA once gives you the first free byte available to

load from. This will be address 70%2.

Page 36

MLDL operating system eprom

MKPR
XROM 11,29

This function allows you to make your programs private, even 1if

vou do not have a card reader. The function will respect the

compiled status of the program. At the prompt you must fill in

the name of the program that has to become private or if you want

to make the current program private press alpha twice.

Example : I+f we want to secure our program compiled with CMFDL

from accidently being altered we could make i1t private.

Execute private and fill in the prompt with TST. I+ you

switch to program mode you will now discover that the

program is private.

Page 37

XROM

11,01
11,82

11,@3
11,24
11,85
11,0&
11,87
11,08
11,89

11,10
11,11
11,12
11,13
11,14
11,15
11,16
11,17

11,18
11,19

11,20
11,21
11,22

11,23

NAME

RAMWR

MMTORAM

AFAT
DFAT
MOVE
CLBL
COFYR
ROMSUM
REG>ROM

COMFILE
LOCA
LROM
coD
DECOD
ROMCHEX
ROM>REG

MNEM

DISASM

CAT
CBT
SYNT

GE

MLDL operating system eprom

APPENDIX A

INPUT

B-F hex

BEBEB in ALFHA

flags @8, 1 and 32

UOFAAA in ALFHA

OFAAA in ALFHA

BBBBEEEEDDDD in ALFHA

F / BEBBEEEE in ALFHA

SD in ALFHA

F in ALFHA

@/F/BBBE in reg Y

first reg in X

name of program

BBBBDDD in ALFHA

EEBBER in ALFHA

hex in ALPHA

binary in X

XROM in X

BBBBEEEE in reg Y

first reg in X

AAAADDD in Y

BEBB in X

F at prompt

name at prompt

X first dec. byte

Y second dec. bvte

pc. at .END.

Page 38

OuUTPUT

word in ram

stored program

FAT updated

FAT updated

block is moved

block cleared

copied block

romsum in xFFF

data in ram

compiled program

AAAADDD / NONE

AAAADDD / NONE

binary in X

~hex in ALPHA

bad / ok do if true

data in registers

last reg in LASTX

mnemonic in Z and T

BBEBB + 1 in X

AAAADDD in Y

cat from page F

length of program

instruction after pc.

MLDL operating system eprom

APPENDIX A

XROM NAME INPUT OQuUTPUT

11,24 ——

11,25 SAVERDM name in ALFHA 4. in file on tape

dec. page in X

11,26 GETROM name in ALFHA 4K of tape in ram

dec. page in X

11,27 CMPDL name of program short comp. program

11,28 IFAGE name in ALFHA desired page cleared

dec. page in X name + xXrom in page

xrom at prompt load addr. in ALFHA

11,29 MEPR name of program private program

SHORT FORM LETTER REPRESENTING

A address digit

B begin address digit

D data digit or destination digit

E end—-address digit

O offset digit

P page number digit

S source digit

u user digit

Page 39

MLDL operating system eprom

APPENDIX B

PROGRAMMING AND THE MLDL EPROM SET

Most +functions provided by the ERAMCO MLDL-EPROM can be entered

in program whenever the eprom—set is plugged in an ERAMCO MLDL-

baox connected to the calculator. When the ERAMCO MLDL-box

containing the eprom set is connected program lines with eprom

functions are displayed and printed as standard functions.

If the box is disconnected, these program lines are displayed and

printed as XROM functions with two identification numbers. The

first number -11- indicates that the functions are provided in

the ERAMCDO MLDL-EPROM. The second number identifies the

particular function. The XROM numbers for the ERAMCO MLDL-EPROM

are listed below.

Function XROM Number! Function XROM Number: Function XROM Number

AFAT XROM 11,03 ! DISASM XROM 11,19 ! RAMWR XROM 11,01
caT XROM 11,20 ! GE XROM 11,23 ! REG>ROM XROM 11,09
CET XROM 11,21 ! GETROM XROM 11,26 ! ROMCHEX XROM 11,16
CLBL XROM 11,86 ! IFAGE XROM 11,78 ! ROMSUM XROM 11,08
CMFDL XROM 11,27 ! LOCA XROM 11,12 | ROM>REG XROM 11,17
COD XROM 11,14 ! LROM XROM 11,13 ! SAVERDOM XROM 11,25
COMFILE XROM 11,11 | MEFR XROM 11,29 ! SYNT XROM 11,22
COFYR XROM 11,07 ! MNEM XROM 11,18 | ——— XROM 11,1@
DECOD XROM 11,15 ! MMTORAM XROM 11,82 | ——— XROM 11,24
DFAT XROM 11,84 ! MOVE XROM 11,05 !

Underlined functions are not programmable.

I¥ program lines using the ERAMCO MLDL eprom are entered when the

eprom set 1s not connected, the +function 1s recorded and

displayed as XEQ followed by the function name. Frogram execution

will be slowed down by lines in this form because the calculator

will Ffirst search in main memory for a praogram or program line

with the specified label.

Fage 4@

MLDL operating system eprom

APPENDIX C

MESSAGES

This 1is a list of messages and errors related to the functions in

the ERAMCO MLDL-EPROM set. When any of these errors are generated

the attempted function i1is not performed, except as noted.

DISPLAY

BAD MLDL

ENTRY >64

GTA/XERQ IND

NO ENTRY

NO HFIL

NO LBL ux

NONE

NMONEXISTENT

NO ROM

NO ROM 2

FUNCTION

RAMWR

AFAT

CMPDL

MMTORAM

DFAT

SAVEROM

GETROM

COMFILE

CMFDL

MMTORAM

LROM
LOCA

—-all-

ROM>REG

RAMWR

ROMCHEX

MEANING

The MLDL ram page 1s malfunctioning.

There are already 64 entry’'s in the FAT.

The program contains GTO or XEQ 1nd

statements.

No such entry exists in the FAT.

The HFIL module is not plugged in.

The GTO or XEQ has no corresponding LEL

in this program.

The whole block 1s empty.

There is no such word in the block from

start—address up to the end of the page.

The ERAMCO MLDL-EPROM set is not plugged

in or is disabled or is malfunctioning.

There are not enough registers available

to store the specified block.

An attempt has been made to write to an

page which does not have a valid XROM

number at the first address of this

page.

The ROM with the given XROM number is not

plugged in or disabled.

Page 41

DISPLAY

NO WRITE

FAGE > 15

ROM

xx NN-RR EBEAD

®x NN-RR 0K

COMFL 2B G

COMFL =B G/X

LOADING FGM

FACKING

READY

MLDL operating system eprom

FUNCTION

RAMWR

GETROM
IFAGE
SAVEROM

MEFR
MMTORAM
COMFILE
CMFDL
CET

ROMCHEX

ROMCHKX

COMFILE
CMFPDL
MMTORAM

COMFILE
CMFDL
MMTORAM

MMTORAM

COMFILE

CMFDL

MMTORAM

COMFILE

CMFDL

IFAGE

MMTORAM

APPENDIX C

MEANING

The data is not written at the desired

address. It is impossible to write to an

EFROM or ROM page. Also you can not

write at a disabled page.

There is an invalid pagenumber in reg X.

The named program doesn’'t exist in main

memory but is found in ROM

The ROM with the XROM number xx is bad.

The ROM with the XROM number xx is aok.

The rJ byte GTO's are handled.

The . byte GT0O0's and XEQ 's are handled.

The program is loaded to MLDL ram.

A byte is deleted and the program is

packed to reduce the length of the

program.

The function is ready.

Page 42

MLDL operating system eprom

APPENDIX D

XROM numbers range from 1 up to 31 inclusive. As gquite a few

ROM's are available at the moment of this writing it is advisable

to choose a XROM number with care to avoid conflicts with oaother

modules.

ROM name ¢+ XROM ID | ROM name : XROM ID

MATH ¢ 21 i SECUR i 19 =

STAT B2 i CLINLAE i 19 =«

SURVEY i @3 v AVIATION i 19 =

FINANCE . 24 i MONITOR P19 » +

STANDARD i @5 i STRUCT-B 1 19 =

CIR ANAL v Bé C FPC 1981 1 20

STRUCT-A a7z i ASSEMBLER 3 ¢ 21

STRESS ¢ @8 + IL-DEVEL 22

HOME MN ¢ @9 i 170 23

GAMES ‘ 18 = + IL-DEVEL 24

C FFC 1981 18 = i —EXTFCN 25

AUTODUF i 18 = i —TIME- i 26

REAL EST 11 ¢ — WAND 27

MACHINE 12 i —MASS 5T i 28

THRML R. i (= CTL FNS -

NAVIG : 14 ¢ HF-IL MODULE)

FETROL i 135 i —FRINTER P 2

FETROL : 16 + CARD READER 3@

FLOTTER 17 ¢ FPC ROM 2 27 1§ 31

FLOTTER : 18 + ERAMCO-MLDL ¢ 11

+ Only a small number of this ROM, an early version of IL-DEVEL

ROM, were made and are not stocked or sold by HF.

Those marked with an asterisks share their identifying number,

and should not be used in the HF-41 at the same time. 0f two

functions with the same XROM ID the one at the lowest address

{(i1.e. the lowest numbered port) will be accessed first and the

other will be ignored. So use discretion when choosing your own

XROM number 1+ you want to avoid these kind of problems.

Page 43

XROM’ s

MLDL operating system eprom

APPENDIX E

XROM STRUCTURE

are located at whole 4k blocks of addresses. The 1lowest

addresses in an XROM, and a few of the highest have special func-

tions. The remainder may be filled in any way. The locations in

the 4k blocks must be filled by ten bit words, giving 2718 diffe-

rent codes. They may be read as instructions, or as alpha—-numeric

data. The following summary, adapted from J. Schwartz’® January

198=% FPFC Conference paper, should be taken intoc account when

studying an application ROM, e.g. the MLDL-RDM. A listing can

easily

MNEM.

Relative

address

Xaa2-3
XB04-5
Xaas-7

X@02+2n

X003+2n

XPAZ+2m
X005+2m
XB84+2m
XBA5+2m

prepared by using the MLDL-ROM functions DISASM and

Function of code at that address

The XROM ID number in hexadecimal digits.

The number of functions in the XROM (m),

including the XROM name.

Address of XROM name

Address of first routine, program, etc.

Address of second routine, etc.

Address of n'th routine

Address of last (m'th) routine

(m < &4)

Compulsory null - 2@0.

Compulsory null — @00.

Page 44

MLDL operating system eprom

Add. of name Name of ROM (running backwards)

Add. of Fn# 1 Start of Fn# 1 code

Add. of Fn# 2 Start of Fn# 2 code

XFF4-A Special interrupt jump locations (see table .

XFFEB-E ROM name abbreviation and revision #.

XFFF ROM checksum for diagnostic use

Word pairs containing function addresses:

First word of pair: b @ 0 O 0 0 all al@ a9 aB

Second word of pair: @ 8@ a7 a& a5 a4 a3 aZ al a8

This results in the following address in this 4k block if 0000 is

zZerao:

p3 p2 pl pB@ all a1@ a? aB a7 ab aS a4 aZ al al a@

Where p@-3 is the bit representation of the 4k page number and

a@-11 represent the relative offset from the beginning of the

page.When 0000 is not equal to zero it must be added to p@-3. For

more information see the function AFAT.

If the two words would read 003, OFF this would represent a

starting address of a function at address X3FF (hex). The bit b

in the first word indicates USER code or microcode. If set the

address is the start of a USER code program (e.g. 288, BAl in the

printer module 1is address 68A1, start of USER code program

"FRPLOT")

Page 45

xFF4

FFS

xFF&

xFF7
xFF8

*FF9
=FFA

Do

doing.

MLDL operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during FSE loop.

Interrupts after each program line.

Wake—up with no key down.

Interrupts when turned off.

Interrupts when peripheral flag is set.

wake—up with ON key.

Wake—up after memory lost.

not use these points unless you know exactly what

Careless use of these points may cause CRASHES.

Page 46

you are

MLDL operating system eprom

ASSEMBLY LANGUAGE INFORMATION

SHORT REVIEW OF THE HP-41 INSTRUCTIONS

The HF41 CFU has three main arithmetic registers: A,B and C.

These are 5S6 bits long (14 nibbles) and instructions can operate

in various "fields" of the register.

13 7 12 11 1@ 2 8 7 & e 4 3 @ 2 I | 8 :

i : ; XS ; ;

: i ALL A= :

b + - —— ——————— :
HI o1= M : S % X i

The whole register

Mantissa

Mantissa Sign

eXponent Sign

eXponent and Sign off exponent

X m

S&X

@R : At specified pointer

R<{— : from digit R to digit @

FQ : Between F and Q

There are two pointers F and @, of which the value is B-13. One

of them is selected at the time (through slct p or slct g}, the

selected pointer is called R. These are three extra fields, which

depend on the value of the pointer), R<— (up to R, from digit R

to digit @) and P-& (between pointer F and &, & must be greater

than F2.

There is a register G, 8 bits long, that may be copied to or

from or exchanged with the nibbles R and R+1 of register C.

(R<i=12). There are 14 flags, B-1%, of which flags @-7 are located

in the B-bits ST (status) register, and there is a 8-bits TONE

register T, of which the contents floats every machine cycle

through a speaker.

Page 47

MLDL operating system eprom

Then there are two auxilary storage registers, M and N, which

can operate only in the field ALL. They are 5& bits long.

There is a 1&6-bit program counter, which addresses the machine

language, and a KEY register of 8-bits, which is loaded when a

key 1s pressed. The returnstack is 4 addresses 1long and 1is

situated in the CFU itsel+.

The CFU may be in HEX or DEC mode. In the last mode the nibbles

act as if they can have a value from @ to 9.

The USER-code RAM is selected by CLs%x1 through RAM SLCT, and

can be written or read through WRITE DATA or READ DATA. I+ chip @

is selected (RAM address 000 to OOF) the 16 stack registers may

be addressed by WRIT and READ @ to 15.

Feripherals (such as display, card reader, printer) may be

selected by Cls%x] through FRFH select or by SELP (see page 1%9).

The mnemonics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field?)

A= C=Ek C=C+1 TATH

B=0@ A=A+1 C=C+A *A#C

C=0@ A=A+ER C=A-C TA#A

A< B A=A+C C=0-C RSHFA

B=A A=A-1 C=-C-1 RSHFE

A :C A=A—-B “B#@ RSHFC

A=C A=A-C 7C#O LSHFA

C<>B C=C+C *A<C

CLRF, SETF, ?FSET, ?R=. ?F1 (peripheral flag set?) , RCR (rotate

right) have a parameter B8-13.

LDER (load C at R) and SELF (select peripheral) have a parameter

a-F.

WRIT and READ have a parameter 8-15, called

@(TY, 1(Z), 2(Y), I(X), 4(L)Y, SN, &Ny, 7(0), B(F), 2@,
1@¢!=), 11¢a), 12(b), 13(c), 14(d), 15(e).

Page 48

MLDL operating system eprom

Jumps:

There are two classes jumps:

a. JNC (jump 1f no carry) and JC (jump 1if carrvyl. These

instructions provide to Jump relative 3F 1in positive

direction or 40 in negative direction.

b. "NC GO and 7C GO. These instuctions provide to jump to an

absolute 16 bits address.

PNC XB and 7C X& are jump—subroutine instructions to absclute

addresses. (remember the return stack is just 4 addresses longl.

Miscel anegus instructions:

57T=0 C=G ST=T FOWOFF

CLREEY C<>6 ST<>T SLCT F

TKEY C=M ST=C SLCT @

R=R-1 M=C C=5T ?F=0Q

R=R+1 C<>*M ST<>C TLOWEBAT

G=C T=8T Xe->60a A=B=C=0

GOTO ADR (CL&:31) ?C RTN FUSH { CL&:231)

C=KEY NC RTN FOF (CL&23ET)

SETHEX RTN GOTO KEY

SETDEC N=C RAM SLCT

DSFOFF C=N WRITE DATA

DSTTOG C<>N READ DATA

FETCH S5%X C=C or A FRFH SLCT

WRIT S%X (for MLDL) C=C and A

Note : wvarious arithmetic and all test instuctions may set the

carry flag. This flag keeps set only one machine cycle, sao

a Jjump dependent on this flag must be immediate after the

arithmetic or test instructicon, otherwise the carryflag

will always be cleared.

Page 49

MLDL operating system eprom

OPERATIONSCLASS @

888 : 848 | 88@ | BCO . 1@@ . 148 : 188 : ICB 288 | 248 | 288 | 2C8 : 388 : 348 [3B@ ! 3C@
p i 384 1 JB4 0 ZB4 | B84 844 | BBA 1 144 | 204 | 104 [244 | BCA D 1B4) 344 0 204 0 - | ---

NOP

CLRF
SETF p:388 . 388 288 : @88 . 848 | 888 : 148 . 288 : 188 | 248 } @C8 : 188 : 348 | 208 § -— | ---
PFSET p i 38C ¢ 38C : 28C : @BC : @4C | @BC : 14C : 28C ¢ 18C ¢ 24C : BCC : 18C © 34C ¢ 2CC } -— | —-

p i @18 {858 | 8% | @Dl . 11B : 158 1 198 1 1D@ ! 218 | 258 | 298 : 208 i 31@ | 358 | 398 | 3D@
g 3940 3140 214 1 B14 [@54 1 894 1 154 0 294 1 114 0 254 © @D4 ¢ 194 1 354 1 24 0 -} -

LDER
R=

pi JA4 0 324 1 224 © 824 | @64 | BA4 1 164 1 2A4 0 124 © 264 | BEA © 1A4 1 364 ¢ 2E4 | 1E4 | 3E4SELP
p i 828 | 8568 i BAB i BEB i 128 : 168 1 1AB 1 1EB | 228 : 268 | 2AB | 2EB i 328 | 348 | 3A8 i 3EB
p i« 3AC 1 32C ¢ 22C ¢ @2C | @6C : BAC : 16C + 2AC ¢ 12C ¢ 26C ¢ @EC ? 1AC ? 36C ¢ 2EC § -—- § -——-

NRIT
1

p i 838878 | @BB : @FB i 138 1 178 1 1BB | 1FB | 238 : 278 | 2B8 i 2FB i 338 i 378 i 3B ! 3F8

p i+ 3BC 2 33C 1 23C ¢ @3C ¢ @7C @BC i 17C + 2BC ¢ 13C ¢ 27C ¢ @FC : 1BC + 37C ¢ 2FC ¢ — 1§ -——-
READ

RCR

OPERATIONMNEMONIC

No operationNOP

Clears systes flag nusber p

Sets systea flag nusber p
P

P

CLRF

SETF
Set the carry flag if systea flag p is setWSET

Load p into "C" at nibble pointed at by pointer and decresent pointer

Set the carry flag it the active pointer equals p

Set the active pointer to p

PLDeR

PR=

Transfer control to the desired peripheral ppSELP

Write "C" to RAM memory or to the selected device in register p of the selected block

Set the carry flag if peripheral flag p is set
PNRIT

7F1

Read "C" from RAM semory or the selected device to register p in the selected block

Rotate "C" right by p digits
PREAD

RCR

Page 58

MNEMONIC

UNUSED
UNUSED
UNUSED
UNUSED

5T-8
CLRKEY
FKEY
R=R-1
R=R+1

UNUSED
6=C
C=6
CO6

UNUSED
H=C
C=M
oM

UNUSED
T=5T
ST=T
STOT

UNUSED
5T=C
C=57
COST

X2-)60
PONOFF
SLCT P
SLCT @

HEX

x34

x74

xB4

xF4

3C4
3C8
3CC
304
30C

818
238
298
a8

118
138
198
108

218
238
298
208

318
338
398
308

a2e

258

ane

ace

MLDL operating system eprom

CLASS @ SPECIAL INSTRUCTION HEX CODES

OPERATION

Not in use

Clears flag 8 to 7 (*ST" register)

Clears the "key pressed’ flag

Set the carry flag when a key has been pressed

Decresent the current pointer

Incresent the current pointer

Not in use

Copy digits r,r+! from "C* to "B"

Copy "6" into digits r,r#1 froms "C*

Exchange "6" with digits r,r#! tros *C*

Not in use

Copy "C* into “M"

Copy "M" into “C*

Exchange "C* with *M"

Not in use

Copy °*ST" into *T"

Copy *T" into "ST"

Exchange *ST" with *T"

Not in use

Copy digits 1, @ froa “C* into “ST"

Copy "ST" into digits 1, @ froa “C*

Exchange digits {, 8 froa *C* with *5T"

Drop stack to convert XR into GO

6o to standby mode

Select *P* as the active pointer

Select "B* as the active pointer

Page 351

NNEMONIC HEX

C=KEY 228
SETHEX 258
SETDEC 2A8
DSPOFF 2EB

DSPTOE 328
C RIN 358
NC RTN A8
RTN 3B

UNUSED @38
N=C a7
C=N asa
CON Bra

LDI 138
PUSH 178
PoP ib@
UNUSED 1FB

60TO KEY 238
RAM SLCT 278
UNUSED 2B@
WRITEDATA 2F@

FETCH

C=C OR A

338
378

C=C AND A 3B8
PRPHSLCT

?P=f

?LOWBAT

A=B=C=@

60TO ADR

3Fa

128

168

18

1EB

OPERATION

Copy key register into digit 4, 3 of *C"

Use hexadecimal arithsetic

Use decimal arithsetic

Turn off the display

Taggle the state of the display

Return from subroutine if the carry is set

Return froa subroutine if carry flag clear

Do a subroutine return always

Not in use

Copy "C" into °N°

Copy *N* into *C"

Exchange *C" with "N*"

Load next roa word into digits 2-8 of *C"

Push address digits 4-3 in *C® onto stack

Pop address from stack into digits 6-3 of

Not in use

Load key register into lower 8 bits of "PC

Set ram address to digits 2-@ of °C"

Not in use

Write register "C" to the selected registe

Load 2-8 of °C" from ros address 6-3 of "C

Logical or of "C* with "A® bit by bit

Logical aesd of "C" with "A" bit by bit

Set peripheral address to digit 2-8 of °C"

Set the carry flag if the pointers are equ

Set the carry flag if low battery

Clear registers "A" "B" and *C*"

Copy digits 6-3 of "C* into the °PC"

MLDL operating system eprom

CLASS 1 INSTRUCTIONS

Class 1 1instructions are absolute GOTOs and EXECUTEs. They

consist of two consecutive ROM words of the following format :

Ais Aia Ais Aiz= Aia Aie Ae Ae p P

Ais—Aa 15 the 1l4-bit address to branch to. The pp field of the

second word determines what type of instruction it is. The next

table shows values for pp :

pp MNEMONIC OPERATION

2@ NC X@& execute subroutine 1f carry 1s clear

a1 cC X execute subrecutine if carry is set

1@ NC GO goto rom address if carry is clear

ai C GO gato rom address if carry is set

Example : NC GO @232 which jumps to the memory lost routine 1i1s

coded as :

P11 2010 A1
P20 20102 10

@C? as first word

@A as second word

Fage 52

FIELD

ALL

MS
XS
S&X
@R

FQ

MLDL operating system eprom

CLASS 2 FIELDS OF OPERATION

AREA OF OPERATION

All digits.

Mantissa digits 12 — 3=,

Mantissa sign digit 13,

Exponent sign digit 2.

At exponent digits 2 - 8.

At digit specified by the current pointer.

Up to and including pointer {from the right.

from pointer F, left up to &, including pointers.

Page 53

MNEMONIC

S
l

T
w
y
e
a
s

o

|
l

0l
+

+
I
O
k
0
=
0
0
0
=
m
D
~
=
0
m

o |
+

fl
fl
fl
n
fl
n
D
b
D
D
%
b
D
Q
U
?
W
D
a
n

I a8 I

MLDL operating system eprom

CLASS 2 INSTRUCTIONS

OPERATION

clear A

clear B

clear C

exchange A with

copy A into B

exchange A with

copy B into C

exchange B with

copy C into A

add B 1into A

add C into A

increment A

subtract B from

decrement A

subtract C from

double C

add A into C

increment C

A-C into C

decrement C

caomplement C

nines complemen

set carry flag

set carry +lag

set carry flag

set carry flag

set carry flag

set carry flag

shift A right 1

shift B right 1

shift C right 1

shift A left 1

t C

if E#0

if C#0

it ALC

if A<B

if A#0

if Ax#C

digit

digit

digit

digit

@R

aaz
a2z
B4z
A&2
pgs
an2
Acz2
PEZ
1802
22
142
162
182
1AZ
1C2
1E2
282
mms
[y

242

262

=282

2A2

2C2

ZEZ2

@02

322

342

362

=82

3A2

3C2

ZEZ

FPage 5S4

S&X

Qas
B2ls
B4s6
B&b
a8s&
BAs
aCcs
@QES
186
126
146
166
186
1A6
1Cé
1E6
206
22
246
266
286
2A6
2C6
2E6
86
326
246
366
286
ZAb6
3C6
ZE&

R<—

avA
AzA
a4Aa
B&A
asA
aAA
acA
PEA
18A
124
14A
16A
18A
1AA
1CA
1EA
20A
22A
244
26A
=28A
2AA
2CA
2EA
Z@A
32
34A
Z6A
Z8A
ZAA
ZCA
SEA

ALL

@azE
AZE
A4k
A&E
A8E
BAE
ACE
AEE
10E
12E
14E
16E
18E
1AE
1CE
1EE
20E
22E 2
24E
26E
2BE
2AE
2CE
ZEE
SBE
S2E
J4E
Z6E
ZBE
SAE
ZCE
SEE

PQ

@1z
=0
-A

As2
arz2
a7
@Bz
apz2
ar2
112
132
152
172
192
1B2
1D2
1F2
212
aetal

252

272

292

2B2

2DZ
2F2
312
TITD
teA

T 2
-t a

372
392
ZB2
3D2
IF2

XS

@16
26

@56
B7&
a9s
ABs
@aDé&
ars
116
136
136
176
1946
1B&
1Dé6
1Fé&
2146
2T
e

256
276
296
2B&
2D6
2Fb
216
336
236
376
3956
ZB&
ZD6&
ZF&

M

@a1A
A3A
B5A
aza
a7Aa
@AEA
@DA
arFA
11A
13A
135A
17A
19A
1BA
1DA
1FA
21A
—-r
e?

25A
274
29A
2BA
2DA
2FA
Z1A

Z5A
Z7A
Z2A
ZBA
ZDA
ZFA

S

@iE
BIE
@SE
R27E
APE
@AEBE
@ADE
@OFE
11E
13E
15E
17E
19E
1BE
1DE
1FE
21E
~er
it}

25E
27E
29E
2BE
2DE
2FE
Z1E
T

SSE
I7E
I9E
ZBE
ZDE
ZFE

MLDL operating system eprom

CLASS 3 INSTRUCTIONS

DISTANCE JNC- JC—- JNC+ JC+ DISTANCE JNC- JC- JNC+ JC+

+/— @1 SFB 3IFF B0B B0F +/— @2 SF3 3IF7 B1Z @17
+/— 83 JEB Z2EF @1k @1F +/— @84 SEZ 3E7 23 27
+/— @5 DB 3IDF @2E @ZF +/— @86 D3 ID7 B3z B37
+/— @7 ZCB 3CF @3B @3F +/— @8 ZC3x 3C7 @43 @47
+/— @89 ZBBE 3IBF @4B @4F +/— @A SBZ 3IB7 @53 @57
+/— BB ZAB 3ZAF @SB @SF +/— @cC 3RS 3A7 B6Z B&7
+/— @D I9B 3I9F B&6E B&F +/— @E 93 397 A7 @77
+/— @F 8B 3ZBF @7B @7F +/— 1@ 83 387 @8= @87
+/— 11 7B 3Z7F @BE @8F +/— 12 7% 377 @93 Aa97
+/— 13 6B 3&6F B9B Q9F +/— 14 363 367 BAZ BA7
+/— 15 323k I5F BAR @AF +/— 16 3533 357 OBIZT @EB7
+/= 17 4B 34F BOBEB OBF +/— 18 343 347 @C= @c7
+/—- 1% IR I3 @aCe QCF +/— 1A 333 3F7 BDE anv
+/— 1B 32 32 @DB @DF +/— 1C 323 32 BEZ @E7
+/— 1D 1B 3Z1F @ER Q@EF +/— 1E 313 =317 BFZ @F7
+/— 1F 2@ 3Z@F OFB @FF +/— 2@ I8z 387 1832 187
+/— 21 Z2Fr 2FF 1@B 10F +/- 22 2F 2F7 113 117
+/— 23 2EB ZEF 11B 11F +/— 24 2B 2E7 123 127
+/—= 25 2Dr 2Z2DF 12BR 1Z2F +/—- 26 203 2D7 1EE 1357
+/— 27 2CB 2CF 13B 13F +/— 28 2C= 2C7 143 147
+/— 29 Z2BE ZBF 14B 14F +/— 2A 2= 2B7 1533 137
+/—- 2B 2AB 2AF 15B 15F +/— 2C 2AZ 2A7 163 1467
+/— 2D 298 2Z9F 16B 16F +/— 2ZE 29 297 173 177
+/—- 2F 2B 28BF 17B 17F +/— @ 28 287 183 187
+/— 31 278 27F 18R 18F +/= 32 273 277 193 197
+/— 33 26B 26F 19B 19F +/— 34 26 267 1AZ 1A7
+/— 35 258 25F 1ABR 1AF +/— 36 253 257 1BIT 1BR7
+/—= 37 24 24F 1BB 1BF +/— 38 24 247 1C3Z 1C7
+/— 39 2z 23F 1CeB 1CF +/— 3A 233 237 1D3I 1D7
+/— ZB 22 22 1DB 1DF +/— 3C 223 22 1EZ 1E7
+/— 3D 21 21F 1ER 1EF +/— 3E 213 217 1F3 1F7
+/—- 3F 208 208F 1FB 1FF +/— 40 20z 207 -—— -

Class 3 instructions allow the program to jump up to &3 words

forward or backward from its present location. The mnemocnics are

JNC and JC.

Fage 3535

MLDL operating system eprom

ROM CHARACTER TABLE

lower 4! @ ! 1 ! 2 ! 2 ! 4151617418191 AaA1EBE!C!DI!E

u @ !e@!A!B!C!D!E!F!G!H!I!J!E!L!M!N
Pleeeeeee eeeeee
p 1 P! @I!IRI!IS!IT UV W XY ZPLD4PN1D10 4
g eleeeeeee e ee e
ro2 Pror ot L # L E % % Y LR L+, =,

T 1@ 1121314151867 189 b= 1

4 i i-tatbitcidie! : P : ; P #

Mote : The colon (3ZA) displays as a boxed star. The comma (2C) is

alsoc the left facing goose when used in a function name or

display and the pericd (ZE) is also the right +facing

goose.

You get the hexadecimal code of a character by taking the number

in the upper2Z2 column and place the number in the lower row behind

it. Last step i1is to place a zero in front of the number.

Example : The hexadecimal code of the letter W is 817.

Of the equal sign it 1is Q3D

FUNCTION NAMES

When a function is executed, the operating system checks the ROM

words containing the first two characters of the function name

and the two words immediately following. The catalog table entry

for a microcaode function (both mainframe and XROM functions)

points to the first word of executable code. The function name 1s

listed in reverse order immediately preceding the first word of

executable code.

Page 56

o
m

B
N
s

M
M
s

M
M
e
s

S
O
s
B
e

MLDL operating system eprom

Example : This example shows you how a normal function name o n

coded.

18CE @81 A Hex @80 added to indicate end of name.

18CF @B8C L

18D @@= C

18aD1 HHX First executable word of CLA.

FUNCTION PROMPTING

To tell the operating system that the end of the function name

has been reached, add @88 hex to the final character. To praovide

a prompt set the top two bits in the first two characters of the

function name by adding the hex constants in the following table

NULL IND %

1ST 2ZND alpha alpha #dig. ind stack stack none example

2082 any X CLA,CLST
102 Q222 X X CLF,COFrY
128 104 3,4 SIZE
106 200 X
108 300 1 X CAT,TONE
200 2o 2 X X STO,RCL
208 10282 2 X X STO,RCL
288 200 2 X FS?,5F
200 =00 X 2 X
26 000 X 2 LEL
300 100 X 2 X XEl(alpha)
28 200 X 2
2@ 320 X 2 X X{.ddd) GTO

The operating system examine these ROM bits and executes a prompt

(if the appropiate bits are set) before the function is executed.

These prompts are only executed when you execute the function

from the keyboard. However, when the function is executed in a

program there will be no prompt at all. Take care of this.

I+ the prompt accepts an alpha string, the input data is loaded

into the & register, right justified in reverse order in ASCII.

Example : Execution of the function ASN with the alpha argument

"COFY" will 1load B8 2@ B8 532 5@ 4F 4C into the 2

register before the function 1s executed.

Page 357

MLDL operating system eprom

I+ the prompt is numeric the input data is loaded into the "A"

register in binary. Whenever the prompt alsc accepts indirect,

the value in the "A" register is increased with hex &80.

Example : Execution of the function RCL with a numeric argument

of 55 will return D00 20 00 00 B0 @@ =7 in the "A“

register.

I+ the prompt would have been filled in with IND 355,

the "A" register contains 0@ 080 B0 G2 20 B8 B7.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the

operating system. The +irst executable word, if a nop (@2a) ,

indicates that the function i1s non—-programmable. This means that

if you execute the function in program mode, 1t executes rather

than being entered as a program line. SIZE, ASN and CLF are non-—

programmable functions.

I+ the first two executable words of a XROM function are both

zero, then the function is both non—-programmable and executes

immediately. This means that no function name is displayed and

that the function will not NULL. The functicn is executed when

the key is pressed rather than when the key is released. FRGM,

SHIFT and back-arrow are non—programmable, immediate executing

functions. Note that unless your routine checks for key release,

and the key to which your function is assigned is held down, the

function will be executed repeatedly until the key i1s realeased.

These twoc words affect the function operation only 1f the

calculator is in FRGM mode. In RUN mode, they are ignored.

Example : these are a few examples of function name promptings.

12D2 @97 W 1185 @99 Y 12CC @B E

12D @85 E 1186 018 F 12CD @@E N

12D4 189 1 1187 @8F O 12CE Z@F O

12D5 218 V 1188 1@3 C 12CF 114 7T

Page 58

FUNCTION

AFAT c s cucceneencnncaccsccncsenscsuanssssnnnsnnasnsannsss
0T
CBT.i eececenacacuncaconnansnasacansaannnssncsasnnnnaanse
LBl.. s ncneuccscnsssnssnassunussennanansacansnnss
CMPDL. .ccccccccaceccanannccsancencssnsnnsacancsnnannacas
COD. e ccesscnasccascsccssesnnassssssnssasncsannssannsasns
COMFILE. .t cieuiceeeaneancnnnsensssnnannanannnnsnacannssa
COPYR. e . ceacusnacssasssnssnasacaasassnssscsnsnsnnans
DECOD.cevececcuusccnsnunanscncsnccnsaansnsnannassas
DFAT . .cccicrecanannssscsssssnssassnasscssansssansass
DISASM. . s cccccccecccececcanancscnnnnnssaannnannsnnaas
BE....cccuiccucccauccascccacaunscscnansasssnsncsnsnsss
BETROM. .t ccicccccncnsnccnsccnnsssnsannssssnnunsans
IPAGE . . ccccccucuscncccanssasascancusascsssannssasnssas
LOCA. ccccceecececacnccuscanaassanascananssnscansancss
LROM. s ccccccceenannnsnnsassansasannsasnasnsananansas
MKPR. ... cccieeccecscenassennussnssasscnsannsasannsnasas
MNEM. . . cccctccecccancsnancasscssnnannnasnsssnannsasas
MMTORAM. . i s ittt c et s i s e nananasccannanaasansnnasas
MOVE. c ccccccececacscasnsnsnssasannnanaanssaananasanas
RAMWR. . s s s i it e it ei i s s cesaanscasncnannascananananass
REGROM. . it cicieeeneacannacanannssananaancsscansnananasnas
|
ROMSUM. « @ i it s e ceccnnecencancsannnnsnasssanansanssass
ROM:REG. s s s e eeeeecenseannasensesnnansancsasnasansess
SAVEROM. . it ittt s s tescccessccasnnnnsssssnanannnnnnns
SYNT . ceueaevenucnecansuncscencaanasosncenasnasnnascanasssssssss

MLDL operating system eprom

FUNCTION INDEX

Page 5%

PAGE

1@
29
=0
14

23
16
26
3
-te

31

12

=1

MLDL operating system eprom

CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the

feet of the eprom’'s are protected against bending. Otherwise a

pin could brake from the eprom and make it worthless. Do not

connect any external power supply to the eproms. Frotect the

eproms against static charges, otherwise i1rrepairable damage to

the eproms can result. Do not remove under any circumstances the
labels on the eproms for these labels protect the eproms against

loosing there data by accident through too much U.V. light on the

eprom’ sS.

Limited 18B@ day’ ' s warranty

The 831204 ERAMCO MLDL-Eprom set is warranted against defects in

materials and workmanship affecting electronic performance, -—-but

not software content- for 1882 day’'s from the date of original

purchase. I+ vyou sell your unit or give 1t as a gift the warranty

is automatically transferred to the new owner and remains in

effect +For the original 180 days period. During the warranty

period we will repair or at our option replace at no charge a

product that proves to be defective, provided yvou return the

product, shipping prepaid, to ERAMCO SYSTEMS or their official

service representative.

Page &8

MLDL operating system eprom

CARE AND WARRANTY

WHAT IS NOT COVERED

This warranty doesn’'t apply if the product has been damaged by

accident, misuse or as the result of service or modification by

other than ERAMCO SYSTEMS or their official service

representative.

Mo cother express warranty is given. Any other implied warranty of

merchantability or fitness is limited to the 188 days period of

this written warranty. In no event shall ERAMCO SYSTEMS be liable

for consequential damages. This liability shall in no way exceed

the catalog price of the product at the moment of sale.

Obligation to Make Changes

Froducts are sold on the basis of specifications applicable at

the time of manufacture. ERAMCO SYSTEMS shall have no obligation

to modify or update products once sold.

FPage 61

MLDL operating system eprom

HOW TO SET UP YOUR OWN EROM PAGE

This part of the manual wiil tell you exactly how to set up an

Erom image in your MLDL-box. This is done with the help of a few

user code routines that are loaded into the MLDL Erom pages. If

you follow the instructions to the letter, nothing can go wrong.

And with the help of these instructions you should be able to set

up your own Erom image.

step 1

The first thing that has to be done is to clear the Erom page you

want to work at and to set the Erom block to the proper page.

Therefore vyou must set the first block with the left rotary

switch at page A. Set the rotary switch of the other block to

page E. Disable both the switches to the left of the leftmost

rotary switch (pull them down). When you set the switches in

this position, vyou can compare the results of your actions with

the results that will be given in this appendix.

step 2

Now we will first clear both Erom pages. Key in alpha mode the

single character "A". Go out alpha mode and execute CLBL (for

more details see page 14) Repeat this sequence with the single

character "E" in alpha. At this moment your Erom pages should

both be clear. Now you can enable both the Erom pages by pushing

the both switches up. Don’'t expect anvything to happen yet. Both

pages are still empty.

step 3

Before doing anything else we have to make sure that both pages

are empty. EKey in alpha "AFFF". Now execute LROM. The display

should read ‘none’. If this is not the case you should control

the setting of the switches and try step 2 again. This i1is done in

the same way for the second block, except you now have to key in

alpha "EFFF". The reading of the display should be again "'none’.

If this 1isn’'t the case return to step Z.

Fage 62

MLDL operating system eprom

step 4

To allow the HF-41 to find anything that is plugged into the

system 1t uses the first word on every page starting from page S.

If this word doesn’'t contain a valid identifier, it can't execute

a routine or function located at that page. Therefore we will

continue with the setting of these identifiers for both Erom

pages. In fact this identifier is the xrom number of a module. To

avoid any problems with other modules it is recommended in this

stage to unplug all your modules.

Also the name of the rom module has to be added. For this the

function IFAGE i1is used. It is enough to put the rom name intoc the

ALFHA register. After this you give the 4K page address in the X

register. Now you can execute the function IFAGE. It will prompt

vou for a XROM number. To avoid problems we choose as XROM number

the number 21.

Mote : In this manual we described two ways to set up an Erom

image. First time we did this with the function RAMWR (see

page S5). For this is quite a cumbersome way to prepare an

Erom image we did incorporate the function IFAGE (see page

35). Here we already gave you an example of how to create

vour own Erom image.

Example : We will create one Erom image with xrom number 21 and

as name "TEST ROM 1A". For this we make use of the RAM

page that is controlled by the left rotary and enabling

switch. The block is already cleared and enabled 1in

step 2. The block is addressed at page "A". Now we have

all relevant data for the block, so we can initialize

it.

Key 1into ALFPHA the name of the module and into the X

register the address of the RAM page that will hold the

Erom image. This address 1s 10.

Execute the function IFAGE. At the prompt you answer

with the desired xrom number E.G. 2Z21. After a while a

tone will sound and the message READY is displaved.

Page &3

MLDL operating system eprom

step S

From now on the HF-41 can recognize anything that is written into

Erom block one. 8o lets give it a try. First of all we have to

create a little program in main memory that is to be stored in

the Erom block.

We will use the following program: LBL "test

LBL @1

EBEEF

GTO 21

END

step &6

You have now created a program in the memory cof your calculator.

But we wanted to have this program in the MLDL-box, because it is

using up the last free bytes we had. That’'s no problem. We only

have to use MMTORAM to get the program in the Erom page we want

it. For this we have to initialize a few things.

When we have initialized our Erom page manually (without use of

IPAGE)Y, we have to give the starting address for our program.

This address will be the first word to be used by MMTORAM. Do not

use the reserved words in an Erom image in which you are to 1load

yvour programs (see appendix E and appendix F).

I¥f vyou work with IFAGE however, the starting address is already

given 1in the ALPHA register. When yvou have to use the ALFHA

register between two sessions of loading programs, it 1is

advisable to keep the contents of the ALFHA register in a normal

data storage register, or to note it down (be carefull saving the

address in a storage register, for MMTORAM can clear all the user

registers, when it makes use of CMFDL). This is handy for future

use. If you lost the address however, vyou can find it back with

the help of LROM. Increase the address given by LROM with one,

and you have the new starting address to store at.

Second thing we have to initialize is the setting of flags @ and

i1, to achieve the desired private status of the loaded program.

There are four options for these flags. For a full description of

these options we rever to the function MMTORAM at page B.

Page &4

MLDL operating system eprom

Third and last initialisation we have to make is the setting of

flag =. MMTORAM decides on this flag wether it shall use CMFDL or

the normal COMFPILE function when it is loading a program. See the

function CMFDL for the difference between the two compilers.

Example : We are going to load the program described at step 5.

This program has to be loaded in a nonprivate, complete

open status. Furthermore we do not want the numeric

labels to be deleted.

We do not have to give the starting address, Ffor this

is given in ALFHA by the function IFAGE.

For a complete open, nonprivate status flags 8 and 1

have to be cleared.

Flag =< has to be set for we do not want the numeric

labels to be deleted.

When these settings are made, the function MMTORAM can

be executed. You will see the messages of the compiler

and then the message "LOADING FGM". When MMTORAM is

finished a tone will sound and the message "READY" is

displayed. The program is now loaded in the Erom image

and is ready for use.

Note : If vou switch to ALFHA you will see that the

starting address is changed. It now points to

the first +Free byte after the just loaded

program. This provides an easy way of 1loading

subsequent programs.

step 7

First thing we will do is deleting the program from main memory.

When you have done this, you should still be able to execute test

for it has been stored in the Erom page. 8o give it a try. You

will hear the familiar beeping every time the program is looping.

Stop execution of the program and switch to FRGM mode. Whenever

you ry to insert or delete a program step, vyou will see the

message 'ROM’. This proves that the program has realy been loaded

into the MLDL-box. The program is also included in catalog 2. I+

you execute CAT 2 you will see the label test showing up in vyour

display sooner or later, depending on the amount of other roms

that are plugged into the system.

Page 635

MLDL operating system eprom

When vyou want to store more and other programs, vyou can follow

the described procedure starting at step S.

Load also the programs described on page 21 (15T and 28 (MDIS).

Locad the TE8T program with flag 3 cleared. Look at the program

after vyou have deleted it in main memory. As you will see, it

does not contains the numeric labels any more. This and the fact

that it is in ROM now, will speed up the execution gquite a lot.

Load the MDIS praogram with flags 1| and 3 set. The program will be

open in the erom page, but as soon as it is copied back to main

memory, it will be private.

This is the end of the description of our MLDL ROM operating

system. We hope you will enjoy to work with this rom. If you have

any complaints or wishes you want to see in a future rom, please

let us know. We will take these in account as much as possible.

ERAMCO SYSTEMS

W. van Alcmade str. 54

1785 LS Den Helder

The Netherlands

Page &é

	Cover
	Contents
	Introduction
	Installation
	Organisation of the instruction set
	MLDL write functions
	RAMWR
	MMTORAM
	AFAT
	DFAT
	MOVE
	CLBL
	COPYR
	REG>ROM
	ROMSUM

	Utility functions
	COMPILE
	LOCA
	LROM
	COD
	DECOD
	ROMCHKX
	ROM>REG
	MNEM
	DISASM
	CAT
	CBT
	SYNT
	GE

	Update functions
	SAVEROM
	GETROM
	CMPDL
	IPAGE
	MKPR

	Appendix A: Input / Output
	Appendix B: Frogrammability
	Appendix C: Messages
	Appendix D: XROM numbers
	Appendix E: XROM and FAT structure
	Appendix F: Interrupting Points
	Appendix G: Assembly language information
	Function Index
	Care and Warranty
	How to set up your own EROM page

