ERAMCO SYSTEMS

ES 84081B DAVID-ASSEM MK - 2

OWNER'S MANUAL

July 1984

840818-M004001

Printed in the Netherlands

(c) Eramco systems W. van Alcmade str.04 1785 LS Den Helder The Netherlands

Table of Contents

Ι.	Introduction	4	
II.	Special features	5	
1.	SSTing and BSTing with ASSM	5	
2.	Disassembling data words	6	
ٽ. ۸	Disassembling characters	7	
4. 5	Ine USEK-Off MODE	7	
5.	The redefined keyboard	8	
7.	Keving in data words	10	
8.	Jumps	10	
9.	BUF>REG and REG>BUF.	11	
10.	BEG/END and DISTOA	11	
11.	Possible extensions	11	
III.	Warnings	12	
IV.	User instructions	13	
IV. A	The function ASSM XROM 02,01	13	
1.	How to enter ASSM mode	14	
2.	How to leave ASSM mode	14	
3.	ASSM mode as disassembler	15	
3.1	USER-off in disassembling	15	
3.2	The USER-on mode in disassembling	16	
3.3	Instructions after a SELP instruction	18	
3.4	The label option	19	
3.5	Auto repeat	21	
3.6	Unused instructions	21	

	4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	ASSM mode as assembler. Direct programmable instructions. LD@R and SELP. RCR, R=, ?R=, SETF, CLRF, ?FSET, ?FI. WRIT and READ. Singular arithmetic instructions. Plural miscellaneous instructions. Jump subroutines.	22 24 25 25 26 27 28 30 31
	5.	Messages in ASSM	35
в		BUF>REG and REG>BUF	36
	1. 1.1 1.2	BUF>REG XROM 02,02 Error messages Warning	36 37 37
	2. 2.1 2.2	REG>BUF XROM 02,03 Error messages Warning	37 38 38
С		BEG/END and DISTOA XROM 02,04 and 02,05	39
		Technical details	40
	1.	Register use with ASSM	40
	2.	Format of a label in a buffer	43
	з.	BST and CONT	44
	4.	Extensions of DAVID-ASSEM	45

v

APPENDICES

Appendix	A	Keyboard definition figures	47
Appendix	В	Instructionset of HP41 CPU	49
Appendix	С	Instructions and their keysequences	51
Appendix	D	Error messages	54
Appendix	E	Example program : FNCTOA	55
Appendix	F	Errors of HP41 CPU	59
Appendix	G	Mainframe label rom	61
CARE AND	WARRANT	Y	67
INDEX			68

I Introduction

From the moment that it was possible to build machine language extensions for the HP-41 calculator, a good assembler/disassembler proved to be indispensable. This is why DAVID-ASSEM has been developed.

DAVID-ASSEM is a ROM consisting of 5 functions, which is designed to provide an easy means of entering Machine Coded programs in a userfriendly format, and for maintaining and displaying thus written programs.

The main function, ASSM, provides a complete operating environment, that resembles the PRGM-mode the calculator provides for entering and editing ordinary programs. It features a redefined keyboard to reduce entering a step to a minimum of keystrokes (varying from 1 to 3 excluding parameters), while persecuing an easy-to-remember correspondence to the instruction mnemonics; program steps are displayed in Stephen Jacobs' notation. As an alternative a HEX-mode may be used for keying in and displaying hex-data-items. A powerful feature is the possibility to assign an alphanumerical label to any address (even in ROM), which may then be used in stead of it while entering jumps etc., and will also be used automatically whenever applicable in displaying program steps. It is even possible to refer to an as yet undefined label, which will automatically be resolved as soon as the label is defined. Also the ASSM function will perform the cumbersome computations needed to decide between the various forms of branches, gotos and (relocatable subroutine jumps. Text-stings following a ?NC XQ 07EF call are displayed as such. Finally it is possible to step forward and backward through a program. The most significant difference with the behavior of the calculator's PRGM-mode, is that ASSM will not relocate code-segments, and therefore will OVER-WRITE steps in the code rather than inserting them.

Because Machine Code knows no labels physically present within the code (like with user-code), this information is stored seperately by ASSM. This is done in storage space seperate from the user-registers, namely an I/O buffer, to achieve transparancy to the user. However, two functions BUF>REG and REG>BUF are provided to enable saving and restoring the buffer information using such devices as card-readers: they transfer the information from a buffer to the user-register or back. Actually the information of any I/O buffer can be handled by thes functions.

In order to enable printing the program in the same format as ASSM (including labels under user-program control, the functions BEG/END and DISTOA are provided.

David-Assem is a program, or operating system if you want, that can be extended in the future by users themselves or by ERAMCO SYSTEMS. Yet now there is a 4K ROM available through ERAMCO SYSTEMS that adds all mainframe entries as they are listed in the VASM listings of HP, but more information about this ROM can be obtained through ERAMCO SYSTEMS.

<u>II Special Features</u>

David-ASSEM provides five functions, of which the function ASSM is the most important. Therefore we shall treat this function first.

If you enter ASSM mode by executing the function ASSM, automaticaly the step is viewed where you were, while leaving ASSM mode for the last time. If it is the first time you enter ASSM mode, a beginning address is asked.

Every step in ASSeMbler mode is (in general) viewed according to Steven R. Jacobs's notation, however, there are some deviations, such as C=M ALL which is viewed as C=M, G=C @R, which is viewed as G=C.

II.1. SST- and BST-ing with ASSM

Being in ASSM mode you can "walk" through any machine level program by pushing SST and BST, which are located on the SST and BST key. One, two, three or multi-word instructions are viewed as one step, both SSTing and BSTing.

e.g. Put on USER mode, assign ASSM to [X+], and

See

Push

Comment

ASSM(Z+)	BEGIN	here	you enter ASSM mode
0000	?NC 60 0180	step	0000
SST	?NC GO 01AD	step	0002
SST	C=0 ALL	step	0004
SST	RAM SLCT	•	
SST,SST	M=C	step	0007
BST	READ 3(x)	step	0006
[<-]	CONT.	•	
E<-3	{x-register}	here	you've left ASSM mode

You can see here that program steps consisting of more than one word are disassembled as one step.

?NC GO 0180 is actually 201, 006, two words long.

<u>Auto repeat</u>

A feature of SST and BST is that if one of these is pressed longer than one second, they will act like they are pressed every 1/2 second. In other words, if you keep pressing the SST key, every 1/2 second the next (or previous) line will be viewed.

e.g.	Push	See
	ASSM	READ 3(x)
	SST (hold)	M=C
	5	C=ST
	ł	C=0 xs
	\$	CLRF 7
	1	C<>ST
	release	?FSET 6
	BST (hold)	C<>ST
	3	CLRF 7
	:	C=0 x5
	release	C=ST

II.2 Disassembling data words

ASSM provides steps being viewed as data words automatically in cases that the HP41 CPU treats them as such. This is after a LDI, after a SELP instruction and after a few mainframe subroutine calls.

	Push	See	Comment
e.g.	[<-]	CONT	where do you want to continue?
	07F9	LDI	
	SST	HEX:OFD =,	step 07FA; this step is viewed as being a data word
	[<-] 02E0	?NC XQ 22F5	22F5 is ERROR subroutine
	SST	HEX:038 8	······································

II.3 Disassembling characters

Sometimes ROM words are meant as character data. In one particular case, after a ?NC XQ 07EF (MESSL), ASSM places the characters one after another between quotes in the display. All characters will be treated as one step.

	Push	See	Comment
e.g.	<- 2FEE	?NC XQ O7EF	07EF needs a character string after its call
	SST SST	"XROM" RTN	

II.4 The USER-off mode

ASSM knows a special mode for the case that instructions should be disassembled or assembled (in tables etc.) as data words: the user-off mode. You can enter or leave this mode by pressing USER key, which toggles the annunciator too.

	Push	See	Comment
e.g.	[] BST	"XROM"	this is step 2FF0 again
	user	2FF0 018 X	
	SST	2FF1 012 R	
	SST	2FF2 00F 0	
	[] BST	2FF1 012 R	
	USER	A=0 P-Q	

This last step has no meaning, for it means "R" of "XROM". You probably have noticed that in USER-off mode also a 4-digit hexadecimal address and a display character appear in the display.

II.5 Labels

A very helpful tool is the label option. To any given address a label can be assigned, and you can store up to 254 labels and their locations in HP 41CV memory. Labels themselves will be viewed and all kinds of jumps to addresses to which a label is assigned will be disassembled as jumps to those labels.

	Push	See	Comment
e.g.			
	<- 000D	JNC +08 0018	000D + DB = 0018
	<- 0018	A<>C ALL	assign to step
	[] LBL ALPHA	LBL'	0018 label "HERE"
	HERE Alpha	LBL 'HERE	
	<-000C	?FSET 6	
	SST	JNC +HERE	remember, this was a
			JNC +0B 0018 !
	SST	?FSET 5	
	SST	JNC +HERE	
	<- 0025	jnc -HERE	here stood a JNC -OD 0018
	<-ALPHA HERE	LBL 'HERE	step 0018
	ALPHA		•
	SST	A<>C ALL	still step 0018!
	LBL ALPHA	A<>C ALL	clear label
	ALPHA		
	<-ALPHA HERE	NONEXISTENT	you just deleted it!
	ALPHA		-

You can see here that a label can be assigned in a simpel way, and that it can be purged in a comparable way.

Also you will have noticed that error messages may appear in ASSM mode; however, you stay in ASSM mode.

II.6 The Redefined keyboard

In ASSM mode the entire keyboard is redefined, although we only used keys with a comparable function as yet. This feature provides a better and faster editing of machine language programs. Let's assume that in the following examples your free MLDL RAM page is A000-AFFF.

 <- AA00 NOP STO (WRITE WRITE DATA DATA) R/S (RAM RAM SLCT SLCT) R/ (POP) POP NULL Annulling key sequence wor in the same way as in user code and after you relea
STO (WRITE DATA)WRITE DATAyou didn't clear this area this is step AA01 !R/S (RAM SLCT)RAM SLCTstep AA02 !R/ (POP)POPkeep it pressed, see after while annulling key sequence wor in the same way as in user code and after you relea the key
R/S (RAM RAM SLCT step AA02 ! SLCT) Rf (POP) POP keep it pressed, see after while NULL annulling key sequence wor in the same way as in user code and after you relea the key
R/ (POP) POP keep it pressed, see after while NULL annulling key sequence wor in the same way as in user code and after you relea
NULL annulling key sequence wor in the same way as in user code and after you relea the key
LIE KEY.
RAM SLCT
[] BST WRITE DATA
$\nabla x (L=) \qquad L =$
f = U = U +
ZT (H) L = LTH _ Some instructions take more than one keystroke.
EEX C = C + A S & X
[]e" (LDI) LDI after a LDI, SELP, or spec subroutine call, you are
supposed to enter hex data
23 HEY-123 #
$\langle - A \Delta \Omega \rangle$ NOP See shows
SST WRITE DATA
SST C= C+A S&X

Something you ought to get used to is the fact that when you key in new program steps you write them over the next step, not over the step that is viewed.

You can find how the keyboard is redefined in Appendix A on page -47-, you can find the key sequenses for all instructions in Appendix C on page -51-.

II.7 Keying in Data words

In USER-off mode the Hexadecimal keyboard is active: Hexadecimal datawords in 244 format (0-3 key, 0-F key, 0-F key) will be programmed just like instructions mentioned in II.6.

	Push	See	Comment
e.g.			
	USER	AA02 206 F	206 is code of C=C+A S&X
	1	HEX:1	
	2	HEX:12_	
	3	AA03 123 #	HEX 123 is written over the next line
	4	AA03 123 #	You can't key-in a dataword beginning with a 4-F ! The
	USER	JNC +24 AA27	123 is the code for JNC +24.

II.8_Jumps

Jump instructions can be keyed in in quite a lot ways. The most powerful is the one using labels. The following examples will give you an idea of the capacity of the label feature.

	Push	See	Comment
e.g.			
	<- 0000	?NC 60 0180	assign label "STRTUP" to address 0000
	lbl Alpha Strtup Alpha	LBL'STRTUP	
	<- AA00	NOP	continue in scratch area
	[] GTO ALPHA	GTO	
	STRTUP ALPHA	NC GO 'STRTUP	now a ?NC 60 0000 has been programmed.
	XEQ []		. 2
	0000	?C XQ 'STRTUP	
	<- AA10	NOP	
	L BL "T RY"	LBL ' TRY	
	[] GTO []	GTO C	jump to try
	"TRY"	JC- TRY	ASSM computes the distance
	[] GTO	JNC? QWERTY	You didn't say yet where
	"QWERTY"		QWERTY is located!
	<- AA20	NOP	
	LBL "QWERTY"	LBL'QWERTY	Now ASSM can know it,
	<- AA12	JNC+ QWERTY	And it does!

These are just a few things that can be done with labels, but with these examples you can see that ASSM keeps all information: where labels are located, and which labels have not yet been defined.

All these features will be discussed later, in chapter IV, how they work, what they do, etc.

II.9 BUF>REG and REG>BUF

This pair of functions allows you to save any I/O buffer at any time you need them. When the contents of an I/O buffer has been moved in user-registers, you may save them on magnetic cards or tape.

These functions have been incorporated in DAVID-ASSEM because the machine-language labels, or ASSeMbler labels are stored in an I/O buffer, namely a buffer with ID#1. This means that you can save your own labels for later use.

II.10 BEG/END and DISTOA

This pair of functions allows you to make a hardcopy of your progams on your printer, by making a simple user-code program.

The advantage of these functins compared to other disassemblers is that DISTOA also translates labels, just as they are viewed in ASSM mode, and since there is a ROM available that adds all mainframeentries, the listings will be very easy to read.

II.11 Possible extensions

DAVID-ASSEM can easily be extended by one or more 4K blocks which can add big features to the yet powerful 4K of DAVID-ASSEM.

At this moment a ROM has been written, namely the one mentioned above.

III Warnings

- David-Assem provides the functions BUF>REG and REG>BUF. These functions should be executed with much care. Read before you use them, the chapter "User-instructions" carefully, a crash could be the result of a wrong use.
- In ASSM mode nearly every key stroke is a write-action in RAM. Be careful when you are in ASSM mode not to be too nonchalant with pushing keys. A program you made earlier could be destroyed partially by doing this.
- There are some deviations from the Steven R. Jacob's notation for disassembling in ASSM mode; look them over! (they are listed on page 16).
- Your HP41 remembers all labels in machine language when you leave ASSM mode, even if you turn the calculator off. However, if you turn the calculator on without having DAVID-ASSEM plugged in, all labels are purged.
 With BUF>REG and REG>BUF you can save the labels, even if you carry no MLDL box with you!
- ASSM may go PACKING the memory. Then the message TRY AGAIN will appear in display. if this message appears again after repeating the instruction that caused ASSM to pack, you have to leave ASSM mode and change the size such, that there is memory free again.

IV_User_instructions

First we have to make a few agreements :

- You are in ASSM mode (Assembler mode) if the function ASSM is being executed.
- By "instruction" we mean a machine language instruction such as LD@R 6, ?NC GD 1234 etc.
- By "function" we mean a user-code function, such as ABS, ASSM, DISTOA
- In examples, the alpha key will be represented as a quote, ", the shift key as []
- Something between {} should not be copied to the letter.
- Examples are given in chronological order, so earlier ones can influence later ones. You should do them all at least once!
- In the Examples it is assumed that you have not plugged in "MNFR-LBLS"
- Most examples take place at address AA00 and further. It is assumed that this is filled with NOP's at the beginning. If you can't switch a free ram page to A or your ram is filled at XA00, you may chose of course an other ram address, but in that case the examples won't be exactly correct.

A. The function ASSM XROM 02.01

The not-programmable function ASSM enables you to enter ASSM mode. ASSM uses no data memory (user registers) or program memory, or stack registers or extended memory. When you leave ASSM mode, everything will be the same as it was before you entered ASSM mode.

	Do		Comment
e.g.	CLX, STO O	O, XEQ "REG>BUF"	Now you have initialised ASSM mode
	Do/Push	See	Comment
	1 enter 2 enter 3 enter	r	fill the stack
	4	4_	
	"TEST 1,2,3"	4,00	fill alpha register
	XEQ "ASSM"	BEGIN	
	0000	?NC 60 0180	now you entered ASSM
	<-	cont	continue?
	<-	4,00	now you left ASSM mode
	R≠, R≠, R≠	1,00	you can see the stack
	ALPHA	TEST 1,2,3	you can see the alpha
	ALPHA	1,00	register.

IV A1 How to enter ASSM mode

The right way to do this is to execute "ASSM", or to push the key to which ASSM is assigned.

Because you will switch very often from normal mode to ASSM mode it is nice to have ASSM assigned to +, for instance.

Push See Comment e.g. [] ASN "ASSM" Σ + 1,00 ASSM (Σ +) ?NC GO 0180 Now you are in ASSM mode

Sometimes it happens that executing ASSM will cause a prompt "BEGIN ____" to be displayed, or that PACKING - TRY AGAIN will appear in the display, but this does not happen very often. It will be discussed later when and why this happens.

IV_A2. How to leave ASSM mode

There are two ways in which you can leave ASSM mode:

a. by twice pushing the back-arrow key ([<-])

	Push	See	Comment
e.g.			
-	[<-]	CONT.	you're still in ASSM mode
	E<-3	1,00	you left ASSM mode

It could happen that an error message "? LBL' {label name} appears in display. This is to remind you of the fact that there still is a pending jump to a nonexistent label. In that case you have left ASSM mode too. (see IV A 4.8 d, page 41)

b. by turning the calculator off. If you turn the machine on again, you are not in ASSM mode any more.

e.g.

ASSM	?NC GO 0180	you are in ASSM mode again
ON	machine is off	
ON	{X-register}	you have left ASSM mode

IV_A3_The_ASSM_mode_as_disasembler

The ASSM mode has its own program counter, that is a 4 digit hexadecimal address that points to the step which is viewed in display. This counter shall be called "Assembly Program Counter", or APC.

The ASSM mode knows two sub-modes concerning both assembling and disassembling:

- a. User-on : The machine-language program steps are disassembled according to Steven R. Jacobs's notation, and the redefined keyboard (see appendix A) is active.
- b. User-off : Steps will be shown as HEXadecimal values, and a hexadecimal keyboard is active.

You can toggle this sub-mode by pressing the USER key. The USER annunciator shows in what mode you are.

IV_A3.1_User_off in disassembling

e.g.

You see that the display is divided in three parts in this mode:

- 1. The 4-digit hexadicemal value of the current APC. (the address on which the ROM word is that is viewed).
- 2. After two spaces followed by a 3-digit hexadecimal value of the 10bits ROM word located at the APC.
- 3. After two spaces followed by a display character & punctuation, where the lower 6 bits (0-3) of the ROM word indicate the character itself (rows 2 - 6 ascii) and the lower 2 of the upper 4 bits (6-7) of the ROM word indicate the punctuation.

(00=nothing, 01=".", 10=":" and 11=","). The upper 2 bits (8-9) of the ROM word are not used. The value of the APC can be changed by using

```
- SST : APC := APC+1
- BST : APC := APC-1, if APC<0 or >FFFF, APC := 0
- [<-] (CONTinue at) abcd (hex) : APC := 0
- [<-] (CONTinue at "{label}" : APC := {address of label}</pre>
```

The defenitions behind the key only apply in user-off mode.

Push See Comment e.g. SST 0001 006 F APC : = 0000 + 1 = 0001SST 0002 2B5 5: APC := 0002[<-] (CONT) CONT. Where do you want to continue 2BF7 130 0 28F7 APC : = 2BF7BST 28F6 28B K: APC : = 2BF7 - 1 = 2BF6

IV A3.2 The User-on mode in dissasembling

In this mode one or more words are disassembled as one single step in the display, for 95% according to Steven R. Jacob's notation.

	Push	See	Comment
e.g.	USER	JNC- 2F 2BC7	the address to which is to be
			jumped is added.
	<-	CONT	·
	0000	?NC 60 0180	APC := 0000
	SST	?NC GO 01AD	APC := 0000 + 2 = 0002
			because the last step was 2 words long
	SST	C=0 ALL	······································
	SST	RAM SLCT	
	SST	READ 3(x)	APC = 0006

There are quite a few exceptions on Jacob's notation :

a. - sometimes a field is omitted, in cases that there is no alternative These cases are listed below.

Jacobs

C=M ALL	->	C=M	C=N ALL	->	C-N
M=C ALL	->	M=C	N=C ALL	->	N=C
C<>M ALL	->	C<>M	C<>N ALL	->	C<>N
G=C @R,+	->	G=C	POP ADR	->	POP
C=6 @R,+	->	C=G	PUSH ADR	->	PUSH
C<>G @R,+	->	C<>6	LDI S&X	->	LDI

b	with short for jumped is adde	m jumps (JC and JNC) th d. (see example above)	e address to which is to be
c	Relocatable ju respectively a	mps and jump subroutine s GOTO {addres/label} a	s are disassembled as nd GOSUB {address/label}.
d	Datawords are {display chara	<pre>viewed as : HEX: <3- cter & punctuation}.</pre>	digit hexadecimal value}
e. – f. –	strings are vi READ O(T) is v	ewed in one step betwee iewed as READ DATA	n quotes
Now	a few example	s of these will follow:	
• •	Push	See	Comment
(a) (b)	SST CONT. 000D	M≂C JNC +0B 0018	ALL is omitted 0018(=000D+0B) is added
	Assumed	X the page of DAVID-ASS	EM:
e.g.	Push	See	Comment
(Ē)	CONT.{X}3BB	GOSUB {X}FAF	relocatable XQ.
	SST	LDer O	what is the next step
	USER	(X)3BE 010 P	APC is incremented by 3BE - 3BB = 3!
(a)	CONT. 07F6 USER	LDI	S&X is omitted
(d)	SST	HEX: 010 P	data word
	CONT. 2FEE	?NC XQ 07EF	
(e)	SST	"XROM "	5 words in one step
	SST	RTN	APC : = APC + 5

In USER-on mode the APC can be changed by using:

	SST :	APC : = APC + {length of step at old APC}
-	BST :	APC : = APC - {length of step at new APC}
		if APC < 0, APC = 0 and if APC > FFFF, APC $:= 0$
-	CONT.	<pre>{address}/"{label}" : APC : = address/address of label</pre>

e.g.	BST	"XROM "	APC	:	#	APC -	 5
	BST	?NC XQ O7EF	APC	:	æ	APC -	 2

Note: Because in machine-language a BST can not be defined, a wrong APC value may be computed by executing BST. In that case "the previous step" is implemented wrong by ASSM, but this happens in only 1% (or less) of the cases you do a BST.

IV A3.3 Instructions after a SELP instruction

The SELP instruction (SELect Peripheral) is used to control smart peripherals. After a SELP instruction is executed by the HP41 processor, it ignores all following instructions up to and including the word of which the hexadecimal value is odd (in other words: bit 0 of the 10-bit word is 1), because these instructions are disassembled as data words, for the cannot know how the selected peripheral implements those instructions.

This may sound a little bit complex, and therefore we shall show you some examples.

	Push	See	Comment
e.g.	CONT.100D	SELP 0	this is actually data, but it will work as well
	SST	HEX:021	odd value, so it must be the
	SST CONT. 1399	XQ->GO SELP 2	and it is!
	SST	HEX: 0AA *: HEX: 0B2 2:	even even
	SST SST	HEX: OBB ': C=B @R	odd; last word normal instructions

If we do a BST, ASSM recognizes the SELP instruction four words earlier, so a DATA word is viewed.

e.g. BST HEX: OBB ':

It is possible in ASSM mode to assign labels up to six characters to an address.

The procedure of assigning a label is as follows

- go to the step to which the label is to be assigned using SST, BST or CONT.
- push [] LBL ALPHA {label name} ALPHA

Then the label and its location is kept in memory until it is changed or deleted.

	Push	See	Comment	
e.g.	CONT.0018	A<>C ALL	suppose you want to	assign
	[] LBL "TEST	" LBL'TEST	"IESI" to 0018 fini shed.	

If we pass a label by SST-ing, the label will be viewed before the step to which it is assigned.

Push See

Comment

e.g.

CONT.0016	READ DATA	APC = 0016
SST	JNC+ 09 0020	APC = 0017
SST	LBL ' TEST	APC = 0018
SST	A<>C ALL	APC = 0018 still
SST	READ 13(c)	APC = 0019

If we pass the label by BST-ing, the label won't be viewed:

	Push	See	Comment
e.g.			
	BST	A<>C ALL	APC := APC - 1 = 0018
	BST	JNC +09 0020	APC = 0017, label is skipped
	BST	READ DATA	APC = 0016

If we continue at an address to which a label is assigned this will be viewed.

e.g. CONT 0018 LBL'TEST

Jumps to addresses with labels are dissembled as jumps to those labels :

Push	See	Comment
e.g.		
CONT. 0011	JNC+TEST	Jump in positive direction to a label called "TEST"
USER	0011 03B	03B is code for JNC +07
CONT. 0025	0025 393 C:	code for JNC- OD
USER	JNC- TEST	jump in negative direction to a label
CONT. 0004	C=0 ALL	create a mainframe label
LBL"ADRFCH"	LBL 'ADRECH	
CONT. 004C	NC XQ ADRFCH	a ?NC XQ 0004

A label can be purged simply :

- go to the label using SST,BST, or CONT.
- Push [] LBL ALPHA ALPHA

e.g.

Push See Comment CONT. ALPHA CONT._ say want label name CONT. TEST_ TEST LBL 'TEST ALPHA continue at label test. USER 0018 OAE }: check address USER []LBL LBL ' ALPHA ALPHA A<>C ALL [] BST SST A<>C ALL there is no label indeed In a similar way a label name can be changed :

	Push	See	Comment
e.g.			
	CONT "ADRFCH"	LBL 'ADRFCH	
	[] LBL "CHANGE"	L.B.L. ' CHANGE	you changed ADRFCH to CHANGE
	CONT "ADRFCH"	NONEXISTENT	error message
	USER	0004 04E N.	
	USER	LBL ' CHANGE	it really is CHANGE!

IV A3.5 Auto repeat

SST and BST are auto-repeat keys, if they are pushed a longer while, you will SST or BST through your program automatically. This feature is incorporated in order to save your [SST] key. Try it. You'll see how it works.

IV A3.6 Unused instructions

Unused instructions are normally disassembled as ???, but there is one exception: 040 is disassembled as WRIT S&X, because this is the normal MLDL RAM write.

e.g. CONT 1002 ???

code is 100

Now we have come to the point why you bought DAVID-ASSEM : the powerful assembler of ASSM.

ASSM redefines the entire keyboard, but maybe you have not noticed it yet, because we only used keys with a similar function : USER, ALPHA, SST, [] BST, [] LBL

In figure 1 of appendix A the redefining of the keyboard is shown. Most mnemonics you will recognise as Jacobean mnemonics, but a few seem incomplete, such as [C=] and [C<>].

It is very advisable to make your own keyboard overlay on which you mark the meaning of the keys as shown in appendix A, figure 1. You can write the unshifted mnemonics for instance from top to bottom next to the keys.

All instructions exist of one or more keystrokes. A few things can be said about the keyparser :

- a key sequence is still incomplete if a prompt is in display.
- a key sequence can be annulled by
- a. holding the last key of a sequence (this is the key which causes no prompt any more) for about a second: NULL will appear in display.
- b. pushing one (or more if it is needed) time(s) the back arrow key, until the display will be cleared while holding the key.

This also applies for CONT. and LBL.

	Push	See	Comment
e.g.			
	CONT. "CHANGE"	CONT. CHANGE_	sequence not ended yet
	ALPHA (hold)	CONT. CHANGE_	
		NULL	
	release key	{same step as	
	•	before CONT.}	annulled
	VX (C =)	C =	start sequence
	+	$\bar{C} = \bar{C} +$	
	[<-] (hold)		display is cleared
	release kev	(same sten as	
		before [[=] key}	annulled

Before we go further into details about how instructions should be keyed in, you must become aware of the following:

Every programstep you key-in, will be written OVER the NEXT program step.

This may differ from what you are used to, with other programs, but the way in which the over-writing happens here is really the most logical. (compare for instance with HP 25; there you write also over the next step!)

Like the disassembler, the assembler (it is not so easy to distinguish the disassembler and assembler, for they both appear in ASSM mode, but they will be treated apart, as you may have noticed) has two sub-modes: User-on and User-off.

We will treat them one after another.

a. User-off: Now a hexadecimal keyboard is active. You can key-in a 10 bit ROM word by pushing three digits repectively in the range 0-3, 0-F, and 0-F.

	Push	See	Comment
e.g.			
	CONT. AAOO	NOP	APC = AA00
	USER	AAOO 000 @	turn to USER-off mode.
	2	HEX: 2	expected two more digits
	A	HEX: 2A	
	4	AA01 2A4 \$:	Remember? NEXT step!

Do you still remember the annulling sequences?

e.

	Push	See	Comment
g.			
	4 > BLINK >	AA01 2A4 \$:	first key must be 0-3
	1	HEX: 1	•
	2	HEX: 12_	
	<-	HEX: 1	
	<-	AA01 2A4 \$:	No result: annulled
	123 (hold)	HEX: 123	•
		NULL	No result; annulled

b. User-on: Now all instructions really will be assembled: All keys have an own function now, except for PRGM and ALPHA. In appendix A, figure 1 you can see the assignments of the keys.

There are several kinds of instructions. We shall treat them one by one.

IV_A4.1_Direct_Programmable_instructions

These are almost all miscellaneous instructions; this group takes the biggest part of the keyboard.

The keying-in sequence simply exists of pushing the key to which the key is assigned:

	Push	See	Comment
e.g.			
	USER [] BST	NOP	
	R=R+1 (X<>Y)	R=R+1	one kev stroke!
	USER	AA01 3DC $\$	3DC is opcode of R=R+1
	USER	R=R+1	·····
	READ DATA (RCL)	READ DATA	READ O(T) is READ DATA
	[] ST=0 (10)	ST=0	

Here you have a list of all direct programmable instructions and the keys related to them :

۲ ۵	ST=0 (10×)	C 3	LDI (e×)		R=R+1 (X<>Y)
נ כ	$R=R-1$ ($CL\Sigma$)		POP (R+)	E 3	PUSH (%)
٢ ٦	WRIT S&X (SIN ^{-'})		FETCH S&X (COS ^{-'})	E 3	XQ->60 (ASN)
	WRITE DATA (SST)		READ DATA (RCL)		N=C (ENTER+)
[]	M=C (CAT)		G=C (CHS)	נכ	?C RTN (ISG)
	RTN (EEX)	[]	?NC RTN (RTN)	[]	NOP (CLX)
ככ	ST=C (CF)		ST<>T (4)	[]	ST=T (BEEP)
	SETHEX (5)	[]	SLCT P (P-R)		SET DEC (6)
C 3	SLCT Q (R-P)		?P=Q (*)	C 3	?LOWBAT (X>Y)
נ ז	T=ST (FIX)	C 3	DSPOFF (SCI)		?KEY (3)
[]	CLRKEY (ENG)	C 3	POWOFF (PI)	[]	DSPTOG (LASTX)
	RAM SLCT (R/S)		PRPH SLCT (VIEW).		

IV_A4.2_LD@R_and_SELP

These instructions need a hexadecimal digit as parameter. If LD@R (LN) or [JSELP (SF) is hit, the instruction name appears, followed by one prompt. After that you can key-in the parameter,[0] to [9] or [A] to [F]

Push	See	Comment
[] SELP	SELP	needs a hex digit.
A	SELP A	instruction is programmed now
001	HEX: 001 A	selp needs a data word
LDer	LDer	•
3	LDOR 3	sequence finished
	Push (] SELP A 001 LD@R 3	PushSeeCJ SELPSELPASELP A001HEX: 001 ALD@RLD@R 3

IV A4.3 RCR, R=, ?R=, SETF, CLRF, ?FSET, ?FI

These instructions need a decimal number between 0 and 13. However, after pushing one of these keys, only one prompt appears in display. So it is easy to key-in a number between 0 and 9. If you want to have a 10-13 parameter, you should push first EEX, and after that you can push 0 to 3. (compare this with the normal user code function GTO. 1234, it should be keyed-in as GTO [.] EEX 234).

Push See Comment e.g. SETF (7) SETF want a digit SETF 8 finished 8 [] ?R= (tan -') ?R= ___ want a 0 to 9 EEX ?R= 1 want a 0 to 3 ?R= 13 3 finished RCR (LOG) RCR suppose you had in mind 11 RCR 1_ and you made a mistake, EEX RCR <you wanted a 3 RCR $\overline{3}$ 3 press <- and 3!

These instructions need a decimal number between 0 and 15, or a stack register name : a. decimal 0-15 : This goes like 4.3, exept that the range is 0-15 : - push instruction key (WRIT (sin) or READ (cos)) - push - a number in the range of 0 to 9, or - EEX followed by a number in the range 0 to 5. Push See Comment e.g. want a 0-9 want a 0-5 WRIT WRIT WRIT 1 EEX 5 (hold) WRIT 15 register # 15 WRIT 15(e) release is called (e) READ READ READ 5 5 (hold) don't hold too long! READ 5(M) release finished b. stack register name. (compare with STO [.] X) - push instruction key (WRIT or READ) - PUSH [.] (decimal point) - push one of the keys shown in appendix A, figure 2, which mean register names :

A(a), B(b), B(b), D(d), E(d), K(1-), L(L), M(M), N(N), O(O), P(P), Q(Q), T(T), X(X), Y(Y), Z(Z).

	Push	See	Comment
e.g.			
	WRIT	WRIT	Suppose you want a WRIT X
	[.]	WRIT ST	now you must hit a req. key
	X (hold)	WRIT X	don't hold too long!
	(release)	WRIT 3(X)	finished
	READ	READ _	suppose you want a READ d.
	EEX	READ 1_	but you forgot the number
	<-	READ	PRESS $\langle -, [.], D$
	[.] D	READ 14 (d)	and your problem is solved
	WRIT	WRIT _	WRITT
	[.]	WRIT ST _	
	Т	WRIT O(T)	
	WRIT	WRIT	WRIT H
	C.J K	WRIT 10(:-)	

The only register which is assigned in a strange way, is 10(-) that is assigned to the K-key. (APPEND character is [] K)

IV A4.5 Singular arithmetic instructions

These instructions are known as class 2 instructions according to Steven Jacob's work. They need a "field" parameter. The right key sequence is as follows :

push the instruction key: the name appears in display with a prompt.
push one of the "field" keys as shown in appendix A, figures 3 :

ALL (A), R<- (RDN), M (M), MS (CHS), S&X (EEX), P-Q (-), @R (R), XS (X).

Push	See	Comment
LSHFA (1)	LSHFA _	key in: LSHFA S&X
S&X (EEX)	LSHFA S&X	finished
[] B=O (y≭)	B=0 _	key in: B=0 ALL
ALL (A)	B=0 ALL	finished
	Push LSHFA (1) S&X (EEX) [] B=0 (y*) ALL (A)	Push See LSHFA (1) LSHFA _ S&X (EEX) LSHFA S&X [] B=0 (y*) B=0 _ ALL (A) B=0 ALL

The instructions that are part of this group are :

[] A<>B (<u>S</u> -)	[] B=0 (y×)	E] ?A#O (X=Y?)
?A#C (−)	?A <c (*)<="" td=""><td>[] ?A<b (x<="Y?)</td"></td></c>	[] ?A <b (x<="Y?)</td">
LSHFA (1)	RSHFB (2)	[] ?B#O (X=O?)
?C#O (/)	RSHFA (0)	RSHFC (.)
B=A (1/x)		

IV A4.6 plural miscellaneous instructions

Because there are just 35 keys for a lot more instructions available, quite a few are gathered under a few initial keys. These initial keys are $A= (\mathbf{L}+)$, [] C(> (x^2) and C= (\sqrt{x}), and they can be followed by one, two or three key strokes. Some of the Jacobean class 2 instructions are reached one or two key touches after a A= or C=. Then they act like the singular arithmetic instructions mentioned above: they still need a field.

In the following enumeration of all the possible key sequences starting with A=, C or C= the class 2 instructions are marked with an asterix *.

- \	Кеу	Display	Instruction
a)	A=	A= _	
	В	A=B=C=O	A=B=C=0
	С	A=C _	A=C *
	- B C 1	A=A A=A-B A=A-C A=A-1	A=A-B * A=A-C * A=A-1 *
	+ B C 1	A=A+ _ A=A+B _ A=A+C _ A=A+1 _	A=A+B * A=A+C * A=A+1 *
	o	A=0 _	A=0 *
ь)	C<> A	C<> C<>A	C<>A *
	B	C<>B _	C<>B *
	G	C< >G	C<>G
	M	C<>M	C< >M
	N	C<>N	C<>N
	S	C< >ST	C<>ST

	Push	See	Comment
e.y.	A=	A=	key in A=A-1 S&X
	-	A=A	,
	1	A=A-1	
	EEX (S&X)	A=A-1 S & X	and A=A-1 S&X is programmed
С			
	key key key	Display	Instruction
	1 2 3		
	C=	C= _	
	A	C=A	
	-		C=A-C *
	+	C=C OND A	L=L UK A C=C AND A
	*		
	В	C=B _	C=B *
	6	C=G	C=6
	к	C=KEY	C=KEY
	М	C=M	C=M
	N	C=N	C=N
	CHS	С=0-С _	C=0-C *
	S	C=ST	C=ST
	-	C=C	
		C=-C-1 _	C=-C-1 *
	1	C=C-1 _	C=C-1 *
	+	C=C+ _	
	A	C=C+A	C=C+A *
	С	C=C+C _	C=C+C *
	1	C=C+1 _	C=C+1 *
	ο	C=0 _	C=0 *
	Push	See	Comment
e.g.			
	C=	C=	key in C=-C-1 P-Q
	-	U=U	
	- - (P-Q)	C=-C-1 P-Q	finished

In appendix C you can find all instructions in alphabetical order, and there sequence of keying them in.

IV A4.7 Jump_subroutines

There are 2 kinds of jump subroutines possible in machine language : a : ?NC XQ and ?C XQ b : GOSUB (this is a relocatable XQ, actually of the form ?NC XQ GOSUB/ GOSUB0/ GOSUB1/ GOSUB2/ GOSUB3 <location in 1K>)

a. The sequence for a ?NC XQ and ?C XQ start with

- pushing XEQ key, XEQ ____ will appear in display

- if you want a ?C XQ, pushing [], XEQ C ____ will appear.

You see that XEQ asks for a 4-digit hexadecimal address, however a label name can be keyed in too!

So after you have keyed in XEQ or XEQ [], you can choose between :

keying in a a 4 digit hexadecimal number, or

- pushing ALPHA key, label name, and alpha key again

Then, a ?NC XQ or ?C XQ to the specified address or label will be programmed over the next two words

	Push	See	Comment
.g.			
	XEQ (XEQ)	XEQ	want 4 digits
	1234	?NC XQ 1234	finished
	XEQ []	XEQ C	
	"CHANGE"	?C XQ CHANGE	"change" was at 0004 so actually a ?C XQ 0004 is written in MLDL RAM.

alpha key

e

- b.The sequence for a GOSUB starts with pushing the XEQ key : XEQ ____ will appear.
 - After that, one can choose between :
 - keying in a 4-digit hexadecimal address, of which the first digit is equal to the first digit of the APC. This first digit must be greater than 6.
 - pushing label name of which the location is at the same page as the APC is located (in other words: the first digit of both addresses must be equal and the page must be > 6).

	Push	See	Comment
e.g.			
	CONT. A000 LBL "SAME4K"	LBL'SAME4K	do some preparing work
	CONT. A900 LBL "SAME1K"	LBL'SAME1K	
	CONT AAOO	NOP	
	XEQ A123	GOSUB A123	continue in scratch area
	USER	AA01 349 I.	address = A123. so reloc
	SST	AA02 08C L:	you can check the
	SST	AA03 123 #	programmed words
	USER [] BST	GOSUB A123	• •
	XEQ "SAME1K"	GOSUB SAME1K	
	USER	AA04 379 9.	these two words form a
	SST	AA05 03C <	?NC XQ GOSUB (OFDE)
	USER [] BST	GOSUB SAME1K	
	XEQ "SAME4K"	GOSUB SAME4K	nothing is easier than this

You see that it depends on the address or label you key in whether a ?(N)C XQ or a GOSUB is programmed:

If before a relocatable address [] is hit, it won't matter to what will be programmed :

e.g. XEQ [] "SAME1K" GOSUB SAME1K [] is ignored

If you key in a label name that not yet exists an error appears.

e.g. XEQ "QXT"

NONEXISTENT

you're still in ASSM mode

IV_A4.8_All_jumps

The [] GTO key is the most flexible key on the ASSM-keyboard. All jumps (relative, absolute and relocatable) start with this key. If you push it, GTO _____ will appear in display. After that you can choose one of the following jumps

a JNC and JC The relative jumps can be keyed in in two ways :

- [] GTO, GTO ____ will appear
- if it should be a JC, press [], GTO C ____ will appear
- [+] or [-] key, depending on the jump direction GTO + _ / GTO _ /
 GTO C + _ / GTO C _ will appear
- a two digit hexadecimal number in the range of 0 3F. After a GTO _____ or GTO C - ____you can also hit [4], which will be assembled as 40.

	Push	See		Comment
e.g.	[] GTO [] + 25 [] GTO + 4 3F [] GTO - 4 [] GTO - 01	GTO GTO C GTO C + JC + 25 GTO + JNC + 3F JNC - 40 JNC - 01	AA32 AA4D A9CF AA0F	standard prompt carry positive direction finished 4 is ignored
- pi - i - ki a: ji	ress [] GTO f you want a ey in a 4-dig ssigned to an ump distance	JC, press [] it hexadecim address, a] (-40 to + 3] again mal address, lpha where tl 3F)	or alpha, label name that is ne address is within relative
	Push	See		Comment
e.g.	LBL'AB CONT. AAOO [] GTO []	lbl'ab Nop		create a label
	"AB" Cont AA4F [] gto "AB"	JC+ AB NOP JNC - AB		right distance is computed
	USER USER	AA50 203 C		203 is JNC - 40
ь бото	ADR and GOTO	KEY		

These two miscelaneous instructions must be keyed in like this:

GOTO ADR : [] GTO M (M is same key as GTO) GOTO KEY : [] GTO K

	Push	See	Comment
e.g.	[] GTO K [] GTO M	GTO GOTO KEY GOTO ADR	adr field is part of mantissa

c ?NC GO, ?C GO, GOTO (relocatable GO)

The same conditions are in force here as in 4.7

Key in [] GTO ([]) 4-digit address / label, and ASSM checks whether a J(N)C , ?(N)C GO or GOTO to that addres or label should be programmed.

	Push	See	Comment
e.g.	[] GTO 0000	?NC 60 0000	
	[] GTO [] 0004	?C GO CHANGE	CHANGE still isn't purged
	[] GTO "SAME1K"	GOTO SAME1K	
	[] GTO "SAME4K"	GOTO SAME4K	
	[] GTO "AB"	GOTO AB	AB is more than 40 steps back
	[] GTO "CHANGE"	?NC GO CHANGE	CHANGE is not located on
			page A so a ?NC GU 1S
			programmed.

d JNC or JC to nonexisting labels

It is possible to key in a not yet existing label name after [] GTO. Instead of an error "NONEXISTENT" a J(N)C? {label name} will be shown in the display.

The moment that the suiting label is keyed in, the right jumpdistance is computed and a real $J(N)C +/- \{label name\}$ is programmed at the location where the jump was keyed in.

	Push	See	Comment
e.g.	[] GTO "XNOTYT"	JNC ? XNOTYT	XNOTYT is not known yet, so a ? is shown.
	[] GTO "XNTYT2" CONT AABO	JNC ? XNTYT2 NOP	other jump
	LBL "XNOTYT" CONT AA24	LBL' XNOTYT NOP	XNOTYT is assigned to AA80
	LBL "XNTYT2"	LBL' XNTYT2	
	CONT AA60	NC GO CHANGE	
	SST	JNC + XNOTYT	this line is programmed
	SST	JNC - XNTYT2	

Just JNC's and JC's can be programmed in this way, because ASSM can not know whether it should reserve one, two or three words (for respectively J(N)C, ?(N)C GO and GOTO) for the jump. That is why it can happen that the message JUMP TOO FAR will appear in the display if you key in a label: JNC's may not go further than 3F forwards or 40 backwards.

	Push	See	Comment
e.g.	CONT AAOO [] GTO "ABC" [] GTO [] "DEF" [] GTO "DEF"	NOP JNC ? ABC JC ? DEF JNC ? DEF	well-known area! at AAO1
	[] GTO [] "ABC" CONT AA40	JC ? ABC NOP	at AA04
	LBL "DEF" [] NOP	LBL'DEF NOP	DEF is assigned at AA40 now NOP is programmed at AA40 (remember: label is viewed before step)
	[] NOP	NOP	
	LBL "ABC"	JUMP TOO FAR	APC is AA41 now AA41 - AA01 = 40 too far!
	CONT AA01	NOP	a NOP is programmed instead of a JNC +40
	SST	JC +DEF	all pending jumps were programmed by keying in LBL"DEF"
	SST	JNC +DEF	
	SST	JC +ABC	also with ABC, exept that there was at least one JUMP TOO FAR

If there are still pending J(N)C? 's and you try to exit ASSM mode, an error message ? LBL ' (still not yet existing label name) will appear in display to remind you of the fact that your program is not finished yet. However, you did leave ASSM mode.

	Push	See	Comment
e.g.	(] GTO "HIJ"	JNC ? HIJ	create a jump to nonexistent label
	<- (cont) <- <-	CONT ?LBL'HIJ {X-register}	still in ASSM mode you left ASSM mode

The JNC ? and JC ? 's actually are NOP's. During execution they do nothing

	Push	See	Comment
e.g.	ASSM	JNC ?'HIJ	last viewed step
	USER	AAO4 OOO @	000 is code for NDP

IV A 5 Messages in ASSM

The following error messages may occur.

- NONEXISTENT : You keyed in a nonexistent label name after a XEQ, [] XEQ, or CONT. (<-)
- NO WRITE : You tried to write in ROM.

	Push	See	Comment
e.g.	USER	JNC ? HIJ	last viewed step
	N=C	NO WRITE	you can't write in ROM!

- NULL	: you held the last key of a sequence too long. (any key sequence, exect for BEGIN)
- PACKING-TRY AGAIN	 you tried to execute ASSM for the first time without free RAM (i.e. 00 REG 00 in PRGM mode). you tried to key in a label without free RAM. you tried to program a jump to a nonexistent label without free RAM.
- ?LBL'{name}	: still pending jumps to nonexistent labels.
- JUMP TOO FAR	: a new label caused a JNC to that label to be too far.
- TRY AGAIN	: this error occurs in the theoretical case you try to create a 255st label or 255st jump to a not yet existing label.

IV_B_BUF>REG_and_REG>BUF

The function ASSM must keep a list of assigned labels and jump-to nonexistent label locations. For this ASSM uses two I/O buffers.

An I/O buffer is a reserved part of user code memory, located directly above the key assignments, which may expand or decrease. A buffer exist of one buffer header, in which the buffer identity (a number between 1 and 14) and the length of the buffer (in registers, header included) are stored.

For execution of ASSM, the buffer with identity 1 should always exist, for important ASSM variables are saved in a part of the header (such as the APC), and a list of labels is saved in this buffer, using one register per label.

Why all this information in this chapter?

Since all buffers will be purged by turning on the HP41, unless special ROM's, as DAVID-ASSEM does, keep one or more of them alive, all your label assignments would be purged if you would turn on the calculator without DAVID-ASSEM plugged in.

This is why BUF>REG and REG>BUF have been incorporated. These functions provide that buffers could be copied into normal user register; these could be copied with the normal functions WRTX (for the cardreader) or WRTRX (for the mass storage) onto magnetic cards respectively tape. Then, if you need the buffers again, you can read them from the magnetic medium into the registers, and then with REG>BUF a buffer with the original contents will be created.

IV_B1_BUF>REG

To copy a buffer with ID# (identity number) p, p must be in X and the size should be minimum n, where n is the buffer length. Then BUF>REG must be executed, after execution n will be in the format: 0. (3-digit n-1), so that immediate WRTX or WRTRX can be executed.

e.g. Suppose you want to save the eight labels you assigned in chapter IV A (CHANGE, SAME1K, SAME4K, AB, XNOTYT, XNTYT2, ABC, DEF) on a magnetic card.

(Size must be at least 9)

Do	See	Comment
1 XEQ "BUF>REG"	1_ 0,008	buffer ID#1 is used for labels assumed you have FIX 3 the buffer is 8 labels + 1 bead = 9 registers loop 9 - 1
XEQ "WRTX"	etc.	= 8 labels are saved on card.

IV B1.1 Error messages:

NONEXISTENT - the buffer with ID# specified by X does not exist - X > = 1000 (guess what routine is used) - the size is too small

DATA ERROR - X = 0 or 15 <= X <= 999 (too small or too big X)

ALPHA DATA - X is of type ALPHA DATA

IV_B1.2 Warning

If a buffer is copied into user registers, you should not recall the contents of a register with RCL, because this could affect the contents of the register.

IV_B2_REG>BUF

This function can be used for two different purposes:

a. To copy buffer contents in registers into a real buffer. No parameters are used nor results are given : REG>BUF gets its information out of REG 00, in which the "header" should be located. Therefore, ROO should have the following format :

1	13 I	12	10 9	8	7	6	5	4	3	2	1	0 :
ł	:	:	;									:
;	ID#;	ID#:	buff er -l			t	ouffe	er da	ata			1
		1	length :									

Before REG>BUF starts copying, first all existing buffers with the same ID# as in ROO is specified are purged (mostly it is "the buffer", for more than 1 buffer with the same ID# is not allowed actually), in order to assure there is maximum 1 buffer with that specified ID#.

e.g. Turn calculator off, plugg DAVID-ASSEM out, press ON twice plugg in DAVID-ASSEM again, turn calculator on again : Now both buffers #1 and 2 (for repectively assigned labels and nonexistent labels) are purged.

Do	See	Comment
ASSM <-	BEGIN {X-register}	there is no APC known yet. this was to show you that both buffers are cleared.
XEQ "REG>BUF"		now buffer 1 (labels & APC) must be created:
ASSM	?NC 60 0180	APC was 0000 when BUF>REG was executed.
cont. "ABC" <- <-	LBL'ABC	label is back again! exit.

IV B2.1 Error mesages

NONEXISTENT: there are not enough free registers available to create the buffer with length, specified in ROO.

IV_B2.2_Warning

Be sure that ROO contains the right information. If you've done no RCL OO's or anything else special, you may assume ROO is good; but if you have created ROO using CODE routines and NonNormalized STOre routines, you must double check its contents. A crash could be the result of a wrong use.

b. A special code in ROO is recognised trough REG>BUF as the function : clear both buffer ID#1 and buffer ID#2. This special code is very simpel : it is the value zero. O can be used for this purpose since ID#O does not exist, nor a buffer length OO.

	Do	Comment
e.g.	0 STO 00 XEQ "REG>BUF" ASSM <-	special code in ROO now buffer ID#1 and ID#2 have been purged BEGIN; APC is not known any more exit.

IV_C_BEG/END_and_DISTOA.

With these two functions you can make printed listings of your machine-language programs, in which labels will make the listings more readable.

With BEG/END you can define the beginning and the ending address, where they must be the last 8 characters in ALPHA, the first 4 characters the 4-digit beginning address, the last 4 characters the ending address.

With DISTOA you can move the address & instruction string as it is shown in display during ASSM to the alpha register, compute the location of the next step, and test whether the end address is reached.

BEG/END sets the APC to the specified beginning address, and execution of DISTOA causes the APC to point to the next step, and check APC \geq = END, where the next user code step will be skipped if the equasion is not true.

Knowing these facts, you can write the following user code program that will print a certain part of machine-language program :

01	LBL'PRINT	
02	'BEGIN/END?	
03	AON	
04	STOP	prompt for begin and end
05	AOFF	
06	BEG/END	define begin and end
07	LBL 01	begin loop
08	DISTOA	put line in ALPHA
09	GTO 03	if reached end
10	PRA	print address & line
11	GTO 01	
12	LBL 03	
13	BEEP	signal
14	PRA	this may be added if the end address itself should be printed
15	END	

Page 39

All different kinds of loop counters may be inserted between steps 10 and 11, such as form feed counters etc.

IF you write the function FNC TO A, as listed in appendix E, using ASSM, and you have the rom MNFR-LBLS, your listings cannot be beaten by other disassemblers!

There are a few characters in ASSM mode which don't exist on the printer.

These are translated this way :

Discription	Display code	Printer chr.	Printer code
west goose	02C	<	03C
east goose	02E	>	03E
starburst	030	1	015

If flag 27 (the user flag) is cleared, DISTOA won't disassemble, but put just the rom words display character behind the address into ALPHA, and the APC will be incremented by 1.

During DISTOA's execution the display is turned off, because actually the characters are read from display into alpha, which also has the effect that just 12 characters after the address & spacing can be placed (excluding ":",";" and ","), but it doesn't often happen that a line is more than 12 characters long.

This only occurs when you have a message string that contains 11 characters. Since the message string is included in two quotes, ", the resulting string is 13 characters long. The right hand quote will be cut from the listing, this also happens in normal ASSM mode

<u>V Technical Details.</u>

In this chapter we will go further into the operation of the functions

V 1 Register use with ASSM

ASSM uses just the scratch areas of the stack registers. However, this is not enough to remember all information during light or deep sleep. Therefore the 5 free bytes in the header of the buffer with ID#1 (in which the labels are stored) are used to save information.

An effect of this is that this buffer always exists during execution of ASSM. This is why ASSM will cause the message "PACKING-TRY AGAIN", to appear if there are no free registers of user RAM and the buffer with ID#1 does not exist yet: At least 1 register is needed for the header of the buffer.

ASSM will prompt for a beginning address with BEGIN ____ if for what ever reason the buffer #1 is purged, because the APC is stored in the header.

ASSM uses the following scratch areas :

1. REG 8(P) [13:6] 2. REG 9(Q) 3. REG 15(e) [4:3] 4. Buffer ID#1, header [9:0]

REG_8(P)_[13:6]

Both in [13:0] and in [9:6] return adresses used by ASSM are saved during a light sleep, because in machine language you should call the mainframe subroutine NEXT (at 0E50) without any subroutine level on the CPU return stack. ASSM often calls NEXT two levels deep.

REG 9(Q)

This register is used for temporary alpha scratch of label names when these are keyed in. However, it is not done in the same way as in the mainframe routines. The formatting will be discussed later.

REG_15(e)[4:3]

This part of the register is used automatically by calling NEXT. In here the CPU register G is saved, which is used by ASSM as a digit counter in cases that the $\langle - \ key \ will \ clear$ the last keyed in character. When this is not the case, its value is set to 0 to avoid a bug in the key-information-flag-set PTEMP1, as HP calls it in the VASM listings.

Header of buffer with ID#1 [9:0]

- a. Part [3:0] This is always the APC, the address on which the instruction is located that is viewed.
- b. Part [7:4] This part is used for different purposes :

 When CONT, GTO(C) or XEQ(C) is in display, NEXT is called three subroutine levels deep: In that case another return address is saved there.
 - 2. If BEG/END has been executed, the ENDing address is saved there.
- - 2 if this flag is set, a SST or BST is auto repeating. flags 3 and 4: - if flag 3 is set, and 4 is cleared, a data word is viewed, except if you are in USER off mode. - if flag 4 is set and 3 is cleared, a text string (after a ?NC XQ MESSL (at O7EF)) is viewed. - if both flags are set, a selp instruction has been passed and still is in force.
 - flag 5 This flag is not used by ASSM for historical reasons. 6 - This flag is set if a label is displayed LBL'{label name} ASSM decides from this flag whether the next step may be a label or not : if this flag is set, the next step is disassembled not to be a label.
 - 7 If this flag is set, the disassemble routine (at X3FA) acts like a normal subroutine. This flag is used by DISTOA

DO

COMMENT

0 STO 00 REG>BUF e.q. clear buffers 1 and 2 ASSM see BEGIN ---- buffer #1 clear 07F7 see HEX:010 P data word <- <- 1 BUF>REG move header to reg 00 RCL 00 This is allowed because first digit is 1: alpha text DECODE we assume you'll have such a routine: see 11 01 08 X5 C2 07 F7

11 is the buffer ID number
01 is the length of the buffer
08 flag 3 is set
X5C2 return address for ASSM (X is page of DAVID-ASSEM)
07F7 Assem Program Counter

V B Format of a label in a buffer

A buffer register that is used for label storage will look like this

13	1	12	11	10	9	8	7	6	5	4	:	3	2	1	0
	1										ł				
carry	:		cond	lensed	6-cha	aracte	er str	'ing			ł		addre	255	

With assigned labels [13] = 0, and [3:0] points to the address to which the label is assigned.

With nonexisting labels [13] says whether a JNC ? or JC ? is stored there. A 1 means JC ?, a 0 means JNC ?. [3:0] points to the address on which the JC ? or JNC ? is located.

Both with assigned and nonexisting labels part [12:4] is used to store a 6-character string. There are 64 characters possible, so one character takes 6 bits. A label is maximum 6 characters long, so 6*6 = 36 bits are needed. Since [12:4] is 9 nibles long (9*4 = 36 bits) it fits exactly.

The characters are stored in reverse order, right justified, so the first character is in [4] and bits 0 and 1 of [5], the second character in bits 2 and 3 of [5] and [6], etc. The character with value 0 is the end of string character. If this is missing, the string is 6 characters long.

For the characters the following table applies

		_			• F
		· :	!		
	; K !	; L. !	: M :	N	: U
P 1 IPIQIRISITIUIVIWIXIYIZ	: C'		:]'	~	•
e!!!!!!!!!	·				
r 2 !' "' #' \$ % &' '' (')' :	+	¦≺~′	1 - 1	->,	
		·			
	· • •	· · ·	·		· ·

The characters marked with ' cannot be keyed in from the keyboard.

e.g. If you have assigned the label "MESSL" to O7EF, somewhere in buffer #1 a register will have the value; OO OC 4D 31 4D 07 EF, which is in bits

13	12	11	10	9	8	7	6	5	4 ;	3	2	1	0
ł		:	:		ł	;		;	:				
0000:	0000	00100	11001	0100	11101	00111	0001	01100	1101	0000	0111	1110	111
;		:	:		;	;		ł	-				
zerot	end	strl	LI	S	:	S I	E	1	M I	0	7	E	F

V_C_BST_and_CONT

As mentioned on page 18, a BST can not be defined correctly in machine language for the disassembler cannot know whether words are just data in a table, or instructions.

Therefore BST looks 7 steps back, then acts as if it is the beginning of an instruction, and computes every new step, until the original APC has been reached. The new APC will be the last but one computed step. This assures for 97% that the disassembler sorts itself out, but there are exeptions of course. More than 7 steps would cause a BST to last longer than would be nice. (compare a BST in USER code in a program that is more then hundred steps long). If you want to change this constant (7) you can find it in V E. A CONT. $(\langle - \rangle)$ (and also a BEGIN ____) does actually a APC := {address}, a BST and a SST to assure that an instruction is disassembled well. Therefore it could happen that you continue one word further than you typed in.

	PUSH	SEE	COMMENT
e.g.	ASSM <- 0001	?NC GO 01AD	try to continue in 2 word instruction.
	USER USER	0002 285 S:	it didn't work out
	<- 2FF3 USER	RTN 2EF5 3E0	try to continue in text string it didn't work out

V_D_Extensions_of_DAVID__ASSEM

Every time ASSM searches for a suiting label or a suiting adress, all plug-in ROM's on pages => 5 are scanned for a ROM with a XROM# 100. This is a too high XROM#, and therefore no functions can be incorporated in this ROM.

If such ROM is found, ASSM will jump somewhere in the ROM (at X080 or X0D3). At these locations extension routines may be located, and they may choose between letting ASSM search further for other XROM#100's and returning directly to ASSM.

Here the in and out conditions follow.

- 1 Given an address, search for a suiting label
 - in the entry address is XO80. If you would not use this entry, a RTN should be on that location.
 - the address, with which a label must suit, is in CPU register N[3:0]
 - the DSP is off, RAM is selected (not chip 0), G[0] is page of the ROM itself, flag 9 is cleared.
- in & -- M(CPU) may not be affected. APC is in ME6:33, ASSM status is out in ME1:03
- out if no suiting label is found, a simple RTN is enough (flag 9 must be cleared) to cause ASSM to look further for XROM#100's.
 - if a label is found, one return address should be skipped by POP or better by XQ->GO, flag 9 must be set, and the label should be in condensed form (see B) in C[12:4], and RTN will return to ASSM, and will show the label.

Given a label, search for suiting address

- - The label is in condensed format (see B) in CPU reg. N[12:4],
 Q=12, P is selected.
 - The DSP is on, RAM is selected (not chip 0), G[0] is page of the ROM itself, flag 9 is cleared.
- in & M(CPU) may not be affected. APC is in M[6:3], ASSM status is
 out in M[1:0].
- - if an address is found, one return address shoud be skipped by POP or XQ->60, flag 9 must be set, and the address must be in B[3:0].

Both in case 1. and 2. one must keep two subroutine levels on the stack, G and M may not be used.

This all may look a bit complex, but there is already one 4K ROM that adds all mainframe entries as listed in HP's VASM listings called MNFR-LBLS. These are c. 750 labels, of which the search routines take in case 1. less than .1 second, and in case 2. maximum 1.5 second with an average of .4 second. More about this rom in appendix G

V_E_Important_Addresses

If you find a few constants not good, you may change them for you own use.

- X624 : Autorepeat constant. Normally 3FF. This constant determines how long a step is viewed in autorepeat mode.
- X64C : wait-to-autorepeat constant. Normally 3FF. This constant determines how how long SST/SST should be pressed before they will go autorepeating.
- XEAO : BST constant. Normally 007. This constant determines where is started when the disassembler tries to sort itself out during a BST. This value is the number of words back.
- XC64 : XROM constant. Normally 100. This is the XROM# for which is searched in other 4K ROM's. You can change this to a XROM < 40 if you want also functions in your extension(s).
- X974 : relocatable page minimum. Normally LD@R 7. This instruction determines from which page relocatable goto's and GOSUB's are possible. (normally from page 7)
- X000 : the XRDM#. Normally 002
- XFFF : check sum. Normally 35F

keyboard 1

keyboard 2

alpha on

The HP41 CPU has three main arithmetic registers: A,B and C. These are 56 bits long (14 nibbles) and instructions can operate in various "fields" of the register.

nibbles | 13 | 12 11 10 9 8 7 6 5 4 3 | 2 | 1 0 | 1 1 1 1 IXSI 1 ALL 1 -:<-->: - 1 :<------+---->! M : S&X ; I MS I ____ ----->!<---->!

ALL : The whole register M : Mantissa MS : Mantissa Sign XS : eXponent Sign S&X : eXponent and Sign of exponent @R : At specified pointer

R<- : from digit R to digit 0 PQ : Between P and Q

There are two pointers P and Q, of which the value is 0-13. One of them is selected at the time (through slct p or slct q), the selected pointer is called R. These are three extra fields, which depend on the value of the pointer), $R\langle - \rangle$ (up to R, from digit R to digit 0) and P-Q (between pointer P and Q, Q must be greater than P).

There is a register G, 8 bits long, that may be copied to or from or exchanged with the nibbles R and R+1 of register C. (R<=12). There are 14 flags, 0-13, of which flags 0-7 are located in the 8-bits ST (status) register, and there is a 8-bits TONE register T, of which the contents floats every machine cycle through a speaker.

Then there are two auxilary storage registers, M and N, which can operate only in the field ALL. They are 56 bits long.

There is a 16-bit program counter, which addresses the machine language, and a KEY register of 8-bits, which is loaded when a key is pressed. The returnstack is 4 addresses long and is situated in the CPU itself.

The CPU may be in HEX or DEC mode. In the latter mode the nibbles act as if they can have a value from 0 to 9.

The USER-code RAM is selected by C[s&x] through RAM SLCT, and can be written or read through WRITE DATA or READ DATA. If chip 0 is selected (RAM address 000 to 00F) the 16 stack registers may be addressed by WRIT and READ 0 to 15.

Peripherals (such as display, card reader, printer) may be selected by C[s&x] through PRPH select or by SELP (see page 19).

The mnemonics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field)

A=0	C=B	C=C+1	?A <b< th=""></b<>
B=0	A=A+1	C=C+A	?A#C
C=0	A=A+B	C=A-C	?A#0
A< >B	A=A+C	C=0-C	RSHFA
B=A	A=A-1	C=-C-1	RSHFB
A<>C	A=A-B	?B#O	RSHFC
A=C	A=A-C	?C#0	LSHFA
C<>B	C=C+C	?A <c< td=""><td></td></c<>	

CLRF, SETF, ?FSET, ?R=. ?FI (peripheral flag set?) , RCR (rotate right) have a parameter 0-13.

LD@R (load C at R) and SELP (select peripheral) have a parameter 0-F.

WRIT and READ have a parameter 0-15, called O(T), 1(Z), 2(Y), 3(X), 4(L), 5(M), 6(N), 7(D), 8(P), 9(Q), 10(1-), 11(a), 12(b), 13(c), 14(d), 15(e).

Jumps:

There are two classes jumps:

- a. JNC (jump if no carry) and JC (jump if carry). These instructions provide to jump relative 3F in positive direction or 40 in negative direction.
- b. ?NC GO and ?C GO. These instructions provide to jump to an absolute 16 bits address.

?NC XQ and ?C XQ are jump-subroutine instructions to absolute addresses. (remember the return stack is just 4 addresses long).

Miscelaneous instructions:

ST=0	C=G	ST=T	POWOFF
CLRKEY	C< >G	ST<>T	SLCT P
?KEY	C=M	ST=C	SLCT Q
R=R-1	M=C	C=ST	?P=Q
R=R+1	C<>M	ST<>C	?LOWBAT
G=C	T=ST	XQ->60	A=B=C=O
GOTO ADR (C[6:3])	?C RTN	PUSH (C[6:3])	
C=KEY	?NC RTN	POP (C[6:3])	
SETHEX	RTN	GOTO KEY	
SETDEC	N=C	RAM SLCT	
DSPOFF	C=N	WRITE DATA	
DSPTOG	C<>N	READ DATA	
FETCH S&X	C=C or A	PRPH SLCT	
WRIT S&X (for MLDL)	C=C and A		

Note: various arithmetic and all test instructions may set the carry flag. This flag keeps set only one machine cycle, so a jump dependent on this flag must be immediate after the arithmetic or test instruction, otherwise the carryflag will always be cleared.

The HP41 CPU cannot execute all combinations of instructions correctly. Those that are located are listed in appendix E.

Appendix C Instructions and their keyseguences

All possible instructions are listed below with their keysequences (in ASSM and normal keyboard), The parameter sort, and the page where information can be found. The parameters are :

F : field
4K : 4K hex addres
L : label
- : nothing
d3 : decimal 0-13
d5 : decimal 0-15
STK : stack reg name
H : hexadecimal digit
+/- : plus or minus hex

Instruction	Key sequence		Parameter	Page
?A#0	[] ?A#0	(X=Y?)	F	+ 27
?A#C	?A#C	(–) ;	F	27
?A <b< td=""><td>[] ?AKB</td><td>(X<=Y) ;</td><td>F</td><td>1 27</td></b<>	[] ?AKB	(X<=Y) ;	F	1 27
PAKC I	?A <c< td=""><td>(+)</td><td>F</td><td>: 27</td></c<>	(+)	F	: 27
?B#0	EJ ?B#O	(X=0?)	F	: 27
?C 60	[] GTO []	(GTO []) ;	4H / L	: 32
?C RTN	L] ?C RTN	(ISG) ;	-	24
?C XQ	XEQ ()	(XEQ[]) ;	4H / L	: 30
?C#0	?C#0	(/);	F	: 27
?FI f	L] FI	(FS?) :	d3	: 25
?FSET !	?FSET	(9)	d3	: 25
?KEY	?KEY	(3);	-	24
?LOWBAT	[] LOWBAT	(X>Y?) ;	-	: 24
?NC 60	C] GTO	(GTO) ;	4H / L	32
2NC RTN	[] ?NC RTN	(RTN) !	-	: 24
?NC XQ	XEQ	(XEQ) :	4H / L	: 30
?P=Q :	?P=Q	(*)	-	24
?R= :	[] ?R=	(TAN ⁻¹) ;	d3	25
A<>B	[] A<>B	(Σ-);	F	27
A<>C :	[] C<> A	(X ² Σ+) ;	F	28
A=0 :	A= 0	(≰+0) ;	F	: 28
A=A+1 :	A= + 1	(≤ ++1) ;	F	: 28
A=A+B :	A = + B	$(\Sigma + + 1/X)$;	F	: 28
A=A+C :	A= + C	$(\Sigma + + \sqrt{\chi})$	F	: 28
A=A-1 :	A=-1	$(\Sigma + -1)$;	F	1 28
A=A-B :	A= - B	$(\Sigma + - 1/X)$	F	1 28
A=A-C ;	A= - C	$(\Sigma + -\sqrt{X})$	F	28
A=B=C=O	A= B	$(\Sigma + 1/X)$;	-	: 28
A=C l	A= C	(∑+√X) ;	F	: 28
B<>A I	[] A<>B	(<u>s</u> -), ;	F	: 27
B<>C :	[] C<> B	(X ² 1/X) ;	F	28
B=0 :	[] B=0	(Y [*]) :	F	: 27
B=A ;	B=A	(1/X)	F	27
C<>A I	[] C<> A	$(X^{4}\Sigma +)$!	F	28
C<>B	[] C<> B	(X ⁴ 1/X) ;	F	28
C<>G :	[] C<> G	(X*R+) ;	-	: 28
C<>M I	[] C<> M	(X [^] _{RCL}) ;	-	28
	EJ C<> N	$(X_{2}^{2} \text{ ENTER})$	-	28
C<>ST I	CJ C<> S	(X_8) 1	-	28
C=-C-1 !	C=	(\sqrt{x})	F	29
C=0 :	C= 0	(√x o) ¦	F	29
C=0-C :	C= CHS	$(\sqrt{x} CHS)$	F	29
C=A-C :	C= A -	(√xΣ+−) ;	F	29

Instruction	Key sequence		Parameter	Page
C=A and C	C= A *	$(\sqrt{x} \Sigma + *)$: 29
C=C or A	C= A +	(√x ∑ + +)	; -	: 29
C=B	C= B	$(\sqrt{x} 1/x)$	l F	: 29
C=C+1	C= + 1	$(\sqrt{x} + 1)$	l F	: 29
C=C+A	: C= + A	$\langle \sqrt{x} + \Sigma + \rangle$	l F	: 29
C=C+C	C= + C	$(\sqrt{x} + \sqrt{x})$	l F	: 29
C=C-1	C= - 1	$(\sqrt{x} - 1)$	l F	; 29
C=G	C= 6	(√x R₩)	;	: 29
C=KEY	с= к	(√x XEQ)	: -	: 29
C=M	C = M	$(\sqrt{x} RCL)$: -	: 29
C=N	C = N	(VX ENTER)	-	1 29
C=ST		(V x 8)	-	1 29
CLRF			d3	: 25
CLRKEY		(ENG)	: -	1 24
DSPOFF	CI DSPOFF			: 24
DSPTOG	L J DSPIUG	(LASIX)	-	: 24
FEICH S&X	LJ FEICHS&X		. –	: 24
G=C			;	1 24
GUSUB			i 4H / L	1 30
	; [] 610		i 4n / L	i 32
GUIU AUR			; -	i 32 I 70
	I LI GIU K			1 32
	; [] 610 [] ; [] 6 1 0			1 31
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	1 25
			! -	! 24
			! F	· 27
M=C	! [] M=C	(CAT)	· ·	: 24
N=C		(ENTER)	-	: 24
NOP		(CIX/A)	-	24
POP	POP	(R+)	-	24
POWOFF	CI POWOFF	(PI)	-	24
PRPH SLCT	[] PRPHSLCT	(VIEW)		24
PUSH	(] PUSH	(7,)	; -	: 24
R=	: R=	(TAN)	l d3	25
R=R+1	: R=R+1	(X<>Y)	1 –	: 24
R=R−1	[] R=R-1	(CL Z)	: -	: 24
RAM SLCT	RAMSLCT	(R/S)	: -	: 24
RCR	i rcr	(LOG)	l d3	: 25
READ	: READ	(COS)	i d5 / STK	: 26
READ DATA	READDATA	(RCL)	; -	: 24
RSHFA	l RSHFA	(0)	l F	: 27
RSHFB	RSHFB	(2)	¦ F	: 27
RSHFC	: RSHFC	(_)	l F	: 27
RTN	I RTN	(EEX)	: -	: 24
SELP	[] SELP	(SF)	I H	25
SETDEC	SETDEC	(6)	: -	: 24

Instruction	on Key sequence					Parameter		Page		
SETF	:		SETF	(7)		d3		25	
SETHEX	ł		SETHEX	(5)	1		:	24	
SLCT P	1	C 3	SLCTP	(P-R)	;	-	1	24	
SLCT Q	ţ	[]	SLCTQ	(R-P)	;	-	ł	24	
ST<>T	1		ST<>T	(4)	1		:	24	
ST=0	:	٤ ٦	ST=0	(10)	1	-	;	24	
ST=C	:	E 3	ST=C	(CF)	:	+	ł	24	
ST=T	;	C 3	ST=T	(BEEP)	ł	-	;	24	
T=ST	;	C]	T=ST	(FIX)	1	-	1	24	
WRIT	-		WRIT	(SIN)	:	d5 / STK	1	26	
WRIT S&X	ł	C 3	WRITS&X	(SIN)	;	-	ł	24	
WRITE DATA	;		WIRTEDATA	(STO)	1	-	1	24	
XQ->60	;	E 3	XQ->60	(ASN)	;	-	:	24	

Appendix D Error messages

The following Error messages can occur using DAVID-ASSEM:

- 1.ALPHA DATA: BUF>REG X is of type ALPHA
- 2.DATA ERROR: BUF>REG: x=0 or x>=15
- 3.JUMP TOD FAR: ASSM mode: At least one jump to the label you keyed in cannot be realized. Label is located too far.
- 4.NONEXISTENT one of functions: DAVID-ASSEM is not plugged in - ASSM mode: the label you keyed in after CONT or XEQ (C) does not exist. - BUF>REG: the SIZE is to small to contain the entire buffer
 - the buffer with 1D# X does not exist
 - DISTOA: buffer #1 does not exist
- 5.NO WRITE: ASSM mode: you tried to write in ROM or your MLDL is wrong.

6.PACKING - ASSM: buffer #1 does not exist yet and there is no TRY AGAIN room to create a header. (00 reg 00).

- ASSM mode: there is no room to save a label jump to nonexistent label.
- REG>BUF: there is no room enough to create an entire buffer in the i/o area.
- BEG/END: buffer with 1D#1 does not exist yet and there is no room to create a header.
- 7.TRY AGAIN you wanted to key in a 255st label or jump to a nonexistent label.
- 8.? LBL {name} ASSM: you still have not completed your machine language program. You forgot to key in this label.

This program will show you how to use labels.

The function itself, FNCTOA is very useful in programs for listings of machine language. You can change parts of it to make it suitable for your own demands.

First, append the function of the FAT of your RAM page, using the USER off mode. CONT.X001, see what is written there do [] BST and increment the word on X001. Add the FAT address and continue 7 words before that address, still in user off mode. Then key in

081 A last char of functionname 00F D 014 T 003 C 00E N 006 F function name: FNCTDA USER A=0 (S&X) turn on assembler

For more information about the structure of the FAT and the ROM itself see your manual of the ERAMCO SYSTEMS MLDL-box.

You will need ERRNE, DOSKP, CLA, APNDNW. If you don't have the rom MNFR-LBLS you could first assign these 4 labels to the adresses respectively 02E0, 1631, 10D1, 2D14. This will make programming easier and nicer, but of course you can use the addresses themselves.

LABEL	INSTRUCTIO	DN	COMMENT
	READ	13(c)	first search buffer #1
	C<>B	5&X	put up chainhead in B[S&X]
	LDI		• • • • • • • • • • • • • • • • • • • •
	OBF		
	R= 12		
	A=0	er	
	A=A+1	e r	compare buffer ID# in A[12]
	A=C	S&X	ram start address in A[S&X]
NXT	A=A+1	S&X	point to next ram register
NXTBUF	?A <b< td=""><td>S&X</td><td>reached chainhead ?</td></b<>	S&X	reached chainhead ?
ERRNEA	?NC GO	ERRNE	ves. sav nonexistent
	A<>C	S&X	, ,,
	A=C	S&X	COPY A[S&X] to C[S&X]
	RAM SLCT		· · · · · · · · · · · · · · · · · · ·
	READ DATA		get register
	?C#0	ALL	empty ? (reached free memory ?)
	JNC-	ERRNEA	Ves
	C=C+1	MS	kev assignment
	JC-	NXT	ves
	?A#C	er	right buffer
	JNC+	FOUND	ves. header is in C
	RCR 10		no. move buffer length to C[3:0]
	C=0	XS	,
	A=A+C	S&X	skip this buffer
	JNC-	NXTBUF	
FOUND	RCR 11		APC to C[6:3]
	C=C+1	м	for compare later
	M=C		save APC in M
	A=0	ALL	
	R= 6		
	A=C	er	CODV page of APC
	LDer 5		set up compare value
	SLCT P		
	R= 3		
	SLCT Q		
	R= 6		put up address field. set R= 6
	?A <c< td=""><td>@R</td><td>page < 5</td></c<>	@R	page < 5
	JC+	DOSKPA	yes, say not found
	C=0	P-Q	
	C=C-1	P-Q	put FFFF in B
	B=A	P-Q	and FAT counter in C
	C<>B	P-Q	B is lowest function address > APC
	C=C+1	P-Q	
	FETCH	5&X	get # of functions
	A=C	S&X	save in A[S&X]
LOOP	A=A-1	S&X	out of functions ?
	JC+	LOWEST	yes
	C=C+1	P-Q	increment FAT counter
	FETCH	S&X	get word
	?C# 0	XS	user code function ?

	JNC+	03	по
	C=C+1	P-Q	increment FAT counter
	JNC-	LOOP	try next FAT address
	RCR 12		
	A=C	XS	save 3rd digit in ACVS1
	RCR 2		Save of a digit in HEXOS
	C=C+1	P-0	apt 2nd word
	C-CTI EETCU	G1.V	CEVEL is slugger O
		2017	CLASI IS always U
		¥2	put V in ALXED, add Srd digit
			move to uto:31
		P-Q	copy address
	RLR 3		
	A=C	G K	add page
	C<>M		get APC+1
	?A <c< td=""><td>P-Q</td><td>APC <= FNC address</td></c<>	P-Q	APC <= FNC address
	JNC+	03	yes
	C<>M		no, put back, try next function
	JNC-	LOOP	
	C< >M		put APC+1 back
	?A <b< td=""><td>P-Q</td><td>FNC address < lowest as yet ?</td></b<>	P-Q	FNC address < lowest as yet ?
	JNC-	LOOP	no
	B=A	P-Q	make B lowest
	JNC-	LOOP	
LOWEST	C=B	P-Q	
	C=C+1	P-Q	still FFFF ?
	JC+	DOSKPA	ves, not found, do skip
	C=C-1	P-Q	restore address
LOOP1	C=C-1	P-Q	compute begin of FNC name
	FETCH	S&X	
	ST=C		
	PESET 7		last character 2
	INC-	LOOPI	
		P-0	save in A
	п-с с-м	, <u>c</u> x	aat APC+1
	20/0	P0	yet HFCTI within function many 7
DOCKDA	2NC CO		within function name ?
DUSKEN	PEAD DATA	DUSKF	no, uo a skip
	REHU UHIH		get neader #1 again
		~ ~	
	L=B 0000 7	P-0	copy new address to APC
	RLR S		APC = start address of function
	WRITE DATE	a	
	C=0	5&X	
	RAM SLCT		select chip 0
	?NC XQ	CLA	clear alpha
	R= 9		leaves $C = 0$
	LDer 4		put string "FNC: " in alpha
	LDer 6		
	LDer 4		
	LDOR E		
	LD@R 4		
	LDer 3		
	LD@R 3		
	LDOR A		
	LD@R 2		leaves R= 0

	WRIT	5 (M)	
L00P2	C=B	M	get function address
	C=C-1	M	decrement
	FETCH	S&X	get display character
	C<>B	M	put address in B again
	ST=C		save character in ST
	?FSET 6		special character ?
	JNC+	NOSPCL	no
	RCR 1		save collumn in C[MS]
	LDI		
	200		special character table is at 2COO
	RCR 10		move to C[6:3]
	FETCH	S&X	get ascii byte
	JNC+	APPND	-
NOSPCL	?FSET 5		row 0-1
	JC+	02	no
	SETF 6		make row 4-5
	CLRF 7		clear last character bit
	C<>ST		save last char. bit in ST and char. in C[1:0]
APPND	G=C		R= 0 left by loading constants
	7NC XQ	APNDNW	append ascii character to alpha
	?FSET 7		last character ?
	JNC-	L00P2	no, do next character
	RTN		finished, don't skip
			· · ·

The use of FNCTOA.

FNCTOA checks whether the APC, stored in a buffer with ID#1, is located within a functionname. If it isn't, the next line is skipped, if it is, FNC: {function name} is put into ALPHA, and the next line is executed, and moreover the APC is set to the first word of the function.

Here follows a routine in which FNCTOA suits perfect

01	LBL 'PRINT
02	BEGIN/END?
03	AON
04	PROMPT
05	AOFF
06	BEG/END
07	LBL 01
08	FNCTOA
09	GTO 02
10	DISTOA
11	GTO 03
12	LBL 02
13	PRA
14	GTO 01
15	LBL 03
16	BEEP
17	PRA
18	END

Appendix F Errors of HP41 CPU

The hardware of the HP41 is not bugfree.

- A. In particular the instructions G=C, C=G and C<>G. You can guess that something must go wrong if R=13 (what is R+1). You should not use these instructions with R=13, unless you studied the following.
- 1 if you did not change R to 13 one step befor you use C<>G, G=C or C=G, it is rather simpel.
 - a. C<>G exchanges C[13] with G[1] (!) and C[0] with G(0), or in symbols

c. G≖C

c. G#C

2

- if you changed R to 13 one step before you use C<>G, C=G or G=C, by R=13, R=R+1 or R=R-1, strange things happen: a. C<>G three nibbles circulate

 - b. C=G the nibbles in G are exchanged, G(0) is copied to C[13]

3. if R=13 and you change R to 12 using R=R-1 one step before use C=G, G=C or C<>G very strange things happen! a. C<>G 5 nibbles are involved in a circulation

B. The instructions C=C AND A and C=C OR A do not always work right: If you have used an arithmetic instruction that is able to yield a carry, and where [13] (MS) is part of the field (so in ALL, MS, @R R=13, P=Q Q=13, R<- R=13), the C=C AND A or C=C OR A is executed, and after that C[13]:=C[0], and A[13]:=C[0].

Therefore, if you want to let these instructions work normally, you should insert a NOP just before them.

Appendix G_Mainframe_label_rom

For the convenience of the user we have developed a 4K rom, that contains all the important entry points within the VASM listings. These entry points are compatible with the official NOMAS HP listings of the HP-41 operating system.

We haven't included all the entry points, for a lot of them are never used by HP themself. The entry points that are supported by the rom, are those entry points that are called from another 1K block of code in the operating system.

For example: There are four entry points concerning locating the rom head address of a program in rom. Of these four entry points one is used only within the routine itself. The other three are also called from another part of the operating system, and are therefore included. So you will find ROMHED, ROMHOS and ROMH35 included in the label rom but ROMHO5 isn't.

The mainframe label rom behaves in the same manner as the user defined labels, but you can not delete them. Therefore they are always present when the label rom is switched on line. Memory lost will not influence the state of the rom

Included in this appendix you will find a printout of all the entry points that are included in the label rom. These entry points are listed in alphabetical order to ease searching if a specific label is included in the rom. After the label name you will find its address in the operating system.

With the help of the label rom you will get very readable printouts of your programs, for you never have to look up which mainframe routine is called. If you have ordered the complete set, you can start writing programs in an easy and simple way now. If you have only ordered the assembler rom itself, we can advice you to order the seperate mainframe label rom as soon as is possible, for it is really easing up writing your programs.

			_					
ABS	ADDR:	1076	BLINK	ADDR:	ú899	DAT106	ADDR:	2D4C
ABTS10	ADDR:	OD16	BRT100	ADDR:	1 D8 0	DAT231	ADDR:	2D77
ABTSEQ	ADDR:	OD12	BRT140	ADDR:	1DEC	DAT260	ADDR:	2D94
ACOS	ADDR:	107D	BRT160	ADDR:	1DA8	DAT280	ADDR:	2D98
AD1-10	ADDR:	1809	BRT200	ADDR:	1EOF	DAT300	ADDR:	2D9B
AD2-10	ADDR:	1807	BRT290	ADDR:	1 DAC	DAT320	ADDR:	2DA2
AD2-13	ADDR:	1800	BRTS10	ADDR:	1D6B	DAT400	ADDR:	2E05
ADD1	ADDR:	1CEO	BST	ADDR:	10C2	DAT500	ADDR:	2E10
ADD2	ADDR:	1CE3	BSTCAT	ADDR:	OBBA	DATENT	ADDR:	2D2C
ADDONE	ADDR:	1800	BSTE	ADDR:	290B	DATOFF	ADDR:	0390
ADRECH		0004	BSTE2	ADDR:	2AE2	DCPL 00	ADDR	2EC3
		1140	RSTEP	ADDR:	28DF	DCPLRT	ADDR:	2FOB
AFORMT		0479	BSTEPA		28FB	DCRT10	ADDR:	2FOD
		1025			2003	DECOD		7907
A10		1000	CAT		1000	DECADA		2904
HJZ AJZ	ADDD.	0004			ADC3	DECHDH		2704
HUS	ADDRI	0000		HDDR:		DECRIFC		1770
ALCLOO	ADDR:			ADDO.	0833	DECUCI	ADDD-	1330
ALLUK	ADDR:	0200	CA1993	ADDRI	1383	DEEXP	ADDC:	VOOL
ALPDEF	ADDR:	OSAE		ADDR:	10CC	DEG	ADDRI	1114
ANN+14	ADDR:	0758	CHK\$S	ADDR:	1408	DEGDO	ADDR:	172A
ANNOUT	ADDR:	07 5 C	CHK\$S1	ADDR:	1404	DEL	ADDR:	1124
AOFF	ADDR:	1345	CHK\$S2	ADDR:	14D9	DELETE	ADDR:	1127
AON	ADDR:	1330	CHKAD4	ADDR:	1686	DELLIN	ADDR:	2306
ADUT15	ADDR:	2C2B	CHKADR	ADDR:	166E	DELNNN	ADDR:	22A8
APHST*	ADDR:	2E62	CHKFUL	ADDR:	05BA	DEROVF	ADDR	OBEB
APND-	ADDR:	1FF3	CHKRPC	ADDR:	0222	DEROW	ADDR	04AD
APND10	ADDR:	1FF5	CHRLCD	ADDR:	05B9	DERUN	ADDR:	08AD
APNDDG	ADDR:	1FFA	CHS	ADDR:	123A	DERWOO	ADDR:	04B2
APNDNW	ADDR:	2D14	CHSA	ADDR:	1CDA	DF060	ADDR:	0587
APPEND	ADDR:	2DOE	CHSA1	ADDR:	1 CDC	DF150	ADDR:	0482
ARCL	ADDR:	1080	CLA	ADDR:	10D1	DF160	ADDR:	0485
ARGOUT	ADDR:	2010	CLCTMG	ADDR	0390	DF200	ADDR:	04E7
ASCLCD	ADDR:	2050	CLDSP	ADDR:	10E0	DFILLF	ADDR:	0563
ASHE	ADDR:	1092	CLICDE	ADDR:	2CEO	DEKBCK	ADDR:	0559
		1098	CLP	ADDR	10F7	DERSTR	ADDR:	0562
		1095			1733	DERSTO	ADDR	0561
AGNIS		2702			1050	DGENSB	ADDR:	0836
AGNIO		2702			20E6	DIGENT		0837
ACOCU		2/00			2200	DICCIT		0987
ACTO	ADDD.	1004			2200	D10074		1945
HSIU	HDDRI	1004			2133	DIVIIO		1000
AIAN	ADDKI	1044		ADDC:	0000			1087
AVAIL	ADDR:	2804	LLRSBS	ADDRI				1047
AVAILA	ADDR:	2807	CLSIG	ADDRI	10F3	DIVIDE	ADDC:	1000
AVIEW	ADDR:	1082	CLST	ADDRI	1069	DUSKP	ADDRI	1031
AXEQ	ADDR:	10B5	CLX	ADDR:	1101	DUSRU1	ADDK:	24ES
BAKAPH	ADDR:	09E3	CNTLOP	ADDR:	0B9D	DOSRCH	ADDR:	24E4
BAKDE	ADDR:	09A5	COLDST	ADDR:	0232	DROPST	ADDR:	OOE4
BCDBIN	ADDR:	02E3	COPY	ADDR:	1109	DROWSY	ADDR:	0160
BEEP	ADDR:	10BB	COS	ADDR:	127C	DRSY05	ADDR:	0161
BIGBRC	ADDR:	004F	CPGM10	ADDR:	06F7	DRSY25	ADDR:	0173
BKROM2	ADDR:	2A91	CPGMHD	ADDR:	067B	DRSY50	ADDR:	0190
BLANK	ADDR:	05B7	D-R	ADDR:	110E	DRSY51	ADDR:	0194

DSPCA ADDR: 0835 FNCTEL ADDR: 1400 HMSMP ADDR: 1265 DSPCRG ADDR: 0825 FNDEND ADDR: 1730 IN38 ADDR: 2865 DSWLWP ADDR: 01AD FRAC ADDR: 1172 INBUT ADDR: 2865 DV1-10 ADDR: 1894 FS7C ADDR: 1402 INBUT ADDR: 2924 DV2-13 ADDR: 1896 FS1IN ADDR: 2885 INBUT ADDR: 2924 DV2-13 ADDR: 0752 GCFK04 ADDR: 2885 INBUT ADDR: 2926 END ADDR: 0386 GCPKC ADDR: 2886 INCAD ADDR: 2926 END ADDR: 0386 GCPKC ADDR: 0407 2896 INCAD ADDR: 2926 ENC ADDR: 1135 GETN ADDR: 0529 INCAD ADDR: 2926	DSE	ADDR:	112D	FLINKP	ADDR:	2925	HMSDV	ADDR:	19E5
DSPCRG ADDR: 0626 FNDEND ADDR: 1730 IN3B ADDR: 2604 DSPLN+ ADDR: 0FC7 FDRMAT ADDR: 0A7B INBCHS ADDR: 2204 DSWLUP ADDR: 1761 FS7 ADDR: 1182 INBUTO ADDR: 2794 DV1-10 ADDR: 1894 FS7C ADDR: 2885 INBUTI ADDR: 2794 DV2-10 ADDR: 1896 FSTIN ADDR: 2885 INBUTI ADDR: 2795 ENCP00 ADDR: 1132 GCPK04 ADDR: 2886 INCADA ADDR: 2793 END3 ADDR: 0386 GCPKC0 ADDR: 2890 INCADA ADDR: 2791 ENCC ADDR: 1135 GENLMA ADDR: 0286 INCADA ADDR: 2791 ENCL ADDR: 1135 GENLMA ADDR: 2791 INCADA ADDR: 2791 ENC	DSPCA	ADDR:	OB35	FNCTBL	ADDR:	1400	HMSMP	ADDR:	19E7
DEFLIN ADDR: OFC7 FORMAT ADDR: OA7B INBCHS ADDR: 2266 DSWKUP ADDR: 1981 FS? ADDR: 117C INBYT ADDR: 27966 DV1-10 ADDR: 1981 FS? ADDR: 1182 INBYTO ADDR: 27963 DV2-10 ADDR: 1989 FSTIN ADDR: 182 INBYTO ADDR: 27963 DV2-13 ADDR: 1989 GCP112 ADDR: 2885 INSUT ADDR: 27967 END2 ADDR: 0386 GCPKCO ADDR: 2886 INCAD ADDR: 2707 END3 ADDR: 0386 GCPKCO ADDR: 2389 INCAD ADDR: 2707 ENC4 ADDR: 1135 GETNUM ADDR: 2389 INCAD ADDR: 2707 ENC4 ADDR: 1275 GETNUM ADDR: 2389 INCAD ADDR: 2407 ENC1 <td>DSPCRG</td> <td>ADDR:</td> <td>0B26</td> <td>FNDEND</td> <td>ADDR:</td> <td>1730</td> <td>IN3B</td> <td>ADDR:</td> <td>2865</td>	DSPCRG	ADDR:	0B26	FNDEND	ADDR:	1730	IN3B	ADDR:	2865
DSWKUP ADDR: OTAD FRAC ADDR: 117C INBYT ADDR: 29E3 DYU-10 ADDR: 1981 FS? ADDR: 118E INBYTO ADDR: 29E3 DY2-10 ADDR: 189A FS?C ADDR: 118E INBYTO ADDR: 29E4 DY2-10 ADDR: 189B FSTIN ADDR: 14C2 INBYTO ADDR: 29E4 DY2-13 ADDR: 0752 GCPKC4 ADDR: 2BBC INSTT ADDR: 29CF END ADDR: 03BE GCPKC0 ADDR: 2BBC INCADA ADDR: 29D1 END ADDR: 03BE GCPKC0 ADDR: 2BB0 INCADA ADDR: 29D2 ENDC ADDR: 07F6 GENLNK ADDR: 02B2 ADDR: 29D1 ENCD ADDR: 112E GETL ADDR: 29T6 INEX ADDR: 29E4 ERRO ADDR:	DSPL N+	ADDR:	OFC7	FORMAT	ADDR:	0A7B	INBCHS	ADDR:	2E0A
DTOR ADDR: 1981 FS7 ADDR: 1182 INBYTO ADDR: 29E3 DV1-10 ADDR: 1894 FS7C ADDR: 1182 INBYTO ADDR: 29E3 DV1-10 ADDR: 1899 FSTIN ADDR: 14C2 INBYTC ADDR: 29E3 DV2-13 ADDR: 0952 GCPK04 ADDR: 28B5 INCAD ADDR: 29C5 ENCP00 ADDR: 0386 GCPKC0 ADDR: 28B5 INCAD ADDR: 29CF END3 ADDR: 0386 GCPKC0 ADDR: 28B7 INCADA ADDR: 29D1 ENC4 ADDR: 0376 GENLM ADDR: 2950 INCAD ADDR: 29D2 ENC4 ADDR: 1623 GETPC ADDR: 2950 INEX ADDR: 244 ERR10 ADDR: 22FF GETXG ADDR: 2952 INLIN ADDR: 2466 ERR120	DSWKUP	ADDR:	01AD	FRAC	ADDR:	1170	INBYT	ADDR:	29E6
DV1-10 ADDR: 199A FS7C ADDR: 118B INBYTI ADDR: 29EA DV2-10 ADDR: 189B FSTIN ADDR: 14C2 INBYTI ADDR: 29EA DV2-10 ADDR: 189D GCPI12 ADDR: 28ES INBYTJ ADDR: 29EA ENCPOO ADDR: 132 GCPKOA ADDR: 28BC INCAD ADDR: 27CF END ADDR: 038E GCPKCO ADDR: 28BO INCADA ADDR: 27DS END ADDR: 038E GCPKCO ADDR: 28BO INCADA ADDR: 27DS ENCD ADDR: 07F6 GENNUM ADDR: 02BE INCADA ADDR: 02BE ENCD ADDR: 113E GETLN ADDR: 02BE INCADA ADDR: 02BE ENCD ADDR: 127E GETXA ADR: 2950 INEX ADDR: 02BE 28CE	DTOR	ADDR:	1981	FS7	ADDR:	1182	INBYTO	ADDR:	29E3
DV2-10 ADDR: 1898 FSTIN ADDR: 14C2 INBYTC ADDR: 29E4 DV2-13 ADDR: 1897 GCP112 ADDR: 28B5 INBYTC ADDR: 29E4 DV2-13 ADDR: 1897 GCPK04 ADDR: 28B5 INBYTP ADDR: 29E3 END2 ADDR: 03B6 GCPKC5 ADDR: 28B5 INCAD2 ADDR: 29D3 END3 ADDR: 03B6 GCPKC ADDR: 28B5 INCAD2 ADDR: 29D1 ENLC DADR: 07F6 GENLM ADDR: 02B2 ERC ADDR: 02B2 ERR10 ADDR: 12CF GETLIN ADDR: 02E4 ADDR: 02B2 ERR10 ADDR: 12CF GETLIN ADDR: 02E5 INLIN ADDR: 02B4 ERR10 ADDR: 12CF GETYC ADDR: 02E5 INLIN ADDR: 02A4 ERR10 ADDR: <td>DV1-10</td> <td></td> <td>1894</td> <td>ES2C</td> <td>ADDR:</td> <td>1188</td> <td>INBYT1</td> <td>ADDR:</td> <td>29EA</td>	DV1-10		1894	ES2C	ADDR:	1188	INBYT1	ADDR:	29EA
DV2-13 ADDR: 189D GCP112 ADDR: 2885 INBYTJ ADDR: 2925 ENDPOO ADDR: 0752 GCPK04 ADDR: 2885 INBYTJ ADDR: 2925 END ADDR: 0384 GCPKC ADDR: 2886 INCAD ADDR: 2925 END ADDR: 0384 GCPKC ADDR: 2880 INCADA ADDR: 2915 END ADDR: 0384 GCPKC ADDR: 2880 INCADA ADDR: 2916 END ADDR: 1135 GENLNK ADDR: 2876 INCADA ADDR: 2916 ENTER^ ADDR: 1135 GETLIN ADDR: 0286 INCADA ADDR: 0284 ERRO ADDR: 1827 GETNA ADDR: 0285 INLIN ADDR: 0284 ERRO ADDR: 1422 GETN ADDR: 0287 INLIN ADDR: 02876 ERROA	DV7-10		1898	FSTIN		1402	INBYTC	ADDR:	29F4
BALTO ADDR: 0752 GCPK04 ADDR: 2BBC INBYTP ADDR: 2725 END ADDR: 03B4 GCPKC0 ADDR: 2BBC INCAD2 ADDR: 29CF END3 ADDR: 03B4 GCPKC0 ADDR: 2BBC INCAD2 ADDR: 29CF END2 ADDR: 03B4 GCPKC0 ADDR: 237A INCADA ADDR: 29D1 ENLCD ADDR: 113E GENLIM ADDR: 102E ADDR: 02B2 ERR10 ADDR: 113E GETLIN ADDR: 10EA IND211 ADDR: 02B2 ERR10 ADDR: 122FB GETVCA ADDR: 10EF INLIN2 ADDR: 29D6 ERR10 ADDR: 1422 GETX ADDR: 10EF INLIN2 ADDR: 29F6 ERRAM ADDR: 22F5 GETYYA ADDR: 10EF INLIN ADDR: 20A17 ERRAM ADDR	DV2 10		1990	SCP112	ADDR.	2885	INBYT.1	ADDR:	2F0C
END ADDR: 132 GERKOF ADDR: 238E INCAD ADDR: 2725 END2 ADDR: 0386 GCPKCC ADDR: 2889 INCADA ADDR: 2703 END3 ADDR: 0386 GCPKCC ADDR: 239A INCADA ADDR: 2703 END3 ADDR: 1135 GENLNK ADDR: 0386 GCPKCA ADDR: 0386 GCPKCA ADDR: 239A INCADA ADDR: 2901 ENTER^^ ADDR: 1135 GETN ADDR: 0568 INCATA ADDR: 0286 ERRO ADDR: 122FB GETVA ADDR: 1275 INLIN ADDR: 2844 ERRID ADDR: 22FF GETXA ADDR: 102F INEX ADDR: 0280 ERROF ADDR: 22FF GETYSQ ADDR: 102F INSHR ADDR: 23F4 ERROF ADDR: 02EO GETYSQ ADR: </td <td></td> <td></td> <td>0052</td> <td>GCPKAA</td> <td></td> <td>2000</td> <td>INBVTP</td> <td>000R.</td> <td>2955</td>			0052	GCPKAA		2000	INBVTP	000R.	2955
END2 ADDR: 1132 GENKOS ADDR: 2182 INCAD2 ADDR: 279D3 END3 ADDR: 03B6 GCPKCO ADDR: 2889 INCAD2 ADDR: 279D3 ENG ADDR: 07F6 GENLMK ADDR: 2334 INCAD2 ADDR: 0286 ENTEC^ ADDR: 07F6 GENLMK ADDR: 0181 119 IND ADDR: 0286 ENTEC^ ADDR: 113E GETN ADDR: 1417 IND ADDR: 0286 ERRO ADDR: 122FB GETPC ADDR: 2750 INEX ADDR: 2844 ERRIA ADDR: 2172 GETXSQ ADDR: 10EE INNTN ADDR: 2844 ERROE ADDR: 0280 GETY A ADDR: 10EE INSLIN ADDR: 2844 ERROE ADDR: 0280 GETYSQ ADDR: 10EE INSLIN ADDR: 2840	END		1137	GCPK05		2000	INCOD		2905
END2 ADDR: O3BE GCPKC ADDR: 2BB0 INCADA ADDR: 279D6 ENG ADDR: 07F6 GENLCM ADDR: 239A INCADP ADDR: 279D6 ENLCD ADDR: 1135 GENLNK ADDR: 2389 INCADP ADDR: 0286 ENTER^A ADDR: 1135 GETLIN ADDR: 0289 INCADP ADDR: 0286 ERRO ADDR: 18C3 GETN ADDR: 1272 ADDR: 0280 INCAT ADDR: 2876 ERRAD ADDR: 1272 GETXSQ ADDR: 10EE INFDF ADDR: 0280 ERRDA ADDR: 2172 GETXSQ ADDR: 10EE INSUR ADDR: 0281 0424 ERRDA ADDR: 0280 GETY ADDR: 10EE INSUR ADDR: 2417 ERRDA ADDR: 0275 GENLNA ADDR: 1071 ADDR: 2473<	ENDO		0704			2000	INCADO		2007
ENG ADDR: O'SBE GENERG ADDR: ZBFA INCADP ADDR: Z'PDI ENLCD ADDR: 07F6 GENLINK ADDR: O'SEB INCADP ADDR: 0282 ENTER^ ADDR: 113E GETLIN ADDR: 1419 IND ADDR: 0282 ERRO ADDR: 22FF GETPC ADDR: 2950 INEX ADDR: 2464 ERRAD ADDR: 22FF GETYCA ADDR: 10251 INLIN ADDR: 2476 ERRAD ADDR: 22FF GETYSG ADDR: 102E INSHT ADDR: 2476 ERRAD ADDR: 02E0 GETYSG ADDR: 102E INSHT ADDR: 2474 ERROF ADDR: 02E5 GOSUBH ADDR: 02E0 INT ADDR: 2473 ERROF ADDR: 2184 GOTINT ADDR: 02F0 INT ADDR: 2473 ERROF	ENDZ		0385	SCI KC		2000	INCADA		2004
ENG HDDR: 1133 GENLINK HDDR: 237H INCGT2 ADDR: 127D ENLCD ADDR: 113E GETLIN ADDR: 105E INCGT2 ADDR: 0286 ERR0 ADDR: 18C3 GETN ADDR: 1257 ADDR: 0024 ERR10 ADDR: 22FF GETPCA ADDR: 2952 INLIN ADDR: 2844 ERR10 ADDR: 22FF GETXG ADDR: 1CEF INLIN ADDR: 2844 ERRAM ADDR: 2172 GETXG ADDR: 1CEF INLIN ADDR: 2844 ERRAM ADDR: 0280 GETXY ADDR: 1CEF INLIN ADDR: 2844 ERRAM ADDR: 0280 GETY ADDR: 1CEF INLIN ADDR: 2876 ERRAM ADDR: 0280 GOLNH ADDR: 177 ADDR: 2182 ERROF ADDR: 2275	ENDS	ADDA:	USDE 117E		ADDRI	2007	INCADA		2700
ENTER* ADDR: 113E GETL ADDR: 11419 IND ADDR: 02812 ERRO ADDR: 113E GETL ADDR: 1419 IND ADDR: 0DC4 ERR10 ADDR: 22FF GETPC ADDR: 2950 INEX ADDR: 22A4 ERRAD ADDR: 1422 GETX ADDR: 2952 INLIN ADDR: 22A4 ERRAD ADDR: 22FF GETXY ADDR: 102F INLIN ADDR: 20A2 ERRAD ADDR: 02820 GETXY ADDR: 10EE INSLIN ADDR: 23A1 ERRIG ADDR: 0280 GETYSG ADDR: 10EE INSLIN ADDR: 23A2 ERROF ADDR: 0280 GETYSG ADDR: 02F8 INTARG ADDR: 23F4 ERROF ADDR: 2184 GOTINT ADDR: 02F8 INTARG ADDR: 02F4 ERRTA		ADDR:	1133	GENLINK	ADDRI	237M	INCHUR	ADDO.	0794
ENTER** ADDR: 113E GETLIN ADDR: 1417 IND ADDR: ODDR: ERRO ADDR: 1863 GETN ADDR: 1244 IND21 ADDR: 2050 ERRAD ADDR: 22FF GETPC ADDR: 2950 INEX ADDR: 2844 ERRAD ADDR: 14E2 GETX ADDR: 1CEE INLIN ADDR: 2876 ERRAD ADDR: 282D GETXY ADDR: 1CEE INSLIN ADDR: 2417 ERRIE ADDR: 008B GETYA ADDR: 1CEC INSLIN ADDR: 2417 ERRIE ADDR: 0082 GETYG ADDR: 1CEC INSLIN ADDR: 2412 ERRIE ADDR: 0042 GULNGH ADDR: 0751 INT ADDR: 2473 ERRIE ADDR: 2184 GOTINT ADDR: 0751 INT ADDR: 1775 ERRTA	ENLLD	ADDRI	0/F6	GENNUM	ADDD.		INCOLZ	ADDC:	0200
ERRO ADDR: 18C3 GEIN ADDR: 10C1 ADDR: 00C4 ERR110 ADDR: 22FF GETPC ADDR: 2952 INLIN ADDR: 2476 ERRAD ADDR: 14E2 GETXG ADDR: 1CEF INLIN ADDR: 2876 ERRAD ADDR: 2172 GETXG ADDR: 1CEE INFTO ADDR: 0640 ERRDE ADDR: 0280 GETYY ADDR: 1CEB INSLIN ADDR: 2974 ERROF ADDR: 0280 GETYY ADDR: 1CEC INSLIN ADDR: 2372 ERROF ADDR: 0240 GOLNGH ADDR: 0771 INSTR ADDR: 2372 ERROR ADDR: 2184 GOTINT ADDR: 0711 ADDR: 0711 ERROR ADDR: 2117 GSB000 ADDR: 1114 INTRC ADDR: 12717 ERROR ADDR: 1400	ENTER	ADDR:	1135	GEILIN	ADDR:	1417	IND	ADDC	
ERR110 ADDR: 22FB GETPC ADDR: 2950 INEX ADDR: 2444 ERRAD ADDR: 12FF GETXCA ADDR: 2752 INLIN ADDR: 2764 ERRAM ADDR: 12FF GETXGA ADDR: 1CEF INLIN ADDR: 2976 ERRAM ADDR: 22SD GETXGA ADDR: 1CEE INSTR ADDR: 2477 ERRIGN ADDR: 0080 GETYGA ADDR: 1CED INSTR ADDR: 2774 ERROF ADDR: 02E0 GETYGA ADDR: 1CED INSTR ADDR: 23B2 ERROF ADDR: 02E0 GETYGA ADDR: 1CED INSTR ADDR: 23B2 ERROF ADDR: 22F5 GOSUBH ADDR: 0FDP INT ADDR: 1177 ERROF ADDR: 2184 GOTINT ADDR: 02FB INTINT ADDR: 27EB EXP10 <td>ERRO</td> <td>ADDR:</td> <td>1803</td> <td>GEIN</td> <td>ADDR:</td> <td>ICEA</td> <td>INDEI</td> <td>ADDR:</td> <td></td>	ERRO	ADDR:	1803	GEIN	ADDR:	ICEA	INDEI	ADDR:	
ERR120 ADDR: 22FF GETPCA ADDR: 12F2 INLIN ADDR: 22F2 ERRAM ADDR: 2172 GETXSQ ADDR: 1CEF INLIN ADDR: 2976 ERRAM ADDR: 2172 GETXSQ ADDR: 1CEE INSHRT ADDR: 2974 ERRNE ADDR: 02E0 GETYSQ ADDR: 1CED INSLIN ADDR: 2974 ERRNE ADDR: 02E0 GETYSQ ADDR: 1CED INSLIN ADDR: 2974 ERRNE ADDR: 02E0 GETYSQ ADDR: 1CED INSLIN ADDR: 2974 ERRNE ADDR: 02E0 GETYSQ ADDR: 1CED INSLIN ADDR: 2974 ERRNE ADDR: 2184 GOTINT ADDR: 0FDP INSTR ADDR: 2473 ERRNE ADDR: 2184 GOTINT ADDR: 02F8 INTAR ADDR: 2773 E	ERR110	ADDR:	22FB	GETPC	ADDR:	2950	INEX	ADDR:	2848
ERRAD ADDR: 14E2 GETX ADDR: 1CEF INLIN2 ADDR: 2976 ERRAM ADDR: 2172 GETXSO ADDR: 1CEE INPTDG ADDR: 06A0 ERRDE ADDR: 2820 GETXY ADDR: 1CEB INSHRT ADDR: 2974 ERRNE ADDR: 02E0 GETYGA ADDR: 1CED INSLIN ADDR: 2382 ERROF ADDR: 02E0 GETYGA ADDR: 1CEC INSLIN ADDR: 2373 ERROF ADDR: 22F5 GOSUBH ADDR: 02F8 INTARS ADDR: 0751 ERRSH ADDR: 2184 GOTINT ADDR: 02F8 INTARS ADDR: 072F8 ERRTA ADDR: 2177 GSB000 ADDR: 23C7 INTXC ADDR: 02F8 EXP10 ADDR: 1A00 GT3DBT ADDR: 03C4 KYOPCK ADDR: 02F4 E	ERR120	ADDR:	22FF	GETPCA	ADDR:	2952	INLIN	ADDR:	2876
ERRAM ADDR: 2172 GETXSU ADDR: ICEE INPTDG ADDR: OBADR: 2417 ERRIGN ADDR: 008B GETY ADDR: ICED INSLIN ADDR: 2417 ERRIGN ADDR: 0020 GETYSO ADDR: ICED INSLIN ADDR: 22974 ERROF ADDR: 0220 GETYSO ADDR: 0FD7 INSLIN ADDR: 23B2 ERROF ADDR: 2215 GOSUBH ADDR: 0FD7 INTARG ADDR: 27F4 ERROR ADDR: 2184 GOTINT ADDR: 0FD7 INTARG ADDR: 27F3 ERRTA ADDR: 2184 GOTINT ADDR: 23FA INTINT ADDR: 02FB EXP10 ADDR: 1A0A GSUBS1 ADDR: 23FA INTINT ADDR: 27F4 EXP400 ADDR: 1A40 GTDR: 0341 KEY0P ADDR: 067B <	ERRAD	ADDR:	14E2	GETX	ADDR:	1CEF	INLIN2	ADDR:	29F6
ERRDE ADDR: 282D GETXY ADDR: 1CEB INSHIT ADDR: 2217 ERRIGN ADDR: 02E0 GETYSQ ADDR: 1CEC INSLIN ADDR: 2372 ERROF ADDR: 02E0 GETYSQ ADDR: 0FD9 INSLIN ADDR: 2373 ERROF ADDR: 22F5 GOSUBH ADDR: 0FD9 INT ADDR: 1177 ERROR ADDR: 22F5 GOSUBH ADDR: 02F8 INTARG ADDR: 1775 ERRTA ADDR: 22E8 GRAD ADDR: 02F8 INTARG ADDR: 1775 EXP10 ADDR: 1A00 GT3DBT ADDR: 23FA INTINT ADDR: 2475 EXP10 ADDR: 1A40 GSUBS1 ADDR: 23CFA INTXC ADDR: 2476 EXP10 ADDR: 1A40 GTACDD ADDR: 0341 KEYOP ADDR: 068A EXP7	ERRAM	ADDR:	2172	GETXSQ	ADDR:	1CEE	INPTDG	ADDR:	0840
ERRIGN ADDR: 008B GETY ADDR: 1CED INSLIN ADDR: 29F4 ERRNE ADDR: 002E0 GETYSQ ADDR: 1CEC INSSUB ADDR: 23B2 ERROF ADDR: 0042 GOLNGH ADDR: 0FD9 INSTR ADDR: 2473 ERROR ADDR: 22F5 GOSUBH ADDR: 0FD9 INSTR ADDR: 2473 ERROR ADDR: 2184 GOTINT ADDR: 0ZF6 INTARG ADDR: 1177 ERRSUB ADDR: 2184 GOTINT ADDR: 0ZF6 INTARG ADDR: 07E1 ERRTA ADDR: 1A0A GSUBS1 ADDR: 137B EXP10 ADDR: 1400 GT3DBT ADDR: 07EB IORUN ADDR: 27F4 EXP10 ADDR: 1A41 GTACDD ADDR: 0304 KYOPCK ADDR: 0648A EXP720 ADDR: 1A4C GTATNC	ERRDE	ADDR:	282D	GETXY	ADDR:	1CEB	INSHRT	ADDR:	2A17
ERRNE ADDR: O2EO GETYSQ ADDR: ICEC INSSUB ADDR: 23B2 ERROF ADDR: 00A2 GOLNGH ADDR: OFD9 INSTR ADDR: 2473 ERROR ADDR: 21B4 GOTINT ADDR: OZF8 INTARG ADDR: 07E1 ERRSUB ADDR: 22E8 GRAD ADDR: 111A INTERC ADDR: 07E1 ERRTA ADDR: 22E8 GRAD ADDR: 111A INTERC ADDR: 07E1 EXP10 ADDR: 1A0A GSUBS1 ADDR: 23FA INTIXC ADDR: 02FB EXP13 ADDR: 1A0D GT3DBT ADDR: 05EB IORUN ADDR: 04BA EXP500 ADDR: 1A4C GTAINC ADDR: 0304 KYOPCK ADDR: 0663 EXP720 ADDR: 1A4C GTBYT ADDR: 29B0 LASTX ADDR: 1295 EXS	ERRIGN	ADDR:	OOBB	GETY	ADDR:	1 CED	INSLIN	ADDR:	29F4
ERROF ADDR: OOA2 GOLNGH ADDR: OFD9 INSTR ADDR: 2273 ERROR ADDR: 22F5 GOSUBH ADDR: OFD0 INT ADDR: 1177 ERRPR ADDR: 2184 GOTINT ADDR: OFD0 INT ADDR: 07E1 ERRPR ADDR: 2184 GOTINT ADDR: 07E3 INTARG ADDR: 07E1 ERRPR ADDR: 2184 GOTINT ADDR: 07E3 INTARG ADDR: 07E3 ERRTA ADDR: 2F17 GSB000 ADDR: 111A INTERC ADDR: 02FB EXP10 ADDR: 1A0A GSUBS1 ADDR: 02FB INTXC ADDR: 02FB EXP400 ADDR: 1A0A GT3DBT ADDR: 0341 KEYOP ADDR: 0468 EXP710 ADDR: 1A4C GTACND ADDR: 27BB LBL ADDR: 1228 EXP720 </td <td>ERRNE</td> <td>ADDR:</td> <td>02E0</td> <td>GETYSQ</td> <td>ADDR:</td> <td>1CEC</td> <td>INSSUB</td> <td>ADDR:</td> <td>23B2</td>	ERRNE	ADDR:	02E0	GETYSQ	ADDR:	1CEC	INSSUB	ADDR:	23B2
ERRORADDR:22F5GOSUBHADDR:OFDDINTADDR:1177ERRPRADDR:2184GOTINTADDR:02F8INTARGADDR:07E1ERRSUBADDR:22E8GRADADDR:111AINTFRCADDR:07E1ERRTAADDR:22F17GSB000ADDR:23FAINTINTADDR:02FBEXP10ADDR:1A0AGSUBS1ADDR:23C9INTXCADDR:24F3EXP13ADDR:1A0DGT3DBTADDR:0FEBIORUNADDR:27E4EXP400ADDR:1A41GTACODADDR:0304KYOPCKADDR:0653EXP70ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:0663EXP720ADDR:144CGTAINCADDR:27BBLBLADDR:1174EXSCRADDR:1147GTBYTAADDR:27B2LD90ADDR:1174EXSCRADDR:1147GTBYTOADDR:29B2LD90ADDR:1174FC?ADDR:1153GTCNTRADDR:29B2LD90ADDR:0797FC?CADDR:1154GTFEN1ADDR:224ELEFTJADDR:0277FD1G20ADDR:062AGTO.ADDR:2247LINNIAADDR:2493FIND\$1ADDR:062AGTO.ADDR:2744LINNIAADDR:2493FIGITADDR:062A<	ERROF	ADDR:	00A2	GOLNGH	ADDR:	OFD9	INSTR	ADDR:	2A73
ERRPRADDR:2184GOTINTADDR:02F8INTARGADDR:07E1ERRSUBADDR:22E8GRADADDR:111AINTARGADDR:07E1ERRTAADDR:2F17GSB000ADDR:23FAINTINTADDR:02FBEXP10ADDR:1A0AGSUBS1ADDR:23C9INTXCADDR:247DEXP13ADDR:1A0DGT3DBTADDR:0FEBIORUNADDR:27E4EXP400ADDR:1A41GTACODADDR:0341KEYOPADDR:048AEXP710ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:0463EXP720ADDR:1A4CGTAINCADDR:27BBLBLADDR:1144E^XADDR:1147GTBYTADDR:27BBLBLADDR:1128EXSCRADDR:1147GTBYTOADDR:27BBLBLADDR:1144E^XADDR:1147GTBYTOADDR:29B2LD90ADDR:1975E^X-1ADDR:1154GTFEN1ADDR:20EBLDD10ADDR:081DFC?ADDR:1154GTFENDADDR:2247LINN1AADDR:22F7FD1620ADDR:0E3DGTLNKAADDR:2247LINN1AADDR:2493FD1GITADDR:0E2FGTOADDR:1191LINN1AADDR:2493FILXLADDR:0E3D	ERROR	ADDR:	22F5	GOSUBH	ADDR:	OFDD	INT	ADDR:	1177
ERRSUBADDR:22E8GRADADDR:111AINTFRCADDR:193BERRTAADDR:2F17GSB000ADDR:23FAINTINTADDR:02FBEXP10ADDR:1A0AGSUBS1ADDR:23C9INTXCADDR:247DEXP13ADDR:1A0DGT3DBTADDR:0FEBIORUNADDR:27E4EXP500ADDR:1A21GTACDDADDR:0FEBIORUNADDR:068AEXP710ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:0693EXP720ADDR:144CGTBYTADDR:29B0LASTXADDR:122EEXSCRADDR:1147GTBYTOADDR:29B2LD90ADDR:1144E^XADDR:1143GTCNTRADDR:02EBLDD.P.ADDR:081DFACTADDR:1163GTCNTRADDR:02BBLDD.P.ADDR:0797FC?ADDR:1154GTFENDADDR:20EBLDDP10ADDR:02F3FDIG20ADDR:0625GTOADDR:1191LINNIAADDR:2A93FILLXLADDR:0626GTSCHADDR:2799LN1+XADDR:2A93FIND\$1ADDR:0627GTOADDR:1191LINNIAADDR:2A93FILXADDR:0626GTO.5ADDR:2797LINNIAADDR:2A93FILXADDR:1775<	ERRPR	ADDR:	2184	GOTINT	ADDR:	02F8	INTARG	ADDR:	07E1
ERRTAADDR:2F17GSB000ADDR:23FAINTINTADDR:02FBEXP10ADDR:1A0AGSUBS1ADDR:23C9INTXCADDR:2A7DEXP13ADDR:1A0DGT3DBTADDR:0FEBIORUNADDR:27E4EXP400ADDR:1A21GTACODADDR:1FDBISGADDR:119EEXP500ADDR:1A41GTACODADDR:0541KEYOPADDR:068AEXP710ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:068AEXP720ADDR:1A50GTBYTADDR:29B0LASTXADDR:1228EXSCRADDR:192AGTBYTAADDR:29B9LBLADDR:1144E^XADDR:1147GTBYTOADDR:29B2LD90ADDR:1995E^X-1ADDR:1163GTCNTRADDR:088DLDD.P.ADDR:081DFACTADDR:1154GTFEN1ADDR:20EBLDSTOADDR:081EFC?ADDR:116BGTLINKADDR:2242LEFTJADDR:0797FC?CADDR:063DGTLNKAADDR:2247LINNIAADDR:2493FDIG20ADDR:062FGTOADDR:1191LINNMIADDR:2493FILXLXADDR:062FGTOLADDR:1191LINNUMADDR:2493FIND\$1ADDR:062A <t< td=""><td>ERRSUB</td><td>ADDR:</td><td>22E8</td><td>GRAD</td><td>ADDR:</td><td>111A</td><td>INTFRC</td><td>ADDR:</td><td>193B</td></t<>	ERRSUB	ADDR:	22E8	GRAD	ADDR:	111A	INTFRC	ADDR:	193B
EXP10ADDR:1AOAGSUBS1ADDR:23C9INTXCADDR:2A7DEXP13ADDR:1AODGT3DBTADDR:OFEBIORUNADDR:27E4EXP400ADDR:1A21GTACODADDR:OFEBISGADDR:119EEXP500ADDR:1A41GTACODADDR:0341KEYOPADDR:0688EXP70ADDR:1A4CGTAIAOADDR:0341KEYOPADDR:0693EXP720ADDR:1A50GTBYTADDR:2980LASTXADDR:1228EXSCRADDR:192AGTBYTAADDR:2980LASTXADDR:1144E^XADDR:1147GTBYTOADDR:2982LD90ADDR:1975E^X-1ADDR:1163GTCNTRADDR:088DLDD.P.ADDR:081DFACTADDR:1154GTFEN1ADDR:20E8LDSTOADDR:081EFC?ADDR:1168GTLINKADDR:2242LEFTJADDR:0797FC?CADDR:1168GTLINKAADDR:2247LINNIAADDR:2A93FDIG1TADDR:0625GTOADDR:1191LINNUMADDR:2A93FILXLXADDR:0775GTOLADDR:294ALINNUMADDR:2A93FIND\$1ADDR:064AGTSRCHADDR:2959LN1+XADDR:1240FIXADDR:1171	ERRTA	ADDR:	2F17	GSB000	ADDR:	23FA	INTINT	ADDR:	02FB
EXP13ADDR:1AODGT3DBTADDR:OFEBIORUNADDR:27E4EXP400ADDR:1A21GTACODADDR:1FDBISGADDR:119EEXP500ADDR:1A41GTAIA0ADDR:0341KEYOPADDR:068AEXP710ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:0693EXP720ADDR:1A4CGTAINCADDR:29B0LASTXADDR:122BEXSCRADDR:192AGTBYTADDR:29B0LASTXADDR:122BEXSCRADDR:1147GTBYTOADDR:29B2LD90ADDR:11A4E^XADDR:1163GTCNTRADDR:08BDLDD.P.ADDR:081DFACTADDR:1154GTFEN1ADDR:20EBLDDP10ADDR:081EFC?ADDR:116BGTLINKADDR:224ELEFTJADDR:0797FC?CADDR:116BGTLINKADDR:2247LINN1AADDR:2493FDIGITADDR:0E2FGTOADDR:1191LINNUMADDR:2A93FILLXLADDR:0E2FGTOLADDR:118CLNADDR:1246FIXADDR:1171GTONNADDR:2957LN1+XADDR:1245FIXADDR:1171GTONNADDR:2957LN1+XADDR:1245FIXADDR:0AC3GTRMAD <td>EXP10</td> <td>ADDR:</td> <td>1A0A</td> <td>GSUBS1</td> <td>ADDR:</td> <td>2309</td> <td>INTXC</td> <td>ADDR:</td> <td>2A7D</td>	EXP10	ADDR:	1A0A	GSUBS1	ADDR:	2309	INTXC	ADDR:	2A7D
EXP400ADDR:1A21GTACODADDR:1FDBISGADDR:119EEXP500ADDR:1A61GTAI40ADDR:0341KEYOPADDR:068AEXP710ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:0693EXP720ADDR:1A50GTBYTADDR:29B0LASTXADDR:1228EXSCRADDR:192AGTBYTAADDR:29B0LASTXADDR:128E^XADDR:1147GTBYTOADDR:29B2LD90ADDR:1995E^X-1ADDR:1163GTCNTRADDR:08BDLDD.P.ADDR:081DFACTADDR:1154GTFEN1ADDR:20EBLD910ADDR:081EFC?ADDR:116BGTLINKADDR:20EBLDSTOADDR:0797FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:2897FDIG20ADDR:0E2FGTOADDR:1191LINNIAADDR:2A90FILLXLADDR:0E2FGTOADDR:1191LINNIMADDR:2A90FILLXLADDR:1171GTONNADDR:2979LN1+XADDR:1240FIXADDR:1171GTONNADDR:2979LN1+XADDR:1240FIXADDR:1275GTCLADDR:0800LN10ADDR:1240FIXADDR:1171GTONN<	EXP13	ADDR:	1AOD	GT3DBT	ADDR:	OFEB	IORUN	ADDR:	27E4
EXP500ADDR:1A61GTAI40ADDR:0341KEYOPADDR:068AEXP710ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:0693EXP720ADDR:1A50GTBYTADDR:29B0LASTXADDR:1228EXSCRADDR:192AGTBYTAADDR:29B0LASTXADDR:1128EXSCRADDR:1147GTBYTOADDR:29B2LD90ADDR:1174E^X -1ADDR:1163GTCNTRADDR:08BDLDD.P.ADDR:081DFACTADDR:1154GTFEN1ADDR:20EBLDDP10ADDR:081EFC?ADDR:116BGTLINKADDR:20EBLDSTOADDR:0797FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:28F7FDIG20ADDR:0E3DGTLNKAADDR:2247LINNIAADDR:2A93FDIGITADDR:0E2FGTOADDR:1191LINNM1ADDR:2A96FILLXLADDR:0CEAGTS.TADDR:118CLNADDR:1146FIXADDR:1775GTOLADDR:118CLNADDR:1146FIXADDR:1775GTOLADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:240FLN560ADDR:1220FIX57ADDR:0AC3GTRMAD	EXP400	ADDR:	1A21	GTACOD	ADDR:	1FDB	ISG	ADDR:	119E
EXP710ADDR:1A4CGTAINCADDR:0304KYOPCKADDR:0693EXP720ADDR:1A50GTBYTADDR:29B0LASTXADDR:1228EXSCRADDR:192AGTBYTAADDR:29B9LBLADDR:11A4E^XADDR:1147GTBYTOADDR:29B2LD90ADDR:1975E^X-1ADDR:1163GTCNTRADDR:088DLDD.P.ADDR:081DFACTADDR:1154GTFEN1ADDR:20E8LDSTOADDR:081EFC?ADDR:116BGTLINKADDR:224ELEFTJADDR:29F7FDIG20ADDR:0E3DGTLNKAADDR:224FLINNM1ADDR:2493FDIG1TADDR:0E2FGTOADDR:1191LINNM1ADDR:2493FILLXLADDR:0E2FGTOLADDR:1191LINNM1ADDR:2498FIXADDR:1775GTOLADDR:118CLNADDR:1146FIXADDR:0AC3GTRMADADDR:2959LN1+XADDR:1220FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:1220FIXENDADDR:2918GTSRCHADDR:24DFLN60ADDR:1893FLINKADDR:2927HMS+ADDR:1032LNC10ADDR:1A4EFLINKAADDR:2928HMS+ <td>EXP500</td> <td>ADDR:</td> <td>1A61</td> <td>GTAI40</td> <td>ADDR:</td> <td>0341</td> <td>KEYOP</td> <td>ADDR:</td> <td>068A</td>	EXP500	ADDR:	1A61	GTAI40	ADDR:	0341	KEYOP	ADDR:	068A
EXP720ADDR:1A50GTBYTADDR:29B0LASTXADDR:1228EXSCRADDR:192AGTBYTAADDR:29BBLBLADDR:11A4E^XADDR:1147GTBYTOADDR:29B2LD90ADDR:1975E^X-1ADDR:1163GTCNTRADDR:0B8DLDD.P.ADDR:0B1DFACTADDR:1154GTFEN1ADDR:20EBLDDP10ADDR:0B1EFC?ADDR:115AGTFENDADDR:20EBLDSTOADDR:0797FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:28F7FDIG20ADDR:0E3DGTLNKAADDR:2247LINN1AADDR:2A93FDIGITADDR:0E2FGTOADDR:1191LINNM1ADDR:2A93FILLXLADDR:0E2FGTOLADDR:118CLNADDR:2A90FIXADDR:1775GTOLADDR:118CLNADDR:1146FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1220FIXENDADDR:2918GTSRCHADDR:0800LN10ADDR:1230FLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1A8AFLINKAADDR:2927HMS-ADD	EXP710	ADDR:	1A4C	GTAINC	ADDR:	0304	KYOPCK	ADDR:	0693
EXSCRADDR:192AGTBYTAADDR:29BBLBLADDR:11A4E^XADDR:1147GTBYTOADDR:29B2LD90ADDR:1995E^X-1ADDR:1163GTCNTRADDR:0BBDLDD.P.ADDR:0B1DFACTADDR:1154GTFEN1ADDR:20EBLDDP10ADDR:0B1EFC?ADDR:115AGTFENDADDR:20EBLDSSTOADDR:0797FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:28F7FDIG20ADDR:0E3DGTLNKAADDR:2247LINN1AADDR:2A93FDIGITADDR:0E2FGTOADDR:1191LINNUMADDR:2A93FILLXLADDR:0EAGTO.5ADDR:29AALINNUMADDR:2A93FIXADDR:1175GTOLADDR:118CLNADDR:2A90FIXADDR:1177GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1220FLSANNADDR:2918GTSRCHADDR:0800LN10ADDR:1220FLINKADDR:2918GTSRCHADDR:24DFLNS60ADDR:1843FLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1A8AFLINKAADDR:2927HMS- <t< td=""><td>EXP720</td><td>ADDR:</td><td>1A50</td><td>GTBYT</td><td>ADDR:</td><td>29B0</td><td>LASTX</td><td>ADDR:</td><td>1228</td></t<>	EXP720	ADDR:	1A50	GTBYT	ADDR:	29B0	LASTX	ADDR:	1228
E^XADDR:1147GTBYTOADDR:29B2LD90ADDR:1975E^X-1ADDR:1163GTCNTRADDR:OB8DLDD.P.ADDR:OB1DFACTADDR:1154GTFEN1ADDR:20EBLDDP10ADDR:OB1EFC?ADDR:115AGTFENDADDR:20EBLDSTOADDR:OF77FC?ADDR:115AGTFENDADDR:20EBLDSTOADDR:0797FC?ADDR:116BGTLINKADDR:224ELEFTJADDR:28F7FDIG20ADDR:OE3DGTLNKAADDR:2247LINN1AADDR:2A93FDIG1TADDR:OE2FGTOADDR:1191LINNM1ADDR:2A93FILLXLADDR:00EAGTO.5ADDR:29AALINNUMADDR:2A93FIND\$1ADDR:1775GTOLADDR:118CLNADDR:2A93FIXADDR:1171GTONNADDR:2959LN1+XADDR:1146FIXADDR:1171GTONNADDR:0800LN10ADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1220FIX57ADDR:0AC3GTSRCHADDR:0800LN10ADDR:1845FLINKADDR:2918GTSRCHADDR:1032LNC10ADDR:1A8AFLINKADDR:2928HMS+	EXSCR	ADDR:	192A	GTBYTA	ADDR:	29BB	LBL	ADDR:	11A4
E^X-1ADDR:1163GTCNTRADDR:OB8DLDD.P.ADDR:OB1DFACTADDR:1154GTFEN1ADDR:20EBLDDP10ADDR:OB1EFC?ADDR:115AGTFENDADDR:20EBLDSSTOADDR:OF77FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:28F7FDIG20ADDR:OE3DGTLNKAADDR:2247LINN1AADDR:2A93FDIG1TADDR:OE2FGTOADDR:1191LINNM1ADDR:2A93FILLXLADDR:00EAGTO.5ADDR:29AALINNUMADDR:2A8BFIND\$1ADDR:1775GTOLADDR:118CLNADDR:1146FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1220FLS77ADDR:0AC3GTSRCHADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1197LNAPADDR:18B3FLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-HADDR:1045LNC10‡ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	E^X	ADDR:	1147	GTBYTO	ADDR:	29B2	LD90	ADDR:	1995
FACTADDR:1154GTFEN1ADDR:20EBLDDP10ADDR:0B1EFC?ADDR:115AGTFENDADDR:20EBLDSSTOADDR:0797FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:2BF7FDIG20ADDR:0E3DGTLNKAADDR:2247LINN1AADDR:2A93FDIG1TADDR:0E2FGTOADDR:1191LINNM1ADDR:2A90FILLXLADDR:00EAGTO.5ADDR:29AALINNUMADDR:2A8BFIND\$1ADDR:1775GTOLADDR:118CLNADDR:11A6FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1220FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1197LNAPADDR:18B3FLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10‡ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	E^X-1	ADDR:	1163	GTCNTR	ADDR:	obsd	LDD.P.	ADDR:	OBID
FC?ADDR:115AGTFENDADDR:20E8LDSSTOADDR:0797FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:2BF7FDIG2OADDR:0E3DGTLNKAADDR:2247LINN1AADDR:2A93FDIG1TADDR:0E2FGTOADDR:1191LINNM1ADDR:2A90FILLXLADDR:00EAGTO.5ADDR:29AALINNUMADDR:2A8BFIND\$1ADDR:1775GTOLADDR:118CLNADDR:1146FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1845FLSANNADDR:1651H-HMSADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1032LNC10ADDR:1AAEFLINKAADDR:2928HMS+ADDR:1045LNC10*ADDR:1AADFLINKAADDR:2927HMS-HADDR:1045LNC10*ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	FACT	ADDR:	1154	GTFEN1	ADDR:	20EB	LDDP10	ADDR:	0B1E
FC?CADDR:116BGTLINKADDR:224ELEFTJADDR:2BF7FDIG20ADDR:0E3DGTLNKAADDR:2247LINN1AADDR:2A93FDIGITADDR:0E2FGTOADDR:1191LINNM1ADDR:2A90FILLXLADDR:00EAGTO.5ADDR:29AALINNUMADDR:2A8BFIND\$1ADDR:1775GTOLADDR:118CLNADDR:11A6FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1845FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:1B03FLGANNADDR:1651H-HMSADDR:1197LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	FC?	ADDR:	115A	GTFEND	ADDR:	2068	LDSSTO	ADDR:	0797
FDIG20ADDR:OE3DGTLNKAADDR:2247LINN1AADDR:2A93FDIGITADDR:OE2FGTOADDR:1191LINNM1ADDR:2A90FILLXLADDR:OOEAGTO.5ADDR:29AALINNUMADDR:2A8BFIND\$1ADDR:1775GTOLADDR:118CLNADDR:11A6FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:OAC3GTRMADADDR:0800LN10ADDR:1845FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1197LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	FC?C	ADDR:	116B	GTLINK	ADDR:	224E	LEFTJ	ADDR:	2BF7
FDIGITADDR:0E2FGTOADDR:1191LINNM1ADDR:2A90FILLXLADDR:00EAGTO.5ADDR:29AALINNUMADDR:2A8BFIND\$1ADDR:1775GTOLADDR:118CLNADDR:11A6FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1845FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1197LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	FDIG20	ADDR:	OE3D	GTLNKA	ADDR:	2247	LINN1A	ADDR:	2A93
FILLXLADDR:OOEAGTU.5ADDR:29AALINNUMADDR:2ABBFIND\$1ADDR:1775GTULADDR:118CLNADDR:11A6FIXADDR:1171GTUNNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1845FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1179LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	FDIGIT	ADDR:	0E2F	GTO	ADDR:	1191	LINNM1	ADDR:	2 A 90
FIND\$1ADDR:1775GTOLADDR:118CLNADDR:11A6FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1845FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1177LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2927HMS-HADDR:1193LNC20ADDR:1ABD	FILLXL	ADDR:	OOEA	GT0.5	ADDR:	29AA	LINNUM	ADDR:	2 88 B
FIXADDR:1171GTONNADDR:2959LN1+XADDR:1220FIX57ADDR:0AC3GTRMADADDR:0800LN10ADDR:1845FIXENDADDR:2918GTSRCHADDR:24DFLN360ADDR:1845FLGANNADDR:1651H-HMSADDR:1197LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2929HMS-HADDR:1193LNC20ADDR:1ABD	FIND\$1	ADDR:	1775	GTOL	ADDR:	118C	LN	ADDR:	11A6
FIX57ADDR:OAC3GTRMADADDR:OBOOLN10ADDR:1845FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:18D3FLGANNADDR:1651H-HMSADDR:1197LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2927HMS-HADDR:1193LNC20ADDR:1ABD	FIX	ADDR:	1171	GTONN	ADDR:	2959	LN1+X	ADDR:	1220
FIXENDADDR:2918GTSRCHADDR:24DFLN560ADDR:1BD3FLGANNADDR:1651H-HMSADDR:1179LNAPADDR:1A8AFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2927HMS-HADDR:1193LNC20ADDR:1ABD	ETX57	ADDR:	0003	GTRMAD	ADDR:	0800	LN10	ADDR:	1845
FLGANNADDR:1651H-HMSADDR:1199LNAPADDR:1ABAFLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2927HMS-HADDR:1193LNC20ADDR:1ABD	FIXEND	ADDR.	2918	GTSRCH	ADDR:	24DF	LN560	ADDR:	1BD3
FLINKADDR:2928HMS+ADDR:1032LNC10ADDR:1AAEFLINKAADDR:2927HMS-ADDR:1045LNC10*ADDR:1AADFLINKMADDR:2927HMS-HADDR:1193LNC20ADDR:1ABD	FLGANN	ADDR.	1651	H-HMS	ADDR:	1199	LNAP	ADDR:	1A8A
FLINKA ADDR: 2927 HMS- ADDR: 1045 LNC10* ADDR: 1AAD FLINKM ADDR: 2929 HMS-H ADDR: 1193 LNC20 ADDR: 1ABD	FLINK	ADDR:	2928	HMS+	ADDR:	1032	LNC10	ADDR:	1AAE
FLINKM ADDR: 2929 HMS-H ADDR: 1193 LNC20 ADDR: 1ABD	FLINKA	ADDR:	2927	HMS-	ADDR:	1045	LNC10#	ADDR:	1 AAD
	FLINKM	ADDR:	2929	HMS-H	ADDR:	1193	LNC20	ADDR:	1ABD

LNSUB	ADDR:	19F9	NEXT	ADDR:	0E50	ON/X13	ADDR:	188E
LNSUB-	ADDR:	19F8	NEXT1	ADDR:	0E45	ONE/X	ADDR:	11D6
LOADE	ADDR:	14FA	NEXT2	ADDR:	0E48	OPROMT	ADDR:	2E4C
LOG	ADDR:	11AC	NEXT3	ADDR:	0E4B	OUTLCD	ADDR:	2080
LSWKUP	ADDR:	0180	NFRC	ADDR:	00F1	OUTROM	ADDR:	2FEE
MASK	ADDP:	2088	NERENT	ADDR:	0004	OVFL10	ADDR:	1429
MEAN	ADDR:	1189	NEREST	ADDR:	00F7	P-R	ADDR:	11DC
MEMCHK	ADDR:	0205	NERKB	ADDR:	00C7	PIORTN	ADDR:	0200
MEMLET	ADDR:	0567	NERNC	ADDR:	0045	P6RTN	ADDR:	1670
MESSI	ADDR:	07FF	NERNIO	ADDR:	0158	PACH10	ADDR:	OSEC
MIDDIG	ADDR:	ODEO	NERPR	ADDR:	OOEE	PACH11	ADDR:	0355
MINUS	ADDR:	1054	NERPLI	ADDR:	00F0	PACH12	ADDR:	03FC
MOD	ADDR:	104F	NERSIG	ADDR:	0002	PACH4	ADDR:	0352
MODIO	ADDR:	1950	NERST+	ADDR:	OBEE	PACK	ADDR	11E7
MODE		1740	NERY		0000	PACKE	ADDR:	2002
MODEI		1745	NERYV		1004	PACKN		2000
MOUDEE		715C	NEPKRI		0006	PAKZOO		2055
MP1-10		1945	NETOOO		0000	PAKEND		2000
MP2-10		1040	NL TOZO			PAKERC		2052
MP2-13		1057	NL TOZO		0500	PAP111		OCED
MOV150		1045	NMAARS		0575	PAD117		
Mec	ADDA:	1665						00-3
MCGIOE		1000	NOPEGO		0106			0022
MEGIIO		1080	NOCKO		1410			0000
MSGIIO	ADDD-	1060	NOTETY	ADDD.	1017	PARAGI		0037
MOCAD	ADDD.	1000	NOTEIX	ADDD.	1970	PARR/J	ADDR:	0047
MSGAD	ADDK:	1018	NRMIU	ADDRI	1870		ADDR:	0077
MSGDE	ADDRI	1022	NKM11	ADDD.		PARSUS	ADDO.	
MSGDLY	ADDRI	0370	NRM12	ADDR:	18/2	PARSOG	ADDC.	0673
MSGE	ADDRI	1071	NRM13	ADDR:	1884	PAK5/3	ADDR:	
MSGML	ADDR:	1C2D	NRUUMS	ADDRI	2802	PARSDE	ADDR:	
MSGNE	ADDR:	1038	NUL 1\$	ADDRI	0263	PARSE	ADDR:	
MSGNL	ADDR:	1030	NUL 1\$3	ADDK:		PARSEB	ADDD-	0400
MSGND	ADDR:	1064	NUL 1\$5	ADDR:	OFRE	PAICHI	ADDR:	2100
MSGOF	ADDR:	1C4F	NULTST	ADDR:	OEC6	PAICHZ	ADDRI	2161
MSGPR	ADDR:	1043	NWGOOS	ADDR:	0704	PATCHS	ADDR:	21EE
MSGRAM	ADDR:	1C67	NXBY13	ADDK:	2987	PATCHS	ADDR:	2153
MSGROM	ADDR:	1C6A	NXBYTA	ADDR:	2989	PAICHO	ADDRI	1000
MSGTA	ADDR:	1C5F	NXBYTO	ADDR:	2008	PATCH9	ADDR:	1003
MSGWR	ADDR:	1056	NXL1B	ADDR:	2823	PCKDUR	ADDR:	1650
MSGX	ADDR	1C75	NXL3B2	ADDR:	2B63	PCT	ADDRI	1061
MSGYES	ADDR:	1C62	NXLCHN	ADDR:	2849	PCTCH	ADDR:	11EC
NAM40	ADDR:	0F34	NXLDEL	ADDR:	2afd	PCTOC	ADDR:	0007
NAM44\$	ADDR:	OF7D	NXLIN	ADDR:	2814	PGMAON	ADDR:	0956
NAME20	ADDR:	OEE6	NXLIN3	ADDR:	285F	PI	ADDR:	1242
NAME21	ADDR:	OEE9	NXLINA	ADDR:	281F	PI/2	ADDR:	199A
NAME33	ADDR:	OEEF	NXLSST	ADDR:	2AF7	PKIOAS	ADDR:	2114
NAME37	ADDR:	0F09	NXLTX	ADDR:	2877	PLUS	ADDR:	10 4 A
NAME4A	ADDR:	OFA4	NXTBYT	ADDR:	2007	PMUL	ADDR:	1 BE9
NAME4D	ADDR:	OFAC	OCTDEC	ADDR:	132B	PRIORT	ADDR:	0372
NAMEA	ADDR:	OED9	OFF	ADDR:	11C8	PR14RT	ADDR:	1365
NBYTAO	ADDR:	2D04	OFSHFT	ADDR:	07 49	PR15RT	ADDR:	22DF
NBYTAB	ADDR:	2D06	ON/X10	ADDR:	188B	PR3RT	ADDR:	OEDD

PROMF1	ADDR:	05CB	R0W940	ADDR:	1598	SKP	ADDR:	162F
PROMF2	ADDR:	0 5 D3	RST05	ADDR:	0098	SKPDEL	ADDR:	2349
PROMFC	ADDR:	0507	RSTANN	ADDR:	0759	SKPL IN	ADDR:	2059
PROMPT	ADDR:	1207	RSTKB	ADDR:	03BE	SNR10		2435
PSE	ADDR:	11FC	RSTMSO	ADDR:	0390	SNR12	ADDR.	2441
PSESTP	ADDR:	03AC	RSTMS1		0392	SNROM		2400
PTBYTA	ADDR:	2323	RSTMSC		0384	SOPIO		1005
PTBYTM	ADDR:	2921	RSTSFO		0807			1000
PTRYTP	ADDR:	2328	RETER		0100	COPT	ADDR:	1001
PTLINK	ADDR.	2310	PETET		0007			
PTI NKA		2318	PTIDI			COT	ADDD.	2000
PTINKR		2321	DTN		1767	JJI CCTDCT	ADDD.	127E
PUTPC		2321	DTNTA	ADDC:	1236	331831 CCTCAT	ADDD.	2200
PUTPCA		2337	PTOD	ADDD	2725	SSILAI	ADDK:	0884
PUTPCA	ADDG.	2337	RIUD	ADDRI	1980	STATUK	ADDRI	1008
PUTPCE	ADDD:	2326	RUN	ADDK:	0702	STAYUN	ADDR:	12A3
PUTPO	ADDR:	2331	RUNING	ADDR:	011D	STBT10	ADDR:	2EA3
PUIPLL	ADDRI	2AF 3	RUNNK	ADDR:	04E9	STBT30	ADDR:	2FE0
PUTPEX	ADDR:	232F	RW0110	ADDR:	04F1	STBT31	ADDR:	2FE5
PUTREG	ADDR:	215E	RW0141	ADDR:	037E	STDEV	ADDR:	11 <u>82</u>
QUTCAT	ADDR:	0305	R^	ADDR:	1260	STFLGS	ADDR:	16A7
R-D	ADDR:	120E	R^SUB	ADDR:	14ED	STK	ADDR:	ODF3
R-P	ADDR:	11C0	SAR021	ADDR:	2640	STKOO	ADDR:	ODFA
R/S	ADDR:	1218	SAR022	ADDR:	2641	STK04	ADDR:	0E00
R/SCAT	ADDR:	0 BB7	SAROM	ADDR:	260D	STMSGF	ADDR:	03A7
RAD	ADDR:	111F	SAVR10	ADDR:	27D5	STO	ADDR:	10DA
RAK06	ADDR:	OC7F	SAVRC	ADDR:	27DF	STO	ADDR:	1288
RAK60	ADDR:	06FA	SAVRTN	ADDR:	2703	STO+	ADDR:	1280
RAK70	ADDR:	070A	SCI	ADDR:	1265	STO-	ADDR:	1289
RCL	ADDR:	122E	SCROLO	ADDR:	2CDE	STO/	ADDR:	1201
RCSCR	ADDR:	1934	SCROLL	ADDR:	2CDC	STOLCC	ADDR:	2E5B
RCSCR#	ADDR:	1932	SD	ADDR:	1D10	STOP	ADDR:	1215
RDN	ADDR:	1252	SEARC1	ADDR:	2434	STOPS	ADDR:	03A9
RDNSUB	ADDR:	14E9	SEARCH	ADDR:	2433	STOPSB	ADDR:	013B
REGLFT	ADDR:	059A	SEPXY	ADDR:	14D2	STOREC	ADDR:	0758
RFDS55	ADDR:	0949	SERR	ADDR:	24E8	STOSTO	ADDR	1240
RG9LCD	ADDR:	OBEF	SETQ=P	ADDR:	0815	STSCR	ADDR:	1922
RMCK05	ADDR:	27EC	SETSST	ADDR	1769	STSCR	ADDR	1920
RMCK10	ADDR:	27F3	SF	ADDR	1269	SUBONE		1802
RMCK15	ADDR:	27F4	SGT019	ADDR	2509	SUMCHK		1667
RND	ADDR:	1257	SHE 10	ADDR	1860	SUMCK2		1440
ROLBAK	ADDR:	2542	SHEAO		1840	TON		1007
ROMCHK		2756	GLIET		1740	TOTTMA		1202
ROMUOS		0440	STEMA		1000	TOTTMO		2575
POMLITS		0660	SIGHAT		1240	TENTOY	ADDD.	2004
POMUEN		0676	SIGMA-		1200	TENTUA		12LH
		0035	SIGNM-	ADDD.			ADDR:	ZUAF
DOWO		0833	310N	ADDC:	1337	IGSHF 1	ADDRI	175/
		£/00 0204	SIGKED	HUUKI	12//	1175	ADDKI	1050
RUWIU		VANO Osad	SINCO	HUUK:	1288		HUUK!	1-82
RUWII	HUUK:	20HU 0510	SINFK	ADDO	174/	IUSSHF	ADDR:	1FE5
RUW12	HUDKI	0413 A1CA	SINFKA	ADDRI	1748	IUNE	ADDR:	1200
RUW120	ADDRI	V46/	SILE	ADDK:	1292	IUNE7	ADDR:	1716
KUMAQQ	ADDR:	V487	SIZSUB	ADDR:	1797	TONE7X	ADDR:	16DB

TONEB	ADDR:	16DD	X>0?	ADDR:	131A	XLN1+X	ADDR:	1873
TONSTE	ADDR:	0054	X>Y?	ADDR:	1320	XMSGPR	ADDR:	056D
TOOCT	ADDR:	1F79	XARCL	ADDR:	1696	XPRMPT	ADDR:	0340
TOPOL	ADDR:	1D49	XASHF	ADDR:	1748	XR/S	ADDR:	079D
TOREC	ADDR:	1E75	XASN	ADDR:	276A	XRAD	ADDR:	1722
TRC10	ADDR:	19A1	XASTO	ADDR:	175C	XRDN	ADDR:	14BD
TRC30	ADDR:	1E38	XAVIEW	ADDR:	0364	XRND	ADDR:	0A2F
TRCS10	ADDR:	1E57	XBAR	ADDR:	1CFE	XROM	ADDR:	2FAF
TRG100	ADDR:	1E78	XBAR#	ADDR:	1D07	XROMNF	ADDR:	2F6C
TRG240	ADDR:	1ED1	XBEEP	ADDR:	16D1	XROW1	ADDR:	0074
TRG430	ADDR:	1F5B	XBST	ADDR:	2250	XRS45	ADDR:	07BE
TRGSET	ADDR:	21D4	XCAT	ADDR:	OB80	XRTN	ADDR:	2703
TSTMAP	ADDR:	14A1	XCF	ADDR:	164D	XR^	ADDR:	14E5
TXRW10	ADDR:	04F6	XCLSIG	ADDR:	14BO	XSCI	ADDR:	1600
TXTLB1	ADDR:	2FC6	XCLX1	ADDR:	1102	XSF	ADDR:	164A
TXTLBL	ADDR:	2FC7	XCOPY	ADDR:	2165	XSGREG	ADDR:	1659
TXTROM	ADDR:	04F5	XCUTB1	ADDR:	0091	XSIGN	ADDR:	OFF4
TXTROW	ADDR:	04F2	XCUTE	ADDR:	015B	XSIZE	ADDR:	1795
TXTSTR	ADDR:	04F6	XCUTEB	ADDR:	0090	XSST	ADDR:	2260
UPLINK	ADDR:	2235	XDEG	ADDR:	171C	XSTYON	ADDR:	1411
VIEW	ADDR:	12D6	XDELET	ADDR:	22AF	XTOHRS	ADDR:	1982
WKUP10	ADDR:	0184	XDSE	ADDR:	159F	XTONE	ADDR:	16DE
WKUP21	ADDR:	01 A 7	XECROM	ADDR:	2F4A	XVIEW	ADDR:	036F
WKUP25	ADDR:	01 BA	XEND	ADDR:	2728	XX\$0?	ADDR:	1611
WKUP70	ADDR:	01F5	XEQ	ADDR:	1328	XX\$Y?	ADDR:	1629
WKUP80	ADDR:	01FF	XEQC01	ADDR:	24EA	XX<0?	ADDR:	15FA
X\$0?	ADDR:	12DC	XFS?	ADDR:	1645	XX<=0?	ADDR:	160D
X\$Y?	ADDR:	12E2	XFT100	ADDR:	18EC	XX<=0A	ADDR:	1609
X/Y13	ADDR:	1893	XGAOO	ADDR:	248D	XX<=Y?	ADDR:	1601
XIOTOX	ADDR:	1BF8	XGI	ADDR:	24C7	XX <y?< td=""><td>ADDR:</td><td>15EF</td></y?<>	ADDR:	15EF
X<0?	ADDR:	12E8	XGI07	ADDR:	24DA	XX=0?	ADDR:	1606
X<=0?	ADDR:	12EF	XGI57	ADDR:	24C1	XX=Y?	ADDR:	1614
X<=Y?	ADDR:	12F6	XGNN10	ADDR:	2512	XX>0?	ADDR:	15F1
X<>	ADDR:	124C	XGNN12	ADDR:	2514	XX>Y?	ADDR:	15F8
X<>ROW	ADDR:	0026	XGNN40	ADDR:	255D	XXEQ	ADDR:	252F
X<>Y	ADDR:	12FC	XGOIND	ADDR:	1323	XY^X	ADDR:	1B11
X <y?< td=""><td>ADDR:</td><td>1308</td><td>XGRAD</td><td>ADDR:</td><td>1726</td><td>X^2</td><td>ADDR:</td><td>106B</td></y?<>	ADDR:	1308	XGRAD	ADDR:	1726	X^2	ADDR:	106B
X=0?	ADDR:	130E	XGTO	ADDR:	2505	Y-X	ADDR:	1421
X=Y?	ADDR:	1314	XISG	ADDR:	15A0	Y^X	ADDR:	102A

CARE_AND_WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the feet of the eprom's are protected against bending. If any brakes of, the eprom would be worthless. Do not connect any external power supply to the eproms. Protect the eproms against static charges, otherwise irreparrable damage to the eproms can result. Do not under any circumstances remove the labels on the eproms, as these labels protect the eproms against losing their data by accidental wipe-out through to much U.V. light on the eproms.

Limited 180 day's warranty

For 180 day's from the date of original purchase the 84081B DAVID-ASSEM-Eprom set is warranted against defects in materials and workmanship affecting electronic performance, but not software content. If you sell your unit or present it as a gift, the warranty is automatically transferred to the new owner and remains in effect for the original 180 day's period. During the warranty period, we will repair or, at our option, replace at no charge a product that proves to be defective, provided that you return the product, shipping prepaid, to ERAMCO SYSTEMS, or their official service representative.

WHAT IS NOT COVERED

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by other than ERAMCD SYSTEMS or their official service representative.

No other express warranty is given. Any other implied warranty of mechantabillity or fitness is limited to the 180 day's period of this written warranty. In no event shall ERAMCO SYSTEMS be liable for consequential damages. This liability shall in no way excede the catalog price of the product at the moment of sale.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. ERAMCO SYSTEMS shall have no obligation to modify or update products once sold.

INDEX

Agreements. 13 Alpha, key. 13, 30 ALPHA DATA. 54, 37 Annul, sequence. 9, 22 , message. 35 AFC, definition. 15 , in display. 15 , change. 16, 17 , storage. 42 Append character. 27 Arithmetic instructions. 27, 28 Assembler. 4, 5 , enter. 14 , leave. 14, 34 Auto repeat. 6, 21, 49 Back arrow key. 13, 16, 22, 44 Battery power. 4 4 13, 39 , errors. 54 BEGIN 14, 43, 45 BEGIN 13 , constant. 44 , constant. 46 CONT. function. , technique. 44 Contents. 27, 71, 43 , words. 5, 79, 17, 18 Jackaters. 25, 26 Disassembler. 15 Jackaters. 25, 26 Crul/process	Adresses, important	46
Alpha, key	Agreements	13
ALPHA DATA	Alpha, key	13. 30
Annul, sequence	ALPHA DATA	54. 37
, message	Annul, sequence	9, 22
APC, definition	, message	35
, in display	APC, definition	15
, change	, in display	15
, storage. 42 Append character. 27 Arithmetic instructions. 27, 28 Assembler. 4, 22 ASSM. 13, 54 ASSM mode. 4, 5 , enter. 14 , leave. 14, 34 Auto repeat. 6, 21, 49 Back arrow key. 13, 16, 22, 44 Battery power. 4 Battery power. 4 georgenetic stresses 54 Brackets () 11, 39 georgenetic stresses 54 Brackets () 13 BST. 5, 16, 17, 19 , technique. 44 CONT. function , constant. 22 , technique. 44 Contents. 22 , technique. 44 Contents. 22 , words. 7, 17, 43 , words. 7, 17, 18 DATA ERROR. 35 Disassembler. 15 Disassembler. 14 45 25 Decimal point, [.]	, change	16, 17
Append character. 27 Arithmetic instructions. 27, 28 Assembler. 4, 22 ASSM mode. 4, 5 . enter. 14 . leave. 14, 34 Auto repeat. 6, 21, 49 Back arrow key. 13, 16, 22, 44 Battery power. 4 BEG/END. 14, 43, 45 BEG/END. 11, 39 , errors. 54 Brackets (). 13 BST. 51 , constant. 46 CONT., function. 16, 17, 20 , anull. 22 , technique. 44 CONT., function. 16, 17, 20 , anull. 22 , technique. 44 Contents. 7, 54 Decimal parameter 25 Disassembler. 15 Display characters. 54 EEX key. 25 Disassembler. 13 S7 54 Decimal point, [.], key. 25 Disassembler. 15 Dis	, storage	42
Arithmetic instructions. 27, 28 Assembler. 4, 22 ASSM 13, 54 ASSM mode. 4, 5 , enter. 14 , leave. 14, 34 Auto repeat. 6, 21, 49 Back arrow key. 13, 16, 22, 44 Battery power. 4 BEG/IN 14, 43, 45 BEG/END 11, 39 , errors. 54 Brackets (). 13 BST. 51, 16, 17, 19 , technique. 44 , constant. 46 CONT. , function 16, 17, 20 , anull. 22 , technique. 44 Contents. 22 (contents. 22 (contents. 7, 17, 43 words. 37, 54 Decimal parameter 25 Disassembler 11, 39 , errors. 54 EEX key. 25, 26 Decimal point, [.], key. 25 Disassembler 15 Display character. 54 Er	Append character	27
Assembler 4, 22 ASSM	Arithmetic instructions	27, 28
ASSM	Assembler	4, 22
ASSM mode	ASSM	13, 54
, enter. 14 , leave. 14, 34 Auto repeat. 6, 21, 49 Back arrow key. 13, 16, 22, 44 Battery power. 4 BEGIN 14, 43, 45 BEG/END. 11, 39 , errors. 54 Brackets () 13 BST. 5, 16, 17, 19 , technique. 44 , constant. 46 CONT. , function 16, 17, 20 , anull. 22 , technique. 44 Contents. 2 CPU/processor. 18, 49, 59 Data, characters/strings. 7, 17, 43 , words. 6, 7, 9, 17, 18 DATA ERROR. 37, 54 Decimal parameter. 25, 26 Decimal point, [.], key. 25 Display character. 15, 40, 44 DISTOA. 11, 39 , errors. 54 Ext key. 25, 26 Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example ro	ASSM mode	4, 5
, leave	, enter	14
Auto repeat. 6, 21, 49 Back arrow key. 13, 16, 22, 44 Battery power. 4 BEGIN	, leave	14, 34
Back arrow key. 13, 16, 22, 44 Battery power. 4 BEGIN	Auto repeat	6, 21, 49
Battery power 4 BEGIN 14, 43, 45 BEG/END. 11, 39 grackets () 13 BST. 5, 16, 17, 19 , technique 44 , constant. 46 CONT. function , anull 22 , technique 44 , constant. 22 , technique 44 CONT. function , anull 22 , technique 44 Contents. 2 CPU/processor 18, 49, 59 Data, characters/strings 7, 17, 43 , words. 6, 7, 9, 17, 18 DATA ERROR. 25, 26 Decimal point, [.], key 25 Disassembler 15 Display character 15 Mod. 11, 39 , errors 54 Ext key 25, 26 Errors 30, 37, 38, 54 Extensions 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine 40, 55 Function	Back arrow key	13, 16, 22, 44
BEGIN 14, 43, 45 BEG/END 11, 39 servers 54 Brackets () 13 BST 5, 16, 17, 19 , technique 44 , constant 46 CONT., function 16, 17, 20 , anull 22 , technique 44 Contents 2 CPU/processor 18, 49, 59 Data, characters/strings 7, 17, 43 , words 6, 7, 9, 17, 18 DATA ERROR 37, 54 Decimal point, [.], key 25 Disassembler 15 Display character 15, 40, 44 DISTOA 11, 39 , errors 30, 37, 38, 54 Extensions 11, 45 Field 14, 45 Field 14, 45 Field 14, 43, 45 States 16, 17, 20 , anull 17, 30, 31, 32 OGTU / GOSUB 17, 30, 31, 32 OGTU / KEY 32	Battery power	4
BEG/END. 11, 39 , errors. 54 Brackets (). 13 BST. 5, 16, 17, 19 , technique. 44 , constant. 46 CONT. function. , anull. 22 , technique. 44 Contents. 2 CPU/processor. 18, 49, 59 Data, characters/strings. 7, 17, 43 , words. 6, 7, 9, 17, 18 DATA ERROR. 37, 54 Decimal parameter. 25, 26 Decimal point, [.], key. 25 Disassembler. 15 Display character. 54 EEX key. 25, 26 Errors. 54 Extensions. 11, 39 , errors. 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO /GOSUB. 17, 30, 31, 32 GOTO ADR. 32	BEGIN	14. 43. 45
, errors. 54 Brackets (). 13 BST. 5, 16, 17, 19 , technique. 44 , constant. 46 CONT. function. , anull. 22 , technique. 44 Contents. 2 CPU/processor. 18, 49, 59 Data, characters/strings. 7, 17, 43 , words. 6, 7, 9, 17, 18 DATA ERROR. 37, 54 Decimal parameter. 25 Disassembler. 15 Display character. 15 Display character. 30, 37, 38, 54 Errors. 30, 37, 38, 54 Errors. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO ADR. 32 GOTO KEY. 32	BEG/END.	11. 39
Brackets ()	, errors	54
BST	Brackets {}	13
, technique	BST	5. 16. 17. 19
, constant	, technique	44
CONT. , function. 16, 17, 20 , anull. 22 , technique. 44 Contents. 2 CPU/processor. 18, 49, 59 Data, characters/strings. 7, 17, 43 , words. 6, 7, 9, 17, 18 DATA ERROR. 37, 54 Decimal parameter. 25 Disassembler. 15 Display character. 15, 40, 44 DISTOA. 11, 39 , errors. 54 EEX key. 25, 26 Errors. 54 Field. 11, 39 , for any character. 54 EX key. 25, 26 Frortos. 54 EX key. 25, 26 Errors. 54 Field. 11, 39 , errors. 54 Field. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO ADR. 32 GOTO KEY. 32	, constant	46
<pre>, anull</pre>	CONT. , function	16. 17. 20
, technique	, anull	22
Contents	, technique	44
CPU/processor. 18, 49, 59 Data, characters/strings. 7, 17, 43 , words. 6, 7, 9, 17, 18 DATA ERROR. 37, 54 Decimal parameter. 25, 26 Decimal point, [.], key. 25 Disassembler. 15 Display character. 15, 40, 44 DISTOA. 11, 39 , errors. 54 EEX key. 25, 26 Errors. 54 EEX key. 25, 26 Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO /GOSUB. 17, 30, 31, 32 GOTO ADR. 32 GOTO KEY. 32	Contents	2
Data, characters/strings. 7, 17, 43 , words. 6, 7, 9, 17, 18 DATA ERROR. 37, 54 Decimal parameter. 25, 26 Decimal point, [.], key. 25 Disassembler. 15 Display character. 15, 40, 44 DISTOA. 11, 39 , errors. 54 EEX key. 25, 26 Errors. 54 EXtensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO /GOSUB. 17, 30, 31, 32 GOTO ADR. 32	CPU/processor	18.49.59
<pre>, words</pre>	Data, characters/strings	7. 17. 43
DATA ERROR	words	6. 7. 9. 17. 18
Decimal parameter. 25, 26 Decimal point, [.], key. 25 Disassembler. 15 Display character. 15, 40, 44 DISTOA. 11, 39 , errors. 54 EEX key. 25, 26 Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO ADR. 32 GOTO KEY. 32	DATA ERROR	37. 54
Decimal point, [.], key	Decimal parameter	25. 26
Disassembler. 15 Display character. 15, 40, 44 DISTOA. 11, 39 , errors. 54 EEX key. 25, 26 Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO ADR. 32 GOTO KEY. 32	Decimal point, [.], key	25
Display character. 15, 40, 44 DISTOA. 11, 39 , errors. 54 EEX key. 25, 26 Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO ADR. 32 GOTO KEY. 32	Disassembler	15
DISTOA. 11, 39 , errors. 54 EEX key. 25, 26 Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO /GOSUB. 17, 30, 31, 32 GOTO ADR. 32	Display character	15. 40. 44
, errors	DISTOA.	11. 39
EEX key. 25, 26 Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO/GOSUB. 17, 30, 31, 32 GOTO ADR. 32 GOTO KEY. 32	, errors	54
Errors. 30, 37, 38, 54 Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO/GOSUB. 17, 30, 31, 32 GOTO ADR. 32 GOTO KEY. 32	EEX key	25. 26
Extensions. 11, 45 Field. 16, 27, 28, 49 FNCTOA, example routine. 40, 55 Function. 13 GOTO/GOSUB. 17, 30, 31, 32 GOTO ADR. 32 GOTO KEY. 32	Errors	30, 37, 38, 54
Field	Extensions	11. 45
FNCTOA, example routine	Field	16, 27, 28, 49
Function 13 GOTO/GOSUB 17, 30, 31, 32 GOTO ADR 32 GOTO KEY 32	FNCTOA. example routine	40.55
GOTO/GOSUB 17, 30, 31, 32 32 GOTO ADR 32 32 GOTO KEY 32 32	Function	13
GOTO ADR	GOTO/GOSUB	17. 30. 31. 32
GOTO KEY	GOTO ADR	32
	GOTO KEY	32
Header	Header	36, 37, 41, 42

Hexadecimal parameter, 1 digit	25
, 2 digits	31
, 4 digits	32
HP25, write over	23
ID#, definition	36
Instruction	13, 59, 51
I/O buffer	11. 36. 43
Jacob, Steven R. notation	5, 12, 15, 16, 22, 30
JNC / JC	17. 31. 50
JNC? / JC?	33. 43
Jumps	10. 17. 20. 31
Jump subroutine	30
JUMP TOO FAR	33. 35
key assignments	4
key sequence, instructions	22, 25, 28, 51
, annull	22
keystrokes	12. 22. 51
Labels, introduction	4.8.10
, storage	11. 36
, use	19. 30
, format in buffer	43
LD@R.	25
?LBL, message	14. 34. 35. 54
Messages	34, 35, 37, 54
Miscellaneous instructions	24. 28
MLDL RAM	9.13
MNFR-LBLS, ROM	13. 40. 46. 61
NEXT, mainframe entrie	41. 42
Next step	9.23
NONEXISTENT.	31. 35. 37. 38. 54
Notation, Steven R. Jacob's	5. 12. 15. 16. 22. 27
NO WRITE	35. 54
ON, key	14
PACKING- TRY AGAIN	12. 14. 35. 41. 54
Print routine	37, 58
Processor, CPU	18, 49, 59
Prompt, symbol	22, 25, 27
Punctuation	15
READ / WRIT	26
READ DATA	17
Redefined keyboard	(4), 9, 22, 51
REG>BUF	11, 36, 37
, errors	38, 54
Register names	26
SELP	18, 25
Shift, key	13, 30, 31, 32, 33
SIZE	36
SST	5, 16, 17, 19
Technical details	41
Unused instructions	21
USER, key	15
USER-off mode	7, 15, 16, 23
USER-on mode	15, 16, 24
Warnings	12, 23, 37, 38
WRIT / READ	26

Special thanks to Peter van Swieten, Michael Markov, and the people of ERAMCO SYSTEMS, for their most appreciated stimulating criticisms.

David A. van Leeuwen Noordweg 54 2641 AM Pijnacker the Netherlands.