
ERAMCO SYSTEMS

ES 84081B

DAVID-ASSEM

MK —- 2

OWNER 'S MANUAL

July 1984

84081B—-M004001

Printed in the Hetnerlands (c) Eramco systems
W. van Alcmade <tr .l.4

1785 LS Den Helder

The Netherlands

II.

III.

Iv.

Iv.

Low

2.

4.

3S.

6.

7.

8.

9.

10.
11.

[.
N

W
W
W
W
W
W

C
U
P
W
R

Table of Contents

Introduction... cc ie iii tiie es ities onccncacanaoancenns 4

Special features.c. cite umencnnnccnaeanancamacans S

8STing and BSTing with ASSM. citer eemrcronasonnns S
Disassembling data words... ieee connnnnccranns 6
Disassembling characters.cccirerecreccencnanns « 7
The USER-off mode. ...cvecvceeeernaan neues ssmmesazessneance 7

Labels... iii i iii itis tite eesncncacennomnunsoncnnomacenns 8

The redefined keyboard. cco cr cocci iin eececnacananonans 3g

Keying in data words...... ems asnesananen emeusnecsrrannn 10

JUMPS. nase e scence ncanan came cass aan “ams asecraesenrarrene 10

BUF>REG and REGBUF... cic iccnnncocecaaacassennnns 11
BEG/END and DISTOA..... cece eernccen cess rcscvanrens ve. 11
Possible extensions........... Ser secacemneacanarnoanennan 11

Warnings. ...c.ccceeercaanna. seeecnaa cs acmmeamnan cseveecnana 12

User instructions.......... ceenuns= tac svesnccnnocenannnnsn 13

The function ASSM XROM 02,01. wrasse snonnmen 13

How to enter ASSM mode. cease cnes ewan. cence 14

How to leave ASEM mode.c. citi iicncccceannnananee 14

ASSM mode as disassembler......... eseveaannnumn smeenanns 15

USER-off in disassembling.......c.. icici annnannns 15

The USER-on mode in disassembling........... wwvevenmnann 146

Instructions after a SELP instruction.......ccvcvvenn.. 18

The label option......ccecceac.. cececsmesmemnssans= neaaana 19

Auto repeat............ ccscererenseas emcee nnecnanan ceews 21

Unused instructions.c.ccacnoaaa. cesessens earssase 21

Frage 2

4. ASSM mode as assembler...... cecum mass mannan. ceees 22

4.1 Direct programmable instructions........ camanan cease annnn 24

4.2 LDEBR and SELF... ccc. ceincreranncnenasasssscnnasnsannas 5

4.3 RCR, R=, ?R=, SETF, CLRF, 7?FSET, ?Fl...ccccucecscencss= «se 25
4.4 WRIT and READ...... creme sesaaernnana Ceara emasaanananna 26

4.5 Singular arithmetic instructions.ccceacicencennnns 2

4.6 Plural miscellaneous instructions.........c.cccenceccenan 28
4.7 Jump subroutines........ccuiccinacccanccnassmnannnnnas cnea 3

4.8 All jumps....... Seem meseessemssasearn anna. casmcaann 31

S. Messages in ASSM.............- cesumemsumeneanse ens cneen 33

EB BUF>REG and REG>BUF. ccc. ncn ennnns sees emasee cans 36

1. BUF>REG XROM 02,02. cccececanscacnnces eens mmmassenasanana 36

1.1 Error messages.....cccceec.- ac acsamsasaesnacenanannanan .. 37

1.2 Warning. ..cccceeecececceccacans es evemases sane na saan . 37

2. REG>BUF XROM 02,03........ Ge mmasavecemacesemaacoaannnans 37
2.1 Error messageS...ccec-seasvancacanaa cesamamnna, «ee 38

2.2 Warning...ececvennccecens seem msmevsamsssasceanacnannnsumoa 38

Cc BEG/END and DISTOA XROM 02,04 and 02,05... .ccccnrcccacen. 39

Vv Technical details. ..ccccreuccaccaranccaasacasannnns «nasse 40

1. Register use with ASSM. ccc... es emss amma nna 40

2. Format of a label in a buffer........ sesso cnnne casuensmaa 43

3. BST and CONT. .ca.veracncaccennns cers vesmcencanamneannnnn 44

4. Extensions of DAVID-ASSEM.cccavnn- teams essnnmanana 45

5. Important addresses......... eemameemances assesses masacans 446

APPENDICES

Appendix A Keyboard definition figures....c.cceecccccnncccenas 47

Appendix B Instructionset of HP41 CPU. ...cevuuccnaa. cenvessas 49
Appendix C Instructions and their keysequencesS.....ccecacenss S51

Appendix D Error messSageS..cccaccascccccscscsnnascnnnsannnacsns S54

Appendix E Example program : FNCTOA.....cccscreasssscccacnnnss O09
Appendix F Errors of HP41 CPU.c.ccceavecccncennscs ceanases O59

Appendix 6 Mainframe label rom.......cccaccnas wesmesascansan. 61

CARE AND WARRANTY....... remenees camaana mearssovenscemsasacascnaannan &7

INDEX. cenenmonasan= teense cemmmnmEnaa een. cesses esecmaean 68

Page 3

I Introduction

From the moment that it was possible to build machine lanquage
extensions for the HP-41 calculator, a good assembler/disassembler
proved to be indispensable. This is why DAVID-ASSEM has been developed.

DAVID-ASSEM is a ROM consisting of S functions, which is designed to
provide an easy means of entering Machine Coded programs in a user-—
friendly format, and for maintaining and displaying thus written
programs.

The main function, ASSM, provides a complete operating environment,
that resembles the PRGM-mode the calculator provides for entering and
editing ordinary programs. It features a redefined keyboard to reduce
entering a step to a minimum of keystrokes (varying from 1 to 3

excluding parameters), while persecuing an easy-to-remember
correspondence to the instruction mnemonics; program steps are displayed
in Stephen Jacobs’ notation. As an alternative a HEX-mode may be used
for keying in and displaying hex—-data-items. A powerful feature is the

possibility to assign an alphanumerical label to any address (even in

ROM), which may then be used in stead of it while entering jumps etc.,
and will also be used automatically whenever applicable in displaying
program steps. It is even possible to refer to an as yet undefined

label, which will automatically be resolved as soon as the label is

defined. Also the ASSM function will perform the cumbersome computations

needed to decide between the various forms of branches, gotos and

(relocatable subroutine jumps. Text-stings following a ?NC XQ O7EF call
are displayed as such. Finally it is possible to step forward and

backward through a program. The most significant difference with the

behavior of the calculator 's PRGM-mode, is that ASSM will not relocate
code—seqgments, and therefore will OVER-VWRITE steps in the code rather
than inserting them.

Because Machine Code knows no labels physically present within the
code (like with user-code), this information is stored seperately by

ASSM. This is done in storage space seperate from the user-registers,
namely an 1/0 buffer, to achieve transparancy to the user. However, two

functions BUF>REG and REG>BUF are provided to enable saving and

restoring the buffer information using such devices as card-readers:

they transfer the information from a buffer to the user-register or

back. Actually the information of any 1/0 buffer can be handled by thes
functions.

In order to enable printing the program in the same format as ASSM

(including labels under user-program control, the functions BEG/END and
DISTOA are provided.

David-—-Assem is a program, or operating system if you want, that can be

extended in the future by users themselves or by ERAMCO SYSTEMS. Yet now

there is a 4K ROM available through ERAMCO SYSTEMS that adds all
mainframe entries as they are listed in the VASM listings of HP, but

more information about this ROM can be obtained through ERAMCO SYSTEMS.

Fage 4

David-ASSEM provides five functions, of which the function ASSM is the
most important. Therefore we shall treat this function first.

If you enter ASSM mode by executing the function ASSM, automaticaly
the step is viewed where you were, while leaving ASSM mode for the last
time. If it is the first time you enter ASSM mode, a beginning address
is asked.

Every step in ASSeMbler mode is (in general) viewed according to
Steven R. Jacaobs’s notation, however, there are some deviations, such as
C=M ALL which is viewed as C=M, B=C @R, which is viewed as G=C.

11.1. SS8T-_and_BST—ing with ASSM

Being in ASSM mode you can "walk" through any machine level program by
pushing SST and BST, which are located on the SS5T and BST key. One, two,
three or multi-word instructions are viewed as one step, both 88Ting and
BSTing.

e.g. Put on USER mode, assign ASSM to [¥+1, and

Push See Comment

ASSM (I+) BEGIN ___ here you enter ASSM mode
0000 ?NC GO 0180 step 0000

SST ?NC GO 0O1AD step 0002
SST C=0 ALL step 0004
SST RAM SLCT

887,857 M=C step 0007

BST READ 3(x) step 0006
[<-1 CONT. _
[<-1 {x-register?’ here you've left ASSM mode

You can see here that program steps consisting of more than one word
are disassembled as one step.

?NC GO 0180 is actually 201, 006, two words long.

Page 5S

DAVID ASSEM EFPROMSET MK - 2

A featwe of 557 and BST is that if one of these is pressed longer
than one second, they will act like they are pressed every 1/2 second.
In other words, if you keep pressing the SST key, every 1/2 second the
next {or previous} line will be viewed.

n “Ge Push

ASEM
88T (hold)

release

BST (hold)
!

release

See

READ 3x)

M=C
=8T

C=0 xs

CLRF 7

C<>8T

ZFSET 6

C<>8T
CLRF 7

C=0 xs

C=8T

g_datawords

ASSM provides steps being viewed as data words automatically in cases
that the HP41 CPU treats them as such. This is after a LDI, after a SELP
instruction and after a few mainframe subroutine calls.

Push

€.g. £<-1

07FF
868T

[<1 O2EC0

88T

See

CONT.

LDI
HEX:OFD =,

2NC XB 2Z2FS

HEX:038 8

Page 6

Comment

where do you want to
continue?

step 07FA; this step is

viewed as being a data word

instead of an instruction.
22F5 is ERROR subroutine

needs a dataword, 038

Sometimes ROM words are meant as character data. In one particular
case, after a TNC X@ O7EF (MESS5L), ASSM places the characters one after
another between quotes in the display. All characters will be treated as
ane step.

Fush See Comment

e.g. <— 2FEE NC X@ O7EF O7EF needs a character string
after its call

S557 “*XROM"
SST RTN

11.4 The USER-off mode

ASSM knows a special mode for the case that instructions should be
disassembled or assembled (in tables etc.) as data words: the user-off
mode. You can enter or leave this mode by pressing USER key, which
toggles the annunciator too.

Fush See Comment

e.g. £31 BST "XROM"™ this is step 2FF0 again
user 2FFO0 018 X

SST 2FF1 012 R

SST 2FF2 OOF O

£1 BST 2FF1 O12 R

USER =0 P-Q

This last step has no meaning, for it means "R" of "XROM". You
probably have noticed that in USER-off mode also a 4-digit hexadecimal
address and a display character appear in the display.

Page 7

11.5 Labels

A very helpful tool is the label option. To any given address a label
can be assigned, and you can store up to 254 labels and their locations
in HF 41CVY memory. Labels themselves will be viewed and all kinds of
jumps to addresses to which a label is assigned will be disassembled as
jumps to those labels.

Push See Comment
e.g.

£— 000D JNC +0B 0018 Q00D + OB = 0018
<- 0018 A<>C ALL assign to step
{1 LBL ALPHA LBL" _ 0018 label “HERE"
HERE Alpha LBL "HERE
<—000C ?FSET 6
SST JNC +HERE remember, this was a

JNC +0B 0018 !
8ST ?FSET S

SST JNC +HERE
<—- 0025 inc —HERE here stood a JNC ~-0D 0018
<—ALPHA HERE LBL ‘HERE step 0018
ALPHA

SST A<>C ALL still step 0018!
LBL ALFHA ACC ALL clear label
ALPHA

<—ALPHA HERE NONEXISTENT you just deleted it!
ALPHA

You can see here that a label can be assigned in a simpel way, and

that it can be purged in a comparable way.

Also you will have noticed that error messages may appear in ASSHM
mode; however, you stay in ASSM mode.

Page 8

11.6 The Redefined keyboard

In ASSM mode the entire keyboard is redefined, although we only used
keys with a comparable function as yet. This feature provides a better
and faster editing of machine language programs. Let’'s assume that in
the following examples your free MLDL RAM page is AOOMO-AFFF.

Push

<= AAODO

STO (WRITE

DATA)
R/S (RAM

SLC)

R¢ (POP)

{1BST

vx (C=)
+

T+

EEX

le”

1

23

<= A

SST

SST

A)

(LDI)

AOD

See

NOP

WRITE DATA

RAM SILCT

POP

NULL

RAM SLCT

WRITE DATA
Cc =

Cc

Cc

C+ _
C+A

C = C+A S&X

LDI

HEXz1_
HEX: 123 #
NOP
WRITE DATA
C= C+A S&X

Comment

this may be another step if
you didn’t clear this area.
this is step AAOL !

step AAQZ2 !

keep it pressed, see after a
while

annulling key sequence works

in the same way as in user

cade and after you released
the key.

some instructions take more

than one keystroke.

after a LDI, SELP, or special

subroutine call, you are

supposed to enter hex data

See above

Something you ought to get used to is the fact that when you key in
new program steps you write them over the next step, not over the step
that is viewed.

You can find how the keyboard is redefined in Appendix A on page -47-
+ You can find the key sequenses for all instructions in Appendix C on
page —-51-.

Page 9

In

datawords in

USER-of f mode

244 format

the Hexadecimal keyboard is
(0-3 key,

active: Hexadecimal

O0-F key, O—-F key) will be programmed
just like instructions mentioned in 11.6.

Jump

Push

USER

1

2

3

a

USER

instructions

See

ARV2 206 F

HEX:=1__

HEX=12_

AAOZ 123 #

AAO3 123 #

INC +24 AAZ7

can be keyed

powerful is the one using labels.

an idea. of the capacity of the label feature.

Push

<—= 0000

LBL ALPHA

STRTUP ALPHA

<= AADOOD

£1 GTO ALPHA

STRTUP ALPHA

XEQ@ [1

0000

<— AA10

LBL. "TRY"

£1 GTO [1
“ TRY n

£1 GTO

"QWERTY"

<— AA20

LBL "QWERTY"

<— AA12

See

?NC GO 0180

LBL "STRTUP

NOP
GTO _
NC 60 ‘STRTUP

XEQ C ____
?2C XQ ‘STRTUP
NOP
LBL ‘TRY
GTO C ____
JC- TRY
INC? QWERTY

NOP

LBL ‘QWERTY

JNC+ QWERTY

Page 10

Comment

206 is code of C=C+A S&X

HEX 123 is written over the

next line

You can't key-in a dataword

beginning with a 4-F ! The
display will blink.

123 is the code for JINC +24.

in in quite a lot ways. The most

The following examples will give you

Comment

assign label "STRTUP" to

address 0000

continue in scratch area

now a ?NC 60 0000 has been

programmed.

jump to try

ASSM computes the distance

You didn’t say yet where
GWERTY is located!

Now ASSM can know it,

And it does!

These are just a few things that can be done with labels, but with
these examples you can see that ASSM keeps all information: where labels
are located, and which labels have not yet been defined.

All these features will be discussed later, in chapter IV, how they
work, what they do, etc.

11.9 BUF>REG_and_ REG>BUF

This pair of functions allows you to save any 1/0 buffer at any time
you need them. When the contents of arn 1/0 buffer has been moved in
user-registers, you may save them on magnetic cards or tape.

These functions have been incorporated in DAVID-ASSEM because the
machine-language labels, or ASSeMbler labels are stored in an 1/0
buffer, namely a buffer with ID#1. This means that you can save your own
labels for later use.

11.10 BEG/END anc._DISTOA

This pair of functions allows you to make a hardcopy of your progams
on your printer, by making a simple user-code program.

The advantage of these functins compared to other disassemblers is

that DISTOA also translates labels, just as they are viewed in ASSM

mode, and since there is a ROM available that adds all mainframe—

entries, the listings will be very easy to read.

DAVID-ASSEM can easily be extended by cne or more 4K blocks which can

add big features to the yet powerful 4K cof DAVID-ASSEM.

At this moment a ROM has been written, namely the one mentioned above.

Fage 11

David-Assem provides the functions BUF>REG and REG>BUF. These
functions should be executed with much care. Read before you use them,
the chapter "User-instructions” carefully, a crash could be the
result of a wrong use.

In ASSM mode nearly every key stroke is a write—action in RAM. Be
careful when you are in ASSM mode not to be too nonchalant with
pushing keys. A program you made earlie~ could be destroyed partially
by doing this.

There are some deviations from the Steven R. Jacob's notation for
disassembling in ASSM mode; look them over! (they are listed on page
16).

Your HP41 remembers all labels in machine language when you leave
ASSM mode, even if you turn the calculator off. However, if you turn
the calculator on without having DAVID-ASSEM plugged in, all labels
are purged.

With BUF>REG and REG>BUF you can save the labels, even if you carry
no MLDL box with you!

ASSM may go PACKING the memory. Then the message TRY AGAIN will
appear in display. if this message appears again after repeating

the instruction that caused ASSM to pack, you have to leave ASSM mode
and change the size such, that there is memory free again.

Page 12

IV User instructions

First we have to make a few agreements :

= You are in ASSM mode (Assembler mode) if the function ASSM is
being executed.

—- By "instruction" we mean a machine language instruction such as
LDeR 6, NC GO 1234 etc.

— By "function" we mean a user—code function, such as ABS, ASSM, DISTOA
—~ In examples, the alpha key will be represented as a quote, " , the

shift key as [1]

—- Something between {3 should not be copied to the letter.

—- Examples are given in chronological order, so earlier ones can
influence later ones. You should do them all at least once!

—- In the Examples it is assumed that you have not plugged in "MNFR-LBLS"

— Most examples take place at address AA0OO and further. It is assumed
that this is filled with NOP's at the beginning. If you can’t switch

a free ram page to A or your ram is filled at XA00, you may chose of

course an other ram address, but in that case the examples won't be
exactly correct.

A. The function ASSM_ XROM 02.01

The not-programmable function ASSM enables you to enter ASSM mode.

ASSM uses no data memory (user registers) or program memory, or stack

registers or extended memory. When you leave ASSM mode, everything will

be the same as it was before you entered ASSM mode.

Do Comment
e.q.

CLXx, STO 00, XEGQ "REG>BUF" Now you have initialised ASSM

mode

Do/Push See Comment

1 enter 2 fill the stack

enter 3 enter

4 4

“TEST 1,2,3" 4,00 fill alpha register

XE@ "ASSM” BEGIN __
0000 NC GO 0180 now you entered ASSM

<- cont. ____ continue....?

{— 4,00 now you left ASSM mode
Ré¢, R¢, RS 1,00 you can see the stack

ALPHA TEST 1,2.3 you can see the alpha
ALFHA 1,00 register.

Page 1X

IV_Al How _to_enterASSM mode

The right way to do this is to execute "ASSM", or to push the key to
which ASSM is assigned.

Because you will switch very often from normal mode to ASSM mode it
is nice to have ASSM assigned to +, for instance.

Fush See Comment

e.g.

[1 ASN

"ASSM” X+ 1,00
ASSM (2+) NC 60 0180 Now you are in ASSM mode

Sometimes it happens that executing ASSM will cause a prompt "BEGIN

__.." to be displayed, or that PACKING - TRY AGAIN will appear in the
display, but this does not happen very often. It will be discussed later
when and why this happens.

IV AZ. How to leave ASSM_mode

There are two ways in which you can leave ASSM mode:

a. by twice pushing the back-arrow key ([<{-1)

Push See Comment

e.g.

[<~-1 CONT. __ you're still in ASSM mode

£<-1 1,00 vou left ASSM mode

It could happen that an error message "? LBL’ {label name} appears in

display. This is to remind you of the faci that there still is a pending

jump to a nonexistent label. In that case you have left ASSM mode too.

(see IV A 4.8 d, page 41)

b. by turning the calculator off. If you turn the machine on again, you
are not in ASSM mode any more.

e.g.

ASSM 2?NC GO 0180 you are in ASSM mode again
ON machine is off

ON {X-register> you have left ASSM mode

Page 14

IV_A3 The ASSM_mode_as_disasembler

The ASSM mode has its own program counter, that is a 4 digit
hexadecimal address that points to the step which is viewed in display.
This counter shall be called "Assembly Program Counter", or AFC.

The ASSM mode knows two sub-modes concerning both assembling and
disassembling:

a. User-on : The wmachine-language program steps are disassembled
according to Steven R. Jacobs's notation, and the
redefined keyboard (see appendix A) is active.
Steps will be shown as HEXadecimal values, and a
hexadecimal keyboard is active.

b. User—-of+f

You can toggle this sub-mode by pressing the USER key. The USER
annunciator shows in what mode you are.

ASSM ?NC 60 0180

USER 0000 201 A—_—

APC 10-bits ROM word Display character

You see that the display is divided in three parts in this mode:

1. The 4-digit hexadicemal value of the current APC. (the address on
which the ROM word is that is viewed).

2. After two spaces followed by a 3—-digit hexadecimal value of the 10-
bits ROM word located at the APC.

3. After two spaces followed by a display character & punctuation,
where the lower 6 bits (0-3) of the ROM word indicate the character
itself (rows 2 — 6 ascii) and the lower 2 of the upper 4 bits (6-7)
of the ROM word indicate the punctuation.

(00=nothing, 01=".", 10=":" and 11=",%).

The upper 2 bits (8-9) of the ROM word are not used.

Page 15

The value of the APC can be changed by using

— 88T : AFC := APC+1
- BST APC := APC—-1, if APC<O or >FFFF, APC = 0
— [<-1 (CONTinue at) abcd (hex) : APC := O
—- [<-1 (CONTinue at "{label}" : APC := {address of label?

The defenitions behind the key only apply in user—-off mode.

Push See Comment
e.g.

SST 0001 Q06 F APC = = 0000 + 1 = 0001
SST 0002 2BS 3: APC : = 0002
£<-1 (CONT) CONT. ____ Where do you want to continue
2BF7 2BF7 130 © APC =: = 2BF7
BST 2BF6 28B K: APC =: = 2BF7 - 1 = 2BF6

In this mode one or more words are disassembled as ane single step in
the display, for 95) according to Steven R. Jacob's notation.

Push See Comment
e.g.

USER JNC—- 2F 2BC7 the address to which is to be
jumped is added.

<- CONT. ____
0000 ?NC GO 0180 APC : = 0000
SST NC GO 0O1AD APC : = 0000 + 2 = 0002

because the last step was 2
words long

885T C=0 ALL
SST RAM SLCT
85T READ 3(x) APC = 0006

There are quite a few exceptions on Jacob‘s notation :

a. — sometimes a field is omitted, in cases that there is no alternative
These cases are listed below.

Jacobs

C=M ALL -> C= C=N ALL -> C-N
M=C ALL -> M=C N=C ALL -> N=C
C<{>M ALL -> C<>M C<>N ALL -> C<>N
6=C @R,+ -> G=C POP ADR -> POP
C=6 @eR,+ -> C= PUSH ADR -> PUSH
C<>G eRr,+ —-% C<>6 LDI S&X -> LDI

Page 16

Now

e.g.

(a)

(b)

e.g.
(c)

(a)

(d)

(e)

In

- 88T

- BST

— CON

e.g.

Note:

with short form jumps (JC and JNC) the address to which is to be

jumped is added. (see example above)

Relocatable jumps and jump subroutines are disassembled as
respectively as GOTO (addres/label? and GOSUB {address/label?Z.

Datawords are viewed as : HEX: £3-digit hexadecimal value}
{display character & punctuation.

strings are viewed in one step between quotes
READ O(T) is viewed as READ DATA

a few examples of these will follow:

Push See Comment

SST M=C ALL is omitted
CONT. OO0OD JNC +0B 0018 0018 (=000D+0B) is added

Assumed X the page of DAVID-ASSEM:

Push See Comment

CONT. {X33BB GOSUB {X3FAF relocatable XQ.

SST LD&R © what is the next step
USER {X33BE 010 P APC is incremented by

3JBE - 3BB = 3!
CONT. O7F6 LDI S&X is omitted
USER

SST HEX: 010 P data word
CONT. 2FEE ?NC XQ O7EF

S8T “XROM “ 3S words in one step

SS8T RTN APC : = APC + 5

USER-on mode the APC can be changed by using:

APC APC + {length of step at old APC}
APC APC — {length of step at new APC}

if APC < O, APC = O0 and if APC > FFFF, APC : = 0

T. {address}/"{labell}" : APC : = address/address of label

BST “"XROM * APC = = APC - 5
BST ?NC X8 O7EF APC : = APC - 2

Because in machine-language a BST can not be defined, a wrong APC

value may be computed by executing BST. In that case “the previous

step” is implemented wrong by ASSM, but this happens in only 1%
(or less) of the cases you do a BST.

Page 17

The SELF instruction (SELect Peripheral) is used to control smart
peripherals. After a SELF instruction is executed by the HP41 processor,
it ignores all following instructions up to and including the word of
which the hexadecimal value is odd (in other words: bit O of the 10-bit
word is 1), because these instructions are disassembled as data words,
for the cannot

instructions.

This may sound a little bit complex,

some examples.

Push

e.g. CONT. 100D

SST

SST

CONT. 1399

58T

SST

SST

SST

See

SELP ©O

HEX: 021 |

Xa->60

SELP 2

HEX: OAA #:

HEX: OB2 2:

HEX: OBB °:

C=B @R

know how the selected peripheral implements those

and therefore we shall show you

Comment

this is actually data, but it
will work as well

odd value, so it must be the

last data word.

and it is!

even
even

odd; last word

normal instructions

If we do a BST, ASSM recognizes the SELP instruction four words earlier,
so a DATA word is viewed.

HEX: OBB ‘=

Page 18

1Y _A3.4 The _label option

It is possible in ASSM mode to assign labels up to six characters to
an address.

The procedure of assigning a label is as follows

— go to the step to which the label is to be assigned using SST, BST or
CONT.

— push [1 LBL ALPHA {label name} ALPHA

Then the label and its location is kept in memory until it is changed
or deleted.

Push See Comment

e.g.

CONT. 0018 ACC ALL suppose you want to assign

"TEST" to 0018
C1 LBL "TEST" LBL TEST finished.

If we pass a label by SST-ing, the label will be viewed before the
step to which it is assigned.

Push See Comment

e.g.

CONT. 0016 READ DATA APC = 0016

SST JNC+ 09 0020 APC = 0017
SST LBL TEST APC = 0018

SST A<>C ALL APC = 0018 still
SST READ 13(c) APC = 0019

If we pass the label by BST-ing, the label won't be viewed:

Fush See Comment
e.g.

BST A<>C ALL APC : = APC - 1 = 0018

BST INC +09 0020 APC = 0017, label is skipped
BST READ DATA APC = 0016

Page 19

If we continue at an address to which a label is assigned this will be
viewed.

e.g. CONT 0018 LBL "TEST

Jumps to addresses with
labels :

Push See

e.g.

CONT. 0011 JNC+TEST

USER 0011 0O3B

CONT. 0025 0023 393 C:
USER JNC—- TEST

CONT. 0004 C=0 ALL

LBL"ADRFCH" LBL ‘ADRFCH

CONT. 004C NC XQ ADRFCH

A label can be purged simply :

— go to the label using SST,BST, or CONT.

— Push [J LBL ALPHA ALPHA

Push

e.g.

CONT. ALPHA

TEST
ALPHA

USER

USER C[CILBL

ALPHA ALPHA

{1 BST SST

See

CONT. _
CONT. TEST_
LBL ‘TEST
0018 OAE 3:
LBL _
A<SC ALL
A<>C ALL

Page 20

labels are dissembled as

Comment

Jump in posit

a label called

jumps to those

ive direction to

"TEST"

O03B is code for JNC +07

code for JNC-

jump in negat
a label

op

ive direction to

create a mainframe label

a ?NC x 0004

Comment

say want label name

continue at label test.

check address

there is no label indeed

In a similar way a label name can be changed :

Push See Comment

e.g.

CONT LBL "ADRFCH
"ADRFCH"”
£1 LBL LBL "CHANGE you changed ADRFCH to CHANGE
"CHANGE"

CONT NONEXISTENT error message
"ADRFCH"

USER 0004 O4E N.
USER LBL ‘CHANGE it really is CHANGE!

SST and BST are auto-repeat keys, if they are pushed a longer while,
you will SST or BST through your program automatically. This feature is
incorporated in order to save your [SST] key. Try it. You'll see how it
wor ks.

1IV_A3.6 Unused_instructions

Unused instructions are normally disassembled as ?7?7, but there is one
exception: 040 is disassembled as WRIT $&X, because this is the normal
MLDL RAM write.

e.g- CONT 1002 277? code is 100

Page 21

IV _A4_ASSM_mode_as_assembler

Now we have come to the point why you bought DAVID-ASSEM :
the powerful assembler of ASSM.

ASSM redefines the entire keyboard, but maybe you have not noticed it
yet, because we only used keys with a similar function : USER, ALPHA,
557, {1 BST, [1 LBL

In figure 1 of appendix A the redefining of the keyboard is shown.
Most mnemonics you will recognise as Jacobean mnemonics, but a few seem
incomplete, such as [C=] and [C<>].

It 1s very advisable to make your own keyboard overlay on which you
mark the meaning of the keys as shown in appendix A, figure 1. You can
write the unshifted mnemonics for instance from top to bottom next to
the keys.

All instructions exist of one or more keystrokes. A few things can be
said about the keyparser :

— a key sequence is still incomplete if a prompt is in display.

— a key sequence can be annulled by

a. holding the last key of a sequence (this is the key which causes no

prompt any more) for about a second: NULL will appear in display.

b. pushing one (or more if it is needed) time(s) the back arrow key,

until the display will be cleared while holding the key.

This also applies for CONT. and LBL.

Push See Comment
e.g.

CONT. "CHANGE" CONT. CHANGE_ sequence not ended yet
ALPHA (hold) CONT. CHANGE_

NULL

release key {same step as

before CONT. annul led

VR (C =) C= _ start sequence
+ C=C + _

[<-3 (hold) display is cleared
release key {same step as

before [C=] key} annulled

Page 22

Before we go further into details about how instructions should be
keyed in, you must become aware of the following:

Every programstep you key—-in, will be written OVER the NEXT program
step.

This may differ from what you are used to, with other programs, but
the way in which the over—writing happens here is really the most
logical. (compare for instance with HP 25; there you write also over the
next step!)

Like the disassembler, the assembler (it is not so easy to distinguish
the disassembler and assembler, for they both appear in ASSM mode, but
they will be treated apart, as you may have noticed) has two sub-modes:
User—-on and User—off.

We will treat them one after another.

a. User—off: Now a hexadecimal keyboard is active. You can key-in a
10 bit ROM word by pushing three digits repectively in the range
0-3, 0—-F, and O-F.

Fush See Comment

e.g.

CONT. AAOO NOP APC = AAOO

USER AAOO 000 e turn to USER—-off mode.
2 HEX: 2__ expected two more digits
A HEX: 2A_

4 AAOL 2A4 $: Remember? NEXT step!

Do you still remember the annulling sequences?

Push See Comment

e.g.

4 > BLINK > AAO1 2A4 $: first key must be 0-3

1 HEX: 1__
2 HEX: 12_

<= HEX: 1_

{- AAOL 2A4 $: No result; annulled
123 (hold) HEX: 123

NULL No result; annulled

Page 23

b. User—-on: Now all instructions really will be assembled: All keys
have an own function now, except for PRGM and ALPHA. In appendix A,
figure 1 you can see the assignments o+ the keys.

There are several kinds of instructions. We shall treat them one by
one.

These are almost all miscellaneous instructions; this group takes the
biggest part of the keyboard.

The keying-in sequence simply exists of pushing the key to which the
key is assigned:

Push See Comment
e.g.

USER [1 BST NOP

R=R+1 (X<{>Y) R=R+1 one key stroke!
USER AAOC1 3DC ©, 3DC is opcode of R=R+1
USER R=R+1

READ DATA READ DATA READ O(T) is READ DATA
(RCL)

£1 ST=0 (10% ST=0

Here you have a list of all direct programmable instructions and the
keys related to them :

£1 ST=0 (10%) £1 LDI (ex) R=R+1 (X<>Y)
[J R=R—1 (CLY) POP (R+) £1 PUSH (%)
£1 WRIT S&X (SIN™Y) FETCH S&X (COs™) [1 X@->60 (ASN)

WRITE DATA (SST) READ DATA (RCL) N=C (ENTER®)
LI M=C (CAT) G=C (CHS) £1 ?C RIN (ISB)

RTN (EEX) LJ] ?NC RTN (RTN) £3 NOP (CLX)
£1 ST=C (CF) ST<>T (4) [1 ST=T (BEEP)

SETHEX (5) £1 SLCT P (P-R) SET DEC (&)
{J SLCT @ (R-P) ?P=Q (*) £1 2LOWBAT (X>Y)
[1 T=ST (FIX) £1 DSPOFF (SCI) ?KEY (3)
£1 CLREEY (ENG) C1 POWOFF (PI) [J DSPTOG (LASTX)

RAM SLCT (R/S) PRPH SLCT (VIEW).

Page 24

IV_A4.2 LDERand SELP

These instructions need a hexadecimal digit as parameter. If LDE&R (LN)

or [1SELP (SF) is hit, the instruction name appears, followed by one

prompt. After that you can key-in the parameter ,[0] to [9] or [A] to [F]

Push See Comment
e.g.

(1 SELP SELP _ needs a hex digit.
A SELP A instruction is programmed now

001 HEX: 00% A selp needs a data word
LDeR LDeR

3 LDeR 3 sequence finished

IV. A4.3 RCR, R=, ?R=, SETF, CLRF, ZFSET, 7FI

These instructions need a decimal number between 0 and 13. However,

after pushing one of these keys, only ore prompt appears in display. So
it is easy to key—-in a number between 0 and 92. If you want to have a 10-

13 parameter, you should push first EEX, and after that you can push ©

to 3. (compare this with the normal user code function GTO. 1234, it
should be keyed-in as GTO [.] EEX 234).

Push See Comment
e.g.

SETF (7) SETF _ want a digit

8 SETF 8 finished

£1 ?R= (tan=') ?R= _ want a O to 9
EEX R= 1 want a 0 to 3
3 ?R= 13 finished

RCR (LOG) RCR _ suppose you had in mind 11

EEX RCR 1_ and you made a mistake,

<— RCR _ you wanted a 3
3 RCR 3 press <{— and 3!

Page 25

1V_A4.4 WRIT_and_ READ

These instructions need a decimal number between 0 and 15, or a stack

register name :

a. decimal 0-195 :

This goes like 4.3, exept that the rarge is 0-15 :

— push instruction key (WRIT (sin) or READ (cos))

—= push

— a number in the range of 0 to 9, or

~ EEX followed by a number

Fush See

e.g.

WRIT WRIT

EEX WRIT

3 (hold) WRIT

release WRIT

READ READ

S (hold) READ

release READ

b. stack register name.

- PUSH [.]1 (decimal point)
~- push one of the keys shown in appendix A, figure 2, which mean

register names :

Ata), B(b), B(b), Dd), Edd), K(i-
T(TY, X(X), YY), Z(Z).

Page 26

in the range 0 to 5.

Comment

want a 0-9

want a 0-5

register # 15
is called (e)

don't hold too long!

finished

{compare with STO [.1 X)

—- push instruction key (WRIT or READ)

), LILY, M(M), N(N), OD), P(P), (QD),

Fush See Comment

e.g.

WRIT WRIT _ Suppose you want a WRIT X

£.3 WRIT ST _ now you must hit a req. key
X (hold) WRIT X don't hold too long!

(release) WRIT 3X) finished

READ READ _ suppose you want a READ d,

EEX READ 1 _ but you forgot the number
<= READ _ PRESS <—, [.1, D
£.1D READ 14 (d) and your problem is solved
WRIT WRIT _ WRIT T
£.13 WRIT ST _
T WRIT O(T)

WRIT WRIT _ WRIT +
£.1 K WRIT 10(i-)

The only register which is assigned in a strange way, is 10(-) that

is assigned to the K-key. (APPEND character is [1] K)

IV A4.5 Singulararithmetic instructions

These instructions are known as class 2 instructions according to
Steven Jacob’s work. They need a "field" parameter. The right key

sequence is as follows :

—- push the instruction key: the name appears in display with a prompt.

— push one of the "field" keys as shown in appendix A, figures 3 :

ALL (A), R<— (RDN), M (M), MS (CHS), S&X (EEX), P-& (-), @R (R), XS (X).

Push See Comment

e.g.
LSHFA (1) LSHFA _ key in: LSHFA S&X

SUX (EEX) LSHFA S&X finished
[1 B=0 (y*) B=0 _ key in: B=0 ALL

ALL (A) B=0 ALL finished

The instructions that are part of this group are :

£1 A<K>B EE) £1 B=0 (yX) CL] ?A%0 (X=Y7?)

?A#C (-) 2A<C (*) C1 ?A<B (X<=Y7?)

LSHFA (1) RSHFB (2) £1 7?B#O (X=07)

?CHO (/) RSHFA (0) RSHFC (.)

B=A (1/x)

Page 27

Because there are just 35 keys for a lot more instructions available,

quite a few are gathered under a few initial keys. These initial keys

are A=E+), [1 C<> (x*) and C= (VX), and they can be followed by one,
two or three key strokes. Some of the Jacobean class 2 instructions are

reached one or two key touches after a A= or C=. Then they act like the

singular arithmetic instructions menticned above: they still need a
field.

In the following enumeration of all the possible key sequences

starting with A=, C<> or C= the class 2 instructions are marked with an
asterix #*.

Key Display Instruction

a)
A= A= _

B =B=C=0 =B=C=0

Cc A=C _ A=C =

- A=A— _
B A=A-B _ A=A—B *

c =A—C _ =A—-C *

1 A=A—-1 _ A=A—-1 *

+ A=A+ _

B A=A+B _ A=A+B *

Cc A=A+C _ A=A+C *

1 =A+1 _ A=A+1 *

0 A= A=0 *

b)
C<> CL» _

A C<>A _ C<>A =

B C<>B _ C<>B =

6 C<>6 C<>6

M C<>M C<>M

N C<{>N C<{>N

S C<>8T C<>8T

Page 28

Push

EEX (5%&X)

key key key

1 2 3

C=

+

I
XX

oO
w

CHS

=
D

~ (P-Q)

See

A=

A=A- _
A=A—-1_
A=A—-1 S&X

Display

C= _
=A _

C=A-C _
C=C OR A

C=C AND A

=B

C=0-C _

C=5T

=—C-1 _
C=C-1 _

C=C+ _
C=C+A _
C=C+C _
C=C+1 _

See

C=

C=C-
C=-C-1
=-C-1 P-@

Comment

key in A=A—-1 SX

and A=A—1 S&X is programmed

Instruction

=A-C #*

C=C OR A

C=C AND A

C=6

=KEY

=M

C=N

C=0-C =

C=ST

C=-C-1 =
C=C-1 *

C=C+A =

C=C+C =

C=C+1 =

C=0 =»

Comment

key in C=-C-1 P-Q

finished

In appendix C you can find all instructions in alphabetical order, and
there sequence of keying them in.

Page 29

IV_A4.7 Jump subroutines

There are 2 kinds of jump subroutines possible in machine language :
PNC X@ and ?C X@

GOSUB (this is a relocatable XB, actually of the form

7?NC X@ 60SUB/ GOSUBO/ GOSUBLl/ GNSUB2/ GOSUB3 <location in 1K»)

a. The sequence for a ?NC XQ and ?C X@ start with

— pushing XEQ key, XEQ will appear in display

— if you want a ?C XQ, pushing [1, XEQ C ____ will appear.

You see that XER asks for a 4-digit hexadecimal address, however a
label name can be keyed in too!

So after you have keyed in XEQ or XEQ [J], you can choose between :

— keying in a a 4 digit hexadecimal number, or

= pushing ALPHA key, label name, and alpha key again

Then, a 7?NC XQ or 7C XQ to the specified address or label will be
programmed over the next two words

Push See Comment

e.g.

XEQ (XEQR) XE@ ____ want 4 digits
1 23 4 NC XQ 1234 finished

XEQ [1 XE@ C __

"CHANGE" ?C X82 CHANGE "change" was at 0004 so

actually a ?C XQ 0004 is

written in MLDL RAM.
alpha key

b. The sequence for a GOSUB starts with pushing the XEQ key :
XEQ ____ will appear.

After that, one can choose between :

— keying in a 4-digit hexadecimal address, of which the first digit is

equal to the first digit of the APC. This first digit must be
greater than 6.

— pushing label name of which the location is at the same

page as the APC is located (in other words: the first digit of both

addresses must be equal and the page must be > 6).

Page 30

You

1 f

Push

CONT. AOOCO LBL

"SAME4K"

CONT. A%00 LBL

"SAME LK"

CONT AAOO

XEQ A123

USER

SST

SST

USER [1 BST

XERQ "SAMEIK"

USER

SST

USER [J] BST

XEQ “SAMEAK"

See

LBL "SAME4K

LBL ‘SAME1K

NOP

GOSUB A123
AARO1 349 1.

AROZ OBC L:

AAO 123 #

GOSUB A123

GOSUB SAMELK

AAD4 379 9.
AAOS O3C <

608UB SAME1K
60SUB SAMEA4K

Comment

do some preparing

wor k

continue in scratch area

address = A123, sO reloc

you can check the

programmed words

these two words form a

NC X@ GOSUB (OFDE)

nothing is easier than
this

see that it depends on the address or label you key in whether a
(NC X& or a GOSUB is programmed:

will be programmed :

e.g XEQ [1 "SAME1K" GO5SUB SAME1K

before a relocatable address [] is hit, it won't matter to what

[] is ignored

If you key in a label name that not yet exists an error appears.

NONEXISTENTe.g. XEQ@ "QXT" you're still in ASSM mode

IV_A4.8Alljumps

The [1 GTO key is the most flexible key on the ASSM—keyboard. All jumps

(relative, absolute and relocatable) start with this key. If you push it,

GTO _will appear in display. After that you can choose one of the
following jumps

a JNC and JC

The relative jumps can be keyed in in two ways :

- [1 GTO, 6T0 ____ will appear
— if it should be a JC, press [1, GTO C ____ will appear

- [+1 or [—-] key, depending on the jump direction 670 + __ / GTO — __

GTO C + __ 7/7 GTO C — __ will appear

— a two digit hexadecimal number in the range of 0 — 3F. After a GTO -— __

or 6TO0 C — __

Page 31

you can also hit [4], which will be assembled as 40.

Fush

e.g. £1 670

£3
+

25
£1 GTO + 4
3F
[1 GTO —- 4
LI 670 — Oi

—- press [1 GTO
— if you want a JC,

JC + 25 AA32

JNC + 3F AA4D

JNC - 40 AFCF

JNC — Oi AAOF

press [J again

Comment

standard prompt

carry
positive direction

finished

4 is ignored

- key in a 4-digit hexadecimal address, or alpha, label name that is

assigned to an address,

jump distance (

Push

e.g. LBL’'AB
CONT. AAOO
£1 GTO [1
” AB n

CONT AA4F
[1 GTO "AB"
USER
USER

-40 to + 3F)

See

LBL ‘AB

NOP

JC+ AB

NOP

JNC — AB
AASO 203 C

b GOTO ADR and GOTO KEY

alpha where the address is within relative

Comment

create a label

right distance is computed

203 is JNC — 40

These two miscelaneous instructions must be keyed in like this:

GOTO ADR : [1 GTO M
: £1 GTO K60TO KEY

Push

e.g. £3 670

K
£1 GTO M

c ?NC GO, ?C GO, GOTO (relocatable 60)

The same conditions are in force here as

Key in [1 GTO (LD)

See

GTO ____
60TO KEY
GOTO ADR

(Mis same key as GTO)

Comment

adr field is part of mantissa

in 4.7

4-digit address / label, and ASSM checks whether a

JINIC , ?2(N)C GO or GOTO to that addres or label should be programmed.

Page 32

Fush

LJ 6TO 0000

£1 6TO £3 0004

£1 GTO "SAME1K"
{1 GTO "SAMEA4AK"

£1 GTO "AB"

{3 GTO "CHANGE"

See

?NC GO 0000

?C GO CHANGE

GOTO SAME1K

GOTO SAMEA4K

6070 AB
?NC GO CHANGE

d JNC or JC to nonexisting labels

Comment

CHANGE still isn’t purged

AB is more than 40 steps back

CHANGE is not located on
page A so a ?NC GO is

programmed.

It is possible to key in a not yet existing label name after [1] GTO.
Instead of an error
in the display.

The moment that the suiting label is keyed in, the right

jumpdistance is computed and a real J(N)C +/- {label name} is
programmed at the location where the jump was keyed in.

Push

£1 GTO "XNOTYT"™

£1 GTO "XNTYTZ2"

"NONEXISTENT™

See

JNC 2? XNOTYT

JNC 2? XNTYT2

a JI(N)C ? {label name} will be shown

Comment

XNOTYT is not known yet, so

a ? is shown.

other jump
CONT AABO NOP

LBL "XNOTYT™ LBL ® XNOTYT XNOTYT is assigned to AABO
CONT AAZ4 NOP

LBL "XNTYT2" LBL * XNTYTZ2

CONT AAKLO NC GO CHANGE

SST JNC + XNOTYT this line is programmed
SST JNEC — XNTYT2

Just JNC’'s and JC's can be programmed in this way, because ASSM can
not know whether it should reserve one, two or three words (for

respectively J(N)C, ?(N)C GO and GOTO) for the jump. That is why it can

happen that the message JUMP TOD FAR will appear in the display if you

key in a label: JNC's may not go further than 3F forwards or 40 backwards.

Page 33

If

in

yet. However,

The JNC ? and JC ?

Fush

CONT AAOOC

{J 6TO "ABC"

£1 670 [1 "DEF"
£1 GTO "DEF"

£3 670 £1 "ABC"

CONT AA40

LBL "DEF"

£1 NOP

C1 NOP

LBL "ABC"

CONT AAOL

SST

SST

SST

there are still pending J(N)C 7?

an error message ? LBL

display to remind you of the fact that your program is not
you did leave ASSM mode.

Push

£1 GTO "HIJ"

<—- (cont)
& —
~

See Comment

NOP well-known area!

JNC 7? ABC at AAO1L

JC 7? DEF

JNC 7? DEF

JC 7? ABC at AAO4

NOP

LBL ‘DEF DEF is assigned at AA40

NOP now NOP is programmed at

AAO (remember: label is
viewed before step)

NOP

JUMP TOO FAR APC is AA41 now AAR41 — AAOL

= 40 too far!

NOP a NOP is programmed instead
of a JNC +40

JC +DEF all pending jumps were

programmed by keying in

LBL "DEF"

JNC +DEF

JC +ABC also with ABC, exept that

there was at least one

JUMP TOO FAR

‘s and you try to exit ASSM mode,

{still not yet existing label name} will appear

finished

See Comment

JNC 7? HIJ create a jump to nonexistent

label

CONT. ___ still in ASSM made

LBL "HIJ you left ASSM mode
{X-register?

‘s actually are NOP’s.

During execution they do nothing

e.g.

Push

ASSM

USER

See Comment

JNC ?°HI1J last viewed step

AACA 000 @ 000 is code for NOP

Page 34

The

|

following error messages may occur.

NONEXISTENT : You keyed in a nonexistent label name after a XEQ,

£1 XEQ, ar CONT. (£-)

NO WRITE : You tried to write in ROM.

Push See Comment

USER JNC ? HIJ last viewed step

cont 0000 NC GO 0180

N=C NO WRITE you can't write in ROM!

NULL : you held the last key of a sequence too long.

PACKING-TRY AGAIN

?LBL.* {name>

JuMP TOO FAR

TRY AGAIN

(any key sequence, exept for BEGIN ___)

: — you tried to execute ASSM for the first

time without free RAM (i.e. 00 REG 00 in

PRGM mode).

— you tried to key in a label without free
RAM.

— you tried to program a jump to a

nonexistent label without free RAM.
still pending jumps to nonexistent labels.

a new label caused a JNC to that label to be

too far.

this error occurs in the theoretical case you

try to create a 255st label or 235st jump

to a not yet existing label.

"
a
w

Page 35

IV_B_ BUF>REG_and_REG>BUF

The function ASSM must keep a list of assigned labels and jump-to
nonexistent label locations. For this ASSM uses two 1/0 buffers.

An 1/0 buffer is a reserved part of user code memory, located directly
above the key assignments, which may expand or decrease. A buffer exist
of one buffer header, in which the buffer identity (a number between 1
and 14) and the length of the buffer (in registers, header included) are
stored.

For execution of ASSM, the buffer with identity 1 should always exist,

for important ASSM variables are saved in a part of the header (such as

the APC), and a list of labels is saved in this buffer, using one
register per label.

Why all this information in this chapter?

Since all buffers will be purged by turning on the HP41, unless

special ROM's, as DAVID-ASSEM does, keep one or more of them alive, all

your label assignments would be purged if you would turn on the
calculator without DAVID-ASSEM plugged in.

This is why BUF>REG and REG>BUF have been incorporated. These
functions provide that buffers could be copied into normal user

register; these could be copied with the normal functions WRTX (for the

cardreader) or WRTRX (for the mass storage) onto magnetic cards

respectively tape. Then, if you need the buffers again, you can read
them from the magnetic medium into the registers, and then with REG>BUF

a buffer with the original contents will be created.

IV _Bl1_BUF>REG

To copy a buffer with ID# (identity number) p, p must be in X and the

size should be minimum n, where n is the buffer length. Then BUF>REG

must be executed, after execution n will be in the format: 0. {(3-digit

n—1}, so that immediate WRTX or WRTRX can be executed.

e.g. Suppose you want to save the eight labels you assigned in chapter

IV A (CHANGE, SAME1K, SAME4AK, AB, XNOTYT, XNTYT2, ABC, DEF) on
a magnetic card.

(Size must be at least 9)

Page 36

Do See Comment

1 1_ buffer ID#1 is used for
XEQ "BUF >REG" 0,008 labels assumed you have FIX 3

the buffer is 8 labels + 1

head = 9 registers long 9 - 1
XEQ@ "WRTX" ete. = 8 labels are saved on card.

NONEXISTENT — the buffer with ID# specified by X does not exist
- X *» = 1000 (guess what routine is used)
— the size is too small

DATA ERROR —- X = 0 or 15 <{= X <= 999 (too small or too big X)

ALPHA DATA — X is of type ALPHA DATA

rtarenrmweenSoetstietn eiSo mr

If a buffer is copied into user registers, you should not recall the

contents of a register with RCL, because this could affect the contents
of the register.

IV_B2 REG>BUF

This function can be used for two different purposes:

a. To copy buffer contents in registers into a real buffer. No

parameters are used nor results are given : REG>BUF gets its

information out of REG 00, in which the "header" should be located.
Therefore, ROO should have the following format :

113 0 12 + 10 94+ 8 7 & S 4 3 2 1 0 |i

i ID#! ID#! buffer—| buffer data :

i length |

Page 37

Before REG>BUF starts copying, first all existing buffers with the

same ID# as in ROO is specified are purged (mostly it is "the buffer",

for more than 1 buffer with the same ID# is not allowed actually), in

order to assure there is maximum 1 buffer with that specified ID#.

e.g. Turn calculator off, plugg DAVID-ASSEM out, press ON twice plugg in

DAVID-ASSEM again, turn calculator on again : oo
Now both buffers #1 and 2 (for repectively assigned labels and

nonexistent labels) are purged.

Do See Comment

ASSM BEGIN __ there is no APC known yet.

{<- {X-register’ this was to show you that

both buffers are cleared.

XEQ "REG>BUF" now buffer 1 (labels & APLC)

must be created:

ASSM ?NC GO 0180 APC was 0000 when BUF>REG was
executed.

cont. "ABC" LBL “ABC label is back again!

C= {= exit.

NONEXISTENT: there are not enough free registers available to create the
buffer with length, specified in ROO.

Be sure that ROO contains the right information. If you've done no

RCL ©00°s or anything else special, you may assume ROO is good; but if

you have created ROO using CODE routines and NonNormalized STOre
routines, you must double check its contents. A crash could be the

result of a wrong use.

b. A special code in ROO is recognised trough REG>BUF as the function :

clear both buffer ID#1 and buffer ID#2. This special code is very

simpel : it is the value zero. 0 can be used for this purpose since

ID#0 does not exist, nor a buffer length OO.

Do Comment

e.g. 0 STO 00 special code in ROO
XEQ "REG>BUF" now buffer ID#1 and ID#2 have been purged

ASSM BEGIN ____; APC is not known any more

£- exit.

Page 38

IV _C_BEG/END_and_ DISTOA.

With these two functions you can make printed listings of your

machine—language programs, in which labels will make the listings more
readable.

With BEG/END you can define the beginning and the ending address,
where they must be the last 8 characters in ALPHA, the first 4

characters the 4-digit beginning address, the last 4 characters the
ending address.

With DISTOA vyou can move the address % instruction string as it is

shown in display during ASSM to the alpha register, compute the location
of the next step, and test whether the end address is reached.

BEG/END sets the APC to the specified beginning address, and execution
of DISTOA causes the APC to point to the next step, and check APC >=

END, where the next user code step will be skipped if the equasion is
not true.

Knowing these facts, you can write the following user code program
that will print a certain part of machine-language program :

01 LBL ‘PRINT

02 "BEGIN/END?

03 AON
o4 STOP prompt for begin and end

05 AOFF

Q6 BEG/END define begin and end

07 LBL O01 begin loop

08 DISTOA put line in ALPHA
09 GTO 03 if reached end

10 PRA print address & line
11 GTO oO1
12 LBL 03

13 BEEP signal

14 PRA this may be added if the end address itself
should be printed

15 END

Page 39

All different kinds of loop counters may be inserted between steps 10
and 11, such as form feed counters etc.

IF you write the function FNC TO A, as listed in appendix E, using
ASSM, and you have the rom MNFR-LBLS, your listings cannot be beaten by
other disassemblers!

There are a few characters in ASSM mode which don't exist on the
printer.

These are translated this way :

Discription Display code Printer chr. Printer code

west goose 02C < 03C

east goose 02E > O3E

starburst 03a Ll O1F

1f flag 27 (the user flag) is cleared, DISTOA won‘t disassemble, but
put just the rom words display character behind the address into ALPHA,
and the APC will be incremented by 1.

During DISTOA's execution the display is turned off, because actually
the characters are read from display into alpha, which also has the

effect that just 12 characters after the address & spacing can be placed

(excluding ":","3" and ","), but it doesn’t often happen that a line is
more than 12 characters lang.

This only occurs when you have a message string that contains 11

characters. Since the message string is included in two quotes , " , the
resulting string is 13 characters long. The right hand quote will be cut

from the listing, this also happens in normal ASSM mode

Page 40

V_ Technical Details.

ASSM uses just the scratch areas of the stack registers. However, this
is not enough to remember all information during light or deep sleep.
Therefore the 3S free bytes in the header of the buffer with ID#1 (in
which the labels are stored) are used to save information.

An effect of this is that this buffer always exists during execution

of ASSM. This is why ASEM will cause the message “PACKING-TRY AGAIN", to

appear if there are no free registers of user RAM and the buffer with

ID#1 does not exist yet: At least 1 register is needed for the header of
the buffer.

ASEM will prompt for a beginning address with BEGIN ____ if for what

ever reason the buffer #1 is purged, because the APC is stored in the
header.

ASSM uses the following scratch areas :

1. REG B(P) [13:61

2. REG 2(B)
3. REG 15¢(e) [4:31]

4. Buffer ID#1, header [9:01]

REG _8(P) [13:61

Both in [13:0] and in [9:6] return adresses used by ASSM are saved

during a light sleep, because in machine language you should call the

mainframe subroutine NEXT (at OES0) without any subroutine level on the

CPU return stack. ASSM often calls NEXT two levels deep.

REG_92(Q)

This register is used for temporary alpha scratch of label names when

these are keyed in. However, it is not done in the same way as in the

mainframe routines. The formatting will be discussed later.

Page 41

REG_15(e) 4:31

This part of the register is used automatically by calling NEXT. In
here the CPU register 6 is saved, which is used by ASSM as a digit
counter in cases that the <{- key will clear the last keyed in character.
When this is not the case, its value is set to O to avoid a bug in the
key-information—flag-set PTEMP1, as HP calls it in the VASM listings.

Header of buffer with ID#1i [9:01]

a. Part [3:0] This is always the APC, the address on which the

instruction is located that is viewed.

b. Part (7:41 This part is used for different purposes :

1. When CONT, GTO(C) or XEQ(C) is in display, NEXT is

called three subroutine levels deep: In that case
another return address is saved there.

2. If BEG/END has been executed, the ENDing address is
saved there.

c. Part [9:81 This part is used for a special ASSM flagset, in

which 8 flags are saved, we shall call them flags 7-0

They are used as follows :

flag 0 — scratch flag, used by keyparser
1 — ” »

2 —- if this flag is set, a SST or BST is auto repeating.

flags 3 and 4: — if flag 3 is set, and 4 is cleared, a data word is
viewed, except if you are in USER off mode.

— if flag 4 is set and 3 is cleared, a text string
(after a ?NC XQ MESSL (at O7EF)) is viewed.

— if both flags are set, a selp instruction has been

passed and still is in force.

flag 5S — This flag is not used by ASSM for historical reasons.

6 — This flag is set if a label is displayed LBL {label name}

ASSM decides from this flag whether the next step may be a

label or not : if this flag is set, the next step is

disassembled not to be a label.

7 — If this flag is set, the disassemble routine (at X3FA)

acts like a normal subroutine. This flag is used by DISTOA

Page 42

DO COMMENT

e.g. QO STO 00 REG>BUF clear buffers 1 and 2
ASSM see BEGIN ———- buffer #1 clear

0O7F7 see HEX:010 FP data word

<— <— 1 BUF>REG move header to reg 00

RCL 00 This is allowed because first

digit is 1: alpha text
DECODE we assume you'll have such a

routine:

see 11 01 08 X5 C2 07 F7

11 is the buffer ID number

01 is the length of the buffer

08 flag 3 is set

X3C2 return address for ASSM (X is page of DAVID-ASSEM)
O7F7 Assem Program Counter

V B Format of a label in _a buffer

A buffer register that is used for label storage will look like this

13 12 11 10 9 8 7 & S 4

o
w

w
e

w
e

-
—

w
e

w
.

carry condensed &—character string address

With assigned labels [13] = 0, and [3:0] points to the address to

which the label is assigned.

With nonexisting labels [13] says whether a UJNC ? or JC ? is stored

there. A 1 means JC ?, a 0 means JNC ?. [3:0] points to the address on
which the JC ? or JNC ? is located.

Both with assigned and nonexisting labels part [12:4] is used to store
a 6—character string. There are 64 characters possible, so one character
takes 6 bits. A label is maximum 6 characters long, so &%6 = 36 bits are

needed. Since [12:41 is 9 nibles long (9%4 = 36 bits) it fits exactly.

The characters are stored in reverse order, right justified, so the

first character is in [4] and bits O0 and 1 of [31, the second character

in bits 2 and 3 of (51 and [6], etc. The character with value 0 is the
end of string character. If this is missing, the string is &6 characters

long.

Page 43

For the characters the following table applies

lower 4} 0 1 1 1 21 314151617 i8!91A!BIC!DI!E!F
r ’ 1 1 1 1 s ! § s ¥ 3 . 1 . 2

u 0 tend: A ! BIC i{D!EIF IG !H:!I:!JIiKIiLIMI!NDO
—_———re H ¢ : ! ¢ 1 ? ’ . t 1 3

b 1 P Q : R S T u Vv W X : Y : Z ; t : \ ; 1° = ; —

25iiwns mia ch Clon ie ded ied
2 : ; : i : : : ; : : : i i ; | :

3 ; 0 ; 1 : 2 3 ; 4 : 3 : 6 : 7 : 3 : ? | bsi P< =1 > 7

The characters marked with °° cannot be keyed in from the keyboard.

e.g. If you have assigned the label "MESSL" to O7EF, somewhere in buffer

#1 a register will have the value; 00 OC 4D 31 4D 07 EF, which is

in bits

13 1} 12 11 10 Q 8 7 é6 S 4 ; 3 2 1
: : } ' ' : :

0000! 0000 00!00 1100: 0100 11101 0011! O001 01:!00 1101! 0000 0111 1110

zero: end str L : 5 : Ss ! E : M ' 0 7 E

V_C_BST_and_ CONT——ieectlrnnemni.cc.we

As mentioned on page 18, a BST can not be defined correctly in machine

language for the disassembler cannot know whether words are just data in

a table, or instructions.

Therefore BST looks 7 steps back, then acts as if it is the beginning

of an instruction, and computes every new step, until the original APC
has been reached. The new APC will be the last but one computed step.

This assures for 997 that the disassembler sorts itself out, but there

are exeptions of course. More than 7 steps would cause a BST to last
longer than would be nice. (compare a BST in USER code in a program that

is more then hundred steps long). If you want to change this constant

(7) you can find it in V E.

Page 44

111

A CONT. (<{-) (and also a BEGIN ____) does actually a APC := {address},

a BST and a SST to assure that an instruction is disassembled well.

Theretore it could happen that you continue one word further than you
typed in.

PUSH SEE COMMENT

e.g. ASSM <- 0001 ?NC GO O01AD try to continue in 2 word

instruction.
USER 002 2BS S: it didn't work out
USER

<— 2FF3 RTN try to continue in text string

USER 2EFS 3EO , it didn’t work out

V_D Extensions of DAVID — ASSEM

Every time ASSM searches for a suiting label or a suiting adress, all

plug-in ROM's on pages => 35 are scanned for a ROM with a XROM# 100. This
is a too high XROM#, and therefore no functions can be incorporated in
this ROM.

If such ROM is found, ASSM will jump somewhere in the ROM (at X080 or

XOD3). At these locations extension routines may be located, and they

may choose between letting ASSM search further for other XROM#100°'s and

returning directly to ASSM.

Here the in and out conditions follow.

1 Given an address, search for a suiting label

in - the entry address is X080. If you would not use this entry, a

RTN should be on that location.
— the address, with which a label must suit, is in CPU register

NL3:01]

— the DSP is off, RAM is selected (not chip 0), GLO] is page of

the ROM itself, flag 2 is cleared.

in & - M(CPU) may not be affected. APC is in ML6:31, ASSM status is

out in MC1:01

out — if no suiting label is found, a simple RTN is enough (flag 9

must be cleared) to cause ASSM toc look further for XROM#100°s.
—- if a label is found, one return address should be skipped by POP

or better by XQ->60, flag 9 must be set, and the label should be

in condensed form (see B) in CC1Z:43, and RTN will return to

ASSM, and will show the label.

Page 45

—
2. Given a label, search for suiting address

in — the entry address is XOD3. If you would not use this entry, a
RTN should be on that location.

~ The label is in condensed format ‘see B) in CPU reg. NL12:41,
Q=12, P is selected.

— The DSF is on, RAM is selected (not chip 0), GIO] is page of the
ROM itself, flag 2 is cleared.

in & - M(CPU) may not be affected. APC is in ML[&6:3], ASSM status is
out in M[1:01].

out - if no suiting address is found, a RTN is enough. (flag 9 must be
cleared)

—- if an address is found, one return address shoud be skipped by
POP or XQ@->60, flag 9 must be set, and the address must be in
BL3: 01].

Both in case 1. and 2. one must keep two subroutine levels on the
stack, G and M may not be used.

This all may look a bit complex, but there is already one 4K ROM that
adds all mainframe entries as listed in HP's VASM listings called MNFR-
LBLS. These are ©. 750 labels, of which the search routines take in case
1. less than .1 second, and in case 2. maximum 1.5 second with an
average of .4 second. More about this rom in appendix G

If you find a few constants not good, you may change them for you own
use.

X624 : Autorepeat constant. Normally 3FF. This constant determines how
long a step is viewed in autorepeat mode.

X64C : wait-—to—autorepeat constant. Normally 3FF. This constant

determines how how long SST7/SST should be pressed befare they
will go autorepeating.

XEAO : BST constant. Normally 007. This constant determines where is

started when the disassembler tries to sort itself out during a
BST. This value is the number of words back.

XC64 : XROM constant. Normally 100. This is the XROM# for which is

searched in other 4K ROM’'s. You can change this to a XROM < 40 if
you want also functions in your extension(s).

X974 : relocatable page minimum. Normally LDER 7. This instruction

determines from which page relocatable goto's and GOSUB's are
possible. (normally from page 7)

X000 : the XROM#. Normally 002
XFFF : check sum. Normally 35F

Page 46

Appendix_A_Keyboard definition figures

A<>B 8-0 <> ST=0 LDi

A= B=A Ce RCR LDe¢R

R=R-1 PUSH W. S&X F Sax R=

ReR+! POP WRIT READ R=

XQ~GO LBL GTO BST

EXQ . DATA DATA SST

C KIN INC RTN NOP

N=C G=C RTN -

AsO SELP ST=C FL

7A» C SETF CLRF FSET

7A<B ST=-T SLCT P SLCT Q

2A<C STT! SETHE [sere

TLOWBA T=ST DSPOFF CLRKEY

Ww=Q LSHFA RSHFS KEY

Bw 0 POWOF DSPTOG PRP SL

CeO RSHFA RSHEC RAM SL

keyboard |

a b < dé e

- L M

N o r

Q T

x

Y z

keyboard 2

Fage 47

Appendix A Keyboard definition figures

ALL

Ms sax

PQ oR

Xs

keyboard 3

A 8 C D E

%] L 3

F G H 1 J

= X t M

2 mM

0 [J -

- 17 8 9

a R S 1

+ 4 5 6

u v Ww X

x 1 2

Y 2 = ?

/ 0 >

5 space -

alpha on

Page 48

The HP41 CPU has three main arithmetic registers: A,B and C. These are
96 bits long (14 nibbles) and instructions can operate in various
"fields" of the register.

nibbles | 13 {| 12 11 10 9 8 7 & S 4 I 12 11 0 |
: : : : }
: : i XS i !
: : ALL 1 {—>1 '
i < + + + >

i MS M : S & X i

1{——>1i< >i >i

ALL : The whole register

M : Mantissa

MS : Mantissa Sign

XS : eXponent Sign

S5&X @: eXponent and Sign of exponent

@R : At specified pointer

R<{— : from digit R to digit ©

PE2 : Between P and @

There are two pointers P and Q@, of which the value is 0-13. One of

them is selected at the time (through slct p or slct q), the selected
pointer is called R. These are three extra fields, which depend on the

value of the pointer), R<{- (up to R, from digit R to digit 0) and P-Q

(between pointer P and @, @ must be greater than P).

There is a register 6G, 8 bits long, that may be copied to or from or
exchanged with the nibbles R and R+1 of register C. {R{=12). There are

14 flags, 0-13, of which flags 0-7 are located in the 8-bits ST (status)

register, and there is a 8-bits TONE register T, of which the contents
floats every machine cycle through a speaker.

Then there are two auxilary storage registers, M and N, which can
operate only in the field ALL. They are 36 bits long.

There is a 16-bit program counter, which addresses the machine

language, and a KEY register of 8-bits, which is loaded when a key is

pressed. The returnstack is 4 addresses long and is situated in the CPU
itself.

The CPU may be in HEX or DEC mode. In the latter mode the nibbles act
as if they can have a value from 0 to 92.

Fage 49

The USER-code RAM is selected by Cis&x] through RAM SLCT, and can be
written or read through WRITE DATA or READ DATA. If chip 0 is selected
(RAM address 000 to OOF) the 16 stack registers may be addressed by WRIT
and READ 0 to 15.

Peripherals (such as display, card reader, printer) may be selected

by Cls&x1 through PRPH select or by SELF (see page 19).

The mnemonics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field)

A=0 C=B C=C+1 ?A<B

B=0 A=A+1 C=C+A ?ARC

C=0 =A+B =A—C ?A#0

A<>B A=A+C C=0-C RSHFA

B=A A=A-1 Cc=-C-1 RSHFB
ALC A=A—B 7B#0 RSHFC

=C A=A-C ?CH0 LSHFA

C<>B =C+C ?A<C

CLRF, SETF, ?FSET, ?R=. ?FI (peripheral flag set?) , RCR (rotate right)
have a parameter 0-13.

LD@R (load C at R) and SELF (select peripheral) have a parameter O0-F.

WRIT and READ have a parameter 0-15, called

0(TY, 1(Z), 2(Y), 3(X), 4), SM, 6(N), 7(@), BP), 9(@), 10(i-),
11¢a), 12(b), 13{(c), 14(d), 15(e).

Jumps:

There are two classes jumps:

a. JNC (jump if no carry) and JC (jump if carry). These instructions
provide to jump relative 3F in positive direction or 40 in

negative direction.

b. ?NC 60 and ?C GO. These instructions provide to jump to an absolute

16 bits address.

?NC X& and ?C XG are jump—-subroutine instructions to absolute addresses.

(remember the return stack is just 4 addresses long).

Page SO

Miscelaneous instructions:

ST=0 C=G ST=T POWOFF

CLRKEY C<>6 ST<>T SLCT P
?KEY C=M 5T=C SLCT @

R=R-1 M=C C=8T ?P=a
R=R+1 C<>M S5T<>C 2LOWBAT

G=C T=87 Xa->60 A=B=C=0
GOTO ADR (CL6:31) ?C RTN PUSH (CL&6:31)

C=KEY ?NC RTN POP (CL6:31)

SETHEX RTN G0TO KEY

SETDEC =C RAM SLCT

DSPOFF C=N WRITE DATA

DSPTOG C<O>N READ DATA

FETCH S&X C=C or A PRPH SLCT
WRIT S&X (for MLDL) C=C and A

Note: various arithmetic and all test instructions may set the carry

flag. This flag keeps set only one machine cycle, so a jump

dependent on this flag must be immediate after the arithmetic

or test instruction, otherwise the carryflag will always be

cleared.

The HP41 CPU cannot execute all combinations of instructions

correctly. Those that are located are listed in appendix E.

All possible instructions are listed below with their keysequences (in

ASSM and normal keyboard), The parameter sort, and the page where

information can be found. The parameters are :

F : field

4K : 4K hex addres

L : label

— : nothing
d3 : decimal 0-13

dS : decimal 0-15

STK : stack reg name

H : hexadecimal digit

+/— : plus or minus hex

Page 51

Instruction Key sequence Parameter Page
—————ee+ —— +
?AH#0 i [1 ?A#O (X=Y?) POF 27
2AHC : ?AHC «(=) : OF 27
?A<B ! [1 ?A<B ¢ X<=Y) IF 27
7?ALC : ?a<C C+) IF i 27
7B#0 { [1 7?B#O (X=07) ! OF 27
?C GO ! [1 GTO [1 (GTO £1) ! 4H / L P32
?C RTN ! [1 ?C RTN (ISG) :! ! 24
7C XQ : XEQ [1 (XER C1) ! 4H / L ! 30
2CHO : 2CHO « 7) !OF 1 27
?F1 {£1 FI (FS?) t! d3 !25
?FSET : ?FSET (9) i d3 iI 25
?PKEY : KEY (3) 1 - {24
?LOWBAT ! [J LOWBAT ¢ X>Y?) PT - 24
?NC GO ! [1 GTO (GTO) ! 4H / L 132
7?NC RTN ! [1 ?NC RTN (RTN PT - ! 24
2NC XQ : XEQ (XE@) ! 4H / L ! 30
?P=0 : ?P=0Q « *®) :! - i 24
R= ! [1 ?R= (TAN~') ! d3 P25
A< OB ! [1 A<OB (£-) I 27
ASC [1 C<> A (X* 5+) ! OF {28
A=0 : = 0 (E+ 0) ! OF i! 28
A=A+1 : = + 1 (=Z+ + 1) : F ' 28

A=A+B : = + B (X+ + 1/X) ! OF i 28
A=A+C : = + C (E+ +VX) ! F 1 28
A=A—-1 : = - 1 (Z+ —- 1) ! OF i 28
A=A—B : = - B (Z+ — 1/X) ! OF :! 28
A=A-C : = — C (X+ -VX) ! OF i 28
A=B=C=0 : = B (+ 1/X ! - 28
A=C : A= C (+ YX) IF 28
B< >A ! [1 A<>B (=£-) ! OF : 27
B<>C : [1 C<>B « X2/x ! OF : 28
B=0 : [1 B=O CvY>) {OF 27
B=A : =A C 1/X) IF i 27
C<>A 1 [1 C<>A (X3 Z+) ! OF : 28
C<>B ! [1 C<>B « X* 17x» ! OF : 28
C<>6 ! [1 C<> 6 (X>2 R$) PT - i! 28
C< OM ! LI CE>M ¢ X* RCL } 1 - i! 28
C<>N ! [J C<> N (X* ENTER) ! i 28
C<>S8T 1 [1 C<>S «(x*g) H— 1 28
C=—C-1 : = - - (Vx — —- 1} ! OF ! 29
C=0 ! = 0 (VX 0) :! OF 1 29
C=0-C : = CHS (Vx CHS) I i! 29
c=A-C : = A — (Vx 2+ —) ! OF 1 29

Page 52

Instruction

a
o
n
o
Q
a
o

H
o
n
o

Z
I
M

Il wn -

CLRF
CLRKEY

DSFOFF

DSPTOG

FETCH S&X

G=C

GOSUB

GAaTO

GOTO ADR

GOTO KEY

JC
JNC
LDEeER

LDI

LSHFA

M=C

N=C
NOP

POF

POWOFF

PRPH SLCT

PUSH
R=

R=R+1

R=R-1
RAM SLCT

RCR

READ

READ DATA

RSHFA

RSHFB

RSHFC

RTN

SELF

SETDEC G
E

G
m

m
W

G
S

B
E

W
E

G
E

v
e

G
E

S
m

G
E

B
M

E
W

P
R

S
A

G
E

S
E

N
E

EW
E

W
E

W
E

H
R

M
E

B
E

G
E

G
E

E
N

G
R

S
R

S
E

S
E

S
E

M
E

S
E

S
E

B
R

A
R

N
S

P
E

E
S

S
E

W
e

S
e

=
E
=

R
e

w
e

Key sequence

= A * (Ve T+ x)

=f + (Vx E+ +)

= BR (Vx 1/%)
= + 1 (VE +1)
= + A (Vx + 5+)

= + C (Vx + Vx)
= - 1 (Vx - 1)
= 6 (VX R¥)
= K (Vx XE@)
= M (Vx RCL)
= N { Vx ENTER)
= g (Vx 8)

CLRF { 8)
£31 CLRKEY { ENG)
£1 DSPOFF (SCI)
£1 DSPTOG { LASTX)
£1 FETCHS&X (cos~')

G=C (CHS)
XEQ (XEQ)

£1 GTO (GTO)
£1 GTO M (GTO RCL)
£1 6TO K (B6T0 XEQ)
£1 670 C1 (6TO £1)
£1 GTO ¢ GTO)

LDer (LN)
[1 LDI (e”)

LSHFA C0)
£1 M=C { CAT)

N=C (ENTER)
£1 NOP (CLX/A)

POP (R¥)
£1 POWOFF (PI)
C1 PRPHSLCT { VIEW)
[1 PUSH «CZ

R= ¢ TAN)
R=R+1 (X<>Y)

[1 R=R-1 { CLE)
RAMSLCT (R/S)
RCR (LOG)
READ (COS)
READDATA (RCL)
RSHFA (0)
RSHFB C2)
RSHFC « .)
RTN (EEX)

£1 SELP (SF)
SETDEC (6)

Page S3

1 | |
we

mm
em

mm
mE

ww
wm

Nm
we

ee
Gn

en
ME

WE
WE

Em
EN

NE
Ge

ee
me

Wm
Se

Me
we

we
we

EE
Ge

mE
==

SE
me

we
WN

ME
m=

we
ee

Se
me

me
mu

=m
ee

we
w
=

Parameter Page

+
+

N
N

f
m
m
m
m
m

g
d

I
M
I
X
d ~
~

H
b

I
I

~
~

mm
wm

me
wm

mn
me

be
mm

mm
un

we
Gm

Mm
we

=e
ea

me
we

me
en

mm
Mn

G6
we

==
Se

4a
we

Se
wa

m=
=m

me
m=

we
==

an
Se

Em
we

We
au

om
we

we
==

on
$

29

29

29

29

29
29

29

29

29

29
29
29

25
24
24

24

24

24

30

32

32

32

31
31

235

24
27

24

24
24

24

24

24

24

25
24

24

24
25

26

24

27

27

27

24

25

24

Instruction key sequence Parameter Page
 ——————— —— mmpeen

SETF : SETF « 7) 7 d3 i 25

SETHEX : SETHEX (5) i - i 24

SLCT F v [1 SLCTP { P-R) : - i 24

SLCT & y [3 SLCTe { RFP) y= : 24

ST<>T : STL >T { 4) : - ‘ 24

ST=0 i [1 ST=0 (10) y= i 24

ST=C v £3 ST=C { CF) ' - 1 24

ST=T i £1 ST=T { BEEF) i - i 24

T=8T vt [1 T=8T { FIX) : - i 24

WRIT : WRIT { SIN) i dS / STK + 26

WRIT S&X t [J WRITS%X (SIN) : - i 24

WRITE DATA WIRTEDATA (STO) : - : 24

Xa->60 i [1 X@->60 (ASN) ' - i 24

The following Error messages can occur using DAVID-ASSEM:

1. ALPHA DATA: —- BUF>REG X is of type ALPHA

2.DATA ERROR: —- BUF>REG: x=0 or x>=13

3.JUMP TOO FAR: — ASSM mode: At least one jump to the label you keyed in

cannot be realized. Label is located too far.

4 _NONEXISTENT — one of functions: DAVID-ASSEM is not plugged in
- ASSM mode: the label you keyed in after CONT or

XEQ (C) does not exist.

— BUF>REG: the SIZE is to small to contain the entire

buffer

— the buffer with 1D# X does not exist

— DISTOA: — buffer #1 does not exist

S5.NO WRITE: — ASSM mode: you tried to write in ROM or your

MLDL is wrong.

6. PACKING — ASSM: buffer #1 does not exist yet and there is no

TRY AGAIN room to create a header. (00 reg 00).
— ASSM mode: there is no room to save a label jump to

nonexistent label.
— REG>BUF: there is no room enough to create an entire

buffer in the i/o area.
~ BEG/END: buffer with 1D#1 does not exist yet and there

is no room to create a header.

7.TRY AGAIN —- you wanted to key in a 255st label or jump to a

nonexistent label.

8.7 LBL {name} — ASSM: you still have not completed your machine

language program. You forgot to key in this label.

Page 54

Appendix _E Example program

This program will show you how to use labels.

The function itself, FNCTOA is very useful in programs for listings

of machine language. You can change parts of it to make it suitable for

your own demands.

First, append the function of the FAT of your RAM page, using the USER

off mode. CONT.X001, see what is written there do [1 BST and increment

the word on X001. Add the FAT address and continue 7 words before that

address, still in user off mode. Then key in

081

OOF
014

003
OOE

006

USER

last char of functionname

function name: FNCTOA

=Q (S&X) turn on assemblerP
M
z
n
-
4
0
D

For more information about the structure of the FAT and the ROM itself

see your manual of the ERAMCO SYSTEMS MLDL-box.

You will need ERRNE, DOSKP, CLA, APNDNW. If you don’t have the rom

MNFR-LBLS you could first assign these 4 labels to the adresses

respectively O2EO, 1631, 10D1, 2D14. This will make programming easier

and nicer, but of course you can use the addresses themselves.

Page 55

LABEL

NXT
NXTBUF

ERRNEA

FOUND

LOOF

INSTRUCTION

READ 13¢c)

C<>B S&X

LDI

OBF

R= 12

A=0 er

A=A+1 eR

A=C S&X

A=A+1 S&X
?A<B S&X

?NC GO ERRNE
ACC S&X

A=C S&X

RAM SLCT

READ DATA

?C#0 ALL

JNC— ERRNEA
C=C+1 MS

JC- NXT

?AH#C @r

INC+ FOUND

RCR 10

C=0 Xs
A=A+C S&X

JNC- NXTRUF

RCR 11

C=C+1 M

=C

A=0 ALL
R= 6&6

A=C @R

L.D@rR S

SLCT P

R= 3

SLCT @
R= 6

?A<C @R

JC+ DOSKPA

c=0 P-Q
C=C-1 P-Q

B=A P-Q

c<>B P-Q

C=C+1 P-Q

FETCH S&X

A=C S&X
A=A-1 S&X

JC+ LOWEST

C=C+1 P-G

FETCH S&X

CHO XS

COMMENT

first search buffer #1

put up chainhead in BISX]

compare buffer ID# in AL12]

ram start address in ALS%X]

point to next ram register
reached chainhead ?

yes, say nonexistent

copy ALS%X]1 to CLS&X1]

get register

empty ? (reached free memory 7?)
yes

key assignment

ves
right buffer

ves, header is in C

no, move buffer length to CL3:0]

skip this buffer

APC to CL6:31

for compare later
save APC in M

copy page of APC

set up compare value

put up address field, set R= 6
page < 5

ves, say not found

put FFFF in B

and FAT counter in C

B is lowest function address > APC

get # of functions

save in ALS&X)
out of functions ?

ves

increment FAT counter

get word

user code function ?

Page 56

LOWEST

LOOP1

DOSKPA

JNC+ 3

C=C+1 P-Q

JNC~ L.OOFr

RCR 12

A=C XS

RCR 2

C=C+1 P-0
FETCH S5&X

ALC Xs

RCR 11

A=C P-Q
RCR =

A=C er
C<>M

?6LC PQ

JINC+ 03

C<>M

JNC- LOOP
C<>M

2A<B P-Q

JNC—- L00P

B=A PQ

JNC—- LOOP
C=B P-Q

C=C+1 FQ

JC+ DOSKPA
=C~1 PQ

C=C—-1 P-0

FETCH S&X

ST=C
?FSET 7

JNC—- LO0P1

A=C PQ

C=M
2A<C P-Q

?NC GO DOSKP

READ DATA

RCR 11

C=B P-Q

RCR 3

WRITE DATA
C=0 S&X

RAM SLCT
?NC XQ CLA

R= 9

LDer

LDéRr

LD@R

LDeR
LDéR
LDeR

LD@R

LD@eR
LDeéR M

D
U
W
U
W
R
E
M
b
E
r

no

increment FAT counter

try next FAT address

save 3rd digit in ALCXS]

get 2nd word
CXS] is always O

put 0 in ALCXS], add 3rd digit
move to CI[S5:3]

copy address

add page

get APC+1

APC <= FNC address
ves

no, put back, try next function

put APC+1 back

FNC address < lowest as yet ?
no

make B lowest

still FFFF 7?

yes, not found, do skip
restore address

compute begin of FNC name

last character ?

no

save in A

get APC+1

within function name ?

no, do a skip

get header #1 again

copy new address to APC

APC = start address of function

select chip 0

clear alpha
leaves C = O

put string "FNC: “" in alpha

leaves R= 0

Fage S57

WRIT S(M)

LOOFZ2 C=B M get function address

€=C-1 M decrement

FETCH S&X get display character
Cox M put address in B again

ST=C save character in ST

FSET 6 special character ?

JNC+ NOSPCL no

RCR 1 save collumn in CIMS]
LDI

2C0 special character table is at 2C00

RCR 10 move to Cr&:31

FETCH S&X get ascii byte

JNC+ APPND

NOSFCL 7?FSET S row 0-1

JC+ 02 no

SETF 6 make row 4-5

CLRF 7 clear last character bit

C<>8T save last char. bit in ST and char. in C[{1:01

APPND G=C R= O left by loading constants

NC XQ APNDNW append ascii character to alpha

?FSET 7 last character ?

JINC—- LOOP2 no, do next character

RTN finished, don't skip

The use of FNCTOA.

FMCTOA checks whether the APC, stored in a buffer with ID#1, is located
within a functionname. If it isn't, the next line is skipped, if it is,
FNC: {function name} is put into ALPHA, and the next line is executed, and

moreover the APC is set to the first word of the function.

Here follows a routine in which FNCTOA suits perfect

01 LBL “PRINT

02 BEGIN/END?

03 AON

04 PROMPT

03 AOFF

06 BEG/END

07 LBL O1

08 FNCTOA

09 GTO 02

10 DISTOA

11 GTO 03

12 LBL O02

13 PRA

14 6TO 01
15 LBL 03

16 BEEP

17 PRA

18 END

Page 58

Appendix _F_Errors_of_ HP41 CPU

The hardware of the HP41 is not bugfree.
A. In particular the instructions G=C, C=6G and C<{>G.

You can guess that something must go wrong if R=13 (what is R+1). You
should not use these instructions with R=13, unless you studied the

following.

1 if you did not change R to 13 one step befor you use C<>G, 6=C or

C=6, it is rather simpel.
a. C<>G exchanges CL(13] with G[11 (!) and CLO] with 6(0), or in

symbols

b.

Cc.

2 if you changed R to 13 one step before you use C<{>6, C=6 or G=C, by

R=13, R=R+1 or R=R-1, strange things happen:
a. C<>6 three nibbles circulate

a

Gf:Jo]

nT
b. C=G the nibbles in 6 are exchanged, G(0) is copied

to Ccr131

6

c LL

c. G=C 6L03J:=6[1]1, 6[11:=CL131

(
GlJo]

c [ry] -—TT

Page S59

3. if R=13 and you change R to 12 using R=R-1 one step before use C=G,

G=C or C<>6 very strange things happen!

a. C«<>6 S nibbles are involved in a circulation

b. C= the nibbles of G are exchanged, then its
3 contents is copied to C, and at last

Gro} Cfo] = Cr131
\/

fCT_TTT

c. 6=C acts normally:

6{ +Jo]
Fy

¢ [aff ——

B. The instructions C=C AND A and C=C OR A do not always work right:

If you have used an arithmetic instruction that is able to yield a

carry, and where [13] (MS) is part of the field (so in ALL, MS, @R R=13,

P=G @=13, R<- R=13), the C=C AND A or C=C OR A is executed, and after

that CL131:=C[0]1, and AL131:=CL0].

Therefore, if you want to let these instructions work normally, you

should insert a NOP just before thes.

Page 60

For the convenience of the user we have developed a 4K rom, that

contains all the important entry points within the VASM listings. These
entry points are compatible with the official NOMAS HP listings of the

HF-41 operating system.

We haven't included all the entry points, for a lot of them are never

used by HP themself. The entry points that are supported by the rom, are

those entry points that are called from another 1K block of code in the

operating system.

For example: There are four entry points concerning locating the rom

head address of a program in rom. Of these four entry points one is used
only within the routine itself. The other three are also called from

another part of the operating system, and are therefore included. So you

will find ROMHED, ROMHOS and ROMH35 included in the label rom but ROMHOS

isn’t.

The mainframe label rom behaves in the same manner as the user defined

labels, but you can not delete them. Therefore they are always present

when the label rom is switched on line. Memory lost will not influence

the state of the rom

Included in this appendix you will find a printout of all the entry

points that are included in the label rom. These entry points are listed

in alphabetical order to ease searching if a specific label is included

in the rom. After the label name you will find its address in the

operating system.

With the help of the label rom you will get very readable printouts of

your programs, for you never have to look up which mainframe routine is

called. If you have ordered the complete set, you can start writing

programs in an easy and simple way now. If you have only ordered the

assembler rom itself, we can advice you to order the seperate mainframe

label rom as soon as is possible, for it is really easing up writing

your programs.

Page 61

ARS
ABTS10
ABTSEQR
ACOS
AD1-10
AD2-10
AD2-13
ADD1
ADD2
ADDONE
ADRFCH
ADVNCE
AFORMT
AGTO
AJ2
AJ3
ALCLOO
ALLOK
ALPDEF
ANN+14
ANNOULT
AOQFF
AON
AQUT1S
APHSTX
APND~-
APND1O
APNDDG
APNDNW
APPEND
ARCL
ARGOUT
ASCLCD
ASHF
ASIN
ASN
ASN1S
ASN20
ASRCH
ASTO
ATAN
AVAIL
AVAILA
AVIEW
AXEQ
BAKAPH
BAKDE
BCDBIN
BEEP
BIGBRC
BKROM2Z
BLANK

ADDR:

ADDR:

ADDR:
ADDF:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

1076
oD1s&
oDp12
107D
1809
1807
180C
1CEO
1CEZ
1800
0004
114D
0628
1085
OoDD4
oDDO
06C9
02CD
O3AE
075B
0735C
1345
122C
2C2B
2E62
tFF3
1FFS
1FFA
2014
2DOE
108C
2C10
2CSD
1092
1098
109E
27C2
27CC
26CS
10A4
10AA
28c4
28C7
10B2
10BS
0O%9E3
09AS
02E3
10BB
004F
2A21
05SB7

BLINK
BRT100
BRT140
BRT160
BRT200
BRT290
BRTS10
BST
BSTCAT
BSTE
BSTE2
BSTEP
BSTEPA
CALDSP
CAT
CATS$1
CATSS2
CATSS3
CF
CHKsS
CHK$S1
CHKSS2
CHKADA4
CHKADR
CHKFUL
CHKRPC
CHRLCD
CHS
CHSA
CHSA1l
CLA
CLCTMG
CLDSP
CLLCDE
cup
CLR
CLREG
CLRLCD
CLRPGM
CLRREG
CLRSB2
CLRSB3
CLSIG
CLST
CLX
CNTLOP
CoLDST
COPY
cos
CPGM10
CPGMHD
D-R

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

Page 62

0899

1D80

1DEC
1DAB

1EOF

1DAC
1D6B

10C2
OBBA

290B

2AF2

28DE
28EB

29C3

10C8
OBC3

OBSY
1383

10CC
14D8

14D4

14D9

16864

166E

05SBA

0222
03SB9

123A

1CDA

icc
10D}
039C

10E0Q

2CFQ
10E7

1733
10ED

2CF&
228C

2155
OCO0

oCco2
10FZ
10F®

110%

OB9D

0232
1109

127C

067B
110E

DAT106
DAT231
DAT2560
DAT280
DAT300
DAT320
DAT400
DATS00
DATENT
DATOFF
DCPLOO
DCPLRT
DCRT10
DECAD
DECADA
DECMPL
DECOCT
DEEXP
DEG
DEGDO
DEL
DELETE
DELLIN
DELNNN
DEROVF
DEROW
DERUN
DERWOO
DF0&0
DF150
DF1&0
DF200
DFILLF
DFKBCK
DFRST8S
DFRST?
DGENSS8
DIGENT
DIGSTX
DIvi10
DIV120
DIV1S
DIVIDE
DASKP
DOSRC1
DOSRCH
DROPST
DROWSY
DRSYOS
DRSY25
DRSYS0
DRSYS1

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

2DbaC
2077
2094
2D98
2D9B
2DA2
2E0S
2E10
2p2C
0390
2EC3
2FOB
2FO0D
29Cc7
29CA
2EC2
1X30
088c
1114
172A
1124
1127
2306
22A8
OBEB
O4AD
08AD
04B2
0587
0482
0485
04E7
0563
0359
0562
0561
0836
0837
08B2
18A5
1BAF
18A9
106F
1631
24E3
24E4
OOE4
0160
0161
0173
0190
0194

DSE

DSPCA
DSPCRG

DSFPLN+

DSWKUP
DTOR

DV1-10

DV2-10
DV2-13

ENCFPOO

END
ENDZ2

END3

ENG
ENLCD

ENTER"

ERRO

ERR110

ERR120

ERRAD
ERRAM

ERRDE
ERRIGN
ERRNE

ERROF

ERROR
ERRPR

ERRSUB

ERRTA

EXP10

EXP13

EXP400

EXP5S00

EXP710
EXP720

EXSCR
E~X

E~X-1

FACT

FC?

FCC

FDIG20
FDIGIT

FILLXL

FINDS1

FIX
FIX37

FIXEND
FLGANN

FLINK
FLINKA

FLINKM

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

112D
OBIS
OoB2&
OFC7
O1AD
1981
189A
1898
189D
0952
1132
03B6
03BE
1128S
O7F6
113E
18C3
22FB
22FF
14E2
2172
2820
OOBB
0260
00A2
22FS
2184
22E8
2F17
1A0A
1A0D
1A21
1A61
1A4C
1AS0
192A
1147
1162
1154
115A
116B
OEZD
OE2F
O0EA
1775
1171
OAC3
2918
14651
2928
2927
2929

FLINKP
FNCTBL
FNDEND
FORMAT
FRAC
Fs?
FS?C
FSTIN
GCP112
GCPKO4
GCPKOS
GCPKC
GCPKCO
GENLNK
GENNUM
GETLIN
GETN
GETPC
GETPCA
GETX
GETXSA
GETXY
GETY
GETYSQ
GOLNGH
GOSUBH
GOTINT
GRAD
6SB00O
GSUBS1
6T3DBT
GTACOD
GTAI4Z0
GTAINC
GTBYT
GTBYTA
GTBYTO
GTCNTR
GTFEN1
GTFEND
GTLINK
GTLNKA
GTO
670.5
GTOL
GTONN
GTRMAD
GTSRCH
H~-HMS
HMS+
HMS—
HMS-H

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:
ADDR:

ADDR:
ADDR:

Page &3

2925
1400
1730
OA7B
117C
1182
1188
14C2
2BBS
2BBC
2BBE
2B8o
2B8%9
229A
O3ES8
1419
1CEA
2950
2952
1CEF
1CEE
1CEB
1CED
1CEC
OFD?
OFDD
02F8
111A
23FA
23Cc9
OFEB
iFDB
0341
0304
2980
29BB
29B2
oB8D
20EB
20E8
224E
2247
1191
29AA
118C
2939
0800
24DF
1199
1032
1045S
1192

HMSDV
HMSMP
IN3B
INBCHS
INBYT
INBYTO
INBYT1
INBYTC
INBYTJ
INBYTP
INCAD
INCAD2
INCADA
INCADP
INCGT2
IND
IND21
INEX
INL IN
INLINZ2
INPTDG
INSHRT
INSLIN
INSSUB
INSTR
INT
INTARG
INTFRC
INTINT
INTXC
IO0RUN
156
KEYOP
KYOPCK
LASTX
LBL
LD?0
LDD.P.
LDDP10O
LDESTO
LEFTJ
LINN1A
L.INNM1
L INNUM
LN
LN1+X
LN1O
LNS60
LNAP
LNC10O
LNC102
LNC20

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDF:
ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

19ES
19E7
2865
2EO0A
29E6
29EZ
29EA
29E4
2E0C
29ES
29CF
29D3
29D6
29D1
0286
one2
oDca
2A4A
2876
29F&
0BAO
2A17
29F4
22B2
2A73
1177
O07E1}
192B
02FB

2A7D
27E4
119E

0693
1228
11A4
1995
OB1D
OBlE
0797
2BF7
2A93
2a90
2A8HE
11A6
1220
1B43
1BDZ
1A8BA
1AAE
1AAD
1ABD

LNSUB

LNSUB-

LOADZ
LOG

LSWKUP

MASK
MEAN
MEMCHK

MEMLFT

MESSL

MIDDIG
MINUS

MOD

MOD1O

MODE

MODE 1

MOVREG

MP1-10
MP2-10

MP2~13

MPY150

MSG
MSG105

MSG110

MEGA

MSGAD

MSGDE

MSGDLY

MSGE
MSGML

MSGNE
MSGNL

MSGNO

MSGOF
MSGPR
MSGRAM

MSGROM

MSGTA

MSGWR

MSGX

MSGYES

NAM4O

NAM44%
NAME20

NAME21

NAMES
NAMEZI?

NAME4A

NAMEA4D

NAMEA

NBYTAO

NBYTAB

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDF:

19F9
19F8
14FA
11AC
0180
2c88
11B9
0205
0SA7
O7EF
ODEO
1054
104F
195C
134D
134F
215C
184F
184D
1852
1865
1C4B
ic8o
1C8s6
1C6C
1C18
1C22
037C
1C71
1C2D
1C28
1C3C
1Cé64
1C4F
1C4Z
1C67
1C6A
1CSF
1CSé6
1C75
1C62
OF34
OF7D
OEE6&
OEE?
OEEF
OFO0%9
OFA4
OFAC
OED?
2004
2D06

NEXT
NEXT1
NEXT2
NEXT3
NFRC
NFRENT
NFRFST
NFRKB
NFRNC
NFRNIO
NFRPR
NFRPU
NFRS1G
NFRST+
NFRX
NFRXY
NGRKB1
NLTOO00
NLTO20
NL.TO40
NM44S$S
NOPRT
NOREG?
NOSKP
NOTFIX
NRM10O
NRM11
NRM12
NRM1Z
NROOMX
NULTS
NULTS$3
NULTSS
NULTST
NWGOOS
NXBYT3
NXBYTA
NXBYTO
NXL1B
NXL3IB2
NXLCHN
NXLDEL
NXLIN
NXLIN3
NXLINA
NXLSST
NXLTX
NXTBYT
OCTDEC
OFF
OFSHFT
ON/X10

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR3
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

Page 64

OESO
OEAS
OEA48
OEA4B
O0F 1
00C4
QO0F7
00C7
00AS
013B
OOEE
O0FO
00C2
OBEE
oocC
10DA
00Csé
OES!
OEAO
OEAA
OF7E
0106
095E
1619
OADD
1870
1871
1872
1884
28C2
OE&S
OE7C
OEBF
OECS&
o7h4
29B7
2989
2DoB
2B23
2B&63
2B49
2AFD
2B14
2BSF
2B1F
2AF7
2B77
2D07
132B
11C8
0749
188B

ON/X13
ONE/ X
OPROMT
OuTLCD
OUTROM
OVFL10
P-R
P1ORTN
P&6RTN
PACH10
PACH11
PACH12
PACH4
PACK
PACKE
PACKN
PAK200
PAKEND
PAKSPC
PAR111
PAR112
PARAOS
PARALO
PARAA1L
PARA7S
PARB4O
PARSOS
PARSSS
PARS7S
PARSDE
PARSE
PARSEB
PATCH1
PATCH2
PATCHS3
PATCHS
PATCH
PATCH?
PCKDUR
PCT
PCTCH
PCTOC
PGMADON
PI
P1/2
PKIOAS
PLUS
PMUL
PR1ORT
PR14RT
PR15SRT
PR3RT

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

186E
11D6
2E4C
2C80
2FEE
1429
11DC

02AC
1670

O3EC
03FS
O3FC
03E2
11E7
2002
2000
2055
20AC
20F2
OCED
OCFS
oDz22
oDn35
oD37
0D49
QD?
0C34
oc
0CCD
0C?0
oCcoS
OoD&D
210C
21E1
21EE
21F3
1C06
1CO3
1&6FC
1061
11EC
00D?
0956
1242
199A
2114
104A
1BE9
0372
1365
22DF
OEDD

PROMF 1
PROMF2
PROMFC
PROMPT
PSE
PSESTP
PTBYTA
PTBYTM
PTBYTP
PTL INK
PTLNKA
PTLNKB
PUTPC
PUTPCA
PUTPCD
PUTPCF
PUTPCL
PUTPCX
PUTREG
QUTCAT
R-D
R-P
R/S
R/SCAT
RAD
RAKOS&
RAK&60
RAK70
RCL
RCSCR
RCECRx
RDN
RDNSUB
REGLFT
RFDSSS5
RG?LLCD
RMCKOS
RMCK10
RMCK1S
RND
ROLBAK
ROMCHK
ROMHOS
ROMH3S
ROMHED
ROUND
ROWO
ROW1O
ROW11
ROW12
ROW120
ROW?33

ADDR:
ADDR:

ADDR:

ADDF:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

05CB
0SD3
0SC7
1209
1iFC
03AC
2307

2921
2328
231A
231B
2321
2337
2339
232C
2331
2AF2
232F
215E
0o3DS
120E
11CO
1218
0BB7
111F
OC7F
Oo6FA
070A
122€E
1934
1932
1252
14E9
059A
0949
O8EF
27EC
27F3
27F4
1237
2EA42
27E6

0678
Ob&A
0A33
2766
02Aa6
25AD
0519
0447
0487

ROWS40

RSTOS

RSTANN

RSTKB

RSTMSO

RSTMS1

RSTMSC

RSTSEQ®

RSTSQ

RSTST

RTJLBL

RTN

RTNZO

RTOD

RUN

RUNING

RUNNK

RWO110

RW0Q141
R™

R~SUB

SARO21

SARD22
SAROM
SAVR10
SAVRC
SAVRTN

SCI

SCROLO

SCROLL

SD
SEARC1
SEARCH
SEPXY

SERR
SETQ=P

SETSST
SF
S6T019

SHF10
SHF40
SHIFT
SIGMA
SiGMA+

SIGMA-
SIGN
SIGREG
SIN

SINFR

SINFRA

SIZE
SIZSuUB

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

Fage 65

1598

0759
O03BE
0390
0392

0384
08A7

0108

08A7
14C9

125C
272F

198C

o7Cc2

011D
04E9
O4F1
O37E
1260
14ED
2640
2641
2560D
27D5
27DF
2703
1265
2CDE
2CDC
iD1o
2434
243%
14D2
24E8
OB15
17F9
1269
25Ce
18&D
186C
1348
1C8s8
124D
1271
1337
1277
1288
1947
194A
1292
1797

SKP
SKPDEL
SKPLIN
SNR10O
SNR12
SNROM
SGR10
SAR13
SORT
SRBMAP
8ST
SSTBST
SSTCAT
STATCK
STAYON
STBT10
STBT3O
STBT31
STDEV
STFLGS
STK
STKOO
STKO4
STMSGF
STO
sSTOx
STO+
STO-
sSTQ/
sTOLCC
STOP
STOPS
STOPSB
STORFC
§TO08TO
STSCR
STSCRx
SUBONE
SUMCHK
SUMCK2
TAN
TBITMA
TBITMP
TENTOX
TEXT
TGSHF 1
TIMES
TODEC
TOGSHF
TONE
TONE7
TONE7X

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:
ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDRz:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

1862
2349
2AF9
243F
2441
2400
18BE
18C1
1298
2FA3
129E
22DD
OBB4
1CC8
12AZ
2EA3
2FEO
2FES
11B2
16A7
ODF3Z
ODFA
OEQO
O3A7
10DA
12A8
12BO
12B9
12C1
2ESB
1215
03A9
013B

Q7EB
124C
1922
1920
1802
16467
1669
1282
2F7F
2F81
12CA
2CAF
1FE?7
105C
1FB3
iFES
12D0
1716
14DB

TONEB
TONSTF

TOOCT

TOPOL

TOREC

TRC10

TRCZO

TRCS10
TRG100

TRG240

TRG430
TRGSET

TSTMAP

TXRW10

TXTLB1

TXTLBL
TXTROM

TXTROW

TXTSTR
UPL INK

VIEW

WIKUP10

WKUP21

WKUP2S
WKUP70

WKUP80

X$07?
Xsy?

X/Y1Z
X10TOX

X<0?

X<=07

X<=Y"?
X<>
X<>ROW
X<>Y

xy?

X=07?

X=Y7?

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

16DD
0054
1F79
1D4a?
1E7S
19A1
1EZ8
1ES7
1E78
1ED1
1FSE
21D4
14A1
O4F6
2FCé
2FC7

04F2
O4F6
2233
12D6
0184
O01A7
01BA
O1FS
OiFF
12DC
12E2
1893
1BF8
12€8
12EF
12Fé6
124C
0026
12FC
1308
130E
1314

X>07?
X>y?
XARCL
XASHF
XASN
XASTO
XAVIEW
XBAR
XBARX
XBEEP
XBST
XCAT
XCF
XCLSIG
XCLX1
xcopy
XCUTB1
XCUTE
XCUTEB
XDEG
XDELET
XDSE
XECROM
XEND
XEQ
XEQCO1
XFS?
XFT100
XGAOO
XG1
X6107
XGIS7
XGNN10
XGNN12
XBENN4O
XGOIND
XGRAD
X6TO
X1S6

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:
ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

Page 66

131A
1320

1696

1748

276A
175C
0364

1CFE
1DO7

14D1

2250
0B80C

1640

14B0O

1102

2163

0091
015B

171C
22AF
159F
2F4A
2728
1328
24EA
1645
18EC
248D
24C7
24DA
24C1
2512
2514
255D
1323
1726
23505
15A0

XLN1+X
XMSGPR
XPRMPT
XR/S
XRAD
XRDN
XRND
XROM
XROMNF
XROW1
XRS45
XRTN
XR~
XSC1
XSF
XSGREG
XSIGN
XSIZE
XSST
XSTYON
XTOHRS
XTONE
XVIEW
XX$07?
XX$Y?
XX<0?
XX<{=0?
XX<=0A
XXL=Y?
XX<Y?
XX=07
XX=Y?
XX>07?
XX>Y?
XXEQ
Xy~X
X~2
Y-X
Y~X

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:
ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

ADDR:

ADDR:
ADDR:
ADDR:

ADDR:

ADDR:
ADDR:

1B73
054D
03A0
079D
1722
14BD
OA2F
2FAF
2F6C
0074
O7BE
2703
14ES
16CO
164A
1659
OFF4
1795
2260
1411
1982
16DE
036F
1611
1629
15FA
160D
1609
1601
1SEF
1606
1614
15F1
15F8
252F
1B11
106B
1421
102A

CARE_AND_ WARRANTYeeerme=temmaaenemee

Eprom care

Store the eprom set in a dry and clean place. Make sure that the feet

of the eprom’s are protected against bending. If any brakes of, the
eprom would be worthless. Do not connect any external power supply to
the eproms. Protect the eproms against static charges, otherwise

irreparrable damage to the eproms can result. Do not under any

circumstances remove the labels on the eproms, as these labels protect

the eproms against losing their data by accidental wipe—-out through to

much U.V. light on the eproms.

Limited 180 day's warranty

For 180 day's from the date of original purchase the 84081B DAVID-
ASSEM-Eprom set is warranted against defects in materials and

workmanship affecting electronic performance, but not software content.
If you sell your unit or present it as a gift, the warranty is

automatically transferred to the new owner and remains in effect for the

original 180 day’'s period. During the warranty period, we will repair

or, at our option, replace at no charge a product that proves to be

defective, provided that you return the product, shipping prepaid, to

ERAMCO SYSTEMS, or their official service representative.

WHAT IS NOT COVERED

This warranty does not apply if the product has been damaged by
accident or misuse or as the result of service or modification by other

than ERAMCO SYSTEMS or their official service representative.

No other express warranty is given. Any other implied warranty of

mechantabillity or fitness is limited to the 180 day’s period of this

written warranty. In no event shall ERAMCO SYSTEMS be liable for

consequential damages. This liability shall in no way excede the catalog

price of the product at the moment of sale.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the

time of manufacture. ERAMCO SYSTEMS shall have no abligation to modify

or update products once sold.

Page 67

Adresses,

Agreement

Alpha,

ALPHA DAT

Annul ,

AFC, defi

y in d

y chan

9

Append ch

Assembler

SEeqUeNCe. cc. nvuaa.-

, message

important..

Sevens

A..... “ee

NitioN. citer errcncncecceonnocannanne

aracter.....c.ccececceacnancans

Arithmetic instructions......

y leave........ .

Auto repeat........... -
Back arrow key

Battery power.

BEGIN

BEG/END.ccceeeucncncncncascnacanae

y technique

sy constant.

function.......CONT. ,

y anull.

s techni

Contents.

CPU/processor.....caaa.-

characters/strings..c.cccecceccsccecoscsnsncseeData,

que.

y WOrdS...oucerennennscsccancsnsnancsnnncnaannna

DATA ERROR. . cc cecareucsensccncsanscsconcmanccnannsns
Decimal parameter.......
Decimal point,

Disassembler.....ccc-vcecane

c.1,

Display character.....ccccecceccasaccsnoascncannas

DISTOA........

3 BFFOFSe. cneecennamucanansvnsaananasnananas

ErrorS.cccscenscesacsasancsasncsasnsasnsasannascsvasnsesn

Extensions....

Field..

FNCTOA, example routine. ..c.cccevercnncncncannceas

Function. ..cecececccenvsncen

GOTO/GOSUB. ...

GOTO ADR. -

GOTO KEY.

Header.....

Page 68

46
13
13, 30
54, 37
9, 22
35
15
15
16,
42
27
27, 28
4, 22
13, 54
4, 5
14
14, 34

17

496, 21,
16, 22,13,

4

14, 43, 45
11,
S4
13
S,
44
46
16,
22
44
2

39

16,

17,

17,

20

18, 49, S9
7,4

37,
25,
25
15
15,
11,
54
25,
30,
11,
16,
40,
13
17,
32
32
36,

S4

26

40,

39

26
37,
a5
27,
55

30,

37,

17, 43
6, 7, 9, 17,

44

38,

28,

31,

41,

44

19

18

S54

49

32

42

Hexadecimal parameter, 1 digit............. eneas 25
y 2 digits......... emneesas 31

, 4 digits............... .. 32
HP25, write over.......... trace mascenanaaa esaeaa 23
ID#, definition...... Ce meassnacmssseccnncannnnnna 36
Instruction........ crass esanns Meese mmcnennnas --- 13, 59, S51
I/O buffer. ...ceeeieeereencnaanns cere nsrana cena na 11, 36, 43
Jacob, Steven R. notation......... cemesamanannn= S, 12, 135, 16, 22, 30
JNC / JC. een eeei ean amt escsananacr nan case ua 17, 31, 50
INC? / JC? eeeeeitnacacenna ceeseaccccenamnan eee. 33, 43
Jumps...... ceemmannua tmecamanna ensue esanana e-e=eas 10, 17, 20, 31
Jump subroutine.c.u ier ienrnnnnccnreannas = 30
JUMP TOO FAR..... ame sescscanecsanannns cmecacne ee. 33, 35
key assignments.cccccuann. wesemannscanns &
key sequence, instructions.......... seeessanaan. 22, 25, 28, 51

PO 52TOcasa 22
keystrokes. . coon nnririetnnnirenrecanenncnnn. 12, 22, 51
Labels, introduction........ccicicenenennennn --- 4, 8, 10

y Storage. ceccccceannseena=e 11, 36
y USE. iter eenoncennnnannsa Presses mmensnnn -. 19, 30
y format in buffer............c0cvenuune.. 43

LD@R. ... siti ii sisi iccccannea cmmmnn=
LBL, MESSAQE...... ctu eananaaa ecccncacesea 14, 34, 35, S54
Messages... ..cecenuccensnasncsacanena sre-unseas. 34, 35, 37, S54
Miscellaneous instructions.............. eneceasas 24, 28
MLDL RAM. tes enscessssennasnencsennanannn ?, 13
MNFR-LBLS, ROM. sasevemunancssan-ssunanees 13, 40, 46, 61
NEXT, mainframe entrie..........cccccueccnann... 41, 42
Next step........... Seas smeusneameecserannnana eee 92, 23
NONEXISTENT....cc0ceenna. sme scaeccansesscasennnnn 3, 35, 37, 38, S54
Notation, Steven R. Jacob‘s........ csemmmennn -.. Oe 12, 15, 16, 22, 27
NO WRITE... ..ccovecvavocncrncscasnanna mreanrasecsce 33, D4
ON, key.eeninereun-nn cemenannoa acest eccnnnnassas=e 14
PACKING— TRY AGAIN. cer aane cereea-cuunenes 12, 14, 35, 41, S54
Print routine.......... ceceesesmssensanacnnanaana 39, S58
Processor, CPU........cccrcreacnnneasancacsenan-ua 18, 49, 59
Prompt, symbol........ smecsvencusunsssnnsnnanacan 22, 25, 27
Punctuation...... smsemnenne snoeem senescancsssses 13
READ / WRIT........ cecseecccsvansencesssnananaanes 26

READ DATA... .ccvvecsnnas sesvesnmcescamsnncanannes 17
Redefined keyboard.ccciincnercnnnneneans (4), 9, 22, 51
REG>BUF......... Cescscesenssassacnsnensenesensaa 11, 36, 37

y BrrOrS..ccecanaansssnsennsan ctcerancnsnnss 38, 54
Register names.cccrucennccecsarancnsnavans 26

SElLP..... een eenn cmscesemsmmssunssnsenccnananass 18, 25
Shift, key..... ceemesencane escussmssecnaneanenana 13, 30, 31, 32, 33
SIZE... eine eeenan reser mescenseannasnccencansenanns SO
3iccsacnansnsrencne Sy 16, 17, 19
Technical details........... cemmasnassssannvecenas 4&1

Unused instructions. ccc nenneenanseaaas erenaens 21

USER, key..... cess ssssmmeemununy ccsoncvascncnanna 13
USER-off mode......cceecaanea- cessmnacasn seeravwean 74 13, 16, 23
USER-on mode..... esamemman=an sesnmaas cesmennn -.2. 15, 16, 24
Warnings..... ST —- samasamanacense seseee sme... 12, 23, 37, 38
WRIT 7 READ....... “cess messssssmmsesesessncan -. 26

Page 6&9

Special thanks to Peter van Swieten, Michael Markov, and the people of

ERAMCO SYSTEMS, for their most appreciated stimulating criticisms.

David A. van Leeuwen

Noordweg 54

2641 AM Pi jnacker

the Netherlands.

Page 70

	Cover
	Table of Contents
	I. Introduction
	II. Special features
	1. SSTing and BSTing with ASSM
	2. Disassembling data words
	3. Disassembling characters
	4. The USER-off mode
	5. Labels
	6. The redefined keyboard
	7. Keying in data words
	8. Jumps
	9. BUF>REG and REGBUF
	10. BEG/END and DISTOA
	11. Possible extensions

	III. Warnings
	IV. User instructions
	A. The function ASSM XROM 02,01
	1. How to enter ASSM mode
	2. How to leave ASEM mode
	3. ASSM mode as disassembler
	3.1 USER-off in disassembling
	3.2 The USER-on mode in disassembling
	3.3 Instructions after a SELP instruction
	3.4 The label option
	3.5 Auto repeat
	3.6 Unused instructions

	4. ASSM mode as assembler
	4.1 Direct programmable instructions
	4.2 LD@R and SELP
	4.3 RCR, R=, ?R=, SETF, CLRF, ?FSET, ?FI
	4.4 WRIT and READ
	4.5 Singular arithmetic instructions
	4.6 Plural miscellaneous instructions
	4.7 Jump subroutines
	4.8 All jumps

	5. Messages in ASSM

	B. BUF>REG and REG>BUF
	1. BUF>REG XROM 02,02
	1.1 Error messages
	1.2 Warning

	2. REG>BUF XROM 02,03
	2.1 Error messages
	2.2 Warning

	C. BEG/END and DISTOA XROM 02,04 and 02,05

	V. Technical details
	1. Register use with ASSM
	2. Format of a label in a buffer
	3. BST and CONT
	4. Extensions of DAVID-ASSEM
	5. Important addresses

	Appendices
	Appendix A. Keyboard definition figures
	Appendix B. Instructionset of HP41 CPU
	Appendix C. Instructions and their keysequences
	Appendix D. Error messages
	Appendix E. Example program : FNCTOA
	Appendix F. Errors of HP41 CPU
	Appendix G. Mainframe label rom
	Care and Warranty
	Index

