
ERAMCO SYSTEMS

ES 840%1A
MLDL ROM

annotated listing

September 1984

84091A—MO0S001

Printed in the Netherlands (c) Eramco Systems

W. van Alcmadestr.S4

1785 LS Den Helder

The Netherlands

ERAMCO SYSTEMS

Kruiszwin 2102

1788 LN Den Helder

fo
s

*
k
k

%k
Xk

kx
xX

*

*

*

*

XROM number is 11

Number of functions is 28

ORG $000

FCB $00B
FCB $01E
FAT $FDE
FAT $4AE
FAT $D8A
FAT $7A4
FAT $756
FAT £680
FAT $6FC

FAT $EE2
FAT $ESF
FAT $CAE
FAT $7DA
FAT $316
FAT $6D3
FAT $6B4
FAT $6EC
FAT $6F6

FAT $FO1
FAT $C4B
FAT £803
FAT $E8B
FAT $£44C
FAT $715
FAT $F88
FAT $F9D
FAT $7DA
FAT $364
FAT $3BE
FAT $089
FAT $047
FAT $FES3

FCB $000
FCB $000

XROM number is 11

number of functions is 28

ERAMCO-MLDL

RAMWR

MMTORAM

AFAT

DFAT

MOVE

CLBL

COPYR

ROMSUM

REG>ROM

COMPILE
LOCA
LROM
CoD
DECOD
ROMCHKX
ROM>REG
MNEM
DISASM
CAT
CBT
SYNT
GE

SAVEROM
GETROM
CMPDL
IPAGE
MKPR

end of FAT

I36336IHI33IIHIEIIHIIEIHIEHIIIIIIEHIEIEIEIEIEHEIEIEIEIIEIIHHEHHEIEIEIEIEIEIEIEIEIEIIEIEIIIIEIEEEIEEE

*

¥*

*

BEGIN OF ASSEMBLY LISTING

*

*

*

F636366IE36IIIE36HIE3636IIIIIII36IIIIEIII36IEIEIIEIIIIIEIIIIHIIIIIEHIIIEIEIIHIEIIIIIIWHK

*

Initialize ram PAGE

*
k

%
Xx

NAM 20 IPAGE say we want a two digit numeric argument
*

FCB $000 say non programmable
A<>B X save xrom number in "B(X)"
GOSUB VPAG page number to "CL61" and $400 to "C(X)"
=0 X get rid of the loop counter

R= 5
A=C A
A=A-1 R<
ALC M end of page to "C(M)" start to "AM"

»*

* here the page is completely cleared
*

IPAGE1 WRIT
C=C-1 M
ALC M
JC—- IPAGE1

*

* now we have to load the xrom number, the start address of the rom name
* and the number of functions
*

C=B)
WRIT write the xrom number

=C+1 M
LDI $001
WRIT say we have only a name
=C+1 M

C=C+1 M
LDI #091
WRIT load address of rom name

AL >C X
RCR 3
A<>C X
RCR 11 create address of rom name

LDI $3E0O
WRIT rom name is terminated by a RTN

M=C save addreess of name
*

* we convert the name into the lcd characters by getting the name out of

* alpha to the display. the name is left justified in the lcd
*

NC XQ ARGOUT convert name

NC X@ ENLCD
C=M
C=C-1 M create address of first character

R= 13
LDeR 10 load only 11 characters

A<>C A
*

* the rom name has to be written in inverted order. this is accomplished

* by getting the characters from the left of the display and write them to
* the ram page
*

IPAGE2Z2 READ E
AL >C M
WRIT
C=C-1 M
ASC M
A=A-1 MS
JNC- IPAGEZ2

Xx
%

Xx
Xx

A<>C M
C=C+1 M
FETCH
C<>5T
SETF 7
C<>8T
WRIT
?NC X@
GOTO

ENCPOO
EXIT

CoMPile and Delete Labels

X
k

Kk
ok

*x

NAM 10 CMPDL

*

FCB $000

x

the end of the rom name is flagged by bit 7 of the last character.
have to tell the mainframe where our rom name ends by setting this bit

get leftmost character and left justify

write character of name

are we finished yet
no, do the rest

we

get last character

flag the character

say "READY" and give address of first free word

indicate an alpha prompt

say this program is non programmable

¥# indicate we want a pre compiled program by clearing flag 0,1 and 2

C=0 A
RAMSLCT
READ E
RCR 3
R= 1
=0

RCR 11
WRIT E

R<

has a normal END. in case

memory,

*
k
k

xk
xX

COMPIL GOSUB FPAL
RCR 8
A<>C R<

C=0 A
RAMSLCT
READ C
?AHC X
JC+
C=C-1 X
C<>B A
?NC XQ
CHO X
?NC GO

NO. END

AVAIL

PACKE

we make the .END a normal one and load a new

clear flags 0,1, and 2

before compiling a program it is necessary to make sure that the program

we have a program that is the last program in

«END

address of end of program to "AL3-01"

get address of .END

is it the .END
no, continue
ves, create address of new .END

and save reg C in "B"

is there still an empty register under the .END
no, pack and say "TRY AGAIN"

*

* we do have enough room to create the new .END this end has a link of one
register to the old .END
*

*

*

*

NO.END

*
k
k
k
k

*

address of a function in

C=B
RAMSLCT
C=0
R= 5
LDER C
LDI
WRITDAT
=B
=C+1
RAMSLCT
READDAT
= 1

LDER ©
WRITDAT
=0

RAMSLCT
C<>B
WRIT C

GOSUB
CLRF 10

RCR 8
A=C
NC
NC
?NC

Xa
XQ
Xa

NC
NC
RMB
NC
NC
NC

XQ
Xa

Xe
Xa
XQ

ASC

"Cf11-81".

X
address the new .END

A

say it is an end
#120 link is 1 reg, make it .END, decompiled

new .END to memory

X
X

get old .END

make it a normal END
END to memory

A

A
store the updated req C

FPAL find links
say we are in ram

FPAL returns from FLINK. the address of the end of the program is then

returned in
program we have to handle.

this is used by CPGMHD to find the start of the
next thing to do is to pack the program.

R<
CPGMHD
PUTPCF
PACKN

tell the user we are handling the 2 byte goto’s

CLLCDE
MESSL
$0A "COMPL 2B G"
LEFTJ
ENCPOO
GETPC

*

* the main loop for the handling of the 2 byte goto’'s is entered with the
* "AL3—-01" in MM format
*

R<

R< copy PC to "CL3-01"

GTO

*
k
k

kx
x

A=C
N=C
?NC X@

split the function byte into "AMS)" and

the number we have to jump to in "A(MS)" and test if we have a two byte

and to "N"
NXBYTA get the first byte of this instruction

"A[O1". in this way we can save

*

* here we have found the 2 byte instruction we have to compile.

C=0

RCR 1

=0

AL >C

LDI

?A#C

JNC+

C=N

A=C

?NC XQ

?FSET 6
JNC-
JNC+

XS

Xs

R<

$00B

F2Z2BINS

NXLSST

DO2ZB
STPP3

do we have a two byte GTO

ves, go handle it

get address of next instruction into "AL3-01"
have we reached the end of the program yet
no, try the next instruction
ves, go handle the 3 byte GTO and XE@

first thing
* we must do is to get the PC at the right position for calculating the
distance to its label.

* byte of the GTO
*

FZ2BINS

*
%
k
k

Xx
*

*
%k

%k

*

* stepping stone

*

STPP4
*

*
k
k

Xk

AL >B

=N
A=C
?NC XQ

?NC X@
CLRF 8
C<>B
C=0
RCR 13
C=C-1
A=C

GOSuUB

JNC+
GOTO

JNC-

M=C
NC XQ
N=C
C=M

A

R<

X

X
X

A

FLABEL find address of label,

INCADZ
PUTPC

SEARCH returns the address of the wanted label in
not found it will clear
is important, because INBYT expects the byte to be inserted in "G6"

S
NOLBLF

DO2B

GETPC

i

therefore the PC has to be positioned to the last

save label number in "B(MS5)"

PC is positioned to the last byte of the GTO
say we are jumping forwards

get label number to "C(O"

decrement it by one for SEARCH

and put it in "A(X)" for SEARCH

"CL3-01"

also is the label number saved in

or if it is

"Gg". this

is label found

FLABEL will return at the next instruction if the label is found, else
it will skip this instruction

ves, go calculate the distance and direction

no, error with "NO LBL NN" and position to GTO

save address of label in "M"

address last byte of GTO to "AL3-01" + "CL[3-01"

and save it in "RN"

in the next part we test if we have to jump backwards or forward and we

compute the distance in registers and bytes to the label

?2064#C X are we in the same register
JC+ 4 no, test if we are in a higher register
?A<C R is it a jump forward
JNC+ 6 ves, we can just compute the distance
JNC+ 3 go say we are jumping backwards
?ALC X is it a jump forward
JNC+ 3 ves, we can just compute the distance
SETF 8 say we are jumping backwards

*

* when we jump backwards we have to make sure we get valid results when we

* compute the distance. this is done by exchanging the label and gto
*# addresses because the label addres is in fact in a higher numbered part
* of MM and distance is calculated by subtracting "C" from "A"
*

ALC R<
NC X@ CALDSFP go compute the distance

*

* when the distance is more then 15 register we have to convert the 2 byte

GTO into a 3 byte GTO
*

?A#0 XS is the distance more then 256 registers
JC+ MK3BG ves, go convert
LSHFA X no, left justify number of registers

AHO Xs is it more then 15 registers
JC+ MK3BG ves, go convert

LSHFA X no, left justify number of registers
RSHFA R< put # reg and # bytes into "AX)"

C=N
ALC R< address of second byte to "AL3-01"
?FSET 8 is the jump forward

JNC+ 2 ves, leave direction bit zero
C=C+1 R no, make direction bit one
C=C+C R<
C=C+C R<
C=C+C R<
C=C+C X
RCR 2 left justify distance byte in "CL[1-01"
NC X@ PTBYTA and put it in the GTO
JNC- STPFP4 do the next instruction

*

* stepping stone
*

STPP3 JNC+ DO3BGX
*
*

a three byte GTO is made by inserting one byte. the byte is inserted

*# after the last byte of the two byte GTO. the byte to be inserted is
* expected to be found in "6G". this byte has to have the number of the
* label wee want to jump to. this is all acounted for, because the SEARCH

* routine transferred the byte to "6" and the address in "N" is of the last
* byte of the 2 byte GTO. also is the first byte of the 2 byte GTO replaced

* with #$0D0, the identifier of a 3 byte GTO
*

MK3BG
*

%k
k

kk
Xk

k
*x

2 Q WW wo al >
»

NXTINS

x
k

k
*k

*

*# we have no GTO or XEQ,
*# if we haven't reached the

*

STPP2

*

* here we are first trying to find the desired label.

given in the third byte of the instruction.
* here.

*

C=N
A=C
?NC XQ
R= 3
?NC XQ
?NC XQ
LDI
NC XQ
C=0
RAMSLCT
GOTO

?NC
?NC

?NC
RMB
?NC
?NC
NC
A<>C
A=C
N=C

XQ
Xa
XQ

XQ
XQ
Xa

in this part
if it is a 3

?NC XQ
C=0
RCR 13
C=C+1
JC+
C=C+1
JC+
C=C+1
JC+

=N
A=C
?NC XQ
FSET 6
JNC-
GOTO

R<

A

R<
R<

INBYT

DECADA
DECADA
$0DO
PTBYTA

COMPIL

PUTPC
CLLCDE
MESSL
$0C
LEFTJ
ENCPOO
GETPC

get address of last byte to "AL3-01"
insert the byte at next address

place the address at the first byte of the GTO

and make it a 3 byte GTO

find start of program, pack and start again

in the next part the 3 byte GTO and XE@ are handled

the address of the first instruction is saved and the message
"COMPL 3B G/X" is placed in the display to keep the user informed of what

is happening.

save PC

"COMPL 3B G/X"

message is in display
get PC back to start

copy current address to "A[3-01" and "N"

we getthe first byte of an instruction out and are testing
byte GTO or a XEQ.

XS

XS

XS

XS

R<

NXBYTA

ROWF

DOCOMP

DOCOMP

sO

NXLSST

NXTINS
?READY

if so, we are compiling it

get first byte of instruction

get row
is it a

ves, go

is it a

yes, go

is it a

ves, go

byte to "C(XS5)"

text identifier

do the next instruction

XEQ

compile it
GTO

compile it

we just find the next instruction and loop

end of the program yet

get current address to "AL3-01"

find next instruction
have we reached the end

no, do next instruction

yes, decide wether we can exit or do more

the label number is

also we find a direction bit

this bit must be cleared because if it is set, we would search for

*¥ a label number that is 128 to high and will always find an error then

DOCOMP 7?NC XQ
SETF 8
?NC X@
CLRF 7
C<>8T
A=C
SETF 6

*
kx
k
k

GOSUB
JNC+
GOTO

*

* stepping stone

*

STFPP1 JNC-
*
*

PUTPC

GT3DBT

FLABEL
LBLF
NOLBL

STPP2

save address of first byte in PC
say jump is forward
byte with label number in "ST" address in "M"

clear direction bit

byte to "A(X)" for SEARCI1
say we are at first byte of a 3 byte instr.

FLABEL returns the address of the label if it exists. if it exists, it
will execute the next step, else the next step is skipped

find label address, have we found it

no, go error "NO LBL NN"

*# in this part we find out in which direction we have to jump.
*

LBLF A=C
C<>M
?A#C
JC+
?AKC
JNC+
JNC+
?A<C
JNC+
CLRF 8
A<>C

*

* here we are computing the
*

DIST C=A-C
C=A-C
JNC+
C=C-1
C=C-1
C=C-1

"Cf2-11%.

*
k
k

Xk
xk

Xk

R<

X

R<

X
R

X
R
R

of the register count.

DIST

DIST

address of label to "AL3-01"
address of GTO to "CL3-01"
are we in the same register

no, test if we are in a higher register
are we jumping backwards

no, go calculate the distance
yes, say it and fix addresses for calculation
are we jumping backwards

no, go calculate the distance
say we jump backwards
and fix the addresses for the calculation

distance in registers and bytes

calculate number of registers
calculate number of bytes

if we pass register boundary decrement reg 1

and set byte count to right value

now we have found the distance in registers and bytes. in bit 3-1 of

digit "CL31" we have the byte distance. bit 0 is used to have one bit
this count is placed in bit 0 of "CL31" and

*

?READY

*

* here the loop for finding GTO or XE@ indirect functions start.
* the first byte fo every function and testif it is IND.
*

=C+C
C=C+C
=C+C
=C+C
JNC+
C=C+1
RSHFC
C<>B
?NC XQ
?NC XQ
RCR 12
C=R
RCR 2
C<>B
C<>B
NC
?NC
C=B
RCR
?NC XQ
?NC XQ

C<>ST
CLRF 7
?FSET 8
JNC+
SETF 7
C<>S8T
?NC XQ
JNC-

Xa
Xa

12

=0
RAMSLCT
READ E
RCR 3
C<>ST
?FSET ©
JNC+
GOTO
SETF ©O
SETF 1
C<>8T
RCR 11
WRIT E

NC XQ
NC XQ
RCR 8
A=C
?NC
?NC

XQ
Xa

>
X
>
X

A

R<

GETPC
GTBYTA

PTBYTA
INCADA

PTBYTA
NXBYTA

PTBYTA
STPP1

READY

GETPC
FLINK

CPGMHD
PUTPC

left justify reg count and use bit 0 if needed

we have to use bit 0
place distance digits in "C(X)"
and save them in "B(X)"
get address of first byte
and get the byte
place row digit in "CL31"
add the distance digits
leave first byte in "CCL1-01"

save secomd byte in "BL[13-121"

put first byte in memory

second byte

second byte in memory

last byte

get

put
get

are we jumping backwards

ves, indicate a jump backwards

put byte in memory
go do the next instruction

get flags

do we have to do a precompiled program

no, do exit or return to calling program

say we do compile for a second run

say we use the user regs as label addresses

save flags

position PC to start of program

we fetch
if so, we exit

10

FNDIND

*

* the addresses of the labels are stored in the user registers.

?NC XQ
A<>B
ASC
A=0
LDI
?AHC
JC+
GOTO
A<>B
?NC XQ

?NC XQ
?FSET 6
JNC-

R<
X

XS

X

R<

NXBYTA

$0AE

4

X/GIND

DECADA
NXLSST

FNDIND

save current address in "B[(3-01"

instr. byte to "A(X)"

is it XEQ/GTO indirect
no
ves, position PC to this line and exit

address to a standard position

find next instruction
are we finished yet

no, test next instruction

therefore

*# it is needed to clear these registers and to find the address of the
* first register. this address is stored in reg 10 that is used to keep
*¥ track of the next free register.
*

C=0 A
RAMSLCT
READ C
RCR 3 get address of reg O
AL >C X
READ 10
AL >C X
WRIT 10 put it in reg 10
SETF 8

NC XQ CLR clear the user rgisters
*

* in this loop the labels are searched, and if one is found the label is
* cleared and its address is saved in the user registers and its number.
*

STDLBL 7?NC X@ GETPC get start address of program
M=C save it in "M"

DLLBL1 ?NC X@ NXBYTA get first byte of an inst.
A<L>B R< save current address

= 1
C=C-1 R is it row O
JC+ LBLO14 ves, go handle row O
A=C X
LDI $OBF first byte of 2 byte LBL —- #10
?AHC R< is it a 2 byte label
JNC+ LBL>14 yes, go handle it

DLLBLZ2 R= 3

A<>B R< get current address back to "AL3-01"
?NC XQ DECADA to standard position
NC X@ NXLSST find next instr.
NC X@ PUTPC save address in PC in case we have to pack

FSET 6 have we reached the end yet
JNC- DLIBL1 no, do next instr.
GOTO NO.END ves, go compile the program

*

*¥ in this part we seperate the numeric labels from the local labels. in
*¥ case we have a local label we must not delete it. it is necessary to

* store the address of the label for the label find routine.
*

11

LBL>14

*

#*# here is checked if we have to do with a null byte,

R= 3
AS >B
?NC XQ
ACB
A=C
A=0
LDI
?A<C
JC+
AL >B
JNC-
R= O
A<>C
C=C+1
G=C
R= 3
A<>B

=0
?NC XQ
?NC XQ
JNC+

* the main loop
*

LBLO14

*

SECBYT

*

#* here we are combining the

LDER ©
CHO

JNC-
G6=C
R= 3
A<>RB

=0
?NC XQ

R<

R<

XS

R<

R

R<

A

NXBYTA

$064

3

DLLBL1

PTBYTA
DECADA
SECBYT

DLLBL2

PTBYTA

the label and its number
*

R= 3
?NC XQ
C=M
RCR 10
AS >C
RCR 11
R= 0
C=6
C=C-1
C=0
C=0
=C+1
ASC
C=0
RAMSLCT
READ 10
C=C+1
WRIT 10
C=C-1
RAMSLCT
A<>C
WRITDAT

R<

XS
MS
MS
A
A

GETPC

get label number
save address

label number to "A((X)"

is it a local label

no

increment LBL for it is decremented when stored

save label number in "G"

get address of second byte

delete the second byte

point to first byte

and if so we return to

clear the first digit and set pointer to 0
is it a null byte
ves, go do the next instr.
save label number in "GG"

current address to "AL3-01"

delete the byte

start address of the program, the address of

get the address of the label to "AL3-01"
get start address of program

add label address

add label number

type it as alpha data

get storage address

update storage address

create the right storage address

put the label address in the register

12

*
kk

k
kx

k
*x

*
*
*

NOLBL

NOLBLF

x
k
k

ok

READY

?NC XQ
?NC XQ
?NC XQ
?NC X@
GOSUB
RCR 8
A<>C
?NC XQ
?NC X@
GOTO

?NC XQ
?NC XQ
JNC+
NC XQ
?NC XQ
NC XQ
?NC XQ
NC XQ
RMB
R= 0
C=6
A=C
A=0
=0

A=A+1
A=A+1
?NC XQ
?NC XQ
NC XQ
?NC XQ
?NC GO

?NC XQ
?NC X@
RMB
NC XQ
?NC XQ
?NC XQ

R<

MS
XS
MS
MS

GETPC
FLINK
FIXEND
PACKN
FPAL

CPGMHD
PUTPC
STDLBL

GETPC
DECADA
3
GETPC
DECADA
PUTPC
CLLCDE
MESSL
$07

GENNUM
LEFTJ
ENCPOO
MSGDLY
ERR110

CLLCDE
MESSL
$05
LEFTJ
ENCPOO

after we have cleared the label we have to pack the program again and
start from the beginning.
null byte in the memory.

this is necessary, because we have created a
we have to change the status of the program from

packed into unpacked for PACKN skipps packed programs.

get address of END to "Cl[11-81"
make the program unpacked

start address of program to PC

set PC to the 2 byte GTO that has no LBL

set the PC to the GTO/XEG@ that has no LBL

"NO LBL_" put this in the display

get label number to "AX)"

say we want two digits in the display
append label number to the display

put total message in the display

here we indicate the user that we are ready and place the PC at the first
step of the compiled program

"READY"

STMSGF message is in display

13

Entry:

Exit

Uses

k
%

ok
ok

ok
k

Kk
k

Kk
*x

m
n

0 D r~

NONEX

ROM

CURPG

PFOUND
*
*
*

X/GIND

*

GOSUB
RCR 8
=C

?NC XQ
?NC XQ
READ E
RCR 3
C<>ST
FSET 2
NC GO
READ P
RCR 7
G60TO ADR

R<

FPAL

CPGMHD get start of program to "AL3-01"
PUTPCF put user at start of program

TONE7X

Find Program And Links

give audio warning that we finished and exit

register @ holds the inverted right justified name of the program

you want to have the begin and end address from

"C" has links to the desired label as returned by FLINK
all

R= 3
READ @
M=C
CHO
JNC+
?NC X@
CHO
NC GO
FSET 9
JC—
FSET 2
JNC+
NC XQ
FCB
?FSET 10
JC-
NC Xa
?NC GO

R<

R<

A<>B
NC
NC
?NC
NC
RMB
NC
NC
NC
LDI
NC

R<
XQ
XQ
Xa
Xa

Xa
XQ
Xa

GO

CURPG
ASRCH

ERRNE

NONEX

PFOUND
ERROR
$06A

ROM
GETPC
FLINK

DECADA
PUTPC
CLLCDE
MESSL
$0B
LEFTJ
ENCPOO
STMSGF
$004
TONEB

get a copy of the program name to "M"

do we have to do the current program

no, find program

say program is nonexistent

it is a microcode function

is the program hold in main memory

ves

specify message ‘ROM’
are we in ROM at the moment
ves

find program head and it's END *

get address of first byte of GTO/XEQ@ ind

set PC to the error line

"GTO/XEQ IND" message to display

give low warning beep if audio is enabled

14

this is the label find routine. we decide here if we have to do with
the normal compiler or if we have to use the user registers with the
addresses of the labels and their label number. it depends on flag 1 in
reg E which compiler we are doing

*
ok
k
k
k
X

FLABEL A=0 XS
LDI $064
?ALC X
JNC+ LOCLBL
C=0 A
RAMSLCT
READ E
RCR 3

CL >8T get compiler flags
?FSET 1 do we have to use the user regs
JC+ DUSREG yes, go handle the user regs

*

*# it depends on the setting of flag 6 of the original flag status if we

#*# have to do 2 or 3 byte GTO/XEG

*

C<>ST get old flagstatus back
FSET 6 is it 3 byte instr.

JC+ 4 ves, do three byte instr.

?NC XQ SEARCH no, do 2 byte
JNC+ 3

LOCLBL 7?NC X@ SEARC1 do 3 byte
*

* if we have found the label we will do a normal return to the instruction
*# after the calling subroutine, else we skipp this instruction and do the
* next instruction.

*

?2CHO A does the desired label exist
?C RTN ves, do a normal return

POP no, skipp instruction after the call
C=C+1 M
GOTOADR

»*

* for a correct compilation of the program we must start searching for the
*¥ desired label from our current program position. this makes it neccessary
*¥ to search for the register with the address after our current position.

*¥ when this register is found, we can search for the desired label. when we
* have reached the end of the labels and haven't found the desired label
* yet, we must start searching from the start of the program. this means we

* have to start with the first user register.
*

*# this is also the procedure that is followed by the normal search routine

*¥ in the mainframe
*

DUSREG C<«>ST restore flags for compile
ALC X get the desired label number
R= 0
6=C and store it in "G"

*

* in this loop we search for a label with an address that lays behind the

current position in the program. we exit when we have found such a label

*¥ or when we have reached the end of the labels.
*

15

R= 3
NC XQ
READ C
RCR 3

FLADD RAMSLCT

*

¥*

*

C<>B X
READDAT
RCR 3
?CHO A
JNC+

GETPC

FLBL

current address to "AL3-01"

address of first reg to "C(X)"

select a label register
save address counter in "B(X)*"

get address right justified
have we had all labels
ves, go find the desired label

in the next instructions we test if the label is after the current

*# position in the program.

PAHC X
JC+
ALC R<
JNC+
C<>B X
C=C+1 X
JNC-
ALC X
JC—

FLBL
same register

no, test if higher reg

is address of label higher
ves, go search for desired label
we have not found such a label yet and are

going to do the next label
go try next register
is address of label higher
no, do next label

after we have found where we must start searching for the labels we will
do it here. if the desired label is not found yet when we reach the end
of the labels we will start at the beginning of the labels.

FLBL R= 0
C=06
A=C X
A=0 XS
C<>B X

DNLBL RAMSLCT
C<>B X
READDAT
CHO A
JNC+
?A#C X
JNC+
C<>B X
C=C+1 X
JNC-

WRAP C=0 A

*

¥*

*

¥*

*

RAMSLCT
READ C
RCR 3
JNC-

WRAP

LBLFND

DNLBL

DNLBL

desired label number to "AX)"

save label counter

get a label
have we had all labels

ves, start at the beginning of the labels

is this the desired label

ves, exit

point to next label

do next label

get counter for first address and go search

we have to exit the same as the SEARCH and SEARC1 routine. this means

status registers must be selected and address of label is in "CL[3-01"
and label number is in ng

16

LBLFND
*
k
k

Xk
Xx

*

ILTST

ERREX

*
%k

kx
dk

Xk
k

Xx
RCR 3
R= 3
A=C
C=0
RAMSLCT
A<>C
RTN

COMPILE

NAM

FCB
=0

RAMSLCT
READ E
RCR 3
ST=0
SETF ©
C=5T
RCR 11
WRIT E
GOTO

C=0
R= 6

LDEeR 7
FETCH
A=C
LDI
?AHC
?NC RTN
GOSUB
RMB

?NC XQ
SETF 8
NC XQ
?NC GO

R<

R<

A

10 COMPILE

$000
A

COMPIL

A

X

rom block of 4K.

$01C

INERR
$07

LEFTJ

MSG105
ERR110

address to right position

save in "A" while we select status regs

select status regs
address of label back to

return to calling point
"CL3-01"

indicate an alpha prompt

say non programmable

say we want the normal compile routine

save flag status for compile
do it

*
*
*

*¥ this routine checks if the HFIL rom is present
*
P

get xrom number of page 7

is it the HPIL chip

ves, then return to calling routine

no, initialize for error message
"NO HPIL"

exit error message and return to mainframe

this routine checks if the page address is valid and it sets the loop
counter to $400. in the loop we store 4 rom words, so we do a complete

17

VPAG
*
k
k

k
Xk

*
*
k
k

ck
Xk

%

NERR

READ X
?NC XQ
A<>C
LDI
?A<C
JC+
GOSUB
RMB
JNC-

A<>C
RCR 8
= 2

LDER 4
RTN

?NC XQ
?NC XQ
?NC GO

SAVEROM

NAM

GOSUB
GOSuUB

C=0
?NC XQ
C=M
?2CH#O
?C GO

C=0
LDI
RCR 2
LDI
RCR 4
LDI
RCR 4
?NC XQ
NC XQ

LDI
NC XQ

?NC X@

NC XQ

MS

A

A

BCDBIN

$010

VPG
INERR
$09
ERREX

ERRSUB
CLLCDE
MESSL

SAVEROM

PILTST
VPAG

780B

7692

the romfiles do have an file type of 7.
it with any of the normal HPIL functions.
these register are stored in 20 records. the file is automatically

secured when it is created.

$078

$280

$014

76BC
7F72

$0A2
70BA

70DA

77E7

get wanted page to "A(X)"

is it a valid page address

no, put message to display and exit
"PAGE > 15"

start address of page to "C(M)"

set loop counter for 4K

here is the initialization done for an error message

check if there is already afile with this name

did the file exist
ves, say DUP FL NAME and exit to mainframe

this is done so we can’t destroy

the length is 640 registers and

file type 7 and secured

640 registers

20 records

create the file
set tape on start of file and BP to zero

give DDL 2 — write mode

give DDL 0 — write buffer O

do error check

18

*

#*# the main loop of SAVEROM is started here.

#* other and these bytes are containing the four lower bytes and one upper
»*

*
byte.

in this loop we make five
*

DARWRD

*# it is

* holds

S3BYT

x
k
k

Xx
SELP 4
FCB

GOSUB

they are stored sequentially.

C=C-1
JC+
R= 4
A=0
C<>B

FETCH
=C+1
ALC
ASC
LSHFA
LSHFA
LSHFA
=C+C

C=C+C
RSHFC
ASC
R=R-1
R= 0
JNC-

C<>B
M=C
LSHFA
LSHFA
ASC
R= 5
WRIT @

X

X
X

X

M
X
X
D
D
X
X
N
Z

D
D
x

$005

VPAG

CLUP

D4RWRD

set REG 1 for DAB

get rom page and loop counter to "“C"

we store 5 bytes after each

the first byte is the upper byte

have we had the whole 4K block
ves, clean up and exit
set loop counter to do 4 romwords

save main loop counter in "B(X)"

bytes containing four rom words

get a rom word

lower part to "A(X)", high PART TO "C(XS)"

right justify low bytes in "A(M)"

left justify high bits in "AL1-01"

have we had 4 romwords
no, do next word

save mainloopcounter and current address

right justify the 5 bytes in "AC11-2]1"

set loop counter for 5 bytes to be saved
string bytes to reg Q

neccessary to use register @ because we can’t use "N" for this
some essential file parameters

READ @
RCR 2
WRIT @
NC XQ
NC XQ
R=R-1
?R= 0
JNC-
C=M
JNC—

here the last

7126
77E7

S5BYT

MLSR

get one byte to "AL1-01"
write it on tape
test for transmit error and exit if error

have we written 5 bytes

no, do next byte

get loop counter and current address
do next words

record is closed and the cassette drive retrieves its

normal status and we exit to mainframe

19

CLUP
*
k
k

kx
Xx

*
LDI
NOP

NOP
?NC GO

GETROM

the mainloop of getrom
each other and combine

NAM

GOSuUB
GOSUB
LDI
?NC XQ

?NC XQ
?NC XQ
GOSUB

=C-1
?C GO
=C

R= 5

$0A8
(0CO)

70AF

GETROM

PILTST
VPAG
$007
780A

7F77
70E6
VPAG

70AC

starts here.

these into 4 romwords

this is done to solve a bug, these 4
words could also be deleted

error if there is no HPIL chip
test for valid page

error if this is not our file type

seek the file
send buffer 0 and SDA
find rampage to write at and set loop counter

we get 5S bytes out of the tape after

have we had the whole 4K

ves, UNT and return to mainframe
save loop counter and current address

set counter for getting 5S bytes

* here we are getting S bytes out and save them in reg @
*

GSBYT

*

after

?NC XQ
?FSET 9
?C GO
WRITHPIL
A<>C
READ @
A<>C
RCR 2
WRIT @Q
R=R-1
?R= 0
JNC-

7110

7634

GSBYT

get a byte

did we have any type of error
ves, decide which error and say it

send byte out again

append byte to string in reg @

have we done 5S bytes

no, do next byte

we have found 5S bytes, we have to store them in the desired page

A=C
RCR 2
C<>B
C=M
R= 4
C<>B

save the 4 lower bytes left justified in "A"

get upper byte to "CL[3-21"

get current address and main loop counter
set counter for 4 romwords

initialize for loop to store 4 words

* the loop has to be entered with the 4 lower bytes left justified in "A"
and the upper byte right justified in "CL3-21"*

*

20

DSBYT
*

dk
kk
k
k

dk
k
k

k
k

xk
k

ok
k

k
Xk

Xk
k

Xk
*k

Xx
AL >C A
RCR 12
A<>C A shift next lower byte to "A[L1-01"
A<>C XS append the upper bits to the word
A<>C X word to "C(X)*"
C<>B M get destination address
WRIT word to page
C=C+1 M increment destination address
C<>B M dest address to "B(M)"
C=C+C A
C=C+C A
RCR 1 shift upper byte two bits to the right
R=R-1
?R= O have we done 4 words

JNC- DSBYT no, do next word
C<>B A get loop counter and current address
JNC- MLGR do next 4 words

CAT and RAMWR routines

APPend Hex Digit

after

Entry:

Exit =

Uses :

D> pt
)

0 xX co

APP2

APP3

a key has been pushed during partial key sequence, the main program
may call this subroutine for processing the key.
accepted (i.e.

only hex digits are

digits 0-92 characters A-F).

data as produced by the HP-41 operating system after a key has
been pushed. the display should be enabled on entry
if the key is digit 0-9 or chracter A-F the corresponding
character is appended to the display. the address after the call
is skipped. for all other keys 70 ms visual feedback. the next
instruction is not skipped
"aMs)*, "AX)", "C", "N" and the active pointer

?FSET 4 upper 10 keys

JC+ APP1 ves
?FSET 3 is it a digit key
?NC GO BLINK no, give 70 ms feedback
ALC MS recall numerical value of the key

RCR 13
= 1

LD@R 3 make it a display character
WRIT E append it to the display

POP
C=C+1 M
GOTOADR skipp byte after the call

21

APP1
x

%k
k
k

k
k

k
%k

k
k

k
k

*k
%k

Xk

NULL

waits one second for key release.
is displayed for at least"NULL"

within

Entry:

Exit :

Uses :

NULL?2

NULLS

?AH#0

JNC-
R= 13
LD@R 7
?A<C
JNC-

LDeR S

=N
C=C+A
RCR 12

LDER 1
LDeR S
FETCH
= 1

JNC-

MS

MS

Xs

XS

APP2

APP2

APFP3

is it the TAN key

ves, it is not allowed

G—-J

it is not allowed

is it

Yes,

add 5 to keycode

load address of character in defaultcode table

get characte

convert it to display character
add character to display and exit

if key not released after this period
+3 seconds. when the key is released

1 second, the byte after the subroutine call is skipped

appropriate text in the display (display is left justified by
assumes display is enabled on entry.

display is still enabled if the key is released in time, otherwise
NULL).

chip 0 is enabled

vc", active pointer, sethex, flag 8npv v

NC XG

LDI

C=C+C

CLRKEY

KEY

JNC+

C=C-1

JNC-

CLRF 8

NC XG

FCB

LDI

=C-1

JNC-

?NC GO

POP

C=C+1

GOTOADR

LEFTJ
$2B3

NULL3

NULL1

MSGA
$03C
$3E8

NULLZ2
RSTKB

load timing constant for one second

wait one second for key release
key is released in time

say no blinking

“mul 1 1

load timing constant for .3 seconds

show message for .3 seconds
wait for key release

skip byte after the call

22

Exit

Uses

*
kk
k
k

k
ok

k
k

dk
k

kk
Xk

%k
Xk

xX
A uy m > Oo pt

RHEXD2

RHEX 1

RHEX 2

RHEX 3

*
k

ck
ok
k
k

k
k

ok
k

kx
*

Entry:

RHEXD1

Read HEX Digit 2

reads specified number of hex digits from the display and returns these
digits in "AMM" right justified

number of digits minus one is specified in "A(MS)" display must
be enabled on entry
the wanted digits are returned in "A(M)" display is still
enabled
An ’

reads

R= 13
LDER 3
A=C
B=A
A=0
LDI
A=C
READ D
A=A—-1
JNC-
A<>B
R= 1
READ E
?CHO
JC+
C=C+A
C=0
RCR 11
LSHFA
R= 3
=C

A=A-1
JNC-
RTN

CATalog

ATTENTION '!
41 CX.

moved to page three with partial handling in the normal mainframe roms.
however, this is not so important, because the 41CX already has a sort of
port selectable catalog.

NAM

FCB
FCB

A=

NC X@

NC XQ
JNC+

nen ’ "B(MS)", active pointer

4 digits from the display

MS
MS

MS

MS

MS

$009

RHEX 1

RHEX 3

RHEX 2

say we want four digits
save number of wanted digits in "B(MS)"
initialize "A(M)" for holding digit string

conversion constant for dig A-F to "A(X)"

move digits to be read to the left of display
have we had all digits
no, do next

recall counter

read one digit
is it 9-0
ves
no, convert to A-F

make place for new digit

append digit
have we had all
no, do next digit

this routine does not work in the expected way with the HP-
this is caused by the fact, that the CAT routine from the 41CX is

CAT

$000
$000

CLLCDE
PROMFC
CATALZ2

say non programmable

say direct executing

display "CAT *"

23

*

* when the user pressed backarrow we return here and cancel the function
#*# after we have done some housekeeping
*

CANCEL ?NC X@
?NC XQ
?NC X@
?NC GO

CLLCDE
ANNOUT
RSTSEQ
NFRKB

append a prompt sign and wait in light sleep for a key to be pressed

byte is skipped

*
*

*# if the key is a backarrow we return at byte after call, otherwise this
*
*

INVASK 72NC XQ NEXT1
JNC- CANCEL
GOSUB APPHD append the hex digit to the display
JNC- INVASK invalid digit, ask again
A=0 MS say we want to read one digit from display
GOSUB RHEXD2 get digit to "AMM"
GOSUB NULL wait for key release
JNC- CANCEL if key hold down to long, cancel
?NC XQ ENCPOO
NC XQ RSTSEG@ clear user flags

R= 3
=0 A

AL >C R get CAT # to "CL31"
C=C+1 X
RCR 3
ST=C save CAT # in "ST" (needed by 0B84)

RCR 8
A=C M address of second word at page to "AM"

R= 6
LDER S
R= 6
AKC R is it a regular CAT (1, 2 or 3)
?C GO OB84 ves, go do the CAT
A=0 X

CAT 2 ?AH#C R have we had all blocks before this page
JNC+ CAT 1 ves
FETCH
A=A+C X add number of functions on page to total
C=C+1 R point to next page
JNC- CAT 2 do next page

CAT 1 AS >C X
RCR 4 number of functions to "Cl[12-101" page address
=C A to "A(XS)" + "C(XS)" + functions to "A[L12-101"

ST=0
SETF 1 do rest of initialisation for OB85
?NC GO 0B85 fall in the regular CAT 2

*
*

DisPlay ADdRess
*

this routine takes a hexadecimal digit from reg @ and writes it to the
*# display (right justified). a space is appended.
*

* Entry: none
*¥ Exit : display is enabled
* Uses : "A", "C", and active pointer
*

24

DPADR

DPBYT

*
k
k
k

%k

DPADR2

*
%

ck
k

kx
*

ASKAD

*

EXRMWR

P4D

P3D

?NC XQ
READ @
R= 13
LDEeR 3
A=C
?NC XQ
LDI
A=C
A<>C
RCR 7

RCR 13
= 1
=0
?ALC
JNC+
AL >C
A=A-C
ALC
JNC+
LD@R 3
WRIT C
A=A—-1
JNC—
LDI
WRIT C
RTN

RAMUWRIi te

NAM

FCB

NC XQ
?NC XQ
RMB
JNC+

NC X@
NC XQ
?NC X@
NC GO

LDI
WRIT E
NC XQ
JNC—

GOSUB
JNC-

?NC XQ
JNC+

A

R<

R<
R<
R<

MS

ENCPOO

CLLCDE
$009

DPADRZ
$020

RAMWR

$000

CLLCDE
MESSL
$04
9

CLLCDE
ANNOUT

RSTSEQ
NFRKB

O1F

NEXT3
EXRMWR

APPHD
P4D

NEXT3
6

get the address to be put in the display

load loop counter for 4 characters

load comparing constant

digits to display to "CL[13-10]"

in the loop is tested if the character is A-F or a normal digit. in case
of the A-F we only have to subtract 9 to get the LCD character. else we
must add $30 to the digit to get the LCD character.

get one digit to "CL1-01"

is it a A-F

no, make the right LCD character

make the LCD character

append character to the display
have we had all characters

no, do next one

append a space to the string

say nonprogrammable

n ADR 1"

update the display to the current status
clean up the partial key sequence
exit to mainframe

append
append

it was

one prompt sign
3 prompt signs and wait for key pressed

backarrow, so exit

no hex digit, so try again

append 3 prompt signs and wait for key pressed
it was backarrow

25

GOSUB
JNC-

*

JNC+
*

* the backarrow key
* again
*

READ D
JNC-

*

P2D ?NC XQ
JNC+

*

GOSUB
JNC-

*

JNC+
*

READ D
JNC-

*

P1D ?NC X@

JNC+
»*

GOSUB
JNC-

*

JNC+
*

READ D
JNC—-

*

GOSUB
GOSUB

ASKAD1 JNC-
?NC XQ

ANDW ALC
A=C
WRIT @
R= 5
C=0
?A#C
JNC+
FETCH
?C#0
JC+

*

R<
M

X

APPHD
P3D

3

no hex digit, so try again

it was a hex digit, so do next digit

was hit, so we remove the rightmost character and try

P4D

NEXT2

AFPPHD
P2D

P3D

NEXT1

AFPPHD
P1D

PZ2D

RHEXD1
NULL
ASKAD
ENCFPOO

NFWRD

NFWRD

remove digit

ask for four digits again

append 2 prompts and wait for key
process backarrow key

no hex digit, so try again

skip removing part

remove one digit and prompt for 3 again

append 1 prompt and wait for key

process backarrow key

no hex digit, so try again

skip removing part

remove one digit and prompt for 2 again

get address to "AM"

wait for key release
if nulled, ask for address again

copy address to "C(M)"
save address in reg Q

create address of first word

are we at first word

ves, continue

is Xrom zero
no, continue

* when we have a first word that is zero, we must assume that there is no
* rampage.
*

then we say "NO ROM" and go asking for the address again.

26

?NC XG
?NC XQ
RMB
?NC X@
?NC X@&
LDI
C=C-1 X
JNC—-
JNC-

ADRAG

NFWRD GOSUB
NC XQ
?NC XQ
READ @
FETCH
RCR 10
R= 13
LDEeR 2
A=C A
2NC X@
GOSUB

*

*# the display now contains the address and the data at this address.

CLLCDE
MESSL
$06
LEFTJ
BLINK
$3E8

1
ASKAD1

DPADR
ENCPOO
OFSHFT

ENLCD
DPBYT

"NO ROM"

leave message .3 sec in display

put the 4 hex address digits in the display

get data at this word

say we want to append 3 digits

PRINTDISPLAY

now

* we are waiting for the user to press a key.
*

WFKEY NC XQ NEXT
JNC- ASKAD1
JNC+ 2

*

* stepping stone

*

STP1 JNC- NFWRD
xX

=N
RCR 1
C=0 Xs
A=C X

*

*# in this part we check for
#*# 8S8T and TAN. the keycodes
#* minus one
*

LDI $002
?A#C X
JNC+ TSHFT
LDI $00A
?AHC X
JC+ TSTK

TSHFT ?NC X@ TOGSHF
NC XQ ANNOUT
?NC XQ ENLCD
JNC—- WFKEY

*

TSTK LDI $022
?A#C X
JC+ 4
GOTO RMWSTO

wait for key

if backarrow, ask for the address again

keycode to "A(X)"

some special keys. these are SHIFT, BST, STO,
that are returned are the synthetic keycodes

is it shift
ves, go set shift and wait for next key

is it shift/shift
no, test for other keys

is it STO

ves, go display contents of rom

27

DOBSTP
*

BDD+A

STP2

* if we

*

LDI
?AH#C X
JC+
GOTO

C=C+1
?A#C
JC+
GOTO

>
x

LDI
?AHC X
JNC—-

?FSET 3
JC+
?NC X@
JNC-

$041

4

RWRBST

4

RMWSST

$04A

DOBSTP

4

BLINK

STP1

is it the TAN key

ves, do a backstep

is it the SST key

ves, do a single step

is it shift SST
ves, go do a backstep

is it a digit key
ves
no

display address and data again

have to do with a digit key, we remove the data digits

READ D
READ D
READ D
R= 13
LDEeR 4
?A<C
JNC—-
GOSuUB
JNC-

MS
BDD+A

APPHD

STP2

is it digit 0-3
no, go display address and data again

no hex digit, go display address and data again

*# if key is accepted we return here
*

DP2D

¥*

?NC XQ
JNC+

GOSUB
JNC-

JNC+

READ D
JNC-

?NC X@
JNC+

GOSuUB
JNC-

JNC+

READ D
JNC—-

NEXT2
6

APPHD
DP2D

DP1D

STP2

NEXT1
6

AFPPHD
DP1D

3

DP2D

add 2 prompts and wait for key
process backarrow key

no hex digit, try with 2 prompts again

skip backarrow processing

remove data digit
display address and data again

add 1 prompt and wait for key
process backarrow key

no hex digit, try with 1 prompt again

skipp backarrow processing

remove last digit
try with 2 prompts again

28

DONDUW1

DONDW

*

NWBRAM

*

put message in
* again

*

*

RMWBST

*
kx

%
%x

RMWSST

*

R= 13
LDeR 2
A=C
GOSUB
GOSUB
JNC-
?NC XQ
ALC
RCR 3
A=C
READ Q
FETCH
ASC
A<>B
=C

WRIT
FETCH
?A#C
JC+
READ @
C=C+1
=C

GOTO

A<>B
7AHC
JC+
?NC XQ
?NC X&
RMB

GOTO

?NC XQ
?NC XQ
READ @
C=C-1
JNC-

?NC XQ
JNC—

MS

x
x
X

x
X

the display,

M

RHEXD2
NULL
STP2
ENCPOO

NWBRAM

ANDW

BMLDL
CLLCDE
MESSL
$08

ADRAG

ENCPOO
OFSHFT

DONDW

in case we are in rom 0 at word 0 and a BST is wanted,

address FFFF.

key hold to long, display address + data again

save input data in "A(X)"
get address to write to

save original data word in "B(X)"
copy input data to "A(X)"

is it written
no, test for no write or bad mldl
ves
point to next address
save address in "AM"

is the original data still the same
no, go say bad mldl

"NO WRITE"

wait for .3 seconds and ask for the address

clear shift annunciator

decrement address

go display address + data and wait for new data

we would wrap to

to avoid this we do a single step to warn the user

ENCPOO
DONDW1

* put message in display and reset partial key sequence and exit to the

* mainframe
*

BMLDL ?NC XQ
?NC XQ
RMB
?NC X@
SETF 8
?NC XQ
NC XQ
?NC XQ
?NC GO

CLLCDE
MESSL
$08
LEFTJ

MSG105
RSTSER
STMSGF
NFRKB

"BAD MLDL"

29

*
*
*

RMWSTO

WAIKEY

NOKEY

DOR/S

Entry

Exit

Uses

%
ok

Kk
k

k
k

k
%k

%x

GOSUB
?NC XQ
READ @Q
FETCH
C=C+1 M
WRIT @Q
RCR 10
R= 13
LD@R 2
A=C A
?NC XQ
G0OSUB
?NC X@
LDI
CLRKEY
?KEY
JNC+
C=KEY
RCR 3
A=C X
A=0 XS
R= 0
C=C+C R
?C GO
LDI
?A#C X
JNC+

RCR 11
=C—-1 X

JNC-
JNC-

?NC XQ
LDI
C=C+C

C=C-1
JNC-
6aT0

>
x

aA

non

DPADR
ENCPOO

ENLCD
DPBYT
LEFTJ
$250

NOKEY

OFF
$087

DOR/S

WAIKEY
RMWSTO

RSTKB
SE8

1
RMWBST

sen

get data at current address

save updated address

append data at this address to the display
view data PRINTDISPLAY
load timing constant

there is a key pressed

keycode to "A(X)"

is it the ON key
ves, go to deepsleep

is it the R/S key
yes, go process it
no, get timing constant back

is time expired
no, keep waiting
ves, display next byte

wait until key is released

wait a while
do a bst and display address and data again

Hex TO Decimal (floating point)

A(X)" holds hex number (smaller then 999)

"C" holding floating point number
"R(X) n

30

HTOD

D 100

DO 10

*

=0 M

A=0 MS initialize "A[13-31"

LDI $064

C<>B

C=0

?A<B

JC+ DO 10

A=A—-B

C=C+1

JNC- D 100

C<>B A

LDI $00A

C<>B A

RCR 13

?A<B X

JC+ NORM

A=A-B X subtract 10d

C=C+1 X count the Tens in "A(X)"

JNC- D 10

100d in "B(X)"

xX
D
x

subtract 100d

count the Hundreds in "A{X)"x
x

10d in "B(X)"

normalize the number by setting up an exponent of 2 and shifting the

mantissa to the left left one place and decrementing the exponent as long
as the mantissa isn't in place

RCR 13 Units are left in "A{X)"™

=A+C X add H,T and U to a dec. number
LDI $002 normalize number

AL >C A

?2CH#0 XS

JC+ DONEHD

RCR 13

A=A—-1 X

?2CH#0 Xs

JC+ DONEHD

RCR 13

A=A—-1 X

* make the floating point number by combining the exponent and the mantissa

*

DONEHD

x
%k

%k
%k

kk
k

*
%

kx

cabo

Entry:

Exit

Uses

RCR 4 put mantissa in place
C=C+A X add the exponent
A=C A save floating point in "A" and "C"
RTN

alpha has the hex string that has to be converted
NNN is in "B" and "C"
"A", "B", ngewe

31

CoD

conver

=0
SETF

SLCT
READ
JNC+
READ
CLRF
A=C
R= 7

u
z

X
I
N
0

ting

d if

Initialize "B" for the new hex number
Say we do the loop for the first time
Select the loop counter
get first 7 digits to convert

start converting loop
get the next 7 digits
say we are finished after this loop

save digits in "A"
set the loop counter for 7 digits

the ascii is done by testing if it lays in between $30 and

so, subtracting $30. if it isn‘t a number we test for ascii

between $41 and $46 and if so subtract $37

*
*

* $39 an
*
*

DO-9

CODEND

DATERR

Decode

Entry:

Exit:

*
kk

%
%k

k
k

xk
*k

Xx

SLCT P
R= 1
?AH#0
JNC+
LDI
A=A-C
JC+
LDI
?A<C
JC+
LDI
AKC
JC+
LDI
?2A<C

JNC+
LDI
A=A-C
R= O
B=A
C<>B
RCR 1
C<>B
RSHFA
RSHFA
SLCT @
R=R-1
?R= O
JNC—
?FSET 9
JC
=B

RTN
?NC
FCB

XQ

subroutine

upg"

R<

R<

R<

R<

R<

R<

2
2
>

D
2

DO-9
$030

DATERR
$00A

DO-9
$011

DATERR
$017

DATERR
$007

CoD 1

DO N

ERROR
$022

say we only compare the right digit
add a zero to the NNN in “B®

load test constant for ascii < $30

we do have ascii < #30

test if this is ascii for a digit 0-9
we do have a digit 0-9

test if the ascii code is less then #41

test for ascii codes > $46

make the hex value for a digit A-F

add this digit to the NNN in "B®

shift NNN one place left

get next digit to "AL1-01"

have we done 7 digits
no
do we have to do 7 more digits

ves
copy the NNN to "C*"

specify message ‘DATA ERROR’

holds NNN to decode

flag 8 must be set and 9? must be cleared
Alpha register holds the decoded NNN

32

DECOD

DECOD2

*
k
k

x
Xk

DECOD1

DIG=0

if the hex

then $09

SLCT @
JNC+
WRIT N
CLRF 8
R= 7

LSHFA
LSHFA
C<>B
RCR 13
C<>B
SLCT P
R= O
A<>B
?A#0
JNC+
SETF 9
?FSET 9
JNC+
R= 1
LDI
ALC R<
JC+
LDI
A=A+C R<
LDI
A=A+C R<
ALC A
=C A

SLCT @
R=R-1
?R= O
JNC-
?FSET 8
JC—
?FSET 9
JC+
LDI
WRIT M
?NC GO

>
D
>
»
>
D
D

A
D

NAM MOVE

GOSUB

B=0 A
SLCT @

SLCT P
= 3

DIG=0

$00A

$007

$030

DECOD1

DECOD2

3
$030

XAVIEW

cop

save the last 7 digits
say we do the loop for the last time
set loop counter to 7

decoding a hex digit to it’s ascii representation is done by adding #30
number is smaller then #$0A and adding #37 if it is greater

make room for the next ascii coded digit

get next digit to transform

point to digit to transform
digit to "ALO"
if it is a leading zero, it must be suppressed

say we have had all leading zero’'s
do we have a leading zero
ves

is it a number

yes

make it a digit A-F minus $30

make it a ascii coded digit

copy ascii string to "C"

are we finished yet
no, loop again
have we done the loop twice
no, save 7 digits in N and do the rest
was the NNN zero
no
ves, load only one zero
save last 7 digits in M
display and return to mainframe

get the desired addresses to "CV

make sure we only leave the wanted addresses

devine the address field with P and @

33

*

#*# split the begin,
*

*
%k
k
k

Xk
X

MOVE1

*

RCR 1
A<>C
RCR 4
C<>B
RCR 6&6
C<>B
?A<B
JC+
A<>B
?A<C
JC+

=C
A<>B
=A-C

A<>B
A=A+C
C=M
A<>B
A<>C
C=C+1
C=C-1
FETCH
C<>B
WRIT
=C-1

C<>B
?A<C
JC-
RTN

PQ

PQ

T
I
X

I
E

I
I
T

I
I
T
I

I
I
I

end,

MOVEZ2

MOVES

MOVE1

and destination addresses

EEEE to "A"

BBBB to "B"

DDDD to "B" BBBB to "C"
test if EEEE<DDDD

DDDD to "A" EEEE to "B®
test if DDDD<BBBB

if the destination address lays in between the begin and end address of
the block we want to move, we have to start copying at the begin of the
source block and place it at the begin of the destination block because
we overwrite the source block

save BBBB in "M"

number of bytes to copy to "C"
end of destination block to "A"
BBBB to “C"

end of dest to "B"

EEEE to "C" BBBB to "A"

this is necessary to get all bytes copied
decrement source address

get source byte
get destination address

write byte to destination

decrement destination address

get source address back to "C*®
are we finished yet
no, loop again

* when the destination block is not overwriting the source block we just

*¥ copy from begin to end
*

MOVES
MOVEZ2

x
k

k
k

ok
*

A<>B
FETCH

C=C+1
C<>B
WRIT

C=C+1
C<>B
?A<C
JNC—
RTN

Last ROM word

NAM

M

c
f
4

T
I
X

MOVEZ2

LROM

EEEE to "A" DDDD to "B®
get source byte
increment source address

get destination address
write byte to destination

increment destination address

get source address back to "C*"

are we finished yet

no, loop again

34

LROM1

NONE

LROM2

*
ok
k
k

Xk
*

LOCA

DECODE

*

GOSUB
A=

LSHFA

LSHFA

LSHFA

RCR 11
C=C-1

FETCH

?2CH#H0O

JC+
ALC

JC-

NC XQ

FCB

C<>B
SETF
CLRF
WRIT
WRIT
GOTO

T
O
O
Y
O
D

LOCate by Alpha

NAM

GOSUB
R= 6
A=0
A=A—-1
=C

A=C
C=C+1
FETCH
?AHC
JNC-—
?A<C
JNC-

IT
I
I
I

>
>
>

I
X
D
A
D

>

* set user flag 10
*

CODe

*
ck
k
k

*x
*

READ D
RCR 11
C<>S8T
SETF 1
C<>8T
RCR 3
WRIT D
JNC-

NAM

CoD

LROM2

LROM1
ERROR
$031

DECOD

LOCA

cab

LROMZ

LOCA

get start address to "CL[3-01"
get page digit to "A(M)"

page digit to "AL61"
start address to "CL6-31"
point to next word to examine

is it a zero byte
no, we have the first non zero word
have we searched the whole rom yet
no, loop again

specify message ‘NONE’
initialise for DECOD and put address and byte
in alpha

get start address and data word

create FFF in "ALS-31"

create the end address of this page in "AL[6-31

save the target word in "AX)"

point to next word to test

is it the desired data word
ves, send it to alpha and the display
have we reached the end of the rom yet
no, loop again

when we do not find the target word

NONE

CoD

get user flags

user flag 10 to CPU flag 1
set user flag 10

restore the updated user flags
and say ‘NONE’

35

DECODe

*
%k

kk
%k

k
Xk

x

CLear

*
k

Xk
Xk

Xk
*

CLBL1

CLBL2

Count

x
k
k
k

Xk
GOSUB
?NC GO

NAM

READ X
JNC-

BlLock

NAM

GOSUB
RCR 12
2CH#0O M
JC+
RCR 10

A=

A=A-1 R
A<>C

WRIT
C=C-1
ALC
JC-
WRIT
RTN
RCR 3
A= M
A<>C M
RCR 10
JNC-

=
I

I
A
D

ByTes

NAM 10

FCB

GOSUB
SETHEX
RCR 8
A=C A
CLRF 10
N=C
?NC
NC
C=N
NC
ALC

Xa
Xe

Xe
R<

cap
RCL

DECOD

DECODE

CLBL

cop

CLBL2Z

CLBL1

CLBL1

CBT

$000

FPAL

CPGMHD
PUTPCF

CALDSF

get the NNN to "C" and "B"
put the NNN on the user stack and take care of
a stacklift

get the desired page or block to "C*

do we have to do the entire page
no, only a little block

get page address to "CL61"

page to "AL61" and clear the rest of "A"
create end address of this page
EEEE to "C" BBBB to "A"
clear this word
point to next word

are we finished yet
no, loop again

clear the first word of the block

BBBB to "AM"

EEEE to "C(M)*"

clear the block

indicate an alpha prompt

indicate not programmable

address of end to "AL3-01"
say we are in ram

save end address in "N"
get start address to "AL3-01"
place PC to start of program

"ACX)"# bytes*2 in "AL31" # regs in

36

*
k

Xk
%k

Xk

C=C+C
C=C+C
=C+C

A<>C

A=A-C

RCR 1
C=

RCR 2
C=C+C

C=C+C

C=C+C

RCR 1

C=C+A
C=C+1

=C+1
A=

?NC XQ
NC X@
LDI
WRIT E
?NC XQ
RMB
NC XQ
LDI
WRIT D
NC XQ
?NC XQ
?NC GO

NAM

GOSUB
R=

C<>B

=0

RCR 11

=C

C=C+1

FETCH

=C+C

A<>C

RCR 3

C=C+A

RCR 11

A<>C

C<>B
=0

A<>C

RSHFA

RSHFA

RCR 6&6

A=C R

RCR 8
C<>B

=
X

M
X
X
X
X
A

>
X
X
X

X
D
X
X

Xx

Delete FAT entry

I
D
>

a
x

>

X

M
N
x
X

X

CLLCDE
GENNUM
$020

MESSL
$06
LEFTJ
$020

ENCPOO
STMSGF
NFRKB

DFAT

COD

compute registers * 7

right justify number of bytes

total program length to "C(X)"

get number of bytes to display

append a space

"BYTES_"

get entry address to "C[4-01"
set pointer for comparing digit O and 1
save AAA in "B((X)"

first address of this page to "CL&6-31"

save also in "A"

get number of functions on this page
double it to make number of bytes in FAT

create address of last FAT word

end address to "AM"

get AAA to "COO"

first digit of AAA in "ALOI1"
get O to "CL13"
complete first word of FAT in A" (X)"

second word of FAT in B"({(X)"

37

*
Xk

%k
Xx

DFAT1

DFATZ2

*

*# after we have found the FAT entry to delete,

C=C+1
A<>B
A<>B
C=C+1
?A<C
JC+
FETCH

?AH#C
JC—
AL>B
C=C+1
FETCH
?AHC
JC-

I
X
X
X
Z

R<

X
M

R<

NO ENT

DFAT1

DFATZ2

in this loop we find the address of the first entry word of the entry
to delete

point to word before an entry
these two instructions are necessary to assure
proper operation in case we compare both words
point to first FAT word
have we had all entry's
ves, say there is not such an entry
get first FAT word
is it the same as our first FAT word
no, do the next entry

get second FAT word
is it the same as our second FAT word
no, restore our FAT words and do the next entry

we have to move the whole

FAT down by two words and make sure that the last entry is replaced by
* the two neccessary null words to say that this is the end of the FAT

*

DFAT3

NO ENT

DFERRE
*
»*
*

A=A+1
A=A+1
C=C-1
C<>B
C=B
C=C+1
C=C+1
FETCH
C<>B
WRIT
=C+1

C<>B
?2A<C
JNC-—
R= 5
LD@ER ©O
LDeR O
LDER 1

FETCH
=C-1

WRIT
RTN
GOSUB
RMB
GOTO

T
I
T

I
I
I
T
I
I
I
X

DFAT3

INERR
$08
ERREX

* Append entry to FAT
*

*

point to the last null word after the FAT
point to the first word of the undesired entry

save destination address in "B(M)™"

increment source address

get source word

write it to destination address

increment destination address

destination to "B(M)" source to

are we finished yet

no, do next FAT word

"CM"

get number of functions on this page

decrement number of functions

save new number of functions

"NO ENTRY"

38

%
%k

kk
Kk

Xk
%

kx
Xk

*
AFATI1

Entry:

Exit :

Uses :

AFATI1

E>64

*
k
k

%k
%k

E

"A" has the entry as follows in "CIL[53-01" UOPAAA
"B(X)" has the digits AAA
the entry is appended when there is enough room in the FAT, other
wise the message ENTRY>64 is displayed
nan y

NAM

GOSUB

AL >C

ALC
A=

C=

RCR 11

C=C+1
FETCH

C=C+1

ALC

LDI
AL >C

ALC

JC+
WRIT

C=C+C

ALC

RCR 3

A<>C
RCR 11

C=B

RSHFA
a=

AL >C

RSHFA

RSHFA

ACC

WRIT

C=C+1

AL >C

WRIT
C=

C=C+1

WRIT

C=C+1

WRIT

RTN

GOSUB

RMB
JNC—

NAM

RTN

"B(X) "oy nee

AFAT

caD

A
A
M
X

M

X
X

$040
X
X

E>64

X
X

X

X
A
X
S
A
A
X

M
X

X
M

M

INERR
$08
DFERRE

get UOPAAA to "C" and "B"

save user code and offset in "ALS-41"

address of first word to "CL6-31"

get number of functions
add one function

this is max number of functions on one page

can we append another function
no, say ‘ENTRY>64°
increment the number of functions with one

this is address of first word of new function

"CL6-3]1" has first word address

get AAA to "C(XH"™

offset and user to "AL4-31"

first digit AAA to "AL2]1" second word to "C{(X)"

first entry word in "A(X)"

append first entry word to FAT

append second entry word to FAT

make null word after FAT in “"C(X)*"

first null word after FAT in RAM

second null word

"ENTRY>64"

39

*
*x

*
k
k
k

*
k
k

kx
Xk

Xx
*

*
%

%k
kx

%x
x

¥*
x

*
k
k

ok
ok

ok
xk

ORG $7FF

MNEM

NAM MNEM

C=0 A
RAMSLCT select status registers

PRPHSLCT and deselect all peripherals
READ L get an instruction byte to "CL[2-01"

when this is the first byte of an instruction there will happen nothing
assumed is that reg L is empty when we start. when it is the second byte
of an instruction the first byte is found in "CI[2-01". it is used to find
out to which class the instruction belonged and what to do now

C<>ST instr. class of first byte to flag 1 and ©

READ Y read first byte of instruction

here is tested if we have to do with a class 1 instruction or if we

handle a LDI instruction

?FSET © is it a class linstruction
JC+ STP 1 yes, handle this instruction type

FSET 1 is it a LDI
JC+ STF 2 it is a LDI, go handle it

here is the class tested in case we do the first byte of an instruction

ST=C get class to flag 1 and ©
FSET O is it class 1 or 3
JC+ STP 3 yes, go handle class 1 or 3
FSET 1 is it class O or 2

JNC+ STP 4 go handle class 0

this part takes care of the arithmetic instructions

A=C A

B=A A save instruction code and it's address in "B"

C=C+C A

C=C+C A

RSHFC X strip of the class bits

=C+C A

RSHFC X strip off the field bits and right justify
A=C A save number of instruction in "AX"

?NC XQ PCTOC get current page address

R= S

LDER A

LD&R O

LDER © load start—-1 of instruction table

all the instructions in class two are numbered in sequence, determined

by the first S bits of the instruction code. we pick the right point in
the table by decrementing the number evrey time we have had an ascii

string representing one instruction and exit when we have reached the
right string

40

CLS 2

*

3

R= 1
CLRF

A=A-1
JC+
=C+1

FETCH
C=0
C=C-1
JC—
JNC-—

9

* stepping stones
*

STP

STP

STP

STP

*

*

* we

* of

*

CLS 2

CLS 2

PARAM

CLS 2

4

3

2

1

JNC+
JNC+
JNC+
JNC+

CLS 20

4

CLS 23

STP S

STP 6&6

DOLDI

STP 7

set pointer for instruction counter
say we only are doing the instruction type
test if we have reached our string number
we have found our string

get next ascii character of a string

is this the end of a string
no, pick next character of string
ves, go test if we are ready yet

enter the fetch of the string we want to have in "A" with the address

the first

Oo

1

2

A=0

R= 1

=C+1

FETCH

ST=C

LSHFA

LSHFA

A<>C

=C-1

JC—

A=A+1

A<>C

?FSET

JC+

SETF

M=C

C=B

C=C+C

C=C+C

RSHFC

C<>S8T

CLRF

C<>ST

A=C

?NC X

R= 5

LDER

LDeR

LD@ER

R= 1

A=0

JNC-

WRIT

=M

A=C

LDI

9

3

Qe

A
a8
A

A

X
X
X
D

character—1 in

CLS 21

CLS 22

PCTOC

CLS 23

$020

ne {(M) in

initialize "A" for holding a string
look only for the ascii byte

get next character

save it in "ST"

add character to the string
have we done all characters
no, do next character
type string as alpha data
and put string in "C"
have we had the ‘field’
ves, write field string
no, say we do the field string
save instruction string in "M"
get instruction code back

string yet
to stack and exit

strip off the class bytes

clear last bit of instruction type
save field byte in "AMX)"

load start address of field table

leave the field byte only in "ALOI"
and make the field string in "A"

write field string to reg T

instruction string to "A"
load ascii byte for a space

41

CLS 24 R= 11
AHO

JC+
LSHFA
LSHFA
R= 1
A=C
JNC-

CLS 25 A<>C
WRIT Z
C=0
WRIT L
RTN

*

R<
R<

R<

* stepping stones
*

STP 5S JNC+

STP 6&6 JNC+
STF 7 JNC+
*

*

CLS 25

CLS 24

STP 8
STF 9
DOCLS1

do we have a character in byte 6

ves, then we are finished

no, make place for a space at the right end

add space to string
and test if we are done

save field string in req Z

say we have first byte of instruction

* this part converts the hex constant of the LDI instruction to its decimal
* value in "AL3-11"
*

DOLDI R= 2
A=0

LDIZ2 C=C-1
JC+
SETDEC
=A+1

HMNDIG SETHEX
JNC-

LDI1 ?R= 0
JC+
R=R-1

C<>B

x
%

%
kx

kx
%

A<>C
A=C
LSHFA
SETDEC
C=C+C
A=A+C
A=A+C
A=A+C
C<>B
JNC-

CONRDY A<>C
¥*

A

in the hex number.
number, we multiply it by 16 and add the rest of the hex number to the
decimal number. this leaves the converted result in "A"

>
>
>

>
>
>

A

LDI1l

LDI2

CONRDY

set loop counter for conversion
initialize "A" for conversion

have we done this digit
ves, test if we are ready

add converted hex value to "A"

are we finished yet

no, decrement loop counter and multiply by 16
save hex number in “"B(X)"

the conversion is done by counting how many times we have a factor of 16

this is done in decimal. after we have found this

HMNDIG

copy decimal string to “C

multiply "A" by 10

"A" is multiplied by 16

get hex number back
set mode to hex and do next digit

* at this point "CIL[3-01" contains the converted hex string right justified
* we only have to make it an ascii coded decimal string. this is done by
*¥ inserting the digit "3" before every decimal digit
¥*

42

LDI3

*

* stepping stones
*

RCR 11
R= 3
RSHFC
LDEeR 3
R=R+1
R=R+1
?R= 6
JNC-
R= 7
LDEeR 3
C=C+1
WRIT T
C=0
R= 11
LDEéR
LD@ER
LD@R
LD@eR
LD@R
LD@R
LD@R
LDeR
LD@ER
LDI
WRIT
C=0
WRIT L
RTN

N
O
N
M
A
T
E
W
S

N

STP 8 JNC+
STP 9 JNC+
*

*

here is the class

* address is done

*

DOCLS1 ST=C
A=C
R= 13
LD@R
LDER
LD@R
LDER
LDeR
LDeR
?FSET 1
JNC+
LDER 4
LDeER C

M
E
N
S

O
=

?FSET O
JC+
LD@R
LDeR
LDER
LDER
LDER
LD@R
JNC+

N
h
m
M
d
H
T
H

LDI3

$020

STP 10
STP 11

initialize string for ascii conversion
set loop counter

convert one digit to ascii

increment loop counter

are we done yet
no, loop again

do the last character
type string as alpha data
and put it in reg T

load the ‘CON___° string
and save it in reg Z

say we are doing the first byte

1 instruction type field handled and the jump

DOXEQ

GOLC

JMPTOZ

get the second byte into "ST" for testing type
save first byte in "AMX"

load alpha identifier

first two letters are always ‘GO’

is it a jump or an xeq
it is an xeq

load a ‘LL’ for the ‘GOL’

is it a jump on carry
ves, handle this one

finish the instruction to ‘GOLONG’

43

DOXEQR

GOLC

ADDSP

JMPTOZ

*

LDER 5S
LDER 3
?FSET O

JNC+
LDeR
LDER
LDER
LDER
JNC+
LDEeR
LDER
LDER
LDER
LDE&ER
LD@R
WRIT
A<>C
C=C+C
C=C+C
RCR 12
A<>C
READ L
A<>C

ALC
=C+C
C=C+C
RSHFC
CLRF 9
JNC+

N
O
C
N
R
N
M
2
U
U
O

O
N
W
S
D

>
D
D
X

D
X
X
D

XX

*# stepping stones
*

STP 10
STP 11

OT
o%

%
%

%
%

%
*

Xk

IST

NDIG

JNC+
JNC+

R= 3
ASC
C=0
ACC
RCR 11
A<>C
C=0
SETDEC
C=-C-1
SETHEX
A<>C
RSHFC
LD@R 3
?A<C
JNC+
C=A-C
C=-C
R=R+1
LDER 4

N
D
A

A
D

>
>
>

R

A
3
0
3

3

GOSUB

ADDSP

DIST

STP 12
CLSIFB

NUMBER

make the string ‘60S’
is it an xeq on carry
no, handle this one

make instruction ‘6GOSC_° or ‘6OLC_°
add a space for 6 characters total

make string °‘GOSUB°

to the string to get 6 characters

in reg Z
msb digits of address to *Ci{2-01"

add a space

save string
get the two

shift them into "C[2-11"

save them in "A(M)"

get the 1lsb digits

left justify them in "C(X)"
right justify address in "C"
say we are doing a class 1 type instruction

skip the stepping stones

in this part we handle the addresses of the jump and gosub instructions
and we handle the distance part of the short jumps.
jump we also add a asterisk and the direction

first thing we have to do for this is to translate the hex representation
of the address or the distance to the ascii coded hex form

when we have a short

set loop counter to the starting position

get all 9's to "A" and address to "C"
shift digit one right
and make it ascii ‘'0°'-'9°

was it a number

ves, then we are ready

no, convert AF to 1-6

and make it ascii ‘A’—-'F°

44

NUMBER

FWRD

*

R=R+1
R=R+1
?R= 6
JNC-
R= 7
LDEeR 3
ALC R
JNC+
=A-C R

C=-C R
R= 7
LDER 4
?FSET 9
JNC+
R= 7
LDER
LDER

LDER
LDER
?FSET 8
JC+
R= 4
LDER D
=C+1 MS

WRIT T
C=0 A
WRIT L
RTN

D
N
D
N

* stepping stones
*

STP 12
DIST!

*
k
k

k
Xx

X

CLS1FB

GOC

JNC+
JNC—

?FSET 1
JNC+
SETF 9
ALC
R= 13
LDER
LDER
LDER
LDER
LDER
LDER
?FSET 2
JC+
LD@R
LDEeR
LD@R
LDER
JNC+
LDER
LDER
LD&éR
LDER

A
d
m
o
b

M
E
N
D
I
O
W

O
N
W
H
b
M

NDIG

NUMB

DONE

FWRD

CLS ©
DIST

BYTE11

G0oC

ADDSPA

increment loop counter by one

are we finished yet
no, do next digit

is it the address of a xeq or jump

ves, exit

no, we have to add an asterisk and direction

load the asterisk

load direction forward

is it backwards

no, do forward

load direction backwards "'-°

type string as alpha data

save it in reg T

say we are doing the first byte

in this part we handle the class 1 instructions in case we have them for
the first byte
also are the class three instructions handled here

is it class 1 or 3

we have class 1

say we do class 3 distance for converting part

save instruction code in "A(X)"

load alpha identifier

make string ‘GO’

is it a gonc
no, do goc

make string °‘GONC’

make string ‘GOC_~°

45

ADDSPA LDeR 2
LDI $020 add two spaces to string

WRIT Z save string in req Z
A<>C A get instruction code back
SETF 8 say we do a forward jump
C=C+C A
RSHFC X strip of class and c/nc bits
ST=C direction bit to "ST 6"
?FSET 6 is it a forward jump

JNC- DIST1 ves, convert distance and say forward
»*

* when we have a jump backwards we have to convert the coding, because the
*# distance is saved in the inverted format
*

SETF 7 make sure that the first bit becomes zero
C=S8T
C=-C X invert the bit pattern

CLRF 8 say we jump backwards
JNC—- DIST1 convert distance and say backward

*

here is the handling of class 1 done in case we have to do the first byte
* of the instruction
*

BYTE11 WRIT L save instruction code in reg L for second pass
C=0 A
C=C+1 MS

WRIT Z
WRIT T write a zero string toreg Z and T

RTN
*

* here the handling of the class 0 instructions is done

*

CLS ©O C=C+C X
C=C+C X

RSHFC X strip off the class bits and right justify
ST=C instr. to "ST" for testing
A=C X and save in "AX"
CLRF 8
CLRF 9 say we are handling row 6
LDI $006
R= 0
?A#C R is it row 6
JNC+ DOROWS yes, go handle it

LDI $008
?A#C R is it row 8
JNC+ DOROW8 yes, go handle it
LDI $00C

?A#C R is it row C

JC+ STP14 no, we have not to do with row 6,8 or C
SETF 9 say we do row C

JNC+ DOROWSG
DOROW8 SETF 8 say we do row 8
DOROWS A<>B X save instr byte in "B(X)"

C=B X copy instr. byte to "C(X)"
RSHFC X strip of the row byte
= 1

?FSET 8 do we have to do row 8

JNC+ 2
C=C+1 R ves, add 16 to instr. byte

?FSET 9 are we doing row C

46

*

* stepping stone
*

STP14
*

APP_A

JNC+
C=C+1
C=C+1
A=C
?NC XQ
R= OS
LDER A
LDER 9
LDER 9
R= 1
A=A—-1
JC+
C=C+1
FETCH
=0

C=C-1
JC-
JNC-
A=0
C=C+1
FETCH
LSHFA
LSHFA
A<>C
C=C-1
JC-
A=A+1
LDI
R= 11
PAHO
JC+
LSHFA
LSHFA
A=A+C
JNC-

JNC+

A<>C
WRIT Z
A<>B
LDI
?AHC
JC+
C=0
R= 7
LDeR
LDeR
LDeR

LDER
LDER
LDER
LDER
LDER =

B
O
N
N
W
U
T
L
H
A

X
0
2

R<
R<

PCTOC

$020

DOCLSO

$0DC

CANDA

add 32 to instr. byte
byte in "A((X)"

yes,
save instr.

load start address of instr. of row 6,8,C

have we found the wanted instruction
ves, get the string to "A"

is this the end of an instruction
no, try next character of instruction

ves, test if we are finished
initialize "A" for string

get a character

append character to string
are we finished yet
no, do next character
type it as an alpha string

load ascii byte for a space

is the string left justified

ves, exit

no, shift one byte left and append a space

and try again

save instruction string in reg Z

get instruction code into "A(X)"

isi it a C=C or A

no, test for C=C and A

load ‘OR’

load “_A°

47

EX1

LDI1

*

* here are the

#* instructions

*

DOCLSO

FSTR
CLS 03

CLS 02

CLS 01

CLS 04

C=C+1
WRIT
LDI
?AHC
JNC+
C=0
A
WRIT
RTN
LDI
?AHC
JC+
C=0
R= 9
LDER
LDeR
LDER
LDER
LDER
LD@eR
JNC-
=0

JNC-
LDI
WRIT
RTN

NC X
R= 5
LDeR
LDER
LDER
B=A
R= 0
A=A—-1
JC+
=C+1

FETCH
R= 2
CHO
JNC-
JNC-
R= 1
A=0
C=C+1
FETCH
LSHFA
LSHFA
A<>C
C=C-1
JC—
A=A+1
A<>C
M=C
JNC+
LDEeR
LD@R
LDeR

MS
T

X

A

L

X

A

4

1
4

E
4
4

A

L

Qe

B
8
S

X

R

M

R

A

M

A
A

R<
X

MS
A

8
4

Cc

$£04C

LDI1

$0EC

APP_A

EX1
$002

PCTOC

CLS 01

CLS 02
CLS 03

CLS 04

type as alpha
and save in reg T

is it a LDI

no, normal instruction go clear reg T and L

load ‘AND’
append ‘_A’ and exit

tell MNEM for second byte that we have a LDI

normal instructions from class 0 handled. these are the

that do have a parameter with them

load start address of first string

save instr. code in "B(X)"

use only the instruction number and not param.
have we reached our instruction

ves

get next character

is it the end of the string

no, try next character
ves, go test if we are finished
set pointer to fetch and build instr. string

get a character of our string

append it to the string

have we done all characters
no, do next character

type string as alpha data

and save it in "M"

48

PUSH
C<>B A
RTN

%*

* stepping stone

*

STPP20 JNC- 6
*

WRIT Z put string in reg Z
?FSET 9 are we ready

JNC+ S no, continue
C=0 A
C=C+1 MS ves, clear reg T
WRIT T
RTN

*

A<>B A get instruction code back
R= 1
LDI $OF7
?A#C R is it a instr. from colum 15

JC+ CLS 09 no, do parameter tables

?FSET 3 is it row B8-F
JC+ CLS 09 yes, do parameter tables
FSET 2 is it row 0-3

JC+ T8TS7 no, test for row S or 7

R= ©
?AH0 R is it the NOP from row O
JC+ DOEXCP no, then it is the an exception

TSTS57 ?FSET O is it row S or 7
JNC+ CLS 09 no, do parameter tables

DOEXCP = 1
A=0 R leave instr. byte only
NC X@ PCTOC
R=5
LDER B
LDER B
LD@R 6&6 load address of exception row D table
SETF 9 say we don’t have to do a parameter anymore
JNC- FSTR go get instruction string

*

CLS 09 7?NC X@ PCTOC
R= S
LDeR B
LDER D
LDEeR 7 load address of normal parameter table
R= O
LDI $00A
7AHC R do we have to do the parameters of REGN=C
JC+ 4 no

TREG R= 4 load table address of C=REGN and REGN=C

LDER F
JNC+ REGN= finish address of table

LDI $00E
7AHC R do we have to do the parameters of C=REGN

JNC— TREG ves, load address of table

LDI $004
2AH#C R do we have to do the LD@R parameters

JC+ NPARAM no, do the normal parameters

49

LD@R R= 4
LDER E

REGN= LD@R D load table address of LD@R parameters
NPARAM SETF 9 say we don't have to do a parameter anymore

*
*

%
k
k

dk
ck

ok
k
k

k
Kk

Xk
%*

0 rr > 0 0 N

RSHFA A field byte to "ALO"
C<>B A
C=B A copy table address to "B(M)" page digit to "C"

R= 5
JNC- STPP20 go do PARAM

ORG $A00

ASCTBL

RMB $143

the following ascii tables belong to the MNEM program. they have to start
at the above specified address. the last character of every entry in the

tables has bit 9 of the romword set. e.g. the entry A=0 is coded as

follows A 041
= 03D
0 230

the @ character means that there is just an empty entry in the table. it

is coded with 200

A=0 these are the mnemonics for the class 2

B=0 instructions

C=0

AB EX the field specifier is picked from the next

B=A table

AC EX

C=B

BC EX

A=C

A=A+B

A=A+C

A=A+1

A=A—-B

A=A—-1

A=A—-C

C=C+C

C=A+C

C=C+1

C=A-C

C=C-1

C=-C

=—C-1

?B#0

?CH#0O

?A<C

?A<B

?A#0

?A#C

A SR

B SR

C SR

A SL

S0

FTBL2

CLSSO0A

PT
X
WPT
ALL
PQ
XS
M
Ss
UNUSED
6=C
C=G
C6 EX
UNUSED
M=C
C=M
MC EX
UNUSED
F=ST
ST=F
FST EX
UNUSED
ST=C
C=ST
CST EX
SPOPND
POWOFF
SEL P
SEL @
72P=0
2LLD
CLRABC
60TOC
C=KEYS
SETHEX
SETDEC
DISOFF
DISTOG
RTN C
RTN NC
RTN
UNUSED
N=C
C=N
NC EX
LDI
STK=C
=5TK

UNUSED
GO KEY
DADD=C
UNUSED
DATA=C
CXISA
C=C
=C

PFADD=C

this is the table with the field specifiers
from the class 2 instructions

this is a part of the class 0 special
instructions
they do not have an additional field specifier

with them

these two instructions are for the C=C and A

and the C=C or A instructions

S51

CLSSOB

CLSSO0C

CLSSOD

CLSSOE

=0

?5=1
LC
?PT=

PT=

SELP
REGN
?F=1

=REGN
RCR
@
CLR
RST
CHK

DEC

INC

3

T
M
O
O
W
D
I
O
I
A
O
N
D
P
U
N
D
U
W
U
N
R
=
O

=C

ST
KB
KB

PT

PT

this is the table of the regular class 0
instructions.

these instructions can have 3 different
parameters.

these parameters are specified in 3 tables

empty entry

empty entry

empty entry

empty entry
this is part of the class 0 special instruction
set.

empty entry

empty entry

class 0 parameter table for the following
instructions

NOP S5=0 S=1 ?65=1 RCR ?F=1

SELP PT= PT=

this is the table with the parameters for

LC instruction

S52

CLSSOF
*

kk
k

Xk
ok

*
%k

o(T)
1(2)
2(Y)
3(X)
4(L)
S(M)
6 (N)
7 (0)
8(P)
(1)
10(°)
11 (a)
12(b)
13(c)
14 (d)
15(e)

ROM>REG

NAM

60SUB
=0

RAMSLCT
READ X
?NC Xa
A=C
READ C
RCR 3
C=C+A
M=C
A=C
A<>B
=A-C

A=C
C=C+C
C=C+C
A=A+C
=A—1

B=A
READ Y

=0
R= 3
A<>C
RCR 4
N=C
=A-C

LSHFA
LSHFA
LSHFA
A=C
A<>B
?A<B
?C GO
C=M

2
X
2

X
X

X
X

X
X

X
X

X
X

X
X

X
X

>
>

R<

R

X
X
X
D
D
D
A

ROM>REG

LREG

BCDBIN

ERRNE

this is the parameter table for the
instructions C=REGN and REGN=C

the ’ stands for the lazy T, code O7F

start initialization ROM>REG

get address of last existenet register

get start reg from X

save start reg number in "A{(X)"

address of reg 00 to "C(X)"

address of start reg 555 to "M"
and to "AX)"
last reg to "A(X)" S55 to "B(X)"

number of available registers to "C(X)"

*2

*4

*5

number of rom words that can be stored

save max rom words in "B(X)"

get BBBBEEEE

EEEE toc "AL3-01"

BBBB to "CL[3-01"

save BBBB in "N"

number of words to store NNN

EEEE to "A(M)"™
NNN to "A(X"
NNN to "B(X)" available to "AX)"
is there enough room to store NNN

no, say ‘NONEXISTENT®

33

x
Kk

ok
k

kx
k

k
kx

k
*

%
k

k
Xx

*

start main loop

A=C
=N

RCR 11
C<>B
C=B
C=0
RCR 7
A<>C
N=C

MS

X

868 to "AMX)"

BBBB to "B(M)"

xO00000BBBBNNN to "C"

clear the x "C" = 0000000BBBBNNN

"C" = BBBBNNNOOOOOO0OO

"CC" = BBBBNNNOQOOSSS

save header in "N"

the main loop is entered with the CPU registers as follows
"A(M)" = EEEE this is start address in rom

"B(M)" = BBBB this is end address in rom

"M(X)" = 885 this is the first MM register to use

"N" = BBBBNNNOOQOSSS this is the header

MAINLP A<>B A EEEE to "B(M)" BBBB to "AM"
R= 9 set loop counter to 5

ONEREG A<>C A address to "C" and string to "A"

LSHFA A
LSHFA A

this makes place for the next rom word and shifts a zero into the

alpha indicator digit, so we are sure that an increment of this digit

returns the alpha indicator

FETCH
A=C
A<>C
C=C+C
=C+C

C=C+C
=C+C

A=A+1
R=R-1
?R= 0
JNC—
RSHFC
=C+1

C<>M
C=C+1
RAMSLCT
C<>M
WRITDAT
A<>B
?A<B
JNC-

T
D
D
X
R
D

u
r

A
M

ONEREG

MAINLF

termination of ROM>REG

*

put the rom word into the string
string to "C" for bit shifting

push word up against rest of string

shift string left to even digit

increment address
decrement loop counter

did we do one register
no, do another rom word in this reg

right justify string in "C"
set alpha indicator digit

save string in "M"
increment register address

save reg address and get back string
move string to memory

did we do all the rom words we had to do

no, continue

o4

*
k
k

k
*k

*

*

start of main loop
*

C=M
A=C
C=N
RAMSLCT
C=A-C
C=C+1
RCR 7
=C+1

WRITDAT

C=0
RAMSLCT
READ C
RCR 3
A=A-C
GOSUB
WRIT L
RTN

REG >R0OM

NAM

READ Y
=C

READ X
?NC XQ
A=C
READ C
RCR 3
C=C+A
RAMSLCT
M=C
READDAT
RCR 3
A=C
C=N
RCR 1
C=0
CHO
JC+
RCR 10
A<>C
R=3
CHO
JC+
A<>C
JNC+
RCR 13

RCR 11
A=C
READDAT
C=0
RCR 11
C=C+A
C<>B

X
X

MS

X

an

A

M

M
A

HTOD

REG>ROM

BCDBIN

last used register address to "A(X)"

get the header
and select the header register

number of used registers to "C(X)"
header is O0OOORRRBBBBNNN RRR is used regs
make it alpha data
save header in header register

reg 00 to "C(X)"
reg number of last used register

make it floating point
and put it in L for the user

start address to "NWN"

start register number to "A(X)"

address of header register

save S855
get the header register 100000AAAANNN

start address of file to "AL3-01"
get the wanted start address

leave only the start address
is it a complete address

ves, go put it in place
put page number in "CL31"
get address in this page

was there a page address given
ves, put address in place

no, write it back at the original place

put address in "AM"
get the header back again

leave only NNN in "C(M)"

save end address in "B(M)"

35

LOOP1

LOOP2

Exit

o
k

ok
ok

ok
ok
k
K

Kk
Kk

*
k

%k
k

*x

Entry:

C=M
C=C+1

RAMSLCT
M=C
READDAT
RCR 13
C=C+C
C=C+C
R= 5
RCR 12
C=C+C
JNC+
C=C+1
C=C+C
JNC+
C=C+1
A=C
A<>C
WRIT
A<>C
?A<B
?NC RTN

A=A+1
R=R-1
?R=0
JNC-
JNC-

Last REGister

none

>
D

2
I
P
I
X

D
>

DI

LOOP2
LOOP1

point to next register
select it
save new register address
get 5 rom words

left justify string in "C"
set LOOP2 counter for S words

shift 2 digits into "C(X)"
shift one bit left

have we shift a one bit of at the left

ves, append this bit at the right

do the second bit to

rom word to "A{X)"

put the rom word in the ram

have we done all the words

ves, we are finished
no, increment address

have we done the complete register
no, do the rest of this register

ves, do the next register

"B(X)","C(X)" are holding address of last reg

last reg is enabled
"A" ,"B(X)","C", enabled chip

LDI
C<>B
LDI
A<>B
C=A-C
RAMSLCT
C<>B
READDAT
A=C
=—C-1

WRITDAT
READDAT
C=-C-1
?A#C
JC—
WRITDAT
C=R
RTN

D
x

$23F

$040

LREG 1

address of last reg + $040 to "B(X)"

subtract $040 of address

select last reg of a 64 reg block

save address

save reg in "A"

complement exponent of reg

reg ought to be good again

it isn't, so its nonexistent

restore reg to its original status
address to "C(X)"™

these are a few subroutines that belong to the MMTORAM program

S56

*

*# this part takes care of the C handling
*

DO C

*

R= 0 set pointer to zero
?A<C R exceptions in C row
?NC RTN return if exception

C=M
C=C+1 M address of label to "C(M)"
RCR 3 right justify address for AFATI1

BL >C A
RCR 11 current PC to "BL6-31" and AAA to "B(X)"

=B X
B<>C A
R= 5
LDeR 2
LDEeR O say we have user code and offset is zero

A<>C A

* "B" has the current PC in [6-31 for the main loop of MMTORAM and the last

* three digits of the address in "B(X)" for AFATI1
* "ALS-01" has UOPAAA for AFATI1
*

*
Xk

dk
k

Kk
ok

DO B-E

NO B

*

GOSUB AFAT1 append FAT entry and error if entrys > 64
B<>C A
RCR 3
BL >C A put PC back into "BL[3-01"
RTN

this part takes care of the B-E bytes (2 and 3 bytes GTO and XE@ and the
alpha labels the last have to be appended to the FAT

LDI $0CE set up DE, C, B compare values
?A<C R is it B
JNC+ NO EB no, continue

GOTO DO B ves, handle B

?AHC R is it C
JNC- DO C ves, handle C

* handling the D bytes consist of converting the register length into a

byte count, add the normal byte count to it and to invert the direction
* bit
*

*

A<>C X
ST=C save byte in "ST" for bit testing

R= 3
ALB R< get PC back to "AL3-01"
NC X@ NXBYTA get second byte of this instr.
ALB R< save PC in "BL3-01"

R= 2
C=0 R set up for conversion
?FSET O is 1xx bit set
JNC+ MLTREG
C=C+1 R ves, add 256 registers to the count
CLRF © leave byte count only in "ST"

* multiply the register count by 7 and add the byte count to it
¥*

S37

MLTREG

*

A=C
C=C+C

C=C+C
C=C+C
ACC
A=A-C
C=ST
LDER ©
LDeR O
C=C+C
C=C+C
C=C+C
C=0

RCR 1
A=A+C
R= 2
C=G
ACC X
=C

ST=C
C=M
C=C+1 M

LDI
R= 0
C=6
WRIT
CLRF 8
C=C+1 M
M=C
=8T

C=0
WRIT

M
X

X
X
X
X

X
X
X

T
X
x

Xx
b
o

Xs

*# last thing to do

* bit
*

R= 3
A<>B R<
NC XQ
A<>B R<

ST=C

$100

regs ¥ 7 in "A(X)" this is byte count of regs

get the byte count

shift byte count three bits right
total byte count of label in "A(X)"

get identifier back to "CL31"
add link bytes

save first byte in "G"

and second in "ST"

storage address

first byte of instr.
get
set flag

first byte
and put it in ram

say we have had the first byte
make storage address of second byte

and save it
get second byte
clear first byte flag
and save it

get

here is to get the last byte and invert the direction

NXBYTA

invert the direction bit

*

DIR1
DIRZ2
RMLOOP

*
k
k

k
Xk

?FSET 7
JC+
SETF 7
JNC+
CLRF 7
R= 0
C=8T
G=C
RTN

DIR1

DIRZ2

get PC to "AL3-01"
get the last byte
save PC in "BL3-01"
put byte in "ST" for inverting direction bit

save byte in "G6"

return to the main loop

this part takes care of the handling of the B bytes

58

DO B =M
C=C+1 M get storage address
M=C save it
R= 2
LDER 1 set first byte flag
R= O
C=6 get first byte
WRIT put it in ram

*

* test direction bit of distance byte and compute the distance in bytes
*

CLRF 8 use this flag for copy of direction bit

R= 3
A<>B R< get PC
NC XQ NXBYTA get the distance byte
AL >B R< save PC
ST=C put distance byte in "ST" for testing direction
?FSET 7 is direction bit set
JNC+ 3
SETF 8 ves, copy it into flag 8
CLRF 7 clear distance byte for calculation of distance

C=ST
C=0 XS
R= 1
G=C save bytes in "G"

*

* multiply register length by 7
*

LDER ©
A=C X
C=C+C X
C=C+C X
C=C+C X
AL >C X
A=A-C X REG # 7 = bytes in "AL 1-01"
C=0 X
C=6 get bytelength to "CLO1"
C=C+A X total byte length to "CL1-01"
ST=C
CHO X is the distance to far
JNC+ 4 ves, leave direction bit zero
FSET 8 was direction bit set

JC+ 2 ves, invert it
SETF 7
CLRF 8 say we have had the first byte
JNC- RMLOOFP save byte and return to the main loop

*
*
*

* Main Memory TO RAM
*»

NAM 10 MMTORAM give an alpha prompt

*

FCB $000 indicate nonprogrammmable
*

*# initialize for the main loop

59

*

* start

*

DINSTR

NOEND

*

* start

GOSUB
GOSUB
CLRF 10
RCR 8
=C

?NC XQ
?NC XQ
C=0
RAMSLCT
READ A
RCR 11
WRIT A
=C+1

M=C

of the main

A<>C
N=C
A<>C
NC XQ
CLRF 9
?FSET 6
JNC+
SETF 9
A<>C
C<>N
ACC
SETF 8

of the

¥*¥ in ram memory

*

DOBYTE

NOTB-E

?NC XQ
AB
R= 0
6=C
?FSET 8

JNC+
?FSET 9
JC+
R= 1
A=C

C=C+1
JC+
LDI
?2A<C
JC+
GOSUB
=M

C=C+1
C=0
M=C
R= 2
?FSET 8
JNC+
LDER 1

R<

M

R<

R<

R<

R<

‘instruction

R<

INMMTR
PATCH

CPGMHD
PUTPCF

loop of

NXLSST

NOEND

NXBYTA

NOTB-E

NOTB-E

NOTB-E
$0BE

NOTB-E
DO B-E

NOTONE

go do compile
get start address and say "LOADING PGM"
indicate we are in MM

set up end for CPGMHD

set PC to begin of MM program

select the status registers
get begin address of storage

rotate to "CL6-31"
begin address to reg A
skip the two header words

save code address—-1 in "M"

MMTORAM

save begin of program in "N"

end of this instruction to "AL3-01"
clear the copy of the end flag
have we found an END

copy status of flag 6 into flag 9

begin of instr. to "AL[3-01", end to "NL[3-01"
indicate we do first byte of instr.

loop’. in this loop one instruction is saved

get a byte of this instr.
current PC to "BL3-01"

fetched byte to "G"
is this the first byte
no, skip byte test
have we hit an end
ves, skip byte test

save byte in "A[L1-01"

test for F byte

skip B-E handling
set up comparing constant
if smaller than B, we can skip B-E handling

take care of B-E bytes
get storage address-—1

clear data space

save updated storage address

are we handling the first byte
if not, skip the flagging of byte one

flag first byte

60

NOTONE

*

* make the END instr.
* and if so make it private
*

DOEND

= Qo 0 A —~ <

*
k
k
k

kx
k
k

DIVIDE C=C+1

R= O
C=6
CLRF 8
WRIT
C=N
R= 3
A<>B R<
?FSET 9
JC+
?AHC R<
JC-
JNC-

?NC XQ
ST=C
=M

C=C+1 M
C=5T
C=0 XS
WRIT
=C+1 M

M=C

LDI
C<>B
C=0
RAMSLCT
READ D
RCR 13
ST=C
C=B A
R= 1
FSET 2
JNC+
LDER 6&6
WRIT

xX
D

C=C-1
A >C
READ A
A=A-C
C=0
R= 3
LDeR 7

>
I
T

I
Z

2A<C
JC+
?AH#C
JNC+
A=A-C
JNC-

I
I

I
X

DOEND

DOBYTE
DINSTR

NXBYTA

$22F

NOFPRIV

EOFDIV

EOFDIV

DIVIDE

get byte
say first byte is done
put byte in ram
get end of instr.

address of byte to "CI[3-01" end to "AL3-01"
are we handling an END
skip PC compare
have we handled the whole instr.
no, do the next byte of this instr.
yes, do next instr.

in ram and test if it has to be a private END or not

get next byte

save byte in "ST"

make new storage address

get byte back
clear first byte indicator

put byte in ram
point to last address of program in ram
save last used address for getting out first
free byte after program for the user

set up last byte of END
address and byte to "B"

select the status registers

user flags 0-3 into CPU 3-0
get back address and byte

must it be a private END
no
ves, indicate write protected file with $26F
put byte in ram

construct the header words for a ROM program file the first header word

contains the length of the program in registers and the second word
holds the status of the file (private or not) in the bit 8 and the
number of bytes that are not hold by a completely filled up register in

digit 1

"C" for byte count
nan

set up

save end of program in
get start address
number of bytes to "AM"

set up for divide by 7 for header words

open at least 1 register
end of division

ves

integer division
ves, exit
subtract (this is a dumb form of division)

61

EOFDIV

PRIVAT

*
k
k
k
k
k

*

A<>C
READ A
A<>C
WRIT
=C+1

A< >C
RCR 2
A<>C
LDI
?FSET
JC+

3

LDEeR 2
A<>C
A<>C
WRIT

A=C
C=0
C=0
RCR 1
A< >C

LDI
A<>C
A=A—-C
A=A+1
A=A+1
B=A

compute the
*

- NXTBYT

*

LDI
ASC
C=B
R= 1
C=C+1
FETCH
CHO
JNC—

?AHC
JC-
?A<C
JC-
ACC
B=A
A=A-C

Xs

A

M
M

Xs

X

X
X
X
X
A

$300

PRIVAT

$007

save number of regs in "A[2-01"
get address of first header word

write first header word in ram

point to second header word

number of bytes to "C(M)" address to "A(M)"

bytecount to "AC11"
say status is private
does the user want it to be private

ves
no, make it an open file
combine status and number of bytes in "A(X)"

put second header word in ram

last thing to do is to compute the link in the first alpha label to the
label that will be in front of the program, when it will be copied to MM
for this we need to know how many empty bytes are left in the first reg

and the distance from the program start to the first alpha label

start address-1 to "AMM"

clear file status, preserve bytes

number of bytes to "A[O1"

calculate 7-bytes (zero bytes in first reg)

add displacement to previous link-1
save start-1 and offset

distance to the first label starting from the first byte

I
I
x

XS

$1CD

NXTBYT

NXTBYT

NXTBYT

comparing constant for 6 labels to "A(X)"
get start-1

get next byte of the new file
is this a start of an instr.
no, continue with next byte

is it a C byte
no, continue with the next byte

one of the exceptions in C row

ves, look up another byte

start-1 to "C(M)", end to "C(M)"

save end (bytes to change)

number of bytes to first label in "C(M)"

* we have the number of bytes to the previous link
*

C=0
C=B
RCR 11
A=A+C
C=0
R= 3
LDER 7

set up for link distance computation

offset value to "C(M)*™

total link distance in

set up for division

"an {M) 1"

62

DIVLNK

LFOUND

EXIT

x
k
k

k
Xx

*

* we can exit through READY

?A<C
JC+
A=A—-C
C=C+1
JNC-
A<>C
C=C+C
C=0
RCR 1
C=C+A
ST=C
RCR 2
LDER 1
LDER C
C=B
WRIT

C=C+1
C=0
C=5T
WRIT
=M

C=C+1
RCR 4
C=0
RCR 13

C<>B
A=0
C=0
SETF
CLRF
WRIT
WRIT
GOSuB

T
O
O

m

cleared.

*

EXIT2

*
%

k
%

Xx

ROMSUM

READ E
RCR 3
ST=0
C=ST
RCR 11
WRIT E
60TO

NAM

X
I
D

x
X

>

the alpha register.

and giving an audio warning

A
A
A

LFOUND

DIVLNK

DECOD

READY

ROMSUM

division finished

ves, exit

increment register count

bytes in "C(M)", regs in "A(X)"
double byte count
clear dat area
get bytes in place
add register count
save second byte
create first byte

get address for first byte

put it to ram

point to second byte

get second byte
put it in ram

get back last word of program
make first free word after program

leave only the address
make the output the same as the input format

now we initialize for DECOD and put the next free byte address back to
then we exit through READY of compile, saying "READY"

initialization done

put address in alpha

when we make sure that flag O of reg E is

indicate we have finished compile

and do exit and say "READY"

63

%
k
k

dk
k
k

k
%k

k
Xk

py
)
Q 2 wm

*
k
k

k
ok

GOSuUB
RCR 11

C=0
C=—C-1
RCR 11
=0

WRIT
R= 5
C=0
C<>B
C=0
RAMSLCT
PRPHSLCT
LDI
C=C+C
C=C+C
=C

C=C+1
C<>B

x
xX

D
X
D
X
X

CODE

$300

get the page to romsum

P to "CL31"

PFFF to "C(M) in

clear the romsum word

start address to

select the status registers

and deselect all peripherals

"A(X)"

"B(X)" has 1100 0000 0001

"Bg (M) ”n

has %Z1100 0000 0000

"C(M)" has start

the checksum is computed by adding all the words to each other and when a
carry occurs to add this carry to the total checksum. the final checksum

is made by taking the 2's complement of the added words.

detection of the carry is done by making the two left bits high.
carry in the right ten bits occur,
this is the carry bit.

left bits in the S&X field of

FETCH
A=A+C
JNC+
A=A+B
C=0
C=C+1
CHO
JC—
A=A-B
LDI
A<>C
C=A-C
=C-1

WRIT

RTN

DISASseMble

NAM

SETHEX
NC XQ
LDI
RCR 11
LDI
A=C
READ X
C=C+1
WRIT X

>
A
Z
X
X

>
>
>

ROMS

$3FF

DISASM

CLA
$006

$009

get a rom word
and add it to the checksum
we didn't had a carry

when the

it will be transferred to bit 12 and

we add the carry and restore the status of the two

"A" by adding “1100 0000 0001 to "A(X)"

add one to the checksum and restore bit 10 + 11

no,

point to next word to add

have we had the whole rom yet
do next word

decrement "A(X)" and get rid of bit 10 and 11

$006009 to
get word to disassemble

"ALS-01"

get the 2's complement of bit 0-92 to "C(X)"
point to checksum word

put checksum into the ram

save address of next word for the user

64

DISAS1

*
%

kk
xk

*
k
k
k
k

*
k
k
k
k
k
k
k
k

C=C-1
RCR 11

FETCH
WRIT Y
RCR 7
LDI
RCR 13
R= 0
?A<C
JNC+

when the hex

digit of the

C=A-C
C=-C
R= 1
C=C+1
C<>B
READ M
RCR 12
C<>B
C<>R
WRIT M
C<>BR
A=A—-1
JNC-

READ M
A=C
R= 5
=0

RCR 6
WRIT N
A<>C
RCR 8
LDeR
LDeéR
LDER
LDER
LDeR
LD@ER
R= 13
LDeR 2
LDER ©
WRIT M
READ Y

O
C
N
O
N
O
N

represented.

R

$003

oS

get the word to disassemble
word and address to reg Y for MNEM
left justify string for conversion to ascii
load first ascii digit of a character

is it a number 9-0
ves, then we are ready with converting

digit is A-F we have to make it 1-6 and add 1 to the first
ascii character

R
R

R
A

X
Xs

A
M

AAAA_DDD_C_ where

R<

characters which are

DISAS1

2 ’

convert digit to 1-6

make first digit 4
save string with converted character in "B"
get the already converted digits
and make place for the new character

put new character in place
save converted digits

get string back for next character
are we finished with characters

no, do one more

the disassembled word and address are written in alpha as follows

stands for a space the C stands for the ascii
representation of the word and is added in the conversion part

get string back

and save it in "A"

leave only the address part
right justify it
and write it to reg N of the alpha register
get string back

load three spaces after the data word

load one space before data word

write string to reg M of the aloha register

get the data word back and decide by which character it has to be
the upper bits of the word are ignored for the ascii

character as is bit three of the second digit (bit 7)

words where the second digit is 4,5,6 or 7 are represented by the

picked from the ASCTBL at $2CFO0.
is used is determined by the first digit of the word

which character

63

*
k
k

kk
Xk

%
*
k
k
k
k

*

COPY

ST=C
CLRF 7
C=8T
FSET 6
JNC+ 8

R= 3
LDER 2
LDE@R C
LD@R ©
RCR 11
FETCH
JNC+ S
?FSET S
JC+ 3
SETF 6&6
C=ST
A=C A
READ M
RCR 2
A<>C X
A<>C XS
RCR 12
WRIT M
?FSET 13
?C RTN
?NC GO AVIEW

COPY Rom

NAM COPYR

GOSUB COD

= 6

RCR 9
A=

A<>C

RCR 13
B=

C<>B

ALC

=C

A=A+1

FETCH

C<>B

WRIT

C<>B

C=C+1

Z?AHC

JC— COPY

LDI $027

NC GO TONEB

A
I
D

0
D
A
W
N

D
D

words where the second digit is 2 or 3 are represented by their ascii

value

words where the second digit is 0 or 1 are represented by the characters
that are represented by the value of the word added with $40

bit 7 of the word is ignored

is first digit 4,5,6 or 7
no, test for digit 0,1 or 2,3
load address of ASCTBL the character to

be picked is determined by the first digit
of the word we use

address to "C(M)"

get ascii value
end of conversion

is second digit a 2 or 3
ves, represent by ascii #20 upto #3F

no, represent by ascii $40 upto #5F
get converted word $00 upto #1F

save character in "A[L1-01"

append character to alpha string

is there a program running
ves, return to mainframe

no, put string in display

get SD to "CL1-01"

§ to "CL61"

leave S000 in "AM"

D to "BL&61"

S to "CL&1"
S+1 to "AL61" for stop criterium

get a source word

get destination address
write source word to destination

get source address back
increment source and destination address

have we had the whole page yet

no, do the next word

give a beep and return to mainframe

66

*

* ROMCHecKX
*

*

TRYNRM

*
k
k

xk

NAM

C=0
RAMSLCT
READ X
?NC XQ
C<>B
=0

R= 6
LDER 4
C<>B
CLRF 9
C=B
R= 6
C=C+1
JNC+
GOTO
C<>B
C=B
FETCH
CHO
JNC-
A<>B
=A

7AHC
JC—-
NC XQ
A=0
?NC XQ
LDI
WRIT E

=0
R= 5
LDER F
LDER F
LD@R E
A=C
=B

C=C+A
FETCH
WRIT E
C=C-1
FETCH
WRIT E
LDI
WRIT E
=C-1

FETCH
WRIT E
C=C-1
FETCH
WRIT E
NC XQ
RMB

MS

I
I

ROMCHKX

BCDBIN

NOROM

TRYNRM

TRYNRM
CLLCDE

GENNUM
$020

$02D

MESSL
$04

xrom number to check to "B(X)*"

reset error flag

point to next rom

rom not found yet

say specified rom not found

get rom ID

is this an existent rom
no, try next rom

is it the one we want to check
no, do next rom

get xrom number in 2 characters to display

append a blank

construct address of revision number

append one rev. character to display

append second rev. character to display

seperate rev. level and characters with a

append one revision level to display

append second revision level to display

”n TST a"

display has now message NN RR-LL TST where NN is the desired xrom number
RR is the revision code and LL is the revision level.

6&7

C=B
LDI
=C+C

C=C+C
A=C
C=C+1
C<>B

=0
C=C+1
RCR 8
ACC
A=A+C

D
X
X

D
P
D

XX
X
D
X
X

$300

get start address of rom to "C(M)"

"A(X)" = 1100 0000 0000 start address to "AM"

"B(X)" = 1100 0000 0001

"C(M)" has start address

"A{M)" has end address

*

in this loop all the rom words are added to create the chcksum. when the

* rom is alright the checksum should end up as zero.
*

* we need to fix the high order

*

NOROM

EXRCHK

®
kk

x
k

Xk

FETCH
C=C+1
A=A+C
JNC+
A=A+B

7AHC
JC—
=A-B

A=A—1
JC+
SETF 9
READ D
READ D
READ D
?FSET 9
JC+
?NC XQ
RMB

JNC+
NC XQ
RMB
JNC+
SETF 9
NC X@
NC XQ
RMB
A<>B
A=0
NC XQ
NC XQ

NC X@
NC XQ
?FSET 9
NC RTN
SETF 7
NC GO

SYNTesize

M
X

X

M

X
X

X
MS

2

WORD

BAD
MESSL
$03
EXRCHK
MESSL
$03
EXRCHK

CLLCDE

MESSL
$07

GENNUM
LEFTJ
ENCPOO
STMSGF

SKP

get word
increment address

add to checksum

add cary to checksum and fix high order bits

bits to detect the next carry.

are we finished yet
no, do next word

is checksum zero

no, set error flag

get the TST characters of the display

is rom ok

no, append message BAD

ves, append message OK
a” OK n

”" BAD 11]

set error flag

"NO ROM "

68

*
k
k
k
k

*
o
k

dk
dk

ok
k
o
k

Kk
k
k

NMMTR

*

Go to

NAM

FCB
READ Y
?NC XQ
SETHEX
NC XQ
C<>B
READ X
?NC XQ
SETHEX
NC XQ
RCR 2
C<>B
RCR 2
NC GO

End

NAM

C=0

WRIT A
WRIT B
CLRF 10
READ C
= 3

LDER 6

A<>C
NC GO

address from,

POP
RCR 4
C=0
RCR 3
WRIT P

SYNT

$000

CHK#S

BCDBIN

CHK#S

BCDBIN

INSLIN

GE

PUTPCF

INitialize Main Memory To

say that this function is non programmable
get the prefix byte
check for alpha data

save prefix in "BL[1-01"
get the postfix byte
check for alpha data

postfix to "CL13-1231"

postfix to "CL11-101" prefix to "CL13-121"
insert the byte in main memory

delete all pending return addresses

say PC is in RAM
get address of register of .END

make address of .END

initialize for PUTPC
place PC at .END and set line number to $FFF

Ram

here we save the return address for MMTORAM in the first 4 digits of
scratch register P. these digits are used by COMPILE toget it's return

in case we use it as a subroutine.

get return address

leave return address only

* second thing we have to do here is to find out wether the user wants to
* delete the labels from the program, or just wants to do a normal compile

this is indicated by flag 3 of the user flags.# and load program.

*

69

*
%

%k
kx

Xx

PATCH

*
*

%k
k
k

%k
*
k
k

%k
%

PATCH

READ D
RCR 13

ST=C
CLRF 1
SETF 2
READ E
RCR 3

=8T
RCR 11
WRIT E
GOTO

MMTORAM

GOSUB
WRIT A
?NC X@
NC XQ
RMB
NC XQ
?NC X@Q
GOTO

ROM NAME

NAM

RTN

Make PRivate

NAM

FCB

6OSUB
RCR 8
A<>C
?NC X@
CLRF 5S
SETF 6
C<>8T
SETF 12
NC XQ
?NC GO

10

R<

type of compile to flag ©
delete status of user flag 2
say we use compile as a subroutine

put flags in place

store flags in reg E

COMPIL

COD get the start address

CLLCDE
MESSL
$0C "LOADING PGM "
LEFTJ put message in display
ENCPOO
FPAL find links and return to MMTORAM

ESMLDL-0S

MKPR

$000

FPAL

OFEE get third byte to "ST" from address in "AL3-01"

set private bit

set indication for cpu of private

PTBYTA
NFRPU return and update private status

70

no entry points used

x
k
k

kx

ORG $FFB
*

FCB $001 revision level is A

FCB $020
*

FCB $013 revision code is AS

FCB $001
*

FCB $168 checksum
*

*

END
*

F6363633636II36363II666363636363IF66636333636369636369636696903696969636696363636963636363636336F96099636-96969699696-9696963969%

* *

* END OF ASSEMBLY LISTING *

* *

F636363I3JEIE36IE36IEI36HIEIEIIIEHIEIIEIEIIIEIIIIIHIEHIEIEIIEHIIIHHIEHIIIIHIWIIEIEIEIEIEIIIAIEIHIEIEIEE

ERAMCO SYSTEMS

k
k
k

k
o
k

kK
k

*k

71

